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FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense (DoD).

2. This handbook is for guidance only. This handbook cannot be cited as a requirement. If it is, the contractor
does not have to comply.

3. This handbook was developed to provide guidance to Department of Defense personnel who are writing re-
guests for proposals for military digital electronic systems, DoD contractors who are developing very high-speed
integrated circuit (VHSIC) hardware description language (VHDL) models for the Government, and DoD engi-
neers, scientists, and management or independent validation and verification contractors who are evaluating or re-
viewing models delivered to the Government. It documents the state of the art and existing technologies for VHDL
model development. Addressed in the handbook are which VHDL models are required to be delivered with a con-
tract, which VHDL models should be developed during the different stages of the lifetime of a system, and how
VHDL models can be structured to be consistent with modeling standards.

4. This handbook was developed under the auspices of the US Army Materiel Command’ s Engineering Design
Handbook Program, which isunder the direction of the US Army Industrial Engineering Activity. Research Triangle
Institute (RTI) was the prime contractor for this handbook under Contract No. DAAA09-86-D-0009. The handbook
was authored by Dr. Geoffrey A. Frank and edited by Ray C. Anderson of RTI. Development of this handbook was
guided by a technical working group that included Mr. Gerald T. Michael, US Army Research Laboratory, chair-
man; Dr. John W. Hines, US Air Force Wright Laboratory; Mr. J. P. Letellier, US Naval Research Laboratory; and
Mr. Michael A. Frye, US Department of Defense, Defense L ogistics Agency.

5. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may be of useinim-
proving this document should be addressed to Defense Supply Center Columbus, ATTN: Director-VA, 3990 East
Broad Street, Columbus, OH 43216-5000, by using the Standardization Document Improvement Proposa (DD
Form 1426) appearing at the end of this document or by letter.

Thefollowing isincluded at the request of |EEE:
“The Institute of Electrical and Electronics Engineers, Inc. (IEEE) disclaims any responsibility or liability resulting from
the placement and use in this publication of material extracted from its publications. Information is reprinted with permission
of the IEEE.”



Downloaded from http://www.everyspec.com

MIL-HDBK-62
CONTENTS
FOREWORD ....outiitetiiisieteite sttt ettt bbbt e b b st e b bt E 48 e b e R £ £ 48 E b £ e A e b b e £ b E e R e e A E b b e A e nE b b e Rt e e b b e aese et b e bt ne e b b ii
LIST OF ILLUSTRATIONS ... cetutiieetetttre sttt sttt ettt se b bt se b b s e b b e st s £ bk e s £ £ 8 eb s e st s e b eb s e ne s b b e st ne e b b e b et e b b e b et se s b ene s iX
LIST OF TABLES ... .ottt bbbt h b4 E £ b1 £ £ b e s £ £ E bR e A E b b s A e A b e st e bbb et e e b b e st st et be s Xi
LIST OF ABBREVIATIONS AND ACRONY MS....oiiiiiirisieientrisieteese sttt bbbttt eb e Xii
CHAPTER 1
INTRODUCTION
LoD PURPOSE ...ttt bbbt e b b2 £ bR E 8 b e R4 e E b e h £ £ b b e Rt e E A b e b e e rE e b e bt e e b b et e b b eb e e e b 1-1
1-2 SCOPE ..ottt ettt b et b bt E b bt e A b e R4 E S E R R £ SRR R £ R AR SR oA AE Ak R £ R R R AR R R R e e R b e R et E R b et s R bR e nrena 1-1
1-3 INTENDED AUDIENCE ..ottt ettt bbbt e e b bt st s b bt n bbb e nn b 1-1
1-4 HISTORY, PURPOSE, AND SCOPE OF VHDL ...c.cctiiiiirisieietisisie ettt ettt 1-2
1-4.1 HISTORY OF VHDL ..ottt ettt b et b bt s e bt e e e 1-2
1-4.2 THE PURPOSE OF VHDL ..ottt ettt eb et b st sn b nn e 1-2
1-4.3 THE SCOPE OF VHDL ..ottt sttt sttt skt b ettt b et e s b e e e 1-3
1-5 RELATED INDUSTRY STANDARDS ..ottt sttt sttt st b bt st s et bt n b b ne st 1-3
1-6 OVERVIEW ..ottt b bbb £ £ bR 1 £ 8k e h £ £ b bt R £ E b e bt e e E e b ekt e e b b et e b e b eb e e e b 1-3
REFERENGCES ..ottt stttk se £ b et £ b b £ R 128 b e R 1E 8 beh £ £ b e b e Rt e E e A e b eh e n e e b ek et e e b e b e nt e b e b ebe e nn b 1-4
BIBLIOGRAPHY ..ttt ettt b e e b et £ b bR 42 £ bR 4 e bk h £ £ b b e Rt £ A b e Rt e E e b e bt e e b b et e b e b eb e e nnena 1-5
CHAPTER 2
HARDWARE DESCRIPTION CONCEPTS
2-1  INTRODUGCTION ...oiitctiitiistetetseseeteieseses ettt seesese st se b bt se s b e b et e s e e b eh e e sE e b eb e e s e e b ek e Rt e e b e b e Rt e s e e b e b et ne s b ek et e s b b ene e es 2-1
2-2 LEVELSOF ABSTRACTION IN MODELSOF DIGITAL ELECTRONIC SYSTEMS .....ccoiiiiirneeneresieieeens 2-2
2-2.1  OVERVIEW ..ttt bbb b b e bkt e bbbt e b b et st bkt b b s 2-2
2-2.2 NETWORK MODELS ..ottt ettt b et bbbkt b bt e bkt b et es 2-3
2-2.2.1  PerformanCe MOUELS ........ccoiiiiriiieree sttt r e bt e b et sr e r e r e r e nr e e re e 2-3
2-2.2.2  INEITACEMOUEIS ..ottt b e bt et r et r et r e r e r e re e 2-3
2-2.3 ALGORITHMIC MODELS ...ttt sttt bbbt eb ettt b et 2-4
2-24 INSTRUCTION SET ARCHITECTURE MODELS ......ccccoiiiietinriirenres et 2-4
2-25 REGISTER-TRANSFER MODELS .......ocooiiiiirieieitrerieie ettt 2-4
2-2.6 GATE-LEVEL MODELS ..ottt bbbttt b b 2-4
2-2.7 USESOF ABSTRACTION AND HIERARCHICAL DECOMPOSITION IN THE DESIGN
PROGCESS ..ottt bbbt b bt £ b bt e £ b b e 1E bk e e b b e Rt e bbb e e s e b b e st re e bk e st n bbb es 2-5
2-3 BEHAVIORAL DESCRIPTIONS OF HARDWARE DESIGNS ......ccooiiiiiiirneteenes e 2-5
2-3.1 THE PURPOSE OF BEHAVIORAL DESCRIPTIONS .....ccoiiiiirieireninesie et 2-5
2-3.2 THEUSE OF HIERARCHY IN BEHAVIORAL DESCRIPTIONS ......ccooiiinrneetriieesesesieeeeseseene s 2-6
2-3.3 EXAMPLE OF A BEHAVIORAL DESCRIPTION ....coociiririsieitinirieieiesenes ettt es 2-7
2-4 STRUCTURAL DESCRIPTIONS OF HARDWARE DESIGNS ......ccooiiiiiiricieeresiei et 2-12
2-41 THE PURPOSE OF STRUCTURAL DESCRIPTIONS .....ccooiiiiirieieienrieieieeses et 2-12
2-4.2 THE USE OF HIERARCHY IN STRUCTURAL DESCRIPTIONS ......ccoiiintrnieetreriieiese e 2-13
2-4.2.1 Hierarchica Decomposition Based on Physical EIements ... 2-13
2-4.2.2 Leaf Modulesin aHierarchical Structural DESCIIPLION .........ccceoeriieirireri et 2-14
2-4.3 EXAMPLES OF STRUCTURAL DESCRIPTIONS ......ociitiiiieittnirieieieseres et b e es 2-14
2-4.3.1 Algorithmic-Level Structural DESCIIPLION ........ooeieriiriiieieeeeeee ettt s enea 2-14
2-4.3.2 Register-Transfer-Level Structural DESCIIPLION ........co.iouerieiieiiieeeeeerere st s enea 2-20
2-5 MIXED ABSTRACTION MODELS ......cocuiitiiiieiiirisieitesere sttt b ettt b b 2-22
2-51 THE PURPOSE OF MIXED LEVEL OF ABSTRACTION MODELS .......cccovieinirineeereeeeesesieieees 2-22
2-5.2 DESIGNING MODULES FOR MIXED ABSTRACTION MODELS .......ccccciirneieiiriieeesesieieesesieieeees 2-22
2-53 AN EXAMPLE OF A MIXED LEVEL OF ABSTRACTION MODEL ......cccooiiieiiirieeereseeeesesieieees 2-23
REFERENGCES ..ottt ettt ettt bbbt s e £ b2 £ b £ R 428 e b e R4 e 8 beh £ £ £ b b e Rt e E A b eh e e E e b e bt e e b e b et e s b e b ebe e nnena 2-23
BIBLIOGRAPHY ..ottt b e e b et £ h £ £ 8 b R4 e E b e R £ £ b bt Rt E A bRt e e e e e b ekt e e b b et e b e b eb e e nn b 2-24



Downloaded from http://www.everyspec.com

MIL-HDBK-62
CHAPTER 3
VHDL CONCEPTS
1 R 1 I I 1 L I ST 31
3-2 BASIC VHDL CONCEPTS ...ttt ittt b ettt bbb bt bbb et b e st b et e ket b et e b et e b e e e bt ne et 31
3-2.1 VHDL DESIGN ENTITIES ....oicitiiiieteieneeisteeeeseseetese st eseseseesesesessssssesesesseseesessesesensssesssensssssesensssssesensnsnes 31
3-2.1. 1 ENLLY INTEITACES ...ttt b e e b e e b e s b e b b e e et b et bt b et ettt e b e 32
3-2.1.2  ArChItECIUNE BOMIES .....eeeieiieeiteete ettt bbbt st b et b et b ettt ne b e 33
3-22 THEVHDL CONCEPT OF TIME ..ottt ettt ettt se s sese e s stesene e sesenenees 34
1 TS €] N 0 OSSR 34
3-2.3.1  Signal ASSIGNMENE SEBEEIMENES ....coviiiiiiriitereeie ettt b e ettt e b et sb et sb e e sttt ne st e neebe e 34
3-2.3.2  RESOIULION FUNCLIONS ...ttt s bbbttt b et e bt be e 35
3-3 VHDL SUPPORT FOR BEHAVIORAL DESIGN ....ccoooiiiiiiieirieirieesiesieesie ettt 3-6
3-3.1 PROGCESSES ...ttt sttt sttt ettt es e ae s st st e e ses e e s e e e e s e e se b et et e et eRe e s e e s nbeneseebetene e eeeseneneen 3-6
I I A o IS I Y1 = N ST 3-7
3-3.3 A BEHAVIORAL DESIGN EXAMPLE .....ociiiiiiiiietne ettt sttt sttt b e ebe e 3-7
3-4 VHDL SUPPORT FOR STRUCTURAL DESIGN ....ocoeiiiiiiieirieerieeniesieesie ettt 3-8
3-41 STRUCTURAL ARCHITECTURE BODIES ........ccoottiiiitiiniesienesie ettt ebe e ebe e 3-8
3-4.2  COMPONENTS ...ttt sttt ese e seeaes e st s e e tesese e s e s eae e s e eees e e se e b e b eneae e teseseneseesesenesesbeteneaeseeseneneen 3-8
3-4.2.1  ComMPONENE DECIAIELIONS ......cueivieitieeiereete st re ettt sttt b e s b e s eb e e bt e bt s b st b et st et st e e sb e e ebe e 3-8
3-4.2.2 Component Instantiations and INEErCONNECIIONS .........ccivierierirereee et 39
3-4.3 A STRUCTURAL DESIGN EXAMPLE ...ttt ebe e 39
3-5 VHDL SUPPORT FOR DATA ABSTRACTION ...ttt st 3-10
3-5.1 USER-DEFINED TYPES ....ooiicitiieetrt ettt sttt s a s ne et e e st s ese e e e s ese e sesbeteneeessesenenees 311
3-52 TYPE CONVERSION FUNCTIONS ..ottt sttt sttt sttt st s ebesaeb e s sttt e et seebenesbeseas 311
3-5.3 OVERLOADED OPERATORS ..ottt sttt ettt sttt st b et b et be s be s ebe e bt e bt st se st e st st et sb et ebeneebenea 312
3-6 VHDL SUPPORT FOR ANNOTATING MODELS .......oociiiiiieerierieesesie ettt 312
00 NN B 11 L1 = O ST 312
3-6.2 GENERIC CONSTANTS ...ttt sttt sttt sttt b et bt b e e b se b s e eb e se bt s e e bt s b e bt s b e st et e st sb et et e neebenea 3-13
3-6.3  PHYSICAL TYPES ..ottt ettt sttt ettt et st s e e e e s e e st et e e et esese e e e s es e e seebebeneaesteteneneen 3-13
3-7 ERROR HANDLING WITH VHDL ..ottt e st se st e st se e e ssesenesessesenesessessnensees 314
3-7.1 ASSERTION STATEMENTS ..ottt sttt et s e et te et sese e et ese e seebetenesesteseneneen 314
3-7.2 HANDLING SIGNAL ERROR STATES ..ottt sttt ere sttt sttt st sbe e b neebe e 3-15
3-8 VHDL SUPPORT FOR SHARING AND REUSE ........coiiiieeres et e 3-15
3-8.1 VHDL DESIGN LIBRARIES ......cooiiiteiiteirietteeereetete st et sese s eesssesesesteseesessesesenessssesenesessesenessssesesensaes 3-16
3-8.1.1 Declaring and USING LIDIarES ........coveuiriiirieerieierieerieer ettt sttt st 3-16
3-8.1.2 CONSIIUCHING LIDIAITES .....cueieiiitiiitereete sttt st sttt b ettt ne b e 319
3-8.2  WHDL PACKAGES ...ttt sttt sttt se st a s e e e e e et e e se s e et e e e e b ese e s e e anbe e seebebene e seesenenesen 3-20
3-82.1 ConStructing VHDL PaCKBOES ........coviuirieiirieierieierieieriee ettt sttt sttt sb e b e 3-20
3-8.2.2 Declaring and USING PACKBOES .......cccoiriiiriiiirieiie sttt sttt sb e e 3-20
3-8.3 CONFIGURATION SPECIFICATIONS AND DECLARATIONS .....ociiiiieierieerieeseesie e 3-20
3-8.3.1 Constructing Configuration Specifications and Declarations ............ccoeereereeneinennenesenese e 3-21
3-8.3.2 Using Configuration Specifications and DeClarations ............cccoveereereenieenieereeseeseese e 3-22
REFERENGCES...... .ottt ittt sestete st st tete e et seseseseseeseseseseeseae e s e seseaese s esenesesseeeseaeseebeseneseeseseneaessnteseaeseeseseneaessesenesssnsas 3-24
BIBLIOGRAPHY ...ttt ettt ettt et ese e se e et e st seseetese e s e e e s eaese s eseae 1o e eeeseae s e b eseneseeseseneee e et eseaessebeseneasssesnnesssnens 3-24
CHAPTER 4
DoD REQUIREMENTSFOR THE USE OF VHDL
N V(@ 1O L 3 TS 4-1
4-2 MIL-HDBK-454 GUIDELINES FOR THE USE OF VHDL .....ccoiiiiiiiiietrietseese ettt 4-1
4-21 DOCUMENTATION OF ASICs DEVELOPED FOR THE GOVERNMENT WITH VHDL .......ccocveennee. 4-1
4-22 DOCUMENTATION OF QUALIFIED DIGITAL INTEGRATED CIRCUITSWITH VHDL .......ccccceuee. 4-2
4-23 THE LIBRARY OF VHDL DESCRIPTIONS OF STANDARD DIGITAL PARTS ....cccoiiiirrireerieenenes 4-2
4-2.4 TEST BENCH REQUIREMENTS FOR VHDL DESCRIPTIONS........cocotoiiiriireeeieeesee e 4-2
4-3 OVERVIEW OF THE VHDL DATA ITEM DESCRIPTION ...c.oiiiiiiiietrieie ettt s 4-2
4-3.1 ENTITY INTERFACE REQUIREMENTS ......coooiiiiiiieririeiee sttt st se e s seesenens 4-3



Downloaded from http://www.everyspec.com

MIL-HDBK-62
4-3.1. 1 ENHLY NBIMES ...oecteiiiiieieieirii ettt b bbbt E b b et e bk et b b et bbbt se b b st e b s 4-3
4-3.1.2 Input and OULPUL DEFINITIONS ....cc.eiueiuirtirieiierieeree ettt bbb e b et e e ebessesaesbenras 4-3
4-3.2 BEHAVIORAL DESCRIPTIONS ....c.oiiiiitiiiririeittsit ettt sttt ettt sttt st enesne 4-4
4-3.2.1 FUNCtioNal DECOMPOSITION ......eiuiitiriiitirtente sttt ettt sb et be bbb e e e et e se e e e e et et eaeebeeaeeaesbennas 4-4
4-3.2.2  TiMIiNG DESCIIPLIONS ......oouiriiiiitirtertertieteste ettt sttt ebe st s bt ebesbesaesbe st e st see e e besee e ene e e e neeneebesaeenesbenees 4-5
4-3.3 STRUCTURAL DESCRIPTIONS ..ottt ettt st ss bbb 45
4-3.3.1 Acceptable Primitive EIEBMENES ...ttt st e sb e 4-5
4-3.3.2 Testability REQUITEIMENLS ......ccoiiiiiiiietirie ettt sb e bbbt e e et se e e e e e e e e e st ebeeaesneebeneas 4-5
4-3.4 TEST BENCH REQUIREMENTS ..ottt ettt sttt 4-6
4-3.4.1 TESE BENCN FUNCLIONS ....oouiiiiiiiiiitiite ittt sb e bbbt e b et et et e e e neeb e beeaesbennas 4-6
4-3.4.2 Test Bench Relationshipsto DeSign MOTUIES ... 4-7
4-35 ERROR MESSAGES ...ttt e bbbttt e bbbt et b et b e 4-7
4-3.6 DOCUMENTATION FORMAT ..ottt sttt sttt ettt sttt bbbt n e 4-7
4-3.7 REQUIRED ANNOTATIONS OF VHDL MODULES .......cccciiieitrrieetseie sttt 4-8
4-3.8 AN EXAMPLE OF A TAILORED DID ...c.octiiiiiiiriieieerisie ettt s 4-8
REFERENGCES...... .ottt ettt b et s£ £ b st s 2 £ b a1 £ £ e b e R 1E 48 beh e e E b bt Rt E e A e b e b e ae s e e b e b et e e e b ebene b e e b ebe e et 4-8
BIBLIOGRAPHY ..ottt ettt b et £ bt e £ £ bR 4 e E b b E b e R4 £ 4 A b e b e e b e bt s e b b e st e e e b eb e e e b 4-9
CHAPTERS
CONSTRUCTION OF BEHAVIORAL VHDL MODELS
5-1  INTRODUGCTION ...iiiiitiiisteteesisteteteseses ettt et se e s st se st b et se b b et e seebeh e e se e b e b et s e e b eb e Rt e e b b e bt e s e b e b e st ne e b et ene e s b b eneneen 51
5-2 CREATION OF VHDL BEHAVIORAL MODELS .......ociiitiriieiei ittt 5-1
5-21 CONSTRUCTING PERFORMANCE MODELS ......ccoiiiitririeiierieieeseses et 5-1
5-2.1.2 Modeling Timing in Performance- and Algorithmic-Level Behavioral Models ..........cccceevecivieeciecenee. 5-2
5-2.1.3 Example of a Statistics Package and ItSUSE .......ccoiiiiiiieee e 5-2
5-2.2 CONSTRUCTING ALGORITHMIC MODELS ......ccooiieiiiirieitenirieieieseses et 5-6
5-2.2.1 Modeling Algorithms With VHDL PrOCESSES .......ccveieriieieitieieeiteeieesteesteseestesseestesseessesssassesssessesnnssneenes 5-7
5-2.2.2 An Example of an AlgorithmiC MOEl ..........coooii e 5-7
5-2.3 CONSTRUCTING INSTRUCTION-SET-ARCHITECTURE-LEVEL MODELS .........ccooooiniinreiceens 5-11
5-2.3.1 MOGENG PrOCESSOIS ......eeviiieeiieiee st sttt ettt ete e te st et s e st e et e saesaeesreeneesaeentesseenteesaenteeseansesseenseennesreaneas 5-11
5-2.3.2 MOGENG MEMOIY ..ottt e e e e st e s te s e e s teeaaesteentesteenseeteenteaneantesseensesnnesneaneas 5-17
5-2.3.3 Modeling Busses and BUS CONIOIEIS ........ccueciieiieiicieic ettt ettt 5-18
5-24 CONSTRUCTING REGISTER-TRANSFER-LEVEL MODELS ........cccoiiiineeeerieeesesieieeses e 5-19
5-24.1 Synthesisof Designs FFOM RTL MOGEIS ......ocouiiiieiieicc ettt s 5-19
5-24.2 AnExampleof aVHDL Register-Transfer-Level MOdel ... 5-20
5-3 VHDL DID SIMULATION REQUIREMENTS FOR BEHAVIORAL MODELS .......cocoiiiirieeirenieeesesieieeens 5-21
5-3.1 CORRECT FUNCTIONAL RESPONSE TO STIMULI ..cotiiiiieiiiirieieerreeeeeses et 5-21
5-3.2 SIMULATION TIMING ..ottt ettt ekttt b ket e b b es 5-21
5-3.3 ERROR HANDLING ...ooiitiitriitetetiitie ettt ettt bbb bbbttt b b 5-21
5-4 TIMING IN BEHAVIORAL MODELS ..ottt bbb bbb 5-22
5-4.1 TIMING SHELLS ...ttt bbbkt b bbbt b ket b b s 5-22
5-4.2  CLOCK RATES ...ttt sttt b bbbt e b bt e bbbkt e bbb e e e b b et st bt et e bbb e s 5-24
5-4.3 CRITICAL PATH DELAY TIMES ..ottt 5-24
5-4.4 BEST-CASE, WORST-CASE, AND NOMINAL DELAY'S ..ottt 5-24
5-45 PARAMETERIZED DELAY MODELS .......ctitiiitiitrsiecen ettt bbbt 5-24
5-4.6 TIMING DEFINITION PACKAGE .....c.octiiiiitiririeiet ettt ettt b s 5-26
5-4.7 TIMING THROUGH FILE INPUT ...ttt bbbttt 5-31
5-4.8 MODELING ASYNCHRONOUS TIMING ...coiiiiiiiiiirinieieisisieitiesesisie ettt 5-32
5-4.9 MODELING SYNCHRONOUS TIMING ....cootirieieiririnieienesisie ettt eb bbb es 5-33
5-5 ANNOTATION OF BEHAVIORAL MODELS ..ottt bbb 5-36
5-5.1 DESCRIPTION OF FUNCTION ...ccociiieiiiiiiiieitienireeietestsisie e sssse et s seses e sese s sessesesessssssessnsns 5-36
5-5.2 DESCRIPTION OF RESTRICTIONS ..ottt ettt sttt eb et b et ene s 5-36
5-5.3 MODELING APPROACH ..ottt stttk bbbttt bbb b s 5-36
5-54 REVISION HISTORY ...ttt et b et b ket e bbb bt b bt e bt s 5-37
5-55 BACK ANNOTATION OF TIMING INFORMATION .....cciieiiinirinieieniresieienesesie e siese s es 5-37



Downloaded from http://www.everyspec.com

MIL-HDBK-62
5-6 USE OF STRUCTURAL HIERARCHY IN BEHAVIORAL MODELS .......cccceoinreieitnnieeeseeeeses e 5-37
REFERENGCES ...ttt ettt bbbt s£ £ b et 2 £ b8 E bR 1E 18 beh e E b bt R e £ e A b b e e e e b ek et e e b e b e ne b e e b eb e e e b 5-38
BIBLIOGRAPHY ..ottt etttk b etk h e E £ bR 4 £ E bR £ E bt Rt £ A b b e E b e bt e e b b ene b b e b eb e e e b 5-38
CHAPTER 6
CONSTRUCTION OF STRUCTURAL VHDL MODELS
B-1  INTRODUGCTION ...ooiiiuiiiriiteiitieseetetesires ettt et seeses et e b b et se s b e b et e s e b eh e e se e b e b e e s e e b b e Rt e e b b e Rt e s e b e b et st s b e b et e s b b ene e es 6-1
6-2 CREATION OF STRUCTURAL VHDL MODELS ......ocoiiiiririieteitenietee sttt 6-1
6-2.1 TRANSLATION OF SCHEMATIC CAPTURE MODELS ......cooiiiiiinrseeene e 6-1
6-2.2 SYNTHESIS OF STRUCTURAL MODELS FROM REGISTER-TRANSFER-LEVEL MODELS ........... 6-2
6-2.3 SYNTHESIS OF STRUCTURAL MODELS FROM FINITE STATE MACHINES ..o 6-2
6-24 ENHANCEMENT OF GATE-LEVEL MODELSWITH GENERATED STRUCTURE ........cccovneinienn. 6-2
6-3 VHDL DID ORGANIZATIONAL REQUIREMENTS FOR STRUCTURAL MODELS ... 6-3
6-3.1 HIERARCHICAL ORGANIZATION OF STRUCTURAL MODELS .......ccccooiieetrnieeeresieeeeseseeieeees 6-3
6-3.2 ALLOWABLE LEAF-LEVEL MODULES .......coocitiettne et 6-4
6-3.2.1 Government-ApPProved MOEIS ..o et be e sae 6-4
6-3.2.2 Modules With Stimulus-ReSpONSE BENAVIOL .......ccuoiuiiiieieiererene e snea 6-4
6-3.2.3 Modules Without Detaill€d DESIQNS ........ccceivieiierieieciesteeee et te e tesra et e ss e te e e sseennesneennas 6-4
6-3.3 VHDL DID ANNOTATION REQUIREMENTS FOR STRUCTURAL MODELS ........ccovirenrnieieeenes 6-5
6-3.3.1 PhySiCal VIEW REQUITEIMENLS .......coiiiiiitiitirie sttt st sbe bbbt s ee e et bese e s e e e e e e esessesaesaen 6-6
6-3.3.2 Electrical View REQUITEIMENTS ........ccciiiiiririiiiriese ettt sae e sae bt e et bese e s e e e e e e e sessesaenneas 6-6
6-3.3.3 Timing View REQUITEIMENES ......coiiiiiii ittt ettt ebesbesae b 6-7
6-4 VHDL DID SIMULATION REQUIREMENTS FOR STRUCTURAL MODELS ......ccoiiiinreeereseeesesieeeeens 6-9
6-4.1 SUPPORT FOR LOGIC-LEVEL FAULT MODELING ....ccocietiririieienreeieienenes et 6-9
6-4.2 SUPPORT FOR TEST VECTOR GENERATION ..ottt 6-10
6-5 TIMING SPECIFICATIONS FOR STRUCTURAL MODELS .....c.ooiiiiitiriicerreei e 6-10
6-6 BACK ANNOTATION OF STRUCTURAL MODELS .......coiiieiitieteere et 6-11
6-6.1 BACK ANNOTATION OF TIMING INFORMATION .....ccsiieiiiniriniienirisieieneses et ssere e sene s 6-11
6-6.2 BACK ANNOTATION OF LAYOUT INFORMATION ...ccociiuiiririnieieniresieieneses et be e ssene s 6-12
6-6.3 BACK ANNOTATION OF TESTABILITY INFORMATION ...ccooiiiiiinirinieienenesiereeesisieie e eees 6-12
REFERENGCES ..ottt etttk se 4 b2 b b £ R 42 £ b e R 1e 8 beh £ £ b e b e R e e e A e b eR e e e r e e b e bt et e e b e b et e s b e b ebe e nn b 6-12
BIBLIOGRAPHY ..ttt bbbt £ h a4 £ 8 b R4 e b bR £ £ b bt Rt e £ A bRt e e e b e b et e e b e b et e b e b eb e e nn b 6-13
CHAPTER 7
PREPARATION OF VHDL MODELSFOR SIMULATION
T-1 INTRODUGCTION ...oiiiiuiiiiieieittieseetetesesee ettt e e ses et se st bt se s b b et s s e e b eh e e se e b b e e 1e e b ek e Rt e e b e b e Rt e s e e b e b et ne e b e b et e s b b ene e es 7-1
7-2 INTEROPERABILITY OF MODELS ...ttt sttt sttt 7-1
7-2.1 USE OF STANDARD SIGNAL DATA TYPES ..ottt 7-2
7-2.2 TYPE CONVERSION FOR DIFFERENT SIGNAL DATA TYPES .....ooooieiinneeeriieeesesie e 7-2
7-2.3 INTEROPERABILITY OF TIMING MODELS ......ccootiieiniisieitenriiee ettt 7-3
7-24 PORTABILITY REQUIREMENTS FOR INTEROPERABLE VHDL MODELS ........cccocoovieennrieieeens 7-3
7-3 TEST BENCH DEVELOPMENT ..ottt stttk bbb bbb b s 7-3
T-3. 1 WAVES ..ottt bbb bt E bR £ A b b E Rk e R bR e bR e Rkttt b e 7-4
7-3.1.1  Standard WAVES PECKAJES .......ceeriririeiiiirieieienises ettt sttt bbbt et n b s 7-7
7-3.1.2 L OCE WAVES PECKAGES .....c.eiereeieiiiisietitsesie ettt sttt st b ettt b s 7-8
7-3.1.3 WAVESTESE SUITES ...cueiieeiiiririetet ittt bbbt b et bbbt bbbt b bbb s 7-8
7-3.2 DOCUMENTATION OF TEST BENCHES .......cocitiiiieitrineiterieiee et 7-10
7-4 TEST VECTOR DEVELOPMENT ..ottt sttt bbbttt 7-10
T-4.1 BEHAVIOR TESTS ...ttt ettt sttt b etk b bt b ket b b st e b bt ne e bkt b et aes 7-10
7-4.2 PROPAGATION DELAY TESTS ..ttt ettt bbbttt b b s 7-11
7-4.3 ERROR CONDITION TESTS ..ottt sttt sttt b ettt b b es 7-11
7-4.3.1 Invalid Operating ConditioN TESES .......ciiiiiiiiriire et et ae e nbea 7-12
7-4.3.2 1INVl INPUL SEBEE TESES ...ttt sttt sttt b e b bbb b s e et et e se e e e e e e et eseesenaenaea 7-12
7-4.3.3 Timing Constraint Violalion TESES ......cccecceiieieiieiiseesieeee et esteseesre e e e ete s e tesraebesss e beesaenseennesneennas 7-12

Vi



Downloaded from http://www.everyspec.com

MIL-HDBK-62

7-4.4 INTEROPERABILITY TESTS ..ot e s
7-45 ORGANIZATION AND DOCUMENTATION OF TEST VECTORS ........ccoooiiiiiiiine e
7-5 USE OF CONFIGURATION DECLARATIONS TO INSTANTIATE THE TEST BENCH
FOR A MODEL ...t e bbb e bbb se e s E b b e e s b e sbesrenn s
7-5.1 SELECTION OF ALTERNATIVE DESIGN LIBRARIES .......ccoociiiiiiiin e
7-5.2 SELECTION OF ALTERNATIVE ARCHITECTURES ......cccooiiiii e
7-5.3 BINDING OF GENERICS ........cooiiiiiii e s s
7-54 PORT MAPPING ...t e e s e e b e sre
7-6 DEFINITION OF SIMULATOR OPTIONS ......ooiiiiiiiitie st s s
7-6.1 CONTROL OVER ENVIRONMENTAL PARAMETERS ..o
7-6.2 SELECTION OF DELAY TYPES ..o e s
7-6.3 CONTROL OVER EXECUTION OF ASSERTIONS .......ooiiiiirn e
7-6.4 CONTROL OVER PROPAGATION OF UNKNOWN SIGNAL STATES ......ccoooiiiiieeieeeeeies
REFERENGCES ..ottt st b e b e s b e e b e e b s R SR e R s b se e s e e e e e e be e b e s b e b sre
BIBLIOGRAPHY e e b e bbb R s R e R s b se e b et nre

CHAPTER 8
MODELING TESTABILITY WITH VHDL MODELS

8-1 INTRODUCTION ..ottt e et h e bbb e bR se e b e b e s e e e e b e e e erenr s
8-2 PURPOSE AND SCOPE OF DESIGN FOR TESTABILITY oo
8-3 TESTABILITY DESIGN ISSUES ...t e e
8-3.1 TEST STRATEGIES AND TECHNIQUES FOR MAINTENANCE AND FAULT TOLERANCE ...........
8-3.2 TESTABILITY MEASURES ...t e s
8-3.3 TEST STRUCTURE BOUNDARIES .......coooiiiiii e
8-34 TEST COMPONENTSAND INTERFACES .......i oo
8-4 MODELING TESTABILITY USING VHDL BEHAVIORAL MODELS .......ccoooiiiiiii e
8-41 EVALUATING TEST STRATEGIES ...
8-4.2 MODELING TEST INTERFACES IN VHDL ....cooiiiiiiiiie e
8-4.3 MODELING TEST CONTROLLER FUNCTIONS ......coiiiieeeeee e
8-44 EVALUATION OF TEST COMMUNICATION AND STORAGE REQUIREMENTS FORBIT .............
8-5 MODELING TESTABILITY USING VHDL STRUCTURAL MODELS ........cccooiiiiiii e
8-5.1 DESCRIPTION OF TEST CIRCUITRY GENERATED FROM STRUCTURAL INFORMATION ..........
8-5.2 SUPPORT FOR FAULT DICTIONARY GENERATION ....ccccciiiiiiiininres e
8-5.3 SUPPORT FOR AUTOMATIC TEST GENERATION ..ot
8-54 SUPPORT FOR COVERAGE ANALYSIS ..o
8-5.5 SUPPORT FOR TEST TIME COMPUTATION ...ttt
8-6 ANNOTATION OF VHDL MODELSWITH TESTABILITY INFORMATION ......cooooiniiiiineiiee e,
8-6.1 ANNOTATION OF STRUCTURAL MODELSTO IDENTIFY LRUS......ccooviiiiinie s
8-6.2 ANNOTATION OF STRUCTURAL MODELSTO IDENTIFY FCRS .....cccviiiiiiiine e
8-6.3 BACK ANNOTATION WITH COVERAGE INFORMATION ......cciiiiiririiinin s
REFERENGCES ... .ottt st b b e e b e b e e b e s R SR e R b se et e e e e s e s be e b e s b e b sre
BIBLIOGRAPHY . e e bbb e h e bR s R e R s b se e b e e et nre

CHAPTER 9
PREPARATION OF VHDL MODELSFOR DELIVERY TO THE DoD

O-1  INTRODUCTION ..ottt e et h e bbb e b b se e b e b e e e e e e b e e b e srenrs
9-2 FILESTOBEINCLUDED IN DELIVERY TAPE ...t
-2 1 LIST OF FILES ... e s e sre
9-2.2 DID OVERVIEW FILE ..o e e e
9-2.3 VHDL ANALY SIS ORDER SPECIFICATION ....ociiiiiiiiiie e
9-24 GOVERNMENT-APPROVED LEAF MODULE VHDL DESCRIPTIONS ......cccooiiiiiiiieeeeeeenens
9-25 REVISED VHDL MODULE LIST oo e s
9-2.6 ORIGINAL VHDL MODULE LIST ..ottt s s
9-2.7 TEST BENCH CORRELATION LIST ..ot s
9-2.8 AUXILIARY INFORMATION FILES ......ooiiiii e
9-2.9 VHDL DESIGN UNIT FILES ..o e s



Downloaded from http://www.everyspec.com

MIL-HDBK-62

9-3 FILENAMING CONVENTIONS ..ottt ettt ettt e s s be e be e st e e b et e sensesessenestens 9-5
9-3.1 NAMING VHDL DESIGN UNIT FILES ..ottt sttt sttt et nesse e 9-5

9-3.2 NAMING AUXILIARY FILES ....ootiiiiieti ettt sttt st saese sttt e e sbe e ebenente e 9-6

9-4 SUGGESTED CODING CONVENTIONS FOR VHDL MODELS ......cccooiiiieerieesees e 9-6
9-4.1 DESIGN ENTITY NAMING CONVENTIONS.......ccceotieirieisieisiesesiesesteseeteseereseesesassessesesseessenessesessesessesens 9-6

9-4.2 PORT-NAMING CONVENTIONS ......coociietiieetirietesiee st sieesteeste s tesesteseeteseesesaesesaesessesessenessanessesessesensesens 9-7

9-4.3 SIGNAL-NAMING CONVENTIONS ....coiiiciiciiieiiiecrietste sttt sttt saetesaesesae s ste e sbenesbeneesesensesens 9-7

9-4.4 PROCESS AND SUBPROGRAM NAMING CONVENTIONS .....cocoviiireetereeienieie sttt sesse e 9-7

9-45 COMMENTING CONVENTIONS FOR VHDL ...cooiiiiiiiiiiieisieisie ettt sttt et et nens 9-7
LS T R 1 =TSRSS 9-7

ST 0 - o (<R SSS 9-7

O0-4.5.3  ENULY INEEITACES ...ocvecie ettt et et ae s s e e e ate s ae e te st e enteese e st e eneanteeneanneennesneeneas 9-7

9-4.5.4  AIChItECIUrE BOMIES .......eeuiiieeie ettt ettt et st e s s reeaae s te e te st e enteeseenteeneenseereeaneennesneeneas 9-8

9-4.55 Configuration DECIAIALIONS ..........c.cieiieeiieeiesieeie et e et este e s e e ae e e tesre e tesseenteeseatesseenseennesneenes 9-8

9-4.5.6  INLEINAl COMIMENLS .....ocuiiiiiiieiieiiesesee st et e s ee e et e et et e e e e te et e saesaeesreeseesteestesseensesseenseeseensesneenseennesneanes 9-8
REFERENGCES ..ottt st tees et te st teseetesaesessesessesessase st ese et eneese e e s e ss e R e e e e b e sees e e es e s en e s e ne b ene e b e e eb e s ebeseebenbebenennentnnes 9-8
211 S L@ A = TSRS 9-8
APPENDIX A ottt sttt sttt sttt sttt sttt et ket E et e Ee e e Rt eA e Rt eA e Rt A e R e e R e R e R e R e e R e e eEenEeEenEeEeneeReneeRenReReeteneeteneete e ete e eteneas A-1
F N 13 G 2 ST B-1
L@ 5L SRR G-1
INDEX .ottt ettt ettt se ettt et e st es b et s e e e s et e se e e st e e st s e e st b e st £ e n e R e At R e At e R e £ e R e A e Rt R e Rt A e Rt R e e e R e e R et e R e R e Rebe R Ee Rt Ee e Ee e tens I-1
SUBJECT TERM (KEY WORD) LISTING .....ctiiiiiisiiirieisteseste et sae sttt sse s sesesaesesaesessenessnsessnnsnsenes ST-1

viii



Downloaded from http://www.everyspec.com

MIL-HDBK-62

LIST OF ILLUSTRATIONS

Figure

No. Description Page
2-1 Functiona Models, Structural Models, and Levels of ADSIFaCtiON ..........ccoceiiriiiiinene e 2-2
2-2 Example Input Image and Edge Magnitude Output of an Edge Detection ProCeSSOr .........ccccoeveeervenieneserenesieniees 2-7
2-3 Hierarchy of Functionsin aBehavioral MOUE ..ottt 2-8
2-4  Image Data Abstractions @and FUNCLIONS .........c.cceiiiiiieie ettt st e st e e sr et e e reensesneenneenes 2-9
2-5 Interface Specifications for an EAge DEteCtion PrOCESSOT ...........cceiriiririrenenere et 2-10
2-6 Behavioral Model for an Edge DeteCtion PrOCESSOK ...........cciiieriieiesiieiesteeeesreeseesteesaesaeesaesaeetesseetesssensesseensesssessesnes 2-11
2-7 Example Functionsfor aBehavioral MOEL ..o bbb e 2-12
2-8 Hierarchy of Componentsin an Algorithmic-Level Structural Model ... 2-15
2-9 A Hardware Block Diagram for the Edge DeteCtion PrOCESSOK .........ccccevievieieeieeseerieseesiesieetesteetesree e ense e sne s 2-16
2-10 Structural Model for an EAge DEteCtiON PrOCESSON .......c..ccveiiiieiieiesteeee e eeesteesaeseeesaesreestesae e tesseetessaentesseensesneensesnes 2-17
2-11 A Hardware Block Diagram for the Window Processor of the Edge Detection Processor .........cccecvvvevieeienieciveneeene 2-17
2-12 VHDL Entity Interface for the WinCQOW PrOCESSOK .........ccveciiiieiiiiiesie st ettt s e sae st te st e e sra e te s enbeeneanneenes 2-18
2-13 VHDL Structura Architecture Body for the Window ProCESSOL .........ccecveviiiieiie et 2-18
2-14 Interface for the HOMZONEAl FIITEN .........ooiiieiie e ettt a e s b b e b b e 2-19
2-15 Behavioral Model for the HOrzontal FIITEr ..ot e 2-19
2-16 Hierarchy of FUNCtiONSiN @ Structural MOGEL ..........c.ooiiiieecce ettt st e enne s 2-20
2-17 Block Diagram of the HOrizontal Filter PrOCESSOF ........cccccciiieiiiiieiiiceeste et eres st e e e e sae st e e s e tesraansesneanneenes 2-21
2-18 Structural Architecture of the HOrizontal FilTer ..o e e e 2-22
2-19 Hierarchical Organization of aMixed Level of Abstraction Model ..o 2-23
3-1 Design Entities, Entity Interfaces, and ArchiteCture@ BOIES ..........coovuveiiiiciie e 32
3-2 A VHDL Entity INterface DECIAIALION .........ccccceieeiieiiee e eteete ettt ste st e sre e e e ae e e aesae e e steentesseentesreenseennanseenes 33
3-3 Example Signal ASSIgNMENt SEAEEMENL .........coiiiiiiiie ettt et e et se b aesaesbesbesaesbe b ee 35
3-4 Example of aRESOIULION FUNCLION .....c.coiiiiiiiiiiiitee ettt bbbt be b bt b sbesbesaesbe b s 3-6
3-5 Example of aBehavioral MOGE ..o bbb st be bbbt b e sbesae b e b s 3-7
3-6 A Structural ArChiteCtUrE BOOY ........cccciiieiiiiie ittt ettt s e e e se e e s te e e e s ae e testeeste st e enteeraenseeneenseanes 3-10
3-7 An Enumerated Type: The IEEE Std 1164 Unresolved LOgiC Data TYPE .....ccoereriirerieriereeieree e e 311
3-8 Entity Interface Declaration With Generic Constants and an AttribULe ..........cceece e 3-13
3-9 Architecture Body USING @n AtLHDULE ..........ooiiieiee ettt sttt s re et e e e enes 3-13
3-10 Example of aPhysical TYPE DECIAIaLiON .......ccciiiiriirie ettt et ae b b sae b b e 3-14
3-11 AN ASSETION SEBLEMENT ...ttt e e ettt e it eb e e b e aeshe e b e bese e e e bese e e e n e e s e e aeebeebeebeeaeebesbesaesbe b es 3-14
3-12 An Example of Error Propagation: IEEE Std 1164 AND Operator Table ... 3-15
3-13 Using a Component Library to Configure a Structural Architecture Body ..........ccocovererenenenereeceeeesesese e 3-17
3-14 Useof Library and Use Clausesto Access EXternal Libraries ........cccocceiiiciiecie st 3-17
3-15 Using Different Architecture Bodiesto SEleCt Lilbraries ........coocvieiiieice et 3-18
3-16 Technology-Dependent Architecture Body Using Configuration SPecifiCations ...........c.ccoeeverereeenienenesenese e 3-19
3-17 Use of Configuration Declarations to Select Alternative Design Libraries .........cccocevviceeveveeveseese e 3-22
3-18 A Reconfigurable ArChiteCtUrE@ BOAY ........cceoiuiiiiiiieiice ettt ettt st e te st et esre et e sreeneesneenneenes 3-23
3-19 Use of a Configuration Declaration to Select Design Entities From aLibrary ... 3-23
3-20 Using a Configuration Declaration to Specify Generic Constant VAlUES ..........ccoevirenenirieiieseeeeeesesesiese e e 3-24
4-1 Logica Structure of aVHDL Test Bench Constructed USINg WAVES ..ot 4-6
5-1 VHDL Package Interface for Statistics for Performance and Algorithmic Models ........cccooevevevicesicececee 5-3
5-2 The Statistics Package Body for Performance and Algorithmic MOdElS .......ocoovvieeie i 5-4
5-3 VHDL Data Type Definitions for a Performance and Algorithmic Model ... 5-5
5-4 VHDL Entity Interface for a Performance and Algorithmic MOdel ..o 5-5
5-5 VHDL Architecture Body for an AIgorithmiC MOAEl ...........ocueiiiiiiicee e 5-6
5-6 Package Declaration for an Algorithmic Model of an FFT ProCESSOF ........cccviieiieieerie et 5-8
5-7 Part of the Package Body for an Algorithmic Model of an FFT ProCessor .........cccceeveieeveveere e 5-9
5-8 The FFT Procedure in the Package Body for an Algorithmic Model of an FFT Processor .........ccccovveeveeienieciesnene, 5-10
5-9 Package Declaration for an Instruction Set Architecture Processor Model ..o 5-12
5-10 Type Conversion Functions for an Instruction Set Architecture Processor Model ..........cooeeieiiiininencnene e 5-13



5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-6
8-1
8-2
8-3
9-1

Downloaded from http://www.everyspec.com

MIL-HDBK-62
Operator Overloading Functions for an Instruction Set Architecture Processor Model ..........ccoeoeiiiiininiininenes 5-14
Program Loading Procedure for an Instruction Set Architecture Processor Model ..........ccovocvvvvece e, 5-14
Entity Interface for an Instruction Set Architecture Processor MOE! ..........ccooveiiiieeii e 5-15
Architecture Body for an |SA-Level Processor MOGE ........c.ccveiiiieiiciese ettt e 5-15
Example Instruction Set Architecture Memory MOGE! .........coooiiiiiie e s 5-17
Example State Transition Diagram for a Bus Interface Unit MOdel ... 5-18
Entity Interface for an Intel BUFfered LatCh .............ooiveii et s 5-20
Synthesizable Architecture Body for the Intel Buffered LatCh .........ccocvveiicicci e 5-20
Entity Interface and Architecture Body for a Functional Model Without Timing ........cccceeveveevvicevesce s 5-22
Package Declaration for aModel That UsesaTiming Shell ..........coooiiiiicececce e 5-22
Function Definition for a Timing Function for a Floating POiNt AEr ........c.ccveeiieiiciece e 5-23
Entity Interface for aModel That UsesaTiming ShEll .......cooiioiiie et s 5-23
Timing Shell ArChiteCIUIE BOOY .........ccviieiiiie ettt et e s ae e s teeae s aeetesteentesteenseereenteeneeseenes 5-24
Best-, Nominal-, and Worst-Case TIMING CUINVES ........ccoieeieiieieieesieseesesaes e saesseesesseessssseessesseessesssessessesssessssssenns 5-25
Package Declaration for aModel That Uses Parameterized TiMiNg ......ccocoveceieeiesierieceesic e ee s eeesneens 5-25
Package Body for aModel That Uses Parameterized TiMiNG ......ccccovivieieriesecieseeieseesieseeseesee e sae e saesseessesseens 5-26
Entity Interface for aModel That Uses Parameterized TIMING .......cccooveeeiirieneciececeseeste e s saesneens 5-26
Architecture Body for aModel That Uses Parameterized TimiNg .......cccoovevivieeieieeie et 5-27
Package Interface for aModel That Uses a Timing Package ........ccccovevieiiiiesicieseee et 5-28
Package Body for aModel That Uses a Timing PaCkage .........ccoveiieiiiieiecesece ettt st nre s 5-29
Package Declaration for aModel That Uses File /O for TIMING ......ccovvoueierieseeiesiee et ae s s sreens 5-31
Package Body for aModel That UseS File 1/O fOr TIMING .....cccveviiieiiie ettt sre e st ae e sreens 5-31
Entity for aModule That UseS File [/O fOr TIMING .....cccuviieie ittt ae e enaenreens 5-32
Potential Asynchronous TimiNg CONSITAINTS ......ccccuiiieiieiieie et e e re e e s reeseesaeesressaesressaesresseansenns 5-33
Potential Synchronous TiMiNg CONSIFAINTS .......cccvecuiiieeiiiecre st e e re et e s reesaesaeesresaaestessaesressnansenns 5-33
Package Interface That Checks Synchronous Timing CONSITAINES .........c.ccveievieeiiisieic e s 5-34
Procedure Body That Checks Setup Time CONSLIAINTS ......c.ioieierieieireee ettt s see s 5-34
Procedure Body That Checks Hold Time CONSIFAINES ........ccccviievieiieieiiesesees e ete st et e reeae e seesaeesaesaestessae e enaenseens 5-35
Entity Interface That Checks Timing CONSITAINES ......cccviieiiiie e srese e sre e e sreeae e enaenreens 5-35
Annotation of aVHDL Package Using Header COMIMENES ........cccveiieieiicee ettt sttt e nne s 5-36
Typical Physical Hierarchy of an Embedded EIECtroniC SYSIEM .......cocoiiiiiiiineie s 6-3
EIA 567 PhysiCal VIeW OrganiZaLION .........ccccccveieeiiieeieeseesieseesiesee e sseestessaestesssessesssesseessesseessesssessssssessessesssesssnssenns 6-6
EIA 567 Electrical VIiew OFganiZaLiON ...........cccueeeeuiieeiieseesieseesesees e ssaestesseesseessesseessesseesssseessessesssesssessessesssesssnssenns 6-7
EIA Timing VIeW OrganiZation ...........ccecueiieeieseeiiseeseeseeste st esesees e ssaestessaessesssessessssaseesesseessesseessessesssessesssessannsenns 6-7
A A BN S Y, FaTo (= @ o=z (] o SRS 6-9
Extrinsic Timing Delay VHDL MOGE .......coo ittt ettt s sa e s s tesnaesbessaesreennenreens 6-11
Slice and Frames Of @WAVEFOIN ........oiuiiieee et ettt he bbbt b e b e e e et ne e e e e e e e eneas 7-5
Dependencies BEtWeen WAV ES PACKAgES ........cccoiiiiiiiiiiieie ettt sttt ebe s sbe st e e e 7-6
Partitioning of WAVES PackageS inNtO LIDIariEs .......cveiiiieie ettt sttt ae e enaenneens 7-7
Library Structure Of WAV ES PACKAOES ........ccveiieiiiicie st sie sttt st sae et este et e seeaesseessesaeessesnaessesseessesssensenns 7-8
EXaMPIE WAVES HEAAEYN Fl@ ...t bbbttt b et ae b st e e nas 7-9
EXaMPIe WAVES EXIEINGl FIlE ...ttt ettt b et ae bbb e nas 7-10
A Taxonomy of Design for Testahility SIrat@QiES........cciviieiiiieieceere e e b e e nre s 8-2
A Taxon0mMY Of TESE MEASUIES........cccueieieeiteiieesteete st e e s e e te st e et e ete e teeseessesseessesseesseaaeesseesaesseensesteensenteenseaseanseaneensennes 8-3
A Hierarchy of Test CONtrollerS and BUSSES..........cceiiiiieiicie ettt ettt ae s steste e tesra e besreentesneenneenes 84
Directory Structure and File Names for Sobel Algorithm Library ..o 9-5



Downloaded from http://www.everyspec.com

MIL-HDBK-62
LIST OF TABLES
Table
No. Description Page
2-1 Features of Behavior, Structure, and Timing and Different Levels of Abstraction...........ccccceceveeievicceseccc e, 2-3
6-1 Internal (Pin-to-Pin) Delay SPECITICAIONS........ccuiiiiiireii ettt b b ettt se et e e se e sne e 6-10
8-1 Testability Functions, Components, and Interfaces for a Physical Design Hierarchy ..., 8-5

Xi



Downloaded from http://www.everyspec.com

MIL-HDBK-62

LI1ST OF ABBREVIATIONSAND ACRONYMS

A

AC = dternating current

ALU = arithmetic and logic unit

ANSI = American National Standards I nstitute
ASCIl = American standard code for information inter-

change

ASIC = application-specific integrated circuit

ATE = automatic test equipment
ATPG = automatic test pattern generator

B

BIM = businterface module
BIT = built-in test
BIU = businterface unit
BSDL = boundary scan definition language

C
CAD = computer-aided design
CAE = computer-aided engineering
CALS = computer-aided acquisition and logistics sup-
port
CDR = Critical Design Review
CDRL = contract data requirements list
COTS = commercial off-the-shelf
CMOS = complementary metal-oxide semiconductor
CPU = central processing unit
CSP = communicating sequential process

D
DASC = Design Automation Standards Committee
DESC = Defense Electronics Supply Center
DID = dataitem description
DoD = Department of Defense

E
ECAD = electronic computer-aided design
EDIF = electronic design interchange format
EDS = electronic data sheet
EIA = Electronic Industries Association
ESD = electrostatic discharge
EW = electronic warfare

F

FCR = fault containment region
FDIR = fault detection, isolation, and recovery
FFT = fast Fourier transform

Xii

FIFO
FSM

HSDB
HW
HWCI

IEEE
IGES
IR
110
IPC

JTAG

LRM
LRM
LRU
LSSD

MCM
MUT

NMOS

PDR

Pl
PLA
PMS

QPL

RFP
ROM
RTL

= firstin, first out
= finite state machine

H
= high-speed data bus
= hardware
= hardware configuration item

I
= integrated circuit
= Ingtitute of Electrical and Electronic Engineers
International Graphics Exchange Standard
infinite impul se response
input/output

Ingtitute for Interconnecting and Packaging
Electronic Circuits

= instruction set architecture

J
= Joint Test Action Group

L
= language reference manual
= line-replaceable module
= line-replaceable unit
= |evel-sensitive scan design
M

multichip module
module under test

N
negative metal-oxide semiconductor

P
= Preliminary Design Review
= processor interface
= programmable logic array
= processor memory switch

Q
qualified products list

R
= reset
random-access memory
request for proposal
read-only memory
register-transfer level



Downloaded from http://www.everyspec.com

S =set
SA/0 = stuck at zero
SA/1 = stuck at one
SDF = standard delay format
SPSP = special-purpose signal processor
SW = software

TAP = test access port

TIREP = Technology Independent Representation of
Electronic Products

TMS = test mode select
TRR = Test Readiness Review

MIL-HDBK-62

Xiii

UUT = unit under test

Y
VHDL = very high-speed integrated circuit (VHSIC)
hardware description language
VHSIC = very high-speed integrated circuit
VITAL = VHDL initiative toward ASIC libraries
VLSl = very large-scale integrated
VML = VHDL modd library
V&V = validation and verification

w

WAVES = Waveform and Vector Exchange Specification
WGP = waveform generator procedure



Downloaded from http://www.everyspec.com

MIL-HDBK-62

CHAPTER 1
INTRODUCTION

The goals, scope, and intended audience of the handbook are described in this chapter. Included are references
to industry standardization efforts related to the goals of this handbook. Also provided is an overview of each

chapter of the handbook.

1-1 PURPOSE

This handbook describes the use of the very high-speed
integrated circuit (VHSIC) hardware description language
(VHDL) to document the design of military digital electron-
ic systems. This handbook is designed to help Government
personnel involved in the acquisition of military digital elec-
tronic systems understand the following issues rel ated to the
use of VHDL modelsto document military digital electronic
systems:

1. What VHDL models are required to be delivered
with a contract? In particular, this handbook discusses the
guidelines described in MIL-HDBK-454 (Ref. 1) and the
requirements of the VHDL data item description (DID)
(Ref. 2). (The VHDL DID provides comprehensive require-
ments for VHDL models that include the need for extensive
auxiliary and testing support files. This handbook contains
approaches to structuring VHDL models so that DID
requirements and intent can be met without an excessive
number of auxiliary and testing support files. Government
personnel can use information in this handbook to tailor
definitions of items in the DID to fit their project needs.
Contractors can use the information to propose the organi-
zation and content of VHDL models they will deliver to the
Government.)

2. Which VHDL models should be developed during
the different stages of the lifetime of a system? The Depart-
ment of Defense (DoD) requirements now mandate deliv-
ery of VHDL models after a system or chip has been
fabricated and is ready for deployment, but VHDL models
have great potential to support the evaluation of system and
chip designs before fabrication is started. The types of
VHDL models appropriate for delivery early in the system
design process are discussed in this handbook. This infor-
mation may be useful to DoD personnel during the prepara-
tion of requests for proposals (RFPs). This handbook may
also be useful to DoD personnd in preparing phased devel-
opment programs for which multiple awards are made in
the early phases of the program to prepare competing
designs (which should include VHDL models of the
designs).

3. How can VHDL models be structured to be con-
sistent with modeling standards? It is of critical importance
to the DoD that VHDL models of compatible pieces of
hardware are themselves compatible. Because VHDL is
such an expressive language, different descriptions may not
be easily interfaced if standards for defining interfaces are
not observed. Guidelines and reference modeling standards

to ensure compatibility between VHDL models are
described in this handbook. In particular, standards for
descriptions of test vectors such as the Waveform and Vec-
tor Exchange Specification (WAVES) standard (Ref. 3),
standard bus interfaces such as the Institute of Electrical
and Electronics Engineers (IEEE) Standards 1149.1 (Ref. 4)
and 1149.5 (Ref. 5) or test and maintenance, and standard
data-type descriptions such as IEEE Standard 1164 (Ref. 6)
are discussed.

1-2 SCOPE

Useof VHDL to model military digital el ectronic systems
is described in this handbook. In particular, this handbook
addresses the development of models compliant with the
VHDL DID (Ref. 2) and MIL-HDBK-454 (Ref. 1). Digital
electronics are only part of most military systems. Most
modern weapons platforms use sensors and actuators that
aretightly coupled with the digital electronic systems; how-
ever, the modeling of these sensors and actuators is outside
the scope of this handbook. Many military electronic sys-
tems have both digital and analog components. The model-
ing of only the digital components is discussed in this
handbook. Researchers are currently exploring the use of
VHDL for analog components and considering changes to
the language to allow VHDL to better support modeling of
analog and hybrid components and subsystems. Although
VHDL models are frequently used to provide test beds for
testing software before the hardware i s fabricated, this hand-
book does not discusstheissues of devel oping tests for soft-
ware.

The handbook is not intended to provide a working
knowledge of VHDL. On the other hand, the handbook in-
troduces VHDL terms and concepts so it can serve as a
stand-alone reference document for readers familiar with
VHDL.

1-3 INTENDED AUDIENCE

This handbook isintended for use by DoD personnel who
are writing requests for proposals for digital electronic sys-
tems, DoD contractorswho are developing VHDL modelsto
be delivered to the Government, and DoD personnel or inde-
pendent validation and verification contractors who are
evaluating or reviewing models that have been delivered to
the Government. DoD personnel include people who are
writing RFPs for the development of digital electronic sys-
tems, are serving on proposal review teams, are negotiating
the deliverables and tailoring the DIDs associated with a

1-1
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contract, are part of Government validation and verification
(V&V) teams, or arein government | aboratoriestracking the
evolution of technology for the design of digital electronic
systems. VHDL tool vendors or VHDL library vendors may
a so find this handbook useful in terms of understanding the
needs of DoD contractors.

Users of this handbook should have some formal training
or some experience with electrical engineering and/or com-
puter science and should have experience reading and writ-
ing VHDL models.

Although the user does not need a complete understand-
ing of VHDL to read this handbook, he or she will need to
understand VHDL to implement the suggestions made in
this handbook and to understand the example VHDL pro-
grams.

1-4 HISTORY, PURPOSE, AND SCOPE OF
VHDL

1-41 HISTORY OF VHDL

The VHSIC program was created to ensure that the digital
microelectronic systems in the weapon systems fielded by
the DoD would be at least comparable to state-of-the-prac-
tice commercial technology. Over its 10-yr lifetime this pro-
gram developed tools and technology for the design,
manufacture, and use of state-of-the-art integrated circuits
(ICs).

At the start of the VHSIC program in 1980, the DoD was
already experiencing a problem with the obsolescence of
ICs. VHSIC studies (Ref. 7) indicated that by 1990, 80% of
nonmemory ICsin military electronic systemswould be ap-
plication-specific integrated circuits (ASICs). At the same
time the VHSIC studies also indicated that the average life-
time of a fabrication process would be two years. Since the
acquisition process for DoD systemswas seven to ten years,
amagjority of the ICsinaDoD system would be obsolete be-
fore the system could be fielded.

VHDL began as a research effort under the DoD
VHSIC program to document fully the DoD digital sys-
tems (Ref. 8). As experience with the language was
gained, the language was improved by incorporating addi-
tional features. The language was subsequently standard-
ized by the IEEE and adopted by the American National
Standards Institute (ANSI) as ANSI/IEEE Std 1076-1987
(Ref. 9). This standard was updated in 1994 by IEEE Std
1076-1993 (Ref. 10).

1-42 THE PURPOSE OF VHDL

VHDL was devel oped to provide a standardized language
to describe formally the behavior and structure of DoD dig-
ital electronic systems (Ref. 8). These descriptions serve as
a procurement device by specifying exactly what functions
a new device would have to perform in order to replace an
old device. Through simulation of these descriptions the
ability of the design of anew deviceto perform the samere-
quired functions asthe old device can be more accurately es-

timated before being physically verified. Furthermore, the
VHDL descriptions may contain timing information. As a
result, the performance of competing designs can be com-
pared before the devices are built. This performance smula-
tion provides an ability to perform an impartial assessment
of proposalsfor integrated circuitsand for complex electron-
ic systems containing many ICs.

Because VHDL has been standardized, it is now being
used as the primary hardware description language for com-
mercial computer-aided design (CAD) vendors, and it is
likely that this trend will continue. VHDL is also coming
into use as an exchange standard between tool sets provided
by different vendors.

As previoudly stated, VHDL was developed to serve the
need of the DoD to document the functionality of digital
electronic systems delivered to it by the defense industry
(Ref. 8). Thisdocumentation isrequired to procure new sys-
tems and to assist in the maintenance of fielded systems.
VHDL provides a powerful, technology-independent way to
describe a wide range of electronic hardware systems from
individual integrated circuits to large multiprocessor sys-
tems. It supports top-down and bottom-up design methodol-
ogies or mixtures of the two.

For new systems a VHDL model can be provided by the
DoD that specifies the exact functional behavior desired of
the system. This description can then be offered to potential
bidders for competitive procurement. Bidders can be re-
quired to submit VHDL models of their proposed designs,
and these can be simulated and compared with the original
DoD model. The VHDL models could be evaluated as part
of the overall proposal evaluation process. This step ensures
that bidders understand the functions the system is to per-
form and that the designs will meet functional requirements.

VHDL also provides important benefits after a system is
fielded. Asfielded systems fail and are repaired, additional
spare parts must be acquired as stocks of original spare parts
are exhausted. For electronic systems this need requires that
the DoD provide, among other things, a complete functional
specification of the desired parts to potential bidders. This
functional specification must be technol ogy independent be-
cause it is often impossible or excessively expensive to ac-
quire parts in the origina technology; thus it becomes
desirable to reimplement the function in a different technol-
ogy. Technology independence permits the separation of the
behavior function (plus timing) from its implementation,
which makes incorporating new technologies easier.

Until the advent of VHDL there was no standard way to
provide this functional specification. Documentation deliv-
ered with the original systems was usually in a technology-
dependent, proprietary format that was not supportable long
term. This obsolescence rai sed the cost and technical risk of
reprocuring new parts because using technically obsolete
engineering data is expensive and time-consuming. VHDL
offersthe technical meansto provide functional, timing, and
other specifications for digital electronic systemsin aform
that will be useful long after the original systemisdelivered.
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1-43 THE SCOPE OF VHDL

VHDL supports describing hardware at many levels of
abstraction from an entire system composed of individual
racks of equipment down to gate-level descriptions of inte-
grated circuits. VHDL includes primitive functions for gate-
level operations. VHDL supports processes, a rich data ab-
straction facility, and synchronization capabilities for algo-
rithmic descriptions. VHDL allows different levels of
abstraction to be mixed in the same description, and this
flexibility can reduce both the amount of timefor simulation
and the introduction of unnecessary detail. VHDL aso pro-
vides for the specification of detailed hardware timing re-
quirements. Timing specification is particularly important
when the VHDL description represents a hardware compo-
nent that must be integrated with other components, asisal-
most always the case. VHDL aso supports annotating
designs and allows the user to specify physica types and
their units, which can be used as attributes for a design.

The DoD is actively incorporating VHDL requirements
into procedures used to develop military electronic comput-
ers. VHDL isrequired documentation under Guideline 64 of
MIL-HDBK-454, which defines the requirements for
VHDL descriptions to accompany any digital electronics
that are being added to the DoD qualified products list
(QPL). A data item description, DI-EGDS-80811 (Ref. 2),
defines the detailed characteristics of a VHDL model to be
delivered to the Government. VHDL models of systemswill
become part of the Computer-Aided Acquisition and Logis-
tic Support (CALS) Program (Ref. 11) usage guidelines.

1-5 RELATED INDUSTRY STANDARDS

Realizing the benefitsfor customers of standardized mod-
els and modeling languages, the electronics industry is de-
veloping commercial standards for electronic systems. This
is acontinuing process. For example, the IEEE requires up-
dates of its standards every five years.

The DaD recognizes and strongly supports VHDL stan-
dardization efforts, including the following: (1) the IEEE
VHDL (1076) standardization, (2) the IEEE Design Auto-
mation Standards Committee (DASC) standards, (3) the
Joint Test Action Group (JTAG) definition of test interface
standards, including the IEEE 1149.1 boundary scan test bus
and the |EEE 1149.5 test and maintenance bus, aswell asthe
Boundary Scan Definition Language (BSDL) (Ref. 12), a
VHDL style that describes implementations of IEEE Std
1149.1 boundary scan test circuitry, (4) the IEEE 1164 stan-
dard logic package, and (5) the IEEE 1029.1 WAVES test
vector standards.

The IEEE has adopted and standardized VHDL as IEEE
Std 1076 (Ref. 10). The standard is the VHDL Language
Reference Manual (LRM). The VHDL DID requiresthe use
of IEEE Std 1076. This handbook uses the VHDL LRM as
its definition of VHDL. |EEE standards are revised approx-
imately every five years; therefore, the IEEE VHDL stan-
dard released in 1988 was revised in 1993. The revised
VHDL standard is the DoD-required standard until it is

againrevised. The LRM isdescribed in more detail in Chap-
ter 3.

The IEEE DASC is developing standards to support the
interoperability of VHDL models. One aspect of this effort
is|EEE Std 1164, which defines a standard set of values for
signals that includes values for unknowns and high-imped-
ancevalues. |IEEE Std 1164 isdiscussed in Chapter 7. A sec-
ond aspect is the VHDL initiative toward ASIC libraries
(VITAL) (Refs. 13 and 14), which is developing a standard
for usein the sign-off processfor chip designsby fabrication
vendors.

The JTAG isdeveloping astandard VHDL practiceto de-
scribe implementations of the IEEE 1149.1 boundary scan
test circuitry (Ref. 4). This practice provides a method used
to describe modifications to alow-level structural model of
an integrated circuit in order to incorporate the circuitry re-
quired for aboundary scan built-in test capability. The IEEE
1149 series of standards is discussed in Chapter 8.

The WAVESIEEE Std 1029.1 (Ref. 3) isintended to cre-
ate a standard representation of test vectors or waveforms
for electronic devices. It uses features of VHDL to describe
procedures used to generate test vectors and waveforms and
to describe methods used to ensure the output of the module
under test matches the required output. WAVES provides a
common format used to describe test vectors for many dif-
ferent automatic test equipment (ATE) machines and acom-
mon output format for automatic test pattern generation
software. This standard reducesthe amount of work required
to interface ATE machines with many VHDL parts models.
MIL-HDBK-454 (Ref. 1) states that the VHDL models de-
livered to the Government should be compatible with
WAVES and requires the use of WAVES for any test vec-
tors or waveforms delivered with the model. The WAVES
standard is discussed in Chapter 7.

1-6 OVERVIEW

In Chapter 2 the use of hierarchiesin modeling computer
hardware is discussed, and the concepts of behavioral and
structural models of electronic systems are described. These
concepts are essential to VHDL models compliant with the
VHDL DID. Models with mixed levels of abstraction are
discussed. Also discussed isthe use of simulation to support
functional correctness checking and performance evaua-
tion. Examples of these concepts are presented.

In Chapter 3 the use of VHDL to capture the structure and
behavior of electronic computers is discussed. Aspects of
VHDL that support the reuse of VHDL models are present-
ed. The development and use of libraries of VHDL descrip-
tions for reuse of both VHDL programs within a model and
between models, as well asthe annotation of VHDL models
with descriptive information, are described.

Chapter 4 discusses two Government documents con-
cerning the use of VHDL: MIL-HDBK-454 (Ref. 1) and the
VHDL DID, DI-EGDS-80811 (Ref. 2). The need for VHDL
descriptions of all application-specific integrated circuits
and all digital electronic components on the DoD qualified
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products list is discussed. The required structure and con-
tents of VHDL descriptions provided to the Government, as
defined by the VHDL DID, are presented. In particular, the
requirement for both structural and behavioral models of
each component of an electronic subsystem is described.
This chapter provides guidelines to be used to tailor the
VHDL DID and discusses an example of atailored VHDL
DID. This chapter also contains required annotations for
VHDL models.

Chapter 5 contains a description of the construction and
use of behavioral VHDL models. Common techniques used
to create behavioral VHDL models, specify the timing for
behavioral models, and annotate behavioral models are de-
scribed. Also discussed are the usefulness of behavioral
models in top-down design and the simulation of models
with mixed levels of abstraction.

Chapter 6 discusses the construction and use of structural
VHDL models. Common techniques used to create structur-
a VHDL models, including automatic synthesis and sche-
matic capture, are described. Applications of structural
models for hybrid model simulation, physical design, test-
ability analysis, and annotation with layout and testability
information are also described in this chapter.

The preparation of VHDL models for simulation is de-
tailed in Chapter 7. The process of configuring amodel from
libraries of component descriptionsis described. Techniques
that support the interoperability of models are emphasized.
In component libraries these models can be combined freely
to provide hybrid structural and behavioral models of sys-
tems. The development of test benches and test vectors to
check the correctness and completeness of the model rather
than the development of test vectorsto check the correctness
of the component design isdiscussed. Also discussed arethe
use of parameterized timing models and the selection of tim-
ing options for simulation.

Chapter 8 discusses issues surrounding VHDL modeling
of the test and diagnostic functions of digital electronic sys-
tems. This chapter describes measures of and techniques for
testability and describes different levels of testability based
on the |IEEE 1149 hierarchy of testing interfaces. The use of
behavioral modeling to verify that the test bus and test con-
troller systems respond properly to error conditions detected
by on-chip BIT without requiring gate-level implementation
detailsis emphasized. The use of detailed structural models
as the starting point for built-in test structure generation,
such as boundary scan, is discussed. This chapter also em-
phasizes that detailed structural models are necessary for
evaluation of many testability measures.

Chapter 9 describesthe preparation of aVHDL model for
delivery to the Government. The contents and organization
of the files delivered to the Government, as specified in the
VHDL DID, are described. The files that must be delivered
include not only the VHDL source models but also test vec-

* Association for Computing Machinery

tors, annotations, certain other external files, and documen-
tation. Chapter 9 also includes recommendations for VHDL
model style and recommendations for naming files and or-
ganizing libraries.
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CHAPTER 2
HARDWARE DESCRIPTION CONCEPTS

As digital electronic systems approach complexity levels of hundreds of millions of devices, the hardware archi-
tect needs techniques to reduce the design complexity to an understandable level without eliminating any design
detail. Two mechanisms used to control complexity are hierarchy and abstraction. Techniques that create models
of hardware by using hierarchy and different levels of abstraction are described. The concepts of structural and
behavioral models of digital electronic systems are essential to very high-speed integrated circuit (VHSC) hard-
ware description language (VHDL) modelsthat comply with the VHDL data item description (DID); these concepts
are described in this chapter. Models with mixed levels of abstraction, in which a hierarchical model of a system
contains behavioral elements at different levels of abstraction, are discussed. Also discussed are the uses of sSimu-
lation to support functional correctness checking and perfor mance evaluation. Examples of these concepts are pre-

sented.

2-1 INTRODUCTION

A hardware design is usually developed by constructing a
series of models that become less abstract (and thus more
implementation specific) as the design process progresses.
This iterative design process is known as top-down design.
The goal of this process is to allow the hardware architect
the flexibility to construct and evaluate models of very dif-
ferent design alternatives rapidly during the early stages of
the design process. In the later stages of the process, the
models become more detailed, more accurate, and more dif-
ficult and expensive to change and evaluate. Thus in these
later stages the architect cannot explore as many options.

Before a hardware design begins the project manager
must specify milestones, i.e., when models of the design are
to be completed, verified, and evaluated. Evaluation occurs
as part of atradeoff between different designs or as part of
the verification of the correctness of the design. Models may
be verified by simulating the model s and comparing the ssim-
ulation results with expected results or against each other.
When the project manager specifiesthe milestones, heor she
must clearly indicate for each milestonethe level of abstrac-
tion of the model to be delivered, the approach to verifica
tion to be used, and the types of evaluationsto be performed
on the model. For a military contract these milestones are
specified in the contract data requirements list (CDRL) and
its associated DIDs. This chapter discusses some possible
levels of abstraction that can be provided for hardware mod-
els. This chapter also describes the two types of models
identified in subpar. 10.2.1 of the VHDL DID (Ref. 1): be-
haviora and structural models. Discussion of design meth-
odologies is beyond the scope of this handbook.

Hierarchy is a method of controlling the complexity of
hardware models. A hierarchical description decomposes a
hardware module into modules of lesser complexity and
specifies how these modul es are connected together. A mod-
ule represents a logical or a physical part of a larger hard-
ware system. Interconnections represent the electrical
connections between modulesthat are used to carry informa-
tion. Hierarchies can be organized functionally or physical-
ly. Hierarchy also provides a means for incrementally

developing and validating the design in atop-down fashion.
In a top-down design process the hardware is partitioned
into a collection of interconnected modules, behavioral
models are created for each of the modules, and the com-
plete model is verified. A second iteration of design is per-
formed by partitioning each of the top-level modules into
their components and then verifying the refined model.

Both behavioral and structural models can be devel oped
for the same digital system. These models serve different
purposes. A behavioral model describes the functions and
timing of the system independently of any specific imple-
mentation. Subpar. 10.2.1 of the VHDL DID (Ref. 1) re-
quires delivery of a behavioral VHDL model of the entire
system and delivery of a behavioral model of each module
of the system. A behavioral model is often classified in
terms of itslevel of abstraction, which is determined by the
functions it performs, the data types used in the model, and
the level of granularity of the events that determine its tim-
ing.

A structural model describes the physical structure of a
specificimplementation by specifying components and their
interconnections. Components are described either structur-
ally or behaviorally. Structural models of components create
another level of hierarchy. A component of astructural mod-
€l described behaviorally is called aleaf module. The level
of abstraction of a structural mode! is the same as the level
of abstraction of itsleaf modulesif the leaf modulesall have
acommon level of abstraction. If astructural model has |eaf
modules with different levels of abstraction, the structural
model isamixed level of abstraction model. Subpar. 10.2.1
of the VHDL DID (Ref. 1) requires delivery to the Govern-
ment of astructural VHDL model of ahardware system. The
leaf-level models of the structural model must meet specific
requirements described in the VHDL DID. In the top-down
design process the behavioral models at a given level be-
come the reference models for the various choices of struc-
tural models at that level. These intermediate behavioral
models should be delivered along with the subsequently cre-
ated structural models.
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2-2 LEVELSOF ABSTRACTION IN MOD-
ELSOF DIGITAL ELECTRONIC SYS-
TEMS

2-21 OVERVIEW

Several levels of abstraction are commonly used during
the design of digital electronic systems. There are no hard
and fast boundaries between levels, but standardization ef-
fortsand common usage are beginning to develop widely ac-
cepted definitions. For example, Institute of Electrical and
Electronics Engineers (IEEE) Std 1164 (Ref. 2) defines data
types and functions for the gate level of abstraction. The
VHDL initiative toward ASIC libraries (VITAL) (Ref. 3)
definesthe level of granularity of timing for thislevel of ab-
straction.

Fig. 2-1 illustrates the relationship between structural,
functional, and timing representations. Fig. 2-1 also shows
three orthogonal axes of hardware description: functional,
structural, and timing.

In Fig. 2-1 the origin represents little or no fidelity in the
model; the fidelity of the structure, function, and timing as-
pects of the model increase along their respective axes. If
any one of the three axesis deleted, one plane remains. Thus
the three planes that can be created are also important. Be-
havioral models include function and timing but provide no
fidelity in their representation of structure. This lack of
structural fidelity does not mean that the behavioral models
do not have structure but that the structure of a behavioral
model does not faithfully represent the physical structure of
the hardware being modeled. Similarly, performance mod-

els faithfully represent the structure and timing of a hard-
ware system but do not represent the functionality of the
hardware being modeled with any fidelity. Thefinal planeis
that of functional models with structure but without any fi-
delity in the timing of the system. Delta delay models, i.e.,
the delay of an operation is represented with the smallest
possible delay describable in VHDL, are used for this pur-
pose. In atop-down design the designer develops a series of
models of the system with increasing fidelity. Fig. 2-1 is
similar to Gagski’'s Y-chart (Ref. 4) but (following the
VHDL DID) does not distinguish between structural and
functional domains. Instead it distinguishes timing as a sep-
arate axis.

Table 2-1 lists some of the levels of abstraction in com-
mon use. (Table 2-1issimilar to other tablesin the literature
(Refs. 5, 6, and 7).) In atop-down design process the hard-
ware architect starts at the level of abstraction that makes
sense for the design problem to be solved. Models at lower
levels of abstraction are used for the incremental refinement
of themodel. The gatelevel isthe lowest level of abstraction
typically usedinaVHDL design. At thelowest level thedig-
ital electronic systemisnot treated asadigital system at all.
Instead the circuits are modeled as analog devices, and the
waveforms produced by the system are currents and voltag-
es, not logic values. Although there has been experimental
work in modeling analog systems using VHDL, it is not
common practice. Other tools, such as SPICE (a public do-
main integrated circuit simulation program), are used at this
level of modeling.

