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Introduction

This standard focuses on the specific issues raised by managing performance
aspects of control systems in the frame of space projects. It provides a set of
normative definitions, budget rules, and specification templates applicable
when developing general control systems.

The standard is split up in two main clauses, respectively dealing with:
. Performance error indices and analysis methods.
o Stability and robustness specification and verification for linear systems.

This document constitutes the normative substance of the more general and
informative handbook on control performance, issued in the frame of the E-60-
10 ECSS working group. If clarifications are necessary (on the concepts, the
technical background, the rationales for the rules for example) the readers
should refer to the handbook.

NOTE  Itis not intended to substitute to textbook material
on automatic control theory, neither in this
standard nor in the associated handbook. The
readers and the users are assumed to possess
general knowledge of control system engineering
and its applications to space missions.
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1
Scope

This standard deals with control systems developed as part of a space project. It
is applicable to all the elements of a space system, including the space segment,
the ground segment and the launch service segment.

It addresses the issue of control performance, in terms of definition,
specification, verification and validation methods and processes.

The standard defines a general framework for handling performance indicators,
which applies to all disciplines involving control engineering, and which can be
applied as well at different levels ranging from equipment to system level. It
also focuses on the specific performance indicators applicable to the case of
closed-loop control systems — mainly stability and robustness.

Rules are provided for combining different error sources in order to build up a
performance error budget and use this to assess the compliance with a
requirement.

NOTE1 Although designed to be general, one of the major
application field for this Standard is spacecraft
pointing. This justifies why most of the examples
and illustrations are related to AOCS problems.

NOTE 2 Indeed the definitions and the normative clauses
of this Standard apply to pointing performance;
nevertheless fully specific pointing issues are not
addressed here in detail (spinning spacecraft cases
for example). Complementary material for
pointing error budgets can be found in ECSS-E-
HB-60-10.

NOTE 3 For their own specific purpose, each entity (ESA,
national agencies, primes) can further elaborate
internal ~ documents, deriving  appropriate
guidelines and summation rules based on the top
level clauses gathered in this ECSS-E-ST-60-10
standard.

This standard may be tailored for the specific characteristic and constrains of a
space project in conformance with ECSS-S-ST-00.
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2
Normative references

The following normative documents contain provisions which, through
reference in this text, constitute provisions of this ECSS Standard. For dated
references, subsequent amendments to, or revision of any of these publications
do not apply, However, parties to agreements based on this ECSS Standard are
encouraged to investigate the possibility of applying the more recent editions of
the normative documents indicated below. For undated references, the latest
edition of the publication referred to applies.

ECSS-5-ST-00-01 ECSS System — Glossary of terms
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3
Terms, definitions and abbreviated terms

3.1 Terms from other standards

For the purpose of this Standard, the terms and definitions from ECSS-S5-ST-00-01
apply, in particular for the following terms:

error
performance

uncertainty

3.2 Terms specific to the present standard *

3.2.1 absolute knowledge error (AKE)

instantaneous value of the knowledge error at any given time
NOTE1 This is expressed by:
AKE(t)=¢, (1)

NOTE2 See annex A.1.3 for defining requirements on the
knowledge error.

3.2.2 absolute performance error (APE)
instantaneous value of the performance error at any given time

NOTE This is expressed by:
APE(t)=e, (1)

3.2.3 error index

parameter isolating a particular aspect of the time variation of a performance
error or knowledge error

NOTE1 A performance error index is applied to the
difference between the target (desired) output of
the system and the actual system output.

1 As a preliminary note, the error signals introduced in clause 3.2 are very general. They represent any
type of physical quantity (e.g. attitude, temperature, pressure, position). According to the situation and
to the nature of the control system, they are scalar or multi-dimensional.

10
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NOTE2 A knowledge error index is applied to the
difference between the actual output of the system
and the known (estimated) system output.

NOTE3 The most commonly used indices are defined in
this chapter (APE, RPE, AKE etc.). The list is not
limitative.

3.24 individual error source

elementary physical characteristic or process originating from a well-defined
source which contributes to a performance error or a performance knowledge
error

NOTE For example sensor noise, sensor bias, actuator
noise, actuator bias, disturbance forces and torques
(e.g. microvibrations, manoeuvres, external or
internal subsystem motions), friction forces and
torques, misalignments, thermal distortions,
assembly distortions, digital quantization, control
law performance (steady state error), jitter, etc.

3.25 knowledge error

difference between the known (estimated) output of the system and the actual
achieved output

NOTE1 Itis denoted by ex.
NOTE 2 Usually this is time dependent.

NOTE3 Sometimes  confusingly  referred to as
“measurement error”, though in fact the concept is
more general than direct measurement.

NOTE4 Depending upon the system, different quantities
can be relevant for parameterising the knowledge
error, in the same way as for the performance
error. A degree of judgement is used to decide
which is most appropriate.

NOTE5 For example: the difference between the actual and
the known orientation of a frame can be
parameterised using the Euler angles for the frame
transformation or the angle between the actual and
known orientation of a particular vector within
that frame.

3.2.6 mean knowledge error (MKE)

mean value of the knowledge error over a specified time interval
NOTE1 This is expressed by:
MKE(At)=¢, (At)

1
=— e (t)dt
AtAjtK()

11
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NOTE2 See annex A.1.4 for discussion of how to specify
the interval At, and annex A.1.3 for defining
requirements on the knowledge error.

3.2.7 mean performance error (MPE)

mean value of the performance error over a specified time interval
NOTE1 This is expressed by:
MPE (At)=e, (At)

1
=—1|e,(t)dt
Atip()

NOTE2 See annex A.1.4 for discussion of how to specify
the interval At.

3.2.8 performance drift error (PDE)

difference between the means of the performance error taken over two time
intervals within a single observation period

NOTE1 Thisis expressed by:
PDE(At,At,)=6,(At,) —e,(At))

1 1
=— | e (1)dt —— | e (t)dt
o Ry
NOTE2 Where the time intervals Ati and Atz are separated
by a non-zero time interval Atepe.

NOTE 3 The durations of At and Atz are sufficiently long to
average out short term contributions. Ideally they
have the same duration. See annex A.1.4 for
further discussion of the choice of At1, At2, AtepE.

NOTE4 The two intervals Ati and At: are within a single
observation period

3.2.9 performance error

difference between the target (desired) output of the system and the actual
achieved output

NOTE1 Itis denoted by er.
NOTE 2 Usually this is time dependent.

NOTE3 Depending upon the system, different quantities
can be relevant for parameterising the
performance error. A degree of judgement is used
to decide which is most appropriate.

NOTE4 For example: The difference between the target
and actual orientation of a frame can be
parameterised using the Euler angles for the frame
transformation or the angle between the target and
actual orientation of a particular vector within that
frame.

12
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3.2.10 performance reproducibility error (PRE)

difference between the means of the performance error taken over two time
intervals within different observation periods

NOTE1 This is expressed by:
PRE(At,,At,))=e,(At,) — e, (At)

1 J- 1
=— [e.()dt—— j e, (t)dt
At, At At, At

NOTE 2 Where the time intervals Ati and Atz are separated
by a time interval Atege.

NOTE 3 The durations of At: and Atz are sufficiently long to
average out short term contributions. Ideally they
have the same duration. See annex A.14 for
further discussion of the choice of At1, Ats, Atere.

NOTE 4 The two intervals At: and At: are within different
observation periods

NOTE5 The mathematical definitions of the PDE and PRE
indices are identical. The difference is in the use:
PDE is wused to quantify the drift in the
performance error during a long observation,
while PRE is used to quantify the accuracy to
which it is possible to repeat an observation at a
later time.

3.2.11 relative knowledge error (RKE)

difference between the instantaneous knowledge error at a given time, and its
mean value over a time interval containing that time

NOTE1 Thisis expressed by:
RKE(t,At) =e, (t) — e, (At)

1 e At

e () —— [e ()t
At s,

NOTE2 As stated here the exact relationship between t and
At is not well defined. Depending on the system it
can be appropriate to specify it more precisely: e.g.
t is randomly chosen within At, or t is at the end of
At. See annex A.1.4 for discussion of how to specify
the interval At, and annex A.1.3 for defining
requirements on the knowledge error.

3.2.12 relative performance error (RPE)
difference between the instantaneous performance error at a given time, and its
mean value over a time interval containing that time
NOTE1 This is expressed by:
RPE(t,At) = e, (t) — e, (At)

—e (D) 1je(t)olt Al
NS

13
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NOTE 2 As stated here the exact relationship between t and
At is not well defined. Depending on the system it
can be appropriate to specify it more precisely: e.g.
t is randomly chosen within At, or t is at the end of
At. See annex A.1.4 for further discussion

3.2.13 robustness

ability of a controlled system to maintain some performance or stability
characteristics in the presence of plant, sensors, actuators and/or environmental
uncertainties

NOTE1 Performance robustness is the ability to maintain
performance in the presence of defined bounded
uncertainties.

NOTE 2 Stability robustness is the ability to maintain
stability in the presence of defined bounded
uncertainties.

