INCH-POUND J-W-1177/34 June 10, 1988

FEDERAL SPECIFICATION SHEET

WIRE, MAGNET, ELECTRICAL, CLASS 180, TYPE Dg0, POLYESTER-GLASS-FIBER-COVERED, ORGANIC VARNISH TREATED, RECTANGULAR

This specification is approved by the Commissioner, Federal Supply Service, General Services Administration, for the use of all Federal agencies.

The requirements for acquiring the wire described herein shall consist of this specification and the latest issue of J-W-1177.

Classification:	Class 180; type Dg20 (bare with double polyester-glass fiber covered, varnished), type L2Dg0 and type L2Dg20 (heavy film, single or double polyester-glass fiber covered, varnished); rectangular.
Insulating materials:	
NEMA/ANSI equivalent:	All test requirements are equivalent to MW-53 of NEMA MW 1000.
General requirements:	See J-W-1177 for general requirements, quality assurance provisions, and packaging.

AMSC N/A <u>DISTRIBUTION STATEMENT A</u> Approved for public release; distribution unlimited

1 of 12

Requirements:			
Characteristics	Test procedure, see J-W-1177	Wire sizes, AWG	Requirements
Dimensions	4.7.1.2	A11	<pre>Rectangular wire: (a) Conductor dimensions and radii - see table I. (b) Conductor tolerances - see table II. (c) Increase in thickness - see table III (type L2DgO), table IV (type Dg2O) and table V (type L2Dg2O). (d) Increase in width due to the glass fiber covering shall be equal to or less than the increase in thickness. Square wire: (a) Conductor dimensions, radii</pre>
Adherence and flexibility	4.7.2.3.1	A11	 and tolerances - see table VI. (b) Increase in thickness and width - see table VI. For bare wire, not less than 75 volts/mil of minimum thickness of the glass fiber covering on one side.
	4.7.2.3.2	A11	For film coated wire, no cracks visible in the film coating after 20 percent elongation. Examine with normal vision without removal of the glass fiber covering.
Elongation	4.7.5	A11	Not less than 32 percent for thicknesses of 0.049 inch and greater, or 30 percent for thicknesses less than 0.049 inch.
Dielectric strengt	h 4.7.9	A11	Not less than 90 volts/mil of the minimum thickness of the glass fiber covering on one side (one-half the minimum specified under "Dimensions") plus the minimum breakdown for film coated wire.
Thermal endurance		All	Class 180. Insulating materials shall meet the thermal class ratings described above.

Nominal thickness														No	om:	ina	1	wi	ldı	th													
Inch	.079	1/.083	.088	1/.093	860.	1/.104	011.	1/.118	.124	1/.132	.140	1/.148	.157	1/.167	111.	1/.187	.197	1/.209	1	1/.236	.248	1/.264		1/.295	.315	1/.335		1/.374	.394	1/.417	1 1	1/.465	.492
0.025		Γ											Γ		Γ						Γ										Π		
.028										-		-	1-		┢				┢		+							-			Η		
.031				 								-	┢╴	 	┢	<u> </u>					+						┢─			-	\vdash		-
.035										<u> </u>											┢						┢─				Η		
•039		1	Γ										ROI	UNI	DE	DB	EDO	GES	5		T										Η		
.044																															Η		
.049		1	ſ																	1-								\vdash	\vdash		\square		-
•055										-									-												\vdash		
•063																-					1										\vdash		
.071																															Η		
.079									0	.0:	20																F				\square		
.088																											\vdash				\square		
.098																															Π		
.110													0.0	02:	5												0	.0:	31				
.124																															Π		
.140																					Γ										Η		
•157												Citizana e								Ī	T		Î								Π		-
. 177																					Γ										Π		
.197																					Γ										H		
.220																					Γ				0	.0:	39				Π		

TABLE I. Dimensions and radii for rectangular wire.

1/ R-40 series numbers.EXAMPLE - Preferred sizes55 x 110 (R20 x R20)Radii tolerances are plusIntermediate sizes55 x 118 (R20 x R40)or minus 25 percent.Intermediate sizes55 x 118 (R20 x R40)

TABLE	II.	Conductor	tolerances.

