NOT MEASUREMENT SENSITIVE

> MIL-HDBK-17-2F Volume 2 of 5 <u>17 JUNE 2002</u>

> SUPERSEDING MIL-HDBK-17-2E Volume 2 of 5 24 MAY 1999

DEPARTMENT OF DEFENSE HANDBOOK

COMPOSITE MATERIALS HANDBOOK

VOLUME 2. POLYMER MATRIX COMPOSITES MATERIALS PROPERTIES

This handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA CMPS

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Volume 2, Foreword / Table of Contents

FOREWORD

- 1. This Composite Materials Handbook Series, MIL-HDBK-17, are approved for use by all Departments and Agencies of the Department of Defense.
- 2. This handbook is for guidance only. This handbook cannot be cited as a requirement. If it is, the contractor does not have to comply. This mandate is a DoD requirement only; it is not applicable to the Federal Aviation Administration (FAA) or other government agencies.
- Every effort has been made to reflect the latest information on polymer (organic), metal, and ceramic composites. The handbook is continually reviewed and revised to ensure its completeness and currentness. Documentation for the secretariat should be directed to: Materials Sciences Corporation, MIL-HDBK-17 Secretariat, 500 Office Center Drive, Suite 250, Fort Washington, PA 19034.
- 4. MIL-HDBK-17 provides guidelines and material properties for polymer (organic), metal, and ceramic matrix composite materials. The first three volumes of this handbook currently focus on, but are not limited to, polymeric composites intended for aircraft and aerospace vehicles. Metal matrix composites (MMC) and ceramic matrix composites (CMC), including carbon-carbon composites (C-C) are covered in Volume 4 and Volume 5, respectively.
- 5. This standardization handbook has been developed and is being maintained as a joint effort of the Department of Defense and the Federal Aviation Administration.
- 6. The information contained in this handbook was obtained from materials producers, industry, reports on Government sponsored research, the open literature, and by contact with research laboratories and those who participate in the MIL-HDBK-17 coordination activity.
- 7. All information and data contained in this handbook have been coordinated with industry and the U.S. Army, Navy, Air Force, NASA, and Federal Aviation Administration prior to publication.
- 8. Copies of this document and revisions thereto may be obtained from the Document Automation and Production Service (DAPS), Bldg. 4D, (DODSSP/ASSIST), 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.
- Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

ACKNOWLEDGEMENT

The services necessary for the development and maintenance of the Composite Materials Handbook (MIL-HDBK-17) are provided by the handbook Secretariat, Materials Sciences Corporation. This work is performed under contract with the US Army Research Laboratory (Contract Number DAAL01-97-C-0140).

The primary source of funding for the current contract is the Federal Aviation Administration. Other sources include NASA, Army, Department of Energy, and Air Force. Volunteer committee members from government, industry, and academia coordinate and review all the information provided in this handbook. The time and effort of the volunteers and the support of their respective departments, companies, and universities make it possible to insure completeness, accuracy, and state-of-the-art composite technology.

CONTENTS

<u>PARAG</u>	RAPH	PA	<u>GE</u>
FOREW	VORD		ii
Summa	ary of Cl	hanges	ĸi
СНАРТ	ER 1	GENERAL INFORMATION	1
1.1		ODUCTION	1
1.1		POSE AND SCOPE OF VOLUME 2	
1.2		ANIZATION OF DATA IN HANDBOOK	
1.5	1.3.1	Fiber properties	
	1.3.2	Matrix properties	
	1.3.3	Composite properties	
1.4		SENTATION OF DATA	
	1.4.1	Data set description	
	1.4.2	Summary tables	
	1.4.3	Individual data tables - normalized data1	1
	1.4.4	Individual data tables - unnormalized data	
	1.4.5	Individual data tables - notched laminate data	
	1.4.6	Individual data tables - bearing data	
	1.4.7	Individual data tables - bearing/bypass data1	
1.5	MATI	ERIALS SYSTEMS	
	1.5.1	Materials system codes	
	1.5.2	Index of materials	
1.6	MATI	ERIAL ORIENTATION CODES	0
	1.6.1	Laminate orientation codes	0
	1.6.2	Braiding orientation codes	2
1.7	SYM	BOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS	2
	1.7.1	Symbols and abbreviations	2
		1.7.1.1 Constituent properties	
		1.7.1.2 Laminae and laminates	8
		1.7.1.3 Subscripts	9
		1.7.1.4 Superscripts	
		1.7.1.5 Acronyms	
	1.7.2	System of units	
		INITIONS	0
REF	ERENC	5	5
СНАРТ	ER 2	FIBER PROPERTIES	1
2.1	INTR	ODUCTION	1
2.2	CAR	BON FIBERS	1
2.3		MID FIBERS	
2.4		SS FIBERS	
2.5		ON FIBERS	
2.6		MINA FIBERS	
2.7		CON CARBIDE FIBERS	
2.8	QUA	RTZ FIBERS	1

CONTENTS

<u>PARAG</u>	RAPH		PAGE
СНАРТ	ER 3	MATRIX PROPERTIES	1
3.1	INTR	ODUCTION	1
3.2		KIES	
-	3.2.1	General Characteristics	
	3.2.2	Index of Supplies, Designations, and Abbreviations	
3.3		ESTERS.	
3.4		NOLICS	
3.5	SILIC	ONES	1
3.6		ALEIMIDES	
3.7		BENZIMIDAZOLES	
3.8		/IMIDES, THERMOSET	
3.9	POLY	ETHERETHERKETONES	1
3.10		PHENYLENE SULFIDES	
3.11	POLY	ETHERIMIDES	1
3.12	POLY	/SULFONES	1
3.13	POLY	AMIDE-IMIDES	1
3.14	POLY	'IMIDES, THERMOPLASTICS	1
СНАРТ	ER 4	CARBON FIBER COMPOSITES	1
4.1	INTR	ODUCTION	1
4.2	CARE	BON - EPOXY COMPOSITES	1
	4.2.1	T-500 12k/976 unidirectional tape	
	4.2.2	HITEX 33 6k/E7K8 unidirectional tape	
	4.2.3	AS4 12k/E7K8 unidirectional tape	
	4.2.4	Celion 12k/E7K8 unidirectional tape	
	4.2.5	AS4 12k/938 unidirectional tape	
	4.2.6	T-300 3k/934 plain weave fabric	
	4.2.7	Celion 12k/938 unidirectional tape	
	4.2.8	AS4 12k/3502 unidirectional tape	63
	4.2.9	Celion 3000/E7K8 plain weave fabric	78
	4.2.10		
	4.2.11	AS4 3k/E7K8 plain weave fabric	105
	4.2.12	AS4/3501-6 (bleed) unidirectional tape	110
	4.2.13	AS4/3501-6 (no bleed) unidirectional tape	120
	4.2.14	AS4 3k/3501-6 plain weave fabric	129
	4.2.15	AS4 3k/3501-6S 5-harness satin weave fabric	138
	4.2.16	AS4 6k/3502-6S 5-harness satin weave fabric	144
	4.2.17	T-300 15k/976 unidirectional tape	152
	4.2.18	IM7 12k/8551-7A unidirectional tape	163
	4.2.19	AS4 3k/3501-6 5-harness satin weave fabric	164
	4.2.20	AS4 3k/3501-6 5-harness satin weave fabric	173
	4.2.21	IM6 3501-6 unidirectional tape	181
	4.2.22	IM7 12k/8552 unidirectional tape	181
		T300 3k/977-2 plain weave fabric	
		T-300 3k/977-2 8-harness satin weave fabric	
	4.2.25	IM7 12k/977-2 unidirectional tape	181
	4.2.26	AS4 6k/PR500 5-harness satin weave fabric	182
		T300 3k/EA9396 8-harness satin weave fabric	
		AS4 12k/997 unidirectional tape	
	4.2.29	T650-35 12k/976 unidirectional tape	227

Volume 2 Foreword / Table of Contents

CONTENTS

PAGE

PARAGRAPH

IM7 12k/PR381 unidirectional tape...... 235 4.2.30 4.2.31 IM7 6k/PR500 4-harness satin weave fabric 235 4.2.32 4.2.33 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.5 4.5.1 4.6 4.7 4.8 49 4.9.1 **CHAPTER 5** ARAMID FIBER COMPOSITES.....1 INTRODUCTION......1 5.1 ARAMID - EPOXY COMPOSITES...... 1 5.2 ARAMID - POLYESTER COMPOSITES...... 1 5.3 ARAMID - BISMALEIMIDE COMPOSITES 1 5.4 5.5 ARAMID - POLYIMIDE COMPOSITES...... 1 5.6 ARAMID - PHENOLIC COMPOSITES 1 ARAMID - SILICON COMPOSITES 1 5.7 ARAMID - POLYBENZIMIDAZOLE COMPOSITES 1 5.8 5.9 ARAMID - PEEK COMPOSITES 1 **CHAPTER 6** GLASS FIBER COMPOSITES......1 6.1 GLASS\EPOXY COMPOSITES.....1 6.2 6.2.1 S2-449 43k/SP381 unidirectional tape1 6.2.2 S2-449 17k/SP 381 unidirectional tape15 6.2.3 6.2.4 6.3 6.4 6.5 6.6

CONTENTS

PARAG	RAPH	PAGE
6.7	GLASS - SILICONE COMPOSITES	45
6.8	GLASS - POLYBENZIMIDAZOLE COMPOSITES	
6.9	GLASS - PEEK COMPOSITES	
СНАРТ	ER 7 BORON FIBER COMPOSITES	1
7.1	INTRODUCTION	1
7.1	BORON - EPOXY COMPOSITES	
7.2	BORON - POLYESTER COMPOSITES	1
7.4	BORON - BISMALEIMIDE COMPOSITES	
7.4	BORON - BISMALEIMIDE COMPOSITES	
	BORON - POLYIMIDE COMPOSITES BORON - PHENOLIC COMPOSITES	
7.6	BORON - PHENOLIC COMPOSITES	
7.7	BORON - SILICON COMPOSITES BORON - POLYBENZIMIDAZOLE COMPOSITES	
7.8 7.9	BORON - POLYBENZIMIDAZOLE COMPOSITES BORON - PEEK COMPOSITES	
CHAPT	ER 8 ALUMINA FIBER COMPOSITES	1
8.1	INTRODUCTION	
8.2	ALUMINA - EPOXY COMPOSITES	
8.3	ALUMINA - POLYESTER COMPOSITES	1
8.4	ALUMINA - BISMALEIMIDE COMPOSITES	1
8.5	ALUMINA - POLYIMIDE COMPOSITES	
8.6	ALUMINA - PHENOLIC COMPOSITES	
8.7	ALUMINA - SILICON COMPOSITES	
8.8	ALUMINA - POLYBENZIMIDAZOLE COMPOSITES	
8.9	ALUMINA - PEEK COMPOSITES	1
СНАРТ	ER 9 SILICON CARBIDE FIBER COMPOSITES	1
9.1	INTRODUCTION	1
9.2	SILICON CARBIDE - EPOXY COMPOSITES	
9.3	SILICON CARBIDE - POLYESTER COMPOSITES	
9.4	SILICON CARBIDE - BISMALEIMIDE COMPOSITES	1
9.5	SILICON CARBIDE - POLYIMIDE COMPOSITES	
9.6	SILICON CARBIDE - PHENOLIC COMPOSITES	
9.7	SILICON CARBIDE - SILICON COMPOSITES	
9.8	SILICON CARBIDE - POLYBENZIMIDAZOLE COMPOSITES	
9.9	SILICON CARBIDE - PEEK COMPOSITES	
СНАРТ	ER 10 QUARTZ FIBER COMPOSITES	
	INTRODUCTION	
	QUARTZ - EPOXY COMPOSITES	
	QUARTZ - POLYESTER COMPOSITES	
10.4	QUARTZ - BISMALEIMIDE COMPOSITES	
	10.4.1 Astroquartz II/F650 8-harness satin weave fabric	2
	QUARTZ - POLYIMIDE COMPOSITES	
10.6	QUARTZ - PHENOLIC COMPOSITES	6

CONTENTS

PARAGRAPH
10.7QUARTZ - SILICONE COMPOSITES610.8QUARTZ - POLYBENZIMIDAZOLE COMPOSITES610.9QUARTZ - PEEK COMPOSITE6
APPENDIX A1. MIL-HDBK-17A DATA 1
A1.1GENERAL INFORMATION1A1.2INTRODUCTION2A1.3HANDBOOK TEST PROGRAM2A1.3.1Objectives2A1.3.2Preimpregnated materials2A1.3.3Test panels2A1.3.4Test procedures3A1.3.4.1Tensile tests3A1.3.4.2Compression tests3A1.3.4.3Shear tests3A1.3.4.4Interlaminar shear3A1.3.4.5Flexural tests3A1.3.4.6Bearing strength3
A1.3.4.6 Bearing strength 3 A1.3.5 Dry conditioning 3 A1.3.6 Wet conditioning 4 A1.3.7 Test schedule 4 A1.4 DATA PRESENTATION 4 A1.4.1 Epoxy-fiberglass laminates 4 A1.4.2 Phenolic-fiberglass laminates 4 A1.4.3 Silicone-fiberglass laminates 4 A1.4.4 Polyester-fiberglass laminates 4 A1.4.5 Boron-epoxy laminates 5 REFERENCES 72

Volume 2, Foreword / Table of Contents

CONTENTS

PAGE

<u>TABLE</u>

Volume 2, Foreword / Table of Contents

CONTENTS

FIGURE

A1.4.1(b)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (26% resin)	.A1-26
A1.4.2(a)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (26% resin)	.A1-27
A1.4.2(b)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (26% resin)	.A1-28
A1.4.4 Pc	bisson effects for F-161/7781 fiberglass epoxy (26% resin)	.A1-29
A1.5.1(a)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (31% resin)	.A1-31
A1.5.1(b)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (31% resin)	.A1-32
A1.5.2(a)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (31% resin)	.A1-33
A1.5.2(b)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (31% resin)	.A1-34
A1.5.4 Po	pisson effects for F-161/7781 fiberglass epoxy (31% resin)	.A1-35
A1.6.1(a)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (36% resin)	.A1-37
A1.6.1(b)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (36% resin)	.A1-38
A1.6.2(a)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (36% resin)	.A1-39
A1.6.2(b)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (36% resin)	.A1-40
A1.6.3 Pi	cture frame shear for F-161/7781 fiberglass epoxy (26%, 315, 36% resin)	.A1-41
A1.6.4 Pc	pisson effects for F-161/7781 fiberglass epoxy (36% resin)	.A1-42
A1.6.5 Vo	bids vs. resin content and specific gravity for F-161/7781 fiberglass epoxy (26%, 31%, 36% resin)	.A1-43
A1.6.6 Th	nickness vs. resin content for F-161/7781 fiberglass epoxy	.A1-44
A1.8.1(a)	Tensile stress-strain for N588/7781 fiberglass epoxy loaded in the 0° direction	.A1-47
A1.8.1(b)	Tensile stress-strain for N588/7781 fiberglass epoxy loaded in the 90° direction	.A1-48
A1.8.2(a)	Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 0° direction	.A1-49

Volume 2, Foreword / Table of Contents

CONTENTS

FIGURE

A1.8.2(b) Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 90° directionA1-51
A1.8.3 Rail shear for N588/7781 fiberglass epoxyA1-52
A1.8.4 Poisson effects for N588/7781 fiberglass epoxy
A1.8.5 Voids vs. resin content and specific gravity for N588/7781 fiberglass epoxy
A1.40.1(a) Tensile stress-strain for N506/7781 fiberglass phenolic loaded in the 0° directionA1-57
A1.40.1(b) Tensile stress-strain for N506/7781 fiberglass phenolic loaded in the 90° directionA1-58
A1.40.2(a) Compressive stress-strain for N506/7781 fiberglass phenolic loaded in the 0° direction
A1.40.2(b) Compressive stress-strain for N506/7781 fiberglass phenolic loaded in the 90° direction
A1.40.3 0° - 90° rail shear for N506/7781 fiberglass phenolicA1-61
A1.40.4 Poisson effects for N506/7781 fiberglass phenolic
A1.40.5 Voids vs. resin content and specific gravity for N506/7781 fiberglass phenolicA1-63
A1.110.1 Tensile stress-strain for AVCO 5505 boron/epoxy (100% - 0° orientation/50.3% to 35% fiber volume) loaded in the 0° and 90° directionA1-65
A1.110.2 Compressive stress-strain for AVCO 5505 boron/epoxy (100% - 0° orientation loaded in the 0° direction
A1.110.3 Poisson effects for AVCO 5505 boron/epoxy (100% - 0° direction)A1-67
A1.111.1(a) Tensile stress-strain for AVCO 5505 boron/epoxy (0° - 90° crossply) loaded in the 0° direction
A1.111.1(b) Tensile stress-strain for AVCO 5055 boron/epoxy (0° - 90° crossply) loaded in the 45° direction
A1.111.3 Poisson effects for AVCO 5055 boron/epoxy (0° - 90° crossply)A1-71
REFERENCESA1-72
<u>INDEX</u> I-1
CONCLUDING MATERIALC-1

Volume 2, Foreword / Table of Contents

SUMMARY OF CHANGES IN REVISION MIL-HDBK-17-2F

<u>Chapter</u>	Section	Title	Change type
1 1.4 Pre-		Presentation of Data	revision
	1.4.3	Individual data tables-normalized data	revision
	1.4.4	Individual data tables-unnormalized data	new
	1.4.5	Individual data tables-notched laminate data	new
	1.4.6	Individual data tables-bearing data	new
	1.4.7	Individual data tables-bearing/bypass data	new
4	4.2.27	T300 3k/EA 9396 8-harness satin fabric	new
	4.2.28	AS4 6k/PR500 5-harness satin fabric	new
	4.2.29	T650-35 12k/997 unidirectional tape	new
	4.2.31	IM7 6k/PR500 4 harness satin fabric	new
	4.2.32	T650-35 3k/976 8-harness satin fabric	new
	4.2.33	T700S 12k/3900-2 plain weave fabric	new
	4.2.34	T800H 12k/3900-2 unidirectional tape	new
	4.2.35 T650-35 3k/976 plain weave fabric		new
	4.4.5 IM7 6k/5250-4 RTM 4-harness satin fabric		new
	4.4.6	T650-35 3k/5250 8-harness satin fabric	new
	4.4.7	T650-35 3k/5250-4 plain weave fabric	new
	4.10	CARBON-CYANATE ESTER COMPOSITES	new
	4.10.1	M55J 6k/954-3 unidirectional tape	new
6	6.2.4	E-Glass 7781/EA 9396 8-harness satin weave	new

Volume 2, Chapter 1 General Information

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION

The standardization of a statistically-based mechanical property data base, procedures used, and overall material guidelines for characterization of composite material systems is recognized as being beneficial to both manufacturers and governmental agencies. It is also recognized that a complete characterization of the capabilities of any engineering material system is primarily dependent on the inherent material physical and chemical composition which precede, and are independent of, specific applications. Therefore, at the material system characterization level, the data and guidelines contained in this handbook are applicable to military and commercial products and provide the technical basis for establishing statistically valid design values acceptable to certificating or procuring agencies.

This standardization handbook has been developed and is maintained as a joint effort of the Department of Defense and the Federal Aviation Administration. It is oriented toward the standardization of methods used to develop and analyze mechanical property data on current and emerging composite materials.

1.2 PURPOSE AND SCOPE OF VOLUME 2

A primary focus of this Handbook is guidance on the selection and use of composite materials. The data collected within this volume are presented to allow initial assessments of material adequacy for a particular application. It provides a common database that will allow significant reductions in the amount of validation data necessary to use the data for design purposes. This handbook cannot be cited as a DoD contractor requirement.

This handbook volume provides a standard source of statistically based mechanical property data for current and emerging polymeric matrix composite materials. Physical, chemical, and mechanical values of the composite constituents - the fibers, matrix material, and prepreg - are reported where applicable. Subsequent chapters include data summaries for the various composite systems. Individual chapters focus on particular type of reinforcement fiber. Strength and strain-to-failure properties are reported in terms of mean and A-values and/or B-values. The A and B statistical allowable values are determined by the procedures of Volume 1. Only mean values are reported for stiffnesses. Maximum and minimum data points, and coefficients of variation are reported for all data items.

The verification of the ability to attain equivalent statistical properties to the required level of risk (probability and confidence) is the responsibility of the user. The verification of the ability of a manufacturer to attain the same statistical properties should be performed as outlined in Volume 1, Chapter 2. The specific process to leverage the data in this volume is described in Volume 1, Section 2.3.7.

The source and context for much of the handbook data sets has historically come from experience with aerospace flight-critical structures. However, all transportation industries (aerospace, ground, rail, and marine), whether commercial or military, as well as other applications including civil infrastructure and general industrial products, will find the handbook useful. Incorporation of additional information related to broader applications is ongoing. Initial input has led to predominantly lamina mechanical properties of prepreg tape and fabric. The range of materials has expanded to cover resin transfer molded and repair materials. The range of properties covered has expanded to laminate mechanicals. Expansion of the ranges of both properties and material forms is expected to continue.

Statistically based strength properties are defined for each composite material system over the usable range of environment. The intent is to provide data at the upper and lower limits of the environmental range for a particular material. If intermediate environmental condition data are available, they are included to assist in defining the relationship over the environmental range. The statistically based strength data can be used as a starting point for establishing structural design allowables when stress and

Volume 2, Chapter 1 General Information

strength analysis capabilities permit lamina and laminate level margin of safety checks. Depending on the application, some structural design allowables will have to be determined empirically at higher testing levels (element, sub-component, full-scale) as they may be dependent on design geometry and philosophies. Additional information and properties will be added to this Volume as they become available and are demonstrated to meet the handbook's criteria.

All statistical data included herein are based on test specimens only. Unless otherwise noted, test specimen dimensions conform to those specified for the particular test method that is used. Standard test methods are recommended in Volume 1. In Volume 2, data are limited to those obtained from recommended in Volume 1. The data contained in this volume may have been provided by more than one source. Where more than one source for data is used for a reported property, the variability of the data from source to source has been reviewed statistically in accordance with Volume 1, Chapters 2 and 8. If the variability has been sufficiently small for the data to be considered from the same population, the data sets are combined and treated as one data set. Where there are reasons for differences among the data sets, both data sets are presented (for example, Volume 2, Section 4.2.8).

The designer, manufacturer and all users are responsible for any translation of the data contained herein to other production sites, specimen dimensions, temperature, humidity, and other environmental conditions not specifically identified in this document. Issues not addressed in this document are scaleup effects and the influence of the selected test method on properties. In general, decisions concerning which properties to use for a specific application or design are the responsibility of the user and are outside the scope of this handbook. MIL-HDBK-17, Volume 3, addresses some of the relevant issues regarding design usage of the data in this volume. It is the responsibility of the handbook user to meet end use, customer and regulatory requirements.

An overview of the material, guidelines for its usage, and details of the statistical and technical analysis of the data are provided at the beginning of each section of Chapters 4 through 10. The format of all information in each data set is described in detail in Section 1.4. A more detailed description of fibers and/or matrix materials may be found in Volume 3, Chapter 2.

1.3 ORGANIZATION OF DATA IN HANDBOOK

The data in Volume 2 is divided into chapters of fiber properties, resin properties, and composite properties organized by fiber and then resin.

1.3.1 Fiber properties

Chapter 2 in Volume 2 will provide data for fiber properties. Sections are to be included for different types of fiber, e.g., glass fibers and carbon fibers. Fiber properties and methods for obtaining them are discussed in Volume 1, Chapter 3.

1.3.2 Matrix properties

Matrix or resin properties will be included in Chapter 3 which will be divided into sections according to the type of resin. For example, Section 3.2 will give data for epoxies and Section 3.3 will provide data for polyester resins. Resin properties and methods for obtaining them are presented in Volume 1, Chapter 4.

1.3.3 Composite properties

The remaining chapters of Volume 2 will provide data for prepreg, lamina, laminate, and joint properties. Methods for characterizing materials are discussed in Volume 1, Chapter 5, and properties and definitions for laminae and laminates are presented in Volume 1, Chapter 6. Properties for structural elements are presented in Volume 1, Chapter 7. The statistical methods used in determining these proper-

Volume 2, Chapter 1 General Information

ties are discussed in Volume 1, Chapter 8. There will be individual chapters for each family of composites based on fiber type. For example, Chapter 4 describes carbon fiber composites.

1.4 PRESENTATION OF DATA

This section provides information on how the data are presented in this volume, both to help understand the data as presented and to ensure the data presentation is consistent. Information enclosed in {}'s represents data that should be included in a given field. Information that is not applicable or not available is omitted.

Each section is titled based on the following information.

{Fiber Commercial Name} {Filament Count}/{Matrix Commercial Name} {Tape/Weave Type/Weave Style} {Critical Processing Information}

Examples of the tape/weave type include unidirectional tape, plain weave, and five-harness satin weave. Weave styles are descriptive codes most commonly used for glass fabrics, such as 7781. Additional information is shown when it is necessary to discriminate between data sets. This includes material information such as glass surface finish or critical processing information, such as bleed or no-bleed. If a warning regarding data documentation is included for the data set, an asterisk follows the section title.

Each section contains three types of information (Figure 1.4). The data set description identifies the

specific material system, provides selected supplier information, and discusses any anomalies which appeared during data sets. The summary data tables give an overview of property types and data classes included in the section. The individual data tables provide the details of data analysis. A separate individual data table is included for each test type, loading direction, and lay-up in the data set. The following describe the content and format for each of these subsections.

1.4.1 Data set description

The first page of each section presents general information.

Material Description:

Material - {Fiber Commercial Name} {Filament Count}/ {Matrix Commercial Name} for the material tested.

 Individual

 Data Tables

 Summary Data

 Tables

 Data Set

 Description

FIGURE 1.4 Types of information in each data section.

Form - Description of material tested including unidirectional tape or weave type, nominal fiber areal weight, typical cured resin content, typical cured ply thickness, sizing, tackifier or binder (class, form, manufacturer, and common name), and/or scrim fiber class and scrim fabric style as relevant. This information is specific to the data set that follows it.

Processing - Description of processing including information listed under Process Description in Volume 1, Table 2.5.6.

General Supplier Information: This section presents information often provided by the material supplier. There are no requirements for substantiation of this information.

Fiber: Often includes precursor, surface treatment, twist, filament count, typical tensile modulus or modulus family, and typical tensile strength.

Volume 2, Chapter 1 General Information

Matrix: Often includes resin type, cure temperature family, description of characteristics.

Maximum Service Temperature: For dry and wet conditions.

Typical Applications: Brief description of applications. May be as generic as "general purpose structural applications" or more specific based on critical characteristics.

Data Analysis Summary: This section contains pertinent information from the statistical analysis of the data. If no other information is included in this section, no data analysis.

Testing: Often includes information on documented deviations from standard test method.

Outliers: Often includes information on the outliers observed, particularly after pooling batches, and their disposition (see Volume 1, Sections 2.5.8 and 2.4.4).

Batch Definition: Often includes information on independence of fiber and matrix lots used in the composite batches.

Batch-to-Batch Variability and Pooling of Data Sets: Often includes information on decision-making for pooling based on batch-to-batch variability. May also contain information on relative batch behavior, such as one batch consistently providing results different from other batches.

Additional Information: For any notes or comments to highlight other concerns by the Secretariat or Data Review working group during analysis and review of the data.

Processing Trace: When available, a processing trace will be presented. Included will be the processing history based on the specification including ramp rates and relative timing of the application of the various processing parameters.

Lay-Up Schematic: When available, a sketch of the processing lay-up will be presented. Included will be bagging, damming, bleeder material, and so on.

The remaining pages in each data section represent data analyzed by the Secretariat, evaluated by the Data Review working group, and approved by the Coordination Group. These data are presented in tables that are described in more detail below. Tables in each section are organized in the same order the properties are listed in the summary tables.

1.4.2 Summary tables

The format for the first page of summary information is shown in Table 1.4.2(a). Details for different portions of the figure are indexed to descriptions in the text by numbered circles.

The first set of information in a data section is a summary table containing information on the materials, processing, etc. The box with a heavy border in the upper right-hand corner identifies the first summary table.

{Fiber Class}/{Matrix Class} {Nominal FAW} - {Tape/Weave Type} {Fiber}/{Matrix} Summary

Volume 2, Chapter 1 General Information

This box contains the fiber/matrix class of the material, such as carbon/epoxy, identified using the material system codes in Section 1.5.1. With the fiber and matrix classes is the nominal fiber areal weight and the abbreviated tape/weave type. Abbreviations for tape and weave type include UT (unidirectional tape), PW (plain weave), or *n*HS (*n*-harness satin) The material identification is summarized by the fiber and matrix names.

Material information is presented for the composite, the preconsolidation form, the fiber, and the matrix. Composite material identification, presented in the Material slot, is the same as the section title.

The preconsolidation Form description depends on the form type. For prepregs, the Form description includes

{Manufacturer} {Commercial Name} {Weave pattern} {Tape/Weave Type} prepreg

For prepregged fabric, information such as warp and fill fiber spacing is included when it is available. For RTM and wet fabric lay-up, the Form description includes

{Weaver} {Fabric Style if glass} {Weave Pattern}{tow/in x tow/in} {Fabric Sizing Identification} {Fabric Sizing Content}, {Tackifier} tackifier + {liquid/film} resin

If a binder is used, information on the binder replaces information on a tackifier.

Fiber identification includes {Manufacturer} {Commercial Name} {Filament Count} {Sizing} {Sizing Amount} {Twist} {[not] surface treated/surface treatment type}. Resin identification is presented as {Manufacturer} {Commercial Name}.

- Overall processing information is presented as Reinforcement Application Process (how the fiber/preform was put together) followed by Cure Process Type (how the part was cured/molded) from Table 1.4.2(b). Basic processing information for one or more processing steps, including the type of processing step (from Table 1.4.2(b), temperature, pressure, duration, and any other critical parameters, is presented. A more complete description may be provided in graphical form as part of the summary information (see Section 1.4.1).
- Glass transition temperature under dry and wet conditions is presented with the test method used to obtain these data (See Volume 1, Section 6.6.3). These may be nominal values obtained from the matrix supplier.
- Any warning for limited data documentation is presented on each page of data presentation. On the first page of the data section, a warning is shown below the material identification block.
- 6 The block below the material identification block presents various dates relevant to the fabrication and testing of the material. The date of data submittal determines the data documentation requirements that were used for the data set (Volume 1, Section 2.5.6) and the date of analysis determines the statistical analysis that was used (Volume 1, Section 8.3). Ranges of dates are presented where appropriate, such as for a testing program that lasted several months.
- Lamina properties are summarized with the class of data provided for each property. The columns of the lamina property summary table define the environmental conditions. The first column contains room temperature ambient or dry data. Dry is used only if a drying procedure was used. Ambient refers to as-fabricated with subsequent storage in an ambient laboratory environment. The remaining columns are ordered from lowest to highest moisture content and within a given moisture content, from lowest to highest temperature. If there is enough space, a blank column separates the room temperature ambient/dry column from the other columns and each moisture condition from the others.

Volume 2, Chapter 1 General Information

The rows of the lamina summary table identify the type test and direction. The basic mechanical properties are included in each summary table. If data are available, additional properties are appended in the following order:

SB strength, 31-plane	GIC	CTE 1-axis
SB strength, 23-plane	Gile	CTE 2-axis
		CTE 3-axis

8

For each test type and direction, the symbol for each class of data for the strength, modulus, Poisson's ratio, and strain-to-failure is provided, in that order. The symbols are listed in Table 1.4.2(c). For example, if the entry under RTA and Tension, 1-axis is BI-S, there is room temperature ambient data for longitudinal tension strength, modulus, and strain-to-failure. The dash indicates that there are no Poisson's ratio data. The strength data are B30 (robust sampling), the modulus data are interim, and the strain-to-failure data are screening. Data classes are defined in Volume 1, Section 2.5.1, and summarized in Table 1.4.2(c). Certain test methods, for example, short beam strength, result only in screening data.

Volume 2, Chapter 1 General Information

TABLE 1.4.2(a) Summary table format, first page.

MATERIAL:		Fiber} {Filament-Count}/{Matrix} {Weave pattern}			0	
FORM:	{input dep	ends on type	of preconsolio	dation form and pro	ocessing}	
FIBER:	{Manufacturer} {Commercial Name} MATRIX: {Manufacturer} {Commercial Name {Filament Count} {Sizing} {Twist}			ercial Name}		
PROCESSING:	{Reinforcement Application}, {Mold Type} {Type of Processing Step}: {Temperature}, {Duration}, {Pressure}				re}, {Duration},	
T _g (dry):	XXX°F	Tg(wet):	XXX°F	Tg METHOD:	{Method}	

*{Warning} **6**

Date of fiber manufacture	MM/YY	Date of testing	MM/YY
Date of resin manufacture	MM/YY	Date of data submittal	MM/YY
Date of prepreg manufacture	MM/YY	Date of analysis	MM/YY
Date of composite manufacture	MM/YY		6

LAMINA PROPERTY SUMMARY

	{RTA}	{Ambient/dry, coldest to hottest}	{Wet, coldest to hottest}	
Tension, 1-axis				
Tension, 2-axis				
Tension, 3-axis				
Compression, 1-axis				
Compression, 2-axis		The data class is noted		
Compression, 3-axis		for each type test/direction/		
Shear, 12-plane		environmental-condition combination		
Shear, 23-plane				
Shear, 31-plane				
{Additional type test/direction}				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: 8

A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c)).

Volume 2, Chapter 1 General Information

TABLE 1.4.2(b) Composite reinforcement application, cure process type, and processing step descriptions.

Reinforcement Application Process	Cure Process Type	Type of Processing Step
automated fiber placement - tape automated fiber placement - towpreg automated fiber placement - wet automated lay-up - prepreg automated lay-up - wet hand lay-up - prepreg hand lay-up - wet preform - braid preform - weave spray wound - dry wound - prepreg	compression molding diffusion bonding injection molding - vacuum assisted injection molding - reaction injection molding - liquid oven autoclave hydroclave trapped rubber pultrusion resin transfer molding VARTM [vacuum-assisted resin transfer molding] vacuum infiltration vapor deposition e-beam	age-harden anneal consolidate [pre-cure] cooldown cure - bleed cure - no bleed debulk densify injection isothermal dwell part insertion part removal postcure preform insertion preheat
	induction	

 TABLE 1.4.2(c) MIL-HDBK-17 data classes and minimum sampling requirements.

			Minimum I	Requirements
Designation	Symbol	Description	Number of Batches	Number of Specimens
A75	А	A-basis – Robust Sampling	10	75
A55	а	A-basis – Reduced Sampling	5	55
B30	В	B-Basis – Robust Sampling	5	30
B18	b	B-Basis – Reduced Sampling	3	18
М	М	Mean	3	18
I	I	Interim	3	15
S	S	Screening	1	5

Volume 2, Chapter 1 General Information

Continuing on the second page of summary information (Table 1.4.2(d)):

- (1) Any warning is placed at the top of this page.
- The box at the top of the second page of summary information presents basic physical parameters for the data set. The first data column contains nominal values, typically specification information. This information may not match information directly applicable to this data set. For example, the nominal fiber volume according to the prepreg manufacturer may be one value, while the data are normalized to a different value based on Volume 1, Section 2.5.7, to provide consistency within the handbook. One or more of the nominal values can be calculated from other information if the values are not otherwise available. For example, if unavailable the nominal composite density will be calculated from nominal fiber density, matrix density, and fiber volume. In this case, a note describes the calculation. If the nominal fiber volume was not supplied by the data source, it was calculated based on resin content, fiber density and composite density, assuming void content is 0%.
- (3) The second data column presents the range of values for the data set submitted. These data may not correlate directly with each other. For example, fiber volume and fiber areal weight may be batch average measurements, while the cured ply thickness values are generally based on individual specimen measurements.
- (4) The last column presents the test method used to obtain these data. This information was not included in the early versions of data documentation requirements.
- (5) Laminate property data are summarized in the lower box in the same way as lamina property data are summarized on the previous page. Families of laminates are provided with properties listed below each laminate family. A laminate family is identified by square brackets surrounding a list of the ply orientations separated by commas. More specific lay-up information is included in the laminate summary table only if needed to differentiate among lay-ups. Specific lay-up information is provided in the detailed tables that follow. The type test and direction are included only if data are available and are based on Table 1.4.2(e).

Unless otherwise noted, the x-axis corresponds to the +0-direction of the laminate lay-up. Data included for this material are indicated by the data class symbol, identified in the footnote.

Volume 2, Chapter 1 General Information

TABLE 1.4.2(d) Summary table format, second page.

{Warning} ①

		Nominal 2	As Submitted ③	Test Method
Fiber Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Resin Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Composite Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Fiber Areal Weight	(g/m ²)	XXX	{Minimum} - {Maximum}	{Method}
Fiber Volume	(%)	XX	{Minimum} - {Maximum}	{Method}
Ply Thickness	(in)	0.0XXX	{Minimum} - {Maximum}	{Method}

LAMINATE PROPERTY SUMMARY 5

	{RTA}	{Amb	ient/dry, o	coldest to	hottest}		{Wet, c	oldest to h	ottest}
{Laminate Family}									
{Type test/direction}									
			The d	lata class	s is noted				
{Laminate Family}			for each	n type tes	st/direction/				
{Type test/direction}		env	rironment	al-condit	ion combina	tion			

 $\label{eq:classes} Classes of data in Strength/Modulus/Poisson's ratio/Strain-to-failure order \\ \texttt{A} = \mathsf{A75}, \texttt{a} = \mathsf{A55}, \texttt{B} = \mathsf{B30}, \texttt{b} = \mathsf{B18}, \texttt{M} = \mathsf{Mean}, \texttt{I} = \mathsf{Interim}, \texttt{S} = \mathsf{Screening}, \texttt{-} = \mathsf{no} \ \mathsf{data} \ (\mathsf{See} \ \mathsf{Table} \ \texttt{1.4.2(c)}).$

Volume 2, Chapter 1 General Information

Type Test (in order)			ection
Tension	Filled Hole Tension (FHT)	x-axis	xy-plane
Compression	Filled Hole Compression (FHC)	y-axis	yz-plane
Shear	Compression After Impact (CAI)	z-axis	zx-plane
Open Hole Tension (OHT)	Bearing		-
Open Hole Compression (OHC)	Bearing/Bypass		
	CTE		

TABLE 1.4.2(e) Laminate type test and directions

1.4.3 Individual data tables - normalized data

The format for a data table containing normalized material property information is shown in Table 1.4.3(a). Requirements and procedures for normalization are found in Volume 1, Section 2.5.7 and 2.4.3.

- Warnings are shown on each page for data sets that do not meet the data documentation requirements. Many of the data sets were submitted before the establishment of the data documentation requirements. Data sets that do not meet the first version of data documentation requirements or the data documentation requirements that were current when the data were submitted will not be considered for B or A data classes.
- At the top right corner of each page is a box with a heavy border. This box contains information that identifies the data set, the type of test for which results are shown, specimen orientation, test conditions, and the classes of data. The tape/weave type abbreviations are described for the top right corner of the first summary page (circle-1), Specimen orientation is provided as a lay-up code with the loading direction used as the reference axis. For example, a unidirectional specimen is described as [0]_n for 1-axis properties and [90]_n for 2- axis properties. Lay-up codes are described in Section 1.6.

{Table Number}	
{Fiber Class}/{Matrix Class} {FAW}-{Tape/Weave Type}	- FAW, fiber areal weight
{Fiber Name}/{Matrix Name}	
{Test Type}, {Direction}	
{Lay-up}	
{Test Temperature}/{Moisture Content}	- repeated for each data column
{Data Classes }	- includes symbols for all data classes
	on this page in descending order
	(from A75 to S).

Material identification is provided for the composite material as

ً₿

{Fiber} {Filament-Count}/{Matrix} {Tape/Weave Type} {Critical processing parameters}

This information should be the same as the section title and the material identification on the first page of the summary tables. The range of physical parameters, resin content, fiber volume, ply thickness, composite density, and void content, for the *cured* material are presented for the data on this particular page. The endpoints of these ranges may not correspond directly as fiber volume, resin content, and so on are generally available as a batch or panel average while the cured ply thickness values are usually based on individual specimen measurements.

Volume 2, Chapter 1 General Information

TABLE 1.4.3 Format for normalized property table. a {Warning} MATERIAL: {Fiber} {Filament count}/{Matrix} {Tape/weave type} ₿ X.XX-X.XX g/cm³ **RESIN CONTENT:** XX.X - XX.X wt% COMP: DENSITY: 2 FIBER VOLUME: XX.X - XX.X vol % VOID CONTENT: 0.X to X.X % PLY THICKNESS: 0.0XXX - 0.0XXX in. 6 4 MODULUS CALCULATION: TEST METHOD: {Method}, XXXX - XXXX {Organization} {Number} {Date} 6 NORMALIZED BY: {Method} Temperature (°F) Moisture Content (%) 0 Equilibrium at T, RH Source Code Normalized Measured Normalized Measured Normalized Measured Mean Minimum Maximum C.V.(%) 0 F_1^{tu} **B**-value Distribution (ksi) C_1 C_2 No. Specimens No. Batches Data Class Mean Minimum Maximum C.V.(%) E_1^t (Msi) No. Specimens No. Batches Data Class Mean No. Specimens v_{12}^{t} No. Batches Data Class Mean Minimum Maximum C.V.(%) **B**-value Note that the strain values presented are "as measured" $\varepsilon_1^{\rm tu}$ Distribution and may not be equivalent to stress divided by modulus (με) C_1 (linear analysis) C_2 No. Specimens No. Batches Data Class

Volume 2, Chapter 1 General Information

4

The test method is identified with the organization, number, and date. For compression after impact, the nominal impact energy level used for the test is appended to the test method, since alternate levels are often used. See Tables 1.4.5 - 1.4.7 for additional information that describes testing parameters for notched laminates, bearing, and bearing/bypass.

6

The method of calculating the modulus is presented for mechanical property data. This includes the calculation method, and the location or range of measurements used for the calculation. Unless otherwise stated (in a footnote), the same method and range is used for Poisson's ratio.

6 The normalization method is presented for data that have been normalized (See Volume 1, Section 2.4.3). The fiber volume to which the data are normalized is also included. This value is typically 60% for carbon-fiber-reinforced unidirectional material (tape) and 57% for carbon-fiber-reinforced fabric. The normalizing fiber volume for all glass-fiber-reinforced material is 50%. Types of normalization as entered are:

Normalized by fiber volume to XX% (0.0XXX in. CPT) Normalized by specimen thickness and batch fiber volume to XX% (0.0XXX in. CPT) Normalized by specimen thickness and batch fiber areal weight to XX% fiber volume (0.0XXX in. CPT)

Corresponding cured ply thickness (CPT) values, based on a nominal fiber areal weight, are included for reference for each method.

At the top of each data column are the test conditions. Nominally dry conditions, for materials that are fabricated and stored under controlled conditions are noted. Wet conditions that are not conditioned to equilibrium are also noted. The source code provides a means for identifying data sets from the same source. No other source identification is provided.

Specific properties are identified in the tables with symbols. These symbols are a combination of an initial letter with subscripts and super scripts added as appropriate. Components of the property symbols are shown in Table 1.4.3(b).

Initial letter(s)	Test type superscripts	Property descriptor superscripts	Test direction subscripts
F - strength ϵ - strain E - modulus G - shear modulus, strain energy release rate υ - Poisson's ratio CTE - coefficient of thermal expansion	t - tension c - compression s - shear sbs - short beam strength oht - open hole tension ohc - open hole compression fht - filled hole tension cai - compression after impact br - bearing byp - bypass	u - ultimate y - yield	1, 2, 3 12, 23, 31 x, y, z, xy, yz, zx

TABLE 1.4.3(b) Components used to construct property symbols.

Property symbols are created by combining these components with test type superscripts preceding property descriptor super scripts. Thus, the symbol for ultimate tensile strength in the 1 direction is F_1^{tu} . The property descriptor superscripts are only used for strength and strain. Exceptions to this rule are strain energy release rates, for example, G_{1c} , and bearing/bypass data where "byp" is used as a subscript for the bypass strength.

Volume 2, Chapter 1 General Information

Strength data and strain-to-failure data are presented in the handbook with a full set of statistical parameters. All statistical parameters are presented for normalized and as-measured strength data. All statistical parameters are presented for as-measured strain-to-failure data. Note that the strain values presented are "as measured" and may not be equivalent to stress divided by modulus (linear analyses). The normalized data column is listed first, followed by the measured data column. The data class using the designation from Table 1.4.2(c) is indicated for each property/condition combination. B-values are presented only for B and A data classes. A-basis values are presented for A data classes. The statistical distribution or method of analysis is presented. The constants, C₁ and C₂, correspond to the distribution as listed in Table 1.4.3 (c).

 C_1 for the Weibull distribution and C_1 and C_2 for the Normal distribution have the same units as the property (e.g., ksi for strength and $\mu\epsilon$ for strain). C_2 for the Weibull distribution and C_1 and C_2 for the Nonparametric method are dimensionless. For the Lognormal distribution, the units for C_1 and C_2 are log(property unit). For the ANOVA method, C_1 and C_2 are the square of the property units.

	C 1	C ₂
Weibull	scale parameter	shape parameter
Normal	mean	standard deviation
Lognormal	mean of the natural log of the data	standard deviation of the natural log of the data
Nonparametric	rank	data point (rank)
ANOVA	tolerance limit factor	estimate of the population stan- dard deviation

TABLE 1.4.3(c)	Distributions and associated constants.
----------------	---

Modulus data are presented with only mean, minimum, maximum, coefficient of variation, batch size, sample size, and data class. Values are presented for both normalized and as-measured data. Where available, Poisson's ratio data are presented with batch size, sample size, and data class information.

- 0
 - Footnotes are presented wherever additional information is pertinent. Information frequently presented in footnotes include conditioning parameters, reasons for not presenting B-values, and deviations from standard test methods.

1.4.4 Individual data tables - unnormalized data

Table 1.4.4 shows an example table for material properties that are not normalized. The basic table format and information are identical to the table format and information for normalized data. Only asmeasured data are presented in each column of information. The statistical parameters are the same provided for normalized data.

1.4.5 Individual data tables - notched laminate data

Table 1.4.5 shows the format for notched laminate data, including data from open and filled hole tests. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. Properties in the index box (upper right-hand corner) are abbreviated OHT (open hole tension), OHC (open hole compression), FHT (filled hole tension), and FHC (filled hole compression). The headers and data for fastener type, torque, hole clearance, and countersink angle & depth appear only for filled hole tests. The data are normalized according to Volume 1, Section 2.5.7, with the descriptions noted with Table 1.4.3(a). Symbols are described in Tables 1.4.3(b), Open hole tension in the x-axis direction is shown as an example.

Volume 2, Chapter 1 General Information

1.4.6 Individual data tables - bearing data

Table 1.4.6 presents the format for bearing data. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. The property in the index box (upper right-hand corner) is Bearing. The data are not normalized according to Volume 1, Section 2.5.7. Symbols are described in Tables 1.4.3(b). Bearing in the x-axis direction is shown as an example. Information on hole clearance, and countersink angle & depth appear as a footnote if applicable and available.

1.4.7 Individual data tables - bearing/bypass data

Table 1.4.7 shows the format for bearing/bypass data. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. The property in the index box (upper right-hand corner) is Bearing/Bypass. The data are not normalized according to Volume 1, Section 2.5.7. If data are available for more than one bearing/bypass ratio, they are presented in columns ordered from lowest to highest ratio for each environment. Symbols are described in Tables 1.4.3(b). Tensile bypass and bearing in the x-axis direction are shown as an example. Information on hole clearance, and countersink angle & depth appear as a footnote if applicable and available.

Volume 2, Chapter 1 General Information

{Warning}	0 T/	ABLE 1.4.4 Format format						
MATERIA	L:	{Fiber} {Filament cou	nt}/{Matrix} {	Tape/weave type	e} 🕄			
RESIN CC FIBER VO PLY THIC	LUME:	XX - XX wt% XX - XX vol % 0.0XXX - 0.0XXX in.	COMP: DENSITY: X.XX-X.XX g/cm ³ VOID CONTENT: 0.X to X.X %				9	
TEST MET	THOD:	4	MODULI	JS CALCULATI	_{ON:} 6			
{Orę	ganization}	{Number} {Date}	{Me	ethod}, XXXX - 2	ΧΧΧΧ με			
NORMALI	ZED BY:	Not normalized	6					
Temperatu Moisture C Equilibrium Source Co	Content (%) n at T, RH		0					
	Mean Minimum Maximur C.V.(%)		9					
F ₂ ^{tu} 🕄 (ksi)	B-value Distributi C ₁ C ₂	on						
	No. Spec No. Batc Data Cla	hes						
$\mathrm{E}_{2}^{\mathrm{t}}$	Mean Minimum Maximur C.V.(%)							
(Msi)	No. Spec No. Batc Data Cla	hes						
v_{21}^{t}	Mean No. Spec No. Batc Data Cla	hes						
	Mean Minimum Maximur C.V.(%)	1						
ε_2^{tu} ($\mu\epsilon$)	B-value Distribution C ₁ C ₂			"as measured	e strain values p d" and may not divided by modu analysis)	be equivalent		
	No. Spec No. Batc Data Cla	hes						

Volume 2, Chapter 1 General Information

TABLE 1.4.5 Format for notched laminate strength property table.

{Warning}	v						
MATERIA	L: {Fibe	r} {Fil. Count}/	{Matrix} {tape/\	weave type}	6		
RESIN CO FIBER VO PLY THIC	DLUME: XX-X	X wt% X % (X - 0.00XX in.	COMP. DEN VOID CONTE	ENT: X.X - X	0.0XX lb/in ³ (.X %	2	
TEST ME	THOD:	{Org. Method	- Date}	4			
SPECIME FASTENE TORQUE:		t = {thickness} { } { }	ŀ	} in., d = {diame HOLE CLEARA COUNTERSINF	NCE: (ANGLE & DE		licable} licable}
NORMALI		{Method}			6		
	Content (%) n at T,RH(°F, %)	•					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
8	Mean Minimum Maximum C.V.(%)		9				
F _x ^{oht} (ksi)	B-value Distribution C_1 C_2						
	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
F _x ^{ohc}	B-value Distribution						
(ksi)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 1 General Information

TABLE 1.4.6 Format for bearing strength property table.

{Warning}	
MATERIAL: {Fit	per} {Fil. Count} / {Matrix} {tape/weave type}
FIBER VOLUME: XX	XX wt% COMP. DENSITY: 0.0XX-0.0XX lb/in ³ XX % VOID CONTENT: X.X - X.X % 0XX - 0.00XX in. (Org. Method - Date)
TYPE OF BEARING TES	
JOINT CONFIGURATION Member 1 (t,w,lay-up): Member 2 (t,w,lay-up): FASTENER TYPE: TORQUE:	{thickness, width, lay-up } {thickness, width, lay-up } { } THICKNESS/DIAMETER: { } { } EDGE DISTANCE RATIO: { } PITCH DISTANCE RATIO: { }
NORMALIZED BY: Temperature (°F)	Not normalized YIELD STRAIN OFFSET: { }
Moisture Content (%) Equilibrium at T, RH (°F, % Source Code	6)
Mean Minimum Maximum C.V.(%)	9
8 B-value F ^{bru} Distribution	
(ksi) C ₁ C ₂	
No. Specimer No. Batches Data Class	ns
Mean Minimum Maximum C.V.(%)	
$\begin{array}{ccc} F_x^{bry} & & \\ \text{B-value} \\ \text{(ksi)} & \text{Distribution} \\ & C_1 \\ & C_2 \end{array}$	
No. Specimer No. Batches Data Class	ns

Volume 2, Chapter 1 General Information

TABLE 1.4.7 Format for bearing/bypass property table.

{Warning}	
MATERIAL: {F	iber} {Fil. Count} / {Matrix} {tape/weave type}
FIBER VOLUME: X	X-XX wt% COMP. DENSITY: 0.0XX-0.0XX lb/in ³ X-XX % VOID CONTENT: X.X - X.X % 00XX - 0.00XX in.
TEST METHOD:	{Org. Method - Date}
JOINT CONFIGURATIO Member 1 (t,w,lay-up): Member 2 (t,w,lay-up): FASTENER TYPE: TORQUE: NORMALIZED BY:	N {thickness, width, lay-up} {thickness, width, lay-up} { } { } THICKNESS/DIAMETER: { } { } EDGE DISTANCE RATIO: { } OTHONORMALIZED
Temperature (°F) Moisture Content (%) Equilibrium at T, RH (°F, Source Code	
Bearing/Bypass Ratio	
F _x ^{byp-tu} (3) Mean Minimum (ksi) Maximum C.V.(%)	9
Mean Minimum Maximum C.V.(%) B-value Distributio (ksi) C ₁ C ₂ No. Speci No. Batch Data Clas	mens es

Volume 2, Chapter 1 General Information

1.5 MATERIALS SYSTEMS

1.5.1 Materials system codes

The materials systems codes which are used in the handbook consist of a fiber system code and a matrix material code separated by a virgule (/). The codes for the fiber and matrix materials appear in Tables 1.5.1(a) and (b).

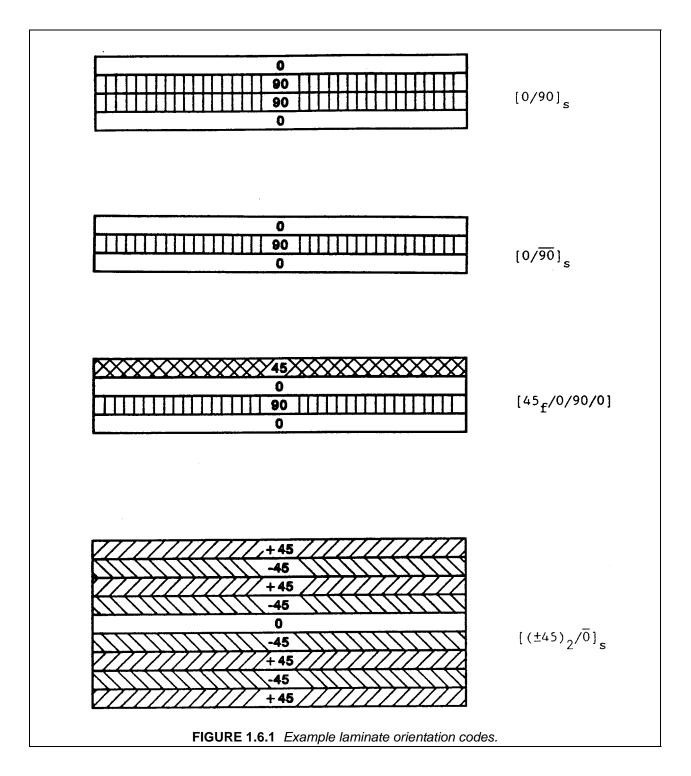
 TABLE 1.5.1(a)
 Fiber system codes.

AIO	Alumina
Ar	Aramid
В	Boron
С	Carbon
DGI	D-Glass
EGI	E-Glass
GI	Glass
Gr	Graphite
Li	Lithium
PAN	Polyacrylonitrile
PBT	Polybenzothiazole
Q	Quartz
Si	Silicon
SiC	Silicon carbide
SGI	S-Glass
Ti	Titanium
W	Tungsten

TABLE 1.5.1(b)Matrix material codes.

BMI	Bismaleimide
CE	Cyanate Ester
EP	Ероху
FC	Fluorocarbon
Р	Phenolic
PAI	Polyamide-imide
PBI	Polybenzimidazole
PEEK	Polyetheretherketone
PEI	Polyetherimide
PES	Polyethersulfone
PI	Polyimide
PPS	Polyphenylene sulfide
PSU	Polysulfone
SI	Silicone
TPES	Thermoplastic polyester

1.5.2 Index of materials


This section is reserved for future use.

1.6 MATERIAL ORIENTATION CODES

1.6.1 Laminate orientation codes

The purpose of a laminate orientation code is to provide a simple, easily understood method of describing the lay-up of a laminate. The laminate orientation code is based largely on the code used in the Advanced Composites Design Guide (Reference 1.6.1(a)). The following information and the examples in Figure 1.6.1 describe the laminate orientation code used in MIL-HDBK-17. Downloaded from http://www.everyspec.com

MIL-HDBK-17-2F

- 1. The orientation of each lamina with respect to the x-axis is indicated by the angle between the fiber direction and the x-axis. Positive angles are measured counter-clockwise from the x-axis when looking toward the lay-up surface (right-hand rule).
- 2. When indicating the lay-up of a weave, the angle is measured between the warp direction and the x-axis.

Volume 2, Chapter 1 General Information

- 3. Orientations of successive laminae with different absolute values are separated by a virgule (/).
- 4. Two or more adjacent laminae with the same orientation are indicated by adding a subscript, to the angle of the first such lamina, equal to the number of repetitions of laminae with that orientation.
- 5. Laminae are listed in order from the first laid up to the last. Brackets are used to indicate the beginning and the end of the code.
- 6. A subscript of 's' is used if the first half of the lay-up is indicated and the second half is symmetric with the first. When a symmetric lay-up with an odd number of laminae is shown, the layer which is not repeated is indicated by overlining the angle of that lamina.
- 7. A repeated set of laminae are enclosed in parentheses and the number of repetitions of the set indicated by a subscript.
- 8. The convention used for indicating materials is no subscript for a tape ply and a subscript "f" for a weave.
- 9. The laminate code for a hybrid has the different materials contained in the laminate indicated by subscripts on the laminae.
- Since the majority of computer programs do not permit the use of subscripts and superscripts, the following modifications are recommended based on ASTM Committee E-49 guidelines (Reference 1.6.1(b)).
 - a. Subscript information will be preceded by a colon (:), e.g., [90/0:2/45]:s.
 - b. A bar over a ply (designating a non-repeated ply in a symmetric laminate) should be indicated by a backslash (\) after the ply, e.g., [0/45/90\]:s.

1.6.2 Braiding orientation codes

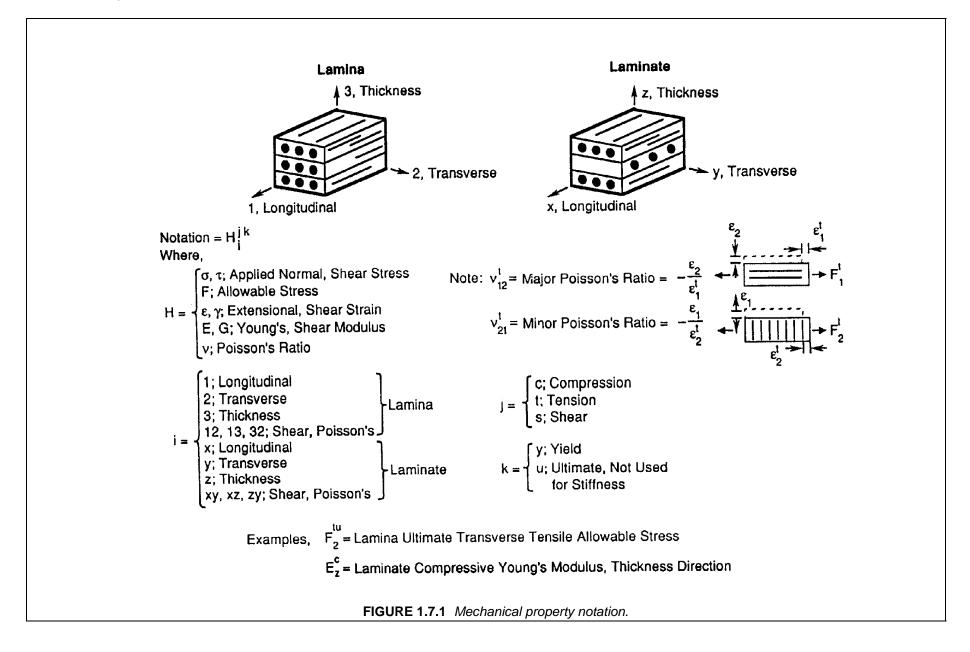
This section is reserved for future use.

1.7 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS

This section defines the symbols and abbreviations which are used within MIL-HDBK-17 and describes the system of units which is maintained. Common usage is maintained where possible. References 1.7(a) - (c) served as primary sources for this information.

1.7.1 Symbols and abbreviations

The symbols and abbreviations used in this document are defined in this section with the exception of statistical symbols. These latter symbols are defined in Chapter 8. The lamina/laminate coordinate axes used for all properties and a summary of the mechanical property notation are shown in Figure 1.7.1.


- The symbols f and m, when used as either subscripts or superscripts, always denote fiber and matrix, respectively.
- The type of stress (for example, cy compressive yield) is always used in the superscript position.
- Direction indicators (for example, x, y, z, 1, 2, 3, etc.) are always used in the subscript position.

Volume 2, Chapter 1 General Information

- Ordinal indicators of laminae sequence (e.g., 1, 2, 3, etc.) are used in the superscript position and must be parenthesized to distinguish them from mathematical exponents.
- Other indicators may be used in either subscript or superscript position, as appropriate for clarity.
- Compound symbols (such as, basic symbols plus indicators) which deviate from these rules are shown in their specific form in the following list.

The following general symbols and abbreviations are considered standard for use in MIL-HDBK-17. Where exceptions are made, they are noted in the text and tables.

А	- (1) area (m²,in²)
	- (2) ratio of alternating stress to mean stress
	- (3) A-basis for mechanical property values
а	- (1) length dimension (mm,in)
	- (2) acceleration (m/sec ² ,ft/sec ²)
	- (3) amplitude
	- (4) crack or flaw dimension (mm,in)
В	- (1) B-basis for mechanical property values
	- (2) biaxial ratio
Btu	- British thermal unit(s)
b	 width dimension (mm,in), e.g., the width of a bearing or compressive panel normal to load, or breadth of beam cross-section
C	- (1) specific heat (kJ/kg °C,Btu/lb °F)
С	
CF	- (2) Celsius - centrifugal force (N,lbf)
CPF	- crossply factor
CPT	- cured ply thickness (mm, in.)
CG	- (1) center of mass, "center of gravity"
CU	- (2) area or volume centroid
C	- centerline
E	
с	- column buckling end-fixity coefficient
с	 honeycomb sandwich core depth (mm,in)
cpm	- cycles per minute
D	- (1) diameter (mm,in)
	- (2) hole or fastener diameter (mm,in)
	- (3) plate stiffness (N-m,lbf-in)
d	- mathematical operator denoting differential
E	 modulus of elasticity in tension, average ratio of stress to strain for stress below propor- tional limit (GPa,Msi)
E'	- storage modulus (GPa,Msi)
E"	- loss modulus (GPa,Msi)
E _c	 modulus of elasticity in compression, average ratio of stress to strain for stress below pro- portional limit (GPa,Msi)
É,	- modulus of elasticity of honeycomb core normal to sandwich plane (GPa,Msi)
E ^{sec}	- secant modulus (GPa,Msi)
E^{tan}	- tangent modulus (GPa,Msi)
e	- minimum distance from a hole center to the edge of the sheet (mm,in)
e/D	- ratio of edge distance to hole diameter (bearing strength)
F	- (1) stress (MPa,ksi)
1	- (2) Fahrenheit
\mathbf{F}^{b}	- bending stress (MPa,ksi)
F ^{ccr}	- crushing or crippling stress (upper limit of column stress for failure) (MPa,ksi)
F ^{su}	- ultimate stress in pure shear (this value represents the average shear stress over the
•	cross-section) (MPa,ksi)

Volume 2, Chapter 1 General Information

FAW	- fiber areal weight (g/m ² , lb/in ²)
FV	- fiber volume (%)
f	- (1) internal (or calculated) stress (MPa,ksi)
	 - (2) stress applied to the gross flawed section (MPa,ksi)
	- (3) creep stress (MPa,ksi)
f^{c}	- internal (or calculated) compressive stress (MPa,ksi)
f_c	- (1) maximum stress at fracture (MPa,ksi)
	- (2) gross stress limit (for screening elastic fracture data (MPa,ksi)
ft	- foot, feet
G	- modulus of rigidity (shear modulus) (GPa,Msi)
GPa	- gigapascal(s)
g	- (1) gram(s)
U	- (2) acceleration due to gravity (m/s ² ,ft/s ²)
H/C	- honeycomb (sandwich)
h	- height dimension (mm,in) e.g. the height of a beam cross-section
hr	- hour(s)
I	- area moment of inertia (mm ⁴ ,in ⁴)
i	- slope (due to bending) of neutral plane in a beam, in radians
in.	- inch(es)
J	- (1) torsion constant (= I_p for round tubes) (m ⁴ ,in ⁴)
0	- (2) Joule
K	- (1) Kelvin
IX .	- (2) stress intensity factor (MPa/m,ksi/in)
	- (3) coefficient of thermal conductivity (W/m °C, Btu/ft ² /hr/in/°F)
	- (4) correction factor
	- (5) dielectric constant
V	- apparent plane strain fracture toughness or residual strength (MPa/m,ksi/in)
\mathbf{K}_{app}	
K _c	- critical plane strain fracture toughness, a measure of fracture toughness at point of crack
	growth instability (MPa/m,ksi/in)
K _{Ic}	- plane strain fracture toughness (MPa/m,ksi/in)
K _N	- empirically calculated fatigue notch factor
Ks	- plate or cylinder shear buckling coefficient
K _t	- (1) theoretical elastic stress concentration factor
	- (2) t _w /c ratio in H/C sandwich
Kv	- dielectric strength (KV/mm, V/mil)
K_x, K_y	 plate or cylinder compressive buckling coefficient
k	- strain at unit stress (m/m,in/in)
L	- cylinder, beam, or column length (mm,in)
L'	- effective column length (mm,in)
lb	- pound
М	 applied moment or couple (N-m,in-lbf)
Mg	- megagram(s)
MPa	- megapascal(s)
MS	- military standard
M.S.	- margin of safety
MW	- molecular weight
MWD	- molecular weight distribution
m	- (1) mass (kg,lb)
	- (2) number of half wave lengths
	- (3) metre
	- (4) slope
Ν	- (1) number of fatigue cycles to failure
	- (2) number of laminae in a laminate
	- (3) distributed in-plane forces on a panel (lbf/in)
	- (4) Newton
	- (5) normalized

Volume 2, Chapter 1 General Information

NT 4	
NA	- neutral axis
n	- (1) number of times in a set
	- (2) number of half or total wavelengths
л	- (3) number of fatigue cycles endured
Р	- (1) applied load (N,lbf)
	- (2) exposure parameter
	- (3) probability
- "	- (4) specific resistance (Ω)
P^u	- test ultimate load, (N,lb per fastener)
P ^y	- test yield load, (N,lb per fastener)
p .	- normal pressure (Pa,psi)
psi	- pounds per square inch
Q	- area static moment of a cross-section (mm ³ ,in ³)
q	- shear flow (N/m,lbf/in)
R	- (1) algebraic ratio of minimum load to maximum load in cyclic loading
DA	- (2) reduced ratio
RA	- reduction of area
RH	- relative humidity
RMS	- root-mean-square
RT	- room temperature
r	- (1) radius (mm,in)
	- (2) root radius (mm,in)
S	- (3) reduced ratio (regression analysis) - (1) shear force (N,lbf)
5	- (2) nominal stress in fatigue (MPa,ksi)
	- (3) S-basis for mechanical property values
Sa	- stress amplitude in fatigue (MPa,ksi)
\mathbf{S}_{e}^{a}	- fatigue limit (MPa,ksi)
S _e S _m	- mean stress in fatigue (MPa,ksi)
S_{max}	- highest algebraic value of stress in the stress cycle (MPa,ksi)
S_{min}	- lowest algebraic value of stress in the stress cycle (MPa,ksi)
S _R	- algebraic difference between the minimum and maximum stresses in one cycle (MPa,ksi)
S.F.	- safety factor
S	- (1) arc length (mm,in)
	- (2) H/C sandwich cell size (mm,in)
Т	- (1) temperature (°C,°F)
	- (2) applied torsional moment (N-m,in-lbf)
T_d	 thermal decomposition temperature (°C,°F)
T _F	
	 exposure temperature (°C,°F)
T_{g}	 glass transition temperature(°C,°F)
T _g T _m	 glass transition temperature(°C,°F) melting temperature (°C,°F)
	 glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in)
T_m	 glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s)
T _m t	 glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s)
T_m	 glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³)
T _m t	 glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf)
T _m t	 glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf)
T _m t	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in)
T _m t	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt
T _m t V W	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis
T _m t W W	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size
T _m t V W	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in)
T _m t W W	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in) (2) distance from neutral axis to given point
T _m t W W X Y y	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in) (2) distance from neutral axis to given point (3) distance along a coordinate axis
T _m t W W	 glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in) (2) distance from neutral axis to given point

Volume 2, Chapter 1 General Information

γ	- shear strain (m/m,in/in)
Δ	- difference (used as prefix to quantitative symbols)
δ	- elongation or deflection (mm,in)
ε ^e	- strain (m/m,in/in)
ϵ^{p}	- elastic strain (m/m,in/in)
ε	- plastic strain (m/m,in/in)
μ	- permeability
η	- plasticity reduction factor
[η]	- intrinsic viscosity
η*	- dynamic complex viscosity
V	- Poisson's ratio
ρ	- (1) density (kg/m ³ ,lb/in ³)
	- (2) radius of gyration (mm,in)
$\dot{ ho_{ m c}}$	- H/C sandwich core density (kg/m³,lb/in³)
Σ	- total, summation
σ	- standard deviation
$\sigma_{ij}, \ \tau_{ij}$	 stress in j direction on surface whose outer normal is in i direction (i, j = 1, 2, 3 or x, y, z) (MPa,ksi)
Т	- applied shear stress (MPa,ksi)
ω	- angular velocity (radians/s)
∞	- infinity

1.7.1.1 Constituent properties

The following symbols apply specifically to the constituent properties of a typical composite material.

- $\mathbf{E}^{\mathbf{f}}$ - Young's modulus of filament material (MPa,ksi)
- E^m - Young's modulus of matrix material (MPa,ksi)
- Young's modulus of impregnated glass scrim cloth in the filament direction or in the warp di-Eg rection of a fabric (MPa,ksi)
- Young's modulus of impregnated glass scrim cloth transverse to the filament direction or to the Ev warp direction in a fabric (MPa,ksi)
- \mathbf{G}^{f} - shear modulus of filament material (MPa,ksi)
- G^m - shear modulus of matrix (MPa,ksi)
- shear modulus of impregnated glass scrim cloth (MPa,ksi) G_{xv}^g
- shear modulus of sandwich core along X-axis (MPa,ksi) G_{cx}
- Gcy - shear modulus of sandwich core along Y-axis (MPa,ksi)
- filament length (mm,in) l
- α^{f} - coefficient of thermal expansion for filament material (m/m/°C,in/in/°F)
- lpha ^m - coefficient of thermal expansion for matrix material (m/m/°C,in/in/°F)
- coefficient of thermal expansion of impregnated glass scrim cloth in the filament direction or in $\alpha_{\rm x}^{\rm g}$ the warp direction of a fabric (m/m/°C,in/in/°F)
- coefficient of thermal expansion of impregnated glass scrim cloth transverse to the filament di- $\alpha_{\rm v}^{\rm g}$ rection or to the warp direction in a fabric (m/m/°C,in/in/°F)
- $v^{\rm f}$ - Poisson's ratio of filament material
- v^{m} - Poisson's ratio of matrix material
- glass scrim cloth Poisson's ratio relating to contraction in the transverse (or fill) direction as a $v_{\rm xv}^{\rm g}$ result of extension in the longitudinal (or warp) direction

Volume 2, Chapter 1 General Information

- v_{yx}^{g} glass scrim cloth Poisson's ratio relating to contraction in the longitudinal (or warp) direction as a result of extension in the transverse (or fill) direction
- σ applied axial stress at a point, as used in micromechanics analysis (MPa,ksi)
- τ applied shear stress at a point, as used in micromechanics analysis (MPa,ksi)

1.7.1.2 Laminae and laminates

The following symbols, abbreviations, and notations apply to composite laminae and laminates. At the present time the focus in MIL-HDBK-17 is on laminae properties. However, commonly used nomenclature for both laminae and laminates are included here to avoid potential confusion.

$\begin{array}{l} A_{ij} \ (i,j=1,2,6) \\ B_{ij} \ (i,j=1,2,6) \\ C_{ij} \ (i,j=1,2,6) \\ D_x, \ D_y \\ D_{xy} \\ D_{ij} \ (i,j=1,2,6) \\ E_1 \\ E_2 \\ E_x \\ E_y \\ G_{12} \\ G_{xy} \\ h_i \\ M_x, \ M_y, \ M_{xy} \\ \end{array}$	 extensional rigidities (N/m,lbf/in) coupling matrix (N,lbf) elements of stiffness matrix (Pa,psi) flexural rigidities (N-m,lbf-in) twisting rigidity (N-m,lbf-in) flexural rigidities (N-m,lbf-in) Young's modulus of lamina parallel to filament or warp direction (GPa,Msi) Young's modulus of lamina transverse to filament or warp direction (GPa,Msi) Young's modulus of laminate along x reference axis (GPa,Msi) Young's modulus of laminate along y reference axis (GPa,Msi) Shear modulus of laminate in 12 plane (GPa,Msi) shear modulus of laminate in xy reference plane (GPa,Msi) thickness of ith ply or lamina (mm,in) bending and twisting moment components (N-m/m, in-lbf/in in plate and shell analysis) number of filaments per unit length per lamina shear force parallel to z axis of sections of a plate perpendicular to x and y axes, respectively (N/m,lbf/in) reduced stiffness matrix (Pa,psi)
u_x, u_y, u_z	- components of the displacement vector (mm,in)
$u_x^o,\ u_y^o,\ u_z^o$	- components of the displacement vector at the laminate's midsurface (mm,in)
V_{v} V_{f} V_{g} V_{m} V_{x}, V_{y} W_{f} W_{g} W_{m} W_{s} α_{1} α_{2} α_{x}	 void content (% by volume) filament content or fiber volume (% by volume) glass scrim cloth content (% by volume) matrix content (% by volume) edge or support shear force (N/m,lbf/in) filament content (% by weight) glass scrim cloth content (% by weight) glass scrim cloth content (% by weight) matrix content (% by weight) weight of laminate per unit surface area (N/m²,lbf/in²) lamina coefficient of thermal expansion along 1 axis (m/m/°C,in/in/°F) laminate coefficient of thermal expansion along general reference x axis (m/m/°C, in/in/°F)
lpha y	- laminate coefficient of thermal expansion along general reference y axis (m/m/°C,
	in/in/°F)
α_{xy} θ	 laminate shear distortion coefficient of thermal expansion (m/m/°C,in/in/°F) angular orientation of a lamina in a laminate, i.e., angle between 1 and x axes (°)
λ_{xy}	- product of v_{xy} and v_{yx}
<i>V</i> ₁₂	- Poisson's ratio relating contraction in the 2 direction as a result of extension in the 1 direction ¹

¹The convention for Poisson's ratio should be checked before comparing different sources as different conventions are used.

Volume 2, Chapter 1 General Information

<i>V</i> ₂₁	- Poisson's ratio relating contraction in the 1 direction as a result of extension in the 2 direction ¹
$V_{\rm xy}$	 Poisson's ratio relating contraction in the y direction as a result of extension in the x direction¹
ν _{yx} ρ _c	 Poisson's ratio relating contraction in the x direction as a result of extension in the y direction¹ density of a single lamina (kg/m³,lb/in³)
$\frac{\rho_{\rm c}}{\rho_{\rm c}}$	- density of a laminate (kg/m ³ ,lb/in ³)
φ	 (1) general angular coordinate, (°) (2) angle between x and load axes in off-axis loading (°)

1.7.1.3 Subscripts

The following subscript notations are considered standard in MIL-HDBK-17.

A - axial a - (1) adhesive - (2) alternating	
- (2) alternating	
app - apparent	
byp - bypass	
c - composite system, specific filament/matrix composition. Composite as a whole, c to individual constituents. Also, sandwich core when used in conjunction with prime	
- (4) critical	
cf - centrifugal force	
e - fatigue or endurance	
eff - effective	
eq - equivalent	
f - filament	
g - glass scrim cloth	
H - hoop	
i - i th position in a sequence	
L - lateral	
m - (1) matrix	
- (2) mean	
max - maximum	
min - minimum	
n - (1) n th (last) position in a sequence	
- (2) normal	
p - polar	
s - symmetric	
st - stiffener	
T - transverse	
t - value of parameter at time t	
x, y, z - general coordinate system	
Σ - total, or summation	
o - initial or reference datum	
 format for indicating specific, temperature associated with term in parentheses. F temperature (21°C,70°F); all other temperatures in °F unless specified. 	RT - room

1.7.1.4 Superscripts

The following superscript notations are considered standard in MIL-HDBK-17.

b - bending

Volume 2, Chapter 1 General Information

br	- bearing
c	- (1) compression
-	- (2) creep
сс	- compressive crippling
cr	- compressive buckling
e	- elastic
f	- filament
flex	- flexure
g	- glass scrim cloth
is	- interlaminar shear
(i)	- i th ply or lamina
lim	- limit, used to indicate limit loading
m	- matrix
ohc	- open hole compression
oht	- open hole tension
р	- plastic
pl	- proportional limit
rup	- rupture
S	- shear
scr	- shear buckling
sec	- secant (modulus)
SO	- offset shear
Т	- temperature or thermal
t	- tension
tan	- tangent (modulus)
u	- ultimate
У	- yield
'	- secondary (modulus), or denotes properties of H/C core when used with subscript c
<i>C</i> + T	

CAI - compression after impact

1.7.1.5 Acronyms

The following acronyms are used in MIL-HDBK-17.

Volume 2, Chapter 1 General Information

CV CVD DCB DDA DGI DLL DMA DOD DSC DTA DTRC EGI ENF EOL EP ESCA ESR ETW FAA FC FFF FGRP FMECA FOD FTIR FWC GC GI Gr	 coefficient of variation chemical vapor deposition! double cantilever beam dynamic dielectric analysis D-glass design limit load dynamic mechanical analysis Department of Defense differential scanning calorimetry differential thermal analysis David Taylor Research Center E-glass end notched flexure end-of-life epoxy electron spectroscopy for chemical analysis electron spin resonance elevated temperature wet Federal Aviation Administration fluorocarbon field flow fractionation fiberglass reinforced plastic Failure Modes Effects Criticality Analysis foreign object damage Fourier transform infrared spectroscopy finite width correction factor gas chromatography glass graphite
GSCS HDT	 Generalized Self Consistent Scheme heat distortion temperature
HPLC ICAP	 high performance liquid chromatography inductively coupled plasma emission
IITRI IR ISS	 Illinois Institute of Technology Research Institute infrared spectroscopy
JANNAF LC	 ion scattering spectroscopy Joint Army, Navy, NASA, and Air Force
Li	 liquid chromatography lithium
LPT LSS MMB	 laminate plate theory laminate stacking sequence mixed mode bending
MOL MS	 material operational limit mass spectroscopy
MSDS MTBF NAS	- material safety data sheet - Mean Time Between Failure
NASA NDI	 National Aerospace Standard National Aeronautics and Space Administration nondestructive inspection
NMR P	- nuclear magnetic resonance - phenolic
PAI PAN	- polyamide-imide - polyacrylonitrile
PBI PBT	- polybenzimidazole - polybenzothiazole
PEEK	- polyether ether ketone

Volume 2, Chapter 1 General Information

PEI PES PI PPS PSU Q RDS RH RT RTA RTD RTM SACMA SAE SANS SEC SEM SFC SI SIC SGI SIMS TBA TEM TGA TI TLC TMA TOS TPES TVM UDC VNB	 polyetherimide polyethersulfone polyimide polyphenylene sulfide polysulfone quartz rheological dynamic spectroscopy relative humidity room temperature room temperature ambient room temperature dry resin transfer molding Suppliers of Advanced Composite Materials Association Society of Automotive Engineers small-angle neutron scattering spectroscopy size-exclusion chromatography silicon International System of Units (Le Système International d'Unités) silicon carbide S-glass secondary ion mass spectroscopy transmission electron microscopy thermogravimetric analysis titanium thin-layer chromatography thermal mechanical analysis thermal mechanical indivision thermal mechan
W	- tungsten
XPS	 X-ray photoelectron spectroscopy

1.7.2 System of units

To comply with Department of Defense Instructive 5000.2, Part 6, Section M, "Use of the Metric System," dated February 23, 1991, the data in MIL-HDBK-17 are generally presented in both the International System of Units (SI units) and the U. S. Customary (English) system of units. ASTM E 380, Standard for Metric Practice, provides guidance for the application for SI units which are intended as a basis for worldwide standardization of measurement units (Reference 1.7.2(a)). Further guidelines on the use of the SI system of units and conversion factors are contained in the following publications (References 1.7.2(b) - (e)):

- (1) DARCOM P 706-470, Engineering Design Handbook: Metric Conversion Guide, July 1976.
- (2) NBS Special Publication 330, "The International System of Units (SI)," National Bureau of Standards, 1986 edition.
- (3) NBS Letter Circular LC 1035, "Units and Systems of Weights and Measures, Their Origin, Development, and Present Status," National Bureau of Standards, November 1985.

Volume 2, Chapter 1 General Information

(4) NASA Special Publication 7012, "The International System of Units Physical Constants and Conversion Factors", 1964.

English to SI conversion factors pertinent to MIL-HDBK-17 data are contained in Table 1.7.2.

To convert from	to	Multiply by
Btu (thermochemical)/in ² -s	watt/meter ² (W/m ²)	1.634 246 E+06
Btu-in/(s-ft ² -°F)	W/(m K)	5.192 204 E+02
degree Fahrenheit	degree Celsius (°C)	T = (T - 32)/1.8
degree Fahrenheit	kelvin (K)	T = (T + 459.67)/1.8
foot	meter (m)	3.048 000 E-01
ft ²	m ²	9.290 304 E-02
foot/second	meter/second (m/s)	3.048 000 E-01
ft/s ²	m/s ²	3.048 000 E-01
inch	meter (m)	2.540 000 E-02
in. ²	meter ² (m ²) m ³	6.451 600 E-04
in. ³	m ³	1.638 706 E-05
kilogram-force (kgf)	newton (N)	9.806 650 E+00
kgf/m ²	pascal (Pa)	9.806 650 E+00
kip (1000 lbf)	newton (N)	4.448 222 E+03
ksi (kip/in ²)	MPa	6.894 757 E+00
lbf-in	N-m	1.129 848 E-01
lbf-ft	N-m	1.355 818 E+00
lbf/in ² (psi)	pascal (Pa)	6.894 757 E+03
lb/in ²	gm/m ²	7.030 696 E+05
lb/in ³	kg/m ³	2.767 990 E+04
Msi (10 ⁶ psi)	GPa	6.894 757 E+00
pound-force (lbf)	newton (N)	4.488 222 E+00
pound-mass (Ib avoirdupois)	kilogram (kg)	4.535 924 E-01
torr	pascal (Pa)	1.333 22 E+02

TABLE 1.7.2 English to SI conversion factors.

* The letter "E" following the conversion factor stands for exponent and the two digits after the letter "E" indicate the power of 10 by which the number is to be multiplied.

1.8 DEFINITIONS

The following definitions are used within MIL-HDBK-17. This glossary of terms is not totally comprehensive but it does represent nearly all commonly used terms. Where exceptions are made, they are noted in the text and tables. For ease of identification the definitions have been organized alphabetically.

A-Basis (or A-Value) -- A statistically-based material property; a 95% lower confidence bound on the first percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 99% of a specified population.

Volume 2, Chapter 1 General Information

A-Stage -- An early stage in the reaction of thermosetting resins in which the material is still soluble in certain liquids and may be liquid or capable of becoming liquid upon heating. (Sometimes referred to as **resol**.)

Absorption -- A process in which one material (the absorbent) takes in or absorbs another (the absorbate).

Accelerator -- A material which, when mixed with a catalyzed resin, will speed up the chemical reaction between the catalyst and the resin.

Accuracy -- The degree of conformity of a measured or calculated value to some recognized standard or specified value. Accuracy involves the systematic error of an operation.

Addition Polymerization -- Polymerization by a repeated addition process in which monomers are linked together to form a polymer without splitting off of water or other simple molecules.

Adhesion -- The state in which two surfaces are held together at an interface by forces or interlocking action or both.

Adhesive -- A substance capable of holding two materials together by surface attachment. In the handbook, the term is used specifically to designate structural adhesives, those which produce attachments capable of transmitting significant structural loads.

ADK -- Notation used for the k-sample Anderson-Darling statistic, which is used to test the hypothesis that k batches have the same distribution.

Aliquot -- A small, representative portion of a larger sample.

Aging -- The effect, on materials, of exposure to an environment for a period of time; the process of exposing materials to an environment for an interval of time.

Ambient -- The surrounding environmental conditions such as pressure or temperature.

Anelasticity -- A characteristic exhibited by certain materials in which strain is a function of both stress and time, such that, while no permanent deformations are involved, a finite time is required to establish equilibrium between stress and strain in both the loading and unloading directions.

Angleply -- Same as Crossply.

Anisotropic -- Not isotropic; having mechanical and/or physical properties which vary with direction relative to natural reference axes inherent in the material.

Aramid -- A manufactured fiber in which the fiber-forming substance consisting of a long-chain synthetic aromatic polyamide in which at least 85% of the amide (-CONH-) linkages are attached directly to two aromatic rings.

Areal Weight of Fiber -- The weight of fiber per unit area of prepreg. This is often expressed as grams per square meter. See Table 1.7.2 for conversion factors.

Artificial Weathering -- Exposure to laboratory conditions which may be cyclic, involving changes in temperature, relative humidity, radiant energy and any other elements found in the atmosphere in various geographical areas.

Aspect Ratio -- In an essentially two-dimensional rectangular structure (e.g., a panel), the ratio of the long dimension to the short dimension. However, in compression loading, it is sometimes considered to

Volume 2, Chapter 1 General Information

be the ratio of the load direction dimension to the transverse dimension. Also, in fiber micro-mechanics, it is referred to as the ratio of length to diameter.

Autoclave -- A closed vessel for producing an environment of fluid pressure, with or without heat, to an enclosed object which is undergoing a chemical reaction or other operation.

Autoclave Molding -- A process similar to the pressure bag technique. The lay-up is covered by a pressure bag, and the entire assembly is placed in an autoclave capable of providing heat and pressure for curing the part. The pressure bag is normally vented to the outside.

Axis of Braiding -- The direction in which the braided form progresses.

B-Basis (or B-Value) -- A statistically-based material property; a 95% lower confidence bound on the tenth percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 90% of a specified population. (See Volume 1, Section 8.1.4)

B-Stage -- An intermediate stage in the reaction of a thermosetting resin in which the material softens when heated and swells when in contact with certain liquids but does not entirely fuse or dissolve. Materials are usually precured to this stage to facilitate handling and processing prior to final cure. (Sometimes referred to as **resitol**.)

Bag Molding -- A method of molding or laminating which involves the application of fluid pressure to a flexible material which transmits the pressure to the material being molded or bonded. Fluid pressure usually is applied by means of air, steam, water or vacuum.

Balanced Laminate -- A composite laminate in which all identical laminae at angles other than 0 degrees and 90 degrees occur only in ± pairs (not necessarily adjacent).

Batch (or Lot) -- For fibers and resins, a quantity of material formed during the same process and having identical characteristics throughout. For prepregs, laminae, and laminates, material made from one batch of fiber and one batch of resin.

Bearing Area -- The product of the pin diameter and the specimen thickness.

Bearing Load -- A compressive load on an interface.

Bearing Yield Strength -- The bearing stress at which a material exhibits a specified limiting deviation from the proportionality of bearing stress to bearing strain.

Bend Test -- A test of ductility by bending or folding, usually with steadily applied forces. In some instances the test may involve blows to a specimen having a cross section that is essentially uniform over a length several times as great as the largest dimension of the cross section.

Binder -- A bonding resin used to hold strands together in a mat or preform during manufacture of a molded object.

Binomial Random Variable -- The number of successes in independent trials where the probability of success is the same for each trial.

Birefringence -- The difference between the two principal refractive indices (of a fiber) or the ratio between the retardation and thickness of a material at a given point.

Bleeder Cloth -- A nonstructural layer of material used in the manufacture of composite parts to allow the escape of excess gas and resin during cure. The bleeder cloth is removed after the curing process and is not part of the final composite.

Volume 2, Chapter 1 General Information

Bobbin -- A cylinder or slightly tapered barrel, with or without flanges, for holding tows, rovings, or yarns.

Bond -- The adhesion of one surface to another, with or without the use of an adhesive as a bonding agent.

Braid -- A system of three or more yarns which are interwoven in such a way that no two yarns are twisted around each other.

Braid Angle -- The acute angle measured from the axis of braiding.

Braid, Biaxial -- Braided fabric with two-yarn systems, one running in the $+\theta$ direction, the other in the $-\theta$ direction as measured from the axis of braiding.

Braid Count -- The number of braiding yarn crossings per inch measured along the axis of a braided fabric.

Braid, Diamond -- Braided fabric with an over one, under one weave pattern, (1 x 1).

Braid, **Flat** -- A narrow bias woven tape wherein each yarn is continuous and is intertwined with every other yarn in the system without being intertwined with itself.

Braid, **Hercules** -- A braided fabric with an over three, under three weave pattern, (3 x 3).

Braid, Jacquard -- A braided design made with the aid of a jacquard machine, which is a shedding mechanism by means of which a large number of ends may be controlled independently and complicated patterns produced.

Braid, Regular -- A braided fabric with an over two, under two weave pattern (2 x 2).

Braid, Square -- A braided pattern in which the yarns are formed into a square pattern.

Braid, Two-Dimensional -- Braided fabric with no braiding yarns in the through thickness direction.

Braid, Three-Dimensional -- Braided fabric with one or more braiding yarns in the through thickness direction.

Braid, Triaxial -- A biaxial braided fabric with laid in yarns running in the axis of braiding.

Braiding -- A textile process where two or more strands, yarns or tapes are intertwined in the bias direction to form an integrated structure.

Broadgoods -- A term loosely applied to prepreg material greater than about 12 inches in width, usually furnished by suppliers in continuous rolls. The term is currently used to designate both collimated uniaxial tape and woven fabric prepregs.

Buckling (Composite) -- A mode of structural response characterized by an out-of-plane material deflection due to compressive action on the structural element involved. In advanced composites, buckling may take the form not only of conventional general instability and local instability but also a micro-instability of individual fibers.

Bundle -- A general term for a collection of essentially parallel filaments or fibers.

C-Stage -- The final stage of the curing reaction of a thermosetting resin in which the material has become practically infusable and insoluble. (Normally considered fully cured and sometimes referred to as **resite**.)

Volume 2, Chapter 1 General Information

Capstan -- A friction type take-up device which moves braided fabric away from the fell. The speed of which determines the braid angle.

Carbon Fibers -- Fibers produced by the pyrolysis of organic precursor fibers such as rayon, polyacrylonitrile (PAN), and pitch in an inert atmosphere. The term is often used interchangeably with "graphite"; however, carbon fibers and graphite fibers differ in the temperature at which the fibers are made and heat-treated, and the amount of carbon produced. Carbon fibers typically are carbonized at about 2400°F (1300°C) and assay at 93 to 95% carbon, while graphite fibers are graphitized at 3450 to 5450°F (1900 to 3000°C) and assay at more than 99% elemental carbon.

Carrier -- A mechanism for carrying a package of yarn through the braid weaving motion. A typical carrier consists of a bobbin spindle, a track follower, and a tensioning device.

Caul Plates -- Smooth metal plates, free of surface defects, the same size and shape as a composite lay-up, used immediately in contact with the lay-up during the curing process to transmit normal pressure and to provide a smooth surface on the finished laminate.

Censoring -- Data is right (left) censored at M, if, whenever an observation is less than or equal to M (greater than or equal to M), the actual value of the observation is recorded. If the observation exceeds (is less than) M, the observation is recorded as M.

Chain-Growth Polymerization -- One of the two principal polymerization mechanisms. In chaingrowth polymerization, the reactive groups are continuously regenerated during the growth process. Once started, the polymer molecule grows rapidly by a chain of reactions emanating from a particular reactive initiator which may be a free radical, cation or anion.

Chromatogram -- A plot of detector response against peak volume of solution (eluate) emerging from the system for each of the constituents which have been separated.

Circuit -- One complete traverse of the fiber feed mechanism of a winding machine; one complete traverse of a winding band from one arbitrary point along the winding path to another point on a plane through the starting point and perpendicular to the axis.

Cocuring -- The act of curing a composite laminate and simultaneously bonding it to some other prepared surface during the same cure cycle (see **Secondary Bonding**).

Coefficient of Linear Thermal Expansion -- The change in length per unit length resulting from a one-degree rise in temperature.

Coefficient of Variation -- The ratio of the population (or sample) standard deviation to the population (or sample) mean.

Collimated -- Rendered parallel.

Compatible -- The ability of different resin systems to be processed in contact with each other without degradation of end product properties. (See **Compatible**, Volume 1, Section 8.1.4)

Composite Class -- As used in the handbook, a major subdivision of composite construction in which the class is defined by the fiber system and the matrix class, e.g., organic-matrix filamentary laminate.

Composite Material -- Composites are considered to be combinations of materials differing in composition or form on a macroscale. The constituents retain their identities in the composite; that is, they do not dissolve or otherwise merge completely into each other although they act in concert. Normally, the components can be physically identified and exhibit an interface between one another.

Volume 2, Chapter 1 General Information

Compound -- An intimate mixture of polymer or polymers with all the materials necessary for the finished product.

Condensation Polymerization -- This is a special type of step-growth polymerization characterized by the formation of water or other simple molecules during the stepwise addition of reactive groups.

Confidence Coefficient -- See Confidence Interval.

Confidence Interval -- A confidence interval is defined by a statement of one of the following forms:

(1) $P\{a < \theta\} \# 1 - \alpha$ (2) $P\{\theta < b\} \# 1 - \alpha$ (3) $P\{a < \theta < b\} \# 1 - \alpha$

where $1-\alpha$ is called the confidence coefficient. A statement of type (1) or (2) is called a one-sided confidence interval and a statement of type (3) is called a two-sided confidence interval. In (1) a is a lower confidence limit and in (2) b is an upper confidence limit. With probability at least $1-\alpha$, the confidence interval will contain the parameter θ .

Constituent -- In general, an element of a larger grouping. In advanced composites, the principal constituents are the fibers and the matrix.

Continuous Filament -- A yarn or strand in which the individual filaments are substantially the same length as the strand.

Coupling Agent -- Any chemical substance designed to react with both the reinforcement and matrix phases of a composite material to form or promote a stronger bond at the interface. Coupling agents are applied to the reinforcement phase from an aqueous or organic solution or from a gas phase, or added to the matrix as an integral blend.

Coverage -- The measure of the fraction of surface area covered by the braid.

Crazing -- Apparent fine cracks at or under the surface of an organic matrix.

Creel -- A framework arranged to hold tows, rovings, or yarns so that many ends can be withdrawn smoothly and evenly without tangling.

Creep -- The time dependent part of strain resulting from an applied stress.

Creep, Rate Of -- The slope of the creep-time curve at a given time.

Crimp -- The undulations induced into a braided fabric via the braiding process.

Crimp Angle -- The maximum acute angle of a single braided yarn's direction measured from the average axis of tow.

Crimp Exchange -- The process by which a system of braided yarns reaches equilibrium when put under tension or compression.

Critical Value(s) -- When testing a one-sided statistical hypothesis, a critical value is the value such that, if the test statistic is greater than (less than) the critical value, the hypothesis is rejected. When testing a two-sided statistical hypothesis, two critical values are determined. If the test statistic is either less than the smaller critical value or greater than the larger critical value, then the hypothesis is rejected. In both cases, the critical value chosen depends on the desired risk (often 0.05) of rejecting the hypothesis when it is true.

Volume 2, Chapter 1 General Information

Crossply -- Any filamentary laminate which is not uniaxial. Same as Angleply. In some references, the term crossply is used to designate only those laminates in which the laminae are at right angles to one another, while the term angleply is used for all others. In the handbook, the two terms are used synonymously. The reservation of a separate terminology for only one of several basic orientations is unwarranted because a laminate orientation code is used.

Cumulative Distribution Function -- See Volume 1, Section 8.1.4.

Cure -- To change the properties of a thermosetting resin irreversibly by chemical reaction, i.e., condensation, ring closure, or addition. Cure may be accomplished by addition of curing (cross-linking) agents, with or without catalyst, and with or without heat. Cure may occur also by addition, such as occurs with anhydride cures for epoxy resin systems.

Cure Cycle -- The schedule of time periods at specified conditions to which a reacting thermosetting material is subjected in order to reach a specified property level.

Cure Stress -- A residual internal stress produced during the curing cycle of composite structures. Normally, these stresses originate when different components of a lay-up have different thermal coefficients of expansion.

Debond -- A deliberate separation of a bonded joint or interface, usually for repair or rework purposes. (See **Disbond**, **Unbond**).

Deformation -- The change in shape of a specimen caused by the application of a load or force.

Degradation -- A deleterious change in chemical structure, physical properties or appearance.

Delamination -- The separation of the layers of material in a laminate. This may be local or may cover a large area of the laminate. It may occur at any time in the cure or subsequent life of the laminate and may arise from a wide variety of causes.

Denier -- A direct numbering system for expressing linear density, equal to the mass in grams per 9000 meters of yarn, filament, fiber, or other textile strand.

Density -- The mass per unit volume.

Desorption -- A process in which an absorbed or adsorbed material is released from another material. Desorption is the reverse of absorption, adsorption, or both.

Deviation -- Variation from a specified dimension or requirement, usually defining the upper and lower limits.

Dielectric Constant -- The ratio of the capacity of a condenser having a dielectric constant between the plates to that of the same condenser when the dielectric is replaced by a vacuum; a measure of the electrical charge stored per unit volume at unit potential.

Dielectric Strength -- The average potential per unit thickness at which failure of the dielectric material occurs.

Disbond -- An area within a bonded interface between two adherends in which an adhesion failure or separation has occurred. It may occur at any time during the life of the structure and may arise from a wide variety of causes. Also, colloquially, an area of separation between two laminae in the finished laminate (in this case the term "delamination" is normally preferred.) (See **Debond, Unbond, Delamination**.)

Volume 2, Chapter 1 General Information

Distribution -- A formula which gives the probability that a value will fall within prescribed limits. (See **Normal**, **Weibull**, and **Lognormal Distributions**, also Volume 1, Section 8.1.4).

Dry -- a material condition of moisture equilibrium with a surrounding environment at 5% or lower relative humidity.

Dry Fiber Area -- Area of fiber not totally encapsulated by resin.

