
ESA PSS-05-0 Issue 2
February 1991

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

ESA
software
engineering
standards
Issue 2

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

Downloaded from http://www.everyspec.com

ii ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA PSS-05-0 Software Engineering Standards

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

0 0 1984 First issue of BSSC(84)1, Issue no 1
1 0 1987 First issue of ESA PSS-05-0, Issue 1
2 0 1991 See Foreword
2 1 1994 Editorial corrections and minor changes

Issue 2 Revision 1 approved, October 1994
Board for Software Standardisation and Control
C.Mazza, Chairman

Issue 2 approved, 21st February 1991
Telematics Supervisory Board

Issue 2 approved by:
The Inspector General, ESA

Published by ESA Publications Division,
ESTEC, Noordwijk, The Netherlands.
Printed in the Netherlands.
ESA Price code: E2
ISSN 0379-4059

Copyright © 1994 by European Space Agency

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) iii
TABLE OF CONTENTS

TABLE OF CONTENTS
INTRODUCTION................................ xi

1 PURPOSE OF THE STANDARDS...xi
2 STRUCTURE OF THE STANDARDS.. xi
3 CLASSES OF STANDARD PRACTICES..xii

3.1 Mandatory practices ...xii
3.2 Recommended practices.. xii
3.3 Guideline practices..xii

4 APPLYING THE STANDARDS.. xii
4.1 Factors in applying the Standards..xii
4.2 Applying the Standards in a system developmentxiii
4.3 Methods and tools ...xiv

Part 1 Product Standards
CHAPTER 1 THE SOFTWARE LIFE CYCLE 1-3

1.1 INTRODUCTION ...1-3
1.2 PHASES, ACTIVITIES AND MILESTONES...1-3

1.2.1 UR phase: user requirements definition..1-5
1.2.2 SR phase: software requirements definition..1-5
1.2.3 AD phase: architectural design ...1-6
1.2.4 DD phase: detailed design and production..1-6
1.2.5 TR phase: transfer..1-7
1.2.6 OM phase: operations and maintenance ...1-7

1.3 LIFE CYCLE APPROACHES...1-8
1.3.1 The waterfall approach...1-8
1.3.2 The incremental delivery approach..1-9
1.3.3 The evolutionary development approach..1-10

1.4 PROTOTYPING ...1-11
1.5 HANDLING REQUIREMENTS CHANGE..1-12

CHAPTER 2 THE USER REQUIREMENTS DEFINITION PHASE 1-13
2.1 INTRODUCTION ...1-13
2.2 INPUTS TO THE PHASE...1-13
2.3 ACTIVITIES .. 1-13

2.3.1 Capture of user requirements..1-14
2.3.2 Determination of operational environment ..1-14
2.3.3 Specification of user requirements..1-14

2.3.3.1 Classification of user requirements...1-14
2.3.3.2 Attributes of user requirements ...1-15

2.3.4 Reviews... 1-16

Downloaded from http://www.everyspec.com

iv ESA PSS-05-0 Issue 2 (February 1991)
TABLE OF CONTENTS

2.4 OUTPUTS FROM THE PHASE ... 1-16
2.4.1 User Requirements Document ..1-17
2.4.2 Acceptance test plans ...1-17
2.4.3 Project management plan for the SR phase.......................................1-17
2.4.4 Configuration management plan for the SR phase1-17
2.4.5 Verification and validation plan for the SR phase................................1-18
2.4.6 Quality assurance plan for the SR phase..1-18

CHAPTER 3 THE SOFTWARE REQUIREMENTS DEFINITION PHASE ... 1-19
3.1 INTRODUCTION ...1-19
3.2 INPUTS TO THE PHASE...1-19

3.3 ACTIVITIES...1-20
3.3.1 Construction of the logical model..1-20
3.3.2 Specification of software requirements ...1-21

3.3.2.1 Classification of software requirements 1-22
3.3.2.2 Attributes of software requirements ..1-24
3.3.2.3 Completeness of software requirements 1-25
3.3.2.4 Consistency of software requirements......................................1-25
3.3.2.5 Duplication of software requirements1-26

3.3.3 Reviews... 1-26
3.4 OUTPUTS FROM THE PHASE ... 1-26

3.4.1 Software Requirements Document..1-26
3.4.2 System test plans...1-27
3.4.3 Project management plan for the AD phase.......................................1-28
3.4.4 Configuration management plan for the AD phase............................1-28
3.4.5 Verification and validation plan for the AD phase...............................1-28
3.4.6 Quality assurance plan for the AD phase..1-28

CHAPTER 4 THE ARCHITECTURAL DESIGN PHASE 1-29
4.1 INTRODUCTION ...1-29
4.2 INPUTS TO THE PHASE...1-29
4.3 ACTIVITIES .. 1-30

4.3.1 Construction of the physical model...1-30
4.3.1.1 Decomposition of the software into components1-31
4.3.1.2 Implementation of non-functional requirements.......................1-31
4.3.1.3 Design quality criteria... 1-32
4.3.1.4 Trade-off between alternative designs......................................1-33

4.3.2 Specification of the architectural design ...1-33
4.3.2.1 Functional definition of the components................................... 1-34
4.3.2.2 Definition of the data structures ..1-34
4.3.2.3 Definition of the control flow ..1-35
4.3.2.4 Definition of the computer resource utilisation1-35

4.3.3 Selection of programming languages...1-35

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) v
TABLE OF CONTENTS

4.3.4 Reviews... 1-35
4.4 OUTPUTS FROM THE PHASE ... 1-36

4.4.1 Architectural Design Document...1-36
4.4.2 Integration test plans..1-37
4.4.3 Project management plan for the DD phase1-37
4.4.4 Configuration management plan for the DD phase............................1-37
4.4.5 Verification and validation plan for the DD phase...............................1-37
4.4.6 Quality assurance plan for the DD phase ...1-37

CHAPTER 5 THE DETAILED DESIGN AND PRODUCTION PHASE 1-38
5.1 INTRODUCTION ...1-38
5.2 INPUTS TO THE PHASE...1-38
5.3 ACTIVITIES .. 1-39

5.3.1 Detailed design...1-40
5.3.2 Production ..1-40

5.3.2.1 Coding..1-40
5.3.2.2 Integration ..1-42
5.3.2.3 Testing..1-43

5.3.2.3.1 Unit testing...1-43
5.3.2.3.2 Integration testing..1-43
5.3.2.3.3 System testing ... 1-44

5.3.3 Reviews... 1-44
5.4 OUTPUTS FROM THE PHASE ... 1-45

5.4.1 Code ...1-45
5.4.2 Detailed Design Document.. 1-46
5.4.3 Software User Manual..1-46
5.4.4 Project management plan for the TR phase1-47
5.4.5 Configuration management plan for the TR phase.............................1-47
5.4.6 Acceptance test specification..1-47
5.4.7 Quality assurance plan for the TR phase..1-47

CHAPTER 6 THE TRANSFER PHASE 1-49
6.1 INTRODUCTION ...1-49
6.2 INPUTS TO THE PHASE...1-49
6.3 ACTIVITIES .. 1-50

6.3.1 Installation...1-50
6.3.2 Acceptance tests..1-50
6.3.3 Provisional acceptance..1-50

6.4 OUTPUTS FROM THE PHASE ... 1-51
6.4.1 Statement of provisional acceptance..1-51
6.4.2 Provisionally accepted software system ...1-51
6.4.3 Software Transfer Document ...1-51

Downloaded from http://www.everyspec.com

vi ESA PSS-05-0 Issue 2 (February 1991)
TABLE OF CONTENTS

CHAPTER 7 THE OPERATIONS AND MAINTENANCE PHASE 1-53
7.1 INTRODUCTION ...1-53
7.2 INPUTS TO THE PHASE...1-53
7.3 ACTIVITIES .. 1-53

7.3.1 Final Acceptance..1-54
7.3.2 Maintenance...1-54

7.4 OUTPUTS FROM THE PHASE ... 1-55
7.4.1 Statement of final acceptance ...1-55
7.4.2 Project History Document .. 1-56
7.4.3 Finally accepted software system ...1-56

Part 2 Procedure Standards

CHAPTER 1 MANAGEMENT OF THE SOFTWARE LIFE CYCLE 2-3
1.1 INTRODUCTION ...2-3
1.2 SOFTWARE PROJECT MANAGEMENT...2-3
1.3 SOFTWARE CONFIGURATION MANAGEMENT...2-4
1.4 SOFTWARE VERIFICATION AND VALIDATION...2-4
1.5 SOFTWARE QUALITY ASSURANCE..2-4

CHAPTER 2 SOFTWARE PROJECT MANAGEMENT 2-5
2.1 INTRODUCTION ...2-5
2.2 ACTIVITIES .. 2-5

2.2.1 Organising the project..2-5
2.2.2 Leading the project ..2-6
2.2.3 Risk management ..2-6
2.2.4 Technical management ...2-6
2.2.5 Planning, scheduling and budgeting the work...................................... 2-7
2.2.6 Reporting project progress.. 2-8

2.3 THE SOFTWARE PROJECT MANAGEMENT PLAN.................................... 2-8
2.4 EVOLUTION OF THE SPMP THROUGHOUT THE LIFE CYCLE.................2-8

2.4.1 UR phase..2-8
2.4.2 SR phase ..2-9
2.4.3 AD phase..2-10
2.4.4 DD phase..2-10

CHAPTER 3 SOFTWARE CONFIGURATION MANAGEMENT.................. 2-12
3.1 INTRODUCTION ...2-12
3.2 ACTIVITIES .. 2-12

3.2.1 Configuration identification .. 2-12
3.2.2 Configuration item storage .. 2-15
3.2.3 Configuration change control ..2-16

3.2.3.1 Levels of change control..2-16

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) vii
TABLE OF CONTENTS

3.2.3.2 Change control procedures...2-17
3.2.3.2.1 Documentation change procedures...............................2-17
3.2.3.2.2 Problem reporting procedures..2-18

3.2.4 Configuration status accounting ...2-19
3.2.5 Release ... 2-19

3.3 THE SOFTWARE CONFIGURATION MANAGEMENT PLAN2-20
3.4 EVOLUTION OF THE SCMP THROUGHOUT THE LIFE CYCLE..............2-20

3.4.1 UR phase..2-20
3.4.2 SR phase ..2-21
3.4.3 AD phase..2-21
3.4.4 DD phase..2-21

CHAPTER 4 SOFTWARE VERIFICATION AND VALIDATION 2-22
4.1 INTRODUCTION ...2-22
4.2 ACTIVITIES .. 2-23

4.2.1 Reviews... 2-24
4.2.1.1 Technical reviews...2-24
4.2.1.2 Walkthroughs ...2-25
4.2.1.3 Software inspections.. 2-25

4.2.2 Tracing.. 2-25
4.2.3 Formal proof ...2-26
4.2.4 Testing .. 2-26
4.2.5 Auditing... 2-28

4.3 THE SOFTWARE VERIFICATION AND VALIDATION PLAN......................2-29
4.4 EVOLUTION OF THE SVVP THROUGHOUT THE LIFE CYCLE................2-29

4.4.1 UR phase..2-29
4.4.2 SR phase ..2-29
4.4.3 AD phase..2-30
4.4.4 DD phase..2-30

CHAPTER 5 SOFTWARE QUALITY ASSURANCE 2-32
5.1 INTRODUCTION ...2-32
5.2 ACTIVITIES .. 2-32

5.2.1 Management ..2-33
5.2.2 Documentation ...2-33
5.2.3 Standards, practices, conventions and metrics 2-33
5.2.4 Reviews and audits ..2-34
5.2.5 Testing activities ...2-34
5.2.6 Problem reporting and corrective action...2-34
5.2.7 Tools, techniques and methods ..2-34
5.2.8 Code and media control ..2-35
5.2.9 Supplier control ..2-35
5.2.10 Records collection, maintenance and retention2-35

Downloaded from http://www.everyspec.com

viii ESA PSS-05-0 Issue 2 (February 1991)
TABLE OF CONTENTS

5.2.11 Training...2-35
5.2.12 Risk management ..2-35

5.3 THE SOFTWARE QUALITY ASSURANCE PLAN2-36
5.4 EVOLUTION OF THE SQAP THROUGHOUT THE LIFE CYCLE...............2-36

5.4.1 UR phase..2-36
5.4.2 SR phase ..2-36
5.4.3 AD phase..2-36
5.4.4 DD phase..2-36

Part Three Appendices

APPENDIX A GLOSSARY 3-A1
APPENDIX B SOFTWARE PROJECT DOCUMENTS................................ .3-B1
APPENDIX C DOCUMENT TEMPLATES 3-C1
APPENDIX D SUMMARY OF MANDATORY PRACTICES 3-D1
APPENDIX E FORM TEMPLATES 3-E1
APPENDIX F INDEX 3-F9

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) ix
FOREWORD

FOREWORD

Software engineering is an evolving discipline, and many changes have
occurred in the field since the last issue of the ESA PSS-05-0 Software Engineering
Standards in January 1987. The BSSC started, therefore, a programme to update
the Standards in 1989. The opinions of users of the Standards were invited, software
engineering methods were reviewed, and standards recently issued by other
organisations were examined.

In 1989, the BSSC called for users of the Standards to submit change
proposals. Nearly 200 separate proposals were received and many of the points
they raised have been incorporated in this new issue of the Standards.

The BSSC has started the development of lower-level documents, called
‘Guides', which will describe in detail how to implement the practices described in
the Standards. The Guides will also discuss software engineering methods. The
development work on the Guides has required careful scrutiny of the Standards, and
some changes in them have been found to be needed.

The last issue of the Standards took into account the software engineering
standards published by the Institute of Electrical and Electronics Engineers (IEEE).
Most of these standards are recognised by the American National Standards
Institute (ANSI). This issue takes into account several new standards which have
been published by the IEEE since the last issue.

The following BSSC members have contributed to the implementation of this
issue: Carlo Mazza (chairman), Bryan Melton, Daniel De Pablo, Adriaan Scheffer and
Richard Stevens.

The BSSC wishes to thank Jon Fairclough for his assistance in the
development of the Standards and the Guides. The BSSC expresses its gratitude to
all those software engineers in ESA and in Industry who have contributed proposals
for the improvement of the Standards.

Requests for clarifications, change proposals or any other comment
concerning this guide should be addressed to:
BSSC/ESOC Secretariat or BSSC/ESTEC Secretariat
Attention of Mr C Mazza Attention of Mr A Scheffer
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-6100 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

Downloaded from http://www.everyspec.com

x ESA PSS-05-0 Issue 2 (February 1991)
FOREWORD

This page is intentionally left blank.

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) xi
INTRODUCTION

INTRODUCTION

1 PURPOSE OF THE STANDARDS

This document describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA), either in house or by industry.

Software is defined in these Standards as the programs,
procedures, rules and all associated documentation pertaining to the
operation of a computerised system. These Standards are concerned
with all software aspects of a system, including its interfaces with the
computer hardware and with other components of the system. Software
may be either a subsystem of a more complex system or it may be an
independent system.

Where ESA PSS-01-series documents are applicable, and as a
consequence ESA PSS-01-21, ‘Software Product Assurance
Requirements for ESA Space Systems’ is also applicable, Part 2, Chapter
5 of these Standards, ‘Software Quality Assurance’, ceases to apply.

2 STRUCTURE OF THE STANDARDS

The ESA Software Engineering Standards are divided into three
parts:

Part 1, Product Standards, contains standards, recommendations
and guidelines concerning the product, i.e. the software to be defined,
implemented, operated and maintained.

Part 2, Procedure Standards, describes the procedures which are
used to manage a software project.

Part 3, ‘Appendices’, contains summaries, tables, forms and
checklists of mandatory practices.

Downloaded from http://www.everyspec.com

xii ESA PSS-05-0 Issue 2 (February 1991)
INTRODUCTION

3 CLASSES OF STANDARD PRACTICES

Three categories of standard practices are used in the ESA
Software Engineering Standards: mandatory practices, recommended
practices and guidelines.

3.1 Mandatory practices

Sentences containing the word ‘shall’ are mandatory practices.
These practices must be followed, without exception, in all software
projects. The word ‘must’ is used in statements that repeat a mandatory
practice.

3.2 Recommended practices

Sentences containing the word ‘should’ are strongly
recommended practices. A justification to the appropriate level in the
Agency’s hierarchy is needed if they are not followed.

3.3 Guideline practices

Sentences containing the word ‘may’ are guidelines. No
justification is required if they are not followed.

4 APPLYING THE STANDARDS

Software projects vary widely in purpose, size, complexity and
availability of resources. Software project management should define
how the Standards are to be applied in the planning documents (see Part
2). Deciding how standards are to be applied in specific projects is often
called ‘tailoring’.

4.1 Factors in applying the Standards

A number of factors can influence how the Standards are applied,
for example the:
project cost, both in development and operation;
• number of people required to develop, operate and maintain the

software;
• number of potential users of the software;
• amount of software that has to be produced;

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) xiii
INTRODUCTION

• criticality of the software, as measured by the consequences of its
failure;

• complexity of the software, as measured by the number of interfaces
or a similar metric;

• completeness and stability of the user requirements;
• risk values included with the user requirements.

 Note that two man years or less is a small project, twenty man
years or more is a large project.

 Software project management should define a life cycle approach
and documentation plan that reflects these factors.

 Projects which use any commercial software must procure
software against stated requirements. Projects are not expected to
reproduce design and implementation documentation about commercial
software. The maintenance of such software is a responsibility of the
supplier.

 The procedures for software production may be embedded in the
infrastructure of the working environment; once these procedures have
been established, repetitive documentation of them is unnecessary.
Groups running many projects should ensure that their working practices
conform to the ESA Software Engineering Standards. Project
documentation should reference these practices.

 Large, complex software projects may need to extend these
Standards. Such projects may need to give more detailed consideration
to the procedural and life cycle aspects when there are changing
requirements or multiple contractors working in parallel.

 4.2 Applying the Standards in a system development

 Software developed for ESA is frequently part of a larger system,
satellite systems being an obvious example. In this situation a number of
activities will already have been performed at ‘system level’ (as part of the
system development life cycle) before the life cycle for any software part
of the system can commence.

 It is a ‘systems engineering’ function to define the overall
requirements for the system to be built, often expressed in a System
Requirement Document (often referred to as an SRD, but not to be

Downloaded from http://www.everyspec.com

xiv ESA PSS-05-0 Issue 2 (February 1991)
INTRODUCTION

confused with a Software Requirements Document). From this system
requirements document a decomposition into subsystems is often
performed with resulting subsystem specifications. Trade-offs are done to
partition the system/subsystems into hardware and software, applying
criteria specific to the system to be built (e.g. commonality, reliability,
criticality etc). Once the need for a software item has been established, its
life cycle, as defined in this standard, can begin. Each of the software
items identified in the system will have its individual life cycle.

 Many of the user requirements may well exist in the system
documentation. It is a false economy to assume that system
requirements are sufficient input to the development of a software
subsystem. To ensure some consistency in the input to a software
project, a User Requirements Document (URD) should always be
produced. The URD should be traceable to the system and/or
subsystem documentation.

 The responsibilities for the production and change control of the
URD should be agreed between ‘system’ and ‘software’ project
management, and recorded in the Software Project Management Plan.

 4.3 Methods and tools

 These standards do not make the use of any particular software
engineering method or tool mandatory. The Standards describe the
mandatory practices, recommended practices and guidelines for
software engineering projects, and allow each project to decide the best
way of implementing them.

 References to methods and tools appear, however, in these
standards for two reasons. Firstly, terminology from particular methods
becomes, with time, part of computing vocabulary. Secondly, examples
of possible ways of implementing the Standards are useful.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-1

 Part 1
 Product

 Standards

Downloaded from http://www.everyspec.com

PHASES

ITEMS

UR UR/R SR SR/R AD AD/R DD DD/R TR OM
SOFTWARE

REQUIREMENTS

DEFINITION

USER

REQUIREMENTS

DEFINITION

ARCHITECTURAL

DESIGN

DETAILED

DESIGN AND

PRODUCTION

OPERATIONS

AND

MAINTENANCE

TRANSFER

MAJOR
ACTIVITIES

DELIVERABLE

ITEMS

REVIEWS

MAJOR
MILESTONES

determination
of operational
environment

identification
of user
requirements

User
Requirements
Document

Software
Requirements
Document

Architectural
Design
Document

Detailed
Design
Document

Software
User
Manual

Software
Transfer
Document

Project
History
Document

identification
of software
requirements

construction
of logical
model

construction
of physical
model

definition
of major
components

module
design

coding
unit tests
integration tests
system tests

installation

provisional
acceptance
tests

final
acceptance

operations

maintenance
of code and
documentation

URD SRD ADD
DDD

SUM

STD PHDCode

.

walkthroughs
inspections

technical
reviews

walkthroughs
inspections

technical
reviews

walkthroughs
inspections

technical
reviews

URD
approved

SRD
approved

ADD
approved

code/DDD/SUM
approved

provisional
acceptance

final
acceptance

Figure 1.2: The Software Life Cycle Model

STD
delivered

PHD
delivered

tests

change control
arrow implies under

technical
reviews

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-3
 THE SOFTWARE LIFE CYCLE

 CHAPTER 1
 THE SOFTWARE LIFE CYCLE

 1.1 INTRODUCTION

 This chapter defines the overall software life cycle. The individual
phases of the life cycle are described in more detail in subsequent
chapters.

 In these Standards the term ‘software development project’ is often
used. Clearly the development of software also involves computer
hardware aspects. Trade-offs between hardware and software are part of
designing a computerised system, except when the hardware
configuration is predefined, and constrains the software design.

 1.2 PHASES, ACTIVITIES AND MILESTONES

 The software life cycle starts when a software product is conceived
and ends when it is no longer available for use, i.e. it contains the whole
of the development, operations and maintenance activities.

 The products of a software development project shall be delivered
in a timely manner and be fit for their purpose. Software development
activities shall be systematically planned and carried out. A ‘life cycle
model’ structures project activities into ‘phases’ and defines what
activities occur in which phase. Figure 1.2 shows the life cycle model
used in these Standards.

 A ‘life cycle approach’ is a combination of the basic phases of the
life cycle model. Section 1.3 describes three possible life cycle
approaches which cover most of the needs of the Agency.

 All software projects shall have a life cycle approach which
includes the basic phases shown in Figure 1.2:
• UR phase - Definition of the user requirements
• SR phase - Definition of the software requirements
• AD phase - Definition of the architectural design
• DD phase - Detailed design and production of the code
• TR phase - Transfer of the software to operations
• OM phase - Operations and maintenance

Downloaded from http://www.everyspec.com

 1-4 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE LIFE CYCLE

 The first four phases end with a review, denoted by ‘/R’ (e.g. UR/R

is the User Requirements Review). These phases must occur whatever
the size, the application (e.g. scientific, administrative, real time, batch),
the hardware, the operating system or programming language used, or
whether the project is carried out by in-house staff or by industry. Each of
these factors, however, influences the development approach, and the
style and content of the deliverable items.

 In Figure 1.1 the heavy black line marks the boundary of the
software life cycle. This begins with the delivery of the User Requirements
Document (URD) to the developer for review. The UR/R is the first activity
of the software life cycle. Following the approval of the URD, three
‘development’ phases must take place before the software is transferred
to the users for operations. The deliverables of each phase must be
reviewed and approved before proceeding to the next. After a period of
operations, the software is retired. This event marks the end of the
software life cycle.

 There are six major milestones that mark progress in the software
life cycle. These milestones, shown in Figure 1.1 as filled triangles, are
the:
• approval of the User Requirements Document (URD);
• approval of the Software Requirements Document (SRD);
• approval of the Architectural Design Document (ADD);
• approval of the Detailed Design Document (DDD), the Software User

Manual (SUM), the code, and the statement of readiness for
provisional acceptance testing;

• statement of provisional acceptance and the delivery of the Software
Transfer Document (STD);

• statement of final acceptance and the delivery of the Project History
Document (PHD).

 The last milestone does not fall at the end of a phase, but at the
end of the warranty period.

