FED-STD-H28/12

31 August 1978

Superseding
NBS Handbook H28 (1957)
Part III, Section XII

FEDERAL STANDARD

SCREW-THREAD STANDARDS FOR FEDERAL SERVICES SECTION 12 ACME THREADS

This standard was approved by the Commissioner Federal Supply Service, General Services Administration, for the use of all Federal agencies.

U.S. GOVERNMENT PRINTING OFFICE: 1979 - 281-172/1225

Orders for this publication are to be placed with General Services Administration, acting as an agent for the Superintendent of Documents. Single copies of this standard are available at the GSA Business Service Centers in Boston, New York, Atlanta, Chicago, Kansas City, MO, Fort Worth, San Francisco, Los Angeles, and Seattle, or from the General Services Administration, Specifications and Consumer Information Distribution Branch, Building 197, Washington Navy Yard, Washington, DC 20407.

FSC THDS

INFORMATION SHEET ON FEDERAL STANDARDS

This Federal Standard is issued in loose leaf form to permit the insertion or removal of new or revised pages and sections.

All Users of Federal Standards should keep them up to date by inserting revised or new pages as issued and removing superseded and cancelled pages.

New and revised pages will be issued under Change Notices which will be numbered consecutively and will bear the date of issuance. Change Notices should be retained and filed in front of the Standard until such time as they are superseded by a reissue of the entire Standard.

NOTICE

From 1939, the Interdepartmental Screw Thread Committee (ISTC), under the Chairmanship of the National Bureau of Standards (NBS), Department of Commerce had developed and published NBS Handbook H28, Screw-Thread Standards for Federal Services.

Section 487 of Title 40 of the U.S. Code states that the authority for development of Federal Standards for procurement purposes rests with the General Services Administration (GSA).

In November 1976, the ISTC was terminated, and the General Services Administration (GSA) accepted the responsibility for NBS Handbook H28 and agreed to convert it and maintain it as a Federal Standard.

The standards which had been published as NBS Handbook H28, Part I, Part II and Part III will now be promulgated as a fully coordinated FED-STD-H28, maintaining the existing sections and identifying them with slant lines. For example, NBS Handbook H28, Part I, Section 3 will be detailed standard FED-STD-H28/3 which must be procured individually.

Military Custodians

Preparing Activity

ARMY - AR NAVY - AS AIR FORCE - 11 DLA-IS

(Project No. THDS-0015)

Civil Agency Coordinating Activity -

ACO.	FPI	MSF
AFS	FRA	NBS
BPA	FSS	PCD
FHW	JFK	RDS
FIS	LRC	TCS

CONTENTS

	•	<u>Page</u>
1.	GENERAL AND HISTORICAL	1
::.	SPECIFICATIONS FOR ACME FORM OF THREAD	7
3.	STANDARD ACME THREAD SERIES	4
4.	CLASSIFICATION AND TOLERANCES, ACME THREADS	4
5.	LIMITS OF SIZE, ACME THREADS	6
6.	THREAD DESIGNATIONS	7
7.	GAGES FOR ACME THREADS	10
	(a) GAGE TOLERANCES (b) GAGES FOR EXTERNAL THREADS (c) GAGES FOR INTERNAL THREADS (d) CONCENTRICITY	17

The text of this section is reprinted from the NBS HANDBOOK H28 with minor editorial corrections. Pages $\frac{2}{3}$ contain corrections indicated by an asterisk.

Reorganization of the document from NBS HANDBOOK H28 to FED-STD-H28 creates an editorial inconvenience, when maintaining continuity of cross references amongst the pages, paragraphs, tables and figures of the different sections. For this standard individual sections will be numbered sequentially starting with (1) one. If the reprinted text refers to another page, such as Page 6.3, this will be understood to mean section 6 page 3. All figures and tables will maintain the established designations, prefixed with the section; e.g. Table 3.1 and Figure 2.5 to identify their location in this standard. All appendices will be incorporated in the basic document FED-STD-H28 with other general information and will continue to be identified with the prefix A.

1. GENERAL AND HISTORICAL

When formulated prior to 1895, Acme threads were intended to replace square threads and a variety of threads of other forms used chiefly for the purpose of producing traversing motions on machines, tools, etc. Acme threads are now extensively used for a variety of purposes. This section provides for two general applications of Acme threads, namely, general purpose and

centralizing.2

The three classes of general purpose threads have clearances on all diameters for free movement and may be used in assemblies with the internal thread rigidly fixed and movement of the external thread in a direction perpendicular to its axis limited by its bearing or bearings. The five classes of centralizing threads have a limited clearance at the major diameters of the external and internal threads, so that a bearing at the major diameter maintains approximate alinement of the thread axis and prevents wedging on the flanks of the thread. For any combination of the five classes of threads covered in this section some end play or backlash will result. This is unavoidable for interchangeable product. When backlash or end play is objectionable, some mechanical means should be provided to climinate the con-The following practices have been successfully used:

(a) The internally threaded member is split parallel with the axis and adjusted and lapped to

it the externally threaded member;

(b) the internally threaded member is tapped lirst and the externally threaded member is milled, ground, or otherwise machined to fit the internally threaded member;

(c) the internally threaded member is split perpendicular to the axis, and the two parts are adjusted to bear on opposite flanks of the thread of the externally threaded member.

In any case, sufficient end play must be left to

provide a close running fit.

In addition to limits of size for the standard series of diameters and pitches of Acme threads, tables of pitch diameter tolerances provide for a wide choice of diameters for a given standard pitch, and by use of the formulas for diameter and pitch increments shown in tables 12.6, 12.7 and 12.8, pp. 7, 8, and 9, the pitch diameter toles.

ances for special diameters and pitches can be determined for each class. Formulas and data for use with special threads are also provided in table 12.5, p. 6, for pitch diameter allowances on external threads, and in table 12.4, p. 5, for major and minor diameter allowances and tolerances.

Multiple threads should be considered when

fast relative motion is required.

While threads for valve operation may be made to this standard, this application is highly specialized and these data should not be used without consultation with the valve manufacturer.

2. SPECIFICATIONS FOR ACME FORM OF THREAD

1. Angle of Thread.—The angle between the flanks of the thread measured in an axial plane shall be 29°. The line bisecting this 29° angle shall be perpendicular to the axis of the thread.

2. PITCH OF THREAD.—The pitch of a thread is the distance, measured parallel to its axis, between corresponding points on adjacent thread forms.

3. HEIGHT OF THREAD.—The basic height of the thread shall be equal to one-half of the pitch.

4. THICKNESS OF THILAD.—The basic thickness of the thread at a diameter smaller by one-hulf the pitch than the basic major diameter shall be

equal to one-half of the pitch.

5. ALLOWANCE (MINIMUM CLEARANCE) AT MAJOR AND MINOR DIAMETERS.—(a) General purpose threads.—A minimum diametrical clearance is provided at the minor diameter of all external threads by establishing the maximum minor diameter 0.020 in. below the basic minor diameter for 10 threads per inch (tpi) and coarser, and 0.010 in. for finer pitches.

A minimum diametrical clearance at the major diameter is obtained by establishing the minimum major diameter of the internal thread 0.020 in. above the basic major diameter for 10 tpi and

coarser, and 0.010 in. for finer pitches.

(b) Centralizing threads.—A minimum diametrical clearance is provided at the minor diameter of all external threads by establishing the maximum minor diameter 0.020 in. below the basic minor diameter for 10 tpi and coarser, and 0.010 in. for finer pitches. A minimum diametrical clearance for the fillet is provided at the minor diameter by establishing the minimum minor diameter of the internal thread 0.1p greater than the basic minor diameter.

A minimum diametrical clearance at the major diameter is obtained by establishing the minimum major diameter of the internal thread $0.001\sqrt{D}$

above the basic major diameter.

. 6. CHAMPERS AND FILLETS .- (a) General purpose threads.-External threads may have the crest corners chamfered at an angle of 45° with the axis to a maximum depth of 0.0667p. This corresponds to a maximum width of chamfer flat of 0.0945p.

(b) Centralizing threads.—External threads shall have the crest corners chamfered at an angle of 45° with the axis to a minimum depth of 0.05p and a maximum depth of 0.0667p. This corresponds to a minimum width of chamfer flat of 0.0707p and a maximum width of 0.0945p. (See

table 12.2, cols. 6 and 7.)
External threads for classes 2C, 3C, and 4C may have a fillet at the minor diameter not greater than 0.1p and for classes 5C and 6C the minimum fillet shall be 0.07p, and the maximum fillet 0.1p.

Internal threads of all classes may have a fillet at the major diameter not greater than 0.06p.

7. BASIC DIMENSIONS .- (a) General .- For general purpose threads, the basic thread form dimensions for the most generally used pitches are given in table 12.1; the basic thread form is symmetrical and is illustrated in figure 12.1.

For centralizing threads, the basic dimensions for the most generally used pitches are given in table 12.2; the basic thread form is symmetrical and is illustrated in figure 12.2.

TABLE 12.1 -Basic dimensions, general purpose Acme threads

					Miqrp o	f flat et:
Threads per toch,	Pitch, P	Height of thread (basic), \$=0.5p	Total beight of thread, A, = A+0.5 allow- ance	Thread thick- ness (basic), t=0.5p	Crest of internal thread (badd), Final 0.2707p	Root of internal thread, France 0.2707p-0.259× allowance
1	2	3	4		6	7
16	.08333 .10000 .12500 .16667 .20000 .25000	69. 0.03125 .03571 .04167 .05000 .06230 .06333 .50000 .12500 .12500 .12500 .20000 .23033 .77500 .80000	0.03427 -0407 -0407 -0400 -0723 -0003 -1100 -1350 -1767 -2100 -2403 -3433 -3830 -3830 -3830 -3830	fs. 0.03128 .03571 .04167 .05000 .05220 .05233 .10000 .12500 .12500 .12500 .23000 .23000 .23000 .83333 .87500 .80000	fn 9.0232 9.0255 9.0309 9.0371 9.0453 9.0518 9.0741 9.0927 1226 1463 1463 1853 2471 2780 38707	5a. 0.004 0.0239 0.0239 0.0219 0.0411 0.0566 0.0575 111-4 141 15-2 24-9 27-3556

a For allowance, see table 17.4 , col. 3.