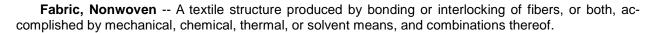
Ductility -- The ability of a material to deform plastically before fracturing.

Elasticity -- The property of a material which allows it to recover its original size and shape immediately after removal of the force causing deformation.

Elongation -- The increase in gage length or extension of a specimen during a tension test, usually expressed as a percentage of the original gage length.

Eluate -- The liquid emerging from a column (in liquid chromatography).

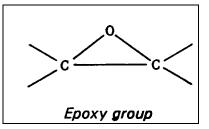
Eluent -- The mobile phase used to sweep or elute the sample (solute) components into, through, and out of the column.


End -- A single fiber, strand, roving or yarn being or already incorporated into a product. An end may be an individual warp yarn or cord in a woven fabric. In referring to aramid and glass fibers, an end is usually an untwisted bundle of continuous filaments.

Epoxy Equivalent Weight -- The number of grams of resin which contain one chemical equivalent of the epoxy group.

Epoxy Resin -- Resins which may be of widely different structures but are characterized by the presence of the epoxy group. (The epoxy or epoxide group is usually present as a gly-cidyl ether, glycidyl amine, or as part of an aliphatic ring system. The aromatic type epoxy resins are normally used in composites.)

Extensometer -- A device for measuring linear strain.


F-Distribution -- See Volume 1, Section 8.1.4.

Fabric, Woven -- A generic material construction consisting of interlaced yarns or fibers, usually a planar structure. Specifically, as used in this handbook, a cloth woven in an established weave pattern from advanced fiber yarns and used as the fibrous constituent in an advanced composite lamina. In a fabric lamina, the warp direction is considered the longitudinal direction, analogous to the filament direction in a filamentary lamina.

Fell -- The point of braid formation, which is defined as the point at which the yarns in a braid system cease movement relative to each other.

Fiber -- A general term used to refer to filamentary materials. Often, fiber is used synonymously with filament. It is a general term for a filament of finite length. A unit of matter, either natural or manmade, which forms the basic element of fabrics and other textile structures.

Volume 2, Chapter 1 General Information

Fiber Content -- The amount of fiber present in a composite. This is usually expressed as a percentage volume fraction or weight fraction of the composite.

Fiber Count -- The number of fibers per unit width of ply present in a specified section of a composite.

Fiber Direction -- The orientation or alignment of the longitudinal axis of the fiber with respect to a stated reference axis.

Fiber System -- The type and arrangement of fibrous material which comprises the fiber constituent of an advanced composite. Examples of fiber systems are collimated filaments or filament yarns, woven fabric, randomly oriented short-fiber ribbons, random fiber mats, whiskers, etc.

Fiber Volume (Fraction) -- See fiber content.

Filament -- The smallest unit of a fibrous material. The basic units formed during spinning and which are gathered into strands of fiber, (for use in composites). Filaments usually are of extreme length and of very small diameter. Filaments normally are not used individually. Some textile filaments can function as a yarn when they are of sufficient strength and flexibility.

Filamentary Composite -- A composite material reinforced with continuous fibers.

Filament winding -- See Winding.

Filament Wound -- Pertaining to an object created by the filament winding method of fabrication.

Fill (Filling) -- In a woven fabric, the yarn running from selvage to selvage at right angles to the warp.

Filler -- A relatively inert substance added to a material to alter its physical, mechanical, thermal, electrical, and other properties or to lower cost. Sometimes the term is used specifically to mean particulate additives.

Finish (or Size System) -- A material, with which filaments are treated, which contains a coupling agent to improve the bond between the filament surface and the resin matrix in a composite material. In addition, finishes often contain ingredients which provide lubricity to the filament surface, preventing abrasive damage during handling, and a binder which promotes strand integrity and facilitates packing of the filaments.

Fixed Effect -- A systematic shift in a measured quantity due to a particular level change of a treatment or condition. (See Volume 1, Section 8.1.4.)

Flash -- Excess material which forms at the parting line of a mold or die, or which is extruded from a closed mold.

Former Plate -- A die attached to a braiding machine which helps to locate the fell.

Fracture Ductility -- The true plastic strain at fracture.

Gage Length -- the original length of that portion of the specimen over which strain or change of length is determined.

Gel -- The initial jelly-like solid phase that develops during formation of a resin from a liquid. Also, a semi-solid system consisting of a network of solid aggregates in which liquid is held.

Gel Coat -- A quick-setting resin used in molding processes to provide an improved surface for the composite; it is the first resin applied to the mold after the mold-release agent.

Volume 2, Chapter 1 General Information

Gel Point -- The stage at which a liquid begins to exhibit pseudo-elastic properties. (This can be seen from the inflection point on a viscosity-time plot.)

Gel Time -- The period of time from a pre-determined starting point to the onset of gelation (gel point) as defined by a specific test method.

Glass -- An inorganic product of fusion which has cooled to a rigid condition without crystallizing. In the handbook, all reference to glass will be to the fibrous form as used in filaments, woven fabric, yarns, mats, chopped fibers, etc.

Glass Cloth -- Conventionally-woven glass fiber material (see Scrim).

Glass Fibers -- A fiber spun from an inorganic product of fusion which has cooled to a rigid condition without crystallizing.

Glass Transition -- The reversible change in an amorphous polymer or in amorphous regions of a partially crystalline polymer from (or to) a viscous or rubbery condition to (or from) a hard and relatively brittle one.

Glass Transition Temperature -- The approximate midpoint of the temperature range over which the glass transition takes place.

Graphite Fibers -- See Carbon Fibers.

Greige -- Fabric that has received no finish.

Hand Lay-up -- A process in which components are applied either to a mold or a working surface, and the successive plies are built up and worked by hand.

Hardness -- Resistance to deformation; usually measured by indention. Types of standard tests include Brinell, Rockwell, Knoop, and Vickers.

Heat Cleaned -- Glass or other fibers which have been exposed to elevated temperatures to remove preliminary sizings or binders which are not compatible with the resin system to be applied.

Heterogeneous -- Descriptive term for a material consisting of dissimilar constituents separately identifiable; a medium consisting of regions of unlike properties separated by internal boundaries. (Note that all nonhomogeneous materials are not necessarily heterogeneous).

Homogeneous -- Descriptive term for a material of uniform composition throughout; a medium which has no internal physical boundaries; a material whose properties are constant at every point, in other words, constant with respect to spatial coordinates (but not necessarily with respect to directional coordinates).

Horizontal Shear -- Sometimes used to indicate interlaminar shear. This is not an approved term for use in this handbook.

Humidity, Relative -- The ratio of the pressure of water vapor present to the pressure of saturated water vapor at the same temperature.

Hybrid -- A composite laminate comprised of laminae of two or more composite material systems. Or, a combination of two or more different fibers such as carbon and glass or carbon and aramid into a structure (tapes, fabrics and other forms may be combined).

Hygroscopic -- Capable of absorbing and retaining atmospheric moisture.

Volume 2, Chapter 1 General Information

Hysteresis -- The energy absorbed in a complete cycle of loading and unloading.

Inclusion -- A physical and mechanical discontinuity occurring within a material or part, usually consisting of solid, encapsulated foreign material. Inclusions are often capable of transmitting some structural stresses and energy fields, but in a noticeably different manner from the parent material.

Integral Composite Structure -- Composite structure in which several structural elements, which would conventionally be assembled by bonding or with mechanical fasteners after separate fabrication, are instead laid up and cured as a single, complex, continuous structure; e.g., spars, ribs, and one stiffened cover of a wing box fabricated as a single integral part. The term is sometimes applied more loosely to any composite structure not assembled by mechanical fasteners.

Interface -- The boundary between the individual, physically distinguishable constituents of a composite.

Interlaminar -- Between the laminae of a laminate.

Discussion: describing objects (e.g., voids), events (e.g., fracture), or fields (e.g., stress).

Interlaminar Shear -- Shearing force tending to produce a relative displacement between two laminae in a laminate along the plane of their interface.

Intermediate Bearing Stress -- The bearing stress at the point on the bearing load-deformation curve where the tangent is equal to the bearing stress divided by a designated percentage (usually 4%) of the original hole diameter.

Intralaminar -- Within the laminae of a laminate.

Discussion: describing objects (for example, voids), event (for example, fracture), or fields (for example, stress).

Isotropic -- Having uniform properties in all directions. The measured properties of an isotropic material are independent of the axis of testing.

Jammed State -- The state of a braided fabric under tension or compression where the deformation of the fabric is dominated by the deformation properties of the yarn.

Knitting -- A method of constructing fabric by interlocking series of loops of one or more yarns.

Knuckle Area -- The area of transition between sections of different geometry in a filament wound part.

k-Sample Data -- A collection of data consisting of values observed when sampling from k batches.

Laid-In Yarns -- A system of longitudinal yarns in a triaxial braid which are inserted between the bias yarns.

Lamina -- A single ply or layer in a laminate.

Discussion: For filament winding, a lamina is a layer.

Laminae -- Plural of lamina.

Laminate -- for fiber-reinforced composites, a consolidated collection of laminae (plies) with one or more orientations with respect to some reference direction.

Volume 2, Chapter 1 General Information

Laminate Orientation -- The configuration of a crossplied composite laminate with regard to the angles of crossplying, the number of laminae at each angle, and the exact sequence of the lamina lay-up.

Lattice Pattern -- A pattern of filament winding with a fixed arrangement of open voids.

Lay-up -- A process of fabrication involving the assembly of successive layers of resin-impregnated material.

Lognormal Distribution -- A probability distribution for which the probability that an observation selected at random from this population falls between a and b (0 < a < b < B) is given by the area under the normal distribution between $\log a$ and $\log b$. The common (base 10) or the natural (base e) logarithm may be used. (See Volume 1, Section 8.1.4.)

Lower Confidence Bound -- See Confidence Interval.

Macro -- In relation to composites, denotes the gross properties of a composite as a structural element but does not consider the individual properties or identity of the constituents.

Macrostrain -- The mean strain over any finite gage length of measurement which is large in comparison to the material's interatomic distance.

Mandrel -- A form fixture or male mold used for the base in the production of a part by lay-up, filament winding or braiding.

Mat -- A fibrous material consisting of randomly oriented chopped or swirled filaments loosely held together with a binder.

Material Acceptance -- The testing of incoming material to ensure that it meets requirements.

Material Qualification -- The procedures used to accept a material by a company or organization for production use.

Material System -- A specific composite material made from specifically identified constituents in specific geometric proportions and arrangements and possessed of numerically defined properties.

Material System Class -- As used in this handbook, a group consisting of material systems categorized by the same generic constituent materials, but without defining the constituents uniquely; e.g., the carbon/epoxy class.

Material Variability -- A source of variability due to the spatial and consistency variations of the material itself and due to variation in its processing. (See Volume 1, Section 8.1.4.)

Matrix -- The essentially homogeneous material in which the fiber system of a composite is embedded.

Matrix Content -- The amount of matrix present in a composite expressed either as percent by weight or percent by volume. Discussion: For polymer matrix composites this is called resin content, which is usually expressed as percent by weight

Mean -- See Sample Mean and Population Mean.

Mechanical Properties -- The properties of a material that are associated with elastic and inelastic reaction when force is applied, or the properties involving the relationship between stress and strain.

Median -- See Sample Median and Population Median.

Volume 2, Chapter 1 General Information

Micro -- In relation to composites, denotes the properties of the constituents, i.e., matrix and reinforcement and interface only, as well as their effects on the composite properties.

Microstrain -- The strain over a gage length comparable to the material's interatomic distance.

Modulus, Chord -- The slope of the chord drawn between any two specified points on the stress-strain curve.

Modulus, initial -- The slope of the initial straight portion of a stress-strain curve.

Modulus, Secant -- The slope of the secant drawn from the origin to any specified point on the stress-strain curve.

Modulus, Tangent -- The ratio of change in stress to change in strain derived from the tangent to any point on a stress-strain curve.

Modulus, Young's -- The ratio of change in stress to change in strain below the elastic limit of a material. (Applicable to tension and compression).

Modulus of Rigidity (also Shear Modulus or Torsional Modulus) -- The ratio of stress to strain below the proportional limit for shear or torsional stress.

Modulus of Rupture, in Bending -- The maximum tensile or compressive stress (whichever causes failure) value in the extreme fiber of a beam loaded to failure in bending. The value is computed from the flexure equation:

$$F^{b} = \frac{Mc}{I}$$
 1.8(a)

where M = maximum bending moment computed from the maximum load and the original moment arm,

c = initial distance from the neutral axis to the extreme fiber where failure occurs,

 ${\rm I}$ = the initial moment of inertia of the cross section about its neutral axis.

Modulus of Rupture, in Torsion -- The maximum shear stress in the extreme fiber of a member of circular cross section loaded to failure in torsion calculated from the equation:

$$F^{s} = \frac{Tr}{J}$$
 1.8(b)

where T = maximum twisting moment,

r = original outer radius,

J = polar moment of inertia of the original cross section.

Moisture Content -- The amount of moisture in a material determined under prescribed condition and expressed as a percentage of the mass of the moist specimen, i.e., the mass of the dry substance plus the moisture present.

Moisture Equilibrium -- The condition reached by a sample when it no longer takes up moisture from, or gives up moisture to, the surrounding environment.

Mold Release Agent -- A lubricant applied to mold surfaces to facilitate release of the molded article.

Molded Edge -- An edge which is not physically altered after molding for use in final form and particularly one which does not have fiber ends along its length.

Molding -- The forming of a polymer or composite into a solid mass of prescribed shape and size by the application of pressure and heat.

Volume 2, Chapter 1 General Information

Monolayer -- The basic laminate unit from which crossplied or other laminates are constructed.

Monomer -- A compound consisting of molecules each of which can provide one or more constitutional units.

NDE -- Nondestructive evaluation. Broadly considered synonymous with NDI.

NDI -- Nondestructive inspection. A process or procedure for determining the quality or characteristics of a material, part, or assembly without permanently altering the subject or its properties.

NDT -- Nondestructive testing. Broadly considered synonymous with NDI.

Necking -- A localized reduction in cross-sectional area which may occur in a material under tensile stress.

Negatively Skewed -- A distribution is said to be negatively skewed if the distribution is not symmetric and the longest tail is on the left.

Nominal Specimen Thickness -- The nominal ply thickness multiplied by the number of plies.

Nominal Value -- A value assigned for the purpose of a convenient designation. A nominal value exists in name only.

Normal Distribution -- A two parameter (μ, σ) family of probability distributions for which the probability that an observation will fall between a and b is given by the area under the curve

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right]$$
 1.8(c)

between a and b. (See Volume 1, Section 8.1.4.)

Normalization -- A mathematical procedure for adjusting raw test values for fiber-dominated properties to a single (specified) fiber volume content.

Normalized Stress -- Stress value adjusted to a specified fiber volume content by multiplying the measured stress value by the ratio of specimen fiber volume to the specified fiber volume. This ratio may be obtained directly by experimentally measuring fiber volume, or indirectly by calculation using specimen thickness and fiber areal weight.

Observed Significance Level (OSL) -- The probability of observing a more extreme value of the test statistic when the null hypotheses is true.

Offset Shear Strength --- (from valid execution of a material property shear response test) the value of shear stress at the intersection between a line parallel to the shear chord modulus of elasticity and the shear stress/strain curve, where the line has been offset along the shear strain axis from the origin by a specified strain offset value.

Oligomer -- A polymer consisting of only a few monomer units such as a dimer, trimer, etc., or their mixtures.

One-Sided Tolerance Limit Factor -- See Tolerance Limit Factor.

Orthotropic -- Having three mutually perpendicular planes of elastic symmetry.

Volume 2, Chapter 1 General Information

Oven Dry -- The condition of a material that has been heated under prescribed conditions of temperature and humidity until there is no further significant change in its mass.

PAN Fibers -- Reinforcement fiber derived from the controlled pyrolysis of poly(acrylonitrile) fiber.

Parallel Laminate -- A laminate of woven fabric in which the plies are aligned in the same position as originally aligned in the fabric roll.

Parallel Wound -- A term used to describe yarn or other material wound into a flanged spool.

Peel Ply -- A layer of resin free material used to protect a laminate for later secondary bonding.

pH -- A measure of acidity or alkalinity of a solution, with neutrality represented by a value of 7, with increasing acidity corresponding to progressively smaller values, and increasing alkalinity corresponding to progressively higher values.

Pick Count -- The number of filling yarns per inch or per centimeter of woven fabric.

Pitch Fibers -- Reinforcement fiber derived from petroleum or coal tar pitch.

Plastic -- A material that contains one or more organic polymers of large molecular weight, is solid in its finished state, and, at some state in its manufacture or processing into finished articles, can be shaped by flow.

Plasticizer -- A material of lower molecular weight added to a polymer to separate the molecular chains. This results in a depression of the glass transition temperature, reduced stiffness and brittleness, and improved processability. (Note, many polymeric materials do not need a plasticizer.)

Plied Yarn -- A yarn formed by twisting together two or more single yarns in one operation.

Poisson's Ratio -- The absolute value of the ratio of transverse strain to the corresponding axial strain resulting from uniformly distributed axial stress below the proportional limit of the material.

Polymer -- An organic material composed of molecules characterized by the repetition of one or more types of monomeric units.

Polymerization -- A chemical reaction in which the molecules of monomers are linked together to form polymers via two principal reaction mechanisms. Addition polymerizations proceed by chain growth and most condensation polymerizations through step growth.

Population -- The set of measurements about which inferences are to be made or the totality of possible measurements which might be obtained in a given testing situation. For example, "all possible ultimate tensile strength measurements for carbon/epoxy system A, conditioned at 95% relative humidity and room temperature". In order to make inferences about a population, it is often necessary to make assumptions about its distributional form. The assumed distributional form may also be referred to as the population. (See Volume 1, Section 8.1.4.)

Population Mean -- The average of all potential measurements in a given population weighted by their relative frequencies in the population. (See Volume 1, Section 8.1.4.)

Population Median -- That value in the population such that the probability of exceeding it is 0.5 and the probability of being less than it is 0.5. (See Volume 1, Section 8.1.4.)

Population Variance -- A measure of dispersion in the population.

Volume 2, Chapter 1 General Information

Porosity -- A condition of trapped pockets of air, gas, or vacuum within a solid material, usually expressed as a percentage of the total nonsolid volume to the total volume (solid plus nonsolid) of a unit quantity of material.

Positively Skewed -- A distribution is said to be positively skewed if the distribution is not symmetric and the longest tail is on the right.

Postcure -- Additional elevated temperature cure, usually without pressure, to increase the glass transition temperature, to improve final properties, or to complete the cure.

Pot Life -- The period of time during which a reacting thermosetting composition remains suitable for its intended processing after mixing with a reaction initiating agent.

Precision -- The degree of agreement within a set of observations or test results obtained. Precision involves repeatability and reproducibility.

Precursor (for Carbon or Graphite Fiber) -- Either the PAN or pitch fibers from which carbon and graphite fibers are derived.

Preform -- An assembly of dry fabric and fibers which has been prepared for one of several different wet resin injection processes. A preform may be stitched or stabilized in some other way to hold its A shape. A commingled preform may contain thermoplastic fibers and may be consolidated by elevated temperature and pressure without resin injection.

Preply -- Layers of prepreg material, which have been assembled according to a user specified stacking sequence.

Prepreg -- Ready to mold or cure material in sheet form which may be tow, tape, cloth, or mat impregnated with resin. It may be stored before use.

Pressure -- The force or load per unit area.

Probability Density Function -- See Volume 1, Section 8.1.4.

Proportional Limit -- The maximum stress that a material is capable of sustaining without any deviation from the proportionality of stress to strain (also known as Hooke's law).

Quasi-Isotropic Laminate -- A balanced and symmetric laminate for which a constitutive property of interest, at a given point, displays isotropic behavior in the plane of the laminate.

Discussion: Common quasi-isotropic laminates are $(0/\pm 60)$ s and $(0/\pm 45/90)$ s.

Random Effect -- A shift in a measured quantity due to a particular level change of an external, usually uncontrollable, factor. (See Volume 1, Section 8.1.4.)

Random Error -- That part of the data variation that is due to unknown or uncontrolled factors and that affects each observation independently and unpredictably. (See Volume 1, Section 8.1.4.)

Reduction of Area -- The difference between the original cross sectional area of a tension test specimen and the area of its smallest cross section, usually expressed as a percentage of the original area.

Refractive Index - The ratio of the velocity of light (of specified wavelength) in air to its velocity in the substance under examination. Also defined as the sine of the angle of incidence divided by the sine of the angle of refraction as light passes from air into the substance.

Volume 2, Chapter 1 General Information

Reinforced Plastic -- A plastic with relatively high stiffness or very high strength fibers embedded in the composition. This improves some mechanical properties over that of the base resin.

Release Agent -- See Mold Release Agent.

Resilience -- A property of a material which is able to do work against restraining forces during return from a deformed condition.

Resin -- An organic polymer or prepolymer used as a matrix to contain the fibrous reinforcement in a composite material or as an adhesive. This organic matrix may be a thermoset or a thermoplastic, and may contain a wide variety of components or additives to influence; handleability, processing behavior and ultimate properties.

Resin Content -- See Matrix content.

Resin Starved Area -- Area of composite part where the resin has a non-continuous smooth coverage of the fiber.

Resin System -- A mixture of resin, with ingredients such as catalyst, initiator, diluents, etc. required for the intended processing and final product.

Room Temperature Ambient (RTA) -- 1) an environmental condition of 73±5°F (23±3°C) at ambient laboratory relative humidity; 2) a material condition where, immediately following consolidation/cure, the material is stored at 73±5°F (23±3°C) and at a maximum relative humidity of 60%.

Roving -- A number of strands, tows, or ends collected into a parallel bundle with little or no twist. In spun yarn production, an intermediate state between sliver and yarn.

S-Basis (or S-Value) -- The mechanical property value which is usually the specified minimum value of the appropriate government specification or SAE Aerospace Material Specification for this material.

Sample -- A small portion of a material or product intended to be representative of the whole. Statistically, a sample is the collection of measurements taken from a specified population. (See Volume 1, Section 8.1.4.)

Sample Mean -- The arithmetic average of the measurements in a sample. The sample mean is an estimator of the population mean. (See Volume 1, Section 8.1.4.)

Sample Median -- Order the observation from smallest to largest. Then the sample median is the value of the middle observation if the sample size is odd; the average of the two central observations if n is even. If the population is symmetric about its mean, the sample median is also an estimator of the population mean. (See Volume 1, Section 8.1.4.)

Sample Standard Deviation -- The square root of the sample variance. (See Volume 1, Section 8.1.4.)

Sample Variance -- The sum of the squared deviations from the sample mean, divided by n-1. (See Volume 1, Section 8.1.4.)

Sandwich Construction -- A structural panel concept consisting in its simplest form of two relatively thin, parallel sheets of structural material bonded to, and separated by, a relatively thick, light-weight core.

Saturation -- An equilibrium condition in which the net rate of absorption under prescribed conditions falls essentially to zero.

Volume 2, Chapter 1 General Information

Scrim (also called **Glass Cloth, Carrier**) -- A low cost fabric woven into an open mesh construction, used in the processing of tape or other B-stage material to facilitate handling.

Secondary Bonding -- The joining together, by the process of adhesive bonding, of two or more already-cured composite parts, during which the only chemical or thermal reaction occurring is the curing of the adhesive itself.

Selvage or Selvedge -- The woven edge portion of a fabric parallel to the warp.

Set -- The strain remaining after complete release of the force producing the deformation.

Shear Fracture (for crystalline type materials) -- A mode of fracture resulting from translation along slip planes which are preferentially oriented in the direction of the shearing stress.

Shelf Life -- The length of time a material, substance, product, or reagent can be stored under specified environmental conditions and continue to meet all applicable specification requirements and/or remain suitable for its intended function.

Short Beam Strength (SBS) -- a test result from valid execution of ASTM test method D2344.

Significant -- Statistically, the value of a test statistic is significant if the probability of a value at least as extreme is less than or equal to a predetermined number called the significance level of the test.

Significant Digit -- Any digit that is necessary to define a value or quantity.

Size System -- See Finish.

Sizing -- A generic term for compounds which are applied to yarns to bind the fiber together and stiffen the yarn to provide abrasion-resistance during weaving. Starch, gelatin, oil, wax, and man-made polymers such as polyvinyl alcohol, polystyrene, polyacrylic acid, and polyacetatates are employed.

Skewness -- See Positively Skewed, Negatively Skewed.

Sleeving -- A common name for tubular braided fabric.

Slenderness Ratio -- The unsupported effective length of a uniform column divided by the least radius of gyration of the cross-sectional area.

Sliver -- A continuous strand of loosely assembled fiber that is approximately uniform in cross-sectional area and has no twist.

Solute -- The dissolved material.

Specific Gravity -- The ratio of the weight of any volume of a substance to the weight of an equal volume of another substance taken as standard at a constant or stated temperature. Solids and liquids are usually compared with water at 39°F (4°C).

Specific Heat -- The quantity of heat required to raise the temperature of a unit mass of a substance one degree under specified conditions.

Specimen -- A piece or portion of a sample or other material taken to be tested. Specimens normally are prepared to conform with the applicable test method.

Spindle -- A slender upright rotation rod on a spinning frame, roving frame, twister or similar machine.

Volume 2, Chapter 1 General Information

Standard Deviation -- See Sample Standard Deviation.

Staple -- Either naturally occurring fibers or lengths cut from filaments.

Step-Growth Polymerization -- One of the two principal polymerization mechanisms. In sep-growth polymerization, the reaction grows by combination of monomer, oligomer, or polymer molecules through the consumption of reactive groups. Since average molecular weight increases with monomer consumption, high molecular weight polymers are formed only at high degrees of conversion.

Strain -- the per unit change, due to force, in the size or shape of a body referred to its original size or shape. Strain is a nondimensional quantity, but it is frequently expressed in inches per inch, meters per meter, or percent.

Strand -- Normally an untwisted bundle or assembly of continuous filaments used as a unit, including slivers, tow, ends, yarn, etc. Sometimes a single fiber or filament is called a strand.

Strength -- the maximum stress which a material is capable of sustaining.

Stress -- The intensity at a point in a body of the forces or components of forces that act on a given plane through the point. Stress is expressed in force per unit area (pounds-force per square inch, mega-pascals, etc.).

Stress Relaxation -- The time dependent decrease in stress in a solid under given constraint conditions.

Stress-Strain Curve (Diagram) -- A graphical representation showing the relationship between the change in dimension of the specimen in the direction of the externally applied stress and the magnitude of the applied stress. Values of stress usually are plotted as ordinates (vertically) and strain values as abscissa (horizontally).

Structural Element -- a generic element of a more complex structural member (for example, skin, stringer, shear panels, sandwich panels, joints, or splices).

Structured Data -- See Volume 1, Section 8.1.4.

Surfacing Mat -- A thin mat of fine fibers used primarily to produce a smooth surface on an organic matrix composite.

Symmetrical Laminate -- A composite laminate in which the sequence of plies below the laminate midplane is a mirror image of the stacking sequence above the midplane.

Tack -- Stickiness of the prepreg.

Tape -- Prepreg fabricated in widths up to 12 inches wide for carbon and 3 inches for boron. Cross stitched carbon tapes up to 60 inches wide are available commercially in some cases.

Tenacity -- The tensile stress expressed as force per unit linear density of the unstrained specimen i.e., grams-force per denier or grams-force per tex.

Tex -- A unit for expressing linear density equal to the mass or weight in grams of 1000 meters of filament, fiber, yarn or other textile strand.

Thermal Conductivity -- Ability of a material to conduct heat. The physical constant for quantity of heat that passes through unit cube of a substance in unit time when the difference in temperature of two faces is one degree.

Volume 2, Chapter 1 General Information

Thermoplastic -- A plastic that repeatedly can be softened by heating and hardened by cooling through a temperature range characteristic of the plastic, and when in the softened stage, can be shaped by flow into articles by molding or extrusion.

Thermoset -- A class of polymers that, when cured using heat, chemical, or other means, changes into a substantially infusible and insoluble material.

Tolerance -- The total amount by which a quantity is allowed to vary.

Tolerance Limit -- A lower (upper) confidence limit on a specified percentile of a distribution. For example, the B-basis value is a 95% lower confidence limit on the tenth percentile of a distribution.

Tolerance Limit Factor -- The factor which is multiplied by the estimate of variability in computing the tolerance limit.

Toughness -- A measure of a material's ability to absorb work, or the actual work per unit volume or unit mass of material that is required to rupture it. Toughness is proportional to the area under the loadelongation curve from the origin to the breaking point.

Tow -- An untwisted bundle of continuous filaments. Commonly used in referring to man-made fibers, particularly carbon and graphite fibers, in the composites industry.

Transformation -- A transformation of data values is a change in the units of measurement accomplished by applying a mathematical function to all data values. For example, if the data is given by x, then y = x + 1, x, 1/x, log x, and cos x are transformations.

Transition, First Order -- A change of state associated with crystallization or melting in a polymer.

Transversely Isotropic -- Descriptive term for a material exhibiting a special case of orthotropy in which properties are identical in two orthotropic dimensions, but not the third; having identical properties in both transverse directions but not the longitudinal direction.

Traveller -- A small piece of the same product (panel, tube, etc.) as the test specimen, used for example to measure moisture content as a result of conditioning.

Twist -- The number of turns about its axis per unit of length in a yarn or other textile strand. It may be expressed as turns per inch (tpi) or turns per centimeter (tpcm).

Twist, Direction of -- The direction of twist in yarns and other textile strands is indicated by the capital letters S and Z. Yarn has S twist if, when held in a vertical position, the visible spirals or helices around its central axis are in the direction of slope of the central portion of the letter S, and Z twist is in the other direction.

Twist Multiplier -- The ratio of turns per inch to the square root of the cotton count.

Typical Basis -- A typical property value is a sample mean. Note that the typical value is defined as the simple arithmetic mean which has a statistical connotation of 50% reliability with a 50% confidence.

Unbond -- An area within a bonded interface between two adherends in which the intended bonding action failed to take place. Also used to denote specific areas deliberately prevented from bonding in order to simulate a defective bond, such as in the generation of quality standards specimens. (See **Disbond**, **Debond**).

Unidirectional Fiber-Reinforced Composite -- Any fiber-reinforced composite with all fibers aligned in a single direction.

Volume 2, Chapter 1 General Information

Unit Cell -- The term applied to the path of a yarn in a braided fabric representing a unit cell of a repeating geometric pattern. The smallest element representative of the braided structure.

Unstructured Data -- See Volume 1, Section 8.1.4.

Upper Confidence Limit -- See Confidence Interval.

Vacuum Bag Molding -- A process in which the lay-up is cured under pressure generated by drawing a vacuum in the space between the lay-up and a flexible sheet placed over it and sealed at the edges.

Variance -- See Sample Variance.

Viscosity -- The property of resistance to flow exhibited within the body of a material.

Void - Any pocket of enclosed gas or near-vacuum within a composite.

Warp -- The longitudinally oriented yarn in a woven fabric (see **Fill**); a group of yarns in long lengths and approximately parallel.

Weibull Distribution (Two-Parameter) -- A probability distribution for which the probability that a randomly selected observation from this population lies between a and b (0 < a < b < 4) is given by Equation 1.8(d) where α is called the scale parameter and β is called the shape parameter. (See Volume 1, Section 8.1.4.)

$$\exp\left[-\left(\frac{a}{\alpha}\right)^{\beta}\right] - \exp\left[-\left(\frac{b}{\alpha}\right)^{\beta}\right]$$
 1.8(d)

Wet Lay-up -- A method of making a reinforced product by applying a liquid resin system while or after the reinforcement is put in place.

Wet Strength -- The strength of an organic matrix composite when the matrix resin is saturated with absorbed moisture. (See Saturation).

Wet Winding -- A method of filament winding in which the fiber reinforcement is coated with the resin system as a liquid just prior to wrapping on a mandrel.

Whisker -- A short single crystal fiber or filament. Whisker diameters range from 1 to 25 microns, with aspect ratios between 100 and 15,000.

Winding -- A process in which continuous material is applied under controlled tension to a form in a predetermined geometric relationship to make a structure.

Discussion: A matrix material to bind the fibers together may be added before, during or after winding. Filament winding is the most common type.

Work Life -- The period during which a compound, after mixing with a catalyst, solvent, or other compounding ingredient, remains suitable for its intended use.

Woven Fabric Composite -- A major form of advanced composites in which the fiber constituent consists of woven fabric. A woven fabric composite normally is a laminate comprised of a number of laminae, each of which consists of one layer of fabric embedded in the selected matrix material. Individual fabric laminae are directionally oriented and combined into specific multiaxial laminates for application to specific envelopes of strength and stiffness requirements.

Volume 2, Chapter 1 General Information

Yarn -- A generic term for strands or bundles of continuous filaments or fibers, usually twisted and suitable for making textile fabric.

Yarn, Plied -- Yarns made by collecting two or more single yarns together. Normally, the yarns are twisted together though sometimes they are collected without twist.

Yield Strength -- The stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain. (The deviation is expressed in terms of strain such as 0.2 percent for the Offset Method or 0.5 percent for the Total Extension Under Load Method.)

X-Axis -- In composite laminates, an axis in the plane of the laminate which is used as the 0 degree reference for designating the angle of a lamina.

X-Y Plane -- In composite laminates, the reference plane parallel to the plane of the laminate.

Y-Axis -- In composite laminates, the axis in the plane of the laminate which is perpendicular to the x-axis.

Z-Axis -- In composite laminates, the reference axis normal to the plane of the laminate.

Volume 2, Chapter 1 General Information

REFERENCES

- 1.6.1(a) DOD/NASA Advanced Composites Design Guide, Vol. 4, Section 4.0.5, Air Force Wright Aeronautical Laboratories, Dayton, OH, prepared by Rockwell International Corporation, 1983 (distribution limited).
- 1.6.1(b) ASTM Guide E1309, "Identification of Composite Materials in Computerized Material Property Databases," *Annual Book of ASTM Standards*, Vol. 15.03, American Society for Testing and Materials, West Conshohocken, PA.
- 1.7(a) Military Standardization Handbook, *Metallic Materials and Elements for Aerospace Vehicle Structures*, MIL-HDBK-5D, Change Notice 2, May, 1985.
- 1.7(b) DOD/NASA Advanced Composites Design Guide, Air Force Wright Aeronautical Laboratories, Dayton, OH, prepared by Rockwell International Corporation, 1983 (distribution limited).
- 1.7(c) ASTM Terminology E206, "Definitions of Terms Relating to Fatigue Testing and the Statistical Analysis of Fatigue Data," *Annual Book of ASTM Standards*, Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA. (canceled March 27, 1987; replaced by ASTM E 1150).
- 1.7.2(a) ASTM Practice E380, "Metric Practice," Annual Book of ASTM Standards, Vol. 14.01, American Society for Testing and Materials, West Conshohocken, PA. (canceled April 28, 1997; now sold in book form called "Metric 97").
- 1.7.2(b) Engineering Design Handbook: Metric Conversion Guide, DARCOM P 706-470, July 1976.
- 1.7.2(c) *The International System of Units (SI)*, NBS Special Publication 330, National Bureau of Standards, 1986 edition.
- 1.7.2(d) Units and Systems of Weights and Measures, Their Origin, Development, and Present Status, NBS Letter Circular LC 1035, National Bureau of Standards, November 1985.
- 1.7.2(e) The International System of Units Physical Constants and Conversion Factors, NASA Special Publication 7012, 1964.

Volume 2, Chapter 1 General Information

This page intentionally left blank

Volume 2, Chapter 2 Fiber Properties

CHAPTER 2 FIBER PROPERTIES

- 2.1 INTRODUCTION
- 2.2 CARBON FIBERS
- 2.3 ARAMID FIBERS
- 2.4 GLASS FIBERS
- 2.5 BORON FIBERS
- 2.6 ALUMINA FIBERS
- 2.7 SILICON CARBIDE FIBERS
- 2.8 QUARTZ FIBERS

Volume 2, Chapter 2 Fiber Properties

This page intentionally left blank

Volume 2, Chapter 3 Matrix Properties

CHAPTER 3 MATRIX PROPERTIES

3.1 INTRODUCTION

3.2 EPOXIES

- 3.2.1 General Characteristics
- 3.2.2 Index of Supplies, Designations, and Abbreviations

3.3 POLYESTERS

- 3.4 PHENOLICS
- 3.5 SILICONES
- 3.6 **BISMALEIMIDES**
- 3.7 POLYBENZIMIDAZOLES
- 3.8 POLYIMIDES, THERMOSET
- **3.9 POLYETHERETHERKETONES**
- 3.10 POLYPHENYLENE SULFIDES
- 3.11 POLYETHERIMIDES
- 3.12 POLYSULFONES
- 3.13 POLYAMIDE-IMIDES
- 3.14 POLYIMIDES, THERMOPLASTICS

This page intentionally left blank

Volume 2, Chapter 4 Carbon Fiber Composites

CHAPTER 4 CARBON FIBER COMPOSITES

4.1 INTRODUCTION

4.2 CARBON - EPOXY COMPOSITES

4.2.1 T-500 12k/976 unidirectional tape

Material Description:

Material: T-500 12k/976

Form: Unidirectional tape, fiber areal weight of 142 g/m², typical cured resin content of 28-34%, typical cured ply thickness of 0.0053 inches.

Processing: Autoclave cure; 240°F, 85 psi, 1 hour; 350°F, 100 psi for 2 hours.

General Supplier Information:

- Fiber: T-500 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 35.5 x 10⁶ psi. Typical tensile strength is 575,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications, good hot/wet properties.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.1 T500 12k/976 unidirectional tape*

MATERIAL:	T-500 12k/976 unidirectional tape			C/Ep 145-UT T-500/976 Summary		
FORM:	Fiberite Hy-E 3076P unidirectional tap	pe prepreg	-			
FIBER:	Union Carbide Thornel T-500 12k	MATRIX:	Fiberite 976			
T _g (dry):	361°F T _g (wet):	Tg METHOD:				
PROCESSING:	240°F, 1 hour, 85 psi; 350°F, 2 hours, 100 psi					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal 6/	/88
Date of form manufacture 12/83	Date of analysis 1/	/93
Date of composite manufacture		

	75°F/A	-65°F/A	250°F/A		
Tension, 1-axis	II-I	II-I	II-I		
Tension, 2-axis	II-I	II-I	II-I		
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.57 - 1.61	
Fiber Areal Weight	(g/m ²)	142	142 - 146	
Fiber Volume	(%)			
Ply Thickness	(in)	0.0053	0.0050 - 0.0057	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: T-50	0 12k/976 unidi		Table 4.2.1(a) C/Ep 142-UT			
FIBER V	OLUME: 59-6	4 wt% 4 % 50 - 0.0057 in.	COMP: DE VOID CON	T-50 Tensio [(0/976 n, 1-axis 0]₀		
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:		5/A, 200/A erim
AST	M D 3039-76		Chord	, 20-40% of ulti	mate load		
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 609	% fiber volume	(0.0052 in. CPT	Г)
	iture (°F) Content (%) ım at T, RH	75 amb			65 vient	25 amb	
Source C		13			3	1	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	295 257 329 6.41	298 270 328 5.74	213 163 243 9.78	213 196 235 5.02	273 236 302 7.39	276 258 310 6.05
F ₁ ^{tu}	B-value Distribution	(1) ANOVA		(1) Weibull		(1) Weibull	
(ksi)	C ₁ C ₂	20.5 4.64		221 13.1		282 15.7	
	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		15 3 Interim	
E_1^t	Mean Minimum Maximum C.V.(%)	21.9 20.9 24.7 4.42	22.0 20.5 24.0 4.15	19.0 15.9 21.5 8.11	19.1 17.7 21.5 5.76	22.2 18.6 25.1 6.91	22.4 21.0 23.8 4.17
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim Ir			5 3 erim	1 S Inte	3
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		13000 11700 13900 4.98		10700 9300 12000 5.98		11800 10800 12900 5.32
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) Weibull		(1) Weibull
(με)	C ₁ C ₂		706 4.75		11000 18.8		12100 21.6
	No. Specimens No. Batches Data Class	15 3 Inte		3	5 3 erim	1 : Inte	3

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	,	0 12k/976 unid				Table 4.2.1(b)
FIBER	VOLUME: 59-6	4 wt% 4 % 50-0.0057 in.	COMP: D VOID COI		57-1.61 lb/in ³ 3-1.7%	C/Ep 142-UT T-500/976 Tension, 2-axis [90]₀ 75(A - 05(A - 200(A
TEST	METHOD:		MODULU	S CALCULATI	ION:	75/A, -65/A, 200/A Interim
	STM D 3039-76			20 - 40 % of u		
NORM	ALIZED BY: Not	normalized				
Moistur Equilibr	rature (°F) e Content (%) rium at T, RH	75 ambient	-65 ambient	250 ambient		
Source		13	13	13		
	Mean	10.2	10.3	7.90		
	Minimum Maximum	9.40 11.3	9.40 12.1	7.00 8.80		
	C.V.(%)	5.59	6.61	5.35		
	B-value	(1)	(1)	(1)		
F_2^{tu}	Distribution	ANOVA	Lognormal	Weibull		
(ksi)	C ₁	0.594	2.33	8.09		
	C ₂	3.48	0.0636	19.7		
	No. Specimens	15	15	15		
	No. Batches	3	3	3		
	Data Class	Interim	Interim	Interim		
	Mean	1.3	1.5	1.2		
	Minimum	1.3	1.4	1.1		
E t	Maximum C.V.(%)	1.7 7.8	1.6 4.8	1.3 7.0		
E ^t ₂	0. v.(70)	7.0	4.0	7.0		
(Msi)	No. Specimens	15	15	15		
	No. Batches	3	3	3		
	Data Class	Interim	Interim	Interim	<u> </u>	
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class					
	Mean	7750	7110	6930		
	Minimum	5800	6200	5900		
	Maximum C.V.(%)	8900 10.3	8600 8.28	8000 8.32		
	U . V.(70)	10.5	0.20	0.02		
4	B-value	(1)	(1)	(1)		
ε_2^{tu}	Distribution	Weibull	Weibull	Weibull		
(με)	C ₁	8080	7390	7180		
	C ₂	12.4	11.5	13.7		
	No. Specimens	15	15	15		
	No. Batches	3	3	3		
	Data Class	Interim	Interim	Interim		

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.2 HITEX 33 6k/E7K8 unidirectional tape

Material Description:

Material: HITEX 33-6k/E7K8

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 34% typical cured ply thickness of 0.0057 inches.
- Processing: Autoclave cure; 300-310°F, 55 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: HITEX 33 fibers are continuous carbon filaments made from PAN precursor. Filament count is 6,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 560,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.2 HITEX 33 6k/E7K8 unidirectional tape*

MATERIAL:	HITEX 33 6k/E7K8 unidirectional tap	e		C/Ep 145-UT HITEX 33/E7K8 Summary		
FORM:	U.S. Polymeric HITEX 33 6k/E7K8 ur	nidirectional tape, gra	ade 145 prepreg			
FIBER:	Hitco HITEX 33 6k, no twist	MATRIX:	U.S. Polymeric E7	K8		
T _g (dry):	T _g (wet):	Tg METHOD:				
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 130 min., 55 psi					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/83
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SSSS	SS-S		SSS-	SSS-	
Tension, 2-axis	SS					
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S		SS	SS	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	S		S	S	S	
Shear, 23-plane						
Shear, 31-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59	1.56 - 1.61	
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	58.0	57 - 64	
Ply Thickness	(in)	0.0057	0.0053 - 0.0058	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.											
MATERIA	AL: HITE	EX 33 6k/E7K8 ι	unidirectional ta	ape			4.2.2(a)					
FIBER V			Comp: De Void Con		3 g/cm ³ %	HITEX Tension	145-UT 33/E7K8 n, 1-axis] ₁₀					
	0.00						A, 75/1.5%					
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		ening					
AST	M D 3039-76											
NORMAL	IZED BY: Fibe	r volume to 60%	5 (0.0057 in. C	PT)								
Tempera		75		-6		7						
	Content (%)	amb	ient	amb	ient	1.						
Source C	im at T, RH	20	n	2	n	(1						
Source C	JULE	Normalized	Measured	Normalized	Measured	Normalized	Measured					
	Mean	313	304	296	288	318	310					
	Minimum	292	283	267	259	280	272					
	Maximum	339	330	327	319	345	335					
	C.V.(%)	4.80	4.84	9.19	9.20	7.63	7.65					
	B-value	(2)	(2)	(2)	(2)	(2)	(2)					
F_1^{tu}	Distribution	Weibull	(∠) Weibull	Normal	(2) Normal	Normal	(2) Normal					
г ₁ (ksi)	C ₁	320	311	296	288	318	310					
(KSI)	C_1 C_2	22.2	21.9	230	26.5	24.3	23.7					
	•2		20		2010							
	No. Specimens	20		5		5						
	No. Batches Data Class	1 Screening		1 Soror		1 Soror						
	Mean	18.2	17.7	Screening 18.5 18.0		Screening 18.5 18.0						
	Minimum	17.5	17.0	18.1	17.7	18.3	17.8					
	Maximum	19.0	18.5	18.6	18.1	18.7	18.2					
E_1^t	C.V.(%)	2.58	2.60	1.06	1.07	0.79	0.79					
(Msi)	No. Specimens	18		5	i	5						
	No. Batches Data Class	-	1 Screening		ening	1 Screening						
	Mean	00166	0.310	00100	,	00100	0.310					
	No. Specimens	5				5						
v_{12}^{t}	No. Batches	1				1						
	Data Class	Scree	ening			Scree	ening					
	Mean		15900		16100							
	Minimum		15200		15500							
	Maximum C.V.(%)		17100 4.81		17000 3.61							
	U . v . (70)		1.01		0.01							
	B-value		(2)		(2)							
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal							
(με)	_		15900		16200							
	C ₂		765		582							
	No. Specimens			5	:							
	No. Batches	5		1								
	Data Class			Scree								
Data Class Screening					~							

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	,					S NOT SUFF	LIED FOR THIS MATERIAL.		
MATERIA		EX 33 6k/E7K8 ι	unidirectional ta	ape			Table 4.2.2(b) C/Ep 145-UT		
FIBER V		6	COMP: DE VOID CON		1.58 0.0%	g/cm ³	HITEX 33/E7K8 Tension, 1-axis		
	CKNESS: 0.00	57 in.					[0] ₁₀ 180/1.5%		
TEST ME	ETHOD:		MODULUS	S CALCU		N:	Screening		
AST	M D 3039-76								
NORMAL	-IZED BY: Fibe	r volume to 60%	5 (0.0057 in. C	PT)					
Temperature (°F) 180									
	Content (%) Im at T, RH	1. (1							
Source C		20							
		Normalized	Measured	Normal	ized	Measured	Normalized Measured		
	Mean	308	300						
	Minimum Maximum	296 318	288 309						
	C.V.(%)	2.65	2.65						
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal						
г ₁ (ksi)	C ₁	308	300						
(KSI)	C_2	8.17	7.95						
	No. Specimens	5							
	No. Batches		1						
	Data Class	Scree	-						
	Mean Minimum	18.7 17.8	18.2 17.3						
	Maximum	19.5	19.0						
E_1^t	C.V.(%)	3.64	3.65						
		_							
(Msi)	No. Specimens No. Batches	5							
	Data Class	Scree	ening						
	Mean		0.300						
t	No. Specimens No. Batches	5							
v_{12}^{t}									
	Data Class Mean	Scree	a mig						
	Minimum								
	Maximum								
	C.V.(%)								
	B-value								
$arepsilon_1^{ ext{tu}}$	Distribution								
(με)	C ₁								
	C ₂								
	No. Specimens								
	No. Batches								
	Data Class								

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER			nidirectional tape		Table 4.2.2(c)
FIBER	CONTENT: 34 v VOLUME: 58 % HICKNESS: 0.00		COMP: DENSIT VOID CONTEN		C/Ep 145-UT HITEX 33/E7K8 Tension, 2-axis [90] ₂₀ 75/A
TEST	METHOD:		MODULUS CAL	CULATION:	Screening
AS	STM D 3039-76				
		normalized			
Moistur Equilibr	rature (°F) e Content (%) rium at T, RH	75 ambient			
Source		20			
	Mean Minimum	6.90 5.58			
	Maximum	8.07			
	C.V.(%)	11.2			
F ₂ ^{tu}	B-value Distribution	(1) Weibull			
(ksi)	C ₁ C ₂	7.23 10.9			
	No. Specimens No. Batches	20			
	Data Class	Screening			
	Mean	1.25			
	Minimum	1.23			
r t	Maximum C.V.(%)	1.27 0.977			
E_2^t	0. v.(70)	0.377			
(Msi)	No. Specimens	20			
	No. Batches Data Class	1 Screening			
	Mean				
v_{21}^{t}	No. Specimens No. Batches				
	Data Class	<u> </u>			
	Mean Minimum				
	Maximum				
	C.V.(%)				
$\varepsilon_2^{ m tu}$	B-value Distribution				
(με)	C ₁				
(pic)	C ₂				
	No. Specimens No. Batches				
	Data Class				

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: HITEX 33 6k/E7K8 unidirectional tape Table 4.2.2(d)											
MATERIA	al: HITE	=X 33 6k/Ε7K8 ι	inidirectional ta	ape			4.2.2(d)					
	ONTENT: 34-3	5 wt%	COMP: DE		7-1.58 g/cm ³		45-UT 33/E7K8					
FIBER VO			VOID CON				ion, 1-axis					
PLY THIC		57 in.		11EINT. 0.07	70	Compress [0]10					
	0.00	07 11.				75/A, -65/	A, 75/1.5%					
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		ening					
SAC	MA SRM 1-88											
NORMAL	IZED BY: Fibe	r volume to 60%	o (0.0057 in. C	PT)								
Temperat		75		-6		75						
	Content (%)	ambi	ient	amb	ient	1.						
	m at T, RH		`		0	(1						
Source C	ode	20		20 Normalized		20						
	Moon	Normalized	Measured		Measured	Normalized	Measured					
	Mean Minimum	209 168	204 164	230 209	224 204	198 178	193 174					
	Maximum	234	228	209 254	248	217	211					
	C.V.(%)	9.41	9.41	7.98	8.04	8.13	8.03					
		••••										
	B-value	(2)	(2)	(2)	(2)	(2)	(2)					
F_1^{cu}	Distribution	Weibull	Weibull	Normal	Normal	Normal	Normal					
(ksi)	C ₁	218	212	230	224	198	193					
()	C ₂	13.7	13.7	18.3	17.9	16.1	15.7					
	No. Specimens	20		5		5						
	No. Batches	1		1		1						
	Data Class	Scree	<u> </u>	Scree	•	Screening						
	Mean	17.1	16.2	17.9	16.9	18.0	17.0					
	Minimum Maximum	16.1 17.8	15.2 16.8	17.5 18.1	16.5 17.1	17.5 18.8	16.6 17.8					
E_1^c	C.V.(%)	2.89	2.94	1.23	1.35	3.04	5.59					
E ₁	0(/0)	2.00	2.01	1.20		0.01	0.00					
(Msi)	No. Specimens	20	h	5		F						
(10131)	No. Batches	1	,	1		5						
	Data Class	Scree	ning	Scree		Scree						
	Mean				Ŭ.							
	No. Specimens											
v_{12}^{c}	No. Batches											
12	Data Class											
	Mean		12600		13600							
	Minimum		12000		13600							
	Maximum		13400		13700							
	C.V.(%)		2.92		0.48							
	B-value	(2)										
cu	Distribution		(2) Weibull		(2) Normal							
$\varepsilon_1^{\rm cu}$												
(με)	(με) C ₁ 12800				13600							
	C ₂		35.7		65.7							
	No. Specimens	20	1	_								
	No. Batches	1		5								
	Data Class	Scree		Scree								
1		00.00		00.00								

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA		EX 33 6k/E7K8 ι		SNOT SUFF	LIED FOR THIS MATERIAL. Table 4.2.2(e)		
RESIN C FIBER VO PLY THIC	OLUME: 57-	35 wt% 58 % 057 in.	COMP: DE VOID CON	1.58 g/cm ³	C/Ep 145-UT HITEX 33/E7K8 Compression, 1-axis [0]₁₀ 180/1.5%		
TEST ME	THOD:		MODULUS	S CALCUI		:	Screening
SAC	MA SRM 1-88						
NORMAL	IZED BY: Fibe	er volume to 60%	o (0.0057 in. C	PT)			
	Content (%) m at T, RH	18 1. (1 20	5)				
		Normalized	Measured	Normal	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	136 111 161 13.4	132 108 157 13.6				
F_1^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	136 18.3	132 17.8				
	No. Specimens No. Batches Data Class	5 1 Scree					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	17.6 17.0 18.0 2.47	16.6 16.1 17.0 2.47				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε_1^{cu}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: HITE	EX 33 6k/E7K8			Table	4.2.2(f)				
FIBER	VOLUME: 62-6	0 wt% 4 % 53 in.	Comp: d Void Co		9-1.61 g/cm ³ 5-0.91%	C/Ep 145-UT HITEX 33/E7K8 Shear, 12-plane [(±45)₂/45]₅ 75/A, 180/A, 75/1.5%, 180/1.5%				
	METHOD:		MODULU	S CALCULATIO	ON:		ening			
AS	STM D 3518-76									
NORM	NORMALIZED BY: Not normalized									
Moistur	rature (°F) re Content (%) rium at T, RH	75 ambient 20	180 ambient 20	75 1.5 (1) 20	180 1.5 (1) 20					
Source	Mean	15.0	13.2	16.3	11.7					
	Minimum	13.5	13.1	15.8	11.5					
	Maximum C.V.(%)	15.8 3.52	13.3 0.655	16.7 2.20	11.9 1.27					
F ₁₂ ^{su}	B-value Distribution	(2) Weibull	(2) Normal	(2) Normal	(2) Normal					
(ksi)	C ₁	15.2	13.2	16.3	11.7					
· · /	C ₂	34.8	0.0865	0.357	0.148					
	No. Specimens No. Batches Data Class	20 1 Screening	5 1 Screening	5 1 Screening	5 1 Screening					
γ_{12}^{su}	Mean Minimum Maximum C.V.(%) B-value Distribution									
(με)	C ₁ C ₂									
	No. Specimens No. Batches Data Class									
G _s ¹²	Mean Minimum Maximum C.V.(%)									
(Msi)	No. Specimens No. Batches Data Class									

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.3 AS4 12k/E7K8 unidirectional tape

Material Description:

Material: AS4-12k/E7K8

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 32-37%, typical cured ply thickness of 0.0054 inches.
- Processing: Autoclave cure; 300-310° F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.3 AS4 12k/E7K8 unidirectional tape*

MATERIAL:	AS4 12k/E7K8 unidirectional tape			C/Ep 145-UT AS4/E7K8 Summary
FORM:	U.S. Polymeric AS4 12k/E7K8 unidire	ctional tape prepreg	-	
FIBER:	Hercules AS4 12k	MATRIX:	U.S. Polymeric E7	<8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 13	0 min., 55 psi		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SSSS	SS-S		SSSS	SSSS	
Tension, 2-axis	SS					
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S		SS	SS	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	S		S	S	S	
Shear, 23-plane						
Shear, 31-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.52 - 1.59	
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	59.6	53 - 60	
Ply Thickness	(in)	0.0054	0.0054 - 0.0057	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

(101)	NE 1989). ALL DOC	JUMENTATION	PRESENTLY	AS NOT SUPP	LIED FOR THIS	MATERIAL.	
MATERIA	AL: AS4	12k/E7K8 unid	irectional tape				4.2.3(a)
	ONTENT: 32-3	37 wt%	COMP: DE		3-1.59 g/cm ³		I45-UT E7K8
FIBER V			VOID CON	ITENT 06	4-2.2%		n, 1-axis
		54 in.		11EN1. 0.0	7 2.270]10
							, 75/0.77%
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:	Scre	ening
AST	M D 3039-76		Slope	of initial linear p	portion of load-o	displacement	
			curve				
		r volume to 60%	6 (0.0054 In. C	PT)			
Tempera		7		-6		75	
	Content (%)	amb	lient	amb	pient	0.7	
Source C	um at T, RH	2	0	2	0	(1 20	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	303	293	291	273	304	294
	Minimum	253	252	255	239	286	276
	Maximum	345	347	327	306	317	306
	C.V.(%)	8.26	8.94	8.93	8.90	4.16	4.22
	B-value	(2)	(2)	(2)	(2)	(2)	(2)
F_1^{tu}	Distribution	ANOVA	ANOVA	Normal	Normal	Normal	Normal
(ksi)	C ₁	26.7	32.4	291	273	304	294
(101)	C_2	4.40	7.49	26.0	24.4	12.7	12.2
	No. Specimens	2		Ę		5	
	No. Batches Data Class		2 Screening		1 Screening		ening
	Mean	19.3	18.7	20.1	18.8	19.6	18.9
	Minimum	18.5	17.4	19.7	18.4	19.0	18.4
	Maximum	21.3	21.4	20.6	19.3	20.1	19.4
$\mathrm{E}_{1}^{\mathrm{t}}$	C.V.(%)	3.79	6.10	1.67	1.79	2.04	1.96
<i></i>		_	_			_	
(Msi)	No. Specimens No. Batches	2		5		5	
	Data Class	Scree		Scree		Scree	
	Mean		0.320		g		0.288
	No. Specimens	5				5	
v_{12}^{t}	No. Batches	1	l			1	
	Data Class	Scree				Scree	
	Mean		13900		13500		14600
	Minimum		12500		12000		13700
	Maximum		16000 11.0		14800 8.24		15000
	C.V.(%)		11.0		0.24		3.83
	B-value		(2)		(2)		(2)
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal
(με)	C ₁		13900		13500		14600
(pic)	C ₂		1530		1110		561
	No. Specimens	5		5		5	
	No. Batches Data Class	Scree		Scree		1 Scree	
		30166	sinny	SUIR	Shing	30166	anny

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		4 12k/E7K8 unid		REGOINE			Table 4.2.3(b)
FIBER V	OLUME: 53-	37 wt% 60 % 054 in.	COMP: DE VOID CON	C/Ep 145-UT AS4/E7K8 Tension, 1-axis [0] ₁₀ 180/0.77%			
TEST ME	THOD:		MODULU	N:	Screening		
AST	M D 3039-76		Slope	of initial li	near p	ortion of load-	displacement
NORMAL	IZED BY: Fib	er volume to 60%	curve 6 (0.0054 in. C	PT)			
	Content (%) Im at T, RH	0. ⁻ (1 2	I)				
		Normalized	Measured	Normali	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	310 284 326 5.87	296 274 306 4.76				
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	310 18.2	296 13.9				
	No. Specimens No. Batches Data Class		5 I ening				
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	20.1 19.1 21.8 5.65	19.2 18.5 20.4 4.01				
(Msi)	No. Specimens No. Batches Data Class	Scree	l				
v_{12}^{t}	Mean No. Specimens No. Batches	Ę					
	Data Class	Scree					
	Mean Minimum Maximum C.V.(%)		14600 13900 15400 4.21				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		14600 616				
	No. Specimens No. Batches Data Class		5 I ening				

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	<u>JNE 1989). ALL DC</u> RIAL: AS	4 12k/E7K8 unidir				Table	4.2.3(c) 145-UT	
FIBER PLY TH	VOLUME: 53- IICKNESS: 0.0	38 wt% 60 % 057 in.	COMP: DEN VOID CONT	ENT:	1.54-1.59 g/cm ³ 0.64-0.75%	AS4/E7K8 Tension, 2-axis [90] ₂₀ 75/A		
TEST N	METHOD:		MODULUS	CALCULA	ATION:	Scre	ening	
AS	STM D 3039-76		Slope of	initial line	ar portion of load-d	lisplacement		
NORM	ALIZED BY: No	t normalized	curve					
Moistur Equilibr	rature (°F) e Content (%) rium at T, RH	75 ambient						
Source		20						
	Mean	5.47						
	Minimum Maximum	4.10 7.01						
	C.V.(%)	13.2						
	B-value	(1)						
F_2^{tu}	Distribution	Weibull						
(ksi)	C ₁	5.79						
. ,	C ₂	8.04						
	N 0 ·							
	No. Specimens	20						
	No. Batches Data Class	1 Screening						
	Mean	1.23						
	Minimum	1.16						
	Maximum	1.32						
E_2^t	C.V.(%)	3.76						
-2								
(Msi)	No. Specimens	20						
. ,	No. Batches	1						
	Data Class	Screening						
	Mean							
, f	No. Specimens No. Batches							
v_{21}^t								
	Data Class Mean	+						
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_2^{ m tu}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Charimana							
	No. Specimens No. Batches							
	Data Class							
L								

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: AS4 12k/E7K8 unidirectional tape Table 4.2.3(d)										
MATERIA	AL: AS4	12k/E7K8 unidi	rectional tape				4.2.3(d) I45-UT				
	ONTENT: 35-4	0 wt%	COMP: DE	NSITY 152	2-1.58 g/cm ³		E7K8				
FIBER V			VOID CON	ITENT: 1.4-	2.3%		sion, 1-axis				
PLY THIC		54 in.				[0]10				
							Ā, 75/0.77%				
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	Scre	ening				
SAC	MA SRM 1-88		Slope	of initial linear p	ortion of load-o	displacement					
NORMAL	IZED BY: Fibe	r volume to 60%	curve (0.0054 in. C	PT)							
Temperat	ture (°F)	75	5	-6	5	75	5				
	Content (%)	ambi		amb		0.7					
Equilibriu	m at T, RH					(1					
Source C	ode	20		20		2					
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean	245	209	276	235	215	182				
	Minimum	207	176	251 299	213 254	196 238	166 202				
	Maximum C.V.(%)	269 8.00	229 7.80	299 6.57	254 6.60	238 7.78	202 7.75				
	U . v . (70)	0.00	7.00	0.57	0.00	1.10	1.15				
	B-value	(2)	(2)	(2)	(2)	(2)	(2)				
F ₁ ^{cu}	Distribution	Weibull	Weibull	Normal	Normal	Normal	Normal				
(ksi)	C ₁	254	216	276	235	215	183				
(101)	C_2	16.3	16.3	18.1	15.4	16.7	14.2				
	No. Specimens	20		5		5					
	No. Batches	1 Screening		1		1					
	Data Class Mean	19.0	ning 17.9	Scree 17.6	ening 16.5	Scree 18.5	ning 17.4				
	Minimum	17.3	16.3	16.6	15.7	17.7	16.7				
	Maximum	20.4	19.2	18.0	17.0	19.0	17.9				
E_1^c	C.V.(%)	4.58	4.54	3.16	3.14	2.95	2.86				
(Msi)	No. Specimens	20)	5	j	5					
. ,	No. Batches	1		1		1					
	Data Class	Scree	ning	Scree	ening	Scree	ening				
	Mean										
6	No. Specimens										
v_{12}^{c}	No. Batches										
	Data Class										
	Mean		11700		14400						
	Minimum Maximum		10800 13100		13900 15100						
	C.V.(%)		4.81		3.89						
	B-value (2)				(2)						
$\varepsilon_1^{\rm cu}$			Normal		Normal						
(με)	C ₁		11700		14400						
(pic)	(µc)		564		559						
	-										
	No. Specimens	20		5							
	No. Batches	1		1							
L	Data Class	Scree	ning	Scree	ening						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

· · ·	,	S NOT SUFF	LIED FOR THIS MATERIAL.						
MATERIA	AL: AS	54 12k/E7K8 unid	irectional tape				Table 4.2.3(e) C/Ep 145-UT		
RESIN C	ONTENT: 35	-40 wt%	COMP: DE	INSITY:	1.52	-1.58 g/cm ³	AS4/E7K8		
FIBER V	OLUME: 51	-57 %	VOID CON	Compression, 1-axis					
PLY THIC	CKNESS: 0.0)054 in.		[0] ₁₀					
TEST ME		180/0.77% Screening							
	MA SRM 1-88	N: ortion of load-o							
340	INA SKINI 1-00	isplacement							
NORMALIZED BY: Fiber volume to 60% (0.0054 in. CPT)									
Temperat			30						
	Content (%) Im at T, RH	0. ⁻ (1							
Source C		2							
		Normalized	Measured	Normali	zed	Measured	Normalized Measured		
	Mean	150	127						
	Minimum	125	106						
	Maximum C.V.(%)	176 14.8	150 15.0						
	0. v.(70)	14.0	10.0						
	B-value	(2)	(2)						
F_1^{cu}	Distribution	Normal	Normal						
(ksi)	C ₁	150	127						
	C ₂	22.2	18.9						
	No. Specimens	5 5	5						
	No. Batches								
	Data Class	Scree	ening						
	Mean	18.0	17.0						
	Minimum Maximum	17.4 18.4	16.4 17.3						
E_1^c	C.V.(%)	2.46	2.41						
E1	0(/0)	2.10	2						
(Msi)	No. Specimens	5 5	5						
	No. Batches	-	l						
	Data Class	Scree	ening						
	Mean No. Specimens	.							
V ^C	No. Batches	'							
v_{12}^c	Data Class								
	Mean			+					
	Minimum								
	Maximum								
	C.V.(%)								
	B-value								
$arepsilon_1^{ m cu}$	Distribution								
(με)	C ₁								
(µc)	C_2								
	No. Specimens	5							
	No. Batches Data Class								
L	Data Class			1					

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	,	AS4 12k/E7K8 uni				Table 4.2.3(f) C/Ep 145-UT	
FIBER	VOLUME:	33-36 wt% 55-57 % 0.0055 in.	COMP: D VOID CO		AS4/E7K8 Shear, 12-plane [(±45) ₂ /45] _S 75/A, 180/A, 75/0.77%, 180/0.77%		
TEST N	METHOD:		MODULU	S CALCULATI	ON:	Screening	
AS	STM D 3518-76						
NORM	ALIZED BY:	Not normalized					
Moistur	rature (°F) re Content (%) rium at T, RH Code	75 ambient 20	180 ambient 20	75 0.77 (1) 20	180 0.77 (1) 20		
	Mean Minimum Maximum C.V.(%)	16.5 13.8 17.0 6.41	14.6 14.2 14.9 1.90	15.1 13.5 15.8 6.04	13.4 13.0 13.8 2.44		
F ₁₂ ^{su}	B-value Distribution	(2) ANOVA	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	2.46 7.58	14.6 0.277	15.1 0.905	13.4 0.328		
	No. Specimens No. Batches Data Class	s 20 2 Screening	5 1 Screening	5 1 Screening	5 1 Screening		
G ^s ₁₂	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class	s					
	Mean Minimum Maximum C.V.(%)						
γ_{12}^{su}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class	S					

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.4 Celion 12k/E7K8 unidirectional tape

Material Description:

Material: Celion-12k/E7K8

- Form: Unidirectional tape, fiber areal weight of 280 g/m², typical cured resin content of 29-33%, typical cured ply thickness of 0.011 inches.
- Processing: Autoclave cure; 300-310°F, 55 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: Celion fibers are continuous carbon filaments made from PAN precursor. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical Applications: Primary and secondary structural applications on commercial and military aircraft.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.4 Celion 12k/E7K8 unidirectional tape*

MATERIAL:	Celion 12k/E7K8 unidirectional tape			C/Ep 280-UT Celion 12k/E7K8 Summary
FORM:	U.S. Polymeric Celion 12k/E7K8 unidi	rectional tape, grade	e 280 prepreg	
FIBER:	Celanese Celion 12k, no twist	E7K8		
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 13	0 min., 55 psi		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SSSS	SS-S		SSS-	SSSS	
Tension, 2-axis	SS					
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S		SS	SS	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	S		S	S	S	
Shear, 23-plane						
Shear, 31-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.59 - 1.61	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)	59.6	59 - 64	
Ply Thickness	(in)	0.011	0.010 - 0.011	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	<u>NE 1989). ALL DOC</u> AL: Celio	on 12k/E7K8 uni				Table	4.2.4(a)
FIBER V	CONTENT: 29 w OLUME: 63-6 CKNESS: 0.01	4 %	Comp: De Void Con		g/cm ³ 9-1.0%	C/Ep 280-UT Celion E7K8 Tension, 1-axis [0]₅	
TEST ME	тнор		MODULUS		A, 75/0.77% ening		
	M D 3039-76		MODOLO		ennig		
		r volume to 60%	o (0.011 in. CP	T)			
Equilibriu	Content (%) um at T, RH	7! amb		-6: ambi	ient	7! 0.7 (1	77
Source C	Code	20		20		20	
	Mean	Normalized 293	Measured 309	Normalized 281	Measured 302	Normalized 300	Measured 314
l	Minimum	293	309 285	268	302 287	292	314
	Maximum	317	332	307	330	315	330
	C.V.(%)	4.52	4.52	5.44	5,44	3.22	3.60
F_1^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁	299	316	281	302	300	314
	C ₂	25.6	25.9	15.3	16.4	9.67	10.1
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Scree		5 1 Screening	
	Mean	20.0	21.1	19.2	20.6	19.0	19.9
	Minimum	18.7	20.1	18.6	20.0	18.5	19.4
\mathbf{r}^{t}	Maximum C.V.(%)	21.9 4.48	23.0 4.25	20.3 3.40	21.8 3.80	20.0 3.22	21.0 3.60
E_1^t	0.1.(70)		1.20	0.10	0.00	0.22	0.00
(Msi)	No. Specimens No. Batches	2(1		5		5 1 Screening	
	Data Class Mean	Scree	0.286	Scree	anng	30100	0.292
v_{12}^{t}	No. Specimens No. Batches	5 1				5 1	5
	Data Class	Scree				Scree	ening
	Mean Minimum		14300		14800		
	Maximum		13500 14700		14200 15800		
	C.V.(%)		3.34		3.87		
$oldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		
			14300	14800			
(με)	C ₁ C ₂		478		573		
	No. Specimens	5		5			
	No. Batches	1		1			
	Data Class	Scree	ening	Scree	ening		

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	,		Table 4.2.4(b)						
RESIN C FIBER V	SIN CONTENT: 29 wt% COMP: DENSITY: 1.61 g/cm ³ ER VOLUME: 63-64 % VOID CONTENT: 0.53-1.0% ' THICKNESS: 0.011 in. VOID CONTENT: 0.53-1.0%						C/Ep 280-UT Celion E7K8 Tension, 1-axis [0]₅		
TEST ME	ETHOD:	DN:	180/0.77% Screening						
AST	M D 3039-76								
NORMAL	LIZED BY: Fibe	r volume to 60%	5 (0.011 in. CP	T)					
	Content (%) Im at T, RH	18 0.7 (1 20	77)						
Source C	Jode	Normalized	Measured	Normal	ized	Measured	Normalized Measured		
	Mean Minimum Maximum C.V.(%)	293 269 316 6.43	311 286 335 7.19						
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal						
(ksi)	C ₁ C ₂	293 18.9	311 20.0						
	No. Specimens No. Batches Data Class	5 1 Screening							
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	19.8 19.4 20.1 1.61	21.0 20.6 21.4 1.81						
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree							
v_{12}^{t}	Mean No. Specimens No. Batches	5							
	Data Class	Scree							
	Mean Minimum Maximum C.V.(%)		13800 12300 15400 10.4						
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal						
(με)	C ₁ C ₂		13800 1440						
	No. Specimens No. Batches Data Class	5 1 Scree							

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER		ion 12k/E7K8 unic		Table 4.2.4(c)	
FIBER PLY TH	CONTENT: 31-3 VOLUME: 59-6 IICKNESS: 0.07	Y: 1.59-1.60 g/cm ³ ∵ 0.68-0.74%	C/Ep 280-UT Celion /E7K8 Tension, 2-axis [90] ₁₂ 75/A		
	METHOD: STM D 3039-76		MODULUS CAL	CULATION:	Screening
NORM	ALIZED BY: Not	normalized			
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	75 ambient			
Source		20			
	Mean	6.00			
	Minimum	5.21			
	Maximum C.V.(%)	6.89 8.79			
	0. V. (%)	0.79			
	B-value	(1)			
F_2^{tu}	Distribution	Weibull			
(ksi)	C ₁	6.24			
(KSI)	C_1 C_2	12.6			
	02	12.0			
	No. Specimens	20			
	No. Batches	1			
	Data Class	Screening			
	Mean	1.28			
	Minimum	1.19			
	Maximum	1.36			
E_2^t	C.V.(%)	4.52			
(Msi)	No. Specimens	20			
	No. Batches	1			
	Data Class	Screening			
	Mean				
t	No. Specimens No. Batches				
v_{21}^{t}					
	Data Class	<u> </u>			
	Mean				
	Minimum				
	Maximum C.V.(%)				
	0. v. (70)				
	B-value				
$arepsilon_2^{ ext{tu}}$	Distribution				
(με)	C ₁				
	C ₂				
	No. Specimens				
	No. Batches				
	Data Class				
ı		1			

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	<u>JE 1989). ALL DOC</u> AL: Celio	on 12k/E7K8 uni					Table 4.2.4(d)		
					3	C/Ep 2	280-ÚŤ		
FIBER V		30 wt% COMP: DENSITY: 1.60-1.61 g/cm ³ 64 % VOID CONTENT: 0.78-0.79%					n E7K8 sion, 1-axis		
	CKNESS: 0.01					[0]5			
TEST ME	THOD			S CALCULATIO	N		75/A, -65/A, 75/0.77% Screening		
	MA SRM 1-88		MODOLOG	0,12002,1110	14.	0010	ching		
		r volume to 60%	•						
Tempera	ture (°F) Content (%)	75 amb		-6 amb		75 0.7			
	im at T, RH	and	ient	and	ient	(1			
Source C	ode	20		2		20	0		
	Maan	Normalized 206	Measured 213	Normalized 221	Measured	Normalized 207	Measured 214		
	Mean Minimum	171	177	198	229 205	198	214 205		
	Maximum	247	255	267	276	219	227		
	C.V.(%)	8.62	8.62	12.2	12.2	5.06	5.06		
	B-value	(2)	(2)	(2)	(2)	(2)	(2)		
F_1^{cu}	Distribution	Weibull	Weibull	Normal	Normal	Normal	Normal		
(ksi)	C ₁	214	221	221	228	207	214		
	C ₂	12.1	12.1	27.0	28.0	10.5	10.8		
	No. Specimens	20)	5	5	5			
	No. Batches		1 Screening		ning	1			
	Data Class Mean	19.9	21.1	Scree 22.9	24.3	Scree 21.6	22.3		
	Minimum	18.1	19.2	20.8	22.0	20.2	21.0		
2	Maximum	21.7	22.3	23.8	25.1	22.8	23.6		
E_1^c	C.V.(%)	4.95	5.08	5.28	5.90	5.25	5.86		
(Msi)	No. Specimens	20)	5	5	5			
	No. Batches	1		1		1			
	Data Class Mean	Scree	ening	Scree	ening	Scree	ening		
c	No. Specimens No. Batches								
v_{12}^{c}	Data Class								
	Mean		11200		9870				
	Minimum		10800		9210				
	Maximum C.V.(%)		11800 3.59		10600 5.32				
$\varepsilon_1^{ m cu}$	B-value e ^{cu} Distribution		(2) Normal	(2) Normal					
	C ₁		11200		9870				
(με)	C_1 C_2		401		526				
		-							
	No. Specimens No. Batches	5		5					
	Data Class	Scree		Scree					

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	/	on 12k/E7K8 un			OUTL	ED FOR THIS MATERIAL. Table 4.2.4(e)	
FIBER V	ONTENT: 29-3 OLUME: 62-6	30 wt% 34 % 0 in.	/cm ³	C/Ep 280-UT Celion E7K8 Compression, 1-axis [0]₅ 180/0.77%			
TEST ME	ETHOD:		Screening				
SAC	CMA SRM 1-88						
NORMAL	-IZED BY: Fibe	r volume to 60%	6 (0.011 in. CP	T)			
	Content (%) Im at T, RH	18 0.7 (1 2	77)				
Source C	Jude	Normalized	Measured	Normal	zed Meas	ured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	185 158 220 12.9	192 164 228 12.9				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	185 24.0	192 24.8				
	No. Specimens No. Batches Data Class	5 1 Scree					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	21.1 19.5 23.1 6.80	22.3 20.6 24.5 7.63				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: Ce	lion 12k/E7K8 ur	Table	4.2.4(f)							
FIBER	VOLUME: 61	31 wt% 62 % 11 in.	Comp: D Void Co		Celion Shear, [±45 75/A, 180//	280-UT n E7K8 12-plane //45] _S A, 75/0.77%,					
	METHOD:		MODULU	S CALCULATIO	ON:		077% ening				
AS	STM D 3518-76										
NORM	NORMALIZED BY: Not normalized										
Moistur	rature (°F) re Content (%) rium at T. PH	75 ambient	180 ambient	75 0.77	180 0.77						
Source	rium at T, RH Code	20	20	(1) 20	(1) 20						
	Mean	9.9	10.0	12.0	10.0						
	Minimum Maximum	9.3 11.1	8.1 11.1	11.3 12.3	8.2 11.4						
	C.V.(%)	4.16	11.7	3.41	11.7						
F ₁₂ ^{su}	B-value Distribution	(2) Nonpara.	(2) Normal	(2) Normal	(2) Normal						
(ksi)	C ₁ C ₂	10 1.25	10.0 1.17	12.0 0.407	10.0 1.17						
	No. Specimens No. Batches	20 1	5 1	5 1	5 1						
G ^s ₁₂	Data Class Mean Minimum Maximum C.V.(%)	Screening	Screening	Screening	Screening						
(Msi)	No. Specimens No. Batches Data Class										
	Mean Minimum Maximum C.V.(%)										
$\gamma_{12}^{\rm su}$	B-value Distribution										
(με)	C ₁ C ₂										
	No. Specimens No. Batches Data Class										

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.5 AS4 12k/938 unidirectional tape

Material Description:

Material: AS4-12k/938

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 35-49%, typical cured ply thickness of 0.0055 inches.

Processing: Autoclave cure; 350°F, 85 psi for 2 hours.

General Supplier Information:

Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.

Matrix: 938 is an epoxy resin. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Commercial and military structural applications

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.5 AS4 12k/938 unidirectional tape*

MATERIAL:	AS4 12k/938 unidirectional tape	C/Ep 145-UT AS4/938 Summary
FORM:	Fiberite Hy-E 1338H unidirectional tape, grade 14	5 prepreg
FIBER:	Hercules AS4 12k, unsized, no twist MATRIX:	Fiberite 938
T _g (dry):	T _g (wet): 260°F T _g METH	OD:
PROCESSING:	Autoclave cure: 350 ± 10°F, 120 - 135 min., 100 ±	± 15 psi

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	8/85
Date of resin manufacture	Date of data submittal	4/89
Date of form manufacture 7/85	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A	200°F/W	
Tension, 1-axis	II	 II	II		
Tension, 2-axis	II		II		
Tension, 3-axis					
Compression, 1-axis	II			II	
Compression, 2-axis	S				
Compression, 3-axis					
Shear, 12-plane	S		I		
Shear, 23-plane					
Shear, 31-plane					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80	1.77 - 1.79	
Resin Density	(g/cm ³)	1.30	1.30	
Composite Density	(g/cm ³)	1.60	1.55 - 1.58	
Fiber Areal Weight	(g/m ²)	145	144 - 146	
Fiber Volume	(%)	60	52 - 60	
Ply Thickness	(in)	0.0055	0.0048 - 0.0065	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: AS4	12k/938 unidire				Table	4.2.5(a)
FIBER V PLY THI	OLUME: 52-5 CKNESS: 0.00	41 wt% COMP: DENSITY: 1.55-1.57 g/cm ³ .57 % VOID CONTENT: 0.0-<1.0%			C/Ep 145-UT AS4/938 Tension, 1-axis [0] ₈ 75/A, -65/A, 200/A		
TEST ME			MODULUS	S CALCULATIC	N:	Int	erim
AST	M D 3039-76 (1)						
NORMAL	LIZED BY: Spec			er volume to 60%	-	PT)	
	iture (°F) Content (%) um at T, RH	7 amb		-6 amb			00 pient
Source C		1	2	1	2	1	2
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	314 270 351 7.45	272 230 330 8.79	296 198 363 14.4	238 174 287 11.0	321 263 356 7.79	274 229 322 8.10
F ₁ ^{tu}	B-value Distribution	(2) Weibull	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) Weibull
(ksi)	C ₁ C ₂	324 16.5	26.3 4.12	49.1 4.64	249 11.1	26.9 3.78	284 13.3
	No. Specimens No. Batches Data Class	22 3 Interim		2 3 Inte	3	20 3 Interim	
E_1^t	Mean Minimum Maximum C.V.(%)	22.4 18.8 26.9 9.88	19.4 17.1 21.0 4.66	19.5 18.5 21.5 4.07	19.0 16.9 22.0 5.13	20.4 18.4 24.0 7.23	20.8 18.4 22.4 6.06
(Msi)	No. Specimens No. Batches Data Class	22 3 Interim		2 3 Inte	3	20 3 Interim	
v ₁₂ ^t	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Gage length 2.0 inches.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATER	RIAL: AS4	12k/938 unidire			Table	4.2.5(b) 145-UT		
FIBER	VOLUME: 52-5	0 wt% 8 % 53-0.0063 in.	COMP:DI VOID CO		AS Tensio	AS4/938 Tension, 2-axis [90] ₁₆ 75/A, 200/A		
TEST	METHOD:		MODULU	IS CALCU	LATION:		terim	
AS	STM D 3039-76 (1)							
NORM	ALIZED BY: Not	normalized						
	rature (°F)	75.0	200					
	e Content (%) rium at T, RH	ambient	ambient					
Source		12	12					
	Mean	8.96	8.84					
	Minimum	6.50	6.85					
	Maximum	12.0	10.3					
	C.V.(%)	15.2	12.2					
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) ANOVA					
(ksi)	C ₁	9.54	1.18					
	C ₂	7.10	3.96					
	No. Specimens	19	17					
	No. Batches	3	3					
	Data Class	Interim	Interim					
	Mean	1.29	1.23					
	Minimum	0.970	1.05					
t	Maximum	1.72	1.40					
E_2^t	C.V.(%)	7.89	7.81					
(Msi)	No. Specimens	19	17					
(10151)	No. Batches	3	3					
	Data Class	Interim	Interim					
	Mean							
	No. Specimens							
v_{21}^{t}	No. Batches							
 	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
	D volue							
ctu	B-value Distribution							
$\varepsilon_2^{\text{tu}}$								
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Gage length 2.0 inches.
 (2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: AS4 12k/938 unidirectional tape Table 4.2.5(c)									
MATERIA	AL: AS4	12K/938 unidire	ctional tape			Table 4.2.5(c) C/Ep 145-UT			
RESIN C	ONTENT: 33-3	3-38 wt% COMP: DENSITY:			5-1.58 g/cm ³	AS4/938			
FIBER V		60 % VOID CONTENT: 0.0-<1.0%				Compression, 1-axis			
PLY THI	CKNESS: 0.00	48-0.0060 in.				[0] ₈			
						75/A, 200/W			
TEST ME			MODULUS	S CALCULATIC	N:	Interim, Screening			
SAC	MA SRM 1-88								
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 609	% (0.0053 in. C	PT)			
Tempera		75		20					
	Content (%)	amb	ient	(1					
	im at T, RH		2	140°F					
Source C	ode	12 Normalized	Z Measured	1 Normalized	2 Measured	Normalized Measured			
	Mean	228	211	190	168	Normalized Measured			
	Minimum	186	172	158	138				
	Maximum	265	251	223	194				
	C.V.(%)	9.31	10.2	8.96	9.29				
	B-value	(2)	(2)	(2)	(2)				
F_1^{cu}	Distribution	Weibull	ANOVA	ANOVA	ANOVA				
(ksi)	C ₁	224	22.4	19.0	17.6				
	C ₂	12.5	3.31	4.40	4.57				
	No. Specimene	21	5	2	4				
	No. Specimens No. Batches	25			3				
	Data Class	Interim			erim				
	Mean	18.2	18.4	19.1	18.4				
	Minimum	15.7	15.9	16.9	16.6				
	Maximum	21.0	22.5	24.0	21.0				
E_1^c	C.V.(%)	9.13	12.4	12.8	9.10				
(Msi)	No. Specimens	15			3				
	No. Batches	2 Interim			<u>2</u>				
	Data Class Mean	inte	11111	Scree	ennig				
	No. Specimens								
v_{12}^{c}	No. Batches								
V 12	Data Class								
	Mean								
	Minimum								
	Maximum								
	C.V.(%)								
	5 .								
CU	B-value Distribution								
ε_1^{cu}									
(με)	C ₁								
	C ₂								
	No Specimera								
	No. Specimens No. Batches								
	Data Class								
<u> </u>		1		1					

(1) Specimens conditioned for one month.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: AS4	12k/938 unidired			Table	4.2.5(d)		
RESIN CONTENT:36 wt%FIBER VOLUME:56 %PLY THICKNESS:0.0058 in.				COMP: DENSITY: 1.56 g/cm ³ VOID CONTENT: 0.0%			145-UT I⁄938 sion, 2-axis 0]₀ 5/A	
TEST	METHOD:		MODULUS C	ALCULATIO	ON:	75/A Screening		
SA	ACMA SRM 1-88							
NORM	ALIZED BY: Not	normalized						
Moistur Equilibi	rature (°F) re Content (%) rium at T, RH	75.0 ambient						
Source	Mean	12 30.4						
	Minimum	26.2						
	Maximum	39.7						
	C.V.(%)	16.4						
	B-value	(1)						
F_2^{cu}	Distribution	Nonpara.						
(ksi)	C ₁	6						
	C ₂	2.14						
	No. Specimens	10						
	No. Batches	1						
	Data Class Mean	Screening						
	Minimum							
	Maximum							
E_2^c	C.V.(%)							
() (No. On eximan							
(Msi)	No. Specimens No. Batches							
	Data Class							
	Mean							
, .c	No. Specimens No. Batches							
v_{21}^{c}	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_2^{\mathrm{cu}}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER			Table	4.2.5(e)			
FIBER	RESIN CONTENT: 35-37 wt% FIBER VOLUME: 54-57 % PLY THICKNESS: 0.0051-0.0063 in.		COMP: DENSITY: 1.56-1.58 g/cm ³ VOID CONTENT: 0.0-<1.0%			C/Ep 145-UT AS4/938 Shear, 12-plane [±45] ₂₈ 75/A, 200/A	
TEST N	IETHOD:		MODULU	S CALCUL	_ATION:		Screening
AS	STM D 3518-76						
NORM	ALIZED BY: Not	normalized					
	rature (°F)	75.0	200				
Equilibr	e Content (%) ium at T, RH	ambient	ambient				
Source		12 13.0	<u>12</u> 13.9				
	Mean Minimum Maximum C.V.(%)	10.8 13.9 6.36	13.9 11.9 16.0 7.63				
F ₁₂ ^{su}	B-value Distribution	(1) Weibull	(1) ANOVA				
(ksi)	C ₁ C ₂	13.4 25.4	1.26 4.96				
	No. Specimens No. Batches Data Class	13 3 Screening	18 3 Interim				
G ^s ₁₂	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\gamma_{12}^{\rm su}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.6 T-300 3k/934 plain weave fabric

Material Description:

Material: T-300 3k/934

Form: Plain weave fabric, fiber areal weight of 196 g/m², typical cured resin content of 34%, typical cured ply thickness of 0.0078 inches.

Processing: Autoclave cure; 355°F, 85-100 psi for 2 hours.

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶. Typical tensile strength is 530,000 psi.
- Matrix: 934 is a high flow, epoxy resin with good hot/wet properties and meets NASA outgassing requirements.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Aircraft primary and secondary structure, critical space structure.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.6 T300 3k/934 plain weave fabric*

MATERIAL:	T-300 3k/934 plain weave fabric			C/Ep 194-PW T-300/934 Summary
FORM:	Fiberite HMF-322/34 plain weave fabri	-		
FIBER:	Toray T-300 3k	MATRIX:	Fiberite 934	
T _g (dry):	410°F T _g (wet):	T _g METHOD:	DSC	
PROCESSING:	Autoclave cure: 355 ± 10°F, 120 - 130	min., 85-100 psig		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing
Date of resin manufacture	Date of data submittal 6/88
Date of form manufacture 2/84	Date of analysis 1/93
Date of composite manufacture	

75°F/A		-65°F/A	250°F/A		160°F/W	250°F/W	
IS-I		IS-I	SS-S		II	II	
II-I		II-I	SS-S		II	II	
II		II	SI		I	I	
II		II	SI		I	I	
S		S	S				
	IS-I II-I II II	IS-I II-I II II	IS-I IS-I II-I II-I II II II II	IS-IIS-ISS-SII-III-ISS-SIIIISIIIIISIIIIISI	IS-IIS-ISS-SII-III-ISS-SIIIISIIIIISI	IS-IIS-ISS-SIIII-III-ISS-SIIIIIISIIIIIISIIIIIISII	IS-IIS-ISS-SIIIIII-III-ISS-SIIIIIIIISIIIIIIISIIIIIIISIII

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)		1.73 - 1.74	
Resin Density	(g/cm ³)	1.30		
Composite Density	(g/cm ³)	1.55	1.54 - 1.57	
Fiber Areal Weight	(g/m ²)	194	1.92 - 2.00	
Fiber Volume	(%)		58 - 60	
Ply Thickness	(in)		0.0073 - 0.0084	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, s = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: T-30	0 3k/934 plain v				Table	Table 4.2.6(a) C/Ep 194-PW	
RESIN CONTENT:33-35 wt%COMP: DENSITYFIBER VOLUME:58-60 %VOID CONTENT:PLY THICKNESS:0.0074-0.0082 in.VOID CONTENT:			NSITY: 1.54 ITENT: <0.5	4-1.57 g/cm ³ 5-1.2%	T-30 Tensioi [0	94-PW 0/934 n, 1-axis /] ₁₂ /A, 250/A		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		Screening	
AST	M D 3039-76 (2)		Chord	between 20 an	d 40% of typica	al ultimate load		
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	% (0.0077 in. C			
	ture (°F) Content (%) ım at T, RH	7 amb		-6 amb		25 amb		
Source C		1	2	1	2	1:	2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	91 82 99 4.1	94 85 100 4.0	83 78 87 3.2	85 79 90 3.3	109 104 114 3.54	113 109 118 3.42	
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	93.0 28.2	96 31	83.7 35.8	86 36	86.0 2.86	113 3.87	
	No. Specimens No. Batches Data Class	20 4 Interim		20 4 Interim		5 1 Soros		
	Mean	9.1	9.4	10.	10.	Scree 9.3	9.7	
E_1^t	Minimum Maximum C.V.(%)	8.4 9.5 3.3	8.7 9.9 3.6	8.6 12 11	9.0 12 10.	9.1 10.0 4.6	9.4 10.7 5.6	
(Msi)	No. Specimens No. Batches	2		20 4		5 1		
	Data Class	Inte	rim	Inte	erim	Scree	ening	
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		9780 8880 11200 5.61		8990 7990 9800 6.07		11300 10900 11800 3.11	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Normal	
(με)	C ₁ C ₂		577 3.12		592 3.61		11300 351	
	No. Specimens No. Batches	2	1	20 4		5		
<u> </u>	Data Class	Inte	rim	Inte	erim	Screening		

(1) Basis values are presented only for A and B data classes.

(2) Width 0.5 inch, speed of testing 0.05 in./in./min, gage length below recommendation

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI	AL: T-30	Table	4.2.6(b)						
FIBER V	OLUME: 58-6	35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ 60 % VOID CONTENT: <0.5-1.2%			T-30 Tensio [0	C/Ep 194-PW T-300/934 Tension, 1-axis [0 _f] ₁₂ 160/W 250/W			
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:		160/W, 250/W Interim		
AST	M D 3039-76 (2)		Chord	between 20 an	d 40% of typica	al ultimate load			
NORMAL	LIZED BY: Spe	cimen thicknes	s and batch fibe	er volume to 579	%				
	Content (%)		60 1)		50 1)				
Source C	um at T, RH Code	1	2	1	2				
000.000		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	96 84 104 5.7	98 88 106 5.11	79 61 95 14	82 66 97 11				
F_1^{tu}	B-value Distribution	(2) ANOVA	(2) Weibull	(2) ANOVA	(2) Weibull				
(ksi)	C ₁ C ₂	6.0 4.8	101 24	12 5.3	86 11				
	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim					
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.8 8.1 11.0 8.7	10.0 8.6 11.7 8.7	9.4 6.8 12.0 17.	9.7 7.1 13.0 18				
(Msi)	No. Specimens No. Batches Data Class		5 3 erim	15 3 Inter					
v_{12}^{t}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)								
$\boldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

(3) Width 0.5 inch, speed of testing 0.05 in./in./min, gage length below recommendation.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,	00 3k/934 plain w		REQUIRED W	AS NOT SUFF	Table	D FOR THIS MATERIAL. Table 4.2.6(c)	
FIBER V	OLUME: 58-6	35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ 60 % VOID CONTENT: <0.5-1.2%			4-1.57 g/cm ³ 5-1.2%	C/Ep 194-PW T-300/934 Tension, 2-axis [90 _f] ₁₂ 75/A, -65/A, 250/A		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		Screening	
AST	M D 3039-76		Chord	between 20 an	d 40% of typica	al ultimate load		
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	% (0.0077 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	75 ambi		-6 amb		25 amb		
Source C		12		1		1		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	88 80. 97 5.7	91 82 99 5.5	80. 70. 91 6.2	82 72 95 6.5	94 90. 97 2.6	98 94 101 2.7	
F_2^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	5.4 3.5	5.4 3.4	5.2 3.3	5.7 3.4	93.7 2.47	97.8 2.59	
	No. Specimens No. Batches Data Class	20 4 Interim		2 4 Inte	l rim	5 1 Screening		
E_2^t	Mean Minimum Maximum C.V.(%)	9.0 8.3 9.9 5.0	9.3 8.7 10.3 4.8	9.1 8.1 10.8 9.3	9.5 8.3 11.1 9.2	8.1 8.0 8.2 1.1	8.5 8.3 8.6 1.5	
(Msi)	No. Specimens No. Batches Data Class	20 4 Interim		2 2 Inte	ŀ	5 1 Screening		
v_{21}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		9630 8680 11100 6.18		9100 7750 10700 7.44		11400 10400 12400 8.59	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Normal	
(με)	C ₁ C ₂		616 2.82		710 3.08		11400 981	
	No. Specimens No. Batches Data Class	20 4 Inter		2 2 Inte	ŀ	5 1 Scree		

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI	AL: T-30	Table	4.2.6(d)						
FIBER V	OLUME: 58-6	35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ 50 % VOID CONTENT: <0.5-1.2%		T-30 Tensio [90	194-PW 0/934 n, 2-axis 0 _f] ₁₂				
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:		160/W, 250/W Interim		
AST	M D 3039-76		Chord	between 20 an	d 40% of typica	al ultimate load			
NORMAL	_IZED BY: Spe	cimen thickness	and batch fibe	er volume to 579	% (0.0077 in. C	PT)			
Tempera	ture (°F) Content (%)	16		25 (1					
	im at T, RH	(1)	(1)				
Source C		1		1					
	Maara	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum	97 90.	100 92	81 73	83 75				
	Maximum	111	113	89	91				
	C.V.(%)	6.8	6.3	5.1	4.8				
F ₂ ^{tu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA				
(ksi)	C ₁	7.3	6.8	4.4	4.2				
	C ₂	4.8	4.5	4.5	4.2				
	No. Specimens	1		1					
	No. Batches	3 Interim			3 vrimo				
	Data Class Mean	10.	10.	Inte 9.9	10.				
	Minimum	8.0	8.2	8.2	8.5				
t	Maximum	11.8	12.1	11.9	12.1				
E_2^t	C.V.(%)	11	11	11	11				
(Msi)	No. Specimens	1		1					
	No. Batches Data Class	a Inte		Inte	3 erim				
	Mean								
v_{21}^{t}	No. Specimens No. Batches								
- 21	Data Class								
	Mean								
	Minimum								
	Maximum C.V.(%)								
	B-value								
$arepsilon_2^{ ext{tu}}$	Distribution								
(με)	C ₁								
	C ₂								
	No. Specimens No. Batches Data Class								

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	IE 1989). ALL DOC							
MATERIA	AL: I-30	0 3k/934 plain v	weave radric				4.2.6(e) 94-PW	
RESIN C	ONTENT: 33-3	85 wt%	COMP: DE	NSITY: 1.54	4-1.57 g/cm ³		0/934	
FIBER V		60 % VOID CONTENT: <0.5-1.2%					sion, 1-axis	
PLY THI	CKNESS: 0.00	74-0.0082 in.					f]12	
TEOTME	TUOD						75/A, -65/A, 250/A Interim, Screening	
TEST ME				S CALCULATIO			screening	
SAC	MA SRM 1-88		Chord	between 20 an	d 40% of typica	I ultimate load		
	-	cimen thickness			-	-		
Temperat		7		-6		25		
	Content (%) m at T, RH	amb	pient	amb	pient	amb	ient	
Source C		1	2	1	2	1:	2	
	000	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	95	98	104	108	100.	105	
	Minimum	83	87	87	90.	94	98	
	Maximum	120	125	133	139	107	111	
	C.V.(%)	10.	10.	13	14	5.6	5.1	
	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
F ₁ ^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Normal	Normal	
-								
(ksi)	C ₁ C ₂	10. 3.9	11 3.9	15 3.7	16 3.8	100. 5.64	105 5.4	
	\mathbf{U}_2	5.5	5.9	5.7	5.0	5.04	5.4	
	No. Specimens	2	0	2	0	5		
	No. Batches	4		4		1		
	Data Class	Interim		Interim		Screening		
	Mean	8.4	8.8	8.2	8.6	8.4	8.9	
	Minimum Maximum	7.7 9.0	8.0 9.4	7.4 8.9	7.8 9.7	7.9 10.0	8.1 10.1	
E ^C	C.V.(%)	5.1	5.3	5.1	5.7	6.3	6.4	
E_1^c	0.11(70)	0.1	0.0	0.1	0.1	0.0	0.1	
(Msi)	No. Specimens	2	0	2	0	19	a	
(1001)	No. Batches	2		4		4		
	Data Class	Inte		Inte	erim	Inte	rim	
	Mean							
	No. Specimens							
v_{12}^c	No. Batches							
	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
	0 (70)							
	B-value							
ε_1^{cu}	Distribution							
(με)	C ₁							
(µc)	C_2							
	-2							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Basis values are presented only for A and B data classes.

(2) Tab thickness of 0.112 - 0.120 inch is larger than 0.070 inch nominal thickness per method.

