DOD-STD-2003-1 (NAVY)
24 June 1987
SUPERSEDING
NAVSEA S9300-AW-EDG-010/EPISM
(INCLUDING NAVSEA DWG. NO. 803-5001027) AND NAVSEC NO. 9000-56202-73980

MILITARY STANDARD

ELECTRIC PLANT INSTALLATION STANDARD METHODS FOR SURFACE SHIPS AND SUBMARINES (CABLE)

SECTION 1 OF 5 SECTIONS

DOD-STD-2003-1 (NAVY)
24 June 1987

SECTION 1

CABLES

> DEPARTMENT OF THE NAVY
> NAVAL SEA SYSTEMS COMMAND
> Washington, DC $20362-5101$

Electric Plant Installation Standard Methods for Surface Ships and Submarines

1. This Military Standard is approved for use by the Naval Sea Systems Command, Department of the Navy, and is available for use by all Departments and Agencies of the Department of Defense.
2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Naval Sea Systems Command, SEA 55Z3, Department of the Navy, Washington, DC 20362-5101 by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

DOD-STD-2003-1 (NAVY)
24 June 1987

FOREWORD

1. The criteria contained herein for the installation of the electrical plant on ships of the United States Navy supersede the data contained in Sections 1 through 5 of NAVSHIPS Drawing 9000-S6202-73980, NAVSEA Drawing No. 803-5001027 and NAVSEA PUBLICATION S9300-AW-EDG-010/EPISM.
2. This standard disseminates up-to-date information detailing Requirements for Standard Installation Methods Employed for Submarine and Surface Ship Electrical Distribution Systems.
3. These criteria apply to work on a:specific ship or ships only when invoked by the Ship Specifications or similar contractual documents.
4. Although these criteria are primarily for application to new construction, their use may be considered in the conversion or alteration of existing ships. In such cases the degree of applicability of these criteria will be specified by the activity preparing the instructions for the work.
5. Considering the magnitude of this standard, along with the changing requirements imposed on the Electric Plant, it is inevitable that changes will be required to up-date these criteria.. Therefore, as comments arise they should be forwarded to Naval Sea Systems Command (NAVSEA) 5573 to keep this standard as current as possible through subsequent revisions. Revisions will be accomplished by the issuance of additional or revised figures to be inserted in the basic standard sections. Document Improvement Proposal Form DD 1426 attached. Superseded pages may be retained for reference if so desired.
6. This standard is available in a $8-1 / 2 \times 11$ hard copy, in microfilm aperture cards, or in microfiche. It is available in $8-1 / 2 \times 11$ hard copy from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. Microfilm aperture card or microfiche are available from Commanding officer, Portsmouth Naval Shipyard, Code 202.2, Portsmouth, NH 03801. All revisions on microfilm aperture cards, or on microfiche are automatically distributed to a previously approved distribution list. (Tel: (207) 439-1000, Ext. 1718, Autovon 684-1718). Activities having a requirement to be placed on the distribution or for additional copies should forward these requests to Commander, Naval Sea Systems Command, SEA 55Z3, Department of the Navy, Washington, DC 20362-5101. Aperture cards have been distributed to those activities presently on the distribution for NAVSEA Standard and Type Drawing microfilm aperture card sets. Microfiche has been distributed to all active ships.

DOD-STD-2003-1 (NAVY)
24 June 1987

CONTENTS

Page

Paragraph 1. SCOPE 1
1.1 Purpose 1
1.1.1 Application 1
1.1.2 New cable specifications 1
2. REFERENCED DOCUMENTS 1
2.1 Government documents 1
2.1.1 Specifications and standards 1
2.1.2 Other Government documents and drawings 2
2.2 Order of precedence 2
3. DEFINITIONS 3
3.1 Cable repair 3
3.2 Flooding water level II (FWL-II) 3
4. GENERAL REQUIREMENTS 3
4.1 Cable 3
4.1.1 Cable slack 3
4.1.2 Supporting cables entering enclosures 3
4.1.3 Cable bends 3
4.1.4 Box connectors, electrical 3
4.1.5 Cable connection 3
4.1.6 Cable end-sealing 4
4.1.6.1 Cable end-sealing exceptions 4
4.1.7 Cable lug terminals 5
4.1.7.1 Application 5
4.1.8 Cable entrance to machinery and equipment 5
4.1.9 Cable entrance to switchboards 5
4.1.10 Cable connection to machinery 6
4.1.10.1 Cables connected to equipment provided with resilient mounts 6
4.1.11 Cable splicing 6
4.1.12 Cable jacket repair 6
5. DETAILED REQUIREMENTS 7
See figures
6. NOTES 7
6.1 Intended use 7
6.2 Designation of electric plant installation standard methods figures 7
6.3 Subject term (key word) listing 7

DOD-STD-2003-1 (NAVY)
24 June 1987

CONTENTS - Continued

Group A - Cable Prep/End Sealing

Page
Figure lal Cable end preparation for open equipment 8
1 A2 Cable end preparation for open equipment 9
1A3 Cable end preparation for enclosed equipment 10
1 A4 Cable end preparation for non-watertight equipment 11
1A5 Attachment of solderless lugs to cables 12
la6 Cable end sealing with heat shrinkable cable crotch boots 13
lA7 Cable end sealing with heat shrinkable tubing 14
1 A8 Cable end sealing with heat shrinkable tubing 15
lA9 Cable conductor end sealing 16
lAl0 Cable end sealing with heat shrinkable tuibing and end caps 17
1 All Cable end sealing when exposed to weather 18
1 Al2 Cable end sealing when exposed to weather 19
1 Al3 Cable end sealing when exposed to weather 20
lal4 Cable end sealing disconnected and stored cable 21
1 A15 End sealing of type "MDY" cables entering connection boxes 22
1 Al6 Cable end sealing of mineral insulated cables 23
1 A17 Cable end sealing of mineral insulated cables 24
lAl8 Cable end sealing using stuffing tubes 25
1A19. Cable end sealing for inboard pressure proof installations on submarines 26
1 A20 Cable end sealing for inboard pressure proof installations on submarines 27
1 A21 End sealing cables in coils or reels in covered stowage not subject to entrance of water 28
1A22 Grounding of shields of multiple conductor cables 29
1 A23 Grounding of shields of multiple conductor cables 30
1A24 End preparation of position indicator type cables 31
Group B - Cable Entry To Equipment
1 B1 Cable entrance to switchboards 32
'1B2 Cable entrance to transformers 33
1B3 Cable entrance to non-watertight equipment 34
1 B4 Cable entrance to watertight enclosures 35
1B5 Strapping and supporting wire bundles in electrical equipment 36
1B6. Lacing and wrapping wire bundles in electrical and electronics equipment 37.
1B7 Stuffing tubes installed on equipment exposed to high temperature 38
1B8 Installation of cables on sound isolated motors 39
1B9 Inboard stuffing tubes for submarines 40