FIGURE 12.1 -General purpose Acme thread form.

NOTATION

= 14°30'
p= pitch
s=number of threads per inch
N=number of turns per inch
A=basic beight of thread=0.5p
t= thickness of thread=0.5p
t= thickness of thread=0.5p
t= 0.3707 p= basic width of flat of creat of internal thread
t= 0.3707 p=0.339 x (major-diameter allowance on internal thread)
t= 0.3707 p=0.239 x (major-diameter allowance on internal thread)
t= 0.3707 p=0.239 x (major-diameter allowance on external thread) pitch-diameter allowance on external thread).

TABLE 12.2 -Basic dimensions, centralizing Acme threads

		Haight of	Total height of thread (all enternal	Thread thick-	45° chemier e jaing exten	pert of central- mal threads	Max illet redina root	Fillet radine at Co of omtralists	iner diseases
T. gracks per lack, 2	Piich, p	thread (basic), \$-0.5p	(jureads) A_=4+0.5 allowance *	nem (basto), (-0.8p	Min depth, 0.08p	Min width of chamfer flat, 0.0707 p	of contralizing tapped hole, 0.08p	Min (clames s and s only), 0.07p	Maz (al) clames), 0.109
1	,	8	4		4	7	•	•	
19	6m. 6.06239 67143 06238 10000 12800 12800 20000 25000 25000 50000 70000 10000	6s. 08138 0.08137 0.0817 0.0800 0.08220 0.08233 10000 12200 12000 20000 20000 20000 20000 20000 20000	90. 0362 -0477 -0467 -0800 -0725 -0800 -1100 -1200 -1200 -2000 -9413 -34100 -4100	0.00123 0.00167 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	6m. 0011 0036 0043 0043 0050 0063 0100 0125 0125 0127 0200	60.0044 0.0050 0.0050 0.0070 0.0050 0.0120 0.0150 0.0150 0.0260 0.0260 0.0270 0.0270	6n. 0.000 .0000 .0000 .0000 .0075 .0100 .0130 .0300 .0200 .0400 .0400	0.0044 .0080 .0080 .0070 .0086 .0177 .0160 .0178 .0280 .0280 .0467 .0467	6a. 0.0008 .0071 .0085 .0167 .0108 .0167 .0200 .0833 .0000 .0807 .0779 .2779

a For allowance, me cable 12.4 , cel. 2.

FIGURE 12.2 -Centralizing Acms thread form.

NOTATION

peptich
penumber of threads per inch
N=number of turns per inch
N=number of turns per inch
h=back beight of thread =0.5 p
1-whickness of thread thread
1-whickness of thread thread
1-whickness of thread =0.5 p
1-whicknes

(b) Special requirements (deviations from nominal diameter).-Applications requiring special machining processes resulting in a basic diameter other than the nominal diameters shown in table 12.3, column 1, shall have allowences and tolerances in accordance with table 12.4, footnote a; table 12.5; and tabulated tolerances, tables 12.6, 12.7 and 12.8.

(c) Special diameters.—Special diameters not

shown in table 12.3 or not divisible by 1/4, shall show the actual basic major diameter in decimals on drawings, specifications, and tools.

3. STANDARD ACME THREAD SERIES

There has been selected a series of diameters and associated pitches of Acme threads listed in table 12.3 which is recommended as preferred. These diameters and pitches have been carefully selected to meet the present needs with the fewest number of items, in order to reduce to a minimum the inventory of both tools and gages.

4. CLASSIFICATION, TOLERANCES, ALLOWANCES, ACME THREADS

There are established herein three classes of threads for general purpose and five classes for centralizing Acme threads, as follows:

Type of thread	Class of thread					
General purpose. Centralizing	2G 2C	3C	40 40	eC	6C	

These classes, together with the accompanying specifications, are for the purpose of assuring the interchangeable manufacture of Acme threaded parts. Each user is free to select the classes best adapted to his particular needs. It is suggested that external and internal threads of the same class be used together for either general purpose or centralizing assemblies. If less backlash or end play than provided by class 2 is desired, classes 3 and 4 are provided for both general purpose an l centralizing threads, and classes 5C and 6C for centralizing threads only.

TABLE 12.3 -Acme thread series, basic diameters and thread data

Identii	Scation			Basic	diameters			Thread data							
-		Orne classes, classes	rei purpo end centi 2C, 3C,	er, ell relizing, and (C	Cent	relizing, cl 5C and 6C	ASSES						le at basic inmeter		
Nomi- nal sizes (all clases)	Threads per inch, s	Major diam- eter, D		Minor diam- eter, K= (D=2a)	Major diameter, $P=(D-0.025 \sqrt{D})$	Pitch diam- eier, E= (H-A)	Minor diam- eter, K= (15-2a)	Pitch,	Thread thick- ness at pitch line, t=0.5p	Basie height of thread, A=0.3p	Basic width of flat, F= 0.3707p	Orneral purpose, all classes, and cen- tridizing classes 2C, 3C, and 4C, k	Central- izing clustes 5C and 6C, h	Shour area, class 3G*	Stres area, class 3G b
1	2	3	•	3	6	7	•	9	10	11	12	13	14	15	16
In. 34 34 36 31	16 14 12 12 12	(#. 0. 2500 . 3125 . 3750 . 4375 . 5000	(n. 0, 2188 , 2768 , 3333 , 3958 , 4500	in. 0. 1873 . 2411 . 2917 . 3342 . 4000	fm.	in.	ia	(n. 0.95250 .07143 .05333 .05333 .10000	in. 0. 03125 . 03571 . 04187 . 04187 . 05000	6#. 0.03125 .03571 .04167 .04167 .05000	fn. 0. 0232 . 0253 . 0309 . 0309 . 0371	des min 5 12 4 47 4 33 3 30 4 3	deg min	ag (n.) 0.350 451 -543 -860 -749	ee in. 0.0253 .04 4 .06 4 .1022 .1253
\$6 \$6 \$6	. 6	. 6250 . 7500 . 8750 1. 0000	5625 .6687 .7917 .9000	. 5000 . 5833 . 7083 . BUOD	. 6052 . 7284 . 8516 . 9750	. 5427 . 6431 . 7683 . 8750	. 4802 . 5617 . 5A49 . 1750	. 12500 . 16567 . 16767 . 20010	. 04250 . 08333 . 08333 . 10000	. 04250 . 08333 . 08333 . 10000	. 0463 . 0618 . 0618 . 0741	4 3 4 33 3 50 4 3	4 12 4 42 2 57 4 10	. 941 1. 108 1. 339 1. 519	. 20 2 . 25 4 . 4) 4 . 55 -
116 116 114	3	1, 1250 1, 2500 1, 3750 1, 3000	1. 0250 1. 1500 1. 2500 1. 3750	. 9250 1. 05:0 1. 1250 1. 2500	1, 0985 1, 2220 1, 3457 1, 4694	. 9985 1. 1220 1. 2207 1. 3444	. 8985 1. 0220 1. 0957 1. 2194	. 20000 . 2000 . 25000 . 25000	. 10000 . 10010 . 12500 . 12500	. 10000 . 10000 . 12500 . 12500	. 0741 . 0741 . 0927 . 0927	3 10 3 29 3 19	3 39 3 15 3 44 3 23	1, 751 i, 983 2, 139 2, 372	.70 .90 1.03 1.29
134 2 254 252	\$	1, 7500 2, 0000 2, 2500 2, 3000 2, 7500	1, 6250 1, 6750 2, 0633 2, 3333 2, 5833	1.5000 1.7500 1.9167 2.1667 2.4167	1. 7169 1. 9646 2. 2125 2. 4603 2. 7085	1 5919 1, 8396 2, 0455 2, 2408 2, 5418	1 4669 1. 7146 1. 8792 2. 1272 2. 3752	. 25000 . 25000 . 31333 . 31323 . 31333	.12509 .12500 .16667 .16667 .16667	.12500 .12500 .16667 .16667 .16667	.0927 .0927 .1236 .1236 .1236	2 48 2 26 2 35 2 36 2 21	2 52 2 29 2 58 2 30 2 23	2, 537 3, 301 3, 643 4, 110 4, 577	1, 85 2, 501 3, 047 3, 87-1 4, 78 i
313	. 2	3. 0000 3. 5000 4. 0000 4. 5000 5. 0000	2, 7500 3, 2500 3, 7500 4, 2500 4, 7500	2, 5000 3, 0000 3, 5000 4, 0000 4, 5000	2. 9567 3. 4592 3. 9500 4. 4470 4. 9441	2, 7067 3, 2132 3, 7090 4, 1970 4, 6941	2, 4567 2, 9532 3, 4500 3, 9470 4, 4441	. \$6000 . \$0000 . \$0000 . \$0000	. 25000 . 25000 . 25000 . 25000 . 25000	. 25000 . 25000 . 25000 . 25000 . 25000	. 1853 . 1853 . 1853 . 1853 . 1853	3 19 2 48 2 26 2 9 1 55	3 72 2 51 2 25 2 10 1 56	4, 788 5, 73 6, 67 7, 60 8, 34	6, 27 7, 50 10, 17 13, 1; 16, 8

^{*} Per inch length of engagement of the external thread in line with the minor diameter crests of the internal thread. Computed from this formula: She was K_* and K_* and min E_* . Figures given are the minimum shear area based on max K_* and min E_* . Figures given are the minimum stress area based on the mean of the minimum minor and pitch diameters of the external thread.