(3) Specimen thickness of 0.09 - 0.10 inch is less than nominal 0.12 inch thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	,	OCUMENTATION			AS NOT SUT 1		4.2.6(f)		
RESIN CO FIBER VO PLY THIC	ONTENT: 33 DLUME: 58	3-35 wt% 8-60 % .0074-0.0082 in.	60 % VOID CONTENT: <0.5-1.2%			C/Ep T-30 Compress [0	C/Ep 194-PW T-300/934 Compression, 1-axis [0 _f] ₁₂ 160/W, 250/W		
TEST ME	THOD:		MODULUS CALCULATION:				Interim		
	MA SRM 1-88				d 40% of typica		-		
NORMAL		pecimen thickness							
Temperat Moisture (ure (°F) Content (%)	16	50 L)	25 (*					
	m at T, RH	()	')	(')				
Source C	ode		2	1					
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum	74 67	76 68	44 40	46 41				
	Maximum	81	84	40	51				
	C.V.(%)	6.9	5.6	6.2	6.2				
F ₁ ^{cu} (3)	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) Weibull				
(ksi)	C ₁ C ₂	5.6 4.9	6.2 5.0	45.4 17.4	46.8 16.9				
	No. Specimen No. Batches		15 3		5				
	Data Class	Inte	Interim		erim				
E_1^c	Mean Minimum Maximum C.V.(%)								
(Msi)	No. Specimen No. Batches Data Class	s							
v_{12}^{c}	Mean No. Specimen No. Batches	IS							
	Data Class Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{\rm cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimen No. Batches Data Class	s							

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

(3) Tab thickness of 0.112 - 0.120 inch is larger than 0.070 inch nominal thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	<u>E 1989). ALL DOC</u> J ·	0 3k/934 plain \					4.2.6(g)	
RESIN CO		5 wt%	COMP: DE	NSITY: 1.54	4-1.57 g/cm ³	C/Ep 1	94-PW 0/934	
FIBER VC PLY THIC		60 % VOID CONTENT: <0.5-1.2%					Compression, 2-axis [90 _f] ₁₂	
	KNE33. 0.00	74-0.0082 III.				75/A, -65/A, 250/A		
TEST ME				S CALCULATIO			Screening	
SACI	MA SRM 1-88		Chord	between 20 an	d 40% of typica	al ultimate load		
NORMAL				er volume to 57%				
Temperate Moisturo (ure (°F) Content (%)	7 amb		-6 amb		25 amb		
	m at T, RH	amo		and		anib		
Source Co	ode	1		1:		12		
	Mean	Normalized 90.	Measured 93	Normalized 103	Measured 106	Normalized 82	Measured 85	
	Minimum	81	85	94	98	77	81	
	Maximum	100.	104	116	121	84	88	
	C.V.(%)	5.9	6.0	6.2	6.1	3.4	3.4	
	B-value	(4)	(4)	(1)	(1)	(1)	(1)	
F ₂ ^{cu} (2)	Distribution	ANOVA	ANOVA	Normal	Normal	Normal	Normal	
(ksi)	C ₁	5.6	5.9	103	106	81.7	85.3	
	C ₂	3.2	3.2	6.18	6.4	2.74	2.86	
	No. Specimens	2		20		5		
	No. Batches Data Class	4 Interim		4 Interim		1 Screening		
	Mean	8.3	8.6	8.4	8.8	8.8	9.0	
	Minimum	7.4	7.7	7.5	7.7	7.9	8.1	
0	Maximum	9.3	9.5	9.0	9.4	10.2	10.6	
E ^c ₂ (3)	C.V.(%)	7.0	6.6	5.1	5.5	8.4	8.9	
(Msi)	No. Specimens	2	0	2	0	20	D	
. ,	No. Batches	4	ŀ	4		4		
	Data Class Mean	Inte	rim	Inte	rim	Inte	rim	
	No. Specimens							
v_{21}^{c}	No. Batches							
	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_2^{ m cu}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Basis values are presented only for A and B data classes.

(2) Tab thickness of 0.112-0.120 inch is larger than 0.070 inch nominal thickness per method.

(3) Specimen thickness of 0.09-0.10 inch is less than nominal 0.120 inch thickness per method.

(4) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	,	-300 3k/934 plain				Table	4.2.6(h)	
RESIN CO FIBER VO PLY THIC	DLUME: 58	3-35 wt% 8-60 % .0074-0.0082 in.	60 % VOID CONTENT: <0.5-1.2%			T-30 Compress [9	C/Ep 194-PW T-300/934 Compression, 2-axis [90 _f] ₁₂	
TEST ME	THOD:		MODULUS	S CALCULATIC)N:	160/W, 250/W Interim		
	MA SRM 1-88				d 40% of typica			
NORMAL	IZED BY: S	pecimen thicknes	s and batch fibe	er volume to 579	% (0.0077 in. C	PT)		
	Content (%) m at T, RH	w (60 vet 1) 2					
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	75 63 81 7.2	77 66 83 6.5	46 38 59 11	47 39 60 11			
F ₂ ^{cu} (3)	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA			
(ksi)	C ₁ C ₂	6.0 5.0	5.4 4.7	5.9 5.1	5.8 5.0			
	No. Specimen No. Batches Data Class	:	15 3 Interim		15 3 Interim			
E_2^c	Mean Minimum Maximum C.V.(%)		-					
(Msi)	No. Specimen No. Batches Data Class	s						
v_{21}^{c}	Mean No. Specimen No. Batches	s						
	Data Class Mean Minimum Maximum C.V.(%)							
$\varepsilon_2^{ m cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimen No. Batches Data Class	IS						

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

(3) Tab thickness of 0.112-0.120 inch is larger than 0.070 nominal thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			Table 4.2.6(i) C/Ep 194-PW			
RESIN CO FIBER VO PLY THIC	DLUME:	33-35 wt% 58-60 % 0.0074-0.		COMP: DENSITY: VOID CONTENT:	1.54-1.57 g/cm ³ <0.5-1.2%	T-300/934 SBS, 31-plane [0 _f] ₁₂
TEST ME				MODULUS CALCI		75/A, -65/A, 250/A Screening
	M D-2344-68	(1)			20 and 40% of typi	
ASTI	VI D-2344-00	(1)		Chord between	20 and 40 % of type	cal ultimate load
NORMAL	IZED BY:	Not norma	alized			
Temperat	ure (°F)		75	-65	250	
	Content (%) m at T, RH		ambient	ambient	ambient	
Source Co			12	12	12	
	Mean		12.0	11.9	9.2	
	Minimum		10.5	10.0	9.1	
	Maximum		13.4	13.9	9.5	
	C.V.(%)		6.89	8.38	2.1	
	B-value		(2)	(2)	(2)	
F_{31}^{sbs}	Distribution	n	ANOVA	ANOVA	Normal	
(ksi)	C ₁		1.07	0.901	9.2	
· · ·	C ₂		3.41	3.71	0.20	
	No. Specir		20	20	5	
	No. Batche		4	4	1	
	Data Class	5	Screening	Screening	Screening	

(1) Length-to-thickness ratio is approximately 11.

(2) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.7 Celion 12k/938 unidirectional tape

Material Description:

Material: Celion-12k/938

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 28-40%, typical cured ply thickness of 0.0040-0.0073 inches.
- Processing: Autoclave cure; 355°F, 85-100 psi for 2 hours.

General Supplier Information:

Fiber: Celion fibers are continuous carbon filaments made from PAN precursor. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi.

Matrix: 938 is an epoxy resin. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Commercial and military structural applications.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.7 Celion 12k/938 unidirectional tape*

MATERIAL:	Celion 12k/938 unidirectional tape			C/Ep 145-UT Celion 938 Summary
FORM:	Fiberite Hy-E 1638N unidirectional tap			
FIBER:	Celanese Celion 12k, EP06, no twist	MATRIX:	Fiberite 938	
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave cure: 355 ± 10°F, 120 - 130	min., 85 - 100 psig		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture 5/85	Date of testing	7/85
Date of resin manufacture	Date of data submittal	6/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

	75°F/A	-67°F/A	250°F/A	180°F/W	
Tension, 1-axis	IIII	SSSS	IISI	IISI	
Tension, 2-axis	II-I	II-I	SS-S	II-I	
Tension, 3-axis					
Compression, 1-axis	II	II	II	II	
Compression, 2-axis	II	II	SI	I	
Compression, 3-axis					
Shear, 12-plane	I	S	S	I	
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	I				

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78		
Resin Density	(g/cm ³)	1.30		
Composite Density	(g/cm ³)		1.54 - 1.61	
Fiber Areal Weight	(g/m ²)	145	144 - 147	
Fiber Volume	(%)		52 - 65	
Ply Thickness	(in)		0.0040 - 0.0073	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA		CUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. on 12k/938 unidirectional tape Table 4.2.7(a)								
	AL. Cel	011 12K/936 uniu	irectional tape				4.2.7(a) 145-UT			
RESIN C	ONTENT: 28-3	36 wt%	COMP: DE	NSITY: 1.	55-1.61 g/cm ³		12k/938			
FIBER VO	OLUME: 56-0	65 %	VOID CON	ITENT: <1	.1%		n, 1-axis			
PLY THIC	CKNESS: 0.00	040-0.0063 in.								
TEST ME				S CALCULATI		: 75/A, -67/A, 250/A Interim, Screening				
							Screening			
AST	M D 3039-76		Secan	it at 25% of typ	oical ultimate loa	a				
NORMAL	IZED BY: Fibe	er volume to 60%	6 (0.0053 in. C	PT)						
Temperat		7			·67	25				
	Content (%)	amb	ient	am	bient	amb	vient			
	m at T, RH		2		40	1	0			
Source C	ode	1: Normalized	Z Measured	Normalized	12 Measured	Normalized	Z Measured			
	Mean	273	271	262	278	309	319			
	Minimum	223	207	235	254	295	306			
	Maximum	324	319	290	303	328	337			
	C.V.(%)	7.56	9.76	7.67	6.25	3.00	2.82			
	B-value	(1)	(1)	(1)	(1)	(1)	(1)			
F_1^{tu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Weibull	Weibull			
-		21.0	29.3	25.1	20.9	314	323			
(ksi)	C ₁ C ₂	21.0	29.3 4.36	18.0	20.9 16.2	34.5	323 36.1			
	02	2.72	4.00	10.0	10.2	04.0	00.1			
	No. Specimens	10	2		10	1				
	No. Batches				2	-	3			
	Data Class	Inte		Screening		Interim 20.1 20.7				
	Mean Minimum	19.7 16.9	19.5 16.5	19.0 17.3	20.2 18.1	16.9	17.9			
	Maximum	23.1	21.8	20.3	22.0	23.4	23.4			
E_1^t	C.V.(%)	5.22	5.59	4.94	5.94	9.12	7.49			
-1										
(Msi)	No. Specimens	10	2		10	1				
	No. Batches				2		3			
	Data Class	Inte		Scre	eening	Inte				
	Mean No. Specimens	10	0.317		0.279 10	1	0.280			
v_{12}^{t} (2)	No. Batches	3			2		2			
v ₁₂ (∠)	Data Class	Inte		Scr	eening	Inte				
	Mean		13100		12800		14800			
	Minimum		10600		11500		12900			
	Maximum		14800		14000		16100			
	C.V.(%)		6.95		6.72		5.81			
	B-value		(1)		(1)		(1)			
$arepsilon_1^{ ext{tu}}$	Distribution		ANOVA		ANOVA	(1) Weibull				
	C ₁		946		1060		15100			
(με)	C_1 C_2		946 3.14		1060		21.4			
	\mathbf{U}_2		5.14		17.2		۲.4			
	No. Specimens	10	2		10	1	5			
	No. Batches	3	5		2	3	3			
	Data Class	Inte	rim	Scre	eening	Interim				

Basis values are presented only for A and B data classes.
 Poisson's ratio measured at 25% of typical ultimate load.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		OCUMENTATION elion 12k/938 unid	Table	4.2.7(b)						
RESIN CO FIBER VO PLY THIC	DLUME: 56 CKNESS: 0.	3-36 wt% 3-64 % 0044-0.0063 in.	VOID CON	COMP: DENSITY: 1.55-1.59 g/cm ³ VOID CONTENT: <1.4%				C/Ep 145-UT Celion 938 Tension, 1-axis [0] ₇ 180/W Interim, Screening		
TEST ME			MODULUS CALCULATION:					Screening		
ASTI	M D 3039-76		Secan	it at 25% of	туріс	al ultimate loa	a			
NORMAL		ber volume to 60%		PT)						
Temperat	ure (°F) Content (%)	18								
	m at T, RH	(1								
Source C		1								
		Normalized	Measured	Normaliz	ed	Measured	Normalized	Measured		
	Mean	277	282							
	Minimum Maximum	236 307	219 328							
	C.V.(%)	8.89	320 14.3							
	0(/0)	0.00	1110							
	B-value	(3)	(3)							
F_1^{tu}	Distribution	ANOVA	ANOVA							
(ksi)	C ₁	27.7	46.7							
	C ₂	5.36	5.89							
	No. Specimen	s 1	5							
	No. Batches		3							
	Data Class	Inte	rim							
	Mean	18.9	19.2							
	Minimum	17.7	16.4 21.9							
r ^t	Maximum C.V.(%)	20.5 4.81	9.74							
$\mathrm{E}_{1}^{\mathrm{t}}$	0.1.(70)		0.7 1							
(Msi)	No. Specimen:	s 1	5							
(-)	No. Batches	3								
	Data Class	Inte								
	Mean No. Specimen:	s 1	0.345							
u ^t (2)	No. Specimen: No. Batches	S 1								
v_{12}^{t} (2)	Data Class	Scree								
	Mean	30100	14000							
	Minimum		11800							
	Maximum		15700							
	C.V.(%)		8.13							
	B-value		(3)							
$arepsilon_1^{ ext{tu}}$	Distribution		ANOVA							
ε ₁ (με)	C ₁		1180							
(με)	C_2		3.36							
	-2		0.00							
	No. Speciment									
	No. Batches	Inte								
	Data Class	Inte								

(1) Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.

(2) Poisson's ratio measured at 25% of typical ultimate load.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

				REQUIRED W	AS NOT SUPPL	IED FOR THIS MATERIAL.
MATER	RIAL: Celi	on 12k/938 unid	Table 4.2.7(c)			
					C/Ep 145-UT	
		-37 wt% COMP: DENSITY: 1.55-1.58 g/cm ³				Celion 938
FIBER		60 %	VOID CO	NTENT: <1.	Tension, 2-axis	
PLY TH	ICKNESS: 0.00)53-0.0064 in.				[90] ₂₀
						75/A, -67/A, 250/A,
						180/W
TEST N	METHOD:		MODULU	S CALCULATIO	ON:	Interim, Screening
AS	STM D 3039-76		Secan	t at 25% of typi	cal ultimate load	
NORM	ALIZED BY: Not	normalized				
	rature (°F)	75	-67	250	180	
	e Content (%)	ambient	ambient	ambient	1.1	
	rium at T, RH				(1)	
Source	Code	12	12	12	12	
	Mean	9.6	9.5	8.8	5.8	
	Minimum	7.5	8.5	7.1	5.0	
	Maximum	13.9	10.4	10.7	6.6	
	C.V.(%)	13	6.6	11	8.4	
	B-value	(2)	(2)	(2)	(2)	
F_2^{tu}	Distribution	ANOVA	Weibull	Weibull	ANOVA	
(ksi)	C	1.3	9.8	9.2	0.54	
(KSI)	C ₁					
	C ₂	2.7	18	10	5.1	
	No Specimene	101	15	10	15	
	No. Specimens No. Batches	3	3	2	3	
	Data Class	3 Interim	Interim	∠ Screening	Interim	
	Mean			1.22		
		1.35	1.35		1.19	
	Minimum	1.14	1.25	0.94	1.03	
_ +	Maximum	1.82	1.51	1.52	1.36	
E_2^t	C.V.(%)	9.29	4.96	12.5	8.65	
(Msi)	No. Specimens	101	15	10	15	
	No. Batches	3	3	2	3	
	Data Class	Interim	Interim	Screening	Interim	
	Mean					
	No. Specimens					
v_{21}^t	No. Batches					
• 21	Data Class					
	Mean	7200	6700	7600	4900	
	Minimum	1300	5500	6900	4900	
	Maximum	9500	7900	9300	5800	
	C.V.(%)	15	9.2	9.5	8.6	
	J. V. (70)	15	3.2	3.5	0.0	
	B-value	(2)	(2)	(2)	(2)	
_tu	Distribution	Nonpara.	(2) Weibull	Normal	Weibull	
$\varepsilon_2^{ m tu}$		-				
(με)	C ₁	5	7000	7600	5100	
	C ₂		12	720	12	
	No. Specimens	97	15	10	15	
	No. Batches	3	3	2	3	
	Data Class	Interim	Interim	Screening	Interim	
•				. 9		

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	<u>NE 1989). ALL DOC</u> AL: Celio	on 12k/938 unidi			<u>AS NOT SULT</u>	Table	4.2.7(d)	
FIBER V	OLUME: 57-6	5 wt% 7 % 46-0.0073 in.	Comp: De Void Con	Celic Compress	145-UT on 938 sion, 1-axis 0] ₇			
TEST M						75/A, -67/A, 250/A Interim		
	ETHOD: CMA SRM 1-88			S CALCULATIO	een 20% and 40			
		r volume to 60%						
	tture (°F) Content (%) um at T, RH	75 amb			67 bient	25 amb		
Source C		12			12	1		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	201 166 255 9.88	198 172 246 8.99	240 204 286 11.3	240 216 276 8.25	195 180 214 5.48	201 179 229 7.26	
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	21.4 3.93	18.7 3.35	31.1 5.59	21.9 4.97	11.9 5.07	16.7 5.59	
	No. Specimens No. Batches Data Class	102 3 Interim		15 3 Interim		15 3 Interim		
E_1^c	Mean Minimum Maximum C.V.(%)	17.2 14.7 21.0 6.87	18.2 15.0 21.5 7.64	18.8 16.6 21.7 7.14	19.1 16.6 22.5 9.74	18.1 17.1 19.1 3.73	18.1 16.3 20.3 7.07	
(Msi)	No. Specimens No. Batches Data Class	97 3 Interim		15 3 Interim		15 3 Interim		
v_{12}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
ε ^{cu} (με)	B-value Distribution C ₁							
(με)	C ₂ No. Specimens							
	No. Batches Data Class							

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	<u>NE 1989). ALL DC</u> AL: Ce	lion 12k/938 unic			DWA		Table	4.2.7(e)
FIBER V	OLUME: 58-	34 wt% 65 % 044-0.0073 in.	wt% COMP: DENSITY: 1.58-1.60 g/cm ³ 5 % VOID CONTENT: <1.0%				Celic Compress	145-UT on 938 sion, 1-axis 0] ₇ 0/W
TEST ME	ETHOD:		MODULUS	S CALCUL	ATION	l:	Int	erim
SAC	MA SRM 1-88		Chord	l modulus b	betwee	n 20% and 40	% of typical ult	imate load
		er volume to 60%	% (0.0053 in. C	PT)				
Tempera	ture (°F) Content (%)		80 .1					
	im at T, RH		. i 1)					
Source C		1	2					
		Normalized	Measured	Normaliz	zed	Measured	Normalized	Measured
	Mean Minimum	185 157	188 160					
	Maximum	206	217					
	C.V.(%)	7.40	7.55					
	B-value	(2)	(2)					
F ₁ ^{cu}	Distribution	Weibull	Weibull					
(ksi)	C ₁ C ₂	191 16.3	194 14.4					
	No. Specimens No. Batches Data Class	:	5 3 erim					
	Mean	18.2	19.2					
	Minimum	15.7	15.8					
E_1^c	Maximum C.V.(%)	22.3 8.88	23.7 10.5					
(Msi)	No. Specimens No. Batches Data Class	:	5 3 erim					
	Mean							
v_{12}^{c}	No. Specimens No. Batches							
	Data Class							
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{ m cu}$	B-value Distribution							
ε ₁ (με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		Tal	HIS MATERIAL. ble 4.2.7(f)			
RESIN CO FIBER VO PLY THIC	DLUME: 58	3-34 wt% 3-65 % 0044-0.0064 in.	COMP: DENSITY: VOID CONTENT:	1.57-1.61 g/cm ³ <1.4%	³ Co Shea	Ep 145-UT Elion 938 ar, 12-plane [±45] ₂₅ -65/A, 250/A,
TEST ME	THOD:		MODULUS CALCU	JLATION:	Interir	180/W n, Screening
ASTN	/I D 3518-76					
NORMALI	ZED BY: No	ot normalized				
Temperatu	ure (°F)	75	-67	250	180	
	Content (%)	ambient	ambient	ambient	1.1	
Equilibriun					(1)	
Source Co		12	12	12	12	
	Mean	14	16	14	14	
	Minimum Maximum	11 16	14 18	13 15	13 14	
	C.V.(%)	7.3	10.	6.1	3.6	
	0.0.(/0)	1.0	10.	0.1	0.0	
	B-value	(2)	(2)	(2)	(2)	
F_{12}^{su}	Distribution	ANOVA	ANOVA	Weibull	ANOVA	
(ksi)	C ₁	1.1	1.8	14	0.53	
	C ₂	4.4	5.8	19	4.6	
	No. Specime	ns 102	14	14	15	
	No. Batches	3	3	3	3	
	Data Class	Interim	Screening	Screening	Interim	
	Mean					
	Minimum					
C \$	Maximum C.V.(%)					
G ^s ₁₂	0. v.(76)					
(Msi)	No. Specime	ns				
	No. Batches Data Class					
<u> </u>	Mean					
	Minimum					
	Maximum					
	C.V.(%)					
	B-value					
11 su	Distribution					
γ_{12}^{su}	C ₁					
(με)	C_1 C_2					
	\mathbf{U}_2					
	No. Specime	ns				
	No. Batches					
	Data Class					

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			2k/938 unidirecti	onal tape		Tab	le 4.2.7(g)
RESIN CC FIBER VO PLY THIC	LUME:	31-40 wt 52-62 % 0.0051-0		COMP: DENSITY: VOID CONTENT:	1.54-1.59 g/cn <1.0%	n ³ Ce	Ep 145-UT elion 938 5, 31-plane [0]₁₄ 75/A
TEST MET	THOD:			MODULUS CALCU	JLATION:	Se	creening
ASTM	/I D 2344-67						
NORMALI	ZED BY:	Not norm	alized				
Temperatu			75				
	Content (%)		ambient				
Equilibriun Source Co			12				
	Mean		18.3				
	Minimum		16.6				
	Maximum	ı	19.7				
	C.V.(%)		3.29				
	B-value		(1)				
F ₃₁ ^{sbs}	Distributio	on	ANOVA				
(ksi)	C ₁		0.619				
(-)	C ₂		2.76				
	No. Crook	imana	102				
	No. Spec No. Batch		102 3				
	Data Clas		Screening				
			~				

(1) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.8 AS4 12k/3502 unidirectional tape

Material Description:

Material: AS4-12k/3502

- Form: Unidirectional tape, fiber areal weight of 150 g/m², typical cured resin content of 32-45%, typical cured ply thickness of 0.0052 inches.
- Processing: Autoclave cure; 275° F, 85 psi for 45 minutes; 350°F, 85 psi, hold for 2 hours. Post cure at 400°F to develop optimum 350°F properties.

General Supplier Information:

Fiber: AS4 fibers are continuous high strength, high strain, standard, modulus carbon filaments made from PAN precursor. The fibers are surface treated to improve handling character-istics and structural properties, offering good drape. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶psi. Typical tensile strength is 550,000 psi.

Matrix: 3502 is an epoxy resin. Good tack; up to 10 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 350°F (dry), 180°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary

1. Where noted, only normalized data were made available for analysis.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.8 AS4 12k/3502 unidirectional tape*

MATERIAL:	AS4 12k/3502 unidirectional tape		C/Ep 147-UT AS4/3502 Summary
FORM:	Hercules AS4/3502 unidirectional tape prepreg	-	
FIBER:	Hercules AS4 12k, surface-treated, MATRIX: no twist	Hercules 3502	
T _g (dry):	407°F T_g (wet): T_g METHOD:	ТМА	
PROCESSING:	Autoclave cure: 280 ± 5°F, 90 min, 85+15-0 psi; 350°F	, 120 min.	

* Additional data set found on p. 73.

Date of fiber manufacture	4/83 - 6/83	Date of testing	11/83 - 7/84
Date of resin manufacture	6/83	Date of data submittal	12/93, 5/94
Date of form manufacture	6/83 - 7/83	Date of analysis	8/94
Date of composite manufacture	8/83 - 5/84		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/W	250°F/W	
Tension, 1-axis	BM	BM	BM	BM	
Tension, 2-axis	BM	BM	BM	BM	
Tension, 3-axis					
Compression, 1-axis	BM	II	BM	BM	
Compression, 2-axis	BM	II	BM	BM	
Compression, 3-axis					
Shear, 12-plane	BM	bM	BM	II	
Shear, 23-plane					
Shear, 31-plane					

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.77 - 1.80	
Resin Density	(g/cm ³)	1.26	1.24 - 1.29	
Composite Density	(g/cm ³)	1.57	1.56 - 1.59	
Fiber Areal Weight	(g/m ²)	147	146 - 150	
Fiber Volume	(%)	58	55 - 60	
Ply Thickness	(in)	0.0055	0.0049 - 0.0061	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

7-UT 02 I-axis 180/W ean	
ean	
3	
3	
3	
3	
<u> </u>	
Measured	
(2)	
(2)	
(2)	
5 Mean	

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

Volume 2,	Chapter 4	Carbon Fiber	Composites
-----------	-----------	--------------	------------

MATERIA	AL: AS4	12k/3502 unidir	ectional tape					4.2.8(b)
FIBER VOLUME: 59-6				-1.59 g/cm ³ .0%	C/Ep 147-UT AS4/3502 Tension, 1-axis [0] ₈ 250/W			
TEST ME	THOD:		MODULUS	S CALCULA		۱:		Mean
	M D 3039-76			portion of			· · · · ·	
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume to	60%	(0.0055 in. C	PT)	
Temperat		25						
	Content (%)	1.1 -						
	m at T, RH	(1						
Source C	ode	49 Normalized	Measured	Normaliz	od	Measured	Normalized	Measured
	Mean	256	weasured	Normaliz	eu	Measured	Normalized	Measured
	Minimum	200						
	Maximum	301						
	C.V.(%)	9.39						
	Ducha	101						
F_1^{tu}	B-value Distribution	191 ANOVA	(2)					
			(2)					
(ksi)	C ₁ C ₂	25.0 2.61						
	No. Specimens No. Batches Data Class	30 5 B3						
E_1^t	Mean Minimum Maximum C.V.(%)	20.1 17.8 23.9 7.32	(2)					
(Msi)	No. Specimens No. Batches	30 5						
	Data Class	Me	an					
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class							
	Mean Minimum Maximum C.V.(%)							
$oldsymbol{arepsilon_1}^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches							
	Data Class						L	

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

Volume 2, Chapter 4 Carbon Fiber Composites

MATER	IAL: AS	4 12k/3502 unidired		Table 4.2.8(c)		
FIBER VOLUME: 59-6		33 wt% 60 % 052-0.0059 in.	COMP: DENSITY: 1.56-1.59 g/cm ³ VOID CONTENT: 0.0-1.0%		cm ³ T	C/Ep 147-UT AS4/3502 ension, 2-axis [90] ₂₄ A, -65/A, 180/W,
TEST M	ETHOD:		MODULUS CAL	CULATION:		250/W B30, Mean
AS	TM D 3039-76		Linear portic	n of curve		
NORMA	LIZED BY: Not	normalized				
	ature (°F)	75	-65	180	250	
	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3	
-	um at T, RH			(1)	(1)	
Source		49	49	49	49	
	Mean Minimum	7.76 6.26	6.65 2.48	4.39 3.52	2.68 2.13	
	Maximum	0.20 10.2	2.48 8.93	3.52 5.20	2.13 3.40	
	C.V.(%)	10.7	18.0	8.44	12.3	
F_2^t	B-value Distribution	6.28 Normal	4.57 Weibull	3.46 ANOVA	1.65 ANOVA	
(ksi)	C ₁ C ₂	7.76 0.832	7.09 7.20	0.380 2.43	0.348 2.94	
	No. Specimens No. Batches Data Class	30 5 B30	30 5 B30	30 5 B30	30 5 B30	
E_2^t	Mean Minimum Maximum C.V.(%)	1.35 1.28 1.49 4.26	1.44 1.32 1.58 4.16	1.21 1.14 1.35 4.02	0.958 0.912 1.06 3.61	
(Msi)	No. Specimens No. Batches Data Class	30 5 Mean	30 5 Mean	30 5 Mean	30 5 Mean	
v_{21}^{t}	Mean No. Specimens					
	No. Batches Data Class					
	Mean Minimum					
	Maximum C.V.(%)					
$arepsilon_2^{ ext{t}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA	AL: AS	64 12k/3502 unidir	ectional tape				4.2.8(d)
RESIN C FIBER VO PLY THIO	OLUME: 55	37 wt% COMP: DENSITY: 1.56-1.57 g/cm ³ 59 % VOID CONTENT: 0.0% 054-0.0060 in. VOID CONTENT: 0.0%			C/Ep 147-UT AS4/3502 Compression, 1-axis [0] ₁₉ 75/A, -65/A, 180/W		
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		an, Interim
	M D 3410A-75			portion of curve			,
		ecimen thickness				PT)	
Tempera	ture (°F)	75	5	-6	5	18	30
	Content (%) m at T, RH	amb	ient	amb	ient		- 1.3 1)
Source C	ode	49	9	4	9		9
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	204 168 226 6.45		233 207 252 5.63		176 146 200 6.31	
F ₁ ^{cu}	B-value Distribution	171 ANOVA	(3)	(2) Weibull	(3)	145 ANOVA	(3)
(ksi)	C_1 C_2	13.5 2.44		238 23.0		11.5 2.65	
	No. Specimens No. Batches Data Class	5	30 5 B30		5 ; rim	30 5 B30	
E_1^c	Mean Minimum Maximum C.V.(%)	18.0 16.9 19.4 3.19	(3)	18.8 17.1 20.5 5.43	(3)	18.6 17.5 20.0 3.36	(3)
(Msi)	No. Specimens No. Batches Data Class	5 30 5 Me		16 5 Interim		30 5 Mean	
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches	5					
	Data Class Mean Minimum Maximum C.V.(%)						
ε_1^{cu}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class	;					

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Basis values are presented only for A and B data classes.
 Only normalized data were made available for analysis.

Volume 2,	Chapter 4	Carbon Fiber	Composites
-----------	-----------	--------------	------------

MATERIA	AL: AS4	12k/3502 unidi	rectional tape	Table 4.2.8(e) C/Ep 147-UT			
FIBER VOLUME: 55-59		87 wt% COMP: DENS 59 % VOID CONTE 054-0.0060 in. VOID CONTE		0		AŠ4/3502 Compression, 1-axis [0] ₁₉	
TEOTM	TUOD		MODULU			25	0/W
TEST ME				S CALCULAT		В30,	Mean
AST	M D 3410A-75		Linear	portion of cu	ve		
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume to 6	0% (0.0055 in. C	PT)	
Temperat		25					
	Content (%)	1.1 -					
-	m at T, RH	(1					
Source C	ode	4					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	147 118					
	Maximum	178					
	C.V.(%)	9.42					
CU	B-value	119	(0)				
F_1^{cu}	Distribution	Weibull	(2)				
(ksi)	C ₁ C ₂	153 12.5					
	No. Specimens	3	0				
	No. Batches	5	5				
	Data Class	B3	30				
	Mean Minimum	18.7 17.3					
	Maximum	20.6	(2)				
E_1^c	C.V.(%)	3.99	(-)				
(Msi)	No. Specimens	3					
	No. Batches Data Class	5 Me					
v_{12}^{c}	Mean No. Specimens No. Batches						
12	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
$arepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁						
(με)	C_2						
	No. Specimens						
	No. Batches						
	Data Class						

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MATER	RIAL: A	AS4 12k/3502 unic	directional tape			able 4.2.8(f) /Ep 147-UT	
RESIN CONTENT: 31-33 wt% FIBER VOLUME: 59-60 % PLY THICKNESS: 0.0054-0.0058 in.		COMP: DENSITY: VOID CONTENT:	1.56-1.59 g/cn 0.0-1.0%	n ³ Comp	AS4/3502 Compression, 2-axis [90] ₂₄ 75/A, -65/A, 180/W, 250/W		
TEST N	METHOD:		MODULUS CALC	ULATION:		Mean, Interim	
AS	GTM D 695M (1) (4)		Linear po	ortion of curve			
NORM	ALIZED BY: Not	normalized					
	rature (°F)	75	-65	180	250		
	re Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3		
-	rium at T, RH			(2)	(2)		
Source		49	49	49	49		
	Mean	34.6	49.8	24.7	18.4		
	Minimum Maximum	27.5 40.4	42.5 57.2	23.0 26.7	17.0 19.9		
	C.V.(%)	9.53	10.4	3.23	4.99		
011	B-value	26.6	(3)	22.3	15.3		
F_2^{cu}	Distribution	ANOVA	Weibull	ANOVA	ANOVA		
(ksi)	C ₁	3.37	52.1	0.836	0.990		
	C ₂	2.38	11.3	2.80	3.18		
	No. Specimens	30	15	30	30		
	No. Batches	5	5	5	5		
	Data Class	B30	Interim	B30	B30		
	Mean	1.41 1.29	1.68	1.24 1.14	1.09		
	Minimum Maximum	1.60	1.57 1.95	1.41	0.973 1.41		
E_2^c	C.V.(%)	4.86	6.07	4.90	9.44		
22							
(Msi)	No. Specimens	30	15	30	30		
	No. Batches	5	5	5	5		
	Data Class Mean	Mean	Interim	Mean	Mean		
	Nean No. Specimens						
v_{21}^{c}	No. Batches						
• 21	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$\varepsilon_2^{\rm cu}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimers						
	No. Specimens No. Batches						
	Data Class						

Tabbed specimen - length 3.12 inch, width 0.50 inch, gage length 0.50 inch.
 Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Basis values are presented only for A and B data classes.

(4) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

Volume 2, Chapter 4 Carbon Fiber Composites

MATER	IAL: AS4	4 12k/3502 unidire	ctional tape			able 4.2.8(g)	
RESIN CONTENT: 31-33 wt% FIBER VOLUME: 59-60 % PLY THICKNESS: 0.0053-0.0059 in		60 %	COMP: DENSI VOID CONTEN		cm ³ Sh	C/Ep 147-UT AS4/3502 Shear, 12-plane [±45] _{4S} 75/A, -65/A, 180/W,	
TEST M	ETHOD:		MODULUS CAL	CULATION:	В3	250/W 0, B18, Mean	
AS	TM D 3518-76		Linear portic	on of curve			
NORMA	LIZED BY: Not	normalized					
	ature (°F)	75	-65	180	250		
	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3		
	um at T, RH			(1)	(1)		
Source	Code	49	49	49	49		
	Mean Minimum Maximum	14.8 13.7 15.8	15.3 13.3 16.2	13.5 12.5 14.1	11.5 10.5 12.4		
	C.V.(%)	3.18	4.58	3.39	4.27		
F ₁₂ ^{su}	B-value Distribution	13.4 ANOVA	13.9 ANOVA	11.8 ANOVA	10.3 ANOVA		
(ksi)	C ₁ C ₂	0.503 2.91	0.706 2.04	0.502 3.24	0.503 2.32		
	No. Specimens No. Batches Data Class	36 5 B30	23 5 B18	37 5 B30	42 5 B30		
G ^s ₁₂	Mean Minimum Maximum C.V.(%)	0.543 0.496 0.593 5.16	0.769 0.738 0.863 3.69	0.217 0.169 0.260 9.25	0.141 0.103 0.205 17.9		
(Msi)	No. Specimens No. Batches Data Class	33 5 Mean	23 5 Mean	33 5 Mean	41 5 Mean		
γ ^{su} 12 (με)	Mean Minimum Maximum C.V.(%) B-value Distribution C ₁ C ₂ No. Specimens No. Batches						

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL:	AS4 12k/3502 unidirectional tape*			C/Ep 147-UT AS4/3502 Summary				
FORM:	Hercules AS4/3502 unidirectional tap	e prepreg	-					
FIBER:	Hercules AS4 12k, surface-treated	MATRIX:	Hercules 3502					
T _g (dry):	460°F T _g (wet):	Tg METHOD:	ТМА					
PROCESSING:	Autoclave cure: 275°F, 45 min.; 350°F, 2 hours, 85 psig; Postcure: 400°F, 4 hours							

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. REFER TO PAGE 4-64 TO VIEW ADDITIONAL DATA SETS ON THIS MATERIAL SYSTEM.

Date of fiber manufacture	12/80 - 2/82	Date of testing	
Date of resin manufacture		Date of data submittal	6/90
Date of form manufacture	12/80 - 2/82	Date of analysis	1/93
Date of composite manufacture			

	75°F/A	-65°F/A	265°F/A	75°F/W	265°F/W	
Tension, 1-axis	IIII		IIII		IIII	
Tension, 2-axis	II-I			II-I	II-I	
Tension, 3-axis						
Compression, 1-axis		II-I	II-I		II-I	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.78 - 1.81	
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.58		
Fiber Areal Weight	(g/m ²)			
Fiber Volume	(%)	60	63 - 68	
Ply Thickness	(in)		0.0047 - 0.0062	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.										
MATERI	AL: AS4	12k/3502 unidi	rectional tape				4.2.8(h)				
FIBER V	OLUME: 63-6	9 wt% 8 % 55-0.0058 in.	COMP: DE VOID CON	NSITY: 1.59 ITENT:	9-1.62 g/cm ³	C/Ep 147-UT AS4/3502 Tension, 1-axis [0]6					
TEST ME			MODULU	S CALCULATIC	N:		5/A, 265/W erim				
AST	M D 3039-76										
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 609	% (0.0056 in. C	PT)					
Tempera		7		26		26	-				
	Content (%) um at T, RH	amb		amb		We					
Source C		(1 2		(1	6	(2	-) 6				
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean	253	275	269	292	251	273				
	Minimum	212	226	148	165	183	196				
	Maximum C.V.(%)	294 8.35	323 9.49	314 15.2	358 16.5	287 9.09	315 10.4				
	0. v.(70)	0.55	9.49	10.2	10.5	3.03	10.4				
F ₁ ^{tu}	B-value Distribution	(3) ANOVA	(3) ANOVA	(3) ANOVA	(3) ANOVA	(3) ANOVA	(3) ANOVA				
(ksi)	C ₁	21.5	27.2	24.0	30.2	24.0	30.2				
	C ₂	2.20	2.60	2.83	3.01	2.83	3.01				
	No. Specimens No. Batches	30 5		2		25					
	Data Class	Interim		Inte		Inte					
	Mean	18.7	20.4	18.4	20.0	19.0	20.6				
	Minimum	17.3	18.9	17.4	19.1	18.0	19.2				
r.t	Maximum C.V.(%)	20.2 3.88	22.2 3.37	19.7 3.52	20.8 2.59	19.7 3.53	22.1 3.22				
E_1^t	0.0.()0)	0.00	0.07	0.02	2.00	0.00	0.22				
(Msi)	No. Specimens	2		2		2					
	No. Batches Data Class	5 Interim		4 Interim		5 Interim					
	Mean	Inte	0.340	inte	0.356	inte	0.280				
	No. Specimens	3	0		20		5				
v_{12}^{t}	No. Batches	Ę	5	4		5	5				
	Data Class	Inte		Inte		Inte					
	Mean Minimum		12400 10200		13900 10400		12400 9220				
	Maximum		14400		15700		13900				
	C.V.(%)		8.65		12.0		8.95				
atu	B-value Distribution		(3) ANOVA	(3) ANOVA			(3) ANOVA				
$\varepsilon_1^{\text{tu}}$	C ₁		1120		1850		1170				
(με)	C_1 C_2		2.62		3.92		2.87				
	No. Specimens	3		2		2					
	No. Batches Data Class	5 Inte		2 Inte		5 Inte					
ļ	Dulu Olass	inte	1111	inte	/11/11	inte					

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 180°F, 75% relative humidity for 10 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* AI	L DOCUMENTATION	I PRESENTI Y	REQUIRED W	AS NOT SUPP	PLIED FOR THIS	MATERIAI
MATER		12k/3502 unidi				Table 4.2.8(i)
FIBER	VOLUME: 63-6	9 wt% 8 % 5-0.0059 in.		COMP: DENSITY: 1.59-1.62 g/cm ³ VOID CONTENT: COMP: DENSITY: 1.59-1.62 g/cm ³ C/Ep 147-UT AS4/3502 Tension, 2-axi [90] ₁₅		
	METHOD: STM D 3039-76		MODULU	S CALCULATI	ON:	75/A, 75/W, 265/W Interim
NORM	ALIZED BY: Not i	normalized				
Moistur	rature (°F) re Content (%) rium at T, RH Code	75 ambient (1) 26	75 wet (2) 26	265 wet (2) 26		
	Mean Minimum Maximum C.V.(%)	8.04 5.93 10.6 13.5	3.27 2.54 4.15 16.3	3.29 2.62 4.15 13.0		
F2 ^{tu} (ksi)	B-value Distribution C ₁ C ₂	(3) ANOVA 1.11 2.36	(3) ANOVA 0.560 3.79	(3) ANOVA 0.452 3.16		
	No. Specimens No. Batches Data Class	30 5 Interim	15 3 Interim	20 4 Interim		
E_2^t	Mean Minimum Maximum C.V.(%)	1.50 1.43 1.58 2.76	1.04 0.95 1.10 5.1	1.04 0.95 1.10 4.3		
(Msi)	No. Specimens No. Batches Data Class	30 5 Interim	15 3 Interim	20 4 Interim		
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)	5500 4000 7390 13.7	3320 2750 4200 13.3	3440 2840 4200 12.1		
$arepsilon_2^{ ext{tu}}$	B-value Distribution	(3) Weibull	(3) ANOVA	(3) ANOVA		
(με)	C ₁ C ₂	5820 7.67	506 5.66	456 3.79		
	No. Specimens No. Batches Data Class	30 5 Interim	15 3 Interim	20 4 Interim		
L					I	I

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 180°F, 75% relative humidity for 63 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	* ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.										
MATERI	AL: AS4	12k/3502 unidi	rectional tape				4.2.8(j)				
FIBER V	OLUME: 63-6	9 wt% 8 % 47-0.0062 in.	Comp: De Void Con		9-1.62 g/cm ³	C/Ep 147-UT AS4/3502 Compression, 1-axis [0]₀					
TEST ME			MODULUS	S CALCULATIC	DN:		5/A, 265/W erim				
AST	M D 3410C										
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 609	% (0.0055 in. C	PT)					
Tempera	ture (°F) Content (%)	-6 amb		26	65 bient	26 We					
Equilibriu	im at T, RH	(1)	(1	1)	(2	2)				
Source C	Code	2 Normalized			6 Maggyurgd	2 Normalized					
	Mean	Normalized 226	Measured 253	Normalized 228	Measured 249	Normalized 176	Measured 192				
	Minimum	173	206	142	150	139	146				
	Maximum	307	325	275	292	208	228				
	C.V.(%)	16.8	14.1	15.0	15.1	11.5	13.3				
F ₁ ^{cu}	B-value Distribution	(3) Weibull	(3) Weibull	(3) Weibull	(3) Weibull	(3) Weibull	(3) Weibull				
(ksi)	C ₁	242	269	241	264	184	203				
	C ₂	6.23	7.45	8.66	9.19	10.6	9.32				
	No. Specimens	1			5	14					
	No. Batches Data Class	3 Interim			3 Interim		s erim				
	Mean	19.3	21.1	21.2	23.2	19.6	21.4				
	Minimum	17.1 21.8	19.3 23.7	17.1 23.1	19.3	18.5	20.5 22.5				
E_1^c	Maximum C.V.(%)	6.63	7.30	9.53	26.3 9.70	20.6 3.85	22.5 3.70				
(Msi)	No. Specimens	1		1		15 3					
	No. Batches Data Class	3 Inte		Inte	3 erim	Inte	-				
	Mean										
C	No. Specimens No. Batches										
v_{12}^{c}	Data Class										
	Mean		16200		13400		10500				
	Minimum		11100		7370		7770				
	Maximum C.V.(%)		21200 17.4		16000 16.2		12800 14.1				
	B-value		(3)		(3)		(3)				
$\varepsilon_1^{ m cu}$	Distribution		Weibull		Weibull		(S) Weibull				
με)	C ₁		17400		14200		11100				
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C ₂		6.39		8.53		8.71				
	No. Specimens	1	5	1	5	1	5				
	No. Batches	3	3	3	3	3	3				
	Data Class	Inte	rim	Inte	erim	Inte	rim				

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 150°F, 98% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.9 Celion 3000/E7K8 plain weave fabric

Material Description:

Material: Celion 3000/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-44%, typical cured ply thickness of 0.0075-0.0084 inches.
- Processing: Autoclave cure; 310°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: Celion 3000 fibers are continuous carbon filaments made from PAN precursor. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.9 Celion 3000/E7K8 plain weave fabric*

MATERIAL:	Celion 3000/E7K8 plain weave fabric			C/Ep 195-PW Celion 3000/E7K8 Summary
FORM:	U.S. Polymeric Celion 3000/E7K8 plair	n weave fabric, Grad	le 195 prepreg	
FIBER:	Celanese Celion 3000	MATRIX:	U.S. Polymeric E	7K8
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave: 310°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	
Date of resin manufacture		Date of data submittal	1/88
Date of form manufacture 2/	/86 - 3/86	Date of analysis	1/93
Date of composite manufacture			

75°F/A		-65°F/A	180°F/A		75°F/W	180°F/W	
SS-S		SS			SSSS	SSS-	
SS-S		SS-S			SS-S	SS-S	
SS-S		SS-S	SS-S		SS-S	SS-S	
SS-S		SS	SS		SS-S	SS	
S		S	S		S	S	
	SS-S SS-S SS-S SS-S	SS-S SS-S SS-S SS-S	SS-S SS SS-S SS-S SS-S SS-S SS-S SS	SS-S SS SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS SS-S SS	SS-S SS SS SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S	SS-SSSSSSSSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSS-SSSSSSS-SSSSS	SS-SSSSSSSSSS-SS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSS-SSS-SSS-SSSSSSS-SSS-S

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.54	1.37 - 1.55	
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	50	51 - 56	
Ply Thickness	(in)	0.0075	0.0078 - 0.011	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		on 3000/E7K8 p			Table 4.2.9(a)	
FIBER V	OLUME: 55-5	38 wt% 56 % 978-0.0085 in.	COMP: DE VOID CON		1.55 g/cm ³ 0.0%	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₀ 75/A, -65/A
TEST ME	ETHOD:		MODULUS	S CALCULA	TION:	Screening
AST	M D 3039-76					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to	57% (0.0075 in. C	PT)
	ture (°F) Content (%) ım at T, RH	75 amb		a	-65 ambient	
Source C		20	0		20	
		Normalized	Measured	Normalize	d Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	132 120 143 4.7	128 115 140 5.8	110 101 118 6.2	106 98.4 113 5.4	
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	135 25.7	132 21.4	110 6.88	106 5.74	
	No. Specimens No. Batches Data Class	20 1 Screening		S	5 1 creening	
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.67 9.49 9.98 1.2	9.38 8.85 9.74 2.5	9.98 9.82 10.0 1.0	9.66 9.46 9.90 1.8	
(Msi)	No. Specimens No. Batches Data Class	1	20 1 Screening		5 1 creening	
v_{12}^{t}	Mean No. Specimens No. Batches	5				
	Data Class	Scree			41000	
	Mean Minimum Maximum C.V.(%)		13700 12300 14800 4.5		11000 10200 11600 5.4	
$m{arepsilon}_1^{ ext{tu}}$	B-value Distribution		(1) Weibull		(1) Normal	
(με)	C ₁ C ₂		14000 26.8		11000 592	
	No. Specimens No. Batches Data Class	20 1 Scree		S	5 1 creening	

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA		on 3000/E7K8 p			Table 4.2.9(b)	
FIBER V			Comp: De Void Con	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 ₁] ₁₀		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	75/W, 180/W Screening	
	M D 3039-76					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	ն (0.0075 in. C	CPT)
Equilibriu	Content (%) Im at T, RH	75 we (1	et)	18 we (1	et)	
Source C	Code	20 Normalized	-	20 Normalized		Normalized Maggurod
	Mean	Normalized 125	Measured 122	Normalized 123	Measured 120	Normalized Measured
	Minimum Maximum C.V.(%)	111 130 6.3	105 129 8.1	114 131 6.5	112 127 6.3	
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	125 7.93	122 9.93	123 7.99	120 7.52	
	No. Specimens No. Batches Data Class	5 1 Screening		5 1 Scree		
E_1^t	Mean Minimum Maximum C.V.(%)	9.23 8.93 9.53 2.5	9.01 8.81 9.20 1.7	9.55 9.37 9.84 1.9	9.33 9.15 9.63 2.0	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
v_{12}^{t}	Mean No. Specimens No. Batches	5	0.0620	5	0.0560	
	Data Class	Scree		Scree	ning	
	Mean Minimum Maximum C.V.(%)		13700 12100 14300 6.9		12800 11200 14100 9.6	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		13700 939		12800 1230	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		Table 4.2.9(c)				
FIBER V	OLUME: 51-5	I4 wt% 54 % 079-0.0084 in.	COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₂ 75/4 65/4		
TEST ME	ETHOD:		MODULUS	S CALCULA	TION:	75/A, -65/A Screening
AST	M D 3039-76					
NORMAI	LIZED BY: Spe			er volume to	57% (0.0075 in. C	PT)
	iture (°F) Content (%) ım at T, RH	7: amb		a	-65 ambient	
Source C		2	0		20	
		Normalized	Measured	Normalize		Normalized Measured
	Mean Minimum Maximum C.V.(%)	132 106 147 7.5	122 100 136 7.5	122 117 126 2.8	115 111 123 4.3	
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	136 16.4	126 17.3	122 3.44	116 4.97	
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Screening		
E_1^t	Mean Minimum Maximum C.V.(%)	9.96 9.30 9.98 1.2	9.21 8.74 9.78 2.5	9.29 8.95 9.66 2.8	8.82 8.51 9.41 4.0	
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		14100 13600 14600 2.6			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Normal			
(με)	C ₁ C ₂		14100 371			
	No. Specimens No. Batches Data Class	5 1 Scree				

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			Table 4.2.9(d)			
RESIN C FIBER V(PLY THI(COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₂		
TEST ME	THOD			S CALCULATIC	N	75/W, 180/W Screening
	M D 3039-76		MODOLOG	5 OALOOLATIC		ourcennig
		cimen thickness	and batch fibe	er volume to 579	% (0.0075 in. C	CPT)
Tempera		7		18		
	Content (%) m at T, RH	(1		(1		
Source C		2		2		
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum	145 143	129 125	148 139	133 124	
	Maximum	143	125	154	142	
	C.V.(%)	1.6	1.8	4.0	5.6	
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁	145	129	148	133	
	C ₂	2.23	2.37	5.94	7.50	
	No. Specimens No. Batches	5		5		
	Data Class	Scree	<u> </u>	Scree		
	Mean Minimum	10.6 10.1	9.42 8.79	10.3 10.1	9.21 8.91	
	Maximum	11.4	10.0	10.5	9.53	
E_1^t	C.V.(%)	4.9	5.0	1.3	2.7	
(Msi)	No. Specimens	5		5		
	No. Batches Data Class	Scree		Scree		
	Mean		0.0560		0.0560	
v_{12}^t	No. Specimens No. Batches	5		5		
	Data Class	Scree		Scree	ening	
	Mean Minimum Maximum		13400 12300 14300			
	C.V.(%)		5.30			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal			
(με)	C ₁		13400			
	C ₂		713			
	No. Specimens No. Batches Data Class	5 1 Scree				

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		on 3000/E7K8 p		Table 4.2.9(e)		
FIBER V			COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 2-axis [0 _f] ₁₀ 75/A, -65/A		
TEST ME	THOD:		MODULUS	S CALCULATIO	ON:	Screening
AST	M D 3039-76					
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 57	% (0.0075 in. C	PT)
	ture (°F) Content (%) ım at T, RH	7: amb			65 bient	
Source C		20	0	2	20	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	128 120 137 3.6	127 115 134 3.7	113 101 125 9.1	111 100 122 8.9	
F ₂ ^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	128 4.64	127 4.69	113 10.3	111 9.89	
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Screening		
E ₂ ^t	Mean Minimum Maximum C.V.(%)	9.50 9.36 9.69 0.98	9.37 9.04 9.71 1.8	9.51 9.29 9.65 1.6	9.34 9.20 9.68 2.1	
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening		
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		13400 12600 14200 3.5		11700 10700 12700 7.7	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(1) Weibull		(1) Normal	
(με)	C ₁ C ₂		13600 32.5		11700 902	
	No. Specimens No. Batches Data Class	20 1 Scree			5 1 eening	

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		on 3000/E7K8 p				Table 4.2.9(f)
FIBER V			COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 2-axis [90 _f] ₁₀		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	75/W, 180/W Screening
	M D 3039-76					g
NORMAI	LIZED BY: Spee	cimen thickness	and batch fibe	er volume to 57%	% (0.0075 in. C	PT)
Equilibriu	Content (%) um at T, RH	7 wo (1	et)	18 wi (1	et)	
Source C	Jode	2 Normalized	0 Measured	2 Normalized	0 Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	119 105 130 7.8	117 104 126 7.3	130 129 132 0.89	128 125 131 1.8	Normalized
F ₂ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	119 9.35	117 8.51	130 1.16	128 2.35	
	No. Specimens No. Batches Data Class	5 1 Screening		5 1 Scree		
E_2^t	Mean Minimum Maximum C.V.(%)	9.08 8.98 9.21 1.2	8.92 8.73 9.14 1.6	9.35 9.26 9.48 1.2	9.18 8.96 9.38 1.8	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Screening		
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		13100 11400 14400 8.7		14200 13700 14800 3.5	
$arepsilon_2^{ m tu}$	B-value Distribution		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		13100 1135		14200 490	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: Celi	on 3000/E7K8 p					4.2.9(g)
RESIN C FIBER V	ONTENT: 36-4 OLUME: 53-5	0 wt%	COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₀ 75/A, -65/A, 180/A			
TEST ME	THOD:		MODULUS	S CALCULATIC)N:		o/A, 180/A ening
	MA SRM 1-88		1102020	0,12002,1110			<u>9</u>
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57°	% (0.0075 in. C	PT)	
	ture (°F) Content (%) ım at T, RH	75 amb			65 bient	18 amb	
Source C		20)	2	0	2	0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	104 90.5 122 8.3	101 87.7 120 8.7	121 113 132 5.9	118 111 126 4.7	97.4 87.5 105 7.2	94.5 85.1 100 7.1
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	C ₁ C ₂	108 13.0	105 12.1	121 7.19	118 5.58	97.4 7.00	94.5 6.72
	No. Specimens No. Batches Data Class	20 1 Screening			5 1 ening	5 1 Screening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.88 9.56 10.3 2.3	9.02 8.65 9.29 2.0	9.83 9.75 9.95 1.0	9.33 9.20 9.48 1.1	9.45 9.14 9.66 2.3	9.16 8.89 9.37 2.0
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening		5 1 Screening	
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		10900 10500 11200 2.2		12200 12000 12300 1.0		10400 10200 10800 2.3
$arepsilon_1^{ m cu}$	B-value Distribution		(1) Weibull		(1) Normal		(1) Normal
(με)	C ₁ C ₂		11000 54.2		12200 122		10400 239
	No. Specimens No. Batches Data Class	20 1 Scree		Scree		5 1 Scree	

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		ion 3000/E7K8 p			LIED FOR THIS MATERIAL. Table 4.2.9(h)	
FIBER V	OLUME: 54-	37 wt% 56 % 073-0.0086 in.	COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₀		
TEST ME	THOD			S CALCULATIC	NI:	75/W, 180/W Screening
	MA SRM 1-88		NODOLO	5 CALCOLATIC	// .	Ocreening
		cimen thickness	and batch fibe	er volume to 579	% (0.0075 in. C	PT)
	Content (%)	75 We	et	w	30 et	
Source C	ım at T, RH Code	(1		(1		
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	94.9 89.7 102 5.5	92.6 88.2 98.8 4.9	78.9 72.7 83.2 5.7	77.6 70.5 82.3 6.0	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	94.9 5.47	92.6 4.57	78.9 4.53	77.6 4.65	
	No. Specimens No. Batches Data Class	5 1 Screening		5 Scree	1	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.39 8.80 10.2 6.3	8.92 8.12 9.79 6.8	8.97 8.45 9.54 4.4	8.52 8.18 8.80 3.5	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Screening		
v_{12}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		9800 8970 10400 6.0		8130 7620 8600 4.4	
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		9800 590		8130 356	
	No. Specimens No. Batches Data Class	5 1 Scree			5 1 ening	

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: Celi	on 3000/E7K8 p				Table	4.2.9(i)
FIBER V	OLUME: 52-5	0 wt% 4 % 178-0.0084 in.	Celion 3 Compres	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/A, -65/A, 180/A			
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:		ening
SAC	CMA SRM 1-88						
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57°	% (0.0075 in. C	PT)	
	ture (°F) Content (%) ım at T, RH	7: amb			65 pient		30 bient
Source C		20	0	2	20	2	0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	114 86.4 128 9.5	107 84.4 121 9.1	133 127 139 3.9	122 116 129 4.6	103 96.0 114 6.8	97.6 89.2 107 7.2
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	$C_1 \\ C_2$	118 13.8	111 14.0	133 5.22	122 5.60	103 6.99	97.6 7.04
	No. Specimens No. Batches Data Class	20 1 Screening			5 1 ening	5 1 Screening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	8.22 8.07 8.50 1.6	7.80 7.51 8.05 2.2	8.45 8.27 8.73 2.3	7.71 7.43 8.09 3.4	8.40 8.20 8.54 1.5	7.67 7.58 7.84 1.4
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening		5 1 Screening	
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		13500 13000 13700 1.6				
$arepsilon_1^{ m cu}$	B-value Distribution		(1) Nonpara.				
(με)	C ₁ C ₂		10 1.25				
	No. Specimens No. Batches Data Class	20 1 Scree					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		LIED FOR THIS MATERIAL. Table 4.2.9(j)				
	AL. Ce	lion 3000/E7K8 p	iain weave lab	C/Ep 195-PW		
RESIN C	ONTENT: 38-	40 wt%	COMP: DE	Celion 3000/E7K8		
FIBER VO		54 %	Compression, 1-axis			
PLY THIC	CKNESS: 0.0	080-0.0084 in.				[0 _f] ₁₂
TEST METHOD: MODULUS CALCULATION:						75/W, 180/W Screening
	MA SRM 1-88		MODULU	5 CALCULATIC	JIN.	Screening
SAC	IVIA SRIVI 1-00					
NORMAL	IZED BY: Spe	ecimen thickness	and batch fibe	er volume to 579	% (0.0075 in. C	PT)
Temperat		75			30	
	Content (%)	We			et	
Source C	m at T, RH	(1			1) :0	
	oue	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean	96.1	90.7	80.2	75.7	
	Minimum	83.9	78.4	74.4	72.2	
	Maximum	107	101	83.3	79.9	
	C.V.(%)	9.3	9.4	4.7	4.4	
	B-value	(2)	(2)	(2)	(2)	
F ₁ ^{cu}	Distribution	Normal	Normal	Normal	Normal	
(ksi)	C ₁	96.1	90.7	80.2	75.7	
(((3))	C_2	8.91	8.55	3.73	3.31	
	No. Specimens	5			5	
	No. Batches		1 Screening		1 aning	
	Data Class Mean	9.08	8.30	9.36	ening 8.54	
	Minimum	8.84	7.91	9.14	8.20	
	Maximum	9.17	8.62	9.57	8.84	
E_1^c	C.V.(%)	1.5	3.2	2.0	2.9	
1						
(Msi)	No. Specimens	5		Ę	5	
	No. Batches	1		1		
	Data Class Mean	Scree	ening	Scre	ening	
	No. Specimens					
v_{12}^{c}	No. Batches					
r 12	Data Class					
	Mean		10700			
	Minimum		10600			
	Maximum		11000			
	C.V.(%)		1.5			
	B-value		(2)			
$arepsilon_1^{ m cu}$	Distribution		(2) Normal			
	C ₁		10700			
(με)	C_1 C_2		164			
	\mathbf{U}_2		104			
	No. Specimens	5				
	No. Batches	1				
	Data Class	Scree	ening			

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA				HIS MATERIAL.						
RESIN CO FIBER VC PLY THIC	ONTENT: DLUME:	36-39 wt 54-56 % 0.0079-0	١	COMP: DENSITY: /OID CONTENT:	1.55 g/cm ³ 0.0-0.75%		Table 4.2.9(k) C/Ep 195-PW Celion 3000/E7K8 SBS, 31-plane [0 ₁] ₁₄ 75/A, -65/A, 180/A,			
TEST METHOD: MODULUS CALCULATION: 75/W, 180/W ASTM D 2344-68 Screening										
NORMAL	NORMALIZED BY: Not normalized									
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code			75 ambient 20	-65 ambient 20	180 ambient 20	75 wet (1) 20		180 wet (1) 20		
	Mean Minimum Maximum C.V.(%)	1	10.3 9.43 11.4 5.7	11.6 10.7 13.6 10.8	9.70 9.34 9.94 3.0	9.81 9.24 10.4 7.0	 	6.92 6.60 7.22 3.4		
F ₃₁ (ksi)	B-value Distributio C ₁ C ₂	ิท	(2) Normal 10.3 0.446	(2) Normal 11.6 1.25	(2) Normal 9.70 0.293	(2) Norm 9.81 0.50	l	(2) Normal 6.92 0.237		
	No. Spec No. Batch Data Clas	nes	20 1 Screening	5 1 Screening	5 1 Screening	5 1 Screen	ning	5 1 Screening		

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

(2) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			Table 4.2.9(I)							
RESIN CO FIBER VC PLY THIC	LUME:	Celion 30 39 wt% 54 % 0.0080 in	COMP: DENSITY: 1.55 g/cm ³ VOID CONTENT: 0.29% Celion 3000/E7K8 SBS, 31-plane [0 _f] ₁₂ 75/A, -65/A, 180/A, 75/W, 180/W							
TEST ME	THOD:		Ν	IODULUS CALCI	JLATION:		w, 180/w creening			
ASTN	/I D 2344-68									
NORMALI	NORMALIZED BY: Not normalized									
Temperatu			75	-65	180	75	180			
	Content (%)		ambient	ambient	ambient	wet	wet			
Equilibriun Source Co			20	20	20	(1) 20	(1) 20			
	Mean		9.76	10.2	9.72	9.72	8.72			
	Minimum		9.00	9.54	8.76	8.76	8.35			
	Maximum	1	10.7	10.5	10.3	10.3	9.00			
	C.V.(%)		4.8	3.9	6.1	6.1	2.8			
	B-value		(2)	(2)	(2)	(2)	(2)			
F ₃₁ ^{sbs}	Distributio	on	Normal	Normal	Normal	Normal	Normal			
(ksi)	C ₁		9.76	10.2	9.72	9.72	8.72			
(1(0))	C ₂		0.470	0.395	0.591	0.591	0.247			
	No. Speci No. Batch		20 1	5 1	5 1	5	5			
	Data Clas		Screening	Screening	Screening	Screening	Screening			

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

(2) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.10 HITEX 33 6k/E7K8 plain weave fabric

Material Description:

Material: HITEX 33-6k/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-41%, typical cured ply thickness of 0.0085 inches.
- Processing: Autoclave cure; 310°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: HITEX 33 fibers are continuous carbon filaments made from PAN precursor. Filament count is 6000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 560,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.10 HITEX 33 6k/E7K8 plain weave fabric*

MATERIAL:	HITEX 33 6k/E7K8 plain weave fabric			C/Ep 195-PW HITEX 33/E7K8 Summary
FORM:	U.S. Polymeric Hitex 33 6k/E7K8 plair	n weave fabric prep	reg	
FIBER:	Hitco HITEX 33 6k G'	MATRIX:	U.S. Polymeric E7	K8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave: 310°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal 1	1/88
Date of form manufacture	Date of analysis 1	1/93
Date of composite manufacture		

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis						
Tension, 2-axis	SSSS	SS-S		SSSS	SSSS	
Tension, 3-axis						
Compression, 1-axis	SS-S	SS	SS	SS-S	SS	
Compression, 2-axis	SS-S	SS	SS	SS-S	SS	
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						
SB Strength, 31-plane	S	S		S	S	

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.56		
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	58	47 - 55	
Ply Thickness	(in)	0.0085	0.0077 - 0.0099	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, s = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: HITEX 33 6k/E7K8 plain weave fabric Table 4.2.10(a) C/Ep 195-PW									
RESIN CO FIBER VO PLY THIO	OLUME: 51-5	1 wt% 5 % 87-0.0098 in.	COMP: DE VOID CON	NSITY: 1.5 ITENT: 0.0	3-1.55 g/cm ³ %	HITEX Tensio [90	195-PW 33/E7K8 n, 2-axis 0 _f] ₁₂ 5/A, 75/W			
TEST ME	THOD:		MODULUS	S CALCULATIO	DN:		ening			
AST	M D 3039-76									
NORMAL	IZED BY: Spec	cimen thickness			Υ.	PT)				
Temperat		7			65	7				
	Content (%)	amb	ient	ami	pient	W				
Source C	m at T, RH ode	20	n		20	(1				
	υασ	Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	131	124	126	122	134	119			
	Minimum	120	103	120	111	130	114			
	Maximum	139	136	131	131	137	125			
	C.V.(%)	4.3	6.8	3.1	6.7	2.8	3.8			
fu	B-value	(2)	(2)	(2)	(2)	(2)	(2)			
F_2^{tu}	Distribution	Weibull	Weibull	Normal	Normal	Normal	Normal			
(ksi)	C ₁	134	128	126	122	134	120			
	C ₂	28.2	17.8	3.88	8.16	3.69	4.55			
	No. Specimens No. Batches	20 1			5 1	5	5			
	Data Class	Scree	ening	Scre	ening	Scree	ening			
	Mean	8.65	8.14	8.10	7.82	9.61	8.55			
	Minimum	8.01	7.52	7.73	7.54	9.26	8.20			
	Maximum	9.65	8.62	8.29	8.26	9.94	9.13			
E_2^t	C.V.(%)	6.2	3.1	2.7	3.4	2.8	4.1			
(Msi)	No. Specimens	20	0		5	5				
	No. Batches	1			1.	1				
	Data Class	Scree	v	Scre	ening	Scree	v			
v_{21}^{t}	Mean No. Specimens No. Batches	5				5				
· 21	Data Class	Scree	enina			Scree	enina			
	Mean	20100	14300		15600	00100	10500			
	Minimum		13700		14600		9930			
	Maximum		14900		16500		10800			
	C.V.(%)		3.8		4.4		3.2			
_tu	B-value Distribution		(2) Normal		(2) Normal		(2) Normal			
$\varepsilon_2^{ m tu}$										
(με)	C ₁		14300		15600		10500			
	C ₂		541		687		335			
	No. Specimens	5	5		5	5	5			
	No. Batches	1			1	1				
	Data Class	Scree	ening	Scre	ening	Scree	ening			

(1) Conditioned at 160°F, 85% relative humidity for 14 days.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	<u>NE 1989). ALL DO</u> AL: HIT	EX 33 6k/E7K8				51101 5011		4.2.10(b)
RESIN C FIBER V	SIN CONTENT: 41 wt% COMP: DENSITY: 1.53 g/cm ³ BER VOLUME: 51 % VOID CONTENT: 0.0% Y THICKNESS: 0.0089-0.0094 in.						C/Ep HITEX Tensio [9	195-PW 33/E7K8 n, 2-axis 0 _f] ₁₂ 0/W
TEST ME AST	ETHOD: M D 3039-76	MODULUS CALCULATION:					ening	
NORMAL	LIZED BY: Spe	ecimen thickness	and batch fibe	er volume t	0 57%	(0.0076 in. C	PT)	
	Content (%) Im at T, RH	18 w (1 2	et I)					
Source C	JUUE	2 Normalized	Measured	Normaliz	ed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	138 120 155 10.2	122 107 135 9.1	Normaliz	eu	Measureu	Normalizeu	Measureu
F_2^{tu}	B-value Distribution	(2) Normal	(2) Normal					
(ksi)	C ₁ C ₂	138 14.1	123 11.1					
	No. Specimens No. Batches Data Class	5 1 Scree						
E ₂ ^t	Mean Minimum Maximum C.V.(%)	9.91 9.11 10.7 7.2	8.80 8.23 9.23 5.3					
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree						
v_{21}^{t}	Mean No. Specimens No. Batches	5	0.0700					
	Data Class Mean Minimum Maximum C.V.(%)	Scree	10400 9840 10800 3.6					
$\varepsilon_2^{ m tu}$	B-value Distribution		(2) Normal					
(με)	C ₁ C ₂		10400 372					
	No. Specimens No. Batches Data Class	5 1 Scree						

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: ALL DOC	EX 33 6k/E7K8 p				.2.10(c)			
RESIN C FIBER V	ONTENT: 45 w OLUME: 47 %	/t%	COMP: DE VOID CON	ENSITY: 1.5 ⁻	1 g/cm ³ %	C/Ep 1 HITEX 3 Compress [0	95-PW 33/E7K8 sion, 1-axis		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		/A, 180/A ening		
SAC	CMA SRM 1-88								
NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0076 in. CPT)									
	ture (°F) Content (%) ım at T, RH	75 ambi		-6 amb		18 amb	-		
Source C		20)	2	0	20)		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	136 111 158 8.4	112 98.4 128 7.5	155 147 164 5.5	128 118 139 7.5	130 118 139 6.3	107 94.9 117 7.8		
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	141 13.3	116 14.5	155 8.51	128 9.57	130 8.21	107 8.22		
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Screening		5 1 Screening			
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.11 8.64 9.63 3.0	7.53 6.83 8.17 5.2	10.1 9.72 10.8 4.0	8.30 7.74 8.76 5.1	9.37 9.15 9.66 2.4	7.75 7.38 8.66 7.1		
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening		5 1 Screening			
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		14400 13700 15200 3.1						
ε_1^{cu}	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		14600 34.7						
	No. Specimens No. Batches Data Class	20 1 Scree							

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		EX 33 6k/E7K8	WAS NOT SUPPL	LIED FOR THIS MATERIAL. Table 4.2.10(d)		
RESIN C FIBER V	ONTENT: 45 OLUME: 47	wt%	COMP: DE VOID CON	NSITY:	1.51 g/cm ³ 0.0%	C/Ep 195-PW HITEX 33/E7K8 Compression, 1-axis [0 _f] ₁₂
TEST ME	ETHOD:		MODULUS	S CALCULA	TION:	75/W, 180/W Screening
	MA SRM 1-88					
NORMAL	LIZED BY: Spe	ecimen thickness	and batch fibe	er volume to	57% (0.0076 in. Cl	PT)
	Content (%)		et		180 wet	
	im at T, RH	(1			(1)	
Source C	JUUE	2 Normalized	0 Measured	Normalize	20 d Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	133 130 139 2.8	110 100 116 5.8	68.5 54.2 75.8 13.6	56.4 46.7 62.2 12.0	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	133 3.71	110 6.36	68.5 9.31	56.4 6.79	
	No. Specimens No. Batches Data Class	Scree		So	5 1 creening	
E_1^c	Mean Minimum Maximum C.V.(%)	8.78 8.41 9.07 3.2	7.24 7.04 7.51 2.5	9.43 9.32 9.64 1.4	7.78 7.69 7.89 9.5	
(Msi)	No. Specimens No. Batches Data Class	Scree	l	So	5 1 creening	
v_{12}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		14600 14000 15400 3.6			
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		14600 525			
	No. Specimens No. Batches Data Class	Scree				

(1) Conditioned at 160°F, 85% relative humidity for 14 days.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: ALL DOC	EX 33 6k/E7K8 p				.2.10(e)		
RESIN C FIBER V	ONTENT: 39-4 OLUME: 51-5	1 wt%	COMP: DE VOID CON	3 g/cm ³ %	C/Ep 1 HITEX 3 Compress [90	95-PW 33/E7K8 sion, 2-axis 0 _f] ₆ /A, 180/A		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening	
SAC	MA SRM 1-88							
NORMAL	PT)							
	ture (°F) Content (%) ım at T, RH	75 amb		-6 amb		18 amb	-	
Source C		20	C	2	0	20)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	104 77.9 125 13.1	92.4 70.4 109 12.6	128 111 138 8.0	114 98.8 123 8.1	99.4 86.4 113 12.0	88.6 77.0 101 12.0	
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	110 9.70	97.4 10.5	128 10.3	114 9.18	99.4 11.9	88.6 10.6	
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Scree		5 1 Scree		
E ₂ ^c	Mean Minimum Maximum C.V.(%)	8.92 8.50 9.40 2.5	8.21 7.78 8.77 3.4	9.49 9.36 9.58 0.9	8.74 8.65 8.93 1.3	9.07 8.95 9.18 1.3	8.35 8.20 8.52 1.7	
(Msi)	No. Specimens No. Batches Data Class	1	20 1 Screening		5 1 Screening		5 1 Screening	
v_{21}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		10900 10400 11400 2.4					
$\varepsilon_2^{\mathrm{cu}}$	B-value Distribution		(1) Weibull					
(με)	C ₁ C ₂		11100 46.5					
	No. Specimens No. Batches Data Class	20 1 Scree						

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI		TEX 33 6k/E7K8			LIED FOR THIS MATERIAL. Table 4.2.10(f)	
FIBER V	OLUME: 51	-41 wt% -52 % 0080-0.0083 in.	COMP: DE VOID CON	.53 g/cm ³ .0%	C/Ep 195-PW HITEX 33/E7K8 Compression, 2-axis [90 _f] ₆	
TEST ME	ETHOD:		MODULU	S CALCULAT	ION:	75/W, 180/W Screening
	CMA SRM 1-88				-	Ŭ
NORMAL	LIZED BY: Sp	ecimen thickness	and batch fibe	er volume to 5	57% (0.0076 in. Cl	PT)
Tempera		7			180	
	Content (%) Im at T, RH	(1			wet (1)	
Source C		2	0		20	
	N 4	Normalized	Measured	Normalized		Normalized Measured
	Mean Minimum	99.2 80.9	88.5 72.2	84.0 74.2	74.9 66.1	
	Maximum	112	100	88.8	79.2	
	C.V.(%)	12.1	12.1	7.0	6.9	
F ₂ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁	99.2	88.5	84.0	74.9	
	C ₂	12.0	10.7	5.8	5.20	
	No. Specimens				5	
	No. Batches Data Class	Scree		Sc	1 reening	
	Mean	9.30	8.56	8.96	8.25	
	Minimum	8.74	7.98	8.69	8.03	
0	Maximum	9.56	8.78	9.31	8.43	
E_2^c	C.V.(%)	3.5	3.9	2.9	2.0	
(Msi)	No. Specimens	5	5		5	
	No. Batches Data Class	Scree	 	Sc	1 reening	
	Mean	30100	Janay	30		
v_{21}^{c}	No. Specimens No. Batches					
	Data Class		40000			
	Mean Minimum		10200 9910			
	Maximum		10900			
	C.V.(%)		3.7			
CP.	B-value		(2) Normal			
$\varepsilon_2^{\rm cu}$	Distribution		Normal			
(με)	C ₁ C ₂		10200 381			
	U 2		001			
	No. Specimens					
	No. Batches Data Class	1 Scree				
	Data Oldoo	00100	Jung	I		

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: HITE	EX 33 6k/E7K8			Table 4	4.2.10(g)	
FIBER V			COMP: DE VOID CON	1 g/cm ³ %	HITEX Compress [9	195-PW 33/E7K8 sion, 2-axis 0 _f] ₁₂ 5/A, 180/A	
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:		ening
SAC	MA SRM 1-88						
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume to 579	% (0.0076 in. C	PT)	
	ture (°F) Content (%) ım at T, RH	7 amb			65 bient	18 amb	30 bient
Source C		2	0	2	0	2	0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	132 114 145 5.7	110 97.9 118 5.3	147 138 161 6.0	122 115 127 4.1	132 128 146 5.9	110 106 117 4.7
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	C ₁ C ₂	136 21.6	113 23.4	147 8.78	122 5.02	132 7.73	110 5.12
	No. Specimens No. Batches Data Class	20 1 Screening		Scree	1	Scree	1
E ^c ₂	Mean Minimum Maximum C.V.(%)	8.74 8.41 9.20 2.6	7.27 6.70 8.06 4.7	9.09 8.12 10.1 9.1	7.54 7.07 7.90 5.6	9.11 8.61 9.49 3.8	7.57 7.41 7.71 1.5
(Msi)	No. Specimens No. Batches Data Class	2 1 Scree		5 1 g Screening			5 I ening
v_{21}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		14100 13400 14700 2.6				
$\varepsilon_2^{ m cu}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		14300 46.4				
	No. Specimens No. Batches Data Class	2 1 Scree					

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

· · · · · · · · · · · · · · · · · · ·		AS NOT SUPP	LIED FOR THIS MATERIAL.			
MATERIA	AL: HI	FEX 33 6k/E7K8	olain weave fal		Table 4.2.10(h)	
		v.40/	COMP: DE		51 g/cm ³	C/Ep 195-PW HITEX 33/E7K8
FIBER V		wt%	VOID CON)%	Compression, 2-axis
		/0 080-0.0097 in.		11LINI. 0.0	576	[90 _f] ₁₂
1 - 1 1110	0111200. 0.0	000 0.0007 111.				75/W, 180/W
TEST ME	ETHOD:		MODULU	S CALCULATI	ON:	Screening
SAC	MA SRM 1-88					
	•	PT)				
Tempera		7			80	
	Content (%)	W			vet	
Source C	im at T, RH	(1			(1) 20	
Source C	JULE	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean	117	97.4	61.1	50.8	Normalized Medsured
	Minimum	107	88.4	52.2	44.1	
	Maximum	132	105	66.4	57.2	
	C.V.(%)	9.1	6.9	9.9	9.9	
	D 1					
-01	B-value	(2)	(2) Normal	(2)	(2) Normal	
F_2^{cu}	Distribution	Normal	Normal	Normal	Normal	
(ksi)	C ₁	117	97.4	61.1	50.8	
	C ₂	10.6	6.74	6.04	5.01	
	No. Specimens	5			5	
	No. Batches	1			1	
	Data Class	Scree	ening	Scre	ening	
	Mean	8.99	7.48	9.26	7.71	
	Minimum	8.48	7.08	8.76	7.32	
	Maximum	9.54	7.8	9.69	8.39	
E_2^c	C.V.(%)	4.5	4.0	4.0	6.2	
(Msi)	No. Specimens	5	5		5	
	No. Batches	1		Corr	1	
	Data Class Mean	Scree	ening	Scre	eening	
	No. Specimens					
v_{21}^{c}	No. Batches					
V 21	Data Class					
	Mean		13500			
	Minimum		12700			
	Maximum		14200			
	C.V.(%)		4.2			
	5 /					
cu	B-value		(2) Normal			
ε_2^{cu}	Distribution		Normal			
(με)	C ₁		13500			
	C ₂		564			
		-				
	No. Specimens No. Batches	5				
	Data Class	Scree				
	Data Class	00166	Jung	L		

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			3 6k/E7K8 plain v	weave fabric		Tab	le 4.2.10(i)
RESIN CO FIBER VO PLY THIC	DLUME:	44 wt% 48 % 0.0077-0	١	COMP: DENSITY: /OID CONTENT:	HITE	p 195-PW EX 33/E7K8 5, 31-plane [90 _f] ₆ -65/A, 180/A	
TEST ME	THOD:		Ν	MODULUS CALCI	JLATION:		creening
ASTN	M D 2344-76						
NORMALI	IZED BY:	Not norm	nalized				
Temperati			75.0	-65.0	75.0	180.0	
	Content (%)		ambient	ambient	wet	wet	
Equilibriun Source Co	n at T, RH ode		20	20	(1) 20	(1) 20	
	Mean		8.67	8.83	9.40	8.35	
	Minimum		7.77	8.14	9.20	7.83	
	Maximum		9.40	9.37	9.73	8.80	
	C.V.(%)		5.0	6.3	2.1	4.5	
	B-value		(2)	(2)	(2)	(2)	
F ₃₁ ^{sbs}	Distributio	n	Weibull	Normal	Normal	Normal	
(ksi)	C ₁		8.86	8.83	9.40	8.35	
()	C ₂		23.6	0.554	0.202	0.379	
	No. Cross		20		-	F	
	No. Speci No. Batch		20 1	5 1	5 1	5 1	
	Data Clas		Screening	Screening	Screening	Screening	

Conditioned at 160°F, 85% relative humidity for 14 days.
 Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.11 AS4 3k/E7K8 plain weave fabric

Material Description:

Material: AS4-3k/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-48%, typical cured ply thickness of 0.0087 inches.
- Processing: Autoclave cure; 290°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: >300°F (dry), >190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.11 AS4 3k/E7K8 plain weave fabric*

MATERIAL:	AS4 3k/E7K8 plain weave fabric			C/Ep 195-PW AS4/E7K8 Summary
FORM:	U.S. Polymeric AS4/E7K8 plain we	ave fabric prepreg		
FIBER:	Hercules AS4 3k	MATRIX:	U.S. Polymeric E	7K8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave: 290°E. 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	
Date of resin manufacture		Date of data submittal	1/88, 6/90
Date of form manufacture	2/86 - 7/89	Date of analysis	1/93
Date of composite manufacture			

LAMINA PROPERTY SUMMARY

	75°F/A				
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	II-I				
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.56		
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	58	48 - 55	
Ply Thickness	(in)	0.0087	0.0074 - 0.0088	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,	3k/E7K8 plain v		Table 4.2.11(a)			
FIBER V	RESIN CONTENT: 37-48 wt% COMP: DENSITY: 1.52-1.54 g/cm ³ FIBER VOLUME: 48-55 % VOID CONTENT: 0.0-1.9% PLY THICKNESS: 0.0074-0.0085 in. VOID CONTENT: 0.0-1.9%					3	C/Ep 195-PW AS4/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/A
TEST ME	ETHOD:		Interim				
SAC	CMA SRM 1-88						
NORMAL	LIZED BY: Spee			er volume	to 57% (0.0076 ii	n. CPT)	
Equilibriu	Content (%) Im at T, RH	7: amb	ient				
Source C	Code	20,					
	N.4	Normalized	Measured	Normal	zed Measure	d N	ormalized Measured
	Mean Minimum Maximum C.V.(%)	111 64.4 138 11.7	988 58.0 122 11.3				
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA				
(ksi)	C ₁ C ₂	13.3 1.81	11.3 1.80				
	No. Specimens No. Batches Data Class	206 18 Interim					
E_1^c	Mean Minimum Maximum C.V.(%)	9.02 7.87 10.5 5.24	8.07 7.07 9.04 4.28				
(Msi)	No. Specimens No. Batches Data Class	21 17 Inte	8				
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class						
Mean Minimum Maximum C.V.(%)			11600 8820 15000 14.5				
$\varepsilon_1^{ m cu}$	B-value Distribution		(1) ANOVA				
(με)	C ₁ C ₂		1730 1.97				
	No. Specimens No. Batches Data Class	19 1 [°] Inte	7				

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: AS4	I/E7K8 plain wea	Table 4.2.11(b) C/Ep 195-PW					
RESIN CONTENT: 38-48 wt% FIBER VOLUME: 48-55 % PLY THICKNESS: 0.0074-0.0085 in.			COMP: DENSITY: 1.52-1.54 g/cm ³ VOID CONTENT: 0.0-1.9%			AS4/E7K8 SBS, 31-plane [0 _f] ₁₂ 75/A	
TEST METHOD:		MODULU	S CALCULATIO	ON:	Screening		
ASTM D 2344-84							
NORMALIZED BY: Not	normalized						
Temperature (°F)	75						
Moisture Content (%) Equilibrium at T, RH	ambient						
Source Code	20,27						
Mean	9.68 7.53						
Minimum Maximum	7.53 14.2						
C.V.(%)	12.0						
	_						
B-value	(1)						
F ₃₁ ^{sbs} Distribution	ANOVA						
(ksi) C ₁	1.20						
C ₂	1.95						
No. Specimens	170						
No. Batches	16						
Data Class	Screening						

(1) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.12 AS4/3501-6 (bleed) unidirectional tape

Material Description:

Material: AS4/3501-6

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 28%-34%, typical cured ply thickness of 0.0041-0.0062 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours; bleed system.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.12 AS4/3501-6 (bleed) unidirectional tape*

MATERIAL:	AS4/3501-	6 unidirectional 1	ape		C/Ep 145-UT AS4/3501-6 Summary
FORM:	Hercules A	S4/3501-6 unidi	rectional tape prepreg	-	
FIBER:	Hercules A	\S4	MATRIX:	Hercules 3501-6	
T _g (dry):	390°F	T _g (wet):	T _g METHOD:	ТМА	
PROCESSING:	Autoclave 100 ± 10 p		, 60 minutes, 85 psig; 350 ± 1	0°F, 120 ± 10 minutes	э ,

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	II				
Tension, 2-axis	SS				
Tension, 3-axis					
Compression, 1-axis	IS	II	SS	SS	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S	S	

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59		
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	60	58 - 65	
Ply Thickness	(in)		0.0041 - 0.0059	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	I PRESENTLY I	REQUIRED W	AS NOT SUPP	LIED FOR THI	S MATERIAL.
MATERI		(3501-6 (bleed)				Table 4.2.12(a)
FIBER V	OLUME: 58-6	8 wt% 5 % 48-0.0057 in.	Comp: De Void Con		6 g/cm ³	C/Ep 145-UT AS4/3501-6 Tension, 1-axis [0]₀ ≂r (A
TEST ME	ETHOD:	DN:	75/A Interim			
AST	M D 3039-76					
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60	% (0.0053 in. C	PT)
	Content (%) um at T, RH	75 ambi 26	ient			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	291 263 326 6.09	295 271 326 5.05			
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Weibull			
(ksi)	C ₁ C ₂	300 18.4	302 20.3			
	No. Specimens No. Batches Data Class	21 7 Inter				
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	19.6 18.0 21.1 3.73	19.9 18.3 22.6 6.48			
(Msi)	No. Specimens No. Batches	21 7				
v_{12}^{t}	Data Class Mean No. Specimens No. Batches Data Class	Inte	nm			
	Mean Minimum Maximum C.V.(%)					
$arepsilon_1^{ ext{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

Volume 2, Chapter 4 Carbon Fiber Composites

* AL	L DOCUMENTATIO	N PRESENTLY F		ERE NOT SU	UPPLIED FOR TH	HS MATERIAL	
MATER	RIAL: AS4	/3501-6 (bleed) (unidirectional ta	ape			4.2.12(b) 145-UT
FIBER	VOLUME: 63-6	29 wt% 64 % 048-0.0057 in.	Comp: De Void Con		1.60-1.61 g/cm ³	AS4/3501-6 Tension, 2-axis [90]₀ 75/A	
TEST N	METHOD:		ening				
AS	STM D 3039-76						
NORM	ALIZED BY: Not	normalized					
	rature (°F)	75					
	e Content (%) rium at T, RH	ambient					
Source	Code	26					
	Mean Minimum	7.78 7.00					
	Maximum	9.50					
	C.V.(%)	12.1					
	B-value	(1)					
F_2^{tu}	Distribution	Normal					
(ksi)	C ₁	7.78 0.941					
	C ₂	0.941					
	No. Specimens	6					
	No. Batches Data Class	2 Screening					
-	Mean	1.48					
	Minimum Maximum	1.40 1.50					
E_2^t	C.V.(%)	2.75					
-							
(Msi)	No. Specimens No. Batches	6 2					
	Data Class	Screening					
	Mean						
v_{12}^{t}	No. Specimens No. Batches						
* 12	Data Class						
	Mean						
	Minimum Maximum						
	C.V.(%)						
	B-value						
$arepsilon_2^{ ext{tu}}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	I PRESENTLY I	REQUIRED W	AS NOT SUPP	LIED FOR THI	S MATERIAL.	
MATERI		/3501-6 (bleed)				Table 4	.2.12(c)
FIBER V	OLUME: 58-6	4 wt% 5 % 41-0.0055 in.	Comp: De Void Con		8-1.61 g/cm ³	C/Ep 145-UT AS4/3501-6 Compression, 1-axis [0]₀ 75/A, 200/A, 75/W	
TEST METHOD: MODULUS CALCULATION:							0/A, 75/W Screening
	CMA SRM 1-88						Ŭ
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60°	% (0.0053 in. C	PT)	
Tempera		75			00	7	
	Content (%) Im at T, RH	amb	ient	amb	pient	(1	
Source C		26	6	2	6	2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	210 144	214 161	196 148	201 165	202 165	213 179
	Maximum	269	260	242	237	274	266
	C.V.(%)	16.0	13.5	13.6	10.7	18.0	14.1
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) Weibull
г ₁ (ksi)	C ₁	34.7	27.7	27.7	22.3	217	226
(((3))	C_2	2.39	2.52	2.52	2.35	5.89	7.82
	No. Specimens No. Batches	20		2	7	1	
	Data Class	Inte			erim	Screening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	17.8 15.1 20.3 7.50	18.8 16.4 20.0 7.18	16.3 13.0 18.7 10.7	17.4 14.3 19.6 10.1	17.4 15.6 20.3 9.14	18.5 17.1 20.6 5.84
(Msi)	No. Specimens No. Batches	14	14		5	1	
	Data Class	Scree	ening	Inte	erim	Scree	ening
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
cu	B-value Distribution						
ε ₁ ^{cu} (με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	I PRESENTLY I	REQUIRED W	AS NOT SUPP	LIED FOR THI	S MATERIAL.
MATERI	AL: AS4/	(3501-6 (bleed)	unidirectional	tape		Table 4.2.12(d) C/Ep 145-UT
FIBER V	OLUME: 58-6	4 wt% 5 % 41-0.0055 in.	Comp: De Void Con		8-1.61 g/cm ³	AS4/3501-6 Compression, 1-axis [0] ₈ 200/W
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:	Screening
SAC	CMA SRM 1-88					
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60°	% (0.0053 in. C	PT)
Equilibriu	Content (%) Im at T, RH	20 we	et			
Source C	ode	20 Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean	169	179	Normalized	MEASULEU	
	Minimum Maximum C.V.(%)	100 212 22.2	107 226 22.9			
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	41.7 5.28	46.6 5.72			
	No. Specimens No. Batches Data Class	1(3 Scree	ening			
E_1^c	Mean Minimum Maximum C.V.(%)	17.7 12.1 27.2 21.6	18.7 13.4 25.5 15.8			
(Msi)	No. Specimens No. Batches	1(3				
<i>v</i> ^c ₁₂	Data Class Mean No. Specimens No. Batches Data Class	Scree	ning			
	Mean Minimum Maximum C.V.(%)					
ε_1^{cu}	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMEN	NTATION PR	ESENTLY REQU	JIRED WERE NO	T SUPPLIED FOI	R THIS MATERI	AL.
MATERIAL:	AS4/350	1-6 (bleed) unidir	ectional tape			le 4.2.12(e) Ep 145-UT
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30-34 wt 58-62 % 0.0047-0	١.	COMP: DENSITY: OID CONTENT:	1.58-1.60 g/cn	n ³ AS SBS	54/3501-6 5, 31-plane [0]₃ 200/A, 75/W,
TEST METHOD: ASTM D 2344	S	200/W creening				
NORMALIZED BY:	Not norm					
	NOL HOIT					
Temperature (°F) Moisture Content (% Equilibrium at T, RH		75 ambient	200 ambient	75 wet (1)	200 wet (1)	
Source Code		26	26	26	26	
Mean Minimu Maximu C.V.(%	um	17.3 14.1 19.4 7.63	13.0 11.1 14.9 11.6	13.9 13.1 15.5 6.13	9.0 8.3 10.1 6.4	
F_{31}^{sbs} Distribu		(2) ANOVA	(2) ANOVA	(2) Normal	(2) Normal	
(ksi) C ₁ C ₂		1.38 2.62	1.59 2.77	13.9 0.852	9.0 0.58	
No. Sp No. Bat Data C		21 7 Screening	21 7 Screening	6 2 Screening	9 3 Screening	

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

MATER	RIAL:	AS4/3501-6 (bleed)	unidirectional	tape		Table 4.2.12(f)
FIBER PLY TH	CONTENT: 2 VOLUME: 0 IICKNESS: 0	29-32 wt% 60-63 % 0.0055-0.0062 in.	COMP: D VOID CO	ENSITY: NTENT:	1.59-1.60 g/cm ³	C/Ep 145-UT AS4/3501-6 Tension, x-axis [0/45/90/-45]s 75/A
			MODULU		Screening	
AS	STM D 3039-76		Lineai	r portion of c	urve	
				s and batch	fiber area weight t	to 60% (0.0059 in. CPT)
Moistur	rature (°F) re Content (%) rium at T, RH Code	7! amb	ient			
000.00		Normalized	Measured	Normalize	d Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	107 101 118 6.03	95.8 90.6 106 5.95			
F _x ^{tu} (ksi)	B-value Distribution C ₁	(1) ANOVA 7.51	(1) ANOVA 29.9			
	C ₂ No. Specimens No. Batches Data Class	2 Scree	ening			
E_x^t	Mean Minimum Maximum C.V.(%)	8.08 7.39 9.41 9.75	7.22 6.60 8.40 9.74			
(Msi)	No. Specimens No. Batches Data Class	s 6 2 Scree				
v_{xy}^t	Mean No. Specimens No. Batches	3				
	Data Class Mean Minimum Maximum C.V.(%)					
$arepsilon_{\mathrm{x}}^{\mathrm{tu}}$ ($\mu arepsilon$)	B-value Distribution C ₁ C ₂					
	No. Specimens No. Batches Data Class	3				

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	ΔΙ· ΔS	64/3501-6 (bleed	1) unidirection:	al tang		Table	4.2.12(g)		
RESIN C	CONTENT: 29	-32 wt% -63 %	COMP:		59-1.60 g/cm ³	C/Ep AS4 Open Ho	/3501-6 ole Tension, -axis		
PLY THI	CKNESS: 0.0	0055-0.0057 in.				[0/45/90/-45]₅ 75/A			
TEST M	ETHOD:		MODUL	LUS CALCULAT	ION:		Screening		
SAC	CMA SRM 5-88 (1))							
NORMA	LIZED BY: No	ormalized by spe	cimen thickne	ss and batch fib	er areal weight	t to 60% (0.0056	6 in. CPT)		
	ature (°F)	75							
	e Content (%) um at T, RH	amb	ient						
Source 0		26	6						
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	65.6	62.0						
	Minimum Maximum	62.2 69.0	59.2 65.1						
	C.V.(%)	3.42	3.13						
		(-)	(2)						
F _x ^{oht}	B-value Distribution	(2) ANOVA	(2) Normal						
(ksi)	C ₁	2.50	62.0						
()	C ₂	12.8	1.94						
	No. Specimens	6	i						
	No. Batches	2							
	Data Class Mean	Scree	ening						
	Minimum								
	Maximum								
E_x^{oht}	C.V.(%)								
(Msi)	No. Specimens								
	No. Batches								
	Data Class Mean								
	Minimum								
	Maximum								
	C.V.(%)								
	B-value								
$\varepsilon_{\mathrm{x}}^{\mathrm{oht}}$	Distribution								
(με)	C ₁								
	C ₂								
	No. Specimens								
	No. Batches								
	Data Class	<u> </u>							

Note SACMA SRM 5-88 uses a [+45/0/-45/90]_{2S} lay-up.
 Basis values are presented only for A and B data classes.