DOD-STD-2003-1 (NAVY)
24 June 1987

CONTENTS - Continued

Group B - Cable Entry To Equipment (Continued)
Page
Figure 1 Blo Cable termination for motor connection boxes 41
1 Bll Insulating bus terminals and bus bars on submarines 42
1 B12 Installation of thermocouple cable entering equipment 43
1 B13 Heatshrink cable entry seal applicable to watertight and non-watertight enclosures 44
Group C - Cable Entry To Connectors
1 C1 CANCELED (Replaced by Section 5) 45
1 C2 CANCELED (Replaced by Section 5) 46
1 C3 Protection of connectors topside 47
Group D - Cable Repair
1D1 Repair of damaged cables, insulation and armor 48
1D2 Repair of jet aircraft and starting cables 49
1 D3 Repair of jet aircraft servicing and starting cables 50
1D4 Repair of jet aircraft servicing and starting cable 51
lD5 Repair of cables - power, control, telephone and electronic 52
$1 D 6$ Cable jacket repair sleeve, installation 53
1D7 Cable jacket repair sleeve, installation 54
Group E - Cable Splicing
1E1 Splicing cables - power, control, telephone and electronic .. 55
IE2 Splicing cables - power, control, telephone and electronic 56
1 E3 Splicing cables - power, control, telephone and electronic .. 57
1E4 1E5
Splicing cables - power, control, telephone and electronic .. 59
Splicing cables - power, control, telephone and electronic .. 59
1E6
1 E7 61plicing cables - power, control, telephone and electronic60
1 E8 Splicing cables - power, control, telephone and electronic 62
1 E9 Splicing cables - power, control, telephone and electronic 63
1 E10 Splicing cables - power, control, telephone and electronic 64
1 Ell Splicing cables - power, control, telephone and electronic 65
1 E12 Cable splicing - power, control, telephone and electronic 66
1 E13 Cable splicing - power, control, telephone and electronic 67
1 E14 Cable splicing - power, control, telephone and electronic 68
1 E15 Splicing high temperature cables 69
1 E16 Splicing high temperature cables 70
1 E17 Splicing cables - power, control, telephone and electronic 71
1 E18 Splicing cables - power, control, telephone and electronic 72
1 E19 Splicing cable - power, control, telephone and electronic with heat shrink tubing 73
1 E20 Splicing cable - power, control, telephone and electronic with heat shrink tubing 74

DOD-STD-2003-1 (NAVY)
24 June 1987

1. SCOPE
1.1 Purpose. The purpose of section 1 of DOD-STD-2003 is to disseminate up-to-date information for cable preparation and end-sealing, entry to equipment and connectors, repair and splicing.
1.1.1 Application. These installation standards shall be used by all installing activities. These standards do not identify ship or type, but do establish minimum standards of acceptance for NAVSEA ships. . It is the responsibility of the user activity to determine which standard satisfies their requirements. It does not authorize relaxation of any requirement specifically invoked by new construction, conversion, overhaul, or refurbishment contracts. In instances where deviated design requirements (for example, ship type, ship class, and so forth) conflict with the requirements of this standard, the requirements of this standard shall govern. Any deviation for electric plant installation identified in this standard shall be submitted to NAVSEA 5622 for resolution.
1.1.2 New cable specifications. Refer to the cable comparison handbook for guidance in substituting MIL-C-24643 cable for equivalent MIL-C-915 cable applications. All cable type designations specified herein to be in accordance with MIL-C-24643 shall be preceded by the prefix "LS". The following cable types shall be retained as MIL-C-915 for use as outboard or portable applications and have no MIL-C-24643 equivalent:

DLT	TRF	\therefore	MSPW	3PR-16
DSWS	TRXF	MSP	1Q-16	
DSS	TSP	5SS		1TR-16
TSS	TSPA	TPMU	7SPR-16S	
FSS	1SWF	IPR-AZOE	1SPR-16	
7SS	2SWF	1PR-16		
JAS	MWF	7PR-16		
MCSF	S2S	2SPR-16		

Cable ratings and minimum bend radii for cables in accordance with MIL-C-24643, MIL-C-24640 and MIL-C-915 shall comply with cable comparison handbook.
2. REFERENCED DOCUMENTS
2.1 Government documents.
2.1.1 Specifications and standards. Unless otherwise specified, the following specifications and standards of the issue listed in that issue of the Department of Defense Index of Specifications and Standards (DoDISS) specified in the solicitation form a part of this standard to the extent specified herein.

DOD-STD-2003-1 (NAVY)
24 June 1987

SPECIFICATIONS
FEDERAL
W-F-406 - Fittings For Cable, Power, Electrical and Conduit, Metal, Flexible.

MILITARY
MIL-T-3064 - Insulation, Electrical, P1astic Sealer.
MLL-T-7928 - Terminal, Lug Splices, Conductor, Crimp Style, Copper, General Specification for.
MIL-T-15659 - Terminal, Lug: Solder, Copper and Phosphor Bronze.
MIL-S-16036 - Switchgear, Power, Naval Shipboard.
MIL-T-16366 - Terminal, Electrical Lug and Conductor Splices, Crimp Style.

STANDARDS

FEDERAL
FED-STD-157 - Fittings for Electrical Cable and Flexible Metal Conduit.

MILITARY
MIL-STD-1310 - Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility and Safety.
2.1.2 Other Government documents and drawings. The following other Government documents and drawings form a part of this standard to the extent specified herein.