Function
DELTA
DELAY
BEHAVIORAL MODELS
MODELS Fidelity
Fidelity Structure
Fidelity
PERFORMANCE
MODELS
Timing

Figure2-1. Functional Models, Structural Models, and L evels of Abstraction
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TABLE 2-1. FEATURES OF BEHAVIOR, STRUCTURE, AND TIMING AND DIFFERENT
LEVELSOFABSTRACTION

LEVEL OF
ABSTRACTION

TYPICAL BEHAVIORAL
MODEL FUNCTIONS

TYPICAL STRUCTURAL
MODEL COMPONENTS

TYPICAL TIMING
MEASURES

Network Message send Processors memories Message response time
Message receive Network elements

Algorithmic Signal processing Processors Throughput
Primitive operations Memories
(e.g. filter, fast Fourier transform) Busses

Instruction Set Instruction level functions Program-accessible registers | Instruction times

Architecture (e.g. Add, Mpy)
Register Transfer Register-arithmetic and logic unit Registers Clock times
(ALV) Internal busses

Register operations ALUs
(e.g. Load Accumulator)

Gate Boolean operations Gates Gate delays
(e.g. AND, OR, NOT) Flip-flops

Analog Differential equations Transistors, resistors, etc Actua time

2-22 NETWORK MODELS

The highest level of abstraction represented in Table 2-1
is the network model, also known as a processor memory
switch (PMS) model (Ref. 8). The primitive components of
astructural model at thislevel of abstraction are processors,
memories, and switches; switchesincludeinterface modules
as well as switching components in a switched network or
routing componentsin a packet switching network. Thetime
units used are application specific but are related to the re-
sponse time of the hardware to application stimuli and to
throughput rates for application-specific units of work. This
level of model is usually developed in order to make
tradeoffs between alternative system architectures and to as-
sess the risk of a design by finding potential bottlenecks or
weak pointsin the design. It may also be used as a proof of
concept to demonstrate that an architectural concept isfeasi-
ble. Thislevel of model may also be used to specify interface
protocols for components and to demonstrate that the com-
ponents will be able to work together. A model at this level
may become the arbiter for deciding whether variations in
designswill be tolerated.

Thisisthelevel of abstraction at which two special forms
of VHDL models are often created and used: performance
models and interface models.

2-2.2.1 Performance Models

Performance models at this level are used to understand
and balance the processing load and the input/output (1/0)

requirements of multiprocessor systems and their intercon-
nects.

Performance models may provide only timing informa-
tion and thus may not simulate the functions of the system.
The designer can use these modelsto estimate responsetime
and component utilization and to find potential performance
bottlenecks in a design.

A performance model is useful for demonstrating the fea-
sibility of a system architecture, but it is not a sufficient be-
havioral model for delivery under the terms of the VHDL
DID. However, a contract monitor could require a perfor-
mance model during the concept exploration stage of the de-
velopment of aweapon system.

2-2.2.2 Interface models

Interface models* combine high-level and incomplete
models of the processor and memory components with de-
tailed and complete bus or network interface modules. The
model of aprocessor used in an interface model is designed
to provide appropriate workloads for the busses or intercon-
nectsin termsof the size and frequency of messages sent and
received. On the other hand, the model of the interface is
very detailed, and the function and timing are accurate spec-
ifications of the interface protocol.

Even though an interface model is useful for demonstrat-
ing the compatibility of components, it isnot asufficient be-
haviora model for delivery under the terms of the VHDL
DID. However, acontract monitor could request aninterface
model during the concept exploration stage of the develop-
ment of aweapon system.

*These models are also known in industry as bus functional models.
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2-23 ALGORITHMIC MODELS

An algorithmic model describes the functions of asystem
in a“program-like” or algorithmic manner. Because the in-
puts and outputs of an algorithmic model are not usually de-
scribed at the bit level, an agorithmic model will not
necessarily provide a completely accurate model of the ex-
ternal interface to the system. However, it will provide the
same overall functionability as a register-transfer-level
(RTL) or gate-level model. For example, an algorithmic de-
scription of afloating-point processor performs all the func-
tions of the processor but uses a simulator-dependent
representation of the floating point numbers. If the floating
point format of the simulator is different from the floating
point format specified for the system being designed, the a-
gorithmic model may not produce the same answers, even at
the abstract level, asthe hardware being designed. However,
the values produced by the simulator would be accurate
enough to evaluate the quality of the design. Thus an algo-
rithmic description can use the primitive data types and op-
erations that the simulator provides as away to simplify the
description and increase the speed of the simulation at the
cost of precision, accuracy, and the use of formats that are
potentialy different from the actual hardware to be devel-
oped.

An algorithmic model can be used to verify that the func-
tions of a digital system are correct, but depending on the
number representation used, it may not provide the bit-accu-
rate results needed to verify outputs from the simulations of
more detailed models.

2-24 INSTRUCTION SET ARCHITECTURE
MODELS

An instruction set architecture (ISA) model includes the
complete set of instructions recognized by a given processor
(Ref. 8). An ISA model provides the externaly visible state
and functions that the processor can perform. The timing of
an |SA moded is typically defined in terms of the times re-
quired to perform each of the instructions of the processor
instruction set. This timing may be expressed in terms of
processor clock cycles or in absolute time, e.g., microsec-
onds. ISA models can support simulated execution of soft-
wareif the compilers and operating system load modules are
available.

An ISA model accurately describes al the functions and
data types provided by the hardware that are accessible to
the user. In particular, acorrect ISA model of aprogramma-
ble device correctly executes any valid program for the de-
vice. Thus an ISA model of a programmable device can be
used to debug software written for that device, and inputs
and outputs of an ISA model can be translated into forms
that are completely compatible with more detailed models.
An ISA model of a programmable subsystem may therefore
be used in combination with more detailed models of other
subsystems. | SA models are appropriate forms of behavioral

models for delivered systems because they are accurate to
thebit level and thus are compatiblewith both the behavioral
and structural models of all adjacent components.

2-25 REGISTER-TRANSFER MODELS

A register-transfer-level model describes the functions
and data types accessible to the user of the system and in-
cludes descriptions of the internal memory (or registers) and
the internal data paths of the hardware. Some registersin a
typical central processing unit (CPU) are accessible to the
programmer and therefore are part of an |SA description, but
some registers may not be directly accessible to the pro-
grammer, such as a memory address register, cache memo-
ry, or microcode instruction register. This internal memory
structure is part of what distinguishes different implementa-
tions of the same architecture and thus is not appropriate in
an 1SA model except as an aid to understanding the model.

Register-transfer-level models use arithmetic and logical
operations such as add, subtract, and compare. These opera-
tions access data in registers and return results to registers.
Since the registers are clocked memory elements, the clock
timeisthe key timing measure.

The register-transfer-level model is a particularly impor-
tant class of models because commercialy available hard-
ware synthesis technology can be used to generate detailed
integrated circuit designs from appropriate register-transfer-
level models. Synthesis of gate-level structural models from
register-transfer-level modelsis discussed in Chapter 6.

2-26 GATE-LEVEL MODELS

Gate-level models arethe lowest level of abstraction gen-
eraly modeled using VHDL. Gate-level models are struc-
tural models constructed with primitive elements (also
known asthe | eaf-level modul es) that represent Boolean log-
icfunctions, e.g., AND, OR, NOT, and basic logic functions
such as flip-flops and multiplexors. |EEE Std 1164 (Ref. 2)
provides a standard set of primitive functions and data-type
definitions for gate-level models. The VITAL initiative
(Ref. 3) isworking on astandard set of timing definitionsfor
thislevel of model. Thetypical timing measuresfor thislev-
el of abstraction are gate delays, which are dependent upon
the technology used to implement the design and may also
be parameterized to reflect the ambient temperature of the
device, the power applied to the device, and the layout of the
circuit in terms of both feature size and the lengths of the
wires or vias connecting the circuits. Gate-level models are
considered low-level structural models because the behavior
of the leaf modules in these models is smple and well-un-
derstood. Structural models are discussed in par. 2-4. Gate-
level models are typically technology dependent, particul ar-
ly with respect to timing. They are the basis for application-
specific integrated circuits (ASIC) foundry sign-off, where
they are used to verify the behavior of the integrated circuits
that will be manufactured.
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2-2.7 USESOF ABSTRACTION AND HIERAR-
CHICAL DECOMPOSITIONIN THE DE-
SIGN PROCESS

During the process of designing asystem, the system may
be represented at several levels of abstraction. “ Top-down
design” and “bottom-up design” refer to the sequence in
which models at different levels of abstraction and different
levels of hierarchical decomposition are developed. When a
new model of a design is to be created, the designer can
choose to define a new level of hierarchy or to change the
level of abstraction, or some combination of these approach-
es can be chosen. Top-down design isthe process of (1) par-
titioning a module into submodules, (2) defining the
interfaces between the submodules, (3) allocating resources
and requirements to those submodules, (4) verifying that the
partitioned form of the design is consistent with the unparti-
tioned design in both function and performance and that the
resource and requirements constraints have been met, and fi-
nally (5) recursively applying the same process to the com-
ponents. During this process the design evolves from the
highest level of abstraction to thelowest level of abstraction.

This process can be captured in VHDL. To do so, a be-
havioral model of amoduleis created and annotated with at-
tributes that reflect quantitative resource and requirements
budgets. The partitioning of the module is represented by
converting the behavioral model into a structural model, in
which the components of the structural model define the
submodules and the ports and port mappings specify thein-
terfaces between the submodules. Verification of the design
isdonein VHDL through, for example, simulation. VHDL
provides a strong type-checking capability, which aids veri-
fication. VHDL tools can check the consistency of theinter-
faces between submodules at analysis time.

Bottom-up design is the process of creating higher level
modelsby connecting together known lower level models. A
classic example of bottom-up design is the process of creat-
ing combinational logic functions by connecting gate-level
functions. VHDL supports bottom-up design with structural
models, in which the known lower level models are speci-
fied by component declarations and the interconnections of
the components are specified by the port maps in the com-
ponent instantiation statements.

The process of transforming a model at one level of ab-
straction into amodel at alower level of abstractioniscalled
synthesis (Ref. 9). Refining the hierarchy of a structural
model is an effective way to transform a high-level model
into a low-level model. For example, an ISA model can be
converted into a register-transfer-level model by cresting a
register-transfer-level model for each leaf moduleinthe ISA
description. The program-accessible registers in the 1SA
model are defined as physical components, and the internal
busses connecting these registersand the AL U are specified.
The implementation of the instruction fetch and decode
mechanisms and the trandlation of a logical address to a
physical addressisdefined interms of physical components.

Alsothe RTL model of the ALU iscreated. Thusamore spe-
cific model is created by replacing the top-level behavioral
model with astructural model or withamodel at alower lev-
el of abstraction. Thisprocessisdone most easily if thefunc-
tional hierarchy of the behavioral model is similar to the
physical hierarchy of theimplementation. For the Sobel pro-
cessor described in subpar. 2-3.3, the functional decomposi-
tion is consistent with a physical decomposition at the top
level. In particular, the four filter functions also occur as
physical components in the parallel implementation. Syn-
thesis is a difficult process because it is a many-to-many
mapping. For example, a behavioral model may have two
separate functionsthat compute memory addresses and sum-
ming pixels, but the corresponding RTL model may use the
sameALU for both. On the other hand, callsto the same pix-
el add routine may be allocated to different ALUsto achieve
parallelism.

The most common way to check the functional correct-
ness of ahardware model isthrough simulation. The VHDL
approach to checking functional correctness uses a test
bench. A test bench isapart of aVHDL model that reads or
generates a set of test vectors and sends them to the module
being tested. The test bench collects the responses made by
the module to the test vectors and checks the results pro-
duced by the module against a specification of correct re-
sults. Simulation can be used in this way to verify that the
model isfunctionally correct at |east to the extent that it pro-
vides correct responses to the input test vectors.

Simulation can also be used to estimate the performance
of the finished hardware. Because a behavioral model often
includes timing information, simulation can be used to veri-
fy that the model performs within its performance limits
over a variety of externa test conditions, e.g., changes in
temperature or changesin voltage. The simulation resultsin
trace fileslisting the names of signals, the times that the sig-
nals change values, and their new values. These trace files
can be postprocessed to estimate the throughput of the hard-
ware, the delay times from input to output, and the amount
of time that different components are kept busy during the
simulation. Simulation results can be used to identify perfor-
mance problems in the hardware design, such asinsufficient
throughput, excessive response time to stimuli, and the pos-
sible race conditions that make the behavior of the hardware
vary erraticaly.

2-3 BEHAVIORAL DESCRIPTIONS OF
HARDWARE DESIGNS

2-31 THE PURPOSE OF BEHAVIORAL DE-
SCRIPTIONS

Behavioral models provide a description of the function
of a hardware system independent of any particular imple-
mentation. A behavioral model isa“black box" in the sense
that any internal hierarchy or structureis provided as an aid
to description or understanding and is not necessarily meant
to serve as a definition of the organization of any imple-
mentation.
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Behavioral models play a key role in top-down system
design and provide an important form of documentation of
a hardware system. Designers can use behavioral models of
subsystems to evaluate the performance and functional cor-
rectness of the system architecture. In these models, timing
budgets are used in the subsystem behavioral model. Simu-
lations of the behavioral models of the subsystems can
demonstrate that the subsystems meet their timing budgets
and therefore demonstrate that the system architecture is
feasible.

Designers can use behavioral models to construct proto-
types of systems before an implementation has been speci-
fied. Prototypes help validate a proposed design by
allowing the designer to understand the functions, timing,
and interactions of the proposed hardware subsystems in a
system context. Behavioral models can help the customer
understand the potential risks associated with particular
implementation decisions. For example, a behavioral model
may indicate which parts of a design are likely to be the
slowest, the largest, or the most complex. Theserisk indica-
tors can help the customer evaluate proposed implementa-
tions.

Behavioral models also play an important role in the ver-
ification of an implementation by defining correct response
to stimuli. A designer creates a set of functional test stimuli,
or test vectors, and simulates the behavioral model using
the test vectors to generate the correct responses to the test
vectors. The designer then creates an implementation model
and simulates the implementation model using the same test
vectors used to simulate the behavioral model. Finally, the
designer verifies that the implementation model is consis-
tent with the behaviora model by comparing the results
generated by the implementation model with the results
generated by the behavioral model. If the results are equiva
lent, the implementation model represents a correct imple-
mentation of the functions and timing of the behavioral
model.

Commercial computer-aided design (CAD) tool vendors
currently provide or sell synthesis tools that accept register-
transfer-level behavioral models and generate gate-level
structural models and chip designs including logic designs
and layouts. Research is continuing on raising the level of
abstraction of the input to synthesis tools. Behavioral mod-
els that are compatible with synthesis tools are particularly
valuable to the Department of Defense (DoD) in system
maintenance, upgrade, and replacement of obsolete parts.
For example, if the DoD needs to replace an electronic cir-
cuit that is no longer available and has a complete VHDL
behavioral description of the circuit compatible with a syn-
thesis toal, it may be possible to generate at relatively low
cost a replacement circuit that is optimized and validated
with respect to some currently available fabrication process.

By capturing the system in an implementation-indepen-
dent, simulatable form, behavioral models provide an
important starting point for system upgrades and improve-
ments to add functions, reduce size, weight, or power, and
keep systems up with the state of technology advances.
Behavioral models also provide a model for hardware that
concesl s the proprietary implementation details. This capa-
bility allows the implementor to protect the implementation
design while completely describing the system function.

2-6

The behavioral model of a proprietary hardware system
may include implementation-specific information such as
timing, power consumption, weight, or heat dissipation
while protecting the implementation details.

Behavioral models at a high level of abstraction are also
usually more efficiently smulated than detailed structural
models. High-level behavioral models can often achieve
simulation times two or three orders of magnitude shorter
than those for detailed structural models. Generally, smula-
tion times are closely related to the number of events sched-
uled by the simulator. Reducing the number of events by a
factor of N is likely to decrease the simulation time by a
factor greater than N. This decrease is possible because (1)
VHDL simulators typically store events in queues, (2) sim-
ulation time is the product of the number of events simu-
lated and the average time to insert events in the queue, and
(3) the average insertion time is a function of queue size.
Detailed structural models may require hundreds, thou-
sands, or even millions of events to be scheduled to com-
plete a function; a high-level behavioral block may be able
to compute the same function in a single event. To have a
useful behavioral model of a subsystem that also improves
simulation speed, the model must be compatible with both
structural and behavioral models of all adjacent subsystem
components. Achieving this requirement allows the mod-
eler to mix and match structural and behavioral models in
order to configure a simulation model emphasizing a partic-
ular portion of the system. The modeler uses a detailed
structural model of the part of the system that is of interest
and high-level behavioral models of other parts of the sys-
tem to minimize simulation time. These mixed abstraction
models are described in greater detail in par. 2-5.

2-3.2 THE USE OF HIERARCHY IN BEHAV-
IORAL DESCRIPTIONS

Because the behavior of a digital electronic system may
be very complex, someform of hierarchy and structureis of-
ten necessary to make a given behavioral model comprehen-
sible to humans. The hierarchy of a behavioral description
should be fashioned to improve understanding rather than to
describe an implementation. For this reason, a modeler
should prefer decomposition of a behavioral model into
functions and subfunctions over physical decompositions
into boards, integrated circuits, registers, and gates. One part
of an object-oriented hierarchy style is a definition of func-
tionsthat provide all accessto adata structure. VHDL pack-
ages are well suited to this style of decomposition. This
approach supportsinformation hiding since the details of the
data structure are not known to the user, only to the develop-
er of the access routines and the data structure. For example,
memory is a data structure that could be modeled in VHDL
using either avery large array or accesstypes. A package of
functions for reading and writing to the memory could be
used to provide the same interface to either implementation
and could be expanded to include functions for computing
the physical address of aword in memory by using the dif-
ferent addressing modes of the processor. Applying object-
oriented techniques to VHDL is currently being researched
(Ref. 10).
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InaVHDL context the hierarchy of behavioral modelsis
specified in terms of the hierarchy of function calls, which
may be used to support object-oriented programming fea-
tures, particularly data abstraction and information hiding.
The hierarchy of function calls also may be used to define a
decomposition of the functional requirements for the sys-
tem being modeled.

Behavioral models of a system may be structured hierar-
chically for the following reasons:

1. Hierarchical models help to simplify and organize a
behavioral model into comprehensible sections. A hierarchi-
cally structured behavioral model reflects good software en-
gineering practice by partitioning the descriptioninto smple
functions that may be reused. A good behavioral model em-
phasi zes comprehension, even at the cost of some efficiency.
VHDL provides several mechanisms to improve the com-
prehensibility of behavioral models including functions and
the overloading of infix operators so that common mathe-
matical functions can be defined by the user for different
data types. These mechanisms are described in Chapter 3.

2. Hierarchical behavioral models can reuse functions
and procedures. The sharing of functions and procedures
within and between components is an important aspect of
good modeling practice. VHDL provides functions, proce-
dures, and packages containing data-type definitions, func-
tions, and procedures as mechanisms that promote reuse
both within and between processes. These mechanisms are
described further in Chapter 3.

3. Hierarchical models can make use of graphical block
diagrams as an aid to understanding the textual behavioral
model. This approach is particularly valuable when a CAD
tool is used to generate a VHDL behavioral model from a
graphical block diagram.

2-3.3 EXAMPLE OF A BEHAVIORAL DE-
SCRIPTION
In this subparagraph a hierarchical behavioral model of
an edge detection processor, from Ref. 11, is described.
Edge detection is a common filtering procedure used in
many military and civilian image processing systemsinclud-
ing automatic target recognition systems. Fig. 2-2 shows a

fEp— e —

(B) Edge Magnitude Outpuf Image

Figure 2-2. Example Input Image and Edge Magnitude Output of an Edge Detection Processor

(Ref. 11)
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test input image and the edge magnitude output of such a
system.

Fig. 2-3 showsthe hierarchy of function callsfor abehav-
ioral model of the edge detection system. At the top of the
hierarchy is the edge detection processor, which is a behav-
ioral model. This process calls six functions. the horizontal
filter, the vertical filter, the left diagonal filter, the right di-
agonal filter, the magnitude function, and the direction func-
tion. The first four of these functions in turn make use of
another function, the weight function.

The behavioral model of the edge detection system makes
use of data abstraction to simplify the modeling of the sys-
tem. The VHDL definitions of the data types for this behav-
ioral model are shown in Fig. 2-4. This VHDL package
declaration describesthe pixel datatype, theindex typesthat
are used to address pixelsin theimage, and the data type for
the image, which is defined as a two-dimensional array of
pixels. The directional output of the system is described as
an enumerated type that lists the eight points of the compass.

Left
Diagonal
Filter

Vertical
Filter

Horizontal
Filter

Weight
Function

Edge Detection
Processor
(Behavioral)

A scan line is defined as a subtype of the image data type.
Pixels are defined in terms of the built-in data-type integer.
During implementation the definitions of the pixel datatype
can be refined to specify the number of bitsin the word. Us-
ing data abstraction the developer allows this implementa-
tion decision to be abstracted out of the behavioral model.
Fig. 2-4 aso specifies the data types for the parameters of
the functions used to implement the system including the
four filter functions, the magnitude and direction functions,
and the weight function.

Fig. 2-5 specifies the interface to the edge detector in
VHDL, i.e, as an entity interface. The input to the system
is a sequence of pixels that are loaded in scan line order.
The output from the system is a pair containing magni-
tude and direction values for each pixel in the output.
This entity interface is common to both behavioral and
structural architecture bodies and subsequently can be
configured with either.

Right
Diagonal
Filter

Direction
Function

Magnitude
Function

Figure 2-3. Hierarchy of Functionsin a Behavioral Model
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package i mage_processing is
constant numlines: natural := 512;
constant line_len: natural := 512;

type x_index is range 1 to line_len;

subtype x_out_index is x_index range 2 to line_len - 1
type y_ index is range 1 to numlines;

subtype y out_index is y_index range 2 to numlines - 1;
subtype pixel is integer;

subtype filter_out is integer

type direction is (N, NE, E, SE, S, SW W NW;

type image is array(x_index, y_index) of pixel

type scan_line is array(inmage' range(1)) of pixel

type pix3 is array (1 to 3) of pixel

function horizontal _filter

( A image;
. x_index;
J: y_index )

return filter_out;
function vertical _filter

( A image;
I : x_index;
J: y_index )

return filter_out;
function | eft_diagonal filter

( A image;
| : x_index;
J: y_index )

return filter_out;
function right_diagonal _filter

( A image;
. x_index;
J: y_index )

return filter_out;
function nagnitude

( HV,LD,RD: filter_out)

return pixel
function direct

( HV,LD,RD: filter_out)

return direction;
function wei ght

( X1, X2, X3: pixel)

return filter_out;
function shift

( A pixs3;

B: pixel)

return pixs3;

end i mage_processi ng;

Figure 2-4. Image Data Abstractions and Functions
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The sobel
-- entity declarations,
-- the algorithmlevel

i brary sobel al gorithm

nodel

algorithmlibrary contains the packages,
and architecture bodies for
of the sobel

processor.

use sobel al gorithminmage processing.all;

use sobel algorithmtimng.all;

-- The IEEE library and the 1164 standard | ogic

for the cl ock

l'ibrary | EEE

use ieee.std logic _1164.all;
entity edge detector is

port (P: i n pixel;
A ock: in std_ul ogic;
E: out pixel;
D out direction );

end edge_det ector;

package are used in the al gorithm node

only

Figure2-5. Interface Specificationsfor an Edge Detection Processor

This entity interface references two VHDL libraries:
the |EEE library, which contains the standard logic pack-
age, and an application-specific library caled
sobel _al gorithm This entity interfface uses one
package from this second VHDL library, the one contain-
ing data-type definitions and function specifications for
this application. The clock signal uses the st d_ul ogi c
data type from the |EEE package. Separating the applica-
tion-specific details such as the scan line size and number
of scan lines per image frame into a package makes it
easier to reuse the design entity in different applications.
Collecting these details in one place also makes it easier
to modify the entire design, should that ever be necessary.

Fig. 2-6 describes the behavior of the edge detector in
VHDL. The architecture body containsasingle process. The
body of the process consists of two sets of nested loops. The
first set of nested loops creates an internal buffer for aframe
of theimage by reading the pixelsin scan line order, one pix-
el per clock. The timing of the input is controlled using the
ri si ng_edge function that is specified in the IEEE Std

2-10

1164 standard logic package (Ref. 2). The second set of nest-
ed loops produces the outputs in scan line order by calling on
functions to compute the output values. The functions called
by the second loop refer to pixels stored in the internal frame
buffer.

The output of pixelsin the second loop is delayed by the
pi xel _out put _del ay, which isaconstant in the timing
package. This approach to implementation-independent tim-
ing hasits limitations. In this example, this abstract behavior
does not capture some of the benefits of pipelining, in which
some resulting pixels may be sent out of the edge detector be-
fore some input pixels arrive.

Fig. 2-7 describes three of the functions from the image-
processing package that are used by the edge detector: the
horizonta filter, the vertical filter, and the weight function.
The calling relationship between the horizontal and vertical
filters and the weight function shown in Fig. 2-3 isthe result
of theweight function callsin the bodies of the horizontal and
vertical filters. The other functions in the image-processing
package (not shown but required) are implemented in asimi-
lar manner.
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archi tecture behavior of edge detector is

begi n

sobel : process

variable A inmage; -- Internal frane buffer for inage

variable H filter _out; -- Tenporary storage for results of
-- horizontal filter

variable V: filter _out; -- Tenporary storage for results of
-- vertical filter

variable LD filter _out; -- Tenporary storage for results of
-- left diagonal filter

variable RD: filter _out; -- Tenporary storage for results of

-- right diagonal filter

begi n

-- Construct a conplete inmage frame by reading
-- in the pixels in scan |ine order
for i in x_index |oop
for j in y_index |oop
wait until rising_edge(d ock);
Al j) =P
end | oop;
end | oop;

assert (false) report "array read in";

wait for pixel output del ay;
-- For each pixel in the output inage
-- conpute the values of all the filters,
-- then use these filter values to conpute
-- the nmagnitude and direction outputs
for i in x_out_index |oop

for j in y_out_index |oop

ma|t until rising_edge(d ock);

H := horizontal fl|ter(AI,j)

V :=wvertical filter(Ai,j);

LD : = | eft _di agonal fllter(A i, 1),
RD := right _diagonal filter(Ai,j);

E <= magnitude(H V, LD, RD);
D <=direct(H VLD RD);
end | oop;
end | oop;

end process sobel;
end behavi or;

Figure 2-6. Behavioral Model for an Edge Detection Processor

2-11
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package body inmage _processing is
function horizontal _filter
( A image;
. x_index;
J: y_index )
return filter_out is
begi n
return weight( A(l-1,J3-1), A(l,J-1), A(l+1,J-1))
- weight (A(I-1,J3+1), A(l,J+1), A(l1+1,J+1));
end horizontal _filter;
function vertical _filter
( A image;
. x_index;
J: y_index )
return filter_out is
begi n
return weight( A(l-1,J3-1), A(l-1,J), A(l-1,J+1)
- weight (A(1+1,3-1), A(1+1,J), A(l+1,J+1) );

end vertical _filter;
function wei ght

( X1, X2, X3: pixel)

return filter_out
begi n

return X1+ 2 * X2 + X3;
end wei ght;
function shift

( A pix3;

B: pixel)

return pix3 is
begi n

return A(2 to 3) & B;
end shift;
—— Other functions are onitted
end i mage_processi ng;

is

Figure 2-7. Example Functionsfor a Behavioral Model

2-4 STRUCTURAL DESCRIPTIONS OF
HARDWARE DESIGNS

2-41 THE PURPOSE OF STRUCTURAL DE-
SCRIPTIONS

The primary purpose of a structural model is to capture
the physical organization of a particular implementation. To
capture the physical organization, the hierarchy of a struc-
tural model should follow the hierarchy of the physical de-
sign. Structural models of hardware are traditionally
represented by schematic diagrams of the connections be-
tween physical components. When VHDL is used to repre-
sent structural models, VHDL components are used to
describe the physical components (such as integrated cir-
cuits and boards), and signals are used to describe the elec-
trical connections between physical components. VHDL
uses ports to describe the interfaces between signals and
components. Ports allow the reuse of components in the
same way that formal parameters allow the reuse of func-
tions.

Low-level structural models can provide detailed docu-
mentation of aparticular implementation, but because of this
implementation dependence, they are not appropriate for
specifications to be used in the competitive procurement of
new designs.

Structural models may be required in order to allow anal-
ysis of the design that is specific to the implementation. For
example, the VHDL DID requires structural modelsto have
sufficient detail to support logic-level fault simulation. Fault
sets for digital hardware are typicaly defined in terms of
failures at the bit level in the gate-level descriptions of the
hardware. To evaluate the effectiveness of a set of test vec-
tors, single-bit faults are injected into a gate-level structural
model during simulation. This faulty simulation output is
then compared to the output of the fault-free model to check
the ability of atest vector to distinguish between the faulty
and flawlessmodels. This processisdescribed in more detail
in Chapter 8.

Gate-level structural models are required to synthesize
built-in test structures. The boundary scan approach requires
that combinational logic be separated from sequentia logic
by fully observable and controllable test nodes. Computer-
aided engineering (CAE) tools are emerging that can synthe-
size the boundary scan test nodes and their interconnections
if the system separates combinational and sequential logic at
the gate level. This synthesis and its corresponding
test-vector generation require detailed structural models at
the gate level.

2-12
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2-42 THE USE OF HIERARCHY IN STRUC-
TURAL DESCRIPTIONS

Hierarchy isimportant in structural model s as a means of
conveying thelogical or physical decomposition of the hard-
ware. Subpar. 10.2.3 of the VHDL DID (Ref. 1) requiresthat
the hierarchy of a structural model follow the hierarchical
organization of the physical design. Thisorganizationisuse-
ful in several ways. A hierarchical structurethat corresponds
to the physical organization supports the design and acquisi-
tion of upgrades by identifying physical interfaces between
components that can be developed separately, and it can
document maintenance issues. For example, a physicaly
oriented hierarchical model reflects the organization of the
hardware into line-replaceable modules (LRMs). Also a hi-
erarchical structure that corresponds to the physical organi-
zation documents boundaries  between  different
technologies. A good structural hierarchy reflects the com-
position of boards into an interconnected set of integrated
circuits with specific layout and routing. This partitioning
facilitates the use of appropriate CAD toolsfor the design of
integrated circuits and the design of boards.

The interconnection of componentsin a structural model
should represent the physical interconnections. For exam-
ple, each data-carrying wire on the board should have a cor-
responding signal in the VHDL model. The relationship
between signals and wires may not be one-to-one, e.g., a
16-bit bus, which contains 16 individual wires, may be rep-
resented by asingle signal in the VHDL model. This corre-
spondence is one way of checking the consistency of the
model with the physical hardware.

The physical hierarchy for a military digital electronic
system has several levels that should be represented in a
structural model. For example, a specification of a military
system written to conform with MIL-STD-490 (Ref. 12)
partitions the system into segments and the segments into
configuration items including hardware configuration items
(HWCIs). The HWCIs are further partitioned into prime
items and critical items. A structural model of adigital elec-
tronic system should be consistent with this partitioning.

Hardware block diagrams and schematic diagrams are
graphical representations of hardware dataflow. VHDL pro-
vides mechanismsto represent this same hardware data flow
formally. When ahardware block diagram isused to provide
graphical documentation for a VHDL structural model, the
following guidelines should be observed to make the rela-
tionship between the VHDL model and the block diagram
clear and unambiguous:

1. There should be a one-to-one correspondence be-
tween the blocks in the diagram and component instantia-
tionsin the VHDL model.

2. Block names should be directly trandatable into
VHDL component instances. Either | nput Bus or
i nput _bus is acceptable.The VITAL specification rec-
ommends names that use capital letters to separate words
rather than underscores.
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3. There should be a one-to-one relationship between
interconnections in the block diagram and signals in the
VHDL source program.

4. If the interconnections in the block diagram are la-
beled, the labels should be directly trandatable into VHDL
signal names.

5. All signals referenced in a VHDL process should
have a corresponding interconnect in the block diagram.

Guideline 1 requires distinct instance labels but allows
components to be reused. For example, the edge detection
processor described in subpar 2-3.3 reuses the adder compo-
nent within all of thefilters. Guideline 2 encourages the user
to trandlate automatically graphical block names into in-
stance labels. (The block names may contain blanks that are
translated into underscores in the VHDL source program.)
Guideline 3 encourages the user to implement multibit bus-
ses and interconnects as bit vectors or higher level data
types. For example, the behavioral model of the edge detec-
tion processor uses the integer data type for itssignals. In a
structural model these signals are translated into bit vectors.
The use of single signalsis essential for the mixed level of
abstraction models described in par. 2-5.

A number of commercial CAD tools have the capabilities
to create schematic representations of VHDL structural
models and to create VHDL structural models directly from
the schematic representation of the CAD tool.

2-4.2.1 Hierarchical Decomposition Based on
Physical Elements

During design the digital electronic system is partitioned
into subsystems. At thetop level the system asawholeisde-
scribed. The next level is a partitioning of the system into
subsystems. The structural model should follow the parti-
tioning described for the system into HWCI as described in
the Level A specifications (Ref. 12). A structural model
should preserve the partitioning into HWClIs of the physical
system because it is a standard unit for acquisition.

The structural model should also be consistent with the
physical hardware at the level of the line-replaceable unit
(LRU). LRU partitioning is significant for logistics and sup-
port because it represents the basic unit used to maintain the
system in the field. Any changes in boundaries between
LRUs can have a significant effect on logistics and support;
therefore, the structural model should accurately represent
those boundaries. Furthermore, LRUs are important bound-
aries of the system for diagnostic and testing purposes. Field
maintenance personnel must be abletoisolate faultstoanin-
dividual LRU. Thus a structural model should be able to
simulate built-in test (BIT) diagnostic capabilities and inter-
facesto external test equipment at the level of its LRUSs.

Another level of partitioning that should be represented in
a structural model is the board. Partitioning the structural
model to correspond to the physical partitioning of the hard-
wareinto boards assistsin the automatic placement and rout-
ing of boards and in the thermal and power analysis of the
boards. Furthermore, delays between boards are likely to be
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much greater than delays within a specific board; this differ-
ence must be represented. In some cases the boards may be
LRUSs, so the componentsin the LRU-level partitioning and
the board-level partitioning may be the same.

Partitioning of the structural model should also corre-
spond to the partitioning of a board design into multichip
modules (MCMs) and integrated circuits (1Cs) as appropri-
ate. Different CAD tools and optimization criteria may ap-
ply a the MCM/IC level versus the board level, so
partitioning of astructural model to represent MCMscan aid
inthe synthesis, analysis, and optimization of adesign using
MCMs.

Partitioning of the structural model should also corre-
spond to the partitioning of an MCM design into packaged
very large-scale integrated (VLSI) circuits. Because pack-
aged VLS circuits are the lowest possible practical level for
repair through replacement, isolation of faultsto specific in-
tegrated circuits is an important design consideration. Also,
if the model accurately represents the boundaries of VLS
circuit packages, VLS| CAD toolscan be used to synthesize,
analyze, and optimize VLSI circuits.

Structural models for components of acircuit should also
follow the partitioning used by the CAD toolsto design the
circuit. For example, the hierarchy of the structural model of
aVLSl circuit should follow the boundaries of standard cells
or macrocells used by the CAD tool. In generd, if a CAD
tool isused to design acircuit and to generate aVHDL mod-
el automatically for the circuit, the generated description fol-
lows the hierarchy of the design. A CAD tool that flattensa
design hierarchy before producing a structural model of the
design should not be used to generate modelsfor delivery to
the Government. Using CAD tools to generate detailed and
hierarchical structural models is a recommended practice
sinceit reduces costs and hel ps to keep the model consistent
with the physical hardware.

2-4.2.2 Leaf ModulesinaHierarchical Structural
Description

If acomponent is represented by a behavioral model and
does not have a structural model, the component is called a
leaf module. Subpar. 10.2.1.1 of the VHDL DID (Ref. 1)
specifies three valid leaf module options:

1. Modules selected from a Government list of valid
uses of leaf modules referenced or contained in the contract

2. Modules corresponding to a collection of hardware
elements that together exhibit a stimulus-response behavior
but whose interaction is best modeled at the electrical or
physical level

3. Modules whose detailed design has not yet been
completed but whose behavior is required as a delivery dis-
closure at specified times during the contract.

Thefirst option for aleaf module allows the contractor to
use models from a Government source of validated models.
The Government requires VHDL models for the electronic
components delivered to it. These requirements are dis-
cussed in Chapter 4. Once these model s have been validated,
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they can be supplied to contractorsfor usein VHDL models
of hardware systemsthat use the products. The Government
and the contractor may aso negotiate to include other
VHDL models, such as models not in the qualified products
list (QPL) that are developed by the contractor or by other
Government contractors. These negotiations must be reflect-
ed inthetailored VHDL DID for the specific contract.

The second option identifies a common set of primitive
elements used in designs whose elements are not easily de-
scribed accurately with VHDL behavioral models. As de-
scribed in subpar. 10.2.1.1 of the VHDL DID (Ref. 1), these
elements include digital logic gates, analog circuit blocks,
and power supplies. Functional models of digital logic gates
are defined as part of the IEEE Std 1164 (Ref. 2) specifica-
tion of standard signal formats. This specification includes
truth tables and a resolution function for using a nine-value
state/strength logic system for AND, OR, NOT, NOR,
NAND, and XOR. This functional specification is being
augmented with timing information and standard formatsfor
back-annotation by the VITAL effort (Ref. 3).

The third option is designed to cover situations in which
the Government wants VHDL models delivered during the
design cycle, i.e., before design of al of the components has
been completed. In this case high-level behaviora models
may be used as leaf modules to specify the current state of
the design. As the design progresses into more detail, these
behavioral models are augmented with structural models.

2-43 EXAMPLESOF STRUCTURAL DE-
SCRIPTIONS

In this subparagraph two examples of structural VHDL
models are presented: one at algorithmic level and one at a
register-transfer level. The algorithmic model uses the data-
type definitions and some of the functions of the
sobel _al gorithmlibrary presented in subpar. 2-3.3.
The entity interface declarations and architecture bodies for
thislevel of model are included in thislibrary. The register-
transfer-level model uses different data-type definitions, in
which the number of bits in each word is specified. These
definitions and the entity interfaces and architecture bodies
that reference these packages are in the
sobel _structure library.

2-4.3.1 Algorithmic-Levd Structural Description
Fig. 2-8 shows a hierarchy for an algorithmic structural
model of the edge detection system described in subpar.
2-3.3. Thismodel isat the algorithmic level becausethe data
types have not yet been refined to bit vectors; therefore, the
inputs and outputs of the model are not bit-for-bit represen-
tations of theinputs and outputs of thereal device. However,
the structural model does reveal much of the physical orga-
nization of the system asit will be implemented. As shown
inFig. 2-8, thismodel continuesto use some of the elements
of the behavioral model, particularly the weight function,
and it uses the data-type definitions previously used in the
behavioral model. This structural model implements the
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Edge Detection
Processor
(Structural)

Memory Processor
(Behavioral)

Window Processor
(Structural)

Direction and
Magnitude Processor
(Behavioral)

Vertical
Filter
(Behavioral)

Horizontal
Filter
(Behavioral)

Left
Diagonal Filter
(Behavioral)

Right
Diagonal Filter
(Behavioral)

Weight
(Function)

Figure 2-8. Hierarchy of Componentsin an Algorithmic-Level Structural Model

same function but with different timings due to a pipelined
approach. The top levels of the structural hierarchy reflect
the physical partitioning used in the circuit design. At this
point the filter functions have been converted into design en-
tities, and an additional entity, the memory processor, has
been added to the design.

Structural models are often represented by hardware
block diagrams. A hardware block diagram for the edge de-
tection processor is shown in Fig. 2-9. The components are
represented by rectangles; the interconnects are shown as
lines connecting the components. Attributes may be associ-
ated with the components, interconnects, and interfacesin a
block diagram. Names are usually given to the components
and may also be given to interconnects and interfaces.
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Fig. 2-9 shows atop-level hardware block diagram of the
first-level partitioning of the edge detection processor. It
shows three interconnected components: a buffer memory, a
window processor, and amagnitude and direction processor.
The buffer memory loads the image in scan line order, one
pixel at atime. The buffer memory passes three scan lines
parallel to the window processor, as indicated by intercon-
nections P1, P2, and P3.

The window processor computes the horizontal, vertical,
and |eft and right diagonal filters. The outputs of thesefilters
are signals labeled H (for horizontal edges), V (for vertical
edges), LD (for left diagonal edges), and RD (for right diag-
onal edges). The direction and magnitude processor outputs
E, the magnitude of the edge (a measure of the level of the
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contrast between the areas separated by the edge), and D, the
direction of the edge

Raster_In

8

Memory Processor

o ¢]
oo
o ¢]

P1| P2| P3

Window
Processor
12 12 12 12
H \Y LD RD

Direction and
Magnitude Processor

D E

Figure2-9. A HardwareBlock Diagram for the
Edge Detection Processor (Ref. 11)
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Fig. 2-10 shows the VHDL structural architecture body
for the edge detector. Similarly to the behavioral architec-
ture for the edge detector shown in Fig. 2-6, thisarchitecture
uses theimage-processing package for data-type definitions.
The port maps for the component instantiations reflect the
connections shown in the block diagram, Fig. 2-9.

Just as structural models can be hierarchical, block dia-
grams also demonstrate the hierarchy. Fig. 2-11 depicts a
structural model of the window processor, which is one
component of the edge detection system shown in Fig. 2-9.
Fig. 2-11 shows the data flow for the window processor
component of the edge detector. It has three input ports la
beled P1, P2, and P3. It has four output ports labeled H, V,
LD, and RD. Theinput and output interface names are iden-
tical to the corresponding interconnect namesin the top-lev-
el block diagram to make the relationship between the
VHDL model and the block diagram clear.

Figs. 2-12 and 2-13, respectively, show the entity inter-
face declaration and the structural architecture body for the
window processor. This VHDL design unit references the
sametwo libraries asthe higher level structural model of the
edge detection processor. The port maps for this model re-
flect the connectivity shown in Fig. 2-11.

Fig. 2-14 shows the entity interface declaration for the
horizonta filter. This same interface could be used with ei-
ther a behavioral or a structural architecture body. Because
theinterface usesthest d_ul ogi ¢ datatypefor the clock,
it referencesthe st d_I ogi c_1164 package inthe | EEE
library. Similarly, since it uses the algorithmic-level data-
type specifications, it references the
i mage_pr ocessi ng packagein the
sobel _al gorit hmlibrary.

Fig. 2-15 shows a behavioral architecture body for the
horizontal filter. Since this behavioral model is designed to
be independent of any particular implementation, no attempt
has been made to optimize the number of computations or
the use of memory. However, the wei ght and shi ft
functions are used to eliminate unnecessary redundancy in
the program and improve readability. Two variables are in-
ternal to the process; they serve as buffers for the input pix-
els from two scan lines. The data in these two buffers are
used as parameters to the weight function. The behavior of
the horizontal filter is described in two parts. The first part
updates the state of the filter, which is defined by the values
of the pixel buffers NEXT_LI NE and LAST_LI NE.

The second part computes the output for the filter as the
difference of the weighted sums of the two input lines. The
function wei ght provides a common mechanism for the
computation of the weighted sum. The horizontal filter pro-
cess callsit twice, and the other filters use it aswell.
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architecture structure of edge _detector is
conponent nmem processor
port ( P: in pixel
d ock: in std_ulogic;
P1, P2, P3: out pixel );
end conponent;
conponent w ndow_processor
port ( Pl, P2, P3: in pixel
d ock: in std_ulogic;
H V, LD, RD: out filter_out );
end conponent;
conponent nmag_dir_processor
port ( H V, LD, RD: in filter_out;

d ock: in std_ulogic;

E: out pi xel

D' out direction );
end conponent;
signal P1: p|xel -- Tap onto 1st scan line buffer in Mem Proc
signal P2: pixel; -- Tap onto 2nd scan line buffer in Mem Proc
si gnal P3: pixel; -- Tap onto 3d scan line buffer in Mem Proc
signal H filter _out; -- Tenp storage for results of horizontal filter
signal V: filter_out; -- Tenp storage for results of vertical filter
signal LD: filter out; -- Tenp storage for results of left diag filter
signal RD: filter _out; -- Tenp storage for results of right diag filter

begi n
MP:  nmem processor port map (P, O ock, P1, P2, P3);
WP:  wi ndow _processor port map (P1, P2, P3, dock, H V, LD, RD;
MDP: nag_dir_processor port map (H, V, LD, RD, Cock, E D;
end structure;
Figure2-10. Structural Model for an Edge Detection Processor
P1 P2 P3
8
1 8 e 8

@
Y / / Y / Y Y
Vertical Horizontai .
Filter Filter D Filter
12 12 T 12 T 12
\Y H LD RD

Figure 2-11. A Hardware Block Diagram for the Window Processor of the Edge Detection
Pr ocessor
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-- The sobel algorithmlibrary contains the packages,

-- entity declarations, and architecture bodies for

-- the algorithmlevel nodel of the sobel processor.
library sobel _algorithm

use sobel _al gorithm i mage_processing. all;

use sobel _algorithmtimng.all;
-- The | EEE library and the 1164 standard | ogi c
-- package are used in the algorithmnodel only
-- for the clock.

l'ibrary | EEE;

use ieee.std logic 1164.all;

entity wi ndow processor is
port ( PI1: in pixel;
pP2: in pixel;
P3: in pixel;
Clock: in st d_ul ogi c;
H: out filter_out;
V: out filter out;
LD: out filter_out;
RD: out filter_out );

end wi ndow_processor;

Figure2-12. VHDL Entity Interface for the Window Processor

architecture structure of w ndow processor is
conponent horizontal filter
port ( PL1: in pixel;
P3: in pixel;
Cl ock: in std_ulogic;
H: out filter_out );
end conponent;
conponent vertical filter
port ( PL1: in pixel;
P2: in pixel;
P3: in pixel;
CI ock: in std_ulogic;
out filter_out );

end conponent

conponent | eft_di agonal filter
port ( P1: in pixel;
pP2: in pixel;
P3: in pixel;
Clock: in std_ulogic;
LD: out filter_out );
end conponent;
conponent right_di agonal _filter
port ( PI1: in pi xel ;
P2: in pixel;
P3: in pixel ;
C ock: in std_ulogic;
RD: out filter_out );
end conponent;
begi n
HF:  horizontal filter port map (P1l, P2, P3, dock, H);
VF: vertical _filter port map (P11, P2, P3, dock, V);
LDF: left_diagonal filter port map (P1, P2, P3, dock, LD);
RDF: right _diagonal filter port map (P1, P2, P3, Cock, RD);

end structure;

Figure2-13. VHDL Structural Architecture Body for the Window Processor
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-- The sobel algorithmlibrary contains the packages,
-- entity declarations, and architecture bodies for
-- the algorithmlevel nodel of the sobel processor.
i brary sobel al gorithm
use sobel al gorithminmage processing.all;
use sobel algorithmtimng.all;
-- The IEEE library and the 1164 standard | ogic
-- package are used in the algorithmnodel only
-- for the clock.
l'ibrary | EEE
use ieee.std logic _1164.all;
entity horizontal filter is

port ( Pl: i n pixel;
P3: i n pixel;
G ock: in std_ul ogic;
H: out filter_out );

end horizonial_filter;

Figure2-14. Interfacefor the Horizontal Filter

architecture behavior of horizontal filter is

variable NEXT LINE: pix3; -- a 3 stage buffer of pixels
-- from the next scan line
variable LAST LINE: pix3; -- a 3 stage buffer of pixels
-- from the last scan line
begin
h filter: process
begin
wait until rising edge (CLOCK) ;
NEXT LINE := shift (NEXT LINE,P3);
LAST LINE := shift(LAST_LINE,Pl);

H <= weight(LAST_LINE(l), LAST LINE(2), LAST LINE(3))
- weight (NEXT_LINE (1), NEXT LINE(2), NEXT LINE(3))
after pixel output delay;
end process h filter;
end behavior;

Figure 2-15. Behavioral Model for the Horizontal Filter
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2-4.3.2 Register-Transfer-Level Structural De-
scription

Fig. 2-16 shows the hierarchy of design entities and the
types of their architecture bodies in aregister-transfer-level
structural description. Each node in the tree has a corre-
sponding VHDL entity interface and at | east one architecture
body. Not all of the VHDL code for the models is shown
here. This model has four levels of hierarchy. At the top of
the hierarchy is the edge detection processor, which has a
structural architecture body. This architecture body uses
three components: the memory processor, the window pro-
cessor, and the direction and magnitude processor. All three
of these components use structural architecture bodies. The
window processor makes use of four filter processors as
components, and the magnitude and direction processor has
two components. All six of these components use structural
architecture bodies. The leaf-level modulesin thismodel are
first-in, first-out (FIFO) buffers, adders, subtractors, delays,
multiplexors, comparators, encoders, and absolute value
processors. These modules use behavioral architecture bod-
ies described at the register-transfer level. Thusthis structur-
al model is aregister-transfer-level model.

Edge Detection
Processor
(Structural)

Window Processor

Memory Processor (Structural)

(Structural)

Fig. 2-17 isablock diagram of the structural model of the
horizontal filter whose behavioral description is shown in
Fig. 2-15. The model usesthree adders. Delay units are used
to postpone certain signals for one clock cycle. The subtrac-
tor SUB performs a subtraction on the incoming data. The
first adder ADD1 adds the difference between the current in-
puts and the difference between the inputs of the previous
cycle (provided by DELAY1). The second adder ADD2 adds
the current and previoussums. A VHDL structural body cor-
responding to this block diagram is shownin Fig. 2-18.

The leaf nodes shown in Fig. 2-17 are macrocells from a
standard library included with the synthesistool used to im-
plement the VLSI circuit for the edge detector. The goal of
this design was to minimize the number of cells required to
perform the function. Thus there is little resemblance be-
tween the structural model shown in Fig. 2-17 and the be-
haviora description shown in Fig. 2-15. Algebraic
manipulation of the function described in the behaviora
model verifies the equivalence of this structural model and
the behavioral model.

Direction and
Magnitude Processor
{Structural)

Horizontal Vertical
Filter Filter
(Structural) (Structural)

Left Diagonal

{Structural)

Right Diagonal Direction
Filter Processor
(Structural) (Structural)

Magnitude
Processor
(Structural)

FIFO Buffer
(Behavioral)

Adder
(Behavioral)

Subtractor
(Behavioral)

Delay
{Behavioral)

Absolute Value
{Behavioral)

Multiplexor
(Behavioral)

Comparator
(Behavioral)

Encoder
(Behavioral)

Figure 2-16. Hierarchy of Functionsin a Structural Model
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Figure 2-17. Block Diagram of the Horizontal Filter Processor (Ref.
11)
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architecture structure of horizontal filter is
conponent subtractor
port ( AL: in pixel;
A2: in pixel;
Cock: in std_ulogic;
DIFF: out filter_out );
end comnponent;
conmponent adder
port ( AL: in filter_out;
A2: in filter_out;
Cock: in std_ulogic;
SUM out filter_out );
end comnponent;
component del ay
port ( AIN in filter_out;
Cock: in std_ulogic;
A QUT: out filter_out );
end comnponent;
signal Sl1: filter_out; -- Connects difference to 1st
-- delay and 1st adder
signal S2: filter_out; -- Connects 1st delay to 1st adder
signal S3: filter_out; -- Connects 1lst adder to 2nd del ay
-- and 2nd adder
signal S4: filter_out; -- Connects 2nd delay to 2nd adder
begi n
SUB: subtractor port map (P11, P3, Cock, Sl);

DELAY1: delay port map (S1, Cock, S2);

ADDL:

adder port map (S1, S2, Cock, S3);

DELAY2: delay port map (S3, Cock, $4);

ADD2:

adder port map (S3, S4, Cock, H)

end structure;

Figure2-18. Structural Architecture of the Horizontal Filter

2-5 MIXED ABSTRACTION MODELS

2-5.1 THE PURPOSE OF MIXED LEVEL OF
ABSTRACTION MODELS

Hierarchical models may not have the same level of detail
down the path to each leaf. For example, in the same model
of a computer the central processing unit (CPU) may be
modeled in terms of its instruction-set behavior, whereas an
application-specific integrated circuit (ASIC) may be mod-
eled at the gate level. These mixed-abstraction-level models
allow detailed simulation of part of a system and achieve
high simulation speeds because the high-level behavioral
parts of the model simulate more quickly than the detailed
structural parts.

Given a complete VHDL model database with both be-
havioral and structural architecture bodiesfor al of the mod-
ules, the architect can configure a model using low-level
structural architectures for some components and high-level
behavioral architectures for the rest of the system. The re-
sulting model achieves higher simulation speed through the
use of the high-level behavioral architecture bodies and yet

provides detailed simulation for the part of the system where
low-level structural architecture bodies are used.

2-5.2 DESIGNING MODULESFOR MIXED
ABSTRACTION MODELS

Subpar. 10.2.1 of the VHDL DID (Ref. 1) requires deliv-
ery of both structural and behavioral models of all modules
other than the leaf modules. Models conforming with thisre-
quirement allow users of the models to build and simulate
mixed abstraction versions of the models. The modules of a
model need to be carefully designed if mixed abstraction
versions of the model are to be configured quickly and effi-
ciently. VHDL provides a mechanism to configure mixed
abstraction models, the configuration specification. The
configuration specification describes which representation
of amodule isto be used, e.g., for aparticular instance of a
module. This mechanism can be used to select behavioral or
structural representations.

Behaviora models must be designed to interface with
structural models of neighboring modules. In particular, the
datatypesfor the external interfaces must be chosen careful-
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ly so that structural models can be interfaced at alater stage.
In generadl, the structural VHDL models use low-level data
types such as the IEEE standard logic types (Ref. 2) as the
data types of their input and output ports. The behaviora
model should be prepared to interface with such data types.
In some cases asingle behavioral input or output may corre-
spond to an array of standard logic values.

One VHDL mechanism that supports interfacing behav-
ioral and structural models is the type conversion function.
Type conversion functions can be associated with the ports
of structural modelsin either component instances or config-
uration specifications. In the early stages of model develop-
ment, the project manager should develop a standard set of
data types for the module interfaces. All models should be
constructed with these standard data types. VHDL provides
a mechanism (the package) to share a single definition of a
datatype across al parts of a model.

2-53 AN EXAMPLE OF A MIXED LEVEL OF
ABSTRACTION MODEL

The hierarchy of a mixed level of abstraction model is
shown in Fig. 2-19. This model uses the register-transfer-
level behavioral structural models of the components of the
horizontal filter processor in conjunction with I1SA-level be-
havioral models of the vertical and diagonal processors and
with algorithmic-level behaviora models of the memory
processor and the magnitude and direction processor. Be-
cause integer formats are used in the behavioral models for
the memory processor and the magnitude and direction pro-
cessor, type conversion functions are required to convert the
integers to and from the 8-bit array inputs and the 12-bit ar-

Memory Processor
{Behavioral)

ray outputs of the structural model of the horizontal proces-
sor.
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CHAPTER 3
VHDL CONCEPTS

This chapter presents an overview of VHDL. The use of VHDL to capture the behavior and structure of digital
electronic systems is discussed. Aspects of VHDL that support the reuse of models and source code are presented.
The devel opment and use of VHDL libraries, for reuse of VHDL descriptions both within a model and between mod-
els, and the annotation of VHDL models with descriptive information are described. Also described is structuring

VHDL models to improve their readability and reuse.

3-1 INTRODUCTION

This chapter introduces and defines very high-speed inte-
grated circuit (VHSIC) hardware design language (VHDL)
terminology in a conceptual framework and shows how
VHDL features can be used to describe digital systems. This
chapter discusses how to use VHDL featuresto describe the
structure, function, and timing of a digital system; how to
annotate models, handle errors, and reuse VHDL code; and
how to manage the configuration of simulation models
through the use of late binding. VHDL terminology intro-
duced in this chapter is used throughout this handbook. The
intent of this chapter is to provide information on what a
contract monitor could or should see in a VHDL hardware
model delivered to the Government, not to provide adetailed
tutorial on VHDL. Detailed VHDL tutorialsare listed in the
chapter Bibliography.

The VHSIC hardware description language was devel-
oped to provide a standardized language to describe the be-
havior and structure of Department of Defense (DoD) digital
electronic systemsformally (Ref. 1). Thelanguageisformal
because it has well-defined syntax and semantics. VHDL
began as a research effort under the DoD VHSIC program
(Ref. 1). Asexperience with the language was gained, it was
improved over aperiod of several years by incorporating ad-
ditional features. The language was subsequently standard-
ized by the Institute of Electrical and Electronics Engineers
(IEEE) as Standard (Std) 1076-1987 (Ref. 2). The |IEEE re-
quires standards to be recertified approximately every five
years, therefore, an update to VHDL was completed in 1993,
|EEE Std 1076-1993 (Ref. 3). Tool support for the standards
generally lags behind the standardization process, soitisim-
portant for a contract monitor to understand what features of
the latest version of VHDL are used in models and which
tool sets support those features. Thisunderstanding is partic-
ularly important if different subcontractors are using differ-
ent VHDL development environments or if the VHDL tool
environment of the contracting or validation and verification
(V&V) organization is different from that of the prime con-
tractor.

3-2 BASIC VHDL CONCEPTS

3-21 VHDL DESIGN ENTITIES

The design entity is the primary VHDL concept that rep-
resents a component of an electronic system. This compo-

nent can be either a physica component (such as an
integrated circuit or aprinted circuit board) or alogical com-
ponent (such as a memory comprising several circuits on a
board or an arithmetic and logic unit (ALU) occupying only
aportion of an integrated circuit).

InaVHDL model adesign entity consists of an entity in-
terface and exactly one of its corresponding architecture
bodies. (One entity interface can have several associated ar-
chitecture bodies.) When a VHDL model is configured, a
specific architecture body is selected for the design entity
through the use of either configuration declarations or con-
figuration specifications. Fig. 3-1 illustrates the relationship
between design entities, entity interfaces, and architecture
bodies.

The VHDL dataitem description (DID) (Ref. 4) requires
each physical module of an electronic system to be docu-
mented with one or more design entities. The VHDL DID
expects that all physica modules that are not considered
primitive, or leaf, modules should have both abehavioral de-
sign entity and a structural design entity. Primitive, or leaf,
modules are documented with a behavioral design entity.

All design entities for the same hardware component and
at the samelevel of abstraction should have acommon entity
interface. This approach encourages reuse of models be-
cause changesin the design of a particular component can be
encapsulated in the architecture body, without causing
changes in the rest of the VHDL model. For example, con-
sider a VHDL entity interface for a microprocessor such as
a1750A (Ref. 5). The entity interface for this microproces-
sor may have one architecture body that implements an in-
struction-set-architecture  (ISA)-level model  of the
microprocessor, another architecture body that provides a
register-transfer-level model, and another architecture body
that providesagate-level model of the samedevice. Suppose
that this entity interface is bound to an instance in a larger
model of a board that includes other components for the
main memory system and input/output (1/0) subsystems.
The | SA design entity can be used to verify software written
for the microprocessor or to test the I/O subsystem model.
To verify the test and maintenance functions, the gate-level
design entity can be used. The register-transfer-level design
entity can be used to synthesize a new version of the micro-
processor using new integrated circuit (IC) technology. All
of these design entities can be simulated in the context of the
board model without changing the VHDL code of the board
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Signals

!7\!\ [B]

Port (A.in bit; B:out bit)
Entity Interface

B <= A after T;
Architecture Body

VHDL Design Entity

L

Port (B:in bit; A:out bit)
Entity Interface

A <= B after S;
Architecture Body

VHDL Design Entity

Figure 3-1. Design Entities, Entity Interfaces, and Architecture Bodies

or the design entities selected for the other subsystems pro-
vided they use the same entity interface and the architectures
implement the same behavior.

Division of a design entity into an entity interface and an
architecture body also allows the system designer to delay
the choice of an architecture body until later in the design
process. This approach allows the system designer to make
tradeoffs between different implementations for a device
simply by selecting adifferent architecture body. VHDL has
mechanisms to select architecture bodies without changing
the contents of any of the entity interfaces or architectures
for the system that uses the component. These mechanisms
are discussed in subpar. 3-8.3. This feature allows a major
reduction of risk because anytime amodel is modified, there
isarisk that new errors will be introduced into the model.

3-2.1.1 Entity Interfaces

The entity interface declaration specifies the interface of
the entity, i.e., the external view of adesign entity. This ex-
ternal view includes ports, generic and local constants, at-
tributes, and error checking of theinputsto the design entity.
The entity declaration providesinformation about this exter-
nal interface to other architectures using the design entity.
This information includes external electrical connections,
which are specified with port declarations, and generic con-
straints, such as the acceptable range of operating tempera-
tures for the device. An entity interface declaration can also
specify a mechanism to detect unacceptable behavior (such
as timing violations) during simulation.

Appropriate entity interface declarations are essential for
interoperability of VHDL models. A contract monitor re-
ceiving amodel should assessthe likelihood of its reuse and

the changes that may occur in the model when it isreused to
ensure that the model is devel oped to support that reuse sce-
nario. In particular for an entity interface declaration, thisas-
sessment requires choosing the data types used to define the
ports and on the generics to be used in the model.

For a design entity that represents a physical device, the
ports specify the external electrical connections of the de-
vice. For example, if an integrated circuit is being modeled
by aVHDL design entity, the ports of its entity interface de-
scribe the individual pins on the integrated circuit package.
For more abstract models, particularly at the algorithmic
level, these ports may represent the busses that a processing
element accesses. Fig. 2-10 and its related discussion pro-
vide an example of amore abstract port.

A port is defined by a name, amode, and atype. The port
name is used to identify a particular port; all port names for
an entity interface must be unique with respect to the other
ports of the entity interface. If a physical device is being
modeled, theVHDL DID (Ref. 4) requiresagiven port name
to correspond to the physical electrical connection of the
component. For example, the number of ports and the port
names for an IC model must correspond to the number of
pins and the pin names of the device being modeled.

The allowable port directions (or modes) are i n, out
i nout , buffer or I i nkage. The port modes define the
allowable direction of data flow through a port. They also
determine the sources of the signal connected to that port.
For example, ports labeled i n and i nout are sinks for a
signal; portslabeled out ,i nout ,andbuf f er aresources.
Ports labeled buf f er or | i nkage provide other special
functions not germane to this discussion; the reader is re-
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ferred to the VHDL Language Reference Manual (Ref. 3) or
VHDL texts such asthose cited in the Bibliography for more
information.

VHDL has mechanismsto define the type of aport and to
check the consistency between the type of the port and the
type of its associated signal. This latter mechanism assures
that incompatible types are not connected. Ports can have
default values, which are used when an instance of an input
port is left unconnected or when an output port is undriven.

Fig. 3-2 shows the entity interface declaration for the
edge detection processor discussed in subpar. 2-4.3. Thisen-
tity interface has four ports named P (for input of image pix-
els), d ock (for synchronization), E (for output of the edge
image), and D (for output of the edge direction information).
Ports Pand Cl ock arei n portsand portsEand Dareout
ports. The type of input port P and output port E is pi xel ,
a user-defined type specified in the package
i mage_pr ocessi ng inthelibrary
sobel _al gorithm The type of input port C ock is
st d_ul ogi c, an IEEE Std 1164 type (Ref. 6), which is
specified in the package st d_| ogi ¢_1164 in the library
| EEE. Edge detector is asimple entity interface declaration
not containing any of the other possible declarations or any
error-checking statements. These additional capabilities are
discussed in pars. 3-6 and 3-7.

3-2.1.2 Architecture Bodies

An architecture body describes the rel ationships between
the inputs and outputs of the corresponding entity declara-
tion. Such relationships may include both function and tim-
ing. Multiple architecture bodies can be associated with a
particular entity interface, although only one can be associ-
ated with a given instance of an entity interface. This in-
stance-by-instance binding capability provides flexibility in
the construction and use of hardware descriptions and elim-
inatestherisk that would result from having to change entity

interfaces every time a different architecture is used. Since
different architecture bodiesfor acomponent can be selected
without modifying the code for the architectures that use the
component, the risk that would result from requiring modi-
fications of the architecturesis eliminated. Furthermore, dif-
ferent architecture bodies can be selected without requiring
that the architectures be reanalyzed, i.e., recompiled, and
this procedure can significantly reduce the time to prepare a
model for simulation.

A good design is modularized to support design tradeoffs
and to anticipate possible changes in the design so they are
appropriately partitioned into design entities. Good parti-
tioning allows changes to be implemented by substituting
different architecture bodies without any modification of the
associated entity interface. One situation in which changes
are expected is during top-down development of a hardware
module. Thelevel of detail in atop-down design changes, so
different architecture bodies can reflect the addition of dif-
ferent levels of detail to the design. For example, two archi-
tecture bodies may perform exactly the same logical
function but differ in their timing and implementation. Pars.
2-3 and 2-4 describe different architecture bodies for the
same entity declaration. Oneis abehavioral model; oneisa
structural model.

One frequently used testing methodology uses two mod-
elsthat process the same inputs; their outputs are compared
for equality. These two models should have the same entity
interface but different architecture bodies. One architecture
body is considered the reference model; its outputs are the
standard to which the outputs of the second architecture
body are compared. In atop-down development process the
reference architecture body usually represents a more ab-
stract view of the system, and the one being tested represents
amore detailed view. Research is being performed to devel-
op functional verification tools that provide an alternative to
simulation for this verification (Ref. 7).

-- The sobel algorithm library contains the packages,
-- entity declarations, and architecture bodies for
-- the algorithm level model of the sobel processor.

library sobel algorithm;

use sobel algorithm.image processing.all;

-- The IEEBE library and the 1164 standard logic
-- package are used in the algorithm model only

-- for the clock.
library IEEE;
use ieee.std logic_1164.all;
entity edge detector is

port (P: in pixel;
Clock: in std ulogic;
E: out pixel;
D: out direction );

end edge_ detector;

Figure 3-2. A VHDL Entity Interface Declaration
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An architecture body contains both declarations and
statements. These statements may include processes, com-
ponent instantiations, and concurrent signal assignment
statements. These kinds of statements execute concurrently
and use the signals declared either in the architecture body
or asthe ports of the entity interface. Such signals exchange
information and synchronize the actions of the architecture.

Depending upon the statements it contains, an architec-
ture body is considered to have one of three styles: behavior-
a, structural, or mixed. The behaviora style is normally
constructed using processes and concurrent signal assign-
ment statements and includes signals for communication be-
tween processes and variables for communication within
each process. In abehavioral style, each process provides a
sequential execution paradigm. Behavioral models con-
structed using the concurrent signal assignment as the pri-
mary construct are sometimes called data flow style models.
The structural style uses only component instantiations to
specify design entities at the next lower level of the hierar-
chy and connects these components using signals. The leaf,
or primitive, elements of a structural model are the lowest
level of the design hierarchy and are always written in a be-
havioral style. The mixed style combines processes and
component instances in the same architecture.

These styles of VHDL models are designed to support
modelsthat serve different purposes. Chapter 2 discussesthe
purposes of behavioral and structural models at different
levels of abstraction. In pars. 3-3 and 3-4 the key VHDL
concepts for these styles and the roles of these stylesin sup-
port of the purposes of structural and behavioral models, as
described in Chapter 2, are discussed.

322 THE VHDL CONCEPT OF TIME

A VHDL simulation is the computation of a series of
events sequenced by time. In VHDL an event isachangein
the value of a signal. Thus each event is associated with a
signal and has a value (the new value of the signal) and a
time. The interval between events can be very large or very
small, so simulation time can be advanced by arbitrary
amounts. VHDL models are usually simulated by a discrete
event simulator in order to cope with variably sized time
steps.

A VHDL simulation is a two-step process (Ref. 8). First,
all signal values are updated. After the signal values are up-
dated, the processes that are sensitive to changes in the sig-
nal values are executed. After all processes have been
executed, the process repeats and signal values are updated.
This cycleisrepeated and terminates only when the simula-
tor runs out of events, the simulation time advances to the
maximum possiblevalue, or the simulation is stopped by the
user or by an error.

The run time of most VHDL simulators is determined
largely by the number of eventsin a simulation. Reducing
the number of eventsrequired in asimulationislikely to re-
duce its run time. Thus a behavioral model with afew large
processes and a small number of signals usually executes

faster than a structural model with many component instan-
tiations and many signals. Using more abstract signal data
types also reduces the number of events. For example, if a
signal has adatatype of a 32-bit integer, asimple event rep-
resentsanew 32-bit value. On the other hand, if the same 32-
bit integer is represented as 32 one-bit signals, up to 32
events may be required to represent the same change in val-
ue.

3-2.3 SIGNALS

In VHDL, signals provide a means of communication be-
tween and processes, concurrent signal assignments, and
components. During simulation, changes in signal values
may activate processes or signal assignment statements,
which in turn compute new values for signals.

The declaration of asignal specifiesitstype. The type of
asignal must be consistent with thetype of any port to which
the signal is connected. Also the type of a signal must be
consistent with the value on the right-hand side of a signa
assignment statement.

To ensure interoperability of VHDL models, the signal
type declarations should be made available to those entities
connected by the signals. A necessary condition for interop-
erability of design entities is that the user can connect two
design entities together with one or more signals. VHDL
type checking can be used to ensure that models meet at least
this interoperability condition. A valuable technique to en-
sure interoperability is the use of packages to encapsulate
signal type definitions and their associated functions and
make them globally available. This approach has been taken
in IEEE Std 1164 (Ref. 6), which defines a standard set of
types for signals in logic-level models. The specification of
signal data types that are used by multiple design entitiesis
an important early milestone for aVHDL system design.

3-2.3.1 Signal Assignment Statements

Signal assignment statements are the VHDL constructs
that specify the future values of signals and the times at
which those values are to be assigned. Computation of the
future values of signals is the essence of the function of the
model; computation of the times at which the signal will as-
sume those values is the essence of the timing of the model.

VHDL hastwo different kinds of signal assignment state-
ments: sequential and concurrent. These two types of signal
assignment statements are valid in different contexts: se-
guential signal assignment statementsarevalid only inside a
process or subprogram, whereas concurrent signal assign-
ment statements are valid in concurrent contexts, such as
within an architecture or block statement.

Simulation events in VHDL are generated by signal as-
signment statements. Execution of asignal assignment state-
ment causes one or more transactionsto be scheduled for the
future. Each transaction has a time and a value that repre-
sents a possible value of the signal at a specified timein the
future. These transactions are stored in queues called driv-
ers. VHDL uses aconcept called adriver to capture the pos-
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sible future values of asignal. As simulation time advances,
transactions are removed from the queue as their times pass
from the future to the present and become the present driving
value of the driver.

A signal assignment statement edits the transactions in
the associated driver. Editing refers to transactions being
added to, deleted from, or inserted into the driver queue. The
interaction of signal assignment statements and drivers is
called propagation. VHDL supports two models of signal
value propagation: inertial delay (the default) and transport
delay. These two models allow users to model accurately
certain physical properties of hardware. In the transport de-
lay model each signal value, no matter how short its dura-
tion, is propagated. This approach isimportant for modeling
edge triggered devices, in which a short-duration pulse may
cause the device to change state. Inertial delays are intended
to model circuits for which an input must persist for some
minimum time before the circuit responds. If the input has a
shorter duration than the minimum inertial delay, the circuit
does not respond.

Each concurrent signal assignment statement has a
unique driver, but al sequential signal assignment state-
ments writing to the same signal in the same process share
the same driver. The user should be careful not to make in-
valid assumptions about the editing rules for sequential sig-
nal assignment statements sharing the same driver because
these editing rules are different from those for concurrent
signal assignment statements, which have different drivers.
See, for example, Ref. 8, pp. 70-82, for adetailed discussion.

Fig. 3-3 shows a sequential signal assignment statement
extracted from the horizontal filter shown in Fig. 2-15. In
this case the value of the signal His specified by a complex
expression that averages elements of the three element buff-
ers LAST_LI NE and NEXT_LI NE. The time that H as-
sumesthisvalueisthe current simulation time plusthe value
of pi xel _out put _del ay.

The timing of acomponent islikely to change based on a
number of factors, such as the operating temperature of the
component or the technology with which the component is
implemented. To ensure reuse of the VHDL model of acom-
ponent, the timing information should be parameterized so
that changes in these external factors can be made without
requiring changes to the VHDL model. As shown by exam-
ination of Fig. 2-5 and its reference to atiming package, the
delay in Fig. 3-3 is parameterized by using a deferred con-
stant. An aternative approach isto use generics and passthe
delay information down the hierarchy of design entities.
These approaches are discussed subpars. 3-6.1 and 3-6.2.
Standardization of the timing of components is most ad-

vanced at the gate level; standards such as VHDL initiative
toward ASIC libraries (VITAL) (Ref. 9) and EIA 567-A
(Ref. 10) are included. Par. 6-5 and subpar. 6-3.3.3 describe
mechanisms used to parameterize timing information in
models at the gate level.

3-2.3.2 Resolution Functions

A signal S may have several drivers, onefor each concur-
rently executing source of future valuesfor S. All of the se-
guential signal assignment statements within a single
process share the same driver for S, and each driver main-
tains a queue of possible future values for its associated sig-
nal. These future values are time stamped. The contents of
these queues must be merged to determine the future value
of the signal. VHDL includes a mechanism, referred to as a
resolution function, that determines how conflicts in future
values of asignal areresolved. Whenever anew value needs
to beassigned to S (and S has multiple sources of values), a
resolution function is called to compute the value of the sig-
nal based on the current values of the sources of the signal.
These resolution functions are defined by the user. The res-
olution function returns a value that is then assigned as the
driving value of the signal. When asignal isdeclared, ares-
olution function may be associated with that signal. If no
resolution function is associated with the signal, the signal is
considered unresolved. For example, the input port Cl ock
for the edge detector design entity whose interfaceis shown
in Fig. 3-2 is an unresolved data type st d_ul ogi c. The
“u” in the name indicates an unresolved data type. An unre-
solved data typeis used for efficiency reasons because there
isonly one driver for the Cl ock signal.

Fig. 3-4 shows an example resolution function called a
“wired-and” resolution function. It is associated with afour-
value logic data type called MVL. This resolution function
returnsa' 0' whenever any of itsinputsare' 0' , it returns
an' X' if thereisan' X' inputbutno' O' input, it returns
a'z' ifalinputsare’ Z' ,anditreturnsa’ 1' otherwise.
The input to a resolution function is always a vector, and a
resolution function must be able to respond properly to a
zero length vector, which may occur if al inputs are discon-
nected.

One or more resolution functions is a necessary part of
any data type definition designed to specify signals. A reso-
[ution function may be defined for adatatype T that is used
for signals. When a data type declaration for signalsis used
to ensure interoperability of models, it should be equipped
with a resolution function. This action guarantees that the
declaration can be used in situations in which signals have
multiple drivers. If asignal hasasingle driver, it may be de-

H <= weight (LAST LINE(1l), LAST LINE(2), LAST LINE(3))
- weight (NEXT_LINE (1), NEXT LINE(2), NEXT LINE(3))

after pixel output delay;

Figure 3-3. Example Signal Assignment Statement
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TYPE MVL IS ( 'X', -- Forcing Unknown
', -- Forcing O
', -- Forcing 1
'Z', -- High Impedance

)

TYPE MVL Vector IS ARRAY (NATURAL RANGE <> ) OF MVL;

-- resolution function

FUNCTION WiredAnd (Inputs: MVL Vector) RETURN MVL IS

7

TYPE LogicTable IS ARRAY (MVL,MVL) OF MVL;
CONSTANT AndTable: LogicTable :=
( -- 'x* o' 1 gz
('x', 'o0', 'X', 'X'), -- 'x!
(ro', 'o', '0', '0'), -- 'O
('x*, '0', '1', '1'), -- r1°
('x', o', '1', 'Z'), -- 'Z"
)i
VARIABLE Result: MVL := '1';
BEGIN
FOR 1 IN Inputs'range LOOP
Result := AndTable(Result, Inputs(i))
IF Result = '0' THEN
RETURN '0';
END IF;
END LOOP;

RETURN Result;
END WiredAnd;

Reprinted with permission. Copyright O by Paul J. Menchini.

Figure 3-4. Example of a Resolution Function (Ref. 11)

clared as an unresolved signal. Unresolved signals typically
require less simulation overhead than resolved signals and
are therefore more efficient. A typical abstract data type for
signalsis provided in both a resolved and unresolved form.
IEEE Std 1164 (Ref. 6) includes a resolution function in its
VHDL package specifying the datatypesfor logic-level sig-
nals.

3-3 VHDL SUPPORT FOR BEHAVIORAL
DESIGN

One of the most powerful features of VHDL isits ability
to support abstract, technol ogy-independent descriptions of
hardwarein theform of behavioral models. Behavioral mod-
els model the function and timing of an electronic system.
VHDL has features that allow creation of implementation-
independent behavioral architecture bodies.

VHDL provides support for behavioral modeling with
both concurrent and sequentia execution modes. A behav-
ioral architecture body may contain multiple processes, all
of which execute concurrently. However, statements within
agiven process are executed sequentially.

3-31 PROCESSES

Processes are the VHDL construct that supports sequen-
tial modes of execution. A process contains a sequence of

statements executed sequentially when the process is acti-
vated.

Control constructs, which may occur in processes, in-
clude loops, conditionals, and assignment statements. As-
signment statements in processes include variable
assignment statements and sequential signal assignment
statements. Sequential signal assignment statements allow
processes to update signal values over time.

Processes cannot be nested, but the function of a process
can be organized hierarchically through the use of functions
and subroutines. Communication between statementswithin
a process and between a process and the functions and sub-
routinesthat it calls can be accomplished using variables. In
most simulations, assignment to variables is much more ef-
ficient than assignment to signals, so the use of variablesis
preferred to the use of signals. The current value of a signal
can also be assigned to a variable as a way to communicate
from the external environment into a process. Communica-
tion from a process to its external environment is accom-
plished through signal assignments.

A process may have an explicit sensitivity list, which
specifiesalist of signals such that the changein value of any
signal on thelist will cause the processto be activated. Wait
statementsin a process specify when the processwill be sus-
pended and when it will resume. A process must have either
asenditivity list or await statement.
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The state of aprocess, as defined by its variables, persists
through asimulation. In contrast, variableslocal to asubrou-
tine are not persistent and are reinitialized each time the sub-
routineis called.

3-32 WAIT STATEMENTS

Wait statements provide a mechanism used to suspend a
process and may be used to synchronize processes. When a
walit statement is executed, execution of the process contain-
ing the wait statement is suspended until the conditions of
the wait statement are satisfied. When the conditions are
met, execution of the process resumes.

