INCH-POUND J-W-1177/46

June 10, 1988

FEDERAL SPECIFICATION SHEET

WIRE, MAGNET, ELECTRICAL, CLASS 90, TYPE C, COTTON-COVERED, ROUND

This specification is approved by the Commissioner, Federal Supply Service, General Services Administration, for the use of all Federal agencies.

The requirements for acquiring the wire described herein shall consist of this specification and the latest issue of J-W-1177.

Classification:	Class 90; type C (single) and type C2 (double
	cotton covered); round.
Insulating materials:	The cotton shall be of good quality and substantially
	free from knots, ravelings, foreign matter and other
	irregularities. The fiber covering and application
	of the covering shall be as specified in J-W-1177.
NEMA/ANSI equivalent:	Dimension, elongation and coverage requirements are
1	equivalent to MW-11 of NEMA MW 1000.
General requirements:	See J-W-1177 for general requirements, quality
	assurance provisions, and packaging.

Requirements:

الحاج المحم معجور والمراجع المراجع المراجع المراجع والمراجع والم

Characteristics	Test procedure, see J-W-1177	Wire sizes, AWC	Requirements
Dimensions	4.7.1.2	4/0-40	See table I.
Elongation	4.7.5	4/0-40	Not less than the values shown in table II.
Coverage		4-40	The covering shall not open sufficiently to expose bare copper when the specimen is wound 10 turns around a mandrel having a diameter equal to 10 times the diameter of the bare wire. Normal vision shall be used.

AMSC N/A DISTRIBUTION STATEMENT A Approved for public release; discribution unlimited J-W-1177/46

Requirements:	(Continued)		
Characteristics	Test procedure, see J-W-1177	Wire sizes, AWC	Requirements
Dielectric strength	4.7.9	10-40	Not less than 100 volts/mil (layer-to-layer test).
Thermal endurance		4/0-40	Class 90. All insulating materials shall meet the thermal class ratings as described above.

TABLE I. Dimensions.

	Туре С						
AUC	Bare wire diameter, inch		inch Minimum increase, one layer of cotton		ncrease, of cotton	Maximum overall diameter	
AWG size	Minimum	Nominal	Maximum	inch	mm	inch	mm
4/0	0.4554	0.4600	0.4646	0.0068	0.173	0.4726	12.004
3/0	.4055	.4096	.4137	.0068	.173	.4217	10.711
2/0	.3612	.3648	.3684	.0068	.173	.3764	9.561
1/0	.3217	.3249	.3281	.0068	.173	.3361	8.537
1	.2864	.2893	.2922	.0068	.173	.3002	7.625
2	.2550	.2576	.2602	.0068	.173	.2682	6.812
3	.2271	.2294	.2317	.0068	.173	•2397	6.038
4	. 2023	.2043	1/.2053	.0068	.173	.2133	5.418
5	.1801	.1819	1/.1828	•0068	.173	.1908	4.846
6	.1604	.1620	1/.1628	.0068	.173	.1708	4.338
7	.1429	.1443	<u>1</u> /.1450	.0068	.173	.1530	3.886
8	.1272	.1285	1/.1292	.0068	.173	•1372	3.485
9	.1133	.1144	1/.1150	.0060	.152	.1220	3.099
10	.1009	.1019	1/.1024	.0051	.130	.1084	2.753
11	.0898	.0907	1/.0912	.0047	.119	.0967	2.456
12	.0800	.0808	1/.0812	.0047	.119	•0867	2.202
13	.0713	.0720	1/.0724	.0047	.119	.0779	1.979
14	.0635	.0641	1/.0644	.0047	.119	.0699	1.775
15	.0565	.0571	1/.0574	.0047	.119	.0629	1.598
16	.0503	.0508	1/.0511	.0047	.119	.0566	1.438
17	•0448	.0453	1/.0455	.0047	.119	.0510	1.295
18	.0399	.0403	1/.0405	•0047	.119	.0460	1.168
19	.0355	.0359	<u>1</u> /.0361	.0047	.119	.0416	1.057
20	.0317	.0320	1/.0322	.0047	.119	.0377	0.958
21	.0282	.0285	1/.0286	.0047	.119	.0341	.866
22	.0250	.0253	1/.0254	.0043	.109	.0304	.772
23	.0224	.0226	1/.0227	.0043	.109	.0277	.704
24	.0199	.0201	1/.0202	.0043	.109	.0252	.640
25	.0177	.0179	$\frac{1}{.0180}$.0038	•096	.0225	.572

See footnote at end of table.

.