DRAWINGS

NAVSHIPS

815-1197060 - Cable Assembly, Set Aircraft Serve, Start. 803-5001027 - Cable End Preparation for Open Equipment.

DOCUMENTS
DESIGN DATA SHEET
DDS 304-2 - Electric Cable Ratings and Characteristics.
(Copies of specifications, standards, drawings and publications required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)
2.2 Order of precedence. In the event of a conflict between the text of this standard and the references cited herein, the text of this standard shall take precedence.

DOD-STD-2003-1 (NAVY)
24 June 1987

3. DEFINITIONS

3.1 Cable repair. Cable repair refers to restoration of only the cable armor or the outermost cable sheath or both.
3.2 Flooding water level II (FWL-II). FWL-II is the highest water level that can be expected above the bulkhead deck at any particular intact watertight subdivision after any flooding elsewhere in the ship which the ship is expected to be capable of surviving.
4. GENERAL REQUIREMENTS

4.1 Cable.

4.1.1 Cable slack. Where cables enter electrical equipment, minimum of 2 inches of slack cable shall be provided in the cableway, permitting repairs to be made at the cable ends, avoiding cable replacement. Cable conductors shall also have 2 inches of slack inside the enclosure.
4.1.2 Supporting cables entering enclosures. Cables entering enclosures shall be secured to bulkheads and shall not exceed the cable bend radius.
4.1.3 Cable bends. Bends at electrical equipment entrances shall be made through angle stuffing tubes. Straight stuffing tubes may be used in place of angle stuffing tubes if the bend in the cable is not less than the minimum radius specified in DDS 304-2 or eight times cable outside diameter (od) unarmored, 12 times shielded cable od.
4.1.4 Box connectors, electrical. Junction box or outlet connectors shall be in accordance with FED-STD-157 and W-F-406 type, class and style listed.
(a) Straight connector for single round cable type I, class 1 , style A.
(b) Straight connector for duplex round cable type I, class 1 , style B.
(c) 45-degree angle connector for single round cable type I, class 1 , style C.
(d) 90-degree angle connector for single round cable type 1 , class 1 , style D.
4.1.5 Cable connection. Changes in conductor size other than at switchboards or panels shall be made by use of specified electrical enclosures, terminal boxes or other equipment indicated herein or on standard drawings. At the point of connection; the separation of conductors and the removal of sheathing shall be in accordance with specifications and kept to a minimum. On parallel cable runs, the length of sheath removed from each cable shall be equal.

DOD-STD-2003-1 (NAVY)
24 June 1987
4.1.6 Cable end-sealing. Cables terminating at the following equipment, located below FWL-II, shall be end-sealed. If FWL-II is unknown, consider the FLW to be the main deck.
(a) Power and lighting switchboards (includes ship service, emergency and load center switchboards).
(b) Manual and automatic bus transfer equipment (whether mounted on a switchboard or panel or as an independent unit).
(c) Distribution power and lighting panels supplies from two sources of power (normal, alternate and emergency).
(d) Automatic degaussing control panels.
(e) Degaussing switchboards and power supplies except where they supply power to only one degaussing coil.
(f) Watertight interior communication and weapons control equipment, including switchboards and connection boxes, where water seepage into the unit would jeopardize undamaged operable portions of the system.
(g) Top entrance cable to interior communication and weapons control switchboards of other than watertight construction.
(h) In minesweepers only, degaussing.
(i) Degaussing connection and through boxes having connections for more than one degaussing coil.
4.1.6.1 Cable end-sealing exceptions. Cables terminating at equipment designated need not be end-sealed where one or more of the following conditions apply:
(a) Flexible cables to rotating structures.
(b) Cables which do not pass through a watertight deck or bulkhead.
(c) Cables which penetrate FWL-II but do not pass through a watertight deck or bulkhead below FWL-II.
(d) Where end-sealing would prevent bringing the armor or shields of a cable into the enclosure, as required for shielding or grounding.
(e) Where water seepage into a unit of an interior communication or weapons control system through a damaged cable would result in no loss of function beyond that already sustained due to cable casualty.
(f) In interior communication systems and weapons control systems, cable types TTSU and MSCU, and all electronic, communication and instrumentation two, three, and four-conductor cable of size 9 and smaller.
(g) Where space is not available inside interior communication and weapons control units, the other end of the cable involved shall be end-sealed regardless of its location.
(h) Degaussing cables where connection boxes or through boxes will be completely filled with a sealing compound because of their location in a compartment subject to flooding or extreme moisture conditions.
4.1.7 Cable lug terminals. Cable lug terminals shall be installed on each connected conductor. Lug terminals shall conform to MLL-T-16366 (solderless type), MIL-T-7928 (insulated barrel solderless type), or MIL-T-15659 (solder type).
4.1.7.1 Application. Solderless type lug terminals including water seal lugs when cable end-sealing is required shall be used for ali applications except for equipment having requirements for solder type terminals or in specified electrical enclosures in which electrical clearances would be reduced below minimum standards by the use of solderless types. The ends of propulsion system cables 9,000 circular mils and larger shall be sealed with solderless waterseal type lug terminals.
4.1.8 Cable entrance to machinery and equipment. Cable entry into bulkheadmounted non-watertight equipment shall be through the bottom or lower half of the side. Cables shall enter watertight equipment in locations best suited to disposition of the cable installation. Sufficient slack shall be allowed for cable connection to machinery to prevent damage to cables, due to vibration, at locations where the cables pass from the structure of the ship to the machinery. Cables connected to equipment provided with resilient mounts shall have a minimum length between the equipment and the last point of support of the cable of 18 inches with at least 3 inches of slack to provide for flexibility and movement of the equipment under shock. Entry of cables into enclosures shall conform to the following:
(a) Splashproof, spraytight, watertight submersible, and explosionproof enclosures. Through stuffing tubes. These stuffing tubes shall be of plastic types in place of metal types except when used with explosionproof and submersible (over 50-foot depth) enclosures, or when the cable shielding requirements of MIL-STD-1310 apply.
(b) All other types of enclosures. By specified cable clamp (see 4.1.4). Cable clamp shall be sealed with MIL-I-3064, type HF, insulation, electrical, plastic-sealer to prevent entry of water dripping from above.
(c) Cable entry into permanentiy mounted or portable enclosures of molded plastic materials shall be by insulating type clamp or nylon stuffing tubes. Metallic type clamps shall not be used.
(d) Cables entering propulsion system equipment from above or from the sides shall enter through stuffing tubes and shall be braced and secured to prevent dislodgement under vibration and shock stresses.
4.1.9 Cable entrance to switchboards. Switchboards designed in accordance with MIL-S-16036 provide for bringing cables in from either top or bottom or both as specified. The cable sheath shall be maintained intact, and the cable armor, jacket and shield shall be stripped to individual conductors to form a loop at each end of the wiring trunk, to provide adequate flexibility and to meet the requirements for bending radius. Where the cable runs are very short and the use of two or three-conductor cables is not practicable, single conductor cable may be used. A dripproof (approximately no. 16 gauge) sheet steel enclosure shall be provided that will permit community entrance of the cables into the section enclosure without the use of stuffing tubes. Weight of cable supported by the