3.2.14 stability

ability of a system submitted to bounded external disturbances to remain
indefinitely in a bounded domain around an equilibrium position or around an
equilibrium trajectory

3.2.15 stability margin

maximum excursion of some parameters describing a given control system for
which the system remains stable

NOTE The most frequent stability margins defined in
classical control design are the gain margin, the
phase margin, the modulus margin, and — less
frequently — the delay margins (see Clause 5 of this
standard)

3.2.16 statistical ensemble

set of all physically possible combinations of values of parameters which
describe a control system

NOTE For example: Considering the attitude dynamics
of a spacecraft, these parameters include the mass,
inertias, modal coupling factors, eigenfrequencies
and damping ratios of the appendage modes, the
standard deviation of the sensor noises etc., that
means all physical parameters that potentially
have a significant on the performance of the
system.

14
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3.3 Abbreviated terms

The following abbreviated terms are defined and used within this document:

Abbreviation
AKE
APE
LTI
MIMO
MKE
MPE
PDE
PDF
PRE
RKE
RMS
RPE
RSS
SISO

Meaning

absolute knowledge error
absolute performance error
linear time invariant

multiple input — multiple output
mean knowledge error

mean performance error
performance drift error
probability density function
performance reproducibility error
relative knowledge error

root mean square

relative performance error

root sum of squares

single input — single output

15
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4
Performance requirements and budgeting

4.1 Specifying a performance requirement

41.1 Overview

For the purposes of this standard, a performance requirement is a specification
that the output of the system does not deviate by more than a given amount
from the target output. For example, it can be requested that the boresight of a
telescope payload does not deviate by more than a given angle from the target
direction.

In practice, such requirements are specified in terms of quantified probabilities.
Typical requirements seen in practice are for example:

. “The instantaneous half cone angle between the actual and desired payload
boresight directions shall be less than 1,0 arcmin for 95 % of the time”

. “Over a 10 second integration time, the Euler angles for the transformation
between the target and actual payload frames shall have an RPE less than 20
arcsec at 99 % confidence, using the mixed statistical interpretation.”

° “APE(g) < 2,5 arcmin (95 % confidence, ensemble interpretation), where
& = arccos(Xtarget.Xactual)”

Although given in different ways, these all have a common mathematical form:
prob(|X|< X,..) = P,

To put it into words, the physical quantity X to be constrained is defined and

a maximum value X _  1is specified, as well as the probability P. that the

X

magnitude of X is smaller than X __ .

Since there are different ways to interpret the probability, the applicable
statistical interpretation is also given.

These concepts are discussed in Annex A.

16
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4.1.2
a.
1.
2.
3.
4.
4.1.3

a.

Elements of a performance requirement

The specification of a performance shall consist of:

The quantities to be constrained.

NOTE1 This is usually done specifying the appropriate
indices (APE, MPE, RPE, PDE, PRE) as defined in
3.2.

NOTE2 All the elements needed to fully describe the
constrained quantities are listed there; for example,
the associated timescales for MPE or RPE.

The allowed range for each of these quantities.
The probability that each quantity lies within the specified range.
NOTE This is often called the confidence level. See 4.1.4;

The interpretation of this probability.

NOTE1 This is often referred to as the “statistical
interpretation”. See annex A.1.2

NOTE 2 The way to specify the statistical interpretation is
described in 4.1.4.2.

Elements of a knowledge requirement

When specifying a requirement on the knowledge of the performance,
the following elements shall be specified:

1.

The quantities to be constrained.

NOTE1 This is usually done specifying the appropriate
indices (AKE, MKE, RKE) as defined in 3.2.

NOTE2 All the elements needed to fully describe the
constrained quantities are listed there; for example,
the associated timescales for MKE or RKE.

The allowed range for each of these quantities.
The probability that each quantity lies within the specified range.
NOTE This is often called the confidence level. See 4.1.4;

The interpretation of this probability.
NOTE1 This is often referred to as the “statistical

interpretation”. See annex A.1.2

NOTE2 The way to specify the statistical interpretation is
described in 4.1.4.2.

The conditions under which the requirement applies.

NOTE These conditions can be that the requirement refers
to the state of knowledge on-board, on ground
before post processing, or after post processing.
This is explained further in annex A.1.3.

17
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4.1.4 Probabilities and statistical interpretations

4.1.4.1  Specifying probabilities

a. In the general case all probabilities shall be expressed as fractions or as
percentages.
b. Using the ‘nc’ notation for expressing probabilities shall be restricted to

cases where the hypothesis of Gaussian distribution holds.

NOTE1 For example: in the general case Pc = 0,95 or Pc =
95 % are both acceptable, but Pc = 2 is not. Indeed
the ‘nc’ format assumes a Gaussian distribution;
using this notation for a general statistical
distribution can cause wrong assumptions to be
made. For a Gaussian the 95 % (26) bound is twice
as far from the mean as the 68 % (1o) bound, but
this relation does mnot hold for a general
distribution.

NOTE2 Upon certain conditions the assumption of
Gaussian distribution is not to be excluded a
priory. For example the central limit theorem
states that the sum of a large number of
independent and identically-distributed random
variables is approximately normally distributed.

4.1.4.2 Specifying statistical interpretations

a. When specifying the statistical interpretation (4.1.2a.4), it shall be stated
which variables are varied across their possible ranges and which are set
to worst case.

NOTE The most commonly wused interpretations
(temporal, ensemble, mixed) are extreme cases and
can be inappropriate in some situations. Annex
A.1.2 discusses this further.

4.2 Use of error budgeting to assess compliance

4.2.1 Scope and limitations

A common way to assess compliance with a performance specification is to
compile an error budget for that system. This involves taking the known
information about the sources contributing them to the total error, then
combining them to estimate the behaviour of the overall performance error,
which can then be compared to the original requirement.

It is important to emphasise that the common methods of budgeting (in
particular those developed by Clause 4.2.3) are approximate only, and therefore
used with care. They are based on the assumption from the central limit
theorem that the distribution of the total error is Gaussian, and therefore
completely specified by its mean and variance per axis. This approximation is

18
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appropriate in most situations, but, like all approximations, it is used it with
care. It is not possible to give quantitative limits on its domain of validity; a
degree of engineering judgement is involved.

Further discussion is given in annex A.2.1.

NOTE In general error budgeting is not sufficient to
extensively demonstrate the final performance of a
complex control system. The performance
validation process also involves appropriate,
detailed simulation campaign using Monte-Carlo
techniques, or worst-case simulation scenarios.

4.2.2 Identification and characterisation of
contributors

4.2.2.1 Identification of contributing errors
a. All significant error source contributing to the budget shall be listed.

b. A justification for neglecting some potential contributors should be
maintained in the error budget report document.

NOTE This is to show that they have been considered.
They can be listed separately if preferred.

4.2.2.2 Classification of contributing errors

a. The contributing errors shall be classified into groups.
b. The classification criteria shall be stated.
c. All errors which can potentially be correlated with each other shall be

classified in the same group.

d. A group shall not contain a mixture of correlated and uncorrelated
errors.

NOTE1 For example: a common classification is to
distinguish between biases, random errors,
harmonic errors with various periods, etc.

NOTE 2 The period of variation (short term, long term,
systematic) is not a sufficient classification
criterion, as by itself it provides no insight into
whether or not the errors can be correlated.

4.2.2.3 Characterisation of contributing errors

a. For each error source, a mean and standard deviation shall be allocated
along each axis.

NOTE1 The mean and standard deviation differ
depending on which error indices are being
assessed.  Guidelines for obtaining these
parameters are given in Annex B.

19
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NOTE 2 The variance can be considered equivalent to the
standard deviation, as they are simply related. The
root sum square (RSS) value is only equivalent in
the case that the mean can be shown to be zero.

NOTE3 Further information about the shape of the
distribution is only needed in the case that the
approximations used for budgeting are
insufficient.

4.2.2.4  Scale factors of contributing errors

a.

The scale factors with which each error contributes to the total error shall
be defined.

NOTE1 Clause 4.2.3 clarifies this statement further.
NOTE2 The physical nature of the scale factors depends
upon the nature of the system.

NOTE3 For example: For spacecraft attitude (pointing)
errors, specify the frame in which the error acts, as
the frame transformations are effectively the scale
factors for this case.

4.2.3 Combination of contributors

a.

If the total error is a linear combination of individual contributing errors,
classified in one or several groups according to 4.2.2.2, the mean of the
total error shall be computed using a linear sum over the means of all the
individual contributing errors.

If the total error is a linear combination of individual contributing errors,
classified in one or several groups according to 4.2.2.2, the standard
deviation of a group of correlated or potentially correlated errors shall be
computed using a linear sum over the standard deviations of the
individual errors belonging to this group.

If the total error is a linear combination of individual contributing errors,
classified in one or several groups according to 4.2.2.2, the standard
deviation of a group of uncorrelated errors shall be computed using a
root sum square law over the standard deviations of the individual errors
belonging to this group.

If the total error is a linear combination of individual contributing errors,
classified in one or several groups according to 4.2.2.2, the standard
deviation of the total error shall be computed using a root sum square
law over the standard deviations of the different error groups.

