
~. = . .= . _ . .._

I METRICI

DOD-STD-1838
9 October 1986

I MILITARY STANDARD

. .. COMMON
ADA~:PRO.GRAMMING SUPPORT

. ENWRONMENT (APSE)
INTERFACE SET

IQ (CAIS)
~ .* .,.

,..

I
,..

I

NO DELIVERABLE DATA
REQUIRED BY THIS DOCUMENT AREA MCCRIIPSC

Im m Ada k a Registered Trademark of the U.S. Government (Ada Joint Program Offke)
.. .

.— --- . b

Downloaded from http://www.everyspec.com

DOD-STD- 1838

DEPARTMENT of DEFENSE
Washington, DC 20302

Making for Shipment and Storage

1. This Military Standard is approved for use by all Departments and Agencies of
the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent

data which may be of use in improving this document should be sent to the Ada
Joint Program OffIce, Room 3E1 14, Pentagon, Washington, DC 20301-3081,
by using the self-ackkessed Standard~ation Document Improvement Proposal
(DD Form 1426) appearing at the end of this document or by letter.

,,

.,.

.,,

.*’

,.. . . .
.!..’,

,,
,’ ,,,. ,. ,,.

. .. .

:.

,.

, .,,

ii

L .. . ____._-, :. ““.:.. : _ .._L_. ...
——a

Downloaded from http://www.everyspec.com

,.

DOD-STD-1838

FOREWORD

FOREWORD

This document has teen prepared in respunse to the Memorandum of Agreement signed by the Underaecretay
of Dcfenae and the Aaaistant Secretaries of the Air Force, AnnY, and Navy. ~e memorandum established
asreement for detinimz a set of common interfaces for Demumnent of Defense (DoD) Adal Pmzrammim?
S;ppom Envimnmema-(AFSEs) to promote Ada tool tmnapo;abiiity and interoperability.’ The initial;nterfacx;
for the CAfS wete derived from the Ada integrated Environment (AIE) and the Ada Language Sysrem(ALS).
Sine-s then the CAfS haa ken expanded to bc implementable aa Pan of a wide variety of APSES. It ia
anticipated that the CAfS wiII evolve to meet oew- needa. Through the acceptance of tka standard, it is
anticipated that the source level porfabiIity of Ada software tools will be enhanced for buth DoD and non-DoD
users.

The amhom of this document include technicaf mpreaentatives from the ME and ALS conmadok,
repmaematives fmm the DoD’s Kernel A& Programming Support Environment (KAPSE) Interface Team
(KIT), and vohmteer representatives from the KAPSE Interface Team from Induah-y and Academia (KJTTA).

The initiaf effect for detlnition of the CAfS was begun in Septe”mkr 1982 by the following membefa of the
KIT J. Foidf (TRW), J. Kramer (Institute for Defense Analyses), P. Obemdorf (Naval Ocean Sysrcms Center),
T. Taft (Intermerncs), R. lkdl (SofTech) and W. Wklcr (NAVSEA PMS-408)..

In February 1983 the design team waa expanded to include B. Schaar (Veda), T. Harrison (Texas Inikmema)
and KfTfA membem: H. Fkcher (Mark V Syatcms), E, Lamb (Bell Labs), T. Lyona (Softwme Scienaa Ltd.,
U.K.), D. McGonagle (General Efectic), H. Mome (Oracle Co~orafion), E. Plced@Mer (Taman Laboratories),
H. WiUman (Raytheon), smdL. Yelowitz (Fred Aerospace).

During 1984, the fnllowi.g people assisted i~ prsparatiun of this document: F. Belz (TRW) ad the ‘kW
protntype team, J, Kemer (TRW), K. CormoUy (TRW), S. Ferdman (Data Generaf), G. Fitch (Intennetrics).
R. Gouw (TRW), B. Gram (Intermehica), N. Lee (Inatitme for Defenac +hlysea)> J. Lung (nW), and ,
R. Robkiaon (Institute for Defense Anafyses). *

Duxing 1985 and 1986, the team was again expanded to include M. Lake and C. Roby (fnatitufe for Defense
Analyses), LCDR P. Myers (Ada Joim Prngram Office), acd F. Tadman (TRW). Additional comtructive
criticism and diiection W= provided by G. Myers (Navaf Ocean Systems Center). 0. ROubimeOnfofmafiqk
IpfernationaJe), rk prototyping teams of Gould, Inc. (Ff. Lauderdale, FL), MITRE (McLean, VA) aod TRW
(Rerfomio Beach, CA), and the generaf memhcrahip of the KfT and KIITA, aa well as many independent
reviewera. The Ada Joint Program Office ia particularly gratetid to theac individuals and their organizations for
providing the time and resources that significantly contribmcd to this ducument.

Of sIJ rheae individuals, those to whom tie final form of this document ia most attributable are F. Belz,
T. Harrison, J. Kramer, P. Obemdorf, E. Plcedereder, C. Roby and F. TadmmL T%c Ada Joint Program Office
regards highJy the individual effofi put forth by rkae and the other people listed here.

This document was prepared with the SCRfBE2 typesetting tool waler VAX/VMS3 at the Inatirute for Defense
Anafyaes,

. .

lANSliMIL-S3’D1815A1983.
\

1,.s~BF, i.,~ciseti@a&markofUni!.,.sic,r.kl.
\

%.4XandVMS m registrmdtradernubofDigital@ipmc.tCmporatiom,

1 n,
!,

L .,

Downloaded from http://www.everyspec.com

DOD-STD-1838

. !, ..1 .,.,. ;,

.,,.
,., ;..) .,<

$,

FOREWORD

iv

Downloaded from http://www.everyspec.com

. ---

DOD-STD-1838.

I

I

Contents

LS(X)PE . 1
l.l~~se ..4 . 1
L2 Application Guidance . 2

2. REFERENCED DOCUMENTS, . 3
2.1 Government documents . 3
2.20ther publications .
2.30rderofprccedence .
2.4 Snurceofdocumcnts .

3. DEFINITIONS .

4. GENERAL, REQUIREMENTS .
4.1 Introduction .
4.2 Method of description .

4.2.1 AUowable ditYerences .
4.2.2 Semantic descriptions .
4.2.3 Typograpbical ctmventions.. .

4.3 CALSnode model .
4.3.1 Nodes .
4.3.22%Iwsw.
4.331nput andoutput .
43.4 Relationships andrelatiom .

4.3.4.1 Kinds of relationships .
43.4.2 Basic predetincd relations .
43.43 Relation names andrelatiomhip keys .

4.3.5 Paths, pathnames andnode identification .
43.6 Attributes .

4.3.6.1 Predefincd attributes .
4.4 Discretionary andmandatory acceascontrol .

4.4.1 Node access .
4.4.2 Discretionary acceascontrol .

4.4.2.1 Groups andrnles .
4.4.2.2 Adopting able .
4.4.2.3 Granting acccas rights .
4.4.2.4 Determining acce$srights .
4.4.2.5 Discretionary access checking .

4.4.3 Mandatory access control .
4.4.3.1 Labeling of CAISnodes ..’
4.4.3.2 Labeling ofprocess nndea .
4.4.3.3 Labeling of non-prows-s nodes
4.4.3.4 Labeling ofnodesfor devices. .
4.4.3.5 Mandatory access chscking .

5. DETAILED Requirements ..o
5.1 General nodemanagement .

5.1.1 Package CAIS_DEFINTfTONS .
5.L2Package CAIS_NODE_MANAGEMENT .

5. L2.10p@ng a node handle .
5. L2.2Closine anode handle .

3
5
5

7

19
19
19
20
20
21
22
22
22
23
23
24
25
29
29
32
33
35
35
36
36
37
40
40’
48
48
51
52
52
52
52

53

53
54
57
63
66

5.1.2.3 Chang]ng the intent regarding node hmdle usage . 67
5.1.2.4 Examining the open status of a node handle . 69
5.1.2.5 Querying the intention of a node handle . 70
5.L2.6Querying thekind of anode . 71
5.1.2.7 Querying the number of open file handles on a fife node . 72

.,-0
I v

Downloaded from http://www.everyspec.com

-- —. -.

DOD-STD- 1838

. ..-,.
5.1.2.80btaining tbeunique primary patbname .
5:1.2.9 Obtaining tbe relations~p key of a primary relationship
5.1.2.10 Obtaiting tbe relation name of a primary relationship .
5.1.2.11 Obtaining tbe relationship key of tbe last relatiombip traversed
5.1.2.12 Obtaining tbe relation name of the last relationship traversed
5.1.2.130btaining apartialpatbname .
.5.1.2 .14Obtaining the name of tbe last relationship in a patfmame
5.1.2.15 Obtaining the key of tbe last relationship in a patbname
5.LZ16Queryingtb eexiatenceofanode .
5.1.2.17 Querying samen~s, .
5.1.2 .180btaining anindex for a node handle .
5.1.2.190btaining anopennode handle totbe parent .
5.1.2.20 Copying inode .:~ .
s. L2.21c0pying treei
5.1.2.22 Renamingtbe primary relatio@ip of a node .
5.L2.23Deletingtb: primary relationstupto a node .
5.L2.24Deleting theprirn”aryrelation@ipsofatrea .
5.1.2.25 Creating secondary relationships .
5.1:2.26 DeJeting secondary relationships .
S. L2.27&4ting inheritance property 0farelation.ihip .
5.1.2.28 Determining if a secondary relationship is inheritable .
5.LZ.29Node iteration types”and subtypes .
5.1.230 Creating aniterator overnodes.. .
5.1.2.31 Determining iteration statua .
5.1.2.32 Determining the approximate size of tbe iterator .
5.L2.33Getting tbenextnode inan iteration .
5.1.2.34 Skipping the next node in an iteration
5.1.2.35 Obtaining tbe path element for tbe next node in an iteration
5.1.2.36 Deleting aniterator .

,. 5.1.2.37 Setting tb+current noderelation.ship .
.5.1.2.380p@ng andehandle totiecurrent node .

5.1.2.39 Determining tbecreationtime ofa node
5.1.2.40 Determining the last time a relationship was moditied .
5.1.2.41 Determinirig tbe’last time that node cuntents were written
5.1.2.42 Determi@ng the last time an attribute was modified .

5.13 Package CA2S_ATYRIBUTE-MANAGEMENT .
5.1.3.1 .Creating nodeattributea .
5.1.3.2 Creating pathattributes .
5.1.3.3~let@ wdea&ributes
5. L3.4f3eleting pathattributes .
5.1.3.5 Setting nodeattributea .
5.1.3.6 Setting path attributes .
5.1.3.7 Getting nodeat~ibutes ..;...’. .
5. L3.8Getting patbattributes .
5.L3.9Attribute iteration types andsubtypes
5.1.3.10 Creating aniterator over node attributes
5.1.3.11 Creating an iterator over relationship attribute .
5.1.3.12 Determining iteration status .
5.1.3.13 Determining tbe approximate size of tbe iterator .
5J.3.14Getting thenext attribute name.’. .
5.1.3 .15.Getting thenext”ittribute value .

.5.1.3.16Skipping thenext attribute inaniteration .
5.1.3.17 Deleting anattribute iterator .

,1 5.1.4 Package CAIS_ACCESS_CONTROL_MANAGEMENT.. .
5.1.AI Subtypes .; .

.- 5.1.4.2 Value OfaUaccess rights .
5.1.4.3 Settingaccessmntr01 .

73
74
75
76 ●
77
78
79
80
81
82
84
85
87
89
92
9.4
%
98

100
102
104
106
107
109
110
111
113
114
115
116
117
119 0
120
121
122
123
125
127
129
131
133
135
137
239
141
142
144
146
147
148
149
1s0
151
152
152
153
154

vi

.

“..
. . . . $

Downloaded from http://www.everyspec.com

.,

DOD-STD-1838

I

““o

,,

5.1.44 Del&ingi&essrelationsbips . 156
5.1.450btaining thevalueof a GRANT attribute . 15S
5.1.4.6 Examining access rights . 159
5.1.47 Adopting able . 160
5.L4.8Unlinkh-g anadoptedroIe .

5.L5 Package CA2S_STRUCTURAL_NODE_MANAGEMENT1.... . . .
5.1.5.1 Creatin&structural nodes.. .

S.2C~prw.s nodes ~. .
5.2.1 Package CA2S-PRCtCESS_DEFINITIONS .
5.2.2 Package CA3S PROCESS_MANAGEMENT .

5.2.2.1 Spawni&g apr0ce5s .
5.2.2.2 Awaiting termination or aburtion of another prucess .
5.2.2.3 hwoking anewprwess .
5.2.2.4 Creating a new job .
5.2.2.5 Deletkg a job .
5.2.2.6 Appending reauks
5.2.2.70verwriting results .
52.2.8 Gettfig msultsfrom aprmms .
5.2.2.9 Determining thestatus 0fapruccss .
5.2.2.10 Getting the parameter list .
5.2.2.11 Aburting a prucess .
5.2.2.12 Suspending a prucess .
S.2.2.13Resuming ar.rucess .
5.2.2:14 Determi~g-the ntimber ofopen node handles .
5.2.2.15 Determining the gumber of input and output units used
5.2.2.16 Determining thetirne of activation
5.2.2.17 Determining the time of termination or abortion .
5.2.2.18 Determining thetime aprmwssbasbeen active
5.2.2.19 Determining the siza of a prucess’.

5.3 CA2Sinput andoutput
5.3.1 Package CALS_DEVICES’....
5.3.2 Package CAIS_IO_DEFINITIONS .
533 Package CAIS IO_ATTRIBUTES

53.3.1 Determi~ng theaccess method
5J.3.2Detertifing the~de Hnd .
53.3.3 ~tertiting thequeue kind .
5.3.3.4 Determining the device kind .
5s.s.5&/@rtiti~ tbec”matfdestie .
5.3.3.6 Determining themaxinmmffle size .
53.3.7 Determining the current queue size
53.3.8 Determining themaximumqueuesim .

53.4 Pa&~e C~.DIRECT.IO .
53.41 Defiition of Typec
53.42 Creati~a dirdfJe .
53.43 O~tinga dhwtfile hmde
5.3.44 Closing adirect fdehandle .
53.45 Resetting adirectfflehandle’ .
53.46 Syncbrunizing the internal file with file node contents .

53.5 Package CAfS_SEQUENTIAL_I0 .
53.5.1 DefhitiOn Oftypm . ;.....
53.5.2 Creating a sequential file .
53.5.30pening asequential fdehandle .
53.5.4 Closing asequential ffiehandle .
5.3.5.5 Resetting a sequential file handle

.:,. ,. . 5.3.5.6 Synchronizing the internal file with file node contents ..,, .
53.6 Package CA2S_TEXT_10:..#,.......

.
53.6.1 Deftition of types .

vii

162
163
164
16s
171
172
174
178
1s0
185
18s
190
191
192
194
195
196
198
200
202
203
204
205
206
207
20s
214
215
217
218
219
220
221
222
223
224
225
226
227
228
231
232
233
234
235
236
237
240
241
242
243
244
245

I

I

Downloaded from http://www.everyspec.com

DOD-STD- !838

53.6.2 Creating atetiftie .. 246
53.6.3 Opening a text tile handle . 249
53.6.4 Closing ateit filehandle’ ..: 250 ●
5J.6.5Rewtting atext~e handle 251
5.3.6.6 Synchronizing the internal file with tile node contents 252

5.3.7 Package C~_QUEUJ3_MANAGEMENT 253
S.3.7.1 Creating anonaynchrommscopyqueuenode . 257
53.7.2 Creating anonsynchronuus mimic queue node . 262
5.3.7.3 Creating a nmrsynchronous solo teti queue node . 267
5.3.7.4 Creating a nonaync@nous solo sequential queue node . 271
5.3.7.5 Creating a synchronous ado text queue nude . 274
5.3.7.6 Creating a synchronous solo sequential queue node . 278
53.7.70pening aqueuelile nudehandle . 281
53.7.t? Closing aqtieue ~enode handle . 281
5.3.7.90pening aqueuefile handle.. 281
53.7.10 C1usinga queue fde handle . 282
53.7.11 Reading elementc fmm a queue file . 282
53.7.12 Writing elements to a queue tile . 282
53.7.13 Reactting aqucuefi1ehandle . 282
53.7.14 Determining end of file of a queue file . 283

53.8 Package CAlS-SCROLL_TERMINAL_IO . 284
53.8.1 Types andsubtypes’ . 286
53.8.20paning ascroUterminal tilehandle . 287
53.S.3Closing ascruUterminal fdehandle . 28S
53.8.4 ~terndning whether atilehahdleisopen . 289
53.s3.5 Determining the numhcr of fynction keys . 290
5.3.8.6 D&ermining intercepted input characters . 291
5.3.8.7 Determining intercepted output characters , ., 292
53.8.8 Enabling and disabling function key usage 293
53.S.9Daterndning function keyusage 294
53.8.10 Setting theactive position . 295
53.8.11 Datermining”the active puaition-’. 2%

●
53.8.12 Dcterrnining thesize of thetermina1 297
53.8.13Wtti@ a tabstop 298
53.&14 Clearing a tab,stop . 299
53.8.15 Clearing.iU tab stops .. 300
53.8.16 Adviricing tothencxt tabpusidon1 . 301
53.8.17 Suunding a terminal beU . 302
53.8.18 Writing to.theterminal 303
53.8.19 Reading acharacter from’atermkal’ ... 304
53.8.20 Reading all available characters frum a terminal .: . 305
53.8.21 Creatingaf unctionk eydescriptor’. ~. ..~. 306
53.8.22 Deletiug afunction keydeacri”ptor. 307
53.8.23 Determining the number of @,nctionkeys that were read 308
53.8.24 Determining function key usage 309
53.8.25 Dctermitig the identification of a function key . 310
53.8.26 Deteradrdng themodeofa terminal . 311
53.8.27 Backspacing theactivepuaition 312
5.3.8.28 Advancing theactivep usitiont othenext’Une . 313
53.8.29 Advancing the active prssitionto the next page . 314
53.8.30 Resetting awruUterndnal tile handle . 315

‘53.8.31 Synchronizing the internal fde with file node contents . 316
53.8.32 Setting terminal fiIe handle synchronization . 317
53.S.33 Determining the syncbruniiation (if a terminallile handle : 318

53.9 Package CAlS_PAGE_TERM1NAL_I0 ; . 319
53.9.1 Ty~. subty~and wnstants' . 321
53.9.20pening apagcterminal filehandle 323

. ./ ●

VILI

Downloaded from http://www.everyspec.com

I

o

DOD-STD-1838

53.9.3 Closing apageterminal tllehandle 324
5.3.9.4 Determining whether afilehandleis open . 325.- .- .
5.3.9.5 Datemrining the number OFfunction keys .iZ6
5S.9.6Deternrining intercepted input characters . 327
53.9.7 Deterndning intercepted 0utputcbaracters . 328
5.3.9.8 Enabling and disabling function key usage 329
5.3.9.9 Deterndning function keyusage . 330
S3.9.10Setting theactive position .. .

“53.9.11 Determinisrg theactivepoaition .
S.3.9.12Determinisrg tbesize of theterminal .
S3.9.13%tiW a tabstop .
S3.9.14Clearing atabstop
SS.9.1S Clearing all tab slops .
S3.9.16Advancing totbenext tabposition .
S3.9.17 Sounding a terminaI bell .
S3.9.18Writing tothe terminal .
S.3.9.19Readii acharacter fromatsrmimd .
S.3.9.20 Reading all available characters fmm a terminal .
53.9.21 Creating afunction keydescriptor .
S3.9.22Deleting afunction key descriptor .
S3.9.23 Determining the number of function keys that were read?....
S3.9.24 Determining function key usage .
S3.9.25Determining theidentification ofaftmction key ..,.: .
S3.9.26Detennining themodeofaterminal .,----
S3.9.27M* *aracters .
S3.9.28 Deleting lima .
S3.9.29 Replaci@ characters in a line with space characters .
S3.9.30Erasing characters inadisplay .
53.9.31 Eraaingcbaractcrs inaline. .
53.9.321nm-tingspacecbaracterainahne .
S3.9.33 Inserting blank lines in the output terminal fde .
S3.9.34Determining grapMc rendition support .
S3.9.3S S-elactingthegraphic rendition .
S3.9.36Determinhrg theeffect ofvmitingto theend position .
S3.9.37Resetting apageternsinkl tllebandle .
53.9.38 Syncbrmdtingt heinternalt Ifewitbf Uenodecontents .
53.9.39 Setting terminaI file handle synchronization .
S3.9.40 Determining the synchronization of a terminal file handle

5.3.10 Package CALS_FORM-TERMINAL-10 .
S3.1O.1 Types and subtypes .
S3.10.20pening aformternsinal tile bandle .
S3.10.3Clm@ aformtermhd fileh@dle
53.10.4 Determining whethqa filehandkisopen .
53.10.5 Determining the number of timction keys .
S3.10.6Determining intercepted input character’9 .
53.10.7Daterminingi nterceptedOutputcharacters .
53.10.8 Creating a form .
S3.10.9Deleting aform .
S3.10.10COpying afOrm .
53.10.11 Defining a qncli!ied area .
S3.10.12Removing anareaquaSikier .
S3.10.13Changing tbeactive position
S3.1O,14 Querying the active position .

~:*L.,. S3.1O.1S Advancing forward to quclifiad area
S3.1O.16 Writing to a form .
53.10,17 Ercsinga quafifiedarea .
S3.10,18Er.asing a form .

i.

331
332
333
334
33s
336
337
338
339
340
341
342
343
344
34s
346
347
348
349
350
3s1
3s2
353
354
3ss
3S6
3s7
3S8
359
360
361
362
363
364
365
366
367
36s
369
370
371
372
373
374
37s
376
377
378
379
380

ix

Downloaded from http://www.everyspec.com

/,.. ,

DOD.STD- 1838

,,,
,.

,.

./
,. .

/...

53.10.19 Activating a form on a termina! .
5.3.10.20 Reading from a form .
5.3.10.21 Determining changes toaform... .
5.3.10.22Determining theidentification ofafnnctionkey .
53.10.23 Determining thetcrmination key .
5d.10.24W&mitig thesheofaform .
5.3.10.25 Determining thesize of thetermincl
53.10.26 Determining if the area qualifier requi~ space in the form
5.3.10.27 Determining if the area quafifier reqtirca space on a terminal

53.11 Pa@ge CAIS_MAGNETIC_TAPE_10 .
53.11.1 Typea, subtypea andexcepti~na
53.11.20pening atapadrive filehandle ..’......
53.1L3Cluaing atapedrive Rlehandle1 .
53.11.4 Determining whether afilehandleisopcn .
53.1L5 Determining the mode of a magnetic tape drive .
53.1L6Requesting themotmtingofa tape
53.11.7 Loading a tape .
53.11.8Udoad~ ata~ .
53.11.9 Requesting thedkmounting ofatapc
53.11.10 Determining thepo~tionofthe tape ..”.’.
53.11.11 Rebinding thetaW
53.11.12SHppi% ta~mmks .
53.11.13Writing a tapemark .
53.11.14Deterniining thestatusof amagnetictapc drive .
53.11.15 Determining the remrd~ method ofa magnetic tape .
53.1L16Determining whether amitering isinstal14 .
53.11.17Skippi~ blAsina ma@@ictape ~e
53.1L18Reading abluckfrom amagnetictapcfile .

“5.3.1L19W ritinga hlocktoa magnetictapcfile
5.3.11.20 Resetting amagnetic tape Rle@ndle .

53.12 Package CA3SIMPORT_EXPORT
5.3.12.1 Impm-tifiatlee .. .
53.12.2 Exmwtim?atide .

,5.4CAISL utMana~emen;,
5.4.1 Package CAIf_LIST_MANAGEMENT,. ,

5.4.1.1 Typea,.subtype$ conatanta andexc6ptioha .
'5.41.2C0pfiq aWt`

5.4.1.3 Making a fist empty .
5.4.1.4 Converting from text to list form . ,”.....,..
5.4.1.5C0qverting aliattOit.s textreprescntatiOn .../...
5.4.1.6Dctermining theequality oftwolis~!.. .
5.4.1.7DeMinganitemfrOmafin earlist .

,. 5.4.1.8Wt&fitiw tWkindtihW

381
382
383 0
384
385
386
387
3ss
389
390
392
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414 @
415
417
419
425
425
427
428
429
430
431
432
433

5.43.10 lnaerting asequence Ofitems intoalinearliit . 435
5.4. Lll Concatenating tw’olinearlists,.. A36
5.4.1.12Extracting ascquence ofitems fromafinearliat . 437
5.4.L13Dctermining thelength ofalinearfist . 438
5.4.1.14 Determining the pusition of the current Iiiear list . 439
5.43.15 Determining whether the current linear Iiat is outermost 440

“’5.4.1.16 Making thenext outer linear listcnrrent . 441
5.4.1.17Makinganc atedsubliattb ecurrentli nearfist. 442

.5.4.1.18 Determining tbe length of the text form of a fist or a list item 444
5.4.1.19Dctermining themmeof anamedite.m 446
5.43.20 Determining thepusition ofanamed,tem1“’”’”m
5.4.1.21 Package CAM LET ITEM +8

5.4.L21.11Lxtrac~ga ~lvaluef rOrnaiistitem . 449
. .

‘5.4.1.9Detcrti thekindoffist item . 434

.:

!.

,:,,.,;,., ,
,.,

0
‘ x

Downloaded from http://www.everyspec.com

●

,..

DOD-STD-1838

5.4.1.21.2 Replacing alistvaluein aliatitem . @
5.4.1.21.3 Inaertiug aliat.valued itemintOa liiear list . 453
5.4.1.21.4 Locating a Iist-wdued item by value within a linear list 45S

5.4. L22Package C~_IDENTIF1ER_ITEM 457
5.4.1.22.1 Copying a taken . 4S8
5.4.1.22.2 Convecting an identifier tlom text to token form . 459
5.4.1.223 Converting an identifier from token to tsxt form . 460
5.4.1.22.4 Dctermini;g the equality of two identifier tokens 461
5.4.1.22.5 Extracting an identifier value from a list item . 462
5.4.122.6 Replacing an identifier value iu a Iiit item .
5.4.1 .22.7 Inserting an identifier-valued item into a liiear list 466
5.4.1.22.8 Imcating an identifier-valued item by value within a liuecr rut 468

5.4.1.23 Generic package CAIS_INTEGER_ITEM . 469
5.4.1.23.1 Convecting an integer value to its canonical text rcprcsentatiim 470
5.4.1.23.2 Extracting an integer value fswm a list item 471
5.4.L23.3Replacing aninteger value inalistitem . 473

. .. 5.4.1.23.4 Inserting an integer-valued item into a linear list . 475
5.4.1.23.5 Locating an integer-valued itemby value within a linear list 477

5.4.1.24Generic package CAIl_FLOAT_ITEM . 478
S.4.1.24.1 Converting a floating puint value to its canonical text form 479
5.4.1 .24.2 Extracting a floating puintvalue frum a Iiit item . 4S0
5.4.1.243 Replacing a floating point’vaiue in a Iiit item . 4S2
5.4.1 .24.4 Inserting a floating poiut-valued item into a Ibsear.fiat 4s4
5.4.1.24.5 Locating a tluating point-valued item by value within a linear list 4S6

5.4 L25Package CAL!_STRING_ITEM . 4S8
5.41.25.1 Extracting a string value fmm a list item 439
5.4. L25.2RepIacing astring value inalistitem . 491
5.4.1.25.3 Inserting a stringvalucd item into a linear list . 493
5.4.1.25.4 Locating a string.vahed item by value within a linear list 495

5.5 Package CAIS_STANDARD . 4%
5.6 Package C~.CALENDAR ..i 497

S.6.1 M1tition ofty~s, subty~s andexceptiom .. 498
5.6.2 Getting thecurrenttime . 499
5.63 Getting the year part of the time . 500
5.6.4 GcUiugthe month part of thetime . S01
5.6.5 GettiWtk daypmtofthe time". 502
5.6.6 Getting thesands partoftbe time . 503
5.6.7 Splitting time into its cumpunents 504
5.6.8 Combining compunentsoftime . 505
5.6.9 Adding time and duration S06
5.6.10Subtracting timewdduratin S07
5.6.11 Comnarinz twovalues of time . 50S

5.7 CAISPragm”atica T. ..1 .

6. NOTES ...!...
6.1 Keywords”. .

Appendix A. Predefine Relations, Attributes and Attribute Values

Appendix B. CAIS Specification

Appendix C. Cross Reference of CAIS Procedures and Functions

Appendix D. Syntax Summary .

Appentfix E. CAISAccess Control Management .

Appen~x F. Implementation Dependencies

S09
515
515

517
527
571

595

597
599

xi .

Downloaded from http://www.everyspec.com

DOD-STD-1838

Index ‘“~’”. 601 ●

I xii

Downloaded from http://www.everyspec.com

DOD-STV-1838

Figures

FIGURE L

FIGURE 2.
FIGURE 3.

FIGURE 4.
FIGURE 5.

FIGURE 6.
FIGURE 7.

FIGURE %

FIGURE9.
FIGURE 10.

FIGURE 11.

CAISsystem concept .
Tree formed by primary relationships .

Some predefined relations .

Some predefined attributes .

Discretionary access control .

Discretionary access control after process creation
Access relationships, Example l..... .

Access relationships, Example 2.....

Access relationships, Example 3..... .
COPY TREE Example .

IMagne~c tapestatus transitions .

.. .
XIII

26

28

30

34
38
41
46

49

50

91

393

Downloaded from http://www.everyspec.com

TABLE L

TABLE II.
TABLE 111.

TABLE Iv.
TABLE V.
TABLE VI.
TABLE VII.

,TABLE VIIL
TABLE Ix.
TABLE X.
TABLE XI:
TABLE XII.
TABLE X111.

TABLE XIV.
TABLE XV..

/,,

,.

.

DOD-STD-1838

Tables

Pathname BNF . 32

GRANT Attribute Value BNF . 42
Predefined Access Rights . 43

Classification Attribute Value BNF. SI
Intents 58

Matrix of Acces Synchronization Constraints 62
Process Status Transition . 16~

Relati.onships Created asa Result of CREATE JOB 172
.Relationships Created andlnherited for Process Nodes 173
Modes and Intents for Input and output 209
Input and output Packages for File Attribirtes 210

“File Node Predefine Entities . 213
Queue File NodePredefinedE ntities . 255

Allowed Magnetic Tape Characters . 391
List External Representation BNF . 422

,.

,,.

?,, -

,,

.{,

.

.,.

,,

, ,,

,.4

,..

:’.

,, ...

.

i?

,,

,,

/, ,..,
.

.. -, , ,

xiv

Downloaded from http://www.everyspec.com

I ‘

I
SCOPE

DOD-STD- 1838 i.1
PURPOSE

●

●

1. SCOPE

1.1 Purpose——

This document provides specifications for a set of Ada4 packages, with their intended

semantics, which together form a set of common interfaces for Ada Progrmirrg Support
Environments (APSES). This set of interfaces is known as the Common APSE Interface Set
(CAfS) and is designed to promote the source-level portability of Ada programs, particulmly
Ada software development tools.

‘The goaI of the CAIS is to promote interoperabiliry and trtisportabifity of Ada software
across Depatrnent of Defense (DoD) APSES.

Inreroperability is defined as the ability of APSES to exchange database objects and their
relationships in forms usable by tools and user programs without conversion.

Transportability of au APSE tool is defined as the ability of the tool to be installed on a
different Kernel Ada Programming Support Environment (KAPSEh the tool must perform with
the same fimctionality in both APSES. Transportability is measured in the degree to which this
installation can be accomplished without reprogramming. Portability and transferability are
commonly used synonyms;s

Those Ada programs that are used in support of software and firmware development are
defiied as tools. This includes the spectmm of support software from project management
through code development, configuration management and life cycle support. Tools are not
restricted to only those soflwme items normafly associated with program generation, such as
editors, compilers, debuggers, and linker-loaders. Groups of tools that are composed of a
number of independent but interrelated programs (such as a debugger which is related to a

6 me CMS establishes interfaCe re~u~ernentsspecific compler) are”referred to as tool sets.
for the transportabifity of Ada tool sets to be used in DoD APSES. Strict adherence to this
interface set will ensure that Ada tools md tool sets will possess a high degree of
transportabifity across conforming APSES. Where tools function as a set, the CAfS facilitates
transportabdity of the tool set as a whole. Individual tools in thk set might not be
individually transportable because the y depend on inputs from other tools in the set.

The scope of the CAIS includes interfaces to those services, traditionally provided by an
operating system, that affect tool transportabdity. The CAIS is intended to provide the
transportability imerfaces most often required by common software development tools and
includes the following interface areas:

a. Node Model. ‘Ilk, area presents a model for the CAIS in which contents,
relationships and attributes of CAIS entities are defied. Also included are the
foundations for access control and access synchronization.

4 ANSIML-SID-18 15A 1983.

5KAPSEInterface Team: Public Report, Volume1, 1Aprit19S%p. Cl.

6Requirements for MO Programming Support Environments, STONE W Depamnent of Defen.v%February
1980.

Downloaded from http://www.everyspec.com

. . . .

1.1 DOD-S~”: 1838
PURPOSE . . SCOPE

b. Processes. This area covers program ir@ocatioritid control.
. .

c. Input and Output. This area covers fide input. and output, basic device irrput and

output support, speciaf device control” facilities, and interprocess
communication.

d. Utilities. This area covers list operations useful for manipulation of parameters

and attribute vahres. .,, ., .,,

e. Pragmatic. This area presents tie pragmatic limitations that. a conforming
C~S implementation is alfowed to’ impOse. “.

.,,

The CAIS as specitled in this document is L@ieved to provide the tool writer with significant
advantages in tool portability, since the most cmcial host dependencies are trrmsparendy
encapsulated by the interfaces of the CAIS.

,,

The CAIS is not a replacement for a host operating system. It standardizes those tool-to-host
interfaces that are most crucial for tool portability.. Wter less frequently used or inherently
host-dependent interfaces must complement, the CAIS, ig order. to provide a baais for the
construction of an APSE. The degree of portability of tools will dewmd on the degree to
which they can obtain the required functionality of host interfaces through the CAIS, rather
than through host-dependent interfaces.

It is assumed that the reader of this document does not have a detaifed knowledge of
Operathg systems concepts and the Ada progr -g language, but is familiar enough with
these topics to understand the concepts defined imd used herein. ●

,,, .
1.2 Application Guidance

The CAIS applies to alI APSES,’ in partictda those” which are to become the basic software
life-cycle environments for DoD mission-critical computer systems (MCCS). It is being
issued as a militmy standard in order to aflow its application to government contracts.
InitiaIly the principal purpose of such an application is to allow contracts to specify the usc
of the CAIS in experimental implementations whose objective is to learn “about the viability,
feasibdity, isnplementabflity and usability of the interface, set as a component of a
programming suppori environment. Implementations of this proposed interface set should
provide knowledge about the implementation of its”,featuses and feedback to the CAIS
designers relevant to the development of Revision A of the CAIS.

. .
Proper application of this standqd is as follows: (1]‘ prototype implementations of the
irtterface set, either wholly or in parG (2) prototype implemental ions of tools written to utilize
the CAIS interface (3) implementation s~udies designed for such purposes as determining
the probable ease of implementing the CAN on new ,owating systems or bare machines;
and (4) experimental studies, desi~ed to utilize” a prototype “CAIS an~or tool implementation
in order to gather information &gard,ing ,perforrq+nce; usabiIit y, viabilit y, etc.

...-...:.- ,, ..,:,. ,,.

It is ‘mticipated that &e”~success of these iruplementatiori experiments will establish the
viability, feasibility, implementability and, usabifity of the interface set. When these
properties have been s~isfactorily dernonstrated,the standard wilf be mature enough, for use
on-actual development projects. It is also ‘mticipated .tiat spch experimentation will guide the o
manner in which the standard will be revised in the future.

.

—.

-2

Downloaded from http://www.everyspec.com

\

DOD-STD-1838 2,1
REFERENCED DOCUMENTS GOVERNMENTDOCDMENTS

2. REFERENCED DOCUMENTS

2.1 Government documents

Unless otherwise specified, the following specifications, standards, and handbooks of the
issue listed in that issue of the Department of Defense Index of Specifications and Standards
(DoDISS) specified in the solicitation form a part of this standmd to the extent speciiled
herein.

[1815A]: Reference Manual for the Ada Programming Language, ANSIIMIL-STD-1815A;
United States Department of Defense; January 1983.

[962A]: Military Standards and Handbook, Preparation of, MIL-STD-962A; United States
Department of Defense; 26 October 1984.

[STONEMAN]: Requirements for Ada Programming Support Environments, STONEM~,
Department of Defense; February 1980.

[TCSEC]: Department of Defense Trusted Computer System Evaluation Criteria;
Department of Defense Computer Security Center, CSC-STD-001-83, 15 August 1983.
(Application for copies should be addressed to Department of Defense, Computer Security
Center, Office of Standards and Products, Attention: Chief, Computer Security Standards,
Fort George G. Meade, MD 20755.)

(Copies of specifications, standards, handbooks, drawings,. and publications required by
contractors in connection with specific acquisition functions should be obtained from the
contracting activity or as directed by the contracting officer.)

2.2 other publications

The following documents form a part of this standard to the extent specitled herein. Unless
otherwise specified, the issues of the documents which are DoD adopted shaIl be those listed
irr the issue of the DoDISS specified in the solicitation. The issues of documents which have
not been adopted shall be those in effect on the date of the cited DoDLSS.

[ANSI 73a]: American National Standards Institute, Recorded Magnetic Tape for
Information Interchange (800 CPI, NRZI) (ANSI Standard x3.22-1973). (Application for
copies should be addressed to American National Standards Institute, Inc., 1430 Broadway,
New York, NY 10018.)

[ANSI 73b]: American National Standards Institute, Recorded Magnetic ‘Tape for
Information Interchange (1600”‘CPI, PE) (ANSI Standard x3.39-1973). (Application for
copies should be addressed to .b-sericarr National Standards Irrstitute, Inc., 1430 Broadway,
New York, NY 10018.) .,

[ANSI 76]: American National Standads Institute, Recorded Magnetic Tape for Information
Interchange (6250 CPI, Group-coded Recording) (ANSI Standard x3.54-1976). (Application

3

Downloaded from http://www.everyspec.com

2.2 DOD-STD- 1838
“OT~R PUBLICATIONS REFERENCED DOCUMENTS

for copies should be addressed to American Nationaf Standards Institute, Inc., 1430
Broadway, New York, NY 10018.) ●
[ANSI 78]: American National Standards Institute, Magnetic Tape Labels and File Structure

for Information Interchange (ANSI Standard x3.27-1978). (Application for copies should be
addressed to American National Standards Institute, Igc., 1430 Broadway, New York, NY
10018.)

[ANSI 79]: American National Standards Institute, Additional Controls for Use with
American National Standard Code for Information. Interchange (ANSI Standard
X3.64-1979). (Application for copies should be addressed to American National Standards
Institute, Inc., 1430 Broadway, New York, NY 10018.)

[DACS]: DACS Glossary, a Bibliography of Sojiware’Engineering Terms, GLOS-I; October
1979, Data and Analysis Center for Software. (Application for copies should be addressed to
Data and Analysis Center for Software, RADC/ISISI, Griffiss AFB, NY 13441,)

[IEEE]: IEEE Standard Glossary of Soflware Engineering Terminology, ANSIIIEEE Std
729-1983. (Application for copies should be addressed to Sales Department, American
National Standards Institute, 1430 Broadway, New York, NY 10018.)

[1S0 76a]: 1S0 1863, Information Processing -9 track, 12,7 mm (0.5 in) wide magnetic tape
for information interchange recorded at 32 rpmm (800 cpi). (Application for copies should
be addressed to International Standards Organization (1S0), 1 sue de Varembe, Case Postale
56, GH12111 Geneva 20, Switzerland) ●
[1S076b]: ISO 3788, Information Processing -9 track, 12,7 mm (0.5 in) wide magnetic tape

for information interchange recorded at 63 rpmm (1600 cpi) phase encoded. (Application for
copies should be addressed to International Standards Organization (1S0), 1 rue de Varembe,
Case Postafe 56, GH 12111 Geneva 20, Switzerland)

[1S0 84]: ISO 5652, Information Processing -9 track, 12,7 mm (0.5 in) wide magnetic tape
for information interchange - Format and recording using group coding at 246 cpmm (6250
cpi). (Application for copies should be addressed to International Standards Organization
(1S0), 1 rue de Varembe, Case Postale 56, GH12 111 Geneva 20, Switzerland)

[UK Ada Study]: United Kingdom Ada Study Final Technical Report; Volume 1, London,
Department of Industry, 1981. (Application for copies should be addressed to Scientific
Information Office, British Defence Staff, British Embassy, 3100 Massachusetts Avenue,
NW, Washington, D.C. 20008,)

[WEBS]: Webster’s Ninth New Collegiate Dictionary; Merriam-Webster Inc., Springfield,
Massachusetts, 1985.

(Nongovemment standards are generally available for reference from libraries. They are also
distributed among nongovemment standards bodies and using Federal agencies.)

● ’

4

Downloaded from http://www.everyspec.com

DOD-STD-1838 2.3

I REFERENCED DOCUMENTS ORDER OF PRECEDENCE

● 2.3 order of precedence

In the event of a conflict between the text of this standard and the references cited herein, the
text of this standard shaIl take precedence,

2.4 Source of documents

Copies of listed military standards, specfilcations, and associated documents listed in the
Department of Defense Index of Specifications and Standards, are available tlom the
Department of Defense Single Stock Point, Commanding Officer,’ Naval Publications and
Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. Copies of industry association
documents should be obtained from the sponsoring industry association, Copies of all other
listed documents should be obtained from the contracting activity or as directed by the
contracting officer.

l“”
.,.>.

“1

I

o

5/6

-,

..

Downloaded from http://www.everyspec.com

I
DOD-STD-1838 3.1

DEFINITIONS ABORT

3. DEFINITIONS

The following is an alphabetical listing of terms which are used in the description of the
CAIS. Where a document named in Section 2 was used to obtain the definition. the definition
is preceded .by a bracketed reference to that document. Definitions that have Men interpreted
and tailored to fit the CAIS include the phrase “in the CAIS” as part of that definition.

3.1 abort. ~EEE] To terminate a process prior to completion.

3.2 access. ~CSEC] A specific type of interaction between a subject and an object that
results in the flow of information from one to the other. See also access to a node.

3.3 access checking. The act of determining the access rights, checking them against those
rights reqtnred for the intended operation, and either permitting or denying dre intended
operation.

3A access control. ~CSEC] (1) discretionary access control: a means of restricting access
to objects based on the identity of subjects and/or groups to which they belong. The controls
are discretionary in the sense that a subject with a certain access permission is capable of
passing that permission (perhaps indirectly) on to any other subject (unless restrained by
mandatory access control), (2) mandatory access control: a means of restricting access to
objects based on the sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access information of such
sensitivityy, In the CAM, access control refers to all the aspects of controlling access to
information. It consists of access rights and access checking.

3.5 access relationship. A relationship of the predefmed relation ACCESS.

3.6 access right constraints. The restrictions placed on certain kinds of operations by
access control.

3.7 access rights. Descriptions of the kinds of operations that processes are allowed to
perform on nodes.

3.8 access to a node. Reading or writing of the contents of the node, reading or writing of
attributes of the node, reading or writing of relationships emanating from a node or of their
attributes, and traversing a node as implied by a pathname.

3.9 accessible. A node is accessible if the current process as a subject has sufficient
discretionary access rights to have knowledge of the existence of the node as an object and if
mandatory access controls permit the current process as a subject to have knowledge of the
existence of the node as an object. In the CAIS, a node is accessible if the current process has
(adopted a role which haa) been granted at least the access right EXISTENCE to that node
and mandatory access control rules permit the process to have knowledge of the existence of
the node.

.-

.

7

Downloaded from http://www.everyspec.com

3.10
ACTIVE PO.$ITION

3.10 active position: The position
performed.

DOD-STD-1838
DEF’EWTIONS

at which an operation on a terminal device is to be. ●
3.11 Ada Programming Support Environment (APSE). [UK Ada Study, STONEMAN]
A set of hmdware and software facimes whose purpose N to support the development and
maintenance of Ada applications software throughout its life cycle with particular emphasis
on software for embedded computer applications. The principal features are the database, the
interfaces and the tool set.

3.12 adopt a role. The action of a process to acquire the access rights which have been, or
will be, granted to adopters of that role; iri the CAIS this is accomplished by establishing a
seconday relationship of the predefmed relation ADOFTED_ROLE from the process node
to the group node representing the role.

3.13 advance the active position. Scroll, page or form terminal: Occurs whenever (i) the
row number of a new posmon IS greater than the row number of the old or (ii) the row
number of the new position is the mine and the column number of the new position is greater
than that of the old. “ ,.

3.14 approved access rights. Approved access rights are access rights whose names appear
in the result mg_nghts_hst of ariy grant_item of those GRANT attribute values for which
either (1) no necessary_right is’given’ or’ (2) the necessary_right names an approved access
right (under fiiite recursive application of this definition). See Appendix D for the
definitions of resulting_rights_list, gramt;item, and necessary_right.

,, ”.,, ●
3.15 area qualifier. A designator for the beginning of a qualiiled area.

,.. .,

3:16 attribute. A value named by an. attribute n~e ~d associated with a node or
relatiomich’provides information about, that node or relationship such as the kind of a
node or the invocation parametersofa process. This value is a list.

3.17 attribute iterator. See iterator, ‘

3.18 base node. A node that serves as the starring point, usually for a path element or a
patfurame. “

3.19 canonical list text representation. Tfie result of transforming a list representation to
list text. .

‘.\..\

3.20’ckrsed node handle. A node handfe that is not associated with a particular node.; A
closed node handle cannot be used to access any node.

,, .,.,..:

3.21 contents. A fde or process associated with a CAIS node. In the CAIS, a node is said
to contain Its contents.-;; ’,! ,:;:~ : ~,,

!.?,

Downloaded from http://www.everyspec.com

‘o

I

o

DOD-STD-1838 3.22
DEFINITIONS COPY QUEUE

3.22 copy queue. A queue with initial contents that are the same as the contents of artother
fide in which all write operations append information to the end of the queue and all read
operations are destructive.

3.23 coupled file. A secondary storage fiie (containing either text or sequential elements)
used to initmfize a mimic queue file and which is mutually dependent upon the mimic queue
fide.

3.24 current job. The process node tree containing the current process node; the root
process node of this tree is the target node of a secondary relationship of the predefmed
relation CURRENT.JOB.

3.25 current linear list. A linear list, within a list structure, to which the linear list
maniprdatlons urtphcitly refer.” Exactly one current linear list is associated with each LIST_
TYPE value.’

3.26 current node. The node that is currently the focus or context for the activities of the
current process; this node is the target node of a secondary relationship of the predefmed
relation CURRENT_NODE.

3.27 current process. The currently executing process making the call to a CAIS operation.
Pathnames; are interpreted in the context of the current process.

3.28 current user. The user’s top-level node; it is the target node of the secondary
relationship of the predefine relation CURRENT_USER.

3.29 default group node. A group node that is the target of a secondary relationship of the
predehed relation DEFAULT_ROLE from either (i) a top-level user node or (ii) a node that
represents the executable image of a program. No node may have multiple default group
nodes ~

3.30 dependent, process. A process other than a root process.
/

3.31 device. [WEBS] A piece of equipment .or a mechanism designed to serve a special
purpose or perform a special hmction.

3.32 device file. An external fiie that represents a device; in the CAIS, the predefmed
device fries are magnetic tape drive files and terminal flies.

3.33 :device name. The key of a primary relationship of the predefine relation DEVICE

3.34 discretionary access control. See access control.
,.,

3.35 element. (of a file) A value of the generic data type with which the input and output
packa-urstantiated (see [1815A] 14.1, 14.2, 14.2.2, and 14.2.4).

9

Downloaded from http://www.everyspec.com

+-

,.

3.36 DOD-STD- 1838

EkWTY LtST DEFtNtTIONS

3.36 empty list. A linear list that contains no ‘items. It is not considered to be either a named
list or an unnamed list. o

3.37 end petition. ‘fle position of a form identified by the highest row and column indices
of the form.

3.38 external file. (see [18 15A] 14. 1(1) based on the definition of Ada external file)
Values input from the external environment of “dreprogram, or output to the environment, are
considered to occupy external fdes. An external fde can be anything extemat to the program
that can produce a value to be read or receive ‘a value to be written.

3.39 file. See external ffle.—

3.40 file handle. M object of t~ FILE_TYPE which is used to identify m internal fide

3.41 file node. A node that contains art Ada external fiie, e.g., a host system fde, a device,
or a queue.

3.42 form. A two-dimensional matrix of chmacter positions.

3.43 group. A set of users; in the CAIS, a group is represented by a group node.

3.44 group name. The ,key of a primary relationship of the predefirred relation GROUP
emanatrng from the system-level node or of a secondary relationship of the predefmed
relation GROUP emanating from” a process node; ●
3.45 group node. A structural node representing a group. This node may have emanating
relationships of, the predefmed relations @TE~AL_MEMBER and DOT to other group
nodes.

3.46 identification of a node. A means to identify a node; in the CARS, identification of a
node i@ovlded enher by a pathname or by spqcifyirrg a base node and the identification of a
relationship emanating from the base node by means of its relation name and a relationship
key designator. ~” ‘

3.47. ident’itication of a relationship. A means to identify a relationship; in the CAIS,
identi~lcatlon of a relationship IS provided by specifying the base node from which it
emanates, its relation name and its relationship key in terms of a relationship key designator.

3.48 identifier text. ,&s external representation of an identifier vafue of a list item.
.,.

3.49 illegal identification. A node identi~cation iri which the pathmune or the relationship
key or relation name is syntacticafIy jllegal with respect “to the syntax defined in Table I
(Pathname BNF), page 32.

.,.
,..

10

Downloaded from http://www.everyspec.com

●

●

DOD-STD-1838 3.50

DEFINITIONS INACCESSIBLE

3.50 inaccessible. A node is” inacce&ible” if. the. current process node does not have
sufficient discretionary access’ control rights to have knowledge of the node’s existence or if
mandatory access controls prevent information flow from the node to the current process.

3.51 inheritable. A properry of a secondary relationship that describes whether or not it is
copied when the node from which it emanates is copied. Also, a property of a secondary
relationship emanating from a creating process node that describes whether or not it is
copied, upon process creation, to emanate from a newly created process node. In the CAIS, a
boolean predefine attribute INHERITABLE on relationships establishes whether or not the
relationships are inheritable.

3.52 initiate. To place a program into execution; irr the CAIS, this means a process node is
create~ocess is created as its contents, required resources are allocated to the process,
and the process is starred.

3.53

3.54

3.55

3.56

initiated process. The process whose program has been placed into execution.

initiating process. The process placing a program into execution.

interface. [DACS] A shared boundary.

internal tile. A file which is internal to a CAIS process. Such a ffle is identitled by a
fide hancue.

3.57 interoperability. The” abili~ of APSES to exchange databise objects and their
relationships in forms usabIe by tools and user programs without conversion.. ‘ ,

3.58 item name. A name that maybe associated with a list item.

3.59 item value. A value associated with a list item. There are five kinds of values that an
item can have: string, integer, floating point number, identifier and Hnear list.

3.60 iterator. A variable which provides the bookkeeping information necessary for.—
iteration over nodes (a node iterator) or attributes (an attribute iterator).

3.61 job. A process node tree, spanned by primary relationship(s), which develops under a
root p~ess node as other (dependent) processes are initiated for the user.

3.62 ~. See relationship key. The key of a node is the relationship key of the last path
element of the node’s pathname.

3.63 latest key. The final !&t of a key that is, automatically assigned Iexicographicafly
follow-mg all previous keys for the same relation names and initial relationship key charactex
sequence for a given node.

Downloaded from http://www.everyspec.com

3.64 DOD-STD:1838
LINEAR LIST DEFINITIONS

3.64 linear list. A linearly ordered set of data elements called list items.

●
3.65 list. [IEEE] An ordered set of items of data. In the CAIS, an entity of type LIST-~pE
whose~ahre is a linearly ordered set of data elements or is empty.

3.66

3.67

3.68

3.69

list item. A data element in a list.
— ,

magnetic tape drive file. Arr external fiie that represents a magnetic tape drive.

mandatory access control. See access conmol. ,

mimic queue. A queue with “’init~klcontents that are the same as the contents of
airother secondary storage fiie and that is mutually dependent with that ffle, in which all write
operations appcrid information, to the end of the fide and queue and all read operations are.
destructive on the queue.

3.70 name. An identifier by which a thing is known.

3.71 named item. A list item that has a name associated with it, i.e., a list item that has ~
item name.

3.72 named list. A non-empty lin&r list that contains only named items. ‘”

3.73 nested list structure. A linear list togedrer with all of its nested sublists (and all of
their n~kely including all the nested sublists). o

3.74 nested sublist. A linear list item of a lihea list is called a nested sqblist of the linear
list containing the list item.

3.75 node. A representation withirr the CAIS of an entity relevant to the APSE.

3.76 node handle. An Ada object of type NODE_TyPE which is used to identify a CMS
node for access, deletion, or creation, it is internal to a process.

3.77 node iteratoi. See iterator. ‘

3.78 node kind. A predefiied attribute on. every relationship indicating the kind of the
target node; the value of the attribute is STRUCTURAL, PROCESS or FILE.

._

3.79 non-existing node. A node which has never been created.

3.80 nonsynchronous.’ queue. A queue which P&inks & impIementation-dependent
number of write .operatlons to occur independently of atry read operations on the queue.

3.81 null key. A single distinguished key represented by the empty string.

12

Downloaded from http://www.everyspec.com

DOD-STD.1838 3.82
DEFU.IITTONS OBJECT

3.82 object. UCSEC] A passive entity that contains or receives information. Access to an
object~ntially impIies access to the information it contains. In the CAIS, an object is any
node to be accessed.

3.83 obtainable. A node is obtainable if it has been created and its primary relationship has
not been deleted.

3.84 open file handle. A file handfe that is associated with a particular file, A fde handle
that is not open cannot be used to access any fde.

3.85 open node handle. A node handfe that is associated with a particular node. A node
handle that is not open cannot be used to access any node,

3.86 parent. The source node of a primary relationship; also the target node of a secondary
relatio=of the predefmed relation PARENT.

3.87 pat h. A sequence of relationships connecting one node to another. Staining from a
given~e, a path is followed by traversing a sequence of relationships until the desired
node is reached.

3.88 path element. A portion of a pathname representing the traversal of a single
relationship, It consists of a relation name and relationship key.

3.89 pathname. A name for a path consisting of the concatenation of the names of th~
traver~nshlps in the path in the same order in ivhich they W traversed.,.,

3.90 position. (of a terminal) A place in an output device in which a single, printable ASCII
character may be graphically displayed.

3.91 potential member. A group that may dynamically acquire membership in another
group; rn the CAIS, a group node is termed a potentiaf membei of a group if it is reachable
from the node representing the group by traversing ordy relationships of ths predefmed
relations DOT and POTENTIAL.MEMBER.

/

3.92 pragmatic. Constraints imposed by an implementation that are not defined by the
syntax or semantics of the CAIS.

3.93 precede the active position. Scroll, page or forru terminak OCCUISwhenever (i) the
row number of a new position N less than the row number of the old or (ii) the row number
of the new position is the same and”the column number of the new position is less than that
of the old.

,.

3.94 primary relationship. The inhial ‘relationship established from “’an,exist!ng node to a
newly created node dumg its creation. The existence of a node .is ‘determined by the”
existence of the primary relationship of which it is the target node.

10
13

I

1

Downloaded from http://www.everyspec.com

3.95 DOD-STD-1838
PRoCESS DEFINITIONS

3.95 process. The execution of an Ada program, including all its tasks

3.96 process node. A node whose contents represent a CAIS process.

3.97 process tree. For a given process, the set of processes consisting of the given process
plus each process whose node’s unique prirmwy path traverses the node of the given process.

3.98 program. [18 15A] A progrrart is composed of a number of compilation units, one of
which~program called the main program.

3.99 qualified area. A contiguous group of positions irra form that share a common set of
charactenstlcs.

3.100 queue. flEEE] A list that is accessed in a fiit-in, fit-out (FIFO) manner.

3.101 queue file. An external fde rtrat represents a sequence of information that is accessed
in a fust-rn, fiit-out reamer. There are three kinds of queue ffles in the CMS: SO1O,COPY,
and mimic queue fries.

3.102 relation. In the CM’S node model, a class of relationships shining the same name.

3.103 relation name. we string that identifies a relation.
,(. :.1.,.,.’,

,/
3.104 relationship. ~ the CAIS ,node model, art edge of the directed graph which emanates
from a source” node arrd terminates at a tafget”node. A relatioriship is an instance of a relation. ●
A relationship is either a prirh~ relationship of a secondary relationship.

. ..!

3.105, relationship key. The string that distin~i:hes a relationship from other relationships
having the same relation ir~e’iind em&itirt#from. the same no$.

,.. ,:, ,, .,41..

3.106 relationship key designator. The ,way that relationship keys are designated to the
interfaces. There are two forms of_relationshlp key designators: an identifier (or the empty
string), or the string “#”, optionally preceded by an identifier prefm.

3.107 role. A role is associated with a group node. [t is the set of all relationships of the
predefm~ relation ACCESS (caiIeti accessrelationships) emanating from nodes and targeted
at that group node or anY of the group nodes reachable recursively from that &ouP node by

secondary relationships of ‘the predefmed relation PARENT.

3.108” ‘root process node. The iriitial process node created when a user logs onto an APSE
or when a new Job M‘created via the CREATE_JOB interface.

●

14

Downloaded from http://www.everyspec.com

1.

io

DOD-STTJ-1838 3.110
DEFINITIONS SECONDARY STORAGE FILE

3.110 secondary storage file. An external file that represents a disk or other random access
storage fde.

3.111 security level. [TCSEC] The combination of a hleratchical classification and a set of
non-h jerarchlcal categories that represents the sensitivity of information.

, .. .

3.112 solo queue. A queue, initially empty, in which d write operations append
information to the end and all read operations are destructive.

3.113 source node. The node from which a relationship emanates.

3.114 start position. (of a form terminal) The position of a form identified by row one,
column one. /-

3.115 structural node. A node without contents. Stmctural nodes are used srnctly as
holders of relationships and attributes.

3.116 subject. ~CSEC] An active entity, generally in the form of a person, process, or
device=auses information to flow among objects or changes the system state. In the
CAIS, a subject is any process (acting on behalf of a given user) performing an operation
requiring access to an object.

3. I 17 suspend. To stop the execution of a process such that it can be resumed.

3.118 synchronization. The act of forcirrg all data written to the internal file identified by a
scroll or page termural fde handle to be transmitted to the contents of the fde node with
which the terminal fde handle is associated.

3.119 synchronous queue. A queue which contains no elements; a write operation on the
queue is not completed untif a corresponding read operation on the same queue has been
completed.

3.120 syste@evel node. The root of the CAIS primary rdationstdp tree which spans the
entire nit.ructure.

3.121 target node. The node at which a relationship terminates.

3.122 task. [18 15A] A task operates in parallel with other parts of the program.—

3.123 terminal file. An external file that represents an interactive terminal device. There
are three km ds of terminal ffles in the CAIS: scroll, page, and form terminals.

I

3.124 termination of a process. Termination (see [1815A] 9.4) of the execution of the
subprogram wluch M the maur program (see [1815A] 10.1) of the process.

15

Downloaded from http://www.everyspec.com

3125 DOD-STD-1838

,___

TOrcm DF.FUWITONS

3.125 token. An internal representation of an identifier value of a list item which can be
manipuias a list item. ●
3.126 tool. flEEE-sof&m tool] Acomputer progrmused tohelpdevelop; test, mdyze,
ormaiiiiiu another computer program or its documentation; for example, automated design
tool, compiler, test tool, maintenance tool.

3.127 tool sets. [STONEMAN] Groups of tools that are composed of a number of
indepen~ interrelated programs (such as a debugger which is related to a specific
compiler).

3.128 top-level node. Anode whose parent is the system-level node; maybe astmctural
node representing auseror group orafde node representing a device.

3.129 track. Arr open node handle or secondary relationship is guaranteed always to refer
to the same node, regardfess of any changes to relationships that could cause pathnarnes to

‘. become illegal or to refer to different nodes. An open node handle is said tot rack the no&to

‘.., which it refers. Simiiarly, secondary relationships track their target nodes.

*.
3.130 transportability: The abifity of a tool to be installed on a d~ferent Kernel Ada
Programming .%pporx Environment (KAPSE); the tool must perform with the same
functionality in both APSES. Transportability i.s measured in the degree to which this
installation can be accomplished without reprogramming.

3.13 I traversal of a node. Traversal of a relationship emanating from the node.

3.132 traversal of a relationship. The act of following a relationship from its source node
to its target node.

3.133 unadopt a role. The action of a process to @sown any of its adopted roles, excepting
the roIe of the current use~ in the CAIS thk is accomplished by deleting a secondary
relationship of the predefine relation ADOPTED_ROLE from a process node to a group
node representing the role.

3.134 undefined token. A distinguished value of a variable of type TO~N_TYpE that
represents an undefiie~value for that variable.

3.135 unique primary path. The path from the system-level node to a given node
traversing only primary relationships. Every node that is not unobtainable has a unique
primary path.

3.136 unique primary patbname. The pathname associated with the orrique primary path.

3.137 unnamed item.
has no~

.

A list item that has no name associated with it, i.e., a list item that

Downloaded from http://www.everyspec.com

DOD-STD-1838 3.138
DEFINITIONS UNNAMED LIST .

3.138 unnamed list. A non-empty linear list that contains only unnamed items.
.—

3.139 unobtainable. A node is Unobtainable if it is not the target node of any primary
relationship.

3.140 user. An individual, project, or other organizational entity. In the CAIS, each user is
associated with a top-level node.

3.141. user name. The key of a primary relationship of the predefmed relation USER,

,, ,., .

,>, . ,,. !.

17/18

.—.

Downloaded from http://www.everyspec.com

GENERAL REQUIREMENTS

DoD-STD-1838 4.1

.

INTRODUCTION

1.

1’

\

1,

~●

o

4. GENERAL REQUIREMENTS

4.1 Introduction

The CAIS provides interfaces for data storage and retrievrd, data transmission to and from
external devices, and activation of processes and control of their execution. In order to
achieve uniformity in the interfaces, a single model is used to describe consistently general
data storage, devices and executing programs. This approach provides a single model for
understanding the CAIS concepts; it provides a uniform understanding of and emphasis on :
data storage aod program control; and it provides a consistent way of expressing
interrelations both within and between data and executing programs. This unified model is
referred to as the node model.

Section 4.2 discusses how the interfaces me described in the remainder of Section 4 and in
Section 5. Section 4.3 describes the node model. Section 4.4 describes the mandatory and
discretionary access control model incorporated in the CAIS. Section 5 provides detailed
descriptions of the interfaces and of limits and constraints not defined by the interfaces.
Section 6 provides the relevant keywords for use by automated document retrievaJ systems,

Appendm A provides descriptions of the entities in the CAIS which are predefmed.
Appendix B provides a set of the Ada package specifications which have been organized for “‘ “-
compilation of the CAtS interfaces. The material contained in this Appendix is a mandatory t 4
part of the standard, Appendix C provides a list of all CAIS procedures and functions in ~
order to aflow the reader ready access to a description of a particular capability in the CAIS, ‘‘ ~
Appendix D summarizes the syntax descriptions given throughout the document, >

Appendix E describes what an implementation-defined replacement for Package CAIS_
ACCESS_CONTROL_iW4NAGEMENT as described in Section 5.1.4 should contain. The
material contained in this Appendm is a mandatory part of the standard.

Appendix F describes how and where those aspects of a CAIS implementation which we
:,:
.2

implementation-dependent must be documented. The material contained in this Appendix is
\

a mandatory part of the standard.
:...
$.~

Examples contairted in the document are not part of the standard.
;.
>:..
::

4.2 Method of description ..

The specifications of the CAIS interfaces are divided into two parts:

a. the syntax as defined by canonical Ada package specifications, and

b, the semantics as defined by the descriptions both of the general node model and
.

of the particular packages and procedures. :F:
~.

The Ada package specifications as given in Appendix B of this document are termed
canonical because they are representative of the form of the allowable actuaf Ada package

swcifications in ~Y P~icul~ CMS implementation. The packages which together provide
2.
;:,.

an implementation of these specifications must have indistinguishable semantics from those .

stated in this document.
.:

I 19

L4
r

Downloaded from http://www.everyspec.com

:./

-:.
:.

.

4.2,1 DOD-S?D-1838

ALLOWABLE DIFFERENCES GENERAL REQUIREMENTS

4.2.1 Allowable differences

The packages which together provide a particular implementation of the CAIS must have the
following properties:

o

\
a. The packages of a particular CAIS implementation are allowed to import

additional library units; this may cause nqne conflicts with the names of libray
units ,required by otherwise legal and non-erroneOus Ada Progr~s.
Furthermore, a particulw. CAIS implementation may extend the enumeration
types b the package ‘CAIS_DEVICES yidr addition~ enumeration liter~s; this
may cause name conflicts by virtue of section 8.3 and 8.4 of[18 15A]. Barring
such name conflicts, however, any Ada program that is legal and not erroneous
in the presence of the canonical package specifications as library units must be
legal and not erroneous if the canonicaf packages are replaced by the packages
of a particular CAIS implementation. [Note: It is recommended, although not
required, that any Ada program that is illegal in the presence of the canonical
package specifications as library units is also iUegal if the canonical packages
are replaced by the packages of a particular CAIS implementation.]

b. The CAIS interfaces provided by the subprograms declared in the packages of a
particular CAIS implementation must have semantics whose effects are

.. indistinguishable from those in the standard. +

The actual Ada package specifications of .a particuku implementation may differ from the
carronicaI specifications as long as properties (a) ,md (b) are preserved.

4.2.2 Semantic descriptions

The’ interface semantics are described in most cases through n~ative. These narratives are
divided into as many as five paragraphs and appear in the following format:

..
Purpose:.. 2: ,,

This paragraph describes the semantics of the interface.

Parameters: :

PARAMETER briefly describes each of the parameters.

Exceptions:

EXCEPTION briefly describes the conditions under which each exception is raised.

.

m

Downloaded from http://www.everyspec.com

DOD.STD-1838 4.2.2

GENERAL REQuIREMENTS SEMANTIC DESCRIPTIONS

Additionrd Interfaces:

.-
--
-.
--
--
-.
--
--
--
--
-.
--

Notes:

In cases where an interface is overloaded and the additional
versions can be described in terms of the basic form of the

interface and other CAIS inter faces, these ~e=sions ===

&scribed in this paragraph using Ada. This mathod of
presenting the semantics of the Additional Interfaces is a
conceptual model. It does not imply ttaat the Additional
Interfaces must be bplamented in terms of the existing ones

exactly as specified, merely that their behavior is eq+valent

to such an implementation. The semantics described in the

Purpose, Parameters and Except ions paragraphs apply only to

the principal interface; the Additional Interfaces may have
additional samantics as implied by the given bodies.

Any relevant information that does not fall under one of the previous four headings is
included in th~ paragraph.

4.2.3 Typographical conventions

Thii document follows the typographical conventions of [.1815A] where these are not in
conflict with those of [962A]. In particular

a. boldface type is used for Ada language reserved words,

b. UPPER CASE is used for Ada language identifiers which are not reserved
words,

c. in the ;ext, syntactic category names are written in normal typeface with any
embedded underscores removed,

d. in the text, where reference is made to the actual vahre of an Ada variable (for
example, a procedure parameter), the Ada name is used in normal typeface.
However, where reference is made to the Ada object itself (see [1815A] 3.2 for
this use of the word object), then the Ada name is given in upper caxe,
including any embedded underscores. For example, from [1815A] 14.2.1
paragraphs 17, 18 and 19:

function MODE(FILE: in FILE_TYPE) return FILE_MODE

Returns the current mode of the given fde.

but

,.,

..

.:

The exception STATUS.ERROR is raised if the ftie
is not open.

e. at the place where a technical term is first introduced and defined in the text,
the term is given in an italic typeface. —,

I
21

Downloaded from http://www.everyspec.com

:-.
..

..”
‘ 4

4.3 DOD-STD- 1838
CAISNODEMOD~. . . GENERAL REQUIREMENTS

4.3 ~~lS node model ::
.

The CAfS provides interfaces for administering entities relevant during the software life-
cycle such as fiies, processes and devices. These entities have various properties and may
have a variety of interrelations., The CAIS model uses the concept of a node as the carrier of
irrforma?ion about an entity. It ‘uses the concept of a relariondtip for representing an
interrelation between two entities and the concept of an attribute for representing a property
of an entity or of an interrelation.

The model of the stmcture underlying the CAIS and reflecting the interrelations of entities is
a directed graph of nodes, which form the vertices of the graph, and relationships, which
form the edges of the graph. This model is a conceptual model. It does not imply that an
implementation of the CAM must use a directed graph to represent nodes and their
relationships..,

Both nodes and relationships possess attributes. Attributes of nodes describe properties of the
entities represented by the nodes; attributes of relationships describe properties of the
interrelations represented by the relationships as well as the kind of the target node.

4.3.1 Nodes

The CAIS ident~les tlyee different kinds of nodes: structural nodes, file nodes arrd process
nodes. A node may ,have contents, telat ionships and attributes. The contents VaSY with the

kind of node; a node is said “to contain” its contents. If a node is a file node, it contains an
Ada extemrd fde. There are four kinds of CAIS supported Ada external fdes: secondary
storage, (represented by a host. file), queue (used for interprocess communication), terminal,
and tape drive.’ If a node is a process node, h contains a representation of the execution of an
Ada”program. If a node is a structural node, ithas no contents and the node is used strictly as
a holder of relationships and attributes. The kind of a node is a predefmed and implicitly
established attribute on every relationship which points to the node. Nodes can be created,
renamed, accessed (as part’of other. operations), and deleted.

4.3.2 Processes .,.—

A process ‘is the CMIS rnechanisrn used to represent the execution of arr Ada program. A
process is represented as the contents of ,a process node. Taken together, the process node, its
attributes, relationships’ and contents are used in the CAfS to manage the dynamics of the
execution of a program. Each time executioir of a“program is initiated, a process node is
created, the process is created, the necessary resources to support the inhial execution of the
program are allocated to the process, and execution is starred. It is possible for a process to
request additional resources after execution has txgun. The newly created process is called
the initiated.process, while the process which caused the creation of that process is called the
initiating process.

A single CAfS process “represents the execution of a single Ada program, even when that
program includes multiple tasks. Within the process, Ada tasks execute in parrdlel (proceed
independently) agd synchronize in accordance with the rules in [1815A] 9(5):

22

Downloaded from http://www.everyspec.com

●

I
,

‘o

GENERAL REQUIREMENTS

F%dlel tasks (mtrallel.. ,.. .
logical

DOD-STD-1838

processors) may be

4,3.2

PROCESSES

implemented on multicomputers,
. .

mumprocessors, or wmi interleaved execution on a single ptryslcal processor. (.)ss the other
hand, whenever an implementation cart detect that the same effect can be guaranteed if parts of
the actions of a given [Ada] task are executed by different physical processors acting in parallel,
it may choose to execute them in t!ds way; in such a case several physical processors implement
a single logical processor.

When a task makes a CAfS cafI, execution of that task is blocked until the CAIS call returns
control to the task. Other tasks in the same process may continue to execute in parallel,
subject to the Ada tasking rules. If calls on CAfS interfaces are enacted concurrently, the
CAIS does not specifi their order of execution,

Processes are analogous to Ada tasks in that they execute logically in parallel, have
mechanisms for intecprocess synchronization, and can exchange data with other processes.
However, processes and Ada tasks are dissimilar in certain critical ways. Data, procedures or
tasks in one process cannot be directly referenced from another process. Also, whale tasks in
a program are bound together prior to execution time, processes are not bound together
except by cooperation using CAfS facilities at run time.

4.3.3 Input and output

Ada input and output in Chapter 14 of [1815A] involves the transfer of data to and iiom Ada
external fdes. The underlying model for the contents of a fde node is that of a fide of data
items, accessible either in a sequential order or in a random order (i.e., dtiectly by some
index) through the packages S.pecifled in Section 5.3. These fde nodes may represent disk or
other secondary storage files, queues, or other devices. Devices supported by the CAfS
include magnetic tape drives arrd rerrninals. CALS fde nodes contain Ada external ffles and
aiso represent information about them,

4.3.4 Relationships and relations

The relationships of CAfS nodes form the edges of a directed graph. Relationships are
unidirectional and are said to emanate from a source node and to terminate at a target node.
A relationship may also have attributes describing properties of the relationship or the kind
of its target node. .

Because marry relationships representing many dfferent classes of comections may emanate
from the same source node, the concept of a relation is introduced to categorize the
relationships. Relations identi~ the nature of relationships, and relationships are instances of
relations, Certain basic relations are predefine by the CAIS. Their semantics are explained
in the foUowing sections. Additional predefmed relations ate introduced in Section 5 and are
listed in Appendix A. Relations may also be defined by a user. The CAIS associates only the
relation name with user-defined relations; no other semantics are supported,

Each relationship is identified by a relation nmhe and a relationship key. The relarion name
identifies the relation, and the relationship key distinguishes between multiple relationships
each bearing the same relation name and emanating from a given node.

Nodes in the environment are attainable by following relationships. Operations are provided

I

/’

23

Downloaded from http://www.everyspec.com

.:, ..,.:
,’. ,

.(.’,;
4.3:4 ‘, DOD-S,TD-1838

RE.EATrONSHPS AND RELiTtONS GENERAL REQUIREMENTS

to”rraverse a relationship,. that is, to follow ‘a relationship from its source node to its target
node. ..”. ●
4.3.4.1 Kinds of relationships” “” “,

There are. two kinds of relationships: ,primary and second~. When a node is created, an
initial relationship is established from: some other node to the newly created node. This initial
relationship is called the primary relationship. to thk new node; it is the ordy primary
relationship of which the new. ndde i:, ,a target node. The source node of this initi~
relationship is called the pa:enr. In ~addltlon, the new. node will be cormected back to this
parent via a relationship of the predefiied relation PARENT. There is no requirement that dl
primary relationships emanating from a node have the same relation name. Primary
relationships form a strictly hierwchicaf tree; that is, for every node (except the root) there is
one and ordy one sequence of prirqary relationships leading to it from the node that is the
root of the tree. No. cycIes can be created.@ this tree us~g OflY PrimW relationships. A
node is ob~ainab~e“if it has been “created agd’ its primary relationship has not been deleted.

The primary .relationship is,deleted by ‘DELETE_NODE, DELETE-TREE, or DELETE-JOB
operations. After deletion of the” pririiary relationship to a node, the node is said to be
unobtainable. ~A non-existing node is one which has never been created. RENAME
operations may be used to, make. the primaIY relationship to anode emmate from a different
node which becomes the” new parent of the’ node. ‘fire operations DELETE_NODE,

DELETE_TREE, DELETE_JOB, RE?JAME, ,w!I the ,o?erations creatkg nOdes we the O~Y
operations that manipulate’ prirri+ry relationships. They m&r@r a state in which each node
has exactly one pafent and a unique, primary pa@ame (see SectiOn 4.3.5).

/.,, ,., . ●
A seco~a”~ re~tion~hjp’ is ~arbitr~’ co”~ection which may be established between two

&5ting nodes; @ond& relationships, may form an arbitrary directed graph. User-defined
secondq relationships are created with the CREAT.E_SECONDARY_RELATIONSHIp
procedure,. and deleted with the DEL~E_SECOND~y_RELATIONSHIp procedure.
Secondary “relations.hrps may’ ‘exist to unobtainable’ nodes stice a secondary relationship to
the node could have existed tkfore the ‘deletion of its “priinary relationship and that deletion
does riot affect dre’ ‘second@ relationship. “A RENAME o@xation has no effect on any
second~ relationships which. have the renarped node * a target node, i.e.. the second~
relationships still track the renirned node (see Section 5.1.2.22, page 92). It is a generzd
,underlying principle of @e CAIS” that “CAIS-intemal node identifications used to implement
relationships are irrique”%rd persist. over the; eyenif We mpective nodes we deleted.

,.,

Cer&rt secondti relation&ips ‘mjinheri;uble; UPOS? copyi?tg a node (see Section 5.1.2.20,
page 87 “imdSection 5,1.2.21 ,,page 89), i@eritable ndatibns!ips emanattig from the node Me
‘copied to emanate from the copied node. I Similqdy, upon creation of a. depndent process
node (see Section 5.2, page’ 168),. inheritable r@ationships emanating from the node of the
creating process ,me copied to emanate from the dependerit process node. Thus, an inherited
relationship is unaffected. by any changes to the, original relationship ~d its attributes
Primary relationships are ‘never in+:ritable. Secon@y relationships of user-defined relations
can, u’pon creation of by subsequent calls oi.th~ ipterface S~T–INHE~TANCE, ~ specified
to be inheritable or not inheritable. Secondary relationswlps of sever~ relations p~defmed in
the CAIS are never ikrentable; these relations are EXECuTABLE_~AGE, M~IC–FILE,
DEFAULT.ROLE, STANDMD_INPU’T, STANDARD_OUTPUT, STANDARD_ERROR
and CWNT_NODE. For the. lasr four of these relations a mech~isrn equiv~ent to ●

,’ ,.

.: ’., .,
,’ 24

Downloaded from http://www.everyspec.com

●

:0

DOD-STD-1838 4.3.4.1.
GENERAL REQUIREMENTS RINDS OF RELATIONSHIPS

inheritance is provided by means of default parameters in the interfaces which create process
nodes (see Section 5.2.2, page 172). Secondary relationships of several relations predefmed
in the CAIS are always inheritable; these relations are USER, DEVICE, GROUP,
CURRENT.JOB and Cl-JRRENT_USER. All other secondary relationships of relations
predefiied in the C.AIS ate created as inheritable relationships; however, the inheritance
property can be subsequently changed by calls on SET_WI-IERITANCE.

,,

4.3.4.2 Basic predefine relations

The CAIS predefmes certain relations. Relationships belonging to, a predefine relation
cannot be created, modified or deleted by means of the CAIS interfaces, except where
explicitly noted. The semantics of the predefiied relations which are basic to the node model,
as well as related concepts of the CAIS, are explained in this section and Section 4.4. The
basic predefiied relations explained in this section are USER, DEVICE, JOB, CURRENT_
JOB, CURRENT_USER and CURRENT_NODE. See Appendix A for the list of all
predefine relations.

The CAIS node model incorporates the ‘concept of a system, of which an example is shown
in Figure 1. Thk concept provides the means of administering all the entities represented
within one CAIS implementation. This concept implies the existence of a system-level node
which acts as the root of the CAIS primary relationship tree spanning the entire node
stmcture. The system-level node cannot be accessed explicitly by the user via the CAIS
interfaces. It may only be manipulated by interfaces outside the CALS.

A top-level node is one whose parent is the”system-level node. There am three kinds of top-
Ievel nodes: user and device nodes (explained below) and groupnodes (explained in Section
4.4).

The CAIS node model incorporates the concept of a user. A user may be an indlviduid,
project, or other organizational entity; this concept is not equated with only an individual
person. Each user has one top-level node. This top-level node is a strocturaf node which
represents the user and from it the user can access other structural,’ fde and prmess nodes.
Each user node is reachable from the system-level node along a primary relationship of the
predefine relation USER emanating from the system-level node. The key of this relationship
is the user name, Each user name has a top-level user node associated with it. The CAIS
does not defiie interfaces for creating nodes which represent users; such interfaces are to be
provided outside the C.MS.

The C.41S node model incorporates the concept of devices. Each device is represented by a
fiie node. This fde node is reachable from the system-level node along a primary relationship
of the predefmed relation DEVICE emanating from the system-level node. The key of this
relationship is the device nume. The CAIS does not define interfaces for creating nodes
which represent devices; such interfaces are to be provided outside the CAIS.

Figure 2 shows an example of a hierarchical ~ree formed by priinary relationships. The top-
level user node that is the target node of the primary relationship ‘USER(JONES) has two
relationships emanatirtg from it. The relationship ‘DOT(LOGIN_SCRIPT) has a file node us
its target node and the relationship ‘DOT(TRACKER) hm” a smuctural node as ita target
node. Both of these relationships are primary relationships of the (default) relation DOT (see
Section 4.3.5, page 29). The primary relationship ‘DOT(LANDING_SYSTEM) emanates

Downloaded from http://www.everyspec.com

::

,:

4.3.4,2 DOD-STD- 1838
BAStC PREDEFWED RELATIONS GENERAL REQUIREMENTS

,., ,

‘Z===l

DEVICE (MAGTAPE)

\

n
FILE NODES

o
STRUCTURAL NOOES

.,

i
PRIMARY RELATIONSHIPS

FIGURE 1. CAIS system concept

●

●

●

26

Downloaded from http://www.everyspec.com

I

DOD.STD- 1838 4.3.4.2
GENERAL REQUIREMENTS BASIC PREDEFINE RELATIONS

from the structural node identified by ‘USER(JONES) ‘DOT(TRACKER) and has a structural
node as its target node. The relationship of the user-defied relation WITH_UNIT with

I ,relat ion key ~DAR emanates from thi; strrrctrmd node and has a fde node as its tamet
!node. The top-level user node identified by the relationship ‘USER(TOOLS) has several
primary relationships of the (default) relation DOT emanating from it. The target nodes
identif~ed by two of these relationships, ‘DOT(EDIT) and ‘DOT(CLI), are ffle nodes. These
fde nodes might contain executable images of programs, EDIT and CLI. In addition, another
structural node identified by ‘USER(TOOLS) ‘DOT(TRACKER) is the target node of a
primary relationship of the (default) relation DOT which emanates from the strircturrd node
identified by ‘USER(TOOLS). The fde node identified by ‘USER(TOOLS)’DOT
(TRACKER) ’DOT(SIMULATOR) may have an executable image of a project-spectilc tool,
i.e., specific to the TRACKER project. The top-level stnrcturaf node ‘GROUP(PROJECT) is
a group node (see Section 4.4 2.1) ::? ?he top-level device node ‘DEVICE(CRT) is a fiie
node.

The CAJS node model incorpc, J !,-; :,]e concept of a job. When a user logs onto the APSE or
calls the CREATE_JOB proc~~it,rr. (see Section 5.2.2.4, page 185), a root process node is
created which often represents fi ,-rxnmand interpreter or other user-communication process.
It is left to each CAJS implementation to set up a methodology for users to 10g OntO:Ihe,
APSE and for enforcing any constraints that limit the top-level user nodes at which users
may log on. After logging onto the APSE, the user will be regarded.by the CAJS as the user
associated with the top-level user node at which he logged on. A process node tree; spanned
by primary relationships, develops from the root process node as other processes (called
dependent processes) are irritated for the user. A particular user may have severaf root
process nodes concurrently. Each corresponding process node tree is referred to as a job. The
predefine JOB relation is provided for locating each of the root process nodes. horn the
user’s top-level node. A primary relationship of the predefmed relation JOB emanates from
each user’s top-level node to the root process node of each of the user’s jobs. The key of this
relationship is assigned by the mechanism of interpreting the LATEST_KEY constant (see
Section 4.3.5) unless otherwise specified in the CREATE_JOB procedure call.

While the CAIS does not specify an interface for creating the irritiaf root process node when
a user logs onto the APSE, the effect is to be the same as a calf to the CREATE_JOB’
procedure. The secondary relationships which the implementation must establish are found in
Section 5.2.2 (page 172). In particular, secondary relationships of the predefmed relations
USER and DEVICE must be established, with the appropriate user and device names as
keys. These relationships emanate from the root process node beirrg created to an
implementation-defmed subset of top-level user nodes and fide nodes representing users arid
devices, respectively. Dependent process nodes in the job inherit these relatioriships. File
nodes representing devices and top-level nodes of other users can be reached from a process
node via these secondary relationships of the relation DEVICE or USER and a relationship
key which is interpreted as the respective device or user name.

CURRENT.JOB, CURRENT.USER, and CURRENT_NODE are predefine relations
which provide a convenient means for identifying other CAIS nodes. These relationships
emanate from each process node. The relationship of the predefine relation CURRENT_
JOB always points to the root process node of a process node’s job, i.e., that process node’s
current job. The relationship of the predefmed relation CURRENT_USER always points to
the user’s top-level node, i.e., the current user. The relationship of the uredefmed relation
CURRENINODE can be used to point to a node called the cu>ent no~e which represents

I 27

Downloaded from http://www.everyspec.com

.:

..

K.”

4.3.4.2 DOD. STD- i838

BASIC PREDEFINE RELATIONS GENERAL REQUIREMENTS

,,

DOT

SYSTEM LEVSL NODE

,~fj;~g~

GROUPiPROJECT)

DEVICE (CRT) USER (TCGLS)

b

DOT(TFACNER) DOT(CLI)

DOT(EDIT)
-.

,.

.. ‘;~. :F) ~~~

WITH UNiT(P.ADAR)
.,-

,fg •1 FILE NODES

o

structural Wouss

,.

{

PRINMY RELATIONSHIPS

.,.

FIGURE 2. Tree formed by prinxmy relationships

.m. ;.’.

●

●

●

2s

Downloaded from http://www.everyspec.com

●

DOD-STD-1838 4.3.4.2
GENERALREQUIREMENTS BASICPREDEF!3w3DRELATIONS

the current focus of the process or the context for its activities. The process node cm thus
use the current node for a base node, i.e., a starting point, when specifying pathname}.(see
Section 4.3.5). The CAB requires that, when a root process node is created when the user
logs onto the APSE, it has a ;econdary relationship o~ the predefiied relation CLJRRENT_
NODE pointing to the top-level node for the user. Figure 3 shows an example of some of
these predefine relations.

The node model makes use of the concept of a current process. This concept is implicit in atl
cafls to CAIS operations and refers to the process for the currently executing program
making the call. It defines the context in which the parameters are to be interpreted. In
pakicular, pathnames are deteniined in the context of the current process. ,

o
I

I

‘o

4.3.4.3 Relation names and relationship keys

Relation names have the syntax of Ada identifiers, Relationship keys also have the syntax of
Ada identifiers. In addition, there is a single, distinguished key called the null key which is
represented by the empty string. Within such identifiers upper and lower case are treated as
equivalent. Interfaces which return such identifiers must return afl alphabetic characters in
upper case.

Relations are designated to the interfaces by their names. These names are passed to CkS
interfaces via parameters of the subtype RELA’f’fON_NAME (section 5.1.1, page 54) or
included in pathnames. Relationships are designated by relation riames ~d relationship
keys. Relationship keys are designated to the interfaces by a relationship key designator.
Relationship key designators are passed to CAIS interfaces via parameters of subtype
RELATIONSHIP_KEY (section 5.1.1, page 54) or included in pathnames. Relationship key
designators have two forms: art identifier (or the empty string), or the string “#”, optionally
preceded by an identifier prefm. The relationship key designator “#” is referred to as the
Iarest key, A relationship key designator of the fust form (an identifier or the empty string)
specifies the relationship key. When selecting a relationship, a relationship key designator of
the second form specifies the relationship key of an existing relationship, Iexicographically
last in the sequence of all keys of relationships of the same relation emanating from that node
which begin with the given prefm. When creating a node or relationship, a relationship key
designator of the second form causes a relationship key to be automatically assigned. This
relationship key will Iexicographicalfy follow afl existing relationship keys of relationships
of the same relation emanating from that node which begin with the given prefix.

4.3.5 Paths, pathnames and node identification

Every accessible node may be reached by following a sequence of relationships; this
sequence is called the path to the node. A path starts at a known (not necessarily top-level)
node and follows a sequence of relationships to a desired node. The path from the system-
level node to a given node traversing only primary relationships is called the unique primary
path to the given node.

Paths are specified by parhnames. When a pathname is supplied to or returned from a CAIS
interface, it always refers to a path which starts at the current process no&. Starting from this
node, the path S.pectled by the pathname is followed by traversing a sequence ‘of
relationships until the desired node is reached. The pathnazne for this path is made up of the

I

Downloaded from http://www.everyspec.com

4,3.5 DOD-STD- 1838
PATHS, PATHN~ AND NODE IDENTIFICATION GENER+ REQUIREMENTS

DOT

I SYSTEMLEVELNODE
1

:$<@USER JONES) OEVICE (CRT)

..

JOB CLI) standa rd_input

W and’ard_out put

dead ce (crt)
current-u9er

‘\

‘L”i:i:::;?%rent-’”b

,,;,)” WiTH_UNIT(RRDAR)

d“ “
n

FILE NODES

o

STRUCTUPM NOOES

o

PROCESS wOWIS

t

PRIwRRY RELATIONSHIPS

1 secondary relationships

FIGURE 3., Some predefiied relations

(ote: The relation WITH_UNIT k notpredefmed.

30

Downloaded from http://www.everyspec.com

DOD-S~-1838 4,3.5
GENERAL REQtJtREMENTS PATHS, PATHNAMES AND NODE IDENTIFICATION

concatenation of path elements each of which identifies the traversed relationships in the
same order in which they are traversed.

The syntax of a path element is an auostrouhe (pronounced “tick”) followed bv a relation. . ..
name ‘and a pare~thesized relationship key designator. If the relationship key designator of a
path element is the null key, the parentheses may be omitted. Thus, ‘PARENT and
‘PARENT() identify the same relationship.

The CAIS predefiies the relation DOT; it allows for an abbreviated form of a path element.
If the relation name in a path element is DOT, then the path element may be represented
simply by a dot (“.”) followed by the relationship key designator. Thus, ‘DOT(TRACKER)
is the same as .TRACKER. DOT has no CALS-specific semantics other than this abbreviation
quality, except when it is used in a group tree where it has properties similar to any other
predefine relationship (section 4.4.2.1, page 36). Relationship keys of relationships of the
DOT relation must not be the empty string. Instances of the DOT relation may be
manipulated by the user within access right constraints. Relationships of the DOT relation
are not restricted to be primary relationships.

A pathname may begin simply with a relationship key designator, not prefiied by either an
apostrophe or period. This is an abbreviation for a pathname obtained by prefixing the given
pathnarne with ‘CURRENT_NODE., i.e., the interpretation follows the relationship of the
predefmed relation CURRENT_NODE and then the relationship of the predefmed relation
DOT with the given key, Thus LANDING_SYSTEM is the same as ‘CURRENT_
NODE. LANDING_SYSTEM.

A pathname may afso be a “:”. This refers to the current process node,

For example, in Figure 3, afl of the following are legal pathnames within the context of the
process node identified by ‘USER(JONES)’JOB(CLI) .EDIT. They all refer to the same node,
since the relationship of the predefine relation CURRENl_NODE points to the same node
as ‘USER(JONES).fiACKER and the relationship of the predefm~d relation C~ENT_
USER points to the same node as ‘USER(JONES):

LANDING_SYSTEM ‘WITH.UNIT(RADAR)

‘USER(JONES).TRACKER .LANDING.SYSTEM ‘WITH.UNIT(RADAR)

‘CURRENT_USER.TRACKER .LANDING_SYSTEM ‘WITH_UNIT(RADAR)

The patfroarne associated with the unique primary path is called the unique primary
parhname of the node. The unique primary patbname of the node is syntactically identical to,
and therefore can be used as, a patbnarne whose interpretation starts at the current process
node. It always starts with ‘USER(user_name), ‘DEVICE(device_name) or ‘GROUP(group_
name).

Identification of a node is provided either by a patfmame or by specifying a base node and
the identification of a relationship emanating from the base node by means of its relation
name and a relationship key designator. The phrase “to identify a node” means to provide
an identification for a node. A node identWlcation is considered an illegal identlj?carion if
either the patfmame or the relationship key designator or the relation name is syntactically
illegal with respect to the syntax defined in Table I.

31

Downloaded from http://www.everyspec.com

4.3,5 DOD-?~-.l838

PATHS, PATHNAMES AND NODE IDENTIFICATION GENERAL REQUIREMEFWS

Identification by padmame implies traversal of,a node if a relationship emanating from the
node is traverse~ consequently afl nodes on the path to a node are traversed, while the node ●
at the end of the path is not traversed. An identification that would require traversal of an
unobtainable or inaccessible (see Section 4.4.1, page 36J node is treated as the identification
for a non-existing node. .,.

Idenrificirtion of a relationship is provided by specifying the base node from which it
emanates, its relation name and its relationship key in terms of a relationship key designator.

TABLE L Pathname BNF

pathname .._..-

path_element .._..—

relation_name ,.. _..—

relationship_key _designator ::=

relationship_key .._..-

identifier_prefm .._,.. —

relationshlp_key_designator {path_element)
~~th_element{path_element)

‘relation_name [([relationship_key_designatOr]) 1
I .relationship_key _designator

identifier

relationship_key
I [identifier_prefix] #

identifier

letter \, [underline] le~er_or_digit) [underline]

See Appendix D for a description of the notation used.

1.

4.3.6 Attributes

Both nodes and relationships may have attributes which provide information about the node
or relationship. Attributes are identified by an attribute name, Each attribute has a name and a
value. The vahse is a list represented using the CAIS_LIST_MANAGEMENT type called
LIST_TYPE (see Section 5.4.1).

Attribute names follow the syntax of an Ada identifier. There is no requirement that relation
names and attribute names be different from each other. Interfaces which return attribute
names must return any alphabetic characters in upper case. ●

32

Downloaded from http://www.everyspec.com

DOD-STD-1838 4,3.6
GEmRw R@.JIREMENTS ATTRIBUTES

The user can create and delete userdefmed attributes as well as manipulate their values by
means of the interfaces specified in Section 5.1.3, page 123.

4.3.6.1 Predefine attributes

The CAIS predefiges several attributes on nodes and relationships, as well as the nature of
the values of these attributes in temrs of appropriate Ada types, e.g., enumeration types.
Predefmed attributes cannot be created, modified or deleted by the user, except where
explicitly noted in the CAIS specification.

Special interfaces are provided to retrieve the values of predefmed attributes and update them
as appropriate in terms of their respective Ada types. The predefmed attributes can also be
accessed by the interfaces provided for attributes in general; in this caxe, the attribute vafues
are uniformly expressed in terms of vahres of type LIST_TYPE (see Section 5.4, page 419).
The correspondence of values of type LIST_TYPE used in, or obtained from, the general
attribute manipulation interfaces with the vahres used in, or obtained from, the special
interfaces for predefmed attributes is explained in Section 5.1.3, page 123.

In particuku, the CAM predefine the following attributes on all nodes: TIME_CREATED,
TIME_RELATIONSHIP_WRITTEN, and TIME AITRfBUTE_WRITfEN. These
attributes describe the date and time of the last acti~ity on the node corresponding to the
mnemonic name of the respective attribute. For details, refer to the interface descriptions for
TIME_CREATED (see Section 5.1.2.39, page 119), TIME_RELATIONSHIP_~N
(see’ Section 5.1.2.40, page 120) and TIME_A’1’TRIBUTE WRIITEN (see Section 5,1.2.42,
page 122) and to the package CAIS_CALENDAR (see Sec~ion 5.6, page 497).

An additionrd attribute on all nodes is predefmed in the suggested model of mandatory access
control described in Section 4.4.3: the attribute OBJECT_CLASSIFICATION describes the
mandatory access control classification of the node as an object.

me CAIS predefiies the following attributes on all relationships: NODE.KIND and
INHERITABLE. The NODE_KIND attribute discriminates the kind of node to which the
relationship is t~geted, i.e., to, a process, fie or structural node. The boolean
INHERITABLE aqribute establishes whether or not the relationship is inheritable according
to the rules given in Section 4.3.4.1, page 24.

All other predefmed attributes are restricted to certain kinds of nodes or to relationships of
certain selations. TIIey are explained in the appropriate subsections of Section 5.

A surnrm+y of all predefmed attributes and their possible values is provided in Appendix A.
Figure 4 shows an example of some of these predefine attributes.

I

33

Downloaded from http://www.everyspec.com

4.3.6.1 DGD-STD-1838
PSEDSF3NEDATITUBUTES GENERALREQLMWMENTS

,(” ‘%==?,,
USER(JONE5) OEVICE (CRT)

.(.,,’

.’$+

,,

ACCESS_METROD- (TEXT)

DOT (TSACKER) Kind-(File)
FILE_KIND-(DEVICEI

d

JOB (CLI)
DEVICE_KIND. (PAGE_TEIullNAL)

HIGHEST_CLASS IFICAT1ON- (U)
device (CRT) LOitEsT_C1.A5S1FIcAT 10N. (u)

0BJECT_CLSSS1F12AT10N- (TJ)

:=:. ~

Kind- (Process)
00T(EDITI

:,, .

wITH_UNIT (tin)

“F”? ~~~

CUSRENT_STATUS - {REAGY)

Kind-(File) 10-UNIT_COUNT-(l_218_356)
., NACHINE_TIUE-{03:10:35.37]

OSJECT_CLASSlFICATION- (U),
OPEN_HANDLE_COUNT - (8)

~,....-,!, ,, ;{.,.... . . PAIW4ETERS-(1
RESULTS- ()

AcCES”S_KETHOD- (SEQUENTIAL) SUEJECT_CLASS IFICATION- (U)

FILE_KIND- (5EC0ND+RY-STORAGE)
T1=_FINIsHED. (I

, {{$,
HIGHEST~CLASSIFICATION- (U)

T1t4E_STtiTED-()

LOWEST_CLASS IFICATIDN- (W
,OBJECT_CLASSIFICAT1ON- (U)

❑ FILE ,00,S ~ Relationship

~ STRUCTURAL NODES

Attributes

o PRoCESS NODES

1

NOOE ATTRIBUTES

/

.PRIMARY RELATIONSHIPS

/ secondary relationships

s,,..,:,. . FIGURE 4. Some predefured attributes

Downloaded from http://www.everyspec.com

DOD-STD-1838 4.3.6.1

‘o

GENERAL REQUIREMENTS PREDEFINE AITRIB-

4.4 Discretionary and mandatory access control

The CAM spcifies mechanisms for discretionary and mandatory access control (see,
[TCSEC1). Alternate dkcretionarv or mandatorv access. controi mechanisms can be
substituted by an implementation provided that th~ semantics of all interfaces in Section 5
(with the exception of Section 5. 1.4) are inuiemented as wiecified. All aftemate mechanisms
as well as the kplementation behav”ior of such a replacement package must be included in an
implementer’s CAIS reference manual as described in Appendw E of thk document.

Access is a spec~lc type of interaction between a subject and an object that results in the flow of
information from one to the other. A subject is an active entity, generally in the form of a
person, process, or device, that causes information to flow among objects or changes the system
state. An object is a passive entity that contains or receives information. Access to an object
potentially implies access to the information it contains. [TCSEC]

In the CAIS, access control refers to all the aspects of controlling access to inforr’nation. It
consists ofi

a. access rights - Descriptions of the kinds of operations that processes arc
allowed to perform on nodes. The granting of these rights is explained in
Section 4.4,2.3,

b. access checking - The act of determining the access rights, checking them
against those rights required for the intended operation, and either permitting or ~
denying the intended operation, These operations are described iri S&ctioq
4.4.2.4 and Section 4.4.2.5.

In the CAIS, an object is arty node to be accessed and a subject is any process (acting on the
behalf of a given user) performing an operation requiting access to art object. Access control
is used to limit access to nodes (objects) by processes (subjects) nmnirrg programs on behaff
of users.

The restrictions placed on certain kinds of operations by access control are called access
right constraints,

4.4.1 Node access— ..—

In the C.MS, the following operations constitute access/o a node:

a. reading or writing of the contents of the node,

b. reading or writing of attributes of the node,

c. reading or writing of relationships emanating from a node or of their attributes,
and

d. traversing a node (see Section 4.3.5).

The phrase “reading relationships” is a convenient short-hand meaning either’ traversing.
relationships or reading their attributes. To access a node, then, means to perform any of the
above access operations. The phrase “to obtain access” to a node means being permitted to
perform certain operations on the node within access right constraints. Access to a node by
means of a pathname can only be achieved if the current process has the respective access
rights to the ‘node as well as to-any node traversed on the pa~ iO the node. -

35

Downloaded from http://www.everyspec.com

4.4,1 DOD-STD-1838

NODE ACCESS GENERAL REQfJfREMEIWS

In the CAfS, the following operations do not constitute access to a node: closing node
handles to a node, opening a node handle with intent NO_ACCESS (see Section 5.1.2),
reading or writing of relationships of which a node is the target node or of the attributes of ●
such relationships, querying the kind of a node and querytig tie status of node handles to a
node.

A node is inaccessible if the current process does not have sufficient discretionary access
control rights to have knowledge of the node’s existence’ or if mandatory access controls
prevent information flow from the node to the cu~ent process. The property of
inaccessibility is always relative to the access rights of the current process, while the properry
of unobtainability is a property of the node alone.

4.4.2 Discretionary access control
\.

. . Discretionary access control is a means of restricting access to objects based on the identity of
subjects and/or groups to which they belong. The controls are discretionary in the sense that a
subject with certain access permission is capable of passing that permission (perhaps indirectly)
onto any other subject. [TCSEC]

4.4.2.1 Groups and roles

The CAIS node model incorporates the concepts of groups and roles. A group is a set of
users that is represented by a group node. Group membership of a subject determines the set
of access rights it bas or can acquire with respect to objects. Each group is represented by a
structural node, termed a group node. Group nodes are organized in group node trees. Each
top-level group node is reachable from the system-level node along a primary relationship of
the predefiied relation GROUP emanating from the system-level node. The key of this ●
relationship ia the group name. The primary relationship of a group node other than a top-
level group node must be of the predefmed relation DOT emanating from another group
node. Upon creation of a root process node, secondary relationships of the predefmed
relation GROUP tie created emanating from dre process node and targeted at an
implementation-defmed subset of top-level group nodes. The relationship keys of these
relationships are the respective group names. Dependent process nodes inherit these
relationships (see Table IX, page 173).

The CAIS associates a role with each group node. The role associated with a group node is
the set of afl relationships of the predefmed ,relation ACCESS (called ‘acces$ relationships)
emaciating from nodes and targeted at this group node or any of the group nodes reachable
recursively from this group ncde by secondaq relationships of the predefine relation
PARENT. These access relationships provide information from. which access rights of a
subject to an object are determined as further described in Section 4.4.2.4.