DOD-STD-2003-1 (NAVY)
24 June 1987
top of the switchboard structure shall be kept to a minimum. If the entire wiring trunk is enclosed, louvers shall be provided for ventilation, and provision shall be made so that movement of the switchboard sections in any direction is not restricted by cables or the wiring truck (see figure 1Bl). Connections of ship cables to switchboards shall be made so that when any switchboard section is caused to move with respect to the ship structure, the inherent flexibility of the connecting cables will permit movement of the section in any direction without subjecting lug connections to stress. Cable connections shall be so made that insulation distances within the switchboard are not reduced below the values required by MIL-S-16036. Where armored cable is used, the armor shall be removed from that portion of all cables which is within the switchboard structure.
4.1.10 Cable connection to machinery. Sufficient slack shall be allowed to prevent damage to cables, due to vibration, at locations where the cables pass from the structure of the ship to the machinery and equipment.
4.1.10.1 Cables connected to equipment provided with resilient mounts. These cables shall have a minimum length between the equipment and the last point of support of the cable of 18 inches with at least 3 inches of slack to provide for flexibility and movement of the equipment under shock.
4.1.11 Cable splicing. The following cables shall not be spliced:
(a) Antenna system cables (both inboard and outboard).
(b) Cables for repeated flexing service.
(c) Portable cables (shore power cables may be spliced).
(d) Cables in voids.
(e) Cables in normally inaccessible spaces.
(f) Cables in hazardous spaces (spaces requiring explosionproof enclosures).
(g) MDU cable exposed to the weather.
(h) Direct current (dc) bus tie cable on nuclear submarines.
(i) Reactor plant system cables.
(j) Non-nuclear cables in the reactor compartment.
4.1.12 Cable jacket repair. All Navy cable may be repaired except the following:
(a) Cables for repeated flexing service.
(b) Portable cable (shore power cables may be repaired).
(c) Dc bus tie cable on nuclear submarines.
(d) Reactor plant system cable.

Cable repair is defined as the restoration of only the cable armor or the outermost cable sheath or both. Radio frequency coaxial cables that suffer damage to the cable jacket or shield during installation shall be replaced or repaired. Where damage to coaxial cable jackets and shields is more cost effective to repair, repairs shall be in accordance with the methods specified in the EIMB series, NAVSEA 0967-LP-000-0100. Cables that are in good mechanical and electrical condition may be spliced.

DOD-STD-2003-1 (NAVY)
24 June 1987

5. DETAILED REQUIREMENTS

SEE FIGURES
6. NOTES
6.1 Intended use. This section specifies the requirements for cable preparation and end sealing, cable entry to equipment, cable entry to connectors, cable repair and cable splicing methods to be employed both on surface ships and submarines. Standard methods identified for electric plant installation are intended for new construction only.
6.2 Designation of electric plant installation standard methods figures. The electric plant installation standard method (DOD-STD-2003-1) contains figures that depict Standard Methods that are applicable for general electric plant instailation on both surface ships and submarines. Standard Methods shown on the individual sheets of Drawing 803-5001027 have been assigned a corresponding figure number in this standard. The methods shown on the figures are grouped together providing similar functions. These groups are:

$$
\begin{aligned}
& \text { DOD-STD-2003-1 (Cables) Group A. Cable Preparation and End-Sealing } \\
& \begin{array}{l}
\text { B. Cable Entry to Equipment }
\end{array} \\
& \\
& \text { C. Cable Entry to Connectors }
\end{aligned}
$$

The methods shown on the figures are identified by the following alpha-numeric designation system:

METHOD 1A142

Thus, method 1 Al42 identifies method 2 , sequential number 14 in group A of DOD-STD-2003-1.

```
6.3 Subject term (key word) 1isting.
    Cable end-sealing
    Cable entry to equipment
    Cable entry to connectors
    Cable preparation
    Cable repair
    Cable splicing
```

DOD-STD-2003-1 (NAVY)
24 JUNE 1987
NOTES:

SH 132316944
FIGURE 1A1. Cable end preparation for open equlpment.
\square
DOD-STD-2003-1(NAVY)
24 JUNE 1987

SH 132316945
FIGURE 1A2̄. Cable end preparation for open equipment.

IA33
ENCLOSED EQUIPMEN
CROTCH ONCLOSED EQUIPMENT - WT OR SBM

FIGURE 1A3. Cable end preparationfor enclosed equipment.

1A52
ATTACHMENT OF LUGS"
TO SINGLE COHDUCTOR CABLE

FIGURE 1A5. Attachment of solderless lugs to cables.
SH 132316948
PREPARATION OF CONDUCTOR END

- Cur To approxmate Avelin

ATTACHMENT OF LUGS* TO MULTIPLE CONDUCTOR CABLE

DOD-STD-2003-1(NAVY)
24 JUNE 1987

FIGURE 1A7. Cable end sealing with heat shrinkable tubing.
DOD-STD-2003-1(NAVY) 24 JUNE 1987

IABI
ATTACHMENT OF THIMBLES TO
SINGLE \& $\& 2,3$ \& 4 CONDUCTOR CABLES.
PREPARATION OF CONDUCTOR
SH 132316951

DOD-STD-2003-1(NAVY)
24 JUNE 1987

1A91

$$
\begin{gathered}
\text { 1A95 } \\
\text { ATTACHMENT OF WATER-SEAL SOLDERLESS } \\
\text { LUG TO SINGLE CONDUCTOR CABLE } \\
\text { PREPARATION OF CABLE END }
\end{gathered}
$$

FIGURE 1A9. Cable conductor end sealing.