NOTE1 The total error €, is a linear combination of the
individual contributing errors € if it is

mathematically expressed by:

N
Ciotal = Z Ci€
i=1
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where the C; are the scale factors introduced in
4224,

NOTE 2 Although this is not the most general case, in
practice a wide variety of commonly encountered
scenarios verify the condition of linear
combination. For example in the small angle
approximation the total transformation between
two nominally aligned frames takes this form: see
annex A.2.3 for more details.

NOTE 3 In the case where the total error is a vector (for
example the three Euler angles between frames) it
is possible to restate it as a set of scalar errors.

NOTE 4 According to 4.2.3a the mean /4, of the total

error is mathematically expressed by:
N
Hiotal = Zci:ui
i=1

where g is the mean of the error €,

NOTE5 According to 4.2.3b a general upper bound of the

standard deviation 0y, of a group of potentially

correlated errors is mathematically expressed by:
N

group
O-group < E |Ci|o-i
i=1
where ¢, is the standard deviation of the error €, .

The actual value of o, 1is obtained by

investigating the correlation conditions case by case.

NOTE 6 According to 4.2.3c. the standard deviation o

group
of a group of uncorrelated errors is mathematically
expressed by:

where 0, is the standard deviation of the error €,

NOTE7 According to 4.2.3d the standard deviation o,

total

of the total error is mathematically expressed by:

_ 2
Ototal = E o-group
groups

NOTE 8 Alternative summation rules can be found in the
literature, often based on linearly summing the
standard deviations of different frequency classes.
These rules have no mathematical basis and are
likely to be overly conservative. They are therefore
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not recommended. Annex A.2.1 discusses this
further.

4.2.4 Comparison with requirement

4.2.4.1 Requirements given on an error

a. If the total error is a linear combination of individual contributing errors,
the following condition shall be met to ensure that the budget is
compliant with the specification:

|/utotal| + nPo-total < Xmax
Where

— Moy 18 the mean of the total error according to 4.2.3.a.

— N, is a positive scalar defined such that for a Gaussian distribution
the N,-o confidence level encloses the probability P. given in

the specification.

— O 1s the standard deviation of the total error according to
4.2.3.b,4.2.3.c,and 4.2.3.d.

— Xmax is the maximum range for the total error, given in the

specification.

NOTE1 This condition is based on the assumption that the
total combined distribution has Gaussian or close
to Gaussian shape. This is not always the case: see
annex A.2.1 for more details.

NOTE 2 This condition is conservative.

NOTE3 For example: This applies to the case of
“rotational” pointing errors, in which separate
requirements are given for each of the Euler angles
between two nominally, aligned frames.

4.2.4.2 Requirements given on the RSS of two errors
42421 General case

a. If the total error €, = 1/8; + eé is a quadratic sum of two independent

errors €, and €, each of which being a linear combination of individual

contributing errors, the following condition shall be met to ensure that
the budget is compliant with the specification:

2, 2 2, 2
\/,UA"'/UB +nP\/O-A+O-B < X
where

— M, and L1, are the means of the two errors €, and €.
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— N, is a positive scalar defined such that for a Gaussian distribution
the N,-o confidence level encloses the probability P. given in

the specification.

— 0, and O are the standard deviations of the two errors €, and €.

— X, is the maximum value for the total error, given in the
specification.
NOTE 1 This condition is extremely conservative and is not
an exact formula. See annex A.2.4 for more details.

NOTE 2 This applies to the case of “directional” pointing
errors, in which a requirement is given on the
angle between the nominal direction of an axis and

its actual direction. In this case €, and €y are the

Euler angles perpendicular to this axis.

4.2.4.2.2 Specific case

a. If the total error €, is a quadratic sum of two errors €, and €y, each of

which being a linear combination of individual contributing errors, and if
the following additional conditions are verified:

o >> 1|, 05 >>|1t], opx 0y
the following condition shall be met to ensure that the budget is

compliant with the specification:

maX(GA,GB)\/—210g(1— Po) < X
where

— M, and fg are the means of the two errors €, and €.

— N, is a positive scalar defined such that for a Gaussian distribution
the N,-0 confidence level encloses the probability P, given in

the specification.

— 0, and o are the standard deviations of the two errors €, and €.
— X, is the maximum value for the total error, given in the

specification.

—  ’log’ is the natural logarithm (base €)

NOTE1 This condition is based on the properties of a
Rayleigh distribution. It is a less conservative
formula than the general case (4.2.4.2.1) - see
annex A.2.4 for more details.

NOTE 2 This applies to the case of “directional” pointing
errors in which the errors on the perpendicular
axes are similar.
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5
Stability and robustness specification and
verification for linear systems

5.1 Overview

When dealing with closed-loop control systems, the question arises of how to
specify the stability and robustness properties of the system in the presence of
an active feedback.

For linear systems, stability is an intrinsic performance property. It does not
depend on the type and level of the inputs; it is directly related to the internal
nature of the system itself.

For an active system, a quantified knowledge of uncertainties within the system

enables to:
J Design a better control coping with actual uncertainties.
. Identify the worst case performance criteria or stability margins of a

given controller design and the actual values of uncertain parameters
leading to this worst case.

In this domain the state-of-the-art for stability specification is not fully
satisfactory. A traditional rule exists, going back to the times of analogue
controllers, asking for a gain margin better than 6 dB, and a phase margin better
than 30°. But this formulation proves insufficient, ambiguous or even
inappropriate for many practical situations:

. MIMO systems cannot be properly handled with this rule, which applies
to SISO cases exclusively.

J There is no reference to the way these margins are adapted (or not) in the
presence of system uncertainties; do the 6 dB / 30° requirement still hold
in the event of numerical dispersions on the physical parameters?

J In some situations, it is well known to control engineers that gain and
phase margins are not sufficient to characterise robustness; additional
indicators (such as modulus margins) can be required.

. In the next clauses a more consistent method is proposed for specifying
stability and robustness. It is intended to help to formulate clear
unambiguous requirements in an appropriate manner, and the supplier
to understand what is necessary with no risk of ambiguity.

NOTE1 This standard focuses on the structure of the
requirement. The type of margins, the numerical
values for margins, or even the pertinence of
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setting a margin requirement are left to the
discretion of the customer, according to the nature
of the problem.

NOTE 2 More generally, this standard does not affect the
definitions of the control engineering methods and
techniques used to assess properties of the control
systems.

5.2 Stability and robustness specification

5.2.1 Uncertainty domains

5211 Overview

As a first step, the nature of the uncertain parameters that affect the system, and
the dispersion range of each of these parameters are specified. This defines the
uncertainty domain over which the control behaviour is investigated, in terms
of stability and stability margins.

To illustrate the underlying idea of this clause, Figure 5-1 shows the two
possible situations depicted in 5.2.1.2, 5.2.1.3 and 5.2.1.4, for a virtual system
with two uncertain parameters, param_1 and param_2:

. On the left, a single uncertainty domain is defined, where stability is
verified with given margins (“nominal margins”).

. On the right, the uncertainty domain is split into two sub-domains: a
reduced one, where the “nominal” margins are ensured, and an extended
one, where less stringent requirements are put — “degraded” margins
being acceptable.

Uncertainty param 2 param_2
domain A Extended A Reduced
uncertainty uncertainty
domain / domain
param_1 param_1

Figure 5-1: Defining the uncertainty domains

5.2.1.2  Specification of an uncertainty domain

a. An uncertainty domain shall be defined identifying the set of physical
parameters of the system over which the stability property is going to be
verified.
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b.

5.2.1.3

a.

This domain shall consist of:

1. A list of the physical parameters to be investigated.

2. For each of these parameters, an interval of uncertainty (or a
dispersion) around the nominal value.

3. When relevant, the root cause for the uncertainty.

NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTE 5

The most important parameters for usual AOCS
applications are the rigid body inertia, the
cantilever eigenfrequencies of the flexible modes
(if any), the modal coupling factors, and the
reduced damping factors.

Usually the uncertainty or dispersion intervals are
defined giving a percentage (plus and minus)
relative to the nominal value.

These intervals can also be defined referring to a
statistical distribution property of the parameters,
for instance as the 95 % probability ensemble.

In practice the uncertainty domain covers the
uncertainties and the dispersions on the
parameters. In the particular case of a common
design for a range or a family of satellites with
possibly different characteristics and tunings, it
also covers the range of the different possible
values for these parameters.

The most common root causes for such
uncertainties are the lack of characterization of the
system parameter (for example: solar array flexible
mode characteristics assessed by analysis only),
intrinsic errors of the system parameter
measurement (for example: measurement error of
dry mass), changes in the system parameter over
the life of the system, and lack of characterization
of a particular model of a known product type.

Reduced uncertainty domain

A reduced uncertainty domain should be defined, over which the system
operates nominally.

NOTE 1

NOTE 2

NOTE 3

In the present context “operate nominally” means
“verify nominal stability margins”.

The definition of this reduced uncertainty domain
by the customer is not mandatory, and depends on
the project validation and verification philosophy.

For the practical use of this reduced uncertainty
domain, see Clause 5.2.7.
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5.2.1.4 Extended uncertainty domain

a.

An extended uncertainty domain should be defined, over which the
system operates safely, but with potentially degraded stability margins
agreed with the customer.

NOTE1 The definition of this extended uncertainty domain
by the customer is not mandatory, and depends on
the project validation and verification philosophy.