 These milestones have been selected as the minimum necessary
for a workable contractual relationship. They must be present in all
projects. In long projects, additional milestones should be added to
measure the progress of deliverables.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-5
 THE SOFTWARE LIFE CYCLE

 1.2.1 UR phase: user requirements definition

 The UR phase is the ‘problem definition phase’ of a software
project. The scope of the system must be defined. The user requirements
must be captured. This may be done by interview or survey, or by building
prototypes. Specific user requirements must be identified and
documented in the User Requirements Document (URD).

 The involvement of the developers in this phase varies according to
the familiarity of the users with software. Some users can produce a high
quality URD, while others may need help from the developers.

 The URD must always be produced. The review of the URD is done
by the users, the software and hardware engineers and the managers
concerned. The approved URD is the input to the SR phase.

 Before the completion of the User Requirements Review (UR/R), a
Software Project Management Plan outlining the whole project must be
produced by the developer. This plan must contain a cost estimate for
the project. Detailed plans for the SR phase must also be produced.

 1.2.2 SR phase: software requirements definition

 The SR phase is the ‘analysis’ phase of a software project. A vital
part of the analysis activity is the construction of a ‘model’ describing
‘what’ the software has to do, and not ‘how’ to do it. Building prototypes
to clarify the software requirements may be necessary.

 The principal deliverable of this phase is the Software
Requirements Document (SRD). The SRD must always be produced for
every software project.

 Implementation terminology should be omitted from the SRD. The
SRD must be reviewed formally by the users, by the computer hardware
and software engineers, and by the managers concerned, during the
Software Requirements Review (SR/R).

 During the SR phase, the section of the Software Project
Management Plan outlining the rest of the project must be updated. The
plan must contain an estimate of the total project cost, and best efforts
should be made to achieve an accuracy of at least 30%. Detailed plans
for the AD phase must also be produced.

Downloaded from http://www.everyspec.com

 1-6 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE LIFE CYCLE

 1.2.3 AD phase: architectural design

 The purpose of the AD phase is to define the structure of the
software. The model constructed in the SR phase is the starting point.
This model is transformed into the architectural design by allocating
functions to software components and defining the control and data flow
between them.

 This phase may involve several iterations of the design. Technically
difficult or critical parts of the design have to be identified. Prototyping of
these parts of the software may be necessary to confirm the basic design
assumptions. Alternative designs may be proposed, one of which must
be selected.

 The deliverable item which constitutes the formal output of this
phase is the Architectural Design Document (ADD). The ADD must
always be produced for every software project. The ADD must be
reviewed formally by the computer hardware and software engineers, by
the users, and by the management concerned, during the Architectural
Design Review (AD/R).

 During the AD phase, a Software Project Management Plan
outlining the rest of the project must be produced. This plan must contain
an estimate of the project, and best efforts should be made to achieve an
accuracy of at least 10%. Detailed plans for the DD phase must also be
produced.

 1.2.4 DD phase: detailed design and production

 The purpose of the DD phase is to detail the design of the
software, and to code, document and test it.

 The Detailed Design Document (DDD) and the Software User
Manual (SUM) are produced concurrently with coding and testing.
Initially, the DDD and SUM contain the sections corresponding to the top
levels of the system. As the design progresses to lower levels, related
subsections are added. At the end of the phase, the documents are
completed and, with the code, constitute the deliverable items of this
phase.

 During this phase, unit, integration and system testing activities are
performed according to verification plans established in the SR and AD
phases. As well as these tests, there should be checks on software
quality.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-7
 THE SOFTWARE LIFE CYCLE

 The three deliverable items (Code, DDD, SUM), which have

already been the subject of intermediate reviews during the DD phase,
must be formally reviewed by the software engineers and the
management concerned, during the Detailed Design Review (DD/R). At
the end of the review process, the software can be declared ready for
provisional acceptance testing.

 1.2.5 TR phase: transfer

 The purpose of this phase is to establish that the software fulfils the
requirements laid down in the URD. This is done by installing the software
and conducting acceptance tests.

 When the software has been demonstrated to provide the required
capabilities, the software can be provisionally accepted and operations
started.

 The Software Transfer Document (STD) must be produced during
the TR phase to document the transfer of the software to the operations
team.

 1.2.6 OM phase: operations and maintenance

 Once the software has entered into operation, it should be
carefully monitored to confirm that it meets all the requirements defined in
the URD. Some of the requirements, for example those for availability,
may take a period of time to validate. When the software has passed all
the acceptance tests, it can be finally accepted.

 The Project History Document (PHD) summarises the significant
managerial information accumulated in the course of the project. This
document must be issued after final acceptance. It should be reissued at
the end of the life cycle, with information gathered in the OM phase.

 After final acceptance, the software may be modified to correct
errors undetected during earlier phases, or because new requirements
arise. This is called ‘maintenance’.

 For the whole period of operation, particular attention should be
paid to keeping the documentation up-to-date. Information on faults and
failures should be recorded to provide the raw data for the establishment
of software quality metrics for subsequent projects. Tools should be
used to facilitate the collection and analysis of quality data.

Downloaded from http://www.everyspec.com

 1-8 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE LIFE CYCLE

 1.3 LIFE CYCLE APPROACHES

 The software life cycle model, shown in Figure 1.2, summarises the
phases and activities which must occur in any software project. A life
cycle approach, based upon this model, should be defined, for each
project, in the Software Project Management Plan.

 This section defines three common approaches. In the diagrams,
the phases of Figure 1.2 have been reduced to boxes. Arrows connecting
the boxes represent permitted transitions.

 1.3.1 The waterfall approach

UR

SR

AD

DD

TR

OM

 Figure 1.3.1 The waterfall approach

 The ‘waterfall’ approach, shown in Figure 1.3.1, is the simplest
interpretation of the model shown in Figure 1.2. The phases are executed
sequentially, as shown by the heavy arrows. Each phase is executed
once, although iteration of part of a phase is allowed for error correction,
as shown by the dashed arrows. Delivery of the complete system occurs
at a single milestone at the end of the TR phase. The approach allows the
contractual relationship to be simple.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-9
 THE SOFTWARE LIFE CYCLE

 1.3.2 The incremental delivery approach

UR

SR

AD

DD

TR

OM

DD

TR

OM

1

2

2

2

1

1

 Figure 1.3.2 The incremental delivery approach

 The ‘incremental delivery’ approach, shown in Figure 1.3.2, is
characterised by splitting the DD, TR and OM phases into a number of
more manageable units, once the complete architectural design has
been defined. The software is delivered in multiple releases, each with
increased functionality and capability. This approach is beneficial for large
projects, where a single delivery would not be practical. This may occur
for a number of reasons such as:
• certain functions may need to be in place before others can be

effective;
• the size of the development team may necessitate subdivision of the

project into a number of deliveries;
• budgeting considerations may only allow partial funding over a

number of years.

 In all cases, each deliverable should be usable, and provide a
subset of the required capabilities.

 A disadvantage of the incremental delivery approach is that
regression testing is required to confirm that existing capabilities of the
software are not impaired by any new release. The increased amount of
testing required increases the cost of the software.

Downloaded from http://www.everyspec.com

 1-10 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE LIFE CYCLE

 1.3.3 The evolutionary development approach

DEV

OM
1

1

DEV

OM
2

2

DEV

OM
3

3

 Figure 1.3.3 The evolutionary development approach

 The ‘DEV’ box is equivalent to the UR, SR, AD, DD and TR phases shown in
Figure 1.2.

 The ‘evolutionary’ approach, shown in Figure 1.3.3, is characterised
by the planned development of multiple releases. All phases of the life
cycle are executed to produce a release. Each release incorporates the
experience of earlier releases. The evolutionary approach may be used
because, for example:
• some user experience is required to refine and complete the

requirements (shown by the dashed line within the OM boxes);
• some parts of the implementation may depend on the availability of

future technology;
• some new user requirements are anticipated but not yet known;
• some requirements may be significantly more difficult to meet than

others, and it is decided not to allow them to delay a usable delivery.

 The dashed extensions to the boxes in Figure 1.3.3 show that
some overlap of OM phases will occur until each new delivery is finally
accepted.

 In an evolutionary development, the developer should recognise
the user’s priorities and produce the parts of the software that are both

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-11
 THE SOFTWARE LIFE CYCLE

important to the user and, possible to develop with minimal technical
problems or delays.

 The disadvantage of the evolutionary approach is that if the
requirements are very incomplete to start with, the initial software
structure may not bear the weight of later evolution. Expensive rewrites
may be necessary. Even worse, temporary solutions may become
embedded in the system and distort its evolution. Further, users may
become impatient with the teething troubles of each new release. In each
development cycle, it is important to aim for a complete statement of
requirements (to reduce risk) and an adaptable design (to ensure later
modifiability). In an evolutionary development, all requirements do not
need to be fully implemented in each development cycle. However, the
architectural design should take account of all known requirements.

 1.4 PROTOTYPING

 The use of prototypes to test customer reaction and design ideas
is common to many engineering disciplines. A software prototype
implements selected aspects of proposed software so that tests, the
most direct kind of verification, can be carried out.

 Prototyping is the process of building prototypes. Prototyping
within a single phase is a useful means of reducing the risk in a project
through practical experience. The output of a prototyping exercise is the
knowledge that is gained from implementing or using the prototype
software.

 The objective of the prototyping activity should be clearly stated
before the process starts. Prototyping to define requirements is called
‘exploratory’ prototyping, while that for investigating the feasibility of
proposed solutions is called ‘experimental’ prototyping.

 Prototypes usually implement high risk functional, performance or
user interface requirements and usually ignore quality, reliability,
maintainability and safety requirements. Prototype software is therefore
‘pre-operational’ and should never be delivered as part of an operational
system.

Downloaded from http://www.everyspec.com

 1-12 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE LIFE CYCLE

 1.5 HANDLING REQUIREMENTS CHANGE

 The URD and SRD must be ‘complete’ documents. This means
that all known requirements must be included when they are produced.
Nevertheless, it is possible that new requirements may arise after the
URD and SRD have been approved. Procedures for handling new
requirements should be established at the beginning of the project.

 Design integrity should not be compromised when new
requirements are incorporated. Such requirements, if accepted by both
user and developer, should be handled in the same way as the original
requirements. The procedure for handling a new user requirement is
therefore to:
• generate a new draft of the URD,
• convene a UR review and, if the change is accepted, then
• repeat the SR, AD and DD phases to incorporate the new requirement

and its consequences.

 A new software requirement is handled in a similar way.

 An alternative method for handling new requirements is to institute
a Software Review Board after the UR/R instead of after the DD/R.
Another method is to use the evolutionary development life cycle
approach. However, this merely defers the handling of new requirements
to the release following the one that is in preparation, and this may not be
sufficient.

 The quality of the work done in the UR and SR phases can be
measured by the number of requirements that appear in later phases.
Especially important is the trend in the occurrence of new requirements.
An upward trend is a sure sign that the software is unlikely to be a
success.

 The availability of software engineering tools may be critical to the
success of a project with frequently changing requirements. In projects
where requirements are agreed and frozen at the end of the SR phase,
the use of paper-based methods for requirements analysis and design
specification may be sufficient. In projects where the freezing of
requirements is not possible, software engineering tools that allow new
requirements and design changes to be assimilated quickly may be
essential to avoid serious delays.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-13
 THE USER REQUIREMENTS DEFINITION PHASE

 CHAPTER 2
 THE USER REQUIREMENTS DEFINITION PHASE

 2.1 INTRODUCTION

 The UR phase can be called the ‘problem definition phase’ of the
life cycle. The purpose of this phase is to refine an idea about a task to be
performed, using computing equipment, into a definition of what is
expected from the computer system.

 The definition of the user requirements shall be the responsibility of
the user. The expertise of software engineers, hardware engineers and
operations personnel should be used to help define and review the user
requirements.

 An output of the UR phase is the User Requirements Document
(URD). This is a critical document for the whole software project because
it defines the basis upon which the software is accepted.

 The UR phase terminates with formal approval of the URD by the
User Requirements Review (UR/R).

 2.2 INPUTS TO THE PHASE

 No formal inputs are required, although the results of interviews,
surveys, studies and prototyping exercises are often helpful in formulating
the user requirements.

 2.3 ACTIVITIES

 The main activity of the UR phase is to capture the user
requirements and document them in the URD. The scope of the software
has to be established and the interfaces with external systems identified.

 Plans of SR phase activities must be drawn up in the UR phase.
These plans should cover project management, configuration
management, verification, validation and quality assurance. These
activities are described in more detail in Part 2.

Downloaded from http://www.everyspec.com

 1-14 ESA PSS-05-0 Issue 2 (February 1991)
 THE USER REQUIREMENTS DEFINITION PHASE

 2.3.1 Capture of user requirements

 While user requirements originate in the spontaneous perception of
needs, user requirements should be clarified through the criticism and
experience of existing software and prototypes. The widest possible
agreement about the user requirements should be established through
interviews and surveys. The knowledge and experience of the potential
development organisations should be used to advise on implementation
feasibility, and, perhaps, to build prototypes. User requirements definition
is an iterative process, and requirements capture activities may have to
be repeated a number of times before the URD is ready for review.

 2.3.2 Determination of operational environment

 Determining the operational environment should be the first step in
defining the user requirements. A clear account should be developed of
the real world in which the software is to operate. This narrative
description may be supported by context diagrams, to summarise the
interfaces with external systems (often called ‘external interfaces’), and
system block diagrams to show the role of the software in a larger
system.

 The nature of exchanges with external systems should be
specified and controlled from the start of the project. The information may
reside in an Interface Control Document (ICD), or in the design
documentation of the external system. If the external system already
exists, then the exchanges may already be defined in some detail, and
constrain the design. Alternatively, the definition of the external interfaces
may develop throughout the UR, SR and AD phases.

 2.3.3 Specification of user requirements

 When the operational environment has been established, specific
user requirements are extracted and organised. Implementation
considerations are omitted, unless they are the essence of the
requirement.

 2.3.3.1 Classification of user requirements

 User requirements fall into two categories:
• capabilities needed by users to solve a problem or achieve an

objective;

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-15
 THE USER REQUIREMENTS DEFINITION PHASE

• constraints placed by users on how the problem is to be solved or the

objective achieved.

Capability requirements describe functions and operations needed
by users. Quantitative statements that specify performance and accuracy
attributes should form part of the specification of a capability.

Space and time dimensions can be useful for organising capability
requirements. It is often convenient to describe capability requirements in
terms of a sequence of operations.

Constraint requirements place restrictions on how software can be
built and operated. For example, definitions of external communications,
hardware and software interfaces may already exist, either because the
software is a part of a larger system, or because the user requires that
certain protocols, standards, computers, operating systems, library or
kernel software be used.

 The Human-Computer Interaction (HCI) requirements will vary
according to the type of software under consideration. For interactive
systems, the users may wish to provide examples of the dialogue that is
required, including the hardware to be used (e.g. keyboard, mouse,
colour display etc), and assistance provided by the software (e.g. online
help). For batch systems, it may be sufficient to indicate the parameters
that need to be varied and the output medium and format required.

Constraints that users may wish to place on the software include
the quality attributes of adaptability, availability, portability and security.
The user shall describe the consequences of losses of availability, or
breaches of security, so that developers can fully appreciate the criticality
of each function.

The user may choose to make additional standards applicable;
such requirements are additional constraints on the development.

2.3.3.2 Attributes of user requirements

Each user requirement must include the attributes listed below.
a) Identifier - each user requirement shall include an identifier, to

facilitate tracing through subsequent phases.
b) Need - essential user requirements shall be marked as such.

Essential user requirements are non-negotiable; others may be less
vitally important and subject to negotiation.

Downloaded from http://www.everyspec.com

 1-16 ESA PSS-05-0 Issue 2 (February 1991)
 THE USER REQUIREMENTS DEFINITION PHASE

c) Priority - for incremental delivery, each user requirement shall include

a measure of priority so that the developer can decide the production
schedule.

d) Stability - some user requirements may be known to be stable over the
expected life of the software; others may be more dependent on
feedback from the SR, AD and DD phases, or may be subject to
change during the software life cycle. Such unstable requirements
should be flagged.

e) Source - the source of each user requirement shall be stated. This
may be a reference to an external document (e.g. system requirement
document) or the name of the user, or user group, that provided the
user requirement.

f) Clarity - a user requirement is clear if it has one, and only one,
interpretation. Clarity implies lack of ambiguity. If a term used in a
particular context has multiple meanings, the term should be qualified
or replaced with a more specific term.

g) Verifiability - each user requirement shall be verifiable. This means
that it must be possible to:
• check that the requirement has been incorporated in the design;
• prove that the software will implement the requirement;
• test that the software does implement the requirement.

 2.3.4 Reviews

 The outputs of the UR phase shall be formally reviewed during the
User Requirements Review (UR/R). This should be a technical review
(see Part 2, Chapter 4). Participants should include the users, operators,
developers (hardware and software engineers) and the managers
concerned.

 User requirements which are rejected in the review process do not
have to be removed from the URD, especially if it is anticipated that
resources may be available at some later date to implement them. Non-
applicable user requirements shall be clearly flagged in the URD.

 2.4 OUTPUTS FROM THE PHASE

 The main outputs of the phase are the URD and the plans for the
SR phase.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-17
 THE USER REQUIREMENTS DEFINITION PHASE

 2.4.1 User Requirements Document

 An output of the UR phase shall be the User Requirements
Document (URD). The URD shall always be produced before a software
project is started. The recommended table of contents for the URD is
provided in Appendix C.

 The URD shall provide a general description of what the user
expects the software to do. All known user requirements shall be
included in the URD. The URD should state the specific user
requirements as clearly and consistently as possible.

 The URD shall describe the operations the user wants to perform
with the software system. The URD shall define all the constraints that
the user wishes to impose upon any solution. The URD shall describe
the external interfaces to the software system, or reference them in ICDs
that exist or are to be written.

 Change control of the URD should be the responsibility of the
user. If a user requirement changes after the URD has been approved,
then the user should ensure that the URD is changed and resubmitted to
the UR/R board for approval.

 2.4.2 Acceptance test plans

 Acceptance test plans must be defined in the acceptance test
section of the Software Verification and Validation Plan (SVVP/AT/Plans,
see Part 2, Chapter 4). These plans outline the approach to
demonstrating that the software will meet the user requirements.

 2.4.3 Project management plan for the SR phase

 The outline project plan, the estimate of the total project cost, and
the management plan for the SR phase, must be documented in the SR
phase section of the Software Project Management Plan (SPMP/SR, see
Part 2, Chapter 2).

 2.4.4 Configuration management plan for the SR phase

 The configuration management procedures for the documents,
CASE tool products and prototype software, to be produced in the SR
phase, must be documented in the Software Configuration Plan
(SCMP/SR, see Part 2, Chapter 3).

Downloaded from http://www.everyspec.com

 1-18 ESA PSS-05-0 Issue 2 (February 1991)
 THE USER REQUIREMENTS DEFINITION PHASE

 2.4.5 Verification and validation plan for the SR phase

 The SR phase review and traceability procedures must be
documented in the Software Verification and Validation Plan (SVVP/SR,
see Part 2, Chapter 4).

 2.4.6 Quality assurance plan for the SR phase

 The SR phase quality monitoring procedures must be defined in
the Software Quality Assurance Plan (SQAP/SR, see Part 2, Chapter 5).

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-19
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

 CHAPTER 3
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

 3.1 INTRODUCTION

 The SR phase can be called the ‘problem analysis phase’ of the life
cycle. The purpose of this phase is to analyse the statement of user
requirements in the URD and produce a set of software requirements as
complete, consistent and correct as possible.

 The definition of the software requirements is the responsibility of
the developer. Participants in this phase should include users, software
engineers, hardware engineers and operations personnel. They all have a
different concept of the end product, and these concepts must be
analysed, and then synthesised, into a complete and consistent
statement of requirements about which everyone can agree. Project
management should ensure that all parties are consulted, so that the risk
of incompleteness and error is minimised.

 An output of this phase is the Software Requirements Document
(SRD). As well as defining ‘what’ the product must do, it is also the
reference against which both the design and the product will be verified.
Although ‘how’ aspects may have to be addressed, they should be
eliminated from the SRD, except those that constrain the software.

 The software requirements definition phase terminates with formal
approval of the SR phase outputs by the Software Requirements Review
(SR/R).

 3.2 INPUTS TO THE PHASE

 The inputs to the SR phase are the:
• User Requirements Document (URD);
• Software Project Management Plan for the SR phase (SPMP/SR);
• Software Configuration Management Plan for the SR phase

(SCMP/SR);
• Software Verification and Validation Plan for the SR phase (SVVP/SR);
• Software Quality Assurance Plan for the SR phase (SQAP/SR).

Downloaded from http://www.everyspec.com

 1-20 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

3.3 ACTIVITIES

SR phase activities shall be carried out according to the plans
defined in the UR phase. Progress against plans should be continuously
monitored by project management and documented at regular intervals
in progress reports.

The main SR phase activity is to transform the user requirements
stated in the URD into the software requirements stated in the SRD. This
is achieved by analysing the problem, as stated in the URD, and building
a coherent, comprehensive description of what the software is to do. The
SRD contains a developer’s view of the problem, rather than the user’s.
This view should be based upon a model of the system, built according
to a recognised, documented method.

Software requirements may require the construction of prototypes
to clarify or verify them. Requirements which cannot be justified by
modelling, or whose correctness cannot be demonstrated in a formal
way, may need to be prototyped. User interface requirements often need
this kind of ‘exploratory prototyping’

Plans of AD phase activities must be drawn up in the SR phase.
These plans must cover project management, configuration
management, verification, validation and quality assurance. These
activities are described in more detail in Part 2.

3.3.1 Construction of the logical model

The developer shall construct an implementation-independent
model of what is needed by the user. This is called a ‘logical model’, and
it is used to produce the software requirements.

A recognised method for software requirements analysis shall be
adopted and applied consistently in the SR phase. The logical model may
be constructed by top-down decomposition of the main function, as
inferred from the URD, into a hierarchy of functions. Modelling is an
iterative process. Parts of the model may need to be respecified many
times before a complete, coherent and consistent description is
achieved.

Walkthroughs, reviews and inspections should be used to ensure
that the specification of each level has been agreed before proceeding to
the next level of detail. A good quality logical model should satisfy the
rules listed below.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-21
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

1. Functions should have a single definite purpose. Function names

should have a declarative structure (e.g. ‘Validate Telecommands’),
and say ‘what’ is to be done rather than ‘how’. Good naming allows
design components with strong cohesion to be easily derived (see
Part 1, Section 4.3.1.3).

2. Functions should be appropriate to the level at which they appear
(e.g. ‘Calculate Checksum’ should not appear at the same level as
‘Verify Telecommands’).

3. Interfaces should be minimised. This allows design components with
weak coupling to be easily derived (see Part 1, Section 4.3.1.3).

4. Each function should be decomposed into no more than seven sub-
functions.

5. The model should omit implementation information (e.g. file, record,
task, module);

6. The performance attributes of each function (capacity, speed etc)
should be stated;

7. Critical functions should be identified.

In all but the smallest projects, CASE tools should be used for
building a logical model. They make consistent models easier to
construct and modify.

3.3.2 Specification of software requirements

The software requirements are obtained by examining the model
and classifying them in terms of:
(a) Functional requirements
(b) Performance requirements
(c) Interface requirements
(d) Operational requirements
(e) Resource requirements
(f) Verification requirements
(g) Acceptance testing requirements
(h) Documentation requirements
(i) Security requirements
(j) Portability requirements
(k) Quality requirements
(l) Reliability requirements
(m) Maintainability requirements
(n) Safety requirements

Downloaded from http://www.everyspec.com

 1-22 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

While other classifications of requirements can be conceived,

developers should use this classification, with the definitions described
in Section 3.3.2.1.

Software requirements should be rigorously described. Various
alternatives to natural language are available and their use is encouraged.
Wherever possible, software requirements should be stated in
quantitative terms to increase their verifiability.

As the requirements are compiled, they must include identifiers,
references and measures of need, priority and stability. The requirements
must be complete and consistent. Duplication is to be avoided.

