
FOR SPACE STANDARDIZATION

EUROPEAN COOPERATION

ECSS

Space engineering

Software

This ECSS document is a draft standard circulated for review and comment. It is
therefore subject to change and may not be referred to as an ECSS Standard until
published as such.

The ECSS public review of this draft ends on 28 February 2002.

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-40B Draft 1
15 February 2002

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

2

Published by: ESA Publications Division
ESTEC, P.O. Box 299,
2200 AG Noordwijk,
The Netherlands

ISSN: 1028-396X

Price: � 10 (up to 50 pages) � 20 (50--100 pages) � 30 (101 -- 200 pages)

Printed in The Netherlands

Copyright 2002 E by the European Space Agency for the members of ECSS

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

3

Foreword

This Standard is one of the series of ECSS Standards intended to be applied
together for the management, engineering and product assurance in space pro-
jects and applications. ECSS is a cooperative effort of the European Space Agency,
national space agencies and European industry associations for the purpose of
developing and maintaining common standards.

Requirements in thisStandardare defined in termsofwhat shall be accomplished,
rather than in terms of how to organize and perform the necessary work. This
allows existing organizational structures and methods to be applied where they
are effective, and for the structures and methods to evolve as necessary without
rewriting the standards.

The formulation of this Standard takes into account the existing ISO 9000 family
of documents, and the ISO/IEC 12207 standard.

This Standard has been prepared by theECSSSoftwareWorkingGroup, reviewed
by the ECSS Technical Panel and approved by the ECSS Steering Board.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

4

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

5

Contents

Foreword 3. .

1 Scope 9. .

2 Normative references 11. .

3 Terms, definitions and abbreviated terms 13. .

3.1 Terms and definitions 13. .

3.2 Abbreviated terms 16. .

4 Space system software engineering 19. .

4.1 Introduction 19. .

4.2 Space system software engineering processes 20. .

4.3 Organization of this Standard 26. .

4.4 Relation to other ECSS Standards 27. .

4.5 Tailoring of this Standard 29. .

5 General requirements 31. .

5.1 Introduction 31. .

5.2 System engineering processes related to software 31. .

5.3 Software management process 36. .

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

6

5.4 Software requirements engineering process 40. .

5.5 Software design engineering process 42. .

5.6 Software validation and acceptance process 45. .

5.7 Software operations engineering process 47. .

5.8 Software maintenance process 49. .

5.9 Software verification and validation (supporting) processes 53.

6 Special requirements 61. .

6.1 Introduction 61. .

6.2 Space segment software 61. .

6.3 Ground segment software 67. .

6.4 Software reuse 67. .

6.5 Man-machine interfaces 68. .

6.6 Critical software 69. .

Annex A (normative)

Software documentation 71. .

A.1 Introduction 71. .

A.2 Requirements Baseline (RB) 72. .

A.3 Technical Specification (TS) 73. .

A.4 Design Definition File (DDF) 75. .

A.5 Design Justification File (DJF) 78. .

A.6 Management File (MGT) 85. .

A.7 Maintenance File (MF) 87. .

A.8 Operational Doumentation (OP) 88. .

A.9 Product Assurance File (PAF) 89. .

A.10 System level documentation 102. .

Annex B (informative)

References to other ECSS Standards 103.

Annex C (informative)

Tailoring guidelines 105. .

C.1 Introduction 105. .

C.2 How to tailor 105. .

C.3 Who tailors? 107. .

C.4 Tailoring templates 107. .

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

7

Bibliography 132. .

Figures

Figure 1: Life cycle processes in ECSS Standards 20. .

Figure 2: The recursive customer - supplier model 21. .

Figure 3: Overview of the software development processes 22. .

Figure 4: Process constraints 23. .

Figure 5: Accommodation of different software life cycles 23. .

Figure 6: Structure of this Standard 26. .

Figure A-1: Overview of software engineering documents 71. .

Tables

Table C-1: 107

Table C-2: 119

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

8

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

9

1

Scope

This software engineering Standard concerns the �product software�, i.e. soft-
ware that is part of a space system product tree and developed as part of a space
project.

This Standard is applicable to all the elements of a space system, including the
space segment, the launch service segment and the ground segment.

This Standard covers all aspects of space software engineering including require-
ments definition, design, production, verification and validation, and transfer,
operations and maintenance.

It defines the scope of the space software engineering process and its interfaces
with management and product assurance, which are addressed in the Manage-
ment (-M) andProduct assurance (-Q) branches of the ECSSSystem, and explains
how they apply in the software engineering process.

This Standard reflects the specific methods used in space system developments,
and the requirements for the software engineering process in this context.
Together with the requirements found in the other branches of the ECSS
Standards, this Standard provides a coherent and complete framework for
software engineering in a space project.

This Standard is intended to help the customers to formulate their requirements
and suppliers to prepare their response and to implement the work.

This Standard is not intended to replace textbook material on computer science
or technology, and such material is avoided in this Standard. The readers and
users of this Standard are assumed to possess general knowledge of computer
science.

The scope of this Standard is the software developed as part of a space project, i.e.
�Space system product software�. It is not intended to cover software develop-
ments out of scope with the ECSS System of Standards. An example is the
development of commercial software packages, where software is developed for
a (large) volume market and not just for a single customer, and the main require-
ment analysis consists of market analysis, combined with a marketing strategy.

This Standard also applies to the development of non-deliverable software which
affects the quality of the deliverable product.

Other classes of software products not covered are: management information
systems (e.g. finance, planning), technical information systems (e.g. CAD/CAM,
analysis packages) and supporting software products for documentation systems,
database systems, spread-sheets. These usually result from the procurement or

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

10

adaptation of existing commercial products, and are not part of the space system
development. Such software products are however, often be part of a supporting
infrastructure for space systems.

When viewed from the perspective of a specific project context, the requirements
defined in this Standard should be tailored to match the genuine requirements
of a particular profile and circumstances of a project (see annex C).

NOTE Tailoring is a process by which individual requirements or
specifications, standards and related documents are evalu-
ated and made applicable to a specific project, by selection
and in some exceptional cases, modification of existing or
addition of new requirements.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

11

2

Normative references

The following normative documents contain provisions which, through reference
in this text, constitute provisions of this ECSS Standard. For dated references,
subsequent amendments to, or revisions of any of these publications do not apply.
However, parties to agreements based on this ECSS Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references the latest edition of the publi-
cation referred to applies.

ECSS--P--001 Glossary of terms

ECSS--E--10 Space engineering � System engineering

ECSS--M--00 Space project management � Policy and principles

ECSS--M--10 Space project management -- Project breakdown struc-
tures

ECSS--M--20 Space project management Project organization

ECSS--M--30 Space project management � Project phasing and plan-
ning

ECSS--M--40 Space project management � Configuration management

ECSS--Q--20 Space product assurance � Quality assurance

ECSS--Q--80 Space product assurance � Software product assurance

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

12

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

13

3

Terms, definitions and abbreviated terms

3.1 Terms and definitions
The following terms and definitions are specific to this Standard in the sense that
they are complementary or additional with respect to those contained in
ECSS--P--001.

3.1.1
acceptance testing
the test of a system or functional unit usually performed by the customer on his
premises after installationwith the participation of the supplier to ensure that the
contractual requirements are met

[ISO 2382]

3.1.2
configurable code
source or executable code that can be tailored by setting values of parameters

3.1.3
critical software
software supporting a safety or dependability critical function that if incorrect or
inadvertently executed can result in catastrophic or critical consequences

NOTE For the definition of catastrophic and critical see
ECSS--Q--30 and ECSS--Q--40.

3.1.4
deactivated code
code that, although incorporated through correct designand coding isnot intended
to execute in any software product configuration

3.1.5
integration test
a. the progressive linking and testing of programs ormodules in order to ensure

their proper functioning in the complete system

[ISO 2382]

b. testing in which software components, hardware components, or both are
combined and tested to evaluate the interaction between them

[IEEE 610.12]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

14

3.1.6
margin philosophy
rationale for margins allocated to the performance parameters and computer
resources of a development, and how these margins shall be managed during the
execution of the project

3.1.7
metric
the defined measurement method and the measurement scale

[ISO 9126]

3.1.8
migration
porting of a software product to a new environment

3.1.9
portability (a quality characteristic)
the capability of software to be transferred from one environment to another

[ISO 9126]

3.1.10
quality characteristics (software)
the set of attributes of a software product by which its quality is described and
evaluated. A software quality characteristic may be refined into multiple levels of
subcharacteristics

[ISO 9126]

3.1.11
quality model (software)
the set of characteristics and the relationships between them which provides the
basis for specifying quality requirements and evaluating quality

[ISO 9126]

3.1.12
regression testing (software)
selective retesting to detect faults introduced during modification of a system or
system component, to verify that the modifications have not caused unintended
adverse effects, or to verify that amodified systemor systemcomponent stillmeets
its specified requirements

[IEEE 610.12]

3.1.13
reusability
the degree to which a software module or other work product can be used in more
than one computer program or software system

[IEEE 610.12]

3.1.14
singular input
individual parameter stress testing

3.1.15
software
see 3.1.20 software product

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

15

3.1.16
software component
part of a software system

NOTE 1 Software component is used as a general term

NOTE 2 Components can be assembled and decomposed to form new
components. In the production phase, components are im-
plemented as modules, tasks or programs, any of which can
be configuration items. This usage of the term is more gen-
eral than in ANSI/IEEE parlance, which defines a compo-
nent as a �basic part of a system or program�; in this Stan-
dard, components are not always �basic� as they can be
decomposed.

3.1.17
software item
see 3.1.20 software product

3.1.18
software intensive system
space system where the dominant part of the constituents are software elements

NOTE In such systems, subsystems consist mainly of software. For
this type of system, the majority of interfaces are software--
software interfaces.

3.1.19
software observability
property of a system for which the values of status variables can be determined
throughout observations of the output variables

3.1.20
software product
set of computer programs, procedures and documentation and data associated
with them

3.1.21
software product assurance
totality of activities, standards, controls and procedures in the lifetime of a soft-
ware product which establishes confidence that the delivered software product, or
software affecting the quality of the delivered product, conforms to customer
requirements

3.1.22
software unit
separately compilable piece of source code

NOTE In this Standard no distinction is made between a software
unit and a database; both are covered by the same require-
ments.

3.1.23
stress test
test that evaluates a system or software component at or beyond the limits of its
specified requirements

3.1.24
unit test
test of software unit to ensure that there are no programming errors

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

16

3.1.25
unreachable code
code that cannot be executed due to design or coding error

3.1.26
usability (a quality characteristic)
the capacity of the software to be understood, learned, used and liked by the user,
when used under specified conditions

[ISO 9126]

3.1.27
validation
confirmation, through the provision of objective evidence, that the requirements
for a specific intended use or application have been fulfilled

[ISO 9000]

NOTE The validation process (for software): confirmation that the
requirements baseline functions and performances are cor-
rectly and completely implemented in the final product.

3.1.28
verification
confirmation, through the provision of objective evidence, that specified require-
ments have been fulfilled

[ISO 9000]

NOTE The verification process (for software):confirmation that ad-
equate specifications and inputs exist for any activity, and
that the outputs of the activities are correct and consistent
with the specifications and input.

3.2 Abbreviated terms
The following abbreviated terms are defined and used within this Standard:

Abbreviation Meaning

AOCS attitude and orbit control system

AR acceptance review

NOTE The term SW-AR may be used for clarity to denote ARs that
solely involve software products.

CAD computer aided design

CAM computer aided manufacturing

CDR critical design review

NOTE The term SW-CDR may be used for clarity to denote CDRs
that solely involve software products.

COTS commercial off-the-shelf software

CPU central processing unit

DDF design definition file

DDR detailed design review

DJF design justification file

ECSS European Cooperation for Space Standardization

FMECA failure mode effect and criticality analysis

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

17

HOOD hierarchical object oriented design

HOORA hierarchical object oriented requirements analysis

HRT hard real time

HSIA hardware software interaction analysis

HW hardware

ICD interface control document

IRD interface requirements document

ISO International Organization for Standardization

ISV independent software validation

ISVV independent software verification and validation

MGT management file

MF maintenance file

MMI man machine interface

MOTS modified off-the-shelf

OP operational plan

ORR operational readiness review

PDR preliminary design review

NOTE The term SW-PDR may be used for clarity to denote PDRs
that solely involve software products.

QR qualification review

NOTE The term SW-QRmay be used for clarity to denote QRs that
solely involve software products.

RB requirements baseline

RT real time

SA structured analysis

SD structured design

SADT structured analysis and design technique

SDE software development environment.

SDL synchronous design language.

SPA software product assurance

SPR software problem report

SRR system requirements review

NOTE The term SW-SRR may be used for clarity to denote SRRs
that solely involve software products.

SW software

SWE software engineering

TS technical specification

UML unified modelling language

V&V verification & validation

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

18

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

19

4

Space system software engineering

4.1 Introduction
This clause 4 introduces the structure of this Standard and the framework of the
space software engineering process that form its basis.

The context of space software engineering is the overall space system engineering
process. This clause 4 defines the general relationships between the software
engineering processes and the general engineering processes of space systems.

The software engineering activity differs from the other engineering disciplines
covered byECSS in one important aspect: software doesnot in itself produce heat,
have mass or any other physical characteristics. The software engineering activ-
ity is a purely intellectual activity and a principle output of the activity is docu-
mentation. If the software code itself is considered as a specialized form of elec-
tronic documents, all visible outputs are in fact documentation.

It follows that this Standard focuses on requirements for the structure and con-
tent of the documentation produced.

Software is used for the implementation of highly complex functions. The ability
to deal with a high level of complexity in a flexible way makes software an
essential and increasing part of space segment and ground segment products. In
space systems, software engineering is found at all levels ranging from system
level functions down to the firmware of a space system part.

Therefore the requirements engineering process, in which the software require-
ments and specifications are defined, has a special emphasis in this Standard.
The software requirements engineering process consumes a large and often un-
derestimated amount of effort in the development of software for space systems.

As a result of the complexity of the functional and performance requirements, it
also follows that special measures and emphasis apply for software verification
and validation, especially for space segment software. The functions assigned to
software can be critical to the space mission.

The maintenance of software for space systems also poses special problems,
because they imply operational lifetimes that far exceed what is expected of
general computer software products. For the space segment, this is further com-
plicated by the fact that software in general is the only part of the space segment
that undergoes major maintenance and repair, sometimes even redesign, after

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

20

launch. In extreme cases, the space system mission itself is redesigned, imple-
menting new space segment software after launch. Ground segment software is
similarly characterized.

This Standard is complemented by ECSS--Q--80 Space product assurance �
Software product assurance, with product assurance aspects. Together the two
standards either define or refer to the definition of all software relevant processes
for space projects.

The coverage of all software life cycle processes by the different ECSS Standards
is illustrated in Figure 1.

O R G A N IZA T IO N A L L IFE C Y C LE PR O C ESSES

SUPPO R T ING

LIFE C Y C LE PR O C ESSES

Configuration management

PR IM A R Y

LIFE C Y C LE PR O C ESSES

Details for
SPA and/or
SW E

Acqu is it ion

D evelopment

O peration

M aintenance

Problem Reso lut ion

Q uality A ssurance

V erificat ion

V alidat ion

Joint Review

Audit

Improvement

Infrastructure

Training

Q-80

Supp ly

D ocumentation

M anagement

E-40

Other ECSS

Figure 1: Software life cycle processes in ECSS Standards

4.2 Space system software engineering processes

4.2.1 General
The software engineering processes regulated by this Standard are based on the
definitions and requirements given in the ECSS--M series (in particular M--20,
M--30, M--40 and M--50), and the general engineering process requirements of
ECSS--E--00. These requirements have been used to define the top level software
engineering processes. This general framework defines the processes (that are
later treated in detail in the following subclauses) and the top level interface
between the software engineering processes and other space development pro-
cesses.

The fundamental principle of this Standard is the �customer-supplier� relation-
ship, assumed for all software developments. The organizational aspects of this
are defined in ECSS--M--20. The customer is, in the general case, the procurer of
two strongly associated products: the hardware and the software for a system,
subsystem, set, equipment or assembly (see ECSS--E--00). The concept of the
�customer--supplier � relationship is applied recursively i.e. the customer may
himself be a supplier to a higher level in the space system as shown in Figure 2.
The software customer therefore has two important interfaces. The first interface
is to his software and hardware suppliers and this includes the functional analysi-

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

21

s allocating adequately functional and performance requirements to his
suppliers. The other where he is in his role as supplier at a higher level, ensuring
that higher level system requirements are adequately taken into account.

The customer derives the functional and performance requirements for the hard-
ware and software, based on system engineering principles and methods. The
customer also controls the interface between the software and hardware. Soft-
ware items are defined in the systembreakdown at different levels. Nevertheless,
it is important to manage the software-software interfaces irrespective of the
level at which they occur. The customer�s requirements are defined by this initia-
lizing process, and provide the starting point for the software engineering.

...

Customer

Supplier

Customer

Supplier

Customer

Supplier

Customer

Supplier

Customer

HW SW SW

HW SW

Level n

Level n+1

Level n+2

Figure 2: The recursive customer -- supplier model
Reviews are the main interaction points between the customer and supplier. The
reviews relevant to the software engineering process are the SRR, PDR, CDR, QR
and AR, as defined by ECSS--M--30. All reviews are applicable to software. The
reviews occur at different levels in the customer-supplier hierarchy and are
sequenced according to the overall system level planning. This Standard is de-
signed to be applied at any level, without explicit assumptions of how these
reviews are integrated with other reviews in the development of a space system.
The term system in this Standard is meant as system or subsystem at any decom-
position level. An overview is shown in Figure 3. The commonly designated
mission phases (e.g. 0, A, B) are used for the overall mission phases, and play no
direct role in the software engineering activities as such. This means that the
software engineering processes, together with their reviews and attached mile-
stones as defined in this Standard, are not scheduled as the higher-level system
mission phases. They are planned in relation to the immediate higher level
development processes.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

22

The notion of engineering processes is fundamental to this Standard, as the
processes provide the means to describe the overall constraints and interfaces to
the software engineering process at system level, and at the same time, provide
the necessary freedom to the supplier to implement the individual activities and
tasks implied by the processes. The freedom given to the supplier to implement
the engineering processes is especially important for software engineering, be-
cause of the requirement to organize the work in accordance with a well defined
software life cycle. There is a requirement to accommodate different types of
software life cycles, both for reasons of efficient organisation of the work and also
for reasons related to competitiveness and choice of software engineering technol-
ogy. Different software life cycle types can be accommodated within the require-
ments in this Standard. Figure 4 illustrates the constraints. Figure 5 shows
examples of variations within these constraints.

RB
DJF

TS
DJF

DDF

SW validation
and acceptance process

(5.6)SW design
engineering

process (5.5)SW requirements
engineering process

(5.4)

SRR PDR CDR QR AR

DDF

DJF

DDF

DJF

DJF

DDF

Legend:

Process

Review

Product flow

Generated Products:

Requirements Baseline (RB)
Technical Specification (TS)
Inter face Control Document (ICD)
Design Definition file (DDF)
Design Justification File (DJF)

System engineering
process related to
sofware (5.2)

Figure 3: Overview of the software development processes

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

23

Processes

Requirements engineering

Verification

SRR PDR CDR QR AR

Functional state

Specified state
Defined state

Qualified state

Accepted state

Legend:

Float limit of process (earliest limit for the start of the process)

State of project

Time

Design engineering

Validation

System engineering

Validation and Acceptance

Figure 4: Process constraints

Design engineering

Verification

SRR PDR CDR QR AR

Validation

Time

(a) �Waterfall� life cycle

Requirements eng.

Design eng.

Verification

SRR PDR QR AR

Validation

(b) Evolutionar y life cycle

CDR

Requirements eng.

Design eng.

Verification

SRR PDR QR AR

Validation

CDR

Optional process early
in the life cycle

Legend:

Final and completing
invocation of the process

Requirements engineering

System engineering

System eng.

System eng.

Validation and
Acceptance

Validation and
Acceptance

Figure 5: Accommodation of different software life cycles

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

24

4.2.2 Software requirements engineering process
The system engineering processes produce the information for input to system
requirements review (SRR). This establishes the functional and performance
requirements baseline (RB) of the software development, and the preliminary
interface requirements.

A second part of the software requirements engineering process is the elaboration
of the technical specification (TS), which is the supplier�s response to the require-
ments baseline. This process may start in parallel or after the elaboration of the
requirements baseline. The software product tree is defined by this process. The
technical specification contains a precise and coherent definition of functions,
performances, cost, schedule and implementation plans for all levels of the soft-
ware to be developed. The preliminary interface control document (ICD) is gener-
ated by this process.

During the software requirements engineering activity, the result of all signifi-
cant trade-offs, feasibility analyses, make-or-buy decisions and supporting
technical assessments are documented in a design justification file (DJF).

The software requirements engineering process is completed by the preliminary
design review (PDR). The input to the PDR is the technical specification, prelimi-
nary ICD and the DJF. The software architectural design is reviewed at the PDR.
Additional reviews of the software architecture under the customer initiative,
can be specifically included in the organization of the project.

The state of the software development after PDR is called �specified state�.

4.2.3 Software design engineering process
The �design and configuration engineering process� mentioned in ECSS--E--10 is
in software developments referred to as the �design engineering process�.

This process does not start before SRR. It can start before the PDR, but it is after
the PDR when the results of the requirements engineering process are reviewed
and baselined that are used as inputs to the design engineering process.

The process produces the design of each element of the software product tree, in
response to the requirements contained in the technical specification, ICD and
DJF. All elements of the software design are documented in the design definition
file (DDF). The DDF contains all the levels of design engineering results, includ-
ing software code listings.

The rationale for important design choices, and analysis and test data that shows
the designmeets all requirements, is added to theDJF by this process. The results
of this process are the input to the critical design review(CDR). The CDR signals
the end of the design phase. For large software projects, all software sub-systems
will undergo a CDR before they are integrated with the next highest level in the
system hierarchy. Large software developments are partitioned in smaller man-
ageable projects that aremanaged like any other subsystemdevelopment in space
projects.

Finally this process produces also the coding, unit testing, integration testing and
validation of the software product with respect to the technical specification. All
elements of the testing activities are documented in the design justification file
(DJF).

The integration activities include preparation and execution of the validation
testing of the integrated product. At system level, which is the next higher level
in the product tree, the system level integration takes place. The system level
integration nominally takes place after completion of the CDR for the software
product to be integrated with the system.However, depending on the system level
life cycle and risk sharing approach, the system integration process can be speci-
fied invoked earlier, but not earlier than the software CDR.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

25

4.2.4 Validation and acceptance process
The validation and acceptance process can start after the CDR and when the
validation with respect to TS is complete.

The state of the software project after CDR is called �defined state�.

This process includes a qualification review (QR), with the DJF as input. The
state of the software project after QR is called the �qualified state�.

4.2.5 Software operations engineering process
The operations process can start after completion of the acceptance review of the
software. Since software products form an integrated part of a space system, the
phasing and management of operations are determined by the overall system
requirements and applied to the software products. The operations engineering
processes are not directly connected to the overall mission phase E, but are,
instead, determined by the requirement at system level to operate the software
product at a given time.

General requirements for operations are found in ECSS--E--70 .

4.2.6 Software maintenance process
This separate process is started after the completion of the AR.

This process is activated when the software product undergoes any modification
to code or associated documentation as a result of correcting an error, a problem
or implementing an improvement or adaptation. The process endswith the retire-
ment of the software product.

NOTE The software analysis process (as a general engineering
process defined in the ECSS--E standards) is invoked by the
requirements and design engineering processes. No separ-
ate output is produced by this process. The results produced
by the analysis process are integrated with the require-
ments and design engineering outputs.

4.2.7 Software verification and validation (supporting) process
The software verification and validation process can start any time after the SRR.

This process is intended to confirm that the customer�s requirements have been
properly addressed, that all requirements have been met and that all design
constraints are respected.

The result of this process is included in the DJF.

A sub-process of this process is the transfer and acceptance of the software to the
customer. This latter sub-process is completed by an acceptance review (AR), that
takes place after QR. The acceptance review is a formal event in which the
software product is evaluated in its operational environment. It is carried out
after the software product is installed and transferred to the customer and in-
stalled on an operational basis. Software validation activities terminate with the
acceptance review.

This state of the software after AR is called the �accepted state�.

NOTE The term �qualification engineering� is often used synony-
mously with the term �verification engineering� in projects
delivering hardware. For the sake of clarity, �qualification
engineering� is used in this Standard to denote �the total set
of verification and validation activities�. This is consistent
with other ECSS Standards outside the software engineer-
ing discipline, and to avoid confusion with the general verifi-
cation engineering activities that are invoked in many
places in software projects.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

26

4.3 Organization of this Standard
This Standard is organized in two main parts:

D General requirements. These are the core requirements for any space
system software engineering activity.

D Special requirements. These are additional requirements for specific ap-
plication areas. These requirements are always applicable, but are only
active in developments where the addressed disciplines or application areas
occur. This separation serves tomake the general requirements core compact
and clear.

Software documentation summaries are included in annex A.

In the preparation of this Standard the ISO/IEC 12207 Standard has been used
extensively, providing a common internationally recognized framework for the
terminology and engineering process description.

The organization of the general requirements of this Standard is reflected in
detail in Figure 6.

5.8 Maintenance Process

5.3.2 Life Cycle definition 5.3.3 Interface management 5.3.4 Technical Budget and margin management

5.3 Software management process

5.7 SW Operations eng. process

5.7.2 Process implementation

5.7.3 Operational testing

5.7.4 System
Operation

5.7.5 User
Support

5.8.2 Process implementation

5.8.3 Problem and modification analysis

5.8.4 Modification implementation

5.9.6 Software migration

5.9.7 Software retirement

Development processes

5.2 System engineering processes related to SW

5.4 Software requirement engineering process

5.6 SW validation and acceptance process

5.5 Software design engineering process

5.5.2 Design of SW items

5.5.3 Coding and testing

5.5.4 Integration

5.4.2 SW requirement analysis

5.4.3 SW architectural design

5.4.4 SW V&V

5.6.2 Validation w.r.t. RB

5.5.5 Validation w.r.t. TS

5.9.3 Validation
process

implementation

5.9.2
Verification

Process
implementation

5.9.5 Maintenance review / acceptance

5.6.4 Software delivery and
Installation

5.6.5 Software acceptance

5.6.3 Validation and
acceptance milestones

5.9 SW V&V
Processes

5.9.4
Verification

activity

5.9.5 Validation
activity

5.9.6 Joint
technical
reviews

Figure 6: Structure of this Standard

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

27

4.4 Relation to other ECSS Standards

4.4.1 General
This subclause 4.4 discusses how this Standard interfaces with other ECSS
series, namely the ECSS--Q series of standards (product assurance) and the
ECSS--M series of standards (project management).

4.4.2 Software product assurance
Requirements on software product assurance are defined in ECSS--Q--80, which
is the entry level document of the ECSS--Q series (product assurance) for software
projects.

The ECSS--Q--80 Standard covers all aspects of space software product assurance
including the implementation aspects of the software product assurance process,
and both software process and product--related assurance activities.

It defines the scope of the space software product assurance process and its
interfaces with management, engineering and other system--level product assur-
ance activities, which are addressed in the management (--M), engineering (--E)
and product assurance (--Q) branches of the ECSSSystem, and explains how they
apply in the software product assurance process.