³ When Acme centralizing threads are produced in single units or in very small quantities (and principally in sizes larger than the range of commercial taps and dies) where the manufacturing process employs cutting tools (see as lathe cutting), it may be economically advantageous and therefore desirable to have the centralizing control of the mating threads located at the miner distinction.

able to have the centralizing control of the mating threads located at the miner dismeters.

Particularly under the above-mentioned type of manufacturing, the advantages cited for minor diameter centralizing control over centralizing control at the major diameters of the mating threads are:

(1) Greater ease and faster checking of machined thread dimensions. It is much easier to measure the minor diameter (root) of the internal thread and the mating fining diameter (crest or bore) of the internal thread and the major diameter (crest or turn) of the external thread and the major diameter (crest or turn) of the external thread.

(2) better meanifecturing energical of the machined size due to greater ease.

⁽²⁾ better manufacturing control of the machined size due to greater esse

checking;
(3) lower manufacturing costs.

All classes of general purpose external and internal threads may be used interchangeably. The requirement for a centralizing fit is that the sum of the major-diameter tolerance plus the major-diameter allowance on the internal thread, and the major-diameter tolerance on the external thread, shall equal or be less than the pitch-diameter allowance on the external thread. A class 2C external thread, which has a larger pitch diameter allow-ance than either a class 3C or 4C external thread, can be used interchangeably with classes 2C, 3C, or 4C internal threads and fulfill this requirement. Similarly, a class 3C external thread can be used interchangeably with classes 3C or 4C internal threads, but only a class 4C internal thread can be used with a class 4C external thread. Classes 5C and 6C external and internal threads can be used interchangeably. The average backlash for any cross combination will be between the values for backlash when both members are class 5C and when both members are class 6C.

1. Basic Diameters.—The maximum major diameter of the external thread is basic and is

the nominal major diameter for all classes except classes 5C and 6C. The maximum major diameter of all class 5C and 6C external threads is the basic major diameter, B, established by subtracting $0.025\sqrt{D}$ from the nominal diameter, D. The minimum pitch diameter of the internal thread is basic for all classes and equal to the basic major diameter minus the basic depth of thread, 0.5p. The basic minor diameter is equal to the basic major diameter minus twice the basic thread depth, p. The minimum minor diameter of the general purpose internal thread is basic. The minimum minor diameter of the centralizing internal thread is 0.1p above basic.

2. LENGTH OF ENGAGEMENT.—The tolerances specified herein are applicable to lengths of engagement not exceeding twice the nominal major diameter.

3. TOLERANCES.—(a) The tolerances specified represent the extreme variations allowed on the They are such as to produce interproduct. changeability and maintain a high grade of prod-

TABLE 12.4 — Tolerances and allowances (minimum clearances) for major and minor diameters, Acme thread series (max major diameter of external thread D, basic. Basic thread height, $\lambda = 0.5 p$.)

		Allower	dismeters dismeters	eio major e , ali classes	od eninor	Tolerance on major dismeter, plus on internal, minus on external threads							
	Threads	All exter- nel threeds		nternal three	ad .	Tolerance on minor diam, all	Ceneral	Parpose			Controllising		
#Exp -	per toch,		Omeral purpose	Centr	dising	internal threads, pitte	All cleans		Class 3C Classes 3C and 5C		Charge (C and 60		
		Minor diameter, minus	Major diameter, plus •	Major diameter,4 plus 0.0010√D	Minor diameter, phus 0.1p	0.0ep *	External f thread, 0.05p	Internal thread	External and internal threads, 0.0034√D	External threat. 0.0018√D	Internal thread, 0.0028√D	External thread, 0.0010√D	Internal thread, 0.0020√D
1	2	•	4	5	4	7	•	•	19	11	12	IJ	14
	16 14 12 12 10 6 6	65.000 .010 .010 .010 .020 .020 .020 .020	.010 .010 .010 .010 .010 .020 .020 .020	0.0007 .0008 .0008 .0010 .0011	0.0100 .0125 .0167 .0167 .0200	6s, 0080 .0090 .0090 .0090 .0090 .0090 .0093 .0093	in. 0.0040 .0040 .0050 .0050 .0050 .0053 .0063 .0100 .0100	6. 010 . 010 . 010 . 010 . 020 . 020 . 020 . 020 . 020	0. 0023 . 0023 . 0023 . 0033 . 0037 . 0037	0.0011 0.0012 0.0013 0.0014 0.0016	8.0028 .0028 .0020 .0030 .0034 .0037	0.0007 .0008 .0009 .0009 .0011	0.0014 .0016 .0017 .0019 .0020
194	•	.020	.020 .020	.0012	.0250 .0250	.0133	. 0125 . 0125	. 020	.0041	.0018 .0018	.0041 .0043	.0012	. 0029 . 0029
N	3	.020 .020 .020 .020	.020 .020 .020 .030 .020	.0013 .0014 .0018 .0018 .0017	. 0250 . 0250 . 0233 . 0333 . 0333	.0123 .0123 .0167 .0167	.0125 .0125 .0167 .0167 .0167	.00 .00 .00 .00 .00	. 0046 . 0049 . 0082 . 0088 . 0088	.0030 .0021 .0023 .0034 .0036	. 0046 . 0049 . 0053 . 0056 . 0006	.0018 .0014 .0015 .0016 .0017	.0026 .0026 .0020 .0023 .0023
394	2 2 2 3 3		.820 .020 .020 .020 .020	.0017 .0019 .8026 .0021 .0023	. 0500 . 0300 . 0300 . 0300 . 0300	. 0250 . 0250 . 0250 . 0250	.0250 .0250 .0250 .0250 .0250	.020 .020 .020 .020	.0081 .0083 .0070 .0074 .0078	. 0028 . 0028 . 0030 . 0022 . 0024	. 0061 . 0068 . 0070 . 0074 . 0078	. 0017 . 0019 . 0020 . 0021 . 0023	.0038 .0037 .0040 .0043 .0048

Values for intermediate diameters should be calculated from the formulas in column headings, but ordinarily may be interpolated.
 Intermediate pitches take the values of the next courser pitch listed.
 Values are 0.00 in. ir. 10 pit and covers, and 0.010 in. for finer pitches.
 The minimum cleares: a st the major diameter between the internal and external thread is squal to oid. 3.
 The minimum cleares a set the major diameter between the controlling internal and external tirred is the sum of the values in osis. 3 and 6.
 To sweld a complicated formula and still provide an adequate tolerance, the pitch factor is used as a base, with the minimum selections value as

Nors.—The maximum enquier play of a centralizing internal threed, one diameter long, on its external thread for the maximum major diameter 4000 00 minor diameter of all external threads is 1.5 X pitch-diameter tolerance.

TABLE 12.5 - Pitch-diameter allowances for Aeme threads

Neminal	dae Hage •		eter allowances o crel purpose and	
Above	To and including	Classes 20, 2C, and 5C; c.cos√D	Classes 3G, 3C, and 6C; 0.000 √D	Classes 40 and 4C; 0.004√D
1	,	3	•	5
In. No	Ia. Ma Ma Ma Ma IMa IMa IMa IMa	fm. 0. 0024 0.0049 0.049 0.0073 0.0053 0.0050 0.0050 0.0050	fa. 0.0018 -0030 -0037 -0042 -0042 -0039 -0090	1a, 0.0012 .00730 .00744 .00728 .00322 .00372 .0040 .0040
19/6	17/e 19/e 134 234 274 276 276 276	.0004 .0008 .0103 .0113 .0120 .0126 .0130	.0079 .0073 .0079 .0083 .0090 .0096 .0096	. 0047 . 0049 . 2032 . 0037 . 0060 . 0068 . 0066
214 234 414 431	314 414 414 644	.0130 .0160 .0170 .0170	.0113 .0120 .0127 .0136	.0075 .0080 .0084 .0091

[•] The values in columns 2, 4, and 6 are to be used for any size within the corresponding range shown in columns 1 and 2. These values are calculated from the mean of columns 1 and 2. It is recommended that the sizes given in table 12.3 be used whenever possible.

• An increase of 10 percent in the allowance is recommended for each inch, or fraction thereof, that the length of engagement exceeds two diameters.

(b) The tolerances on diameters of the internal threads shall be applied plus from the minimum sizes to above the minimum sizes.

(c) The tolerances on diameters of the external threads shall be applied minus from the maximum sizes to below the maximum sizes.

(d) The pitch-diameter tolerances (which control thread thickness) for an external or internal thread of a given class are the same. The pitch-diameter tolerances for the product include lead and angle deviations.

Pitch diameter tolerances for all classes and for various practicable combinations of diameter and pitch, are given in tables 12.6, 12.7 and 12.8. The relative proportions of the pitch diameter tolerances are: class 2, 3.0; classes 3 and 5, 1.4; and classes 4 and 6, 1.0.

(e) The tolerances on the major and minor diameters of the external and internal threads are listed in table 12.4 and are based on the following formulas, which are to be used for special threads:

4. ALLOWANCES (MINIMUM CLEARANCES) ON PITCH DIAMETER.—Allowances applied to the pitch diameter of the external thread for al' classes, general purpose and centralizing, are given in table 12.4. These pitch diameter allowances are equal to the sum of the allowance on major diameter, column 4, table 12.4, and the sum of the tolerances on external and internal threads, columns 10 to 14, inclusive, table 12.4, for general purpose and centralizing, plus an additional amount of 0.002√D in. for classes 5C and 6C. This is the minimum pitch diameter allowance that is required to maintain the centralizing fit and minimum end play of 0.0005√D in. for classes 5C and 6C.