The optional clauses of a wait statement (sensitivity
clause, condition clause, and timeout clause) provide a vari-

architecture behavior of edge detector is

begin
sobel: process
variable A: image; --
variable H: filter out; --

variable V: filter out; --

variable LD: filter out; --
variable RD: filter out; --

begin

Internal frame buffer
Temporary storage for
horizontal filter
Temporary storage for
vertical filter
Temporary storage for
left diagonal filter
Temporary storage for
right diagonal filter

ety of waysto control execution of aprocess. The sensitivity
clause of await statement contains a list of signals referred
to as a sensitivity list. Changes in the current values of sig-
nals on the list may (depending upon the condition clause of
the wait statement) cause the processto resume execution. A
wait statement with a timeout clause can be used to intro-
ducetiming delaysinto functional models. See subpar. 2-3.3
for discussion of some of the limitations of this approach in
defining timing.

3-3.3 A BEHAVIORAL DESIGN EXAMPLE

Fig. 3-5 showsabehavioral architecture body for the edge
detection processor described in subpar. 2-3.3 and shown in

for image
results of

results of
results of

results of

-- Construct a complete image frame by reading
-- in the pixels in scan line order

for i in x _index loop
for j in y index loop

wait until rising edge (Clock) ;

A(i,])

end loop;
end loop;

(false) report "array read in";

wait for pixel output delay;

P;

assert

-- For each pixel in the output image

-- compute the values of all the filters,
-- then use these filter values to compute
-- the magnitude and direction outputs

for i in x out index loop
for j in y out index loop

wait until rising edge (Clock) ;

H = horizontal filter(A,i,j);
\Y = vertical filter(A,i,j);
LD := left diagonal_ filter(A,i,]j);
RD := right diagonal filter(A,i,j);
E <= magnitude (H,V,LD,RD) ;
D <= direct(H,V,LD,RD);
end loop;
end loop;

end process sobel;
end behavior;

Figure 3-5. Example of a Behavioral M odel
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Fig. 2-6. The entity interface declaration for this design en-
tity isshownin Fig. 3-2.

This architecture body consists of a single process. The
process contains two major nested loops. In both loops, the
f or loop control structureis used. Thefirst loop usesawait
statement to synchronize loading pixel values from theinput
signal P into the variable A. The wait statement has in its
condition clause the second input signal C ock. The wait
statement uses theri si ng_edge routine from the IEEE
std_| ogi c_1164 packageto catch the rising edge of the
clock signal.

The second loop computes and outputs the pixel values.
The output is accomplished by signal assignment statements
assigning values to the output signals E and D. These signal
assignment statements also specify the timing in a parame-
terized way through the use of the constant

pi xel _out put _del ay. The wait statement in the loop
synchronizes the output of pixels with the clock and pre-
vents the values from overwriting each other.

Between the two loops is a separate wait statement that
causes the delay associated with computing the output pixel
values. An assertion statement (discussed in subpar. 3-7.1) is
used to assist debugging by printing a message when input
of the image is complete.

This architecture body uses the package of data type def-
initions and function specifications in the package
i mage_processi ng, shown in Figs. 2.4 and Fig. 2.7.
References to the i mage_pr ocessi ng package in the
sobel _al gori t hmlibrary are allowed because the entity
interface shown in Fig. 3-2 includes | i brary and use
statements referring to this library and package, and these
references areinherited by the architecture body. Use of this
package alows the system to be parameterized in severa
ways. For example, the number of pixelsintheimage can be
changed without changing the architecture body. Similarly,
the number of bits of precision in apixel can be changed, or
the datatype for apixel could be changed from integer to an
unsigned natural number or a bit vector.

This behavioral model uses functions to achieve a hierar-
chical organization. The calling hierarchy for this model is
shownin Fig. 2-3.

This behavioral model specifies both the function and
timing of the system. The timing information is introduced
through the wai t statements in the input and output loops
and thewai t statement between the two loops. The timing
information is parameterized because the delays are speci-
fied with constants. The value of the
pi xel _out put _del ay constant is specified in the
ti m ng package.

3-4 VHDL SUPPORT FOR STRUCTURAL
DESIGN

Structural models can be used to model the actual or pro-
posed physical structure of adigital system. VHDL structur-
al architecture bodies support hierarchy by allowing adesign

entity to bind other design entities to instances of its compo-
nents. The generic maps of component instantiation state-
ments alow attribute values to flow down through the
structural hierarchy with appropriate modifications at each
level.

341 STRUCTURAL ARCHITECTURE
BODIES

A structural architecture uses only component instances
and their interconnections to define its structure. The com-
ponents are bound to design entities during elaboration. This
binding provides support for hierarchical structural models.

A VHDL structural description can be visualized as an
unpopulated board. The component declarations define a
partslist for the board and specify the pins on those parts. In
this analogy the ports specified in the declaration of compo-
nent C define the pins of C. The component instances are
sockets whose pins are wired to the traces on the board. The
port maps of component instantiation statements define the
wiring of the pins to the traces. The traces can be internal
signals that are traces local to the board or interface signals
that connect to the board edge connector through the ports
specified in the entity declaration to onboard socket pins.

Lower level design entities represent the devices to be
plugged into the sockets. “Binding” is the act of doing so.
The design entity to be bound to acomponent may be select-
ed on an instance-by-instance basis by means of a configu-
ration.

The maor language features supporting structural de-
scriptions are component declarations and component in-
stantiations. These features are described in subpar. 3-4.2.

342 COMPONENTS

In VHDL, components represent the outlines of individu-
a hardware entities from which a larger design entity is
composed. Before a component can be used in a model, it
must be declared with acomponent declaration statement. A
component is incorporated into a model by means of the
component instantiation statement. Multiple component in-
stantiation statements may refer to the same component dec-
laration, just as a typical hardware board may use many
copies of the same circuit.

The link between physical components and the corre-
sponding componentsin the VHDL model can be reinforced
through the naming of components and the annotation of
component instances. VHDL allows different attribute val-
ues to be associated with different instances of the same
component. The EIA 567 standard (Ref. 10) describes the
concept of an electronic data sheet, in which a data sheet is
associated with each component in the “parts list”. At-
tributesin the electronic data sheet are used to compute tim-
ing for elements of the model. This concept is described in
more detail in par. 3-6 and Chapter 5.

3-4.21 Component Declarations
Component declarations can be thought of as defining an
inventory of components, which can be reused as many
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times as necessary in the model. Component declarations
specify and name the ports and generic constants of compo-
nents. A port clause in acomponent declaration servesto de-
clare the ports of the component. It must contain the names,
directions, types, and default values, if any, of the portsin
the component. VHDL analyzers check that component in-
stances refer to components that have been declared and that
the port map for the instance is consistent with the parts of
the component declaration. This consistency checking helps
to catch errorsin VHDL models during the model develop-
ment process.

Component declarations can be placed in packages, and
this placement allows them to be reused. This approach is
particularly valuable if a common or prescribed partslist is
required across multiple hardware modules.

3-4.2.2 Component Instantiations and I ntercon-
nections

A component that has previously been declared can be
used in an architecture body via a component instantiation
statement. A component instantiation statement gives the
component instance a unigue name and associates the ports
of the component with the signals that convey information
to and from the component. Use of component instantiations
resultsin astructural model that isanetwork of components
connected by signals.

Component instantiation statements provide three types
of associations: (1) associating adesign entity (with apartic-
ular architecture body) with the component instance, (2) as-
sociating ports in the entity interface with locally declared
signals, and (3) associating the values of generic constants
with the generics defined in the entity interface. These asso-
ciations can occur in two places: in the structural architec-
ture body (Thisis aform of early binding or “hard wiring”
of the information.) or in a separate configuration declara-
tion (Thisis aform of late binding.). An early binding can
be changed only by editing and analyzing the architecture
body, whereas alate binding can be changed without editing
the architecture body. The use of external configuration dec-
larations is discussed in subpar. 3-8.3.

Signals are associated with the ports of a component in-
stance in the port map of the component instantiation state-
ment. When the same signal is used in multiple port maps, a
signal net is defined. The direction information in the port
declaration of the component determines the sources and
sinks for the net.

Component declarations (and their corresponding instan-
tiations) in VHDL are placeholders. The design entities used
to model the components cannot be specified in either the
component declaration or the component instantiation. This
lack of dependency supports top-down model development
because the lower level design entities need not be defined
and analyzed before the higher level design entities are cre-
ated. However, when both levels of design entities are de-
fined and a configuration specification is used to associate
the lower level design entity with the component instance at

a higher level, the consistency-checking capabilities of
VHDL ensurethe consistency of the models. This consisten-
cy allows abehavioral model of acomponent to be replaced
by a structural model by changing and reanalyzing the con-
figuration information.

343 A STRUCTURAL DESIGN EXAMPLE

Fig. 3-6 contains a structural architecture body for the
horizontal filter described in subpar. 2-4.3.2. The entity in-
terface declaration corresponding to thisarchitecture body is
shown in Fig. 2-14. This architecture body has three input
ports, P1 and P3 of type pi xel and Cl ock of type
std_ul ogic. It has a single output port H of type
filter_out.

Thisexampleillustrates several points. It showsthe use of
component and signal declarations, the use of component in-
stantiations, and the association of signals with the ports of
a component.

The architecture body in Fig. 3-6 declares three compo-
nents. an adder, a subtractor, and a delay. In each of these
three components the port list names the ports and defines
the direction and the data type of the ports. The data types
are specified inthe i mage_pr ocessi ng package in the
sobel _struct ure library. The image-processing pack-
age is shown in Fig 2-4, and the package body isillustrated
inFig. 2-7.

The particular design entity, i.e., an entity interface and a
corresponding architecture body, to be bound to each in-
stance is selected in a separate configuration specification.
The use of configuration specifications adds flexibility by
deferring selection of particular versions until the model is
ready to be simulated. Configuration specifications and dec-
larations are discussed in subpar. 3-8.3.

The architecture body in Fig. 3-6 declares four signals:
S1, S2, S3, and S4. These signals are used to carry infor-
mation among the component instances in the model. All
four signals have the same user-defined type,
filter_out. Thistype is used for al in ports and out
ports of the components except for the datainput ports of the
subt ract or component and for the Cl ock ports on the
adder and del ay components.

Thebegi n in Fig. 3-6 designates the start of the execut-
able statement part of the architecture body. This part con-
tains the component instantiation statements that describe
the structure of the architecture body. Each component in-
stance has alabel, which must be unique within a particular
architecture body. After the label is the name of the compo-
nent being instantiated. This model showsthat asingle com-
ponent can be replicated as many times as needed, e.g., there
are two instances of del ay and two instances of adder .
Each replication, however, must have a unique instance la-
bel. The instance labels for the adders are ADD1 and ADD2.

Lastly, each component instance is connected to the sig-
nals by associating each signal with a particular port in the
order in which the ports are listed in the component declara-
tion. This association could also be done by name, which
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architecture structure of
component subtractor

horizontal filter is

port { Al: in pixel;
A2: in pixel;
Clock: in std ulogic;
DIFF: out filter out );
end component;
component adder
port ( Al: in filter out;
A2: in filter out;
Clock: in std ulogic;
SUM: out filter out );
end component;
component delay
port ( A IN: in filter out;
Clock: in std ulogic;
A OUT: out filter out );
end component;
signal S1: filter out; -- Connects difference to 1lst delay and 1lst adder
signal S2: filter out; -- Connects 1st delay to 1lst adder
signal S83: filter out; -- Connects 1lst adder to 2nd delay and 2nd adder
signal S4: filter out; -- Connects 2nd delay to 2nd adder
begin
SUB: subtractor port map (Pl1, P3, Clock, S1);
DEL1: delay port map (S1, Clock, S2);
ADD1: adder port map (S1, S2, Clock, S3);
DEL2: delay port map (S3, Clock, S4);
ADD2: adder port map (S3, S4, Clock, H);

end structure;

Figure 3-6. A Structural Architecture Body

would allow the signal port pins to be listed in an arbitrary
order. The sources and sinks for the signals are implied by
the port list in the entity declaration and the port listsin the
component declarations. For example, Cl ock is a signa
with an external source and five sinks, one for each compo-
nent instance. Similarly, S1 has asits source the port

DI FF inthe instance with label SUB and has asiits sinks the
port Al of ADD1 and the port of A_| Nof DEL1. Also Hhas
the port SUMof ADD2 asits only source and has one or more
external sinks.

3-5 VHDL SUPPORT FOR DATA AB-
STRACTION

Data abstraction is the practice of extracting the essential
characteristics of data by creating user-defined data types
and disregarding certain implementation details. Data ab-
straction isapowerful tool used to control the complexity of
models. It allows acomplex data structure to be defined in a
single place in the code and thereby assures consistency in
the definition throughout a model. It also is atool to ensure
consistent definitions of the operations on a user-defined
datatype. These aspects are critical to the interoperability of
models.

3-10

Data abstraction is aso a powerful tool used to isolate
changes and thereby reduces the risk associated with mass
changes in software. A single data type may have many dif-
ferent implementations at different levels of abstraction.
These implementation details should be hidden from those
users who do not have a need to know the structure. Thus,
when the implementation of the data type changes, the
changesin the VHDL code can be isolated to that section of
the code which provides the implementation details. For ex-
ample, the datatype pi xel has different representations at
different levels of abstraction in the edge detector model. In
the algorithm-level model pi xel isdefined asaninteger. In
the gate-level model pi xel isdefined as abit vector with
a specific number of bits.

Data abstraction is implemented in VHDL with user-de-
fined types. A user-defined data type consists of atype def-
inition together with the definitions of the functions that act
on the datatype. Examples of abstract datatypesinclude the
di recti onandi nagetypesdefined in Fig. 2-4.

VHDL has capabilities that allow the user to create new
data types, and it has capabilities to overload subprogram
and enumeration literal names. VHDL also enhances in-
teroperability by supporting the definition and use of type
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conversion functions to interface design entities that were
written using different interface data types.

3-5.1 USER-DEFINED TYPES

VHDL has two mechanisms that allow the user to create
new scalar types, and it has two methods used to create com-
posite types.

The user can create anew scalar typein VHDL by defin-
ing an enumerated type or by defining aphysical type. Phys-
ical types are described in subpar. 3-6.3. An enumerated
type is defined by listing al of the possible values of an ob-
ject of that type. An example of an enumerated type is the
IEEE Std 1164 st d_ul ogi ¢ type, which consists of nine
possible values, as shown in Fig. 3-7. Enumerated types
have an explicit ordering specified by the order in which
they are listed in the declaration. Variables and signals can
have values that are enumerated types and can be assigned
values that are enumerated types. Values of enumerated
types can be compared using the relational operators =, / =,
<,<=,>,and>=. Forexample,' X < ' Z' because' X' is
listed before' Z' inthe declaration in Fig. 3-7.

VHDL includes four built-in enumerated types:
character, bool ean,bit,andseverity | evel.
VHDL includes additional built-in logical operators for the
bool ean and bit enumerated types. and, or, nand,
nor, not, xor. Theseverity_ | evel built-intypeis
described in par. 3-7.

A compositetypeiscreated by aggregating simpler types.
There are two kinds of composite types. arrays and records.
An array type is created by aggregating a collection of ele-
ments of the same subtype. The elements of an array are se-
lected by using an index. For example, abit vector is created
by aggregating a homogeneous array of bits. A record type
is created by aggregating a heterogeneous collection of ele-
ments, each of which must be named at analysistime. A bus
with multiple control, address, and data lines can be created
by aggregating atype for the control lines (which may again
be acomposite type), atype for the address lines, and atype
for the data lines.

VHDL aso supports access types, which are similar to
the pointer data types of C and PL/I. However, signals can-
not be declared as access types. VHDL aso supports file
typesfor useintheinput of test vector filesand in the output
of messages and trace data. Signals also may not be a file
type.

Subtypes are another option available to the user. A
VHDL subtype inherits the operations defined for the parent
type but restricts the possible values of variables, constants,
or signals declared as the subtype. Error messages are gen-
erated when an operation produces avalue that is not within
the subtype. For example, an array type may be defined with
an unrestricted, i.e., integer, range. A subtype of the array
may be defined as having arestricted range, e.g., “0 to 10”.

Subtypes are an important mechanism used to define la-
beled types without also defining the functions allowed for
the data type. As such, they are arelatively simple method
of using aVHDL analyzer to support consistency checking.

3-5.2 TYPE CONVERSION FUNCTIONS

Type conversion functions provide a mechanism used to
make incompatible design entities work together. For exam-
ple, type conversion functions may be required to make
models at different levels of abstraction interoperate. If one
design entity usesinteger typesfor its1/0O ports and another
design entity uses bit vectors, type conversion functions can
be used to make these two design entities interoperate.

Type conversions can be specified in component instanti-
ation statements. A port map specification in a component
instantiation statement can list a type conversion function
applied to asignal rather than listing only a signal as being
connected to the port. This procedure allows late binding of
type conversion to a signal. The IEEE Std 1164 package
(Ref. 6) includes type conversion functions for some com-
monly used logic types. These functions are included in the
IEEE Std 1164 package to support the interoperability of
1164-compatible models with models that were not built
with the full 1164 logic set. Similarly, the IEEE synthesis
package (Ref. 12) provides type conversion functions used

-- logic state system (unresolved)

TYPE std ulogic IS ( 'U', -- Uninitialized
X! -- Forcing Unknown
‘0" -- Forcing 0
'1', -- Forcing 1
'Z', -- High Impedance
"W -- Weak Unknown
'L -- Weak 0
'H! -- Weak 1

Don't care

Copyright 00 1993. IEEE. All rights reserved.

Figure 3-7. An Enumerated Type: The |EEE Std 1164 Unresolved L ogic Data Type (Réef. 6)
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to convert twos complement and sign-magnitude integers
into bit vectors and vice versa.

3-5.3 OVERLOADED OPERATORS

An operator is a computation that is a recognized part of
the VHDL language. Binary operators (operators with two
operands) typically usetheinfix notation, e.g., A + B, rath-
er than the more general function notation, e.g., +( A, B) .
The VHDL language comes with a set of operators that are
defined on the built-in data types of the language. An over-
loaded operator is an operator that performs functions de-
pending upon the type of its operands. For example, the
addition operator may be overloaded to perform integer ad-
dition if its operands are integers and real addition if its op-
erands are real numbers. Operator overloading increases the
readability of VHDL modelsand allowsthe same operations
on different types to be identically named.

The IEEE Std 1164 package (Ref. 6) includes definitions
of the overloaded operators “and”, “nand”, “or ", “nor ”,
“xor”, and “not . The package provides overloading for
situations in which both operands are either st d_ul ogi ¢
or botharest d_I ogi c.

3-6 VHDL SUPPORT FOR ANNOTATING
MODELS

Annotation is the practice of incorporating information
into the model that may not be directly related to the func-
tion of the model but that can provide a more accurate de-
scription of a particular implementation. An example is the
temperature range over which the device is expected to op-
erate.

Information that is not used during simulation can aso be
incorporated into a VHDL model as a form of documenta-
tion that can be processed by VHDL analyzers. Thiskind of
information can be used by external tools that can extract it
from the VHDL description.

Themajor VHDL features that support design annotation
are constants, attributes, and physical types. VHDL alows
the user to define attributes, to associate attributes with
VHDL signals, design entities, and components, and to use
attribute values to compute the function and timing of
VHDL components. VHDL supports the definition of data
types called physical types, which are desighed to support
the definition of attributes. VHDL allows the user to define
physical types and units and relations between units of the
same physical type. VHDL includes a single built-in physi-
cal type, thetypetime. VHDL allows constantsto be defined
and shared by multiple design units through the use of pack-
ages, it supports deferred definition for constant values, and
it supports parameterized models through the use of gener-
ics.

Because user-defined attributes are constants, they can be
assigned values at elaboration time by generics, just as other
constants can. Attributes have the advantage of being at-

3-12

tached to specific objects; constants are not. Constants can
have their value definitions deferred and can be collected
into packages; therefore, it is easier to access common con-
stant values from multiple design entities.

Theapproach taken by VITAL (Ref. 9) and EIA 567 (Ref.
10) is to use constants defined in packages, and part of the
constant record structure is the link back to the originating
part, not attributes. Attributes are used for purposes other
than back annotation, e.g., the VI TAL_Level attribute as-
sociated with an architecture body. One of the things that
VHDL 93 (Ref. 3) provides to make attributes easier to use
isthe built-in path attribute. This attribute simplifiesfinding
a specific instance in which an attribute value needs to be
Set.

For constants or attributes to be used effectively to docu-
ment amodel, they must be used consistently throughout the
model. The EIA 567 (Ref. 10) defines a set of constants for
device models and functions that use these constants to de-
fine and check the timing of the models. The EIA constants
describe an electronic data sheet, which has three views:
physical, electrical, and timing. Each of these viewsis spec-
ified with aVHDL package that defines a collection of data
typesincluding, in particular, data types for the constants.

3-6.1 ATTRIBUTES

Attributes are the primary VHDL construct that supports
the annotation of models with user-specified data. This in-
formation might include vendor part numbers, drawing
numbers, power dissipation, or amost any other information
auser might want to include. VHDL includes predefined at-
tributes that provide information about named entities. Of
particular value in this regard are attributes describing the
state of signals, such asst abl e or event .

The value of an attribute is accessible to the VHDL de-
sign unit in which the attribute is declared; tools have been
developed that interact with VHDL analyzers to access and
manipulate these values. Attribute values can be used to
compute the timing or modify the function of adesign entity.
Attributes have types, which are assigned by attribute decla-
rations. Because VHDL provides an extensive facility with
which to define and check types, the VHDL type mechanism
provides great flexibility inincluding additional information
and checking the consistency of the information added to a
VHDL description. Attributes that are not predefined are
constants, but they may be given values by generics after
analysis. Generics are discussed in subpar. 3-6.2.

Attributes should be distinguished from comments as a
form of documentation. VHDL alows comments, but
VHDL analyzers ignore the text of comments. Thus a
VHDL anayzer has no control over the consistency of infor-
mation in comments. However, VHDL attributes are parsed
and type checked by VHDL analyzers. VHDL analyzerswill
also compute the value of attribute expressions that are as-
signed values at analysistime.
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3-6.2 GENERIC CONSTANTS

Generic constants are an important mechanism used to
parameterize VHDL models. Parameterized models are eas-
ier to reuse because they are designed to support some level
of change external to the model. Generic constants are el ab-
oration-time parameters. Sincetheir values are constant dur-
ing simulation, they do not imply the performance penalty
associated with run-time parameters. Both the EIA 567 (Ref.
10) and VITAL (Ref. 9) use generics to define the value of
timing parameters.

VHDL expressions can include generic constants whose
values are fixed when the model is elaborated. The value of
a generic constant is specified when it is used in a compo-
nent instantiation statement or when its design entity is ref-
erenced in a configuration specification. The use of
configuration declarations to set generic constant values is
shown in subpar. 3-8.3.2.

Configuration declarations provide a mechanism within
VHDL to do back annotation (Ref. 13). The VHDL structur-
al model is analyzed, and netlists are extracted from the an-
alyzed model. External timing tools are used to analyze the
netlist and compute timing values based on factors such as
parasitic capacitance. The external tool then generatesacon-
figuration declaration containing the timing information it
has computed. When the model is ready for simulation, the
configuration declaration is elaborated so that the timing at-
tributes of the model are assigned the values computed by

LIBRARY timed;
USE timed.util;
ENTITY t _or IS

GENERIC (temperature: float;
base delay: time );
PORT( in1l: IN bit;
in2: 1IN bit;
outl: OUT bit );
ATTRIBUTE fcn_delay: time;
BEGIN

ATTRIBUTE fcn delay OF t or

:entity IS

the external tool.

Fig. 3-8 illustrates the use of generic constants and at-
tributes in an entity interface. In this example an attribute is
declared as part of an entity interface declaration. The value
of the attribute is computed from the values of generic con-
stants that are inherited either from a component instantia-
tion or a configuration specification.

InFig. 3-8 afunction der at e isassumed to take the ge-
neric constants base_del ay and t enper at ur e asar-
guments and return the appropriate value. This function is
called when the model is elaborated. The delay computed by
this function has been parameterized in terms of the two pa-
rameters, base_del ay andt enper at ur e.

An architecture body for theinterface of Fig. 3-8 isshown
in Fig. 3-9. This body uses the attribute with the name
fcn_del ay and is associated with the entity interface
t _or for thetime delay inthe signal assignment statement.

The attribute value has been used in the signal assignment
statements in place of a fixed time value. Thus, the same
entity-architecture pair can be reused many times with pos-
sibly different values for the generic constants without re-
writing the VHDL source code.

3-6.3 PHYSICAL TYPES

Physical types represent measurable physical quantities.
VHDL provides facilities to define physical types and to
check that those types are used consistently in the model. A
physical type definition is characterized by an integer range

util.derate(base delay, temperature) ;

END t_or;

Figure 3-8. Entity Interface Declaration With Generic Constants and an Attribute

ARCHITECTURE behavior OF t _or IS
BEGIN
or_proc
BEGIN
Y <=
END PROCESS;
END behavior;

PROCESS (A, B)

A or B AFTER t_ or'

fcn _delay;

Figure 3-9. Architecture Body Using an Attribute

3-13
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and a base unit of measurement. Secondary units of mea-
surement may also be declared for a physical type, along
with an equation defining the relationship of the secondary
unit of measurement to some primary unit of measurement.
VHDL comes equipped with asingle built-in physical type:
time.

Fig. 3-10 illustrates the declaration of a physical type,
whichinthis caseisatype measuring distance. The base unit
of measurement is the angstrom; other secondary units of
measurement are also specified in both metric and English
units.

type Distance is range 0 to 1E18

units
-- base unit:
A; -~ angstrom
-- metric units:
nm = 10 A; -~ nanometer
um = 1000 nm; -- micron
mm = 1000 um; -- millimeter
cm = 10 mm; -- centimeter
m = 100 cm; -- meter
km = 1000 m; -- kilometer
-- english units:
mil = 25400 A; -- mil
inch = 1000 mil; -- inch
ft = 12 inch; -- foot
yd = 3 ft; -- yard
fm = 6 ft; -- fathom
mi = 5280 ft; -- mile
1g = 3 mi; -- league

Copyright O 1993. IEEE. All rights reserved.

Figure 3-10. Example of a Physical Type
Declaration (Ref. 3)

Physical types provide a powerful mechanism to increase
the understandability and consistency of attribute defini-
tions. The EIA 567 (Ref. 10) physical and electrical views
use physical types extensively to create an electronic data
sheet. The EIA 567 physical and electrical views are dis-
cussed in more detail in subpar. 6-3.3.

entity RSFF is

3-7 ERROR HANDLING WITH VHDL

When amodel is used as part of alarger system, it is pos-
sible that some of its operating conditions may be violated.
For example, a timing violation may be observed that may
cause incorrect operation of the circuit. Users should be in-
formed of these violations so the incorrect operating condi-
tion can be corrected. The VHDL DID (Ref. 4) requires
certain types of error checking; subpar. 7-4.3 describesthese
requirements in more detail.

VHDL provides a special mechanism to detect errors: as-
sertion statements. Another way to flag errors is to extend
the data types for signals to include error states. These ap-
proaches are described in the following subparagraphs.

3-7.1 ASSERTION STATEMENTS

Assertion statements are one mechanism to detect and re-
port errors. Assertion statements provide arelatively simple
way to check some of the behavioral or operating conditions
of amodel and can be used to check signal timing at the ports
of an entity interface. For example, assertion statements may
be used in entity interfaces, architecture bodies, and subpro-
gram bodies. Assertion statements appear in any sequential
or concurrent statement part. One use of passive processesis
to encapsulate assertion statements. Passive processes can
be defined in packages and can be made available for usein
multiple design entities.

Asshown in Fig. 3-11, an assertion statement consists of
acondition, an optional report clause, and an optional sever-
ity clause. The condition must evaluate to a Boolean value.
If the condition of an assertion statement evaluates to
FALSE, thereport string is displayed with the designated se-
verity. Thereport clause string is displayed in an implemen-
tation-dependent fashion. There are four possible values of
aseverity code: not e, war ni ng, err or , and
fai | ur e.The action of the simulator for each level of se-
verity isimplementation dependent, and some simulators al-
low the user to specify the action to be taken and/or the
severity level that will terminate the simulation. Synthesis
tools may use the assertion conditions as invariants.

A concurrent assertion statement executes when a signal
that is referenced in the condition section of the assertion

port ( R, S: in Bit;
Q, QBar: buffer Bit);
begin
CheckInputConstraint:
assert R = '0' or S = '0'
report "R and S inputs both asserted!"
severity Failure;
end RSFF;

Reprinted with permission. Copyright O by Paul J. Menchini.

Figure3-11. An Assertion Statement (Ref. 11)
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statement changes value. Sequentia assertion statementsin
processes or subprograms are executed in the order in which
they appear. Assertion violations are reported with either a
default or a user-specified message.

Fig. 3-11 shows an example of an assertion statement for
an R(reset)S(set) flip-flop. Thistype of flip-flop cannot tol-
erate’ 1' valueson both the S (set) and R (reset) inputs at
the same time. The assertion statement
Checkl nput Constrai nt is designed to detect this
anomaly.

More elaborate error detection can be done with passive
processes. Assertion statements can invoke functions in
their condition or in their report and severity expressions.
However, assertions do not provide the same degree of com-
putational sophistication that is available in a passive pro-
cess since functions do not maintain state between calls.
Passive processes do retain state and therefore can provide
testing of assertions that require some history to be main-
tained.

Both VITAL (Ref. 9) and EIA 567 (Ref. 10) provide
functions designed to check timing and to be used in the con-
dition parts of assertion statements.

3-7.2 HANDLING SIGNAL ERROR STATES
VHDL alows designers to specify any logic level con-
vention desired. To help detect and propagate errors, logic
level conventions are often extended to include signal error
states. This approach has been used in IEEE Std 1164 (Ref.
6), which includesthe ' X' and ' W statesto mark errors
and 'U to mark uninitialized objects, as shown in Fig. 3-7.
Because any logic level may appear asasignal value during
the course of asimulation, it isimportant that processes us-
ingst d_I ogi c signasbeabletohandleall possiblesignal
levels, including signal error states. Furthermore, error
states should be propagated to the outputs so that when an
error occurs, it can be detected at the external boundary of
the system. One method used to provide these error handling

-~ truth table for "and" function
CONSTANT and table stdlogic_table :

-- | U X 0 1 Z W
( 'u', 'y, ro', 'y, ‘U, 'y
( 'u', 'X', 'o', 'X', 'X', 'X'
( 'o', 'or, 'o', ‘o', '0', '0"
( 'u', 'X', '0', '1', 'X', 'X'
( 'u', 'X', '0', 'X', 'X', 'X!
( 'u', 'X', '0', 'X', 'X', 'X!
('o', ‘o', *o', '0', '0', 'O
( 'u', 'X', '0', '1', 'X', 'X!
( 'u', 'X', '0', 'X', 'X', 'X"

)i
Copyright 00 1993. |IEEE. All rights reserved.

capabilitiesisto overload the operators for the normal func-
tions. This approach has been used in IEEE Std 1164 (Ref.
6); Fig. 3-12 illustrates this approach. The figure shows the
logic table for the logical and function. The resultsfor and
appliedtothevalues' 0' and' 1' matchthetraditional def-
inition, but the definition has been extended to deal with all
nine values defined in the IEEE Std 1164 data type
std_ul ogi ¢ (Fig. 3-7). This table for the and function
should be compared with the table for the W r edAnd reso-
lution function shown in Fig. 3-4, which also propagates its
error states.

Effective use of packages to encapsulate error state data
types and functions can prevent the need to change VHDL
models that use the logic, as discussed in subpar. 3-8.2.

3-8 VHDL SUPPORT FOR SHARING AND
REUSE

VHDL was developed with many features that support
sharing and design reuse. These features help to minimize
effort duplication and to ensure that consistent models are
used throughout adesign. Sharing and reuse are supportedin
VHDL by VHDL design libraries, packages, and configura-
tion declarations.

VHDL libraries impose a structure on the models avail-
able to the user. VHDL libraries store design units that can
be made available to the user. The user must indicate which
libraries are used by a model. Depending upon the imple-
mentation, the library may also be useful for configuration
management and access control.

Packages provide a mechanism to collect VHDL source
statements for some common purpose. Such statements in-
clude data type declarations, attribute declarations, and sub-
program declarations. These declaration statements can then
be included in other VHDL design units. The package pro-
vides a common location for the source code so that revi-
sions need to be made only once. Revisions of the package

LooH - |
o, 'u', 'u' ), -- | U]
oY, ‘X', X' ), -- | x|
o', 'o', '0" ), -- | 0]
o', "1, X' ), -- | 1|
o, ‘X', X'y, -- | 2z |
o', X', XU ), -- | W
o', ‘o', '0r ), -- | L |
o', '1', 'X' ), -- | H |
0, XY, X0 - | - |

Figure 3-12. An Exampleof Error Propagation: |[EEE Std 1164 AND Operator Table (Ref. 6)
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are then automatically used whenever a design unit that ref-
erences the package is subsequently analyzed.

Configuration declarations provide afeaturefor late bind-
ing of architecture bodies to entity interfaces and late bind-
ing of valuesto generic constants. Because the configuration
declarations can exist as separate files, they can reduce edit-
ing of other design units and thus reduce risk.

3-8.1 VHDL DESIGN LIBRARIES

VHDL libraries are used to store information that can be
used (or reused) to construct new VHDL models and to pro-
vide a mechanism to partition a large design into manage-
able pieces. A library may contain a collection of frequently
used parts, data and function definitions common to al
VHDL design unitsin amodel, or data and function defini-
tions common to a particular model. Libraries have names
that can be referenced viaa VHDL library clause to make
the contents of alibrary accessible. The contents of libraries
may be made available for reference by use clauses or may
be referenced directly using expanded names.

VHDL design libraries are the repository of VHDL de-
sign units. Existing design units can be referenced in a
VHDL description by using expanded name of the library
unit. Theuse clause makesthe contents of adesign unit vis-
ible, just asthel i br ar y clause makesthelibrary itself vis-
ible. Theuse clause providesa*“ shortcut” so auser does not
have to repeat the expanded name of thelibrary unitin every
reference.

VHDL requires that an entity interface declaration ent
must be analyzed, i.e., compiled, before any architecture
body is associated with it. However, a VHDL design unit
that references an entity interface declaration does not have
to be modified or even reanalyzed when the architecture
body is changed. Separating the analysis of entity interface
declarations from the analysis of associated architecture
bodies is a mgjor risk reduction factor because anytime a
program is modified, there is a significant possibility errors
will be introduced. It is aso a significant factor in reducing
the time required to analyze a large model. Thus a well-de-
signed VHDL model takes advantage of design entitiesas a
mechanism to modularize the model aswell asamechanism
to document the relationship between physical components
and the VHDL model.

VHDL has two predefined libraries. wor k and st d. Li-
brary wor k isthelibrary specified by the user into which li-
brary units are analyzed. It usualy contains the library units
of amodel under construction. The namewor Kk isintended
as atemporary name for the current library. When the cur-
rent library has been developed, it should be given a name,
and appropriate references to this library should be inserted
in the source code for the design unitsin thelibrary. Library
st d contains the predefined VHDL packages st andar d
and texti o, which provide definitions and functions
needed for all VHDL models. Packages associated with oth-
er |EEE standards are in other libraries, such asthei eee li-
brary being used by |EEE Std 1164 (Ref. 6).
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The binding of library namesto external storageisimple-
mentation dependent and therefore may vary from vendor to
vendor and from design environment to design environment.
This dependency results from variations in the file-naming
conventions in different operating systems. One common
implementation-dependent restriction on file names is the
length of the name. To support portability of libraries, it is
recommended that library names be no longer than eight
characters.

Standards organi zations are creating and populating their
own libraries. For example, IEEE Std 1164 (Ref. 6) has de-
fined apackagecalledst d_| ogi ¢c_1164, whichisstored
in the library i eee. Another example is |IEEE Std 1029.1,
the Waveform and Vector Exchange Specification
(WAVEYS) standard (Ref. 14), which uses four libraries. (1)
aWAVES standard library, (2) alibrary that contains code
specific to particular automated test equipment (ATE), (3)
the wor k library, which is where the module under test is
stored, and (4) alocal standard library. The partitioning of
design unitsinto the WAVES library is described in subpar.
7-3.1.

3-8.1.1 Declaringand Using Libraries

Libraries are referenced in a VHDL description in
i brary and use clauses, and they may also be refer-
enced in expanded names. The | i br ary clause specifies
the particular libraries, and the us e clause specifieswhat li-
brary units or declarations within alibrary are to be directly
visible to the unit in which the clause occurs.

Each design unit implicitly containsthefollowing context
clause:
library std,work; use std.standard.all;

Because the current design unit is initially placed in the
wor K library, it needsto have accessto other design unitsin
the same library. This implicit context clause provides this
access and also makesthe VHDL library st d available. As
mentioned in the previous paragraph, the st d library con-
tains predefined VHDL standard packages, such as
textio.

A library clause and a use clause in adesign unit context
clause are shown in Fig. 3-13. In this example four libraries
are named. Two libraries are implicitly named: wor k (the
default working library) and st d (the VHDL standard li-
brary), and two libraries are explicitly named: i eee (which
contains the |EEE Std 1164 data type definitions) and
cust om(alibrary of predefined gate-level models). In li-
brary st d there is a package named st andar d, the con-
tents of which are made visible by the implicit use clause
use std. standard. al | . In addition, the IEEE Std
1164 definitionsin library i eee are made visible by theuse
clause use ieee.std_logic_1164.all ;.

In Fig. 3-13 the design unit is the architecture body
struct ur e of the design entity i npl y. The cust omli-
brary contains models for the components that are used in
this architecture body. The configuration specifications bind
the component declarationsof c_or and c_i nv to specific
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design entities specifying both the entity interfaces (called not a) to the ports of the components as hamed in
ttl _invert and ttl _or inthelibrary cust omandthe the entity declarations in the library cust om Fig. 3-14 il-
architecture bodies (both of which are named behavi or). lustrates how the library clauses, use clause, and configura-
The component instantiations connect the external ports of tion specifications in Fig. 3-13 link these design units

i mpl y (called A and Y) and the internal signal of i nply together to create aVHDL model.

LIBRARY custom;
LIBRARY ieee;
USE ieee.std logic_1164.ALL;
ARCHITECTURE structure OF imply IS
-- Signal Declarations
SIGNAL nota: std ulogic;
-- Component Declarations
COMPONENT c_or
PORT (inl: 1IN std ulogic,
in2: 1IN std ulogic,
outl: OUT std ulogic);
END COMPONENT;
COMPONENT c_inv
PORT (inl: IN std ulogic,
outl: OUT std ulogic);
END COMPONENT;
-- Compecnent Specifications
FOR orl: c_or USE
ENTITY custom.ttl or{(behavior) ;
END FOR;
FOR invl:c_inv USE
ENTITY custom.ttl invert (behavior);
END FOR;
BEGIN
-- Component Instantiations
invl:c _inv PORT MAP (inl => A, outl => nota)
orl: ¢ _or PORT MAP (inl =»> nota, in2 => B, outl => C)
END structure;

Figure 3-13. Using a Component Library to Configure a Structural Architecture Body

Library custom al— Library work — > Library ieee

Entity tL_inv n Entity imply Package std_logic_1164;

ARCHITECTURE behavior |gg | ARCHITECTURE structure OF
OF tt_inv imply IS
LIBRARY custom;
LIBRARY ieee;
USE ieee.std_logic_1164.ALL; Package body of 1164

FOR inv1: c_inv USE
ENTITY custom.ttl_inv

(behavior);
END FOR,;
Entity ttl_or 4——| FOR or1: c_or USE
ENTITY custom.ttl_or
i (behavior);
ARCHIT%:JtlileEr behavior <__] END FOR.

Figure3-14. Useof Library and Use Clausesto Access External Libraries
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Fig. 3-15 and Fig. 3-16 show the use of configuration
specifications to select from libraries appropriate design en-
titiesand their architecture bodiesfor componentsin astruc-
tural model. Selection of appropriate architecture bodiesisa
key step in configuring a VHDL model. A single entity in-
terface can have several associated architecture bodies. Dif-
ferent architecture bodies can represent different
implementations of the same entity interface. Selecting an
architecture body is a means of trading off or evaluating al-

Library nmos

Package timing

i |

| C

A

ternative implementations. Different architecture bodies
may represent different levels of abstraction of a design en-
tity. In this case selecting an architecture body determines
the level of abstraction to be used for a particular compo-
nent. Subpar. 10.2.1 of the VHDL DID requires both behav-
ioral and structural models for all modules that are not |eaf
modules. Thus selecting an architecture for each component
is an essentia step in configuring a DID-compliant VHDL
model.

Library cmos

Package timing

t 1

c_or
c in

Library ieee

Package std_logic_1164

A

Library work

Design Entity imply

ARCHITECTURE
nmos_imp OF imply

ARCHITECTURE
cmos_imp OF imply

Figure 3-15. Using Different Architecture Bodiesto Select Libraries
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LIBRARY nmos;
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ARCHITECTURE nmos_imp OF imply IS
-- Signal declarations
SIGNAL nota: std ulogic;
-- Component declarations
COMPONENT c¢_or

PORT (inl: 1IN std ulogic,
in2: IN std ulogic,
outl: OUT std ulogic);

END COMPONENT;
COMPONENT c_inv

PORT (inl:
outl:

END COMPONENT;
-- Component Specifications

IN
OouT

std ulogic,
std ulogic) ;

FOR ¢_or USE
nmos.c_or (behavior) ;
END FOR;

FOR c_inv USE
nmos.c_inv (behavior) ;
END FOR;
BEGIN
-- Component Instantiations
invl:c_inv PORT MAP (inl => A,
orl: c¢c or PORT MAP (inl => nota,
END nmos_imp;

outl => nota)
in2 => B,

outl => C)

Figure 3-16. Technology-Dependent Architecture Body Using Configuration Specifications

3-8.1.2 Constructing Libraries

Setting up aVHDL library system involves animplemen-
tation-dependent procedure used to establish library names
and their correspondence to external storage. Once a design
library | i b has been established, the VHDL analyzer adds
design unitsto | i b by binding | i b to the library wor k.
When al of the design unitsin | i b have been analyzed,
work on anew library can proceed by changing the binding
of library wor k.

The VHDL source code for adesign unit isusually stored
in atext file. The VHDL analyzer parses the VHDL source
code contained in the file and checks that it conforms to the
language definition. The VHDL analyzer also builds an in-
ternal representation of the design unit and maintains a di-
rectory of the VHDL libraries and their contents.

Design units are divided into two classes: primary units
and secondary units. Primary units specify interfaces. They
include entity declarations, package declarations, and con-
figuration declarations. Secondary units are the bodies asso-
ciated with primary units, and they include architecture
bodies and package bodies. All secondary units associated
with a primary unit pri mmust be kept in the same library
asprim

For a VHDL analyzer to process a design unit ent , it
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must have previously analyzed all design unitsreferenced by
ent . In particular, secondary units must be analyzed after
their corresponding primary units have been analyzed, and
every design unit must be analyzed after all design unitsto
which it refers. Thus aset of VHDL libraries (amodel data-
base) may have a complex set of dependencies that deter-
mines at least a partial order in which design units must be
analyzed. This analysis order should be specified for a user
in order to recreate a VHDL simulation model from the
VHDL source code. The VHDL DID (Ref. 4) requires that
thisanalysis order be provided with models delivered to the
Government. The WAVES (Ref. 14) header file aso re-
quiresthisinformation.

The organization of design unitsintolibrariesisanimpor-
tant part of the configuration management of a VHDL de-
sign database. The partitioning of design units in a design
databaseinto librariesis usually done for one of two reasons.
The first reason is to control read and write access to ele-
ments of aparticular library. Write accessis particularly im-
portant to establish who has the right to change the contents
of alibrary. For example, if alarge project has several teams,
each team may have a separate library in which it is allowed
to store modules. In fact, there may be separate libraries for
different levels of confidence. Each user has awork library,
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and the team may have a team library. After unit testing, a
design unit may be promoted from the user’ swork library to
a common team library. After integration testing across al
of the units for which the team is responsible, the library
units in the team library may be promoted to a project li-
brary. The promation of team library units becomesaformal
milestone in the project schedule.

A second approach to partitioning design unitsinto librar-
iesisto collect design unitsthat represent a particular design
approach into alibrary. The goa of this approach is to iso-
late a set of changes (or differences) to a specific library.
This approach istaken in WAVES (Ref. 14), inwhich al of
the design units specific to aparticul ar type of automatic test
equipment are stored in asingle library. If adesign database
contains multiple types of ATE, it will have multiple librar-
ies, each containing different versions of the same design
units.

3-8.2 VHDL PACKAGES

Packages in VHDL provide a way to share information,
both within a single model and across models. A package
may contain type declarations, attribute declarations, sub-
program declarations, and other declarations. A package
should be written and analyzed only once. Once analyzed,
the information in a package is available for use by other
VHDL library units within the same library and in external
libraries, as shownin Fig. 3-14.

A VHDL package consists of two parts: the package dec-
laration and the package body. Theinformation in apackage
declaration can be used by the analyzer to check for certain
types of errors, e.g., type mismatch errors. The package
body contains the specifications of the values of any con-
stants not defined in the package declaration and the bodies
of any subprograms declared in the package declaration. The
package body is analyzed separately from the package dec-
laration.

The standards efforts related to VHDL make extensive
use of VHDL packages as away to use VHDL analyzersto
enforce compliance with the standards. The IEEE Std 1164
(Ref. 6) uses a package to specify an abstract data type for
extended logic. EIA 567 (Ref. 10) usesthree packagesto de-
fine its electronic data sheet. The t ext i o package in the
predefined VHDL standard library contains a collection of
utility functions for textual input and output. The WAVES
standard (Ref. 14) also uses packagesto define standard data

types.

3-8.21 Constructing VHDL Packages

Packages are particularly important as ways to define ab-
stract datatypes such asthe IEEE Std 1164 (Ref. 6) extended
logic. The IEEE Std 1164 package declaration defines its
logic data type as an enumerated type, as shownin Fig. 3-7.
The package declares a resolution function, overloaded op-
erators, and type conversion functions. Its package body
provides the semantic definitions of the functions and oper-
ators. Fig. 3-12 shows atable of constantsthat isdeclared in
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the 1164 package body. Thistableisinterpreted by the body
of the and function. The IEEE Std 1164 allows alternative
implementations of its package body in order to provide
greater execution efficiency.

3-8.2.2 Declaring and Using Packages

The information in a package can be made visible selec-
tively, or al of the information can be made visible with a
use clause. The data type definitions for i mage and
filter_outinFig.3-5are made visible by the use clause
use sobel _al gorithm i nage_processing. al | ; in
Fig. 3-2. This same use clause makes such functions as
hori zontal _filter (whicharestoredin the package
i mage_pr ocessi ng) accessible to the process. Similar-
ly, the constant pi xel _out put _del ay isdefined in the
package t i m ng. The packages i nage_pr ocessi ng
andti ni ng are stored in thelibrary
sobel _al gorithm

Packages are an important mechanism of back annota-
tion. EIA 567 (Ref. 10) specifies the package declarations;
the user provides the package bodies as a form of back an-
notation. This structure makes extensive use of deferred
constantsto implement back annotation. A deferred constant
isaconstant with a package declaration whose valueis spec-
ified in the package body. Any design unit that references a
package has an analysis dependency on only the package
declaration, not on the package body. Aslong asthe package
declaration has been analyzed, the package body can be con-
structed and analyzed at the user’s leisure. (Of course, the
package body must exist by the time the model is elaborat-
ed.) Thus a user can construct a VHDL structural model by
referencing the constant in the package declaration, extract
the netlist from the structural model, process the netlist with
an external tool that generates the package body (including
the value of the constant), analyze the generated package
body, and then simulate the system using the back-annotated
constant value. This EIA 567-compliant approach is de-
scribed in more detail in subpar. 6-3.3.

VHDL places some restrictions on the use of deferred
constants for back annotation. In particular, a package dec-
laration can have only one associated package body, which
must residein the samelibrary asthe package declaration. In
contrast, one entity declaration may have many architecture
bodies, all of which must reside in the same library. For ex-
ample, in alibrary there cannot exist a single timing view
package declaration and separate package bodies for mini-
mum time, maximum time, and nominal time. The EIA 567
standard (Ref. 10) includes all three times in a single pack-
age.

3-8.3 CONFIGURATION SPECIFICATIONS
AND DECLARATIONS
Before amodel can be simulated, the exact configuration
of library unitsincluded in the simulation must be specified.
That is, each component instance in the model must have a
specific design entity (both entity declaration and architec-
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ture body) associated with it. Furthermore, al generic con-
stants must be given avalue. These associations can be made
with VHDL configuration specifications or with declara
tions.

The ahility to configure amodel permits creation of many
variations on a basic model without having to rewrite the
VHDL source code. Different configurations are useful for
exploring aternative implementations of functions, for in-
corporating different levels of abstraction into a simulation
model, and for changing the values of parameters. Configu-
ration specifications and declarations can be used to change
the values of parameters by specifying values for generic
constants.

3-8.3.1 Constructing Configuration Specifica-
tionsand Declar ations

A specific configuration (binding) can be provided either
in the block in which the component instance appears or in
a separate configuration declaration. Using a configuration
specification “hard-wires’ abody-particular design entity to
a component instance. This method is useful when no ater-
native configurations are available or desirable. A changein
the configuration in this case requires a modification to the
source code containing the instance and its subsequent re-
analysis. In contrast, use of a configuration declaration al-
lows deferral of the final configuration decisions until after
analysis of the instance. For example, when aVVHDL model
is used to document existing hardware, it may be desirable
to use configuration specificationsto definethetiming infor-
mation. If a VHDL model is used during the design of a
component, i.e., when changes in layout and timing are fre-
guent, the use of generics and configuration declarations
may be preferred to reduce analysistime.

One way to specify timing information is through use of
configuration specifications combined with use of deferred
constants. VHDL constrains the way deferred constants can
be used to define values for global parameters. Within asin-
gle library each package declaration has at most one body.
Thus if different values are required for deferred constants,
packages with the same interface but different bodies must
beinstalled in different libraries.

There are two approaches to using these libraries in a
structural model. The first approach, shown in Fig. 3-15,
usesasingle design entity for asystem and separate structur-
al architecture bodies. Each of the structural architecture
bodies references the same package name but in a different
technology library. The second approach, shown in Fig. 3-
17, uses a single architecture body and two configuration
declarations to associate design units from one or another of
the libraries with the components of the body.
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Fig. 3-15 illustrates the first approach with the i npl y
function described in subpar. 3-8.1.1. Fig. 3-15 shows two
technology libraries each containing a package of timing in-
formation and design entities that reference the |EEE stan-
dard logic package stored in a third library. Two design
entitiesc_i nv and c_or are shown in each library. Also
shown is awork library containing a higher level entity in-
terface (in this case, logical functioni npl y) and two struc-
tural architecture bodies for the entity. The two architecture
bodies use different contexts, i.e., different | i br ary and
use clauses, to bind design entities to the component in-
stances in the common architecture. The arrows represent
the combination of | i brary and use clauses. Fig. 3-16
shows the VHDL source code for one of these architecture
bodies.

Thetwo timing packages in the different libraries declare
the same constants with the same types, but they assign dif-
ferent values to the constants. To make this division clear,
the constants can be deferred so that the package declara
tionsareidentical and the differences occur only in the pack-
age bodies. Thetiming packages could also contain different
derating functions for the different technologies. Because
the two packages have the same names and the same con-
stants and the design entities have the same names and the
same port types and interfaces, entities in the nnos and
cnos libraries can be used interchangeably, but they will
have different timings.

These technology-dependent timing packages can be
shared by many architectures and thus can provide a very
compact representation of technology-dependent timing.
Technology-dependent packages can aso be used to define
type conversion functions for appropriate subsets of the
IEEE Std 1164 logic package or to define conversion func-
tions to map the |IEEE Std 1164 logic values to higher level
datatypes.

Fig. 3-17 illustrates the second approach, in which there
isonly one architecture body, but two configuration declara-
tions are used to select the appropriate libraries. In this ap-
proach thel i br ary clauses that reference the technology
libraries are in the configuration declarations rather than be-
ing in the structural architecture body.

Because structural VHDL models can be constructed hi-
erarchically, configuration declarations can also be con-
structed hierarchically. The nesting of block configurations
reflects the hierarchy of the model being configured. The hi-
erarchy can aso be described piecemeal by having a config-
uration declaration reference another configuration decla-
ration within the binding indication of a component config-
uration. In this case the hierarchy of dependencies of the
configuration declarations reflects the hierarchy of the con-
figured model.
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Library nmos

Package timing

|

Library cmos

Package timing

t 1

c_or c_or
[ T_inv oo c_in [ eoe
Library ieee *
Package std_logic_1164
Library work
Entity Interface imply
CONFIGURATION ARCHITECTURE CONFIGURATION
nmos_config OF imply reconfig OF imply cmos_config OF imply

Figure 3-17. Useof Configuration Declarationsto Select Alternative Design Libraries

3-8.3.2 Using Configuration Specificationsand
Declarations

Configuration specifications can be used within an archi-
tecture body (or block statement) when it is desired to spec-
ify a unique configuration for the architecture (or block).
Once a component instance has been configured thisway, it
cannot be reconfigured without modifying the source code
of the architecture body or block. A configuration declara-
tion should be used when the overall model configuration
may change during the course of model development and
simulation. Fig. 3-13 illustrates the use of configuration
specifications inside an architecture body. Fig. 3-16 shows
the architecture body, which uses configuration specifica
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tions to include the negative metal-oxide semiconductor
(NMOS) technology-specific timing information. In this ar-
chitecture body the nnos library is specified. Furthermore,
the configuration specifications require that the specific de-
sign entities in the nnos technology library be used for all
instancesof thec_or andc_i nv components. Becausethe
two architecturesfor i npl y have the same structure, these
bindings could be delayed until elaboration, as discussed in
subpar. 3-6.2. If the two architectures have different internal
structures, this method of selection is necessary.

Fig. 3-18 shows a different version of the architecture
body fori npl y that isdesigned for use with a separate con-
figuration declaration. A corresponding configuration decla-
ration is shown in Fig. 3-19.
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LIBRARY ieee;
USE ieee.std logic 1164.all;
ARCHITECTURE reconfig OF imply IS
-- Component declarations
COMPONENT c¢_or
PORT (inl: IN std ulogic,
in2: 1IN std ulogic,
outl: OUT std ulogic);
END COMPONENT;
COMPONENT c_inv
PORT (inl: IN std ulogic,
outl: OUT std_ulogic);
END COMPONENT;
-- Signal declarations
SIGNAL nota: std ulogic;
BEGIN
-- Component instantiations

invl: c¢_inv PORT MAP (inl => A, outl => nota);

orl: c¢ or PORT MAP (inl => B,

END reconfig;

in2 => nota,

outl => Y);

Figure 3-18. A Reconfigurable Architecture Body

LIBRARY nmos;
CONFIGURATION nmos_config OF imply IS
FOR reconfig

FOR orl: c_or
USE ENTITY nmos.c_or (behavior) ;
END FOR;
FOR invl: c_inv
USE ENTITY nmos.c_inv(behavior);
END FOR;
END FOR;

END nmos_config;

Figure 3-19. Use of a Configuration Declaration to Select Design EntitiesFrom aLibrary

Both of the examples shown in Figs. 3-15 and 3-17 use
deferred constants to provide the timing information. This
practice allows determination of the timing values to be de-
ferred until the package bodies are analyzed. An aternative
approach that provides greater flexibility isthe use of gener-
ic constants for timing information. For example, the archi-
tecture body shown in Fig. 3-18 can be used with the
configuration declaration shown in Fig. 3-19.

The configuration declaration shown in Fig. 3-19 speci-
fies the library, entity, and architecture body for each com-
ponent instance of the architecture body r econfi g. The
outer FOR loop specifies the architecture body; the inner
FOR loops specify the design entities to be used for each of
the component instances. This configuration declaration
contrasts with the configuration declaration in Fig. 3-20, in
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which the inner FOR loops specify values for generics as
well asthe design entities.

In Fig. 3-20 it is assumed that a design library named
ti med exists and that this library contains the parameter-
ized design entities likethet _or entity shown in Fig. 3-9.
These design entities provide parameterized timing by using
generic constants. The configuration declarationin Fig. 3-20
selects the entity interface and architecture body, and it de-
fines the values of the generics of the design entities. These
values can be back annotated. In particular, this configura-
tion declaration can be created after the structural architec-
ture for i npl y and the entity interfaces and architecture
bodiesinthelibrary t i med have been analyzed. A tool can
be used to generate the configuration declarations shown in
Fig. 3-20.
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LIBRARY timed;
CONFIGURATION max_time OF imply IS

FOR reconfig

FOR orl: c or
USE ENTITY timed.t or (behavior)
GENERIC MAP ( 50.0, 10 NS );
END FOR;
FOR invl: c_inv
USE ENTITY timed.t inv (behavior)
GENERIC MAP ( 50.0, 20 NS );
END FOR;
END FOR;

END max_time;

10.

Figure 3-20. Using a Configuration Declaration to Specify Generic Constant Values
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CHAPTER 4
DoD REQUIREMENTSFOR THE USE OF VHDL

In this chapter the two primary Government documents concerning the use of VHDL are discussed: (1)
MIL-HDBK-454 and (2) the VHDL DID, DI-EGDS-80811. The need for VHDL descriptions of all application-spe-
cific integrated circuits (AS Cs) and all qualified digital electronic integrated circuitsin board-level designsisdis-
cussed. The DID-required structure and contents of VHDL descriptions provided to the Government are presented.
In particular, the requirement for both structural and behavioral models of each component of a digital electronic
subsystem is described. This chapter also describes the required annotations to VHDL models.

4-1 INTRODUCTION

The two primary documents that describe the require-
ments of very high-speed integrated circuit (VHSIC) hard-
ware description language (VHDL) models to be delivered
to the Government are MIL-HBK-454 (Ref. 1) and the
VHDL Dataltem Description (DID), DI-EGDS-80811(Ref.
2). MIL-HDBK-454 describes the criteria for selection and
application of various types of electronic equipment. In par-
ticular, Guideline 64 of MIL-HDBK-454 describes such cri-
teria for microelectronic devices and provides guidance to
deliver VHDL models of application-specific integrated cir-
cuits (ASIC) and microelectronic circuits used in board de-
signs. Further, these models should comply with
requirements stated inthe VHDL DID. TheVHDL DID lays
out comprehensive requirements for VHDL models and the
necessary auxiliary and testing support files.

VHDL isalsorequired by MIL-STD-1840 (Ref. 3) for the
exchange of digital data relating to electrical or electronic
applications. MIL-STD-1840 requires one or more of the
following formats:

1. Electronic Design Interchange Format (EDIF)
(Ref. 4)

2. VHDL (Ref. 5)

3. International Graphics Exchange Standard (IGES)
(MIL-D-28000) (Ref. 6)

4. Ingtitute for Interconnecting and Packaging Elec-
tronic Circuits (IPC) (Ref. 7).

Subpar. 4.4.11.2 of MIL-STD-1840 citesthe VHDL DID
(Ref. 2) and Electronic Industries Association standard EIA-
567 (Ref. 8) as the application protocols used to organize
and write the VHDL code. Though MIL-HDBK-454, the
VHDL DID, and MIL-STD-1840 require the use of VHDL,
they provide little or no practical guidance on the organiza-
tion of VHDL models and support files.

This chapter contains approaches to structuring the
VHDL models so that DID requirements and intent can be
met with appropriate auxiliary and testing support files.
These approaches are written to readily support the tailoring
of itemsin the DID to fit project requirements and the struc-
turing of VHDL models so that they can be delivered to the
Government at an affordable cost.

4-1

4-2 MIL-HDBK-454 GUIDELINESFOR
THE USE OF VHDL

MIL-HDBK-454 describes the common guidelines to be
used in military specifications for electronic equipment. It
contains 78 individual guidelines covering a variety of is-
sues relating to electronic egquipment. Guideline 64 of
MIL-HDBK-454 (Ref. 1) covers microelectronic devices
and recommends delivery of VHDL models for microelec-
tronic circuits under specific situations. Microelectronic cir-
cuits include monoalithic integrated circuits, hybrid
integrated circuits, and multichip modules.

Subpar. 4.1.3 of Guideline 64 of MIL-HDBK-454 (Ref.
1) describes a sequence of choices to be used to acquire mi-
croelectronic circuits. Subpar. 4.5.1 of Guideline 64 recom-
mends delivery of structural and behavioral models for
ASICsand citesthe VHDL DID (Ref. 2). Otherwise, anon-
standard part approval must be requested. MIL-HDBK-454
lays out the requirements for the documentation and testing
of nonstandard and standard parts on the Qualified Products
List and of other microcircuits.

Subpar. 4.5.3 of Guideline 64 recommends documenta-
tion of digital qualified devices used in board-level applica-
tions with behavioral VHDL descriptions. These behavioral
descriptions must enable test generation and support fault
detection/isolation to the circuit pins.

4-21 DOCUMENTATION OF ASICsDEVEL-
OPED FOR THE GOVERNMENT WITH
VHDL
One form of a nonstandard microelectronic circuit used
increasingly in military electronic systemsis an ASIC. An
ASIC is any microcircuit customized to perform a specific
function. By dedicating all resources on the device to a spe-
cific function, ASICs provide high throughput for a given
level of power, weight, and size. The rapidly increasing ca-
pability of electronic computer-aided design (ECAD) tools
has made it possible to design and fabricate ASICs at area-
sonable cost. However, the small number of copiesof ASICs
makes them especially vulnerable to becoming unavailable
due to alack of production facilities. The existence of both
behavioral and structural VHDL models for ASICs means
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that ECAD capabilities can be used either to reengineer the
function of the ASIC for new fabrication technologies or to
transfer the design automatically to a new manufacturer’s
production line.

Subpar. 4.5.1 of MIL-HDBK-454 (Ref. 1) recommends
that the circuit design of digital microelectronic ASICs de-
veloped be documented with behavioral and structura
VHDL descriptions. The behavioral VHDL description
must model both the function and timing of the microcircuit
at the ports of the model. The behavioral VHDL model must
be sufficiently detailed to permit its use within a larger
VHDL model for test generation and fault grading of the
larger model.

Subpar. 4.5.4 of MIL-HDBK-454 (Ref. 1) recommends
that the test vectors and test waveforms for digital ASICs be
documented and delivered to the Government in Waveform
and Vector Exchange Specification (WAVES) format.

In an information section par. 5.6 of MIL-HDBK-454
(Ref. 1) referencesthe VHDL DID (Ref. 2) asaguidelineto
be used to prepare the VHDL documentation of an ASIC.

Although MIL-HDBK-454 does not provide specific
guidance on structural models, the information can be in-
ferred from the VHDL DID (Ref. 2). As a guideline, the
structural model of digital microcircuits should be suffi-
ciently detailed to support fault coverage analysis based on
the equivalence classes of single, permanent, stuck-at-zero,
and stuck-at-one faults on all lines (i.e., interconnects). In
general, this requirement implies a structural model that is
decomposed into gate-level primitive modules and atomic
storage functions, such asflip-flops. However, large regular
structures, such as read-only memories (ROMs) and ran-
dom-access memories (RAMS), can be treated as atomic
structures provided they are tested using the appropriate al-
gorithms,

Subpar. 4.5.4 of Guideline 64 of MIL-HDBK-454 recom-
mends that the ASIC test stimuli be written and documented
in Waveform and V ector Exchange Specification (WAVES)
(Ref. 9).

Chapter 7 describesthe WAV ES standard and how to im-
plement aVVHDL test bench using WAVES.

4-2.2 DOCUMENTATION OF QUALIFIED
DIGITAL INTEGRATED CIRCUITS
WITH VHDL
Subpar. 4.5.3 of Guideline 64 of MIL-HDBK-454 recom-
mends documentation with VHDL descriptions of micro-
electronic circuits used in board-level designs. These
descriptions must fully define the functions of the device
and must include timing of the device at the input/output (1/
O) ports in sufficient detail to support test generation, fault
detection, and fault isolation to the device when board or
subsystem simulation is performed. The behavioral VHDL
model recommended by MIL-HDBK-454 should be suitable
for use asaleaf modulein aVHDL model of asystem using
the modeled device.

4-2

4-2.3 THE LIBRARY OF VHDL DESCRIP-
TIONSOF STANDARD DIGITAL PARTS

Under the auspices of the Defense Electronics Supply
Center (DESC), the Department of Defense (DoD) has start-
ed building alibrary of interoperable VHDL descriptions of
microelectronic circuits. This VHDL model library (VML)
acts as a standardization vehicle and is available to Govern-
ment contractors to enable them to design systems quickly.
Asaresult, the DoD will receivemore VHDL designsfor fu-
ture use. Validated models placed in the VML will be are-
source to aid design engineers in system upgrades or to
provide logistical support after system delivery. The VML
can be accessed through the World Wide Web at http://
kirk.desc.dla.mil or viaanonymous ftp at kirk.desc.dla.mil.

DoD project managers who are receiving VHDL models
should contact DESC to alert them to the existence of the
models, they should work with DESC on the specification
and validation of these models, and they should send a copy
of the VHDL modelsto DESC. DoD project managers who
are tailoring the VHDL DID and defining acceptable
leaf-level modules should contact DESC to find out whether
the VML has VHDL models that could be used by the pro-
gram. The VHDL DID (Ref. 2) requires Government ap-
proval of leaf-level models used in higher level VHDL
models. In the future the VML may provide a source for
such |leaf-level models.

The modelsin such alibrary must have sufficient accura-
cy and quality to allow their use as formal models for parts
of Government-procured systems. To deal with this issue,
the US Air Force has published a procedure for validating
VHDL models (Ref. 10). DESC is evaluating these valida-
tion techniquesin order to use them to screen models deliv-
ered to the DESC VHDL model library. The validation
processtracesits requirements back to MIL-HDBK-454 and
to the VHDL DID.

4-2.4 TEST BENCH REQUIREMENTSFOR
VHDL DESCRIPTIONS

VHDL has popularized the concept of atest bench, a col-
lection of VHDL modulesthat apply stimuli to amodule un-
der test (MUT). Test benches may aso compare the
response of the MUT with the expected output and report
any differences between observed and expected responses.
WAVES provides mechanisms for generating VHDL test
benches and for using a standard format for the external
files. WAVES is described in more detail in Chapter 7.

4-3 OVERVIEW OF THE VHDL DATA
ITEM DESCRIPTION
The VHDL Data Item Description, DI-EGDS-80811
(Ref. 2), provides a definition of the Department of Defense
requirements for adelivered VHDL model. The DID can be
tailored for particular contracts to meet the unique require-
ments of a specified program. This tailoring specifies the
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modelsto be devel oped and delivered, and it may further de-
fine some of the basic terms used in the DID, such as
“stand-alone modules’. The DID can be tailored by rewrit-
ing its sections.

Appendix B contains an example of a tailored VHDL
DID, including both the text of the initial DID and the
changes that were made to it.

The VHDL DID requires delivery of a hierarchy of
VHDL module descriptions. This hierarchy must be consis-
tent with the hierarchy of the physical hardware (Ref. 2, sub-
par. 10.2.1), as described in Chapter 2. A VHDL module is
defined by the DID asadeliverableitem that includes sever-
al files and VHDL design units. The DID requires one
VHDL module to be defined for the entire system and one
for each physical electronic unit, such as an assembly, sub-
assembly, or integrated circuit. VHDL modules should aso
be defined for important subsections or groupings of com-
plex physical units. For each VHDL module of the design,
the VHDL DID requires an associated VHDL entity inter-
face, one or more behavioral bodies, and (except for leaf
modules) astructural body. Furthermore, the VHDL DID re-
quiresaVHDL test bench for each stand-alone module.

An important aspect of tailoring the VHDL DID to aspe-
cific project is specifying the hierarchy of VHDL modules
that will be delivered. Each of these VHDL modules re-
quires its own test bench and its own structural and behav-
ioral models. Within the VHDL modules the contractor is
encouraged to use VHDL hierarchiesto clarify the design.

Subpar. 10.2.2.3 of the VHDL DID requires that operat-
ing conditions for the physical hardware module be charac-
terized in the corresponding VHDL entity interface.
Operating characteristics include temperature range, logic
level definitions (which relate the logic values used in the
simulation to voltage levels in the physical design), power
and heat dissipation, and radiation hardness. The VHDL
DID also requires that VHDL packages be used to encapsu-
late this information when it can be reused across multiple
VHDL modules. This use of packages is consistent with
standards such as Institute of Electrical and Electronics En-
gineers (IEEE) 1164 (Ref. 11), WAVES (IEEE 1029.1)
(Ref. 9), EIA-567 (Ref. 8), and VITAL (Ref. 12). One area
of tailoring of the DID relates to the use of these standards.
MIL-HDBK-454 (Ref. 1) specifiesthe use of WAVES. The
computer-aided acquisition and logistics support (CALS)
standard, MIL-STD-1840 (Ref. 3), specifiesthe use of EIA-
567. A tailored DID can refer to other standards, such as
IEEE 1164 (Ref. 11), IEEE 1149.1 (Ref. 13), and VITAL
(Ref. 12).

Development of models without the use of standards runs
the risk of reducing the interoperability and reuse potential
of themodels. Requiring the use of standards after model de-
velopment has begun is very expensive. Also model devel-
opers should use standard packages so that modelswill work
together when they are integrated.
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4-31 ENTITY INTERFACE REQUIREMENTS

Subpar. 10.2.2 of the VHDL DID (Ref. 2) definesthe re-
quirements for the declaration of design entities as follows:
“Theentity declaration shall include an interface declaration
which describes the input and output ports of the system.
The entity declaration shall also describe timing and electri-
cal requirements for the behavior of the device and allow-
able operating conditions. The entity declaration shall also
include explanatory comments.”.

These comments should identify the corporate and indi-
vidual authors of the entity interface, the date and time of the
last revision of the design interface, and identification of the
device being modeled. The entity interface declaration
should include references to VHDL libraries and packages
that are required by every body for the interface. Libraries
and packages specific to a particul ar architecture should not
be included.

The entity interface can also include assertions about the
interface, including relationships between the input and out-
put ports and conditions on the value and timing of the entry
and exit of input and output data. Assertions should be used
to describe requirements on the module, and the timing de-
lays in the behavioral bodies should capture the actual be-
havior of the physical device. If abehavioral body is used to
describe adesign for which no corresponding physical hard-
ware exists, the behavioral body must be clearly commented
to indicate the source of the timings.

4-3.1.1 Entity Names

Subpar. 10.2.2.4 of the VHDL DID (Ref. 2) requires that
namesfor the VHDL entities betraceableto the names of the
corresponding physical electronic components whenever
such a correspondence exists. Similarly, the names of archi-
tecture bodies for a design entity should reflect a distin-
guishing implementation characteristic of that architecture
body, such asthelevel of abstraction, the technology used to
implement the component, or the manufacturer. This trace-
ability is important for verification that the model is com-
plete, i.e., each physical hardware component isinstantiated
inthe VHDL design. Appropriate naming also aids verifica-
tion that the VHDL model design hierarchy is consistent
with the physical design hierarchy. Appropriate names for
entity interfaces also aid maintenance of the model, particu-
larly when upgrades are made to physical components. A
well-structured VHDL model of a system allows changesto
be isolated to those parts of the model that correspond to the
physical components being upgraded and perhapsto config-
urations of those components.

4-3.1.2 Input and Output Definitions

Subpar. 10.2.2.1 of the VHDL DID (Ref. 2) requires that
each entity interface shall describeall input and output ports.
In particular for very large-scale integrated (VLSI) circuits,
there should be a port declared for each pin of the circuit.
Thisrequirement isdriven by the needs of WAVES (Ref. 9).
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Touse WAVESLevel 1 to describethetest bench for amod-
el, each input and output port must correspond to asingle pin
on the physical component. To support traceability between
aVHDL model of the hardware and the physical hardware
module, the labels used for the ports should support trace-
ability to the corresponding bus, connector, or pins in the
physical hardware whenever such a correspondence exists.
These labels may be augmented by attributes, comments, or
port maps. A port map can be used to link specific pinsto an
element of abit vector. Thislink is particularly valuable for
circuit pins to busses.

Building models with close rel ationships between VHDL
ports and physical hardware pinsis essential if the WAVES
test bench is to be used for both testing the VHDL models
and driving automatic test equipment (ATE). Thistraceabil-
ity between the VHDL model and the physical hardware
also allows better verification of the completeness of the
VHDL model, either through manual review of the VHDL
source code or through partially automated verification
matching VHDL port namesor port attributes against the net
list of the physical hardware. When VHDL -based synthesis
tools are used, this verification may be unnecessary. The
synthesized VHDL model then becomes the standard de-
scription of the net list.

A set of standardsthat definesthe possibletypesfor al in-
put, bidirectional, and output ports of the system should be
set up for the entire system model. These standards should
be consistent with the WAVES logic values and value dic-
tionary for the entire system. This approach supports the in-
teroperability of structural and behavioral models of
different hardware modules and thus allows the Government
and the contractor to build and simulate mixed abstraction
models of the system.

4-3.2 BEHAVIORAL DESCRIPTIONS

Subpar. 10.2.1 of the VHDL DID (Ref. 2) requires deliv-
ery of abehavioral VHDL model of every physical electron-
ic unit of the hardware system. Asrequired by subpar. 10.2.3
of the VHDL DID, these behavioral models are required to
express the timing and functional characteristics of the cor-
responding physical unit. Behavioral models are intended to
serve several purposes: to provide simulation facilities for
testing software written to execute on the hardware, to pro-
vide executable specifications for different physical imple-
mentations of the same hardware function, and to provide
the reader of a VHDL model with a readable description of
the system that reflects the partitioning decisions made dur-
ing the design of the hardware module.

A behavioral VHDL model should accurately represent
the visibleinterface, particularly for programmable devices.
Thus behavioral models describing existing programmable
hardware should accurately represent the instruction set and
visible registers of the device being modeled. Furthermore,
test and maintenance functions of the physical unit available
to the user shall beincluded in the body. These requirements
allow the model to be used to verify that system test pro-
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gramsand fault detection, isolation, and recovery algorithms
arefunctioning. In general, these requirements do not permit
the effectiveness of fault detection and isolation algorithms
to be determined because evaluating effectiveness usualy
requires detailed structural information. Subpar. 10.2.3.3 of
the VHDL DID statesthat structurally dependent signal val-
ues, such as scan path signatures, shall not be specified in
behavioral bodies.

One important form of DID tailoring is the task of defin-
ing the set of modules for which behavioral modelsareto be
delivered. Because the development costs of behavioral
models can be a significant part of the entire cost of devel-
oping VHDL deliverables, the contractor and the contract-
ing agency should decide early in the project on the set of
behavioral models to be delivered. The contracting agency
needs to ensure that the behavioral models represent those
parts of the system for which different implementations may
be needed due either to competing designs or to the evolu-
tion of technology over time. For example, because small-
volume ASIC production poses arisk of obsolescence, sub-
par. 4.5.1 of Guideline 64 in MIL-HDBK-454 (Ref. 1) rec-
ommends both structural and behavioral models of all
ASICs. Similarly, if the contracting agency expectsthat part
of a system now implemented with several circuitsislikely
to be implemented in the future with a single circuit, it may
insist on abehavioral model of that part of the system. If the
contracting agency has plans to alow competitive bidding
for a subsystem as part of a later stage in development, it
should require a behavioral model of the subsystem since
that behavioral model can be used as an executable specifi-
cation of the subsystem.

The contracting agency should also verify that the combi-
nation of behavioral and structural models provides enough
options for mixed abstraction models. These models allow
detailed but acceptably rapid simulation of designated por-
tions of the system. Thus part of the process of tailoring the
VHDL DID for aspecific program should include definition
of scenarios used to simulate the system. Each scenario
should identify the purpose of the scenario and the structure
of the mixed abstraction model to be simulated. For exam-
ple, a gate-level model of an entire multiprocessor is not an
appropriate mechanism to use to debug software. In this
case, ahigh-level behavioral model of the entire system or a
high-level structural model that uses behaviora models of
all of the processing elements, busses, and memoriesismore

appropriate.

4-3.2.1 Functional Decompaosition

Subpar. 10.2.3.1 of the VHDL DID (Ref. 2) allows de-
composition of a behavioral model to ease simulation and
increase the clarity of the model. Structural decomposition
of behavioral bodies shall be used only to show functional
partitionsthat are not represented in the physical partitioning
of the hardware. For example, abehavioral body of a central
processing unit (CPU) can be structurally partitioned into an
arithmetic and logic unit (ALU) and several registers. How-
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ever, the physical design may not follow this logical parti-
tioning; instead it may partition the CPU into several bit
dlices, each containing one or more bits of the ALU and the
same number of bits of each of theregisters. In this case, de-
composition into an ALU and severa registersis an appro-
priate functional decomposition of the CPU because
partitioning the functions of the ALU and the registers adds
to the clarity of the model. Furthermore, execution of asin-
gle ALU process may be significantly faster than performing
several operations on signals and ALU bit slices.

Subpar. 10.2.3.1 of the VHDL DID (Ref. 2) discourages
delivering structural models at the Boolean logic level asbe-
havioral models. Thus the use of structural VHDL models
generated as output from schematic capture systems may be
inappropriate as a behavioral model, asis the output of syn-
thesistools. These structural models do not serve any of the
purposes of a behaviora model. In particular, they do not
provide fast simulation or technology independence; they
are not as readable as more abstract behavioral models,
which are often maintained to document system design de-
cisions.

4-3.2.2 Timing Descriptions

Subpar. 10.2.3.2 of the VHDL DID (Ref. 2) requires that
signal delays at the output ports of VHDL modules accurate-
ly model the timing behavior of the physical units corre-
sponding to the VHDL modules. The VHDL DID also
requires that best-case, worst-case, and nominal output de-
lays be included in the model.

The VHDL DID aso encourages the use of more elabo-
rate timing models that, for example, consider environmen-
tal factors such as supply voltage, temperature, or output
loading. A unified approach should be developed for the in-
vocation of appropriate timing models during simulation.
The electronic data sheet (EDS) approach to capturing this
information has been included in the EIA-567 standard (Ref.
8). The VITAL initiative is also developing approaches to
providing best-case, worst-case, and nominal timing models
that take into account environmental factors. Approaches
used to define such timing models are a so discussed in pars.
5-4 and 6-5 and subpars. 6-3.3.3 and 6-6.1 of this handbook.

4-3.3 STRUCTURAL DESCRIPTIONS

Subpar. 10.2.4 of the VHDL DID (Ref. 2) requires struc-
tural VHDL models to be sufficiently detailed and accurate
to permit logic-level fault modeling and test vector genera-
tion. For ahierarchy of VHDL design entities to correspond
to the physical hierarchy of the modeled system as subpar.
10.2.1 of the VHDL DID requires, the structural partitioning
of the model must correspond to the physical partitioning of
the hardware. Additional structural partitioning may be used
to aid understanding of the system or to support effective
built-in test techniques. Subpar. 10.2.4.1 of the VHDL DID
states, “The naming of components and signalsin structural
VHDL models shall be the same, or be traceable to, their
electronic schematic counterparts.”.
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4-3.3.1 Acceptable Primitive Elements

Subpar. 10.2.1.1 of the VHDL DID (Ref. 2) restricts the
choice of primitive or leaf-level componentsin VHDL mod-
elsto one of three alternatives:

1. “Modules selected from a Government list of
leaf-level modules referenced or contained in the contract.”