4.4.3 Software project management

4.4.3.1 Introduction

ECSS--M Standards define the requirements applicable to the management of
space projects. The following subclauses describe how the ECSS--M Standards
apply to the management of software projects.

In addition, requirements which cannot be found in M-series, because they are
specific to software project management, are provided in subclause 5.3.

4.4.3.2 ECSS-M-00: Policy and principles

ECSS--M--00 is a top-level document which defines project management prin-
ciples and general requirements applicable to all aspects of a space project includ-
ing software.

Risk management is covered by ECSS--M--00--03. Some risk factors, such as
exceeding the assigned memory budget or CPU load, are specific to software.

The terms �customer� and �supplier� used in this Standard are defined in
ECSS--M--00A subclause 5.2.

4.4.3.3 ECSS-M-10: Project breakdown structures

The provisions of ECSS--M--10 apply to software, taking account of the specific
features of the software.

The products of a software project are usually documents (including code) but
may also include computer devices in the case of software intensive systems.

�Model matrix� in ECSS--M--10A, subclause 5.2, is concerned with material mo-
dels and therefore is not relevant to software.

4.4.3.4 ECSS-M-20: Project organization

ECSS--M--20 provides a clear definition of the role and responsibility of each party
to the project. ECSS--M--20 covers the requirements for software projects.

4.4.3.5 ECSS-M-30: Project phasing and planning

ECSS--M--30 defines the phasing and planning requirements for an entire space
project, but some requirements also affect software development, because they
are specified in ECSS--M--30 as applicable at any level of the project organization.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

28

Project phases as defined in ECSS--M--30 are top-level (mission) phases, used to
structure the whole space project. They do not apply recursively to software
development. They are not the phases which are defined to give structure to
software development life cycles, and for which no specific definition is requested
in this Standard.

Similarly, the reviews as defined in ECSS--M--30 do not apply directly to software
even though the concept of review applies recursively to all levels of a space
project.

The terms �SRR�, �PDR�, �CDR�, �QR� and �AR� are defined in ECSS--M--30 , and
these are reused to define joint technical reviews for a software development as
described in subclause 4.2 of this Standard.

These reviews are synchronized with higher level reviews in a way which is
project dependant. In clause 6, interface requirements are given for particular
types of software. Requirements concerning phasing and reviews, and which are
specific to software are given in subclause 5.3.

4.4.3.6 ECSS-M-40: Configuration management

The requirements, also for software developments, are contained inECSS--M--40.

One facet of software configuration management is that all configuration items
may be regarded as documents (even code). Therefore, the software configuration
management can easily be automated.

4.4.3.7 ECSS-M-50: Information/documentation management

Information and documentation management are particularly performed to en-
sure the accessibility of information to all parties of the project and to ensure the
coherence of this information. This also applies to software projects. The relevant
requirements are not those in ECSS--M--50.

4.4.3.8 ECSS-M-60: Cost and schedule management

ECSS--M--60 contains requirements on software projects, although requirements
on schedule management are more directly applicable to software, than costing
requirements.

4.4.3.9 ECSS-M-70: Integrated logistic support

ECSS--M--70 is mainly of concern to large or software-intensive systems.

4.4.4 Engineering

4.4.4.1 ECSS-E-00: Policy and principles

ECSS--E--00 contains the basic rules and overall principles to be applied to all
engineering activities during performance of a space project. It addresses the
establishment, based on customer needs, ofmission objectives, requirements, and
specifications for space systems, and the design, definition, production, verifica-
tion, operation, and eventual disposal of the systems themselves. It defines the
scope and interfaces of these activities relative to the domains of management
and product assurance which are addressed in the management (-- M) and prod-
uct assurance (-- Q) branches of the ECSS system, and explains how they may
apply in different ways depending on the type of space system concerned.

4.4.4.2 ECSS-E-10: System engineering

ECSS--E--10 is intended to guide the development of systems (including hard-
ware, software, man--in--the--loop, facilities and services) for space applications.
It specifies implementation requirements for the responsible system engineering
organization consistent with the assumption that the system engineering process
defined in standard ECSS--E--10--01 is applied.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

29

4.4.4.3 ECSS-E-70: Ground systems and operations

ECSS--E--70 provides a high level description of all ground segment elements, the
domain specific aspects of the associated engineering processes and defines re-
lated guidelines and requirements.

4.5 Tailoring of this Standard
The general requirements for selection and tailoring of applicable standards are
defined in ECSS--M--00--02.

There are several drivers for tailoring, such as dependability and safety aspects,
product quality objectives, software development constraints and commercial
considerations.

Tailoring for software development constraints takes into account technical, op-
erational and management factors, see annex C for details.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

30

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

31

5

General requirements

5.1 Introduction
This clause 5 defines the requirements for engineering software for space sys-
tems, applicable to any space projects producing computer software.

Each requirement can be identified by a hierarchical number. The text of the
requirement is followed, where necessary, by further explanation of the aim. For
each requirement, the associated output is given in the output section. With each
output (e.g. �a.�, �b.�), the destination (document) of the output is indicated in
brackets together with the corresponding review. For example: �[DDF, DJF; QR]�
denotes an output to the design definition file and the design justification file. The
output in this example is requested for the qualification review.

5.2 System engineering processes related to software

5.2.1 Introduction
This subclause 5.2 describes activities which are under the customer responsibil-
ity. The customer is responsible for the delivery of a system in which the devel-
oped software is integrated (refer to the recursive customer-supplier model de-
scribed in 4.2).

The customer activities described here are only those that introduce additional
requirements particular for software development:

D system requirement analysis,
D system partitioning,
D system level requirements for software verification and validation,
D system level integration of software,
D software operations, and
D software maintenance.
System level documentation is a prerequisite to the requirements engineering of
the software. The requirements given in this subclause ensure the completeness
and correctness of the customer�s system level documentation and establish a
complete and verified requirements baseline for the software project.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

32

5.2.2 System requirements analysis

5.2.2.1 System requirements specification
System requirements shall be derived from an analysis of the specific intended
use of the system to be developed and documented.

EXPECTED OUTPUT: a. Functions and performance requirements of the system
[RB; SRR];

b. Interface requirements [IRD(RB); SRR];

c. Design constraints and verification and validation re-
quirements [RB; SRR];

d. Identification of lower level software engineering stan-
dards [RB;SRR] (see ECSS-Q-80B subclauses 6.3.2 and
6.3.3).

5.2.2.2 System and functional criticality analysis
System and software criticality analysis shall be performed in accordance with
ECSS--Q--80B subclauses 6.2.2 and 6.2.3

EXPECTED OUTPUT: Overall safety and reliability requirements of the software to
be produced [RB; SRR].

5.2.3 System partitioning

5.2.3.1 Introduction

a. As a part of the system design process, a physical architecture and design
(including HW, SW and human operations) of the system shall be derived.

NOTE 1 This is called top level partitioning of the system.

NOTE 2 This system design is derived from an analysis of the
requirements on the system and its functions.

EXPECTED OUTPUT: System design [DDF-system level; SRR].
b. Conformance to the system design with all system requirements shall be

verified.

EXPECTED OUTPUT: System design to system requirements conformance [DJF-
system level; SRR].

c. All system requirements shall be allocated and traceable to the different
system design partitions.

EXPECTED OUTPUT: System requirements to system design traceability [DJF-sys-
tem level; SRR].

5.2.3.2 System partitioning
a. A top- level partitioning of the system shall be established.

EXPECTED OUTPUT: Software-hardware interface requirements [IRD(RB); SRR].
b. The system partitioning shall identify items of hardware, software and

human operations, ensuring that all the system requirements are allocated
to items.

EXPECTED OUTPUT: Traceability to system partitioning [DJF; SRR].
c. Hardware configuration items, software configuration items, and human

operations shall be subsequently identified from these items.

EXPECTED OUTPUT: System partition with definition of items [RB; SRR].
d. The system partitioning and the system requirements allocated to the indi-

vidual items shall be documented.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

33

EXPECTED OUTPUT: System configuration items list [RB; SRR].

5.2.4 System level requirements for software verification and
validation

5.2.4.1 Introduction

The general ECSS approach to the verification process is described in
ECSS--E--10A clauses 4 and 5, covering both verification and validation activities.

5.2.4.2 Qualification engineering requirements
The customer shall adapt the requirements for qualification engineering given
in subclause 5.6 to system level requirements.

AIM: To identify the customer�s verification and validation process requirements
at system level, and to prepare for software acceptance and software in-
tegration by introducing the corresponding verification and validation pro-
cess requirements in the requirements baseline.

EXPECTED OUTPUT: Verification and validation process requirements [RB; SRR].

5.2.4.3 Software validation requirements at system level
The customer shall include requirements for validation of all elements of the
software at system level, including validation at mission level.

AIM: To ensure that the software is validated at system level with realistic
mission data and operational environments, and tominimize the functions
that can only be validated by actual flight. This is because in general no
prototype flights are possible, then the mission success imposes the soft-
ware to be operational at the first flight

EXPECTED OUTPUT: a. Functional requirements for support to system and
mission level validation [RB; SRR];

b. Installation and acceptance requirements of the delivered
software product at the operational andmaintenance sites
[RB; SRR].

5.2.4.4 Requirements baseline verification
The customer shall verify the requirements baseline, considering the following:

D In cases where the customer�s product is an integrated hardware and soft-
ware product, this shall be performed in conformance with the ECSS system
engineering standards.

D In cases where the customer�s product is a software product, the customer
shall apply this Standard in his role as �supplier� at a higher level in the
product tree.

EXPECTED OUTPUT: Requirements justifications [DJF-system level; SRR].
NOTE The output is not part of the customer-supplier interface for

the software engineering processes, and is therefore not
part of any milestone inputs. Instead the output is part of
the customer�s own system DJF, and used only by the
customer in his role as supplier at the next higher level in
the product tree. The output is mentioned here for
completeness only.

5.2.4.5 System requirements review
The customer shall conduct a system requirements review (SRR) in accordance
with subclause 5.3.2.6.

EXPECTED OUTPUT: SRR milestone report [RB;SRR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

34

5.2.5 System level integration of software

5.2.5.1 Identification of software observability requirements
If a software product is integrated into a system, all software observability re-
quirements to facilitate the software integration, shall be specified by the cus-
tomer.

EXPECTED OUTPUT: Software observability requirements [RB; SRR].

5.2.5.2 Control and data interfaces for system level integration
If the software is integrated into a system, all the interfaces between the software
and the system shall be specified by the customer, including the static and dy-
namic aspects, for nominal and degradedmodes (e.g. behaviour in case of failure).

NOTE 1 The external interfaces, specific to software integrated in a
system, can be:
-- software interface with other software on the system (op-
erating system, files, databasemanagement system or other
applications software);
-- hardware interfaces to the specific hardware configur-
ation; and
-- communication interfaces (particular network protocol for
example).

NOTE 2 Space segment software is in general integrated with highly
specialised processors and electrical equipment. The IRD
and ICD therefore have a special importance and are con-
trolled separately to ensure consistent design throughout
the hardware and software life cycle.

EXPECTED OUTPUT: System level interface requirements [IRD(RB); SRR].

5.2.5.3 Data medium requirements for integration
The customer shall identify the interface data medium and prepare the require-
ments accordingly.

EXAMPLE The interface data can be defined and structured in such a
way it can be automatically acquired by the SDE supplier.
Trade-offs can be performed, taking into account the
number of software packages in the system, the evolution of
interface data, and the number of interface data sets.

EXPECTED OUTPUT: System level data interfaces [IRD(RB); SRR].

5.2.5.4 Identification of development constraints
The customer shall define specific development constraints on the supplier re-
quired to support the integration of the software into the system.

NOTE When the software is integrated into a system, the customer
can check for applicability of some harmonization con-
straints such as: specification of the operating system to be
used, specification of COTS to be used (e.g. database and
MMI generator), and specification of the SDE to be used.

EXPECTED OUTPUT: Development constraints [RB; SRR].

5.2.5.5 Identification of customer�s input for software integration into the
system

The customer shall identify and plan the specific inputs to be provided by him to
the supplier to support the integration of the software into the system, in accord-

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

35

ance with the overall projects constraints with appropriate documentation in the
requirements baseline.

NOTE When the software is integrated into a system, the customer
can provide the supplier with specific inputs for validating
the software in a representative environment. These inputs
can be: breadboard or computer model, and a simulator of
the hardware and software environment.

EXPECTED OUTPUT: System level integration support products [IRD(RB); SRR].

5.2.5.6 Identification of supplier�s outputs for software integration into
the system

The customer shall identify and plan the specific outputs to be delivered by the
supplier to support the integration of the software into the system, and he shall
prepare the requirements baseline accordingly.

NOTE When software is integrated into a system, some prototype
versions or intermediate versions can be requested by the
customer to prepare the integration, the functionalities and
delivery dates for each of these versions are defined by the
customer.

EXPECTED OUTPUT: System level integration preparation requirements [IRD(RB);
SRR].

5.2.5.7 Planning of supplier support to system integration
The customer shall plan the support from the software supplier in order to
integrate the software at system level.

NOTE This can include activities such as: training, maintenance,
configuration and test support.

EXPECTED OUTPUT: System level integration support requirements [MGT; SRR].

5.2.6 Software operations

5.2.6.1 Phasing and management
Since software products are an integrated part of the space system, the phasing
andmanagement of operations shall be determined by the overall system require-
ments and shall be applied to the operations of software products.

EXPECTED OUTPUT: Operational plan [OP; ORR].

5.2.6.2 System requirements definition for software operations
a. The customer shall establish system requirements for the operation of soft-

ware products.

EXPECTED OUTPUT: Software operations requirements [RB; SRR].
b. The supplier�s response shall be agreed with the customer in the system

requirements review (SRR), intended to release the operational plan for
execution as established in subclause 5.7.

EXPECTED OUTPUT: Operational plan [OP; ORR].

5.2.7 Software maintenance
The customer shall establish system requirements for the maintenance of soft-
ware products. The supplier�s response shall be agreed with the customer in the
system requirements review (SRR), intended to release the maintenance plan for
execution as established in subclause 5.8.

EXPECTED OUTPUT: Software maintenance requirements [RB; SRR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

36

5.3 Software management process

5.3.1 Introduction
Most of the specific requirements for the management and control of space sys-
tems software projects exist in the ECSS--M series of documents. They are not
repeated here. In addition, the software product assurance requirements de-
scribed in ECSS--Q--80 are also used for the control of space systems software
projects. Management plans are produced in relation with the following acti-
vities:

D development;
D configuration and documentation management;
D verification and validation;
D maintenance;
D quality assurance on process and product.
The requirements described in this subclause 5.3 define the engineering and
control of software development in a space systems project, and they bridge the
gap between the other ECSSStandards mentioned above and the software engin-
eering activities in space projects.

The management and control tasks described in this subclause are:

D software life cycle,
D interface management, and
D technical budget and margin management.
The requirements in this subclause 5.3 apply to any type of software in a space
project.

As defined in more detail in following subclauses, the software undergoes the
overall software milestone reviews SRR, PDR, CDR, QR and AR as a minimum.
A DDR is also requested for flight software in accordance with subclause 6.2.4.
The customer can request further reviews (e.g. review of project plans, before the
PDR) following requirements mentioned in subclause 5.9.6.

5.3.2 Software life cycle

5.3.2.1 Definition of software life cycle phases
To assure effective phasing and planning, the software development life cycle
shall be broken into phases, each having its with associated milestones.

NOTE Detailed guidelines on software life cycle are found in the
level 3 Standard ECSS--E--40--04.

EXPECTED OUTPUT: Definition of the software life cycle phases included in the
software development plan [MGT; SRR, PDR].

5.3.2.2 Software life cycle identification
a. The software supplier shall define and follow a software development life

cycle in accordance with subclause 4.2, and covering all activities from the
statement of requirement to the entry of the software into service.

EXPECTED OUTPUT: Project software development life cycle definition, included in
the software development plan [MGT; SRR,PDR].

b. The definition of the life cycle shall be associated with choices of techniques
used during the development, operations and maintenance processes (e.g.
data base management system, and extensive product reuse), with the risks
inherent to the project (e.g. highly changeable specification, and stringent
schedule constraints) and with synchronization points with the upper level.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

37

EXPECTED OUTPUT: Definition of software development, operations and mainten-
ance techniques and identification of project risks, included
in the software development plan [MGT; SRR, PDR].

c. The choice of software life cycle shall be in accordance with the overall project
requirements, and the process model of subclause 4.2 and ECSS--M--30 shall
be used.

EXPECTED OUTPUT: Definition of software life cycle in line with the software and
system level processes included in the software development
plan [MGT; SRR, PDR].

5.3.2.3 Identification of inputs and outputs associated to each phase
The development life cycle shall define the input and output for each phase and
its associated milestones.

EXPECTED OUTPUT: Review plan-milestones (included in the software develop-
ment plan) [MGT; SRR, PDR].

5.3.2.4 Identification of documentation relevant to each milestone
The output for each phase shall consist of documents in complete or outline
versions, including the results of verification of the technical outputs of the phase.

NOTE Milestones are the joint technical reviews at the customer
--supplier level (SRR, PDR, CDR, QR and AR) and internal
reviews at the supplier level. The outputs for eachmilestone
are documents submitted for examination and are explicitly
listed in the software life cycle definition.

EXPECTED OUTPUT: Identification of outputs at each milestone (included in the
software development plan) [MGT; SRR, PDR].

5.3.2.5 Identification of interface between the development and
maintenance processes

The interface between development and maintenance (e.g. documents to be pro-
duced, tools to be kept for maintenance) shall be identified for the software life
cycle.

AIM: Define and prepare during development input for maintenance process of
the software product. See subclause 5.8.

EXPECTED OUTPUT: Elements of the software maintenance plan [MF; PDR].

5.3.2.6 Software requirements baseline at the SRR
The customer�s release of the software requirements baseline shall be included
in the material submitted to the SRR.

NOTE The software requirements baseline results from a system
requirements analysis and a system partitioning conducted
by the customer. It represents the customer�s requirements
towards the software to be developed. These are constituted
by the customer�s requirements and the external interfaces
of the software.

EXPECTED OUTPUT: Customer approval of requirements baseline [RB; SRR]

5.3.2.7 Software technical specification phase
A software technical specification phase shall be included at the beginning of the
development life cycle.

AIM: To establish the technical specification for the project. This is the software
suppliers response to the requirements baseline. The technical specifica-
tion captures all technical requirements for the software product, and it is
aimed to establish the technical specification early in the project.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

38

EXPECTED OUTPUT: a. Technical specification of the software [TS; PDR];

b. Software architectural design [DDF; PDR];

c. Interface control document [ICD(TS); PDR];

d. Software architectural design trade-offs [DJF; PDR].

5.3.2.8 Preliminary design review
On completion of the technical specification phase, the software supplier shall
hold a preliminary design review (PDR) with the customer.

AIM: � Agree with the customer or their representatives that all requirements
with respect to the requirements baseline are captured in the technical
specification.

� Review the software architecture.

EXPECTED OUTPUT: Customer approval of technical specification and software
architecture [TS, DDF, ICD(TS), DJF; PDR].

5.3.2.9 Critical design review
a. At the end of the design, the software supplier shall hold a critical design

review (CDR) with the customer.

AIM: During the CDR, the design definition file, operations software user man-
ual and the associated design justification file are reviewed.

EXPECTED OUTPUT: CDR milestone report [DJF; CDR].
b. The completeness of the software validation activities with respect to the

technical specification and their relevant products (e.g. test case specifica-
tion and simulators) shall be reviewed.

EXPECTED OUTPUT: a. Customer approval of the design definition file (e.g. soft-
ware architectural design, detailed design and code)
[DDF; CDR];

b. Customer approval of the design justification file (e.g. re-
sults of unit and integration tests and results of validation
with respect to the technical specifications) [DJF; CDR];

c. Customer approval of the design of system level interfaces
and the system level integration plan [DDF, DJF; CDR];

d. Customer approval of the software user manual
[DDF; CDR];

e. Customer approval of the validation with respect to TS
report [DJF; CDR].

5.3.2.10 Software verification and validation process
Verification and validation shall be carried out at the end of the development life
cycle.

AIM: To ensure, by means of verification and validation processes in a represen-
tative environment, that the software product conforms to its technical
specification before integration in the system.

EXPECTED OUTPUT: Software verification and validation activities phasing in the
software development plan [MGT; SRR, PDR].

5.3.2.11 Qualification review
a. The software supplier shall hold a qualification review (QR) to verify that the

software product meets all of its specified requirements in the requirements
baseline.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

39

AIM: To verify that the software meets all of its specified requirements, and in
particular that verification and validation process outputs enable transi-
tion to �qualified state� for the software products.

EXPECTED OUTPUT: QR milestone report [DJF; QR].
b. During QR, a summary of tests reports and software user manual are re-

viewed. The consistency of all software documentation (RB, TS, DDF, DJF)
shall be verified.

EXPECTED OUTPUT: Customer �s approval of qualified state [DJF; QR].

5.3.2.12 Acceptance review
After the qualification review, the customer shall hold an acceptance review (AR).

AIM: Acceptance of the software with respect to the intended operational envi-
ronment.

EXPECTED OUTPUT: Customer �s approval of accepted state [DJF; AR].

5.3.3 Interface management

5.3.3.1 Interface definition

Interfaces shall be defined in the requirements baseline in an interface require-
ments document, which defines the requirements applicable to various elements
of the system product tree.

EXPECTED OUTPUT: Interface requirement document [IRD(RB); SRR].

5.3.3.2 Interface management procedures

Interface management procedures shall be defined in accordance with
ECSS--M--40 requirements.

AIM: Define procedures which guarantee the consistency of the system inter-
faces.

EXPECTED OUTPUT: a. Interface management procedures [RB; SRR];

b. Part of configuration management requirements [RB;
SRR].

5.3.4 Technical budget and margin management

5.3.4.1 Software technical budget and margin philosophy definition
Technical budget targets and margin philosophy dedicated to the software shall
be specified by the customer in the requirements baseline.

AIM: To define the limits of software budgets associatedwith computer resources
(such as: CPU load and maximum memory size) and performance require-
ments to be considered by the supplier.

EXPECTED OUTPUT: Technical budgets andmargin philosophy for the project [RB;
SRR].

5.3.4.2 Software technical budget management
The supplier shall manage margins regarding the technical budgets and present
their status at each milestone, describing the utilized analytical hypothesis.

AIM: To establish themargins by analysis in the early phases of development and
to consolidate them by performance measurements commensurate with
the software implementation.

EXPECTED OUTPUT: Margins and technical budgets status [DJF; PDR, CDR, QR,
AR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

40

5.4 Software requirements engineering process

5.4.1 Introduction
The software requirements engineering process consists of the following acti-
vities:

D software requirements analysis;
D software architectural design;
D software verification and validation.

5.4.2 Software requirements analysis

5.4.2.1 Establishment and documentation of software requirements
The supplier shall establish and document software requirements, including the
software quality requirements, as part of the technical specification

EXPECTED OUTPUT: Software requirements specification [TS; PDR]
a. Functional and performance specifications, including

hardware characteristics, and environmental conditions
under which the software item executes, including budgets
requirements [TS; PDR];

b. Software product quality requirements (see ECSS-Q-80B
subclause 7.2 [TS; PDR];

c. Security specifications, including those related to factors
which can compromise sensitive information [TS; PDR];

d. Human factors engineering (ergonomics) specifications,
including those related to manual operations, human-
equipment interactions, constraints on personnel, and
areas requiring concentrated human attention, that are
sensitive to human errors and training [TS; PDR];

e. Data definition and database requirements [TS; PDR];

EXPECTED OUTPUT: Interface control document [TS; PDR]
f. Interfaces external to the software item [ICD(TS); PDR].

5.4.2.2 Software logical model definition
The supplier shall build an implementation--independent model of software items
in order to analyse and document software requirements.

EXPECTED OUTPUT: Software logical model [TS; PDR].

5.4.2.3 Identification of requirement unique identifier
Each requirement shall be separately identified in order to allow for traceability.

EXPECTED OUTPUT: Requirements unique identifier [TS; PDR].

5.4.2.4 Software requirements evaluation
The supplier shall evaluate the software requirements invoking subclause
5.9.4.1.

EXPECTED OUTPUT: a. Requirement traceability matrices [DJF; PDR];

b. Requirements verification report [DJF; PDR].

5.4.3 Software architectural design

5.4.3.1 Transformation of software requirements into a software
architecture

The supplier shall transform the requirements for the software item into an
architecture that describes its top-level structure and identifies the software

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

41

components, ensuring that all the requirements for the software item are allo-
cated to its software components and later refined to facilitate detailed design.

EXPECTED OUTPUT: Software architectural design [DDF; PDR].

5.4.3.2 Software design description
The design description shall as a minimum cover hierarchy, dependency, inter-
faces and operational usage for the software components.

EXPECTED OUTPUT: Hierarchy, dependency and interfaces of software
components in the software architectural design [DDF; PDR].

5.4.3.3 Software design documentation
The design description shall document the process, data and control aspects of the
product.

EXPECTED OUTPUT: Process, data and control aspects of software components in
the software architectural design [DDF; PDR].

5.4.3.4 Development and documentation of the software interfaces
The supplier shall develop and document a software architectural design for the
interfaces external to the software item and between the software components of
the software item.

EXPECTED OUTPUT: a. Preliminary external interfaces design [ICD(TS); PDR];

b. Preliminary internal interfaces design [DDF; PDR].

5.4.3.5 Evaluation of reuse of predeveloped software
The supplier shall consider the �reuse� of already developed, commercial off-the-
shelf, modifiable off-the-shelf software, free software and open source (see also
subclause 6.2.7 in ECSS--Q--80B).

EXPECTED OUTPUT: Specification of reuse of predeveloped software [TS; PDR].

5.4.3.6 Definition and documentation of the software integration
requirements and plan

The supplier shall define and document preliminary test requirements and the
plan for software integration.

EXPECTED OUTPUT: Software integration test plan (preliminary) [DJF; PDR].

5.4.3.7 Evaluation of the software architecture and the interface design
The supplier shall evaluate the architecture of the software itemand the interface
design invoking subclause 5.9.4.2.

EXPECTED OUTPUT: a. Software architectural design and interface verification
report [DJF; PDR];

b. Software architectural design to requirements traceabil-
ity matrices [DJF; PDR].

5.4.3.8 Conducting a preliminar y design review
The supplier shall conduct a preliminary design review (PDR) in accordance with
subclause 5.3.2.8.

NOTE The successful completion of the review establishes a baseli-
ne for the development of the software item.

EXPECTED OUTPUT: PDR milestone report [DJF; PDR].

5.4.4 Software verification and validation
The technical specification shall be accompanied by the specification of verifica-
tion and validation of the software product. These specifications are determined

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

42

by the customer�s requirements baseline (subclause 5.2.4.2) and by invoking the
relevant verification and validation processes.

The processes invoked are:

a. verification process implementation (subclause 5.9.2);

b. validation process implementation (subclause 5.9.3).

EXPECTED OUTPUT: a. Software verification plan - independence, criticality and
effort [DJF; PDR];

b. Software verification plan - methods and tools [DJF;
PDR];

c. Software verification plan - organization [DJF; PDR];

d. Software validation plan - independence, criticality and
effort [DJF; PDR];

e. Software validation plan - methods and tools [DJF; PDR];

f. Software validation plan - organization [DJF; PDR].

5.5 Software design engineering process

5.5.1 Introduction
The software design engineering process consists of the following activities:

D design of software items;
D coding and testing;
D integration;
D validation with respect to the technical specification.