3.3.2.1 Classification of software requirements
(a) Functional requirements. These specify ‘what’ the software has to do.

They define the purpose of the software. The functional requirements are
derived from the logical model, which is in turn derived from the user’s
capability requirements. In order that they may be stated quantitatively,
the functional requirements may include performance attributes.

(b) Performance requirements. These specify numerical values for
measurable variables (e.g. rate, frequency, capacity, and speed).
Performance requirements may be incorporated in the quantitative
specification of each function, or stated as separate requirements.
Qualitative statements are unacceptable (e.g. replace ‘quick response’
with ‘response time must be less than x seconds for y% of the cases with
an average response time of less than z seconds’). The performance
attributes may be presented as a range of values, for example the:
• worst case that is acceptable;

• nominal value, to be used for planning;
• best case value, to indicate where growth potential is needed.

(c) Interface requirements. These specify hardware, software or database
elements with which the system, or system component, must interact or
communicate. Interface requirements should be classified into software,
hardware and communications interfaces. Software interfaces could
include operating systems, software environments, file formats, database
management systems and other software applications. Hardware
interface requirements may specify the hardware configuration.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-23
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

Communications interface requirements constrain the nature of the
interface to other hardware and software. They may demand the use of a
particular network protocol, for example. External interface requirements
should be described, or referenced in ICDs. User interface requirements
should be specified under ‘Operational Requirements’ (see below).
Interface requirements can be illustrated with system block diagrams
(e.g. to show the hardware configuration).

(d) Operational requirements. These specify how the system will run and
how it will communicate with the human operators. Operational
requirements include all user interface, usability and human-computer
interaction requirements as well as the logistical and organisational
requirements. Examples are: the screen layout, the content of error
messages, help systems etc. It is often useful to define the semantics
and syntax of commands.

(e) Resource requirements. These specify upper limits on physical
resources such as processing power, main memory, disc space etc.
These are especially needed when extension of processing hardware late
in the life cycle becomes too expensive, as in many embedded systems.

(f) Verification requirements. These specify the constraints on how the
software is to be verified. The verification requirements constrain the
SVVP. They might include requirements for simulation, emulation, live
tests with simulated inputs, live tests with real inputs, and interfacing with
the testing environment.

(g) Acceptance testing requirements. These specify the constraints on how
the software is to be validated. The acceptance testing requirements
constrain the SVVP.

(h) Documentation requirements. These specify project-specific
requirements for documentation in addition to those contained in these
Standards (e.g. the detailed format of the Software User Manual).

(i) Security requirements. These specify the requirements for securing the
system against threats to confidentiality, integrity and availability.
Examples of security requirements are interlocking operator commands,
inhibiting of commands, read-only access, password system and
computer virus protection. The level of physical protection needed of the
computer facilities may also be stated (e.g. backups are to be kept in a
fire-proof safe off-site).

Downloaded from http://www.everyspec.com

 1-24 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

(j) Portability requirements These specify the ease of modifying the

software to execute on other computers and operating systems. Possible
computers and operating systems, other than those of the target system,
should be stated.

(k) Quality requirements. These specify attributes of the software that
ensure that it will be fit for its purpose (other than the major quality
attributes of reliability, maintainability and safety, which should always be
specified). Where appropriate, software quality attributes should be
specified in measurable terms (i.e. with the use of metrics).

(l) Reliability requirements. These specify the acceptable mean time interval
between failures of the software, averaged over a significant period
(MTBF). They may also specify the minimum time between failures that is
ever acceptable. Reliability requirements may have to be derived from the
user’s availability requirements.

(m) Maintainability requirements. These specify how easy it is to repair faults
and adapt the software to new requirements. The ease of performing
these tasks should be stated in quantitative terms, such as mean time to
repair a fault (MTTR). They may include constraints imposed by the
potential maintenance organisation. Maintainability requirements may be
derived from the user’s availability and adaptability requirements.

(n) Safety requirements . These specify any requirements to reduce the
possibility of damage that can follow from software failure. Safety
requirements may identify critical functions whose failure may be
hazardous to people or property.

3.3.2.2 Attributes of software requirements

Each software requirement must include the attributes listed below.
a) Identifier - each software requirement shall include an identifier, to

facilitate tracing through subsequent phases.
b) Need - essential software requirements shall be marked as such.

Essential software requirements are non-negotiable; others may be
less vitally important and subject to negotiation.

c) Priority - for incremental delivery, each software requirement shall
include a measure of priority so that the developer can decide the
production schedule.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-25
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

d) Stability - some requirements may be known to be stable over the

expected life of the software; others may be more dependent on
feedback from the design phase, or may be subject to change during
the software life cycle. Such unstable requirements should be flagged.

e) Source - references that trace software requirements back to the URD
shall accompany each software requirement.

f) Clarity - a requirement is clear if it has one, and only one,
interpretation. Clarity implies lack of ambiguity. If a term used in a
particular context has multiple meanings, the term should be qualified
or replaced with a more specific term.

g) Verifiability - each software requirement shall be verifiable. This means
that it must be possible to:
• check that the requirement has been incorporated in the design;
• prove that the software will implement the requirement;
• test that the software does implement the requirement.

 3.3.2.3 Completeness of software requirements

 Completeness has two aspects:
• no user requirement has been overlooked;
• an activity has been specified for every possible set of inputs.

 For the SRD to be complete, each requirement in the URD must be
accounted for. A traceability matrix must be inserted in the SRD to prove
completeness.

 The phrase ‘To Be Defined’ (TBD) indicates incompleteness. There
must be no TBDs in the SRD.

 3.3.2.4 Consistency of software requirements

 A set of requirements is consistent if, and only if, no set of
individual requirements conflict. There are a number of types of
inconsistency, for example:
• different terms used for the same thing;
• the same term used for different things;
• incompatible activities happening at the same time;
• activities happening in the wrong order.

Downloaded from http://www.everyspec.com

 1-26 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

 The achievement of consistency is made easier by using methods

and tools.

 3.3.2.5 Duplication of software requirements

 Duplication of requirements should be avoided, although some
duplication may be necessary if the SRD is to be understandable. There
is always a danger that a requirement that overlaps or duplicates another
will be overlooked when the SRD is updated. This leads to
inconsistencies. Where duplication occurs, cross-references should be
inserted to enhance modifiability.

 3.3.3 Reviews

 The outputs of the SR phase shall be formally reviewed during the
Software Requirements Review (SR/R). This should be a technical review
(see Part 2, Chapter 4). Participants should include the users, the
operations personnel, the developers and the managers concerned.

 3.4 OUTPUTS FROM THE PHASE

 The main outputs of the phase are the SRD and the plans for the
AD phase. Progress reports, configuration status accounts, and audit
reports are also outputs of the phase. These should always be archived
by the project.

 3.4.1 Software Requirements Document

 An output of the SR phase shall be the Software Requirements
Document (SRD).

 The SRD shall be complete. The SRD shall cover all the
requirements stated in the URD. A table showing how user requirements
correspond to software requirements shall be placed in the SRD. This
demonstrates forwards traceability and can be used to prove
completeness.

 The SRD shall be consistent. Software engineering methods and
tools can help achieve consistency.

 The functional requirements should be structured top-down in the
SRD. Non-functional requirements should be attached to functional
requirements and therefore can appear at all levels of the hierarchy, and

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-27
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

apply to all functional requirements below them (inheritance of family
attributes).

 The SRD shall not include implementation details or terminology,
unless it has to be present as a constraint. Descriptions of functions,
therefore, shall say what the software is to do, and must avoid saying
how it is to be done. The SRD shall avoid specifying the hardware,
unless it is a constraint placed by the user.

 The outputs of the analysis method, for example ‘data flow
diagrams’ in the case of Structured Analysis, should be included, so as
to provide the overview needed to permit an understanding of the specific
requirements.

 Each software requirement must have an identifier, and include
measures of need and priority. Software requirements must reference the
URD to facilitate backwards traceability.

 The SRD may be written in a natural language. This has the
important advantage that it presents no additional barriers between the
people of different disciplines who are involved during this phase. On the
other hand, natural languages have many properties that are undesirable
in specifications (ambiguity, imprecision and inconsistency). Using
requirements specification languages can eliminate many of these
problems, and these range in rigor from structured english to formal
methods such as Z or VDM. Formal methods should be considered for
the specification of safety-critical systems. If a requirements specification
language is used, explanatory text, written in natural language, should be
included in the SRD to enable it to be reviewed by those not familiar with
the specification language.

 The SRD shall be compiled according to the table of contents
provided in Appendix C, which is derived from ANSI/IEEE Std 830-1984,
Guide to Software Requirements Specifications.

 3.4.2 System test plans

 System test plans must be defined in the system test section of the
Software Verification and Validation Plan (SVVP/ST/Plans, see Part 2,
Chapter 4). These plans outline the approach to demonstrating that the
software will meet the software requirements.

Downloaded from http://www.everyspec.com

 1-28 ESA PSS-05-0 Issue 2 (February 1991)
 THE SOFTWARE REQUIREMENTS DEFINITION PHASE

 3.4.3 Project management plan for the AD phase

 The outline project plan, the cost estimate for the complete project
(accurate to 30%), and the management plan for the AD phase, must be
documented in the AD phase section of the Software Project
Management Plan (SPMP/AD, see Part 2, Chapter 2).

 3.4.4 Configuration management plan for the AD phase

 The configuration management procedures for the documents,
CASE tool products and prototype software, to be produced in the AD
phase, must be documented in the Software Configuration Management
Plan (SCMP/AD, see Part 2, Chapter 3).

 3.4.5 Verification and validation plan for the AD phase

 The AD phase review and traceability procedures must be
documented in the Software Verification and Validation Plan (SVVP/AD,
see Part 2, Chapter 4).

 3.4.6 Quality assurance plan for the AD phase

 The AD phase quality monitoring procedures must be defined in
the Software Quality Assurance Plan (SQAP/AD, see Part 2, Chapter 5).

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-29
 THE ARCHITECTURAL DESIGN PHASE

 CHAPTER 4
 THE ARCHITECTURAL DESIGN PHASE

 4.1 INTRODUCTION

 The AD phase can be called the ‘solution phase’ of the life cycle.
The purpose of this phase is to define a collection of software
components and their interfaces to establish a framework for developing
the software. This is the ‘Architectural Design’, and it must cover all the
requirements in the SRD.

 The architectural design definition is the responsibility of the
software engineers. Other kinds of engineers may be consulted during
this phase, and representatives of users and operations personnel
should review the architectural design.

 An output of this phase is the Architectural Design Document
(ADD). This should document each component, and its relationship with
other components. The ADD is complete when the level of definition of
components and interfaces is sufficient to enable individuals or small
groups to work independently in the DD phase.

 The architectural design phase terminates with formal approval of
the AD phase outputs by the Architectural Design Review (AD/R).

 4.2 INPUTS TO THE PHASE

 The inputs to the AD phase are the:
• Software Requirements Document (SRD);
• Software Project Management Plan for the AD phase (SPMP/AD);
• Software Configuration Management Plan for the AD phase

(SCMP/AD);
• Software Verification and Validation Plan for the AD phase (SVVP/AD);
• Software Quality Assurance Plan for the AD phase (SQAP/AD).

Downloaded from http://www.everyspec.com

 1-30 ESA PSS-05-0 Issue 2 (February 1991)
 THE ARCHITECTURAL DESIGN PHASE

 4.3 ACTIVITIES

 AD phase activities shall be carried out according to the plans
defined in the SR phase. Progress against plans should be continuously
monitored by project management and documented at regular intervals
in progress reports.

 The principal activity of the AD phase is to develop the architectural
design of the software and document it in the ADD. This involves:
• constructing the physical model;
• specifying the architectural design;
• selecting a programming language;
• reviewing the design.

 A recognised method for software design shall be adopted and
applied consistently in the AD phase. Where no single method provides
all the capabilities required, a project-specific method may be adopted,
which should be a combination of recognised methods.

 Plans for the rest of the development must be drawn up in the AD
phase. These plans cover project management, configuration
management, verification, validation and quality assurance. These
activities are described in more detail in Part 2.

 4.3.1 Construction of the physical model

 The developer shall construct a ‘physical model’ which describes
the design of the software, using implementation terminology. The
physical model should be derived from the logical model, described in
the SRD. In transforming a logical model to a physical model, ‘design
decisions’ are made in which functions are allocated to components and
their inputs and outputs defined. Design decisions should also satisfy
non-functional requirements, design quality criteria and implementation
technology considerations. Design decisions should be recorded.

 Modelling is an iterative process. Each part of the model needs to
be specified and respecified until a coherent description of each
component is achieved.

 In all but the smallest projects, CASE tools should be used for
building the physical model. They make consistent models easier to
construct and modify.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-31
 THE ARCHITECTURAL DESIGN PHASE

 4.3.1.1 Decomposition of the software into components

 The software should be decomposed into a hierarchy of
components according to a partitioning method. Examples of partitioning
methods are ‘functional decomposition’ and ‘correspondence with real
world objects’. There should be distinct levels within the hierarchy, with
each component occupying a well-defined place.

 The method used to decompose the software into its component
parts shall permit a top-down approach. Starting from the top-level
component, the software is decomposed into a hierarchy of components.
The architectural design should specify the upper levels of the hierarchy,
typically the top three or four.

 Top-down decomposition is vital for controlling complexity because
it enforces ‘information hiding’ by demanding that lower-level
components behave as ‘black boxes’. Only the function and interfaces of
a lower-level component are required for the higher-level design. The
information necessary to the internal workings of a lower-level component
can remain hidden.

 Top-down decomposition also demands that each level of the
design be described using terms that have an appropriate degree of
‘abstraction’ (e.g. the terms ‘file’, ‘record’, and ‘byte’ ought to occur at
different levels in the design of a file-handling system). The use of the
right degree of abstraction at each level assists information hiding.

 The bottom-level components in the ADD should be sufficiently
independent to allow their detailed design and coding to proceed in
parallel to that of other components, with a minimum of interaction
between programmers. In multi-tasking systems, the lowest level of the
Architectural Design should be the task level. At the task level, the timing
relationships (i.e. before, after or concurrent) between functions are used
to allocate them to tasks.

 4.3.1.2 Implementation of non-functional requirements

 The SRD contains a number of requirements in the non-functional
category. These are:

 Performance requirements
 Interface requirements
 Operational requirements
 Resource requirements

Downloaded from http://www.everyspec.com

 1-32 ESA PSS-05-0 Issue 2 (February 1991)
 THE ARCHITECTURAL DESIGN PHASE

 Verification requirements
 Acceptance testing requirements
 Documentation requirements
 Security requirements
 Portability requirements
 Quality requirements
 Reliability requirements
 Maintainability requirements
 Safety requirements

 The design of each component should be reviewed against each
of these requirements. While some non-functional requirements may
apply to all components in the system, other non-functional requirements
may affect the design of only a few components.

 4.3.1.3 Design quality criteria

 Designs should be adaptable, efficient and understandable.
Adaptable designs are easy to modify and maintain. Efficient designs
make minimal use of available resources. Designs must be
understandable if they are to be built, operated and maintained
effectively.

 Attainment of these goals is assisted by aiming for simplicity in
form and function in every part of the design. There are a number of
metrics that can be used for measuring complexity, (e.g. number of
interfaces per component), and their use should be considered.

 Simplicity of function is achieved by maximising the ‘cohesion’ of
individual components (i.e. the degree to which the activities internal to
the component are related to one another).

 Simplicity of form is achieved by:
• minimising the ‘coupling’ between components (i.e. the number of

distinct items that are passed between components);
• ensuring that the function a component performs is appropriate to its

level in the hierarchy;
• matching the software and data structures;
• maximising the number of components that use a given component;
• restricting the number of child components to 7 or less;

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-33
 THE ARCHITECTURAL DESIGN PHASE

• removing duplication between components by making new

components.

 Designs should be ‘modular’, with minimal coupling between
components and maximum cohesion within each component. There is
minimal duplication between components in a modular design.
Components of a modular design are often described as ‘black boxes’
because they hide internal information from other components. It is not
necessary to know how a black box component works to know what to
do with it.

 Understandable designs employ terminology in a consistent way
and always use the same solution to the same problem. Where teams of
designers collaborate to produce a design, understandability can be
considerably impaired by permitting unnecessary variety. CASE tools,
designs standards and design reviews all help to enforce consistency
and uniformity.

 4.3.1.4 Trade-off between alternative designs

 There is no unique design for any software system. Studies of the
different options may be necessary. A number of criteria will be needed to
choose the best option. The criteria depend on the type of system. For
example, in a real-time situation, performance and response time could
be important, whereas in an administrative system stability of the data
base might be more important.

 Prototyping may be performed to verify assumptions in the design
or to evaluate alternative design approaches. This is called ‘experimental
prototyping’. For example, if a program requires fast access to data
stored on disc, then various methods of file access could be coded and
measured. Different access methods could alter the design approach
quite significantly, and prototyping the access method would become an
essential part of the design process.

 Only the selected design approach shall be reflected in the ADD
(and DDD). However, the need for the prototyping, listing of code, trade-
off criteria, and reasons for the chosen solution, should be documented
in the Project History Document.

 4.3.2 Specification of the architectural design

 The architectural design is the fully documented physical model.
This should contain diagrams showing, at each level of the architectural

Downloaded from http://www.everyspec.com

 1-34 ESA PSS-05-0 Issue 2 (February 1991)
 THE ARCHITECTURAL DESIGN PHASE

design, the data flow and control flow between the components. Block
diagrams, showing entities such as tasks and files, may also be used to
describe the design. The diagramming techniques used should be
documented or referenced.

 4.3.2.1 Functional definition of the components

 The process of architectural design results in a set of components
having defined functions and interfaces. The functions of each
component will be derived from the SRD. The level of detail in the ADD
will show which functional requirements are to be met by each
component, but not necessarily how to meet them: this will only be known
when the detailed design is complete. Similarly, the interfaces between
components will be restricted to a definition of the information to
exchange, and not how to exchange it (unless this contributes to the
success or failure of the chosen design).

 For each component the following information shall be defined in
the ADD:
• data input;
• functions to be performed;
• data output.

 Data inputs and outputs should be defined as data structures (see
next section).

 4.3.2.2 Definition of the data structures

 Data structures that interface components shall be defined in the
ADD. External interfaces may be separately documented in an ICD.

 Data structure definitions shall include the:
• description of each element (e.g. name, type, dimension);
• relationships between the elements (i.e. the structure);
• range of possible values of each element;
• initial values of each element.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-35
 THE ARCHITECTURAL DESIGN PHASE

 4.3.2.3 Definition of the control flow

 The definition of the control flow between components is essential
for the understanding of the software’s operation. The control flow
between the components shall be defined in the ADD.

 Control flow definitions may describe:
• sequential and parallel operations;
• synchronous and asynchronous behaviour.

 4.3.2.4 Definition of the computer resource utilisation

 The computer resources (e.g. CPU speed, memory, storage,
system software) needed in the development environment and the
operational environment shall be estimated in the AD phase and defined
in the ADD. For many software projects, development environment and
operational environment will be the same. Any resource requirements in
the SRD will constrain the design.

 4.3.3 Selection of programming languages

 Programming languages should be selected that support top-
down decomposition, structured programming and concurrent
production and documentation. The programming language and the AD
method should be compatible.

 Non-functional requirements may influence the choice of
programming language. For example, portability and maintenance
considerations suggest that assembler should be selected only for very
specific and justifiable reasons.

 The availability of reliable compilers and effective debuggers
constrains the selection of a programming language.

 4.3.4 Reviews

 The architectural design should be reviewed and agreed layer by
layer as it is developed during the AD phase. The design of any level
invariably affects upper layers: a number of review cycles may be
necessary before the design of a level can be finalised. Walkthroughs
should be used to ensure that the architectural design is understood by
all those concerned. Inspections of the design, by qualified software
engineers, may be used to eliminate design defects.

Downloaded from http://www.everyspec.com

 1-36 ESA PSS-05-0 Issue 2 (February 1991)
 THE ARCHITECTURAL DESIGN PHASE

 The outputs of the AD phase shall be formally reviewed during the

Architectural Design Review (AD/R). This should be a technical review
(see Part 2, Chapter 4). Participants should include the users, the
operations personnel, the hardware engineers, software engineers, and
the managers concerned.

 After the start of the DD phase, modifications to the architectural
design can increase costs substantially. The DD phase should not be
started if there are still doubts, major open points, or uncertainties in the
architectural design.

 4.4 OUTPUTS FROM THE PHASE

 The main outputs of the phase are the ADD and the plans for the
DD phase. Progress reports, configuration status accounts, software
verification reports and audit reports are also outputs of the phase. These
should always be archived by the project.

 4.4.1 Architectural Design Document

 The Architectural Design Document (ADD) is the key document
that summarises the solution. It is the kernel from which the detailed
design grows. The ADD shall define the major components of the
software and the interfaces between them. The ADD shall define or
reference all external interfaces. The ADD shall be an output from the AD
phase.

 The ADD shall be complete, covering all the software requirements
described in the SRD. To demonstrate this, a table cross-referencing
software requirements to parts of the architectural design shall be placed
in the ADD.

 The ADD shall be consistent. Software engineering methods and
tools can help achieve consistency, and their output may be included in
the ADD.

 The ADD shall be sufficiently detailed to allow the project leader to
draw up a detailed implementation plan and to control the overall project
during the remaining development phases. The ADD should be detailed
enough to enable the cost of the remaining development to be estimated
to within10%.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-37
 THE ARCHITECTURAL DESIGN PHASE

 The ADD shall be compiled according to the table of contents

provided in Appendix C, which is derived from ANSI/IEEE Std 1016-1987,
Software Design Descriptions. This table of contents implements the
approach described in Section 4.3.2.

 4.4.2 Integration test plans

 Integration test plans must be defined in the integration test section
of the Software Verification and Validation Plan (SVVP/IT/Plans, see Part 2,
Chapter 4). These plans outline the approach to demonstrating that the
software subsystems conform to the ADD.

 4.4.3 Project management plan for the DD phase

 The estimate of the total project cost (accurate to 10%), and the
management plan for the DD phase, must be documented in the DD
phase section of the Software Project Management Plan (SPMP/DD, see
Part 2, Chapter 2). An outline plan for the TR and OM phases must also
be included.

 4.4.4 Configuration management plan for the DD phase

 The configuration management procedures for the documents,
deliverable code, CASE tool products and prototype software, to be
produced in the DD phase, must be documented in the Software
Configuration Management Plan (SCMP/DD, see Part 2, Chapter 3).

 4.4.5 Verification and validation plan for the DD phase

 The DD phase review and traceability procedures must be
documented in the Software Verification and Validation Plan (SVVP/DD,
see Part 2, Chapter 4).

 4.4.6 Quality assurance plan for the DD phase

 The DD phase quality monitoring procedures must be defined in
the Software Quality Assurance Plan (SQAP/DD, see Part 2, Chapter 5).

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-38
 THE DETAILED DESIGN AND PRODUCTION PHASE

 CHAPTER 5
 THE DETAILED DESIGN AND PRODUCTION PHASE

 5.1 INTRODUCTION

 The DD phase can be called the ‘implementation phase’ of the life
cycle. The purpose of the DD phase is to detail the design outlined in the
ADD, and to code, document and test it.

 The detailed design and production is the responsibility of the
software engineers. Other kinds of engineers may be consulted during
this phase, and representatives of users and operations personnel may
observe system tests. The software may be independently verified by
engineers not responsible for detailed design and coding.

 Important considerations before starting code production are the
adequacy and availability of computer resources for software
development. There is no point in starting coding and testing if the
computer, operating system and system software are not available or
sufficiently reliable and stable. Productivity can drop dramatically if these
resources are not adequate. Failure to invest in software tools and
development hardware often leads to bigger development costs.

 The principal output of this phase are the code, the Detailed
Design Document (DDD) and Software User Manual (SUM). The DD
phase terminates with formal approval of the code, DDD and SUM by the
Detailed Design Review (DD/R).