NOTE 2 For the practical use of this extended uncertainty
domain, see Clause 5.2.7.

52.2 Stability requirement

a.

The stability property shall be demonstrated over the whole uncertainty
domain.

If the uncertainty domain is split into a reduced and an extended domain
according to 5.2.1, then the stability property shall be demonstrated over
the extended domain.

The technique (or techniques) used to demonstrate the stability shall be
described and justified.

NOTE  Several methods are available for this purpose. For
example stability of a linear time-invariant system
can be demonstrated by examining the eigenvalues
of the closed loop state matrix.

The point of the uncertainty domain leading to worst case stability
should be identified.

The corresponding stability condition shall be verified by detailed time
simulation of the controlled system.

5.2.3 Identification of checkpoints

a.

Checkpoints shall be identified according to the nature and the structure
of the uncertainties affecting the control system.

NOTE1 These loop checkpoints correspond to the points
where stability margin requirements are verified.
They are associated to uncertainties that affect the
behaviour of the system.

NOTE 2 Locating these checkpoints and identifying the
associated types of uncertainties are part of the
control engineering expertise; this can be quite
easy for simple control loops (SISO systems), and
more difficult for complex loops (MIMO, nested
systems). Guidelines and technical detail on how
to proceed is out of the scope of this document.
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5.2.4 Selection and justification of stability
margin indicators

a. For SISO loops the gain margin, the phase margin and the modulus
margin shall be used as default indicators.

b. For MIMO loops the sensitivity and complementary sensitivity functions
shall be used as default indicators.

C. The appropriate stability margin indicators shall be identified and
justified by the control designer according to the nature and structure of
the uncertainties affecting the system.

d. If other indicators are selected by the supplier, this deviation shall be
justified and the relationship with the default ones be established.

NOTE1 The classical and usual margin indicators for SISO
LTI systems are the gain and phase margins.
Nevertheless in some situations these indicators
can be insufficient even for SISO loops, and are
completed by the modulus margin.

NOTE 2 Sensitivity and complementary  sensitivity
functions are also valuable margin indicators for
SISO systems. Actually the modulus margin is
directly connected to the Hoo-norm of the
sensitivity function.

NOTE 3 Additional indicators, such as the delay margin,
can also provide valuable information, according
to the nature of the system and the structure of its
uncertainties.

NOTE 4 Selecting the most appropriate margin indicators is
part of the control engineering expertise.
Guidelines and technical detail on how to proceed
is out of the scope of this document.

5.2.5 Stability margins requirements

a. Nominal stability margins are given by specifying values ¢,, ¢, m,,

and S, such that the following relations shall be met:
1. The gain margin is greater than (),
2. The phase margin is greater than ¢,

3. The modulus margin is greater than M,

4. The peak sensitivity and complementary sensitivity functions is
lower than §; .

b. Degraded stability margins are given by a specifying values J,, @,, M,

and S, such that the following relations shall be met:

1. The gain margin is greater than (,
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2. The phase margin is greater than ¢,

3. The modulus margin is greater than M,

4. The peak sensitivity and complementary sensitivity functions is
lower than S, .

NOTE1 By definition §,20,, ¢ =2¢,, M =M, and
5, <8,

NOTE 2 The numerical values to be set for these required
margins are left to the expertise of the customer;
there is no general rule applicable here, although
values ¢, =6 dB, ¢ =30° S =6 dB can be

considered “classical”.

5.2.6 Verification of stability margins with a single
uncertainty domain

a. The nominal stability margins requirements shall be demonstrated over
the entire uncertainty domain.

NOTE1 This clause applies in the case where a single
uncertainty domain is defined — refer to 5.2.1.

NOTE2 the term “nominal stability —margins” is
understood according to 5.2.5, clause a.

5.2.7  Verification of stability margins with
reduced and extended uncertainty domains

a. The nominal stability margins specified by the customer shall be
demonstrated over the reduced uncertainty domain.

b. The degraded stability margins specified by the customer shall be
demonstrated over the extended uncertainty domain.

NOTE1 This clause applies in the case where a reduced
and an extended uncertainty domains are defined.
Refer to 5.2.1.

NOTE2 The terms “nominal” and “degraded stability
margins are understood according to 5.2.5, clauses
a. and b. respectively.

NOTE3 This formulation avoids the risk of ambiguity
mentioned in Clause 5.1 by clearly stating over
which uncertainty domain(s) the margins are
verified. Here a reduced uncertainty domain is
defined, where a nominal level of stability margins
is specified; in the rest of the uncertainty domain,
degraded margins are accepted.
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Annex A (informative)
Use of performance error indices

A.1 Formulating error requirements

A.l1l More about error indices

A performance error generally has a complicated behaviour over time. To
quantify this behaviour, a small set of error indices are introduced, in order to
capture a particular aspect of their variation over time, such as the average over
some interval, the short term variation or the drift. These are defined in Clause
3.2 and are illustrated in Figure A-1 and Figure A-2.

Error indices are generally the most convenient way to deal with such time-
varying errors, but in some cases it can be more appropriate to use other means
of quantifying the error, for example by looking at the spectrum in the
frequency domain.

For spacecraft pointing errors, the indices usually are specified in terms of the
Euler angles & (between the target and actual payload frames) or & (between the
actual and estimated payload frames). Sometimes it is more appropriate to use
another quantity instead, such as a directional error, or a more complicated
parameter such as the offset between an instantaneous pointing direction and a
target path across the sky. Similar choices can be made for other control
systems.

For high frequency jitter errors, it can be preferable to formulate the
requirements in terms of constraints on the body rates rather than attitude. Rate
error indices can be defined by replacing the Euler angles in the given
definitions with the difference between real and desired body rates, 6o = ®real-
ourget. This does not just apply to body rates: the indices can be applied to any
time varying quantity, such as position.

It can also be necessary to define more error indices to place constraints on
other types of error variation. For example, it can be necessary to place a
requirement on how much the error can change in a 5 second interval, in which
case an error index can be introduced on the quantity de = e(t) — e(t-5).
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Figure A-1: Example showing the APE, MPE and RPE error indices
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Figure A-2: Example showing the PDE and PRE error indices

A.l.2 Statistical interpretation of requirements

Any error is a function both of time, t, and of a set of parameters which define
the error behaviour: ¢ = g(t,{A}). Depending on the exact scenario, {A} can
include - for a given design of the control system — such things as the physical
properties of the spacecraft, sensor biases, orbit, and so on: indeed any
parameter whose value affects the error should be included in the set.
Generally, a parameter A does not have a single known value, instead there is a
range of possible values described by a probability distribution P(A).

It is useful to introduce the concept of the statistical ensemble, which is the set
of all possible combinations of {A}, or equivalently the set of all possible &(t).
This is illustrated in Figure A-3 for a simple case in which

s(t) =A -A, sin(t).

Now suppose that we have a requirement that there is a 90 % probability that
APE(e) < 1° This requirement can be met in different ways: either for 90 % of
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the time for all members of the statistical ensemble (Figure A-4, left), or for
100 % of the time for 90 % of the ensemble (Figure A-4, right), or some
intermediate case.

Which of these should apply depends upon the details of the mission and the
payload. For example, if we are trying to make sure that during an observation
at least 90 % of the light ends up in the payload field of view, then the first case
applies (90 % of the time), while if we require continuous observation then the
second (90 % of the ensemble) is more appropriate.

When giving a pointing requirement for an index I, make it clear what the
probability is referring to. This is known as the statistical interpretation of the
requirement. There are three commonly used statistical interpretations:

. The ensemble interpretation: there is at least a probability Pc that I is
always less than Imax. (I.e. a fraction Pc of the members of the statistical
ensemble have I < Imax at all times)

J The temporal interpretation: I is less than Imax for a fraction Pc of the time
(i.e. this holds for any member of the ensemble)

. The mixed interpretation: for a random member of the ensemble at a
random time, the probability of I being less than Imax is at least Pc.

Other statistical interpretations are possible, such as that a requirement is met
for 95 % of the time over 95 % of possible directions on the sky; the three
interpretations above can be though of as extreme cases. It is important that it is
always made clear which interpretation is used, as the statistics are very
different for the different cases. This is illustrated in Figure A-5 for a simple
case where ¢ =A sin(ot).

Note that the temporal interpretation is supposed to hold for any member of
the ensemble. Since the ensemble potentially includes extreme cases, unlikely to
occur in reality, in practice a “modified temporal interpretation” is used, where
the ensemble is redefined to exclude such situations. (For example,
configurations with one or more parameters outside the 3c limits can be
excluded from the ensemble.)

Figure A-3 : Example of a statistical ensemble of errors.

In this case the parameters are the mean and amplitude of the variation and the
ensemble is the set of all possible combinations of these parameters.
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Figure A-4: The different ways in which a requirement for P(I¢1<1°) > 0,9 can be met
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Figure A-5 : Illustration of how the statistics of the pointing errors differ depending on
which statistical interpretation is used

In this example € =A sin(wt), where A has a uniform distribution in the range 0-
10. Left: ensemble interpretation (worst case time for each ensemble member).
Centre: temporal interpretation (all times for the worst case ensemble member).
Right: Mixed interpretation (all times for all ensemble members).