5.5.2 Design of software items

5.5.2.1 Detailed design of each software component
a. The supplier shall develop a detailed design for each component of the soft-

ware and document it.

EXPECTED OUTPUT: Software components design documents [DDF; CDR].
b. Each software component shall be refined into lower levels containing soft-

ware units that can be coded, compiled, and tested.

EXPECTED OUTPUT: Software components design documents [DDF; CDR].
c. It shall be ensured that all the software requirements are allocated from the

software components to software units.

EXPECTED OUTPUT: Software components design documents [DDF; CDR].

5.5.2.2 Development and documentation of the software interfaces
detailed design

The supplier shall develop and document a detailed design for the interfaces
external to the software item, between the software components, and between the
software units,in order to allow coding without requiring further information.

EXPECTED OUTPUT: a. External interfaces design (update) [ICD(TS); CDR];

b. Internal interfaces design (update) [DDF; CDR].

5.5.2.3 Development and documentation of the software user manual
The supplier shall develop and document the software user manual.

EXPECTED OUTPUT: Software user manual [DDF; CDR].

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

43

5.5.2.4 Definition and documentation of the software unit test
requirements and plan

The supplier shall define and document test requirements and plan for testing
software units, including stressing the software at the limits of its requirements.

EXPECTED OUTPUT: Software unit test plan [DJF; CDR].

5.5.2.5 Updating of the software integration test requirements and plan
The supplier shall update the test requirements and the plan for software
integration.

EXPECTED OUTPUT: Software integration test plan (update) [DJF; CDR].

5.5.2.6 Evaluation of the software detailed design and test requirements
The supplier shall evaluate the software design and test requirements invoking
subclause 5.9.4.3.

EXPECTED OUTPUT: a. Design verification report [DJF; CDR];

b. Design traceability matrices [DJF; CDR].

5.5.3 Coding and testing

5.5.3.1 Development and documentation of the software units, test
procedures and test data

The supplier shall develop and document the following:

D the coding of each software unit;

D test procedures and data for testing each software unit.

EXPECTED OUTPUT: a. Software component design documents and code (update)
[DDF; CDR];

b. Software unit test plan (update) [DJF; CDR].

5.5.3.2 Software unit testing
The supplier shall test each software unit ensuring that it satisfies its require-
ments and document the test results

EXPECTED OUTPUT: a. Software component design document and code (update)
[DDF; CDR];

b. Software unit test reports [DJF; CDR].

5.5.3.3 Software user manual updating
The supplier shall update the software user manual.

EXPECTED OUTPUT: Software user manual (update) [DDF; CDR].

5.5.3.4 Updating of the software integration test requirements and plan
The supplier shall update the test requirements and the plan for software in-
tegration.

AIM: To make the test requirements and integration plan consistent with the
results of the code design process.

EXPECTED OUTPUT: Software integration test plan (update) [DJF; CDR].

5.5.3.5 Code and unit test results evaluation
The supplier shall evaluate software code and test results, invoking subclause
5.9.4.4.

EXPECTED OUTPUT: a. Software code verification report [DJF; CDR];

b. Software code traceability matrices [DJF; CDR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

44

5.5.4 Integration

5.5.4.1 Software integration test plan development
The supplier shall develop and document an integration plan to integrate the
software units and software components into the software item, providing with
the following data:

D test requirements;
D test procedures;
D test data;
D responsibilities allocation;
D schedule information.

EXPECTED OUTPUT: Software integration test plan [DJF; CDR].

5.5.4.2 Software units and software component integration and testing
The supplier shall integrate the software units and software components, and test
them, as the aggregates are developed, in accordance with the integration plan,
ensuring that each aggregate satisfies the requirements of the software item and
that the software item is integrated at the conclusion of the integration activity.

EXPECTED OUTPUT: Software integration test report [DJF; CDR].

5.5.4.3 Software user manual updating
The supplier shall update the software user manual.

EXPECTED OUTPUT: Software user manual (update) [DDF; CDR].

5.5.4.4 Software integration activities results evaluation
The supplier shall evaluate the software integration activities results invoking
subclauses 5.9.4.5 and 5.9.4.6.

EXPECTED OUTPUT: a. Software integration verification report [DJF; CDR];

b. Software documentation verification report [DJF; CDR].

5.5.5 Validation with respect to the technical specification

5.5.5.1 Software validation with respect to the technical specification
a. The supplier shall evaluate the software with respect to the technical specifi-

cation, conducting the validation tests against the technical specification,
invoking the validation process (see subclause 5.9.5).

EXPECTED OUTPUT: a. Validation with respect to the technical specification test-
ing report [DJF; CDR];

b. Validation with respect to the technical specification test-
ing specification [DJF; CDR];

c. Software design and test evaluation report [DJF; CDR].

b. Every problem detected during the validation activities shall be subject of a
problem resolution process (invoking subclause 5.9.5.5).

EXPECTED OUTPUT: Problem and nonconformance reports [DJF; CDR].

5.5.5.2 Conducting a critical design review
a. The supplier shall conduct a critical design review (CDR) in accordance with

subclause 5.3.2.9.

EXPECTED OUTPUT: CDR milestone report [DJF; CDR].
b. All outputs for CDR shall be prepared and verified by the process �verifica-

tion of software documentation� (subclause 5.9.4.6) in preparation of the
CDR.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

45

AIM: That the supplier baselines his design documentation for the project to
transit from �specified state� to the �defined state�, thereby achieving the
milestone of a completed design.

EXPECTED OUTPUT: Software documentation verification report [DJF; CDR].
c. Every problem detected during the review shall be subject of a problem

resolution process (invoking subclause 5.9.5.5).

EXPECTED OUTPUT: CDR milestone report [DJF;CDR].

5.6 Software validation and acceptance process

5.6.1 Introduction
This process consists of the following activities:

D validation with respect to the requirements baseline;
D validation and acceptance milestones;
D software delivery and installation;
D software acceptance.

5.6.2 Validation with respect to the requirements baseline
a. The customer shall evaluate the software with respect to the requirements

baseline, invoking the validation process (see subclause 5.9.5).

EXPECTED OUTPUT: a. Validation with respect to the requirements baseline test-
ing specification[DJF; QR, AR];

b. Validation with respect to requirements baseline testing
report [DJF; QR, AR].

b. This validation shall be performed not later than the acceptance review.

EXPECTED OUTPUT: Phasing of activities of the software validation with respect
to the requirements baseline in the software development plan
[MGT; SRR, PDR].

5.6.3 Validation and acceptance milestones

5.6.3.1 Conducting a qualification review
The qualification review (QR) shall be conducted in accordance with subclause
5.3.2.11.

AIM: To verify that the software meets all the requirements, and in particular
that verification and validation process outputs enable transition to �quali-
fied state� for the software products.

EXPECTED OUTPUT: a. Preliminary software acceptance data package [DJF; QR];

b. Software release document [DDF; QR];

c. Software delivery [DDF; QR];

d. Software design and test evaluation report [DJF; QR];

e. Validation testing report [DJF; QR];

f. Test specification evaluation [DJF; QR];

g. QR milestone report [DJF; QR].

5.6.3.2 Conducting an acceptance review
a. The acceptance review (AR) shall be conducted in accordance with subclause

5.3.2.12.

EXPECTED OUTPUT: AR milestone report [DJF; AR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

46

b. The software supplier�s acceptance support task (see subclause 5.6.5.4) shall
support the customer�s acceptance activities in preparation of the AR.

AIM: To ensure that the customer receives adequate supplier support to perform
his acceptance and integration activities in preparation of the AR, invoking
subclause 5.6.5.4.

EXPECTED OUTPUT: a. Final software acceptance data package [DJF; AR];

b. Acceptance testing documentation [DJF; AR];

c. Software release document [DDF; AR];

d. Software delivery [DDF; AR].

5.6.4 Software delivery and installation

5.6.4.1 Preparation and updating of the software product
The supplier shall:

a. Prepare and update the deliverable software product as established in the
requirements baseline for system integration, system validation testing,
software installation, or software acceptance support.

EXPECTED OUTPUT: a. Software delivery [DDF; QR];

b. Software release document [DDF; QR].

b. Update the established baseline for the design and code of the software item.

EXPECTED OUTPUT: Software acceptance data package [DJF; QR].

5.6.4.2 Supplier�s provision of training and support
The supplier shall provide initial and continuing training and support to the
customer as specified in the requirement baseline.

EXPECTED OUTPUT: Training material [DDF; QR].

5.6.4.3 Installation planning
The supplier shall develop a plan to install the software product in the target
environment.

EXPECTED OUTPUT: Installation plan [DJF; AR].

5.6.4.4 Installation activities reporting
a. The resources and information to install the software product shall be deter-

mined and be available.

b. The supplier shall assist the customer with the set-up activities.

c. It shall be ensured that the software code and databases initialize, execute
and terminate as specified in the installation plan.

d. The installation events and results shall be documented.

EXPECTED OUTPUT: Installation report [DJF; AR].

5.6.5 Software acceptance

5.6.5.1 Acceptance test planning
The customer shall establish an acceptance test plan specifying the intended
acceptance tests with tests suited to the target environment.

EXPECTED OUTPUT: Acceptance test plan [DJF; AR]

5.6.5.2 Acceptance test execution
The customer shall execute the acceptance testing.

EXPECTED OUTPUT: Acceptance test report [DJF; AR].

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

47

5.6.5.3 Executable code generation and installation
The acceptance shall include generation of the executable code from configur-
ationmanaged source code components and its installation on the target environ-
ment.

EXPECTED OUTPUT: Executable code generation test in the acceptance test plan
[DJF; AR].

5.6.5.4 Supplier�s support to customer�s acceptance
a. The supplier shall support the customer�s acceptance reviews and testing of

the software product.

EXPECTED OUTPUT: AR milestone report [DJF; AR].
b. Acceptance reviews and testing shall consider the results of the joint reviews

(ECSS--Q--20A subclause 4.6.4.4 and 8.3), audits (ECSS--Q--20A subclause
2.6), software validation testing (ECSS--Q--80B subclause 6.3.4), and system
validation testing (if performed).

EXPECTED OUTPUT: AR milestone report [DJF; AR].
c. The results of the acceptance reviews and testing shall be documented.

EXPECTED OUTPUT: Acceptance testing documentation [DJF; AR].

5.6.5.5 Evaluation of acceptance testing

The acceptance tests shall be evaluated with respect to the requirements baseli-
ne.

EXPECTED OUTPUT: Traceability of acceptance tests to the requirements baseline
[DJF; AR].

5.7 Software operations engineering process

5.7.1 Introduction
The operation process may start after completion of software acceptance. Since
software products are an integrated part of the space system, the phasing and
management of operation is determined by the overall system requirements and
applied to the software products. The operation engineering processes are there-
fore not directly connected to the overall mission phase E, but are determined by
the system level requirement to operate the software product at a given time.
Ground segment software products are for example in extensive operational use
to qualify the ground segment, well before the actual mission operation occur.
Similarly, for flight segment software, extensive ground operations are, in gen-
eral, performed for testing flight equipment long before space system flight oper-
ations begin.

Both the documents and the reviews identified as outputs by the subclauses of 5.7
are therefore part of the operations activities for the space systems, and the
requirements for these reviews and their documentation forms part of the space
system operations engineering requirements covered in other ECSS standards.
The provisions of this subclause 5.7 are intended to produce the required software
engineering inputs for the system level activities.

The operation process comprises the activities and tasks of the operator. The
process covers the operation of the software product and operational support to
users. Because operation of a software product is integrated into the operation of
the system, the activities and tasks of this process refer to the system.

The operator manages the operation process at the project level following the
management process (ECSS--M--30). This process consists of the following acti-
vities:

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

48

D process implementation;
D operational testing;
D software operation;
D user support.

5.7.2 Process implementation

5.7.2.1 Operational plans and standards development
The operator shall develop, document and execute a plan and set operational
standards for performing the activities and tasks of this process.

EXPECTED OUTPUT: Operational plan - plan and standards [OP; ORR].

5.7.2.2 Problem handling procedures definition
a. The operator shall establish procedures for receiving, recording, resolving,

tracking problems, and providing feedback.

EXPECTED OUTPUT: Operational plan - procedures for problem handling [OP;
ORR].

b. Whenever problems are encountered, they shall be recorded in accordance
with the change control established and maintained in conformance with
ECSS--M--40.

EXPECTED OUTPUT: Problem and nonconformance report [OP]

5.7.2.3 Operational testing definition
The operator shall establish procedures for:

D testing the software product in its operation environment,

D entering problem reports and modification requests to the maintenance pro-
cess (see subclause 5.8), and

D releasing the software product for operational use in accordance with the
change control established and maintained in conformance with
ECSS--M--40.

EXPECTED OUTPUT: Operational plan - operational testing specifications [OP;
ORR].

5.7.3 Operational testing

5.7.3.1 Operational testing execution
a. For each release of the software product, the operator shall perform oper-

ational testing in accordance with the change control established and main-
tained in conformance with ECSS--M--40.

EXPECTED OUTPUT: Operational testing results [OP; ORR].
b. On satisfying the specified criteria, the software product shall be released for

operational use.

EXPECTED OUTPUT: Software delivery [OP; ORR].

5.7.3.2 Software operational requirements demonstration
a. The customer shall ensure that prior to the operations phase, the software

has been demonstrated capable of implementing the operational require-
ments.

NOTE This demonstration can be part of the acceptance tests of the
system.

EXPECTED OUTPUT: Validation of operational requirements [OP; ORR].
b. This demonstration shall be representative in terms of:

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

49

S hardware operating environment,

S situations to which the software is designed to be fault tolerant,

S system configuration,

S sequence of operations and phases, and

S operator interventions.

EXPECTED OUTPUT: Demonstration criteria [OP; ORR].

5.7.4 Software operation
The software shall be operated in its intended environment according to the
software user manual.

5.7.5 User support

5.7.5.1 User�s assistance
a. The operator shall provide assistance and consultation to the users.

b. User�s requests and subsequent actions shall be recorded and monitored.

5.7.5.2 Handling of user�s requests
a. The operator shall forward user requests to the maintenance process for

resolution.

b. User�s requests shall be addressed and the actions that are planned and
taken shall be reported to the originators of the requests.

5.7.5.3 Provisions of work-around solutions
a. If a reported problem has a temporary work-around solution before a perma-

nent solution can be released, the originator of the problem report shall be
given the option to use it.

b. Permanent corrections, releases that include previously omitted functions or
features, and system improvements shall be applied to the operational soft-
ware product using the maintenance process (subclause 5.8).

5.8 Software maintenance process

5.8.1 Introduction
Themaintenance process contains the activities and tasks of the maintainer. This
process is activated just before QR . The objective is tomodify an existing software
product while preserving its integrity. This process includes the migration and
retirement of the software product. The process ends with the retirement of the
software product.

The activities provided in this subclause 5.8 are specific to the maintenance
process; however, the process can utilize other processes in this Standard. If the
software engineering process (subclause 4.2) is utilized, the term supplier there
is interpreted as maintainer.

The maintainer manages the maintenance process at the project level following
themanagement process (ECSS--M--10), which is instantiated for software in this
process.

Both the documents and the reviews identified by the subclauses in this subclause
5.8 are part of the general maintenance activities for the space systems, and the
requirements for these reviews and documentation are part of the space system
maintenance engineering requirements, covered in other ECSS Standards. The
provisions of this subclause 5.8 produce the required software engineering inputs
for this system level activities.

This process consists of the following activities:

D process implementation;

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

50

D problem and modification analysis;
D modification implementation;
D in flight modification;
D maintenance review and acceptance;
D software migration;
D software retirement.

5.8.2 Process implementation

5.8.2.1 Software maintenance process planning
The maintainer shall develop, document, and execute plans and procedures for
conducting the activities and tasks of the maintenance process.

EXPECTED OUTPUT: Maintenance plan - plans and procedures [MF; QR].

5.8.2.2 Software maintenance process procedures, methods and
standards

Software maintenance shall be performed using the same procedures, methods,
tools and standards as used for the development.

EXPECTED OUTPUT: Maintenance plan - applicability of development process pro-
cedures, methods, tools and standards [MF; QR].

5.8.2.3 Problem reporting and handling
a. Themaintainer shall establish procedures for receiving, recording and track-

ing problem reports and modification requests, providing feedback to the
requester.

EXPECTED OUTPUT: Maintenance plan - problem reporting and handling [MF;
QR].

b. Whenever problems are encountered, they shall be recorded and entered in
accordance with the change control established and maintained in confor-
mance with ECSS--M--40.

EXPECTED OUTPUT: Problem and nonconformance report [MF].

5.8.2.4 Implementation of configuration management process
The maintainer shall implement (or establish the organizational interface with)
the configuration management process (ECSS--M--40) for managing modifica-
tions.

EXPECTED OUTPUT: Maintenance plan - configuration management process [MF;
QR].

5.8.3 Problem and modification analysis

5.8.3.1 Problem analysis
The maintainer shall analyse the problem report or modification requests for its
impact on the organization, the existing system, and the interfacing systems for
the following:

D type (e.g. corrective, improvement, preventive, or adaptive to new environ-
ment);

D scope (e.g. size of modification, cost involved, and time to modify);

D criticality (e.g. impact on performance, safety, or security).

EXPECTED OUTPUT: Modification analysis report and problem analysis report
[MF].

5.8.3.2 Problem verification
The maintainer shall reproduce or verify the problem.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

51

EXPECTED OUTPUT: Modification analysis report and problem analysis report
[MF].

5.8.3.3 Development of options for modifications
Based upon the analysis, the maintainer shall develop options for implementing
the modification.

EXPECTED OUTPUT: Modification analysis report and problem analysis report
[MF].

5.8.3.4 Documentation of problem, analysis and implementation
The maintainer shall document the problem or the modification request, the
analysis results and implementation options in the problem analysis report or in
the modification analysis report respectively..

EXPECTED OUTPUT: Modification analysis report and problem analysis report
[MF].

5.8.3.5 Customer approval of selected modification options
The maintainer shall obtain approval for the selected modification option in
accordance with procedures agreed with the customer.

5.8.4 Modification implementation

5.8.4.1 Analysis and documentation of product modification
The maintainer shall conduct and document an analysis to determine which
documentation, software units, and their versions shall be modified.

EXPECTED OUTPUT: Modification identification [MF].

5.8.4.2 Documentation of software product changes
All changes to the software product shall be documented in accordance with the
procedures for document control and configuration management.

5.8.4.3 Invoking of software engineering process for modification
implementation

The maintainer shall enter the software engineering process (subclause 4.2) to
implement the modifications and consider the following:

S Test and evaluation criteria for testing and evaluating the modified and
the unmodified parts (software units, components, and configuration
items) of the system shall be defined and documented.

S The complete and correct implementation of the new and modified re-
quirements shall be ensured.

S It also shall be ensured that the original, unmodified requirements were
not affected.

S The test results shall be documented.

5.8.5 Inflight modification

5.8.5.1 Definition of inflight modification capability for flight software

The customer shall specify the requirements to perform software modifications
inflight, when this capability is identified for space segment software.

NOTE Due to the long lifetime often encountered with space seg-
ment software, special requirements also exist to ensure
that the supporting tools (e.g. compilers, engineering tools
and inflight modification tools) can support the in-orbit re-
programming during the specified lifetime.

EXPECTED OUTPUT: Requirements for inflight modification capabilities [RB;
SRR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

52

5.8.5.2 Definition of functional and performance requirements for
inflight modification

When inflight modification is specified for space segment software , the supplier
shall perform analysis of the specific implications for the software design and
validation processes and include the necessary functional and performance re-
quirements in the technical specification and the corresponding design in the
software architectural design.

EXPECTED OUTPUT: a. Specifications for inflight software modifications [TS;
PDR];

b. Design for inflight modification [DDF; PDR].

5.8.6 Maintenance review and acceptance
a. The maintainer shall conduct joint reviews with the organization authoriz-

ing the modification to determine the integrity of the modified system.

EXPECTED OUTPUT: Baseline for changes [MF].
b. Upon successful completion of the reviews, a baseline for the change shall be

established.

EXPECTED OUTPUT: Baseline for changes [MF].

5.8.7 Software migration

5.8.7.1 Applicability of this Standard to software migration
If a system or software product (including data) is migrated from an old to a new
operational environment, it shall be ensured that any software product or data
produced or modified during migration conform to this Standard.

5.8.7.2 Migration planning and execution
A migration plan shall be developed, documented, and executed, including the
following items:

S requirements analysis and definition of migration;

S development of migration tools;

S conversion of software product and data;

S migration execution;

S migration verification;

S support for the old environment in the future;

S operator involvement in the activities.

EXPECTED OUTPUT: Migration plan [MF].

5.8.7.3 Contribution to the migration plan
The maintainer shall contribute to the migration plan and justification including
the following items:

S statement of why the old environment is no longer to be supported;

S description of the new environment with its date of availability;

S description of other support options available, once support for the old
environment has been removed;

S the date as of which the transition takes place.

EXPECTED OUTPUT: Migration plan [MF].

5.8.7.4 Preparation for migration
Parallel operations of the old and new environments can be conducted for smooth
transition to the new environment. During this period, training shall be provided
and specified in the operational plan.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

53

5.8.7.5 Notification of transition to migrated system
a. When the scheduled migration takes place, notification shall be sent to all

concerned.

b. All associated old environment�s documentation, logs, and code shall be
placed in archives.

5.8.7.6 Post-operation review
a. A post-operation review shall be performed to assess the impact of changing

to the new environment.

b. The results of the review shall be sent to the appropriate authorities for
information, guidance, and action.

5.8.7.7 Maintenance and accessibility of data of former system
Data used by or associated with the old environment shall be accessible in accord-
ance with the requirements for data protection and audit applicable to the data.

5.8.8 Software retirement

5.8.8.1 Retirement planning
Upon customer�s request to retire a software product, a retirement plan to remove
active support by the operator and maintainer shall be developed, documented
and executed, considering the following items:

S cessation of full or partial support after a certain period of time;

S archiving of the software product and its associated documentation;

S responsibility for any future residual support issues;

S transition to the new software product;

S accessibility of archive copies of data.

EXPECTED OUTPUT: Retirement plan [MF].

5.8.8.2 Notification to the operator of retirement plan
Notifications of the retirement plan and activities shall be provided to the oper-
ator, including the following items:

S description of the replacement or upgrade with its date of availability;

S statement of why the software product is no longer to be supported;

S description of other support options available, once support is removed.

EXPECTED OUTPUT: Retirement notification to operator [MF].

5.8.8.3 Identification of requirements for software retirement
Parallel operations of the retiring and the new software product can be conducted
for smooth transition to the new system. During this period, user training shall
be provided as specified in the contract.

5.8.8.4 Maintenance and accessibility to data of the retired product
Data used by or associated with the retired software product shall be accessible
in accordance with the contract requirements for data protection and audit appli-
cable to the data.

5.9 Software verification and validation (supporting) processes

5.9.1 Introduction
These verification and validation processes may be executed with varying de-
grees of independence. The degree of independence may range from the same
person, or different person in the same organization, to a person in a different
organization, with varying degrees of separation. In the case where the processes
are executed by an organization independent of the supplier, it is called Indepen-

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

54

dent Software Verification and Validation (ISVV); or Independent Software Vali-
dation (ISV), if only the Validation Process is independent.

The following subclauses are intended to be invoked by other parts of this Stan-
dard. For this reason the output destination is not noted explicitly.

NOTE The supplier process verification evaluation is handled as
part of the ECSS management and is therefore not covered
as part of the software activities (tailoring of ISO/IEC
12207:1995 subclause 6.4.2.2).
In addition, ECSS--Q standards provide requirements re-
lated to the supplier process assessment which are not re-
peated in this Standard.

The software verification and validation engineering processes consist of:

D verification process implementation,
D validation process implementation,
D verification activity,
D validation activity, and
D joint technical reviews process.

5.9.2 Verification process implementation

5.9.2.1 Determination of the verification effort for the project
a. A determination shall be made concerning the verification effort and the

degree of organizational independence.

EXPECTED OUTPUT: Software verification plan - organizational independence
and effort identification.

b. Applicability of ECSS--M--00A clause 6.3 (management of risks), and
ECSS--Q--80B subclauses 6.2.2 (software dependability and safety) and
6.2.6.14 (independent software verification and validation) shall be checked.

EXPECTED OUTPUT: Software verification plan - identification of risks and level
of independence.

c. The project requirements shall be analysed for criticality. Criticality shall be
gauged in terms of:

S the potential of an undetected error in a system or software requirement
for causing death or personal injury, mission failure, or financial or cata-
strophic equipment loss or damage;

S the maturity of and risks associated with the software technology to be
used;

S availability of funds and resources.

EXPECTED OUTPUT: Software verification plan - criticality and resources identifi-
cation.

5.9.2.2 Establishment of the verification process, methods and tools
a. A verification process shall be established to verify the software products.

EXPECTED OUTPUT: Software verification plan - verification process identifica-
tion.

b. Target life cycle activities and software products needing verification shall
be determined based upon the scope, magnitude, complexity, and criticality
analysis mentioned in 5.9.2.1 c.

EXPECTED OUTPUT: Software verification plan - software products identification.
c. Verification activities and tasks defined in subclause 5.9.4, including asso-

ciated methods, techniques, and tools for performing the tasks, shall be
selected for the target life cycle activities and software products.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

55

EXPECTED OUTPUT: Software verification plan - methods and tool.

5.9.2.3 Selection of the organization responsible for conducting the
verification

a. If the project warrants an independent verification effort, a qualified organ-
ization responsible for conducting the verification shall be selected.

EXPECTED OUTPUT: Independent verification organization selection
b. This organization shall be assured of the independence and authority to

perform the verification activities.

NOTE ECSS--Q--80B subclause 6.2.6.14 (independent software
verification and validation), ECSS--M--00A subclause 7.2.3
and ECSS--M--20 (project organization) contain further re-
quirements relevant for this subclause.

AIM: A coherent and consistent approach to project organization within each
project.

EXPECTED OUTPUT: Appropriate element of project requirements documents deal-
ing with project organization.

5.9.2.4 Development and documentation of a verification plan
covering the software verification activities

Based upon the verification tasks as determined, a verification plan shall be
developed and documented, addressing the following items:

D the life cycle activities and software products subject to verification;

D the required verification tasks for each life cycle activity, software product,
related resources, responsibilities, and schedule;

D the procedures for forwarding verification reports to the customer and other
involved organizations.

EXPECTED OUTPUT: Software verification plan - organization and activities.

5.9.3 Validation process implementation

5.9.3.1 Determination of the validation effort for the project
The validation effort and the degree of organizational independence of that effort
shall be determined, coherent with ECSS--Q--80B subclause 6.3.4.2.

EXPECTED OUTPUT: Software validation plan - effort and independence.

5.9.3.2 Establishment of a validation process
a. The validation process shall be established to validate the software product,

EXPECTED OUTPUT: Software validation plan - validation process identification.
b. Validation tasks defined in subclause 5.9.5, including associated methods,

techniques, and tools for performing the tasks, shall be selected.

EXPECTED OUTPUT: Software validation plan - methods and tools.

5.9.3.3 Selection of a validation organization
a. If the project warrants an independent validation effort, a qualified organiz-

ation responsible for conducting the effort shall be selected.

EXPECTED OUTPUT: Independent software validation plan-organization selec-
tion.

b. The conductor shall be assured of the independence and authority to perform
the validation tasks.