 5.2 INPUTS TO THE PHASE

 The inputs to the DD phase are the:
• Architectural Design Document (ADD);
• Integration test plans (SVVP/IT/Plans);
• System test plans (SVVP/ST/Plans);
• Software Project Management Plan for the DD phase (SPMP/DD);
• Software Configuration Management Plan for the DD phase

(SCMP/DD);
• Software Verification and Validation Plan for the DD phase (SVVP/DD);

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-39
 THE DETAILED DESIGN AND PRODUCTION PHASE

• Software Quality Assurance Plan for the DD phase (SQAP/DD).

 5.3 ACTIVITIES

 DD phase activities shall be carried out according to the plans
defined in the AD phase. Progress against plans should be continuously
monitored by project management and documented at regular intervals
in progress reports.

 The detailed design and production of software shall be based on
the following three principles:
• top-down decomposition;
• structured programming;
• concurrent production and documentation.

 These principles are reflected in both the software design and the
organisation of the work. They help ensure that the software is delivered
on time and within budget, because emphasis is placed on ‘getting it
right first time’. They also have a positive effect on the quality of the
software, its reliability, maintainability and safety.

 Top-down decomposition is vital for controlling complexity because
it enforces ‘information hiding’ by demanding that lower-level
components behave as ‘black boxes’. Only the function and interfaces of
a lower-level component are required for the higher-level design. The
information necessary to the internal workings of a lower-level component
can remain hidden.

 Structured programming aims to avoid making errors when a
module is designed and when code is written. Stepwise refinement of a
design into code, composed of the basic sequence, selection and
iteration constructs is the main feature of the technique. By reducing the
number of coding errors, structured programming dramatically reduces
time spent in testing and correcting software. Structured programming
also makes code more understandable, reducing time spent in inspection
and in maintenance.

 Concurrent production and documentation of code is a side effect
of stepwise refinement. Design information should be retained as
commentary in the source code.

Downloaded from http://www.everyspec.com

 1-40 ESA PSS-05-0 Issue 2 (February 1991)
 THE DETAILED DESIGN AND PRODUCTION PHASE

 5.3.1 Detailed design

 In detailed design, lower-level components of the architectural
design are decomposed until they can be expressed as modules in the
selected programming language. A module is a program unit that is
discrete and identifiable with respect to compiling, combining with other
units, and loading.

 Starting from the bottom-level components in the ADD, the design
proceeds to lower levels via stepwise refinement of each module
specification.

 The guidelines for stepwise refinement are:
• start from functional and interface specifications;
• concentrate on the control flow;
• defer data declarations until the coding phase;
• keep steps of refinement small so that verification is easier;
• review each step as it is made.

 The review of each module may be by walkthrough or inspection.
The review of a module is complete when it is approved for coding.

 The methods and CASE tools used for architectural design should
be used in the DD phase for the detailed design work.

 Although design should normally proceed downwards, some of
the lowest level components may need to be designed (and coded) first.
Examples are device drivers and utility libraries.

 5.3.2 Production

 5.3.2.1 Coding

 When the design of each module is completed, reviewed and
approved, it can be coded.

 Coding conventions should be established and documented in
the DDD. They should provide rules for:
• presentation, (e.g. header information and comment layout);
• naming programs, subprograms, files, variables and data;

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-41
 THE DETAILED DESIGN AND PRODUCTION PHASE

• limiting the size of modules;
• using library routines, especially:
 - operating system routines;
 - commercial library routines (e.g. numerical analysis);
 - project specific utility routines;
• defining constants;
• using compiler specific features not in the language standard;
• error handling.

 The standard header (see Part 2, Chapter 3) should be made
available so that it can be edited, completed and then inserted at the
head of each module.

 Code should be consistent, as this reduces complexity. Rigorous
adherence to coding conventions is fundamental to ensuring
consistency. Further, consistency is enhanced by adopting the same
solutions to the same problems. To preserve code consistency, changes
and modifications should follow the style of the original code, assuming
it was produced to recognised standards.

 Code should be structured, as this reduces errors and enhances
maintainability. Generally, this means resolving it into the basic sequence,
selection (i.e. condition) and iteration (i.e. loop) constructs. Practically, the
ideas of structured programming require that:
• each module should have a single entry and exit point;
• control flow should proceed from the beginning to the end;
• related code should be blocked together rather than dispersed

around the module;
• branching out of a module should only be performed under

prescribed conditions (e.g. error exit).

 Production of consistent, structured code is made easier by using
tools such as language-sensitive editors, customised to suit the project
conventions.

 The coding process includes compilation; not only does this
produce the object code needed for testing the run-time behaviour of a

Downloaded from http://www.everyspec.com

 1-42 ESA PSS-05-0 Issue 2 (February 1991)
 THE DETAILED DESIGN AND PRODUCTION PHASE

module, it is the first step in verifying the code. Compilation normally
produces statistics that can be used for the static analysis of the module.

 Supplementary code included to assist the testing process should
be readily identifiable and easy to disable, or remove, after successful
testing. Care should be taken to ensure that such code does not
obscure the module logic.

 As the coding of a module proceeds, documentation of the design
assumptions, function, structure, interface, internal data and resource
utilisation should proceed concurrently. This information should be
recorded in Part 2 of the DDD. The inclusion of this information in the
source code is recommended. To avoid the maintenance problem of
having the same information in two places, tools to select information
required for the DDD from the source code are desirable.

 When a module has been documented and successfully compiled,
unit testing can begin.

 5.3.2.2 Integration

 Integration is the process of building a software system by
combining components into a working entity.

 Integration of components should proceed in an orderly function-
by-function sequence. This allows the software’s operational capabilities
to be demonstrated early, increasing management confidence that the
project is progressing satisfactorily.

 The integration process shall be controlled by the software
configuration management procedures defined in the SCMP. Good SCM
procedures are essential for correct integration.

 The top-down approach to integration is to use stubs to represent
lower-level modules. As modules are completed and tested, they replace
the stubs. In many projects, the need to make shared components
available at an early stage forces the integration to be organised initially
on a bottom-up, and later on a top-down, basis. Whatever approach to
integration is taken, it should minimise the time spent in testing, while
ensuring that all source statements are verified.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-43
 THE DETAILED DESIGN AND PRODUCTION PHASE

 5.3.2.3 Testing

 Procedures for developing and documenting the test approach are
described in Part 2, Chapter 4.

 5.3.2.3.1 Unit testing

 Unit tests verify the design and implementation of all components
from the lowest level defined in the detailed design up to the lowest level
defined in the architectural design (normally the task level). Modules that
do not call other modules exist at the lowest level of the detailed design.

 Unit tests verify that not only is a module doing what it is supposed
to do (‘black box’ testing), but also that it is doing it in the way it was
intended (‘white box’ testing). The most probable paths through a
module should be identified and tests designed to ensure these paths
are executed. In addition, before a module can be accepted, every
statement shall be successfully executed at least once. Coverage
analysers and symbolic debuggers can be very useful in observing the
internal behaviour of a module. For larger systems, tools can ensure that
modules are tested systematically.

 Unit testing is normally carried out by the individuals or teams
responsible for the components’ production.

 Unit test plans, test designs, test cases, test procedures and test
reports are documented in the Unit Test section of the Software
Verification and Validation Plan (SVVP/UT).

 5.3.2.3.2 Integration testing

 Integration testing is also done in the DD phase when the major
components are assembled to build the system. These major
components are identified in the ADD. Integration tests should be
directed at verifying that major components interface correctly. Integration
testing should precede system testing and follow unit testing.

 Integration testing shall check that all the data exchanged across
an interface agree with the data structure specifications in the ADD.
Integration testing shall confirm that the control flows defined in the ADD
have been implemented.

 Integration test designs, test cases, test procedures and test
reports are documented in the Integration Test section of the Software
Verification and Validation Plan (SVVP/IT).

Downloaded from http://www.everyspec.com

 1-44 ESA PSS-05-0 Issue 2 (February 1991)
 THE DETAILED DESIGN AND PRODUCTION PHASE

 5.3.2.3.3 System testing

 System testing is the process of testing an integrated software
system. This testing can be done in the development or target
environment, or a combination of the two. System testing shall verify
compliance with system objectives, as stated in the SRD. System testing
should include such activities as:
• passing data into the system, correctly processing and outputting it

(i.e. end-to-end system tests);
• practice for acceptance tests (i.e. verification that user requirements

will be met);
• stress tests (i.e. measurement of performance limits);
• preliminary estimation of reliability and maintainability;
• verification of the Software User Manual.

 Trends in the occurrence of defects should be monitored in
system tests; the behaviour of such trends is important for the estimation
of potential acceptability.

 For most embedded systems, as well as systems using special
peripherals, it is often useful or necessary to build simulators for the
hardware with which the deliverable system will interface. Such simulators
are often required because of:
• late availability of the final system hardware;
• low available test time with the final system hardware;
• desire to avoid damaging delicate and/or expensive hardware.

 Simulators are normally a separate project in themselves. Effort
should be made to ensure that they are available in time, and that they
are certified as identical, from an interface point of view, with the target
hardware.

 System test designs, test cases, test procedures and test reports
are documented in the System Test section of the Software Verification
and Validation Plan (SVVP/ST).

 5.3.3 Reviews

 The detailed design should be reviewed and agreed layer by layer
as it is developed during the DD phase. The design of any level invariably

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-45
 THE DETAILED DESIGN AND PRODUCTION PHASE

affects upper layers and a number of review cycles may be necessary
before the design of a level can be finalised. Walkthroughs should be
used to ensure that the detailed design is understood by all concerned.
Inspections of the design, by qualified software engineers, should be
used to reduce the occurrence of design defects.

 When the detailed design of a major component is finished, a
critical design review shall be convened to certify its readiness for
implementation. The project leader should participate in these reviews,
together with the team leader and team members concerned.

 After modules have been coded and successfully compiled,
walkthroughs or inspections should be held to verify that the
implementation conforms to the design.

 After production, the DD Review (DD/R) shall consider the reports
of the verification activities and decide whether to transfer the software.
This should be a technical review (see Part 2, Chapter 4). Review
participants should include engineers, user representatives and
managers.

 5.4 OUTPUTS FROM THE PHASE

 The main outputs of the phase are the code, DDD, SUM and the
plans for the TR phase.

 Progress reports, configuration status accounts, software
verification reports and audit reports are also outputs of the phase. These
should always be archived by the project.

 5.4.1 Code

 The developer should deliver all the items needed to execute and
modify any part of the software produced in the project, e.g:
• source files;
• command procedure files;
• configuration management tools;
• source files for test software;
• test data;
• build and installation procedures.

Downloaded from http://www.everyspec.com

 1-46 ESA PSS-05-0 Issue 2 (February 1991)
 THE DETAILED DESIGN AND PRODUCTION PHASE

 All deliverable code shall be identified in a configuration item list.

 5.4.2 Detailed Design Document

 The DDD grows as the design proceeds to the lowest level of
decomposition. Documentation should be produced concurrently with
detailed design, coding and testing. In large projects, it may be
convenient to organise the overall DDD into several volumes. The DDD
shall be an output of the DD phase. A recommended table of contents of
the DDD is provided in Appendix C.

 Part 1 of the DDD defines design and coding standards and tools,
and should be prepared as the first activity of the DD phase, before work
starts on detailed design and coding.

 Part 2 of the DDD expands as the design develops. Part 2 of the
DDD shall have the same structure and identification scheme as the
code itself, with a 1:1 correspondence between sections of the
documentation and the software components.

 The DDD shall be complete, accounting for all the software
requirements in the SRD. A table cross-referencing software requirements
to the detailed design components shall be placed in the DDD.

 5.4.3 Software User Manual

 A Software User Manual (SUM) shall be an output of the DD
phase. The recommended table of contents for a SUM is provided in
Appendix C. The rules for the style and content of the Software User
Manual are based on ANSI/IEEE Std 1063-1987, ‘Software User
Documentation’. Two styles of user documentation are useful: the
‘instruction’, or ‘tutorial’, style and the ‘reference’ style.

 While the instruction style is oriented towards helping new users,
the reference style is more suited to more experienced users who need
information about specific topics.

 In the instruction section of the SUM, material is ordered according
to the learning path, with the simplest, most necessary operations
appearing first and more advanced, complicated operations appearing
later. The size of this section depends on the intended readership; some
users may understand the software after a few examples (and can switch
to using the reference section) whilst other users may require many
worked examples.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-47
 THE DETAILED DESIGN AND PRODUCTION PHASE

 The reference section of the SUM presents the basic operations,

ordered for easy reference (e.g. alphabetically). Reference documentation
should be more formal, rigorous and exhaustive than the instructional
section. For example a command may be described in the instruction
section in concrete terms, with a specific worked example. The
description in the reference section should describe all the parameters,
qualifiers and keywords, with several examples.

 The development of the SUM should start as early as possible.
Establishing the potential readership for the SUM should be the first
step. This information is critical for establishing the style of the document.
Useful information may be found in the section ‘User Characteristics’ in
the URD.

 The Software User Manual may be large, spread over several
volumes. The SUM may be made available electronically, for example as
part of an online help facility. There should be specific software
requirements for such facilities.

 5.4.4 Project management plan for the TR phase

 The management plan for the TR phase must be documented in
the DD phase section of the Software Project Management Plan
(SPMP/TR, see Part 2, Chapter 2). This plan may also cover the period up
to final acceptance.

 5.4.5 Configuration management plan for the TR phase

 The TR phase procedures for the configuration management of the
deliverables, in the operational environment, must be documented in the
Software Configuration Management Plan (SCMP/TR, see Part 2, Chapter
3).

 5.4.6 Acceptance test specification

 Acceptance test designs, test cases and test procedures must be
documented in the Software Verification and Validation Plan (SVVP/AT,
see Part 2, Chapter 4).

 5.4.7 Quality assurance plan for the TR phase

 The TR phase quality monitoring procedures must be defined in the
TR phase section of the Software Quality Assurance Plan (SQAP/TR, see
Part 2, Chapter 5).

Downloaded from http://www.everyspec.com

 1-48 ESA PSS-05-0 Issue 2 (February 1991)
 THE DETAILED DESIGN AND PRODUCTION PHASE

 This page is intentionally left blank.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-49
 THE TRANSFER PHASE

 CHAPTER 6
 THE TRANSFER PHASE

 6.1 INTRODUCTION

 The TR phase can be called the ‘handover phase’ of the life cycle.
The purpose of the TR phase is to install the software in the operational
environment and demonstrate to the initiator and users that the software
has all the capabilities described in the User Requirements Document
(URD).

 Installation and checkout of the software is the responsibility of the
developer. Representatives of users and operations personnel shall
participate in acceptance tests. The Software Review Board (SRB) shall
review the software’s performance in the acceptance tests and
recommend, to the initiator, whether the software can be provisionally
accepted or not.

 The principal output of this phase is the Software Transfer
Document (STD), which documents the acceptance testing activities.

 The TR phase terminates with provisional acceptance of the
software and the start of operations.

 6.2 INPUTS TO THE PHASE

 The inputs to the TR phase are the:
• code;
• Detailed Design Document (DDD);
• Software User Manual (SUM);
• Acceptance Test specification (SVVP/AT);
• Software Project Management Plan for the TR phase (SPMP/TR);
• Software Configuration Management Plan for the TR phase

(SCMP/TR);
• Software Quality Assurance Plan for the TR phase (SQAP/TR).

Downloaded from http://www.everyspec.com

 1-50 ESA PSS-05-0 Issue 2 (February 1991)
 THE TRANSFER PHASE

 6.3 ACTIVITIES

 TR phase activities shall be carried out according to the plans
defined in the DD phase.

 6.3.1 Installation

 The first activity of the TR phase is installation of the software. This
is done by:
• checking the deliverables against the configuration item list;
• building a system executable in the target environment.

 Procedures for building software may vary, depending on the type
of software, but the capability of building the system from the
components that are directly modifiable by the maintenance team shall
be established.

 Maintenance staff should exercise the procedures for modifying
the software, especially if any unfamiliar software development tools have
been supplied.

 6.3.2 Acceptance tests

 Acceptance tests validate the software, i.e. they demonstrate the
capabilities of the software in its operational environment. Acceptance
tests should be based on the user requirements, as stated in the URD.
Acceptance tests plans, test designs, test cases and test procedures are
defined in the SVVP.

 Acceptance tests are executed in the TR phase and the results
recorded in the SVVP. A summary of the acceptance test reports should
be inserted in the STD.

 6.3.3 Provisional acceptance

 Acceptance tests necessary for provisional acceptance shall be
indicated in the SVVP. The criterion for provisional acceptance is whether
the software is ready for operational use. A period of operations is usually
required to show that the software meets all the requirements in the URD.

 The provisional acceptance decision should be made by the
initiator after consultations with the SRB, end-user representatives and
operations staff.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-51
 THE TRANSFER PHASE

 6.4 OUTPUTS FROM THE PHASE

 6.4.1 Statement of provisional acceptance

 The statement of provisional acceptance shall be produced by the
initiator, on behalf of the users, and sent to the developer. Provisional
acceptance marks the end of the TR phase.

 6.4.2 Provisionally accepted software system

 The provisionally accepted software system shall consist of the
outputs of all previous phases and modifications found necessary in the
TR phase.

 6.4.3 Software Transfer Document

 The purpose of the Software Transfer Document (STD) is to identify
the software that is being transferred and how to build and install it. An
output of the TR phase shall be the STD. The STD shall be handed over
from the developer to the maintenance organisation at provisional
acceptance. The recommended table of contents for the STD is
presented in Appendix C.

 The STD shall contain a summary of the acceptance test reports
and all documentation about software changes performed during the TR
phase.

Downloaded from http://www.everyspec.com

 1-52 ESA PSS-05-0 Issue 2 (February 1991)
 THE TRANSFER PHASE

 This page is intentionally left blank

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-53
 THE OPERATIONS AND MAINTENANCE PHASE

 CHAPTER 7
 THE OPERATIONS AND MAINTENANCE PHASE

 7.1 INTRODUCTION

 In the OM phase, the software first enters practical use. The
operation of software is beyond the scope of these Standards, so this
chapter only discusses maintenance.

 The purpose of software maintenance is to ensure that the product
continues to meet the real needs of the end-user. The available resources
for maintenance should reflect the importance of the product.

 Unlike hardware maintenance, which aims to return a hardware
product to its original state, software maintenance always results in a
change to a software product. Software maintenance staff should
thoroughly understand the software which they have to alter. Training may
be necessary.

 The principal output of this phase is the Project History Document
(PHD), which summarises the development, operations and maintenance
of the product.

 7.2 INPUTS TO THE PHASE

 The inputs to the OM phase are the:
• statement of provisional acceptance;
• provisionally accepted software system;
• Software Transfer Document.

 7.3 ACTIVITIES

 Until final acceptance, OM phase activities that involve the
developer shall be carried out according to the plans defined in the
SPMP/TR.

 The maintenance organisation may choose to adopt the Software
Configuration Management Plan used in the development phases.
Alternatively they may choose to produce a new one, specific to their

Downloaded from http://www.everyspec.com

 1-54 ESA PSS-05-0 Issue 2 (February 1991)
 THE OPERATIONS AND MAINTENANCE PHASE

needs. The effort to convert from one configuration management system
to another should not be underestimated, nor the risks involved ignored
(e.g. the loss of configuration items or the incorrect attachment of labels).

 The Software Project Management Plans and Software Quality
Assurance Plans continue to apply to the activities of development staff,
but not to operations and maintenance staff, who should develop their
own plans.

 7.3.1 Final Acceptance

 The early part of the OM phase should include a warranty period in
which the developer should retain responsibility for correcting errors. The
end of the warranty period is marked by final acceptance.

 The criterion for final acceptance is whether the software meets all
requirements stated in the URD. All the acceptance tests shall have been
successfully completed before the software is finally accepted.

 The final acceptance decision should be made by the initiator after
consultations with the SRB, end-user representatives and operational
staff.

 Even when no contractor is involved, there shall be a final
acceptance milestone to arrange the formal handover from software
development to maintenance.

 Whenever the handover is performed, the last document formally
released by the engineering (as opposed to maintenance) project leader,
must be the first issue of the Project History Document (PHD).

 7.3.2 Maintenance

 After this warranty period, maintenance of the software may be
transferred from the developer to a dedicated maintenance organisation.
A maintenance organisation shall be designated for every software
product in operational use. Resources shall be assigned to a product’s
maintenance until it is retired.

 Maintenance of software should be driven by the occurrence of
problems and new requirements. The SRB controls problem handling
activity, and shall authorise all modifications. Responsibility for minor
modifications and emergency changes may be delegated to
maintenance staff, depending on the level of criticality.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 1-55
 THE OPERATIONS AND MAINTENANCE PHASE

 Procedures for software modification shall be defined. This is

normally done by carrying over the configuration management and
verification procedures from the development phase. Consistency
between code and documentation shall be maintained.

 Some software problems can give rise to new requirements. A
user, after experience with the software, may propose a modification (in
an SPR). The SRB, classifying the problem as a new or changed
requirement, drafts changes to the URD and reviews it with the users
concerned. Users may also draft changes to the URD and put them
forward to the SRB.

 New requirements may also arise because the original
requirements defined in the UR and SR phases were not appropriate, or
because the user’s needs change. The maintenance budget should
support a realistic level of requirement-change activity. Major new
requirements should be handled as a separate software development
project, and be separately budgeted.

 Users should be kept informed of problems. If possible, software
items which are the subject of problem reports should be withdrawn
from use while the problem is corrected. When withdrawal is not possible,
temporary work-around solutions are permitted, provided the safety of the
system is not impaired. All software modifications must be documented,
even temporary ones.

 When software is changed, regression tests should be performed
to ensure that the change has not caused new faults. Regression test
cases may be a subset of the acceptance test cases.

 7.4 OUTPUTS FROM THE PHASE

 7.4.1 Statement of final acceptance

 The statement of final acceptance shall be produced by the
initiator, on behalf of the users, and sent to the developer. Its delivery
marks the formal handover of the software. The precondition of final
acceptance is that all the acceptance tests have been executed
satisfactorily.

Downloaded from http://www.everyspec.com

 1-56 ESA PSS-05-0 Issue 2 (February 1991)
 THE OPERATIONS AND MAINTENANCE PHASE

 7.4.2 Project History Document

 The Project History document (PHD) should be produced by the
software project manager. It summarises the main events and outcome
of the project. The PHD is useful to future projects for:
• estimating the effort required;
• setting up the organisation;
• finding successful methods;
• advising about problems and pitfalls.

 The PHD is the place where estimates, made in the planning
stages, are compared with actual events. The accuracy of predictions of
the project schedule, software volume, manpower requirements,
hardware requirements and cost should be measured. Productivity
should be estimated using the measurements of software volume,
resources and time.

 Preparation of the PHD forces a project manager to consider
progress carefully, and to draw personal and organisational conclusions
when the events concerned are fresh in the project manager’s mind.
Accordingly, the project manager should start making notes for the PHD
at the beginning of the project. At the end of each phase, the plans made
for the previous phase should be compared with what actually
happened. This knowledge can also help in planning the next phase.

 The PHD shall be delivered to the initiator after final acceptance,
who should make it available to the maintenance organisation. The
chapter describing the performance of the system should be added by
the designated maintenance organisation during the OM phase and
updated when the product is retired. The recommended table of contents
for the PHD is presented in Appendix C.