Secoridary relationships of the predefimed relation DEFAULT_ROLE. ~ used to assOciate
with group nodes afl top-level user nodes and’ some nodes representing the executable images
of programs. Each top-level user node has a secondary relationship of the pwdefmed relation
DEFAULT_ROLE emanating from it and targeted at a group node. A node which represents
the executable image of a progrti may also be associated with a group node by means of a
secondary relationship of the predefiied relation DEFAULT_ROLE emanat~g from that
node to the group node. This group node is termed the default group node of the user or
program, respectively. No node may have multiple default group nodes.. ●

?.$

—.—-. -.-—- .. --=. .>.

Downloaded from http://www.everyspec.com

DOD-STD-1838
GENERAL REQUtREMENI’S

4.4.2.1

GROUPS AND ROLES

Group nodes may have secondmy relationships of the predefmed relation POTENTIAL_
MEMBER emanating from them to other group nodes. A group node is termed a potential
member of a group if it is reachable from the node representing the group by traversing only
relationships of the predefine relations DOT and POTENTIAL_MEMBER. Figure 5 shows
an example of a hierarchical group strocture and its embedding irr the node model.

Group nodes, their attributes and their emanating relationships cannot be modified by means
of CAIS interfaces. It is left to each CAIS implementation to set up a methodology and to
provide interfaces for the creation, modification or deletion of group nodes and for, the
creation, modification and deletion of the reiationshlpa of the predefmed rdation
DEFAULT_ROLE, in particular for those emanating from nodes representing the executable
image of a program. It is suggested that such interfaces not be generaJly availabIe to the
CAIS user community. The effects of the deletion of group nodes and of alterations of group
memberships or of relationships of the predefmed relation DEFAULT_ROLE on
concurrently executing processes are implementation-defined.

4.4.2.2 Adopting a role

When a process adopts a particular role, that process acquires the access rights which have
been, or will be, granted to adopters of that role. In the CAIS, a secondary relationship of the
predefmed relation ADOPTED_ROLE is created from the prccess node to the group n6de
representing thk role. The group node and the role associated with this group node are said to
be adopted by that process. A process is said to execute “under the authority of its adopted
roles”.

Roles are adopted either implicitly at creation of the process node or explicitly. When a root
process node .is created, it implicitly adopts the role associated with the default group node of
the current user. It also implicitly adopts the role associated with the default group node of
the “node containing the executable image of the program it is executing, if such a defardt
group node exists. When any other process node is created, it implicitly adopts all adopted
roles of its creating process and the role associated with the default group node of the node
containing the executable image of the program it is executing, if such a default group node
exists.

There may be multiple relationships of the predefine relation ADOPTED_ROLE emanating
from a process node. Keys of relationships of the predefiied relation ADOPTED_ROLE me
implementation-defmed when the relationship is created implicitly or are specified by the
user as a parameter of the ADOPl_ROLE procedure when the relationship is created
exp~lcitly.

An executirrg process may explicitly adopt roles associated with certain group nodes in
addition to its existing roles, using the ADOFT_ROLE procedure (Section 5.1.4.7, page
160). For a process to adopt a role associated with a given group node, some group node
already adopted by the process must be a potential member of the group represented by this
group node. Once a process has adopted a role, it executes under the authority of tlus role as
well as any other roles it has adopted.

Similarly, a process may disown any of its adopted roles, exceptirrg the role of the current
user, the process is said to wtadopt a role. When the process unadopts a role, using the
UNADOPT_ROLE procedure (Section 5.1.4.8, page 162), the respective relationship of the

..

31

Downloaded from http://www.everyspec.com

.

. .

2...
.

:-

:.

:..

4.4.2.2 DOD-STD- 1838.

ADOPTING A ROLE GENERAL REQUIREMENTS

,~MITH)
USER JONES) GROUP(WIZABD).

~,t!$%!?p

i

default_role
potent ial_mernber (JONES) A_FILE (X)

default-role

~M~

•1 FILE NODES

O STRUCTUIWL NOOES”

4

PRIMARY RELATIONSHIPS

/ secondary relationships 1
FIGURE 5. Discretionary access control

38

Downloaded from http://www.everyspec.com

I “

I
DOD-STD- 1838 4.4.2.2

GENERAL REQUIREMENTS ADOPTING A ROLE

●
~redefmed relation ADOPTED_ROLE is deleted. The process then executes under the
authority of its remaining adopted roles.

Figure 6 depicts an example for the node model structure shown ‘mFigure 5 after the creation
of the process node by user JONES and the explicit adoption of ‘GROUP(JWZARD) by this
process. I

o

I

●
39

Downloaded from http://www.everyspec.com

4.4,2.2 DOD-STD-1838

bOITING A ROk GENERAL REQUIREMENTS

‘he relationship of the predefmed relation POTENTIAL-MEMBER shOwn iII Figure 6 is a
prerequisite for user JONES to adopt the role ‘GROUP(WIZARD). The relationship of the
predefmed relation ADOPTED.ROLE from ‘JOB(MNLER) to ‘GROUp(W~ARD) exists @

onfy if an explicit calf was issued on the procedure ADOPT_ROLE (see Section 5.1.4.7, page
160) for the creation of thii relationship.

.

4.4.2.3 Granting access rights . : L

Arr object may be the source node of zero or more access relationships targeted at group
nodes. Each. access relationship h~ a predef~ed attribute, called GRANT, that” spccifles
which access rights to the object ‘we grarited’ to processes (subjects) executing under the
authori~ of roles that include thk relationship. ‘‘ ‘”

Access relationships and the”ir GRANT attribute; am established for objects either at node
creation or by using the interfaces provided in the package CAfS_ACCESS_CONTROL_
MANAGEMENT.

At node creation, the DISCRETION~y_ACcESS parameter of the node creation interface
provides a set of access rights to be granted to the current user. A relationship of the
predefmed relation ACCESS with a GRANT attribute , v~ue given by the
DISCRETIONARY_ACCESS parameter is establistied to the group node,associated with the
current user, i.e., the node identified: by the pattrqame ‘GuRRE~_USE~’DEFAUkT_
RoLE. J ~} :j

. .*L . ..,

~e SET_GRA.NTED_RIGI-fTS procedure (24E-S&fiOp. ~: 1.??. Pige ‘154) cm.,be used by a
process to establish an access relatitiiihip between an object node and a groiip node and to o
set the value of the GRANT attribute, This prpcsdure Cm ~SO ~ used to ch~gy, t!e v~ue of
the GRANT attribute of an existing access, relationship.
{ ,.

& order to limit the set of group nodes to which access relationships can be established, a
CAIS implementation is allowed.to restrict the set of group nodes” which may%e;target nodes
of access relationships to an implementation-~efined subset ~Whiclf may d@cnd on the
process (subject) and its acquired roles. A violation of such ,restrictions causes the exception
ACCESS_VIOLATION to be raised by the CAIS interfaces attempting to create the access
relationship.

4.4.2.4 Determining access rights “’~ ~~ .: ‘:. ,

The value of the GRANT attribute on access relationships must conform to the syntax of
Table II, which corresponds to the syntax of narrigd ,aggregates in Ada. The syntax is
consistent with that given in Section 5.4. The interfaces in Section 5.4 can be used to
construct and maniptdate the value of the GRANT attribute.

I

,,..,,, ,.{):,,,,(i,:,,,,..P;:,;., ...
I ...!..

,.

40

Downloaded from http://www.everyspec.com

DOD-STD-1838 4.4.2,4

GENERAL REQUIREMENTS DETERMINING ACCESS RIGHTS .

,,
.

.; ,.

SYSTEMLEVEL NOOE

,,, .

,/.
1, .,.

., ,.
,>

,“:, ,” ,,. ,

.,

[

z!===”
“i< ‘J ‘> ‘i t ‘“ ,:

.4 ,:, -,.. ,1,’

~ Pr+ec!sss Nom I

= : “’ ~~~~

FIGURE 6. Discretionary access control after process creation

tote: The relationship keys on the relationships of the predefiied relation ADO~EI
~OLE “me omitted, although required by the CAIS node model, since these keys are r
elevant to the discussion irr this section.

I

1:

41

Downloaded from http://www.everyspec.com

4,4.2.4 ‘ DOD-STD- 1838
DETERMINING ACCESS RIGHTS GENERAI- REQUIREMENTS

, TABLE IL GRANT Attribute Value BNF

grant_arrribute_value ::= ([grant_item (, grant_item I])

grant_item ‘ ::= ([necessary_right =>] resulting_rights_list)

necessary_right ::= identifier ,

resrslting_rights_list ::= identifier
I (identifier , identifier))

See Appendix Dfor a description of the notation used. ,,

. .

,,
,. ,,. ,

Access rights may: ~ user-def~ed,. but certain access rights have special significance to
CAfS operations. In particular, theCAIS,.recognizes the access rights given in Table III,
which also lists the kind of access for which they ire necessary or sufficient.,,).’,’,,:.,.. .,,

,, ..,, :
A node is accessible if the current process’ ~ a ~ubject has sufficient discretionary access ●
rights to ~ave’ knowledge ‘of the existence ‘of the .tiode as an object and if mandatory access
controls permit the curi&t process ~as‘a i:b~ett to; have knowledge of the existence of the
node as w o,bject~ln th~ C,@, ‘a,rio.de ti ‘accessible if~?ie current prOcess has (adopted a rOle
which has) been granted at least the accesy” right E~STENCE to that node and mandatory
access control rules pe~it the process to have knowledge of the existence of the node.1, , !

Determining the dkcretionary access rights that a given process (subject) has to a given
object involves: (1) afI adopted roIes under which the current process is executing and (2) the
GRANT attributes of the subs,et of the access relationships comprising these roles and
emanating from the node representing th~ .~bject.

,. -,,,., .7,, , , ... ,., .,,
The vahres of theGRANT attributes of these access relationships are used to determine the
set of approved access rights. Approvtid acces~ rights are access rights whose names appear
in the resulting_rights_Iist of any gr.ant_itern of these GR~ at~ibute values for which
either (1) no necessary_right is given or (2) the necessary_ right n~es ~ approved access
right (under finite recursive application of this definition).

, 1’, ,

~Figure .7, Figure 8. and. Figure 9 show. d. ex@p!?. for the relationships relevant to the
determination’ of approved access rights. .These figures are derived from Figure 6. In Figure
7, Figure 8 and Figure 9, keys on access rilationstiips and on relationships of the predefmed
relation ADOPTED_ROLE are omitted where they are.not needed for discussion. In Figure
7, rhe process ‘USER(JONES)’JOB(MAILER) has, implicitly adopted the roles ‘GROUP
(JONES) and ‘GROUP(MAILTOOLS) .MAILER. Since the latter is reachable via a primary orelationship of the DOT relation from the group MAIL.TOOLS, OIIY access Relationships to

42

Downloaded from http://www.everyspec.com

DOD-WD-1838 4.4.2.4
GENERAL REQUIREMENTS DETERMfNfNG ACCESS RIGHTS

~GROUP(MAILTOOLS) are automatically part of the role of ‘GROIJP
(MAILTOOLS).MAILER. In addition, this process haa adopted the role ‘GROUP(WIZARD)
explicitly

TABLE 111. Predefine Access Rights

Access Right

EXISTENCE

READ.RELATIONSHIPS

WRITE.RELATIONSHIPS

APPEND.RELATIONSHIPS
,,

READ_AITRIBUTES

WRITE.ATT’RIBUTES

APPEND_ATTRIBUTES

!,

‘READ_CONTENTS
.,. .

,,

Explanation

The minimum access righta without which the object ia
inaccessible to the subject. Whhout additional access rights the
subject may neither read nor write attributes, relationships o+
contents of the object. This sccess right is necessary to open the
objectwith intent NO_ACCESS.

The subject may read atrnbutes of relationshipsemanating from
the object or use it for traveraaJto another node; the access right
EX3STENCEia implichIy granted. This access right is necessary
to open the object with (exclusiveor non-exclusive)intent READ_
RELATIONSHIPS.

The subject may create or delete relationships emanating from the
object or may create, deIete, or madify atrnbutes of these
relatiormhip$ the access right EXISTENCE is implicitlygranted.
ThisaccessrightisnecessarytoopenU!sobjectwih (exclusiveor
non-exclusive)intentWRITE_RELATIONSHfPS. This access

rightis sufficientto open the object with (exclusive or non.
exclusive) intent APPENT._RELATfONSHIPS.

The subject may create relationships emanating from the object
and attributes of the% relatiomhip$ the access right EXISTENCE
is implicitly granted. This, access right is necessary to open tie”
object with (exclusive 0[non-exclusive) intent ‘APPEND_
RELATIONSHIPS.

The subject may read attributes of the objecc the access right
EXISTENCE is implicitly granted. This access right is necessary
to open the object with (exclusive or norr-exclusive) intent READ_
ATTRIBUTES.

The subject may create, write, or delete attributes of the object the
access right EXISTENCE is implicitly granted. This access right is
necessary to open the object with (exclusive or non-exclusive)
intent WRITI_AlTRIBl_7T7Z3 This access right is sufficient to
open the object with (exclusive or non-exclusive) intent APPEND_
AlTRIBUTES.

The subject may create attributes of the object the access right
EXISTENCE is implicitly ~ted. Tbia access right is necessary
to open the object with (exclusive or non-e~chrsive) inteut
APPEND_AIT’FUR UTES. .,,, .,

The subject. may sead contents of the objecq the access right
EXfSTENCE is implicitly granted. llda accgas right is necessary
to open the object wMr (exclusive or r!on-ex&sive3 intent READ:
CONTENTS,

43

Downloaded from http://www.everyspec.com

4.4.2.4 ‘ “ DOD-STD- 1838

DETERMUWNG ACCESS RIGHTS GEN13RALREQLJREMENTS

!:. .,. *.. ,,:’’.”.,

TABLE 111.Predefmed Access Rights -- Continued.

Access Right Explanation

WRITE.CONTENTS The subject may create,write, or delete contents of the object; the
accessright EXISTENCEis implicitlygranted.This accessrkghtis
necessary to open the object with (exclusive or non-exclusive)
intent WRITE_CONTENTS. This access right is sufficient to open
the object with (exclusive or non-exclusive) intent .APPENDJ,
CONTENTS.

APPEND.CONTENTS The ;ubject may ap~nd contents of the object; the access right
EXISTENCEis implicitly granted. This access tight is necessary
to open the object with (exclusive or non-exclusive) intent
APPEND.CONTENTS:

READ This ia the union of RE@_RELAITONSHfPS, READ_
A’ITRIBUTES, READ_CONTE~S and EXISTENCE access
rights: This access right is necessary to open the object with
(exclusive or non-exclusive) intent READ. It is sufficient to open
the object with (exclusjve or non-exclusive) intent READ_
RELATIONSHIPS, “’READ_A’THtIBOTES or READ_
CONTENTS.

WRITE This “k the union of WRITE_RELATIONSI-lJPS, WRI’IE_
ATTRIBUTES, .WTUTf_CONTENTS and EXfSTENCE access
rights. ‘rbis accessrightis necessaryto open tie objectwith

(exclusive o,rnon-exclusive) intent ~ITE. [t is sufficient to open
the object .witb (exchkive or non-exclusive) intent WfUTE_

, RELATIONSHIPS, WRI~_AITRIBUTES , wRITE_
coNp3NTs, APPEND_RELATfONS HfPS, APPEND_
A1’TRIBm,S ~d $PP~_CO~NT$.., :,,

APPEND “““ This is the anion of APPEND_RELATIONSHIPS,.APPEND_
A~B~S, APPE~_CONTENTS ‘a@ EXISTENCE ,accessfi $,’: , :

:, . ri@”tL ‘rids ac~ss right., is nec.+ry to open. tie Object with
: ‘t .,,

, rl,, ., ‘; (exclusive ’01 ‘non-exclusive) intint APPEND. It is sufficient to
.’ 4/,., open the obj{bt with (exdusi% or non-exclusive) intent APPEND_

RELATIONS~PS, ‘APPEND_ATIRIBfJTES or APPEND_
CONTENTS.

EXECUTE
. ,

The subject, may create a process that takes the contents of the
object aa its executable image; the .wccsa right EXISTENCE is
implicitly gmnted. This access right is necessary to open the object

,.. , with intent EXECUTE. ~,.,. .

CONTROL .’ The subjectu&y mdify access control information of he objecfi
the a&ess right EXISTENCE is, implicitly. granted. This access
right is necessary to open the object with (exclusive or non-

.,,.. exclusive) intent CONTROL.

ALL_RIGHTS Tbia accessrrightis the union of all other predefine access rights.
.,I; I All access rights in this table are granted to the subject.

44

Downloaded from http://www.everyspec.com

,0

DOD-SIT)- 1838 4.4.2.4
GENERAL REQlm@fENTS DETERMDQING ACCESS RJGHES

Given a process node ‘USER(JONES)’JOB(MAILER), an object ‘LISER(SMJTH)
‘A_FILE(X), five group nodes ‘GROUP(JONES), ‘GROUP(WIZARD), ‘GROUP
(MAiLTOOLS), ” ‘GROUP(IVLMLTOOLS),MAILER, and ‘GROUP(SMITH) representing
roles (where ‘GROUP(WIZARD) was adopted explicitly), the following relationships might
exist as depicted in Figure 7,

a. a relationship of the relation ACCESS from the object ‘A_FILE(X) to the
group node ‘GROUP(JONES) with a GRANT attribute value of
((NEWMAIL)),

b. a relationship of the relation ACCESS from the object ‘A_FILE(X) to the
group node ‘GROUP(MAILTOOLS) with a GRANT attribute value of
((NEWMAIL=>APPEND), (READMAIk>READ)),

c. a relationship of the relation ACCESS from the object ‘A_FILE(X) to the
group node ‘GROUP(SMITH) with a GRANT attribute value of
(((NEWL,READMML,CONTROL))),

d. a relationship of the relation ACCESS from the object ‘A_FILE(X) to the
group node ‘GROUP(WIZARD) with a GRANT attribute value of (((READ,
WRITE))), :

e. a relationship of the relation ADOPTED_ROLE from the subject (process)
‘JOB(MAILER) ro the group node ‘GROUP(JONES),

f. a relationship of the relation ADOPTED_ROLE from the subject (process)
‘. ‘JOB(MAILER) to the group node ‘GROUP(WIZARD), by explicit adoption.

.:
g. a ‘relationship of the relation ADOPTED .ROLE from the subiect (urocess)

‘JOB(MAILER) to the group node ‘GROUP(MAILTOOLS) .MAI-LER~ ‘
.,. ,

The values of the GRANT attributes of the access relationships are used to determine the set.
of approved access rights; in the example shown in the figure, the vafues of the grant_items
which’ “ae used to determine the approved access rights of the job are ((READ,WRIT’E)),
(NEWMAIL), (NEWNLML=>APPEND) and (READMAIL=>READ).

Approved access rights are access rights whose names appear in the resultirrg~rights_list of

mY gr~t.-item of these GRANT attribute whes for which (l) no necess~_right is given or
(2) the necessary_right names an approved access right (under finite recursive application of
the definition of approved access rights). In this “exaniple, the access rights NEWMAJL,
READ and VfRITE have no necessary_right, given,. thus the set of approved access rights
under rule (1) contains N,EWMAIL, READ and WRITE,

The access right APPEND can be added to the set of approved access rights under rule (2)
because APPEND appears in the resuking_nghts_list of the grant_item whose necess~_
right name, NE WL, matches an access right name already in the’ set. The set of

approved acce~s rights now consists of NE-L, READ, WRITE m-d APPEND. “

If the process had not explicitly adopted ‘GROUP(WIZARD), the access rights would be
determined by the GRANT attribute values ((NEWMAIL)) and ((NEWMAIL=>APPEND),
(READMAIL=>READ)) which results in the set of approved access rights NEWMAIL and
APPEND.

4s

Downloaded from http://www.everyspec.com

.

A.4.2.4 .DOD-STD-1838

: DE-G ACCE& RIGHTS : GENERAL REQLJtREMENTS

.,.
.,

SYSTEN LP,VSL NODE

“sER(~MITH) GROUP(SMITH)

\
JOB(NAZLSR)

a<cegg COT(NAILER}
acce9a

(((READ, ac~ess CRANT-(((NEli?M2L,
cMNT- RSMUAIL.03NTFOL)))

WAILER)

.,~

{{Ex?.cu7tl)
acce?s
GRMT.

IIIXZCUTE),

,,,

: !:4[,: ..!, > .), ,

,“’ .:”’”,

❑ FILE NODES

,0. s+w NODES

i “Q. “p~~.$:N?!! ::: !’: , ,

“/
PRI&Y ,MLATION5i1PS

:.. ,’‘,.*. ., ,,,,

.“./ :’(,,secondary relationships
,,

.,

,. ,,

FIGURE 7. Access relationships, Example 1.

[ote: The relationship keys on the relationships. of the predefmed re!ation ADOPTED.
:OLE are omirted, although required by the CAIS node model, since these keys are, no
;levant “to the discussion in this section.

●

●

●

46

,

Downloaded from http://www.everyspec.com

DOD-STD-1838 4.4.2.4
GENSRAL REQUIREMENTS DETERMINING ACCESS RIGHTS

If ‘USER(SMITH) were io run ‘USER(JONES)’MY_PROG(MAILER), as shown in Figure
8, his access rights would be determined by the GRANT attribute vahres (((NEWMAIL,
READMAIL,CONTROL))) and ((NEWMAIL=>APPEND). (READMAIL.>READ)) which
results in the approved access ‘;lghts NE WMAIL, READMAIL, APPEND, REA,D and
CONTROL. Note that ‘USER(SMITH) cannot, read or append the contents of the fide
‘A_FILE(X) except through rhe services of a tool whose default role is reachable via a
primary relationship of the DOT relation from ‘GROUP(MAILTOOLS) or has the carrabilitv..=. .-– ...
& a p~tential member to adopt the role ‘GRO(JP(M~LTOOLS). By having access right
CONTROL, be may change the access rights at will. Of course, if ‘USER(SMITH) could
adopt the role WIZARD or could use a tool that adopts this role, he would not need to use a
tool in the family of MAILTOOLS to read or write the contents of the fiie ‘A_FILE(X). It is
a matter of policy in setring up the access control structures whether highly privileged roles,
such as the role WIZARD, are adoptable by a large number of users and tools.

WhiIe the access rights READ, WRITE, APPEND and CONTROL used in this example we
predefmed access rights and therefore carry meaning to the CAIS interfaces that open node
handles, NEWMAIL and READMAIL are user-defined access rights without CAIS-specific
semantics. An approved user-defined access right does not influence the checkirrg of access
rights (see Section 4.4.2.5); itonly influences the determination of approved access rights,

In each of these examples, users SMffH and JONES were allowed to run the MAILER
program because access relationships with a GRANT attribute vahse of (((EXECUTE))) were
established from the fde node containing the executable image of the MAILER program to
rhe group nodes representing their respective default roles. ~‘.

While Figure 7 and Figure 8 show the use of group nodes for assigning access rights to tools
or groups of tools, Figure 9 exhibits an example in which access rights for users are grouped
in a similar manner, The group ‘GROUP(ALL_USERS) is introduced as a top-Ievel group
node with emanating primary relationships of the relation DOT to the group nodes associated
with the users SMITH and JONES. .The latter are no longer top-level group nodes. In th$
new example, the access relationship that was targeted at ‘GROUP(JONES) is moved so that
it is targeted at ‘GROUP(ALL_USERS). The NEWMAIL access right is deleted from the
access relationship to the group node associated with user SMITH. Now mail can be sent to
SMITH by all users, but he can read it only via the MAILER program. However,’ WIZARDS
can read or edb the fde ‘A_FILE(X) without using a program whose DEFAULT_ROLE is a
member of the MAILTOOLS group, All users are now allowed to run the MAILER program
since the EXECUTE access right is granted to ‘GROUP(ALL_USERS).

A change to either of the above scenarios so that all access right changes regarding the ffle
‘A_FILE(X) have to be accomplished tkrough a tool in ‘GROUP(MAILTOOLS) can 6e done
by simply moving the GRANT attribute vahre CONTROL to the access relationship targeted
at ‘GROUP(MAILTOOLS).

.
I
t

I
.:

Downloaded from http://www.everyspec.com

,.

4.4.2 .4,...., ~ DOD-STD-1 838

DEKiRtiiWNG ACCESS ”RIG~S GENERAL REQUIREMENTS
,.

~.-l.2.5 Discretionary access checking

C&S discretioriary access control rules state that any access right required for a subject to o

access an object must be contained in the set of approved access rights of that object with
respect to that subject. The CAJS model requires discretionary access checking to be
performed at the time a node h@le”is .o>ned’ (see Section 5.1.2.1, page 63). At this point
access rights implied by the INTENT parameter of the open “operation must be a subset of the
ap,proved access ””rights.If this is not the, c~e, the operation is terminated and an exception is
rrused. If the access rights implied by the INTENT par~eter are a subset of the approved
access rights, then for subsequent access using a successfully opened node handle, die access
rights requifed may be compared to the rights @plied by the intent, rather than the approved
access rights.
‘, ..., ,.

. .

~.~.3 Mandatory access crmt#rsl

A4andatoiy access contro[provides access controls based directly on a comparison of the
individual’s .cleararice or authorization for the information and the classification or sensitivity

~ deiigmtion of ~e information being sought. [TCSEC]

A mandatory access control classification is a combination of a hierarchical classification
level’ and’,zero or, more ‘non-hi$ra.rcliicaf categories’ A hierachicd classification leveI is
chosen frorn’sn ‘orpered set of ‘classificatiori levels and represents either the sensitivity of the
object or the trrrstwo~hines$ of the subject. A subject may obtain read access to an object if
the hierarchical classditiation of the subject is,greater than or equsf to that of the object. ,@
turn; toobtain, wiit~acceis to the ,object, a subject’s hierarchical’ claasiflcation must be less
than:or,eqqaf ‘~o~hehierarchic~ classification of ~e object... ,’.,,. .-
:’ ●,,.

Each’ subject arrd o~je~t is ~Signed zero or more non-hierarchical categories which represent
coexisting classiflcatioris~ A hrbje<t may obtaisl fiad access to “h object if the set of non-

Yer@!Z$.Z..GA!e~g!iqs.,.@s?jgn$d.ro,.!!w@j%t ,Coqtti?. e@c~!ateg!w %+.ig%d to the object.
Likewise, a sub~ct -may obtti’ write access to air object if each of the non-hierarchical
categories iasigned to the subject is included in.the set of categories aasigned.to the object.

A subject must “satisfy both hierarchical and nim-hierarchicid access rights rides to obtain
access to an object.

In the CAR, subjects are CA2S processes, while an object may be any CAIS node.
O@a\ionS are CMS operations and are cl~sified as.,read,. write, or read and write
!p;atlons. Mtmdatory access. checking is perfoimed by. comparing the. classification of the
subject @h that. of the object with respect to the type of operations intended to be
performed. The CAN model requires mandatory access checking to be performed’at the time
d:node handle is opened (see ,Section 5.1.2.1, page 63) with respect to the intents expressed in
the “~,NT parameter. For subsequent access using a successfully opened node handle,
mandatory access checking may, but need not, be re@ated. The effects of alterations of
classifications of objects o“nconcurrently executing processes are implementation-defmed.

.,

,“ ,.:.~

48

Downloaded from http://www.everyspec.com

●

DOD:STD- 1838 4.4.3.1
GENERAL REQUIREMENTS LAMMNG OF CALSNODES

SYSTSU LEVSL NODE

I
GROUP(JONES) GROUP (W1ZARD)

“--R(JONES)
1 I 4 I

USER (S~ITH’
pc.t..ti.l.momh

GROUP(Sh TH)
1) 1

JSE

I C...”*. access V!NC

I ((Nz!i14k11,))‘“’””-’”
MY_PROG
(MAILER)

((lKSCOTC))

❑ FILE NODES

o STR”CT”& NODES

o PRCCPSS NODES

/
PRIMARY RSLATIONSH IPS

/

{ secondary relationships1..
‘FIGURE 8. Access relationships, Example 2

‘ote: The relationship keys on the relationships of the predefmed relation ADOPTED.
OLE are omitted, although required by the CAIS node model, sirrce these keys are no
Ievant to the discussion in this section.

49

Downloaded from http://www.everyspec.com

4.4.3. I DOD-STD- 1838

MELING OF CAM NODES GENERAL REQUIREMENTS

r

SYSTSM LSVSL NODE

USER (JONES) GROUP(MAILTOOLS)

! (MwlmlL->APPEMDI

HY PROG
(MILER)

DOT (MAILER)

access
CRANI-((EXECUTE))

potential_member(JONSS)

J
❑ FILE NOOES

o STR”CNRAL,NODES

/
PRIMARY RELATIONSHIPS ~~

/ secondary relationships

FIGURE 9. Access relationships, Exanrple 3

●

●

●
50

Downloaded from http://www.everyspec.com

DOD-STD-1838 4.4.3.1
GENERAL REQUIREMENTS LABELING OF CAIS NODES

4.4.3.1 Labeling of CAM nodes

The labeling of nodes is provided by predefirred node ,attributes. A predefirted attribute,
called SUBJEC3_CLASSIFICATION, is assigned to each process node and represents the
classification of that process as a subject. A predefine attribute, called OBJECT_
CLASSIFICATION, is assigned to each node and represents the node’s classiflcatioq as an
object. These attributes cannot be read or written directly through the CAIS interfaces, except
for their initird setting at node creation. The vahse of the attribute is a parenthesized list
containing one or two items, the. hierarchical classification level and,’ optionally, the
non-hierarchici-d category list. The hierarchical classification is a keyword member of the
ordered set of hierarchical classitlcation keywords. The non-hierarchicalcatego~ llstisa list

of one or more keyword members of the set of non-hierarchical categories. ~he- hierarchical
classification level set and the non-hierarchical category set are implement ation-defmed. For
example, the following are possible classification att~ibute values:

(TOP_SECRET, (MAIL_USER, OPERATOR, STAFF))

(UNCLASSIFIED)

(SECRET, (STAFF))

The BNF for the value of a classification attribute (and of die MANDATORY_ACCESS
parameter which provides it at node creation) is given in Table IV.

TABLE IV. Classification Attribute Value BNF

object_classification ::= classification

subject_classific ation ::= class ~lcation

classification ::= (hierarchical_classification
[, non_hierarchical_categories])

hierarchical_classification ::= keyword

non_hierarchical_categones ::= (keyword (, keyword})

keyword ::= identifier

See Appendix D for a description of the notation used.

51

Downloaded from http://www.everyspec.com

.4.4.3.2 DOD-STD- 1838
LABELING OF PROCESS NODES GENERAL REQLIIREME+S

4.4.3.2 Labeling of process nodes

A securiryle~,r?lis the combination of a hier~chical classification rmd a set of non-hierarchical ●
categories that represents the sensitivity of information. [TCSEC],,

When a root process node is created, it is assigned subject and object classification labels.
The method by which these initiaf labels are assigned is not specified; however, the labels
~‘shall accurately represent security levels of the specific [users] with which they we
associated” ~CSEC]. When any non-root (dependent) process node is created, the creating
process may specify the classification attributes associated with the node. If no classifica~jon
is specified,, the classification is inherited from the creating process. The ass@ed
classification must adhere to the requirements for mandatory access control over Write
oprations. ..’,

,,, .

4.4.3.3 Labeling of non:process nodes

When a non-process object is created, it is assigned w object classification label. The
classification label may be specified in the create operation, or it may be inherited from the
creating process. The assigned classification must a~ere to the requirements for mandatory
access control over write operations.1,

4.43.4 Labeling of nodes,for devices .

Ceitain ffle nodes representing de~icei may have a range of classification levels. The
classification Iabel of the”node of the’ first process’<o@ming ‘ahandfe to one .of these nodes is
&signed to the “file node’ while there a@ ’aiiy open node handles to the fde node, Only w“hen
all open node Iitidles have been’closed cari a new classification label be assigned to the me
node. Y ~ ,;, , .,.... :,, 7,.: ,..

$“...., .,, ..:,~..., ,. ;...’ ,,

The range of classification levels is s~cified by two predefiied CAIS node attributes. The
attribute HIGHEST_CLASSIFICATfON defiies the highest allowable object ckzssification
IabelXthat ‘rnay+ti assi@ed””to “the file” node.’ T?te attribute LOWEST~CLASSIFICATION
defiies die’ lowest ‘allowable objectckssification label that may be assigned to the ffle node.

.,.‘., , ,:,

When a, file node representing the device is opened, the device. inherits its security
clsssitlcation label from the fust process performing the open operation. If it is not possible
to label the node representing the device within the bounds of the attributes HIGHEST_
CLASS~CA~ON and LOWEST_C+SSIFICA~ON, the, operation fails by raising the
exception SECURITY_VfOLATfON. ”, . ~ .

‘j.,. ~ .,., ,:., ,, ,,: . :

4.4.3.5 Mandatory access checking
,., ,,.

When access control is enforced for a given operation, mandatory access controI rules are
checked., If mandatory access controls are not satisfied, the operation terminates by raising
the exception SECURfTY_VIOLATION, except where the indication of failure constitutes
violation of mandatory access control rules for read operations, in which case NAME_
ERROR may be raised.
.,

●�

●

Downloaded from http://www.everyspec.com

I

o

DOD-STD-1838 5
DETAILED REQUDtEMENT’S GENERAL NODE MANAGEMENT

5. DETAILED REQUIREMENTS

The following’ detailed requirements shall be fulfilled in a manner consistent with the model
descriptions given in Section 4 of this standard.

5.1 General node management

This section ‘describes the CAIS interfaces for the general manipulation of nodes,
relationships and attributes. ‘fhese interfaces are deiined in five CAIS packages: CAIS_
DEFINITIONS defiies types, subtypes, exceptions, and constants used throughout the CALS;
CAIS_NODE_MANAGEMENT defiies interfaces for general operations on nodes and
relationships; CAIS_ATI’RIBUTE_MANAGEMENT defines interfaces for general
operations on attributes; CAIS_ACCESS_CONTROL_MANAGEMENT defines interfaces
for setting access rights and adopting roles; and CAIS_STRUC3WRAL_NODE_
MANAGEMENT defines interfaces for the creation of structural nodes.

Specialized interfaces for the manipulation of process and fde nodes and of their
relationships and attributes are defined in Section 5.2 and Section 5.3, respectively.

To simplify manipulation by Ada programs, an Ada type NODE_TYPE is defined for values
that represent w internal handle for a node, refeqed to as a node handle. Ada objects of this
typq can be, associated. with a node by means of CAIS procedures, causing an open, node
handle to be assigned to the object. While such ari ~sociation is in effect, the node handle is
said to &, opr, otherwise, the node handle, is. said to be closed. Most procedures expect
either a parameter of type NODE_l’YPE, a pathname, or a combination of a base gode
(specified by a parameter of type NODE_TYPE) and a path element relative to it, to identify
a node. :-.+..,. ,, ,

1. .,1 ,.,.

An :o~n ,node handle is’ grr&arrteed always to refer to the same node, regardless of grry
changes to relationships that ,coqld cause pathn~es to become invalid or to refer to different
nodes. This behavior is referred to as the rracking of nodes by open node handles.

The package CAIS_STANDARD (see Section 5.5, page 496) cor@ns certain scalar types
predefmed in the CAIS. The intent of providing this package is to make these types
reasonably independent of any predef~ed types @,the Ada language, whose characteristics
may vary among compilers. These types are CAIS_INTEGER, C-AIS_NATURAL, C~S_
POSITIVE and CAIS_DURATION and are’ analogous to the Ada types INTEGER,
NATURAL, POSITIVE and DURATION, respectively.

,.. .. .

.
53

Downloaded from http://www.everyspec.com

.,,
. .

5.1.1 DOD-STD- 1838
TYPES AND SUSTYi’ES CAKS.DEFKNKTIONS

5.1.1 Package CAIS DEFINITIONS

Tl& package defties the Ada ‘~ NODE.TYPE. It also defines certain enumeration and ●
string types, constants and exceptions useful for node manipulations.

type NODE_TYPE is limited private;

type NOtiE_KIND is (FILE, STRUC~ , PROCESS) ;

type INTENT_SPECIFICATION is

(NO_ACCESS , REAo , WRITE , APPEND, sWAO_ATTRIBUTES , NRITE ATTRIBUTES,

APpEN’O_ATTRIBUTM, READ_ABWTIONSHIPS, NRITE_RELATIONS~IPS,
APPENI_RELJ4TIONSHIPS , READ_CONTBNTS , NRITE_CONTKNTS ,
APPEND_CONTENTS , CONTROL, ISXECUTE, EXCLUSIVE AEAO ,
BXCLUS IVtt_~ITE , EXCLUSIVE_APPEND , EXCLUSIVB:W+D_ATTRIBWES ,
EXCLUSIVIS_tiITti ATTRIBUTES , EXCLUS IVB_-PEND_ATTRIBUTES ,
EXCLUSIVIK_RBAD ‘mKATIONSHIPS , EXCLUSIVE_NRITE_RE~TIONSNIPS ,
EXCLUSIVE_l@PE-m SXLATIONSHIP S , EXCLUSIVE_RBAD_CONTIWTS ,
EXCLUS IVE_NRITE_~ONTENTS , EXCLUSIti_APPENO_CONTENTS ,
EXCLUS IVE_CONTROL) ;

tYW INTENT_-y is afiaY (c-AIs_posI’TIvE range +) Of INTENT_SPECIFICATION;

subtype PATSNAME is aTRING;
subtyps RELATIONaHIP_NEY is STRING;
subtype REIATION_NPMS is STRING:

,,

NODE_TYPE descs%es “the type for node hhdles. NODE_KIND is the enumeration of the
kinds of nodes. INTE~_SPECIFICATION describes the usage of node handles and is
further explained in Section 5.1.2. INTENT.ARRAY is the type of the parmeter INTENT

●
of CAB procedures which, open or change the in@t of a node handle, as further explained in
Section 5.1.2.

,. ’,., ;.”’!:
PATHNAME, RELATIONSHIP_KEY, tid RELATION.NAME are string subrypcs for
pathnames, relationship key designators, and relation nties.. Values of these subtypes are
subject to certain syntactic restrictions whose violation causes exceptions to b-eraised.

subtype ATTRIBUTE_NANE is STRING;

ATTRIBUTE_NAME is a subtype for the names of attributes.

subtype ATTRISUTE_LIST is ‘mIS_LIST_MANAGBSWT .LIST TYPE;
subtype DISCRETIONARY ACCEWS_LI!3T is‘ CAIS LIST_MANAGENSNT .LIST:TYPE ;
subtype MANDATORY_ACCi&_ LIST is CAIS:LIST_bSANAGlMF71 LIST lTPE ;

AITTUBl_lTl_UST is the subtype for lists of attributes. DISCRETIONARY_ACCESS_
LIST and MANDATORY_ACCESSLLIST are the ,subtypes, ~spectively, of the
discretionary and mandatory access control information. Values of these LIST_TYPE
subtypes are subject to certa~ ,syntactic.:restricdons whose violation causes exceptions to be
raised. ,:/j, , .;;.

...

Y.’,

,-.

S4

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.1
CAIS.DEFINITIONS CONSTANTS

CURRltNT_USER: constant PATHNANE : = “ ‘ CURRENl_USER” ;

CUKRENT_t?ODE : constant PATNNAME := “ ‘ CURS&NT_NODE “ ;
CURRSNT_PRCCESS : ronstant PATNNAbtE :=!! :!O.

LATEST_KISY : constant RELATIONSHIP xEY := ,,# ‘t;
DEFAULT_REIATION : constant RELATION_N-- ;= ,,Dm, r;

LONG_DELAY : runstant CAIS_DURATION := CAIS_DURATION’ LAST;

CURRENIUSER, CURREN7_NODE, and CURRENT-pROCES.S ~e st~dmd pa~ames
for the current user’s top-level node, current node (base node for pathnames beginning with a
relationship key), and current process node, respectively. LATEST_KEY and DEFAULT_
RELATION are standard names for the latest key and the default relation name, respectively.
LONG_DELAY is a constant of type C+IS_DURATION (see [1815A] 9.6) used for time
limits.

ACCESS_VIOLATION ; exception;
ATTRIBUTE_ERROR : exception;
DEVICE_ltRROR : csception;
EXISTING_NODE_EttROR : emeption;
INTf/AiT_VIOLATION : exception;
ITttkWCOR_ttRROR : csccption;

LOCtt_ERROR: exception;
w4E_ERROR : exception;
NODE_KIND_ERROR : exception;
PATxNANE_SYNTAl_HtROR : ciception;
PREDZFINSD_ATTRI BUTE_ERROR: CXCeptiOn;
PEUtDttWIED_RELATION_EPROR : esception ;
RM.ATIONSHIP_ERROR : exception;

S.CCURITY_VIOLATION : csception;

STATUS_ERROR : esception;
SYNTM_lSRROR : exception;
uSIS_ERROR:

.,
exception;

:, ,>

ACCESS_VIOLATION is raised if an operation is attempted which violates access right
constraints other than knowledge of existence of the node. ACCESS_~OLA~ON iS raised.
ordy if the conditions for NAME.ERROR tie not present.

A’ITRIBUTE_ERROR is raised if the intefiace. expects an attribute of the’ given name and
none exists or if the interface expects there to be no attribute of the given name but one
already exists.

L. .,..

DEVICE.ERROR is raised if a CAIS operation cannot be completed because of a
malfunction of the underlying system. AU interfaces may raise this exception, so it k not
explicitly mentioned in the descriptions of the interfaces.

EXIS~G_NODE_ERROR is raised if a node already exkts with the identitlcation given
@d an attempt is made to create anode with this identification.

,.. .
,, .,. . ! .,,

INTENT_ViOLATION is raised if an operation is attempted on’ an open node handle which
is in violation of the intent associated with the open node handle. :,

ITE~TOR_ERROR is raised if an iterator is used that has not been set or is exhausted.

55

Downloaded from http://www.everyspec.com

5.1.1 DOD-STD-1838
EXCEPTIONS C.41S.DEFINITIONS

LOCK.ERROR is raised if the opening of a node handle to a node is delayed beyond a
specified time Iimit due to the existence of a Iock “onthis node, its attributes, relationships, or

) contents. Such opening of a node handle may also be an implicit action of a CAN interface ●
call (see’ Section 3.1.2, page’ 57). LOCK_ERROR may k raised prior to expiration of the
timeout if the CAB implementation can determine that a deadlock situation has occurred.

NAME_ERROR is raised if”% attempt’ is rnde to access ‘a node via a pathname or node
handle while the node does not exist, is uirobtainable, ‘discretionary access control constraints
for knowledge of existence of a node are violated, or m~dato~ access controls for “read”
operations we violated. This exceptioir takes precedence over ACCESS_VIOLATION and
SECURITY-VIOLATION exceptions. :,

.,, ,.

NODE_~_ERROR is f~sed if the ~kind of the ‘node is incorrect for the atiernpted
operation.

PATHN~_SYNTAX_ERROR is raised if the pathname information is syntactically
illegal. , ,, ...

PREDE~ED_ATlllIBfiE_ERROR is raised X an attempt is made to create or modfi a
.predefmed attribute that cannot .be created or moc@ed by the user.,. . .

PREDEFfNED_RELATfON_ERROR is raised if an attempt is made to create or modify a
relationship of a ~redefiied ~latio,n that, c~Uo~,@,cre.atedo; mod~led, by r@ user,., ,..

~m~ONSH~_EtiOR,ijIakkd: g~$erei~~onshipp’~dentkedby the. pq@peters ‘BASE,
~.KEY a@RE~~ON.of,a prOCedUre.Or:fqrICtiOndWSqOt .exjst,. ●

,., .,.. ,,, ,.. , .,.:ji. r.:: ,, J :,{

SEC-AVIOLATION may,, be, raised if i.~ operation:, is, ~attempted whichi violates
mandatory access controls:for “writeh’.oprations.. SECURm_~OLATION may be raised
only if the conditions for other exceptions are not present.

,,,. ..,: .,,! , ,, .,.,,,2;,. .,, . ,,. , ,. .,.,,
STATUS_ERROR is raised if the open’ stal~S of a ““node han~e does not conform to
expectations.

SYNTAX_ERROR is raised if the information given in certain parameters other than
padrnarne pamrneters is syntactically illegal.

USE_ERROR is raised if a restriction on the use of an interface is violated.

The CAIS does not prescribe a pattictdw. preference ordering among these exceptions in the
presence of multiple error situations, except where the lack of such preference would create
i@erence paths violating security modeIs. If access to information that is inaccessible
according to the access control models is required to detect an additional emor situation, the
exCe.ptiors relating to the attempt to access inaccessible information takes precedence over the
exception for the’additional error.

.

54

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2

5.1.2 Package CAIS NODE MANAGEMENT

This package defiies the general primitives for manipulating, copying, renaming and
deleting nodes and their relationships. The exceptions raised by all subprograms in this
package are defied in the packages CAIS.DEFIIWITONS and CAIS.PRAGMATICS.

The operations defined in this package are applicable to SUnodes, relationships and attributes
except where explicitly stated otherwise. These operations do not include the creation of
nodes. The creation of structural nodes is performed by the CREATE_NODE procedures of
package CAIS_STRUCTURAL_NODE_MANAGEMENT (see Section 5.1.5), the creation
of nodes for processes is performed by INVOKE.PROCESS, SPAWN.PROCESS ~d
CREATE_JOB of package CAIS_PROCESS_MANAGEMENT (see Section 5.2.2), and the
creation of nodes for fries is performed by the CREATE procedures of the input and output
packages (see Section 5.3).

Three CAIS imerfaces for manipulating node handles are OPEN (opens a node handle),
CLOSE (closes a node handle), and CHANGE_INTENT (alters the specii3cation of the
intentionof node handle usage). h addition, OPEN_PARENT, GET_CURRENT_NODE,
GET_NEXT and the node creation procedures also open node handles. These interfaces
perform access synchronization in accordance with an intent specified by the parameter
INTENT. One or more of the intents defined in Table V can be expressed by the INTENT
parameters.

Operations which open node handles or change their intent we central to general node
administration since they manipulate node handles and most other $terfaces take node
handles as parameters. While such other interfaces me often provided ii overloaded versions,
taking pathnames as node ident~lcation, these overloaded versions are to be understood as
including implicit OPEN calls with an appropriate intent specification and a default TIME_
LIMIT parameter. Subsequent uses of the phrase’ ‘open operation” may refer to any of the
OPEN, GET_CURRENT _NODE, OPEN_PARENT and GET_NE~ operations. <

1. ,, ...,,

Open node handles to a node can delay attempts to open other node handles to this node or to
change the intent of other node handles to this node, as explained in Table V and summarized
graphically in Table VI. Most CAIS interfaces that may be delayed upon opening a node
allow the specification of a time limit atler which a call to such interfaces is allowed to
terminate with an exception.

,,

. ...1 ,,

. .: .,,” ‘,. :,7.’. .
,, . .= ,.. , .$’ .1,,.. .

,.

..,.4;7. .

57

Downloaded from http://www.everyspec.com

. ,:

-.

5.1.2 DOD.STD-1838
INTENTs CAfS.NODE_MANAGEMENT

TABLE V. Intents

Explanation @Intent

qO_ACCESS

WAD
?XC1.USIVE_READ

vRfTE
:XCLUSIVE_~

,1 .,,.

,.,’ ,,
,., .

,,. ,,, ,. ,.
, ..

PPF.ND
!XCLUSfVELAPPEND “ ,, “,

,..,.’ ,,, ,,
/ :.:m,

,... .,,,, .,,:,?,,,;,,.! ,...
...., ..,..,,,,, ,,7

EAD.CONIWS : .,
XCLUSfVl_READ.CONTENTS

The established acceas right for subsequent operations is I
to que~ prop+mies of the node bade and obt~ability of
the node only. Locks on the mxle have no delaying effect.

Open and CHANGE_INTENT operstiom sre delayed if
the node, ita contents, attributes or reladonahips a-e
locked againat read operations The established access ~
right for subsequent operatiom ia to read node contenh,
atuibutea and relationships.

.,.

For EXCLUSIVE.READ, the node k Iocked against
o~m, wi* any’ writi or control intent aa specified in
Table Vf. Open and CHANGE.INTENT operatica.e are
additionally delayed if there are open ncde handles to the
node with write or conuol intent.

Open and CHANGEJNTENT opemtiona are delayed if
the node, its contents, atuibutes or @ticmabipa are
locked against write opsradom. ‘h established acceas
right for subsequent operation is to write, crsate o]
append tOncde contents, attributes and relationatdps.

For ;EXCLUSIVE_WR~, the ncde is locked agaimt
ope~@~with .tiy fiad, ‘write.’ap@d, e~cutej .OI,control
intent,. as”~pecified in Table, ~.; Qperi. ;~; C~GE-
-. opxatiom ‘are additionally delayed if there are
op,n, @.+y@es’ to tk node with read, write, append,
execute or’control intent.

Open and+.2HANGE_INTENT operations are delayed it
the node, it.i contents, at@butes or relaticmabipa are
Iocke,d.agaimt append o~rations. The estabfiahed access
right ,for :subsequent wrations k to append to the
:onte.nts m.d to create attributes or rslationahips.

,, ,..
For EXCLUSIVE_@PEND, the node is locked againat
Dpem with WI’ite,apJXIId or execute intent as specified in
Table VI. Open and CHANGE_fNTENT opwations are
~dditionally delayed if them w open node handles to the
@e ,@b write, append or execute intent.,. ...,

Open snd,CHANGE_INTENT opaa!iona are delayed if
he node or ita contents are Iockd-againat read o~ratioms
l%e estsbfisbed amss right for subsequent operations is
:0 rsad$he nnde contents.

..:,.

For” “”EXCLUSIVE_REAI_COiVl13.NTS, the node
:ontents are locked against all opens with write intent as
ipecified in Table W. Open and CHANGE_INTENT
)pe.radona are additionally delayed if here are open node
x+mdlesto the node with intent to write its contents.

o

58

Downloaded from http://www.everyspec.com

I
DOD-STD-1838 5.1.2

CAIS_NODE_WAGEMENT INTENTS

TABLE V. Intents -- Continued.

Intent Explanation

wTuTl_coNT)3NTs Open and CHANGE_INTENI opemtiona us delayed if
3XCLUSlVE_WWTE_CONTEIW S the ncxie nr ita contents are locked against write

operations. The established access right for subsequent
operations is to write or append to tbe nwie contents.

For EXCLUSNE_WRITE_CONTENTS, the nede
contents we locked agsinst opens with read. write, appeod
or execnte intent as specified in Table VI. Open and
CHANGE.INTENT operations are additionsly delayed if
there are OWII nods handles to the node with intent to
read, write, executs or append to its contents.

I
4PPEND_coNrliBrrs Open and CHANGE_INTENT opemtiona me delayed if
lXCLUSIVE_APPEND_CONTENTS the node or its contents sre lncked against append!

opemtiona. The established access right for subsequent 1
operationsis tosppendtothennde contents.

For EXCLUSIVl_APPEND_CONTENTS, the node
contents are locked agsinat opens with vmite, appsnd, or I
executs intent as specitisd in Tsble W. Open snd
CHANGE_INTENT operstiona srs additionally delayed if
there m open ncde hsndles tn the ncde with intent to
write,executem appendtoitscontents.

WiI_A-Lll’ES Opim snd CHANGE_INTENT operations are delayed if
?XCLUSIVE_RE,4D_ATlTUBUTES the node or its attribute are locked against read

operatiom. The established access right for aubaequent
operations is to read node attributes.

,., For EXCLUSNE_READ_ATTRIBUTES, ths node is
locked against opens with intent to write athibutes u
specified in Table VI. Open snd Cl+ANGE_INTEIW

, opsrstions me additionally delayed if there we open node
handles to the nnde with intent to write attributes.

bVRITf_AITRISWIES Open and CHANGE_tFiTENT operations sw delayed if
3XCLUS(~_WRlTE_AmUTES the node m its attributes w Iecked against write

operations. The eatabliahed scceaa right for subsequent
operstiom ia to modify and create node atuibutea.

For ~CLUSIVl_WRITE_AmUTES, the made is
locked agsinat opens with intent to read, write or append
attributes ss specified in Table VL Open snd CHANGE_
INTENT operations are additionally delayed if there am
opsn ncde bamdles to tix nods with intent to read, write or
appsnd attributes.

I
1““o

. ‘.:- —

Downloaded from http://www.everyspec.com

5.1.2 DOD-STD-1838
INTENTS CAIS.NODE.MANAGEMENT

TABLE.V. Intents-.Continued.

Intent,”“““,< Explanation

‘APPEIW)_A~BWf13S , ,- Open qid CiiANGE_INTENI operations ire delayedif
EXCLUS,~ APPE$DA+BUTES ., the ncde. Or its attributesare locked againstappend

“- .,
,,,,, operadotp.The established access right for subsequent

f “:.?. ,:,. ::.. ,~,, , opeq+tions is,to create node attibutes.
.,. ,.. ,., ,, ,., ,: ,,, .,

For EXCllISIVE_APPEND_ATTRIBU’TES, the node is
‘locked against opens with intent to write or append

, . at,pibutes aa specified in Table Vf. Open and CHANGE_. . .,
~!+JT operations are additionally delayed if there are!

,.; o~fl ncde handles to the node with intent to write or,..~.,,
. . . . append zitributes.

READ_RELATTONSHIPS it “. ‘.‘ ! O&m &&CHANGE_DITEm opemtiona arE delayed if
EXCLUSIVE_READ_RELATIONSHJPS the ncde,’ or its relationships m locked againat read

..:. operatiom. The established access right for subsequent.
operations is to read node rslationahipa, including their,., .;,..1:,
atuibutes.,. ’.,.,, :,.j,,, , ‘.,’. .,

., ..; : , ,, ,,. .’..
., .,, , For,~CLUSIVE_READ_RELATIONSHIPS, the node is

., locked againat opens with control intent or intent to write~ ,1 ..7-::, .
.- ‘ ~~ relationships aa specified in Table vI. Open and

CHANGE_INTENT operations are additionally delayed if
there are. open n~e hades to thi node with conmol
intent or intent to write relationships.

~_RELATIONSHIPS Open and CHANGE_IiNTENT operations are deIayed if
EXCLUSIVE_WRITE-RELATIONi~PS the ncde or its n+atiombips are lc-eked against write

bperationa. The established access right for subsequent,,
operationsis to write or createnode relatiodips,
iticludingtheirattributes.

For EXCLUSIVE_WRITE RELATIONSHIPS, the node

is locked againstopens w~ti controlintentor intentto

read,write or, append mla!iombips m specified in Table
VI. Open and CHANGE_INTENT operation are
additionally delayed if there are open node hades to the
nde with cocmol intent or intent to read, write or append
relatiombips,

iPPEND_RELAnoNsHIPs o pen and CHANGE_lNTENT operations are delayed if
3XCLUSIVl_APP~_RELATIONS fiZPS the node or its relationships are locked against append

0pemdons. TIE estab~sbed access right for subsequent
operatioruis to createnode relationships,iocluding their
athibutes, ,

For EXCLUSIVf_APPEtW_RELATIONSMPS, the
node is locked againat opem with control intent or intent
to write or append relationships as specified in Table VI.
o pen and CHANGE_INTENT opera!ion.i are additionally
delayed if .tieie are open node handles to ‘tie ncde with
control intent or intent to write or append relationships.

Downloaded from http://www.everyspec.com

,. ●

DOD-STD-1838 5.1.2
CAIS_NODE_MANAGEMENT fNTENrs

.,

I T&LE V. Intents -. Continued. ‘

Intent I Explanation
1

COi4TROL ‘.. OWn and CHANGE_INTENT operations are delayed if
EXCLUSIVE_COIVHIOL ~ the nc& nr its relationships are locked againat write,

conunl or (exclusive or - nntiexclusive) ‘READ jtnd,. -,,
READ-RELATIONSHIPS operations. The established
accesa right for subsequent operations ia to read write or
append accesscomrnl iufonnatinn.

Fnr EXCLUSNETCONTROL, the node is locked againat
opens to read, wrote nr appmd relatiodips or to xead,

.,. write, or append access control information m specified in
Table VT, Open and CHANGE_INTENT operaticaa are
additionally delayed if there are open nnde handles to the
nnde with intent to read, write or .ippend.rehtkmahips or
to read, tite or append access control information.

EXECUTE Open and CHANGE_ItW’ENT opertitiona are delayed if
the node contents are lwked against xead or append
operations. The established access right for subsequent
operationsiathepenniaaiontoinitiateaprweaatakingthe
nodecontentsasexecutableimage.

,.

,,:,

,.. ,,
,,, ,.. .

,, .,’.., ~,,

: ., .,,.:- : .)

,, ,.

,, ?,.

,.-, ,, .,

,,.
,, ...,

,. ..,,

,.. ,.

),

,,

I

61

. .

Downloaded from http://www.everyspec.com

>.

—
.

5.1,2 DOD-S~-1838
INTENTS CA15.NODE_tiAGEMENT.,, ,

TABLE VI. Matrix of Access Synchronization Constraints
..

.,.,!, .’
l? OU-X. xc’ L.1191.VS, EXe LIJ91TE.,.

\ 12
“\ ., ...

\
n \

\UORWAXC W. AC SIAWXIWe’’%’ii CEX R,WA XC WC+CPA9/h XL BRWR AXC
Wt!o ,, .:..Wo
0 R. i ,.. . . .
w

X..”x. ’.x.,.,.,;’ “’<. , .X. XR
w. , Xxxxxx. xx xxx Xxw

, x ...,;....”. .’, :.. XX,,.. XX. XX. XX XA
Zrl c..,,:... ;. X”. .X,.,.N
Xwc.;,. .’.. .X XXX. Xx. :’tm
C &? ...’..... xX’... .x’xLc
2’WX ...;”....;”’. ..’’. .. ’.x.:... X.. . ..RA
Ll?m .. :.....,. :..’..,;”;. xx x,... .X XXXX
SOL ...’....Xx: ... xx. ... AX
~ m..,.....’.’. .xX. XRI?
VWR xx x.,... .Xxxxww
XLR,, ..:... .X x...... .X XXXW

c,.”...; ,. .,., xx x..... .Xxxxc
m,.,.....’. .Xx. xx..... . ..LX. :! ,,- .: !.): j,” ;; , .“. .’...,.: :,

E’” R.. x.. .x. x!: ‘..”X’ .i;’x >.,.’ .x,. . . x’!. . x . X.. XR
x W., xxxxx xxx Xxx xxx Xxxxxxx xxx Xxxw
c A.. xx. xx. x X.. x’ xxx .Xx. xx. xx. x XXA
LRc. .x. .x.. ., .,.:.,.X ..X. Rc
Uwc. xxx xxx.X

. . .
Xxx xxx::::, ..WC

s. Lc .;’X;X.. . X;*:::>.,-.,f,,. .. X:,: .);XX: x x., , ,x
Im. .x. ..’, .x ‘“...,.... .x. :;. .x””... ..PA
V= .x Xx... xx x..... xxx. .X2+ X.. ..WL
x u . xx :::,x :x.:.’,’. ::- :+’+.f:i:x : , ‘; ,,.,xx .LL

Wn. .x...... ,.. .X.x.. . x....,... X.XRR
Wa ,yx,x,.,,..,,.,<,,,.;...x.,x x X.. :.l X.X. ;,. .. .Xxxxm
AR ..X X .-’.’’-.. .“:’’’.’X: X’’*l.’’.*l : : ; XXXLR
C. xxx..... .X xxx, xx x.. .Xxxxc
/ Wo R W A,~.:~I+C,P+ WA)%. +’,WR ~>.$:~ R,W A,,l+CAC k k AA RR WR AR C

11 /

/1 ,’
/=

X = Cp.m with int..t 12 i. &l.y.d if th.z. ...

oP-n h-~- ‘w-??’.: with i--t 11.

. .

62

‘.

Downloaded from http://www.everyspec.com

. ,.

DOD-STD- 1838
CAIS_NODE_MANAGEMENT

5.1.2.1 opening a node handle

procedure OPEN (NODE: io out
,NAME: io
INTENT: in
TIME_LiMIT: in

pmdurt! OPEN [NODE: in out
-E : in
Rar : in
RELATION: in
INTENT: in
TIME_LIbtIT: in

purpose:

NODE TYPE;
PATIiih61E ;
INTE~_ixBAY;

CAIS_DURATION := LONG_DELAY);

NODE_TYPE ;
NODE_TYPE ;

AELATIONSHIP_NEY;
PWATION_NAME := DEFAULT_REI.ATION;
INTENl_ARSAY ;

CAIS_DUSATION := LONG_DELAY);

5.1.2.1
OPEN

These procedures return an open node handle in NODE to the node identfledby the
pathnsme NAME or to the node identified by the BASE, KEY and RELATION
parameters, respectively: The INTENT parameter determines the access rights available
forsubsequent uses of the node handle; it also establishes access synchronization with
other users of the node. The TIME_LIMIT parameter allows the specification of a time
limit for the delay imposed on OPEN by the existence of locks on the node. A delayed
OPEN call completes after the node is unlocked or the specified time limit has elapsed.
In.the latter case, the exception LOCK_ERROR is raised,

,.

Parameters

NODE

.,,,
NAME

KEY ‘

RELATION

rNTENl-

TIME_LIMIT
,,:.

.
,. ~,... .,.

Exceptior&

,,

is a node handle, ititiatly closed, to be opened to the ident~led node.

is the;pathnarne iden’tifyiirg the node to be opened. : :
..

is an open node h~dle to a base node for node identification.
.,.

is the relationship ke y designator for node identification: ‘“‘“
.,

is”the relation name for node identification,

is the intent of subsequent “operations on the. node; the actual pammeter
takes the form of an array aggregate. . .

is’ a v’ilue” of type CALS_DURATION, specifying a time limit for the
delay on waiting for the unlocking of a node in accordance with the
desired INTE~.

PATHN~_SYNT~ ERROR -. -- ~~
is raised-if the NAME, KEY or RELATION given is syntactically illegal
(see Table I, page 32).

63

Downloaded from http://www.everyspec.com

5.1.2.1

OPEN

,-

DOD-STD-1838 \
CAIS.NODEMANAGEMENT

NAME_ERRORis raised ti.any traversed node in the path specified is unobtainable or
inaccessible, if the node to which the handle is to be opened is ●
inaccessible or unobtainable and the given INTENT includes any intent
other tlpt NO_ACCESSl or if the relationship specified by BASE, KEY
and RELA~ON or by any path element of NAME does not exist.

USE.ERROR k’raised if the specified INTENT is an empty array.

STATUS-ERROR ‘
is rkised if the node handle NODE is already open at the time of the call
on OPEN or if BASE is not an open node handle.

..

LOCK_ERROR is raised if the OPEN operation is delayed beyond the s~cified time
l~knitdue to the”existence of locks in conflict with the specified WENT.
This includes any ,delays caused by locks on nodes traversed on the path
specified by the pathname NAME or locks on the node identified by
BASE, preventing the reiding of relationships emanating from these
nodes. LocK_gRROR may be raised prior to expiration of the timeout

if the CAIS implementation can determine that a deadlock situation has
occurred.

prrBNT_vIoQqIoN
,, is r@ed if BASE <~,~~ot o@ed with an intent establi@iiig the right to~.,

read,relationships. ~ ,,, !. - .,

ACCESS_VIOLATION
is raised if tie diacretionq access ‘control rights of the current process,, .,.

,,. , W i&$fficient to~travirse ,t~e path ,s~ci~ed by NAME Or by BASE,
.,.

,,;. ‘~,Y;@d RE~+~ONJor to obtaiii acce+.to ‘the nqIe consistent with the

s~clfied” ~~. ACCE5S~V10LA7TON ‘is ~rti>d”, only if the
conditions for NAME_~ROR are not present.

SECURITY VIOLATiON
is rr&ed if me attempt to obtain access to the node with the specified
INTENT represents a violation of mandatory access controIs for the
CAIS. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

o-
64

7

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2.1
CAIS_NODE_MANAGEMEtW “OPEN

Addltiorral Interfaces:
,.

p~sdurs OPEN (NODE: in Out NODE TYPE;
NAM4 : in PAT&iME ;
INTENT : in INTENT_SPECIFXCATION’ := READ;
TIME_LIbtIT: in CAIS_DmTION := mNG_DrEm4Y)

is. ,,
begin ‘

,.

OPEN (NODE, NANE, (1 => INTENT) , TIblE_LIMIT) ; ,

end OPEN;
.,.

pIOSdU~ OPEN (NODE: in Out NODE_TYPE ; ,.,
SASE : in NODE_TYPIt ;
NEY : in REuTIONSNIP SCSY;
RSLATiON : io SWATION_NA& := DIIFAULT_REIATION;
INTENT : in INTENT_SPECIrICATION\ := P.EAD;
TIbtE_L16SIT : in CAIS_DORATION := MNG_DSZAY)

is
begin

>.

OPEN (NODE, *E, IOW, p.ELATION, (1 => INTENT) , TIME_LIbSIT) ;
end OPEN ;

Notes:

An open n~e hapdle acts as if the handle forms a+ p~amecl temporary ~cond~
reiaiionsIup to the node; this means that; if the node identitled by the ‘open node handle
is renamed (potentially by another process), the open node hmdle: tracks the renamed
node. ;, .:;..

~’ .,..’ ,,. .

It is p&sible to”open, a node Ii&dle to”tin unobt@able no~ or t~ lip ,@cessible node.
The latter N consistent with the fact’~at ,tie, existence,of ,arela~@lup emanating from
an, accesiibIe node to whch the “user, haa READ_RE.A~ONS~PS rights cannot be

:!.+:,J-J.hidden’’from the user. ,“”.
:.. : “1’ ‘i .,:,.,,,:.::,

., (~,,, ., ;.:

63

Downloaded from http://www.everyspec.com

5.1.2.2 DOD-STD-1838

CLOSE CAIS.NODE.MANAGEMENT

5.1.2.2 Closing a node handle

Procedure CLOSE (NODE : in out NOD8_TYPE) :

Purpose:

This procedure severs any association between the node handle NODE and the node
and reIeaaes any associated lock on the node imposed by the intent of the node handle
NODE. Closing an already closed node handle haa no effect. If there are arty open fie
handles associated with the contents of the node identitled by this node handle, the fde
handles are also closed.

Paramete~

NODE is a node handle, Wltially open, to be closed.

Exceptions:

None.

Notes:
,,

A NODE_TYPE %riable must b. closed, &“fore another OPEN cti be c~ed using the
same NODE_lYPE vaiiable ‘as’& actual parameter ~0 the fowsl NODE Pmsmeter of
OPEN.

1. ..’, ,c:’. .:.
., ..;,,;.,.” ,., ,

‘, ’’.,’

. . . .!!!!

:,, ,’ .,).? .,. .‘

., .{. ,,,
,. ,,,. .,-1; !: :..;

6s

Downloaded from http://www.everyspec.com

‘o

DOD-STD- 1838
CAIS.NODEJ4ANAGEMENT

5.1.2.3 Changing the intent regarding node handle usage

pKWdusf CNANGE_INTENT (NODE: in out NODE_TYPE;

5.1.2.3
CRANGE_INTENT

—
&. INTENT : in INTE-i@l?ARRAY;

TIME_LIMIT : in CAIS_D--TION

Purpose: .,. .

:= LONG_DEIAAY) ;

This procedure changes the intent regarding use of the node handle NODE. It is
semantically equivalent to closing the node handle and reopening the node handle to the
same node with the INTENT and TIME_LIMIT parameters of CHANG13_INTENT,
except that CHANGE_INTEN’T guarantees to return an open node handle that refers to
the same node as the node handle input in NODE (see the issue explained in the note
below).

Pammeters:

NODE is an open node handle.

INTENT is the intent of subsequent operations on the node; the actual parameter
takes the form of an array aggregate.

TIME_L~IT ,is a value of ,~e,, CAIS_DURATION, specifying a time limit for the
delay, ~n “iv@ng for @e “i+dock!gg of a node in accordance with the,:
desire~ INTENT; ‘

Exceptiorw

NAME_ERROR is raised if the node handle NODE refers to an unobtainable or
inaccessible node and INTENT contains any intent specification other
than NO_ACCESS.

STATUS ERROR—

LOCK_ERROR

is raised if the node handle NODE is not an open node handle.

is raised if the operation is delayed beyond the specified time limit due to
the existence of locks on the node in conflict with the .soecKled INTENT.
LOCK_ERROR may be raised prior to expiration of ‘the timeout if the
CAIS implementation can determine that a deadlock situation has
occurred.

ACCESS_VIOLATION
is raised if the discretionary access control rights of the current process
are insuftlcient to obtain access to the node consistent with the speckled
INTENT. ACCESS_VIOLATTON is raised only if the condition for
NAME_ERROR is not present.

SECURITY_VIOLATtON
is raised if the attempt to obtain access consistent with the specfled
INTENT to the node specified by NODE represents a violation of
mandatory access controls for the CAIS. SECURITY.VIOLATION is
raised only if the conditions for other exceptions are not present.

/
67

Downloaded from http://www.everyspec.com

5.1.2.3 DODST)- 1838

CHANGE.INTENT CAIS_NODE.WAGEMENT

USE_ERROR is raised if there are open fiIe handles associated with the node and the
new INTENT differs from the existing intent regarding the contents of
the node identified by NODE.

●
Additional Interface:

!,, ,
nroieduk CNANGE INTE”ti [NODE: ti out NODE TYPE:

is
begin

CNANGrt_INTENT
end CNANGE_I~ENT ;

Notes:

“INTENT: in
TIbtE_LIMIT : in

(NODE, (1 => INTENT),

INTE-ii_SPXCIFICATION;
CAIS_DOIUiTION := LONG_DZIAX)

TIME_LIblIT) ;

Use of the seauence of a CLOSE and an OPEN ooeration instead of a CHANGE
INTENT oper~ion caimot guarantee that the same n~de is opened, since relationships;
and therefore the node identification, may have changed since the previous OPEN on
the node.

Downloaded from http://www.everyspec.com

I

I

‘o

DOD-STD- 1838
CAIS.NODE.MANAGEMENT

5.1.2.4 Examinirw the rmen status of a node handle

5.1.2.4
IS.OPEN

function IS .OPEN (NODE: in NODE_TXPE)—
return ‘WLEZw;

Putpose:

This function returns TRUE if the node hamle NODE is open; otherwise, .it returns
FALSE.

.

r.

Paramete~ ~’

NODE is a node handle.

Exceptions:

None.

69

Downloaded from http://www.everyspec.com

5.1.2.5 DOD-STD-1838.
INTENT CAIS_NODE_MANAGEMENT

5.1.2.5 Querying the intention of a node handle

function INTENT (NODE: in NODE_TYPE)
Mum INTInrT_ARRAY; .,

Porpose:

‘This frincdon returns the intent with which the’node handle NODE is open.

Parametec

NODE is an open node handle.

Exception:

STATUS.ERROR
is raised if the node handle NODE is not open.

.

.:..

70’

Downloaded from http://www.everyspec.com

DOD-STD-1838
CAIS.NODE.MANAGEMENT

5.1.2.6
KIND_OF_NODE

5.1.2.6 Querying the kind of a node

filslction KINL_OF_NODE (NODE: in NODE_TYPE)

return NODE_KIND;

purpose:

This function returns the kmd of a nude, either FILE, PROCESS or STRUCTUIML. It
is possible to query the kmd of inaccessible and unobtainable nodes. The query does not
constitute access to the node. Tf-’e “kind” of the target node is regarded as an implicit
attribute of alf relationships to the node and of any open node handle.

Parameter:

NODE is an open node harrdfe.

STATUS_ERROR
is raised if the node handle NODE is not open.

11

Downloaded from http://www.everyspec.com

5.1.2.7 DOD-STD-1 838

OPEN_FILE_HANDLE_COUN’f CAIS_NODE_MANAGEMENT

5.1.2.7 Querying the number of open file handles on a file node
,,

function OPEN_$ILE_NANDLE_COONT (NODE: in NODE_TYPIS)
Mum CAXS_NAmmAL;

Porpose:

Thii function returns the number of open fde handles associated with the node handle
NODE.

NODE is an open node handle. .-

Exceptions:

NODE_NND_ERROR
is raised if thenode identified by NODE is not a fde node.

STATUS_ERROR
is raised if the node handle NODE is not open.

.“’ ;:, ,
,, :.,. :~.,

,,l,- ,., ., ,,

72

Downloaded from http://www.everyspec.com

,0

DOD.STD-1838
CAlS_NODE_MANAGEh4ENT

5.1.2.8 .
PRIMARY.NAME

S.1.2.$ obtaining the unique primary pathname

tirnction PRIMARY_NAME (NODE: in NODE_TYPE)
SWWrI PATNNAME; ,.

Purpose: “,

T’his tiction remms the unique primary pathname of the node identified by NODE:

I

I

I

I
1.

I

I
,.

I

Parameter:

NODE is an open node handle identifying the node.

Exceptions:

NAME-ERROR is raised if any node traversed on the primary path to the node is
inaccessible.

STATUS.ERROR
is raised if the node handle NODE is not open.

LOCK-ERROR is raised if access consistent with intent READ.RELATIONSHIPS to
any node traversed on the primary path cannot be obtained due to an
existing lock on the node,

INTENT.VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read relationships.

ACCESS_VIOLATION
is raised if the discretionary access control rights of the current process
are insufilcient to traverse the node’s primary path. ACCESS_
VIOLATION is raised only if the conditions for NAME_ERROR are not
present.

,.

,, ... ,

I

1,

,,

~~“o

,.,

.

73

1

Downloaded from http://www.everyspec.com

5.1.2.9 DOD-STD-1838
PRIMARY.KEY CAIS_NODE_MANA~EMENT

5.1.2.9 obtaining the relationship key of a primary relationship

function PRIMARY_NJsY (NODE: in NODE_TYPE)
r@WrS SUtLATIONSNIP_XEY;

Purpose:

This function returns the relationship key of the last path element of the unique primary
pathnanre of the node.

NODE is an open node handle identifying the node.

Exceptions

NAME_ERROR is raised if the parent of the node identified by NODE is irraccessibIe

STATUS_ERROR
is raised if the node haodfe NODE is not open,

LOCK_ERROR is raised if the parentis locked against reading relationships.

INTENT_VIOLATION
is raised if the node handle NODE was not opened with an intent
establishing the right to read relationships.

ACCESS_VfOLATION
.; is raised if the discretionary access control rights of the current process

., ,, are insufficient to obtairr access to the node’s parent consistent with
intent READ_RELATIONSHIP. ACCESS.VIOLATION is raised ord y
if the conditions for NAME_ERROR me not present.

o
74

Downloaded from http://www.everyspec.com

,

0

:,/

J,,:,,..,
,.

DOD-STD-1838 S.1.2.1O
CAK._NODE_MA.NAGEMENT PRIMARY_RELATION

S. 1.2.10 obtaining the relation name s.sfa primary relationship

furrction PRIMARY_RaLATION (NODE: in NODE_TYPE)

re@rn BJZLATION_NAME;

Purpose

This function returns the relation name of the last path element of the unique primaty ’
pathnsme of the node.

Pamtneter

NODE is an open node handle identifying the node. ”

Exceptions:

NAME_ERROR is raised if the parent of the node identified by NODE is inaccessible.

STATUS.ERROR
is raised if the node handle NODE is not open.

LOCK_ERROR is raised if the parentis locked against reading relationships.

INTENT_VIOLATION
...” - is raised if NOSE was not opened with an intent establishing the right to

read relationships.

ACCESS_VIOLATION ,: . .
is raised if the dkcretionary access control rights of the current ‘process
are insufficient to obtain access to the node’s parent consistent with
intent to READ=RELATIONSHIPS. ACCESS_VIOLAT’fON is raised
only if the condmons for NAME_ERROR are not present.

75

1

Downloaded from http://www.everyspec.com

5.1.2.11 “ DOD-STD- 1838
PATH_KEY ‘~ CAIS_NODE_MANAGEMENT

5.1.2.11 otitahshrg the relationship key of ihe last relationship traversed

function PATH_KEY (NODE: in NODE_TYPE)

.retnm RSI.ATIONSHIp_KEy;

This function returns the relationship key of the relationship corresponding to the last
path element of the pathnsme used in opening th~ node handle. The relationship key is
returned even if the relationship has been deleted.

Parameter:

NODE is an open node hsmdle

Exceptions: “‘

STATUS.ERROR ~
is raised if the node handle NODE is not open

USE_ERROR is raised if the node handle NODE was opened using the pathnsme ‘‘:”.

. .

.

76
—.-.

L

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2.12
CAIS.NODEJIANAGEMENT PATH.RELATION

5.1.2.12 Obtaining the”relation name of the last relationship traversed

fJslction l?ATSf_RELATION (NODE: in NODE_TYPE)
return RELATION_Nm.lE;

Purpose:

This function returns the relation name of the relationship corresponding to the last path’
element of the pathname used in opening this node handle. The relation name is
returned even if the relationship has been deleted.

Parametex

NODE is an open node handle.

Exceptions:

STATUS.ERROR
is raised if the node handle NODE is not open. ,

USE_ERROR is raised if the node handle NODE was opened using the pathname “:”.

L

. .

77

.,

Downloaded from http://www.everyspec.com

5.1.2.13 .DOD-STD- 1838
BASE_PATH CAIS:NODE_MANAGEMENT

5.1.2.13 obtaining a partial pathname - *-’

fsWtion BASE_PATH (NAME: in PATNNAME)
MUrIS PATNNAMZ;

Purpose:

~is :,function ret~s the pathname obtained by deletxg the last path element from
,NAME. It does not estabiish whether the pathnsme identifies an existing node; onfy the
syntactic,, properties:, of the pathriaine ~ examined. This function also checks the
syntactic legaliiy of the patfmsme NAME: ‘If the submitted sxu-rseis an abbreviated
name according to the rules of Section 4.3.5, the function returns the corresponding
portion of the fully expanded padmame. If the fully expanded pathname has only a
single path element, ‘‘:” is retnmed.

., .:

Parameter

NAME is a pathnarne (not necessarily identifying a node).

Exceptioris:

PATHNAME_kYNTti_ERROR

USE.ERROR

is raised if NAME is a syntactically iflegaf pathname (see Table I, page
32).

is raised if NAME has the vafue ‘‘:”.

.

.’

,’. 7s

1

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2.14

CAIS_NODE_MANAGEMENT LAST_REL&TION

5.1.2.14 obtaining the name of the last relationship in a pathname..:

function WT_RXLATION (NAME: in PATNNAME)
return R!i-iATION_NM?E ;

,.

Purpose:

This tknction returns the name of the relation of the last path element o~the partrn~e
NAME. It does not establish whether the pathname identifies an existing node; only the
syntactic properties of the pathname are examined. This functjon also checks the
syntactic legality of the pathname NAME.

Pamrneter

NAME is a pathname (not necessarily identi~irrg a node).

Exceptions

PATHNAME_S~AX_ERROR
is raised if NAME is a syntactically illegal parhrrame (see Table I, page
32).

,,

USE_ERROR is raised if NAME has the value “,:”.

79

Downloaded from http://www.everyspec.com

.. .

5.1.2.15 DOD-STD-1838
3+ST.KEY: : CAIS.NODE-MANAGEMENT

5.1.2.15 Obtaining the key of the last relationship in a pathname

Punction LAST_RWY (NADOS: in PATlpUME)
relura RELATIONSNIP_IOZY;

Porpose:

This function returns ,tie relationship key designator of the last path element of the
pathname NAME. The empty string is returned if the last path element of the pathname
NAME has no relationship key designator. This funcrion does not establish whether the
pathname identities an existing node; only the syntactic properties of the pathname are
examined. This function checks the syntactic legality of the pathname NAME.

Parameter

NAME ‘is a padmame (not necessarily identifying a node).

Exceptions:

PATHNAME.SYNTAX ERROR
is raised-if NAME is a syntactically illegaI patbname (see Table I, page
32).

USE_ERROR is raised if NAME has the value ‘‘:”.

,.

,.,. . ,,. ;..:, .,..

‘., , . .

.

,..
. . . !

so

Downloaded from http://www.everyspec.com

I

0

DOD-ST’D-1838 5.1.2.16
CAIS_NODE_MANAGEMENT LS.OBTAINABLE

5.1.2.16 Querying the existence of a node

fktion IS OBTAINABLE (NODE: in NODE TYPE)

return ‘-LEAN ;

Purpose:

This function returns FALSE if the node identified by NODE is unobtainable or
inaccessible. It returns TRUE otherwise.

Parameter:’

NODE is an open node handle identifying the node.

Exception:

STATUS.ERROR
is raised if NODE is not an open node handle.

Additional Interfaces:

function IS_OBTAINABLE

P2tWr BWLEAN
is

(NANE: in PATNNAMS)

NODE : NODE_TYPE ;
RNSOLT : BOOL-&N;

begin
OPEN (NODE , NAME, (l=>NO_ACCESS)) ;
NESULT : = IS OBTAINABLE (NODE) :...
CLOSE (NODE) Y
return RES~T;

esception
when others => return FALSE;

end IS_OBTAINXSLE;

funCtiOn IS_OBTAINABLE (BABE: in

Ni3Y: in
RELATION: in

return BCOLEAN
is

NODE : NODE_TYPE ;
RSSOLT : BOOLEAN;

begin

NODE_TYPtt ;
NELATIONSIiIP_tCSY;
RELATIOt_NAMt : = DWAOLT_RSLATION)

OPEN (NODE , BASIC, NNY, NNLATION,
PJH3tJLT : = IS_OSTAINABLE (NODE) ;
CiOSE (NODE) ;
return NESULT;

exception
when others => return FALSE;

end IS_OBTAINABLE ;

Notes:

(l=>NO_ACCttSS)) ;

\

IS_OBTAINABLE can be used to determine whether a node identitled via a secondary
relationship has been made urrobtairrable or is inaccessible to the current process.

81”

.

Downloaded from http://www.everyspec.com

.-

5.1.2.17
Is_sAME

5.1.2.17 Querying Sameness

fuNCiiOnIS_sAMS (NODE1:
NODE2 :

return SOOLEAN;

Purpose:

DOD-STD-1838
CAIS.NODEJMANAGEMENT

in NODE_TYPE;
in NODE_TXPE)

This function returns TRUE if the nodes identified by its mguments are the same node;
otherwise it remms FALSE. If both nodes are unobtainable or inaccessible, IS-SAME
returns its result as if the nodes were not unobtainable or inaccessible. If only one of the
nodes is unobtainable or inaccessible, IS_SAME always returns FALSE.

Parameters:

NODEI is ars open node handle to a node.

NODE2 is an open node h~dle to a node.

Exception

STATUS_ERROR
is raised if at least one of tlie node handfes, NODE 1 and NODE2, is not
open.

Additional Interface:

fUNCtiOnIS_SASKE (NAME1: in PATriNAKs; ●
NAkDG2: in PATHWAME)

SWUm SOOLEM
is

NODItl , NODE2 : NODE TYsE ;
NSSULT : SOOL-W;

begin

end

OPEN (WODE1, NAMIs1, (l=>NO ACCESS)) ;

w
opsN (N0DE2, NANE2,

exception
when ONsers =>

CLOSE [NODE1) ;
raise;

(l=>NO_ACCESS)) ;

end ;
RSSULT := ZS_SAtdtt (NODE1 , NODE2) ;
CLOSE (NODE1) ;
CLOSE (uOOE2} :.—. ,
MUnS NSSULT;
IS_SANSS;

82

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2.17

CAIS.NODE.MANAGEMEN? IS_SAME

Notes:

Sameness is not to be confused with equality of attribute values, relationships and
contents of nodes, which is a necessary but not a sufficient criterion for sameness.

Open node handles to unobtainable or inaccessible nodes can exist, if the intent under
which these node handles were opened is NO_ACCESS OAY. NO secufity violation
arises inthe IS_SAME interface, since the past existence and “sameness” of the nodes
cannot be denied due to the visible existence of the relationships used in opening the
node handles.

I

I

o

Downloaded from http://www.everyspec.com

S..1.2,i8 DOD-STD-I 838
INDEX “,__, CAIS.NODE.tiAGEMENT

5.1.2.18 obtaining an index for a node .haridle
0

function INDEX (NODE: in NODE_Z+PE;
btODULO: in CAIa_POSITIVE)

retire CAIS_NA1’USAL;’
-

“Purpose:

~is function rdums an implementation-defmed number in the range of O to
MODULO-1. This number is guaranteed: to be the same if the intetiace is called with
the same MODULO. parameter value for two open node handles N1 and N2, for which
IS_SAME(Nl ,N2) is TRUE. Otherwise, the function result may but need not differ.

Parameters:

NODE is an open node handle.

MODULO is a number used to<restnct the result to be in the range O..MODULO- 1.

Exception:

STATLJS_ERROR ‘ “’ “’
is raised if the node hand3e NODE is not an open node handle.

.,
,~, , .,,

No~es:
::. .

This interface is intended to allow users to create hash tables for open node handles and
fast checking for sameness. The fact that the type NODE_TYPE is liiited private
implies that the components of such hash tables need to .be implemented in terms of
access types, since the hash value can orily. be obtained after the node han~e is opened.

An implementation’ of “the interface= ought to’ return numbers that are rmdotiy
distributed over the: range O..MODULO- 1 for’ open node handles associated with
different nodes. -

>., . ,. ,’..~.

:. .-.. ... ,..
,. ..’. . . .

:.~. ;< ., .,,

.,,.,,,:...-” ..:., ,,

.,.$,: &,: .-,, ,\,. :,.,.\,;. ., .,.,.,, ,,

●

s.

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2.19
CALS_NODE_MANAGEMEN’T OPEN.PARENT

5.1.2.19 obtaining an open node handle to the parent

procedure OPEN PASENT (PAsENT: in Out NODE TYPE;
NODE : in NODE~TYPE;

INTENT : in INTENT AWAY;
TIbtS_LIbtIT: in CAIS_D-%iATION := LONG_DELAY);

Purpose:

This procedurt’retoms an open node handle in PARENT to the’ parent of the node
identified by the open node handle NODE. llre intent under which the node handle
PARE~ is opened is specified by INTENT. A call on OPEN.PARENT is equivalent
to

OPEN (PARENT, NODE, “ “ , “PAIUNT” , INTENT, TIME_LIt4LT) .

Parameters:

PARENT

NODE

INTENT
,.:

TIME_LtilT

,.

Exceptions:” “”

is a node handle, initially closed, to be opened to the parent.

is an open node handle identi~ing the node.

is the intent of subsequent operations on the node handle PARENT.
,.

is a value of type CAIS_DURATION, specifying a time limit for the
delay on waiting for the unlocking of the parent in accordance with the,
deshed INTENT.

N.AME_ERROR is raised if the, node identified by NODE is .a top-level node or if its
parent is inaccessible.

,.

USE_E~.OR is raised if the specified INTENT is an empty array.

STATUS_ERROR
is raised if the node handle PARENT is open at the time of the call or if
the node handle NODE is not open.

LOCK_ERROR is rtised if the opening of the parent is delayed beyond the specified
TIME_LIh41T due to the existence of locks in conflict with the specified
INTENT. LOCK_ERROR may be raised prior to expiration of the
timeout if the CAIS implementation can determine that a deadlock
situation has occurred.

INTE~_VIOLATTON
is raised if NODE was not opened with an intent establishing the right to
read relationships.

85

Downloaded from http://www.everyspec.com

5.1.2.19 DOD-STD- 1838

OPEN.PARENT CAIS_NODE_MANAGEMENT

ACCESS:VIOLATiON
is raised if the discretionary access control rights of the current process o
are insufficient to obtain access to the parent with the s~cified INTENT.
ACCESS_VIOLATION is raised only if the conditions for NAME_
ERROR are not present.

SECURITY_VIOLATION
is raised if the attempt to gain access to the parent with the specified
INTENT represents a violation of mandatory access controls for the
CAIS. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

Additional Interface

procsdure OPltN_PARENT (PASJZNl!: in out NODE_TYPE;

NODE :
~

NODE TYPE ;

INTENT :
~

INTE-iiISPECIFICATION := W ;

l’MI_LIMIT : in CAIS_D&4ATION := LONG_DEIAY)

&gin

OPEN_PAP41tNT (PARENT , NODE, (l=>ItWSNT) , TIMS_LIMIT) ;

end OPEN_PARENT ;

1.,

86

Downloaded from http://www.everyspec.com

I DOD-STD-1838 5.1.2.20

0

CAIS.NODE.MANAGEMENT

5.1.2.20 Copying a node

procedure COPY_NODE

Purpose:

.

(FROM: in
TO_BASE: “m

TO_KEX :
~

TO_RBIATION: hl

COPY;NODE

NODE_TYPE ;
NODE_TYPlt ;
RELATIONSHIP KEY;
RBLATION_NAblii := DEFAULT_RXIJiTION) ;

This procedure copies a file or stnrctural node that does not have emanating primary
relationships. The node copied is, identified by the open node handle FROM ~d is

copied to a newly created node~llre new node is identfled by the combination of the
TO.BASE, TO_KEY &d TO RELATION parameters., The newly created node is of
the same kind as the node ide~tified by FROM. If the node is a fde node, its contents
are also copied, i.e., a new copied,file is created. Any inheritable second~ relationship
emanating from the original riode is recreated in the copy. A seconday relationship of
the predefmed relationship PARENT is created from the newly created node to the node
identified by TO_BASE. If the target node of the original node’s relationship is the
node itself, then the copy has an analogous relationship to itself. Any other second~
relationship whose target node is the original node is unaffected. All attributes of the
FROM node are also copied. Regardless of any locks on the node identified by FROM,
the newly created node is unlocked.

ParMeters:

FROM is an open node handle to the node to be copied.

TO_BASE is an open node haridle to the base node for identification of the node to
be created. ‘

TO_KEY is a relationship key designator for the identification of the node to be
created.

TO_RELATION is a relation name for the identification of the node to be created.

PATHNAME_SYNT,W_ERROR
is raised if the new node identification given by TO_KEY and
TO_RELATION is syntactically illegal (see Table I, page 32).

EXISTfNG_NODE_ERROR
is raised if a node already exists with the identification given for the new
node:

NODE_KI~_ERROR
is raised if the original node is a process node.

USE.ERROR is raised if any primary relationships e~tie from tlF Originaf node.

P,~DEFINED_RELATION_ERROR
is raised if TO_RELATION is the name of a predefine relation that
cannot be created by the user.

,., .,.

87
.,

Downloaded from http://www.everyspec.com

t’

.5.1.2.20 ., DOD-STD- 1838

COPY.NODE CAIS_NODE_MANAGEMENT

STATUS.ERROR
is raised if the node handles FROM and TO_BASE are not both open.

o

INTENT.VIOLATION
is raised if FROM was not opened with an intent establishing the right to
read contents, attributes, and relationships or if TO_BASE was not

+, opened with an intent establishing the right to append relationships.
lNTENT_VIOLATION is not raised if the conditions for NAME_
ERROR are present.

.SECURITY_VIOLATION
is raised if the operation” represents a violation of mandatory access
controls and the conditions for other exceptions are not present.

,.,

Additional interface:

prp@ure COPY_NODE (FP@4: in NODE_TYPE;
To: in PATNNAME)

is

TO WE:, NODE_TYPE;.

‘w~ -
Opgy (m-+iE, BiSE_PATH (m), (l=>MPEND_RSLATIONSHIPS)) ;

C“OPY_NODE (FROM, TC_S2SE , LAST_NEY (TO) , LAST_REtiTION (TO)) ;
, CLOSE (TO_SASE) ; ,,

exception ‘
when others =>

CLOSE (~_~E) j
,. r*se; ,.

end COPY_NODE;

88

Downloaded from http://www.everyspec.com

1.

“•

DOD-STD-1838 5.1.2:21
CAIS_NODE_kfANAGEMEti COPY_tiEE

5.1.2.21 Copying trees

procedure COPY_TSUE

Purpose:

(FROM: in NODE_TYPE ;
m_BAsrr : in NODE_TYP E ;
TO_KSY : in KSIJiTIONSHIP_NSY;
TC_NELATION : in RSLATION_NAME : = DEFAOLT_NSLATION) ;

This procedure copies a tree of fde or structural nodes formed by primary relationships
emanating from the node identified by the open node handle FROM. Primary
relationships are recreated between corresponding copied nodes. The root node of the
newly created tree corresponding to the FROM node is the node identified by the
combination of the TO.BASE, TO.KEY and TO_RELATION parameters. If an
exception is raised by the procedure, none of the nodes is copied. Secondary
relationships, attributes, and node contents are copied as described for COPY_NODE
with the foIlowing additional rules:

a. Secondary relationships between two nodes which both are copied tie
recreated between the two copies.

b. Any inheritable secondary relationships emanating from a node which is
copied, but which refer to nodes outside the tree being copied, are copied so :
that they”emanate from the copy, but still refer to the original target node.

c. Secondary relationships emanating from a node which is not copied; but
which refer to nodes inside the tree being copied, are unaffected.

If the node identtiled by TO_BASE is part of the tree to be copied, then the copy of the
node, identified by FROM will not be copied recursively.

Figure 10, page 91, shows an example of copying a tree.

Parameters: .

FROM is an open node handfe to the root node of the tree to be copied.

TO_BASE is an open node handle to the base node for identification of the node to
be created as root of the new tree.

TO_KEY is a relationship key designator for the identification of the node to be
created as root of the new tree. ‘.

TO_RELATION is a relation name for the identification of the node to be created as root
of the new tree. . .

\

Exceptions:

PATHNAME_SYNT=_ERROR
is raised if the new node identification given by TO_KEY and “
‘TO_RELATION is syntactically illegal (see Table I, page 32).

89

Downloaded from http://www.everyspec.com

5.1.2.21 DOD-STD-1838
COPY.TREE CALS_NODE_MANAGEMENT

EXiSTING_NODE_ERROR
is raised if a node already exists with the identification given for the root
node of the copied tree (given by TO_BASE, TO_KEY and ●
TO_RELA’FION).

NODE_KIND_ERROR
is raised if any node to be copied is a process node,

PREDEFINED_RELATION_ERROR
is raised if TO_RELATION is the name of a predefine relation that
cannot be created by the user,

STATUS_ERROR
is raised if the node handles FROM and TO_BASE are not both open.

LOCK_ERROR is raised if any node to be copied except the node identified by FROM is
locked against read access to attributes, relationships or contents.

INTENT_VIOLATION
is raised if FROM is not open with an intent establishing the right to read
node contents, attributes and relationships or if TO_BASE is not open
with an intent establishing the right to append relationships. lNTENT_
VIOLATION is not raised if the conditions for NAME_ERROR are
present.

ACCESS_VIOLATION
is raised if the discretionary access control rights of the current process
are insufficient to obtain access to each node to be copied with intent
READ. ACCESS VIOLATION is not raised if conditions for NAME
ERROR are prese~t.

SECUfU~_VIOLATION
is raised if the operation represents a violation of mandato~
controls and the conditions for other exceptions are not present.

Additional Interface:

procedure COPY_TSEE (FSQ4: in NODE_TYPE;

TO: in PATSNAME)
is

TO_SASE : NODE_TYPE ;

begin
OPEN (TO_EASE , SASE_PATH (TO) , (l=>APPEND_suSLATIONSSfIPS)) ;
COPY_TREE (FROt4r TO_EASE , IAST_KEY (TO) , LAET_RELATION (TO)) ;
CLOSE (TO_SASE) ;

exception
when others =>

CLOSE (TO_SASE) ;
raise;

end COPY_TRSS ;

—

access

,.,!,
. . .

‘w

A

Downloaded from http://www.everyspec.com

‘o

DOD-STD- 1838 5.1.2.22

C.US.NODE.MANAGEMENT RENAME

USER(S.ITHI-ll.*.(-
L75 L-f lU’UA:

A
.“-.. ,.--Q,

‘- ‘“3E

‘++ ‘h /’ ?5’[
))0.: dir(Snlrn)

PILE(F1)
d+and,‘anir31

m aftcsexecuting
to...lf ml

COPY_TRBE (FROM,

the mlc mc&# bctomm
TO_BASE, ■‘s4”, ‘DIR”)

SYSTEM LEVSL NOOE

USER(JONSS)

FROM

\
DIRIS1

h.m..dlr(SMITH)

DIR(s2)

dwond. .0. m)
CO.*.M (ru

Co.**If (rl

FIGURE IO. COPY.TREE Example

91

—

Downloaded from http://www.everyspec.com

,.

5.1.2.22 DOD-STO- 1838
RENAME CAIS.NODE.MANAGEMENT

5. 1.2.22 ”Renaming the primary relatioriship of a node

procedure rOSNAbtE (NODE: ti NoDE_TYPE ;

NEW BASE : in WODE TTPE;

NSW-KEY : in RELA~IONSHIP NEY;

NEW~FOJLATION : h. RELATION_NAblii := DEFAULT_SULATION) ;

Purpose:

Thii procedure renames a fide or structural node h “deletes the primary relationship to
the node identified by NODE and installs a new primary relationship to the node,
emanating from the node identified by. NEW_BASE, with key designator ~d relatiOn
name given by the NEW_KEY and NEW.RELATION parameters. The parent
relationship is changed accordingly. This changes the unique primary pathrrame of the
node. Existing secondimy relationships with the renamed node as target node track the
renaming, i.e., they have the renamed node as target node,

,,, .,

Parameters . ;

NODE is an open node handle to the node to be renamed.

NEW_BASE is an oprh node handle to the base node from which the new primary
relationship to the renamed node emWates.

NEW_KEY is a relationship key designator for the new primary relationship.

NEW_RELAT’ION
,,“,~, .:~~””’.“is i relation riame for the n$w pr@ry relationship.

. :,.>.,.,.. “.,
+! ,’:?$$j: ,: ..’i. :, . .

Exceptions:

PATHNAME_SYNTAX ERROR
is raised–if the new node identification given by NEW_KEY ~d NEW_
RELATION is syntactically illegal (see Table I, page 32).

EXISTING_NODE_ERROR
is raised if a node already exists with the identification given.

NODE_KIND_ERROK ~ “ “’ “
is raised if the node identified by NODE is a process node.

USE_ERROR is raised if the renaming cannot be accomplished while stall maintaining
non-circularity of primary relationships.

PREDEFINED_RELATION_EtiOR”
is raised if NEW_RELATTON is the name of a predefiied relation that
cannot be created by the user or if the primary relationship to be deleted
belongs to a predefine relation which carmot be modified by the user.

STATUS_ERROR
.

is raised if the node handles NODE and NEW_B ASE are not open. ●

92

Downloaded from http://www.everyspec.com

. . . .

DOD-STD- 1838 ‘5.1.2.22

CAIS_NODE_MANAGEMENT RENAME
.

LOCK.ERROR is raked if access with intent wE_RELATIONSHIPS to the p=ent
of the node, cannot be obtained due to an existing lock on the node to be
renamed. ,

INTENT=VIOLATION
is raised if NODE was not opened with an intent establishing the right to
write relationships or if NEW_BASE was not opened with am iotent

establishing the right to append relationships.

ACCESS_VIOLATION . .

is raised if the current process does not have sufficient discretionary
access control rights to obtain access to the parent of the node to be
renarhed with intent WRITE.RELATIONSHIPS.

SECURI~_VIOLATfON
is raised if the operation represents a violation of maodatory access
controls. SECLJfUTY_VIOLATION is raised only if the conditions for
other exceptions are not present.

Additional Interface;

procedure RENAMS (NODE: in NODE TYPE;

NEW_NAbSE: in PATtiAbSE)

is
.

NEW SASE : NODE_TYPE ;
,.. . .

begin -
OPEN (wEW_SASE , BASE_PATH (WEW_NAME) , (l=>APPEND_RELATIONSHIps));
WENANE (NODE, WEW_SASE , IAST_SCEY (WEW_NAWE), .

3AET_SE3.ATION (NEW_NAWE));

“CLOSE (WEW_F&E)’ ;

exception
when others =>

,, CLOSE (WEW_SASE) ;
raise;

end WENAWE;

Notes: ‘” ““ .

Open node hadles from exiitiirg processes track the renamed node.

..”

.

93

Downloaded from http://www.everyspec.com

5.1.2.23 DOD-STD- 1838

.—

.—

.

DELETE.NODE CAIS.NODE_ WAGEMENT

5.1.2.23 Deleting the’primary relationship.to a-node

procedure DELETE_NODE (NODE: “ in out NODE_TYPE ;

TIME_LIMIT : in’ CAI?_DIJMTION := LONG_DELAY) ;
...

Purpose:
.,,’

This procedure deletes the primary relationship to a node identified by NODE. The
node becomes unobtainable. The node handle .NODE is closed. If the node is a process
node and the process is not yet TERMINATED (see’ Section 5.2), DELETE_NODE
aborts the process. The TIME_LIMIT parameter allows the specificahon of a time limit
for the delay imposed by the existence of locks on the parent of the node. A delayed
call completes after the node is unlocked or the specified time l~it has elapsed. In the
latter case, the exception ,LOCK_ERROR is raised.

.,

Pammeters:

NODE is an open node han~e to the node which is the target node of the
primary ~lationship to &deleted.

TIME.LIMIT is a value’ of type’ CAIS_DURATION, specifying a time limit for the
delay on waiting for the unlocking of a node in accordance with the
intent WRITE_RELATIONS HIPS.

Exceptions:

NAME_ERRO”R is raised if the p~ent of the node identified by NODE is inaccessible.

USE_ERROR is, r’ti.sed’ if any, prim&y relationships emanate from the node to be
deleted. ‘“ ,, : “

PREDEFINED_RELATION_ERROR
is raised if the primary relationship to the node identified by NODE
belongs to a predefimed relation that cannot be modiled by the user.

STATUS_ERROR
is raised if the node handle NODE is not open at the time of the call.

LOCK_ERROR iS raised if access: with intent T@lTE_RELATIONSHIPS, to the parent
of the node to be deleted cannot be obtained within the specified TIME_
LIMIT’ due to an existing lock on the node. LOCKERROR may be

rrriskd Prior to expiration of the timeout if the CAIS in-mlementation can
detem-ine that a deadlock situation has occurred. ‘

INTENT_VIOLATION ‘
is rtised if “tie riode handle ,NODE “was not opened with an
including EXCLU$~E_~lTE ahd REA”D_RELATIONSHIPS

,, .,

intent

●

94

Downloaded from http://www.everyspec.com

1

DOD-SITl- 1838 5.1.2.23
.CAIS.NODE.MANAGEMENT DELETE.NODE

ACCESS.VIOLATION d
is raised if the current pr6cess does not have sufficient discretionary
access control rights” to obtain access to the parent of the node to be ‘
deleted with intent WRITE_RELATIONSHIPS and the conditions for
NAME_ERROR are not present.