SVNTHE RIC RESIN TUBING, SPEC MLI-1-631 TYPE GRADE a. FORMU ISEE NOTE

1A94

ACHMENT OF WATER-SEAL THIMBLES
TO SINGLE CONDUCTOR CABLES PREPARATION OF CABLE ENDS
IMPERVIOUS SHEATHIMPERVIOUS SHEATH7
SEE NOTE 3)
CONDUCTOR

WATER-SEAL THIMBLE ATTACHED TO CABLE

SEIZE FRAYING END OF ARMOA
NOTE 4)
MPERVIOUS SHEATH SHALL BE
INSERTED INTO THIMBIE THE
FULL LENGTH OF THE SOCKET
SKIRT
SH 132316952

24 JUNE 1087 -2003-1(NAVY)

[^0]

FIGURE 1A11. Cable end sealing when exposed to weather.

DOD-STD-2003-1(NAVY)
24 JUNE 1987

STEP 1. INDIVIDUAL CONDUCTORS MAY BE BALLED STEP 2. MOLD FLAMEPROOF INSULATING FILLER TAPE

SPEC. MLL-I-17695.
APPLY WV SRVIIGS (MIN.) HALF LAPPED OF
LASTICELECTRICAL INSULATING ADHESIVE TAPE,
STEP 4. COAT ENTIRE SEAL WITH THREE COATS OF
NEOPRENE CEMENT.

STEP 1. REMOVE ARMOR.
STEP 2. SEIZE ARMOR END WITH ONE SERVING HALF
LAPPED OF PLASTIC ELECTRICAL INSULATING
STEP 3. MOLD FLAMEPROOF INSULATING FILLER TAPE
DUCTORS AS APPLC ABLE FOR CABLE YYPE
NEOPRENE FILERA ASBESTOS IMPREGNATED
SPEC. ML-17695
STEP 4. APPLY TWO SERVINGS (MIN.) HALF LAPPED OF
PLASTCELECTRICAL ISULTING ADHESIVE TAPE,

FOR VESSELES IN RESERVE

SH 132316958

FIGURE 1A15. End sealing of type "MDY" cables entering connection boxes.

范

BRAZED.

STEP 2 row b. DETERMINE INSULATION RESISTANCE OF CABLE. EACH
CABLE LENGTH SHALL BE MEASURED TO HAVE A MINMUM
READING ON INSUUATION RESISTANCE TEST AS SPECIFIED FLEX SUGHTLY AND SIVEY BEND CONDUCTOR(S). THE CABLE
DAMAGE OR EXCSSVEIY BE
SHEATH SHAL BE SQUARE AND FREE OF BURRS.

24 JUNE 1987
OOD-STD-2003-1(NAVY)

FIGURE 1A16. Cable end sealing of mineral insulated cables.
696918Zel HS

DOD-STD-2003-1(NAVY)
24 JUNE 1987
NOTES:

1. THIS FIGURE SUPERSEDES SECTION 5 , SHEET 88, OF
DRAWING, NAVSEC NO. 9000-S6202-73980. AND
 SLIDE TERMINAL ON TO THE CABLE SHEATH UNTL. THE
CERAMIC PORTION OF THE TERMINAL BUTTS AGAINST
THE CABLE SHEATH. b. PLACE ASSEMBLY IN A POSITION TO PERMIT BRAZING.
 TERMPERATURE GRAZING FLUX, SPEC O-F-499 ('HANDY-
FLUX OR EQUIV.")
d. USING OXY-ACETYLENE OR HYDROGEN TORCH FLAME.
PREHEAT YHE CABLE SHEATH THOROUGHLY AND THE
TERMINAL SLEEVE SLIGHTLY, UNTIL THE FLUX BECOMES e. If THERE HAS BEEN A TIME LAG OF 15 MINUTES BETWEEN
THE BRAZING OF THE OUTER SLEEVE AND STRIPPING THE
CABLE, CHECK INSULATION RESISTANCE WITH STEP 16

1A17

SH 132316961
 RMMOR TO BE CUT TO THIS
RELATIVE POSITION IN TUBE

25
1A19|

24 JUNE 1987
NOTES:

IA205-A

FIGURE 1A20. Cable end sealing for inboard Pressure Proof installations on submarines.
NOTES:

1. THIS METHOD APPLIES TO CABLE COILS OR REELS
STORED IN A COVERED LOCATION NOT SUBJECT TO 1. THIS MET IN A COVERE LOCATION NOT SUBJECT TO
STORED
ENTRANGE OF WATER OR MOISTURE.
2. THIS FIGURE SUPERSEDES SECTION 4, SHEET 62 , OF
DRAWING, NAVEC NO. $900-$ S62020- 72980 , AND SHEET
TA2 1 OF DRAWING 803-500 1027 .