Thickness, inch	Permissible variations in thickness
0.220 to 0.098 Under 0.098 to 0.025	+ 1 percent + 0.001 percent
Width, inch	
0.492 to 0.315 Under 0.315 to 0.098 Under 0.098 to 0.079	$\begin{array}{r} + 0.003 \text{ inch} \\ + 1 \text{ percent} \\ + 0.001 \text{ inch} \end{array}$

L2Dg0).
(type
Dimensions
.111
TABLE

organic varnish,	Nominal thickness	Millimeters	Inches 7.0	0.025 0.63		 -	•039 1.00	┿	$\left\{ - \right\}$	\square	+	-	• U88 2.24	110 7.80	+	Н		+	\rightarrow	1 .220 5.60
in thickness, inches (mm), due to heavy film coating and high temperature organic varnish, rectangular wire		11.8 10.0 0.5 00.8 00.8 00.8	597'0/I 177'0 217'0/I 765'0 725'0 555'0/I 515'0				0.013 1nch												L	
in thickness, inches (mm), heavy film coating and high rectangular wire	width	05.2 01.2 02.9 05.9 00.9 09.5 05.5 00.5	I/0.562 0.580 0.580 1/0.50 9.570 9.570 1/0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532				0.012 inch												_[
num increase in thickness, er covering, heavy film co rectangular w	Nominal	<pre></pre>	281.0/1 //1.0 291.0/1 /SI.0 /SI.0 10.148 0.148 0.150 1251.0 1251.0				0.011 inch													
Maximu glass fiber		3.00 5.80 5.65 5.37 5.37 5.12 5.12 5.00	811°0/1 011°0 701°0/1 860°0 £60°0/1 880°0 £80°0/1 620°0				0.010 inch	(mm +c7.0)			1									
single polyester	Nominal thickness	Millimeters	Inches	0.63 0.025	<u>'</u>	3E0. 06.	┢┼	1.12 .044	+	╀	┼╌			2.50 .098	+	_	┢			5.60 .220

1/ R-40 series intermediate numbers.

EXAMPLE - Preferred size 0.055 x 0.110 (R-20 x R-20) Intermediate size 0.055 x 0.118 (R-20 x R-40)

- The maximum increase due to the film and fiber covering may be exceeded provided the overall dimension of the covered wire does not exceed the sum of the maximum thickness of the bare wire plus the maximum increase due to the heavy film coating and single polyester glass fiber covering.
- 2. The increase in thickness due to the heavy film coating shall be for film coated wire.
- 3. The increase in thickness due to the single polyester glass fiber covering shall be determined by subtracting 0.005 inch (0.127 mm) (maximum thickness of film coating) from the maximum increase in thickness given in the table.
- 4. The increase in width due to the polyester glass fiber covering shall be equal to or less than the maximum increase in thickness given in the table. Note 1 applies to the increase in width as well as the increase in thickness.
- 5. Because it is impossible to accurately separate the polyester glass fiber covering from the film coating, the total minimum increase in the thickness of the film-coated glass fiber covered rectangular wire shall be the sum of the minimum increase due to the film coating (as shown for film-coated wire) and the minimum increase due to the polyester glass-fiber covering. The total minimum increase shall be not less than 70 percent of the maximum increase given in the table above, rounded to the nearest 0.001 inch (0.025 mm).
- 6. For direct conversion of inches to millimeters, multiply inches by the factor 25.4 (exact).

TABLE IV. Dimensions (type Dg20).