4.2.13 AS4/3501-6 (no bleed) unidirectional tape

Material Description:

Material: AS4/3501-6

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 36%-39%, typical cured ply thickness of 0.0055-0.0063 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.13 AS4/3501-6 (no bleed) unidirectional tape*

MATERIAL:	AS4/3501-	6 unidirectional ta	pe		C/Ep 145-UT AS4/3501-6 Summary			
FORM:	Hercules A	AS4/3501-6 unidire	-					
FIBER:	Hercules A	S4, unsized	MATRIX:	Hercules 3501-6				
T _g (dry):	390°F	T _g (wet):	Tg METHOD:	ТМА				
PROCESSING:		Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minutes; 85 psig; $350 \pm 10^{\circ}$ F, 120 ± 10 minut 100 ± 10 psig; no bleed						

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	~12/82-8/89	Date of testing	~6/83 - ~4/91
Date of resin manufacture		Date of data submittal	6/90
Date of prepreg manufacture	1/83 - 11/89	Date of analysis	1/93
Date of composite manufacture			

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A	200°F/W	
Tension, 1-axis	II	SS	SS		
Tension, 2-axis	SS				
Tension, 3-axis					
Compression, 1-axis	II		I	II	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S		S		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59		
Fiber Areal Weight	(g/m ²)	145	142 - 149	
Fiber Volume	(%)	60	52 - 60	
Ply Thickness	(in)		0.0055 - 0.0063	

LAMINATE PROPERTY SUMMARY

	75°F/A				
[0/45/90/-45] family					
Tension, x-axis	S				
OHT, x-axis	S				

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.									
MATERIA	AL: AS4/	/3501-6 (no blee	ed) unidirectior	·		C/Ep [·]	l.2.13(a) 145-UT		
FIBER V	OLUME: 52-5			COMP: DENSITY: 1.55-1.57 g/cm ³ VOID CONTENT:			AS4/3501-6 Tension, 1-axis		
PLY THI	CKNESS: 0.00	55-0.0060 in.		[0] ₈ 75/A, -65/A, 200/A					
TEST ME	THOD: M D 3039-76	MODULUS CALCULATION: Initial tangent				Interim, S	Screening		
		aiman thiaknaaa		-	((0.0052 in .C	ידסי			
		1		er volume to 60%					
	ture (°F) Content (%) m at T, RH	75 amb		-6 amb		20 amb			
Source C		20		26		2			
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
1	Mean	290	262	261	237	315	286		
	Minimum	262	235	207	187	278	247		
	Maximum	322 5.62	286 5.38	300 12.4	274 12.8	330 4.89	297 5.59		
	C.V.(%)	5.62	5.36	12.4	12.0	4.09	5.59		
tu	B-value	(1)	(1)	(1)	(1)	(1)	(1)		
F1 ^{tu} (ksi)	Distribution C ₁	ANOVA 16.5	ANOVA 14.3	ANOVA 34.9	ANOVA 33.1	Nonpara. 6	Nonpara. 6		
(101)	C_2	2.05	2.01	4.69	5.05	2.25	2.25		
	No. Specimens	30		9		g			
	No. Batches Data Class	10 Interim		Screening		3 Screening			
	Mean	18.9	17.1	21.1	19.2	20.8	18.9		
	Minimum Maximum	17.0 20.3	15.5 17.9	19.7 22.3	17.7 21.4	19.4 22.0	17.4 20.2		
E_1^t	C.V.(%)	4.0	3.20	4.60	5.78	4.72	4.70		
(Msi)	No. Specimens	30		9		g			
	No. Batches Data Class	10 Inte		3 Screening		3 Screening			
	Mean No. Specimens								
v_{12}^t	No. Batches								
	Data Class Mean								
	Minimum								
	Maximum C.V.(%)								
$arepsilon_1^{ ext{tu}}$	B-value Distribution								
(με)	C ₁ C ₂								
	\mathbf{U}_2								
	No. Specimens								
	No. Batches								
	Data Class								

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL:	AS4/3501-6 (no blee		Table 4.2.13(b) C/Ep 145-UT			
FIBER	ESIN CONTENT: 37 wt% COMP: DENSITY: 1.56 g/cm ³ BER VOLUME: 54-55 % VOID CONTENT: Y THICKNESS: 0.0060-0.0062 in.			AS4/3501-6 Tension, 2-axis [90]₃ 75/A			
TEST	METHOD:		MODULU	S CALCULATIO	ON:	Screening	
AS	STM D 3039-76		Initial t	angent			
NORM	ALIZED BY:	Not normalized					
Moistur Equilibi	rature (°F) re Content (%) rium at T, RH	75 ambient					
Source	Mean	26 8.0					
	Minimum Maximum C.V.(%)	6.8 9.3 10					
F ₂ ^{tu}	B-value Distribution	(1) Normal					
(ksi)	C ₁ C ₂	8.0 0.81					
	No. Specimen No. Batches Data Class	ns 9 3 Screening					
E_2^t	Mean Minimum Maximum C.V.(%)	1.2 1.1 1.4 8.9					
(Msi)	No. Specimen No. Batches Data Class	ns 9 3 Screening					
v_{21}^{t}	Mean No. Specimen No. Batches	าร					
	Data Class Mean Minimum Maximum C.V.(%)						
ε ₂ ^{tu} (με)	B-value Distribution C ₁ C ₂						
	No. Specimen No. Batches Data Class	ıs					

Volume 2, Chapter 4 Carbon Fiber Composites

ALL DOCUMENTATION RECENTLY REQUIRED WERE NOT SURRUED FOR THIS MATERIAL

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.								
MATERI	AL: AS4/	/3501-6 (no blee	ed) unidirectior	nal tape			.2.13(c)	
RESIN CONTENT: 36-39 wt% COMP: DENSITY: 1.5 FIBER VOLUME: 52-56 % VOID CONTENT: PLY THICKNESS: 0.0056-0.0060 in.					5-1.57 g/cm ³	C/Ep 145-UT AS4/3501-6 Compression, 1-axis [0] ₈		
	CKINESS. 0.00	56-0.0060 IN.		75/A, 200/A, 20/W				
TEST ME				S CALCULATIO	N:		erim	
SAC	CMA SRM 1-88		Initial	tangent				
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	6 (0.0053 in. C	PT)		
Tempera	ture (°F) Content (%)	75 amb		20 amb		20		
	im at T, RH	amp	lent	anno		(1		
Source C	Code	26		20		2	6	
	Mean	Normalized 233	Measured 211	Normalized 213	Measured 193	Normalized 191	Measured 173	
	Minimum	200	186	174	193	142	128	
	Maximum	260	234	267	243	220	201	
	C.V.(%)	6.39	6.16	9.74	10.0	11.0	11.4	
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	
(ksi)	C ₁ C ₂	15.2 2.21	13.4 2.23	21.0 2.00	19.6 2.03	22.4 4.17	21.1 4.25	
	No. Specimens No. Batches Data Class	30 8 Interim		30 10 Inte)	15 3 Interim		
	Mean	18.8	17.0			18.3	16.6	
	Minimum Maximum	17.9 19.7	16.2 17.8			17.5 19.1	15.7 17.3	
E_1^c	C.V.(%)	3.21	3.53			2.62	3.16	
(Msi)	No. Specimens No. Batches	15 3	15 3			15		
	Data Class	Inte	rim			Inte	rim	
v_{12}^{c}	Mean No. Specimens No. Batches							
12	Data Class							
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{ m cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: AS4/3501-6 (no bleed) unidirectional tape						Table 4.2.13(d)
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	36-39 wt ⁴ 52-56 % 0.0057-0	١	COMP: DENSITY: /OID CONTENT:	1.55-1.57 g/cn	n ³	C/Ep 145-UT AS4/3501-6 SBS, 31-plane [0]₃ 75/A, 200/A
TEST METHOD:		Ν	IODULUS CALCU	JLATION:		Screening
ASTM D 2344-76			Initial tangent		-	
NORMALIZED BY:	Not norm	alized				
Temperature (°F)		75	200			
Moisture Content (%)		ambient	ambient			
Equilibrium at T, RH		00	00			
Source Code Mean		26 17.9	26 14.0			
Minimum		16.5	12.9			
Maximum		19.0	15.4			
C.V.(%)		4.46	4.73			
		-	_			
B-value		(1)	(1)			
F ₃₁ ^{sbs} Distributio	n	ANOVA	ANOVA			
(ksi) C ₁		0.824	0.683			
C ₂		2.36	2.34			
No. Speci		30	30			
No. Batch		8	10 Остановани			
Data Clas	S	Screening	Screening			

(1) Short beam strength test data are approved for Screening Data Class only.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATER	RIAL: AS	64/3501-6 (no blee	d) unidirection	al tape		Table 4	4.2.13(e) 145-UT		
RESIN CONTENT: 36-37 wt% FIBER VOLUME: 54-56 % PLY THICKNESS: 0.0057-0.0062 in.				COMP: DENSITY: 1.56-1.57 g/cm ³ VOID CONTENT:			AS4/3501-6 Tension, x-axis [0/45/90/-45] _s 75/A		
	METHOD: STM D 3039-76		MODULU	S CALCULAT	ION:	Scre	ening		
NORM	ALIZED BY: NA	A							
Moistur	rature (°F) e Content (%) rium at T, RH	75 ambient							
Source		26							
	Mean Minimum Maximum C.V.(%)	87.4 83.2 92.8 3.43							
F _x ^{tu}	B-value Distribution	(1) Normal							
(ksi)	C ₁ C ₂	87.4 3.00							
	No. Specimens No. Batches Data Class	9 3 Screening							
$E_{\mathbf{x}}^{t}$	Mean Minimum Maximum C.V.(%)								
(Msi)	No. Specimens No. Batches Data Class								
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches								
	Data Class								
	Mean Minimum Maximum C.V.(%)								
$\varepsilon_{\rm x}^{ m tu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATER	RIAL:	AS4/3501-6 (no ble	ed) unidirection	al tape			4.2.13(f)
		36-37 wt% 54-56 %		COMP: DENSITY: 1.56-1.57 g/cm ³ VOID CONTENT:			145-UT 3501-6 le Tension,
PLY TH	PLY THICKNESS: 0.0060-0.0064 in						axis 90/-45] _s 5/A
TEST	METHOD:		MODULU	S CALCULATI	ON:		ening
SA	ACMA SRM 5-88	(1)					
NORM	ALIZED BY:	NA					
	rature (°F)	75					
	re Content (%) rium at T, RH	ambient					
Source		26					
	Mean	56.8					
	Minimum Maximum	54.4 60.8					
	C.V.(%)	3.75					
F _x ^{oht}	B-value Distribution	(2) Normal					
г _х (ksi)	C ₁	56.8					
(1(0))	C ₂	2.13					
	No. Specimens	9					
	No. Batches	3					
	Data Class	Screening					
	Mean Minimum						
	Maximum						
E_x^{oht}	C.V.(%)						
(Msi)	No. Specimens						
(11101)	No. Batches	,					
	Data Class						
	Mean No. Specimens						
v_{xy}^t	No. Batches						
,	Data Class						
	Mean						
	Minimum Maximum						
	C.V.(%)						
	B-value						
$\varepsilon_{\rm x}^{\rm oht}$	Distribution						
ε _x (με)	C ₁						
(µc)	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

Note SACMA SRM 5-88 uses a [45/0/-45/90]_{2S} lay-up.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.14 AS4 3k/3501-6 plain weave fabric

Material Description:

Material: AS4-3k/3501-6

- Form: Plain weave fabric, areal weight of 193 g/m², typical cured resin content of 37-41%, typical cured ply thickness of 0.0074-0.0086 inches.
- Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

4.2.14 AS4 3k/3501-6 plain weave*

MATERIAL:	AS4 3k/3501-6 plain weave fabric	•					
FORM:	Hercules AW193P plain weave fabric	prepreg	-				
FIBER:	Hercules AS4 3k W	MATRIX:	Hercules 3501-6				
T _g (dry):	T _g (wet):	Tg METHOD:					
PROCESSING:	Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minute 100 ± 10 psig, no bleed	,					

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°A/F	200°F/A		75°F/W	200°F/W	
SS		SS	SS				
II			II		II	II	
S			S		S	S	
	SS II	SS II	SS SS	SS SS SS II II	SS SS SS II II	SS SS SS II II II	SS SS SS II II <th< td=""></th<>

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.58	1.54 - 1.56	
Fiber Areal Weight	(g/m ²)	193	193	
Fiber Volume	(%)	58	51 - 54	
Ply Thickness	(in)	0.0070	0.0074 - 0.0086	

LAMINATE PROPERTY SUMMARY

	75°F/A				
[0t/90t/±45t] Family					
Tension, x-axis	SS				
[±45 _f /0 _f /90 _f] Family					
OHT, x-axis	S				

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: AS4	3k/3501-6 plain	weave fabric				4.2.14(a)	
FIBER V	OLUME: 53-5	38 wt% COMP: DENSITY: 1.56 g/cm ³ 53-54 % VOID CONTENT: 0.0074-0.0080 in.				AS4/3 Tensio	193-PW 3501-6 n, 1-axis	
		174-0.0000 III.			[0₁]₃ 75/A, -65/A, 200/A			
TEST ME			MODULUS	S CALCULATIO	N:	Scre	ening	
AST	M D 3039-76							
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	% (0.0074 in. C	PT)		
Tempera		7!		-6		20		
Equilibriu	Content (%) Im at T, RH	amb	ient	amb	ient	amb	pient	
Source C	code	20		2		2		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	124 117	117 111	112 103	105 98.1	126 116	119 108	
	Maximum	133	124	120	112	133	126	
	C.V.(%)	4.18	3.56	4.63	4.00	4.79	5.88	
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
г ₁ (ksi)	C ₁	124	117	112	105	126	119	
(KSI)	C_2	5.17	4.15	5.17	4.21	6.05	7.00	
	No. Specimens 9 No. Batches 3) 3	9 3		9 3		
	Data Class	Scree		Scree		Scree		
	Mean Minimum	9.8 9.4	9.2 8.8	10.5 9.7	9.9 9.1	10.1 7.1	9.5 6.7	
	Maximum	10.2	9.5	11.1	10.4	10.7	10.1	
E_1^t	C.V.(%)	3,0	2.5	4.6	4.2	11	11	
(Msi)	No. Specimens No. Batches	9) 8	9		9 3		
	Data Class	Scree		Screening		Scree		
v_{12}^{t}	Mean No. Specimens No. Batches							
12	Data Class							
	Mean Minimum Maximum C.V.(%)							
$oldsymbol{arepsilon_1}^{ ext{tu}}$	B-value Distribution							
ε ₁ (με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	AL: AS	4 3k/3501-6 plair	weave fabric				4.2.14(b)
RESIN CONTENT:39-41 wt%COMP: DENSITY:1.54-1.55 g/cm3FIBER VOLUME:51-52 %VOID CONTENT:PLY THICKNESS:0.0081-0.0086 in.NODULU 0.044 CUL ATION					C/Ep 193-PW AS4/3501-6 Compression, 1-axis [0 _f] ₁₄ 75/A, 200/A, 75/W		
TEST ME			MODULU	S CALCULATIC	DN:	Int	erim
SAC	MA SRM 1-88						
NORMAL	IZED BY: Spe	ecimen thickness	and batch fibe	er volume to 57°	% (0.0074 in. C	PT)	
Tempera Moisture	ture (°F) Content (%)	7	5	20	00	7 (1	
	m at T, RH	amb	ient	amb	pient	W	
Source C	ode	2			6	2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	130 115	117 104	108 92.8	97.3 83.0	112 99.6	101 88.0
	Maximum	140	104	92.0 121	83.0 109	99.6 122	88.0 109
	C.V.(%)	6.45	6.49	7.44	7.71	5.56	5.65
гсu	B-value Distribution	(2) Nonpara.	(2) Nonpara.	(2) Weibull	(2) Normal	(2) ANOVA	(2) ANOVA
F ₁ ^{cu} (ksi)		8	8	112	97.3	6.83	6.32
(KSI)	$C_1 \\ C_2$	1.54	0 1.54	15.1	7.51	4.85	5.09
No. Specimens			15		5	1	
No. Batches			3 Interim		3	3	
	Data Class Mean	9.2	8.3	9.8	erim 8.8	Inte 9.4	erim 8.4
	Minimum	8.5	7.7	9.2	8.4	8.8	8.1
	Maximum	9.8	8.8	10.2	9.1	9.9	8.8
E_1^c	C.V.(%)	3.4	4.3	3.5	2.5	3.0	2.4
(Msi)	No. Specimens No. Batches	1:		15 3		15 3	
	Data Class	Inte		Interim			erim
v_{12}^{c}	Mean No. Specimens No. Batches						
. 12	Data Class						
	Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ m cu}$	B-value Distribution						
ε ₁ (με)	C ₁						
(με)	C ₂						
	No. Specimens No. Batches Data Class						

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	AL: AS	4 3k/3501-6 plain	weave fabric		Table 4.2.14(c)		
FIBER V	RESIN CONTENT: 39-41 wt% COMP: DENSITY: 1.54-1.55 g/cm FIBER VOLUME: 51-52 % VOID CONTENT: PLY THICKNESS: 0.0081-0.0086 in.		-1.55 g/cm ³	C/Ep 193-PW AS4/3501-6 Compression, 1-axis [0 _f] ₁₄ 200/W			
TEST METHOD: MODULUS CALCULATION:						Interim	
SAC	MA SRM 1-88						
NORMAL	IZED BY: Spe	ecimen thickness	and batch fibe	er volume t	o 57%	6 (0.0074 in. C	PT)
	Content (%) m at T, RH	200 (1) we 26	t				
Source C	oue	Normalized	Measured	Normaliz	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	58.7 51.7 65.4 7.27	52.7 46.2 59.7 7.58		·		
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull				
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	60.6 15.6	54.5 15.2				
	No. Specimens No. Batches Data Class	. Batches 3					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.1 8.7 9.4 2.4	8.1 7.8 8.5 2.9				
(Msi)	No. Specimens No. Batches Data Class	15 3 Inter					
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	AS4	3k/3501-6 plain wea		Table 4.2.14(d) C/Ep 193-PW				
RESIN CONTE FIBER VOLUM PLY THICKNE	IE: 51-52		wt% COMP: DENSITY: 1.54-1.55 g/cm ³ AS4/3501- % VOID CONTENT: SBS, 31-pla -0.0082 in. [0 ₁] ₁₄ 75/A, 200/A, 7		54/3501-6 5, 31-plane [0 _f] ₁₄ 200/A, 75/W,			
TEST METHOD: MODULUS CALCULATION: Screening								
ASTM D 2	344							
NORMALIZED	BY: Not r	normalized						
Temperature (°	°F)	75	200	75	200			
Moisture Conte		ambient	ambient	wet	wet			
Equilibrium at	Γ, RH			(1)	(1)			
Source Code		26	26	26	26			
	ean	10.9	8.4	10.9	5.3			
	nimum	9.7	8.1	10.0	5.2			
	aximum	11.9	8.8	11.4	5.5			
U.	V.(%)	6.09	2.5	3.47	2.3			
B-	value	(2)	(2)	(2)	(2)			
	stribution	Weibull	Normal	Weibull	Nonpara.			
1 31		11.2	8.4	11.0	7			
(ksi) C ₁		20.1	0.21	35.4	7 1.81			
C ₂	2	20.1	0.21	35.4	1.01			
No	o. Specimens	15	9	15	12			
	b. Batches	3	3	3	3			
	ata Class	Screening	Screening	Screening	Screening			
		Ŭ	U	<u>_</u>				

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	3k/3501-6 plair	n weave fabric				4.2.14(e) 193-PW
FIBER V	OLUME: 53-54	8 wt% 4 % 80-0.0085 in.	t% COMP: DENSITY: 0.056 lb/in ³ AS4/35 VOID CONTENT: Tension,		3501-6 n, x-axis /±45 _f] _{2S}		
TEST MI			MODULU	S CALCULATIO	ON:		ening
AST	ГM D 3039-76						
NORMA	LIZED BY: Norm	nalized by spec	imen thickness	and batch fibe	r areal weight t	0.0083 (0.0083	in. CPT)
Equilibriu	Content (%) um at T, RH	7 amb	vient				
Source C	Jode	2 Normalized	o Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	76.0 68.8 83.4 7.6	68.5 62.0 75.1 7.60		modourou		modourou
F _x ^{tu} (ksi)	B-value Distribution C ₁ C ₂	(1) Normal 76.0 5.78	(1) Normal 68.5 5.21				
	No. Specimens No. Batches Data Class	g 3 Scree	3				
$\mathbf{E}_{\mathbf{x}}^{\mathbf{t}}$	Mean Minimum Maximum C.V.(%)	6.7 6.2 6.9 3.5	6.0 5.6 6.3 3.6				
(Msi)	No. Specimens No. Batches Data Class	s Scree	3				
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\boldsymbol{\varepsilon}_{\mathrm{x}}^{\mathrm{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL: RESIN CON FIBER VOLU PLY THICKN TEST METH SACMA	ITENT: 37-3 JME: 53-5 NESS: 0.00 IOD: A SRM 5-88 (1)	3k/3501-6 plain 8 wt% 4 % 80-0.0085 in.	COMP: D VOID CO		i6 lb/in ³	Table 4.2.14(f) C/Ep 193-PW AS4/3501-6 Open Hole Tension, x-axis [±45 _t /0 _t /90 _t] ₂₅
FIBER VOLU PLY THICKN TEST METH	UME: 53-5 NESS: 0.00 IOD: SRM 5-88 (1)	4 %	VOID CO		i6 lb/in ³	Open Hole Tension, x-axis
PLY THICKN TEST METH	NESS: 0.00 IOD: \ SRM 5-88 (1)					x-axis
TEST METH	IOD: A SRM 5-88 (1)	80-0.0085 in.	MODULU			[±45 _f /0 _f /90 _f] _{2S}
_	SRM 5-88 (1)		MODULU			75/A
SACMA				S CALCULATIC	DN:	Screening
NORMALIZE		nalized by speci	men thickness	and batch fiber	areal weight to	0 60% (0.0083 in. CPT)
		Normalized	Measured	Normalized	Measured	Normalized Measured
	⁄lean ⁄linimum	57.0 54.0	51.4 48.6			
	Maximum	59.7	40.0 53.8			
	C.V.(%)	3.4	3.40			
F_x^{oht} E	3-value	(2)	(2)			
	Distribution	ANÔVA	ANÓVA			
	21	2.12	2.46			
	C_2	5.15	1.20			
	No. Specimens	9				
	No. Batches Data Class	3 Scree	nina			
	Mean	00100				
	Ainimum					
H	Maximum					
	C.V.(%)					
	No. Specimens					
=	No. Batches Data Class					
	Mean					
	Minimum					
	Maximum C.V.(%)					
	3-value					
	Distribution C1					
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Σ_2					
	No. Specimens					
	No. Batches Data Class					

Note SACMA SRM 5-88 uses a [45/0/-45/90]_S lay-up.
 Basis values are presented only for A and B data classes.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

4.2.15 AS4 3k/3501-6S 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6S

- Form: 5-harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 33-35%, typical cured ply thickness of 0.0106 -0.0107 inches.
- Processing: Autoclave cure; 240°F, 85 psi for 1 hour, 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6S is an amine-cured epoxy resin. This resin is a solvated material. It results in a more drapeable prepreg for use on highly complex parts. This resin is also amenable to cocuring. The hot/wet strengths are slightly lower than the non-solvated resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical Applications: General purpose structural applications.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.15 AS4 3k/3501-6S 5-harness satin weave fabric*

MATERIAL:	AS4 3k/3501-6S 5-harness satin wea	C/Ep 280-5HS AS4/3501-6S Summary				
FORM:	Hercules AW280 5-harness satin we					
FIBER:	Hercules AS4 3k W					
T _g (dry):	T _g (wet):					
PROCESSING:	Autoclave cure: 240 ± 10°F, 60 minut 100 ± 10 psig, no bleed	Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minutes, 85 psig; $350 \pm 10^{\circ}$ F, 120 ± 10 minutes 100 ± 10 psig. no bleed				

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A			
Tension, 1-axis	II				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	I	I			
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S			

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.58	1.58 - 1.59	
Fiber Areal Weight	(g/m ²)	280	279 - 284	
Fiber Volume	(%)	58	57 - 60	
Ply Thickness	(in)		0.0106 - 0.0107	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: AS4		Table 4.2.15(a)				
RESIN C FIBER V	ONTENT: 33-3 OLUME: 57-6	3k/3501-6S 5-harness satin weave fabric 5 wt% COMP: DENSITY: 1.58-1.59 g/cm ³ 0 % VOID CONTENT: 06-0.0107 in. VOID CONTENT:				g/cm ³	C/Ep 280-5HS AS4/3501-6S Tension, 1-axis [0₁]₀ 75/A
TEST ME	ETHOD:		MODULUS	S CALCUL	ATION:		75/A Interim
	M D 3039-76			-			
NORMAL	IZED BY: Spe	cimen thickness	and batch fib	er volume	to 57% (0.0	0107 in. CP	Ϋ́Τ)
Equilibriu	Content (%) m at T, RH	7 amb	ient				
Source C	ode	2					
	N.4.5.5.5	Normalized	Measured	Normali	zed Mea	asured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	112 97.6 123 5.78	115 100 126 5.55				
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA				
(ksi)	C ₁ C ₂	6.63 2.26	6.55 2.25				
	No. Specimens No. Batches Data Class	3 1 Inte	0				
E_1^t	Mean Minimum Maximum C.V.(%)	9.73 8.93 10.1 2.48	10.0 9.20 10.3 2.31				
(Msi)	No. Specimens No. Batches Data Class	3 1 Inte	0				
v ₁₂ ^t	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(µɛ)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

ALL DOCUMENTATION DRESENTLY DECLIDED WERE NOT SUDDUED FOR THIS MATERIAL

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TH	HIS MATERIAL.			
MATERIAL: AS4 3k/3501-6S 5-harness satin weave fabric Table 4.2.15(b C/Ep 280-5HS									
	CONTENT: 33-35 wt% COMP: DENSITY: 1.58-1.59 g/cm ³						501-6S		
FIBER V		0 % 06-0.0107 in.	VOID CON	IIENI:		Compression, 1-axis [0 _f] ₆			
						75/A,	200/A		
TEST ME			MODULUS	S CALCULATIO	N:	Inte	erim		
SAC	CMA SRM 1-88								
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	6 (0.0107 in. C	PT)			
Tempera	ture (°F)	75		20					
	Content (%) Im at T, RH	amb	ient	ambi	ent				
Source C		20	6	26	3				
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	124	128	110	113				
	Minimum Maximum	108 144	111 148	96.1 122	99.0 125				
	C.V.(%)	6.73	6.74	6.31	6.24				
	B-value	(1)	(1)	(1)	(1)				
F_1^{cu}	Distribution	Weibull	Weibull	ANOVA	ANOVA				
(ksi)	C ₁ C ₂	128 15.4	132 15.3	7.04 2.10	7.15 2.09				
	No. Specimens	30	0	30)				
	No. Batches	10		10)				
	Data Class Mean	Inte	rim	Inte	rim				
	Minimum								
	Maximum								
E_1^c	C.V.(%)								
(Msi)	No. Specimens								
	No. Batches Data Class								
	Mean								
v_{12}^{c}	No. Specimens No. Batches								
v12	Data Class								
	Mean								
	Minimum								
	Maximum C.V.(%)								
	0.0.(/0)								
011	B-value								
$\varepsilon_1^{ m cu}$	Distribution								
(με)	C ₁								
	C ₂								
	No. Specimens								
	No. Batches Data Class								
	Dala Oldoo			1					

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATER	AL.
---	-----

MATERIA			501-6S 5-harne	Table 4.2.15(c)				
RESIN CC FIBER VO PLY THIC	LUME: KNESS:	33-35 wt ⁴ 57-60 % 0.0106-0		C/Ep 280-5HS COMP: DENSITY: 1.58-1.59 g/cm ³ VOID CONTENT: 07 in. [0 _f] ₆ 75/A, 200/A				
TEST MET ASTM	THOD: 1 D 2344			MODULUS CALCU	JLATION:	Screening		
NORMALI	ZED BY:	Not norm	alized					
Temperatu Moisture C Equilibriun	Content (%)		75 ambient	200 ambient				
Source Co			26	26				
	Mean Minimum Maximum C.V.(%)	I	11.0 9.00 13.2 10.8	9.53 8.40 10.8 6.70				
F ₃₁ (ksi)	B-value Distributic C ₁	on	(1) ANOVA 1.22	(1) ANOVA 0.66				
(KSI)	C_1 C_2		2.18	2.32				
	No. Speci No. Batch Data Clas	nes	30 10 Screening	30 10 Screening				

(1) Short beam strength test data are approved for Screening Data Class only.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric

Material Description:

Material: AS4-6k/3502-6S

- Form: 5 harness satin weave fabric, fiber areal weight of 365 g/m², typical cured resin content of 56-57%, typical cured ply thickness of 0.0142-0.0157 inches.
- Processing: Autoclave cure; 275°F, 85 psi for 45 minutes; 350°F, 85 psi, hold for two hours. Post cure at 400°F to develop optimum 350°F properties.

General Supplier Information:

- Fiber: AS4 fibers are continuous high strength, high strain, standard modulus carbon filaments made from PAN precursor. The fibers are surface treated to improve handling character-istics and structural properties. Filament count is 6,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3502 is an epoxy resin. This is a solvated resin formulated to improve drapeability over complex shapes. The hot/wet strengths will be slightly lower than the non-solvated resin. Good tack up to 10 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 350°F (dry), 180°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary:

1. Only normalized data were made available for analysis.

4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric*

MATERIAL:	AS4 6k/3	AS4 6k/3502 5-harness satin weave fabric							
FORM:	Hercules	A370-5H/3502	, 5-harness sat	in weave fabric, 1	1 x 11 tow/in. prepreg				
FIBER:	Hercules AS4 6k, surface-treated "W"*, no twist			MATRIX:	Hercules 3502				
T _g (dry):	404°F	T _g (wet):	313°F	Tg METHOD:	ТМА				
PROCESSING:	Autoclave	e cure: 280 ± 5°	°F, 90 minutes,	85+15-0 psi; 350°	°F, 120 minutes.				
* now "G"									
Date of fiber manufacture 10/82-3/83				Date of testing		9/83-1/84			
Date of resin manufacture 5/83				Date of data sub	mittal	12/93, 5/94			

Date of resin manufacture	5/83	Date of data submittal	12/93, 5/94
Date of prepreg manufacture	5/83	Date of analysis	8/94
Date of composite manufacture	8/83-9/83		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/W	250°F/W	
Tension, 1-axis	BM	BM	BM	BM	
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	BM	IS	BM	BM	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	BM	BM	BS	BS	
Shear, 23-plane					
Shear, 31-plane					

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.57	1.55 - 1.60	
Fiber Areal Weight	(g/m ²)	365	361 - 372	
Fiber Volume	(%)	58	56 - 57	
Ply Thickness	(in)	0.0145	0.0142 - 0.0158	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERI	AL: AS4	6k/3502 5-harn	ess satin wea	/e fabric			l.2.16(a)	
FIBER V	OLUME: 56-5 CKNESS: 0.01	37 wt% 57 % 46-0.0157 in.	COMP: DE VOID CON	C/Ep 365 - 5HS AS4/3502 Tension, 1-axis [0 _f /90 _f /0 _f /90 _f /90 _f /0 _f] 75/A, -65/A, 180/W B30, Mean				
	S 8-168D			S CALCULATIO		Б30,	Mean	
NORMAL	LIZED BY: Fibe	er volume to 57%	ն (0.0145 in. C	PT)				
	Content (%) ım at T, RH	7: amb	ient	-6 amb	ient	18 1.1 - (1 4	1.3)	
Source C	Jode	Normalized	Measured	Normalized	Measured	4 Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	114 97.1 126 6.87	mododrou	105 87.9 116 5.33	modourou	117 102 128 5.29	modourou	
F ₁ ^{tu}	B-value Distribution	91.9 ANOVA	(2)	95.0 Normal	(2)	102 ANOVA	(2)	
(ksi)	C ₁ C ₂	8.15 2.70		104.9 5.59		6.31 2.33		
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B3	i	30 5 B30		
E_1^t	Mean Minimum Maximum C.V.(%)	9.61 9.29 10.4 3.08	(2)	9.67 9.09 10.1 2.35	(2)	10.5 9.74 10.9 2.75	(2)	
(Msi)	No. Specimens No. Batches Data Class	30 5 Me	5	30 5 Me	i	30 5 Mean		
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MATERIA	AL: AS4	6k/3502 5-harr	ess satin weav	/e fabric			4.2.16(b)	
FIBER V	OLUME: 56-5	7 wt% 7 % 50-0.0157 in.	COMP: DE VOID CON		5-1.56 g/cm ³ -0.2%	C/EP 365 - 5HS AS4/3502 Tension, 1-axis [0 _f /90 _f /0 _f /90 _f /90 _f /0 _f] 250/W		
TEST ME				S CALCULATIC		B30,	Mean	
BMS	8-168D		Linear	portion of curv	e			
		r volume to 57%	-	PT)				
Tempera		25 1.1 ·	50					
	Content (%) ım at T, RH	1.1 · (1						
Source C		4	9					
	Maara	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	108 96.8						
	Maximum	119						
	C.V.(%)	4.62						
F ₁ ^{tu}	B-value Distribution	96.6 Weibull	(2)					
(ksi)	C ₁ C ₂	111 23.1						
	No. Specimens No. Batches Data Class	3 5 B3	5					
E_1^t	Mean Minimum Maximum C.V.(%)	10.1 9.29 10.7 3.65	(2)					
(Msi)	No. Specimens No. Batches Data Class	3 t Me	5					
	Mean No. Specimens							
v_{12}^{t}	No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MATERIA	AL: AS4	6k/3502 5-harn	ess satin weav	/e fabric		Table 4	.2.16(c)
RESIN C FIBER V	ONTENT: 36-3 OLUME: 56-5 CKNESS: 0.01	37 wt%	C/EP 365 - 5HS NSITY: 1.55-1.56 g/cm ³ TENT: 0.0-0.2% Compression, 1-axis [0r/90r/0r/90r/90r/0r] 75/A, -65/A, 180/W B30, Mean, Interim				
	M D 695M (1) (4)			ar portion of cur			•
NORMAL	IZED BY: Fibe	er volume to 57%	5 (0.0145 in. C	PT)			
	Content (%) Im at T, RH	7! amb	ient	-6 amb	ient	18 1.1 - (2 49	1.3)
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	104 79.7 122 10.1		108 85.0 118 8.62		65.9 52.1 76.7 9.81	
F ₁ ^{cu}	B-value Distribution	83.7 Weibull	(5)	(3) Weibull	(5)	52.4 Weibull	(5)
(ksi)	C ₁ C ₂	109 12.1		111 16.4		68.7 11.7	
	No. Specimens No. Batches Data Class		0 5 80	15 5 Interim		30 5 B30	
E_1^c	Mean Minimum Maximum C.V.(%)	8.49 8.15 8.86 2.13	(5)	8.90 7.70 11.0 10.3	(5)	9.21 6.25 12.5 18.2	(5)
(Msi)	No. Specimens No. Batches Data Class	30 5 Me	i	14 5 Interim		30 5 Mean	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Tabbed specimen, length 3.12 inch, width 0.050 inch, gage length 0.50 inch.
 Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(3) Basis values are presented only for A and B data classes.

(4) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

(5) Only normalized data were made available for analysis.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	6k/3502 5-harn	ess satin weav	ve fabric			l.2.16(d) 65 - 5HS		
FIBER V	OLUME: 56-5	7 wt% 7 % 42-0.0157 in.	COMP: DE VOID CON	AS4/3502 Compression, 1-axis [0 _f /90 _f /0 _f /90 _f /90 _f /0 _f] 250/W					
TEST ME	ETHOD:		MODULU	S CALCULATIO	N:	B30, Mean			
AST	M D 695M (1) (3)		Line	ar portion of cur	ve				
NORMAL	LIZED BY: Fibe	r volume to 57%	6 (0.0145 in. C	PT)					
	Content (%) um at T, RH	25 1.1 - (2 4	· 1.3 2)						
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	56.3 45.5 75.2 16.0							
F ₁ ^{cu}	B-value Distribution	30.5 ANOVA	(4)						
(ksi)	C ₁ C ₂	9.41 2.75							
	No. Specimens No. Batches Data Class	3 5 B3	5						
E_1^c	Mean Minimum Maximum C.V.(%)	10.3 8.88 12.4 6.60	(4)						
(Msi)	No. Specimens No. Batches Data Class	3 5 Me	5						
v_{12}^{c}	Mean No. Specimens No. Batches		-						
	Data Class Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{\rm cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

(1) Tabbed specimen, length 3.12 inch, width 0.050 inch, gage length 0.50 inch.

(2) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(3) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

(4) Only normalized data were made available for analysis.

MATER		4.6k/2502.5 hornor	ss satin weave fab	rio	Tab	le 4.2.16(e)
WATER	IAL. AS	4 0K/3502 5-name:	ss sauri weave lab			P 365 - 5HS
RESIN (CONTENT: 36-	37 wt%	COMP: DENSI	TY: 1.55-1.56 g/	cm ³ A	S4/3502
		57 %	VOID CONTEN	T: 0.0-0.2%		ar, 12-plane
PLY TH	ICKNESS: 0.0	145-0.0158 in.				$f_{f} \pm 45_{f} \pm 45_{f}$
TEST M	ETHOD:		MODULUS CAI	LCULATION:		A, 180/W, 250/W ean, Screening
AS	TM D 3518-76		Linear portio	on of curve		
NORMA	LIZED BY: Not	t normalized				
Tempera	ature (°F)	75	-65	180	250	
Moisture	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3	
Equilibri	um at T, RH			(1)	(1)	
Source	Code	49	49	49	49	
	Mean	12.6	14.0	11.7	9.30	
	Minimum	11.4	12.1	10.7	8.27	
	Maximum	13.7	15.4	12.9	10.5	
	C.V.(%)	5.61	7.47	5.24	6.76	
	B-value	10.1	10.1	9.53	6.95	
F_{12}^{su}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	
(ksi)	C ₁	0.775	1.16	0.669	0.698	
(1.0.)	C_2	3.21	3.36	3.20	3.37	
	No. Specimens	36	36	36	36	
	No. Batches	5	5	5	5	
	Data Class	B30	B30	B30	B30	
	Mean	0.514	0.682	0.204	0.174	
	Minimum	0.485	0.638	0.196	0.147	
	Maximum	0.553	0.731	0.212	0.203	
G ^s ₁₂	C.V.(%)	3.68	3.40	2.82	11.8	
(Msi)	No. Specimens	36	36	6	5	
	No. Batches	5	5	1	1	
	Data Class	Mean	Mean	Screening	Screening	
	Mean					
	Minimum Maximum					
	C.V.(%)					
	B-value					
$\gamma_{12}^{\rm su}$	Distribution					
(με)	C ₁					
	C ₂					
	No. Specimens					
	No. Batches					
	Data Class					

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

4.2.17 T-300 15k/976 unidirectional tape

Material Description:

Material: T-300 15k/976

- Form: Unidirectional tape, fiber areal weight of 152 g/m², typical cured resin content of 25-35%, typical cured ply thickness of 0.0051 inches.
- Processing: Autoclave cure; 250°F, 100 psi for 45 mins.; 350°F, 2 hours.

General Supplier Information:

- Fiber: T-300 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 15,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications, good hot/wet properties.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.17 T-300 15k/976 unidirectional tape*

MATERIAL:	T300 15k	/976 unidirecti	onal tape			C/Ep - UT T300 15k/976 Summary		
FORM:	Fiberite T	Fiberite T300/976 unidirectional tape prepreg						
FIBER:	Union Carbide T300 15k		MATRIX:	Fiberite 976				
T _g (dry):	518°F	T _g (wet):	493°F	T _g METHOD:	DMA			
PROCESSING:	Autoclave	e cure: 250°F,	100 psi, 45 n	ninutes; 350°F, 2 hou	urs			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing
Date of resin manufacture	Date of data submittal 2/82
Date of prepreg manufacture7/80	Date of analysis 9/94
Date of composite manufacture	

S S	SSSS	SSSS	SSSS			
S			2200			
	SS-S	SS-S	SS-S			
S	SS-S	SS-S	SS-S			
S	SS-S	SS-S	SS-S			
-	SS	SS	SS			
-	S	S	S			
-	· S · S · -	S SS-S SS	S SS-S SS-S - SS SS	S SS-S SS-S SS-S - SS SS SS	S SS-S SS-S SS-S - SS SS SS	S SS-S SS-S SS-S - SS SS SS

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.62	1.58 - 1.65	
Fiber Areal Weight	(g/m ²)	152		
Fiber Volume	(%)	68	60 - 70	
Ply Thickness	(in)		0.0049 - 0.0053	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: T300) 15k/976 unidir				Table 4	l.2.17(a) o - UT
FIBER V			COMP: DE VOID CON	0 g/cm ³ prox. 0.0%	T300 T Tension [(I5k/976 n, 1-axis 0]₀ 7/A, 260/A	
TEST ME	TEST METHOD: MODULUS CALCULATION:						ening
AST	ASTM D 3039-76 Linear portion of curve						
		r volume to 60%					
	ture (°F) Content (%) ım at T, RH		2 bient		67 bient	26 amb	
Source C		4	8	4	8	4	8
	-	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	211 185 235 11.2	207 191 219 6.47	199 187 220 6.83	197 173 214 7.67	236 205 256 9.88	232 212 255 6.84
F ₁ ^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	C ₁ C ₂	211 23.6	207 13.4	199 13.6	197 15.1	236 23.3	232 15.9
	No. Specimens No. Batches Data Class	5 1 Screening			5 1 Screening		s ening
E_1^t	Mean Minimum Maximum C.V.(%)	19.6 17.8 21.2 6.09	19.3 18.2 20.4 5.18	20.8 19.5 22.6 5.88	20.4 19.6 21.0 2.74	22.6 20.5 24.9 8.97	22.4 21.2 22.9 2.19
(Msi)	No. Specimens No. Batches Data Class		5 1 enina		5 1 ening	5 1 Scree	
v_{12}^{t}	Mean No. Specimens No. Batches	Ę	0.318 5 1	Ę	0.318 5 1	5 1	0.312
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 10400 10000 10800 3.42	Scree	ening 8600 8000 9000 5.29	Scree	ening 9900 9500 10500 4.46
$\boldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution		(1) Normal		(1) Normal		(1) Normal
(με)	C ₁ C ₂		10400 356		8600 454		9900 442
	No. Specimens No. Batches	-	5		4	5	
	Data Class	Scree	ening	Scree	ening	Scree	ening

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

1						51101 5011	LIED FOR THIS MATERIAL.
MATERIA	L: T30	0 15k/976 unidir	ectional tape				Table 4.2.17(b)
RESIN CO FIBER VO PLY THIC	DLUME: 59 9		Comp: De Void Con	C/Ep - UT T300 15k/976 Tension, 1-axis [0] ₆			
TEST ME			MODULUS			J.	350/A Screening
	M D 3039-76			portion o		N.	Screening
ASTI	M D 3039-70		Linear	portion o	Curve		
NORMAL		er volume to 60%	·	PT)			
Temperat Moisture	ure (°F) Content (%)	35 amb					
	m at T, RH		_				
Source Co	ode	48	-	Name		Managera	Normalizad Massurad
	Mean	Normalized 232	Measured 228	Normal	zea	Measured	Normalized Measured
	Minimum	212	219				
	Maximum	248	242				
	C.V.(%)	7.11	3.77				
	B-value	(1)	(1)				
F ₁ ^{tu}	Distribution	Normal	Normal				
(ksi)	C ₁	232	228				
(-)	C ₂	16.5	8.63				
	No. Crosimoro						
	No. Specimens No. Batches	5					
	Data Class	Scree					
	Mean	22.4	22.1				
	Minimum	21.0	20.2 23.9				
E_1^t	Maximum C.V.(%)	24.2 5.59	23.9 6.19				
E ₁	0(/0)	0.00	0.10				
(Msi)	No. Specimens	5	i				
	No. Batches	1					
	Data Class Mean	Scree	ening 0.348				
	No. Specimens	5					
v_{12}^{t}	No. Batches	1					
12	Data Class	Scree	ening				
	Mean		9930				
	Minimum		9600				
	Maximum C.V.(%)		10700 5.29				
	0. v.(70)		5.23				
	B-value		(2)				
$\varepsilon_1^{ m tu}$	Distribution		Normal				
(με)	C ₁		9930				
	C ₂		525				
	No. Specimens	4					
	No. Batches	1					
	Data Class	Scree	ening				

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER		0 15k/976 unidi				Table 4.2.17(c)		
FIBER	CONTENT: 25 v VOLUME: 69 9 HCKNESS: 0.00		COMP: D VOID COI		C/Ep - UT T300 15k/976 Tension, 2-axis [90] ₁₅ 72/A, -67/A, 260/A, 350/A			
TEST	IETHOD:		MODULU	S CALCULATIO	ON:	Screening		
AS	STM D 3039-76		Linear	portion of curv	e			
NORMALIZED BY: Not normalized								
Moistur	rature (°F) re Content (%) rium at T, RH	72 ambient	-67 ambient	260 ambient	350 ambient			
Source	Code	48	48	48	48			
	Mean Minimum Maximum C.V.(%)	5.66 4.53 6.52 15.4	4.73 3.23 6.29 25.1	3.81 2.87 4.68 17.4	3.47 2.67 3.83 13.2			
F ₂ ^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal			
(ksi)	C ₁ C ₂	5.66 0.870	4.73 1.19	3.812 0.664	3.47 0.458			
	No. Specimens No. Batches Data Class	5 1 Screening	5 1 Screening	5 1 Screening	5 1 Screening			
	Mean	1.34	1.69	1.37	1.30			
	Minimum	1.28 1.39	1.49 1.88	1.16	1.25 1.43			
E_2^t	Maximum C.V.(%)	3.13	9.01	1.55 10.1	5.83			
(Msi)	No. Specimens No. Batches	5 1	5 1	5 1	5 1			
	Data Class Mean	Screening	Screening	Screening	Screening			
v_{21}^{t}	No. Specimens No. Batches							
	Data Class							
	Mean Minimum Maximum C.V.(%)	3900 3200 4600 14.6	2760 1900 3300 20.4	2640 2100 3400 19.1	2620 2200 3000 13.3			
$arepsilon_2^{ ext{tu}}$	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal			
(με)	C ₁ C ₂	3900 570	2760 564	2640 503	2620 349			
	No. Specimens No. Batches	5 1	5 1	5 1	5 1			
	Data Class	Screening	Screening	Screening	Screening			

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: T30	0 15k/976 unidii				Table 4	4.2.17(d)	
FIBER V			COMP: DE VOID CON	T300 Compress [(o - UT 15k/976 sion, 1-axis)] ₂₀ 7/A, 260/A			
TEST ME	ETHOD:	THOD: MODULUS CALCULATION:					ening	
AST	M D 3410A-75		Linear	portion of curv	e			
NORMAL	-IZED BY: Fibe	r volume to 60%	% (0.0053 in. C	PT)				
	ture (°F) Content (%) ım at T, RH		2 bient		67 pient	20 amb	60 bient	
Source C		4	8	4	8	4	8	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	188 139 214 15.9	218 162 248 15.9	192 169 218 9.76	223 196 254 9.76	147 95.6 177 21.7	171 111 205 21.7	
F ₁ ^{cu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	188 29.9	218 34.7	192 18.8	223 21.8	147 31.9	171 37.1	
	No. Specimens No. Batches Data Class	5 1 Screening			5 1 Screening		5 I ening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.7 14.9 21.9 13.4	21.8 17.3 25.5 13.4	18.8 16.2 25.5 20.1	21.9 18.8 29.6 20.1	18.4 10.8 22.6 26.5	21.4 12.6 26.2 26.5	
(Msi)	No. Specimens No. Batches Data Class		5 1 Screening		5 1 Screening		5 1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		12500 9500 19600 32.2		14500 9900 20000 31.5		8860 6300 12600 30.2	
$\varepsilon_1^{ m cu}$	B-value Distribution		(1) Normal		(1) Normal		(1) Normal	
(με)	C ₁ C ₂		12500 404		14500 4560		8860 2670	
	No. Specimens No. Batches Data Class		5 1 ening		5 1 ening	Scree	1	
		0016	uning	0016	oning		uning	

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

T	/						IED FOR THIS MATERIAL.
MATERIA	AL: 130	00 15k/976 unidir	ectional tape				Table 4.2.17(e) C/Ep - UT
FIBER V	OLUME: 70 °	wt% % 050 in.	COMP: DENSITY: 1.63 g/cm ³ VOID CONTENT: approx. 1.0%			%	T300 15k/976 Compression, 1-axis [0] ₂₀ 350/A
TEST ME	THOD:		MODULUS	S CALCU	ATION:		Screening
	M D 3410A-75			portion o			J
NORMAL	IZED BY: Fib	er volume to 60%	6 (0.0053 in. C				
	ture (°F) Content (%) m at T, RH	35 amb					
Source C		4	8				
		Normalized	Measured	Normal	ized Measu	ured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	136 107 160 18.5	159 124 186 18.5				
F ₁ ^{cu}	B-value Distribution	(1) Normal	(1) Normal				
(ksi)	$C_1 \\ C_2$	136 25.2	159 29.3				
	No. Specimens No. Batches Data Class	5 1 Scree					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	19.7 16.5 23.0 13.2	22.9 19.1 26.7 13.2				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)		9400 5000 14000 39.7				
$\varepsilon_1^{\mathrm{cu}}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		9400 3730				
	No. Specimens No. Batches Data Class	5 1 Scree					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MATER	RIAL: T300) 15k/976 unidii				Table	4.2.17(f) o - UT
TEST METHOD: ASTM D 3410A-75 MODULUS CALCULATION: Linear portion of curve Screening NORMALIZED BY: Not normalized -67 260 350 Temperature (°F) 72 -67 ambient ambient ambient ambient ambient Source Code 48 48 48 48 48 -67 Maisture Content (%) Z2.6 19.1 17.3 -67 19.4 17.3 Mean 30.0 35.1 22.6 19.1 - - B-value (1) (1) (1) Normal Normal Normal K(si) C1 30.0 35.1 22.6 19.1 - C2 2.13 6.62 2.42 2.24 - - Mean 1.46 1.84 1.64 1.1 - - Mean 1.46 1.84 1.64 - - - Minimum 1.73 2.18 3.03 2.02 - - <td>FIBER</td> <td>VOLUME: 70 %</td> <td>, D</td> <td></td> <td></td> <td>T300 Compres [9 72/A, -67</td> <td>15k/976 sion, 2-axis 0]₂₀ ⁄/A, 260/A,</td>	FIBER	VOLUME: 70 %	, D			T300 Compres [9 72/A, -67	15k/976 sion, 2-axis 0] ₂₀ ⁄/A, 260/A,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TEST	METHOD:		MODULU	S CALCULATIO	ON:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AS	STM D 3410A-75		Linear	portion of curve	e		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NORM	ALIZED BY: Not i	normalized					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ambient	ambient	ambient	ambient		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			48	48	48	48		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c cccc} & C.V.(\%) & 7.10 & 18.9 & 10.7 & 11.7 \\ \hline F_2^{Cu} & Distribution & Normal & Normal & Normal & Normal \\ \hline (ksi) & C_1 & 30.0 & 35.1 & 22.6 & 19.1 \\ C_2 & 2.13 & 6.62 & 2.42 & 2.24 \\ \hline No. Specimens & 5 & 5 & 5 & 5 \\ No. Batches & 1 & 1 & 1 & 1 \\ \hline Data Class & Screening & Screening & Screening \\ \hline Mean & 1.46 & 1.84 & 1.84 & 1.64 \\ \hline Minimum & 1.32 & 1.46 & 1.37 & 1.25 \\ \hline Maximum & 1.73 & 2.18 & 3.03 & 2.02 \\ \hline C_2 & C.V.(\%) & 11.1 & 17.0 & 36.7 & 19.6 \\ \hline Mean & No. Specimens & 5 & 5 & 5 \\ No. Batches & 1 & 1 & 1 & 1 \\ \hline Data Class & Screening & Screening & Screening \\ \hline Mean & 1.46 & 1.84 & 1.84 & 1.64 \\ \hline Minimum & 1.73 & 2.18 & 3.03 & 2.02 \\ \hline Maximum & 1.73 & 2.18 & 3.03 & Screening \\ \hline Mean & No. Specimens & 5 & 5 & 5 \\ \hline Data Class & Screening & Screening & Screening \\ \hline Mean & No. Specimens \\ No. Batches & 1 & 1 & 1 \\ \hline Data Class & Screening & Screening & Screening \\ \hline Mean & No. Specimens \\ No. Batches & 1 & 1 & 1 \\ \hline Mean & 32300 & 22100 & 14900 & 69000 \\ \hline Maximum & 46300 & 27700 & 21400 & 21300 \\ \hline C.V.(\%) & 44.7 & 31.1 & 40.1 & 47.2 \\ \hline Mean & 32300 & 22100 & 14200 & 6900 \\ \hline Maximum & 46300 & 27700 & 21400 & 21300 \\ \hline C_1 & 32300 & 22100 & 14200 & 6720 \\ \hline Mormal & Normal & Normal \\ \hline Mormal & Normal \\ \hline Mormal & No$		Minimum						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.V.(%)	7.10	18.9	10.7	11.7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F ^{cu}							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C1	30.0	35.1	22.6	19.1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E ₂ ^c	C.V.(%)	11.1	17.0	36.7	19.6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Msi)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Screening	Screening	Screening	Screening		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v_{21}^{c}	No. Specimens						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccc} Maximum & 46300 & 27700 & 21400 & 21300 \\ C.V.(\%) & 44.7 & 31.1 & 40.1 & 47.2 \\ \hline B-value & (1) & (1) & (2) & (1) \\ Normal & Normal & Normal \\ (\mu\epsilon) & C_1 & 32300 & 22100 & 14200 \\ C_2 & 14400 & 6880 & 6720 \\ \hline No. Specimens & 5 & 5 & 3 & 5 \\ No. Batches & 1 & 1 & 1 & 1 \end{array}$								
$ \begin{array}{c ccccc} C.V.(\%) & 44.7 & 31.1 & 40.1 & 47.2 \\ \hline B-value & (1) & (1) & (2) & (1) \\ \hline \mathcal{E}_2^{cu} & Distribution & Normal \\ (\mu\epsilon) & C_1 & 32300 & 22100 & 14200 \\ \hline C_2 & 14400 & 6880 & 6720 \\ \hline No. Specimens & 5 & 5 & 3 & 5 \\ \hline No. Batches & 1 & 1 & 1 & 1 \\ \end{array} $								
$ \begin{array}{c ccccc} & B-value & (1) & (1) & (2) & (1) \\ \hline \mathcal{E}_2^{cu} & Distribution & Normal \\ (\mu\epsilon) & C_1 & 32300 & 22100 & 14200 \\ C_2 & 14400 & 6880 & 6720 \\ \hline No. Specimens & 5 & 5 & 3 & 5 \\ No. Batches & 1 & 1 & 1 & 1 \\ \end{array} $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.0.(/0)		01.1	10.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε_2^{cu}				(2)			
C2 14400 6880 6720 No. Specimens 5 5 3 5 No. Batches 1 1 1 1		C ₁	32300	22100		14200		
No. Batches 1 1 1 1 1	(µc)							
			Screening	Screening	Screening	Screening		

(1) Basis values are presented only for A and B data classes.

(2) The statistical analysis is not completed for less than four specimens.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	,	5k/976 unidirection	al tape		Tab	Table 4.2.17(g)		
RESIN CC FIBER VC PLY THIC	DLUME: 69 %	V	COMP: DENSITY: OID CONTENT:	1.63 g/cm ³ approx. 0.1%	T30 Shea	/Ep - UT 00 15k/976 ar, 12-plane [±45]₂s -67/A, 260/A, 350/A		
TEST ME	THOD:	Ν	IODULUS CALCU	JLATION:	S	creening		
ASTN	/I D 3518-76							
NORMALI	ZED BY: Not norr	malized						
Temperatu	ure (°F)	72	-67	260	350			
-	Content (%)	ambient	ambient	ambient	ambient			
Equilibriun	n at T, RH							
Source Co	ode	48	48	48	48			
	Mean	11.1	13.7	8.25	8.30			
	Minimum	11.0	13.2	7.78	7.67			
	Maximum	11.4	15.5	8.72	9.36			
	C.V.(%)	1.23	6.99	4.78	7.80			
	B-value	(1)	(1)	(1)	(1)			
F_{12}^{su}	Distribution	Normal	Nonpara.	Normal	Normal			
(ksi)	C ₁	11.1	4	8.25	8.30			
(1101)	C ₂	0.137	4.10	0.394	0.647			
	No. Specimens	5	5	5	5			
	No. Batches	1	1	1	1			
	Data Class	Screening	Screening	Screening	Screening			
	Mean	0.91	1.0	0.89	0.77			
	Minimum	0.84	0.89	0.82	0.70			
	Maximum	0.96	1.08	0.94	0.82			
G_{12}^s	C.V.(%)	5.1	7.1	5.3	7.4			
(Msi)	No. Specimens	5	5	5	5			
. ,	No. Batches	1	1	1	1			
	Data Class	Screening	Screening	Screening	Screening			
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
, su	Distribution							
γ_{12}^{su}								
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			976 unidirection	al tape		Tabl	le 4.2.17(h)
RESIN CC FIBER VO PLY THIC	LUME:	25 wt% 69 % 0.0052 in.	V	COMP: DENSITY: OID CONTENT:	1.63 g/cm ³ approx. 0.1%	T30 SBS	/Ep - UT 00 15k/976 5, 31-plane [0] ₁₅ -67/A, 260/A, 350/A
TEST MET	THOD:		Ν	IODULUS CALCU	JLATION:	S	creening
	1 D 2344-76			Linear portion c			
NORMALI		Not norma	alized				
Temperatu	ure (°F)		72	-67	260	350	
Moisture C Equilibriun	Content (%) n at T, RH		ambient	ambient	ambient	ambient	
Source Co	ode		48	48	48	48	
	Mean		12.9	16.6	9.36	8.60	
	Minimum		9.42	14.2	8.59	7.71	
	Maximum		17.1	19.6	10.8	9.56	
	C.V.(%)		18.4	12.8	10.1	8.06	
-shs	B-value Distributio		(1) Weibull	(1) Normal	(1) Normal	(1) Normal	
F ₃₁		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
(ksi)	C ₁		13.8	16.6	9.36	8.60	
	C ₂		6.17	2.12	0.949	0.693	
	No. Speci No. Batch		10 1	5 1	5 1	5 1	
	Data Clas		Screening	Screening	Screening	Screening	

4.2.18 IM7 12k/8551-7A unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.19 AS4 3k/3501-6 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: 5 harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 28-30%, typical cured ply thickness of 0.0099 -0.0109 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow, no twist. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.19 AS4 3k/3501-6 5-harness satin weave fabric (bleed)*

MATERIAL:	AS4 3k/3501-6 5-harness satin w		C/Ep 280-5HS AS4/3501-6 (Bleed) Summary					
FORM:	Hercules AW280-5H/3501-6 5-ha	Hercules AW280-5H/3501-6 5-harness satin weave fabric prepreg						
FIBER:	Hercules AS4 3k, no twist	MATRIX:	Hercules 3501-6					
T _g (dry):	T _g (wet): T _g METHOD:							
PROCESSING:	Autoclave cure, 240 \pm 10°F at 85 psig for 60 minutes; 350 \pm 10°F for 120 \pm 10 minutes at 100 \pm 5 psig							

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	2/95
Date of composite manufacture		

	75°F/A	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	SS				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	SS	SS	SS	II	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S		

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)		1.59 - 1.60	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)		60 - 62	
Ply Thickness	(in)		0.0099 - 0.0171	

LAMINATE PROPERTY SUMMARY

75°F/A							
SS							
S							
	SS						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	MATERIAL: AS4 3k/3501-6 (Bleed) 5-harness satin weave fabric Table 4.2.19(a) C/Ep 280-5HS										
FIBER V		∕t% ol % 00-0.0106 in.	COMP: DENSITY: 1.61 g/cm ³ VOID CONTENT: 0106 in.			AS4/3501 Tensio [0	80-5HS ∣-6 (Bleed) n, 1-axis 0 _f]₃ 5/A				
TEST ME	ETHOD:		MODULUS	S CALCUL		N:		ening			
AST	M D 3039-76										
NORMAL	-IZED BY: Spe	cimen thickness	and batch fibe	er volume	to 57%	5 (0.019 in. CP	ΥT)				
Equilibriu	Content (%) Im at T, RH	75 ambi	ent								
Source C	Code	43									
	Mean	Normalized 108	Measured 115	Normali	zed	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	93.3 128 12.2	98.8 137 12.2								
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA								
(ksi)	C ₁ C ₂	14.9 5.74	15.8 5.72								
	No. Specimens S No. Batches Scree Data Class Scree										
E_1^t	Mean Minimum Maximum C.V.(%)	9.83 8.25 12.0 9.88	10.4 8.80 13.1 10.8								
(Msi)	No. Specimens No. Batches Data Class	9 3 Scree									
v_{12}^{t}	Mean No. Specimens No. Batches										
	Data Class Mean Minimum Maximum C.V.(%)										
$arepsilon_1^{ ext{tu}}$	B-value Distribution										
(με)	C ₁ C ₂										
	No. Specimens No. Batches Data Class										

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.											
MATERIA RESIN C	AL: AS4 CONTENT: 29 w		ed) 5-harness COMP: DE	satin weave fab ENSITY: 1.6 ²	ric 1 g/cm ³	C/Ep 2	I.2.19(b) 80-5HS I-6 (Bleed)				
FIBER V	OLUME: 61 vo	ol % 99-0.0104 in.	VOID CON		3.1	Compression, 1-axis [0 _f] ₈					
TEST ME			MODULU	75/A, 20	75/A, 200/A, 75/W Screening						
	CMA SRM 1-88						<u> </u>				
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	% (0.019 in. CF	Ϋ́Τ)					
Tempera Moisture	ture (°F) Content (%)	7 amb		20 amb		7: 					
Equilibriu	ım at T, RH					(1)				
Source C	Jode	4: Normalized	3 Measured	4: Normalized	3 Measured	4: Normalized	3 Measured				
	Mean	106	113	80.8	86.1	95.8	102				
	Minimum	91.0	97.7	67.6	73.7	79.3	84.7				
1	Maximum	115	123	93.1	99.9	106	113				
	C.V.(%)	6.52	6.65	8.84	8.69	9.43	9.42				
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) Weibull	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	7.21 3.73	116 18.4	83.9 13.6	89.4 13.4	95.8 9.03	102 9.64				
	No. Specimens	13		1:	3	g)				
	No. Batches Data Class	3 Screening		3 Scree		2 Scree					
	Mean Minimum	8.7 7.6	9.3 8.2	8.48 6.42	9.04 7.00	9.23 9.07	9.87 9.70				
	Maximum	7.6 9.4	8.2 9.9	9.43	10.0	9.07	9.70 10.2				
E_1^c	C.V.(%)	8.2	8.4	10.6	10.4	1.55	1.68				
(Msi)	No. Specimens	1		1:		9					
	No. Batches Data Class	3 Screening		3 Scree		2 Screening					
v_{12}^{c}	Mean No. Specimens No. Batches										
12	Data Class										
	Mean Minimum										
	Maximum C.V.(%)										
$arepsilon_1^{ m cu}$	B-value Distribution										
(με)	C ₁										
(με)	C_2										
	No. Specimens No. Batches Data Class										

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: AS	4 3k/3501-6 (Blee					Table 4.2.19(c)					
FIBER V	OLUME: 61	wt% vol % 111-0.0171 in.	VOID CONTENT:			C/Ep 280-5HS AS4/3501-6 (Bleed) Compression, 1-axis [0 _{f]8} 200/W						
TEST ME			MODULUS	S CALCULA		۷:	Interim					
SAC	MA SRM 1-88											
	NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.019 in. CPT)											
	Content (%) m at T, RH	20 we (1 4:	et)									
		Normalized	Measured	Normalize	ed	Measured	Normalized Measured					
	Mean Minimum Maximum C.V.(%)	57.0 49.8 67.8 8.85	60.8 53.8 72.2 8.82									
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA									
(ksi)	C ₁ C ₂	5.46 4.57	5.761 4.38									
	No. Specimens No. Batches Data Class	1: 3 Inte	3									
E ₁ ^c	Mean Minimum Maximum C.V.(%)	8.1 6.5 9.0 10	8.6 7.0 9.4 10									
(Msi)	No. Specimens No. Batches Data Class	13 3 Inte	3									
v_{12}^c	Mean No. Specimens No. Batches											
	Data Class Mean Minimum Maximum C.V.(%)											
$\varepsilon_1^{ m cu}$	B-value Distribution											
(με)	C ₁ C ₂											
	No. Specimens No. Batches Data Class											

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA		Table 4.2.19(d)				
RESIN CONTENT:28-30 wtFIBER VOLUME:60-62 voPLY THICKNESS:0.0099-0			1%	COMP: DENSITY: VOID CONTENT:	C/Ep 280-5HS AS4/3501-6 (Bleed) SBS, 31-plane [0 _f] ₈ 75/A, 200/A, 75/W	
TEST ME	THOD:			MODULUS CALCI	JLATION:	Screening
AST	ND 2344-84	4		N/A		
NORMAL	IZED BY:	Not norm	alized			
Temperat			75	200	75	
	Content (%)		ambient	ambient	wet	
Equilibriur Source Co	m at T, RH		40	40	(1)	
Source Co	Mean		43 9.93	43 7.94	43 9.35	
	Minimum	ı	9.93 8.50	7.60	9.00	
	Maximur		10.7	8.40	9.60	
	C.V.(%)		7.38	3.89	2.22	
	B-value		(2)	(2)	(2)	
F ₃₁ ^{sbs}	Distributi	on	Normal	ANOVA	Normal	
(ksi)	C ₁		9.93	0.353	9.35	
(1(3))	C_2		0.733	6.02	0.207	
			_			
	No. Spec		9 3	9 3	6 2	
	No. Batc Data Cla		3 Screening	3 Screening	∠ Screening	
	Data Ola		Corconing	Ocicerning	Gereening	

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: AS4			satin weave fab		Table	4.2.19(e)					
FIBER V		wt% COMP: DENSITY: 1.59 g/cm ³ vol % VOID CONTENT: 105-0.0106 in. VOID CONTENT:			Tensio [(0/±4	AS4/3501-6 (Bleed) Tension, x-axis [(0/±45/90) _f] _s 75/A						
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening					
AST	M D 3039-76											
	NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.019 in. CPT)											
Equilibriu	Content (%) Im at T, RH	7 amb	ient									
Source C	Code	4 Normalized	3 Measured	Normalized	Measured	Normalized	Measured					
	Mean Minimum Maximum C.V.(%)	83.4 75.7 88.2 5.28	88.6 81.3 94.2 4.86	Normalized	Measured	Normalized	Measured					
F _x ^{tu}	B-value Distribution	(1) Normal	(1) Normal									
(ksi)	C ₁ C ₂	83.4 4.41	88.6 4.30									
	No. Specimens No. Batches Data Class	e 2 Scree	2									
E_x^t	Mean Minimum Maximum C.V.(%)	6.9 6.6 7.0 2.8	7.3 7.0 7.5 2.9									
(Msi)	No. Specimens No. Batches Data Class	6 2 Scree	<u>)</u>									
v_{xy}^{t}	Mean No. Specimens No. Batches											
	Data Class Mean Minimum Maximum C.V.(%)											
$\varepsilon_{\rm x}^{\rm tu}$ (µ ε)	B-value Distribution C1											
(µc)	C ₂											
	No. Specimens No. Batches Data Class											

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

	DOCUMENTATION							
MATERI	AL: AS4	3k/3501-6 (Blee	ed) 5-harness	satin weave fab	ric		4.2.19(f)	
FIBER V	OLUME: 61-6	0 wt% 2 vol % 05-0.0109 in.	Comp: De Void Con		9-1.60 g/cm ³	C/Ep 280-5HS AS4/3501-6 (Bleed) OHT, x-axis [(0/±45/90) _f] _s 75/A		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening	
SAC	CMA SRM 5-88							
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57	% (0.019 in. CF	Ϋ́T)		
Tempera		75						
	Content (%)	ambi	ient					
Source C	im at T, RH Code	43	3					
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	58.4	63.0					
	Minimum	57.0	60.9					
	Maximum	61.0	64.5					
	C.V.(%)	2.57	2.43					
	B-value	(1)	(1)					
F_x^{oht}	Distribution	Normal	Normal					
(ksi)	C ₁	58.4	63.0					
	C ₂	1.50	1.53					
	No. Specimens	6						
	No. Batches	2						
	Data Class Mean	Scree	ning					
	Minimum							
	Maximum							
E_x^{oht}	C.V.(%)							
(Msi)	No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$arepsilon_{ m x}^{ m oht}$	B-value Distribution							
	C ₁							
(με)	C_2							
	No. Specimens No. Batches Data Class							

4.2.20 AS4 3k/3501-6 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: 5 harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 36-39%, typical cured ply thickness of 0.0110 -0.0121 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments per tow, no twist. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.20 AS4 3k/3501-6 (no bleed) 5-harness satin weave fabric*

MATERIAL:	AS4 3k/3501-6 (No Bleed) 5-ha	AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric						
FORM:	Hercules AW280-5H/3501-6 5-harness satin weave fabric prepreg							
FIBER:	Hercules AS4 3k, no twist	MATRIX:	Hercules 3501-6					
T _g (dry):	T _g (wet):	T _g METHOD:						
PROCESSING:	Autoclave cure, $240 \pm 10^{\circ}$ F at 8 for 120 ± 10 minutes.	0 ± 10°F at 100 ± 5 psig						

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	2/95-3/95
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°F/A	200°F/A				
SS		SS	SS				
SS							
S							
	SS SS	SS SS	SS SS	SS SS SS	SS SS SS SS	SS SS SS SS SS SS	SS SS SS SS SS SS SS Image: Signature of the second se

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.55	1.55 - 1.56	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)	53	52 - 55	
Ply Thickness	(in)	0.011	0.011 - 0.017	

LAMINATE PROPERTY SUMMARY

	75°F/A				
0/±45/90 Family					
Tension, x-axis	SS				
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	AS4 3k/3501-6 (N	AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric					
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	36-39 wt% 52-55 vol % 0.0111-0.0171 in	COMP: DENSI VOID CONTEN		C/EP 280-5HS AS4/3501-6 (No Bleed) Tension, 1-axis [0 _f] ₈ 75/A, -65/A, 200/A			
TEST METHOD:		MODULUS CA	LCULATION:	Screening			
ASTM D 3039-76							
NORMALIZED BY:	Specimen thickne	ess and batch fiber vol	ume to 57% (0.011 in. CP1)			
Temperature (°F)		75	-65	200			

Moisture Content (%) Equilibrium at T, RH		ambient		amb	ient	ambient	
Source C		43		43	3	43	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	134	125	125	117	130	121
	Minimum	129	117	120	109	124	116
	Maximum	146	136	136	127	141	136
	C.V.(%)	3.79	4.85	3.85	4.89	4.49	5.11
F_1^{tu}	B-value	(1)	(1)	(1)	(1)	(1)	(1)
	Distribution	Normal	ANOVA	Normal	ANOVA	Lognormal	Nonpara.
(ksi)	C ₁	134	6.56	125	6.07	4.86	6
	C ₂	5.07	4.77	4.81	4.40	0.0440	2.25
	No. Specimens)	9		9	
	No. Batches		B	3		3	
	Data Class		ening	Screening		Screening	
E_1^t	Mean	9.67	9.06	10.2	9.57	10.8	10.1
	Minimum	9.39	8.60	9.63	8.80	9.88	9.00
	Maximum	9.88	9.50	11.0	10.3	11.8	11.3
	C.V.(%)	1.65	3.63	4.26	5.68	6.74	8.23
(Msi)	No. Specimens	9		9		9	
	No. Batches	3		3		3	
	Data Class	Screening		Screening		Screening	
v_{12}^{t}	Mean No. Specimens No. Batches						
ε ₁ ^{tu} (με)	Data Class Mean Minimum Maximum C.V.(%) B-value Distribution C ₁ C ₂ No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

1					SUPPLIED FOR T				
MATERIA	ATERIAL: AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric Table 4.2.20(b) C/EP 280-5HS								
RESIN CO FIBER VO PLY THIC	OLUME: 52-5	39 wt% COMP: DENSITY: 1.55-1.56 g/cm ³ 55 vol % VOID CONTENT: 114-0.0121 in. VOID CONTENT:				C/EP 280-5HS AS4/3501-6 (No Bleed) Compression, 1-axis [0₁]₀ 75/A			
TEST ME	THOD		MODULUS	Interim					
	MA SRM 1-88		MODOLOG	0 0/ (2002/					
SAC	IVIA SITIVI 1-00								
				er volume to	57% (0.011 in. CF	РТ)			
Temperat	ture (°F)	75							
	Content (%)	amb	ient						
Source C	m at T, RH ode	43	3						
	000	Normalized	Measured	Normaliz	ed Measured	Normalized Measured			
	Mean	129	121	- tornullz					
	Minimum	121	111						
	Maximum	145	137						
	C.V.(%)	5.02	6.03						
	B-value	(1)	(1)						
F ₁ ^{cu}	Distribution	Weibull	ANOVA						
(ksi)	C ₁	133	7.84						
	C ₂	18.9	4.39						
	No. Specimens	15							
	No. Batches	3							
	Data Class	Interim							
	Mean	9.42	8.81						
	Minimum Maximum	8.71 10.0	8.30 9.50						
ъc	C.V.(%)	4.25	9.30 5.35						
E ₁ ^c	0. v.(70)	4.20	0.00						
(Msi)	No. Specimens	15							
	No. Batches Data Class	3 Inte							
	Mean								
	No. Specimens								
v_{12}^c	No. Batches								
	Data Class								
	Mean								
	Minimum								
	Maximum C.V.(%)								
	0. v. (70)								
	B-value								
$\varepsilon_1^{ m cu}$	Distribution								
	C ₁								
(με)	C_1 C_2								
	\mathbf{U}_2								
	No. Specimens								
	No. Batches								
	Data Class								

Volume 2, Chapter 4 Carbon Fiber Composites

MATER RESIN FIBER PLY TH	IAL: AS4 3k/ CONTENT: 36-39 w VOLUME: 52-55 vo IICKNESS: 0.0110-0	3501-6 (No Blee t% bl % D.0114 in.	d) 5-harness satin w COMP: DENSITY: VOID CONTENT:	veave fabric 1.55-1.56 g/cn	Tab C/E n ³ AS4/35(SB:	le 4.2.20(c) p 280-5HS)1-6 (No Bleed) S, 31-plane [0f] ₈ 75/A
AS	TM D 2344-84		N/A			
NORM	ALIZED BY: Not norr	nalized				
		75				
	MATERIAL: AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric RESIN CONTENT: 36-39 wt% COMP: DENSITY: 1.55-1.56 g/cm³ IBER VOLUME: 52-55 vol % VOID CONTENT: AS4/3501-6 (No Bleed) PLY THICKNESS: 0.0110-0.0114 in. MODULUS CALCULATION: Screening IEST METHOD: N/A N/A IORMALIZED BY: Not normalized Not normalized					
		10				
Source						
	B-value	(1)				
F ₃₁ ^{sbs}	Distribution	ANOVA				
	C ₁	0.611				
. ,	C ₂	4.35				
	Data Class	Screening				
			+			

(1) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

1	DOCUMENTATION								
MATERIA	L: AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric Table 4.2.20(d) C/EP 280-5HS								
FIBER V	OLUME: 52-5	39 wt% COMP: DENSITY: 1.55-1.56 g/cm ³ 55 vol % VOID CONTENT:				AS4/3501-6 (No Bleed) Tension, x-axis			
	CKNESS: 0.01	13-0.0116 in.					[(0/45/90/-45) _f]₅ 75/A		
TEST ME	ETHOD:	MODULUS CALCULATION:					Screening		
AST	M D 3039-76								
NORMAL	-IZED BY: Spec	cimen thickness		er volume t	o 57%	5 (0.011 in. CF	т)		
Tempera	ture (°F)	75							
	Content (%) Im at T, RH	ambi	ent						
Source C		43	3						
		Normalized	Measured	Normali	zed	Measured	Normalized Measured		
	Mean Minimum	80.4 77.1	75.3 68.8						
	Maximum	86.4	68.8 82.0						
	C.V.(%)	3.85	5.41						
	B-value	(1)	(1)						
F_{x}^{tu}	Distribution	Normal	ANOVA						
(ksi)	C ₁	80.4	4.45						
(-)	C ₂	3.09	5.07						
	No. Specimens	9							
	No. Batches	3							
	Data Class	Screening							
	Mean Minimum	6.94 6.73	6.50 6.30						
	Maximum	7.13	6.60						
E_x^t	C.V.(%)	1.87	2.04						
(Msi)	No. Specimens No. Batches	9							
	Data Class	3 Screening							
	Mean		-						
, t	No. Specimens No. Batches								
$\nu_{\rm xy}^{\rm t}$									
	Data Class Mean								
	Minimum								
	Maximum								
	C.V.(%)								
	B-value								
$\varepsilon_{\rm x}^{\rm tu}$	Distribution								
(με)	C ₁								
	C ₂								
	No. Specimens								
	No. Batches								
	Data Class								

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

	DOCUMENTATION								
MATERI	MATERIAL: AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric Table 4.2.20(e) C/EP 280-5HS								
FIBER V	OLUME: 52-5	9 wt% 5 vol % 13-0.0116 in.	AS4/3501-0 OHT, [(0/±4	AS4/3501-6 (No Bleed) OHT, x-axis [(0/±45/90) _f]₅ 75/A					
TEST ME	THOD:		MODULUS	S CALCULATIO	DN:		Screening		
SAC	MA SRM 5-88								
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	r volume to 57	% (0.011 in. CP	T)			
Tempera		75							
	Content (%)	ambi	ent						
	im at T, RH	40	、 、						
Source C	ode	43		Neveelined	Managurad	Nerreelined	Magazinad		
	Mean	Normalized 54.4	Measured 55.5	Normalized	Measured	Normalized	Measured		
	Minimum	51.4	52.9						
	Maximum	57.7	58.7						
	C.V.(%)	4.58	3.72						
oht	B-value Distribution	(1) ANOVA	(1) Normal						
F_x^{oht}			55.5						
(ksi)	C ₁ C ₂	2.80 5.64	2.06						
	No. Specimens No. Batches Data Class	9 3 Screening							
E_x^{oht}	Mean Minimum Maximum C.V.(%)		,						
(Msi)	No. Specimens No. Batches Data Class								
	Mean Minimum Maximum C.V.(%)								
$\varepsilon_{\mathrm{x}}^{\mathrm{oht}}$	B-value Distribution								
(με)	C ₁								
(pic)	C ₂								
	No. Specimens No. Batches Data Class								

4.2.21 IM6 3501-6 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.22 IM7 12k/8552 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.23 T300 3k/977-2 plain weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.24 T-300 3k/977-2 8-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.25 IM7 12k/977-2 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.26 AS4 6k/PR500 5-harness satin weave fabric

Material Description:

Material: AS4 6k/PR500

- Form: 5 harness satin weave fabric, with 4% PT500 tackifier resin, fiber areal weight of 370 g/m², injected with PR500 resin by Resin Transfer Molding (RTM); typical cured resin content of 28-34%, typical cured ply thickness of 0.013 0.0145 inches.
- Processing: RTM injection at > 320°F, cure for 2 hours at 350°F

General Supplier Information:

- Fiber: Hercules/Hexcel AS4 fibers are continuous carbon filaments made from a PAN precursor woven into 5HS fabric. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3M PR 500 is a one part, 350°F curing epoxy resin system especially suited to RTM processing. Characteristics include: excellent toughness with 300°F wet mechanical performance, several weeks of room temperature stability and low viscosity at recommended injection temperature.

Maximum Short Term Service Temperature: 350°F (dry), 300°F (wet)

Typical applications: Primary and secondary aircraft structure (commercial and military) and other applications requiring unusual hot/wet properties and impact resistance where RTM advantages such as precise dimensional tolerances, part consolidation, complex lay-ups and replicated surface finishes are desired.

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.26 AS4 6k/PR500 5-harness satin weave fabric*

MATERIAL:	AS4 6k/Pl	R 500 harness	s satin weave fa	abric		C/Ep 370-5HS AS4/PR 500 Summary
FORM:	Fiberite 5-	harness satin	500			
FIBER:	Hercules	Hercules AS4 6K, GP sizing, no twist MATRIX: 3M PR 500 RTM				
T _g (dry):	378°F	T _g (wet):	340°F	T _g METHOD:	SRM 18-94, RDA	GN knee
PROCESSING:		old temperatur			pressure 175 psi, inte ate temperature 140-	-

Date of fiber manufacture	12/93-5/94	Date of testing	5/95-11/95
Date of resin manufacture	8/94-9/94	Date of data submittal	6/96
Date of prepreg manufacture	11/94-12/94	Date of analysis	8/96
Date of composite manufacture	1/95-10/95		

	72°F/A	-75°F/A	180°F/A	300°F/A	350°F/A	180°F/ W	240°F/W	300°F/W
Tension, 1-axis	II-I		II-I	SS-S	IS-S	II-S	II-S	II-I
Tension, 2-axis								
Tension, 3-axis								
Compression, 1-axis	II	-I	II	I	S	I	S	S
Compression, 2-axis								
Compression, 3-axis								
Shear, 12-plane	II	II	SS	II	SS	II	SS	SS
Shear, 23-plane								
Shear, 31-plane	I		I	I		I		I
SB Strength, 31-plane	S		S	S		S		S

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for 12-plane shear for four fluids in addition to water.

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.787		ASTM C693
Resin Density	(g/cm ³)	1.25		ASTM D 792
Composite Density	(g/cm ³)		1.55-1.60*	
Fiber Areal Weight	(g/m ²)	370	375	SRM 23-94
Fiber Volume	(% vol)		55.5-64.8	
Ply Thickness	(in)	0.014	0.0128-0.0149	

* Throughout this section, resin content and composite density have been calculated assuming zero void content.

	72°F/A	-75°F/A	180°F/A	300°F/A	350°F/A	180°F/W	240°F/W	300°F/W
[0/45/90/-45]								
OHT, x-axis	IS-S	IS-S	IS-S	IS-S	IS-S	IS-S	IS-S	BI-b
OHC, x-axis	BS-S		IS-S	II-I		IS-S	II-I	bI-I
CAI, x-axis	I							
Glc	S							
Gilc	b							

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for 240/W and five impact energy levels for CAI.

MATERIA	AL: AS4	6k/PR 500 RTN	/ 5-harness sa	tin weave fabric	;		.2.26(a)
FIBER VO PLY THIO	OLUME: 57.6 CKNESS: 0.01	34 wt% 5 - 62.0 vol % 33 - 0.0142 in.	COMP: DE VOID CON	ITENT: NA	6 - 1.58 g/cm ³	AS4/F Tensior [0 72/A, 180	70-5HS PR 500 n, 1-axis f] _{3s} J/A, 240/A
TEST ME				S CALCULATIO		Interim, S	Screening
SRI	VI 4R-94		Chord	between 1000 a	and 3000 με		
NORMAL	IZED BY: Spe	cimen thickness				ume (0.0145 in.	CPT)
	Content (%)	72 amb		18 amb		24 amb	
Source C	im at T, RH Code	6	1	6	1	6	1
2001000		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	115 105 124 4.50	120 111 129 4.74	115 102 126 5.48	118 105 128 4.94	117 103 125 4.79	122 106 133 5.15
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	5.71 4.43	6.44 4.83	7.01 4.65	121 23.5	6.03 4.42	6.67 4.06
	No. Specimens No. Batches Data Class	17 3 Interim		3	16 3 Interim		5 rim
E_1^t	Mean Minimum Maximum C.V.(%)	9.54 9.15 9.86 1.78	9.97 9.46 10.5 3.64	9.44 9.01 9.80 2.62	9.73 9.09 10.2 3.35	9.53 9.26 9.88 2.13	9.94 9.46 10.2 2.43
(Msi)	No. Specimens No. Batches Data Class	3	15 3 Interim		16 3 Interim		5 rim
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		11900 10800 13700 6.17		11800 10200 16400 12.4		11600 10000 13100 7.68
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Nonpara		(1) ANOVA		(1) Weibull
(με)	C ₁ C ₂		8 1.54		1510 3.294		12000 16.2
	No. Specimens No. Batches Data Class	15 3 Inte	5	15 3 Inte	3	1: 3 Scree	

MATERIA	AL: AS	4 6k/PR 500 RTN	/I 5-harness sa	itin weave fabric	:		l.2.26(b)
FIBER VO PLY THIO	OLUME: 57. CKNESS: 0.0	- 34 wt% 6 - 62.0 vol % 133 - 0.0142 in.	COMP: DE VOID CON	ITENT: NA	6 - 1.58 g/cm ³	AS4/F Tensio [0 300/A, 35	770-5HS PR 500 n, 1-axis 0/₃ 0/A, 180/W
TEST ME				S CALCULATIO		Interim,	Screening
SRI	VI 4R-94		Chord	between 1000 a	and 3000 με		
NORMAL	IZED BY: Sp	ecimen thickness	and batch fibe	er areal weight to	57% fiber vol	ume (0.0145 in.	. CPT)
	Content (%) m at T, RH	30 amb	ient	35 amb 6 ⁷	ient	18 (2 160°F 6	?) water
000100 0		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	111 104 118 3.97	117 111 122 2.82	105 94.6 112 4.39	114 103 123 4.75	112 103 119 4.66	114 109 119 2.57
$\mathbf{F}_{1}^{\mathrm{tu}}$	B-value Distribution	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	4.91 5.14	119 49.5	5.19 5.34	117 25.9	5.89 5.48	3.25 5.03
	No. Specimens No. Batches Data Class	3	14 3 Screening		15 3 Interim		5 3 rim
E_1^t	Mean Minimum Maximum C.V.(%)	9.51 9.14 9.79 2.16	10.0 9.79 10.5 2.21	9.07 8.46 9.76 4.50	9.88 9.28 10.5 3.76	9.70 9.40 10.2 2.25	9.92 9.47 10.4 2.78
(Msi)	No. Specimens No. Batches Data Class	3	14 3 Screening		2 ening	15 3 Interim	
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		11500 10900 12800 4.78		11800 10900 12400 3.88		11000 9700 11900 5.88
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Normal		(1) Weibull		(1) ANOVA
(με)	C ₁ C ₂		11500 550.		12000 34.4		691. 4.32
	No. Specimens No. Batches Data Class	1 3 Scree	3	12 3 Scree		14 3 Scree	3
		Sure	, in the	00100	rinny	00166	2 mily

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	/ 5-harness sa	tin weave fabric			.2.26(c)
RESIN C FIBER VO PLY THIC	OLUME: 57.6	34 wt% - 62.0 vol % 33 - 0.0142 in.	COMP: DE VOID CON		6 - 1.58 g/cm ³	AS4/F Tensior [(70-5HS PR 500 h, 1-axis /ʲ]8 , 300/W
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		Screening
	VI 4R-94			between 1000 a			ŭ
NORMAL	IZED BY: Spe	cimen thickness		er areal weight to		ume (0.0145 in.	CPT)
	Content (%) m at T, RH	24 (2 160°F 6	:) water	30 (2) 160°F 61) water		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	109 98.0 118 5.65	114 104 120 4.13	102 98.1 110 2.81	110 102 116 3.46		
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) Nonpara.	(1) Weibull		
(ksi)	$C_1 \\ C_2$	6.82 4.98	5.05 4.32	8 1.43	112 35.4		
	No. Specimens No. Batches Data Class	3 Interim		3 Inter	17 3 Interim		
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.42 9.04 9.82 2.47	9.84 9.45 10.5 3.11	9.24 8.69 9.60 2.60	9.96 9.20 10.5 3.62		
(Msi)	No. Specimens No. Batches Data Class	15 3 Inte	5	15 3 Inter			
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		11200 10400 13500 7.43		11000 10100 12000 4.38		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Nonpara.		(1) Weibull		
(με)	C ₁ C ₂		7 1.81		11300 23.7		
	No. Specimens No. Batches Data Class	12 3 Scree	5	15 3 Inter			

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	/I 5-harness sa	tin weave fabric	0		.2.26(d)
RESIN CO FIBER VO PLY THIO TEST ME	OLUME: 56.5 CKNESS: 0.01	35 wt% 5 - 61.8 vol % 34 - 0.0146 in.	COMP: DE VOID CON MODULUS		5 - 1.58 g/cm ³ DN:	C/Ep 370-5HS AS4/PR 500 Compression, 1-axis [0 _f] _{3s} 72/A, -75/A, 180/A Interim	
	/ 1R-94			between 1000			
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight t	o 57% fiber vol	ume (0.0145 in.	CPT)
	ture (°F) Content (%) m at T, RH	7: amb		-7 amb	75 pient	18 amb	
Source C	ode	6		6		6'	
	Mean Minimum Maximum C.V.(%)	Normalized 118 103 136 7.91	Measured 127 110 141 7.41	Normalized	Measured	Normalized 105 92.1 116 5.86	Measured 110 94.4 126 7.02
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) Weibull			(1) Weibull	(1) Weibull
(ksi)	C ₁ C ₂	9.99 3.81	131 16.1			108 19.8	114 15.8
	No. Specimens No. Batches Data Class	17 3 Interim				15 3 Interim	
E_1^c	Mean Minimum Maximum C.V.(%)	8.88 8.30 9.41 3.16	8.95 8.28 9.86 5.41	8.85 8.19 9.30 3.09	8.90 8.10 9.72 4.71	8.99 8.69 9.30 2.16	9.00 7.99 9.48 5.08
(Msi)	No. Specimens No. Batches Data Class	1 3 Inte	3	15 3 Interim		15 3 Interim	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	6k/PR 500 RTM	/I 5-harness sa	tin weave fabric	:		.2.26(e)
RESIN C FIBER VO PLY THIC TEST ME	OLUME: 56.5 CKNESS: 0.01	35 wt% - 61.8 vol % 34 - 0.0146 in.	COMP: DE VOID CON		5 - 1.58 g/cm ³	C/Ep 370-5HS AS4/PR 500 Compression, 1-axis [0 _f] _{3s} 240/A, 300/A, 350/A Interim, Screening	
	M 1R-94			between 1000 a		interini, s	screening
		cimen thickness				ume (0.0145 in.	CPT)
Equilibriu	Content (%) m at T, RH	24 amb	ient	30 amb	ient	35 amb	ient
Source C	ode	6 [°]		6 [°]		6 Normalized	
	Mean Minimum Maximum C.V.(%)	Normalized 103 98.2 110 3.36	Measured 106 99.5 114 4.37	Normalized 80.1 69.5 87.5 6.69	Measured 84.2 71.2 93.0 7.31	Normalized 51.0 42.2 61.6 9.72	Measured 53.5 44.4 64.8 10.6
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA
(ksi)	C ₁ C ₂	104 29.3	4.94 4.14	82.5 18.0	6.68 4.18	53.3 10.7	6.10 4.30
	No. Specimens No. Batches Data Class	15 3 Interim		10 3 Inte		1: 3 Scree	3
E_1^c	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\boldsymbol{arepsilon}_1^{\mathrm{cu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric	:		4.2.26(f)
RESIN CO FIBER VO PLY THIO TEST ME	OLUME: 56.5 CKNESS: 0.01	35 wt% - 61.8 vol % 34 - 0.0146 in.	COMP: DE VOID CON		5 - 1.58 g/cm ³	C/Ep 370-5HS AS4/PR 500 Compression, 1-axis [0 _f] _{3s} 180/W, 240/W, 300/W Interim, Screening	
	M 1R-94			between 1000 a		interini, v	Screening
		cimen thickness				ume (0.0145 in.	. CPT)
	Content (%) m at T, RH	18 (2 160°F 61) water	24 (2 160°F 61) water	30 (2 160°F 6	?) water
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	100 87.9 114 7.08	106 87.7 126 10.2	77.5 67.4 87.1 8.97	79.3 66.1 93.4 12.3	67.0 62.2 71.6 4.43	71.7 65.5 78.2 6.05
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) Normal	(1) ANOVA	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	7.53 3.67	12.3 4.89	77.5 6.95	11.9 16.8	3.33 11.7	5.33 16.2
	No. Specimens No. Batches Data Class	17 3 Interim		9 2 Scree		11 2 Screening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-	harness satin weav	e fabric		le 4.2.26(g)	
RESIN CO FIBER VO PLY THIC	DLUME:	29 - 35 w 56.0 - 63 0.0130 -		COMP: DENSITY: 1.55 - 1.59 g/cm ³ VOID CONTENT: NA			C/Ep 370-5HS AS4/PR 500 Shear, 12-plane [45 _f] _{2s} 72/A, -75/A, 180/A, 240/A, 300/A	
TEST ME	THOD:			MODULUS CALC	ULATION:		n, Screening	
SRM	7R-94			Chord axial mo	odulus between 10	00 and 4000 με		
NORMALI	IZED BY:	Not norm	nalized					
Temperate			72	-75	180	240	300	
Equilibriur	Content (%) m at T, RH		ambient	ambient	ambient	ambient	ambient	
Source Co			61	61	61	61	61	
	Mean		14.8	15.4	13.5	11.5	9.25	
	Minimum Maximun		13.0 18.2	14.5 18.0	12.6 14.4	10.7 13.1	7.97 10.3	
	C.V.(%)	I	8.63	5.50	4.15	5.37	7.28	
	B-value		(1)	(1)	(1)	(1)	(1)	
F_{12}^s	Distributi	on	Normal	Nonpara	ANOVA	Normal	Weibull	
(ksi)	C ₁		14.8	8	0.632	11.5	9.55	
()	C ₂		1.28	1.54	5.37	0.618	15.6	
	No. Spec		16	15	14	15	16	
	No. Batcl		3	3	3	3	3	
	Data Cla	SS		Interim	Screening	Interim		
	Mean Minimum		0.639 0.585	0.838 0.795	0.513 0.451	0.432 0.388	0.361 0.331	
	Maximun		0.565	0.893	0.593	0.505	0.381	
G ^s ₁₂	C.V.(%)	1	6.56	4.28	7.17	7.56	3.92	
(Msi)	No. Spec	cimens	16	15	14	15	16	
	No. Batcl		3	3	3	3	3	
	Data Cla	SS	Interim	Interim	Screening	Interim	Interim	

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-ł	narness satin weave	e fabric		able 4.2.26(h) C/Ep 370-5HS
RESIN CO FIBER VO PLY THIC	DLUME:	29 - 35 w 56.0 - 63 0.0130 -			1.55 - 1.59 g/ơ NA	cm ³ SI	AS4/PR 500 hear, 12-plane [45 _f] _{2s} A, 180/W, 240/W, 300/W
TEST ME				MODULUS CALCU			erim, Screening
SRM	7R-94			Chord axial mo	dulus between 10	000 and 4000	με
NORMALI	IZED BY:	Not norm	alized				
Temperate Moisture (ure (°F) Content (%)		350 ambient		180 (2)	240 (2)	300 (2)
	n at T, RH		61		160°F water 61	160°F wate 61	
	Mean		7.75		12.2	10.2	7.82
	Minimum		7.37		11.3	9.61	7.03
	Maximum		8.15		13.0	11.4	8.45
	C.V.(%)		4.36		4.76	4.78	6.35
F_{12}^s	B-value Distributio	on	(1) Normal		(1) ANOVA	(1) ANOVA	(1) Weibull
(ksi)	C ₁		7.75		0.656	0.529	8.04
	C ₂		0.338		5.36	4.62	19.6
	No. Spec No. Batch		8 2		15 3	14 3	11 3
	Data Clas		∠ Screening		ہ Interim	Screening	
	Mean	55	0.252		0.506	0.400	0.235
	Minimum		0.216		0.450	0.352	0.190
	Maximum		0.264		0.577	0.450	0.274
G_{12}^s	C.V.(%)	-	6.02		5.80	6.95	12.0
(Msi)	No. Spec		8		15	14	11
	No. Batch Data Clas		2 Screening		3 Interim	3 Screening	3 Screening

(1) Basis values are presented only for A and B data classes.

(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-h	arness satin weave	fabric		ble 4.2.26(i) Ep 370-5HS
RESIN CO FIBER VC PLY THIC	DLUME:	29 - 35 v 56.0 - 63 0.0130 -		cm ³ A She	AS4/PR 500 Shear, 12-plane [45 _f] _{2s} 72/Fluids		
TEST ME	THOD:			MODULUS CALCU	JLATION:		Screening
SRM	7R-94			Chord axial mod	dulus between 1	000 and 3000 μ	ε
NORMALI	ZED BY:	Not norm	nalized				
Temperati	ure (°F)		72	72	72	72	
	Content (%)		(2)	(3)	(4)	(5)	
	n at T, RH						
Source Co			61	61	61	61	
	Mean		13.5	14.6	15.0	14.8	
	Minimum Maximum		12.4 14.9	13.4 16.7	13.5 16.7	13.7 15.8	
	C.V.(%)		6.46	8.44	8.41	6.88	
	0. v.(70)		0.40	0.77	0.41	0.00	
	B-value		(1)	(1)	(1)	(1)	
F_{12}^s	Distributio	n	Normal	Normal	Normal	Normal	
(ksi)	C ₁		13.5	14.6	15.0	14.8	
()	C ₂		0.872	1.23	1.26	1.02	
	No. Speci	mens	7	7	6	6	
	No. Batch		1	1	1	1	
	Data Clas		Screening	Screening	Screening	Screening	
	Mean		0.601	0.678	0.651	0.666	
	Minimum		0.560	0.639	0.633	0.650	
	Maximum		0.638	0.716	0.677	0.701	
G_{12}^s	C.V.(%)		5.65	4.45	2.64	2.77	
(Msi)	No. Speci	mens	7	7	6	6	
· - /	No. Batch	es	1	1	1	1	
	Data Clas	S	Screening	Screening	Screening	Screening	

(1) Basis values are presented only for A and B data classes.

(2) Held for 6 days at room temperature in MEK cleaning solvent.

(3) Held for 6 days at 160°F in Skydrol hydraulic fluid.

(4) Held for 6 days at room temperature in JP-4 jet fuel.

(5) Held for 6 days at room temperature in deicing fluid.