SECW_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

Addition@ Interface:

procedure DELETE_NODE (NAME: in PATXNAME)
is

NODE : NODE_TYPE ;

begin

OPEN’ “(NODE, NAME, (EXCLUSIVS_WMTE, READ_RELATIONSHIPS));
DELETE_NODE (NODE) ;

exceptiun
when others =>

.CI+E (NODi) ;
raise;

end DELETE_NoDE”;

Notes: . .

The DELETE:NODE operations cannot be used to delete more thari one primary
relationship in a single operation. It is left to an implementation decision whether and
when nodes whose primary relationships have been deleted are actually removed.
However, secondwy relationships to such nodes must remain until they are explicitly
deleted using the DELETE_SECONDARY_RELATIONSHIP procedure.

,.
.’

,.-

.

.

.

1 .
,4 ...,,

.

-t

Downloaded from http://www.everyspec.com

5.1.2.24 ., . DOD:STD-1838
DELETE.TIWE CAIS_NODE_MANAGEMENT

5.1.2,24 Deleting the primary rekrtionships”of a tree’

proresture DELETlt_TREE (NODE: in orri NODE_TYPE) ;

Purpose:

This procedure effectively performs the DELETE_NODE operation for a specified
node. and recursively applies DELETE_NODE to all nodes whose unique primary path
traverses the designated node. ,~e nodes whose primary relationships are to be deleted
are opened with intent EXCLUSIVE_WfUTE, thus locking them for other operations.
The order in which the deletions of primary relationships is performed is not specified.
If the DELETE_l’REE operation raises an exception, none of the pririx+ry relationships
is deleted.

Pamrneten

NODE is an open node handle to”the node at the root of the tree whose primary
relationships are to be deleted.

Exceptions:

NAME_ERROR is raised if the parent of the node identified by NODE or any of the target
modes of primary relationships to be deleted are inaccessible.

PREDEFINED_RELATION_ERROR
is raised if the primary relationship to the node identified by NODE
belongs to a predefirred relation that cannot be modfled by the user. o

STATUS ERROR

LOCK.ERROR

is raised if the node handle NODE is not open at the time of the call.

is raised if a node h~dl~ to the parent of the node specified by NODE
c~ot be opened with intent tiITE_RELAITONS-HIPS or if a node
handle’ identifying any node whose unique primary path traverses the
node identified by NODE cannot be opened with intent EXCLUSfVE_
WRITE.

INTENT_VIOLATION
is raised if the node handle NODE was not opened wiLh an intent

irrclu&ngEXCLUSfVE_WTUI’E and READ.RELATIONSHIPS.

ACCESS_~OLATION
is raised if the, current process does ,not have sufficient discretiormy
access control rights to obtain access to the parent of the node specified
by NODE with intent WRITE.RELATIONSHIPS or to obtain access to
any target node of a primary “’relationship to be deleted with intent
EXCLUSIVE_WRITE .&d the conditions for NAME_ERROR are not
present.,.’ .,

~.,

96

A

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1,2,24
C~S_NODE_MANAGEMENT DELETE_TREE

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for’
other exceptions are not present.

Additional Interface:

procedure DELETE_TRsE (NAMS: in PATNNAME)
is

NODE: NODE_TYPE;

begin
OPEN (NODE, NAblE, (EXCLUSIVS_NRITE, RE~_S.StiTIONSHIPk));
DELETE_TRSE (NODE) ;

exception
when others=>

CLOSE (NODE) ;
raise;

end DELETE_TREE;

Notes:

This operation can be used to delete more than one primaxy ’relationship in a single
operation.

,,. .

,- :’r

., ,.. , ,. , :.’

... ,..,,
,.,”’,-,.. . .

97

Downloaded from http://www.everyspec.com

5.1.2.25 DOD-STD- 1838

CREATE_SECONDARY_RELATIONSHIP CALS_NODE_MAIiAGEMENT

5.1.2.25 Creating secondary relationships

prosedure CRSATE_SECONDARY_RSrLATIONSHIP

(TARGET_NODE: in NODE_TYPE;

/ SOURCE_SISE: in NODE_TYPE;
/ wEw_totY : in RELATIONSHIP_KEY;

NEW_RELATION: in RELATION_NM := DEFAOLT_RSLATION;

ZNHERITAELE : in SOOLEAN := FALSE) ;

Purpose:

This procedure creates a secondary relationship between two existing nodes. The
procedure takes a node handle TARGET.NODE on the target node, a node handle
SOURCE_BASE on the source node, and an explicit key designator NEW_KEY and
relation name. NEW_RELATION for the relationship to be established from SOURCE_
BASE to TARGET_NODE.

Parameters:

TARGET_NODE
is an open node handle to the node to which the new secondary
relationship poiots.

SOURCE_BASE
is m open node handle to the base node from which the new secondary
relationship to the node emanates,

NEW_KEY is the relationship key designator for the new secondary relationship

NEW_RELATION
is the rela:icm name for the new secondary relationship

INHERITABLE specifies the value of the predefmed attribute INHERITABLE of the
newly created relationship.

Exceptions:

NAME_ERROR is raised if either a primary or secondary relationship atready exists with
the identification given by SOURCE_BASE, NEW_KEY and NEW_
RELATION.

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by NEW_KEY and NEW_
RELATTON is syntactically illegal (see Table 1, page 32).

PREDEFINED_RELATTON_ERROR
is raised if NEW_RELATION is the name of a predefmed relation that
cannot be created by the user.

STATUS_ERROR
is raised if the node handles TARGET_NODE and SOURCE_BASE are
not both open. ●

98

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.2.25
CAIS_NODE_MANAGEMENT CREATE_SECONDARY_RELATIONSKIP

INTENT.VIOLATION
is raised if SOIJRCE_BASE was not opened with an intent establishing
the right to create relationships.

SEC~_VIOL.+TION
is raised if the operation represents a violation of marrdato~ access
controls. SECURITl_VIOLATION is raised ordy if the conditions for
other exceptions are not present.

Additional Interface:

procedurs CREATE_SECONDARY_rI.ELATIONSHIP
(TARGET_NODE:in NODE_TYPE;
NEW NAME : in PATWNAME;

IN~-RITASLE: in BOOLEAW := FALSE)
is

SOURCE_BASE : NODE TYPE;—
begin

OPEN (SOORCE_BASE , SASE_PATH (NEW_NAbSS),

(1.>=PEwD_MLATIoNSHIpS));

CSEATE_SECOWDARY_RELATIONSHIP (TARGET_NODE , SOURCE_BASE ,
LAST_WJIY (NEW_NAbWt),

LAST_SELATION (NEW_NAbC3),
INHERITABLE) ;

CLOSE (SOORCE_SASE);
exception

when others =>
CLOSE (SOURCE_BASE) ;
raise;

end Clur.ATESECONDARY RELATIONSHIP;

Notes:

CREATE_SECONDARY_RELATIONSHIP can be used to create secondary
relationships to nodes that are unobtainable or inaccessible,

J

Y9

Downloaded from http://www.everyspec.com

5.1.2.26 DOD-STD- 1838
DELETEISECONDARY.RELATIONSHIP CMS.NODE.MANAGEMENT

5.1.2.26 Deleting secondary relationships

t
procedure DELETIS_SECONDMY_RSLATIONSHIP

- \.
(SASE: in NODE_TYPE;

mY: in P.ELATIONSSSIP_KSY;
P.JZLATION: in RELATION_NAME := DEFAULT RSLATION) ;

,,

Purpose:

This procedure deletes a second~ relationship identified by the BASE, KEY and
RELATION parameters.

Parameters:

BASE is an open node handle to the node from which the relationship emanates
which is to be deleted.

KEY is the relationship key. designator of the relationship to be deleted.
., .,.,

RELATION. is the relation n~e of the relationship to be deleted.

Exceptions:

PATHNAME.SYNTAX.ERROR
is raised if the node identification given ,by KEY, and RELATION is
syntactically illegal (see Table I, page 32).

I
RELATIONSHIP_ERROR ●

is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

...

USE_ERROR is raised if the relationship given by BASE, KEY and RELATION is a
primary relationship.

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefmed relation that cannot
be created by the user.

STATUS_ERROR
is raised if the BASE is not an open node handle.

INTENT.VIOLATION
is raised if BASE was not opened with an intent establishing the right to
write relationships.

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are riot present.

●
iwl

Downloaded from http://www.everyspec.com

DOD. STD-1838
CAIS.NODE.MANAGEMENT

Additional Interface:

5.i.2.26° : :
DELETE_SECOND.i.RY-RELATIONSHIP . “,

prOcedure DELETE_SECONDARY_RSLATIONSHIP (NAME: in PATHNAME)

is ,,
d’

SASS : NODE_TYPE ;
. ..

,.., ..

begin ,.. ,

OPEN (sASE , BASE_PATH (NAMs) , (l=>wRITE_itP,LATIONSHIPS));
DELETE_SECONDARY_RItLATIONSHXP (SANE , LAST_KEY (NAME) ,

LhST_RELATION (NAME));
CLOSE (BASE);

exception

when others =>
CLOSE [EASE) ;
raise;

end DELETE SECONDARY_NSIAT IONSHIP;

Notes:

DELETE=SECONDARY.RELATIONSHIP can be used to delete secondaiy
relationships to nodes that have become unobtainable.

,,,

,.

I

‘o

L—

,,.

. ...,., .’,

.,.!.. ..i ,, -!. ,$

101

.,

,

Downloaded from http://www.everyspec.com

S,1:2,27 DOD-STD-1838

SET.INHERITANCE CAIS.NODE. MANAGEMENT

5.1.2.27 Setting inheritance property of a relationship

procedure SET_INNSRITANCE

(BABE : :

NEY :

SMATION :

INHERITABLE :

Purpose:

in NODE ~E;

in ~n~ION,EHIP_KEY;

in RStATION_NAMS := DEFANLT_RELA1’ION;

in BOOLEAN) ;

This procedure sets the ‘vahre of the. predefine attribute INHERITABLE of the
relationship identified by the BASE, KEY and. RELATION parameters to the value of
the parameter INHERITABLE.

.. . .

Parameters:

BASE is an open node handle to the node from which the relationship emanates.

KEY is the relationship key designator of the affected relationship

RELATION is the relation name of the. affected relationship
.,. .

INHERITABLE specifiesthe new value of the predefmed attribute INHERITABLE.

Exceptions:

PATHNAME_SYtiAX_ERROR “‘
is raised if the relationship identificatiori given by KEY and RELATION ●
is syntactically illegal (see Table I, page 32).

RELATIONSHIP_ERROR
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

USE_ERROR is raised if the identified relationship is a primaq relationship or if it is a
relationship of a predefine relation whose inheritance property cannot
be altered by the user as specified in section 4.3.4.1.

STATUS_ERROR
is raised if the node handle BASE is not open.

INTEN’.VIOLATION
is raised if BASE ~wasnot opened with an intent establishing the right to
write relationships.

SECURITY.VIOLATTON
. .

is raised if the operation represents a violation of mandatory access
‘controls. ‘SECUfUTY_VIOLATION is raised only if the conditions for
other exceptions are not present. ,,

●

102 ,.

,.....,,

Downloaded from http://www.everyspec.com

●

DOD-STD-1838 5.1.2.27
CAIS.NODE.MANAGEMENT SET.INHERITANCE

Additional Interface:

procedure SET_lNNBRITANCE (NAME: in PATSNAMP,;
INHERITABLE : in BOOLEAN)

is
BASE : NODE_~E ;

begin

OPEN (SASE , BABE_PATIi (NAME) , (l=>NRITE_RELATIONSHIPS)) ;
SET_INNERITANCE (BASE, LABT_NEY (NAME) , LAST_SJ3LATION (NA&lS),

IN31ERITASLE) ;
C3.OSE (BASE) ;

exception
when others =>

CLOSE (BASE) ;
raise;

end SET_INRERITANCE;

●

��
103

Downloaded from http://www.everyspec.com

5:1.2.28 DOD-STD-1838
lS.lNUEWTABLE CAtS_NODE_MANAGEMENT

5.1.2.28 Determining if a seeondary relationship is inheritable ,’

function IS_INNERITASLE (SASE : in NODE_TYPE; ●
KEY: “’ in tiUTIONSSSIP_XEY;

RELATION: in RELATION_NAbtS :. DEFAuLT_RELRTIoN)

return SJMLISMi;

Purpose:

,~is function returns the value of the predefmed attribute JIN’HERITABLE of the
relationship identified by the BASE, KEY and RELATION parameters. For prinrary
relationships, this function always returns FALSE.

Parameters:

BASE is an open node h~dle to the node from which the relationship emanates.

KEY is the relationship key designator of the affected relationship.

RELATION is the relation name of the affected relationship..,. .

Exceptiorw
/,

/,,
/

PATHNAME_SYhT~” EtiOR t

is rsise~if the relationship identification given by KEY and RELATION
is syntactically iIIegat (see Table I, page 32).

RELATIONSHIP.ERROR ●
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

STATUS_ERROR
is raised if the node handle BASE is not open.

104

INTENT_VIOLATION
is raised if BASE was not opened with an intent establishing the right to
read relationships.

Downloaded from http://www.everyspec.com

‘●

DOD-STD-1838

iAIS_NODE_@AGEkfi3~

AdditionslIn terface:

5.1.2.28
IS.INHERITAF3LE

fuIICtiOn.IS_INSSRITABLE (NAMS: k PATNWAKE)
titum 8c0LErtN

is”
BASS, : NODE_TYPE ;
VALUE : BOOLSAN ;

begin”,
OPSN (BASE, BASE_PATH (NAblE), (l=>REAO_Pl!LATIONSHIPS));
VALUE := IS_INNERITAELE (SASE , LAST_RSY (NAME) , LAST_Ri$LATION (NAME)) ;

CLOSE (BASE) ;

return VALUE;
exception

when others =>
CLOSE (BABE) ;
raise;

end IS_INNICRITASLE ;

,,
.!

.,,

I

I ,.’

I

‘“o
105

Downloaded from http://www.everyspec.com

,,
5.1.2.29 DOD-STD- 1838
NODE fTERATIONTYPES ANit SUBTYPES CAtS_NODE_MANAGEMENT

5.1.2.29 Node iteration types and subtypes

The following types and subtypes are used in the interfaces for iterating over a set of nodes. ●
typs ‘NODE_ITPiRAT$)Ris Iiited private;

A node irerator is an Ada object of the type NODE_ITERATOR, which is a limited private
type assumed to contain the bookkeeping information necessary for the implementation of
the MORE, GET_NEXT, SKIP.NEXT and NEXT.NAME interfaces. The nodes are
remmed by GET_NEXT in ASCII lexicographical order by relation name and then by
relationship key. The effect on existing iterators of creation or deletion of relationships is
implernentation-de”fmed..

subtype RSIATIONSHIP_KXY_PATTERN is Rl?LATIONSHIP_KEY ;

subtype RltLATION_NAME_PATTERN is RJLATION_NFIMB;

RELATIONSHIP_KEY_PATTERN and RELATION_NAME_PATTERN follow the syntax
of relationship keys and relation names, except that ‘‘?‘’ wifl match any single character and
“*” wifl match any s~g of zero or more characters.

type REI.ATIONSHIP_KIND is (PRIbN@Y, SECONDMY, BOTH) ;
type NODlt_KXND_~Y is array (CAIS_NATUPAL range <>)

of NODE KINO ;

RELATIONSHIP_KIND is ~ enumerated type which determines whether the iterator will
be based on primary, secondary, or both primary and secondary relationships. NODE_
KIND_ARRAY is a type indicating the kind(s) of nodes on which the iterator will be based. ●

,.
106

..’

Downloaded from http://www.everyspec.com

I

●

DOD-STD-1838 5.1.2.30
CAtS_NODE_MANAGEMENT CREATE_lTERATOR

5.1.2.30 Creating an iterator over nodes

procedure CSJtATE_ITEPATOR
(ITESATOR : in out NODE_ITEWmOR;
NODE : in NODE_TYPE ;

KIND : in NODE_KIND_ARKAY := (FILE, STRUCTURAL) ;
KEY : in RELATIONSHIP KSY PATTESII := ,!● ,,;
RELATION : in RELATION_N~-_PA?TEM := DEFAULT_SELATION ;
KIND_OF_F@LrLTION: in KELATIONSHIP_KIND := PRIMARY) ;

Purpose:

This procedure establishes a node iterator ITERATOR over the set of nodes that are the
target nodes of relationships emanating horn a given node identified by NODE and
matchmg the specified KEY and RELATION patterns. Nodes that are of a kind not
contained in the component values of KIND are omitted by subsequent calls to Gl?T_
NEXT (see Section 5.1.2.33, page 11 1), SKIP_NEXT (see Section 5.1.2.34, page 113)

or NEXT_NAME (see Section 5.1.2.35, page 114) using the resulting ITERATOR.
Depending on the value of KIND_OF_RELATION, nodes reachable by primary or
secondary or both primary and secondary relationships will be included on the iterator.

Parameters:

ITERATOR is the node iterator returned.
,,

NODE is an open node handle to a node whose emanatirrg relationships form the
basis for constructing the iterator.

KIND is the kind of nodes on which the iterator is based.

KEY is the pattern for the relationship keys on which the iterator is based.

RELATION is the pattern for the relation names on which the iterator is based. \

ICIND.OF.RELATION
isan enumeration value;itdetermirreswhether the iteratorwillbe based “
on primary, secondary, or both primary and secondary relationships.

Exceptions

SYNTAX_E~OR
is ‘raised if the pattern given in KEY or RELATION is syntactically
illegal (see Table I, page 32 and Section 5.1.2.29, page 106).

STATUS_ERROR
is raised if NODE is not an open node handle.

INTENT_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read relationships.

107

I

Downloaded from http://www.everyspec.com

5.1.2.30

CR~~_ITERATOR.

DODSTD-1838

CAIS_NODE_MANAGEMENT

Additional Interface:

procedure “CRKATE_ITEPATOR
(ITERATOit:. in out NODE_ITEsA!TOR;
N-: in. PATSNAbtk ;

KIND : in N@E_ItIND_ARRAY := (FILE, STRUCTURAL) ;

lW.Y:’. in RELATIONSHIP KEY PATTERN := ,,*,,;

RSZ.ATION : in tUXATION_NM-_PA-~ERN := DltE’AULTRELATION;

KXND_Or_RSLATION : in REIATIONSHIP_KIHD := PRIMARY) -
is

NODE : NODg_TYpE ;

begin.’ ‘.

OPEN (NODE, NAbtE, (l=>RSAD_RELATIONSHIPS));
CRkATE_ITESATOR (ITERATORr NODE, KIND, RSY, RSLATION,

KISD_OZF RZ,IATION) ;

CLOSE (NODE) ;
exception

when’ others =>
CWSiZ (NODE) ;
raise ;,.

end CKSATE_ITERATOR;

Votes:

The, fuqcdons PATH_KEY ~d PATH.RELATION may be used to determine the
relationship which cause”d the node to be included in the iteration. The iteration
interfaces can be used to determine relatioirships to inaccessible or unobtainable nodes.

....

:: .,’
108

Downloaded from http://www.everyspec.com

DOD-STD-1838

CAIS_NODE_bAGEMENT

5.1.2.31 Determining iteration status

function bK)RS (ITERATOR: in NODE ITERATOR) =!5.1.2.31
MORE

rMrrrI EOOLEAN;

Purpose

This function returns FALSE if all nodes contained on the node. iterator have been
retrieved with the GET_NEXT (see Section 5.1.2.33, page 111) procedure or skipped
over with the SKIP_NEXT (see Section 5.1.2.34, page 113) procedure; otherwise it
returns TRUE.

Parameter:
.,

ITERATOR is a node iterator previously set by the procedure CREATE_~ERATOR,
page 107. ~!.

Exception:

ITERATOR_ERROR
is raised if the ITERATOR has not been previously set by the procedure
CREATE ITERATOR (see Section 5.1.2.30. Da~e 107) or has been “set
but subse~uently deleted by the procedure” DE~ETE_iTERATOR (see
Section 5.1.2.36, page 115) at the time of the call on MORE.

‘o

\ 109

Downloaded from http://www.everyspec.com

“ ‘5.1.2.32 DOD-STD- 1838

APPROXIMATt_SIZE CAIS_NODE_MANAGEMENT

5.1.2.32 Determining the approximate size of the iterator

function APPROXhATE_SIZE (ITERATOR: in NODE_ITERATOR)
return CAIS_NATURAZ;

This functionreturnsthe approximate number of elements on the iterator at the moment
of the call. C~ls on GET_NEXT or SIUP.NEXT have no influence on the value

, returned by this function.” ‘‘ ~

Parameter: ,.

ITERATOR is a node iterator previously set by the procedure CREATE_lTERATOR
.> ‘,, .

,.
Exception.

,.

ITERATOR.ERROR

Notes: ‘ ~

israised if the ITERATOR has not been previously set by the procedure
CREAT.E_ITERATOR (see Section 5.1,2.30, page 107) or has been set
but subsequently deleted by the procedure DELf3TE_ITERATOR (see
Section 5.1.2.36, page 115) at the time of the call on APPROXIMATE_
SIZE. .

.,::

~,This interface ,shopld not be used@ loops of.the form:

..., ,!. .: ‘for I in l“:. =’PROXIMti~E_SIZE (ITEtiTORi Itip
“GttT_SEXT (1’TESATOR, NSXT_NODE) ;

end foop;

since the deletion of rdationships may &duce the number of node handles returned by
ihe “iqreated cak on GET_NEXT.’

The. effect on existing iterators of creation or deletion of relationships is
implementation-defmed.

,,,

110

Downloaded from http://www.everyspec.com

/-
,/- .’

DOD-STD-1838 5.1.2.33 -
CAIS_NODE_MANAGEME?fT GET_=. .

5.1.2.33 Getting the next node in an iteration

procedure GET NEXT (ITERATOR: in out NODE ITESATOR;

NSXT_NODE : in out NODE~TYPE ;

INi’ENT: in INTENT_AR3AY;

TlblE_LIblIT: in CAIS_DUSATION := LONG_DELAY) ;’

Purpose:

This procedure retrrms an open node handle to the next node, on the iterator ~ the
parameter NEKT.NODE, the intentunder which the node handle is opened is specifiid
by the INTENT parameter. If NEKT_NODE is open prior to the cafl to GET_NEXT, it
is closed prior to being opened to the next node. A time limit can be specified for the
maximum delay perniitted if the node to he opened is locked against access with the
specified INTENT. If an exception is raised by the cafl on GET_NE~~ the next cdl
on GET_NEXT for the same iterator wiIl attempt to return an open node handle “to the
same node, i.e., the iterator is not advanced by a call resulting in an exception.

Parameters:

ITERATOR is a node iterator previously set by the procedure CREAT’F.ITERATOR
(see Section 5,1.2.30, page 107).

NEXT_NODE is a node handle to be opened to the next node on the ITERATOR.

INTENT is the intent of subsequent operations on the node handle NEXl_NODE.

TIME LEvllT is a value of tvoe CAIS DURATION. suecifyirw a time limit “for the
delay on waiti& for the ~rdocking of th~ node’ ~ accordance with the
desired INTENT.

Exceptions:

NAME_ERROR is raised if the node whose node handle is to be returned in NE~_
NODE is unobtainable or inaccessible and the INTENT includes any
intent other than NO_ACCESS.

ITERATOR_ERROR

I

USE_ERROR

LOCK_ERROR

is raised if the ITERATOR has not been previously set by the procedure
CREATE_ITERATOR (see Section 5.1.2.30, page 107), if the iterator
has been set but subsequently deleted by the procedure DELETE_
ITERATOR (see Section 5.1.2.36, page 115) prior to the call on GET_
NEXT, or if the iterator is exhausted.

is raised if fNTENT is an empty array.

is raised if the opening of the node is delayed beyond the specified
TIME_LfMIT due to the existence of locks in contlict with the specified
INTENT. LOCK_ERROR may be raised prior to expiration of the
timeout if the CAIS implementation can determine that a deadfock
situation has occurred.

Ill

Downloaded from http://www.everyspec.com

\

“+ ~5:1,233
DOD-STD- 1838 .

GET_NEXT

#
ACCESS_VfOLATION

is raised jf the d~scretionary access rights
insufficient to obtain access to the next node

CALS.NODE.MANAGEMENT

of the current process are
with the specified INTENT. ●

ACCESS_VIOLATION is raised onfy if the conditions for NAME_
E~OR are not present.

SECd_VIOLATiON
is raised if the attempt by the current process to obtain access to the next
node with the specified INTENT represents a violation of mandatory
access controls. SECURITY.WOLATION is raised only if the

,j, conditions for other exceptions are riot present.

Additions interface:

pMJCedUrS GET_NEXT (ITERATOR: in out NODE_I TE~ToR ;

NSXT_NODE : illOut NODE_TYPIS ;

INTENT : , in INTENT_SPECIFICATION := NO_ACCESS ;

,; TIME LIMIT : in aIs_O~TION := LONG_DELAY)
,,~.— .,

is

begin
‘p

,..”
GET_~~ (ITERM!OR, NIs~_NODE, (l=> INTENT) , TIMS LIbtIT) ;

end GET_NS2CT;
—

,- .,..,. ,, .,, ,,- .,, ..,:,,! ,.

112

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.1.2.34

CAIS.NODE.MANAGEMENT sIuP_NExT

5.1.2.34 Skipping the next node in an iteration

procedure SRIP_NEXT (ITERATOR: in out NODE_ITERATOR);

Purpose

This urocedure advances the iterator to the next node on the iterator without returning.
an open handle to this node.

Pammetec .

ITERATOR is a node iterator previously set by the procedure CREATE_lTERATOR , ~
(see Section 5.1.2.30, page 107).

.

Exception:

lTERATOR_ERROR
is raised if the ITERATOR has not been previously set by the procedure
CREATE_ITERATOR (see Section 5.1.2.30, page 107), ~ the iterator
has been set but subsequently deleted by the procedure DELETE_
ITERATOR (see Section 5.1.2.36, page 115) prior io the callon sfUP_

NEm, or if the iterator is exhausted.

Notes:, ,..

Ths procedure can be used to advance the iterator across a node for w~ch GET_NEXT
resulted in amexception.

Ii3

Downloaded from http://www.everyspec.com

5.1.2.35 DOD-STD-1 838
NEXT_NAME CAIS.NODEJL4NAGEMENT

5.1.2.35 obtaining the path element for the next node in an iteration
.

FrrrrctiorrNEXT_NAbtE(ITERATOR: in NODE_XTERATOR) ‘o
return PATNNAbrX;

Purpose: ,.

This tirnction returns a path element, composed of the relation name and relationship
key of the relationsh~ which caused the next node to be included in the iteration. The
returned value has the syntax of a path element (see TabIe I, page 32); it can be
submitted to LAST_KEY and LAST_RELATION for obtaining the constituent values.
The iterator is not advanced by this call, i.e., it is possible to call GET_NEXT to obtain
a node handle on this node or to call SKIP_NEXT to advarsce the iterator to the next
node.

Psrametec

ITERATOR is a node’ iterator previously set by the procedure CREATE_ITERATOR,
page 107.

Exception:

ITERATOR_J3RROR
is raised if the ITERATOR haa not been previously set by the procedure
CREATE_ITERATOR (see Section 5.1.2.30, page 107), or if the iterator
haa been set but subsequently deleted by the procedure DELETE_
fTERATOR (see Section 5.1.2,36, page 115) prior to the call on NEXT_
NAME or if the iterator is exhausted (i.e., the value of MORE ●
(lTERATOR) is FALSE).

114

Downloaded from http://www.everyspec.com

I

1 DOD-STD-1838 5.1.2.36

CAIS.NODE.MANAGEMENT DELETl_ITERATOR

10

I

I

I

o

5.1.2.36 Deleting an iterator

procedure DELETE_ITERATOR (ITERATOR: in out NODE_ITERATOR) ;

Purpose:

This procedure. deletes an iterator. The value of its’ parameter after the call is as if it
were never set by CREATE_ITERATOR (see Section 5.1.2.30? page 107). ~let~g.~
iterator that is not set has no effect.

Pafametefi

ITERATOR is a node iterator.

Exceptions

None.

L-.-\ 115

Downloaded from http://www.everyspec.com

5.1.237 ‘“ DOD-STD-1838

SET.CURRENT.NODE CAtS_NODE_MANAGEMENT

5.1.2.37 Setting the current node relationship

promdu,ti SttT~C~NT_NODE (NOD~:.. in NODE TYPE;
TIblE_LIbtIT: in CAIS~DOPATION := LONG_DELAY) ;

,,

Purpose:

This proceduse specifies the node identifkd by NODE as the current node. The
relationship of the predefmed relation CURRENT_NODE of the current process is
ch+ged accordingly.

NODE is an open node handle to a node to be the new target node of the
CURRENT.NODE relationship emanating from the current process
node. .

TIME_LIMIT is a value of type CAIS_DURAT’ION specifying a time limit for the
delay. on waiting for access to the current process node with intent
WRITE_RELAnONSHIPS.

.,

Exceptions:

STATUS_ERROR .
is raised if the node handle NODE is not open.

,, :., .: ,,-

LOCK_ERROR is raised if access, with intent WRITE_RELATIONSHIPS, to the current
process node cannot .& obtained within the specified TIME_~IT due
to an existing lock on the node. LOCK_ERROR may be raised prior to
expiration of the timeout if the CAN implementation ‘can determine that
a deadlock simation has occurred.

,., ~,

SEC-_VIOLATTON
is rai”d if the operation represents a violation of mandatory access
controls, SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

Additional Interface:

procedurw SET_CuPRmTT_NODE (NAbar: in PATmANZ ;
,TISS_LIMIT : in CAIS_DUSATION := LONG_DEILAY)

is’’’”>.
NODE : NODE_TYPE ;

begirr
OP.Ek (NODE, NAk4s, (l=>NO_ACCESS));
SET_COT&NT_NODIt (NODE, TIME_LLbsIT) ;

~ception
=>: : ...~benot~~ ;,: ~ . .’!;-, :

,,. .
CLOSE (NODE);” “.’
“.rsise;’

end SET_CUIUtENT-NODE ;

,.

116

Downloaded from http://www.everyspec.com

I

DOD-STD-1838 5.1.2.38
CAIS;NODE_MANAGEh4ENT GET.CORRENTLNODE

5.1.2.38 opening a node handle to the current node

procedure GET_CUSREN’_NODE ,.
,.. , —

(NtiDE: in out NODE TYPE;

INTENT : in INTE-ii_ANRAY ;

TIME_LIMIT: in CAIS_DUXATION := LONG_DEIAY) ;

purpose:

‘this “procedure returns in NODE an open node handle to the current node of the current
process; the intent with which the node handle is opened is specified by the INTENT
parameter.

P~anieters:
-~
NODE

INTENT

TIh4E_LIh4~

is a node handle, “initially closed, to be opened to the current node.

is the intent of subsequent operations on the node hsmdle NODE.

is a value of type CAIS.DURATION specifying a time limit for the
delay on waiting for the unlocking of the node in accordance with the
desired INTENT.

Exceptions:

NAME_ERROR is raised if the current node is inaccessible or unobtainable and the
,, ‘ INTENT contains any intent specification other th~ NO_ACCESS.
,,,

USE_ERROR is raised if INTENT is an empty array.

STATUS ERROR
is raised if NODE is an open node handle at the time of the call.

LOCK_ERROR is mixed if access, with intent READ_RELATIONS~pS, to the current
process node cannot be obtained within the specified TIME_LIMIT due
to an existing lock on the node. LOCK_ERROR may ~ rtised Prior to
expiration of the timeout if the CAIS implementation can determine that
a deadlock situation has occurred.

ACCESS_VIOLATION : ~
..:. is raised if the discretionary access rights of the current process arc

insufficient to obtain access to the current node with the spectiled
INTENT. ACCESS_VIOLATION is raised only if the conditions for
NAME.ERROR are not present.

SEC~_VIOLATTON
is raised if the operation represents a violation of mandatory access
controls. SECURITY.VIOLATION is raisedOnlY if the conditions other
exceptions are not present.

‘o
117

-.

Downloaded from http://www.everyspec.com

5.1.2.38 DOD-STD- 1838

GET.CURRENT.NODE CAIS_NODE_MANAGEMENT

Additional Interface:

procedure GltT_CORRlmTNODE ●
(N&DE : in out NODE TYPE;

INTENT: in INTC-~_SPECIFICATION := NO_ACCESS;

TIblE_LIMIT: in CAIS_DOPATION := LONG_DZLAY)
is

w
GET_CURRENT_NODIE (NODE, (l=>INTENT), TIMX_LIMIT);

end GET_CUEUWJT_NODE;

Notea:

The call on GET_CURRENT_NODE is equivalent to

OPEN (NODE , “ ‘ CUNRSNT_NODE “ , INTENT , TIblE_LIMIT) ;

●

118

Downloaded from http://www.everyspec.com

10

I

DOD-STD- 1838 5.1.2.39
CAIS.NODE.MANAGEMENT TIMI.CREATED

5.1.2.39 Determining the creation time of a node

function TIbsB_CRSATED (NODE: in NODZ_TTPE)
return CAIS_CALENDAR.TIME;

Purpose:

This function returns a vafue of type CAIS_CALENDAR.TIME representing the value
of the predefmed attribute TIME_CREATED of the node identified by NODE. The
value returned is the time at which the node was created.

Parameter:

NODE is an open node handle identifying the node whose attribute is being
queried.

Exceptions:

STATUS.ERROR
is raised if NODE is not an open node handle.

INTENT_VIOLATION
is raised if NODE was not opened with ah intent to read attributes.

Additional Interface:

functionTIME_CR-CATED (NAbtS: in PAT5UW@SS)

return CAIS_CALCNDAR. TIME
is

NODE : NODE_&PE ;

AESULT : CAIS_CALENDAR . TI~ ;
begin

OPEN (NODE , NAME, (l=>R?.AD_ATTRIBUTES)) ;

SZSULT := TIMSt_CP.5SATED [NODE) ;
CLOSE (NODE) ;
return RESULT;

exception
when others =>

CLOSE (NODE) ;
raise;

end TIME CRSATED;

119

Downloaded from http://www.everyspec.com

5.1.2.40 DOD-STD- 1838
TIME_RELATIONSHIP_WRIITEN CAIS.NODE.MANAGEMENT

5.1.2.40 Determining the last time a relationship was mrrdified

function T~_ltEMTIONSI.IIP_NRITTEN (NODE: i“ NOC,E_TTpEj
rdrrrn CAIS_CALENDAR. TIME;

,This function retirms a vahre of type CAIS_CALENDAR.TIME representing the value
of the predefmed attribute TIME_ RELATIONS HIP_ WRITTEN of the node identified
by NODE. The vahre returned is the time at which any’ relationship on the node
identified by NODE was mod~led (i.e., a new relationship added or an existing
relationship deleted) or at which any attributes of any relationship emarrating from the
node were modified (i.e., value of an attribute of the relationship changed by the user, a
new attribute of the relationship added or an existing attribute of the relationship
deleted) Changes to relationships that are irrairitained by the implementation and
cannot be set using CAIS interfaces are not reflected irr TIME_RELATIONSHIP_
WRITTEN.

ParameteF

NODE is an open node handle. identifying the node whose attribute is being
queried.

Exceptions: ; “

STATUS.ERROR
is raised if NODE is.not ‘an open node handle.

I INTE~_VIOLATION
is raised if NODE was not opened with an irrtent to read attributes

?’. :, ., ,,, . . ., ..:

Additional Interface:.
.,,

finction T~_REUTIONSHIP_NRITTEN (N+: in p&TNNAME)
Whmr) eAI S_C.ALENDAR. TIbfE

is

NODE : NODE_TYPE ;
RXSULT : CAZS_CALENDAR T&E ;

I&r

OPEN (NODE, NAKE, (l=>READ_ATTRItsuTEs));
SUSSULT := TIbtE_SXI,ATIONSHIP_NRITTEN (NODE);
CLOSE (NODE) ;

!@UM SESULT;
excention.

end

when others =>
CLOSE (NODE) ;
raise;

TIblE_FusLATIONSHIP NRITTEN ;

120

Downloaded from http://www.everyspec.com

10,.,

,.
1,

1.

●

L

DOD-STTJ-1838 5.1.2.41

CAK.NODE.MANAGEMENT TIME_CO~NTS_WRITTEN

5.1.2.41 Determining the last time that node contents were written

funCtiOn TINE_CONTENTS_WRITTEN (NODE: in NODE_TYPE)
relum CAIS_CALlmDAR. T2ME;

Purpose:

This function returns a value of type CAIS.CALENDAR.TIME representing the value
of the predefmed attribute TIME_CONTENTS_WRITTEN of the fde node identified
by NODE. The value returned is the time at which the fde contents of the node were
last modified (i.e., written).

Parameter:

NODE is an open node handle identifying the node whose attribute is being
queried.

STATUS_ERROR
is raised if NODE is not an open node handle.

NODE_IUND_ERROR
is raised if the node identified by NODE is not a fde node.

INTENT.VIOLATION ~, -.
is raised if NODE was not opened with an intent to read attributes.

Additional Interface:

fUnCtiOnT2blE_CONTENTS_WRITTEN (NAME: in PATNNAKE)

return CM S_CALENDAR. TIbtS
is

NODE : NODE_TYPE ;
RSS~T : CAIS_CALENDAR .TIME ;

tqjrr
OPSN (NODE, NAMS , (l=>READ_ATTRIBOTES));
SZSULT := T2ME_CONTENTS_NRI TTEN (NODE) ;

CLOSE (NODE) ;
return SESOLT;

exception

end

when others =>

CLOSE (NODE) ;
raise;

T&S_CONTENTS_WRITTEN ;

!21

. .

Downloaded from http://www.everyspec.com

..

5.1.2.42 DOD.STD-1838

TtME.AITRIBOTE_WRI’tTEN CAIS.NODE.MANAGEM13NT

5.1.2.42 Determining the last time an attribute was modified

function ‘TIME_ATTRIBUTE_WRITTEN (NODE: in NODE_l’YPE)

retrrrnCAI S_CALENDAR. TISSE;

Purpose:

This function returns a vahre of type CAIS_CALENDAR.TIME representing the value
of the predefmed attribute TtME_A’lTfUBUTE_WRffTEN of the node identified by
NODE. The value returned is the time at which any attribute on the node identified by
NODE was modified (i.e., an attribute value changed by the user, a new attribute added
or an existirrg attribute deleted) by a call on a CAIS interface. Changes to attributes that
are made implicitly by the CAIS implementation are not reflected in the result of
TIME_ATITUBUTE_WRITfEN.

Parameter:

NODE is an open node handle identifying the node whose attribute is being
queried.

Exception:

STATUS.ERROR
is raised if NODE is not an open node handle

INTENT_VIOLATION
is raised if NODE was not opened with an intent to read attributes,

Addhionsl Interface:

function TIbsE_ATTRIBUTE_WRITTEN(Nrwa: in PATSNAME)
return CAIS CJ&ENDAR. TIM.S

is

NODE : NODE_TYPE ;
RESULT : CAIS_CALENDAR TIMS ;

begin
OPEN (NODE , NAME, (l=>FOZAD_ATTRIBUTES));

RESULT := TIbtE_ATTRIBUTE_WRITTEN (NODE) ;

CLOSE (NODE) ;
return RESULT;

exception
when others =>

CLOSE (NODE) ;
raise;

end TI.MS!ATTRIBUTE ~IT1’EN;

Notes:

Updating the attributes TIME_CONTENTS_WTUTTEN and TIME_RELATIONSHIP.
WRITTEN does not affect the value of the TIME_AITRIBUTE_WRfTTEN attribute.
,-

&

122

.

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.3
CAIS.ATI’RMUTE.MANAGEMENT

5.1.3 Package CAIS ATTRIBUTE_MANAGEMENT

This package supports the definition and manipulation of attributes for nodes and
relationships. The exceptions raised by all subprograms in this package are defined in the
packages CAIS.DEFINITIONS and CAIS_PRAGMATICS.

The name of an attribute follows the syntax of an Ada identifier. The value of each attribute
is a list; the format of the list is defined by the package CAIS_LIST_MANAGEMENT (see
Section 5.4). Upper and lower case distinctions are not sign~lcaot within the attribute
names.

Unless stated otherwise, the attributes predefmed by the CAIS cannot be created, deleted or

modified by the user.

The operations defined for the manipulation of attributes identifi the node to which an
attribute belongs either by patfmame or open node handle. They implicitly identify a
relationship to which an attribute belongs by the last path element of a pattmarne or explicitly
identify the relationship by base node, relationship key designator and relation name
identification.

While there are special interfaces to retrieve the vahre of predefmed attributes in the various
CAIS packages, such vafues can also be retrieved by the general attribute manipulation
interfaces of the package CAIS_ATTRIB UTE_MANAGEMENT. It can be reasonably

assumed that it will not be possible to implement the latter retrievals as efficiently as the
former ones.

For predefmed attributes, the following rules apply regarding the nature of the LIST_TYPE
vahr~ returned by calls on the general a~tribute rn~riipuiation =terfaces:

a. Retrieval of the value of predefmed attributes described as being of integer type
by the interfaces of package CAIS_ATTRIBUTE_MANAGEMENT will yield
arr umamed list of a single integer-valued list item.

b. Retrieval of the value of predefine attributes described as being of type LIST_
TYPE by the interfaces of package CAIS_AITRIBUTE_MANAGEMENT
will yield the respective list value.

c. Retrieval of the value of predefmed attributes described as being of
enumeration type by the interfaces of package CAIS_ATTRfBUTE_
MANAGEMENT will yield an umarned list of a single token-valued list item.
The string representation of this token is equal to the result of applying the
IMAGE attribute of the enumeration type to the enumeration value
corresponding to the token.

d. Retrieval of the value of predefmed attributes, whose value is described as
being a combination of one or more values of enumeration type, by the
interfaces of package CAIS_ATTRIBUTE_MANAGEMENT will yield an
unnamed list of token-vahsed list items. The string representation of each token
is equal to the result of applying the IMAGE attribute of the enumeration type
to the enumeration value corresponding to the token.

123

Downloaded from http://www.everyspec.com

5.1.3 DOD-STD-1838
CAIS_A’lTRIBUTE_MANAGEMENT

e. Retrieval of the value of predefmed attributes described as being of type CAIS_
DURATION will yield art umamed list of a single integer-valued list item.
This integer value represents the atqibute value in multiples of CAIS_
PRAGMATICS,StiLL_FOR_CAIS_DURATION.

f. Retiieval of the value of predefmed attributes of type CAIS_
CALENDAR.TIME by the interfaces of package CAIS_ATTRK3UTE_
MANAGEMENT will yield a ntied,list with four integer-valued components.
The component names are, in order, YEAR, MONTH, DAY and SECONDS.
The component values are the yalues as obta@ed when applying the procedure
CAIS.CALENDAR.SPLIT to a value of, type CAIS_CALENDAR.TIME,
except that the SECONDS component is an integer value which represents the
SECONDS comporient of CAIS_CALENDAR.TTME in multiples Of CAIS_
PRAGMATICS.SMALL_FOR_CAi_DURATION,

,>;. ’-,. ,,~,,.,:; ,-,.:$:....:. ..,’

-i. ,: .’...’ -: .’’,,.:.!::!,

>u~,,,..

,;:.

,,,

124

Downloaded from http://www.everyspec.com

●

DOD-STD-1838 5.1.3.1
C.AIS_AlTRIBUTE_ MANAGEMENT CREATE_NODE_A’ITRIBUT’E

5.1.3.1 .Creating node attributes

proredur’e CREATE_NODE_ATTRIBUTE (NODE: in NODE_TYPE ;
ATTRIaVTE : in ATTRIBUTE NAME;
VALUE : in LIST_TYPE~;

Purpose:

This procedure creates an attribute named by ATTRIBUTE of the node identtiled by
the open node handle NODE and sets its initial value to VALUE.

Parameters:

NODE is an open node handle to a node to receive the new attribute.

ATTRfBUTE is the name of the attribute.

VALUE is the initial Value of the attribute.

Exceptions: .. . -,
SYNT.&_ERROR

is raised if the attribute name given is not a valid Ada identifier.

PREDEFINED_A’lTRIBUTE_ERROR
is raised if A’I’TRIB UTE is the name of a predefine node attribute that
c~ot be created by the user.

A’lTRIBUTE_ERROR

I
is raised if the node already has an attribute of ‘the given name.

STATUS_ERROR
is raised if the node handle NODE is not open.

INTE~_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
create attributes.

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present. .

125

Downloaded from http://www.everyspec.com

5.1.3.1 DOD-STD- 1838
CREATE_NODE_AITRIBOTE CAIS_AITRIBUTE_ MANAGEMENT

Additional Interface:

procedure CSXATE_NODE ATTRI,BvTE (NANR: + PATHNAME ;

ATTRIBUTE : in ATTRIBuTE_NAMs ;
VALUE : in LIST_TYPE)

is
NODE : NODE TYPE;

Ii&gin

OPEN (NODE, NAME, (l=>APPEND_ATTRIBUTES));
CRZATE_NODE_ATTRI BUTE (NODE, ATTRIBVTE , VALUE) ;
CLOSE (NODE);

exception

end

.

.. Z

,. ::..,.

when others=>

CLOSE (NODE) ;
raise;

CRSATE_NODE_ATTRIBUTE; ,

,,,

,’
,)

., :,,.,,. . .!’. ,.,.,,.

,’

,.

f,..., .,..,..’ ?l.;.

126

Downloaded from http://www.everyspec.com

‘o

. .

,.’
DOD-STD-li38

CAIS_ATTRIBOTE.tiAGE@4T

5.1.3.2 Creating path attributes

procedure CREATE_PATH_ATTRIBUTE

5.1.3.2
CREATE.PATH.ATTRIBIJTE

—
(&E: in NODE_TYP E;

KFX : in PSLAT IONSHIP_~Y;

SELATION : in P.ELATION_NAME := DEFAULT_RXLATION;

ATTRIBUTE: in ATTRIBUTE_NANS;
VALUS : in LIST_TYPE) ;

Purpose: ,.

This procedure creates an attribute, named by A’ITRIB~E, of a relationship and sets
,its initial value to VALUE. The relationship is identified by the BASE, KEY and
RELATION parameters.

BASE is an open node handle to the node from which the relationship emanates.

KEY is the relat ionshlp key designator of the affected relationship.

RELATION is the relation name of the affected relationship.

ATTRIBUTE is the atmibute name.

VALUE is the initial value of the attribute,

Exceptions: . .

PATHNAME_SYNTAX_ERROR
is raised if the relationship identification given by KEY and RELATION
is syntactically illegal (see Table 1, page 32).

RELATIONSHIP_ERROR
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

SYNTAX_ERROR
is raised if the attribute name given is not a valid Ada identifier.

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefiied relation that cannot
be modfled by the user.

PREDEFINED_AtiUTE_ERROR
is raised if ATTRIBUTE” is the name of a predefiied relationship
attribute that cannot be created by the user.

ATTRIBUTE_ERROR
is raised if the relationship already has an amibute of the given name

STATUS_ERROR
is raised if the node handle BASE is not open.

127

Downloaded from http://www.everyspec.com

5.1.3.2 DOD-STD- 1838

CREATE_PATH_ATTRIB tJTE CAIS.ATTRIEWTE.MANAGEMENT

INTENT.VIOLATION
is raised if BASE was not opened with an intent establishing the right to
write relationships. ●

SECURITY.VIOLATION
is raised if the operation represents a vioIation of mandato~ access

!, controls. SECURtTY_VIOLATION is raised only if the conditions for
other exceptions are not present.

Additional Interface:

procedure ‘CmtATE_PATH_ATTRIBuTE(NWtF.: im PATNNAMS ;

ATTRIBUTE : in ATTRIB~E_NAME ;

\ is
.VAI,OE: in LIST TYPE)-,

BABE : NODE-TYPE; ,,.

begin

OPKN (-E , BASE_PATH (NAME) , (l=>NRITE_RELATIONSHIPS));

CSXATE_PATH_ATTRIBVTE (BASE , LAST_REY (NAME) , LAST_RELATION (NM4E),
ATTRIBVTE , VALUE) ;

CLOSE (BASE) ;
exception

when others=>

CLOSE (-”E) ;
raise; .

end CREATE_PATH_ATTRI BOTE ;

,

1.2s

Downloaded from http://www.everyspec.com

o

I

‘o

DOD-STD-1838 5.1.3.3
CALS.ATTRLBOTI.MANAGEMENT DELETE_NODE_AITRIBOTR

5.1.3.3 Deleting node attributes

procedure DELETE_NODF,_ATTRIBUTE (NODE: “in NODE_TYPE ;

ATTRIBUTE : in ATTRIBOTE_NAME) ;

purpose:

This procedure deletes an attribute, named by ATTRIBUTE, of the node identified by
the open node handfe NODE.

Parameters:

NODE is an open node handle to a node whose attribute iii to be deleted.

ATTRIBUTE is the name of the attribute to be deleted,

Exceptions:

SYNTAX_ERROR ,.,

is raised if the attribute name given is not a valid Ada @entifier.

PREDEFINED_ATITUBUTE_ERROR .,. ,

is raised if ATTRIB UTE is the name of a pfedefined node attribute that
cannot be modified by the user.

,.

~,

ATTRIBUTE_ERROR
is raised if the node does not have an attribute of dre given name.

STATUS_ERROR
is raised if the node handle NODE is not open.

INTE~_VIOLATfON
is raised if NODE was not opened with an intent establishing the right to
write attributes.

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. S ECURITY_VIOLATION is raised only if the condhions for
other exceptions are not present.

129

Downloaded from http://www.everyspec.com

5.1.3.3
DELETE_NODE_ATTRlBUT13

DoD-STD-1838
CAIS_A’lTRISUTE_ MANAGEMENT

Additional Interface:

procedure DELETE_NODE_ATTRIBUTE(NAME: in PATSNW311;
ATTRIBUTE: in ATTRIBUTE_NAMS)

is
NODE : NODE TYPE;

begin
OPEN (NODE, NAKS , (l=>NRITE_ATTR133UTES)) ;
DELETE_NODE_ATTRI BUTE (NODE , ATTRIBUTE) ;

CLOSE (NODE) ;

exception

when others=>
CLOSE (NODE) ;
raise;

end DXLETE_NODE_ATTRI BUTE;

?,

130

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.1.3.4

‘o

‘o

C.MS_AITRIBUTl_ WAGEi%QIW

5.1.3.4 Deleting path attributes

procedure DELETE_PATH_ATTRIBUTE

(BASE: in
rrEY: in
S3LATION : in
ATTRIBUTE: in

Purpose:

DELETE_PATH_AITRIB UTE

NODE_TYP E ;

RELATIONSHIP REY;
RELATION_NA& := DEFAULT_REI.ATION ;

ATTRIBUTE_NAbtF,);

This procedure deletes an attribute, named by ATTRIBUTE, of a relationship identified
by BASE, KEY and RELATION.

Parameters:

BASE

KEY

RELATION

ATTRIBUTE

Exceptions:

is an open node handle to the node from which the relationship emanates.

is the relationship key designator of the affected relationship.

is the relation name of the affected relationship.

is the name of the attribute to be deleted.

PATHNAME.SYNTAX ERROR
is raised–if the relationship identification given by KEY and RELATION
is syntactical] y illegal (see Table I, page 32),

SYNTAX.ERROR
is raised if the attribute name given is not a valid Ada identifier.

RELATfONSHIP_ERROR
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefmed relation that cannot
be modified by the user.

PREDEFINED_ATI’RIBUTE_ERROR
is raised if A’ITRIBUTE is the name of a predefine relationship
attribute that cannot be modified by the user.

ATTRIBUTE_ERROR
is raised if the relationship does not have an attribute of the given name.

STATUS.ERROR
is raised if the node handle BASE is not open,

INTENT_VIOLATION
is raised if BASE was not opened with an intent establishing the right to
write relationships.

131

I ;.

Downloaded from http://www.everyspec.com

5:1.3.4 “ DOD-STD- 1838
DELETE.PATH.ATTRIBUTE CAL_ATTRIBUTE_MANAGE~NT

SECURITl_VIOLATION k
is raised if the operation represents a violation of mandatory access ●
controls. SECURITY_VfOLATION is r.tised OnlY if the conditions for
other exceptions are not present.

Additional Interface:

procedure DICLETE_PATH_ATTRIBmE (NAME: in PATNNAME;

ATTRIBUTE : iN ATTRIBUTE_NAME)

is
BASE : NODE_TYPE ;

,,:. begin

OPEN (SASJI , SASE_PATI’1 (NAME) , (l=XfRITE_WtJJJTIoNsNIps)) ;

DE LETE_PATH_ATTRI BOTE (BASE , LAST XEY (NAME) , LABT_RJ2LATION (N-) ,
ATTRIBUTE)y

CLOSE (BASE) ;

exception
when others =>

CLOSE (RABE) ;
raise;

end DELETE_PATH_ATTRI BOTE ;

,,:,

,. ,.:.,f ., .,.’

... ., ,,, .::

,.. ,,,:,’, , ;j:, .,. ,

... ,.: ,. !..:.,

132

Downloaded from http://www.everyspec.com

1’
/

I CAIS.ATTREHJTE.MANAGEMENT

5.1.3.5 Setting node attributes

procedure SET_NODE_ATTRIBUTE

DOD-STD- 1838 5.1.3.5
SET_NODE_ATTSJBUTE

(NODE : in NODE_TYPE ;

ATTRIBUTE : in ATTRIBVTE_NAME ;
VALUE : in LIST TYSE) ;

This procedure sets the value of the node attribute nruned by ATTRIBUTE to the vabre
given by VALUE. The node is identified by the open node handle NODE.

J
Parameters:

NODE is an open node handle to a node the value of whose attribute named by
A~IBUTE is, to be set.

ATTRtBUTE is the name of the attribute.

VALUE is the new value of the attribute.

Exceptions:

SYNTAX.ERROR
is raised if the attribute name given is not a valid Ada identifier.

PREDEFINED.ATI’RIBUTE.ERROR
is raised if ATTRIBUTE is the name of a predefmed node attribute that
cannot be modified by the user.

ATI’RtBUTE_ERROR
is raised if the node does not have an attribute of the given name,

STATUS_ERROR
is raised if NODE is not an open node handle.

INTENT_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
write attributes.

SEC~_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

‘o
133

Downloaded from http://www.everyspec.com

5.1.3.5 DOD-STD-1838

SET_NODE_A’ITIUBUTE CAIS_ATI’RIBLiT’E. MANAGEMENT

Additional Interface:

procedure SJIT_NODZ_ATTRIBUTE (NAMS: iN PATNNAME ;
,, ATTRIBUTE : in ATTRIBUTE_NAME ;

VALUE : in LIST_kYPM)

is
NODE : NODE_TYPE ;

begin
OPEN (NODE, NANE, (l=>NRITtt ATTRIBUTES)) ;
SET_NODE_ATTRIBUTE
CLOSE (NODE) ;

exception
when others =>

CLOSE (NODE) ;
raise;

end SET_NODE_ATTRIBUTE ;

(NODE , A=TRIBUTE , VALVE) ;

●

134

Downloaded from http://www.everyspec.com

. . . .

DOD-STD-1838 5,1.3,6
CAIS_ATTRtBUTE_ WAGEtiNT SET_PATH_ATTRIBIJTE

5.1.3.6 Setting path attributes

prOCMhre SET_PATH_ATTRIBUTE

(BASE : in NODE TYPE;

XEY : in RELA~IONSHIP my;

RELATION : in RELATION NM— :. DEFA~T_RELATION;

ATTRIBUTE: in ATTRIBUT~_NAMS;

VALUE : in LIST_TYPE) ;

Purpose:

~is procedure setsthe value of the relationshipattributenamed by A’lTRIBUTE to the
value specified by VALUE. The relationship is identified by BASE, KEY and
RELATION.

Parameters:

BASE is an open node handle to the node from which the relationship emanates.

KEY is the relationship key designator of the affected relationship,

RELATION is the relation name of the affected relationship

A’ITFUBUTE is the name of the attribute.

VALUE is the new value of the attribute,

Exceptions:

PATHNAME_SYNTAX ERROR
is raised-if the relationship identification given by KEY and RELATION
is syntactically illegal (see Table I, page 32).

RELATIONSHIP_ERROR
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

SYNTAX_ERROR a
is raised if the attribute name given is not a valid Ada identifier.

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefirred relation that cannot
be modfled by the user.

PREDEFINED_ATTfUBUTE_ERROR
is. rtised if ATTRIBUTE is the name of a predefiied relationship
attribute that carmot be modtiied by the user.

ATTRIf3UTE_ERROR
is raised if the relationship does not have an attribute of the given name.

~ STATUS_ERROR
is raised if the node handle BASE is not open.

135

I

Downloaded from http://www.everyspec.com

.5.1.3.6 DOD-STD-1838

SET_PA~_ATTRIBUTE CAIS_AITRIBUTE_MANAGEMENT

INTENT.VIOLATION
is raised if BASE was not opened with an intent establishing the right to
write relationships, ●

,,!

SECURITY.VIOLATTON
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised onfy if the conditions for
other exceptions are not present.

Additionrd Interface:

procedure SET_PATH_ATTRISttTE (NANE: in

ATTRIBUTE : in

VALVS : in

is

SASE : NODE_TYPE ;

PATHNM4E ;

ATTRIBUTE_NAbtS ;

LIST_TYPE)

begin
OPEN (BASE , SM3E_PATH (NAME) , (l=>WRITk_RELATIONSHIPS));

SET_PATH_ATTRIBUTE (BABE, I+ST_KEY (NAME) , LAST_RELATION (NAME) ,
ATTRIBUTE , VALVE) ;

CLOSE (BASE) ;

exception
when others=>

CLOSE (BASE) ;

,raise;. ,+
end SET_PA’TH_ATTri18U’&;

,. .:.

‘. .,. ,..,. i).
. ...:.\. ;,,,’,!’.-,,.,

,. ...

136

Downloaded from http://www.everyspec.com

●

. .
DOD-STD.1838

CAIS.ATTRIB~_@NAGEMENT
., ,.

5.1.3.7 (jetting node attributes

f)~l#CSdUrSGET_NODE_ATTRIBUTE (NODE : in
ATTRIBUTE : in

VALUE : in out

Pl@ose ‘

,-

5.1.3.7
GET.NODE.ATTRIBUTE

NODE TYPE ;
ATTR~BUTE NAME;

LIST_TYPE~;

This procedure returns the value of the node attribute named by A’IITZIBUTE in the
parameter VALUE, in accordance with the roles given in Section 5.1.3, page 123. The
node is identified by the open node handle NODE.

Parameters:
,,

NODE, is an o@in node handle to a node the value of whose attribute
ATTRIBUTE is to be retrieved.

.,’

A’ITRIB UTE is the name of the attribute.

V~UE is the result parameter containing the value of the attribute.

SYNTAX_ERROR
is raised if the attribute name given is not a valid Ada identifier.

A’lTRIBUTE_ERROR
is raised if the node does not have an attribute of the given name or if the
name designates a predefine attribute for mandato~ access control
purposes.

STATUS_ERROR
is raised if NODE is not an open node handle.

INTENT.VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read attributes.

‘“.*
137

Downloaded from http://www.everyspec.com

5.1.3.7 DOD-STD-1838

GET.NODE.ATITUBOTE CAIS_AITRIBLJTE_MANAGEMENT

Additional Interface:

procadura GltT_NODE_ATTRIBUTE(NAME: in PA’TNNAUE;
ATTR18UTE: in ATTRIBUTE_NAME ;

VALUE : in out LIST_TYPE)

is
NODE : NODE_TYPE ;

begin
OPEN (NODE , NAME, (l=>AEAD_ATTRISUTES));

GET_NODE_ATTRIBUTE (NODE, ATTRIBUTE, VALUE) ;

CLOSE (NODE) ;.

exception
when others =>

CLOSE (NODE) ;
raise;

end GET_NODE_ATTRIBUTE;

138

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.3.8
CAIS_ATllUBUTF_MANAGEMENT GET_PATH_A’ITIUBOTE

5.1.3.8 Getting path attributes

Dmcedure GET PATH ATTRIBUTE
‘(BASE : in NODE_TYP E ;

XEY : in RELATIONSHIP xSY;
RELATION : in 3UtLATION_NM- := DEFAOLT_RE~TION ;

ATTRIBUTE: in ATTRIBoTE NAME;

VALVS: in out LIST_TYPEY;

Purpose:

This procedure returns the value of the relationship attribute named by ATTRIBUTE in
the parameter VALUE, in accordance with the roles given in Section 5.1.3, page 123.
The relationship is identified by BASE, KEY and RELATION.

Parameters:

BASE is an open node handle to the node from which the relationship emanates.

KEY is the relationship key designator of the affected relationship.

RELATION is the relation name of the affected relationship.

AITRIBUTE is the name of the attribute.

VALUE is the result parameter containing the value of the attribute.

Exceptions:

PATHNAME.SYNTAX ERROR
is raise~if the relationship identification given by KEY and RELATION
is syntactically illegal (see Table I, page 32).

RELATIONSHIP_ERROR
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

SYNTAX_ERROR
is raised if the attribute name given is not a valid Ada identifier.

ATTRB3UTE_ERROR
is raised if the relationship does not have an attribute of the given name.

STATUS_ERROR
is raised if the node handle BASE is not open.

INTE~_VIOLATION
is raised if BASE was not opened with an intent establishing the right to
read relationships,

139

Downloaded from http://www.everyspec.com

. . .

5.1.3.8 DOD-STD- 1838
GET_PA~_A7T’RIB~ CAIS_A’lTRIBUTE_MANAGEMENT

Additional Interface:

prOCf?durP‘GET-PATH_ATTRIBOTE (N&E: in PATNNAME ;

ATTRIBUTE : in ATTRIBVTE_NAME ;

VMSJE : in Ont LssT_TYPlt)

is.
BASE ; NODE_TYP~ ;

beain

(BiSE, iiST_KEY (Nti) , LAST_RJttiTiON (NAME) ,
ATTRIBVTE , VALUE) ;

- OPEN (BASlt, BABE_PATH (NAUS), (l=>READ PJ?,LATIONSHIPS)) :

GET_PATN_A~RIBDTE

CLOSE (BABE) ;
exception

when others =>
CLOSE (BASE) ;
raise;

end GET_PATH_ATTRIBoTE ;

.:

140

...

Downloaded from http://www.everyspec.com

,. ‘.

DOD-STD- 1838 5.1.3.9

CAtS_ATTRtBUTE_MANAGEMENT ATTRXBUTE XTERATION TYPES ANDSUBTYPES

5.1.3.9 Attribute iteration types and subtypes

type ATTRIBOTE ITERATOR is limitedprivate;

subtype A’ZTRIBUTE~NAME_P ATTERN is STRING;

&r ‘atrribure irerutor is an Ada object of the ~ ATI’IUBUTE.ITERATOR, which is a
limited private type assumed to contairr the bookkeeping information necessary for the
implementation of the MORE, NEXT.NAME, GET_NEXT_VALUE ~d SKW_NEXT
interfaces. The attributes are returned by NEXT_NAME and GET_NEXT_VALUE in ASC~
lexicographical order by attribute name. Predefiied attributes for mandatory access control
purposes are omitted by the iterator. The effect on existing iterators of creation Or deletion of
attributes or relationships is implementation-defmed.

>,,

These types and subtypes are used in the following interfaces for iteration over a set of
attributes of nodes or relationships. An ATTIUB UTE_NAME_pA~ERN has the same
syntax as an ATT’RIBUTE_NAME, except that ‘‘?” will match aiy single character and
“*‘’ WN match any string of zero or more characters.

141

I

Downloaded from http://www.everyspec.com

,.. .
. . ..

5.1.3.10 ‘ DOD-STD- 1838
CREATE.NODE_AITRIBUTE_~”ATOR C.MS.ATTRJBUTE.MANAGEMENT

5.1.3.10 Creating an iterator over node attributes
. . .

procedure Cti+E_NODIE_A’S+RIBUTE_IT.EPJfrOR
(ITERATOR: h5 Out ATTRIBUTE ITERATOR;

NODE: in NODE_TYPET

. . PATTERN: in ATTRIBUTE_NAMR PATTEBJ4 := ,,● ,,);

Purpose:

This procedure returns in the par~eter ITERATOR an attribute iterator according to
the semantic rules for attribute selection given in Section 5.1.3.9. The iterator can then
be processed by means of the MORE, NEXT_NAME, GET_NEXl_VALUE and
SKIP_NEXT interfaces.

Parameters:

ITERATOR is the attribute iterator returned.

NODE is an open node handle to a node over whose attributes the iterator is to
be constructed.

PATTERN is a pattern for attribute names as described irr Section 5.1.3.9.

Exceptions:

SYNTti_ERROR
is raised if the “PATTERN is syntactically illegal (see Section 4.3.6 and
Section 5.1.3.9).

●
STATUS_ERROR

..

is raised if NODE is not an open node handle,,

INTENT_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read attributes.

. . .

Additional Interface: ,. ;.

prosedure CREATtt_NODE ATTRIBUTE ITERATOR
~ITEWTOR: % out ATTRIBuTE_ITERAToR;

NAME: in PATNNAMS ;
PATTERN : in ATTRIBUTE NAbSE_PATTESJi := ‘,*,,)

is “ ‘.
NODE : NODE-TYPE;

begin. .- ‘“

OPEN (NODE, NAMN, (l=XOSAD_ATTRIBUTES)) ;
CR&ATE_NODE_ATTRIB~E_ITtSSATOR (ITERATOR , NODE, PATTESI!);

CI+E (NODE) ;
exception

Wbers Otfsers => “
CLOSE (NODE) ;
raise; “‘

end CREATE_NODIF,_A’iTRIBUTE_ITERATOR;

142

Downloaded from http://www.everyspec.com

1 DOD-STD- 1838 5.1.3.10
CAIS.ATTRIBUTE.MANAGEMENT CRtiTE_NODE_AITRIBUTE_ITERATOR

o Notes: ,.

By using the pattern “*‘’, it is possible to iterate over all attributes of a node.

I

. .

,,

.,

:. ..! ,.’,

,;, . . ,,, .

10

Downloaded from http://www.everyspec.com

5.1.3.11 DOD-STD.1838

CRM~.pA~_A~IB~lI~WTOR C,AIS_A?TRIBUTE_ WAGEMENT

5.1.3.11 Creating an iterator over relationship attributes

pracertureCREATE_PATH ATTRIBuTE ITE”RATOR.,-
- : (1’CEkATOR:”i:” out ATTRIBUTE ITERATOR;

SASE: ; in ‘ NODE_TYP E;
REY: ‘“ in RELATIONSStIP_RBY;
RELATION: in EEIATION_NAbSlt := DEFAOLT_RELATION;
PATTEPN : in ATTRIBUTE NAMSi PATTEM := ,,● ,’);--

Purpose:
.!::...,, ,., .

,?’.,

This procedure is provided to obtain an attribute iterator foirelationship attributes, The
relationship is identified by BASE, KEY and RELATION. The procedure returns arr
attribute iterator, in ITERATOR according to the semantic roles for attribute selection
applied to the attributes of the identified relationship. This iterat~r CM then be
processed by means of the MORE, NEXT.NAME, GET_NEXT_VALUE and SKIP_
NEXT interfaces.

ITERATOR.; is the attribute iterator returned

BASE is an open node handle to the node from which the relationship emanates,

KEY is the relationship key designator of the affected relationship,

RELATION is the relation name of the affected relationship.
.,.

PATTERN is a pattern for attribute names (see Section 5.1.3.9),

Exceptions:

PATHNAME_SYNTAX ERROR
is raised-if the relationship identificatiori given by KEY and RELATION
is syntactically illegal (see Table I, page 32).

RELATIONSHIP.ERROR
is raised if the relationship identified by BASE, KEY and RELATION
does not exist.

SYNTAX_ERROR
is raised if PA’ITERN is syntactically illegal (see Section 4,3.6 and
Section 5.1.3.9).

STATUS_ERROR
is raised if BA”SE is not an open noctehandle,

● ’

~NT_VIOLATION
is raised if BASE was ‘not opened with an intent establishing the right to
read relationships.

144

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.1.3.11
CAIS_AT1’RIBUI?_MANAGEMENT CREATE.PATH_ATITUBUTl_ITERATOR

Additional Interface:

procedurs CRXATE_PATH_ATTRIBUTE ITERATOR
(ITERATOR: i; out ATTRIBOTE_ITEPATOR;
NAME: in PATHNAME ;

PATTENN: h ATTRIBUTE NAME PATTEPN := “●,,)--
is

MSE : NODE_TYPE ;
begin

OPEN (BASE , BABE_PATH (NAME) , (l=>REAO_RELATIONSHIPS));

CREATE_PATSi_ATTRIBUTE_ITERATOR (ITERATOR, SASE , LABT_HEY (NANE) ,

LAST_RSLATION (NME) , PATTERN) ;
CLOSE (sME) ;

exception
when others=>

CLOSE (~SE) ;
raise;

end CR-EATE_PATH_ATTRIBoTE_ITERATOR;

Notes:

By using the pattern “*‘’, it is possible to iterate over all attributes of a relationship.

‘o

I

0
145

Downloaded from http://www.everyspec.com

5.1.3.12 DOD-STD- 1838
MORE CAIS_AITRIBtJTE_ WAGEMENT.

5.1.3.12 Determining iteration status

fUISCtiOIIbKXUS (ITEIUiTOR: in ATTRIBUTE_ITERATOR)

Morn -LEAN;

purpose:

This function returns IFALSE if afl attributes contained on the attribute iterator have
been retrieved with the subprograms SKIP_NEXT and GET_NEXT_VALUE;
otherwise, it returns TRUE.

Parametec

ITERATOR is an attribute iterator previously constructed,

Exception

ITERATOR.ERROR
is raised if the ITEF@TOR has not been previously set by the procedures
CREATE_NODE_AITIUBUTE_ITERATOR (Section 5.1.3.10, page
142) or CREATE_PATH_ATTR113 UTE_nERATOR (Section 5.1.3.11,
page 144) or if the iterator has been subsequently deleted by the
procedure DELETE_ITERATOR (Section 5.1,3.17, page 151) prior to
the call on MORE.

.’
.,.

146

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.3,13

CAIS_ATTRIBUTE_ WAGEMENT APPROXINSATE_SIZE

5.1.3.13 Determining the approximate size of the iterator

function APPROXIbSATE_SIZE (ITERATOR: in ATTRISOTE_ITERATOR)

retrrrrrCJLIS NATUSAL;

Purpose:

This function returns the approximate number of elements on the attribute iterator at the
moment of the call. Calls on NEXT.NAME, GET.NEXT.VALUE or SIUP.NEXT
have no influence on the value returned by this function.

Parameter:

ITERATOR is an attribute iterator previously constmcted.

Exception:

ITERATOR.ERROR
is raised if the ITERATOR has not been previously set by the procedures
CREATE_NODE_A’ITRfBUTE_ITEILATOR (Section 5.1.3.10, page
142) or CREATE_PATH_ATTRIBUTE_lTERATOR (Section 5.1.3.11,
page 144) or if the iterator has been subsequently deleted by the
procedure DELETE_ITER4TOR (Section 5.1.3.17, page 151) prior to
the call on APPROXIMATE_SIZE.

Notes:

This interface should not be used in loops of the form

for I in 1 APPROXIMATE_SIZE (ITERATOR) loop

NSXT_ATTRIBUTE_NAbSE := NSXT_NAbtE (ITERATOR) ;

GET_NEXT_VALUE (ITERATOR, NRXT_ATTRIBUTE_VALUE) ;

end loop;

since the deletion of attributes may reduce the number of attributes returned by the
repeated calls on NEXT_NAME and GET_NEXT_VALUE.

I

●
147

Downloaded from http://www.everyspec.com

5.1.3.14 DOD-STD-1838

NEXT.NAME CAtS_ATTRIBOTE.MANAGEMENT

5.1.3.14 Getting the next attribute name

function NEXT_N~ (ITERATOR: in ATTRIBUTE_ITERATOR) ●
MUrn’ ATTRIBOTE_NAME; -

.,

Purpose:

This function returnsthe name of the next attributeon the iteratorwithout advancing

the iterator. ,‘

Parameter:

IT%RATOR is an attribute iterator previously constructed

Exception:

ITERATOR.ERROR
is raised if the ITERATOR has not been previously set by the procedures
CREATE_NODE_ATTRIB ~E_ITERATOR (Section 5.1.3.10, page
142) or CREATE_PATH_ATTRIBUTEllTERATOR (Section 5.1.3.11,
page 144), if the iterator has been subsequently deleted by the procedure
DELETE_lTERATOR (Seciion 511.3.i7, page 151) prior to the call on
NEXT_NAME, or if the itefator is exhausted.

‘.,;
,,

,.,

148

Downloaded from http://www.everyspec.com

This procedure returns the vatue of the next attribute on the iterator in VALUE, in
accordance with the rules given in Section 5.1.3, page 123, and then advances the
iterator to the next attribute on the iterator (i.e., the one corresponding to the returned
vqlue).

Parameters:

ITERATOR is an attribute iterator previously constructed.,.

VALUE is the value of the next attribute on the iterator.
,’.,

Exception: ,,

:ITERATOR.ERROR
,, ,’ is raised if the ITERATOR has not been previously set by the procedures

CREATE_NODE_ATllU13UTE_ITERATOR (Section 5.1.3.10, Page
142) or CREATE_PATH_AT1’’RIBUTE_ITERATOR (Section 5.1.3.11,
page 144), if the iterator has been subsequently deleted by the procedure
DELETE_K’ERATOR (Section 5.1.3.17, page151) prior to the call on
GET_NEXT_VALUE, or if the iterator is exhausted.

I

DOD-STD- 1838 5.1.3.15
CAIS_AITRJBUTE_MANAGEtVtENT GET.NEXT.VALUE

5.1.3.15 Getting the next attribute value

procedure GET_NBXT_VALUE (ITEPAT(XC in out ATTRIBVTE_ITERATOR;
VALUE : ia out LIST_TTPE) ;

L 149

Downloaded from http://www.everyspec.com

5.1.3.16 DOD-ST’D-1838
SIUP.NEXT CAIS.ATTRILVJTE. WAGEMENT

5.1.3.16 Skipping the next attribute in an iteration

procedure SKIP_NEXT (ITERATOR: in ATTRIBVTE_ITERATOR) ;

This procedure advances the iterator to the next attribute on the iterator.

Parameter:

ITERATOR is an attribute iterator previously constructed.

Exception: ,,:.,,

ITERATOR.ERROR
is raised if the ITERATOR has not been previously set by the procedures
CREATE_NODE_AIT’RIB UTE_ITERATOR (Section 5.1.3.10, page
142) or CREATE_PATH_A’MTUBUTE_lTERATOR (Section 5.1.3.11,
page ‘144), if the iterator has been subsequently deleted by the procedure
DELETE_lTERATOR (Section 5.1.3.17, page 151) prior to the, call on
SKIP_NEXT, or if the iterator is exhausted.

,..

150

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.1.3.17
CAIS.AITRIBIJTE_tiAGEMENT DELETE.lTERATOR

5.1.3.17 Deleting an attribute iterator

prOCedure DELETE_ITERATOR (I’TERATOR: in out ATTRIBUTE_ITERATOR) ;

This procedure deletes arr attribute iterator. The vafue of its parameter after the call is as
if it were never set by the procedures CREATE.NODE.A’ITRIB UTE.ITEFL4TOR
(Section 5.1.3.10, page 142) or CREATE_PATH_A’fTRIBUTE_lTERATOR (Section
5.1.3.11, page 144). Deleting an iterator that is not set has no effect.

Parameter

ITERATOR is an attribute iterator

Exceptions:

None.

I

o
I

151

Downloaded from http://www.everyspec.com

G 5.1.4 DOD-STD-1838
Definition OF SUBTYPES “‘ CAIS_ACCESS_CONTROL_ MANAGEMENT

,.

5.[.4 Package CAIS ACCESS_CONTROL” MANAGEMENT

This package provides primitives for manipulating access control information for CALS o
nodes. In addition, certain CAJS subprograms declared elsewhere (e. g., the node creation
irrterfaces, the node open interfaces, SPAWN.PROCESS, INVOKE.PROCESS ard
CREATE_JOB) aliow the specification of initial access control information. The exceptions
raised by all subprograms in this package are defied in the packages CAJS_DEFI.NITIONS
and CAJS_PRAGMATICS.

The CAJS specifies mechanisms. for discretiomuy ,and rnhdatory access control (see
[TCSEC]). Alternate discretionary or mandatory access control mechanisms can be
substituted by an implementation provided that the semantics of all interfaces in Section 5
(with the exception of Section 5.1.4) are implemented as specified, These alternate
mechanisms as well as the implementation behavior of such a replacement package must be

included in an implementer’s CAIS” reference manual as described in Appendix E of this
document.

5. [.4.1 Subtvpes-

subtype GRANT_VALUS is CAIS_LIST_btANAGSMENT. LIST_TYPE;

subtype ACCESS_RIGHTS is STRING;

GRANT_VALUE is a subtype for values of GR.ANT attributes; it is a list in the syntax
described in Table D, page 42.

ACCESS_RIGHTS is a subtype for values of access rights.

.,

I52

Downloaded from http://www.everyspec.com

●

DOD-STD-1838 5.1.4.2

CA3S.ACCESS_CONTROL_MANAGEMENT ALL.lUGHTS

5.1.4.2 ‘Value of all access rights

function =L_RIGHTS
retire DISCRETIONARY ACCESS LIST;

This function returns a value of type DISCRETIONARY_ACCESS_LIST, which,
when installed as the value of the GRANT attribute on rur access relationship, grants afl
predefine discretionary access rights. The list value consists of a single grant item (see
Table II, page 42) without necessasy right and a resulting rights list consisting of the
identifier ALL_RIGHTS (see Table III, page 44).

Parameters:

None.

Exceptions:

None.

.-

1..

“o

153

Downloaded from http://www.everyspec.com

5.1.4.3 DOD-STD- 1838
SET.GRANTED.RIGHTS CAtS_ACCESS_CONTROL_MAN AGEiW3TT

5.1.4.3 Setting access control

procedure SET_GSANTED_RIGSSTS (NODE: in NODE_TYPE ;

GROUP_NODE : in NODE_TYP E;
G-T ; in GPANT_VALUE) ;

Purpose:

This procedure sets access control information for a given node. If a relationship of the
predefmed reIation ACCESS does not exist from the node identified by NODE to the
node identified by GROUP_NODE, such a relationship with an implementation-defmed
relationship key is created from the node specified by NODE to the node specified by
GROUP_NODE. If necessary, the predefmed attribute GRANT is created on this
relationship. The vatue’ of the GRANT attribute is set to the vatue of the GRANT
parameter (see Table If, page 42, for the syntax).

Parameters:

NODE is an open node handle to the node whose access control information is to
be set.

GROUP.NODE is an open node handfe to a group node.

GRANT is a list describing what access rights can be granted

Exceptions:

SYNT.M_ERROR
is raised if the value specified for the pwameter GRANT is syntactically
illegal (see Table II, page 42).

NODE_KfND_ERROR
is raised if GROUP_NODE is not an open node handle to a group node

STATUS_ERROR
is raised if NODE and GROUP_NODE are not both open node handtes.

INTENT_VIOLATTON
is raised if NODE was not opened with intent CONTROL

ACCESS_VIOLAT’ION
is raised if the executing process (subject) is not allowed to establish or
alter an access relationship to the given group node according to
implementation-defmed criteria.

SECURI~_VIOLATfON
is raised if the operation represents a violation of mandatory access
controls. SECUfUTY_VtOLATION
other exceptions are not present.

is raised only if the conditions for

●
154

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.1.4.3
CAIS_ACCESS_CONTROL_MANAGEMENT SET_GRANTED_RIGHTS

Additiomd Interface:

procedure SE’l_GSANTED_RIGHTS [NAMN: iN PATHNAME ;

GROUP_NANE : in PATNNAME ;
GPANT : in GRANT_VALUE)

is
NODE , GROOP_NODE : NODE_TYPE ;

begin
OPEN [NODE, NAME, (l=XONTROL)):

opEN iGROup_NODEj GROVP_NAME, ”“(l=>NO_AcCESS));

SET_GrUWrED_RIGHTS (NODE, GROUP_NODE, GSJUJT);

CLOSE (NODE) ;

cI.OsE (GROUP_NODE);
exception

when others=>

cLosE (NODE);
CLOSE (GROOP_NODE) ;
raise;

end SET_GRANTED_RIGNTS;

,>,, .>

155

Downloaded from http://www.everyspec.com

5.1.4.4 DOD-STD- 1838
DELETE_GRANTED-RIGHTS CAL_ACCESS_CONTROL_MANAGEMENT

5.1.4.4 Deleting access relationships

procedure DELETE_GXANTED_RIGHTS(NODE: in NODE_TYPE ;
~’. , GROUP_NODE : in NOD E_TYPE) ;

Purpose:

This procedure deIetes access control information, for a given node. If a relationship of
the predefmed relation ACCESS exists from the node identified by NODE to the node
identified by CiROUP_NODE, it is deleted. If no access relationship exists from the
node identified by NODE to the node identtiled by GROUP_NODE, this interface has
no effect, and no error indication is given.

NODE is an open node handle to the node whose access control information is to
be deleted.

GROUP_NODE is an open node handle to a group node

Exceptions:

NODE_KIND_ERROR
is raised if GROUP_NODE is not an open node handle to a group node.

STATUS_ERROR
is raised if NODE and GROUP_NODE we not both open node handles.

o

INTENT_VIOLATION
is raised if NODE was not opened with intent CONTROL

ACCESS_VIOLATION
is raised if the executing process (subject) is not allowed to establish or
aher an access relationship to the given group node according to
implementation-defmed criteria.

SECURITY.VIOLAT’ION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions am not present.

..=

156

Downloaded from http://www.everyspec.com

I

I

DOD-S~- 1838 5.1.4.4
CAIS_ACCESS_CO~OL_WAG~~ DELETE_GRANTED-luGHTS

Additional Interface:
.

prOCedure DELETE_GRANTED_RIGHTS(NAblE: in PATHNAME;
GRONP_NM : in PATRNANE)

is
NODE ; GROUP_NODE : NODE_TkPE ;

begin

OPEN (NODE, NAMN , (l=XONTROL));
OPEN (GROUP_NODE , GROUP_NAN2 , (l=>NO ACCESS));

DELETE_GPANTED_RIGHTS (NODE , GROOP_NijDE) ;

CLOSE (NODE) ;
CLOSE (GROUP_NODE) ;

exception
when others =>

cLosE (NODE);

CLOSE (GROUP_NODE) ;
raise;

end DELETE_GRANTED_RIGHTS;

-..

,.

., 157

Downloaded from http://www.everyspec.com

5.1.4.5 DOD-STD- 1838

—

-.

GET.GRANTED.RIGHTS C+E3_ACCESS_CONTROL_MANAGEMENT
.,.

5.1.4.5 obtaining the value of i GRANT attribute ,.

procedure GET_GSANTED_RIGHTS (NODE: in NODE_TYP E ;
GROUP NODE : in NODE TYPE;

GRANT~ in Out GRANy VALUE) ;—

Purpose:

This procedure @rieves the v@ue of the GR+4NT attribute of the access relationship
between the object NODE ad the group node GROUP_NODE. It returns the empty list
if no such relationship exists:

Parameters:

NODE is an open node handle’ to the node from which the access relationship
emanates. ,,

GROUP_NODE is an open node handle to a group’ node,

GRANT is, upon return, a list describing what access rights are granted to the
group represented by. the group node for the object NODE.

Exceptions: ,,, ,,
NODE_ fUND_ERROR

IS raised if GROUP_NODE is not an open node handle to a group node.

STATUS ERROR ●
is raised if NODE and GROUP_NODE are not both open node handles.

,, ...
INTENT.VIOLATION ,.

.is raised if NODE was not opened with an intent establishing the right to
read relationships or to read access control information.,.

. .

Additional Interface: : , .,

prOCAureGET_GRANTED_RIGHTS (NAME: in PATNNAME :

GROUP_NAME: in PATHNAMS ;.,
GSANT: in‘out GBANT_VAI,UE)

NODE TYPE ;,- ,,

is
NODE, GROUP NODE:

begin

OPEN (NODE, NAME, “(l=>stEAO_REIATIONSHIPS)) ;
OPEN (GROUP_NODE , GROUP NAMS, (l=>NO ACCESS)) ;
GET_GRANTED_RIGHTS (NODE; “GROUP_NODE: GPANT) ;
CLOSE (NODE) ;

CLOSZ (GROUP_NODE) ;
exception .. : . .

when others =>
CLOSE (NODE) ;
CLOSE (GRO~_NODE) ;
raise;

end GET_GsANTED_RIGriTS;

.
,, ,.

..’
158

Downloaded from http://www.everyspec.com

,. . . .
.-.’

DOD-STD-1838
CAIS.ACCESS_CONIROi.MANAGEMENT

5.1.4.6 Examining access rights

tkrction IS_APPROVED (OBJECT_NODE :
ACCESS_RIGHT :

rehsrn BCos.Er+l;

Purpose:

in NODE_TXPE j
in ACCESS_RIGHTS)

5.1.4.6
IS_APPROVED

.>,

>

This fonction returns TRUE if the current process as a subject has an approved access
right ACCESS_RIGHT to the OBJECT_NODE as an object. Otherwise it returns
FALSE.

Parameters:

-OBJECT.NODE
is an open node handle to the object node

ACCESS_RIGHT
is the name of a predefmed or user-defined access right.

Exceptions:

SYNTAX.ERROR . .
is raised if the parameter ACCESS_RJGHT is not a valid Ada identifier.

STATUS_ERROR
is raised if OBJECT_NODE is not an open node handJe.

,,

II$TENT_VIOLATION
. ,., .,’

is raised if OBJECT_NODE was not opened with ‘an iinent establishing
the right to read relationships or to read access control information.

,,

Additional Interface:

fUOCtiOn IS_APPROVED (OBJECT_NAME: in PATHNAME;
ACCESS_RIGHT: in ACCESS_RIGHTS)

return BOOLEAN

is
OBJECT_NODE : NODE_TYPE ;

RESOLT : BOOLSX? ;

begin ,,
OPEN.(OBJZCT_NODE , OBJECT N&tE , (l:>RxAD_RELATIONSHIPS)) ;

SESOLT := IS_APPROVED (OB-@CT_NODE , ACCESS_RIGHT) ;
CLOSE (OBJECT_NODE) ;

return RESULT;

exception
.,

when others=>

CIOSE (OStJECT_NODE) ;
raise;

end IS_APPROVED;

I59

Downloaded from http://www.everyspec.com

5,1.4.7 DOD-STD-1838

ADOFT.ROLE

5.1.4.7 Adopting a role

procedure ADOPT_ROLE (GStOUP_NODE: in
,. Rar : .ils

INHERITABLE: in

Purpose:

CAtS_ACCESS_CONTROL-MANAGEh’fENT

,.

NODE TYPE;

RELA~IONSStIP_XtSY := LATEST XSY;—
BOOLEAN := TRUE) ;

This procedure causes tie current process to adopt the role associated with the
GROUP_NODE. Arelationship of the predefmed relation ADOPTED_ROLE with a
relationship key designated by KEY is created from the catling process node to the
group node identified by GROUP_iVODE. Inorder forthecurrent process to adopt the
role, a node representing some other adopted role of the current process must be a
potential member of the group.

Parameters:

GROUP_NODE is an open node handle to a node representing the group.

KEY is a relationshipkey designator to be used in creating the relationship.

INHERITABLE specifies the value, of the predefine attribute INHERITABLE of the
newly created relationship.

Exceptions:

SYNTAX_ERROR
is raiied If KEY is syntactically illegal (see Table I, page 32).

NODE_KIND_ERROR
is raised if GROUP_NODE is not an open node handle to a group node.

USE_ERROR is raised, if there is no adopted role of the current process that is a
potential member of the group represented by GROUP_NODE or if there
already exists a relationship of the predefined relation ADOPTED_
ROLE with relationship key designator KEY emanating from the current
process node.

STATU$_ERROR
is raised if GROUP_NODE is not an open nOde handle.

LOCK_ERROR is raised if access with intent APPEND_RELATIONSHIPS to the cur’rent
process node cannot be obtained due to an existing lock on the node.

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

160

Downloaded from http://www.everyspec.com

DfN).STD.1838
CAIS_ACCESS_CONTROL_MANAGE~~ -

●
Additional Interface: ‘‘

procedure ADOPT_ROLE (GROuP_NANE:

KEY :

INHERITABLE:
is

GROUP_MODE: NODE_TYPE ;
heein

in

in

in

/

PATRNAMS ;

RELATIONS fiIP_KEY
BOOLEAN := TRuE)

“ OPEN (GROm_NODE , GROUP_NA6fE) ;

I
ADOPT_ROLE (GROOP_NODE , ICSY, INHERITABLE) ;

exceDtiOn
I when others=>
I CLOSE (GROUP_NODE) ; ,,

I end ADOPT_ROLE ;
,,

o

5.1.4.7

ADOYI_ROLE

,:.

: = LATEST_KEY;

.,:)..,...~
,,. .,, .,,,,, ,;...,,

,., ,

I
161

Downloaded from http://www.everyspec.com

,.

5.1.4,8 DOD-STD-1838

UNADOPT.ROLE CAL_ACCESS_CONTROL_MANAGEMENT

5.1.4.8 Unlinking an adopted role

procedure ONAOOPT_ROLE (KEY: in RELhTIONSHIP_RSY) ;

Purpose:

This procedure deletes the relationship of the predefimed relation ADOPTED_ROLE
with a relationship key designated by KEY emanating from the current process node, If
there is no such relationship, the procedure has no effect.

Parameter

KEY is the relationship key designator of the relation ADOPTED_ROLE.

Exceptions:

SYNTAX_ERROR
is raised if KEY is syntactically illegal (see Table I, page 32).

LOCK_ERROR is raised if access, with intent WRITE_RELATIONS HIPS, to the current
process node cannot be obtained due to an existing lock on the node,

●

162

Downloaded from http://www.everyspec.com

DOD-$TD-1838
CAIS_STRUCTLJRAL_NODE_WAGEMENT

I

5.1.5

10 5.1.5 Package CAIS STRUCTURAL NODE MANAGEMENT

Stmctural nodes are speciaf nodes in the sense that they do not have contents as the other
nodes of the CAIS m~del do. Their purpose is solely to be carriers of common information
about other nodes related to the structural node.

I
The package CAIS_STRUCTURAL_NODE_MANAGEMENT defines the primitive
operations for creating structural nodes. The exceptions raised by all subprograms in this

I package are defined in the package CAIS.DEFINITIONS.

‘o

10
163

Downloaded from http://www.everyspec.com

L“

5,’1.5.1 DOD3TD-1838

CREATk_NODE CAIS_STRU~ AL-NODE- WAGEMENT

5.1.5.1’ Creating structural nodes

proeedu~ CRXATE_NODE
(NODE: in out NODE_TYP E;

BASE : in NODE_TYPE;

srzY: in RELATIONSHIP_NEY := LATEST_EEY :

S-ZLATION : in sELATION_NMtE := DEFAULT_RXLATION ;

INTENk : in INTENT_ARRAY := (l=>NRITE);

ATTRIBUTES : in ATTRIBUTE_LIST := EbSQTY_LIST ;
DZSCR.ltTIONARY_ACCE SS: in DISCRETIONARY_ACCESS_LIST :=

CAI S_ACCESS_CONTROL_4ANAGENENT ALL_RXGHTS ;

~ATORY_ACCESS: in -ATORY_ACCESS_LIST := EMPTY_LIST) ;

Purpose:

This procedure creates a stmctural node and instaUs the primary relationship to it as
well as the corresponding relationship of the predefmed relation PARENT to the node
identified by BASE. The reiation name and relationship key designator of the prirnafy

,, relationship to the node are given by the parameters RELATION and KEY,
respectively; the base node from which the primary relationship emanates is given by
the parameter BASE. An open node hanrUe to the newly created node with intent as
specified by the INTENT parameter is returned in NODE.

The ATTRIBUTES parameter ~efmes” and provides initial values for attributes of the
node.

,.. ~’

;,., The DISCREITONARY_ACCESS parameter specifies the initial access control
information to be established between the created node and the default group node of ●
the current user (see Section 4.4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject classification of the creating process as its object class~]cation. Otherwise, it
must be an umamed list consisting of an identifier item and, optionaUy, art umamed
list of identifier items (see Table IV, page51).

Parameters:

BASE

,,

KEY

‘REL~ti’ON

INTENT
,.

is a node handle, initially closed, to be opened to the newly created node.
,.,

is an open node hancUe to the node from which the primary relationship
to the new node is to emanate.

is the relationship key designator of the primary relationship to be
created.

is die ~ela~on niuni ‘of the prirhary relationship to be created.

is the intent of subsequent operations on the node; the actual parameter
takes the form of an array. aggregate.

●

164

Downloaded from http://www.everyspec.com

DOD.STD-1838 5.1.5:1
CALS.STRUCTIJRAL_NODE_MANAGEMENT CREATE.NODE

ATTRMUTES is an empty or named list (see Section 5.4) whose eIements are used to
establish initial values for attributes of the newly created node; each
named item of the list specifies an attribute name and the vahre to be
given to that attribute.

DISCRETIONARY.ACCESS
is the initial access control information associated with the created node;
it is the value of the GRANT attribute of the access relationship to the
user’s default group node (see Section 4.4.2,3, page 40).

MANDATORY ACCESS
‘is a list defining the classification label for the created node (see Table

IV, page 5 I).

Exceptions:

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by KEY and RELATION is
syntactically iflegal (see Table I, page 32).

EXISTING_NODE_ERROR
is raised if a node already exists with the identification given.

SYNTAX_ERROR
is raised if the ATTR.U3UTES parameter (see description above), the’
DISCRETIONARY_ACCESS parameter (see Section 4.4.2.3) OK the ~.
MANDATORY_ACCESS parameter (see Table IV, page 51) is
syntactically ilIegaL

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefine relation that cannot

be createdby the user.

PREDEFINED_ATITtIBUTE_ERROR

israisedifany attributename given by the A~RIBUTES parameter is

the name of a predefine attributethatcannot be createdby the user.

USE_ERROR is raised if the ‘value for the DISCRETIONARY_ACCESS or
MANDATORY_ACCESS parameter is semantically iflegal.

STATUS.&ROR
is raised if BASE is not an open node handle or if NODE k an open node

,- handle at the time of the tail.

INTE~-VIOLATION
is,raised if BASE was not opened with an intent establishing the right to,,
create relationships.

.

SECUIUTY_VIOLATION
.,,

is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

165

,

Downloaded from http://www.everyspec.com

.,.

-.

5.1.5.1 DOD-STD- 1838
CREATE.NODE CAIS_STRUCTTRkJ_NODE_MANAGEMENT

Additional Interfaces:

prmxxhsre CRNATE_NODE

(NODE : in out NODE_TTPE;

NAME : in P.4THNkMB ;

INTENT : in INTENT_ARSJtY := (l=>NRITE) ;

ATTRIBUTES : in ATTRIBUTE-LIST := ENPTT_LIST;

DISCR-ETIONARY_ACCESS: in DISCRE?IONARY_ACCESS_LIST : =

CAIS_ACCFSS_CONTROL_MANAGSMENT ALL_RIGHTS ;

MANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := SMPTY_LIST)
is

BASE : NODE_TYPE ;

begin
OPEN (BASE, BASE_PATH (NAME) , (l=>~PEND_SELATIONStiIPS));

CREATE_NODE (NODE, SASE, UsT_RBy (NAMN), LAST_RELATION (Nz+ba2),
INTENT , ATTRIBUTES, DISCRETIONARY_ACCESS ,

MANDATORY ACCESS) ;
CLOSE (BASE) ;

exception
when others =>

CLOSE (BASE) ;
raise;

end cRBATE_NooE;

procedure CREATE_NODE
(BASE : in

sUcY: in
RELATION : in

INTENT : in

ATTRIBUTES : in

\ DISCRETIONMtY_ACCESS: in

\
blaN’DATORY ACCESS: in

is ‘

NODE : NODE_TYPE ;

begin

NODE_TYPE ;

F.JILATIONSHIP_REY := LATEST_KSY:
tiiATION_NAMS := DEFAULT_RSLATION ;

INTENT_ARRAY :=. (l=>NRITE) ;

ATTRIBUTE_LISz := EMPTY-LIST;
DISCRETIONARY-ACCESS_LIST :=
CAIS_ACCES5_CONTROL_MANAGEbtNNT ALL_RIGHTS ;
MANDATORY_ACCESS_LIST := EKPTY_LI ST)

CREATE_NODE (NODE, BASE, &EY, RNIXITI02?, INTENT, ATTRIBUTES,
DISCSU2TIONARY-ACCESS , MANDATORY_ACCESS) ;

CLOSE (NODE) ;
end CREATE_NODE ;

prusedure CREATE_NODE
(NAME : in PATNNANE;

INTENT : in INTENT_ARRAY := (l=>NRITE) ;
ATTRIBUTES : in ATTRIBUTE_LIST := BMPTY_LIST;

DISCRETIONARY_ACCESS: in DISCRETIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_MANAGBMNNT ALL_RIGHTS :
MANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := EKPTY_LIST)

is
NODE : NODE_TTPE ;

begin

CFCEATE_NODE (NODS, NAME, INTENT, ATTRIBUTES ,
DISCJtETIONARY_ACCESS, bSANDATORY_ACCESS) ;

CLOSE (NODE) ;
end CREATE_NobE;

o
166

Downloaded from http://www.everyspec.com

DoD-STD-1838 5.1.5.1
CAIS_ST’RUCTLJRAL_NODE_MANAGEMENT CREATE_NODE

I Notes:

o Use of the sequence of a CREATE_NODE call that does not return an open node
handle followed by a cafl on OPEN for the created node, using the node identification
of the created node, cannot guarantee that a handle to the node just created is opened;
this is because relationships, and therefore the node identification, may have changed
since the CREATE.NODE call.

I /

1

Downloaded from http://www.everyspec.com

5.2 DOD-STD- 1838
CAIS PROCESS NODES

...“.

,5.2 CAIS process nodes

This section describes the semantics of the execution of Aria programs as represented by
CAfS processes and the facilities provided by the CAIS for initiating and controlling ●
~p~ocesses. The major stages in the life of a process we initiation, running (which may include
s’mpension or resumption), and termirration or abortion. The CAIS defines facfiit ies to
control and coordinate the initiation, suspension, resumption, and termination-or abortion of
processes (see Section 4.3.2). Each CfiS process hi a current status associated with it
which changes with certain events as specified in Table VII.

F
non-existent READY

READY Not

Applicable

Not TERMINATED
Applicable

T==r-
1

I

SUSPENDED

TABLE Vii. Process Status Transition

STATUS

EVENT

Process
Creation

Termination
of Main
Program

Invocation
of Interface
ABORT_
PROCESS

Invocation
of Interface
SUSPEND_
PROCESS

Invocation
of Interface
RESUME_
PROCESS

Not
Applicable

Not
Applicable

ABORTED

No
Effect

READY

ABORTED TERMINATED

+--

Not Not
Applicable ApplicaMe

Not Not
Applicable Applicable

T=tzr
I

A process is said to be terminated when its main program (in the senseof[1815A] 10.1) has
terminated (in the sense of [1815A] 9.4). See also the notes in [1815A] 9.4. Thus,
termination of a process takes place when the main program has completed and all tasks
dependent on the main program have terminated.

A process may be suspended either by itself or by another process. When a process is
suspended, its execution is stopped such that it can Iater be resumed. If an Ada program is
suspended, all tasks are suspended and no tasks may be activated until the process is
resumed. A suspended process may be resumed by another process. A process may be
resumed even if its parent process is not resumed.

A process maybe aborted either by itself or by another process.

16S

Downloaded from http://www.everyspec.com

DoD-STD-1838 5.2
CAtS PROCESS NODES

For a given process, a process tree is the set of processes consisting of the given process plus
each process whose node’s imique primary path traverses the node of the given process.
When a process is aborted, suspended or resumed, all of the rrrocesses’ irr its urocess tree are
likewise aborted, suspended or-resumed, subject to discretio&ry access con~rol; in any case
their process nodes remain until deleted. Any open node handles of a process are closed
when the process terminates or is aborted.

Three mechanisms for a process to initiate another process are provided:

a. Spawn - the procedure SPAWN_PROCESS returns after initiating the specified
program. The initiating process and the initiated process mn in parallel, and,
within each of them, their tasks may execute in parallel,

b. Invoke ; the procedure INVOKE_PROCESS returns control to the calling task
after the initiated process has terminated or aborted. Execution of the calling
task is blocked until termination or abortion of the initiated process, but other
tasks in the initiating process may execute in parallel with the irritated process
and “itstasks.

c. Create - the procedure CREATE_JOB returns after initiating the specified
program. The initiating process and the initiated process run in parallel, and,
withirr each of them, their tasks may execute in parallel.

Every process node has several predefimed attributes. Three of these are RESULTS, which
can be used to store multiple user-defined strings giving (intermediate) results of the procesy
PARAMETERS, which contains !he par meters with which the process was nitiated; ssiri
CURRENT_STATUS, which gives the current status of the process (see Table VII, page
168). In addition, every process node has several predefmed attributes which provide
information for standardized debugging and performance measurement of processe~ within
the CAIS implementation. One of these predefmed attributes, OPEN_NODE_H~DLE_
COUNT, gives the number of node handles the process currently has mren. The remainirw
predeficred attributes have implementation-dependent values .~d sboild not be used fo~
compmison with values from other CAIS implementations. TIME_STARTED ~d TfME_
FINISHED give the time of inkiatlon and the time of termination or abortion of the process.
MACHINE_TIME gives the length of time tbe process was active on the logical processor, if
tbe process has terminated or aborted, or z:ro, if the process has not terminated or aborted.
IO_UNIT_COUNT gives the number of GET and PUT operations that have been performed
by the process. PROCESS_SIZE gives the amount of memory currently in use by the
process. The CURRENl_STATUS, OPEN_NODE_HANDLE_COIN~, TtME_
STARTED, TIME_FINISHED, MACHINE_TIME, IO_UNIT_COUNT and PROCESS_
SIZE predefmed attributes are maintained by the implementation and cannot be set using
CALS interfaces.