EXPECTED OUTPUT: Independent software validation plan-level of independence .

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

56

c. This subclause shall be applied with ECSS--M--00A subclause 7.2.3 and
ECSS--Q--80B, subclause 6.3.4.21.

EXPECTED OUTPUT: Appropriate element of project requirements documents deal-
ing with project organization.

5.9.3.4 Development and documentation of a validation plan
A validation plan shall be developed and documented, including, as a minimum
the following:

D items subject to validation;

D validation tasks to be performed;

D resources, responsibilities, and schedule for validation;

D procedures for forwarding validation reports to the customer and other
parties.

EXPECTED OUTPUT: Software validation plan - organization and activities.

5.9.4 Verification activity

5.9.4.1 Verification of software requirements
The software requirements shall be verified considering the criteria listed below:

D software requirements are traceable to system partitioning and system re-
quirements;

D software requirements are externally and internally consistent (not imply-
ing formal proof consistency);

D software requirements are verifiable;

D feasibility of software design;

D feasibility of operations and maintenance;

D the software requirements related to safety, security, and criticality are cor-
rect as shown by suitably rigorous methods.

EXPECTED OUTPUT: a. Requirements traceability matrices;

b. Requirements verification report.

5.9.4.2 Verification of the software architectural design
The software architectural design shall be verified considering the criteria listed
below:

D external consistency with the requirements of the software item;

D internal consistency between the software components;

D traceability from the requirements to the software item;

D feasibility of producing a detailed design;

D feasibility of operations and maintenance;

D the design is correct with respect to the requirements and the interfaces;

D the design implements proper sequence of events, inputs, outputs, inter-
faces, logic flow, allocation of timing and sizing budgets, and error definition,
isolation and recovery;

D the chosen design can be derived from requirements;

D the design implements safety, security and other critical requirements cor-
rectly as shown by suitable rigorous methods.

EXPECTED OUTPUT: a. Software architectural design to requirements traceabil-
ity matrices;

b. Software architectural design and interface verification
report.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

57

5.9.4.3 Verification of the software detailed design

The software detailed design shall be evaluated in accordance with the criteria
listed below:

D traceability to the architectural design of the software item;

D external consistency with architectural design;

D internal consistency between software components and software units;

D feasibility of testing;

D feasibility of operation and maintenance;

D the design is correct with respect to requirements and interfaces;

D the design implements proper sequence of events, inputs, outputs, inter-
faces, logic flow, allocation of timing and sizing budgets, and error definition,
isolation, and recovery;

D the chosen design can be derived from requirements;

D the design implements safety, security, and other critical requirements cor-
rectly as shown by suitable rigorous methods.

EXPECTED OUTPUT: a. Detailed design traceability matrices;

b. Detailed design verification report.

5.9.4.4 Verification of code
The code shall be verified considering the criteria listed below:

D the code is traceable to design and requirements, testable, correct, and in
conformity to software requirements and coding standards;

D the code implements proper event sequence, consistent interfaces, correct
data and control flow, completeness, appropriate allocation timing and sizing
budgets, and error definition, isolation, and recovery;

D the chosen code can be derived from design or software requirements;

D the code implements safety, security, and other critical requirements correct-
ly as shown by suitable rigorous methods;

D external consistency with the requirements and design of the software item;

D internal consistency between software units;

D test coverage of units;

D feasibility of software integration and testing;

D feasibility of operation and maintenance.

EXPECTED OUTPUT: a. Software code traceability matrices;

b. Software code verification report.

5.9.4.5 Verification of software integration
a. The software integration shall be verified considering that the software

components and units of each software item are completely and correctly
integrated into the software item.

EXPECTED OUTPUT: Software integration verification report.
b. In addition, the supplier shall evaluate software integration test plan, de-

sign, code, tests, test results and software user manual, considering the
criteria specified below:

S external consistency with system requirements;

S traceability to software architectural design;

S internal consistency;

S interface testing coverage;

S requirements test coverage;

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

58

S conformance to expected results;

S feasibility of software validation testing;

S feasibility of operation and maintenance.

EXPECTED OUTPUT: Software integration verification report.

5.9.4.6 Verification of software documentation
The documentation shall be verified considering the criteria listed below:

D the documentation is adequate, complete, and consistent;

D documentation preparation is timely;

D configuration management of documents follows specified procedures.

EXPECTED OUTPUT: Software documentation verification report.

5.9.4.7 Evaluation of test specifications
Test requirements, test cases, and test specifications shall demonstrate the cover-
age of all software requirements of the technical specification or the requirements
baseline.

EXPECTED OUTPUT: a. Traceability of the requirements baseline to the validation
tests;

b. Traceability of the technical specifications to the vali-
dation tests.

5.9.4.8 Verification of software validation with respect to the technical
specifications and the requirements baseline

The validation tests shall be verified considering the criteria listed below:

D test coverage of the requirements of the software item;

D conformance to expected results;

D feasibility of system integration and testing, if conducted;

D feasibility of operation and maintenance.

EXPECTED OUTPUT: Test results evaluation.

5.9.4.9 Problem and nonconformance handling
a. Problems and nonconformances detected by the software verification effort

shall be entered into the problem resolution process (ECSS--Q--80B sub-
clauses 5.3.5 and 5.3.6).

EXPECTED OUTPUT: Problem and nonconformance reports.
b. All problems and nonconformances shall be resolved.

EXPECTED OUTPUT: Problem and nonconformance report.
c. Results of the verification activities shall be made available to the customer

and other involved organizations.

EXPECTED OUTPUT: Problem and nonconformance report.

5.9.5 Validation activity

5.9.5.1 Development and documentation of a software validation
testing specification

a. The supplier shall develop and document, for each validation requirement of
the software item, a set of tests, test cases (inputs, outputs, test criteria), and
test procedures for conducting software validation testing, ensuring that the
integrated software item is ready for software validation testing.

EXPECTED OUTPUT: Software validation testing specification.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

59

b. The supplier shall evaluate the test specifications in accordance with sub-
clause 5.9.4.6.

EXPECTED OUTPUT: Software documentation verification report.

5.9.5.2 Conducting the validation tests
The validation tests shall be conducted as specified in the output of subclause
5.9.5.1 above, including:

D testing with stress, boundary, and singular inputs;

D testing the software product for its ability to isolate and minimize the effect
of errors; that is graceful degradation upon failure, request for operator
assistance upon stress, boundary and singular conditions;

D testing that the software product can perform successfully in a representa-
tive operational environment.

EXPECTED OUTPUT: Validation testing report.

5.9.5.3 Evaluation of the design, code, tests, test results, and software
user manual

The supplier shall evaluate the design, code, tests, test results, and software user
manual in accordance with the criteria listed below:

D test coverage of the requirements of the software item;

D conformance to expected results;

D feasibility of system integration and testing, if conducted;

D feasibility of operation and maintenance.

EXPECTED OUTPUT: Software design and test evaluation report.

5.9.5.4 Updating the software user manual
The supplier shall update the software user manual.

EXPECTED OUTPUT: Software user manual (update).

5.9.5.5 Problem and nonconformance handling
a. Problems and nonconformances detected during the validation shall be the

subject of a problem resolution process (ECSS--Q--80B subclauses 5.3.5 and
5.3.6).

EXPECTED OUTPUT: Problem and nonconformance report.
b. All problems and nonconformances shall be resolved.

EXPECTED OUTPUT: Problem and nonconformance report.
c. Results of the validation activities shall be made available to the customer

and other involved organizations.

EXPECTED OUTPUT: Problem and nonconformance report.

5.9.5.6 Test readiness review
Test readiness reviews, as established in subclause 5.9.6, joint technical review
process, shall be held before the commencement of key test activities.

EXPECTED OUTPUT: Technical review report.

5.9.6 Joint technical review process

5.9.6.1 Introduction
The joint review process is a process for evaluating the status and products of an
activity of a project as appropriate. Joint reviews shall be held throughout the life
cycle of the software. This process may be employed by both parties, where one
party (reviewing party) reviews another party (reviewed party).

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

60

5.9.6.2 Support to software reviews
The software support of to joint technical reviews shall be related to project
phasing and planning (refer to ECSS--M--30). Therefore software shall undergo
the overall software milestone reviews SRR, PDR, CDR, QR and AR as a mini-
mum. The supplier shall support any further reviews requested by the customer.

NOTE Internal reviews can be replaced by inspections.

EXPECTED OUTPUT: Milestone review reports.

5.9.6.3 Technical reviews
a. Technical reviews (including milestone reviews) shall be held to evaluate the

software products or services under consideration and provide evidence that:

D they are complete;

D they conform to applicable standards and specifications;

D changes are properly implemented and affect only those areas identified by
the configuration management process;

D they adhere to applicable schedules;

D they are ready for the next activity;

D the development, operation, or maintenance is being conducted according to
the plans, schedules, standards, and guidelines laid down for the project.

EXPECTED OUTPUT: Technical review reports.
b. Reviews shall be planned of each identified software product within its de-

fined software life cycle according to the criteria above.

EXPECTED OUTPUT: Technical review reports.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

61

6

Special requirements

6.1 Introduction
This clause 6 defines the specific requirements for engineering of computer soft-
ware for space systems. They are special in the sense that they apply only where
the software engineering disciplines or technologies identified in this clause are
exploited in the project.

6.2 Space segment software

6.2.1 Introduction
The space segment software calls for special engineering requirements, due to the
highly specialized environment and because the software implements functions
that directly relate to space system dependability.

The requirements are presented specifying which is the general activity that
contains them.Detailed software engineering guidelines for space segment soft-
ware are found in ECSS--E--40--01

6.2.2 System level integration of software: system
observability

6.2.2.1 System observability requirements definition
Observability data shall include the data for the system observability and shall
take into account the constraints imposed by the computer such as the bandwidth
allocation and the overloading of the processor.

NOTE 1 The general requirement for software observability data
intends to facilitate the software integration or the software
trouble shooting. Purpose of space on-board software is gen-
erally to access or control (in a reactive or interactive way)
some hardware, whose visibility is also important.

NOTE 2 Observability requirements can impair the performance re-
quirements (e.g. computer throughput, bandwidth, and
ground exploitation rate of telecommands). This has an im-
pact when specifying the observability requirements (e.g.
considering the need of oversampling).

EXPECTED OUTPUT: System observability requirements [RB; SRR].

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

62

6.2.2.2 Software observability data definition
The customer shall specify the system observability data individually to be com-
pleted by the supplier later in the technical specification

EXPECTED OUTPUT: System observability requirements [RB; SRR].

6.2.2.3 Criteria to define observability requirements
When specifying the observability requirements, the customer shall trade off the
software visibility with the risk of activating undesirable code on-board.

NOTE The software observability requirements, considered only
during the integration, and not during flight, can result into
some deactivated code.

EXPECTED OUTPUT: System observability requirements [RB; SRR].

6.2.3 System level integration of software: system database
The customer shall specify a system database to ensure the consistency of com-
mon data, considering the following additional aspects:

D Specification of the system database use for the supplier. For instance, the
database may be used to produce automatically configured software
(e.g. generation of tables, constant data, initial values).

D Specification of the system database size, the possible modification that can
be foreseen after the acceptance review, and the accepted impact in terms of
software maintenance.

EXPECTED OUTPUT: System database specification (content and use) [RB; SRR].

6.2.4 Software lifecycle: detailed design review

6.2.4.1 Detailed design review planning
At the end of the detailed design, the software supplier shall hold a detailed
design review (DDR) with the customer.

AIM: � Review the detailed design.

� Review the software technical budget status (e.g. CPU and memory).

� Review the completeness and stability of the technical specification
requirements. This DDR objective can be implemented in case of evol-
ution of technical specification requirements after the PDR.

EXPECTED OUTPUT: a. Customer approval of the design definition file (software
architectural design, detailed design) [DDF; DDR];

b. Customer approval of the design of software interface and
the software integration test plan [DJF; DDR];

c. Customer approval of the margins and technical budget
status [DJF; DDR];

d. Customer approval of the updated technical specifications
[TS; DDR].

6.2.4.2 CDR plan for flight software
In order to avoid that software items are subject to several reviews, the software
elements defined in the general requirements for review at CDR, but actually
reviewed at DDR, shall be removed from the CDR list.

EXPECTED OUTPUT: Revised CDR outputs in the software development plan
[MGT; SRR, PDR].

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

63

6.2.5 Software requirements analysis: logical model

6.2.5.1 Definition of a software logical model
The supplier shall construct a logical model of the functional requirements of the
software product.

NOTE 1 The logical model can be the result of an iterative verifica-
tion process with the customer.It also supports the require-
ments capture, documents and formalizes the software re-
quirements.

NOTE 2 A logical model is a representation of the technical specifica-
tion, independent from the implementation, written with a
formalized language and it can be possibly executable. For-
mal methods can be used to prove properties of the logical
model itself and therefore of the technical specification. The
logical model allows in particular to verify a technical spec-
ification is complete (i.e. by checking a software require-
ment exists for each logical model element), and consistent
(because of the model checking).
The logical model can be completed by specific feasibility
analyses such as benchmarks, in order to check the techni-
cal budgets (e.g. memory size and computer throughput). In
case themodelling technique allows for it, preliminary auto-
matic code generation can be used to define the contents of
the software validation test specification.

EXPECTED OUTPUT: Software logical model [TS; PDR].

6.2.5.2 Definition of behavioural view for space reactive software
For space reactive software, the logical model shall include a behavioural view.

NOTE Space reactive software is defined as a software that fulfils
the following characteristics:
-- it is real-time software;
-- it runs remotely;
-- it manages closely a specific limited target computer;
-- it controls a potentially long living system with visibility
limitation into an hostile environment;

-- it drives its own availability and reliability.

EXPECTED OUTPUT: Behavioural view in software logical model for space reactive
software [TS; PDR].

6.2.5.3 Man-machine interface (MMI) prototype for interactive software
For interactive software, the logical model shall be associated with a prototype
of the man-machine interface (see 6.5.4)

NOTE Space interactive software is defined as a software that ful-
fils the following characteristics:
-- generally it is not real-time, although there can be some
real-time connection from the laptop to the environment;

-- it is loaded into the processor from a external device
(e.g. a disk, a floppy);

-- It does not manage the hardware. It uses a general-
purpose platform with extendable resources as a mean to
execute;

-- It is generally intended to control experiments whose
lifetime is in the range from hours to one year;

-- It has a graphical user interface;
-- As space software, space interactive software runs into a
hostile environment (radiation).

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

64

EXPECTED OUTPUT: MMI prototype [TS; PDR].

6.2.6 Verification of software requirements: feasibility of
design and operation

6.2.6.1 Schedulability analysis
The supplier shall use an analytical model to perform a schedulability analysis
and prove that the design is feasible.

NOTE The schedulability analysis proves that the real-time behav-
iour is predictable, i.e. that all the tasks complete before
their deadline in the worst case condition.

EXPECTED OUTPUT: Schedulability analysis [DJF; PDR].

6.2.6.2 Technical budgets management
The technical budget (memory size, and CPU utilization) shall be monitored:

a. The memory size shall be estimated for static code size, static data size and
stack size.

EXPECTED OUTPUT: Technical budgets -Memory estimation [DJF; PDR].
b. The CPU utilization shall be estimated.

EXPECTED OUTPUT: Technical budgets -CPU estimation [DJF; PDR].

6.2.6.3 Software behaviour modelling and verification techniques
The software behaviour shall be verified using the behavioural view of the logical
model produced in subclause 6.2.5.2.

EXPECTED OUTPUT: Software behaviour verification [DJF; PDR].

6.2.6.4 Design feasibility demonstration
Modelling or simulation shall be used to prove the feasibility of the design, if no
analytical model exists.

EXPECTED OUTPUT: Design feasibility verification with models or simulation
[DJF; PDR].

6.2.7 Software architectural design: static and dynamic
architecture

6.2.7.1 Software architectural design contents
The software architectural design shall describe:

D the static architecture (i.e. decomposition into software elements such as
packages and classes or modules),

D the dynamic architecture, which involves active objects such as threads,
tasks and processes,

D the mapping between the static and the dynamic architecture, and

D the software behaviour.

EXPECTED OUTPUT: a. Software static architecture [DDF; PDR];

b. Selected analysable computational model [DDF; PDR];

c. Software dynamic architecture [DDF; PDR];

d. Software behaviour [DDF; PDR].

6.2.7.2 Software design method
A method (e.g. object oriented or functional) shall be used to produce the static
architecture including:

D software elements, and their interfaces, and

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

65

D software elements relationships,

6.2.7.3 Selection of a computational model
a. The dynamic architecture design shall select an analysable computational

model and shall be described accordingly.

EXPECTED OUTPUT: Computational model [DDF; PDR].
b. Scheduling simulations shall be performed.

EXPECTED OUTPUT: Scheduling simulation report [DJF; PDR].

6.2.7.4 Description of software dynamic behaviour
The software architecture design shall also describe the dynamic behaviour of the
software, for instance by means of description techniques based on automata and
scenario or techniques used for the behavioural view of the logical model (see
subclause 6.2.5.2).

EXPECTED OUTPUT: Software dynamic behaviour[DDF; PDR].

6.2.8 Design of software items: physical model

6.2.8.1 Production of software items physical model
The software design shall produce the physical model of the software items
described during the software architectural design.

NOTE The physical model includes the static design, the dynamic
design, the mapping between the static and the dynamic
views, and the behaviour of the software elements.

EXPECTED OUTPUT: a. Software static design [DDF; DDR, CDR];

b. Software dynamic design [DDF; DDR, CDR];

c. Software elements behaviour [DDF; DDR, CDR];

d. Compatibility of design methods with the computational
model [DDF; DDR,CDR].

6.2.8.2 Utilization of methods for software static design
A design method (e.g. object oriented or functional method) shall be used to
produce the static design including:

D software elements and their interfaces, and
D software elements relationships.

6.2.8.3 Description of the dynamic aspects of physical model
a. The dynamic design shall be based on the computational model selected

during the software architectural design and shall describe the dynamic
aspect of the physical model accordingly.

EXPECTED OUTPUT: Software dynamic design [DDF; DDR, CDR].
b. Scheduling simulations shall be performed.

EXPECTED OUTPUT: Scheduling simulation report [DJF; DDR, CDR].

6.2.8.4 Utilization of description techniques for the software behaviour
The software design shall also describe the dynamic behaviour of the software
elements, for instance bymeans of description techniques based on automata and
scenario or techniques used for the behavioural view of the logical model (see
subclause 6.2.5.2)

EXPECTED OUTPUT: Dynamic behaviour [DDF; DDR, CDR].

6.2.8.5 Determination of design methods consistency
In some cases, several design methods can be used for different items of the same
software. In this case, special care shall be dedicated to check that all the utilized

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

66

methods are, from a dynamic stand-point, consistent between themselves and
consistent with the selected computational model.

EXPECTED OUTPUT: Compatibility of design methods with the computational
model [DDF; DDR, CDR].

6.2.9 Verification of design: feasibility of operation

6.2.9.1 Schedulability analysis refinement
The schedulability analysis performed during the software architectural design
shall be refined on the basis of the detailed design documentation.

EXPECTED OUTPUT: Schedulability analysis (update) [DJF; CDR].

6.2.9.2 Technical budgets management
The technical budget (e.g., memory size, and CPU utilization) shall bemonitored:

a. Thememory size shall be refined for static code size, static data size and stack
size expressed on a thread basis, measuring them per terminal design ob-
jects.

EXPECTED OUTPUT: Technical budgets (update) - Memory size [DJF; CDR].
b. The CPU utilization shall be refined considering the worst case execution

time of each terminal active object (therefore including the call to the pro-
tected objects).

NOTE The worst case execution time of each terminal active object
is multiplied by the number of times the object is executed
per second. The resulting quantity is summed over all non-
terminal objects. The result is the estimated percentage
processor utilization.

EXPECTED OUTPUT: Technical budgets (update) - CPU utilization [DJF; CDR].

6.2.9.3 Behavioural model verification
Software behaviour shall be modelled and verified by means of the techniques
used in subclause 6.2.8.4.

EXPECTED OUTPUT: Software behaviour verification [DJF; CDR].

6.2.10 Verification of design: feasibility of testing
The evaluation of testing feasibility shall check the following aspects:

D Appropriate verification points are identified and included in the detailed
design in order to prepare the effective testing of the performance require-
ments.

D Assertions defining computational invariant properties, or temporal prop-
erties (possibly derived from the behavioural model) are added within the
design.

D Capability of fault injection.

EXPECTED OUTPUT: Testing feasibility report [DJF; CDR].

6.2.11 Verification of coding and testing: feasibility of
operation

6.2.11.1 Schedulability analysis refinement
The schedulability analysis performed during detailed design shall be refined
with the actual information extracted from the code.

EXPECTED OUTPUT: Schedulability analysis (update) [DJF; CDR].

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

67

6.2.11.2 Technical budget update
The technical budget shall be updated with the measured values and shall be
compared to the margins.

EXPECTED OUTPUT: Technical budgets (update) [DJF; CDR].

6.2.12 Evaluation of validation: complementary system level
validation

The supplier shall identify the requirements of the technical specification and the
requirements baseline that cannot be tested on its own environment, and shall
forward to the customer a request to validate them on the real system.

NOTE Some of the requirements cannot be verified because the
test environment used for the validation does not allow it.
These requirements can be only tested when the software is
integrated within the system (e.g. satellite, launcher).

EXPECTED OUTPUT: Complement of validation at system level [DJF; AR].

6.2.13 Maintenance: long term maintenance
a. The maintenance plan shall take into account the spacecraft lifetime.

EXPECTED OUTPUT: Maintenance plan [MF].
b. If this lifetime goes after the expected obsolescence date of the software

engineering environment, then the maintainer shall propose solutions to be
able to produce and uploadmodifications to the spacecraft up to its end of life.

EXPECTED OUTPUT: Long term maintenance solutions [MF].

6.3 Ground segment software
No special requirements concerning the software engineering processes are
identified at this level. Detailed software engineering guidelines for ground seg-
ments are found in ECSS--E--40--03.

6.4 Software reuse

6.4.1 Introduction
The following subclauses are applicable in the software engineering process for
projects where:

D it is intended to reuse the software products being developed for other space
projects;

D it is intended to reuse software products from other space projects and third-
party �commercial off-the-shelf� are intended to be part of the software prod-
uct.

6.4.2 Developing software for intended reuse

6.4.2.1 Definition of constraints for software to be reused
The customer shall specify the special constraints that apply for the development,
to enable future reuse of the software.

NOTE When the customer requires reuse of developed software
components, he specifies the generic application domain of
these components. This can for example include require-
ments on software architecture for given target computers
and operating systems, the interfaces required for reuse and
the level where reuse is required (e.g. function, sub-system,
and code modules).

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

68

EXPECTED OUTPUT: Requirements for �design for reuse� [RB; SRR].

6.4.2.2 Definition of methods and tools for software to be reused
The supplier shall define procedures, methods and tools for reuse, and apply these
to the software engineering processes to comply with the reusability require-
ments for the software development.

EXPECTED OUTPUT: Software for intended reuse - justification of methods and
tools [DJF; PDR].

6.4.2.3 Evaluation of potential reuse of software
An evaluation of the reuse potential of the software shall be performed at PDR
and CDR.

EXPECTED OUTPUT: Software for intended reuse - evaluation of reuse potential
[DJF; PDR, CDR].

6.4.3 Reuse of pre-developed software

6.4.3.1 Analysis of potential reusability
The analysis of the potential reusability of existing software components shall be
performed through:

S identification of the re-use components with respect to the functional
requirements baseline, and

S a quality evaluation of these components, invoking ECSS--Q--80B sub-
clause 6.2.6.

NOTE There are no special requirements concerning the verifica-
tion and validation requirements for reused software. The
requirements are the same as for software developed with-
out reuse. The difference is that some already existing
verification and validation plans and results can be avail-
able with the reused products. However, the full verification
validation and validation verification requirement apply to
reused software as for any other part of the software devel-
opment.

EXPECTED OUTPUT: Justification of reuse with respect to requirements baseline in
the software reuse file [DJF; PDR].

6.4.3.2 Software acquisition process implementation
The supplier shall implement the software acquisition process for reused soft-
ware, and document the process in the software development plan, as described
in the ECSS--Q--80B subclause 6.2.7.

EXPECTED OUTPUT: Software acquisition process implementation in the software
development plan [MGT; SRR, PDR].

6.5 Man-machine interfaces

6.5.1 Introduction
Software projects which include the development of a significant interactive
direct interface to a human user or operator, lead to the involvement of the
specialized software engineering and human factors disciplines covering this
field and the requirements of this subclause 6.5 are applicable.

The reason for the special subclauses is thatmodernMMI technology (e.g. graphi-
cal user interfaces, and multi-layered choice menus), is not feasible to specify or
design using conventional software engineering documentation methods. The
non-linear and multi-dimensional nature of modern MMI cannot be described
adequately only using two-dimensional documents that by nature are linear in
structure. This is very similar to other systems with significant human factors

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

69

requirements, such as cars, airplanes, and buildings. In those cases a mock-up or
model is implemented during the requirements engineering. An analogous ap-
proach in software engineering applies for software with extensive human inter-
action requirements.

For any MMI development a scenario driven requirements analysis can be per-
formed. The term MMI used in the following subclauses also includes customiz-
ation of COTS supplied MMI.

6.5.2 Establishment of the need for a MMI mock-up
For software with interface to human operators, the customer shall, based on the
complexity and requirements of the MMI, determine if a software mock-up of the
MMI is requested to support the requirements engineering processes.

EXPECTED OUTPUT: MMI software mock-up requirements [RB; SRR].

6.5.3 MMI standards and guidelines definition
The customer shall determine if general MMI standards or guidelines shall be
applicable to the software project and include these requirements in the require-
ments baseline.

AIM: To ensure that appropriate guidelines, and style-guides are selected for
projects in cases where, for example, a common MMI style and functional-
ity applies for several suppliers� products.

EXPECTED OUTPUT: MMI general requirements and guidelines [RB; SRR].

6.5.4 MMI software mock-up development
a. The supplier shall develop a software mock-up to support the requirements

engineering process, in accordance with customer�s requirements.

EXPECTED OUTPUT: MMI specifications for software [TS; PDR].
b. The supplier shall use themock-up to prototype the specifications ofman-ma-

chine interfaces for the software, such that MMI specifications are consoli-
dated and evaluated with respect to human factors and use.

AIM: The aim of this subclause includes:

� proper considerations of human factors,

� that the man-machine interface reach an acceptable state of definition
during requirements engineering activities, and

� that the technical performance of the man-machine interface is verified.

NOTE Depending on the nature of the project, the supplier can opt
to later upgrade the software mock-up of theMMI to become
part of the final software product. However, unless the
mock-up is later upgraded to become part of the final prod-
uct tree, the mock-up needs not to be a formal delivery to the
customer.

EXPECTED OUTPUT: Report on evaluation of MMI specifications using a software
mock-up [DJF; PDR].

c. The customer shall ensure that end-users, or their representatives, partici-
pate in the MMI mock-up evaluation.

6.6 Critical software
For critical software ECSS--Q--80 applies.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

70

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

71

Annex A (normative)

Software documentation

A--A--

A.1 Introduction
This annex defines the contents of the software documents to be produced. The
contents are defined by the outputs of the clauses in this standard, and the list
of the outputs for each milestone of the project is provided below. The detailed
structure of the software documents (e.g. table of contents, number of volumes)
are not defined here, but left open to be determined by the size and nature of the
individual software projects. The overall structure is given in Figure A--1.