2. “Modules corresponding to a collection of hardware
elements which together exhibit a stimulus-response behav-
ior, but whose interaction is best modeled at the electrical or
physical level. Examples of such modules are digital logic
gates, analog circuit blocks, and power supplies.”

3. “Modules whose detailed design has not yet been
completed, but whose behavior isrequired asadelivery dis-
closure at specified times during the contract.”.

The first alternative alows use of a Government-ap-
proved library of reusable VHDL descriptions. It is aso a
mechanism to ensure consistent descriptions of the same
physical hardware design, and it encourages reuse of stan-
dard models whenever possible and thus reduces the valida
tion efforts and increases the reuse of models. This
alternativeisan important consideration in tailoring the DID
for a specific contract. For example, if the hardware design
is using a specific commercial off-the-shelf (COTS) hard-
ware component that has been militarized, the contractor
and the contracting agency can agree to use acommercially
available VHDL model of that component in their VHDL
model of the system should such amodel exist.

The second aternative allows the use of standard descrip-
tions at the gate level, and the use of a standard logic pack-
age such as IEEE Std 1164 (Ref. 11) is strongly
recommended.

Thethird alternativeis designed to allow top-down devel -
opment of VHDL models in parallel with the design of the
system. In this situation the contractor and the contracting
agency should agree on what |eaf-level modulesareto be de-
livered at each milestone in the contract. These delivery
milestones are usually scheduled to coincide with program
reviews such asthe Preliminary Design Review and the Crit-
ical Design Review.

4-3.3.2 Testability Requirements

Subpar. 10.2.4 of the VHDL DID (Ref. 2) requires that
the structural models be sufficiently detailed and accurate to
permit logic-level fault modeling and test vector generation.
Subpar. 10.2.4 also requires any structure created to support
testing and maintenance, such as scan paths (Ref. 13), to be
included in such a VHDL description. Modern synthesis
tools are becoming sophisticated enough to generate the
built-in test circuitry when given logic-level models and
some guidance (Ref. 14). Circuit designers still need to par-
tition thelogic into appropriate blocks for automatic test pat-
tern generation. VHDL design hierarchies provide a
mechanism for this partitioning if the synthesis tools are so-
phisticated enough to use the information.
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4-34 TEST BENCH REQUIREMENTS

A key part of a VHDL simulation package is the test
bench. A test bench provides stimuli to the hardware module
being simulated, checks the responses generated by the
hardware module, and reports any discrepancies between
the expected responses and the actual responses.

The test bench is used for verification and assessment of
the VHDL description; hence subpar. 10.2.5.1 of the VHDL
DID defines requirements on the design and implementation
of the test bench. It requires configuration information nec-
essary to simulate the module under test (MUT) to be deliv-
ered with the test bench. The WAVES header file provides
thiskind of configuration information. A VHDL configura-
tion declaration is also needed to link the appropriate archi-
tecture bodies with their entity interfaces and to specify
values of generics. However, a VHDL configuration decla-
ration does not specify which source code versions of the de-
sign units are stored in which design libraries. This
information is included in a WAVES header file. The
WAVES header file also relates a given external file, i.e., a
file not containing VHDL source code, to the test it imple-
ments.

4-34.1 Test Bench Functions

Subpar. 10.2.5.1 of the VHDL DID requires test benches
to apply stimuli toaMUT and to compare the responses gen-
erated by the MUT with expected responses. The test bench

External
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WAVES External Format

must also report any differences between observed and ex-
pected responses. The VHDL DID also requires that the test
bench and VHDL configuration information needed to inte-
grate and simulate the model of the MUT with its test bench
beincluded in the delivered package. Subpar. 10.2.5.2 of the
VHDL DID also requires VHDL test benches to be
cross-referenced to the contractually required hardware test
plans, specifications, and drawings. The WAVES header
file can and should relate the VHDL test bench model, the
VHDL model of the MUT, and the external files of test vec-
torsto the test plan or test procedure. This cross-referencing
is another important reason to tailor the VHDL DID. Each
test planned for the actual hardware should have a corre-
sponding test bench. The WAVES header file and the
VHDL configuration declaration for the VHDL test bench
provide the corresponding information. The same VHDL
test bench and configuration may be used for several tests
with different external files corresponding to different test
vector sets planned for the hardware. The capability of
WAV ESto drive both the VHDL test bench and the ATE for
the actual hardware makes management of configuration
and correlation of tests easier.

Fig. 4-1 showsthe organization of atypical test bench. Its
components are labeled using the WAV ES naming conven-
tion. The waveform generator procedure (WGP) produces
the stimuli for the MUT. Fig. 4-1 aso shows the use of an
auxiliary file as a source of datafor stimuli generation. Dif-
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Figure4-1. Logical Structureof aVHDL Test Bench Constructed Using WAVES
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ferent tests can use different auxiliary files. Subpar. 10.2.5.1
of the VHDL DID requires that these auxiliary files be doc-
umented as part of the VHDL delivery item. The comparator
shown in the figure compares the expected responses sup-
plied by the WGP with the expected responses. In thisexam-
ple, the expected responses are stored in auxiliary filesin a
manner similar to the stimuli, but other organizations are
possible. The comparator function must generate reports
that indicate significant differences between the expected
and the actual responses. The comparator must consider any
tolerances or don’'t-care conditions for the output of the
MUT and the timing of the expected values input.

4-3.4.2 Test Bench Relationshipsto Design M od-
ules

Subpar. 10.2.5 of the VHDL DID requiresthat test bench-
es be provided for “each VHDL module required by the con-
tract to be simulatable as a stand-alone module”. A tailored
DID must specify which VHDL design entities represent
stand-alone modules, which require their own test benches
and a behavioral VHDL model. Subpar. 10.2.5.1 of the
VHDL DID requires that every VHDL module of the hard-
ware hierarchy be ssimulatable as a stand-alone module. Be-
cause the development of test bench software represents a
significant cost, the choice of which VHDL modules must
be simulatable as stand-alone modules is a critical tailoring
of the DID for aspecific contract. Candidates for these mod-
ulesinclude hardware modules that are likely to be replaced
asaresult of preplanned program improvements or modules
for which separate subcontracts are going to be let.

The hierarchy of test benchesrequired by the VHDL DID
provides a mechanism for the bottom-up validation of the
model. Each low-level module can be tested individually
with its own test bench. Then the low-level modules arein-
tegrated by a higher level structural design entity or hierar-
chy of design entities, and the resulting model is tested with
its test bench. If necessary, the higher level test bench can
use the corresponding behavioral model as the reference
point to detect any differences between the behavioral and
structural models.

Alternatively, the behavioral model can be used to gener-
ate the expected values for the output pins. These values,
captured in an externa file, can be combined with theinputs
to form waveforms for both input and output pins of the
MUT. In such an approach the behavioral model is not need-
ed as part of the comparator function, but an external file
combining stimuli and expected responses for the MUT is
generated instead. An aternative format for atest bench has
the behavioral model of the MUT running in parallel with a
structural model of the MUT that is to be tested. The behav-
ioral model of the MUT is combined with a compare func-
tion to serve as the comparator in Fig. 4-1.

Subpar. 10.2.5 of the VHDL DID also requires that the
test bench design entities must be clearly distinguished from
VHDL modules representing the MUT. The convention in
WAVES isto usethe suffix “.wav"” for the test bench source
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code and to use distinct libraries for test bench entities and
MUT entities. However, in some cases behavioral models of
components of the system being designed are used as part of
the test bench. For example, if astructural model of asignal
processor using raw sensor data in external files is being
tested, the designer may want to use behaviora models of
the system businterface unit (BIU) to handle theinput of the
sensor datainto the signal processor local memory. Thusthe
behavioral model of the BIU is part of the MUT in one situ-
ation and is part of the test bench in another. In such cases
thelibrary organization should follow the physical organiza-
tion of the entire hardware system. The configuration decla-
ration for the test bench revealswhich components are being
used for the test bench and which are part of the MUT.

4-35 ERROR MESSAGES

Subpar. 10.2.6 of the VHDL DID requiresthat error mes-
sages generated either in the VHDL description of the MUT
or in thetest bench identify the requirement that has been vi-
olated together with the name of the VHDL design unit in
which the error occurred. Subpar. 10.2.2.2 of the VHDL
DID requires any violations of timing or electrical require-
ments, such as setup and hold times or power supply voltage
extremes, to generate error messages. The VHDL assertion
statement provides ameansto add such conditions to amod-
el.

4-3.6 DOCUMENTATION FORMAT

Par. 10.3 of the VHDL DID describes a set of at least
eight files constituting a delivery to the Government. This
description assumesthat over thelife of asystem design sev-
eral versions of the VHDL model for asystem will be deliv-
ered to the Government.

Thefirst file contains the names of all files of the deliver-
able VHDL documentation named in accordance with the
originating host operating system (including the first file).
Each record should contain exactly one file name.

The second file is a high-level prose overview of the
VHDL deliverable. This file must cite contract, item num-
ber, and contract data requirements list (CDRL) sequence
number and summarize the organization and content of the
set of files.

The third file specifies the sequence used to analyze the
VHDL design unitsdelivered. The sequence must be consis-
tent with the order of analysis rulesin the VHDL Language
Reference Manual (Ref. 5). A WAVES header file satisfies
this requirement.

Thefourth fileisalist of the VHDL modules selected for
usein the model and appearing in the Government-approved
list of leaf-level modules. Because these files have aready
been approved by the Government, they do not need to be
verified as part of the model acceptance procedure. Thusthis
list is used to reduce the workload of the Government re-
viewers of the models.

The fifth fileis alist of VHDL modules that have been
previously accepted by the Government but have been re-
vised. Only those files that have been changed since the last
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delivery to the Government need to be identified in this|ist.
For thefirst delivery of amodel to the Government, thisfile
should be empty.

The sixth file is alist of VHDL modules that originate
with thisdelivery. For example, if thisisthefirst timethat a
model is being delivered to the Government, all the VHDL
modules arelisted inthisfile. If sincethelast delivery of the
model to the Government, the model hierarchy has been ex-
tended to include more detail, this file will identify the new
VHDL modules. For example, if a behaviora model of a
component has been augmented with a structural model that
references several new behaviora models, these structural
and behavioral models will be referenced in thislist as will
the new structural model.

The seventh file associates VHDL modules with their
corresponding test benches. For each VHDL modulethereis
a list of corresponding test benches. For each test bench
thereisalist of VHDL entities comprising that test bench.
Thislistincludes not only the VHDL entity for the MUT but
also al of the VHDL entities that are components of the
MUT and all of the VHDL entities that are part of the test
bench external to the MUT.

The files after the seventh specified file contain VHDL
design units and auxiliary files. The auxiliary files proceed
VHDL design units. Auxiliary filesinclude WAV ES header
files, WAVES externa files, timing files (such as the stan-
dard delay format (SDF) files used by VITAL (Ref. 12)),
and external environment parameter files (such as data files
for behavioral models). VHDL MUT descriptions must be
distinguished from VHDL test bench descriptions.

The delivery medium is another place where tailoring of
the VHDL DID isimportant. Par. 7.3 of the VHDL DID de-
fines the preferred media as nine-track magnetic tape, 1600
bits per inch, unlabeled, with 80-character records and 24
records per block. An identifying label must be attached to
thetapereel, and ahardcopy of Files1 and 2 must beinclud-
ed with the tape. Because of the wide variety of computer
systems in existence, the Government may want to specify
other magnetic media or other delivery format.

4-377 REQUIRED ANNOTATIONSOF VHDL
MODULES
The VHDL DID requires explanatory comments to make
the intent of aVHDL module clear. The following informa-
tionisrequired:

1. Any factors restricting the general use of the VHDL
module to represent the modeled hardware. For example, if
nonstandard signal state/strength definitions are used, they
should be noted in the explanatory comments.

2. General approaches taken to modeling, particularly
decisions regarding model fidelity. Model fidelity informa-
tion includes information about the timing models used and
any variance in exact function from the subject hardware
(such asthe use of host-dependent floating point formats for
calculations).

3. Any further information the originating organization
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considers vital to subsequent users of the descriptions. For
example, if the source code for the VHDL module has been
structured to support a particular synthesis tool, this fact
should be noted with the version of the tool.

VHDL modules selected from the list of Government-ap-
proved modules and VHDL modules that have been previ-
ously accepted by the Government require documentation of
the originator or source of the VHDL model, a DoD-ap-
proved identifier if such an identifier exists, and a design
unit name or revision identifier.

A revision history must be maintained for design units
that have been accepted by the Government. The design re-
vision history is included as comments in the design unit.
The revision history must include the dates of revisions, the
performing individual and organization, the rationalefor the
revision, a description of what part of the design unit re-
quired revision, and the testing done to validate the revised
model. Revision histories should also be maintained for auix-
iliary files using the same format as the VHDL design units
where possible.

4-3.8 AN EXAMPLE OF A TAILORED DID

Appendix B, “Example of a Taillored DID”, includes an
example of a DD Form 1423 used to tailor the VHDL DID.
This form describes a contract data requirement. Seven re-
marks are listed that specify the deliverables for the VHDL
DID and referencethe VHDL DID paragraph numbers. This
modified form of the DID specifies a series of six versions
of themodel to bedelivered. (Theseversionsarecalled “lev-
els’ in DD Form 1423.)

Four behavioral model versions are required: an architec-
tural level model, two application level models, and a bus
functional model, which isamixed abstraction level model.

Two structural model versions are required: a structural
model whose |eaf-level entities are integrated circuits and a
structural model at the register transfer level of abstraction.

Thetailoring also requiresthat the models of input stimuli
and output results be specified in IEEE Std 1029.1 format
(WAVES).
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CHAPTER 5
CONSTRUCTION OF BEHAVIORAL VHDL MODELS

The construction and use of behavioral VHDL models are described. Common techniques used to create behav-
ioral VHDL models, develop timing specifications for behavioral models, and annotate behavioral models are pre-
sented. Also discussed isthe useful ness of behavioral modelsin top-down design and mixed-abstraction-level model

simulation.

5-1 INTRODUCTION

Thevery high-speed integrated circuit (VHSIC) hardware
description language (VHDL) data item description (DID)
(Ref. 1) describestwo usesfor behavioral models: (1) as ab-
stract models for hardware modules that have not yet been
completely designed and (2) as accurate documentation for
hardware modules that already exist. For the first use the
goal isto capture the functionality of acomponent in aman-
ner that is as free of implementation decisions as possible.
For the second use the goal is to develop an accurate model
of the function and timing of the corresponding hardware
module that can be clearly understood and rapidly simulat-
ed.

An implementation-free behavioral model is very useful,
particularly in the early stages of a design process. Such a
behavioral model can be used to validate internal and exter-
nal interfaces, functiona partitioning, and the synchroniza-
tion of components. Behavioral models can be reviewed and
simulated by independent validation and verification groups
if required and can be used to develop functional tests for
system integration. Behavioral models can aso be used to
verify the functionality of more detailed designs.

Behavioral models at different levels of abstraction are
used in different ways. For example, an algorithmic model
may be used as part of a system-level simulation to validate
the partitioning and allocation of functions to the hardware
modules, an instruction set architecture (ISA) model may be
used to verify that the software will execute on the hardware,
and aregister-transfer-level model may be used as the start-
ing point for the synthesis of an application-specific inte-
grated circuit (ASIC).

In this chapter approaches to developing VHDL behav-
iordl models at the agorithmic level, ISA level, and
register-transfer level are discussed. This discussion focuses
on methods used to capture functions and timing at these
levels and to use VHDL models for validation and verifica-
tion. Included in the discussion are common approaches to
behavioral modeling in VHDL, the development of timing
specifications for behavioral models, and the annotation of
behavioral models.

5-2 CREATION OF VHDL BEHAVIORAL
MODELS

The development of abehavioral VHDL model should be
approached with its intended use in mind. The intended use

of the model influencesthelevel of abstraction of the model,
which in turn affectsthe size, complexity, and cost of there-
sulting model. The intended use a so influences the external
support needed, such as test data generation and analysis.
Theintended use of the model should be examined to ensure
that resources devoted to devel oping the model are expend-
ed as productively as possible.

The level of abstraction selected for the model should be
the highest possible that meets the goals of the modeling ef-
fort. More abstract models generally are more concise, easi-
er to read and comprehend, quicker to develop, and faster to
simulate.

This paragraph discusses creating VHDL models for
threelevels of abstraction: algorithmic, instruction set archi-
tecture, and register transfer. It also discusses performance
models, which aretypically used to model real-time systems
at very abstract levels for purposes of design tradeoffs.

5-21 CONSTRUCTING PERFORMANCE
MODELS

Performance modelsare used at ahigh level to understand
the timing requirements of a system. The system designer
can use these models to estimate system response time and
component utilization and to find potential performance bot-
tlenecksin adesign. Theissues associated with constructing
performance models are directly related to the issues of in-
corporating timing into functional models in order to create
behavioral models as required by the VHDL DID. The most
common reason to develop performance models or to in-
clude timing in algorithmic models is to support several
types of analysis:

1. A peformance- or agorithmic-level behaviora
model can be used to detect inappropriate sequences of
events. For example, a processor should not start sending
messages across a bus before the bus interface unit (BIU)
has been initialized.

2. An agorithmic model can be used to estimate the
throughput of the hardware system if the throughput of a
system is ameasure of the number of output units generated
in agiven time unit. For example, an image-processing sys-
tem may be required to generate 30 frames a second.

3. A performance- or algorithmic-level behavioral
model can be used to compute the utilization of hardware
modules. This computation can be used to determine poten-
tial bottlenecks in the design. These bottlenecks are high-
risk areas of the design because if they do not meet their per-
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formance reguirements, the entire system will not be able to
meet its performance goals. Measures of utilization include
bus utilization, and estimates of bus utilization can be useful
in determining the required bandwidth of the actual busses
or networks of the system.

4. A performance- or algorithmic-level behavioral
model can be used to estimate response time. For example,
an electronic warfare (EW) system must be able to generate
jamming emissions within a specific time upon detecting an
enemy radar. An algorithmic VHDL model of an EW system
providesinformation about thetimeinterval between receiv-
ing an enemy radar pulse and generating jamming emis-
sions.

5. A performance- or algorithmic-level behavioral
model can be used to determine that the hardware system
will keep up with the input data rate. For example, aradar-
processing unit must be able to process radar frames at the
pulsefrequency rate of the transmitter; otherwise, it will lose
input data.

This subparagraph describes techniques that use VHDL
to model timing at the algorithmic level and to capture asso-
ciated design metrics. The approaches described here are ap-
propriate for VHDL performance models or agorithmic-
level behavioral models created during top-down design.

5-2.1.2 Modeling Timing in Performance- and
Algorithmic-Level Behavioral Models

In performance- and algorithmic-level behavioral mod-
els, “time” often refersto the time that amodule is expected
to be busy working on a specific function, not to the inertial
delay of an electrical circuit or the setup and hold times re-
quired for alatch. For example, performance modeling early
in a development cycle usually requires that estimates be
made of the execution time of important system processes or
functions. These estimates can be based on models of algo-
rithmic complexity and the amount of data that must be pro-
cessed, domain-specific knowledge of process timing
characteristics, or timing budgets assigned by system engi-
neers. A system functionismodeled to use al of itsinput da-
ta, to process that data for some length of time, and then to
produceits outputs. VHDL models can be constructed to re-
flect this pattern. Furthermore, the time a module is busy
performing a function often can be computed from one or
more of the parameters of the function. For example, the
busy timefor afast Fourier transform on an ASIC withasin-
gle multiplier requires 4(N/2)logy(N) multiplier cycles.
VHDL providestwo mechanismsto introduce timing effects
within a process: the delay clause on a signal assignment
statement and the wait statement. Both of these mechanisms
allow the delay to be parameterized, so the actual delay on a
specific execution of the statement may vary. Signal assign-
ment statements are discussed in subpar 3-2.3.1. Wait state-
ments are discussed in subpar. 3-3.2. From the point of view
of behavioral modeling, there are several issues to consider
before choosing to use either a delay clause or await state-
ment to introduce timing delays:

1. If await statement is used, the process will not re-
spond to changes in its input signals during the interval the
process is waiting. This unresponsiveness can cause unex-
pected and undetected losses of data, which are difficult to
debug.

2. In aprocess use of signal assignment statementsin
aloop isrisky unlessthereisawait statement in the loop or
the delay times vary on each execution of the loop. Other-
wise, the output values on the signal will be overwritten.

3. A combination of wait statementsand delayson sig-
nal assignment statements can be used in abehavioral model
of apipelined system to model the difference between laten-
cy and throughput. A system with along pipeline (such asa
pipelined floating point unit or a systolic array) may have a
short time between inputs (a measure of throughput) but a
very long latency. A wait statement can be used to define the
minimum time between inputs, whereas the signal assign-
ment delay can be used to capture thelong latency timefrom
the input of datum to the corresponding output.

If the delay expression in either the wait statement or the
signal assignment statement is parameterized, the processis
much easier to reuse. For example, the delay expression can
be parameterized to adjust the timing delay on the size or
value of an input or to allow the same model to be used to
collect timing data about the best-, worst-, and average-case
performance of the component being model ed.

There are three approaches used to collect statistics about
agorithmic models:

1. A dtatistics package can be used to collect and re-
duce performance data during the simulation. This approach
requires that calls to statistics-gathering functions be built
into the algorithmic model.

2. Simulator controls can be used to produce trace da-
ta. Thisapproach islikely to produce very large files of raw
data that trace the necessary signal values and cause addi-
tional file input/output (1/0). Some VHDL simulation envi-
ronments provide the postprocessing capabilities required to
analyze trace data and produce statistics. However, if the
simulation environment is used in this way, the underlying
VHDL model may not be portabl e because not all simulation
environments provide for the postprocessing of simulation
trace data.

3. Statistical analysis functions can be built into the
test bench for the module. The approach taken to statistics
collection depends on exactly what information is needed
and how much support the simulation environment provides
for data collection and analysis. This approach requires that
al of the information required for timing assessment is
available to the test bench, such asinternal signals that con-
nect components.

5-2.1.3 Exampleof a Statistics Package and Its
Use
As discussed in Chapter 2, the timing measures used at
the algorithmic level are different than those used at the gate
level. As aresult, test bench or model infrastructure should
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include VHDL code that collects and condenses timing data
into useful forms. This example describes a statistics pack-
age that collects and condenses information on-line and
shows how to use data-dependent delays to model the exe-
cution time of an algorithm. It also shows how VHDL code
can be developed and reused to collect statistics and provide
data types for statistics that are shared between design enti-
ties. This sharing is necessary to describe the signals that
provide the communication between design entities.

The exampl e consists of two packages and asingledesign
entity. The design entity calls aprocedure to compute values
using afast Fourier transform (FFT).

Thefirst package, of which the VHDL package interface
is shown in Figs. 5-1 and the statistics package body is
shown in Fig. 5-2, contains declarations and procedures
used to collect statistics about a process during execution.

PACKAGE statistics IS

The following statistics are included:

1. The current ssimulation time

2. The minimum busy time of the process over al in-
vocations

3. The maximum busy time of the process over al in-
vocations

4. The average busy time of the process across al in-
vocations

5. Thetota busy time of the process

6. The utilization of the process.
This statistics package can be used by multiple design enti-
ties.

The second package, shownin Fig. 5-3, describesthe data
type for signals providing input into and output from the
FFT design entity. The input to the VHDL design entity is
assumed to be a record having fields that provide informa-
tion on how much data are to be processed. Thisinformation

-- Type for holding the statistics data as

-- 1t is collected during execution

TYPE stat info IS RECORD

max_time: time;

min time: time;

average time: real;

times_executed: natural;

total time: time;

utilization: real;
END RECORD;

CONSTANT STAT INIT: stat_info

(0 ns,

time'high, O.

-- Various string constants used for printing statistics data.

CONSTANT CT: string := " Current Time
CONSTANT DE: string := " Delay = ";
CONSTANT TE: string := " Times executed
CONSTANT NT: string := " Min Time = "
CONSTANT XT: string := " Max Time = "
CONSTANT TT: string := " Total Time =
CONSTANT AT: string := " Average Time
CONSTANT UT: string := " Utilization
CONSTANT SP: string := " ",

-- The procedure for

PROCEDURE compute stats( stat data:

process delay:

process_id:
END statistics;

—_ LI
= ?

—_ LIS
= 7

computing and printing statistics data

INOUT stat info;
time;
string) ;

Figure5-1. VHDL Package Interfacefor Statisticsfor Performance and Algorithmic Models

5-3
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USE std.textio.ALL;
PACKAGE BODY statistics IS
PROCEDURE compute stats(

stat_data: INOUT stat info;

process_delay: time;

process_id: string) IS
VARIABLE L: line;

BEGIN
IF process_delay < stat data.min _time
THEN stat data.min_time := process delay;
END IF;
IF process_delay > stat data.max_time
THEN stat_data.max_time := process delay;
END IF;
stat data.times_executed := stat data.times executed + 1;
stat_data.total_time := stat data.total time + process delay;
stat_data.average_time := real(time'pos(stat data.total time))
/real (stat data.times_executed) ;
stat_data.utilization := real(time'pos(stat_data.total time))
/real (time'pos (now)) ;

WRITE( L, PROCESS ID);
WRITE( L, CT);
WRITE( L, now);
WRITE( L, DE);
WRITE( L, process_delay);
WRITE( L, TE);
WRITE( L, stat data.times_ executed) ;
WRITE( L, NT);
WRITE( L, stat data.min time);
WRITELINE (output, L);
WRITE( L, XT);
WRITE( L, stat_data.max_time);
WRITE( L, TT);
WRITE( L, stat data.total time);
WRITE( L, AT);
WRITE( L, stat data.average time);
WRITE( L, UT);
WRITE( L, stat data.utilization);

WRITELINE (output, L);
END compute stats;
END statistics;

Figure5-2. The Statistics Package Body for Performance and Algorithmic Models
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PACKAGE sim_ support IS

-- Types that define a transaction record

-- that is passed around the model.
TYPE trans vals IS ARRAY (0 TO 64)
TYPE transaction IS RECORD
values: trans vals;
data_size: positive;
-- Add other fields as required
END RECORD;

PROCEDURE ComputeFFT (input:
FUNCTION NLogN(size: INTEGER)

END sim_support;

IN transaction;

OF REAL;

output: OUT transaction) ;

RETURN INTEGER;

Figure5-3. VHDL Data Type Definitionsfor a Performance and Algorithmic Model

is used to compute the execution time of the process.

Fig. 5-4 shows the entity interface for a hardware module
FFT that uses both the data type and statistics packages. In
addition, a generic scale factor uni t _del ay is declared.
This scale factor is used to scale the performance of the al-
gorithm when different implementations (with different
clock speeds) are being evaluated.

USE work.sim support.ALL;
ENTITY FFT IS

The agorithm described in Fig. 5-5 is executed in four
stages. In the first stage the data are input and the results
computed. In the second stage the timing delay for the pro-
cessis calculated based on the information in the input data.
Next the process waits for the computed busy time. Finally,
the process outputs its result data and cals the
conput e_st at s procedure in the statistics package to
compute and print certain statistics.

-- Generic unit_delay is the computation delay per unit of

-- algorithmic complexity
GENERIC (unit_delay: time :=

25 ns

)i

PORT (data_in: transaction; data out: OUT transaction);

END FFT;

Figure5-4. VHDL Entity Interface for a Performance and Algorithmic Model
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USE work.sim support.ALL;
USE work.statistics.ALL;
USE std.textio.ALL;
ARCHITECTURE algorithmic OF FFT IS
BEGIN
implement delay: PROCESS

CONSTANT process_id: string

VARIABLE process delay: time;

VARIABLE stats:

:= "FFT.algorithmic.implement delay";

stat_info

STAT INIT;

-- This variable holds the statistics for this process.
-- Each process needs to declare its own stat info variable
-- Holder for the computed results

VARIABLE results:
BEGIN
WAIT ON data_ in;

transaction;

ComputeFFT{data_in, results);

-- Wait for input data to begin processing

-- Perform the algorithmic function

-- Compute the process delay as a function of the size
-- of the input and the generic unit delay.

process_delay

2 * unit _delay * NLogN( data_in.data size );

-- Wait for the process delay time. Note that process will not
-- respond to input signals during wait interval.

WAIT FOR process_delay;

-- Collect process statistics

compute stats(stats, process delay, process id);

data out <= results;
END PROCESS;

END algorithmic;

-- Assign output values

Figure5-5. VHDL Architecture Body for an Algorithmic Model

5-22 CONSTRUCTING ALGORITHMIC
MODELS

Algorithmic models are models in which the function to
be performed is described in a program-like manner inde-
pendently of any particular hardware implementation. De-
tails such as the timing and control of input/output
operations or the specifics of internal data sequencing may
not be specified.

In an agorithmic VHDL modd the structure of the
VHDL code may bear no relationship to the corresponding
physical hardware. However, there should be a documented
correspondence between the entity interface of the VHDL
model and the corresponding physical hardware. For exam-
ple, if the algorithmic model has ports with record data
types, asis shown in Figs. 5-3 and 5-4, the correspondence
between the pins of the physical hardware and the bit-level
representation of the records may be fairly complex, and

there may be other differences. For example, the algorithmic
model of amicroprocessor may not simulate the instruction-
processing cycle; the “software” executed by the processor
is part of the behavior of the microprocessor model. In this
case the physical hardware pins required to fetch instruc-
tions may not be represented in the algorithmic model at all.

An agorithmic VHDL model can be used effectively in
severa ways.

1. Toverify that the function required of the hardware
modul e being designed has been completely and unambigu-
ously specified

2. To help to relate system functional requirementsto
hardware design parameters. For example, al gorithmic mod-
€ls can be used to evaluate word length effects on truncation
errors and error propagation in mathematical processing
functions such as matrix inversion or infinite impulse re-
sponse (IIR) filters. An agorithmic model of a distributed
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Kalman filter implemented with multiple ASICs could be
extremely valuablein verifying that the multichip system ar-
chitecture will provide the needed tracking accuracy.

3. To help to partition a hardware system into compo-
nents, and all ocate system functionsto the hardware compo-
nents. An algorithmic model can be used to verify that a
given partitioning and allocation can collectively perform
the functions required of the system. For example, an algo-
rithmic model could be used to determine that the address
generation function for the memory of a systolic array is
consistent with the data addressing the requirements of the
array.

4. To perform function vs throughput or latency
tradeoffs for a system. For example, if an iterative refine-
ment algorithm is used to compute the least squared error in
a set of overdetermined equations, a behavioral model may
be used to trade off between how many iterations are com-
puted and how long these computations take.

5. To support testing of other models. For example, a
detailed VHDL model may be built of a processor interface
(P1) bus interface unit for a multiprocessing system. A
VHDL model of the BIU may betested by using agorithmic
models for the processors that drive the BIU. This approach
isthe key concept behind the development of interface mod-
els; the interfaces and interconnections between the major
components are modeled in detail, but the full functionality
of the processorsis not modeled. In this case, the processor
models act as workload generators to produce realistic pat-
terns of messages sent across the bus.

Algorithmic models are not usually sufficient as docu-
mentation of a developed hardware module because algo-
rithmic models rarely provide both the complete bit-level
accuracy on outputs and accuracy in timing required to doc-
ument a completed hardware module.

5-2.2.1 Modeling Algorithms With VHDL Pro-
cesses
The major VHDL constructs suitable for an algorithmic
description include processes, functions, and procedures.
These constructs form the basis for describing behavior in-
dependently of specific hardware details.
As discussed in subpar. 3-3.1, the process is the natural

VHDL construct for algorithmic models. The VHDL con-
structs that can occur inside a process include all of the con-
trol structures of a modern programming language, e.g., C,
Ada, and Pascal. These control structures include variable
assignment statements, looping constructs, if-then-else con-
structs, and case statements. Other VHDL constructsthat are
legal inside a process include functions and procedures.
Functions and procedures allow model ers to encapsul ate be-
havior and reuse the same behavior in different placesin the
model. A VHDL function or procedure also can call other
functions or procedures and result in even greater modulari-
ty. Functions and procedures can be declared and defined in
packages, and the packages can then be referenced by any
design unit. Library and use clauses are used in design units
to access the package.

Signals are the interfaces between processes. Processes
execute independently of each other. Thus multiple process-
esin an algorithmic model can be used to represent the par-
alelism in the hardware. A process communicates with
other processes by writing to and reading from signals. A
process is activated and starts execution when a signal to
which it is sensitive changes value. A process suspends its
execution by executing a wait statement. The process re-
sumes when the condition on the wait statement has been
met. Wait statements can also be used to synchronize pro-
cesses. A signal can be used as a semaphore by having dif-
ferent processes write to the signal and by waiting on
specific states of the signal.

5-2.2.2 An Example of an Algorithmic M odel

In this subparagraph an algorithmic model of the FFT
function described in the performance model shown in sub-
par. 5-2.1.3 is presented. The algorithmic model of the FFT
function makes use of data abstraction to simplify the mod-
eling of the system. The VHDL definitions of the data types
and the procedures for this behavioral model are shown in
Fig. 5-6. This VHDL package declaration describes the
complex data type and one- and two-dimensional arrays of
real and complex data. The package includestwo versions of
the FFT routine: onethat operates on signalsfor usein struc-
tural models and one that uses variables and can be used in
abehavioral model.
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-- Title:

PACKAGE dsp_ prims

-- Purpose:
common real constants,
primitive DSP procedures,
functions

VHDL Declarations for package dsp primitives which contains
common trigonometric functions,

and common complex arithmetic

-- References: 1 PACKAGE math real by IEEE VHDL Math Package Study Group

-- 2
David Stearns

Janick Bergeron

PACKAGE dsp prims_pkg IS

Signal Processing Algorithms in FORTRAN and C by

Discrete Time Signal Processing by Oppenheim and Schafer
Guidelines for VHDL Models in a Team Environment by

TYPE arrl re typ IS ARRAY(POSITIVE RANGE <>) OF real;
TYPE arr0 re typ IS ARRAY(NATURAL RANGE <>) OF real;
TYPE complx typ IS RECORD

re: real;

imag: real;
END RECORD;

TYPE arrl complx typ IS ARRAY (POSITIVE RANGE
TYPE todl complx typ IS ARRAY (POSITIVE RANGE

OF complx typ;

PROCEDURE fft_ sig
( SIGNAL data:
SIGNAL isi
SIGNAL fft out:

IN

IN integer;

PROCEDURE fft var

( VARIABLE data: INOUT
VARIABLE isign IN integer;
VARIABLE fft out: OUT

end dsp prims pkg;

<>) OF complx typ;

<>, POSITIVE RANGE <>)

arrl complx typ;

OUT arrl complx typ);

todl_complx typ;

todl complx typ) ;

Reprinted with permission. Copyright 00 by Virginia Polytechnic Institute and State University.
Figure 5-6. Package Declaration for an Algorithmic Model of an FFT Processor (Ref. 2)

This VHDL package specifies the data types for the FFT
proceduresin terms of the built-in typer eal . The complex
data type is defined as a VHDL record that has real and
imaginary components. When the design is refined and the
model is converted from the algorithmic level to ISA or reg-
ister-transfer level, several issues must be addressed includ-
ing (1) the number of bits in each word and (2) the
organization of elements in arecord, particularly the align-
ment of these elements. These issues can be resolved by
changing the package declaration and package body without
changing the code in the architecture bodies. Thus, by using

packages to implement abstractions, the developer alows
word size and alignment decisionsto be abstracted out of the
behavioral model.

Fig. 5-7 contains part of the package body for the package
declaration of Fig. 5-6. The addition and multiplication op-
erators are overloaded to define addition and multiplication
operationsfor the complex datatype. The package body also
declares two constants, mat h_pi and hal f _pi , used to
calculate the weighting factors. Because these two constants
are declared in the package body rather than in the package
declaration, they are not visible outside the package body.
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PACKAGE BODY dsp prims_pkg IS

-- Commonly used constants

CONSTANT math pi: real
CONSTANT half pi: real

3. 14159_26535_89793_23846;
math pi / 2.0;

FUNCTION "*" (x: complx typ;
y: complx typ )
RETURN complx typ IS
BEGIN
RETURN ( x.re * y.re - x.imag * y.imag,
X.imag * y.re + x.re * y.imag);
END "*.

FUNCTION "+" (x: complx typ;
y: complx typ )
RETURN complx typ IS

BEGIN
RETURN ( x.re + y.re, x.imag + y.imag);
END "+";
FUNCTION "-" (x: complx typ;
y: complx typ )
RETURN complx typ IS
BEGIN
RETURN ( x.re - y.re, x.imag - y.imag);
END "-";

Reprinted with permission. Copyright 0 by Virginia Polytechnic Institute and State University.
Figure5-7. Part of the Package Body for an Algorithmic Model of an FFT Processor (Ref. 2)

Fig. 5-8 contains the procedure body for thefft_si g and then compute the intermediate val ues. The code also al-
procedure declared in Fig. 5-6. This codeis part of the pack- lows afinal pass that uses the second parameter of the pro-
age body described in Fig. 5-7. The code uses a series of cedure to normalize the output.
loops to rearrange the data, compute the weighting factors,
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PROCEDURE fft sig
( SIGNAL data: IN arrl _complx typ;
SIGNAL isi : IN integer;
SIGNAL fft out: OUT arrl complx typ) IS

VARIABLE w : complx typ;
VARIABLE temp : complx typ;
VARIABLE datal: arrl complx typ(l to data'HIGH);
VARIABLE mmax : integer := 1;
VARIABLE istep : integer;
VARIABLE X : integer;
VARIABLE j : integer := 1;
VARIABLE m : integer;
VARIABLE theta : real;

BEGIN
datal := data;

FFT1: FOR i IN datal'RANGE LOOP
IF (i < j) THEN

temp := datal(j);
datal(j) := datal(i);
datal (i) := temp;

END IF;

m := datal'HIGH/2;

FFT2: WHILE (j > m) LOOP
j o= j-m;
m := {((m+l)/2);

END LOOP FFT2;

j o= 3 + m;

END LOOP FFT1;
FFT3: WHILE (mmax < datal'HIGH) LOOP

istep := 2 * mmax;
FFT4: FOR m IN 1 TO mmax LOOP
theta := math pi * REAL(isi* (m-1))/REAL (mmax) ;
w := (COS(theta),SIN(theta));
X := m;
FFT5: WHILE (X <= data'HIGH) LOOP
J := X + mmax;
temp := w * datal(j);
datal(j) := datal(x) - temp;
datal(x) := datal(x) + temp;
X := X + istep;

END LOOP FFT5;
END LOOP FFT4;
mmax := istep;
END LOOP FFT3;
IF (isi »= 0) THEN
FFT6: FOR 1 IN datal'RANGE LOOP
datal(i) := datal(i)/datal'HIGH
END LOOP FFT6;
END TIF;
fft_out <= datal;
END fft sig;

Reprinted with permission. Copyright O by Virginia Polytechnic Institute and State University.

Figure5-8. TheFFT Procedurein thePackageBody for an Algorithmic M odel of an FFT Processor
(Ref. 2)
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5-23 CONSTRUCTING INSTRUCTION-SET-
ARCHITECTURE-LEVEL MODELS

I SA models accurately describe the functions, data types,
and registers of a processor accessible to the programmer.
Anexampleisan |SA model of amicroprocessor. Asthe mi-
croprocessor executes its instructions, the contents of its
memory and registers change. The correct ISA modeling of
such a programmable device requires that, given the same
memory contents for both data and instruction as an actual
device, the execution of the ISA model must accurately re-
produce the same changes in memory contents as the actual
device. ISA models usually represent data and instructions
with bit-for-bit fidelity with respect to the data and instruc-
tions of the actual device. ISA models must also provide a
higher level of timing fidelity than algorithmic or perfor-
mance models. Usually, ISA models must provide accurate
times to perform an instruction and update the associated
registersand memories. | SA models may haveto provide ac-
curate timing at clock boundaries. This requirement is par-
ticularly true for pipelined programmable processors in
which the execution of multiple instructions may be over-
lapped.

An ISA VHDL model can be used in several ways:

1. Todocument the functionsand timing of an existing
hardware module

2. Tosupport verification of software through simula-
tion of the hardware

3. To provide timing estimates for specific software
workloads. Although an agorithmic-level model may be
used to estimate software performance by counting opera-
tions, an ISA model provides specific information by inter-
preting the actual software instructions and adding up their
execution times.

4. To support verification of a hardware implementa-
tion of a standard architecture. For example, an |SA model
of the 1750A standard military computer architecture (Ref.
3) can be used in combination with a validation suite to test
that a hardware design accurately implements the standard
architecture (Ref. 4).

In many military electronic system development projects,
the hardware is developed concurrently with the software.
This concurrency of development means the hardware may
not be available when software is ready for testing. An 1SA
model allows software developers to test portions of their
code via simulation before the hardware isready. Thus soft-
ware errors can be found and corrected earlier in the design
cycle, to save time and money.

The most common configuration for a programmable
hardware system includes one or more processors, one or
more memories (storing the program and its data), and one
or more busses to provide the communication paths among
the elements. A complete ISA model has all of these mod-
ules explicitly modeled at the ISA level, but simulations are
often performed in which some of the modules are repre-
sented by agorithmic models. In the following subpara-
graphs issues relating to modeling these types of hardware
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modules are discussed.

5-2.3.1 Modeling Processors

An ISA model of a processor faithfully interprets the in-
struction stream input to the model. The ISA model of the
processor must explicitly represent all of the internal regis-
ters of the processor accessible to any instruction. A register
isaccessibleif aninstruction can directly set or read the val-
ue of the register. For example, the instruction address reg-
ister for aprocessor may be set by a program that executes a
jump instruction. In contrast, amicrocode address register is
not set explicitly by any instruction and need not be included
inan ISA model.

AnISA model must mimic the transformations of the pro-
cessor to the accessible registers and the external interfaces
at the bit level. The externa interface of the processor, e.g.,
bus interface, 1/0 channel interface, etc., must be explicitly
modeled at the bit level. The timing of an ISA model should
be accurate at instruction boundaries or clock edges. In pipe-
lined architectures, in which there is a significant amount of
overlap between instruction execution, accurate representa-
tion of memory and registers may be required at the clock
boundaries. This level of timing accuracy is not required in
an agorithmic model.

The complexity of an ISA model is related to the number
of components used in the VHDL model. More complex
models take longer to build and verify. If a processing ele-
ment including processor, memory, and bus interface is
modeled as a single unit, the interface between the proces-
sor, memory, and bus interface unit can be modeled behav-
ioraly. However, if a model separates the processor,
memory, and businterfaceinto separate modules, their inter-
faces must be modeled accurately and explicitly. If the pro-
cessing element uses virtual memory, the memory
management process has to be modeled accurately as a sep-
arate function in the more fine grained model.

Thecodein Figs. 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, and 5-
15 constitutes an |SA model of avery simple processor. The
processor has nineinstructions and three registers accessible
to the programmer: the program counter, the accumulator,
and an index register. These registers are explicitly repre-
sented in the model as VHDL variables whose types specify
the structure of the registers.

Fig. 5-9 contains the package declaration for a set of data
types, constants, functions, and a procedure used to imple-
ment this |SA model. Thefirst datatypewor d specifiesthe
word used by the processor. The functions Tol nt and
ToWbr d define the representation of integersin this proces-
sor as a sign-magnitude format. Integers are the only data
type that this processor uses.

The"opcode” constants define the formatsfor theinstruc-
tion set of the processor. There is also an enumerated data
type for the instruction set op_code. One of the functions
included in the package is DeCode, which decodes instruc-
tions read from memory into the op_code enumerated

type.
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PACKAGE isa pkg IS

-- The register datatype which
-- for this processor
TYPE word IS ARRAY (15 downto 0)
-- The memory array type
TYPE mem IS ARRAY (natural RANGE <>) OF
-- The external file for a prog
TYPE mem file IS file OF word;
-- The instruction set literals
TYPE op code IS (halt,load, store,add, su

OF bit

CONSTANT halt code: word := X"0000";
CONSTANT load_code: word := X"0001";
CONSTANT store_code: word := X"0002";
CONSTANT add code: word := X"0003";
CONSTANT subt_ code: word := X"0004";
CONSTANT dec_code: word := X"0005";
CONSTANT inc_code: word := X"0006";
CONSTANT 1dx_code: word := X"0007";
CONSTANT bne code: word := X"0008";
-- Literal constants
CONSTANT ZERO: word := X"0000";
CONSTANT ONE: word := X"0001";
CONSTANT TWO: word := X"0002";

-- Utility routines for convert

-- word and integers

FUNCTION ToInt( val: word ) RETURN inte
FUNCTION ToWord( val: integer ) RETURN
FUNCTION DeCode( val: word ) RETURN op

-- Overloaded operators
FUNCTION "+" (left: word; right: word)
FUNCTION "-" (left: word; right: word)
FUNCTION "*" (left: word; right: word)

-- The procedure for loading a
PROCEDURE load program({ VARIABLE memory

END isa pkg;

defines the word size

word;
ram to be loaded into memory

bt,dec, inc, 1dx, bne) :

ing back and forth from

ger;
word;
code;

RETURN word;
RETURN word;
RETURN word;
program into
: OUT mem ) ;

memory

Figure 5-9. Package Declaration for an Instruction Set Architecture Processor M odel

Figs. 5-10, 5-11, and 5-12 contain the contents of the
package body associated with the package declaration
shown in Fig. 5-9. Fig. 5-10 contains the type conversion
functions Tol nt, ToWsr d, and DeCode. To make these
routines robust and thus easily able to deal with changesin
the word size of the processor, extensive use has been made
of built-in attributes associated with VHDL arrays. Theloop

rangesare all described in terms of the RANGE attribute. The
NEXT statements are used to detect when the sign bit of the
word has been detected and thus causes the body of the loop
to be skipped. Note a so that the CASE statement used in the
DeCode function is not valid in VHDL 1987 (Ref. 5), be-
cause the constants are not locally static. An | F statement
can be used instead.
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-- Converts words (in sign-magnitude format) to integers
FUNCTION ToInt( val: word ) RETURN integer IS
VARIABLE result: integer := 0;
BEGIN
FOR i IN word'RANGE LOOP
NEXT WHEN 1 = word'LEFT;
IF val(i) = '1°
THEN result
ELSE result
END IF;
END LOOP;
IF val (word'LEFT) = '1'
THEN result := - result;
END IF;
RETURN result;
END;

1]

2 * result + 1;
2 * result;

-- Converts integers to words in sign-magnitude format
FUNCTION ToWord( val: integer ) RETURN word IS

VARIABLE result: word := ZERO;
VARIABLE temp: integer := val;
BEGIN

FOR i IN word'REVERSE RANGE LOOP
NEXT WHEN i = word'LEFT;
IF temp mod 2 = 1
THEN result (i) := '1';
END IF;
temp := temp/2;
EXIT WHEN temp = O;
END LOOP;
IF val < 0

THEN result (word'LEFT) := '1';
END IF;
RETURN result;

END;

-- Converts words representing instructions to op codes
FUNCTION DeCode( val: word ) RETURN op_code IS
VARIABLE result: op code;

BEGIN
CASE val IS
WHEN load code => result := load;
WHEN store code => result := store;
WHEN add code => result := add;
WHEN subt code => result := subt;
WHEN dec_code => result := dec;
WHEN inc_code => result := inc;
WHEN 1ldx code => result := 1ldx;
WHEN bne code => result := bne;
WHEN OTHERS => result := halt;
END CASE;
RETURN result;
END;

Figure5-10. Type Conversion Functionsfor an Instruction Set Architecture Processor M odel
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Fig. 5-11 contains the operator overloading functions for
the ISA model. These functions overload the traditional ad-
dition and subtraction operators so that they are defined for
the wor d format used in this processor. This implementa-
tion converts the inputs to these functions into i nt eger
type, performs the operation, and then converts the result
back to wor d format. These functions could be made more
robust by adding error handling for overflow and underflow
conditions. An alternativeimplementation approach usesthe
operator overloading and the conversion functions in the
proposed synthesis standard (Ref. 6).

Fig. 5-12 contains the procedure for loading the program

into memory. This procedure uses the VHDL type of FI LE
and some of the built-in functions used to detect the end of
file condition. In this model the memory is declared as a
fixed size array. The size of the memory is specified by age-
neric whose value is set in the entity interface declaration
shownin Fig. 5-13. The memory isinitialized from an exter-
nal file that contains the program to be executed.

Fig. 5-13 contains the entity declaration for the ISA mod-
el. Thereis no port clause in the entity interface for the ISA
model because thisisthe highest level entity in the simula-
tion. The generic associated with the entity specifies the
memory size. The memory is not modeled as a separate de-

-- This function overloads the "+" (addition) operator.

-- It converts its arguments into the internal representation of
-- the host machine, adds them and then reconverts the result

-- back to sign-magnitude format. It does not check for possible

-- overflow of the result

FUNCTION "+" (left: word; right: word) RETURN word IS

BEGIN
RETURN ToWord( ToInt (left) + ToInt (right) );
END;
-- This function overloads the "-" (subtraction) operator.

-- It converts its arguments into the internal representation of
-- the host machine, subtracts them and then reconverts the result
-- back to sign-magnitude format. It does not check for possible

-- overflow or underflow of the result

FUNCTION "-" (left: word; right: word) RETURN word IS
BEGIN

RETURN ToWord( ToInt (left) - ToInt(right) );
END;

-- This function overloads the "*" (multiplication) operator.

-- It converts its arguments into the internal representation of

-- the host machine, multiplies them and then reconverts the result
-- back to sign-magnitude format. It does not check for possible

-- overflows or underflows

FUNCTION "*" (left: word; right: word) RETURN word IS

BEGIN

RETURN ToWord( ToInt (left) * ToInt (right) );

END;

Figureb5-11. Operator Overloading Functionsfor an Instruction Set Ar chitecture Processor M odel

-- This procedure loads a program into memory
PROCEDURE load program( variable memory: out mem ) IS

FILE pfile: mem file IS IN "program";

BEGIN
FOR addr IN memory'RANGE LOOP
EXIT WHEN endfile (pfile);
READ (pfile, memory (addr));
END LOOP;
END load_ program;

Figure5-12. Program Loading Procedurefor an Instruction Set Architecture Processor Model
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ENTITY isa model IS
GENERIC( MemSize: natural := 512);

END;

Figure5-13. Entity Interfacefor an Instruction
Set Architecture Processor Model

USE std.textio.ALL;
USE work.isa pkg.ALL;
ARCHITECTURE isa OF isa model IS
BEGIN
PROCESS
-- Internal registers:
-- pc = program counter,

VARIABLE pc word := ZERO;

-- acc = accumulator
VARIABLE acc word := ZERO;

-- index = index register.
VARIABLE index word := ZERO;

-- Internal variables
VARIABLE data_ addr word := ZERO;
VARIABLE data_word word;
VARIABLE stop boolean := FALSE;
VARIABLE instr op_code;

sign entity. If it were, it would need to be instantiated and
connected to the processor by signals. This approach, in
which the memory is not a separate component, simplifies
the model and improvesits simulation performance.

Fig. 5-14 contains the architecture body for the |SA mod-
el. At the start of simulation, the stored program is loaded
into the simulated memory. Once the program has been
loaded into memory, execution begins. Each instruction cy-

-- The memory array, constrained by the generic MemSize

VARIABLE memory

mem( 0 to MemSize

-1 );

-- String constants and variables for debugging output

VARIABLE 1 line;

CONSTANT PCS string := " PC ";

CONSTANT INS string := " Inst. = ";

CONSTANT AC string := " ACC = ";

CONSTANT DX string := " Index = ";

CONSTANT errmsg string := "Invalid Instruction. PC = ";

-- Writes out internal state of simulation

PROCEDURE write state IS

BEGIN

write(l, PCS);

write(l, ToInt (pc));
write(l, INS);

write(l, ToInt (instr));
write(l, AC);

write (1, ToInt (acc));
write (1, DX);

write(l, TolInt {index));
writeline (output, 1);
END write state;

-- Load the externally stored program into memory

load _program( memory ) ;
-- Loop,

fetching, decoding, and executing instructions until a halt

-- instruction is received or an invalid instruction is processed.

(cont’d on next page)

Figure 5-14. Architecture Body for an | SA-L evel Processor Model

5-15



Downloaded from http://www.everyspec.com

MIL-HDBK-62
WHILE stop = FALSE LOOP
data_word := memory( ToInt( pc ) );
instr := DeCode (data word) ;

CASE instr IS
-- Load accumulator from address specified in load instruction

WHEN load=> acc := memory(ToInt (memory (ToInt (pc + ONE))));
write_state;
pc := pc + TWO;
-~ Store accumulator into address specified in store instruction
WHEN store=> memory (ToInt (memory(ToInt (pc + ONE)))) := acc;

write state;
pc := pc + TWO;
-- Add contents of memory location to accumulator from
-- location specified in add instruction, offset by value of index

WHEN add=> data addr := memory(ToInt (pc + ONE)) + index;
acc := acc + memory (ToInt (data addr)) ;
write state;
pc := pc + TWO;

-- Subtract contents of memory location from accumulator from
-- location specified in add instruction, offset by value of index
WHEN subt=> data _addr := memory(TolInt{pc + ONE)) + index;
acc := acc - memory(ToInt (data addr));
write state;
pc := pc + TWO;
-- Decrement index register
WHEN dec=> index := index - ONE;
write state;
pc := pc + ONE;
-- Increment index register
WHEN inc=> index := index + ONE;
write state;
pc := pc + ONE;
-- Load index register from location specified in load instruction
WHEN 1ldx=> index := memory( ToInt (memory (ToInt (pc + ONE))));
write state;
pc := pc + TWO;
-- Branch to specified address if index not equal to zero
WHEN bne =»> IF index /= ZERO

THEN pc := memory{TolInt (pc + ONE)) ;
ELSE pc := pc + TWO;
END IF;

write state;
-- Halt simulation when halt instruction is received
WHEN halt => stop := TRUE;
write state;
-- Print error msg and halt if a bad instruction is processed
WHEN others =>write(l, errmsg);
write(l, TolInt (pc));
writeline (output, 1);
stop := TRUE;
END CASE;

END LOOP;
wait;

END PROCESS;

END;

Figure 5-14. (cont’d)
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cle and instruction is read from memory, decoded, and exe-
cuted. When a*halt” instruction isexecuted, the model stops
simulating.

5-2.3.2 Modeling Memory

Memory, in the sense of alarge, contiguous array of stor-
ageregisters, can be modeled in several ways. Inan algorith-
mic model the simplest way is to use an array of the
appropriate size and type. Instructions and data are stored in
the array and accessed using the appropriate index into the
array. A readismodeled by indexing into the array and using
the contents as required by the model; awrite is modeled by
assigning a new value to the location in the array indicated
by the index.

Because modern computers have very large memories,
this simple model can occupy very large amounts of the
memory in the computer used to simulate the model without
making efficient use of this memory. An aternative ap-

proach isto build avirtual memory model in which only the
pages of memory that have been read or written are actually
maintained by the model. VHDL accesstypes provide acon-
venient mechanism to implement this type of virtual memo-
ry. The memory process maintainsalist of pointersto pages
of memory, maps the addresses received as part of read or
write commands into references to specific pages, and then
operates on the specific page. If an address is received that
isnot in the address space of any of the current pages, anew
pageis created and added to the list.

An instruction set architecture memory model includes
explicit memory control signals, such asread and writelines
and address and datalines. It also hastiming delays and log-
ic conventions appropriate to the model. An example of this
type of memory model is shown in Fig. 5-15. This VHDL
model makes use of an array to represent the memory but
provides afaithful representation of the external memory in-

-- Memory entity has a generic size which defaults to 256 bits.

It also has address,
LIBRARY ieee;

USE ieee.std logic_1164.ALL;
USE work.isa pkg.ALL;

ENTITY memory IS

data,

GENERIC( memsize: integer :=
PORT ( data: INOUT word;
address: IN word;
R W: IN std logic) ;

END memory;

ARCHITECTURE behavior OF memory IS
BEGIN
memoxry PROCESS ( R_W, address, data )
~- The memory array,

VARIABLE memarray

VARIABLE data_ addr natural := 0;
BEGIN
data_addr := TolInt (address) ;

IF data_addr <= memarray'HIGH
THEN ASSERT FALSE

constrained by the generic
mem( 0 to MemSize -1

and read/write control signals.

256) ;

MemSize

)

REPORT "Bad memory address"

SEVERITY Error;

ELSIF R W = '1'

THEN data <= memarray(data_addr)

ELSIF R W = '0"

THEN memarray (data addr)
ELSIF R_W 'Z!

THEN NULL;
ELSE ASSERT FALSE

after 10 ns;

data;

REPORT "Bad memory read write value'

SEVERITY Error;
END IF;
END PROCESS;
END behavior;

Figure5-15. Example Instruction Set Architecture Memory Model
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terface. The entity interface declaration in Fig. 5-15 makes
use of the | EEE standard logic package (Ref. 7) to model the
read/write (R_W pin and uses the definition of the word size
and the memory array from thei sa_pkg package.

In this memory model there is one control signa R_W
and it indicates whether the memory operation is a read
(when' 1' ) or write (when' 0' ). The memory array isim-
plemented as a variable by the declaration of memory. An
additional feature of this model isits use of the generic pa
rameter “memsize”, which has a default value of 256. The
use of ageneric alows usersto model amemory of any size
without rewriting the memory model.

The“address’ input signal is declared astypewor d, con-
sistent with the ISA processor model. The memory model is
made robust by use of an assertion statement to ensure that
the integer used to index the memory array is within the
range of the memory array. If an address value is received
that is out of the specified range, the assertion violation is
raised.

5-2.3.3 Modeling Busses and Bus Controllers

A VHDL bus has a meaning different than the hardware
meaning of a bus as a collection of electrical signals, apro-
tocol to acquire and release the bus resource, and a protocol
to transfer data across the bus. A VHDL signal that has the

signal kind of “bus’ floats to a user-determined value when
it is disconnected from all of its drivers, and thusit does not
preservethevaluelast drivenonitasaVHDL register signal
does. This subparagraph describes how to model a bus used
to transfer data among hardware components.

A traditional busis often implemented with a component
referred to as a bus interface unit, or bus controller. Hard-
ware units that use the bus do so with the BIU. The BIU is
responsiblefor implementing the detail s of the bus protocols
and for transferring data and other information between the
units on the bus.

The protocol for atraditional busis often specified with a
statetransition diagram. Transitionsin the state transition di-
agram represent actions on the bus such as data transfer,
control signaling, and error conditions.

Fig. 5-16 shows the state transition diagram for the test
access port (TAP) controller for the Institute of Electrical
and Electronics Engineers (IEEE) 1149.1 boundary scan test
bus (Ref. 8). The ellipsesin the figure represent the states of
thefinite state machine. The lines represent transitions from
one state to another. The value adjacent to each state transi-
tion line is the value present on the test mode select (TMS)
input signal. Changesin these val ues cause the state machine
to move to another state. A VHDL description of this BIU
has been developed (Ref. 9).

Test-Logic
Reset
Run-Test/
Idle

Select-
DR-Scan

Update-DR

Update-IR

Copyright 00 1990. IEEE. All Rights Reserved.

Figure5-16. Example State Transition Diagram for a Bus Interface Unit Model (Ref. 8)
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5-2.4 CONSTRUCTING REGISTER-TRANS
FER-LEVEL MODELS

Register-transfer-level (RTL) models explicitly represent
theinternal registers, data path elements, and control mech-
anisms in a hardware component. Design decisions about
the number and kinds of registers, the structure of internal
data paths, and the data transformation functions are reflect-
edinan RTL model.

Just as the major elements of an ISA model are proces-
sors, memories, and busses, the major elements of an RTL
model are registers, combinational logic, internal busses,
and clocks. Individual elementsof an RTL model, such asan
arithmetic and logic unit (ALU), may be modeled behavior-
ally. The scope of an RTL model is generally achip.

A register transfer level model can be used effectively in
several ways:

1. To support synthesis of very large-scale integrated
(VLSI) circuit designs. This ability is particularly important
because synthesis tools can adapt a design to different fabri-
cation technologies. If synthesizable models are available
for parts when they become obsolete, then new circuit de-
signs can be created for current fabrication technologies.

2. Tocheck that the logical decomposition of the hard-
ware design into register-transfer-level elementsisfunction-
ally consistent with ahigher level behavioral design, such as
an |SA model. For example, an RTL model can be used to
decide whether a microcoded processor architecture will
work or whether custom combinational logic is required.

3. Toverify that the clocking scheme, sequencing, and
control of a synchronous system work correctly together.
Determining whether a single-phase clock is good enough
(or that atwo-phase clock is required) is one such question.

4. To analyze the performance of a particular register-
transfer-level partitioning. For example, does a replicated
bit-slice circuit have enough performance with its interchip
carry lines, or isafamily of custom chips required to reduce
interchip communication?

5. To test microcode for microprogrammable proces-
sors. The existence of aVHDL simulation model allows mi-
crocode devel opers to debug and optimize their code before
theactual hardwareisavailable. If aVHDL model at thereg-
ister-transfer level is used as the functional specification of
aprocessor and is used to devel op microcode, the microcode
and the VHDL model can be used to help verify the correct
functionality of the new hardware when it becomes avail-
able.

In an RTL model written in VHDL, signals are used to
represent specific hardware registers. The types associated
with the signals reflect the format of the data stored in the
register. The flow of data through the system is represented
by bit-level control signals acting on multiplexors. Func-
tions are synchronized with clocks, and signals are used ex-
plicitly to distribute clocks to the components.
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5-24.1 Synthesisof Designs From RTL Models

Register-transfer-level models are a particularly impor-
tant class of models because commercialy available hard-
ware synthesis technology can be used to generate detailed
integrated circuit designs from appropriate register-transfer-
level models. Use of synthesis tools is an important method
used to design application-specific integrated circuits.

Standards are being developed to support the use of
VHDL for synthesis. Currently, each synthesis tool has its
own packages and data types. The IEEE has a working
group and a draft standard (Ref. 8), which is to be imple-
mented through a set of guidelines for models and through a
collection of VHDL packages.

The proposed standard includes two packages:
NUMERI C_BI T and NUMERI C_STD. These packages have
the same list of functions, but these functions differ in their
target data types. The NUMERI C_BI T package defines
functions for the NUMERI C BI T data type, the
NUMERI C_STD package defines functions for the IEEE
st d_ul ogi ¢ data type. Each package defines two addi-
tional data types: one for vectors representing signed arith-
metic values and one for vectors representing unsigned
arithmetic values. Each package defines a comprehensive
set of arithmetic, logical, relational, and shift functions that
operate on these data types. The packages also include type
conversion functions between the signed and unsigned data
types and vectors of Bl T, BOOLEAN, and |IEEE Std 1164
st d_ul ogi c datatypes.

The proposed standard defines functions used to detect
rising and falling edges of signals that have a data type
named NUVERI C_BI T. The NUMERI C_BI T datatype de-
scribes vectors whose elements are of type Bl T, a VHDL
built-in type. Simulations based on the NUVERI C_BI T data
type ordinarily require less execution time because they do
not have to deal with operands containing metalogical val-
ues. The functions that detect rising and falling edges of
NUMERI C_BI T signals are meant to be complementary to
the functionsthat detect rising and falling edgesin the IEEE
standard logic package (Ref. 9).

The proposed standard provides an interpretation of the
Bl T and BOOLEAN data types of VHDL (Ref. 10). Thisin-
terpretation defines how synthesis tools should handle the
logic values of literals after named constants have been re-
placed by their values. The proposed standard describes how
the metalogical values, i.e, thevalues' U ,' X' ,' Z' , and
'-', of the IEEE st d_ul ogi c data type should be han-
died by relational operatorssuchas' <','>','=","'[=".

Additionally, the proposed standard defines a standard
matching function that provides don't care or wild card test-
ing of values based on the IEEE st d_ul ogi ¢ data type.
This matching function returns ' FALSE' whenever either
of the arguments contains a metal ogical value other than
' -', the don't care value. The function returns ' TRUE'
when' H iscomparedwith' 1' orwhen' L' iscompared
with' 0" .
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5-24.2 An Exampleof aVHDL Register-Trans-
fer-Level Model

Figs. 5-17 and 5-18 show a behavioral model of an Intel
8212 buffered latch described at aregister-transfer level that
has been used as atest input for asynthesis system (Ref. 11).
The | 8212 has control inputs DSL (named NDS1), DS2,
VD, and STRB. These inputs are used to control device se-
lection, data latching, output buffer state, and service flip-

ENTITY I8212 IS
PORT (DI

DO
NDS1,
DS2,
MD,
STRB,
NCLR
NINT
) ;

END I8212;

Reprinted with permission. Copyright O by VHDL International

IN Bit;
: OUT BIT

IN Bit_Vector (7 DOWNTO 0);
: OUT Bit_Vector (7 DOWNTO 0) ;

flop. When NDS1 islow and DS2 is high, the deviceis se-
lected. When MDis high, the chip isin output mode, and the
output buffers are enabled. When MDis"' 0" , the chipisin
input mode, and the STRB is used to latch data and to reset
the service request flip-flop SRQ. SRQis set when NDS1 is
low or the device is selected. When MDis' 0’ , the output
buffers are enabled whenever the device is selected.

Figure5-17. Entity Interfacefor an Intel Buffered Latch (Ref. 11)

USE work.functions.ALL;
ARCHITECTURE data_flow OF 18212 IS

SIGNAL SO, S1, S2, S3 : Bit;
SIGNAL SRQ: Bit;
SIGNAL Q: Wired OR_Bit Vector (7 DOWNTO O) ;
BEGIN
Cl: SO <= NOT NDS1 AND DS2;
C2: 81 <= (S0 AND MD) OR (STB AND NOT MD) ;
C3: S2 <= S0 NOR NOT NCLR;
C4: S3 <= S0 OR MD;
B: BLOCK(S1 = '1l' AND NCLR = '1"')
BEGIN
C5: Q <= GUARDED DI;
Cé6: Q <= "00000000" WHEN (NCLR = '1');
C7: DO <= Q WHEN (S3 = 'l') ELSE "ZZZZZZZZ";
END BLOCK B;
P: PROCESS
BEGIN
IF (82 = '0') THEN SRQ <= '1';
ELSIF (STRB = '1') THEN SRQ <= '0';
END IF;
WAIT ON S2, STRB;

END PROCESS P;
C8: NINT <= NOT SRQ NOR S0;
END data_flow;

Reprinted with permission. Copyright O by VHDL International .

Figure 5-18. Synthesizable Architecture Body for the Intel Buffered Latch (Ref. 11)
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5-3 VHDL DID SIMULATION REQUIRE-
MENTSFOR BEHAVIORAL MODELS

The VHDL DID (Ref. 1) requires that all VHDL behav-
ioral models exhibit certain responsesto stimuli, timing, and
error handling characteristics. These requirements are dis-
cussed in the next three subparagraphs.

5-3.1 CORRECT FUNCTIONAL RESPONSE
TO STIMULI

The VHDL DID requires that behavioral models correct-
ly expressthe function of their corresponding physical units.
VHDL supports the verification of a model, typicaly via
simulation. VHDL models are typicaly simulated in the
context of atest bench.

Subpar. 10.2.5 of the VHDL DID (Ref. 1) requiresVHDL
test benches for each VHDL module. Part of the develop-
ment of an effectivetest bench is creating test vectorsto pro-
vide stimulus for the model. Another part of the
development of an effective test bench is defining the cor-
rect responses to the test vectors. During the top-down de-
velopment of adesign, ahigh-level behavioral model can be
used to generate the correct responsesto a set of test vectors.
When a less abstract model is subsequently developed, the
responses of the low-level model can be verified by compar-
ison with the results produced by the high-level behavioral
model.

Some standard strategies are used to generate test vector
sets for behavioral models. At the algorithmic level the fol-
lowing approaches can be used:

1. Thetest vectors should exercise al of the functions
of the hardware module. For example, if the hardware mod-
uleis programmable, each instruction should be tested.

2. Thetest vector set should include sequences of vec-
tors that represent normal operational sequences of the sys-
tem. If the model is general enough to accurately model
system startup and shutdown, these transient modes of oper-
ation should also be tested.

3. The test vectors should include stress tests that re-
flect severe or unusual |oads on the system but loads that are
within the specifications for the hardware. These tests may
include timing stress tests.

4. The test vectors should include invalid inputs that
are “almost” valid inputs. These vectors test the error-han-
dling ability of the model.

5. The input data should be divided into equivalence
classesin which elementswithin each classare handled sim-
ilarly. The simplest form of equivalence class partitioning
onadatainputisto divideitinto classes of valid and invalid
inputs. The test vector set should include representatives of
each equivalence class. The number of equivalence classes
may be chosen to reflect the time and resources available for
testing. It is not practical to test most interesting functions
exhaustively because of their internal complexity.

AtthelSA level asimilar set of guidelinesfor test vectors
can be used. All of the instructions of a programmable pro-
cessor should be tested. Normal sequences of instructions
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should also be tested. Equivalence classes for different input
and output data formats also should be considered.

For VHDL behaviora models based on finite state ma-
chines, there are several more formal strategies used to gen-
erate test vectors. One strategy is based on testing the
reachability of all of the statesin the model. Asaminimum,
a sequence of test vectors should be defined that drives the
model into every state.

Another strategy isto test the liveness of the model. This
strategy saysthat except for certain specified terminal states,
it should be possible to get from any given state to any other
state. Another check for finite state machine-based modelsis
a static check.

The code should be reviewed to make sure that any in-
valid states or invalid inputs are detected and appropriate er-
ror messages are generated. In the model in Fig. 5-15
whenever an out-of-range memory address is encountered,
an error is asserted and a message is generated. Because the
number of possible states of a processor may be very large,
it may be necessary to define equivalence classes on states
and test only some of the representative states in each class.
For example, atester may not distinguish between the data
values in registers of a processor and instead may define
only states based on the current instruction being processed.

When a hierarchica model is developed, a bottom-up
testing strategy is recommended. Once the testing of indi-
vidual submodels is complete, the entire model should be
tested by executing tests designed to exercise al of the major
functional groups asthey work together. To assist in bottom-
up testing, submodels should test their inputs and gracefully
handleinvalid inputs.

532 SIMULATIONTIMING

Subpar. 10.2.3.2 of the VHDL DID requires that VHDL
models exhibit correct timing behavior at the external inter-
face including best, worst, and nominal output delays. Cor-
rect timing behavior should be monitored by individua
VHDL modules, i.e., VHDL modules should test for invalid
timing conditions on their inputs, such as inputs violating
setup and hold conditions.

The VHDL language provides powerful facilities to de-
tect improperly timed signals. These include assertion state-
ments, passive processes and subprograms, and built-in
attributes for signals. These mechanisms can be used to ex-
amine the timing relationships among the signals associated
with aninterface. If atiming violation is discovered by these
checks, the module can indicate that the violation has oc-
curred. Checks on these timing constraints can be imple-
mented with passive processes (Ref. 12). This topic is
discussed in detail in par. 5-4.

5-3.3 ERROR HANDLING

Subpar. 10.2.2.2 of the VHDL DID (Ref. 1) requires that
“timing and electrical requirements (e.g., setup and hold
times or power supply voltage extremes) shall be expressed
in such a manner as to cause the simulator to generate error
messages should the requirement be violated during asimu-
lation.”.
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The assertion statement provides away for model writers
to issue messages when an error occurs. These messages
should pinpoint the location of theerror. TheVHDL DID re-
quires that these messages identify the design entity, pro-
cess, procedure, or function in which the error occurred. In
the case of components used many timeswithin amodel, the
simulator must provide contextual information on exactly
which component instance raised the exception.

Since not al errors require that the simulation be halted,
some means must be available to categorize the severity of
errors. VHDL provides this means with the severity clause
of the assertion statement, which allows users to specify the
severity of different errors. The action taken by the simulator
can then depend on the severity of the error encountered.

The assertion statement may not be powerful enough for
amodel builder’ s needs; consequently, VHDL provides pas-
sive processes in which arbitrary computations can be per-
formed. A passive process is a process that neither directly
or indirectly, i.e., in a procedure called by the process, as-
signsto signals.

Passive processes, like any other process, can have a sen-
sitivity list so more complex timing relations among signals
can be examined. Appropriate messages can be written to
external files, displayed immediately to users, or both.

ENTITY FPAdd IS
PORT ( 1Inl: 1IN real;
In2: IN real;
Outl: OUT real );
END FPAdd;

ARCHITECTURE Function OF FPAdd IS
BEGIN
Outl <= Inl + In2;
END Function;
Figure 5-19. Entity Interface and Archi-
tecture Body for a Functional Model
Without Timing

5-4 TIMING IN BEHAVIORAL MODELS

541 TIMING SHELLS

It is often useful to separate the description of timing and
function in behavioral models, especially in the early stages
of the model development cycle. With this separation of
concernsit is possibleto modify timing and behavioral mod-
els(semi-)independently. Thisseparationis particularly use-
ful if thetiming requirements external to an entity are known
but the behavior is not finalized. This separation of concerns
can be achieved in VHDL through the use of atiming shell.

A timing shell is used to define delays for signal assign-
ments in behaviora models independently of the
function-computing part of the model. Figs. 5-19, 5-20, 5
21, 5-22, and 5-23 describe a timing shell and a functional
entity that when combined provide abehavioral model. This
example shows how tradeoffs can be performed by using
different timing shells with the same function to represent
different implementations.

The example included here is a floating point adder. Fig.
5-19 shows the functional entity including both its entity in-
terface declaration and a functional architecture body. It
uses the built-in floating point addition function to compute
the result, and it uses unit delay, i.e., the signal assignment
statement in the architecture body has no delay clause.

Fig. 5-20 contains the package declaration for a set of
functions that supports the computation of the delay for an
implementation of the floating point adder. In this example,
it is assumed that the floating point addition is done by an
ALU with asimple shifter that can shift aword only one bit
to the left or right per clock cycle. Therefore, the delay for a
floating point addition is dependent upon the inputs, as well
as on the time for aclock cycle.

Fig. 5-21 shows the body of the timing delay function.
This timing function assumes that the ALU can perform a
fixed point addition in one cycle, can compute the number of
shiftsrequired to align theinputsor to aign the output in one
cycle, and can shift aword one bit per clock cycle. The pack-
ageincludesfunctionsto determine the amount of alignment

-- Example of a package that supports timing shell

PACKAGE Timing IS

-- This function gets the exponent of its floating point argument

FUNCTION GetExp( SIGNAL val: real )

RETURN integer;

-- This function computes the maximum of two integers

FUNCTION MaxInt (left: integer; right:

integer) RETURN integer;

-- This function computes the minimum of two integers

FUNCTION MinInt (left: integer; right:

FUNCTION SimpleShiftDelay (
SIGNAL Inl, In2, In3:

END Timing;

real;
CONSTANT ClockTime: time

integer) RETURN integer;

RETURN time;

Figure 5-20. Package Declaration for a Model That Usesa Timing Shell
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FUNCTION SimpleShiftDelay (

SIGNAL Inl, In2, In3: real;

CONSTANT ClockTime: time ) RETURN time IS

VARIABLE Expl: integer;

VARIABLE Exp2: integer;

VARIABLE Exp3: integer;

VARIABLE AlignedExp: integer;

VARIABLE ClockCount: natural;
BEGIN

Expl := GetExp(Inl);

ExXp2 := GetExp (In2);

Exp3 := GetExp(In3);

-- Compute the exponent for the alignment

- MinInt (AlignedExp, Exp3) ;

AlignedExp := MaxInt (Expl, Exp2) ;
-- Initialize ClockCount with the time to compute the alignment
ClockCount := 1;
-- Add the number of clocks to align inputs
ClockCount := AlignedExp - MinInt (Expl, Exp2) ;
-- Add the number of clocks to perform the fixed point addition
ClockCount := ClockCount+ 1;
-- Add the number of clocks to compute the result alignment
ClockCount := ClockCount+ 1;
-- Add the number of clocks to align the result
ClockCount := ClockCount
+ MaxInt (AlignedExp, Exp3)
-- Convert

RETURN ClockTime * ClockCount;
END SimpleShiftDelay;

ClockCount to a delay time using ClockTime

Figure5-21. Function Definition for a Timing Function for a Floating Point Adder

required by computing the exponent (base 2) of the inputs
and the result. The number of shiftsrequired to align the in-
putsis the difference between the maximum input exponent
and the minimum input exponent. The number of shifts re-
quired to align the output is the difference between the max-
imum exponent of the aligned input and the result and the
minimum exponent of the aligned input and the result.

Fig. 5-22 showsthe entity interface declaration of the be-
havioral model, i.e., the model that uses the timing shell in
combination with the functional entity to model both func-

USE work.Timing.ALL;
ENTITY TimedFPAdd IS

GENERIC (ClockCycle time :=

PORT {( Left: IN real;
Right: IN real;
Result: OUT real

) ;
END TimedFPAdd;

tion and timing. This entity declaration includes a generic
that defines the clock cycle time.

Fig. 5-23 shows the architecture body of the timing shell
entity. A configuration specification links the functional en-
tity described in Fig. 5-19 to the component instance in this
architecture. The architecture body contains a component
instance whose port map links the functional output to the
internal signal Qut Val . A concurrent signal assignment
statement is used to delay the output of theresult by thetime
computed using the function Si npl eShi f t Del ay.

500 ns) ;

Figure5-22. Entity Interfacefor a Model That Usesa Timing Shell
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ARCHITECTURE SimpleShift OF TimedFPAdd IS

COMPONENT Adder

PORT( Inl: IN real;
In2: IN real;
Outl: OUT real );
END COMPONENT;
SIGNAL OutVal : real;

FOR Compl: Adder USE work.FPAdd (Function) ;

BEGIN

Compl: Adder PORT MAP ( Left, Right,

Outval

) ;

Result <= OutVal after SimpleShiftDelay(Left,Right,OutVval, ClockCycle) ;

END SimpleShift;

Figure5-23. Timing Shell Architecture Body

An aternative implementation of the floating point adder
that uses a barrel shifter would have a different delay func-
tion, but it would provide the same result value. This differ-
ence could be implemented with a different architecture
body for Ti medFPAdd, which uses a different delay func-
tion. A further refinement is to use the same name for delay
functions for different implementations. The different delay
functions are placed in different libraries. The same archi-
tecture body could be used for the different implementa-
tions, and the appropriate delay function would be selected
using a configuration declaration, as described in par. 3-8.