 7.4.3 Finally accepted software system

 This consists of one or more sets of documentation, source, object
and executable code corresponding to the current versions and releases
of the product.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-1

 Part 2
 Procedure
 Standards

Downloaded from http://www.everyspec.com

ACTIVITY

PLAN

USER
REQUIREMENTS

REVIEW

SOFTWARE
REQUIREMENTS

DEFINITION

ARCHITECTURAL
DESIGN

DETAILED
DESIGN AND
PRODUCTION

SOFTWARE
PROJECT
MANAGEMENT

SOFTWARE
CONFIGURATION
MANAGEMENT

SOFTWARE
VERIFICATION
AND
VALIDATION

SOFTWARE
QUALITY
ASSURANCE

SPMP/SR SPMP/AD SPMP/DD

SPMP/TR

SCMP/SR

SVVP/SR

SVVP/AT

SQAP/SR

SCMP/AD SCMP/DD

SVVP/AD

SVVP/ST

SQAP/AD

SVVP/DD

SVVP/IT

SCMP/TR

SVVP/AT

SVVP/ST

SVVP/IT

SVVP/UT

SQAP/DD

Output Output OutputOutputActivity Activity Activity Activity

SQAP/TR

Figure 1.1: Software Management Plans

Estimate
project cost

Plan SR phase
WBS & staffing

Estimate
project cost
to 30% accuracy

Plan AD phase
WBS & staffing

Estimate
project cost
to 10% accuracy

Plan DD phase
WBS & Staffing

Detail
DD phase WBS

Plan TR phase
WBS & Staffing

SPMP/DD
updates

Define SR phase
procedures for:

- documents

- CASE tool
products

- prototype code

Define AD phase
procedures for:

- documents

- CASE tool

products

- prototype code

Define DD phase
procedures for:

- documents

- CASE tool

products

- deliverable code

operational

- documents

- deliverable code

environment
procedures for:

Define

Define SR phase
review and
traceability
procedures

Define AD phase
review and
traceability
procedures

Define DD phase
review and
traceability
procedures

Plan acceptance
tests

Plan system
tests

Plan integration
tests

Define acceptance
tests

Define system
tests

Define integration
tests

Plan and define
unit tests

Plan SR phase
monitoring
activities

Plan AD phase
monitoring
activities

Plan DD phase
monitoring
activities

monitoring
activities

Plan TR phase

updates

updates

updates

Outline plan for
whole project

Outline plan for
whole project

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-3

 CHAPTER 1
 MANAGEMENT OF THE SOFTWARE LIFE CYCLE

 1.1 INTRODUCTION

 Part 2 of these Standards describes the activities that are essential
for managing the software life cycle. Whereas Part 1 describes the
activities and products of each phase of the life cycle, Part 2 discusses
management activities which are performed throughout all development
phases.

 The goal of the management activities is to build the product within
budget, according to schedule, with the required quality. To achieve this,
plans must be established for:
• software project management;
• software configuration management;
• software verification and validation;
• software quality assurance.

 Figure 1.1 summarises how these plans must be documented.
Plans for project management, configuration management, verification,
validation and quality assurance are split into sections. Each section
plans the activities for subsequent phases. While the same structure may
be repeated in each section of a document, the actual contents may vary.
Titles of documents are separated from their section names by ‘/’ (e.g.
SPMP/SR is the SR phase section of the Software Project Management
Plan).

 Figure 1.1 does not include the plans required to manage the
maintenance of the software in the period between final acceptance and
retirement. The maintenance organisation may choose to reuse
development plans or produce new plans.

 1.2 SOFTWARE PROJECT MANAGEMENT

 A project manager, or project management team, has to plan,
organise, staff, monitor, control and lead a software project. The project
manager is responsible for writing the Software Project Management Plan

Downloaded from http://www.everyspec.com

 2-4 ESA PSS-05-0 Issue 2 (February 1991)
 MANAGEMENT OF THE SOFTWARE LIFE CYCLE

(SPMP). The project manager leads the development team and is the
principal point of contact between them and the initiator, end-users and
other parties.

 1.3 SOFTWARE CONFIGURATION MANAGEMENT

 Proper configuration management is essential for control of a
software product. A component may function perfectly well, but either a
fault in integration or a mistake in identification can result in obscure
errors. This standard defines requirements for identifying, controlling,
releasing and changing software items and recording their status.
Procedures for managing the software configuration must be defined in
the Software Configuration Management Plan (SCMP).

 1.4 SOFTWARE VERIFICATION AND VALIDATION

 These standards adopt a general definition of verification as the
process of reviewing, inspecting, testing, checking and auditing software
products. Verification is essential to assure that the product will be fit for
its purpose. The verification approach should be planned by project
management and carried out by development staff.

 In these Standards, ‘validation’ is the evaluation of software at the
end of the development process to ensure compliance with user
requirements. Validation is done in the TR phase.

 All verification and validation activities must be documented in the
Software Verification and Validation Plan (SVVP).

 1.5 SOFTWARE QUALITY ASSURANCE

 The quality assurance activity is the process of verifying that these
Standards are being applied. In small projects this is done by the project
manager, but in large projects specific staff should be allocated to the
role. The Software Quality Assurance Plan is the document which
describes how adherence to the Standards is to be verified.

 Where ESA PSS-01-series documents are applicable, and as a
consequence ESA PSS-01-21, ‘Software Product Assurance
Requirements for ESA Space Systems’ is also applicable, Part 2, Chapter
5 of these Standards, ‘Software Quality Assurance’, ceases to apply.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-5
 SOFTWARE PROJECT MANAGEMENT

 CHAPTER 2
 SOFTWARE PROJECT MANAGEMENT

 2.1 INTRODUCTION

 Software Project Management (SPM) is ‘the process of planning,
organising, staffing, monitoring, controlling and leading a software
project’ (ANSI/IEEE Std 1058.1-1987). The Software Project Management
Plan (SPMP) is the controlling document for managing a software project.
The SPMP defines the technical and managerial project functions,
activities and tasks necessary to satisfy the requirements of a software
project.

 The SPMP is updated and refined, throughout the life cycle, as
more accurate estimates of the effort involved become possible, and
whenever changes in requirements or design occur. A number of
methods and tools are available for software project planning and their
use is recommended.

 During all the phases of the life cycle, project management should
review how a plan works out in practice. Important deviations between
estimates and actuals have to be explained and documented in the
Project History Document (PHD), which is issued in the OM phase.

 2.2 ACTIVITIES

 2.2.1 Organising the project

 A key responsibility of software project management is organising
all project activities. There are several possible models for the
organisation of a software project (e.g. functional and matrix).

 Once tasks have been defined, project management must define
the team structure to carry them out. Positions in that structure should be
adequately defined so that each team member has clear responsibilities
and lines of authority. These responsibilities should be documented in
terms of reference and work package descriptions.

Downloaded from http://www.everyspec.com

 2-6 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE PROJECT MANAGEMENT

 2.2.2 Leading the project

 Project management decide the objectives and priorities at each
stage. They should document the assumptions, dependencies and
constraints that influence their decisions in the SPMP.

 2.2.3 Risk management

 Risks threaten a project’s success. Project management should
identify the risks to a project and assess the threat they pose. This is
called ‘risk analysis’. Examples of potential risk areas are:
• quality and stability of user requirements;
• level of definition and stability of external interfaces;
• adequacy and availability of resources;
• availability and quality of tools;
• staff training and experience;
• definition of responsibilities;
• short time scales;
• technical novelty of the project.

 Risks may be quantified by combining the probability of an event
with the cost to the project if it does happen. The total risk to the project
is the sum of all risks. Probabilities can be estimated from historical data
(e.g. sickness rates of employees) or manufacturer’s data (e.g. the mean
time between failure of a disk drive).

 Project management should devise a plan for reducing risk levels
and ensure that it is carried out. Achievements should be measured and
the risks reevaluated throughout the project.

 Decisions about priorities should be supported by risk analysis.
Accurate assessment of the impact of decisions relies on quantitative
estimation of the factors that should change when action is taken.

 2.2.4 Technical management

 There are many methods and tools that can be applied throughout
the software life cycle, which can greatly enhance the quality of the end
product and their use is strongly recommended. Project management is
responsible for selecting methods and tools, and for enforcing their use.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-7
 SOFTWARE PROJECT MANAGEMENT

 Technical management includes organising software configuration

management, and verification, validation and test activities.

 2.2.5 Planning, scheduling and budgeting the work

 Estimating the resources and time scales required for activities is a
key part of planning their execution. The basic approach to estimation is
to analyse the project into tasks that are small enough for their costs to
be evaluated easily and accurately. Estimates for the time scales and
resources for the whole project are then synthesised from the estimates
for the individual tasks. Each task should be linked to an appropriate part
of the deliverable for that phase. For example, tasks in the SR phase
might be based on requirements, whereas in the AD phase they might be
based on components. Traditionally, estimates for detailed design and
production have been based on lines of code. Other factors that affect
estimates are the experience of the development team, the novelty of the
technical area and the availability of software engineering tools.

 The Work Breakdown Structure (WBS) is one of the fundamental
tools for the planning and control of project activities. The WBS describes
the hierarchy of tasks (grouped into ‘work packages’) to be carried out in
a project. The WBS corresponds to the structure of the work to be
performed, and reflects the way in which the project costs will be
summarised and reported.

 A work package defines a set of tasks to be performed in a project.
Work package descriptions should define tasks in sufficient detail to
allow individuals, or small groups of people, to work independently of the
rest of the project. The start and end dates of a work package should be
specified. The duration of a product oriented work package should be
sufficiently short to maintain visibility of the production process (e.g. a
month in the DD phase). Procedure-oriented work packages, for example
project management, may extend over the entire length of the project.

 The work schedule should show when the work packages are to
be started and finished. A milestone chart shows key events in the
project; these should be related to work package completion dates.

 An estimate of the cost of the whole project should be included in
the SR phase section of the SPMP. Pending definition of the software
requirements and the design, it will be difficult to provide accurate
estimates. The actual costs of similar projects help in making initial
estimates.

Downloaded from http://www.everyspec.com

 2-8 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE PROJECT MANAGEMENT

 Cost models may be used for estimating the time required for

detailed design and production. Careful consideration should be given to
the applicability of any cost model. Parameter values attributed in making
a cost model estimate should be clearly documented.

 2.2.6 Reporting project progress

 Project reporting is essential for the proper control of a software
project. Carried out by project management, it provides visibility of
development activity at regular intervals during the project. Reports are
necessary to assure people outside the development team that the
project is proceeding satisfactorily.

 Project management should ensure that material presented at
progress reviews is sufficiently detailed, and in a consistent format that
enables the PHD to be compiled simply from progress-review data.

 Contracts for software procurement should require that progress
data be collected and progress reports be generated during the
development. When it is necessary to keep information confidential
between ESA and the contractor, the progress reports and PHD may be
marked ‘For ESA use only’.

 2.3 THE SOFTWARE PROJECT MANAGEMENT PLAN

 All software project management activities shall be documented in
the Software Project Management Plan (SPMP). The SPMP is the
controlling document for managing a software project. The SPMP is
divided into four sections which contain the management plans for the
SR, AD, DD and TR phases. The table of contents for each section of the
SPMP is described in Appendix C. This table of contents is derived from
the IEEE Standard for Software Project Management Plans (ANSI/IEEE
Std 1058.1-1987).

 2.4 EVOLUTION OF THE SPMP THROUGHOUT THE LIFE CYCLE

 2.4.1 UR phase

 By the end of the UR review, the SR phase section of the SPMP
shall be produced (SPMP/SR). The SPMP/SR describes, in detail, the
project activities to be carried out in the SR phase. As part of its
introduction, the SPMP/SR shall outline a plan for the whole project.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-9
 SOFTWARE PROJECT MANAGEMENT

 A rough estimate of the total cost of the software project should be

included in the SPMP/SR. Technical knowledge and experience gained
on similar projects should be used in arriving at the cost estimate.

 A precise estimate of the effort involved in the SR phase shall be
included in the SPMP/SR. Specific factors affecting estimates for the work
required in the SR phase are the:
• number of user requirements;
• level of user requirements;
• stability of user requirements;
• level of definition of external interfaces;
• quality of the URD.

 An estimate based simply on the number of user requirements
might be very misleading - a large number of detailed low-level user
requirements might be more useful, and save more time in the SR phase,
than a few high-level user requirements. A poor quality URD might imply
that a lot of requirements analysis is required in the SR phase.

 2.4.2 SR phase

 During the SR phase, the AD phase section of the SPMP shall be
produced (SPMP/AD). The SPMP/AD describes, in detail, the project
activities to be carried out in the AD phase.

 An estimate of the total project cost shall be included in the
SPMP/AD. Every effort should be made to arrive at estimates with an
accuracy better than 30%. Technical knowledge and experience gained
on similar projects should be used in arriving at an estimate of the total
project cost.

 When no similar projects exist, it may be useful to build a
prototype, to get a more precise idea of the complexity of the software.
Prototyping activities should be properly planned and resourced.

 A precise estimate of the effort involved in the AD phase shall be
included in the SPMP/AD. Specific factors that affect estimates for the
work required in the AD phase are:
• number of software requirements;
• level of software requirements;

Downloaded from http://www.everyspec.com

 2-10 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE PROJECT MANAGEMENT

• stability of software requirements;
• level of definition of external interfaces;
• quality of the SRD.

 If an evolutionary development life cycle approach is to be used,
then this should be stated in the SPMP/AD.

 2.4.3 AD phase

 During the AD phase, the DD phase section of the SPMP shall be
produced (SPMP/DD). The SPMP/DD describes, in detail, the project
activities to be carried out in the DD phase.

 An estimate of the total project cost shall be included in the
SPMP/DD. An accuracy of 10% should be aimed at. The number of lines
of code should be estimated for each software component. This should
be used to estimate the time required to write the software, and therefore
its cost.

 The SPMP/DD shall contain a WBS that is directly related to the
decomposition of the software into components.

 The SPMP/DD shall contain a planning network showing the
relationships between the coding, integration and testing activities. Tools
are available for this kind of planning.

 2.4.4 DD phase

 As the detailed design work proceeds to lower levels, the WBS and
job schedule need to be refined to reflect this. To achieve the necessary
level of visibility, no software production work packages in the SPMP/DD
shall last longer than 1 man-month.

 During the DD phase, the TR phase section of the SPMP shall be
produced (SPMP/TR). The SPMP/TR describes, in detail, project activities
until final acceptance, in the OM phase.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-11
 SOFTWARE PROJECT MANAGEMENT

 This page is intentionally left blank.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-12

 CHAPTER 3
 SOFTWARE CONFIGURATION MANAGEMENT

 3.1 INTRODUCTION

 As defined in ANSI/IEEE Std 729-1983, software configuration
management (SCM) is process of:
• identifying and defining the configuration items in a system;
• controlling the release and change of these items throughout the

system life cycle;
• recording and reporting the status of configuration items and change

requests;
• verifying the completeness and correctness of configuration items.

 Software configuration management is both a managerial and a
technical activity, and is essential for proper software quality control. The
software configuration management activities for a project must be
defined in the Software Configuration Management Plan (SCMP).

 All software items, for example documentation, source code,
executable code, files, tools, test software and data, shall be subjected
to configuration management procedures. The configuration
management procedures shall establish methods for identifying, storing
and changing software items through development, integration and
transfer. In large developments, spread across multiple hardware
platforms, configuration management procedures may differ in physical
details. However, a common set of configuration management
procedures shall be used.

 Tools for software configuration management are widely available.
Their use is strongly recommended to ensure that SCM procedures are
applied consistently and efficiently.

 3.2 ACTIVITIES

 3.2.1 Configuration identification

 A ‘configuration item’ (CI) is a collection of software elements,
treated as a unit, for the purpose of configuration management. Several

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-13
 SOFTWARE CONFIGURATION MANAGEMENT

factors may be relevant in deciding where to draw the boundaries of a
configuration item. A configuration item may be any kind of software item,
for example: a module, a document, or a set of CIs.

 The key to effective software configuration management is
unambiguous identification of the parts of the software. Every
configuration item shall have an identifier that distinguishes it from other
items with different:
• requirements, especially functionality and interfaces;
• implementation.

 Each component defined in the design process shall be
designated as a CI and possess an identifier. The identifier shall include
a number or a name related to the purpose of the CI. The identifier shall
include an indication of the type of processing the CI is intended for (e.g.
filetype information).

 The term ‘version’ is used to define a stage in the evolution of a CI.
Each stage is marked by a ‘version number’. When the CI changes, the
version number changes. The identifier of a CI shall include a version
number.

 The identifier of documents shall include an issue number and a
revision number. Issue numbers are used to mark major changes and
revision numbers are used to mark minor changes. Major changes
usually require formal approval. The issue number and revision number
together mark the version of the document.

 The configuration identification method shall be capable of
accommodating new CIs, without requiring the modification of the
identifiers of any existing CIs.

 A ‘baseline’ is a document or a product that has been formally
reviewed and agreed upon, and is a basis for further development. A
baseline is an assembly of configuration items. Formal change control
procedures are required to modify a baseline.

 Integration of software should be coordinated by the identification
and control of baselines. Figure 3.2.1 illustrates the relationship between
units of modules, baselines and releases. Modules, after successful unit
testing, are integrated into existing baselines. Incorporation into a
baseline can only occur after successful integration tests. Baselines must
be system tested before being transferred to users as a ‘release’ of the

Downloaded from http://www.everyspec.com

 2-14 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE CONFIGURATION MANAGEMENT

software. After delivery and installation, releases of the software undergo
acceptance testing by users.

UNIT 1

UNIT 2

UNIT 3

BASELINE 1

BASELINE 2 RELEASE 1

Development
Libraries

Master
Libraries

Static
Libraries

Integrate

Transfer

CI state

Key

 Figure 3.2.1 Baselines and releases

 In the TR phase, a list of configuration items in the first release
shall be included in the STD. In the OM phase, a list of changed
configuration items shall be included in each Software Release Note
(SRN). An SRN shall accompany each release made in the OM phase.

 As part of the configuration identification method, a module shall
have a header that includes:
• configuration item identifier (name, type, version);
• original author;
• creation date;
• change history (version/date/author/description).

 Note that a module header may also contain other component
information from the DDD, Part 2.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-15
 SOFTWARE CONFIGURATION MANAGEMENT

 All documentation and storage media shall be clearly labelled in a

standard format, with at least the following data:
• project name;
• configuration item identifier (name, type, version);
• date;
• content description.

 3.2.2 Configuration item storage

 A software library is a controlled collection of configuration items. It
may be a single file or a collection of files. A library may exist on various
media (e.g. paper, magnetic disk).

 To ensure the security and control of the software, as a minimum,
the following software libraries shall be implemented for storing all the
deliverable components (e.g. documentation, source and executable
code, test files, command procedures):
• Development (or Dynamic) library;
• Master (or Controlled) library;
• Static (or Archive) library.

 Tools for handling software libraries are essential for efficient
configuration control. Such tools should allow CI identification, change
tracking, and CI cross-referencing.

 Software is coded and tested as a set of modules in the
development library. After unit tests, modules are transferred to master
libraries for integration testing and system testing. When changes to
master library modules are necessary, the appropriate modules are
transferred back to a development library from the master library.

 A baseline includes a set of master libraries. When a baseline is
released, copies of all master libraries should be taken. These copies,
called ‘static’ libraries, shall not be modified.

 Up-to-date security copies of master and static libraries shall
always be available. Procedures for the regular backup of development
libraries shall be established. This is called ‘media control’.

Downloaded from http://www.everyspec.com

 2-16 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE CONFIGURATION MANAGEMENT

 3.2.3 Configuration change control

 Software configuration control is the process of evaluating
proposed changes to configuration items and coordinating the
implementation of approved changes. Software configuration control of
an item can only occur after formal establishment of its configuration
identification and inclusion in a baseline.

 Proper software configuration control demands the definition of the:
• level of authority required to change each CI;
• methods for handling proposals for changing any CI.

 At the top level, the software configuration control process
identifies the procedures for handling changes to known baselines.

 In addition, project management has the responsibility for the
organisation of SCM activities, the definition of SCM roles (e.g.
configuration control board and software librarian), and the allocation of
staff to those roles. In the TR and OM phases of a software project,
ultimate responsibility for software configuration control lies with the
Software Review Board (SRB). The SRB should be composed of
members with sufficient authority and expertise to resolve any problems
or nonconformances of the software.

 When a software item does not conform to its specification, it
should be identified as non-conforming, and held for review action.
Nonconformance should be classified as minor or major depending on
its severity and its urgency. Minor nonconformances can be processed at
a level below SRB. Depending on the size and the management structure
of the software development, a further classification should be performed
in relation to the software life cycle, i.e. against the user requirements,
software requirements, design, etc.

 Changes to external interfaces or to software packages used by
the system should be handled like changes to ordinary CIs.

 3.2.3.1 Levels of change control

 As a configuration item passes through unit, integration, system
and acceptance tests, a higher level of authority is needed to approve
changes. This is called the promotionof a CI. Just as programmers sign
off unit tests, team leaders sign off integration tests, and project leaders

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-17
 SOFTWARE CONFIGURATION MANAGEMENT

sign off system tests, so change approval demands a level of authority
corresponding to the verification status of the CI.

 3.2.3.2 Change control procedures

 Changes occur naturally in the evolution of the software system.
This evolution should be planned and implemented using controlled
software libraries. Changes can also occur because of problems in
development or operation. Such changes require backtracking through
the life cycle to ensure that the corrections are carried out with the same
degree of quality control as was used for the original development. The
level of authority for each change depends on the part to be changed,
and on the phase in the life cycle that has been reached.

 3.2.3.2.1 Documentation change procedures

 The change procedure described below shall be observed when
changes are needed to a delivered document.
 1. A draft of a document is produced and submitted for review. If the

document is not new, all changed text must be identified.
 2. The reviewers record their comments about the draft document on

Review Item Discrepancy (RID) forms. A recommended solution may
be inserted on the RID form. The RIDs are then returned to the
author(s) of the document.

 3. The author(s) of the document record their response on the RID form.
 4. Each RID is processed at a formal review meeting and an action

decided (see Section 4.2.1).
 5. The draft document and the approved RIDs are used to make the next

revision, or issue if there major changes, of the document.
 6. Each revision or issue of a document must be accompanied by a

Document Change Record (DCR) and an updated Document Status
Sheet (DSS).

 Up to the end of the TR phase, the formal review meeting is a
UR/R, SR/R, AD/R or DD/R, depending on the document. In the OM
phase the formal review is conducted by the SRB. Templates for RID,
DCR and DSS forms are provided in Appendix E.

Downloaded from http://www.everyspec.com

 2-18 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE CONFIGURATION MANAGEMENT

 3.2.3.2.2 Problem reporting procedures

 Software problems can be reported at any stage in the life cycle.
Problems can fall into a number of categories according to the degree of
regression in the life cycle.

 Problem categories are:
• operations error;
• user documentation does not conform to code;
• code does not conform to design;
• design does not conform to requirements;
• new or changed requirements.

Selection of the problem category defines the phase of the life
cycle at which corrective action needs to start.

Software problems and change proposals shall be handled by the
procedure described below. This change procedure requires a formal
review to be held (see Section 4.2.1).
1. A Software Problem Report (SPR) must be completed for each

detected problem, giving all information about the symptoms, the
operating environment and the software under test. Evidence, such as
listings of results, may be attached. A problem does not formally exist
until an SPR has been written.

2. The SPR is passed to the Software Review Board (SRB) who will
assign it to the relevant authority for analysis. A Software Change
Request form (SCR) must be completed for each software change
found necessary. This describes the changes required and includes
an assessment of the cost and schedule impacts.

3. The Software Review Board then reviews each SCR and, if
appropriate, assigns someone to carry out the change.

4. Each software modification is documented in detail in a Software
Modification Report (SMR), complete with items such as:
• source code changes;
• test reports;
• documentation changes;
• verification reports.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-19
 SOFTWARE CONFIGURATION MANAGEMENT

 Templates of SPR, SCR and SMR forms are given in Appendix E.

 3.2.4 Configuration status accounting

 Software configuration status accounting is the administrative
tracking and reporting of all configuration items.

 The status of all configuration items shall be recorded.
Configuration status accounting continues, as do all other configuration
management activities, throughout the life cycle.

 To perform software status accounting, each software project shall
record the:
• date and version/issue of each baseline;
• date and status of each RID and DCR;
• date and status of each SPR, SCR and SMR;
• summary description of each Configuration Item.

 Configuration status accounts should be produced at project
milestones, and may be produced periodically between project
milestones.

 Information in configuration status accounts should be used to
generate the SRNs and CI lists that must accompany each delivery of a
software baseline.

 3.2.5 Release

 The first release of the software must be documented in the STD.
Subsequent releases of software must be accompanied by a Software
Release Note (SRN) that lists the CIs included in the release, and the
procedures for installing them, so that they can be made available for use
(see Appendix E). As a minimum, the SRN shall record the faults that
have been repaired and the new requirements that have been
incorporated.