RB
Requirement
Baseline

Customer�s requirements

Interface requirements

...

...

TS
Technical

Specification

Supplier Specification

Interface Control Document

Justification of design trades

Verification and Validation plans

Milestone reports, Test results, ...

...

Design of all components

Software Code

DJF
Design

Justification File

DDF
Design

Definition File

Software user manual

Software product
assurance plan
Software quality models

Procedures & Standards

MF
Maintenance File

Maintenance plan

Migratiion plan

PAF
Product Assurance

File

MGT
Management File

Software development plan

....

OP
Operational

Documentation

Operational plan

Operational testing resu

...

...

...
...

...

...
...

....

Figure A--1: Overview of software documents

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

72

The following convention is used in this annex to, uniquely, identify the expected
outputs referenced inClauses 5& 6of this Standard: w.x.y.zindex1--index2 where
w.x.y.z is the subclause reference identifier(e.g. 5.4.4.1, 6.2.4.1, or 5.5.1), index1
is used to distinguish an identified separated requirement in a subclause (reult-
ing e.g. from a split of a subclause into several requirements), index2 is used to
identify its associated outputs (in case where there is several outputs for a
w.x.y.zindex1 subclause)

For example :

D E40--5.2.2.1--a denotes the expected output �a� associated to subclause
E40--5.2.2.1,

D E40--5.2.3.2c denotes the expected output associated to subclause 5.2.3.2c,
and

D E40--5.2.3.9b--a denotes the expected output �a� associated to subclause
5.3.2.9b

A.2 Requirements Baseline (RB)

A.2.1 General
The RB expresses the customer�s requirements. It is generated by the require-
ments engineering processes, and it is the primary input to the SRR review
process.

The IRD expresses the customer�s interface requirements for the software to be
produced by the supplier. It shall be produced in all cases where the software
product is intended for integration with the customer�s hardware or software
products. This document is part of the requirements baseline. Depending on the
size and nature of the project, the IRD may form separate clauses or separate
volumes of the RB.

A.2.2 RB contents at SRR

E40--5.2.2.1--a Functions and performance requirements of the system
[RB; SRR]

E40--5.2.2.1--c Design constraints and verification and validation require-
ments [RB; SRR]

E40--5.2.2.1--d Identification of lower level software engineering stan-
dards [RB; SRR]

E40--5.2.2.2 Overall safety and reliability requirements of the software
to be produced [RB; SRR]

E40--5.2.3.2c System partition with definition of items [RB; SRR]

E40--5.2.3.2d System configuration items list [RB; SRR]

E40--5.2.4.2 Verification and validation process requirements [RB; SRR]

E40--5.2.4.3--a Functional requirements for support to system and mission
level validation [RB; SRR]

E40--5.2.4.3--b Installation and acceptance requirements of the delivered
software product at the operational and maintenance site
[RB; SRR]

E40--5.2.4.5 SRR milestone report [RB; SRR]

E40--5.2.5.1 Software observability requirements [RB; SRR]

E40--5.2.5.4 Development constraints [RB; SRR]

E40--5.2.6.2a Software operations requirements [RB; SRR]

E40--5.2.7 Software maintenance requirements [RB; SRR]

E40--5.3.2.6 Customer approval of requirements baseline [RB; SRR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

73

E40--5.3.3.2--a Interface management procedures [RB; SRR]

E40--5.3.3.2--b Part of configuration management requirements [RB;
SRR]

E40--5.3.4.1 Technical budgets and margin philosophy for the project
[RB; SRR]

E40--5.8.5.1 Requirements for inflight modification capabilities
[RB;SRR]

E40--6.2.2.1 System observability requirements [RB;SRR]

E40--6.2.2.2 System observability requirements [RB; SRR]

E40--6.2.2.3 System observability requirements [RB; SRR]

E40--6.2.3 System database specification (content and use) [RB; SRR]

E40--6.4.2.1 Requirements for �design for reuse� [RB; SRR]

E40--6.5.2 MMI software mock--up requirements [RB; SRR]

E40--6.5.3 MMI general requirements and guidelines [RB; SRR]

Q80--5.6.1 Software acquisition process for COTS, OTS or MOTS [RB;
SRR]

Q80--6.2.2.1 Critical function identification and analysis [RB; SRR]

A.2.3 RB contents at PDR

Q80--6.2.2.4 Critical function identification and analysis [RB; PDR,
CDR, QR, AR, ORR]

A.2.4 RB contents at CDR

Q80--6.2.2.4 Critical function identification and analysis [RB; PDR,
CDR, QR, AR, ORR]

A.2.5 RB contents at QR

Q80--6.2.2.4 Critical function identification and analysis [RB; PDR,
CDR, QR, AR, ORR]

A.2.6 RB contents at AR

Q80--6.2.2.4 Critical function identification and analysis [RB; PDR,
CDR, QR, AR, ORR]

A.2.7 RB contents at ORR

Q80--6.2.2.4 Critical function identification and analysis [RB; PDR,
CDR, QR, AR, ORR]

A.2.8 IRD contents at SRR

E40--5.2.2.1--b. Interface requirements [IRD(RB); SRR]

E40--5.2.3.2a Software--hardware interface requirements [IRD(RB);
SRR]

E40--5.2.5.2 System level interface requirements [IRD(RB); SRR]

E40--5.2.5.3 System level data interfaces [IRD(RB); SRR]

E40--5.2.5.5 System level integration support products [IRD(RB); SRR]

E40--5.2.5.6 System level integration preparation requirements
[IRD(RB); SRR]

E40--5.3.3.1 Interface requirement document [IRD(RB); SRR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

74

A.3 Technical Specification (TS)

A.3.1 General
The TS contains the supplier�s response to the requirements baseline, and is the
primary input to the PDR review process.

Depending on the size and nature of the project, the following sub-documents can
be separate clauses or separate volumes of the TS.

The ICD is the supplier�s response to the IRD, and is part of the TS.

A.3.2 TS contents at PDR

E40--5.3.2.7--a Technical specification of the software [TS; PDR]

E40--5.3.2.8 Customer approval of technical specification and software
architecture [TS, DDF, ICD(TS), DJF; PDR]

E40--5.4.2.1--a Software requirements specification [TS; PDR] -- Function-
al and performance specifications, including hardware
characteristics, and environmental conditions under which
the software item executes, including budgets require-
ments [TS; PDR]

E40--5.4.2.1--b Software requirements specification [TS; PDR] -- Software
product quality requirements (see ECSS--Q--80B subclause
7.2) [TS; PDR]

E40--5.4.2.1--c Software requirements specification [TS; PDR] -- Security
specifications, including those related to factors which can
compromise sensitive information [TS; PDR]

E40--5.4.2.1--d Software requirements specification [TS; PDR] -- Human-
factors engineering (ergonomics) specifications, including
those related to manual operations, human-equipment
interactions, constraints on personnel, and areas requiring
concentrated human attention, that are sensitive to human
errors and training [TS; PDR]

E40--5.4.2.1--e Software requirements specification [TS; PDR] -- Data defi-
nition and database requirements [TS; PDR]

E40--5.4.2.2 Software logical model [TS; PDR]

E40--5.4.2.3 Requirements unique identifier [TS; PDR]

E40--5.4.3.5 Specification of reuse of predeveloped software [TS; PDR]

E40--5.8.5.2--a Specifications for inflight software modifications [TS; PDR]

E40--6.2.5.1 Software logical model [TS; PDR]

E40--6.2.5.2 Behavioural view in software logical model for space reac-
tive software [TS; PDR]

E40--6.2.5.3 MMI prototype [TS; PDR]

E40--6.5.4a MMI specifications for software [TS; PDR]

Q80--7.1.1,

Q80--7.1.2,

Q80--7.1.3.3,

Q80--7.2.1.1 Software quality requirements [TS; PDR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

75

A.3.3 TS contents at DDR

E40--6.2.4.1--d Customer approval of the updated technical specifications
[TS; DDR]

A.3.4 ICD contents at PDR

E40--5.3.2.7--c Interface Control Document [ICD(TS); PDR]

E40--5.3.2.8 Customer approval of technical specification and software
architecture [TS, DDF, ICD(TS), DJF; PDR]

E40--5.4.2.1--f Interfaces external to the software item [ICD(TS); PDR]

E40--5.4.3.4--a Preliminary external interfaces design [ICD(TS); PDR]

A.3.5 ICD contents at CDR

E40--5.5.2.2--a External interfaces design (update) [ICD(TS); CDR]

A.4 Design Definition File (DDF)

A.4.1 General
The DDF is a supplier-generated file that documents the result of the design
engineering processes. The DDF is the primary input to the CDR review process
and it contains all the documents called for by the design engineering require-
ments.

A.4.2 DDF contents at SRR

E40--5.2.3.1a System design [DDF--system level; SRR]

Q80--6.2.4.4 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.2.4.5 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.2.4.11 Identification and protection method or tool in the software
configuration file [DDF; SRR; PDR, CDR, QR, AR, ORR]

A.4.3 DDF contents at PDR

E40--5.3.2.7--b Software architectural design [DDF; PDR]

E40--5.3.2.8 Customer approval of technical specification and software
architecture [TS, DDF, ICD(TS), DJF; PDR]

E40--5.4.3.1 Software architectural design [DDF; PDR]

E40--5.4.3.2 Hierarchy, dependency and interfaces of software compo-
nents in the software architectural design [DDF; PDR]

E40--5.4.3.3 Process, data and control aspects of software components
in the software architectural design [DDF; PDR]

E40--5.4.3.4--b Preliminary internal interfaces design [DDF; PDR]

E40--5.8.5.2--b Design for in--flight modification [DDF; PDR]

E40--6.2.7.1--a Software static architecture [DDF; PDR]

E40--6.2.7.1--b Selected analysable computational model [DDF; PDR]

E40--6.2.7.1--c Software dynamic architecture [DDF; PDR]

E40--6.2.7.1--d Software behaviour [DDF; PDR]

E40--6.2.7.3a Computational model [DDF; PDR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

76

E40--6.2.7.4 Software dynamic behaviour [DDF; PDR]

Q80--6.2.3.5--a Measures in the design [DDF; PDR, CDR]

Q80--6.2.4.4 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.2.4.6 Authorized changes--Software configuration file [DDF;
PDR, CDR, QR, AR, ORR]

Q80--6.2.4.8 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.9,

Q80--6.2.4.10 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.11 Identification and protection method or tool in the software
configuration file [DDF; SRR, PDR, CDR, QR, AR, ORR]

A.4.4 DDF contents at DDR

E40--6.2.4.1--a Customer approval of the design definition file (software
architectural design, detailed design) [DDF; DDR]

E40--6.2.8.1--a Software static design [DDF; DDR, CDR]

E40--6.2.8.1--b Software dynamic design [DDF; DDR, CDR]

E40--6.2.8.1--c Software elements behaviour [DDF; DDR, CDR]

E40--6.2.8.1--d Compatibility of design methods with the computational
model [DDF; DDR, CDR]

E40--6.2.8.3a Software dynamic design [DDF; DDR, CDR]

E40--6.2.8.4 Dynamic behaviour [DDF; DDR, CDR]

E40--6.2.8.5 Compatibility of design methods with the computational
model [DDF; DDR, CDR]

A.4.5 DDF contents at CDR

E40--5.3.2.9b--a Customer approval of the design definition file (e.g. soft-
ware architectural design, detailed design and code) [DDF;
CDR]

E40--5.3.2.9b--c Customer approval of the design of system level interfaces
and the system level integration plan [DJF,DDF; CDR]

E40--5.3.2.9b--d Customer approval of the software user manual [DDF;
CDR]

E40--5.5.2.1a Software components design documents [DDF; CDR]

E40--5.5.2.1b Software components design documents [DDF; CDR]

E40--5.5.2.1c Software components design documents [DDF; CDR]

E40--5.5.2.2--b Internal interfaces design (update) [DDF; CDR]

E40--5.5.2.3 Software user manual [DDF; CDR]

E40--5.5.3.1--a Software component design documents and code (update)
[DDF; CDR]

E40--5.5.3.2--a Software component design document and code (update)
[DDF; CDR]

E40--5.5.3.3 Software user manual (update) [DDF; CDR]

E40--5.5.4.3 Software user manual (update) [DDF; CDR]

E40--6.2.8.1--a Software static design [DDF; DDR, CDR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

77

E40--6.2.8.1--b. Software dynamic design [DDF; DDR, CDR]

E40--6.2.8.1--c Software elements behaviour [DDF; DDR, CDR]

E40--6.2.8.1--d Compatibility of design methods with the computational
model[DDF; DDR, CDR]

E40--6.2.8.3a Software dynamic design [DDF; DDR, CDR]

E40--6.2.8.4 Dynamic behaviour [DDF; DDR, CDR]

E40--6.2.8.5 Compatibility of design methods with the computational
model [DDF; DDR, CDR]

Q80--6.2.3.5--a Measures in the design [DDF; PDR, CDR]

Q80--6.2.4.4 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.2.4.5 Software configuration file [DDF; CDR, QR, AR, ORR]

Q80--6.2.4.6 Authorized changes --Software configuration file [DDF;
PDR, CDR, QR, AR, ORR]

Q80--6.2.4.8 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.9,

Q80--6.2.4.10 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.11 Identification and protection method or tool in the software
configuration file [DDF; SRR, PDR, CDR, QR, AR, ORR]

A.4.6 DDF contents at QR

E40--5.6.3.1--b Software release document [DDF; QR]

E40--5.6.3.1--c Software delivery [DDF; QR]

E40--5.6.4.1a--a Software delivery [DDF; QR]

E40--5.6.4.1a--b Software release document [DDF; QR]

E40--5.6.4.2 Training material [DDF; QR]

Q80--6.2.4.4 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.2.4.5 Software configuration file [DDF; CDR, QR, AR, ORR]

Q80--6.2.4.6 Authorized changes--Software configuration file [DDF;
PDR, CDR, QR, AR, ORR]

Q80--6.2.4.8 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.9,

Q80--6.2.4.10 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.11 Identification and protection method or tool in the software
configuration file [DDF; SRR, PDR, CDR, QR, AR, ORR]

A.4.7 DDF contents at AR

E40--5.6.3.2b--c Software release document [DDF; AR]

E40--5.6.3.2b--d Software delivery [DDF; AR]

Q80--6.2.4.3 Software configuration file [DDF; AR, ORR]

Q80--6.2.4.4 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

78

Q80--6.2.4.5 Software configuration file [DDF; CDR, QR, AR, ORR]

Q80--6.2.4.6 Authorized changes --Software configuration file [DDF;
PDR, CDR, QR, AR, ORR]

Q80--6.2.4.8 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.9,

Q80--6.2.4.10 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.11 Identification and protection method or tool in the software
configuration file [DDF; SRR, PDR, CDR, QR, AR, ORR]

A.4.8 DDF contents at ORR

Q80--6.2.4.4 Software configuration file [DDF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.2.4.5 Software configuration file [DDF; CDR, QR, AR, ORR]

Q80--6.2.4.6 Authorized changes --Software configuration file [DDF;
PDR, CDR, QR, AR, ORR]

Q80--6.2.4.8 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.9,

Q80--6.2.4.10 Identification and protection method or tool in the software
configuration file [DDF; PDR, CDR, QR, AR, ORR]

Q80--6.2.4.11 Identification and protection method or tool in the software
configuration file [DDF; SRR, PDR, CDR, QR, AR, ORR]

A.5 Design Justification File (DJF)

A.5.1 General
The DJF is generated and reviewed at all stages of the development and review
processes. It contains the documents that describe the trade-offs, design choice
justifications, verification plan, validation plan, validation testing specification,
test procedures, test results, evaluations and any other documentation called for
to justify the design of the supplier�s product. The DJF is a primary input to the
CDR, QR and AR milestones, and supporting input for the other milestones.

A.5.2 DJF contents at ANY milestone

Q80--5.3.5.1--b Nonconformance [DJF]

Q80--5.3.5.1--c Nonconformance record [DJF]

A.5.3 DJF contents at SRR

E40--5.2.4.4 Requirements justification [DJF--system level; SRR]

E40--5.2.3.1b System design to system requirements conformance [DJF--
system level; SRR]

E40--5.2.3.1c System requirements to system design traceability [DJF--
system level; SRR]

E40--5.2.3.2b Traceability to system partitioning [DJF; SRR]

Q80--5.6.3.1 Software component list [DJF; SRR,PDR]

Q80--5.7.3.3 Evidence of suitability of the software development envi-
ronment [DJF; SRR, PDR]

Q80--6.2.4.12 Labelling of media [DJF; SRR, PDR; CDR, QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

79

Q80--6.2.6.14 ISVV plan [DJF; SRR, PDR]

Q80--6.2.7.1,

Q80--6.2.7.2,

Q80--6.2.7.3,

Q80--6.2.7.4,

Q80--6.2.7.7 Justification of selection of reused software in the software
reuse file [DJF, SRR, PDR]

Q80--6.2.7.5,

Q80--6.2.7.6,

Q80--6.2.7.8 Software reuse file [DJF; SRR, PDR, CDR]

Q80--6.2.7.10 Quality report of proposed product in the software reuse
file [DJF; SRR, PDR, CDR]

Q80--6.2.7.11 Action plan in the software reuse file [DJF; SRR, PDR,
CDR]

Q80--7.2.4.4 Technical specification for reusable components in the soft-
ware reuse file [DJF; SRR, PDR]

Q80--7.2.4.7 Test reports for the software reuse file [DJF; SRR, PDR]

Q80--7.4.1--a,

Q80--7.4.2,

Q80--7.4.3,

Q80--7.4.5 Justification of selection of ground equipment [DJF; SRR,
PDR]

Q80--7.4.1--b Receiving inspection report [DJF; SRR, PDR]

A.5.4 DJF contents at PDR

E40--5.3.2.7--d Software architectural design trade-offs [DJF; PDR]

E40--5.3.2.8 Customer approval of technical specification and software
architecture [TS, DDF, ICD(TS), DJF; PDR]

E40--5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

E40--5.4.2.4--a Requirement traceability matrices [DJF; PDR]

E40--5.4.2.4--b Requirements verification report [DJF; PDR]

E40--5.4.3.6 Software integration test plan (preliminary) [DJF; PDR]

E40--5.4.3.7--a Software architectural design and interface verification
report [DJF; PDR]

E40--5.4.3.7--b Software architectural design to requirements traceability
matrices [DJF; PDR]

E40--5.4.3.8 PDR milestone report [DJF; PDR]

E40--5.4.4--a Software verification plan -- independence, criticality and
effort [DJF; PDR]

E40--5.4.4--b. Software verification plan -- methods and tools [DJF; PDR]

E40--5.4.4--c Software verification plan -- organization [DJF; PDR]

E40--5.4.4--d Software validation plan -- independence, criticality and
effort [DJF; PDR]

E40--5.4.4--e. Software validation plan -- methods and tools [DJF; PDR]

E40--5.4.4--f Software validation plan -- organization [DJF; PDR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

80

E40--6.2.6.1 Schedulability analysis [DJF; PDR]

E40--6.2.6.2a Technical budgets -- Memory estimation [DJF; PDR]

E40--6.2.6.2b Technical budgets -- CPU estimation [DJF; PDR]

E40--6.2.6.3 Software behaviour verification [DJF; PDR]

E40--6.2.6.4 Design feasibility verification with models or simulation
[DJF; PDR]

E40--6.2.7.3b Scheduling simulation report [DJF; PDR]

E40--6.4.2.2 Software for intended reuse -- justification of methods and
tools [DJF; PDR]

E40--6.4.2.3 Software for intended reuse -- evaluation of reuse potential
[DJF; PDR, CDR]

E40--6.4.3.1 Justification of reuse with respect to requirements baseline
in the software reuse file [DJF; PDR]

E40--6.5.4--b Report on evaluation of MMI specifications using a soft-
ware mock--up [DJF; PDR]

Q80--5.6.3.1 Software component list [DJF; SRR, PDR]

Q80--5.7.3.3 Evidence of suitability of the software development envi-
ronment [DJF; SRR, PDR]

Q80--6.2.3.5--b Verification activities [DJF; SRR, PDR]

Q80--6.2.4.12 Labeling of media [DJF; SRR, PDR; CDR, QR, AR, ORR]

Q80--6.2.6.14 ISVV plan [DJF; SRR, PDR] and ISVV report [DJF; PDR,
CDR, QR, AR, ORR]

Q80--6.2.7.1:

Q80--6.2.7.2,

Q80--6.2.7.3,

Q80--6.2.7.4,

Q80--6.2.7.7 Justification of selection of reused software in the software
reuse file [DJF; SRR, PDR]

Q80--6.2.7.5,

Q80--6.2.7.6,

Q80--6.2.7.8 Software reuse file [DJF; SRR, PDR, CDR]

Q80--6.2.7.10 Quality report of proposed product in the software reuse
file [DJF; SRR, PDR, CDR]

Q80--6.2.7.11 Action plan in the software reuse file [DJF; SRR, PDR,
CDR]

Q80--6.3.3.5 Document justifying suitability of language [DJF; PDR]

Q80--7.1.11 Result of studies on mumerical errors presented at each
milestone of the software development [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.2.1.4 Verification and validation method for each requirement
[DJF; PDR, CDR, QR, AR, ORR]

Q80--7.2.4.4 Technical specification for reusable components in the soft-
ware reuse file [DJF; SRR, PDR]

Q80--7.2.4.7 Test reports for the software reuse file [DJF; SRR, PDR]

Q80--7.3.1.1

Q80--7.3.1.2,

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

81

Q80--7.3.1.3,

Q80--7.3.1.4,

Q80--7.3.1.5 Detailed test planning documentation [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.3.1.6 Verification reports [DJF, PDR, CDR, QR, AR]

Q80--7.4.1--a,

Q80--7.4.2,

Q80--7.4.3,

Q80--.4.5 Justification of selection of ground equipment [DJF; SRR,
PDR]

Q80--7.4.1--b Receiving inspection report [DJF; SRR, PDR]

A.5.5 DJF contents at DDR

E40--6.2.4.1--b Customer approval of the design of software interface and
the software integration test plan[DJF; DDR]

E40--6.2.4.1--c Customer approval of the margins and technical budget
status [DJF; DDR]

E40--6.2.8.3b Scheduling simulation report [DJF; DDR, CDR]

A.5.6 DJF contents at CDR

E40--5.3.2.9a CDR milestone Rreport [DJF; CDR]

E40--5.3.2.9b--b Customer approval of the design justification file (e.g. re-
sults of unit and integration tests and results of validation
with respect to the technical specifications) [DJF; CDR]

E40--5.3.2.9b--c Customer approval of the design of system level interfaces
and the system level integration plan [DDF, DJF; CDR]

E40--5.3.2.9b--e Customer approval of the validation with respect to TS re-
port [DJF; CDR]

E40--5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

E40--5.5.2.4 Software unit test plan [DJF; CDR]

E40--5.5.2.5 Software integration test plan (update) [DJF; CDR]

E40--5.5.2.6--a Design verification report [DJF; CDR]

E40--5.5.2.6--b Design traceability matrices [DJF; CDR]

E40--5.5.3.1--b Software unit test plan (update) [DJF; CDR]

E40--5.5.3.2--b Software unit test reports [DJF; CDR]

E40--5.5.3.4 Software integration test plan (update) [DJF; CDR]

E40--5.5.3.5--a Software code verification report [DJF; CDR]

E40--5.5.3.5--b Software code traceability matrices [DJF; CDR]

E40--5.5.4.1 Software integration test plan [DJF; CDR]

E40--5.5.4.2 Software integration test report [DJF; CDR]

E40--5.5.4.4--a Software integration verification report [DJF; CDR]

E40--5.5.4.4--b Software documentation verification report [DJF; CDR]

E40--5.5.5.1a--a Validation with respect to the technical specification test-
ing report [DJF; CDR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

82

E40--5.5.5.1a--b Software validation with respect to the technical specifica-
tion testing specification [DJF; CDR]

E40--5.5.5.1a--c Software design and test evaluation report [DJF; CDR]

E40--5.5.5.1b Problem and nonconformance reports [DJF; CDR]

E40--5.5.5.2a CDR milestone report [DJF; CDR]

E40--5.5.5.2b Software documentation verification report [DJF; CDR]

E40--5.5.5.2c CDR milestone report [DJF; CDR]

E40--6.2.8.3b Scheduling simulation report [DJF; DDR, CDR PDR]

E40--6.2.9.1 Schedulability analysis (update) [DJF; CDR]

E40--6.2.9.2a Technical budgets (update) -- Memory size [DJF; CDR]

E40--6.2.9.2b Technical budgets (update) -- CPU utilization [DJF; CDR]

E40--6.2.9.3 Software behaviour verification [DJF; CDR]

E40--6.2.10 Testing feasibility report [DJF; CDR]

E40--6.2.11.1 Schedulability analysis (update) [DJF; CDR]

E40--6.2.11.2 Technical budgets (update) [DJF; CDR]

E40--6.4.2.3 Software for intended reuse -- evaluation of reuse potential
[DJF; PDR, CDR]

Q80--6.2.3.5--b Verification activities [DJF; SRR, PDR]

Q80--6.2.4.12 Labeling of media [DJF; SRR, PDR; CDR, QR, AR, ORR]

Q80--6.2.6.14 ISVV report [DJF; PDR, CDR, QR, AR, ORR]

Q80--6.2.7.5,

Q80--6.2.7.6,

Q80--6.2.7.8 Software reuse file [DJF; SRR, PDR, CDR]

Q80--6.2.7.10 Quality report of proposed product in the software reuse
file [DJF; SRR, PDR, CDR]

Q80--6.2.7.11 Action plan in the software reuse file [DJF; SRR, PDR,
CDR]

Q80--6.3.4.9 Nonconformance report and SPR [DJF; CDR, QR, AR,
ORR]

Q80--6.3.4.19,

Q80--6.3.4.20,

Q80--6.3.4.21 Updated test documentation [DJF; CDR, QR, AR, ORR]

Q80--7.2.1.4 Verification and validation method for each requirement
[DJF; PDR, CDR, QR, AR, ORR]

Q80--7.1.11 Result of studies on mumerical errors presented at each
milestone of the software development [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.2.2.3--b Justification of design choices [DJF; CDR]

Q80--7.2.4.6 Test reports for the software reuse file [DJF; CDR]

Q80--7.3.1.1,

Q80--7.3.1.2,

Q80--7.3.1.3,

Q80--7.3.1.4,

Q80--7.3.1.5 Detailed test planning documentation [DJF; PDR, CDR,
QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

83

Q80--7.3.1.6 Verification reports [DJF, PDR, CDR, QR, AR]

A.5.7 DJF contents at QR

E40--5.3.2.11a QR milestone report [DJF; QR]

E40--5.3.2.11b Customer�s approval of qualified state [DJF; QR]

E40--5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

E40--5.6.2a--a Validation with respect to the requirements baseline test-
ing specification [DJF; QR, AR]

E40--5.6.2a--b Validation with respect to requirements baseline testing
report [DJF; QR, AR]

E40--5.6.3.1--a Preliminary software acceptance data package [DJF; QR]

E40--5.6.3.1--d Software design and test evaluation report [DJF; QR]

E40--5.6.3.1--e Validation testing report [DJF; QR]

E40--5.6.3.1--f Test specification evaluation [DJF; QR]

E40--5.6.3.1--g QR milestone report [DJF; QR]

E40--5.6.4.1b Software acceptance data package [DJF; QR]

Q80--6.2.4.12 Labeling of media [DJF; SRR, PDR; CDR, QR, AR, ORR]

Q80--6.2.6.14 ISVV report [DJF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.9 Nonconformance report and SPR [DJF; CDR, QR, AR,
ORR]

Q80--6.3.4.19,

Q80--6.3.4.20,

Q80--6.3.4.21 Updated test documentation [DJF; CDR, QR, AR, ORR]

Q80--7.1.11 Result of studies on mumerical errors presented at each
milestone of the software development [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.2.1.4 Verification and validation method for each requirement
[DJF; PDR, CDR, QR, AR, ORR]

Q80--7.3.1.1,

Q80--7.3.1.2,

Q80--7.3.1.3,

Q80--7.3.1.4,

Q80--7.3.1.5 Detailed test planning documentation [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.3.1.6 Verification reports [DJF; PDR, CDR, QR, AR]

A.5.8 DJF contents at AR

E40--5.3.2.12 Customer�s approval of accepted state [DJF; AR].