A.1.3 Knowledge requirements

Knowledge requirements refer to the difference between the estimated state
(sometimes known as the measured state, though this is misleading as the
concept is more general than direct measurements) and the actual state.

When specifying knowledge requirements, the same considerations apply as for
performance errors. The knowledge error indices defined in Clause 3.2 are
used.

In addition, always make clear to what state of knowledge the requirement is
referring to. For example, this can be

J Direct outputs from a sensor
. Knowledge available to the controller in (near) real time
. Knowledge available for analysis after post-processing.

Al4 Specifying the timescales for requirements

The MPE, RPE, PDE and PRE indices defined in Clause 3.2, and their
equivalents for knowledge errors, require one or more timescales for averaging
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(At, At1, Atz) to be specified when giving a requirement. Usually, but not always,
the same duration Atis used for all of these indices.

Often there is an obvious choice for the averaging time, especially if there are
discrete observations. For example: if the spacecraft is taking a succession of
images, each lasting 1 minute, then all averaging should be done over a 1
minute observation period.

The MPE then represents the bias over an observation, the RPE the stability
during the observation, and the PDE and PRE the difference between two
observations which are nominally identical (see below). This discussion is in
terms of the pointing of a spacecraft payload, but can be easily generalised to
apply to other types of system.

In other cases this choice can be more complex, especially if continuous
pointing is required over a long duration, with no natural breakdown into
discrete periods. The averaging time At is specified some other way, for
example by the minimum time required to collect useful data (payload
integration time). However this time relates sensibly to the errors acting on the
system: there is no point averaging over an integration time if all of the
contributing errors have a longer period. In the end the choice comes down to a
judgement of what is appropriate for the particular system.

For the PDE and PRE indices (drift and reproducibility), there is an additional
timescale, namely the interval between the two averaging periods. Some ways
in which such timescales can be defined are:

J If the mission makes an extended observation, over many payload
integration periods, then the duration of this observation should be used
in the PDE definition.

o If the mission is expected to keep its accumulated errors below some

bounds for some minimum time (to avoid frequent calibrations requiring
time out from normal mode), then this is the timescale which should be
used in the PDE.

. If there is a requirement that the mission should make an observation,
and then be able to repeat this observation at some later time, then this
timescale that should be used for the PRE definition.

It should be noted that the PDE and PRE indices are defined identically, except
for whether or not there has been a calibration (resetting of accumulated errors)
between the intervals.

It is also possible to define the PRE index without an explicit reference to a
timescale, as the ability of the calibration process to return to an earlier state. In
this type of situation, no quantitative value for the time interval ATere is
specified.

When specifying requirements it should always be made clear whether these
timescales are treated statistically or as worst cases. Examples of how these can
differ are:

) PRE defined as a randomly chosen interval (in a continuous observation)
and a randomly chosen time within that interval.

o PRE defined as the worst case time within a randomly chosen interval.
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. PDE defined as difference between an observation at a random time and
an observation a fixed period later.

° PDE defined as the difference between an observation at local noon and
an observation 12 hours later.

A.2 More about performance error budgets

A.2.1 When to use an error budget

Given a performance requirement for a spacecraft, the problem is to determine
whether or not the design meets this requirement. There are various ways to

check this:
. Experimental results
o Numerical simulations

. A compiled error budget

Comparison with experimental results is not usually possible (at least for the
complete system) until a late stage of development. Numerical simulations are
more practical, but still have disadvantages. In particular, the only way to
include ensemble type errors (see A.1.2) is to have some form of Monte-Carlo
campaign with a large number of simulations covering the parameter space.
Simulations are more useful for analysing specific contributions to the total
pointing error (such as the controller behaviour) rather than the total pointing
error for the entire system.

It is therefore usually necessary to compile an error budget for the system, to
estimate the total error given what is known about the individual contributing
errors. Ideally, a budget takes all known information about the contributing
errors, use this to derive probability distribution functions (PDFs) for each one,
and convolve these to find the PDF for the total error. This is impractical except
in the very simplest cases: what is instead required is a simple rule to estimate
the distribution of the total error so that is can be compared to the requirement.

It is important to be aware that such rules are approximations only, and that the
assumptions made in the approximations can not always apply. The
summation rules given in this standard are based on the central limit theorem,
but this holds strictly true only in the limit N—c. However for a sufficiently
large N the approximation is usually good enough. It is not always obvious
what constitutes “sufficiently large”, but some rules of thumb can be applied:

° If there are only a few contributing errors, or if one or two errors
dominate over the others, then the approximation can be inappropriate,
especially if one or more of these few errors have non-Gaussian form.

For example, if the budget is dominated by a sinusoidally varying error,
then the probability distribution of the total error has a bimodal shape,
not Gaussian.

As a rough guide, the APE and RPE indices generally have many
contributors, while the PDE and PRE indices usually have only a few.
(The MPE index can go either way depending upon the system.)
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. If the requirement is at a high confidence (e.g. 99,73 %) then small
differences in the behaviour of the tails of the distribution changes
whether the system is compliant or not.

In such cases more exact methods are recommended, though the approximate
techniques used here are still useful for an initial rough assessment.

A.2.2 Identifying and quantifying the contributing
errors

The first stage in compiling an error budget is to identify all the contributing
error sources. These depend upon the system, so detailed guidelines cannot be
given. As a general rule, follow a conservative approach, and include as many
sources as possible rather than assuming that some are negligible; even small
errors can contribute significantly if there are enough of them.

For pointing error budgets in particular, the different error sources often act in
different frames, for example a sensor frame. Since the orientation affects how
each error contributes to the error budget (see A.2.3) it is important to identify
the right frame to use for each one.

Each individual error source has a probability distribution, which contributes to
the statistics of the total error. Depending on which statistical interpretation is
being applied, different probability distributions should be used:

o For requirements of the ‘temporal’ type, use the statistics of the variation
over time for the worst case ensemble member.

J For requirements of the ‘ensemble’ type, use the statistics of the worst
case values across the ensemble.

. For requirements of the ‘mixed’ type, use the statistics across both time
and the ensemble.

Figure A-5 illustrates the difference between these options. For most cases it is
not necessary to obtain the full probability distribution, since to apply
approximate methods only the means and variances are needed:

u(e)= jeP(e)de , c’(e)= J(e )’ P(e)de

How these quantities are obtained depend upon the error variation over time,
the index being assessed, the statistical interpretation being applied, the
available information regarding the ensemble parameters, and so on.

. For many errors, such as sensor noise, the mean and variance of the error
is supplied directly by the manufacturer.

. For requirements using the ‘temporal’ statistical interpretation, there are
generally simple formulae which can be applied, providing that the
worst case ensemble parameters can be identified.

o For requirements using the ‘ensemble’ statistical interpretation, the
appropriate choice of PDF (and hence the formulae for mean and
variance) depends upon how much is known about the ensemble
parameter.
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J For requirements using the ‘mixed’ statistical interpretation, it is not
trivial to find the means and variances of the overall distribution.
However in many common cases approximate formulae exist.

More details can be found in Annex B together with formulae for some of the
more COmMmon cases.

A.2.3 Combining the errors

Once the details of the contributing errors are known, the next step is to
combine them to estimate the total error. This Clause gives combination
methods, based on the central limit theorem, which are suitable in most cases.
The approximation made is that the total form of the combined error is
Gaussian, and as such is completely specified by its mean and standard
deviation. However since this is an approximation it does not always apply. In
particular, if the total error is dominated by a few highly non-Gaussian error
sources then the approximations break down (see annex A.2.1.).

All individual errors do not contribute to the final result with the same weight,
so determine the way they contribute before combining them. Taking the
example of a spacecraft pointing budget, suppose that there are N independent
errors contributing to the misalignment between payload and target frames.
Each of these errors acts in a frame Fi (for i = 1 to N), such that the
transformation between the nominal and real alignment of this frame is

represented by error angles {€ }. The small angle approximation is

i,x° | ,y? | z
assumed to apply, so that the order of the angles does not matter. The total
error angle between the payload and target frames is then given by:

etotal X ei,x
total Y% z RR—)F ei,
etotal,z ei,z

If we know the means {uix, Wiy, Mz} and standard deviations {cix, oiy, Giz} for
each individual contributing error (see Annex B) then the mean and variances
of the total error angles are given by:

/Utotal,x :ui,x
2 2
/utotal,y ZRR%F Hi Yy |’ [O_total] ZRRaF [O-i ]RR%E
/utotal,z ﬂi,z
where [0, total] is the total covariance matrix and [O‘iz] are the individual

covariance matrices, all square, of dimension (3,3). Considering the individual
covariance matrices are diagonal gives a slightly simplified formula for the
standard deviations:

2

O-total X N O-i X
2 2

O-total,y Z{ R—>F } i,y
2 i=1 2

Gtotal ,Z Gi,z
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Where {M}2 means that each element of the matrix is squared individually, not
the matrix as a whole. With the hypotheses considered, this is an exact
expression for the mean and variance of a sum of contributing terms. Similar
expressions can be derived for other systems in which the errors are linearly
combined.