 For each release, documentation and code shall be consistent.
Further, old releases shall be retained, for reference. Where possible, the
previous release should be kept online during a change-over period, to
allow comparisons, and as a fallback. Older releases may be archived.
The number of releases in operational use at any time should be
minimised.

Downloaded from http://www.everyspec.com

 2-20 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE CONFIGURATION MANAGEMENT

 Some form of software protection is desirable for controlled source

and binary code to avoid use of an incorrect release. The strength of this
protection depends on the criticality of use of the product. In general,
each release should be self-identifying (e.g. checksum, operator
dialogue or printed output).

 Modified software shall be retested before release. Tests should
be selected from the SVVP to demonstrate its operational capability.

 While it is usually not necessary to repeat all the acceptance tests
after a software change is made, a standard subset of the acceptance
tests (often called ‘regression tests’) should be run when any new
release is made. These tests are required to demonstrate that a
modification has introduced no unexpected side effects.

 3.3 THE SOFTWARE CONFIGURATION MANAGEMENT PLAN

 All software configuration management activities shall be
documented in the Software Configuration Management Plan (SCMP).
The SCMP is divided into four sections which contain the configuration
management plans for the SR, AD, DD and TR phases. The table of
contents for each section of SCMP is described in Appendix C. This table
of contents is derived from the IEEE Standard for Software Configuration
Management Plans (ANSI/IEEE Std 828-1983).

 Additional information on configuration management may be
found in ANSI/IEEE Std 1042-1987, Guide to Software Configuration
Management.

 3.4 EVOLUTION OF THE SCMP THROUGHOUT THE LIFE CYCLE

 Configuration management procedures shall be in place before
software production (code and documentation) starts. SCM procedures
should be simple and efficient. Wherever possible, procedures should
be capable of reuse in later phases. Instability in SCM procedures can be
a major cause of poor progress in a software project.

 3.4.1 UR phase

 By the end of the UR review, the SR phase section of the SCMP
shall be produced (SCMP/SR). The SCMP/SR shall cover the

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-21
 SOFTWARE CONFIGURATION MANAGEMENT

configuration management procedures for all documentation, CASE tool
outputs or prototype code, to be produced in the SR phase.

 3.4.2 SR phase

 During the SR phase, the AD phase section of the SCMP shall be
produced (SCMP/AD). The SCMP/AD shall cover the configuration
management procedures for documentation, CASE tool outputs or
prototype code, to be produced in the AD phase. Unless there is a good
reason to change (e.g. different CASE tool used), SR phase procedures
should be reused.

 3.4.3 AD phase

 During the AD phase, the DD phase section of the SCMP shall be
produced (SCMP/DD). The SCMP/DD shall cover the configuration
management procedures for documentation, deliverable code, CASE tool
outputs or prototype code, to be produced in the DD phase. Unless there
is a good reason to change, AD or SR phase procedures should be
reused.

 3.4.4 DD phase

 During the DD phase, the TR phase section of the SCMP shall be
produced (SCMP/TR). The SCMP/TR shall cover the procedures for the
configuration management of the deliverables in the operational
environment.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-22

 CHAPTER 4
 SOFTWARE VERIFICATION AND VALIDATION

 4.1 INTRODUCTION

 In ANSI/IEEE Std 729-1983, three definitions of verification are
given. Verification can mean the:
• act of reviewing, inspecting, testing, checking, auditing, or otherwise

establishing and documenting whether or not items, processes,
services or documents conform to specified requirements
(ANSI/ASQC A3-1978);

• process of determining whether or not the products of a given phase
of the software development life cycle fulfil the requirements
established during the previous phase;

• formal proof of program correctness.

The first definition of verification in the list above is the most general
and includes the other two. In these Standards, the first definition
applies.

Validation is, according to its ANSI/IEEE definition, ‘the evaluation
of software at the end of the software development process to ensure
compliance with the user requirements’. Validation is, therefore, ‘end-to-
end’ verification.

Verification is essential for assuring the quality of a product.
Software verification is both a managerial and a technical function, since
the verification programme needs to be both defined and implemented. A
project’s verification activities should reflect the software’s criticality, and
the quality required of it. Verification can be the most time-consuming and
expensive part of a project; verification activities should appear in the
SPMP. Figure 4.1 shows the life cycle verification approach.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-23
 SOFTWARE VERIFICATION AND VALIDATION

URD

SRD

ADD

DDD

INTEGRATION

TESTS

SYSTEM
TESTS

ACCEPTANCE

TESTS

UNIT

TESTS

Product

Key

Activity

Verify

1

2

3

4

5

6

7

8

CODE

DETAILED

DESIGN

ARCHITECTURAL

DESIGN

SOFTWARE

REQUIREMENTS

DEFINITION

USER

REQUIREMENTS

DEFINITION 9

Accepted

Software

Tested

System

Tested
Subsystems

Tested
Modules

Compiled

Modules

Project

Request

SVVP/AT

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/UT

SVVP/IT

SVVP/ST

SVVP/DD

Figure 4.1 Life cycle verification approach

4.2 ACTIVITIES

Verification activities include:
• technical reviews, walkthroughs and software inspections;
• checking that software requirements are traceable to user

requirements;
• checking that design components are traceable to software

requirements;
• checking formal proofs and algorithms;
• unit testing;
• integration testing;
• system testing;
• acceptance testing;
• audits.

 The actual activities to be conducted in a project are described in
the Software Verification and Validation Plan (SVVP).

Downloaded from http://www.everyspec.com

 2-24 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE VERIFICATION AND VALIDATION

 As well as demonstrating that assertions about the software are

true, verification can also show that assertions are false. The skill and
ingenuity needed to identify defects should not be underestimated.
Users will have more confidence in a product that has been through a
rigorous verification programme than one subjected to minimal
examination and testing before release.

 4.2.1 Reviews

 The procedures for software reviews are based closely on the
ANSI/IEEE Std 1028-1988. A software review is an evaluation of a
software element to ascertain discrepancies from planned results and to
recommend improvements.

 Three kinds of reviews can be used for software verification:
• technical review
• walkthrough;
• software inspection.

 The three kinds of reviews are all ‘formal reviews’ in the sense that
all have specific objectives and procedures. All kinds of review seek to
identify defects and discrepancies of the software against specifications,
plans and standards.

 The software problem reporting procedure and document change
procedure defined in Part 2, Section 3.2.3.2, call for a formal review
process for all changes to code and documentation. Any of the three
kinds of formal review procedure can be applied for change control. The
SRB, for example, may choose to perform a technical review, software
inspection or walkthrough as necessary.

 4.2.1.1 Technical reviews

 Technical reviews should be used for the UR/R, SR/R, AD/R, and
DD/R. Technical reviews evaluate specific software elements to verify
progress against plan.

 The objective of a technical review is to evaluate a specific software
element (e.g. document, source module), and provide management with
evidence that:
• it conforms to specifications made in previous phases;

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-25
 SOFTWARE VERIFICATION AND VALIDATION

• the software element has been produced according to the project

standards and procedures;
• changes have been properly implemented, and affect only those

systems areas identified by the change specification (described in a
DCR or SCR).

 4.2.1.2 Walkthroughs

 Walkthroughs should be used for the early evaluation of
documents, models, designs and code in the SR, AD and DD phases.

 The objective of a walkthrough is to evaluate a specific software
element (e.g. document, source module). A walkthrough should attempt
to identify defects and consider possible solutions. In contrast with other
forms of review, secondary objectives are to educate, and to resolve
stylistic problems.

 4.2.1.3 Software inspections

 Software inspections should be used for the evaluation of
documents and code in the SR, AD and DD phases, before technical
review or testing.

 The objective of a software inspection is to detect and identify
defects. A software inspection is a rigorous peer examination that:
• identifies nonconformances with respect to specifications and

standards;
• uses metrics to monitor progress;
• ignores stylistic issues;
• does not discuss solutions.

 4.2.2 Tracing

 Forwards traceability requires that each input to a phase shall be
traceable to an output of that phase. Forwards traceability demonstrates
completeness. Forwards tracing is normally done by constructing cross-
reference matrices. Holes in the matrix demonstrate incompleteness quite
vividly.

 Backwards traceability requires that each output of a phase shall
be traceable to an input to that phase. Outputs that cannot be traced to
inputs are superfluous, unless it is acknowledged that the inputs

Downloaded from http://www.everyspec.com

 2-26 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE VERIFICATION AND VALIDATION

themselves were incomplete. Backwards tracing is normally done by
including with each item a statement of why it exists (e.g. the description
of the function of a component may be a list of functional requirements).

 During the software life cycle it is necessary to trace:
• user requirements to software requirements and vice-versa;
• software requirements to component descriptions and vice versa;
• integration tests to major components of the architecture and vice-

versa;
• system tests to software requirements and vice-versa;
• acceptance tests to user requirements and vice-versa.

 To support traceability, all components and requirements are
identified. The SVVP should define how tracing is to be done. References
to components and requirements should include identifiers.

 4.2.3 Formal proof

 Where practical, formal deductive proof of the correctness of
software may be attempted.

 Formal Methods, such as Z and VDM, possess an agreed notation,
with well-defined semantics, and a calculus, which allows proofs to be
constructed.

 The first property is shared with other methods for software
specification, but the second sets them apart. If a Formal Method can
demonstrate with certainty that something is correct, then separate
verification is not necessary. However, human errors are still possible,
and ways should be sought to avoid them, for example by ensuring that
all proofs are checked independently. CASE tools are available that
support Formal Methods, and their use is recommended.

 Refinement of a formal specification into executable code is
generally not a deductive process; other forms of verification (e.g.
testing), are necessary to verify the refinement.

 4.2.4 Testing

 Testing is the process of exercising or evaluating a system or
system component, by manual or automated means, to:

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-27
 SOFTWARE VERIFICATION AND VALIDATION

• confirm that it satisfies specified requirements;
• identify differences between expected and actual results.

 The amount of time spent in testing software is frequently
underestimated. Testing activities must be carefully specified so that they
can be adequately budgeted for. The expense of testing increases with
the number of errors present before it begins. Cheaper methods of
removing errors, such as inspection, walkthrough and formal proof,
should always be tried before testing is started.

 Software testing includes the following activities:
• planning the general approach and allocating resources;
• detailing the general approach for various kinds of tests in a test

design;
• defining the inputs, predicted results and execution conditions in a

test case specification;
• stating the sequence of actions to be carried out by test personnel in

a test procedure;
• logging the execution of a test procedure in a test report.

 Four kinds of testing have been identified in these Standards: unit
testing, integration testing, system testing and acceptance testing.

 Test software should be produced to the same standards as the
deliverable software. Test software and data must therefore be
documented and subjected to configuration control procedures. This
allows monitoring of the testing process, and permits test software and
data to be reused later, to verify that the software’s functionality and
performance have not been impaired by modifications. This is called
‘regression’ testing.

 Test plans, test designs, test cases, test procedures and test
reports for unit, integration, system and acceptance tests must be
documented in the SVVP.

 Figure 4.2.4 summarises when and where testing is documented in
the SVVP.

Downloaded from http://www.everyspec.com

 2-28 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE VERIFICATION AND VALIDATION

INTEGRATION
TESTS

SYSTEM
TESTS

ACCEPTANCE
TESTS

UNIT
TESTS

SVVP

SECTION

PHASE USER

REQUIREMENTS

REVIEW

SOFTWARE

REQUIREMENTS

DEFINITION

ARCHITECTURAL

DESIGN

DETAILED

DESIGN AND

PRODUCTION

TRANSFER

Plans
Designs

Cases

Procedures
Reports

Plans

Designs

Cases

Procedures

Reports

Plans

Designs

Cases

Procedures

Reports

Plans

Designs

Cases

Procedures

Reports

 Figure 4.2.4 Life cycle production of test documentation

 In Figure 4.2.4, the entry ‘Plans’ in the System Tests row, for
example, means that the System Test Plans are drawn up in the SR
phase and placed in the SVVP section ‘System Tests’, subsection ‘Plans’.
This is abbreviated as ‘SVVP/ST/Plans’.

 Reports of Acceptance Tests must also be summarised in the
Software Transfer Document.

 4.2.5 Auditing

 Audits are independent reviews that assess compliance with
software requirements, specifications, baselines, standards, procedures,
instructions, codes and contractual and licensing requirements. A
‘physical audit’ checks that all items identified as being part of the
configuration are present in the product baseline. A ‘functional audit’
checks that unit, integration and system tests have been carried out and
records their success or failure. Functional and physical audits shall be
performed before the release of the software.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-29
 SOFTWARE VERIFICATION AND VALIDATION

 4.3 THE SOFTWARE VERIFICATION AND VALIDATION PLAN

 All software verification and validation activities shall be
documented in the Software Verification and Validation Plan (SVVP). The
SVVP is divided into seven sections which contain the verification plans
for the SR, AD, DD phases and the unit, integration, system and
acceptance test specifications. The table of contents for each section of
SVVP is described in Appendix C. This table of contents is derived from
the IEEE Standard for Verification and Validation Plans (IEEE Std 1012-
1986) and the IEEE Standard for Software Test Documentation (IEEE Std
829-1983).

 The SVVP shall ensure that the verification activities:
• are appropriate for the degree of criticality of the software;
• meet the verification and acceptance testing requirements (stated in

the SRD);
• verify that the product will meet the quality, reliability, maintainability

and safety requirements (stated in the SRD);
• are sufficient to assure the quality of the product.

 4.4 EVOLUTION OF THE SVVP THROUGHOUT THE LIFE CYCLE

 4.4.1 UR phase

 By the end of the UR review, the SR phase section of the SVVP
shall be produced (SVVP/SR). The SVVP/SR shall define how to trace
user requirements to software requirements, so that each software
requirement can be justified. It should describe how the SRD is to be
evaluated by defining the review procedures. It may include specifications
of the tests to be performed with prototypes.

 The initiator(s) of the user requirements should lay down the
principles upon which the acceptance tests should be based. The
developer shall construct an acceptance test plan in the UR phase and
document it in the SVVP. This plan should define the scope, approach,
resources and schedule of acceptance testing activities.

 4.4.2 SR phase

 During the SR phase, the AD phase section of the SVVP shall be
produced (SVVP/AD). The SVVP/AD shall define how to trace software

Downloaded from http://www.everyspec.com

 2-30 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE VERIFICATION AND VALIDATION

requirements to components, so that each software component can be
justified. It should describe how the ADD is to be evaluated by defining
the review procedures. It may include specifications of the tests to be
performed with prototypes.

 During the SR Phase, the developer analyses the user requirements
and may insert ‘Acceptance testing requirements’ in the SRD. These
requirements constrain the design of the acceptance tests. This must be
recognised in the statement of the purpose and scope of the acceptance
tests.

 The planning of the system tests should proceed in parallel with
the definition of the software requirements. The developer may identify
‘Verification requirements’ for the software - these are additional
constraints on the unit, integration and system testing activities. These
requirements are also stated in the SRD.

 The developer shall construct a system test plan in the SR phase
and document it in the SVVP. This plan should define the scope,
approach, resources and schedule of system testing activities.

 4.4.3 AD phase

 During the AD phase, the DD phase section of the SVVP shall be
produced (SVVP/DD). The SVVP/AD shall describe how the DDD and
code are to be evaluated by defining the review and traceability
procedures.

 The developer shall construct an integration test plan in the AD
phase and document it in the SVVP. This plan should describe the
scope, approach, resources and schedule of intended integration tests.
Note that the items to be integrated are the software components
described in the ADD.

 4.4.4 DD phase

 In the DD phase, the SVVP sections on testing are developed as
the detailed design and implementation information become available.

 The developer shall construct a unit test plan in the DD phase and
document it in the SVVP. This plan should describe the scope,
approach, resources and schedule of intended unit tests. The items to be
tested are the software components described in the DDD.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-31
 SOFTWARE VERIFICATION AND VALIDATION

 The unit, integration, system and acceptance test designs shall

be described in the SVVP. These should specify the details of the test
approach for a software feature, or combination of software features, and
identify the associated tests.

 The unit integration, system and acceptance test cases shall be
described in the SVVP. These should specify the inputs, predicted results
and execution conditions for a test item.

 The unit, integration, system and acceptance test procedures shall
be described in the SVVP. These should be provide a step-by-step
description of how to carry out each test case.

 The unit, integration, system and acceptance test reports shall be
contained in the SVVP.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-32

 CHAPTER 5
 SOFTWARE QUALITY ASSURANCE

 NOTE: Where ESA PSS-01-series documents are applicable, and as a
consequence ESA PSS-01-21, ‘Software Product Assurance
Requirements for ESA Space Systems’ is also applicable, Part 2, Chapter
5 of these Standards, ‘Software Quality Assurance’, ceases to apply.

 5.1 INTRODUCTION

 Software Quality Assurance (SQA) is ‘a planned and systematic
pattern of all actions necessary to provide adequate confidence that the
item or product conforms to established technical requirements’
(ANSI/IEEE Std 730-1989). Software Quality Assurance is synonymous
with Software ‘Product Assurance’ and the terms are used
interchangeably in these Standards.

 The quality assurance activity is the process of verifying that these
Standards are being applied. In small projects this could be done by the
development team, but in large projects specific staff should be
allocated to the role.

 The Software Quality Assurance Plan (SQAP) defines how
adherence to these Standards will be monitored. The SQAP contents list
is a checklist for activities that have to be carried out to assure the quality
of the product.

 For each activity, those with responsibility for SQA should describe
the plans for monitoring it.

 5.2 ACTIVITIES

 Objective evidence of adherence to these Standards should be
sought during all phases of the life cycle. Documents called for by this
standard should be obtained and examined. Source code should be
checked for adherence to coding standards. Where possible, aspects of
quality (e.g. complexity, reliability, maintainability, safety, number of
defects, number of problems, number of RIDs) should be measured
quantitatively, using well-established metrics.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-33
 SOFTWARE QUALITY ASSURANCE

 Subsequent sections list activities derived from ANSI/IEEE Std

730-1989 that are necessary if a software item is to be fit for its purpose.
Each section discusses how the activity can be verified.

 5.2.1 Management

 Analysis of the managerial structure that influences and controls
the quality of the software is an SQA activity. The existence of an
appropriate organisational structure should be verified. It should be
confirmed that the individuals defined in that structure have defined tasks
and responsibilities. The organisation, tasks and responsibilities will have
been defined in the SPMP.

 5.2.2 Documentation

 The documentation plan that has been defined in the SPMP
should be analysed. Any departures from the documentation plan
defined in these Standards should be scrutinised and discussed with
project management.

 5.2.3 Standards, practices, conventions and metrics

 Adherence to all standards, practices and conventions should be
monitored. Deviations and non-conformance should be noted and
brought to the attention of project management. SQA personnel may
assist project management with the correct interpretation of standards,
practices and conventions.

 A ‘metric’ is a quantitative measure of the degree to which a
system, component, or process possesses a given attribute. Metrics are
essential for effective management. Metrics need to be simple to
understand and apply to be useful.

 Metrics for measuring quality, particularly reliability, and
maintainability, should be specified in the SRD. These metrics should be
meaningful to users, and reflect their requirements. Additional metrics
may be defined by the project. Values of complexity metrics may be
defined in the design standards to limit design complexity, for example.
Metrics may be defined in the SPMP to guide decision-making (e.g. if a
software component exhibits more than three failures in integration
testing then it will be reinspected).

 Metrics should relate to project objectives, so that they can be
used for controlling it. All objectives should have metrics attached to

Downloaded from http://www.everyspec.com

 2-34 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE QUALITY ASSURANCE

them, otherwise undue weight can be given to those for which metrics
have been defined. A project that counts the number of lines of code
written, but not the failure rate, is likely to concentrate on producing a
large volume of code, and not reliability, for example.

 5.2.4 Reviews and audits

 These Standards call for reviews of the URD, the SRD, the ADD, the
DDD, the SVVP and the SCMP. It also calls for the review and audit of the
code during production. The review and audit arrangements described in
the SVVP should be examined. Many kinds of reviews are possible (e.g.
technical, inspection and walkthrough). It should be verified that the
review mechanisms are appropriate for the type of project. SQA
personnel should participate in the review process.

 5.2.5 Testing activities

 Unit, integration, system and acceptance testing of executable
software is essential to assure its quality. Test plans, test designs, test
case, test procedures and test reports are described in the SVVP. These
should be reviewed by SQA personnel. They should monitor the testing
activities carried out by the development team, including test execution.
Additionally, other tests may be proposed in the SQAP. These may be
carried out by SQA personnel.

 5.2.6 Problem reporting and corrective action

 The problem handling procedure described in these Standards is
designed to report and track problems from identification until solution.
SQA personnel should monitor the execution of the procedures,
described in the SCMP, and examine trends in problem occurrence.

 5.2.7 Tools, techniques and methods

 These Standards call for tools, techniques and methods for
software production to be defined at the project level. It is an SQA activity
to check that appropriate tools, techniques and methods are selected
and to monitor their correct application.

 SQA personnel may decide that additional tools, techniques and
methods are required to support their monitoring activity. These should
be described in the SQAP.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-35
 SOFTWARE QUALITY ASSURANCE

 5.2.8 Code and media control

 These Standards require that the procedures for the methods and
facilities used to maintain, store, secure and document controlled
versions of the identified software, be defined in the SCMP. SQA
personnel should check that appropriate procedures have been defined
in the SCMP and carried out.

 5.2.9 Supplier control

 Software items acquired from external suppliers must always be
checked against the standards for the project. An SQAP shall be
produced by each contractor developing software. An SQAP is not
required for commercial software.

 5.2.10 Records collection, maintenance and retention

 These standards define a set of documents that must be produced
in any project. Additional documents, for example minutes of meetings
and review records, may also be produced. SQA personnel should
check that appropriate methods and facilities are used to assemble,
safeguard, and maintain all this documentation for at least the life of the
project. Documentation control procedures are defined in the SCMP.

 5.2.11 Training

 SQA personnel should check that development staff are properly
trained for their tasks and identify any training that is necessary. Training
plans are documented in the SPMP.

 5.2.12 Risk management

 All projects must identify the factors that are critical to their success
and control these factors. This is called ‘risk management’. Project
management must always analyse the risks that affect the project. Their
findings are documented in the SPMP. SQA personnel should monitor
the risk management activity, and advise project management on the
methods and procedures to identify, assess, monitor, and control areas
of risk.

Downloaded from http://www.everyspec.com

 2-36 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE QUALITY ASSURANCE

 5.3 THE SOFTWARE QUALITY ASSURANCE PLAN

 All software quality assurance activities shall be documented in the
Software Quality Assurance Plan (SQAP). The recommended table of
contents for the SQAP is presented in Appendix C. This table of contents
is derived from the IEEE Standard for Software Quality Assurance Plans
(ANSI/IEEE Std 730-1989).

 5.4 EVOLUTION OF THE SQAP THROUGHOUT THE LIFE CYCLE

 5.4.1 UR phase

 By the end of the UR review, the SR phase section of the SQAP
shall be produced (SQAP/SR). The SQAP/SR shall describe, in detail,
the quality assurance activities to be carried out in the SR phase. The
SQAP/SR shall outline the quality assurance plan for the rest of the
project.

 5.4.2 SR phase

 During the SR phase, the AD phase section of the SQAP shall be
produced (SQAP/AD). The SQAP/AD shall cover in detail all the quality
assurance activities to be carried out in the AD phase.

 In the SR phase, the SRD should be analysed to extract any
constraints that relate to software quality assurance (e.g. standards and
documentation requirements).

 5.4.3 AD phase

 During the AD phase, the DD phase section of the SQAP shall be
produced (SQAP/DD). The SQAP/DD shall cover in detail all the quality
assurance activities to be carried out in the DD phase.