MATERIAL:	AS4 6k/F	AS4 6k/PR 500 RTM 5-harness satin weave fabric Table 4.2.26 C/Ep 370-51								
RESIN CONTENT FIBER VOLUME: PLY THICKNESS	57.6 - 62		COMP: DENSITY: /OID CONTENT:	1.56 - 1.58 g/c NA	cm ³ AS SBS 72/A, 1	AS4/PR 500 SBS, 31-plane [0 _f] _{3s} 72/A, 180/A, 300/A, 180/W, 300/W				
TEST METHOD:		Ν	ODULUS CALCI	JLATION:		creening				
SRM 8R-94			Chord axial mo	dulus between 10	000 and 3000 με					
NORMALIZED BY: Not normalized										
Temperature (°F)		72	180	300	180	300				
Moisture Content		ambient	ambient	ambient	(2)	(2)				
Equilibrium at T, R Source Code	(H	61	61	61	160°F water 61	160°F water 61				
Source Code Mean	1	11.6	9.6	6.8	8.0	5.47				
Minim		10.4	9.0	6.5	7.2	5.2				
Maxir		12.7	10.2	7.3	8.4	5.7				
C.V.(5.36	3.4	3.2	4.6	3.3				
B-val		(1)	(1)	(1)	(1)	(1)				
F ₃₁ ^{sbs} Distril	bution	Weibull	ANOVA	Normal	Weibull	Normal				
(ksi) C ₁		11.9	0.35	6.8	8.1	5.5				
C ₂		22.2	3.5	0.22	30.	0.18				
No. S	pecimens	19	19	19	12	7				
	atches	3	3	3	2	1				
Data		Screening	Screening	Screening	Screening	Screening				
		Ŭ		5	Ŭ	, , , , , , , , , , , , , , , , , , ,				

Short beam strength test data are approved for Screening Data Class only.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric		Table 4	.2.26(k)			
FIBER V	ONTENT: 28 - OLUME: 55.5	36 wt% 5 - 64.8 vol % 28 - 0.0149 in.	COMP: DE VOID CON	NSITY: 1.55	5		70-5HS PR 500 x-axis 00 _f /-45 _f] _s			
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	72/A, -75/A, 180/A Interim, Screening				
SRI	M 5R-94		Chord	between 1000 a	and 3000 με					
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 57% fiber volume (0.0145 in. CPT)										
Tempera		72		-7		18				
	Content (%) Im at T, RH	amb	ient	ambi	ient	amb	ient			
Source C		6		61		6	1			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	47.5	49.4	47.7	49.9	46.9	48.3			
I	Minimum	42.5	41.7	41.7	40.6	43.8	44.9			
	Maximum C.V.(%)	51.5 5.49	54.0 7.03	51.6 5.73	54.8 7.82	48.8 3.46	51.5 4.66			
F _x ^{ohtu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	48.7 21.8	51.0 17.6	48.8 22.6	51.5 17.6	1.69 3.61	2.20 3.81			
	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		15 3 Inte				
	Mean	6.86 7.24		7.25	7.77	6.75	7.04			
	Minimum	6.72	7.09	7.08	7.63	6.55	6.71			
	Maximum	7.07	7.41	7.34	7.94	7.14	7.45			
E_x^{oht}	C.V.(%)	1.94	1.59	1.42	1.90	3.26	3.48			
(Msi)	No. Specimens No. Batches	5		5		6				
	Data Class	Scree		Scree		Scree	ning			
	Mean		7100		6700		7100			
	Minimum		6500		6600		6800			
	Maximum		7500		7000		7400			
	C.V.(%)		5.7		2.5		3.8			
$arepsilon_{ m x}^{ m ohtu}$	B-value Distribution		(1) Normal		(1) Normal		(1) Normal			
ε _x (με)	C ₁		7100		6700		7100			
(με)	C_2		400		170		270			
	No. Specimens No. Batches	5		5		5				
	Data Class	Scree		Scree		Scree	nina			
	2010 01000	00100		00.00		00100				

MATERIA	AL: AS4	6k/PR 500 RTM	l 5-harness sa	tin weave fabric		Table 4	l.2.26(I)			
	ONTENT: 28 - OLUME: 55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	COMP: DE VOID CON	NSITY: 1.55	5 - 1.60 g/cm ³	C/Ep 3 AS4/F OHT, [0 _f /45 _f /9	70-5HS PR 500 x-axis 00 _f /-45 _f] _s			
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		240/A, 300/A, 350/A Interim, Screening			
SRM	M 5R-94		Chord	between 1000 a	and 3000 με					
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 57% fiber volume (0.0145 in. CPT)										
Temperat		24		30		35				
	Content (%) m at T, RH	ambi	ent	amb	ient	ambi	ient			
Source C		61		6		61				
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
1	Mean	48.6	51.2	47.5	49.7	44.1	45.4			
1	Minimum	45.4	47.8	45.9	46.6	41.6	41.4			
	Maximum	52.8	56.1	51.2	53.3	46.7	48.4			
	C.V.(%)	3.89	4.96	3.20	4.11	3.61	3.86			
	B-value	(1)	(1)	(1)	(1)	(1)	(1)			
F_x^{ohtu}	Distribution	Weibull	Normal	Nonpara.	Weibull	ANOVA	Weibull			
(ksi)	C ₁	49.5	51.2	8	50.7	1.70	46.3			
. ,	C ₂	25.6	2.54	1.49	26.1	3.84	29.3			
	No. Specimens	16	6	16	6	16	6			
	No. Batches	3		3		3				
	Data Class	Interim		Interim		Inte				
	Mean	6.58	6.96	6.64	7.02	6.01	6.28			
	Minimum	6.42	6.70	6.52	6.74	5.85	6.08			
E_x^{oht}	Maximum C.V.(%)	6.78 2.10	7.20 2.82	6.87 1.84	7.12 2.03	6.33 3.14	6.52 2.56			
				_		_				
(Msi)	No. Specimens	6		6		6				
	No. Batches Data Class	Scree	nina	Scree		Scree	ning			
	Mean	00100	7500	00100	7200	00100	7300			
	Minimum		7000		7000		7000			
	Maximum		7800		7300		7700			
	C.V.(%)		3.7		1.8		3.6			
	B-value		(1)		(1)		(1)			
$\varepsilon_{\mathrm{x}}^{\mathrm{ohtu}}$	Distribution		Normal		Normal		Normal			
(με)	C ₁		7500		7200		7300			
· · /	C ₂		270		130		260			
	No. Specimens	6		6	i	6				
	No. Batches	1		1		1				
	Data Class	Scree	ning	Scree	ening	Scree	ning			

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric	:	Table 4	.2.26(m)			
RESIN C FIBER V	ONTENT: 28 - OLUME: 55.5	36 wt% 5 - 64.8 vol % 28 - 0.0149 in.	COMP: DE VOID CON	C/Ep 3 AS4/F OHT, [0 _f /45 _f /S	C/Ep 370-5HS AS4/PR 500 OHT, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 180/W 200/W 300/W					
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		180/W, 240/W, 300/W B18, Interim, Screening			
SRI	M 5R-94		Chord	between 1000 a	and 3000 με					
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 57% fiber volume (0.0145 in. CPT)									
Tempera		18		24		30				
	Content (%)	(2		(2)	(2				
Source C	im at T, RH	160°F 61		160°F 6′		160°F 6				
Source C	Joue	Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	47.1	49.3	46.4	48.6	46.5	48.6			
	Minimum	43.1	44.2	43.7	46.0	44.4	45.7			
	Maximum	50.0	53.6	49.4	53.4	50.1	52.3			
	C.V.(%)	3.81	5.13	3.57	4.44	3.57	6.05			
	B-value	(1)	(1)	(1)	(1)	41.9	43.6			
F _x ^{ohtu}	Distribution	Weibull	Weibull	Weibull	Nonpara.	Weibull	Weibull			
(ksi)	C ₁	47.9	50.4	47.2	8	28.1	26.8			
	C ₂	29.6	22.0	31.0	1.49	47.3	49.6			
	No. Specimens	16	6	16	6	2	1			
	No. Batches	3		3		3				
	Data Class	Interim		Interim 7.00 7.46		B1				
	Mean Minimum	6.69 6.58	7.08 6.77	6.78	7.46 7.07	6.64 5.95	6.96 6.15			
	Maximum	6.80	7.43	7.24	7.70	7.01	7.54			
E_x^{oht}	C.V.(%)	1.63	3.44	2.96	3.74	4.92	5.93			
(Msi)	No. Specimens	6		6	i	1	6			
	No. Batches	1		1		3	5			
	Data Class	Scree		Scree	0	Inte				
	Mean Minimum		7100 6800		6600 6100		6900 6000			
	Maximum		7200		7100		7800			
	C.V.(%)		2.2		6.5		6.1			
$arepsilon_{\mathrm{x}}^{\mathrm{ohtu}}$	B-value Distribution		(1) Normal		(1) Normal		5800 Weibull			
(με)	C ₁		7100		6600		7100			
(µc)	C ₂		150		430		17			
	No. Specimens No. Batches	6		6		18				
	Data Class	Scree		Scree		B1				
	2444 01400	00,00		00,00			-			

(1) Basis values are presented only for A and B data classes.
(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric		Table 4	.2.26(n)		
RESIN C FIBER VO PLY THIO	OLUME: 55.5	36 wt% 5 - 64.8 vol % 28 - 0.0149 in.	Comp: De Void Con			C/Ep 3 AS4/F OHC, [0 _f /45 _f /S	C/Ep 370-5HS AS4/PR 500 OHC, x-axis [0t/45t/90t/-45t]s 72/A 180/A 240/A		
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	72/A,180/A,240/A B18, Interim, Screening			
SRM	M 5R-94		Chord	between 1000 a	and 3000 με				
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 57% fiber volume (0.0145 in. CPT)									
Temperat		72		18		24			
	Content (%) m at T, RH	amb	ient	ambi	ient	amb	ient		
Source C		6		61		6			
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	45.3	47.2	38.2	40.4	35.6	37.9		
	Minimum	42.7	44.7	34.8	37.0	32.2	33.9		
	Maximum C.V.(%)	48.2 3.57	51.4 4.17	44.1 6.32	47.3 6.93	37.9 4.22	41.0 4.38		
	B-value	41.0	41.5	(1)	(1)	(1)	(1)		
F _x ^{ohcu}	Distribution	Weibull	Weibull	Weibull	Normal	Weibull	Weibull		
(ksi)	C ₁ C ₂	46.1 30.7	48.1 24.0	39.4 15.1	40.4 2.80	36.2 29.6	38.6 26.7		
	No. Specimens No. Batches Data Class	18 3 B18		16 3 Interim		16 3 Inte			
	Mean	6.67 7.10		6.48	6.94	6.43	6.85		
	Minimum	6.28	6.67	6.44	6.78	6.24	6.34		
	Maximum	7.08	7.59	6.52	7.05	6.70	7.32		
E_x^{ohc}	C.V.(%)	4.47	5.02	0.549	1.44	1.87	4.35		
(Msi)	No. Specimens No. Batches	8		5		1: 3			
	Data Class	Scree		Scree		Scree			
	Mean		6900		6100		5500		
	Minimum		6500		5400		5100		
	Maximum		7500		6800		6000		
	C.V.(%)		5.7		9.7		4.6		
$\varepsilon_{\rm x}^{ m ohcu}$	B-value Distribution		(1) Normal		(1) Normal		(1) Weibull		
(με)	C ₁		6900		6100		5700		
(με)	C_2		390		590		24		
	No. Specimens	5		5		15			
	No. Batches Data Class	1 Scree	nina	1 Scree	ning	3 Scree			
	Data Class	30166	ining	Sciee	anny	30186	anny		

MATERIA	NI: AS4	6k/PR 500 RTM	5-barness sa	tin weave f	abric		Table	4.2.26(o)
	ONTENT: 28 - OLUME: 55.5	- 36 wt% COMP: DENSITY: 1.55 - 1.60 g/cm ³ 5 - 64.8 vol % VOID CONTENT: NA 128 - 0.0149 in.			C/Ep 3 AS4/I OHC, [0 _f /45 _f /!	C/Ep 370-5HS AS4/PR 500 OHC, x-axis [0 _f /45 _f /90 _f /-45 _f]s		
TEST ME	THOD:		MODULUS	S CALCUL	ΑΤΙΟΙ	N:	300/A Interim	
	M 5R-94					and 3000 µɛ		
NORMAL	IZED BY: Spec	cimen thickness	and batch FA	W to 57% f	iber v	olume (0.014	5 in. CPT)	
	Content (%) m at T, RH	30 ambi 61	ent					
	loue	Normalized	Measured	Normaliz	ed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	32.1 26.2 36.6 7.92	34.0 28.9 38.6 7.41	literitait		modeared	Holman200	madalou
F _x ^{ohcu}	B-value Distribution	(1) Weibull	(1) Weibull					
(ksi)	C ₁ C ₂	33.2 15.7	35.1 14.9					
	No. Specimens No. Batches Data Class	17 3 Inter	im					
E _x ^{ohc}	Mean Minimum Maximum C.V.(%)	6.24 6.02 6.38 1.73	6.60 6.19 7.24 4.13					
(Msi)	No. Specimens No. Batches Data Class	17 3 Inter						
	Mean Minimum Maximum C.V.(%)		5100 4300 5700 7.6					
$arepsilon_{ m x}^{ m ohcu}$	B-value Distribution		(1) Weibull					
(με)	C ₁ C ₂		5300 17					
	No. Specimens No. Batches Data Class	17 3 Inter						

MATERIA	AL: AS4	6k/PR 500 RTM	l 5-harness sa	tin weave fabric		Table 4	.2.26(p)				
FIBER V	OLUME: 55.5	36 wt% 5 - 64.8 vol % 28 - 0.0149 in.	COMP: DE VOID CON	5 - 1.60 g/cm ³	C/Ep 370-5HS AS4/PR 500 OHC, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 180/W, 240/W, 300/W						
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		B18, Interim, Screening				
SRI	M 5R-94	Chord between 1000 and 3000 με									
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 57% fiber volume (0.0145 in. CPT)										
Tempera		18		24		30					
	Content (%)	(2))	(2)	(2	2)				
Source C	im at T, RH	160°F 61		160°F 6′		160°F 6					
Source C	Jule	Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean	36.3	38.5	32.8	34.6	27.1	28.4				
	Minimum	32.2	34.5	30.3	31.8	25.0	26.1				
	Maximum	40.9	44.2	36.5	38.4	30.2	32.1				
	C.V.(%)	7.01	7.02	5.76	6.39	6.35	6.52				
	B-value	(1)	(1)	(1)	(1)	25.4	23.5				
F _x ^{ohcu}	Distribution	Weibull	ANÓVA	Weibull	Weibull	Nonpara.	Weibull				
(ksi)	C ₁	37.5	2.90	33.7	35.7	9	29.3				
	C ₂	16.1	3.97	18.2	17.2	1.35	16.4				
	No. Specimens	16	6	17	7	1	8				
	No. Batches	3		3		3	3				
	Data Class	Interim		Interim 6.45 6.83		B1					
	Mean Minimum	6.39 6.29	6.90 6.56	6.45 6.22	6.83 6.49	6.10 5.84	6.40 5.78				
	Maximum	6.53	7.13	7.05	7.46	6.45	6.87				
E_x^{ohc}	C.V.(%)	1.69	2.89	3.54	4.03	2.64	4.57				
(Msi)	No. Specimens	6		15	5	1:	5				
()	No. Batches	1		3		3	3				
	Data Class	Scree	U U	Inte		Inte					
	Mean Minimum		5800 5400		5100 4500		4500 4100				
	Maximum		5400 6500		4300 5800		4900				
	C.V.(%)		7.0		7.2		5.4				
$arepsilon_{\mathrm{x}}^{\mathrm{ohcu}}$	B-value Distribution		(1) Normal		(1) Weibull		(1) Weibull				
(με)	C ₁		5800		5300		4600				
(µc)	C_2		410		15		20				
	No. Specimens	6		1:		1					
	No. Batches	1	ning	3 Inte		3 Into					
	Data Class	Scree	ning	inte	11111	Inte	1111				

(1) Basis values are presented only for A and B data classes.
(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

ONTENT: 30 - OLUME: 58.5	6 - 1.59 g/cm ³	Table 4.2.26(q) C/Ep 370-5HS AS4/PR 500 CAI, x-axis [0 _f /45 _f /90 _f /-45 _f] _{2s}				
THOD:		Impact erim				
	•			-		_
ture (°F) Content (%) Im at T, RH Code	amb (2	ient !)	amb (3	pient 3)	amb (4	ient)
	Normalized	Measured	Normalized	Measured	Normalized	Measured
Mean Minimum Maximum C.V.(%)	60.5 55.6 67.2 5.33	64.3 59.1 71.7 5.42	43.1 40.6 45.3 3.31	45.8 42.4 48.6 4.23	39.5 35.5 45.7 6.32	41.9 39.0 47.6 5.47
B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA
C ₁ C ₂	62.0 19.6	66.0 18.9	1.58 4.98	2.17 5.26	2.64 3.99	2.45 4.18
No. Specimens No. Batches Data Class	3	5	3	3	3	1
	ONTENT: 30 - OLUME: 58.5 CKNESS: 0.01 ETHOD: M 2-94, Impact ener IZED BY: Specture (°F) Content (%) m at T, RH code Mean Minimum Maximum C.V.(%) B-value Distribution C1 C2 No. Specimens No. Batches	ONTENT: $30 - 33$ wt%OLUME: $58.5 - 62.4$ vol %CKNESS: $0.0133 - 0.0141$ in.ETHOD:M 2-94, Impact energy (see footnoteM 2-94, Impact energy (see footnoteLIZED BY:Specimen thicknessture (°F)72Content (%)ambm at T, RH(2code60Mean60.5Minimum55.6Maximum67.2C.V.(%)5.33B-value(1)DistributionWeibullC162.0C219.6No. Specimens14No. Batches33	ONTENT: $30 - 33$ wt%COMP: DEOLUME: $58.5 - 62.4$ vol %VOID CONOKNESS: $0.0133 - 0.0141$ in.WODULUSETHOD:MODULUSM 2-94, Impact energy (see footnotes)MODULUSLIZED BY:Specimen thickness and batch FAture (°F)72Content (%)ambientm at T, RH(2)iode61Mean 60.5 64.3 Minimum 55.6 59.1 Maximum 67.2 71.7 C.V.(%) 5.33 5.42 B-value(1)(1)DistributionWeibullC1 62.0 66.0 C219.618.9No. Specimens 15 No. Batches 3	ONTENT: $30 - 33$ wt%COMP: DENSITY: 1.50 OLUME: $58.5 - 62.4$ vol %VOID CONTENT:NAOKNESS: $0.0133 - 0.0141$ in.MODULUS CALCULATICETHOD:MODULUS CALCULATICM 2-94, Impact energy (see footnotes).IZED BY:Specimen thickness and batch FAW to 57% fiberure (°F)72Content (%)ambientm at T, RH(2)(2)(3)code61Mean 60.5 Maximum 67.2 71.7 45.3 C.V.(%) 5.33 5.42 3.31 B-value(1)(1)(1)DistributionWeibullWeibullWeibullC1 62.0 66.0 1.58 C219.6No. Specimens 15 No. Batches 3	ONTENT: $30 - 33 \text{ wt\%}$ COMP: DENSITY: $1.56 - 1.59 \text{ g/cm}^3$ OLUME: $58.5 - 62.4 \text{ vol \%}$ VOID CONTENT: NA CKNESS: $0.0133 - 0.0141 \text{ in.}$ MODULUS CALCULATION: THOD: MODULUS CALCULATION: M 2-94, Impact energy (see footnotes) IZED BY: Specimen thickness and batch FAW to 57% fiber volume (0.0145 ture (°F) 72 Content (%) ambient mat T, RH (2) iode 61 Mean 60.5 Maximum 55.6 Sps.1 40.6 Maximum 67.2 Normalized Measured Maximum 67.2 State 3.31 B-value (1) U(1) (1) Minimum 62.0 B-value (1) U (1) U (1) U (1) U (1) U (1) U (1) </td <td>ONTENT: 30 - 33 wt% COMP: DENSITY: 1.56 - 1.59 g/cm³ AS4/F OLUME: 58.5 - 62.4 vol % VOID CONTENT: NA AS4/F CKNESS: 0.0133 - 0.0141 in. WODULUS CALCULATION: Interview CAI, 1 ETHOD: MODULUS CALCULATION: MODULUS CALCULATION: Interview Interview M 2-94, Impact energy (see footnotes) MODULUS CALCULATION: Interview Interview IZED BY: Specimen thickness and batch FAW to 57% fiber volume (0.0145 in. CPT) Interview Interview ture (°F) 72 72 72 72 Content (%) ambient ambient ambient ambient mat T, RH (2) (3) (4 61 61 Mean 60.5 64.3 43.1 45.8 39.5 55 Maximum 67.2 71.7 45.3 48.6 45.7 6.32 Mean 60.5 59.1 40.6 42.4 35.5 6.32 Maximum 67.2 71.7</td>	ONTENT: 30 - 33 wt% COMP: DENSITY: 1.56 - 1.59 g/cm ³ AS4/F OLUME: 58.5 - 62.4 vol % VOID CONTENT: NA AS4/F CKNESS: 0.0133 - 0.0141 in. WODULUS CALCULATION: Interview CAI, 1 ETHOD: MODULUS CALCULATION: MODULUS CALCULATION: Interview Interview M 2-94, Impact energy (see footnotes) MODULUS CALCULATION: Interview Interview IZED BY: Specimen thickness and batch FAW to 57% fiber volume (0.0145 in. CPT) Interview Interview ture (°F) 72 72 72 72 Content (%) ambient ambient ambient ambient mat T, RH (2) (3) (4 61 61 Mean 60.5 64.3 43.1 45.8 39.5 55 Maximum 67.2 71.7 45.3 48.6 45.7 6.32 Mean 60.5 59.1 40.6 42.4 35.5 6.32 Maximum 67.2 71.7

(1) Basis values are presented only for A and B data classes.

Impact energy: 135 in-lbs.
 Impact energy: 270 in-lbs.
 Impact energy: 360 in-lbs.

MATERIA RESIN C FIBER VC PLY THIC	ONTENT: 30 - OLUME: 58.9	6k/PR 500 RTM 33 wt% 5 - 62.4 vol % 133 - 0.0141 in.	/I 5-harness sa COMP: DE VOID CON	NSITY: 1.50	5 6 - 1.59 g/cm ³	C/Ep 3 AS4/I CAI, [0 _f /45 _f /9	Table 4.2.26(r) C/Ep 370-5HS AS4/PR 500 CAI, x-axis [0 _f /45 _f /90 _f /-45 _f] _{2s} 72/A, Impact	
TEST ME		<i>, , ,</i>		S CALCULATIC	N:		erim	
	12R-94, Impact en							
	-	cimen thickness		•		n. CPT)		
	Content (%) m at T, RH	7: amb (2 6	ient ?)	7 amb (3	vient 3)			
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	37.2 34.8 40.9 4.61	39.4 36.1 43.7 4.91	35.1 33.0 37.5 4.15	37.4 34.5 39.8 4.26			
F _x ^{cai}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	1.91 5.12	2.11 4.73	1.59 4.65	1.74 4.75			
	No. Specimens No. Batches Data Class	11 3 Inte	3	1 3 Inte	3			

Basis values are presented only for A and B data classes.
 Impact energy: 450 in-lbs.
 Impact energy: 545 in-lbs.

MATERIAL:		AS4 6k/F	PR 500 RTM 5-h	arness satin weave	e fabric	Table	e 4.2.26(s)
RESIN CON FIBER VOL PLY THICK	UME:	33 - 34 w 57.3 - 58 0.0142 -		COMP: DENSITY: /OID CONTENT:	1.56 g/cm ³ NA	AS4 G _{lo}	9 370-5HS 4/PR 500 ,, x-axis [0 _f] _{6s} 72/A
	HOD: -276, Sectio Cantilever		I	MODULUS CALCU	JLATION:		reening
NORMALIZ	ED BY:	Not norm	alized				
Temperatur Moisture Co Equilibrium	ontent (%)		72 ambient				
Source Cod	е		61				
	Mean Minimum Maximum C.V.(%)		2.63 1.64 3.88 20.1				
G _{Ic} (in- lbs/in ²)	B-value Distributic C ₁	n	(1) ANOVA 0.642				
,	C ₂		8.30				
	No. Speci No. Batch Data Clas	es	56 2 Screening				

(1) Basis values are presented only for A and B data classes.

(2) Equivalent to ASTM D 5528-94 with 0.5 inch specimen width.

MATERIAL:		AS4 6k/F	PR 500 RTM 5-	harness satin weav	e fabric		e 4.2.26(t)
RESIN CON FIBER VOL PLY THICK	UME:	33 - 34 w 57.3 - 58 0.0142 -		COMP: DENSITY: VOID CONTENT:	1.56 g/cm ³ NA	AS	o 370-5HS 4/PR 500 _c , x-axis [0 _f] ₆₅
TEST METH	HOD:			MODULUS CALCI	JLATION:		72/A B18
	-276, Sectio						
End No	otched Flex	ure					
NORMALIZ	ED BY:	Not norm	nalized				
Temperatur			72				
Moisture Co Equilibrium			ambient				
Source Cod	le		61				
	Mean		7.88				
	Minimum Maximun		6.21 10.8				
	C.V.(%)		13.1				
	B-value		(1)				
G_{II_c}	Distributi	on	ANOVA				
(in-	C ₁		1.20				
lbs/in ²)	C ₂		5.02				
	No. Spec	cimens	47				
	No. Batcl		3				
	Data Cla	SS	B18				

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

4.2.27 T300 3k/EA9396 8-harness satin weave fabric

Material Description:

Material: T300 3k/EA9396

- Form: 8-harness satin fabric of Hexcel weave W133 using 3k tows at 24x23 tows per inch, fiber areal weight of 366 g/m², wet lay-up, typical cured resin content ranged from 31.9 to 37.1%, typical cured ply thickness of 0.015 inches.
- Processing: Vacuum Bag cure; 195°F, 126 mm Hg, 45 minutes

General Supplier Information:

- Fiber: T300 3k fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments per tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: EA9396 is a 200°F curing toughened epoxy resin with improved hot/wet properties. 75 minute pot life for 1 lb. batch. This resin is a two part, unfilled version of EA 9394.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: aircraft repair

Data Analysis Summary:

- 1. This material was tested at fiber volumes that exceed what are typically used for repair. Data should be substantiated if used at lower fiber volumes.
- 2. Elevated temperature, wet properties for compression and shear are low and have increased variability because the material was tested near the glass transition temperature.
- 3. Reported fiber volumes and resin contents are not consistent with the measured ply thicknesses.
- 4. Data are from publicly available report, Reference 4.2.27.

4.2.27 T300 3k/EA 9396 8-harness satin weave fabric*

MATERIAL:	T300 3k/E	A 9396 8-harı	ness satin we	eave fabric		C/Ep 366-8HS T300/EA 9396 Summary	
FORM:		Dry carbon fabric impregnated with epoxy resin in a wet lay-up impregnation process.					
FIBER:	Toray T30	Toray T300 , 3k, UC 309 Sizing			Dexter-Hysol EA 9396		
T _g (dry):	349°F	T _g (wet):	225°F	T _g METHOD:	DMA		
PROCESSING:	Vacuum B	ag Cure: 195	-200°F, 45 m	in., 25 in. Hg.			

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	11/88-5/91
Date of resin manufacture	8/88-10/88	Date of data submittal	3/98
Date of prepreg manufacture	NA	Date of analysis	8/98
Date of composite manufacture	11/88-5/91		

LAMINA PROPERTY SUMMARY

	72°F/A	-65°F/A	200°F/A	-65°F/W	72°F/W	200°F/W
Tension, 1-axis	IISI				IISI	
Tension, 2-axis	SSSS	IISI	IISI	IISI	IISI	IISI
Tension, 3-axis						
Compression, 1-axis	SS-S				II-I	
Compression, 2-axis	SS-S	IS-S	II-I	II-I	II-I	SS-S
Compression, 3-axis						
Shear, 12-plane	II	II	II	II	IS	II
Shear, 23-plane						
Shear, 31-plane						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78	1.78	D 792
Resin Density	(g/cm ³)	1.14		
Composite Density	(g/cm ³)	1.45	1.46-1.48	D 792
Fiber Areal Weight	(g/m ²)	366	366	
Fiber Volume	(%)	54	53.7-57.3	D 3171A
Ply Thickness	(in)	0.0142	0.014-0.016	

Nominal composite densities assume void content of 0%.

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: T300	3k/EA 9396 8-h	arness satin w	eave fabric		Table 4.2.27(a)
RESIN C FIBER V PLY THI	OLUME: 56.3-	34.2 wt% 57.3 % 8-0.0153 in.	COMP. DE VOID CON		3 g/cm ³ 4.8 %	C/Ep 366-8HS T300 3k/EA 9396 Tension, 1-axis [0 _f] ₈ 72/A,72/W
TEST ME	THOD:		MODULUS	S CALCULATIC	DN:	Interim, Screening
AST	M D 3039		Chord	between 1000	and 3000με	
NORMAL	IZED BY: Spec	imen thickness	-	nt to 57% (0.014	12 in. CPT)	
	Content (%) m at T, RH	Am	72 bient 31	(1	95-100	
000100 0	.000	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	88.3 80.2 94.4 5.79	80.6 73.1 86.0 6.39	92.8 84.1 102 5.49	84.9 74.3 91.4 6.00	
$\mathrm{F}_{\mathrm{l}}^{\mathrm{tu}}$	B-value Distribution	(2) Weibull	(2) Nonpara.	(2) Weibull	(2) Weibull	
(ksi)	C ₁ C ₂	90.6 22.5	8 1.54	95.1 20.7	87.2 21.1	
	No. Specimens No. Batches Data Class		15 3 Interim		5 3 erim	
E_1^t	Mean Minimum Maximum C.V.(%)	9.17 8.68 10.1 3.96	8.38 7.69 9.22 4.60	9.68 9.38 10.3 2.43	8.85 8.44 9.34 2.71	
(Msi)	No. Specimens No. Batches Data Class		5 3 erim		3	
v_{12}^t	Mean No. Specimens No. Batches	0.0	587 7 3	Interim 0.0372 6 3		
• 12	Data Class	Scre	ening	Scree	ening	
	Mean Minimum Maximum C.V.(%)		7830 5500 9480 14.3		9570 8800 10400 5.34	
ϵ_1^{tu}	B-value Distribution		(2) ANOVA		(2) Weibull	
(με)	C ₁ C ₂		4.64 1220		9800 22.7	
	No. Specimens No. Batches Data Class		15 3 erim	3	5 3 erim	

Unknown weight gain.
 Basis values are presented only for A and B data classes.

MATERIA	L: T300 ;	3k/EA 9396 8-h	arness satin w	eave fabric			4.2.27(b)
RESIN CO FIBER VO PLY THIC	DLUME: 56.3-5	4.2 wt% 7.3 % 3-0.0153 in.	T300 3I Tensio [C/Ep 366-8HS T300 3k/EA 9396 Tension, 2-axis [0 _f] ₈ 72/A, -65/A, 200/A			
TEST ME	THOD:		MODULUS	Interim, Screening			
ASTI	V D 3039		Chord	between 1000	and 3000με		
NORMAL	IZED BY: Specir	men thickness a	and areal weigh	nt to 57% (0.014	42 in. CPT)		
	ure (°F) Content (%) m at T, RH	7 Amt			65 pient		00 pient
Source Co		3	1	3	1	3	51
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	100 80.4	93.0 75.1	93.6 87.0	90.6 82.9	78.9 59.7	75.5 57.3
	Maximum C.V.(%)	110 9.39	101 9.11	103 5.19	107 6.89	94.6 12.4	91.7 13.1
F_2^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Lognormal	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	104 15.2	96.4 16.0	95.9 19.7	4.50 0.0663	4.61 10.6	4.61 10.7
	No. Specimens No. Batches Data Class	14 3 Screening		:	15 3 Interim		5 3 erim
	Mean	9.10	8.51	9.60	9.29	9.05	8.64
	Minimum Maximum	8.11 9.68	7.31 9.44	8.97 10.1	8.33 10.2	8.37 9.67	7.75 9.23
E_2^t	C.V.(%)	5.12	6.58	3.27	4.66	4.92	5.14
(Msi)	No. Specimens No. Batches	1			5 3		5 3
	Data Class	Scree		Inte	erim	Inte	erim
	Mean No. Specimens	0.0			543 7		575 6
ν_{21}^t	No. Batches	3	3	:	3	:	3
	Data Class	Scree		Scre	ening	Scre	ening
	Mean Minimum		10500 8520		9580 8850		8590 6460
	Maximum C.V.(%)		11700 10.3		10600 6.71		10000 10.7
ε ^{tu} ₂	B-value Distribution		(1) Weibull		(1) ANOVA		(1) Weibull
(με)	C ₁		10900		4.81		8980
(1.0)	C ₂		13.0		704		11.3
	No. Specimens No. Batches	1	4		5 3		5 3
	Data Class	Scree			s erim		s erim

MATERIA	AL: T300	3k/EA 9396 8-ł	arness satin w	eave fabric		Table C/Ep	4.2.27(c) 366-8HS
FIBER V	OLUME: 56.3-	34.2 wt% 57.3 % 8-0.0153 in.	Comp. De Void Con	T300 3k/EA 9396 Tension, 2-axis [0 _f]₅ -65/W, 72/W, 200/W			
TEST ME	THOD:		MODULU	S CALCULATIC	N:		Screening
AST	M D 3039		Chord	between 1000	and 3000με		
NORMAL	IZED BY: Spec	men thickness	and areal weigh	nt to 57% (0.014	l2 in. CPT)		
Equilibriu	Content (%) m at T, RH	(140, 9	65 1) 95-100	7 (1 140, 9	l) 5-100	([/] 140, 9	00 1) 95-100
Source C	ode	Normalized	Measured	3 Normalized	Measured	Normalized	1 Measured
	Mean Minimum Maximum C.V.(%)	100 79.4 110 7.40	96.7 80.6 105 6.88	93.3 80.4 101 5.94	87.5 72.0 101 9.29	66.7 60.2 71.9 5.51	64.3 56.7 72.1 6.51
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Normal
(ksi)	C ₁ C ₂	103 19.1	99.4 20.2	95.7 21.2	91.2 12.1	68.4 22.0	64.3 4.18
	No. Specimens No. Batches Data Class	15 3 Interim		1 3 Inte	3	:	6 3 erim
	Mean	9.84	9.52	9.32	8.73	8.29	7.98
	Minimum	9.51	8.91	8.89	8.22	7.29 9.28	7.01 9.20
E_2^t	Maximum C.V.(%)	10.1 1.95	10.4 3.69	9.81 2.83	9.63 4.21	9.20 7.49	9.20 7.73
(Msi)	No. Specimens No. Batches		15 3	1	3	:	6 3
	Data Class Mean		erim 1535	Inte 0.04			erim 497
v_{21}^t	No. Specimens No. Batches		6 3	6	6	1	0
	Data Class	Scre	ening	Scree	Screening		ening
	Mean Minimum Maximum C.V.(%)	9830 7210 11000 10.5			10000 8390 11700 8.61	7370 3070 9520 23.5	
ϵ_2^{tu}	B-value Distribution		(2) Weibull		(2) Weibull		(2) Weibull
(με)	C ₁ C ₂		10200 14.4		10400 12.5		8000 5.72
	No. Specimens No. Batches		15 3	1	5		6 3
	Data Class		erim	Inte			erim

Unknown weight gain.
 Basis values are presented only for A and B data classes.

MATERI	AL: T30	0 3k/EA 9396 8-h	arness satin w	eave fabric		Table 4.2.27(d)
FIBER V	OLUME: 53.7	7-37.1 wt% 7-55.5 % 147-0.0152 in.	COMP. DE VOID CON	C/Ep 366-8HS T300 3k/EA 9396 Compression, 1-axis [0 _f] ₁₂ 72/A,72/W		
TEST ME	ETHOD:		MODULU	S CALCULATIC	DN:	Interim, Screening
AST	M D 3410B		Chord	between 1000	and 3000με	
NORMAL	LIZED BY: Spe	cimen thickness a		weight to 57%	(0.0142 in. CP	Т)
Equilibriu	Content (%) Im at T, RH	Aml	2 bient	7 2.18- (1	-2.43 I)	
Source C	Jode	Normalized	Measured	3 Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	75.0 60.1 84.1 8.48	69.9 56.4 78.5 8.22	58.0 47.4 72.9 11.9	53.9 42.3 65.4 11.1	
F _l ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) ANOVA	
(ksi)	$C_1 \\ C_2$	77.6 15.1	72.3 15.7	61.1 8.65	3.06 6.12	
	No. Specimens No. Batches Data Class		12 3 Screening		5 3 erim	
$\mathrm{E}_{1}^{\mathrm{c}}$	Mean Minimum Maximum C.V.(%)	8.92 6.56 11.1 15.0	8.37 6.15 10.3 15.8	8.29 6.49 9.88 13.0	7.70 6.05 9.21 13.5	
(Msi)	No. Specimens No. Batches Data Class	:	12 3 Screening		5 3 erim	
v_{12}^c	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		8940 6670 14300 27.3		7840 5410 12300 26.4	
ϵ_1^{cu}	B-value Distribution		(2) Lognormal		(2) Weibull	
(με)	C ₁ C ₂		9.07 0.248		8630 4.10	
	No. Specimens No. Batches Data Class		2 3 ening		5 3 erim	

Specimens conditioned at 140°F, 95-100% RH for 99 days.
 Basis values are presented only for A and B data classes.

		3k/EA 9396 8-h					4.0.07()
MATERIA RESIN C FIBER VO PLY THIC	ONTENT: 34.7-3 OLUME: 53.7-5	37.1 wt% COMP. DENSITY: 1.48 g/cm ³ 55.5 % VOID CONTENT: 2.8-4.8 % 7-0.0153 in. 7-0.0153 in. 1.48 g/cm ³				Table 4.2.27(e) C/Ep 366-8HS T300 3k/EA 9396 Compression, 2-axis [0 _f] ₁₂ -65/A, 72/A, 200/A	
TEST ME AST	THOD: M D 3410B	-65/A, 72/A, 200/ MODULUS CALCULATION: Interim, Screenin Chord between 1000 and 3000με					
		men thickness a		nt to 57% (0.014			
Equilibriu	Content (%) m at T, RH	7 Amb	pient	-6 Amb	ient	Amt	00 bient
Source C	ode	3 Normalized		3'		3 Normalized	
	Mean Minimum Maximum C.V.(%)	63.7 52.5 69.1 7.50	Measured 60.9 52.3 65.6 7.03	Normalized 86.4 72.3 96.8 10.2	Measured 83.2 70.6 91.2 8.38	Normalized 42.1 35.0 49.4 9.61	Measured 40.4 35.2 45.8 7.86
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	65.7 18.7	62.7 19.1	90.2 12.7	86.1 15.8	4.48 5.05	5.27 3.56
	No. Specimens No. Batches Data Class	1 Scree		15 3 Inte	ł	15 3 Interim	
E ₂ ^c	Mean Minimum Maximum C.V.(%)	8.21 6.41 9.48 9.69	7.86 5.94 9.21 10.6	8.79 7.77 12.0 12.5	8.46 7.38 11.2 11.6	8.26 6.75 9.93 11.1	7.95 6.46 9.56 11.0
(Msi)	No. Specimens No. Batches Data Class	1 Scree	3	13 3 Scree		15 3 Interim	
v_{21}^c	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		8260 5580 13900 26.1		11700 8230 14000 17.1		5360 3590 7610 21.4
ε ^{cu} ₂	B-value Distribution		(1) Normal		(1) Weibull		(1) ANOVA
(με)	C ₁ C ₂		8260 2150		12400 8.15		3.97 1210
	No. Specimens No. Batches Data Class	14 3 Screening		13 3 Scree		15 3 Interim	

MATERI	AL: T300) 3k/EA 9396 8-h	arness satin w	eave fabric			4.2.27(f)			
FIBER V	OLUME: 53.7	-37.1 wt% -55.5 % 47-0.0152 in.	COMP. DE VOID CON	C/Ep 366-8HS T300 3k/EA 9396 Compression, 2-axis [0 _f] ₁₂ -65/W, 72/W, 200/W						
TEST ME			MODULUS CALCULATION: Interim, Screening							
AST	M D 3410B		Chord	between 1000	and 3000με					
NORMAL	LIZED BY: Spec	imen thickness	and areal weigh	nt to 57% (0.014	2 in. CPT)					
	Content (%) Im at T, RH	1.91 (72 -2.30 1) 31	-6 1.91- (1 3	2.30					
Source C	Jude	Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	52.8 45.8 65.3 9.49	50.7 44.4 59.9 8.02	79.5 69.0 92.8 8.94	76.4 67.6 86.0 7.54	29.3 20.6 39.3 17.8	28.0 19.8 37.1 17.4			
F ₂ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull			
(ksi)	$C_1 \\ C_2$	55.1 10.2	52.6 12.7	82.7 12.2	79.1 14.7	31.4 6.42	30.0 6.58			
	No. Specimens No. Batches Data Class		15 3 Interim		15 3 Interim		13 3 Screening			
E_2^c	Mean Minimum Maximum C.V.(%)	8.57 6.91 9.60 10.1	8.24 6.56 9.34 10.3	9.14 8.48 10.5 6.29	8.80 8.19 10.2 6.01	9.12 7.51 11.2 11.9	8.73 7.36 10.7 11.5			
(Msi)	No. Specimens No. Batches Data Class	:	15 3 Interim		5 3 rim	13 3 Screening				
v_{21}^c	Mean No. Specimens No. Batches									
	Data Class Mean Minimum Maximum C.V.(%)		6490 3690 12900 32.6		9850 7460 14100 19.6		3440 1930 5130 28.9			
ϵ_2^{cu}	B-value Distribution		(2) Lognormal		(2) Weibull		(2) Weibull			
(με)	C ₁ C ₂		8.74 0.283		10600 5.42		38000 4.07			
	No. Specimens No. Batches		5 3	1:			3			
	Data Class		s erim	Inte		Scre				

Specimens conditioned at 140°F, 95-100% RH for 62-99 days.
 Basis values are presented only for A and B data classes.

MATERIA	L: T300 3	T300 3k/EA 9396 8-harness satin weave fabric Table 4.2.27(g) C/Ep 366-8HS							
FIBER VOLUME: 53.9-57		5.4 wt% 7.0 % 0-0.0160 in.	COMP. DENSITY: 1.49 g/cm ³ VOID CONTENT: 4.6-5.6 %			C/Ep 366-8HS T300 3k/EA 9396 Shear, 12-plane [+/-45 _f] ₈ 72/A, -65/A, 200/A, 72/W, -65/W, 200/W			
TEST ME	THOD:		MODULUS	S CALCULATIO		Interim, Screening			
ASTI	VI D 3518								
NORMAL	NORMALIZED BY: Not normalized								
Temperat		72	-65	200	72	-65	200		
	Content (%)	Ambient	Ambient	Ambient	2.08-2.34	2.08-2.34	2.08-2.34		
	m at T, RH	24	24	24	(1)	(1) 31	(1)		
Source C	Mean	31 12.8	31 18.4	31 7.82	31 10.5	16.8	31 4.49		
	Minimum	12.0	15.7	6.94	8.79	13.7	3.82		
	Maximum	15.4	21.8	9.30	12.6	20.8	5.46		
	C.V.(%)	9.95	9.53	9.51	12.2	11.9	11.2		
F ^{su} ₁₂	B-value Distribution	(2) Normal	(2) Weibull	(2) Weibull	(2) Normal	(2) Weibull	(2) Normal		
(ksi)	C ₁	12.8	19.2	8.16	10.5	17.7	4.49		
	C ₂	1.28	11.7	11.1	1.27	8.95	0.502		
	No. Specimens	15	15	15	15	15	15		
	No. Batches	3	3	3	3	3	3		
	Data Class	Interim	Interim	Interim	Interim	Interim	Interim		
	Mean	0.634	0.829	0.413	0.542	0.824	0.249		
	Minimum	0.510	0.719 0.967	0.347	0.452 0.757	0.623	0.153		
C \$	Maximum C.V.(%)	0.851 13.9	9.07	0.561 16.5	17.5	1.08 15.3	0.468 32.5		
G ^s ₁₂	0. v. (70)	10.0	3.01	10.0	11.5	10.0	02.0		
(Msi)	No. Specimens	15	15	15	15	13	14		
. ,	No. Batches	3	3	3	3	3	3		
	Data Class	Interim	Interim	Interim	Interim	Screening	Screening		
γ_{12}^{s}	Mean No. Specimens No. Batches								
12	Data Class								

Specimens conditioned at 140°F, 95-100% RH for 91 days.
 Basis values are presented only for A and B data classes.

4.2.28 AS4 12k/997 unidirectional tape

Material Description:

Material: AS4 /997

Form: Unidirectional tape, filament count of 12,000 filaments per tow, fiber areal weight of 145 g/m², typical cured resin content of 35%, typical cured ply thickness of 0.0056 inches.

Processing: Autoclave cure; 350° F, 85 psi for two hours.

General Supplier Information:

Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments per tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.

Matrix: 997 is a 350°F curing epoxy resin.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: Primary and secondary aircraft structure. Elevated temperature service.

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.28 AS4 12k/997 unidirectional tape

MATERIAL:	AS4 12k/997 unidirectional tape	C/Ep 145-UT AS4/997 Summary					
FORM:	Fiberite HyE 997/AS4 Unsized 12k	Fiberite HyE 997/AS4 Unsized 12k prepreg					
FIBER:	Hexcel AS4 12k, no twist	MATRIX:	Fiberite 997				
T _g (dry):	410°F T _g (wet): 320°F	Tg METHOD:	DMA E'				
PROCESSING:	Autoclave: 2 hours, 350°F, 85 psi						

7/96-3/97	Date of testing	5/97-10/97
4/97	Date of data submittal	7/97
4/97	Date of analysis	2/99
4/97		
	4/97 4/97	4/97Date of data submittal4/97Date of analysis

	73°F/A	-65°F/A	180°F/W		
Tension, 1-axis	BM-B	BM-B	BM-B		
Tension, 2-axis	BM-B	BM-B	BM-B		
Tension, 3-axis					
Compression, 1-axis	BM-B	BM-B	BM-B		
Compression, 2-axis	BM-B	BM-B	BM-B		
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 13-plane					
SBS, 31-plane	S	S	S		

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.77-1.80	SACMA SRM-15
Resin Density	(g/cm ³)	1.30		ASTM D 792
Composite Density (g/c		1.60	1.58-1.60	
Fiber Areal Weight	(g/m ²)	145		ASTM 3529-90, modified
Fiber Volume	(%)	57	54.4-62.6	
Ply Thickness	(in)	0.0056	0.0053-0.0059	

LAMINATE PROPERTY SUMMARY

	73/A	-65/A	180/W	
[0, <u>+</u> 45, 90] _{3s} Family				
Bearing	SS	SS	SS	
OHT	S	S	S	
ОНС	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: AS4		.2.28(a) 145-UT					
FIBER VO PLY THIO	RESIN CONTENT:27.4-31.1 wt%COMP. DENSITY:1.58-1.59 g/cm3FIBER VOLUME:55.5-64.8 %VOID CONTENT:0-0.32 %PLY THICKNESS:0.0055-0.0058 in.MODULUS CALCULATION:					AS4 12k/997 Tension, 1-axis [0]₅ 73/A, -65/A, 180/W B30, Mean		
	M D 3039-76			modulus in line		D 30,	Mean	
		cimen thickness			-	0.0056 in. CPT)		
	Content (%) Im at T, RH	7: amb	ient	-6 amb	ient	18 1.1 (1 85)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	327 285 359 4.52	325 271 362 5.93	306 178 344 9.59	303 172 334 9.80	327 301 351 3.79	322 298 344 3.98	
F ₁ ^{tu}	B-value Distribution	292 Weibull	291 Normal	263 Weibull	262 Weibull	298 Weibull	298 Nonpara.	
(ksi)	C ₁ C ₂	334 24.1	325 19.3	317 17.0	313 17.6	332 29.4		
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B30		30 5 B30		
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	19.9 18.4 21.1 3.30	19.8 19.0 20.5 2.19	20.0 19.3 20.8 2.23	19.8 18.6 20.8 2.44	20.1 18.4 21.8 3.78	19.8 18.7 22.2 3.55	
(Msi)	No. Specimens No. Batches Data Class	30 5 Mea		30 5 Mean		30 5 Mean		
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		15300 13500 16500 4.23		14300 8330 15500 9.09		15000 13700 16100 3.78	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		13700 ANOVA		12600 Weibull		13800 Weibull	
(με)	C ₁ C ₂		666 2.45		14700 20.5		15290 29.9	
	No. Specimens No. Batches Data Class	30 5 B3		30 5 B3		30 5 B3		

MATERI	AL: AS4	1 12k/997 unidirect	ional tape		Table 4.2.28(b) C/Ep 145-UT		
FIBER VOLUME: 55.5		I-32.7 wt% COMP. DENSITY: 1.58-1.59 g/cm ³ 5-64.8 % VOID CONTENT: 0 -1.24 % 056-0.0059 in.			AS4 12k/997 Tension, 2-axis [90] ₂₄ 73/A, -65/A, 180/W		
TEST ME	ETHOD:		MODULUS CALCU	LATION:	B30, Mean		
AST	M D 3039-76		Chord modulus	in linear range			
NORMAI	LIZED BY: Not	normalized.					
Tempera	iture (°F)	73		-65	180		
Moisture	Content (%)	ambie	nt	ambient	1.10		
	um at T, RH				(1)		
Source C		85		85	85		
	Mean	11.3		12.7	5.64		
	Minimum	9.70		11.2	4.30		
	Maximum	13.3 6.06		14.4	6.60		
	C.V.(%)	6.06		6.58	8.64		
	B-value	10.1		10.8	4.15		
F_2^{tu}	Distribution	Norma	al	Weibull	ANOVA		
				13.1			
(ksi)	C ₁	11.3		0.515			
	C ₂	0.683)	16.3	2.90		
	No. Specimens	30		30	30		
	No. Batches	5		5	5		
	Data Class		B30 B30		B30		
	Mean	1.36		1.53	1.21		
	Minimum	1.27		1.43	1.16		
	Maximum	1.50		1.61	1.32		
E_2^t	C.V.(%)	3.19		2.63	3.38		
(Msi)	No. Specimens	30		30	30		
	No. Batches	5		5	5		
	Data Class	Mear)	Mean	Mean		
v_{21}^{t}	Mean No. Specimens No. Batches						
	Data Class						
	Mean	8820		8700	4940		
	Minimum	7390		7470	3710		
	Maximum	11200		10100	5980		
	C.V.(%)	8.07		7.25	9.17		
	B-value	7640		7390	3650		
$arepsilon_2^{ ext{tu}}$	Distribution	Lognorr		ANOVA	ANOVA		
		9.08		637	472		
(με)	C ₁ C ₂	0.079		2.06	2.72		
	No. Specimens	30		30	30		
	No. Batches	5		5	5		
	Data Class	B30		B30	B30		

MATERIA	AL: AS4	12k/997 unidire	ctional tape			Table 4	.2.28(c)		
FIBER V PLY THI	RESIN CONTENT:30.6-32.5 wt%COMP. DENSITY:1.58-1.59 g/cm³FIBER VOLUME:54.4-62.6 %VOID CONTENT:0.34-0.74PLY THICKNESS:0.0055-0.0057 in.MODULUS CALCULATION:						C/Ep 145-UT AS4 12k/997 Compression, 1-axis [0] ₁₉ 73/A, -65/A, 180/W B30, Mean		
	ETHOD: M D 3410A-94		MODULUS	S CALCULATIO	N:	B30,	Mean		
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 60% fiber volume (0.0056 in. CPT)								
	Content (%) Im at T, RH	7: amb 8:	ient	-6 amb 85	ient	18 1. ′ (1 8	10)		
000100 0	.000	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	229 169 263 7.88	221 174 251 7.14	233 182 273 8.76	227 182 261 8.89	159 132 179 6.43	152 130 178 6.71		
F ₁ ^{cu}	B-value Distribution	195 Weibull	186 ANOVA	191 Weibull	186 Weibull	135 ANOVA	125 ANOVA		
(ksi)	C ₁ C ₂	236 16.5	16.0 2.19	242 13.3	236 13.2	10.4 2.29	10.6 2.58		
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B30		30 5 B30			
E_1^c	Mean Minimum Maximum C.V.(%)	17.8 16.6 18.7 2.86	17.2 16.5 18.0 1.96	18.1 17.1 20.1 4.11	17.6 16.8 19.5 3.26	18.6 17.2 20.5 4.23	17.8 17.1 19.2 2.50		
(Msi)	No. Specimens No. Batches Data Class	3(5 Me		30 5 Mean		30 5 Mean			
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		15400 10700 17900 9.82		15600 11300 19200 12.9		9550 7830 11500 10.1		
$\varepsilon_1^{ m cu}$	B-value Distribution		11900 ANOVA		11500 Weibull		6900 ANOVA		
(με)	C ₁ C ₂		1544 2.26		16500 8.72		998 2.66		
	No. Specimens No. Batches Data Class	3(5 B3		30 5 B3		3) 5 B3	5		

MATERI	AL: AS4	12k/997 unidired	tional tape		Table 4.2.28(d)	
FIBER VOLUME: 54.4		4-32.7 wt% COMP. DENSITY: 1.58-1.59 g/cm ³ 4-62.6 % VOID CONTENT: 0 -1.24 % 056-0.0059 in. VOID CONTENT: 0 -1.24 %			C/Ep 145-UT AS4 12k/997 Compression, 2-axis [90] ₂₄ 73/A, -65/A, 180/W	
TEST ME	ETHOD:		MODULUS CALCU	LATION:	B30, Mean	
SRM	1 1-94		Chord modulus	between 1000 and 30	000 με	
NORMAL	IZED BY: Not	normalized.				
Tempera		73		-65	180	
	Content (%)	ambie	ent	ambient	1.10	
Equilibriu Source C	im at T, RH	85		85	(1) 85	
Source C	Mean	37.0		39.0	25.4	
	Minimum	29.		20.7	24.0	
	Maximum	40.8		53.9	27.9	
	C.V.(%)	8.43	3	24.3	3.26	
	B-value	28.9	.	6.79	23.4	
F ₂ ^{cu}	Distribution	ANO		ANOVA	ANOVA	
г ₂ (ksi)		3.2		10.2	0.848	
(KSI)	C ₁ C ₂	2.52		3.16	2.37	
	U2	2.0.	-	0.10	2.01	
	No. Specimens	30		30		
	No. Batches	5		5	5	
	Data Class	B30		B30	B30	
	Mean Minimum	1.4		1.55 1.33	1.34 1.20	
	Maximum	1.7		1.92	1.50	
E_2^c	C.V.(%)	9.9		7.63	5.93	
_						
(Msi)	No. Specimens	30		30	30	
	No. Batches Data Class	5 Mea	n	5 Mean	5 Mean	
	Mean	Ivica		Wear	Medil	
v_{21}^{c}	No. Specimens No. Batches					
	Data Class					
	Mean	3060		24700	34800	
	Minimum	2420		12200	28900	
	Maximum	3790		41400	39500	
	C.V.(%)	11.9		26.7	6.97	
	B-value	2270	00	2670	29100	
$arepsilon_2^{ m cu}$	Distribution	Weib		ANOVA	ANOVA	
(με)	C ₁	3220	0	7371	2473	
(Pac)	C ₂	9.0		3.13	2.30	
	No. Specimens	30		30	30	
	No. Batches	5		5	5	
	Data Class	B30)	B30	B30	

MATER		12k/997 unidirectio	nal tane		Table 4.2.28(e)		
MATERIAL:AS4 12k/997 unidirectional tapeRESIN CONTENT:28.2-32 wt%COMP. DENSITY:1.58FIBER VOLUME:54.4-62.6 %VOID CONTENT:0.0-PLY THICKNESS:0.0053-0.0058 in.0.0053-0.0058 in.0.0053-0.0058 in.					C/Ep 145-UT AS4 12k/997 Shear, 12-plane [+45/-45] _{4s} 73/A, -65/A, 180/W		
TEST METHOD: MODULUS CALCULATION: B18							
NORMA	ALIZED BY: N/A						
Moistur	rature (°F) e Content (%) rium at T, RH	73 Ambient 85	-65 Ambient 85	180 Wet (1) 85			
Source	Mean Minimum Maximum C.V.(%)		00	00			
F ₁₂ (ksi)	B-value Distribution C ₁ C ₂	Table 4.2.2	28(e) will be added	when necessary doo	cumentation is submitted		
	No. Specimens No. Batches Data Class						
G ^s ₁₂	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\gamma_{12}^{ m su}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIAL: AS	64 12k/997 unidirecti	onal tana		Table 4.2.28(f)
RESIN CONTENT: 24	3.9-33.8 wt% 4.4-62.6 %	COMP. DENSITY: VOID CONTENT:		C/Ep 145-UT AS4 12k/997 SBS, 31-plane
	0053-0.0058 in.	VOID CONTEINT.	0.0-0.35	[0] ₁₆ 73/A, -65/A, 180/W
TEST METHOD: ASTM D 2344-84		MODULUS CALC	ULATION:	Screening
NORMALIZED BY: N/	A			
Temperature (°F)	73	-65	180	
Moisture Content (%)	Ambient	Ambient	1.10	
Equilibrium at T, RH Source Code	85	85	(1) 85	
Mean	18.3	23.1	11.4	
Minimum Maximum	17.6 19.6	21.1 25.3	9.33 12.0	
C.V.(%)	2.35	4.91	7.44	
B-value	(2)	(2)	(2)	
F ^{sbs} ₃₁ Distribution	ANOVA	ANOVA	ANOVA	
(ksi) C ₁	0.438	1.18	0.914	
C ₂	2.25	2.62	3.37	
No. Specimens	30	28	30	
No. Batches Data Class	5 Screening	5 Screening	5 Screening	
	ŭ	Ŭ	U	

Conditioned at 160°F, 85% RH.
 Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL:	AS4 12k/997 unidirectional tape Table 4.2.28(g)							
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	34.6 wt% 57.7 % 0.0058 in.	7 % VOID CONTENT: 0.54 % Bearing, x-axis						
TEST METHOD: ASTM D 953-93 Screening								
TYPE OF BEARING	TEST: double	e lap shear			× · · · ·			
JOINT CONFIGURA Member 1 (t,w,d,e): Member 2 (t,w,d,e): FASTENER TYPE: TORQUE: NORMALIZED BY:	0.25 ii 0.25" Not ap	n., 0.92 in., 0.25 in., hardened steel oplicable ormalized	0.75 in. (e/d = 3.0) HOLE CLEARANCI COUNTER SINK AI		0.001 in. Not applicable			
Temperature (°F) Moisture Content (% Equilibrium at T, RH Source Code		73 Ambient 85	-65 Ambient 85	180 1.10 (1) 85				
F ^{bu} (ksi)	Mean Minimum Maximum C.V. (%) B-value Distribution C ₁ C ₂	65 92.7 87.9 101 4.78 (3) Normal 92.7 4.43	83 92.0 82.9 106 8.44 (3) Normal 92.0 7.77	70.3 67.2 75.7 5.18 (3) Normal 70.3 3.65				
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening				
	Mean Minimum Maximum C.V. (%)	34.4 23.0 39.2 17.9	34.1 29.7 39.4 11.2	31.0 28.7 33.7 7.20				
F ^{bry} (2) (ksi)	B-value Distribution C_1 C_2	(3) Normal 34.4 6.17	(3) Normal 34.1 3.81	(3) Normal 31.0 2.23				
No. Specimens No. Batches Data Class		6 1 Screening	6 1 Screening	6 1 Screening				

Conditioned at 160°F, 85% RH.
 Offset measured at 4% hole diameter.
 Basis values are presented only for A and B data classes.

MATERIAL: RESIN CON FIBER VOL PLY THICKI	ITENT: 28.8-29. UME: 56.6-59.		onal tape COMP. DENS VOID CONTE		60 lb/in ³ 11 %	Table 4. C/Ep 1 AS4 12 OHT, > [0/±45]	45-UT 2k/997 k-axis /90] _{3s}
TEST METHOD: SRM 5-94 73/A, -65/A, 180/W Screening Screening							
FASTENER TORQUE:	SPECIMEN GEOMETRY:t = 0.10 in., w = 1.50 in., d = 0.25 in.FASTENER TYPE:Not applicableHOLE CLEARANCE:TORQUE:COUNTER SINK ANGLE & DEPTH:						
NORMALIZI		Specimen thick		· · · · · · · · · · · · · · · · · · ·	,	1	
Temperature Moisture Co			73 bient	-6 Amb	5 bient	18 1.1	30 10
Equilibrium a Source Cod	at T, RH (°F, %) e		35	8	5	(1 8	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V. (%)	54.1 51.3 58.4 4.76	51.4 48.9 55.1 4.48	49.2 45.9 52.4 5.51	46.8 44.3 50.0 4.74	54.9 53.5 56.0 1.67	52.6 51.5 54.1 1.77
F _x ^{oht}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	54.1 2.58	46.8 2.22	49.2 2.71	46.8 2.22	54.9 0.916	52.6 0.929
	No. Specimens No. Batches Data Class		6 1 eening	e Scree	l	e Scree	I

Conditioned at 160°F, 85% RH.
 Basis values are presented only for A and B data classes.

MATERIAL:	MATERIAL: AS4 12k/997 unidirectional tape Table 4.2.28(i) C/Ep 145-UT							
RESIN CONTENT: 28.8-29.0 wt% COMP. DENSITY: 1.59-1.60 lb/in ³ AS4 12k/997 FIBER VOLUME: 56.3-56.9 % VOID CONTENT: 0.75-1.11 % OHC, x-axis PLY THICKNESS: 0.0057-0.0058 in. [0,±45,90] _{3s} 73/A, -65/A, 180/W								
TEST METHOD: SRM 3-94 Screening								
	SPECIMEN GEOMETRY:t = 0.10 in., w = 1.50 in., d = 0.25 in.FASTENER TYPE:Not applicableTORQUE:HOLE CLEARANCE: COUNTER SINK ANGLE & DEPTH:							
NORMALIZE	D BY: S	pecimen thick	ness and FAW	to 60% (0.005	56 in. CPT)			
Temperature Moisture Cor Equilibrium a			73 bient	-6 Amb		1.	30 10 1)	
Source Code			35	8	T	8	5	
	Mean	Normalized 53.0	Measured 50.5	Normalized 59.8	Measured 57.0	Normalized 45.3	Measured 42.9	
	Minimum	52.3	50.0	58.4	55.7	43.2	41.0	
	Maximum	54.2	51.5	61.0	58.3	46.5	44.1	
	C.V. (%)	1.33	1.15	1.77	1.96	2.76	2.60	
F _x ^{ohc}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	53.0 0.704	50.5 0.582	59.8 1.06	57.0 1.12	45.4 1.25	42.9 1.12	
	No. Specimens No. Batches Data Class		6 1 eening	e Scree	l		6 I ening	

Conditioned at 160°F, 85% RH.
 Basis values are presented only for A and B data classes.

4.2.29 T650-35 12k/976 unidirectional tape

Material Description:

Material: T650-35 12k/976

- Form: Unidirectional tape prepreg, fiber areal weight of 145 g/m², typical cured resin content of 39-45%, typical cured ply thickness of 0.0049 0.0058 inches.
- Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

- 1. Glass transition temperature results were high for an epoxy.
- 2. Low longitudinal tension strengths were not reported due to low data and unresolved issues about the testing.
- 3. A high end outlier for compression modulus at 72°F ambient was not discarded because no inconsistencies were found.
- 4. For transverse tension strength at -67°F ambient and 250°F wet, scatter is too high to report basis values.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.29 T650-35 12k/976 unidirectional tape

MATERIAL:	T650-35 12k/976 unidirectional tape	145-UT T650-35/976 Summary
FORM:	ICI Fiberite T650-35 12k/976 unidirectional tape prep	breg
FIBER:	Amoco T650-35 12k, UC 309 sizing, MATRIX: no twist	ICI Fiberite 976
T _g (dry):	486°F T _g (wet): 410°F T _g METHOE	D: DMA E'
PROCESSING:	Autoclave cure: 90 \pm 10 min., 350 \pm 10°F, 95 \pm 5 psi.	

Date of fiber manufacture	3/93-1/94	Date of testing	7/93-1/96
Date of resin manufacture	7/93-10/94	Date of data submittal	12/97
Date of prepreg manufacture	8/93-11/94	Date of analysis	5/00
Date of composite manufacture	10/94-6/95		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W		
Tension, 1-axis	BM	BM	BM		
Tension, 2-axis	bS	IS	IS		
Tension, 3-axis					
Compression, 1-axis	IM	bM	bM		
Compression, 2-axis	bS	IS	bS		
Compression, 3-axis					
Shear, 12-plane	BM	BM	BM		
Shear, 23-plane					
Shear, 31-plane					

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.77-1.78	SRM 15
Resin Density	(g/cm ³)	1.28	1.28	ASTM D 792
Composite Density	(g/cm ³)		1.55-1.61	
Fiber Areal Weight	(g/m ²)	145	144-147	Solvent Extraction
Fiber Volume	(%)	61	55.3-65.3	
Ply Thickness	(in)	0.0052	0.0049-0.0058	

LAMINATE PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W		
[90/0] Family					
Compression, x-axis	bM	bM	bM		

MATERI	AL: T650)-35 12k/976 un	idirectional tap	e			4.4.29(a) 145-UT	
FIBER V	OLUME: 56.9	5 wt% -64.5 % 50-0.0057 in.	COMP. DE VOID CON		7-1.61 g/cm ³ 0 %	T650- Tensio	-35/976 n, 1-axis 0]₀ ⁄/A, 250/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		Mean	
AST	M D 3039-89		Chord	, 1000 - 6000 με	:			
NORMAL	LIZED BY: Spee	cimen thickness	and batch fibe	er areal weight to	o 60% fiber vol	lume (0.0052 in	. CPT)	
	Content (%) um at T, RH	72 amb	ient	-6 ambi 80	ient	25 1.11- 160 8	·1.21 , 85	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	231 175 256 7.37	236 173 264 8.27	170 120 210 14.5	174 123 208 13.7	258 223 286 5.89	260 220 295 7.58	
F_1^{tu}	B-value Distribution	202 Weibull	200 Weibull	124 Weibull	132 Weibull	212 ANOVA	197 ANOVA	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	238 19.1	244 15.8	180 8.55	184 9.56	16.0 2.87	21.0 3.01	
	No. Specimens No. Batches Data Class	32 5 B3		30 5 B3		30 5 B30		
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	22.0 20.9 23.5 3.00	22.5 20.2 24.8 4.64	20.7 19.4 22.4 2.89	21.2 19.9 22.4 3.60	20.9 19.6 22.2 2.72	21.0 19.3 22.5 3.66	
(Msi)	No. Specimens No. Batches Data Class	32 5 Me		30 5 Mea		3 5 Mean		
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATERI	AL: T65	0-35 12k/976 unid	irectional tape		Table 4.2.29(b)
FIBER V PLY THI	OLUME: 55.3 CKNESS: 0.00	45 wt% COMP. DENSITY: 1.57-1.61 g/cm ³ 3-62.4 % VOID CONTENT: 0-1.0 % 052-0.0058 in.			C/Ep 145-UT T650-35/976 Tension, 2-axis [90] ₂₄ 72/A, -67/A, 250/A
TEST ME			MODULUS CALCU	ILATION:	B18, Screening
AST	M D 3039-89		Chord, 1000 - 6	6000 με	
NORMAI	LIZED BY: Not	normalized.			
Tempera		72		-67	250
	Content (%)	ambier	nt	ambient	0.97-1.03
Source C	um at T, RH	80		80	160, 85 80
	Mean	5.71		4.76	2.40
	Minimum	4.66		2.61	1.32
	Maximum	6.74		7.07	3.46
	C.V.(%)	9.23		22.6	26.7
F ₂ ^{tu}	B-value Distribution	4.42 Weibu		(1) ANOVA	(1) ANOVA
(ksi)	C ₁	5.95		1.14	0.720
(-)	C ₂	12.0		3.57	4.80
	No. Specimens	18		18	18
	No. Batches	3		3	3
	Data Class	B18		B18	B18
	Mean	1.30		1.37	0.934
	Minimum	1.18		1.24	0.820
E_2^t	Maximum C.V.(%)	1.42 4.97		1.61 8.38	1.07 10.2
(Msi)	No. Specimens	9		9	9
	No. Batches	3		3	3
	Data Class	Screeni	ng	Screening	Screening
v_{21}^t	Mean No. Specimens No. Batches				
	Data Class				
	Mean				
	Minimum Maximum				
	C.V.(%)				
ϵ_2^{tu}	B-value Distribution				
(με)	C ₁				
(με)	C_2				
	No. Specimens No. Batches Data Class				

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATERI	AL: T65	i0-35 12k/976 unidi	rectional tape		Table 4.2.29(c)
FIBER VOLUME: 60.0		45 wt% COMP. DENSITY: 1.57-1.60 g/cm ³ 0-62.2 % VOID CONTENT: 0-1.0 % 050-0.0054 in.			C/Ep 145-UT T650-35/976 Compression, 2-axis [90] ₂₂ 72/A, -67/A, 250/W
TEST ME	ETHOD:		MODULUS CALCU	JLATION:	B18, Interim, Screening
AS	TM D 3410-87		Chord, 1000 - 3	3000 με	
NORMAL	LIZED BY: Not	normalized.			
	Content (%)	72 ambier	nt	-67 ambient	250 (1)
Equilibriu Source C	um at T, RH Code	80		80	160, 85 80
000100 0	Mean	33.6		39.5	18.6
	Minimum	30.7		33.9	15.3
	Maximum	37.4		44.6	20.0
	C.V.(%)	6.40		6.84	5.68
F ₂ ^{cu}	B-value Distribution	28.1 Weibu	II	(2) Weibull	16.4 Weibull
(ksi)	C ₁	34.6		40.7	19.0
	C ₂	17.1		16.4	24.6
	No. Specimens	18		17	18
	No. Batches	3		3	3
	Data Class	B18		Interim	B18
	Mean Minimum	1.38 1.23		1.55 1.45	1.08 0.940
	Maximum	1.44		1.66	1.21
E_2^c	C.V.(%)	5.48		4.11	8.38
(Msi)	No. Specimens No. Batches	9		8 3	10
	Data Class	Screeni	ng	Screening	3 Screening
ν ₂₁	Mean No. Specimens No. Batches			¥	
21	Data Class				
	Mean Minimum Maximum				
	C.V.(%)				
ϵ_2^{cu}	B-value Distribution				
(με)	C ₁ C ₂				
	No. Specimens No. Batches Data Class				

(1) Unknown moisture content.

(2) Basis values are presented only for A and B data classes.

MATEF	RIAL: T650)-35 12k/976 unidi	rectional tape		Table 4.2.29(d)		
FIBER	VOLUME: 58.6	45 wt% 3-62.2 % 52-0.0055 in.	COMP. DENSITY VOID CONTENT:	0	C/Ep 145-UT T650-35/976 Shear, 12-plane [+45/-45] _{4s} 72/A57(A250A)/		
TEST	METHOD:		MODULUS CALC	ULATION:	72/A, -67/A, 250/W B30, Mean		
AS	STM D 3518-82		Chord, 1000 -	3000 με			
NORM	ALIZED BY: Not i	normalized					
Tempe	rature (°F)	72	-67	250			
Equilib	re Content (%) rium at T, RH	ambient	ambient	1.16-1.22 160, 85			
Source		80	80	80			
	Mean Minimum	14.9 13.1	17.4 16.1	11.8 10.9			
	Maximum	18.1	19.2	12.4			
	C.V.(%)	11.4	4.85	3.54			
F ₁₂ ^{su}	B-value Distribution	8.57 ANOVA	14.7 ANOVA	10.4 ANOVA			
(ksi)	C ₁ C ₂	1.86 3.39	0.893 2.98	0.455 3.25			
	No. Specimens No. Batches	30 5	30 5	30 5			
	Data Class Mean	B30 0.745	B30 0.919	B30 0.542			
	Minimum	0.680	0.700	0.510			
	Maximum	0.830	1.05	0.580			
G_{12}^s	C.V.(%)	4.82	10.4	3.91			
(Msi)	No. Specimens No. Batches	30 5	30 5	30 5			
	Data Class	Mean	Mean	Mean			
	Mean Minimum Maximum C.V.(%)						
γ_{12}^{su}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERI	AL: T65	0-35 12k/976 ur	nidirectional tap	e			4.2.29(e)	
FIBER V	OLUME: 57.3 CKNESS: 0.00	45 wt% COMP. DENSITY: 1.57-1.60 g/cm ³ 3-65.3 % VOID CONTENT: 0-1.0 % 049-0.0056 in. MODULUS CALCULATION:				Compres [9 72/A, -67	T650-35/976 Compression, x-axis [90/0]₀ 72/A, -67/A, 250/W B18, Mean	
AS	STM D 3410-87 Chord, 1000 - 3000 με							
NORMAI	LIZED BY: Spe	cimen thickness				ume (0.0052 in	. CPT)	
	Content (%) um at T, RH	amt	2 pient 0	amt	67 bient 30	1.21 160	50 -1.33 9, 85 60	
000100 0		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	131 117 144 6.34	131 115 148 6.54	146 131 161 5.50	145 129 163 6.22	95.9 83.8 110 6.76	98.2 97.9 111 5.74	
F _x ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	127 Weibull	(1) ANOVA	77.2 ANOVA	83.4 ANOVA	
(ksi)	C ₁ C ₂	8.64 2.93	9.11 3.25	150 19.6	9.53 3.12	6.79 2.77	5.82 2.53	
	No. Specimens No. Batches Data Class	4	3 4 18	4		29 5 B18		
E ^c _x	Mean Minimum Maximum C.V.(%)	9.72 8.65 10.8 4.41	9.76 8.86 10.8 4.58	10.2 9.48 11.0 3.99	10.1 9.37 10.7 4.28	10.0 9.57 10.9 3.71	10.3 9.15 11.2 5.08	
(Msi)	No. Specimens No. Batches Data Class	4	3 4 ean	24 4 Mean		29 5 Mean		
v_{xy}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$\varepsilon_{\rm x}^{\rm cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.30 IM7 12k/PR381 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.31 IM7 6k/PR500 4-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.32 T650-35 3k/976 8-harness satin weave fabric

Material Description:

Material: T650-35 3k/976

Form: Eight harness satin fabric prepreg, fiber areal weight of 374 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.011 - 0.014 inches.

Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no-twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

- 1. For transverse tension, a bowtie specimen is not in concert with the test method used.
- 2. Two low end outliers for transverse compression modulus at -67°F ambient were not discarded because no inconsistencies were found.

4.2.32 T650-35 3k/976 8 harness satin weave fabric

MATERIAL:	T650-35 3	T650-35 3k/976 8-harness satin weave fabric				
FORM:	Cytec Fibe	erite 8-harnes	s satin weave f	abric prepreg	-	
FIBER:	Amoco T6	50-35 3k, UC	309, no twist	MATRIX:	Cytec Fiberite 976	
T _g (dry):	443°F	T _g (wet):	380°F	Tg METHOD:	DMA E'	
PROCESSING:	Autoclave	cure, 350°F,	90 min, 95 psi			

Date of fiber manufacture	9/90 — 9/95	Date of testing	6/93 – 1/96
Date of resin manufacture	6/92 - 6/94	Date of data submittal	12/97
Date of prepreg manufacture	6/92 - 10/94	Date of analysis	1/01
Date of composite manufacture	1/93 – 4/95		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	N III	250°F/W		
Tension, 1-axis	BM	BM		bSS-		
Tension, 2-axis	bS	BI		bSS-		
Tension, 3-axis						
Compression, 1-axis	bS	BM		bM		
Compression, 2-axis	bS	BM		bS		
Compression, 3-axis						
Shear, 12-plane	BM	bM		BM		
Shear, 23-plane						
Shear, 13-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.76 – 1.78	SRM 15
Resin Density	(g/cm ³)	1.28	-	ASTM D 792
Composite Density	(g/cm ³)	1.57	1.56-1.59	
Fiber Areal Weight	(g/m ²)	374	-	
Fiber Volume	(%)	59	58-61	
Ply Thickness	(in)	0.0130	0.0113 - 0.0146	

LAMINATE PROPERTY SUMMARY

MATERIA	AL: T650	-35 3k 976/8-ha	arness satin w	eave fabric		Table 4.2	2.32(a)			
RESIN C FIBER V	ONTENT: 28 – OLUME: 59 - (34 % wt 64 vol % 3-0.014 in.	COMP: DE VOID CON	NSITY: 1.56-	C/Ep 374-8HS T650-35 976 Tension, 1-axis [0 _f] ₇ 72/A, -67/A, 250/W					
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	B30, B18, Mean, Screening				
Bow	tie Specimen- ASTN	A D 3039 76	Chord	, 1000 - 6000 με	-					
NORMALIZED BY: Normalized by specimen thickness and batch fiber areal weight to 57% fiber volume (0.0146 in. CPT)										
	Content (%) Im at T, RH	7: amb 8(ient	-6 amb 80	ient	25 1.12- 160 80	1.21 , 85			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	99.2 79.2 111 7.03	107 85.4 124 7.16	82.0 68.4 92.5 8.24	86.8 70.8 99.5 8.65	104 90.2 118 7.85	115 99.3 130 7.62			
F_1^{tu}	B-value Distribution	82.5 ANOVA	89.2 ANOVA	64.9 ANOVA	67.5 ANOVA	88.8 Weibull	95.2 Weibull			
(ksi)	C ₁ C ₂	7.91 2.33	7.91 2.29	6.98 2.44	7.78 2.48	108 16.0	119 16.2			
	No. Specimens No. Batches Data Class		6 5 80	36 6 B30		18 3 B18				
E_1^t	Mean Minimum Maximum C.V.(%)	10.3 9.23 10.8 3.62	11.1 10.4 11.5 2.81	10.3 10.1 10.7 2.28	11.4 10.6 13.0 4.71	11.0 10.3 11.9 5.38	12.1 11.4 13.1 5.45			
(Msi)	No. Specimens No. Batches Data Class	2 ⁻ 6 Me	;	18 6 Mea		9 3 Screening				
v_{12}^{t}	Mean No. Specimens No. Batches					0.0 9 3)			
	Data Class Mean Minimum Maximum C.V.(%)					Scree	ening			
$arepsilon_1^{ ext{tu}}$										
(με)										
	No. Specimens No. Batches Data Class									

(1) Basis values are presented only for A and B data classes.

		0.05.01.070/0 k		(- h		Table	0.00(1-)
MATERIA RESIN C FIBER V	:ONTENT: 28 -	0-35 3k 976/8-h - 34 % wt 64 vol %	arness satin we COMP: DE VOID CON	NSITY: 1.50	6-1.59 g/cm ³	C/Ep 3 T650-	l.2.32(b) 74-8HS 35 976 n, 2-axis
		13-0.014 in.				[9	0 _f] ₇ /A, 250/W
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	B30, B18,	Screening, erim
Bow	rtie Specimen- AST	M D 3039 76 (2) Chord	, 1000-6000 με			
		cimen thickness					,
Equilibriu	Content (%) Im at T, RH	7 amb	pient	-6 amb	ient	25 1.12- 160 8	1.21 , 85
Source C	Jode	8 Normalized	0 Measured	8 Normalized	0 Measured	Normalized	Measured
	Mean	106	116	82.2	89.2	111	122
	Minimum	95.2	105	61.7	63.8	93.3	103
	Maximum	115	126	97.4	108	125	137
	C.V.(%)	4.62	4.59	10.6	11.4	6.15	6.22
F ₂ ^{tu}	B-value Distribution	94.0 Weibull	102 Weibull	62.0 ANOVA	62.8 ANOVA	97.8 Normal	104 Weibull
(ksi)	C ₁	108 26.0	118 23.9	8.91 2.26	10.5 2.52	111 6.85	126 18.4
	C ₂						
	No. Specimens No. Batches		8 3	3		18	
	Data Class		18		B30		8
	Mean	10.7	11.7	10.4	11.1	10.8	11.80
	Minimum	9.83	10.9	9.74	10.2	9.67	10.9
	Maximum	11.6	12.6	11.1	12.0	11.2 5.29	12.3 4.15
E_2^t	C.V.(%)	5.81	4.55	3.01	4.07	5.29	4.15
(Msi)	No. Specimens	9	9 3	1		9	
	No. Batches Data Class	Scree		5 Inte		3 Scree	ening
v_{21}^{t}	Mean No. Specimens					0.0 3	
	No. Batches Data Class					1 Scree	
	Mean Minimum Maximum C.V.(%)						
ctu	B-value Distribution						
ε_2^{tu} ($\mu\epsilon$)	C ₁						
(pic)	C ₂						
	No. Specimens No. Batches Data Class						

Basis values are presented only for A and B data classes.
 Bowtie specimen is not the standard specimen geometry using this method.

MATERIA	L: T650-3	5 3k 976/8-harne	ess satin weav	ve fabric			4.2.32(c)
RESIN CO FIBER VO PLY THIC	LUME: 59 - 64	vol %	VOID CONTENT: 0 %				374-8HS 35 976 sion, 1-axis 0 ₁] ₇ ⁄/A, 250/W
TEST ME	THOD:		MODULUS	CALCULATION	۷:		Screening
	I D 3410-87 Procedu	re B		000-3000 με			U
						(/ / -)	
NORMALI Temperatu		n thickness and			<u>7% fiber volur</u> 37	ne (0.0146 in. 0 25	
	Content (%)	amb			pient	1.00-	-
Equilibriun			•		•	160	
Source Co	de	8 Normalized	0 Measured	8 Normalized	0 Measured	8 Normalized	0 Measured
	Mean	86.2	95.5	92.6	102	55.1	57.1
	Minimum	62.9	71.6	72.9	78.7	42.4	46.0
	Maximum	100	108	115	131	68.6	68.4
	C.V.(%)	10.3	9.82	12.7	13.7	15.1	11.9
	B-value	70.3	77.0	55.0	56.8	25.6	34.2
Flcu	Distribution	Weibull	Weibull	ANOVA	ANOVA	ANOVA	ANOVA
r ₁ (ksi)	C ₁	89.8	99.4	12.5	15.4	9.05	7.32
(1(0))	C_2	13.2	14.0	3.00	3.12	3.25	3.12
	No. Specimens	1	8	3	0	2	1
	No. Batches	3			5	5	
	Data Class	B18		B30		B18	
	Mean Minimum	8.81 8.45	9.81 9.26	9.38 8.82	10.0 9.51	9.35 8.53	9.76 9.28
	Maximum	9.12	9.20 10.3	9.99	9.51 10.4	9.98	9.28 10.4
E_1^c	C.V.(%)	2.19	4.03	4.21	2.40	5.22	4.03
-							
(Msi)	No. Specimens No. Batches)		0	2	
	Data Class	Scree			5 B18		, 18
	Mean No. Specimens						
, t	No. Batches						
v_{12}^t	Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
	B-value						
$\varepsilon_2^{\rm cu}$	Distribution						
ε2 (με)	C ₁						
(με)	C_2						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA	L: T	650-35	3k 976/8-harne	ess satin weav	/e fabric			.2.32(d) 74-8HS	
RESIN CONTENT: 28 - 34 FIBER VOLUME: 59 - 64 v PLY THICKNESS: 0.013-0.			ol %	COMP: DEN VOID CONT	T650-35 976 Compression, 2-axis [90 _f] ₇ 72/A, -67/A, 250/W				
TEST ME	THOD			MODULUS	CALCULATION	۹.		8, Mean,	
	и D 3410-87 Pr	ooduro	D			N.		ening	
AST		ocedule	D	Chord, 10	000-3000 με			U	
NORMALI	ir	lormalize n. CPT)			nd batch fiber		o 57% fiber vo	lume (0.0146	
Temperate			72			67	25		
	Content (%)		amb	ient	amb	pient		-1.30	
	n at T, RH		0	`		0		, 85	
Source Co	bae		80	-	8	-	-	0	
			Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean		90.1	97.5	97.4	106	54.7	59.9	
	Minimum		82.1	88.5	74.5	81	50.3	53.6	
	Maximum		99.6	112	113	127	63.0	70.9	
	C.V.(%)		6.75	6.62	9.90	9.95	6.74	8.21	
	B-value		(1)	(1)	72.3	71.5	47.4	(1)	
CII	Distribution		ANOVA	ANOVA	ANOVA	ANOVA	Normal	ANOVA	
F_2^{cu}				-	_				
(ksi)	C ₁		6.41	6.70	10.1	11.2	54.7	5.22	
	C ₂		3.54	3.20	2.49	3.05	3.69	3.72	
	No. Specime	ens	18	3	3	0	1	8	
	No. Batches		3		6	6	3		
	Data Class		B18		B	30	B	18	
	Mean		8.98	9.73	9.21	9.82	9.43	10.3	
	Minimum		8.04	8.58	8.20	9.03	8.98	9.99	
	Maximum		9.51	10.6	10.0	10.7	9.75	10.6	
E_2^c	C.V.(%)		6.01	6.54	4.05	4.22	3.32	2.46	
(14-:)	No. Crosimo		0			0			
(Msi)	No. Specime No. Batches		93		26 6			9 3	
	Data Class		Scree		Mean		Scree		
	Mean		00100	, in ig	1010		0010	oning	
v_{21}^{t}	No. Specime	ens							
	No. Batches Data Class								
	Mean	Т							
	Minimum								
	Maximum C.V.(%)								
	B-value								
ε_2^{cu}	Distribution								
-	C ₁								
(με)									
	C ₂								
	No. Specime No. Batches								
Data Class									

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATER	RIAL: T65	0-35 3k 976/8-harness satin	Table 4.2.32(e) C/Ep 374-8HS	
FIBER PLY TH	VOLUME: 59 - IICKNESS: 0.01	64 vol % VOID C 3-0.014 in.	DENSITY: 1.56-1.59 g/cm ³ CONTENT: 0	T650-35 976 Shear, 12-plane [+45₅/-45 ₅]₅ 72/A, -67/A, 250/W
	/IETHOD:	MODUL	B30, B18, Mean	
AS	STM D 3518-82 (1)	Cho		
NORM	ALIZED BY: Not	normalized		
	rature (°F)	72	-67	250
	e Content (%)	Ambient	Ambient	1.22
Equilibr	ium at T, RH			160,85
Source		80	80	80
	Mean	12.8	14.5	8.99
	Minimum	12.0	13.6	8.41
	Maximum	13.9	15.2	10.4
	C.V.(%)	3.81	2.58	5.60
	B-value	11.0	13.3	8.41
611	Distribution	ANOVA	ANOVA	Nonpara.
F_{12}^{su}	Distribution			Nonpara.
(ksi)	C ₁	0.53	0.39	1.00
	C ₂	3.49	2.57	1.22
	No. Specimens	30	29	30
	No. Batches	5	5	5
	Data Class	B30	B18	B30
	Mean	0.85	1.05	.47
	Minimum	0.73	0.93	.37
	Maximum	0.98	1.13	.52
G_{12}^s	C.V.(%)	7.10	5.07	9.63
(Msi)	No. Specimens	26	30	21
	No. Batches	5	5	5
	Data Class	Mean	Mean	Mean
	Mean	ivical i	- Wealt	ινισατι
	Minimum			
	Maximum			
	C.V.(%)			
	B-value			
γ_{12}^{su} Distribution				
$(\mu\epsilon)$ C ₁				
(με)	C_2			
	\mathbf{U}_2			
	No. Specimens			
	No. Batches			
	Data Class			

(1) Test method used ultimate strength to failure.

4.2.33 T700S 12k/3900-2 plain weave fabric

Material Description:

Material: T700S 12k/3900-2

Form: Plain weave fabric prepreg, 3 tows per inch, fiber areal weight of 193 g/m², typical cured resin content of 35%-36%, typical cured ply thickness of 0.0073-0.0079 inches.

Processing: Autoclave cure, 350°F, 85 psi, 3°F/minute ramp rate, 2 hours

General Supplier Information:

Fiber: T700 fibers are continuous, standard modulus, no twist carbon filaments made from a PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 700,000 psi.

Matrix: 3900-2 is an toughened epoxy resin.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose commercial and military aerospace structural applications.

Data Analysis Summary: None

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.33 T700S 12k/3900-2 plain weave fabric

MATERIAL:	T700S 12k/3900-2 plain we	700S 12k/3900-2 plain weave fabric							
FORM:	Toray F6273C-30H plain w	oray F6273C-30H plain weave fabric prepreg							
FIBER:	Toray T700SC-12000-5 tows/inch, UD309 Sizing, n								
T _g (dry):	330°F T _g (wet): 2	230°F	T _g METHOD:	ASTM E 1545	5 (TMA)				
PROCESSING:	Autoclave Cure: 350°F, 85	psi, 3°F/mii	nute ramp rate, 2 h	ours					

Date of fiber manufacture	1/98	Date of testing	1/99-3/99
Date of resin manufacture	1/98	Date of data submittal	12/99
Date of prepreg manufacture	1/98	Date of analysis	1/00
Date of composite manufacture	3/99		

LAMINA PROPERTY SUMMARY

	75/A	-67/A	180/W		
Tension, 1-axis				 	
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane	SS	SS	SS		
Shear, 31-plane	SS	SS	SS		
SB Strength, 31-plane	S	S	S		

Volume 2, Chapter 4 Carbon Fiber Composites

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80	1.80	ASTM D 3800
Resin Density	(g/cm ³)	1.22		ASTM D 791
Composite Density	(g/cm ³)	1.53	1.54	
Fiber Areal Weight	(g/m ²)	193	192.1	ASTM D 5300
Fiber Volume	(%)	54	54.6-55.4	ASTM D 3171
Ply Thickness	(in)	0.0079	0.0078-0.0079	

LAMINATE PROPERTY SUMMARY

MATERIAL: T70	00S 12k/3900-2	plain weave fab	oric		Table 4.2.33(a)		
FIBER VOLUME: 55 PLY THICKNESS: 0.0	3 wt.% % 073-0.0074 in.	COMP. D VOID CO	NTENT: 0 %		C/Ep 193-PW T700S/3900-2 SBS, 31-plane [0 _f] ₃₄ 75/A, -67/A, 180/W		
TEST METHOD: ASTM D 2344-84		N/A	S CALCULATIO	ON:	Screening		
ASTIVI D 2344-04		N/A					
NORMALIZED BY: No	normalized						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	75 Ambient	-67 Ambient	180 1.0 (1)				
Source Code	90	90	90				
Mean Minimum Maximum C.V.(%)	10.3 10.2 10.7 1.94	12.4 11.7 12.9 4.41	7.67 7.45 7.91 2.13				
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(2) Nonpara.	(2) Normal	(2) Normal				
(ksi) C ₁ C ₂		12.4 0.546	7.67 0.164				
No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening				

Conditioned at 160°F and 95 ± 2% RH until 1.0% moisture content attained.
 Short beam strength test data are approved for Screening Data Class only.

MATER	RIAL: T70	0S 12k/3900-2	plain weave fab	ric		Table 4.		
RESIN CONTENT: 36.1 wt.% FIBER VOLUME: 54.6 % PLY THICKNESS: 0.0078-0.0079 in.			COMP. D VOID CO		4 g/cm ³ %	C/Ep 19 T700S/3 Shear, 13 [0 _f]	8900-2 3-plane 95	
TEST	METHOD:		MODULU	S CALCULATI	ON:	75/A, -67/A, 180/W Screening		
AS	STM D 5379-93		Chord	, 1000 - 3000 μ	£			
NORM	ALIZED BY: Not	normalized						
	rature (°F)	75	-67	180				
	re Content (%) rium at T, RH	Ambient	Ambient	1.0				
Source		90	90	(1) 90				
000.00	Mean	10.4	13.3	6.97				
	Minimum	10.2	12.6	6.80				
	Maximum C.V.(%)	10.6 1.28	13.6 3.08	7.10 1.48				
	C.V.(%)	1.20	3.00	1.40				
	B-value	(2)	(2)	(2)				
F_{13}^{su}	Distribution	Normal	Normal	Normal				
(ksi)	C ₁	10.4	13.3	6.97				
	C ₂	0.133	0.410	0.103				
	No. Specimens No. Batches	6	6	6 1				
	Data Class	Screening	Screening	Screening				
	Mean	0.418	0.498	0.374				
	Minimum	0.394	0.467	0.366				
	Maximum	0.436 3.58	0.520 3.72	0.381 1.58				
G ^s ₁₃	C.V.(%)	3.50	3.72	1.50				
(Msi)	No. Speciment	6	C	C				
	No. Specimens No. Batches	6 1	6 1	6 1				
	Data Class	Screening	Screening	Screening				
	Mean							
	Minimum Maximum							
	C.V.(%)							
	B-value							
$\gamma_{13}^{\rm su}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

MATER	RIAL: T70	0S 12k/3900-2	plain weave fab	ric		Table 4		
FIBER	VOLUME: 54.6	wt.% 9 % 178-0.0079 in.	COMP. D VOID CO		4 g/cm ³ 6	C/Ep 193-PW T700S/3900-2 Shear, 23-plane [0₁]∍₅ 75/A, -67/A, 180/W		
TEST N	METHOD:		MODULU	S CALCULATI	ON:	Scree		
AS	STM D 5379-93		Chord	, 1000 - 3000 μ	£			
NORM	ALIZED BY: Not	normalized						
	rature (°F)	75	-67	180				
	e Content (%) rium at T, RH	Ambient	Ambient	1.0 (1)				
Source		90	90	90				
	Mean	10.3	13.2	7.08				
	Minimum	10.0	127	6.99				
	Maximum C.V.(%)	10.9 3.29	13.7 2.56	7.14 0.870				
	••••(//)	0.20		01010				
	B-value	(2)	(2)	(2)				
F_{23}^{su}	Distribution	Normal	Normal	Normal				
(ksi)	C ₁	10.3	13.2	7.08				
	C ₂	0.339	0.337	0.062				
	No. Specimens	5	6	6				
	No. Batches	1	1	1				
	Data Class Mean	Screening 0.401	Screening 0.500	Screening 0.349				
	Minimum	0.375	0.478	0.333				
	Maximum	0.445	0.525	0.376				
G_{23}^{s}	C.V.(%)	6.60	3.76	4.15				
(Msi)								
	No. Specimens	6	6	6				
	No. Batches Data Class	1 Screening	1 Screening	1 Screening				
	Mean	Corcorning	Corooning	Corooning				
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\gamma_{23}^{\rm su}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

4.2.34 800HB 12k/3900-2 unidirectional tape

Material Description:

Material: 800HB 12k/3900-2

Form: Unidirectional tape prepreg, fiber areal weight of 190 g/m², typical cured resin content of 36%-37%, typical cured ply thickness of 0.0075-0.0082 inches.

Processing: Autoclave cure, 350°F, 85 psi, 3°F/minute ramp rate, 2 hours

General Supplier Information:

Fiber: 800HB fibers are continuous, standard modulus, no twist carbon filaments made from a PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 700,000 psi.

Matrix: 3900-2 is an toughened epoxy resin.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose commercial and military aerospace structural applications.

Data Analysis Summary: None

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.34 800HB 12k/3900-2 unidirectional tape

MATERIAL:	800H 12k	/3900-2 unidir	ectional tape			C/Ep 800HB/3900-2 Summary
FORM:	Toray P23	302-19 unidire	ctional tape pre	epreg		
FIBER:	Toray T800HB 12k, 3 tows/inch, siz- ing H, no twist			MATRIX:	Toray 3900-	2
T _g (dry):	330°F	T _g (wet):	230°F	T _g METHOD:	ASTM E 154	45 (TMA)
PROCESSING:	Autoclave	cure: 350°F,	85 psi, 3°F/min	ute ramp rate, 2 h	ours	

Date of fiber manufacture	7/97	Date of testing	1/99-7/99
Date of resin manufacture	7/97	Date of data submittal	12/99
Date of prepreg manufacture	12/97	Date of analysis	1/00
Date of composite manufacture	12/97		

LAMINA PROPERTY SUMMARY

	75/A	-67/A	180/W		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane	SS	SS	SS		
Shear, 13-plane	SS	SS	SS		
SB Strength, 31-plane	S	S	S		

Volume 2, Chapter 4 Carbon Fiber Composites

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.81	1.80	ASTM D 3800
Resin Density	(g/cm ³)	1.22		ASTM D 891
Composite Density	(g/cm ³)	1.55	1.56	
Fiber Areal Weight	(g/m ²)	190	191.1	ASTM D 5300
Fiber Volume	(%)	55.5	54.0-55.5	ASTM D 3171
Ply Thickness	(in)	0.0075	0.0075-0.0082	

LAMINATE PROPERTY SUMMARY

MATERIAL:	800H 12k/3900-2 u	nidirectional tar)e		Table 4.2.34(a)		
RESIN CONTENT: FIBER VOLUME:	36.3 wt.% 55.5 % 0.0073-0.0074 in.	COMP. D VOID CO	ENSITY: 1.5	6 g/cm ³ .10 % ON:	C/Ep 190-UT 800HB/3900-2 SBS, 31-plane [0] ₃₄ 75/A, -67/A, 180/W Screening		
NORMALIZED BY:	Not normalized						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code Mean Minimum Maximum C.V.(%) B-value F ₃₁ ^{sbs} Distribution (ksi) C ₁ C ₂ No. Speciments No. Batches Data Class	75 Ambient 90 12.7 12.6 13.1 1.47 (2) Normal 12.8 0.187	-67 Ambient 90 16.7 16.3 17.0 1.34 (2) Normal 16.7 0.223 6 1 Screening	180 1.0 (1) 90 7.63 7.55 7.71 0.772 (2) Normal 7.63 0.059 6 1 Screening				

Conditioned at 160°F and 95 ± 2% RH until 1.0% moisture content attained.
 Short beam strength test data are approved for Screening Data Class only.