In the common case that all frames are nominally aligned, these expressions
simplify:

— 2 _ 2 2 2
Hiotarx = Hix T Hox +oooF Hy i Owptalx = O1x TO,x t... T Oy

_ 2 2 2 2
Moty = Hiy THyy Tooe T lyy s Oraly =01y TOoy ..t 0y

— 2 _ 2 2 2
:utotal,z - :ul,z +/u2,z +"'+/LlN,Z O-total,z - O-l,z +O_2,z Tt O-N,z

It is important to note that this approximation is based on the variance (c?) of
the individual contributing errors and not on their 68 % probability bound.
Since we are making the approximation that the total distribution is Gaussian,
this is now all the information required to define it completely.

These summation rules remain unaltered if, instead of taking the mean and
variance directly, an error index is first applied:

_ 2 2 2 2
My =y x TH T T Optalx —O1x T O Tt Oy,

_ 2 2 2 2
'Llltotal’y = ,u,l,y +/J|2’y +...+,u,N’y , O-total,y = O'Ly +O'2’y +...+ O'N’y

2 2 2 2
Hy o =M THL T T/, Owal,; =01, TO,3, +...+ 0y,

That is, the error index applied to the total error is the sum of the error index
applied to each of the contributing errors. This is the basis of the tables given in
Annex B.

In the case where two errors are known or suspected to be correlated, it is
recommended to alter slightly the summation rules for variance (to make them
more conservative). Example are the cases in which two errors both vary at the
orbital period, in which case it is very possible that they are both influenced by
the same factors (phase of orbit, sun angle, etc.) and can therefore be in phase.
Suppose that correlation is known (qualitatively) or suspected for two of the
contributing errors (A and B). This can be dealt with by applying the more
conservative approach of combining their standard deviations linearly instead
of using the usual RSS formula:

2 _ 2 2 ( )2 )
Ootal — O +O—2+---+ O-A+JB ...+O'N

The means are still summed linearly as before. The justification for this formula
is that the two errors are effectively summed and treated as a single error (i.e.
that the value of one depends upon the value of the other). It can however be
more convenient to list them separately in a budget, to show that all effects
have been included.

It is also possible to have a summation rule incorporating a factor expressing
the degree of coupling, but since this involves determining the degree of
coupling this is more complicated

Note that the summation rules given above are not the only ones that can be
found in the literature. In particular, the approach adopted by the ESA pointing
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error handbook was to classify errors according to their time periods (short
term, long term, systematic) and use a different way to sum between classes.
This was an attempt to make the summation rules more conservative, and such
rules have worked well in practice, but there is no mathematical justification for
such approaches, and they can overestimate the overall variance if the inputs
have been estimated well.

A.2.4 Comparison with requirements

Having estimated the distribution of the total error about each axis, this is
compared to the requirement to see if the system is compliant.

In the case where the parameter being assessed in a linear sum of contributing
errors (such as the Euler angles about each axis of a spacecraft) there is a simple
formula; since the total distribution is assumed to have Gaussian form the
system is compliant with the requirement providing that:

|/ut0tal | + nPGtotaI = emax

Where nr is defined such that for a Gaussian distribution the nrc bound
encloses a probability equal to the confidence level Pc of the requirement. (The
upper limit emax can be replaced by an upper limit on an error index, Imax).

NOTE To fix the ideas, let us remind that for a Gaussian
distribution 1o is equivalent to Pc = 68%, 2c is
equivalent to Pc =95%, 3o is equivalent to Pc =99,7%.

The situation is more complicated if the total error is not a linear sum of
contributors, as the final error does not have Gaussian distribution. The most
common scenario for this is for directional errors of a payload boresight, for
which the total error angle is found by taking the root sum square of the Euler
angles about the perpendicular axes, for example:

2 2
g, =&, +e, .

The resulting distribution is not even close to having Gaussian shape. In the
special case that both of the perpendicular axes have almost distributions with
identical standard deviations cwta and negligible means, then the directional
error follows a Rayleigh distribution, and the system is compliant to the
requirement providing that:

O-total vV~ 2 log(l - PC ) < ¢max

Where, ‘log’ is the natural logarithm, base e.

For a requirement at 95 % confidence this translates into 2.450,, <@, ..,

while for 99,73 % confidence the condition is 3.44 0, < @, .. . Unfortunately

if there is a significant mean, or if the standard deviations about the axes differ,
then there is no such formula, however a simple numerical integration can be
used instead, or a conservative estimate by taking both axes to be identical to
the worst case one.

total

A simplified approach based on the approximation that the standard deviation
of the error @, is the quadratic sum of the standard deviations of e, and €,
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leads to more conservative results. For example, with the hypothesis that both
errors have negligible means and similar standard deviations, the requirement

at 95% confidence gives 2.830,,, <¢,.., while for 99,73 % confidence the

conditionis 4.24 0, < @,..

With directional errors, it is recommended to look very carefully at possible
correlation between the two contributing axes. For example, if nutation causes
the x-axis to rotate about its target direction at a constant offset angle, then the

RPE of the directional error angle is zero, but both €, and €, have a significant
RPE. Naively combining the two gives the wrong result for @, . In such cases,

the correct thing to do is to look at the intention of the requirement (i.e. why is it
important to constrain the RPE of @, ), and to be conservative in compiling the

budget.
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Annex B (informative)
Inputs to an error budget

B.1 Overview

The summation rules recommended in Clause 4.2.3 assume that the means and
variances are known for all errors contributing to the total. In many cases these
parameters can be easily available (quoted in a sensor specification for
instance), in other cases it requires some work to obtain values, first deriving
the probability distribution, then taking its mean and variance.

Some general rules should always be applied, the most important of which is to
follow a conservative approach and to overestimate values rather than
underestimate. As an example, assuming a-priori that a given error has an
approximately Gaussian shape, identifying the bounds with the 3o (99,7 %)
level and computing p and ¢ accordingly, can in fact severely underestimate the
value of o if the error has a uniform distribution or sinusoidal form.

The values used differ depending upon the index being assessed (see Table B-1)
and the statistical interpretation applied:

. Ensemble interpretation: variation across the statistical ensemble at the
worst case time. In this case, the mean and variance used in the budget
refers to the variation of the possible worst case value, and depend upon
the accuracy to which the ensemble parameters are known.

o Temporal interpretation: variation over time for the worst case member
of the statistical ensemble. In this case, the mean and variance used in the
budget relates to the variation over time, and can be derived analytically
if the time variation is known.

o Mixed interpretation: variation across both time and over the statistical
ensemble. It can be shown (see B.7) that in this case the correct value of
the variance to use in the budgets is related to the root mean square
(RMS) value of the ensemble parameter.

This Clause discusses the most common types of error, and gives tables to show
the correct inputs to the budgets for different cases. Not all of the formulae
given are exact, but they are generally a sufficiently good approximation. Other
types of error can be analysed using similar methods.

NOTE In the tables of Annex B, the notations are as
follows: E for “ensemble”, T for “time”, M for
“mixed”; P(e) is the probability density function,
(e) is the mean, and o(e) is the standard deviation
of the error.
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Table B-1: Parameters whose distributions are assessed for the different pointing error

indices (knowledge error indices are similar)

Index PP
. Parameter whose distribution .
being . Description
is assessed
assessed
APE e(t) Error value over time
MPE §(At) Mean error over a time interval
RPE oe = e(t) - é(At), where t € At Variation away from the mean
e = §(At2 )- §(Atl ), where Ati,
PDE Atz are in same observation Change in the mean during an observation period
period
e = §(At2 )- §(Atl ), where Ati,
PRE Atz are in different observation Change in the mean between observation periods
periods

B.2 Bias errors

A bias error is constant by definition, but this does not necessarily mean that its
value cannot change during a mission. It is also possible to have a bias which is
constant during an observation, but which changes between two different
observations. For example, an attitude dependent star sensor error is constant
so long as the sensor sees the same area of sky, but varies if its orientation
changes.

This means that it is possible for bias errors to contribute to PRE index,
providing that the bias changes between observations. Whether this is true, is
assessed for each error separately.

Table B-2 shows the appropriate means and distributions for use with a bias
error B. See B.6 for discussion of how to find distributions of the ensemble
parameter B.
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Table B-2: Budget contributions from bias errors, where B represents the bias

Distribution
Index | S.I Index
P(e) u(e) o(e)
APE E P(B) Us oB For P(B), us and o8 see B.6
T 3(Bwe) Bwc 0 Bwc=worst-case bias.
P(B) us oB For P(B), us and os see B.6
MPE | All | Asfor APE MPE
RPE All | 5(0) 0 0 No contribution by definition
PDE All | 5(0) 0 0 No contribution by definition
PRE E P(AB) 0 2% o | Only if bias can vary between
T 8 (Brmax-Bumin) BuwxBuin | 0 observations, otherwise zero
contribution.
P(AB) 0 2% g8

B.3 Random errors

Generally a random error has a Gaussian or quasi-Gaussian distribution,
although there are cases (such as rounding errors or movement between
bounds) for which a uniform distribution is appropriate. Random errors
generally have a short period, and their distribution is assumed not to change
significantly over time.