E40--5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

E40--5.6.2a--a Validation with respect to the requirements baseline test-
ing specification [DJF; QR, AR]

E40--5.6.2a--b Validation with respect to requirements baseline testing
report [DJF; QR, AR]

E40--5.6.3.2a AR milestone report [DJF; AR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

84

E40--5.6.3.2b--a Final software acceptance data package [DJF; AR]

E40--5.6.3.2b--b Acceptance testing documentation [DJF; AR]

E40--5.6.4.3 Installation plan [DJF; AR]

E40--5.6.4.4 Installation report [DJF; AR]

E40--5.6.5.1 Acceptance test plan [DJF; AR]

E40--5.6.5.2 Acceptance test report [DJF; AR]

E40--5.6.5.3 Executable code generation test in the acceptance test plan
[DJF; AR]

E40--5.6.5.4a AR milestone report [DJF; AR]

E40--5.6.5.4b AR milestone report [DJF; AR]

E40--5.6.5.4c Acceptance testing documentation [DJF; AR]

E40--5.6.5.5 Traceability of acceptance tests to requirements baseline
[DJF; AR]

E40--6.2.12. Complement of validation at system level [DJF; AR]

Q80--6.2.4.12 Labeling of media [DJF; SRR, PDR; CDR, QR, AR, ORR]

Q80--6.2.6.14 ISVV report [DJF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.9 Nonconformance report and SPR [DJF; CDR, QR, AR,
ORR]

Q80--6.3.4.19,

Q80--6.3.4.20,

Q80--6.3.4.21 Updated test documentation [DJF; CDR, QR, AR, ORR]

Q80--6.3.5.3,

Q80--6.3.5.5 Acceptance test plan [DJF; AR]

Q80--6.3.5.7 Nonconformance report and SPR [DJF; AR]

Q80--6.3.5.8,

Q80--6.3.5.9 Acceptance test report [DJF; AR]

Q80--7.1.11 Result of studies on mumerical errors presented at each
milestone of the software development [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.2.1.4 Verification and validation method for each requirement
[DJF; PDR, CDR, QR, AR, ORR]

Q80--7.3.1.1,

Q80--7.3.1.2,

Q80--7.3.1.3,

Q80--7.3.1.4,

Q80--7.3.1.5 Detailed test planning documentation [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.3.1.6 Verification reports [DJF, PDR, CDR, QR, AR]

A.5.9 DJF contents at ORR

Q80--6.2.4.12 Labeling of media [DJF; SRR, PDR, CDR, QR, AR, ORR]

Q80--6.2.6.14 ISVV report [DJF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.9 Nonconformance report and SPR [DJF; CDR, QR, AR,
ORR]

Q80--6.3.4.19,

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

85

Q80--6.3.4.20,

Q80--6.3.4.21 Updated test documentation [DJF; CDR, QR, AR, ORR]

Q80--7.1.11 Result of studies on mumerical errors presented at each
milestone of the software development [DJF; PDR, CDR,
QR, AR, ORR]

Q80--7.2.1.4 Verification and validation method for each requirement
[DJF; PDR, CDR, QR, AR, ORR]

Q80--7.3.1.1,

Q80--7.3.1.2,

Q80--7.3.1.3,

Q80--7.3.1.4,

Q80--7.3.1.5 Detailed test planning documentation [DJF; PDR, CDR,
QR, AR, ORR]

A.6 Management File (MGT)

A.6.1 General
The MGT is a supplier generated file that describes the management features of
the software project (organizational breakdown and responsibilities, work acti-
vities breakdown, selected life cycle, deliveries, milestones. risks...)

A.6.2 MGT contents at SRR

E40--5.2.5.7 System level integration support requirements [MGT; SRR]

E40--5.3.2.1 Definition of the software life cycle phases included in the
software development plan [MGT; SRR, PDR]

E40--5.3.2.2a Project software development life cycle definition, included
in the software development plan [MGT; SRR, PDR]

E40--5.3.2.2b Definition of software development, operations and
maintenance techniques and identification of project risks,
included in the software development plan [MGT; SRR,
PDR]

E40--5.3.2.2c Definition of software life cycle in line with the software
and system level processes included in the software
development plan [MGT; SRR, PDR]

E40--5.3.2.3 Review plan -- milestones (included in the software devel-
opment plan) [MGT; SRR, PDR]

E40--5.3.2.4 Identification of outputs at each milestone (included in the
software development plan) [MGT; SRR, PDR]

E40--5.3.2.10 Software verification and validation activities phasing in
the software development plan [MGT; SRR, PDR]

E40--5.6.2b Phasing of activities of the software validation with respect
to the requirements baseline in the software development
plan [MGT; SRR, PDR]

E40--6.2.4.2 Revised CDR outputs in the software development plan
[MGT; SRR, PDR]

E40--6.4.3.2 Software acquisition process implementation in the soft-
ware development plan [MGT; SRR, PDR]

Q80--5.1.5.1 Training plan [MGT; SRR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

86

Q80--5.6.3.2 Purchasing data [MGT; SRR, PDR]

Q80--5.7.2 Descriptions of choices of development equipment in the
software development plan [MGT; SRR, PDR]

Q80--6.2.1.1,

Q80--6.2.1.2,

Q80--6.2.1.3 Software development plan [MGT; SRR, PDR]

Q80--6.2.4.2 Software configuration management [MGT; SRR, PDR,
CDR, QR, AR, ORR]

Q80--6.3.2.1 Definition of methodology and tools in the software devel-
opment plan [MGT; SRR, PDR]

Q80--7.2.4.5 Configuration management for software reuse file [MGT;
SRR, PDR]

A.6.3 MGT contents at PDR

E40--5.3.2.1 Definition of the software life cycle phases included in the
software development plan [MGT; SRR, PDR]

E40--5.3.2.2a Project software development life cycle definition, included
in the software project development plan [MGT; SRR, PDR]

E40--5.3.2.2b Definition of software development, operations and
maintenance techniques and identification of project risks,
included in the software development plan [MGT; SRR,
PDR]

E40--5.3.2.2c Definition of software life cycle in line with the software
and system level processes included in the software
development plan [MGT; SRR, PDR]

E40--5.3.2.3 Review plan -- milestones (included in the software devel-
opment plan [MGT; SRR, PDR]

E40--5.3.2.4 Identification of outputs at each milestone (included in the
software development plan) [MGT; SRR, PDR]

E40--5.3.2.10 Software verification and validation activities phasing in
the software development plan [MGT; SRR, PDR]

E40--5.6.2b Phasing of activities of the software validation with respect
to the requirements baseline in the software development
plan [MGT; SRR, PDR]

E40--6.2.4.2 Revised CDR ouputs in the software development plan
[MGT; SRR, PDR]

E40--6.4.3.2 Software acquisition process implementation in the soft-
ware development plan [MGT; SRR, PDR]

Q80--5.6.3.2 Purchasing data [MGT; SRR, PDR]

Q80--5.7.2 Descriptions of choices of development equipment in the
software development plan [MGT; SRR, PDR]

Q80--6.2.1.1,

Q80--6.2.1.2,

Q80--6.2.1.3 Software development plan [MGT; SRR, PDR]

Q80--6.2.4.2 Software configuration management [MGT; SRR, PDR,
CDR, QR, AR, ORR]

Q80--6.3.2.1 Definition of methodology and tools in the software devel-
opment plan [MGT; SRR, PDR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

87

Q80--7.2.4.5 Configuration management for software reuse file [MGT;
SRR, PDR]

A.6.4 MGT contents at CDR

Q80--6.2.4.2 Software configuration management [MGT; SRR, PDR,
CDR, QR, AR, ORR]

A.6.5 MGT contents at QR

Q80--6.2.4.2 Software configuration management [MGT; SRR, PDR,
CDR, QR, AR, ORR]

A.6.6 MGT contents at AR

Q80--6.2.4.2 Software configuration management [MGT; SRR, PDR,
CDR, QR, AR, ORR]

A.6.7 MGT contents at ORR

Q80--6.2.4.2 Software configuration management [MGT; SRR, PDR,
CDR, QR, AR, ORR]

A.7 Maintenance File (MF)

A.7.1 General
The MF is a maintainer generated file that describes the planning and status of
the maintenance, migration and retirement activities

A.7.2 MF contents at ANY milestone

E40--5.8.2.3b Problem and nonconformance report [MF]

E40--5.8.3.1 Modification analysis report and problem analysis report
[MF]

E40--5.8.3.2 Modification analysis report and problem analysis report
[MF]

E40--5.8.3.3 Modification analysis report and problem analysis report
[MF]

E40--5.8.3.4 Modification analysis report and problem analysis report
[MF]

E40--5.8.4.1 Modification identification [MF]

E40--5.8.6a Baseline for changes [MF]

E40--5.8.6b Baseline for changes [MF]

E40--5.8.7.2 Migration plan [MF]

E40--5.8.7.3 Migration plan [MF]

E40--5.8.8.1 Retirement plan [MF]

E40--5.8.8.2 Retirement notification to operator [MF]

E40--6.2.13a Maintenance plan [MF]

E40--6.2.13b Long term maintenance solutions [MF]

A.7.3 MF contents at PDR

E40--5.2.3.5 Elements of the software maintenance plan [MF; PDR]

A.7.4 MF contents at QR

E40--5.8.2.1 Maintenance plan -- plans and procedures [MF; QR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

88

E40--5.8.2.2 Maintenance plan -- applicability of development process
procedures, methods, tools and standards [MF; QR]

E40--5.8.2.3a Maintenance plan -- problem reporting and handling [MF;
QR]

E40--5.8.2.4 Maintenance plan -- configuration management process
[MF; QR]

Q80--6.3.7.1,

Q80--6.3.7.2,

Q80--6.3.7.4 Maintenance plans -- assurance [MF; QR, AR, ORR]

Q80--6.3.7.5 Rules for submission of maintenance reports -- mainte-
nance plans -- assurance [MF; QR, AR, ORR]

Q80--6.3.7.6,

Q80--6.3.7.7 Maintenance records [MF; QR, AR, ORR]

A.7.5 MF contents at AR

Q80--6.3.7.1,

Q80--6.3.7.2,

Q80--6.3.7.4 Maintenance plans -- assurance [MF; QR, AR, ORR]

Q80--6.3.7.5 Rules for submission of maintenance reports -- Mainte-
nance plans -- assurance [MF; QR, AR, ORR]

Q80--6.3.7.6,

Q80--6.3.7.7 Maintenance records [MF; QR, AR, ORR]

A.7.6 MF contents at ORR

Q80--6.3.7.1,

Q80--6.3.7.2,

Q80--6.3.7.4 Maintenance plans -- assurance [MF; QR, AR, ORR]

Q80--6.3.7.5 Rules for submission of maintenance reports -- Mainte-
nance plans -- assurance [MF; QR, AR, ORR]

Q80--6.3.7.6,

Q80--6.3.7.7 Maintenance records [MF; QR, AR, ORR]

A.8 Operational Doumentation (OP)

A.8.1 General
The operations process is a system level activity, defined by the customer�s re-
quirements for the space system.The corresponding software engineering process
is therefore not independent engineering activity, but is a support process at
system level. Hence, the outputs of the process are contributions to system level
outputs, and the outputs below are therefore either integrated with the software
development documentation, or controlled and developed as part of a system
documentation tree. The outputs are identified and grouped below.The system
level documentation tree defines how the documents are included.

A.8.2 OP contents at ANY review

E40--5.7.2.2b Problem and nonconformance report [OP]

A.8.3 OP contents at ORR

E40--5.2.6.1 Operational plan [OP; ORR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

89

E40--5.2.6.2b Operational plan [OP; ORR]

E40--5.7.2.1 Operational plan -- plan and standards [OP; ORR]

E40--5.7.2.2a Operational plan -- procedures for problem handling [OP;
ORR]

E40--5.7.2.2.b Problem and nonconformance report [OP]

E40--5.7.2.3 Operational plan -- operational testing specifications [OP;
ORR]

E40--5.7.3.1a Operational testing results [OP; ORR]

E40--5.7.3.1b Software delivery [OP; ORR]

E40--5.7.3.2a Validation of operational requirements [OP; ORR]

E40--5.7.3.2b Demonstration criteria [OP; ORR]

A.9 Product Assurance File (PAF)

A.9.1 General
The PAF contains documents related to planning and definition of requirements
and activities related to software product assurance activities and processes.
Depending on the size and nature of the project, the following sub--documents can
be separate clauses or separate volumes of the PAF.

A.9.2 PAF contents at ANY milestone

Q80--5.3.4--a Preliminary alert information [PAF]

Q80--5.3.4--b Alert information [PAF]

Q80--5.5.1--a Results of pre--award audits [PAF]

Q80--5.5.1--b Records of procurement sources [PAF]

Q80--5.8.1 Software process assessment plan [PAF]

Q80--5.8.2 Software process assessment procedure [PAF]

Q80--5.8.3 Software process assessment records [PAF]

Q80--5.8.4 Software process assessment records: strengths and weak-
nesses [PAF]

Q80--5.8.5 Software process assessment records: quality data [PAF]

Q80--5.8.6 Software process assessment records: improvement plan
[PAF]

Q80--5.8.7 Software process assessment records: updates to process or
project documentation [PAF]

A.9.3 PAF contents at SRR

Q80--5.1.2--a Responsibility, authority and interrelation of personnel
managing, performing and verifying work affecting quality
[PAF; SRR]

Q80--5.1.2--b External and internal interfaces and responsibilities of
each organization [PAF; SRR]

Q80--5.1.2--c Lower level supplier performing delegated product assur-
ance tasks [PAF; SRR]

Q80--5.1.3 Software product assurance resource requirements [PAF;
SRR]

Q80--5.1.4.1 Software product assurance manager [PAF; SRR]

Q80--5.1.5.2 Records of training and experience [PAF; SRR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

90

Q80--5.3.1.1,

Q80--5.3.1.4 Software product assurance plan [PAF; SRR]

Q80--5.3.1.3 Software product assurance plan [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--5.3.1.6 Compliance matrix [PAF; SRR]

Q80--5.3.2.1,

Q80--5.3.2.4,

Q80--5.7.3.5,

Q80--5.3.2.2 Assessment of the quality of software development process
in the software product assurance report [PAF; SRR, PDR,
CDR, QR, AR, ORR]

Q80--5.3.2.3 Assessment of the quality of software product in the soft-
ware product assurance report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.3.3 Audit plan and schedule [PAF; SRR]

Q80--5.3.5.1--a Nonconformance control system [PAF; SRR]

Q80--5.3.5.3 Point in the software lifecycle from which the nonconfor-
mance procedures apply -- software product assurance plan
[PAF; SRR]

Q80--5.5.2.1,

Q80--5.5.2.2 Software product assurance requirements for subcontrac-
tors [PAF; SRR, PDR]

Q80--5.5.4 Evidence of dependability and safety criticality classifica-
tion [PAF; SRR]

Q80--5.6.5 Receiving inspection report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.1.1,

Q80--6.1.5,

Q80--6.1.6,

Q80--6.1.7,

Q80--6.1.8 Software development life--cycle definition or reference
[PAF; SRR]

Q80--6.1.9 Software development and maintenance lifecycle definition
[PAF; SRR]

Q80--6.2.1.4 Identification of plans and their preparation and update
time--scales [PAF; SRR]

Q80--6.2.2.5 Software criticality analysis report [PAF; SRR, PDR]

Q80--6.2.5.1,

Q80--6.2.5.2,

Q80--6.2.5.3 Details of metrics in software product assurance plan [PAF;
SRR, PDR, CDR]

Q80--6.2.6.2,

Q80--6.2.6.3,

Q80--6.2.6.4,

Q80--6.2.6.5,

Q80--6.2.6.6,

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

91

Q80--6.2.6.7,

Q80--6.2.6.8 SPA reports and software problem reports [PAF; SRR,
PDR, CDR, QR, AR, ORR]

Q80--6.2.6.9,

Q80--6.2.6.10 Review and inspection procedures [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--6.2.6.12,

Q80--6.2.6.13 Review and inspection records [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.3.2.3 Design standards [PAF; SRR]

Q80--6.3.2.9--a Description of checks in the software product assurance
plan [PAF; SRR, PDR, CDR, QR, AR, ORR]

Q80--6.3.4.7 Means and organization in the software product assurance
plan [PAF; SRR, PDR, CDR]

Q80--7.1.4,

Q80--7.1.5 Products metrics specification and justification in software
product assurance plan [PAF; SRR, PDR]

Q80--7.1.8 Product metrics specification and justification in software
product assurance plan [PAF; SRR, PDR]

Q80--7.2.2.3--a. Product quality requirements reflected in coding and de-
sign standards [PAF; SRR]

Q80--7.3.2 Software product assurance report [PAF; SRR, PDR, CDR,
QR, AR, ORR]

A.9.4 PAF contents at PDR

Q80--5.3.1.3 Software product assurance plan [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--5.3.2.1,

Q80--5.3.2.4,

Q80--5.7.3.5,

Q80--5.3.2.2 Assessment of the quality of software development process
in the software product assurance report [PAF; SRR, PDR,
CDR, QR, AR, ORR]

Q80--5.3.2.3 Assessment of the quality of software product in the soft-
ware product assurance report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.3.6.1,

Q80--5.3.6.2 Software problem reporting procedures [PAF; PDR]

Q80--5.5.2.1,

Q80--5.5.2.2 Software product assurance requirements for subcontrac-
tors [PAF; SRR, PDR]

Q80--5.5.3.3,

Q80--5.5.3.4 Subcontractors� software product assurance plan [PAF;
PDR]

Q80--5.6.5 Receiving inspection report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.7.3.1,

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

92

Q80--5.7.3.2 Justification included or referenced in the product assur-
ance file [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.1.6,

Q80--6.2.1.7,

Q80--6.2.1.8 Procedures and Standards [PAF; PDR]

Q80--6.2.2.2 List of critical components [PAF; PDR]

Q80--6.2.2.5 Software criticality analysis report [PAF; SRR, PDR]

Q80--6.2.3.1,

Q80--6.2.3.2 Definition of measures and verification activities in soft-
ware product assurance plan [PAF; PDR, CDR]

Q80--6.2.3.3,

Q80--6.2.3.4 Definition of measures and verification activities in soft-
ware product assurance plan [PAF; PDR, CDR]

Q80--6.2.5.1,

Q80--6.2.5.2,

Q80--6.2.5.3 Details of metrics in software product assurance plan [PAF;
SRR, PDR, CDR]

Q80--6.2.5.4,

Q80--6.2.5.5,

Q80--6.2.5.6 Metrics reports in software product assurance reports
[PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.6.2,

Q80--6.2.6.3,

Q80--6.2.6.4,

Q80--6.2.6.5,

Q80--6.2.6.6,

Q80--6.2.6.7,

Q80--6.2.6.8 SPA reports and software problem reports [PAF; SRR,
PDR, CDR, QR, AR, ORR]

Q80--6.2.6.9,

Q80--6.2.6.10 Review and inspection procedures [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--6.2.6.12,

Q80--6.2.6.13 Review and inspection records [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.3.2.4 Design and coding rules for numerical accuracy [PAF;
PDR, CDR, QR, AR, ORR]

Q80--6.3.2.5,

Q80--6.3.2.6,

Q80--6.3.2.8 Results in software product assurance reports [PAF; PDR,
CDR]

Q80--6.3.2.7 Description of checks in the software product assurance
plan [PAF; PDR, CDR]

Q80--6.3.2.9--a Description of checks in the software product assurance
plan [PAF; SRR, PDR, CDR, QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

93

Q80--6.3.2.9--b Results in software product assurance reports [PAF; PDR,
CDR, QR, AR, ORR]

Q80--6.3.3.1 Coding standards [PAF; PDR]

Q80--6.3.3.2,

Q80--6.3.3.3,

Q80--6.3.3.4 Coding standards and description of tools [PAF; PDR]

Q80--6.3.3.7,

Q80--6.3.3.8 Description of measurements and tools [PAF; PDR, CDR,
QR, AR, ORR]

Q80--6.3.3.9 Description of measurements and synthesis in software
product assurance reports [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.1,

Q80--6.3.4.2 Assurance activities for testing [PAF; PDR, CDR, QR, AR,
ORR]

Q80--6.3.4.7 Means and organization in the software product assurance
plan [PAF; SRR, PDR, CDR]

Q80--6.3.4.23,

Q80--6.3.4.25,

Q80--6.3.4.26,

Q80--6.3.4.27,

Q80--6.3.4.28 Contribution to the test plan [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.3.1,

Q80--7.1.3.2 Software quality models [PAF; PDR]

Q80--7.1.4,

Q80--7.1.5 Products metrics specification and justification in software
product assurance plan [PAF; SRR, PDR]

Q80--7.1.6, Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.7, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.8 Product metrics specification and justification in software
product assurance plan [PAF; SRR, PDR]

Q80--7.1.9, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.10 Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.12 Report of the analysis of software behaviour in the soft-
ware product assurance report [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.13, Report of the analysis and metrics in the software product
assurance plan [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.14 Records of data collection analysis and results and actions
for improvement [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.3.2 Software product assurance report [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

94

Q80--7.5.1 Procedures described or referenced in the software product
assurance plan [PAF; PDR]

Q80--7.5.2 Marking described or referenced in the software product
assurance plan [PAF; PDR]

A.9.5 PAF contents at CDR

Q80--5.3.1.3 Software product assurance plan [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--5.3.2.1,

Q80--5.3.2.4,

Q80--5.7.3.5,

Q80--5.3.2.2 Assessment of the quality of software development process
in the software product assurance report [PAF; SRR, PDR,
CDR, QR, AR, ORR]

Q80--5.3.2.3 Assessment of the quality of software product in the soft-
ware product assurance report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.6.5 Receiving inspection report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.7.3.1,

Q80--5.7.3.2 Justification included or referenced in the product assur-
ance file [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.2.3 List of critical components [PAF; CDR, QR, AR, ORR]

Q80--6.2.3.1,

Q80--6.2.3.2 Definition of measures and verification activities in soft-
ware product assurance plan [PAF; PDR, CDR]

Q80--6.2.3.3,

Q80--6.2.3.4 Definition of measures and verification activities in soft-
ware product assurance plan [PAF; PDR, CDR]

Q80--6.2.5.1,

Q80--6.2.5.2,

Q80--6.2.5.3 Details of metrics in software product assurance plan [PAF;
SRR, PDR, CDR]

Q80--6.2.5.4,

Q80--6.2.5.5,

Q80--6.2.5.6 Metrics reports in software product assurance reports
[PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.6.2,

Q80--6.2.6.3,

Q80--6.2.6.4,

Q80--6.2.6.5,

Q80--6.2.6.6,

Q80--6.2.6.7,

Q80--6.2.6.8 SPA reports and software problem reports [PAF; SRR,
PDR, CDR, QR, AR, ORR]

Q80--6.2.6.9,

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

95

Q80--6.2.6.10 Review and inspection procedures [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--6.2.6.12,

Q80--6.2.6.13 Review and inspection records [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.3.2.4 Design and coding rules for numerical accuracy [PAF;
PDR, CDR, QR, AR, ORR]

Q80--6.3.2.5,

Q80--6.3.2.6,

Q80--6.3.2.8 Results in software product assurance reports [PAF; PDR,
CDR]

Q80--6.3.2.7 Description of checks in the software product assurance
plan [PAF; PDR, CDR]

Q80--6.3.2.9--a Description of checks in the software product assurance
plan [PAF; SRR, PDR, CDR, QR, AR, ORR]

Q80--6.3.2.9--b. Results in software product assurance reports [PAF; PDR,
CDR, QR, AR, ORR]

Q80--6.3.3.7,

Q80--6.3.3.8 Description of measurements and tools [PAF; PDR, CDR,
QR, AR, ORR]

Q80--6.3.3.9 Description of measurements and synthesis in software
product assurance reports [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.1,

Q80--6.3.4.2 Assurance activities for testing [PAF; PDR, CDR, QR, AR,
ORR]

Q80--6.3.4.3,

Q80--6.3.4.5,

Q80--6.3.4.6,

Q80--6.3.4.8 Collected data and analysis of the results in the software
product assurance report [PAF; CDR, QR, AR, ORR]

Q80--6.3.4.7 Means and organization in the software product assurance
plan [PAF; SRR, PDR, CDR]

Q80--6.3.4.10,

Q80--6.3.4.14,

Q80--6.3.4.15,

Q80--6.3.4.16 Statement of compliance with test plans and procedures
[PAF; CDR, QR, AR, ORR]

Q80--6.3.4.23,

Q80--6.3.4.25,

Q80--6.3.4.26,

Q80--6.3.4.27,

Q80--6.3.4.28 Contribution to the test plan [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.6, Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

96

Q80--7.1.7, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.9, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.10 Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.12 Report of the analysis of software behaviour in the soft-
ware product assurance report [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.13 Report of the analysis and metrics in the software product
assurance plan [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.14 Records of data collection analysis and results and actions
for improvement [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.3.2 Software product assurance report [PAF; SRR, PDR, CDR,
QR, AR, ORR]

A.9.6 PAF contents at QR

Q80--5.3.1.3 Software product assurance plan [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--5.3.2.1,

Q80--5.3.2.4,

Q80--5.7.3.5,

Q80--5.3.2.2 Assessment of the quality of software development process
in the software product assurance report [PAF; SRR, PDR,
CDR, QR, AR, ORR]

Q80--5.3.2.3 Assessment of the quality of software product in the soft-
ware product assurance report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.6.5 Receiving inspection report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.7.3.1,

Q80--5.7.3.2 Justification included or referenced in the software product
assurance file [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.2.3 List of critical components [PAF; CDR, QR, AR, ORR]

Q80--6.2.5.4,

Q80--6.2.5.5,

Q80--6.2.5.6 Metrics reports in software product assurance reports
[PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.6.2,

Q80--6.2.6.3,

Q80--6.2.6.4,

Q80--6.2.6.5,

Q80--6.2.6.6,

Q80--6.2.6.7,

Q80--6.2.6.8 SPA reports and software problem reports [PAF; SRR,
PDR, CDR, QR, AR, ORR]

Q80--6.2.6.9,

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

97

Q80--6.2.6.10 Review and inspection procedures [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--6.2.6.12,

Q80--6.2.6.13 Review and inspection records [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.3.2.4 Design and coding rules for numerical accuracy [PAF;
PDR, CDR, QR, AR, ORR]

Q80--6.3.2.9--a Description of checks in the software product assurance
plan [PAF; SRR, PDR, CDR, QR, AR, ORR]