When a process has terminated or aborted, the final status, recorded in the predefmed process
node attribute CURRENT_STATUS, will persist as long as the process node exists.
CURRENT_STATUS may also be examined by the CAB interfaces CURRENT_STATUS
sad GET RESULTS.
:2: \f?ll) 7

For puqroses of input and output, every process node has one relationship of each of the
following predefinerl relations: STANDARD_INPUT, STANDARD_OUTPUT and
STANDARD_ERROR. STANDARD_INPUT, STANDARD_OUTPUT and STANDARD_

169

Downloaded from http://www.everyspec.com

5.2 DOD-STD-1838
CAISPROCESS NODES

ERROR are relation names of relationships established at process creation. The

STANDARD.lNPUT and STANDARD.OUTPUT fiIes conform to the semantics given for
these in [18 15A]14.3.2,except that these files are not automatically open upon initiation of o
process execution. Interfaces are provided in the CAIS input and output packages (see
Section 5.3) to read relationships of these predefmed relations.

●1

●
I70

Downloaded from http://www.everyspec.com

CAIS.PROCESS.DEFIMTIONS

5.2.1 Package CAIS_PROCESS_

DOD.STD- 1838

DEFINITIONS

5.2.1
DEFINTHON OF TYPES AND SUL3TYPES

This package defines the types, subtypes, constants and exceptions associated with process
nodes.

tYW PR~ESS_STAToS_KI~ is (-Y, SUSPENDED, ASORTED, TERMINATED) ;

An object of type PROCESS_STATUS_KIND is the status of a process.

subtype RESULTS_LIST is CAIS_LIST_MANAGSMENT. LIST_TYPE;

subtype RESULTS_STRING is STRING;
subtype PARAMETER_LIST is CAIS_LIST_bUQiAGEMENT. LIST_TYPE;

An object of type RESULTS_LIST is a list of results from a process. The elements of this list
are of type RESULTS.STRING. An object of type PARAMETER_LIST is a list containing
process parameter information.

StOOT_PROCESS : constant PATNNAMF, : = ,,, CURRENT JOB,, ;
STANDARD_INPUT : COIIStSNtPATSNAMS : = ,,, STAND-- INPUT,,;

STANDAPJ3_OUTPUT: COnSt~t PATNNAME := “‘STANDARD~OUTPtlT ~~;

STANDARD_ERROR: eonstsntPATNNAMS := “‘STANDARD_ERROR,, ;

ROOT_PROCESS is a standard pathrrame for the root process node of the current job.
STANDARD_INPUT, STANDARD_OUTPUT and STANDARD.ERROR are predefmed
pathnames for the standard input, output and error fdes, respectively, of the current process.

EXECUT-LE_IMAGE_ERROR : exception;

EXECUTABLE_fMAGETERROR is raised if h can be determined that the fide node does
not contain an executable u-nage.

I

,0
171

Downloaded from http://www.everyspec.com

,5.2.2 . DOD-SD. 1838
CAIS_PROCESS_MANAGEMENT

5.2.2”Package CAIS PROCESS MANAGEMENT

This package spec~les interfaces for the creation and termination of processes and ●
examination and modification of process node attributes. The exceptions raised by all
subprograms in this package are defined in the packages CAfS_DEFINfTIONS and CAIS_
PRt3CESS_DEFfNITIONS

As part of the creation of root process nodes, new secondary relationships emanating from
the newly created process node are created as described in Table VflI.

As pm of the creation of process nodes orher than root process nodes, seccmday
relationships of several predefmed relations are created, emanating from the newly created
process node. In addition, the newly created process node inherits all secondary relationships
from the node of the creating process for which IS_lNHERITABLE (see Section 5.1.2.28,

page 104) is TRUE.
.,

Table IX summarizes the inheritance or creation of all predefmed relationships which
emanate from the created process node.

TABLE VIII. Relationships Created as a Result of CREATE_JOB

.A Secondiuy Relationship Is Created to the Node
of the Predefiied Relation: Identified by the:

ACCESS Pathnarne ‘CURRENT_USER’DEFAULT_ROLE (the GRANT
atrnbrrte is set by the interfacx parameter DISCRETIONARY_
ACCESS).

ADOPTED_ROLE Pathsrame ‘CURRENT.USER’DEFAULT.ROLE. This secondary
relationship is also created to the default group node of the node
containing the executable image of@ program, if such a group nade
exists.

CURRENT_JOB Newly-created root process nade.

CURRENT_NODE Imerfacc parameter EhW’lRON?vtENT_NODE.

CURRE~_USER ‘‘ The user’s top-level user node.

DEVICE Implementation-definedsubsetof top-level device nodes.

I EXECUTABLE_IMAGE I lntefia@pwmekrHLE_NODE. I

I GROUP Implementation-defined subset of top-level group nodes.
1

PARENT Predefirred constant CURRENT_USER.

STANDARD.ERROR Interface pararaeter ERROR_FILE.

STANDARD_INPUT Interface parameter INPUl_FILE.

=“ 1Interface parameter OUTPUTJILE. I

Implementation-defined s“bse: of top-level user nodes. “----~

112

-.

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.2.2

0’

CAIS.PROCESS. WAGEMENT

TABLE IX. Relationships Created and Inherited for Process Nodes

A Secondmy Relationship Is
of the Predefitred Relation

ACCESS hrheritrd from the creating process nnde: in addition, the accesa
relationship to the node identified by the patfrnarne ‘CURRENT.
USER’DEFAOLT_ROLE is created or altered tn have a GRANT
athibute set to tfre value of the interface pammeter
DISCRET30NAR Y_ACCESS.

ADOPTED.ROLE Inherited from the creating process nod=in addition, created to the
defatdt group rmdr nf the node umtairringtheexecutable image nf
the program, if such a group node exists

CURRE~_JOB Merited from the creatingprocessnode.

CURRENT.NODE Created to the node identified by the interface parameter
ENVIRONMENT.NODE.

CURRE~_USER Inherited from the creatingprocess.

DEVfCE Merited fromthe creatingprncess.

EXECUTABLE_IMAGE Created to the node identified by the interface parameter FfLE_
NODE.

GROUP Inheritedfrom the creatingprocess.

PARENT Created to the node for the creating process.

STANDARD.ERROR Created to the node identified by the interface parameter ERROR_
FILE.

STANDARD_LNPUT Created to the node identified by the interface parameter INHJT_
FILE.

STANDARD.OUTPUT Created tn dre node identified by the interface parameter OUTPWI_
FILE.

. .“---
U>12K mnernea mom me creanng process.

I

,--
;..

o
I 173

Downloaded from http://www.everyspec.com

5.:?.2.1 DOD-SIT 1838
SPAWN.PROCESS CAIS_PROCESS_MANAGEMENT

5.2.2.!Spawning a process

procedure SPANN_PROCESS
(NoDE :
F ILE_NODE :
INTENT :
INPOT_PARAMSTERS :
tow:
RcLATION :
DISCRWTIONARY_ACCESS :

MANDATORY ACCESS:
ATTilIBUTE~ ;

INPUT_FILE :

OtSTPUT_FILE :

ERROR_FILE:
ENVIRONMENT_NODE :

in out NoDE_’TYPE;
in NODE~TYPE ;

in INTENT ANRAY;

in PARME=ER_LIST := PAtPTY_LIST;
in tiUTIONSHlp_=Y := wrwr_my;
in RRwTION_NAMIt := DEFAOLT_RE~TION;
in DISCRETIONARY ACCESS_LIST :=

CAIS_ACCESS_CON!i~OL_UANAGEbtSt4T.ALL RIGHTS;
in MANDATORY_ACCESS_LIST := SMPTY_:IST;
in ATTRIBUTE LIST := BbSPTY_LIST;
in PATNNAbSB y= STANOARD_INP~ ;
in PATNNAME := STANDAPD_OOTPUT ;

in PATNNAME := STANDARD_ERROSt;
in PATNNAMs := CORRENT_NODE);

Purpose:

This procedure creates a new process node whose contents represent the execution of
the program contained in the specified fiie node. The primary relationship to the newly
created process node emanates from the current process node and ha.irelation name and
relationship key identified by the RELATION and KEY ptiameters. Tbe process is
theti activated, i.e., its status is set to READY. Control returns to the calling task after
the new node is created. The process node containing the calling task must have
execution rights for the fde node. An open node’ hsncfIe ‘NODE on the new node, is
returned, with an intent as specitled by the INTENT parameter. The new process, as a
subject, has all discretionary access rights to its own process node (as the object). ●
Second&y relationships emanating from the new process node are created and inherited
as described in Table IX, page 173.

The DISCRETIONARY_ACCESS parameter specifies the initial access control
information to be established between the created node and the defauk group node of
the current user (see Section 4,4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject ch.ssification of the creating process as its object class~lcation. Otherwise, it
must be an unnamed list consisting of m identifier item and, optionally, an unnamed
list of identifier items (see Table fV, page 51). Object and subject classification labels
of a process are the same,

Parameters:

NODE

PILE_NODE

INTET4T

is a node handle, initiaIly closed, to be opened to tbe newly created
process node.

is an open node handle on the fiie node contai@ng, the executable ~~ge
whose execution will be represented by the new process.

is the intent of subsequent operations on the node; the actuai parameter ●
takes the form of an array aggregate.

.,,

, 174.

.:, ..(,

Downloaded from http://www.everyspec.com

~.
—, .. . ~

DOD-STD-1838 5.2.2.1
CALS.PROCESS.MANAGEMENT SPAV/P_PROCESS

INP~_PARAMETERS

is a list containing process parameter information. The list is conskcted
,’

and named usim the suburomrns Drovided in CAIS-LIST–
MAN~GEMENT - (see Section- 5.4). - The value of INPUT.
PWETERS is stored in a predefiied attribute PARAMETERS of the
new node.

KEY is the relationship key designator of the primary relationship from the
current process node to the new process node.

RELATION is the relation name of the primary relationship from the current process
node, to the new process node.

DISCRETIONARY_ACCESS
is the initial access control information associated with the created node;
it is the value of the GRANT attribute of the access relationship to the
user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY ACCESS—

ATTRIBUTES

INP~_FILE

is a list. defining dre classification label for the created node (see Table
IV, page 51).

is an empty or named list(see Section 5.4) whose elements are used to
establish initial values for attributes of the newly created node; each
named item of the list specifies an attribute name and the value to be
given to that attribute.

is a pathname to a ffle node that will be the target node of the secondary
relationship of the predefine relation STANDARD_INPtJT.

OUTPUT.FILE is a pathname to a ffle node that will be the target node of the secondary
relationship of the predefiied relation STANDARD_OUT’pUT.

ERROR_FILE is a pathnrrme to a fiie node that will be the target node of the secondary
relationship of the predefine relation STANDARD_ERROR.

ENVfRONME~_NODE
is a pathname to a node the new process wilf have as its initial current
node.

Exceptions

PATHNAh@SYNTAX_ERROR
is raised if the node identification given by KEY and RELATION is
syntactically illegal.

.-r

-’: RELATIONSHIP_ERROR
is raised” if any of the nodes identified by INPUT_FILE, OUIT’UT_~E,
ERROR_FfLE, or EIWIRONMENT_NODE does not exist.

L 175

Downloaded from http://www.everyspec.com

k.. -.. .--+~,.,- >, ., ,..

5.2.2.1 DOD-STD- 1838
SPAWN.PROCESS CAIS.PROCESS.MANAGEMENT

EXISTING_NODE_ERROR
is raised if a relationship of the relation RELATION with the relationship o

key designator KEY already exists.

SYNTti_ERROR
is raised if any of the parameters lNP~_PARAMETERS,
~NDATORY_ACCESS (see Table IV, page 5 1), DISCRETIONARY_
ACCESS (see Section 4.4.2.3) or AITRfBUTES (see description above)
is syntactically illegal

PREDEFLNED_RELATION_ERROR
is raised if RELATION is the name of a predefirred relation that carmot
be created by the user.

PREDEFINED_ATITUBUTE_ERROR
is raised if any attribute name given by the ATTRIBUTES parameter is
the name of a predefmed attribute’ that cannot be created by the user.

EXECUTABLE IMAGE ERROR
‘is rajsed;f it carr be determined that the node identified by FILE_NODE
d~s not contain an executable image.

USE_ERROR is raised if any of the parameters INPUT_PAf?AMETERS,
MANDATORY.ACCESS , DISCRETIONARY_ACCESS, Of

ATTRIBUTES is sernanticafly illegal. ●
STATUS ERROR—

LOCK_ERROR

is raised if NODE is an open node handle at the time of the calI or if
FfLE_NODE is not an open node handle.

is raised if access with intent APPEND_RELATIONSHIPS to the current
process node cannot be obtained due to an existing lock on the node.

INTENT_VIOLATION
is raised if the node designated by FILE_NODE was not opened with arr
intent establishing the right to execute its contents.

SECURITY.VIOLATTON
may be raised if the attempt to obtain access to the node identified by
NODE for the specified ,jntent represents a violation of mandatory access
controls. SECURITY_VIOLATION may afso be raised if a process is
created either of a higher or of a lower classification than the crnrent
process. SECURJTY_VIOLATION maybe raised ordy if the conditions
for raising the other exceptions are not satisfied.

176

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.2.2.1

CAfS_PROCESS_MANAGEMENT SPAWN_PROCESS

Additional Interface:

prucedure SPANl_PROCESS
(NODE : – in out NODE TYPE;

FILE_NODE : in NODE~TYPE ;

INTENT : in lNTENT_SPECIFICATION := READ_ATTRIBUTES ;

INPUT_PARAbSBTERS: in PARAMETER_LIST := EMPTY_LIST ;

NSY : in REIATIONSIiIP_CZY := LATEST_REY;

~LATION : in RELATION NANE := DEFAULT_~LATION;

DISCRBTIONARY_ACCE SS: in DISCRETI~NARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_NANAGFMENT .ML_RIGHTS ;

blANDATORY_ACCESS: in NANDATORY_ACCESS_LIST := BMPTY_LIST;

ATTRIBUTES : in ATTRIBUTE LIST := EMPTY LIST;

INPOT_FILE : in PATNNAME ~= STANDARI_INPUT;
00TPOT_FILE : in PATHNAME := STANDASD_OUTPOT;
ERROR_FILE : in PATNNAME : = STANDASD_ERROR;

ENVIRONMENT_NODE: in PATNNAME := CURRENT_NODE)

is
begin

SKIANN_PRCCES S

end SPAWN_PROCESS;

Notes:

(NODE, FILE_NODE , (l=>INTENT) , INPUT_PARAMETERN,

REY , KSLATION, DISCRETIONARY_ACCESS ,
bWDATORY_ACCESS , ATTRIBUTES , INPUT_FILE ,

OUTPUT_F ILE , ERROR FILE, ENVIRONMENT_NODE) ;

If the default value of the ~ENT parameter is used, the exception SEC~_
VIOLATION may be raised when a process is created at a higher classification than
that of the current process.

o

——
I77

Downloaded from http://www.everyspec.com

5.2.2,2 DOD.STD-1838
AWAIT_PROCESS_COMPLETION CAIS.PROCESS_MANAGEMEN~

.5.2.2.2 Awaiting termination or abortion of another process

prOCedUre AWAIT_PNOCESS_CCMfPLETION
(NODE: in NODE-TYPE;

TIME_LItdIT: in CAIS_DOSATION := LONG_DEULY) ;

Purpose:

This procedure suspends the calhng task and waits for the process identified by NODE
to terminate or abort. The calling task is suspended until the identified process
terminates or aborts or until the time linit is exceeded.

Parameters:

NODE is an open node handle for the process to be awaited.

TJME_LIMIT is the limit on the time that the calling task will be suspended awaiting
the process. When the Iimit is exceeded the calling task resumes
execution.

Exceptions:

NODE_KIND_ERROR
is raised if NODE does not identi~ a process node.

STATUS_ERROR
is raised if NODE is not an open node handle.

INTENT.VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read attributes.

SECURITY_VIOLATION
may be raised if dre attempt to wait for completion of the pmccs:
represents a violation of the mandatory access control of the GUS
tiplement ation.

Additional interface:

procedure AWAIT_PROCESS_CcS4PLETIOW

(NODE : in
RESOLTS_RETttPNED: in out
STATOS : out
TIMS_LItdIT : in

is

WOOE TYPE;

SES~-TS_LIST ;
PKOCESS_STATOS_KIND ;

CAIS_DOPATION := LONG_DELJ4Y)

begin
AWAIT_PSOCESS_CCWiPLETION (NODE, TIMK_LIMIT) ;

GET_RSSOLTS (NoDE , SXSULTS_SZTUSWED) ;
STAZ?X3 := CURNSNT STATUS [WODE1 :

end AWAIT_P=ESS_Cm-LET xotr;

178

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.2.2.2

CAIS.PROCESSJIANAGEMENT AWAIT_PROCESS_COMPLETION

●
Notes:

The description of the interface GET_RESULTS can ~ found on page 192.

0
179

Downloaded from http://www.everyspec.com

S.2.2.3
INVOKE.PROCESS

5.2.2.3Invoking a new process

procedure INVORE_PROCESS
(Xomr : in out

rILE_NODE : in
INTENT : in
RESULTS_RETORNED : in out

STATUS : out

INPOT_PAFAbfETERS: in
mY : in

RELATION : in
DISCRETIONARY ACCESS: in

DOD-STD- 1838

CAIS_PROCESS_ MANAGEMENT

NODE_TYPE ;

NODE_TYPIS ;

INTENT ARRAY;
RSSULT~_LMT;
PROCESS STATOS KIND;

PARMdET~R_LI ST7

RELATIONSHIP_KSY := LATEST XSY ;

RELATION NAME := DEFAULT ~-LATION ;
DISCRETI~NARY ACCESS LIS~ :=

CAIS ACCESS CONTR~L bSbNA%EVIENT.ALL_RIGHTS ;

t.SANDATORY_ACCESS : in -ATO1y_ACCES;_LIST :. EbfpTY_LIsT;
ATTRIBUTES : in ATTRIBUTE_LI ST := Et.SPTY_LIST ;

INPUT FILE : in PATNNAbSS := STANDARD INPUT;

OOTP~-_F ILE : in PATKNAbfE := STZUiDARD~OUTPUT ;

ERROR FILE : in PATKNAMS : = STANDAKD_ERROR;

ENVIR&brENT_NODE: in PATKNAKE := CUPJWNT NODE;
TIME_LIMIT : in CAIS_DfJRATION := LO=G DELAY) ;—

Purpose:

Thk procedure creates a new ,process node whose contents represent the execution of

the program contained in the specified fde node. The primary relationship to the newly I
created process node em+tnates from the current process node and has relationname and

relationship key identified by the RELATION and KEY parameters.. The process is
then activated, i.e., its status is set to READY. Control returns to the calling task after
the newly created process terminates or is aborted or the amount of time specifkd by o
the parameter TIME_LIMIT expires. The process node containing the calling task must
have execution rights for the fde node. Arr open node handle NODE on tie new node is
returned, with an intent as specified by the fNT,ENT parameter. The new process, M a
subject, has all discretionary access rightsto its own process node (as the object).

Secondary relationships emanating from the new process node are created and inherited
as described iriTable IX, page 173.

The DISCRETIC)NARY_ACCESS paiameter specifies the init id access control
information to be established between the created node arrd the default group node of
the current user (see Section 4.4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node irrherits the
subject ckzssiflcation of the creating process as its object classification. Otherwise, it
must be an umamed list consisting of an identifier item and, optionaEy, an umamed
.Iist of identifier items (see Table IV, page 51). Object and subject classification labels
of a process are the same.

I

This procedure provides the functionality described by the following Ada fragmegt
except that the irnplementat ion must ,guarantee that only exceptions raised by the call to I
SPAWF_PR,OCESS in this fragment are raised by INVOKE_PROCfiSS.

.. ●

1so

Downloaded from http://www.everyspec.com

●

I

I

DOD-STD-1838 5.2.2.3
CNS.PROCESS,_MAGEME~ INVOKE.PROCESS

SPAWN_PROCESS (NODE, FILE NODE , INTENT, INPUT_PAFUMETERS ,

KEY , RELAT?ON , DISCPJZTIONARY ACCESS, MANDATORY_ACCESS,

\ ATTRIBUTES , INPUT_FILE , OOTP-~_FILE , EAROR_FILE ,
ENVIAONbsS~_NODE) ;

AWAIT_PMCESS_CCMPLETION (NODE , ‘J!ItMS_LLbtIT);

GET_RESULTS (NODE, SUtSOLTS_RETtlRNED);

STATOS := CMARENT_STATOS (NODE) ;

Parameters:

NODE is a node handle, initially closed, to be opened to. the newly created
process node.

FILE.NODE is am open node handle on the file node containing the executable image
whose execution will be represented by the new process.

INTENT is the intentof subsequent operations on the node; the actualparameter

takesthe form of an array aggregate.

RESULTS.RETURISED

isa listof resultsfrom the new process,which are representedby strings.

The individual results may be extracted from the list using the

I subprograms of CAIS.LIST~MANAGEMEfi.

STATUS is the process status of the process. If termination or abortion of the
identified process can be reported within the specified time limit,
STATUS will have the value ABORTED or TERMINATED. If the
process does not terminate or abort within the time limit, STATUS will
kave the vahre READY or SUSPENDED.

INPUT_PARAMETERS
is a list containing process parameter information. The list is constructed
and parsed using the subprograms of CALS_LIST_MANAGEMENT.
The vahre of INP~_PARAMETERS is stored in the predefine
attribute PARAMETERS of the new node.

KEY is the relationship key designator of the primary relationship from the
current process node to the new process node.

RELATION is the relation name of the primary relationship from the current process
node to the new node.

DISCRETTONARY_ACCESS
is the initial access control ‘information associated with the created node;
it is the value of the GRANT attribute of the access relationship to the

user’s default group node (see Section 4.4.2.3, page 40).

‘iW414DiTORY AccEss
‘is a list defining the classification label for the created node (see Table

IV, page 51).

181

Downloaded from http://www.everyspec.com

5.2.2.3 DOD-STD- 1838

INVOKE_PROCESS CAIS_PROCESS_MANAGEMENT

ATI’RtiLITES is an empty or named list (see Section 5.4) whose elements are used to
establish initial values for attributes of the newly created node; each
rrtied item of the list specifies an attribute name and the value to be
given to that attribute.

lNP~_FILE is a pathname to a fde node that will be the target node of the secondary
relationship of the predefiied relation STANDARD_INPUT.

OUTPUT_FILE is a pathname to a file node that will be the target node of the secondary
relationship of the predefmed relation STANDARD_OUT’PUT.

ERROR_FILE is a pathname to a f~e node that will be the target node of the secondary
relationship of the predefmed relation STANDARD_ERROR.

ENVIRONMENT.NODE ‘
is a patfmame to a node the new process will have as its cm-rent node.

TRvlE_LIMIT is the limit on the time that the calling task will be suspended awaiting
the new process. When the limit is exceeded, the calling task resumes
execution.

Exceptions:

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by KEY and RELATION is
syntactically illegal.

RELATIONSHIP_ERROR
is raised if any of the nodes identified by INPUT_FILE, OUTPUT_FILE,
ERROR_FILE, or ENVfRONMENT_NODE does not exist.

EKISTING_NODE_ERROR
is raised if a relationship of the relation RELATION with relationsh~p
key designator KEY already exists.

SYNTAX_ERROR
is raised if any of tbe parameters INPWl_PARAMETERS,

MANDATORY.ACCESS (seeTable lV, page 51),DISCRETIONARY_
ACCESS (see Section 4.4,2,3) or ATI’RIBOTES (see description above)

issyntactically illegal.

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefmed relation that cannot
be created by the user.

PREDEFINED_ATTRIBUTE_ERROR
is raised. if any attribute name given by the ATTRIBUTES parameter is
the name of a predefmed attribute that cannot be created by the user. ●’: :’

iJ
,,

,!

, !“
182

Downloaded from http://www.everyspec.com

,.“o

DOD-STD-1838 5.2.2.3
cAIS..PROCESS.MANAGEMENT INVOKE.PROCESS

EXECUTABLE IMAGE ERROR
‘is raised~f it can be detesmissed that the node identified by FILE_NODE

does not contain an executable image.

USE.ERROR is raised if any of the parameters ~p~_P~ETERS,
MANDATORY_ACCESS , DISCRETIONARY_ACCESS, or
ATTRIBUTES is semantically illegal.

STATUS_ERROR

LOCK_ERROR

is raised if NODE is an open node handle at the time of the call or if
FILE_NODE is not an open node handle.

is raised if access with intent APPEND.RELATIONSHIpS c~ot be
obtained to the current process node due to an existing lock on the node.
LOCK_ERROR may be raised prior to expiration of the timeout if the
CAIS kpplementation can determine that a deadlock situation has
occurred.

INTE~_VIOLATION
is raised if the node designated by FILE_NODE was not opened with an
intent establishing the right to execute its contents.

SECURI~_VIOLATION
may be raised if the attempt to wait for completion of the process and to
obtain results from it represents a violation of the mandatory access
controls for the CAIS. S ECURITY_VIOLATION may be raised when a
process is created either of a higher or of a lower classification than the
current process. SECUfUTY_VIOLATION may be raised O~Y if the
condkions for raising the other exceptions are not’satisfied.

183

Downloaded from http://www.everyspec.com

5.2.2.3
INVOE.PROCESS

Additional Interface:

b prueedure Ir4vOIcX PROi2ESS

(NODE : -

FILE NODE :
INTE-i&:

RCSULTS_RNTUSNED :

sTAms :

INPUT_PARhNETBRS :

1CE%:
IuSLATION :

DOD-STD- 1838

CAIS_PROCESS_MANAGEMENT

in out
in
in
in out

out
in
in
in

DISCRETIONAA_ACCESS: in

NODE_TTPE ;
NODE_TYPE ;
INTENT SPECIFICATION := READ_ATTRIFIuTES ;

SESULT~_LIST;
PROCESS_STATUS_KIND ;

PAPJMETER_LIST;

RXLATIONSHIP_NSY := LATEST_KEY;

P.P.LATION_NAME := DEFAULT_REIATION ;

DISCRETIONARY ACCESS LIST :=—
CAI S_ACCESS_CONTR~L_MANA%SMNNT M,L_RIGHTS ;

bSANDATORY_ACCESS: in MANDATORY_ACCESS_LIST := EMP~ LIST;
ATTRIB~ES : in ATTRIBUTE_LIST := ENPTY LIST; -

INP~_TILE : in PATNNM := ST~~ IN~UT ;

00TP~_FILE : in PATNNAME := STMJW~O~P~ ;

EPROR_rILE : in PATNNAME := STANDARD_ERROR ;

ENVIRONMENT NODE : in PATNNAME := CURRENT_NODE ;

TINJL_LItdIT:-
is

begin
INVORE_PRCCESS

end INVOKS PROCESS;—

Notes:

in CAIS_DURATION := LOiiG_DE~Y)

(NODE , FILE_NODE , (l=> INTENT) , M, SULTS_mTURNED ,

STATUS , INPU!_PABAMETERS , KEY, REI#IVONr
DISCRETIONARY_ACCESS ,,NANDATORY_ACCESS ,
ATTRIBUTES, INPUT FILE , OUTPUT_FILE, ERROR_FILE,
ENVIRO=NT NODE, ‘TIME_LIMIT) ;

Both control and data (results and process status) are returned to the calling task upon
termination or abortion of the invoked process or when the TIME_LIMIT is exceeded.

●✌

●

184

Downloaded from http://www.everyspec.com

CALS.PROCESS.MANA GEMENT
DOD-STD- 1838 5.?.2.4

CREATE.JOB

5.2.2.4Creating a new job

procedure CRSATE_JOB
(F ILE_NODE :
INPUT PARAMETERS :
REY: -
DISCRETIONARY_ACCESS :

MANDATORY ACCESS :

ATTRIBUTES :

INPUT FILE :

00TPU~_FILE :
ERROR_FILE :

ENVIRONMENT NODE :

m

in NODE TYPE;
in P~TER LIST :. EMPTY_LIST;
in RELATIONSfiIP_REY := LATEST SEY;
in DISCRETIONMY_ACCESS_LIST ~=

CAIS_ACCESS_CONTROL_bSANAGSNENT .l&L_RIGHTS ;
in MANDATORY_ACCES S_LIST : = EMPTY_LIST;

in ATTRIBUTE_LIST : = EbfPTY_LIST;
in PATHNAME :. STANDASD_INPUT;

in PATRNAMS : = STAWDASD_OUTPUT;
in PATRNAME : = STANDARD_ERROR;
in PATSNAME :. CURFOSNT_USER;

DELETE_WSSEN~TERMINATED: in BOOLSAN : = TRUE) ; –

Purpose:

This procedure creates a new mot process node whose contents represent the execution
of the program contained in the specified file node. The process is then activated, i.e.,
its status is set to READY. Control returns to the calling task after the new job is
created. The process node containing the calling task must have execution rights for the
fde node and sufficient rights to append relationships to the node identitled by
‘CURRENT_USER. A new primary relationship of the predefiied relation JOB is
established from the current user node to the ;mt process node of the new job. The new
root process as a subject has all discretionary access rights to its own process node (the
object).

Secondwy relationships emanating from the new root process node are created as
described in Table VIII, page 172.

The DISCRETIONARY_ACCESS parameter specifies the inhial access control
irsfonnation to be established between the created node and the default group node of
the current user (see Section 4.4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject classification of the creating process as its object classification. Otherwise, it
must be an umarned Iist consisting of art identifier item and, optionally, an umamed
list of identifier items (see Table IV, page 51). Object and subject classification labels
of a process are the same.

Parameters:

FILE_NODE is an open node handle on the file node cent aining the executable image
whose execution will be represented by the new process.

INP~_PARAMETERS
is a list containing process parameter information The list is constructed
and parsed using the subprograms provided in CAIS_LIST_
MANAGEMENT. INPU’_PARAMETERS is stored in the predefmed
attribute PARAMETERS of the new node.

185

Downloaded from http://www.everyspec.com

: 5.2.2.4
‘ CREATE_JCrB

DOD-STD- 1838
CAIS.PROCESS.MANAGEMENT

KEY is the relationship key designator of the primary relationship of the
predefine relation JOB from the current user node to the new process ●
node.

\..

DISCRETIONARY.ACCESS
is the initial access control information associated with the created node;
it is the value of the GRANT attribute of the access relationship to the
user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY ACCESS
‘is a list defining the classification label for the created node (see Tablt

,,, IV, page 51).

AlTTU13UTES is an empty or named list .(see Section 5.4) whose elements are used to
establish irritial values for attributes of the newly created node; each
named item of the list specifies an attribute name and the value to be
given to that attribute,

INPUT.FILE is a pattmame to a file node that will be the target node of the secondary
relationship of the predefmed relation STANDARD_INPUT,

OUTPUT’_FILE is a pathname to a fde node ti~at will be the target node of the secondary
relationship of the preciefined relation STANDARD_OUTPUT.

ERROR_FILE is a pathname to a file node that will be the target node of the secondary
relationship of the predefmed relation STANDARD_ERROR,

., .. :.,,

ENVIRONMENT_NODE
is a patfmame to a node the new process will have as its initial current
node.

;,...... ., ;,,.
,1.:.DELETE_WHEN~TE~fNATED

is a boolean; if TRUE, the process node will be deleted when the job
ten-ninatey if FALSE, the process node will be kept when the job
terminates. Note that in the latter case, an explicit call to the DELETE_

.,, JOB interface (see Section 5.2.2.5, page 188) must be made in order to
delete the process node.

,:..f:, .:, ,>.’

Exceptions:

PATHNAME_SYNTAX ERROR
is raised–if the node identification given by KEY is syntactically illegal.

RELATfONSHIP_ERROR
is raised if any of the nodes identified by JNPUT_FfLE, OUTPUT_FILE,
ERROR_FILE, or ENVIRONMENT_NODE does not exist.

a

EXISTING.NODE_ERROR
is raised if a relationship of the relation JOB with relationship key
designator KEY already exists, ●

186

Downloaded from http://www.everyspec.com

/’

●

DOD-STD-1838 5.2.2.{

CAtS_PROCESS_tW4NAGEMENT CR13ATE_JOB

SYNTAX_ERROR

raised if any of the parametem INPUT_PARtiTERS

~NDATORY_ACCESS (see Table IV, page51), DISCREWONARi.
ACCESS (see Section 4.4.2.3) or ATTRIBUTES (see description above)
is syntacticallyillegal.

PREDEFINED_A~RIB UTE_ERROR

israisedifany attributename given by the ATTRIBUTES parameter is

the n“ame of a predefiied attributethatcannot lx createdby the user:

EXECUTABLE IMAGE ERROR ,,l;,

‘is raised~f it can be determined that the node identified by FfLE_NODE
does not contain an executable image.

USE_ERROR is raised if arty of the parameters INPUT’.PARAMETERS,
MANDATORY_ACCESS , DISCRETIONARY.ACCESS, Or

ATI’RLBUTES is semantically illegal.

STATUS_ERROR
is raised if FILE_NODE is not am open node handle.

LOCK_ERROR is raised if access to the current user node “with intent APPEND_
RELATIONSHIPS carmot be obtained due to an existing lock on the
node. ,.

INTENT_VIOLATION
is raised if the node designated by FILE_NODE was not opened with ~
intent establishing the right to execute its contents.

ACCESS.VIOLATION
is raised if the current process does not have sufficient &scretion@
access rights to ormt the current user node with APPEIWl_
RELATIO-NSHIPS in~ent.

SECURITY_VIOLATTOi
is raised if the attempt to obtairr access to the node identified by
CURRENT_USER represents a violation of mandatory access controls:
SECURITY_VIOLATION is raised only if the conditions for raising ~,
other exceptions are not satisfied.

1 . . .

.,, ;

:.

.,

187

Downloaded from http://www.everyspec.com

5,22,5 DOD-STD- 1838

DELETE.JOB CAIS_PROCESS.M+AGEMENT

5.2.2.5Deleting a job

prOcedti DELETE_JOB (NODE: in Out NODE_TYPE);

Purpose:

This procedure effectively performs the DELETE_NODE operation for a specified root
process node .irrd recursively applies DELETE_NODE (see Section 5.1.2.23, page 94)
to all nodes reachable by a unique primary pathname from the designated node. The
nodes whose primary relationships are to be deleted are opened with intent
EXCLUSIVE_,~TE, thus locking them for other operations. The order in which the
deletions of prrmary relationships is performed is not specified. If the DELETE_JOB
operation raises an exception, none of the primary relationships is deleted,

Parameter

NODE is an open node handle to the root process node of the job to be deleted.

Exceptions:

NAME_ERROR is raised if the parent of the node identified by NODE or any of the target
nodes of primary relationships to be deleted are inaccessible.

PREDEFINED_RELATION_ERROR
is raised if the primary relationship to the node identified by NODE is
not a relationship of the predefmed relation JOB. ●

STATUS_ERROR
is raised if the node handle NODE is not open at the time of the call

LOCK_ERROR is raised if a node handfe to the parent of the node specified by NODE
cannot be opened with intent WRJTE_RELATIONSHIPS or if a node
handle identifying any node whose unique primary path traverses the
node identified by NODE cannot be opened with intent EXCLUSIVE_
WRITE.

tNTE~_VIOLATION
is raised if the node handle NODE was not opened with an intent
including EXCLUSIVE_WR~E and READ_RELATIONSHIPS .

.ACCESS.VIOLATION
is raised if the current process does not have sufficient dkcretionwy
access rights to obtain access to the parent of the node specified by
NODE with intent WfUTE_RELATIONSHIPS or to obtain access to any
target node of a primary relationship to be deleted with intent
EXCLUSIVE_WRITE and the conditions for NAME.ERROR are not
present.

SECURITY_VIOLATfON
is raised if ,the operation represents a violation of mandatory access
controls. SECURITY_VfOLATION is raised ordy if the conditions fos
other exceptions are not present.

●

188

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.2.2.5
CAIS.PROCESS.MANAGEMENT DELETE.JOB

Addkional Interface:

prOC.SdUP2 DELETE_JOSI (NAME.: h PATSNAME)

is
NODE : NODE_TYPE! ;

begin
OPEN (NODE, NANS, (EXCLUSIVE_WRITE, READ_iUCIATIONSHIPS)) ;
DELETE_JOB (NODE) ;

exception

when others =>

CLOSE (NODE) ;
raise;

end DELETE_JOB;

Notes:

This operation can be used to delete more than one primary relationship in a single
operation.

The DELETE_TREE operation (see Section 5.1,2.24, page 96) cannot be applied to
jobs, due to the predefiied nature of the JOB relation.

I
189

Downloaded from http://www.everyspec.com

5.2.2.6 DOD-STD-1 838

APPEND_R.ESULTS C.AIS..PROCESS.MAN ACiEMENT

5.2.2.6 Appending ~esults

procedure APPSN_MSOLTS (suMULTS: in WSULTS_S’TRING);

Tlrisprocedure imests the vaiue of its RESULTS parameter as the last item in the list
which is the value of the RESULTS attribute of the current process node.

Parameter:

RESULTS is a string to be appended to the RESULTS attribute value of the current
process node.

Exception

LOCK.ERROR” is raised if access with intent WRITE.AT7TUBUTES to the current
process node cannot be obtained due to an existing lock on the node.

190

Downloaded from http://www.everyspec.com

5.2.2.7
WRITE.RESULTS

Dm3.sTD-i83$
CAtS_PROCESS_MANAGEMENT

5.2.2.7 overwriting results

● procedure WRITE_KSSULTS (P.ESOLTS: in SSSOLTS_STRING) ;

Purpose:

This procedure replaces the value of the RESULTS attribute of the current process node
with a list containing a single item which is the value of the parameter RESULTS.

Parameter:

RESULTS

Exception:

LOCK.ERROR

Iio

is a string to be stored in the RESULTS attribute value list of the current
process node.

is raised if access with intent WRITE_ATTRIBUTES to the current
process node cannot be obtained due to an existing lock on the node.

191

Downloaded from http://www.everyspec.com

5.2.2.8 DOD-STD-1838
GET.RESULTS CAIS.PROCESS.MANAGEMENT

5.2.2.8 Getting results from a process

procedure GE!C_RaSULTS (NODE: in NODE_TYPE ;
RESULTS : in out RSSULTS_LIST) ;

Purpose:

This procedure returns the value of the attribute RESULTS of the process node
identified bv NODE. The orocess need not have terminated or aborted. The empty list is
remmed in” RESULTS ii WRITE.RESULTS or APPEND_RESULTS has ~01 been
called by the process contained in the node identified by NODE.

Parameters:

NODE is an open node handle on a process node.

RESULTS is an unnamed list of strings giving the value of the RESULTS attribute
of the process node identified by NODE. The individual strings may be
extracted from the list using the subprograms of CAIS_LIST_
MANAGEMENT (see Section 5,4).

Exceptions:

NODE_IUND.ERROR
is raised if the node identified by NODE is not a process node

STATUS_ERROR
is raised if NODE is not an open node handle.

INTE~_VIOLATION
is raised if the NODE was not opened with an intent establishing the
right to read attributes.

192

Downloaded from http://www.everyspec.com

‘o

I

,0

,

DOD-STD-1838
CAIS.PROCESS.MANAGEMENT

Additional Interfaces:

pV3CffhI~ GET_RESULTS (NODE: iN NODE_TYPE ;

RESULTS : iN out RESULTS_LIST;

STATUS : out PROCESS_STATUS_KIND)

is

begin
GET_RSSDLTS (NODE, RESULTS) ;
STATUS := CURRENT_STATUS (NODE) ;

end G3tT_RESULTS;

pKxMh3R GET_SLESULTS (NAME: iN PATNNAME ;

RESULTS : iN out RESULTS_LIST;

STATUS : out PROCESS_STATUS_KIND)

is
NODE : NODE_TYPE ;

begin
OPEN (NODE, NAME, (l=>READ-ATTRIBUTES)) ;
GE’I_30cSULTS (NODE, RESULTS) ;
STATUS : = CURRENT_STATUS (NODE) ;
CLOSE (NODE) ;

exception
when others =>

cr-osiz (NODE);
raise;

end GET_RSSULTS;

procedure GET_RESULTS (NAME: in PATHNAME ;

RESULTS : iN out RESULTS_LIST]
is

NODE : NODE_TYPE ;

begin
OPEN (NODE , NAME, (l=>REMI ATTRIBUTES)) ;
GE,T RESULTS (NODE, RESULTS~;
CLOSE (NODE) ;

exception
when others =>

CLOSE (NODE) ;
raise;

end GET_RESULTS;

5.2.2.8

GET_RESULTS

Notes:

The STATUS parameter in the Additional Interfaces performs in a manner similar to
the function CURRENT_STATUS (Section 5.2.2.9, page 194).

193

\,

I

Downloaded from http://www.everyspec.com

CAIS_PROCESS_MANAGE~NT

;..

s.i.2.9, ~~ ~~ DOD-STO-1838
@lRRENT.STATLJS 1

&2.2.Y Determining the status of a process

,, fUNCtiOn CUFtRENT_STATUS (NODE: in NODE_TYPE)
, ,. return PAOCESS_STATDS_KIND;...:,, ...

iii+se:

@s functiori remms the value of the attribute CURRENT.STATUS associated with
,. the process node identified by NODE.

J,“,
Pdrnetec

NODE is an open node handle identifying the node of the process whose status
is to be queried.

f! :..:.?,..
.,,.,,:, ,,. ,
ExceptIons “:

,NODE_tiND_ERROR
is raised if the node identified by NODE is’not a process node.

,,\:TATUS_EtiOR
,,,.:. .,:,,.... . is raised if NODE is not an oxm node handle.

:INTENT.VIOLATION
is raised if the node handle NODE

,,” establishing the right to read attributes.:,

Additional interface:

‘: hICtiOn COKRXNT_STATOS(NAME: in PATNNAME)

.Wurn PmESS_STATUS_KIND
h

NODE: NODE_TYPE;

was not opened with an intent

RESULT: P&iCESS_STATO_KIND ;—
begin

—

OPEN (NODt! , NAUS , (l=>REFO_ATTRIBUTES)) ;

SXSOLT := CDRKSN’_STATUS (NODE) :
,; CZOSE (NODE) ;

.,~ ~,:, return sUZSDLT;
exception

when others =>
CLOSE (NODE) ;:.,!;.:: “,
rais&;

eisd CDRRENT_STATUS ;

1.
,1 ““””’ /’

194

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.2.2.10
CAIS.PROCESS.MANAGEMENT GET.PARAMETERS

5.2.2.10 Getting the parameter list

procedure GET_PARFIMETERS(PAPJMETERS: in out PASAMETER_LIST) ;

Purpose:

This procedure returns the value of the predefmed attribute PARAMETERS of the “’
current process node.

Parametec
I

PARAMETERS

Exception

LOCK.ERROR

is a list containing parameter information. The list is constructed and can
be manipulated using the subprograms provided in CAIS_LIST_
MANAGEMENT (see Section 5.4).

is raised if access with intent READ_ATTRJBUTES to the current
process node cannot be obtained due to an existing lock on the node.

Notes:

The value of the predefmed attribute PARAMETERS is set during process node
creation; see the interfaces SPAWN_PROCESS (page 174), INVOKE_PROCESS
(page 180) and CREATE_JOB (page 185).

r.
. .

0
195

Downloaded from http://www.everyspec.com

5.2.2.11 DOD-STD-1838
ABORT.PROCE.SS CAIS_PROCESS_MANAGEkfENT

5.2.2.11 Aborting a process

pracedure AEQRT_PROCESS(NODE: in NODE_TYJ?E;
RESULTS: in RESULTS_STRING);

Purpose:

Thk procedure aborts the process represented by NODE (see Table VII, page 168). It
sfso aborts any process in its process tree for which the current process has sufficient
discretionary access rights to (1) traverse the primary relationships to the node
representing the process and (2) obtain access to the node representing the process with
intent WRITE.ATTIUBUTES and WRITE.CONTENTS. If the current process does
not have such access rights to the node of any process in the process tree, the respective
node’s process is not aborted, and after all processes that can be aborted are aborted,
ABORT_PROCESS returns by raising the exception ACCESS_VIOLATION. The
order in which the processes are aborted is not specified. After return of ABORT_
PROCESS the CURRENT_STATUS of the process represented by NODE will be
ABORTED or TERMINATED; it wifl be TERMfNATED only if the process
terminated before ABORT_PROCESS took effect. The nodes associated with the
aborted processes remain until explicitly deleted. If NODE_KIND_ERROR, STATUS_
ERROR or INTENT_VfOLATION is raised none of the processes in the process tree is
aborted.

Pammeters:

NODE is ,an open node handle for the node of the process to be aborted.

RESULTS is a string to be appended to the RESULTS attribute of the node ●
represented by NODE.

Exceptions:

NODE_IUND_ERROR
is raised if the node identified by NODE is not a process node.

STATUS_ERROR
is raised if NODE is not an open node handle

WTEFT_VIOLATION
is raised if the node handle NODE was not opened with m intent
establishing right: to read relationships and to write attributes and
conrents.

ACCESS_VIOLATiON
is raked if the current process does not have sufficient discretionary
access ~gi]ts to obtati access to any node of the process tree idemifki by
NODE Wtih inte[l[hcluding READ_,Rf3LATIONSli WS. LVFWIE_

ATfTUB b“fES aud WRITE..CONTENTS

Downloaded from http://www.everyspec.com

DOD-STD-1838
CAIS.PROCESSJL4NAGEMENT

Additional Interfaces

proeedurs ASORT_PROCESS (NAME: io PATRNAME ;

RESULTS : in RESULTS_STRING)
is

NODE : NODE_TYPE ;
begin

OPEN (NoDE, Nr+r.m, (Rsm_mLATIoNSHIPs,
WRITE_ATTRIi3UTES)) ;

ASORT_PROCESS (NODE, RESULTS) ;
CLOSE (NODE) ;

exception
when others =>

CLOSE (NODE) ;
raise;

end ASoRT_mOCESS;

procedure ASORT_PRCCESS (NODE: in NODE_TTPE)
is

begin
ASORT_PRCCESS (NODE, ‘tASORTED ‘q) ;

end ASORT_PRfXESS;

procedure ASORT_PROCESS (NAME: in PATRNAKS)
is

NODE : NODE_TTP E;
begin

OPEN (NODE , NAME, (SXAD_RELATIONSZ31 PS,
NRITE_ATTRIBUTES)) ;

ASORT_PRC@ESS (NODE, ,,ASORTED ,,) ;
CLOSE (NODE) ;

exception
when others =>

CLOSE (NODE) ;
raise;

end ABORT_PROCESS;

Notes:

5.2.2.11
ASORT_PROCESS

HRITE_CONTENTS ,

WRITE_CONTENTS ,

ABORT_PROCESS can be used by a task to abort the process that contains it.

It is intentional that LOCK_ERROR will not be raised by this procedure.

I

10

t9’7

Downloaded from http://www.everyspec.com

5,2.2.12 DOD-STD-1838
SUSPEND.PROCESS CAIS_PROCESS_MANAGEMENT

5.2.2.12 suspending a process
~.

procedrrm SUSPttND_PROCESS (NODE: in NODE_TYPE) ;

Purpose:

This procedure suspends the process represented by NODE (see Table VII, page 168).
It also suspends any process in its process’ tree for which the cixrent process has
sufficient discretionary access rights to’ (1) traverse the primary relationships to the
node represent @g the process and (2) obtain access to the node representing the process
with intent WRITE_ATTRfB UTES and WRITE.CONTENTS. If the current process
does not have such access rights to the’ node of any process in the process tree, the
respective node’s process is not suspended, and after all processes that can be

.. suspended are suspended, SU,SPEND_PROCES,S returns by raising the exception
ACCESS_VIOLATION.’ The order in which. the processes are suspended is not

specified. Afier return of SUSpEND.-pROCESS~ the C~ENT.STATUS of the
process represented by NODE will’be ABORTED, TERMINATED or SUSPENDED; it
will be SUSPENDED unless the process terminated of was aborted before SUSpEND–
PROCESS took effect. The nodes associated with the suspended processes remain until
explicitly deleted. If NODE_IUND_ERROR, STATUS_ERROR or mENT_

.: VIOLATION is raised none of the processes in the process tree is suspended.

. Parameter:

NODE is an open node handle identifying the node of the process to be
suspended.

1: Exceptions:

NODE_KIND_ERROR
is raised if the node identified by NODE is not a process node.

STATUS_ERROR
is raised if NODE is not an open node hmdle.

r..
INTE~_VIOLATION

is raised’ if the node
establishing rights to
contents.

handle NODE was not opened with an int,nt
read relationships and to write attributes a:ui

ACCESS_VIOLATION..
is raised if the current process does not have sufficient discretionary
access rights to obtarn access to any node of the process tree Identi. ~.{:~d by

NODE with iitent including READ.REI.ATIONSHIPS. WTE-
A~IBIJTES and WKITE_CONTENTS

I

‘\
\ I98

Downloaded from http://www.everyspec.com

DOD-STD-1838
CASS.PROCESS.MANAGEMENT

Additional Interface:

procedure SUSPZNO_PROeESS (NASsS: in PATNNAMS)

is

WODE: NODE-TYPE ;
begin

oPcIi (Mom, NAUS, (m_PJSmTIONSIiIPS, 5ist1TE_AmRIBmEs,
NRITE_CONTENTS)) ;

SUSPENO_PROCISSS (NODE);
csmE (NODE);

exception

when others S>
CIOSE (NODE) ;
raise;

end SuSPEND_PRCXESS:

Notes:

SUSPEND_PROCESS can be used by a task to suspend the process that contains it.

Processes in the process tree of the process represented by NODE may be resumed by
other CAIS calls prior to completion of the call on SUSPEND_PROCESS.

I

1 I99

5.2.2.12
SU5PEm_PROCESS

Downloaded from http://www.everyspec.com

.5.2.2.13
RESUME:PROCESS

DOD-STD-1838
CAIS_PROCESS_MANAGEMENT

5.2.2.13 Resuming a process

procsdure REStlSt71_PROCESS(NODE: in NODE_’TYPE) ;

Ptupose

This procedure resumes the process represented by NODE (see Table WI, page 168). It
also resumes any process in its process tree for which the current process has sufficient
discretionary access sights to (1) traverse the pritrw y relationships to the node
representing the process and (2) obtain access to the node representing the process with
intent WRITE.ATT’RIB UTES and WRITE_CONTENTS. If the current process does
not have such access rights to the node of any process in the process tree; the respective
node’s process is not resumed, and after all processes that can be resumed are resumed,
RESUME_PROCESS returns by raising the exception ACCESS_VIOLATION. The
order in which the processes are resumed is not specified. After return of RESUME_
PROCESS, the CURRENT_STATUS of the process represented by NODE wll be

ABORTED, TERMINATED or READY; it will be READY unless the process
“termiirated or was aborted before RESUME_PROCESS took effect. , The nOdes
associated with the resumed processes remain untif explicitly deleted. If NODE_~D_
ERROR, STATUS_ERROR or INTENT_VIOLATION is raised none of the processes
in the process tree is resumed.

Paramete~

NODE is an open node handle identifying the node of the process to be resumed.

Exceptions:

NODE_KIND_ERROR
is raised if the node identified by NODE is not a process node.

STATUS_ERROR
is raised if NODE is not an open node handfe

INTE~_VIOLAuON
is raised if the node handle NODE was not opened with an intent
establishing rights to read relationships and to write attributes and
contents.

ACCESS.VIOLATION
is raised if the current process does not have sufficient discretionary
access rights to obtain access to any node of the process tree identified by
NODE with intent including READ_RELATIONSHIPS, WRITE.
ATTRIBUTES and WRITE_CONTENTS.

2C0

Downloaded from http://www.everyspec.com

DOD-STD-1838
CAIS.PROCESSJVMNAGEMENT

Additional Interface:

prumdure RESOME_PROCESS (NAMS: in PATNNAME)
is

NODE : NODE_TYPE ;
b+n

OPEN (NOD.S, NANE, (READ_REIATIONSHI PS,
NRITE_CONTENTS)) ;

FOtSOMS_PROCESS (NODE) ;
CLOSE (NODE);

exception

when others =>
CLOSE (NODE);
raise;

end RESUME_PROCESS ;

Notes:

5.2.2.13
RESUME_PROCESS

NRITE_ATTRIBUTES ,

Processes in the process tree of the process represented by NODE maybe suspended by
other CAIS calls prior to completion of the call on RESUME_PROCESS.

1
●

201

Downloaded from http://www.everyspec.com

5.2.2.14 DOD-STD-1838
OPEN_NODE_HANDLE_COUNT CAIS_PROCESS_MANAGEMENT

5.2.2.14 Determining the number of open node handles

funCtiOO OPEN_NODE_HWDLE_COUNT (NODE: in NODE_TYPE)
return CAIS NX2WNAL;

This function returns a natural number representing the value of the predefmed attribute
OPEN_NODE_HANDLE_COUNT of the process node identified by NODE.

Pammeter:

NODE is an open node handle identifying the process node whose attribute is
being queried.

Exceptions:

NODE_~ND_ERROR
is raised if the node identified by NODE is not a process node,

STATUS_ERROR
is raised if NODE is not an open node handle

INTE~_VIOLATION
is raised if the node handle NODE was not opened with an intent
establishing the right to read attributes.

Additional Interface:

fUnCtiOII OPEN_NODE_HANDLE_COONT (NAME: in PATNNAME)

return CAIS_NAToSAL
is

NODE : NODE_TYPE ;
XESULT : eAIs_NATtIRAL;

begin
OPEN (NODE , NM, (l=xutM)_ATTRIBoTES)) ;
NESOLT : = OPEN_NODE_HANOLE_COONT (NODE) ;
CLOSE (NODE) ;
return RESmT;

exception
when others =>

CLOSE (NODE) ;
raise;

end OPEN_NODE_NANDLE_COONT;

202

●

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.2.2.15
Cm_PRocw_ MANAGEMENT Io_uN1-r_couNT

5.2.2.15 Determining the number of input and output units used

fUnCtiOn IO_UNST_COONT (NODE: in NODE_TYPE)
retr3m CAIS_NATUSM,;

This function returns a nanmd number representing the value of the predefine attribute
IO_UNIT_COUNT of the process node identified by NODE.

Paramete~

NODE is an open node handfe identifying the process node whose attribute is
being queried.

Exceptions:

NODE_KIND_ERROR
is raised if the node identified by NODE is not a process node,

STATUS_ERROR
is raised if NODE is not an open node handle.

INTE~_VIOLATION
is raised if the node handle was not opened with m intent establishing the
right to read attributes.

Additional Interface:

finCtiOn IO_UNIT_COUNT (NAME: in PAl!SNAtm)
rehire CAIS_NATUPAL

is
NODE : NODE_TYPE ;
SZSULT : ~IS NATUSAL ;

begin
OPEN [NODE , NAbsE, (l=>rcSAD_ATTRIBDTES)) ;
RESULT := IO_UNIT_COUNT (NODE) ;
CLOSE (NODE) ;
~hrrn RESULT;

exception
when others =>

cms.s (NODE);
raise;

end IO_ONIT_COUNT;

203

Downloaded from http://www.everyspec.com

5.2.2.16 DOD-STD-1838
TIME_STARTED C.41S.PROCESSJIANAGEMENT

5.2,2.16 Determining the time of acti~atiwr

function ‘Ht.tS_STARTED (NODE: in NODE_TYPE)
return CAIS_CMENDAR. TIME;

Purpose:

l%i.s function returns a value of type CAIS_CALENDAR.~ME representing the v~ue
of the predefmed attribute TfME_STARTED of the process node identified by NODE.

PsrarneteK

NODE is an open node handfe identifying the process node whose attribute is
being queried.

Exceptions:

NODE_fCIND_ERROR
is raised if the node identified by NODE is not a process node.

STATUS.ERROR
is raised if NODE is not an open node handfe.

INTENT_VIOLATION
is raised if the node handfe NODE was not opened with an intent
establishing the right to read attributes.

Additional Interface:

frntCtiOO TIME_STARTED (NAME: in PATSNAbfS)
return CAI S-CALENDAR. TIME

is
NODE : t$ODE_TYPE:
RESOLT : CAIS_CFUNDAR .TIME ;

begin
OPEN (NODE, NAMS, (l=>Sl?.AD_ATTRIalJTES)) ;
RESOLT := TIbSE_STARTED (NODE) ;
CLOSE (NODE) ;

return ruXOLT;
exception

\ when others =>
CLOSE (NODE) ;
raise;

end TIbtE_STARTED;

o
204

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.2.2.17
CAIS_PROCESS_MANAGEMENT ‘ITMl_FfNLSHED

5.2.2.17 Determining the time of termination or abortion

function TIMlt_FINIS?SED (NODE: in NODE_TYPE)
return CAIS_CALENDAR. TIME;

Purpose:

This frmction returns a value of type CAIS.CALENDAR.TIME representing the value
of the predefmed attribute TJME_FINISHED of the process node identtiled by NODE.

NODE is an open node handle identifying the process node whose attribute is
being queried.

Exceptions:

NODE_KIND_ERROR
is raised if the node identified by NODE is not a process node.

STATUS_ERROR
is raised if NODE is not an open node handle;

INTE~_VIOLATTON
is raised if the node handle NODE was not opened with an intent
establishing the right to read attributes.

USE_ERROR is raised if the process is not yet terminated or aborted. ,, ,,

Additional Interface:

function TINFi_FINISSSD (NAME: in PATHNAMS)
~hwn CAIS_CALENDAR. TIME

is
NODE : NODE_TYPE ;
RBSULT : CAIS_CALENUAR .TM ;

begin
OPEN (NODE, NANX , (l=>READ_ATTRIBuTES)) ;
RESULT := TIME_FINISHED (NODE) ;

CLOSE (NODE) ;
MWn RSSULT;

exception
when others =>

crkrsE (NODE) ;
raise;

end TIMS_FINISHSD;

205

Downloaded from http://www.everyspec.com

5.2.2.18 DOD-STO.1838
MACHINE.TIME CAIS_PROCESS_M4NAGEMENT

S.2.2,18 Determining the time a process has been active

function bSACHINS_TXtSE (NODE: in NODE_TYPE)
Mum CAIS_DURATION;

This function returns a value of type CAIS_DURATION representing the value of the
predefiied attribute MACHINE.TIME of the, process node identified by NODE. Zero
is returned if the process is not yet terminated or aborted.

,.
Parameter: ,

NODE is an open node handle identifying the process node whose attribute is
being queried.

Exceptions:

NODE_KIND_ERROR ...
is raised if the node identified by NODE is not a process node.

STATUS_ERROR
is raised if NODE is not an open node handle.

INTENT_VIOLATION
is raised if the node handle NODE was not opened with an intent
establishing the right to read attributes.

Additional Interface:
.

function bsACHINE_T12dE(NAME: ‘in PA’@Abd)”
returrt CAIS_DUNATION

is
NODE : NODE S?S??S;

RNSULT : CAIS~OtlSATION ;
begin ,,

OPEN (NODS ,. NAME, (l=>SJtAD_ATTRIBOTES));
RSSULT := btACStINE_TIbtS(NODE);
CUSE (NODE);
returnwKWI.T ;

exception
when others =>

CWSE (NODE);
raise;

end lsficHIlss_Tm;

●

206

●

Downloaded from http://www.everyspec.com

/

DOD-STD- 1838 5.2.2.19
CAIS_PROCESSjtANAGEtvIENT PROCESS_SIZE

5.2.2.19 Determining the size of a process

function PROCESS SIZE (NODE: kI NODE TYPE)
return CAIS_%ATORZU;

Purpose:

This furiction returns a vafue of type CAIS_NATURAL representing the value of the
predefmed attribute PROCESS_SIZE of the process node identified by NODE. The
predefmed attribute PROCESS_SIZE designates rhe amount of memory currently iO
use by the process, If rhe process is terminated or aborted, the value returned is the
amount of memory in use by the process at the time that the process was terminated or
aborted. .The result of this funcrion is expressed in multiples of CAIS_
PRAGMA~CS.MEMORY_STORAGE_UNIT_StiE.

Pararnerer:

NODE is an open node handle identifying the process, node whose arrribute is
being queried.

Exceptions:

NODE_IUND_ERROR
is raised if the node identified by NODE is riot a process node.

STATUS.ERROR
is raised if NODE is not an open node handle.

INTENT_VIOLATION
is raised if the node handfe NODE
establishing rhe right to read attributes.

Additional Interface:

function ‘PROCESS_SIZE (NJU4E: in PATHI?AME)
retrrm CAIS_NATUPJ&

is
NODE : NODE TYPE;
RESULT : CA~S_NATtr+ ;

begin
OPEN (NODJS, NAMS , (l=>m_ATTRIBOTES))
RESOLT := PROCESS_SIZE (NODE) ;
CLOSE (NODE);
return K?,SULT;

exception’
when others =>

CZJ2SE (NODE) ;
raise;

end PROCSISS_SIZE;

207

was not opened with an intent

Downloaded from http://www.everyspec.com

~
.

5.3 DOD-STO-1838
CAIS INPOTANDOUIWJT

5.3 CAM input and output

This section describes the CAIS interfaces for the transfer of data to and from CAK tiles,
queues.or devices, These interfaces are defined in the following CAIS packages:

a. CAIS_DEVICES defrnes types used throughouttheinputand outputinterfaces

of the CAIS. ‘fheie types allow a CAIS implementation to pro~ide additional
packages in support of additiord devices in a way that is compatible with the
CAIS standard;

b. CAIS_IO_DEFI~IONS defines types, subtypes, constants and exceptions
used throughout the inpui and output interfaces of the CAIS;

c. CAIS=IO_ATITUBf JTES defines interfaces for obtairring the values of the
predefuted input arrd output attributes on fie nodes;

d. CAIS_DIRE~_IO, CAIS_SEQUENTL4L_I0 and CAIS_TEXl_IO define
interfaces largely corresponding to the interfaces defined in [18 15A], Chapter
14. The interfaces are described in terms of thek correspondences with and
differences from those defined in [18 15A].

e. CAIS_QUEUE_MANAGEMENT defines mechanisms for the creation of
queue fiie nodes;

f, C,4LS_SCROLL_TERMINAL_I0, CAIS_PAGE_TEfZMINAL_IO and CAt_
FORN_TERMfNAL_IO define interfaces for operating on (abstract) scroll
terminals, page terminals and form terminals, respectively;

g. CAIS_MAGNETIC_TAPE_IO defines interfaces for operating on magnetic
tape drive ffles; and

h. CAIS_IMPORT_EXPORT defines interfaces for transferring fdes between the
host operating system and the CAIS implementation node model.

‘.

Tkyoughout ti$ document, the word “file” is used to mean an Ada external fde, which in
the, CAIS is the contents of a file node, while in [18 15A] the word ‘‘fde” is used to mean an
~tern~ fiie. The input and output operations in the packages in this section are expressed as
operations on objects of some fde type, rather tha:, directly in terms of the contents of the fde
nodes. These objects are internal to a CAfS process (irrterrra[fi/es). [ntemd files are
identified by file hurrd/es. An Ada type FILE_TYPE is defined for values that represent fde
handles. Ada objects of this type can be associated with a file by means of CAIS interfaces
causing an open file handle to be assigned to the object. While such an association is in
effect, the frle handle is said to be open. In this section, a parameter or variable of type FILE_
~PE identifies a frle.

An open fde ‘handfe is ~ways associated with an open file node handle that was used in
opening the ffle handle or returned along with the open fde handle by a node creating
iqterfaee. ,@ open fde node handle may be associated with multiple open fde handIes, File
hti~es rn~Y”be closed without affecting the status of the associated file node handf:.,
However, “closing the fde node handle also closes all file handles associated with tlfaf%l?”
node handle (see Section 5.1.2.2, page 66),

, }: I-i Li:jT??,q-f:.?,

o

The locking semantics of ihtents provided upon opening node bandies applies only to nodes
(see Table V, page 61). Thus, it is possible to open multiple fde handles associated with a

208

Downloaded from http://www.everyspec.com

DOD-STO-1838 5.3
CALSINPUTANDOUTPDT

given file node handle opened under an exclusive intent on the contents of the node.
Consequently, a single Ada program can obtain exclusive access to an extemaf fiie and yet
ooen and ooerate rmon multiule file handles to this file without rehrrauishirw exclusive.1. . ,
access for obtaining additiorraf’file handles to the fde. The opening of a s~cond ~ode handle
to this file node by the same or any other process will however be delayed as speciiled in
Table VI, page 62. It is not possible to change the intent relating to the contents of an open
fde node handle if there are open fde handles associated with the node (see Section 5.1.2.3,
page 67). The interaction of operations on two or more fde handles associated with the same
open fde node handle is implementation-dependent.

File handles are also orrened under a mode which determines the allowed data transfer.
operations. This mode must be consistent with the intent under which the associated fde node
was opened, as shown in Table X.

TABLE X. Modes and Intents for Input and Output

Mode INTENT required

IN.FILE IREAD_CONTENTS

OUT.FILE WRITE_CONTENTS I
INOUT_FILE READ_CO~ENTS and WfUTE_CONTENTS

APPEND.FILE APPEND_CONTENTS
1

Severaf medefmed attributes are amdicable to fde nodes. The attributes FILE_KJ.ND and
ACCES~_METHOD are predefm~~ on all fide nodes. The attribute DE~C~_~D is
predefmed on all fde nodes whose FILE_KIND attribute has the value DEWCE. The
attribute QUEUE.IUND is predefmed on rdf ffle nodes whose ~LE_~ attribute h~ the
vafue QUEUE. These attributes provide information about the contents of a fde node and
how it maybe accessed.

The predefine values for the predefmed ffle node attribute FILE_KIND are SECONDARY_”
STORAGE, QUEUE and DEVICE.

The predefmed values for the predefine file node attribute ACCESS_METHOD are
SEQUENTIAL, DIRECT and TEXT. These values indicate which of the predefmed CAIS
input and output packages may be used to perform input and output operations on the
contents of the fiIe node. A value of SEQUENTIAL imlicates that the CMS-.
sHQIJf3JTIAL_K) package may be used. A value of DIRECT indicates that either of the

packages CAIS_DfRECT_IO or CAIS_SEQUEN’fIAL_IO may be used. A value of TEXT
es that the package CAIS_TEXT_IO may be used. A CAIS implementation is%#rc%m m:

perrmtted to add additional values for this attribute.

The predefmed vafues for the predefmed ffle node attribute DEVfCE_KIND are SCROLL_
TERMINAL, PAGE_TERMINAL, FORM_TERMfNAL and MAGNE’ffC_TApE_D~E.

\

209

Downloaded from http://www.everyspec.com

5.3 DOD-STD-1838
CAISmPuT ANDOUTPUT

One or more of these values maybe specified for a device fide node to indicate which device
packages may be used to operate upon the contents of the device file node. A value of
SCROLL.TERMINAL indicates that the package CAIS_SCROLL_TERMLNAL_IO may be @
used. A value of PAGE_TERMINAL indicates that the package CAIS_PAGE_
TERMINAL_IO may be used. A value of FORM_TERM(NAL indicates that the package
CAIS_FORM_TERMINAL_IO may be used. A value of MAGNEITC_TAPE_DRIVE
indicates that the package CAIS_MAGNETIC_TAPE_IO may be used. A CAM
implementation is permitted to add additional values for thk attribute.

The predefmed values for the predefmed fde node attribute QUEUE_KIND are explained in
Section 5.3.7, page 253 and following.

Table Xl summarizes the applicab~ity of predefmed CAIS packages to file nodes with
certain vafues for the predefine file node attributes FILE_KIND, ACCESS_METHOD and
DEVICE_KIND. If a CAIS implementation adds additional packages, or adds additional
values for the predefiied attributes DEVICE_XIND and ACCESS_METHOD, then it must
document these extensions by an extended Table XI in Appendix F. A CAIS implementation
is not permitted to reduce the- appIicabilit y of the predefin&l packages,

TABLE XI. Input and Output Packages for File Attributes

The fde attributes listed to the
right may use the packages

which axe.listed below
according to the constrains ACCESS_ DEVICE_

in this TabIe. FILE_KIND METHOD XIND

CAIS_IO_ATfRIBUTES Any Any Any

CAIS_DIRE~_IO Any DIRECT Any

CAIS_SEQUENTIAL_IO Any SEQUENTL4L Any

cAIs_TExf_Io Any TEXT Any

CAIS_QUEUE_MANAGEMENT QUEUE Any Any

SCROLL_
CAfS_SCROLL_TERMINAL_10 DEVICE TEXT TERMINAL

PAGE_
CAIS_PAGE_TERMINAL_IO DEVICE TEXT TERMINAL

FOm_
CAIS_FORM_TERMINAL_IO DEVICE TEXT TERMINAL

MAGNETIC_
CAIS_MAG~IC_TAPE_IO DEVICE TEXT TAPE_DRIVE

SECONDARY_
CAtS_IMPORT_EXPORT STORAGE Any .:~Aw

.,&L, ..- .,

210

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3
CAB INPUTANDOUTPDT

The CAIS defines three kinds of fdes: secondmy storage fdes, queue fdes and device fdes,
whkh correspond to the FILE_IUND values SECONDARY.STORAGE, QUEUE ~d
DEVICE, respectively.

a. A secondary storage jile in the CAN represents a disk or other random access
storage ffle.

Each secondary storage fde node has two predefiied attributes related to the
number of fde storage units (see FILE_STORAGE_UNf_SIZE, SeCtimr5.7,
page 513) allocated to the contents of the fde node. The predefmed attribute
MAXIMUM_FILE_SIZE indicates the maximum number of fde storage units
that may be allocated to the contents of the fide node. A vahre of zero irrdicates
that the number of file storage units is unrestricted. The predefmed attribute
CURRE~_FILE_SJZE indicates the number of fde storage units that are
allocated to the contents of a fde node. The exception CAPACITY_ERROR is
raised when an operation on the contents of a seconday storage fde node (the
result of a write or close operation) causes the maximum permitted number of
file storage units to be exceeded.

b. A queue file in the CAIS represents a sequence of information that is accessed
in a fust-in, f~st -out manner. There are three kinds of CAIS queue fdes: solo,
copy and mirtic. Queue fdes are further described in Section 5.3.7, page 253.
Queues may be created by using the procedures specified in the CALS_
QUEUE_MANAGEMENT package. Queues maybe read and written using the
interfaces of the CALS_TEXT_IO package or the CACS.SEQUENTIAL.10
package. The allowable predefmed values for the attribute ACCEsS_
METHOD are SEQUENTIAL and TEXT. A value of SEQUENTIAL indicates
that the CAIS_SEQUENT’fAL_IO package may be used; a Value of TE~
indicates that the CAIS_TEXT_IO package ITMYbe used

c. A device file in the CAIS represents a device. Packages to operate on device
fdes are either predefmed in the CAM or can be added by individual CAIS
implementations. The FILE_KIND attribute of device file nodes must have the
vahre DEVICE. The CAIS predefmes the following special device fdes:
magnetic tape drke files and three kinds of terminal fdes. The DEWCE_~D
attribute of nodes for these CAIS predefmed device fries must have one or
more of the vahres MAGNETfC_TAPE_DRIVE, SCROLL_T~AL,
PAGE_TERMINAL and FORM_TERMINAL, WJectiveb.

A rerminal file in the CAIS represents art interactive terminal device. Three
kinds of terminal devices are distinguished in the CAIS: scroll, page and form
terminals. These are distinguished because they have different characteristics
which require specialized interfaces. The functionality of these interfaces is
derived from [ANSI 79]. Scroll and page terminals may be represented either
by a single terminal fde for input and output or by two tezmitraf fdes, one for
input and one for output. The implementation determines, for each physical
terminal, whether it will be represented by one or NO terminaf files. A form
terminal is represented by a single terminal file for both input and output.

L #nterfaces must be provided outside of the CAIS for the creation of terminal fde
—. nodes: ‘Scrolf terminal files are described in more detaif in Section 5.3.8, page

284. Page terminal files are described in more detail in Section 5.3.9, page 319.
Form terminal ffies are further described irr Section 5.3.10, page 362. Terminal

\

211

Downloaded from http://www.everyspec.com

5.3 DOD-ST’D-1838
C.41SINPUTAND OUTWT

ffle nodes have a value of TEXT for the predefirred attribute ACCESS_
METHOD, this indicates that the package CAIS_TEXT_IO may be used to
operate upon the contents of terminal fiIe nodes.

A magnetic tape drtve jile in the CAIS represents a magnetic tape drive.
Operations on magnetic tape drive files can affect either the magnetic tape or
the drive. Interfaces must be provided outside of the CAN for the creation of
magnetic tape drive tide nodes. Operations on magnetic tape drive fdes are
defined by the interfaces in the package CAIS_MAGNETIC_TAPE_10.
Magnetic tape drive fide nodes have a vafue of TEXT for the predefmed
attribute ACCESS_METHOD; this indicates that the package CAIS_TEXT_IO
may be used to operate upon the contents of magnetic tape drive fde nodes.
Magnetic tape ~ive files me further descritxd in Section 5.3.11, page 390.

The above discussion is summ&ized in Table XII.

●

i..

212

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3
CAISINPUTANDOUTPUT

TABLE XII. File Node Predefiied Entities

The attributes arrd attribute
values listed below are

applicable to the fde kinds
listed to the right.

iCCESS_METHOD
SEQUENTIAL
DIRECT
TEXT

XJRRENT_FILE SIZE

;ECONDARY.
STORAGE DEVICEQUEUE

—
Attribute

Value
NjA

Value

Attribute
Value
Value
Value

Attribute

Attribute
N/A
N/A

Value

NIA N/A— —

)EVICE_KIND
SCROLL TERMINAL

NiA
NIA
NJA
N/A
NIA

NIA
NfA
NIA
NIA
N/A

Attribute
N\A

Vabre
NjA

Attribute
Value
Value
Value
Value

Annbute
N]A
N\A

Value

PAGE_T~RMNAL
FORM_TERMINAL
MAGNETIC_TAPE_DRIVE

\

i

I
1

?!\I

TLE_KJND
SECONDARY_STORAGE
QUEUE
DEVJCE

Anribute
Value
NjA
N/A

31GHEST_CLASSIFICATION

:OWEST_CLASSIFICATION

vlAXTMUM_FILE_SIZE

Attribute

Attribute

Attribute

Anribute

NfA

Attribute

Attribute

N/A

Attribute

Attribute

3BJECT CLASSIFICATION Attribute

AttributeIllvlE_ATTRIBUTE_WRITTEN Attribute Attribute

AttributeiTh4E_coNTENTS_wR~EN Attribute

Attribute

Attribute

Attribute
—.

Attribute

—..
ITME CREATED

ITME_RELATIONSHIP_
WRITTEN Attribute Attribute

L ..==-:,~‘-’5=

213

Downloaded from http://www.everyspec.com

/

,,

5.3.1 DOD-STD-1838
TYP@S CAE_DEVICES

5.3.1 Package CAIS DEVICES

This’ package defiies certain types associated with input and output; these types allow a o

CAM implementation to provide additional packages in support of additional devices in a
way that is compatible with the CAM st andatd.

type ACCESS_METHOD_KIND is {DIRECT, SEQUENTIAL, TEXT,
implementation-defined);

ACCESS_METHOD_KIND is the enumeration of the kinds of access methods. A CAIS
implementation is permitted to add additionrd enumeration literals to this type declaration to
denote other access methods. If a CAIS implementation adds additional enumeration Iiterak
to thk type declaration, then it must document these extensions in Appendix F.

typs DEVICE_KI~~TYPE is (SCROLL_TESSS2NAL, PAGE_TERbtINAL ,
FOSSS_TERMXNAL, MAGNETIC_TAPE_DRIVE, i~lemen(aion_defined) ;

,,

DEVICE_KINDTTYPE., ‘is the enumeration of the possible kinds of devices. A CAIS
implementation M perrmtted to add additional enumeration Iiterals to this type declaration to
denote other device kinds. If a CAIS implementation adds additional enumeration litemls to
this type declaration, then itmust document these extensions in Appendix F.

Notes:

If a CAIS implementation adds additional enumeration literals ,to these t~s, then
applying a USE clause may cause visibility problems regarding homographs of the
added enumeration Iitersls. Therefore, USE clauses applied to package CALS_
DEVICES should be avoided. o

..:,
,.

,,/
.....>

.. ’.,:

I

I

Ii

!. -/

●

I

Downloaded from http://www.everyspec.com

--

I ,.
DOD-STD-1838 5.3.2

>/: ; CAK.10.DEFINITIONS TYPES
.,

●
5.3.2 Package C.AIS I()_DEFINITI()NS

This package defies certain types, subtypes, constants and exceptions associated with fide
nodes.

type FILE_KIND h (SECONDAKY_STOP.AGE, QUEUE, DEVICE);

FILE_KIND is the enumeration of file kinds.

typs QrrsuK_KIND is
(SYNCHRONOUS_SOIQ,NONSYNCitRONOUS_SOLO,
NONSYNCHRONOUS_COPY , NONSYNCKRONOUS_MIbtZC) ;

QUEUE_KIND is the enumeration of queue kinds

type DEVICE_KIND_ARRAY is array (CAIS_POSITIVE range <>)
of CAIS_DEVICES DEVICE_KIND_TYE’E ;

DEVICE_ICIND_ARRAY is an array type whose elements are the possible kinds of devices.

IN_INTENT : COnStmt INTENT_MRAY :. (l=>SUZMJ_CONTENTS) ;
INOVT_INTENT : eorsstarst INTENT_ARSAY := (RKAO_CONTENTS , WRITE_CONTEN’TS) ;
OUT_INTENT : mmstant INTENT ARRAY := (l=>NRITE_CONTENTS) ;
F@PEND_INTENT: Cm.$tarrt INTENT~-Y := (l=>AP PEND_CONTENTS) ;

The intents defined above correspond to the intents required for each of the modes associated
with fde nodes.

ONEOUNDED_FILE_SIZE : COnStSrItCAIS_NATUIW := O;
ONE@NOED_QUEUS_SIZE : Constant CAIS_NA~ := 0:

UNBOUNDED.FILE.SIZE and UNBOUNDED-QUEUE_S~E indicate, uPon creatiOn Of a
fde or queue, respectively, that the size of the fde or queue is to have an unrestricted limit.

DATA_ERROR : exception;
END ERROR: exception;
FIL~_KIND_E5U10R : exception;
FOSbl_STATUS_ESROR : exception;
FVNCTION_KEY_STATUS_ERROR: exception;
LAYOU’_ERROR : exception;
WDE ESROR : exception;
TE--NAL_POSITION_ERROR : exception;

DATA_ERROR maybe raised on input if the data read cannot be properly interpreted due to
syntaz or type errots.

END_ERROR is raised if an attempt is made to skip or to read past the end of a fiie or if no
more elements can be read from a queue fie and no process has the associated queue node
open with the intent to write contents.

FILE_IUND_ERROR is raised if the value of any of the fde attributes ~E_~ND,

● ACCESS_h@I’HOD or DEVICE_KIND is incomct for the operation.

21s

Downloaded from http://www.everyspec.com

5.3,? “-A” DOD-STD-1838
EXCEPTIONS CAIS.IO.DEFTMTIONS

FORM_STATUS_ERROR is raised if a form already exists (was created) when it should not
exist or If a form does not exist (has not been created) when it should exist,

FUNCTION_KEY_STATUS_ERROR is raised if a non-existent function key is referenced.

LAYOLJT_ERROR is raised if a subprogram attempts to exceed various limits on output or
if an interface returns a value which exceeds the range of its subtype.

MODE_ERROR is raised if an input or output operation is attempted that is in conflict with
the mode specified upon opening or resetting the respective file handle,

TERMINAL_POSITION_ERROR is raised if more rows or columns are specified than exist
foIIowing the terminal active position or if the active position is inappropriate for the
operation.

The exception CAPACITY_ERROR of the package C.MS_PRAGMATICS (see Section 5.7,
page 509) is raised if MAXIMLNl_FILE_SIZE or MAXIMUMQUEUE_SUE is exceeded.
This may occur either during a write operation or a close operation.

●

●

216

Downloaded from http://www.everyspec.com

DOD-STD.1838 5.3.3
CAIS_IO_ATTRIBUTES

5.3.3 Package CAIS 10_ATTRIBUTES

This package provides facilities for obtaining the values of the following predefine fde node
attributes: ,.

ACCESS_METHOD
FILE_KtND
QUEUE.KIND
DEVICE.KIND
CURRE~_FILE_SIZE
MAXIMUM_FILE_SIZE
CURRENTQUEUE_SIZE
MAXIMUMQUEUE_SIZE

The exceptions raised by all subprograms in this package are defined in the package CAIS_
DEFINITIONS,

The attributes ACCESS_METHOD, FILE_KIND, DEVICE_KIND, CURRENT_FILE_SIZE
and MAXIMUM_FILE_SIZE are described in the introduction to CAIS Input and Output
(see Section 5.3, page 208 and following). The attributes QUEUE_KtND, CURRENT_
QUEUE_SIZE and MAXIMUN_QUEUE_SIZE are describ+ ~ the introduction to the
discussion of Package CAIS_QUEUE_hfANAGEMENT (see Section 5.3.7, page 253 and
following),

217

Downloaded from http://www.everyspec.com

..
.. .

5.3.3.1 DOD-.WD-1838
ACCESS_METHOD CAIS_IO.ATITUBWES

5.3.3.1 Determining the access method

function ACCESS_=THOD (NODE: in NODE_TYPE)
return CAIS-DEVICISS. ACCESS_btRTHOD_KIND;

Purpose:

This function returns the vahre of the predefmed node attribute ACCESS_METHOD.
The node is identified by the open node handle NODE.

NODE is an open node handle to a node the value of whose attribute ACCESS_
METHOD is to be retrieved.

Exceptions:

.STATUS.ERROR
is raised if NODE is not an open node handle.

NODE_KIND_ERROR
is raised if the node identified by NODE is not a fie node.

INTENT_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read attributes.

Additional Interface: ●
fINN!tiOnACCESS_METISOD (NAME: in PATNNAbtE)

return CAIS_DEVICES . ACCESS_bSETHOD_KIND
is

NODE : NODi?_TYPE ;
KESULT : C.AIS_D?WICES ACCESS_tdETHOD_KIHD ;

begin
OPEN (NODE, NAMS, (l=>ttEAD_ATTRISUTES)) ;
RESULT : = ACCESS_StETHOD (NODE) ;
CLOSE (NODE) ;
return KESOLT;

exception
when others =>

CLOSE (NODE) ;
raise;

end ACCESS_t4ETHOD;

218

Downloaded from http://www.everyspec.com

●

DOD-STD-1838 5 ~;,2
CAtS.IO_ATTNIBOTES KINI_OF_FILE

5.3.3.2 Determining the file kind

function KIND_OF_FILE (NODE: in NODE_TYPE)
return FILE_KIND;

Purpose:

This function returns the value of the predefmed node attribute FILE_IUND. The node
is identified by the open node handle NODE.

Parameter:

NODE is an open node handle to a node the value of whose attribute FILE_
KIND is to be retrieved.

Exceptions:

STATUS.ERROR
is raised if NODE is not an open node handle.

NODE_KIND_ERROR
is raised if the node identified by NODE is not a file node.

INTE~_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read attributes.

Additional Interface:

fnnCtiOn KIND_OF_FILE (NAME: in PATNNAMS)
return FILE_KIND

is
NODE : NODE_TYPtt ;
KESOLT : FILE KIND;

begin
OPEN (NODE, NAMS, (l=>X%AD_ATTRXBUTES)) ;
RESOLT := KIND_OF_FILE (NODE) ;
CLOSE (NODE) ;
return RESULT;

exception
when others =>

cLOsE (NODE);
raise;

end KIND_• F_ FILE;

219

Downloaded from http://www.everyspec.com

4.3,3.3
KIND.OF.QUEUE

DOD-STD-1838
CAIS.10_ATTRIBUTES

5.3.3.3 Determining the queue kind
,,

fuaction KINO_OF_QUEOS (NODE: in NODE_TYPE)

Warn QUEUE_KIND;

Purpose:

Thk function returns the value of the predefmed node attribute QUEUE_KIND. The
node is identified by the open node handle NODE.

Parameter:

NODE is an open node handle ideritifiing the queue node whose attribute
QUEUE.ICIND is being queried.

Exceptions:

STATUS_ERROR
is raised if NODE is”not an open node handle

NODE_KIND_ERROR
is raised if the node identified by NODE is not a fde node.

FILE_IUND_ERROR
is raised if the value of the predefmed attribute FILE_KIND on the node
identified by NODE is not QUEUE,

INTE~_VIOLATION ●
is raised if NODE was not opened with an intent establishing the right to
read attributes.

Additional Interface:

function ttIND_OF_QtlKUSt (NAMS: in PATNNANE)
retrrm QL7ErrE_rrIND

is

NODE : NODE_TYPZ ;
RBSOLT : QtltSUE_KINO ;

hegjsr
OPEN (NODE, NAStE, (l=>KSAD_ATTRIBUTES));
KSSULT := KIND_OF_QUSUE (NODE);
cr4xE (NODE) ;
return RESULT;

exception
when others =>

CLOSIS (NODE) ;
raise;

end KIND_OF_QUEIJE ;

220

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.3.4
CAIS_IO_AT’NUBUTES

5.3.3..1 Determining the device kind

functiOn KIND_OF_DEVICE (NODE:
return DEVICE_KIND_ARRAY;

KIND_OF_DEVICE

in tiODE_TYPE)

Purpose:

This function returns the vafue of the predefmed node attribute DEVICE_KIND. The
node is identified by the open node handle NODE. The result is an array of type
DEVICE_KIND_ARRAY.

Parameten

NODE is an open node handle to a node the value of whose attribute DEVICE_
KIND is to be retrieved.

Exceptions:

STATUS_ERROR
is raised if NODE is not an open node handle.

NODE_KIND_ERROR
is raised if the node identified by NODE is not a file node.

FILE_KIND_ERROR
is raised if the value of the predefmed attribute FILE_KIND on the node
identified by NODE is not DEVICE.

INTENl_VIOLATION
is raised if NODE was not opened with an intent establishing the right to
read attributes,

Additional Interface:

function KIND_OF_DEVICE (NAME: in

IWInYI DEVICE_KIND_ARKAY
is

MODE: NODE TYPE ;
RESOLT : DEVICE KIND ASRAY ;

begin
.-

OPEN (NODE, NAbtE, (l=>KEAD:

PATNNAMS)

liTTRIBOTES)) ;
RESULT := KIND_OF_DEVICE (~ODE) ;

CLOSE {NODE) ;

I return RESULT;
exeeption

end

when others =>
CLOSE (NODE) ;
raise;

KIND_OF_DEVICE ;

Downloaded from http://www.everyspec.com

5.3.3.5 DOD-STD-1838
CSJRRENT_FILE_SIZE

5.3.3.5 Determining the current tile size

function CORR&’T_FZLE_SIZE (NODE: in NODE_TYPE)
return CAIS_NATORA.L;

Purpose: ~ ,’

This function returns the vahse of the predefine node attribute Cl-JRRENT_FILE_
SIZE. The node is identified by the tipen node handle NODE. The value is expressed in
multiples of F’ILE_STORAGE_~_S IZE defined in the package CMS.
PRAGMATIC.

Parametec

NODE is an open n’ode handle to a node the value of whose attribute
CURRENT_FILE_SIZE is to be retrieved.

Exceptions: .,

STATUS_ERROR
is raised if NODE is not an open node handle.

NODE_IUND_ERROR
is raised if the riode identified by NODE is not a fde node.

FILE_KIND_ERROR
is raised if the value of the predefine attribute FILE_KIND of the node
identified by NODE is not SECONDARY_STORAGE.

INTENT_VIOLATION
is raised if NODE was not owned with an intent establishing the right to
read attributes,

Additional Interface:

function CURREN’_s’ILE_SIZE (N”ti: in PATNNAI.SE)
return CAIS_NATURAL

is
NODE : NODE_TYSE ;

RESULT : CAIS_NATUML ;
begin

OPEN (NODE, NASS2S, (l=>&W_A;TRI&TES)) ;
RESULT := CURSJW_FILE_SIZE (NODE) ;
CIOSE (NODE) ;
return SXSOLT;

exception
when others .=>

CLOSE (NODE) ;
raise;

end CO&rtNT_FILE_61 Zti;

222

CMS_IO_ATTRIBUTES

Downloaded from http://www.everyspec.com

,0

I

I

‘o

I

DOD-STD-1838
CAIS_lO_ATTIUBUTES

5.3.3.6
MAXIMUM_FILE_SIZE

5.3.3.6 Determining the maximum file size

function bfaxmtOF_FILE_SIZE (NODE: in NODE_TYPE)
return eAIS_NA~;

Pr2.pose:

This function returns the vahre of the predefiied node attribute MAXIMUM_FILE_
SIZE. The node is identified by the open node handle NODE. The value is expressed in
multiples of FILE_STO~GE_@_SIZE defined in the packag~ CAIS_
PRAGMATIC.

Parameter:

NODE is so open node handle to a node the vahse of whose attribute
MAXIMUM_FILE_SIZE is to be retrieved.

Exceptions:

STATUS_ERROR
is raised if NODE is not an open node handle.

NODE_IUND_ERROR
is raised if the node identified by NODE is not a fde node.

FILE_KLND_ERROR
is raised if the value of the predefiied attribute ‘FILE_KIND of the nOde
identified by NODE is not SECONDARY.STORAGE.

INTENT_VIOLAITON
is raised if NODE was not opened with an intent establishing the right to
read attributes.

Additional Interface:

fumtkm bSAXIt.tOt_FILE_SIZE (NAMS: in PATSNAME)
return CAIS_NAZ’ORAL

is
NODE : NODE TYPE ;

RESOLT : CAIS~NATtlSAL ;
begin

OPEN (NODE , NAME, (l=> SOZAD_ATTRIBUTES)) ;
RESOLT := btAXIMtNd_FILE_SIZE (NODE) ;

CLOSE (NODE) ;
mhtrn RESOLT;

exception
when others =>

CL@E (NODE) ;
raise;

end MAxIld0bs_FIL2s_S IZ2E;

223

Downloaded from http://www.everyspec.com

CAfS.10.ATTRIBKJTES
5.3.3.7 DOD-STD-1838
CURRENT_QUEUE_SIZE

5.3.3.7 Determinkrg the current queue.sixe

function CUW.ZNT_QUEUE_SIZE (NODE: in NODE_TYPE)
return CAIS_NATUSAL;

Purpose:

llsis function returns the vahre of the predefiied node attribute CURREN’f_QfJELJE_
SIZE. The node is identified by the open node handle NODE. The vahre is expressed in
multiples of QUEUE_STORAGE_UNI’I_SIZE defined in the package CAIS_
PRAGMATfCS.

Parameten

NODE is an open node handfe to a node the vafue of whose attribute
CURRE~_QUEUE_SIZE is to be “retrieved.

Exceptions:

STATUS_ERROR
is raised if NODE is not an open node handle.

NODE_KIND_ERROR
is raised if the node identified by NODE is not a file node.

FILE_KIND_ERROR
is raised if the vahre of the predefine attribute FILE_KIND of the node
identified by NODE is not QUEUE or if the vafue of the predefiied o

afiribute QUEUE_KtND of tihe ‘node identified by NODE is not
NONSYNCHRONOUS_SOLO , NONSYNCHRONOUS_COPY or
NONSYNCHRONOUSJWMIC.

INTENT_VIOLATION
is raised if NODE ww not opened with sn intent establishing the right to
read attributes.

Additional Intetface:

function COSRSNl_QOSUE_SIZE
return CAIS_NATURF&

is
NODE : NODE_TYPE ;
RZSNLT : CAIS_NATORAL;

hesin

(NWr7Z:. in PATNNAMS)

OPEN (NODE, NAMB, (l=XSAD_ATTRIBIJTES)) ;
RSSULT := CtlRNIX’T_QOErX_SIZE (NODE) ;
CLOSE (NODE) ;
return SLESOLT;

exception
when others =>

CLOSE (NODE) ;
raise;

end CUSRENT_QUEOE_S IZE ; ●

224

,

Downloaded from http://www.everyspec.com

‘o

I

o

DOD-STD-1838
CAIS_IO_ATTItlBUTES

5.3.3.8 Determining the maximum queue si~e

function btAXIt4UY_QUEUE_SIZE (NODE: in NODE_TYPE)
return CriIS_NMXJSAL;

5.3.3.8

MAX3MUM_QUEIJ_SIZE

This fonction returns the value of the predefimed node attribute MIM~_QUEUE_
SIZE. The node is identified by the open node handle NODE. The value is expressed in
multiples of QUEUE_STORAGE_UIWT_S IZE defied in the package CAIS_
PRAGMATIC.

ParameteE

NODE is an open node handle to a node the value of whose attribute
MAXIMUM_QUEUE_SIZE is to be retrieved.

Exceptions:

STATUS.ERROR
is raised if NODE is not an open node handle.

NODE_fCIND_ERROR
is raised if the node identitled by NODE is not a fide node.

FILE_KIND_ERROR

‘/ is raised if the value of the predefirted attribute PILE_KIND of the node
identified by NODE is not QUEUE or if the value of the pl..’+lted
aflribute Q~l.JE_KIND of the node identified by NODE is not
NONSYNCHRONOUS_SOLO, NONSYNCHRONOUS_COPY Or

NONSYNCHRONOUS_MIMIC.

INTE~_VIOLATION
is raised if NODE was not opened with zm intent establishing the right to
read attributes.

Additional Interface:

function bmX-_QOWJE_SIZE (NAME: in PATSNAME)
return CAIS_NATOSAL

is
NODE : NODE_TYPE ;
sUtSULT : CAI S_NATORAL ;

begin
OPEN (NODE, NAbSC, (l=>AEAD_ATTRIBOTES)) ;
RSSOLT := tdAXIt4Ub_QONUE_S1ZE(NODE) ;

CLOSE (NODE) ;
return SXSULT;

exception
when others =>

CLOSE (NoDE) ;
raise;

end btAXIM7JM_QOEUS_SIZE ;

225

Downloaded from http://www.everyspec.com

([5..7.4 DOD-STD-1838
MAXIMUM.XJFXJE.SIZE CAIS_DIRECT_IO

5.3.4 Package CAIS DIRECT 10

This package provides facilities for directly accessing data elements in CAIS files.

Files written with CAIS_DIRECT_IO are dso readable by c~s_sEQuE~AL_Io if the
-.. two generic packages are instantiated with the same data type. The package specification and,.<,

1 semantics of CAIS_DIRECT_IO are ctmwable to fiose of he [1815A] package
DIRECT_IO.

The subprog&ns of C.AIS_DIRECT_IO amespw-d to the subwgr~s in [1815AI
DIRECT_IO r follows:

CREATE replaces [18 15A] DIRECT_IO.CREATE.

OPEN replaces [18 15A] DIRECT_IO.OPEN.

CLOSE replaces [1815A] DIRECT_IO.CLOSE.

i
i DELETE does not exist in the package CAIS_DIRECT_IO.
i
i
! RESET replaces [18 15A] DIRECT_IO.RESET.

/
NAME does not exist in the package CAIS_DIRECT_IO.

‘x

) FORM does not exist in the package CAIS_DIRECT_IO.

\

SYNCHRSFiiZE
is an addttionaI subprogram that does not exist in [1S15A] DRECT_IO.

Y All other subprograms in [1815A] DIRECT_IO are also in CAIS_DIREC’I_IO and have the
same syntax and semantics, except that all types and subtypes are CAIS-defined types and
subtypes smi that additional semantics apply to input and output operations on queues (see
Section 5.3.7, page 253).

The exceptions raised by all subprograms in C.AIS_DIRECT_IO ~ defined in C~S-
DEFINITIONS and CAIS_IO_DE~NI~ONS.

I

● ’

226

Downloaded from http://www.everyspec.com

5.3.4.1

DEFINITIONOF TYPES
DOD-STD-1838

CAIS_DIRE~_IO

5.3.4.1 Definition of Types

type FILE_TYPE is limited private;

type rILE_MDn is (IN_FILE, INOUT_FILE, OUT_FILE) ;

FILE_TYPE describes the type for fde handles for all duect input and output operations.

FILE_MODE indicates whether input operations, output operations or both can be perforrrted
on the direct fde handle. The values for FILE_MODE are the same as [1815A] and
correspond respective y to the following cases:

a. IN_FILE corresponds to the case where only readirrg is to be performed.

b. INO~_PILE corresponds tothecasewhere both reading and writing are to be
perfotrned.

c. OUT_FILE corresponds to the case where only writing is to be performed.

O .,

L

Downloaded from http://www.everyspec.com

5.3.4.2
CREATE

DODWD-1838
CMS.DIRIX.10

5.3..L2 Creafing a direct file

procedure CASATE
(NODE : in out NODE_TYPE;

FILS : in out FILE_TYPE;
RASE : in NODE TYPE ;

REY : in RSLA~IONSHIP_RSY := LATEST_RSY ;

RSLATION : in RELATION_NAbfS := DEFAULT_RRLATION ;
INTENT : in INTENT_ARSAY := INOUT_INTENT ;

KIDE : in FILE MODE := INOUT_FILE ;
ATTRIBUTES : in ATTR~BUTE_LIST := EbD?TY_LIST;
MAXIbtUSt_FILE_SIZE: in CAIS_NATUSAL := UNBOUNDED_FILE_S IZE;
DISCRETIONARY_ACCESS: in DISCRETIONARY ACCESS LIST :=

CAZS ACCESS_CONl%L NF&GEMENT ALL_RIGSTS ;
bSANDATORY_ACCESS : in b&mATORy_ACcESs~LIsT :. mPTY_LIsT);

,Pu~ose:

This procedure creates a fide and its file node; the fde node is identified by the BASE,
KEY and RELATION parameters. It also installs the primary relationship to the node
NODE as well as the corresponding second~ relationship of the predefmed re[ation
PARENT from thk node to the node identified by BASE. Each element of the fde is
directly addressable by an index. [1815A] defines what constitutes an element. The
predefmed attributes NODE.KIND, FILE_~D, and ACCESS_METHOD are
assigned the values FILE, SECONDARY_STORAGE, and DIRECT, respectively, as
part of the creation.

‘‘ The AT1’RfBUfES parameter defines and provides initial values for attributes of the
node. The MAXfMLJM_FILE_SIZE parameter provides the value for the predefmed ●
attribute MAXIMUM_FILE_SIZE with a value of zero indicating umestricted size. The
DISCRETIONARY_ACCESS parameter specifies h-dial access control information to
be established for the created node (see Section 4.4.2 for details).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject classification of the creating process as its object classification. Otherwise, it

mist be an unnamed list consisting of an identifier item and, optionally, an umramed
Iist of identifier items (see Table ‘IV, page 51).

Parameters:

NODE is a node handle, initially closed, to be opened to the ntwly created node.

FILE is a ffle”handle, initially closed, to be opened. ,.;,,~.{;f~::

BASE ~ is an open node handle to the node which will be the source node of the
!.. , primary relationship to the new node.

!.~y is the relationship key designator of the prirnasy relationship to be
created.

RELATION is the relation name of the primary relationship w he cremxl. ●

Downloaded from http://www.everyspec.com

‘o

o

CAtS_DULE~_IO

INTENT

MODE

ATTRIBUTES

DOD-STD-1838 5.3.4.2
CREATE

is the intent of subsequent operations on the node; the actual parameter
takes the form of an array aggregate.

indicates the mode under which the file handle is to be opened.

is an emmv or named list (see Section 5,4) whose elements are used to
establish’ ~hial values for’ attributes of the newly created node; each
named item of the list specifies an attribute name and the vahre to be
given to that attribute.

MAXIMUM.FILE.SIZE
defines the value for the predefmed attribute .MAXIMLJN_FILE.SIZE.

DISCRETIONARY.ACCESS
is the irritiaI access control information associated with the created node;
it is the vahre of the GRANT attribute of the access relationship to the
user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY ACCESS
‘is a list defining the classification label for the created node (see Table

IV, page 51).

Exceptions:

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by KEY and RELATION is
syntactically illegal (see Table I, page 32).

EXLSTING_NODE_ERROR
is raised if a node already exists with the ideritification given by BASE,
KEY and RELATION.

SYNTAX_ERROR
is raised if the A’ITUBUTES parameter (see description above), the
DISCRETfONARY_ACCESS parameter (see Section 4.4.2.3) or the
MANDATORY_ACCESS parameter (see Table IV, page 5 1) is
syntactically illegal.

PREDEFINED_RELATTON_ERROR
is raised if RELATION is the name of a predefmed relation that cannot
be created by the user.

PREDEFINED_AITRIBUTE_ERROR
is raised if any attribute name given by the ATTRIBUTES parameter is
the name of a predefine attribute that cannot be created by the user.

USE_ERROR is raised if the value for the DISCRETIONARY_ACCESS or
MANDATORY_ACCESS parameter k semantically illegal.

I

229

Downloaded from http://www.everyspec.com

.’..

1.

.
...

.

5.3.4.2 DOD-STD-1838
CREATE CAIS_DIRECT_IO

STATUS_ERROR
is raised if BASE is not an open node handle, if FILE is an open fde
handle at the time of the call or if NODE is an ouen node handle at the ●
time of the cafL

INTEN’I.VIOLATION
is raised if BASE was not opened with an intent establishing the right to
create relationships or if the INTENT given is incompatible with the
MODE according to Table X, page 209.

SECURITl_VIOLATfON
is raised if the operation represents a violation of mandatory access
controls. SECURITY_ VIOLATION is raised ordy if the conditions for
other exceptions are not present.