 5.4.4 DD phase

 During the DD phase, the TR phase section of the SQAP shall be
produced (SQAP/TR). The SQAP/TR shall cover in detail all the quality
assurance activities to be carried out from the start of the TR phase until
final acceptance in the OM phase.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 2-37
 SOFTWARE QUALITY ASSURANCE

 This page is intentionally left blank.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 3-1
 SOFTWARE QUALITY ASSURANCE

 Part 3
 Appendices

Downloaded from http://www.everyspec.com

 3-2 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE QUALITY ASSURANCE

 This page is intentionally left blank.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 3-A1
 GLOSSARY

 APPENDIX A
 GLOSSARY

 A.1 LIST OF TERMS

 The terminology used in the ESA Software Engineering Standards
conforms to ANSI/IEEE Std 729-1983, ‘IEEE Standard Glossary of
Software Engineering Terminology’. This section contains definitions of
terms:
• that are not contained in ANSI/IEEE Std 729-1983;
• that have multiple definitions in ANSI/IEEE Std 729-1983, one of

which is used in these Standards (denoted by);
• whose ISO definition is preferred (denoted by ISO and taken from ISO

2382, ‘Glossary of Terms used in Data Processing’).
Component

General term for a part of a software system. Components may be
assembled and decomposed to form new components. They are
implemented as modules, tasks or programs, any of which may be
configuration items. This usage of the term is more general than in
ANSI/IEEE parlance, which defines a component as a ‘basic part of a
system or program’; in ESA PSS-05-0, components may not be ‘basic’ as
they can be decomposed.
Concurrent Production and Documentation

A technique of software development where the documentation of a
module proceeds in parallel with its production, i.e. detailed design
specifications, coding and testing.
Decomposition

The breaking down into parts.
Development

The period from URD delivery to final acceptance, during which the
software is produced.

Downloaded from http://www.everyspec.com

 3-B2 ESA PSS-05-0 Issue 2 (February 1991)
 GLOSSARY

Developer

The person or organisation responsible for developing the software from
a specification of the user requirements to an operational system.
Environment

Either: Physical conditions such as temperature, humidity and
cleanliness, within which a computer system operates; or, the support
and utility software and hardware.
Formal Method

A mathematically precise means of specifying software, enabling
specifications to be proven consistent.
Interface Control Document

A specification of an interface between a system and an external system.
Layer

One hierarchical level in the decomposition of a system.
Logical model

An implementation-independent representation of a real world process;
contrast physical model.
Model

A representation of a real world process. A software model is composed
of symbols organised according to some convention.
Maintainability

The ease with which software can be maintained ().
Nonconformance

A statement of conflict between descriptive documentation and the object
described.
Physical model

An implementation-dependent representation of a real world process;
contrast logical model.

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 3-A3
 GLOSSARY

Product Assurance

The totality of activities, standards, controls and procedures in the lifetime
of a product which establishes confidence that the delivered product will
conform adequately to customer requirements (Product Assurance and
Safety Policy and Basic Requirements for ESA Space Systems, ESA PSS-
01-0, May 1990).
Production

The process of writing and testing software, as opposed to design and
operations.
Project

Either the development process or the organisation devoted to the
development process.
Prototype

An executable model of selected aspects of a proposed system.
Recognised method

Describes the characteristics of an agreed process or procedure used in
the engineering of a product or performing a service.
Release

A baseline made available for use.
Reliability

The probability that software will not cause the failure of a system for a
specified time under specified conditions.

Response Time

The elapsed time between the end of an inquiry or demand on a
computer system and the beginning of the response (ISO).
Review

An activity to verify that the outputs of a phase in the software life cycle
conform to their specifications (contrast IEEE: ‘Design Review’.)

Downloaded from http://www.everyspec.com

 3-B4 ESA PSS-05-0 Issue 2 (February 1991)
 GLOSSARY

Stability

Quality of not changing. Either in the short term, not breaking down, or in
the longer term, not subject to design and/or requirements changes
(Contrast IEEE (1) the ability to continue unchanged despite disturbing or
disruptive events, (2) the ability to return to an original state after
disturbing or disruptive events).
Software

The programs, procedures, rules and all associated documentation
pertaining to the operation of a computerised system (ISO).
Task

A software component that executes sequentially. A task may execute in
parallel with other tasks.
Traceability

The ability to relate an input to a phase of the software life cycle to an
output from that phase. The item may be code or documentation.
Traceability Matrix

Matrix showing which outputs correspond to which inputs. More often
showing which parts of a design satisfy which requirements.
Trade-off

Comparison of alternatives to determine the optimal solution.
Turnaround

The elapsed time between submission of a job and the return of the
complete output (ISO).
User

Any individual or group ultimately making use of the output from a
computer system, distinct from personnel responsible for building,
operating or maintaining the system.
Verification

The act of reviewing, inspecting, testing, checking, auditing, or otherwise
establishing and documenting whether items, processes, services or
documents conform to specified requirements (ANSI/ASQC A3-1978).

Downloaded from http://www.everyspec.com

 ESA PSS-05-0 Issue 2 (February 1991) 3-A5
 GLOSSARY

Version

A stage in the evolution of a configuration item.
Work-Around

A temporary solution to a problem.
Work Breakdown Structure

The WBS describes the hierarchy of tasks (grouped into ‘work packages’)
to be carried out in a project. The WBS corresponds to the structure of
the work to be performed, and reflects the way in which the project costs
will be summarised and reported.
Work Package

A detailed, short span, unit of work to be performed in a project.

Downloaded from http://www.everyspec.com

 3-B6 ESA PSS-05-0 Issue 2 (February 1991)
 GLOSSARY

A.2 LIST OF ACRONYMS

AD Architectural Design
ADD Architectural Design Document
AD/R Architectural Design Review
ANSI American National Standards Institute
AT Acceptance Test
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
DCR Document Change Record
DD Detailed Design and production
DDD Detailed Design Document
DD/R Detailed Design and production Review
DSS Document Status Sheet
ESA European Space Agency
IEEE Institute of Electrical and Electronics Engineers
ICD Interface Control Document
ISO International Standards Organisation
IT Integration Test
PA Product Assurance
PHD Project History Document
PSS Procedures, Specifications and Standards
QA Quality Assurance
RID Review Item Discrepancy
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCR Software Change Request
SPM Software Project Management
SPMP Software Project Management Plan
SMR Software Modification Report
SPR Software Problem Report
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SR Software Requirement
SRB Software Review Board
SRD Software Requirements Document
SRN Software Release Note
SR/R Software Requirements Review
ST System Test
STD Software Transfer Document
SUM Software User Manual
SVVP Software Verification and Validation Plan
UR User Requirements
URD User Requirements Document
UR/R User Requirements Review
UT Unit Tests

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-B1
SOFTWARE PROJECT DOCUMENTS

APPENDIX B
SOFTWARE PROJECT DOCUMENTS

This Appendix summarises the documents that can be produced in
a software engineering project. Table B.1 summarises technical
documents. Table B.2 summarises the plans. Table B.3 summarises
reports, forms and other documentation.

Acronym Name Purpose

URD User Requirements
Document

To state the needs of the users of the
software system.

SRD Software Requirements
Document

To specify the requirements of the
software system from the developer’s
point of view. The SRD incorporates the
user requirements described in the URD

ADD Architectural Design
Document

To specify the top-level components of
the software. The ADD fulfils the
software

 requirements stated in the SRD.

DDD Detailed Design
Document

To specify the lower-level components of
the software. The DDD fulfils the
requirements laid down in the SRD,
following the top-level design described
in the ADD.

SUM Software User Manual To state what the software does and
how to operate the software.

STD Software Transfer
Document

To contain the checked configuration
item list and SPRs, SCRs, SMRs
generated in the TR phase.

PHD Project History
Document

To record significant information about
the specification, design, production
and operation of the software.

Table B.1 Summary of technical documents

Downloaded from http://www.everyspec.com

 3-B2 ESA PSS-05-0 Issue 2 (February 1991)
 SOFTWARE PROJECT DOCUMENTS

Acronym Name Purpose

SPMP Software Project
Management Plan

To state the organisation, WBS,
schedule and budget, for each
development phase.

SCMP Software Configuration
Management Plan

To state the procedures for identifying,
controlling, and recording the status of
software items.

SVVP Software Verification
and Validation Plan

To state the procedures for testing the
software and for verifying that the
products of each phase are consistent
with their inputs.

SQAP Software Quality
Assurance Plan

To state the procedures for assuring the
quality of the software products.

Table B.2 Summary of plans required

Acronym Name Purpose

DCR Document Change
Record

To record a set of changes to a document

DSS Document Status
Sheet

To summarise the issues and revisions of
a document.

RID Review Item
Discrepancy

To state issues to be addressed in a
review and record decisions made

SCR Software Change
Request

To describe changes required in the
software and its documentation in the TR
and OM phases, including new
requirements.

SMR Software Modification
Report

To describe changes made to the
software and its documentation in the TR
and OM phases.

SPR Software Problem
Report

To record a problem reported in the use
or test of software and its documentation

SRN Software Release
Note

To summarise changes made to software
with respect to the previous release.

Table B.3 Summary of reports and forms

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C1
DOCUMENT TEMPLATES

APPENDIX C
DOCUMENT TEMPLATES

All documents should contain the following service information:

 a - Abstract
 b - Table of contents
 c - Document Status Sheet
 d - Document Change Records made since last issue

If there is no information pertinent to a section, the following
should appear below the section heading: ‘This section not applicable’,
with the appropriate reasons for this exclusion.

Guidelines on the contents of document sections are given in
italics. Section titles which are to be provided by document authors are
enclosed in square brackets.

Downloaded from http://www.everyspec.com

3-C2 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

C.1 URD TABLE OF CONTENTS

1 Introduction
1.1 Purpose of the document
1.2 Scope of the software
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the document

2 General Description
2.1 Product perspective
2.2 General capabilities
2.3 General constraints
2.4 User characteristics
2.5 Operational environment
2.6 Assumptions and dependencies

3 Specific Requirements
3.1 Capability requirements
3.2 Constraint requirements

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C3
DOCUMENT TEMPLATES

C.2 SRD TABLE OF CONTENTS

1 Introduction
1.1 Purpose of the document
1.2 Scope of the software
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the document

2 General Description
2.1 Relation to current projects
2.2 Relation to predecessor and successor projects
2.3 Function and purpose
2.4 Environmental considerations
2.5 Relation to other systems
2.6 General constraints
2.7 Model description

3 Specific Requirements
3.1 Functional requirements
3.2 Performance requirements
3.3 Interface requirements
3.4 Operational requirements
3.5 Resource requirements
3.6 Verification requirements
3.7 Acceptance testing requirements
3.8 Documentation requirements
3.9 Security requirements
3.10 Portability requirements
3.11 Quality requirements
3.12 Reliability requirements
3.13 Maintainability requirements
3.14 Safety requirements

4 User Requirements vs Software Requirements Traceability matrix

Downloaded from http://www.everyspec.com

3-C4 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

C.3 ADD TABLE OF CONTENTS

1 Introduction
1.1 Purpose of the document
1.2 Scope of the software
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the document

2 System Overview

3 System Context

4 System Design
4.1 Design method
4.2 Decomposition description

5 Component Description
5.n [Component identifier]

5.n.1 Type
5.n.2 Purpose
5.n.3 Function
5.n.4 Subordinates
5.n.5 Dependencies
5.n.6 Interfaces
5.n.7 Resources
5.n.8 References
5.n.9 Processing
5.n.10 Data

6 Feasibility and Resource Estimates

7 Software Requirements vs Components Traceability matrix

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C5
DOCUMENT TEMPLATES

C.4 DDD TABLE OF CONTENTS

Part 1 - General Description

1 Introduction
1.1 Purpose of the document
1.2 Scope of the software
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the document

2 Project Standards, Conventions and Procedures
2.1 Design standards
2.2 Documentation standards
2.3 Naming conventions
2.4 Programming standards
2.5 Software development tools

Part 2 - Component Design Specifications
n [Component identifier]

n.1 Type
n.2 Purpose
n.3 Function
n.4 Subordinates
n.5 Dependencies
n.6 Interfaces
n.7 Resources
n.8 References
n.9 Processing
n.10 Data

Appendix A Source code listings
Appendix B Software Requirements vs Component Traceability

 matrix

Downloaded from http://www.everyspec.com

3-C6 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

C.5 SUM TABLE OF CONTENTS

1 Introduction
1.1 Intended readership
1.2 Applicability statement
1.3 Purpose
1.4 How to use this document
1.5 Related documents
1.6 Conventions
1.7 Problem reporting instructions

2 [Overview section]

3 [Instruction section]
(a) Functional description
(b) Cautions and warnings
(c) Procedures
(d) Probable errors and possible causes

4 [Reference section]
(a) Functional description
(b) Cautions and warnings
(c) Formal description
(d) Examples
(e) Possible error messages and causes
(f) Cross references to other operations

Appendix A Error messages and recovery procedures
Appendix B Glossary
Appendix C Index (for manuals of 40 pages or more)

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C7
DOCUMENT TEMPLATES

C.6 STD TABLE OF CONTENTS

1 Introduction
1.1 Purpose of the document
1.2 Scope of the software
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the document

2 Installation Procedures

3 Build Procedures

4 Configuration Item List

5 Acceptance Test Report Summary

6 Software Problem Reports

7 Software Change Requests

8 Software Modification Reports

Downloaded from http://www.everyspec.com

3-C8 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

C.7 PHD TABLE OF CONTENTS

1 Description of the project

2 Management of the project
2.1 Contractual approach (if applicable)
2.2 Project organisation
2.3 Methods used
2.4 Planning

3 Software Production
3.1 Estimated vs. actual amount of code produced
3.2 Documentation
3.3 Estimated vs. actual effort
3.4 Computer resources
3.5 Analysis of productivity factors

4 Quality Assurance Review

5 Financial Review

6 Conclusions

7 Performance of the system in OM phase

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C9
DOCUMENT TEMPLATES

C.8 SPMP TABLE OF CONTENTS

Software Project Management Plan for the SR Phase

1 Introduction
1.1 Project overview
1.2 Project deliverables
1.3 Evolution of the SPMP
1.4 Reference materials
1.5 Definitions and acronyms

2 Project Organisation
2.1 Process model
2.2 Organisational structure
2.3 Organisational boundaries and interfaces
2.4 Project responsibilities

3 Managerial process
3.1 Management objectives and priorities
3.2 Assumptions, dependencies and constraints
3.3 Risk management
3.4 Monitoring and controlling mechanisms
3.5 Staffing plan

4 Technical Process
4.1 Methods, tools and techniques
4.2 Software documentation
4.3 Project support functions

 5 Work Packages, Schedule, and Budget
5.1 Work packages
5.2 Dependencies
5.3 Resource requirements
5.4 Budget and resource allocation
5.5 Schedule

Software Project Management Plan for the AD Phase Same
Software Project Management Plan for the DD Phase structure as
Software Project Management Plan for the TR Phase SPMP/SR

Downloaded from http://www.everyspec.com

3-C10 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

C.9 SCMP TABLE OF CONTENTS

Software Configuration Management Plan for the SR Phase

1 Introduction
1.1 Purpose of the plan
1.2 Scope of the plan
1.3 Glossary
1.4 References

2 Management

3 Configuration Identification

4 Configuration Control
4.1 Code control
4.2 Media control
4.3 Change control

5 Configuration Status Accounting

6 Tools, Techniques and Methods for SCM

7 Supplier Control

8 Records Collection and Retention

Software Configuration Management Plan for the AD Phase Same
Software Configuration Management Plan for the DD Phase structure as
Software Configuration Management Plan for the TR Phase SCMP/SR

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C11
DOCUMENT TEMPLATES

C.10 SVVP TABLE OF CONTENTS

Software Verification and Validation Plan for the SR Phase

1 Purpose

2 Reference documents

3 Definitions

4 Verification overview
4.1 Organisation
4.2 Master schedule
4.3 Resources summary
4.4 Responsibilities
4.5 Tools, techniques and methods

5 Verification Administrative Procedures
5.1 Anomaly reporting and resolution
5.2 Task iteration policy
5.3 Deviation policy
5.4 Control procedures
5.5 Standards, practices and conventions

6 Verification Activities
6.1 Traceability matrix template
6.2 Formal proofs
6.3 Reviews

7 Software Verification reporting

Software Verification and Validation Plan for the AD Phase Same structure as
Software Verification and Validation Plan for the DD Phase SVVP/SR

Downloaded from http://www.everyspec.com

3-C12 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

Acceptance Test Specification

1 Test Plan
1.1 Introduction
1.2 Test items
1.3 Features to be tested
1.4 Features not to be tested
1.5 Approach
1.6 Item pass/fail criteria
1.7 Suspension criteria and resumption requirements
1.8 Test deliverables
1.9 Testing tasks
1.10 Environmental needs
1.11 Responsibilities
1.12 Staffing and training needs
1.13 Schedule
1.14 Risks and contingencies
1.15 Approvals

 2 Test Designs (for each test design...)
2.n.1 Test design identifier
2.n.2 Features to be tested
2.n.3 Approach refinements
2.n.4 Test case identification
2.n.5 Feature pass/fail criteria

3 Test Case Specifications (for each test case...)
3.n.1 Test case identifier
3.n.2 Test items
3.n.3 Input specifications
3.n.4 Output specifications
3.n.5 Environmental needs
3.n.6 Special procedural requirements
3.n.7 Intercase dependencies

4 Test Procedures (for each test case...)
4.n.1 Test procedure identifier
4.n.2 Purpose
4.n.3 Special requirements
4.n.4 Procedure steps

5 Test Reports (for each execution of a test procedure ...)
5.n.1 Test report identifier
5.n.2 Description
5.n.3 Activity and event entries

System Test Specification Same
Integration Test Specification structure as
Unit Test Specification (may be in DDD) SVVP/AT

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-C13
DOCUMENT TEMPLATES

C.11 SQAP TABLE OF CONTENTS

Software Quality Assurance Plan for the SR phase

1 Purpose of the plan
2 Reference documents
3 Management
4 Documentation
5 Standards, practices, conventions and metrics

5.1 Documentation standards
5.2 Design standards
5.3 Coding standards
5.4 Commentary standards
5.5 Testing standards and practices
5.6 Selected software quality assurance metrics
5.7 Statement of how compliance will be monitored

6 Review and audits
7 Test
8 Problem reporting and corrective action
9 Tools, techniques and methods
10 Code control
11 Media control
12 Supplier control
13 Records collection, maintenance and retention
14 Training
15 Risk Management
16 Outline of the rest of the project

Software Quality Assurance Plan for the AD Phase Same
Software Quality Assurance Plan for the DD Phase structure as
Software Quality Assurance Plan for the TR Phase SQAP/SR

Downloaded from http://www.everyspec.com

3-C14 ESA PSS-05-0 Issue 2 (February 1991)
DOCUMENT TEMPLATES

This page is intentionally left blank

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-D1
SUMMARY OF MANDATORY PRACTICES

APPENDIX D
SUMMARY OF MANDATORY PRACTICES

These mandatory practices have been extracted for ease of
reference, and can be used as a review checklist. They are labelled with
the chapter they come from, suffixed with a sequence number. This
number corresponds to the order of the requirement in the chapter.

D.1 SOFTWARE LIFE CYCLE
SLC01 The products of a software development project shall be delivered in a

timely manner and be fit for their purpose.
SLC02 Software development activities shall be systematically planned and

carried out.
SLC03 All software projects shall have a life cycle approach which includes the

basic phases shown in Part 1, Figure 1.2:
UR phase - Definition of the user requirements
SR phase - Definition of the software requirements
AD phase - Definition of the architectural design
DD phase - Detailed design and production of the code
TR phase - Transfer of the software to operations
OM phase - Operations and maintenance

D.2 UR PHASE
UR01 The definition of the user requirements shall be the responsibility of the

user.
UR02 Each user requirement shall include an identifier.
UR03 Essential user requirements shall be marked as such.
UR04 For incremental delivery, each user requirement shall include a measure

of priority so that the developer can decide the production schedule.
UR05 The source of each user requirement shall be stated.
UR06 Each user requirement shall be verifiable.

Downloaded from http://www.everyspec.com

3-D2 ESA PSS-05-0 Issue 2 (February 1991)
SUMMARY OF MANDATORY PRACTICES

UR07 The user shall describe the consequences of losses of availability, or
breaches of security, so that developers can fully appreciate the criticality
of each function.

UR08 The outputs of the UR phase shall be formally reviewed during the User
Requirements Review.

UR09 Non-applicable user requirements shall be clearly flagged in the URD.
UR10 An output of the UR phase shall be the User Requirements Document

(URD).
UR11 The URD shall always be produced before a software project is started.
UR12 The URD shall provide a general description of what the user expects the

software to do.
UR13 All known user requirements shall be included in the URD.
UR14 The URD shall describe the operations the user wants to perform with the

software system.
UR15 The URD shall define all the constraints that the user wishes to impose

upon any solution.
UR16 The URD shall describe the external interfaces to the software system or

reference them in ICDs that exist or are to be written.

D.3 SR PHASE
SR01 SR phase activities shall be carried out according to the plans defined in

the UR phase.
SR02 The developer shall construct an implementation-independent model of

what is needed by the user.
SR03 A recognised method for software requirements analysis shall be

adopted and applied consistently in the SR phase.
SR04 Each software requirement shall include an identifier.
SR05 Essential software requirements shall be marked as such.
SR06 For incremental delivery, each software requirement shall include a

measure of priority so that the developer can decide the production
schedule.

SR07 References that trace software requirements back to the URD shall
accompany each software requirement.

SR08 Each software requirement shall be verifiable.

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-D3
SUMMARY OF MANDATORY PRACTICES

SR09 The outputs of the SR phase shall be formally reviewed during the
Software Requirements Review.

SR10 An output of the SR phase shall be the Software Requirements
Document (SRD).

SR11 The SRD shall be complete.
SR12 The SRD shall cover all the requirements stated in the URD.
SR13 A table showing how user requirements correspond to software

requirements shall be placed in the SRD.
SR14 The SRD shall be consistent.
SR15 The SRD shall not include implementation details or terminology, unless

it has to be present as a constraint.
SR16 Descriptions of functions ... shall say what the software is to do, and must

avoid saying how it is to be done.
SR17 The SRD shall avoid specifying the hardware or equipment, unless it is a

constraint placed by the user.
SR18 The SRD shall be compiled according to the table of contents provided

in Appendix C.

D.4 AD PHASE
AD01 AD phase activities shall be carried out according to the plans defined in

the SR phase.
AD02 A recognised method for software design shall be adopted and applied

consistently in the AD phase.
AD03 The developer shall construct a ‘physical model’, which describes the

design of the software using implementation terminology.
AD04 The method used to decompose the software into its component parts

shall permit a top-down approach.
AD05 Only the selected design approach shall be reflected in the ADD.

For each component the following information shall be detailed in the
ADD:

AD06 • data input;
AD07 • functions to be performed;
AD08 • data output.
AD09 Data structures that interface components shall be defined in the ADD.

Downloaded from http://www.everyspec.com

3-D4 ESA PSS-05-0 Issue 2 (February 1991)
SUMMARY OF MANDATORY PRACTICES

Data structure definitions shall include the:
AD10 • description of each element (e.g. name, type, dimension);
AD11 • relationships between the elements (i.e. the structure);
AD12 • range of possible values of each element;
AD13 • initial values of each element.
AD14 The control flow between the components shall be defined in the ADD.
AD15 The computer resources (e.g. CPU speed, memory, storage, system

software) needed in the development environment and the operational
environment shall be estimated in the AD phase and defined in the ADD.

AD16 The outputs of the AD phase shall be formally reviewed during the
Architectural Design Review.

AD17 The ADD shall define the major components of the software and the
interfaces between them.

AD18 The ADD shall define or reference all external interfaces.
AD19 The ADD shall be an output from the AD phase.
AD20 The ADD shall be complete, covering all the software requirements

described in the SRD.
AD21 A table cross-referencing software requirements to parts of the

architectural design shall be placed in the ADD.
AD22 The ADD shall be consistent.
AD23 The ADD shall be sufficiently detailed to allow the project leader to draw

up a detailed implementation plan and to control the overall project
during the remaining development phases.

AD24 The ADD shall be compiled according to the table of contents provided
in Appendix C.