542 CLOCK RATES

In agorithmic and ISA VHDL models, a common ap-
proach to specifying the timing of a synchronous hardware
module isto specify thetime for an operation in terms of the
number of clock cycles required to complete the operation
and then to measure the clock rate for the module. This ap-
proach has been taken in the architecture body in Fig. 5-5.
More accurate timing may be available after the hardware
has been designed and the microcode (if any) has been writ-
ten.

543 CRITICAL PATH DELAY TIMES

Clock rates are critical to determining the performance of
synchronous hardware modules. A register-transfer level or
more detailed model can be used to predict the clock rate of
a system by calculating the critical path times between reg-
istersor latches. The nature of semiconductor devices means
that the critical path depends not only on the number of lev-
els of logic between latches but also upon the data flowing
through the network and the time it takes for devices to
change output signal states and strengths. Thus, if the clock
rate is being pushed to the limits of the technology, detailed
analysis of the structure and physical layout of critical paths
is needed.

In VHDL models error messages generated by setup or
hold violations can be used to detect excessive clock rates.
However, this approach requires a set of test vectors that
force worst-case dynamic situations. Most computer-aided
engineering (CAE) environments include tools that statical-
ly analyze worst-case timing. Generally, thesetoolsaredriv-
en by a gate-level netlist and other data dependent on the
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implementation technology. The VITAL timing approach
(Ref. 13) allows back annotation of worst-case timing infor-
mation through the use of standard delay format (SDF) files.

544 BEST-CASE, WORST-CASE, AND NOM -
INAL DELAYS

The VHDL DID (Ref. 1) requires that all VHDL models
incorporate worst-case, nominal-case and best-case timing
delays at the model interface. Providing several delay mod-
els allows designers to evaluate the performance of the de-
sign under adverse as well as optimistic operating
conditions. Simulating a system in which different compo-
nents operate under different conditions may show anoma-
lies that do not occur under more typical operating
conditions. Thiskind of simulation provides useful informa-
tion on the components likely to have problemswhen incor-
porated into alarger system.

Fig. 5-24 showstiming curves for acomponent as afunc-
tion of either temperature or voltage. Ty, and Vi, are the
minimum expected operating temperature and supply volt-
age, Vom is the nominal operating voltage at the nominal
operating temperature of 27°C, and Ty and V 5 &€ the
maximum expected operating temperature and supply volt-
age. tmax thom aNd tyyin are the maximum, nominal, and min-
imum delays, respectively, that correspond to each of the
temperature and voltage combinations. There is a range of
delay times at any temperature and voltage combination be-
cause of dlight variationsin timing from component to com-
ponent.

The diamonds and the ovals in the figure indicate mea-
sured times that are available for the component. The ovals
indicate the timing measurements from the illustrated set of
measurements that must be included in the VHDL timing
model. The diamonds indicate optional timing values; better
VHDL models consider awider range of environmental fac-
tors.

545 PARAMETERIZED DELAY MODELS
Parameterized delay models permit more elaborate tim-
ing models to be constructed. In real hardware, timing de-
lays are often functions of environmental factors such as
supply voltage, output loading, or temperature. If these ef-
fects can be model ed, timing models can be constructed that
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Figure 5-24. Best-, Nominal-, and Wor st-Case Timing Curves (Ref. 14)

cover abroad range of environmental conditions rather than
just those for which measurements have been taken.

These kinds of timing models can be constructed in
VHDL by including environmental factorsin delay calcula-
tions. Mechanisms used to supply environmental informa-
tion include generics, special signals to represent
environmental factors (e.g., temperature or radiation dos-
age), and computations performed by the design entitiesthat
evaluate these factors on an ongoing basis. An example

PACKAGE reg_delay IS

shown in Figs. 5-25, 5-26, 5-27, and 5-28 adjusts the timing
delay on an output signal as afunction of the input voltage.

The package declaration for this exampleis Fig. 5-25. In
the package declaration the voltage is declared as a physical
type, and a subtype is declared that specifies the possible
range of supply voltages. The three possible options for de-
lay values are described in terms of an enumerated type
del ay_case.

-- Declares a physical type for voltages
TYPE voltage IS RANGE -50 000 000 TO 50_000_000

units
uv;
mv = 1000 uv;
volt = 1000 mv;
END units;

SUBTYPE supply voltage range IS voltage RANGE (0.0 volt TO 10.0 volt);
TYPE delay case IS (worst, nominal, best);
TYPE delay IS ARRAY(delay case) OF time RANGE (0 ns TO time'HIGH) ;

-- Each signal for which a delay is specified should have its delay

-- gpecified as below:
CONSTANT out delay: delay := (worst

nominal =>

best

-- This function computes an adjusted

15 ns,
10 ns,
5 ns);
delay based on

-- the current input voltage and a selected delay value.
FUNCTION derated delay(delay val: time; supply voltage: voltage)

RETURN time;
END reg delay;

Figure 5-25. Package Declaration for aModel That Uses Parameterized Timing



Downloaded from http://www.everyspec.com

MIL-HDBK-62

Fig. 5-26 shows the corresponding package body includ-
ing the definition of the derating function. The derating
function uses voltages within an acceptable range to com-
pute a multiplicative factor that ranges from 0.8 to 1.2. This
derating function can be reused in other parts of the model
asrequired.

An acceptable range for the operating voltage is deter-
mined by an assertion statement in the entity interface
shown in Fig. 5-27. Voltages outside this range cause an ex-
ception. Thisassertion statement ensuresthat the parameters
for the derating function are within the acceptable range for

PACKAGE body reg delay IS

the function. In this design entity the supply voltage is de-
fined asasignal.

Fig. 5-28 shows the architecture body for the entity. The
parameterized delay function is called in the AFTER clause
of each of the signal assignment statementsin the single pro-
cess which comprises the architecture body.

5-46 TIMING DEFINITION PACKAGE

Since a simple model may be reused many times to con-
struct a more complex model, it is desirable to provide the
timing information so it can be shared by all instances of the

-- This function computes the actual delay based on the current
-~ voltage level and the delay selected by the delay model.

FUNCTION derated delay(delay val: time;

supply voltage: voltage)

RETURN time IS

VARIABLE int factor: integer;
VARIABLE derate: real;
BEGIN

-- The first expression is a "universal integer"

-- representing the number of micro volts by which the

-- input voltage varies from a nominal 5.0 volts.

~-- The second factor converts it into a real value in the range
-- 0.8 to 1.2. This could be done all in one expression, but was
-- separated into two to enhance the clarity of the example. The
-- input voltage can range from 4.8V to 5.2V.

int factor := (supply voltage - 5.0 volt)/uv;

derate := real(int factor)/1.0e6;
RETURN derate * delay val;
END derated delay;
END reg_delay;

Figure 5-26. Package Body for a Model That Uses Parameterized Timing

LIBRARY ieee;

USE ieee.std logic_1164.ALL;
USE work.reg delay.ALL;
ENTITY PowLatch IS

GENERIC( delay model: delay case
supply_voltage range;

PORT ( power:
input: std logic;
hold: std_logic;
output: OUT std logic);

BEGIN

:= nominal) ;

-- This assertion ensures that the input voltage is within

-- the allowable operating range.

ASSERT (power >= 4.8 volt and power <= 5.2 volt)
REPORT "Power Supply Voltage Is Out Of Range."

SEVERITY ERROR;
END PowLatch;

Figure5-27. Entity Interfacefor a Model That Uses Parameterized Timing
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ARCHITECTURE ParmTime OF PowLatch IS
BEGIN
LatchProc: PROCESS (hold, input)
BEGIN

-- These signal assignment statements call the derating function
-- with the proper signal delay and the current input voltage.

IF hold = 'l1' OR hold = 'H'
THEN output <= input AFTER

derated delay(out _delay(delay model), power) ;

ELSIF hold = 'X' OR hold = 'U!
THEN output <= 'X' AFTER

derated delay(out_delay(delay model), power) ;

END IF;
END PROCESS;
END ParmTime;

Figure 5-28. Architecture Body for a Model That Uses Parameterized Timing

model. Thisapproach ensuresthat all instances are operating
with the same information and simplifies changing the tim-
ing information for all instances, if necessary. The VHDL
package provides this mechanism.

All timing information related to a particular model can
be provided in a package (or packages), which is then used
by the VHDL model. (This approach is described in subpar.
3-8.3.2)) Theinformation in this packageis shared by al in-
stances of the model that uses this package. Any changesto
the timing of the model can be made in one place and auto-
matically propagated to al instances of the model.

Although timing information could be hard-wired into the
model itself, this practice is not desirable. Timing informa-
tion is dependent on the details of specific implementation
of the function. If timing information is incorporated in a
package, different timing values can be used with the same
VHDL model to account for different implementation tech-
nologies.

Figs. 5-29, 5-30, and 5-31 show the use of atiming pack-
ageto providethetiming for asimple ALU. Thetiming data
are defined with deferred constants. This approach allows
the timing of the behaviora model to be changed without
changing the text of the architecture body for the behavioral
model. In this case the timing package is specific to the be-
haviora model because the matrix of times is specified in
terms of a specific set of signalsin the model. Furthermore,
this example is specific to a particular technology, namely,
complementary metal-oxide semiconductor (CMOS).

Fig. 5-29 is the package declaration. In this package a

four-dimensional matrix of delays is declared. The four di-
mensions are

1. Themode of the chip (whichisdetermined from the
input data to the chip)

2. Thesigna name

3. The supply voltage

4. The operating temperature.

The use of the signal name as a dimension of the table
makes the table specific to a particular implementation of
the chip in terms of the internal interconnections. The volt-
age levels and operating temperatures are declared as enu-
merated types. Thus they can take on a small number of
discrete values. This approach isin contrast with the derat-
ing function described in Fig. 5-28, which provides timings
for a continuous range of voltages.

A function is declared in the package that computes the
mode of the chip from theinput values. The package alsoin-
cludes a declaration of the possible modes of the chip as an
enumerated type. Thus all the dimensions of the delay ma-
trix are defined by enumerated types.

Fig. 5-30 shows the corresponding package body. The
timing information shown in this package isimplemented as
adeferred constant. To change technologies, only the pack-
age body needs to be changed and reanalyzed. No other
component of the model needsto be changed to include new
timing information.

The Electronic Industries Association (EIA) has devel-
oped amore general table (Ref. 16) for output timings of sin-
gle-level logic where the times depend upon the time
required for the signal to change strengths and states.
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-- Package : CMOS_181 PERFORMANCE CHARACTERISTICS
-- Description:

-- This package exports types and constants required to represent the
-~ performance characteristics for the CMOS 181 ALU. The data in this
-- package is from the National Semiconductor MM54HC181 ALU specification.

PACKAGE cmos_ 181 performance characteristics IS
SUBTYPE Bit Vector 0_to_3 IS Bit _Vector( 0 TO 3 );
SUBTYPE Bit Vector 3 to 0 IS Bit Vector( 3 DOWNTO 0 ) ;
TYPE Volts IS ( LOW, MID, HIGH );
- 2.0, 4.5, 6.0
TYPE Temperature IS ( TYPICAL, G LOW, G MID, G _HIGH );
-- 25C, 25C, 85C, 125C
TYPE Mode IS ( SUM, DIF, LOGIC );
TYPE Signal Name IS ( A EQ B, C N 4, NOT_F, NOT G, NOT_P );
TYPE Delay matrix IS ARRAY(
Mode'left TO Mode'right,
Signal name'left TO Signal name'right,
Volts'left TO Volts'right,
Temperature'left TO Temperature'right ) OF Time;
CONSTANT DELAY TABLE; -- deferred constant
-- This function determines the chip mode based on the Mode
-- bit and the select bits. Valid modes are SUM, DIF, LOGIC,
-- and OTHER.
FUNCTION Get Mode( M, S0, S1, S2, S3 : IN Bit )} RETURN Mode;
END cmos 181 performance characteristics;

Reprinted with permission. Copyright O by James P. Hanna
Figure 5-29. Package Interfacefor a Model That Usesa Timing Package (Ref. 15)
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PACKAGE body cmos 181 performance characteristics IS

CONSTANT DELAY TABLE : Delay matrix :=

{ -- SUM
( -- AEQB

-- Typical, G_low, G mid, G_high

( ( 0 ns, Ons, Ons, O0ns ), -- Low
( 0 ns, Ons, Ons, O0mns), -- Mid
( 0 ns, Ons, Ons, 0mns ) ), -- High

-- CN 4

-- Typical, G low, G mid, G high

( ( 110 ns, 250 ns, 325 ns, 375 ns ), -- Low
( 35 ns, 50 ns, 63 ns, 75 ns ), -- Mid
{ 30 ns, 43 ns, 53 ns, 65 ns ) ),-- High

-- NOTF

-- Typical, G _low, G mid, G high

( ( 115 ns, 240 ns, 300 ns, 360 ns ), - - Low
( 35 ns, 48 ns, 60 ns, 72 ns ), -- Mid
( 30 ns, 41 ns, 51 ns, 61 ns ) ),-- HIgh

-- NOTG

-- Typical, G low, G mid, G high

( ( 55 ns, 120 ns, 160 ns, 200 ns ), -- Low
( 17 ns, 24 ns, 30 ns, 36 ns ), -- Mid
( 14 ns, 20 ns, 25 ns, 30 ns ) ), -- High

-~ NOTP

-- Typical, G low, G _mid, G high

( ( 70 ns, 150 ns, 189 ns, 224 ns ), -- Low
( 20 ns, 30 ns, 38 ns, 45 ns ), -- Mid
( 17 ns, 26 ns, 32 ns, 38 ns ) ) ),-- High

-- DIF
( -- AEQB

-- Typical, G low, G mid, G high

( ( 120 ns, 280 ns, 350 ns, 420 ns ), -- Low
( 40 ns, 56 ns, 70 ns, 84 ns ), -- Mid
( 35 ns, 48 ns, 60 ns, 72 ns ) ),-- High

-- CN_4

-- Typical, G low, G mid, G high

( ( 120 ns, 280 ns, 350 ns, 420 ns ), -- Low
( 40 ns, 56 ns, 70 ns, 84 ns ), -- Mid
( 35 ns, 48 ns, 60 ns, 72 ns ) ),-- High

-- NOTF

-- Typical, G low, G mid, G _high

( ( 120 ns, 275 ns, 344 ns, 344 ns ), -- Low
( 40 ns, 55 ns, 69 ns, 83 ns ), -- Mid
( 34 ns, 47 ns, 59 ns, 69 ns ) ),-- High

-- NOTG

-- Typical, G low, G mid, G high

( ( 70 ns, 150 ns, 189 ns, 224 ns ), -- Low
( 20 ns, 30 ns, 38 ns, 45 ns ), -~ Mid
( 17 ns, 26 ns, 32 ns, 38 ns ) ),-- High

-- NOTP

-- Typical, G low, G mid, G high
- - - (cont’d on next page)

Figure 5-30. Package Body for aModel That Usesa Timing Package (Ref. 15)
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70 ns, 150 ns, 189 ns, 224 ns
20 ns, 30 ns, 38 ns, 45 ns
17 ns, 26 ns, 32 ns, 38 ns
Typical, G low, G mid, G high

0 ns, 0Ons, Ons, Ons ),
0 ns, 0Ons, Ons, Omns ),
0 ns, 0Ons, Ons, O ns )
Typical, G_low, G mid, G _high

0 ns, 0ns, Omns, O0ns ),
0 ns, 0ns, Omns, O0ns ),
0 ns, 0 ns, 0 ns, 0 ns )
Typical, G low, G mid, G_high
120 ns, 275 ns, 344 ns, 344 ns
40 ns, 55 ns, 60 ns, 83 ns
34 ns, 47 ns, 59 ns, 69 ns
Typical, G _low, G mid, G _high

0 ns, 0 ns, 0 ns, 0 ns ),
0 ns, 0 ns, 0 ns, 0 ns ),
0 ns, 0 ns, 0 ns, 0 ns )
Typical, G_low, G _mid, G_high

0 ns, 0 ns, Ons, O0ns),
0 ns, 0O ns, Ons, O0ns),
0 ns, 0 ns, Omns, O0mns ))));

FUNCTION Get Mode( M,

BEGIN
IFM = "1"
RETURN
ELSIF ( S3
( s3
( s3
( 83
( s3
RETURN
ELSE
RETURN
END IF;

END Get Mode;

T

LOGIC;

DIF;

S

HEN

IOI
IOI
Io’
Ill
’ll

UM;

S0, S1, s2, S3

and S2 = '0' and S1
and S2 = '1' and
and S2 = '1l' and S1
and S2 = '0' and S1
and S2 '1' and

END cmos_181 performance_ characteristics;

Reprinted with permission. Copyright O by James P. Hanna.

Figure 5-30. (cont’d)
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547 TIMING THROUGH FILE INPUT

Another way to incorporate timing information into a
simulation model isto read the timing information from ex-
ternal datafilesusing the VHDL file I/O capability. Thisap-
proach allows modification of the timing behavior at any
time during a simulation. The example in Figs. 5-31, 5-32,
and 5-33 shows the “latch” model described in Figs. 5-27
and 5-28, but its timing information now comes from an ex-

Fig. 5-31 shows a package declaration similar to that in
Fig. 5-29. In this package afileis declared of records; each
record contains asignal name and adelay value. An array of
delays, similar to the matrix of delays defined in Fig 5-29, is
also declared in this package, and this package declares the
function that reads the file and fills the array of delays.

Fig. 5-32 shows the corresponding package body. It con-
tains the definition of the function that reads the delay infor-
mation from thefile.

ternal file.

-- A package which defines the structure of the external timing data
-- file.
PACKAGE fio delay IS
TYPE delay case IS (best, nominal, worst);
TYPE signal name IS (S1, S2, S3, S4, S5 );
TYPE delay IS ARRAY (delay case) OF time;
TYPE delay record IS RECORD
signal id: signal name;
delay value: delay;
END RECORD;

TYPE delay file IS FILE OF delay record;

TYPE sig delays IS ARRAY(Signal name'left TO Signal name'right) OF delay;
-- This is the function which will read the file and initialize the
-- signal delays.

FUNCTION init delays RETURN sig delays;
-- All signals in the model for which delays are to be initialized
-- from a file are assumed to be members of this array. This
-- function will be called when the model is elaborated.

CONSTANT signal delay: sig _delays := init delays;

END fio delay;

Figure 5-31. Package Declaration for aModel That UsesFile /O for Timing

PACKAGE body fio delay IS

FUNCTION init delays RETURN sig delays IS
-- Delay information is kept in a file which is called
-- "latchdel™
FILE dfile: delay file IS IN "latchdel";
VARIABLE file element: delay record;
VARIABLE ret_val: sig_delays := (others => (others => 0 ns));
BEGIN
-- Loop through the file, reading each file record in
-- turn. Assign the delay data to the signal identified
-- in the file record.
WHILE not endfile(dfile) LOOP
read(dfile, file element);
ret_val(file element.signal id) := file element.delay value;
END LOOP;
RETURN ret val;
END init delays;
END fio delay;

Figure5-32. Package Body for a Model That UsesFile |/O for Timing
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Fig. 5-33 containsthe entity interface and the architecture
body for the latch model that usesthefile I/O package to ob-
tainitstiming information. Thegenericdel ay_nodel de-
clared in the entity interface is used to select the best-,
nominal-, or worst-case timing. The code in the architecture
body isidentical to that in Fig. 5-28 except that the AFTER
clauses now contain an array reference rather than afunction
call. In this example the timing information is loaded from
an external fileinto an array at the start of the simulation.

548 MODELINGASYNCHRONOUSTIMING

VHDL provides for the creation of accurate timing mod-
els. In particular, small timing glitches can be modeled.
Glitches are short-duration output pulses caused by rapid
changesininput signal values. Including timing information
with thislevel of detail ispossiblein VHDL, but it isusually
inappropriate, particularly in behavioral models.

VHDL provides control of such timing details with two
kinds of delay: transport and inertial signal. A signal assign-
ment statement containing the word “transport” transmits
the value of the input signal to the output signal regardless
of its duration.

The use of transport delay is particularly inappropriate in
behavioral models in which the glitches generated may not
correspond to those in the actual hardware. These glitches
are particularly risky in behavioral modelsif they are caused
by rare timing conditions and are not revealed by standard
behavioral test vectors.

LIBRARY ieee;

USE ieee.std logic 1164 .ALL;
USE work.fio delay.ALL;
ENTITY Latch IS

GENERIC( delay model: delay case :=
PORT( input: std logic;
hold: std_logic;

output: OUT std logic);
END;

ARCHITECTURE FileIOTime OF Latch IS

BEGIN
LatchProc:
BEGIN

PROCESS (hold, input)

Inertial delay can be used in signal assignment statements
to prevent a model from generating glitches. Inertial signal
assignment statements (the default in VHDL) do not trans-
mit changes in signal values with a duration less than that
specified by the time of the first waveform in the signal as-
signment statement. Thus glitches are prevented from prop-
agating through the model. Details of the VHDL delay
mechanism are discussed in subpar. 3-2.3.1.

Asynchronous timing constraints are timing constraints
that are applied to single bit signals in isolation. Fig. 5-34
shows some general timing constraints on asynchronous
timing of singlebit signals. Inthefigure, th;,, and thy, rep-
resent the minimum and maximum intervals asignal can be
high, and tl;,, and tl ., represent the minimum and maxi-
mum intervals asignal can be low.

The values for these constraints can be implemented as
constants stored in atiming package. Checking of these con-
straints, required by the DID (Ref. 1), can be implemented
through functions declared in atiming package and invoked
by assertions associated with individual input ports or by
passive process in the design entity if more sophisticated
timing checks are needed.

Timing values may apply globally, may be associated
with a specific technology, or may be associated with a spe-
cific hardware component. If the values are global or are as-
sociated with a specific technology, they can be defined in a
global package. Generics that describe the technology can
be used to select the appropriate constraints.

nominal) ;

-- These signal assignment statements call the derating function
-- with the proper signal delay and the current input voltage.
IF hold = 'l' OR hold = 'H'
THEN output <= input AFTER signal delay(S4) (delay model) ;
ELSIF hold = 'X' OR hold ‘g
THEN output <= 'X' AFTER signal delay(S4) (delay model) ;
END IF;
END PROCESS;
END FileIOTime;

Figure 5-33. Entity for aModule That UsesFile /O for Timing
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Figure 5-34. Potential Asynchronous Timing Constraints (Ref. 14)

549 MODELING SYNCHRONOUSTIMING

A synchronous timing constraint is a timing constraint
that is applied to single-bit signals with respect to a second
synchronizing signal. Fig. 5-35 shows some general con-
straints on synchronoustiming of single-bit signals. Thefig-
ure illustrates two types of synchronous timing constraints:
setup time constraints and hold time constraints. These con-
straints are computed by comparing a synchronizing signal
(A k in Fig. 5-35) with another single-bit signal (D in Fig.
5-35). Checking of these constraints, as required by the DID
(Ref. 1), can be implemented through functions declared in
atiming package and invoked by assertions associated with
clock inputs and individual datainput ports.

The values for these constraints may apply globally, or
they may be associated with a specific technology, or they
may be measured for a specific hardware component. If the
values are global or they are associated with a specific tech-
nology, they can be defined in a global package. Generics
that describe the technology can be used to select the appro-
priate constraints. If they are measured for a specific hard-
ware component, they may be defined as generics in the
corresponding entity interfaces.

Figs. 5-36, 5-37, and 5-38 show a package containing re-
usable procedures used to check setup and hold times of a
single-bit signal against a reference signal, such as a clock.
Fig. 5-36 contains the package declaration, which declares

Clk

— T

Setup

Hold

Reprinted with permission. Copyright O by Menchini and Associates.
Figure 5-35. Potential Synchronous Timing Constraints (Ref. 17)
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PACKAGE CheckTiming IS
PROCEDURE CheckSetupTime ( SIGNAL ref: bit;
ref edge: bit;
SIGNAL checked: bit;
setup: time;

signal name: string );

PROCEDURE CheckHoldTime (

SIGNAL ref delayed by hold time: bit;

ref edge: bit;
SIGNAL checked: bit;
hold: time;

signal name: string );

END CheckTiming;

Figure5-36. Package Interface That Checks Synchronous Timing Constraints

two timing check functions. CheckSet upTi me and
CheckHol dTi nme. Thereisasubtle difference in the argu-
mentsfor the two timing check functions. Thereference sig-
nal input to CheckHol dTi ne isdelayed by the hold time
amount. This delay is the reason for the different argument
setsin Fig. 5-37. Both of these procedurestake the constraint
value astheir fourth parameter.
Fig. 5-37 shows the procedure body for the

CheckSet upTi me procedure declared in Fig. 5-36. This
procedure uses the built-int ext i o package, in which the
typeof | i ne isdefined as an access type, which pointsto a
string. This procedure usesthewr i t e functionof t exti o
to build up the er r nsg (error message) string. This string
is output by the assertion statement and then deallocated so
that a new message can be constructed. The procedure also
uses the built-in attribute | ast _event to get the time

PROCEDURE CheckSetupTime ( SIGNAL ref: bit;
ref edge: bit;

SIGNAL checked: bit;
setup: time;

VARIABLE errmsg: line;

CONSTANT setupmsg: string

CONSTANT linefeed: character
BEGIN

-- This section checks for set-up timing violations by checking to

-- see if the difference in time between the last time the signal

-- to be checked changed value and the time of current transition

-- of the reference signal meets or exceeds the required set-up time.

-- If not, then the assertion statement reports the timing violation

-- with an appropriate error message.

"Setup Time Violation On: ";
LF;

LOOP
WAIT UNTIL ref = ref edge;
IF checked'last event < setup THEN
write (errmsg, setupmsg ) ;
write (errmsg, signal name & linefeed);
ASSERT FALSE
REPORT errmsg.ALL
SEVERITY warning;
deallocate (errmsg) ;
END IF;
END LOOP;
END CheckSetupTime;

Figure 5-37. Procedure Body That Checks Setup Time Constraints
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when the checked signal last changed state. This time is
compared with the setup time to ensure that the reference
signal allows enough setup time for the checked signal. The
wai t statement ensures that the comparison is made only
when the reference signal transitionsto the state specified by
ref edge.

Fig. 5-38 shows the procedure body for the

PROCEDURE CheckHoldTime (

CheckHol dTi me procedure declared in Fig. 5-36. Simi-
larly to CheckSet upTi ne, this procedure uses the
wri t e functionof t exti o tobuilduptheerrmsg string
and usesthe built-in attribute | ast _event to get thetime
when the checked signal last changed state.

Fig. 5-39 shows an example of the entity interface for a
simple multiplexor. The entity interface uses the timing

SIGNAL ref delayed by hold time: bit;

ref edge: bit;
SIGNAL checked: bit;
hold: time;
signal name: string ) IS
VARIABLE errmsg: line;
CONSTANT holdmsg string := "Hold Time Violation On: ";
CONSTANT linefeed: character := LF;
BEGIN
-- This section checks for hold time violations by checking to
-- see if the difference in time between a transition on the
-- reference signal (delayed by thold time units) and a
-- transition on the signal to be checked meets or exceeds
-- the required hold time. If not, then the assertion statement
-- reports the timing violation with an appropriate error message.
LOOP

WAIT UNTIL ref delayed by hold time

IF checked'last event < hold THEN
write (errmsg, holdmsg ) ;
write (errmsg,
ASSERT FALSE
REPORT errmsg.ALL
SEVERITY warning;
deallocate (errmsqg) ;
END IF;
END LOOP;
END CheckHoldTime;

= ref edge;

signal name & linefeed) ;

Figure 5-38. Procedure Body That Checks Hold Time Constraints

USE work.CheckTiming.ALL;
ENTITY 1.S74151 IS
PORT( A, B, C

STROBE
Do, D1, D2, D3, D4, D5, D6, D7
Y, W
BEGIN
CheckSetupTime (strobe, '1l', a, 10 ns,
CheckSetupTime (strobe, 'l', b, 10 ns,
CheckSetupTime (strobe, '1', ¢, 10 ns,

CheckHoldTime (strobe'delayed (15 ns),
CheckHoldTime (strobe'delayed (15 ns),
CheckHoldTime (strobe'delayed (15 ns),

END LS74151;

IN bit;

IN bit;

IN bit;

OUT bit );

"A");

"B") ;

ey ;

'1', a, 15 ns, "A");
‘1', b, 15 ns, "B");
'1', ¢, 15 ns, "C");

Figure 5-39. Entity Interface That Checks Timing Constraints
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checks provided in the package shown in Figs. 5-36, 5-37,
and 5-38. The timing checks are included in the entity inter-
face declaration, not in the architecture body. Thus these
timing checks are applied to all of the multiplexor imple-
mentations.

5-5 ANNOTATION OF BEHAVIORAL
MODELS

TheVHDL DID requiresthat modelsinclude explanatory
comments that clarify the intent of the model. These com-
ments must a so include the following (taken directly from
the VHDL DID (Ref. 1) subpar. 10.2.7):

“a. Any factors restricting the general use of this de-

scription to represent the subject hardware.

b. General approaches taken to modeling and partic-
ularly decisions regarding modeling fidelity.

¢. Any further information which the originating ac-
tivity considers vital to subsegquent users of the descrip-
tions.”
Thiskind of information can beincluded inamodel by using
VHDL comments.

Fig. 5-40 shows the header for a VHDL design unit that
includes a comprehensive set of annotations (Ref. 18).

Further guidance on documenting revisions to models
that have already been delivered to the Government is pro-
vided in Ref. 18, which isincluded as Appendix A.

551 DESCRIPTION OF FUNCTION

A description that clarifies the intent of the model should
include a narrative discussion of the overall function of the
model and a description of itsinputs and outputs.

Design Unit Identifier: LS74151
Identification of Originator: RTI
DoD Approved Identifier: None

Was Model Previously Delivered: No

conditions.

Further Information: None
Restrictions:

only one driver.

-- Assumptions: None
-- Previously Approved by DoD: No
PACKAGE LS74151Timing IS

END LS74151Timing;

Since the model uses an unresolved data type,
to ensure that any signal connected to a port of this model has

A more sophisticated model should use a resolved
data type for the signals in the model.

The description should also include information on any
interface timing constraints and information on the proper
sequencing of control and datasignals, i.e., theinterface pro-
tocol, needed to ensure proper operation.

Generics of the model also should be explained. The data
sheets supplied with hardware components provide proper
guidance for the documentation of a model.

If an understanding of the details of internal algorithmsis
important to the proper use of a model, these details should
be explained. Examplesin which the algorithm is important
include numerical algorithms for which accuracy depends
on input values.

552 DESCRIPTION OF RESTRICTIONS

Any restrictions on using amodel should be explained in
the comments. Restrictions include operating speeds,
bounds of generics, and other limitations. To the extent pos-
sible, any limitations should be enforced by using appropri-
ate language features such as subtypes and assertions. Using
these language features makes the model self-checking.

553 MODELING APPROACH

The VHDL DID requires that the “general approaches
taken to modeling, particularly decisions regarding model-
ing fidelity”, be described in the comments. The general ap-
proaches to modeling should describe the level of
abstraction of the model (ISA, RTL, etc.), the typical use of
the model, the logic conventions used, any external compo-
nents needed to use the model, any documents needed to
supplement the model (such as an explanation of the instruc-
tion set), and any industrial or military standards the model
isintended to meet. The intent of these commentsisto pro-

General Approach To Modeling and Fidelity:
This model was developed as a behavioral data flow model.
for accurate output delays for best, worst,

It provides
and nominal timing

The model uses the simple unresolved "bit" data type
as the fundamental signal data type.

care must be taken

Figure 5-40. Annotation of a VHDL Package Using Header Comments
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vide the user with the information needed to use the model
effectively.

Modeling fidelity should also be addressed, particularly
in the area of timing models. The types of timing errors that
are checked should be described, as well as the time scales
associated with events within the model. Variations of inter-
nal timing with external conditions, if any, or the provision
and use of different timing models should al so be described.

Any other information the model builder considers useful
should also be included. Such information includes any as-
sumptions made about the simulation environment, such as
the location and names of data files needed for the simula-
tion of the model. Other information also includes version
numbers of design entities used in the model that were sup-
plied by outside vendors or information on the structure of
the VHDL design library needed to compile the model suc-
cessfully, and the compilation order for the library units of
the model if this order is not obvious from the model itself.

554 REVISION HISTORY

A model may be revised or corrected over time. These
changes should be documented in the model. This documen-
tation should include the date the revision was made (as es-
tablished by the revision control procedures of the
developing organization), a brief description of the nature
and purpose of the revision, and the organization and person
responsible for the revision. This information should be in-
cluded in one location in the module so that the entire revi-
sion history is available for review.

If the revision is amgjor change to the model and affects
itsexternally visiblefunctionality, the change should also be
reflected in the module documentation.

555 BACK ANNOTATION OF TIMING IN-
FORMATION

As a hardware design becomes increasingly detailed, in-
creasingly accurate and detailed timing information be-
comes available either from simulation results or an analysis
of the actual hardware. Because these values are usually not
extracted from the VHDL model, it is often desirable to up-
date the VHDL model with this more accurate timing infor-
mation. This process is referred to as “back annotation”.
This updated timing information can be incorporated into
the VHDL model using any of the mechanisms that handle
timing information discussed in earlier paragraphs.

A timing package can be produced that includes the new
timing data. If the timing information is represented as ade-
ferred constant, only the package body needs to be modified
and reanalyzed. The new timing information takes effect the
next time the model is elaborated. Alternatively, afile is
constructed that contains the timing information needed by
themodel. Thisinformation isread into the simulation asre-
quired. This method has the advantage of not requiring that
the model be reanalyzed or reelaborated when the timing in-
formation changes.
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5-6 USE OF STRUCTURAL HIERARCHY
IN BEHAVIORAL MODELS

As described in subpar. 5-2.2.1, VHDL provides func-
tions and procedures as methods for the functional decom-
position of behavioral models. As shown in subpar. 2-3.2
and illustrated in Fig. 2-3, the calling structure of functions
and procedures defines a hierarchy for behavioral models.

VHDL also providestwo waysto create hierarchies using
structural decomposition:

1. Structural decomposition through the use of compo-
nent instantiations in architecture bodies, which may in turn
have architecture bodies that use component instantiations

2. Nested blocks, which, in concert with guard signals,
let designers decompose and isolate specific behaviors to
specific blocks.

The VHDL DID (Ref. 1) requires that the “ structural de-
composition of behavioral bodies shall be used only when
necessary to show functional partitions which are not clear
from the partitions of the corresponding structural body”.
The DID discourages the use of structural decomposition in
behavioral bodiesin order to

1. Reduce the implementation bias in a behaviora
model

2. Encourage delivery of behavioral modelsthat ssimu-
late quickly

3. Prevent the delivery of agate-leve structural model
to fulfill the requirement for a behavioral model.

The VHDL DID does not prohibit the use of structural de-
composition. The use of structural decompositionisnegotia-
ble and is an important opportunity to tailor the DID. The
issue of structural decomposition in behavioral modelsisdi-
rectly related to the issue of specifying the VHDL modules
that are delivered. Each VHDL module should be delivered
with a behaviora model, a structura model, and a test
bench. If the behavioral model of aVHDL module includes
multiple design entities, structural decomposition has been
usedinit.

The use of structural decomposition where the decompo-
sition is implementation dependent is discouraged. The
VHDL DID cites the example of a processor that isimple-
mented from bit-slice components, and the structural model
has a design entity that represents a bit dlice, and the behav-
ioral architecture body has separate component instances for
each individual slice that makes up the processor. Thisisan
implementation-dependent decomposition because a differ-
ent implementation that does not use hit-slice components
would not have the same set of components, and this decom-
position does not help the reader understand the functional
partitioning of the processor, i.e., theinstructions of the pro-
cessor. On the other hand, partitioning of the architecture
into afixed point processor and a floating point coprocessor
does assist the reader in understanding the functional parti-
tioning of the processor and therefore might be acceptableto
the Government.
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CHAPTER 6
CONSTRUCTION OF STRUCTURAL VHDL MODELS

This chapter discusses common approachesto creating structural models, VHDL DID requirements on structur-
al models, timing specificationsfor detailed gate-level structural models, and annotation of structural models based
on the physical measurements of existing hardware, on switch level or analog analysis, or on simulation of a com-
ponent design. Common techniques used to create structural VHDL models, including automatic synthesis and
schematic capture, are discussed. Applications of structural models for physical design and testability analysisare
described. Annatation of structural models with layout and testability information is described.

6-1 INTRODUCTION

Structural models are the preferred mechanism for hierar-
chical decomposition in very high-speed integrated circuit
(VHSIC) hardware description language (VHDL). Structur-
al models alow a design to be partitioned into different
physical or functional groupings. Asdiscussed in Chapter 3,
structural models are used at any level of abstraction. Both
structural and behavioral models are used early in the hard-
ware design cycle (when physical design has not been com-
pleted) and after design and fabrication have been completed
(when the model provides accurate, machine-readable docu-
mentation of the completed design). Furthermore, no struc-
tural model is complete without behavioral modelsasits|eaf
components. Thus there are both structural and behavioral
aspects to any complete VHDL description. The focus of
this chapter is on detailed gate-level structural VHDL mod-
els used to document existing hardware components. This
approach complements the one used in Chapter 5, in which
thefocusison abstract VHDL models used to document de-
signsthat are in progress. As discussed in pars. 2-5 and 3-4,
structural models can support simulation of mixed-abstrac-
tion-level models. Detailed structural models support design
techniques such as logic synthesis and testability analysis.
Structural models also provide a mechanism for reusing
VHDL models. Reuse is supported by component instantia-
tion and binding.

6-2 CREATION OF STRUCTURAL VHDL
MODELS

The VHDL structural model of a hardware module con-

sists of

1. Aninterface description, which describes the exter-
nally accessible signals, generic constants, and timing re-
guirements of the module

2. Component declarations, which identify the types
of components used in the model. Each component may be
described by either a behaviora VHDL model or another
level of structural model

3. Signal declarations, which name all of the signals
that interconnect the components of the module

4. Component instances, in which the ports of the
components (each of which corresponds to a pin or a set of
pins on the actual hardware component) are tied to the sig-

nalsthat connect the components, tied to external signalsde-
clared in the interface, or left open.

Although the components of astructural model can repre-
sent abstract functional blocks, the VHDL dataitem descrip-
tion (DID) (Ref. 1) requires that VHDL structural models
represent the physical or logical organization of the hard-
ware. During the early stages of design, different structural
models may be generated and evaluated; each of these rep-
resents different partitioning of the model. However, when
an existing design is documented, the structural decomposi-
tion of the VHDL model should match the physical or logi-
cal organization of the hardware.

VHDL structural models can be constructed in several
ways. They can be developed by manually writing the ap-
propriate VHDL description. This approach is very tedious
and error-prone for all but the smplest models. A detailed
gate-level VHDL structural model generated in this way
should be checked very carefully to assure that it is an accu-
rate representation of the hardware and that it is internally
consistent. A common alternative is to use a schematic cap-
ture system to create diagrams of interconnected compo-
nents and then generate astructural VHDL description from
the netlist.

Gate-level models can also be created automatically.
Logic synthesistools are commercially available that gener-
ate gate-level models from behavioral models written in re-
stricted forms of VHDL.

Another form of generation involves modification of an
existing gate-level design by adding built-in test (BIT) cir-
cuitry. This approach allows the designer to focus on parti-
tioning the design into testable islands of logic rather than
working on the details of integrating BIT components into
an existing design.

6-2.1 TRANSLATION OF SCHEMATIC CAP-
TURE MODELS

M odern computer-aided engineering (CAE) tool s support
the capture of hierarchical structural models as schematic di-
agrams and the trandation of schematic diagrams into
VHDL structural models. A schematic capture tool usually
works from alibrary of primitive elements that serve as the
leaf-level modules in the design. Such libraries usualy in-
clude the basic logic gates and higher level entities. These
entities represent standard macrocells used in chip designs.
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Thelibrary may also contain existing chipsfor circuit board
design. The designer can usually assemble structural models
and add them to the library for reuse. Sophisticated schemat-
ic capture tools provide icons for the elements of the library
and allow the user to defineicons for his or her designs.

These schematics can then be translated into VHDL
structural models for simulation or for export for other uses.
Each of the primitive elements in the schematic capture tool
library has an associated structural or behavioral VHDL
model that implements the function of the primitive. The
netlist for the schematic is converted into a structural VHDL
model, and the components of the structural VHDL model
arethe library elements.

A key issuefor schematic capture systemsisthe choice of
signal statesand strengthsto be used. Most non-VHDL CAE
tools use a state/strength model compatible with their partic-
ular simulator and analysistools. Also many tools can export
VHDL modelsthat use Institute of Electrical and Electronics
Engineers (IEEE) Std 1164 logic values. For the resulting
models to be interoperable, schematic capture tools used to
build structural VHDL models for delivery to the Govern-
ment should support at least a subset of |EEE Std 1164 (Ref.
2). If the tool supports only asubset of IEEE Std 1164, a set
of type conversion functions should be provided to map the
IEEE Std 1164 logic values onto that standard subset. The
|EEE standard logic package contains definitions of several
subtypes, such as X01, X01Z, and UX01. It also defines
type conversion functions for these subtypes. Use of type
conversion functionsfor interoperability is discussed in sub-
par. 7-2.2.

Although use of schematic capture tools provides greater
productivity for engineers generating gate-level VHDL
models and eliminates syntax errorsin the models, it still re-
quires human interaction to place every instance of a com-
ponent in the model. Furthermore, these models must be
verified against more abstract functional or behavioral mod-
els to ensure that the logic does implement the intended
function.

6-2.2 SYNTHESISOF STRUCTURAL MOD-
ELSFROM REGISTER-TRANSFER-
LEVEL MODELS

Logic synthesis uses abstract VHDL descriptions to gen-
erate lower level, functionally equivalent structural descrip-
tions that can be implemented directly as very large-scale
integrated (VL SI) circuits. Logic synthesis saves a substan-
tial amount of design time and effort and reduces the risk of
design errors introduced through manual trandation of an
abstract design to adetailed design. Logic synthesistoolsare
now available in many CAE environments.

TheVHDL featuresin modelsused for logic synthesisare
restricted. These restrictions are tool specific and change as
synthesis technology improves. Most synthesis tools accept
asinput aregister-transfer-level model, as described in sub-
par. 5-2.4. Other restrictions may include limited data types,
stereotypical use of processes and other constructs to define

finite state machines (FSMs) and registers, or the required
use of explicit configuration information. Because subsets
vary, the documentation of the particular tool must be con-
sulted for more specific information. Most tools also use
comments of special form to guide synthesis. A draft stan-
dard (Ref. 3) is emerging that defines a standard set of data
types and functions for use by synthesistools. This standard
isdiscussed in subpar. 5-2.4.1.

6-2.3 SYNTHESISOF STRUCTURAL MOD-
ELSFROM FINITE STATE MACHINES

The finite state machine is another abstract functional
hardware representation commonly used to describe behav-
ior. Finite state machines are useful to model control se-
guencers and communication protocols. FSMs can be used
in VHDL at several levels of abstraction from high-level ab-
stract behavioral models to register-transfer models. The
complexity of large FSMs can be controlled through the use
of hierarchical models (Ref. 4) or through the use of commu-
nicating sequential processes (CSPs) (Refs. 5 and 6).

Because the mathematical attributes of FSMsarewell un-
derstood, they are anatural starting point for logic synthesis.
Synthesis tools can take advantage of the mathematical na-
ture of FSMsto produce very compact and fast circuits. Cer-
tain forms of VLSl circuits are naturally suited to the
implementation of FSMs, such as programmable logic ar-
rays (PLAS).

Some CAE systems provide graphical tools for the defi-
nition and simulation of FSMs (Refs. 7 and 8). FSMs are
easily trandlated into VHDL, and many CAE systems per-
form this trandlation. CAE vendors are beginning to link
tools for the construction, debugging, and simulation of
FSMs to tools that synthesize circuit designs from VHDL
descriptions of the FSMs. In these integrated tool sets
VHDL plays akey role as an intermediate form between the
FSM and the circuit layout.

6-24 ENHANCEMENT OF GATE-LEVEL
MODELSWITH GENERATED STRUC-
TURE

The use of built-in test circuitry is essential to achieving
the testability of both military circuit boards and VLS cir-
cuits. When atest operation is required for a hardware com-
ponent, normal interconnects are disabled, and the BIT
circuitry provides the control and observation of the signals
to be tested. Some CAE tools provide a mechanism to aug-
ment alogic design BIT circuitry automatically. Thus a de-
signer can focus on the development of afunctional design,
then partition the design into appropriate islands of logic for
testability purposes, and have the additional structure auto-
matically generated. Par. 8-4 describes approaches to BIT
and discusses related | EEE standards, and par. 8-5 describes
an approach used to enhance structural models with BIT.

An important part of accurately modeling existing hard-
ware isrepresentation of its BIT circuitry. Subpar. 10.2.4 of
the VHDL DID (Ref. 1) requires that structural models in-
cludethe physical implementation accurately enough to per-
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mit logic fault modeling and test vector generation. It also
requires that structural models represent structures created
to support testing and maintenance, such as scan paths. Asa
result, CAE tools should be chosen that generatethe BIT cir-
cuitry and include the generated BIT circuitry in the VHDL
models produced by the tool.

6-3 VHDL DID ORGANIZATIONAL RE-
QUIREMENTSFOR STRUCTURAL
MODELS

6-3.1 HIERARCHICAL ORGANIZATION OF

STRUCTURAL MODELS

The VHDL DID (Ref. 1) requiresthat the structural hier-
archy of VHDL modules be “anal ogous to the physical hier-

System

connected
by

archy of the hardware being documented”. The VHDL DID
also states, “One VHDL module shall be defined for the en-
tire system and one for each physical electronic unit (assem-
bly, subassembly, integrated circuit, etc.) of the hardware
system. VHDL modules should also be defined for impor-
tant subsections or groupings of complex physical units
(e.g., macrocells of achip or boards defining a processor).”.
For this correspondence to be traceable, the VHDL DID re-
quires that the entity interface modeling the hardware com-
ponent include a component identification based on the part
number of the corresponding hardware component. In addi-
tion, the ports of the VHDL design entities must correspond
to pins or connectors of the physical hardware.

Fig. 6-1 shows atypica physical design hierarchy for an
embedded electronic system such as is used by the Army.
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The system consists of a number of assemblies that can be
removed for repair. The assemblies are connected by cables.
A VHDL description of this system written to conform with
the VHDL DID includes design entities for the assemblies.
The ports of each of these design entities describe cable con-
nections required to connect the assembly to the other as-
sembliesin the system.

Within an assembly are a set of boards that can be re-
moved and either replaced or repaired at a second level of
maintenance. The boards are connected by a backplane that
isinternal to the assembly. A VHDL description of an as-
sembly written to conform to the VHDL DID includes de-
sign entitiesfor the boards. The ports of these design entities
describe the types of connectors that connect the boards to
the backplane.

Attached to the board isa set of chipsthat can be removed
and replaced at athird level of maintenance. The chips are
connected by metal traces etched into the boards. A VHDL
description of a board written to conform with the VHDL
DID includes design entities for each of the chips. The ports
of these design entities describe the pins on the chip. For
back-annotation purposes each pin may require a separate
port. A “shell” design entity may be requiredin order to con-
vert the connector portsinto thewiresfor the pins. Inthisen-
tity, signals connect the connector port bit vector to the
single-bit ports of the chip model.

The chips may be further partitioned into macrocells con-
nected by runs of metal or polysilicon. A VHDL description
of achip written to conformto the VHDL DID could include
design entities describing the macrocells or islands of logic
within the chip. At the next level of detail are logic gates,
which are the lowest level of detail that can be represented
reasonably in VHDL.

6-3.2 ALLOWABLELEAF-LEVEL MODULES
The VHDL DID specifies the following as leaf-level
modules for which no VHDL structural body is required:
1. Government-approved leaf modules
2. Modules that exhibit a stimulus-response behavior
but whoseinternal structureisnot properly modeledinadig-
ital format
3. Modules whose detailed design has not yet been
completed when the VHDL model is required to be deliv-
ered.
These three cases are discussed in the following subpara-

graphs.

6-3.2.1 Government-Approved Models

The VHDL DID allows VHDL modules selected from a
Government list of VHDL modules to be used as |eaf-level
modules. The DID also requires that the contract include a
list of Government-approved leaf-level modules. One mech-
anism used to approve multiple modules is to approve the
use of all VHDL modulesin a given model library. Model
libraries facilitate the hardware design process by providing
reusable, pretested components from which new hardware

designs can be built. Many commercially available modél li-
braries exist that provide functionally complete, fully timed
simulation models of existing components. Typically, these
models have been developed or approved by the manufac-
turer of the component. An important aspect of tailoring the
VHDL DID for a specific program is specifying the models
and libraries the contractor can use to develop VHDL de-
scriptions. Also the Defense Electronics Supply Center
(DESC) of the Defense Logistics Agency is collecting
VHDL descriptions in its VHDL Model Library (See sub-
par. 4-2.3.).

The use of Government-approved high-level leaf mod-
ules serves many purposes. Use of previously developed
high-level leaf modules can dramatically reduce the time to
build and validate models of existing parts. Use of approved
models also eliminates differences in simulation results due
solely to differences in the VHDL models of the compo-
nents. This similarity is particularly important with respect
to timing, i.e., differences in the timing from one model to
another may change the outcome of system race conditions.

For different models to interoperate they must be written
with the same logic-level conventions or have trandation
routines to convert between the different conventions. In-
teroperability is an important consideration when the list of
Government-approved, leaf-level models is generated. In-
teroperability issues and approaches are described in par. 7-
2.

6-3.2.2 Modules With Stimulus-Response Behav-
ior

Subpar. 10.2.1.1, Item (b) of the VHDL DID (Ref. 1) al-
lows the use of behavioral models for “...a collection of
hardware elements which  together exhibit a
stimulus-response behavior, but whose interaction is best
modeled at an electrical or physical level.”. The DID gives
as examples digital logic gates, analog circuit blocks, and
power supplies. Depending upon the complexity of a mem-
ory chip (in terms of fault tolerance and testahility),
high-level models may also be appropriate for random ac-
cess and read-only memory circuits.

Behavioral models are appropriate to model analog de-
vices, where necessary, because the discrete event approach
of VHDL isinappropriate. Research is continuing on inte-
grating analog circuit models into VHDL (Refs. 9 and 10).
If thiswork is successful, the DID may, in thefuture, require
use of VHDL or extensionsto VHDL when analog systems
or hybrid analog-digital systems are modeled.

6-3.2.3 Modules Without Detailed Designs

An important aspect of the use of VHDL during the de-
sign of a new hardware system is documentation of the de-
sign during the early stages of the life cycle of the system.
VHDL behavioral models can be used to document design
requirements and expected performance asasystemisbeing
developed. Behavioral models can also be used as simulat-
able specifications for more detailed designs.
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VHDL models may berequired at the Preliminary Design
Review (PDR) and the Critical Design Review (CDR) as
simulatable documentation of the design. For these early
milestones the Government may want to specify that behav-
ioral models are acceptable leaf modules, even though they
do not support the logic-level fault modeling or automatic
test vector generation. This approach encourages top-down
design by the contractors and givesthe Government simul at-
able documentation of a design as the work progresses.

For example, a program is developing a multiprocessor
architecture using off-the-shelf 1750A processors, Plbusin-
terface modules (Plbus BIMs), and high-speed data bus in-
terface modules (HSDB BIMs), and a to-be-developed
special-purpose signal processor (SPSP). VHDL models are
to be delivered at the PDR, CDR, and Test Readiness Re-
view (TRR). By the time of the PDR the architecture of the
multiprocessor to the level of the number of busses, the
number of data processors, and the number of signal proces-
sors should be known. The architecture can be defined with
a structural model that uses Government-approved models
for the existing components. The model for the SPSP deliv-
ered at the PDR is amodel for a part without a detailed de-
sign, i.e., ahigh-level behavioral model. The model includes
theinterfaceto therest of the system and communicateswith
the rest of the system through the detailed bus and BIM
models. Thislevel of model isappropriate for interface sim-
ulation, which is an appropriate verification step for the
PDR. At this stage the VHDL model of the SPSP may also
include some high-level timing estimates for critical func-
tions and thus could be used as evidence that the resulting
multiprocessor system will meet its timing requirements, at
least for some critical subset of the system applications. At
this point the entire SPSP may be represented by a single be-
havioral body. During the design process, changes in the
number of components and the network topology must be
reflected in the structural model of the multiprocessor.

The model delivered at the CDR extends the PDR model.
The SPSP model should be extended to an instruction set ar-
chitecture (ISA) or register-transfer-level (RTL) model.
ThisVHDL model can be used for software design and ver-
ification; therefore, software and hardware design can con-
tinue in parallel. The CDR model allows more accurate
timing analysis than the earlier version and supports com-
plete functional verification, particularly if the entire in-
struction set of the SPSPismodeled. At thispoint the VHDL
model of the SPSP should be extended to provide some in-
ternal structure. The VHDL model delivered at the start of
fabrication should be a register-transfer model suitable for
synthesis of the SPSP |ogic design.

Theresults of simulating both the CDR VHDL model and
the PDR VHDL model on the same test sets should be com-
pared to verify that the CDR VHDL model is a correct im-
plementation of the PDR VHDL model. In practice, there
may be so many design changes between the two reviews
that comparisons may be very difficult to make. For exam-
ple, refined area estimates for system ASICs may force a

new partitioning of hardware, or they may force achangein
algorithms. Either of these changes could make comparisons
between the models difficult. However, the CDR VHDL
model should be simulated with the same test sets used to
simulate the PDR VHDL model. Also the contract should
specify which VHDL models are to be maintained through-
out thelife of the project. If the PDR VHDL model is select-
ed to be maintained, changes in the design should be
reflected in both the PDR VHDL model and the CDR VHDL
model so comparisons between the models should be
straightforward. This technique is regression testing and is
very valuable in ensuring that later levels of design do not
introduce new problems into the design.

The model delivered for the TRR reflects the detailed
gate-level design of the SPSP. The Test Readiness Review
verifies that the model is complete and detailed enough to
support analysis of test vectors. The model is how complete
except possibly for timing information. Timing information
should be provided through analysis and testing of the actual
hardware and should be accumulated during the integration
of the system.

6-3.3 VHDL DID ANNOTATION REQUIRE-
MENTSFOR STRUCTURAL MODELS

The VHDL DID (Ref. 1) requires that structural models
be annotated for three reasons:

1. To provide traceability between the physical hard-
ware and the VHDL model (DID subpar. 10.2.2.4)

2. To capture timing and electrical requirements for
the hardware in the model (DID subpar. 10.2.2.2)

3. To capture the acceptable operating conditions of
the system (DID subpar. 10.2.2.3).

Traceability ensures that the VHDL model accurately
documentsthe actual hardware. Without traceability it isdif-
ficult to use the VHDL model to evaluate possible upgrades
or changesto the system becauseit is difficult to relate those
components of the hardware to the corresponding compo-
nents of the VHDL model. Similarly, traceability allows
analysis of simulation results (such as the utilization of de-
sign entities) to berelated back to the hardware components.

Timing and electrical requirements document the accept-
able range of timing and electrical parameters, e.g., clock
frequency and pin voltage levels, for the components of the
hardware system. According to subpar. 10.2.2.2 of the
VHDL DID (Ref. 1), these documented ranges must interact
with the simulation in the sense that if during a ssmulation
the operating conditions of a component go outside the ac-
ceptable range, an error message is generated. The operating
conditions interact with ssmulation in that operating condi-
tion parameters are used to calculate timing values for the
components.

A mechanism useful to organizing the annotation of de-
tailed models of physical components is an electronic data
sheet (EDS). Thisisthe approach taken by the Electronic In-
dustries Association (EIA) in EIA-567 (Ref. 11). The elec-
tronic data sheet consists of several views of a hardware
system. A view of ahardware moduleisaset of logically re-
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lated data representing the significant characteristics of the
modul e within the scope of the data. The EIA approach fully
documents the rel ationships among the physical design, the
electrical characteristics, and the system timing directly in
the VHDL model. These relationships are captured in
VHDL and in threeinterdependent viewsin the EDSfor any
hardware module: aphysical view, an electrical view, and a
timing view.

The VHDL initiative toward ASIC libraries (VITAL)
standard (Ref. 12) uses a different approach in which the
timing information is generated by external toolsintheform
of atiming file that is used to generate generics. This ap-
proach is described in subpar. 6-6.1.

These two standards are being made compatible. They
both use genericsto put the timing information into the mod-
els. Different configuration declarations can be used to de-
fine the values for generics. An EIA configuration
declaration references the information in the EDS packages,
aVITAL configuration declaration is generated using data
in an standard delay format (SDF) file.

The purpose of the EDS is to capture information tradi-
tionally supplied by a manufacturer but in a manner that is
more easily created, verified, and used. Data missing from
the manufacturer’s data sheet should be calculated and in-
serted into the EDS and then annotated to distinguish it from
data supplied by the manufacturer. Equations used to calcu-
late the missing data must be included in the package.

In the EIA approach the three views of an EDS are repre-
sented as a collection of VHDL packages. Each view has a
primary package containing declarations of data characteriz-
ing the view. These packages are used throughout a VHDL
model. There may be other packagesin aview that are spe-
cific to atechnology but used by all models using that tech-
nology. Technology-specific packages are used particularly
in the timing view.

There are specific packages for each component in the
VHDL design library. These packages are used, for exam-
ple, in the physical view to provide traceability between the
VHDL component and the corresponding physical compo-
nent.

6-3.3.1 Physical View Requirements

In the EIA approach to defining an EDS, each VHDL
modul e has a collection of constants describing the physical
view of the system. Fig. 6-2 shows the hierarchical organi-
zation of constants characterizing the physical view of a

Physical View

VHDL module and providing traceable linkages between a
VHDL model and its corresponding hardware component
and interconnections. Asshownin Fig. 6-2, the constants are
divided into two categories. the electrostatic discharge
(ESD) limit and the pin to signal mapping. The

ESD LI M T constant has the type VOLTAGE. Component
identification is handled through entity-naming conventions
and through header comments. The pin to signal mapping in-
formation is defined through two data structures: an enumer-
atedtype Pl N_LI ST_PV, which liststhe pins, and an array
of recordsPl N_TO_SI GNAL_RECORDS, which isindexed
by PI NT_LI ST_PV. Each element of

PI N_TO_SI GNAL_RECORDS is a record containing two
strings: one containing the name of the pin and one contain-
ing the name of the signal. These strings are both deferred
constants, so if different packaging options exist for the
component, different package bodies can be used to define
the mapping.

This physical view information is described in a VHDL
model using one package for the entire model and another
package for each component.

Pin-out constants are associated with the port declarations
in the entity declaration. These constants are sufficient to
satisfy the VHDL DID requirementsin subpar. 10.2.2.1 that
the VHDL entity declaration port declarations “...shall in-
clude information which relates each input or output port to
a package pin number or connector pin number whenever
such a correspondence exists.”.

The package defining the timing view may depend upon
the packages defining the electrical and the physical views.
The combination of electrical, timing, and physical views
constitutes the el ectronic data sheet for the physical compo-
nent. The VHDL structural model then uses these constants
to define the timing and error handling characteristics of the
models.

6-3.3.2 Electrical View Requirements
As shown in Fig. 6-3, the electrical view of a component
consists of two parts:

1. The signal characteristics, which characterize each
input port of the component by its input threshold voltages
and leakage currents, each output port by its output drive
voltage and current and alternating current (AC) test load,
and all ports by their capacitive loads

2. The power characteristics, which describe the max-
imum and minimum operating voltages and the maximum

ESD

Pin to Signal Mapping

Reprinted with permission. Copyright O by Electronic Industries Association.
Figure6-2. EIA 567 Physical View Organization (Ref. 11)
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Pin Loads

Operating Voltage Range
Maximum Supply Current
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Reprinted with permission. Copyright O by Electronic Industries Association.
Figure6-3. EIA 567 Electrical View Organization (Ref. 11)

power supply current for each power pin of the component.

The drive capabilities of each output pin are described in
terms of two pairs, each consisting of a voltage and a cur-
rent. Thefirst pair Vg, and 1, isthe voltage and current gen-
erated when the output port is sustaining ahigh signal value.
The second pair V and | is the voltage and current gener-
ated when the output port is sustaining alow signal value.

Similarly, the input pin threshold voltages and leakage
currents are specified in terms of two pairs, each also con-
sisting of avoltage and acurrent. Thefirst pair Vi, and I, is
the threshold voltage and the leakage current received when
the input pin is presented with a high signal value. The sec-
ond pair V;; and I is the threshold voltage and the |eakage
current received when the input pin is presented with alow
signal value. The pinload is used to calculate the net depen-
dent load due to the number of receivers and drivers.

Constraints

Timing View

Delays

6-3.3.3 Timing View Requirements

As shown in Fig. 6.4, the EIA timing view for a compo-
nent consists of two parts: a set of timing constraints that are
defined for each input pin and a set of parameters that de-
fines both internal and external delays. The external delays
are further subdivided into input wire and output load de-
lays.

The constraints are used to generate timing error messag-
es and actions. According to the EIA guidelines, each input
pin should have a subset of the four timing constraints de-
fined. If there is no additional signal that acts as a clocking
signal, then asynchronous timing constraints are specified.
Asdescribed in subpar. 5-4.8, the EIA pulsewidth and cycle
time define how long a signal can stay at a particular signal
state. If that time is exceeded, the VHDL model should gen-
erate an error message, and if atiming flag has been set, the

Setup

Hold

Cycle Time
Pulse Width

Internal Delays

Input Wire Delays

External Delays

Output Load Delays

Reprinted with permission. Copyright O by Electronic Industries Association.

Figure6-4. EIA Timing View Organization (Ref. 11)
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signal should be set to 'X'. If there is a clocking signal asso-
ciated with theinput pin, the setup and hold timesfor thein-
put pin with respect to the clocking signal should be
specified as constraints, as described in subpar. 5-4.9.
Again, if a setup or hold timing constraint is violated, the
VHDL model should generate an error message, and if a
timing flag has been set, the appropriate signal should be set
to 'X'. Timing flags are described in subpar. 7-6.3.

The timing delay parameters are used to capture internal
pin-to-pin delays, input wire delays, and output capacitance
loading delays.

Another approach to documenting the timing behavior of
a VHDL model is provided by the VITAL specification
(Ref. 12). A VITAL-compliant model uses generics to doc-
ument the timing data and a set of VITAL timing functions
and model primitivesto implement the timing behavior. The
actual timing data can be imported into the model from an
externa file, which complies with the VITAL standard de-
lay file format.

The VITAL specification provides a detailed procedure
used to develop models suitable for hardware acceleration
and back annotation of timing information. VITAL uses ge-
neric parameters to pass timing information into the VHDL
model. VITAL-compliant models perform no environmen-
tally dependent delay calculations themselves. All such de-
lay information is calculated outside the model and passed
into the model using an SDF file.

The timing information in the SDF file is used to set the
generic parameter values prior to smulation. The simulation
environment is responsible for inserting the SDF timing in-
formation into the model.

VITAL-compliant models require strict adherence to
naming conventions, model organization, and use of the
VITAL primitive library. The advantage of using VITAL
is that compliant models produce the same result regard-
less of the simulator on which they are executed, particu-

larly if the simulator has hardware acceleration. Gate-
level models to be used for final timing verification
should be VITAL compliant.

Thetiming behavior can be documented either by produc-
ingaVHDL source code model that has been back annotated
from the SDF file or by including the SDF file itself as part
of the documentation package. A self-contained VHDL
model has the benefit of not requiring external files and,
therefore, the resulting configuration management issues of
linking versions of external fileswith versions of design en-
titiesusing thosefiles. Including the SDF file and the default
generic VHDL model has the advantage of easier incorpora-
tion of different timing behaviorsinto the same basic model.

Fig. 6-5 illustrates the two alternative approaches used in
VITAL-compliant architecture bodies. The VITAL Level 1
architecture uses either aVITAL process model or aVITAL
primitive concurrent procedure call approach. Both ap-
proaches use a wire delay block and a negative constraint
block. The VITAL processis atiming shell approach which
separates the function (in the functionality section) from the
timing (in the path delay section). The VITAL primitive
concurrent procedure call approach allows the delays to be
distributed across multiple components of the model.

A detailed structural model constructed in compliance
with the VITAL specification primarily documents the de-
tailed internal timing of the component. It does not provide
asimpler external “data sheet” view of the timing require-
ments of theinterface. However, adata sheet view of timing
could be developed from aVITAL-compliant timing model.

A model that documents the low-level behavior of an
ASIC will most likely use the VITAL approach to timing.
Such models benefit from hardware acceleration and simu-
lator optimization because they are usually complex and are
used for final timing verification prior to fabrication. VITAL
was developed specifically to address the acceleration and
verification needs of ASIC designs.
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Figure6-5. VITAL Model Organization (Ref. 12)

6-4 VHDL DID SSIMULATION REQUIRE-
MENTSFOR STRUCTURAL MODELS

The VHDL DID specifiesthelevel of fidelity required in
gate-level structural modelsin terms of two requirementson
the functionality of the models: models must support
logic-level fault modeling and test vector generation. These
requirements, combined with the requirement that the struc-
tural model accurately represents the physical hardware,
both in its hierarchy of components and in its interconnec-
tions, specify alevel of fidelity that isrequired in the model.
These requirements are driven by a need to support the
maintenance of hardware through the development of diag-
nostic aids such astest vectors.

6-4.1 SUPPORT FOR LOGIC-LEVEL FAULT
MODELING

The VHDL DID requires gate-level structural models to
support logic-level fault modeling. The common approach
to logic-level fault modeling inserts faults into the VHDL
model of the circuit. These inserted faults represent failures
in the gates or their interconnections. For fault modeling to
represent physical faults effectively in particular intercon-
nects of adevice, there must be aone-to-one correspondence
between the interna signals in the VHDL model and the
physical wires on the modeled printed circuit board or the
polysilicon or metal runinaVLSI circuit.
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6-4.2 SUPPORT FOR TEST VECTOR GENER-
ATION

The VHDL DID requires gate-level structural models to
support test vector generation. Typically, a test vector gen-
eration tool either works with a static representation of the
circuit and creates test vectors from the structure of the cir-
cuit or thetest vector generator usesfault simulation to grade
the test vectors and assure that the test vector set is comple-
mentary (i.e., each test vector detects at least one fault not
detected by any others) and complete (i.e., the test vectors
detect a sufficient percentage of the faults that have been
modeled). In either case thetool must have adetailed and ac-
curate model of the physical interconnection of gate-level
primitives.

To make use of test vectors generated using a VHDL
structural model, the test vectors should be compatible with
Waveform and Vector Exchange Specification (WAVES)
(Ref. 13). Test vectors generated in the WAVES format can
be used directly by WAVES-compatible automatic test
equipment (ATE).

Test vectorsare animportant part of the documentation of
ahardware component. The VHDL DID requirestest bench-
esfor each VHDL module. One of the essential components
of atest bench isa collection of test vectors that apply stim-
uli to the circuit and define the expected response.

6-5 TIMING SPECIFICATIONSFOR
STRUCTURAL MODELS

The EIA approach to timing specifications allows three
types of delaysin amodel: input wire delay, output load de-
lay, and internal (pin-to-pin) delays. The input wire delay
and the output load delay are functions of the component
layout. Input wire delay isimplemented using VHDL trans-
port delays. An input wire delay is associated with each in-
put port. Output load delays are associated with out put ,
buf f er, and i nout ports. Internal pin-to-pin delays are

6-10

defined in terms of the transitions in the state of output sig-
nals. Table 6-1 shows the names of the constants for the dif-
ferent possible transitions between signal strengths. The
values of these timing constants may vary among various
semiconductor fabrication technologies. In some cases a
specific port will not support particular transitions; thus a
subset of all of these constants would be applied.

Fig. 6-6 shows a VHDL implementation of a primitive
OR function that uses the input timing delays. Each input
port hasits own process and a corresponding internal signal.
The process delays the input according to an input wire de-
lay function, which is based on the current and new values
of the input signal. The function computing this delay uses
atable lookup scheme to provide the delay values; the tables
are defined in the package body of the package containing
the function. As a result, it is easy to substitute different
package bodies that provide different times without reana-
lyzing the entire model. This approach has the problem that
the delays are not specific to the circuit design, but all sig-
nals using the same technology get the same delay. An alter-
native approach uses generics to describe the delays and has
thelocal processes select the appropriate generic delay using
a sequence of if statements (Ref. 14). This approach is well
suited to back annotation.

TABLE 6-1. INTERNAL (PIN-TO-PIN)
DELAY SPECIFICATIONS (Ref. 11)

TO
FROM ‘U "X ‘o "1 VA
‘U NA* | NA t xl txh |txz
"X NA NA t xl txh |txz
‘o NA tIx | NA tlh |tlz
"1 NA thx | thi NA thz
VA NA tzx | tzl tzh | NA

*NA = not applicable
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LIBRARY ieee;

USE ieee.std logic 1164.ALL;

LIBRARY timing;

USE timing.in wire delay;

USE timing.internal delay;

ENTITY ORXT IS

PORT (IN1l: IN Std_ulogic;

IN2: IN std ulogic;
OUT: OUT std ulogic);

END ORXT;

ARCHITECTURE Externally_Timed OF ORXT 1S
SIGNAL Internmal IN1: std ulogic;
SIGNAL Internal IN2: std ulogic;

BEGIN
PROCESS (IN1)

VARIABLE old IN1l: std ulogic;
BEGIN

Internal Inl <= transport IN1 AFTER

old IN1 := INI1;
END PROCESS;
PROCESS (IN2)

VARIABLE old IN2: std ulogic;
BEGIN

in wire delay(old IN1, IN1);

Internal In2 <= transport IN2 AFTER in wire delay(old IN2,IN2);

old IN2 := IN2;

END PROCESS;

PROCESS (Internal Inl, Internal In2)
VARIABLE new OUT std ulogic;
VARIABLE old OUT std ulogic;

BEGIN

new_OUT := Internal Inl OR Internal IN2;
OUT <= transport new_OUT AFTER internal delay(old OUT, new OUT);

old OUT := new OUT;
END PROCESS;
END Externally Timed;

Figure 6-6. Extrinsic Timing Delay VHDL Model

6-6 BACK ANNOTATION OF STRUCTUR-
AL MODELS

Detailed gate-level models are natural targetsfor back an-
notation. The extraction of anetlist from agate-level VHDL
model is straightforward. The analysis of the netlist and cal-
culation of timing and electrical information fromthe netlist,
perhaps augmented with layout information, is a common
capability in modern CAE tools.

The primary emphasis of back annotation is on providing
more accurate timing and electrical information. The focus
for electrical information has been on the computation of ca-
pacitive loads on the output ports of components. Thisinfor-
mation is then used to compute timing information.

6-11

6-6.1 BACK ANNOTATION OF TIMING IN-
FORMATION

Back annotation of timing information is one of the most
common ways to provide detailed timing for models, and it
can take advantage of the many timing analysis capabilities
of modern CAE tools.

Two methods of back annotation have been used for
VHDL models: external input files (Ref. 15) and generation
of configuration declaration combined with generics (Ref.
14). The VITAL specification (Ref. 12) uses an external file,
the standard delay file, to provide timing data generated ex-
ternally to the model. VITAL-compliant models provide a
rigid naming convention for timing-related generics in the
model. This convention allows the information in the SDF
file to be properly associated with the corresponding gener-
ic.
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6-6.2 BACK ANNOTATION OF LAYOUT IN-
FORMATION

Back annotation of layout information can be particularly
important when VHDL models are used as the interface be-
tween high-level synthesis tools and layout tools (Ref. 16).
Typical layout information for VLSl circuits includes
lengths of runs, numbers of metal and polysilicon levels, and
area requirements. Similar information, such as the number
of levels of printed circuits, the number of chips on the
board, and the required board size, is used for printed circuit
board models. The layout tool can annotate the VHDL mod-
el with layout information. Synthesistools can then use this
information. The designer can explore different ways of ex-
pressing the behavior in VHDL, which may result in differ-
ent synthesized models.

6-6.3 BACK ANNOTATIONOFTESTABILITY
INFORMATION

Back annotation can be used to support testability analy-
sis. This form of back annotation may be useful for the de-
sign and optimization of the built-in test capabilities of a
hardware system. The appropriate metrics and BIT tech-
niques are discussed in par. 8-3 of this handbook. As part of
the work on WAVES, a general fault dictionary languageis
being developed (Ref. 17). This language can be trandlated
into annotations for VHDL models. With this fault dictio-
nary defined, individual signals can be labeled with the ap-
propriate set of tests.
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CHAPTER 7
PREPARATION OF VHDL MODELSFOR SIMULATION

In this chapter the preparation of VHDL models for simulation is described, as is the process of configuring a
model from libraries of component descriptions. Emphasized are techniques that support the interoperability of
models in component libraries so they can be combined freely to provide mixed-abstraction-level models. The de-
velopment of test benches and test vectors to check the correctness and completeness of the model are discussed.
Also discussed are the use of parameterized timing models and the selection of timing options for simulation.

7-1 INTRODUCTION

A key advantage of documenting hardware with very
high-speed integrated circuit (VHSIC) hardware design lan-
guage (VHDL) is that VHDL models of hardware systems
can be simulated. Previous chapters have discussed model
development; the emphasis of this chapter is on preparation
of VHDL modelsfor simulation. The target audience of this
chapter isthe user of aVHDL modél, i.e., the person respon-
sible for verifying, validating, and using the model to sup-
port decision making. This chapter discusses five aspects of
the preparation of VHDL models for simulation:

1. The assembly and integration of a complete test
bench, including the test bench components and the unit un-
der test (UUT). This aspect includes the steps necessary to
ensure the interoperability (par. 7-2) of all of the compo-
nents of the test bench, particularly the UUT.

2. Thedevelopment of test benches (par. 7-3) that pro-
videthe stimulation for the UUT and check to ensurethat the
results produced by the UUT are correct

3. The development of test vectors (par. 7-4), which
are the stimulation data for the UUT and also may specify
the correct result values

4. The configuration of a complete test bench (par. 7-
5), including the test bench components and the UUT

5. Thedefinition of simulator options (par. 7-6), which
control the execution of the smulation and the trace data
generated as a side effect. The choice of simulator options
can haveavery significant effect on thetime required for the
simulation, the amount of disk space required for the simu-
lation, and the kind of data available to support decision
making after the ssmulation has run, including decisions
about the validity of the model.

The VHDL dataitem description (DID) (Ref. 1) refersto
therequired simulation capabilities and constraints that must
be considered when preparing a model for simulation. Sub-
par. 10.2.2 of the DID requires VHDL modules to produce
error messages detecting timing and electrical faults. Sub-
par. 10.2.5 of the DID requires VHDL modulesto be accom-
panied by appropriate test benches. Subpar. 10.2.5.2 of the
DID requirestest benchesto betraceableto test plansfor the
physical hardware, where possible. Subpar. 10.2.5.3 of the
DID requires test benches to be supplied for each VHDL
module of the hardware hierarchy.

7-2 INTEROPERABILITY OF MODELS

The preparation of aVHDL model for simulation may in-
volve assembling severa component models so that when
the assembled model is simulated, it will produce valid out-
puts. This preparation requires that the component models
be interoperable. In this paragraph preventative methods
used to ensure interoperability and methods used to combine
componentsthat are not directly interoperable are discussed.
Interoperability involves ensuring that component models
can be connected together through common type definitions
for signals connecting components and that components op-
erate in a common semantic environment. Essentia to en-
suring a common semantic environment is ensuring a
consistent timing model for the entire environment.

Two scenarios for the use of VHDL modelsillustrate this
need. In the first scenario a prime contractor for a hardware
system has its subcontractors design the components of the
system and produce gate-level VHDL models of the compo-
nents as documentation of the designs. This prime contractor
also devel opstest benches and test vector setsto validate the
subcontractors designs and to ensure that the system works
properly asawhole. All of the models devel oped by the sub-
contractors must work together correctly. The component
models at the same level of abstraction must interoperate,
and the best approach to ensuring this interoperability is to
use astandard signal definition as described in subpar. 7-2.1.
If thisisnot possible, type conversion functions may be used
in some situations to provide interoperability. Use of type
conversion functionsis described in subpar. 7-2.2.

For the second scenario the Government has devel oped
(or had developed for it) a high-level-of-abstraction test
bench and high-level-of-abstraction models of all of the
components of an existing hardware system that is going to
have some of its components upgraded. This test bench and
the models of the components that are not going to be up-
graded will be used for functional testing of gate-level de-
signs of the components that are going to be upgraded. This
test bench and the high level models of the components that
are not being upgraded must be interoperable with the gate-
level models of the components being upgraded. This sce-
nario is an example of a situation in which component mod-
elsat different levels of abstraction must interoperate.

To dlow for configuration of mixed-abstraction-level
models, the following approach is recommended:
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1. Define astandard set of datatypesfor signals at the
lowest common level of abstraction needed. Standards for
the data types of signals are discussed in subpar. 7-2.1.

2. Define and acquire or implement a set of type con-
version functions that alow higher level of abstraction
components to communicate with lower level of abstraction
components and vice versa. Type conversion functions are
discussed in subpar. 7-2.2.

3. Even though the port data types for models of the
same component at different levels of abstraction are differ-
ent, maintain a one-to-one correspondence between the
number of portsin models at different levels of abstraction.
An example of this problem is discussed in subpar. 7-2.2.

4. When configuring the mixed-abstraction-level
models, use the type conversion components in configura-
tion declarations to remap interfaces at different levels of
abstraction so that the entire mixed-abstraction-level model
can be compiled and simulated without recompiling the
component models.

Configuring some mixed-level-of-abstraction models
may require more than just the use of type conversion in
port maps. For example, embedding a functional model
with no timing in a behavioral system model that is model-
ing the timing may require construction of a timing shell.
(Timing shells are described in subpar. 5-4.1.) The concept
of a shell may be required to configure a system model
when the VHDL component models at different levels of
abstraction do not have the same number of ports. For
example, if a high-level component model has a single port
for the address bus but a gate-level model of the same com-
ponent has separate ports for each of the bits of the address
bus, then a shell will be needed to interface the gate-level
model of this component with high-level models of other
components.

7-2.1 USE OF STANDARD SIGNAL DATA
TYPES

The VHDL language requires that the type of a port be
consistent with the type of the signal connected to the port,
i.e., all of the ports connected to asignal must be consistent.
A minimal requirement for interoperability between two
component models is the ability to connect the ports of the
two components with signals. Use of standard data typesfor
signals and portsis the most common approach to achieving
interoperability of VHDL models at the same level of ab-
straction. These standard data types are supported by stan-
dard semantics as implemented by resolution functions and
(for logical types) by definitions of the basic logic functions.
The standard for models at the gate level of abstractionisIn-
stitute of Electrical and Electronics Engineers (IEEE) Stan-
dard 1164, the standard logic package (Ref. 2). The IEEE
1164 standard logic data type uses a VHDL package to en-
capsulate a data type definition, a resolution function, and
several common type conversion functions. The emerging
standard for register-transfer-level models is IEEE Std
1076.3 (Ref. 3), thelogic synthesis package. These packages
provide type conversion functions for related data types and
thus support interoperability with other similar models.