Additiorxd Interface:

procedure CREATIZ
(NODE: in OUt NODE_TYPE;
FILE : in out FILE_TYPE;
NAbsE: in PATNNA14E;
INTENT : in INTENT_~Y := ZNOUT_INTENT;
MODE : in FILE_btODE := INOUT_S’ILE;
ATTRIBUTES : in ATTRIBtiE LIST := EbtPTY_LIST;
btAXIbtOM_FILE_SIZJS : in CAIS_!iA’TUiiAL:= UNFOONDED_FILE_SI ZE;
DIsCP.ETIONARY_ACCESS: in DMCRETIONARY_ACCESS_LIST :=

CAI S_ACCESS_CONTROL_bSANAGSKENT M,L_RIGHTS ;
MANDATORY_?+CCESS: in MANDATORY_ACCESS_LIST := EbSFTY_LIST)

is ●
EASE : NODE TYPE;—

begin
OPEN (BASE, SASE_PATH (NAME), (l=>APPEND_RELATIONSHIPS));
CREATE (NODE, FILE, SASE , LAST_RSY (NAME), LAST_RELATION (NAME),

INTENT, MODE , ATTRIBUTES, MAxIbfOM_FILE_SIZE,
DIscIwTIONARY_ACCESS , bZANDATORY_ACCESS);

CLOSE (BASE);
exception

when others =>
CLOSE (BASE);
raise;

end CREATE ;

z
:...
~.r.
.

..

‘1;/.,
.,:,~;..>..

230

Downloaded from http://www.everyspec.com

..’
,.,

DOD-STD-1838
CAIS_DIRE~_IO

5.3.4.3
OPEN

5.3.4.3 opening a direct file handle

procedure OPEN (rILE: in out FILE_TYPE;
NODE : in NODE TYPE :
MODE: in FILE~t40DE);

Pu3pose: ~.

This procedure o~ns a fde handle on a duect fde, given an open node handle on the
associated fde node. Each element of the file is directly addressable by an index.

Parameters:

FILE is a fde handle, initially closed, to be opened.

NODE is an open node handle to the ffle node.

MODE indicates the mode rmder which the fde handle is to be opened.

Exceptions:

STATUS.ERROR
is raised if FILE is in open file handle at the time of the call on OPEN or
if NODE is not an open node handle.

INTENT.VIOLATION
is raised if NODE was not opened with an intent specification including
at least the intents required for the MODE,’ as specified in Table X, page
209.

NODE.ICIND.ERROR
is raised if the node identified by NODE is not a fde node.

FILE_XIND_ERROR .,

USE.ERROR

Notes:

is raised if the values of the predefmed ffie node attributes FILE_KIND,
ACCESS_METHOD and DEVICE_KIND are not appropriate for the
package containing this procedure according to Table XI, page 210.

is raised if an open file handle identifies the same file node contents and
the C~S implementation does not supporl the existence of multiple ffie
handles” identifying the same fde node contents. Any such restriction
must be documented in Appendix F. An implementation is allowed to
raise this exception only if “it is based on operating system suuDort that
does not provide this capability.

-.

.,

Closing an open node handle also closes any open fde handles which maybe associated
widr it.

23I

l“:”> ●

Downloaded from http://www.everyspec.com

5.3.4.4
CLOSE

DOD-STD-1838
CAIS_DIRECIIO

5.3.4.4 Closing a direct tile “handle

prmedure CLOSE (rILE : in out FILE_2’YSE);

Purpose:

This procedure severs the association between the internal ~ie identified by the fde
handle FILE and its associated node contents. It also severs any association between the
ffle handle FILE and its associated node handle. Closing an already closed file handle
has no effect.

Psrsmetec .,

FILE is a fiie handle, i@tislly open, to be closed.

,,.
Exceptiom

None.

-<

... r):,.., . .
,!

*

Downloaded from http://www.everyspec.com

,.

I
I

:0
I

I

I

I

I

I

.0

I ‘

I

DOD-STD-I838 5.3.4.5
CAIS_DIRECT_IO RESET

5.3,4.5 presetting a direct file handle

proesdure warm (rILE: in out rILE_mPE;

MODE: in FILE-MODE) ;

~ ●

,Th@ proeedu~ sets the current mode of the fiie h@le FILE to the mode given’ by the
MODE parameter. ~

It also positions the given internal file so that reading from or writing to ita elements
can be restarted from the beginning of the intemaI fde. The current index is set to one.

,.

Parameters: ,..

‘FILE. is s33open file handle identifying the internal file to be reset. ,,

MODE indicates the new mode under which the file handle is to be reset.

Exceptions:

STATUS_ERROR . .

is raised if FILE is not an open file handle:
,.

USE_ERROR is raised if the CAM implementation does not support resetting the fde
handle to the specified mode.

,.

INTENT-VIOLATION
,..

is raised if the fde node handle associated tij~ the’ ffle handle FILE was.
not opened with an intent specification inchufirig’ at least the intents,,
requ~ed for the MODE, ,ss speci~ed in Table X, page 209.

.,.

233

Downloaded from http://www.everyspec.com

5.3.4.6 DOD-STD-1838
SYNCHROMZE CAIS_DIRECT_IO

5.3.4.6 Synchronizing the internal file with file node contents

proeedru’e SYNCSIPONIZSt (FIs#.: in TILE -E) ;,-

Purpose:

This procedure forces all data that has been written using the fde handle FILE to be
transmitted to the contents of the file node with which it is associated.

Parametec

FILE is an open .fde handle identifying the internal ffle to be synchronized.

Exceptions

MODE_ERROR is raised if the file h@Ie FILE is of mode lN_FILE.

STATUS_ERROR
is raised if FILE is not an open file handle.

Notes:

For all write operations in the CAIS, the condhions upon which data are trarrsfemed
from an internal fde to the contents of “a ffle node me implementation-dependent. Data
ih the internal file of a process are inaccessible to other processes. This procedure
ensures that the data in the internal fde and the data in the contents of the fde node
coincide. ●

:“ !’

,,. . ,

234

Downloaded from http://www.everyspec.com

DOD-STO-1838 5.3.5
CAIS_SEQUENTIAI_IO

●
5.3.5 Package C.AIS_SEQUENTIAL 10

This package provides facilities for sequentially accessing data elements in CAIS’ fdes.
[18 15A] defiies what constitutes an element.

The package specification and semantics of CAIS_SEQUENTIAL_IO are comparable to
those of the [1815A] package SEQUENTIAL_IO.

The subprograms of. CAIS_SEQUENTIAL_IO comespond to the subprograms in [18 15A]
SEQUENTIAL_IO as follows:

CREATE replaces [18 15A] SEQUENTIAL_10.CREATE.

OPEN replaces [18 15A] SEQUENTIAL_IO.O PEN.

CLOSE repIaces [18 15A] SEQUENTIAL_IO.CLOSE.

DELETE does not exist in the package CAIS_SEQUENTIAL_IO.

RESET replaces [18 15A] SEQUENTIAL_IO.RESET.

NAME does not exist in the package CAIS_SEQUENITAL_IO,

O
,.

FORM does not exist in the package C+W_SEQUENTIAL_10.

SYNCHRONIZE
is an additional subprogram that does not exist in [1815A]
SEQUENTIAL_IO

All other subprograms in [1815A] SEQUENTIALJO are also in CAIS_SEQUENTIAL_IO
and have the same syntax and semantics, except that all types and subtypes are CAIS-defmed
types and subtypes, that all operations on file handles of mode APPEND_FILE should be the
&&re as those “of mode O~-_FILE and that additional semantics apply to input arrd output
operations on queues (see Section 5,3.7, page 253).

The exceptions raised by all subprograms in CAIS_SEQUENTIAL_IO are defined in C.MS_
DEFNTIONS and CAIS_IO_DEFINITIONS.

235

Downloaded from http://www.everyspec.com

5.3.5.1 .
DEFINITIONOF T~ES

DOD-STD-1838
CAIS.SEQUENTIAIJO

5.3.5.1 Definition of types

typa rILE-!tYPZ is limited private;

typi ~ILE_*D”Z iS (IN_rILE , 0K7!_FILE, APPEND_FILll) ;

FILE_TYPE desc:iks tie type for fde handkwfor all sequential input and output operations.
.. .

FILE_MODE iridicates whether &put operations or output operations carr be performed on
the sequential fde:handle. A mode of APPEND_FILE causes any elements that me written to
the specitled fde handle to, be a~rrded to, the elements that are already in the ffle. The
values for PILE_,MODE,” except for APPEND_FILE, ue the same as [1815A] and
correspond respectwely to the following cases:

a. IN_FILE corresponds to the case where only reading is to be performed.

b. O~_FILE corresponds to the case whe~ only writing is to be performed.

c; APPEND_FILE corresponds to the c’me where only writing (beginning at the
end of the fde) is to be performed. The fiie terminator is deleted at the time the
fde is opened.

. .

,J : ,:

,.

,,, ,,, ., ,.

,:.
.,

,,.

,,’

.’, . .

:., . 236

0

●

,..

Downloaded from http://www.everyspec.com

CAIS.SEQUENTIALJO

5.3.5.2 Creating a sequential file

DOD-STD-1838 5.3.5.2
CREATE

Drawdure .CR?.ATZ
(NODE : in out NODE_TYPE;

FILE : in out S’ILE_TYSE;

BABE : in NODE TYPE :
REY : in

RSLATION : in
,. INTENT : in

MODE: in

ATTRIBUTES: in
MAN13dDM_IUL2t_SIZE : in

DISCAETIONARY_ACCESS: in

MANDATORY_ACCESS: in

RELA~IONS&P_KEY := LATEST_tiY ; -
RSLATION_NAME := DEFA~T_RELATION;
INT3tN’T_ARsAY, := ODT_INTZNT ;
FILE_WDE := 00T_FILE ;
ATTRIBOTE_LIST := sMPTY LXS~;

CAIS_NATDSJ& := UNBOUND~D_FILE_S12 E’;
DISCRETIONARY_ACCE SS_LI ST : =

CAIS_ACCESS_CONTROL_.tANAGSb2ENT .ALL_RIGIiTS ;
MANDATORY_ACCESS_LIST := EbtPTY LIST) ;

Purpose “

This proceduti creates a fde and its ffle node; the fde node is identtiledby the ,BASE,
KEY and RELATION parameters. It also installs the primary relationship to. the node
NODE as well as the corresponding secondary relationship of the prcdefmed relation
PARENT from t+ node to the node identified by BASE. Each element of the file is
sequentially accessible. The predefine node attributes NODE_KIND, FILE_KIND,
and ACCESS.METHOD .ue assigned the vahres FILE, SECONDARY.STORAGE,
and SEQUENTIAL, r&pectively, as part of tlie creation.

The ATTRIBUTES parameter defures and provides initial vshres for attributes of the
node. The MAKIMUM_FILE_SIZE pammeter provides the value for the predefine
node attribu~e MAXIMUM_FILE_SIZE with a vahre of zero indicating unrestricted
size. The DISCRETIONARY_ACCESS parameter specifies initial access control
information to .be established for the created node (see Section 4.4.2, page 36 for
details).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject classification of the creating process as its object classification. Otherwise, it
must be an umsmed list consisting of an identifier item and, optionally, an unnamed
list of identifier items (see Table IV, page 51).

Parameters:

NODE

FILE

BASE

KEY ‘“

RELATION

is a node handle, initially closed, to be opened to the newly created node.

is a fde handle, initially close”d, to be opened.

is an open node hsndfe to the node which will be the source node of the
primary relationship to the new “node.

is the relationship key designator of the primary relationship to be
created.

is the relation name of the primary relationship to b created.

237

Downloaded from http://www.everyspec.com

.. .. .—
. .

5.3.5.2 DOD-STD-1838
CR~TE .,’, , CAIS_SEQU2NTIAL_I0

Imw is the, intent of the subsequent operations on the node; the actual
pqr~eter takes the form of an array aggregate.

., :.... . . .
MODE . indicates the mode under which the file handle is to be opened.

,. ATIWBUTES~ is an empty’,or ‘named list (see Section 5.4) whine elements we used m
:,, establish. initial values. for attributes of the newly created node; each

‘named item of the list specifies an attribute name arrd the value to be
given to that attribute. . . .

MAXIMIJM.PILE_SIZE’
,.,

defiies.the value for the predefmed attribute MAXIMUM_FILE_SIZE.

DISCRETIONARY.ACCESS
,,; ,

is the initial access control information associated with the created node;
it is the’ vahre of the GRANT attribute of the access relationship to the
user’s default group node .(see Section 4.4.2.3, page 40).

MANDATORY_ACCESS
is a list defiiing’ the classification label for the created node (see Table

‘~,:~age 51). :~-’
.,

,:.,&* . ,,. .,..
Exceptions:’ ‘”. ,‘ -,

PATHNAME_SYNPAX_ERROR ~ “;i~ ?
,, .:,.., is’”raiied if. the node. identification given by KEY ‘arid RELATION is

‘, syntactically illegaI (see Table I, page 32).

EXISTING_NODE_E~OR
“is r~ied. if a node .&ready exists whh the identification given by BASE,,. .,:,,: .,
KE~,,+d REQATION. ., ; .. ,

... .

SYNTAX_ERROR . L
is. raised if the ATTRIBUTES parameter (see description above), the
DISCRETIONARY_ACCESS parameter (see Section 4.4.2.3) or the
MANDATORY_ACCESS parameter (see Table IV, page 51) is
syrjtacticiilly ,llegal...

.PRED&NED_RELATION_EtiOR
is raised if RELATION is the name of a predefine relation that cannot
be created by the user. ~

PREDEtiD_ATi’R&lTE_ERROR

. .

USE_Ei&OR

is raised if ‘any attribute name given by the ATTRIBUTES parameter is
the rramk of a predefine attribute ,tiat cwot be created,by the user.

is r&ed ‘if the vahre for the DISCRETIONARY_ACCESS or
h@NDATORY,_ACCESS parameter is semanticsly illegal.

,,. 238

I

●

Downloaded from http://www.everyspec.com

DOD-STD. 1838 5.3.5.2
C.41S_SEQUENTlAL_I0 CREATE

STATUS.ERROR
is raised if BASE is not an open node; handle, ti FILE is an ‘open fiie
handle at the time of the call. or if NODE is an oben node handle at the.
time of rhe call.

INTENTLVIOLATION
is raised if BASE was not opened with an intent establishing the ri~t to
append relationships or if the INTENT given is incompatible with the

MODE according to Table X, page 209.

SECURITY.VIOLATION
is raised if the oueration represents a violation of mandatoti access
controls. SECURITY_VIOLAT’ION is raised only if the condfiions for
other exceptions are not present.

Additional Interface:

procedure “tii&TE
(NOnE : in out
FILE : in out
SANE: in
INTENT : in
t@DE : in
ATTRIB~ES : in’
MFdtIb30b3FILE SIZE: in
DISCSST?ONAR? ACCESS: in—

NODE_TYPE ;
FILIS_TYPE ;
PATNNABD3;
INTENT AASAY.: = 0~ INTENT;
FILE_W-DE := OOT_FI~E;
ATTRIB~E_LIST := EMPTY LIST;
CAIS_NATURAL := ONBOUND~D FILE_SIZE ;
DISC&TIONARY_ACCESS_LIST– : = –

,—
CAIs_XCESS_COmmL_WXmm .ALL_RIGHTs ;

B4ANDATORY_ACCESS : in btANDATORY_/$CESS_LIST : = ESSPTY_LIST)
is

EASE : NODE_TYPE ;
hesin

OPEN (SASE , BABE_PATH (NW) , (l=>APPEND_RELATIONSHIPS)) ;
C_TE (NODE, FILE, BABE, LAST_NEY (NAME) ,, LAST_RELATION (NA&) ,

INTENT , ~DE, ATTRIBUTES, MAXIM03d_FILE_SIZE,
DISCRETIONARY_ACCESS , NANDATORY_ACCESS) ;

CLOSE (BASE) ;
exception

when others =>
CLOSE (BABE) ;
raise;

end CREATE ; ,.’

.,

239

Downloaded from http://www.everyspec.com

5.3.s.3 DOD-STIL1838

OPEN CAIS.SEQUENTIAL.10

5.3.5.3 opening a sequential file handle. , ‘

proeedurs omm (FILE: in Otit FILE_TYPE ;
NODE: in NODE_TYPE ;

~DE : in FILE_I@DE) ;

Purpose:” ‘j ...” ‘!” ‘. ~ ., ,,,. ..,.
‘II& procedure opens, a f~e h~dfe on a sequential fide, given an open node handle on
~e associated file nok Each element of Vte fiie is sequentially accessible.

Parameters:
.. .

~,E is a f~e’htide, initially closed, to be opened.

NODE “‘ is art open node handle to the ftie node.

MODE indicates the mode under which the file handle is to be opened.

Exceptions:.

STATUS.ERROR
is raised if FILE is an open fde handle at the time of the call on OPEN or
if NODE is not an open node handle.

INTENT.VIOLATION -
is raised if NODE was not opened with an intent specification including
at.least the intents required for the MODE, as specified in Table X, page ●
209.

NODE_KIND_ERROR
is raised if the node identified by NODE is hot a fde node.

FILE KIND ERROR—

USE_ERROR

Notes:

is raised if the vahres of the predefmed ffle node attributes FILE_KIND,
ACCESS_METHOD and D13VlCE_KlND are not appropriate for the
package containing thk procedure accordiig to Table XI, page 210.

is raised if an open fiie handle identifies the same ftie node contents and
the CAIS implementation does not support the existence of multiple fde
handles identifying the same fde node contents. Any such restriction
must be documented k“ Appimdix F. An implement at ion is aIlowed to
raise this exception only if it is based on operating system support that
does not provide this capability.

Closing an open node han~e also closes any open ffie handles which maybe associated
with it.

●
240

Downloaded from http://www.everyspec.com

DOD-STD-1838 5,3.5.4
CAIS_SEQUENTLkL_10 CLOSE

5.3.5.’4 Closing a sequential file handle

ptit!d~ CLOSE (FILE: in Out FILE_lYPE) ;

Purpose:

This procedure severs the association between the ir,temaJ fiie identified by the fde
handle FILE and its associated node contents. It also severs any association between the
fiie handle FILE and its associated node handle. Closing an already closed fiie handle
has no effect.

Parameter’

FILE is a fde handle, initially open, to be closed.

Exceptions:

.

None.

.

.:

241

Downloaded from http://www.everyspec.com

5.3.5.5- DOD-STD- 1838

RESET

5.3.5.5 Resetting a sequential file handle

procedure SES8T (WILE: in out ~ILE_TYPE;
MODE : in EILE_bSODE);

CAIS.SEQUENTL4LJ0

This procedure sets the cu~ent mode of the fsse handle FILE to the mode given by the
MODE parameter.

If the new mode is IN_FILE or OUT_FILE, this procedure positions the given internal
fiie so that readirrg from or writing to its elements can be restarted from the beginning
of the internal ffle. If the new mode is APPEND_FILE, this procedure positions the
given internal fiie so that writing to its elements can be restarted at the end of the
internal fde.

Parameters:

FILE is an open fide handle identifying the internal fide to be reset.

MODE indicates the new mode under which the file handle is to be reset.

Exceptions:

STATUS_&OR “;.;, ,.:
is raised if FILE is not an open file hrqdk

USE_ERROR is raised if the CAIS ioiplementation does not support resetting the fde
handIe to the specified mode.

INTENT_VIOLATION
is raised if the file node handle associated with the fiie handle “FILE was
not opened with an intent specification including at least the intents
required for the MODE, as specified in Table X, page 209.

●

● ’
242

Downloaded from http://www.everyspec.com

DOD-STD-1838

CAIS.SEQUENTL4L.10

5.3.5.6 Synchronizing the internal file with file node contents

procedure WNCNRONIZIS (FILE: in FILE_TYPE) ;

5.3.5.6

SYNCHRONIZE

Purpose:

This procedure forces all data that has been written using the. fide handle FILE to be
transmitted to the contents of the fde node with which it is ‘msociated.

Parameters:

FILE is an open ffle handle identifying the internal fde to be synchronized

Exceptions:

MODE_ERROR is raised if the fde handle identified by FILE is of mode IN_FILE.

STATUS_ERROR
is raised if FILE is not an open file handle.

Notes:

For all write operations in the CAIS the conditions upon which data are transferred
from an internal fde to the contents of a fde node are implementation-dependent. Data
in the internal fde of a process are inaccessible to orher processes. This procedure
ensures that the data in the intema3 fde and the data in the contents of the fide node
coincide.

243

I

Downloaded from http://www.everyspec.com

.,.

5.3.6 - DOD&D 1838
., cAts_rErr_Io

5.3.6 Package CAIS_TEXT 10

This package ‘provides facil~ies for acces&g textual data elements in CAIS files. [1815A]
defiies what constitutes an element.

The package s~ci~cation snd semantics of CAI$_~EXT_IO are comparable to time of the
[1815A], package TE~_IO. .

The’ subprograms of ‘ChSITEX’’k_IO correspond to the subprograms in [1815A] TEXT.JO
as follows:

CRti+E’ ‘“ replaces [18 15A] TEXT_IO.CREATE.

OPEN” ., replaces. [18 15A] TEm_IO.OPEN.

CLOSE replaces [18 15A] TE~~IO.CLOSE.

DELE~ d~s hot exist in the package CAIS_TEXT_IO.

RESET replaces [18 15A] TEXT_IO.RESET.

NAME “does not exist in the package CAIS_TEXT_IO.

FORM does not exist in the package C~S_TEXT_IO.

STANDARD.INPUT
.. does not exist in the package CAIS_TEXT_IO.

STtiDARD_OtiPUT
does not exist in the package CAIS_TEXT_IO.

SYNCHRONIZE
is an additional subprogram that does not exist in [1815A] TExT_IO,

All other subprograms in [1815A] TEXT_IO are slso in CAIS.TEXT_IO and have the same
syntax and semantics, except that all types and, subtypes rwe CAIS-defiied types and
subtypes, that all operations on fiie handles of mode APPEND.FILE should be the same as
thos~-of mode O~_FILE and that additional semantics apply to input and output operations
on queues (see Section 5.3.7, page 253).

The exceptions’ raised by all subprograms in
DEFINITIONS and CAIS_lO_DEFINITIONS.

!“.. .,

. ...,, ... ,
.’!

. ..-’ . .
,.

,.. .

... .
.

244

CAIS_TEXT_IO are defined in CAIS_

,.. , .

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.6.1
CAIS.TFXT.10 DEFINITIONOF TYPES

5.3.6.1 Definition of types

. . ~~type FILE_TYPE is limited private;

type sVLE_EmDE is (IN_FILE, OrT_FILE, mPrtND-rILlr) ;

FILE_TYPE describes the type for fde handles for sll text input and output operations.

FILE.MODE indicates whether input operations or output operationa cart be performed on
the text file handle. A mode of APPEND_FILE causes any text written to the specified fide
handfe to be appended to the text that is already in the fde. The values for FILE_MODE,
except for APPEND_FILE, are the same as [1815A] and correspond respectively to the
following cases:

a. IN_FILE corresponds to the case where only reading is to be performed.

b. OUT_FILE corresponds to the case where only writing is to be performed.

c. APPEND_FILE corresponds to the case wheti only writirrg (begirmiig at the
end of the fiie) is to be performed. .The ffle terminator is deleted at the time the
fide hsndle is opened.

Downloaded from http://www.everyspec.com

cArs_TExl_Io
5.3,6.2 DOD-S’17J-1838

CREATE
.,,

5.3.6.2 Creating a text file

proceshrrecsrzATz
(NODE: in out tiODE_TYPE;
FILE : iri out FILE_TYPE; ”
BME : in. . NODE_TYPE ;
sqtY: in RELATIONSHIP_StZY : = LATEST NZY;
REIAsKTON: iir RELATION_NAME := DEFAULT_&ATION ;
INTENT : INTENl_ARRAY := Ofi_INTENT ;h. ,.,
MDE : in FILE_MODE := OUT S’ILE;
ATTRIBUTES :

.
m ATTRIBUTE_LIST := SbtPm_LI”ST;

btAXZbtUM_rILE_SIZE: in CAIS_NATURI& := UNBOUNDED FILE SIZE;
DISCRETIONARY ACCESS: hs DISCRZTIONliRY_ACCESS LIST- := -

CAIS_ACCESS_CONTROL_MAtixGMtNT ALL_RIGHTS ;
btANDATORY_AC’CESS : in MAWATORY ACCESS_LIST := EMPTY_LIST) ;-..

purpose:

This procedure creates a fiie and its fde node; the file node is identified by the BASE,
KEY and RELATION pamrneters. It also installs the primary relationship to the node
NODE as welf as the corresponding secondary relationship of the predefmed reIation
PARENT from this node to the node identified by BASE, The fde is textual, The
attributes NODE.KIND, FILE_KIND and ACCESS.METHOD are assigned the values
FILE, SECONDARY_STORAGE and TEXT, respectively, as part of the creation,

The ATf’RIBUTES parameter defines and provides initial values for attributes of the
node. The MAXIMUM_FILE_SIZE provides the value for the predefmed node
attribute MAXIMUN_FILE_SIZE with a value of zero indicating unrestricted size. me
DISCRETIONARY_ACCESS .parsmeter s@cifies kitial access control information to
~ established for the created node (see Section 4.4.2, page 36 for details).,.,

The MANDATORY_ACCESS parameter s~cifies, the object classification labels with
which the node is to be created. If its value is. the empty list, the node inherits the
subject classification. of. the creating process as its object. classification. Otherwise, it
must be an umamed hst consisting of an identifier item and,. optionally, an unnamed
list of identifier items (see Table IV, page51).

●

Parameters:

NODE

FILE “

BASE

KEY

REi.ATION

iNTENT

.,.

is a node handle, initially closed, to be opened to the newly created node

is a fflc handle, initially closed, to be op&ed.

is an open node handle to the node which will be the source node of the
prim~relationship to the new node.

is the relationship key designator of the primary relationship to be
created,

,, .,,

is the relation name.of the primary relationship to be created,

is the intent of subsequent, operations on the node; the actuaf parameter
takes the form of an array aggregate. ●

, .. i46
,.

Downloaded from http://www.everyspec.com

C’MS.TEXT.10

MODE

ATI’RIBUTES

DOD-STD-1838 5.3,6.2

CREATE

indicates the mode under which the fde handle is to be opened.

is an empty or named list (see Section 5.4) whose elements are used to
establish initial values for attributes of the newIy created’ node, each
named” item of the list specifies an attribute name and the value to be
given to that attribute.

. .
MAXIMUM_FILE_SIZE

defines the value for the predefine node attiibute MAXIMUM_FILE_
SIZE.

DISCRETIONARY .ACCESS—
istheinitiafaccesscontrolinformationassociatedwith thecreatednode;

h isthe vahre of the GRANT attribute of the access relationship to the
user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY ACCESS
‘is a list defining the classification labelforthecreatednode (seeTable

IV,page 51).

Exceptions:

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by KEY and” “RELATION’ is
syntacticallyillegal(seeTable I, page 32).

EXISTING NODE ERROR .

is ~aised if a node already exists with the ident~lcation given by BASE,
KEY and RELATION.

SYNTAX_ERROR
is raised if the A~BUTES parameter (see description above), the
DISCRETIONARY_ACCESS parameter (see Section 4.4.2.3) or the
MANDATORY.ACCESS tmrameter (see Table IV. Dage 5 1) is
syntacticallyillegal. “

. . .

PREDEFINED_RELATION_ERROR
is raised if RELATION is the name of a predefmed relation that cannot
be created by the user.

PREDEFINED_ATTRIBUTE_ERROR
is raised if any attribute name given by the ATHUBUTES parameter is
the name of a predefine attribute that cannot be created by the user.

USE_ERROR” is raised if the vrdue for the DISCRETIONARY_ACCESS or
MANDATORY_ACCESS parameter is semantically illegal.

I
I-.. ,

STATUS_ERROR
is raised if BASE is not an open node handle, if FfLE is an o@n fiie
hirrdle at the time of the call, or if NODE is an open node handle at the
time of.the call.

247

Downloaded from http://www.everyspec.com

DOD-STD-18385.3.6.2

CREATE cAIs_TExT_Io

INTENT.VIOLATION
is raised if BASE was not opened with an intent establishing the right to
append relationships or if the INTENT given isincompatiblewith the o
MODE accordingtoTable X, page 209.

SEC~_VIOLATfON
,. is raised if the operation represents a violation of mandatory access

controls. SEC~Y_VIOLATION js ‘raised only if the conditions for
other exceptions m not present.

Addkional Interface:

praeedure CREATE
(NODE : in out NODE_TYPE;
FILE : in out FILE_TYPE;
NANs : in PATHNAMS ;
INT2sNT : in MTEN’_ASRAY := 00T_INTENT ;

WDE : in FILE_btODE := OUT_FILE ;
ATTRIBUTES : in ATTRIBUTE_LIST := EUPTY LIST;
MAXIbtOM_FILE-SIZE: in’ CAIS_NATORAL := ONBOUND~D_FILE_SIZE ;
DISCRETIONARY ACCESS: in DISCRETIONARY ACCESS LIST :=

CAIS_ACCESS_CO@’-~L_2.1AliiGP!2.C!tNT . ALL_lUGHTS ;
. iiANDATORY_ACCt SS: “in ~‘ MANDATORY_ACCESS_LIST := EblPTY_LIST)

is ,.,.,

RASE : NODE_TYPE ;
begin ...

OPEN (*E, BASE_PATH (NW) r ,(l=>APPEND_REIAT10NS?21 PS)) ;
cmmt (NoDE, FILE, SA9E, UT_RSY (NAME) , LA9T_RZLATION (NAE4X),

INTENT, MODE, ATTRIBUTES, bti&IMuM FILIZ_SIZE ,
DISCRitTIONARY_ACCESS , bWOATORY_X-CESS) ;

CLOSE (SASE) ;
exception

when others => ,/, ,

CLOSE (EASE) ;
raise; ‘,

end CRZATE ;

.:’. -,.::
,.. , .,

-.

.... . r,:

‘.. .

248

●

Downloaded from http://www.everyspec.com

.

DOD-STD-1838 5.3.6.3

CAIS_TEXT_IO OPEN

5,3.6.3 opening a text file handle

procedure OPEN (FILE: in out FILE_TYPE;
NODE : in NODE TYFE;

bSODE: in FILE~MODE) ; ,.,

Purpose:

This procedureopens a fidehandle on a fiiethathas textualcontents,given an open
r!

node handle on the associated fde node.

Parameters:

FILE is a fiie handle, initially closed, to be opened,

NODE is an open node handle to the ffle node.

MODE indicates the mode under which the file handle is to be opened.

Exceptions

‘$TATUS_ERROR”
is raised if FILE is an open file handle at the t~e of the call on OPEN or
if NODE is not an open node handle.

INTENT_VIOLATION
is raised if NODE was not opened with an intent specification including
at least the intents required for the MODE, as specified in Table X, page
209;

NODE_KIND_ERROR
is raised if the node identified by NODE is not a fde node.

FILE_XLND_ERROR
israised if the vahres of the predefmed ffle node attributes FILE_XIND,
ACCESS.METHOD and DEVICE_KIND are not appropriate for the
package containing this procedare according to Table XI, page 210.

USE_ERROR is raised if an open file handle identifies the same file node contents and
the CAIS implementation does not support the existence of moltiple fde
handles identi@ng the same ffle node contents. Aiy such svstriction
must be documented in Appendix F. An implementation is allowed to
raise this exception only if it is based Ori operating system support that
does not provide this capability’.

Notes:
I

Closingan open node handle also closes any open file handles which maybe associated
with it. :>

I

c,

Downloaded from http://www.everyspec.com

5.3.6.4 DOD-STD-1838

CLOSE

5.3.6.4 Closing a text file handle

prOCedUre CLOSE (S’ILE: b out S’ILE_TYPE) ;

CALS.TEXT.10

Purpose:

This procedure sevecs the association between the internal file identified by the fde
handle FILE and its associated node contents. It also severs any association between the
fde handle FILE and its associated node handle. Closing an already closed ffle handle
has no effect.

PamrneteK

FILE is a fde handle, initially open, to be closed.

Exceptions:

None.

250

,.

●

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.6.5
cArs.TExT_Io RESET

5.3.6.5 Resetting a text file handle

prOC.SdUI’eSXSET (FILE: iIIOUt FILE_TYPE;
MODE: in FILE_MODE) ;

Purpose:

This procedure sets the current mode of the fde handle FILE to the mode given by the
MODE parameter. If the new mode for the file handle is OUl_FILE or APPEND_
FILE, the page and line lengths are unbounded. For all modes, the current column, lie
and page numbers are set to one.

If the fde handle FILE has the current mode OUT_FILE or APPEND_FILE, this
procedure has the effect of calling NEW_PAGE, unless the current ~a~e is alreadv
~enninated; then outputs a file tem-rhator,

.-

Parameters:

FILE is an open file handle identifying the internal file to be reset.

MODE indicates the new mode under which the file handle is to be reset.

Exceptions:

STATUS_ERROR
is raised if FILE is not an open file handle.

USE_ERROR is raised if the CAIS implementation does not support resetting the fde
handle to the specified mode.

. .

INTENT VIOLATION
is raised if the file node handle associated with the fde handle FILE was
not opened with an intent specification including at least the intents
required for the MODE, as specified in Table X, page 209.

I

25I

Downloaded from http://www.everyspec.com

5,3.6.6 DOD-STD-1838

SYNCHRONIZE
,,

5.3.6.6 Synchronizing the internal file with file node contents

proeerlure SYNCHRONIZE (FILE: in .FILE_TYPE) ;

CAIS.TEX-.IO

Puipose;
.

This procedure forces all data that has been written to the internal fde identified by
FILE to be transmitted to the contents .of the ffle node with which it is associated.

,, ,,

Partieters:
.; ..;, .

FILE is an open tlte handleidentifying’theinternalfiletobe synchronized.

Exceptions: ., ... ,;

~ MODE_ERRORis raised if the file handle FILE is of mode IN_FILE.

STATUS.ERROR
is raised if FILE is notan open file handle

Notes: ,,

For all write operations in the CAIS the conditions upon which data are transferred
from’ an intem”id ffle to the contents of the file node are implementation-dependent.
Data in the .jntim~ fde of a proc&s are.iriaccessible ,to other processes.. This procedure
ensures that die data in the intern,+ fii~juid the data in the contents ,of the ‘fde node
coincide. ” “’ ~~ ‘ “’ , ‘:,, .,,.)., ~. ‘.~ ●

● ✌
252,,

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.7
CAIS.QUEUE.WAGEMENT

5.3.7 Package CAIS_QUEUE MANAGEMENT

This package provides facilities for creating queue fide nodes. Queue fide nodes may be used
for interprocess communication or the sharing of a single data fiie among’ several processes.
The exceptions raised by all subprograms in this package are defiied in the packages CAIS_
DEFINITIONS and CAIS_IO_DEFINIT’fONS.

A queue fde in the CAIS represents a sequence of elements that is accessed in a fwst-in,
first-out manner (i.e., elements are read from a queue in the same order as they ae written).
Each eIement of a queue may be read onfy once (destructive read) from that queue. Elements
are wiitten to and read from queue fdes by using the packages CAIS_TEXT_IO (see Section
5.3.6) and C.MS_SEQUENTIAL_IO (see Section 5.3.5).

Queue fde nodes have a predefmed amibute QUEUE.KIND that determines the
functiorwdity of read or write operations upon the contents of that queue fsle node. The
predefmed values for the attribute QUEUE_KIND arc SYNCHRONOUS_SOLO,
NONSYNCHRONOUS_SOLO, NONSYNCHRONOUS_COPY and
NONSYNCHRONOUS_MIMIC.

There tiethreekinds of CAM queue fdes: solo queue, copy queue and mimic queue. The
queue kinds differ in their initial contents and the effect of write ,oWrations.

a. A solo queue fde operates like a simple queue, initially empty, in which all
writes append information .to the end and all reads are destructive. A write
operation on a solo queue ffle handle affects only the solo queue fde. The
valuesfor the predefiied attribute QUEUE_K.IND of a solo queue fde node are
SYNCHRONOUS_SOLO or NONSYNCHRONOUS_SOLO.

b. A copy queue file is initialized from the contents of another secondary storage
fde node (containing either text or sequential elements). After the creation of
the copy queue file, the two fries are independent of each other. The vahre for
the predefine attribute QUEUE_fUND of a copy queue fde node is
NONSYNCHRONOUS~COPY.

c. A mimic queue fide is initialized from the contents of another secondary storage
file node called a coupled file node (containingeithertext or sequential

elements).Afierthecreationof themimic queue fde,themimic queue fde and
itscoupledfde aremutuallydependent.This means thatelementswrittento a

mimic queue fde handle are ap&.nded to its coupled fde (at an irnplementation-
dependent time no later than when the mimic queue ffle handle is, closed).
Opening a mimic queue fiie handle with a mode of OUT_FfLE or
APPEND_FILE implies opening the coupled fde node with intent to append
contents. There is no effect on the contents of the mimic queue fde node of
writing or appending directly to the contents of its coupled fde node. A
relationship of the predefine relation MIMIC_FILE is established from the
mimic queue file node to its coupled file node. The value for the predefmed
attribute QUEUE_KIND of a mimic queue file node is
NONSYNCHRONOUS.MLMIC.

When a write operation is completed on a queue ffie handle the elements written are
immediately available to be read from the queue ftie.

253
. . .

Downloaded from http://www.everyspec.com

5.3.7 DOD-STD-1838
CAIS_QIJELJl_MANAGEMENT

Queue fdes maybe either synchronous or nonsynchronous. A synchronous queue fde has no
elements. A write operation on a synchronous queue fde handle is not completed until a
corresponding read operation on the same queue fde has been completed. Only a solo queue ●
ffle can be synchronous.A nottsynchonous queue fde permits an ~plementation-dependent

number of write operationsto occur (dependent upon -the MAXIMUIV_QUEUE_SIZE
established at creation time) independent of any read operations on the queue fde.

Every nonsynchronous queue file node has two predefmed attributes related to the number of
queue storage units (see QUEUE:STORAGE_UNIT_SIZE, Section 5.7, page 513) allocated
to the contents of the queue fde node. The predefmed attribute MAXIMUM_QUEUE_SIZE
indicates the maximum number of queue storage units that may be allocated to the contents
of the nonsynchronous queue fde node. A value of zero indicates that the niirnber of queue
storage un”its is unrestricted. The, predefmed attribute ,CIJFtRE~_QUEUE_SlzE ihdicates
the number of queue storage units that are allocated to the contents of a nonsvnchronous
queue fde .node,”The excep~ion CAPACITY_ERROR is raised when an attemp~is made to
create a nonsynchronous queue fde node if copying.,of the contents of the coupled fdi node
would exceed the ~nnitted maximum number of allocated queue storage units for the queue
fde node contents to &. created... ‘.

The above discussion, is summ~ized in Table”X~I.
.

~ “:’,
. . .

.:. ,,” ,’,’

.,.
.,,!’ :: . . .“

.,. , ,:.,.
. ..

.
,. ., ,.

,.
,.,

:,

.,
..:

.“,

254

●

.;

●

Downloaded from http://www.everyspec.com

. . DOD-STD-1838 5.3.7

I

I

!0

CfUS_Qmw_wAGENtENT

TABLE X111. Queue File Node Predefine Entities

The attributes, attribute values
and relations listed below are Synchro-
applicable to the queue kinds nous

listed to the right. solo

4CCESS_METHOD Annbute
SEQUENTIAL Vafue
DIRECT Vafue
TEXT Value

XJRRE~_QUEUE_SIZE I N/A

41GHEST.CLASSIFICATION Attribute— 1

.OWEST_CLASSIFIC ATION At@ute

vlAXIMUM_QUEUE_SIZE NIA

vlIMIC_FILE N/A

)BJE~_CLASSIFICATION “1 Attribute

jUEUE_KIND ,Attribute
SYNCHRONOUS_SOLO Value
NONSYNCHRONOUS SOLO NIA
NONSYNCHRONOUS~COPY

I
IWA

NONSYNCHRONOUS MIMIC NIA— 1

NME_A’ITRIBUTE_WFUITEN 1. Attribute

U~_CO~ENTS_WRITI’EN Attribute

rIME_CREATED Attribute

NME_RELATIONSHIP_WRITTEN I Attribute

+

Non- Non-
synchro- synchro-

nous nous
solo copy

Attribute Attribute
Vrdue VaIue
NfA N/A

Value Value

Attribute I Annbute

Attribute Attribute

Aitnbute Attribute

Attribute Attribute

NfA NjA

Attribute Attribute

Attribute ‘, Attribute
NfA NIA

Value NIA
N]A Value
N\A NIA

Attribute Attribute

Attribute Attribute

Attribute Attribute

Attribute Attribute

Non-
synchro-

nous
Mnic

Attribute
value
NIA

Value

Attribute

Attribute

Attribute

Attribute

Relation

Attribute

Attribute
N/A
NJA
N/A

VaJue

Attribute

Annbute

Attribute

Attribute

Copy queue ffles’ arid mimic queue fdes are created by the interfaces CREATE_
NONSYNCHRONOUS_COPY_QbEUE (see Section 5.3.7. i, page 257) and CREATE:
NONSYNCHRONOUS_MIMIC_QUEUE (see Section 5.3.7.2, page 262), respectively. The
vafue of” the predefmed attribute ACCESS_METHOD. on the fde node from which the
contents of the copy queue ffle or mimic queue file are initialized determines whether the
copy queue or the mimic queue can be operated on by the interfaces of the package CALS_
TEXT-10 (see Section 5.3.6, page 244) or the package CAIS_SEQUENTIAL_IO (see
Section 5.3.5, page 235). Solo ,queue fdes are created by the following interfaces:

a. CREATE_SYNCHRONOUS_SOLO_T~_QUEUE (see Section 5.3.7.5,
page 274) creates”a synchronous solo queue that can only be operated on by the
interfaces of the package CAIS_TEXT_IO (see Section 5.3.6, page 244).

b. CREATE_SYNCHRONOUS_SOLO_SEQUEN’TL4L_QUEUE (see Section
5.3.7.6, page 278) creates a synchronoris solo queue that can only be operated
on by dre interfaces of the package CAIS_SEQUENITAL_10 (see Section
5.3.5, page 235).

255.

., ‘..
,

Downloaded from http://www.everyspec.com

5.3.7 DOD-STD-1 838
CAIS.QUEW.MANAGEMENT

... ,

c. CREATE_NONSYNCHRON’OUS–$ OLO–T~~.QUEUE (see SectiOn
5.3.7.3, page 267) createsa nonsynchronous solo queue thatcan only be

operatedon by the interfacesof the.-packageCAIS_TEXT_IO (see Section
o

5.3.6, page 244).

d. CREATE_NONSYNCHRONOUS.SOLO_SEQUENTIiL_QUEUE (see

Setiion 5.3.7.4, page 271) creates a nbnsynchronous solo queue that can only
be operated ori by the interfaces of the package CAIS_SEQUENTTAL_IO (see
Section 5.3.5, page235).

.,

,.

.,

,,

.
,,

. ,,

‘..

.

256

4

01

●

Downloaded from http://www.everyspec.com

●

✼

‘o

DOD-STD-1838 5.3.7.1
CAtS_QUEUE_ MANAGEMENT CREAm_NONSmCHRONOUS_COPY_QUEUE

5.3.7.1 creating a nonsynchronous CWpyqueue node

procedure CRZATE_NONSYNCHRONOUS_COPY_QUEUZ
(QUEUE_NODE : in out NODE TYPE;
FILE_NODE : in NODE-TYPE ;
QUEOE_BASE , in NODE-TYPE ;
@JEUE_NEY : in R.22.A;IoNSHIPtom :. LATEST RZY;”
QUEUE_RXIATION: in RZ2ATION_N~- := DEFAOLT I&ATIOd;
INTENT : in INTENT ARRAY : = IN_INTEt@;
ATTRIBUTES : in ATTRIB-~E_LIST := EbtPTY_LIST;
DISCRZTIONARY_ACCESS: in DISCRJJTIONARY_ACCESS_LIST :.

CAIS_ACCESS_CONTROL_bSANAGENENT .ALL_RIGHTS ;
bfANOATORy_AcCESS: i“ MANDATORY_ACCESS_LIST := ZbtPTY_LIS’2;
biAXD5U1.S_QUEUE_SIZE: in CAIS_NATURAL :. UNBOUNDED_QUEUE_SI ZE) ;

Purpose:

This procedure creates a nonsynchronous copy queue fde node and installs the primary
relationship to it. The newly created nonsynchronous copy queue fde node is identified
by” the QUEUE.BASE, QUEUE.KEY arrd QUEUE_RELATION parameters. It also
installs the primary relationship to the node QUEUE-NODE as well as the
corresponding secondary relationship of the predefine relation PARENT from this
node to the node identified by QUEUE_BASE. An open node handle to the newly
created node is returned in QUEUE_NODE.

The predefmed attributes NODE_KIND and FILE_KIND are assigned the values FfLE
and QUEUE, respectively, as part of the creation. The predefiied amibute ACCESS=
METHOD is assigned the value of the predefmed attribute ACCESS METHOD of the
node identified by FILE_NODE, or SEQUENTIAL if the latter vahre-is DIREC1’. fl;e
predefiied attribute QUEUE_KIND is assigned the vahre NONSYNCHRONOUS_
COPY.

The ATI’RLBUTES parameter defines and provides fi]tial values for attributes of the
node.

The DISCRETIONARY_ACCESS par&eter specifies the inkial access control
infotiation to be established between the created node and the default group node of
the current user (see Section 4.4).

The MANDATORY_ACCESS pammeter specifiestheobjectclassificationlabelswith
which the node isto be created.Ifitsvalue isthe empty list,the node inheritsthe

subjectclassificationof the creatingprocessas itsobjectclas.siflcation.Otherwise,it
must be an umsmed listconsistingof an identifieritem and,optionally,an unnamed
Iist.of identifier items (see Table. IV, page51).

The MAXfm_QUEUE_SIZE parameter provides the value for the predefiied node
attribute MAXfMUM_QUEUE_SIZE with a vafue of zero indicating unrestricted size.

Upon completion of the call to th~ interface, the contents of the newly created
nonsynchronous copy queue fife node are irritialiied from the contents of the node
identified by the node handle FILE_NOD-E,

257

Downloaded from http://www.everyspec.com

5.3.7.1 DOD-STD-1838

CREATE.NONSYNCHRONOUS.COPY.QUEUE CAIS_QUEUE_ WAGEMENT

Parameters:

QUEUE.NODE

FILE.NODE

QUEUE_BASE

QUEUE_KEY

is a node handIe, initially closed, to be opened to the newly created node. @

is an open node handle identi@rrg the fde node whose contents will be
used to initialize the contents of the queue ffie node.

is an open node handle to the node from which the primary relationship
to the new node is to emanate.

is the relationship key designator of the primary relationship to be
created.

OUEUE RELATION.—

INTENT

A’ITIUBUTES

is the relation name of the primasy relationship to be created.

is the intent of subsequent operations on the node; the actual parameter
takes the form of an array aggregate.

is a list (see Section 5.4) whose elements are used to establish initial
vafues for attributes of the newly created node; each named item
specifies an attribute name and the v-due to be given to that attribute.

,}: ii.

DLSCRETIONARY_ACCESS
is the initial access control information associated with the newly created
node; it ii the value of the’GRANT “attribute of the access relationship to
the user’s default ‘group node (see Section 4.4.2.3, page 40). o

. . . . ,:
MA~~~AToRy_ficcEsS

LS a list defiiing the classification label for the created node (see Table
IV, page 51)...

MAXIM~_QUEUE_SIZE
defines the maximum size to which the queue may grow in terms of
queue storage units (see Section 5.7, page 513).

Exceptions:

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by QUEUE_KEY and QUEUE-
RELATION is syntactically illegal (see Table I, page 32).

EXISTING_NODE_ERROR
is raised if a node already exists with the identification given.

SYNTAX_ERROR
is raised if the ATITUBUTES parameter (see description above), the
DISCRETIONARY_ACCESS parameter (see Section 4.4.2.3) or the
MANDATORY_ACCESS parameter (see Table IV, page 51) is
syntactically illegaf. ●

258

Downloaded from http://www.everyspec.com

‘o

I

I

I

I

I

I

:

I

‘o

DOD-STD- 1838 5.3,7.1
CAtS_@JE7JE_MANAGEMENI CREATE_NONSYNCHRONOUS_COPY_QUEUE

PREDEFINED_RELATION_ERROR

is raised if QUEUE_RELATION is the name of a predefine relation that
cannot be created by the user,

PREDEFINED_A’ITRfBUTE_ERROR
is raised if any attribute name given by the ATTRIBUTES parameter is
the name of a predefiied attribute that cannot be created by the user.

USE_ERROR is raised if the value for the DISCRETIONARY_ACCESS or
MANDATORY_ACCESS parameter is semantically illegal.

FILE_IUND_ERROR
is raised if the vahre of the predefiied attribute FfLE_fUhrD on the node
identified by FILE-NODE is not SECONDARY_STORAGE.

STATUS_ERROR
is raised if QUEUE.BASE or FILE_NODE are not open node handles or
if QUEUE_NODE is an open node handle at the time of the call.

INTE~_VIOLATION
is raised if QUEUE_BASE was not opened with an intent establishing
the right to append relationships or if FILE_NODE was not opened with
an intent establishing the right to read contents.

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

2S9

Downloaded from http://www.everyspec.com

. . 5:3:7.1 DOD-STD-1838
CRtil%_”NONStiCHRONOUS_COPY_QUEUE

Additional Interfaces:

CMS.Qmm_ WMXMENT

procedure CNEATE_NONSYNC~ONOUS_COPY_QUEUE
(QUEUE_NODE: in out NODE_TYPE;
FILE_NODE :. in NODE_TYiE ;
Q~UZ_NA24R : in PATNNAME ;

‘, “.’INTE~: in INTENT_ARRAY := IN_INTENT ;
ATTRIBUTES: in ATTRIBUTE_LI ST : = EbfPm_LI ST;
DISCAZTIONARY_ACCESS: in DISCRZTIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_4ANAGEMzNT .ALL_RIGHTS ;
bSANDATORY_ACCESS: in MANDATORY_ACCESS_LI ST := E2.2PTY_LIST;
tdAXIbtU2._QUEUE_SIZE: in CAIS_NATURAL := ONBOUNDED_QUEUE_S I ZE)

is
QUZUZ_SABE “: NODE_TkPE ; ‘“ ;

begin
.,

OPW (Qmm B2isE, IiABE_PATH KYJEUN_NM),
(l=>tiPEND_5UZLATIONSHIPS));

CPJSATE_NONSYNCNRONOUS_COPY_QUEU2Z
(QUEUE_NODE , FILE_NODE , QOEUE_B&E ,
usT_tay KYJEUE_NM), LANT-P.SUTION (QUZUE_NAtGZj,
INTENT, ATTRIBUTES, DI:CNETIONARY_ACCESS ,

...
MANDATORY_ACCESS , b2AxIMobt_QUEUE_SIZE);

‘. “ CLOSE (QUEUE_BASE) ;
“exception ~: .,, ,

when others ~=> ,.,

.’ ,{, i C2@E (QURUE_BtiE):;;.’., :; ,,,,
raise;

0
end csNtiTE_NONSYNCNRONOUS_COPY_QUEUE;

.,
procedure CNEATE_NONSYNCNRONOUS_COPY_QUSUE

-, (FILE_NODE: in NODE_TYPE;
QUEUR_SABE : in NODE_TYPE;

QUZUE_REY : in RELATIONSHIP_REY := mTsXT_NEY;
QUZUE_RELATION : in R3LATION NAbiZ :. DE~AULT_RELATION;
IN17ZNT: in INTENT_ARNAY :. IN_INTENT;
ATTRIBUTES : inATTRIB~E_LIST :. ENPTY_LIST;
DISCRETIONARY_ACCESS: in DISCRETIONAAY_ACCESS_LIST :=

CAIS_ACCiLSS_CONTROL_MANAGlU4ZNT.ALL_RIGHTS ;
btANDATORY_ACCESS: in tdANDATORY_ACCESS_LIST := wTY_LI ST;
MAXI~_QUEUE_Sl ZE : in CAIS NATURAL := UNBOUNDED_QUSZUE_SIZE)

is
QUZUZ_NODE : NODE_TYPE ;

begin
CREATE_NONSYNCNNONOUS_COPY_QUEUB

(QUIWE_NODE , lFILE_NODE , Q~uB_BABE ,
QUZUR_202Y, QUZUE_RZLATION, INTENT, ATTRIBUTES ,
DISCRRTIONARY_ACCESS ; NANDATORY_ACCESS ,
btAx12.tob2_QuEuE_SIZE);

● CLOSE (QUEUE_NODE);
exception

when others =>
CLOSE (QUZUE_NODE) ;
rsise;.

CREATE_NONSYNCNRONOUS_COPY_QUBUZ :

●

●

2t.c

,..

Downloaded from http://www.everyspec.com

“0

I

I

I

I

I

o

. .

DOD-STO-1838 5.3.7.1
CAIS_QUELE_MANAGEMENT CREATE_NONSYNCHRONOUS_COPY_QUEUE

procedure cREATE_NONSYNCNRONOUS_COPY_QuEUZ
(S’ILE_NOD5’,: in NODE TYPE;

is

QUEUii_NAME: in PAT@u4E;
INTENT : in INTENT_ARRAY :. IN_INTENT;
ATTRIBUTES : in ATTRIS.UTE_LIST :. Zt.lPTY_LIST;
DISCRZTIONARY_ACCESS: in DISCRSTIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_MANAGEMZNT .ALL_RIGHTS ;
2.tANDATORY_ACCESS: in _A~RY_AccEss_LIST := ZtdPTY_LIST;
6tWIbtUM_QUEUS_SIZE : in CAIS_NATUSAL :. UNBOUNDED_WEUZ_SIZE)

QUIXIE_NODE: NODE_TYPE ;
begin

CREATZ_NONSYNCtiRONOUS_COPY_QUEUE
(QUEUZ_NODE, FILE_NODE , QUZUE_NAME , INTENT ,
ATTRIBUTES , DISCRETIONARY_ACCESS , 14ANDATORY_ACCESS ,
bSAXIt4UB_QUZOZ_SIZE);

CLOSE (QUEUE_NODE) ;
end CRSATE_NONSYNCSRONOUS_COPY_QUSUE;

Notes:

Use of the sequence of a CREATE_NONSYNCHRONOUS_COPY_QUEUE call that
does not return an open node handle followed by a call on OPEN for the created node,
using the node identification of the created node, cannot gusrsntee that a handle to the
node just created is opened, because relationships, and therefore the node identification,
may have changed since the CREATE_NONSYNCHRONOUS_COPY_QUEUE call. ‘.I

.,.., I

261

Downloaded from http://www.everyspec.com

5.3.7.2 DOD-STO.1838

CREATE_NONSYNCHRo~oUs-~~c-Q~~ CArS_QUErJE_MANAGEMENT

5.3.7.2 Creating a rrorrsyrrchrorrmssmimic queue node
,.

procedure CSXATE_NONSYNCNRONOUS_MzMIC_QUE~
(QuSUB_NODE: in out NODE_TYSE;
FILE_NODE : in NODE_TYl?E ; ,.
QuSUE_BASE : in NODE_TkFE ;
Qi7EUE_tOSY: in RSLATIONSNIP_SOZY := LATEST REY ;
(xzsx7E_SXLATION; in rOSLATION_NASUt:= DEFAULT S&LATION ;
INTENT : in ZNTENT_ARRAY := IN_INTEti;
ATTRIBUTES : in ATTRIBUTE_LIST : = SNFTY_LIST ;
DISCRETION~Y_ACCESS: in DISCRSTION~Y_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_btANAGSMENT ALL_RIGHTS ;
MANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := BMPTY_LIST ;

~1-_QUEUE_SI ZE: in CAIS_NATUML := UNBOUNDED_QUEUE_S IZE);

Purpose:

This procedure creates a nonsynchronous mirriic queue file node and installs the
primary relationship to it. The newly created nonsynchronous mimic queue fde node is
identified by the QUEUE_BASE, QUEUE_KEY and QUEUE_RELATfON
parameters. It also installs the primary relationship to the node QUEUE_NODE as well
as the corresponding secondary relationship of the predefmed relation PARENT from
this node to the node identified by QUEUE_BASE. An open node handle to the newly
created node is returned in QUEUE_NODE. ,., ,,,

.,, .

The predefine attributes NODEIKIND and FILkL~ND are assigned the valves FILE
and QUEUE, respectively, as part of the creatbn. The predefyed attribute ACCESS–
METHOD is assigned the value of the predef~ed, attribute ACCESS_METHOD of the ●node identified by FILE_NODE, or SEQUENTIAL if the latter value is DIRECT. The
predefiied attribute QUEUE.KIND is assigned the value NONSYNCHRONOUS_
MIMIC. ,..

The ATITUBUTES parameter defines and provides initi~ values for attributes, of the
node.

The DISCRETIONARY_ACCESS parameter specifies the initial access control
information to be establkhed between the created node and the default group node of
the current user (see Section 4.4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the. empty list,the node irrheritsthe

subjectclassificationof the creatingprocessas’‘itsobjectclassification.Otherwise,it
must be an urmtied list consisting of an identifier item and, optionally, an umamed
list of identifier items (see Table IV, page51).

The ~Mw_Ql_JEUE_SIZE parameter provides the value for the predefine node

attribute MAXIMUM_QUEUE_SIZE with a value of zero kdicat~g ~estricted size.

A relationship of the predefmed relation MIMIC-FILE with ~ empty relationship key
is created from the newly created nonsynchronous mimic queue fde node to the node
identified by the node handle FILE_NODE.

o

Downloaded from http://www.everyspec.com

●

I

\

●

DOD-STD-1838 5.3.7.2

CAIS_@.JEUE_MANAGEhlENT CREATE_NONSYNCHRONOUS_MIMIC_QUEUE

Upon completion of the call to this interface, the ‘contents of the newly created
nonsynchronous mimic queue fide node are initialized from the contents of the node
identified by the node handle FfLE_NODE.

Parameters:

QUEUE_NODE is a node handle, initially closed, to be opened to the newly created node.

FILE_NODE is an open node handle identifying the fiie node with which the mimic
queue fde node is to be coupled.

QUEUE_BASE is arropen node handle to the node from which the primary relationship
to the new node is to emanate.

QUEUE_KEY is the relationship key designator of the primary relationship to be
created,

QUEUE RELATION—

INTENT

ATTRIBUTES

is the relation name of the primary relationship to be created.

is the intent of subsequent operations on the node; the actual parameter
takes the form of an array aggregate,

is a list (see Section 5.4) whose elements are used to establish inkial
values for attributes of’ the newly created node; each named item
specifies an attribute name and the value to be given to that attribute.

DISCRETIONARY_ACCESS
is the initial access control information associated with the newly created
node; it is the value of the GRANT attribute of the access relationship to
the user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY_ACCESS
is a list defining the classification label for the created node (see Table
IV, page 51).

MAxIMUMQUEUE.SIZE
defines the maximum size to which the queue may grow in terms of
queue storage units (see Section 5.7, page 513).

Exceptions:

PATHNAME_SYNTAX_ERROR
is raised if the node identification given by QuEUE_KEY and QUEUE_
RELATION is syntactically illegal (see Table I, page 32).

EXLSTLNG_NODE_ERROR
is raised if a node already exists with the identification given.

263

I

Downloaded from http://www.everyspec.com

5.3.7.2 DOD-STD-1838
CREATE_NONSYNCHRONOUS_MIMIC_QUEUE CAIS_QUE~_MANAGEMENT

SYNTAX.ERROR
is raised if the ATTRIBUTES parameter (see description above), the
DISCRETIONARY_ACCESS parameter (see Section 4.4,2.3) or the
MANDATORY_ACCESS parameter (see Table IV,’ page 51) is

●
syntactically illegrd.

PREDEFINED_RELATION_ERROR
is raised if QUEUE_RELATION is the name of a predefine relation that

,. c~ot be created by the user.

PREDEFINED_AITRIBUTE_ERROR
is’raised if any attribute. name given by the ATTRIBUTES parameter is
the name of a predefine attribute that cannot h. created by the user.

USE_ERROR is raised if the value for the DISCRETIONARY.ACCESS or
MANDATORY_ACCESSparmeter is semantically ilIegal.

FILE_IUND_ERROR
is raised if the value of the predefmed attribute FILE_KIND on the node
identified by FILE_NODE is not SECONDARY_STORAGE,

STATUS_ERROR
is raised if QUEUE_BASE or FILE_NODE are not open node handles or
if QUEUE~NODE is an open node handle at the time of the call.

,.J,

INTE~_VIOLATION
is raised if QUEUE_’BASE was not’ operied ‘with w @tent, establishing
the right to append relationships o! if FILE_NODE was not opened with

●
an intent establishing the right to. read contents.

.. ”.,.

SECUIUTY_VIOLAITON ,.. ,

is raised’ if the o~ration represents a violation of; ‘rnan{atory access
controls. SECURITY_VIOLATION is raised only if the ‘conditions for
other exceptions are not present.

,,-
. .

,.. , ,,, . ,, .,, ,,,

-.
264

Downloaded from http://www.everyspec.com

,0

,.
..

DOD-STO-1838 5.3.7.2

CAIS.QwUE_h4.4NAGEm CREATE_NONSYNCHRONOUS_MMC_QUEUE

Additional Interfaces:

plwcedll~ C-TE_HONSWCHRONOWS_blIMIC_QtIEUE
(~W~_NODE : in out NODE TYPE;
HLE NODE: in NODE-TYPE ;
QUZ~-_NAME : in PAT&6fE ;

,, IHTXNT : in INTENT ARRAY := IN INTENT:

~

1.”,

I

ATTRIBuTES : in ATTRIB-~E_LIST := ‘&PTY LIST;
D19CSJ,TIONARY_ACCESS: in DISCRETIONARY_ACCESS_LI~T :=

CAIS_ACCESS_CONTROL_MANAGSMENT ALL_RIGHTS ;
6i&12ftkXty_AccE55: in MANDATORY_ACCES S_LIST := EMPTY_LI ST ;
MAXIktOM_QUEUE_S IZE: in CAIS_NATURAL := UNBOUNDED_QUEUE_SI ZE)

is
QUEUlt_BABE : NODE_TYPE ;

begin
OPEN (QUEUE_BASE ,. SASE_PATN (QOEUE_klE) ,

(l=>APPEND_RELATIONSHIPS)) ;
CRSA~_NONS~CHRONOUS_= C_QUEUE

(QUEUE_NODE , FILE_NODE , QUEUE_EABE, .,

-T_NSY (QOEUE_NAME) , =T_5ELATIoN (QUEUE_N~),
INTENT, ATTRIBuTES , DISCRETIONARY_ACCESS ,

. MANDATORY_ACCESS , MAXIMiJM‘QUEUE SIZE) ; .
CLOSE (QUEUE_BASE) y

exception
when others =>

I

““o

. .

.,
. .

-se (QOEUE_BABE);
raise ; ,.,

end CRSATE_NONSYNCHRONOUS_MIbUC_QUEUE ;

procedure CREATE NONSYNCHRONOUS_MIblzC_QUEti
(BILE_NODE T in NODE_~E;
QUSOS_S+BE : in NODE_TYPE;
QUSOE_KEY : “ ‘in SXIATIONSllIP_KEY :=, tiTqST_REY;
QUEOZ_SXLATION : in RELATION_NAME := DEFAULT_RELATION;
INTEW : in INTENT_mY :. .IN_INTENT; ,, ,“. ”
AtiIBUTES : in ATTRIBuTE_LIST : = ENP~ LIST;
DISCRiTIONARY_ACCESS: in DISCRETIONARY ACCESi_LI~T :=

CAIS_ACCESS_~ONTROL_MANAGEMENT .l+L_RIGHTS ;
MANDAi’bRY_ACCESS :, in MANDATORY_ACCESS_LIST : = EMPTY_LIST;
MAXIMOM QUEUE_SIZE : in CAIS_NATOSAL :. UNSOUNDED_QUEUE_SI ZE).-

is.
QDICOE_NODE: NODE_~”E;

w
CFXATS_NONS~CHRONOUS_MIMIC_QUEOit

(&g05_NoDE, FILE_NODE , QUEUP,_BME, .:
QUZUS_SJZY, QUEUE NZi.ATION, INTENT, ATTRIBUTES,
DISCRETIONARY_AC~ESS., MANDATORY_ACCESS ,

-1610t4_QOEUE_SIZlZ) ;
CLOSE (QOEUE_NODE) ;

exception
when others =>

CLOSE (QUEt7_NODE) ;
Take;

end CRSATS_NONSYNCHRONOUS_MIbtIC_QUEUE ;

265

Downloaded from http://www.everyspec.com

5.3.7.2 DOD-STD-1838

CREATE_NONSYNCHRONOUS_~Mtc_Q~UE CAIS_QUE~_MANAGEMENT

procedurs CREATE NONSYNCNRONOUS_btIMIC_QUEUE
(rILE_NODE~ in NODE TYSE;

QUEUE_NAbtN : in PAT&blE ;

INTENT: in INTENT ARRAY := IN INTENT;

ATTRIBUTES : in ATTRIB-mE LIST :. ‘i&PTY LIST;

DISCRETIONARY ACCESS: in DISCRltTIOihRY_ACCESS_LIiiT : =-,
CAIS_ACCESS_CONTROL_bSANAGEblENT ALL_RIGHTS ;

MANDATORY_ACCESS : in MANDATORY_ACCESS_LI ST := SbSP’2’_LIST;
-IbStlbS_QOEUE_SIZE : in CAIS_NA~RAL :. UNBOUND ED_QUEUE_S IZE)

is ,.

QUWJE_NODE : NODE_TYPE ;
begin

CRZATE_NONSYNCNRONOUS_btIMIC_QUSIJZ
(QuEUE_NODE , FILE_NODE , QUEWE_NAME ,
INTENT, ATTRIBUTES , DISCRETIONMY_ACCESS ,
blANDATORY_WCESS , MANZbtUb_QUEUE_SIZE);

CIOSE (QUSUE_NODE);
end CRLATE NONSYNCNRONOUS_blINIC_QUSUE ;

Notes:

Use of the sequence of a CR~TE_NONSYNCHRONOUS_~~C_QUEUE cdl that
does not return m open node handle followed by a call on OPEN for the created node,

usingthenode identificationofthe creatednode,carinotguarszxeethata handletothe
node justcreatedisopened,becauserelationships,arrdthereforethenode identification,
may have changed since the CREATl_NONSYNCHRONOUS_MIMIC_QUEUE cdl.

.

. .

. . . .

266

●

●

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.7.3
CAIS.QUEUE.MANAGEMENT CREATE-NONSYNCHRONOUS_SOLO_TEXTQUEUE

5.3.7.3 Creating-a’ tsonsynchrotsous solo text queue node

procedure CREATE_NONSYNCNRONOUS_SOLO_TEXT_QUEUE
(QUSUE_NODE : in out NODE_TYPE;

QUEUE~BASE : in NODE~TYPE ;

QUSUE_NEY : in SXLA=IONSHIP_ttEY : = LATEST_RSY ;
QOEUE_RELATION , in RttLATION_NAMZ := DEFAULT_RZLATION ;
INTENT : in INTENT_ARSAY := IN_INTENT ;
ATTRIBUTES : in ATTRISUTE_LIST := EbSPTY_LIST;
DISCSCSTIONARY_ACCESS: in DI SCRRTIONARY_ACCESS_LI ST :=

CAIS_ACCESS_CONTROL_bSANAGSbUtNT ALL_RIGHTS ;
14AHDATORY ACCESS: in btANDATORY_ACCESS_LIST :. EMPTY_LIST;
bSAXZMUM_Q;EUE_SI ZE: in CAIS_NAT~ := UNBOIJNDED_QUEUE_SIZE) ;

Purpose:

This procedure creates a nonsynchronous solo text queue fiie node and installs the
primary relationship to it. The newly created nonsynchrononous solo text queue file
node is identified by the QUEUE.BASE, QUEUE_KEY and QUEUE_RELATfON
parameters. It also installs the primary relationship to the node QUEUE_NODE as well
as the corresponding secondary relationship of the predefine relation PARENT from
this node to the node identified by QUEUE_BASE. An open node handle to the newly
created node is returned in QUEUE_NODE.

The predefine attributes NODE_KIND and FILE_KIND are assigned the values FILE
and QUEUE, respectively, as part of the creation. The predefiied attribute ACCESS_
METHOD is assigned the value TEXT. The predefioed attribute QUEUE.KIND k
assigned dre value NONSYNCHRONOUS_SOLO,

The ATTRIBUTES parameter defines and provides initial values for attributes of the
node.

The DLSCRETIONARY_ACCESS parameter specifies the inhial access control
information to be established between the created node and the defauIt group node of
the current user (see Section 4.4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject classification of the creating process as its object classification. Otherwise, it
must be an umamed list consisting of an identifier item and, optionally, an umamed
list of identifier items (see Table N, page 51).

The MAXIM~_QUEUE_SIZE parameter provides the value for the predefmed node
attribute MAXIM~_QUEUE_SIZE with a value of zero indicating unrestricted size.

Parameters:

QUEUE_NODE is a node handle, initially closed, to be opened to the newly created node.

QUEUE_BASE is an open node handle to the node from which the primary relationship
to the new node is to emanate.

267

Downloaded from http://www.everyspec.com

5,3.7.3 ,’ DOD-STD- 1838

CREATE_NONSYNCHRONOUS_S.OLO_TE~_QUEUE. .

QUEUE_KEY is the relationship. key designator
,.,

created. .

@EUE_fiELA~Ofi ‘” ‘, ‘

CAIS_QUE~_ WAGEMENT

of the primary relationshipto be

.,

Im”N-I’

. .A’lTRJBUTES
,, .!.

is’the relation name of the primary relationship to be created.

is the irttentof subsequeritoperationson thenode; the actual“parameter
t&es.theform of:fiarrayaggregate.

isa list(seeSeciion5.4)whose elements are used to establishinitial

values for attributesof.tl%-newlv’ creatednode: each named item
specifies an attribute name &d the v’alue to be given to that attribute.

DISCRET’IONARY_ACCESS : ~~
is the initial access control information associated with the newly” created
node; it .is the vafue of the GRANT attribute of the access relationship to
the user’s default group node (see Section 4.4.2.3, page 40).

N@NDATORY_ACCESS
is a list defining the classification label for the created node (see Table
IV, page 51),”

,.~’

MA~~lQUEUEASIZE
,defmes the maxirriurn size to which the queue may grow in terms of
queue storage units (see Section 5.7, page 513).

.,. ,.

Exceptioris: ~- ,,. ‘ < “’ . .

PATHN.AM_SYNTti ERROR ~ “’,
is ,raised-if the node identflcation given by QUEUE_KEY and QUEUE_

.,. ~J+TION is syntactically illegal (see Table I, page 32).

EXISTING_NODE_EtiOR ‘‘ ‘
is raised if a no$kealready exists with the identification given.

SYNTAX_ERROR “ :
is raised if the A’fl’RIB~ES ,parameter (see description above), the
DISCRETIONARY_ACCESS pa&eter (see Section 4.4.2.3) or the
MANDATORY_ACCESS,: pammeter (see Table IV, page 51) is
syntactically illegal.

PREDEFINED_RELATION_ERROR
is r@ed ‘if QUEUE_RELATION is the name of a predefine relation that

.,, .
.,. caniiot be created by the user.

,’
PREDEFINED_AT%UBUTE_ERROR

is. raised if My attribute name given by the ATTRIBUTES parameter is
the. name of a predefiied attribute that cannot be created by the user.,.

USE_ERROR is raised” if the value’” for the DISCRETIONARY_ACCESS or
MANDATORY_ACCESS parameter is semantically illegal.

260+
.

. .
,..

Downloaded from http://www.everyspec.com

L

DOD-STD-1838 5.3.7.3
CAIS.QUEUE.MANAGEMENT CREATE_NONSYNCHRONOUS.SOLO_m_QUEUE

STATUS.ERROR
is raised if QUEUE_BASE is not an open node handle or if QUEUE_
NODE is an open node handle at the time of the call.

lNTENT_VIOLATION
is raised if QUEUE_BASE was not opened with an intent establishing
the right to app-end relationships.

SEC~_VIOLATION
is raised if the operation represents a violation of mandatosy access
controls. SECURJTY.VIOLATION is raised only if the conditions for
other exceptions are not present.

Additio@ Interfaces:

procedure CREATE_NONSYNCNRONOUS_SO~_TEXT_QU!SUZ

(QUz~_NODE: in out NODE_TYPE;
QUEUZ_NAbtE: in PATNNAME ;
INTtsNT: in INTE~_ARRAY := IN_INTEN’T; ‘
ATTRIBUTES : in ATTRIBOTE_LIST := EblPTY_LIST;
DISCRETIONARY_ACCE SS: in DISCSJJTIONARY+ACCESS_LIST :=

CAIS_ACCESS_CONTROL_6SANAGZ6tENT .ALL-RIGHTS;
bSANDATORY ACCESS: in -ATORy_AccESS_LxST :. ~zw_LIsT;
SSAXIMUM_Q-mUE_SI ZE: in CAXj3_NATURAL := ONSOUNOED_QiNtUE-SI ZE)

is
QUEUE_SASE : NODE_TYPE ;

tregin
OPEN (QOZOE_SASE , BASE_PATH (QUEUE_NAbSZ);

(l=>APPENC_RELATIONSHIPS)); ,.
CNSATE_NONSYNC~-NOUS_SOLO_TEXT_QUEUE

(QUEUZ_NODE , QUEUE_SAEE ,
LAST_REY (QUEUE_NAtdtS), LAST_RE2ATION (QUSOE_NANE),
INTENT , ATTRIBUTES, DISCRETIONARY_ACCESS ,
MANDATORY ACCESS , MAXIMUbt_QUEOE_SI ZE) ;

cLosE (QtrEuz_sWE) 7
exception

when others =>
CLOSE (QUE~_SASE) ;
raise;

end CREATE_NONSYNCNRONOUS_SOLO_TEXT_QUSOB;

,.
:,.’

,; . .. :

269

Downloaded from http://www.everyspec.com

.,

5.3.7.3 DOD-STD- 1838 .,,’
CREATE_NONSYNCHRONOUS.SOLO_TE~_QUEUE CALS_QUEUl_MANAGEMENT

“procedure CRZA1’E_NONSYNCtiRONOiJS_SOLO_!CEXT_QUEUE
(QUEUE_BASE , in NODE TYPE;
QUSUE_REY : in RELA~IONSrrIP NSY :. LATEST EEY;
QUEUE_RELATION : in RELATION NM- : = DEFAULT U-L,ATION;

INTENT : in INTENT_&rAY := IN_ INTEm-;

ATTRIBUTES : in ATTRIBOTE LIST : = EMPTY_LIST;
DISCRETIONARY_ACCESS: in DISCRETIOi&RY_ACCESS_LIST : =

CAIS_ACCESS_CONTROL_MANAGEMENT. ALL_RIGHTS;
MANDATORY_ACCltSS: in bUWDATORY ACCESS_LIST :. EbtPTY_LIST;
MAXIblUB_QUZUE_SIZZ : in CAIS_NATU-W :. UNSODNDED_QUEUE_SI ZE)

is

QuEUZ_NODE ~ NODE_TYPE ;
begin

C-TE_NONSYNCNRONOuS_SOLO_TEXT_QUEUE

(QUEUE_NODE , QUEUF_SiSE ,
QUEUE_KEY, QUEUE_RELATION, INTENT, ATTRIBUTES ,
DISCRETIONARY_ACCESS , btANDATORY_ACCESS,
MAxIMOM_QUEUE SIZE) ;

cuME (QUEUS~NODE); -.
exception

when others => “‘

CLOSE .(QuEoE_NODE) ; “
raise;

end CRZATE_NONSYNCNRONOUS SOI,_+ QUEUE;,- ..-

procedure CRZATE_NONSYNCHRONOUS_SOLO_TEXT_QUEUE

(Q~US_NAbtE : in PATRNAME;
INTENT : in INTENT Ar@AY : = IN_INTENT;

ATTRIS~ES : ifl ATTRIS~TE_LIST : = EMPTY_LIST;
DISCRETIONARY ACCESS: in DISCSETIoNARY_ACCESS_LIST :=.-

CAIS_ACCESS_CONTROL_bUUJAGEbS5NT .ALL RIGHTS; ●,,
MANDATORY ACCESS : in WATORY ACCESS LIST :. EMPTY LIST;

MAXIbiUbl_Q-~~_SIZE : in CAI S_NATU—@ :. ‘mBOUNDED_QuEu~_SI zE)
is

QWEUE_NODE : tioDE_mPE ;
begin

CRSATE_NONSYNCHRONOUS_SOLO_TEX!_QUEUE

(QUEUE_NODE, QUZUE_NAbtB, INTENT,
ATTRIBUTES , DISCRETIONARY ACCESS,
bLWIMUM_QUEUZ_S I Z,E) ; -

crasE (Qt7EUS_NODE) ;
end CREATE_NONSYNCRRONOUS_SOLO TEXT_QUEUE;-.

Notes: ‘ .“. ;

MANDATORY ACCESS ,

Use of the sequence of a CREATE_N.ONSYNCHRONOUS_SOLO_TE~_QUEUE
call that does not return m open node’ handle followed by a call on. .OPEN for the
created node, using the node identification of the created node, cannot guarahtee that a
handle to the node just created is opened, because relationships, and therefore the node
identification, may have change,d sirice. the CREATE_NONSYNCHRONOUS_SOLO_
TE~_QUEUE call. “’

,,. / ,.

270

--, ,.-:-,..

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.7.4
CAIS.QUEUE.MANAGEMENT CREATl_NONSYNCH3tONOUS_SOLO_SEQUENTtAL_QUEUE

5.3.7.4 Creating a nonsynchrwsous solo sequential queue node

generic
tYpe EL.EM’ENT_TYPE is private;

prOCedure CREATE NONSYNCHRONOUS_SO~_SEQUENTIAL_QUEUS
(QUEUE_NODi: in out NODE_TYPE;
QUEOZ_SASE : iir NODE_TYSE ;

QUEUZ_REY : in RELATIONSHIP_ttZY := LATEST_KEY;
QUEUE_mMtTION: in RELATION NAbsE := DEFAULT RELATION;
INTENT : in INTENT_&RAY : = IN INTEt&;
ATTRIBUTES : in ATTRIBUTE_LIST := ‘i&iSTYLEST;
DISCRETIONARY_ACCE SS: in DISCRETIONARY ACCESS_LI~T :=

CAIS_ACCESS CONT-%L_MMNWIMZNT .UL_RIGHTS ;
L4ANDATORY_ACCESS: in t&NJATOR=_ACCESS~LIST : = zbtmw LIST;
MAXIbtUbt_QUEUE_S IZE: in CAIS_NATURAL := UNSOUNDED_QUE~-_S IZE) ;

Purpose:

This procedure creates a nonsynchronous solo sequential queue file node and installs
the prirmuy relationship to it. The newly created nonsynchronous solo sequential queue
fie node is identified by the QUEUE_BASE, QUEUE_KEY and QUEUE.RELATION
parameters. It also installs the prinwy relationship to the node QUEUE_NODE as well
as the corresponding secondaty relationship of the predefine relation PARENT from
this node to the node identified by QUEUE_BASE. An open ‘node handle to the newly

created node is returned in .QUEUE_NODE.

The predefiied attributes NODE_KIND and FILE_KIND are assigned the values FILE
and QUEUE, respectively, as part of the crearion. The predefine attribute ACCESS_
METHOD is assigned the vahre SEQUENTIAL. The predefiied attribute QUEUE_
KIND is assigned the value NONSYNCHRONOUS_SOLO.

The ATTRIBUTES parameter defines and provides initial vafues for attributes of the
node.

The DISCRETIONARY_ACCESS partieter specifies the initial access control
information to be established between the created node and the default group node of
the crment user (see Section 4.4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its vahre is the empty list, the node inherits the
subject classification of the creating process a.s its object classitlcation. Otherwise, it
must be an umamed list consisting of an identifier item and, optionally, an unnamed
list of identifier items (see Table N, page 51).

The MAXIMUM_QUEUE_SIZE parameter provides the value for the predefmed node
attribute MAXIMW_QUEUE_SIZE with a value of zero indicating unrestricted size..

The generic forrnaf type ELEMENT_TYPE is the type for file elements that are to be
read from or written to the queue file.

271 -

Downloaded from http://www.everyspec.com

5.3.7.4 DOD-STD-1838

CREATE.NO.ASYNCHRONOUS.SOLO.SEQUENTIAL-QUEUE CAIS.QUE~_MANAGEMENT

Parameters:

QUEUE_NODE is a riode han~e, initially closed, to ~ Opened to the newly. created node. ●
QUEUE_BASE is an open node handle to. the node from which. the primary relationship

to the new node is to emanate.

QUEUE_KEY is the relationship key designator of the primary relationship to be
,. created.,.,

QUEUE_RELATION
is the relation name of the primary relationship to be created

IN’@-f- .. ‘ is the intent of, subsequent operations. on the node; the. actual parameter
takes the form of w array aggregate.

ATTR~UTES is a Iist (see Section 5.4) whose elements are used to establish initial.,
values for attributes of the newly created node; each named iteme., .
specifi& an attribute name and the vahre to be given to that attribute.

DISCRETIONARY.ACCESS
is the initial access control information associated with the newly created
node; it is the value of the GRANT attribute of the access relationship to
the user’s default group node (see Section 4.4,2.3, page 40).

MANDATORY_ACCESS . . ●is a list defining the classification label for the created node (see Table

w,page51).

MA~uMQUEUE_SIZE
defiies the maximum size to which the queue may grow in terms of
queue storage units (see Section 5.7, page 513).

Exceptions:

PATHNAME.SYNTAX ERROR
is raise~if the node identification given by QUEUE_KEY and QUEUE_
RELATION is syntactically dlegal (see Table 1, page 32).

EXLSTING_NODE.ERROR
is raised if a node already exists with the identification given.

SYNTAX_ERROR
is raised if the ATTRIBUTES parameter (see description above), the
DISCRETIONARY=ACCESS parameter (see Section 4,4.2.3) or the
MANDATORY_ACCESS parameter (see Table IV, page 5 1) is
syntacticallyillegal.

PREDEFINED_RELATION_ERROR
is raised if QUEUE_RELATION is the name of a predefine relation that
cannot be created by the user. 0

272

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.3.7.4

CAIS.QUEUEJ4ANAGEMENT CREATE_NONSYNCHRONOUS_SOLO_SEQUENTIAL_QUEUE

● PREDEFINED_Al+UBUTE_ERROR
is raised if any attribute name given by the A’ITRIB ~ES parameter is
the name of a predefiied attribute that cannot be created by the user.

USE_ERROR is raised if the value for the DISCRETIONARY.ACCESS or
N$ANDATORY_ACCESS parameter is semantically illegal.

STATUS_ERROR
is raised if QUEUE_BASE is not an open node handle “or if QUEUE_
NODE is an open node handle at the time of the call.

INTENT_VIOLATION
$ raised if QUEUE_BASE was not opened with an intent establishing
the right to append relationships.

SEC.ti_VIOLATION
is raised if the operation” represents a violation of mandatory access
controls. SECURITY_VIO~TION is raised only if the condfiions for
other exceptions are not present.-. ,.. ..

●

.,

I

.

..’,

. ..

273

Downloaded from http://www.everyspec.com

5.3.7s DOD-STD- 1838

CRJ+4TE:SYNCHRONOUS_SOLO_TEXT_QUEUE CAtS_QUEUE_MANAGEMENT

5.3.7.5 Creating a synchronous solo text queue node

procedure CSZATE.SYNCHRONOUS..SOLO TEXT __QUNOE
(QUEUE .NOD~: % our NODE~TYPE;
QtrEoE~BASE: in NODE~TYPE ;
QuEoB_RsY : in RELATIONSNIP SBY := LATEST NEY;
QOEUE_RELATION: in RELATION NAI& := DEFAULT 2&LATION;
INTENT : in INTENT_AibY := IN_INTE~-;
ATTRIBUTES : in ATTRIBUTE_LIST := ENsTY_LIST ;
DISCRETIONARY ACCESS: in DISCRETIONARY_ACCESS LIST :=

CAIS_ACCESS_CONTROL_I’#&G.EMENT .ALL_RIGNTS ;
MANDATORY_ACCESS: in MANDATORY_ACCESS_LI ST := EbSPTY_LIST);

Purpose:

This procedure creates a synchronous solo text queue fde node and installs the primary
relationship to it. The newly created synchronous solo text queue f~e node is identified
by the QUEUE.BASE, QUEUE_KEY and QUEUE.RELATION parameters. It also
instafls the primary relationship to the node QUEUE_NODE as well as the
corresponding secondary relationshipof the predefmed relationPARENT from this
node to the node identified by QUEUE_BASE. Arr open node handle to the newly
created node is returned in QUEUE_NODE.

The predefmed attributes NODE_KIND and’ FILE_KIND are assigned the values FILE
and QUEUE, respectively, as part of the creation. The predefiied attribute ACCESS_
METHOD is assignedthe value TEXT. The predefmed attribute QUEUE_KIND is
assigned the value SYNCHRONOUS.SOLO.

●
: The ATTRIBUTES parameter ,defmes and provides initial values for attributes of the

~node.

The DISCRET’IONARY_ACCESS parameter specifies the initial ,,access control
informationto be establishedbetween the creatednode and thedefaultgroup node of

thecurrentuser(seeSection4,4).

The MANDATORY_ACCESS parameter specifies the object classification labels with
which the node is to be created. If its value is the empty list, the node inherits the
subject classtilcation of the creating process as its object classification. Otherwise, it
must be an umarned list consisting of an identifier item and, optionally, an umamed

. list of identifier items (see Table IV, page51).

Parameters:

QUEUE_NODE’is a node handle,initi~lyclosed,tobe opened tothenewly creatednode.

QUEUE~BASE is an open node handle to the node from which the primary relationship
to the new node is to emanate.

QUEUE_KEY is the relationship key designator of the primary relationship to be
created.

QUEUE_RELATION
is the relation name of the primary relationship to be created.

●

274

Downloaded from http://www.everyspec.com

DOD-STD- 1838 5.3.7.5
CAIS.QUEUEJIANAGEMENT CREA~_SYNCHRONOUS_SOLO_m_QUEUE

INTENT

AITfUB UTES

is the intent of subsequent operations on the node; the actual parameter
takes the form ofan arrayaggregate.

is a list(seeSection5.4)whose elements are used to establish initial
values for attributes of the newly created node; each named item
specifies an attribute name and the value to be given to that attribute.

DISCRETIONARY.ACCESS
is the initial access control information associated with the newly created
node; it is the value of the GRANT attribute of the access relationship to
the user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY ACCESS
‘isa listdefiningtheclassificationlabelforthe creatednode (see Table

IV, page 51).

Exceptions:

PATHNAME.SYNTAX ERROR
is raise~if the node identification given by QUEUE_KEY and QUEUE_
RELATION is syntactically Megaf (see Table I, page 32).

EXfSTING_NODE_ERROR
is raised if a node already” exists with the identification given.

SYNTP&ERROR
is raised if the AITRIB UTES cmrameter (see descrimion above). the
DISCRETIONARY_ACCESS p-mameter (see Sectio~ 4.4.2.3) or the
MANDATORY_ACCESS parameter (see Table IV, page 51) is
syntactically iflegaf.

PREDEFINED_RELATION_ERROR
is raised if QUEUE_RELATION is the name of a predefmed relation that
cannot be created by the user.

PREDEFINED_ATTRIBUTE_ERROR
israisedifany attributename given by theA’ITRIB UTES pmwoeter is

thename of apredefmed attributethatcannotbe createdby theuser.

USE_ERROR is raised if the value for the DISCRETIONARY.ACCESS or
MANDATORY_ACCESS parameter is semantically illegal.

STATUS.. ERROR—
is raised if QUEUE_BASE is not an open node handle or if QUEUE_
NODE is an open node handle at the time of the calf.

,;,JNTE~_VIOLATTON
is raised if QUEUE_BASE was not opened with an intent establishing
the right to append relationships.

275

Downloaded from http://www.everyspec.com

r,

5.3.7.5 .,. , DOD-STD-1838

C“REATEj~CKRONOUSjOLO_TEXTQOEUE CAIS_QUEUEJL$NAGEMENT

SECLRITY_VIOLATION . ‘
ii raised, if the operation represents a violation of mandatory access ●
controli.A SECURITY’=VIOLATION is raised only if the condkions for.,

. other exceptions are not present...,
,.. . .,. .

Additiord Interfaces: ‘

procedure ~TE_SYNCHRONOUS SOLCI_TEXT_QUEUE

(QuSUN_NODE : % Out NODE_TYPE;

QuEUR_NAME : in PATHNAMS ;
INTENT : in INT?XJT_AREULY := IN_INTZNT ;
ATTRIBUTES { in ATTRIBUTE LIST := ~TY LIST;
DISCRETIONARY_ACCESS: in DISCRETIOfi=Y_ACCESS-LI~T :=

‘JAI S_ACCESS CONTROL MANAGNNSNT ,ALL_RIGEJTS;
b@NDATORY_ACCESS: “- iii ““MANDATOR~ “ACCESS~LIST := ENPTT_LIST)

is
.,

QuEW_sA5E: ~ODIt_TYPE; - .”.
, ,Ix&in

OPEN (Qu&E_s&E, BASE_tiATH (Q&iti_NANE),
,. (1=>APPEND-RxLATIONSHIPS))“;
-, CREATE_SYNCNRONOUS_SOLO_TEXT_QUNUS

(fFJNUE_NODE;QUEUE_SASE,
-“T_RIIY (QuEUE_NAME) , 2&T_RELAT10N (QrJPm_Nti),
INTENT, ATTRIBUTES, DISCRETION~Y_ACCESS ,
MANDATORY ACCESS) ;

CLOSE (QUEUS_SASE) Y
exception

ivhen others “=>
CLOSE (QuEUE_SASE) ;
raise;

end CKEATE_SYNCHAONOUS_SOti_TEXT=QUEUE;

procedure CSJZATE”SYNCHRONOUS SOM_TEXT_QUEUE

(QuEWE_i3AS~: ‘in NODE TTP E >

QuEUS_~Y : in ~L,A~IONSHIP RSY :. LATCST_KEY;,

QUEUS_RELATION : in RELATION_Nw-. :. DEFAULT_PZLATION;
INTENT : in INTENT_ARRAY :. IN INTENT;

ATTRIBUTES i ~in ATTRXSOTE_LZST ~:= ‘&4PTY LIST;
DISCRSTIONAkY_ACCESS: in DIsCslrTIONAriY_ACCESS_LI~T :=

~1 S_ACCESS_CONiROL_MIUN4GEbtENT ~L_RIGHTS ;
MANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := SNPTT_LIST)

is ,,.

QUSUZ_NODE : NODE_TTPE ;
hegirr .,

C-i@ATE_STNCHRONOUS_SOW_TEti_QUEUE

(QUE~_NODE , QUEUE_SASE ,
QUEUE~F+Y, Q~UE_RSLATION, Immr, ATTRIsmE5,
DISCIUJTIONARY_ACCESS , MANDATORY_ACCESS) ;

CLOSE (QUEtiLNODE) ; :
exception ““ ; .:

when others’, => ~
C~SE (QUE*_NODE) ; ‘.’
raw;. .

end CREATE_STNCHRONOUS_S02&T~_QUEUE;

“..,’

,. .,

.. ;.,

276

,..

,.. ,

Downloaded from http://www.everyspec.com

●

DOD-STD-1838 5.3.7.5
CAIS_QLMJE_MANAGEiv&NT CREATE_SYNCHRONOUS_SOLO_Tl?XT_QUEUE

procedure CREATE_SYNCHRONOUS SOIO_TEXT_QOEUN
(QUEUE_NAblE: %s PATNNAME;
INTENT : in INTENT_ARRAY := IN_INTENY!;
ATTRIBiJTES : in ATTRIINJTE_LIST := Et.SPTY_LIST;
DISCSCETIONARY ACCESS: in DISCSOITIONARY ACCESS_LIST :=

CAIS_ACCESS_~ONTROL_14MAGSMSNT UL_RIGklT~ ;
WANDATORY ACCESS: in bSANDATORY_ACCESS_LI ST := StbtPW_LIST)

is
QUEUS_NODE : NODE_TYPE;

begin
CSUSATE_SYNCRttONOUS_SOLO_TEXT_QUEUE

(QUSUE_NODE, QuscuE_NAbrR,INTENT,
ATTRIBUTES , DISCSUSTIONARY_ACCES’S, MANDATORY_ACCESS) ;

CLOSE (QUSUE_NODE);
,,,,:end CREATE_SYNCHRONOUS_SOLO-TEXT_QUEUSt;

Notes: “

Use of the sequence of a CREATE_SYNcHRON@JS~SOLO-TEX’I-QUELJE cdl
that does not return an open node handle followed by a call on OPEN for the created
node, usingthenode identificationof thecreatednode,cannotguaranteethata handle

to the node justcreatedis opened, because relatjonshlps,and thereforethe node
identification, may have changed since the CREATE_SYNCHRONOUS_SOLO_
TEXTQUEUE call.

277

.,.

Downloaded from http://www.everyspec.com

5.3.76 DOD-STD-1838
CREATE_SYNCHRONOUS_SOLO_SEQ UENTL4L.QUEUE CAtS_QUEUE_MANAGEMENT

5.3.7.6 Creating a synchronous solo sequential queue node

generic
type ELEt.tENT_TYpE is private;

pmeedure CREATE_SYNCNRONOUS SOLO_SEQomJTIAL_QuSUS
(QUEUE_t?ODE: % out NODE-TYPE;
QUEUS_BASE : in NODE-TYPE ;

QUEUE_~Y : in RSLATIONSHIP_ICEY := LATEST_NSY;

QUEUE_RE~TION: in RELATION_NANE := DEFAULT_RELATION ;
INTENT : in INTENS_ARRAY : = IN INTENT;
ATTRIBW22W : in ATTRIBUTE_LIST := ‘~TY_LIST ;
DISCRETIONARY ACCESS: in DISCWtTIONARY_ACCESS_LIST :=

CAIS ACCESS_CONTROL NANAG=NT ALL RIGHTS;
~ATORY_ACCESS: iir t.&DATORY_ACCESS~LIST := EbtPTY_~IST);

Purpose:

This procedure creates a synchronous solo seqrrentid queue fde node and installs the
primary relationship to it, The newly created synchronous solo sequential queue fde
node is identified by the QUEUE.BASE, QUEUE_KEY md QUEUE.RELATION
parameters. h also installs the primary relationship to the node QUEUE_NODE as well
as the corresponding secondziry relationship of dre predefirred relation PARENT from
this node to the node identified by QUEUE_BASE. An open node handle to the newly
created node is returned in QUEUE_NODE.

The predefmed attributes NODE_KIND and FILE_KIND are assigned the values FILE
and QUEUE, respectively, as part of the creation. The predefured attribute ACCESS_
METHOD is assi~ed the value SEQUENTIAL. The predefmed attribute QUEUE_
KIND is assigned the value SYNCHRONOUS_SOLO.

●
The ATTFUBUTES pammeter defines and provides “initial values for attributes of the
node.

The DISCRETIONARY_ACCESS parameter specifies the initial access control
information to be established between’ the created node and the default group node of
the current user (see Section 4.4).

The MANDATORY_ACCESS pammeter specifies the object classification labels with
which the node is to be created. If its value is the empty list,the node inherits the
subject classification of the creating process as its object classification. Otherwise, it
must be an umamed list consisting of an identifier item and, optionally, an unnamed
list of identifier items (see Table IV, page51).

The generic type ELEMENT.TYPE describes the type for fide elements that are to be
iead from orwritten to the queue file.

.,,

Pamuneters:
.,

QUEUE_NODE is a node ha&le, initially closed, to be opened to the newly created node

QUEUE_BASE is an open node handle to the node from which the primary relationship
to the hew node is to emanate: ●

278

Downloaded from http://www.everyspec.com

CAI_QUE~_MANAGEMENT

DOD-STD-1838 5.3.7.6
CREATE_SYNCHRONOUS.SOLO_SEQUENTIAL_QUSUE

QUEUE_KEY is the relationship key designator of the primary relationship to be
created,

QUEUE_RELATTON

INTENT

ATTRIBUTES

is therelationname of theprimaryrelationshiptobe created.

isthe intentof subsequentoperationson thenode; the actualparameter

takestheform ofan arrayaggregate.

isa list(seeSection5.4)whose elements are used to establish initial
vahres for attributes of the newly created node; each named item
specifies an attribute name and the value to be given to that attribute.

DISCRETIONARY:ACCESS
is the initial access control information associated with the newly created
node; it is the value of the GRANT attribute of the access relationship to
the user’s default group node (see Section 4.4.2.3, page 40).

MANDATORY ACCESS
‘is a list defiiing the classklcation label for the created node (see Table

IV, page 51).

Exceptions:

PATHNAME_SYNTAX ERROR
is raised-if the node identification given by QUEUE_KEY and QUEUE_
RELATION is syntactically illegal (see Table I, page 32).

EXISTING_NODE_ERROR
is raised if a node already exists with the identification given.

SYNTAK_ERROR
is raised if the ATTRIBUTES parameter (see description above), the
DISCRETIONARY.ACCESS parameter (see Section 4.4.2.3) or the
MANDATORY_ACCESS parameter (see Table IV, page 51) is
syntactically illegal.

PREDEFINED_RELATION_El&OR
is raised if QUEUE_RELATION is the name of a predefiied relation that
cannot be created by the user.

PREDEFINED_AITRIB UTE_ERROR
is raised if any attribute name given by the ATITUBUTES parameter is
the nme of a predefine attribute that cannot be created by the user.

USE_ERROR is raised’ if the vahre for the DISCRETIONARY_ACCESS or
MANDATORY_ACCESS parameter is semantically illegal.

STATUS_ERROR
is raised if QUEUE_BASE is not an open node handle or if QUEUE_
NODE is an open node handle at the time of the call.

279

Downloaded from http://www.everyspec.com

5.3.7,6 DOD-STD-1838
CREATE_SYNCHRONOUS_SOLO_SEQUENTIAL_QUEUE CAIS_QUEUE_MANAGEMENT

INTE~_VIOLATION
is raised if QUEUE_BASE ivas not opened with an intent establishing
the right to append relationships. ●

SECw_VIOLATION
is raised if the operation represents .a violation of mandatory access
controls. SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

,. ..

. .

I

I

,.

,..
,,

●

280

●

Downloaded from http://www.everyspec.com

1.

●

I

1,

●

DOD-STD-1838 5.3.7.7
CA2S_QUElJE_MANAGEM13NT ,OPEN

5.3.7.7 opening a queue file node handle

A queue file node handle is opened by calling OPEN (see Section 5.1.2.1, page 63).

5.3.7.8 Closing a queue file node handle

A queue file node handle is closed by calling CLOSE (see Section 5.1.2.2, page 66). If the
queue ftie node handle that is being closed is associated with a mimic queue node and if there
is an open node handle to the coupled file node and if there is an open fde handle associated
with the coupled fde node handle, then closing the queue fde node handle also closes the
open coupled node handle and the open coupled file handle.

5.3.7.9 opening a queue file handle

A queue fde handle is opened by calling the OPEN interface of CAIS.SEQUENTIAL.10
(see Section 5.3.5.3, page 240) or by calling the OPEN interface of CAIS_TEXT_IO (see
Section 5.3.6.3, page 249) with an open queue fde node handle as parameter. In addition to
the exceptions raked bv these OPEN interfaces. SECURITY VIOLATION mav be raised if—
the oper~tion represent; a violation of mandatory access controls. If the value of the queue
fde node attribute QUEUE_IUND is NONSYNCHRONOUS_MIMIC and the mode is
OUT_EILE or APPEND_FILE, then the call on the OPEN interface must achieve the
addition+ semaniic effect of the following code fragment.

procedure OPEN (rmLE: in out FILE_lYPE;
NODE : in NODE_TYPE ;
btODE: in S’ILE~2.lCDE)

is
COUPLCD_NOOE : NODE_TYPE ;
COUPLED_rILE : FILE_TYPE ;

begin

CAIS_NODE_NANAGENENT .OPEN (COOPLED_NODE , NODE , ““,
‘WIblIC_FILE” , (l=>APPEND_CONTENTS)) ;

begin
OPEN (COUPLZD_FILE , COUPLED_NODE , APPE~_FILE) ;

exception
when others .>

CLOSE (COUPLED_FILE) ;
raise;

end ;

end OPEN ;

281

.

.

I

I

I.,,-.,

Downloaded from http://www.everyspec.com

5.3.7.10 DOD-STD-1838

CLOSE CAIS_QtJEtJ_IvIANAGEMENT

S.3.7.10 Closing a queue fde handle

A queue fiIe handle is closed by calling the CLOSE intefiace of cAIs_sIzQfJENT~LIo
(seeSection 5.3.5.4, page 241) or by calling the CLOSE interface of CAIS-TEXf_IO (see
Section 5.3.6.4, page 250). If the value of the attribute QUEUE_KIND of the queue file
node associated with the queue file handle is NONSYNCHRONOUS_MIMIC and the mode
of the queue fiie handle is OUT_FILE or APPEND_FILE, then the coupled f~e handle and
the coupled file node hancfIe opened by the OPEN cdl described in Section 5,3,7.9 are
implicitlyclosed.

5.3.7.11Reading elements from a queue file

The READ procedure in CAIS_SEQUENTiAL_IO and the GET procedures

TEXT_IO (includingGET_LINE) areused to read elements from a queue ftie.

Exception:

in CAIS_

END_ERROR is raised if no more elements can be read from the given queue file and
no process has the associated queue node open with the intent to write
contents.

5.3.7.12 Writing elements to a queue file

The WRffE procedure in CAIS_SEQUENTIAL_IO is used to append elements to a queue
file.

The PUT, PUT_LINE, NEW.LINE and NEW_PAGE procedures in CAIS_TE~_IO are
used to append characters, line terminators and page terminators to a queue fde.

Exceptions:

CAPACITY_ERROR
is raised if the maximum queue size of a nonsynchronous queue is
exceeded by the respective operation. .

5.3.7.13 Resetting a queue file handle

The RESET procedures in CAIS_SEQUENTIAL_IO and CAIS_TEXT_IO are used to reset
a queue fde handle. Resetting a queue fde handle has no effect other than changing the mode
of the fde handIe.