For centralizing fits, when the product has a length of engagement greater than the standard length of the thread ring gage as shown in table 12.14, column 3, p. 17, and lead deviations not exceeding the values shown at the bottom of that table, and when "go" thread ring gages of these lengths are to be used, the maximum pitch diamater of the external thread shall be decreased by the amount shown in table 12.14, column 5. If the lead deviations in the product are greater than indicated, the allowance for the ring gage stated in column 5 should be increased proportionately. However, if methods of gaging the external thread are to be used which will detect angle deviation and cumulative lead deviation, the pitch diameter of the external thread shall be below the tabular maximum pitch diameter of the external thread by an amount sufficient to compensate for the measured deviations.

An increase of 10 p. ...nt in the allowance is recommended for each .nch, or fraction thereof, that the length of engagement exceeds two diameters.

5. FORMULAS FOR DIAMETERS.—The formulas for the major, pitch, and minor diameters are given in table 12.9.

5. LIMITS OF SIZE. ACME THREADS

Limits of size for general purpose Acme threads of the preferred series of diameters and pitches are given in table 12.10. The application of these limits is illustrated in figure 12.3.

Limits of size for centralizing Acme threads of the preferred series of diameters and pitches are given in tables 12.11 and 12.12. The application of these limits is illustrated in figures 12.4 and 12.5.

Thierances on major and minor diameters of external and internal threads

	The diese of the minute distinct of the minut										
Type of thread	M	sjor distreter	Minor diameter								
	External thread Internal thread		· External thread	Internal thread							
General purpose (all cludes)	0.1-40 111.7	(0.020 in. for 10 tpl and conser; 0.010 in, for finer pitches	1.5×pitch diameter toler-	0.05p = (h(in= 0.005 in_)							
Centralizing Classes SC and SC Classes SC and SC	0.0035 √D	0.0035 √D 0.0035 √D 0.0036 √D	1.5×piteb diameter toler-	0.05p + (Min = 0.006 in.)							

To world a complicated formula and still provide an adequate tolerance, the pitch factor is used as a base, with the minimum tolerance value set at

6. THREAD DESIGNATIONS

The following abbreviations are recommended for use on drawings and in specifications, and on tools and gages:

ACME = Acme threads, G=general purpose,

C=centralizing, LH=left-hand.

Examples of designations:

Right-hand Acme threads:

1%—4 ACME—2G=General purpose class 2G Acme threads; major diameter 1% in.,

pitch 0.2500 in., single, right-hand.

2%—0.4p—0.8L—ACME—3G=General purpose class 3G Acme threads; major diameter 2% in., pitch 0.4 in., lead 0.8 in., double, right-hand.

1%-6 ACME-4C=Centralizing class 4C Acme threads; major diameter 1% in., pitch

0.1667 in., single, right-hand. 2%-0.4p-0.8L-ACME-3C=Centralizing class 3C Acme threads; major diameter 2% in., pitch 0.4 in., lead 0.8 in., double, right-hand.

 $2 \times -0.3333 p -0.6667 L -ACME -5 C = C e n$ tralizing class 5C Acme threads; nominal major diameter 2½ in. (basic major diameter 2.4605 in.), pitch 0.3333 in., lead 0.6667 in., double, right-hand.

Left-hand Acme threads:

1%-4 ACME-2G-LH 2%-0.4p-0.8L-ACME-1%-6 ACME-4C-LH 2%-0.4p-0.8L-ACME--3G—LH

2%-0.3333p-0.6667L-ACME-5C-LH

TABLE 12.6 -Pitch diameter tolerances for Acme screw threads, classes 2G and 2C

Three de	Pitch Increment,	<u> </u>			Pts	ch diamete	r tolurazioni	for nec	ninei d	lameteri 9	d: •					
toch,	0.030 √1/a	34 la.	91 e tr.	96 tm.	No in	. Ht	a. 96	tn. '	34 b	n.]	14 lm.	i in	1)4 tn.	134 in.		
6	in. 0.00780	fm. 0.0106	fa. Q. 0109	6s. 0.0112	4s. 0.011	5 (a.		0122	ta.	127	(8.	fa.	ío.	fa.		
4 2 0	.00802 .00808 .00949		.0114	.0117 .0123 .0133	.01	m .c	29 .	0178 0124 0143	.0	132 139 147	0. 6136 . 0143 . 0151	0.0140 .0147 .0145	0. 6120 , 6158	0.0184 .0162		
	.01081 .01225 .01342 .01500								. o	11.56 11.74	.0162 .0179 .0190	.0198 .0182 .0194	.0170 .0186 .0108	.0173 .0190 .0301		
и	.01333 .01897 .02121	•••••••									i		.0216	. 0217		
и и	. 02449 . 02598 . 03000		 													
)inmetr ment,	r incre- 0.006 √D	6. 00300	0. 01333	0.0036	7 0.00	B07 Q. Q	04 Q	00174	0.0	0330	p. 00061	0.00000	0.00536	Ć. 0067		
Chreads per	Pitch Increment,		Pitch diameter toleranors for nominal diameters of: •													
inch.	0.030 √1/=	136 tn.	1½ in.	136 La.	a in.	214 in.	234 in.	296	in.	3 la,	235 bs.	4 to.	494 tn.	8 to.		
4	(m. 0.00750 .00H02	fra.	ta.	fa.	(a,	in.	in.	ia	- ,	ía,	ia.	in.	fn,	ću.		
7 0	. 00966 . 00949	0.0164	0.0168	0.0174												
	. 01051 . 01225 . 01342	.0176 .0193 .0206	. 0180 . 0195 . 0208	.0185 .0202 .0214	0 0101 0207 0219	0.0212	0. 0229	<u>:</u>					-			
	. 01300	. 0220	. 0223	. 02239	. 0233 0258	. 0240	. 0245	0.0	248 273	0. 0234	0.0262	0.0270	0.0000	1		
34	. 01897 . 02121			.0209	0273	. 0200 . 0202	. 07283 . 07007	.0	2559 312	. 0277 . 0294 . 0216	. 0324	.0310	.0317	0.0307 .0324 .0346		
))	. 02449 . 02398 . 03000									, 0349 , 0364	.0357 .0372 .0412	. 0365 . 0380 . 0420	.0372 .0387 .0427	.0379 .0294 .0434		
Diamete mente	r Incre- 0.006 √ D	0.00704	0.00735	0. 00794	0. 00849	0.00900	0.00049	0.0	0995	0 01009	0.01122	0.01200	0.01273	0.01343		

The equivalent tolerance on thread thickness is 0.250 times the pitch diameter tolerance. For an intermediate nominal diameter, apply the pitch diameter rance for the next larger nominal diameter given in this table.

NOTE.—The pitch diameter tolerances shown equal the sum of the pitch increment and the diameter increment,

TABLE 12.7 -Pitch diameter tolerances for Acme screw threads, classes 3G, 3C, and 5C