FIGURE 1A21. End sealing cables in coils or reels in covered stowage not subject to entrance of water.
DOD-STD-2003-1(NAVY)
24 JUNE 1987

STEP 3 - ASSEMBLING OF RINGS

FIGURE 1A22. Grounding of shields of multiple conductor cables.
1A231
CONDUCTOR SHIELDS OF MULTI-CONDUCTOR CABLE
(SINGLE FOLD METHOD)
DOD-STD-2003-1(NAVY)
24 JUNE 1987
TESTS FOR GROUNDING RING CONNECTORS 1A234
CONDUCTOR SHIELDS COMBINED WITH
CABLE ARMOR OR WITH ARMOR ADDED
TO UNARMORED CABLE
NOTES:

1. INSTALLING ACTIVITY SHALL RUN DIELECTRIC AND
INSULATION RESISTANCE TESTS IN ACCORDANCE WITH
 BEING DONE TO DON CONOUCTOR OR CABLE INSULATION.
 DA23 OF DRAWING 803 -500 1027
 STEP 1 - PREPARATION OF SHielded CONDUCTORS TRIM SRAID TO APPROXIMATELY 1-1/2" FROM JACKET AND
FAN SLIIHTLY PREPRE SHELDED CONOCTORS AS FOR
DOUBLE FOLDED METHOD 1 A2R1 STEP 1 EXCEPT DO NOT

step 2 - selection of ring size
SELECT THE RINGS IN ACCORDANCE WITH THE DOUBLE
FOLO METHOD IARZI STEP 2.p
STEP 3 - ASSEMBLY OF RINGS
 PLACE OUTER COMPESSSION RING OVEE THE SHIELD AND
BAIDS. NSERT GROUNDING LEAD BETWEEN BRAIDS AND
OUTER RING. CAREUULLY LOCATE THE OUTER RING IN THE OUER RING CAREULLY LOCATE THE OUTER RING IN THE
CENTER OF THE INNER RING. STEP 4 - COMPRESSION

SELECT THE PROPER COMPRESSION DIE AND COMPRESS
THE ASSEMBLY AS PER THE DOUBLE FOLD METHOD 1 AL2
STEP 5.
MILLINOLT DROP ACGOSS THE COMPRESSED CONNECTION
FROMTHE INTERSECTION OF THE TONGUE AND THE BRREL
 STEP 2-TEMPERATURE CYCLING
 HEATING-COOLING CYCLES COMPLETE THE CYELE BY
HATNG TO 30 DEGREE FIN AR CRCULATION OVEN FO
3O MINUTES. COOLING TO 85 DEGEE F FOR 30 MINUES PERFORM VOTAGE OROP STEE 1 , EEFORE AND AMTER HEA
CYCLING TO INDICATE QUALITY OF THE JOINT. STEP 3 - TENSILE STRENGTH THE TENSILE STRENGTH BETWEEN THE GROUNO WIRE AAN
COMPRESSION RINGS AND INOVIDUAL BRAIDS AND AINGS
SHALL BE IN ACCORDANCE WITH TABLE 1.

SELECT THE RINGS IN ACCORDANCE WITH THE SINGLE
FOLO FORWARD METHOD 1 A222 STEP 2 .
STEP 3 - ASSEMBLY OF RINGS
SELECT TME PROPER COMPRESSIONDIE AND COMPRESS THE
ASSEMBLY AS PER THE DOUBLE FOLD METHOD 1 A22 STEP 5. 1 A232
CABLE SHIELD OVER MULTIPLE OR
SINGLE CONDUCTOR CABLE OUTER COMPRESSION ——— RING, PC 3
INER COLLEGTOR
RING. PC 2

STEP 1 - PREPARATION OF SHIELDING bRAID STRIP BACK OUTSIDE INSULATION OR JACKET WITHOU
CUTTING. NICKING OR BREAKING BRAID STRANDS. STRIP BACK OUTSIDE INSULATION OR JACKET WITHOUT
CUTTING. NICKING OR BREAKING BRAID STRANDS.
STEP 2 - SELECTION OF RING SIZE. SELECT THE RINGS IN ACCORDANCE WITH THE SINGLE
FOLO FORWARD METHOD IA222 STEP 2 .

SLIDE OUTER RING OVER BRAID BUNDLE TRIM BRAID TO
APPROXIMATELY $1-1 / 2^{\prime \prime}$ FROM JACKET AND FAN SLIGHTLY.
 BETNEEL BRAVER BRAIDED SHEGLD. CAREFULYY LOCATE
THE OUTER OING IN THE CENTER OF THE INNER RING.! STEP 4 - COMPRESSION

SELECT THE PROPER COMPRESSION DIE AND COMPRESS THE
ASSEMBLY AS PER THEEOUBLE FOOO METHOD IR22 STEP 5 . SH 132316966

$\left.\begin{array}{r}\text { BRAIDED SHELD } \\ \text { FIBERGLASS SLEEVING. }\end{array}\right] \quad \begin{gathered}\text { inNER GROUNDING RING, PC } 4 \\ \text { FIBERGLASS SLEEVING, PC } 2\end{gathered}$

CORD, COLOR TO SUIT, PG 5 OR 5A
SLEEVING, SEE ALT, STEP 3 NOTE
CORD, PC S OR SA SHEATH: CONDUCTOR

FIGURE 1A24. End preparation of Position hacicator type cables.

32

DOD-STD-2003-1(NAVY)
24 JUNE 1987

1 B 31
ANGLE CONNECTORS FOR CABLES
$5 / 16$ TO $3 / 4$ DIA.

COMMERCIAL TYPE I STEEL, BRASS
OR ALUMINUM CLAMPING MEMBER SECURED
WITH TWO MACHINE SCREWS SEE NOTE 7

45° ENTRANCE
COMBINATION SHORT ELBOW AND
STRAIGHT BOX CONNECTOR FOR CABLES

SEE NOTE 6) PLASTIC SEALER (SEE NOTE 3)

0° ENTRANCE

总瓹

FIGURE 184. Cable entrance to watertight onclosures.
SH 132316971

FIGURE 1B5. Strapping and supporing wire bundies in electrical equipment.

SH 132316972

NOTES: SPECIAL CARE SHALL BE TAKEN IN FORMING AND

	TES: special care shall be taken in SECURING THE BUNDLE TO PREVEN conouctor insulation unoer va
	WRAPPING MATERIAL SHALL BE OF A FIRE STIC BUCH AS NYLON 'AMP-SPIRAP' OR EQU OF VINYL OR POLYETHYLENE PLASTIC MA
	E LACING SHALL BE OF A NON-NUTRIENT MATERIAL NYLON.
	Re TEMPERATURE MAY EXCEED 250° F OR Where AME RESISTANCE IS SPECIFIED. THE LACING OR TYINO TERIALS SHALL CONFORM TO THE FOLLOWING ISS CORD, MIL-Y-1140, TREATED WITH SLIICONE RES CORD (OR TAPE) SHALL BE TREATED TO PREVENT SI SI MMERCIAL) TO THE ENOS OF THE CORD OR TAPE.