Exceptions:

ACCESS_VIOLATION
is raised if the current process does not have sufficient access rights to—
append to the contents of the coupIed fde node pointed tO by the
relationship of the predefmed relation MIMIC_FILE when the mimic

., .’” queue fde handle is reset to mode OUT_FILE or APPEND_FILE.

., ; N,&E_ERROR is raised if the coupled fde node that is associated with a mimic queue
,, ffle handle reset to mode OIJ_FfLE or APPEND_FILE is unobtainable

or inaccessible.

282

. ,,

●

I
I

I

I

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.7.13
CAIS_QUEUE_WAGEMENT RESET

5.3.7.14 Determining end of file of a queue file

The END_OF_FILE functions in CAIS_SEQUENTIAL_IO and CAIS_TEXT_IO we used to
determine the end of fde of a queue fide.

Purpose:

For the package CAIS.SEQUENTIAL.10. this function returns TRUE if no more.- — —
elements can be read from the given queue ffie and no process has the associated queue
node open with intent to write contents; otherwise, it returns FALSE.

For the package CAIS_TEXT_IO, this function returns TRUE if no more characters,
line terminators or page terminators can be read from the given queue fiie and no
process has the associated queue node open with intent to write contents; otherwise, it
returns FALSE.

Notes:

The value returned by this fimction varies depending upon the reading and writing
activity upon the contents of the queue ffle node. Programs should not be written to
depend on the value of END_OF_FILE for a fde handle being constant once TRUE has
been returned.

I

I

I

~o

283

Downloaded from http://www.everyspec.com

5.3.8 DOD-STD- 1838

CAIS.SCROLL.TERMINAI.10

5.3.8 Packa~e MIS S&ROLL. TERMINAL 10. .

“This package provides subprograms for communicating with a scroll terminal. The
●

eiceptioris raised by all subprograms in this package are defined in the packages CAIS_
.DEFHWTIONS. ~d CAIS_IO_D,EFINITION.S. .

The functionality’. of this package. is bu~t upon a subset of the operations def~ed in [ANSI
79], The physical devices, with which this package is intended to be used are typified by
kteractlve printing te,pnfiafs, (i.e., iriteractive; tennirqls that have a keyboard for sendirrg
characters to the program using the CAIS_SCROLL_TERMINAL_IO package md a printer
for displaying the output from the CAfS_SCROLL_TERMINAL_IO package). The display
device may also be what is commonly referred to as a‘’ glass l_I1”’.

Communication using tbe CAIS_SCROLL_TERMINAL_IO package consists of reading
characters and/or function keys from the scroll terminal, modifying the scroll tenninaf
display, aitd querying characteristics of the scroll term&d.

Data read from a scroll terminal are. either Ada -characters or function key identification
numbers. These data are read using the GET functions. The data returned from a GET
operation consist of a string of Ada characters and, optionally, a list of finction key
identification numbers. No function key identification numbers are returned if the function
keys have been disabled. Instead, each function key. identification number is translated into
an implementation-dependent sequence of Ada characters that are returned in GET
operations. The number of funct ion key identification numbers and the string representation
of the names of the function key identification’ numbers are implementation (and scroll
terminaf) dependent. ●
The display device for a scroll terminal has positions in which printable ASCII characters
may be graphically displayed. The positions are arranged into horizontal rows and vertical
columns. Each position is identifiable by the combination of a positive row number and a
positive column number. A display device for a scroll terrninaf has a fried number of
columns and rows. The rows are incrementally indexed starting with one after performing the
NEW_PAGE (see Section 5.3.8.29, page 314)’ operation. The columns are incrementally
indexed starting with one at the left side of the output device.

The active position on the output device of a scroll terminal is the position at which the next
operation will be Wrforrned. The active position is said to advance if (1) the row number of
the”new position is greater than the row number of the old position or (2) the row number of
the new position is the same as the row number of the old position and the new position haa a
greater column number. Similarly, a position is said to precede the active position if (1) the
tow number of the position is less than the row number of ,tie active position or (2) the row
number of the position is the saine as the row number of the active position and the column
number of the position is smaUer than. the COIUW number of the active posjtion.

‘V&en accessing a particular scroll .ter&al it is important to know several aspects of the
terminal. Some of the ~formation about the terminal that can be obtained by using
subprograms in this package. are the characters from the, Ada character set that cmnOt be read
from or written to the terminal,. (see lNTERCEPTED_INPUT_CHARACTERS, Section
5:3,8.6, page 291 and INTERCEPTED_OUTPUT_CHARACTERS, Section 5.3.8.7, page ●
292), the size of the termin+ (see PAGE_SIZE, Section 5.3.8.12, page 297), and the number

284

I

Downloaded from http://www.everyspec.com

I
I DOD-STD-1838 5.3.8

C.4K_SCROLL_TERMINMJ0

●
of fanction keys for the terminal (see FuNCTION_KEY-CCIUNT, Section 5.3.8.23, page
308).

1 For all write operations in the CAM the condition(s) upon which data are transferred from an
internal file to the contents of a terminal file node are implementation-dependent. Data in the
internal ffle of a process are inaccessible to other processes. Syrtclriwrizaticwrof a scroll
terminal fde handle forces all data written to the internal fde identified by the fiie handle to
be transmitted to the contents of the fiie node “with which it is associated. Synchronization
ensures that the data in the internal fde and the data in the contents of the fde node coincide.

?.

●

●

285

Downloaded from http://www.everyspec.com

CAIS_SCROLL_T%RMINAL_10

5.3.8,1 DOD-STD- 1838

TYPES AND SURTYPES

5.3.8.1 Types and subtypes

type FILE_TYPE is limited private; ,

‘YPe FxLE_WDE is (IN_FILE, OUT_FILE , INOUT_FILE) ;

FILE.TYPE describes the type for fde handles. FILE_MODE describes whether a fde
handle is to be used for input, output, or both.

type CNARACTER_ASJUY is array (CHAF+CTER) of BOOLEAN;

type FOWCTION_KEY_DESCRIPTOR is limited private;

subtype FONCTION NEY_NAbtE is STRING; ‘” (

CHARA(XER_ARRAY isused to determine the characters that are intercepted due to the
characteristics of the underlying system and the individual terminal. FUNCTION_KEY_
DESCRIPTOR is used to obtain information about function keys read from a terminal.
FUNCITON_KEY_NAME is used to identify function keys by string representations,

tYP

type

—

TESJSINAL_POSITION_TYPE is
record

Row : CAIS_POSITIVE;
COLUMN: CAIS POSITIVE;

end record;

TAS_STOP_KINrl is (HoRIZONTAL, VERTICAL) ;

TERMINAL_POSITION_TYPE describes the type’ for a position on a terminal. TAB_ ●
STOP_KIND is usedtospecifythekindof tabstopto be set or cleared.

●

286

I

Downloaded from http://www.everyspec.com

DOD-STD-1838

CAIS.SCROLL.TERMTNAL.1O
5.3,8.2

OPEN

‘o

~
I

I

10

5.3.8.2 opening a scroll terminal file handle

prOCedUreOPEN (TEP141NAL: in OUt FILE_TYPE;
NODE : in NODE TYPE;
MODE : “m FILE~MODEj ;

Purpose:

This procedurereturnsan open filehandleinTERMINAL tothefde identifiedby the

open node handleNODE.

Parameters

TERMINAL is a fie handle, initially closed, to be opened.

NODE is an open node hsndle to the fde node.

MODE indicates the mode under which the file handle is opened.

Exceptions:

NODE.KIND.ERROR
is raised if the node identified by NODE is not a fiie node.

FILE_KIND_ERROR
is raised if the values of the predefine fiie node attributes FILE-KIND,
ACCESS_METHOD and DEVICE_KIND are not appropriate for the
package containing this procedure according to Table XI, page 210.

STATUS.ERROR
is raised if the file handle TERMINAL is open at the time of the call or if
the node handle NODE is not open.

US E_ERROR is raised if an open fde handle identifies the same f~e node contents and
the CAIS implementation does not suppofi the existence of multiple fde
handles identifying the same fde node contents. Any such restriction
must be documented in Appendix F. An implemental ion is allowed to
raise this exception only if it is based on operating system support that
does not provide this capability.

INTE~_VIOLATION
is raised if NODE was not opened with an intent specification including
at least the intents required for the MODE, as specified in Table X, page
209.

Notes:

Closing the node handle associated with the file handle TERMINAL closes the fife
handle.

287

I

I

Downloaded from http://www.everyspec.com

5,3.8.3 DOD-STD-1838

CLOSE CAIS.SCROLL.TERMNAL1O

5.3.8.3 Closing a scroll terminal file handle

procedure Cr,OSE (TE-NAL: in out FILC_TYSE) ;

Pu2pose:

This procedure severs any association between the internal fde identified by the file
handle TERMINAL and its associated node contents. It also severs any association
between the fde handle TERMfNAL and its associated node handle. Closing an already
closed fde handle has no effect.

Parameten

TERMINAL is a fsle handle to be closed.

Exceptions:

None.

288

0

Downloaded from http://www.everyspec.com

DOD-STD-1838
C.MS_sCROLL_TERMINAL_IO

5.3.8.4
lS.OPEN

5.3.8.4 Determining whether a file handle is open

functiOn IS_OPEN (TESMINAL: in FILE_TYPE)
return WOLEAN;

Purpose:

This function returns TRUE if the fde handle.is open; otherwise, it returns FALSE.

Parameter:

TERMINAL is a ffie handle.

Exceptions:

None.

,,

,0
,’. . ,,

.,. .

. .

289

Downloaded from http://www.everyspec.com

,--

5.3.8.5 DOD-STD- 1838

NUMBER_OF_FUNCHON_KEYS

5.3.8.5 Determining the number of function keys

function NUbf6ER_OF_FONCTION_RSYS (TERMINAL:
return CAI S_NA~;

CAIS_SCROLL_TERMINAL_10

in FILE_TYPE)

This function returns the number of function keys defined for the terminal associated
with the internal fde identified by the ffle handle TERMINAL.

Parameter:

TERMINAL is an open file handle identifying the internal fde associated with the
terminal fde.

Exceptions:

STATUS.ERROR
is raised if the f~e handle TERMINAL is not open

MODE.ERROR is raised if the fie handle TERMINAL is of mode OUl_FILE

●

I

290

Downloaded from http://www.everyspec.com

10
I

I

‘o

DOD-STD-1838 5.3.8.6
CAtS.SCROLL_TERMINAL_IO lNTERCEITED_lNPUT_CHARACI’ERS

5.3.8.6 Determining intercepted input characters

fUrICtiOrSINTERCEP1’ED_INPOT_CHAFLACTSRS (TEPMINAL: in FILE_TYPE)
@Urrt CMCTER_AUIAY;

Purpose:

This function returns an array of type CHARACTER.ARRAY that indicates the input
characters that can never appear in the terminal file identified by TERMINAL due to
characteristics of the underlying system and the individual terminal for the mode under
which the fde handle TERMINAL was opened. A value of FALSE indicates that the
input character can appeaq a value of TRUE indicates that it cannot appear.

Parameter

TERMINAL is an open fde handle identifying the internal ffie associated with the
terminal fde.

Exceptions:

STATUS.ERROR
is raised if the file handle TERM3NAL is not open.

MODE_ERROR is raised if the f~e handle TERMINAL is of mode OUT.FILE.

Notes:

The input characters intercepted by an underlying system or an individual terminal may
differ with the mode (IN_FILE or INOU’_FILE) in which the file handle TE~NAL
is being accessed. The input characters being intercepted may also be affected by
whether or not function keys are enabled (see ENABLE_FUNCTTON_KEYS, Section

5.3.8.8, page 293).

291 .

. . .

Downloaded from http://www.everyspec.com

—_.

5.3.8.7 DOD-STD-1838

[NTERCEFT’ED_OUTPUT_CHARACTERS CAIS_SCROLL_TERMINAL_10

5.3.8.7 Determining intercepted mrtput characters

function IRTERCEPTED_OOTP~_CSSARACTERS (TEPMINAL: in FILE_TYPE)
return C55ARFLCTER_ARRAY;

Purpose:

This function returns an array of type CHARACTER.ARRAY that indicates the output
characters that can never appkm in the terminal fiie identified by TERMINAL due to
characteristics of tfW underlying system and the individual terinimd for the mode under
which the fde handle TERh@NAL was o@ned. A value of FALSE indicates that the
output character can appew, a value of TRUE indicates that it cannot appear.

Parameter
.. ,., ,;;

TERMINAL is an open file handle identifying the internal fde associated with the
terminal file.

Exception:

STATUS_ERROR
is raised if the file handle TERMfNAL is not open.

,! ,, :,.

MODE_ERROR is raised if the fde handle TERMINAL is of mode II’_FILE.
-.. . ,. !”. . ..’ “.,

The output characters intercepted by an underlying system or an individual terminal
may; differ with the. mode (OUTLFILE .OEINOUT_FILE),. in which the fde handfe
TERMINAL is being accessed: ; : . .;, ::!

291

..

●

Downloaded from http://www.everyspec.com

o

I

I

10

DOD-STD-1838 5.3.8,8
C..US.SCROLL.TERMINAL.1O ENABLE_FLJNtiONXEYS

5.3.8.8 Enabling and disabling function key usage

procedure ENABLE_FUNCTION_NNYa (TEm.tlNbL: in FILE_TxPE;
EF$A8LE: iN NCOLEAN);

Purpose

This procedure establishes whether function keys are read as a sequence of
CHARACTERS or as a function key number. A value of. TRUE for ENABLE
designates that function keys should be read as function key numbers. A value of
FALSE for ENABLE designates that function keys should be read as CHARACTERS.

Pmometers:

TERMINAL is an open ffle handle identifying the internal fde associated with the
terminal fde.

ENABLE indicates how finction keys are to appear.

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not oxm.

MODE_ERROR is raised if the fde handle TERMINAL is of mode OUT_FILE.

I

Notes:

The characters being intercepted may also be affected by whether or not function keys
are enabled. Intercepted characters can be part of a function key sequence when
function keys are enabled.

,.,

I

““”’

Downloaded from http://www.everyspec.com

=..

5.3.8.9 DOD-STD- 1838

FUNCrION_KEYS_ARE_ENABLED CAI_SCROLL_lXRMIN.4L1 O

5.3.8.9 Determining function key risage

function FUNCTION_tOtYS_ARE_ENASLED (TERMINAL: in FILE_TYPE)
retrrrn SOOLEAN;

Purpose:

This function returns TRUE f“ the function keys are enabled; otherwise, it returns
FALSE.

Parameter:

TERMINAL is an open ffle handle identifying the internal fde associated with the
terminal file.

Exceptions:

STATUS.ERROR
is raised if the fide harrae TER~NAL is not open

MODE.ERROR is raised if the file handle TERMINAL is of mode OUT.FILE.

,..

294

i.

Downloaded from http://www.everyspec.com

DOD-STO-1838 5.3.8.10

CAIS_SCROLL_TERMINAL.10 SET_ACTI~_POSITION

5.3.8.10 Setting the active positkm

procedure SET_ACTIVS_POSITION (TEwNU: hs FILE_~E;
POSITION : in TERblINAL_POSITION_TYPE) ;

Purpose:

This procedure advances the active position to the specified POSITTON on the internal
file identified by the output terminal file handle TERMINAL.

Parameters:

TERMINAL is an open ffle handle identifying the internal ffle associated with the
terminal file.

POSITION is the new active position in the output terminal ffle.

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not open.

MODE_ERROR is raised if the fJe handle TERMINAL is of mode JN_FILE.

TERMINAL_POSITION_ERRCXl
is raised if POSITION does not exist on the terminal or POSITTON
precedes the active position.‘0

I

295

,
v

Downloaded from http://www.everyspec.com

5.3;8.11 ‘ DOD-STD-1838

ACITVE.POStTtON CAIS.SCROLL.TERMINAI.10

5.3.8.1 I Determining the active position

function ACTIVS_POSITION (TERMINAL: in FI~_TYPE)
return mW-_P0sIT10N_TYP5t; ,,, .. ●

Pus-pose:

T&s function returns the” active position of the internal fiie identified by the output.
terminal fide handle TERMINAL. -

Parameter

TERMINAL is ai open fJe handle identifying the intemtd file associated with the
termhyl file.

Exceptions: ,..

STATUS_ERROR
is raised if the fiie handle TERMINAL is not open.

MODE.ERROR is rhised if the file ha&ile TERMINAL is of mode IN.FILE.

o
,.

2%

Downloaded from http://www.everyspec.com

. ,.. ,,.
.,. ‘“’,

!, ’-,
DOD-STD-1838 5.3.8.12

~CMS-SCROLL.TERMINAL.10, PAGE_SIZE

,. .,’
6.3JL1,2 Deterrnhiing the si~e of the terminal,

p“’””” , ““
~ h@etien PAGE_SIZE (TESMSNAL: in FILE_TYsE)
.. Msnli ‘TERMSNAL_POSITION_TyPIS;

,:,. ” @i&se:

,, “.~, finction mtus the maximum row and maximum colugm of me. internal fde
,.
,,,. idendfiid by the output terminal fde handle TERMINAL.. . . .

~ ““’””’”’;” “

,.

Pamnietef:., .’.

,... .TE@41NAL is” ti open fde han~e identifying the internal ffle associated with the
I terminal fide.

.

,. ,‘”Exceptions:

1.”’‘ .:,.’..,~STA~US_ERROR ,,
-., ;, .,

. . , “’:,”, ~~ is i.sised .if the file handle TERMfNAL is not open.

~““”:,” MODE_ERROR is raised if the file handle TERMINAL is of mode .~_FILE.

,.,’ ,,’ ‘,

,’*”’”’. ..:

,, .:,.

,.,,, :.

.

.,, ,
1. “

l’”

1’,,

1.”.

q ... ‘,,.

,. ,,. ,

●

297

Downloaded from http://www.everyspec.com

5.3.8.13 DOD-STD- 1838

SET_TAB_STOP CAIS.SCROLL_TERMINAL_10

5.3.8.13 Setting a tab stop

prosedureSET_T-_STOP (TERbtINAL:in S’ILE_TTPE;
KINO : hl TAS_STOP_KIND := HORIZONTM) ;

Purpose:

Thk” procedure establishes a horizontal tab stop at the column of the active position if
KIND is HORIZONTAL or a vertical tab stop at the row of the active positiori if KIND
is VERTfCAL.

Parameters:

TERMINAL is an open fde handle identifyissg tbe internal fde associated with the
terminal file.

KIND is the kind of tab stop to be set.

Exceptions:

STATUS.ERROR
is raised if the ffle handle TERMINAL is not open,

MODE.ERROR is raised if the fde handle TERMINAL is of mode fN_FILE.

,..’,“’ 298

Downloaded from http://www.everyspec.com

●

CAIS_SCROLL_TERMINAL_10

5.3.8.14 Clearing a tab stop

procedure CLEAR_TAS_STOP

DOD-STD- 1838 5.3.8.14
CLEAR_TAS_STOP

(TEKbtZN~ : in FILE_lYPE;
KIND : in TAX4_STOP_KIND := HORIZONTAL) ;

purpose:

TMs procedure removes a horizontal tab stop from the column of the active position if
KIND is HORIZONTAL or a vertical tab stop from the row of the active position if
KIND is VERTICAL. Removing a tab stop from a position that does not have a tab stop
has no effect.

Parameters:

TERMINAL is an open file handle identifying the internal fiie associated with the
termimd fde.

KIND is the kind of tab stop to be removed.

Exceptions:

STATUS_ERROR
is raised if the file handle TERMINAL is not open.

MODE_ERROR is raised if the fde handle TERMLNAL is of mode IN_~LE.

299

.—.

Downloaded from http://www.everyspec.com

5.3.8.15 DOD-STD- 1838

CLEAR.ALL.TA133STOPS CAIS_SCROLL_TERMtNAL_10

5.3.8.15 Clearing ail tab stops

p“nmdure cLEArt_Au_ms_smr?s. (TESMZNAL: in FILE_TYPE;
KIW : in TAS_STOP_KIND := SSORIZONTAL) ; ●

~rpose: .’, .;,

This procedure removes” & horizontal tab stops if KIND is HORIZONTAL or all
vertical tab stops if KIND is VERTICAL. Removing a tab stop from a position that
does not have a tab stop has no effect. ‘“ .,

.,, .,

Pamrneters:

T-AL : is an opeir fde handle identifying the internal file associated with the
.,,

terminal fiie. . ; ,,,. . .

KIND’ is the kind of tab stops to be removed.
.

Exception%” .,, ‘ ~ :

STATUS ~OR” “ : ‘.
,—

is raised if the fide hmdle TERMINAL is not open..

MODE2ERRORis raised if the fiie handle TERMINAL is of mode IN_FILE.

., ..,,

.,,

,.~.

.

,.

,. ,.

.

.,

:, ‘,

3r9

Downloaded from http://www.everyspec.com

●

DOD-STO-1838 5.3.8.16

CkS_SCROLt_TERMINAl_10

5.3.8.16 Advancing to the next tab oositicm

TAB

procedure T.AS (TEKJ41NAL:in FILE_TYPE;
COONT: in CAIS_POSITIVE
KINO : in TAS STOP KINO--

Purpose:. -

:=l.

:= HORIZONTAL) ;

This procedure advimces the active position COUNT tab stops. Horizontal advancement
causes a change in only the column number of the active position. Vertical
advancement causes a change in only the row number of the active position.

If there are fewer than COUNT tab stops following the active position, the active
position is advanced to the column of the maximum column (HORIZONTAL) or to the
row of the maximum row (VERTICAL).

Parameters:

TERMINAL is an open fde handle identifying the intemaI file associated with the
terminal fiie.

COUNT is the number of tab stops the active position is to advance.

KIND - is the kind of tab stop to which the active position will be advanced. :

Exceptions:

STATUS.ERROR .
is raised if the file handle TERMINAL is not open.

MODE.ERROR is raised if the file handle TERMINAL is of mode IN_FILE.

. .

Downloaded from http://www.everyspec.com

5.3.8.17

SOUND.BELL

DOD-STD-1838
CAIS_SCROLL_TERMINAL_IO

5.3.8.17 Sounding a terminal bell

procedure SOOND_BStLL (TESU41N~: in FILE-~PE);

Purpose

Th@ procedure sounds the bell (beeper) on the @emal fde identified by the output
terrnird f’iieTERMINAL.,.

,,. ...

Parameter ‘“ “ “ :

TERMINAL is an open fde handle identifying the internal fde associated with the
terminal fde.

Exceptions: - ,,

STATUS.ERROR
is raised if the file handle TERMINAL is not open

MODE_ERROR is raised if the fide handle TERMINAL is of mode W_FILE.

.:’,

,.

,.
.. ’.,’ ,,,-.~f. ., .,,

●

302

Downloaded from http://www.everyspec.com

5.3.8.18
PUT

DOD-STO-1838

CAIS_SCROLL_TERMIN.41_I0

5.3.8.18 writing to the terminal

prwxkre PUT (TSJU41NAL:in FILE_TXPE;
ITSM: in CNARACTER) ;

Purpose:

l%is procedure writes a single character to the internal ffle identiked by the ,output ffle
handle TERMINAL and advances the active position by one column. After a character
is written in the maximum column of a row, the active position is the first column of the
next row. After a character is written in the maximum column of the maximum row, the
active position is the fxst column of a new page.

Parameters:

TERMINAL is ~ open ffle handle identifying the internal ffle associated with the
terminal ffle.

ITEM is the character to be written.

Exceptions:

STATUS.ERROR
is raised if the fde handle TERMINAL is not open.

MODE_ERROR is raised if the fde handle TERMINAL is of mode IN_FILE.

Additional Interfaces:

procedure POT (TESAtINAL:in ~ILE_TYPE;
ITItM: in STRING)

is
begin

for INoEX in ITEM’FIRST .. ITEM’LAST bop
POT (TEPMINAL, ITSM (INDEX));

end loop;
end POT;

Notes:

Positioning to a new page constitutes advancing the active position an implementation-
dependent number of rows.

●
303

r

Downloaded from http://www.everyspec.com

5.3.8.19. .DOD-STD. 1838

. GET CALS_SCROLL.TERMINAt_IO

5.3.8.19 Reading a character from a terminal

ProcedureGET (TERMINAL: in
ITsM: out
NEYS : in out

Prrrpose:
,:’”

FILE TYPE ;
CN?&CTER;
FtJNCTION_SOSY_DESCRIPTOR);

This procedure reads either a sirrgle character into lTEM or a single function key
identification number into KEYS from the intemsf fde identified by the input fde

, hsndleTERI@NAL. If no character is av@able at the time of the call the interface does
not coinplete unt,jl a character becomes avaifable.

.,. .

Parameters .
. .

TERMINAL is ,& open fde ha&ile identifying the internal fde associated with the,,
terminal fde.

ITEM is the character that was read.

KEYS ,. is, the description of the function key that was read.

Exceptions:

STATUS.ERROR
.,

is raised if the “fde handle TERMINAL is not open.

MODE_ERROR is raised if the fide handle TERMINAL is of mode OU’I.FILE.

FUNC1’ION_KEY_STATUS_ERROR
. . . is “raised if KEYS haa ,qot been previously created by the” procedure

CREATE_FUNCTION_KEY_DESCRIPTOR (see, Section 5.3.8.21,
page .306) Md the value of FUNffION_KEYS_ARE_ENABLED (see
Section 5.3.8.9, page 294) is TRUE.

.,, . .

Notes:

lltii procedure will only return function key identification numbers in KEYS if
, !.:. furiction keys have been enabled’ (see’ .Section 5.3.8.9, page 294). Otherwise he
?.. charktcteis in the. ASCfl character sequence representing. the function key will appear

one at a time in JTEM. Use FUNCfION_KEY_COUNT (see section 5.3.8.23, page
308) to determine whether a character or function key was read.

● ’

NM

Downloaded from http://www.everyspec.com

I

DOD-STO- 1838

CAIS_SCROLL_TERMINAL_10

●
5.3.tL20 Reading all available characters from a terminal

procedure GET (TERMINAL: in rILE TYPE;
ITEM: Out STRI~G;
LAST : Out CAIS_NATUSAL ;
KEYS : in Out FCJNCTION_NEY_DltSCRIPTOR);

Pcrrpose:

,’. . 5.3,8.20

GET

This procedure successively reads characters and function key identification numbers
into lTEivl and KEYS, respectively, until either all positions of ITEM or KEYS are
filled or there are no more characters available in the internal ffle identified by the input
file handle TERMINAL. Upon completion, LAST contains the index “of ‘the I+st
position in ITEM to contain a character that has been read. If there are no elements
aviilable for reading from the internal fde, then LAST has a value one less than
ITEM’FIRST and FUNCTION_KEY_COUNT(KEYS) (see section 5.3.8.23, page 308)
is equal to zero. -.. .

Parapreters:
,,

TERMINAL is an open file handle identifying the internal fde associated widr’ the
terminal file.

ITEM is the string of characters that were read. ...

LAST is the position of the last chwacter read in ITEM. ‘
:.

●
.,

KEYS is a description of the function keys that were read.

.,, .$
Exceptions

STATUS.ERROR
is raised if the fde handle TERMINAL is not open.

MODE_ERROR is raised if the ffle handle TERMINAL is of mode OUT_FILE.

FUNCTION_KEY_STATUS_ERROR
-.. is raised if KEYS has not been previously created by the procedure

CREATE_FUNCTION_KEY_DESCRIPTOR (see Section 5.3.8.21,
page 306) and the value of FUNCITON_KEYS_ARE_ENAELED (see
Section 5.3.8.9, page 294) is TRUE.

Notes:

This procedure will only return function key identification numbers in KEYS if
function keys have been enabled (see the interface FUNCTION KEYS_ARE_
ENABLED, Section 5.3.8.9, page 294). Otherwise, the characters ‘@ the ASCII
chaiacter sequence representing the function key will appear in ITEM.

●

I-Ll-!x’ “

Downloaded from http://www.everyspec.com

5.3.8.21 DOD-STD-1838

CRR.4TE_FiJNClTON_KEY_DESCR1PTOR, CAIS_SCROLL_TERMINAL_10

5.3,8.21 Creating a function key descriptor

procedure CSZATZ_~UNCTION-REY_DESCRIPTOR
(lolYs : in out mJ?JCTION_REY-DESCRIPTOR;
36AXIbtUt4_COUNT:in CAIS_POSITIVE) ;

Purpose:

This procedure establishesa function key descriptorKEYS with capacity for

MAXfMUM_COUNT functionkey descriptions.

Parameters:

KEYS isthefunctionkey descriptorreturned.

MAXIMUM.COUNT
is the maximum “number of function key descriptions that may be read
into KEYS.

Exception%

None.

306

●

●

Downloaded from http://www.everyspec.com

DOD.STD- 1838 5.3.8.22
CAIS_SCROU_TERMINAL_10 DELETE_FUNCTION_KEY_DESCRIPTOR

5.3.8.22 Deleting a function key descriptor

prOCdMre DELETE_FUNCTION_REY_DESCRIPTOR
(RSYS: in out FUNCTION_NEY_DESCRIPTOR) ;

Purpose:

This procedure deletes a function key descriptor. The value of its parameter after the
call is as if it were never created by the procedure CREATE_FUNCTION_KEY_
DESCRIPTOR (see Section 5.3.8,21; page 306). Deleting a function key descriptor
that has already been deleted or that has neverbeen created has no effect.

Paran3eter:

KEYS is a function key descriptor.

Exceptions:

None.

307

Downloaded from http://www.everyspec.com

5.3.8.23 DOD-S’TLL1838
FUNC1’ION_KEY_COUIW CAIS_SCROLL_TERM2NALJ0

5.3.8.23Determining the number of function keys that were read,

‘function roNCTION_rcaY_CODNT (RSYS: in S’OyCTION_REY_DZ SCRXPTOR}
return CAIS~tWrorum;

,., ,
Purpose:,,......

..

~ function returns the number of function keys described in ,KEYS. ,

.
Parameter: ,!

KEYS is the functionkey descriptor being queried.

, ,,

Exception

FLJNCTION_KEY_STATLJS_EI@OR
is raised if KEYS h& not been previously created by the procedure
CRj3ATE_FUNCTION_KEY_DESCRIPTOR (see Section 5.3.821,
page 306).

}., ,
,,,

,,, , ;:,., .,.
.,

.-’ ..’, !., ,: .,.’

...

.... . ,., .,,

.,. .

.

“o

●
308

Downloaded from http://www.everyspec.com

DOD-STD-1838 5.3.8.24

I

o

C,yS_SCROLL_TERMINAL-m

5.3.8.24Determining functiop.key usage

procedure GET_S’UNCTION_RSY ,
(XZYS: in
INDltx : in
SXY_IDltNTIFIER: out
POSITION : out
,.

Purpose:

GETJ7JNCTtON_KEY

,!,

FUNCTION REY DESCRIPTOR;
CAIS_POS=TIW- ;
CAIS_POSITIVS ;
CAIS_NATUPAL) ;

This procedure returns the identification number of a function key. If KEYS was
obtained by GET (see Section 5.3.8.20, page 305) this procedure returns the position in
the string (read at the same time as the function keys) of the character following the
function key. If KEYS was obtained by GET (see Section 5.3.8.19, page 304) this
procedure sets POSITION to zero.

.: P,*,areters:.
.; KEYS ., ,.,.

ii.’the description of the frmction keys that were read.

INDEX is the index in KEYS of the timction key to be queried.

KEY.IDENTIFIER
is the identification number of a finction’ key

POSITION is the position of the character read after the function key.

Exceptions:

FUNCTION_KEY_STATUS_ERROR
is raised if KEYS has not been previously created by the procedure
CREATE_FUNCTION_KEY_DESCRI~OR (see Section 5.3.8.21,
page 306).

CONS~_ERROR
is raised if JNDEX is greater than FUNCTION_KEY_COUNT’(KEYS).

Notes:

See FUNCTION_KEY_IDENTIFICATION, Section 5.3.8.25, page 310, to get a strirrg
representation of the function key identification nomber returned in KEY_
IDENTIFIER.

309

Downloaded from http://www.everyspec.com

5.3.8.25 DOD-STD- 1838

FUNCTION.KEY.IDEJWIFICATION CAIS_SCROLL_TF.RMINAl_[O

5.3.tL25Determining the identification of a function key

function FONCTION_StttY_IDENTIITICATION
(TE3WINW : in s’ILE_TYPE;
NEY_IDENTIFIER: in CAIS_POSITIVE)

relum FNNCTION_NEY_NAS4E;

Pnrpose:

~is functionreturns the string identification of the funstiOn key designated by KEY_
IDENTIFIER.

.,
Parameters:

TERMINAL ‘‘is an open file handle identifying rhe internal file associated with the
terriiinsl fde.

KEY_lDENTTFIER
is the. identification number of a function key.

Exceptiorv

STATUS_ERROR ‘
is raised if the fiie handle TERMINAL is not open.

MODE_ERROR is raised if the fide handle TERMINAL is of mode OUT_FILE.

FUNCTION_KEY_STATUS_ERROR ●
is raised if the value of KEY_IDENTIFIER is greater than NUMBER_
OF_FUNCITON_KEYS(TERMINAL).

Notes:

Fmrctionkey names areimplementation-dependent.

310

Downloaded from http://www.everyspec.com

DOD-STD- 1838

CAIS.SCROLL.TERMINAL.10

5.3.8.26Determinirw the mode of a terminal

5.3.8.26
MODE

function MODE (TERMINAL: in FILE_TYPE)
reIum FILE_L@DE;

Pupose:

This function returns the mode under which the fde handle TERMINAL is opened.

Pararnete~

TERMINAL is an open fde handle identifying the internal fte associated with the
terminal ftie.

Exception:

STATUS_ERROR is raised if the fde handle TERMINAL is not open.

o
311

Downloaded from http://www.everyspec.com

5.3.8.27 DOD-STD- 1838

BACKSPACE CA2S.SCROLL.TERMINAL.1O

5.3.8.27 Backspacing the active position

prorerhrre SACKSPACIS (TEF.141NAL:in FILE_TYPE;.
..COUNT : , ‘in~ISdPOSIT IVE := 1) ;

Purpose:

This procedure sets the active position to the. colurng COUNT cohrrnns toward the
beginning of the active row. If COUNT is greater than or equal to the column number
of the active position, the active position is set to the first column.

Paameters:

TERMINAL is an open fde handle identifying the. internal fde associated with the
terminal file.

COUNT is the number of cokrrnns to backspace.

Exceptions:

STATUS_ERROR ~~
is raised if the fde handle TERMINAL is not open.

.,-,

MODE.ERROR is raised if the’ fde h&le TER~NAL is of mode IF.FILE.

Notes:

The CAIS does not define for a scroll terminal the results” of writing a character at a ●
position where a character has aheady been written. It maybe replaced or overstruck.

312

●

✎�

Downloaded from http://www.everyspec.com

l:,

,
1.:.,”!’

I

:O.

DOD-STD-1838

CAIS_SCROLL_TERtvllNAL_IO

5.3.8.28 Advancing the active position to the next line

procedure NSW_LINS (TS3U41NAL: in FILE_TYPE;
COUNT : in CAIS_POSITIVE

,~rpose:

:= 1);

5.3.8.28

NEW-LINE

This procedure advances the active position in the internal fifie identified by the output
terminsf fiie handle TERMNAL to column one, COUNT rows after the active position.

Pammeters:

TERMINAL is an open fde handle identifying the intemaf fde associated with the
terminal fde.

COUNT is the number of rows to advance.

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not open

MODE_ERROR is raised if the fide handle TERMINAL is of mode It’_FILE.

Notes: .

The next row after the maximum row of a page is the flwst row of a new page.

,,0
313

Downloaded from http://www.everyspec.com

5.3.8.29
NEW.PAGE

DOD-STT2-1838

CALS_SCROLL_T13RMINW_I0

5.3.8.29Advancing the active position to the next page

proced;re WXW_BAGtS(TEWblINAL: in FILE_TYPE) ;

Purpose:

This procedure advances the active position in the internal file identified by the output
terminal fiie handle TERMINAL to the first column of the fust row of a new page.

Parameter

TERMINAL is an open file handle identifying the internal fde associated with the
terminal file.

Exceptions:

STATUS.ERROR
israised ifthefde handle TERMINAL is not open.

MODE.ERROR is raised if the fiie handle TERMINAL is of mode fN_FILE.

Notes:

Positioning to a new page constitutes advancing the active position an implementation-
dependent number of rows.

●

I

●
314

I

Downloaded from http://www.everyspec.com

5.3.8.30
RESET

DOD-STD-1838

CAIS.SCROU.TERMINAL.10

5.3.8.30 Resetting a scroll terminal file handle

prOCedU~ R3X3ET (TERMINAL: iN OUt FILE_TYPE;
MODE: in FILE_b@DE) ;

Prrrpose:

This procedure sets the current mode of the file handle TERMINAL to the mode given
by the MODE parameter.

Parameters:

TERMINAL is an open fde handle identifying the intemaf file to be reset.

MODE indicates the new mode under which the file handle is to be reset.

Exceptions:

STATUS.ERROR
is raised if TERMINAL is not an open file handle.

INTENT_VIOLATION
is raised if the ffle node handle associated with the fde handle
TERMINAL was not opened with an intent specification including at
least the intents required for the MODE, as specified in Table X, page
209.

USE_ERROR is raised if the CAIS implementation does not support resetting the ffle
handle to the specified mode.

●
315

Downloaded from http://www.everyspec.com

‘5.3.8.31 “:DOD-STD-1838
SYNCHRONIZE - r ‘ ; CAIS_SCROLL_TERMINAl_10

5.3.8.31 Synchronizing the internal file ‘with file ‘node contents

procedure SYNCHR.iiNI~E(TERMIN&: in’FILE_TXPE) ;

This procedure forces ~1 data written to the internal fde identified by TERMINAL to
be transirni&e~to the content,: of the fiie nbde with which it is associated.

,,. ,,.’

Parameter:

TERMINAL is an open fie handle identifying the internal fde to be synchronized.

,.,. ,

Exceptions:

STATUS.ERROR .,
is raised if the ~ie handle TERMINAL is not open.

MODE.ERROR is raised if the ffle handle TERMINAL is of mode IP_FILE,

, ,.,
., , !,, , . ,- ‘w ...f , .,.

●

I

●
316

Downloaded from http://www.everyspec.com

DOD-STD.1838 5.3.8.32

CALS.SCROLL.TERMINAL.1O ENASLE_SYNCHRONIZATION

5.3.8.32Setting terminal file handle synchronization

procedure ENABLE_SYNCNRCrNISATION (TEPMIN?&: irlFILZ_TYPE ;
ENABLE : in SOOLEAN) ;

Purpose:

Tbia procedure establishes operations on the fde handle TERMINAL to be
synchronized if ENABLE is TRUE, otherwise, syncbronixation is implementation-
dependent.

Parameter5

TERMINAL is an open ftie handle identifying the internal file associated with
terminal fiie.

ENABLE indicates whether or not the file handle is to be enabled
synchronization.

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not open.

MODE_ERROR is raised if the.file identitled by TERMINAL is of mode’3N_FILE.

Not&: ..

the

for

When SYNCHRONIZATION_IS_ENABLED (see Section 5.3.8.33, page 318) retorna
FALSE for a file handle, the effect of synchronization for the fide handle can be
achieved by (1) preceding each read operation on the ffle handle immediately by a call
to SYNCHRONIZE (see Section 5.3.8.31, page 316) on the fde handle and (2)
following each write operation on the fde handle immediately by a call to
SYNCHRONIZE ‘on.the fide handle.

‘o
.317

.

Downloaded from http://www.everyspec.com

5.3.8.33 DOD-STD-1838

SYNCHRONIZ4mON_IS_ENABLED CAIS_SCROLL_TERMtN.41_I0

5.3.8.33Determining the synchroriixatkm of a terminal file handle

function SYNCNNOtUZATION_IS~ENA8LED (TERMINJU: in FILE_TYPE)
returnmOLSAN;

This function returns TRUE if the file handle is enabled for synchronization; otherwise,
it returns FALSE.

TERMINAL is an open file bade identifying the internal file associated with the
terminal fide.

Exceptions:

STATUS.ERROR
is raised if the fde handle TERMINAL is not open

MODE_ERROR is raised if the fde identfled by TERMINAL is of mode IF_FILE.

. .

318

Downloaded from http://www.everyspec.com

I

o

DOD-STO- 1838

C>S_PAGE_TERMINAL_10
5.3.9

5.3.9 Package CAN PAGE TERMINAL_K)

This package provides subprograms for communicating with a page terminal. The exceptions
raised by all subprograms in this package are defined in the packages CAIS_DEFINITIONS
and CAIS_IO_DEFINHTONS.

The functionality of this package is buih upon a subset of the operations defbred in [ANSI
79]. The physicaJ devices with which this package is intended to be used are typified by
interactive video dkplay terminals (i.e., interactive terminals that have a keyboard for
sending characters to the program using the CAIS_PAGE_TERM~AL_IO package and a
video screen for displaying the output from the CAtS_PAGE_TERMINAL_IO package).

Communication using the CAIS_PAGE_TERMINAL_IO package consists of reading
characters and/or function keys from the page terminal, modifying the page terminal display,
and querying characteristics of the page terminal.

Data read from a page terminal are either Ada characters or function key identflcation
numbers. These data are read using the GET functions. The data returned from a GET
operation consist of a string of Ada characters and, optionally, a list of function key
identification numbers. No function key identification numbers are returned if the function
keys have been dkabled. Instead, each function key identification number is translated into
an implementation-dependent sequence of Ada characters that are returned in GET
operations. The number of function key identification numbers and the string representation
of the names of the function key identification numbers are implementation (and page
terminal) dependent.

The dispIay device for a page te’iminsl has positions in which printable ASCII characters
may be graphically displayed. The positions are arranged into horizontal rows and vertical
columns. Each position is identifiable by the combination of a positive row number and a
positive column number. A d~play device for a page terminal has a freed number of
columns and rows. The rows are incrementally indexed starring with one at the top of the
output device. The columns are incrementally indexed starting with one at the left side of the
output device.

The active position on the output device of a page terminal is the position at which the next
operation will be performed. The active position is said to advance if (1) the row number of
the new position is greater than the row number of the old position or (2) the row number of
the new position is the same as the row number of the old position and the new position has a
greater column number. Similarly, a position is said to precede the active position if (1) the
row numbei’ of the position is less than the row number of the active position or (2) the row
number of the pos,it,ion is the same as the row number of the active position and the column
number of the posltlon is smaller than the column number of the active position.

When accessing a particuh page termimd it is important to know several aspects of the
terminaL Some of the information about the terminal that can be obtained by using
subprograms in this package are the characters from the Ada character set that cannot be read
from or written to the terminal (see INTERCEPTED_INPUT_CHARACTERS, Section
5.3.9.6, page 327) and INTERCEPTED_OUTPIJT_CHARACTERS, Section 5.3.9.7, page
328), the size of the terminal (see PAGE_SIZE, Section 5.3.9.12, page 333), the number of
function keys for the tennimd (see FUN~ON_KEY_COUNT, Section 5.3.9.23, page 344),

/’

319

—.

Downloaded from http://www.everyspec.com

-..

1.

5,3.9 DOD-STD-1838
,. CAIS-PAGE_lERMtNA3_10

the characteristics of writing a character into the last position on the output device (see END_
POSllTON_SUPPORT, Section 5.3.9.36, page 357), and the graphic renditions supported by
the individual terminal (see GRAPHIC_RENDITION_IS_SUPPORTED, Section 5,3.9,34, ●
page 355).

For W’write operations in the CAM the condition(s) upon which data are transferred from an
internal fde to the contents of a tet@rtal fde node are implementation-dependent. Data in the
internal ffle of a process are inaccessible to other processes. Synchronization of a page

terminal fde handle forces all data written to the internal ffle ident~led by the file handle to
be transmitted to the contents of the fde node with which it is associated. Synchronization
ensures that the data in the internal ffle and the data iri the contents of the ffie node coincide.

. .

.,,
,.,

,.. . ,,<. ’1... ,,,
,,,.,...

. ,., ,,, .,., i;

320

i

Downloaded from http://www.everyspec.com

●

I

I

I
●

DOD-STD-1838 5.3.9.1
CAIS_PAGE_TERMINAI_10 TYPES AND SUBTYPES

5.3.9.1 Types, subtypes and constants

type FILE_TYPE islimitedprivate;

typeS?XLE_MODE is [It?_FILE,00T_FILE, INOUT_FILE) ;

FfLE_TYPE describes the type for fde handles. FILE_MODE describ+ whether a ffle
hmdfe is to & used for input, output, or both.

type CHARACTER_ASRAY k array (CHASACTER) @ SCOLSA$~

typeF~CTION_tiY_DESCRIPTOR is limited private;

subtype FONCTION_RSY_N2U4S is STRING;

CHARACTER_ARRAY is used to determine the characters that are intercepted due to the
characteristics of the underlying system and the individual terminal. FUNCTION_KEY_
DESCRIPTOR is used to obtain information about function keys read horn a terrnioaL
FUNCTION_KEY_NAME is used to identify function keys by string representations.

type

type

tYP

type

type

TES2dINAX_POSITION_TFPE is
recwrd

Row: CAIS_POSITIVS;
COLOhNI: CAIS_POSITIVE ;

end record;

T~_STOP_StIND is (BORIZONTN, VSRTICAL) ;

SELECT_RAWGE_KIND is
(rRW_xTIn_POSITION_~_Em,
rROtd_STAAT_TC_ACTIVS_POSITION ,
ALL_POSITIONS) ;

GRAPHIC_PJNDITION_3C2N0 is
(pRINARY_RBNDITION,

soLo ,
FAINT ,
UNOERSCORX ,
SLOW_BLINK,
RAPID_BLINK,
REVttRSE_2MAGE) ;

GSAPHIC_itJSNDITION_~Y is array—
of SOOL~ ;

TERMINAL POSITION TYPE describes the

I

I
(GRAPHIC_RSNt21TION_KINt2)

tvoe for a Dosition on a terminal. TAB
STOP_KIND-is used to s-~cify the kind of tab s~~p to be sit. SELECT_RANGE_KIND ~
used in ERASE_IN_DISPLAY (see Section 5.3.9.30, page 351) and ERASE_fN_LINE (see
Section 5.3.9.31, page 352) to determine the portion of the display or line to be erased.
GRAPHIC_ RENDITION KIND and GRAPHIC RENDITION ARRAY are used to
&termine ~kplay chatact~ristics of printable characters. –

321

Downloaded from http://www.everyspec.com

5.3.9.1 DOD:STD-1838
CONSTANTS CAtS_PAGE_TERMINAL_IO

DEFAULT_GSAPHIC_SJND IT ION: COnStSM GSAPHIC_SENDITION_ARSAY : =
(PR2tdARY_SXNDITION => TRUE, BOLD. REVNRSE_IMAGE => FALSE) ;

oDEFAULT_GRApHIC_RENDITION is a constant used to determine display characteristics
of printable characters.

-1.

.,,

t ;,, i,,,,):, .:, .

322

●

o

Downloaded from http://www.everyspec.com

5.3.9.2

OPEN

DOD-STD-1838

CAIS_PAGE_TERMINAL.10

5.3.9.2 opening a page terminal file handle

prOC~U OPEN (TERMINAL: kr OUt FILE_TYPE;
NODE : in NODE_TYPE ;

MODE: in FILE_MODE) ;

Purpose:

This procedure returns an open fde handle in TERMINAL to the node identified by the
the node handle NODE.

Parameters:

TERMINAL is a fde handle, initially closed, to be opened.

NODE is an open node handle to the fde node.

MODE indicates the mode under which the file handle is opened.

Exceptions:

NODE_fUND_ERROR
is raised if the node identified by NODE is not a file node.

FILE_KIND_ERROR
is raised if the values of the predefmed file node attributes FfLE_XIND,
ACCESS_METHOD and DEVICE_XJND are not appropriate for the
package containing this procedure according to Table XI, page 210.

STATUS_ERROR
is raised if the file handle TERMINAL is ooen at the time of the call or if
the node handle NODE is not open.

USE_ERROR is raised if an open file handle identifies the same fde node contents and
the CAIS implementation does not support the existence of mrdtiple fde
handles identifying the same fde node contents. Any such restriction
must be documented in Appendix F. An implementation is allowed to
raise thk exception only if it is based on operating system support that
does not provide this capability.

INTE~_VIOLATTON
is raised if NODE was not opened with an intent specification including
at least the intents required for the MODE, as specified in Table X, page
209.

I Notes:
I

Closing the node handle associated with the ffle handle TERMINAL closes the fde
handle.

‘o
I
I .’ 323

.—

Downloaded from http://www.everyspec.com

. .
_.

5.3.9:3 DOD-STD- 1838

CLOSE CAIS.PAGE.TERMINAL.1O

5.3.9.3Closing a page terminal file handle

procedure CLOS= (TESMINAL: in out FILE_TYPE) ;
o

Purpose:

This procedure severs any association between the internal fde identified by the fde
handle TERMINAL and its associated node contents. It also severs any association
between the ffle handle TERMINAL and its associated node handle. Closing an already
closed fde handle has no effect.

Parametec

TERMINAL is a fde handle to be closed.

Exceptions:

None.

324

●

●

Downloaded from http://www.everyspec.com

●

I

I

10
I

DOD.STD- 1838

CAIS_PAGE_TERNUNAL_10

5.3.9.4
lS_OPEN

5.3.9.4Determining whether a file handle is open

function IS_OPEN (TERMINAL: in FILE_TrPE)
return SOOLSAN;

Purpose:

This function returns TRUE if the ffle handle is open; otherwise, it returns FALSE.

Parametec

TERMINAL is a fde handle.

Exception%

None. I

\

I

325

Downloaded from http://www.everyspec.com

!---

5.3.9.5 DOD-STD-1838

NUMBER_OF_FUNCTION_KEYS

5.3.9,5Determining the number of function keys

CALS.PAGE.TERMINAIJO

function NOMSER_O~_FONCTION_NEYS (TZSMINAL: in FILE_TYPE)
return CAI S_NATUSAL;

Purpose:
. .

This function remms the number of function keys defined for the terminal associated
with the internal fiIe identified by the fde handle TERMINAL.

Parameter:

TERMINAL is an open file handle identifying the internal fde associated with the
terminal file.

STATUS.ERROR
is raised if the fiie handle TERMINAL is not open.

MODE_ERROR is raised if the fde handIe TERMINAL is of mode OLJT.FILE

326

Downloaded from http://www.everyspec.com

‘o

DOD-STD-1838 5.3.9.6
CMS_PAGE_TERMtNAL_IO lNTERCEPTED_INPUT_CHARACTERS

5.3.9.6 Determining intercepted input characters

fUIICtiOn INTERCEPTED_INPUT_C~TERE (TERMINAL.:in FILE_TYPE)
return CtrASIACTER_mY;

Purpose:

This function returns an array of type CHARACTER.ARRAY that indicates the input
characters that can never appear in the terminal file identified by TERMINAL due to
characteristics of the underlying system and the individual terminal for the mode under
which the fde handle TERMINAL was opened. A value of FALSE indicates that the
input chwacter can appeaq a vahse of TRU-E indicates that it cannot appear.

Parameter

TERMINAL is an open file handle identifying the internal fde associated with the
terminal file.

Exceptions:

STATUS.ERROR
is raised if the fde handle TERMINAL is not open.

MODE_ERROR is raised if the file handle TERMINAL is of mode OUT_FILE.

Notes:

The input characters intercepted by an underlying system or an individual terminal may
differ withthemode (IN_FILE orINO~_FILE) inwhich thefde handleTERMINAL
is being accessed. The inputcharactersbeing interceptedmay alsobe affectedby

whether or notfunctionkeys areenabled (seeENAB LE_FUNCTION_KEYS, Section

5.3.9.8, page 329).

327

Downloaded from http://www.everyspec.com

5.3.9.7 DOD-STD-1838

1~Rt33~_o~pw_cHARA~R5 CALS_PAGE_TERMINAL_IO

5.3.9.7Determining intercepted output characters

fUnCdOnINTERCEPTED_OUTPUT_$~CTE~ (!l%wNl&: in FILE_TYPE)
Mum CSSARACTER_ARRAY;

●
,,

Purpose:

Thii function returns an array of ty@ CHARACTER.ARRAY that indicates the output
characters that can never appear in the terminal file identified by TERIWNAL due to
characteristics of the, underlying system and the, individual terminal for the mode under
which’ the fde han~e TERMINAL, was opened.” A vahe of FALSE indicates that the
output character can appea, a value of TRUE indicates that it cannot appea,

Parameter:

TtiINAL is an open ffle handle, identifying the internal fde associated with the
termmal fde. ”

.

Exception:

STATUS.ERROR
is raised if the file handfe TERMINAL is not open.

MODE_ERROR is raised if the ffie handle TERMINAL is of mode IF_FILE.

:. ,.

Notes:

The” output characters intercepted by an underlying. system or an individual termird o
may ,d~fer wi~ the, mode (OUT_FILE or INOUT_FI,LE), in which. the. fde fiarrdle
TEWAL is be~gaccessed.

.! ,

,.. ,

328

Downloaded from http://www.everyspec.com

o
,,..

,.
,.,

I

l.”‘

. . .

,,,.

““*”’:.

1.

I

!