D.5 DD PHASE
DD01 DD phase activities shall be carried out according to the plans defined in

the AD phase.
The detailed design and production of software shall be based on the
following three principles:

DD02 • top-down decomposition;
DD03 • structured programming;

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-D5
SUMMARY OF MANDATORY PRACTICES

DD04 • concurrent production and documentation.
DD05 The integration process shall be controlled by the software configuration

management procedures defined in the SCMP.
DD06 Before a module can be accepted, every statement in a module shall be

executed successfully at least once.
DD07 Integration testing shall check that all the data exchanged across an

interface agrees with the data structure specifications in the ADD.
DD08 Integration testing shall confirm that the control flows defined in the ADD

have been implemented.
DD09 System testing shall verify compliance with system objectives, as stated

in the SRD.
DD10 When the design of a major component is finished, a critical design

review shall be convened to certify its readiness for implementation.
DD11 After production, the DD Review (DD/R) shall consider the results of

the verification activities and decide whether to transfer the software.
DD12 All deliverable code shall be identified in a configuration item list.
DD13 The DDD shall be an output of the DD phase.
DD14 Part 2 of the DDD shall have the same structure and identification

scheme as the code itself, with a 1:1 correspondence between sections
of the documentation and the software components.

DD15 The DDD shall be complete, accounting for all the software requirements
in the SRD.

DD16 A table cross-referencing software requirements to the detailed design
components shall be placed in the DDD.

DD17 A Software User Manual (SUM) shall be an output of the DD phase.

D.6 TR PHASE
TR01 Representatives of users and operations personnel shall participate in

acceptance tests.
TR02 The Software Review Board (SRB) shall review the software’s

performance in the acceptance tests and recommend, to the initiator,
whether the software can be provisionally accepted or not.

TR03 TR phase activities shall be carried out according to the plans defined in
the DD phase.

Downloaded from http://www.everyspec.com

3-D6 ESA PSS-05-0 Issue 2 (February 1991)
SUMMARY OF MANDATORY PRACTICES

TR04 The capability of building the system from the components that areirectly
modifiable by the maintenance team shall be established.

TR05 Acceptance tests necessary for provisional acceptance shall be
indicated in the SVVP.

TR06 The statement of provisional acceptance shall be produced by the
initiator, on behalf of the users, and sent to the developer.

TR07 The provisionally accepted software system shall consist of the outputs of
all previous phases and modifications found necessary in the TR phase.

TR08 An output of the TR phase shall be the STD.
TR09 The STD shall be handed over from the developer to the maintenance

organisation at provisional acceptance.
TR10 The STD shall contain the summary of the acceptance test reports, and

all documentation about software changes performed during the TR
phase.

D.7 OM PHASE
OM01 Until final acceptance, OM phase activities that involve the developer

shall be carried out according to the plans defined in the SPMP/TR.
OM02 All the acceptance tests shall have been successfully completed before

the software is finally accepted.
OM03 Even when no contractor is involved, there shall be a final acceptance

milestone to arrange the formal hand-over from software development to
maintenance.

OM04 A maintenance organisation shall be designated for every software
product in operational use.

OM05 Procedures for software modification shall be defined.
OM06 Consistency between code and documentation shall be maintained.
OM07 Resources shall be assigned to a product’s maintenance until it is retired.
OM08 The SRB ... shall authorise all modifications to the software.
OM09 The statement of final acceptance shall be produced by the initiator, on

behalf of the users, and sent to the developer.
OM10 The PHD shall be delivered to the initiator after final acceptance.

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-D7
SUMMARY OF MANDATORY PRACTICES

D.8 SOFTWARE PROJECT MANAGEMENT
SPM01 All software project management activities shall be documented in the

Software Project Management Plan (SPMP).
SPM02 By the end of the UR review, the SR phase section of the SPMP shall be

produced (SPMP/SR).
SPM03 The SPMP/SR shall outline a plan for the whole project.
SPM04 A precise estimate of the effort involved in the SR phase shall be

included in the SPMP/SR.
SPM05 During the SR phase, the AD phase section of the SPMP shall be

produced (SPMP/AD).
SPM06 An estimate of the total project cost shall be included in the SPMP/AD.
SPM07 A precise estimate of the effort involved in the AD phase shall be included

in the SPMP/AD.
SPM08 During the AD phase, the DD phase section of the SPMP shall be

produced (SPMP/DD).
SPM09 An estimate of the total project cost shall be included in the SPMP/DD.
SPM10 The SPMP/DD shall contain a WBS that is directly related to the

decomposition of the software into components.
SPM11 The SPMP/DD shall contain a planning network showing relationships of

coding, integration and testing activities.
SPM12 No software production work packages in the SPMP/DD shall last longer

than 1 man-month.
SPM13 During the DD phase, the TR phase section of the SPMP shall be

produced (SPMP/TR).

D.9 SOFTWARE CONFIGURATION MANAGEMENT
SCM01 All software items, for example documentation, source code, object or

relocatable code, executable code, files, tools, test software and data,
shall be subjected to configuration management procedures.

SCM02 The configuration management procedures shall establish methods for
identifying, storing and changing software items through development,
integration and transfer.

SCM03 A common set of configuration management procedures shall be used.

Downloaded from http://www.everyspec.com

3-D8 ESA PSS-05-0 Issue 2 (February 1991)
SUMMARY OF MANDATORY PRACTICES

Every configuration item shall have an identifier that distinguishes it from
other items with different:

SCM04 • requirements, especially functionality and interfaces;
SCM05 • implementation.
SCM06 Each component defined in the design process shall be designated as a

CI and include an identifier.
SCM07 The identifier shall include a number or a name related to the purpose of

the CI.
SCM08 The identifier shall include an indication of the type of processing the CI is

intended for (e.g. filetype information).
SCM09 The identifier of a CI shall include a version number.
SCM10 The identifier of documents shall include an issue number and a revision

number.
SCM11 The configuration identification method shall be capable of

accommodating new CIs, without requiring the modification of the
identifiers of any existing CIs.

SCM12 In the TR phase, a list of configuration items in the first release shall be
included in the STD.

SCM13 In the OM phase, a list of changed configuration items shall be included
in each Software Release Note (SRN).

SCM14 An SRN shall accompany each release made in the OM phase.
As part of the configuration identification method, a software module shall
have a standard header that includes:

SCM15 • configuration item identifier (name, type, version);
SCM16 • original author;
SCM17 • creation date;
SCM18 • change history (version/date/author/description).

All documentation and storage media shall be clearly labelled in a
standard format, with at least the following data:

SCM19 • project name;
SCM20 • configuration item identifier (name, type, version);
SCM21 • date;
SCM22 • content description.

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-D9
SUMMARY OF MANDATORY PRACTICES

To ensure security and control of the software, at a minimum, the
following software libraries shall be implemented for storing all the
deliverable components (e.g. documentation, source and executable
code, test files, command procedures):

SCM23 • Development (or Dynamic) library;
SCM24 • Master (or Controlled) library;
SCM25 • Static (or Archive) library.
SCM26 Static libraries shall not be modified.
SCM27 Up-to-date security copies of master and static libraries shall always be

available.
SCM28 Procedures for the regular backup of development libraries shall be

established.
SCM29 The change procedure described (in Part 2, Section 3.2.3.2.1) shall be

observed when changes are needed to a delivered document.
SCM30 Software problems and change proposals shall be handled by the

procedure described (in Part 2, Section 3.2.3.2).
SCM31 The status of all configuration items shall be recorded.

To perform software status accounting, each software project shall
record:

SCM32 • the date and version/issue of each baseline;
SCM33 • the date and status of each RID and DCR;
SCM34 • the date and status of each SPR, SCR and SMR;
SCM35 • a summary description of each Configuration Item.
SCM36 As a minimum, the SRN shall record the faults that have been repaired

and the new requirements that have been incorporated.
SCM37 For each release, documentation and code shall be consistent.
SCM38 Old releases shall be retained, for reference.
SCM39 Modified software shall be retested before release.
SCM40 All software configuration management activities shall be documented in

the Software Configuration Management Plan (SCMP).
SCM41 Configuration management procedures shall be in place before the

production of software (code and documentation) starts.

Downloaded from http://www.everyspec.com

3-D10 ESA PSS-05-0 Issue 2 (February 1991)
SUMMARY OF MANDATORY PRACTICES

SCM42 By the end of the UR review, the SR phase section of the SCMP shall
be produced (SCMP/SR).

SCM43 The SCMP/SR shall cover the configuration management procedures for
documentation, and any CASE tool outputs or prototype code, to be
produced in the SR phase.

SCM44 During the SR phase, the AD phase section of the SCMP shall be
produced (SCMP/AD).

SCM45 The SCMP/AD shall cover the configuration management procedures for
documentation, and CASE tool outputs or prototype code, to be
produced in the AD phase.

SCM46 During the AD phase, the DD phase section of the SCMP shall be
produced (SCMP/DD).

SCM47 The SCMP/DD shall cover the configuration management procedures for
documentation, deliverable code, and any CASE tool outputs or
prototype code, to be produced in the DD phase.

SCM48 During the DD phase, the TR phase section of the SCMP shall be
produced (SCMP/TR).

SCM49 The SCMP/TR shall cover the procedures for the configuration
management of the deliverables in the operational environment.

D.10 SOFTWARE VERIFICATION AND VALIDATION
SVV01 Forwards traceability requires that each input to a phase shall be

traceable to an output of that phase.
SVV02 Backwards traceability requires that each output of a phase shall be

traceable to an input to that phase.
SVV03 Functional and physical audits shall be performed before the release of

the software.
SVV04 All software verification and validation activities shall be documented in

the Software Verification and Validation Plan (SVVP).
The SVVP shall ensure that the verification activities:

SVV05 • are appropriate for the degree of criticality of the software;
SVV06 • meet the verification and acceptance testing requirements (stated in

the SRD);
SVV07 • verify that the product will meet the quality, reliability, maintainability

and safety requirements (stated in the SRD);

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-D11
SUMMARY OF MANDATORY PRACTICES

SVV08 • are sufficient to assure the quality of the product.
SVV09 By the end of the UR review, the SR phase section of the SVVP shall be

produced (SVVP/SR).
SVV10 The SVVP/SR shall define how to trace user requirements to software

requirements, so that each software requirement can be justified.
SVV11 The developer shall construct an acceptance test plan in the UR phase

and document it in the SVVP.
SVV12 During the SR phase, the AD phase section of the SVVP shall be

produced (SVVP/AD).
SVV13 The SVVP/AD shall define how to trace software requirements to

components, so that each software component can be justified.
SVV14 The developer shall construct a system test plan in the SR phase and

document it in the SVVP.
SVV15 During the AD phase, the DD phase section of the SVVP shall be

produced (SVVP/DD).
SVV16 The SVVP/AD shall describe how the DDD and code are to be evaluated

by defining the review and traceability procedures.
SVV17 The developer shall construct an integration test plan in the AD phase

and document it in the SVVP.
SVV18 The developer shall construct a unit test plan in the DD phase and

document it in the SVVP.
SVV19 The unit, integration, system and acceptance test designs shall be

described in the SVVP.
SVV20 The unit integration, system and acceptance test cases shall be

described in the SVVP.
SVV21 The unit, integration, system and acceptance test procedures shall be

described in the SVVP.
SVV22 The unit, integration, system and acceptance test reports shall be

described in the SVVP.

D.11 SOFTWARE QUALITY ASSURANCE
SQA01 An SQAP shall be produced by each contractor developing software.
SQA02 All software quality assurance activities shall be documented in the

Software Quality Assurance Plan (SQAP).

Downloaded from http://www.everyspec.com

3-D12 ESA PSS-05-0 Issue 2 (February 1991)
SUMMARY OF MANDATORY PRACTICES

SQA03 By the end of the UR review, the SR phase section of the SQAP shall be
produced (SQAP/SR).

SQA04 The SQAP/SR shall describe, in detail, the quality assurance activities to
be carried out in the SR phase.

SQA05 The SQAP/SR shall outline the quality assurance plan for the rest of the
project.

SQA06 During the SR phase, the AD phase section of the SQAP shall be
produced (SQAP/AD).

SQA07 The SQAP/AD shall cover in detail all the quality assurance activities to be
carried out in the AD phase.

SQA08 During the AD phase, the DD phase section of the SQAP shall be
produced (SQAP/DD).

SQA09 The SQAP/DD shall cover in detail all the quality assurance activities to be
carried out in the DD phase.

SQA10 During the DD phase, the TR phase section of the SQAP shall be
produced (SQAP/TR).

SQA11 The SQAP/TR shall cover in detail all the quality assurance activities to be
carried out from the start the TR phase until final acceptance in the OM
phase.

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-E1
FORM TEMPLATES

APPENDIX E
FORM TEMPLATES

Template forms are provided for:

 DCR Document Change Record
 DSS Document Status Sheet
 RID Review Item Discrepancy
 SCR Software Change Request
 SMR Software Modification Report
 SPR Software Problem Report
 SRN Software Release Note

Downloaded from http://www.everyspec.com

3-E2 ESA PSS-05-0 Issue 2 (February 1991)
FORM TEMPLATES

DOCUMENT CHANGE RECORD DCR NO

DATE

ORIGINATOR

APPROVED BY

1. DOCUMENT TITLE:

2. DOCUMENT REFERENCE NUMBER:

3. DOCUMENT ISSUE/REVISION NUMBER:

4. PAGE 5. PARAGRAPH 6. REASON FOR CHANGE

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-E3
FORM TEMPLATES

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE:

2. DOCUMENT REFERENCE NUMBER:

3. ISSUE 4. REVISION 5. DATE 6. REASON FOR CHANGE

Downloaded from http://www.everyspec.com

3-E4 ESA PSS-05-0 Issue 2 (February 1991)
FORM TEMPLATES

REVIEW ITEM DISCREPANCY RID NO
DATE
ORIGINATOR

1. DOCUMENT TITLE:

2. DOCUMENT REFERENCE NUMBER:
3. DOCUMENT ISSUE/REVISION NUMBER:
4. PROBLEM LOCATION:

5. PROBLEM DESCRIPTION:

6. RECOMMENDED SOLUTION;

7. AUTHOR’S RESPONSE:

8. REVIEW DECISION: CLOSE/UPDATE/ACTION/REJECT (underline choice)

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-E5
FORM TEMPLATES

SOFTWARE CHANGE REQUEST SCR NO
DATE
ORIGINATOR
RELATED SPRs

1. SOFTWARE ITEM TITLE:

2. SOFTWARE ITEM VERSION/RELEASE NUMBER:
3. PRIORITY: CRITICAL/URGENT/ROUTINE (underline choice)
4. CHANGES REQUIRED:

5. RESPONSIBLE STAFF:

6. ESTIMATED START DATE, END DATE AND MANPOWER EFFORT

7. ATTACHMENTS:

8. REVIEW DECISION: CLOSE/UPDATE/ACTION/REJECT (underline choice)

Downloaded from http://www.everyspec.com

3-E6 ESA PSS-05-0 Issue 2 (February 1991)
FORM TEMPLATES

SOFTWARE MODIFICATION REPORT SMR NO
DATE
ORIGINATOR
RELATED SCRs

1. SOFTWARE ITEM TITLE:

2. SOFTWARE ITEM VERSION/RELEASE NUMBER:

3. CHANGES IMPLEMENTED:

4. ACTUAL START DATE, END DATE AND MANPOWER EFFORT:

5. ATTACHMENTS (tick as appropriate)

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-E7
FORM TEMPLATES

SOFTWARE PROBLEM REPORT SPR NO
DATE
ORIGINATOR

1. SOFTWARE ITEM TITLE:

2. SOFTWARE ITEM VERSION/RELEASE NUMBER:

3. PRIORITY: CRITICAL/URGENT/ROUTINE (underline choice)

4. PROBLEM DESCRIPTION:

5. DESCRIPTION OF ENVIRONMENT:

6. RECOMMENDED SOLUTION;

7. REVIEW DECISION: CLOSE/UPDATE/ACTION/REJECT (underline choice)

8. ATTACHMENTS:

Downloaded from http://www.everyspec.com

3-E8 ESA PSS-05-0 Issue 2 (February 1991)
FORM TEMPLATES

SOFTWARE RELEASE NOTE SRN NO
DATE
ORIGINATOR

1. SOFTWARE ITEM TITLE:

2. SOFTWARE ITEM VERSION/RELEASE NUMBER:

3. CHANGES IN THIS RELEASE:

4. CONFIGURATION ITEMS INCLUDED IN THIS RELEASE:

5. INSTALLATION INSTRUCTIONS:

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-E9
APPENDIX F

APPENDIX F

INDEX

Downloaded from http://www.everyspec.com

3-E10 ESA PSS-05-0 Issue 2 (February 1991)
INDEX

abstraction, 31
acceptance test, 52

case, 49
participation, 51
plan, 30
practice for, 45
reports, 53
requirement, 23, 31

AD phase, 6, 29
AD/R, 29, 36
adaptability requirement, 15
ADD, 6, 29, 36
ANSI, 1
architectural design, 29

phase, 29
specification, 34

audit, 35
definition, 29
functional audit, 29
physical audit, 29

availability, 7
availability requirement, 15
backup, 16
baseline, 14, 20
block diagram

SR phase, 23
UR phase, 14

block diagrams
AD phase, 34

budgeting, 7
capability requirement, 15
CASE tool

AD phase, 31
DD phase, 41
SR phase, 21

change control
documentation, 18
general. See
levels of, 17
procedures, 18
software, 19

checkout, 51
CI

definition, 13
identifier, 14
promotion, 17

code, 46

conventions, 42
documentation, 43
production, 43
quality assurance of, 36

coding, 41
cohesion, 32
component

function of, 34
interface, 34

computer resource utilisation, 35
computer virus, 23
configuration item list, 52
configuration management, 43
configuration status accounting, 20
constraint requirement, 15
control flow, 35
cost model, 8
coupling, 33
coverage analyser, 44
critical design review, 46
criticality, 15, 30
data structure, 34
DCR, 18, 20
DD phase, 6
DD/R, 39, 46
DDD, 6, 47
debugger, 44
decomposition, xiv, 20

functional, 31
of components, 31
top-down, 31

defect, 45
design quality criteria, 32
detailed design, 41

phase, 39
documentation, 18

labelling, 16
documentation plan

quality assurance of, 34
documentation requirement, 23
DSS, 18
embedded system, 45
estimating, 7

AD phase, 10
for future projects, 58
SR phase, 9
UR phase, 9

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-F11
INDEX

evolutionary development, 10
external interface, 14, 17, 23, 34, 9, 10, 17
feasibility, 14
final acceptance, 7, 56
formal method, 27
formal proof, 27
functional audit, 29
functional decomposition, 31
functional requirement, 22
handover phase, 51
HCI, 15
ICD, 14, 23, 34
IEEE

Std 1012-1986, 30
Std 1016-1987, 37
Std 1028-1988, 25
Std 1042-1987, 21
Std 1058.1-1987, 5
Std 1063-1987, 47
Std 729-1983, 13, 1
Std 730-1989, 33, 34
Std 828-1983, 21
Std 830-1984, 27

implementation, 39
incremental delivery, 9
information hiding, 31, 40
initiator, 56
installation, 51
integration, 43
integration test, 44
integration test plan, 31
integrity, 23
interface requirement, 22
interview, 14
library

archive, 16
controlled, 16
definition, 16
development, 16
dynamic, 16
master, 16
static, 16

life cycle, 3
logical model, 20
maintainability requirement, 24
maintenance, 56

phase, 55
purpose, 55

media
labelling, 16

media control
procedure, 16
quality assurance of, 36

method, 30
quality assurance of, 35

metric, 24, 32, 26
complexity, xiii
data collection, 7
definition, 34
for specifying requirements, 34
quality assurance of, 34
tools for, 7
use in inspection, 26

milestone, 4
module

definition, 41
header, 15
review, 41

module header, 42
MTBF, 24
MTTR, 24
non-functional requirement, 32
OM phase, 7, 55
operational environment, 14, 52
operational requirement, 23
operations phase, 55
PA, 33
partitioning, 31
password, 23
performance requirement, 22
PERT chart. See planning network
phase, 3
PHD, 7, 34, 58
physical audit, 29
physical model, 30
planning, 7
planning network, 10
portability requirement, 15, 24
problem

categories, 19
problem reporting

procedures, 19
quality assurance of, 35

product assurance, 33
production, 41

procedures, xiii
programming language, 35
progress report, 8
prototype, 10
prototyping, 11

Downloaded from http://www.everyspec.com

3-E12 ESA PSS-05-0 Issue 2 (February 1991)
INDEX

AD phase, 33
experimental, 33
exploratory, 20
SR phase, 20
UR phase, 14

provisional acceptance, 7, 52
quality assurance, 33
quality requirement, 24
regression test, 57, 21
release, 20
reliability requirement, 24
requirement. See software requirement. See
user requirement

change, 12
requirements

capture, 14
requirements.

OM phase, 57
resource requirement, 23
review, 41, 25, 35. See software inspection. See
walkthrough. See technical review

AD/R, 36
DD phase, 46
SR/R, 26
UR/R, 16

RID, 18, 20
risk analysis, 6
risk management, 6

in quality assurance, 36
safety requirement, 24
safety-critical system, 27
scheduling, 7
SCM, 4, 13
SCMP, 21

AD phase, 28, 22
DD phase, 37, 22
SR phase, 17, 21
TR phase, 48, 22

SCR, 19, 20
security requirement, 15, 23
simulator, 45
SMR, 19, 20
software configuration management. See SCM
software inspection, 26
software project management. See SPM
software quality assurance, 33
software requirement

attribute, 24
clarity, 25
classification, 22

completeness, 25
consistency, 25
definition phase, 19
duplication, 26
identifier, 24
need, 24
priority, 24
source, 25
specification, 21
stability, 25
verifiability, 25

software verification and validation. See SVV
SPM, 3, 5
SPMP, 8

AD phase, 5, 28, 9
DD phase, 6, 37, 10
SR phase, 5, 17, 9
TR phase, 48, 11

SPR, 19, 20
SQA, 4, 33

SR phase, 37
SQAP, 37

AD phase, 28, 37
DD phase, 38, 37
SR phase, 18
TR phase, 49, 37

SR phase, 5, 19
SR/R, 19, 26
SRB, 51, 56, 19
SRD, 5, 19, 26, 27
SRN, 15, 20
static analysis, 43
STD, 7, 53, 20
structured english, 27
structured programming, 40, 42
stub, 43
SUM, 6, 47
supplier control, 36
survey, 14
SVV, 23
SVVP, 30

acceptance test, 17, 49
acceptance test plan, 30
AD phase, 28, 30
DD phase, 37, 31
integration test, 37, 45
integration test plan, 31
SR phase, 18, 30
system test, 27, 45
system test plan, 31

Downloaded from http://www.everyspec.com

ESA PSS-05-0 Issue 2 (February 1991) 3-F13
INDEX

unit test plan, 31
unit tests, 44

system test, 45
system test plan, 31
systems engineering, xiii
tailoring, xii
technical management, 6
technical review, 25
test

black box, 44
coverage, 44
DD phase, 44
regression, 57
unit test, 44
white box, 44

testing, 27
integration testing, 44
quality assurance of, 35
system test, 45

tool
need for. See CASE tool
planning, 10
quality assurance of, 35
SCM, 13

top-down
decomposition, 31, 40
design, 31
integration, 43

TR phase, 7, 51
traceability

backwards, 27, 26
forwards, 26

traceability matrix, 26
trade-off, 33
training, 55, 6

quality assurance of, 36
transfer

phase, 51
unit test, 44
unit test plan, 31
UR phase, 5, 13
UR/R, 13, 16
URD, 5, 13, 17
user requirement

attribute, 15
clarity, 16
classification, 14
definition phase, 13
identifier, 15
need, 15
priority, 16
source, 16
specification, 14
verifiability, 16

validation, 23
verification requirement, 23
virus. See computer virus
V-model, 23
walkthrough, 26
waterfall, 8
WBS, 7
work breakdown structure, 7
work-around, 57

Downloaded from http://www.everyspec.com

