pederal specification sheet

WI RE, MAGNET, ELECTRICAL, CLASS 155, TYPE DgV, POLYESTER-GLASS-FIBER-COVERED, RECTANGULAR

This specification is approved by the Commissioner, Federal Supply Service, General Services Administration, for the use of all Federal agencies.

The requirements for acquiring the wire described herein shall consist of this specification and the latest issue of $J-W-1177$.

Classification:	Class 155; type Dg 2 (bare with double polyester-glass fiber, unvarnished), type Dg 2 V (bare with double polyester-glass fiber, varnished), type B2Dg and type B2Dg2 (heavy film, single or double polyester-glass fiber, unvarnished), type B 2 Dg V and type B 2 Dg 2 V (heavy film, single or double polyester-glass fiber, varnished); rectangular.
Insulating materials:	The fiber covering and application of the covering shall be as specified in $J-W-1177$. If an underlying film coating is used, it shall have a class 130 rating. The varnish used in treating fibrous covered wire shall conform to the requirements of class 155 of MIL-I-24092, or an alternate selected on the basis of equivalent test data. The varnish used shall be identified in the qualification test report.
NEMA/ANSI equivalent:	All test requirements are equivalent to MW-46 of NEMA MW 1000.
General requirements:	See J-W-1177 for general requirements, quality assurance provisions, and packaging.

AMSC N/A
FSC 6145
DISTRIBUTION STATEMENT A Approved for public release; distribution unlimited

TABLE I. Dimensions and radif for rectangular wire.

Nominal thickness	Nominal width																										
Inch	O	M	$\left\{\begin{array}{l} \infty \\ \infty \\ 0 \end{array}\right.$	$\begin{gathered} m \\ \left.\begin{array}{l} 2 \\ 0 \\ \vdots \\ -1 \end{array} \right\rvert\, \end{gathered}$							$\begin{aligned} & \infty \\ & \cdots \\ & \hdashline-1 \\ & \hdashline-1 \end{aligned}$			$\left\|\begin{array}{c\|c} \infty \\ \infty \\ \hdashline-1 \\ \vdots \\ -1 \\ \hline \end{array}\right\|$	$\begin{aligned} & \substack{9 \\ 0 \\ 2 \\ 1 \\ -1} \end{aligned}$		$\begin{array}{\|c\|c} \infty \\ \sim \\ \\ \vdots \\ n \end{array}$										
0.025																											
. 028																											
. 031																											
. 035																											
. 039												ROUND	ED	EDC	GES												
. 044																											
. 049																											
. 055																											
. 063																											
. 071																											
. 079										020																	
. 088																											
. 098						1																					
.110												025												. 031			
. 124																											
.140																											
. 157																											
. 177																											
. 197																											
. 220																					0.03	039					

| 1/ R-40 series numbers. | EXAMPLE - Preferred sizes | 55×110 (R20 x R20) | |
| :--- | :--- | :--- | :--- | :--- |
| Radif tolerances are plus | | Intermediate sizes 55×118 (R20 x R40) | |
| or minus 25 percent. | | | |

TABLE II. Conductor tolerances.

Thickness, inch	Permissible variations in thickness
0.220 to 0.098	± 1 percent
Under 0.098 to 0.025	± 0.001 percent
Width, inch	
0.492 to 0.315	± 0.003 inch
Under 0.315 to 0.098	± 1 percent
Under 0.098 to 0.079	± 0.001 inch

TABLE III. Maximum increase in thickness, inch, due to single-polyester-glassfiber covering and heavy-film coating over rectangular wire.

1/ R-40 series numbers. EXAMPLE - Preferred sizes 55×110 (R20 x R20) Radii tolerance is plus Intermediate sizes 55×118 (R20 x R40) or minus 25 percent.

NOTES:

1. The maximum increase due to the heavy-film coating and single-polyester-glass-fiber covering may be exceeded provided the overall dimension of the covered wire does not exceed the sum of the maximum thickness of the bare wire plus the maximum increase due to the heavy-film coating and single-polyester-glass-fiber covering.
2. The increase due to the heavy-film coating and single-glass-fiber covering for wire having dimensions not shown in table III shall be the same as those for the next larger thickness or width.
3. The increase in thickness due to the heavy-film coating, if any, shall be for film-coated wire.
4. The increase in thickness due to the single-polyester-glass-fiber covering shall be determined by subtracting 0.005 inch (maximum thickness of film coating) from the maximum increase in thickness given in table III.

TABLE IV. Maximum increase in thickness, inch, due to double-polyester-glass-fiber covering over rectangular wire.

$\begin{array}{lllll}\text { 1/ R-40 series numbers. } \\ \begin{array}{l}\text { Radif tolerance is plus } \\ \text { or minus } 25 \text { percent. }\end{array} & \text { EXAMPLE - Preferred sizes } & 55 \times 110 \text { (R20 } \times \text { R20) } \\ & \text { Intermediate sizes } 55 \times 118(R 20 \times R 40)\end{array}$

NOTES:

1. The maximum increase due to the polyester-glass-fiber covering may be exceeded provided the overall dimension of the covered wire does not exceed the sum of the maximum thickness of the bare wire plus the maximum increase due to the polyester-glass-fiber covering.
2. The increase due to the polyester-glass-fiber covering for wires having dimensions not shown in table IV shall be the same as those for the next larger thickness or width.
3. The minimum increase shall be 70 percent of the maximum increase shown in table IV, rounded off to the nearest 0.001 inch.