Q80--6.3.2.9--b. Results in software product assurance reports [PAF; PDR,
CDR, QR, AR, ORR]

Q80--6.3.3.7,

Q80--6.3.3.8 Description of measurements and tools [PAF; PDR, CDR,
QR, AR, ORR]

Q80--6.3.3.9 Description of measurements and synthesis in software
product assurance reports [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.1,

Q80--6.3.4.2 Assurance activities for testing [PAF; PDR, CDR, QR, AR,
ORR]

Q80--6.3.4.3,

Q80--6.3.4.5,

Q80--6.3.4.6,

Q80--6.3.4.8 Collected data and analysis of the results in the software
product assurance report [PAF; CDR, QR, AR, ORR]

Q80--6.3.4.10,

Q80--6.3.4.14,

Q80--6.3.4.15,

Q80--6.3.4.16 Statement of compliance with test plans and procedures
[PAF; CDR, QR, AR, ORR]

Q80--6.3.4.23,

Q80--6.3.4.25,

Q80--6.3.4.26,

Q80--6.3.4.27,

Q80--6.3.4.28 Contribution to the test plan [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.6, Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.7, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.9, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.10 Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.12 Report of the analysis of software behaviour in the soft-
ware product assurance report [PAF; PDR, CDR, QR, AR,
ORR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

98

Q80--7.1.13, Report of the analysis and metrics in the software product
assurance plan [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.14 Records of data collection analysis and results and actions
for improvement [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.3.2 Software product assurance report [PAF; SRR, PDR, CDR,
QR, AR, ORR]

A.9.7 PAF contents at AR

Q80--5.3.1.3 Software product assurance plan [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--5.3.1.5 Quality measures for the operations and maintenance pro-
cesses in the software product assurance plan [PAF; AR]

Q80--5.3.2.1,

Q80--5.3.2.4,

Q80--5.7.3.5,

Q80--5.3.2.2 Assessment of the quality of software development process
in the software product assurance report [PAF; SRR, PDR,
CDR, QR, AR, ORR]

Q80--5.3.2.3 Assessment of the quality of software product in the soft-
ware product assurance report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.6.5 Receiving inspection report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.7.3.1,

Q80--5.7.3.2 Justification included or referenced in the software product
assurance file [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.2.3 List of critical components [PAF; CDR, QR, AR, ORR]

Q80--6.2.5.4,

Q80--6.2.5.5,

6.2.5.6 Metrics reports in software product assurance reports
[PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.6.2,

Q80--6.2.6.3,

Q80--6.2.6.4,

Q80--6.2.6.5,

Q80--6.2.6.6,

Q80--6.2.6.7,

Q80--6.2.6.8 SPA reports and software problem reports [PAF; SRR,
PDR, CDR, QR, AR, ORR]

Q80--6.2.6.9,

Q80--6.2.6.10 Review and inspection procedures [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--6.2.6.12,

Q80--6.2.6.13 Review and inspection records [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.3.2.4 Design and coding rules for numerical accuracy [PAF;
PDR, CDR, QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

99

Q80--6.3.2.9--a Description of checks in the software product assurance
plan [PAF; SRR, PDR, CDR, QR, AR, ORR]

Q80--6.3.2.9--b Results in software product assurance reports [PAF; PDR,
CDR, QR, AR, ORR]

Q80--6.3.3.7,

Q80--6.3.3.8 Description of measurements and tools [PAF; PDR, CDR,
QR, AR, ORR]

Q80--6.3.3.9 Description of measurements and synthesis in software
product assurance reports [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.1,

Q80--6.3.4.2 Assurance activities for testing [PAF; PDR, CDR, QR, AR,
ORR]

Q80--6.3.4.3,

Q80--6.3.4.5,

Q80--6.3.4.6,

Q80--6.3.4.8 Collected data and analysis of the results in the software
product assurance report [PAF; CDR, QR, AR, ORR]

Q80--6.3.4.10,

Q80--6.3.4.14,

Q80--6.3.4.15,

Q80--6.3.4.16 Statement of compliance with test plans and procedures
[PAF; CDR, QR, AR, ORR]

Q80--6.3.4.23,

Q80--6.3.4.25,

Q80--6.3.4.26,

Q80--6.3.4.27,

Q80--6.3.4.28 Contribution to the test plan [PAF; PDR, CDR, QR, AR,
ORR]

Q80--6.3.4.30 Contribution to the test plan [PAF; AR]

Q80--6.3.5.1 Contribution to the installation plan [PAF; AR]

Q80--6.3.6.1 Contribution to the operational plan [PAF; AR]

Q80--6.3.6.2 Contribution to the validation of the operational require-
ments [PAF; AR]

Q80--7.1.6, Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.7, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.9, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.10 Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.12 Report of the analysis of software behaviour in the soft-
ware product assurance report [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.13 Report of the analysis and metrics in the software product
assurance plan [PAF; PDR, CDR, QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

100

Q80--7.1.14 Records of data collection analysis and results and actions
for improvement [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.3.2 Software product assurance report [PAF; SRR, PDR, CDR,
QR, AR, ORR]

A.9.8 PAF contents at ORR

Q80--5.3.1.3 Software product assurance plan [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--5.3.2.1,

Q80--5.3.2.4,

Q80--5.7.3.5,

Q80--5.3.2.2 Assessment of the quality of software development process
in the software product assurance report [PAF; SRR, PDR,
CDR, QR, AR, ORR]

Q80--5.3.2.3 Assessment of the quality of software product in the soft-
ware product assurance report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.6.5 Receiving inspection report [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--5.7.3.1,

Q80--5.7.3.2 Justification included or referenced in the software product
assurance file [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.2.3 List of critical components [PAF; CDR, QR, AR, ORR]

Q80--6.2.5.4,

Q80--6.2.5.5,

Q80--6.2.5.6 Metrics reports in software product assurance reports
[PAF; PDR, CDR, QR, AR, ORR]

Q80--6.2.6.2,

Q80--6.2.6.3,

Q80--6.2.6.4,

Q80--6.2.6.5,

Q80--6.2.6.6,

Q80--6.2.6.7,

Q80--6.2.6.8 SPA reports and software problem reports [PAF; SRR,
PDR, CDR, QR, AR, ORR]

Q80--6.2.6.9,

Q80--6.2.6.10 Review and inspection procedures [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Q80--6.2.6.12,

Q80--6.2.6.13 Review and inspection records [PAF; SRR, PDR, CDR, QR,
AR, ORR]

Q80--6.3.2.4 Design and coding rules for numerical accuracy [PAF;
PDR, CDR, QR, AR, ORR]

Q80--6.3.2.9--a Description of checks in the software product assurance
plan [PAF; SRR, PDR, CDR, QR, AR, ORR]

Q80--6.3.2.9--b Results in software product assurance reports [PAF; PDR,
CDR, QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

101

Q80--6.3.3.7,

Q80--6.3.3.8 Description of measurements and tools [PAF; PDR, CDR,
QR, AR, ORR]

Q80--6.3.3.9 Description of measurements and synthesis in software
product assurance reports [PAF; PDR, CDR, QR, AR, ORR]

Q80--6.3.4.1,

Q80--6.3.4.2 Assurance activities for testing [PAF; PDR, CDR, QR, AR,
ORR]

Q80--6.3.4.3,

Q80--6.3.4.5,

Q80--6.3.4.6,

Q80--6.3.4.8 Collected data and analysis of the results in the software
product assurance report [PAF; CDR, QR, AR, ORR]

Q80--6.3.4.10,

Q80--6.3.4.14,

Q80--6.3.4.15,

Q80--6.3.4.16 Statement of compliance with test plans and procedures
[PAF; CDR, QR, AR, ORR]

Q80--6.3.4.23,

Q80--6.3.4.25,

Q80--6.3.4.26,

Q80--6.3.4.27,

Q80--6.3.4.28 Contribution to the test plan [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.6, Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.7, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.9, Report of the analysis and metrics in the software product
assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.10 Report of the analysis and remedial actions in the software
product assurance report [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.12 Report of the analysis of software behaviour in the soft-
ware product assurance report [PAF; PDR, CDR, QR, AR,
ORR]

Q80--7.1.13, Report of the analysis and metrics in the software product
assurance plan [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.1.14 Records of data collection analysis and results and actions
for improvement [PAF; PDR, CDR, QR, AR, ORR]

Q80--7.3.2 Software product assurance report [PAF; SRR, PDR, CDR,
QR, AR, ORR]

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

102

A.10 System level documentation

A.10.1 General
The system level documentation is governed by the ECSS system engineering
standard. The relevant input for software elements at system level are found in
subclause 5.2. In the special case where the customer is himself a software
supplier (a product consisting solely of software) for the next higher level in the
system product tree, the customer becomes a supplier at that level and the re-
quirements of this current standard are applied recursively for that case.

A.10.2 DDF contents at SRR

E40--5.2.3.1a System design [DDF--system level; SRR]

A.10.3 DJF contents at SRR

E40--5.2.4.4 Requirements justification [DJF--system level; SRR]

E40--5.2.3.1b System design to system requirements conformance [DJF--
system level; SRR]

E40--5.2.3.1c System requirements to system design traceability [DJF--
system level; SRR]

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

103

Annex B (informative)

References to other ECSS Standards

Referenced ECSS Standard clause / page(s)

ECSS--E--00 cl4 / 20, 28

ECSS--E--10 cl4 / 24, 28

ECSS--E--10A cl5 / 33

ECSS--E--10--01 cl4 / 28

ECSS--E--40--01 cl6 / 61

ECSS--E--40--03 cl6 / 67

ECSS--E--40--04 cl5 / 36

ECSS--E--70 cl4 / 25, 29

ECSS--M cl4 / 27

ECSS--M--00 cl4 / 27

ECSS--M--00A cl5 / 54, 55, 56

ECSS--M--00--02 cl4 / 29

ECSS--M--00--03 cl4 / 27

ECSS--M--10 cl4 / 27; cl5 / 49

ECSS--M--20 cl4 / 20, 27; cl5 / 55

ECSS--M--30 cl4 / 21, 27; cl5 / 37, 47, 60

ECSS--M--40 cl4 / 28; cl5 / 39, 48, 50

ECSS--M--50 cl4 / 28

ECSS--M--60 cl4 / 28

ECSS--M--70 cl4 / 28

ECSS--P--001 cl3 / 13

ECSS--Q--20A cl5 / 47

ECSS--Q--30 cl3 / 13

ECSS--Q--40 cl3 / 13

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

104

ECSS--Q--80 cl4 / 20, 27; cl5 / 36; cl6 / 69

ECSS--Q--80B cl5/ 32, 41, 47, 54, 55, 56, 58, 59;
cl6/ 68

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

105

Annex C (informative)

Tailoring guidelines

B--B--
C--C--

C.1 Introduction
The ECSS family of standard is intended to be tailored for each individual project.
This Standard lists exhaustively the requirements for the best practices in space
software engineering. The purpose of this clause is to give the customer general
guidelines on tailoring this standard for a specific project.

The goal of the tailoring is to select, modify or add adequately requirements in
order to reach the optimised ratio quality and the actual project peculiarities. The
technical, management and operational factors discussed in the following sub-
clauses provide for the examples of the software project peculiarities to the con-
sidered, to perform tailoring of this Standard.

C.2 How to tailor
The first step is therefore to understand the requested level of quality for the
project, which starts with the characterisation of the project, the identification of
the needed processes, and the characterisation of the product.

ECSS--M--00--02 provides for indication on the general way to tailor an ECSS
standard, in particular the tailoring process and the tailoring templates. The
templates are generic and deserve a more concrete description of the so-called
programmatic and technical factors.

For space software, there are some examples where the full application of this
Standard can be tailored and then refined on the basis of software project details
(the tailoring factors). The main influencing factors are the following:

D Technical factors:
S novelty of the domain of application;
S complexity of the software and the system;
S criticality level;
S size of the software;
S reusability required of the software being developed;
S interface to system development projects;
S degree of use of COTS or existing software;
S maturity of the COTS and completeness or stability of the user require-

ments.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

106

D Operational factors:
S type of application (e.g. platform, payload, and experiment);
S number of potential users of the software;
S criticality of the software as measured by the consequences of its failure;
S expected lifetime of the software;
S number of sites where the software is used;
S operation, maintenance, migration and retirement constraints.

D Management factors:
S amount of time and effort required to develop the software;
S budget requirements for implementing and operating the software;
S accepted risk level for the project;
S type of life cycle;
S schedule requirements for delivering the software;
S number of people required to develop, operate andmaintain the software;
S complexity of the organisation;
S experience of the supplier;
S financial resource.

For each particular project additional factors may be used.

The tailoring can be made during a short discussion between the software engin-
eering engineer and the software project manager. The software engineering
engineer first asks a set of questions to the project manager, in order to set up the
scope of the tailoring (i.e. the characteristics of the project that influence the
selection or not of each requirements). Examples of questions are:

S Who are the customer, the supplier, the user, the maintainer, and the
operator? Does the customer intend to delegate some tasks to the
supplier?

S Where is the complexity of the project, in the requirements or in the
design?

S What level of validation is necessary? Should the product be perfect at
delivery, or is some room allowed for the user to participate to the tests,
or is it a prototype that will be dropped later on (or reused in the next
phase)?

S What level of verification is necessary? Is it necessary to verify the re-
quirements, or the code, or the test definition?

S What visibility into the design is wished? Does the project manager want
to know everything on the detailed design and unit test, or does he trust
the supplier for a part of the lifecycle?

S Consequently, what are the necessary reviews to be selected into the
project? Is it acceptable tomerge some of them (asQRand AR, or SRRand
PDR) or to waive others (as CDR or DDR)?

S How much are COTS involved? Is the project an assembly of COTS prod-
ucts where the COTS acceptance and integration shall have the empha-
sis?

S Is the software critical? Is it included into an hardware environment?
S How is organised the maintenance? Is it included fully in the current

contract, or is the maintenance limited to the guarantee period?
Then the requirements in clauses 5 and 6 are reviewed and made or not appli-
cable in a table.

The tailoring of this Standard results in a short document including the project
characteristics (as a justification for the tailoring) and the tailoring table.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

107

Note that several subclauses are anyhow mandatory for any project, e.g. the
production of a minimum set of software requirements, a PDR to review them,
and the production of the code.

The tables in this annex propose tailoring templates for space software. These are
only samples. Each subclause of this Standard is reviewed and tailored, on the
basis of the identified factors at project level. The first table is organized per
subclause of this Standard and the second one is organized in accordance with the
ECSS--M--00--02 template, i.e. per tailoring factor.

C.3 Who tailors?
The tailoring of this Standard is implicitly a task of the Customer. When prepar-
ing the Invitation to Tender, the Customer may propose a tailored version of the
standard as an indication of the level of software engineering that is required for
the project. However, some tailoring factors (such as criticality, detailed design
complexity) may only be known after the grant of the contract. The Supplier will
also have to be part of the tailoring process and the resulting document will be
baselined in the RB (at SRR). The Customer may also subcontract the tailoring
to the Supplier, then review and accept the tailored version.

C.4 Tailoring templates
The tailoring conditions and possibilities identified in tables C--1 and C--2 are
general (i.e. �a project is small�, �the budget is low�), and, as such, provide only
an indication of what they can be. The real projects characteristics are utilized
in order to identify the tailoring conditions and possibilities in the exercise of
instantiation of this Standard

Table C--1 provides an example of tailoring conditions and possibilities for each
subclause of this Standard.

Table C--1:
Subclause Tailoring condition Tailoring possibility

5.2.2.1 System require-
ment specification

If the system is pure soft-
ware.

The system requirement
specification is reduced to
user or customer require-
ments (the software require-
ment baseline).

If the project is small. The software requirement ba-
seline may be merged with
the software specification
(software technical baseline).

5.2.2.2 System and
functional criticality
analysis

If the system is not critical. It does not exist.

5.2.3.1 Introduction If the system is pure software It does not exist.

5.2.3.2 System parti-
tioning

If the system is pure software It does not exist.

5.2.4.2 Qualification
engineering require-
ments

If the system is pure software It does not exist

5.2.4.3 software vali-
dation requirements at
system level

If the system is pure soft-
ware.

It does not exist.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

108

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.2.4.4 Requirements
baseline verification

If the complexity of the sys-
tem is low.

The verification may be li-
mited to the supplier reading
and commenting.

5.2.4.5 System require-
ments review

If the customer and the
supplier are the same orga-
nisational unit because the
project is small enough.

The SRR may be waived in
favour of the PDR.

5.2.5.1 Identification of
software observability
requirements

If the system is pure soft-
ware.

It does not exist.

5.2.5.2 Control and
data interfaces for sys-
tem level integration

If the system is pure soft-
ware.

It does not exist.

5.2.5.3 Data medium
requirements for in-
tegration

If the system is pure soft-
ware.

It does not exist.

5.2.5.4 Identification of
development con-
straints

If the system is pure soft-
ware.

It does not exist.

5.2.5.5 Identification of
customer�s inputs for
software integration
into the system.

If the system is pure soft-
ware.

It is limited to the worksta-
tion running the software.

5.2.5.6 Identification of
supplier�s outputs for
software integration
into the system

If the system is pure soft-
ware.

It does not exist.

5.2.5.7 Planning of
supplier support to
system integration

If the system is pure soft-
ware.

It does not exist.

5.2.6.1 Phasing and
management

Depends on 5.7 tailoring

5.2.6.2 System require-
ments definition for
software operations

Depends on 5.7 tailoring

5.2.7 software main-
tenance

Depends on 5.8 tailoring

5.3.2.1 Definition of
software life cycle
phases

Mandatory

5.3.2.2 Software life
cycle identification

Mandatory

5.3.2.3 Identification of
inputs and outputs as-
sociated to each phase

Mandatory

5.3.2.4 Identification of
documentation rel-
evant to each mile-
stone

Mandatory

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

109

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.3.2.5 Identification of
interfaces between the
development and
maintenance processes

If the software is not main-
tained.

It does not exist.

5.3.2.6 Software re-
quirements baseline at
the SRR

If the customer and the
supplier are the same orga-
nisational unit because the
project is small enough.

The SRR may be waived in
favour of the PDR.

5.3.2.7 Software
technical specification
phase

If the software is small
enough and with a straight-
forward architecture (e.g. a
set of services).

The specification and the soft-
ware architectural design
may be merged.

5.3.2.8 Preliminary de-
sign review

Mandatory

5.3.2.9 Critical design
review

If the project is small enough
and if the design is not com-
plex.

The CDR may be waived.

5.3.2.10 Software
verification and vali-
dation process

Tailored according to 5.9
If the criticality is low and
the budget is low.

The verification may be selec-
tive or waived.

If the software is a prototype. The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

5.3.2.11 Qualification
review

If both verification and vali-
dation have been waived.

QR is meaningless. Other-
wise, QR is mandatory.

5.3.2.12 Acceptance re-
view

If the customer and the
supplier are the same organ-
izational unit because the
project is small enough.

The AR may be merged with
the QR.

If the V&V environment is
the same as the operational
environment.

The AR may be merged with
the QR.

5.3.3.1 Interface de-
fi iti

If the system is only software. They do not exist.
finition If the system interface has no

possibility to evolve
They may be waived.

If the budget is low and the
complexity is low.

They may be waived.

5.3.3.2 Interface man-
t d

If the system is only software. They do not exist.
agement procedures If the system interface has no

possibility to evolve
They may be waived.

If the budget is low and the
complexity is low.

They may be waived.

5.3.4.1 Software
technical budget and
margin philosophy de-
finition

If the technical budget is un-
limited (e.g. memory size,
computer throughput, and re-
sponse time).

It may be waived.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

110

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.3.4.2 Software
technical budget man-
agement

If the technical budget is un-
limited (e.g. memory size,
computer throughput, and re-
sponse time).

It may be waived.

5.4.2.1 Establishment
and documentation of
software requirements

Mandatory.
Outputs are tailored as ap-
propriate for the project
needs.

5.4.2.2 software logical
model definition

If the complexity of the sys-
tem is low.

It may be waived.

5.4.2.3 Identification of
requirement unique
identifier

If both verification and vali-
dation have been waived for
all the versions of the soft-
ware.

Requirement identification is
not useful and it may be
waived.

5.4.2.4 Software re-
quirements evaluation

If the budget is low and the
criticality is low.

It may be waived.

5.4.3.1 Transformation
of software require-
ments into a software
architecture

If the software is a set of rela-
tively independent services.

The requirement and the
software architectural design
may be merged.

architecture
If the design is a tree, but
with a low complexity.

The software architectural
design and the detailed de-
sign may be merged.

5.4.3.2 Software design
description

Mandatory

5.4.3.3 Software design
documentation

Mandatory

5.4.3.4 Development
and documentation of
the software inter-
f

If the software is a set of rela-
tively independent services.

The requirement and the
software architectural design
interface can be merged.

faces If the interfaces complexity is
low.

The interfaces of the software
architectural design and de-
tailed design may be merged.

5.4.3.5 Evaluation of
reuse of predeveloped
software

If the software do not intend
to use any COTS, MOTS or
others already developed soft-
ware components

It may be waived.

5.4.3.6 Definition and
documentation of the
software integration
requirements and plan

If the software is a set of rela-
tively independent services,
or if there is little or no inter-
face.

The plan may be waived.

If the complexity of the inter-
face is low.

The plan may be delayed to
5.5.2.5.

5.4.3.7 Evaluation of
the software architec-
tural design and the
interface design

If the budget is low and the
criticality is low.

The verification may be
waived.

5.4.3.8 Conducting a
preliminary design re-
view

Mandatory

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

111

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.4.4.1 software verifi-
cation and validation
planning

Tailored as per 5.3.2.10 V&V
tailoring.
If the budget is low and the
criticality is low.

The verification plan may be
waived.

If the software is a prototype. The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

5.5.2.1 Detailed design
of each software com-
ponent

If the design is a tree, but
with a low complexity.

The software architectural
design and the detailed de-
sign can be merged.

5.5.2.2 Development
and documentation of
the software interfaces
detailed design

If the interfaces complexity is
low.

The interfaces of the software
architectural design and the
detailed design can be
merged.

5.5.2.3 Development
and documentation of
the software user man-
ual

If the budget is low. This may be delayed up to
5.5.4.3

5.5.2.4 Definition and
documentation of the
software unit test re-
quirements and plan

If the budget is low or if the
criticality is low.

The plan may be waived.

5.5.2.5 Updating of the
the software integra-
tion test requirements
and plan.

If the software is a set of rela-
tively independent services.

The plan may be waived.

5.5.2.6 Evaluation of
the software detailed
design and test re-
quirements

If the budget is low and the
criticality is low.

The verification may be
waived.

5.5.3.1 Development
and documentation of
the software units,
tests procedures and
test data

Mandatory.

5.5.3.2 Software unit
testing

If the budget is low and the
criticality is low.

The unit test reports may re-
main not formally docum-
ented.

If the stubs needed to unit
test a component are equival-
ent to the real components.

The unit test of this compo-
nent may be replaced by the
integration test of this compo-
nent and its related compo-
nents.

5.5.3.3 Software user
manual updating

If the budget is low. The update may be delayed
up to 5.5.4.3

5.5.3.4 Updating of the
software integration
test requirements and
plan

If the software is a set of rela-
tively independent services

The plan may be waived.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

112

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.5.3.5 Code and unit
test results evaluation

If the budget is low and the
criticality is low

The verification may be
waived.

5.5.4.1 Software in-
tegration test plan de-
velopment

If the software is a set of rela-
tively independent services or
there is little or no interface

The integration may be sim-
plified or waived.

5.5.4.2 Software units
and software compo-
nent integration and
testing

If the budget is low and the
criticality is low

The integration test reports
may remain not documented.

5.5.4.3 Software user
manual updating

Mandatory if there is no vali-
dation.
May be delayed to 5.9.5.3
otherwise

5.5.4.4 Software in-
tegration activities re-
sults evaluation.

If the budget is low and the
criticality is low

The verification may be
waived.

5.5.5.1 Software vali-
dation with respect to
the technical specifica-
tion

If the system is pure soft-
ware,. If the project is small

It may be waived when
TS=RB

5.5.5.2 Conducting a
critical design review

If the budget is low and the
criticality is low

The CDR may be waived.

5.6.2 Validation with
respect to the require-
ments baseline

Mandatory. Either at QR or
AR.

5.6.3.1 Conducting a
qualification review

See 5.3.2.11

5.6.3.2 Conducting an
acceptance review

See 5.3.2.12

5.6.4.1 Preparation
and updating of the
software product

If the budget is low The delivery preparation may
be simplified.

5.6.4.2 Supplier�s
provision of training
and support

Only if appropriate

5.6.4.3 Installation
planning

Only when installation is re-
quired.

5.6.4.4 Installation
activities reporting

Only when installation is re-
quired.

5.6.5.1 Acceptance test
planning

Mandatory.

5.6.5.2 Acceptance test
execution

Mandatory.

5.6.5.3 Executable code
generation and in-
stallation

If no automatic code is gener-
ated

It may be waived

5.6.5.4 Supplier�s sup-
port to customer�s ac-
ceptance

Only in the terms tailored.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

113

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.6.5.5 Evaluation of
acceptance testing

If the budget is low and the
criticality is low.

It may be waived.

5.7.2.1 Operational
plans and standards
development

If the operation of the soft-
ware is of low complexity.

The operational plan and
standards development may
be waived.

5.7.2.2 Problem handl-
ing procedures defini-
tion

If the operation of the soft-
ware is of low complexity.

5.7.2.3 Operational
testing definition

If the operation of the soft-
ware is of low complexity.

The operational testing may
be waived in favour of the ac-
ceptance testing.

5.7.3.1 Operational
testing execution

If the operation of the soft-
ware is of low complexity.

The operational testing may
be waived in favour of the ac-
ceptance testing.

5.7.3.2 Software oper-
ational requirements
demonstration

If the operation of the soft-
ware is of low complexity.

The software operational re-
quirements demonstration
may be waived in favour of
the acceptance testing.

5.7.4 Software oper-
ation

Mandatory

5.7.5.1 User�s assist-
ance

Tailored on a case by case
basis

5.7.5.2 Handling of
user�s requests

Tailored on a case by case
basis

5.7.5.3 Provisions of
work--around solutions

Tailored on a case by case
basis

5.8.2.1 Software main-
tenance process plan-
ning

If the software is not main-
tained

The maintenance process
planning may be waived.

5.8.2.2 Software main-
tenance process pro-
cedures, methods and
standards

If the software is not main-
tained.

This may be waived.

5.8.2.3 Problem report-
ing and handling

If the software is not main-
tained

This may be waived

5.8.2.4 Implementation
of configuration man-
agement process

If the software is not main-
tained

This may be waived

5.8.3.1 Problem analy-
sis

If the software is not main-
tained.

This may be waived.

5.8.3.2 Problem verifi-
cation

If the software is not main-
tained.

This may be waived

5.8.3.3 Development of
options for modifica-
tions

If the software is not main-
tained.

This may be waived

5.8.3.4 Documentation
of problem, analysis
and implementation

If the software is not main-
tained.

This may be waived

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

114

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.8.3.5 Customer ap-
proval of selected
modification options

If the software is not main-
tained.

This may be waived

5.8.4.1 Analysis and
documentation of prod-
uct modification

If the software is not main-
tained.

This may be waived.

5.8.4.2 Documentation
of software product
changes

If the software is not main-
tained.