2

J-W-1177/46

			Ty	pe C			
	Bare wire diameter, inch			Minimum i one layer	ncrease, of cotton	Maximum diame	overall eter
AWG size	Minimum	Nominal	Maximum	inch	mm	inch	mm
26 27 28 29 30 31 32 33 34	0.0157 .0141 .0125 .0112 .0099 .0088 .0079 .0070 .0062	0.0159 .0142 .0126 .0113 .0100 .0089 .0080 .0071 .0063	1/0.0160 .0143 .0127 .0114 .0101 .0090 .0081 .0072 .0064	0.0038 .0038 .0038 .0038 .0038 .0038 .0038 .0038 .0038 .0038	0.096 .096 .096 .096 .096 .096 .096 .096	0.0205 .0188 .0172 .0159 .0146 .0135 .0126 .0117 .0109	0.521 .478 .437 .404 .371 .343 .320 .297 .277 .259
35 36 37 38 39 40	.0055 .0049 .0044 .0039 .0034 .0030	.0056 .0050 .0045 .0040 .0035 .0031	.0057 .0051 .0046 .0041 .0036 .0032	.0038 .0037 .0037 .0037 .0037 .0037 pe C2	.096 .094 .094 .094 .094 .094	.0102 .0094 .0089 .0084 .0079 .0075	.259 .239 .226 .213 .201 .190
4/0 3/0 2/0 1/0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	.4554 .4055 .3612 .3217 .2864 .2550 .2271 .2023 .1801 .1604 .1429 .1272 .1133 .1009 .0898 .0800 .0713 .0635 .0565 .0503	.4600 .4096 .3648 .3249 .2893 .2576 .2294 .2043 .1819 .1620 .1443 .1285 .1144 .1019 .0907 .0808 .0720 .0641 .0571 .0508	$\begin{array}{c} .4646\\ .4137\\ .3684\\ .3281\\ .2922\\ .2602\\ .2317\\ 1/\ .2053\\ \overline{1}/\ .1828\\ \overline{1}/\ .1628\\ \overline{1}/\ .1628\\ \overline{1}/\ .1292\\ \overline{1}/\ .1292\\ \overline{1}/\ .1150\\ \overline{1}/\ .1024\\ \overline{1}/\ .0912\\ \overline{1}/\ .0812\\ \overline{1}/\ .0724\\ \overline{1}/\ .0574\\ \overline{1}/\ .0511\\ \end{array}$.0136 .0136 .0136 .0136 .0136 .0136 .0136 .0136 .0136 .0136 .0136 .0139 .0119 .0119 .0102 .0094 .0081 .0081 .0081 .0081 .0081 .0081	. 345 . 302 . 302 . 302 . 302 . 259 . 239 . 206 . 206 . 206 . 206 . 206 . 206	.4806 .4297 .3844 .3441 .3082 .2762 .2477 .2213 .1988 .1768 .1590 .1432 .1270 .1134 .1077 .0907 .0819 .0739 .0669 .0606	12.207 10.914 9.764 8.740 7.828 7.015 6.292 5.621 5.050 4.491 4.039 3.637 3.226 2.880 2.558 2.304 2.080 1.877 1.699 1.539

TABLE I. Dimensions. - Continued

See footnote at end of table.

3

J-W-1177/46

	Type C2						
	Bare wire diameter, inch		Minimum in one layer	ncrease, of cotton	Maximum c diamet	overall ter,	
AWG size	Minimum	Nominal	Maximum	inch	mn	inch	mm
17	0.0448	0.0453	$\frac{1}{0.0455}$	0.0081	0.206	0.0550	1.397 1.270
10	.0355	.0359	$\frac{1}{1}$.0361	.0081	.206	.0456	1.158
20	.0317	.0320	1/.0322	.0081	.206	.0417	1.059
21	.0282	.0285	1/.0286	.0081	.206	.0381	0.968
22	.0250	.0253	$\frac{1}{.0254}$.0077	.196	•0344	•0/4 905
23	.0224	.0226	$\frac{1}{1}$.0227	.00//	.196	•0317 0292	•005
24	.0199	.0201	$\frac{1}{1}$.0202	.0077	•190 183	.0292	.673
25	.01//	.01/9	$\frac{1}{1}$ 0160	-0072	.183	.0245	.622
20	.0157	.0142	-0143	.0072	.183	.0228	.579
28	.0125	.0126	.0127	.0072	.183	.0212	.538
29	.0112	.0113	.0114	.0072	.183	.0199	.505
30	.0099	.0100	.0101	.0072	.183	.0186	.472
31	.0088	.0089	.0090	.0072	.183	.0175	.444
32	.0079	.0080	.0081	.0072	.183	.0166	.422
33	.0070	.0071	.0072	_0072	.183	.0157	399
34	.0062	.0063	.0064	.0072	.183	.0149	. 3/8
35	.0055	.0056	.0057	.0072	.183	•0142	. 301
36	.0049	.0050	.0051	.0068	.1/3	.0131	• 22.5
37	.0044	.0045	.0046	.0068	.1/3	.0120	• 320 307
38	.0039	.0040	.0041	0068	.1/3	.0121	295
39	.0034	.0035	.0036	.0068	.173	.0112	.284
40	.0000	1 .005T			1	L	1

TABLE	Ι.	Dimens:	ions.	-	Cont:	Inued

1/ The maximum bare wire dimensions may be exceeded up to the NEMA/ANSI maximum bare wire limit, provided the minimum increase is maintained and the maximum overall diameter specified is not exceeded.

AWG size	Minimum elongation, percent
4/0-1	35
2-9	30
10-23	25
24-34	20
35-40	15

TABLE II. Elongation of the finished wire.

J-W-1177/46

Part number: Magnet wire covered by this specification shall be defined by the following part numbering system. Example: M1177/46-01C021.

The following codes shall apply:

Туре	Type code	Conductor	Conductor code
С	01	Copper	С
C2	02	Aluminum	A
02		Nickel-coated copper	N
		Silver-coated copper	S

The size code shall be the bare wire dimension. AWG wire size shall be used.

Intended use: Type C magnet wire is intended for 90°C applications in the rebuilding of rotating machinery, transformers and similar equipment where an alternative insulation is not available.

MILITARY INTERESTS:

.. . .

• •

CIVIL AGENCY COORDINATING ACTIVITIES:

FAA

Custodians: Army - CR Navy - SH Air Force - 85	GSA - FSS, PBO, PCD INTERIOR - BLM HHS - FDA DCGOVT - DCG NASA - JFK
Review activities: Army - AR, ER, MI DLA - IS	COMMERCE - NBS TRANSPORTATION - APM, FA
User activities: Army - ME Navy - AS, CG, MC, OS	Preparing activity: Navy - SH (Project 6145-1111-42)