varnish,	Nominal thickness	Millimeters	Inches 267.0	0.025 0.63	.031 .80	.035	.039 1.00		.055 1.40		.079 2.00	\neg	-+	-	-	.140 3.55		+	.197 5.00	.220 5.60
ches (mm), due to h temperature organic		8'11 2'11 9'01 0'01 05'6 00'6 05'8 00'8 00'8 05'2 01'2 01'2	\$97.0/I 177.0 L17.0/I 766.0 726.0 726.0 566.0 566.0/I 516.0 \$67.0/I 087.0 797.0/I 877.0		 		0.015	mm() (0.400		1										
1	Nominal width	00.0 2.60 2.60 2.00 2.00 4.75 2.7 2.55 2.7 2.75 2.75 2.75 2.75 2.7	1/0.236 0.1/0.236 0.10.20 1/0.20 1/0.10 1/0.10 1/0.10 1/0.10 1/0.10 1/0.10 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1		 		0.012 tach 0.013 tach 0.014 tach				 			1nch 0.015		_		0.015 Inch		
Maximum increase e polyester glass fiber		3.32 3.15 3.15 5.80 5.80 5.92 5.32 5.32 5.32 5.15 5.15 5.00	620.0 67				0.011 inch 0.011				 _	_		0.013 Inch						
double	Nominal thickness	Millimeters 6	Inches	0.63 0.025	_		1.00 .039	╇	+-	╂	2.00 .079	-+	_	-	\rightarrow		4.00 .157	-+	5.00 .197	5.60 .220

6

Downloaded from http://www.everyspec.com

J-W-1177/34

1/ R-40 series intermediate numbers.

 EXAMPLE - Preferred size
 0.055 x 0.110 (R-20 x R-20)

 Intermediate size
 0.055 x 0.118 (R-20 x R-40)

- 1. The maximum increase due to the polyester glass fiber covering may be exceeded provided the overall dimension of the covered wire does not exceed the sum of the maximum thickness of the bare wire plus the maximum increase due to the glass fiber covering.
- 2. The minimum increase due to the polyester glass fiber covering shall be not less than 70 percent of the maximum shown in the table above, rounded to the nearest 0.001 inch (0.025 mm).
- 3. The increase in width due to the polyester glass fiber covering shall be equal to or less than the maximum in thickness given in the table. Note 1 applies to the increase in width as well as the increase in thickness.
- 4. For direct conversion of inches to millimeters, multiply inches by the factor 25.4 (exact).

L2Dg20).	
(type	
Dimensions	
۷.	
TABLE	

, ísh,	Nominal thickness	Millimeters	Inches		• 0.28 •/1	+-		┝╌┼	-+	043 1 600	╋			+	+	C1-C +21.	* *		ייר +-	00°C 077°
, due to heavy film coating, gh temperature organic varnish, e		15.5 11.8 11.5 10.0 10.0 10.0 6 00.6 00.6 00.6 00.6 00	267.0 97.0/I 177.0 177.0 177.0 762.0 762.0 722.0 522.0 512.0 562.0/I 082.0 792.0/I 872.0				0.020 fnch 0.021 fnch	(0.508 mm) (0.533												
thickness, inches (mm), due to heavy s fiber covering and high temperature rectangular wire	Nominal width	00.9 0.600 0.500 0.52 0.52 0.52 0.72	1/0.236 1/0.230 1/0.200 1/0.200 1/0.167 1/0.167 1/0.167 1/0.167 1/0.167 1/0.167 1/0.127 1/0												0.018 finch			0.0201ach		
Maximum increase in d double polyester glass	6	3.00 5.80 5.80 5.92 5.37 5.37 5.12 5.12 5.12 5.00	811.0/1 911.0/1 901.0/1 860.0 660.0/1 880.0 680.0/1 670.0						,											
nop W	Nominal thickness	Millimeters	Inches	0.63 0.025			-90 -030 1 00 010	+-	-	\square	_	2 00 070	2.24 .088		2.80 .110	3.15 .124	 		5.00 .197	5.60 .220

Downloaded from http://www.everyspec.com

J-W-1177/34

1/ R-40 series intermediate numbers.

```
EXAMPLE - Preferred size 0.055 x 0.110 (R-20 x R-20)
Intermediate size 0.055 x 0.118 (R-20 x R-40)
```