This may be waived

5.8.4.3 Invoking of
software engineering
process for modifica-
tion implementation

If the software is not main-
tained.

This may be waived.

5.8.5.1 Definition of in-
flight modification ca-
pability for flight soft-
ware

Only for flight software.

5.8.5.2 Definition of
functional perform-
ance requirements for
inflight modification

Only for flight software.

5.8.6 Maintenance re-
view and acceptance

If the organisation is simple. The acceptance may be
waived.

5.8.7.1 Applicability of
this Standard to soft-
ware migration

If migration is not necessary. This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.2 Migration plan-
ning and execution

If migration is not necessary. This may be waived
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.3 Contribution to
the migration plan

If migration is not necessary. This may be waived
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.4 Preparation for
migration

If migration is not necessary. This may be waived
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.5 Notification of
transition to migrated
system

If migration is not necessary. This may be waived
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.6 Post--operation
review

If migration is not necessary. This may be waived
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.7 Maintenance
and accessibility of
data of former system

If migration is not necessary. This may be waived
Otherwise, it is mandatory in
a more or less formal way.

5.8.8.1 Retirement
planning

If the software is not retired
independently from the sys-
tem.

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

115

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.8.8.2 Notification to
the operator of retire-
ment plan

If the software is not retired
independently from the sys-
tem.

This may be waived.
Otherwise, it is mandatory in
a more or less formal way

5.8.8.3 Identification of
requirements for soft-
ware retirement

If the software is not retired
independently from the sys-
tem.

This may be waived.
Otherwise, it is mandatory in
a more or less formal way

5.8.8.4 Maintenance
and accessibility to
data of the retired
product

If the software is not retired
independently from the sys-
tem.

This may be waived.
Otherwise, it is mandatory in
a more or less formal way

5.9.2 Verification pro-
cess implementation

If the budget is low and the
criticality is low.

The verification may be
waived.

5.9.2.1 Determination
of the verification ef-
fort for the project

If the budget is low and the
criticality is low.

Only necessary if verification
is needed

5.9.2.2 Establishment
of the verification pro-
cess, methods and
tools

If the budget is low and the
criticality is low.

Only necessary if verification
is needed

5.9.2.3 Selection of the
organization respon-
sible for conducting
the verification

If the budget is low and the
criticality is low.

Only necessary if indepen-
dent verification is needed

5.9.2.4 Development
and documentation of
a verification plan
covering the software
verification activities

If the budget is low and the
criticality is low.

Only necessary if verification
is needed

5.9.3.1 Determination
of the validation effort
for the project

If the budget is low and the
criticality is low.

The validation plan can be
merged with the software de-
velopment plan

5.9.3.2 Establishment
of a validation process

If the budget is low and the
criticality is low.

The validation plan can be
merged with the software de-
velopment plan

5.9.3.3 Selection of a
validation organization

If the budget is low and the
criticality is low.

Only necessary if an indepen-
dent validation is needed.

5.9.3.4 Development
and documentation of
a validation plan

If the budget is low and the
criticality is low.

The validation plan can be
merged with the software de-
velopment plan

5.9.4.1 Verification of
software requirements

If the budget is low and the
criticality is low

This activity may be waived

5.9.4.2 Verification of
the software architec-
tural design

If the budget is low and the
criticality is low

This activity may be waived

5.9.4.3 Verification of
the software detailed
design

If the budget is low and the
criticality is low

This activity may be waived

5.9.4.4 Verification of
code

If the budget is low and the
criticality is low

This activity may be waived

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

116

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

5.9.4.5 Verification of
software integration

If the budget is low and the
criticality is low

This activity may be waived

5.9.4.6 Verification of
software documenta-
tion

If the budget is low and the
criticality is low

This activity may be waived

5.9.4.7 Evaluation of
test specifications

Traceability of the existing
requirements input (RB or
TS) to the validation tests is
mandatory

5.9.4.8 Verification of
software validation
with respect to the
technical specifications
and the requirements
baseline

If the budget is low and the
criticality is low

This activity may be waived

5.9.4.9 Problem and
nonconformance
handling

Mandatory in a more or less
formal way for the selected
verification activities

5.9.5.1 Development
and documentation of
a a software validation
testing specification

If the budget is low and the
criticality is low.

The validation may be limited
to a given coverage target,
e.g. by validating only the
nominal behaviour.

5.9.5.2 Conducting the
validation tests

If the budget is low. The validation report may re-
main non--documented.

5.9.5.3 Evaluation of
the design, code, tests,
test results, and soft-
ware user manual

If the budget is low and the
criticality is low

This activity may be waived

5.9.5.4 Updating the
software user manual

If the budget is low and the
criticality is low.

The verification may be
waived.

5.9.5.5 Problem and
nonconformance
handling

Mandatory, in a more or less
formal way.

5.9.5.6 Test readiness
review

If the budget is low and the
criticality is low.

The verification may be
waived.

5.9.6.1 Introduction As per review tailoring

5.9.6.2 Support to soft-
ware reviews

As per review tailoring

5.9.6.3 Technical re-
views

If the life cycle is of type con-
current engineering or with
short and numerous incre-
mental steps

The reviews will be defined
as a set of periodic meetings
whose last one only includes
the formal review success.
The authorisation to start the
next phase disappears.

6.2.2.1 System observ-
ability requirements
definition

If not flight software It may be waived

6.2.2.2 Software ob-
servability data defini-
tion

If not flight software It may be waived

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

117

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

6.2.2.3 Criteria to de-
fine observability re-
quirements

If not flight software it may be waived

6.2.3. System level in-
tegration of software:
system database

If not flight software It may be waived

6.2.4.1 Detailed design
review planning

If not flight software It may be waived

6.2.4.2 CDR plan for
flight software

If not flight software It may be waived

6.2.5.1 Definition of a
software logical model

If not flight software It may be waived

6.2.5.2 Definition of
behavioural view for
space reactive software

If not flight software It may be waived

6.2.5.3 Man--machine
interface (MMI) proto-
type for interactive
software

If not flight software for
manned space systems

It may be waived

6.2.6.1 Schedulability
analysis

If not flight software It may be waived

6.2.6.2 Technical
budgets management

If not flight software It may be waived

6.2.6.3 Software be-
haviour modelling and
verification techniques

If not flight software It may be waived

6.2.6.4 Design feasibil-
ity demonstration

If not flight software It may be waived

6.2.7.1 Software archi-
tectural design con-
tents

If not flight software It may be waived

6.2.7.2 Software design
method

If not flight software It may be waived

6.2.7.3 Selection of a
computational model

If not flight software It may be waived

6.2.7.4 Description of
software dynamic be-
haviour

If not flight software It may be waived

6.2.8.1 Production of
software items physi-
cal model

If not flight software It may be waived

6.2.8.2 Utilization of
methods for software
static design

If not flight software It may be waived

6.2.8.3 Description of
the dynamic aspects of
physical model

If not flight software It may be waived

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

118

Table C--1: (continued)
Subclause Tailoring possibilityTailoring condition

6.2.8.4 Utilization of
description techniques
for the software behav-
iour

If not flight software It may be waived

6.2.8.5 Determination
of design methods con-
sistency

If not flight software It may be waived

6.2.9.1 Schedulabilty
analysis refinement

If not flight software It may be waived

6.2.9.2 Technical
budgets management

If not flight software It may be waived

6.2.9.3 Behavioural
model verification

If not flight software It may be waived

6.2.10 Verification of
design: feasibility of
testing

If not flight software It may be waived

6.2.11.1 Schedulabilty
analysis refinement

If not flight software It may be waived

6.2.11.2 Technical
budget update

If not flight software It may be waived

6.2.12 Evaluation of
Validation: comple-
mentary system level
validation

If not flight software It may be waived

6.2.13 Maintenance:
long term maintenance

If not flight software It may be waived

6.3 Ground segment
software

6.4.2.1 Definition of
constraints for soft-
ware to be reused

When software is not built to
be reused

It may be waived

6.4.2.2 Definition of
methods and tools for
software to be reused

When software is not built to
be reused

It may be waived

6.4.2.3 Evaluation of
potential reuse of soft-
ware

If software is not intended to
be reused

It may be waived

6.4.3.1 Analysis of po-
tential reusabilty

If software is not intended to
be reused

It may be waived

6.4.3.2 Software ac-
quisition process im-
plementation

If no COTS or MOTS are not
a part of the software to be
produced

It may be waived

6.5.2 Establishment of
the need for a MMI
mock up

If not interactive space soft-
ware

It may be waived

6.5.3 MMI Standards
and guidelines defini-
tion

If not interactive space soft-
ware

It may be waived

6.5.4 MMI software
mock up development

If not interactive space soft-
ware

It may be waived

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

119

Table C--2 provides the same content than table C--1, but it is sorted per tailoring
condition

Table C--2:
Tailoring condition E--40 requirement Tailoring possibility

No condition 5.2.6.1 Phasing and manage-
ment

Depends on 5.7 tailoring.

5.2.6.2 System requirements
definition for software oper-
ations

Depends on 5.7 tailoring.

5.2.7 Software maintenance Depends on 5.8 tailoring.

5.3.2.1 Definition of software
life cycle phases

Mandatory.

5.3.2.2 Software life cycle
identification

Mandatory.

5.3.2.3 Identification of in-
puts and outputs associated
to each phase

Mandatory.

5.3.2.4 Identification of docu-
mentation relevant to each
milestone

Mandatory.

5.3.2.8 Preliminary design re-
view

Mandatory.

5.4.2.1 Establishment and
documentation of software re-
quirements

Mandatory.
Outputs are tailored as ap-
propriate for the project
needs.

5.4.3.2 Software design de-
scription

Mandatory.

5.4.3.3 Software design docu-
mentation

Mandatory.

5.4.3.8 Conducting a prelimi-
nary design review

Mandatory.

5.5.3.1 Development and
documentation of the soft-
ware units, test procedures
and test data

Mandatory.

5.5.4.3 Software user manual
updating

Mandatory if there is no vali-
dation. May be delayed to
5.9.5.3 otherwise.

5.6.2 validation with respect
to the requirement baseline

Mandatory. Either at QR or
AR.

5.6.3.1 Conducting a qualifi-
cation review

See 5.3.2.11

5.6.3.2 Conducting an accept-
ance review

See 5.3.2.12

5.6.4.2 Supplier�s provision of
training and support

Only if appropriate

5.6.4.3 installation planning Only when installation is re-
quired.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

120

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

5.6.4.4 installation activities
reporting

Only when installation is re-
quired.

5.6.5.1 Acceptance test plan-
ning

Mandatory.

5.6.5.2 Acceptance test execu-
tion

Mandatory.

5.6.5.4 Supplier�s support to
customer acceptance

Only in the terms tailored.

5.7.4 Software operation Mandatory.

5.7.5.1 User�s assistance Tailored on a case by case
basis.

5.7.5.2 Handling of user�s re-
quests

Tailored on a case by case
basis.

5.7.5.3 Provisions of work
around solutions

Tailored on a case by case
basis.

5.8.5.1 Definition of inflight
modification capability for
flight software

Only for flight software

5.8.5.2 Definition of func-
tional performance require-
ments for inflight modifica-
tion

Only for flight software

5.9.4.7 Evaluation of test
specifications

Traceability of the existing
requirements input (RB or
TS) to the validation tests is
mandatory

5.9.4.9 Problems and noncon-
formance handling

Mandatory in a more or less
formal way for the selected
verification activities

5.9.5.5 Problem and non--con-
formance handling

Mandatory, in a more or less
formal way.

5.9.6.1 Introduction As per review tailoring

5.9.6.2 Support to software
reviews

As per review tailoring

If both Verification and
Validation have been
waived

5.3.2.11 Qualification Review QR is meaningless. Other-
wise, QR is mandatory.

If both Verification and
Validation have been
waived for all the ver-
sions of the software

5.4.2.3 Identification of re-
quirement unique identifier

Requirement identification is
not useful and it may be
waived.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

121

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

If migration is not
necessary

5.8.7.1 Application of this
Standard to software migra-
tion

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.2 Migration planning
and execution

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.3 Contribution to the
migration plan

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.4 Preparation for migra-
tion

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.5 Notification of transi-
tion of migrated system

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.6 Post--operation review This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.7.7 Maintenance and ac-
cessibility of data of former
system

This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

If no automatic code is
generated

5.6.5.3 Executable code gen-
eration and installation

It may be waived

If the budget is low 5.5.2.3 Development and
documentation of the soft-
ware user manual

The update may be delayed
up to 5.5.4.3

5.5.3.3 software user manual
updating

The update may be delayed
up to 5.5.4.3

5.6.4.1 Preparation and up-
dating of the software prod-
uct

The delivery preparation may
be simplified.

If the budget is low
d th l it i

5.3.3.1 Interface definition They may be waived.
and the complexity is
low 5.3.3.2 Interface management

procedures
They may be waived.

If the budget is low
and the criticality is
l

5.4.2.4 Software require-
ments evaluation

It may be waived.
y

low 5.4.3.7 Evaluation of the soft-
ware architectural design and
the interface design

The verification may be
waived.

5.5.2.4 Definition and docu-
mentation of the software in-
terfaces detailed design

The plan may be waived.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

122

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

5.5.2.6 Evaluation of the de-
tailed design and test re-
quirements

The verification may be
waived.

5.5.3.2 Software unit testing The unit test reports may re-
main not documented.

5.5.3.5 Code and unit test re-
sults evaluation

The verification may be
waived.

5.5.4.2 Software units and
software components integra-
tion tests

The integration test reports
may remain not documented.

5.5.4.4 Software integration
activities results evaluation

The verification may be
waived.

5.5.5.2 Conducting a critical
design review

The CDR may be waived.

5.6.5.5 Evaluation of accept-
ance testing

It may be waived.

5.9.5.1 Development and
documentation of a software
validation testing specifica-
tion

The validation may be limited
to a given coverage target,
e.g. by validating only the
nominal behaviour.

5.9.5.4 Evaluation of the de-
sign,code,test test results and
software user manual

The verification may be
waived.

5.9.2 Verification process im-
plementation

The verification may be
waived.

5.9.2.1 Determination of the
verification effort for the pro-
ject

Only necessary if verification
is needed

5.9.2.2 Establishment of the
verification process, methods
and tools

Only necessary if verification
is needed

5.9.2.3 Selection of the organ-
ization responsible for con-
ducting the verification

Only necessary if verification
is needed

5.9.2.4 Development and
documentation of a verifica-
tion plan covering the soft-
ware verification activities

Only necessary if verification
is needed

5.9.3.1 Determination of the
validation effort for the pro-
ject

The validation plan can be
merged with the software de-
velopment plan

5.9.3.2 Establishment of a
validation process

The validation plan can be
merged with the software de-
velopment plan

5.9.3.3 Selection of a vali-
dation organization

Only necessary if an inde-
pendant validation is needed

5.9.3.4 Development and
documentation of a validation
plan

The validation plan can be
merged with the software de-
velopment plan

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

123

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

5.9.4.1 Verification of soft-
ware requirements

This activity may be waived

5.9.4.2 Verification of the soft-
ware architectural design

This activity may be waived

5.9.4.3 Verification of the soft-
ware detailed design

This activity may be waived

5.9.4.4 Verification of code This activity may be waived

5.9.4.5 Verification of soft-
ware integration

This activity may be waived

5.9.4.6 Verification of soft-
ware documentation

This activity may be waived

5.9.4.8 Verification of soft-
ware validation with respect
to the technical specifications
and the requirements base-
line

This activity may be waived

5.9.5.1 Developemnt and
documentation of a software
validation testing specifica-
tion

The validation may be limited
to a given coverage target,
e.g. by validationg only the
nominal behaviour

5.9.5.3 Evaluation of the de-
sign, code, tests, tests results,
and software user manual

This activity may be waived

5.9.5.4 Updating the software
user manual

This activity may be waived

5.9.5.6 Test readiness review This activity may be waived

If the complexity of the
interface is low

5.4.3.4 Development and
documentation of software in-
terface design

The software architectural
design interface and detailed
design may be merged.

5.4.3.6 Definition and docu-
mentation of the software in-
tegration requirements and
test plan

The plan may be delayed to
5.5.2.5.

5.5.2.2 Development and
documentation of the soft-
ware interfaces detailed de-
sign

The software architectural
design interface and detailed
design can be merged.

If the complexity of the
system is low

5.2.4.4 Requirements baseline
verification

The verification may be li-
mited to the supplier reading
and commenting.

5.4.2.2 Software logical model
definition

It may be waived.

If the customer and
the supplier are the

i ti l

5.2.4.5 System requirements
review

The SRR may be waived in
favour of the PDR.pp

same organizational
unit because the pro-
ject is small enough

5.3.2.6 Software requirement
baseline at SRR

The SRR may be waived in
favour of the PDR.

ject is small enough
5.3.2.12 Acceptance review The AR may be merged with

the QR.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

124

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

If the design is a tree,
but with a low com-
plexity

5.4.3.1 Transformation of
software requirements into a
software architecture

The software architectural
design and the detailed de-
sign may be merged.

5.5.2.1 Detailed design of
each software component

The software architectural
design and the detailed de-
sign can be merged.

If the life cycle is of
type concurrent engin-
eering or with short
and numerous incre-
mental steps

5.9.6.3 Technical reviews The reviews will be defined
as a set of periodic meetings
whose last one only includes
the formal review success.
The authorisation to start the
next phase disappears.

If the operation of the
software is of low com-
plexity

5.7.2.1 Operational plans and
standards development

The operational plan and
standards development may
be waived.

5.7.3.1 Operational testing
execution

The operational testing may
be waived in favour of the ac-
ceptance testing.

If the organization is
simple

5.8.6 Maintenance review ac-
ceptance

The acceptance may be
waived.

If the project is small 5.2.2.1 System requirement
specification

The software requirement ba-
seline may be merged with
the software specification
(software technical baseline).

5.5.5.1 Software validation
with respect to the technical
specification

It may be waived when
TS=RB.

If the project is small
enough and if the de-
sign is not complex

5.3.2.9 Critical design review The CDR may be waived.

If the software is a
prototype

5.3.2.10 Software verification
and validation process

The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

5.4.4 software verification
and validation planning

The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

125

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

If the software is a set
of relatively indepen-
dent services

5.4.3.1 Transformation of
software requirements into a
software architectural design

The requirement and the
software architectural design
may be merged.

5.4.3.4 Development and
documentation of the soft-
ware interfaces

The requirement and the
software architectural inter-
face design can be merged.

5.4.3.5 Development and
documentation of software
user manual

The software architectural
design interface and the soft-
ware user manual may be
merged.

5.5.2.5 Updating of the soft-
ware integration test require-
ments and plan

The plan may be waived.

5.5.3.4 Updating of the soft-
ware integration test require-
ments and plan

The plan may be waived.

If the software is a set
of relatively indepen-
d t i th

5.5.4.1 Software integration
test plan development

The integration may be sim-
plified or waived.y p

dent services or there
is little or no interface

5.4.3.6 Definition and docu-
mentation of the software in-
tegration requirements and
test plan

The plan may be waived.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

126

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

If the software is not
maintained

5.8.2.1 Software maintenance
process planning

This may be waived

5.8.2.2 Software maintenance
process procedures, methods
and standards

This may be waived

5.8.2.3 Problem reporting and
handling

This may be waived

5.8.2.4 Implementation of
configuration management
process

This may be waived

5.3.2.5 Identification of inter-
faces between the develop-
ment and maintenance pro-
cesses

It does not exist.

5.8.3.1 Problem analysis The analysis may be waived.
Otherwise it is mandatory, in
a more or less formal way.

5.8.3.2 Problem verification This may be waived

5.8.3.3 Developemnt of op-
tions for modifications

This may be waived

5.8.3.4 Documentation of
problem, analysis and imple-
mentation

This may be waived

5.8.3.5 Customer approval of
selected modification options

This may be waived

5.8.4.1 Analysis and docu-
mentation of product modifi-
cation

This may be waived

5.8.4.2 Documentation of soft-
ware product changes

This may be waived

5.8.4.3 Invoking of software
engineering process for
modification implementation

This may be waived

If the software is not
retired independently
from the system

5.8.8.1 Retirement planning This may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.8.2 Notification to the op-
erator of a retirement plan

This may be waived
Otherwise, it is mandatory in
a more or less formal way

5.8.8.3 Identification of re-
quirements for software re-
tirement

This may be waived Other-
wise, it is mandatory in a
more or less formal way

5.8.8.4 Maintenance and ac-
cessibility to data of the re-
tired product

This may be waived Other-
wise, it is mandatory in a
more or less formal way

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

127

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

If the software is small
enough and with a
straightforward archi-
tecture (e.g. a set of
services)

5.3.2.7 Software technical
specification phase

The specification and the soft-
ware architectural design
may be merged.

If the stubs needed to
unit test a component
are equivalent to the
real components

5.5.3.2 Software unit testing The unit test of this compo-
nent may be replaced by the
integration test of this compo-
nent and its related compo-
nents.

If the system interface
has no possibility to
evolve

5.3.3.1 Interface definition They may be waived.

If the system interface
has no possibility to
evolve

5.3.3.2 Interface management
procedures

They may be waived.

If the system is not
critical

5.2.2.2 System and functional
criticality analysis

It does not exist.

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

128

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

If the system is pure
ft

5.3.3.1 Interface definition They do not exist.
software 5.3.3.2 Interface management

procedures
They do not exist.

5.2.2.1 System requirement
specification

The system requirement
specification is reduced to
user or customer require-
ments (the software require-
ment baseline).

5.2.3.1 Introduction It does not exist.

5.2.3.2 System partitioning It does not exist.

5.2.4.2 Qualification engin-
eering requirements

It does not exist.

5.2.4.3 Software validation
requirements at system level

It does not exist.

5.2.5.1 Identification of soft-
ware observability require-
ments

It does not exist.

5.2.5.2 Control and data in-
terfaces for system level in-
tegration

It does not exist.

5.2.5.3 Data medium require-
ments for integration

It does not exist.

5.2.5.4 Identification of devel-
opment constraints

It does not exist.

5.2.5.5 Identification of cus-
tomer�s inputs for software
integration into the system

It is limited to the worksta-
tion running the software.

5.2.5.6 Identification of
supplier�s output for software
integration into the system

It does not exist.

5.2.5.7 Planning of supplier
support to system integra-
tions

It does not exist.

If the technical budget
is unlimited (memory
size, computer
th h t

5.3.4.1 Software technical
budget and margin philos-
ophy definition

It may be waived.

throughput, response
time) 5.3.4.2 Software technical

budget management
It may be waived.

If the V&V environ-
ment is the same as
the operational envi-
ronment

5.3.2.12 Acceptance Review The AR may be merged with
the QR.

Tailored according to
5.9. If the criticality is
low and the budget is
low

5.3.2.10 Software verification
and validation processes

The verification may be selec-
tive or waived.

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

129

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

Tailored as per 5.3.2.10
V&V tailoring. If the
budget is low and the
criticality is low

5.4.4 software verification
and validation

The verification plan may be
waived.

If not flight software 6.2.2.1 System observability
requirements definition

It may be waived

6.2.2.2 Software observability
data definition

It may be waived

6.2.2.3 Criteria to define ob-
servability requirements

It may be waived

6.2.3 System level integration
of software: system data base

It may be waived

6.2.4.1 Detailed design review
planning

It may be waived

6.2.4.2 CDR plan for flight
software

It may be waived

6.2.5.1 Definition of a soft-
ware logical model

It may be waived

6.2.5.2 Definition of beha-
vioural view for space reac-
tive software

It may be waived

6.2.6.1 Schedulability analy-
sis

It may be waived

6.2.6.2 Technical budgets
management

It may be waived

6.2.6.3 Software behaviour
modelling and verification
techniques

It may be waived

6.2.6.4 Design feasibility
demonstration

It may be waived

6.2.7.1 Software architectural
design contents

It may be waived

6.2.7.2 Software design
method

It may be waived

6.2.7.3 Selection of a com-
putational model

It may be waived

6.2.7.4 Description of soft-
ware dynamic behaviour

It may be waived

6.2.8.1 Production of software
items physical model

It may be waived

6.2.8.2 Utilization of methods
for software static design

It may be waived

6.2.8.3 Description of the dy-
namic aspects of physical
model

It may be waived

6.2.8.4 Utilization of descrip-
tion techniques for the soft-
ware behaviour

It may be waived

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

130

Table C--2: (continued)
Tailoring condition Tailoring possibilityE--40 requirement

6.2.8.5 Determination of de-
sign methods consistency

It may be waived

6.2.9.1 Schedulability analy-
sis refinement

It may be waived

6.2.9.2 Technical budgets
management

It may be waived

6.2.9.3 Behavioural model
verification

It may be waived

6.2.10.1 Evaluation of testing
feasibility

It may be waived

6.2.11.1 Schedulabilty analy-
sis refinement

It may be waived

6.2.11.2 Technical budget up-
date

It may be waived

6.2.12 Evaluation of vali-
dation: complementary sys-
tem level validation

It may be waived

6.2.13 Maintenance: long
term maintenance

It may be waived

If not flight software
for manned space sys-
tems

6.2.5.3 Man--machine inter-
face (MMI) prototype for in-
teractive software

It may be waived

6.3 Ground segment software

When software is not
built to be reused

6.4.2.1 Definition of con-
straints for software to be re-
used

It may be waived

6.4.2.2 Definition of methods
and tools for software to be
reused

It may be waived

If software is not in-
tended to be reused

6.4.2.3 Evaluation of poten-
tial reuse of software

It may be waived

6.4.3.1 Analysis of potential
reusabilty

It may be waived

If no COTS or MOTS
are not a part of the
software to be pro-
duced

6.4.3.2 Software acquisition
process implementation

It may be waived

If not interactive space
software

6.5.2 Establishment of the
need for a MMI mock-up

It may be waived

6.5.3 MMI standards and
guidelines definition

It may be waived

6.5.4 MMI software mock-up
development

It may be waived

Downloaded from http://www.everyspec.com

ECSS 15 February 2002

ECSS--E--40B Draft 1

131

(This page is intentionally left blank)

Downloaded from http://www.everyspec.com

ECSS15 February 2002
ECSS--E--40B Draft 1

132

Bibliography

ECSS--E--00 Space engineering -- Policy and principles

ECSS--E--10--01 Space engineering � Standard practice for interface man-
agement

ECSS--E--70 Space engineering -- Grounds systems and operations

ECSS--M--00--02 Space project management -- Tailoring of space standards

ECSS--M--00--03 Space project management � Risk management

ECSS--M--50 Space project management -- Information/documentation
management

ECSS--M--60 Space project management -- Cost and schedule manage-
ment

ECSS--M--70 Space project management -- Integrated logistic support

ECSS--E--40--01 1) Space engineering � Space segment software

ECSS--E--40--03 1) Space engineering � Ground segment software

ECSS--E--40--04 1) Space engineering � Software life cycles

ECSS--Q--30 Space product assurance -- Dependability

ECSS--Q--40 Space product assurance -- Safety

ISO/IEC 12207:1995 Information technology � Software life cycle processes

ISO/IEC 2382 Information technology � Vocabulary

ISO 9000:2000 Quality Management Systems -- Fundamentals and vo-
cabulary

ISO 9126:1992 Information technology--Software porduct evaluation--
Quality characteristics and guidelines for their use

IEEE 610.12--1990 IEEE Standard Glossary of software engineering termi-
nology

IEEE 1062--1993 IEEE Standard Recommended practices for software ac-
quisition

1) To be published.

Downloaded from http://www.everyspec.com