I

~

I ,“”

~~~~~

I
I

I
~ ‘“

‘o,

.1

DOD-STD-1838 5.3.9.8
2NS_fiAGELTi3RMNliJ0 ENABLE_’~C+ON.KEYS

~.3,9.f LEnabling and disabling function key usage

‘pr&ed~ lSNASt&_rONCTION_NEYs (TESblINAL: & ~ILE_TYPE ; ..
ENASLE : “m SOOLEAN) ;

.

?Uiposc:

nk proeedurk establisheswhether function keys are read as a sequence” of

CH+CI’ERS or as a functionkey number. A value, of TRUE for ENABLE
designates that function keys should be read as function key numbers. A value of

FALSE for ENABLE designates that function keys should be read as CHARACTERS.

%rsmeters: . .

T~IFJAL is an open ftie handle identifying the internal fde associated with the

terminal fde.

EtiA.kLE indicates how limction keys are to appear.

,.
Exceptions:

STATUS-ERROR
is raised if the fde handle TERMINAL is not open. .,.

MODE.ERROR is raised if the fde handle TERMINAL is of mode O~_FILE.
,<

.“
Sotes:”’

. .
,,

me characters being intercepted are also affected by whether oi’ not function keys are
enabled. Intercepted characters can be part of a function key sequence when furiction
keys are enable~.

. .

. .

329

Downloaded from http://www.everyspec.com



5.3.9.9 DOD-STD-1838

FUNC1’tON_KEYS_.ARE_ENmLED CAIS_PAGE_TERMINAl_10

5.3.9.9Determining function key usage

fUnCtiOnFONCTION_KXYS_~_ENWLED (TESJIINAL:in FILE_TYPE )
rWluM SOOLEAN;

Purpose:

This fonction returns TRUE if the function keys are enabled; otherwise, it returns
FALSE.

Pararr&er:

TERMINAL is an open file handle identifying the internal fde associated with the
temrinal fde.

STATUS.ERROR
is raised if the fde handle TERMINAL is not open

MODE_ERROR is raised if the fiie handle TER~NAL is of mode 0~.FILE

330

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.9.10

I

●
I

I

I

o

I

CAIS.PAGE.TERMINAL.10

5.3.9.10 Setting the active position

prcadure SET_ACTIVE_POSITION

PutPose:

Sl?_ACIWE.POSITION

(TEPMINA.L : in FILE_TYPE;
POSITION : in TEPJIINl&_POSITION_TYPE) ;

This procedure advances the active position to the specified POSITION on the internal
fiie identified by the output terminal fie handle TERMINAL.

Pam.meters:

TERMINAL is an open fde handle identifying the internal fide associated with. the
terminal fde.

POSITION is the new active position in the output terminal fde.

Exceptions:

STATUS.ERROR
is raised if the fde handle TERIWNAL is not open.

MODE_ERROR is raised if the ffle handle TERMINAL is of mode lN_FILE.

TERMINAL_POSITtON=ERROR
is raised If POSITION does not exist on the terminal.

331

Downloaded from http://www.everyspec.com



. .

5:3.9,1i. bOD-sTD-1838

ACITVE_PbS1’llON CAIS_PAGE.TERN!INAL_IO

5.3.9.11Determining the active position ‘‘
,,

*D ACTIVZ_POSITION (TE~Nw: in FILE_TYPz)
returaTSNMINAL_POSITION_TYPE ;

Porpose: -
“This function rerur& the active position of the internal fiie identified by the output

terminsl fiie identified by TERMINAL.

Parameter

TERh@NAL ‘is an o-pkm fde handle identifying the internal fde associated with the
terminal fiie.

Exceptions:

STATUS.ERROR ~
is raised if the file handIe TERMINAL is not open.

MODE_ERROR is raised if the fide handle TERMINAL is of mode JN_FILE.

,,,,,.
332

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.3.9.12

CAIS.PAGE.TERMINALJO PAGE.SIZE

5.3.9.12Determining the size of the terminal

function PAGE_SIzE (TEFU41NAL: in FILE_TYPE) ,.
AUrrI TERNINAL_POSITION TYPE;

Purpose:

This function returns the maximum row and maximum .cohmm of the internal ffle
identified by the output terminal fde TERMINAL. ,

Parameters:

TERM3NAL is an open fde
terminaf file.

-.

handle. identifying the internal fjle associated with the

Exceptions:

STATUS.ERROR
is raised if the file handle TER~AL is not open.

MODE_ERROR is raised if the file handle TERMfNAL is of mode IFJ_FILE. ,.

333

Downloaded from http://www.everyspec.com



\
5.3.9.13 DOD-STDt838

SET_TAB_STOP CAIS_PAGE_TERMINAI_IO

5.3.9.13Setting a tab stop

procedure SET_TAS_STOP (TEFWINAL: in FILE_TYPE;
KIND :,,, io TAS_STO@_KIND := HORIZONTAL) ;

Purpose: ‘,

This procedure establishes a horizontal tab stop at the column of the active position if

KIND is HORIZONTAL or a verticaf tabstopattherow of theactivepositionifKIND
is VERTICAL.

TERMINAL is m open fde handle identifying the internal file associated with the
,te@v31 file.

KIND is the kind of tab stop to be set.

Exceptions:

STATUS.ERROR
is raised if the file. handle TERMINAL is not open,

MODE_ERROR is raised if the file handle TER~NAL is of mode IN_FILE

334

Downloaded from http://www.everyspec.com



CAIS.PAGE.TERMIN.AL1O

5.3.9.14Clearing a tab stop

procedure CLEAS_TAS_STOP

Purpose:

DOD-STD-1838 5.3,9.14

CLEAR_TAB_STOP

,.

(TEBMINl&: in FILE_TYPE;
3(IND: in TAI_STOP_KIN13 := HORIZONTAL) ;

This procedure removes a horizontal tab stop from the column of the active position if
KIND is HORIZONTAL oravenical tabstop from therow of the active position if
KIND is VERTICAL. Removing a tab stop from a position that does not have a tab stop
has no effect.

Parameters:

TERMINAL is an open fde handle identifying the internal ffi”e”associated with the
terminal fde.

KIND is the kind of tab stop to be removed.

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is riot open.

MODE.ERROR is raised if the fde handle TERMINAL is of mode IIN_FILE.

>

I

10

335

Downloaded from http://www.everyspec.com



5.3.9.15 DOD-STD.1838

CLEAR_ALL_TAB_STOPS CAIS_PAGE_TERMINAL_10

5.3.9.15clearing all tab stops

procedure CLEAR_WL_T-_STOP S (TEsJ61NAL: in FILE_TYPE; ●
KIND: irs TAs_STOP_KIND := HORIZONTAL) ;

This procedure removes all horizontal tab stops if KIND is HORIZONTAL or all
vesticiil tab stops’ if KIND “is VERTICAL. “Removing a tab stop from a position that

doekoot have’ a tab stop has no effect.
. ...,.

Parameters: , ,
.,,, .. ,.

TERMINAL ~~’,is an open fde handle identifying the internal fde associated with the
terminal file.

~~. is the kmd of tab stops to be removed

“Exceptions:

STATUS.ERROR
is raised if the fiie handle TERMINAL is not open.

MODE_ERROR is iaised if the file handle TERMINAL is of mode IN_FILE

,,;, .,

$. .,, \
:. ..,. ,. .:$, ‘., ...-’

336

Downloaded from http://www.everyspec.com



DOD-STD-1838

C.4LS.PAGEJENMINAL.10

5.3.9.16 Advancing to the next tab position

prOSHbI~ TAS (TEsMINAL: hi FILlt_TYPE;
COONT : in CAIS POSITIVE := 1;

5.3.9.16

TAB

KINO : in TAB_%OP_KZNO : = HORIZONTAL) ;

Purpose:

This procedure advances the active position COUNT tab stops. Horizontal advancement
causes a change in only the column number of the active position. Vertical
advancement causes a change in only the row number of the active position.

If there are fewer than COUNT tab stops foIlowing the active position. the active
rrosition is advanced to the column of the maximum column (HORIZONTAL) or to the
~ow of the maximum row (VERTICAL):. .‘

Parameters:

TERMINAL is an open ftie handle identifying the internal fde associated with the
termin~ fde.

\

COUNT is the number of tab stops the active position is to advance. .‘.

KIND is the kmd of tab stop to which the active position will be advanced.

Exceptions:

STATUS.ERROR
is raised if the fde handle TERMINAL is not open.

MODE_ERROR is raised if the fde handle TERMINAL is of mode JN_FILE..

337

Downloaded from http://www.everyspec.com



5.3.9.17 DOD-S’ID- 1838

SOfJND.BELL CAIS.PAGE-TERMINAL.10

5.3.9. ]7 Sounding a terminal bell

procedure SOOND_BELL (’TESMINAL: in FILE_l’YFE);

Purpose:

This procedure sounds the bell (beeper) on the internal fde identified by the output
ter@ral fiie identified by TERMINAL.

TERMINAL is an open file’”handle identifying the internal file associated with the
terminal file.

Exceptions:

STATUS_ERROR

is raised if the file handle TERMINAL is not open.

338

MODE_ERROR is raised if the. file handle TERMINAL is of mode fN_FILE.

Downloaded from http://www.everyspec.com



a

I

I

I

I

I

I

I

‘o

DOD-STD- 1838

CAIS_PAGE_TERMtNAL_IO

5.3.9.18

PUT

5.3.9.18writing to the terminal

prucerture POT (TEIU41NAL: in FILE_lTPE;
ITEM: in CHARACTER) ;

Purpose:

This procedure writes a single character to the internal file identified by the output fde
handle TERMINAL and advances the active position by one column. After a character
is written in the maximum column of a row, the active position is the fust column of the
next row. The effect of writing to the last position of a page is terminal-dependent, but
may be (partially) determined by using the function END_POSITION_SUppORT (see
Section 5.3.9.36, page 357).

Parameter:

TERMINAL is an open fde handle identifying the internal fde associated with the
terminal file.

ITEM is the character to be written.

Exceptions: ... .

STATUS.ERROR
is raised if the fde handle TERMINAL is not open.

MODE.ERROR is raised if the fde handle TERMINAL is of mode IFJ_FILE

Additional Interface:

procedure POT (TES141NAL: in FILE_TYPE;
ITEM: in STRING)

is
begin

fOrINOEX in ITSM, FIRST ITEM’ LAST hmp
POT (TEP.MINAL, ITSM (INDEX)) ;

end loop;
end PUT;

339

Downloaded from http://www.everyspec.com



,,

5.3.9.19 DoD-sTD.1838

GET CAIS-PAGE_%RMINAL_10

5.3.9;19Reading a character from a terminal’
,

procedure GE’S (TESMINAL:. is FSL?._TYPE ; ●
ITEM: :. out C~CTER;

KEYS: N! Out STJNCTION_tOrY_DESCRIP TOR) ;

Purpose: ~~ “ ‘“

This’ procedtire reads either a singIe character kto iTEM or a single function key
identification number ,jnto KEYS from the igtemal ffle identified by. the input ffle
handle TERMfNAL: If no ch~acter is availabie’ the interface does not complete untif
one becomes available. ,.

Parameters:

TERMINAL

ITEM

~~ KEYS

Exceptions:

.,

is an open fife handle identifying the internal ffle associated with the

terminat file.

is tfie’chsmcter that was read.

is the description of the function key that was read.

. .

STATUS_ERROR .
. is raised.if the fiie ts~~e TERMINAL .is not o&s.

. ,.

MO.DE_ERROR is raised if die fde handle TERfiNAL is @ mode’OUT_FILE. ●
FWtiION_KEY_STATUS_ERROR

is raised if KEYS has not been previously created by the procedure
CREATE_FUNCTfON_KEY.DESCRfPTOR (see Section .5.3.9.21,
page ,342)’ and” the v@e of FUNCTION_KEYS_ARE_ENABLED (see
Section 5.3.9.9, page 330) is TRUE.

,.

Notes:

This procedure will only return function key identification numbers in KEYS if
.”. function keys have been enabled (see Section 5.3.9.9, page 330). Otherwise the
~‘. chtiacters in the ASCII character sequence representing the fonction key will appear

one at a time in ITEM: Use FUNCTION_KEY_COUNT (see Section 5.3.9.23, page
3,44) to determine whether a character or function key was read.

.,

.’

,
340

Downloaded from http://www.everyspec.com



I

DOD-STD-1838 5.3,9.20

CAIS.PAGE_TERMINALJO GET

5.3.9.20Reading all available characters from a terminal ‘

tNOCWhIreGET [TESMINIJ: h FILE TYPE;. .
“ITEN: Out STRING;
LAST : out CAIS_NATUW& ;
KEYS : irs Out FONCTION_3tSY_DESCRIPToR) ;

Purpose:

This proceduresuccessivelyreadscharactersand frmctionkey identificationnumbers

intoITEM and KEYS, respectively, until either all positions of ITEM or KEYS are
fried or there are no more chmacters available in the internal fde identified by the input
fde handle TERMINAL. Uuon completion, LAST contains the index of the last
position in ITEM to contain-a charac~er that has been read. If there are no elements
available for reading from the input terminal fiie, then LAST has a value one less than
ITEM’FIRST’” and FuNcTION_KEY_COUNT(KEYS) (see Section 5.3.9.23, Page
344) is equaf to zero.

Parameters

TERMINAL is an open fie handle identifying the internal ffle associated. with the
terminal ffle.

,.
ITEM is the string of characters that were read.

,.

LAST is the position of the last character read in ITEM.

KEYS is the description of the function keys that were read.

Exceptions: .,
I

STATUS.ERROR
., is raised if the fde handle TERMINAL is not open.

~ MODE_ERROR is raised if the fde handle TERMINAL is of mode OUT_FILE.

FUNCTION.KEY.STATUS.ERROR
is raised if KEYS haa not been previously created by the procedure
CREATE_FUNCTiON_KEY_DESCRIPTOR (see Section 5.3.9.21,
page 342) snd the value of FuNCITON_KEYS-ARE-EN~ LED (see

. . Section 5.3.9.9, page 330) is TRUE.

Notes:

‘IIIia procedure will only return function key identification numbers in KEYS if
function keys have been enabled (see Section 5.3.9.9, page 330). Otherwise, the
chmactess in the ASCII character sequence representing the function key will aPPm in
ITEM.

34I

Downloaded from http://www.everyspec.com



5.3.9.21 DOD-STD- 1838
CRE,ATE_FUNCIION_KEY_DESCRIPTOR CAIS_PAGE_TERMIN W.10

5.3.9.21Creating a function key descriptor

Q~&tU- CREATE_KTNCTION_UEY_DESCRIPTOR
(RaYs: in out FUNCTION_XEY DESCRIPTOR;
~IL.NJl._COONT: in CAIS POSITI~–) ;

Puqtose:

This procedure establishes a fimction key descriptor KEYS with capacity for

MAXIMUM_CO(JNT function key descriptions.

Parameters:

KEYS is the function key descriptor returned.
.,. !

MAKrMuM_coLJFm.,
is the. rnsximum number of function key descriptions that may be read
into KEYS

Exceptions:

None.

342

Downloaded from http://www.everyspec.com



w!
DOD-STD- 1838 5.3.9.’22

CAIS_PAGE_TERMINAL_10 DELETF_FUNCTION_KEY_DESCRIPTOR

5.3.9.22Deleting a function key descriptor

procedrweDELETE FuNCTION_REY_D!LSCRIPTOR
‘(rwYs: in out ~UNCTION_SCSY_DIXiCRIPTOR);

Purpose

This procedure deletes a function key descriptor. The value of its parameter after the
call is as if it were never created by the procedure CREATE_FLJNCTfON_KEY_
DESCRIPTOR (see Section 5.3.9.21, page 342). Deleting a function key descriptor
that has already been deleted or that has never been created has no effect.

Pararnetec

KEYS isa flrnction key descriptor.

Exceptions:

None.

343

Downloaded from http://www.everyspec.com



5.3.9.23 DOD-STO-1838

FUNCTION.KEY.COUNT CAIS_PAGE_TERMlNA3_I0

5.3.!) .23 Determining the number of function keys that were read

fUrSCtiOIrFONCTION_~Y_COrJNT (KSYS: in FUNCTION_XEY_DESCRIPTOR)
returnCAIS_NATUSJU;

Propose:

This function returns the number of function keys described in KEYS

,
Parameter: ,.

KEYS is the function key descriptor being queried,
,,,

Exception:

FUNCTION_KEY_STATUS_ERROR
is raised if KEYS has not been previously created by the procedure
CREATE_FUNCTION_KEY_DESCRIPTOR (see Section 5.3.9.21,
page 342).

,.

,., ,,.

344

Downloaded from http://www.everyspec.com



DOD-STD,1838 5.3.9.24

CAIS.PAGE.TESMIN.%.10

5.3.9.24 Determining function key usage

PrOCeltum GET_~UNCTION_SEY
(ii.rs: in

INDEX : iir
sOtY_IDENTIFIER: out
POSITION : out

l,.

I

I

I

1.

.0

!,

I

~ “.0

GET.FUNCITON_KEY

FONCTION_ttSY_DESCRIPTOR;
CAIS_POSITIVS;
CAIS_POSITIVE;
CAIS_NATUSAL) ;

Purpose:
.

This procedure returns the identification number of a function key. If KEYS was
obtained by GET (see Section 5.3.9.20, page 341), this procedure returns the position in
the string (read at the same time as the function keys) of the character following the
function key. If KEYS was obtained by GET (see Section 5.3.9.19, page 340), this
procedure sets POSITION to zero.

Parameters:

KEYS is the description of the function keys that were read.

INDEX is the index in KEYS of the function key to be queried.

KEY_IDENTIFIER
is the identification number of a function key.

POSITION is the position of the character read after the function key.

Exceptions:

FUNCTION_KEY_STATUS_ERROR
is raised if KEYS has not been previously created by the procedure
CREATE_FUNCTION_KEY_DESCRIPTOR (see Section 5.3.9.21,
page 342).

CONSTRAINT.ERROR
is raised if INDEX is greater than FUNCITON_KEY_COUNT(KEYS). “.

.

‘ 345

Downloaded from http://www.everyspec.com



5.3.9.25 DOD-STD- 1838

FUNCTION.KEY.IDENTIFICATION CAIS_PAGE_TERMINAL_IO

5.3.9.25Determining the identification of a function key

funCtiOnrONCTION_KEY_ID~NTIF I CATION
(TZRNINM. :

●
in FILE_TYPE;

SOIY_IDSWTIFIER: in CAIS_POSITIVE)
relurn rONCTION NEY_NME;

This function returns the string identification of the fonction key designated by KEY_

Identifier.

TERMINAL is an open ffle handle identifying the internal ffle associated with the
terminal ffle.

KEY_lDENTTFIER
is the identification number of a function key.

STATUS.ERROR
is raised if the fiie handle TERMINAL is not open.

MODE_ERROR is raised if the fde handle TERMINAL is of mode OUIFILE

FUNCl’ION_KEY.STATUS_ERROR
is raised if the value of KEY_IDE~lFIER

OF_FUNC’TION_KEYS(TERMINAIJ

Notes:

Function key names are implementation-dependent.

L, :

,,. .

.+ . ,, ;.,,

.’,4

●
is greater than NUMBER_

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.3.9.26

CAIS_PAGE_TERMtNAI_IO MODE

5.3.9.26Determining the mode of a terminal

function D@DE (TEBMINAL: in FILE_l’YPE)
returnFILE_~DE;

Purpose:

This functionreturnsthemode under which thefiehandleTERMINAL isopened.

Parameter

TERMINAL is an open fflehandle identifyingthe internalfideassociatedwith the

terminalfile.

Exception:

STATUS.ERROR is raised if the file handle TERMINAL is not open.

I

,0

347

Downloaded from http://www.everyspec.com



CAIS_PAGE_TERMINAL_IO
5.3.9.27 DOD-STD-1838

DELETE_CHARACIER

5.3.9.27 Deleting characters

prOCHIureDELETE_CNARACTER., :(TE~NZ&: k, FILE_TYPE;
COONT : i13CAIS_POSITIVE := 1) ;

Purpose:

This proceduredeletesCOUNT chqractem on the active row starting at the active

positionand ,adv~cing,,towardthe maxigmm column. Adjacent charactersfollowing
the deleted characters are shifted toward the active position. Open space at the end of
the. ro”wis filled with space ,characters. me active position is not changed. If the value
of CO,~T is greater,,thW the number of columns in the active line between the active
position and the maximum columrr (inclusive), all positions on the active row from the
active column to the maximum column (inclusive) are replaced with space characters,

Parameters:

TERMINAL ‘ ‘~ “is an open frle handle identifying the internal ffle associated with the
terminal ffle.

..,,
COUNT isthe number of characters to be deleted.

Exceptions:

STATUS_ERROR ... . , ,, ~:. ,.,
is raised “ifthe file handle TERMINAL is not open.

... .,

MODE_ERROR is raised if”the f~e h~~e TERfiNAL is of mode fF_FILE.

. .

.. .

348

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.9.28

CALS.PAGE.TERM3NAIJ0 DELETE_LtNE

5.3.9.28Deleting lines

Drowhrre DELETE LINE {TESMINAL: in rILE TYPE;
“COONT: in CAIS:POSITIVE := 1) ;

Purpose:

This procedure deletes COUNT lines starting at the active row and advancing toward
the maximum row. Lines following the deleted lines are shifted toward the active
position. Open space at the end of the page is filed with erased lines. The active
position is not changed. If the value of COUNT is greater thao the number of rows
between the active row and the maximum row (inclusive), the rows from the active to
the maximuni row (inclusive) are replaced with erased lines.

Parameters:

TERMINAL is an open fde handle identifying the internal fde associated with the
terminal file.

COUNT isthe number of Iines.to be deleted.

Exceptions:

STATUS.ERROR
is raised if the fde handle TERMINAL is not open.,.

MODE_ERROR is raised if the file handle TERMINAL is of mode IN_FILE.

-.

349

Downloaded from http://www.everyspec.com



5.3,9.29 DOD-STD-1838

ERASE_CHARA~ER CAIS.PAGE.TERMINAL1O

5.3.9.29Replacing characters in a line with space characters

praeedrrre ERASE_CUCTER (TERMINAL: in FILE_TypE;
COUNT : in CAIS_POSITIVE := 1);

This procedure replaces COUNT characters on the active line with space characters
starting at the active position and advancing toward the maximum column. The active
position is not changed. If the value of COUNT is greater than the number of cohunrrs
in the active line between the active position and the maximum column (inclusive), all
positions on the active row from the active column to the maximum column (inclusive)
are replaced with. space characters.

Parameters:

TERMINAL is an open fde handle. identifying’ the internal file associated with the
terminaf fde.

COUNT is the number of characters to be erased

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not open.

MODE.ERROR is raised if the file handle TERMINAL is of mode IN_FILE.

.

,..-i—-.

,..—
q
.—...——

~
—.—
-.-..—

. .
:
:

—

350

Downloaded from http://www.everyspec.com



,0

DOD-STD- 1838 5.3.9.30

CAIS.PAGE.TERMINAL.1O ERASE_lN_DISPLAY

5.3.9.30Erasing characters in a display

procedure EKASE_IN_DISPIJLY (TESMINAL: in FILE_TYPE;
SELECTION : in SELECT_RANGE_KINO) ;

Pulq30se:

This procedure erases the characters in the display as determined by the active position
and the given SELECTION (including the active position). After erasure, erased
positions have space characters. The active position is not changed.

Parameters:

TERMINAL is an open fde handle identifying the internal fde associated widr the
terminal file.

SELECTION is the portion of the display to be erased,

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not. open.

MODE_ERROR is raised if the fde handle TERMINAL is of mode IN.FILE.

35I

I

Downloaded from http://www.everyspec.com



. .—

5.3.9.31 DOD-STD-1838

ERASE.lNJJNE CAIS.PAGE_TERMINAl_10

5.3.9.31Erasing characters in a line

procedure ~RASll_IN_LINE (TERMINAL: in FILE_TYiE;
SELECTION : in SELECT_M,GE_KIND) ;

Purpose:

This procedure erases the characters in the active. line as determined by the active

position and the given SELECTION (including the active position). After erasure

erased positions have space characters. The active position is not changed.
. .

Parameters:

TERMINAL . ~e~~~”fdeis an open fide handle identifying the internal fde associated with the

SELEC~ON “is the portion of the line to be erased.

Exceptions:

STATUS_ERROR
is raised if the file handle TERMINAL is not open.

MODE.ERROR is raised if the’fde handle TERMINAL is of mode IN_FILE.

,.

352

!,

Downloaded from http://www.everyspec.com



DOD-STD: 1838
C.MS_PAGE_TERMINAL_IO

5.3.9.32
INSERT_SPACE

5.3.9.32Inserting space characters in a line

procedure INSERT SPACE (TES141NAL:in FILE TYPE;
COUNT: in CAIS~POSITIVE := 1) ;

Purpose:

Thii procedure inserts COUNT space characters into the active line at rhe active

position. The character at the active position and following ch~acters on the active row
we shitled toward the maximum column. The COUNT last characters on the row are

lost. The active position is not changed.

Parameters

TERMINAL is an open file handle identifying the internal file associated wirh the
terminal file.

COUNT is the number of space characters to be inserted.

Exceptions

STATUS.ERROR
is raised if the fiie’handle TERMINAL is not open.

MODE.ERROR is raised if the fife handle TERMINAL is of mode IN.FILE.

0
353I

Downloaded from http://www.everyspec.com



5.3.9.33 DOD-STD- 1838
INSERT.LM3 CAtS_PAGE_TERMINAt_IO

5.3.9.33Inserting blank lines in the output terminal file

prOCedureINSllRT_LIUE (TEl+ltINAL: in FILE_TYPE;
Com : in CAIS_POSITIVE := 1);

Purpose:

This procedure inserts COUNT erased lines into the output terminal fife at the active
line. The lines at the active position and following rows are shifted toward the
maximum row. The COUNT last lines of the display are lost. The active row is not
changed. he active column is changed to one.

Parameters:

TERMINAL is an open fiie handfe identifying the intemaf fde associated with the
terminal fde.

Cofm-r is the number of blank lines to be inserted.

Exceptions

STATUS.ERROR
is raised if the ,fde handle TERMINAL is not open

MODE_ERROR is raised if the, fde.handle TERMINAL is of mode IIIFILE.

354

Downloaded from http://www.everyspec.com



DOD-S~-1838 5.3.9.34
CAIS_PAGE_TERMINAL_10 GRAPHIC_RENDIT’ION_IS_SUPPORTED

5.3.9.34 Determining graphic rendition support

fisnctionGRAPHIC RENDITION IS SUPPORTED

(~ESiiINAL : in FILE_TYPE;
tWNDITION: in GRAPNIC_RENDITION_ANRAY)

returnSOOLEAN;

Purpose:

I

This function returns TRUE if the combined graphic renditions RENDITION are
supported by the internal file identfled by the output fde handle TERMINAL,
otherwise, it rensms FALSE.

Parameters:

TERMINAL is an open fde handle identifying the” internal file associated with the
terminal file.

RENDITION is a combination of graphic renditions,

,

Exceptions:

STATUS.ERROR—
is raised if the fde handle TERMINAL is not open.

MODE.ERROR is raised if the file handle TERMINAL is of mode IN_FILE.

.,, ,

Downloaded from http://www.everyspec.com



5.3.9.35 DOD-STD-1838
SELECT.GRAPHIC.RENIXTION CALS_PAGE_TERMtNAL_10

5.3.9.35Selecting the graphic rendition

procedure SELECT_GRAPHIC_RJINOITION
(TEiUdINAL: in rILE_m E;
RENDITION: in GRAPHIC_RJNDITION_ARRAY :.

D&FAULT GAAPHIC_tUNDITION) ;

Pu@se:

This procedure sets the graphic rendition for. subsequent characters to be output to the
internal fide identified by the output fiie handle TERMINAL.

Parameters:

TERMINAL is am open file handle identifying the internal ffle associated wi@r the
terminal fiie.

RENDITION isthegraphic rendition to be used in subsequent ourput operations

Exceptions:

STATUS.ERROR
is raised if the fide handle TERMINAL is not open.

MODE_ERROR is raised if the ffle handle TERMINAL is of mode IN_FILE

Downloaded from http://www.everyspec.com



.

! ‘ ‘-,,.
CAISLPAGE.TERNUNAL.10

DOD-STD- 1838
i>’

.r 5.3.9.36
END_POSl~ONZSUPPORT

1’-,.j> ‘“:3.9.36 Determining the effect of writing to the end position

●~.

I -
functionEND_POSITION_StlPPORT (TEFOSINAL:in FILE_TYPE)

remrn SOOLEAN;

Puspose:

This function returns TRUE if, after writing a character to the position at the maximum
row and maximum column of the internal file identified by the fide handle TERMINAL,
the ordy changes to the internal fde are that (1) the character is graphically displayed in
the maximum row and maximum column position and (2) the active position is. set to
the frost row and fwst column of the terminal file; otherwise, it returns FALSE.

Pammetec

TERMINAL is ass open file handle identifying the internal fde associated with the
tenninat ffle.

Exceptions:

STATUS_ERROR
is raised if the file handle TERMINAL is not open.

MODE.ERROR is raised if the fde handle TERMINAL is of mode lN_FILE.

●

3s7

Downloaded from http://www.everyspec.com



s.
:..

:.

1:-::
,-
..

.
:<
::

I
5.3,9.37 ), DOD-STD- 1838

.@SET~ ~~
.

5.3.9.37Resetting a p&e terminal file handle

procedure RESET (TESMINAL: in out S’ILE_TYPE;
b@DE :

~ FILE_MODE) ;

‘1
CAIS_PAGE_TERMtNAL_IO

Purpose:

This procedure sets the current mode of the ffle handfe TERMINAL to the mode given
by the MODE parameter.

Parameters:

TERMINAL is an open file handle identifying the terminal fife handle to be reset.

MODE indicates the new mode under which the ffle handle is to be reset.

Exceptions:

STATUS.ERROR
is raised if TERMfNAL is not an open file handle.

INTENT.VIOLATION ‘~
is raised if the fiie node handle associated with the file handfe
TERMINAL was not opened with an intent specification including at

least the intents required for the MODE, asspectiled in Table X, page
209.

USE_ERROR is raised if the CAIS implementation dews not support resetting the fde ●
handle to the specified mode.

?.~.

::..,
..
...
:,....
----
..

.

358

Downloaded from http://www.everyspec.com



I

DOD-STD- 1838

CAIS_PAGE_TERMINAL_10

5.3.9.38 Synchronizing the internal file with file node contents

procedure SYNCHRONIZE (TEFMINAL: in S’ILE_TYPE);

5.3.9.38
SYNCHRONIZE

Purpose

This procedure forces all data written using the fde handle TERMINAL
transmitted to the contents of the ffle node with which it is associated.

Parametec

TERMINAL is an open file handle identifying the fide to be synchronized.

Exceptions

STATUS.ERROR
is raised if the file handle TERMINAL is not open.

I (

I

I

I

o

MODE.ERROR is raised if the fde handle TERMINAL is of mode IN_

o

359

FILE.

to be

L

Downloaded from http://www.everyspec.com



5.3.9.39 DOD-STD-1838

ENABLE.SYNCHRONIZATION

5.3.9.39 Settim? terminal file handle synchronization

prCWduIWENABLE_SYNCHRONI ZATION (TESM2NAL:
ENASLE :

Purpose:

CAtS_PAGE_TERMINAL_10

in FILE_TYPE;
in BOOLEAN) ;

This procedure establishes operations on the. fiie handle TERMINAL to be
synchronized if ENABLE is TRUE; otherwise, synchronization is implementation-
dependent.

Parameters:

TERMINAL is an open file handle identifying the internal ffle associated with the
terminal ffle.

ENABLE indicates whether or not the fle handle is to be enabled for
synchronization.

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not open.

MODE.ERROR is raised if the fde handle TERMINAL is of mode IN_FILE.

Notes:

When SYNCHRONIZATION_IS_ENAB LED (see Section 5.3.9.40, page 361 ) returns
FALSE for a fde han$le, the effect of synchronization for the ffle handle can be
achieved by (1) preceding each read operation on the fiie handle immediately by a call
to SYNCHRONIZE (see Section 5.3.9.38, page 359) on the file handle and (2)
following each write operation on the fde handle immediately by a call to
SYNCHRONIZE on the file handle.

360

Downloaded from http://www.everyspec.com



DOD-STO- 1838 5.3.9.40
CAIS_PAGE_TERMINAL_IO SYNCHROMZATION.ISJSNAB LED

5.3.9.40Determining the synchronization of a terminal file handle

tiction SYNCm0N12AT10N_IS_ENASLED (TEru4zNra.: in FILE_~E)
return BOOLSAN;

This function returns TRUE if the fde handle is enabled for synchronization, otherwise,
it returns FALSE.

Pamrneter

TERMINAL is an open fiie handle identifying the internal file associated with the
terminal fde,

Exceptions:

STATUS_ERROR
is raised if the file handle TERNUNAL is not open,

MODE_ERROR is raised if the ffle handle TERMINAL is of mode IN_FILE.

,.

[.
..
.-

361

Downloaded from http://www.everyspec.com



5.3.10 DOD-STZA1838
CAIS_FORM.T’ERMINAI_IO

‘5.3.10 Package CAIS FORM TERMINAL 10

This package provides the functionality of a form terminrd. A form terminrd consists of a
single device (inasmuch as a programmer is concerned). The exceptions raised by all

●
subprograms in this package are defined in the packages CAfS_DEFIMTIONS and C~S_
IO_DEFINflTONS

The scenario for usage of a form terminal has two active agents: a process and a user. Each
interaction with the form terminal consists of a three-step sequence. First, the process creates
and writes a form to the terminal. Second, the user modifies tlie form. Third, the process
reads the modified form.

A form is a two-dimensional matrix of character positions, i.e., places on a form where
printable ASCLI characters may be displayed. The rows of a form are indexed by positive
numbers starting with row one at the top of the display. The columns of a form are indexed
by positive numbers sttiing with column one at the left side of the form. The position
identified by row one, coknnn one, is calfed the start position of the form. The position with
the highest row and column index is called the end position of the form.

The active position on a form is the position at which the next operation will be performed.
The active position is said to advance if (1) the row number of the new position is greater

than the row number of the old position or (2) the row number of the new position is the

same as the row number of the old position and the new position has a greater column

number. Similarly, a position is said to precede the active position if (1) the row number of
the position is less than the row number of the active position or (2) the row number of the
position is the same as the row number of the active position and the column number of the
position is smafler than the column number of the active position. ●
A form is divided into qualified areas. A qualified area identifies a contiguous group of
positions that share a common set of characteristics. A qualified area begins at the position
designated by an area qualifier and ends either at the end position of the form or at thF
position preceding the next area qualifier toward the end of the form. Qualification <IT
positions preceding the first area qualifier on a form is implementation-dependent. The area
qualifier at the beginning of an area defines the set of characteristics for that area. Depending
on the form, the position of the area qualifier may or may not be considered to be in a
qualified area. The characteristics of a qualified area consist “of such things as protection
(from modtilcation by the user), display rendhions (e.g., intensity), and permissible values
(e.g., numeric only, alphabetic only). Each position in a qualified area contains a single
printable ASCII character.

362

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.10.1
C.41S_FORM_TERMINAL_10 TYPES AND SUBTYPES

5.3.10.1 Types and subtypes

VP FILE_TYPE is limited private;

tYfX FOKM_TYPE is Iimited private;

FILE_TYPE describes the type for ffle handles. FORM_TYPE describes characteristics of
forms.

typeCRAPACTER_ARRAY isarray (C33ABACTER)of BOOLEAN;

subtype FWCTION_itEY_NAME is STRING;

CHARACTER_ARRAY ,is used to determine the characters that are intercepted due to the
characteristics of the underlytig operating system and the individual terminal. FUNCTION_
KEY_NAME is used to identifi function keys by string representations.

type

type

tYPe

type

type

TERMINAI_POSITION TYPE is
recvrd

Row : CAIS POSITIVS ;
COLUMN : CAIS-POSITIVE;

end record;

ARJSA_INTENSITY KIND is
(NONE ,
NORMAL ,
HIGH) ;

AREA_PKOTECTION_KIND is
(UNPROTECTED ,
PROTECTED) ;

AREA_INPUT_KIND is
(G3WHIC_CNMIACTERS ,
NOMtRICSr
ALPSAEETICS) ;

ARW_VALUE_KIND is
(NO_iILL, –
FILL_WIT3i_ZER03tS ,
FILL_WITH_SPACES ) ;

TERMINAL_POSIT’ION_TYPE describes the type of a position on a termimd. AREA_
INTENSITY_KIND indicates the intensity at which the characters in the area should be
displayed; NONE indicates that characters are not displayed. AREA_PROTECTION_KIND
specifies whether the user can modify the contents of the area when the fomr has been
activated. AREA_INPUT_IUND specifies the valid characters that may be entered by the
useq GRAPHIC_CHARACTERS indicates that any printable character may be entered.
AREA_VALUE_KIND indicates the initial value that the area should have when activated;
NO_FILL indicates that the value will be specified by a PUT statement,

subtype PRINTARLE_CKARACTER is CSABACTER rsnge f ; . ASCII. TILOE;

PRINTABLE_CHARACTER describes the characters that can be output to a form terminal.

363

Downloaded from http://www.everyspec.com



5.3.10.2 DOD-STD-1838

OPEN CAIS_FORM_TERMINAL_IO

5.3.10.2 opening a form terminal file handle

prucedure OPEN (TPXU41NAL: in out ETLE_TYPE;
NODE : in NoDE_TYPE );

Purpose:

This procedure opens a fiie ha&ile on a terminal ftie, given an open node handle on the
associated terminal file node.

Parameters:

TERMINAL is a fide handle, initially closed, to be opened.

NODE is an open node handle to the fde node.

Exceptions:

NODE_KIND_ERROR
is raised if the node identified by NODE is not a file node.

FILE_KIND_ERROR
is raised if the values of the predefine file node attributes FILE_KIND,
ACCESS.METHOD and DEVICE_KIND are not appropriate for the
package containing this procedure according to Table XI, page 210.

STATUS_ERROR
is raised if the ffle handle TERMINAL is open at the time of the call or if ●
the node handle NODE is not open.

USE_ERROR is raised if an open fide handIe identifies the same file node contents and
the CAM implementation does not support the existence of multiple f~e
handles identi~ing the same ffle node contents. Any such restriction
must be documented in Ap@ndm F. An implementation is allowed to
raise this exception only if it is based on operating system support that
does not provide this capability.

INTENT_VIOLATION
is raised if NODE was not opened with an intent specification including
at least the intents required for reading and writing contents.

Notes:

CIosing the node handle associated with the fde han@e TERMINAL closes the ffle
handle.

364

Downloaded from http://www.everyspec.com



DOD-STD-1838

CAIS.FORM.TERMINAL.10

5.3.1O.3 ~lming a form terminal file handle

● procsdure CLOSE (TERMINAL: in out FILE_TYSE ) ;

10

IO

5.3.10.3
CLOSE

This procedure severs any association between the internal fde identified by the fde
handle TERMINAL and its associated node contents. It also severs any association
between the fde handle TERMINAL and its associated node handle. Closing an afready
closed f~e handle has no effect.

Parametec

TERMINAL is a ffle handfe to be closed.

Exceptions:

None.

365

/

Downloaded from http://www.everyspec.com



5.3.10.4 DOD-STO-1838
IS_OPEN CAIS_FORM_TSRMINAI_10

. . . . .

5.3~10.4 Determining whether a file handle is open

fIIdiOn IS_OPEN (TllS1.tINAL: in STLE=TYPE)
return SOOLEAN;

. . .. . ‘.
,,

Purpose:

This finction returns TRUE if the ftie handle is operG otherwise, it returns FALSE.

~m&eteK ‘ ‘ : ‘“”, , ,, ‘“ “,,:

TERMINAL is a fde handle.

Exceptions: -1 .,

None.
,, ,’::-’,

. .

.,.

366

●

A

Downloaded from http://www.everyspec.com



,

DOD-STD- 1838 5.3.10.5

CAIS.FORM.TERMINU.JO

●
,.’ qER_OF_FLN71TON_KEYS:’

5.3.10.5 Determining the number of function keys

function NUMSER_Or_rONCTION_RsiYS (TERMINAL: in rILE-TYPE)
return Cr&lS_r.lATURAL;

Purpose:

This function returns the number of function keys defied for the terminal associated
with the internal fde identified by the fiie handle TERMINAL.

Paramete~

TERMINAL is so open fiie handle identifying the internal fde associated with the
terminai file.

Exception:

I STATUS.ERROR
is raised if the fide handle TERMINAL is not open,I

‘o
. .

367

Downloaded from http://www.everyspec.com



\

5.3.10.6 DOD-STD-1838

INTERCEFTED_INPW_CHARACl%RS CAIS_FORM_TERMtNAt_IO

5.3.10.6 Determining intercepted input characters

function INTERCEPTED_INPUT CHr@.ACTEFS (TERblINl&: in FILE_TYPE)
return CRARACTER AP.RAY7

Purpose:

This firnction returns an array of type CHARACTER.ARRAY that indicates the input
charactem that can never appear in a form activated on the terminal file handle
TERMINAL due to ,characteristics of the underlying system and the individual
terminal. A value of FALSE indicates that the input character can appe~ a value of
TRUE indicates that it cannot appear.

Parameter:

TERMINAL is an open ffle handle identifying the internal fiie associated with the
terminal fiIe.

Exception:

STATUS.ERROR
is raised if the fide handle TERMINAL is not open

368

Downloaded from http://www.everyspec.com



DOD-STD-1838

CAIS_FORM_-iMWtIN.iIJO

5.3.10.7 Determining intercepted output characters

5.3.10.7
INTERCEFTIQOOTPIJ_CHARACTERS

function INTERCEPTED 00TPu!r CHARACTERS (TERMINAL: in FILE TYPE)
relum CHARACTER-ARRAY;-

Purpose:

Thisfunctionreturnsan arrayoftypeCHARACTER.ARRAY thatindicatestheoutput

charactersthatcm never appear in a form activatedon the terminalfilehamdle
TERMINAL due to characteristics of the underlying system and the individual
terminal. A value of FALSE indicates that the output character can appeaq a value of
TRUE indicates that it cannot appear.

Parameter

TERMINAL is an open ftie handle identifying the internal fde associated with the
terminal ftie.

Exception

STATUS_ERROR
is raised if the fife handle TERMINAL is not open.

I
I

o

L

369

Downloaded from http://www.everyspec.com



5.3.10.8
CREATE.FORM

5.3:10.8 Creating a form

DOD-STD- 1838

CAIS_FORM_TERMINAL_IO

procedare CREATE_FOSM
(Foss.r : in out FOSu.3_~PE;
ROWS: in eAIS_pOSITIVE;
COLUMWS: in CAIS_POSITIVE;
AREA_QUIUIFIER_REQUISES_SPACE; in SOOLSAW) ;

This procedure creates a form. The form is erased (see Section S.3. 10,18, page 380).

Parameters:

FORM is the form created.

Rows isthe number of rows in the form.
.

COLUMNS is the number of columns in the form.

AREA_QUALIF3ER_REQUIRES_SPACE
indicates whether or not an area qualifier requires space on the form.

Exception:

FORM_STATUS_ERROR
is raised if the form FORM exists (was created) at the time of the caIL ●

370

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.10.9
CAIS.FORM.TERM3NAL.10 DELETE_FORM

5.3.10.9 Deleting a form

procedure DELETE_FORM (FOBM: in out FORbt_TYPE);

Purpose:

This procedure deletes a form. The value of its parameter after the call is as if it were
never created by the procedure CREATE_FORM (see Section 5.3.10.8, page 370).

Deleting an already deleted form or a form that was never created has no effect.

FORM is a form

Exceptions

None.

371

Downloaded from http://www.everyspec.com



5.3.10.10 DOD-STD-1838

COPY.FORM

5.3.10.10 Copying a form

procedure COPY_FORM (FR@t: in FOPJt_TYPE;
TO: in out FOFOt_TYPE);

CAIS.FORM_’TERMIN.41_I0

This procedure copies the value of the form FROM to the form TO.

Parameters:

FROM is the form to be copied.

TO is the form receiving the value.

Exception

FORM_STATUS_ERROR
is raised if FROM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

Notes:

If the form TO does not exist at the time of the call, it is created with the same
parameters with which the form FROM was created.

!,, .

372

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.3.10.11

CAISLFORM_TERMINAL_IO DEFINE_QUALIFTED_A’REA

5.3.10.11 Defining a qualified area

rNOCedsNeDEFINE QUALIFIED AKSA
(F&mm: - in out FOS1.S_TYPE;
INTENSITY: in ARSA INTENSITY KIND : = NOPMAL ;

PROTECTION: in AFOSA-PKOTECTIOiiKIND := PROTECTED;
INPOT : in A3WA~INP~_KIND- := GRAPHIC_CFU&U+CTEKS;
Vu’us : in AREA_VALUE_KIND := NO_FILL) ;

Purpose:

Thii procedure places an area qualifier with the designated attributes (INTENSITY,

PROTECTION, INPUT, VALUE) at the active position of the form FORM. A. qualified

area consists of the character positions between two area qrralflers. The area is

qualified by thearea qualifierthatprecedesthearea.A qualifiedareamay or may not

irrcludethepositionof itsareaqualifier(seeSection5.3.10.26,page 388, and Section

5.3.10.27,page 389).

Parameters:

FORM is the form on which the qualified area is beirrg defiied.

INTENSITY is the intensity at which the qualified area is to be displayed

PROTECTION is the protection for the qualified area.

INPUT is the set of permissible input charact,:rs for the qualified area.

VALUE is the initial value of the qrrahtled area.

Exception:

FORM.STATUS.ERROR

is raised if FORM has not been previously created

CREATE_FORM (see Section 5.3,10.8, page 370).

Notes:

by the procedure

The characteristics (intensity, protection, input, value) of positions that precede the frst
area qrrsltiler on a form are implementation-defined.

373

Downloaded from http://www.everyspec.com



5.3.10.12 DOD-STD-1838

REMOV&kREAQUALIFIER

5.3.10.12 Remrrviiuj an area qualifier

procedure a-ztba ~_QuALIFIER (FORM: in out-.

Purpose:

CAIS.FORM.TERMINAt_IO

Fow_lYPE) ;

This procedure removes an area qualifier from the active position of the form.
Removing an area qualifier from a position that does not have an area qualifier has no
effect.

Parametec

FORM ii the form from which the qualified area is to be removed.

,,,...
Exception

.{
FORM.STATUS.ERROR

is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3,10.8, page 370).

~,.,

Notes:
#.,.?

The positions of the area from which the area qualifier is beiig removed become part of
the, preceding qualified. area. If there is no preceding qualified area the set of
characteristics for the positions are implementation-dependent.

.:
;: ,.

,:.

374

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.3.10.13
CAIS_FORM_TERMINAI_IO SET_ACIWE_POSmON

5.3.10.13 Changing the acti}e position

procedure SET_ACTIVS_POSITION (FOSM: in Out FOPJ4_TYPE;
POSITION: in TESWINAL_POSITION_TYPE) ;

‘l%is procedure indicates the position on the form that is to become the active position

Parameters:

FORM is the form on which to change the active position

POSITION is the new active position on the form

Exceptions:

FORM.STATUS.ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

TERMINAL_POS~ON_ERROR
is raised if POSITION does not identify a position in FORM.

I

‘o

.
375

Downloaded from http://www.everyspec.com



5.3.10,14 DOD-STD- 1838

ACIWE.POSITION

5.3.10.14 Querying the active position ‘ “: J

function ACTIW_POSITION (FOIU.1:’ in FOP1._mE)

re~rfl TESbIINu_POs ITION_TYPE;

CAIS_FORM.TERMIFIAL_IO

This function returns the active position of the :form FORM.

Pafameter

FORM is the form to be queried.

Exception:

FO~_STATUS_ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3. 10.8j page 370).

. ,. ,.
,.,

.

.376

Downloaded from http://www.everyspec.com



●

DOD-STD-1838 5,3.10.15
CAIS_FORMITERMINAL.10 ADVANCE.TO.QUALIFIED.AREA

5.3.10.15 Advancing forward to qualified area

procedure ADVANCE_~_QWALIIrIED_MWA (FORM: in out FOSM_TYPE;
COUNT : in CAIS_POSITIVS := 1);

Parpose:

This pmeedure advances the active position COUNT area qualflers toward the end of
the form. If there are fewer than COUNT area quahfiers between the active position and
the end of the FORM the active position is set to the position of the last area qualifier
on the form. If there are no area qualifiers between the active position and the end of
the FORM the active position is not chsnged.

Parameters:

FORM is the form on which the active position is being advanced.

COUNT isthenumber of qualified areas the active position is to be advanced.

Exception

FORM.STATUS.ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3:10.8, page 370).

377

Downloaded from http://www.everyspec.com



5.3.10.16
POT

DOD-STD- 1838
CALS_FORM_TERMINW_IO

5.3.10. I6 Writing to a form

procedure POT (rOW: in out FOS14_TYPE;
ITF.td: in PRINTASLE_CHARACTER) ;

purpose:

This procedure places ITEM at the active position of FORM and advances the active
position one position toward the end position. If the active position is the end position,
the active position is set to the start position.

Parameters

FORM is the form being written

ITEM is the character to be written to the form.

Exceptions:

FORM_STATUS_ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

USE_ERROR is raised if the active position contains an area qualit3er and AREA-
QUALIFIER.REQUIRES_SPACE(FORM) was set to TRUE.

Additional interface:

procedure PUT (FOSBt: in out FOSbS_TYPE;
ITSM: in STRING)

is

begin
for INDEX in ITEM’ rIRET . . ITEM’ LAST 100P

POT (FOSM, ITSM(INOEX) ) ;
end loop;

end POT ;

378

Downloaded from http://www.everyspec.com



DOD-STD- 1838

CAIS.FORM_TERMtNAL_IO

5.3.10.17
ERASE.AREA

~o 5.3.10.17 Erasing a qualified area

procedure ERASE_AREA (FORM: in out FOP.bS_TYPE) ;

Purpose:

This procedure places space characters in all positions of the area in which the active
positionof the form islocated.’If“theactivepositionisnot in a qualifiedarea,this

procedurehasno effect.

Parameter:

FORM is the form on which the qualified area is being erased

Exception

FORM.STATUS.ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

379

Downloaded from http://www.everyspec.com



5.3.10.18

ERASE.FORM

5.3.10.18 Erasing a form

procedure ERASE_FOPM (FORM:

DOD-STD-1838

in Out FOM_TYFE) ;

CAIS_FORM_TERMINAI_IO

This procedure removes all area qualifiers and places space characters in all positions of

the form. The active position is set to the start position. The form is established as not

updated (see Section 5.3.10.21, page 383). The termination key is established as the
normal termination key (a value of zero) (see Section 5.3.10.23, page 385).

Parameter:

FORM is the form to be erased.

Exception:

FORM.STATUS.ERROR

is raised if FORM has not been previously created

CREATE_FORM (see Section 5.3.10,8, page 370).

by the procedure

380

,.,

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3. I&19

CAISiFORM;TWWINAL_IO ACTWATE

5.3.10.19 Activating a form on a terminal

Drocedur’eACTIVATE (TEFu41NAL:in FILE TYPE;
“FORM: in tit FORM:TTPE) ;

Purpose:

This ~procedure activates the form on the terminal ffle associated with the intemaf file
identified by the fde handfe TERMINAL. The contents of the terminal fde are
modified to reflect the contents of the form. When the user of the terminal enters a
termirration key, the modified contents of the terminaf fde are copied back to the form
and returned. This operation may not result in the modification of protected areas.
Qualification of positions preceding the fmt area qualifier on a form is implementation-
dependent. -

Parameters:

TERMINAL is an open fde handle identifying the internal fde associated with the
terminal fde.

FORM is the fomr to be activated.

Exceptions:

STATUS.ERROR
is raised if the file handle T“ERMINAL is not open.

FORM STATUS_ ERROR—
ii raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

USE_ERROR is raised if FORM_SIZE(FORM) is not equal to TERMINAL_SIZE
(TERMINAL)or if AREA_QUALIFIER_REQUIRES_SF’ACE(FORM)

is not equal to AREA_QUALIFIER_REQUIRES_SPACE(TERiVfINAL).

381

-. ,,

Downloaded from http://www.everyspec.com



—.

.-

,—

—.

.—

.;.
-..,—

5,3.10.20 DOD-STD- 1838

GET

5.3.10.20 Reading from a form

pracedure GET (FOP.M: in out FORl_TYPE;
ITEM : Out PRINTABLE_CXARACTER) ;

Purpose:

CAIS_FORM_TERMINAL_IO

This procedare reads a character from FORM at the active position and advances the
active position one position toward the end position. If the active position is the end
position, the active position is set to the start position. An area qualifier on a form on
which the area qualifier requires space is read as the space character.

Parameters:

FORM is the form to be read.

ITEM is the character that was read.

Exceptiom

FORM_STATUS_ERROR
is raised if FORM has not been prt:t ic,:n ly crea!ec! by ths pwctxiufi:
CREATE_FORM (see Section 5.3,10.8, page 37@t.

Additional Interface:

procedure GET (FOSM: in out FOP.M_TYPE;
ITEU: out STRING)

is
begin

for INOEX in ITEM’FIRST .. IT.Et.t’I.A.STloop
GET (FOSM, ITEM (INDEX));

end loop;

end GET;

.-.

.-

,.

-.
-.
<...-

,.

382

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.10.21

CAIS_FORM.TERMINAI_IO IS_FORM_UPDATED

5.3.10.21 Determining changes to a form

function IS_FOPJ_UPDATED (FOPM: in FOP$l_TYPE)
retum BCOLEAN:

Purpose:

This function returns TRUE if the value of my position on the form was modified

durirrg the last activate operation in which the form was used; otherwise it returns
FALSE.

Parameter:

FORM is the form to be queried.

Exception:

FORM.STATUS.ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.:0.8, page 370).

o

383

L ,;

Downloaded from http://www.everyspec.com



5.3.10.22 DOD-STD- 1838

FUNCITON_KEY_IDENTIFtCATION CAIS_FORM_TERMINAL_IO

5.3.10.22 Determining the identification of a function key

function FONCTION_KEY_IDENTIFICATION
(TEF@tINAL: in F ILE_TYPE;
REY_IDENTIFIER : in CAIS_POSITIVE )

returnFUNCTION_KXY_NAI.tE;

Purpose: .. !

This function returns the string identification of the function key designated by KEY_
IDENTWfER.

Parameters:

TERMINAL is an open fde handle identifying the internal fde associated with the
terminaf file.

KEY_IDENTIFIER
is the identification number of a fanction key,

Exceptions:

STATUS.ERROR
is raised if the file handle TERMINAL is not open

FUNCTION_KEY_STATUS_ERROR
is raised if the value of KEY_IDENTIFIER is greater than NUMBER_
OF_FUNC1’TON_KEYS(TERMINAL). ●

. 0
384

..

Downloaded from http://www.everyspec.com



‘o

I

I

●

I

5.3.10.23
TERM3NATION.KFY

DOD-STD-1838

CAIS.FORM.TERMINAL.10

5.3.10.23 Determining the termination key

function TEBMINATION_REY (FOSM: in FOSbS_TYSE)
return CM S_NA~;

Purpose:

This function returns a number that indicates which (implementation-dependent) key
terminated the ACllVATE procedure (see Section 5.3.10.19, page 381) for the form
FORM. A value of zero indicates the normal termination key (e.g., the ENTER key). A
positive value indicates a function key.

Parameter

FORM is the form to be queried.

Exception:

FORM.STATUS.ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

385

L

Downloaded from http://www.everyspec.com



5.3.10.23 DOD-STD-1838

FCRM.SIZE

5.3.10.24 Determining the size of a form

function FOrU.S_SIZE(FOSM: in FON.t_~PE)
retnr’o TESMINAL_POSITION_TYPE;

CAtS_FORM_TERMIN.4LI0

Purpose:

This finction returns the position of the maximum column of the maximum row of the
form.

Parameter:

FORM is the form to be queried.

Exception:

FORM_STATUS_ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

386

Downloaded from http://www.everyspec.com



1
‘o
I

DOD-STD-1838

CAIS_FORM_TERhlINAL_IO

5.310.25
TERMIN.4L_S1ZE

5.3.10.25 Determining the size of the terminal

thctiorsTESJtINAL_SIZE (TEPJSINAL:in FILE_TYPE)
return TESMINAL_POSITION_TYPE;

Purpose:

Thii function returns the position of the maximum column of the maximum row of the
internal fiie identfled by the fsle handle TERMINAL.

Parameter

TERMINAL is art open fde handle identifying the internal fde associated with the
terminal file.

Exception:

STATUS.ERROR
is raised if the fide handle TERNUNAL is not open.

387

I

Downloaded from http://www.everyspec.com



.

5.3.10.26 DODSTD-1838

AREA.QUALIFIER_REQUIRES_W’ACE CAIS_FORM_TERMINAI_10

5,3.10.26 Determining if the area qualifier requires space in the form’

function AFOm_QUALIFIER_REQUIRES_SPACE (FOR&: in rOabS_TYPE)
return BOOL.13w;

Purpose:

This function returns TRUE if the area quafi~: requires space h the form FORM;

otherwise it returns FALSE.
,..

ParameteK /

FORM is the form to be queried.

Exceptiom

FORM.STATUS.ERROR
is raised if FORM has not been previously created by the procedure
CREATE_FORM (see Section 5.3.10.8, page 370).

Downloaded from http://www.everyspec.com



I
DOD-STD-1838 5.3.10.27

CAIS_FORM_TERMINAL_IO AREA_QUALIFIER_REQUIRES_SPACE

5.3.10.27 Determining if the area qualifier requires space on a terminal

● fiu3Cti00AS31A_QUALIFIER_REQUIRStS_SPACE (TESMINAL : in FILE_~PE)
relum SOOLSAN;

I
Purpose:

~

This ftumion returns TRUE if the srea qualifier requires space on the internal fde

identfled by the fiie hsndle TERMINAL; otherwise it returns FALSE.

I Parameter:

TERMINAL is an open ffle handle identifying the intemat fde associated with the
terminal fde.

Exception:

STATUS_ERROR
is raised if the fde handle TERMINAL is not open

389

‘o

Downloaded from http://www.everyspec.com



. -.
:7

... .

~;:
,-.
‘-. .

T.
:..:.

.:
,. .

.:.

5.3.11 DOD-STD. 1838
CAIS_MAGNETIC_TAPE_IO

5.3.11 Package CAIS MAGNETIC TAPE” 10

This package provides interfaces for the support of input and output operations on magnetic

tapes. For purposes of interoperability the interfaces defiied in this section should be used in ●
accordarrce with level II of [ANSI 78]. The exceptions raised by all subprograms in this
package are defined in the packages CAIS.DEFINIT’IONS and CAIS.10.DEFINITIONS.

To use a tape drive, a fiie handle on the fde representing the tape drive must be obtained (see

OPEN in Section 5.3.11.2).

When information transfer is completed, the tape is unloaded and dismounted using the
UNLOAD (see Section 5.3.11.8, page 401 ) and REQUEST_DISMCIUNT (see Section
5.3.11.9, page 402) procedures.

Once a tape is dismounted, another tape maybe mounted. When the user is finished utilizing
the drive, the fde handle on the fde representing the tape on the drive should be closed (see
Section 5.3.11.3, page 396),

Magnetic tape drive fde nodes can only be created by the implementation. Implementation-
defined fde characteristics must be supported by the implementation and will include the
densities and block sizes supported by the tape drive, whether or not a tape is mounted on the
drive.

Character data is transferred to and horn magnetic tapes in fixed length records. Each logical
record is also a physical block.

When transferring an Ada text file to or from a magnetic tape, the text fde must be read or ●
written as blocks of Ada characters. Table XIV identifies. the mapping that is to be used
between the contents of an Ada text fde and a file on magnetic tape containing an Ada text
file.

:.

3%3

;;

Downloaded from http://www.everyspec.com



●

●

DOD-STD-1838 5.3.11
CAIS.MAGNETIC_TAPE_10

TABLE XIV. Allowed Magnetic Tape Characters

ALLOWED CHARACTERS REPRESENTATION OF CHARACTERS

All printable characters CHARACTER(’ ‘).. ASCII. TILDE

Horizontal Tab ASCII.HT

Verticaf Tab ASCII.VT

Carriage Return ASCILCR

Lme Terminator ASCII.LF

Page Terminator ASCII.FF

Fill Character ASCII.NUL

Fife Terminator Zero or more fill characters followed by a tape mark.

Use of other characters is not defiied. Each block of a fde may be terminated by zero or
more ffl characters.

Afl tape read and write operations use odd parity.

For magnetic tape, the exception DEVfCE_ERROR maybe raised for many implementation-
dependent reasons, e.g., a write ring not on the tape when attempting to write to it.

391

Downloaded from http://www.everyspec.com



. .
5.3.11.1 DOD.STD-1838

TYPES AND SUSTYPES CAIS.MAGN3TIC.TAPE.10

5.3.11.1 Types, subtypes and exceptions

type FILE TTPE is timited private;

type FILE_b@DE is (IN_FILE, 00T_FILE) ;

FILE_TYPE defiies the type for fiie handles, which are used for controlling sII operations on
tape drives. FfLE_MODE describes whether a file handfe is to be used for input or output it

can never be used for both.

subtype TAFE_NAME is STRING;

subtype TAP E_BLOCK is STRING;

TAPE.NAME defines a subt~ for the name of a tape to be mounted. TAPE_BLOCK
defines a subtype for buffers for the read-g and writing of blocks of chmacters.

tYPe TUE_DRIW_STATUS_KIND ii
(OPENED,
bSXNT_RSQUESTED ,
WONTED ,
LOADED,
CLOSED) ;

type TAPE_POSITION_KIND is
(BEGINNING_OF_VOLObSS ,
ZND_OE_VOLUbtE,

,,. ,.

END_OF_TAPE ,
AFTER_TAPE_btATUt ,

! OTHER) ;

ty’& T~E_RKCORDING_t4S3 THOD_KIND is
(NON_WiTJ3U?_TO_ZERC_INVERTED ;
PNAEE_ENCODED,
GROW-CODED_RECOSDING) ;

TAPE_DRfVE_STATUS_KIND defines the states of an internal magnetic tape drive file,
Figure 11 shows the state transitions that may occur. The success (MOUNTED) or faifure

(Op~ED) state of a mount request is detetied by a particulm CAIS implementation. The
time for the actual change of state from OPENED to MOUNT_REQUESTED for the
REQUEST_MOUNT interface and the time for the actual change from MOUNTED to
OPENED for the REQUEST_DISMOUNT interface are implementation-defmed. In all other
situations the time of the transition from one state to another is the completion of the
interface cafl. The function STATUS(TAPE_DfUVE) should be used to determine the state
of an intemaf magnetic tape drive file.

TAPE_POSITION_KIND describes the position of the tape on the tape drive; a value of
i AFTER_TAPE:MARK means that the tape is positioned just after a tape mark. That is, a
read in this position will read the next block.

.,. ,,

‘TAPE_RECORDING_MEfiOD_KhD ideriti~es the p&icular tap recording method and
‘tape recording density being used. NON_RETURi_TO_ZERO_INVERTED indicates
conformance to ANSI X3.22 [ANSI 73a] or ISO 1863 [1S0 76]. PHASE_ENCODED
indicates conformance to ANSI X3.39 [ANSI 73b] or 1S0 3788 llSO 76b]. GROUP_ ●

392

Downloaded from http://www.everyspec.com



‘o

DOD-STLL 1838 5.311,1
C.4LS_M.4GNETlC_TAPE.10 TYPES AND SUBTYIW3

Failure

MOUNT Sueeess

b REQUESTED

REQUESTJVUXJNT

v t

4-.

v

OPENED CLOSED 4
am

MOUNTED

1 -
e

(INITIAL STATE)

A A b

REQIJEST_DISMWNT UNLOAD

LOAD

v

am
LOADED

:, .’
,.

..,.

,:, .:, , ,, :., ,,.. .
,,

FIGURE 11. Magnetic taps status transitions
!i

393

Downloaded from http://www.everyspec.com



5.3.11.1 DOD.STD-1838

TYPES AND SUSTYPES CAIS.MAGNETIC.TAPE.1O

CODED_RECORDING indicates conformance to ANSI X3.54 [ANSI 76]or1S05652 ~SO
84].

TAP E_STATUS_ERROR: exception;
●

TAPE_STATUS_ERROR is raised if the mounted or loaded state of a tape drive is incorrect
for the operation.

394

Downloaded from http://www.everyspec.com



:0

DOD-STD-1838

CAIS_MAGNETtC_TAPE_IO

5.3.11.2

OPEN

5.3.11.2 opening a tape drive file handle

procedure OPEN (TAPE DRIVE : in out FILE_TYPE ;
NODE; in NODE_TYPE ;
bSODE: in FILE_MODE) ;

Purpose:

This procedure opens a file handle on a magnetic tape drive file, given an open node
harrdfe on the associated magnetic tape drive fde node.

Parameters:

TAPE_DRIVE is a ffle har@e, inhially closed, to be opened to the identified node.

NODE is an open node handle to a fde node

MODE indicates the mode under which the file handle is to be opened.

NODE_KI~_ERROR
is raised if the node identitled by NODE is not a file node.

FILE_ICIND_ERROR
is raised if the values of the predefmed file node attributes FILE_KIND,
ACCESS.METHOD and DEVICE_RIND are not appropriate for the
package containing this procedure according to Table XI, page 210.

STATUS.ERROR
is raised if the file handle TAPE_DfUVE is already open at the time of
the call on OPEN or if NODE is not an open node handle.

USE_ERROR is raised if an open fde handle identifies the same file node contents and
the CAIS implementation does not support the existence of multiple fde
harrdfes identifying the same fde node contents. Any such restriction
must be documented in Appendm F. An implementation is allowed to
raise this exception only if it is based on operating system suppon that
does not provide this capability.

INTENT_VIOLATION
is raised if NODE was not opened with an intent specification includirrg
at least the intents required for MODE, as specified in Table X, page
209.

Notes:

Closing the node handle associated with the fde handle TAPE_DRWE closes the file
handle.

‘o
395

,

Downloaded from http://www.everyspec.com



5.3.11.3 DOD-STD-1838

CLOSE CAIS_MAGIWTIC_TAPE_IO

5.3.11.3 (Hosing a tape drive file handle

procedurs CLOSE (TASE_DRIVE: in out FILII_TYPE) ;

Purpose:

This procedure severs any association between the internal fde identified by the fde
handle TAPE_DRIVE and its associated node contents. It also severs any association
between the fie handle TAPE_DRIVE and its associated node handle. Closing an
already closed fiie handle has no effect.

If the state of the fde handle TAPE_DRIVE is LOADED, the tape represented by the
fde handle is unloaded and dismounted before closing. If the state of the fde handle is
MOUNTED or MOUNT_REQUESTED, the tape represented by the fde handle is
dkmounted before closing.

Parameter:

TAPE_DRIVE is a fde handle, initially open, to be closed.

Exceptions:

None.

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.11.4
CAIS_MAGNETIC_TAPE_IO IS_OPEN

5.3.11.4 Determining whether a file handle is open

flmction IS_OPEN (TAPE_DRIVS: in FILE_TYPE)
return S@3LEAN;

This function returns TRUE if the ftle handle is operv otherwise, it returns FALSE,

Parameter:

TAPE.DRIVE is a fde handle,

Exceptions:

None.

397

Downloaded from http://www.everyspec.com



5.3.11 ..5 DOD-STD-1838

MODE CAIS_MAGNETIC_TAPE.10

5.3.11.5 Determining the mode of a magnetic tape drive

function t.X3DE (TAPE-DRIVE: in S’ILE_TYPE)
I%tim FILE_bSODE;

Purpose:

This fanction returns the mode under which TAPE_DRIVE is opened.

Parameter

TAPE_DfUVE is an open file handle identifying the internal fde associated with the tape
drive file.

Exception:

STATUS_ERROR
is raised if the file handle TAPE_DRIVE is not open.

398

Downloaded from http://www.everyspec.com



DOD-STD-1838

CAIS_MAGNE’tTC_TAPE_IO

●
5.3.11.6 Requesting the mounting of a tape

procedure RSQJSST_MOUNT (T-E_DRIW: in
NAME: in
RECORDING METHOD: in
rNsTALL tiITE_RING: in

5.3.11.6

REQUEST_MOUNT

FILE TYPE;
TAPE~NAME;
TAPE RECOSDING_bSETliOD_KIND;
BOOL-ihN := FALSE) ;

I Purpose:

This procedure generates an implementation-defined request that the tape whose
external name is NAME be mounted on the tape drive associated with the internal fde
identified by the fde handle TAPE_DRIVE, the tape drive recording method be set to
RECORDING_METHOD, and, if INSTALL_WRITE_RING is TRUE, that a write
ring be installed on the tape &fore mounting,

Following completion of this procedure until the request is fulfilled or denied, STATUS
(TAPE_DRIVE) returns MOUNT_REQUESTED. If the request is fulfdled, the
function STATUS(TAPE_DRIVE) returns MOUNTED. If the request is denied, the
function STATIJS(TAPE_DfUVE) returns OPENED.

Parameters:

TAPE_DRIVE is an open file handle identifying the internal fde associated with the tape
drive file.

●
NAME is an external name which identifies the tape to be mounted on the tape

drive.

RECORD fNG_METHOD
is the recording method to be used when writing to the tape.

INSTALL_WRITE_~NG
indicates whether or not a write ring is to be installed on the tape.

Exceptior-c

STATUS.ERROR
is raised if TAPE_DRIVE is not an open ffle handle.

!0
399

Downloaded from http://www.everyspec.com



5.3.Li.7 DOD-STD-1838

LOAD CAIS.MAGNETIC.TAFE1O

5.3.1 L7 Loading a tape

Isrocerhrre LOAO (TAPE_DRIVE : in FILE+TYSE ;.
B-K_SIZE: in -IS_pOSITIVIS) ;

Purpose:

This procedure loads the tape on the tape drive represented by the fiie associated with
the internal fde identified by TAPE.DRIVE. The tape is positioned after the beginning
of tape mark. Following completion of this procedure, the function STATUS(TAPE_
DRIVE) remms LOADED.

Parameters:

TAPE_DRIVE is an open ffle handle identifying the internal file associated with the tape
drive file.

BLOCK_SIZE is the number of bytes to be read or written during input or output
operations.

Exceptions:

STATUS_ERROR “‘i
is raised if TAPE_DRIVE is not an open fde handle

,,, ,: .!, !,
TAPE_STATUS ER’ROR

,.

~s raised if STATUS(TAPE_DRIVE) is not MOUI@ED.

USE.ERROR is raised if BLOCK_SIZE is less than MINIMUM_TAPE_BLOCK_
LENGTH (see Section ‘5.7, page 513) or greater than MAXIMUM.
TAPE_BLOCK_LENGTH (see Section 5.7, page 5 13).

400

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.11.8

CAIS.MAGNETIC.TAPEJO UNLOAD

5.3.11.8 Unloading a tape

procedure UNLOAD (TAPE_DSIIVE : in FILE_TYPE) ;

Purpose:

This procedure unloads the tape on the tape drive fide associated with the internal ffle
identified by the file handle TAPE_DRIVE. Following completion of thk procedure,
the tape is positioned after the beginning of tape mark, the function STATUS(TAPE_
DRIVE) will return MOUNTED, and the function POSITION(TAPE_DRIVE) will
return BEGINNING_OF_VOLUME. Unloading a tape in which STATUS(TAPE.
DRIVE) is MOUNTED has no effect,

Parsmetefi

TAPE_DRIVE is an open fide handle identifying the internal fie associated tiith the tape
drive fde.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRIVE is not an open fde handle.

TAPE_STATUS ERROR
~s raised if STATUS(TAPE_DRIVE) is neither MOUNTED nor
LOADED.

401

Downloaded from http://www.everyspec.com



5.3.11.9 DOD-STD-1838

REQUEST-DISMOUNT CAIS.MAGNETIC.TAPE.-IO

5.3.1 t.9 Requesting the dkmounting of a tape

procedure RSQUEST_DISMXJNT. (TASE_DRIVS: in s’ILE_TYPE ) ;

Purpose:

This procedure generates an implementation-defined request that the tape on the tape
drive represented by the ftle associated with the internal fde identified by f~e handle
TAPE.DFUVE b-e removed from the drive. It makes the tape available for removal.
Following the completion of thk procedure, the function STATUS(TAPE_DRIVE) will
return OPENED.

Parameter:

TAPE_DRIVE is an open fde handle identifying the internal ffle associated with the tape
tilve fide.

Exceptions:

STATUS.ERROR
is raised if TAPE_DRIVE is not an open file handle.

TAPE_STATUS_ERROR
is raised if STATUS(TAPE_DRIVE) is not MOUNTED.

●

A02

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.3.11.10

CAIS_MAGNETIC_TAPE_IO POSITION

5.3.11.10 Determining the position of the tape

fUIICtiOIIBOSITION (TAFE_DRIVS: in FILE_TYFE)
MUrn TAP E_POSITION_KINO;

This function returns the current position of the internal fde identified by the file handle
TAPE.DRIVE.

Parametec

TAPE_DRIVE is an open file handle identifying the internal file associated with the tape
drive file.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRIVE is not an open fde handle,

TAPE_STATUS ERROR
~s raised if STATUS(TAPE_DRfVE) is not LOADED,

403

Downloaded from http://www.everyspec.com



5.3.11.11 DOD-STD-1838

REWIND.TAPE CAtS_MAGNETIC_TAPE.IO

5.3.11.11 Rewinding the tape

procedure REWIND_TAPE (TAPE_DRIVE: in FILE_TYPE) ;

Purpose:

Tl& procedure positions the internal fide identified by the fde hande TAPE_DRIVE
after the beginning of tape mark. Followtig completion of this procedore, the function
POSITION(TAPE_DRIVE) returns BEGINNING.OF.VOLUME.

Parameter:

: TAPE_DRIVE is an o@m fde handle identifying the internal fde associated with the tape
tilve file.

Exceptions:

STATUS.ERROR
is raised if TAPE_DRIVE is not an open fde hamiIe.

~ TAPE_STATUS ERROR
js raised if STATUS(TAPE_DRIVE) is not LOADED

., , .,,,

,, .

404

Downloaded from http://www.everyspec.com



CAIS.MAGNETIC.TAPE.10

5.3.11.12 Skipping tape marks

procedure SKIP_TAPE_MARK

purpose:

DOD-STD-1838 5.3.11.12

SKIP_TAPE_MARK

(TAPE_DRIVE : h SZLE_lWPE ;
Coun’l! : in cAIs_eosI’cIvE := 1) ;

This procedure skips COUNT tape marks on the internal fiie identified by the file
handle TAPE.DRIVE.

Followirrg a call to SKIP_TAPE_MARK, the tape is positioned immediately following
the appropriate tape mark. If the end of tape mark is encountered during this operation,
the function POSITION(TAPE.DRIVE) returns END_OF_TAPE; otherwise
PO,WITON(TAPE.DRIVE) returns AFfER_TAPE_MARK.

If two consecutive tape mwks are encountered during this operation, the tape is
positioned between the two tam marks arrd the function pOSffTON(TApE-DR~E)

I returns END_OF_VOLUME. ff at the time of the call the tape is positioned between
two consecutive tape marks, the position of the tape is not changed and the function
POSITION(TAPE_DRIVE) returns END_OF_VOLUME.

I
I Parameters:

TAPE_DRfVE is an open fife handle identifying the internal fde associated with the tape
drive fde.

Courrr is the number of tape marks to skip.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRfVE is not an open fde handle.

TAPE_STATUS ERROR
j.q rak+erf if STATUS(TAPE_DRfVE) is not LOADED.

MODE_ERROR is raised if the file handle TAPE.DRIVE k of mode OLJT_FILE.

405

Downloaded from http://www.everyspec.com



5.3.11.’13 DOD-STD- 1838

WRITE.TAPE.MARK CAIS_MAGNETIC_TAPE_IO

5.3.11.13 Writing a tape mark

praeedure WRITE_TAPE_btARK (TAP E_DRIVE: ia FILE_TYPE ) ;

Purpose:

This procedure writes a tape mark on the internal fde identified by the file handle
TAPE.DRIVE. If the end of tape mark is encountered during this operation, the
function POSXTION(TAPE_DRIVE) returns END_OF_TAPE; otherwise, POSITION
(TAPE.DRIVE) returns AFTER_TAPE_MARK.

TAPE_DRIVE is an open file handle identifying the internal file associated with the tape
drive fide.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRIVE is not an open tile handle,

TAPE_STATUS ERROR
‘ js raised if STATUS(TAPE_DRIVE) is not LOADED.

MODE_ERROR is raised if the file handle TAPE_DRIVE is of mode IN.FILE.

406

Downloaded from http://www.everyspec.com



.

DOD-STD-1838 5.3.11.14

CAIS.MAGNETIC.TAPE.10 STATUS

5.3.11.14 Determining the status of a magnetic tape drive

fmctiorr STATUS (TAPE DRIVR: in FILE TYPE)
return TJ@E_DRIW-_STATUS_KIND; -.

Puspose:

This tlurction returns the tape drive status of the fiie handle TAPE.DRIVE.

Parameter:

TAPE_DRIVE is an open fde handle identifying the internal f~e associated with the tape
drive file.

Exception:

STATUS.ERROR
is raised if the file handle TAPE_DRNE is not open

407

L —

Downloaded from http://www.everyspec.com



5.3.11.15 DOD-STD- 1838

RECORDING.METHOD CAIS_MAGNETIC_TAPE_IO

5.3.11.15 Determining the recording method of’s magnetic tape

function BJr,CORDING_blETHOD(TAPE_DRIq: in, FILE_TYPE)
return TAPE_RECORDING_METHoD_KIND;

Purpose:

This function returns the value speciied for RECORDING_METHOD during the most
recent request to mount a tape on the ~tape ~ive associated with the internal fde
identified by the fide handle TAPE_DRIVE. ~

Parametec

TAPE_DRIVE is an open ffle handle identifying the intemaf file associated with the tape
drive fiie.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRIVE is not an open fde handle.

TAPE.STATUS ERROR
IS raisedif STATUS(TAP,E_DR,JVE) @ not MOUNTED.

●

j

408

Downloaded from http://www.everyspec.com



DOD.STD-1838 5.3.11.16

CAIS_MAGt4ETIC_TAPE_10 L_WRITE_RING_INSTALLED

5.3.11.16 Determining whether a write ring is installed

function IS_WRITE_RING_lNSTALLED (~~E~DRIVS: in FILE_TYFE)
return BOOLEAN;

Purpose: “ ~~

Thii function returns the value specified for INSTALL.WRITE.RING during the most
recent request to mount a tap on the tape &ive associated with the internal fde
identified by the file,handle TAPE_DRIVE.

Parameter: ‘”

‘ TAPE_DRIVE is an open fife handle identifying the internal file associated with the tape ‘.
drive file.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRIVE is not an open file handle.

TAPE_STATUS_ERROR
is raised if STATUS(TAPE_DRIVE) is neither MOUNTED nol
LOADED.

‘o

I
I

I
I

I

o
I

.,. . .

.

,..

. . . .. .

. . .

. ..-.

409

Downloaded from http://www.everyspec.com



5.3.11.17 DOD-STD-1838
SKIP_BLOCK CALS.MAGNETIC.TAPE.1O

5.3.11.17 Skipping blocks in a magnetic tape file

procedure 8KIP_BLOCR (TAPE_DRIVEk in FXLE_TYPE; ●
COONT: in CAIS_POSITIVE := 1) ;

Purpose:

This procedure skips COUNT bIocks on the internal ffle identified by the fide handle
TAPE_DRIVE.

,

The tape is positioned COUNT blocks toward the end of die tape. If a tape mark is
encountered during this operation, the tape is positioned after the tape mark and
POSITION(TAPE_DRIVE) returns AIWER_TAPE_MARK. If during or after this
operation the tape is positioned after the end of tap mark, POSITION(TAPE_DRIVE)
returns END_OF_TAPE even if a tape mark was encountered.

Parameters:

TAPE_DRIVE is an open ffle handle identifying the internal ffle associated with the tape
tilve fde.

COUNT is the number of blocks to skip.

Exceptions:

STATUS_ERROR
is raised if TAPE_DfUVE is not an open fde ha.rule.

TAPE_STATUS ERROR
IS raised if STATUS (TAPE_DRIVE) is not LOADED

MODE_ERROR is raised if the fiie handle TAPE_DRIVE is of mode OUT_FILE.

. .
;- o 1“’,”).” :.,!

●

4[0

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.11.18

C.41S_MAGNETlC_TAPE_10 READ_BLOCK

5.3.11.18 Reading a block from a magnetic tape file

mocedur’e RSAD BLOCK (TX?E DRIVE: in FILE TYPE;
“BLOC~: out TAPE~BLOCK;
LAST : Out CAIS_NATOSAL ;
BLOCK_OVKKFLOW: out CAIS_NATORAL) ;

Parpose:

Thii procedure reads a block of characters from the internal fiie identified by the ffle
handle TAPE_DRIVE into the string BLOCK. The number LAST identifies the istdex
into BLOCK of the last character read. Characters are read sequentially into BLOCK
starting at BLOCK ‘FIRST.

If the block of characters irr the internal fide is greater than BLOCK’LENGTH, the
characters in the block after BLOCK’ LENGTH characters are lost. The number of
characters that are lost is returned in B LOCK_OVERFLOW.

If during or after this operation the intemsf fde is positioned after the end of tape mark,
POSITTON(TAPE.DRIVE) returns END_OF_TAPE; otherwise, pOSITION(TApE_
DRIVE) returns OTHER. If during this operation a tape mark is read, POSITION
(TApE_DRIVE) returns AFTER_TAPE_MARK and LAST is equal to C~S_
NATURAL’PRED(BLOCK’ FIRST).

Parameters:

TAPE_DRIVE is an open file handle identifying the internal file associated with the tape
drive ffle.

BLOCK is a string to receive the chmacters that are read.

LAST is the index into BLOCK of the last character read.

BLOCK_OVERFLOW
is the number of characters lost as a result of the block of characters on
tape being greater tbarr BLOCK’LENGTH.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRWE is not an open fde handle.

TAPE_STATUS_ERROR
is raised if STATUS(TAPE_DRIVE) is not LOADED.

MODE_ERROR is raised if the fiIe handle TAPE_DRfVE k of mode OuT_F~E.

411

Downloaded from http://www.everyspec.com



5.3.11.19 DOD-STD-1838

WRITE.BLOCK CAIS_MAGNETIC_TAPE_IO

5.3.11.19 Writing a block to a magnetic tape file

procedure WRITE_BLOCK (TAPE_DRIVE: in FILE_TYPE;
BLOCK: ; in TAPE_BLOCK) ;

Purpose:

This procedure writes the block of ch~acters BLOCK to the internal fde identified by
the fde handle TAPE.DRIVE.

If during or after this operation the tape is positioned tier the end of tape mark,
POSITION(TAPE_DRIVE) returns END_OF_TAPE; otherwise POSITION(TApE_
DRIVE) returns OTHER.

Parameters:

TAPE_DRIVE is an open fide handle identifying the internal fde associated with the tape
drive fde.

BLOCK is the string to be written.

Exceptions:

STATUS_ERROR
is raised if TAPE_DRIVE is not an open fde handle.

USE_ERROR is raised if BLOCK’LENGTH is less than MINIMUM_TApE_BLOCK_ ●
LENGTH (see Section 5.7, page 513) or greater than MAXIMUM.
TAPE_BLOCK_LENGTH (seeSection 5.7, page 513 ) or not equal to the
block srze specified when the tape was loaded.

TAPE_STATUS_ERROR
is raised if STATUS(TAPE_DRIVE) is not LOADED.

MODE_ERROR is raised if the fiie handle TAPE_DRWE is of mode IN_F’ILE.

412

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.3.11.20

CAIS_MAGNETIC_TAPE_IO RESET

5.3.11.20 Resetting a magnetic tape file handle

pracedurs RaSET (TAPE_DRIVS: in out FILELTYPE;
btODE:

~
lULE_dODE) ;

Purpose:

This procedure sets the current mode of the ffie handle TAPE_DRIVE to the mode
given by the MODE parameter.

h also positions the tape after the beginning of tape mark. Following completion of this
procedure, the function POMTION(TAPE.DRIVE) returns BEGINNING_OF_

I VOLUME.

Parameters:

TAPE_DRIVE is an open fife handle identifying the tape drive fie handle to be reset,

MODE indicates the new mode under which the fde handle is to be reset.

Exceptions:

STATUS.ERROR
is raised if TAPE_DRIVE is not an open fiie handle.

TAPE_STATUS_ERROR
is raised if STATUS(TAPE_DRIVE) is not LOADED.

INTENT_VIOLATION
is raised if the file node handle associated with the fde handle TAPE_
DRIVE was not opened with an intent specification including at least the
intents required for the MODE, as spec~ied in Table X, page 209.

USE_ERROR is raised if the CAIS implementation does not support resetting the fde
hasrdfe to the s~cified mode.

Notes:

Since a magnetic tape drive fde can only have the modes IN_FILE or OUT_FILE, this
procedure can be used to read a tape that has just been written by chmgirrg the mode
from fF_FfLE to OUT_FILE.

413

.

Downloaded from http://www.everyspec.com



5.3.12 DOD-STD-1838

C.41S_lMPORT_EXF’ORT

5.3.12 Package CAIS_IMPORT EXPORT

The CAIS allows a particular CAIS implementation to maintain fries separately from fdes ●
maintained by the host file system. This package provides the capability to transfer ffies
between these two systems. The exceptions raised by all subprograms in this package are
defined in the packages CAIS_DEFINI~ONS and CAIS_IO_DEFINITIONS.

,

.
. .

,..

. .. .

,, .,.,

414

Downloaded from http://www.everyspec.com



I

I

‘o

CAIS.IMPORT.EXPORT

5.3.12.1 Importing a file

proewhsre IMPORS’_CONTENTS

Purpose:

Thii procedure copies the fde

DOD-STD.1838 5.3.12.1

IMPORT_CONTENTS

(FROM: , in sTRING;
To: in NODE_TYPE ;
CHARACTERISTICS : iN LIST_TYPE := EMITY_LIST) ;

identified by FROM irr the host fde system into the
contents of the fde node associated with TO. The contenrs of the ftie identifkd bv
FROM in the host fde system replace the contents of the fde node associated with TO. -

Parameters:

FROM is the name of the host fde to be copied.

TO is an open node handle to the node receiving the contents.

CHARACTERISTICS
is a list (see Section 5.4, page 419) of implementation-dependent
information to be used for copying the host fde.

Exceptions:

USE.ERROR is raised if the parameters FROM or CHARACTERISTICS have
(implementation-dependent) values that do rwt permit copying the host
fie.

STATUS.ERROR
is raised if TO is not an open node handle.

NODE_KIND_ERROR
is raised if the node identified by TO is not a fde node.

FILE_KIND_ERROR
is raised if the value of the predefmed ftie node attribute FILE_KIND is
not SECONDARY_STORAGE.

INTENT.VIOLATION
is raised if TO was not opened with an intent establishing the right to
write contents. lNTENT_VIOLATION is not raised if the conditions for
other exceptions (excluding SECURITY_VIOLAI’ION) are present.

SECURfTY_VIOLAT’ION
is raised if the operation represents a violation of mandatory access
controls and the conditions for other exceptions ace not present.

415

L

Downloaded from http://www.everyspec.com



5.3.12.1 DOD-STD-1838

IMPORT.CONH3NTS CAIS_lMPORT_EXPORT

Additional Interface:

procedure IMPORT_CONTENTS (FRoM: in STRING;
TO: in PATSNAME;
CNARiCTEkISTICS : in LIST_TYPF := E6fPTY_LIST)

is
TO_NODE: NODE_TYPE ;

bezin

CHARACTERISTICS) ;
- OPEN (TO NODE, TO, (l=>WRITE_CONTENTS ) ) ;

IMPORT_C&JTENTS (FROM, TO_NODE,
CLOSE (TO_NODE) ;

exception
when others =>

CLOSE (TO_NODE) ;
raise;

end IMP ORT_CONTENTS;

:!. . ..

416

Downloaded from http://www.everyspec.com



DOD.STD- 1838I 5.3.12.2

CAIS_lMPORT_EXPOR’I EXPORT_CONTENTS

5.3.12.2 Exporting a file

● procedure EXSORT_CONTENTS (F-: in NODE TYPS;

To: in STRIiiG;

I CSARACTERXSTICS : in LIST_TYPE := EMSTY LIST) ;—

I Purpose:

This procedure copies the contents of the fide node identified by the open node handle
FROM to the file identified by TO in the host file system. The CHARACTERISTICS
parameter provides implementation-dependent information for copying the ffle node
contents.

FROM is an open node handle to the node whose contents are to be exported,

TO is the name of the host ftle receiving the contents.

CHARACTERISTICS
is a list (see Section 5,4, page 419) of implementation-dependent
information to be used for copying the contents.

Exceptions:

USE_ERROR is raised if the parameters TO or CHARACTERISTICS have
(implementation-dependent) vahres that do not permit copying the
contents.

STATUS_ERROR
is raised if FROM is not an open node handle.

NODE_KLND_ERROR
is raised if the node ident ifled by FROM is not a file node,

FILE_KIND_ERROR
is raised if the value of the predefiied file node attribute FILE_IUND is
not SECONDARY_STORAGE.

INTENT.VIOLATION
is raised if FROM was not opened with so intent establishing the right to
read attributes snd contents. INTENT_VIOLATION is not raised if the
conditions for other exceptions (excluding SECUfUTY_VIOLATION)
are present.

417

SECURITY_VIOLATION
is raised if the operation represents a violation of mandatory access
controls and the conditions for other exceptions are not present.

“o

Downloaded from http://www.everyspec.com



5.3.12.2 DOD-ST’D 1838

EXPORT.CONTENTS

Additional Interface:

procedure EXFORT_CONTENTS (FRCM:
To: ~ ?
CHARACTERISTICS :

is
FRCM_NODE: NODE_TYPE ;

besin’b. ‘

CAIS_lMPORT_EXPORT

in PATNNAME;
in STRING;
in LIST_TYPE := F,NPTY_LIST)

OPEN (FROM_NODE, FRCM, (READ_ATTRIBUTES , w_CONTENTS) ) ;
EXPORT_CONTENTS (FRCt._NODE, TO, CSARACTERISTICS ) ;
CLOSE (FROM_NODE) ;

exception
when others =>

CLOSE (FROb_NODE) ;
raise;

end EXPORT CONTENTS;

. .

., ,,,,

,,

,.

:,,
:;.

,,i~..

,,, ,.!:

.,, ,;,

.,

,.!,

;,. ,

. . ,,
,:,

::

1. {’

,, :’, ,
;i. :! ,.

.:,

.,

1

,$ ,., ,,,

,!
,

:,,:. ,,

418

Downloaded from http://www.everyspec.com



DETAILED REQIJIREMENIX

5.4 UK List Manaf!ement

DOD-STD. 1838 5.4
CAIS LIST WAGEMENT

!0

I

\
I

10

This section describes the CAIS interfaces for the manipulation of lists. Lists are used as the
values of node and relationship attributes. The interfaces described in package CAIS_LIST_
MANAGEMENT are intended for use by other CAIS interfaces. The exceptions raised by all
subprograms in this package are defined in the packages C.AIS_LIST_MANAGEMENT and
CAIS_PRAGMATICS

A linear list is a linearly ordered set of data elements called list items. Each list item has an
item value. A list item may also have an item name, in which case it is called a named item; if
a list item hax no item name. it is called an unnamed item.

There are three kinds of hnear Iiits empty lists, named lists, and unnamed lists. An empiy list

is a linear list that contains no items. Such a list is not considered to be either named or
umanred. A named list is a non-empty linear list that contains only named items; the names
of distinct items in a named list must be distinct. An unnamed list is a non-empty linear list
that contains only umamed items. The values of type LIST_KIND enumerate these three
kinds of lists.

There are five kinds of list items, discriminated on the kind of values they can have: strings,
integers, floating point numbers, identitlers and Iinear lists. The values of type ITEM_KND
enumerate these five kinds of list items. The actual, internal types of list item vahres are not
specified, although certain properties of these types are specified in the package CAIS_
PRAGMAT’ICS (Section 5.7, page 509). However, the means to manipulate these internal
values are provided by explicit, external types (or generic type parameters) used by the
subprograms in CAIS.LIST.MANAGEMENT. These external types have been chosen so as
to maximize the likelihood that they will be related veV efficiently to the internal types used
by a given implementation of CALS_LIST_MANAGEMENT; in some cases, the external
types can even be the same as the internal types.

Although a CAIS implementation may choose a representation for intemaf values different
from that of the external values at the interfaces, it must presewe certain properties. The
process of inserting values into a list (for example by inserting list items or by repIacing the
values of exis%g list items) and then retrieving the inserted values must either preserve the
values (or, in the case of floating point values, nearly preserve the values) or result in
CAPACfTY_iXtROR upon insertion and CONSTRAfNT_ERROR upon retrieval, in case the
constraints of the respective internal or external types are violated.

Because of the conversions between external, instantiated types and internal types, the
storage and retrieval cycle for floating point numbers may not preserve the values precisely;
the degree of error is completely contained within that provided by doing standard Ada type
conversions.

Some interfaces, such as those which determine an item’s position by value, require a value
provided at the interface to be compared with an internal value in a list; these operations
behave as if the value provided at the interface is converted to internal representation prior to
comparison.

The principles of external values, internal values and comparison of values are realized in
distinct ways for values of each of the five kinds of list items:

419

.

Downloaded from http://www.everyspec.com



5.4. DOD-STD- 1$38

CAIS LIST MANAGEMENT DET.zULED REQUIREMENTS

a. String values of list items are represented by the external type STRING at the
interfaces. String equality is defined according to the predefirred equality for
the Ada t~ STRING. .’

b. Integer values of list items are represented at the interfaces by’ external integer
types defined in the programs using the iryerfaces; operations to manipulate
these values are placed in generic packages that can be. instantiated for user-
defmed types.

Intemaf integer vahres include exactly the v@ues of the CAIS type CAIS_
INTEGER (see Section 5.1.1, 54); integer eqrrafity is defined according to the
predefmed equality for the CAIS type C.AlS_INTEGER.

c. Floating point vahres of list items are represented at the interfaces by external
floating point types defined in the programs using the interfaces; operations to
manipulate these values are placed in generic packages that can be instaritiated
for user-defiied types.

Floating point internal v~ues preseive at least CAIS_PRAGMATICS. LIST_
MAXIMUM_DIGITS accuracy. Floating point equality of two values is
defiied ‘according to predefmed equidity for the two values when converted to
a floating point type of CAIS_PRAGMATICS.LIST_MAXIMUM_DIGITS
accuracy. ,,.

4,
Upon insertion and subsequent extraction” of floating point vrdues, it is
implemenfat ion-dependent whether or not changes. , to the. ,physicd
representation of the value, v made. If such ch4rrgis’ are made; they must be
consistent with the accuracy of the tjps” used in the ie+ective iristantiations of
the ‘package’ CAIS_FLOAT_lTEM,, ‘but may 1‘irffect the meaning of eqtdity
betiieen the retrieved value and the inserted vaftre, ,,,

,.
Users should be aware of the accuracy issues for’ relational operations between
floatihg point values expkiined iir ~1815A], Section 4,5.7,” in order to avoid
erroneous assumptions about the eqrr,+ity of float iterni’ind lists involving such,., . !.
items. ,4...,,,.

d. Identifier values of list items occur. in two dtiferent forms which are
represented by two different extemaJ types at the interfaces: a token form
represented by a Iimited private type (TOKEN_TYPE) and an idermfie~ te~

form represented by STRING (restricted to strings with the syntax of Ada
identifiers, indicated by the use of the subtype IDE,~FIER_TE2CI’). Identifier
vidues can be manipulated using either fore, there tie’ interfaces to trtisform
the extemil representation of identifier values from identiler text form to token
form and vice versa.

The value, of every TOKEN_TYPE variable is initially a distinguished
tindefined token; the ‘variable is given a valid token value by interfaces that
copy tokens, transform identifier text forms into tokens, or otheflise produce
tokens. There is no text form for .m. undefined token{ ~o. ~terface .C,Wproduce
the undefined token;, no $terface can use ~% ~undefr+ed token as a, Iegit@ate
input value. The undefined token c~ only be used as the value of an in r-rut
parameter in an interface; in such a case, the’ purpose’ of the intefiace is to
update the parameter value but not use it as input. All interfaces guarantee that
attempts to use an undefined token in any other way result in raising the
TOKEN_ERROR exception.

Downloaded from http://www.everyspec.com



I

I

‘o

L

DOD-STD-1838 5.4
DETAILED REQUIREMENTS CAIS LIST MANAGEMENT

If an identifier text form is transformed to token form and then transformed
back, the resulting identifier text will be the origimd identifier text with any
originally lower case letters transformed to upper case.

Identifier equality holds among tokens and identifier text forms when the
tokens and/or identifier text forms designate the same identifier value.
Identifier equality follows the Ada rule when applied to the identifier text form:
two identifier text forms which differ only in the case of alphabetic characters
designate the same identifier value and therefore satisfy identifier equality. A
token obtained from an identifier text form designates the same identifier value
as the identifier text form and is therefore identifier-equal to the identifier text
form.

Identifiers are not only used as item valuey they also serve as item names.
Interfaces that refer to item names are provided with both forms of external
types, and the rule of ident~ler equality applies, Therefore, no two distinct
items in a linem list may have names that are ident ifier-equaI.

e. The value of a list item may be itself a linear list, Whether or not such a list
item is named, its linear list value may be named, unnamed or empty. The
lineiw list value is called a nested sublist of the linear list containing the list
item. Any linear list containing a list item can be viewed as a nested list

structure consisting of the linear list with all of its nested sublists (and all of
their nested sublists, recursively including all the nested sublisrs).

The only way to refer to linear list values at the interfaces is through the use of
the limited private type LLST_TY,PE. Every LIST_TYPE value includes a
,single, outermost linear list, which may “constitute a nested list structure. By
convention, the list kind of a LIST_TYPE value’s ourermosr linear list is said
to be the list kmd of the LIST_TYPE value itself.

Many list manipulations provided by “the CAIS_LIST_MANAGEMENT
interfaces require designating a list item by its position within its linear list. To
provide the ability to apply such list manipulations at all levels of nesting of a
nested list structure, every LIST_TYPE value includes not ordy a list structure
but also a designation of the current linear Iisr within the list structure, to
which the list manipulations implicitly refer, Exactly one designation of a
current linear list is associated with each LIST_TYPE value; a nested sublist ,

within that value does not have its own designated current linear list.

The initial value of eve~ Ada object of type LIST_TYPE represents the empty
list; that is, the empty list is the Ada object’s outermost linear list and is also
designated as its current linear list,

CAIS_LIST_MANAGEMENT interfaces provide several operations upon the
current linear list of LIST_TYPE values., These, include such line~ list
m~pularioqs as: ,, ., :,,

1. extr~iing values of items’ in a linear list, ‘ i
‘‘ 2. extracting contigrious sequences of “items from a linear [ist,

3. replacing or changing values of items in a linear list, and
4. inserring new items into a ltiear list.

They also include operations which change the designation of the current linear
list of a LIST_TYPE value, such as:

421

Downloaded from http://www.everyspec.com



. .

,.

‘.

.

,.

5.4 DOD-STD-1838

CAN LIST MANAGEMENT DETAILED REQUIREMENTS

1. making a nested sublist of the current linear list the (new) current linear
list,, and

2. making the linear list contaiiiingthe current linear list the (new) current
linear list,

These two kinds of operations (linear list manipulations and current linear list
designations) are independent in the following sense: “linear list manipulations
do not change the designation of the current linear list of a LIST_TYPE value
and current linear list designations applied to a LIST_TYPE vafue do not
change the nested list structure being represented.

For convenience, a STRING-valued external representation (restricted to
strings with the syntax given in Table XV) is defined for lirrear lists.

TABLE XV. Lkt External Representation BNF

list ::= named_list
I umamed_list
Iempty_list

named_list ::= ( named_item ( , named_item } )
umamed_list ::= ( item_value ( , item_vahre } )
empty_list ::= ()
named_item ::= item=name => item_value
item_name ::= identifier
item_value ::= list

I quoted_string
I integer_number
I float_number
I identifier

integer_number ::= [-] integer
float_number ::= [-] decimal_literal
quoted_string ::= string_literaf

See Appendix D for a description of the notation used.

It is legal for blanks, format effecters sod/or non-printing characters to occur
between the syntactic constituents of LIST_TE~ representations of list
vahres.

There are interfaces to transform the external representation of a linear list from
list form to text form and vice versa. If a list representation is transformed to
list text form the result is a canonical list text representation. The canonical list

text representation of a list consists of the list text of its list items, composed

422

.,

Downloaded from http://www.everyspec.com



,,‘o
I

I

I

I

‘o

L

DOD-S~-1838 5.4
DETAILED REQUIREMENTS CAN LIST MANAGEMENT

according to the syntax of Table XV, and in addition adheres to the following
rules:

1. There “are no blanks, format effecters or non-printing characters
between the syntactic constituents.

2. For an integer vafue of a list item, the list text representation is the
decimal representation of its numeric value without leading zeroes.
Negative vahres have a leading minus sign; positive values are
unsigned.

3. For a tloating point value of a list item, the list text representation is the
string image of its numeric vahre in decimal notation with a format as
obtained under default settings of the FORE, AFT, and EXP parameters
in PUT operations of Ada TEXT_IO (see [1815A] 14.3.8), except that
the value of ‘DIGITS to be assumed for AfT is LIST_MAXIMUM_
DIGITS (see CAIS_PRAGMATICS, Section 5.7, page 514) and the
FORE field does not contain any leading spaces.

4. For a string value of a list item, the list text representation is the string
literal representing the string vahre (i.e., the string value enclosed by
quotation characters and with inner quotation characters doubled). The
replacement character “%” may be used uniformly instead of the
quotation character as described in [18 15A] 2.10.

5. For an identifier value of a list item or the name of a list item, the list
text representation is the identitler string (in upper case characters,
without enclosing quotation characters).

6. For a linear list vrdue of a list item, the list text representation is
(recursively) the list text of the list value.

If a list text representation of a linear list is transformed to list form, the result
is a LIST_TYPE value whose current (and outermost) linear list is the linear
list described in the list text representation,

List equality is defined according to the following rule:

Two hnear lists are equal if and only if

1. both lists are of the same kind (i.e., named, unnamed or empty), and

2. both lists contain the same number of list items, and

3, in the case of named lists, for each position in the list, the names of the
list items at this position are equal under identifier-equality, and

4. for each position in the list, the vahres of the list items at this position
are of the same kind and are equaf according to the appropriate form of
equality (as described above), i.e.:

(a) for identifier items, identifier equality;
(b) for string irems, string equality;
(c) for integer items, integer equality;
(d) for floating point items, floating point equality;
(e) for list items (whose values m in turn lists), list equality as

defined in this rule.

423

Downloaded from http://www.everyspec.com



5.4 DOD-STD-1838

CAIS LIST MANAGEMENT DETAILED REQUIREMENTS

Equafity of lists involving floating point items should be applied with
considerable caution and awareness of afl the issues documented in [1815A],
Section 4.5.7, regarding the accuracy of relational operations with real
oyrm,ds and the discussion above defining floating point equality for floating
pornt hst items.

.

.,.

,,J
.,.

., ,’!.’ ,,
: ,{ :- ., ’..,

.; .,. f. .: ,.
:,:. ,, ,,

424,.

Downloaded from http://www.everyspec.com



‘o

I

DOD-STD- 1838 5.4,1

CAtS_LIST&ANAGEMENT TYPES AND SUSTYPES

5A. I Package CAIS LIST iMANA(;EMENT

This package defines types, subtypes, constants, exceptions and general list manipulation
interfaces. The latter are supplemented by genetic subpackages for the manipulation of list
items of numeric type.

5.4.1.1 Types, subtypes, constants and exceptions

type LIST_TYPE is

subtype LIST_TEXT is

tYP LIST_SIZE is
subtype POSIT ION_COONT is
subtype INSERT_COONT is

type LIST_KIND is

type IT!Q_KIND is

limited private;

STRING;

range O . . CAIS PRAGNATICS. LIST_LENGTH;
LIST_SIZE range-l . . LIST_SIZE’ LAST;
LIST_SIZE range O . . LIST_SIZEr LAST - 1;

(UNNAMED, NAMSD, ZUPTY) ;

(LIST_ITKM KIND, STRING_ITSM_KIND ,
INTEGER_I~SM_KIND , FLOAT_ ITEN_KINO ,
IDENTIFIER_ITZb_KINO) ;

LIST_TYPE describes the values used for lists at the list manipulation interfaces. LIST_
TEXT describes the values used for the text representation of lists, The interfaces enforce the

synt~ of Table ~, page 422, for such text values. LIST_SIZE describes the values that CZUI
be used to inttcate the number of items in a iiiear list. POSITTON_COUNT describes the
vahses that can be used to indicate the position of an item in a non-empty linear list.
INSERT7COUNT describes the values that can be used to indicate the position in a linear list
after which items iwe to be inserted. LIST_KUND enumerates the kinds of lists. ITEM_
KIND enumerates the kirtds of list items.

type TOKEN_TYFE is limited private;
subtype ID ENTIrFIER_TEXT is STRING;

TOKEN_TYPE describes the token vahses used at the interfaces to designate identifiers.
IDENTIFIER_TEXT describes the text values used at the interfaces to designate identifiers.
The interfaces enforce the syntax of Ada identifiers for such text vahses.

SNPTY_L1iT : Constant LIST_TTPE ;

EMPTY_LIST is a deferred constant denoting the value of an empty list. The value of the
function IS_EQUAL(EMPTY_LIST,X) is TRUE for any object X of type LIST_TYPE
whose value is ag empty list.

ITEM_KIND_ERKOR : exception;
LIST_KIND_ERROR : exception;
LIST_POSITION_E~OR: exception;
NbMED LIST ERROR: exception;
SEAKC~ E~-R :
SYNTAX~ERKOR :
TOKEN_ERROR:

ITEM_KIND_ERROR
attempted.

exception;
exception;
exception;

is raised if the kind of item is incorrect for the operation being

425

Downloaded from http://www.everyspec.com



5.4.1 DOD-STD-1838

EXCEFtTONS CAE.LIST.MANAGEMENT

LIST_KIND_ERROR is raised if the kind of list is incorrect for the operation being
attempted.

LIST_POSITION_ERROR is raised if an attempt is made to specify a list item’s position
●

larger than the list’s length, a start position larger than the list’s length or an end position less
than the specified start position.

NAMED_LIST_ERROR is raised if an attempt is made to specify an item by name in an
unnamed list or to construct a linear list with more than one item with the same name.

SEARCH_ERROR is raised if a search for an item fails because the item is not present in a
non-empty list.

SYNTAX_ERROR is raised if an attempt is made to use IDENTIFIER_TEXT values that do
not satisfy the syntax of an Ada identifier or LIST_TEXT values that do not satisfy the
syntax defined in Table XV, page 422.

TOKEN_ERROR is raised if an undefined token value is used where a valid token is
required.

426

Downloaded from http://www.everyspec.com



CAIS.LISTJL4NAGEMENT

5A. 1.2 Copying a list

procedure COPY_LIST

DOD-STD- 1838

(FRCM_LIST : in LIST_TYPE;
TO_LIST : in out LIST_TYPE) ;

5.4,1.2

COPY_LIST

This procedurt returns in the parameter TO_LIST a copy of the current linear list vahse
of the parameter FROM_LIST. In the newly copied TO_LIST, the outermost list is the
current linear list. Subsequent modifications of either list do not affect the other list.

Parameters:

FROM_LIST is the list whose current linear list is to be copied.

TO_LIST is the list returned as a copy of the current liiear list of FROM_LIST.

Exceptions:

None.

o
427

I

Downloaded from http://www.everyspec.com



5.4.1.3 “

SET_TO_EMPTY_LIST

DOD-STD-1838
CAIS_LIST_ WAGEMENT

5.4.1.3 Making a list empty

procedure SET_TC_Et4PTY_LIST (LIST: in out LIST_’IYPE) ;

Purpose:

This procedure resets the parameter LIST so that its current (and outermost) linear list
is the empty list.

Parametec

LIST is the list to be made empty

Exceptions:

None.

428

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.4,1.4

CAIS.LIST.MANAGEMENT CONYERT_TEXT_TO_LIST

5.4.1.4 Converting from text to list form

procedure CONVERT_TEXT_TO_LIST (LIST_STRING: in LIST TExl! ;,
LIST : in Out LIST~TYPE) ;

Purpose:
,,, ,

This procedure converts the text representation of a list into the private list
representation. It establishes the current (and outemrost) linear list of LIST to be a
named, unnamed, or empty list. The individual list items are classified according to
their text representation. For a numeric item value, the item is classified as an integer
item if the numeric value can be interpreted as a (possibly negated) literal of universal_
integer type; otherwise, the numeric item is classified as a floating point item. Blanks,
format effecters and non-printing characters are allowed between syntactic elements in
the vahre of the pammeter LIST_STRING.

Parameters:

LIST_STfUNG

LIST

is the text form to be interpreted as a linear list value,

is the list whose current and outermost linear list is built and returned
according to the contents of LIST_STfUNG.

Exceptions:

SYNTAX.ERROR
is raised if the value of the parameter LIST_STRING does not conform
to the syntax of Table XV, page 422.

CAPACITY_ERROR
is raised if the length of the LIST_STRING parameter exceeds the value
of the constant CAIS_PRAGMATICS .LIST_TE~_LENGTH or if its
value contains any name or vafue which cannot be represented in the
LIST result due to exceeding implementation limits for the particular
CALS implementation, (See CAIS_PRAGMATICS, Section 5.7, page
514.)

NAMED_LIST_ERROR
is raised if the LIST_STRING parameter designates a named linem
(sub)list with two or more items of the same name.

429

.,

I .,

Downloaded from http://www.everyspec.com



5.4.1.5 DOD-STD-1838

TEXT.FORM
.,.

.

CAIS_LIST_MANAGEMENT

5.4.1.5 Converting a list to its text representation

fru3cti0n TEXT_FOSM (LIST: in LIST_TYPE)
return LIST_TEXT;

Purpose:

This function returns the text representation of the value of the current linear list of
LIST. The result is in the canonical list text representation defirred in Section 5.4,

Pammeter:

LIST is the list whose current linear list is to be converted to its text
representation.

:,.

Exception:

CAPACITY.ERROR
is raised if the length of the canonical list text representation to be
returned exceeds the value of the constant CAIS_PRAGMATICS .LIST_
TEXT_LENGTH. (See CAIS_PRAGMATICS, Section 5.7, page 5 14.)

,;; , ,,
..

.! . . . . !
:,,.\,.,.;,,.,:, .,, , .,,

,. ,.

430

Downloaded from http://www.everyspec.com



DOD-STD- 1838

CAIS.LIST.MANAGEMENT

5.4.1.6
IS.EQUAL

●
5..L 1.6 Determining the equality of two lists

function IS_EQUAL (LIS’P1: in LIST_TYPE;
LIS’T2: in LIST TYSE)

rekurn SOOLEAN;

Purpose:

This function returns TRUE if the values of the two current linear lists of LIST1 and
LIST2 are equal according to list equality (see Section 5.4); otherwise, it returns
FALSE.

Parameters:

LIST I, LIST2 are the lists containing the current linear lists whose equality is to be
determined.

Exceptions:

None.

Notes:

Equality of lists involving floating point items should be applied with considerable
caution and awareness of all the issues documented in [1815A], Section 4.5.7,

●
regarding the accuracy of relational operations with real operands, and the discussion in
Section 5.4 defining floating point equality for floating point list items.

431

Downloaded from http://www.everyspec.com



5.4.1.7 DOD-STD-1838

DELETE CAIS.LIST.MANAGEMENT

5.4.1.7 Deleting an item from a linear list

procedure DELETE (LIST: in Out LIST_TWE ;
ITEbt_POSITION : in POSITION_COUNT);

procedure DELETE (LIST: in Out LIST_~E;
ITEbf_NAMS : ill IDENTIFIER_TEXT) ;

procedure DELETE (LIST: in out LIST_TYPE ;
ITEt._NAMS : in TOKSN TYPE) ;

Purpose:

This procedure deletes the ‘item specified .by lTEM_POSH’ION or ITEM.NAME from
the current linear list of LIST. If this was the only item in the linear list, the kind of the
linear list changes to EMPTY.

Parameters:

LIST is the list containing the current linear list from which tbe item will be
deleted.

ITEM_POSITION
is the position within the current linear list of the item to be deleted,

ITEM_NAME is the name of the list item to be deIeted.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear list of LIST is empty.

LIST_POSITION_ERROR
is raised if lTEM_POSfTION has a vahre larger thsn the current length
of the current linear list of LIST.

SYNTAK.ERROR
is raised if the identifier-text value of the parameter lTEM_NAME of
type KIENT’tFIER_TEKT does not conform to the syntax of an Ada
identifier.

TOKEN_ERROR
is raised if the lTEN_NAME of type TOKEN_TYPE is an undefined
token.

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current linear list
of LIST is unnamed.

SEARCH_ERROR
is raised if there is no item in the current linear list of LIST with the
name lTEM_NAME: o

.432

Downloaded from http://www.everyspec.com



DOD-STD-1838

CAIS.LIST.MANAGEMENT

5.4.1.8

KIND_OF_LIST

5.4.1.8 Determining the kind of list

function KIND_OII’_LIST (LIST: in LIST_TYSE)
return LIST KIND;

Purpose:

This function returns the kind of the current Iinesr list of LIST; the vslue returned is
either UNNAMED, NAMED or EMPTY.

PsrsrneteK

LIST is the list whose current linear list is of interest.

Exceptions:

None.

433

L

Downloaded from http://www.everyspec.com



5.4.1.9 DOD-STD-1838

KIND.OF.ITEM CAIS_LIST_MANAGEMENT

5.4.1.9 Determining the kind of list item

function rCIND_OS’_ITSM

return ITEbt_KIND;

function tCIND_OF_ITEt’d

Mum ITEM_KIND;

function KIND_OF_ITSM

return ITS2.f_KIND;

Purpose:

(LIST: in LIST_TYPE;
ITFM_POSITION: in POSI1’ION_COONT)

(LIST: , in LIST_TYPE;
ITNbS_NANM: in IDENTIFIER_TEXT)

(LIST : in LIST_TYPE;
ITEE_NAblE : in ToNEN_TYPE)

This function returns the kind of an item in the current linear list of LIST.

Parameters:

LIST is the list of interest.

ITEM_POSITION
is the position of the item of interest within the current linear list of
LIST.

IT,EM_NAME is the name of the list item of interest within the current linear list of
LIST. ●,1

Exceptions:

LIST_KfND_ERROR
is raised if the current linear list of LIST is empty.

LIST_POSITION_ERROR
is raised if ITEM_POSITION has a value larger than the current length
of the current linear list of LIST.

SYNTAX_ERROR
is raised if the identtiler-text value of the parameter ITEM_NAME of
type IDENTfFIER_TEXT does not conform to the syntax of an Ada
identifier.

TOKEN.ERROR
is raised if the ITEM_NAME of type TOKEN_TYPE is an undefined
token.

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current linear list
of LIST is umamed.

SEARCH.ERROR ●
is raised if there is no item in the current linear list of LIST with the
name ITEM.NAME.

434

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1.10

CAIS.LIST.MANAGEMENT SPLICE

5.4.1.10 Inserting a sequence of items into a linear list

prOCedu~SPLICE (LIST: io out LIST TYSE;
POSITION : in INSEiiT_COONT ;
SOURCE_LIST : in LIST_TYPE) ;

Purpose:

This procedure allows the items of the current linear list of one list to be inserted into

the current linear list of another list. Copies of the items in the linear list to be insested

will become items in the resulting linear list. The copied items will appear, irr order,

immediately following the item position designated by POSITION. Subsequent
modifications to the value of LIST or to the value of SOURCE_LIST do not affect the
other list.

Parameters:

LIST

POSITION

SOURCE.LIST

Exceptions:

is the list into whose current linear list the copied items are to be inserred.

is the position in LIST’s current linear list after which the new items will
be inserted,

is the list whose current lirrear list supplies the items to be inserted.

LIST_IUND_ERROR
is raised if the current linear lists of LIST and SOURCE_LIST are not of
the same kind and neither of them is an empty list.

LIST_POSITION_ERROR
is raised if POSITION has a vahre larger than the current length of the
current linear list of LIST.

CAPACITY_ERROR
is raised if the number of items in the resulting linear list would exceed
the value of the constant CAIS.PRAGMATICS .LIST_LENGTH. (See
CAIS_PRAGMATICS, Section 5.7, page 5 14.)

NAMED_LIST_ERROR
is raised if the current linear lists of LIST and SOURCE_LIST are both
named and contain an item of the same name.

435

Downloaded from http://www.everyspec.com



5.4.1.11 DOD-STD. 1838

CONCATENATE.LISTS CAIS_iIST_ WAGEMENT

5.4.1.11 Concatenating two linear lists

proeedrrreCONCATENATE_LISTS (FRONT: in LIST TYPE ;
SACK : in LIST-TYPE;
RSSULT : in out LIST~TYPE) ;

.,,.

Purpose:

This procedure remms in RESULT a list constructed by concatenating the current linear
list of BACK to the erid of the. current lineai list of FRONT. The current linear lists of
FRONT and. BACK must be of the same kind or one must be an empty list. The values
of FRONT and BACK are not affected Subsequent modifications to the value of
FRONT or of BACK or to the value of the returned RESULT list do not affect either of
the other (unmodified) lists.

Parameters:

FRONT is the f~st list whose current linear list is to be concatenated.

BACK “‘ is t@e”second list whose current. linear list is to be concatenated.

RESULT is the list produced by the concatenation, its outermost linear list has as
its iqitid items the items in the current linqar list of FRONT and as the,,
rest of its items the items in the cu~nt linear list of BACK,

Exceptions: . ..-...,> , ,,.

LIST_KIND_ERROR
is raised if the current linear lists of FRONT and BACK are not of the
same kind and neither of them, is rin empty list. ,,:.,:

‘CAPAC~Y_ERROR; . ;:,:. “:.{j ., ‘~-‘ ““, ,. “;, .,
is raised if the numbdr of items in ‘the resqltirig lineiii ‘list would exceed
the value of the constant CAIS_PRAGMATICS .LIST_LENGTH. (See
.CAIS_PRAGMATICS, Section 5.7, page 5 14.)

NAMED_LIST_ERROR
is raised if the current linear lists of FRONT and BACK are both named
and contain an item of the same name.

. .
436

.,

1 L— ....

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1.12

CALS.LtST_h4ANAGEMENT EXTRACT.LIST

5.4.1.12 Extracting a sequence of items from a linear list

prOCdU~ EXTSAC1’_LIST (LIST: in LIST TTPE ;
START POSITION : in POSITION_COUNT ;
ENL_P&31TION : in POSITION_COONT ;
RNSULT_LIST: in out LIST_TTPE) ;

Purpose:

This procedure extracts a sequence of items from the current linear list of a list, forming

a new list from them. The items to he extracted are those in the positions from START
POSITION through END_POSITION inclusive. Copies of the ~xtracted items form th~
current (and outermost) linear list of RESULT_LIST.

Parameters:

LIST is the list whose current linear list supplies the items to be extracted.

START_POSITION
is the position (within LIST’s current linear list) of the fmt in the
sequence of items to be extracted.

END.POWITON
is the position (within LIST’s current linear list) of the last in the
sequence of items to be extracted.

RESULT_LIST is the list constructed from copies of tf,e extracted items.

LIST_POSITION_ERROR
is raised if START_POSITION is greater than END_POSITION or if
either START_POSITION or END_POSITION is greater than the
number of items in the current linear list of LIST.

437

Downloaded from http://www.everyspec.com



5.4.1.13 DOD-STD-1838