DOD-STD-2003-1(NAVY) 24 JUNE 1987

DOD-STD-2003-1(NAVY) 24 JUNE 1987

SH 132316975
FIGURE 1B8. Installation of cables on sound lsolated motors.

DOD-STD-2003-1(NAVY)
 24 JUNE 1987

FIGURE 1B9. Inboard stuffing tubes for submarines.

FIGURE 1810. Cable termination for motor connection boxes (surface ships and submarines)
DOD-STD-2003-1(NAVY)

24 JUNE 1987

DOD-STD-2003-1 (NAVY)
24 June 1987

DOD-STD-2003-1 (NAVY)
24 June 1987
C AN C E L E D (RE P L A C E D B Y

DOD-STD-2003-1(NAVY) 24 JUNE 1987

DOD-STD-2003-1(NAVY)
24 JUNE 1987

24 JUNE 1987

SH 132316988 MGURE 4
FIGURE 1D5. Repair of cables power, control, telephone and electronic.
DOD-STD-2003-1(NAVY)

FIGURE 1D6. Cable lacket repair sleeve, Installation.
6869 Lezel hs

OOD-STD-2003-1(NAVY)
 24 JUNE 1987

damaged cable
(NOTE E)

DOD-STD-2003-1(NAVY)
24 JUNE 1987

TABLE 3 TYPE CCBC CONNECTOR DATA

											M1L SPEC	STOCK NUFER				
		$\begin{aligned} & 1 / 27060 \\ & \hline 1016 \\ & \hline \end{aligned}$	mscu-7 70						${ }^{2(7) 3 /(7)} 1{ }^{17}$	1-2			$10-188-2878$	1/4	0.150	[5/8
	OSLS -3	TSCO-3 Tscl-3							${ }^{3(1)}$	2-1/2.4			287	1/4	0.150	5/8
5s56.4		${ }_{\text {ctsen }}^{\text {rse-4 }}$							(1)	2-1/2-4			${ }^{287}$	$1 / 4$	a, 150	588
									6 (1)	6.9			2836	5/16	0212	3/4
Ssca-9		$\xrightarrow{\text { Istara }}$ He9			frof-9				9 (n)	6-9			2876	5/16	0212	3/4
sscalic										14			$\stackrel{258-5891}{ }$	${ }^{13 / 16}$	1/4	1-3/4
		$\begin{aligned} & \text { Herof-23 } \\ & \text { Troc-23 } \end{aligned}$	${ }^{\text {TSeder }}$	${ }^{\text {5 S00-23 }}$					23] ${ }^{3(2)}$	${ }^{23}$			5890	13/16	$1 / 4$	${ }^{1-3 / 4}$
s5sat-30	cosme								$30(19)$	30			583	1-1/8	$5 / 16$	2-3/8
Sscasa	OSAC.40						(ov)		40 41919)	${ }^{40}$				1-1/	5/16	3/8
\pm		$\xrightarrow{\text { Ssala }}$	$T H 0 F-42$						soili)	so			590	1-1/4	3/8	2-5/8
Strof. 60	osca.60	1504-60		Prot-60			$\operatorname{HIY}-60$			${ }^{60}$			W995	1-1/4	3/8	-5/6
				${ }^{\text {rsabl }}$ /5					7537]	75			694	1-3/8	1/2	2-7\%
				FS6U-100					$100(61)$	100			5897	$1-3 / 8$	$1 / 2$	2-7
		${ }^{\text {ISAC-125 }}$							${ }_{125}^{12(19)}{ }^{\text {(19) }}$	125			${ }^{5896}$	${ }^{1-1 / 2}$	9/1	-1/8
	OSSA-150		${ }^{\text {Trope }-150}$						$150(6) 1$	150			${ }^{588}$	1-1/2	5/8	3-1/8
				F560-200					200661)	${ }^{200}$			599	$1-5 / 8$	$811 / 16$	3-3/8
skof-250									${ }^{20005(3) 19}$	${ }^{250}$			5500	1-5/	$3 / 4$	3-3/8
	OSS5-300								$300(9)$	300			5901	2	13/16	4-1/8
								SETISLC-350	350,91)	350			5902	2	78	8
		iscal-60	ISQU-400					Skr 5 Sul-400	${ }^{4000}$	400				2-1/	15/16	3/8
	O+10+40	Troram							$500(127)$	500			5904	2-1/4	$1-1 /$	5/8
		Theoc-500							650(127)	650			5905	2-3/6	1-1	/4
									$800(121)$	500			5906	2-15n	${ }^{13 / 8}$	6
									$10000(123)$	1000				3	1-1/2	${ }^{6-1 / 8}$
(incol-									13800127	1330						
(ssisk									$1600(123)$	1600				3-3/16	175/16	6-3/8
									$2000(12)$	2000	,	,	,			

FIGURE 1E3. Splicing cables-power, control, telephone and electronic.
DOD-STD-2003-1(NAVY)

SH 132316994 FIGURE 1E 4. Splicing cables-power, control, telephone and electronic.

FIGURE 1E6. Splicing cables-power, control, telephone and electronic.

[^1]
20 DOD-STD-2003-1(NAVY)

FIGURE 34

FIGURE 33

 FIGURE 31 . OF THE CONDUCTORS HAVE OEEN SPLIED THE AFTER ALL OF THE CONOUCTORS HAVE BEEN SPLICED THE
GABLE SHOULD BE STRETCHED TO STRAIGHTEN THE
CONDUCTORS. THEN APPLY A BINDER TAPE CONSISTING
 NCHES ON EACH END OF SPLICE, SEE FIGURE 32 . APPLY ONE LAYER, $1 / 2$ LAPPED, OF FILLER TAPE. WHEN
TAPIGG. PUL TAPE TO APPROXIMATELY ONE-HALF OFITS
ORIGINAL. THICKNESS. EXTEND TAPE OVER ENDSOF GABLE

APEATH FOR ABOUT 2 INCHES. SEE FIGURE 33.
VINLY TWO LAYERS, $1 / 2$ LAPPED, OF PRESSURE SENSITIVE
VIAL TAPE SHOULD EXTEND APPROXIMATELY ONE

Noten
CONTINUED ON FIGURE 1Es.
FIGURE 35
METHOD 1 1ET1

3. PLACE CABE MDGT-34 (4)

POSITION BY TEMPORARY TIES OH CLAMPS. UNWIND THE
OUTER DUCK TAPE 27 INCHES FROM THE END OF EACH
CABLE AND SECUHE THE ROLED TAPE BEYOND THE

4. THE SPLCEISASSEMELEDEYSTARTING WTHTHECENTEA

 1E7. Splicing cables-powe

FIGURE 1E7. Splicing cables-power, control, telephone and electronic.