Formatsi Per	Pitch increment,				Fit	ch diameter	tolerences f	or nomina	diameter	r cf: •			
theh,	0.014 √V=	<u>ы</u> ь.	910 in.	% to.	3ío In.	Ha tan	. 96 11	a. 9	(ta.	36 to.	1 🔐	136 io.	134 년.
6	fm. 0.00380	fe, 0,0069	(m. 0.0061	fa. 0.0062	(s.	(m. 0.003	ia.		(n.) 0030	ta.	ía.	in.	fs.
l 4	.00374		.0063	.0055	.005	. 00:		ÖĞÖ "	.0062	0.00%	0.0068		***********
2	.00404			.0058	.003			062	.0065	.0067	. 0068	0.0070	0.0073
٥	.00143			.0061	.005	.000	¥ .0	086	.0068	. 0070	.0073	.0074	. CU7B
	.00405				.l	∞ە.ا	sa a	ora	. 0074	.0076	.0076	.0079	.0061
	.00573								.0081	.0083	.0085	.0087	.0058
	. 00825									.0089	. 0091	.0093	.0094
	.00700				-							. 0100	.0101
	.00000	1)	1	- 1	İ		ŀ			1	
и	. 00885		l	l	-l								
	.00000												*********
			i	l		- 1			1				
<u> </u>	.01143		ļ										
и	01400	**											
*****					-				•••				********
Diamete	r Inche		i	1									
ment,	0.0025 √D	0.00140	0.001.57	0.00171	0.001	45 0.00	198 0.0	0221	2 00343	0.00363	0.00280	0.00297	0.00311
ment, Chreeds	Pitch increment,	0.00140	0.00187	0.00171	<u> </u>	as 0.00					0.00220	0.00397	0.0031
ment, Threads	Pitch	0.00140	0.00187	0.00171	<u> </u>	1						0.00297	0. 00312 6 to.
ment, Threads per inch,	Pitch increment, 0.014 √1/m			1	Pite 2 in.	in diameter :	iolarancos fo 214 tn. fm.	or nominal 294 in.	diameters 3 in.	314 tn.	in.	4}4 in.	5 to.
ment, Threads per tnch, s	Pitch increment, 0.014 √1/m c.00330 .00374	194 to.	114 in.	1% in.	Pite 2 in.	in diameter i	iolarazicos fo 214 bz. fra,	294 in.	diameters 2 in.	314 tn	in,	414 in.	6 tra.
ment, breeds per toch,	Pitch increment. 0.014 √1/n 0.00350 .00374 .00474	134 tp.	1)4 in.	1% in.	Pite 2 in.	314 to.	Soluraneous fo 214 to. fm.	294 in.	diameters 3 in.	314 to	6 in.	414 in.	6 tn.
ment, Chreeds	Pitch increment, 0.014 √1/n 4.00330 .00374 .00443	196 to. fm.	1½ in. in.	194 in. in.	Pite 2 to.	314 to.	iolarazicos fo 214 bz. fra,	294 in.	diameters 3 in.	314 tn	6 in.	414 in.	6 tra.
ment, Threads per inch, 8	Pitch increment, 0.014 √Vm c.00330 .00330 .00443 .00443 .00464 .00464 .00466 .	194 tn. fn. 0,0077	114 im. 6s. 0.0079	194 in. in.	Pitc 3 to. 10.	214 to.	Soluraneous fo 214 to. fm.	294 in.	diameters	3½ to	4 tn.	414 in.	6 tn.
ment, Threads per tuch, 8	Pitch increment. 0.014 √1/m in. 0.00300 .00374 .00443 .00408 .00572	194 to. fa. 0.0077	11/4 km. (ss. 0.0079	194 in. in. 0.0081	Pitc 2 lts. is. 0.0089 .0097	## 134 to. fn.	tolerances for the fine.	294 in.	diameters 3 in.	3½ to	4 tn.	414 in.	6 tn.
ment, Threads per tuch, s	Pitch increment, 0.014 √1/n 0.00320	134 bs. fs. 0.0077 .0082 .0083	11/4 im. fm. 0.0079 .0084 .0091	194 in. fn. 0.0081 .0086 .0094 .0100	Pitc 2 lb. 1s. 0.0090 .0097 .0107	314 to.	714 to. fm.	294 in.	diameters	31/3 tn	4 in.	414 tn.	6 tn.
ment, Threads per tuch, s	Pitch increment. 0.014 √1/m in. 0.00300 .00374 .00443 .00408 .00572	194 to. fa. 0.0077	11/4 km. (ss. 0.0079	194 in. in. 0.0081	Pitc 2 lts. is. 0.0089 .0097	## 134 to. fn.	tolerances for the fine.	294 in.	diameters	31/3 tn	4 in.	414 tn.	fs.
ment, Threads per inch, 8	Pitch increment, 0.014 √1/n 0.00350 0.00350 0.00572 0	134 bs. fs. 0.0077 .0082 .0083	11/4 im. fm. 0.0079 .0084 .0091	194 fm. ém. 0.0081 0.0086 0.0094 0.0097	2 ks. +a	234 to. Fn. 0.0000 0104 0112	0.0107 . 0114	294 tn. 294 tn. 294 tn.	3 to	314 tn.	4 tn.	414 tz.	5 to.
ment, per tnch, 2	Pitch increment. 0.014 √Vn 0.0030 0.0030 0.00443 0.00443 0.00443 0.00404 0.00403 0.00572 0.00500 0.00	134 bs. fss. 0.0077 .0082 .0080 .0085	114 bs. fs. 0.0079 0084 0091 0097 0104	194 fm. fm. 0.0081 .0094 .0100 0107	Pite 2 bs	234 to. fn. 0.0000 0104 0112 0123	0.0107 .0125 .0125	294 in. fm. 0.0116	2 tn. (s	31/2 tm.	. 4 in.	414 in.	6 to.
ment, Phreeds per tuch, 8	Pitch increment, 0.014 √1/n 0.00350 0.00350 0.00572 0	194 to. fm. 0.0077 .0082 .0080 .0103	114 bs. fs. 0.0079 0084 0091 0097 0104	194 fm. ém. 0.0081 0.0086 0.0094 0.0097	2 ks. +a	234 to. Fn. 0.0000 0104 0112	0.0107 . 0114	294 tn. 294 tn. 294 tn.	3 to	31/2 tm	. 4 in.	414 in.	5 tn.
ment, Phreeds per trich, 8	Pitch increment. 0.014 √Vn 0.0030 0.0030 0.00443 0.00443 0.00443 0.00404 0.00403 0.00572 0.00500 0.00	134 bs. fs. 0.0077 .0082 .0080 .0083	114 in. (ss. 0.0079 0091 0097 0104 .0118	0.0081	Pite 2 bs	234 to. Fis. 0.0000 0104 0112 .0123 .0121 .0141	0.0107 .0114 .0125 .0133 .0143	294 in. fra. 0.0116 .0127 .0133 .0146	diameters 2 in (a	31/2 tm	. 4 tn. in.	414 in. fra. 	0.0143 0.0163
hrends per tnch,	Pitch increment, 0.014 √1/n 0.00350 .00374 .00443 .00572 .00572 .00508 .00608	136 to. 6n. 0.0077 .0082 .0083 .0103	114 bs. fs. 0.0079 0084 0091 0097 0104	1% in. fm. 0.0081 .0086 .0094 .0107 .0118 .0128	Pite 2 bs. 19	234 to. fn. 0.0000 0104 0112 0123	0.0107 .0114 .0125 .0133 .0143	294 in. fra. 0.0116 .0127 .0133 .0146	2 in. / fa.	314 tn im im 0.012 - 0.013 - 0.017 - 0.018 - 0.017	2 0.012 3 .013 1 .014 3 .013 7 .017	414 tz. fs. 77 0.0140 15 0145 16 0.055	6 to. ts. 0.0143 0163 0163 0163
hrends per inch,	Pitch increment, 0.014 √1/s 0.00300 0.00572 0.00508 0.00808 0	194 bs. fm. 0.0077 .0082 .0080 .0083	114 in. 6s. 0.0079 .0081 .0097 .0104 .0118	194 in. in. 0.0081 .0096 .0094 .0100 0107 .0118 .0126	Pite 2 lm. fm. fm. fm. fm. fm. fm. fm. fm. fm. f	214 to. in. 0.0000 0104 0113 .0123 .0121	0.0107 .0114 .0125 .0133	294 in. fra. 0.0116 .0127 .0133 .0146	diameters 2 to. 6a. 6a. 0.011 0.12 0.13 0.14	31/2 tm fm 0.012 9 0.03 7 0.016 7 0.018	2 0.012 3 .013 1 .014 3 .013 7 .017	414 tz. fs. 77 0.0140 15 0145 16 0.055	6 to. is. 0.0143 0161 0163
ment, hreads per inch, s	Pitch increment, 0.014 √1/n 0.00350 .00374 .00443 .00572 .00572 .00508 .00608	194 bs. fm. 0.0077 .0082 .0080 .0083	1)4 in. ts. 0.0079 0084 0091 0007 0104 .0118	194 in. in. 0.0081 .0096 .0094 .0100 0107 .0118 .0126	Pite 2 lm. fm. fm. fm. fm. fm. fm. fm. fm. fm. f	214 to. in. 0.0000 0104 0113 .0123 .0121	0.0107 .0114 .0125 .0133	294 in. fra. 0.0116 .0127 .0133 .0146	diameters 2 to. 6a. 6a. 0.011 0.12 0.13 0.14	314 tn im im 0.012 - 0.013 - 0.017 - 0.018 - 0.017	2 0.012 3 .013 1 .014 3 .013 7 .017	414 tz. fs. 77 0.0140 15 0145 16 0.055	0.0143 .0161

[•] The equivalent tolerance on thread thickness is 0.236 times the pitch diameter tolerance. For an intermediate nominal diameter, apply the pitch diameter tolerance for the part larger nominal diameter given in this table.

Norg.-The pitch dismeter tolerances shown equal the sum of the pitch increment and the diameter increment.

TABLE 12.8 -Pitch diameter tolerances for Acms screw threads, classes 40, 40, and 60

The section	Pitch		=		Pi	tch diamets	r toleranous	for not	ninal diame	ters of: •			
65 A.	0.010 √1/=	J(to.	₩s tn.	96 in.	He to	2. Hi	ba. 10	in.	96 tn.	36 in.	1155	136 in.	134 fm.
10	6s. 0.00250 .00267	fs. 0.0038	fs. 0.0036 .0038	és. 0.003 .003			0 1700	n. .0041	An. 0.0042	ia.	fa.	(a	In.
10	00230			004	1 ,00	42 (1043	.0042 .0045 .0047	. 0044 . 0046 . 0049	0.0043 .0048 .0030	. 0.0047 .0049 .0052	0.0039 .0053	0.0081 .0034
	.00384 .00408 .00447 .00800							.0051	.0053 0036	. 0064 . 0060 . 0063	. 0058 . 0061 . 0063	. 0057 . 0062 . 0066	. 0058 . 0063 . 0067
3 236	.00577	i 								,		.0071	.0073
111	. 00707 . 00816 . 00808					····			***********				
Dismete	. 01000												
	.con √∑	0.00100	0.00111	0.005	23 0.00	733 C.O	0141 a	00130	ور 200 ت	0.00187	0.00200	0.00213	0.00224
	Pitch increment,				Pit	ch diameter	telerazione	for next	iral diamet	ers of: •			
ineb.	0.010Æ=	134 tn.	114 to.	1% to.	\$ in.	2)4 to.	255 to.	234	io, a te	334 15	4 to.	414 in.	å in.
16	és. 0.00200 .00207	in.	h.	6 .	fa.	fa,	ėn.	118			fa.	tu.	ia.
10	. 00288 . 00218	0.0056	0.0004	å (105 6									
6	.00864 .00408 .00447 .00400	.0089 .0084 .0088 .0073	.0060 .0064 .0069	.0063 .0067 .0071	0.0064 .0089 .0073	0.0071 .0078 .0080	0.0076	0.00	0.00		7 0.0000		
274	. 00677 . 00632 . 90707			.0084 .0080	.0066	. 0005 . 0000 . 0101	.0000 .0003 .0102	l a	001 .00 008 .00	072 .008 198 .010	.000s	0.0100 .0108	0.0102 .0108 .0115
13	.00814		••••			*********				16 . 011	.0122	.0134	.0126
1	. 0.000		·			********				013		.016	.0148

[•] The equivalent tolerance on thread thickness is 0.220 times the pitch diameter tolerance. For an intermediate nominal diameter, apply the pitch diameter tolerance for the next larger nominal diameter given in this table.