These standards are described in more detail in Chapters 5
and 6.

7-2.2 TYPE CONVERSION FOR DIFFERENT
SIGNAL DATA TYPES

Type conversion functions provide a way to connect
VHDL models of components whose ports are not syntacti-
cally consistent. Type conversion functions are often needed
in mixed-level -of-abstraction model s because the data types
for signals at different levels of abstraction are usualy dif-
ferent.

Packages provide a natural mechanism for collecting type
conversion functions. An early step in the top-down design
of acomputer is definition of the basic datatypes, e.g., char-
acter, integer, floating point, instruction, and address, that
are supported by the computer. The definitions of these data
types can be formalized in VHDL by creating a package de-
fining the formats of these data types and including the cor-
responding type conversion functionsthat convert these data
typesinto bit arrays. The IEEE synthesis package, | EEE Std
1076.3 (Ref. 3), provides ageneric set of such definitionsin-
cluding signed, sign-magnitude, and twos-complement for-
mats whose word size is parameterized.

Different types in the same network can be converted by
using type conversion functions in the port maps of compo-
nent instantiation statements or binding indications. This
technique is particularly useful for connecting structural
models whose components use different signal types. Type
conversion functions can also be used for variablesin the pa-
rameter association lists of subprogram calls. Thistechnique
allowsauser to assemble high-level behavioral modelsfrom
subprograms that use different interface types.

To make use of type conversion functions in port-map-
ping statements, there must be a one-to-one correspondence
between the signal s and the ports, even though the datatypes
of the signals and the ports are different. One interoperabil-
ity problem for mixed-level-of-abstraction models is repre-
sentation of busses at different levels of abstraction. High-
level modelstypically represent an entire busasasingle sig-
nal. At the highest level such a bus may resemble a VHDL
composite data type with fields for control, address, and da-
ta. These formats vary from one bus to another. Conversion
routines can be developed to convert the bus data type into
an array of standard logic values and to convert from an ar-
ray of standard logic values back into the bus data type. Fig.
5-10 shows aVHDL package body that includes conversion
functions that convert an integer value into an array of bit-
level values and back.

If simulating VHDL models in combination with other,
independently developed VHDL models is to be worth-
while, each model must processthe full range of possiblein-
put valuesincluding error states. If amodel does not process
all possibleinputs appropriately, the simulation of the whole
system will fail, or worse, the results of system simulation
will not be accurate. Therefore, if it is necessary to develop
type conversion functions, these functions should be tested
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to ensure that if they aggregate lower level of abstraction
data types, they accurately handle cases in which the value
of alower level of abstraction datatypeisan error state. For
example, if one bit of an addressfield of abushasan' X
value, then what isthe aggregate value of the bus? If the def-
inition of the bus includes parity bits, then the existence of
an' X value may not propagate through the type conver-
sion. In an algorithmic-level model the parity decoding may
not be modeled. If this algorithmic-level model of one com-
ponent is connected to a register-transfer-level model of a
bus interface unit (BIU), the effects of parity decoding
would have to be handled by the type conversion function.
The purpose of this exampleisto point out the potential dif-
ficulties of error propagation in mixed-level-of-abstraction
models and the roles that type conversion functions may
haveto play in such models, not to encourage the use of type
conversion functions to model hardware functions.

7-2.3 INTEROPERABILITY OF TIMING
MODELS

Subpar. 10.2.3.2 of the VHDL DID requires that VHDL
models provide accurate timing information in the form of
signal delays at the output ports of al VHDL entities. This
requirement implies that VHDL models must have a com-
mon timing framework. If there is a common timing frame-
work, different architecture bodies for components of a
structural model can be interchanged and still provide accu-
rate timing information for the structural model.

VHDL includes a predefined set of time units as part of a
built-in physical data type, which is discussed in subpar.
3-6.2. VHDL converts time units to a common base so that
different time units can be intermixed freely. In high-level
models the time delay for an operation may be a complex
computation based on parameters such as clock speed, clock
cycles per instruction, and word size. If models are being
combined into asystem model for simulation, it isimportant
to verify that the same parameters are being used in the same
way in all the components. For example, are word sizes stat-
ed in terms of bits or bytes?

As described in Chapter 6, the VHDL initiative toward
application-specific integrated circuit (ASIC) libraries (V-
TAL) package (Ref. 4) provides a standard representation
for timing and back annotation for gate-level models. VI-
TAL is consistent with the IEEE Std 1164 standard logic
package (Ref. 2). Electronic Industries Association (EIA)
567 (Ref. 5) includesaVHDL package that describes a stan-
dard timing view. Thistiming view relatesthe physical char-
acteristics of the hardware and the implementation
technology of the hardware to delays for logic functions.
This standard is consistent with |EEE Std 1164.

7-24 PORTABILITY REQUIREMENTSFOR
INTEROPERABLE VHDL MODELS
A critical Government requirement isthat VHDL models
be portable to different simulation environments. This re-
guirement allows contractors to select the most competitive

computer-aided engineering (CAE) system for their needs
and alows the Government to simulate models that may
have been devel oped on anumber of CAE systems. Also this
requirement allows the Government to provide selected
VHDL models to contractors as leaf modules or as specifi-
cations for redesign of existing systems. Sharing of models
will be practical only if the models are portable to any envi-
ronment that may be used by a contractor.

Although the VHDL DID does not have any explicit port-
ability requirements, several of its requirements are de-
signed to ensure portability of models from one simulation
environment to another. Par. 10.3 of the DID requires that
files containing VHDL source code delivered to the Govern-
ment be in full compliance with the current IEEE VHDL
standard (Ref. 6). Most CAE systems support VHDL |EEE
Std 1076 fully. Some CAE systems have specific subsets
that can be mapped to their proprietary, high-performance
simulator or silicon compiler. A few vendors have even ex-
tended VHDL to add features or capabilities. These exten-
sions, however, are not portable and must not be used in
documentation delivered to the Government. A contractor
may wish to restrict amodel to a specific subset of the stan-
dard that is sufficiently expressive and is compatible with
the subsets required for proprietary tools in the contractor’s
tool suite. If the contractor isimporting VHDL models, the
design engineer needs tools that support the IEEE VHDL
standard fully. A superset of standard IEEE VHDL should
never be used.

One portability issue is data. The most portable way
to represent data is to use American standard code for
information interchange (ASCII) numbers and use the
functions in the VHDL TEXTI O package for input/out-
put (1/0). However, this approach may require much
more space and execution time than formatted /O of
VHDL composite data types. Therefore, to achieve port-
ability of the ASCII representation and the speed and
space reductions of formatted 1/O, the ASCII data may
be provided along with a conversion function that pro-
duces the equivalent data ready for formatted 1/O.

The VHDL model verification procedure (Ref. 7) has
been devel oped to establish guidelines and proceduresto en-
surethat VHDL models are compliant with the VHDL DID.
These procedures involve inspection of the package re-
ceived from the contractor as well as compilation and simu-
lation of the model. (Ref. 8)

7-3 TEST BENCH DEVELOPMENT

The VHDL DID uses atest bench to provide the external
stimuli for amodel and to collect and eval uate the responses
generated by the model.

“A VHDL test bench is a collection of VHDL modules
which apply stimuli to amodule under test (MUT), compare
the MUT’ sresponse with an expected output, and report any
differences between observed and expected responses dur-
ing simulation.” (subpar. 10.2.5.1 of Ref. 1)



Downloaded from http://www.everyspec.com

MIL-HDBK-62

A VHDL model delivered to the Government must be ac-
companied by atest suite, i.e., acollection of operating con-
dition specifications, test benches, and associated test
vectors that, taken together, test the VHDL model of the
hardware under avariety of conditions. The same test bench
can be configured to use different sets of test vectors or op-
erating conditionsto achieve different test purposes. Thetest
plan for the model should specify these configurations.

The VHDL DID contains the requirements of the con-
tents of the test suite. Subpar. 10.2.5.3 of the DID requires
test benches to be provided for each VHDL module in the
model hierarchy. Subpar. 10.2.5 of the DID requires that
VHDL modules written and delivered to serve as part of
one or more test benches be clearly distinguished from
VHDL modules that represent part of the hardware design.
Guidelines for tailoring the VHDL DID are discussed in
subpar. 4-3.4.2.

MIL-HDBK-454 (Ref. 9) recommends additional
requirements for the test benches and test vectors delivered
to the Government. The use of VHDL to document ASICs
in accordance with the DID is recommended in subpar.
4.5.1. These models should allow test vector generation and
fault isolation to the integrated circuit pins. Subpar. 4.5.3
states that the same level of VHDL modeling for qualified
integrated circuits in board-level applications should be
used. Subpar. 4.5.4 of Guideline 64 of MIL-HDBK-454
advises the use of the Waveform and Vector Exchange
Specification (WAVES) (Ref. 10) for documentation of test
vectors.

The VHDL model verification procedure (Ref. 7)
describes the procedure the Government can use to verify
that amodel meets all requirements.

7-3.1 WAVES

WAVES (Ref. 10) is designed to describe highly struc-
tured sets of test vectors, discrete event simulator trace out-
put, and automatic test equipment (ATE) input. WAVES is
designed to facilitate exchange of this information between
design environments and automatic test equipment. Thus
test vectors devel oped to validate VHDL models can also be
used to drive the test equipment used to validate the hard-
ware. WAVES is a subset of VHDL and uses only the se-
guential statements. WAV ES has standardized on two levels
of test benches: Level | and Level I1I. WAVES Level Il isa
subset of VHDL inthat it does not allow arbitrarily complex
types as the types of signals. WAVES Level | is a subset of
WAVES Levd |I. Although WAVES is a subset of VHDL,
the value of an event is given more structure in WAVES
thanin VHDL, so WAVES is more restrictive.

WAVES s built around two key concepts: the concept of
an event and the concept of a waveform. Asin the VHDL
concept of events, a WAVES event has an associated time,
signal, and value. Thetime of aWAVES event isthetime at
which the value of the signal changes.

The value of a WAVES Level | event has four separate
components: a state, a strength, a direction, and arelevance.
The stateisthelogic value of thesignal; it iseither low, mid-
band, or high. The strength is the ability of adriver to force

the signal to be resolved to the driver’s state regardless of
conflicting states from other drivers. The possible valuesfor
the strength of an event are disconnected, capacitive, resis-
tive, drive, and supply. These values are ordered—discon-
nected is the weakest, and supply, the strongest. WAVES
does not specify aphysical interpretation of the strength val-
ues, i.e., WAVES does not define the impedance levels as-
sociated with particular strengths. The direction of an event
denotes whether the event represents a stimulus to the MUT
or an expected response from the MUT. The relevance is
used to indicate the significance of the event to the simula-
tion. The possible valuesfor therelevance of an event arere-
quired, predicted, observed, and unknown. A required event
isonethat is part of the specification and that the MUT must
match in order to meet the specifications. A predicted event
is aresponse that has been calculated or expected as part of
the specification, but is not required of the MUT. An ob-
served event isaresponse from aMUT that isnot part of the
specification for the behavior of theMUT; it isnot a predict-
ed or required event. Other events are unknown events; typ-
icaly, an unknown relevance would be associated with a
don't care event. Each of the four components of the value
of aWAVES Leve | event may have one of two additional
values: unspecified or unknown. Unspecified is typicaly
used to indicate that the value of an eventismissing fromthe
waveform specification but could be determined from the
MUT, whereas unknown is used to indicate that the value
cannot be determined, e.g., an unstable output fromaMUT.
Unspecified may be used to indicate that an input toaMUT
has not been initialized.

WAV ES uses two different methods to specify times: de-
lay time and event time. Event time is defined as an offset
from either the current time or some specified event, adelay
time is defined as an offset from the previous event on a
specified pin, such asthe clock. In WAVESthetime of are-
sponse event may have an associated tolerance. A response
time may be specified as a nominal response time, a lower
tolerance on aresponse time, or an upper tolerance on are-
sponse time. Just as it allows a tolerance in the timing of a
response event, WAV ES alows atolerancein thevalue of a
response. In particular, WAVES allows a set of valuesto be
associated with a single response event. Sets of event values
may be used to represent uncertainty and to aid mapping be-
tween different state/strength systems.

A WAVES waveform is a sequence of time-ordered
events across a set of signals. A waveform can specify both
stimulus and response values. A waveform describes the
testing of a MUT in that if the stimuli in the waveform are
applied to the MUT, the responses generated by the MUT
are associated with the responses of the waveform. A VHDL
implementation of aWAV EStest bench supports simulation
of aVHDL model of the waveform. Such a simulation can
verify that the MUT respondsto the stimuli asthe waveform
predicts.

A waveform in WAVES is usually organized in terms of
dlices, asshownin Fig. 7-1. A WAVES dliceis a specifica
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PRESET Frame 3. Drive_1(0 ns)
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Frame 5. Dont_Care(0 ns) + Sense_0(90 ns) +
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Frame 6. Dont_Care(0 ns) + Sense_1(75 ns) +
Sense_0(200 ns)

g
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C.R. Unkleand W. G. Swavely [0 1994 |IT Research Institute

Figure 7-1. Slice and Frames of a Waveform (Ref. 11)

tion of a portion of awaveform that occursin afixed period
of time across all signals of the MUT. Different dlices of a
waveform may have different periods of time, but the period
of time during adliceisthe samefor all signals of the MUT.
In Fig. 7-1 thefirst dice has a period of 450 ns. A frameis
the set of events defined within a slice for a single signal.
Frames may be used like macros to capture multiple events
and assign them to a single pin code. Six frames are shown
in Fig. 7-1 for the six pins on the MUT. Five of the frames
have two events defined in them, each of which specifies a
new logic value and atime (in terms of the offset from the
start of the frame).

The period of adliceisthe time from the beginning of the
dice to the end of the dice. The times for events occurring
within a dlice are defined as offsets from the starting time of
the dice. A dlice may contain events that are defined after
the end of its period but never before the beginning of its pe-
riod. A waveform is constructed of concatenated slices so
that the end of the period of one slice isthe beginning of the
period for the succeeding dlice.

WAVES provides VHDL procedures and types used to

build events, frames from events, and slices from frames.
These procedures and types are specified in the WAVES
standard package.

A WAVES data set consists of a header file, WAVES
files (which contain WAV ES-specific VHDL design units),
and externa files (which contain test vector datain ASCII
format). A WAVES data set includes a package that defines
a procedure which generates a waveform. A waveform is
generated by building dlices, applying those portions of dlic-
es with direction st i mul us to the MUT, and then sam-
pling the MUT responses to those portions of the slices with
direction r esponse. Slices provide a way to build hierar-
chical test pattern descriptions that are consistent with mod-
e ATE.

Fig. 7-2 shows how the three components of a WAVES
data set interact with the module under test. The WAVES
comparator function, part of the WAVES data set, isimple-
mented in VHDL and is executed under the control of the
waveform generator procedure (WGP). WAV ES uses three
operationsin the WGP to interact with the waveform: apply,
tag, and match. The apply operation adds eventsto thewave-
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Figure 7-2. Dependencies Between WAVES Packages

form and advances the current time. Eventsin the waveform
with times less than the current time are unchangeable, but
events with times in the future are considered pending and
will be superseded if an event is applied with an earlier time.
The tag operation adds a textual annotation to the waveform
at the current time. The match operation samples the actual
response of the MUT, compares it with the expected re-
sponse (as specified in the slice by events with direction re-
sponse), and produces aflag value of true or false depending
upon whether the response exactly matched one of the val-
uesin the value set for the event labeled r esponse.

A primary function of WAVES is to provide a standard
format for describing all information relevant to test patterns
and to extract appropriate views of that information in forms
that can be used either by the model of the MUT or by ATE.
Asshown in Fig. 7-2, the WAVES packages can import test
vectors in a common format from one or more optional ex-
ternal files and then trandate this information for use as
stimuli for the MUT and for comparison with MUT respons-
es. The external files are optional because a waveform gen-
erator procedure does not have to read its data from an
externa file. A major part of the design of a WAVES data
set is determining the VHDL type definitions and function
definitions that correctly implement these views, and much
of this effort is reusable if the definitions are packaged ap-
propriately.

A WAVES data set is implemented as a collection of
VHDL packages, VHDL design entities, and external files.
To support portability of aWAVES data set, adata set is or-
ganized as a collection of files. Each WAVES file contains
one or more packages, but all packages in the same file are

analyzed into the samelibrary. In general, WAVES declara-
tions may be split up into multiple files. In thisway, differ-
ent declarations can be analyzed and stored in different
libraries.

Every WAVES data set must contain at least five declara-
tions:

1. Logic Value. An enumerated type naming all possi-
ble signal values that can appear in awaveform, i.e., can be
either applied to the external inputs of the MUT or sensed as
external outputs of the MUT. In Level | WAVES each port
of the MUT is assumed to have values that range across an
enumerated type.

2. Value Dictionary. A function that translates the
logic value names into event values

3. Pin Codes. All of the characters used in the MUT
to describe the value of any signal in the test bench at any
time and contained in astring. Pin codes are used in external
WAVESfilesand in table lookupsin the WAVES functions
and procedures.

4. Test Pins. Vaues of an enumerated type naming all
signals to which the waveform will be applied. In WAVES
the term “pin” is used to refer to any external signal of the
MUT that is to be stimulated or compared with known out-
puts.

5. Waveform Generator Procedure. The procedure
that generates a waveform, annotates the waveform, and
monitors the response of the MUT to the waveform. A
WAV ES data set may have more than one waveform gener-
ator procedure.

A WAVES data set must contain a minimum of three
files: a header file and two files containing declarations and
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function definitions. Within asingle WAVES data set there
may be multiplefiles, each containing a different waveform
generator procedure. The names of the WGPs may be the
same, but in this event the WGPs must be placed in different
libraries. There may also be one or more external files con-
taining test vector sets. These vectors are stored in a com-
mon format, as defined by WAVES.

The order of analysis of the WAVES packages is deter-
mined by the dependencies of the objects in the packages.
Fig. 7-3 shows dependencies among and between the pack-
ages. Packages are indicated by rectangles, and the name of
the package appears in a box in the upper left-hand corner.
Other names in the rectangle are names of objects or types
declared in the package. These latter declarations are the
source of the dependencies. The lists of objectsin packages
shown in Fig. 7-3 are not necessarily complete; other ob-
jects, subprograms, or types may be declared in these pack-
ages. A trapezoid representsaVHDL procedure; the nameis
inside the trapezoid.

7-3.1.1 Standard WAVES Packages

The standard WAVES packages provide a collection of
functions used to construct waveforms. They also include
the different variations on the apply, tag, and match func-

tions. There are three standard WAVES packages:
WAVES_STANDARD, WAVES | NTERFACES, and
WAVES_OBJECTS.

WAVES STANDARDisstored initsown library, whichis
also called WAVES _ STANDARD. This package provides def-
initions for WAVES constants, data types, and functions
that do not change between WAV ES data sets.

The WAVES OBJECTS package contains declarations
of the some of the basic objects used by WAVES, including
delay_time, time_data, file_slice, pinset,
andpi n_code_string.Thet i ne_dat a object holdsa
frame set array and is a parameter to the apply operation
used by WGPs.

The WAVES_| NTERFACES package contains declara-
tions of the other objects used by WAVES. Its declarations
include events and event values.

The WAVES OBJECTS and WAVES | NTERFACES
packages must be analyzed using information that is specific
to both the MUT and the required test outputs, e.g., to the
types of operations supported by a particular ATE. The user
must edit these design units to include the appropriate con-
text clauses, i.e., | i br ary and use clauses. Dependencies
of these design units are shown in Fig. 7-3; alibrary struc-
tureisshown in Fig. 7-4.

Logic
——————
logic_value
value_dictionary
depends on
Qdmjs on
WAVES_INTERFACE MUT

WAVES_STANDARD
Codes direction_list
pin_codes event_value
10
depends on A A
Module Pins
depends on depends on
test_pins
+ depends on
WAVES_OBJECTS
time_data
pinset
delay time
? depends on
User-Defined Procedure
Package WAVEFORM

frame_set Module Entity Interface
frame_event Module Architecture Body
event_time

¢ 00

Figure 7-3. Partitioning of WAVES Packagesinto Libraries
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library ATE
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Library Local Standard

Logic
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value_dictionary

event
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frame_set
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WAVES_OBJECTS

delay time
time_data
file_slice

pinset
pin_code_string

Figure7-4. Library Structure of WAVES Packages

7-3.1.2 Local WAVES Packages

WAVES files may be reused at two different levels: the
source code form of a WAV ES package may be reused, or a
WAV ES package may be analyzed once and then referenced
by multiple WAVES header files. The WAVES_OBJECTS
package must be reanalyzed whenever the MUT module
description changes because it depends upon the test pins
description. However, this package may be reused without
reanalysis if the external interface of the MUT does not
change. The WAVES _STANDARDS package is an example
of a package that is analyzed once and then reused without
reanalysis.

To make the most efficient use of a WAVES test bench,
the user must carefully plan the partitioning of the declara-
tions into packages and WAVES files in a way that mini-
mizes the amount of reanadysis. Fig. 7-4 shows a
partitioning of these declarations into libraries and pack-
ages. This partitioning assigns packages with similar rea
sons for change to the same library. The ATE library
contains the pin codes definition, which is derived from the
requirements of the ATE equipment. The ATE library also
contains the WPG specific to that ATE structure and the
WAVES packages that are dependent upon the pin code
information. Different ATE systems require different ATE
libraries if the pin codes for the ATE systems are different.
If no ATE device has been selected, an ATE library should

be constructed using whatever pin codes make sense to the
user. When an ATE system is chosen, this library should be
updated. The Local _Standard library contains the
logic value and value dictionary declarations because those
are likely to be used across several MUTSs. For example, the
local standard library could include logic value and value
dictionary definitions that are appropriate to the |IEEE Std
1164 logic package.

7-3.1.3 WAVES T Test Suites

Severa different WAVES packages must be developed
for a specific module and a specific type of test equipment.
The module-specific declarations include the test pins and
the logic values. These declarations and their partitioning
into packages are shown in Fig. 7-4.

Two sets of files are specific to a particular MUT and to
aparticular test case: the WAV ES header file and the exter-
nal test vector files. Each WAVES data set has a unique
header file. The header file identifies the data set, describes
the other filesin the data set and their intended use (includ-
ing thetarget library for VHDL packages), identifies\VHDL
libraries and packages that already have been analyzed for
usein thetest bench, and defines the order of analysis of the
VHDL source code files comprising the WAVES test suite.
Fig. 7-5 shows an example header file.
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-- Example WAVES Header File

Title WAVES Example

Author Research Triangle Institute
Author Geoffrey Frank

Date April 3, 1992

Origin ieee.std_logic_1164

Device_Id

is UNIX,

for validation.

The file names are case sensitive.
specifically Ultrix on a DEC Workstation.
files are being ported to an MS/DOS environment, where the

Model Technology VHDL analyzer and simulator are being used

Multiple XOR chip

The originating environment
These

Waves_Filename waves_logic.wav Local_std
Waves_Unit Waves_Interface ATE
Waves_Filename waves_codes.wav Local_std
Waves_Filename device_pins.wav Work
Waves_Unit Waves_Objects ATE
Waves_Filename seq_wgp.wav ATE

External_Filename pattern

seq_pat.dat

-- The waveform generator procedure is contained in seq wgp.wav

Waveform_Generator_Procedure

waves_logic.wav

Local_std

Figure 7-5. Example WAVES Header File

The first part of the header file identifies the data set by
brief text strings associated with the following WAVES
keywords:

1. Title. This field provides a brief description of the
data set. Different releases of the same data set normally
keep the sametitle.

2. Author. This field contains the name of the organi-
zation and the name of the individual or individuals within
the organization who developed the data set. It defines the
responsible organization and specifies one or more points of
contact who are the best sources of technical information
about the data set.

3. Date. This field contains release information for
configuration management purposes. The data should
uniquely distinguish this release from al other releases of
the same data set.

4. Origin. This field is used to indicate the source of
the model of the MUT and also “soft standards’ that have
been agreed upon by the producers and users of a WAVES
data set. The DoD contracting agency and the contractor
should agree in advance on what information is allowed in
the origin field of a WAVES data set delivered to the Gov-
ernment.

5. Deviceld. The device identification field identifies
the target MUT of the data set.

These fields are required. After the identification section
of the header file, the WAV ESfilesare specified in the order
inwhich they are to be analyzed. A WAVES header file can
specify severa different types of files and different uses of

thosefiles. WAV ESfile name commands areincluded in the
header fileto associate the name of aWAVESfilein the host
operating system and the target VHDL library for all pack-
ages contained in the WAVES file. WAVES units are used
to refer to standard WAV ES packages. WAVES unit com-
mands are included in the header file to indicate the order in
which standard WAV ES packages are to be analyzed and to
indicate the VHDL library in which the analyzed package
should be stored. A WAVES header file may also include
VHDL |i brary and VHDL use clauses. These clauses
provide the context for analyzing later packages, and reduce
the time and effort required to prepare the data set for simu-
lation. A WAVES header file may aso include referencesto
externa files. External file name commands associate alog-
ical name for the file used in the WAVES packages with the
host operating system name for the file.

A WAVES external file uses a standard format for test
vectors to be stored as data files. The WAVES external file
format isvery flexible. Commentsin an external file are de-
limited at the start by a‘ %’ and at the end by the end of the
line. An external file contains a sequence of WAVES dlices.
WAVES dlices are separated by semicolons. A WAVES
slice contains four fields. The description of aWAVESdlice
in an external file consists of a subset of the first three of
these fields. In an externa file, the fields are separated by a
colon. These four fields are possible:

1. codes. Thecodesfieldistypically used to hold apin
code string for an apply operation.

2. fstime. Thefiledicetimeistypically used to define
the period for adlice.
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3. fsinteger. Thefile dice integer is typically used to
select a dlice period from an array of possible slice periods.
For example, the file slice integer can be used to index into
an array of slice times with tolerances for output ports.

4. endof file. Theend of filefield isaBoolean flag that
isset to trueif the last attempt to read a slice from the exter-
nal file caused an end of file condition. When the end of file
flag istrue, al other fields areinvalid.

Typically,aWAVESSdliceisused to driveall of theMUT
input ports at the same time. Thisisthe approach that is tak-
en in the external file shown in Fig. 7-6.

7-3.2 DOCUMENTATIONOF TEST BENCHES

Subpar. 10.2.5.2 of the VHDL DID (Ref. 1) requires all
test benchesto be cross-referenced to physical hardware test
plans, specifications, and drawings, when possible.

The WAVES header file format, as discussed in subpar.
7-3.1.3, specifically addresses several of these DID require-
ments. The device ID field links the test bench to the identi-
fication of the physical device whose model is being tested.
If the waveform generator procedure is designed for a spe-
cific ATE system and the WGP is stored in an ATE-specific
library, the header filelisting the file dependencies will indi-
cate the ATE system used to test the physical device. Fur-
thermore, WAVES allows the same externa file to drive
both the VHDL test bench and the test of the physical device
by the ATE. Thus configuration management of the external
files and appropriate naming conventions for externa
WAVES files provide another link between VHDL simula-
tions and physical device simulations. The origin field may
be used to link a specific test as defined by the WAVES
header file to a specific physical hardwaretest plan. Theref-
erence to the MUT VHDL description should be specific
enough to link the VHDL test to a specific version of the
physical hardware, as modeled by a specific MUT VHDL

Pins 1 and 2 are scan path inputs,

O o0 00 00 OC 00 o 90 0 00 OF o

Pins 0 and 3 are parallel inputs.

This driver file
P PPP

0123

0101 : 5 ns ;
0101 ¢: 5 ns ;
0001 : 5 ns ;
0000 :5ns ;
0101 : 5 ns ;
0001 :5 ns ;
0000 : 5 ns ;
1111 : 5 ns ;

Example WAVES External File

Author

Version Date April 3, 1992

Intended for Waves example data set,
The pin codes are '1', '0', 'X*‘', 'Z'

The device has 4 pins.

description.

Subpar. 10.2.5 of the VHDL DID (Ref. 1) requires all
VHDL test benches to be clearly distinguished from VHDL
modules that represent the hardware design. Recommended
file-naming conventions are provided in Chapter 9.

A hierarchical directory structure should be used to orga-
nize the source code and auxiliary files. There should be a
separate directory for each component, and all filesrelating
to a specific component, such as alternative architecture
bodies, test benches, auxiliary files of test vectors, and con-
figuration declarations, should be stored in the directory for
that component.

7-4 TEST VECTOR DEVELOPMENT

Test cases for VHDL models fit into two categories. The
first category, which is supported by WAVES, specifies the
tests needed to demonstrate the functionality of the physical
device represented by the VHDL model. The second catego-
ry of testsdemonstratesthat the VHDL model aso meetsthe
requirements of the DID, e.g., by providing error messages
upon detection of timing and electrical faults. This category
of test isnot supported by WAVES. Although the contractor
isresponsible for test vectors that test both the functionality
of the model and the physical hardware, the contractor, an
independent model verifier, or the Government is responsi-
blefor creating test vectorsthat verify that the VHDL model
complies with the properties required by the VHDL DID.

7-41 BEHAVIORTESTS

Subpar. 10.2.5 of the VHDL DID (Ref. 1) requires that
the test vectors supplied with the test bench test the intended
behavior of the MUT. These functional tests must be equiv-
alent to the physical tests performed on the physical device.
These behavior tests should verify that the models act the
same as the physical device on startup, on recovery from er-

Geoffrey Frank, Research Triangle Institute

4 input chip

updates every pin in every file slice

Figure 7-6. Example WAVES External File

7-10



Downloaded from http://www.everyspec.com

MIL-HDBK-62

rors, prior to an enable, and during arestart. The test vectors
developed to test the behavior of aVHDL model should de-
termine whether the VHDL model omits any functions spec-
ified for the hardware. The test vectors should also
determine whether the VHDL model incorrectly implements
any specified functions. These tests verify that the results
produced by the model are consistent with the specification
for the physical hardware and should not differ significantly
from the results produced by the physical hardware. The ac-
ceptable tolerance for deviation between the timing and val-
ues of responses generated by the MUT and the expected
responses should be specified as part of the test sets. For ex-
ample, WAVES allows don’t care as the value for expected
responses and allows tolerances to be specified for the tim-
ing.

Subpar. 10.2.3.3 of the VHDL DID requires that the val-
ues of signals depending upon the structure of the hardware,
e.g., ascan path, be absent from behavioral bodies. A recom-
mended approach to describing such functionsin abehavior-
al model is that the behavioral body should respond with a
note-level assertion indicating that the structure determining
the signal value is not implemented in the model when the
system isplaced in amodein which valid output is expected
on a structurally dependent output signal and that any valid
signal value should be generated. This approach alows
functional tests of the processing of structurally specific BIT
data but does not provide feedback on quality measures of
the BIT implementation, such as coverage. This approach
also allows tests of the diagnostic modes of a system to be
developed early in atop-down development process and re-
fined as the design detail is added.

For structural models the behavior tests should test that
the diagnostic and test modes of the system, such as scan
paths, have been implemented correctly. If structural models
are available, it should be possible to verify estimates of
BIT, such as coverage. In atop-down development process
the structural models are not available until late in the devel-
opment process.

7-4.2 PROPAGATION DELAY TESTS

It is strongly recommended that atest bench submitted to
the Government include test vectors that test the intended
propagation delay from the inputs to the outputs of the
MUT. Propagation delay tests must provide information on
best-, worst-case, and nominal delays to ensure the design
will operate as required throughout the operating range.
These test vectors and their associated test benches should
provide mechanisms to compare the delays reported by a
VHDL simulation with the delays measured on a physical
device. For simple devices these test vectors can be created
by hand. For example, theworst-casetiming for aripple-car-
ry adder occurs when the carry signal ripples through all
stages. Similarly, the best-case timing occurs when no carry
occurs between any stages. Critical path analysis may be
used for more complex systems to determine the best- and
worst-casetimes. Sensitivity analysismay be requiredto de-
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termine how changes in the input test vectors change best-
or worst-case delay times. Nominal delays may require
some statistical analysis of input signal patterns.

As noted in subpar. 5-4.4, variations in environmental
factors such as power, voltage, and temperature should be
considered when defining best- and worst-case delay times.
If best-case, nominal, and worst-case delay times are defined
for a range of environmental conditions, the tests should
check the extremes of the ranges. If best- and worst-case de-
lay times are dependent upon specific environmental condi-
tions, the test bench that tests these times must specify the
appropriate environmental factors. To obtain tests that re-
flect best- and worst-case delay times, it may be necessary
to run tests on several combinations of environmental con-
ditions. For example, the best-case times may occur when
the component isrun in alow-temperature, high-voltage en-
vironment. The worst-case times may occur when the com-
ponent is run in a high-temperature, low-voltage
environment. From these tests, test vectors for best- and
worse-case timing that reflect arange of environmental con-
ditions can be extracted.

Propagation delay testsfor high-level models of program-
mable electronic systems depend not only on the physical
environment but also on the software executing on the hard-
ware (Ref. 12). Performance models, described in subpar. 2-
2.2.1, are often used to compute propagation delaysin these
types of systems. Very often mixed-level-of-abstraction
models are used. (The processors are modeled at a very ab-
stract level, and the system interconnection hardware is
modeled at adetailed level.) It isvery difficult to obtain test
data to drive propagation delay tests for high-level models,
anditisdifficult to verify that the best- and worst-case times
are what they are claimed to be. Annotation of test data ex-
plaining why a certain test configuration and input data pro-
duce worst-case timing is an important part of the
documentation. An important source of such test dataistests
of previous systems or regression test data that capture se-
guences of events that have caused trouble during integra-
tion and test of the system. If such data is obtained, the
source of the data and the reason for inclusion in the test set,
e.g., reference to a specific problem report, should be docu-
mented.

7-4.3 ERROR CONDITION TESTS

A complete test suite must test that the model responds
appropriately toinvalid usage. Error condition tests promote
effective reuse of the components by warning the user of the
model if the planned use violatesthe operating constraints of
the model.

Subpar. 10.2.6 of the VHDL DID (Ref. 1) specifies the
minimum contents but not the format of error messages.
Each error message must identify the requirement or con-
straint that has been violated and the name of the VHDL de-
sign unit in which the error occurred, i.e.,, where the
violation was detected. In some cases static analysis of the
VHDL code may be sufficient to determine whether amodel
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meets these conditions. In other cases, tests may be required
to determine whether error messages provide this informa-
tion. For example, astatic analysis can determine whether an
assertion statement in a design entity interface identifies its
enclosing design entity. However, a test may also be re-
quired to determine whether the assertion statement correct-
ly identifies the component instance in which the error
occurred.

7-4.3.1 Invalid Operating Condition Tests

Subpar. 10.2.2.2 of the VHDL DID (Ref. 1) requires that
external error conditions on a MUT, such as electrical con-
straint violations and timing violations, should be reported.
If the operating conditions are static and are not changed by
elaboration of the VHDL model, a static analysis should be
sufficient. However, if the operating conditions for an entity
are determined by calculations made during elaboration,
e.g., if the operating conditions are computed from generics,
tests may haveto be performed to determine whether invalid
operating conditions are checked by the model. If, however,
the operating conditions vary as afunction of the test inputs,
the test vectors will have to be more complex. In either of
these cases it is important that the test vectors used to pro-
duce reports of invalid operating conditions be linked to the
configuration declaration (or equivalent documentation),
which specifies the generics that cause the error message.

7-4.3.2 Invalid Input State Tests

VHDL models should be robust enough to respond appro-
priately to invalid states of input signals. The VHDL model
verification procedure (Ref. 7) recommends tests of the abil-
ity of the VHDL model of the MUT to respond to invalid in-
puts. These tests must be either delivered with the model or
developed by the verifier. Invalid states of input signals
would include error values associated with the input data
types. For example, the' U and ' X' values of the IEEE
1164 (Ref. 2) standard logic package can be considered in-
valid input states. A set of test vectors that contains invalid
input values for the MUT should be provided. These tests
are part of ensuring that a VHDL model of a component is
interoperable with VHDL models of other components.
They are also used to ensure that invalid inputs are properly
propagated through the model.

Invalid input state tests are particularly important if the
model of the component will be used in amixed-level-of-ab-
straction model of a system, in which these tests can be used
to verify the robustness of the type conversion functions. In
particular, if the type for aport can express unknown, unini-
tialized, or don’t care values, the model must react appropri-
ately to those values either by issuing awarning or an error
message or by propagating the error value through the sys-
tem. If error values are not properly propagated, the user
may not be able to isolate design faults in systems using the
MUT as a component.

Itisagood design practice to provide modelswith the ca-
pability to warn the user when invalid inputs occur. If thein-
valid input indicates a design error, these warnings can be
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used to isolate the error to another component. However,
sometimes an assertion statement on an input port may pro-
duceafaseaarm. If aninvalid value occurs on aninput port
that iscurrently adon’t careinput to the function of the com-
ponent, then an error message produced at the input port
would be afalse alarm. In such situations the user should be
able to mask these messages by setting a simulation option.

IEEE Std 1164 (Ref. 2) extends the basic logic values of
"0" and ' 1' toinclude additional signal states, such as
' X' forunknownand' U for uninitialized. The definition
of this set of logic valuesis shown in Fig. 3-7. The standard
alsoincludes definitionsfor all of the basic logical operators
that cover propagation of error inputs including unknown,
uninitialized, and don’t care values. Fig. 3-12 shows how the
logical AND function has been extended to handle invalid
signal states. A logic state of * U for one input propagates
to the output in every case except when the other input is
' 0" . Similarly, alogic stateof ' X' for oneinput propagates
to the output in every case except when the other input is
"0" or' U .Modelshuilt using theselogical operation def-
initions handle any standard logic input consistently. The
IEEE Std 1164 also includes a definition for a resolution
function that handles error propagation as described in sub-
par. 3-2.3.2.

Using |EEE Std 1164 typesis an effective approach to de-
tect invalid input statesin gate-level models. To support use
in mixed-level-of-abstraction models, high-level models
must also be able to deal with unknown, uninitialized, and
don’t care inputs by either generating an error message or
propagating appropriate values to the output ports. For ex-
ample, consider a test bench for a bus interface module
(BIM). Suppose that the bus consists of three subsignals: a
control signal, an address signal, and a data signal. During
arbitration for control of the bus (which involves exchanges
of information on the control signal), the BIM may receive
and generate don't care values on the data signal. When an
input data signal arrives with an unknown value for one bit,
the BIM should not propagate this value to the control sig-
nal, but it may generate an error message to indicate that it
has received abad input signal. However, this unknown val-
ue may not represent a design error, so it should be possible
for the user to turn off the error message. On the other hand,
during data transmission the occurrence of an unknown val-
ue on the data signa does represent an invalid input and
should cause an error message and propagation of the error
value across the bus. This example indicates that error prop-
agation is data dependent, which meansthat test data are re-
quired to ensure that invalid values are propagated when
they should be propagated and that the model does not gen-
erate false alarms by propagating invalid values when it
should not.

7-4.3.3 Timing Constraint Violation Tests

VHDL models delivered to the Government should be
tested to ensure that they create error messages whenever
timing violationsoccur. Thistesting can be performed at two
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levels: by statically checking that timing constraints have
been declared and are used in the model and by creating test
vectors that force a range of timing violations. One simple
form of such atest isto increase the setup and hold timesun-
til errors occur. A more interesting test is to increase the
clock speed. (This test can, of course, be performed only if
the clock isasignal external to the hardware component be-
ing modeled or if the clock generator can be externally con-
trolled.) This test may cause a range of timing errors that
should be reported by the model. The VHDL model verifi-
cation procedure recommends that if the devel oper does not
supply test vectors that

1. Violate the timing and voltage specifications

2. Attempt to perform illegal model operations

3. Test the functionality of the unit at its operational
limits,
the verifier should develop and apply them.

Both the EIA 567 standard (Ref. 5) and the VITAL stan-
dard (Ref. 4) include timing violation checks in the VHDL
packages that implement their standards.

TheEIA 567 timing violation works with two genericsre-
quired for each entity: MGENERATI ON, which isused to de-
termine whether messages are to be generated whenever
violations are detected, and XGENERATI ON, which is used
to determine whether the unknown value* X' should be as-
signed to any signal at which atiming violation is detected.
When MGENERATI ON is TRUE, messages are generated
through assertion statements or are written to files using
TEXTI Ofunctions. If both MGENERATI ON and
XGENERATI ON are FALSE, no timing checks are per-
formed. These two generics should be set at simulation time.
The VITAL package aso provides simulation options to
control the generation of messages and the performance of
timing checks.

7-4.4 INTEROPERABILITY TESTS

Tests to ensure interoperability should verify that all
VHDL design entities correctly processtest vectors contain-
ing representative combinations of datainput values, includ-
ing error values, uninitialized values, and don’t care values.
Tests to ensure interoperability should also verify that all
VHDL design entities correctly process any environmental
and physical data including data inside and outside the ac-
ceptable ranges for the components of the system; the mod-
els should produce appropriate timing and delay values
dependent on these environmental conditions. Finally, tests
to ensureinteroperability should verify that the model ispor-
table over some range of simulation environments. Portabil-
ity test values may be selected based on differences in
representation of datatypesin different simulation environ-
ments. Portability tests may a so include tests of simulation
control options. Portability issues include directory, path,
and file-naming conventions. If model portability is impor-
tant, the range of target environments on which the model
needsto be tested should be specified. If model portability is
not a primary concern, verification that the model iswritten
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in standard VHDL may suffice. For example, if the model is
to be archived when delivered, the model should operate
correctly at least in the archive environment. Similarly, if the
model is going to be validated through analysis and simula-
tion (as opposed to just inspected), the validation environ-
ment should be specified in a tailored DID. In general,
ensuring portability to future environments is not possible.
However, ensuring that the model has been written in IEEE
Std 1076 VHDL (Ref. 6) provides agood basis for portabil-
ity.

7-45 ORGANIZATION AND DOCUMENTA-

TION OF TEST VECTORS

To obviate documentation and traceability problems, the
test vectors should be divided into separate files, and each
file should address a specific set of requirements. The test
bench should label the output so that examination of the re-
ports generated by the test bench indicates the environment
assumptions, the hardware model configuration, and the test
vectors used in the run. This can be accomplished if the en-
vironmental assumptions, the hardware model configura
tion, and the test vector file name(s) are defined by a
configuration declaration and the test bench prints the name
of the configuration declaration. This use of a configuration
declaration is discussed in par. 7-5.

The test bench and the test vector files should be com-
mented to show their purpose. As shown in Fig. 7-5,
WAVES (Ref. 10) allows commentsin external files. VHDL
model files, including design entities and test benches,
should have header comments at the front of the file. The
following format for header comments has been tailored to
deal with test vector sets:

1. Design Unit Name Identifier. This should indicate
the corresponding test bench and the VHDL name of the
MUT.

2. Identification of Originator or Source. This should
name the person responsible for creating the test vector set
and also the corporate source if the originating person is an
employee.

3. DoD-Approved Identifier. If an identifier for the
physical hardware exists, it should be used for thisfield. If
the physical hardware does not have an identifier, the spon-
soring agency for the VHDL code development should cre-
ate an identifier.

4. Revision History. At a minimum, indicate whether
the test vector set has been delivered before. If it has, indi-
cate

a. The dates of therevisions

b. Theindividua and organization making the revi-
sion

¢. The purpose of the revision

d. The part of the test vector file modified.

5. Test Vector Set Purpose. This part of the header
comment should relate the test vectors back to requirements
stated in the VHDL DID or to functional or timing tests
specified for the physical hardware.
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6. General Approach. This part of the header com-
ment should deal with issues such as timing tolerances al-
lowed for the comparison of MUT responses and expected
responses. This section should also indicate how the test
vectors were generated: Are they randomly generated ac-
cording to adistribution, hand coded, or automatically gen-
erated by an automatic test pattern generator (ATPG)?

7. Additional Information for Users. This part of the
header comment should include information about how to
modify the set of test vectors in response to changesin the
module design or how to adapt the test vectors to different
environments.

8. Redlrictions. This part of the header comment
should describe restrictions on the use of the test vector set
and identify any part of the test bench or modul e description
that, if changed, would make the set of test vectors ineffec-
tive.

9. Assumptions. This part of the header comment
should describe assumptions made during creation of the
tests.

10. Previous Approval. This part of the header com-
ment should indicate whether the test vector set has been ac-
cepted previously by the DoD.

7-5 USE OF CONFIGURATION DECLA-
RATIONSTO INSTANTIATE THE
TEST BENCH FOR A MODEL

To be prepared for simulation, the model must be config-
ured from apotentially complex database that containsthese
items:

1. At least one test bench for the model

2. One or more sets of test vectors

3. At least one architecture body for the model

4. At least one design entity for each component in-
stantiated in the model

5. Optional packages specifying global data types,
constants, and subprograms

6. One or more configuration declarations configuring
the model or pieces of it.

VHDL allows a great deal of flexibility in configuring a
specific model for simulation. A configuration declaration
can be used to

1. Select libraries to be used as sources for packages
and design entities. This choice allows the compilation units
to be collected into libraries.

2. Select architecture bodies for components. VHDL
allows several architecture bodies to be associated with a
single entity interface. Through the use of configuration dec-
larations or configuration specifications, an appropriate ar-
chitecture body can be selected for each component
instance.

3. Specify values for generics. Defining the values of
key genericsin aconfiguration declaration provides an audit
trail to the values and makes the simulation repeatable.

4. Define port maps, particularly to specify type con-
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version functions. The combination of the selection of archi-
tecture bodies and the choice of type conversion functionsis
akey part of the construction of amixed-level-of-abstraction
model from a design database in which components are
modeled at multiple levels.

Effective use of configuration declarations can provide
significant assistance in the configuration management of
models. However, care must be taken to centralize the late
binding decisions in the configuration declaration rather
than distribute this information throughout the different
compilation units. For example, if the sametest bench can be
used with different external datafiles, the names of the data
files should be defined in the configuration declaration rath-
er than in the architecture body of the design entity that reads
thefile.

The purpose of the model affects decisions about what as-
pects of the model can be changed in a configuration decla-
ration. For example, during the design of an ASIC, when the
timing parameters are changing frequently as the layout of
the circuit changes, the VITAL (Ref. 4) approach of using
generics for the timing is appropriate. If a VHDL model of
the ASIC is built as documentation after the design is com-
plete, then the validated timings may be permanently bound
into the VHDL architecture body of the ASIC model. Thisis
a situation in which configuration specifications may be
made in an architecture body rather than in a configuration
declaration. Configuration specifications are typically used
in an architecture body to specify amore permanent binding.

During the specification and design of a VHDL model,
decisions must be made about what aspects of the model are
likely to change and what aspects are not likely to change,
and these decisions should be reflected in the organi zation of
the VHDL code. These decisions should be made by consid-
ering the way the model will be configured for simulation.
For example, if the model is to be simulated severa times
during testing, the different configurations required for test-
ing should be considered.

7-5.1 SELECTION OF ALTERNATIVE DE-
SIGN LIBRARIES

Selection of appropriate design librariesis a key step in
preparing a model for ssmulation. Alternative design librar-
ies provide a mechanism to encapsulate information about
technology or common data types, constants (such astiming
constants), and functions (such as derating functions) in
packages. Alternative design libraries also provide away to
describe alternative implementations of design entities to-
gether with the packages of data types and constants appro-
priate for the elements of that library. For example, in
subpar. 7-3.1 different libraries for different ATE systems
are suggested for WAVES (Ref. 10).

VHDL constrains the way deferred constants can be used
to define values for globa parameters. Within a single li-
brary each package declaration has at most one body. Thus,
if different values are required for deferred constants, pack-
ages with the same interface but different bodies must be in-
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stalled in different libraries. Alternatively, the package body
can be reanalyzed between simulations. This approach has
the disadvantage that the different sets of valuesfor the con-
stants are not maintained in the VHDL libraries but must be
maintained as source code files. Thus they create another
level of configuration management.

7-5.2 SELECTION OF ALTERNATIVE AR-
CHITECTURES

Selection of appropriate architecturesisakey stepin con-
figuring aVHDL model. A single entity interface can have
several associated architecture bodies. Different architec-
tures can represent different implementations of the same
entity interface, so selecting an architecture is a means of
trading off or evaluating alternative implementations. Dif-
ferent architectures may represent different levels of ab-
straction of a design entity, so selecting an architecture
determines the level of abstractions to be used for a particu-
lar component. Subpar. 10.2.1 of theVHDL DID (Ref. 1) re-
quires both behavioral and structural modelsfor all modules
that are not leaf modules. Therefore, selecting an architec-
ture for each component is an essential step in configuring a
DID-compliant model for simulation.

7-5.3 BINDING OF GENERICS

Defining the value of genericsisanother important stepin
preparing a model for simulation. Generics can be assigned
values hierarchically: a parent structural architecture re-
ceives values of generics, computes the values of the gener-
ics of its components, and then assigns those values to the
componentsthrough ageneric map. This process can be con-
tinued down the hierarchy so that vaues trickle down
through the design hierarchy. Generics can be assigned val-
ues in architectures or in entity interfaces, which is an early
binding of values.

Generic constants provide a way for the late binding of
parameter values through the use of configuration declara-
tions. These constants are particularly valuable for setting
the value of tradeoff parameters or parameters used in sensi-
tivity analyses. Generic constants can be used in combina-
tion with constants declared in packages, and afew may be
used to determine the values of many model characteristics.
For example, in EIA 567 (Ref. 5) a single generic constant
is used to select among minimum, nominal, and maximum
timing options. The value of this constant can be used to
look up timing information stored in a table or tables; the
values selected from these tables may set many timing val-
ues. Alternatively, a generic constant may be a complex
structure containing the values for many model parameters.
The latter approach is the preferred mechanism for back an-
notation, particularly if the tables of parameters cannot be
precalculated.

EIA 567 (Ref. 5) requiresthat at least aminimal set of ge-
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nerics be provided for each design entity. VITAL (Ref. 4)
also uses generics to provide control. The parameter

Ti m ngChecksOn activates timing checks and the
VITAL parameter XGener ati onOn performs a similar
function to the EIA XGENERATI ON parameter. A VITAL-
compliant  model uses generics to implement
back-annotation of timing information. VITAL has estab-
lished a mapping mechanism between standard delay format
(SDF) information and the names of ports and generics of a
design entity. This mapping assumes a specific naming con-
vention consistent with the SDF file.

7-5.4 PORT MAPPING

As discussed in subpar. 7-2.2, the use of type conversion
functions may be required to construct mixed-level-of-ab-
straction models and aso to configure models that are not
immediately interoperable. The port-mapping capabilities of
VHDL configuration declarations allow these conversions
to be specified without rewriting and reanalyzing the VHDL
source code for the two components being connected.

Type conversion functions may be specified in port maps
in architecture bodies as well as in configuration declara-
tions. The use of type conversion functionsin the configura-
tion declarations separates the configuration issues from the
interconnect issues and allows more reuse of structural ar-
chitecture bodies without reanalysis.

7-6 DEFINITION OF SSIMULATOR OP-
TIONS

A VHDL model has been configured when all component
instances are bound to specific design entities. During the
binding of VHDL component instances, the modeler has
also selected test bench design entities that will drive the
simulation. Selection of the test bench design entities deter-
mines some of the simulation parameters, but other deci-
sions still need to be made.

The mechanisms used to control simulation are not spec-
ified in the VHDL Language Reference Manual (Ref. 6).
Some simulators allow these parametersto be set asapart of
the simulation. In other cases these simulation parameters
may haveto beincluded in a package body dedicated to sim-
ulation control, and others may have to be specified as ge-
nerics in configuration declarations. The option to set
simulation parameter values in configuration declarationsis
strongly preferred over entering them manually during elab-
oration of the model. Simulations requiring manually en-
tered parameters are not automatically reproducible and are,
therefore, less valuable as elements of a test suite. Manual
entry of parameters can be very time-consuming when abat-
tery of testsis conducted. The following subparagraphs de-
scribe some of the parameters that need to be set and some
possible ways of controlling them.
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7-6.1 CONTROL OVER ENVIRONMENTAL
PARAMETERS

Subpar. 10.2.2.3 of the VHDL DID (Ref. 1) mandates
capture of physical and electronic parameters of the hard-
ware, such as temperature range, power dissipation, and ra-
diation. The same subparagraph encourages the use of
packages to describe common operating conditions across
components of the hardware system. Subpar. 10.2.3.2 of the
DID recommends the use of timing modelsthat consider en-
vironmental parameters, and subpar. 10.2.2.2 requires error
messages to be generated when the values of these parame-
ters are outside their acceptable range.

Each simulation has a particular value for each of these
environmental parameters. These parameters are best de-
clared in packages, such asthe physical and electrical views
described in EIA 567 (Ref. 5). The values of these parame-
ters should be defined in the corresponding package bodies.
Thus the parameters become deferred constants. When the
values of deferred constants are changed for a particular
simulation, only the body of the package needs to be reana-
lyzed; the VHDL design units that use the package need not
be reanalyzed. Thus the use of deferred constants for simu-
lation parametersis strongly recommended.

The VITAL standard (Ref. 4) does not include environ-
mental parametersin its models. Instead, it requires that all
computations of delay times be performed externally to the
model and imported either as generics or SDF files.

7-6.2 SELECTION OF DELAY TYPES

One important simulation option is selection of the type
of delay to be used in the simulation. Subpar. 10.2.3.2 of the
VHDL DID (Ref. 1) requires VHDL modelsdelivered to the
Government to support at least three timing delay options:
worst-case, best-case, and nominal. The VITAL standard
(Ref. 4) and EIA 567 (Ref. 5) have different approaches to
the selection of timing information.

ElA 567 defines a data type, called
oper ati ng_poi nt _t ype, which isan enumerated type
with three values: i ni mrum nomi nal , and maxi num
Each entity interface must have a generic constant of type
oper ati ng_poi nt _t ype. The value of this generic is
used to select the timing model used within the model.

The VITAL standard requires all timing calculations be
performed “ off-chip”. All |oad-dependent or environmental -
ly dependent timing data are calculated outside the VITAL
model and then provided to it as actual values to the model
via generic maps or a standard delay format. The DID re-
quirement can be satisfied for a VITAL model with three
separate configuration declarations, each including generic
maps with different values, or through three separate SDFs.

Generics should be used when different values of simula-
tion options are used in different parts of the model, particu-
larly when different instances of the same component model
require different values. These simulation options can be
used directly in the behavioral architecture of the leaf mod-
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ules of the simulation, or they may be passed down to the
leaf modules through generics.

7-6.3 CONTROL OVER EXECUTION OF AS
SERTIONS

Subpar.10.2.2.2 of the VHDL DID (Ref. 1) requires error
messages to be generated by models when conditions such
asviolations of setup and hold time constraints occur. Con-
current assertion statements are a hatural mechanism to sup-
port such tests. However, because these assertions are
checked whenever any signa referenced in the assertion
condition changes value, simulation of a model with asser-
tions can be much slower than simul ation without assertions.

Both VITAL (Ref. 4) and EIA 567 (Ref. 5) use multiple
generics to control error handling. In EIA 567 these are
called MGENERATI ON and XGENERATI ON (See subpar.
7-4.3.3.). The VITAL standard uses two generics,

Ti m ngChecksOn and XGener ati onOn.

For models at higher levels of abstraction, either new ge-
nerics must be defined for control of assertions or the exist-
ing generics must be reinterpreted for the needs of more
abstract models. The latter approach is probably better suit-
ed to modeling at mixed levels of abstraction.

7-6.4 CONTROL OVER PROPAGATION OF
UNKNOWN SIGNAL STATES

IEEE Std 1164 (Ref. 2) defines the propagation of un-
known valuesinitsdefinition of itslogic functions. Both V-
TAL (Ref. 4) and EIA 567 (Ref. 5) standards follow |IEEE
Std 1164 in supporting the propagation of unknown signal
states. However, the VITAL and EIA 567 standards differ in
the approaches they take to convert the detection of timing
errors into reports and to generate unknowns.

The VITAL standard includes a timing check procedure
called Vi t al Ti m ngCheck. This routine is overloaded
so that the output variable Vi ol at i on is either of type
BOOLEAN or of type X01. If the Vi ol at i on variableis of
type BOOLEAN, thenit can beused inan | F statement or an
assertion statement. If the Vi ol at i on variable is of type
X01, then it can be ored with a variable of the
st d_ul ogi c typeto propagate the error. VITAL does not
support generation of unknown signal states without the as-
sociated generation of error messages, so it should awaysbe
possible to determine where an unknown value is generated.
VITAL addressestheissues of simulation speed through the
use of native mode implementations of logic primitiveswith
timing checks rather than through the elimination of timing
checks. Although VITAL includes VHDL source code de-
scriptionsof its primitivelibrary and timing check functions,
it assumes that the simulation vendors will implement these
primitives as an integral part of their simulators. Thus the
VHDL source code is intended as an executable specifica
tion.

EIA 567 does not include any timing check routines as
part of the standard package; definition of these routinesis
left to the user. EIA 567 does require that error checksbein-
cluded in EIA-567-compliant models. If the EIA 567 gener-
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ic XGENERATI ON is TRUE, then when a timing error is
detected, an unknown signal state is output. EIA 567 re-
quires timing checks to be suppressed during simulation
when both the XGENERATI ON and the MGENERATI ON ge-
nerics are FALSE.

Asin the case of control over the execution of assertions,
models at higher levels of abstraction should define new ge-
nerics for control over error propagation or reinterpret the
VITAL and EIA 567 generics. In subpar. 7-2.2 support for
error propagation through the use of type conversion func-
tions in mixed-level-of-abstraction models is discussed.
Those type conversion functions could be adapted to take
into account the XGENERATI ON generic. A configuration
declaration could select the appropriate type conversion
function based on the value of the XGENERATI ON generic.
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CHAPTER 8
MODELING TESTABILITY WITH VHDL MODEL S

The modeling of testability information using VHDL, testability measures, and techniques is described. A hier-
archy and the functions of test components are described, and the IEEE Stds 1149.5 and 1149.1 test interfaces are
discussed. The use of behavioral modeling is recommended to verify that the test bus and test controller systems
interface correctly without regard for the contents of the information sent across the bus. The use of detailed struc-
tural modelsisrecommended as the starting point for generation of built-in test structures, such as boundary scan.
This chapter emphasizes that detailed structural models are necessary to evaluate many testability measures.

8-1 INTRODUCTION

Thevery high-speed integrated circuit (VHSIC) hardware
description language (VHDL) Data Item Description (DID)
(Ref. 1) requires two kinds of models: behavioral and struc-
tural. The VHDL DID also states specific requirements for
the modeling of testability in both of these models. Testabil-
ity isany design characteristic that contributesto fault mask-
ing, detection, isolation, or containment. Subpar. 10.2.3 of
the VHDL DID requires, “Test and maintenance functions
which are part of the physical unit and are available to the
user shall be included in the behavioral body.”. However,
the VHDL DID dtates in subpar. 10.2.3.3, “Signal values
which are dependent upon a particular structural implemen-
tation, such as scan path signatures, shall not be specified in
the behavioral module.”. One of the purposes of this chapter
is to recommend methods to meet both of these require-
ments, which may at first seem to be contradictory. The crux
of the issue is the extent to which test and maintenance fea-
tures can be described in amanner that isimplementation in-
dependent because the goal of aVVHDL behavioral model is
to provide the user with amodel that is free of implementa-
tion dependencies. Such models can be used as the specifi-
cation for multiple implementations.

Test and maintenanceissues are critical to specifying how
detailed a VHDL structural model must be to meet VHDL
DID requirements. Subpar. 10.2.4 of the VHDL DID re-
quires, “ Structural bodies shall represent the physical imple-
mentation accurately enough to permit logic fault modeling
and test vector generation. Structure which is created to sup-
port testing and maintenance such as scan paths shall be in-
cluded in the VHDL structural description.”. This chapter
discussesthelevel of detail required in astructural model to
support this requirement based on the standard fault models
used for test vector generation.

8-2 PURPOSE AND SCOPE OF DESIGN
FOR TESTABILITY

Testability features of electronic systems include fault
masking, detection, containment, or isolation. Fault detec-
tion and isolation are critical to maintenance of military
electronic systems. A major function of hardware mainte-
nance is the detection and isolation of a fault to a line-re-

placeable unit (LRU) and subsequent replacement of the
LRU. From the Government point of view, the primary goal
for modeling testability and fault tolerance circuitry in
VHDL modelsisto validate that a design provides the test-
ability required to maintain fielded systems. Testability isan
aspect of design for maintainability.

In a fault-tolerant system either faults are automatically
masked so that they cannot corrupt the system or the system
provides automatic fault detection, isolation, and recovery
(FDIR). FDIR reconfigures the system by switching in a
built-in spare in place of the faulty subsystem. Design for
testability of a fault-tolerant system must support FDIR.
Fault containment circuitry is used to prevent corruption of
data outside the LRU, especidly outside the digital part of
the electronics. For example, failure of flight control circuit-
ry should not cause sudden, drastic changes in the control
surfaces of awing.

The scope of design for testability includes fault models,
hardware design models, test strategies, and test techniques.
This chapter focuses on the stuck-at-zero (SA/0) and the
stuck-at-one (SA/1) fault models, particularly for use with
logic-level structural models. Other, more complex models
are appropriate for more detailed electronic hardware mod-
els, such as switch-level models. High-level behavioral
VHDL models and logic-level structural VHDL models of
the hardware are considered.

8-3 TESTABILITY DESIGN ISSUES

During design for maintainability the system must be par-
titioned into physical components referred to as LRUS,
which can be tested and replaced as necessary at appropriate
logistical levels, e.g., inthefield or at the depot.

Once the replaceabl e units have been identified, appropri-
ate fault detection and isolation strategies must be selected
and techniques chosen to implement those strategies. The
testability design must provide the fault detection and isola
tion strategies required by the maintainability design.
VHDL can provide the ssimulation capabilities necessary to
assess the success of the fault detection and isolation strate-
gies.

A critical issue of the testability design iswhat are the ac-
ceptable measures of cost and effectiveness, both for the
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tests themselves and the additional circuitry and equipment
necessary to implement the tests. Subpar. 8-3.2 describes
measures of cost and effectiveness and indicates the infor-
mation needed to estimate those measurements. The result-
ing cost information may be back annotated into the VHDL
model to alow reassessment of design decisions made as
part of design for testahility (See par. 8-6 for annotation.).

8-3.1 TEST STRATEGIESAND TECHNIQUES
FOR MAINTENANCE AND FAULT
TOLERANCE

Fig. 8-1 shows ataxonomy of design for testability strat-
egies. Thistaxonomy can also be used as a decision tree for
the selection of test strategies. Test strategies can be divided
into on-line and off-line approaches. On-line test strategies
includeall strategiesthat allow the system to provideits nor-
mal services while testing occurs. Off-line test strategiesin-
clude all strategies that require the system to suspend its
normal services in order to perform test functions. On-line
approaches can be divided into concurrent and background
processing. Concurrent strategies are those for which the test
functions are carried out concurrently with the normal func-
tions of the test component. Background strategies are those
that require the component being tested to suspend its nor-
mal processing, even though the system as a whole contin-
ues to provide its normal services. Background tests are

typically scheduled when the component isidle, or they are
scheduled as background tasks to be performed by the pro-
cessor and compete at a low priority with other tasks as-
signed to the processor. Because on-line processing occurs
while the system isin service, it uses primarily built-in test
techniques, in which the test functions are provided by the
system.

Off-linetest strategies are designed to support fault detec-
tion and isolation while the system is not in service. These
strategies may either employ built-in test techniques or ex-
ternal test equipment. Off-line, built-in test techniques are
the same as those used in nonconcurrent background testing.
Off-line, built-in test features of avery large-scaleintegrated
(VLSI) circuit may be used both for off-line testing of the
complete LRU and for nonconcurrent, background testing of
the circuit while the rest of the LRU is till on-line. Design
of test strategies for external testing depends upon the selec-
tion of the interface with external test equipment. External
testing strategies also emphasize how the information col-
lected during testing is presented to the field or depot main-
tenance technician.

External test strategies focus on the choice of automatic
test equipment, on the partitioning of responsibilities be-
tween built-in test equipment and external test equipment,
and on the interface between the built-in test (BIT) and au-

Design for Testability Strategies

Concurrent Background
|| Hardware I | Structural
Redundancy Testing
Data Functional
] Redundancy —  Testing
Time
—| Redundancy

Built-In External
Structural | | Standard
Testing Test Interfaces
Functional Dlagr_lqstlc
L] Testing L_| Decision
Support

Figure 8-1. A Taxonomy of Design for Testability Strategies (Ref. 16)
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tomatic test equipment (ATE). WAVES (Ref. 3) provides a
means of expressing test vectorsin aform that can be used
by multiple ATE vendors. WAVES is also used to design
VHDL test benches, and it is recommended by MIL-
HDBK-454 (Ref. 4).

Diagnostic decision support strategies relate to the parti-
tioning of responsibilities between BIT and ATE. One im-
portant aspect of this partitioning is deciding which
equipment isgoing to log the test information and how much
information isto be preserved. At thelowest level, BIT tech-
nigues such as signature analysis and circular self-test re-
duce the amount of data that needs to be stored. With or
without data compression, a lot of information has to be
maintained. ldeally, maintenance personnel would like to
know everything about the state of the hardware just before
the fault occurred. During design for maintainability, how-
ever, tradeoffs must be made to balance the need for thisin-
formation with the space, sensors, and circuitry required to
capture the information.

Different test strategies are needed for different compo-
nents of a hardware system. For example, a concurrent test
strategy, e.g., acoding technique such as parity or Hamming
code, istypically used to test the busses and memories of an
electronic system. A nonconcurrent strategy, e.g., a scan
path technique such as level-sensitive scan design (LSSD),
may be used for the arithmetic and logic unit (ALU) of the
same system. The testability design of the system must ad-

dress how these component (e.g., bus, memory, or ALU)
testing techniques can be integrated into the test strategy for
an entire system consisting of many components.

8-3.2 TESTABILITY MEASURES

Measures of the testability of a design are critical to en-
sure that cost-effective testability features have been intro-
duced into the design. Testability measures must be assessed
in terms of the following issues:

1. What isthe cost of evaluating the measure?

2. What system testability techniques and strategies
are effectively evaluated by the measure?

3. What types of models (particularly structural or be-
havioral) are required to allow accurate estimates of a mea-
sure?

4. What types of tools and procedures are currently
availableto evaluate ameasure? What VHDL models can be
used to provide this information, or which VHDL models
should be annotated with analysis results from external
tools?

Fig. 8-2 shows a taxonomy of testability measures. The
top-level division is between performance and cost mea-
sures. The second-level split isbetween spatial and temporal
measures, with the concept of fault isolation measures also
being applied to the performance measures. Watterson et al
(Ref. 5) provide more detail on the techniques used to esti-
mate these measures.

Testability
Measures

Performance Cost
Spatial Temporal Fault Isolation Spatial Temporal
L Fault Error Ambiguity Area Test Time
Coverage Latency Group Size Overhead
Fault Parts Count
Latency Overhead

Figure8-2. A Taxonomy of Test Measures
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8-3.3 TEST STRUCTURE BOUNDARIES
Subpar. 10.2.1 of the VHDL DID (Ref. 1) requiresthe hi-
erarchy of VHDL design entities in a model to reflect the
physical design hierarchy of the hardware being modeled.
Fivelevelsin atypical physical design hierarchy are shown
in Table 8-1: system/subsystem, LRU, fault containment re-
gion (FCR), board, and integrated circuit. The LRU level is
the critical physical partitioning from the maintenance point
of view. Levels above the LRU are involved in diagnosing
problems within LRUs and with isolating faults to specific
LRUs. Fault containment regions are not necessarily physi-
cal boundaries, but they are important electrical boundaries
for fault-tolerant systems. Table 8-1 describes the test func-
tions associated with each of these levels and the corre-
sponding test components and their interfaces and provides

alist of referencesfor information on test techniques used at
these levels and information on corresponding test compo-
nents and interfaces. The test components and interfaces de-
scribed in Table 8-1 are also shown in Fig. 8-3.

Because fault containment regions require a concurrent
testing or fault-masking strategy, fault containment is typi-
cally implemented in the hardware with software support.
Asaresult of thisimplementation the design of the hardware
requires tradeoffs between the size of the fault containment
region, thetest time, and the area overhead for fault contain-
ment. High-level structural VHDL models can be used to
capture the data required for such analyses. High-level be-
havioral modelsthat provide timing information can be used
to assess the concurrent testing or fault-masking overhead
and itsimpact on system performance.

System .
Maintenance Ogeratmg
Controller ystem

System
Maintenance
Bus

LRU
LRU
LRU
LRU Test Module
Controller Executive
Backplane
Test Bus
[Board
IBoard
Board
Board Test
Controls
I
‘ Chip Test Bus |
[TAP | |TAP l |TAP |
Chip Chip Chip T

Figure8-3. A Hierarchy of Test Controllersand Busses

84



Downloaded from http://www.everyspec.com

MIL-HDBK-62

Table8-1. TESTABILITY FUNCTIONS, COMPONENTS, AND INTERFACES
FORAPHYSICAL DESIGN HIERARCHY

TYPICAL RELATED TEST
PHYSICAL DESIGN FUNCTIONS IMPLEMENTATION COMPONENTS REFERENCES
HIERARCHY LEVEL APPROACH (SW vs HW)* AND
TEST INTERFACES
System and/or Sub- 1. Error logging High-level softwareon a System maintenance | (Ref. 6)
system 2. Communication with general-purpose processor controller (Ref. 7)
external ATE System maintenance | (Ref. 8)
3. Support for system bus (Ref. 9)
reconfiguration (Ref. 2)
4. Management of spare
LRUs
5. Scheduling of test func-
tions
6. Management of LRU test
sets
7. Interpretation of LRU
test results
Line-Replaceable Unit 1. Communication with Microcode software on ded- | LRU test controller (Ref. 10)
(LRU) system maintenance con- icated hardware (e.g., Backplane test bus (Ref. 11)
troller microcontroller) controller
2. Storage of LRU status
3. Management of spare
components
4. Faultisolationto LRU
components
5. Management of compo-
nent tests
6. Management of compo-
nent test data
7. Interpretation of compo-
nent test results
Fault Containment 1. Fault containment Dedicated hardware with Voter (Ref. 7)
Region (FCR) 2. Error reporting software monitoring Error-correcting (Ref. 9)
coder/decoder (Ref. 2)
Parity/error code
lines on busses
Board 1. Communication with Microcode software on a Board test controller | (Ref. 12)
LRU controller dedicated controller Backplane test bus (Ref. 13)
2. Management of spare Boundary scan paths (1149.5) (Ref. 14)
ICs on board Chip test bus (Ref. 10)
3. Isolation of faulty ICs (1149.2)
4. Management of IC tests
5. Management of IC test
data
6. Interpretation of IC test
results
Integrated Circuit 1. Communication with Dedicated controller Test access port (Ref. 15)
board controller Boundary scan paths signa- (TAP) (Ref. 16)
2. Fault detection ture analysis Chip test bus (Ref. 5)
3. Fault containment (1149.2) (Ref. 17)
4. Fault masking

* SW = software
HW = hardware
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8-34 TEST COMPONENTSAND INTER-
FACES

Fig. 8-3 shows atypical test system hierarchy. This hier-
archy follows the format introduced by Lien and Breuer
(Ref. 11). It addresses four levels in the physical design hi-
erarchy: system/subsystem, LRU, board, and integrated cir-
cuit. Three levels of test busses are identified: system
maintenance bus, backplane test bus, and chip test bus. The
software/hardware interaction at the system maintenance
controller isindicated by the connection between the operat-
ing system and the system maintenance controller. A similar
relationship is shown between the LRU module executive
and the LRU test controller.

8-4 MODELING TESTABILITY USING
VHDL BEHAVIORAL MODELS

The Department of Defense (DoD) requires VHDL mod-
elsto be delivered with certain hardware components. This
requirement encourages effective reuse of those components
in DoD systems and allows replacement of those compo-
nents as technology advances. The DoD also views VHDL
as aformal description of the design of a hardware system.
This paragraph discusses the possible roles of VHDL mod-
elsin supporting design for testability asthe design evolves.

Subpar. 10.2.3 of the VHDL DID requires behaviora
models of hardware to model the diagnostic and test func-
tions of the hardware. This paragraph describes capabilities
that can beincluded in behavioral VHDL modelsresponsive
to the DID.

8-4.1 EVALUATING TEST STRATEGIES

Useof VHDL to explore design for testahility tradeoffsis
still a research area. However, many VHDL capabilities
make it an attractive tool for supporting such tradeoffs. Dur-
ing the hardware design process, VHDL models can be used
to explore possible partitionings of systems into LRUs and
fault containment regions. A scenario for this use of VHDL
is to generate a VHDL model reflecting a partitioning and
then to evaluate the testability effectiveness measures (such
as coverage) and the testability cost measures (such as area
overhead, interconnect overhead, and test time) for that
model. If the evaluation produces resultsthat do not meet the
effectiveness or cost requirements, the partitioning is re-
vised and the process is repeated. Evaluation of coverage
may not be possible during the early stages of design. How-
ever, the time required to execute the tests could be evaluat-
ed with high-level behavioral VHDL models if the number
and lengths of test vectors are known or estimated. Intercon-
nect overhead and parts count overhead can be extracted
fromaboard-level VHDL structural model; areaoverheadis
more difficult. If the hardware system consists primarily of
existing components, information about coverage for the
components, information about number and sizes of test
vectors for the components, and information about area
overhead for testing of the components can be used to eval-
uate different ways of organizing the testing process.

Developing a test strategy involves dividing the system
into partitions, each of which uses asingletest strategy. The
appropriate test strategy for each partition isthen selected. A
decision process for determining a test strategy can be de-
scribed in terms of answering a series of questions:

1. How much fault tolerance is required in the parti-
tion? (The answer will determine the minimum level of con-
current BIT required for the partition.)

2. Which of thetest and diagnosis functions of the par-
tition will be performed internally by BIT, and which of
these functions will be performed externally by ATE?

3. What test mode will be used: concurrent or noncon-
current?

4. What type of redundancy will be used for a concur-
rent mode partition: data, hardware, or temporal ?

5. What type of test set will be used for a nonconcur-
rent mode partition: functional, deterministic, or pseudoran-
dom?

6. Which specific test techniques will be used to im-
plement the strategy that has been selected?

The results of these decisions can be captured inaVHDL
model, and tradeoffs can be made by analysis of information
in the VHDL model and by simulation.

Test functions at the system/subsystem level are usually
performed by a combination of software and hardware. The
need to use both software and hardware together poses a
problem for behavioral VHDL models. Algorithmic VHDL
models can be used to demonstrate system FDIR concepts
during the early stages of system design. Performance mod-
elsfor reconfiguration may be needed for fault-tolerant sys-
tems (Refs. 8 and 18). Algorithmic VHDL models can be
used as part of system interface models to demonstrate that

1. Faults detected by BIT can be logged.

2. Faults detected by BIT can be used by FDIR.

3. FDIR can be performed within the time constraints
imposed by fault tolerance requirements.

4. Hardware fault containment functions provide the
necessary warnings about errors and perform appropriate
fault-masking functions.

5. System controllers can configure subsystems for
nonconcurrent background tests. When background tests are
run on a module or subsystem, their execution should not
corrupt the state of the system, i.e., the module under test
(MUT) should be isolated from the rest of the system for
testing. System controllers are also responsible for resetting
the MUT to an appropriate state to continue processing after
nonconcurrent background tests.

Building test benches that demonstrate these fault detec-
tion and fault tolerance functions aso clearly defines the
role the executive software of the system must play in pro-
viding system-level fault tolerance, testability, and error
containment.

An important benefit achieved using behavioral VHDL
models and simulation is verification that the testability con-
cept of asystem is correct, i.e., that
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1. Faulty components can be isolated and their faults
contained.

2. Spare components can be configured into the sys-
tem.

3. Test vectors can be stored in the system as required
and can be distributed to the components that use those tests.

4. Test results are communicated to the system main-
tenance controller or to ATE.

5. Appropriate error logs are maintained.

For VHDL behavioral models of existing hardware, this

handbook recommends that the model support this function-
aity.

8-42 MODELING TEST INTERFACESIN
VHDL

Behaviora models should be able to verify that when
properly interconnected, their test busses and interfaces are
able to communicate correctly. For example, test busses
such as the Ingtitute of Electrical and Electronics Engineers
(IEEE) 1149.1 and 1149.5 specify a set of instructionsto be
communicated through those busses. Behavioral models of
modules should be ableto interpret thoseinstructions and re-
spond appropriately.

A chip test busisthe interface between the board or LRU
controller and the VLSl circuits. IEEE Std P1149.1 (Ref. 19)
defines this interface, as well as a standard set of compo-
nents. The bus provides a serial port for loading test vectors
from the controller into a chip and for unloading test results
fromthe chipto the controller. The seria path minimizesthe
number of pins on the chip dedicated to test functions. Be-
havioral models of the IEEE Std 1149.1 test access port
(TAP) controller exist (Ref. 20), and models are being de-
veloped for the |EEE 1149.5 backplane test bus (Ref. 10).
Both of these bus structures define a set of test instructions
supported by the bus and its controllers.

VHDL models can be used to evaluate different strategies
for interconnecting test subsystems proposed in a hardware
design. If the VHDL models of the test and maintenance
busses and their interfaces include timing information, the
VHDL model can be used to exploretest times for different
configurations of modules and test busses.

8-43 MODELING TEST CONTROLLER
FUNCTIONS

An example of atest controller in a VLSI circuit is the
IEEE Std 1149.1 TAP controller. An example of a board-
level test controller is the controller for the IEEE 1149.5
backplane test bus. Both of these controllers execute a re-
quired set of functions as well as some additional functions
specific to the structural implementation of the module. A
behavioral model of the test controller must be able to inter-
pret the required functions and respond appropriately.

A behavioral model should produce results that represent
both correct and incorrect functioning of the model. The
former is used to verify that the system-level diagnostic and

maintenance functions operate correctly with a fault-free
module. The latter is used to verify that the system responds
with appropriate fault isolation and reconfiguration com-
mands to a faulty module. One mechanism that can be used
isto load test responses from an auxiliary file. The response
of the MUT to a specific test is ascertained by table lookup.

At the highest level s of the hardware design hierarchy, the
test control functions may be implemented by software that
is part of the normal function of the module. Modeling these
functions in VHDL is beyond the scope of the VHDL DID
(Ref. 1). Inthis case, it is very valuable for aVHDL model
of the fault detection, isolation, reconfiguration, and recov-
ery process to be generated from a software or system-level
description to verify the system has the desired fault toler-
ance.