MATER	RIAL: 8001	H 12k/3900-2 ui	nidirectional tag)e		Table 4.2.34(b)		
RESIN FIBER PLY TH	CONTENT: 37.3 VOLUME: 54.0	wt.%	COMP. D VOID CO	ENSITY: 1.5	6 g/cm ³ .10 %	C/Ep 190-UT 800HB/3900-2 Shear, 13-plane [0] ₁₀₀ 75/A, -67/A, 180/W Screening		
	STM D 5379-93			, 1000 - 3000 μ		Obreening		
NORM	ALIZED BY: Not	normalized	Chord	, 1000 - 5000 μ	ic.			
Moistur	rature (°F) re Content (%) rium at T, RH code	75 Ambient 90	-67 Ambient 90	180 1.0 (1) 90				
	Mean Minimum Maximum C.V.(%)	12.8 12.5 12.9 1.21	18.6 18.2 19.3 2.24	7.20 6.90 7.50 3.11				
F ₁₃ ^{su}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	12.8 0.155	18.6 0.417	7.20 0.224				
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	5 1 Screening				
G ^s ₁₃ (Msi)	Mean Minimum Maximum C.V.(%)	0.478 0.464 0.489 2.34	0.598 0.560 0.630 3.87	0.401 0.396 0.405 0.872				
(100)	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	5 1 Screening				
	Mean Minimum Maximum C.V.(%)							
γ_{13}^{su}	B-value Distribution							
(με)	C_1 C_2							
	No. Specimens No. Batches Data Class							

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

MATER	RIAL: 800	H 12k/3900-2 ui	nidirectional tar)e		Table 4.2.34(c)
RESIN FIBER	RESIN CONTENT: 37.3 wt.% COMP. DENSITY: 1.56 g/cm ³ FIBER VOLUME: 54.0 % VOID CONTENT: 0-1.10 % PLY THICKNESS: 0.0078-0.0082 VOID CONTENT: 0-1.10 %					C/Ep 190-UT 800HB/3900-2 Shear, 23-plane [0] ₁₀₀
TEST METHOD: MODULUS CALCULATION:				ON:	75/A, -67/A, 180/W Screening	
AS	STM D 5379-93		, 1000 - 3000 μ	ε		
NORM	ALIZED BY: Not	normalized				
	rature (°F)	75	-67	180		
	re Content (%) rium at T, RH	Ambient	Ambient	1.0 (1)		
Source		90	90	90		
	Mean	6.10	6.45	4.22		
	Minimum Maximum	4.79 6.72	4.68 7.27	3.91 4.35		
	C.V.(%)	13.1	13.7	4.24		
F ^{su} ₂₃	B-value Distribution	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	6.10 0.801	6.45 0.886	4.22 0.179		
	No. Specimens No. Batches	6 1 Sereening	7 1 Serecting	6 1 Saraaning		
	Data Class Mean	Screening 0.317	Screening 0.377	Screening 0.281		
	Minimum	0.306	0.360	0.258		
	Maximum	0.330	0.399	0.293		
G_{23}^s	C.V.(%)	2.94	3.36	4.45		
(Msi)	No. Specimens	6	7	6		
	No. Batches	1	1	1		
	Data Class	Screening	Screening	Screening		
	Mean Minimum Maximum C.V.(%)					
$\gamma_{23}^{\rm su}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

4.2.35 T650-35 3k/976 plain weave fabric

Material Description:

Material: T650-35 3k / 976

- Form: Plain weave fabric prepreg, fiber areal weight of 194 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.0067 0.0069 inches.
- Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 35×10^6 psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

1. For transverse tension, a bowtie specimen is an exception to this test method.

4.2.35 T650-35 3k/976 plain weave

MATERIAL:	T650-35 3	k/976 plain w	eave fabric			C/Ep 194-PW T650-35 976 Summary			
FORM:	Cytec Fibe	Cytec Fiberite 976/T650-35 plain weave fabric prepreg							
FIBER:	Amoco T6	50-35 3k, UC	309, no twist	MATRIX:	ICI Fiberite 976				
T _g (dry):	461°F	T _g (wet):	393°F	Tg METHOD:	DMA E'				
PROCESSING:	Autoclave	Autoclave cure 350°F +10/-10°F, 90 min +10/-10 min, 95 psi +5/-5 psi							

Date of fiber manufacture	9/90 — 5/95	Date of testing	7/93 – 10/96
Date of resin manufacture	9/90 - 7/94	Date of data submittal	12/97
Date of prepreg manufacture	6/92 - 8/94	Date of analysis	1/01
Date of composite manufacture	7/93 – 10/96		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W	
Tension, 1-axis	bS	bS	BM	
Tension, 2-axis	BM	BM	BM	
Tension, 3-axis				
Compression, 1-axis	BM	BM	BM	
Compression, 2-axis				
Compression, 3-axis	bS	bS	BM	
Shear, 12-plane	BM	bM	BM	
Shear, 23-plane				
Shear, 31-plane				

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.76 – 1.78	SRM 15
Resin Density	(g/cm ³)	1.28	1.28	ASTM D 792
Composite Density	(g/cm ³)	1.57	1.55-1.58	
Fiber Areal Weight	(g/m ²)	194	-	
Fiber Volume	(%)	59	58-61	
Ply Thickness	(in)	0.0069	0.0066 - 0.0079	

PHYSICAL PROPERTY SUMMARY

LAMINATE PROPERTY SUMMARY

MATERIA	AL: T650			Table 4.2.35(a)			
FIBER VOLUME: 59 -		- 34 % wt COMP: DENSITY: 1.56-1.58 g/cm ³ 64 vol % VOID CONTENT: 0 – 1% 062-0.0079 in.		C/Ep 194-PW T650-35 976 Tension, 1-axis [0 _f] ₁₂ 72/A, -67/A, 250/W			
TEST ME				S CALCULATIO		B30, B1	8, Mean, ening
BOW	tie Specimen - AST	M D 3039 76	Chord	, 1000 - 6000 μι	E	Gere	cillig
		nalized by speci			-	-	-
	Content (%) m at T, RH	72 ambi 80	ent	-6 amb	ient	25 1.09- 160, 80	1.20 85
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	94.4	103	75.4	82.6	106	113
	Minimum	83.3	89.7	65.9	73.3	93.6	102
	Maximum	103	116	80.9	88.7	116	125
	C.V.(%)	7.05	7.10	6.03	5.70	6.38	5.75
F_1^{tu}	B-value Distribution	79.9 Weibull	(1) ANOVA	(1) ANOVA	72.9 Weibull	88.9 ANOVA	98.1 Weibull
(ksi)	C ₁	97.35	7.87	4.74	84.2	6.99	116
	C ₂	18.09	4.08	3.27	6.35	2.50	18.9
	No. Specimens No. Batches	18 3		18 3		30 5	
	Data Class	B18		B18		B30	
	Mean	10.4	11.2	10.5	11.5	10.7	11.2
	Minimum Maximum	9.91 11.4	10.5 11.8	10.0 10.7	10.7 11.9	9.81 11.3	10.0 12.4
E_1^t	C.V.(%)	4.54	4.32	2.43	3.40	2.82	5.48
(Msi)	No. Specimens	9		g		2 [.]	
	No. Batches Data Class	3 Scree		3 Scree		5 Mean	
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATERI	AL: T65	0-35 3k 976 plai	n weave fabric	;			l.2.35(b) 194-PW	
FIBER V PLY THI	OLUME: 59 - CKNESS: 0.00	- 34 % wt 64 vol % 062-0.0079 in.	COMP: DE VOID CON	T650-35 976 Tension, 2-axis [90 _f] ₁₂ 72/A, -67/A, 250/W				
TEST ME			MODULU	S CALCULATIO	N:	B30,	Mean	
Bowtie S	pecimen- ASTM D	3039 76	Chord	, 1000-6000 με				
NORMAL	LIZED BY: Norr	malized by spec	imen thickness	and batch fiber	areal weight t	o 57%(0.0076 iı	n. CPT)	
	Content (%) Im at T, RH	7 amb	ient	-6 amb	ient	25 1.14- 160 8/	1.22 , 85	
Source C	Jule	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	93.7 78.5 106 7.07	101 83.4 118 8.48	74.0 62.1 87.4 8.22	80.8 64.1 108 11.7	98.3 88.5 111 6.02	105 94.3 122 6.98	
F ₂ ^{tu}	B-value Distribution	76.4 ANOVA	74.9 ANOVA	57.4 ANOVA	51.4 ANOVA	81.6 ANOVA	82.5 ANOVA	
(ksi)	C ₁ C ₂	6.91 2.51	8.98 2.87	6.31 2.64	10.0 2.93	6.17 2.70	7.75 2.90	
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B3		30 5 B30		
E_2^t	Mean Minimum Maximum C.V.(%)	10.0 9.59 10.9 3.40	10.6 9.61 11.9 5.17	9.91 9.46 10.5 3.28	10.6 9.93 11.5 5.32	9.93 9.16 11.0 4.87	10.5 9.57 12.2 7.31	
(Msi)	No. Specimens No. Batches Data Class	5	21 5 Mean		21 5 Mean		21 5 Mean	
v_{21}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$\varepsilon_2^{ m tu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATERIA	L: -	Г650-35 3k 97	6 plain w	eave fabric			Table 4. C/Ep 19	
FIBER VOLUME: 59 - 64 v		28 – 34 % wt 59 - 64 vol % 0.0062-0.0079	ol % VOID CONTENT: 0 – 1%			T650-35 976 Compression, 1-axis [0 _f] ₁₂ 72/A, -67/A, 250/W		
TEST ME	THOD:			MODULUS (CALCULATION	:	B30, I	
AST	И D 3410-87, F	Procedure B	e B Chord, 1000-3000 με					
NORMAL	ZED BY:	Normalized by	specime			real weight to	57%(0.0076 in	. CPT)
Temperat				2	-6	7	25	
	Content (%)		amb	pient	amb	ient	1.02 -	
Equilibriur Source Co	n at T, RH		0	0	80	h	160, 80	
	Jue	Norr	nalized	Measured	Normalized	Measured	Normalized	Measured
	Mean		06.7	100	93.8	99.6	55.9	59.1
	Minimum		74.3	71.3	62.6	99.0 65.5	43.0	45.5
	Maximum		4.3 108	114	116	121	43.0 75.1	45.5 77.5
	C.V.(%)		3.41	10.6	14.3	14.0	14.5	13.4
	0.0.(70)			10.0	14.0	17.0	17.0	10.7
	B-value	-	78.1	74.8	55.8	60.2	29.8	34.2
-CII	Distribution		IOVA	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA
Fl			-					
(ksi)	C ₁		3.30	10.9	14.1	14.7	8.66	8.38
	C ₂	2	2.23	2.31	2.69	2.69	3.02	2.97
	No. Specim	ens	3	6	30	3	30	۱
	No. Batches		6 B30		6		5	
	Data Class				B3		B3	
	Mean	8	3.83	9.53	9.36	9.89	9.15	9.67
	Minimum	8	3.07	8.63	7.78	8.55	8.63	9.08
	Maximum		9.52	10.1	10.2	10.6	9.62	10.2
E_1^c	C.V.(%)	2	1.52	4.11	4.98	4.45	2.77	2.67
(Msi)	No. Specim	ens	3	0	27		21	
	No. Batches Data Class	6		6 ean	6 Mean		5 Mean	
	Mean		IVIC		INIE	un	10164	
	No. Specim	ens						
v_{12}^{t}	No. Batches							
•12	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
CII	Distribution							
ε_2^{cu}								
(με)	C ₁							
	C ₂							
	No. Specim No. Batches							
	Data Class							

MATERIA	L:	T650-35	3k 976 plain w	eave fabric				.2.35(d) 94-PW
RESIN CONTENT: 28 - 34 ° FIBER VOLUME: 59 - 64 v PLY THICKNESS: 0.0062-0			COMP: DEN VOID CONT	T650-35 976 Compression, 2-axis [90 _f] ₁₂ 72/A, -67/A, 250/W				
TEST ME	THOD:			MODULUS (J:		8, Mean,	
	M D 3410-87	Procedur	e B			ening		
//011		, 1 1000000	0.5	Chora, h	000-3000 με	I		_
NORMAL	IZED BY:	Normaliz	ed by specime	n thickness ar	nd batch fiber a	areal weight to	57%(0.0076 ir	n. CPT)
Temperat			7			67		50
	Content (%)		amb	pient	amb	pient		- 1.33
	m at T, RH			0		0), 85 10
Source Co	bde		8 Normalized	Measured	Normalized	0 Measured	Normalized	0 Measured
	Mean							
	Minimum		92.6 79.7	99.1 88.6	88.0 70.5	94.2 78.4	52.5 38.1	56.1 40.3
	Maximum		79.7 105	88.6 11130	70.5 98.9	78.4 108	38.1 61.0	40.3 64.3
	C.V.(%)	I	9.23	8.28	98.9 10.3	9.77	10.9	64.3 10.5
	0.1.(%)		9.20	0.20	10.3	9.77	10.9	10.5
	B-value		(1)	79.7	69.2	73.6	37.5	41.8
011	Distributio	n	ANOVA	Weibull	Weibull	Weibull	ANOVA	ANOVA
F_2^{cu}	Distributio		ANOVA	veibuli	Weibuli	veibuli	ANOVA	ANOVA
(ksi)	C ₁		8.93	103	91.89	98.2	5.92	6.05
	C ₂		12.5	14.0	12.61	12.3	2.53	2.37
	No. Specimens			8		8	30 5 B30	
	No. Batch		3 B18			3		
	Data Clas	SS				18		
	Mean		8.82	9.39	8.95 8.13	9.62 8.93	8.89 8.44	9.52 8.81
	Minimum Maximum		8.26 9.19	8.83 9.84	9.34	8.93 9.96	8.44 9.40	9.96
-0	C.V.(%)	1	3.25	3.87	4.11	3.40	2.68	2.78
E_2^c	0(///		0.20	0.01		0.10	2.00	2.70
(Mai)	No Spee	imana		`	0			1
(Msi)	No. Spec No. Batch		9	3	9 3			:1 5
	Data Clas		Scree		Screening			ean
	Mean			3		3		
	No. Spec							
v_{21}^{t}	No. Batch	nes						
- 21	Data Clas	ss						
	Mean							
	Minimum							
	Maximum	1 I I I I I I I I I I I I I I I I I I I						
	C.V.(%)							
	B-value							
-								
$\varepsilon_2^{\mathrm{cu}}$								
(με)	C ₁							
	C ₂							
	No Spec	imone						
	No. Spec No. Batch							
	Data Clas							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATER		50-35 3k 976 plain	woovo fabric			Table 4.	2 35(a)	
RESIN FIBER	CONTENT: 28 VOLUME: 59	– 34 % wt - 64 vol %	COMP. DENSITY: 1.56-1.58 g/cm ³ VOID CONTENT: 0 – 1%			C/Ep 19 T650-3 Shear, 1	4 - PW 5 976 2-plane	
		062-0.0079 in.				[+45 _f /-45 _f] _{3s} 72/A, -67/A, 250/W		
	METHOD:			CALCULATION:		B30, B18	8, Mean	
AS	STM D 3518-82 (1)		Chord,	0 - 3000 με				
NORM	ALIZED BY: No	t normalized						
	rature (°F)	72	-67	250				
	re Content (%) rium at T, RH	Ambient	Ambient	1.15 – 1.25 160,85				
Source		80	80	80		``		
	Mean	15.0	17.2	10.8				
	Minimum	13.6	15.3	9.95				
	Maximum C.V.(%)	16.3 4.93	17.7 3.04	11.4 3.56				
			0.0.1	0.00				
	B-value	13.0	16.3	9.72				
F_{12}^{su}	Distribution	ANOVA	Weibull	ANOVA				
(ksi)	C ₁	0.77	17.3	0.40				
	C ₂	2.58	58.2	2.69				
	No. Specimens	34	18	30				
	No. Batches	5	3	5				
	Data Class	B30	B18	B30				
	Mean Minimum	0.80 0.73	1.01 .95	0.51 0.47				
	Maximum	0.88	1.08	0.54				
G_{12}^s	C.V.(%)	4.90	3.82	3.73				
12								
(Msi)	No. Specimens	24	18	22				
	No. Batches	5 Maan	3	5 Moon				
	Data Class Mean	Mean	Mean	Mean				
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
γ_{12}^{su}	Distribution							
(με)	C ₁							
(µc)	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Test method used ultimate strength at failure.

4.3 CARBON - POLYESTER COMPOSITES

4.4 CARBON - BISMALEIMIDE COMPOSITES

4.4.1 T-300 3k/F650 unidirectional tape

Material Description:

Material: T300 3k/F650 unidirectional tape

- Form: Unidirectional tape, fiber areal weight of 189 g/m², typical cured resin content of 32%, typical cured ply thickness of 0.0070 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours; postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.1 T-300 3k/F650 unidirectional tape*

MATERIAL:	T-300 3k/F650 unidirectional tape			C/BMI 189-UT T-300/F650 Summary			
FORM:	Hexcel T3T190/F652 unidirectional tap						
FIBER:	Toray T-300 3k	MATRIX:	Hexcel F650				
T _g (dry):	600°F T _g (wet):	Tg METHOD:					
PROCESSING:	Autoclave cure: 375°F, 4 hours, 85 psig; Postcure: 475°F, 4 hours, free-standing oven						

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-67°F/A	400°F/A		
Tension, 1-axis	SS	S	SS		
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S		S		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.76		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.56	1.57	
Fiber Areal Weight	(g/m ²)	189		
Fiber Volume	(%)	59	61	
Ply Thickness	(in)	0.0070		

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	NE 1989). ALL DOC	0 3k/F650 unidi			AS NOT SULL		4.4.1(a)		
	AL. 1-30	0 3K/F030 uniu	rectional tape				4.4.1(a) 189-UT		
RESIN C	ONTENT: 32 w	/t%	COMP: DE	NSITY: 1.5	7 g/cm ³		0/F650		
FIBER V	OLUME: 61 %	/ 0	VOID CON	Tensio	n, 1-axis				
PLY THIC	CKNESS: 0.00	70 in.		[0] ₆				
							7/A, 400/A		
TEST ME			MODULUS	S CALCULATIC	DN:	Scre	ening		
AST	M D 3039-76								
NORMALIZED BY: Fiber volume to 60% (0.0070 in. CPT)									
Temperat		7			67	40	400 ambient		
	Content (%)	amb	ient	amb	pient	amb	ambient		
	im at T, RH		4		4		4		
Source C	ode	2 Normalized		2 Normalized		2 Normalized			
	Mean	Normalized 248	Measured 252	Normalized 194	Measured 197	Normalized 229	Measured 233		
	Minimum	240	232	167	170	229	233		
	Maximum	293	298	212	216	243	247		
	C.V.(%)	7.14	7.15	8.68	8.68	3.97	3.97		
	B-value	(1)	(1)	(1)	(1)	(1)	(1)		
F_1^{tu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal		
(ksi)	C ₁	248	252	194	197	229	233		
	C ₂	17.7	18.0	16.8	17.1	11.1	9.24		
	No. On a simon of		-		-	-	7		
	No. Specimens No. Batches	1			5 1		7 1		
	Data Class	Scree			ening	Scre	•		
	Mean	18.9	19.2		<u>-</u>	19.1	19.4		
	Minimum	16.5	16.8			16.8	17.1		
	Maximum	20.3	20.6			21.0	21.4		
E_1^t	C.V.(%)	5.58	5.49			7.26	7.23		
(Msi)	No. Specimens	1				9	9		
	No. Batches	1				0	1		
	Data Class	Scree	ening			Scre	ening		
	Mean No. Specimens								
rt.	No. Batches								
v_{12}^{t}	Data Class								
	Mean								
	Minimum								
	Maximum								
	C.V.(%)								
	D 1								
fu	B-value Distribution								
$arepsilon_1^{ ext{tu}}$									
(με)	C ₁								
	C ₂								
	No Specimers								
	No. Specimens No. Batches								
	Data Class								
L		ļ		ļ		ļ			

(1) Basis values are presented only for A and B data classes.

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

				RED WAS NOT SUP	PPLIED FOR THIS MATERIAL.
MATERIA	L: T-300 3k	/F650 unidirection	nal tape		Table 4.4.1(b) C/BMI 189-UT
RESIN CO FIBER VO PLY THIC	DLUME: 61 %	V	COMP: DENSITY: OID CONTENT:	1.57 g/cm ³	T-300/F650 SBS, 31-plane [0] ₃₄
TEST ME	THOD:	75/Å, 400/A Screening			
	M D 2344		IODULUS CALC		g
NORMALI	IZED BY: Not norm	alized			
Temperatu		75	400		
	Content (%)	ambient	ambient		
Equilibriun Source Co	m at T, RH	21	21		
	Mean	14.1	9.39		
	Minimum	13.5	8.77		
	Maximum	15.0	10.1		
	C.V.(%)	3.04	4.25		
	B-value	(1)	(1)		
F ₃₁ ^{sbs}	Distribution	Weibull	Weibull		
(ksi)	C ₁	14.3	9.59		
(ROI)	C ₂	32.3	24.6		
	No. Specimens	15	15		
	No. Batches Data Class	1 Screening	1 Screening		
	Data Glass	Ocreening	Coreening		

(1) Basis values are presented only for A and B data classes.

4.4.2 T-300 3k/F650 8-harness satin weave fabric

Material Description:

Material: T300 3k/F650

- Form: 8 harness satin weave fabric, fiber areal weight of 370 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.015 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours; postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.2 T-300 3k/F650 8-harness satin weave fabric*

MATERIAL:	T-300 3k/F650 8-harness satin wea	T-300 3k/F650 8-harness satin weave fabric			
FORM:	Hexcel F3T584/F650 8-harness sat	in weave fabric prepre	g		
FIBER:	Toray T-300 3k	MATRIX:	Hexcel F650		
T _g (dry):	600°F T _g (wet):	T _g METHOD:			
PROCESSING:	Autoclave cure: 375°F, 4 hours, 85	psig; Postcure: 475°F,	4 hours, free-standir	ng oven	

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	350°F/A	450°F/A		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	SS				
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.75		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.54		
Fiber Areal Weight	(g/m ²)	370		
Fiber Volume	(%)	56	52	
Ply Thickness	(in)	0.015		

LAMINATE PROPERTY SUMMARY

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			satin weave fabric		Table 4.4.2(a)
RESIN CO FIBER VC PLY THIC	DLUME: 52 %	,	Comp: Density: Void Content:	1.51 g/cm ³	C/BMI 370-8HS T-300/F650 Shear, 12-plane [±45ɾ]₄s 75/A
TEST ME	THOD:		MODULUS CALCU	LATION:	Screening
	M D 3518-76				
NORMALI	ZED BY: Not norr	nalized			
Temperatu		75			
	Content (%)	ambient			
Equilibriun Source Co	m at T, RH	21			
Source CC	Mean	9.77			
	Minimum	8.57			
	Maximum	11.1			
	C.V.(%)	8.78			
	B-value	(1)			
F_{12}^{su}	Distribution	Weibull			
(ksi)	C ₁	10.2			
	C ₂	12.9			
	No. Specimens	15			
	No. Batches	1			
	Data Class	Screening			
	Mean	0.69			
	Minimum	0.59			
- 8	Maximum	0.81 10			
G ^s ₁₂	C.V.(%)				
(Msi)	No. Specimens	14			
	No. Batches Data Class	Screening			
	Mean	Coreening			
	Minimum				
	Maximum				
	C.V.(%)				
	B-value				
su	B-value Distribution				
γ_{12}^{su}					
(με)	C ₁ C ₂				
	\mathbf{U}_2				
	No. Specimens				
	No. Batches				
	Data Class				

(1) Basis values are presented only for A and B data classes.

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		3k/F650 8-harness			UPPLIED FOR THIS MATERIAL. Table 4.4.2(b)
RESIN CO FIBER VO	ONTENT: 40 wt% DLUME: 52 %	6 C V	COMP: DENSITY: OID CONTENT:		C/BMI 370-8HS T-300/F650 SBS, 31-plane
PLY THIC	[0₅] ₈ 75/A, 350/A, 450/A				
TEST ME		N	IODULUS CALC	ULATION:	Screening
ASTN	/I D 2344				
NORMALI	ZED BY: Not no	rmalized			
Temperatu		75	350	450	
	Content (%)	ambient	ambient	ambient	
Equilibriun Source Co		21	21	21	
200.00 00	Mean	5.83	5.59	5.80	
	Minimum	4.75	4.93	5.23	
	Maximum	8.06	6.44	6.57	
	C.V.(%)	15.0	10.9	6.81	
	B-value	(1)	(1)	(1)	
F ₃₁ ^{sbs}	Distribution	Nonpara.	Weibull	Weibull	
(ksi)	C ₁	8	5.86	5.98	
(1101)	C ₂	1.54	11.0	15.5	
	No. Specimens	15	10	10	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	

(1) Short beam strength test data are approved for Screening Data Class only.

4.4.3 T-300 3k/F652 8-harness satin weave fabric

Material Description:

Material: T300 3k/F652

- Form: 8 harness satin weave fabric, fiber areal weight of 367 g/m², typical cured resin content of 27%, typical cured ply thickness of 0.0124 inches.
- Processing: Press cure, 400°F, 2.5 hours, 125 psi; postcure at 550°F, 4 hours

General Supplier Information:

- Fiber: T-300 3K fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F652 is a bismaleimide resin that has been modified from F650 to reduce the flow of the resin. The lower flow allows the resin to be used in press forming operations and also for high temperature honeycomb. The properties are equivalent to F650.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.3 T-300 3k/F652 8-harness satin weave fabric*

MATERIAL:	T-300 3k/F	T-300 3k/F652 8-harness satin weave fabric						
FORM:	Hexcel F30	3584/F652 8-harn	ess satin weave fabric prepre	eg				
FIBER:	Amoco Tho	ornel T-300	MATRIX:	Hexcel F652				
T _g (dry):	600°F	T _g (wet):	Tg METHOD:					
PROCESSING:	Press cure	d: 400°F, 2.5 hou	rs, 125 psig; Postcure: 550°F	, 4 hours				

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	70°F/A	600°F/A			
Tension, 1-axis	SS				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.76		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.55	1.57	
Fiber Areal Weight	(g/m ²)	367		
Fiber Volume	(%)	58	64.8	
Ply Thickness	(in)	.00124		

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	T-300 3k/F652 8-harness satin weave fab				
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	27.2 wt% 64.8 % 0.012 in.	COMP: DENSITY: VOID CONTENT:			

 1.57 g/cm^3 COMP: DENSITY: VOID CONTENT:

MODULUS CALCULATION:

Table 4.4.3(a) C/BMI 367-8HS T-300/F652 Tension, 1-axis **[O**f]10 70/A Screening

TEST METHOD: ASTM D 3039-76

Batch fiber volume to 57% (0.012 in. CPT) NORMALIZED BY:

	Content (%) m at T, RH	70 ambient 21					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	73.6 58.8 84.3 10.1	84.0 67.1 96.1 10.0				
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull				
(ksi)	C ₁ C ₂	76.8 12.3	87.6 12.4				
	No. Specimens No. Batches Data Class	1: 1 Scree					
	Mean Minimum Maximum	9.71 8.94 10.2	11.1 10.2 11.6				
$\mathrm{E}_{1}^{\mathrm{t}}$	C.V.(%)	4.36	4.28				
(Msi)	No. Specimens No. Batches Data Class	1: 1 Scree					
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIA MATERIAL: T-300 3k/F652 8-harness satin weave fabric Table 4.4.3(b)								
RESIN CONTENT FIBER VOLUME: PLY THICKNESS:	: 27.2 wt% 64.8 %	COMP: DENSITY: 1.57 g/cm ³ C/BMI 367-8HS wt% COMP: DENSITY: 1.57 g/cm ³ T-300/F652 % VOID CONTENT: SBS, 31-plane						
TEST METHOD: ASTM D 2344	Ļ	Ν	IODULUS CALCI	JLATION:		Screening		
NORMALIZED BY: Not normalized								
Temperature (°F) Moisture Content (Equilibrium at T, R		70 ambient	600 ambient					
	um hum %) ue bution pecimens atches	21 5.97 5.13 6.64 8.17 (1) Weibull 6.18 14.8 15 1 Screening	21 4.59 4.29 4.82 3.60 (1) Weibull 4.66 36.8 15 1 Screening					

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

4.4.4 AS4/5250-3 unidirectional tape

Material Description:

Material: AS4/5250-3

Form: Unidirectional tape, fiber areal weight of 147 g/m², typical cured resin content of 26-38%, typical cured ply thickness of 0.0055 inches.

Processing: Autoclave cure; 250°F, 85 psi, 1 hour; 350°F, 85 psi, 6 hours; postcure; 475°F, 6 hours.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 5250-3 is a modified bismaleimide resin possessing good hot/wet strength and improved toughness over standard bismaleimides. Good high temperature resistance.

Maximum Short Term Service Temperature: 450°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary:

1. Data are from publicly available report, Reference 4.4.4.

4.4.4 AS4/5250-3 unidirectional tape*

MATERIAL:	AS4/5250	-3 unidirectior	al tape			C/BMI 147-UT AS4/5250-3 Summary
FORM:	Narmco A	S4/5250-3 un	idirectional ta	ape, grade 147 prepr	eg	
FIBER:	Hercules /	AS4		MATRIX:	Narmco 5250-3	
T _g (dry):	642°F	T _g (wet):	561°F	T _g METHOD:	DMA	
PROCESSING:	Autoclave	cure: 250°F,	60 minutes; 3	350°F, 360 minutes,	85 psi; Postcure: 475°	F, 6 hours

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	12/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

	72°F/A	-67°F/A	350°F/A	450°F/A	74°F/W	350°F/W
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S		
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	SS	SS	SS	SS	SS	SS
Shear, 23-plane						
Shear, 31-plane						

LAMINA PROPERTY SUMMARY

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.25		
Composite Density	(g/cm ³)	1.58	1.52 - 1.63	
Fiber Areal Weight	(g/m ²)	147	132 - 165	ASTM D 3529
Fiber Volume	(%)	60	51 - 66	
Ply Thickness	(in)	0.0051 - 0.0059	0.0050 - 0.0062	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		/5250-3 unidire	ctional tape	Table	e 4.4.4(a)			
FIBER V	OLUME: 63-6	28 wt% 66 % 050-0.0053 in.	COMP: DE VOID CON					
TEST ME	THOD:		MODULUS	S CALCUL	ATION:		eening	
AST	M D 3039-76							
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume t	o 60% (0.0055 in. C	CPT)		
	Content (%)		2 bient		-67 ambient		50 bient	
Equilibriu Source C	im at T, RH	(-	1)		(1)		(1)	
Source C	JULE	Normalized	Measured	Normaliz		Normalized	Measured	
	Mean	252	291	270	311	266	308	
	Minimum	223	255	249	285	241	276	
	Maximum	275	322	288	332	283	325	
	C.V.(%)	7.63	8.48	6.12	6.48	6.87	7.54	
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Norma	(2) al Normal	(2) Normal	(2) Nonpara.	
(ksi)	C ₁	252	291	270	312	266	5	
(KSI)	C_2	19.2	291	16.5	20.2	18.3	3.06	
	No. Specimens No. Batches	6 1		6 1		6 1		
	Data Class		ening		Screening		ening	
	Mean	15.9	18.3	16.4	18.9	16.4	19.0	
	Minimum	15.3	17.7	15.9	18.5	15.8	18.2	
E_1^t	Maximum C.V.(%)	16.4 3.04	18.9 2.51	16.8 2.23	19.4 1.91	16.7 2.07	19.5 2.85	
ъ ₁								
(Msi)	No. Specimens		6		6		6	
	No. Batches Data Class		1 ening		Screening	Scre	ening	
	Mean		0.300		0.295		0.302	
v_{12}^{t}	No. Specimens No. Batches		5 1		6 1		6 1	
12	Data Class	Scre	ening		Screening	Scre	ening	
	Mean		17100		15800		15900	
	Minimum		14900		14100		14800	
	Maximum		20000		18000		17100	
	C.V.(%)		13.3		9.6		4.98	
	B-value		(2)		(2)		(2)	
$\varepsilon_1^{ m tu}$	Distribution		Normal		Normal		Normal	
(με)	C ₁		17100		15800		15900	
(pc)	C ₂		2270		1520		789	
	No. Specimens		5		6		6	
	No. Batches		1.		1		1.	
	Data Class	Scre	ening	I	Screening	Scre	ening	

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

RESIN C	MATERIAL: AS4/5250-3 unidirectional tape Table 4.4.4(b) C/BMI 147-UT RESIN CONTENT: 26-28 wt% COMP: DENSITY: 1.61-1.63 g/cm ³ AS4/5250-3 FIBER VOLUME: 63-67 % VOID CONTENT: 0.0-0.9% Tension, 1-axis								
		7 % 50-0.0053 in.	VOID CON		0] ₈				
							4/W, 350/W		
TEST ME			MODULUS	S CALCULATIO	DN:	Scre	eening		
ASI	ASTM D 3039-76								
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60°	% (0.0055 in. C	PT)			
Tempera		45			'4 70	35			
	Content (%) Im at T, RH	amb	lient		70 -, 95%	0.7 (1			
Source C		(2	2)		, 9378 2)	(2	2)		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	253	292	268	312	249	287		
	Minimum	208	237	235	268	232	264		
	Maximum C.V.(%)	269 8.87	314 9.64	293 7.74	347 8.99	261 4.50	305 5.42		
	C.V.(%)	0.07	9.04	1.14	0.99	4.50	5.42		
	B-value	(3)	(3)	(3)	(3)	(3)	(3)		
F_1^{tu}	Distribution	Nonpara.	Normal	Normal	Normal	Normal	Normal		
(ksi)	C ₁	5	292	268	312	249	288		
	C ₂	3.06	28.1	20.7	28.1	11.2	15.6		
	No. Specimens	6	3		6	5	5		
	No. Batches	1		1		1			
	Data Class	Scree			ening	Scree	, e		
	Mean	16.5	19.0	16.6	19.3	15.9	18.4		
	Minimum Maximum	15.7 16.9	18.1 19.7	16.2 17.3	18.9 19.9	15.4 16.4	17.8 19.1		
E_1^t	C.V.(%)	3.43	3.56	2.36	1.82	2.41	2.71		
(Msi)	No. Specimens	6			6	5	5		
	No. Batches	1		1 Screening		1			
	Data Class Mean	Scree	0.295	Scre	ening 0.335	Scree	ening 0.368		
	No. Specimens	6			6	5			
v_{12}^{t}	No. Batches	1			1	1			
12	Data Class	Scree	ening	Scre	ening	Scree	ening		
	Mean		13900		15200		14900		
	Minimum		11700		13500		13200		
	Maximum C.V.(%)		15000 8.14		16600 7.14		15500 6.46		
	0. v.(/0)		0.14		1.14		0.40		
	B-value		(3)		(3)		(3)		
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal		
(με)	C ₁		13900		15200		14900		
	C ₂		1130		1080		961		
	No. Specimens		,		6	6	3		
	No. Batches	6			1	1			
	Data Class	Scree			ening	Scree			
(1) Con	ditioned at 160°E 0					-			

(1) Conditioned at 160°F, 95% relative humidity for 29 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		/5250-3 unidirect		Table 4.4.4(c)			
FIBER V	OLUME: 63-6	8 wt% 6 % 50-0.0053 in.	% VOID CONTENT: 0.1-0.9%				C/BMI 147-UT AS4/5250-3 Tension, 1-axis [0] ₈ 350/W
TEST ME	ETHOD:		MODULUS	S CALCUL		N:	Screening
AST	M D 3039-76						
NORMAL	-IZED BY: Spe	cimen thickness	and batch fibe	er volume	to 60%	6 (0.0055 in. C	PT)
	Content (%) Im at T, RH	350 1.0 160°F, (1)) 95%				
		Normalized	Measured	Normali	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%) B-value	235 176 259 12.8	270 202 296 13.0				
F ₁ ^{tu}	Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	235 29.9	270 35.1				
	No. Specimens No. Batches Data Class	6 1 Screei	ning				
E_1^t	Mean Minimum Maximum C.V.(%)	16.7 15.5 18.4 6.43	19.2 17.7 21.2 6.26				
(Msi)	No. Specimens No. Batches Data Class	6 1 Screei	ning				
v ₁₂ ^t	Mean No. Specimens No. Batches	4	0.363				
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ning 14400 9950 16200 16.0				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		14400 2300				
	No. Specimens No. Batches Data Class	6 1 Scree	ning				

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

AS4/5250-3 unidirectional tape

MATERIAL:

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

Table 4.4.4(d)

MAIEF		C/BMI 147-UT				
FIBER	VOLUME: 51	-40 wt% -65 % 0051-0.0059 in.	COMP: D VOID CO		2-1.61 g/cm ³ -0.8%	AS4/5250-3 Tension, 2-axis [90]₀ 72/A, -67/A, 350/A, 450/A
TEST N	/IETHOD:		MODULU	S CALCULATI	ON:	Screening
AS	STM D 3039-76					
		ot normalized				
	rature (°F)	72	-67	350	450	
	e Content (%)	ambient	ambient	ambient	ambient	
	ium at T, RH	(0)	(0)	(0)		
Source		(2)	(2)	(2)	(2)	
	Mean Minimum	4.61 3.52	4.98 4.68	4.63 3.43	4.54 4.13	
	Maximum	5.65	4.68 5.94	5.33	5.19	
	C.V.(%)	18.4	9.69	13.7	9.20	
	0 (70)	10.4	3.03	10.7	0.20	
F ₂ ^{tu}	B-value Distribution	(1) Normal	(1) Nonpara.	(1) Normal	(1) Normal	
(ksi)	C ₁	4.61	5	4.63	4.54	
(1.01)	C_2	0.847	3.06	0.637	0.417	
	No. Specimens	6	6	6	6	
	No. Batches	1 Screening	1 Sereening	1 Sereening	1 Screening	
	Data Class Mean	Screening 1.24	Screening 1.40	Screening 1.04	Screening 1.08	
	Minimum	1.24	1.40	0.940	0.930	
	Maximum	1.35	1.20	1.16	1.26	
E_2^t	C.V.(%)	5.90	5.50	8.50	10.3	
(Msi)	No. Specimens	6	6	5	6	
(10131)	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean No. Specimens		<u>co.com.g</u>	<u>co.comig</u>		
v_{21}^t	No. Batches					
	Data Class					
	Mean	3540	3580	4680	4330	
	Minimum	2000	3180	3300	3600	
	Maximum	4900	4740	6000	5600	
	C.V.(%)	26.9	16.5	19.0	18.0	
<i>t</i> 11	B-value	(1)	(1)	(1)	(1)	
$arepsilon_2^{ ext{tu}}$	Distribution	Normal	Lognormal	Normal	Normal	
(με)	C ₁	3540	8.17	4680	4330	
. /	C ₂	955	0.149	889	782	
	No. Specimens No. Batches	6	6 1	6	6	
	Data Class	Screening	Screening	Screening	Screening	
		Coreening	Corcerning	ourcening	oorconing	

(1) Basis values are presented only for A and B data classes.

(2) Reference 4.4.4.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		4/5250-3 unidire		Table	4.4.4(e) 147-UT		
FIBER V	OLUME: 53-	38 wt% 56 % 057-0.0062 in.	5 % VOID CONTENT: 0.1-0.9%		AS4/ Comprese [5250-3 sion, 1-axis 0]₀ 7/A, 350/A	
TEST ME	ETHOD:		MODULUS	S CALCULA ⁻	TION:		ening
AST	M D 3410A-87						
NORMAL	LIZED BY: Spo	ecimen thickness	and batch fibe	er volume to	60% (0.0055 in. C	PT)	
	ture (°F) Content (%) ım at T, RH	7 amb	2 bient	а	-67 mbient		50 bient
Source C		(1)		(1)	(*	1)
		Normalized	Measured	Normalize	d Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	175 122 203 15.9	158 110 184 15.9	198 176 222 8.0	179 160 201 8.0	174 141 235 23.6	148 127 185 15.9
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	175 27.7	158 25.1	198 15.8	179 14.3	174 41.1	149 23.6
	No. Specimens No. Batches Data Class	Scree	l	Sc	6 1 creening		6 1 ening
E_1^c	Mean Minimum Maximum C.V.(%)	17.0 14.1 22.7 20.1	15.4 12.8 20.5 20.0	15.5 13.9 18.5 10.7	14.0 12.6 16.7 10.6	17.4 15.2 21.9 14.7	14.9 13.8 17.2 8.55
(Msi)	No. Specimens No. Batches Data Class	Scree	l	Sc	6 1 creening		6 1 ening
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		12100 8000 22700 46.2		19800 8360 26700 43.9		15300 10200 18400 18.1
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal
(με)	C ₁ C ₂		12100 5570		19800 8710		15300 2770
	No. Specimens No. Batches Data Class	Scree	l	So	6 1 creening		6 1 ening

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

	NE 1989). ALL DU						
MATERI	AL: AS4	/5250-3 unidire	ctional tape			Table 4	
					3	C/BMI 1	
		38 wt%	COMP: DE	5 g/cm ³	AS4/52		
FIBER V		56 %	VOID CON	-0.9%	Compressi		
PLY THI	PLY THICKNESS: 0.0057-0.0062 in.						8
			450/A, 74/\				
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:	Scree	ning
AST	M D 3410A-87						
NORMAL	LIZED BY: Spe	cimen thickness	s and batch fibe	er volume to 60°	% (0.0055 in. C	PT)	
Tempera	ture (°F)	4	50	7	4	35	50
Moisture	Content (%)	amb	pient	0.	82	0.	79
Equilibriu	ım at T, RH			160°F	, 95%	(*	1)
Source C	Code	(2	2)	(2	2)	(2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	153	131	194	176	153	139
	Minimum	119	108	175	159	113	102
	Maximum	207	163	216	195	173	157
	C.V.(%)	21.2	15.1	8.6	8.63	15.5	15.5
	B-value	(3)	(3)	(3)	(3)	(3)	(3)
F ₁ ^{cu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal
-							
(ksi)	C ₁	153	131	194	176	153	139
	C ₂	32.4	19.7	16.7	15.2	23.8	21.5
	N 0 ·		-		_		_
	No. Specimens		6		6	ł.	5
	No. Batches	1		1 Screening			1
	Data Class		ening			Scree	<u> </u>
	Mean	18.2	15.6	18.5	16.8	16.1	14.6
	Minimum	14.0	12.6	16.4	14.9	14.3	12.9
	Maximum	21.7	17.1	21.5	19.5	18.2	16.5
E_1^c	C.V.(%)	16.0	10.4	9.42	9.39	9.78	9.75
(Msi)	No. Specimens		6	6	6	5	5
· · · ·	No. Batches		1		1	1	
	Data Class	Scre	ening	Scre	ening	Scre	ening
	Mean		-		-		-
	No. Specimens						
v_{12}^{c}	No. Batches						
×12	Data Class						
	Data Class		0400		15000		10000
	Mean		8480		15900		12600
	Minimum Maximum		2900 14600		10600 22900		6400 16000
	C.V.(%)		44.7		32.5		30.2
	P volue		(2)		(2)		(2)
CII	B-value Distribution		(3) Normal		(3) Normal		(3) Normal
ε_1^{cu}			Normal				Normal
(με)	C ₁		8480		15900		12600
	C ₂		3790		5170		3810
	-						
	No. Specimens		6	6	6		5
	No. Batches		1		1		1
	Data Class	Scre	ening	Scree	ening	Scre	ening
	ditioned at 160°E (nidity for 7 day	(750)	<u>ل</u>	0010	3

(1) Conditioned at 160°F, 95% relative humidity for 7 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	,	/5250-3 unidired					Table 4.4.4(g)
	AL. A34	5250-5 unitaliet	cional tape		C/BMI 147-UT		
RESIN CO FIBER VO	DLUME: 56 %	, 0	COMP: DE VOID CON	AS4/5250-3 Compression, 1-axis			
PLY THIC	CKNESS: 0.00	50-0.0053 in.					[0] ₈ 350/W
TEST ME	THOD		MODULUS				Screening
	M D 3410A-87			0, 12001			
7.011							
NORMAL		cimen thickness		er volume	to 60% (0).0055 in. CF	ידי) די
Temperat		35					
	Content (%) m at T, RH	1. 160°F					
Source C		(1					
		Normalized	Measured	Normal	zed N	leasured	Normalized Measured
	Mean	127	115				
	Minimum Maximum	108 152	97.9 138				
	C.V.(%)	11.4	130				
	(/0)						
	B-value	(2)	(2)				
F_1^{cu}	Distribution	Normal	Normal				
(ksi)	C ₁	127	115				
	C ₂	14.4	13.0				
	No. Specimens	6	5				
	No. Batches	1					
	Data Class	Scree					
	Mean	18.1	16.4				
	Minimum Maximum	16.6 20.7	15.0 18.7				
E_1^c	C.V.(%)	7.93	7.89				
(Msi)	No. Specimens	6					
	No. Batches	1					
<u> </u>	Data Class Mean	Scree	ening				
	No. Specimens						
v_{12}^{c}	No. Batches						
12	Data Class						
	Mean		8120				
	Minimum		6600				
	Maximum C.V.(%)		9180 11.5				
	B-value		(2)				
ε_1^{cu}	Distribution		Normal				
(με)	C ₁		8120				
	C ₂		934				
	No. Specimens	6					
	No. Batches	1					
	Data Class	Scree	ening				

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	L: AS4/52	Tab	ole 4.4.4(h)			
RESIN CO FIBER VO PLY THIC	LUME: 59-63 %	³ AS Shea	SMI 147-UT S4/5250-3 ar, 12-plane [±45] _{4s} -67/A, 350/A,			
TEST ME			MODULUS CALCU	JLATION:	S	450/A creening
ASTN	1 D 3518-76					
NORMALI	ZED BY: Not nor	malized				
Temperatu		72	-67	350	450	
Moisture C Equilibriun	Content (%)	ambient	ambient	ambient	ambient	
Source Co		(1)	(1)	(1)	(1)	
	Mean	9.61	10.1	10.4	9.01	
	Minimum	8.49	9.67	9.55	8.44	
	Maximum	10.4	10.5	11.0	9.47	
	C.V.(%)	6.95	3.50	5.31	4.87	
	B-value	(2)	(2)	(2)	(2)	
F ₁₂ ^{su}	Distribution	Normal	Normal	Normal	Normal	
(ksi)	C ₁	9.61	10.1	10.4	9.01	
(111)	C ₂	0.668	0.352	0.553	0.439	
	No. Specimens	6	6	6	6	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean	0.77	0.84	0.66	0.62	
	Minimum Maximum	0.71 0.83	0.78 0.86	0.62 0.72	0.50 0.69	
C ^S	C.V.(%)	5.6	3.6	5.3	12	
G ^s ₁₂	0.1.(70)	0.0	0.0	0.0	12	
(Msi)	No. Specimens	6	6	6	6	
-	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean					
	Minimum Maximum					
	C.V.(%)					
	B-value					
γ_{12}^{su}	Distribution					
(με)	C ₁					
	C ₂					
	No. Specimens					
	No. Batches					
	Data Class					

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		250-3 unidirection			Table 4.4.4(i)
RESIN CO FIBER VO PLY THIC	DLUME: 59-63 KNESS: 0.0055		COMP: DENSITY: VOID CONTENT:	C/BMI 147-UT AS4/5250-3 Shear, 12-plane [±45] _{4s} 74/W, 350/W, 350/W	
TEST ME			MODULUS CALCU	JLATION:	Screening
ASTN	1 D 3518-76				
NORMALI	ZED BY: Not no	rmalized			
Temperate		74	350	350	
	Content (%)	0.55	0.55	1.1	
Equilibriur		160°F, 95%	(1)	160°F, 95%	
Source Co		(2)	(2)	(2)	
	Mean	12.5	8.70	9.81	
	Minimum	11.3	8.24	8.13	
	Maximum	13.2	8.95	10.6	
	C.V.(%)	5.26	3.42	9.27	
	B-value	(3)	(3)	(3)	
F_{12}^{su}	Distribution	Normal	Normal	Normal	
(ksi)	C ₁	12.5	8.70	9.81	
(10)	C ₂	0.656	0.298	0.909	
	- 2				
	No. Specimens	6	5	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean	0.79	0.46	0.49	
	Minimum	0.77	0.43	0.40	
	Maximum	0.81	0.48	0.56	
G_{12}^s	C.V.(%)	1.9	4.0	14	
(Msi)	No. Specimens	6	6	4	
· · /	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean				
	Minimum				
	Maximum				
	C.V.(%)				
	B-value				
, su	Distribution				
$\gamma_{12}^{\rm su}$					
(με)	C ₁				
	C ₂				
	No. Specimens				
	No. Batches				
	Data Class				

(1) Conditioned at 160°F, 95% relative humidity for 3 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

4.4.5 IM7 6k/5250-4 RTM 4-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.4.6 T650-35 3k/5250-4 8-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.4.7 T650-35 3k/5250-4 plain weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.5 CARBON - POLYIMIDE COMPOSITES

4.5.1 Celion 3000/F670 8-harness satin weave fabric

Material Description:

Material: Celion 3000/F670

- Form: 8 harness satin fabric, areal weight of 384 g/m², typical cured resin content of 30-34%, typical cured ply thickness of 0.0132-0.0144 inches.
- Processing: Autoclave cure; 440°F for 2 hours; 600°F for 3 hours, 200 psi; postcure to achieve high temperature service.

General Supplier Information:

Fiber: Celion 3000 fibers are continuous carbon filaments made from PAN precursor. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 106 psi. Typical tensile strength is 515,000 psi.

Matrix: F670 is a polyimide resin (PMR 15) with good high temperature performance.

Maximum Short Term Service Temperature: 575°F (dry)

Typical applications: Commercial and military aircraft applications where high temperature resistance is a requirement.

4.5.1 Celion 3000/F670 8-harness satin weave fabric*

MATERIAL:	Celion 3000/F670 8-harness satin we	C/PI 384-8HS Celion 3000/F670 Summary		
FORM:	Hexcel F3L584/F670 8-harness satin	weave fabric prepre	g	
FIBER:	Celanese Celion 3000	MATRIX:	Hexcel F670 (PM	R-15)
T _g (dry):	635°F T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave cure: 440°F, 2 hours; 600°l	F, 3 Hours, 200 psig;	Postcure	

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	8/87
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture 2/87-5/	7 Date of analysis	1/93
Date of composite manufacture		

	75°F/A	550°F/A			
Tension, 1-axis	SS	SS			
Tension, 2-axis	SS	SS			
Tension, 3-axis					
Compression, 1-axis	SS	SS			
Compression, 2-axis	SS	SS			
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 23-plane	S				
SB Strength, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.32		
Composite Density	(g/cm ³)	1.59	1.59 - 1.63	
Fiber Areal Weight	(g/m ²)	384		
Fiber Volume	(%)	56	57 - 64	
Ply Thickness	(in)		0.0132 - 0.0144	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL:	Celic	on 3000/F670 8-	-harness satin	pric	Table 4.5.1(a) C/PI 384-8HS	
FIBER V	ONTENT: OLUME: CKNESS:	57-64	34 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 64 % VOID CONTENT: 0.0-0.62% 132-0.0144 in. 0.0-0.62%		Celion 3000/F670 Tension, 1-axis [0 _f] ₈ 75/A, 550/A		
TEST ME	ETHOD:			MODULUS	S CALCUL	ATION:	Screening
AST	M D 3039-76						
NORMAL	LIZED BY:	Fiber	volume to 57%	6 (0.0147 in. C	PT)		
	ture (°F) Content (%) ım at T, RH		7! amb			550 ambient	
Source C			22	2		22	
			Normalized	Measured	Normalia		Normalized Measured
	Mean Minimum Maximum C.V.(%)		132 127 140 2.75	136 131 144 2.76	116 95.4 129 7.94	134	
F ₁ ^{tu}	B-value Distribution		(1) Normal	(1) Normal	(1) Norma		
(ksi)	C_1 C_2		132 3.63	136 3.76	116 9.18		
	No. Specim No. Batches Data Class		9 3 Scree	3		9 3 Screening	
E_1^t	Mean Minimum Maximum C.V.(%)		9.03 8.66 9.35 3.22	9.35 8.96 9.68 3.23	8.67 8.50 9.07 2.54	8.80 9.39	
(Msi)	No. Specim No. Batches Data Class		9 3 Scree	}		9 3 Screening	
v_{12}^{t}	Mean No. Specim No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specim No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: Celio	on 3000/F670 8-		Table 4.5.1(b) C/PI 384-8HS		
FIBER V	OLUME: 57-6	4 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 4 % VOID CONTENT: 0.0-0.62% 32-0.0144 in.				Celion 3000/F670 Tension, 2-axis [90₁]₀ 75/A, 550/A
TEST ME	ETHOD:		MODULUS	S CALCULATI	ON:	Screening
AST	M D 3039-76					
NORMAL	LIZED BY: Fibe					
Equilibriu	Content (%) um at T, RH	75 amb	ient	am	550 Ibient	
Source C	Code	22 Normalized	2 Measured	Normalized	22 Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	107 85.6 129 15.7	111 88.6 133 15.7	90.4 61.9 123 23.8	93.5 64.1 127 23.8	Normalized Measured
F_2^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁ C ₂	19.3 6.09	20.0 6.09	24.7 6.02	25.5 6.02	
	No. Specimens No. Batches Data Class	9 3 Screening		9 3 Screening		
E ₂ ^t	Mean Minimum Maximum C.V.(%)	8.43 7.43 9.33 7.45	8.73 7.69 9.66 7.46	8.23 7.58 8.84 5.49	8.52 7.85 9.15 5.48	
(Msi)	No. Specimens No. Batches Data Class	9 3 Scree	3	Scre	9 3 eening	
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$arepsilon_2^{ ext{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL:	Celio	Celion 3000/F670 8-harness satin weave fabric					4.5.1(c)
FIBER V	ONTENT: OLUME: CKNESS:	57-6	34 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 34 % VOID CONTENT: 0.0-0.62% 32-0.0144 in. 32-0.0144 in. 0.0-0.62%		Celion 3 Compres [84-8HS 3000/F670 sion, 1-axis 0 _f] ₈		
TEST ME	THOD:			MODULUS	S CALCUL	ATION:		, 550/A eening
SAC	MA SRM 1-88	3						
NORMAL	IZED BY:	Fibe	r volume to 57%	6 (0.0147 in. C	PT)			
	Content (%)		7: amb			550 ambient		
Source C	im at T, RH Code		2:	2		22		
			Normalized	Measured	Normaliz		Normalized	Measured
	Mean Minimum Maximum		99.4 87.9 118	103 91.3 122	66.0 59.0 71.7	68.3 61.1 74.2		
	C.V.(%)		9.33	9.33	6.60	6.59		
F ₁ ^{cu}	B-value Distribution		(1) ANOVA	(1) ANOVA	(1) Norma	(1) al Normal		
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$		10.2 5.28	10.6 5.28	66.0 4.36	68.3 4.51		
	No. Specim No. Batches		9 3 Soros	6		9 3 Saraaning		
	Data Class Mean		Scree 8.61	8.92	8.09	Screening 8.38		
E ₁ ^c	Minimum Maximum C.V.(%)		8.40 9.09 2.54	8.69 9.41 2.54	7.26 8.78 5.19	7.51 9.09 5.21		
(Msi)	No. Specim		9)		9		
	No. Batches Data Class	6	3 Scree		:	3 Screening		
v_{12}^{c}	Mean No. Specim No. Batches							
	Data Class Mean							
	Minimum Maximum C.V.(%)							
$arepsilon_1^{ m cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specim No. Batches Data Class							

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		Table 4.5.1(d)				
FIBER VO	OLUME: 57-6 CKNESS: 0.01	4 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 4 % VOID CONTENT: 0.0-0.62% 32-0.0144 in.			C/PI 384-8HS Celion 3000/F670 Compression, 2-axis [90 ₁]₀ 75/A, 550/A	
TEST ME			MODULUS	S CALCULA	TION:	Screening
SAC	CMA SRM 1-88					
NORMAL	LIZED BY: Fibe					
Tempera Moisture	iture (°F) Content (%)	75 amb			550 ambient	
Equilibriu	um at T, RH					
Source C	Code	22 Normalized	2 Measured	Normalize	22 ed Measured	Normalized Measured
	Mean	78.9	81.7	54.2	56.1	
	Minimum	76.1	78.8	52.4	54.2	
	Maximum C.V.(%)	80.7 3.10	83.5 3.10	56.6 4.02	58.6 4.03	
			5.10	4.02	4.00	
F ₂ ^{cu}	B-value Distribution	(1)				
г ₂ (ksi)	C ₁					
(noi)	C_2					
	No. Specimens	3			3	
	No. Batches	1			1 oropping	
	Data Class Mean	Scree 8.08	8.37	7.67	creening 7.94	
	Minimum	8.03	8.31	7.59	7.86	
76	Maximum C.V.(%)	8.14 0.681	8.43 0.720	7.77 1.19	8.04 1.15	
E ₂ ^c	0.0.(%)	0.001	0.720	1.19	1.15	
(Msi)	No. Specimens No. Batches	3			3	
	Data Class	1 Scree		s	1 creening	
	Mean No. Specimens					
v_{12}^{c}	No. Batches					
12	Data Class					
	Mean Minimum					
	Maximum					
	C.V.(%)					
	B-value					
$\varepsilon_2^{\mathrm{cu}}$	Distribution					
(με)	C ₁ C ₂					
	\mathbf{U}_2					
	No. Specimens					
	No. Batches Data Class					
I	2414 61400	I		1		

(1) Insufficient observations to complete the statistical evaluations.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	Celion 30	000/F670 8-harne		Table 4.5.1(e)		
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30-34 wt ⁴ 57-64 % 0.0132-0	V	COMP: DENSITY: OID CONTENT:	1.59-1.63 g/cn 0.0-0.62%	1 ³	C/PI 384-8HS Celion 3000/F670 SBS, 23-plane [0₁]ଃ 75/A
TEST METHOD:		Ν	IODULUS CALCU	JLATION:		Screening
ASTM D 2344-84						
NORMALIZED BY:	Not norm	alized				
Temperature (°F)		75				
Moisture Content (%) Equilibrium at T, RH		ambient				
Source Code		22				
Mean		11.1				
Minimum		10.4				
Maximum		11.7				
C.V.(%)		5.88				
B-value F ^{sbs} Distributio	n	(1)				
1 23	11					
(ksi) C ₁						
C ₂						
No. Speci	mens	3				
No. Batch		1				
Data Clas	S	Screening				

(1) Insufficient observations to complete the statistical evaluations.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL		Table 4.5.1(f)			
RESIN CO FIBER VOI PLY THICK	LUME: 57	-34 wt% -64 %)132-0.0144 in.	COMP: DENSITY: VOID CONTENT:	C/PI 384-8HS Celion 3000/F670 SBS, 31-plane [0 _{7]8} ≂r(A	
TEST MET ASTM	HOD: D 2344-84		MODULUS CALCU	JLATION:	75/A Screening
NORMALIZ	ZED BY: No	ot normalized			
Temperatu Moisture C Equilibrium Source Coo	ontent (%) at T, RH	75 ambient 22			
Source Coo	de Mean Minimum Maximum C.V.(%)	10.9 9.70 12.0 6.15			
F ₃₁ ^{sbs} (ksi)	B-value Distribution C ₁ C ₂	(1) ANOVA 0.722 4.78			
	No. Specimer No. Batches Data Class	is 9 3 Screening			

(1) Short beam strength test data are approved for Screening Data Class only.

4.6 CARBON - PHENOLIC COMPOSITES

4.7 CARBON - SILICONE COMPOSITES

4.8 CARBON - POLYBENZIMIDAZOLE COMPOSITES

4.9 CARBON - PEEK COMPOSITES

4.9.1 IM6 12k/APC-2 unidirectional tape

Material Description:

Material: IM6 12k/APC-2

Form: Unidirectional tape, fiber areal weight of 150 g/m², typical cured resin content of 32%, typical cured ply thickness of 0.0053 inches.

Processing: Autoclave cure; 720°F, 30-45 mins., 60 psi.

General Supplier Information:

- Fiber: IM6 fibers are continuous, intermediate modulus carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments per tow. Typical tensile modulus is 40 x 10⁶ psi. Typical tensile strength is 635,000 psi.
- Matrix: APC-2 is a semi-crystalline thermoplastic (polyetheretherketone, PEEK) resin that has high toughness and damage tolerance. It can be stored indefinitely at ambient conditions.

Maximum Short Term Service Temperature: 250°F (dry), 250°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, space components.

Data Analysis Summary:

1. Data are from publicly available report, Reference 4.9.1.

4.9.1 IM6 12k/APC-2 unidirectional tape*

MATERIAL:	IM6 12k/A	PC-2 unidired	ctional tape			C/PEEK - UT IM6/APC-2 Summary				
FORM:	Fiberite IN	/I6/APC-2 unio								
FIBER:	Hercules	Hercules IM6 12k			Fiberite APC-2					
T _g (dry):	291°F	T _g (wet):	309°F	Tg METHOD:	DMA					
PROCESSING:	Autoclave	Autoclave cure: 720°F, 30 - 45 minutes, 60 psig								

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	12/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

	74°F/A	-67°F/A	180°F/A	250°F/A	180°F/O	74°F/W	180°F/W
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S			
Tension, 3-axis							
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S
Compression, 2-axis							
Compression, 3-axis							
Shear, 12-plane	SS	SS	SS	SS	SS	SS	SS
Shear, 23-plane							
Shear, 31-plane							

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.73		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.55	1.54 - 1.58	ASTM D 792
Fiber Areal Weight	(g/m ²)			
Fiber Volume	(%)	60	60 - 62	
Ply Thickness	(in)	0.0054	0.0052 - 0.0058	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		AS NOT SUFF	Table	4.9.1(a)				
RESIN CONTENT:32 wFIBER VOLUME:61-6PLY THICKNESS:0.00						C/PEEK - UT IM6/APC-2 Tension, 1-axis [0] ₈ 74/A, -67/A, 180/A		
TEST ME	THOD:		MODULUS		Screening			
AST	M D 3039-76							
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 60)% (0.0055 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	74 amb			67 bient	18 amb		
Source C		(1)		(1)	(1)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	350 266 426 15.9	370 282 455 16.0	376 326 412 8.69	398 345 439 8.93	327 234 402 17.3	344 248 421 16.8	
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	350 55.5	370 59.3	376 32.7	398 35.6	327 56.4	344 58.0	
	No. Specimens No. Batches Data Class	6 1 Screening		Scr	6 1 Screening		ening	
E ^t	Mean Minimum Maximum C.V.(%)	21.6 21.3 22.0 1.41	22.9 22.4 23.3 1.58	22.0 20.9 23.2 3.35	23.3 22.2 24.5 3.26	23.2 22.3 23.7 2.24	24.4 23.6 25.0 2.17	
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		6 1 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches	6 1	0.342		0.357 6 1	0.355 6 1		
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 13600 8100 17500 24.6	Scre	eening 15900 13500 17200 9.23	Scree	ening 14100 10400 16800 14.9	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		13600 3350		15900 1470		14100 2100	
	No. Specimens No. Batches Data Class	6 1 Screening		Scre	6 1 eening	6 1 Screening		

(1) Reference 4.9.1.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: IM6	12k/APC-2 unio				Table 4 C/PEE	.9.1(b)	
		wt% COMP: DENS 62 % VOID CONTE 053-0.0054 in. VOID CONTE			0		IM6/APC-2 Tension, 1-axis [0]₀ 250/A, 74/0.13%, 180/0.11%	
TEST ME	ETHOD:		MODULUS	S CALCULA	TION:	250/A, 74/0.13%, 180/0.11% Screening		
AST	M D 3039-76							
NORMAL	LIZED BY: Spe	cimen thickness	s and batch fibe	er volume to	60% (0.0055 in.	CPT)		
Tempera			50		180		74	
	Content (%) Im at T, RH	amo	pient		0.11 (1)		.13 ⁻ , 95%	
Source C		(2	2)		(1)		2)	
		Normalized	Measured	Normalize		Normalized	Measured	
	Mean Minimum	304 253	322 269	369 303	390 320	352 271	371 286	
	Maximum	341	363	403	425	415	434	
	C.V.(%)	11.4	11.4	12.3	12.2	14.6	14.2	
F_1^{tu}	B-value Distribution	(3) Normal	(3) Normal	(3) Normal	(3) Normal	(3) Normal	(3) Normal	
(ksi)	C ₁	304	322	369	390	352	371	
()	C ₂	34.7	36.6	45.3	47.6	51.4	52.6	
	No. Specimens No. Batches		6		5 1		6 1	
	Data Class	Screening			creening		ening	
	Mean Minimum	21.4 20.5	22.7 21.9	21.8 20.9	23.0 22.1	21.2 20.4	22.3 21.6	
	Maximum	22.1	23.4	20.0	23.5	22.0	23.0	
E_1^t	C.V.(%)	2.70	2.42	2.42	2.42	3.15	3.04	
(Msi)	No. Specimens		6		5		6	
()	No. Batches		1	1			1	
	Data Class	Scre	ening 0.338	S	creening	Scre	ening	
	Mean No. Specimens		6		0.366 5		0.372 6	
v_{12}^t	No. Batches		1		1		1 aning	
	Data Class Mean	Scre	ening 14800	S	creening 16300	Scre	ening 18100	
	Minimum		12500		14400		15700	
	Maximum		16400		17200		20800	
	C.V.(%)		11.8		6.70		10.8	
	B-value		(3)		(3)		(3)	
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal	
(με)	C ₁		14800		16300		18100	
/	C ₂		1760		1090		1960	
	No. Specimens		6		5		6	
No. Batches			1		1		1	
	Data Class		ening pidity for 3 days		creening	Scre	ening	

(1) Conditioned at 160°F, 96% relative humidity for 3 days (75% saturation).

(2) Reference 4.9.1.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			Table 4.9.1(c)				
FIBER V		62 % VOID CONTENT: 0.0-0.2% 053-0.0054 in.				C/PEEK - UT IM6/APC-2 Tension, 1-axis [0] ₈ 180/0.14%	
TEST ME	ETHOD:	MODULUS CALCULATION:					Screening
AST	M D 3039-76					_	
	•	cimen thickness		er volume	to 60%	(0.0055 in. C	CPT)
Equilibriu	Content (%) Im at T, RH	18 0.1 160°F,	4 95%				
Source C	Jode	(1 Normalized) Measured	Normali	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	364 325 411 10.2	385 344 436 10.1	Norman	<u>260 </u>	Measureu	Normalized Measured
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	364 37.2	385 38.8				
	No. Specimens No. Batches Data Class	6 1 Screening					
E_1^t	Mean Minimum Maximum C.V.(%)	21.2 20.5 22.2 3.14	22.4 21.8 23.2 2.77				
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening					
v_{12}^{t}	Mean No. Specimens No. Batches	6					
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ning 15400 13600 17200 9.24				
$\varepsilon_1^{\rm tu}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		15400 1420				
	No. Specimens No. Batches Data Class	6 1 Scree					

(1) Reference 4.9.1.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

(JU	JNE 1989). ALL I	DOCUMENTATION	N PRESENTLY	REQUIRED W	<u>AS NOT SUPPL</u>	LIED FOR THIS	S MATERIAL.	
MATER	IAL: I	M6 12k/APC-2 uni	directional tape				4.9.1(d)	
FIBER	VOLUME: 6	31-34 wt% 60-62 % 0.0054-0.0058 in.	COMP: D VOID CO		5 g/cm ³ %	C/PEEK-UT IM6/APC-2 Tension, 2-axis [90] ₁₆ 74/A, -67/A, 180/A,		
			MODULU	S CALCULATIO	ON:	250/A Screening		
AS	TM D 3039-76							
NORMA	ALIZED BY:	Not normalized						
Moistur	ature (°F) e Content (%) ium at T, RH	74 ambient	-67 ambient	180 ambient	250 ambient			
Source		(1)	(1)	(1)	(1)			
	Mean Minimum Maximum C.V.(%)	9.41 8.53 10.6 9.35	9.67 8.72 10.7 6.52	11.1 10.0 12.2 8.87	9.07 7.30 9.72 10.1			
F ₂ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal			
(ksi)	C ₁ C ₂	9.41 0.880	9.67 0.631	11.1 0.985	9.07 0.916			
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening	6 1 Screening			
E_2^t	Mean Minimum Maximum C.V.(%)	1.28 1.24 1.36 3.33	1.41 1.35 1.46 3.32	1.22 1.17 1.25 2.13	1.32 1.27 1.38 3.44			
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening	6 1 Screening			
v_{21}^{t}	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)	7610 6650 8830 11.2	7120 6450 8180 8.15	10900 8850 14900 20.0	12300 8510 23600 45.5			
$arepsilon_2^{ ext{tu}}$	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Nonpara.			
(με)	C ₁	7610	7120	10900	5			

(1) Reference 4.9.1.

No. Specimens

No. Batches

Data Class

 C_2

(2) Basis values are presented only for A and B data classes.

850

6

1

Screening

2180

6

1

Screening

581

6

1

Screening

3.06

6

1

Screening

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: IM6	Table	Table 4.9.1(e)				
RESIN C FIBER VO PLY THIC		vt% COMP: DENSITY: 52 % VOID CONTENT: 554-0.0058 in. VOID CONTENT:			55 g/cm ³)%	IM6// Compress [0	EK - UT APC-2 sion, 1-axis)] ₁₆ 7/A 180/A
TEST ME	THOD:		MODULUS		74/A, -67/A, 180/A Screening		
AST	M D 3410A-87						
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume to 60	9% (0.0055 in. C	PT)	
	Content (%)	74 amb			67 bient	18 amb	-
Source C	m at T, RH code	(1)	(1)	(1	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	167 139 197 13.3	169 144 200 13.3	156 115 179 16.0	160 118 181 15.6	156 103 195 20.2	155 96.7 190 20.4
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	167 22.1	169 22.4	156 25.0	160 24.9	156 31.5	155 31.6
	No. Specimens No. Batches Data Class	6 1 Screening			6 1 eening	6 1 Scree	l
E ₁ ^c	Mean Minimum Maximum C.V.(%)	19.4 17.6 20.9 6.54	19.7 18.1 21.2 7.17	20.4 16.9 24.0 12.2	20.9 17.3 24.8 12.6	21.4 17.0 27.5 16.1	21.2 16.0 26.7 16.1
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening			6 1 eening	6 1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						Jimig
	Data Class Mean Minimum Maximum C.V.(%)		8790 7780 10500 11.8		7910 4510 9630 24.7		8010 5950 9350 14.9
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal
(με)	C ₁ C ₂		8790 1040		7910 1950		8010 1200
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		6 1 Screening	
1		20100		0010		20100	

(1) Reference 4.9.1.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

• DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: IM6		directional tape			Table 4.9 C/PEEK	9.1(f)					
RESIN C FIBER VO PLY THIC		wt% COMP: DENSITY: 1.55 g/cm ³ 62 % VOID CONTENT: 0.0% 054-0.0058 in. VOID CONTENT: 0.0%			%	IM6/APC-2 Compression, 1-axis [0] ₁₆						
TEST ME			MODULUS		250/A, 74/0.12%, 180/0.097% Screening							
AST	M D 3410A-87											
	NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT) Temperature (%E) 250											
Temperat Moisture	ture (°F) Content (%)		50 pient		30)97	7· 0.2						
Equilibriu	m at T, RH			(*	1)	160°F						
Source C	ode		2) 		<u>2)</u>	(2	1					
	Mean	Normalized 129	Measured 126	Normalized 162	Measured 160	Normalized 174	Measured 176					
	Minimum	70.0	71.5	156	146	141	144					
	Maximum	154	145	168	169	186	192					
	C.V.(%)	23.6	21.8	3.25	5.36	9.6	9.7					
rcu	B-value Distribution	(3) Normal	(3) Nonpara.	(3) Normal	(3) Normal	(3) Normal	(3) Normal					
F ₁ ^{cu} (ksi)	C ₁	129	5	162	160	174	176					
(101)	C_2	30.5	3.06	5.26	8.59	16.7	17.1					
	No. Specimens No. Batches	6 1			5 1	6						
	Data Class	Screening			ening	Scree	ening					
	Mean	21.2	20.7	19.5	19.3	21.4	21.6					
	Minimum Maximum	19.6 24.7	19.0 23.2	18.7 20.0	18.6 20.7	18.8 23.9	19.3 23.9					
E_1^c	C.V.(%)	8.47	7.37	2.91	4.42	8.60	7.38					
(Msi)	No. Specimens		6 1		5 1	6						
	No. Batches Data Class		ening		ening	1 Screening						
	Mean				•							
v_{12}^{c}	No. Specimens No. Batches											
V 12	Data Class											
	Mean		6860		8310		8690					
	Minimum		3380		7500		6950					
	Maximum C.V.(%)		8990 28.7		9390 8.94		12100 23.5					
	B-value		(3)		(3)		(3)					
$\varepsilon_1^{ m cu}$	Distribution		Normal		Normal		Normal					
(με)	C ₁		6860		8310		8690					
4 7	C ₂		1970		743		2050					
	No. Specimens		6	Į į	5	6	6					
	No. Batches		1		1	1						
	Data Class		ening		ening	Scree	ening					

(1) Conditioned at 160°F, 95% relative humidity for 10 days (75% saturation).

(2) Reference 4.9.1.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		Table 4.9.1(g)							
RESIN CO FIBER VO PLY THIO						C/PEEK - UT IM6/APC-2 Compression, 1-axis [0] ₁₆ 180/W			
TEST METHOD: MODULUS CALCULATION:						Screening			
AST	M D 3410A-87								
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)									
	Content (%) m at T, RH	180 0.1 160°F, (1)	1 95%						
		Normalized	Measured	Normali	zed N	leasured	Normalized Measured		
	Mean Minimum Maximum C.V.(%)	154 105 189 18.2	151 98.5 183 19.3						
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal						
(ksi)	C ₁ C ₂	154 28.0	151 29.3						
	No. Specimens No. Batches Data Class	6 1 Screening							
E ₁ ^c	Mean Minimum Maximum C.V.(%)	20.3 15.6 25.3 18.4	19.8 15.7 24.6 17.6						
(Msi)	No. Specimens No. Batches Data Class	6 1 Screer	ning						
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches		2						
	Data Class Mean Minimum Maximum C.V.(%)		8180 6580 9500 13.0						
$arepsilon_1^{ m cu}$	B-value Distribution		(2) Normal						
(με)	C ₁ C ₂		8180 1070						
	No. Specimens No. Batches Data Class	6 1 Screer	ning						

(1) Reference 4.9.1.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

• DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	L:	IM6 12k/	APC-2 unidirecti	onal tape	Tak C/F	ole 4.9.1(h) PEEK - UT	
RESIN CONTENT:31-32 wt%FIBER VOLUME:61 %PLY THICKNESS:0.0052-0.				COMP: DENSITY: VOID CONTENT:	IN Shea	IM6/APC-2 Shear, 12-plane [±45]₄s 74/A, -67/A, 180/A, 250/A	
TEST MET				MODULUS CALCU	JLATION:	S	creening
ASTM	I D 3518-76						
NORMALI	ZED BY:	Not norm	alized				
Temperatu	ure (°F)		74	-67	180	250	
	Content (%)		ambient	ambient	ambient	ambient	
Equilibriun							
Source Co			(1)	(1)	(1)	(1)	
	Mean		23.9	25.4	22.4	19.8	
	Minimum Maximum		18.9 27.8	18.1 29.0	17.2 25.3	14.2 23.1	
	C.V.(%)		14.8	29.0 14.8	25.5 15.6	15.1	
	C. V.(70)		14.0	14.0	15.0	15.1	
	B-value		(2)	(2)	(2)	(2)	
F ^{su} ₁₂	Distribution		Normal	Normal	Normal	Normal	
(ksi)	C ₁		23.9	25.4	22.4	19.8	
(K3I)	C_2		3.53	3.77	3.49	2.98	
	02		0.00	0.17	0.10	2.00	
	No. Specim	iens	6	6	6	6	
	No. Batche		1	1	1	1	
	Data Class		Screening	Screening	Screening	Screening	
	Mean		0.78	0.91	0.78	0.71	
	Minimum		0.73	0.83	0.72	0.63	
	Maximum		0.83	0.96	0.86	0.79	
G_{12}^s	C.V.(%)		5.5	5.5	6.2	9.3	
(Msi)	No. Specim	one	6	6	6	6	
(10151)	No. Batche		1	1	1	1	
	Data Class	-	Screening	Screening	Screening	Screening	
	Mean		g			g	
	Minimum						
	Maximum						
	C.V.(%)						
	. .						
e11	B-value						
γ_{12}^{su}	Distribution						
(με)	C ₁						
	C ₂						
	No. Specim	iens					
	No. Batche						
	Data Class						
						L	1

(1) Reference 4.9.1.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

• DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	L: IM	6 12k/APC-2 unidire		Table 4.9.1(i) C/PEEK - UT	
FIBER VC	RESIN CONTENT:31-32 wt%COMP: DENSITY:1.55 g/cm³FIBER VOLUME:61 %VOID CONTENT:0.0-0.2%PLY THICKNESS:0.0052-0.0056 in.				IM6/APC-2 Shear, 12-plane [±45] _{4s} 74/0.21%, 180/0.17%,
TEST ME	THOD:		MODULUS CALC	ULATION:	180/0.20% Screening
ASTN	/I D 3518-76				· · · · · · · · · · · · · · · · · · ·
NORMALI	ZED BY: No	ot normalized			
Temperate		180	74	180	
	Content (%)	0.17	0.21	0.20	
Equilibriur		(1)	160°F, 95%	160°F, 95%	
Source Co	ode	(2)	(2)	(2)	
	Mean	23.3	23.0	20.0	
	Minimum	21.8	16.2	14.5	
	Maximum	24.0	26.7	26.1	
	C.V.(%)	3.85	15.4	22.4	
	B-value	(3)	(3)	(3)	
F_{12}^{su}	Distribution	Normal	Normal	Normal	
(ksi)	C ₁	23.3	23.0	20.0	
~ /	C ₂	0.897	3.55	4.48	
	No. Specimer	ns 5	6	6	
	No. Batches	1	1	1	
	Data Class	Screening		Screening	
	Mean	0.76	0.79	0.71	
	Minimum	0.74	0.65	0.64	
	Maximum	0.78	0.89	0.78	
G_{12}^{s}	C.V.(%)	2.7	10	9.0	
(Msi)	No. Specimer		6	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean				
	Minimum				
	Maximum				
	C.V.(%)				
	B-value				
γ_{12}^{su}	Distribution				
(με)	C1 C2				
	No. Specimer	IS			
	No. Batches				
	Data Class	95% relative humidi			

(1) Conditioned at 160°F, 95% relative humidity for 27 days (75% saturation).

(2) Reference 4.9.1.

(3) Basis values are presented only for A and B data classes.

4.10 CARBON – CYANATE ESTER COMPOSITES

4.10.1 M55J 6k/954-3 unidirectional tape

Material Description:

Material: M55J 6k/954

- Form: Unidirectional tape, nominal fiber areal weight of 72.9 g/m², nominal cured resin content of 27%, typical cured ply thickness of 0.0024 inches.
- Processing: Autoclave cure; 350°F, 100 psi for two hours

General Supplier Information:

Fiber: M55J 6k fibers are continuous untwisted carbon filaments made from PAN precursor. Filament count is 6,000 filaments per tow. Typical tensile modulus is 78 x 10⁶ psi. Typical tensile strength is 583,000 psi.

Matrix: 954 is a 350°F curing cyanate ester resin.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: Dimensionally stable structure for optical instruments

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

4.10.1 M55J 6k/954-3 unidirectional tape

MATERIAL:	M55J 6k/95	M55J 6k/954-3 unidirectional tape							
FORM:	M55J 6k/95	M55J 6k/954-3 unidirectional tape prepreg							
FIBER:	Toray M55J 6k, surface treated Type 5, no twist			MATRIX:	Hexcel 954-3				
T _g (dry):	390°F	T _g (wet):	340°F	T _g METHOD:	TMA flexure @ rai	mp rate 70°F/min			
PROCESSING:	Autoclave of	cure: 350°F,	2 hrs., 100 psi						

Date of fiber manufacture	1/96 - 2/97	Date of testing	1/96 - 7/97
Date of resin manufacture	1/96 - 7/97	Date of data submittal	10/1/97
Date of prepreg manufacture	1/96 - 7/97	Date of analysis	9/98
Date of composite manufacture	1/96 - 7/97		

LAMINA PROPERTY SUMMARY

	72°F/A				
Tension, 1-axis	aM				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	aM				
Compression, 2-axis					
Compression, 3-axis					
SBS, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.91	1.91	
Resin Density	(g/cm ³)	1.19	1.19	ASTM D 792-86
Composite Density	(g/cm ³)	1.65	1.62 - 1.66	ASTM D 792-86
Fiber Areal Weight	(g/m ²)	72.9	71.2 - 75.1	ASTM D 3529-90
Fiber Volume	(%)	64	53 - 67	
Ply Thickness	(in)	0.0024	0.0023-0.0026	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	MATERIAL: M55J 6k/954-3 unidirectional tape							
FIBER V	OLUME: 53.1 -	24.1 wt% 65.4 % 4 - 0.0025 in.	C/CE 73-UT M55J/954-3 Tension, 1-axis [0] ₁₆ 72/A					
TEST ME	THOD:	N:	A55, Mean					
AST	M D 3039-95		Chord	between	1000 a	and 3000 με		
		men thickness a		areal wei	ght to 6	60% (0.0024 ir	n. CPT)	
Equilibriu	Content (%) m at T, RH	7: Amb	ient					
Source C	ode	7: Normalized		Norma	lizod	Moosurod	Normalized Measured	
	Mean	Normalized 324	Measured 320	norma	iizeu	Measured	Normalized Measured	
	Minimum Maximum C.V.(%)	274 367 5.37	277 387 7.52					
$\mathbf{F}_{1}^{\mathrm{tu}}$	A-value/B-value Distribution	250/286 ANOVA	216/260 ANOVA					
(ksi)	C ₁ C ₂	17.8 2.15	25.0 2.41					
	No. Specimens No. Batches Data Class	10 6 A5	5 55					
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	47.7 43.6 52.0 3.66	47.0 43.1 52.1 4.21					
(Msi)	No. Specimens No. Batches	10 6 Mo	i					
v_{12}^{t}	Data Class Mean No. Specimens No. Batches	Me						
	Data Class							
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{ m tu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: M55.	J 6k/954-3 unidire	ectional tape				Table 4	l.10.1(b)
RESIN C FIBER V PLY THIC TEST ME	NTENT: 23.5 - 27.4 wt% COMP: DENSITY: 1.63 - 1.67 g/cm ³ LUME: 54.9 - 66.1 % VOID CONTENT: 0.17 - 0.27% KNESS: 0.0023 - 0.0024 in. VOID CONTENT: 0.17 - 0.27%					C/CE 73-UT M55J/954-3 Compression, 1-axis [0] ₃₂ 72/A A55, Mean		
							A35,	wean
SAC	MA SRM1-94 (1)		Chord	between	1000 a	and 3000 με		
NORMAL	IZED BY: Spec	imen thickness a	and batch fiber	areal weig	ght to 6	60% (0.0024 ir	. CPT)	
Equilibriu	Content (%) m at T, RH	7 Amt	pient					
Source C	ode	7 Normalizad		Normo	lizod	Maggurad	Normalized	Maggurad
	Mean	Normalized 136	Measured 138	Norma	iizeu	Measured	Normalized	Measured
	Minimum Maximum C.V.(%)	109 163 7.22	111 163 6.73					
F ₁ ^{cu}	A-value/B-value Distribution	96/109 ANOVA	103/118 ANOVA					
(ksi)	C ₁ C ₂	10.4 2.62	9.50 2.14					
	No. Specimens No. Batches Data Class	10 6 As						
E_1^c	Mean Minimum Maximum C.V.(%)	44.8 39.8 49.3 4.70	45.6 42.3 50.0 3.78					
(Msi)	No. Specimens No. Batches Data Class	10 6 Me						
v_{12}^c	Mean No. Specimens No. Batches							
	Data Class							
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{\rm cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Torque on fixture bolts was "finger tight", not specifically torqued to 5-10 in-lbs.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

RESIN CONTENT: 23.5 FIBER VOLUME: 57.3 PLY THICKNESS: 0.00	SIN CONTENT: 23.5 - 27.4 wt% COMP: DENSITY: 1.63 - 1.67 g/cm ³ ER VOLUME: 57.3 - 66.7 % VOID CONTENT: 0.17 - 0.27% THICKNESS: 0.0023 - 0.0024 in. VOID CONTENT: 0.17 - 0.27%				
TEST METHOD: ASTM D 2344-95		MODULUS CALCUI	LATION:		reening
NORMALIZED BY: Not	ormalized				
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code	72 Ambient 72				
Mean Minimum Maximum C.V.(%) A-value/B-value F ^{sbs} Distribution (ksi) C ₁ C ₂ No. Specimens No. Batches Data Class	11.1 9.90 12.2 5.31 (1) ANOVA 0.623 2.68 113 6 Screening				

(1) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

REFERENCES

- 4.2.27 Askins, Robert, "Characterization of EA9396 Epoxy Resin for Composite Repair Applications," University of Dayton Research Center, UDR-TR-91-77, WL-TR-92-4060, October 1991.
- 4.4.4 Rondeau, R.A., Askins, D. R., and Sjoblom, P., "Development of Engineering Data on New Aerospace Materials," University of Dayton Research Institute, UDR-TR-88-88, AFWAL-TR-88-4217, December 1988, Distribution authorized to DoD and DoD contractors only; critical technology; September 1988. Other requests for this document should be referred to AFWAL/MLSE, OH 45433-6533.
- 4.9.1 Rondeau, R.A., Askins, D. R., and Sjoblom, P., "Development of Engineering Data on New Aerospace Materials," University of Dayton Research Institute, UDR-TR-88-88, AFWAL-TR-88-4217, December 1988, Distribution authorized to DoD and DoD contractors only; critical technology; September 1988. Other requests for this document should be referred to AFWAL/MLSE, OH 45433-6533.

Volume 2, Chapter 5 Aramid Fiber Composites

CHAPTER 5 ARAMID FIBER COMPOSITES

- 5.1 INTRODUCTION
- 5.2 ARAMID EPOXY COMPOSITES
- 5.3 ARAMID POLYESTER COMPOSITES
- 5.4 ARAMID BISMALEIMIDE COMPOSITES
- 5.5 ARAMID POLYIMIDE COMPOSITES
- 5.6 ARAMID PHENOLIC COMPOSITES
- 5.7 ARAMID SILICON COMPOSITES
- 5.8 ARAMID POLYBENZIMIDAZOLE COMPOSITES
- 5.9 ARAMID PEEK COMPOSITES

MIL-HDBK-17-2F Volume 2, Chapter 5 Aramid Fiber Composites

This page intentionally left blank

Volume 2, Chapter 6 Glass Fiber Composites

CHAPTER 6 GLASS FIBER COMPOSITES

6.1 INTRODUCTION

6.2 GLASS\EPOXY COMPOSITES

6.2.1 S2-449 43k/SP381 unidirectional tape

Material Description:

Material: S2-449 17k/PR381

Form: Unidirectional tape, fiber areal weight of 111 g/m², typical cured resin content of 28-33%, typical cured ply thickness of 0.0033 - 0.0037 inches.

Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: S2 glass has enhanced properties in strength, modulus, impact resistance and fatigue when compared to conventional E glass roving. The sizing for these fibers is an epoxy compatible 449 finish. Roving of 17,000 filaments. Typical tensile modulus is 12.5 to 13.0 Msi. Typical tensile strength is 665,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Primary and secondary structural applications where improved fatigue and excellent mechanical strength is important such as helicopters and general aviation.

Volume 2, Chapter 6 Glass Fiber Composites

6.2.1 S2-449 43k/SP381 unidirectional tape

MATERIAL:	S2-449 43.5k/SP 381 unidirectional tape	·						
FORM:	3M Scotchply SP 381 Uni S29 284 BW 33RC Prepreg							
FIBER:	Owens Corning S2-449, no twist, no sur- face treatment, typical 449 glass sizing	MATRIX:	3M PR 381					
T _g (dry):	280°F T _g (wet): 234°F	T _g METHOD:	SRM 18-94, RI	DA, G' onset				
PROCESSING:	Autoclave cure: 260±10°F, 120±20 min., 50	psi						

Date of fiber manufacture	5/92 - 12/94	Date of testing	5/93 - 4/95
Date of resin manufacture	1/93 - 12/94	Date of data submittal	6/96
Date of prepreg manufacture	4/93 - 3/95	Date of analysis	2/97
Date of composite manufacture	12/91 - 3/96		

75°F/A		-65°F/A	180°F/A		160°F/W		
BM-B		SS-S	SS-S		SS-S		
SS-S		SS-S	SS-S		SS-S		
SS-S		SS-S	SS-S		SS-S		
SS		SS	SS		SS		
S		S	S		S		
	BM-B SS-S SS-S SS	BM-B SS-S SS-S SS	BM-B SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS SS	BM-B SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS	BM-B SS-S SS-S SS-S SS-S SS-S	BM-B SS-S SS-S SS-S SS-S SS-S SS-S SS-S	BM-B SS-S SS-S SS-S SS-S SS-S SS-S SS-S

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for \boldsymbol{F}^{sbs} conditioned in eight fluids.

Volume 2, Chapter 6 Glass Fiber Composites

		Nominal	As Submitted	Test Method	
Fiber Density	(g/cm ³)	2.49	.49 AS		
Resin Density	(g/cm ³)	1.216		ASTM D 792	
Composite Density	(g/cm ³)	1.85	1.84 - 1.97		
Fiber Areal Weight	(g/m ²)	284	283 - 291	SRM 23B	
Fiber Volume	(%)	50	47.3 - 56.1		
Ply Thickness	(in)	0.009	0.0070 - 0.0097		

LAMINATE PROPERTY SUMMARY

	73°F/A				
[±45/0/∓ 45]					
Tension, x-axis	SS-S				
Tension, y-axis	SS-S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	49 43.5k/SP 38	1 unidirectiona	al tape			6.2.1(a)	
RESIN CO FIBER VO PLY THIC				ENSITY: 1.84 ITENT: 0-0.0				
TEST ME	THOD:		MODULUS	S CALCULATIC	DN:		n, Screening	
SRM	l 4-88	Chord between 1000 and 6000 $\mu\epsilon$						
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0090 in. CPT)								
	ture (°F) Content (%) m at T, RH	73 Amb		-6: Ambi			80 pient	
Source C		69		69		-	69	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	246 217 287 6.45	243 228 267 3.89	236 204 257 7.44	246 218 261 5.19	208 200 220 3.62	211 200 228 4.79	
F ₁ ^{tu}	B-value Distribution	198 ANOVA	219 ANOVA	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁ C ₂	16.8 2.82	9.78 2.45	21.4 16.6	252 28.3	8.15 9.69	11.7 14.1	
	No. Specimens No. Batches Data Class	32 6 B3		11 2 Screening		11 2 Screening		
E_1^t	Mean Minimum Maximum C.V.(%)	6.91 6.32 7.54 4.34	6.83 6.47 7.22 2.68	6.93 6.41 7.24 3.03	7.24 6.91 7.53 3.26	6.62 6.42 6.78 1.62	6.70 6.55 7.09 2.48	
(Msi)	No. Specimens No. Batches Data Class	s 32 6 Mean		11 2 Screening		11 2 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		35600 33400 38300 3.83		34100 29500 36700 6.23		31500 30000 33800 4.21	
$oldsymbol{arepsilon_1}^{ ext{tu}}$	B-value Distribution		32400 ANOVA		(1) ANOVA		(1) ANOVA	
(με)	C ₁ C ₂		1400 2.28		2440 13.9		1390 7.11	
	No. Specimens No. Batches Data Class	32 6 B3		11 2 Scree			1 2 ening	

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: \$2-4	149 43.5k/SP 38	1 unidirectiona	al tape			Table 6.2.1(b)
FIBER VOLUME: 49.3- PLY THICKNESS: 0.008		33 wt% COMP: DENSITY: 1.89-1.97 g/cm ³ 3-51.1 % VOID CONTENT: 0-0.07% 088-0.0092 in. 0.0092 in. 0.0092 in.			SGI/Ep 284-UT S2-449/SP 381 Tension, 1-axis [0]₅ 160/W		
TEST ME	TEST METHOD: MODULUS CALCULATION:					۷:	Screening
SRM	1 4-88		Chord	between 1	000 a	nd 6000 με	
NORMAL	IZED BY: Spe	50% (0.0090	in. CPT)				
	Content (%) m at T, RH	16 Wa (2 69	et)				
		Normalized	Measured	Normaliz	ed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	113 105 119 3.90	115 106 120 3.22				
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull				
(ksi)	C ₁ C ₂	115 32.6	116 40.5				
No. Specimens No. Batches Data Class		13 2 Screening					
E_1^t	Mean Minimum Maximum C.V.(%)	6.86 6.52 7.25 3.19	6.95 6.71 7.16 2.06				
(Msi)	No. Specimens No. Batches Data Class	13 2 Screening					
v_{12}^{t}	Mean No. Specimens No. Batches		~				
	Data Class Mean Minimum Maximum C.V.(%)		16500 15600 17100 2.76				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		16700 45.9				
	No. Specimens No. Batches Data Class	13 2 Scree					

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2-4	149 43.5k/SP 38	31 unidirectiona	Il tape		Table 6.2.1(c)
FIBER '	RESIN CONTENT: 31-32 wt% COMP: DENSITY: 1.84-1.86 g/cm FIBER VOLUME: 51.0-53.2 % VOID CONTENT: 0-0.99% PLY THICKNESS: 0.0081-0.0092 in. VOID CONTENT: 0-0.99%				SGI/Ep 284-UT S2-449/SP 381 Tension, 2-axis [90]₁₀ 73/A, -65A, 180/A, 160/W	
TEST METHOD: MODULUS CALCULATION:						Screening
SR	RM 4-88		Chord	between 1000	and 3000 με (2	2)
NORMA						
	rature (°F)	73	-65	180	160	
	e Content (%)	Ambient	Ambient	Ambient	Wet	
Source	ium at T, RH	69	69	60	(3) 69	
Source	Mean	9.0	9.1	69 7.5	4.2	
	Minimum	8.7	8.3	7.1	3.8	
	Maximum	9.3	9.8	7.6	4.7	
	C.V.(%)	2.3	4.7	2.7	7.5	
	B-value	(1)	(1)	(1)	(1)	
F_2^{tu}	Distribution	Weibull	Weibull	Normal	Weibull	
(ksi)	C ₁	9.1	9.3	7.5	4.3	
	C ₂	49	24	0.20	14	
		10	44	6	10	
	No. Specimens No. Batches	10 2	11 2	6	10 2	
	Data Class	Screening	Screening	Screening	Screening	
	Mean	1.93	2.10	1.53	1.07	
	Minimum	1.85	1.88	1.47	1.00	
	Maximum	2.07	2.31	1.59	1.12	
E_2^t	C.V.(%)	3.31	5.57	2.58	3.23	
(Msi)	No. Specimens	10	11	6	10	
	No. Batches	2	2	1	2	
	Data Class	Screening	Screening	Screening	Screening	
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class	4700	4000	1000		
	Mean	4700	4300	4900	3900	
	Minimum Maximum	4200 5100	3800 4800	4600 5100	3400 4300	
	C.V.(%)	4.6	7.2	4.6	6.7	
					0.1	
rtu	B-value Distribution	(1) Nonpara.	(1) Weibull	(1) Normal	(1) Weibull	
$\varepsilon_2^{\mathrm{tu}}$						
(με)	C ₁	6	4500	4900	4000	
	C ₂	2.1	16	220	17	
	No. Specimens	10	11	6	10	
	No. Batches	2	2	1	2	
	Data Class	Screening	Screening	Screening	Screening	

Basis values are presented only for A and B data classes.
 Exception to SRM 4-88.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	49 43.5k/SP 38	1 unidirectiona	al tape			6.2.1(d)
FIBER VO PLY THIC	RESIN CONTENT: 28-33 wt% COMP: DENSITY: 1.90-1.94 FIBER VOLUME: 49.3-56.1 % VOID CONTENT: 0.12-0.50 PLY THICKNESS: 0.0080-0.0094 in. MODULUS CALCULATION:				SGI/Ep 284-UT S2-449/SP 381 Compression, 1-axis [0]₅ 73/A, -65/A, 180/A Screening		
						3010	ening
SRIV	1 1-88		Chord	between 1000	and 3000 με		
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0090 in. CPT)							
	ture (°F) Content (%) ım at T, RH	7: Amb		-6: Amb			80 bient
Source C		69	9	69	9	6	69
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	168 141 199 10.4	182 149 215 10.8	170 153 184 5.20	177 162 196 5.59	150 137 166 6.70	166 154 179 4.93
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA	(1) Weibull
(ksi)	C ₁ C ₂	176 10.6	191 10.5	174 22.0	10.9 11.3	12.3 16.6	170 22.2
	No. Specimens No. Batches Data Class	20 2 Screening		14 2 Scree			2 2 ening
E ₁ ^c	Mean Minimum Maximum C.V.(%)	6.96 6.71 7.20 2.43	7.06 6.67 7.34 2.68	6.87 6.75 7.01 1.40	7.20 6.75 7.68 4.16	6.76 6.54 6.94 1.74	6.95 6.75 7.16 2.22
(Msi)	No. Specimens No. Batches Data Class			10 2 Screening		10 2 Screening	
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	L: S2-4	49 43.5k/SP 38	1 unidirectiona	al tape		Table 6.2.1(e)
RESIN CONTENT: 28-33 wf FIBER VOLUME: 49.3-56. PLY THICKNESS: 0.0082-0		3 wt%	COMP: DE VOID CON	SGI/Ep 284-UT S2-449/SP 381 Compression, 1-axis [0]₅ 160/W		
TEST ME				S CALCULATIO		Screening
SRM	1-88		Chord	between 1000	and 3000 με	
	-	cimen thickness		er areal weight	to 50% (0.009)	0 in. CPT)
	Content (%) m at T, RH	16 W (2 69	et)			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	139 130 146 3.48	146 131 157 5.27			
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull			
(ksi)	C ₁ C ₂	141 37.4	149 22.6			
	No. Specimens No. Batches Data Class	10 2 Screening				
E ₁ ^c	Mean Minimum Maximum C.V.(%)	6.92 6.69 7.08 2.11	7.16 6.85 7.43 2.83			
(Msi)	No. Specimens No. Batches Data Class					
v_{12}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$\varepsilon_1^{\rm cu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2-4	149 43.5k/SP 38	31 unidirectiona	l tape		Table 6.2.1(f)			
		32 wt%	COMP: D	-	8-1.94 g/cm ³	SGI/Ep 284-UT S2-449/SP 381			
FIBER	VOLUME: 51.1	-54.5 %	VOID CO		1-0.60%	Shear, 12-plane			
PLY TH	ICKNESS: 0.00	81-0.0090 in.				[±45] _{2S} 73/A, -65A, 180/A, 160/W			
TEST N	/IETHOD:		MODULU	S CALCULATIO	ON:	Screening			
SR	RM 7-88		Chord	between 500 a	ind 3000 με, ax	tial			
NORM	NORMALIZED BY: Not normalized								
	rature (°F)	73	-65	180	160				
	e Content (%) rium at T, RH	Ambient	Ambient	Ambient	Wet (2)				
Source		69	69	69	69				
	Mean	14.3	13.6	11.8	9.5				
	Minimum	13.2	12.9	10.8	9.0				
	Maximum C.V.(%)	14.7 3.52	14.5 3.77	12.3 3.66	9.8 2.9				
	C. V.(70)	5.52	5.77	3.00	2.9				
	B-value	(1)	(1)	(1)	(1)				
F ₁₂ ^{su}	Distribution	Nonpara.	Normal	Weibull	Weibull				
(ksi)	C ₁	6	13.6	12.0	9.6				
	C ₂	2.14	0.515	38.4	44				
	No. Specimens	10	9	10	12				
	No. Batches	2	2	2	2				
	Data Class Mean	Screening 0.689	Screening 0.881	Screening 0.555	Screening 0.470				
	Minimum	0.648	0.837	0.541	0.455				
	Maximum	0.729	0.952	0.578	0.480				
G ₁₂	C.V.(%)	3.62	5.06	2.26	1.76				
(Msi)	No. Specimens	9	6	10	10				
(No. Batches	2	2	2	2				
	Data Class	Screening	Screening	Screening	Screening				

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL: S2-	149 43.5k/SP 38	31 unidirectiona	l tana		Table 6.2.1(a)				
			-		SGI/Ep 284-U					
	34 wt%	COMP: D		4-1.94 g/cm ³	S2-449/SP 3					
	6-53.1 % 170-0.0092 in.	VOID CO	NTENT: 0.0	-0.64%	SBS, 31-plaı [0] ₁₂	ne				
FLITHICKNESS. 0.00	170-0.0092 III.				73/A, -65A, 180/A	160/W				
TEST METHOD:		MODULU	S CALCULATIO	ON:	Screening					
SRM 8-88				•						
NORMALIZED BY: Not	NORMALIZED BY: Not normalized									
Temperature (°F)	73	-65	180	160						
Moisture Content (%)	Ambient	Ambient	Ambient	Wet						
Equilibrium at T, RH	<u> </u>	<u> </u>	<u> </u>	(2)						
Source Code Mean	69 12.4	<u>69</u> 14.6	69 8.7	69 7.2						
Minimum	11.6	13.9	8.2	7.0						
Maximum	13.2	15.6	9.0	7.4						
C.V.(%)	4.16	3.32	2.9	1.7						
B-value	(1)	(1)	(1)	(1)						
	ANOVA	Normal	ANOVA	Weibull						
г ₃₁										
(ksi) C ₁	0.573 3.85	14.6 0.485	0.31 18	7.3 67						
C ₂	3.00	0.465	10	07						
No. Specimens	25	14	14	13						
No. Batches	4	2	2	2						
Data Class	Screening	Screening	Screening	Screening						
<u> </u>										

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

RESIN CONTENT: 30 wt% COMP: DENSITY: 1.93-1.94 g/cm³ S2-449/SP 381 FIBER VOLUME: 52.9-53.1 % VOID CONTENT: 0.0-0.64% Director Director PLY THICKNESS: 0.00792-0.00925 in. MODULUS CALCULATION: SS5, 31-plane Director T37Fluids SRM 8-88 NORMALIZED BY: Not normalized MODULUS CALCULATION: Screening Screening Temperature (°F) 73 73 73 73 G G Moisture Content (%) (2) (3) (4) (5) G G Source Code 69 69 69 69 G<	MATERIAL:	S2-4	49 43.5k/SP 38	31 unidirectiona	l tape		Table 6.2.1(h) SGI/Ep 284-UT			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FIBER VOLUME:	52.9-	·53.1 %	VOID COI	ENSITY: 1.93 NTENT: 0.04	3-1.94 g/cm ³ -0.64%	S2-449/SP 381 SBS, 31-plane [0] ₁₂			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Temperature (°E)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Moisture Content (%)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source Code									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
(ksi) C1 11.9 12.4 1.07 11.9 C2 34.7 0.355 12.2 0.376 No. Specimens 14 14 14 14 No. Batches 2 2 2 2										
No. Specimens 14 14 14 14 No. Batches 2 2 2 2			11.9	12.4	1.07	11.9				
No. Batches 2 2 2 2 2	C ₂		34.7	0.355	12.2	0.376				
		ns								
			5							

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in MIL-A-8243 Anti-Icing Fluid at 32°F for 30 days.
 Conditioned in MIL-H-83282 hydraulic Fluid at 160°F for 90 days. MIL-H-83282 was converted to MIL-PRF-83282 on September 30, 1997.