NOTE.—The pitch diameter televiness shown some the min of the pitch increment and the diameter transmission.

TABLE 12.9 -Formulas for diameters, Acme thread classes

	<u>-</u>	
	Classes 2G, 3G, 4G Classes 2C, 3G, 4C	Classes SC, 6C
1	,	3
	EXTERNAL THR	BADS
Major dia: Busic (mas) = Min =	D D-talfram cobio 17.4 , cals	$B(=D-0.023 \sqrt{D})$ $B-tol from table 12.4 , col$
Pitch dia:	8, 10, 11, or 12	11 or 13
Max -	Int min pitch dis—sllow from table 12.5 , cols 3,	Int min pitch dis-eller from telle 12.5 , cols 2 o
Mio -	4, or 5 Ext mas pitch dis—tol from tebles 12.5, 12.7, or or 12.5	Ext max pitch dis—tel from
Minor dia: Max –	D-p-silow from table	B-p-allow from tabl
Min -	Ext max minor dis-1.8× pitch dis tol from tables 12.4, 12.7, or 12.8.	Ext max minor dis—1.5) pitch dis toi from table 12.7 or 12.8.
	INTERNAL THRE	ADS
Major dia:		
Min -	D+allow from table 13.4, cods (or 8	## ellow from table 12.4 col 5
Mas -	Int min major die+tol from table 12.4 , cols 8, 10, 12, or 14	Int min major dis+tol from cable 12.4 , cols 12 or 14
Pitch dia:		
Basic (min) = Max =	D=0.8p Int min pitch dis+tol from tables 12.6, 12.7, er 12.4	8-0.5p int min pitch din+tol from cable 12.7 or 12.8
Minor dia:	D-0	
Min -	D-p (for classes 2G, 3G, 4G)	B-p B-p+0.1p
-	D-p+0.1p (for classes 2C, 3C, 4C)	
Mus =	Int min minor dis-tol from table 12.4, col 7	Int min minor dis+tol from table 12.4, cal ?

D=Nominal size or diameter.

B=Basic diameter (for classes 5C and 6C)

p=Pitch

7. GAGES FOR ACME THREADS

Gages representing both product limits, or adequate gaging instruments for thread elements, are necessary for the proper inspection of Acme threads. The dimensions of "go" and "not go" gages should be in accordance with the principles: (a) that the maximum-metal limit or "go" gage should check simultaneously as many elements as possible, and that a minimum-metal limit or "not go" thread gage can effectively check but one element; and (b) that permissible variations in the gages be kept within the extreme product limits.

(a) GAGE TOLERANCES

Tolerances for the thread elements of "go" and "not go" thread gages for Acme threads are as specified below.

1. Tolerances on Pitch Diameter.—The pitch diameter tolerances for gages for classes 2G and 2C external and internal threads are given in table 12.13, column 2, and for gages for classes 3G, 3C, 4G, 4C, 5C, and 6C external and internal threads in table 12.13, column 3.

2. Tolerances on Major and Minor Diameters.—The major and minor diameter tolerances for Acme thread gages are given in table 12.13, column 4.

3. Tolerances on Lead.—The variation in lead of all Acme thread gages for classes 3, 4, 5, and 6 product shall not exceed 0.0002 inch between any two threads not farther apart than one inch. However, the cumulative error in lead shall not exceed 0.0003 in. for gages with a length over 1 to 3 in., inclusive; or 0.0004 in. for gages with a length over 3 to 5 in., inclusive; or 0.0006 in. for gages with a length over 5 to 10 in., inclusive. For gages for class 2 product, 0.0001 in. shall be added to the above values. For multiple threads, the cumulative tolerance for pitch and lead shall be multiplied by 1.5.

4. Tolerances on Angle of Thread.—The tolerances on angle of thread, as specified in tuble 12.13, column 5, for the various pitches are tolerances on one-half the included angle. This insures that the bisector of the included angle will be perpendicular to the axis of the thread within proper limits. The equivalent deviation from the true thread form caused by such irregularities as convex or concave sides of thread, or alight projections on the thread form, should not exceed the tolerances permitted on angle of thread.

(b) GAGES FOR EXTERNAL THREADS

1. "GO" THREAD RING OR THREAD SNAP GAGE.—(a) Major diameter.—The major diameter of the "go" thread ring or thread snap gage shall clear a diameter greater by 0.01 in. than the maximum major diameter of the external thread.

mum major diameter of the external thread.

(b) Pitch diam: —The pitch diameter shall fit the maximum-metal limit thread setting plug

(c) Minor diameter.—For general purpose external threads, the minor diameter of the "go" thread ring gage shall be the same as the maximum minor diameter of the external thread plus 0.005 in. for pitches finer than 10 tpi, and plus 0.010 in. for 10 tpi and coarser, to allow for possible deviations in concentricity of the pitch and minor diameters of the product. The tolerance shall be applied minus.

For centralizing external threads, the minor diameter of the "go" thread ring gage shall be less than the minimum minor diameter of the internal thread by the amount of the allowance on pitch diameter, table 12.5, columns 3 to 5. The tolerance (table 12.13, col. 4) shall be applied minus

(d) Length.—The length of the "go" thread ring or thread snap gage should approximate the length of engagement (see footnote to table 12.14) but should not exceed the length specified in table 12.14, col. 3.

2. Maximum-Metal Limit Thread Setting Plug for "Go" Thread Ring or Snap Gages.—
(a) Major diameter.—The major diameter of the basic-crest maximum-metal limit thread setting

TABLE 12.10 -Limits of size and tolerances, Acms general purpose thread series, classes \$0, 30, and 40

													1:										ı
			ľ	ļ	f	-	[-	+	+		Nominal dismata,			ł	}	}	}	-	}	-	-	ļ	ı
Bite Utalts and toleranose	×	*	*	ž	<u>-</u>	7.	.	3,6	-	, H	<u>*</u>	*	¥.	¥		7.		r m	풅	_	*	•	(
											Threeds	per toch											
	18	Ξ	2	n	2	•	•	•	•	-	•	-		-	•				**	-		*	
BITERIAL TRALADO			1,4	-																_			ļ
Clause 20, 30, and 40, Mar. B. 0, 2500 make make (Tal 750)		258	383	558	858	828	8 ± 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	888	338	288 288	933	858	8E 3	000 44 44 600 600 600 600 600 600 600 60	836	83.5 44.5	825 24 828	000 000 000 000 000 000 000 000 000 00	-888 -888 -888	-838 -838 -838	855 858 858	823
Change 30, 30, and 40, Max minor diameter. Max chan 30, minor diameter. Min chan 30, minor diameter. Min Chan 40, minor diameter. Min		ត្តនិត្តនិ	ESE.	3235	2355	8386	3553	2555	8835	8255	8888	9838	8238	8333	2323 2323	25.55 25.55	2383	5255 4444 3238	11111 11111 111111 111111	2225 2444 2525 2225	2000 2000 2000 2000 2000 2000 2000 200	9839	6535
Clau 20, pich dismeter. [Mai	### ### ###	i i i	ASA RES	828 828	132	22.5	875	23£	02.25 03.25 03.25	0168 0067 0168	228 228	220	388	11000	725 725 725 725	25.00 25.00	2000 2000 2000 2000 2000	44 44 58	8202 4 MST 8202 4 MST 8203 - 8123	282	3 2 E	£83	223
Class 10, pitch dismeter His	N.H	£33	202	523 233	328	E 5 6	238	2E3	9228	200 200 200 200 200 200 200 200 200 200	228 238	868 572	PESS	E 200	22.010	288 288 288 288 288 288 288 288 288 288	44.	44 44 44 44	200 1 200 CONTRACT CO	44	233 233 233	11. Ergi	385
Cham 10, pitch diameter. Min	### ###	200 200 200 200	999	25.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	128 123	338	528 328	988	923	858 858	255 255	385	E \$ 8	228 228	844 844 844 844 844 844 844	E33	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5757 # 7375 5277 # 1500 5019 . 0100	855 24. 25. 25. 25.	27.24 2017.0.	33. 2003.	27.5	833
INTERNAL TRABADO																	٠						
Chases 30, 30, and 40, Min	888 848	### ###	125 125 125 125 125 125 125 125 125 125	### ###	888	2.8.8 8.8.8	555	328 228 238 238 238 238 238 238 238 238	888	338 338	888	999	888	988	888 888	500 275	53.2 58.8 44.8	2000 2000 2000 2000 2000	886 888 888	25.5 888	238 238 888	238 238	888
Clauses 10, 10, and 10, to Max	F258	# 38	### ###	338	338 833	898	######################################	558 583	888	838 	888 288	85.5	9888 8888 8888	822	027 027 027 027 027 027 027 027 027 027	77 7910 0167	22.0 44.	002 1 PHO 0020 1 PHO 0020 1 PHO	888 44 888 888	22 S	888 888	23.25	888
Cha 30, pich dismoter Max	### ###	ENE ENE	### ###	348 348	0119 1119	ario ario	25.5	282 285	811	228 228	SES	826	258	02 E	878 818 818 818	2000 2000 2000 2000 2000 2000	44 100 E	2007 4 0230 0017 4 0013 0018 0018	822 822 822 822 822 822 822 822 822 822	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 H H H H H H H H H H H H H H H H H H H	25.00	833
Class 10, pitch dismeter. Max	ANS.	EHS HBS	HE S	21.00 20.00	\$28 828	355	858 858	283 283	855	838	838	888	02.20	8888	889 44.	110 110 110 110 110	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	144 155 144 155	7100 1, 2500 7647 1, 2561 0147 0 1111	0027 42 M	0000 T T T T T T T T T T T T T T T T T	525	832
Char 10, plich diameter Max	## 3	198	Hes	385 385	833	## #	525	268 268	888	85.38 85.38	888	8128 8128	275	355	05.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	200 200 200 200 200 200 200 200 200 200	47.0 47.0	001 4 K00 201 4 K00 201 6 10 201 6 10	833 44 908 908	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	885 275 275	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8==
												1	1	1		$\left\{ \right.$,

selection of threads per inch is arbitrary and in intended for the purpose of satabilahing a standard. So dimensions correspond to tolerances on major discreter of external thresh and minor discrete of internal thresh equal to 0.03 p.