TABLE V. Maximum increase in thickness, inch, due to double-polyester-glassfiber covering and heavy-film coating over rectangular wire.

1/ R-40 series numbers. Radif tolerance is plus or minus 25 percent.
$\begin{array}{rlllll}\text { EXAMPLE }- & \text { Preferred sizes } & 55 \times 110(R 20 \times R 20) \\ & \text { Intermediate sizes } 55 \times 118 \text { (R20 } \times \mathrm{R} 40)\end{array}$

NOTES:

1. The maximum increase due to the polyester-glass-fiber covering may be exceeded provided the overall dimension of the covered wire does not exceed the sum of the maximum thickness of the bare wire or film-coated wire plus the maximum increase due to the polyester-glass-fiber covering.
2. The increase due to the polyester-glass-fiber covering for wires having dimensions not shown in table IV shall be the same as those for the next larger thickness or width.
3. The increase in thickness due to the heavy film coating, if any, shall be for film-coated wire.
4. The minimum increase shall be not less than 70 percent of the maximum increase shown in table IV, rounded off to the nearest 0.001 inch.
5. Because it is impossible to separate accurately the polyester-glassfiber covering from the film coating, the total minimum increase in the thickness of film-coated double-polyester-glass-fiber-covered rectangular wire shall be 70 percent of the maximum increase given in table V rounded off to the nearest 0.001 inch.
TABLE VI. Minimum increase and maximum overall dimensions of

$\begin{aligned} & \text { AWG } \\ & \text { size } \end{aligned}$	Bare wire dimension, inch			Radii inchl/	Type Dg2V		Type B2DgV		Type B2Dg2V	
				Minimum increase, inch	Maximum overall dimension, inch	Minimum increase, inch	Maximum overall dimension, inch	Minimum increase, inch	Maximum overall dimension, inch	
	Min	Nom	Max							
0	0.3219	0.3249	0.3279	0.040	0.012	0.344	0.009	0.341	0.015	0.349
1	. 2864	. 2893	. 2922	. 040	. 012	. 308	. 009	. 305	. 015	. 313
2	. 2550	. 2576	. 2602	. 040	. 012	. 276	. 008	. 272	. 015	. 281
3	. 2271	. 2294	. 2317	. 040	. 012	. 248	. 008	. 244	. 015	. 253
4	. 2023	. 2043	. 2063	. 040	. 012	. 222	. 008	. 219	. 015	. 227
5	. 1801	. 1819	. 1837	. 040	. 011	. 199	. 008	. 196	. 014	. 204
6	. 1604	. 1620	. 1636	. 032	. 011	. 179	. 008	. 175	. 014	. 184
7	. 1429	. 1443	. 1457	. 032	. 010	. 160	. 008	. 157	. 013	. 165
8	. 1272	. 1285	. 1298	. 032	. 009	. 143	. 008	. 141	. 012	. 148
9	. 1133	. 1144	. 1155	. 026	. 009	. 129	. 008	. 127	. 012	. 134
10	. 1009	. 1019	. 1029	. 026	. 008	. 115	. 007	. 113	. 011	. 120
11	. 0897	. 0907	. 0917	. 020	. 008	. 103	. 007	. 102	. 011	. 108
12	. 0798	. 0808	. 0818	. 020	. 008	. 093	. 007	. 092	. 011	. 098
13	. 0710	. 0720	. 0730	. 016	. 008	. 084	. 007	. 084	. 011	. 089
14	. 0631	. 0641	. 0651	. 016	. 008	. 076	. 007	. 076	. 011	. 081

1/ Tolerance is plus or minus 25 percent.

1. The increase due to the heavy film coating or glass-fiber covering for wires having dimensions
not shown in table $V I$ shall be the same as those for the next larger size.
2. The increase in thickness due to the heavy film coating, if any, shall be for film-coated wire.
NOTES:
(

Part number: Magnet wire covered by this specification shall be defined by the following part numbering system. Example: M1177/25-02CXXX.

M1177/25-	02	C	xxx
Federal	Two digit	Single letter	Rectangular
specificat	type code	conductor code	wire code

The following codes shall apply:
Type Type code Conductor Conductor code

Dg2	01	Copper	C
Dg2V	02	Aluminum	A
B2Dg	03	Nicke1-coated copper	N
B2Dg2	04	Silver-coated copper	S

Intended use: Type $D g V$ rectangular magnet wire is intended for use in $155^{\circ} \mathrm{C}$ applications similar to those for which type GV magnet wire is used where increased toughness and nonfraying properties are required.

Revision letters are not used to denote changes due to the extensiveness of the changes.

MILITARY INTERESTS:

```
Custodians:
    Army - CR
    Navy - SH
    A1r Force - 85
```

Review activities:
Army - AR, ER, MI
DLA - IS
User activities:
Army - ME
Navy - AS, CG, MC, OS

CIVIL AGENCY COORDINATING ACTIVITIES:
GSA - FSS, PBO, PCD
INTERIOR - BLM
HHS - FDA
DCGOVT - DCG
NASA - JFK
COMMERCE - NBS
TRANSPORTATION - APM, FAA

Preparing activity:
Navy - SH
(Project 6145-1111-21)