- 1. The maximum increase due to the polyester glass fiber covering may be exceeded provided the overall dimension of the covered wire does not exceed the sum of the maximum thickness of the bare wire plus the maximum increase given in table V.
- 2. The increase in thickness due to the heavy film coating shall be for film coated wire.
- 3. The minimum increase due to the polyester glass fiber covering shall be not less than 70 percent of the maximum shown in table IV, rounded to the nearest 0.001 inch (0.025 mm).
- 4. The increase in width due to the polyester glass fiber covering shall be equal to or less than the maximum increase in thickness given in table IV. Note 1 applies to the increase in width as well as the increase in thickness.
- 5. Because it is impossible to accurately separate the polyester glass fiber covering from the film coating, the total minimum increase in the thickness of a film and fiber covered rectangular wire shall be the sum of the minimum increase due to the film coating (as shown for film coated wire) and the minimum increase due to the polyester glass fiber covering. The total minimum increase shall be not less than 70 percent of the maximum increase given in table IV, plus the minimum for the film coated wire, rounded to the nearest 0.001 inch (0.025 mm).
- 6. For direct conversion of inches to millimeters, multiply inches by the factor 25.4 (exact).

TABLE VI. Dimensions, square wire.

single polyester glass fiber covering, heavy film coating and high temperature organic varnish, Minimum increase and maximum overall dimensions, inches (mm), due to square wire Type L2Dg0

										Insulation	tion		
		Bare	Bare wire d	d imens ion	no		Vonterol		Minimum	Winimim increase	Mavimum overell	llaravo	
Square	Minimum	ສາເ	Nomitn	inal	Maximum		radii	1	in din	dimension	dimension	ston	Square
AWG size	1 nch	8	1 nch	8	1 nch		1 nch		1 nch	Ę	1 nch	8	size
0	0.3219	8.176 0.324	0.3249	8.252	0.3279	8.329	0.040	1.02	0.009	0.229	0.341	8.661	0
1	.2864		.2893	7.348	.2922 7.	7.422	.040	1.02	600 .	.229	. 305	7.747	-
7	.2550	6.477	.2576	6.543	.2602	609.9	.040	1.02	.008	.203	.272	6.909	2
m	.2271	5.768	.2294	5.827	.2317	2317 5.885	.040	1.02	• 008	.203		6.198	ñ
4	.2023	5.138	.2043	5.189	.2063	5.240	.040	1.02	•008	.203	.219	5.563	4
Ś	.1801	4.575	.1819	4.620	.1837	4.666	.040	1.02	• 008	.203	.196	4.978	Ś
9	.1604	4.074	.1620	0 4.115	.1636	4.155	.032	0	•008	.203	_	4.445	9
~	.1429	3.630	.1443	3.665	.1457	3.701	.032	.81	.008	.203		3.988	7
80	.1272	3.231	.1285	3.264	.1298	3.297	.032		• 008	.203	.141	3.581	œ
6	.1133	2.878	.1144	2.906	.1155	2.934	.026		• 008	.203	.127	3.226	6
10	.1009	2.563	.1019	2.588	.1029	2.614	.026		.007	.178	.113	2.870	10
11	.0897	2.278	.0907	2.304	.0917	2.329	.020	.51	- 007	.178	.102	2.591	11
12	.0798	2.027	.0808	2.052	.0818	2.078	.020	.51	.007	.178	.092	2.337	12
13	.0710	1.803	.0720	1.829	.0730	1.854	.016	.41	• 001	.178	.084	2.134	13
14	.0631	1.603	.0641	1.628	.0651	1.654	•016	.41	.007	.178	•076	1.930	14

NOTES:

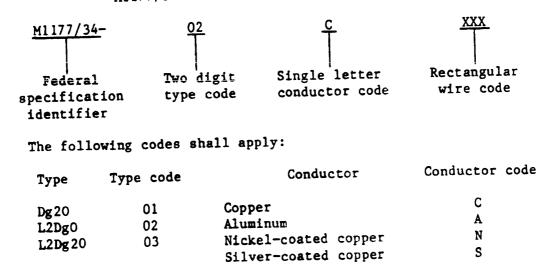
ı

- Radii tolerance is plus or minus 25 percent.
 For direct conversion of inches to millimete
- For direct conversion of inches to millimeters, multiply inches by the factor 25.4 (exact).