INTERNAL THREAD (NUT)

EXTERNAL THREAD (SCREW)

FIGURE 12.3 —Illustration of allowances, tolerances, and crest clearances, general purpose Acms threads, classes 2G, 3G, and 4G.

Notation

p=pitch,
h=basic thread height,
Heavy lines show basic size.

plug gage shall be the same as the maximum major diameter of the external thread. The gage tolerance (table 12.13, col. 4) shall be applied plus. The major diameter of the truncated maximum-metal limit thread setting plug gage shall be smaller by one-third of the basic thread depth (=p/6) than the maximum major diameter of the external thread. The gage tolerance (table 12.13, col. 4) shall be applied minus.

(b) Pitch diameter.—The pitch diameter of the maximum-metal limit thread setting plug for all

(b) Pich diameter.—The pitch diameter of the maximum-metal limit thread setting plug for all external threads shall be the same as the maximum pitch diameter of the external thread. However, if the product length of engagement exceeds the length of the ring gage, table 12.14, column 3, the pitch diameter of the maximum-metal limit thread setting plug shall be less than the maximum pitch diameter of the external thread by the amount stated in table 12.14, column 5. The gage tolerance (table 12.13, col. 2 and 3) shall be

applied minus.

(c) Minor diameter.—The minor diameter shall be cleared below the minimum minor diameter of the "go" thread ring gage.

(d) Length.—The length of the maximum-metal

(d) Length.—The length of the maximum-metal limit thread setting plug gage should approximate the length of the "go" thread ring or thread supposes

gage.

3. "Go" PLAIN RING OR SNAP GAGE FOR MAJOR DIAMETER.—The diameter of the "go" plain ring gage, or gaging dimension of the "go" plain snap gage, shall be the same as the maximum major diameter of the external thread. The class Z tolerances given in footnote of table 12.13 shall be applicable to gages for centralizing threads. Tolerances given in table 12.13, column 4, shall be applicable to gages for general purpose threads. The tolerances shall be applied minus.

4. "NOT GO" THREAD RING OR THREAD

.

88 8698 100 215 98. 828 1007 88 8233 €ĝ 製造器 BES S ¥85 ž 9553 523 523 553 88 922 8 88 553 92.5 8774 1, 8019 7 agg 調節 200 4 188 188 898 212 2000 38 NA P 88 44 5 5 5 5 5 5 5 5 5 5 325 922 2.7368 200 44. 67.0 77.0 1001 222 27.750 27.750 20.057 20.050 TABLE 12.11—Limits of size and tolerances, Acms centralicing thread series, classes \$C, 3C, and 4G 2.574 2.507 0.27 1.5767 1.646 1.600 ž 1,7117 339 25.0 25.0 25.0 188 .002 톭 \$ 8 8 2000 25.5 ## B 2.8018 4 38 32 525.00 525.00 525.00 2.80 2.200 2.250 3.250 37.0 200 27.8 27.8 27.8 ¥8 22.0 200 G 3553 200 2.23 28 924 200 385 44. 0002 ž 28 5355 5355 1 335 3 2 8 88 2 0014 55.50 55.50 55.50 200 208 Nombal dameter Ł 222 3773 200 38 955 358 353 ¥ 58 82.8 -8 553 33 276 PAS. ś ž Sp. 397 ng ng ž 38 2.8 2.8 332 ¥ #. g 9000 33.8 988 828 848 į 2.1.8 2.4.8 2.4.8 38 3 # 8 覆 828 228 프 33 888 Ēġ Eg **B** 3 EE 8 282 **F88** EFE × 38 338 E8E 333 * 95g 80 88 88 1325 385 문결물 953 338 1 2 338 ĝ 333 15 3.5 Chance 2C, 8C, and 4C, major diameter... Min. 5 7 7 4 Z Z Charter 20, 40, and 10, major diams her tages and tolerage BITHUME TREEADS Chans 10 and 10, major diameter, Ches 4C, pfteb diametar...... The joy distributer. Ches 4C, major dlameter Class MC, pitch diameter Chas MO, ptich diameter Ches 30, pitch diameter Chas 10, pitch distante Ches 6C, pitch diameter Channe 2C, JC, and 4C, ğ 9 Ŏ C.

* The selection of threads per inch is arbitrary and is supported

for the purpose

200 H ENE £88 38 28 8228 822 2 7 3 2 7 5 100 × \$ 500 A COLT 44. 0449. Ę. 3 225 1 888 2 PM ŝ 2 656 28 838 238 18 E E 44 5:00 5:00 5:00 38 2238 M. 200 44 249 249 249 2 7.03 TABLE 12, 12 — Limits of size and tolerances, Acms centralising thread series, classes 8C and 8C 33 ₹ 38 38 2001 2 OCH 44 878 578 2 4822 44.8 8.23 8.33 8.33 2,002 훉 3 388 2220 200 3 238 폴 88 38 ã88 8 225 818 82.5 9.60 325 7.72 r g 9 3 5 3 225 ¥ 335 133 138 £28 182 ᆂ 2 × E 3 6 535 535 38 Ĭ 200 hã 8≅8 222 ag 338 8 8 R 238 ã 8 ¥ 38 222 322 88 88 ¥ 8228 333 8 = 5 8 = 8 £8 258 33 200 353 128 128 2 38 2 333 333 £ 53 8 28 £8 228 338 z 328 223 58 £23 EZZ EZZ 3 38 2 866 533 9 **98** 2 ± 75 E ž Classes SC and SC, major diameter. .. sports and tolerage Cless 6C, mittor diameter.. Class 3C, minor diameter. Class &C. pitch dismeter. Class &C. pitch diameter. Class SC, major diameter. Clean &C, major diameter Chass SC. petch diameter. Clus SC, major diameter Class SC, pitch diameter Plus Standac, minor Classes &C and &C, calnor Chauses SC and &C, major diameter...

. The selection of threads per tach is arbitrary and is intended for the purpose of establishing a standard.

INTERNAL THREAD (NUT)

EXTERNAL THREAD (SCREW)

FIGURE 12.4 —Illustration of allowances, tolerances, and crest clearances, centralising Acme threads, classes 2C, 3C, and 4C. NOTATION

p=pitch h=hung thread height. Heavy lines show basic star

SNAP GAGE.—(a) Major diameter.—The major diameter of the "not go" thread ring or thread snap gage shall clear a diameter greater by 0.01 in. than the maximum major diameter of the external thread. The clearance cut may have 0.435p maximum width between intersections with the flanks of the thread.

(b) Pitch diameter.—The pitch diameter shall fit the minimum-metal limit thread sotting plug

gage

(c) Minor diameter. — The minor diameter of the gage shall be computed by using the formula: basic minor diameter plus p/4, with the tolerance (table

12.13, col. 4) applied plus. If the value for minimum gage minor diameter thus determined is greater than the minimum pitch diameter of the external thread, the minimum minor diameter of the gage shall be taken as equal to the minimum pitch diameter of the external thread.

(d) Length.—The length of the "not go" thread ring or thread snap gage should approxi-mate 3 pitches (see footnote to table 12.14). When a multiple thread is involved, the 'not go' thread ring or snap gage shall be of such length ns to provide at least 1 full turn of thread.

5. THREAD SETTING PLUG FOR "NOT GO"

INTERNAL THREAD (NUT)

EXTERNAL THREAD (SCREW)

FIGURE 12.5 —Illustration of allowances, tolerances, and crest clearances, centralizing Acms threads, classes &C and &C.

NOTATION pitch basic thread halght Heavy lines show basic form.

THREAD RING OR THREAD SNAP GAGE.—(a) Major diameter.—The major diameter of the basiccrest minimum-metal limit thread setting plug gage shall be the same as the maximum major diameter of the external thread. The gage tolerance (table 12.13, col. 4) shall be applied plus. The major diameter of the truncated minimummetal limit thread setting plug gage shall be truncated one-third basic thread depth (=p/6)smaller than the maximum major diameter of the

The gage tolerance (table external thread.

12.13, col. 4) shall be applied minus.

(b) Pitch diameter.—The pitch diameter shall be the same as the minimum pitch diameter of the external thread, with the tolerance applied

(c) Minor diameter.—The minor diameter shall be cleared below the minimum minor diameter of the "not go" thread ring gage.

(d) Length.—The length shall be at least equal

to the length of the "not go" thread ring or thread

50 Shap gage.

6. "Not Go" Plain Snap Gage For Major of the "not DIAMETER.—The gaging dimension of the "not go" plain snap gage shall be the same as the minimum major diameter of the external thread. Class Z tolerances given in footnote of table 12.13 shall be applicable to gages for centralizing threads. Tolerances given in table 12.13, column 4, shall be applicable to gages for general purpose threads. The gage tolerance shall be applied plus.