Behaviora VHDL models of the IEEE Std 1149.1 TAP
exist (Ref. 20), and computer-aided design (CAD) tool ven-
dors are beginning to generate test structures that are com-
patible with the 1149.1 standard (Refs. 21, 22, 23, and 24).

8-44 EVALUATION OF TEST COMMUNICA-
TIONAND STORAGEREQUIRE MENTS
FORBIT

One important aspect of design for testability that is mea-
surable using behaviora VHDL models is the storage re-
guirements for test vectors and error logs that must be
maintained by the hardware system. Error logs are registers
accessible to the user and therefore must be represented in
the behavioral model of the component. If test vectors are
downloaded and stored inside the hardware system, memo-
ries used to store the test vectors must also be model ed.

If test vectorsand error logs areincluded in the behavioral
models and the test access ports on the devices are also mod-
eled, the times required to load and run the tests and extract
the results can be analyzed. This analysis is useful when
evaluating proposed test systems.

8-5 MODELING TESTABILITY USING
VHDL STRUCTURAL MODELS

8-5.1 DESCRIPTION OF TEST CIRCUITRY
GENERATED FROM STRUCTURAL IN-
FORMATION

Subpar. 10.2.4 of the VHDL DID (Ref. 1) requires that
structural VHDL models delivered to the Government must
includetest circuitry. Thiscircuitry includes scan paths such
as the data registers in an |EEE-Std-1149.1-compatible de-
sign. Severa commercial computer-aided engineering

(CAE) tools now automatically generate scan path circuitry

when given a gate-level circuit and partitioning assistance.

Other forms of generated test circuitry include built-in logic

blocks, pseudorandom test vector generators, and test signa-

ture analyzers. Description of such circuitry is essential for
logic-level fault modeling and for test vector generation.
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8-52 SUPPORT FOR FAULT DICTIONARY
GENERATION

A fault dictionary is a collection of information about the

potential electrical faultsin amodule and includes

1. The type of fault, e.g., stuck-at-zero, stuck-at-one,
short, or open

2. Thelocation of fault in the module

3. The origin of fault, e.g., predicted by the fault sm-
ulator or discovered by the test engineer.

Fault dictionaries are used to evaluate the quality of test
vectors. During this evaluation process, additional informa-
tion may be attached to a fault dictionary. For example, in-
formation about the test vectorsthat detect agiven fault may
be attached to the fault dictionary, e.g.,

1. The identity of the test vectors that discover the
fault

2. The way that the fault manifestsitself, e.g., the pin
that contains the error or the change in the compressed test
signature that results from the error

3. The ambiguity group associated with the particular
fault and the particular test vector.

The IEEE P1029.2 committee is developing a standard
fault dictionary language (Ref. 25). This language will be
compatible with VHDL and with WAVES. This proposed
standard is described in terms of VHDL packages and syn-
tactic and semantic rules for analyzing such packages.

The VHDL DID requires that VHDL structural models
model the physical implementation closely enough to sup-
port gate-level fault modeling. The creation and mainte-
nance of a fault dictionary for the fault universe of the
component is essential for fault modeling. A fault dictionary
is separate from the VHDL structural model but uses the
VHDL structural model to define the locations of the fault.
The structural model must be detailed enough so each fault
can be precisely located and the effects of the faults can be
simulated.

8-5.3 SUPPORT FOR AUTOMATIC TEST
GENERATION

In order to generate test vectors automatically, an auto-
matic test pattern generator (ATPG) must define afault uni-
verse and then construct test vectors covering that universe.
To define a fault universe, the ATPG must have a detailed
(at least gate-level) structural model of the hardware to be
tested. The faults are defined as failures of the components
connecting signalsin the structural model.

8-54 SUPPORT FOR COVERAGE ANALYSIS

Coverage of atest vector set is defined as the probability
that at least one vector in the set will discover afault given
that some fault has occurred. For deterministic test vector
sets a test vector t is said to detect a fault f in a circuit ¢ if
whentisapplied to c with fault f, the output isdifferent from
the output when t is applied to ¢ without fault f. Under the
assumptions that all faults are considered equally likely for

deterministic test vector sets, the coverage of atest vector set
can be estimated for a particular fault universe asthe number
of distinct faults detected by the test vector set divided by the
number of distinct faultsin the fault universe.

There are severa fault smulation tools available that
work with VHDL models. These tools generally work with
models that assume unit delays, specific logic primitives,
and specific signal values. The tool sets that contain these
fault smulation tools convert the VHDL gate-level structur-
al models into simple gate-level models using special for-
mats and then perform fault ssimulation on the internal
models. For example, paralel fault smulation runs many
test vectors through the same circuit at the same time. By
packing 32 cases into a single word and using the wordwide
bit vector logic available in most ALUs parallel simulation
can provide speedups of close to 32 over sequential fault
simulation.

8-55 SUPPORT FOR TEST TIME COMPUTA.-
TION

Test time is a critical factor in real-time, fault-tolerant
systems and is a significant factor in system availability.
VHDL gate-level structural models can provide important
information related to computing the test time. For example,
the test time for a component using scan paths is a function
of the product of the number of test vectors and the lengths
of the scan paths. If VHDL structural modelsare used to cre-
atethetest vectorsfor the system, the auxiliary files contain-
ing test vectors should be included with the VHDL
deliverables. These auxiliary files can be used to determine
the number of test vectors. The VHDL structural models
contain the scan paths, so they can be used to determine the
number of cells in the scan paths. Also VHDL gate-level
structural models can be smulated to provide information
about the test time for a hardware module.

8-6 ANNOTATION OF VHDL MODELS
WITHTESTABILITY INFORMATION

8-6.1 ANNOTATION OF STRUCTURAL MOD-
ELSTO IDENTIFY LRUs

The concept of aline-replaceable moduleisacritical ele-
ment of a system logistics strategy. An LRU isaphysically
separate element; therefore, as required by the VHDL DID
(in subpar. 10.2.1), each LRU must be represented as a sep-
arate design entity. This handbook recommends that each
design entity that represents an LRU be so annotated. This
annotation could be a comment in the entity interface, but
making the annotation into an attribute could provide future
support for computer-assisted analysis such as LRU counts
or costing analysis. Also this annotation provides important
design information and should discourage anyone redesign-
ing or modifying the system from making changesthat could
compromise the ahility of the test system to isolate faults to
the LRU.
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8-6.2 ANNOTATION OF STRUCTURAL MOD-
ELSTO IDENTIFY FCRs

The concept of fault containment regions is critical to
fault-tolerant systems since they mark boundaries where
mechanisms have been placed to prevent errors from propa-
gating out of the FCR. Unlike LRUs, there is no DID re-
quirement that an FCR represent a separate physical entity.

Because fault containment regions require a concurrent
testing or fault-masking strategy, fault containment is typi-
cally implemented in the hardware with software support.
This means that the design of the hardware requires
tradeoffs between the size of the fault containment region,
the test time, and the area overhead for fault containment.
High-level structural VHDL models can be used to capture
the data required for such analyses. High-level behavioral
modelsthat provide timing information can be used to assess
the concurrent testing or fault-masking overhead and itsim-
pact on system performance.

This handbook recommends that signals or entities repre-
senting the boundary of an FCR be annotated to specify that
the signal or entity represents an FCR boundary. It may also
be possible to define assertions to verify that faults are con-
tained. These tests provide important design information
that can reduce the risk that a redesign will inadvertently
damage the fault containment capabilities of the system.

8-6.3 BACK ANNOTATION WITH COVER-
AGE INFORMATION

The engineer using a VHDL modéel as the starting point
for the redesign of a system requires information about the
cost and effectiveness of testability.

Because coverage information is a combination of infor-
mation about the module under test and the test vectors, it
should be included in the fault dictionary. The VHDL DID
does not specifically require delivery of afault dictionary.
However, it does require delivery of both the VHDL model
that describes the MUT and the test bench needed to drive
the VHDL model, including the test vectors. This handbook
recommends that the fault dictionary, including information
about test vector coverage, beincluded in the delivery pack-
age. Thisinformation should include the target fault models
and coverage information for each LRU.
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CHAPTER9
PREPARATION OF VHDL MODELSFOR DELIVERY TO THE DoD

This chapter describes the preparation of a VHDL model for delivery to the Government. The contents and or-
ganization of the files delivered to the Government as specified in the VHDL DID are described. The files that must
be delivered include not only the VHDL source programs but also test vectors, annotations, other external files, and
documentation. This chapter also recommends VHDL naming conventions.

9-1 INTRODUCTION

If very high-speed integrated circuit (VHSIC) hardware
description language (VHDL) models are to serve their in-
tended purpose, they must be delivered to the Government
in a consistent form and with all supporting documents and
files. Asadesign progresses, a series of modelsisdelivered
to the Government; each model represents a refinement of
the previous version. The final, delivered model represents
the final hardware design. Each of these modelsisdelivered
to the Government in accordance with the dataitem descrip-
tion (DID).

Par. 10.3 of the VHDL DID (Ref. 1) requires that all in-
formation required to document and test amodel must be de-
livered with the model. This information includes textual
documentation, supporting VHDL model libraries, test
benches, test data, and the model itself. The DID requires
that these items be packaged into text files and delivered on
magnetic tape. Because of the variety of magnetic tapesin
existence, the Government may wish to tailor the DID to
specify an alternate tape sizeand format, e.g., 8-mm Unix tar
tape, from that stated in the DID.

The DID specifiesthe contents of thefiles on the tape, but
it does not specify which, if any, higher level file structure
(such as file names and directory structures) should be in-
cluded. Thus, if the files are delivered on unlabeled ASCII
magnetic tapes as recommended by the DID, no file- or
directory-name information is included. Therefore, it is not
possible to connect the contents of afile directly to its orig-
inal host file name. Even though the VHDL DID requires
that alist of host file names be provided, without some con-
vention it is not possible to associate this host name with a
given VHDL source file on the tape, as par. 10.3 of the
VHDL DID also requires.

Par. 7.3 of the VHDL DID allowsthe Government agency
receiving the models to specify the machine format of the
tape for the deliverables so directory structures and names
can be negotiated. Because of the generality of the DID for-
mat specification, it isrecommended that each VHDL source
file contain its host file name as a comment at the top of the
file. Thehost file name should specify thedirectory hierarchy
above thefileto thelevel of directoriesincluded in the tape.
For example, consider adirectory (called nodel ) containing
four subdirectories:

1. A dtilitiesdirectory, utilities
2. A dtructure directory, st ruct ur e
3. A leaf cell directory, | eaf _cel | s
4. A component specification directory, conp_1I i b.
Then afile named nenory_ar ch. vhdl , which contains
the architecture body for a memory component (one of the
leaf cells), would have the comment
File: nodel/leaf cells/nenory_arch. vhdl
VHDL specifiesthelibrary asthe unit of organization for
VHDL models; VHDL source files are analyzed into these
libraries. Although the VHDL DID does not explicitly re-
quire specification of the library structure, the names of the
libraries and the library unitsthey contain need to be provid-
ed in the documentation so that amodel can be successfully
recovered from the contents of the tape. It is recommended
that the directory structure reflect the VHDL library struc-
ture, so al files containing VHDL source code for unitsin a
particular library should be in the same directory. It is also
recommended that each VHDL source file contain the name
of thelibrary into which it should be analyzed as acomment
at the top of the file. To continue the example, suppose that
the directory structure described reflects the target library
structure; the VHDL model includes four libraries:
Uilities, Structure, LeafCells, and
ConpLi b
Therefore, the source code file named
menory_ar ch. vhdl would have the comment
Li brary: LeafCells
The Waveform and Vector Exchange Specification
(WAVES) header file provides information about the rela-
tionship between VHDL units, the files that contain their
source code, and the VHDL libraries in which they reside.
For each file delivered with the model, there is a specifica-
tion of thetype of thefile (either external, WAVES standard,
or VHDL) and a specification of the associated library. An
example of a WAVES header fileis shown in Fig. 7-3.
These recommendations require tailoring of the VHDL
DID. Additional recommendations relating to file-, entity-,
signal-, port-, and package-naming conventions are included
in this chapter and also require tailoring of the VHDL DID
should the Government want to specify these details. If the
Government anticipates a need for interoperability between
components of the model or use of packages in other mod-
els, these issues should be spelled out in the tailored DID.
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9-2 FILESTOBE INCLUDED IN DELIV-
ERY TAPE

Par. 10.3 of the VHDL DID requires files to be parti-
tioned into two basic types: VHDL design files conforming
in al respects to the VHDL Language Reference Manual
(Ref. 2) and other files containing auxiliary information
needed to document various aspects of the design and its op-
eration. Par. 7.3 of the VHDL DID a so describes the tech-
nical requirements for the layout of the delivery tape.

In generd, it isrecommended that only one design unit be
included in each VHDL file; however, there are exceptions
that should be made. For small packages the package decla-
ration and the package body may be included in the same
file, particularly if few changesin the package body without
corresponding changes in the package declaration are antic-
ipated. All design unitsin the same file should belong in the
same VHDL library.

Par. 10.3 of the VHDL DID requiresthat design units new
to a delivery not be contained in a file that has been previ-
ously delivered to the Government. The VHDL DID re-
quires that the files be delivered in a specific order as
described in the following subparagraphs.

The Navy Technology Independent Representation of
Electronic Products (TIREP) project (Ref. 3) has produced a
complete example of a VHDL model and its supporting in-
formation. The TIREP VHDL model conforms to the re-
quirements of the VHDL DID and makes use of WAVES
(Ref. 4). 1t al'so applies an early version of Electronic Indus-
tries Association (EIA) 567 (Ref. 5), and makes recommen-
dations for changesin EIA-567 (Ref. 6).

9-2.1 LIST OF FILES

Subpar. 10.3.a of the VHDL DID requires that the first
file included on the delivery tape contain, in order, the
names of all of the files included in this delivery. Each file
name should be followed by the name of the design unit con-
tained in the file, and there should be one record or line for
each file. It isrecommended that the order in which the files
are listed match the order in which the files occur on the
tape.
This handbook recommends that this file be given an
easily recognized name when practical, e.g.,
<nodel nane>.toc, for this table of contents. This
convention makes it easy to find the file after it has been
copied from the tape into the host file system.

9-2.2 DID OVERVIEW FILE

Subpar. 10.3.b of the VHDL DID requires the second file
on the tape contain a high-level, prose overview of the na-
ture of the VHDL model. This overview should cite (1) the
contract number that required the devel opment of the model,
(2) the contract line item, and (3) the contract data require-
ments list (CDRL) sequence number. The overview should
also summarize the organization and content of the set of
files.

Information on the purpose, level of abstraction, or any is-

suesrelated to fidelity or other special considerationsor lim-
itations of the model, should also be included in thisfile. If
the models use special or unusual algorithms, either a dis-
cussion of their operation should be included or areference
should be made to a readily available report or other docu-
ment describing the algorithm.

It is recommended that information about the library
structure be included in this overview to explain the ratio-
nale behind the partitioning of design units into libraries.
This handbook also recommends that this file be given a
name that reflects the purpose of the file. For example, the
UNIX traditionisto call such afile READVE. Other choices
for thisfile name are<nodel _nane>. cdr! or
<nodel _nane>. r eadne.

9-2.3 VHDL ANALYSISORDER SPECIFICA-
TION

Subpar. 10.3.c of the VHDL DID requires that the third
file on the tape describe the required order of analysis of the
filesincluded in the delivery.

This handbook recommends that when practical, the file
specify the name of thelibrary in whichaVHDL design unit
should be stored. The WAVES header file (Ref. 4) isan ex-
ample of afile format that meets this recommendation. An
example of a WAVES header fileis shown in Fig. 7-5. The
WAVES header file has three columns. The first column
specifies the type of file: WAVES_FI LENAME (i.e., a test
bench component), WAVES_UNI T (i.e.,, aWAVES standard
file), or EXTERNAL_FI LENAME (i.e., an auxiliary file).
The second column gives the file name. The third column
specifies the VHDL library into which the design unit con-
tained in the file isto be analyzed.

A good naming convention helpsto verify that the analy-
Sis order is correct, e.g., that package declarations are ana-
lyzed before package bodies. A suggested naming
convention is described in par. 9-3.

It is also recommended that the file describing the order
of analysis be given a name that reflects the purpose of the
file, eg., <nodel _nane>. or der.

9-24 GOVERNMENT-APPROVED LEAF
MODULE VHDL DESCRIPTIONS

Subpar. 10.3.d of the VHDL DID requires that the fourth
file on the tape contain alist of the VHDL leaf-level design
entities used in the model that are supplied by or approved
by the Government. Thislist should include the name of the
Government organization supplying (or authorizing the use
of) each design entity. This name should be first in the file
and should include enough information to enable a future
user to contact the supplying organization, if necessary. The
supplying organization may authorize the use of files with-
out actually supplying the VHDL source code; in such cases
the supplying Government organization should belisted first
in the file, and the sources of the files used as leaf modules
should be specified in the actual files.

The VHDL Model Library being developed by the De-
fense Electronics Supply Center (DESC) is a potential
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source for leaf-level design entities. It should be contacted
for information on available models and the standards re-
quired to support interoperability with models in their li-
brary. Subpar. 4-2.3 describes the DESC efforts to develop
thislibrary. Par. 4-2 provides more information on the types
of models required by MIL-HDBK-454 (Ref. 7). These
models are candidates for leaf-level entities to be supplied
by the Government.

Subpar. 10.2.8 of the VHDL DID requires the following
documentation for design units used in the model but not de-
veloped as part of the effort:

1. Identification of originator or source

2. Department of Defense (DoD)-approved identifier
(if one exists)

3. The design unit name

4. The design unit revision identifier.

The primary consideration for the definition of libraries
should be configuration management, particularly in terms
of who has read and write privileges for it. Each library
should have a single organization responsible for it. If a
VHDL model isbeing developed by ateam, each library un-
der construction should have one person responsible for its
contents. A secondary consideration is the cohesiveness of
the unitsin alibrary. The goal isto limit the number of de-
sign units that have to access the library, to ensure that the
design units that access alibrary use most of the unitsin the
library, and to be able to describe the contents of the library
succinctly.

A Government agency should supply acceptable
leaf-level design entities and any appropriate VHDL pack-
ages already organized into libraries. The agency may spec-
ify commercial standard packages, eg., Institute of
Electrical and Electronics Engineers (IEEE) 1164, that are
provided as part of commercial tool sets. The description
should include the host file name if the models were sup-
plied in source form. The description should also include the
name of the library unit contained in the file, its classifica
tion (i.e., package declaration, package body, entity declara-
tion, architecture body, configuration declaration), and some
indication of itsrevision level, if available.

It is recommended that somefile, preferably thisone, in-
clude descriptions of all VHDL libraries containing library
units either not devel oped by the contractor or maintained by
some organization other than the developer. Such libraries
include libraries containing standards such as IEEE Std
1164 (Ref. 8), WAVES (Ref. 4), or EIA-567 (Ref. 6).

It is also recommended that this file be given a name that
reflectsits purpose, e.g., <nodel _nane>. | eaf .

9-25 REVISED VHDL MODULE LIST

Subpar. 10.3.e of the VHDL DID requires that the fifth
file on the tape contain alist of the VHDL design units that
arerevisions of design units previously delivered to and ac-
cepted by the Government.

Asamode isrefined during the design cycle, it is neces-
sary to deliver revisions of design units previously accepted

by the Government. Whenever possible, the file name for
these revised design units should be the same as the name of
the previously delivered version. For example, if an archi-
tecture body is modified but the entity interface is not
changed, the body retains the same design unit name and
should keep the same file name that was used when it was
delivered previously. The text of the modified design unit
should include additional information about the revision, as
described in subpar. 9-2.9.

It is aso recommended that the file describing the
revised design units be given a name that reflects the pur-
pose of thefile, e.g., <model _nane>. r evi sed.

9-26 ORIGINAL VHDL MODULE LIST

Subpar. 10.3.f of the VHDL DID requires that the sixth
file on the tape contain a list of VHDL source code design
units newly created for thisdelivery. Par. 10.3 of the VHDL
DID also requiresthat these VHDL design unitsbe placedin
files other than those containing design units previously ac-
cepted by the Government.

It isrecommended that the list of design units be grouped
by libraries. It is also recommended that the list of VHDL
design units have a description for each design unit. Thisde-
scription should include the host file name, the name of the
design unit, the class of the design unit (i.e., package decla-
ration, package body, entity declaration, architecture body,
or configuration declaration), and some indication of its re-
vision level or history. Further, it is recommended that the
file describing the original design units be given aname that
reflects the purpose of thefile, e.g.,
<nodel _name>. ori gi nal .

9-2.7 TEST BENCH CORRELATION LIST
Subpar. 10.2.5.3 of the VHDL DID requires that every
design entity be accompanied by an associated test bench.
This association may not necessarily be one-to-one. The
same test bench may be used to test several hardware mod-
ule design entities, and several test benches may be required
to test asingle design entity fully. A test bench may consist
of ahierarchy of VHDL design entities. Configuration dec-
larations may be used to combine design entities into a test
bench or to specify generic constant values. For example, a
test bench may have as a generic constant the file name for
the externa file containing the test vectors. The same test
bench runs different tests merely by changing the value of
the generic constant. The different values of the generic con-
stant may be defined in different configuration declarations.
The configuration declarations may a so be used to select
the architecture body for the module under test (MUT). This
way, the same test bench can be used to test both the behav-
ioral and structural models of the MUT using the same test
vectors. Alternatively, the test bench may have several dif-
ferent architecture bodies that are used for different tests. In
this case, a configuration specification in the top-level archi-
tecture body of the test bench defines the value of the gener-
ic constant. The same configuration specification can
specify which architecture body isto be used for the MUT.
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A VHDL model (often a behavioral model) of a system
component may be used as part of atest bench used to test
another system component. For example, a test bench may
use both abehavioral and a structural model in back-to-back
configurations to verify that the structural model produces
the same results as the behavioral model.

Subpar. 10.3.g of the VHDL DID requires that the sev-
enth file on the tape indicate which test bench is associated
with which VHDL model. This file should contain a list of
pairs of names; each name should specify both a design en-
tity and either an architecture body or a configuration decla-
ration. The name of the test bench should specify a
configuration of the root entity interface of the test bench,
and the name of the VHDL model should specify a configu-
ration of the root entity interface of the MUT model hierar-
chy. For example, consider a test bench for Test A of the
behavioral model of a board maintenance controller for
which the root entity of the test bench hierarchy is called
Test Bench, and the configuration declaration associated
with the Test Bench entity iscalled Test A. Theroot en-
tity of the board maintenance controller is called
Boar dvai nt enanceCont rol | er, and the behavioral
architecture body for thisentity iscalled Behavi or . A line
in the association file states

Test Bench(TestA) tests
Boar dMai nt enanceCont rol | er ( Behavi or) .

It is recommended that each of these pairs be accompa-
nied by a description of how the test data for the test bench
were generated (e.g., internally generated, WAVES test da-
ta, or other external files), how test bench options and pa-
rameters affect the nature and scope of testing, and any
assumptions or requirements needed to operate the test
benches. This description might include assumptions on the
location of test data files or other operating-system-specific
reguirements.

It is also recommended that the seventh file be given a
name that reflects the purpose of thefile, e.g.,
<nodel _name>. test.

9-2.8 AUXILIARY INFORMATION FILES

Subpar. 10.3.h of the VHDL DID requires that the files
following the seventh file be the auxiliary files and VHDL
source files. The auxiliary files should precede the VHDL
files. The auxiliary files include supporting files such astest
data machine codefor programmable processor models, oth-
er memory initialization data, and environmental parameter
data. Fig. 7-5 shows an example of aWAVES externa file,
which is an auxiliary file. It is recommended that the file
name for an auxiliary fileindicate that thefileisan auxiliary
file, not aVHDL sourcefile. Use of an appropriatefile name
suffix, suchas<fil e nane>. dat or
<file nanme>.ext, isrecommended. In particular, the
extension vhdl or vhd should not be used for auxiliary
files.

ASCII format auxiliary files are preferred because these
files are portable from one VHDL environment to another.

9-4

If the model developer is creating anew format for an exter-
nal file, (particularly ASCII files, which can be read using
TEXTIO), the formats should allow comments such as the
header commentsin the WAV ES external file shownin Fig.
7-5. Performance reasons and file sizes may force the use of
non-ASCI|I files. For example, synthetic aperture radar files
can require several hundred megabytes of data for a small
number of frames. Using the TEXTIO capabilities of VHDL
may pose a considerable performance burden for large data
files; therefore, the model developer may prefer to use the
implementation-dependent binary file 1/O built into the lan-
guage. Use of this may save time and space at the cost of
portability. Thus the model developer must supply amecha
nism to convert the non-ASCII files into a usable format.
TheVHDL DID doesnot require ASCII auxiliary files. The
VHDL DID must betailored to specify amechanism that en-
sures the portability of auxiliary data.

9-29 VHDL DESIGN UNIT FILES

Subpar. 10.3.h of the VHDL DID requires that VHDL
source codefilesfollow the auxiliary files on the tape. These
files should contain al the new and revised VHDL design
unitsasidentified in thefifth and sixth files described in sub-
pars. 9-2.5 and 9-2.6.

The VHDL model verification procedure (Appendix B
and Ref. 9) recommends that each design unit, i.e., entity
declaration, architecture body, package declaration, package
body, and configuration declaration, contain aheader filein-
cluding the following information:

1. The design unit name

2. Thedesign unit revision identifier (e.g., Version 2.3)

3. The design unit file name

4. ldentification of the originator or source of the
VHDL including both individual and organization

5. DoD-approved identifier for the design unit, if one
exists (e.g., the contract data requirements list (CDRL) data
item number).
These recommendations are consistent with the require-
ments stated in subpar. 10.2.8 of the VHDL DID.

Subpar. 10.2.7 of the VHDL DID requiresthat thefollow-
ing documentation be included in explanatory comments
augmenting the formal VHDL text:

1. Any factors restricting the general use of this de-
scription to represent the subject hardware

2. General approaches taken to modeling, particularly
decisions regarding model fidelity

3. Any additional information the originating organiza-
tion considers vital to subsequent users of the descriptions.
These comments are intended to clarify the intent of the
VHDL model.

Subpar. 10.2.8.1 of the VHDL DID requires that each re-
vised design unit have commentsincluding thefollowingin-
formation, which must be included for each revision:

1. The date of the revision
2. Theindividual and organization making the revision
3. The reason for the revision
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4. |dentification of the part or parts of the original de-
sign unit that changed

5. A description of thetesting doneto verify that there-
vised design unit is correct.

9-3 FILE NAMING CONVENTIONS

The purpose of file-naming conventionsisto aid auser in
selecting afile. In particular, thefile name should giveanin-
dication of the type of VHDL design unit contained in the
file and an indication of the purpose of the design unit, e.g.,
modeling a particular physical hardware component, stan-
dard package, or test bench module. File-naming conven-
tions must be considered in the context of directory
structures. Much of the information that could be put in the
file name can be inferred from the directory path to thefile;
redundant information should be avoided. Some popular op-
erating systems place limits on the length of the file name
(e.g., 8 characters) and on the length of the suffix (eg. 3
characters) and may not discriminate between upper- and
lowercase lettersin afile name, or they may allow only up-
percase | etters. In theinterest of portability it isrecommend-
ed that file names should not use mixes of upper- and
lowercase letters. It is also recommended that directory
structures be used to keep file names short.

Thus adirectory structure starts with the directory for the
entire library. Thisdirectory has subdirectoriesfor packages
and entities, and each design entity hasits own subdirectory.
The design entity subdirectory contains the entity interface
declaration and multiple architecture bodies for the entities.
The WAVES standard places the test bench components in
different libraries than the design entity for the module un-
der test (MUT), so test bench components are stored in atest
bench library subdirectory of the design entity directory.
Fig. 9-1 showsadirectory structure and file namesfor the al-
gorithm library (which holds an algorithmic-level model)
for the sobel edge detector described in Chapter 2. The path
name for the horizontal filter test bench entity interface dec-
larationis
alg lib/entities/h_filt/t_b lib/iface.vhd. The
path name contains the information needed to identify the
file and to work out where the unit should be placed in the
VHDL library structure.

9-31 NAMING VHDL DESIGN UNIT FILES

The syntax for file-naming conventions used in this sub-
paragraph is to surround the part of a name that changes on
instantiation with left and right brackets. Thus the specifica-
tion of <package_nane>. vhd for a package declaration
could be instantiated as st d_| ogi ¢_1164. vhd, which
indicates a package declaration named
std_logic_1164.

The VHDL model verification procedure (Ref. 9) recom-
mends the following naming convention for files containing
individual VHDL design units:

1. <package_nane>. vhd for package declarations

alg_lib
pkgs
image.vhd
image_b.vhd
entities

edge_det
iface.vhd
behave_a.vhd
struct_a.vhd
t_b_1lib
iface.vhd
behave_a.vhd
mem_proc
iface.vhd
behave_a.vhd
t_b_1lib
iface.vhd
behave_a.vhd
win_proc
iface.vhd
behave_a.vhd
struct_a.vhd
t_b 1lib
iface.vhd
behave_a.vhd
dir_ mag
iface.vhd
behave_a.vhd
t_b_lib
iface.vhd
behave_a.vhd
h_filt
iface.vhd
behave_a.vhd
t_b_1lib
iface.vhd
behave_a.vhd
v_£filt
iface.vhd
behave_a.vhd
t_b_lib
iface.vhd
behave_a.vhd
1d_filt
iface.vhd
behave_a.vhd
t_b_1lib
iface.vhd
behave_a.vhd
rd_filt
iface.vhd
behave_a.vhd
t_b_lib
iface.vhd
behave_a.vhd

Figure9-1. Directory Structureand File
Names for Sobel Algorithm Library

2. <package_nane>_body. vhd for package bodies

3. <nodel _nane>_e. vhd for entity declarations

4. <nodel _nane>_a_str. vhd for structura archi-
tecture bodies

5. <nmodel _nane>_a_beh. vhd for behaviora archi-
tecture bodies
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6. <nmodel _nane>_t est bench. vhd for test bench
models.

Because of the previous discussions about directory
structures, it is recommended that the file names be further
defined asfollows:

1. <library_dir>/pkgs/

<package_abrv>_p. vhd
for general-purpose package declarations that are applied to
multiple MUTs and test benches

2. <l'i brary_dir>/pkgs/

<package_abrv>_b. vhd
for bodies of general-purpose packages that are applied to
multiple MUTs and test benches

3. <library _dir>/entities/

<entity dir>/iface.vhd
for entity interface declarations

4. <library _dir>/entities/

<entity_dir>/<arch>_a.vhd
for architecture bodies
5.<library dir>/entities/
<entity dir>/t_b lib/<test>_i.vhd
for test bench entity interface declarations
6. <library dir>/entities/
<entity dir>/t_b lib/<test> a.vhd
for test bench architecture bodies

7. <library _dir>/entities/

<entity dir>/t_b |ib/<test>_p.vhd
for test bench package declarationsthat are specific to apar-
ticular entity and test

8 <library dir>/entities/

<entity dir>/t_b lib/<test> b.vhd
for test bench package bodies that are specific to a particul ar
entity and test.

This handbook recommends that configuration declara
tions be given names of the form
<library dir>/entities/<entity_dir>/

<config> c.vhd
and that test bench configuration declarations be given
names of the form
<library dir>/entities/<entity_dir>/

t b lib/<test> c.vhd.

This handbook also recommends that configuration dec-
larations be given names of the form
<entity_nanme>_confi g_<config_nanme>. vhd.

9-3.2 NAMING AUXILIARY FILES

Specific environments may have special naming conven-
tionsfor simulation output files. If the contractor and the re-
ceiving Government agency have the same VHDL
environment, they can simply use the naming conventions of
the environment. Otherwise, it is recommended that the
name <nodel nanme>_<test_set _nane>.trace
be used for trace files. If the VHDL models use file input/
output (1/0) to load tables or initialize memories, these files
should be given explanatory names, such as

<nodel _nanme>_<functi on_name>. program for
the machine language instructionsfor a programmabl e hard-
ware system or

<nodel _nanme>_<functi on_name>. tabl e for the
table of coefficients for a function implemented by table
lookup.

9-4 SUGGESTED CODING CONVEN-
TIONSFOR VHDL MODELS

Because VHDL is a programming language intended to
communicate design information, it isimportant that thisin-
formation be presented as clearly as possible. Clarity can be
improved by establishing certain programming conventions.
These conventions can also help to establish that a VHDL
description accurately reflects the function and structure of
a hardware system.

9-41 DESIGNENTITY NAMING CONVEN-
TIONS

VHDL entity interfaces intended to represent the final
form of an actual hardware system should have the same
names asthe actual hardware components. The VHDL name
for components that have names composed of more than one
word should be constructed by substituting underscores
(“_") for the spaces between the individual words of the
hardware component name. Alternatively, uppercase letters
can be used to mark the beginnings of words. For example,
amodel of the board maintenance controller could be named
boar d_nmi nt enance_control |l er or
Boar dMai nt enanceControl | er. The VHDL initia-
tive toward ASIC libraries (VITAL) (Ref. 10) encourages
the latter approach. Different styles may be used in different
parts of the model as long as a clearly defined protocol for
naming is specified. For example, al uppercase letters may
be used for VHDL-reserved words, underscores may be
used in external standards such as |IEEE Std 1164 (Ref. 8),
and capitalization may be used for names created by the
model builder.

VHDL entity interfaces that do not represent actual hard-
ware should have names that are descriptive of the functions
they perform.

Architecture bodies should also be descriptively named.
It should be possible to tell from the name whether the body
is behavioral or structural, and it should be possible to tell
which implementation of the entity has been modeled, par-
ticularly if more than one implementation will reside in the
library. From a configuration management viewpoint, im-
plementation from different vendors may need to reside in
separate directories.

Component instance labels should be chosen to show the
connection with the parent component and should describe
the role the component is playing. For example, if an archi-
tecture always uses a particular 1860 for an address genera-
tor and other 1860s for other purposes, the address generator
role should be indicated by giving the address generator
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component instance thelabel | 860AG. If the component in-
stances are generated by a schematic capture tool, the sche-
matic capture tool may have its own rules for defining
component instance labels. In this case, the roles of the com-
ponent instances need to be indicated for diagnostic reasons
and to improve readability. This information can be docu-
mented with generic constants that specify attribute values
associated with the component instances.

9-4.2 PORT-NAMING CONVENTIONS

Port names for entity interfaces that represent hardware
should have the same names as the pins on the actual hard-
ware. If apin name starts with adigit, the port name should
consist of the interconnect name prefixed with a letter. For
example, if the pin name is 123, the corresponding signal
may be named P123. If the hardware pin hames have more
than one word, the corresponding VHDL name should be
formed by concatenation and capitalization of the words as
described in subpar. 9-4.1.

A major style issue arises around the declaration of ports
that represent a multiline bus. From the viewpoint of top-
down design, there may be adesire to have asingle port de-
clared acomposite or abstract type. To support back annota-
tion, there may be a need to have a separate port for each bit
of the multiline bus. It is possible to create a “wrapper” en-
tity that converts a model using separate ports for each bit
into asingle port with acomposite or abstract type. Names
for separate single bit ports that make up a multiline bus
should be chosen to indicate their role in the bus. For exam-
ple, the port name for address bus bit 3 could be
Addr essBus3.

Port names that do not represent actual hardware should
be descriptive of their function or usage.

9-4.3 SIGNAL-NAMING CONVENTIONS

Signal names for models that represent hardware should
be the same as the names of the electrical interconnections
in the hardware. If an interconnect name starts with a digit,
the signal name should consist of the interconnect name pre-
fixed with aletter, as described in subpar. 9-4.2. If an inter-
connect name consists of more than one word, the
corresponding VHDL name should be formed by concatena-
tion and capitalization of the words, as described in subpar.
9-4.1.

Names of signals that do not represent hardware should
be descriptive of their function or usage. For example, a per-
formance model may have a globally declared signal called
stati stics, which is used by the test bench to collect
statistics.

9-44 PROCESSAND SUBPROGRAM NAM -
ING CONVENTIONS
Process labels and subprogram names should be descrip-
tive of the function performed by the process or subprogram.
Labels should be active instead of passive, e.g.,
gener at e_next _addr ess instead of
addr ess_gener at or . The names of conversion func-

9-7

tions should indicate both the source and result types of the
function asisdonein IEEE Std 1164 (Ref. 8).

9-45 COMMENTING CONVENTIONSFOR
VHDL

The inclusion of comments in a VHDL description can
enhance understanding of the model. Comments should de-
scribe the contents of files.

Because different organizations will have different cod-
ing conventions, it is not the intent of this subparagraph to
give detailed guidance on the exact format of comments.
The guidelines that follow are intended to be suggestive of
the kinds of information that should be included in com-
ments. Other information can be included as required.

More detailed requirements can be specified either by tai-
loring the VHDL DID or by requiring that VHDL models be
developed in accordance with a development plan approved
by the Government.

9-45.1 Files
VHDL source files should not contain more than one li-

brary unit, although it may be desirable to combine a pack-
age declaration and its package body when the combination
is relatively short. Files containing VHDL source code
should have the following comments at the beginning of the
text file:

1. A brief description of the overal purpose of the li-
brary units contained within the file

2. A list of the library units, by name, contained within
thefile

3. Thedate thefinal form of the file was created for de-
livery to the Government

4. The name of the organization that created the file

5. The contract number(s) under which the contents of
the file were created.

9-45.2 Packages
Each package declaration should have a brief description
of the purpose and contents of the package. This description
should include the following information:
1. A functional description of the package contents
2. The date the final form of the package was created
for delivery to the Government
3. The name of the organization that created the pack-
age.
This information should be included at the beginning of
the package text file.

9-45.3 Entity Interfaces
Each entity interface should have brief description that

contains the following information:

1. A description of the function the design entity per-
forms

2. Description of the generic constants. names, mean-
ings, and ranges

3. Description of the ports

4. Description of errors checked for by the entity inter-
face
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5. The date the final form of the entity interface was
created for delivery to the Government

6. The name of the organization that created the entity
interface.

9-45.4 Architecture Bodies
Each architecture body should have a brief description

that contains the following information:

1. A description of the style of architecture body: struc-
tural, behavioral, data flow, or a mixture

2. An indication of the level of abstraction employed:
algorithmic, instruction set architecture, register-transfer
level, or gate level

3. Anindication of the complexity of the timing model
employed: zero delay, fixed delays, parameterized delays,
etc.

4. Description of any internal error checking

5. A referenceto the corresponding CDRL number and
the intention of the body to serve the requirements of the
VHDL DID (Ref. 1), e.g., does the body serve as abehavior-
a or structural body in the sense of the DID

6. The date the final form of the architecture body was
created for delivery to the Government

7. The name of the organization that created the archi-
tecture body.

This description should come immediately before the

declaration of the architecture body.

9-45.5 Configuration Declarations
Each configuration declaration should have a brief de-
scription that contains the following information:
1. A description of the purpose of this particular con-
figuration declaration
2. A description of any specific operating conditions
for which this configuration declaration is intended
3. The date the final form of the configuration declara-
tion was created for delivery to the Government
4. The name of the organization that created the config-
uration declaration.
This description should come immediately before the
declaration of the configuration declaration.

9-45.6 Internal Comments

In addition to the comments previously mentioned, each
VHDL description should include comments to help users
understand the internal operation of the model. These com-
ments can be either in-line or block.

Each subprogram and process should have commentsthat
describe the operation, expected inputs and outputs, and er-
ror conditions associated with the process or subprogram.

Assertion statements should have comments that describe
the error conditions detected.

All type and object declarations or groups of related dec-
larations should have comments explaining the purpose of
the declarations.

Finally, executable sections of amodel should have com-
ments explaining the operation of the model.
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APPENDIX A
VHDL MODEL VERIFICATION PROCEDURE

A-0 PREFACE

This Appendix is a procedure developed by the Depart-
ment of Defense (DoD) to verify VHDL models. ThisVHDL
Model Verification and Acceptance Procedure was devel-
oped at the US Air Force Rome Laboratories, Griffiss Air
Force Base, Rome, NY, through the coordinated efforts of a
triservice working group and industry consultants. This Ap-
pendix is the procedure as originally published by Rome
Laboratories in November 1992 as Version 1.0 and updated
3 February 1995; it is unchanged by the author or editors of
this handbook. References in the procedure to documents or
standards that have been updated or superseded as of the
date of publication of this handbook are footnoted, and the
current reference is given in the footnote.

Theintent of use of the very high-speed integrated circuit
(VHSIC) hardware description language (VHDL) and the
Waveform and Vector Exchange Specification (WAVES)
within the DoD is to reduce the life cycle cost associated
with unit or device development, testing, maintenance, and
reprocurement. To achievethisgoal, the DoD now suggests,
as specified in MIL-HDBK-454, that al electronic devices
delivered be documented in VHDL and their test vectors be
in WAVES format. The need to establish a single model as
the simulatable representation of an electronic unit in order
to eliminate duplication and assure common simulation re-
sultsis recognized by DoD and industry. Procurement per-
sonnel need to verify that such amodel accurately represents
the unit or device specification. In addition, this document
provides VHDL model developers a means by which to
evaluate their models against a set of criteria that the Gov-
ernment will use to evaluate whether a VHDL model has
captured the necessary design information.

The verification procedure consists of six paragraphs.
The first paragraph, “Scope’, provides an overview of the
motivation behind the DoD requirement for VHDL models.
This paragraph also addresses models that will be archived
and the minimal simulation environment needed for model
evaluation. The second paragraph, “Referenced Docu-
ments’, explains the order of precedence for reference doc-
uments in determining the functionality, timing, and
operation of the electronic device. Next is “Initia Inspec-
tion”, whichisavisua examination of the delivered filesfor
proper documentation and format. The fina three para-
graphs, “Detailed Inspection”, “ Testing and Data Analysis’,
and “The Fina Report”, include a detailed examination and
execution of VHDL source code, library components, head-
er information, and areport that discusses the findings.

A-10 SCOPE

The Department of Defense (DoD) is engaged in a num-
ber of programs which require VHDL models of ASICsand
systems. Specifically, the details of the deliverable VHDL
models are expressed in acombination of documents such as
MIL-STD-454*, the VHDL Data Item Description
(VHDL-DID (DI-EGDS-80811)) and any additiona re-
quirements specified in any given Contract Deliverable Data
Items (“CDRLS’ or “dataitems”).

VHDL dataitems capture the behavior and structure of an
electronic system, subsystem, or device. The primary pur-
pose of these dataitemsis to document hardware designsin
a machine executable, simulatable, and hierarchical format.
VHDL models themselves must be inspected to insure that
they meet the requirements specified in the contract or
VHDL DID, asapplicable. The VHDL DID may betailored
by the contract requirements for some applications.

For acceptance, VHDL simulation models provided to the
Government as CDRLs must satisfy some known accep-
tance and verification criteria and procedure. These criteria
and procedures are the purpose of this document.

The verification procedure includes model evaluation for
compliance with the VHDL DID, inspection and testing of
the code for VHDL correctness, verification of models
against the supplied WAV ES test vectors, verification of the
models against the functionality of the described part, and
verification of the model against the part specifications.
Such verification methodol ogies require an in-depth knowl-
edge of VHDL simulation, electronics hardware functional-
ity, and electronics test.

This document shall be used as the procedure document
for the verification of VHDL simulation models supplied to
the Government under contract, for certification and qualifi-
cation under the new Qualified Manufacturers List (QML),
or as part of Line Replaceable Module (LRM) acceptance.

A-20 REFERENCED DOCUMENTS

The first step in model verification is to obtain a set of
specifications and references concerning the device or sys-
tem being modeled. Thisinformation isthen used by thein-
dividuals performing this verification and acceptance
procedure to educate themselves as to the functionality, tim-
ing and operation of the electronic system. Expert level un-
derstanding of the system’s design, functionality and timing
are essential prerequisites of the verifier.

*MIL-STD-454 has been superseded by MIL-HDBK-454, General Guidelines for Electronic Equipment, 28 April 1995.
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A-2.1 Order of Precedence

The order in which the publications are listed bel ow shall
be the order of precedence in the event that one publication
modifies the specifications or statements of a document at a
higher level of precedence, i.e., requirements under par. A-
2.2.2 override conflicting requirements at par. A-2.2.3 and
SO 0n).

A-2.2 System Specifications

Any or al of the foregoing specifications may contain
block diagrams, timing charts, truth tables, stimulus
response vectors, schematics and any additional informa-
tion.

A-221 Standard |C Data Books/Specifications

Theverifier shall obtain acopy of thecommercialy avail-
able device or system data book or specification if one is
available from the manufacturer.

A-2.2.2 ASIC Design Specification
For each ASIC undergoing verification and acceptance

under this procedure, a detailed design specification shall be
obtained.

A-2.2.3 System Level Specifications

For systemsincorporating more than one of any combina-
tion of ASICs or standard ICs, a detailed system specifica
tion shall be obtained.

A-2.24 HardwareTest Plan

For any system, subsystem, board or ASIC undergoing
verification under this procedure, adetailed test plan shall be
obtained for each design unit undergoing verification.

A-2.3 |EEE Publications

The following Institute of Electrical and Electronics En-
gineers (IEEE) publications are referenced either explicitly
or implicitly within this document. The verifiers should
make each of these documents available to themselves for
reference. Copies of the standards may be obtained from
|EEE Standards Sales, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331.

A-2.3.1 |EEE Std 1076-1987*

IEEE Standard VHDL Language Reference Manual
(VHDL-LRM), 1988, The Institute of Electrical and Elec-
tronics Engineers, Inc., 345 East 47th Street, New York,
NY.

A-2.3.2 |EEE Std 1029.1-1992

| EEE Standard (Waveform and V ector Exchange Specifi-
cation) Language Reference Manual, 1991, The Institute of
Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY.

A-2.4 Government Documents
The following US Government standards are referenced

either explicitly or implicitly within this document. The ver-
ifiers shall make each of these documents available to them-
selves for reference. Copies of the standards may be
obtained from the US Government by contacting:

Naval Publications and Printing Service Office

700 Robbins Ave.

Philadelphia, PA 19111-5094

A-2.4.1 Military or Contract Specification

The verifier shall obtain a copy of any applicable military
or contract specification in addition to those mentioned
above under which the VHDL model(s) have been devel-
oped. For some items, more than one specification (SMD,
SCD, commercial, etc.), may be required, in which case it
must be determined which specification the model is sup-
posed to represent. Also, many specifications may differ by
timing alone so that one model with different timing pack-
ages may satisfy several different military specifications (or
“dash numbers’). In addition, the same part may occur in
different packages.

A-24.2 MIL-STD-454M, Requirement 64 to be
published April 1991**

A-24.3 DI-EGDS-80811, VHSIC Hardware De-
scription Language (VHDL) Data Item
Description

A-25 Verification Procedure

To facilitate the performance of this verification proce-
dure, theverifier shall follow theinstructions provided in par
A-6.0.

Note 1: Hereafter MODEL shall refer to the VHDL code
delivered to represent a digital electronic unit, device, or
component. The MODEL may be described as a high level
(behavioral) model or asagate level model or asacombina-
tion of behavior and structure (mixed mode!).

Note 2: The intended unit, device, or component for
which the MODEL was developed will hereafter be called
the REFERENCE. The REFERENCE item may be hard-
ware, or if no hardware existsit will be the specificationsfor
the intended unit, device, or component.

A-3.0 INITIAL INSPECTION

A-3.1 Documentation Files Required Under
DID DI-EGDS-80811

The verifier shall determine that the contractor has pro-
vided al of the system specifications, hardware test plans,
and any additional documentation required for the verifier to
determine the functionality and timing of the system, sub-

*| EEE Std 1076-1987 has been superseded by ANSI/IEEE Std 1076-1993, |EEE Standard VHDL Language Reference Manual, September

1993.

**MIL-STD-454 has been superseded by MIL-HDBK-454, General Guidelines for Electronic Equipment, 28 April 1995.
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system or device undergoing verification.

This section explains which items are to be “visually” in-
spected to determine whether al the required deliverables
are present, in the proper order, and that they meet certain
criteria specified in the VHDL DID.

The following eight auxiliary information files shall pre-
cede VHDL design files.

A-3.1.1 Tableof ContentsFile

Inspect that this file contains the names of each of the
VHDL files delivered; one file name per record and nothing
else (pad with trailing blanks). (DID requirement 10.3a)

Thefile should be an ASCII file. Comments should begin
with the character #. ONLY onefile per line.

Note 3: From amodel style guide perspective, the devel-
opers should be encouraged to deliver the modelsin the fol-
lowing format: <package>.vhd for package decla-
rations,<package>_body. vhd for the corresponding
package body, <nodel name>_e. vhd for model entities,
<nodel name>_a_str. vhd for structural architectures,
<nodel namre>_a_beh. vhd for behavioral architec-
tures, <nmodel nane>_c_st r. vhd for structural configu-
rations, <nodel nanme>_c_beh. vhd for behavioral
configurations, and
<nodel name>_t est bench. vhd for test benches. This
information is provided as a guide, not a requirement. The
developer is encouraged to follow a similar file naming
methodol ogy.

Note 4: In addition, it is suggested that each model’s en-
tity, architectures, test benches and configurations be locat-
ed in its own subdirectory under the name of the model. The
same holds true for packages. In addition, all simulation
scripts and results can be located in the same subdirectories
as the models to which they pertain.

A-3.1.2 CDRL File

Inspect that this file contains a high-level prose descrip-
tion of the VHDL deliverables. The description shall contain
the following: (@) contract, (b)line item, (c) Contract Data
Requirements list sequence number, and (d) a summary of
the organization and content of the set of files. (DID require-
ment 10.3b)

A-3.1.3 AnalysisFile

Inspect that this file contains a specification of the order
of analysis of the VHDL design units. Verify that the order
of analysis is consistent with the rules of VHDL, (DID re-
quirement 10.3c) (i.e., Packages compiled before their cor-
responding bodies, which in turn are compiled before the
entities/architectures, and configurations which reference
them).

A-3.1.4 LeavesFile

Inspect that this file contains the list of unmodified
VHDL leaf-level models that have been provided by the
Government, and referenced within any VHDL files. (DID
requirement 10.3c)

A-3.1.5 MoadificationsFile

Inspect that thisfile containsthe list of modules previous-
ly accepted by the Government and subsequently modified.
(DID requirement 10.3€)

A-3.1.6 DeliverablesFiles

Inspect that thisfile containsalist of VHDL modulesthat
originate with thisVHDL delivery. (DID requirement 10.3f)

A-3.1.7 Test Bench Association File

Inspect that this file contains a list that associates VHDL
modules with their corresponding test benches. (DID re-
quirement 10.3g)

A-3.1.8 Auxiliary Information File(s)

Inspect that this file(s) contains any additional informa-
tion concerning the VHDL descriptions and VHDL design
files. Inspect that the contents of the auxiliary files do not
contain any complete VHDL design units. (DID require-
ment 10.3h)

A-3.2 Conformancetol| EEE VHDL-1076

The verifier isinstructed to compile (analyze) the VHDL
filesonafully compliant VHDL |EEE-1076 analyzer, in the
order specified in the Analysis File delivered under par. A-
3.1.3. Each of the files shall analyze with no errors. Certain
analyzers will issue warnings. The verifier shall make a
record of the execution of the analyzer and specifically note
any errors or warnings indicated.

A-40 DETAILED INSPECTION

The second phase of the verification processis a detailed
inspection of entities, architectures, configurations and other
support modules delivered.

A-4.1 Comment Banner

In order to assist the model verifier, acomment sectionis
required to precede each VHDL module. The comment sec-
tion should contain the following information:

1. Design unit name identifier

2. ldentification of originator or source

3. DoD approved identifier (if one exists)

4. Whether model has been previously delivered

5. General approaches taken to modeling, and particu-
lar decisions regarding Modeling fidelity

6. Any further information vital to subsequent users of
the descriptions

7. Any factors restricting the general use of this de-
scription to represent the actual hardware

8. Any assumptions taken in devel oping the model

9. Previous approval of the module by the DoD.

A-4.11 Comment Banner With Revision Infor-
mation
If the module is a previously approved module and has
been revised with this delivery, the following information
shall also be included:
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1. The date of revisions

2. The performing individual and organization

3. Therationale for the revision

4. A description of which part of the original design
unit which required modification

5. A description of the testing done to verify the re-
vised model.

A-41.2 Comments

While it is difficult to determine quantitatively that the
model author has sufficiently commented the VHDL code, a
usual rule of thumb isto have an approximate 20% comment
overhead.

A-4.1.3 Inspection for Orthogonality

The files shall be inspected to ensure that each fileis ei-
ther aVHDL design file, whose entire contents conform to
the requirements of the VHDL Language Reference Manu-
al, or an auxiliary information file containing no VHDL de-
sign units. (DID requirement 10.3)

A-4.1.4 Inspection for Incremental Information

The files shall be inspected to ensure that new design
units are not contained in the same file as design units that
have been previously accepted by the Government. (DID re-
guirement 10.3)

Note 5: A previously accepted module can be checked to
ensurethat it has not been altered by using atext comparison
to discover any differences between the archived module
and the delivered module. Differences other than variable
names and comments should be examined for their effect on
module functionality, these differences should be noted in
the final report.

A-4.2 Model Evaluation and Inspection

The procedure described in this section should apply to
entities, architectures, and configurations of the model. All
material in par. A-4.1 pertains to each module of the VHDL
deliverables.

A-4.2.1 Entity Declaration (DID Conformance)

Each entity declaration shall be inspected for the specifi-
cations listed in this section. In addition, if the entity is con-
tained in a separate file, then the procedures pertaining to
revision information and comments (par. A-4.1) shall aso
apply.

A-42.1.1 Entity Declaration
The entity declaration for each entity shall include:
1. Aninterface declaration
2. Timing and electrical requirements for the behavior
of the device
3. Allowable operating conditions
4. Component identification
5. Explanatory comments.
(DID requirement 10.2.2.)

A-4.2.1.2 Entity Interface Declaration

Theinterface declaration for each entity shall be inspect-
ed to assure:

1. That adescription has been included for every port
that exists on the device

2. Theinclusion of information relating each input and
output port to a package pin number or connector pin num-
ber whenever such a correspondence exits.

(DID requirement 10.2.2.1.)

Note 6: If a condition should arise such that the name of
the port violates the rules of VHDL, an appropriate alterna-
tive name should have been selected and commented as
such.

Note 7: There are a number of ways in which this infor-
mation may be obtained including (1) comments, (2) port at-
tributes, or even (3) theinstantiation of a*“ packaging” entity
whose port names correspond to the pin numbers of the
packaging of the device, i.e., Pi n_23 asaport name (DID
requirement 10.2.2.1).

A-4.2.1.3 Entity Naming Conventions

The entity declaration shall beinspected to ensure that the
names for VHDL entities are traceable to the names of their
physical electronic counterparts whenever such acorrelation
exists. (DID requirement 10.2.2.4)

A-42.1.4 Timing Electrical Requirements

The model shall be inspected to ensure that timing and
electrical requirements are expressed in such amanner asto
cause the simulator to generate error messages upon viola-
tion of a specification during simulation. (DID requirement
10.2.2.2)

The specifications may include the following:

1. Timing specifications such as setup, hold, pulse
width, periodicity, and release or recovery times, among
others.

2. Electrical specifications such as maximum fanout
DC load, maximum fanout capacitive load, maximum drive
current limits, voltage range, temperature range.

3. Additional timing considerations such as required
number of clock cycles for correct reset to occur.

A-4.3 Architectures

Each architecture shall be inspected for the specifications
listed in this section. In addition, if the architecture is con-
tained in aseparatefile, then the procedures pertaining to re-
vision information and comments shall apply as well.

A-4.3.1 Hierarchy

Inspect that the models delivered are written with a*“rea-
sonable” level of hierarchy. The model shall beinspected to
ensure that structural decomposition of behavioral bodiesis
used only when necessary to show functional partitions of
the corresponding structural body. Ease of simulation and
clarity of behavior shall be considered when determining the
appropriate level of hierarchical decomposition. (DID re-
quirement 10.2.3.1)
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A-431.1

The model shall be inspected to ensure that the hierarchy
of VHDL modulesis analogous to the physical hierarchy of
the hardware being documented. The model shall be inspect-
ed to ensure that one VHDL moduleis defined for the entire
system, and one for each physical electronic unit (assembly,
subassembly, integrated circuit, etc.) of the hardware sys-
tem, and that VHDL modules are defined for important sub-
sections or groupings of complex physical units (e.g.,
macrocells of a chip or boards defining a processor). (DID
requirement 10.2.1)

Note 8: As aguide, an ASIC should have a minimum of
three (3) levels of hierarchy: (1) A behavioral model of the
ASIC at the pin boundary level (no structural subarchitec-
tures), (2) a level representing the ASIC's block diagram
(which includes structural subarchitectures), where the
structural subarchitectures are written as behavioral models,
and lastly (3) adetailed, gate-level architecture, where all of
the components are leaf-level models.

A-4.3.2 Physical Correspondence

Inspect that the model’s architecture is written and com-
mented sufficiently well such that the internal signal names
and hierarchical component names reasonably match the
names of the physical implementation. (DID requirement
10.2)

A-4.3.3 Signal Delays

Inspect that all signal delays accurately model the behav-
ior of the device specification. At a minimum, the models
shall be coded to incorporate a means of evaluating mini-
mum, typical, and maximum timing delays. More elaborate
timing models which take into account other variables such
as supply voltage or output loading may also be used. (DID
requirement 10.2.3.2)

Note 9: Determining that the model “accurately” models
the timing of a specification is a difficult task. Certain areas
to look for include:

1. All possible input to output pin asynchronous
“cause-effect” paths have a corresponding delay path. This
delay path may, in addition, be level sensitive.

2. Determine how the model should respond under
conditions when simultaneous events could trigger events
that preempt previous timing events causing the output to
change to anew state at the wrong time.

3. Normally, inertial delay should be used. However,
certain conditions, such as glitch detection, require a trans-
port delay mechanism.

A-4.4 Behavioral Subarchitecture

Each behavioral subarchitecture shall be inspected to en-
sure that it meets the specifications listed in this section.

A-4.4.1 Visbility of Internal Registers

The model shall be inspected to ensure that all user pro-
grammabl e operations and registers are clearly identifiable

in the simulation model. The model verifier shall make a
checklist of the programmable operations and registers for
later use. (DID requirement 10.2.3)

A-4.4.2 Test and Maintenance Functions

Inspect that, if test or maintenance functions are available
to the user of the actual component, the model includes ade-
scription of the test functions. (DID requirement 10.2.3)

A-4.4.2.1 Test and Maintenance Functionsfor Be-
havioral Models

Detailed structural scan signature paths shall not be spec-
ified. However, the entity interface of the device should in-
clude the scan test port declarations. The model shall be
inspected to ensure that signal values which are dependent
on a particular structural implementation, such as scan path
signatures, are not specified in the behavioral body. (DID re-
quirement 10.2.3.3)

Note 10: In addition, the behavioral model, when placed
into a test mode, should respond with a NOTE level asser-
tion stating that the scan structure has not been implemented
in the model.

A-45 Structural Subarchitecture

Each structural subarchitecture shall be inspected to en-
sure that it meets the specifications listed in this section.

A-451 Test and Maintenance Functions

Inspect that, if test or maintenance functions are available
to the user of the actual component, the model includes ade-
scription of the test functions. (DID requirement 10.2.3)

A-45.2 Test and Maintenance Functionsfor
Structural Models
The model shall be inspected to ensure that structure
which is created to support testing and maintenance (such as
scan path signatures) isincluded in the VHDL structural de-
scription. (DID requirement 10.2.4)
Detailed structural scan path signatures shall be specified.

A-453 Correspondenceto Actual | mplementa-
tion
The model shall be inspected to ensure that the structural
bodies represent the physical implementation. The details of
the model at this level should enable logic fault modeling
and test vector generation to be performed, not necessarily
within aVHDL environment (DID requirement 10.2.4)

A-454 Traceability

The model shall be inspected to ensure that the names of
components and signals arethe same as, or traceableto, their
electrical schematic counterparts, for ease of schematic
drawing correlation, and within the constraints of the lexical
rules of VHDL. (DID requirement 10.2.4.1)

A-455 Leaf-Level Modules

Themodel shall beinspected to ensure that each leaf level
module can be classified in one of the following categories:
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1. Modules selected from a Government list of leaf
level modules

2. Modules corresponding to a collection of hardware
elements which together exhibit a stimulus-response behav-
ior, but whose interaction is best modeled at the electrical or
physical level. Examples of such modules are digital logic
gates, analog circuit blocks, and power supplies.

3. Modules whose detailed design has not yet been
completed, but whose behavior isrequired asan interim con-
tractual deliverable. (DID requirement 10.2.1.1)

A-4.6 Dataflow Subarchitecture
Each of the procedures defined in and above shall be ap-
plied to dataflow modeling subarchitectures as well.

A-4.7 Inclusion of Packages

The model shall be inspected to ensure that VHDL pack-
age declarations are used whenever operating conditions are
common across aclass of similar components. (DID require-
ment 10.2.2.3).

Note 11: Operating conditions are the physical and elec-
tronic environment in which components are designed to op-
erate, such as temperature range, signal excursions, logic
level definitions, maximum power dissipation, and radiation
hardness.

A-4.7.1 Traceability

Inspect that all such specifications are traceable back to
the physica device specifications. (DID requirement
10.2.2.3)

A-4.8 Test Benches

A-481 Check for Existence of Corresponding
Test Bench
Every VHDL module shall be simulatable as a stand-
alone model and hence acorresponding VHDL test benchis
required for every VHDL module of the hierarchy. (DID re-
quirement 10.2.5.3)

A-48.2 WAVES Conformance Requirements
The test vectors shall be inspected to determine that they
have been written in the WAVES format.

A-4.8.3 Distinguishable from the Module

Thetest benches shall be inspected to ensure that they are
clearly distinguishable from the VHDL modules represent-
ing the design itself. (DID requirement 10.2.5)

A-48.4 Test Bench Comments

The test bench shall be inspected for explanatory com-
ments. Refer to pars. A-4.1 and A-4.1.2. (DID requirement
10.2.7)

A-4.85 Test Vector(s) Description
A detailed description of the purpose of each test bench
shall beincluded. (DID requirement 10.2.7)

A-4.8.6 Assertion Reports

The test bench shall be inspected to assure that it stimu-
latesthe Module Under Test (MUT) and reports any discrep-
ancies with expected response during simulation. (DID
requirement 10.2.5.1)

A-4.8.6.1 Assertion Messages

For each error message, inspect that it identifies the re-
quirement that has failed, and that the error message in-
cludes the name of the violating VHDL design entity. (DID
requirement 10.2.6)

A-4.8.7 Sufficiency of Configuration Information
Inspect the test bench to assure that sufficient configura-
tion information is present to facilitate the test.

A-4.8.8 Test Requirements Correlation

The VHDL test benches, the hardware test drawings, and
test plans shall be inspected to ensure that they are
cross-referenced to any required hardware test plans as nec-
essary. (DID requirement 10.2.5.2)

A-4.8.9 Necessary Tests

Each test bench shall be inspected to ensure that the
WAV EStest vectors used within it are necessary to ssimulate
the correct behavior of the VHDL module to which it corre-
sponds. (DID requirement 10.2.5)

A-4.8.10 Sufficient Tests

Each test bench shall be inspected to ensure that the
WAV EStest vectors used within it are sufficient to simulate
the correct behavior of the VHDL module to which it corre-
sponds. This includes a sufficient set of test vectors to vio-
late al timing constraints. (DID requirement 10.2.5)

A-4.9 Configurations
Note 12: While there are no specific procedures to verify
configurations, the following issues should be pointed out:

1. Default Bindings. When default bindings are used,
acomment stating such is useful.

2. Open Associations. When open ports or design
units are encountered in the configuration, a comment
should be made as to the purpose of the open association.

Note 13: Type Conversions. When type conversion func-
tions are used to map data from one VHDL model to anoth-
er, acomment should state if the mapping isidentical or not.
If the mapping is not identical, then the comment should
state whether any unmapped signal values are likely and to
which state they are being mapped.

A-50 TESTING AND DATA ANALYSIS

A-5.0.1

Verifying the correct behavior of a VHDL simulation
model is a complex undertaking. The verifier needs a de-
tailed understanding of the device that has been modeled.
All sources of information concerning the device's opera-
tion shall be obtained and used to determine what testing is
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required to verify that the delivered VHDL simulation mod-
el operates correctly and if the delivered test suite is suffi-
cient to meet those requirements. The intent of the
verification isto detect errors or omissionsin the functional-
ity, timing, style or content of the VHDL simulation model.
The mechanics of the verification procedure are dependent
on the amount of design detail available for the REFER-
ENCE and the amount of design detail available for the
MODEL.

A-5.0.2 Execution of the Test Suite

Simulation results must match those indicated by the
specification for items such as best-case, worst-case, and
nominal output delays versus temperature and voltage rang-
es. Error messages caused by timing violations shall be in-
spected to ensure that they correctly identify the requirement
which has been violated and the name of the VHDL design
unit in which the error has occurred.

A-5.0.3 TheTesting Procedure
The test procedure consists of:
1. Comparing the operation of the MODEL to the
specifications of the REFERENCE
2. Comparing the operation of the MODEL to the op-
eration of the intended REFERENCE.

A-5.1 Definitionsfor Testing

A-5.1.1 Test Bench

A VHDL module that applies WAVES stimuli to a mod-
ule under test (MUT) compares the MUTs response and the
WAVES expected output, and reports any differences be-
tween observed and expected responses during simulation.
Each configuration should have a corresponding test bench
which is clearly distinguishable from the MUT modules.

A-5.1.2 Test Suite
A collection of one or more test benchesto which is asso-
ciated a corresponding MODEL .

A-5.1.3 Test Bench Configuration Sets

Determine that a test bench configuration set has been
made availablefor every combination of entity, architecture,
and test bench such that a test bench configuration exists for
each pair, i.e, MODEL-structural view + Test 1,
MODEL -behavioral view + Test 1, etc. (DID requirement
10.2.5.1)

A-5.14 Commercial Model REFERENCE

For commercially available integrated circuits, the DID
specifies that the VHDL test case shall correspond to an
equivalent hardware test plan. If no such test plan exists, as
in the case of amodel of astandard | C device, then the REF-
ERENCE shall be the actual device.

A-5.2 Execution of Test Suite

Each test bench shall be executed and the results of the
simulation runs recorded. (DID requirement 10.2.5.1)

A-5.2.1 Behavioral and Structural Verification

Run every test bench configuration set and record the re-
sults. (DID requirement 10.2.5.1)

A-5.2.2 Automatic Checking

The simulation results shall be analyzed to ensure that
each VHDL test bench does correctly apply stimuli to the
MODEL, compares the MODEL’s response to an expected
WAVES output, and reports any differences between ob-
served and expected responses during simulation. (DID re-
quirement 10.2.5.1)

This involves monitoring the test bench and the MODEL
during simulation to insure that the proper functions in the
MODEL are activated by the test bench and that the proper
responses occur in the MODEL and are properly monitored
by the test bench. The comments provided with the test
bench defines what should happen with each test bench.

A-5.2.4 Augmentation of Test Vectors

The model developer shall provide WAVES test vectors
designed to check functionality and timing with a comment
provided for each vector or set of vectors describing the as-
sociated function being tested. The model verifier shall de-
velop aset of test vectors that violate the timing and voltage
specifications, attempt to perform illegal model operations
and test its functionality at its operational limits should such
test not be provided by the devel oper. Any additional vectors
developed to augment the test vector set shall be document-
ed in the final report. The MUT shall then be simulated and
the results analyzed.

A-52.3 Determination of REFERENCE Test
Goodness
Referring back to the REFERENCE specifications and
the hardware test plan, perform the following tasks:

A-525 REFERENCE Test Coverage Deter mina-
tion
Determine if there exists any REFERENCE behavior
specified in the functional specification that is not tested by
atest bench. This involves comparing the functional speci-
fication with the test bench descriptions to identify test
bench omissions. (DID requirement 10.2.5.3).

A-5.2.9 Augmentation of Test Benches

If in the opinion of the verifier, additional test benchesare
warranted, then the verifier may write those test benches and
document the purpose of each test.

A-5210 Simulation

The VHDL modules shall be smulated on any available
|EEE-1076 compliant simulator using the supplied test vec-
tor set in the WAVES format.



Downloaded from http://www.everyspec.com

MIL-HDBK-62

A-5.3 ResultsAnalysis

A-53.1 Result Documentation

Document every test performed under this section. Note
any errors or omissions and write additional test benches as
deemed necessary.

A-53.2 MODEL Functionality Omissions

Look for REFERENCE behavior specified in the func-
tional specification that isnot modeled at all inthe MODEL.
This involves comparing the functional specification with
the MODEL to identify MODEL omissions.

A-5.3.3 MODEL Functionality Errors

Look for REFERENCE behavior specified in the func-
tional specification that has been modeled in error in the
MODEL. Thisinvolves comparing the functional specifica-
tion with the MODEL to identify MODEL errors. REFER-
ENCE behavior includes timing behavior and functional
behavior.

A-5.3.4 MODEL Timing Performance
Check for proper modeling and testing of best, worst and
nominal output delays. (DID reguirement 10.2.2.2).

A-534.1

Among other timing tests situations to look for, the fol-
lowing is a list of timing conditions commonly found in
commercia device models:

1. Setup, hold, recovery, and release time specifica
tions
2. Periodicity, pulse-width and cycle-count specifica
tions
3. Timing variations due to voltage, temperature or
loading.
(DID requirement 10.2.3.2)

Note 14: Performing this procedure involves monitoring
the MODEL during simulation to insure that the proper tim-
ing relationships exist in the MODEL and that they are acti-
vated by the test bench. The comments provided with the
test bench define what should happen with each test bench.

A-5.35 Timing Violation Error Reports

The error messages caused by the timing violation shall
be inspected to ensure that they correctly identify the re-
guirement which has been violated and the name of the
VHDL design unit in which the error occurred. Applicable
VHDL design units include: entity declarations, architec-
tures, package declarations, package bodies, and configura-
tions. (DID requirement 10.2.6).

OPEN ISSUE: An dternative to verifying timing with
simulation isto verify timing with atiming analysis tool.
A-5.3.6 MODEL Programmable Operations Per -

formance

Check for proper operation of all user programmable op-

erations (instructions, registers, etc.) (DID requirement
10.2.3).

Note 15: This check involves comparing the REFER-
ENCE specification with the MODEL to identify MODEL
errors or omissions. In addition, common areas to investi-
gate include instruction operation in al addressing modes,
explicit use of illegal opcodes, and determination that in-
structions execute in proper time sequence with the correct
cycle count among other test.

A-53.7 MODEL Test and Maintenance Func-
tions
Check for proper operation of all test and maintenance
functions that are available to the user. (DID requirement
10.2.3)

A-54 REFERENCE Implemented in Hard-
ware

A correlation between the actual hardware and the VHDL
model to ensure correctness is the next step of the testing
process. The same WAV EStest vectors used to stimulate the
MODEL are used to test the corresponding hardware. At this
level, discrepanciesindicate afailurein the model’ s descrip-
tion, an incorrect test vector set, or hardware that fails to
meet the specification.

This procedure shall be applied when the actua hardware
component is considered to be of higher quality than the
VHDL model. This is normally the case whenever a
third-party develops a behavioral model of a commercial
digital integrated circuit from the description contained in a
nonproprietary data book or data sheet.

A-54.1 Hardware Test Fixture

Construct or mount the REFERENCE into a hardware
test fixture. (For a commercial component, thisis usualy a
hardware modeler interfaced to adigital simulator.) Develop
a means of applying the test patterns generated by the test
suite to the REFERENCE. (In atypical VHDL-based simu-
lator with a hardware modeler interface, this step requires
the writing of a configuration design unit binding the formal
component instantiation to the physical device through the
hardware modeler software interface protocol.)

A-5.4.2 Verification Procedure
Repeat par. A-5.2 through par. A-5.3.7 with the physical
REFERENCE.

A-5.4.3 Test Response Comparisons

Compare the responses of the REFERENCE against the
response of the MODEL.

A-543.1 Comparison Considerations

The intent of comparing the responses of the MODEL
with the responses of a REFERENCE isto insure the MOD-
EL reflectsthe behavior of the REFERENCE both function-
aly and to some allowable timing tolerance. Because many
differences may exist between the two, specia care needsto
be taken to insure avalid comparison.
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A-5.4.4 Different Levelsof Abstraction

By itself, different levels of modeling abstraction be-
tween the REFERENCE and the MODEL should not
present additional problems. The REFERENCE operation
may be encapsulated in a written specification, a high level
(behavioral) model, a gate level model or by the hardware;
the MODEL may be described as a high level (behavioral)
model or as a gate level model. But the VHDL DID only
mandates that physical 1/0 pins, timing characteristicson |/
O pins, and user accessible hardware objects be clearly iden-
tifiable and hence comparable. Other internal objects may or
may not match across the two models and certainly should
not be used as a basis for comparison.

A-5.45 Data Sampling

Whiletherewill be differencesin the details, both models
are intended to represent a common behavior. Keeping in
mind theissues presented bel ow, areasonable comparisonis
possible.

The comparison is only as good as the data being com-
pared. Getting good data is a function of proper sampling.
Proper sampling is determined by the amount of timing de-
tail incorporated into the REFERENCE and the MODEL.
Sampling rates, times and locations are determined by the
REFERENCE or MODEL with the least accurate timing for
pin to pin comparisons. For internal comparisons, sampling
rates, times and locations are determined by the REFER-
ENCE or MODEL with the most abstract description.

A-5.4.6 Strobing Intervals/Time Offset

If both models contain accurate timing information, sam-
pling can occur at regular timed intervals, for instance: every
5ns. Thisinterval is determined by the level of accuracy re-
quired in the comparison and the alowable timing toleranc-
es. Data collection must be offset far enough from sample
initiation to guarantee valid datain the presence of any mod-
eled or physical delaysand any timing ambiguity dueto tim-
ing tolerances.

If one of the models does not contain detailed timing in-
formation, then sampling must be initiated with system
clocks (synchronous design) or control signals (asynchro-
nous designs). Data collection must be offset far enough
from sample initiation to guarantee valid data in the pres-
ence of any modeled or physical delays and any timing am-
biguity due to timing tolerances.

If both models contain accurate functional information,
sampling can also occur at any internal location; for instance
at every register. Theselocations are determined by thelevel
of accuracy required in the comparison. If one of the models
does not contain detailed functional information, then sam-
pling isonly useful where there are common objects.

A-5.4.7 CycleCount

Certain processors require anumber of clock cyclesin or-
der to perform a given function (i.e., multiplication in 154
clocks on aMC68000). Check that the MODEL matchesthe
REFERENCE with respect to cycle counts.

A-5.4.8 Timing Tolerance Windows

Certain REFERENCE specifications indicate that the
MODEL shall respond to astimulus within acertain relative
time interval with respect to the stimulus or a gating clock
signal. Check that the test bench has been written in such a
way asto determine that the response transition occurs with-
in that timing window and that the test bench issues an error
if the response (a) failsto occur, (b) failsto provide the cor-
rect value during the time window, or (c) occurs outside of
the time window.

A-5.4.9 Discrepancies
Document any errors or omissions and write additional
test benches as necessary.

A-5.4.10 Justifiable Discrepancies

Make alist of justifiable discrepanciesindicating the dis-
crepancy aong with an explanation of why the discrepancy
is acceptable.

A-55 Simulation Values

If the REFERENCE and the MODEL have different val-
ue systems, a mapping from one to the other must be de-
fined. This mapping will be used during the comparison
process to insure response equality.

Consider the case where the REFERENCE uses a three
state(" U, ‘0", '1'),twostrength(' W, 'S')vaue
system and the MODEL uses a five value system (" U,

‘o', "1, "Z, '-'). Themapping might be some-
thinglike("' W, 'U)->'U, (S, 'U)->"'U,
(w, '0") ->'z2,(s, '0") ->"'0,(W,
"1')->'Z2",(S, '1')-> "1 .(Thereisno map-
pingto ' -".)

Keeping in mind the issues of data sampling below, the
comparison procedure uses the mapping defined above to
determine when responses in the REFERENCE are equiva
lent to responsesin the MODEL. If the MODEL ever exhib-
itsa' -' during the comparison process, special analysisis
probably called for to determine what is happening. The ex-
istence of the' - ' does not automatically imply model dif-
ferences.

A-5.6 Model Initialization

Situations may occur where it may appear that things can
be more complicated than is actualy the case. Because the
models are supposed to be equivalent, the external stimulus
that initializes the REFERENCE and the MODEL are iden-
tical. After that stimulus has been applied, the two models
must be in identical states or the models aren’t equivalent.
The question remains: how to compare states for identity?

Consider the case where an initialization sequence con-
sists of holding areset line active and then applying 5 clock
pulses. Upon completion of the initialization sequence, all
state machines should be at their starting state, al registers
should be cleared and all output busses should be tristated.
A comparison of thetwo modelsis constrained in both space
and time because of the way the specification is defined and
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because of what the DID allows.

The state machinesin the two models cannot be observed
and compared because they do not represent user-accessible
features. The DID does not require that internal hardware
objects be modeled to any standard or that they must behave
in any set way. Only the subset of registersthat is“user pro-
grammable” may be observed and compared for the same
reason. Nothing in either of the models (registers, busses,
etc.) may be compared during the reset sequence, only after
it is completed. The specification and the DID make no
statement about the behavior of the circuit or the models dur-
ing the reset sequence. Because of the data sampling issues
below, there may need to be some additional delay before
the comparison sampleis taken because of pin switching de-
lays.

A-5.7 Unjustifiable Discrepancies

Make a list of unjustifiable discrepancies indicating the
discrepancy along with an explanation of why the discrepan-
cy is unacceptable.

A-5.8 1/0O Pin Differences

There are two possibilities here. One possibility isthat a
pin is present in one model and absent in the other. For in-
stance: a high level model has no scan out pin because that
behavior wasn't modeled. An “equivalent” low level model
has a scan out pin. The other possibility is that a pin is
present in both models but behaves differently dueto “level
of abstraction” issues. While it may seem there are extenu-
ating circumstance here, there really are not. In neither case
are these models equivalent. The DID requires pin for pin
compatibility.
A-6.0 VERIFICATION REPORT

A final report shall be written detailing the results of this
Model Verification Procedure. The report shall contain the
following sections.

A-6.1 Contentsand Organization of the Re-
port

A-6.1.1 Final Report Header

Contains essential information regarding the hardware
being modeled and the modeling environment. (See Tab A.)

A-6.1.2 Verification Procedure Checklist

Assures that the model has been inspected against each
item of the procedure. (See Tab B.)

A-6.1.3 Final Report Format
Explains the expected deliverable format of the final re-
port. (See Tab C.)