Often random errors come from sensors or actuators, in which case data are
usually available directly from the suppliers’ specifications. If not, Table B-3
shows how to find the means and variances for Gaussian errors. In this case the
ensemble parameter is the standard deviation (denoted o) itself: if this is not
known but estimated then we are dealing with the standard deviation of the
standard deviation, which is mathematically well defined (see B.6) but sounds
confusing.

Also note that since Gaussian distributions do not have an upper bound, when
looking at the ensemble distribution (worst case time) it becomes necessary to
impose one. Using the 36 bound as a worst case is generally adequate.

Table B-4 gives the same information for uniform random errors with a range 0
to C, with C being the ensemble parameter in this case.
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Table B-3: Budget contributions from zero mean Gaussian random errors

Distribution
Index | S.I. Notes
P(e) p(e) | ale)
APE E P(3s)= %P(S) 3u 36 | See text. For P(s), u and os see B.6
T GO, swe?) 0 swe G(m,Y) = Gaussian with specified mean
& variance, swc = worst case s
M J‘ G(O,sz)P(s) ds 0 (s) For P(s), us and <s> see B.6. For derivation
see B.7
MPE All 0 0 0 Zero mean so no MPE contribution
RPE All As for APE Zero mean so RPE identical to APE
PDE All . Short timescale, and assume mean value
No contribution i
PRE All does not change over time

NOTE: Zero mean is assumed; if a non-zero mean is present it can be treated as a separate bias-type error

Table B-4: Uniform Random Errors (range 0-C)

Distribution
Index S.L Notes
P(e) p(e) o(e)
E P(C) ile oc | For P(C), uc and oc see B.6.
U(O,CW LC ﬁ CV U(Xmin,Xmax) = uniform in range Xmin to Xmax. Cwc= worst
APE ) 2owe case C
2Mc For P(C), pc and <C> see B.6. For derivation see B.7
Pl3C)=1
E (2 ) FHc 56¢ | For P(C), puc and oc see B.6.
sl5C
MPE T (2 WC) 5 Cwe 0 Cwc=worst case C
PlLC)=1 1
M 2 ZHe 5(C> For P(C), pc and <C> see B.6. For derivation see B.7
P(3C)=1
E (2 ) FHe o | For P(C), uc and oc see B.6.
T U(— 1C3 0 ﬁcw U(Xmin,Xmax) = uniform in range Xmin to Xmax. Cwc= worst
RPE case C
[F1ct L(c
M 22 0 12 For P(C), uc and <C> see B.6. For derivation see B.7
PDE All o Short timescale, and assume mean value does not
No contribution .
PRE All change over time
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B.4 Periodic errors (short period)

By short period, it is meant that the timescale of variation is much shorter than
the averaging time used in the indices, so that the average of the error is zero
(any non-zero average can be treated as a separate bias-type error). The
distribution of the error can be found assuming that it has sinusoidal form.
Table B-5 shows the appropriate means and distributions to be used. See B.6 for
discussion of how to find distributions of the ensemble parameter A (amplitude
of the periodic error).

It is worth mentioning that there is a lot of literature dealing with the
relationship between time and frequency domains requirements using the RPE,
some of the relevant techniques being already in use in the industry. Refer for
example to [1].

Table B-5: Budget contributions for periodic errors (low period sinusoidal)

Distribution
Index S.1. Notes
P(e) u(e) cle)
APE E P(A) uA CA For P(A), pa and ca see B.6
-1
W 0 wac Awc=worst case A
M J’ 1 For P(A), pua and <A> see B.6 For

e|A)PLA)JA —(A

( | ) ( ) 0 2 < > derivation see B.7
MPE | All 0 0 0 No MPE for low period errors
RPE All As for APE No mean so RPE, APE same
PDE All o No change over time so no

No contribution L2

PRE All contribution to PDE, PRE

NOTE: Zero mean is assumed; if a non-zero mean is present it can be treated as a separate bias-type error

B.5 Periodic errors (long period)

By long period, it is meant that the timescale of variation is much longer than
the averaging time used in the indices, so that to a good approximation the
index does not change during an observation. The distribution of the error can
be found assuming that it has sinusoidal form. Table B-6 shows the appropriate
means and distributions to be used. See B.6 for discussion of how to find
distributions of the ensemble parameter A.
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Table B-6: Budget contributions for periodic errors (long period sinusoidal)

Inde Distribution
S.I. Notes
X P(e) u(e) o(e)
APE E P(A) Ha A For P(A), pa and ca see B.6
W 0 FAwe | Awe= worst case A
M P(e | AP(A A LA For P(A), ua and <A> see
J. (8| ) ( )d 0 ‘E< ) B.6; For derivation see B.7
MPE | All As for APE
RPE All 0 0 0
PA)=1P(A 9 9 Actual values depend on the
B (24)=3P(a) Ha oA definitions of PDE, PRE.
7! These values are computed
PDE T 2Ayc-e)2Ayc +e 0 ﬁAWC assuming a worst case where
the 2 intervals are taken %
M J.P(Se | A)P(A)dA 0 V26, period (time T/2) apart, so
that de= 2e
PRE All As for PDE
NOTE: Zero mean is assumed; if a non-zero mean is present it can be treated as a separate bias-type error

B.6 Distributions of ensemble parameters

In Clauses B.2 to B.5 the error statistics (in ensemble or mixed interpretations)
depend on the statistics of the ensemble parameters A (periodic), B (bias), C
(uniform random) and s (Gaussian random). For a general ensemble parameter,
x, we need to be able to determine the probability distribution of x given the
data available, in particular the mean and standard deviation.

Case 1: measured data. If a measurement is made of the parameter x, this gives
a measured value plus some error range, Xest + 3X, where 8x corresponds to the
n-c level of a Gaussian. In this case the appropriate distribution is a Gaussian
with:

Wx= Xest, Ox= SX /n
This is appropriate for example for the measured bias of a sensor.

Case 2: bounds known, distribution not known. If it is known that X is in the
range Xmin t0 Xmax, and that intermediate values are possible, but no other
information is available, then the appropriate distribution is a uniform
distribution between these bounds. This is appropriate for example for
alignment using shimming.

Case 3: PDF of ensemble parameter known. In such case the relevant
properties can be extracted directly from the probability distribution:

U, = IxP(x)dx ,

o} = [(x= ) P(x)dx
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(x) =, /szP(x)dx

This can occur if the physical process underlying the ensemble is known well
enough to predict its behaviour. An example is a pointing error caused by
position uncertainty, in which the distribution of the ensemble parameter can
be obtained knowing the uncertainties in the process of determining the orbit.

Table B-7 gives some common distributions used to describe ensemble
parameters, and their important properties.
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Table B-7: Some common distributions of ensemble parameters and their properties
Name Distribution Mean Variance RMS
P(x) x G2 <>
Delta P(X)=0(X— ) u 0 P
. 1 l(x-p 2 2 2 2
Gaussian P(x) = exp| —— 2 o U +o
oN2rx 2\ o
P(x) = for X <X<X_ X +X X —x_ ) X =X
Uniform — Xmiu 'max 'min ‘max ‘min ‘max min
2 12 3K = X
P(x) =0 otherwise
ﬂ_—l
Bi d 1 P(X) = fOI' Xmiu <X< Xmax X + X . — 2
lmo 2 \/(Xmax - X)(X - Xmin) = = M <X> = %\/6X§13X + 6X§1m + 4Xmax Xmin
(PDF for sinusoid) 2 8

P(X) =0 otherwise
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B.7 Using the mixed statistical distribution

When using the mixed statistical interpretation, there is a different temporal
distribution (i.e. behaviour over time) for each value of the ensemble parameter.
When taking the mean or variance, the appropriate PDF to quantify is the
distribution over both time and ensemble:

P(x)=[P(x| A)P(A)dA

Where normalisation constants are omitted.

However, rather than computing this distribution and then finding p and o,
there is a simpler way. Starting from the definition of the mean

U, = j XP(x)dx
Substituting the above expression for P(x) and doing some manipulation gives
u, = [x([ P(x| A)P(A)dA)dx
= [([ xP(x| A)dx)P(A)dA
= [ 11, (x| A)P(A)dA

That is, the overall mean can be found using the distribution of A providing
that the mean is known for a given value of A. Similarly for the variance o

o’ :jaj(x|A)P(A)dA

This avoids computing the full distribution P(s). For example, suppose that we
have a noise error with a zero mean Gaussian distribution over time:

P(x|$)=—— Lx
\27S? 28
In this case the ensemble parameter is the temporal standard deviation, S, and

for a given value of S p=0 and o=S. If we know that S lies between 0 and Smax,
but nothing else, then assuming a uniform distribution gives

= [ H(S)P(S)dS =0

S
max 1
o =[TSPEES = [ 8718, )d5 =S,
0

Which is much easier than finding the full distribution

Simax 2
P(x) = J.L ! exp(—%%}ds

0 Smax 27S :
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Annex C (informative)
Worked example

C.1 Scenario and requirements

Consider a simple scientific spacecraft, whose objective is to take images of
various star fields, as shown in Figure C-1. Attitude measurement is done using
a star sensor, attitude control using reaction wheels.