(c) GAGES FOR INTERNAL THREADS

1. "Go" TEREAD PLUG GAGE, GENERAL PUR-POSE THREADS.—(a) Major diameter.—The major diameter of the "go" thread plug gage for general purpose threads shall be equal to the minimum major diameter of the internal thread minus 0.005 in. for pitches finer than 10 tpi, and minus 0.010 in. for 10 tpi and coarser, to allow for possible deviations in concentricity of the pitch and major diameters of the product. The gage tolerance (table 12.13, col. 4) shall be applied

TABLE 12.13 -Tolerances for "go" and "not go" thread and plain gages, Acme threads

	7-7-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Tolerance Class	on pitch >	Tolarance -	Toleranos
Threads per fach *	Classes 20 and 20	Classes 80, 8C, 60, 6C, 8C, and 60	on major and minor diameters	on hair arigh of thread
1	3	3	4	
14	6% - 0.0008 - 0008 - 0006 - 0007 - 0008	76. 0.0006 .0006 .2206 .0007	6. 601 . 601 . 601 . 602 . 602	0 10 0 10 0 10 0 10 0 10 0 10 0 8
14	.0000 .0010 .0011 .0018 .0014	.0007 .0008 .0008 .0008 .0008	200. 200. 200. 200. 200.	0 8
	.0015 .0018 .0018 .0021	0100 . 0100 . 0100 .	200. 200. 200. 200.	0 4

Intermediate pitches take the toleraness of the next owners pitch listed in the table.

he table. • These pitch diameter tolerances for thread eager are not cumulative; their they do not include tolerances on lead and on half angle. Lead tolerances

These pitch diameter tolerances for thread sages are not cumulative; that is, they do not include tolerances on lead and on haif angie. Lead tolerances are given in par, 7(a) 3, p. 10.
These tolerances are applicable to all maps except the "ge" and "not ge" thread ping pages for major diameter of all classes of centraliting internal threads, and for "go" and "not go" pick ring or map rays for major diameter of outraliting external threads. For these pages the tolerances are close Z.

Či.	Lande	Class 2
Above	To sad including	tolergoes
/m. 6. 028 0. 625 1. 810 2. 810 4. 810	fa. 0. 625 1. 510 1. 510 4. 510 6. 810	9. 00010 .00013 .00016 .00020 .00020

(b) Pitch diameter.—The pitch diameter shall be equal to the minimum (basic) pitch diameter of the internal thread with the tolerance (table

12.13, col. 2 and 3) applied plus.
(c) Minor diameter.—The minor diameter shall clear a diameter less by 0.01 in. than the minimum

minor diameter of the internal thread.

(d) Length.—The length of the "go" thread plug gage should approximate the length of engagement (see footnote to table 12.14) but shall not exceed twice the nominal major diameter

unless specifically requested.

2. "Go" THREAD PLUG GAGE, CENTRALISING THREADS.—(a) Major diameter.—The major diameter of the "go" thread plug gage for centralizing threads shall be the same as the minimum

TABLE 12.14 -Pitch diameter compensation for adjusted --- --- --- was unimeter compensation for adjusted lengths of "go" ring gages for general purpose and central-ising threads

Nominal major : external ti	districtor of grand	1	Maximum amount 1	Maximum abount pitch diameter of
Abere	To and tackeding	Longth of "ga" ring com	diameters length of engagement expedie length of page	"go" ring shall be form thou maxi- mum pitch distribut of external thread
1	3	3	4	•
6ta.	tm. 2	2 djame- ters.	ts. 9	da.
	114 114 136 136	2 to	14	0.0013 .0813 .0015 .0016
14 14 2	154 2 214 214	2 to	156 2 2 3 364	.0016 .0019 .0019
3A	394 3	7)4 tm 5 tm 3 tm	*	. 6019 . 6019 . 6027

NOTE.—The above comparantion in set exceeding two discussive and a learneding the following values (in inch): 0,0006 in length of 16 in. or ham, ,0006 in length over 34 to 21 in. ,0007 in length over 3 to 6 in. ,0007 in length over 3 to 6 in. ,0007 in length over 3 to 10 in. ,0008 in length over 5 to 10 in. ,0008 in length over 5 to 10 in. The principles have been established 2 for gene should appreciate the length over 3 in the stable of the second of the second over the s "for gapes accessed the pitches long. For remain to madify the page standard be three pitches long. For remain to madify the form of the semantice of using ginedard his in the latest issue of ARII-267.1, Gaps blanks, wherever they my fully. (2) Avoid too cumbersome ring pages as well as assessive pages by limiting the lampth of "ge" thread ring pages to tensify in the col. 8 above. (3) Avoid consell vely cumbersome three by limiting seasinum length to two distributors wherever possiful advantage of medical equipment for preducing and chest lands, particularly where long engagements are invalved, the to use of standard or medicate longst thread ping, thread of many pages. Alternatively, of course, instruments its standard exhibits the climits of distributors and angles independently.

sinap grams. Alternatively, of course, instruments fluggs be one sheeking distinctors and engles independently.

Should a "go" gape shorter than the length of templement he of independent means should be used to measure lend deviation in pr. The maximum means condition must be reduced to easier free sam of product, if the lend deviation in the length of engagement, determined, exceeds 0.3800, where O is the product pitch disablewants. The required amount of shange in pitch disablewant. At the product of course of external thread, plus on internal thread search.

is: $\Delta D=0.887\left(1-\frac{L_f}{L_f}\right) s_p$, where L_f is the length of the page and L_f is the length of engagement. When interacted are used for chesking dismoder it is a simple matter to make this allowance. When thread ping and ring pages are used, the ellowance is constitute increased a finite amount, at outlined in the above table. This arbitrarily reduces the tolerance on diameter.

major diameter of the internal thread with a plus tolerance (class Z, footnote of table 12.13). Both corners at the crest shall be chamfered equally at an angle of 45°, leaving a width of flat at crest of 0.28p, +0.00, -0.02p.

(b) Pitch diameter, minor diameter, and length.-The pitch diameter, minor diameter, and length of gage shall be the same as those given in 1(b),

1(c), and 1(d) above.

3. "NOT GO" THREAD PLUG GAGE FOR PITCH DIAMETER OF ALL INTERNAL THREADS .-- (G) Major diameter.—The major diameter of the "not go" thread plug gage shall be equal to the maximum (basic) major diameter of the external thread minus p/4, with the tolerance (table 12.13, col. 4) applied minus.

(b) Pitch diameter.—The pitch diameter shall be the same as the maximum pitch dismeter of the internal thread, with the tolerance (table

12.13, col. 2 and 3) applied minus.
(c) Minor diameter.—The minor diameter shall clear a diameter less by 0.01 in. than the minimum minor diameter of the internal thread. The clearance cut may have 0.435p maximum width between intersections with the flanks of the thread.

- (d) Length.—The length of the "not go" thread plug gage should approximate 3 pitches (see footnote to table 12.14). When a multiple thread is involved, the "not go" thread plug gage shall be of such length as to provide at least I full turn of the
- 4. "NOT GO" THREAD PLUG GAGE FOR MAJOR DIAMETER OF CENTRALIZING INTERNAL THREAD.— The major diameter shall be equal to the maximum major diameter of the internal thread. The tolerance shall be class Z (footnote of table 12.13) applied minus. The included angle of the thread shall be 29°. The pitch diameter shall be the maximum pitch diameter of the class 4C centralizing external thread (for centralizing internal threads, classes 2C, 3C, and 4C) or the maximum pitch diameter of the class 6C centralizing external thread (for centralizing internal threads, classes 5C and 6C), with a minus tolerance of twice that given in table 12.13, column 3. The crest corners shall be chamfered 45° equally to leave a central crest flat not more than 0.24p wide. The approximate depth of chamfer is 0.07p. The minor diameter shall clear a diameter less by 0.01 in, than the minimum minor diameter of the internal thread. The length should approximate 3p (see footnote to table 12.14). When a multiple thread is involved, the "not go" gage shall be of such length as to provide at least 1 full turn of thread.
- 5. "Go" Plain Plug Gage for Minor Diam-ETER OF INTERNAL THREAD.—The diameter of the "go" plain plug gage shall be the same as the minimum minor diameter of the internal thread. The gage tolerance shall be class Z (footnote of table 12.13), applied plus. The gage length shall be in accordance with the latest revision of Commercial Standard ANSI B47.1, Cage Blanks.

6. "Not Go" Plain Plug for Minor Diam-ETER OF INTERNAL THREAD .- The diameter of the "not go" plain plug gage shall be the same as the maximum minor diameter of the internal thread. The gage tolerance shall be class Z (footnote of table 12.13), applied minus. The gage length shall be in accordance with the latest revision of ANSI B47.1.

(4) CONCENTRICITY

Methods of securing concentricity between major and pitch diameters of external or internal threads must be determined for each individual application.

INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold alone this line)

(Fold slone this line,

DEFENSE LOGISTICS AGE! CY

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL

RST CLASS PERMIT NO. 496

WASHINGTON D. C.

POSTAGE WILL BE PAID BY THE DEFENSE LOGISTICS AGENCY

Commander
Defense Industrial Supply Center
700 Robbins Avenue
Philadelphia, PA 19111

MO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL (See Instructions - Reverse Side)				
1. DOCUMENT NUMBER	2 DOCUMENT TITLE			
3L NAME OF SUBMITTING ORGA	ANIZATION		4. TYPE OF ORGANIZATION (Mark one) VENDOR	
b. ADDRESS (Street, City, State, Z.)	(P Code)		USEN MANUFACTURER	
			OTHER (Specify):	
5. PROBLEM AREAS 4. Persgraph Number and Wording	j:		· · · · · · · · · · · · · · · · · · ·	
		•		
•				
b. Recommended Wording:				
·			·	
c, Resson/Retionals for Recomm	· · · · · · · · · · · · · · · · · · ·		,	
	. •			
s. REMARKS			~	
· .				
·				
A NAME OF BUSMITTER (Last F			b. WORK TELEPHONE NUMBER (Include Area Code) — Optional	
e. MAILING ADDRESS (Street, City,	, State, ZIF Code) — Optional		& DATE OF SUBMISSION (YYMMDD)	
	<u> </u>		·	