(4) Conditioned in MIL-H-5606 hydraulic fluid at 160°F for 90 days.

(5) Conditioned in MIL-T-5624 fuel at 75°F for 90 days. MIL-T-5624 was converted to MIL-PRF-5624 on November 22, 1996.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL: S2-4	449 43.5k/SP 38	31 unidirectiona		Table 6.2.1(i) SGI/Ep 284-UT						
	vt%)-53.1 %)758-0.00933 in.	COMP: DI VOID COI	ENSITY: 193 NTENT: 0.0-	-1.94 g/cm ³ -0.64%	S2-449/SP 381 SBS, 31-plane [0] ₁₂ 73/Fluids					
TEST METHOD: SRM 8-88										
NORMALIZED BY: Not normalized										
Temperature (°F)	73	73	73	73						
Moisture Content (%) Equilibrium at T, RH	(2)	(3)	(4)	(5)						
Source Code	69	69	69	69						
Mean Minimum	11.8 11.1	12.1 10.9	11.7 10.6	11.8 11.3						
Maximum	12.6	12.6	12.3	12.3						
C.V.(%)	3.47	3.84	4.02	2.91						
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA						
(ksi) C ₁ C ₂	12.0 30.7	12.3 39.5	11.9 37.2	0.386 12.6						
No. Specimens No. Batches	14 2	14 2	13 2	14 2						
Data Class	Screening	Screening	Screening	Screening						
(1) Short beam strength te			ving Data Class	anh						

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-L-23699 lubricating oil at 160°F for 90 days. MIL-L-23699 was converted to MIL-PRF-23699 on May 21, 1997.

(3) Conditioned in MIL-L-7808 lubricating oil at 160°F for 90 days. MIL-L-7808 was converted to MIL-PRF-7808 on May 2, 1997.

(4) Conditioned in MIL-C-87936 cleaning fluid at 75°F for 7 days. MIL-C-87936 was canceled on March 1, 1995 and replaced with MIL-C-87937. MIL-C-87937 was converted to MIL-PRF-87937 on August 14, 1997.

(5) Conditioned in ASTM D 740 methyl ethyl ketone (MEK) at 75°F for 7 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	149 43.5k/SP 38	al tape			6.2.1(j) 284-UT		
FIBER VOLUME: 51.6 PLY THICKNESS: 0.00		-31wt% COMP: DENSITY: 1.92-1.94 g/cm ³ 6-53.5 % VOID CONTENT: 0-0.50% 086-0.0089 in.				SGI/Ep 284-UT S2-449/SP 381 Tension, x-axis [±45/0/±45]s 73/A		
TEST ME			MODULU	Scree	ening			
SRM	1 4-88	Chord between 1000 and 3000 $\mu\epsilon$						
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight	to 50% (0.009	0 in. CPT)		
	Content (%) Im at T, RH	7: Amb	ient					
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	69.5 66.7 71.3 2.18	72.9 71.4 75.6 1.67					
F _x ^{tu}	B-value Distribution	(1) ANOVA	(1) Normal					
(ksi)	C ₁ C ₂	1.74 13.7	72.9 1.22					
	No. Specimens No. Batches Data Class	lo. Batches 2						
$\mathbf{E}_{\mathbf{x}}^{\mathbf{t}}$	Mean Minimum Maximum C.V.(%)	2.87 2.78 2.96 2.21	3.01 2.94 3.11 1.58					
(Msi)	No. Specimens No. Batches Data Class	2	10 2 Screening					
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches							
-	Data Class Mean Minimum		24200 23600					
	Maximum C.V.(%)		24900 1.69					
$arepsilon_{ m x}^{ m tu}$	B-value Distribution		(1) Weibull					
(με)	C ₁ C ₂		24400 65.4					
	No. Specimens No. Batches Data Class	10 2 Scree						

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2	-449 43.5k/SP 38	1 unidirectiona		Table 6.2.1(k)				
FIBER VO PLY THIO	OLUME: 51 CKNESS: 0.0	-31 wt% .6-53.5 % 0083-0.0090 in.	COMP: DE VOID CON	SGI/Ep 284-UT S2-449/SP 381 Tension, y-axis [±45/90/±45]s 73/A					
TEST ME			MODULU	Screening					
SRM	1 4-88	Chord between 1000 and 3000 $\mu\epsilon$							
				er areal we	ight to 50% (0.0090) in. CPT)			
	Content (%) m at T, RH	7: Amb	ient						
		Normalized	Measured	Normaliz	zed Measured	Normalized Measured			
	Mean Minimum Maximum C.V.(%)	24.9 23.9 25.9 2.29	26.2 24.7 27.3 2.94						
F _y ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull						
(ksi)	C ₁ C ₂	25.1 47.1	26.5 42.2						
	No. Specimens No. Batches Data Class	ns 10 2 Screening							
E_y^t	Mean Minimum Maximum C.V.(%)	2.15 2.10 2.20 1.33	2.26 2.18 2.39 3.50						
(Msi)	No. Specimens No. Batches Data Class	2 Scree							
v_{yx}^{t}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		11600 10900 12000 2.65						
$\varepsilon_{\mathrm{y}}^{\mathrm{tu}}$	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		11700 49.8						
	No. Specimens No. Batches Data Class	10 2 Scree							

Volume 2, Chapter 6 Glass Fiber Composites

6.2.2 S2-449 17k/SP 381 unidirectional tape

Material Description:

Material: S2-449 43.5k/3M PR381

- Form: Unidirectional tape, fiber areal weight of 284 g/m², typical cured resin content of 28-33%, typical cured ply thickness of 0.0081 0.009 inches.
- Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: S2 glass has enhanced properties in strength, modulus impact resistance and fatigue when compared to conventional E glass roving. The sizing for these fibers is an epoxy compatible 449 finish material. Rovings of 43,500 filaments. Typical tensile modulus is 12.5 to 13.0 Msi. Typical tensile strength is 665,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Primary and secondary structural applications where improved fatigue and excellent mechanical strength is important such as helicopters and general aviation.

Volume 2, Chapter 6 Glass Fiber Composites

6.2.2 S2-449 17k/SP 381 unidirectional tape

MATERIAL:	S2-449 17k	/SP 381 unidi	rectional tape			SGI/Ep 111-UT S2-449/SP 381 Summary
FORM:	3M Scotchp	oly SP 381 Un	i S29 111BW 33 RC			
FIBER:	Owens Cor treatment, t					
T _g (dry):	291°F	T _g (wet):	234°F	T _g METHOD:	SRM 18, RDA,	G" peak
PROCESSING:	Autoclave c	ure: 260±10°	°F, 120±20 min., 50 p	si		

Date of fiber manufacture	8/91 - 12/94	Date of testing	6/93 - 4/96
Date of resin manufacture	11/91 - 5/95	Date of data submittal	6/96
Date of prepreg manufacture	11/91 - 2/96	Date of analysis	2/97
Date of composite manufacture	12/91 - 3/96		

LAMINA PROPERTY SUMMARY

	73°F/A	-65°F/A	180°F/A	160°F/W	
Tension, 1-axis	bM-b	SS-S	SS-S	SS-S	
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S	
Tension, 3-axis					
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	IS	IS	IS	SS	
Shear, 23-plane					
Shear, 31-plane					
SBS, 31-plane	S	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for F^{sbs} conditioned in eight fluids.

Volume 2, Chapter 6 Glass Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.49		ASTM C 693
Resin Density	(g/cm ³)	1.216		ASTM D 792
Composite Density	(g/cm ³)	1.85	1.82 - 1.94	
Fiber Areal Weight	(g/m ²)	111	111 - 113	SRM 23B
Fiber Volume	(%)	50	47.6 - 55.2	
Ply Thickness	(in)	0.0035	0.00303 - 0.00375	

LAMINATE PROPERTY SUMMARY

	73°F/A				
[±45/0/∓ 45]					
Tension, x-axis	SS-S				
Tension, y-axis	SS-S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AI ·	49 17k/SP 381	unidirectional	tana		Table	6.2.2(a)	
	ONTENT: 29-3 OLUME: 47.6	6 wt% -54.0 % 32-0.0038 in.	COMP: DE VOID CON	NSITY: 1.85	-1.93 g/cm ³).17%	SGI/Ep 111-UT S2-449/SP 381 Tension, 1-axis [0] ₁₂		
TEST ME	THOD:		MODULUS	S CALCULATIC	N:	B18, Mea	6/A, 180/A n, Interim, ening	
SRM	1 4-88		Chord	between 1000	and 6000 με			
NORMAL	IZED BY: Spec	cimen thickness	s and batch fibe	er areal weight t	o 50% (0.0035	in. CPT)		
	ture (°F) Content (%) m at T, RH		3 pient	-6 Amb		18 Amb		
Source C	ode		0	7		70		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	255 243 277 3.40	248 228 274 5.07	267 233 287 6.52	274 251 302 5.96	225 218 237 3.13	225 216 234 2.59	
F ₁ ^{tu}	B-value Distribution	238 Normal	(2) ANOVA	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	
(ksi)	C ₁ C ₂	255 8.65	13.6 3.53	274 21.3	281 18.1	228 32.9	228 43.2	
	No. Specimens No. Batches Data Class		1 4 18	11 2 Screening		11 2 Screening		
E_1^t	Mean Minimum Maximum C.V.(%)	6.93 6.61 7.18 2.29	6.75 6.26 7.16 4.37	7.01 6.70 7.31 2.98	7.19 6.98 7.49 2.19	6.73 6.50 7.09 2.80	6.73 6.50 7.09 2.95	
(Msi)	No. Specimens No. Batches	4	1 4	2	11 2		11 2	
v ₁₂ ^t	Data Class Mean No. Specimens No. Batches Data Class	Me	ean	Scree		Scree		
	Mean Minimum Maximum C.V.(%)		36800 34600 38600 3.09		38000 33500 40900 5.85		33400 31000 35100 3.84	
$oldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution		34100 Weibull		(1) Weibull		(1) Weibull	
(με)	C ₁ C ₂		37300 37.9		39000 22.5		34000 34.9	
	No. Specimens No. Batches	21 4		11 2		11 2		
	Data Class		18	Scree		Scree		

(1) Basis values are presented only for A and B data classes.(2) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	49 17k/SP 381	unidirectional	tape					6.2.2(b)	
RESIN CO FIBER VO PLY THIO	OLUME: 49.0	1 wt% -50.1 % 34-0.0038 in.	COMP: DENSITY: 1.90-1.93 g/cm ³ VOID CONTENT: 0.00%			g/cm ³	S2-449 Tensio	0 111-UT 9/SP 381 n, 1-axis 0] ₁₂ 0/W		
TEST ME		MODULUS CALCULATION:						Screening		
SRM	SRM 4-88 Chord between 1000 and 6000 με									
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0035								in. CPT)		
	Content (%) m at T, RH	16 We (2 70	et)							
		Normalized	Measured	Normali	zed	Me	asured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	116 107 123 4.34	113 108 123 3.54							
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Normal							
(ksi)	C ₁ C ₂	118 26.8	113 4.01							
	No. Specimens No. Batches Data Class	13 2 Scree	ning							
E_1^t	Mean Minimum Maximum C.V.(%)	6.84 6.50 7.12 2.57	6.71 6.49 6.97 1.99							
(Msi)	No. Specimens No. Batches Data Class	13 2 Scree								
v ₁₂ ^t	Mean No. Specimens No. Batches Data Class									
	Mean Minimum Maximum C.V.(%)		16900 15800 18100 3.90							
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull							
(με)	C ₁ C ₂		17200 28.7							
	No. Specimens No. Batches Data Class	13 2 Scree								

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2-	449 17k/SP 381	unidirectional t	ape		Table 6.2.2(c)
FIBER	VOLUME: 48.8	31 wt% 3-50.1 % 033-0.0036 in.	COMP: D VOID COI		8-1.92 g/cm ³ %	SGI/Ep 111-UT S2-449/SP 381 Tension, 2-axis [90] ₂₀
TFOTA						73/A, -65/A, 180/A, 160/W
				S CALCULATI		Screening
36	RM 4-88	and 3000 με (2))			
NORM	ALIZED BY: Not	normalized				
	rature (°F)	73	-65	180	160	
	e Content (%)	Ambient	Ambient	Ambient	Wet	
Source	ium at T, RH	70	70	70	(3) 70	
Source	Mean	8.7	10.0	6.4	3.6	
	Minimum	8.1	9.6	5.9	3.1	
	Maximum	9.0	10.3	6.7	3.9	
	C.V.(%)	3.9	3.6	4.0	9.0	
F ₂ ^{tu}	B-value Distribution	(1) Normal	(4)	(1) Normal	(1) Normal	
(ksi)	C ₁	8.7		6.4	3.6	
	C_2	0.34		0.26	0.32	
	No. Specimens No. Batches	5	3 1	8 2	5 1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean	1.84	2.11	1.42	1.10	
	Minimum	1.82	2.06	1.34	1.05	
+	Maximum	1.91	2.15	1.55	1.16	
E_2^t	C.V.(%)	2.05	2.14	6.43	4.59	
(Msi)	No. Specimens No. Batches	5 1	3 1	4 1	5 1	
	Data Class	Screening	Screening	Screening	Screening	
v_{21}^t	Mean No. Specimens No. Batches Data Class					
	Mean	4700	4730	4450	3280	
	Minimum	4400	4500	4200	3000	
	Maximum	4900	5000	4800	3600	
	C.V.(%)	4.26	5.32	5.95	8.18	
$\varepsilon_2^{ m tu}$	B-value Distribution	(1) Normal	(4)	(1) Normal	(1) Normal	
(με)	C ₁	4700		4450	3280	
(με)	C ₂	200.0		265	268	
	No. Specimens No. Batches	5	3 1	4	5 1	
	Data Class	Screening	Screening	Screening	Screening	
		Corooning	Corooning	Corooning	Corooning	

(1) Basis values are presented only for A and B data classes.

(1) Data Values are presented only for A and D data diabeted.
 (2) Exception to SRM 4-88.
 (3) Conditioned in 160°F water for 14 days.
 (4) The statistical analysis is not completed for less than four specimens.

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AL: S2-4	449 17k/SP 381	unidirectional	tape			6.2.2(d)				
FIBER V	OLUME: 50.1	29 wt% -54.0 %)32-0.0035 in.	COMP: DE VOID CON		1.92 g/cm ³ 1.53%	S2-449 Compress [0	111-UT /SP 381 sion, 1-axis ʲ] ₁₂ ʲ/A, 180/A				
TEST ME	ETHOD:		MODULUS	Scre	ening						
SRM	<i>I</i> 1-88	and 3000 με									
NORMAI	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0035 in. CPT)										
	ture (°F) Content (%) ım at T, RH	7: Amb		-6- Amb		18 Amb	ient				
Source C	Code	70		70		7					
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean Minimum Maximum C.V.(%)	172 145 193 8.09	178 142 198 9.35	166 147 184 6.62	177 152 198 7.46	165 146 185 6.81	175 155 196 7.28				
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull				
(ksi)	$C_1 \\ C_2$	178 15.2	185 14.7	171 17.7	183 16.0	170 16.6	181 16.4				
	No. Specimens No. Batches Data Class	13 2 Screening		13 2 Scree		12 2 Screening					
E_1^c	Mean Minimum Maximum C.V.(%)	6.86 6.43 7.24 3.79	7.14 6.81 7.52 3.39	6.91 6.63 7.10 2.35	7.19 6.96 7.49 2.22	6.97 6.63 7.24 3.18	7.47 7.19 7.59 1.85				
(Msi)	No. Specimens No. Batches Data Class	10 2 Scree	2	10 2 Scree		10 2 Screening					
v ₁₂ ^c	Mean No. Specimens No. Batches Data Class										
	Mean Minimum Maximum C.V.(%)										
$\boldsymbol{arepsilon}_1^{\mathrm{cu}}$	B-value Distribution										
(με)	C ₁ C ₂										
	No. Specimens No. Batches Data Class										

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL. 62.		unidirectional			Tabla	6.2.2(e)	
RESIN C FIBER V	ONTENT: 28-2 OLUME: 50.1	449 17k/SP 381 29 wt% -54.0 % 033-0.0037 in.	COMP: DE	COMP: DENSITY: 1.85-1.92 g/cm ³ VOID CONTENT: 0-1.15%			0.2.2(8) 111-UT /SP 381 sion, 1-axis)] ₁₂ 0/W	
TEST ME	THOD:		MODULUS	S CALCULATIO	DN:		ening	
SRM	1 1-88		Chord	between 1000	and 3000 με			
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0035 in. CPT)								
	Content (%) m at T, RH	16 W (2 70	et ?)					
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	135 124 143 3.51	137 123 146 4.83					
F ₁ ^{cu}	B-value Distribution	(1) Nonpara.	(1) ANOVA					
(ksi)	C ₁ C ₂	6 2.14	8.02 16.7					
	No. Specimens No. Batches Data Class	10 2 Scree	2					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	6.96 6.69 7.24 2.44	6.97 6.75 7.23 2.16					
(Msi)	No. Specimens No. Batches Data Class	10 2 Scree	<u>)</u>					
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class		0					
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{ m cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Downloaded from http://www.everyspec.com

MIL-HDBK-17-2F

Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2	-449 17k/SP 381	unidirectional t	ape		Table 6.2.2(f)		
FIBER	VOLUME: 48	-32 wt% .8-51.6 %)032-0.0037 in.	COMP: D VOID CO		SGI/Ep 111-UT S2-449/SP 381 Shear, 12-plane [±45]₅s 73/A, -65/A,180/A, 160/W			
TEST	METHOD:		MODULU	S CALCULATI	ON:	Interim, Screening		
SF	RM 7-88		Chord	between 1000	and 3000 $\mu\epsilon$, a			
NORMALIZED BY: Not normalized								
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	73 Ambient	-65 Ambient	180 Ambient	160 Wet (2)			
Source		70	70	70	70			
	Mean Minimum	19.7 18.9	25.7 24.7	15.0 14.0	11.1 10.7			
	Maximum	20.3	26.2	15.5	11.9			
	C.V.(%)	2.18	1.85	2.67	3.43			
F ₁₂ ^{su}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	20.0 61.1	25.9 73.2	0.452 4.88	0.442 5.83			
	No. Specimens No. Batches Data Class	16 3 Interim	16 3 Interim	16 3 Interim	14 3 Screening			
	Mean	0.681	0.808	0.539	0.467			
	Minimum	0.627	0.772	0.513	0.440			
G ₁₂	Maximum C.V.(%)	0.745 5.29	0.850 3.32	0.583 4.06	0.490 2.96			
(Msi)	No. Specimens No. Batches	9 2	9 2	10 2	10 2			
	Data Class	Screening	Screening	Screening	Screening			
				<u>_</u>				
ł			1	I	ı	I		

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL:	S2-449 1	7k/SP 381	unidirectional t	ane		Table 6.2	2 2(a)	
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	27-35 wt9 48.3-55.2 0.0029-0.	% 2 %	COMP: DENSITY: 1.85-1.94 g/cm ³ VOID CONTENT: 0.0-0.12%			SGI/Ep 1 S2-449/S SBS, 31- [0] ₃₀ 73/A, -65/A	11-UT P 381 plane , 180/A,	
TEST METHOD: SRM 8-88			MODULU	S CALCULATIO	ON:	160/W Screening		
NORMALIZED BY:	Not norm	alized						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code Mean	A	73 mbient 70 12.6	-65 Ambient 70 14.9	180 Ambient 70 9.5	160 Wet (2) 70 7.6			
Minimum Maximum C.V.(%)		11.6 13.7 4.64	13.1 16.8 6.89	9.1 9.8 2.2	7.0 8.7 7.1			
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \\ (ksi) & C_1 \end{array}$		(1) NOVA 0.613	(1) Weibull 15.4	(1) Normal 9.5	(1) ANOVA 0.63			
C ₂ No. Specime No. Batches Data Class		2.77 32 5 creening	17.1 14 2 Screening	0.21 17 3 Screening	5.2 18 3 Screening			

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL: S2	2-449 17k/SP 381	unidirectional t	ape		Table 6.2.2(h)					
FIBER VOLUME: 50	-30 wt% .1-51.6 % 0033-0.0037 in.	COMP: D VOID COI		2-1.94 g/cm ³ -0.12%	SGI/Ep 111-UT S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/Fluids					
TEST METHOD:		MODULU	S CALCULATIO	ON:	Screening					
SRM 8-88										
NORMALIZED BY: Not normalized										
Temperature (°F)	73	73	73	73						
Moisture Content (%) Equilibrium at T, RH	(2)	(3)	(4)	(5)						
Source Code	70	70	70	70						
Mean Minimum	12.0 10.7	12.4 10.9	12.6 11.3	12.1 10.5						
Maximum	13.0	13.4	13.5	12.8						
C.V.(%)	5.20	5.81	4.44	5.22						
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA						
(ksi) C ₁	12.3	12.7	12.9	0.683						
C ₂	24.0	21.9	27.8	9.78						
No. Specimens	12	14	14	14						
No. Batches Data Class	2 Screening	2 Screening	2 Screening	2 Screening						
		Ocreening	Ocreening	Ocreening						

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-A-8243 Anti-Icing Fluid at 32°F for 30 days.

⁽³⁾ Conditioned in MIL-H-83282 hydraulic fluid at 160°F for 90 days. MIL-H-83282 was converted to MIL-PRF-83282 on September 30, 1997.

⁽⁴⁾ Conditioned in MIL-H-5606 hydraulic fluid at 160°F for 90 days.

⁽⁵⁾ Conditioned in MIL-T-5624 fuel at 75°F for 90 days. MIL-T-5624 was converted to MIL-PRF-5624 on November 22, 1996.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL: S2-4	S2-449 17k/SP 381 unidirectional tape Table 6.2.2(i)									
FIBER VOLUME: 50.1	0 wt% -51.6 % /33-0.0037 in.	COMP: DI VOID COI	SGI/Ep 111-UT S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/Fluids							
TEST METHOD:	Screening									
SRM 8-88										
NORMALIZED BY: Not	normalized									
Temperature (°F)	73	73	73	73						
Moisture Content (%) Equilibrium at T, RH	(2)	(3)	(4)	(5)						
Source Code	70	70	70	70						
Mean	12.6	12.6	11.8	11.9						
Minimum Maximum	10.3 13.5	11.6 13.6	11.1 12.4	10.2 12.9						
C.V.(%)	6.49	3.86	3.79	6.19						
B-value E ^{sbs} Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull						
F_{31}^{sbs} Distribution (ksi) C ₁	12.9	12.8	12.0	12.2						
C_2	23.1	26.6	32.8	21.5						
No. Specimens	14 2	14	13 2	13 2						
No. Batches Data Class	2 Screening	2 Screening	∠ Screening	Screening						
(1) Short beam strength tes										

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-L-23699 lubricating oil at 160°F for 90 days. MIL-L-23699 was converted to MIL-PRF-23699 on May 21, 1997.

(3) Conditioned in MIL-L-7808 lubricating oil at 160°F for 90 days. MIL-L-7808 was converted to MIL-PRF-7808 on May 2, 1997.

(4) Conditioned in MIL-C-87936 cleaning fluid at 75°F for 7 days. MIL-C-87936 was canceled on March 1, 1995 and replaced with MIL-C-87937. MIL-C-87937 was converted to MIL-PRF-87937 on August 14, 1997.

(5) Conditioned in ASTM D 740 methyl ethyl ketone (MEK) at 75°F for 7 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	149 17k/SP 381	unidirectional	tape			Table 6.2.2(j)
RESIN C FIBER VO PLY THIO	OLUME: 50.1	32 wt% -51.6 %)34-0.0036 in.	COMP: DE VOID CON	SGI/Ep 111-UT S2-449/SP 381 Tension, x-axis [±45/0/±45] _{2s} 73/A			
TEST ME	THOD:		MODULU	S CALCUL	ATION	l:	Screening
SRM	1 4-88		Chord	l between	1000 a	nd 3000 με	
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal we	ight to	50% (0.0035	in. CPT)
	Content (%) m at T, RH	7: Amb 7(ient				
		Normalized	Measured	Normali	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	69.7 68.1 72.5 1.78	71.4 69.8 73.9 1.92				
F _x ^{tu}	B-value Distribution	(1) Normal	(1) Weibull				
(ksi)	C ₁ C ₂	69.7 1.24	72.1 55.0				
	No. Specimens No. Batches Data Class	2	10 2 Screening				
E_x^t	Mean Minimum Maximum C.V.(%)	2.90 2.80 2.96 1.86	2.97 2.85 3.08 2.30				
(Msi)	No. Specimens No. Batches Data Class	10 2 Scree	2				
v ^t _{xy}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum		24100 23300				
	Maximum C.V.(%)		25200 2.49				
$\varepsilon_{\rm x}^{ m tu}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		24400 40.9				
	No. Specimens No. Batches Data Class	10 2 Scree					

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-	-449 17k/SP 381	unidirectional	tape			Table 6.2.2(k)
RESIN C FIBER VO PLY THIC	OLUME: 50.	32 wt% 1 % 035-0.0036 in.	COMP: DE VOID CON	SGI/Ep 111-UT S2-449/SP 381 Tension, y-axis [±45/90/±45] _{2S} 73/A			
TEST ME	THOD:		MODULUS	S CALCU	LATIO	N:	Screening
SRM 4-88 Chord between 1000 and 3000 µε							
	-	ecimen thickness	and batch fibe				in. CPT)
Equilibriu	Content (%) m at T, RH	7 Amb	bient				
Source C	ode	7 Normalized	0 Measured	Norma	lized	Measured	Normalized Measured
	Mean	36.2	36.6	noma	IIZCU	เพอลอนเฮน	
	Minimum Maximum C.V.(%)	35.3 37.1 1.77	35.8 37.6 1.77				
F _y ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA				
(ksi)	C ₁ C ₂	0.813 18.6	0.755 14.8				
	No. Specimens No. Batches Data Class	1 2 Scree	2				
	Mean Minimum Maximum	2.21 2.14 2.28	2.24 2.17 2.31				
E_y^t	C.V.(%)	1.88	2.01				
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2				
$\nu_{\mathrm{xy}}^{\mathrm{t}}$	Mean No. Specimens No. Batches		5				
	Data Class Mean		16400				
	Minimum Maximum C.V.(%)		15600 16800 2.40				
$\varepsilon_{\mathrm{y}}^{\mathrm{tu}}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		16500 58.7				
	No. Specimens No. Batches Data Class	1 2 Scree	2				

Volume 2, Chapter 6 Glass Fiber Composites

6.2.3 7781G 816/PR381 plain weave fabric

Material Description:

Material: 7781 E-glass/3M PR381

Form: Fiber areal weight of 300 g/m², typical cured resin content of 32-38%, typical cured ply thickness of 0.009 - 0.0105 inches.

Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: Continuous, E-glass fiber. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Aircraft secondary structure, fuselage skins and general industrial applications where improved fatigue and excellent mechanical strengths are required.

6.2.3 7781 G-816/PR381 plain weave fabric

MATERIAL:	7781G 816/PR 381 plain weave fabric	EGI/Ep 300-PW
		7781G/PR 381
FORM:	3M SP 381/7781 E-Glass Fabric Prepreg, 57 Yarn Count/in. (Warp), 54 Yarn Count/in. (Fill)	Summary
FIBER:	Clark-Schwebel 7781 E-glass Fabric, per MATRIX: 3M PR 381 MIL-C-9084C Type VIII B, Yarn DE-75 1/0.0 twist, no surface treatment, 558 Finish	
T _g (ambient):	282/F T _g (wet): 225 /F T _g METHOD: SRM-18, DMA I	E' knee
PROCESSING:	Autoclave cure: 260/F, 100 min., 50 psi	

Date of fiber manufacture	11/92 - 7/95 Date of testing	3/93 - 4/96
Date of resin manufacture	12/92 - 3/96 Date of data submittal	6/96
Date of prepreg manufacture	12/92 - 3/96 Date of analysis	8/97
Date of composite manufacture	3/93 - 4/96	

73/F/A		220/F/A				
II-I		SS-S				
S						
I		S				
	II-I S	II-I S	S	S	S	II-I SS-S SS II-I

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.6		ASTM C 693
Resin Density	(g/cm ³)			ASTM D 792
Composite Density	(g/cm ³)	1.85	1.75 - 2.04	ASTM D 792
Fiber Areal Weight	(g/m ²)	300	288 - 297	SRM 23B
Fiber Volume	(%)	48	43.0 - 50.9	SRM 10
Ply Thickness	(in)	0.0099	0.0087 - 0.0104	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL:	7781G 816/PR 381 pla	in weave fabric		Table 6.2.3(a) EGI/Ep 300-PW
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	34-36 wt% 43.0-48.4% 0.0091-0.0104 in.	COMP. DENSITY: VOID CONTENT:	1.75-1.97 g/cm ³ -	7781G/PR 381 Tension, 1-axis [0] ₅ 73/A, 220/A
TEST METHOD:		MODULUS CALCUL	_ATION:	Interim, Screening
SRM 4-88 (1)		Chord between 1000	0 and 6000 με	

NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0091 in. CPT)

Temperat Moisture	ture(°F) Content(%)	7: Amb		22 Amb		
Equilibriu Source C	m at T, RH	7:	2	7:	2	
	Joue	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V. (%)	74.9 70.4 79.6 3.66	70.9 62.9 77.8 7.07	71.3 67.0 77.4 4.02	67.5 60.5 74.4 5.89	
F ₁ ^{tu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) ANOVA	
(ksi)	C ₁ C ₂	2.90 3.10	5.37 3.26	72.7 24.9	4.22 3.45	
	No. Specimens No. Batches Data Class	1) 5 Inte	5 rim	1: 4 Scree	ening	
$\mathbf{E}_1^{\mathrm{t}}$	Mean Minimum Maximum C.V. (%)	3.83 3.70 3.97 2.63	3.64 3.37 3.96 4.51	3.64 3.45 3.75 2.78	3.44 3.24 3.77 5.40	
(Msi)	No. Specimens No. Batches Data Class	1: 5 Inte	5	13 4 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches Data Class					
	Mean Minimum Maximum C.V. (%)		17800 15200 19600 6.23		19600 18400 21100 4.01	
$\mathcal{E}_1^{ ext{tu}}$	B-value Distribution		(2) ANOVA		(2) Weibull	
(με)	C ₁ C ₂		1310 3.32		20000 25.7	
	No. Specimens No. Batches Data Class	1: 5 Inte	5	1: 4 Scree		

(1) Three batches were tested according to SRM 4R-94 with modulus calculated as noted above.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL:	7781G 816/PR 381 pla	in weave fabric	Table 6.2.3(b)			
FIBER VOLUME:	34-36 wt% 43.0-50.9% 0.0088-0.0103 in.	COMP. DENSITY: 1.76-2.04 VOID CONTENT: %	SBS, 13-axis [0]₅₅			
TEST METHOD: SRM 8-88 (1)		73/A MODULUS CALCULATION: Screening NA				
NORMALIZED BY:	Not normalized					
Temperature(°F) Moisture Content(%) Equilibrium at T, RH Source Code Mean Minimum Maximum C.V. (%)	73 Ambient 72 10.4 9.6 11.5 4.8					
B-value F ₁₃ Distribution (ksi) C ₁ C ₂ No. Specir No. Batche Data Class	0.53 3.2 mens 22 es 5					

Three batches were tested according to SRM 8R-94.
 Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	L:	7781G	816/PR 381 pla	ain weave fabri	с		Table 6. EGI/Ep 3	
RESIN CONTENT: 34-36 wt% FIBER VOLUME: 43.4-48.7% PLY THICKNESS: 0.0091-0.0103 in.			COMP. DEI VOID CON	NSITY: 1.76-1. TENT: %	97 g/cm ³	7781G/PR 381 Flexure [0]₅₅ 73/A, 220/A		
TEST ME	THOD:			MODULUS	CALCULATION	۸:	Interim, So	
ASTM D	790 Metho	d 1		NA				
NORMAL	IZED BY:	Not nor	malized					
Equilibriur	Content(%) n at T, RH		73 Ambient	220 Ambient				
Source Co	ode Mean		72 109	72 93.2				
	Minimum Maximur C.V. (%)	n	94.2 121 7.52	83.4 104 8.15				
F ^{flex}	B-value Distributi	on	(1) ANOVA	(1) ANOVA				
(ksi)	C ₁ C ₂		8.92 3.33	8.45 4.13				
	No. Spec No. Batc Data Cla	hes	21 5 Interim	14 4 Screening				

Volume 2, Chapter 6 Glass Fiber Composites

6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric

Material Description:

Material: E7781/EA9396

- Form: Eight harness satin fabric of style 7781, fiber areal weight of 295 g/m², dry fabric impregnated in a wet lay-up process, typical cured resin content of 25.9 to 30.4%, typical cured ply thickness of 0.008 inches.
- Processing: Vacuum Bag cure; 200°F, 25 inches Hg, 45 minutes

General Supplier Information:

- Fiber: Continuous E-glass fiber woven by Hexcel using F-16 (Volan-A) sizing. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: EA9396 is a 200°F curing toughened epoxy resin with improved hot/wet properties. 75 minute pot life for 1 lb batch. This resin is a two part, unfilled version of EA 9394.

Maximum Short Term Service Temperature: Not determined from available data, but at least 150°F.

Typical applications: Aircraft repair

Data Analysis Summary:

- 1. This material was tested at fiber volumes that may be higher than what are typically used for repair. Data should be substantiated if used at lower fiber volumes.
- 2. Glass transition temperature (Tg) values were not reported because they were determined on neat resin using a non-standard method.
- 3. Wet properties are very low because of the glass and sizing combination.
- 4. Contrary to expectations, the fill tensile strengths and stiffnesses were greater than the warp properties.
- 5. Most tension failures were under the tabs, but were included since the strengths were consistent with correct failure modes.
- 6. Variability between batches is high. Documentation does not reveal a reason.
- 7. High end outliers for the following properties were discarded:
 - a. Transverse tension strain at 72°F ambient
 - b. Transverse tension modulus at -65°F ambient and 72°F wet
 - c. Transverse compression modulus at 72°F wet
- 8. Data are from publicly available report, Reference 4.2.27.
- 9. Test method dates were assumed from the testing dates rather than obtained from the data source.

Volume 2, Chapter 6 Glass Fiber Composites

6.2.4 E-Glass 7781/EA 9396 8-harness satin weave fabric *

MATERIAL:	E-Glass	E-Glass 7781/EA 9396 8-harness satin weave fabric						
FORM:		Blass fabric impr mpregnation pro		epoxy resin in a wet				
FIBER:		Burlington 7781 /538 Silane sizin		MATRIX:	Dexter-Hysol EA 9396			
T _g (dry):	(1)	T _g (wet):	(1)	T _g METHOD:				
PROCESSING:		n Bag Cure: 200	, ,	5 in. Hg.				

(1) See Data Analysis Note #2 in data set description

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	11/88-5/91
Date of resin manufacture	8/88-10/88	Date of data submittal	3/98
Date of prepreg manufacture	NA	Date of analysis	8/98
Date of composite manufacture	11/88-5/91		

LAMINA PROPERTY SUMMARY

	72°F/A	-65°F/A	200°F/A	-65°F/W	72°F/W	200°F/W
Tension, 1-axis	IISI				IISI	
Tension, 2-axis	IISS	IISS	IISI	IISI	ISSI	IISI
Tension, 3-axis						
Compression, 1-axis	II-I				II-I	
Compression, 2-axis	II-I	II-I	SS-S	II-I	SS-S	II-I
Compression, 3-axis						
Shear, 12-plane	II	II	II	II	II	II
Shear, 23-plane						
Shear, 31-plane						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.54		D 792
Resin Density	(g/cm ³)	1.14		
Composite Density	(g/cm ³)	1.91	1.88-1.96	D 792
Fiber Areal Weight	(g/m ²)	295		
Fiber Volume	(%)	54	51.2-56.9	D 2584
Ply Thickness	(in)	0.0085	0.0083-0.0087	

Nominal composite densities assume void content of 0%.

LAMINATE	PROPERTY	SUMMARY
		0011111/1 (1 ()

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	E-Glass 7781/EA 939	Table 6.2.4(a) EGI/Ep 295-8HS									
RESIN CONTENT:	25.9-27.7 wt%	COMP: DENSITY:	1.89-1.93 g/cm ³	E-7781/EA 9396							
FIBER VOLUME:	54.1-55.8 %	VOID CONTENT:	3.7-5.4%	Tension, 1-axis							
PLY THICKNESS:	0.0085-0.0086 in.			[0 _f] ₈							
				72/A,72/W							
TEST METHOD:		MODULUS CALCU	LATION:	Interim, Screening							
ASTM D 3039-76	i	Chord between	1000 and 3000με								

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code		7. Amb		7.(1)		
		30		140, 95-100			
		30 Normalized Measured		30 Normalized Measured		Normalized	Measured
	Mean	48.3	51.8	15.7	16.4	Normalized	Measured
	Minimum	45.5	48.0	13.4	13.6		
	Maximum	54.1	57.9	17.0	18.3		
	C.V.(%)	4.77	5.17	6.44	7.74		
	B-value	(2)	(2)	(2)	(2)		
F _l ^{tu}	Distribution	Nonpara.	Normal	Weibull	Weibull		
(ksi)	C ₁	8	51.8	16.1	16.9		
	C ₂	1.54	2.68	17.8	15.8		
	No. Specimens	1		1			
	No. Batches	3		3			
	Data Class	Inte		Inte			
	Mean	3.39	3.62	3.16	3.30		
	Minimum Maximum	3.25 3.48	3.45 3.77	2.97 3.30	3.07 3.52		
	C.V.(%)	2.18	2.51	2.64	3.93		
E_1^t		-		-			
(Msi)	No. Specimens	1	5	1	5		
()	No. Batches	3		3			
	Data Class	Inte		Interim			
	Mean	0.1		0.084			
v_{12}^t	No. Specimens	6	5	7			
12	No. Batches	3		3 Screening			
	Data Class Mean	Scree		Scree			
	Minimum		17700 16400		5100 4260		
	Maximum		21800	5850			
	C.V.(%)		7.72		8.83		
	B-value		(2)		(2)		
ϵ_1^{tu}	Distribution		Nonpara.		Weibull		
(με)	C ₁		8		5290		
	C ₂		1.54		13.8		
	No. Specimens	1		1	5		
	No. Batches	3		3			
(1) Unk	Data Class	Inte	rim	Inte	rim		

(1) Unknown weight gain

(2) Basis values are presented only for A and B data classes.

(3) Most failures were under the tabs, but were included since the strengths were consistent with correct failure modes.

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	ss 7781/EA 939			ic	Table	6.2.4(b) 295-8HS		
FIBER V	OLUME: 54.0-	27.7 wt% 56.5 % 5-0.0086 in.	6.5 % VOID CONTENT: 3.7-5.4 %					
TEST ME	THOD:		72/A, -65/A, 200/A Interim, Screening					
AST	M D 3039-76		Chord	between 1000	and 3000με			
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)								
	Content (%)	72 Amb			65 bient	20 Amb		
Equilibriu Source C	m at T, RH	30	`		30	30	h	
Source C	Jude	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	50.5	54.3	67.2	71.9	42.4	45.2	
	Minimum	45.1	48.5	56.7	59.2	35.4	37.0	
	Maximum	54.1	59.0	78.7	83.2	47.9	50.5	
	C.V.(%)	5.96	6.14	8.62	9.03	6.42	6.80	
F_2^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) Weibull	(1) Weibull	
(ksi)	C ₁	51.8	55.7	69.7	74.7	43.6	46.5	
(-)	C ₂	19.5	20.5	11.2	36.8	15.4	18.3	
	No. Specimens No. Batches		15 3		15 3		15 3	
	Data Class	Interim		Interim		Interim		
	Mean	3.41	3.67	3.89	4.15	3.31	3.53	
	Minimum	3.25	3.38	3.74	3.97	3.19	3.36	
	Maximum C.V.(%)	3.82 5.39	4.15 6.11	3.96 1.63	4.30 2.68	3.48 2.50	3.68 2.79	
E_2^t	0. v.(70)	0.39	0.11	1.05	2.00	2.50	2.19	
(Msi)	No. Specimens	1:			14	1:	5	
	No. Batches	3		3		3		
	Data Class	Interim		Screening		Interim 0.101		
	Mean No. Specimens		0.127 6		0.157 7		01	
v_{21}^t	No. Batches		3		3			
* 21	Data Class	Scree	Screening		Screening		enina	
	Mean	00166	18200	24000		Screening 14400		
	Minimum		15400		20500		9750	
	Maximum		20300		26200		16500	
	C.V.(%)		8.37		7.76		11.6	
	B-value		(1)	(1)		(1)		
ϵ_2^{tu}	Distribution		Weibull		Normal		Weibull	
(με)	C ₁		18900	24000			15000	
. ,	C ₂		15.7		1870		13.0	
	No. Specimens	14	1		7	1:	5	
	No. Batches	3			3	3		
	Data Class	Scree	ening	Scre	ening	Inte	rim	

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

	MATERIAL: E-Glass 7781/EA 9396 8-harness satin weave fabric Table 6.2.4(c) EGI/Ep 295-8HS										
FIBER V	OLUME: 54.0-5	27.7 wt% COMP. DENSITY: 1.89-1.94 g/cm ³ 56.5 % VOID CONTENT: 3.7-5.4 % 35-0.0086 in. 3.7-5.4 %			E-7781/EA 9396 Tension, 2-axis [0 _f] ₈ -65/W, 72/W, 200/W						
TEST ME	ETHOD:		MODULU	S CALCULATIO	ON:		2/W, 200/W Screening				
AST	ASTM D 3039-76 Chord between 1000 and 3000µε										
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)										
Tempera		-6			72 1)		00				
	Content (%) Im at T, RH	(1 140, 9			1) 95-100		1) 95-100				
Source C		3	0	3	30	3	0				
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean Minimum	19.7	21.2	16.3	17.5	12.6	13.5				
	Maximum	14.4 23.0	15.5 25.2	14.6 18.8	15.7 20.4	11.2 14.3	11.9 15.9				
	C.V.(%)	10.9	12.3	8.11	8.42	6.17	7.04				
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) Normal				
(ksi)	C ₁	20.5	22.3	1.44	1.59	13.0	13.5				
~ /	C ₂	10.5	10.1	4.06	4.37	14.3	0.953				
	No. Specimens No. Batches	15 3			15 3		5 3				
	Data Class	Interim		Interim		Interim 2.81 3.01					
	Mean Minimum	3.54 3.32	3.81 3.47	3.01 2.89	3.22 3.09	2.81 2.44	3.01 2.58				
	Maximum	3.74	4.03	3.11	3.36	3.52	3.67				
E_2^t	C.V.(%)	2.97	3.65	1.96	2.47	11.7	11.5				
(Msi)	No. Specimens	1		13		15					
	No. Batches Data Class	a Inte	3 Arim	3 Screening			3 erim				
	Mean	0.1			066)79				
v_{21}^t	No. Specimens	6	6		6	(6				
21	No. Batches Data Class	3 Scree			3 ening		3 ening				
	Mean	30100	6240	3016	5420	3018	4470				
	Minimum		4000		3040		3360				
	Maximum		7300		6510		4900				
	C.V.(%)		14.2		19.2		10.6				
ϵ_2^{tu}	B-value Distribution		(2) ANOVA		(2) ANOVA		(2) Nonpara.				
(με)	C ₁		936	1120			8				
. ,	C ₂		3.88		4.58		1.54				
	No. Specimens	1	5	1	5	1	5				
	No. Batches	3	3		3	:	3				
	Data Class	Inte	erim	Inte	erim	Inte	erim				

(1) Unknown weight gain

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	-Glass 7781/EA 939		atin weave fabri		Table	6.2.4(d) 295-8HS	
FIBER VO	SIN CONTENT: 27.6-30.4 wt% COMP: DENSITY: 1.89-1.93 g/cm ³ ER VOLUME: 54.1-55.8% VOID CONTENT: 3.7-5.4% Y THICKNESS: 0.0085-0.0086 in. VOID CONTENT: 3.7-5.4%				E-778 ¹ /EA 9396 Compression, 1-axis [0 _f] ₁₆ 72/A,72/W		
TEST ME	THOD:		MODULU	S CALCULATIC	DN:		erim
AST	M D 3410B-87		Chord	between 1000	and 3000με		
		pecimen thickness a		-		ne (0.0085 in.	CPT)
Temperat			2 pient		2 -2.33		
	Content (%) m at T, RH	Ami	Jient	1.00 [.] ()			
Source C			0	3	0		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	46.4 41.1	49.6 43.9	20.3 11.2	21.0 11.0		
	Maximum	51.2	43.9 55.5	26.3	27.0		
	C.V.(%)	5.96	5.84	27.6	27.8		
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) ANOVA	(2) ANOVA		
(ksi)	C ₁	47.6	51.0	6.40	6.71		
(-)	C ₂	17.5	18.5	4.91	5.67		
	No. Specimen No. Batches	:	15 3		15 3		
	Data Class Mean		Interim 3.45 3.68		Interim 3.06 3.18		
	Minimum	2.96	3.17	2.56	2.56		
	Maximum	3.86	4.11	3.77	3.85		
E ₁ ^c	C.V.(%)	6.24	5.98	10.1	10.1		
(Msi)	No. Specimen		15		15		
	No. Batches Data Class		3 erim	3 Interim			
v_{12}^c	Mean No. Specimen No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)		14700 11700 19600 12.8		7160 4160 10600 27.3		
ϵ_1^{cu}	B-value Distribution		(2) ANOVA		(2) ANOVA		
(με)	C ₁ C ₂		3.25 1940		4.72 2130		
	No. Specimen No. Batches	:	5 3	3	5 3		
<u> </u>	Data Class	Inte	erim	Inte	erim		

Specimens conditioned at 140°F, 95-100% R.H for 68-180 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	E-Glass 7781/EA 939	E-Glass 7781/EA 9396 8-harness satin weave fabric									
			. 3	EGI/Ep 295-8HS							
RESIN CONTENT:	27.6-30.4 wt%	COMP: DENSITY:	1.89-1.93 g/cm ³	E-7781/EA 9396							
FIBER VOLUME:	51.2-53.8 %	VOID CONTENT:	4.0-5.0 %	Compression, 2-axis							
PLY THICKNESS:	0.0083-0.0085 in.			[O _f] ₁₆							
				-65/A, 72/A, 200/A							
TEST METHOD:		MODULUS CALCU	LATION:	Interim, Screening							
ASTM D 3410B-8	37	Chord between	1000 and 3000με								

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

Tempera Moisture	ture (°F) Content (%)	7: Amb		-65 Ambi		20 Amb		
	um at T, RH	30		30			30	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	37.7 32.4 42.9 8.72	40.8 35.3 46.0 7.60	59.2 50.8 68.9 9.72	63.8 55.8 73.5 9.58	26.9 20.4 34.4 16.1	29.0 23.4 37.2 15.1	
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁ C ₂	39.2 11.6	42.3 15.1	6.54 4.81	5.33 6.87	5.07 5.00	5.75 5.16	
	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Inter		12 3 Screening		
E ₂ ^c	Mean Minimum Maximum C.V.(%)	3.37 2.94 3.61 6.04	3.66 3.13 3.93 6.70	3.89 3.38 4.17 5.79	4.18 3.63 4.55 5.84	3.23 2.82 3.54 7.64	3.49 2.98 3.83 7.23	
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		12 3 Screening		
v_{21}^c	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		11900 9020 17800 20.1		16800 13400 20800 11.8		8650 6550 12400 19.5	
ϵ_2^{cu}	B-value Distribution		(1) Weibull		(1) ANOVA		(1) Weibull	
(με)	C ₁ C ₂		12900 5.04		5.06 2200		9340 5.42	
	No. Specimens No. Batches Data Class	1: 3 Inte	5	15 3 Inter		12 3 Scree		

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.											
MATERIA	L: E-Glas	s 7781/EA 9396	6 8-harness sa	atin weave fabric		Table	6.2.4(f)				
							295-8HS				
RESIN CO		0.4 wt%	COMP: DE		-1.93 g/cm ³		EA 9396				
FIBER VC		3.8 %	VOID CON	Compression, 2-axis							
PLY THIC	KNESS: 0.0083	3-0.0085 in.					f]16				
							/W, 200/W				
TEST ME	THOD:		MODULU	S CALCULATIO	N:	Interim, S	Screening				
AST	V D 3410B-87		Chord	between 1000 a	and 3000us						
			enera								
	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)										
Temperat		-6		72		20					
	Content (%)	1.48-	2.33	1.48-2	2.33	1.48-	2.33				
	m at T, RH	(1		(1)		(1					
Source Co	ode	30)	30)	30)				
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean	43.5	46.5	22.0	23.6	13.4	14.2				
	Minimum	36.4	38.6	16.8	18.9	11.3	11.8				
	Maximum	52.5	56.1	26.4	27.7	17.2	18.3				
	C.V.(%)	9.58	10.0	13.3	12.8	14.8	14.8				
	B-value	(2)	(2)	(2)	(2)	1.88	1.84				
F ₂ ^{cu}	Distribution	Weibull	Weibull	ANÔVA	ANÓVA	ANOVA	ANOVA				
-											
(ksi)	C ₁	45.4	48.6	3.50	15.3	2.36	4.95				
	C ₂	9.65	10.9	1.39	3.56	4.31	2.49				
			_								
	No. Specimens	15		10		18					
	No. Batches	3		2		3					
	Data Class	Interim		Screening		Interim					
	Mean	3.81	4.07	3.11	3.34	2.91	3.08				
	Minimum	3.32	3.41	2.96	3.23	2.25	2.32				
	Maximum	4.16	4.46	3.25	3.49	3.73	3.92				
E_2^c	C.V.(%)	6.22	6.76	3.40	2.40	13.6	13.8				
2											
(Msi)	No. Specimens	15	5	0		10	2				
(10131)	No. Batches	3		9 2		18 3					
	Data Class	Inter		Screening		Inte					
	Mean			00,66		inte					
	No. Specimens										
v_{21}^c	No. Batches										
	Data Class										
	Mean		12400		7800		4540				
	Minimum		9890		4570		4540 2880				
	Maximum		9890 15700		4570 9310		2880 6890				
			13.3		18.8		22.9				
	C.V.(%)		13.3		10.0		22.9				
	B-value		(2)		(2)		(2)				
	Distribution		(2) Weibull		(∠) Weibull		(2) Weibull				
ϵ_2^{cu}	DISTUDUTION		VVEIDUII		vveiduli		VVEIDUII				
(με)	C ₁		13100	8330			4950				
(pic)	C ₂		8.42	7.91			4.68				
	-2		0.12								
	No. Specimens	15	5	10)	18	3				
	No. Batches	3		2		3					
	Data Class	Inter		Scree		Inte					
1				00,66	ining		1				

(1) Specimens conditioned at 140° F, 95-100% RH for 68-180 days.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 6 Glass Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: E-Glas	E-Glass 7781/EA 9396 8-harness satin weave fabric Table 6.2.4(g)								
FIBER V	OLUME: 54.2-5	7.7 wt% 6.9 % 3-0.0085 in.	COMP: DE VOID CON		2 g/cm ³ -5.7 %	EGI/Ep 295-8HS E-7781/EA 9396 Shear, 12-plane [+/-45 _f]₅ 72/A, -65/A, 200/A,				
TEST ME			MODULUS	S CALCULATI	ON:		72/W, 200/W nterim			
AST	ASTM D 3518-76									
NORMAL	NORMALIZED BY: Not normalized									
	Content (%) m at T, RH	72 Ambient 30	-65 Ambient 30	200 Ambient 30	-65 1.52-2.32 (1) 30	72 1.52-2.32 (1) 30	200 1.52-2.32 (1) 30			
Source C	Mean	11.5	16.9	7.11	8.52	5.49	2.73			
	Minimum Maximum C.V.(%)	9.45 13.5 9.20	13.1 20.3 14.1	4.59 9.56 15.8	6.74 10.7 13.3	4.16 6.44 11.9	2.17 3.42 12.9			
F ₁₂ ^{su}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull			
(ksi)	C ₁ C ₂	12.0 11.8	17.9 8.15	7.59 6.77	9.01 8.08	5.76 11.0	2.890 8.60			
	No. Specimens No. Batches Data Class	23 3 Interim	18 3 Interim	19 3 Interim	18 3 Interim	18 3 Interim	17 3 Interim			
G ^s ₁₂	Mean Minimum Maximum C.V.(%)	0.758 0.625 0.928 11.3	1.03 0.901 1.29 10.5	0.458 0.289 0.549 12.9	0.860 0.624 0.976 11.6	0.490 0.336 0.666 16.7	0.242 0.146 0.436 33.0			
(Msi)	No. Specimens No. Batches Data Class	22 3 Interim	18 3 Interim	19 3 Interim	16 3 Interim	18 3 Interim	17 3 Interim			
γ_{12}^{s}	Mean No. Specimens No. Batches									
(με)	Data Class					<u></u>				

(1) Specimens conditioned at 140° F, 95-100% RH for 111-117 days.

(2) Basis values are presented only for A and B data classes.

- 6.3 GLASS POLYESTER COMPOSITES
- 6.4 GLASS BISMALEIMIDE COMPOSITES
- 6.5 GLASS POLYIMIDE COMPOSITES
- 6.6 GLASS PHENOLIC COMPOSITES
- 6.7 GLASS SILICONE COMPOSITES
- 6.8 GLASS POLYBENZIMIDAZOLE COMPOSITES
- 6.9 GLASS PEEK COMPOSITES

Volume 2, Chapter 6 Glass Fiber Composites

This page intentionally left blank

Volume 2, Chapter 7 Boron Fiber Composites

CHAPTER 7 BORON FIBER COMPOSITES

- 7.1 INTRODUCTION
- 7.2 BORON EPOXY COMPOSITES
- 7.3 BORON POLYESTER COMPOSITES
- 7.4 BORON BISMALEIMIDE COMPOSITES
- 7.5 BORON POLYIMIDE COMPOSITES
- 7.6 BORON PHENOLIC COMPOSITES
- 7.7 BORON SILICON COMPOSITES
- 7.8 BORON POLYBENZIMIDAZOLE COMPOSITES
- 7.9 BORON PEEK COMPOSITES

Volume 2, Chapter 7 Boron Fiber Composites

This page intentionally left blank

Volume 2, Chapter 8 Alumina Fiber Composites

CHAPTER 8 ALUMINA FIBER COMPOSITES

- 8.1 INTRODUCTION
- 8.2 ALUMINA EPOXY COMPOSITES
- 8.3 ALUMINA POLYESTER COMPOSITES
- 8.4 ALUMINA BISMALEIMIDE COMPOSITES
- 8.5 ALUMINA POLYIMIDE COMPOSITES
- 8.6 ALUMINA PHENOLIC COMPOSITES
- 8.7 ALUMINA SILICON COMPOSITES
- 8.8 ALUMINA POLYBENZIMIDAZOLE COMPOSITES
- 8.9 ALUMINA PEEK COMPOSITES

MIL-HDBK-17-2F Volume 2, Chapter 8 Alumina Fiber Composites

This page intentionally left blank

Volume 2, Chapter 9 Silicon Carbide Fiber Composites

CHAPTER 9 SILICON CARBIDE FIBER COMPOSITES

- 9.1 INTRODUCTION
- 9.2 SILICON CARBIDE EPOXY COMPOSITES
- 9.3 SILICON CARBIDE POLYESTER COMPOSITES
- 9.4 SILICON CARBIDE BISMALEIMIDE COMPOSITES
- 9.5 SILICON CARBIDE POLYIMIDE COMPOSITES
- 9.6 SILICON CARBIDE PHENOLIC COMPOSITES
- 9.7 SILICON CARBIDE SILICON COMPOSITES
- 9.8 SILICON CARBIDE POLYBENZIMIDAZOLE COMPOSITES
- 9.9 SILICON CARBIDE PEEK COMPOSITES

This page intentionally left blank

Volume 2, Chapter 10 Quartz Fiber Composites

CHAPTER 10 QUARTZ FIBER COMPOSITES

- **10.1 INTRODUCTION**
- **10.2 QUARTZ EPOXY COMPOSITES**

10.3 QUARTZ - POLYESTER COMPOSITES

10.4 QUARTZ - BISMALEIMIDE COMPOSITES

10.4.1 Astroquartz - II/F650 8-harness satin weave

Volume 2, Chapter 10 Quartz Fiber Composites

10.4.1 Astroquartz II/F650 8-harness satin weave fabric

Material Description:

Material: Astroquartz II/F650

- Form: 8 harness satin weave fabric, fiber areal weight of 285 g/m², typical cured resin content of 37%, typical cured ply thickness of 0.010 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours. Postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: Astroquartz II fiber is a continuous, high strength, low modulus ceramic fiber made of pure fused silica. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications, fire containment structures, radomes or any application where high strength and/or electrical properties are required.

Volume 2, Chapter 10 Quartz Fiber Composites

10.4.1 Astroquartz II/F650 8-harness satin weave*

MATERIAL:	Astroquartz	II/F650 8-harness sa	Q/BMI 285-8HSI Astroquartz II/F650 Summary						
FORM:	Hexcel AQI	1581/F650 8-harness							
FIBER:	J.P. Steven	s Astroquartz II	MATRIX:	Hexcel F650					
T _g (dry):	600°F	T _g (wet):	Tg METHOD:						
PROCESSING:	Autoclave c	Autoclave cure: 375°F, 4 hours, 85 psig; Postcure: 475°F, 4 hours							

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

	75°F/A	450°F/A			
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB strength, 31-plane	S	S			

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 10 Quartz Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.17		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.78	1.73	
Fiber Areal Weight	(g/m ²)	285		
Fiber Volume	(%)	57	51	
Ply Thickness	(in)	0.0100	0.010	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	Astroquartz II/F650	8-harness satir			10.4.1(a)					
FIBER VOLUME:	37 wt% 51 % 0.010 in.	COMP: D VOID CO		3 g/cm ³	Q/BMI 285-8HS Astroquartz II/F650 SBS, 31-plane [0 _f]12 75/A, 450/A					
TEST METHOD:		MODULU	S CALCULATIO	ON:		ening				
ASTM D 2344										
NORMALIZED BY: Not normalized										
Temperature (°F)	75	450								
Moisture Content (%) Equilibrium at T, RH	ambient	ambient								
Source Code	21	21								
Mean	6.41	6.56								
Minimum Maximum	6.31 6.50	6.43 6.72								
C.V.(%)	1.06	1.69								
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Normal	(1) Normal								
(ksi) C ₁	6.41	6.56								
C ₂	0.068	0.111								
No. Specimens	5	5								
No. Batches	1	1								
Data Class	Screening	Screening								

(1) Short beam strength test data are approved for Screening Data Class only.

- 10.5 QUARTZ POLYIMIDE COMPOSITES
- **10.6 QUARTZ PHENOLIC COMPOSITES**
- 10.7 QUARTZ SILICONE COMPOSITES
- 10.8 QUARTZ POLYBENZIMIDAZOLE COMPOSITES
- **10.9 QUARTZ PEEK COMPOSITE**

Volume 2, Appendix A1

APPENDIX A1. MIL-HDBK-17A DATA

A1.1 GENERAL INFORMATION

The data on polymer matrix composite materials which were presented in MIL-HDBK-17A, dated January 1971, are presented in this appendix. MIL-HDBK-17A has been superseded so these data are presented here so they can be Referenced in a current publication. However, these data do not meet the data requirements in Volume 1. The materials which were included in MIL-HDBK-17A are listed in Table A1. Of the sixteen materials, six are still available, five are no longer available, and the availability of the other five materials could not be determined. The data from the six available materials are provided in this appendix. The data from the remaining materials may be added as availability of the material or usefulness of the data is determined. Note that Narmco 5505 has been licensed to AVCO and those data are presented herein as AVCO 5505.

TABLE A1 Materials from MIL-HDBK-17A.

Available:
U.S. Polymeric E-720E/7781 (ECDE-1/0-550) Fiberglass Epoxy
Hexcel F-161/7743(550) Fiberglass Epoxy
Hexcel F-161/7781(ECDE-1/0-550) Fiberglass Epoxy
Narmco N588/7781 (ECDE-1/0-550) Fiberglass Epoxy
Narmco 506/7781 (ECDE-1/0-A1100) Fiberglass Phenolic
AVCO 5505 Boron Epoxy
Not available:
U.S. Polymeric E-779/7743 (Volan) Fiberglass Epoxy
3M XP251S Fiberglass Epoxy
U.S. Polymeric S-860/1581 (ECG-1/2-112) Neutral pH Fiberglass Silicone
U.S. Polymeric P670A/7781 (ECDE-1/0) Fiberglass Modified DAP Polyester
SP272 Boron Epoxy
Availability unknown:
Bloomingdale BP915/7781 (ECDE-1/0-550) Fiberglass Epoxy
Bloomingdale BP911/7781 (ECDE-1/0 Volan) Fiberglass Epoxy
Cordo E293/7781 (ECDE-1/0-550) Fiberglass Epoxy
Styrene-Alkyd Polyester/7781 Fiberglass
Cordo IFRR/7781 (ECDE-1/0) Fiberglass Modified DAP Polyester

The Table and Figure numbers used in this appendix are similar to those in MIL-HDBK-17A. The chapter identification has been changed from 4 to A1 but the rest of all Figure and Table numbers has not been changed. For example, Table A1.40 is the same as Table 4.40 in MIL-HDBK-17A. The MIL-HDBK-17A text describing the test program and methods is reproduced in Sections A1.2 through A1.4.

Volume 2, Appendix A1

A1.2 INTRODUCTION

The laminate properties presented in this chapter have been generated in test programs conducted at the U.S. Forest Products Laboratory and elsewhere (Reference A1.2).¹ Properties are given for fiberglass with epoxy, phenolic, silicone and polyester resins and for boron with epoxy. Additional information on these and other material combinations will be issued as supplements or revisions of the present handbook edition.

A1.3 HANDBOOK TEST PROGRAM

A1.3.1 Objectives

The objectives of the handbook test program are to obtain statistically significant data for materials currently in use and to determine the degree of reproducibility attained in their fabrication. A minimum requirement is that test results include data from three sets of panels which are representative of the manufacturing procedures employed by three different fabricators. The properties listed in the charts and Tables of this chapter represent test results from only one set of panels for each material system. Properties are therefore not given minimum values and are considered to be "typical" for each material. When the minimum number of tests has been completed for a material, its properties will be assigned values on a B-basis; that is, the value above which 90 percent of the population of values is expected to fall with a confidence of 95 percent.

A1.3.2 Preimpregnated materials

All test panels are fabricated from prepregs. Emphasis is placed on materials for use as facings in sandwich type structures. The prepregs for facings are normally processed to conform with two methods of sandwich fabrication. These are the laminate grades for two-step sandwich constructions and the controlled flow adhesive grades for one-step sandwich constructions. Only laminates simulating precured facings, that is, for use in two-step sandwiches, have been subjected to the narrow coupon tests listed in this chapter. The controlled flow adhesive prepregs are best tested as sandwich panels, and such testing is not at present included in the handbook program.

The prepreg materials comply with the specifications established by the individual fabricators. In general, the materials are autoclave molding grades with flows controlled to attain minimum bleedout and optimum bonding of the plies. When possible handling characteristics are specified consistent with the objectives of collimated plies in the laminate and the retention of fiber orientation during lay-up and cure.

Imposed tolerances on the gravimetric resin content of the prepregs are dependent on the type of reinforcement. For bidirectional woven broadgoods such as style 7781 fabric, the resin fraction is specified as not varying by more than two percent from the assigned devolatilized resin content. For directionally woven broadgoods such as style 7743 fabric, and nonwoven parallel fiber tapes such as XP251S, variation from the assigned devolatilized resin content is not to exceed three percent.

A1.3.3 Test panels

A minimum size of the test panels has been established as two feet parallel to the warp direction by three feet parallel to the width for woven fabrics. For the non-woven laminates, including unidirectional, crossplied and quasi-isotropic configurations, the three foot dimension is parallel to the fiber direction in the outer plies.

¹Exceptions are the data for fiberglass-polyester laminates, taken from earlier sources, and the data for boron-epoxy panels which were compiled under special contract and published separately (Reference A1.2).

Volume 2, Appendix A1

It is desirable that the test laminates be fabricated so that fiber alignment and orthotropy are maintained and that they are symmetrically balanced. Such conditions are generally attained in the test panels and they are designated in the following data summary Tables as balanced and parallel. One set of panels (Table A1.1) is not balanced. In this case the laminates are parallel plied.

A1.3.4 Test procedures

Conventional uniaxial tests are conducted at constant crosshead rates. The direction parallel to the warp of woven fabrics is designated as the 0° or 1-direction. The direction perpendicular to the 0° direction is designated as the 90° or 2-direction. For non-woven unidirectional laminates, the 0° direction corresponds to the fiber direction. For crossplied and quasi-isotropic laminates, the 0° direction corresponds to the fiber direction in the outer plies.

A1.3.4.1 Tensile tests

Tensile tests for woven fabric laminates have been conducted initially using the method of ASTM D 638 and Type I specimens (Reference A1.3.4.1(a)). Later tests are conducted with a modified specimen (Reference A1.2) and the method is designated as MIL-HDBK-17 tensile test. Tab ended specimens are used to test the 0° tensile properties of the non-woven unidirectional laminates (Reference A1.3.4.1(b)).

A1.3.4.2 Compression tests

Compression tests have been conducted with the end clamped and jig stabilized ASTM D 695 specimen (Reference A1.3.4.2) and with the MIL-HDBK-17 compression specimen (Reference A1.2) in which the specimen and fixture have been modified.

A1.3.4.3 Shear tests

The picture frame method (Reference A1.2) has been used to determine the 0° - 90° shear properties of one material system at three resin fractions (Figure A1.6.3). In these tests it is assumed that 88 percent of the load is reacted by the specimen, while the pins in the fixture react the remainder. The other materials are tested by a modified rail shear method (Reference A1.3.4.3).

A1.3.4.4 Interlaminar shear

Interlaminar shear properties are determined by the short beam test method (Reference A1.3.4.1(b)), or by the method of ASTM D 2733-68T when indicated (Reference A1.3.4.4).

A1.3.4.5 Flexural tests

Flexural properties are determined by the method of ASTM D 790 (Reference A1.3.4.5).

A1.3.4.6 Bearing strength

Bearing strengths are determined by the method of ASTM D 953 (Reference A1.3.4.6).

A1.3.5 Dry conditioning

Specimens are dry conditioned by allowing them to attain equilibrium at 70°F to 75°F and 45 percent to 55 percent relative humidity for a minimum of ten days. When tested at other than room temperature, the dry conditioned specimens are soaked at the test temperature for one-half hour prior to applying load.

Volume 2, Appendix A1

A1.3.6 Wet conditioning

Specimens are wet conditioned at 125°F and 95 percent to 100 percent relative humidity for 1000 hours (42 days). When tested at temperatures below freezing, the wet conditioned specimens are cycled four times from the wet condition at 125°F to the sub-freezing test temperature; the dwell time at each temperature being one-half hour. Wet specimens tested at 160°F are soaked for one-half hour at this temperature immediately prior to testing. Some materials are shown as being tested at 220°F after wet conditioning. Such testing has been discontinued since these results appear inconclusive.

A1.3.7 Test schedule

The 0° and 90° tension and compression properties are determined at three Reference temperatures, $65^{\circ}F$, $70^{\circ}F$ - $75^{\circ}F$ and $160^{\circ}F$, for both dry and wet conditioned specimens. Dry conditioned specimens are tested at maximum temperature for those materials which are potentially serviceable at elevated temperatures. Ten test results are obtained for the stress-strain relations at each of these conditions. Tests at intermediate temperatures are conducted to verify property changes, in which cases five specimens are tested. Ten test results are also required for the 0° - 90° shear at -65°F, $70^{\circ}F$ - $75^{\circ}F$, and $160^{\circ}F$ in the dry condition. Five tests are conducted at $70^{\circ}F$ - $75^{\circ}F$ to determine the stress-strain relations for Poisson's ratio. Flexure, bearing and interlaminar shear are determined in the 0° direction and dry condition at -65°F, $70^{\circ}F$ - $75^{\circ}F$ and $160^{\circ}F$. Five specimens are tested for each temperature.

A1.4 DATA PRESENTATION

Uniaxial tension, compression and shear are shown as stress-strain relations at each temperature and the properties are summarized in tabular form. Flexural, bearing and interlaminar shear properties are listed in summary Tables. Poisson's ratio is shown as the response of the 0° elongation and 90° contraction to the applied tensile stress.

When ten or more results are available at a test condition, average values and the associated standard deviations are given in the Tables. Stress-strain relations are plotted as an average curve and a plot of the average minus three times the standard deviation is also shown. When five to nine results are obtained from a test condition, average, maximum, and minimum values and curves are shown.

A1.4.1 Epoxy-fiberglass laminates

All data on fiberglass-epoxy systems are results obtained from the handbook test program. Properties are summarized in Tables A1.1 through A1.8. Detailed data are shown in Figures A1.1.1(a) through A1.8.5. [Four of the nine materials are known to be available.]

A1.4.2 Phenolic-fiberglass laminates

Handbook tested properties are summarized in Table A1.40 and Figures A1.40.1(a) through A1.40.5 for one fiberglass-phenolic system. [This material is available.]

A1.4.3 Silicone-fiberglass laminates

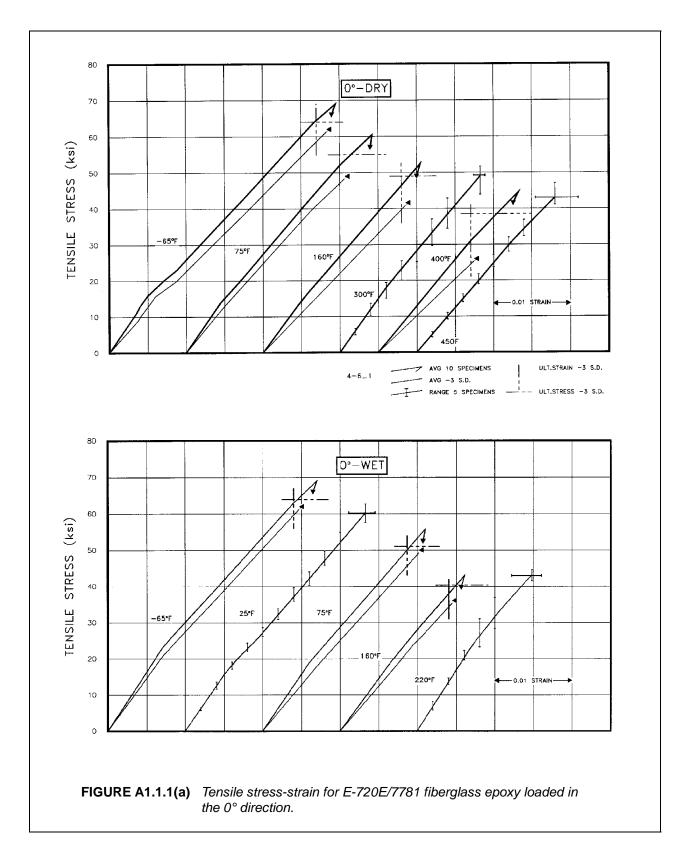
Partial handbook test results were listed in MIL-HDBK-17A for one fiberglass-silicone system. [This material is not available]

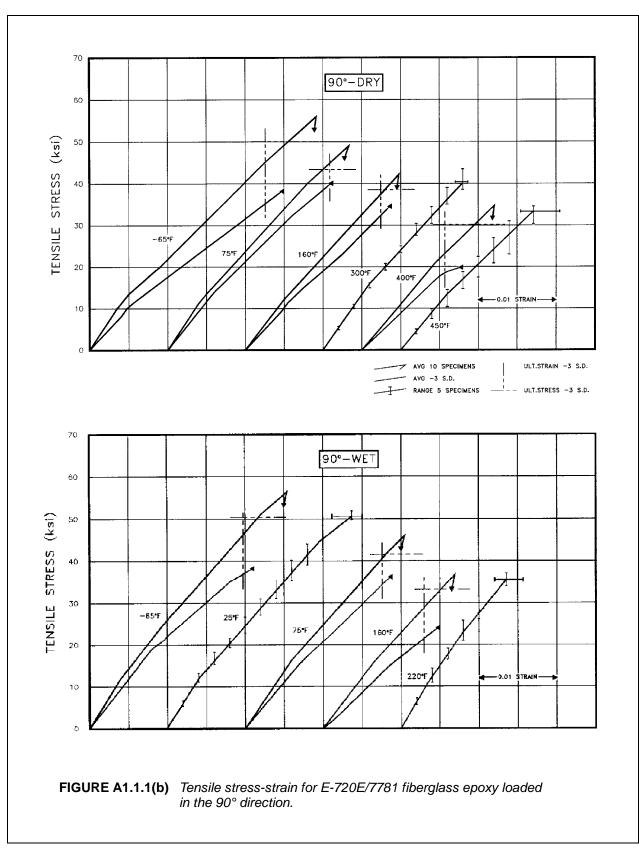
A1.4.4 Polyester-fiberglass laminates

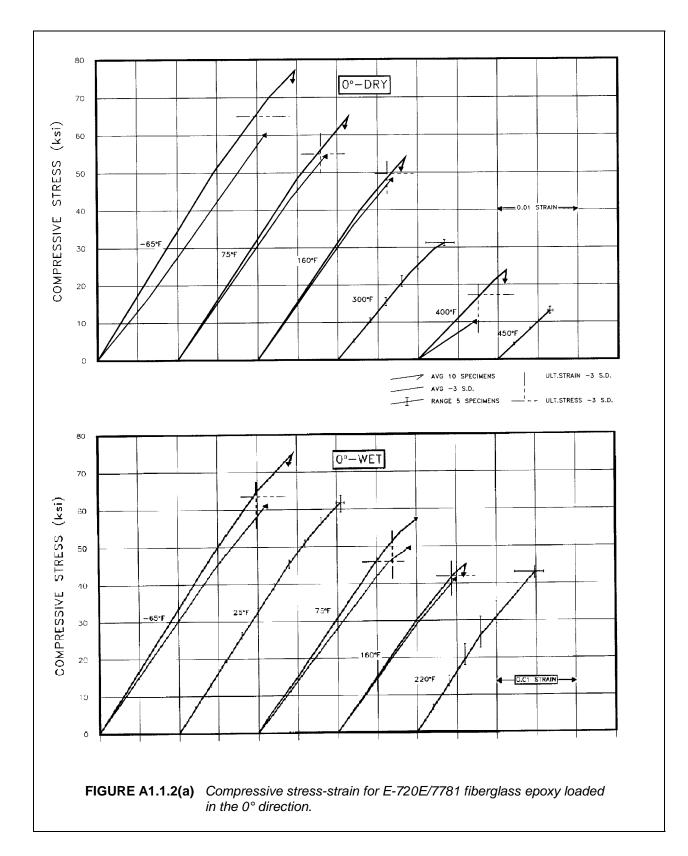
Previous data for fiberglass-polyester laminates were listed in MIL-HDBK-17A. [None of these materials are known to be available.]

Volume 2, Appendix A1

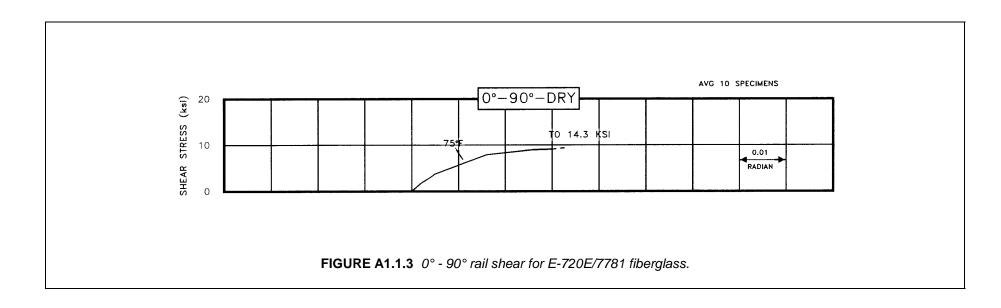
A1.4.5 Boron-epoxy laminates

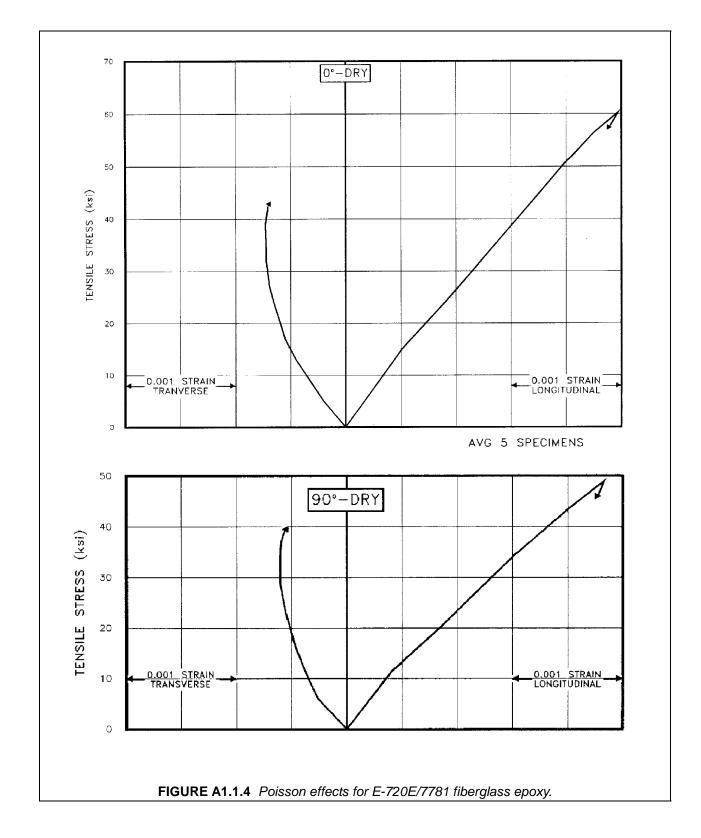

Data on two boron-epoxy systems have been abstracted from the literature (Reference A1.4.5) and are presented in Tables A1.110 and A1.111 and in Figures A1.110.1(a) through A1.111.3. [One of these materials is available.]

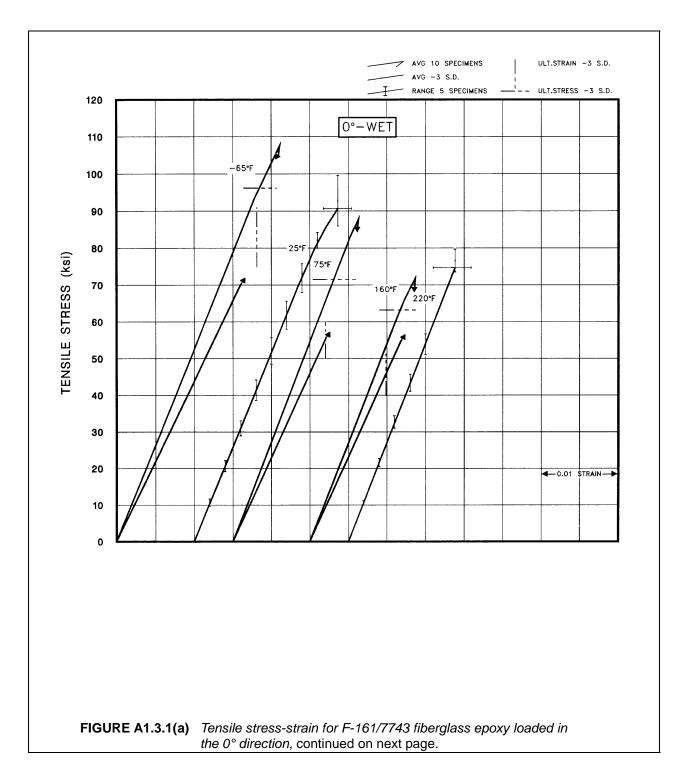

The laminate thickness is controlled by the number of plies in the construction and the desired resin content. In general, the thickness of woven fabric laminates is maintained at eight plies, except for low resin content laminates which may require as many as ten plies. Nonwoven laminate monolayers are constructed with six plies to reduce the shear lag apparent in testing, and eight plies for the crossplied and quasi-isotropic panels.

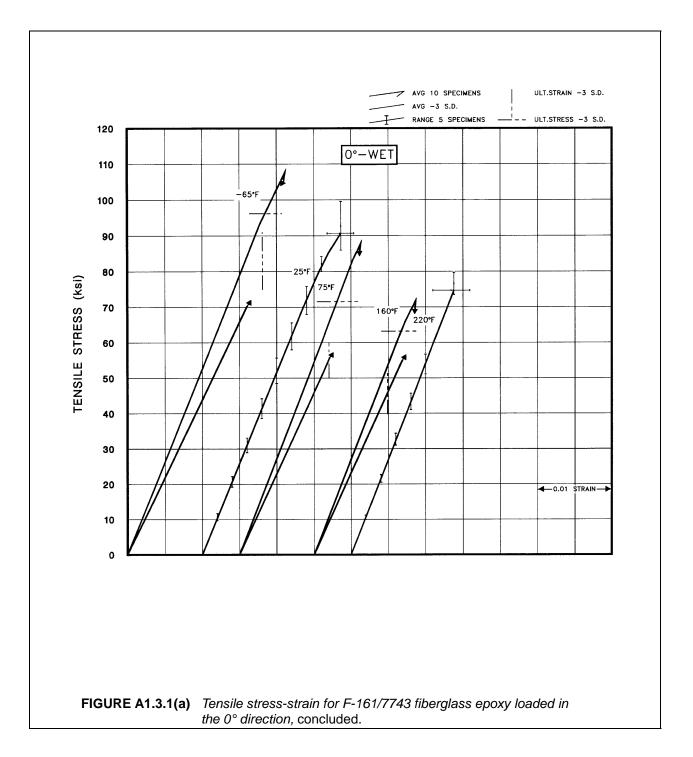

Volume 2, Appendix A1

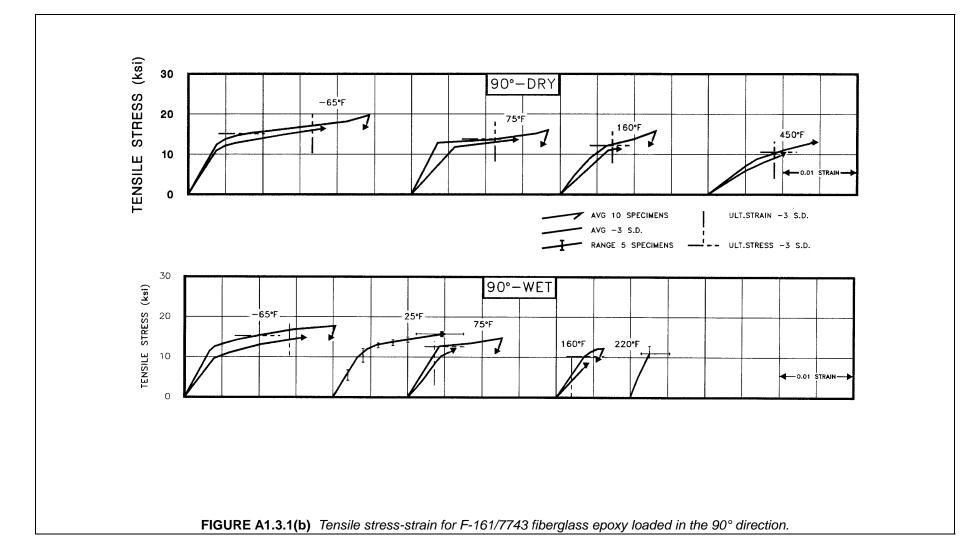
18	BLE A1.1 ୪					,					0		1			
–		Lay-up: Vacuum:				Pressure: Bleedou						Postcure:		Plies:		
Fabrication		Parallel None Weight Percent Resin:							Vertical 2 hr/350°F			4 hrs/4		8		
Dhusiaal Dran artisa		Weight P			Avg.				Avg. Percent Voids:			Avg. Thickness:				
Physical Properties		T	34.9			1.78			2.0					082 inches		
Test Methods					pression:							Bearing:		Interlaminar Shear:		
		ASTIVID				L-HDBK-17 Rail 75°F			ASTM D 790			ASTM D 953 160°F		Short Beam		
Temperature		D		-65°F Wet		Drv 75		Wet		Drv		Wet		400°F Drv		
Condition		Dry Wet		SD	/			Avg SD		Avg SD		SD		SD		
Tension		Avg	<u> 30</u>	Avg	30	Avg	30	Avg	30	Avg	30	Avg	3D	Avg	3D	
ultimate stress, ksi	0°	69.2	1.6	69.1	1.7	60.4	4 1.7	55.7	1.5	52.5	1.0	42.9	0.8	44.8	2.0	
ultimate stress, ksi	90°		2.0		2.0			45.9	1.5		1.0	42.9 36.9	0.8 1.1	44.0 34.9		
ultimate strain, %	90 0°	2.93	2.0 0.08		2.0 0.11	2.4		45.9 2.12	0.08		0.08	1.61	0.06	1.80		
	90°		0.00	2.70	0.19			2.12	0.00		0.08	1.70	0.00	1.00		
proportional limit, ksi	0°	-	0.22	2.04	0.15	2.0	0.00	2.04	0.00	1.50	0.00	1.70	0.15	1.72	0.22	
	90°															
initial modulus, 10 ⁶ psi	0°			3.38		3.1	2	3.12		2.95		2.76		2.60		
initial filoadiae, i o poi	90°			3.02		2.8		2.78		2.50		2.65		2.30		
secondary modulus, 10 ⁶ psi	0°	2.30		2.85		2.4		2.50		2.46		2.37				
, , , , , , , , , , , , , , , , , , , ,	90°			1.74		2.0		2.19		2.01		1.97				
Compression																
ultimate stress, ksi	0°	77.1	4.0	75.0	3.7	64.	8 2.9	57.3	3.8	54.0	1.4	46.2	1.4	23.8	2.2	
	90°	57.2	2.7	53.9	2.7	50.3	2 2.9	45.2	2.4	40.8	2.9	36.2	3.1	14.7	2.2 1.6	
ultimate strain, %	0°	2.48	0.16		0.15			1.99	0.09		0.08	1.62	0.06	1.12		
	90°		0.16	1.81	0.19	1.7	0 0.14	1.58	0.14	1.46	0.17	1.37	0.15	0.91	0.08	
proportional limit, ksi	0°															
	90°															
initial modulus, 10 ⁶ psi	0°			3.45		3.2		3.10		3.15		3.03		2.45		
	90°	3.20		3.26		3.2	1	3.03		2.99		2.85		1.85		
Shear		17.5														
ultimate stress, ksi	0°-90°	17.5				14.:	3 0.6			11.2						
	±45°															
			-65°F Dry					75°F Dry				160°		У		
		Avg		Max	Mir	ו	Avg	Ma	ax	Min	A	٨vg	Max		Min	
Flexure										90.3				67.2		
ultimate stress, ksi	0°		15.6 119.4			111.5 91						69.4		71.1		
proportional limit, ksi	0°		88.1	100.7		77.5 32.5 2.74 3.21					.8	56.2		52.8	49.4	
initial modulus, 10 ⁶ psi	0°		2.87	2.91		2.74	3.2	.1	3.36	3.0	13	2.81	2	2.87	2.76	
Bearing	00			70 4		70 7	~~	0	64.4	58.2		F0.0		20	47 4	
ultimate stress, ksi	0° 0°		74.1 32.1	78.4		70.7	60 23		64.4 34.2	58 20		50.0 18.1		53.0 21.5	47.9 15.9	
stress at 4% elong., ksi Interlaminar Shear	01		JZ. I	34.8	2	29.1	23	.9	J4.Z	20	. 1	10.1		21.0	15.5	
ultimate stress, ksi	0°		7.09	7.36		6.80	5.9	0	6.07	5.7	22	6.05	,	5.16	5.91	
טונוווומול גוולגג, גאו	0		1.09	1.30		0.00	5.8		0.07	5.7	2	0.05	,	5.10	5.9	

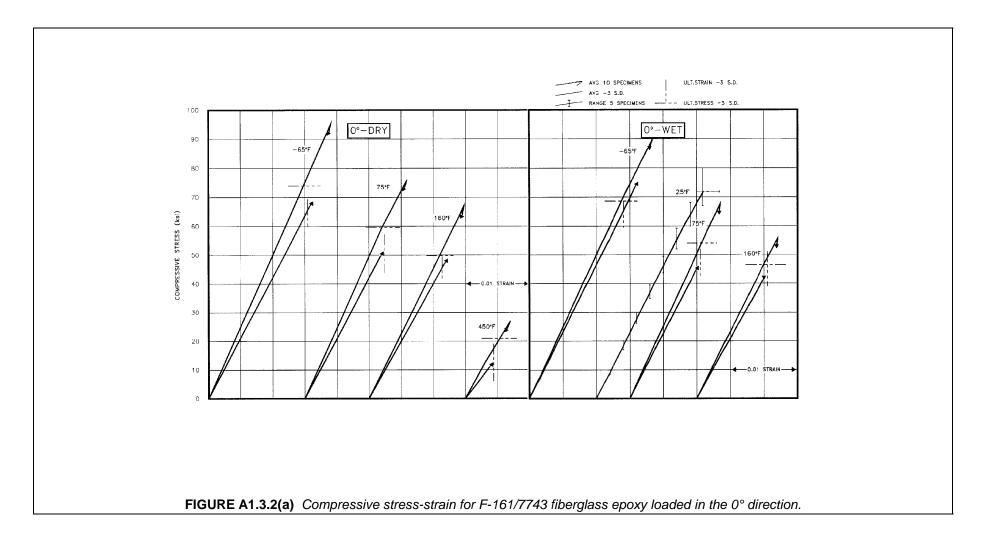

TABLE A1.1 Summary of Mechanical Properties of U.S. Polymeric E-720E/7781 (ECDE-1/0-550) Fiberglass Epoxy

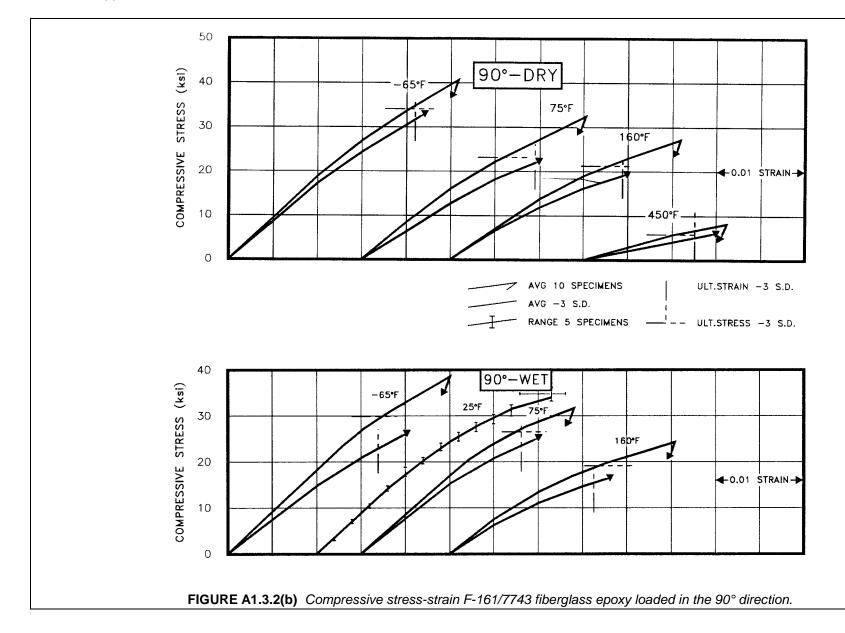


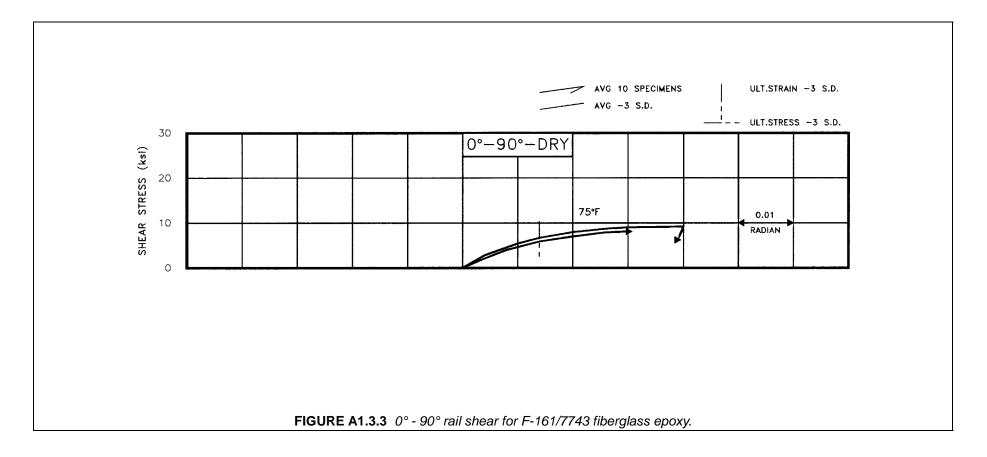

Volume 2, Appendix A1

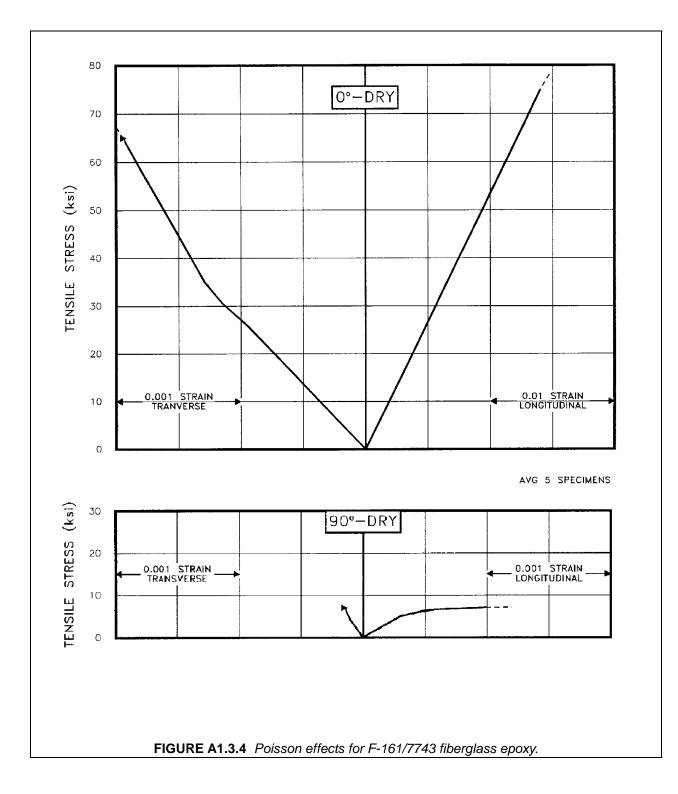

This page intentionally left blank

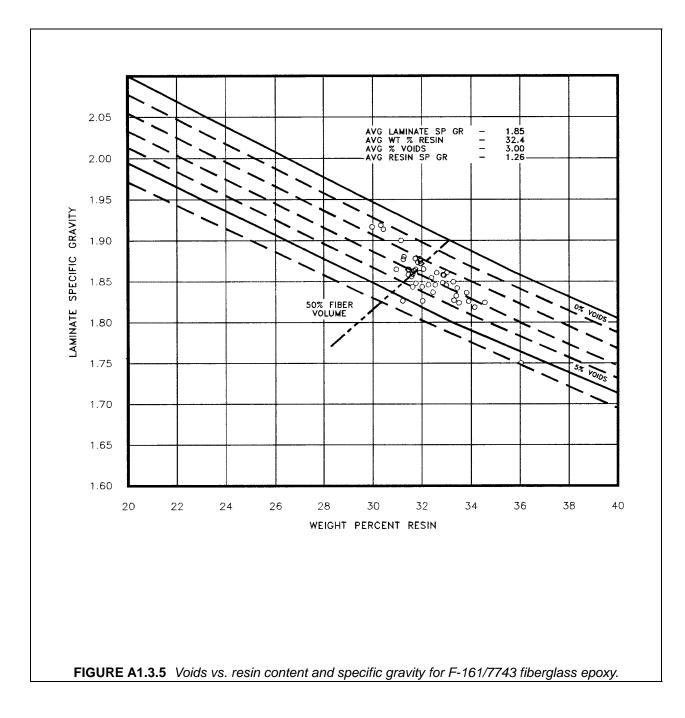

Volume 2, Appendix A1

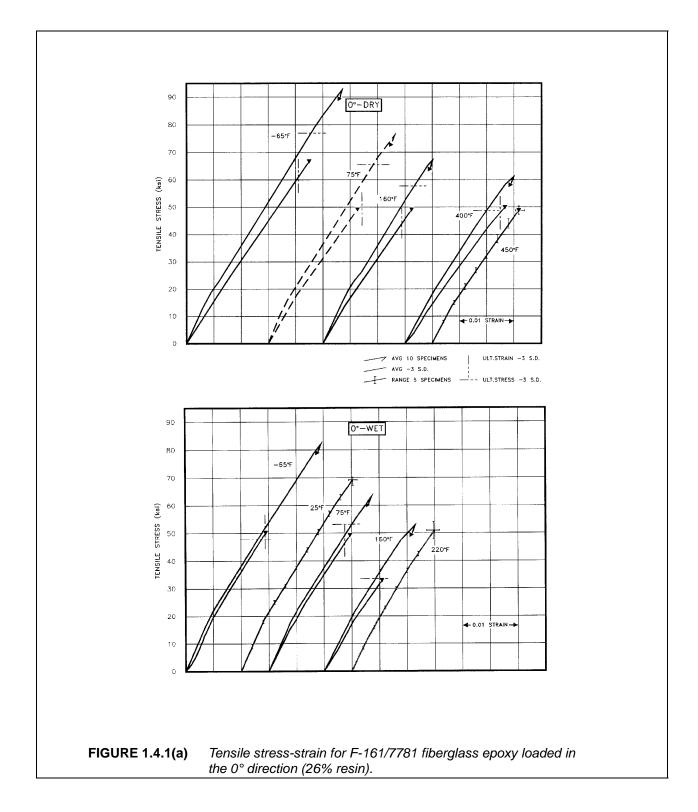

	IAD		-						, ,	erglass Ep		D	1.	.	
		Lay-up:		Vacuum:		Pressure		Bleedout		Cure:	~ -	Postcure:		Plies:	
Fabrication		Balanced 14 p						Pinched Edge 2 hr/350°							
		Weight P			Avg. Specific Gravity:			Avg. Percent Voids:				Avg.	Thicknes		
Physical Properties			$v_{f} = 0.4$	96		1.85			3.0			0.086 inches			
		Tension:				oression: Shear:			Flexure: Bear			B • F •		terlaminar Shear:	
Test Methods		ASTM-De			IL-HDBK	HDBK-17 Rail			ASTM-D790		-		Sho	Short Beam	
Temperature			-65				75°F				160			400	
Condition		Dry Wet			Dry		Wet		Dry		W		Dry		
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°	111.3	1.12	107.3	3.60	95.5		87.3	5.2	80.9	4.05		2.73	74.5	
	90°	9.84	0.78	9.42	0.59	8.15		7.27	0.28	6.78	0.18		0.21	6.59	
ultimate strain, %	0°	2.10	0.31	2.11	0.10	1.88		1.72	0.17	1.56	0.15		0.12	1.64	
	90°	2.43	0.25	2.03	0.21	1.82		1.20		1.26	0.19		0.13	1.44	-
proportional limit, ksi	0°	86.2		87.8		74.7		81.5		64.0		65.4		61.0	
6	90°	5.6		5.0		5.2		4.8		5.0		5.0		3.0	
initial modulus, 10 ⁶ psi	0°	5.42		5.35		5.30		5.55		5.36		5.47		4.52	
0	90°	1.61		1.73		1.73		1.41		1.11		1.30		0.74	
secondary modulus, 10 ⁶ psi	0°					5.15									
	90°					0.09	9								
Compression															
ultimate stress, ksi	0°		7.42	89.7	7.0	75.9		67.4	4.43	66.3	5.53		2.80	26.7	
	90°	40.3	1.93	37.6	2.93	32.1		30.4	1.27	27.4	1.93		1.30	8.3	
ultimate strain, %	0°	1.90	0.11	1.83	0.14	1.58		1.36		1.47	0.08		0.06	0.68	
	90°	2.57	0.16	2.46	0.25	2.51		2.38	1.90	2.58	0.22		0.30	1.62	
proportional limit, ksi	0°	83.0		70.0		52.2		49.8		55.6		40.8		20.0	
6	90°	18.1		15.0		11.9		10.6		9.2		8.2			
initial modulus, 10 ⁶ psi	0°	5.02		4.98		4.96		5.09		4.59		4.66		4.12	
	90°	1.91		1.88		1.65	5	1.77		1.46		1.37			
Shear															
ultimate stress, ksi	0°-90°	12.5				9.2	2 0.2			7.7					
	± 45°														
		-65°F Dry							Dry				160° Dry		
		Avg Max		Min		Avg Max		ax Min		Avg		Max		Min	
Flexure															
ultimate stress, ksi	0°	2	203.0	.0 210.0		196.0		.0	163.0	155.0		138.0	14	2.0	135.0
proportional limit, ksi	0°	1	53.0	3.0 158.0		147.0		.0	139.0	116.0		116.0	11	8.0	112.
initial modulus, 10 ⁶ psi	0°			5.63		5.18		5.27 5.10		0			5.46		
															5.3
Bearing									63.2						
	0°		79.4	90.2		64.8	58	.8	63.2	52.	7	53.7	5	7.5	50.
Bearing ultimate stress, ksi	0° 0°		79.4 37.9	90.2 45.6		64.8 31.5	58 23		63.2 27.1	52. 19.		53.7 21.9		57.5 3.6	50. 20.
Bearing															

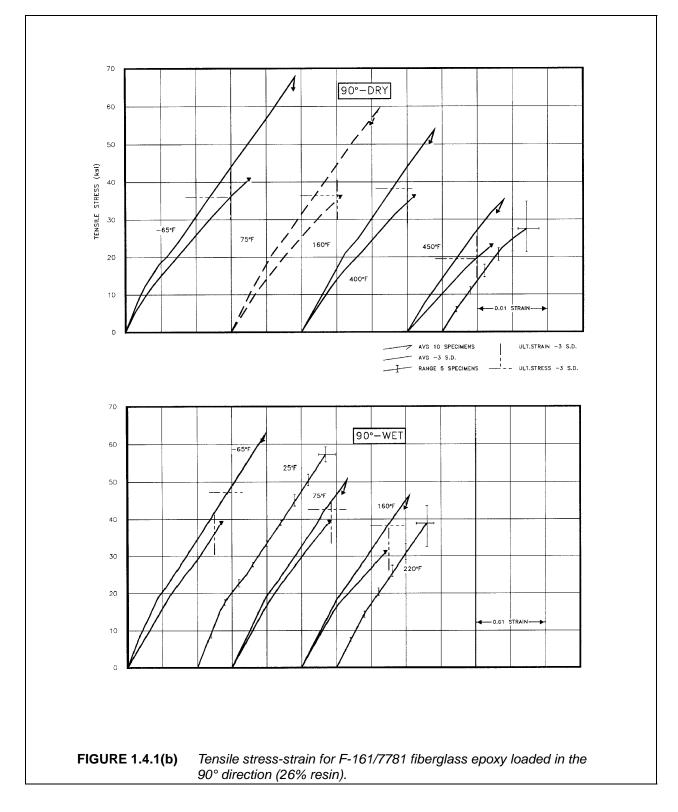

 TABLE A1.3
 Summary of Mechanical Properties of Hexcel F-161/7743(550)
 Fiberglass Epoxy.