Dimensions, square wire. - Continued TABLE VI.

double polyester glass fiber covering and high temperature organic varnish, Minimum increase and maximum overall dimensions, inches (mm), due to Type Dg20 and L2Dg20 square wire

									double fibe	Bare uble-polyester fiber-covered	Bare double-polyester-glass- fiber-covered wire		Heavy-film-coated double-polyester-glass- fiber-covered wire	Heavy-film-coated uble-polyester-gl fiber-covered wir	-coate ster-g red wi	rted glass- wire
		Bare	wire	dimensio	uo		·		mum în îM		mumî xeM	878	Minimum		Maximum	
Square	Minimum		Nominal	nal	Maximum	2	Nominal radii	ial i	increase in dimension	se in sion	overall dimension	all sion	lncrease 1 dimension	se in sion	overail dimension	aii sion
AWG Bize	Inch	B	1nch	a	inch		1 nch	una	inch		Inch	8	1 nch	Ħ	inch	BB
0	0.3219	8.176	0.3249	8.252	0.3279	8.329	0.040	1.02	0.040 1.02 0.012 0.305		0.344	8.738	0.015	0.381	0.349	8.865
	.2864	7.275		7.348	.2922	7.422	.040	1.02	.012	.305	.308	7.823	.015	.381	.313	7.950
2	.2550	6.477	· · · · · ·	6.543	.2602	6.609	.040	1.02	.012	.305	.276	7.010	.015	.381	.281	7.137
•	.2271	5.768	_	5.827	.2317	5.885	.040	1.02	.012	.305	.248	6.299	.015	.381	.253	6.426
4	.2023	5.138	.2043	5.189	.2063	5.240	.040	1.02	.012	.305	.222	5.639	.015	.381	.227	5.766
Ś	.1801	4.575	.1819	4.620	.1837	4.666	.040	1.02	110.	.279	.199	5.055	.014	.356	.204	5.182
6	.1604	4.074	.1620	4.115	.1636	4.155	.032	0.81	110.	.279	.179	4.547	.014	.356	.184	4.674
~	.1429	3.630	.1443	3.665	.1457	3.701	.032	.81	.010	.254	.160	4.064	.013	•330	.165	•
8	.1272	3.231	.1285	3.264	.1298	3.297	.032	.81	600.	.229	.143	3.632	.012	.305	.148	3.759
6	.1133	2.878	.1144	2.906	.1155	2.934	.026	•66	600.	.229	.129	3.277	.012	•305	.134	3.404
10	.1009	2.563	.1019	2.588	.1029	2.614	.026	.66	.008	.203	.115	2.921	110.	.279	.120	3.048
11	.0897	2.278	.0907	2.304	.0917	2.329	.020	.51	.008	.203	.103	2.616	.011	.279	.108	2.743
.12	.0798		.0808	2.052	.0818	2.078	.020	.51	.008	.203	•093	2.362	.011	.279	.098	2.489
13	.0710	1.803	.0720	1.829	.0730	1.854	.016	.41	.008	.203	.084	2.134	.011	.279	.089	•
14	.0631	1.603		1.628	.0651	1.654	.016	.41	.008	.203	.076	1.930	.011	.279	.081	2.057


11

Downloaded from http://www.everyspec.com

- Radii tolerance is plus or minus 25 percent.
- For direct conversion of inches to millimeters, multiply inches by the factor 25.4 (exact). l. 2.

1

Part number: Magnet wire covered by this specification shall be defined by the following part numbering system. Example: M1177/34-02CXXX.

Intended use:

Type DgO rectangular magnet wire is intended for use in 180°C applications similar to those for which type DgO round magnet wire is used.

MILITARY INTERESTS:

CIVIL AGENCY COORDINATING ACTIVITIES:

Custodians:	GSA - FSS, PBO, PCD
Army - CR	INTERIOF - BLM
Navy - SH	HHS - FDA
Air Force - 85	DCGOVT - DCG
Review activities:	NASA - JFK
Army - AR, ER, MI	COMMERCE - NBS
DLA - IS	TRANSPORTATION - APM, FAA
User activities:	Preparing activity:
Army - ME	Navy - SH
Navy - AS, CG, MC, OS	(Project 6145-1111-30)