The requirements (formulated according to the recommendations of Clause 4.1)
on the spacecraft are:

. “The APE on the payload boresight shall be less than 20 arcsec about the y and z
axes (the axes perpendicular to the boresight) and less than 1 arcmin about the x-
axis (i.e. about the boresight)”.

. “The RPE on the payload boresight shall be less than 10 arcsec about the y and z
axes (the axes perpendicular to the boresight) and less than 30 arcsec about the x-
axis (i.e. about the boresight), i.e. no more than half the error can be due sources
which vary on short timescales. The timescale RPE is taken to be 30 seconds (the
payload integration time)”.

. “These requirements should be met for 95 % of the time using the ‘mixed’
statistical interpretation”

These requirements are derived from the payload parameters, such as field of
view, pixel size, integration time and so on, as shown in Figure C-1. This
derivation is beyond the scope of this note and so is not done here.

NOTE1 The example presented in this Annex is intended
to illustrate the specification and budgeting
procedure described in the standard, and does not
intend to represent a real or even realistic
spacecraft.

NOTE2 The performance budgets worked out in this
Annex (clauses C.2 and C.3) are strictly based on
the method described by Clause 4.2 (in particular
the summation rules).
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Attitude determination
__ using star tracker
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Target imaged on
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Figure C-1: Scenario example

C.2 Assessing the contributing errors

For this example, the contributing errors can be classified into groups:

Measurement errors. The attitude measurement error of the star sensor is
separated into two parts: an attitude dependent bias, and a time-
dependent term. It is assumed that the distribution of the time varying
errors (after filtering) is known exactly, but that of the attitude errors is
not.

Control errors. The error in reaching the (measured) target frame. For the
purpose of this example this also includes actuator errors (e.g. reaction
wheel noise) as well as errors due to the controller itself. The resulting
error distribution is assumed to be Gaussian, with a standard deviation
(ensemble parameter) which is itself described by a Gaussian
distribution.

Targeting errors. The dominant contribution here comes from the error
in knowing the exact spacecraft position along its orbit, and hence the
error varies sinusoidally at the orbital period.

Structural errors. The payload and the star sensor both have some
misalignment with respect to the nominal body reference frame, so even
after calibration there remains some misalignment between the two. In
addition there is a thermoelastic distortion of the spacecraft, assumed to
vary at the orbit period.

Table C-1 summarises these errors, together with their important properties. In

order to provide some numerical inputs to the budget, the numerical values of
the ensemble distribution are assumed to be those given in Table C-2. Note that
these values are for illustration only, and are not necessarily representative of
any given mission.
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Note also that correlations between errors are not considered for this simple
example.

Table C-1: Example of contributing errors, and their relevant properties

Temporal . 0
Error P! Period Ensemble distribution
behaviour
STR time-dependent errors | Random Less than observation Delta function (value
(after filtering) period known)
STR attitude dependent Bias observation period Gaussian (variance
bias known)
Controller and actuator Random Less than observation Gaussian (variance
errors period known)
Thermoelastic distortion Sinusoidal Orbit period Uniform
STR & payload (assumed) (range known)
Payload -STR Bias Does not vary Uniform
misalignment after (range known)
calibration
Targeting error due to Sinusoidal Orbit period Gaussian (variance
position knowledge known)
Flexible modes & fuel Sinusoidal Less than observation Gaussian (variance
slosh (assumed, not period known)
generally so
simple)

The choice of the ensemble parameter distribution is different for each error:

The time dependent star sensor errors are assigned a delta-function
distribution. This means that the value of the ensemble parameter (i.e. the
noise level) are essentially known exactly

The thermoelastic distortion and payload/star sensor misalignment are
assigned uniform distributions. This means that their bounds can be
identified, but not the behaviour between them (see B.6)

The other errors are assigned Gaussian distributions, meaning that a
distribution of their possible values is known. For example, the targeting
error is related to the initial position error, and even though this is not
known a-priori we can predict the probability of it having a particular
value.

More details are given in Annex B.

52




|[EY

ECSS-E-ST-60-10C
15 November 2008

Table C-2 : Example of distribution of the ensemble parameters

Ensemble . Distribution of ensemble parameter
Error dim
parameter E P(E) LLE OF <F>
STR time- Standard X 5(10”) 10,0” 0 10,0”
dependent deviation over y 8(57) 5,07 0 5,07
errors time
3(5”) 5,07 0 5,07
STR attitude Value of bias X G(0, 6.67”) 0 6,67 6,67"
dependent bias y G(0, 3.33") 0 3,33” 3,33”
G(0, 3.33”) 0 3,33” 3,33”
Controller and Standard X G(17,3”) 1,00” 3,007 3,16”
actuator errors deviation over y G(1”,3") 1,00” 3,00” 3,16”
time
G(17,3") 1,00” 3,007 3,16”
Thermoelastic Amplitude of X U(0, 4”) 2,00” 1,157 2,31”
payload variation
U0, 4”) 2,00” 1,15” 2,31”
Payload -STR Value of bias X U(-5",5") 0 2,897 2,897
misalignment U(-5", 57 0 289" 289"
U(-5”,5") 0 2,89” 2,89”
Targeting error | Amplitude of X G(0,5”) 0 5,00” 5,00”
due to position sinusoidal y G(0, 1) 0 1,00 1,00”
knowledge variation
G(0, 5”) 0 5,00” 5,00”
Flexible modes Amplitude of X G(0, 3") 0 3,00” 3,00”
& fuel slosh sinusoidal y G(0,5") 0 5,007 5,007
variation
G(0, 3”) 0 3,00” 3,00”
NOTE §(A) = delta function,
G(p,0) = Gaussian distribution with specified mean and standard deviation,
U(A,B) = uniform distribution with bounds A and B.

C.3 Compiling the pointing budgets

Using the values in Table C-2, the contributions to the pointing budgets for the
APE and RPE indices can be worked out using the formulae given in annex B.
Since the mixed statistical interpretation is being used here, all of the errors in
the budget have zero mean, even if the ensemble parameter has non-zero mean.
This is not the general case.

Combining the contributing standard deviations using the formula from Clause
4.2.3, it can be shown that the APE is compliant with the requirement (20 arcsec
about y and 1 arcmin about x). However the RPE budget is not compliant with
the requirement, as the short term variations are too large.
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Table C-3 : Example of pointing budget for the APE index

o (arcsec)
Error Formula from:
X y Z
STR time-dependent errors 10,0 5,0 5,0 Table B-3
STR attitude dependent bias 6,67 3,33 3,33 Table B-2
Controller and actuator errors 3,16 3,16 3,16 Table B-3
Thermoelastic: STR & payload 1,63 1,63 1,63 Table B-6
Payload —STR misalignment 2,89 2,89 2,89 Table B-2
Targeting error (position knowledge) 3,54 0,71 3,54 Table B-6
Flexible modes & fuel slosh 2,12 3,54 2,12 Table B-5
Total (RSS): 13,51 8,37 8,61
APE budget
Total x 2 (for 95 % confidence): | 27,01 | 16,75 | 17,21 ucee
compliant
Original requirement: 60 20 20

Table C-4 : Example of pointing budget for the RPE index

o (arcsec)
Error Formula from:

X Y Z
STR time-dependent errors 10,0 5,0 5,0 Table B-3
STR attitude dependent bias 0,0 0,0 0,0 Table B-2
Controller and actuator errors 3,16 3,16 3,16 Table B-3
Thermoelastic: STR & payload 0,0 0,0 0,0 Table B-6
Payload —STR misalignment 0,0 0,0 0,0 Table B-2
Targeting error (position knowledge) 0,0 0,0 0,0 Table B-6
Flexible modes & fuel slosh 2,12 3,54 2,12 Table B-5

Total (RSS): | 10,70 6,89 6,28
RPE budget
Total x 2 (for 95 % confidence): | 21,40 | 13,78 | 12,57 ucee
not compliant
Original requirement: 30 10 10
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Annex D (informative)
Correspondence with the pointing error
handbook

For the specific domain of AOCS and spacecraft pointing, the terminology
introduced in this Standard brings in some innovation in regard to the ESA
Pointing Error Handbook. This was made mandatory by the care for covering a
more general field of application, not restricted to AOCS, and to deal with error
signals of any physical type — not only angles and angular rates.

In order to help the user to switch to the new reference terms, Table D-1
explains how to translate the Pointing Error Handbook indicators into the
ECSS- E-ST-60-10 ones:

Table D-1: Correspondence between Pointing error handbook and ECSS-E-ST-60-10
indicators

PEH indicators ECSS- E-ST-60-10 equivalence

APE (absolute pointing error) APE (absolute performance error), applied to the
pointing error

RPE (relative pointing error) RPE (relative performance error), applied to the
pointing error

PDE (pointing drift error) PDE (performance drift error), applied to the pointing
error

PRE (pointing reproducibility error) PRE (performance reproducibility error), applied to the
pointing error

MPE (median pointing error) MPE (mean performance error), applied to the pointing
error

AME (absolute measurement error) AKE (absolute knowledge error), applied to the angular
knowledge

ARE (absolute rate error) APE (absolute performance error), applied to the

angular rate

ARME (absolute rate measurement error) | AKE (absolute knowledge error), applied to the angular
rate knowledge
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