NOTES:

1. $\begin{aligned} & \text { THIS FIGURE SUPERSEDES SHEET } \\ & \text { BO3-5001027 }\end{aligned}$

DOD-STD-2003-1(NAVY)
 24 JUNE 1987

FIGURE 1E10. Splicing cables-power, control, telephone and electronic.

DOD-STD-2003-1(NAVY)
24 JUNE 1987

FIGURE 81

FIGURE 1E12. Cable splicing-power, control, telephone and electronic.

UOD-STD-2003-1(NAVY)
(NA
1987
24 JUNE 1987

DOD-STD-2003-1(NAVY)
24 JUNE 1987

DOD-STD-2003-1(NAVY)

24 JUNE 1987

FIGURE 1E17. Splicing cables-power, control, telephone and electronic.

 JUMPER CAN EE INSTALLED AT THE SPLICE TO MAINTAIN ELECTRICAL CONTINUTY,
care should be exercised when preparing cable ends so that underlying insulation
IS NOT CUT WHEN REMOVING THE ARMOR AND SHEATH. SIMILAR CARE IS NECESSARY WHEN
REMOVING INSULATION TO PROTECT THE COPPER CONDUCTOR STRANOS FROM CUTS AND
THE EXCESS STRAND SEALING COMPOUND SHOULD BE WIRE BRUSHED AND CLEANED OFF THE
OUTER SUAFACE OF THE OUTER LAYER OF COPPER STRANDS OF EACH CONOUCTOR BEFORE THE
OUTER SUAFACE OF THE OUTER LAYER OF COPPER STRANOS OF EACH CONDUCTOR BEFORE
THE CONDUCTOR IS INSERTED IN THE CONNECTOR. CONNECTORS SHOULD BE INSTALED SO THAT THE CONDUCTOR END I FULLY INSERTED TO THE "STOP" AT THE CENTER OF THE
CONNECTOR AND THE INENT SHOULO BE SPACED HALF WAY BETWEEN THE END OF THE
CONNECTOR AND THE STOPT.
TEMPORARY GINDING SHOULD BE APPLIED OVER THE END OF TAPES ON CONDUCTORS TO
PREVENT UNWINDING OF THE INSULATION.
SPLICING MATERIAL SHOULD BE KEPT AS CLEAN AS POSSIBLE DURING APPLICATION SO THAT
FOREIGN MATTER OR CONTAMINANTS ARE NOT WITHIN THE SPLICE. material: the heat shrink tubing shall be per mil-1-23053/5. SHEATHING THAT HAS BEEN REMOVED FOR SPLICING.
BOTH THE THERMALLY STABLIZED MODIFIED POLYOLEFIN TUBING AND THE SEALANT USED
FOR THIS SPLICING METHOD HAVE AN INFINITE SHELF LIFE.

WHERE A WATERTIGHT SPLIIE IS RECUMED IT WIZES OF CABLE NECESARY TO USE A MELTABLE
WASH DC 2O362. NAVSEA CODE S6Z34.
DOD-STD-2003-1(NAVY)
24 JUNE 1987

$$
\begin{aligned}
& \text { HOWEVER. A BERNZOMATIC TORCH WITH FLAME SPREADER MAY ALSO BE USED. COTHER } \\
& \text { MODELS AN TPE TRCHE TAN TE USED. } \\
& \text { AS HEAT IS APPLED. MOVE HEAT SEURGE BACK AND FORTH ANO AROUNO THE PART TO BE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AS HEAT IS APPLIED. MOVE HEAT SOURCE BACK AND FORTH ANO AROUND THE PART TO BE } \\
& \text { SHRUNK. FOR SPLIGE COVER, SHRINK FROM CENTER TO AVOID TRAPPING AIR INSIDE THE } \\
& \text { COVER. THIS WILL ENSURE EVEN SHRINKAGE. }
\end{aligned}
$$

WHEN PART HAS RECOVERED ENOUGH TO ASSUME THE CONFIGURATION OF THE ITEM
ADDITIONAL HEATING WILL NOT MAKE THE PART SHRINK TIGHTER.
11. DELETED.

1. THE CABLE SPLICing METHODS DETALLED ON THIS SHEET AND ARNATE TO THOSE DETAILED ON FIGURES IE1 2. THIS FIGHEME SUPERSEDES SHEET $1 E 19$ OF DRAWING

DOD-STD-2003-1(NAVY) 24 JUNE 1987

STANDARDIZATION DOCURERT IRAPROVEMENT PROPOSAL (See Instructions - Reverse Side)

5. PROBLEA AREAS
a. Porseraoh Number and Warding:
b. Recommended Wording:
c. Remon/Retionale for Recommendation:

6. REAARKS

7a. NAME OF SUBAAITTER (Lact, First, MII) - Optional	b. WONK TELEPMONE NUABER IIRCIMdO ARS Code) - Optionel
c. MAILING ADDAESS (Street, City, Stata, ZIP Coda) - Optionol	8. DATE OP SUBAAIESION (YYAMADD)

[^0]: NOTES:

 1. HEAT SHRINK END CAPS, METHOD 1A143, MAY BE USED
 AS ALTERNATE TO METHOD 1A111. AS ALTERNATE TO METHOD 1 A111.
 2. PIECES 1 THRU 7 SHALL BE IN ACCORDANCE WITH

[^1]: FIGURE 21

 SH 132316996