Tab A: Final Report Header
Report Name:

Verificator Name:

Model Name:

A-10

Model Version:

Model Vendor:

Authorizing Requester:
Analyzer Vendor Name;
Analyzer Model:

Analyzer Version:

Simulator Vendor Name:
Simulator Version:

Hardware Modeler Vendor:
Hardware Modeler Model:
Hardware Modeler Version:
Source of REFERENCE data:
List of additional HW / SW used for thistest:
List of auxiliary test benches:
Instructions to the Verificator:

Tab B: Verification Procedure Checklist

The verificator shall check that each task item has been
completed as described in the Verification Procedure.

A-2.0 REFERENCED DOCUMENTS
A-2.2 System Specifications

A-2.2.1 Standard |C Data Books/Specifications

A-2.2.2 ASIC Design Specification

A-2.2.3 System Level Specifications

A-2.2.4 Hardware Test Plan
A-2.3 |EEE Publications

A-2.3.11EEE Standard VHDL Language Reference Man-
ual (VHDL-LRM) Exchange Specification

A-2.3.2 |IEEE Standard VHDL View of WAVES (Wave-
form and V ector Exchange Specification)
A-2.4 Government Documents

A-2.4.1 Military or Contract Specification

A-2.4.3 DI-EGDS-80811 VHSIC Hardware Description
Language (VHDL) Data Item Description

A-2.4.4 TISSS Specification

A-3.0INITIAL INSPECTION

A-3.1 Documentation Files Required under DID
DI-EGDS-80811

A-3.1.1 Table of Contents File
A-3.1.2 CDRL File

A-3.1.3 AnalysisFile

A-3.1.4 Leaves File

A-3.1.5 Modifications File

A-3.1.6 Deliverables Files

A-3.1.7 Test Bench Association File
A-3.1.8 Auxiliary Information File(s)
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A-3.2 Conformance to |IEEE VHDL-1076

A-4.0 DETAILED INSPECTION
A-4.1 Comment Banner
A-4.1.1 Comment Banner with Revision Information
A-4.1.2 Comments
A-4.1.3 Inspection for Orthogonality
A-4.1.4 Inspection for Incremental Information
A-4.2 Model Evaluation and Inspection
A-4.2.1 Entity Declaration DID Conformance
A-4.2.1.1 Entity Declaration
A-4.2.1.2 Entity Interface Declaration
A-4.2.1.3 Entity Naming Conventions
A-4.2.1.4 Timing Electrical Requirements
A-4.3 Architectures
A-4.3.1 Hierarchy
A-4.3.2 Physical Correspondence
A-4.3.3 Single Delays
A-4.4 Behavioral Subarchitecture
A-4.4.1 Visihility of Internal Registers
A-4.4.2 Test and Maintenance Functions

A-4.4.2.1 Test and Maintenance Functions for Behav-
ioral Models

A-4.5 Structura Subarchitecture
A-4.5.1 Test and Maintenance Functions

A-4.5.2 Test and Maintenance Functions for Structural
Models

A-4.5.3 Correspondence to Actual Implementation
A-4.5.4 Traceability
A-4.55 Leaf-Level Modules
A-4.6 Dataflow Subarchitecture
A-4.7 Inclusion of Packages
A-4.7.1 Traceahility
A-4.8 Test Benches

A-4.8.1 Check for Existence of Corresponding Test
Bench

A-4.8.3 Test Bench Comments
A-4.8.4 Test Vector(s) Description
A-4.8.5 Assertion Reports
A-4.8.5.1 Assertion Messages
A-4.8.6 Sufficiency of Configuration Information
A-4.8.7 Test Requirements Correlation
A-4.8.8 WAVES Conformance Requirements
A-4.8.9 Necessary Tests
A-4.8.10 Sufficient Tests
A-4.9 Configurations

A-11

A-5.0 TESTING AND DATA ANALYSIS
A-5.2 Execution of Test Suite
A-5.2.1 Behavioral and Structura Verification
A-5.2.2 Automatic Checking
A-5.2.3 Determination of REFERENCE Test Goodness
A-5.2.4 Augmentation of Test Vectors
A-5.2.5 REFERENCE Test Coverage Determination
A-5.2.6 Augmentation of Test Bench(es)
A-5.2.7 Simulation
A-5.3 Results Analysis
A-5.3 1 Result Documentation
A-5.3.2 MODEL Functionality Omissions
A-5.3.3 MODEL Functionality Errors
A-5.3.4 MODEL Timing Performance
A-5.3.5 Timing Violation Error Reports
A-5.3.6 MODEL Programmabl e Operations Performance
A-5.3.7 MODEL Test and Maintenance Functions
A-5.4 REFERENCE Implemented in Hardware
A-5.4.1 Hardware Test Fixture
A-5.4.2 Verification Procedure
A-5.4.3 Test Response Comparisons
A-5.4.4 Different Levels of Abstraction
A-5.4.5 Data Sampling
A-5.4.6 Strobing Intervals/ Time Offset
A-5.4.7 Cycle Count
A-5.4.8 Timing Tolerance Windows
A-5.4.9 Discrepancies
A-5.4.10 Justifiable Discrepancies
A-5.5 Simulation Values
A-5.6 Model Initialization
A-5.7 Unjustifiable Discrepancies
A-5.81/0 Pin Differences

Tab C: Délivery of the Final Report

The Verification Report, along with the Verification
Checklist, shall befiled in ASCII version and be appended
to the final tape provided for acceptance. In addition, awrit-
ten copy of the following shall be provided to the Program
Office requiring the acceptance.

Certification of Verification

THIS VERIFICATION PROCEDURE has hereby been
performed in accordance with the Verification Procedure at-
tached hereto.

WHEREAS, Verificator hereby certifies that the Mod-



Downloaded from http://www.everyspec.com

MIL-HDBK-62

€l (s) under consideration have been evaluated in accordance
with the verification procedures set forth in the Verification
Procedure document; and

WHEREAS, the Verificator hereby represents that any
discrepancies found have been indicated in an accompany-
ing Verification Report attached to this Checklist; and

NOW THEREFORE, the verificator certifies that such
tests were performed as required by affixing his or her sig-
nature below.

Verificator Signature:

Date:

A-12
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APPENDIX B
CONTRACT DATA REQUIREMENTSLIST AND DATAITEM
DESCRIPTION

B-0 PREFACE

This Appendix contains examples of a completed con-
tract data requirements list (CDRL), DD Form 1423-1, and
a completed tailored data item description (DID), DI-
EGDS-80811.

The CDRL isan actual CDRL developed by the US Army
Research Laboratory and isthe CDRL of the DID devel oped
by the Naval Research Laboratory that is used as an exam-

B-1

ple. The CDRL and the tailored DID are presented exactly
as used in contractual requirements documentsfor the deliv-
ery of very high-speed integrated circuit (VHSIC) hardware
description language (VHDL) documentation. Some docu-
ments referenced in the tailored DID have been updated or
superseded. Anyonedeveloping aDID and using thisDID as
an example must verify the current version of any document
referenced in this example.
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CONTRACT DATA REQUIREMENTS LIST

(1 Data Item)

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 220 hours per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the date needed, and completing and reviewing the collection of information. Send comments regarding the
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, paperwork Reduction project (0704-0188), Washington, DC 20503. Please DO NOT RETURN your form to either of thesd
addresses. Send completed form to the Government Issuing Contracting Officer for the Contract/PR No. listed in Block E.

A. CONTRACT LINE {TEM NO.

0009AA

B. EXHIBIT

D

C. CATEGORY:

TDP

™ Other

EGDS

D. SYSTEM/ITEM

RASSP DEVELOPMENT

E. CONTRACT /PR NO.

DAAL01-93-C-3380

F. CONTRACTOR

MARTIN MARIETTA

1. DATA ITEM NO.

DoOo1

2. TITLE OF DATA ITEM

VHSIC Hardware Description Language (VHDL)
Documentation

3. SUBTITLE
VHDL Technical Reports

4. AUTHORITY (Data Acquisition Document No.)

DI-EGDS-80811

5. CONTRACT REFERENCE

SOW PARA 3.1.3. & 3.4.2.2

6. REQUESTING OFFICE

ARPA/ESTO

17. PRICE GROUP

7. DD 250 REQ | 9. DIST STATEMENT] 10. FREQUENCY
REQUESTED

12. DATE OF FIRST SUBMISSION 14,

DISTRIBUTION

F PER YEAR MODEL
EACH DEMO

One (1) month after first
model year demo

13. DATE OF SUBSEQUENT
SUBMISSION

A 1 month after each year
SEE BLOCK 12 demo

8. APP CODE 11. AS OF DATE

a. ADDRESSEE

b. COPIES

18. ESTIMATED
TOTAL PRICE

Final
Draft

Reg. |Repro

16. REMARKS

AMSRL-EP-I 0 1 0

1. Performance/un-interpreted/architectural model views at the first level of VHDL NRL

0 1 0

module hierarchy (10.2.1) Decomposition. This view shall contain timing-only behavior
for leaf level entities (10.2.1.1) such as processor nodes. Buses/interconnects, inputs,

WL/EL

and outputs. This view documents the view required by a system engineer to make high

level choices relative to the type of processor. Number of processors, and the type of DESC

network required.

2. Application model view at the second level of VHDL module hierarchy (10.2.1)
decomposition. This view shall describe the full functional behavior (10.2.3) with multi-

component electronic modules as the leaf level entities (10.2.1.1). This view documents
the functionality of the module such that the system engineer can 1) choose from a model

library the module with the appropriate functionality, 2.) integrate the described module’s
behavior with the behavioral descriptions of other modules in the system, 3.) can perform

integrated hardware and software diagnostics of the system software, and 4.) can
investigate and analyze the impact of replacing the module during a model year upgrade.

3. Application model view at the third level of VHDL module hierarchy (10.2.1) decomposition.

This view shall describe the full functional behavior {10.2.3) with individual integrated circuits
as the leaf level entities (10.2.1.1). This view documents the functionality of the integrated

circuit that the application engineer can 1.) choose from a model library the integrated circuits
with the appropriate functionality, 2.) combine individual integrated circuit models into a composite

model of an electronic module, and 3.) perform integrated hardware and software diagnostics on
programmable integrated circuits, and 4.) investigate and analyze the impact of replacing an

individual integrated circuit during a model year upgrade.

4. Bus functional views shall be documented at the second and third level of decomposition
(i.e., module and integrated circuit level) to include interface declaration, pin timing and

electrical information, and operating conditions of all the interfaces (10.2.2.1, 10.2.2.2, and
10.2.2.3). This view documents the information required by the electronic module and/or

board designer to determine if he has correctly interconnected the integrated circuits on the
module. Continued....
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DATA ITEM DESCRIPTION o e 188
1. TITLE 2. IDENTIFICATION NUMBER
VHSIC Hardware Description Language (VHDL) Documentation DI-EGDS-80811

3. DESCRIPTION / PURPOSE

3.1 VHDL documentation contains behavioral and structural descriptions of an electronic system, subsystem,

or device. The primary purpose of these data items is to document hardware designs in a machine
processable, simulatable, and hierarchical format.

4. APPROVAL DATE 5. OFFICE OF PRIMARY RESPONSIBILITY (OPR) 6a. DTIC APPLICABLE 6b. GIDEP APPLICABLE
(YYMMDD)
890511 N SPAWAR-324

7. APPLICATION / INTERRELATIONSHIP

7.1 This Data ltem Description contains the format and content preparation instructions for the data product
generated by the specific and discrete task requirement as delineated in the contract.

7.2 The contract should provide a list of Government approved leaf level modules and a list of VHDL language
definitions. The Contracting Officer Technical Representative is responsible for monitoring the status of the

list of Government leaf level modules and preparing contract modifications to reflect current leaf level module
requirements in the contract.

(Continued on page 2).

8. APPROVAL LIMITATION 9a. APPLICABLE FORMS 9b. AMSC NUMBER

N4694

10. PREPARATION INSTRUCTIONS

10.1 BReference documents. The applicable issue of the documents cited herein, including their approval
date and dates of any applicable amendments, notices, and revisions, shall be as specified in the contract.

10.1.1 VHDL Manual.
(a) IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1987
The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017, USA

10.2 VHDL Documentation Content. VHDL documentation contains behavioral and structural descriptions

of the hardware being documented and behavioral descriptions of the VHDL test benches required to
demonstrate their functionality.

10.2.1 VHDL module hierarchy. A VHDL description for the hardware shall be a hierarchy of

VHDL modules, analogous to the physical hierarchy of the hardware being documented. A VHDL module
consists of a VHDL entity declaration, one or more behavioral VHDL bodies, and except for allowable leaf
level modules, a structural VHDL body. One VHDL module shall be defined for the entire system and one for
each physical electronic unit (assembly, subassembly, integrated circuit, etc.) of the hardware system. VHDL
modules should also be defined for important subsections or groupings of complex physical units (e.g.,
macrocells of a chip or boards defining a processor).

(Continued on page 2)

11. DISTRIBUTION STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
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Block 7, Application/Interrel ationship (Continued)

7.3 The DD Form 1423 (Block 16) should contain the re-
quirements for preparation of the deliverable VHDL docu-
mentation. The preferred means of delivering all VHDL
documentation should be machine readable ASCI| files con-
tained on the specific magnetic media and in the machine
format required by the Government Activity user. ASCII
files are defined as those satisfying character set require-
ments of the VHDL Language Reference Manual. Require-
ments for preparation of deliverable hard copy
(printed-paper media) documentation should also be provid-
ed on the DD Form 1423 (Block 16). The preferred docu-
mentation shall be comprised of:

a. Nine-track magnetic tape, 1600 bits per inch, unla-
beled, 80-character records, and a blocking factor of 1920
(i.e., 24, 80-character records per block). A label containing
text identifying the tape contents shall be affixed to the tape
reel.

b. Hard copy (printed on paper) containing the machine
loading instructions and the contests of the file 1 and file 2
on the tape (Section 10.3).

Block 10, Preparation Instructions (Continued)

10.2.1.1. Allowableleaf level modules. Leaf level modules
are VHDL modules for which no VHDL structural body is
required. The only permitted leaf level modules are:

a. Modules selected from a Government list of leaf level
modules referenced or contained in the contract.

b. Modules corresponding to a collection of hardware el-
ementswhich together exhibit a stimulus-response behavior,
but whose interaction is best modeled at the electrical or
physical level. Examples of such modules are digital logic
gates, analog circuit blocks, and power supplies.

¢. Moduleswhose detailed design has not yet been com-
pleted but whose behavior is required as a delivery disclo-
sure at specified times during the contract.

10.2.2 Entity declaration The entity declaration for each
module shall include an interface declaration, timing and
electrical requirementsfor the behavior of the device, allow-
able operating conditions, component identification, and ex-
planatory comments.

10.2.2.1 Interface declaration Theinterface declaration for
each entity shall describe all input and output ports. Thein-
terface description shall include information which relates
each input and output port to a package pin number or con-
nector pin number whenever such a correspondence exists.
Thisinformation may bein theform of port attributesor port
mapping statements which relate functional port nameswith
connector pin numbers.

10.2.2.2 Timing and electrical requirements Timing and
electrical requirements (e.g., setup and hold times or power
supply voltage extremes) shall be expressed in such a man-
ner as to cause the simulator to generate error messages
should the requirement be violated during a simulation.

Block 10, Preparation Instructions (Continued)

10.2.2.3 Operating conditions Operating conditions are the
physical and electronic environment in which physical com-
ponents are designed to operate, such as temperature range,
signal excursions, logic level definitions, maximum power
dissipation, radiation hardness, etc. VHDL package decla-
rations should be used whenever operating conditions are
common across a class of similar components.

10.2.2.4 Entity naming conventions Names for VHDL en-
tities shall be traceable to the names of physical electronic
counterparts whenever such a correlation exists.

10.2.3 Behavioral body A behavioral body is an abstract,
high-level, VHDL description which expresses the function
and timing characteristics of the corresponding physical
unit. All user programmable registers should be clearly
identifiable in the simulation model. Test and maintenance
functions which are part of the physical unit and are avail-
able to the user shall be included in the behavioral body.
Data flow, procedural and structural constructs may be used
for expressing behavior.

10.2.3.1 Decomposition of behavioral bodies Structural
decomposition of behavioral bodies shall be used only to
show functional partitions which are not clear from the par-
titions of the corresponding structural body. When deter-
mining the appropriate level of hierarchical decomposition,
ease of simulation and clarity of behavior should be kept in
mind. For example, it may be appropriate to decompose a
computer which ismade up of several bit-slice microproces-
sors into composite arithmetic logic units and register files
which span portions of several chips. However, decompos-
ing it into Boolean logic primitives (e.g., AND and OR op-
erators) would neither clarify the behavior of the system nor
make it easy to simulate.

10.2.3.2 Timing characteristics Signal delays at output
ports of the VHDL modules shall accurately model the be-
havior of the physical units corresponding to the VHDL
modules. Best, worst, and nominal outputs delays shall all
beincluded. More elaborate timing models which take into
account other variables such as supply voltage or output
loading may also be used.




Downloaded from http://www.everyspec.com

MIL-HDBK-62

10.2.3.3 Structurally dependent signal values Signal values
which are dependent on a particular structural implementa
tion, such as scan path signatures, shall not be specified in
the behavioral module.

10.2.4 Structural body A structural VHDL body is com-
posed exclusively of interconnected lower level compo-
nents. Structural bodies shall represent the physical
implementation accurately enough to permit logic fault
modeling and test vector generation. Structurewhichiscre-
ated to support testing and maintenance such as scan paths
shall beincluded in the VHDL structural description.

10.2.4.1 Structural naming conventions For ease of sche-
matic drawing correlation, and within the constraints of the
lexical rules of VHDL, names for components and signals
shall bethe same as, or traceableto, their electrical schemat-
ic counterparts.

10.2.5 VHDL simulation support VHDL test benches
which simulate the correct behavior of each VHDL module
required by the contract to be simulatable as a stand alone
module shall be furnished and clearly distinguished from the
VHDL modules representing the design itself.

10.2.5.1 VHDL test benches A VHDL test bench is a col-
lection of VHDL modules which apply stimuli to a module
under test (MUT), compare the MUT's response with an ex-
pected output, and report any differences between observed
and expected responses during simulation. VHDL configu-
ration information required to simulate the MUT shall bein-
cluded with the test bench.

10.2.5.2 Test requirement correlation VHDL test benches
shall be cross-referenced to the contractually required hard-
ware test plans, specifications and drawings.

10.2.5.3 VHDL test bench completeness Every VHDL
module of the hardware hierarchy shall be simulatable as a
stand alone module and hence a corresponding VHDL test
bench isrequired for every VHDL module of the hierarchy.

10.2.6 Error messages Error messages generated anywhere
in either the VHDL description of the actual hardware or the
test bench should identify the requirement which has been
violated and the name of the VHDL design unit in which the
error occurred. Applicable VHDL design unitsinclude: en-
tity declarations, structural and behavioral bodies, package
declarations, package bodies, and configurations.

10.2.7 Annctations VHDL design units shall include ex-
planatory comments which augment the formal VHDL text

to make the intent of the VHDL model clear. Thefollowing
information is required:

a. Any factors restricting the general use of this descrip-
tion to represent the subject hardware.

b. General approaches taken to modeling and particul ar-
ly decisions regarding modeling fidelity.

c. Any further information which the originating activity
considers vital to subsequent users of the descriptions.

10.2.8 Referencetoorigin Includedinthe VHDL documen-
tation shall be alist of VHDL modules new with this deliv-
erable and alist of VHDL modules that have been used
without change from VHDL documentation previously ac-
cepted by the Government under this contract or VHDL
modules selected from the list of Government VHDL mod-
ules referenced in the contract. Those modules included
from previously existing descriptions shall include:

a. identification of originator or source

b. DoD approved identifier (if one exists)

c. design unit name/revision identifier

10.2.8.1 Revision management VHDL design units, once
accepted by the Government, shall be revised only with the
approval of the Contracting Officer. A design unit revision
history shall beincluded in commentsin each revised design
unit (Refer to 10.3, h). The revision history shall include:
the date of revisions, the performing individual and organi-
zation, the rationale for the revision, a description of where
the original design unit required modification and thetesting
done to validate the revised model.

10.3 VHDL documentation format Each file delivered un-
der contract shall be either aVHDL design file, whose entire
contents conform to the requirements of the VHDL Lan-
guage Reference Manual (including the definition of com-
ments), or an auxiliary information file, containing no
VHDL design units. Design units which are new with this
contractual deliverable shall not be contained in the same
design file with design units which have been previously ac-
cepted by the Government. The sequential order of the files
of the deliverable shall be:

a. File1: Names of all files of the deliverable VHDL
documentation, named in accordance with the originating
host operating system; one file name per record and nothing
else (pad with trailing blanks).

b. File 22 High-level prose overview of the VHDL
description that cites contract, line item, Contract Data
Requirements List sequence number, and summarizes the
organization and content of the set of files.

c. File3: Specification of a sequence for analyzing the
VHDL design units of the deliverable that is consistent with
the order of analysis rules in the VHDL Language Refer-
ence Manual.

d. File4: List of VHDL modules which were selected
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from the Government list of leaf level modules.

e. File5: List of VHDL modules which are revisions
of modules previoudly accepted by the Government.

f. File6: List of VHDL modules which originate with
thisVHDL delivery.

g. File 7: List which associates VHDL modules with
their corresponding test benches.

h. File8 et seqq.: Auxiliary information files concern-
ing the VHDL descriptions and VHDL design files. Auxil-
iary information files shall precede VHDL design files.

M odifications

1. Performance/un-interpreted/archictural model views
at thefirst level of VHDL module hierarchy (10.2.1) decom-
position. This view shall contain timing-only behavior for
leaf level entities (10.2.1.1) such as processor nodes, buses/
interconnects, inputs, and outputs. This view documents the
view required by a system engineer to make high level
choices relative to the type of processor, number of proces-
sors, and the type of network required.

2. Application model view at the second level of VHDL
module hierarchy (10.2.1) decomposition. This view shall
describe the full functional behavior (10.2.3) with
multi-component electronic modules as the leaf level enti-
ties (10.2.1.1). Thisview documentsthe functionality of the
modul e such that the system engineer can 1.) choose from a
model library the module with the appropriate functionality,
2.) integrate the described modul€'s behavior with the be-
havioral descriptions of other modulesin the system, 3.) can
perform integrated hardware and software diagnostics of the
system software, and 4.) can investigate and analyze theim-
pact of replacing the module during a model year upgrade.

3. Application model view at the third level of VHDL
module hierarchy (10.2.1) decomposition. This view shall

describe the full functional behavior (10.2.3) with
multi-component electronic modules as the leaf level enti-
ties(10.2.1.1). Thisview documentsthe functionality of the
integrated circuits such that the application engineer can 1.)
choose from amodel library the integrated circuits with the
appropriate functionality, 2.) combine individual integrated
circuit modelsinto acomposite model of an electric module,
and 3.) perform integrated hardware and software diagnos-
tics on programmabl e integrated circuits, and 4.) investigate
and analyze the impact of replacing an individual integrated
circuit during amodel year upgrade.

4. Bus functional views shall be documented at the sec-
ond and third level of decomposition (i.e., module and inte-
grated circuit level) to include interface declaration, pin
timing and electrical information, and operating conditions
of all the interfaces (10.2.2.1, 10.2.2.2, and 10.2.2.3). This
view documents the information required by the electronic
module and/or board designer to determineif he has correct-
ly interconnected the integrated circuits on the module.

5. Structural views (10.2.4) of multi-component elec-
tronic modules with individual integrated circuits as the | eaf
level entities. This view documents the information re-
quired to describe to the modul € stest engineers, model year
upgrade engineers, and maintenance technicians how the
components on the module are interconnected.

6. Structural views (10.2.4) of all integrated circuits de-
signed by the RASSP program with register-transfer level
cells as the leaf level entities. This view documents infor-
mation that may be used by the model year upgrade engi-
neers to re-implement the integrated circuit in a newer
technology.

7. |EEE 1029.1 (Waveform and vector exchange specifi-
cation) waves compatible views of input stimulus and output
results (10.2.5) for all VHDL test benches at al levels of
VHDL module decomposition. Thisview documentsthein-
formation necessary to show the correct functionality of the
models to anyone utilizing them.
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GLOSSARY*

Algorithmic Model. A high-level behavioral model written Assertion Statement. A VHDL statement used to check that
as “a prescribed set of well-defined rules or processes a specified condition in a VHDL model is true and re-
for the solution of aproblem in afinite number of steps; ports an error if it isnot. [VHDL’ 93 LRM]
for example, afull statement of an arithmetic procedure  agyripyte. A named characteristic that can be associated with
for evaluating sin(x) to a stated precision.”. [IEEE] The VHDL itemsincluding types, ranges, signals, and func-

inputs and outputs of an algorithm model may not be tions. Attributes are used to annotate designswith infor-
exactly identical to therealized hardware at the bit level mation in addition to timing, structure, and function.

but will provide the same overall functionality asthe fi- Some attributes are predefined. VHDL provides at-
nal system. Moreover, an algorithmic model may not tribute specifications to specify the values of attributes,
support al of the diagnostic functions of the fina real- and user-defined attributes are supported by VHDL .
ized hardware.

Back Annotation. The process of assigning values to at-
tributes asthe result of the use of an external assessment
tool or when the parameters of an abstract model are up-
dated with accurate values obtained from more detailed
models. Back annotation is frequently used to refer to
the process of refining delay values based on detailed
calculations of fan-out, capacitive loading, and other
physical factors. The term is from the process of creat-
ing the model and declaring its attributes, then export-
ing the model to the external assessment tool, and then
replacing the attribute values of the model with the
more accurate values obtained from the assessment
tool.

Behavioral Model. An abstract, high-level VHDL descrip-
tion that expresses the function and timing characteris-
tics of the corresponding physical unit independently of

Application-Specific I ntegrated Circuit (ASIC). A micro-
electronic device customized for a particular applica-
tion. Customization of a microcircuit may include
programming of programmable read-only memories
(PROMS), electrically programmable read-only memo-
ries (EPROMSs), dectrically erasable programmable
read-only memories (EEPROMS), and ultraviolet eras-
able programmable read-only memories (UVE-
PROMSs). It also includes customized circuit designs
such as sea of gates, programmablelogic arrays (PLAS),
programmable logic devices (PLDs), gate arrays, and
microelectronic devices designed using standard cells
or silicon compilation. [MIL-HDBK-454]

Apply. The WAVES operation that schedules events to a
waveform and advances the current time for the wave-

form. any particular implementation. A behavioral model isa

Architecture Body. A VHDL design unit used to define the model whose inputs, outputs, functional performance,
behavior or structure of a design entity. There is only and timing are known but whose internal implementa-
one entity declaration permitted for agiven architecture tion is not further defined. [IEEE] Behavioral models
body; however, multiple architecture bodies may be are also called black box models or input/output mod-
generated for asingle entity declaration. els. “Behavioral model” is also a general term for any

ASCII File. The American Standard Code for Information VHDL model that is not a structural model.
Interchange (ASCII) defines a character set that is used Block Statement. A VHDL statement that defines an inter-
by VHDL'87 for source programs. Any file written in nal block representing aportion of adesign. Blocks may
that character setisconsidered an ASCI| file. VHDL' 93 be h|erarch|ca||y nested to support desi gn decomposj-
uses SO 8859-1 asiits character set. tion. [VHDL’93 LRM]

* Some definitions extracted from authoritative sources are annotated with an abbreviation of the source in brackets following the extracted
portion. The following abbreviations are used:

[EIA] = EIA-567-A, VHDL Hardware Component and Modeling Interface Standard, Electronic Industries Association, Washington, DC,
March 1994.

[|EEE] = |EEE Std 100-1992, The New | EEE Standard Dictionary of Electrical and Electronics Terms, The Institute of Electrical and Elec-
tronics Engineers, Inc., New York, NY, January 1993.

[VHDL’'93 LRM] = IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, April 1994.

[MIL-HDBK-454] = MIL-HDBK-454, General Guidelines for Electronic Equipment, 28 April 1995.

[WAVES] = |EEE Std 1029.1-1991, Waveformand Vector Exchange Specification, The Institute of Electrical and Electronics Engineers, Inc.,
New York, NY, 1991.

[Lipsett] = R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware Description and Design, Kluwer Academic Publishers, Norwell, MA,
1989.

[VLSI] = Joseph DiGiacomo, VLS Handbook: Slicon, Gallium Arsenide, and Superconductor Circuits, McGraw-Hill Book Co., Inc., New
York, NY, 1989.
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Boards. Physical electronic units designed for easy replace-
ment in asystem. Boards are typically the finest grained
form of aline-replaceable unit (LRU) found in a mili-
tary electronic system. An example of a board is the
standard electronic module E (SEM-E) package, which
isa6-in. by 5.6-in. board that is approximately 0.10 in.
thick.

Boundary Scan. A method of component testing that in-
volves the inclusion of a shift register stage (contained
in what is called a boundary scan cell) adjacent to each
component pin. The boundary scan cells are connected
into a serial shift register chain around the border of the
design, and the path is provided with serial input and
output connections and appropriate clock and control
signals. [IEEE 1149.1] A component designed with
boundary scan cells for each of its ports is tested by
shifting test vectors into the boundary scan override in-
put ports, executing the function of the component, and
then shifting out results from each of the boundary scan
output ports.

Boundary Scan Description Language (BSDL). A subset
of VHDL that defines formats for attributes of VHDL
design entities. These attributes contain much of thein-
formation required to analyze boundary scan BIT de-
signs.

Built-In Self-Test (BIST). Any test technique that allows a
unit to test itself with little or no need for external test
equipment or manual test procedures. A unit may bean
integrated circuit, board, or system, and the definition
impliesthat the testing process of input stimulation and
output response evaluation is integral to the unit being
tested.

Built-In Test (BIT). Any test approach using built-in test
equipment or self-test hardware or softwareto test all or
part of the unit itself.

Bus. A signal line or a set of lines used by an interface sys-
tem to connect a number of devices and transfer infor-
mation. [| EEE]

Bus Signal. In VHDL, aguarded signal that returnsto a de-
fault value (specified by the resolution function of the
signal) whenever al of its drivers are disconnected.

Bus Controller. Sometimes referred to as a bus interface
module, this controller is an electronic component that
monitors, provides, and controls access to the bus by
one or more processors or 1/O devices. A bus controller
monitors the status of the bus to determine whether to
receive an incoming message and viesfor control of the
bus with other controllers to send out messages.

Bus Functional Model. See Bus Interface Model.

BusInterface Model. A model of the operation of a compo-
nent with respect to any bussesto which it is connected.
A bus interface model combines an incomplete model
of the processor and the memory portions of a compo-

nent with an accurate model of the function and timing
of the bus or network interface protocol.

Circuit-Level Model. A model that represents a system in
terms of transistors or other elements such as switches
or gain blocks. It models the electrical behavior of the
system at alower level than the gatelevel but at ahigher
level than a full analog model. Circuit-level models
consider multiple (but discrete) signal strengths rather
than treating signal values as Boolean values or as con-
tinuous values.

Combinational Logic. A logic function where a combina
tion of input values always produces the same combina-
tion of output values. (The terms “combinative” and
“combinatorial” have also been used to mean combina-
tional.)

Compatibility. 1. The degree to which models may be inter-
connected and used together in the same simulation
without modification. 2. The degree to which aVHDL
model can be used by or operated on by simulation,
analysis, or design tools, such as synthesistools. [|EEE]

Complete Model. A VHDL model that defines the interface
and behavior of adesign and includes an electronic data
sheet, a test bench, and other supporting information
that explicitly describes the characteristics of the de-
sign.

Compliant Model. A VHDL model that meets the require-
ments of the VHDL dataitem description (DID).

Component. Any logically separable hardware unit. Com-
ponents can be combined to form a higher level compo-
nent by being interconnected; thus components are
nodesin the design hierarchy. The VHDL DID requires
that VHDL model components correspond to physical
or logical components.

Concurrent Statement. A VHDL statement that executes
asynchronously with no defined order relative to other
statements. [VHDL’'93 LRM]

Data Flow Model. A model where the architecture is ex-
pressed in terms of data transfer, use, and transforma-
tion. [IEEE] A data flow mode typicaly uses
concurrent signal assignment statementsto compute the
output signal values directly from the input signals.

Data Set. A named collection of similar and related data
records. A WAVES data set is the complete set of files
needed to build a WAVES waveform description. A
data set consists of a header file, one or more waves
files, and zero or more externa files. [WAVES]

Declaration. A VHDL construct that defines a declared en-
tity (such as an entity, object, subprogram, configura-
tion, or package) and associates an identifier with it.
[VHDL’93 LRM] This association is in effect within a
region of text called the scope of the declaration. Within
the scope of a declaration there are placesin which it is
possible to use the identifier to refer to the associated
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declaration. At such places the identifier is said to de-
note the associated declaration.

Delay Model. An agorithm used by a VHDL simulator to
update the transaction queue for asignal driver.

Delay Time. The time between activation of aVHDL signal
assignment statement and the time the updated signal
value is scheduled to appear on the signal.

Design Entity. An entity declaration together with an asso-
ciated architecture body. [VHDL 93 LRM] Different
architecture bodies associated with the same entity dec-
laration are different design entities. Different design
entities may share the same entity interface but employ
different architecture bodies and thus describe different
components with the same interface or different views
of the same component.

Design File. A text file containing the source code form of
one or more VHDL design units.

Design Hierarchy. The complete representation of adesign
that results from the successive decomposition of a de-
sign entity into subcomponents and the binding of those
subcomponents to other design entities that may be de-
composed in asimilar manner. [VHDL '93 LRM]

Design Library. A host-dependent storage facility wherein-
termediate form representations of analyzed VHDL de-
sign units are stored. [VHDL'93 LRM] Models
contained in a design library may not be available in
source form because of licensing and proprietary data
restrictions.

Design Unit. Any block of VHDL code that can be indepen-
dently analyzed and stored in adesign library. A design
unit isan entity declaration, an architecture body, a con-
figuration declaration, a package declaration, or a pack-
age body. [VHDL'93 LRM]

Direction. A component of a WAVES event that indicates
whether the event represents avalue that is to be driven
by the waveform, i.e., is a stimulus, or the event is an
expected value coming from the module under test, i.e.,
is a response. WAVES allows two possible values for
the direction of an event: stimulus and response.

Driver. A VHDL mechanism for creating new values for
signals. A driver holds the projected output waveform
of asignal. [VHDL’93 LRM] A driver consists of a set
of time/value pairs that holds the value of each transac-
tion and the time at which the transaction should occur.
[Lipsett] The value of asignal is afunction of the cur-
rent values of itsdrivers. [VHDL'93 LRM]

Edge Detection System. An electronic system that inputs
digital images and detects edges in the image, in which
an edge is associated with each significant changeinin-
tensity between neighboring pixels of the image.

Electrical View. A view of aVHDL model that specifiesthe
voltage and current characteristics for each pin of a
component. [EIA]

Electronic Data Sheet. A set of VHDL packages that de-

scribe the parameters, data types, physical types, and
functions required for the views of a component sup-
ported by EIA-567, such as an electrical view, atiming
view, and aphysical view.

Entity Declaration. A declaration that defines the interface
between a given design entity and the environment(s) in
which it is used. It may also specify declarations and
statements that are part of the interface. A given entity
declaration may be shared by many design entities; each
of which has a different architecture. Thus an entity
declaration can potentially represent a class of design
entities, each with the same interface.

Error. A condition that renders a VHDL source description
illegal. If the error is detected at the time of analysis of
the design unit containing the error, the detection pre-
vents the creation of alibrary unit for the given source
description. A run-time error causes asimulation to ter-
minate.

Event. In VHDL, a change in the current value of a signal,
whereas a WAVES event is the occurrence of an event
value at some specified time. A WAVES event has
three components: an event value, an event time, and an
associated signal on which the event occurs.

Event Value. A WAVES data structure that has four compo-
nents: astate, astrength, adirection, and arelevance. A
WAV ES event value defines the requirements upon the
waveform passing through the unit under test (UUT) at
an instant in time.

Fabrication Process. The collection of mechanical and
chemical processes used to create an integrated circuit.
These fabrication processes have associated rules con-
straining the performance and the geometry of circuits
developed using the processes.

File Slice. A record inaWAVES external file that describes
one or more events occurring at the same time.

Fragment of VHDL. A collection of VHDL source state-
ments that do not constitute a complete VHDL design
unit that can be separately compiled.

Frame.The set of eventsin WAVES defined within a slice
for asingle signal. A frame represents a list of zero or
more events.

Functionally Correct. A design is said to be functionally
correct if it provides the correct outputs for all possible
inputs. It must be assumed that there are no physical
faults in the manufactured system and that no errors are
caused by timing problems.

Gate-Level Model. A model that describesasystemin terms
of Boolean logic functions and simple memory devices,
such as flip-flops.

Generic. A VHDL interface constant whose value is not
fixed until elaboration. A generic is declared in the
block header of ablock statement, a component decla-
ration, or an entity declaration. Generics provide a
mechanism for communicating static information into a
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block. Unlike constants, the value of the generic can be
supplied externally in a component instantiation state-
ment or in a configuration specification. [VHDL’93
LRM]

Guard. See Guard Expression.

Guard Expression. A Boolean-valued expression associat-
ed with a block statement that controls assignments to
guarded signals within the block. A guard expression
definesanimplicit signal that may be used to control the
operation of certain statements within the block. [VH-
DL’93 LRM]

Guarded Signal. A signal declared as a register of a bus.
Such signals have special semantics when their drivers
are updated from within a guarded signal assignment
statement. [VHDL’93 LRM] There are two forms of
guarded signals: bus signals and register signals.

Header File. A WAVES file that specifies how the data set
isto be assembled from the WAV ESfiles and the exter-
nal files and defines the order of analysis for the
WAVES files and standard WAVES units. [WAVES]
A WAVES header file identifies the WAVES data set,
describes the other filesin the data set and their intend-
ed use (including the target librariesfor VHDL packag-
es), identifies VHDL library and packages that already
have been analyzed and will be used in the test bench,
and defines the order of analysis for the VHDL source
code.

Hierarchical Decomposition. A type of modular decompo-
sitioninwhich asystem isbroken down into ahierarchy
of components through a series of top-down refine-
ments. [|EEE]

Hierarchy. A structure in which components are ranked into
levels of subordination, each component has zero, one,
or more subordinates, and no component has more than
one superordinate component. [IEEE]

I mplementation Model. A model that reflects the design of
a specific physical implementation of a hardware com-
ponent. Usually, an implementation model is parti-
tioned into several submodels, and each submodel
corresponds to a unique physical subcomponent of the
component.

Inertial Delay. A VHDL delay model used for switching cir-
cuits. A pulse whose duration is shorter than the switch-
ing time of the circuit will not be transmitted. Inertial
delay isthe default delay modefor VHDL signal assign-
ment statements. [VHDL'93 LRM] An inertia delay
model removes spikes in the driving value of the target
signal driven by aninertially delayed signal assignment.

Infix Operator. A built-in arithmetic, relational, concate-
nate, or logical function that is represented syntactically
by asymbol or reserved word appearing between itstwo
operands in an expression. For example, the addition
operator + is an infix operator that appears between its
two operands, as in the expression A + B. VHDL

built-in operators can be overloaded so that they operate
on different types in addition to their native definition.

Initial Value Expression. An expression that specifies the
initial valueto be assigned to avariable, signal, or con-
stant.

Instruction Set Architecture (ISA). A model of the com-
plete set of instructions recognized by a given proces-
sor. An ISA model describesthe externally visible state
of aprogrammable processor and the functions the pro-
cessor performs. An ISA model of a processor executes
any machine program for that processor and gives the
same results as the physical machine aslong asall input
stimuli are sent to the ISA model simulation on the
same simulated clock cycle as they arrive at the real
processor.

Integrated Circuit. A combination of interconnected com-
ponents constructed on a continuous substrate.

I nterchangeable. Two VHDL models of the same module
are said to be interchangeable if one model can be sub-
stituted for the other as the description of a component
inalarger system model without introducing errorsinto
the system.

I nterconnection. A mechanism used for electrical commu-
nication between two components; it may also be a
model of such a mechanism.

Interface. A model that describes a shared boundary or
means of transmitting information between units. For
example, the interface for a VHDL design entity de-
scribes the ports that connect external signalsto thein-
ternal functions of the component modeled by the
entity. Theinterface for aVHDL package describes the
functions and data structures that can be accessed by a
user of the package.

I nterface Declaration. In VHDL, adeclaration that declares
the aspects of aVHDL design unit visible to other units
using the declared unit.

I nteroperable. Two VHDL models of different modules are
said to beinteroperableif they can be connected togeth-
er as components of alarger system model without in-
troducing errors into the system model or into
simulations of the system model.

Leaf Module. A design entity for which no VHDL structural
architecture body is required. As such, it is aleaf node
in the hierarchy of components. Examples of possible
leaf modulesfor astructural VHDL model include pow-
er supplies, analog circuit blocks, and digital logic
gates. In genera, a leaf module will be a behavioral
model.

Line-Replaceable Unit (LRU). A hardware component of a
system that can be replaced in the field if it is found to
be faulty.

Logic-Level Model. See Gate-Level Model.

Logic-Level Fault Modeling. Models that represent Bool-
ean “stuck-at” values, stuck-at-0 and stuck-at-1. This
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modeling is used to test how effectively test vectors de-
tect logic-level faults.

Logic Value. For WAVES, a VHDL enumerated type that
names all possible signal values that either can be ap-
plied to the external inputs of the MUT or can be sensed
as external outputs of the MUT.

Match. The WAVES operation that samples the actual re-
sponse of the MUT (or its model), compares it with the
expected response, and produces a flag depending on
whether the response was within the tolerances speci-
fied by the WAV ES waveform generator procedure.

Microelectronic Devices. Monalithic integrated circuits, hy-
brid integrated circuits, radio frequency (RF) and mi-
crowave (hybrid/integrated) circuits, multichip micro-
circuits, and microcircuit modules. [MIL-HDBK-454]

Model Reference Library. An implementation-dependent
storage facility for a set of executable models that can
be simulated in aVHDL simulation environment. Mod-
els contained in a model reference library may not be
provided in source form because of licensing and pro-
prietary data restrictions. Such restricted models are to
be avoided in DoD system designs because they may
make the described equipment unsupportable in the
long term.

Module. A synonym for a component.

Module Under Test (MUT). The component of atest bench
that is being tested.

Object. A VHDL object contains a value of a given type.
There are four classes of objects in VHDL’93: con-
stants, signals, variables, and files.

Operating Condition. The physical and electronic environ-
ment in which physical components are designed to op-
erate, such as temperature range, signal excursions,
logic-level definitions, maximum power dissipation,
and radiation hardness. An operating condition for a
VHDL model is defined in terms of a set of parameters
that specify the aspects of the environment and a specif-
ic set of values for those parameters.

Operating Point. A specific simulation condition selected
from minimum, maximum, and nominal. [EIA] An op-
erating point specifies the values for the operating con-
dition parameters used in a simulation.

Package. A VHDL design unit that contains declarations
and definitions. Packages are used to encapsulate defi-
nitions of data types, constants, type conversion func-
tions, and utility functions so that these common
definitions can be reused throughout a model or across
several models.

Partitioning. The process of decomposing acomponent into
its subcomponents.

Performance. A collection of measures of the quality of a
design that relate to the timeliness with which the sys-
tem reacts to stimuli. Measures associated with perfor-
mance include utilization, throughput, and latency

(response time).

Performance Model. A model with incomplete numerical
and internal state precision used early in the design cy-
cleto estimate utilization, throughput, and latency.

Period. The time from the beginning of a WAVES dlice to
the end of the dlice.

Physical View. A view that specifies the relationship be-
tween the component model and the physical packaging
of the component, such asrelating port definitionsinthe
component model to the signal and power pins in the
physical implementation of the component.

Pin. An electrical connection to aphysical component. Pins
areclassified assignal pins, power pins, or unconnected
pins. [EIA]

Port. A VHDL signal that provides a channel for dynamic
communication between a module and its environment.
A portisasignal declared in the interface list of an en-
tity declaration, in the header of ablock statement, or in
theinterfacelist of acomponent declaration. In addition
to the characteristics of signals, ports also have an asso-
ciated mode that constrains the directions of data flow
allowed through the port. [VHDL’'93 LRM]

Port Interface List. A list of ports that declares the inputs
and outputs of a block, component, or design entity. It
consists entirely of interface signal declarations.

Power Pin. An electrical connection through which electri-
cal power is supplied for the operation of aphysical de-
vice. Power pin specification is necessary for the
procurement of physical components, but it is not nec-
essary for simulation in VHDL models. [EIA]

Prime Item. A configuration item is a technically complex
item such as an aircraft, missile, launcher equipment,
fire control equipment, radar set, or training equipment.
A prime item requires a B1-level specification for de-
velopment. The criteriaused to consider aconfiguration
item aprime item are described in MIL-STD-490.

Primitive Data Types. A data type that is one of the data
types predefined by VHDL. TheVHDL primitive data
typesarel NTEGER, REAL, Tl ME, CHARACTER, BI T,
BOOLEAN, and SEVERI TY_LEVEL.

Primitive Module. A leaf-level module in a design hierar-
chy.

Printed Circuit Boards. Boards used to mount components.
A conductor pattern in, or attached to, the surface of the
printed circuit board provides point-to-point electrical
connections for the components mounted on the board.
[IEEE]

Process. The basic mechanism in VHDL used to describe
behavior. All concurrent signal assignment statements
can be represented as equivalent processes.

Processor. A hardware component that has the ability to fol-
low aprogram or list of instructions stored in amemory
(RAM or ROM), which alows it to perform some de-
tailed set of tasks. At the simplest level the instructions
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may be just a set of parameters. At the most complex
level, the instructions may be a compiled Ada program.

Processor-Memory-Switch-Level Model. A model that de-
scribes a system in terms of processors, memories, and
their interconnections, e.g., busses or networks.

Programmable Device. A hardware component whose be-
havior can be altered after manufacturing of the device.
Programmable devices include processors (whose be-
havior can be changed by changing the program in
memory), programmabl e logic arrays (PLAS), and field
programmable gate arrays (FPGAS).

Prototype. Aninitial or early version of asystemin anonde-
ployable form and usually created to validate certain as-
pects of the design. It may not have al of the
functionality, appearance, or internal complexity of the
expected final design. For example, acomputer simula-
tion of ahardware component may be considered a pro-
totype in which al physical and timing characteristics
are not represented, but the functional characteristics
are represented.

Race Condition. Occurs when the behavior of a device de-
pends on the relative arrival order of signal values at a
particular component of the device. Such differences
may occur because two or more values are ultimately
derived from the same signal by computations having
potentially different delays.

Register Signal. A guarded VHDL signal that retainsitslast
driven value whenever all of its drivers are disconnect-
ed.

Register-Transfer-Level Model. A model that describes a
system in terms of registers, combinational circuitry,
low-level busses, and control circuits.

Relevance. The component of aWAVES event valuethat is
used to indicate the significance of the event to the sim-
ulation. The possible values for a WAVES event rele-
vance are predicted, observed, and required.

Resolution Function. A user-defined function used to com-
pute the value of a signal that has multiple drivers. A
resolution function is required whenever a signal has
multiple drivers. The resolution function determinesthe
value of the resolved signal as a function of the collec-
tion of inputs from the signal’s multiple sources. [V H-
DL’'93 LRM] It is invoked whenever the value of any
drivers of the signals changes.

Scope. The range of VHDL text to which a declaration ap-
plies. For example, the scope of a declaration of an in-
ternal variablein a processincludes only that process.

Schematic Capture. The process of electronically drawing
and storing a schematic diagram. The schematic capture
database can be used with simulation to verify design
accuracy. [VLSI]

Sequential Logic. A logic relation in which the combination
of outputs of the relation is determined not just by the
combination of current input values but also by the his-

tory of previousinputsto the relation.

Sequential Statement. A VHDL statement that occursin the
body of aprocess and is executed in the order in which
it appears in the program and as controlled by the con-
trol statements of the process. Sequential statementsare
not executed concurrently.

Signal. A VHDL aobject with a present value, a past history
of values, and apossible set of future values. Signalsare
objects declared by signal declarations or port declara-
tions and are the mechanisms used in VHDL to connect
entities. VHDL processes or signal assignment state-
ments create the possibl e future values of signals. Those
connectionsto asignal that edit the futurevalue of asig-
nal are called drivers. A signal may have multiple driv-
ers, each with a current value and projected future
values.

Signal Pin. An electrical connection through which a com-
ponent exchanges information with other components
of the system. Specification of signal pinsis necessary
for both procurement and simulation. [EIA]

Signal State. The state of aWAVES event value determined
by the logic level of the associated signal. A WAVES
event can specify one of three logic levels: low, mid-
band, and high. The midband value is used to indicate
uncertainty about the value of the signal at the given
time. A VHDL signal does not distinguish between state
and strength, but data types can be defined for signals
that do make this distinction.

Signal State/Strength Value. In VHDL, the encoding of the
signal state and strength into a single value. The possi-
ble state/strength values for a VHDL signal can be de-
scribed by an enumerated datatype for the signal. IEEE
Standard 1164 defines astandard enumerated typeinits
std_I| ogi c_1164 package. In WAVES, signal state
and strength are treated separately.

Signal Strength. The ability of the specific WAVES signa
driver to force a logic level in the face of conflicting
logic levelsfrom other signal sources. A WAVES event
can specify signal strength as disconnected, capacitive,
resistive, drive, or supply.

Simulation. The process of applying stimuli to amodel over
simulated time and producing the corresponding re-
sponses from the model at the simulated times at which
those responses would occur in an effort to predict how
the modeled system will behave.

Simulation Condition. A description of characteristics of
the model used for a specific simulation. For example,
a simulation condition would specify whether mini-
mum, maximum, or nominal timing was to be used for
the simulation and whether assertions on portswould be
executed.

Simulation Model. A model that behaves or operates like a
given system when provided a set of controlled inputs.
[IEEE] A VHDL model that has been prepared for sim-
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ulation. A VHDL simulation model has been elaborat-
ed, the values of all generic constants are set, the
configuration has been determined and implemented,
and all instances of each specific component have been
created.

Slice. A specification of a portion of a WAVES waveform
that is created by asingleappl y operation. A slice oc-
curs in a fixed period of time across all signals of the
module under test.

Specification. 1. A document that specifies in a complete,
precise, verifiable manner the requirements, design, be-
havior, or other characteristics of a system or compo-
nent and often the procedures used to determine
whether these provisions have been satisfied. [|[EEE] 2.
A VHDL specification associates additional informa-
tion with a previously declared named entity. There are
three kinds of specifications: attribute specifications,
configuration specifications, and disconnection specifi-
cations. [VHDL' 93 LRM]

Static Analysis. Any kind of analysis of aVHDL model that
does not require simulation. Static analysis can be used
to check type or that all guarded signals are resolved.

Status. An optional field in a WAVES header file that de-
scribes the status of the test set.

Structural Body. A body of adesign entity that is composed
exclusively of interconnected lower level components.

Structural Model. A model of the physical or logical struc-
ture of asystem. A structural model may be hierarchi-
cal, i.e,, amodule in a structural model may itself be a
structural model. A structural model describes a system
purely in terms of its components and the interconnec-
tion of these components.

Synthesis. The process of creating arepresentation of asys-
tem at alower level of design abstraction from a higher
level (more abstract) representation. The synthesized
representation should have the same function as the
higher level representation; it should also meet all con-
straints specified to the synthesizer.

Tag. The WAVES operation that adds a textual annotation
to the waveform at the current time.

Testability. The degree to which the design of a system or
component facilitates the establishment of test criteria
and the performance of tests to determine whether those
criteriahave been met. [|EEE]

Test Bench. A collection of VHDL modulesthat apply stim-
uli to amodule under test (MUT), compare the response
of the MUT with the expected output, and report any
differences between observed and expected responses
during simulation.

Test Controller. An electronic circuit dedicated to control-
ling the testing of its host system and to collecting and
storing or reporting the results of the test.

Test Generation. The process of developing a set of test
stimuli, expected responses, and acontrol program. The

control program administers the tests to a module under
test (MUT) and compares the responses of the MUT to
the expected responses.

Test Interface. A collection of input/output (1/0) ports and
a protocol for communication through those ports in
which theinformation that is communicated istest data,
commands, and results.

Test Pin. INWAVES, an external signal of the module under
test to be stimulated or compared with known outputs.

Test Vector. A set of valuesfor al of the external input sig-
nals of a module under test. Inputs are driven with the
value, whereas outputs are tested against the given val-
ue.

Throughput. The total capability of a system or component
to process or transmit data during a specified time peri-
od. [IEEE] For example, to require that an edge detec-
tion system have a throughput rate of 30 images a
second means that the system must be able to consume
30 images a second and produce representations of the
edgesin each of the images consumed, again at arate of
30 images a second.

Timing Budget. A hierarchical set of throughput limitsor re-
sponsetimelimitsthat partition the timing requirements
for a system into timing requirements for the compo-
nents of the system.

Timing View. A view that specifies the signal propagation
and timing constraints associated with each signal pin
as afunction of the operating point. [EIA]

Trace. In WAVES, a sequence of WAVES events that cap-
tures the interaction between aWAVES data set and its
environment. [WAVES]

Trace File. An output of a simulation that contains one
record per event and is sorted by thetimes of the events.
For each event the time the event took place, the signal
whose change in values caused the event, the new value
of the signal, and sometimesthe VHDL process causing
the change in value are included. Some VHDL simula-
tion systems provide these transparently and automati-
caly.

Transaction. An element of adriver that holdsasingletime
and value pair. The time represents the simulation time
when the value will become the current value of the
driver. A transaction isthe result of the execution of a
signal assignment statement affecting the associated
driver and does not necessarily represent achangeto the
value of asignal. [VHDL’93 LRM]

Transport Delay. A VHDL delay model in which al inter-
mediate driving values of a signal, regardless of their
duration, are preserved. A transport delay is used by the
driver of a signal driven by a transport-delayed signal
assignment. Transport delay is characteristic of hard-
ware devices (such as transmission lines) that have al-
most infinite frequency response.

Type. An association of aname with aset of valuesand a set
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of operations. The set of operations includes the basic
operations and predefined operators, as well as the ex-
plicitly declared subprograms that have a parameter or
aresult of the type.

Type Checking. The process of checking that the types of
values transmitted between entity ports, subprogram
parameters, expression operands, and objects are syn-
tactically consistent. For example, type checking veri-
fiesthat the types of values assigned to asignal by al of
the signal assignment statements are the same.

Use Clause. A clause that implicitly associates the local
VHDL name for anamed design unit with thelibrary in
which that design unit resides.

Validation. The process of evaluating a model during or at
the end of a development process to determine whether
it satisfiesthe specified functional, performance, and in-
terface requirements. [ EEE]

Value Dictionary. A WAVES function that translates the
logic values created by the modul e under test into event
values.

Variable. A VHDL object that holds data. It has only a sin-
gle vaue that is the current value at any time, which
may be changed by assignment. A variableisin contrast
with signal drivers, which have a present value, a past
history of values, and several future values stored in
transactions.

Verification. The process of determining whether the prod-
ucts of agiven phase of the development cyclefulfill all
of the requirements established during the previous
phase. [|IEEE]

Verification and Validation. The process of determining
whether the requirementsfor asystem or component are
complete and correct, the products of each development
phase fulfill the requirements or conditions imposed by
the previous phase, and the final system or component
complies with the specified requirements. [IEEE]

VHSIC Hardware Description Language (VHDL). An
IEEE standard language to describe digital electronic
systems.

Very High-Speed Integrated Circuit (VHSIC) Program.
A program that developed technology (including the
VHDL) for the design and manufacture of high-
speed digital integrated circuits with 1.25 (Phase |)
and 0.5 (Phase Il) micrometer feature sizes for mili-
tary applications. Many Phase | VHSICs incorporate
built-in test capabilities, and Phase 1l VHSICs com-
ply with VHSIC interoperability standards.

View. A set of logically related data that represents the sig-
nificant characteristics of a component with respect to
the logical scope of the data. For a VHDL model of a
component, a view is typically represented by a set of
VHDL packages containing declarations of data, which
characterize aview.

Wait Statement. A mechanism within the VHDL to syn-
chronize activities in different processes. A wait state-
ment describes acondition on input signals of aprocess.
Only when those conditions are met will sequential ex-
ecution of the process continue. A wait statement causes
a process to suspend until the conditions given in the
wait statement are satisfied, at which point the process
resumes sequential execution.

Waveform. 1. A VHDL waveform is a series of
time-ordered transactions; each of which represents the
value of the driver of asignal. [VHDL’93 LRM] 2. A
WAVES waveform is a seguence of time-ordered
events across a set of signals[WAVES].

Waveform and Vector Exchange Specification (WAVES).
The Waveform and Vector Exchange Specification isa
standard method used to describe highly structured sets
of test vectors, discrete event simulator output, and au-
tomatic test equipment input. WAVESisdesignedto fa-
cilitate the exchange of information between design
environments and automatic test equipment. WAVESis
expressed as a subset of |IEEE Std 1076 VHDL.

Waveform Generator Procedure (WGP). The procedure in
aWAVES data set that generates awaveform and mon-
itors the response of the module under test to the wave-
form.
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instantiation, 3-8—3-9, 3-20
Composite type
definition, 3-11
example, 3-11
Concurrent built-in test, 8-6
Concurrent test strategy, 8-2, 8-3
Concurrent testing, 8-4, 8-6, 8-9
Configuration declaration comments, 9-3, 9-8
Configuration management,
Configuration specification, 3-9
changing parameter values, 3-21
example, 3-21—3-22
in ablock statement, 3-21
in an architecture body, 3-21, 3-22
purpose, 3-20
used with deferred constants, 3-21
Configuration declaration, 4-6—4-7
changing parameter values, 3-21
example, 3-13, 3-21—3-22
for back annotation, 3-13
nested, 3-22
purpose, 3-16, 3-20
use of libraries, 3-21
Constant, 3-12
deferred, 3-5, 3-12, 3-2
example of use, 3-7—3-8
in a package, 3-12
Contract data requirementslist, B-2
Context clause example, 3-16, 3-21
Cost measures, 8-1, 8-2, 8-3, 8-6
Critical Design Review, 4-5, 6-5
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Data abstraction, 2-7

definition, 3-10

purpose, 3-10

VHDL constructs supporting, 3-10—3-11
Data redundancy, 8-6
Delay model

inertial, definition, 3-5

transport, definition, 3-5
Delivery tapefile order, 9-2
Design entity

definition, 3-1

purpose, 3-1
Design entity interface

comments, 9-7—9-8
Design unit, 3-16, 4-8

primary units, 3-19

secondary units, 3-19
Design unit file, 9-4—-9-6
Design for maintainability, 8-1
Design for testability, 8-2, 8-6
Deterministic testing, 8-6
Diagnostic decision support, 8-3
Discrete event simulator, 3-4
Documentation of VHDL models, 4-7
DoD-approved identifier, 9-2—9-4

E

Edge detector

behavioral architecture body, 2-8, 2-10
behavioral hierarchy, 2-7, 2-8

data type VHDL package, 2-10

input, 2-7

output, 2-7

structural hierarchy, 2-14, 2-20

VHDL package body, example, 2-10

ElA 567, 3-5, 3-12, 4-3, 4-5, 5-27, 6-5—6-6, 7-12, 9-2, 9-3

application example, 9-2

consistent with |EEE 1164, 7-3
electronic data sheet, 3-8, 3-13, 4-5
environmental parameters, 7-13

generation of unknown signal state parameter, 7-17

generics, 3-14, 7-3
MGENERATI ON, 7-13
operating point selection, 7-1
timing check functions, 3-15
timing check routines, 7-12, 7-16
timing view, 7-3
timing violation, 7-13
unknown generation, 7-12
use of physical types, 3-14
XGENERATI ON, 7-13, 7-15
Electrical view, 3-12



Electronic data sheet, 3-8, 3-20, 4-5

use of physical types, 3-14
Entity declaration, purpose, 3-2
Entity interface, 3-1
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Entity name, programming conventions, 9-7

Enumerated type, 3-10—3-11
built-in, 3-11
definition, 3-11
Environmental parameter data, 9-5
Error

detection with passive processes, 3-15

propagation, 3-15

signaling severity of, 5-22
Error logging, 8-6, 8-7, 8-8
Error handling, 5-21—5-22
Error recovery, 8-1
Event

definition, 3-4

generation, 3-4
Executable specification, 4-4
External test strategies, 8-2—8-3

F

Fault containment, 8-1, 8-4, 8-6, 8-9

Fault coverage, 8-6, 8-8, 8-9

Fault detection, 8-1—8-4, 8-6

Fault dictionary, 8-8, 8-9

Fault isolation, 8-1—8-4, 8-6, 8-7, 8-8

Fault masking, 8-4, 8-6, 8-8, 8-9

Fault model, 8-1, 8-8
logic level, 6-9—6-10
stuck-at-zero, stuck-at-one, 8-1, 8-8

Fault recovery, 8-1, 8-6

Fault smulation, 8-8

Fault tolerance, 8-2—8-3, 8-6, 8-9

Fault universe, 8-8

Fault-tolerant system, 8-1

Filetype, 3-11

File-naming conventions, 9-6—9-7
analysis order specification, 9-2
architecture body, 9-8
coefficient tables, 9-8
configuration declarations, 9-3, 9-8
design entity declaration, 9-6
DID overview, 9-2
filelist, 9-2
leaf modulelist, 9-3
machine language program, 9-8
original moduleslist, 9-3
package body, 9-7

package declaration, 9-7
revised modules list, 9-3
test bench, 9-6, 9-7
test bencheslist, 9-4
tracefile, 9-8

Function, 5-7

Functional testing, 1-4, 8-6

G

Gate-Gate level model, 1-4, 2-4, 2-12
definition, 2-4
example of, 2-4
Generic, 3-5, 3-12
example, 3-13, 3-23
in acomponent instantiation statement, 3-8, 3-13
in a configuration specification, 3-13
purpose, 3-13
value, 3-13
Government standards documents, 1-3
computer-aided acquisition and logistic support. See
MIL-STD-1840.
general recommendation 64 of MIL-HDBK-454. See
MIL-HDBK-454.
VHDL data item description, DI-EGDS-80811. See
VHDL DID.
Guidelines for
assertions, 4-3
explanatory comments, 4-3
hardware block diagrams, 2-13
partitioning structural models, 2-13—2-14
test plans, 4-6—4-7
library names, 3-16
port types, 4-4
timing models, 4-5
use of |[EEE 1164, 4-5

Hamming code, 8-3

Hardware redundancy, 8-6
Header file, 9-4

Hierarchical decomposition, 5-37
Hierarchy, definition, 2-1, 2-6
High-speed data bus, 6-5

| EEE Design Automation Standards Committee, DASC, 1-3

|EEE 1029.1. See Waveform and Vector Exchange Specifi-
cation.

|EEE 1029.2, 8-8
|EEE 1076.3, synthesis package

type conversion functions, 3-11-3-12
|EEE 1076.4, Standard for VITAL ASIC Modeling Specifi-
cations. See VITAL.
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IEEE 1076-1987, VHDL Language Reference Manual, 1-2,
1-3
|EEE 1076-1993, VHDL Language Reference Manual, 1-2,
1-3, 3-12
|EEE 1149, test interfaces, 1-3, 1-4, 4-3
IEEE 1149.1, boundary scan test circuitry, 1-3, 5-18, 8-7
|EEE 1149.5, module test and maintenance bus, 1-3, 8-7
|EEE 1164, standard logic package, 1-3, 3-15, 3-16, 3-20,
4-3,4-5
datatypes, 2-2, 2-4, 3-11
error states, 3-15
example of use, 3-8, 3-21
extended logic, 3-20
invalid signal states, 7-12
library |EEE, 3-16
logic function models, 2-14
logic state/strengths, 2-14
overloaded operators, 3-12, 3-15
propagation of unknown values, 7-12, 7-16
resolution function, 3-5—3-6
type conversion functions, 3-113-12
IGES, 4-1
Industry standards documents, 1-3

boundary scan test circuitry. See IEEE 1149.1.
modul e test and maintenance bus. See IEEE 1149.5.
standard logic package. See |EEE 1164.
VHDL, IEEE 1076. See VHSIC Hardware Descrip-
tion Language (VHDL).
WAVES, |EEE 1029.1. See WAVES.
Information hiding, 2-6
Instruction set architecture model, 5-11—5-18, 5-36
applications, 5-11
bus, 5-18
bus interface unit, 5-19
definition, 2-4
example, 5-11, 5-18, 5-19
in a mixed-level-of-abstraction model, 2-23
memory model, 5-18
processor, 5-11
processor model, 5-11
software testing, 5-11
Interconnect overhead, 8-6
Interface models, 2-3
Interoperability, 1-4
of gate-level models, 3-11
of structural and behavioral models, 4-4
of VHDL models, 3-5, 3-9—3-11, 4-3

J
Joint Test Action Group (JTAG), 1-3

L

Leaf-level modules, 4-7—4-8, 9-2—9-3

definition, 2-1, 2-4, 2-14
Level of abstraction, 2-1— 2-3
Library clause, 3-16

example, 3-16, 3-22

implicit context clause, 3-16
Library structure, 9-2
Library, 4-6

predefined, STD, 3-16

predefined, WORK, 3-16

purpose, 3-15

setup, 3-19

WAVES_STANDARD, 7-7
Line-replaceable unit, 8-1, 8-2, 8-4, 8-6, 8-8, 8-9
Logic-level fault modeling, 4-5

M

Maintenance
depot, 8-3
field, 8-1, 8-3

Memory model, 5-17—5-18

Memory initialization data, 9-6

Microcircuit design library, 4-5

MIL-HDBK-454, 1-3, 4-1, 4-2, 4-4, 7-3, 7-4, 8-3, 9-3
acquisition of microelectronic circuits, 4-1
behavioral model, 4-2
genera recommendation 64, 1-1, 1-3, 4-1
guidelinesfor ASICs, 4-1
guidelines for microelectronic devices, 4-1
requirements for test documentation, 7-3, 7-4
use of WAVES, 4-3

MIL-STD-1840, 4-1
EDIF option, 4-1
EIA 567 requirements for VHDL code, 4-1
IGES option, 4-1
IPC option, 4-1
use of EIA 567, 4-3
VHDL DID requirements for VHDL code, 4-1
VHDL option, 4-1

Mixed level of abstraction
configured with aVHDL configuration declaration, 2-

22

design considerations, 2-22
example of, 2-23
for high-speed simulation, 2-23, 4-4
use of composite signals, 2-13
using type conversion functions for, 2-23
VHDL models, 1-3, 2-23, 4-4

Model revision information, 9-4

Model referencelibrary, 6-4

Module under test, 4-2, 4-6
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N declaration, 3-9
Network model, 2-3 gef:Cutlt Val; 3 33%
) irection, 3-2, 3-
Nonconcurrent bac!<ground testing, 8-6 hierarchy, 6-3
Nonconcurrent testing, 8-3, 8-6 list. 3-9
o map, 3-9
. . name, 3-2, 3-9
ObJeCt declaration purpose 3-1
comments, 9-8 type, 3-9
Object-oriented model, 2-6 Plbus, 6-5
use of VHDL packages for, 2-6 Port-naming conventions, 9-7

Off-line test strategies, 8-2
On-line test strategies, 8-2

Preliminary Design Review, 4-5, 6-5
Primitivelibrary, 6-11

Operating condition, 3-5 VHDL models of primitives, 6-2
violation, 3-14 Process, 5-7

Operator. N activation, 3-6
definition, 3-12 definition, 3-6
logical, 3-10—3-11 example, 3-7
overloaded, 3-12, 3-15 passive, 3-15, 5-21—5-22
relational, 3-10—3-11 purpose, 3-6

Overloaded operator Process name
definition, 3-12

programming conventions, 9-8
Processor memory switch model, 2-3, 4-4
Programmable device, 2-4

P Prototype, 2-10
Package Pseudorandom testing, 8-6

body, 3-20 o)

declaration, 3-20, 9-2, 9-7

example of use, 3-8

example, 3-12
for error state propagation, 3-15

Qualified parts, behavioral model guidelines, 4-22

predefined, STANDARD, 3-16 R
predefined, TEXTI O, 3-16 o
purpose, 3-15, 3-20 Race condition, 2-5
Parity code, 8-3 Reconfiguration, 8-1, 8-6, 8-7
Partitioning, 3-16 Record type
functiona, 4-4—4-5 definition, 3-11
logical, 4-4—4-5 example, 3-11
of structural VHDL models, 2-12 Register-transfer-level model, 5-19, 5-36
physical, 4-4—4-5 applications, 5-19
Parts obsolescence, 1-2 definition, 2-4
Parts count overhead, 8-6 in a mixed-level-of-abstraction model, 2-20
Performance model modeling registers with signals, 5-19

for load balancing, 2-3 primitive elements, 5-19

to estimate response time, 2-3 Resolution function
use of, 1-3 definition, 3-5—3-6

Physical type, 3-11, 3-12, 5-25 - exfampldzI 3? e ot an e
built-in, 3-12, 3-14 euse of models, 1-3, 3-5, 3-15, 4-3, 4-

declaration, example of, 3-14 VHDL constructs supporting, 3-15

definition, 3-13—3-14 Revision history, 4-8
purpose! 3-13 s
user-defined, 3-12

Physical view, 3-12 Scalar type, 3-11

Scan path, 8-1, 8-8
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Scan path test technique, 8-3 construction, 6-1
Schematic capture, 1-4 definition, 2-1
for productivity, 6-2 example, 3-9, 5-37
library updates for reuse, 6-2 gate-level models, 6-1

standard logic package, 6-2 interface description, 6-1
verification, 6-2 high level, 8-4, 8-8
Sensitivity list logic level, 8-1, 8-8

manual construction, 6-1
reuse mechanisms, 6-1
schematic capture, 6-1

) o signal declaration, 6-1
assignment, efficiency, 3-6 Stuck-at-zero, 8-1, 8-8

declaration, example of, 3-9 . :
error states, 3-14—3-15 Subfunction testing, 5-21

for aprocess, 3-6
for await statement, 3-7
Signal

of kind bus, 5-18 Subprogram comments, 9-88
in agorithmic models, 2-15—2-16, 5-7 Subtype, 3-11
in register-transfer-level models, 2-20 Supporting fault coverage analysis, 4-2
representing electrical connections, 2-12 VHDL constructs supporting, 3-8
resolution function. See Resolution function. VHDL DID requirements, 6-1
type, 3-4 Synthesis, 1-4

Signal assignment statement, 3-4—3-5 definition. 2-5
concurrent, 3-4, 3-5 example of, 2-5
concurrent, example, 3-13 to replace obsolete parts, 2-5
driver, 3-4—3-5 tools, 4-4, 4-5
event generation, 3-4 System maintenance controller, 8-6
guarded, 5-37 Systolic array, 5-6—5-7
propagation, 3-5
sequential, 3-5, 3-6—3-8 T
transaction, 3-4

Temporal redundancy, 8-6

editing, 35 Test and maintenance, 8-7
removal, 3-5 =
Signal delay Testability, 1-4
inertial, 5-32 definition of, 8-1
transport, 5-32 Test bench, 1-4, 4-2, 4-6—4-7, 4-8, 5-21, 8-3, 8-6, 8-9, 9-

Signal-naming conventions, 9-7 3—9-4
Signals, 3-4—3-6 configuration declarations, 9-6
' comparator function, 4-7

Signature analysis, 8-3 definition of, 4-2, 4-6

Simulati on hierarchy, 9-6
efficiency, 2-6 modul e association, 9-4
for functional correctness, 2-5 organization, 4-6—4-7
for performance analysis, 2-5 purpose, 4-6
for performance evaluation, 2-5 use of auxiliary files, 9-4
process, 3-4 Test bus, 1-4

Software development plan, 9-8 Test controller. 1-4. 8-7

Standard delay file format, 7-15 Test data, 9-4

Structural architecture body generation of, 5-1
definition, 3-8 Test documentation, 7-4, 7-10, 7-13
example, 3-9 Test functions, 8-1, 8-6
purpose, 3-8

Testing
behavioral model, 5-21
test generation strategies, 5-21
Test logging, 8-3
Test time, 8-4, 8-6, 8-8
Test vector,1-4, 8-8, 8-9

use of libraries, 3-21
Structural decomposition, 5-37
Structural models, 1-4, 2-14—2-22, 6-2
component declaration, 6-1—6-2
component instantiations, 6-1
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generation of, 4-5, 6-10, 8-1, 8-8
Test Readiness Review, 6-5
Test response compression, 8-3
Text file

comments, 9-7
Timing, 1-4, 5-37, 6-6, 6-10
asynchronous timing constraints, 5-32
back annotation of data, 5-37
behavior, 4-5
best-case, 4-5
best-case/worst-case analysis, 5-24
check function, 3-15
data from external files, 5-31
definition packages, 5-26—5-27
environmental factors, 5-25
example, 5-31, 5-36
externa file input, 5-31
externa interface, 5-21
glitches, 5-32
improper signal, 5-21—5-22
minimum, maximum, and nominal timing delays, 5-
24
model fidelity, 5-36—5-37
nominal, 4-5
package, example of, 5-27
technol ogy-dependent, 3-21
use of, 3-21
parameterized, 3-5, 3-8
parameterized delay model, 1-4, 5-24—5-26
setup and hold checking, 5-34—5-36
simulation options, 1-4
synchronous timing constraints, 5-33—5-34
violation, 3-14, 4-7, 5-21—5-22
worst-case, 4-5
Timing shells, 5-22
example, 5-22, 5-27
package interface, 5-22—5—23, 5-27
Timing view, 3-12
Top-down design
definition, 2-5
partitioning, 2-1
use of behavioral models, 2-1
use of structural models, 2-1
leaf-level modules, 4-5
Type
access. See Access Type.
array. SeeArray Type.
conversion function, 3-11-3-12
enumerated. See Enumerated Type.
file, 3-11
physical. See Physical Type.
record. See Record Type.
scalar. See Scalar Type.
user-defined, definition of, 3-10

user-defined, example, 3-9, 3-11, 3-12
Type conversion function, 3-11—3-12

example of use, 3-11

purpose, 3-11

Uninterpreted models, 5-1
Use clause, 3-16
example, 3-16
implicit context clause, 3-16

Y

Variable, 3-6—3-7
assignment, efficiency, 3-6
example of use, 3-7—3-8
in algorithmic models, 2-16
Verification and acceptance procedure, 7-3, 7-8, A-1
Very High-Speed Integration Circuit (VHSIC) Program, 1-4
VHDL design entity, 8-8
VHDL design unit
name, 9-4
revision identifier, 9-4, 9-5

source,

94

VHDL DID, 1-1, 1-3, 1-4, 2-1, 4-1, 4-2, 4-3, 7-1, 9-4, 9-8
acceptable leaf modules, 2-1, 2-14
behavioral model requirement, 2-1
guidelines for structural models, 4-2
par. 7.3, 9-1, 9-3
par. 10.3, 4-7
structural model requirement, 2-1

subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.
subpar.

10.2.2.1,4-3
10.2.2.2,4-7,7-12
10.2.2.3, 4-3, 7-16
10.2.2.4,4-3

10.2.3, 2-12, 4-4, 8-1, 8-6
10.2.3.1, 4-4,4-5
10.2.3.2, 4-5, 7-3, 7-16
10.2.3.3,4-4,8-1, 7-11
10.2.4, 4-15, 4-5, 8-1, 8-7
10.24.1, 4-5

10.2.5, 4-7, 7-10
10.2.5.1, 4-6—4-7
10.2.5.2, 4-6, 7-10
10.2.5.3,9-3

10.2.6, 4-7, 7-11
10.2.7,9-4

10.2.8, 9-3, 9-4
10.2.8.1,9-4
10.3,9-1,9-2
10.3.4,9-2

10.3.b, 9-2

10.3 ¢, 9-2

10.3.d, 9-2

10.3.¢,9-3
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subpar. 10.3.f, 9-3
subpar. 10.3.g, 9-4
subpar. 10.3.h, 9-4
subpar. 10.2.2, 4-3
subpar. 10.2.1.1, 2-14, 4-5
subpar. 10.2.1, 2-2, 4-3, 4-4, 4-5, 7-15, 8-4, 8-8
tailored, example, B-3
tailoring, 4-2— 4-4, 4-6
VHDL model
useof, 1-2, 1-4
model verification procedure, 7-3
VHDL model library, 4-2, 4-5

for microelectronic circuits, 4-2
goals, 4-2
model accuracy, 4-2
VHDL model validation procedure, 4-6, A-1
VHDL module, definition of, 4-3
VHSIC Hardware Description Language (VHDL), 1-3
Language Reference Manual, 1987 edition, 1-2, 1-3
1993 edition, 1-2, 1-3, 3-12
purpose of, 1-2
scope of, 1-1, 1-3
useof, 1-1
use of for analog components, 1-1
VITAL, 1-3, 2-2, 3-5, 3-12, 6-8
approach to environment parameters, 7-16
back-annotation of timing information, 7-3, 7-15
delay selection approach, 7-16
for back annotation, 2-14
generics, 3-13
standard delay file (SDF), 4-8
timing check procedure, 3-15, 7-15, 7-16
timing for gate-level models, 2-4, 2-14
timing models, 4-5, 6-6
timing violation checks, 7-13
violation variable, 7-16
XGener ati onOn, 7-15, 7-16

w
Wait statement
definition, 3-7
example, 3-7
in algorithmic models, 5-7—5-8
purpose, 3-7

Waveform and Vector Exchange Standard (WAVES), 1-3,
3-16, 3-20, 4-1— 4-4, 4-8, 6-10, 7-4—7-10, 8-3, 8-8, 9-
1,9-2,9-3,95

application example, 9-2
apply operation, 7-5—7-6
comparator function, 7-5
data set, 7-5—7-6, 7-8
data set files, 7-6—7-7
declarations, 7-6
definition, 7-4
event, 7-4
event time, 7-4
externa file, 4-6, 4-8
file-naming conventions, 4-7
files, minimum requirements, 7-6, 7-9
for test documentation, 7-4
header file, 3-19, 4-6, 4-7—4-8, 7-9, 9-1, 9-2, 9-4
library names, 3-16

guidelines, 7-8, 7-9

structure, 7-7, 7-8, 7-14
logic value, 7-4, 7-6, 7-8
match operation, 7-6
pin codes, 7-6, 7-8
dice, 7-4—7-5
tag operation, 7-6
test bench, 7-4, 7-8, 7-10
test bench simulation, 7-4
test pins, 7-6
timing tolerance, 7-4
unknown value, 7-4
unspecified value, 7-4
value, 7-4

dictionary, 7-6

direction, 7-4

relevance, 7-4

set, 7-4

state, 7-4

strength, 7-4
waveform, 7-4, 7-5
waveform generator procedure, 4-6, 7-5, 7-6—7-7

WAVES packages, 7-6, 7-7—7-8

partitioning, 7-8

WAVES | NTERFACES, 7-7

WAVES OBJECTS, 7-7

WAVES STANDARD, 7-7
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