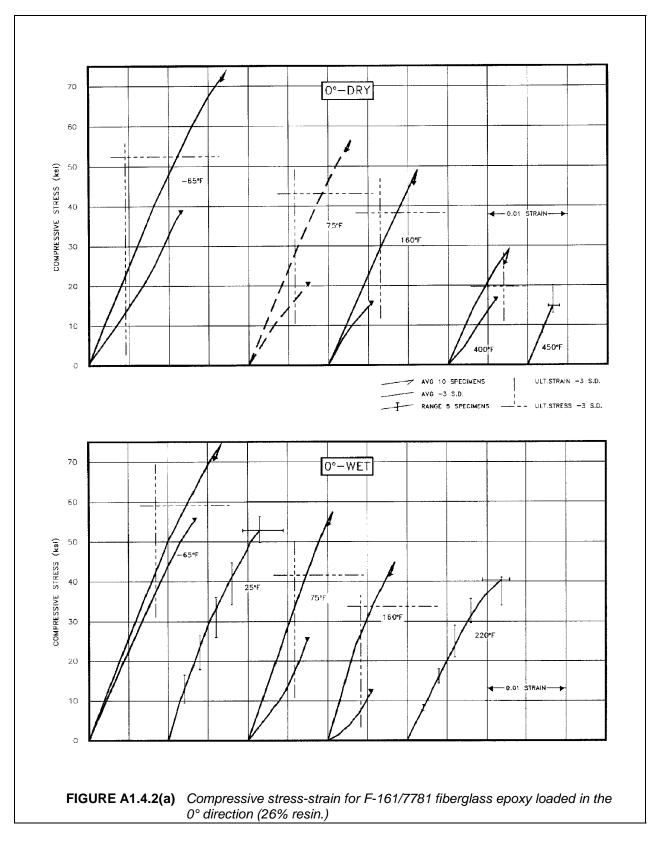


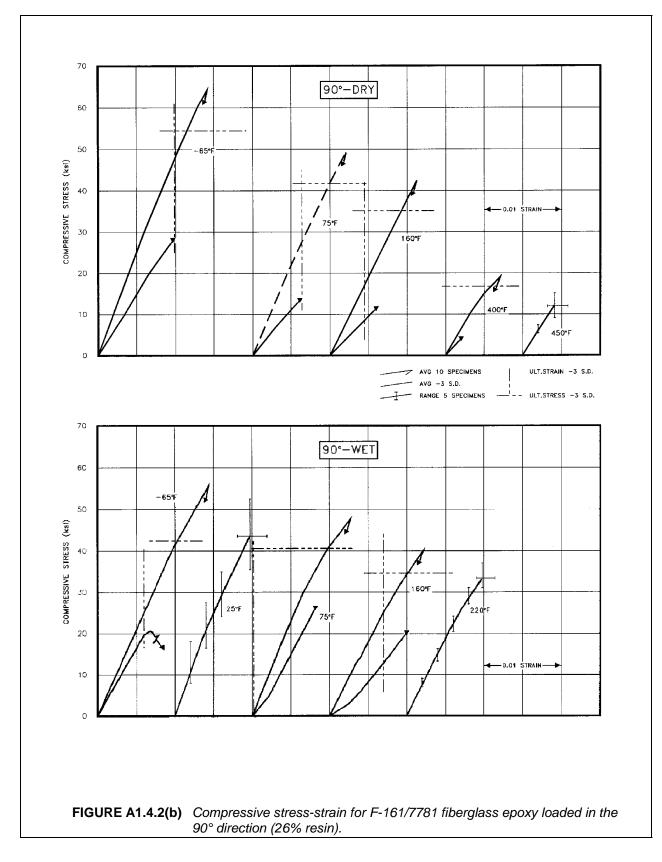


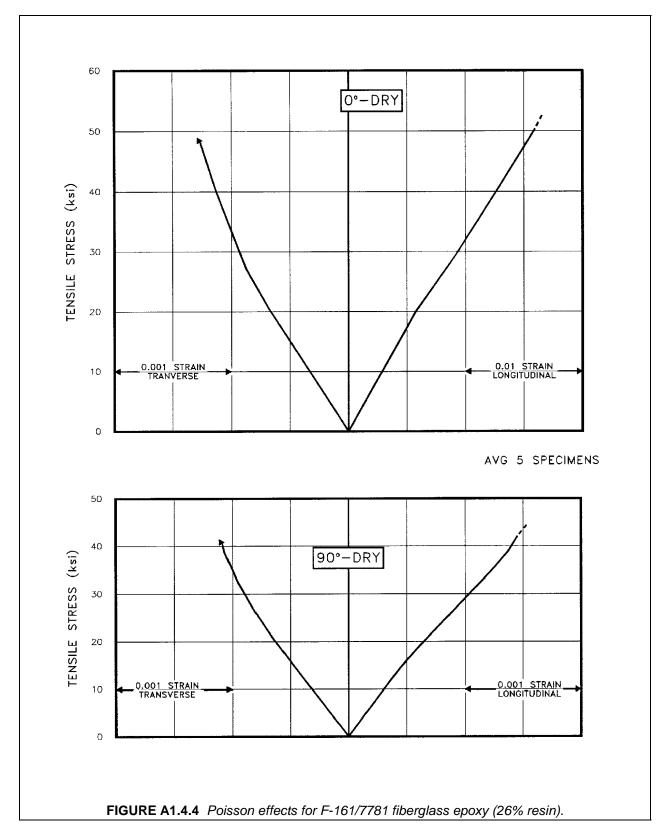


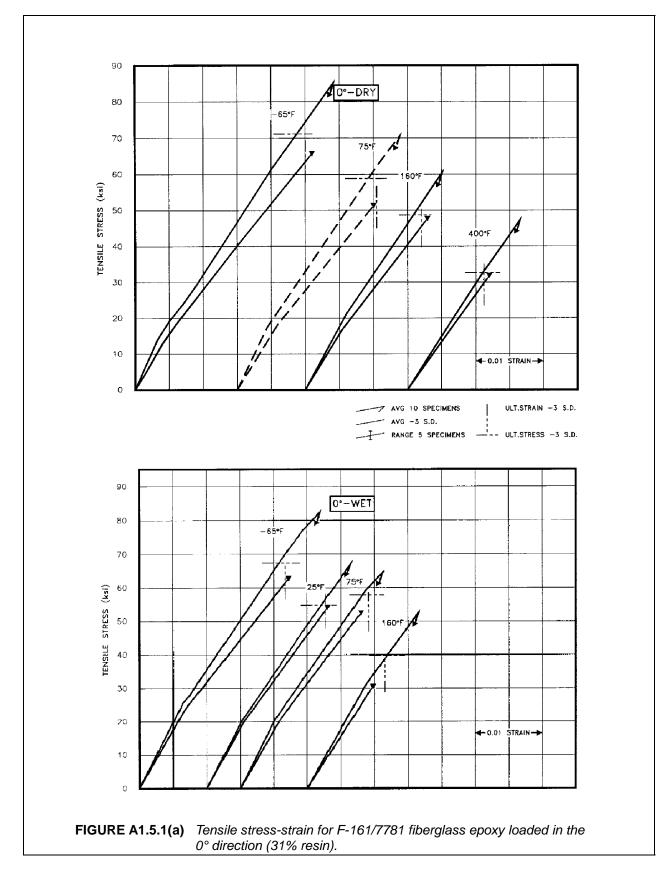

Volume 2, Appendix A1

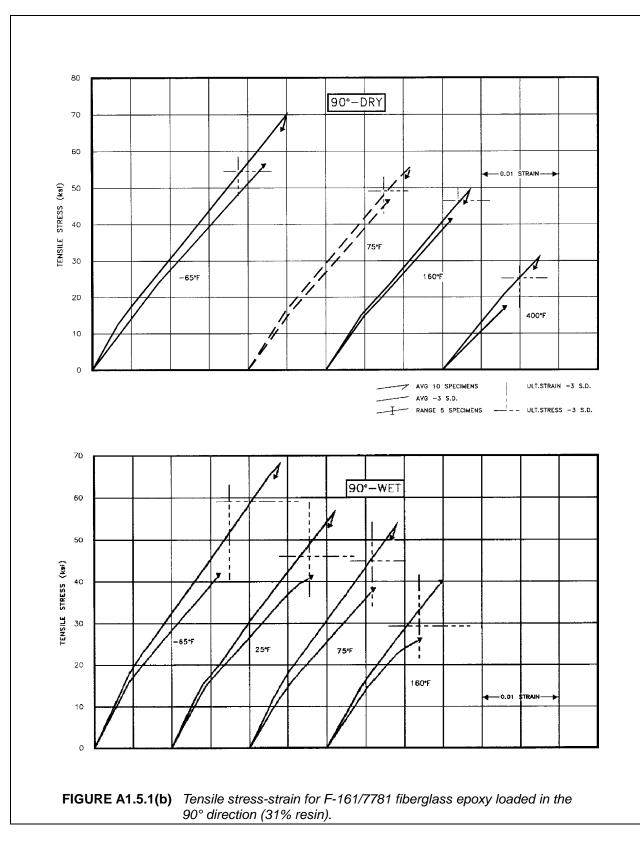

This page intentionally left blank

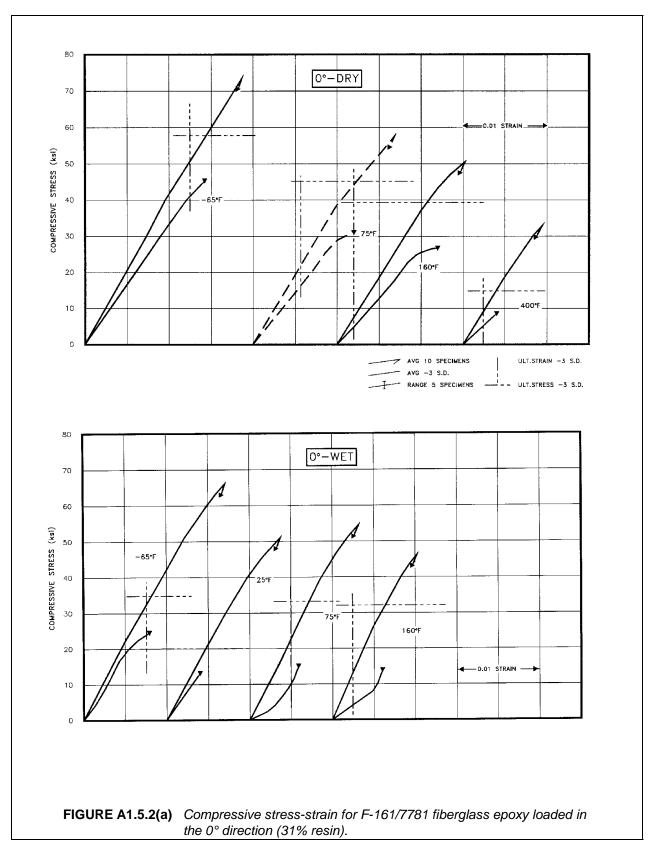

Volume 2, Appendix A1


				Vacuum:		Pressure:		ECDE-1/0-550) Fil		Cure:		Postcure):	Plies:	
Fabrication		Balanced		None	1	55-65 psi		Vertical and Stepped Edge		1 hr/350°F		2 hr/300°F 2.5 hr/400°F		8 and 10	
Physical Properties		Weight Pe	ercent Re v _f = 0.5		Avg.	Specific 2.01	Gravity:			cent Voids:		Avg	. Thicknes 0.008 ir		
Filysical Flopenies		Z0.0 Tension:	$v_{f} = 0.5$		ression:	Shear:			Flexure:	0.5		ng:		erlaminar	Shoor
Test Methods			IDBK-17	М	L-HDBK-		Picture Frame			M-D790	Beari	•	III	ASTM-D	2345
Temperature			-65				75					0°F			0°F
Condition			Dry		et		Dry		/et	Dry			/et	D	,
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°	-	5.16	80.5	10.87			61.4			3.03			59.8	3.
	90°		10.65	62.3	5.01			50.3			5.19			35.2	5.
ultimate strain, %	0°		2.11	2.37	0.31			1.78		-	0.14				0.0
www.entievent.lineit.linei	90°		3.14	1.97	0.24			1.65	0.08	1.88	0.12	1.55	0.10	1.38	0.
proportional limit, ksi	0° 90°														
initial modulus, 10 ⁶ psi	90° 0°			4.49				4.10		3.92		3.72		3.27	
initial modulus, 10 psi	90°			4.49				3.76		3.92		3.38		2.86	
secondary modulus, 10 ⁶ psi	0°			3.14				3.06		3.24		3.07		2.00	
	90°			2.74				2.62		2.72		2.55		2.46	
Compression															
ultimate stress, ksi	0°	73.2	6.83	74.0	5.02			57.3	4.0	48.9	3.50	44.7	3.25	28.8	3.0
	90°		3.19	55.8	4.40			37.5			2.64				0.6
ultimate strain, %	0°		0.42	1.65	0.28			1.09			0.15	0.84			0.0
	90°	1.40	0.14	1.42	0.27			1.26	0.41	1.14	0.23	1.22	0.18	0.71	0.3
proportional limit, ksi	0°			46.0				42.0		41.0		24.0		15.0	
2	90°			41.0				24.0		36.0		21.0		11.0	
initial modulus, 10 ⁶ psi	0°			4.47				4.27		4.05		3.94		3.73	
	90°	4.02		4.19				4.12		3.68		3.40		3.07	
Shear															
ultimate stress, ksi	0°-90°	_	2.3					16.0	1.64	13.4	1.28				
	± 45°														
		A	-6	5°F Dry			A		Dry	N4's	_	A	160° D		
		Avg		Max	Mir	1	Avg	M	ax	Min		Avg	Max		Min
Flexure	00						94.1		96.86	00.0	4				
ultimate stress, ksi proportional limit, ksi	0° 0°						94.	0	96.86	89.6	4				
initial modulus, 10 ⁶ psi	0°														
Bearing	0				<u> </u>			-			+				
ultimate stress, ksi	0°														
stress at 4% elong., ksi	0°														
Interlaminar Shear	0				1										
ultimate stress, ksi	0°						5.5	56	5.65	5.5	0				


TABLE A1.4 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (26% Resin)






Volume 2, Appendix A1

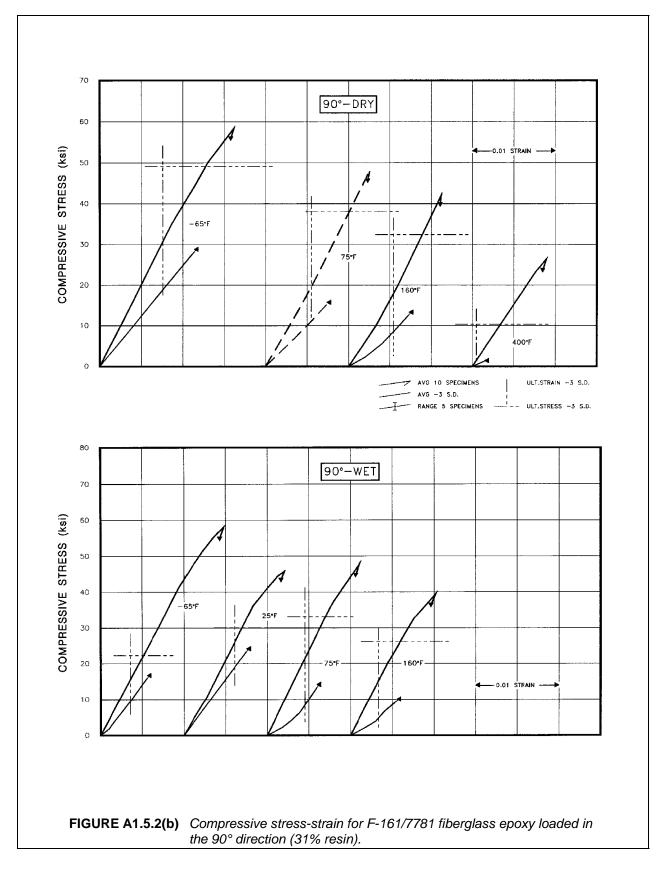
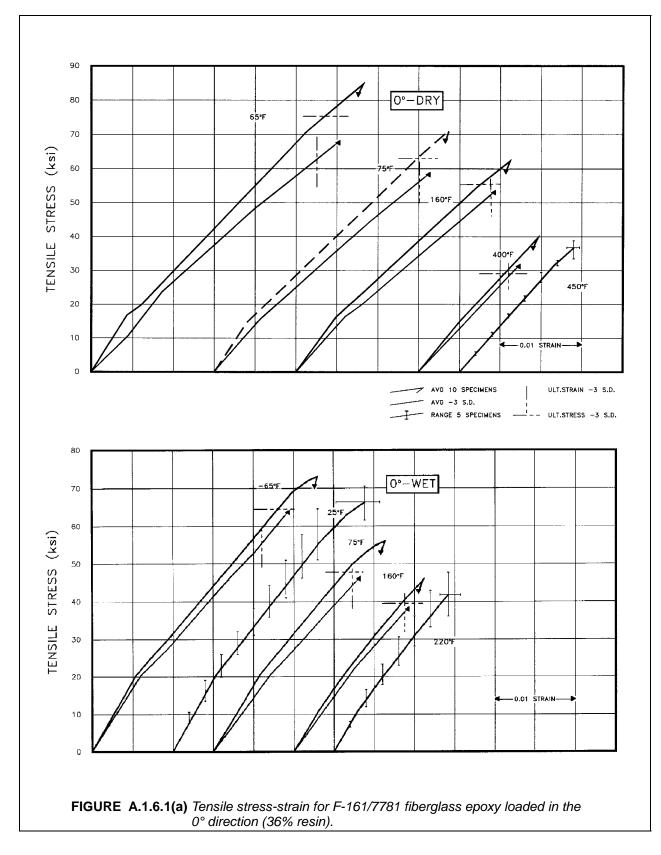
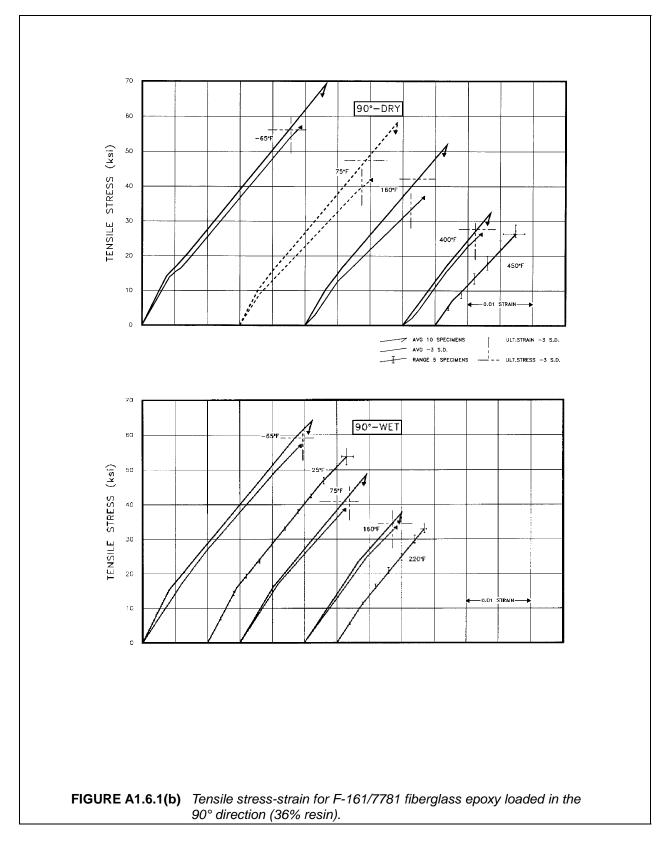
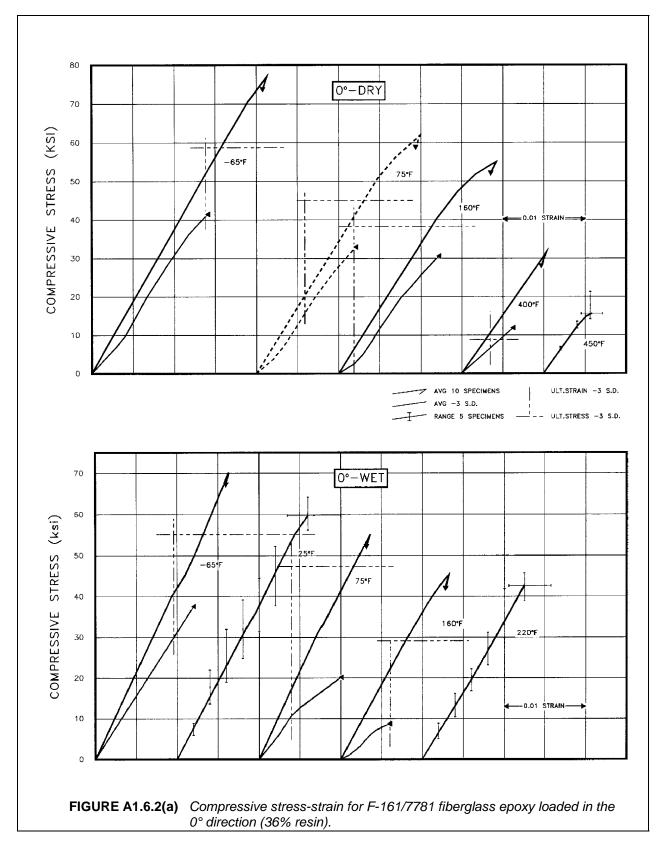
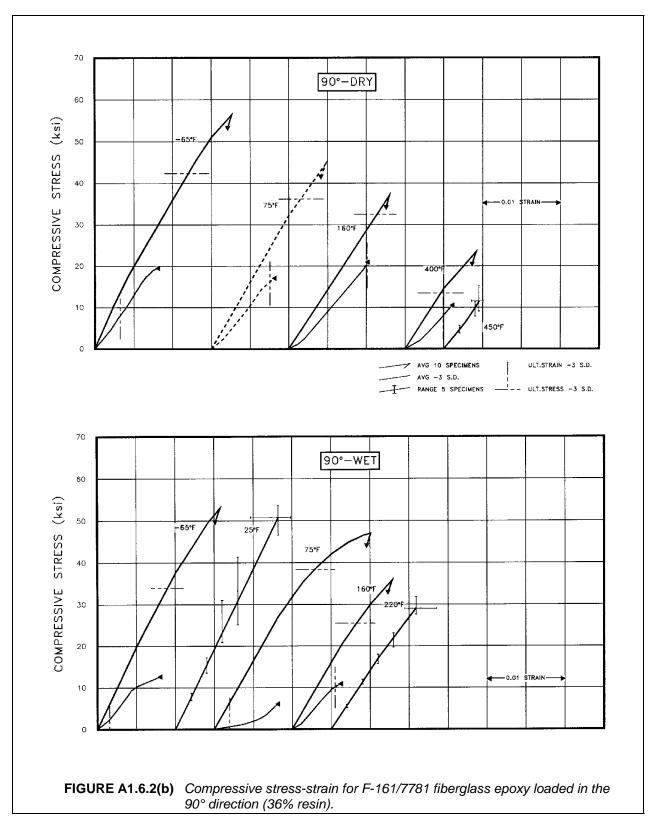

	Lay-up:		cal Properties of He Vacuum:		Pressure:		Bleedout	,	Cure:		Postcure		Plies:			
Fabrication		Balanc		None	9	55-65 psi St		Vertica Stepped	l and Edge	1 hr/350°F		2 hr/300°F 2.5 hr/400°F				
Physical Properties		Weight Pe	ercent Re 31.0			. Specific Gravity: 1.92			Ŭ	rcent Voids: 0.6		Ŭ	Thickness: 0.009 inch/ply			
Test Methods		Tension: MIL-H	IDBK-17		ression: L-HDBK-	Shear: 17 Picture F			Flexure: ASTN	Л-D790	Bearir	ng:	Int	erlaminar	Shear:	
Temperature			-65	5°F		75		°F			160)°F		400	Э°F	
Condition		Dr	У	Wet		Dry		Wet		Dry	W		/et	D	ry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0° 90°	85.2 70.0	4.68 5.24	82.3 67.9	4.97 2.98			64.0 53.5		60.1 49.3	3.75 0.95	51.4 39.8		47.3 31.0	4. 1.	
ultimate strain, %	0° 90°		0.14 0.21	2.53 2.41	0.18 0.22			2.10 1.90		2.02 1.86	0.10 0.06	1.66 1.47		1.66 1.25	0. 0.	
proportional limit, ksi	0° 90°		0.21								2.00		0.00	0	0.0	
initial modulus, 10 ⁶ psi	0° 90°	4.22		4.30 4.15				3.84 3.68		3.69 3.37	3.72 3.34	3.65 3.30		3.09 2.75		
secondary modulus, 10 ⁶ psi	0° 90°	3.13		3.01 2.96				3.03 2.62		2.97 2.55	0.04 0.25	2.88 2.46		2.94 2.47		
Compression		2.02		2.00				2.02		2.00	0.20	2.10		2.17		
ultimate stress, ksi	0° 90°		5.18 3.17	66.0 57.5	10.75 11.56			54.4 47.3		50.6 42.2		45.9 38.7		32.8 25.8	6. 8.:	
ultimate strain, %	0° 90°	1.86	0.21 0.29	1.72 1.44	0.32 0.36			1.33 1.10	0.28			1.04 0.99	0.23	0.95 0.87	0. 0.	
proportional limit, ksi	0° 90°	44.0		38.0 33.0				33.0 30.0		32.0		25.0 21.0	_	16.0 15.0		
initial modulus, 10 ⁶ psi	0° 90°	3.90		4.04 3.84				4.03 3.96		3.42 3.23		4.06 4.01		3.50 3.07		
Shear ultimate stress, ksi	0°-90° ±45°		2.23					15.9	0.72	13.7	0.82					
			-6	5°F Dry				75°F	5°F Dry			160° D			Dry	
		Avg		Max	Mi	n	Avg		ax	Min	A	٨vg	Max	Min		
Flexure		<u>J</u>							00.74	07.07		J				
ultimate stress, ksi proportional limit, ksi initial modulus, 10 ⁶ psi	0° 0°						90.2	3	93.74	87.29	9					
Bearing ultimate stress, ksi stress at 4% elong., ksi	0° 0°															
Interlaminar Shear ultimate stress, ksi	0°						5.5	6	5.65	5.50	b					

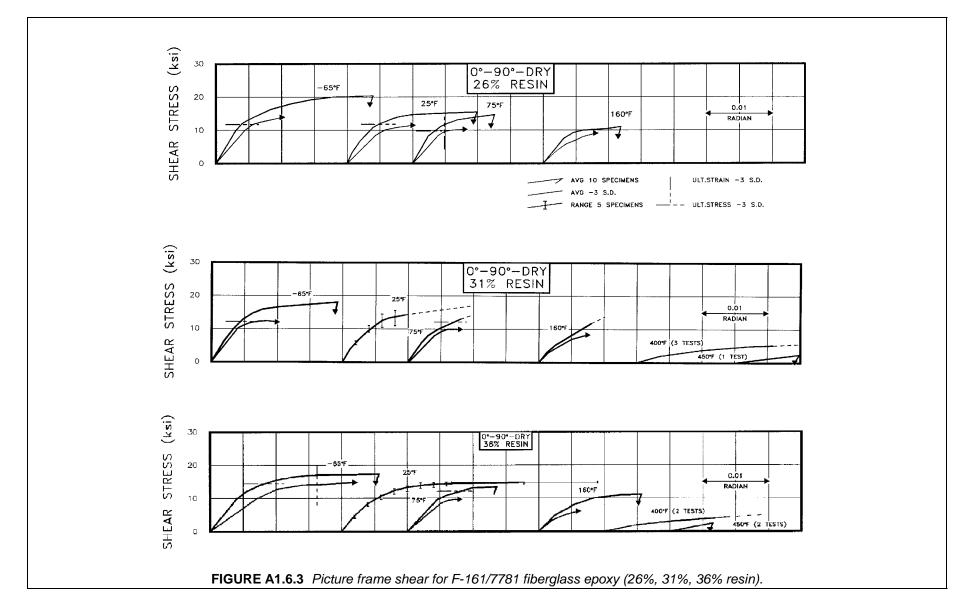
TABLE A1.5 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (31% Resin)

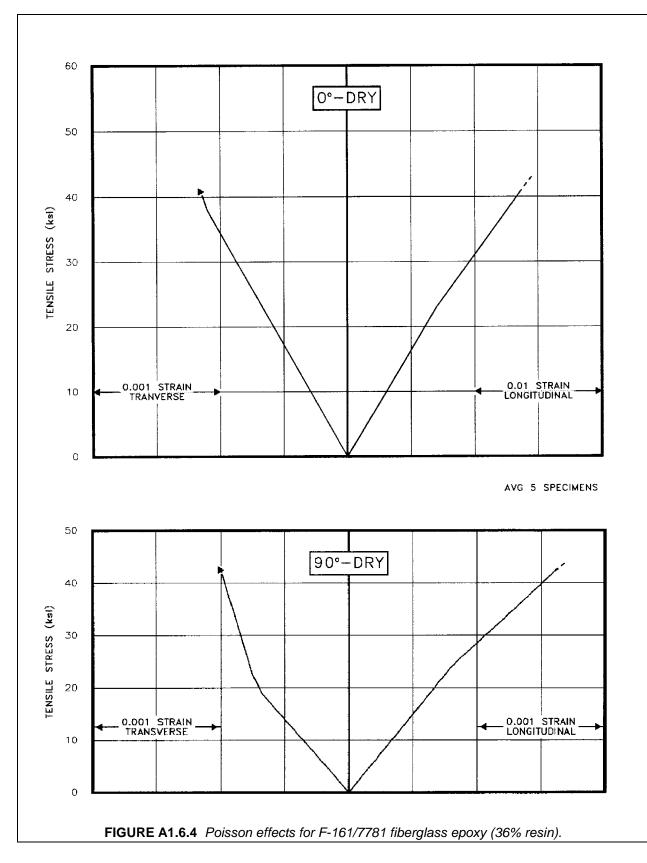


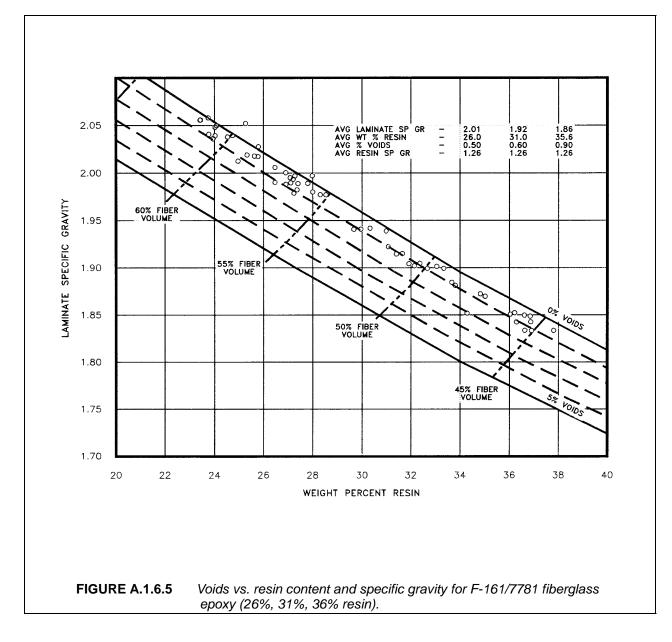


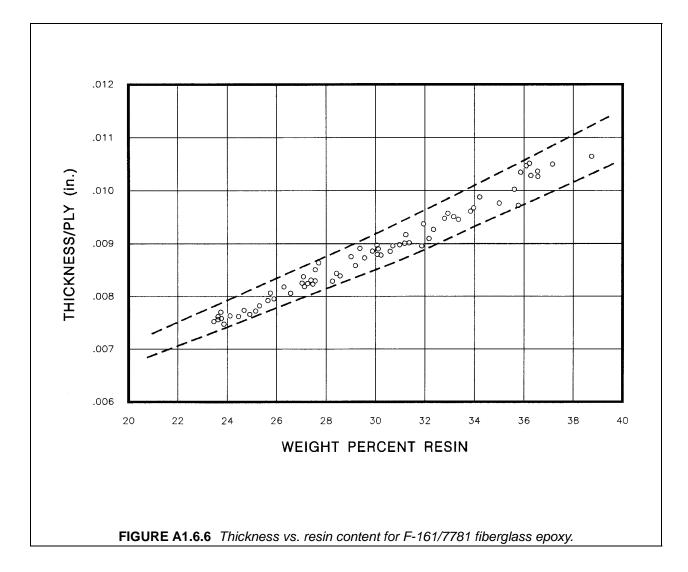

Volume 2, Appendix A1

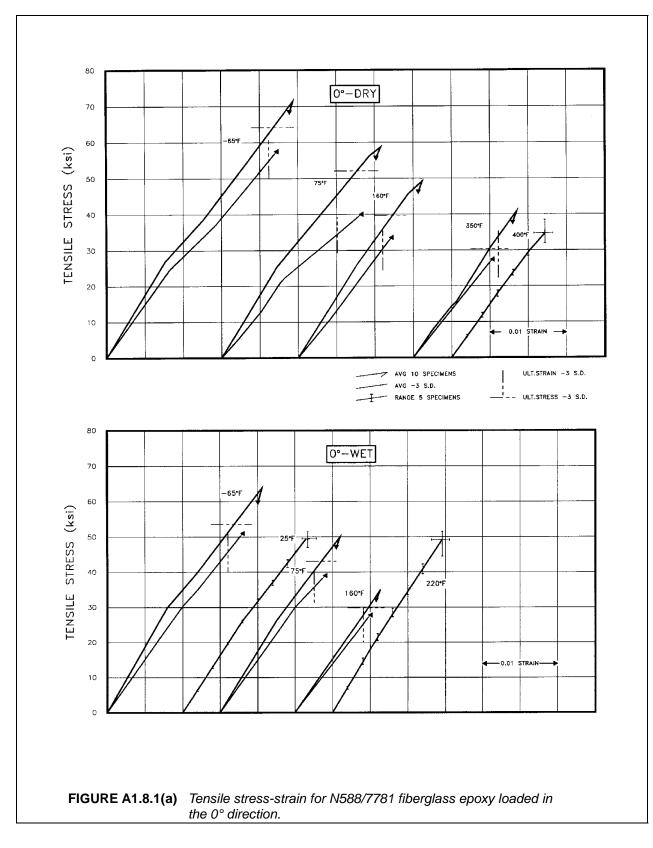

Fabrication		Lay-up: Balanced)	55-65 psi Avg. Specific Gravity: 1.86		Ű		1 hr/350°F 2 cent Voids: 0.9		Postcure: 2 hr/300°F 2.5 hr/400°F		Plies: 8	
Physical Properties			ercent Re 5.6			Avg							Avg. Thicknes 0.010 ir			
Test Methods		Tension: MIL-H	IDBK-17	C	ompress MIL-H	ion: DBK-17	Shear: Pict	ure Frame		exure: ASTM-D79		earing:	Int	erlaminar	Shear:	
Temperature			-65	5°F			75	75°F			160	0°F		400	0°F	
Condition		Dr	у	Wet		D	ry	Wet		Dry	1	Wet		D	ry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0° 90°		2.85 4.19	73.0 63.9	2.89 1.61			55.5 48.9	2.57 2.67		2.24 3.25	45.0 37.6		39.2 32.0	3.4 1.4	
ultimate strain, %	0° 90°		0.18 0.18		0.02 0.05			2.12 1.95	0.14 0.09		0.08 0.19	1.59	0.07	1.45 1.35	0.1 0.0	
proportional limit, ksi	0° 90°		0.10		0.00				0.00		0.10		0.00		0.0	
initial modulus, 10 ⁶ psi	0° 90°	3.84		3.81 3.81				3.58 3.30		3.25 3.13		3.35 3.18		2.96 2.51		
secondary modulus, 10 ⁶ psi	0° 90°	2.81		2.75 2.67				3.04 2.72		2.49		3.04		2.74		
Compression										2.00						
ultimate stress, ksi	0° 90°		5.88 4.56	68.8 52.9	4.36 6.32			55.1 47.0	2.63 6.78		5.49 1.47	46.0 35.3			8.0 3.2	
ultimate strain, %	0° 90°	2.13	0.28 0.48	1.64 1.58	0.23 0.57			1.36 2.00	0.32 0.89	1.90	0.56 0.09	1.32	2.41	1.02	0.2 0.1	
proportional limit, ksi	0° 90°	28.0		24.0 17.0				24.0 16.0		32.0 28.0		22.0 17.0		17.0 12.0	-	
initial modulus, 10 ⁶ psi	0° 90°	4.10		4.50 4.10				3.87 3.64		3.45 2.87		3.36 2.88		2.87 2.63		
Shear ultimate stress, ksi	0°-90° ±45°		1.04					15.0	0.70	12.7	0.62					
	± 40		-6	5°F Dry				75°F	Dry				160° D			
		Avg	-0	Max	Mi	n	Avg	75°F Dry Max		Min		٩vg	Max		Min	
Flexure												·· 9	····an			
ultimate stress, ksi proportional limit, ksi initial modulus, 10 ⁶ psi	0° 0° 0°						86.3	1	92.16	79.0	07					
Bearing ultimate stress, ksi stress at 4% elong., ksi	0° 0°															
Interlaminar Shear ultimate stress, ksi	0°						5.5	6	5.65	5.5	50					

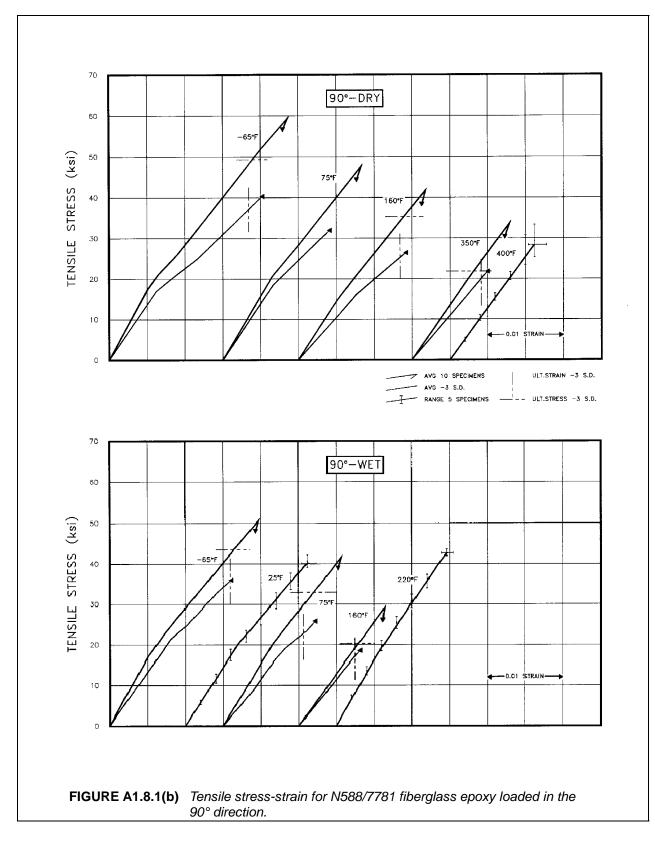

TABLE A1.6 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (36% Resin)








Volume 2, Appendix A1


This page intentionally left blank

Volume 2, Appendix A1

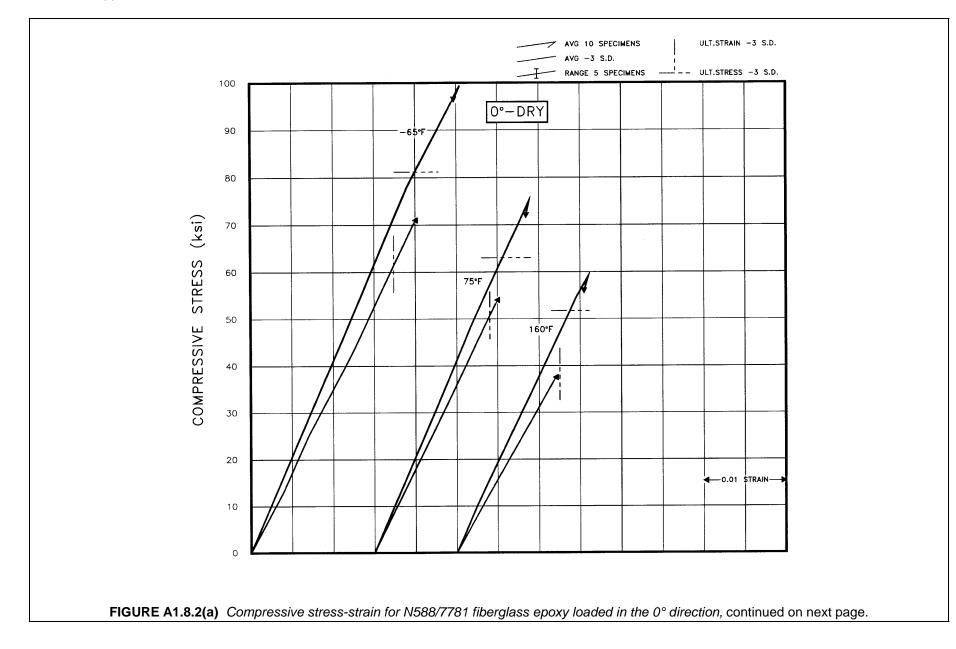
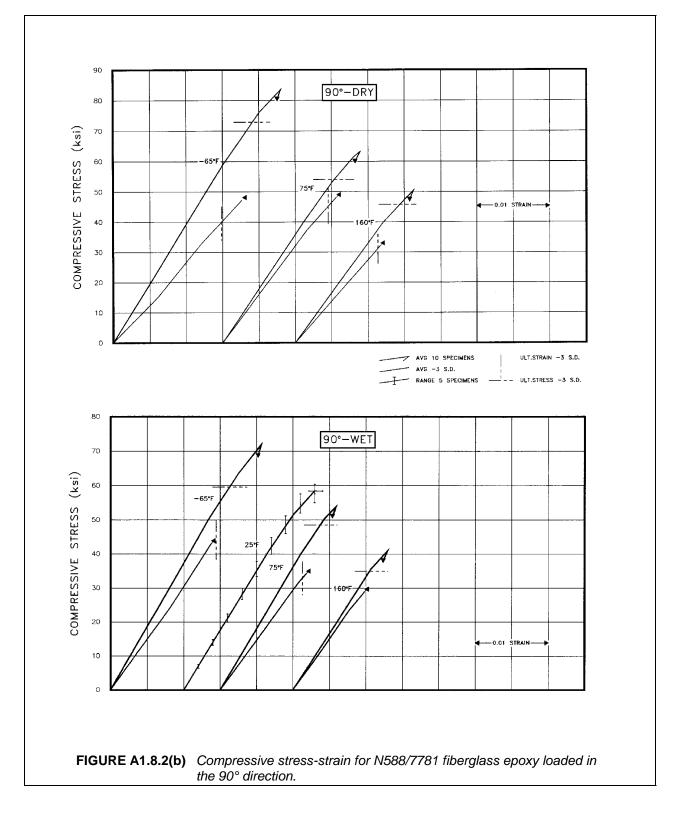
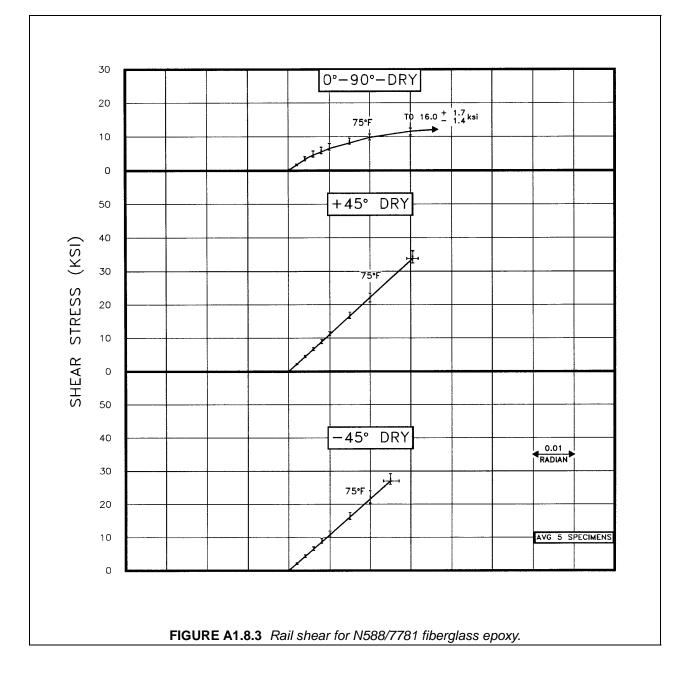
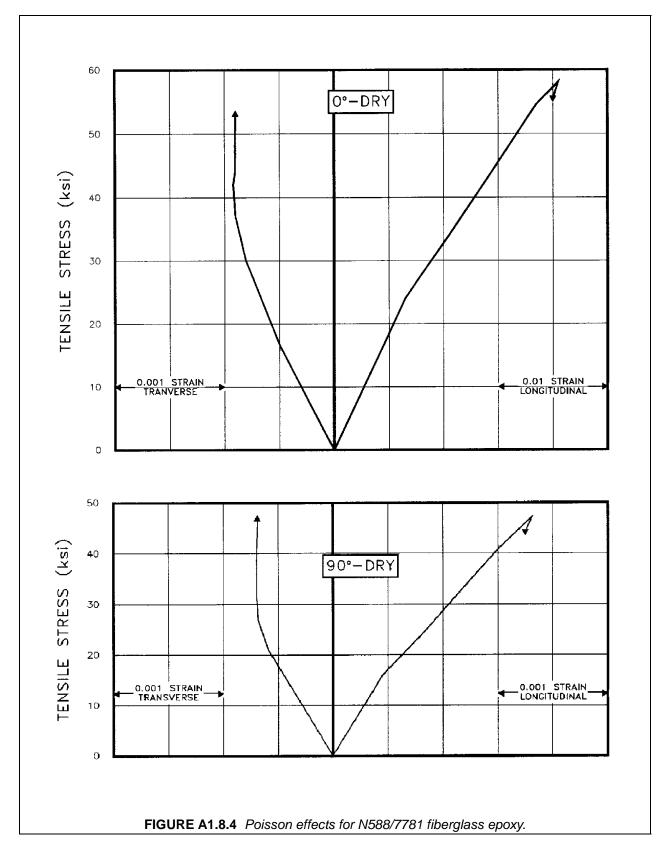
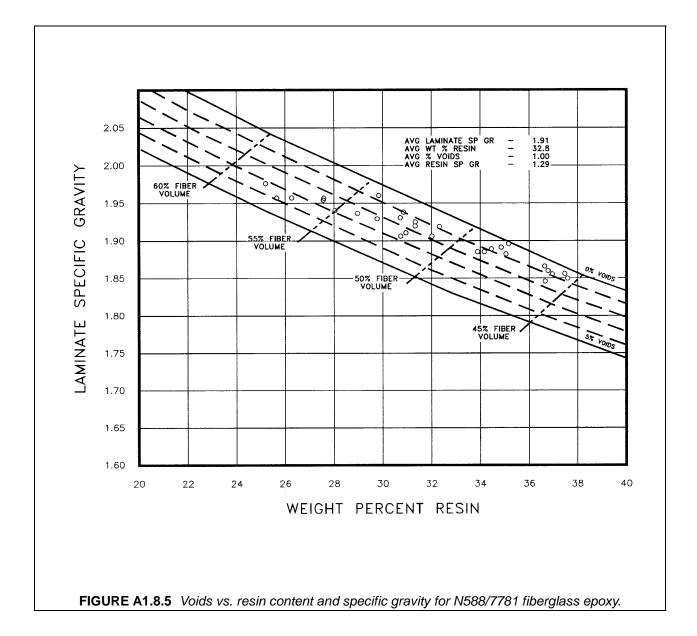

	TABLE A1	1	-							,	јазз сро	Postcur		Dian	
Febrication				Vacuum:				Bleedout:		Cure:				Plies:	
Fabrication		Balanced		None		45-55 psi		Vertio		al Stepwis 1hr/				8	
		Weight Pe			Avg.		Gravity:		Avg. Per	cent Void	s:	Avg.	Thicknes		
Physical Properties			$v_{f} = 0.5$	51		1.91				1.0			0.075 ir		
		Tension:			npressio		Shear:		lexure:		Bearing:			laminar S	
Test Methods		ASTM-D6			MIL-HD	BK-17	Rai		ASTM-	D790		M-D953	S	hort Bear	
Temperature				5°F		75		-			-	0°F		400	0°F
Condition		Dr	У	We			Dry	V	Vet	D)ry	W	et	Dry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°		2.4	63.8	3.3	58.4		50.0		48.8		35.0	2.0	40.4	
	90°		3.3		2.4	47.2		41.1		41.4			2.8	33.3	3.8
ultimate strain, %	0°	2.41	0.09		0.15			1.61		1.59			0.07	1.26	0.0
	90°		0.17		0.12	1.81		1.55					0.14	1.25	0.12
proportional limit, ksi	0°		1.7		2.5	23.3		25.4		21.0				24.3	
6	90°	19.3	0.8		1.6			18.1					1.3	14.3	
initial modulus, 10 ⁶ psi	0°			3.85		3.71		3.57		3.58		3.10		3.13	
	90°	-		3.37		3.56	6	3.23	3	2.92		2.63		2.80	0.23
secondary modulus, 10 ⁶ psi	0°														
	90°														
Compression				07.4		74.0						40.5			
ultimate stress, ksi	0°		5.9		5.8	74.0		63.5		59.0			1.9		
ultimate strain 0/	90°		3.5		4.1	62.9		53.7		50.9			1.8		
ultimate strain, %	0° 90°		0.26 0.27		0.25 0.20	1.89 1.87		1.65 1.58		1.60 1.63			0.06 0.08		
proportional limit, ksi	90° 0°		2.6		0.20	44.5	-	39.8					2.7		
proportional limit, KSI	90°		2.0		2.3	35.3		34.4					2.7		
initial modulus, 10 ⁶ psi	90 0°	40.8	5.0	42.4	2.1	4.18		4.1		3.88		3.70	1.0		
initial modulus, To psi	90°			3.83		3.68		3.72		3.41		3.41			
Shear	50	4.00		0.00		0.00	,	0.12	-	0.41		5.41			
ultimate stress, ksi	0°-90°	22.6				16.0	1.05			13.8					
	±45°					10.0	1.00			10.0	,				
	145		5°F Dry				75°	75°F Dry			160° Dry				
		Avg		Max	Mir	n	Avg		Max			Avg	Max	y Min	
Flexure		,,,,,,		mun		·	/ v g	10		Min			widt		
ultimate stress, ksi	0°	1	05.0	115.6		95.6	90.	4	102.6	R	84.5	79.3	1	87.8	74.0
proportional limit, ksi	0°		69.6	75.9		59.0	68.		72.4		64.6	64.8		72.2	57.2
initial modulus, 10 ⁶ psi	0°		3.48	3.62		3.42	3.3		3.60		3.20	3.19		3.27	3.09
Bearing	0			0.02			0.0	-				55			0.00
ultimate stress, ksi	0°		84.6	92.5		77.9	68.	4	71.3	6	6.0	48.4	1	53.6	44.2
stress at 4% elong., ksi	0°		29.3	30.9		26.5	26.		27.4		25.3	21.8		22.8	20.0
Interlaminar Shear		1													
	0°	1	8.84	9.16	1	8.56	8.3	1	8.56		3.05	7.39		7.72	6.4

TABLE A1.8 Summary of Mechanical Properties of Narmco N588/7781 (ECDE-1/0-550) Fiberglass Epoxy

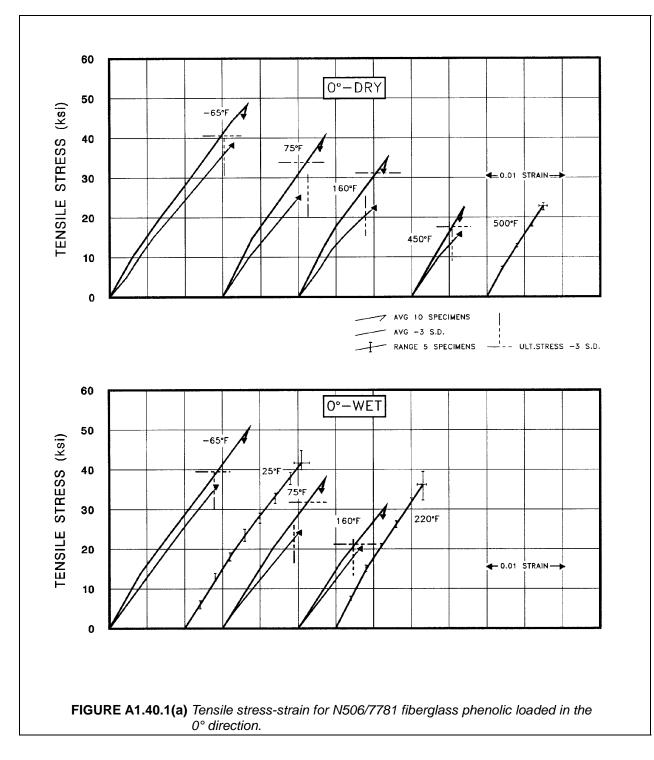


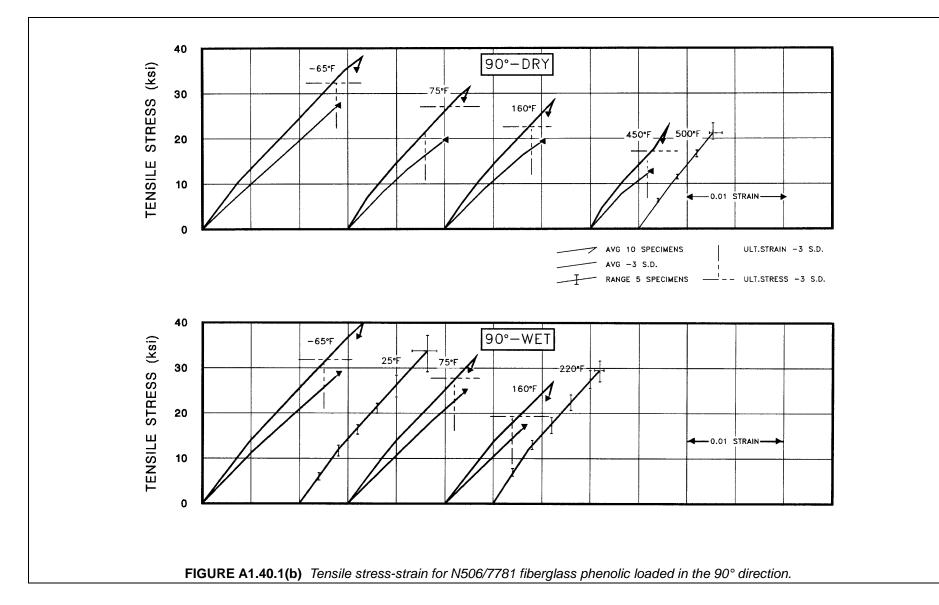

Volume 2, Appendix A1

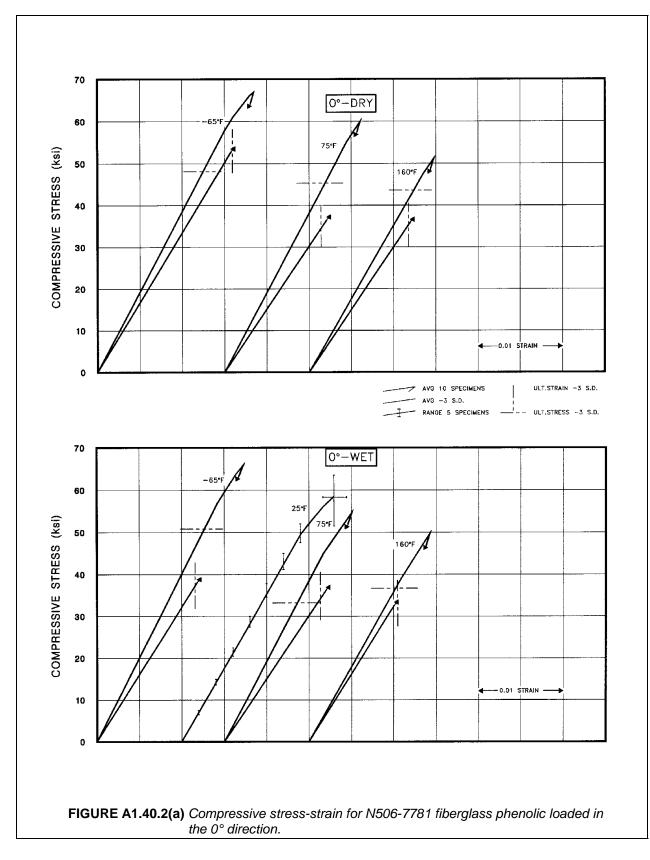


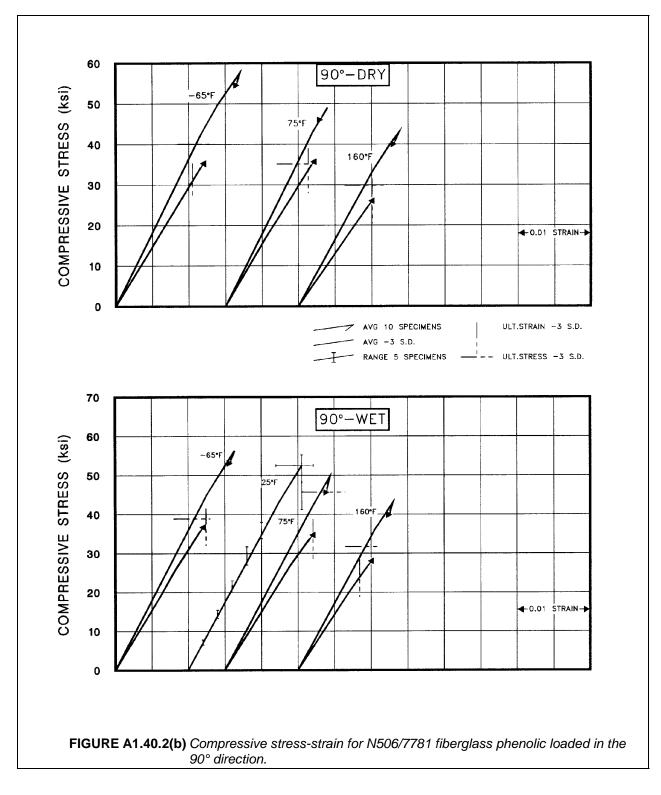

Volume 2, Appendix A1

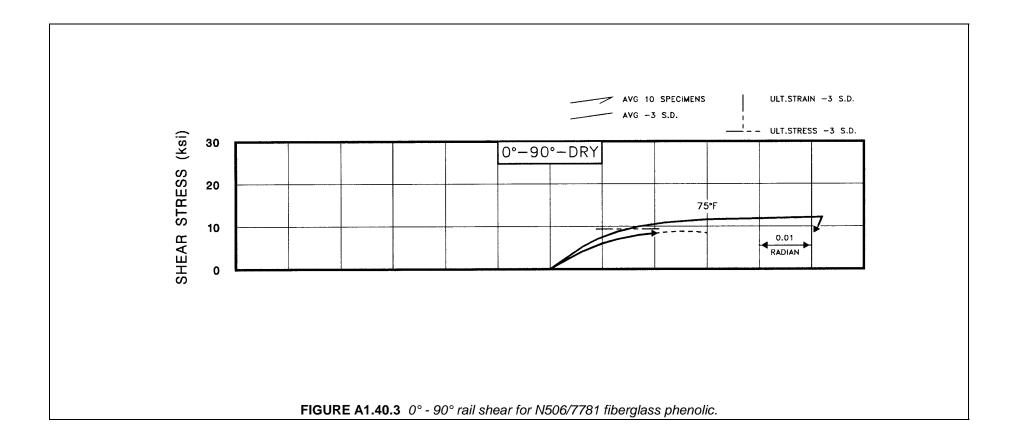
ULT.STRAIN -3 S.D. AVG 10 SPECIMENS AVG -3 S.D. RANGE 5 SPECIMENS ----- ULT.STRESS -3 S.D. 90 0°-WET 80 -65⁰F 70 25°F (ksi) 60 STRESS 75°F 50 40 TENSILE 160°F 30 20 —0.01 \$TRAIN— 10 0 FIGURE A1.8.2(a) Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 0° direction, concluded.

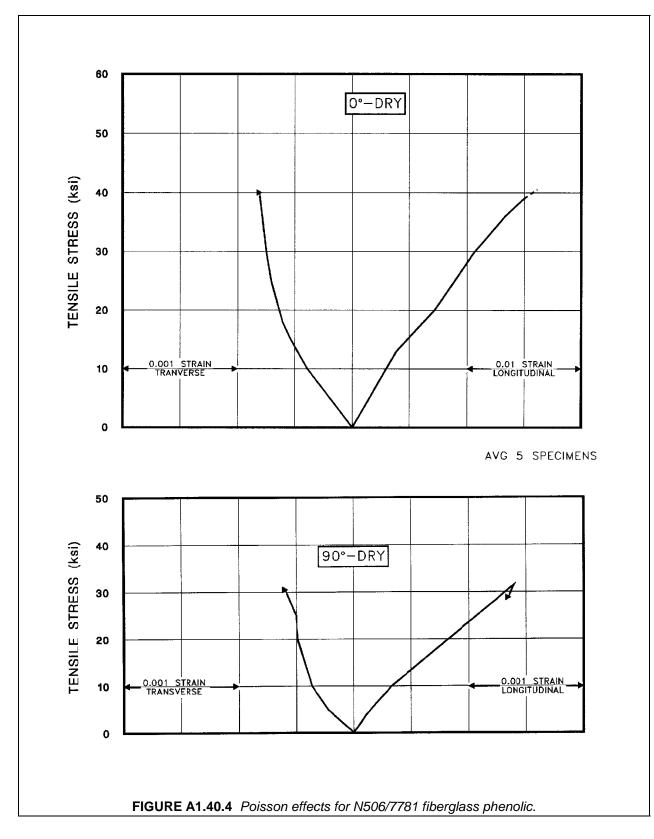

Volume 2, Appendix A1

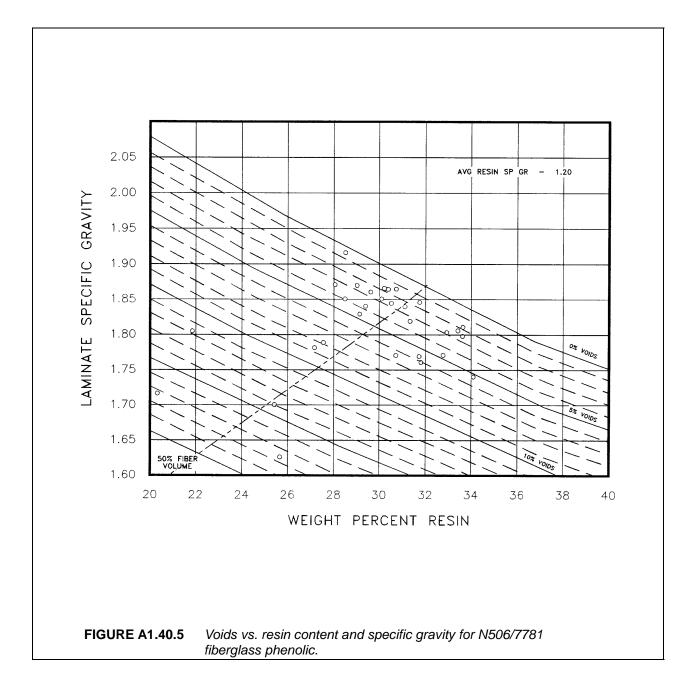

This page intentionally left blank

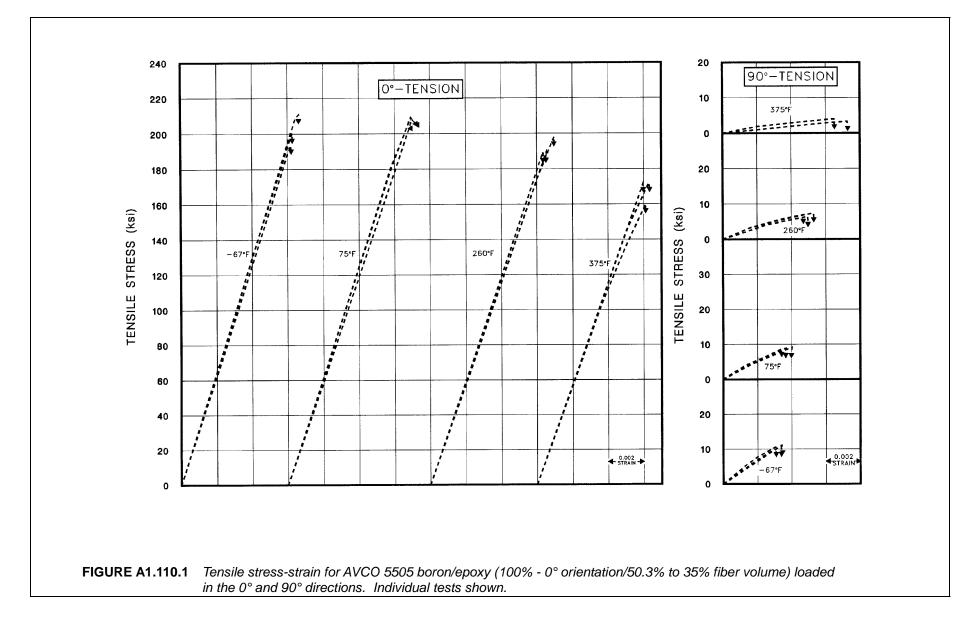

Volume 2, Appendix A1

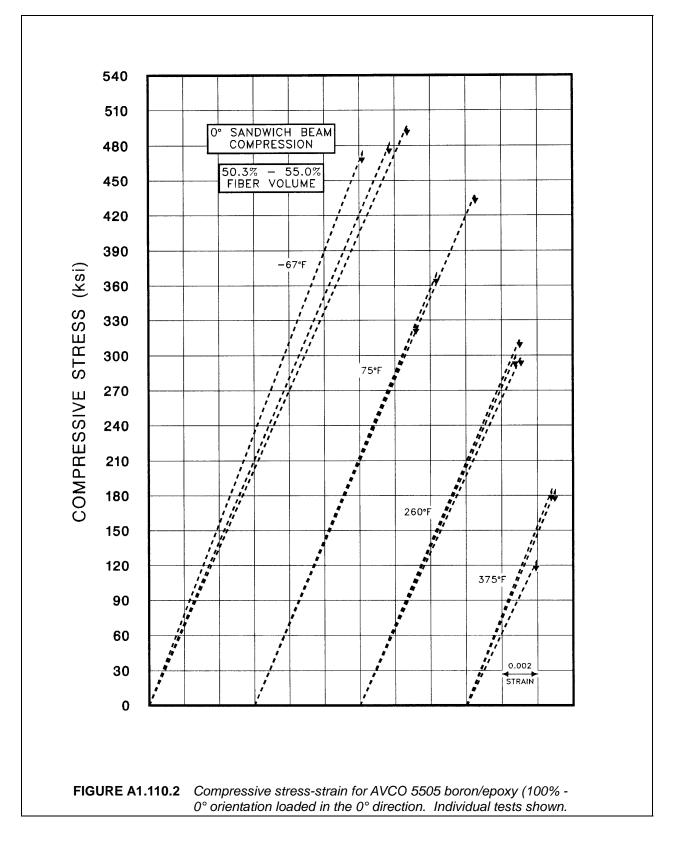

	TABLE A1.40			Vacuum:		Pressu		Bleedout		Cure:	0001110			Plies:	
Fabrication		Lay-up: Balanc	ha	vacuum.		Flessu	ie.	Vertic		Cure.		Postcure:		Files.	
abrication		Weight P		sin [.]	Δνα	Specific	Gravity:			cent Voids		Δνα	Thicknes	-	
Physical Properties		0	3 - 32.3		۸vg.	1.72 -				gure 4.40.).071 - 0.0		s
i ilyoloal i ropolitoo		Tension:	0 02.0	Co	mpressio		Shear:		Flexure		Bearin			erlaminar	
Test Methods			D638 TYF		MIL-HDE		Rail			Л-D790		TM-D953		Short Bea	
Temperature				5°F			75	°F			160				0°F
Condition		D		We	et	[Drv		et	Dr	V	W	et	D	rv
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	ŚD
Tension		Ŭ		Ŭ		<u> </u>		<u> </u>				Ŭ		Ŭ	
ultimate stress, ksi	0'	° 48.1	2.4	49.8	3.3	38.9	9 1.5	37.2	1.8	35.3	1.4	30.6	3.0	21.6	1.6
	909	° 37.9	1.8		2.7	31.5		32.1	1.4	27.9	1.7		2.2	21.6	
ultimate strain, %	0'		0.07	1.76	0.13	1.33	3 0.14	1.34	0.13	-	0.10	-	0.14	0.69	
	90°		0.08	1.65	0.13	1.26		1.32	0.07	1.11	0.07		0.14	0.78	
proportional limit, ksi	0'		0.9	18.1	1.2	13.5		17.0	1.0	13.9	1.0		0.70	9.7	1.1
6	909		0.4	12.5	0.9	9.2		12.8	0.7	10.3	0.8		0.70	8.6	
initial modulus, 10 ⁶ psi	0		0.21	3.35	0.20	3.94		3.14	0.26		0.41		0.19	3.57	
	909		0.29	3.04	0.22	3.54	4 0.41	2.81	0.24	3.33	0.37	2.78	0.21	3.18	0.30
secondary modulus, 10 ⁶ psi	0° 90°														
Companyation	90	-													
Compression ultimate stress, ksi	0'	° 66.7	6.2	65.9	5.0	59.7	7 4.7	54.5	7.1	50.6	2.3	49.2	4.2		
ultimate stress, ksi	90		5.8		5.0 5.8	49.0		48.7	4.0	43.0	2.3 4.3		4.2 3.7		
ultimate strain, %	90 0'	-	0.09		0.18	1.58		1.49	0.12	1.45	0.06		0.12		
utimate strain, 70	909		0.00	1.63	0.10	1.40		1.43	0.12	1.37	0.00		0.12		
proportional limit, ksi	0	-	3.8	38.5	7.9	39.0		41.2	4.6	39.9	2.4	35.0	1.7		
	909		3.8	34.4	5.0	32.6		35.5	3.0	32.4	3.1	31.1	3.3		
initial modulus, 10 ⁶ psi	0		0.19		0.29	3.9		3.89	0.26		0.21	3.67	0.12		
· •	909		0.25		0.17	3.70		3.57	0.20		0.23	3.45	0.21		
Shear															
ultimate stress, ksi	0°-90	° 13.8				12.3	3 0.97			11.4					
	±45	Þ													
			-6	5°F Dry				75°F	Dry			1	160° Dr	v	
		Avg		Max	Mir	۱	Avg		ax	Min	A	Avg	Max	,	Min
Flexure							Ŭ								
ultimate stress, ksi	0'	D	68.2	72.8	3	65.2	58	.4	64.0	52	.1	52.7	Ę	56.3	47.4
proportional limit, ksi	0'		59.3	66.1		54.6	48		56.8	42		42.4		46.2	38.8
initial modulus, 10 ⁶ psi	0'	2	2.97	3.04	ł	2.88	2.8	39	2.99	2.	78	2.97	3	3.06	2.8
Bearing						1									
ultimate stress, ksi	0		65.7	73.2		57.0	58		64.0	46		49.5		55.8	44.
stress at 4% elong., ksi	0'	2	25.1	26.0)	23.7	24	.5	24.9	23	.8	21.6	2	22.6	20.7
Interlaminar Shear															
ultimate stress, ksi	0	0	4.83	5.10)	4.29	4.6	64	4.92	3.9	94	4.62	4	4.88	4.08


TABLE A1.40 Summary of Mechanical Properties of Narmco N506/7781 (ECDE-1/0-A1100) Fiberglass Phenolic.



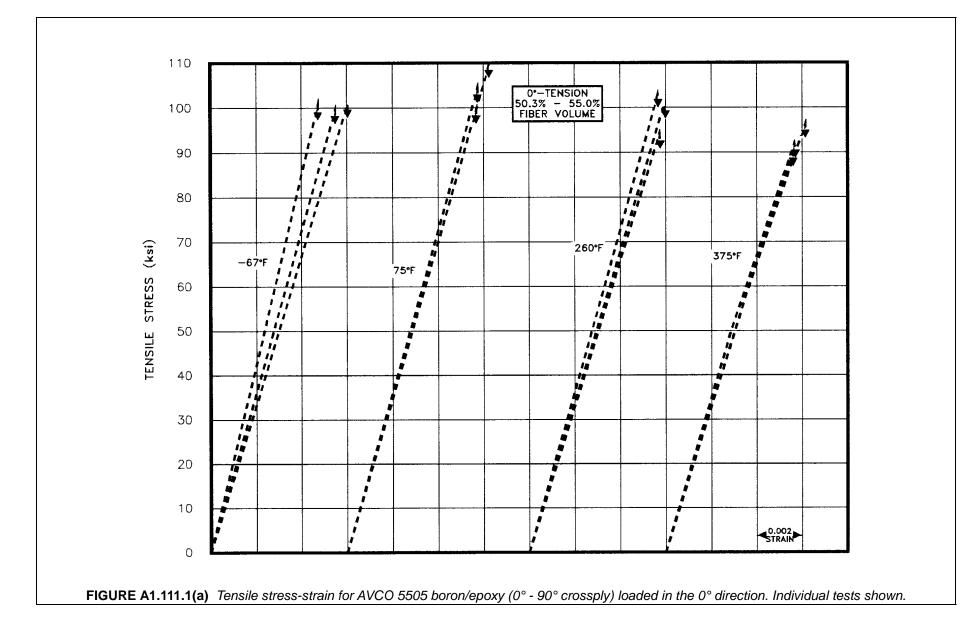


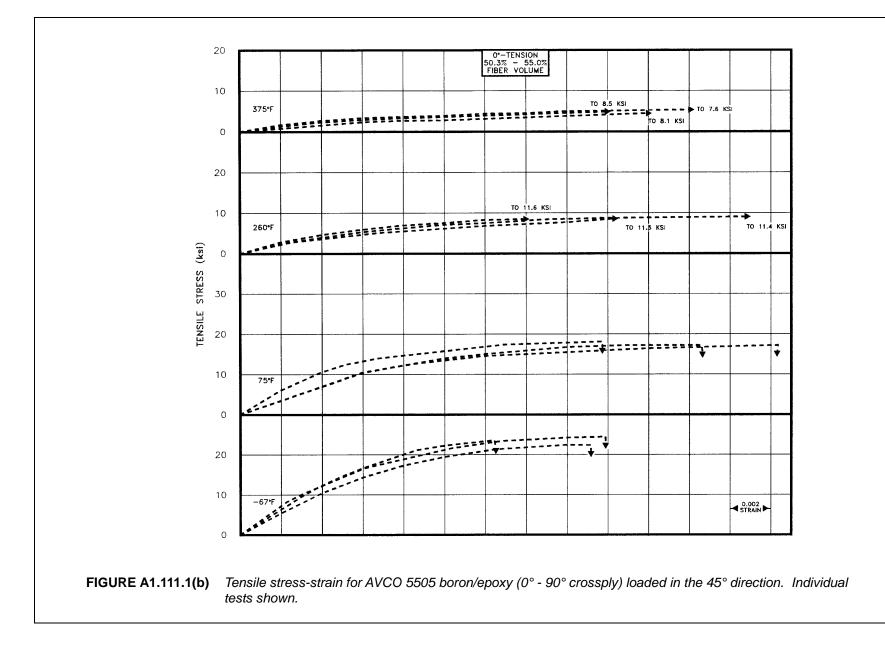


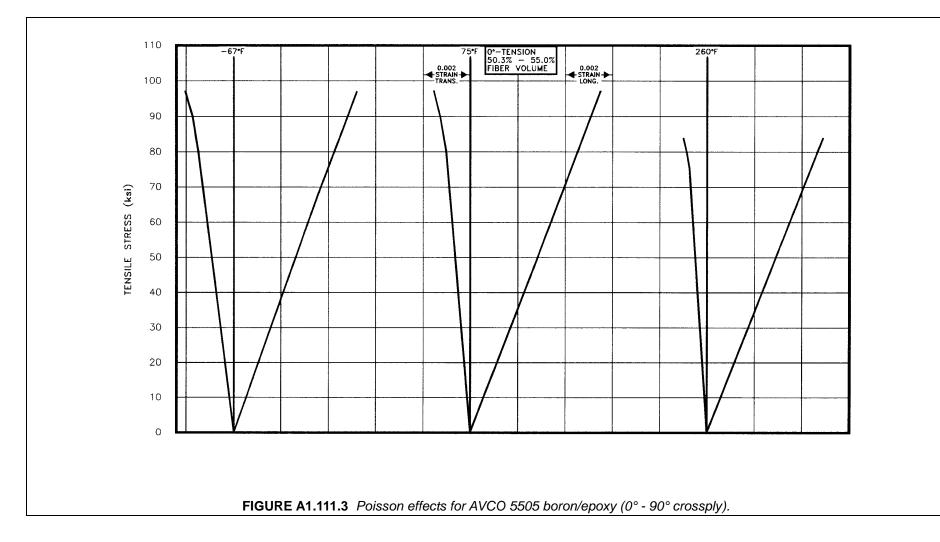


T	ABLE A1.110	Summary										,		,			
Fabrication		Lay-up: Parallel		cuum: 2 ins		Pressu 50 ±	ure: ± 5 psi	BI	eedout:		Cur	e: 1.5hr/ 35 ± 10°F		stcure: 2hr/350		lies: 6	
Physical Properties		Weight Pe					fic Gravit	y:		Avg. P					hickness: 0.005 in/p	ly	
		Tension:		ompressio			Shear:			Flexure			Bearing	g:		minar She	ear:
Test Methods		Tab-en		Sandwi	ch Bea	am		_		4 Po	int Loa	ding	00	005	Sh	ort Beam	
Temperature Condition		Dry		7°F	'et		Dry		′5°F	Wet		Dr		0°F	Vet	375 Dr	
Condition		Avq	SD	Avg	ei SE	<u>,</u>	Avg	SD	Av		SD	Avg	y SD	Avg	SD	Avg	y Se
Tension		Avg	00	Avg	01	, 	Avg	00		9	00	Avg	00	Avg	00	Avg	
ultimate stress, ksi	0°	201.1					208.3					191.6				167.3	
	90°						8.7					6.5				3.3	
ultimate strain, %	0°	6390					6930					6660				6150	
	90°	3250					3710					4970				6920	
proportional limit, ksi	0°	141.8					175.5					140.0				79.5	
	90°																
initial modulus, 10 ⁶ psi	0°	32.0					30.9					29.6				28.6	
<u>^</u>	90°																
secondary modulus, 10 ⁶ psi	0°																
	90°																
Compression		100.0															
ultimate stress, ksi	0°	482.3					378.0					303.3				143.9	
ultimate strain 0/	90° 0°	13670					10830					8920				4466	
ultimate strain, %	90°	13070					10630					6920				4400	
proportional limit, ksi	90 0°	333.5															
	90°	555.5															
initial modulus, 10 ⁶ psi	0°	35.7					34.8					34.6				35.8	
initial moduluo, ro por	90°						01.0					01.0				00.0	
Shear																	
ultimate stress, ksi	0°-90°																
	± 45°																
			-65	°F Dry					75°F	Dry					160° Dry		
		Avg	Ма		Mir	۱	Avg	1	M			Min	Avg	1	Max		lin
Flexure		Ŭ						-			1		C				
ultimate stress, ksi	0°																
proportional limit, ksi	0°																
initial modulus, 10 ⁶ psi	0°						<u> </u>										
Bearing						Т											
ultimate stress, ksi	0°																
stress at 4% elong., ksi	0°																
Interlaminar Shear																	
ultimate stress, ksi	0°										1						

 TABLE A1.110
 Summary of Mechanical Properties of Narmco 5505 Boron-Epoxy (100%-0° Direction) (Tentative).






Volume 2, Appendix A1

	ABLE A1.111		of Mech		-						y) (Tenta			•	
Fabrication		Lay-up: [2(0/90)]	S	Vacuu 2 ii		Pressu 50 ±	ire: = 5 psi	Bleedou	ut:		r/ 350°F I0°F	Postcure 2hr/38		Plies: 6	
Physical Properties		Weight Per				g. Specifio	-		-	ercent Voi	ds:		g. Thickne 0.005 i	n/ply	
Test Methods		Tension: Tab-end		ompress	sion:	SI	near: Picture F	rame	Flex	ure:	Be	aring:	Interl	aminar She	ar:
Temperature		Tab Cit	-67°	'F			75				26	60°F		375	'F
Condition		Dry		W	et	C	ry	W	et	Dr			/et	Dry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°	99.9				103.				98.5				91.9	
	90°	23.6				17.				11.4				8.1	
ultimate strain, %	0°					571				5830				5780	
proportional limit kai	90° 0°	15850 53.0				2447 77.				48.6				48.6	
proportional limit, ksi	90°	53.0				11.	'			40.0				40.0	
initial modulus, 10 ⁶ psi	90 0°	18.9				18.	0			17.5				16.5	
initial modulus, to psi	90°	10.5				10.	0			17.5				10.5	
secondary modulus, 10 ⁶ psi	0°														
,	90°														
Compression															
ultimate stress, ksi	0°														
	90°														
ultimate strain, %	0°														
	90°														
proportional limit, ksi	0°														
initial modulus, 10 ⁶ psi	90° 0°														
initial modulus, 10 psi	90°														
Shear	30														
ultimate stress, ksi	0°-90°	19.5				17.	3								5
	±45°	65.7				63.									33
	±+0		-6'	5°F Dry				75°	F Dry				160° D)rv	
		Avg		Max	М	in	Avg		Max	Min		Avg	Max		1in
Flexure			-				9						····an		
ultimate stress, ksi	0°														
proportional limit, ksi	0°														
initial modulus, 10 ⁶ psi	0°														
Bearing															
ultimate stress, ksi	0°														
stress at 4% elong., ksi	0°														
Interlaminar Shear	00														
ultimate stress, ksi	0°														

TABLE A1.111 Summary of Mechanical Properties of Narmco 5505 Boron-Epoxy (0°-90° Crossply) (Tentative)

Volume 2, Appendix A1

REFERENCES

- A1.2 S. J. Dastin and others, *Determination of Principal Properties of "E" Fiberglass High Temperature Epoxy Laminates for Aircraft,* Grumman Aircraft Engineering Corporation, DAA21-68-C-0404, August 1969.
- A1.3.4.1(a) ASTM D 638, "Tensile Properties of Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.3.4.1(b) P. D. Shockey and others, *Structural Airframe Application of Advanced Composite Materials*, General Dynamics, IIT Research Institute, Texaco Experiment, AFML-TR-69-01, **IV**, AF 33(615)-5257, October 1969.
- A1.3.4.2 ASTM D 695, "Compressive Properties of Rigid Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.3.4.3 K. H. Boller, A Method to Measure Intralaminar Shear Properties of Composite Laminates, Forest Products Laboratory, AFML-TR-69-311, March 1970.
- A1.3.4.4 ASTM D 2733-68T, "Interlaminar Shear Strength of Structural Reinforced Plastics at Elevated Temperatures," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA (canceled January 15, 1986 and replaced by ASTM D 3846).
- A1.3.4.5 ASTM D 790-70, "Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials," *1971 Annual Book of ASTM Standards*, ASTM, Philadelphia, PA, 1971.
- A1.3.4.6 ASTM D 953, "Bearing Strength of Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.4.5 G. C. Grimes and G. J. Overby, *Boron Fiber Reinforced/Polymer Matrix Composites Material Properties*, Southwest Research Institute, January 1970.

Index

MIL-HDBK-17-2F

INDEX

|--|

Abbreviations Acronyms Ambient	Ch 1-30
Bearing Braiding	Ch 1- 19, 23, 30, 35, 42 Ch 1- 22, 34, 35, 36, 38, 41, 43
Compression	Ch 1- 7, 22, 23, 25, 30, 34, 38, 43, 44
Data Definitions Dry	Ch 1- 32
Fiber Ch 1- 2, 3, 7, 10, 12, 16, 17, 18, 19, 20, 45, 46, 47, 48, 50, 51, 52, 53	21, 22, 25, 28, 32, 34, 35, 37, 39, 40, 41, 43, 44,
Glass transition temperature	Ch 1- 26, 46, 47
Joint	Ch 1- 1, 2, 18, 31, 38
Lamina Ch 1- 2, 10, 17, 20, 21, 22, 25, 28, 29, Laminate orientation code Lay-up code	, 31, 34, 36, 37, 38, 39, 42, 43, 45, 46, 48, 51, 53 Ch 1- 20, 21, 38
Matrix Ch 1- 2, 7, 12, 16, 17, 18, 19, Matrix class Moisture content	Ch 1- 37
Normalization Notched laminates	
Processing	Ch 1- 34, 44, 46, 47, 48, 49
Symbols	Ch 1- 22, 23, 27, 28
Terminology Test Method	
Units Conversion	

PAGE

Material Property Data

Discoslaimida	
Bismaleimide	
AS4/5250-3 unidirectional tape	
Astroquartz II/F650 8-harness satin weave fabric10-2	
IM7 6k/5250-4 RTM 4-harness satin weave fabric	
T-300 3k/F650 unidirectional tape4-265	
T-300 3k/F650 8-harness satin weave fabric	
T-300 3k/F652 8-harness satin weave fabric	
T-650-35 3k/5250-4 plain weave fabric	
T650-35 3k/5250-4 8-harness satin weave4-292	
Carbon	
AS4 12k/938 unidirectional tape 4-33	
AS4 12k/997 unidirectional tape4-215	
AS4 12k/3502 unidirectional tape	
AS4 12k/E7K8 unidirectional tape	
AS4 3k/3501-6 plain weave fabric	
AS4 3k/3501-6S 5-harness satin weave fabric 4-138	
AS4 3k/3501-6 5-harness satin weave fabric4-164	
AS4 3k/3501-6 5-harness satin weave fabric4-173	
AS4/3501-6 (bleed) unidirectional tape 4-110	
AS4/3501-6 (no bleed) unidirectional tape	
AS4 3k/E7K8 plain weave fabric	
AS4 6k/3502-6S 5-harness satin weave fabric	
AS4 6k/PR500 5-harness satin weave fabric	
AS4/5250-3 unidirectional tape	
A34/3230-3 uniunectional tape	
Celion 12k/938 unidirectional tape4-53	
Celion 12k/E7K8 unidirectional tape	
Celion 3000/E7K8 plain weave fabric4-78	
Celion 3000/F670 8-harness satin weave fabric4-294	
HITEX 33 6k/E7K8 plain weave fabric 4-93	
HITEX 33 6k/E7K8 unidirectional tape	
IM6 12k/APC-2 unidirectional tape4-303	
IM6 3501-6 unidirectional tape	
IM7 6k/5250-4 RTM 4-harness satin weave fabric	
IM7 6k/PR500 4-harness satin weave fabric	
IM7 12k/8551-7A unidirectional tape4-163	
IM7 12k/8552 unidirectional tape4-181	
IM7 12k/977-2 unidirectional tape	
IM7 12k/PR381 unidirectional tape	
M55J 6k/954-3 unidirectional tape4-315	

T-300 15k/976 unidirectional tape	
T-300 3k/934 plain weave fabric	
T-300 3k/977-2 8-harness satin weave fabric	
T-300 3k/977-2 plain weave fabric	
T-300 3k/EA9396 8-harness satin weave fabric	

Index

T-300 3k/F650 8-harness satin weave fabric T-300 3k/F650 unidirectional tape T-300 3k/F652 8-harness satin weave fabric T-500 12k/976 unidirectional tape T-650-35 3k/5250-4 plain weave fabric T650-35 3k/5250-4 8-harness satin weave T650-35 3k/976 8-harness satin weave fabric T650-35 3k/976 plain weave fabric T650-35 12k/976 unidirectional tape T700S 12k/3900-2 plain weave fabric T800HB 12k/3900-2 unidirectional tape	4-265 4-275 4-1 4-292 4-292 4-236 4-256 4-227 4-244
Cyanate Ester M55J 6k/954-3 unidirectional tape	4-315
Epoxy 7781G 816/PR381 plain weave fabric 7781G/EA 9396 8-harness satin weave fabric	
AS4 12k/938 unidirectional tape AS4 12k/997 unidirectional tape AS4 12k/3502 unidirectional tape AS4 12k/E7K8 unidirectional tape AS4 3k/3501-6 5-harness satin weave fabric	4-215 4-63 4-15 4-164 4-173 4-129 4-138 4-105 4-105 4-110 4-120 4-144
Celion 12k/938 unidirectional tape Celion 12k/E7K8 unidirectional tape Celion 3000/E7K8 plain weave fabric	. 4-24
HITEX 33 6k/E7K8 plain weave fabric HITEX 33 6k/E7K8 unidirectional tape	
IM6 3501-6 unidirectional tape IM7 12k/8551-7A unidirectional tape IM7 12k/8552 unidirectional tape IM7 12k/977-2 unidirectional tape IM7 12k/PR381 unidirectional tape IM7 6k/PR500 4-harness satin weave fabric	4-163 4-181 4-181 4-236
S2-449 17k/SP 381 unidirectional tape S2-449 43k/SP381 unidirectional tape	
T-300 15k/976 unidirectional tape T-300 3k/934 plain weave fabric T-300 3k/977-2 8-harness satin weave fabric T-300 3k/977-2 plain weave fabric T-300 3k/EA9396 8-harness satin weave fabric T-500 12k/976 unidirectional tape	4-41 4-181 4-181 4-205

Index

T650-35 3k/976 8-harness satin weave fabric T650-35 3k/976 plain weave fabric T650-35 12k/976 unidirectional tape T700S 12k/3900-2 plain weave fabric T800HB 12k/3900-2 unidirectional tape	
Glass	
7781G 816/PR381 plain weave fabric	6-29
7781G/EA 9396 8-harness satin weave fabric	6-35
S2-449 43k/SP381 unidirectional tape	6-1
S2-449 17k/SP 381 unidirectional tape	
PEEK	
IM6 12k/APC-2 unidirectional tape	
Polyimide	
Celion 3000/F670 8-harness satin weave fabric	
Quartz	10.0
Astroquartz II/F650 8-harness satin weave fabric	

CONCLUDING MATERIAL

Custodians: Army - MR Navy - AS Air Force - 11 Preparing activity: Army - MR

(Project CMPS-0172)

Review activities: Army - AR, AT, AV, MI Navy - SH Air Force - 13 DLA-IS

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter must be given.

2. The submitter of this form must complete blocks 4, 5, 6, and 7.

2. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

	1. DOCUMENT NUMBER	2. DOCUMENT DATE (YYYYMMDD)
I RECOMMEND A CHANGE:	MIL-HDBK-17-2F	20020617

3. DOCUMENT TITLE

COMPOSITE MATERIALS HANDBOOK - VOLUME 2, Polymer Matrix Composites, Materials Properties

4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed)

5. REASON FOR RECOMMENDATION

6. SUBMITTER

a. NAME (Last, First, Middle Initial)	b. ORGANIZATION						
c. ADDRESS (Include Zip Code)	d. TELEPHONE (Include Area Code) (1) Commercil (2) DSN (If applicable)	7. DATE SUBMITTED (YYYYMMDD)					
8. PREPARING ACTIVITY							
a. NAME	b. TELEPHONE (Including Area Code)						
US Army Research Laboratory	(1) Commercial (2) DSN						
Weapons & Materials Research Directorate	(410) 306-0725	458-0725					
C. ADDRESS (Include Zip Code)	IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT:						
ARL/WMRD	Defense Standardization Program Office (DLSC-LM)						
ATTN: AMSRL-WM-MA 8725 John J. Kingman Road, Suite 2533, Fort Belvoir, VA 22060-6221							
Aberdeen Proving Ground, MD 21005-5069	Telephone (703) 767-6888 DSN 427-6888						
DD Form 1/26 EEB 1000 (EG) Provious adition is obsolete WHS/DIOP. Eeb 00							

DD Form 1426, FEB 1999 (EG)

Previous edition is obsolete

WHS/DIOR, Feb 99