NUMBER.OF.ITEMS CAI.LISTJL+NAGEMENT

5.4.1.13 Determining the length of a linear list

function NOMSER_O~_IT.SMS (LIST: h LIST-TYPE)
return LIST_SIZE;

Purpose:

This functiorr returns a count of the number of items in the current linear list of LIST. If
the current linear list is empty, zero is returned.

Parameter:

LIST is the list whose current linear list is being measured

Exceptions:

None.

438

Downloaded from http://www.everyspec.com



DOD-STO- 1838 5.4.1.14

CAIS_LIST_MANAGEMENT POSITION-OF_CURRENl_LIST

5.4.1.14 Determining the position of the current linear list

fusIdiOn POSITION_OF_CU-NT_LIST (LIST: in LIST_TYPE)
return POSITION_COONT;

Purpose:

This ilmction returns the position (within the innermost linear list containing the current
linear list) of the item whose value is the current linear list.

Parameter

LIST is the list whose current linear list is the value of some list item.

Exception:

LIST.POSITION.ERROR
is raised if the current linear list of LIST is the outermost linear list of
LIST.

●

L 439

Downloaded from http://www.everyspec.com



5.4.1.15 DoD-STD-1838

C~~NT_LIST_IS_OUTERMOST , ““‘ CAIS.LIST_MANAGEMENT

5.4.1.15 Determining whether the current linear list is outermost

function CgRsm!r_LIST_IS_ OoTEs4gXT (LIST.: in, LIST_TYSE) @
return BcOLSAN;

Purpose:

This’ function returns TRUE ‘if‘the current linear list of LIST is the outermost linesr list
of LIST; otherwise it returns FALSE,

Pammeter:

LIST is the list’ whose current linest list may either be the outermost linear list
or the value of some list item.

Exceptions:

None.

440

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1.16

C&LIST_MANAGEME~, MAKE_CONTAINING_LIST_CURRENT

5.4.1.16 Making the next outer linear list current

pmwdure btAKE_ccwrAINING_LI sT_cuRRswr (IN_LxsT: in out LIST_TYSE);

Purpose:

Thii procedure causes the innermost list containing the current linear list to become the
(hew) current linear list.

Paramete~

IN_LIST is the list whose current linear list is of interest

Exception:

LIST_POSITION_ERROR
is raised if the current linear list of LIST is the outemrost linear list of
LIST.

441

Downloaded from http://www.everyspec.com



5.4.1.17 DOD-STD-1838

MAKE_THIS_ITEM_CURRENT CAIS_LISTJL4NAGEMENT

5.4.1.17 Making a nested sublist the current linear list

procedureMANs_lwXS_ITSM_CURRENT

procedure tmNE_THIS_ITSM_COsRNNT

procedure MMrE_THIS_ITSbt_CURRENT

Purpose:

(IN_LIST: hr Out LIST_TYPE ;
ITSM_POSITION : in POSITION_COUNT) ;

(IN_LIST: in out LIST_TTPE;
ITEM NAME: in IDENTIFIER_TEXT) ;

(IN_LIST : in Out LIST_TYPE ;
ITEM NSMS: in TONEN_TYPE) ;

This procedure causes the list value of an item in the current linear list of LIST to
become the (new) current linear list.

Parameters:

IN_LIST is the list whose cument linear list is of interest.

ITEM_POSITfON
is the position (in the current linear list) of the list-kind item whose value
is to become the (new) current linear list.

ITEM_NAME is the name of the list-kind item (in the current linear list) whose value is
to become the (new) current linear list.

Exceptions

LIST_KIND_ERROR
is raised if the current linear list of IN_LIST is empty.

LIST_POSHTON_ERROR
is raised if lTEM_POSITION has a vahe Iarger than the current length
of the current linear list of IN_LfST.

SYNTAX.ERROR
is raised if the value of the psmmeter ITEM_NAME of type
IDENTIFIER_TEXT does not conform to the syntax of an Ada
identifier.

TOKEN_ERROR
is raised if the lTEM_NAME of type TOKEN_TYPE is an undefined
token.

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and rhe current linear list
of IN_LIST is umamed.

ITEM_KIND_ERROR
is raised if ITEM.POSITION or lTEM_NAME specifies an item whose
vatue ii not a list. ●

... , , 442,

Downloaded from http://www.everyspec.com



~

DOD-STD- 1838 5.4.1.17
CAIS.LIST.WAGEMENT W_THIS_ITEM_CURRENT

●
SEARCH-ERROR

is raised if there is no item in the current linear list of IN.JJST with the
name ITEM.NAME.

....”

●

., .,..

. . .

.,,

..- !,. ,,,
.

,:,.,

.:

443

Downloaded from http://www.everyspec.com



5.4.1.18 DOD-STD-1838

TEXT.LENGTH CAIS.LIST.MANAGEMENT

5.4.1.18 Determining the length of the.text form of a list or a list item

function TEXT_LENGTSt (LIST: in LIST_TYPE )
return CAIS_POSITIVR;

function TEXT_LENGTH (LIST: in LIST TYPE;
ITEM_POSITION: in POSI=ION COUNT)

return CAIS_POSITIVS;

fUnCtiOIITEXT_LENGTH (LIST: in LIST_TYPE;
ITEN N~ : in IDENTIFIER_TEXT)

return CAIS_POSITIVE; -

function TEXT_LENGTSt (LIST: in LIST_TYPE;
ITEbS_NAbtE: in TOttEN_TYP E)

return CAIS_POSITIVE;

Purpose:

This function returns the length of the text form of the current linear list of LIST [first
interface], or the length of the text form of the value of a list item (of the current linear
list) identified by ITEM_POSITION or ITEN_NAME [last three interfaces].

Parameters:

LIST is the list whose current linear list is of interest.

ITEM.POSIT’ION
is the position within the current linear list that identifies the item of ●
interest,

ITEM_NAME is the name of the list item of interest.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear list of LIST is empty (last three interfaces).

LIST_POSITION_ERROR
is raised if lTEM_POSITION has a value larger than the current length
of the current linew list of LIST.

SYNTAX_ERROR
is raised if the value of the parameter
IDENTTPIER_TEXT does not conform to
identifier.

TOKEN_ERROR

ITEM_NAME of type
the syntax of an Ada

is raised if the lTEM_NAME of type TOKEN.TYPE is an undefined

token.

NAMED.LIST_ERROR ●
is raised if the parameter ITEM_NAME is used and the current linear list
of LIST is umamed.

●✎

444

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1.18
CAIS.LISTJ4ANAGEMENT

SEARCH.ERROR
is raised if there is no
name ITEM.NAME.

TEXt_LE,NGTH

item in the current linear list of LIST with the

Notes:

The text form of every vahre is non-null, and therefore the result is always positive.

This is even true of the empty list, which is represented by the string value designated
by the Ada string literal “()” and therefore has length 2.

I . ... ..

●

445

Downloaded from http://www.everyspec.com



5.4.1.19, DOD-STD- 1838

GET.lTEM_Nti CAIS.LIST.MAN!AGEMENT

5.4.1.19 Determining the name of a named item

procedure GET_ITEbt_NAMa (LIST: in LIST_TYSE;
IT!&b!_POSITION : in POSI’TION COUNT;
NAbC3: in out TOSUtN_TW-E );

Purpose:

This procedure returns, in NAME, the token form of the name of item that is in the
position indicated by ITEM_POSITION in the (named) current linear list of the LIST.

LIST is the list whose current linear list is of interest.

ITEM_POSITION
is the position within the current linear list that identfles the item

NAME is the token representation of the name of the item in the named current
linear list.

Exceptions:

LIST_KIND_ERROR ““
is raised if the current linear list of LIST is not a named list.

:.:. LIST_POSITION_ERROR .
.:, . is raised if lTEM_POSITION his a vahre larger ‘than the current length ●

of the current linear list of LIST.

. .
., .,’., .. .. ..

.

—.

,’....,, !,

446

-J

Downloaded from http://www.everyspec.com



5.4.1.20

POSITION_BY_NAME

DOD-STD- 1838

CAIS_IJST_ WAGEMENT

5.4.1.20 Determining the position of a named item

function POSITION_BY_NAb5S (LIST: in LIST_TYPE ;
ITEM NAMS: in IDENTIFIER_TEXT)

return POSIT ION_COONT; -

firnctiorr POSITION_BY_NAMS (LIST: in LIST_TYPE;
ITEM NAMS: in TO~N_TYPE )

return POS IT ION_COONT; -

Purpose:

This function retoms the position at which an item with the given name ITEM_NAME
is located in the current linear list of LIST.

Parameters

LIST is the Iist in whose current linear list the named item is to be located.

ITEM.NAME is the name of the item to be located.

Exceptions:

LIST.KJND.ERROR
is raised if the current linear list of LIST is empty.

SYNTAX_ERROR
is raised if the value of the parameter
IDENTIFIER_TEXT does not conform to

ITEM.NAME of ‘ type
the syntax of an Ada

identifier.

TOKEN ERROR
is raised if the ITEM_NAME of type TOKENJYPE is an undefined
token.

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current linear list
of LIST is unnamed.

SEARCH_ERROR
is raised if there is no item in the current linear list of LIST with the
name lTEM_NAME.

I
I

10

447

Downloaded from http://www.everyspec.com



5.4.1.2.1 DOD-STD-1838

PACKAGE CAIS.LISTJI’EM CAIS.LIST.MANAGEMENT

5.4.1.21 Package CAIS LIST ITEM

This is a package for manipulating list items whose values are list items. The exceptions

raised by all subprograms in this package are defined in the packages cMs_I-IS_ ●
MANAGEMENT and CAIS_PRAGMATICS.

—

,.

,..1

● 1
448

(

Downloaded from http://www.everyspec.com



DOD-STD- 1838

CAIS.L.KT.ITEM

5.4.1 .21.1 Extracting a list value from a list item

procedure EsTRAcT_vsIrmE (FROkf_LIsT: in
ITEM_POSITION : in
VALUE : in out

procedure EXTRACT_vALtrE (FROb_LIST: in

IT.El_NAME : in
VALUE : in out

procedure ExTRAcT_vwuE (FRObi_LIsT:
~

ITEM NM: in
VALUE : in out

Purpose:

5:4..i.2l,l
EXTRACT.VALUE.

LIST TYPE;

POS I=ION_COUNT ;
LIST_TYPE) ;

LIST_TYPE ;

IDENTIFIER_TExT;
LIST_TYPE) ;

LIST TYPE;

TONEti_TYPE ;

LIST_TYPE) ;

This procedure locates a list-vatued item in the current linear list of FROM_LIST and
returns a copy of the list value as the current (and outermost) linear list of VALUE.
Subsequent modification to the value of FROM_LIST or to the value returned in
VALUE does not affect the other value.

Parameters:,

FROM_LIST is the list whose current linear list contains the item to be extracted,

ITEM_POSITION
is the position within the current linear list that identifies the item whose
value is to be extracted.

ITEM_NAME is the name of the item whose vatue is to be extracted.

VALUE is the list value extracted from the designated item.

Exceptions

LIST_KIND_ERROR
is raised if the current linear list of FROM_LIST is empty.

LIST_POSITION_ERROR
is raised if ITEM_POSITION has a value larger than the current length
of the current linear list of FROM_LIST.

SYNTAX_ERROR
is raised if the value of the parameter ITEM_NAME of type

lDENTIFIER_TEKT does not conform to the syntax of an Ada
identifier.

TOKEN.ERROR
is raised if the ITEM_NAME of type TOKEN_TYPE is an undefined
token. I

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current linear list
of FROM_LIST is umamed.

449

Downloaded from http://www.everyspec.com



DOD-S’I’D- 18385.4.1 .21.1

EXTRACT.VALUE CAIS.LLST.ITEM

ITEM_IUND_ERROR
is raised if ITEM_POSITION or lTEM_NAME speciiles an item whose
value is not a list. ●

SEARCH.ERROR
is raised if there is no item in the current linear list of FROM_LIST with
the name JTEM_NAME.

,.

.!

..’i ‘. :! ..:-,,
,,.,,., i ;,,} r,’,!’..?.‘i: ---.-. ;,

1,.

450

—

Downloaded from http://www.everyspec.com



●

●

5.4.1 .21.2

REPLACE

DOD-STD-1838

CAIS.LIST_~

5.4.1 .21.2 Replacing a list value ;n a list item

procedure SC&PtACE (IN_LIST: iu Out LIST_TYPE ;
STEt4_POSITION : in POSITXON_COONT ;
VALUE : in LIST_TYPE) ;

procedure RSPLACE (IN_LIST: in out LIST_TYPE;

ITSbt_NAbtE: in IDENTIFIER TEXT ;

VALUE : in LIST_TYPE)Y

procedure REPLACE (IN_LIST: in Out LIST_TYPE;
ITSM_NAblE : in TOKEN-TYPE ;
VALOE : in LIST_TYPE) ;

Purpose:

This procedure replaces the value of a list-valued item in the current linear list of
IF_LIST with the current linear list of VALUE. Subsequent modification to the value
of IN_LIST or of VALUE does not affect the other value.

Parameters:

IN.LIST is the list whose current linear list contains the item whose value is to be
replaced.

ITEM_POSITION
is the position within the current linear list that identifies the item whose
value is to be replaced.

ITEM.NAME is the name of the item whose value is to be replaced.

VALUE is the list value whose current linear list is to become the new value of

the designated item.

Exceptions:

LIST_KIN~_ERROR

is raised if the current linear list of IN_LIST is empty.

LIST POSITION ERROR

i; raised if lTEM_POSITION has a volue larger than the current length
of the current linear list of IN_LIST.

SYNT.LU_ERROR
is raised if the vahre of the pammeter
IDENTIFIER_TEXT does not conform to
identifier.

ITEM.NAME of type
the syntax of an Ada

TOKEN_ERROR
is raised if the lTEM_NAME of type TOKEN_TYpE is m undefined
token.

,..

I 451

Downloaded from http://www.everyspec.com



-L

5.4.1 .21.2 DOD-STD-1838

REPLACE CAIS_LIST_ITEM

NAMED_LIST_ERROR
is raised if the parameter ITEM_N~E is used and the current linear list
of IN_LIST is unnamed. ●

ITEM.IUND.ERROR . ,.

is raised if ITEM.POSITION or lTEM_NAME specfles an item whose
value is not a list.

SEARCH_ERROR .,
is raised if there is no item in the current linear list of IN_LIST with the
name lTEM_NAME.

.: ... ,.

.,..,,.. . . . .

,:, ;-. .:, : ,,.{;,,. ,. ..;. .,

,:,,., ;/. ,.. ,! :1> $

.;, ,: ,,, {, ,,. :,, ;! .:,..!!,,. -?,, ,: !,
,-

. .. . . . . . ... ::,.

!., ,,

,, ●

●

Downloaded from http://www.everyspec.com



DOD-STD-1838

CAIS_LIST_~

5.4.1 .21.3

INSERT

5.4.1 .21.3 Inserting a list-valued item into a linear list

prOcedUre INSERT ( IN_LIST: k OUt LIST_TYPE;
POSITION : in INSERT_COUNT ;
VALUE : in LIST_TYPE) ;

procedure INSERT ( IN_LIST: in out LIST_TTPE;
POSITION: ti INSERT_COVNT;
NAME: in IDENTIFIER TEXT ;
VALUS : in LIST_TTPE)T
-.

procedure INSERT ( IN_LIST: in out LIST_TTPE;
POSITION : iss INSERT_COONT ;
NAME: h TONEN_TTPE ;
VALUE : in LIST_TTPE) ;

Tfris procedure inserts a list-valued item imo the current linear list of IN_LIST; the “new

list item will be positioned after the list item specified by POSITION. The list Are of
the item to be inserted is the cument linear list of the VALUE parameter. A vahre of
zero in POSITION specifies a position at the head of the current linear list. Subsequent
modification to the vafue of IN_LIST or of VALUE does not affect the other vahre. If
the current linear list of IN_LIST is empty, it will be a named list after the successful
completion of the call, if the second or third interface is, used, and an unnamed list
otherwise.

Parameters:

,JPLLIST is the list into whose current linear list the item will be inserted.

POSITION is the position in the current linear list after which the item is to be

inserted.

NAME is the”name of the new item to be inserted.

I
VALUE is the list vahre whose current linear list is the value of the new item to be

inserted. ~

Exceptions:

LIST_KIND_ERROR
is raised if an attempt is made to insert an item by NAME into an
umamed list or, conversely, if an attempt is made to inserr an item
without NAME into a named list.

LIST_POSITION_ERROR
is raised if ITEM_POS~ON has a value larger than the current length
of the current linear list of IN_LIST.

SYNTAX.ERROR
is raised if the vahre of the parameter NAME of type IDENTIFIER_
TEXT does not conform to the syntax of an Ada identifier.

Downloaded from http://www.everyspec.com



.

.7

.$-

.+..
.....
,:
:.:

5.4.1 .21.3 DOD.STD-1838

INSERT CAIS.LIST.ITEM

TOKEN.ERROR
is raised if the NAME of type TOKEN_TYPE is an undefined token.

CAPACITY.ERROR
is raised if the number of items in the resulting linear list would exceed
the value of the constant CAIS_PRAGMATICS. LIST_LENGTH, (See
CAIS_PRAGMATICS, Section 5.7, page 5 14.)

N~ED_LIST_ERROR

,’. is raised if the current linear list of IN_LLST is a named list that afready
contains an item with the name given by NAME.

-...
.;:

:.
:-..-.

.

$-.

.
:....

..

454

Downloaded from http://www.everyspec.com



●

I

I

I

I

I
I

●

DOD-STD- 1838 5.4.1.21.4

CAtS_LtST.m31vf POSITfON.BY_VAfJJE

5.4.1.21.4 Locating a list-valued item by value within a linear list

functionPOSITION_BY_VALUtt

(LIST : in LIST TTPE;
VALUE : in LIST-TYPE;

STANT_POSI’TION: h POSI~ION_COONT := POSITION_COUNT’ FIRST;
ENO_POSITION: in POSITION_COONT :. POSITION COUNT, LAST)

return POSITION_COONT;

Purpose:

This function returns the position in the current linear list of LIST of the next list-
valued item whose value equals that of the current linear list of the VALUE parameter
under list equality (see Section 5.4, page 423). The search begins at the START_
POSITION and ends when either an item whose vahre equals the current linear list of
VALUE is found, rhe last item of the list has been examined, or the item at the END_
POSITION has been examined, whichever comes fust.

Parameters:

LIST is the list in whose current linear list the item of interest is to be located

VALUE is the list wdue whose current linear list is the value of interes(

START.POSITION
is the position of the fust item in the current linear list of LIST to be
considered in the search.

END.POSITION
is the position beyond which the search will not proceed, the search may
terminate prior to reaching END_POSITION should the sought item be
found or should the last element of the list be considered.

Exceptions:

LIST_fUND_ERROR
is raised if the current linear list of LIST is empty.

LIST.POSITION.ERROR
is raised if START_POSITfON specifies a vahse larger than the current
length of the cument linear list of LIST, or if END_POSITfON is less
tlian S’LART_POSITION.

SEARCI-I_ERROR
is rdsed if there is no item iti the current lineat list of LIST within the
region specified by START_POSITION and END_POSITION that has
the value specified by VALUE.

45s

Downloaded from http://www.everyspec.com



DOD-STD-18385.4.1 .21.4

POSITION.BY.V.4LUE CAIS_LIST_ITEM

Notes:

Determining the position by value of a list. involving floating point items should be

applied with considerable caution and awareness of all the issues doc~nted in ●
[18 15A], Section 4.5.7, regardirrg the accuracy of relational operations with reaf

operands and the dkcussion in Section 5.4, page 420, defining floating point equafit y
for floating point list items.

456

Downloaded from http://www.everyspec.com



●

DOD-STD-1838 5.4.1.22

CAiS_LIST_MANAGEMENT PACKAGE CAIS_IDEiYITFIER_ITEM

5.4.1.22Package CAIS lDENTIFIER_ITEM

This package provides interfaces for the manipulation of identifier values and’list items
whose values are identifiers. The exceptions raised by all subprograms in this package are
defiied in the packages CAIS.LIST.MANAGEMENT and CAIS_pRAGMATICS.

ldentifiervahses are represented at the interfaces asvalues of thetypes TOKEN_TYPEor
IDENTIFIER_TEXT.

457

Downloaded from http://www.everyspec.com



5.4.1 .22.1 DOD-STD-1838

COPY.TOKEN CAIS_IDENITFIER_ITEM

5.4.1 .22.1 Copying a token

procedure COPY_TOKEN (FRCM_TONEN: in TONEN_TYFE ;

TO_TOtCEN : in Out TOKEN_TYPE );

Purpose:

This procedure returns in TO.TOKEN a copy of the token in FROM.TOKEN.

Pamnreters:

FROM_TOKEN is the token to be copied

TO_TOKEN is the copied token to be returned

Exception

TOKEN.ERROR
is raised if FROM_TOKEN is an undefined token.

4S8

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1 .22.2
CAIS.IDENTIFTER_ITEM CONVERT_TEX_TO_TOKEN

5.4.1 .22.2 Converting an identifier from text tb token form

prOCeduW CONVERT_TEXT_TC_TOREN (IDENTIFIER: in

TOKEN : in out

Purpose:

IDENTIFIER_TEXT;

TOKEN_TYPE) ;

This procedure converts the text representation of an identifier into the corresponding

token representation.

Parameters:

IDENTIFIER is the text to be converted to a token.

TOKEN is the token corresponding to the value of IDENTIFIER,

Exceptions:

SYNTAX_ERROR
is raised if the vahre of the parameter IDENTIFIER does not conform to
the syntax of an Ada identifier.

CAPACITY_ERROR
is raised if the length of the IDENTIFIER parameter exceeds the value of
the constant CAIS_PRAGMATICS .IDENTIFIER_ITEM_LENGTH (see
CAIS_PRAGMATICS, Section 5.7, page 5 13).

I 459

I .

Downloaded from http://www.everyspec.com



5.4.1 .22.3 DOD-STD-1838

TE~_FORM CAtS_IDENTtFtER_ITEM

5.4.1 .22.3 Converting an identifier from token to text form

fUIICdOIITEXT_rORM (TONEN: in TOKEN_TYPE)
return IDsmTI1’IER_TExT;

Purpose:

This function returns the text representation of the token value of the TOKEN
parameter. The result has the syntax of an Ada identifier,

ParmneteK

TOKEN is the identifier expressed as a token.

Exception:

TOKEN.ERROR
is raised if the TOKEN is an undefined token.

Notes:

The result does not contain any lower-case characters.

460

L.

Downloaded from http://www.everyspec.com



DOD-STD-1838

CALS_ID~_ITEM

5.4.1 .22.4 Determining the equality of two identifier tokens

hmction IS_EQUAL (TOXEN1 : in TO-_lYPE ;
TOK.EN2: in TOKEN_lYPE)

I’Wrn SCOLSAN;

5.4.1 .22.4

tS_EQUAL

This function ietums ~UE if the two identifier tokens TOKENI and TOKEN2 are

identifier-equd, otherwise, it returns FALSE.

TOKEN1, TOKEN2
are the identifier tokens whose equality is to be determined.

Exception:

TOKEN.ERROR
is raised if either TOKEN 1 or TOKEN2 is an undefined token.

46i

Downloaded from http://www.everyspec.com



5.4.1 .22.5 DOD-STD- 1838

EXTRACT.VALUE

5.4.1.22.5 Extracting an identifier value from a list item

procerhrrsEXTRACT_VALUE (FRCS._LIST: ilr
ITEb2_POSITION : iN
VALUE : in out

prw+ure EXTRACT_VALUN (FROb_LIS’2: in
ITS2.2_NAME: in
VALUS : in out

procertum EXTRACT_VALUE (FROM_LIST: in
ITEbt_NAKE : in
VALUE : h out

Purpose:

CAIS.IDENTWTER.ITEM

LIST_TYPE;
POS XTION_COUNT ;

TOKEN_TYPE) ;

LIST_TYPE ;
IDENTIFIER_TEXT ;

TOREN_TYPE ) ;

LIST TYPE;
TORE= TYPE ;
TOREN~TYPE) ;

This procedure locates an identifier-valued item in the current linear list of FROM_

LIST and returns a copy of the identifier value (in token form) in VALUE.

Parameters

FROM_LIST is the list whose current linear list contains the item to be extracted.

ITEM.POSITTON

is the position within the current linear list that identifies the item whose

value is to be extracted.

ITEM_NAME is the name of the item whose vahre is to be ex~acted.

●
VALUE is the identifier-value (in token form) extracted from the designated item.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear list of FROM_LIST is empty.

LIST_POSITION_ERROR
is raised if lTEM_POSITION has a value larger than the current length
of the current linear list of FROM_LIST.

SYNTM_ERROR
is raised if the value of the parameter
IDENTIPIER_TEXT does not conform to
identifier,

ITEM.NAME of type
the syntax of an Ada

TOKEN_ERROR
is raised if the ITEM_NAME of type TOKEN_TYPE is m undefined
token.

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current linear list
of FROM_LIST is unnamed.

462

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.4.1 .22.5

CAIS_tDEIWIFIER.ITEM EXTRACT_VALUE

●
ITEM.KIND.ERROR

is raised if lTEM_POSITION or lT’EM_NAME specifies an item whose
value is not an identifier.

SEARCH_ERROR
is raised if there is no item in the current linear list of FROM_LIST with
the name ITEM.NAME.

I

,0
463

Downloaded from http://www.everyspec.com



5.4.1 .22.6 DOD-STD- 1838

REPLACE CAIS_IDENITFTER.ITEM

5.4.1 .22.6 Replacing an identifier value in a list item
. . . . . ,..
procedure rutpticz (Itf_L15T: ilrout

ITEM POSITION : in

WiLm- : in

prw”ertureIU3puicE (IN_L15T: in out
ITEM NAME : in

Vrum- : in

procedure asPuAcE (IN_L15T: in out
ITSb_NAME : in
Vamnr : in

Purpose:

LIST_TYPE;
POSITION_COVNT ;

TONEN_TYPE) ;

LIST TYFE;

IDEtiIFIER_TEXT;
TOKEN_TYPE );

LIST_TYPE;

TOREN_TYPE ;
TONEN_TYPE );

This procedure replaces the value of an identifier-valued item in the current linear list
of IN_LIST with VALUE. Subsequent modification to the value of IF_LIST or of
VALUE does not atYect the other value.

IN_LIST is the list whose current linear list contains the item whose value is to be
replaced.

ITEM.POWITON—
is the position within the current linear list that identifies the item whose

vahre is to be replaced. ●
lTEM_NAME is the name of the item whose value is to be replaced.

VALUE is the new identifier value (in token form) of the designated item.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear Jst of IN_LIST is empty.

LIST_POSITION_ERROR
is raised if ITEM_POSITION has a value larger than the current length
of the current linear list of IN_LIST.

SYNTAX_ERROR
is raised if the value” of the parameter I’TEM_NAME of type
IDENTIFIER_TEXT does not conform to the syntax of an Ada

identifier.

TOKEN.ERROR
is raised if the iTEM_NAME of type TOKEN_TYPE is an undefined
token or if VALUE is an undefined token.

NAMED_LIST_ERROR ●
is raised if the parameter ITEM_NAME is used and the current linear list
of IN-LIST is umamed.

464

Downloaded from http://www.everyspec.com



CAIS_IDENTIHER_lTEM

lTEM_~_ERROR
is raised if lTEM_

DOD-STD-1838 5.4.1 .22.6

REPLACE

,POSITION or lTEM_NAME specifies an item whose

vslue is not m identifier.

SEARCH_ERROR

is raised if there is no item in the current linear list of llI_LIST with the

name lTEM_NAME.

●
I 465

Downloaded from http://www.everyspec.com



5.4.1 .22.7 DOD-STD- 1838

INSERT CAIS.IDENTIFIER.ITEM

5.4.1 .22.7 Inserting an identifier- vahred item into a linear list

prOCedIUeINSERT ( IN_LIST: in out LIST_TYPE;
POSITION : in INSERT_COONT ;
VALUS : in TORSN_TYPE) ;

prOCed~ INSERT ( IN_LIST: ~ out LIST_TYPE;
POSITION: in INSERT_COOWI ;
NA14s:

~
IDENTIFIER TEXT ;

VALOE : in TOREN_TYPE~;

prOCdU~ INSERT (IN_LIST: in out LIST_TYPE;
POSITION : in INSERT_COUNT ;
N-: in TOREN_TYPE ;
VALVE : in TOREN_TYPE) ;

Purpose:

This procedure inserts a identifier-valued item into the current linear list of IN_LIST,

the new list item will be positioned after the list item specified by POSITION. A value

of zero in POSITION specifies a position at the head of the current linear list.

Subsequent modflcation to the value of IN_LIST or of VALUE does not affect the

other value. If the current linear list of lN_LIST is empty, it will be a named list after

the successful completion of the call, if the second or thtid interface is used, and an

umamed list otherwise.

Parameters:

IN_LIST is the list into whose current linear list the item will be inserted.

POSITION is the position in the current linear list’ after which the item is to be
inserted.

NAME is the name of the new item to be inserted.

VALUE is the identifier value (in token” form) of the new item to be inserted.

Exceptions:

LIST_KIND_ERROR
is raised if an attempt is made to insert an item by NAME into an
unnamed list or, conversely, if an attempt is made to insert an item
without NAME into a named list.

LIST_POSITTON_ERROR
is raised if ITEM.POSIT’ION haa a value larger than the current length
of the current linear list of IN_LIST.

SYNTAX_ERROR
is raised if the value of the pammeter NAME of type IDENTIFIER_
TEXT does not conform to the syntax of amAda identifier.

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1 .22.7

CAIS.ID~ER.~ INSERT

ToKEN.ERROR
is raised if the NAME of type TOKEN_TYPE is srr undefined token or if
VALUE is an undefiied token.

CAPAC~Y_ERROR
is raised if the number of items in the resulting linear list would exceed

the value of the constant CAIS_PRAGMATIcs .LHTJ-ENGTH. (See
CAIS_PRAGMATICS, Section 5.7, page 514.)

NAMED_LIST_ERROR

is raised if the current linear list of IN_LIST is a named list that already

contains an item with the name given by NAME.

467

L

Downloaded from http://www.everyspec.com



5.4.1 .22.8 DOD-STD-1838

POSITION_BY_V ALU13 C.41S_IDENTlFIER_ITEM

5.4.1 .22.8 Loeating an identifier-valued item by value within a linear list

fUnCtion POSITION BY Vramt---
(LIST : in LIST_TYPst;
V?&m,: in TOKSN_~E;

START_POSITION: in POSITION-COUNT :=
ENO_POSXTION : in POSITION-COONT :.

AUrn POSIT ION_COONT;

Purpose:

POSITION_COONT’ HRST;
POSITION_COUNT ‘ LAST)

This function remrns the position in the current linear list of LIST of the next identifier-
vsdued item whose value equals that of the VALUE parameter under identifier equality
(see Section 5.4, page 421). The search begins at the START_POSITION and ends
when either an item whose vahre equals VALUE is found, the last item of the list has
been examined, or the item at the END_POSITION has been examined, whichever
comes first.

Parameters

LIST is the list in whose current linear list the item of interest is to be located.

VALUE is the identifier value of interest.

START_POSITION
is the position of the fmt item in the current linear list to be considered in
the se~ch.
,,

END POSITION
is tfie position beyond which the search will not proceed the search inay

terminate prior to reaching ENO_POSITfON should the sought item be
found or should the lsst element of the list be considered.

Exceptions
. .

L15T_fUND_EtiOR

is raised if. the current linear list of LIST is empty.

LIST_POSITfON_ERROR
is raised if START_POSIT’tON s~cif~es a value larger than the current
length of the current linear list of LIST, or if END_POSITION is less
than START.POSITION.

TOK~_ERROR
is raised if VALW is an undefiied token

SEARCH_ERROR
is raised if there is no item in the current linear list of LIST within the
region specified by ST~T_POSITION and END_POSITION that has

the y.lue specified by VALUE.

●
46S

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.4.1.23

CAIS_LIST_MANAGEMENT GENERIC PACK.$GE CAIS.INTEGERJ’EM

●
5.4.1.23 Generic package CAIS INTEGER ITEM

This is a generic package for manipulating list items whose values are integers. This package
must & instantiated for the appropriate integer type (indicated by NUMBER in the
specification). The exceptions raised by all subprogrtups in thjs package are defured @ the
packages CAIS_LIST_MANAGEMENT snd CAIS_pWGMATICS.

generic
type NOMRER is rmge <>;

package WS INTIEGER_ITEM is

-- Spec~fications of subprograms for this generic package.
snd CAIS_INTEGER_ITEbt;

●

469

--

Downloaded from http://www.everyspec.com



5.4.1 .23.1 DOD-STD-1838

TEXT.FORM CAIS_INTEGER_ITEM

5.4.1 .23.1 Converting an integer value to its canonical text representation

functionTEXT_FOSM (INTEGER_VWOS: in NOMSER)
return STRING;

Purpose:

This function returns the canonical text form representation of the value of the

INTEGER_VALUE parameter. The canonical text form representation is the string
representation defined in Section 5.4.

Parameter:

INTEGER.VALUE
ii the integer vahre whose external representation is to be returned.

Exceptions:

None.

470

● ’

Downloaded from http://www.everyspec.com



I

●

DOD:STD-1838 5.4.1 .23.2

CAIS.INTEGER.ITEM EXTRACTED_VALUE

5.4.1 .23.2 Extracting an integer value from a list item

fumlion SXTSACTED_VZ&.OE (FRoM_LIST : in LIST TYPE;
ITEbr_POSITION: in POSI~ION_COONT)

n?hrm NvNSER;

function E~SACTEO_VALUS (FROM_LIST : in LIST_TYPE;
ITEM_NAUE : in IDENTIFIER_TEXT)

returu NVMWR;

function EXTSACTED_VALVE (FRoM_LIST : in LIaT_TYPE;
ITEM_NAME : in TOREN_TYPE)

mtrrm NOMSER;

llria function locates an integer-valued item in the current linear list of FROM-LIST

~d re~ms a copy of its npmeric value.

Parameters:

FROM_LIST is the list whose current l~ear list contairrs the item whose value is to be
extracted.

lTEM_POSITION
is the position within the current linear list that identifies the item whose
value k to be extracted.

ITEM_NAME is the name of the item whose value is to be exuacted.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear list of FROM_LIST is empty

LIST_POSITION_ERROR
is raised if lTEM_POS~ION has a value larger than the current length
of the current linear list of FROM_LIST.

I SYNTAX_ERROR
is raised if the value of the parameter ITEM_NAME of type
IDENTIFIER_TE~ does not co~form to the syntax of an Ada
identtiler.

TOKEN_ERROR
is raised if the lTEM_NAME of type TOKEN_TYPE is ~ undefimed
token. . . .

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current lkear list
of FROM_LIST is umamed.

.

47I

Downloaded from http://www.everyspec.com



5.4.1 .23.2 DOD-STD-1838
EXTRACTED.V&UE CAIS_INTEGER_IT?iM

ITEM_KIND_ERROR
is raised if ITEM_POS~ON or lTEM_NAME specities an item whose
value is not an integer. @

CONSTRAINT_ERROR
is ra$ed if the value to be extraeted violates the constraints of the type
designated by NUMBER. ”

SEARCH_ERROR
is raised if there is no item in the current linear list of ~OM_LIST with

the name ITEM_NAME.

,,

,.,

472

Downloaded from http://www.everyspec.com



.
DOD-STD-1838’

CAIS.INTEGER.ITEM

5.4.1 .23.3

REPLACE

5.4.1 .23.3 Replacing an integer value in a list item

‘piocedureRiiPLACE (IN_LIST : in out LIST_TYPE ;

ITEM POSITION : in POSITION_COUNT ;
Vrmrii : in NONSER) ;

prowhire sczikm (IN LIST: in out LIST_ TYPC;

r&ii_NAME : in ‘IDE~-IFIEli_TE3tT;
VALUE : in NUMBER) ;

prOCdU~ ~PL&CE (IN_LIST: h out LIST_TYPE;

ITEt4_NAMP,; in ‘@tCEN_TYPE ;
VALOE : in NKN4BER);

This procedure replaces the value of an integer-valued item in the current linear list of

IN_LIST with VALUE. Subsequent modification to the value of lN_LIST or of

VALUE does not affect the other value.
.,. .

Parameters:

IN_LIST is the list whose current linear list contains the item whose value is to be
replaced.

JTEM_POSITION
is the position within the current linear list that identifies the item whose
value is to be replaced.

ITEM_NAME is the name of the item whose value is to be replaced.

VALUE is the new integer value of the designated item.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear list of ~..LIST is empty.

LIST_POS3TION_ERROR
is raised if ITEM_POSITION has a value larger dxyr the current length
of the current linear list of IN_LIST.

SYNTAX ERROR
is raised if dre value of the parameter ITEM_NAME of type
IDENTIFIER_TEXT does not confomr to the syntax of an Ada
identifier. .

TOKEN_ERROR “‘
is. raised if the ITEM_NAiYIE of t~ TOKEN.TYPE is m undefimed
token.

473

G

Downloaded from http://www.everyspec.com



DOD-STD-18385.4.1 .23.3

REPLACE CAISJNTEGER.ITEM

CAPACITY.ERROR
is raised if the VALUE violates the constraints defined by the .~
CALS.INTEGER (see Section 5.1.1, page 54). ●

NAMED_LIST_ERROR
is raised if the parameter ITEM_NAME is used and the current linear list

of ~_L,IST is unnamed.

ITEM_KIND_ERROR
is raised if ITEM_POSITION or lTEM_NAME specifies an item whose

value is not an integer.

SEARCH_ERROR
is raised if there is no item in the current line as list of IN_LIST with the

name lTEM_NAME.

,,. : 474

Downloaded from http://www.everyspec.com



>

DOD-STD- 1838

CAIS_INTEGER_ITTiM

5.4.1 .23.4

INSERT

5.4.1.23.4 Inserting an integer-valued item into a linear list

procedure INSERT (IN_LIST: in out LIST-TYPE;
POSITION : in INSERT_COUNT ;

VALUE : in NUMBER) :

prOCedureINSERT (IN_LIST: in OUt LIST_TYBE;
POSITION : in INSERT_COIJWS;
NAME: in IDENTIFIER TEXT ;

VMJJE : in NVMEER) ; -

prucedwe INSERT (IN_LIST: in out LIST_TYPE;
POSITION : in INSERT_COUNT ;
NAME : in TOREN_TYPE ;
VALUE : in NUMBER) ;

Purpose:

This procedure inserts so integer-valued item into the current linear list of IN_LIST; the
new list item wilf be positioned a!ler the list item specified by POSITION. A value of
zero in POSITION specifies a position at the head of the current linear list. Subsequent
modification to the value of IN_LIST or of VALUE does not affect the other value. If
the current linear list of IN_LIST is empty, it will be a named list after the successful
completion of the call, if the second or third interface is used, and an unnamed list
otherwise.

Parameters

IN.LIST is the list into whose current linear list the item will be inserted.

POSITION is the position in the current linear list after which the item is to be
insefied.

NAME is the name of the new item to be insested.

VALUE is the integer value of the new item to be inserted.

Exceptions:

LIST_KIND_ERROR
is raised if an attempt is made to insert an item by NAME into an
umsmed list or, conversely, if an attempt is made to insert an item
without NAME into a named list.

LLST.POSITION..ERROR
i; r~sed if nEM_poSITION has a value larger than the current length
of the current linear list of IN_LIST.

SYNT~_ERROR
is raised if the value of the parameter NAME of type IDENTIFIED_
TEXT does not conform to the syntax of an Ada identifier.

TOKEN_ERROR
is raised if the NAME of type TOKEN_TYPE is an undefined token.

47s

Downloaded from http://www.everyspec.com



5.4.1 .23.4 DOD-STD-1838
INSERT CAIS_lNTEGER.ITEM

CAPAC~Y_ERROR
is raised if the number of items irr the resulting linear list would exceed
the value of the constant CAIS_PRAGMATICS .LIST_LENGTH or if o

the VALUE to be inserted violates the constraints defined by the type
CAIS_INTEGER (see Section 5.1.1, page 54).

NAMED.LISTIERROR
is raised if the current linear list of IN_LIST is a named list that already
contains an item with the name given by NAME.

476

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.4.1 .23.5

CAIS.lFTt%GERJTEM POSITION_BY_VALUE

5.4.1 .23.5 Lueating an integer-valued item by value within a linear list

finSCtiOnPOSITION~BY_VALUN
(LIST~ – in LIST TYPE;
VALUE : in NOMS~R;
START_POSITION: in PCrSITION_COONT := POSIT ION_COUNT, FIRST;

END_POSITION : in POSIT ION_COUNT := POSITION_COONT, LAST).

Mum POSIT ION_COttNT;

This function returns the position irr the current linear list of LIST of the next integer-
valued item whose value equals that of the VALUE parameter under integer equality
(see Section 5.4, page 420), The search begins at the START_POSITTON and ends
when either an item whose vahre equals VALUE is found, tie last item of the list has
been examined, or the item at the END_POSfTION has been examined, whichever
comes fret.

LIST is the list in whose current linear list the item of interest is to be located.

VALUE is the integer vafue of interest.

START.POSITION
is the position-of the fust item in the current linear list to be considered in
the search.

END_POS~ON
is the position tiyond which the search will not proceed; the search may
terminate prior to reaching END_POSITION should the sought item be
found or should the last element of the list be considered.

Exceptions:

LIST_ fUND_ERROR
is raised if the current linear list of LIST is empty.

LIST_POSITION_ERROR
is raised if START_POSITfON specifies a value larger than the current
length of the current linear list of LIST, or if END_POSITION is less
than START.POSITION.

CAPACITY_ERROR
is raised if the VALUE violates the constraints defined by the type
CAIS_INTEGER (see Section 5.1.1, page 54).

SEARCH_ERROR
is raised if there is no item in the current linear list of LIST within the
region specified by START_POSITION and END_POSITION that has
the vshre specified by VALUE.

477

Downloaded from http://www.everyspec.com



5.4.1,24 DOD-STD-1838

GENERIC PACKAGE CAISJIOAT_ITEM CAIS.LLST.MANAGEMENT

5.4.1.24 Generic package CAIS FLOAT ITEM

This is a generic package for manipulating list items whose values are floating point ●
numbers. llris package must be instantiated for the appropriate type (indicated by NUMBER
in the specification), The exceptions raised by all subprograms in dris package are defined in
the packages CAIS_LIST_MMJAGEMENT and CAIS.PRAGMATICS,

generic

type NUMSER is digits <>;
package CAIS. FLOAT=ITSM is

-- Spec~ficataons of subprograms for this generic package.
end CAIS_FmAT ITEM;

Use of floating point values in lists has certain adverse consequences for the meaning of list
equality as detailed in Section 5.4. Users should be aware of the accuracy issues for relational
operations between floating point values explained in [1815A], Section 4.5,7, in order to
avoid erroneous assumptions about the equaMy of float items and lists involving such items.

See also the dkcussion of floating point values in Section 5.4, page 420, for further cautions

.

478

Downloaded from http://www.everyspec.com



●

I

5.4.1 .24.1

TELY.FORM

-..

DOD-STD- 1838

CAIS.FLOAT.ITEM

5.4.1.24.1 Converting a floating point value to its canonical text form

function Tsxl_FOS1.t (1’w2AT_VALUE: in NUMSER)
MUrO STRING;

Purpose:

This function returns the canonical text form representation of the value of the FLOAT_

VALUE parameter. The canonical text form representation is the string representation

defined in Section 5.4.

Parameter

FLOAT.VALUE
is the floating point item whose external representation is to be returned.

Exceptions:

None.

479

Downloaded from http://www.everyspec.com



-.

5.4.1 .24.2 DOD-STDJ1838.

EXTRAC71%D_VALUE CAIS_FLOAT_ITEM

5.4.1 .24.2 Extracting a floating point value from a list item

function ERTRACTED_VALUE (FiOI.l_LIST: in LIST TYPE;
ITEbt_POSITION : in POSI@ION_COONT)

returnNUMSER;

function EXTRACTED_VALUE (FROM_LIST: h LIST TYSE;

ITEbt_NAME : in IDEm-IFIER_TEXT)
return NUBISER;

functionEXTRACTED_VALUE (FROb_LIST: in LIST TYPE;
ITEb_NAME : in TORE=_TYPE )

returnNVMSER;

Purpose:

This function locates a floating point-valued item in the current linear list of FROM_

LIST and returns a copy of its numeric value.

Pammeters:

FROM.LIST is the list whose current linear list contairrs the item whose value is to be
extracted.

ITEM.POSITION
is the position within the current linear list that identifies the item whose
value is to be extracted.

ITEM_NAME is the name of the item whose value is to be extracted.

Exceptions:

LIST_tiD_ERROR
is raised if the current linear list of FROM_LIST,is empty.

LIST_POSITION_ERROR ~. > “
is raised if lTEM_POS~ION has a value larger than the current length
of the current linear list of FROM_LIST.

SYNTAX_ERROR
is raised if the value of the parameter ITEM_NAME of type
IDENTIFIER_TEXT does not conform to the syntax of an Ada
identitler.

TOKEN.ERROR
is raised if the lTEM_NAME of type. TOKEN.TYPE is an undefined
token.

NAMED_LIST_ERROR
is raised if the parameter lTEM_NAME is used and the current linear list
of FROM_LIST is unnamed.

4s0

. .
‘i

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.4.1 .24.2
CAIS.PLOAT.ITEM EXTRACTED_VALUE

●
ITEM.KIND.ERROR

is raised if lTEM_POSITION or lTEM_NAME specifies an item whose
value is not an floating point number.

CONS~_ERROR
is raised if the value to be extracted violates the range constraints of the

type designated by NUMBER.

I SEARCH_ERROR
is raised if there is no item in the current linear list of FROM_LIST with
the name ITEM_NAME,

48I

Downloaded from http://www.everyspec.com



.. .

5.4.1 .24.3 DOD-STD-1838

REPLACE

5.4.1 .24.3 Replacing a floating point value in a list item

prOcPdureREPLACE (IN_LIST: in Out LIST_TYPE ;

ITSbf_POS IT ION : in POSITION_COONT ;
VALUE :

~
NOMSER) ;

CAIS.FLOAT.ITEM

procedure RZPIACE (IN_LIST: in Out LIST_T”fPE ;

ITEM_NAMS : in IDENTIFIER TEXT ;

vALrnr: in NVMSER) ; -

prOCedum -PUCE (IN_LIST: in Out LIST_TYPE ;

lTEM_NAME : in TO=N_TYPE ;

VALUE : in NObtSER);

Purpose:

This procedure replaces the value of a floating point-vafrred item in the current Iiiear

list of IN_LIST with VALUE. Subsequent modification to the value of IN_LIST or of
VALUE does not affect the other value.

IN.LIST is the list whose current linear list contains the item whose value is to be
replaced.

ITEM_POSITION
is the position within the current linear list that identifies the item whose
value is to @ replaced. ●

ITEM_NAME is the name of the item whose value is to be replaced.

VALUE is the new floating point vafue of the designated item.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear lit of IN_LIST is empty.

LIST_POSITION_ERROR
is raised if lT’EM_POSITION has a value Larger than the current length
of the current linear list of IN_LIST.

SYNTAXJRROR
is raised if the value of the parameter ITEM_NAME of type
IDENTIFIER.TEXT does not conform to the syntax of an Ada
identifier.

TOKEN_ERROR
is raised if the lTEM_NAME of type TOKEN_TYPE is an undefined
token.

CAPACITY_ERROR ●
is raised if the VALUE (see note below) violates the range constraints of
the CAIS implementation.

482

.,!

Downloaded from http://www.everyspec.com



DOD.STD-1838 5.4.1 .24.3

CAIS_FLOAT_tTEM REPLACE

NAMED_LIST_ERROR

is raised if the parameter ITEM_NAME is used and the current linear list
of IN_LIST is unnamed.

ITEM_IUND_ERROR
is raised if ITEM_POSITION or lT’EM_NAME specfles an item whOse
value is not a floating point number.

SEARCH_ERROR
is raised if there is no item in the current linear list of lN_LIST with the
name lTEM_NAME.

Notes:

The most restrictive range constraints applicable to VALUE can be inferred from
CAIS_PRAGMATICS .LIST_MAXIMUM_DIGITS accordimg to roles defined in
[1815A] 3.5.9,4.5.7 and 4.6. (See CAIS_PRAGMATfCS, Section 5.7, page 514.)

●
483

—-

Downloaded from http://www.everyspec.com



-...

●

5,4.1 .24.4 DOD-STO-1838

“INSERT CAIS.FLOAT.ITEM

5.4.1 .24.4 Inserting a floating point-valued item into a linear list
:,. , ,,

procedrrreINSERT (IN_LIST: in Out LIST_~E ;

POSITION : in INSERT COUNT ;

VALUE : in NUMSERY;

procedure INSERT (IN_LIST: in out LIST_TYPE;

POSITION: in INSERT COUNT ;

NAUE : ~. IDENTI~IER TEXT;

VALUE:. in NUMEIER); -

procedure INSERT (IN_LIST: in Out LIST TYPE;

POSITION : in INSEiiT COONT ;

NAME: in TONSN ‘~E ;

VALUE : in NOtdSE~);
,,

Purfiose:

This procedure inserts an floating, point-valued” item into the current linear list of
IN_LIST the new list item will be positioned after the list item specified by
POSITION. A value of zero hi POSITION specifies a position,at the head of the current
linear list. Subsequent modification. to the value of IF_LIST or of VALUE does not
affect the other value. If the current linear list of IN_LIST is empty, it will be a named
list after the successful completion of the call, if the second or thkd interface is used,
and an unnamed list otherwise.

Parameters:
.,. .

IN_LIST is the list into whose current linear list the item will be inserred.

POSITION is the position in the current linear list tier which the item is to be
inserted. .,.

NAME is the name of the new item to be inserted.

VALUE is the floating point value of the new item to be inserted.

Exceptions:

LIST_KIND_ERROR
is raised if an attempt is made to insert an item by NAME into an
unnamed lis( or, conversely, if an attempt is made to insert sn item
without NAME into a named list.

LLST_POSITION_ERROR
is raised if lTEM_POSITION has a value larger than the current length
of the current linear list of IN_LIST.

SYNTAXJRROR
is raised if the value of the parameter NAME of type IDENTIFIER_
TEXT does not conform to the syntaz of an Ada identifier.

TOKEN.ERROR ●
is raised if the NAME of type TOKEN_TYPE is an undefined token.

4s4

-A ~

Downloaded from http://www.everyspec.com



I
/

DOD-STD-1838 5.4.1 .24.4
CAIS.FLOAT.ITEM INSERT

CAPAC~_ERROR

● is raised if the’ number of items in the resulting linear list would exceed
the value of the constant CAIS.PIL4GMATICS. LIST.LENGTH or if
the VALUE to be inserted violates the range constraints of the CAIS
implementation. (See the note below.)

NAMED.LIST.ERROR
is raised if the current linear list of IN_LIST is a named list that already

r

contains so item with the name given by NAME.

Notes:

The most restrictive range constraints applicable to VALUE can be inferred from the
vahre of the constant CAIS_PWGMATiCS. LIST_MAXIMUTv_DIGITS according to

rules &flied in [1815A] 3.5.9, 4.5.7 and 4.6. (See CAIS_PRAGMATICS, Section 5.7,

page 514.)

1,

.,

,., ., ,,

I 485 .,

Downloaded from http://www.everyspec.com



..

.;>:
,..

.:

:.:

.:.. .

~.

:. ..

..:.= -
: :... .

:-.

; ..

5.4.1 .24.5 DOD-STD-1838

POSITION_BY_VALfJE CAfS_FLOAT_lTEM

5.4.1 .24.5 Locating a floating point-valued item by value within a linear list

functionPOSITION_BY_VALUE
(LIST : in LIST TYPE;

VMJJSS: in N7JMS~R;

START_POSITION: in POSITION_COONT := POSITION_COuNT’ FIRST;
END POSITION : in P,OSITION_COUNT :. POSITION COUNT’ LAST)

return POSIT= ON_COUNT;

Purpose:

This function returns the position in the current linear list of LIST of the next floating
point-valued item whose value equals that of the VALUE parameter under floating
point equatity (see Section 5.4, page 420). The search begins at the START_POSnION
arrd ends when either an item whose value equals VALUE is found, the last item of the
list has been examined, or the item at the END_POSITION has been examined,
whichever comes first.

Parameters:

LIST is the list irr whose current linear list the item of interest is to be located,

VALUE is the floatirrg point value of irrterest.

START.POSITION
is the position of the first item in the current linear list to be considered in
the search.

END_POSITION
is the position beyond which the, search will not. proceed; the search may
terminate prior to reaching END_POSITION should the sought item be
found or should the last element of the list& considered.

Exceptions:

LIST_KfND_ERROR
is raised if the current ljnear list of LXST is empty.

LIST_POSITTON_ERROR
is raised if START_POSITfON specifies a value larger tham the current
length of the current linear list of LIST, or if END_POSITION is less
than START.POSITTON.

CAPAC~_ERROR
ii raised’ ‘if the VALUE violates the range constraints of the CAIS
implementation. (See the note below.)

SEARCH_ERROR ““
is raised if there is no item’ iir the current linear list of LIST within the
region specified by START_POSITION and END_POSITION that has
the vrdue specified by VALUE.

●

( -.

486

Downloaded from http://www.everyspec.com



CAIS.FLOATJTEM
5.4.1.24S

POSI’tTON_BY_VALUE
DOD-STD-1 838

Notes:

● Determining the posidon by” value of floating point items should be applied with
considerable caution and awareness of afl the issues documented in [1815A]. Section

I 4.5.7, regarding the accuracy of relational operations with reaJ o~rmds~’ and the
discussion, in Section 5.4, page 420, defmirrg floating point equality for floating point
list items.

I The most restrictive range constraints applicable to VALUE can be inferred from the
value of the constant CAIS _PRAGMATICS .LIST.MAXIMUMJMGITS according to

I roles defined in [1815A] 3.5.9, 4.5.7 and 4.6. (See CAIS_PRAGMATICS, Section 5.7,
page 514.)

:;

o

4s7

Downloaded from http://www.everyspec.com



5.4.1.25 DOD-STD-1838

PACKAGE CAtS_STRING_ITEM CAIS_LIST_MANAGEMENT

5.4.1.25 Package ‘CAIS STRING ITEM

This is a package for manipulating list items whose values are strings. The exceptions raised
by all subprograms .in ~~this package are defiied in dre packages CAIS_LIST_ ●
MANAGEMENT and CAIS_PI@GMATICS.

.>, ,:, , ,,, ,., ,,

. .. ;,:,,,.,. “1’. ...

,, j,,, ,., .,. . :,

;.:. ..;,,- ,, ;,;, , ,. ..! !.l,,,. ‘!’ ‘ i t

,;

4s8

Downloaded from http://www.everyspec.com



DOD-Sti-1838

CA3S_STI@G_~M ~

5.4.1 .25.1 Extracting a string value from a list item”

function ZXTRACTED_V~O& (FRCS_LIST: in
ITSbt POSITION: in

AIN’O STRING;

functionSXTRACTED VALUE (FRCM LIST: in
‘ITEM-NAME: in

I’I?tum STRING;

function EXTRACT~D_VALUE (FR&bt_LIST: in

ITF.bl_NAME: in
&Um STRXNG;

5.4.1 .25.1
E~A&?2D_VALUE

LIST_TYPE;

POSXTION_COONT) :

LIST_TYPE;
IDENTIFIER_TEXT)

LIST_TYPE;

TO~N_TYPE)

Purpose:

This function locates a string-valued item in the current linear list of FROM_LIST and
returns a copy of its string value.

Parameters:

FROM_LIST is the list whose current linear list contains the item to be extracted.

ITEM_POS3TTON
. . .

is the position within the current linear list that identifies the item whose
value is to be extracted.

ITEM_NAME is the name of the item whose value is to be exmacted.
.,

Exceptions:

LIST_KINL_ERROR
is raised if the current linear list of FROM_LIST is empty.

LISTJOS3TION.ERROR
is raised if lTEM_POSITION has a value larger than the current length
of the current linear list of FROM_LIST.

SYNTAX_ERROR
is raised if the value of the parameter ITEM_NAh4E of type
IDENTIFIER_TEKT does not conform to the syntax of an Ada
identifier.

TOKEN_ERROR
is raised if the ITEM_NAME of type TOKEN_’lYPE is an undefiied
token.

,.. ,
.

NAMED_LIST_ERROR
is raised if the parameter ITEM_NM is used snd the current Iinear Iist
of FROM_L3ST is unnamed.

SEARCH_ERROR
is raised if there is no item in the current linear list of FROM_LIST widt
the name ITEM_NAME.

4s9

—

Downloaded from http://www.everyspec.com



DOD-STD-1838. 5.4.1 .25.2

CAIS_STRING_H!EM

5.4.1.25.2 Replacing a string value in a list item

ptiedls~ RXPLACE (IN_LIST : in out

11’EM_POSITION : in

VALUE : in

rNOCdW REPLACE (IN LIST: in Osst

IT-ii_NAME : in
vALrra : in

procedure RSPLACE ( IN_LIST : in out
XTEbl_NAUE : in

vALoa : in

REPLACE

LIST-TYPE;

POSITION_COUNT ;

SITtING);

LIST_TYPE;
IDENTIFIER TEXT;

aTRING) ; -

LI.ST_TYPE;

TOStEN_TYPE ;

STRING) ;

Purpose:

This procedure replaces the value of a string-valued item in the current linear list of
IN_LIST with VALUE. Subsequent modification to the value of IN_LIST or of
VALUE does not affect the other value.

Parameters:

IN_LIST is the list whose current linear list contains the item whose value is to be
replaced.

ITEM_POSITION
is the position within the current linear list that identifies the item whose
value is to be replaced.

lTEM_NAME is the name of the item whose value is to be replaced.

VALUE is the new string value of the designated item.

Exceptions:

LIST_fUND_ERROR
is raised if the current linear list of IN_LIST is empty

LIST_POSITION_ERROR
is raised if lTEM_POSIT’ION has a value larger than the current length
of the current linear list of IN_LIST.

SYNTAX_ERROR
is raised if the value of the parameter ITEM_NAME of type
IDENTIFIER_TEXI’ does not conform to the syntax of an Ada
identifier.

TO~_ERROR
is raised if the ITEM.NAME of type TOKEN.TYPE is an undefined
token.

491

Downloaded from http://www.everyspec.com



5.4.1 .25,2 DOD-STD- 1838
REPLACE CAIS.STRINGJT’EM

CAPACITY.ERROR,

is raised if the strtig value of VALUE is longer than the value of the,.
constaht CAIS_PRAGMATICS. STRING_ITEM_LENGTH (see Section ●
5.7, page.514).

NAMED_LIST_&llOR

is raised, if the parameter ITEM_N~ is used and the current lirrcw list

of IN_LIST is unnamed.’

lTEM_K.IND_ERROR ‘
,.

is raised if fiEM_POSITION or lTEM_NAME specifies sn item whose~.
v~ue is not a“string. -‘ “”

SEARCH_ERROR
is raised if there is no item in tire curnmt linear list of IN_LIST with the

nanie lTEM_NAME. ”

,,

,.

..”’ .,, .

492
,, .’, ~. . ,.

,,.

●

Downloaded from http://www.everyspec.com



‘o

DOD-STD.1838 5.4.1.25.3

CAIS_STRING_ITEM INSERT

5.4.1 .25.3 Inserting a string-valued item into a linear list

prOCdINeINSERT (IN_LIST : in out LIST_TYSE ;
POSITION : in INSERT COONT :
VALOE: in STRINGY>

.,,,,,

procedure INSERT (IN_LIST : in Out LIST_TYSE;

POSITION : in INSERT_COUNT ;

NAME. in IDENTIFIER TEXT;

vALua : in STRING) ; -
. .

procedure I~SERT (IN_LIST : in Out LIST_TYPE ;
POSITI”ON : in INS ERT_COVNT ;

NAMS: in TOREN_TYPE;
~

vALva : STRING) ; .,

purpose:

This procedure inserts an string-valued item into the current linear iist of IN_LIST, the
new list item wiU @ positioned after the list item specified by POSITION. A value of
zero in POSITION specifies a position at the head of the current linew list. Subsequent
modtlcation to the value of IN_LIST or of VALUE does not affect the other value. If
the current linear list of IN_LIST is empty, it will be a named list tier the successful
completion of the call, if the second or third interface is used, and an umruned list
otherwise.

Parameters

IN_LIST is the list into whose current linear list the item w1l be inserted.

POSITION is the position in the current linear list after which the item is to be
inserted.

NAME is the name of the new item to be inserted.

VALUE is the string value of the new item to be inserted.

Exceptions:

LIST_~_ERROR
is raised if an attempt is made to insert an item by NAME into an
unnamed list or, conversely, if an attempt is made to insert an item
without NAME into a named list.

LIST_POSfTION_ERROR
is raised if lTEM_POSITION has a value larger than the current length
of the current linear list of 2N.LIST.

SYNTAX_ERROR
is raised if the value of the parameter NAME of type IDENTIFIER_
T~ d~s not conform to the syntax of an Ada identifier.

TOKEN_ERROR
is raised if the NAME of type TOKEN_TYPE is an undefined token.

493

Downloaded from http://www.everyspec.com



5.4.1 .25.3 DOD-STD- 1838

INSERT CAIS.STRING.ITEM

CAPACITY_EkOR
is raised if the saing value of VALUE to be inserted is longer than the
value of the constant CAIS_PRAGMATICS .STFUNG_ITEM_LENGTH ●
or if the number of items in the resulting linear list would exceed the
value of the constant CAIS_PRAGM-AfiCS .LIST_LENGTH (see

Section 5.7, page 514).
,. ...

NAMED_LIST_ERROR

is raised if the current linear list of IN_LIST is a named list that already

contains an item with the name given by NAME.

.
,.

., .,. .,,
,,, ,,, . ...’ ..:...”,.

,,,
,,

., , ,-:: $... .-

494

Downloaded from http://www.everyspec.com



‘0

DOD-STD-1838 5.4.1 .25.4
CAIS_STRING_~M POStTION_BY_VALUE

5.4.1 .25.4 Locating a string-valued item by value within a linear list

tiUICtiOnPOSITION.BY_VALOS
(LIST : in LIST_TYPE;
VALUE : in STRING;

START_POSITION: in POSIlrION_COoNT := POSITION_COONT~ ~IRST;

END_POSITION : in POSITION_COONT := POSITION_COONT/ rJ&ST)

IWIWrI POSITION_COONT;

Purpose

This function returns the position in the current linear list of LIST of the next string-

valued item whose value equals that of the VALUE parameter under string equaIity (see
Section 5.4, page 420). The search begins at the START_POSIT’lON and ends when
either an item whose value equals VALUE is found, the last item of the list has been
examined, or the item at the END.POSITION has been examined, whichever comes
fit.

Parameters:

LIST is the list in whose current linear Iist the item of interest is to be located.

VALUE is the string value of interest.

START.POSH’ION
is the position of the first item in the current linear list to be considered in
the search.

END_POSITION
is the position beyond which the search will not proceed; the search may
terrrrirrate prior to reaching END_POSITION should the sought item be
found or should the last element of the list be considered.

Exceptions:

LIST_KIND_ERROR
is raised if the current linear list of LIST is empty.

LIST_POSITION_ERROR
is raised if START_POSITfON speciiles a value larger than the current
length of the current liear list of LIST, or if END_POSITION is less
than START.POSITION.

CAPACITY_ERROR
is raised if the string value of VALUE is longer than the value of the
constant CAIS_PRAGMATICS .STRING_ITEM_LENGTH (see Section
5.7, page 514).

r’

SEARCH.ERROR
is raised if there is no item in the current liiear list of LIST within the
region specified by START_POSITION and END_POSITfON that has
the vahre specfled by V.MJJE.

495

Downloaded from http://www.everyspec.com



5.5 DOD-STD- 1838

DEFIFiITTON OF TYPES AND SUBTYPES CAIS.ST.4NDAUD

5.5 Package CAIS STANDARD

This package contains certain scalar types predefimed in the CAIS. The intent of providing ●
this package is to make these. types reasonably independent of any predefmed types in the
Ada language; whose characteristics mayviiry among compilers.

typs CAIS_INTEGER is range

CAIS_PSAGMATICS .MINIMUM_INT~GER .. CAIS_PRhGt6ATICS .blAXIbtOBl_INTEGER;,:
subty~ CAIS_NATUSAL is CAIS INTEGER range O. .CAI”S_INTEGER’ LAST;

“”” subtytiiCAIS_POSITIVS’ is CAIS~INTEGER range 1.. CAIS_INTEGER’ LAST;
,:,

CAIS_INTEGER is a CAIS-deflmed type in arialogy to the Ada type INTEGER. CAIS.
NATURAL and’ CAIS_POSITfVE are CAIS-defined subtypes in snrdogy to the Ada
subty@ NATURAL and POSITIVE, respectively.
. ,-
.,, type CAIS_D~TION is delta imp/ementation_dejned;

~; ., for..CX@_D~TION” SMALL use C?@_PRA@tATICS .SbtALL_FOR_CAIS_DOSATION;

. .,-.,,.,.~%,.,. ...... .. .

For the ,C~S, & .irnplementation of the type CAIS_DURATION must allow representation

of durations (botii positive and negative) up to at least 86400 seconds (one day). The

smallest presentable duration, CAIS_DURAT’ION’ SMALL must equal cAIs_
PRAGMATICS.SIvL4LL_FOR_CAtS_DURATION.

496

k.. -

Downloaded from http://www.everyspec.com



DOD-STD-1838

CAIS.CALENDAR

5.6 Package CAIS CALENDAR

5.6
DEFINITION OF TYPES AND SUBTYPES

This package provides facilities for accessing a system clock and interpreting its values. It is
semantically almost identicaJ to the package CALENDAR in [1815A], Section 9.6.. The
differences relate to the use of the types CAIS.INTEGER and CAIS_DURATION in lieu of
the corresponding Ada predefiied types.

For the CAfS, an implementation of the type CAIS_DURAT’ION must allow representation
of durations (both positive and negative) up to at least 86400 seconds (one day). The smallest
&presentable duration, CAIS_DURATION ‘SMALL, must equal cAIs_
PRAGMATICS.SMALL_FOR_CAIS_DU&4TfON (see Section 5.7, page 514).

The meaning of the values of type CAIS_CALENDAR.TIME is implementation-dependent,
as these values will usually be obtained from the underlying system clock. In particular, the
vslues need not be synchronized to some standard time, such as Greenwich Mean Time.
Prior to compar~g two values of type CALS_CALEND~,TIME obtained by two different
tails on CAIS_CALENDAR.CLOCK, the user should consult Ap@rdix F of the respective
CAIS implementations to determine and account for tie implementation dependencies:

.,

I 497

Downloaded from http://www.everyspec.com



5.6,1 DOD-STD-1838

TYPES AND SUBTYPES CAIS.CALENDAR

5.6.1 Definition of types, subtypes and exceptions

type TIME is private;

TIME is the type for the implementation-dependerit time; values of type TIME must be able
to be decomposed into vrdues of the subtypes YEARJWJMBER, MONTH_NUMBER,
DAY.NUMBER and DAY.DURATION.

subtype YEAR_NUMSER is CAIS_INTEGER range 1901 . . 2099;
subtype MONTH_NUMSERis eAIS_INTEGER range 1 . . 12;
subtype DAY_NOt4SER is CAIS_INTEGER range 1 .. 31;
subtype DAY_DORATION is CAIS_DORATION range 0.0 .. 86_400. O;

YEAR.NUMBER, MONTH_NUMBER and DAY_NUMBER are subtypes for the year,

month and day, respectively, of a time. DAY_DURATTON is the type which identifies the
second within the day.

A proper time is a time that is formed from these types, in particular, the year number must
be in the range of the subtype YEAR.NUMBER.

TINE ESROR: exception;

\ ~~~~~~og~ if a proper time CSIUIOtbe formed by the functions defined in this
“-” cannot return a result that is in the range of the type CAIS_

\ DURATION.

498

Downloaded from http://www.everyspec.com



cArs.cALEmAR

5.6.2 Getting the current time

functionCLOCK

Mum TIME ;

DOD-STD-1838 5.6.2

.CLOCK -

Purpose:

This function returns a vahre of CAIS.CALENDAR.TIME, representing the

implementation-dependent time at which the interface was catled.

None.

JExceptions:

I

!0
499

Downloaded from http://www.everyspec.com



i 5.6.3 DOD-STO. 1838

~ 5.6.3 Getting the year part of the time
,

functkl YEAR (DATE: in TIME)

~fUITI YEAR_NOMBER;
,., ,,

This function’retum$ the value of the year component within the time DATE for a given
value of the type CAIS.CALENDAR.TIME.

Parameter: . .

DATE is the tirhe from which to extract the value of the year.

Exceptions:

None:

. .

,.. ,
. .

..
. . . .

\ SW

., .,’

Downloaded from http://www.everyspec.com



DOD-STD-1838 5.6.4

C.’US.CALENDAR MOFilTt

5.6.4 Getting the month part of the time

PunctionMmJ1’R(DA’m: in TIW)
return Mmrrri_mJMEzR;

Parpose:

This function returns the value of the month comDonent within the time DATE for a

given value of the type. CAIS.CALENDAR.TIME.- ,,

Parameter:

DATE is the time from which to extract the value of the month.

Exceptions

None.

●

I

1.

-

rol

Downloaded from http://www.everyspec.com



5.6.5 DOD-STD-1838

DAY CAK.CALENDAR

5.6.5 Getting the day part of the time

functionDAY (DATE : in TIME)

return DAY_t?UMBER ;

f’urpose

Thii function returns the value of the day component within the time DATE for a given
vafue of the type CAIS_CALENDAR.TIME.

Parameter:

DATE is the time from which to extract the value of the day.
,:1,

Exceptions

None

502

Downloaded from http://www.everyspec.com



●

I

●

DOD-STD-1838 5.6.6

CAIS.CALENDAR SECONDS

5.6.6 Getting the seconds part of the time

functionSECONDS (DATE: in

return DAY_DUSATION;

TM)

Purpose:

This function returns the vahre of the seconds component within the time DATE for a
given wdue of the type CAIS_CALENDAR.TIME.

Pm’ameter

DATE is the time from which to extract the vahre of the seconds.

Exceptions

None.

503

Downloaded from http://www.everyspec.com



5.6.7 DOD-STDT1838

SPLIT ~ CAIS.CALENDAR

5.6.7 Splitting time into its components

procedure sPLIT (DATE: in TIMs;

YsAR: o~,t%~ hER’;

bsWTH : out blQNTii_NUiiSER;

DAY : Out.,DAY_NOMSER;
SECONDS: Out DAY_DURATION) ;

Purpose:

This procedure ,@ums all four component vafues. (year,. month, day and seconds) for
the time DATE. ,,

Parameters:

DATE is the value of type CAI_CALEND@.TIME that will be split into its
components.

,,,. .,. ,,.:,.

YEAR is the year component returned.
.,,.,,

MONTH is the month component returned.
,;. . ,,

DAY is the day component returned.

SECONDS is the seconds component returned.
,,., ~,~;.;,:,:. , .,:.”. ;.’ .+ i

Excepti~s:

None.

.

.

504

Downloaded from http://www.everyspec.com



I

I

I

I

●

DOD-STD- 1838 5.6.8

CAIS.CALENDAR TIME_OF

5.6.8 Combining components of time

function TrbtE_Or (YEAR: in YEAR_NuMBER;
MrrJTrs: in r4XTH_NOMSER;
DAY : in DAY_MR.SBER;

SECONDS: in DAY_DORATION)

relurn TIME;

purpose

This functioncombines a year number, a month number, a day number and a seconds
number into a value of the type CAIS.CALENDAR.TIME.

Parameters:

YEAR

MONTH

DAY

SECONDS

Exception:

T3ME_ERROR

is the value of the year component.

is the vahre of the month component.

is the value of the day component.

is the value of the seconds component.

is raised if the actual parameters do not form a proper time.

8

&

SOS

Downloaded from http://www.everyspec.com



DOD-STD- 1838
CMS_CALENDAR

/ 5.6.9 1

+

5.6.9 Adding time and duration

function “+” (LSrT: in TIM61;
RIGHT: in C.AIS_DURATION)

rWUrn TIbts;

function“+” (LEFT: in CAIS_DOaATION;
RIGNT: in TIME)

AIMS TIMS;

Purpose:

This function performs the operation of addition of times and durations.

Parameters:

LEFT, RIGHT

Exception:

TIME_EiUIOR

we the values of type CAIS_CALENDAR.TIME and CAIS_
DURATION to be added together.

is raised if, .for the given operands, the operator cannot return a time

whose year number is in the range of the corresponding subtype.

●

.,
.,, ,. .,:. .,

,!

,.; ! ,.

.-

Downloaded from http://www.everyspec.com



DOD-STD.1838 5.6.10

CAIS.CALENDAR

5.6.10 Subtracting time and duration ,.,,.. .

timction “-” (LWT: in TIMS; .,
RIGHT: in CAIS_DUSATION)

Mum TIME;

&nction “-“ (LEFT: in TIMS:

RIGHT: in TXME)

returnCAI S_DURATION; .

Purpose:

This function performs the operation of subtraction of times and durations.

Parameters:

LEFT, RIGHT

Exception:

‘ITME.ERROR

are the values of type CAIS_CALENDAR.TIME and CAIS_
DURATION to be subtracted from each other.

is raised if, for the given operands, the operator cannot return a time
whose year number is in the range of the corresponding subtype or if the
result is not in the range of the type CAIS.DURATION.

o

Downloaded from http://www.everyspec.com



5.6.11 DOD-STD- 1838

COMPARISON OPERATORS CAIS.CALENDAR

5.6.11 Comparing two values of time

function“<” (LEFT : in ‘TIM;
RIGHT: in TIME)

return BOOLEAN;

function“<=” (LEFT: in TIME;
RIGHT: in TIME)

return BOOLEAN;

function “>,, (LEFT: in TIME;
RIGHT: in TLME)

return aCOLEAU;

function“>” (LEFT: in TIME;
RIGHT: in TIME)

return BOOLEAN; .
.,, .

PutPose:

This function perfotis the operation. of the relational operators for times and has the
. conventional mathematical meanings.

.,,

Parameters: .,, ..

LEFT, RIGHT are the values of type CAIS.CALENDAR.TfME to be compared.

Exceptions: ,,

None. . . .

,...
,..,.,,

[.,
,,, ,,

f,

,.
-,

.?, ..,,,.,,! ;., .,,

,,, ., ,,.’ ., :,/

.,,

●
508

Downloaded from http://www.everyspec.com



DOD-STD- 1838 5.7

CM>_PRAGMATtCS

5.7 CAIS Pragmatic

Pragmatic are constraintsimposed by an implementation that are not defined by the syntax
or semantics .of the CAIS. This section delineates the minimum capacities a conforming
CAIS implementation must support. For most pragmatic limitations, two constants. are
defiied in this package CAIS_PRAGMATICS. One is”prefiied with ‘‘CAIS_”; it is the
minimum value that any C.ALS implementation must support. The other one without the
prefm specifies an implementation-defmed limit equal to or beyond the minimum required.

Each CAIS implementation must supply this package with the actual values filled in. AN
implementation-defmed exceptions will be declared in Package CAIS.PRAGMATICS. An
implementation can raise these implementation-defmed exceptions in any of the interfaces as
long as tie semantics given in this document are maintained.

CAPACITY_ESROR:exception;
WSOURCE_ERROR:exception;

CAPACITY_ERROR is raised if a call on a CAIS interface detects a violation of the
implementation-dependent maxima for the pragmatic limitations specified in this package.
RESOURCE_ERROR is raised if a call on a CALS interface exceeds resource limitations
imposed by the underlying implementation. This exception is raised only if the conditions for
CAPACITY_ERROR are not present.

UNRESTRICTED: constant := imp kmentation_defined;

UNRESTRICTED is a very large universal_inreger constant, usable .ordy in universal
expressions (see [18 15A] 4.10).

CAIS_PATHNAME_LENGTH : constant‘:= 255;

PATHNAMS LENGTH:,.-., constant := implementation_deJined;

CAIS_PATHN~E_LENGTH and PATHNAME_LENGTH are constants specifying,
respectively, the smallest upper limit which can ~ imposed by any CAIS implementation on
+e number of characters in a pathntie and the actuaf upper limit imposed by a particular
implementation. . !,

CAIS_IDENTIFIER_LENGT?t; constant := 80;
IDENTIFIER LENGTH : constant := implementotion_de fined;

CAIS_IDENTIFIER_LENGTH and. IDENTIFIER_LENGTH are constants specifying,
respectively, the smallest upper iimit which casr be imposed by any CAIS implementation on
the number of chuacters in an identifier and the actual upper limit imposed by a particular
implementation.

CAIS_NODE_HANDLES_PER_PR~ESS : constant := 255;
NODE_HANDLES_PER_P ROCl?SS: CQnStSrSt:= implementation_dejined;

CAIS_NODE+ANDLES_PER_PROCESS and NODE_HANDLES_PER_PROCESS are
constants specdjing, respectively, the smallest upper limit which can be imposed by ony
CAIS implementation on the number of open node handles a process can have at one time
and the actual upper limit imposed by a particular implementation.

L

509

Downloaded from http://www.everyspec.com



5.7 DOD-STD- 1838

CAIS.PRAGMATICS

.

-
+.

.———
—
+

-.

CAIS_NODES_IN_COPY TRSE : mnstant := 2 ●* 15 - 1 ;
NODES_IN_COPY_TRS E; constant := implementation_dej7 ned;

CAIS_NODES_fN_COPY_TREE and NODES_IN_COPY_TREE are constants specifying,
respectively, the smallest upper limit which can be imposed by any CAIS implementation on
the number of nodes that can be copied-with a single call of COPY_TREE and the actual

upper limit ~posed by a particular implementation.

CAIS_NODES_IN_DELETE_TREE: COnStmt := 2 ** 15 - 1;
NODES_IN_DELETE_TREE : const~t := implementotion_de fTned;

CAIS_NODES_IN_DELETE_TREE and NODES_IN_DELETE_TREE are constants

specifying, respectively, the smallest upper limit which cart & imposed by any CAIS

implementation on the number of nodes that con be deleted with a single call of DELETE_
TREE and the actual upper limit imposed by a particula implementation,

CAIS_BbtANATING_PRIMARY_RELATIONSHZPS_PER NODE: Constant := 2 ●* 10 - 1 ;
BMANATING_PRIMARY RELATIONSHIP S_PER_NODE? constant := impk=mentation_de fined;-,

CAIS_EMANATING_PRmARY_RELATIONSHIPS_PER_NODE and EMANATING.
PRIMARY_RELATIONSHIPS_PER_NODE are constants specifying, respectively, the
smallest upper limit which can be imposed by any CAIS kplementation on the number of
primmy relationships that can emanate from a single node at one time and the actual upper

lirnir imposed by a particular implementation.

C3US_EMANATING_SECONDARY_RBLATIONSHIPS PER NODE: constant := 2 ** 10 - 1;

EMANATING_SECONDARY_SELATIONSHIP S_PER_tiODE~ ccNIStSM :‘=implementafion_dejined;

CAfS_EMANATING_SECOND~Y_RELATTONS HIPS_PER_NODE and
EMANATINCi_SECONDARY_RELATIONSHIPS_PER_NODE are constants specifying, ●
respectively, the smaflest upper limit which cm. w imposed by any CAIS implementation on
the number of second@ relationships that can emanate from a single node ar one time and
the actual upper limit imposed by a particular implementation.

CAIS_EL@lkS_OF_NODE_I TEWOR : constant := 2 ●* 11 -2;
ELEKENTS OF NODE ITEsATOR : const~t := implementation_dejined;-—-

CAI_ELEMENT_OF_NODE71TERATOR and ELEMENTS_OF_NODE_ITERATOR

are constants specifying, respectwely, the smallest upper hrrit which can be imposed by any

CAIS implementation on the number of elements that can be contained in a node iterator at
one time and the actual upper limit imposed by a particrilar implementation. The constant

ELEMENTS_OF_NODE_lTERATOR must be at least as large as the sum of the two

constants EMANATTNG_PRIMARY_RELATIONSHIPS_PER_FTODE apd EMANATTNG_

SECONDARY_RELATIONSHIPS_PER_NOf)E.

CAIS_ELEMENTS_OF_AT’TRIBUTE_ITE,SATOR : constant := 255;
ELBbtENTS_OF_ATTRI BNTE_ITERATOR : constant := implementation defined;

CAIs_ELEMENT_OF_AmUti_ITERATOR and ELEMENTS OF_ATTRIBUTE_

lTERATOR’ are constants specifying, respectively, the ,smaflest upper~imit which can be

imposed by any CAIS implementation on the number of elements that can be contained in an
attribute iterator at one time and the, actual upper limit imposed by a particular

implementation.

●
510

Downloaded from http://www.everyspec.com



●

I

‘o
I

DOD-STD-1838 5.7

CAIS.PRAGMATICS

CAIS_ATTRIBUTES_PER_NODE: constant := 255;

ATTRIBUTES PER_NODE : constant := implementadon_de fiaed;

CAIS_ATllUBUTES.PER_NODE and ATTRIBUTES.PER.NODE are constants
specifying, respectively, the smallest upper limit which can be imposed by any CAIS
implementation on the number of attributes that can be associated with a single node at one
time and the actual upper limit imposed by a particular implementation,

CAIS_ATTRISOTES_PER RELATIONSHIP: Constaat := 255;
ATTRISUTES_PER_RELA=IONSSiIP : constant := implementation_dejined;

CAlS_A7TIUEtUTES_PER_RELATIONSHIP and ATTFUBUTES_PER_RELATIONSHIP
are constarrts specifying, respectively, the smallest upper limit which can be imposed by any
CAIS implementation on the number of attributes that can be associated with a single
relationship at one time and the actual upper limit imposed by a particular implementation.

CAIS_ACCESS_SIZATIONSHIPS_OF_OBJZCT: canstsnt := 255;
ACCESIS_REAATIONSHIPS Or OBJSCT : constant := implemen[ation_de fined;-—

CAIS_ACCESS_RELATIONSHIPS_OF_OBJECT and ACCESS_RELATIONSHIPS_OF_
OBJECT are constants specifying, respectively, the smallest upper Iiiit which can be
imposed by any CAIS implementation on the number of relationships of the predefmed
relation ACCESS that can emanate from a node at one time aod the actual upper limit

imposed by a particuka implementation,

CAIS_GSANT_ITEbtS_ON_GRFINT_AT1’RIBttTE: constant :. 15;
GNANT_ITEt4S_ON_GSANT ATTRIBOTE : constant := implementation_de@d;

CAIS_GRANT_ITEMS_ON_GRANT_ATTRIBUTE and GRANT_ITEMS ONTGRANT_
ATTRIBUTE are constants specifying, respectively, the smallest upper lim~ whtch can be
imposed by any CAJS implementation on the number of grant items that can be corn ained in
the value of a GRANT attribute at one time and the actual upper limit imposed by a
particular implementation.

CAIS_GRODP NODES: constant := 255;

GROUP_NODE~ ; constant := implementation_dc fined;

CAIS_GROUP_NODES and GROUP_NODES are constaots specifying, respectively, the
smallest upper limit which cart be imposed by any CAIS implementation on, the number of
group nodes that can be contained in a given CAIS implementation aod the actual upper limit
@posed by a particular implementation.

CAIS..ADOPTED_ROLES_OF PROCESS: Constarrt:= 7;

100PTED_ROLES_OF_PROC~SS : constant := implementation_dejined;

CAIS_ADOPTED_ROLES_OF_PROCESS and ADOPTED_ROLES_OF_PROCESS are
constants speci$irrg, resp-sctively, the smallest up~r limit which can bc imposed by any
CAIS implementation on the number of roles which a single process can have adopted at one
time and the actual upper limit imposed by a particular implementation.

CAIS_NUbStSER_O~_NODES: constant := OtTSESTRICTED;

CAIS_NUMBER_OF_NODES is a constam specifying the smrdlest upper limit which can be
imposed by any CAIS implementation on the number of nodes that can be contained in a
given CAIS implementation at one time.

511

Downloaded from http://www.everyspec.com



2==

5.7. DOD-STD- 1838

.CAIS_PRAGMATtCS

CAIS_LENGTtt_OF_PRktY_PATH : Constant := PATNNAbU_LENGTH/2 ;
-.

CAiS_LENGTH_OF_PRIMARY_PATH is a constmt specifying the sm~lest uPper limit ●
which CM be imposed by any CAIS iniplernentation on the number of path elements in a

primary pathnanie. ,. .
,.

CAIS_DIRSCT_IO_RECOSD_SI?E : CCurSt.mt:= 2 ** 15 - 1 ;
DIRECT_IO_PWCOSD_S IZE : constant := impiementation_dejlncd;

c’M.S_DIREti_IO_RECORD.SEE ~d DIRECT_IO_REC0RD_S12E are const~ts
specifying, respectively, the smallest upper limb which can be imposed by any CAIS
implementation on the number of bits in a direct input or output record and the actual upper
limit imposed by a particular implementation.

CAIS_SEWENTIAL_IO_KWOSD_slzE : COmtmt := 2 ● * 15 - 1 ;
SEQUZNTIAL_IO_PXCORD_SI ZE : Constsnt := implementation_de fined;

CAIS_SEQUE~IAL_IO_RECORD_SIZE : and SEQUENTIAJJO_REC0FtD_S12E are
constants specify ing, ”respectively, the smallest upper limit which can be imposed by any

CAIS implementation on the number of bits in a sequential input or output record and the

actual upper limit imposed by a particular implementation. ne constant SEQUE~~L_IO_
RECORD_SIZE must be at least as large as the constant DLRECT_IO_RECORD_SIZE.

CAIS_DIRECT_IO_INDEX_SANGE_UPPER_BOUNO: constant. := 2 ●* 15 - 1 ;
DIRECT_IO_INDEX_SANGE_OPPER_SOUND : constant := implementation_de@d;

,.

CxMS_DIRE~_lO_INDEX_RANGE_UppEIUIOUND rmd DIRECT_IO_INDEX
RANGE_UPPER_BOUND are constants specifying, respectively, the smallest ‘upp-a Iirnl

which cti be imposed by any CAIS implementation on the type COUNT in the package

CAIS_DIREC7_I0 and the actual upper liinit imposed by a particrdar implementation. ●
G+IS_SEQUENTIAL_ IO_FILE_SIZE :“ ‘&insttit := 2 ** 15 - 1.;
SEQUENTI~_IO_FILE_SI ZE : constant := implemenration_dejined;

CAIS_5EQUENTIAL_IO_FILE_SIZE and SEQUEI@AL_IO_FILE_SIZE are constants
specifying, respectively, the smallest upper limit which can be imposed” by any CAIS

implementation on the num~r of c~sSEQuE~ALIo..mE operations that Cm ~
performed on a sequential, fde and the actual upper lirnh imposed by a particular

implementation. SEQUENTIAL_lO_FILE.SIZE must k at least m large w D~EO_IO_
lNDEX_RANGE_UPPER_B OUND.

CAIS_TEXT_IO_LINES_PER_rILE : constant :=“ 2 ** 15 - 1;

TExT_Io_LINttS_PER_F ILE : constant := implemartation_dej7ned;

CMS_~fi_IOIE~=_PER_FILE and TEXT_IO_LINES_PER_FILE & constmts
specifying, respective] y,” the smallest upper- limit. which” can be imposed. by any CAIS
implementation on the number of. l~es in a text ~put or output ffle, and the .acmd upper limit
imposed by a particular implementation.

,. -..
CAIS_TEXT_IO_LIfiS_PER PAGE:: &m”t’ant := .2..** 15 - 1;
TE~_IO_LINttS_PER_PAGE~ constant.:= implementation_de/ined; . :

CAIS_TEXT_IO_LIN~_PER_PAGE aird” .l%~_l,O_LINES_F’EiR_F’AGE are constants
specifying, respectively, the smallest upper li&it which can be imposed by any CAIS

implementation on the number of lkes per page in a text input or output ffle and the actual

upper limit imposed by a particular implementation. ●
512

Downloaded from http://www.everyspec.com



o

I

‘o

L----

DOD-STD-1838 5.7

CAIS_PRAGMATICS

CAIS_TSXZ’_lO_COLObMS_PER_LINE: constant := 255;
TttXT_IO_COLOMNS_PER_LINE : constant : = implemenration_de@ed;

CAlS_TEXT_107COLUMNS_PER_LINE and TEXT_IO_COLLJMNS_PER_LINE are
constants specifying, respectjvely, the smallest upper limit which can be imposed by my

CAIS implementation ‘on the number of columns per line of a text input or ourput file and the

actual upper limit imposed by a panicular implementation.

CAIS_!INILtOB4_TAPE-BLOCX_LENGTH: constant := 18;
t41NIb10bt_TUE_BL0CX_LENGTH : constant := implementation_dejined;

CAIS_MINIMUM_TAPE_BLOCK_LENGTH ~d MINIMUM_TAPE_BLOCK_LENGTH
are constants, specifyirrg, respectively, the largest lower limit which can be irnpbsed by any

CAIS implementation on the number of characters written to a magnetic tape in a single

block knd the actual lower limit imposed by a particular implementation.

CAIS_MRN2KObt_TRPE_BLCCK_LENGTH : Co&taNt := ,2048;

btRXIbtOM_TAPE_8LOCX_LENGTH : constsnt := implementation_de$ned;

CAIS_MAXIMUM_TAPE_BLOCK_LENGTH and MAXIMUM_TAPE_B LOCK_
LENGTH are constants, specifying, respectively, the sm”allest upper lid which cm be
~po:ed by anY CAIS implementation on the number of characters written to a magnetic tape
m a srngle block and the actual upper limit imposed by a particular implementation.

tiIS_FILE_NAN0LES_PER_PR0CE5s: wdmt := 15;
FILlt_NRNDLES_PER_PROCESS : cnnstant := implementation_dejined;

CAIS_FILE_HANDLES_PER_PROCESS and FILE_HANDLES_PER_,PROCESS are
constants specifying, respectively, the smaIlest upper limit which can be unposed by my

CAIS implementation on the number of open fiie handles a process can have at one tin.: md

the actual upper limit imposed by a pwticrdar implementation.

~ILSt_STOSAGE_ONIT-SI ZE: constant := impIementation_de fined;

FILE_STOWGE.UNIT_SIZE is a constant specifying the number of bits per file storage
unit in sequential fries and direct fdes for a paticular CAIS implementation.

btEb@RY_STOSAGE_UNIT_SIZE: constant := implementation-defined;

MEMORY_STORAGE_UNIT_SIZE is a constant specifying the number of bits per memory

storage unit for a particular CAIS implementation.

QUSXJE-STOaAGE_UNIT_SIZE: constant := implemenmtion_dejin ed;

QUEUE_STORAGE_UNIT_SIZE is a constant specifying the number of bits per queue
storage unit irr nonsynchronous queue ffles for a particular CAfS implementation.

-lS_lDE~lFIER_ITM_LENGTH: constant := CASS_lMMTIs’1i3R_LENGTH;
IDENTI~IER_ITEM_LENGTH: constant := implementation_dejined;

CAIS_IDENTIFIER_lTEM_LENGTH arrd IDENTIFIER_ITEM_LENGTH are constants
specifying, respectively, the smallest upper limit which can be. imposed by any CAR
implementation on the number of characters in an identifier item or the value of a token and
the actual upper limit imposed by a particular implementation.

513

Downloaded from http://www.everyspec.com



5.7 DOD-STD-1838

CAIS_PtL4GMATICS

CAIS_LIST_LENGTH : SOnstant := 255 ; , ‘
LIST_LENGTH : constant : = implementation_dejined; ●

CAIS_LIST_LENGTH and LIST_LENGTH are constants specifying, respectively, the
smallest upper limit which can be imposed by any CAIS implementation on the number of

items in a list and the actual upper limit imposed by a particukw implementation.

CAI S_STRING_ITEb_LENGTH: Coflst’&t := CAIS_PATRNXME_LENGTH;
STRING_ITEN_LStNGTSt : mqsst,tit := irnplementatio~_dej%ed;

CAIS_STRING_ITEM_LENGTH and STRING_lTEM_LENGTH are constants specifying,
reswctively, the smallest upper limit, ,which can be imposed by any CAIS implementation on
the number of characters in a string item and the acttsaI upper limit imposed by a particular
implementation, sTRING_ITEM_LENGTH must be at least as large m the value of

PATHNAME_LENGTH.
,., ,.

CAIS_LIST_TFXT_LENGTH: constant := 2 ** 10;
LIST_TEXT_LENGTH : constapt : = implementation_dejined:

,.

CAIS_LIST_TE~_LENGTH and LIST_TEfi_LENGTH are constants specifying,
respectively, the smallest upper limit which can be imposed by any CAIS implementation on I
the number of characters in the external representation of a’ list and the actual upper limit

imposed by a particular implementation.
,, -..,. ., .,

CAIS MINIMUM INTEGER: ~constmt :=:- .(2** ~15 - 1) ;
I

bSIN&Ot4 INTEGER: cnnstant := imp/ementatitin_de/ined:
,.,, ; ?.,:,:,.. ,-,

CAIS_MtNIMUM_INTEGER and h41NIMUM_INTEGER are constants specifying,
respectively, the largest lower limit which can be imposed by any CAIS implementation on
the smallest (most negative) wdue of the type CAIS_INTEGER and the achd lower limit o

imposed by a pmticulm implementation.

CAIS_MnXIMOM_INTEGER: constant :. 2 ** 15 - 1;

btAXIMtN4_INTEGER : cwsstsnt := implementation_de fined;

CAIS_MPLYIMLJM_INTEGER and MAXIMUM_INTEGER are constants specifying,
respectively, the smallest upper limit which can be imposed by any CAIS implementation on
the largest (most positive) value of the type CAIS_INTEGER and the actual upper Iimit
imposed by a particular implementation:

CAIS_LIST_MAXIMUM_DIGITS : CWsStmt := 6;

LIST_bSAXI14Ut_DIGITS : Cwrstant := implementation_dej% ed;

CAM LIST_MAXIMUM_DIGITS and LIST_MAXIMUM_DIGITS are constants
speci~ing, respectively, the smallest upper lirnh which can be imposed by any CAIS
implementation on the number of si~lcant decimal digits of the floating point type used to

contain floatirsg point item values and the actrud upper limit imposed by a particukw CAIS

implementation.

CAIS_SMALL_FOR_CAI S_DUSATION : constant := 0. 015625; -- 1164
=L_FOR_CAIS_DWTION : constant := implemental’on_@ned:

CAIS_SMALL_FOR_CAIS7DURATION and SMALL_FOR_CAIS_DURATION are
constants specifying, respectively, the maximum for the smalIest representable duration, i.e.,
for the vahre of CAIS_DURATION’SMALL, and the actual smallest duration supported by a
particular CAIS implementation. ●

514

Downloaded from http://www.everyspec.com



NOTES

DOD-STD- 1838 6
KEYWORDS

6. NOTES

6.1 Keywords

The following list represents the keywords applicable to thk standard. l%ese keywords may

be used to categorize the’ concepts presented withirr this standard and assist in automatic

retrieval of appropriate data used in automated document retrieval systems.

A&
Ada Programing Support Environment

APSE

CAIS

Ccamon ASSE Interface Set

ccmputer file system
SASSE

Kernel Ada Progr-ng Support Environment
high level languages

interfaces

interoparability

operating system

portability
programming support environment
software engineering environment

transportability
virtual operating system

,:.

,,,. ;
,,, ,

.,, .

... ,,

.. ’,,
,,, ,,

515/516,

L’

. ,, ;,,*:. ~t .: ,,{...+.=....7...:,...i:,,,: ,,
,’ . . .. ... ... ..-! ,

Downloaded from http://www.everyspec.com



DOD-STD.1838 PREDEFINE RELATIONS

APPENDIX A

o
I

I

I

o

I

1

A pendix A

Predefine Relations, 1 ttributes and Attribute Values

The material contained in this appendix is not a mandatory part of the standard.

10. Predefine Relations:

ACCfi%S: designates a seconday rdationship from an object node to a group node

representing a role; the access rights that are granted to adopters of the

role are given in the GRANT attribute of this relationship,

ADOPTED.ROLE:
designates a secondary relationship from a subject (process) node to a
group node representing a rolq int~cates that the process has adopted the

role represented by the group node.

CURRENT_JOB:
designates a secondary relationship from a process node to the root

process node of the tree which contains the process node.

CURRE~_NODE
designates a secondary relationship kom a process node to the node

representing the current focus of attention or context for activities of that

process.

CURRE~_USER:
designates a secondary relationship from a process node to a top-Ievel
node representing the user on whose behalf the process was initiated.

DEFAULT.ROLE:
designates a secondary relationship from a top-level user node to a group
node; there must be exactly one such relationship from a user node. Also,

designates a secondmy relationship from a ffle node that contains an
executable image of a process to a group node; there can ordy be one

such relationship from the fiie node.

DEVICE: designates a secondary relationship from a process node to a top-level
node representing a device to which the process has access. Also
designates a primary relationship from the system-level node to a node
representing a device.

DOT: designates the default relation name to be used when none is provided.

Special rules apply for pathname abbreviations in the presence of path

elements whose relation name is DOT. Also, the CAIS discretionary

access contiol model associates specific semantics with relationships of
the DOT relation among group nodes in determining the role under

which a process executes. No other semantics or restrictions are

associated with DOT.

EXECUTABLE_tMAGE.
designates a secondary relationship from a process node to the node

containing the executable image of the process.

517

,

-.

Downloaded from http://www.everyspec.com



PREDEFTNED RELATIONS DOD-STD- 1838

.
::

.

...
-.

GROUP

JOB:

MIMIC.FILE

,:..
.:

PARENT:

.-,,..

,..
. .

APPENDIX A

designates a secondary relationship from a process node to a top-level
group node. Also designates a primary relationship from the system-level

node to a top-level group node.

designates a primary relationship from the top-level node of a user to the

root process node of a job.

designates a secondary relationship from a node representing a mimic

queue fiie to the node representing that ffle’s coupled file; indicates that

the queue fde and the other fde are coupled; this means that the contents

of the frle are the inhial contents of the queue file and subsequent writes

to the queue fide are appended to the other file as well.

designates the secondary relationship from a given node to the node

which is the source node of the unique primary relationship pointing to

the given node.

POTEIV1’IAL_MfZMf3 ER:

designates a secondary relationship from a group node to another group
node representing a potentiaf member of the group.

STANDARD_ERROR.
designates a secondary relationship from a process node to a file node

representing the file to wtilch error messages are to be written by default.

STANDARD_INP~.

designates a secondary relationship from a process node to a file node

representing the ffle which is the initial default source of process inputs.

STANDARD_OUTP~

designates a secondary relationship from a process node to a fife node

representing the ftie to which ourputs are initially being directed by

default.

USER: designates a second@ relationship from a process node to a top-level

user node. Also designates a primary relationship from the system-level

node to a top-level node representing a user.

.

Downloaded from http://www.everyspec.com



DOD-STD-1838 PREDRFEN’ED A7TRIBIJTES

APPENDIX A

20. Predefine Attributes:

ACCESSJAETHOD:
applies to f~e nodes; designates the kind of access which can & used On

the node’s contents; the predefirsed attribute vahres are SEQUENTIAL,

DIRECT and TEXT.

CURRE~_FILE_SIZE

applies to fde nodes with a FILE_KIND attribute value of

SECONDARY_STORAGE designates the current size of a fde.

CURRE~_QUEUE_SIZE:

applies to fiie nodes with a FILE_KIND attribute vahre of QUEUE and a
QUEUE_lCIND attribute value of NONSYNCHRONOUS_SOLO,

N0NSYNt2HR0NOUS_C0PY or rforwmcmoIwous_Nmmc;
designates the current number of elements of a queue.

CURRENT_STATUS:
applies to process nodes; designates the current status of the node’s
contents; possible values are READY, SUSPENDED, ABORTED or
TERMINATED.

DEVICE_KIND: applies to fde nodes with a FILE_KIND attribute value of DEVICE;

FfLE_KIND.

I
GRAM

o

designates the kinds of devices which are represented by” the node’s

contents; the predefmed attribute values” are SCROfJ-_TERMINAL,

PAGE_TERlvffNAL, FORM_TERMINAL, MAGNETIC_TAPE_

Dl?lVE or combinations thereof.

applies to fide nodes; designates the kind of file that is the node’s
contents; possible values are SECONDARY_STORAGE, QUEUE or
DEVICE.

applies to relationships of the predefmed relation ACCESS; designates
the access rights which are granted by means of the access relationship;
values are lists of grant items’% specified in Table 11,page 42.

HIGHEST_CLASSIFICATION:
applies to file nodes; designates the highest allowable object

classification label that may be assigned to the node; values are

irnplementation-defmed.

INHERITABLE applies to all relationships; designates whether or not the relationship is

inheritable, Possible values are TRUE and FALSE. For primary

relationships the attribute value is always FALSE.

IO UNIT CO~—

NODE_KIND:

applies to process nodes; designates the number of GET and PUT
operations that have been performed by the node’s process.

applies to all relationships; designates the kind of the target node;
possible values are STRUCTURAL, PROCESS or FILE.

519

Downloaded from http://www.everyspec.com



PREDEF&OID ATTRIBUTES DOD-STD-1838

APPENDIX A

LO~T_CLASSIFJCAT30N:

applies to fde nodes; designates the lowest allowable object classification
label that may ~ assigned to the node; vahses are irnplementation-
defmed. ‘‘

●
,.

MACHINl_TIME:
aPPlies to process nodes; desi~ates the length of time the process WaS
active on the logical processor, if the process has terminated or aborted,

or zero, if the process h~ not terminated or aborted.

MAXIMUM_FILE_SfZE:

applies to ffle nodes with a FILE_KIND attribute value of
SECONDARY_STORAGE, designates the maximum aIIowable size for
a file.

MAXIMUM_QUEUE_SIZE

aPPIies to ffle nodes with a PILE_K~D attribute value of QUEUE ad a
QUEUE_ICIND attribute value of NONSYNCHRONOUS.SOLO,
NONSYNCHRONOUS_COPY or NONSYNCHRONOUS_MIMIC;
designates the maximum allowable size for a queue.

.,,

OBJE~_CLASSIFICATION:
apPIies tO ~1 nodes; designates the node’s chrssificaticin ss m object;

values are irrsplementation-defmed.

‘OPEN_NODE_HANDLE_COUNT!
applies to process nodes; designates the number of node handles.
node’s process currently has opened.

PARAMETERS: applies to process nodes; designates the parameters with which
process was initiated.4 .,,

PROCESS ..SIZE:

the ●
the

aPPlies to process nodes; designates the amount of memory currentlY in
use by the process.

QUEUE_KIND applies to ffle nodes with a“ F’ILE_KIND attribute value of QUEU~
designates the kind of queue fiie; possible values are SYNCHRONOUS_
SOLO, NONSYNC~ONOUS_SOLO, NONSYNCHRONOUS_
MIMIC or NONSYNCHRONOUS_COPY.

RESULTS: applies to process nodes; designates the intermediate results of the
process; vahses are user-defined.

SUBJ~_CLASSIF3CATION:

apphes to proCeSS nodeS; designates the classification of the node’s
process as a subject; vahses are implementation-defmed.

5Z0

Downloaded from http://www.everyspec.com



I

DOD-STD- 1838 PREDEFtNED AITRIE@IES

I APPENDIX A ... .,

●
TIME_ATTRIBUTE_WRiTTEN:

applies to all nodes; designates the most recent inrplementatiori:defmed
time at which any attribute was modified (i.e., attribute value changed by
the user, new attribute added or existing attribute deleted) by a call on a
CAIS interface; changes to attributes that are made implicitly by the
implementation are not reflected in TIME_ATITUBUTE=WRI1’TEN.

TIME_CONTEtiS.WRl’TTEN:
applies to fide riodes; designates the most recent implementation-defmed
time at which the file coptents have been modified (i.e.,. written).

I TIME.CREATED
applies to au nodes; designates the implementation-defmed time at which
the node was created.

TIME_PINISHED:
applies to process nodes; designates the implementation-defined time at
which the process terminated or aborted.

TIME_RELATIONSHIP_WRI’ITEN:
applies to + nodes; designates the most recent irnplementation-defmed
tune at which any relationship wak modiiled (i.e., a new relationship
added or an existing “relationship deleted) or at which any attributes of
any relationship emanating from the node were modified Ji.e ~,’am-ibute
value of an attribute of the relationship changed by the user; a new
attribute of the relationship added or. an existing attribute of the
relationship deleted); changes to relationships that are maintained”by the
implementation and cmot be set using CAIS interfaces are not reflected
its TIME_RELATIONSHIP_WRITTEN.

,. .,:
TIME_STARTED:

applies to process nodes; designates the implementation-defmed time of
activation of the process.

,,
!. :

.,,

..

.“.

521

Downloaded from http://www.everyspec.com



PREDEFINE AITRIBUTE VALUES DOD-STD-1838

APPENDIX A

30. Predefine Attribute Values:

ABORTED
APPEND
APPEND_ATHIIBUTES
APPEND_CONTENTS
APPEND_RELAITONSHIPS
CONTROL
DEVICE
DIRECT
EXEC!UTT3
EXISTENCE
FALSE
FILE
FORM_TERMINAL
MAGNETIC_TAPE_DRIVE
NONSYNCHRONOUS.COPY
NONSYNCHRONOUS_MIMIC
NONSYNCHRONOUS_SOLO
PAGE_TERMINAL
PROCESS
QUEUE
READ
READ_ATTRIBUTES
READ_CONTENTS
READ_RELATIONSHIPS
READY
SCROLL_TERMINAL
SECONDARY_STORAGE
SEQUENTIAL
STRUCTURAL
SUSPENDED
SYNCHRONOUS_SOLO
TERMINATED
T~
TRUE
WRITE
WRITE_AITRIBUTES
WRITE_CONTENTS
WRITE_RELATIONSHIPS

522

Downloaded from http://www.everyspec.com



DOD-STD-1838 PREDEFINE ENTITY SUMMARIES

APPENDIX A

40. Predefine Contents, Attributes, and Relationships

The following tables show the predefmed contents, attributes, and relationships for the
system-level node and for each kind of node (STRUCTURAL, PROCESS, and FILE).

System-Level Node 1

Node Node
Contents Attributes

None lNOne
I

Node
:ontents

{one

Node
Attribute

)BJECT_
CLASSIFICATION

~E_ATTRJBUTE_
WRITTEN

~_CREATED
~E_

RELATIONSHIP_
WRITTEN

Structural Nodes

Node as Source
of Relationship

iCCESS
>EFAULT_ROLE

(if top-level user node)
)OT
“OB (if top-level user

node)
‘ARENT
‘OTENTL4L_MEMBER

(if group)

Node as Target
of Relationship

ACCESS
(if group node)

ADOPTED_ROLE
(if group node)

CURRENINODE
CURRENT_USER

(;~;level user

DEFAULT_ROLE
(if group node)

DOT
GROUP (if group node)
PARENT
POTENTIAL_MEMBER

(if group node)
USER (if top-level user

node)

523

Downloaded from http://www.everyspec.com



.,

PREDEFTNED ENTITY SUMMARIES DOD-STD- 1838

APPENDIX A

Node
Contents

tepresen~’
kecutioh
~fan Ada
xograrn

Process Nodes

~~ Node” 1“Node .m Source
“,Attributes of Relationship

CU@ENT_STAtiS ACCESS
IO_~_CO~ ADOPTED_ROLE
MACHINE_TIME C~RENT_JOB
OBJE~_ ““ CURRENT_NODE

CLASS~FICATION” CURRENT_USER
OPEN_NODE_HANDLE_ DEVICE

cow DOT
PARAMETERS EXECUT.&BLE_IMAGE
PROCESS_SIZE CRC)UP
RESULTS “’ PARENT
SUBJE~_ STANDARD.ERROR

CLASSIFICATION STANDARD_INPUT
lTME_ATTRIBUTE_ STANDARD_OUTPUT

WRITTEN”. ” USER
I’IME_CREATED
I’IME_FINLSHED
l’IME_RELATIONSI-dP_

WRITTEN .
l’IME_STARTED I

.
. . . ... ,

.“. .

524

Node as Target
of Relationship .

CURRENT_JOB
(if root process

node )
C~ENT_NODE
DOT
JOB

(if root process
node )

PARENT

Downloaded from http://www.everyspec.com



.

DOD-STD-1838 PREDEFINE ENTITY SUMMARIES

APPENDIX A

Node
Contents

ida external
ile

File Nodes

Node
Atiibutes

ACCESS.METHOD
CURRENT_FILE_SIZE

(if SECONDARY_
STORAGE File Node)

cURRENT_QUEUE_SIZE
(if QUEUE File Node)

DE~CE_KIND
(if DEVICE Fde Node)

FILE.IGND
HIGHEST_

CLASSIFICATION
LOWEST_

CLASSIFICATION
MAXIMUM_FILE_SIZE

(if SECONDARY_
STORAGE Fde Node)

MAXIMUMQUEUE_SIZE
(if QUEUE File Node)

OBJECT_
CLASSIFICATION

QUEUE.KIND
(if QUEUE File Node)

TIME.ATTTUBUTE_
WRllTEN

TIME_CONTENTS_
WIWITEN

TIME_CREATED
TLME_RELATIONSHIP_

WRITTEN

Node as Source
of Relationship

iCCESS
)EFAULT_ROLE

(if File
Node has
Executable
Contents)

JOT
vlIMIC_FILE

(if QUEUE
File Node)

‘ARENT

525/526

.,

Node as Target
of Relationship

XJRRENT_NODE ‘
IEVICE

(if top:level device
node)

JOT
mC_FILE

(if QUEUE
File Node)

‘ARENT
;TANDARD_ERROR
;T~ARD_INPUT
;TANDARD_OUTPUl

.

Downloaded from http://www.everyspec.com



LJuu->1u-l6>0

APPENOIX B

CAIS SPECIFICATION

A endix B
CAI/’’pecification

The material contained in this appendix is a mandatory part of the standard.

This appendix contains a set of Ada package spccitlcations of the CAIS interfaces in their
canonicrd form (see Section 4.2, page 19 and Section 4.2.1, page 20). Although the interfaces
are not necessarily shown here in the order in which they are dkcussed in the text, this
apwndk provides a reference h.sting of the CAIS.

package CAIS_Pwx12dATrCS is

CAPACITY ERROR: exception;
RX.SOORCE-ZRROR: exception;

ONRESTRICTCD: constant := imp/ementation_dejned;

CAIS PATHNAE4Jt_LENGTH : cvnstant := 255 ;
PATtiAMS LENGTH: constant := implementation_de fined;

CAIS_IDENTIFIER_LENGTH : constant := 80;
IDENTIFIER-LENGTH : cmstsnt := implementation-&fined;

CAIS_2?ODE_NANOLES_PER_PROCESS : mrrstmt := 255;
NODE HANDLES PER_PROCESS : rsmstant := implementation-defined;

●
CAIS NOD ES_IN_COPY_TRSE : OmStarrt := 2 ● ● 15 - 1;

NODE~_IN_COPY_TSOtE : constant := implemenrah”on_deJTned:

CAIS_NODES_IN_DELETE_TREE : constant := 2 ●* 15 - 1 ;
NODE S_IN_DELETE_TREE : constant := implementation_dejined:

CAIS_E2.WATING_PRIMARY_RE2ATIONSHIPS_PER NODE : constant := 2 ** 10 - 1 ;

EbtANATING_PR2btARY_RELATIONSRIP S_PER_NODE~ constant := implementation.defined;

CAIS_SNANATING_SECONDARY_RELATIONSHIPS_PER_NODE : COn.$tSIIt:= 2 *• 10 - 1;

EbtANATING_SECONDARY_RELATIONSNIPS_PER_NODE: mnstsnt := implementation_dejined;

CAIS_ELEMENTS_OF_NODE_ITENATOR : COmtmt := 2 ●* 11 ‘2;
ELEMENTS_OF_NODE_ ITERATOR : constant := implementation_de fined;

I
I CAIS_ELEbSENTS_OF_ATTRIBUTE_ITERATOR : OnSStant := 255;

ELEbfENTS OF ATTRIBUTE_ITERATOR : constant := implementation_de fined;--

I CAIS_ATTRIBW2ES_P ER_NODE : COrsstant:= 255;
ATTRIBOTES_PER_NODE : cwrstsnt := implementation_dejfned;

CAIS_ATTRIBOTES_PER_RELATIONSHIP : constant := 255;

I ATTRIBOTES_PER_RELATIONSHIP : constant := implementation_de@ed;

I CAIS_ACCESS_WLATIONSHIPS_OR’_OBJECT : constant := 255;
ACCBSS_RBLATIONSHIPS_OF_OBJECT : omstant := implementation_de fined;

●
CAIS_GRANT_ITEbSB_ON GRAN2_ATTRIBOTE : constant := 15;

GRAtP_ITRNB_ON_GW-_ATTRIBUTE : constant := implementation_dejined;

I 527

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION DOD-STD- 1838

APPENDIX B

CAIS_GROUP NODES: amstmt := 255;

GROUP_NODE~ : constant := implementation_de@?d;

CAIS_ADOPTED_ROLES_OF_PROCESS : constant := 7 ;

ADOPTED_ROLES_OF_PROCESS : constant := implementation_dejinid;

CAIs_mER OF NODEs: constant := UNRESTRICTED;--

CAIS_LENGTH_OF_PR2NARY_PATH: constant :. PATNNAbt22_LENGTH/2;

CAIS_DIRZCT IO_XSCOSD SIZE: COmtmt := 2 ** 15 - 1;

D IRXCT_IO_m-CORD_S IZE~ constant.:= implementation_dejined;

CAIS_SEQUENTIAL_IO RECOSD SIZE: C#nstmt := 2 ●* 15 - 1 ;

SEQUZNTI=_IO_RXCO-~_SI ZE~ constant := implernentation_de fined;

CAIS_DIRECT IO_INDEX_RANGE UPPER BOUND : amstmt := 2 ** 15 - 1;
DIRECT_IO I-mEX_RANGE_UPPE~_BOUNii : constant := implementation_de f7ned;

CAIS_SEQUENTIAL I,O_FILE SIZE: cimstant := 2 ** 15 - 1;..,
‘“.SE”@JENTIAL_I,O_F~LE SIZE; cmstait := implementation_dejined;,,-

CAIS_TEfi_IO_LINES’ PER_FILE: CCMMt’dd := 2 ●* 15 - 1;
TEXT IO LINES. PER ~ILE :--- _ constant := implementation_dejined;

CAIS_&f+_IO_LINES ‘PER_iAGE : COn$tait := 2’ ●* 15 - 1;
TEXT IO LINES_PER ~AGE : constant := implemeMation_&jined;—- —

CAIS_TEXT_IO_COLUMNS_P ER_LINE: constant := 255;.
T!2~_10_COLWMNi_PER LINE: constant := implementation dejined; ●
CAIS_St2N2b2UM_TAPE_BLCCK_LENGTH: constant := 18;

~N-_TAPE_BmK_LENGTH: constant := implernentation_de@d;

C.AIq_~IMU2._TfipE_BLOCK_LSNGTH: COmtmt :. 204s;
StAXIt4UM_TAPE BLOCK_LENGT2i : constant := implementah”on_de@ ed;

CAIS FILE_HANDLES_PER_PROCESS: C0mt8nt :~ 15;
FILE%WDLES_PER_ PROCESS : constant := implementation_& fined;

FILE_STORAGE_UNIT_S IZE: constant := implementation_de@ed;
.,, , ,

b2EWRY_STOiAGE_WIT_SI ZE: ~nstant {= “irnplemek?tion_& fined;
.

QUZUE_STOAAGE_ONIT_SI ZE: constent :. implementation_dejined;

CAIS IDENTIFIER_ITEt4_LENGTN : constaqt := CAIS_IDENTIFIER_LENGTH ;
IDEtiIFIER ITEN_LE,NGTH : const~t :=,implementation_@ined;,:. -

CAIS LIST_LENGTH: constsnt“:=’255;’”’{
LIST-LENGTH : constznt := impleme~ation defined;

.-

CAIS_sTRING_ITEE_LENGTH: constant := c.AIS_Pr4Ts2wM_tiENGTn;
..!

STRING ITEM LENGTH :___ constant := implementation_de@ed;

CAIS_LIST_TEXT_LENGTfi : constant := 2 ** 10;
LIST_TKXT_LXNGTH : constant := implementation_de@ ed:

528

Downloaded from http://www.everyspec.com



I end

!0

CAIS_MINIStUM_INTEGER :
MINIMUM INTEGER :

CAIS_k4AX2btUbl_INTEGER:

t4AX2MOM INTEGER:

DOD-STD-1838 CAIS SPECIFK4TTON

APPENDIX B

constant := - (2 ●* 15 - 1);
constant := implementatiofi_&jined;

COnatmt”:= 2 ●* 15 - 1;

constant := implementation_dejined;

CAIS_LIST_M?WSfOM_DIGITS : COIIStant:= 6;,

LIST_btANIt40t4_DIGITS: mmtmt := implementation_de fined;,

CAIS_EWWL_FOR_CAIS DORATION: constant := 0.015625; -- 1/64

EMSLL_~OR_CAIS_DUT&ON : constant := implementatiori-dejined;

CAIS_PRAGbiATICS ;

with CAI S_P SAGMAT ICS ;

padwge CAIS_STANDARD is

type CAIS ..INTEGER is range
aIS P&MRTICS. MINIbtOM_INTEGER .. cAIS_P~TIc5. t4iX-_INTEGER;

subtype &S_NATURAL. is CAIS_INTEGER range 0.. CAIS_INTIZGZRI LAST;

subtypa CA19_POSITIVS is CAIS_INTEGER range 1..CAIS_IN+ItGERr XJL3T;

type CAIS_?URATION k delta implementation-deJined;
for CAIS_DURATION’ SbliLL uss CAIS_PRAGbtATICS. WL_FORvCAIS_DUSATION;

end ~IS_STRNOASII ;
.,, ,.

,. “.. .

.,

With CIUS_STANDAiD ;
.. .

with cAIs_PSwtdimcs ;
.,. ,

package “CAIS_LIST_blANAGEMRNT is
.,

US-S CAIS STANDJW.D:.-
,,

type LIST_TYFE is limitedprivate;

subtype LIST_TEXT is STRXNG;

tyfi LZST_SIZE isrmge O . . CAZS_PRAGMATZCS .LIST_LSWG2H;
subtype PoSITION_COONT is LIST_SI?.E raN~ 1 .. LIST_SIZJl’ LRST;

subtype INS~RT_COUNT is LIST_SIZlt range O .. LIST_SIzE’ LAST - 1;

typa LIST_KIN12 is (ONNAMSD, NAMED, lQ4PTY);

t* ITS24_KIND is (LZST_ITEM_KIND , STRXIUG_ITSSt_XZND ,
INT.SGXR ITEbl_XIND , FLOAT_ITltM_KIND ,

WNTIF~ER_ITE&_KIND) ;

tY* TOKEN TYPE is Iimited private; ‘“

subtypa IDENT~R’IER_TENT is STRING;

~TY LIST: CUmtmt LIST_TYPE ;

ITPJ_XI~_E~R : exception;

529

A

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION

LI ST-KIND_!lRROR :

LIST_POSITION ERROR:
NAuZD LIST_E&R :

SEARCti_EPROR :

SYNTAK ERROR:

TORZN ERROR:

DOD-STD-1838

APPENDIX B

exception;
exception;

exception;

exception;

exception;

exception;

pruccdure COPY_LIST (TROM_LIST: in LIST_TYPE;

TI_LIST : in Out LIST_TYPE) ;

prucedure SET_m_EMFTY_LIST (LIST: iN Uut LIST TYPE) ;
prUCCdurc CONVZRT_TERT_TO_LIST (LIST STRING: ‘k LI ST_TE~ ;

LI STY iu out LIST_TYPE) ;
functionTERT_FOlw (LIST: ii LIST_TYPE)

return LIST_TEXT;
functionIS_EQUAL (LIST1 : in LIST_TYPE;

LIST2: in LIST_TYPE)

return SCOLKAN:
prUCdINeDELETE (LIST: iN Out LIST-TYPE;

ITRM POSITION: in POSITION_COONT) ;
prucedure DELETE (LIST~ iu Out LIST_TYPZ ;

ITZM NAME: iN IDENTITIER_TEXT) ;
prUCCdure DELETE (LIST; iu Out LIST_TYPE;

ITZM NAMS : in TOREN_TYPE) ;
functionKIND_Or_LIST ~LIST: in LIST_TTFE)

return LIST_KIND;
functionKIND_OF_ITZM (LIST: iu LISZ_TYPE ;

ITEM POSITION : in POSITION COUNT)

return ITEb3_KIND;
fUDCtiOnKINI_OF_ITSN (LIST:

ITEM NAME :.—
return ITW_KIND;

functionKIND_Or_ITEM (LIST:

ITEbt_NAME :

return ITEN KIND;
prucedute

prucedure

procedure

SPLXCii (LIST; in
POSITION : in

SOURCE LIST : in

in LIST_TYPIE;
in IDENTIFIER-TEXT)

in LIST TYPE;

iN TOl&_TYPE)

out LIST_TYPE ;
INSERT_COUNT ;
LIST_TTPE) ;

CONCATENATE_LI~TS (FRONT: in – LIST_TYPE;
SACK : in LIST_TYPE;
RESULT : in uut LIST_TYPE) ;

L%%TRACT_LIST (LIST: in LIST-TYPE;
START_POSITION : in POS ITION_COUNT ;
END_POSITION : in POS ITION_COUNT ;
RJXWLT LIST: in UNt LIST TYPE) ;

function NOMRER_OF_ITEbLP (LIST: in LIST_TYPE) -
Mum LIST_SIZE;

functionPOSITION_OF_CUARENT_LIST (LIST: in LIST_TYPE)

return POSIT ION_COONT ;
functionCURRENT_LIST_IS_OUTERJS2ST (LIST: in LIST_TYPE)

return SOOLEAN;

prucedurc
procedure

pruccdurc

prncedurc

NARZ_CONTAINING_LI ST_CURRZNT (IN LIST : in out LIST TYPE) ;
b3ARE_THIS_ITZM CURRENT

WCE_THIS_ITEM_CURRENT

MARE_THIS_ITE3d_CURRENT

●

(IN_LIST :- in uut LIST~TYPE ;
ITfCN_POSITION : in POSITION_COUNT) ;
(IN-LIST: in uut LIST TYPE;
ITNM NAb3E:

~
ID~-IFIER_TEXT) ;

(IN_L~ST : in out LIST_TYPE ;
STEM NAME: in TONZN_TYPE ); ●
530

Downloaded from http://www.everyspec.com



DOD-STD-1838

APPENDIX B

C.MS SPECIFICATION

‘o

I

I

●

1

10

fu33Cti03)TEXT_LENGTH (LIST: i33LXST_TYPE)
return CAIS_POSXTIVE ;

fWCtiOn TEXT_LENGTH (LIST: in LIST_TYFE;

ITEb_POSITION: in POSITION_COVNT)
return CAIS_POSITIVE;

functionTEXT_LENGTH (LIST: in LIST_TYPE;
rmt4_NaME : in IDENTIFIER_TEXT)

Mum CkIS_POSITIVE;

functiOnTEXT_LENGTH (LIST: in LIST_TTPE; .,

ITEt4_NAMC : in TOREN_TTPE )
retNn3 CAIS_POSITIVE;

pmccdure GET_ITEbl_NAMS (LIST: in LIST_TYPE;
ITEM POSITION : in POSIT ION_COONT ;
NAME~ in out TOREN_ME) ;

hN3Cti0nPOSITION_BY_NAbtE (LXST: in LIST_TYPE;

ITzM_NAt4E: in lDENTIFIER_TEXT)
return POSIT ION_COONT ;

functionPOSITION_BY_NAblE (LIST: in LIST-TYPE;

ITEb_NAME: in TONEN_TTPE )—
m?tmm POSITION_CODNT ; —

package CAIS_LIST_ITEbt is

pmcedurc EXTSACT_VALUS (FSOM+LIST:

ITEM_POSITION
VALUE :

Procedure EXTRACT_V~UE (FROtd_LIST :

IT~_NM% :

VALVE :
procedure EXTSACT_vALUE (FROM_LIST:

ITEM NAME :

W&m- :
procedure REPLACE (IN_LIST:

ITEb_POSITION :

VALUE :
pmccdure REPLACE (IN_LIST:

ITEM NAME :

vALm- :
procedure REPLACE (IN_LIST:

ITEtd_NAME :

VALVE :
procedure INSERT (IN_LIST: in out

POSITION : in
VSLOE : in

prWCh331? INSERT (XN_LIST : in out
POSITION : in
NAUE; in

VALUE : iN
pmcedtwe INSERT (lN_LIST: in out

POSITION : in
;(4, NSME : in

VALUE : in

iN
‘: in

in out

h
in

in out
in

in

LIST_TYPE ;
POS ITION_COONT ;

LIST_TTFE) ;

LIST TTPE;

IDE~-IFIER TEXT;
LIST TYPE);

LIST-TTPE ;

TOW- TYPE;
in 03N LIST ‘~E) ;

in out LIST TYPE; -

in POSI~ION_COONT ;

in LIST_TTPE) ;

iN Out LIST_TTPE ;

in IDENTIFIER TEXT ;
in LIST_TYPE)Y

in out LIST-TYPE;

in TOEEN TYPE;

in LIST_-~E) ;

LIST_TTPE;

INSERT_COUNT;

LIST_TTPE) ;
LIST_TTPE;
INSERT_COWT ;
IDENTIFIER_TENT ;

LIST_TTPE) ;

LIST_TYPE;
INSERT_COONT ;

TOKEN_TTPE ;
LIST_TTPE) ;

fu13Cti0nPOSITION BY_VALuE

ILISTT in LIST TTPE;
“VALVS : in LIST~TYPE;

I 531

;:-
k. -T.. ..+- ._.._.

Downloaded from http://www.everyspec.com



.CAISSPECIFICA’iTON DOD.STD-1838
APPENDIXB

STAR2’_POSXTION: in POSI!PION_COUNT
END_POSITION : in POSITION_COVNT

relurn POSIT ION_COVNT;

end ‘CAIS_LIST:iT~;
,.

:= POSITIOW_COUNT ‘ FIRST;

:= POSITION_COUNT ‘LAST) ●

package “~IS_IDENTIFIEi_ITSbt is

.- .,-.. . . .
prOCeduW CoPY_T&EN (FRCSd_~REN: ~ TOREN_TYPE ;

TO_TOKEN : ~ Out” TOREN TYPE) ;
pr~edure CO~RT_TEXT_TO_T$XEN (IDENTIFIER: ~ IDENTIFIER TExT;

,, T&EN : in out TOREN_TYPEY;—
functionTxfi_FORM (TONEN: in TONXN_TYPrr)

IWWII. IDENTIrIER_TEXT;

functionIi_EQUW (TONEN1: in TONICN_TYPE;

TOREN2: in TORRN_TYPE)
return SOOLEAN;

prncedure lxl%ACT_VALuE, (FROM_LIST: iN

ITEM_POSITION : in,,
VALUE: in out

procedure EficT_VWti (rR@l_LIST: in

ITEM_NMiE : in
VALVE :, in out

procedure.EXTRACT_VAJJJE, (FRCM_LIST: iO

ITEM NAME : in

LIST_lYPE ;

POS ITION_COUNT ;

mmN_TYPE) ;
LIST_TYPE ;
IDEN’IIFIER_TEXT;

TQNEN_TYPE) ;
LIST_TYPE;

TONEN TYPE;
VAUE:

. .

p~edluw ~PLACE (IN_LIST :

ITEN POSITION:
-.w+uii :

p;clitiureiWPtiCE (IN_LIST :
.

ITEM NAME :
,.’ +AI,m-:

prO&ure .ssPucz (IN_LIST:

ITEtd_NAt4E:
. VALUE :

prrictiureINSERT (IN-LIST: iN

POSITION : iN
VALUE : in

p&dure INSERT (IN_LIsT: in
POSITION : in
NAME : in
VALUE : in

pruwd~ INSERT (IN-LIST: in
POSITION : iN
NANE: in
VALUE : in

out

Uut

out

mREN:YPJo ;
in Out LIST TYPE; -

in POSI~ION_COUNT ;
iN mK2EN_TYPE) ;
in out LIST-TkPE;

in IDENTIFIER_TEXT;
in TokkN_TYPE) ;
illOut LZS~_TYPE ;
in TONEN_TYPE ;
in mNEN:~E) ;
LIST_TYPE;

INSERT_COUNT ;

m~N_TXPE) ;
LIST ‘WE;
INSE~T_CODNT ;
IDENTIFIER_TEXT;

TOREN_TYPE) ;
LIST_TYPE;
INS fiRT_COUN7 ;

TOREN_TYPE ;

kk POSITION_BY_VALUE

~_TSPE) ;

(LIST: in.LIST TYPE;
VALDE : in T$NCEii_TYPE;

START_POSITION : in POSITION_CODNT :=
iND-pOS?,TION: in POSITION COUNT :=.-

return POtlITION_CO@T; .:

eqd CAIS_IDEtWIFIER_ITEM;

..

.,.,.,.

.
532

,. ...

. . ~,- -

POSITION-COUNT ‘FIRST;
POSITION_COv ‘LAST)

●

●

- . .—— .— —‘.

Downloaded from http://www.everyspec.com



DOD-STD-1838

APPENDIX B

CAIS SPECIFICATION

o

I

I

I

●

generic
type NOMSER iS range 0;

package CAIS_INTEGER_ITEb3 is

fUmtiOflTEXT_FOPM (INTEGER_VALOE: in

n?tum STRING;

tinctionEXTRACTED. VAL7JS (FROI._LIST:

_ER)

in LIST_’rrPE;
ITEM~POSITION: in POSI~lON_COONT)—

rdUrII NUMSER;
—

function EXTRACTED_VALUS (FRCM_LIST: in LIST_TYPE;
ITSbf_NAbtE: in IDENTIFIER_TEXT)

I@Wfl NOI@.ER;

functionENTRACTED_VALUE (FR&t_LIST: in LIST_TYPE;

ITEM NAMS : in TOREN_TYPE )——
return 3NJMBCR;

prOCdUre RsPLACE (IN_LIST:

IT32_POSITION :
VALUE :

prOWdU~ RRPIACE (IN_LIS’T:

ITIZM_NAME :

VALm :
prOCad~ PWPLACE (IN_LIST:

ITEN Nti :

Vuiii :

procedure INsERT (IN_LrST:

POSITION :

VALUS :
prOCdUraINSERT (IN_LIST:

POSITION :
RAMS:

I
VALUE :

prncedura INSERT (IN_LIST:

I POSITION:

NAME :

I VALUE:
tiNMiOIIPOSITION_BY_VX3JJE

(LIST :

VALUE :

in out

iN
in
in out

in

iN

iN
in out

in

in
in

—

iN Out LIST_TYPE ;
in PoSI’J!ION_COUNT;

h NoMSER) ;

iN O@ LIST_TYPE ;
iN IDENTITIER_TEXT;

in NDMSSR) ;

iN out LIST-TYPE;

in TOIWN_TYPE ;
in NUMSZR) ;

LIST_TYSE;

INSERT_CODNT ;
NUMBER) ;
LIST_TYPE;

xNSERT_COUNT :

IDENTIFIER_TEXT;
NDMSSR); .

LIST_TYPE;

INSERT_CODNT;

TOREN_TYPE ;
NDMSER) ;

in LIST_TYPE;

in NOMNIZR;

START_POSXTION: in POSIT ION_COONT := POSITION_COONT’ FIRST;
END_PoS ITION : in POSITION_COti : = POSITION_CO~f -T)

return POSIT ION_COONT ;

snd CAIS_INTEGER_ITEM;

gemwic
typa NOMBER is digits<>;

package C?kIS_FL.0AT_IT3tN is

fUIMiOn TEXT_FORM (FLOAT_VALVN: h NwSER)
return STRING ;

functionlWTRACTED_vALOS (rRW_LIST: in LIST_TYPE;
ITEN_POSXTION : in POSITION_COUNT)

WUm NU34SER;

fu@iOn EXTRACTED_VWUE (FR@I_LIST: in LIST_TYPE;

ITFd_NAMX : in IDENTIFIER_TEXT)

mtum NUMBER;

1. >..-, ___

533

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION DOD-STD-1838

APPENDIX B

fUiICtiOIIESTsACTED_vRLUS (FROM_LIST: in LXST_TYPE;

ITEt._NAW ; in TOKBN_TTPE )
return NOWSER;

procedure REPLACE (IN_LIST: in out LIST_TYPE;

ITStd_POSITION : in POSITION_COUNT ;

VALOB : il” NUMRER) ;

prwXdINe REPLACE ( IN_LIST: @ out LIST TYPE;
ITEbl_NANS : in IDE~-IVIER_TEXT ;

VALUE : ir” NOMSER) ;

procedure REPLACE (IN_LIST ; in out LIST_TYPE;

ITEM “NAME : in TORRN_TYPE ;
viwlE: ill NOMEER) ;

procedure INSERT (IN_L19T: in Out LIST_TYPE ;

POSITION : in lNSERT_COONT;

VALUE : in NUMSER) ;
prUcf2dUrPINSERT (IN_LIST’: in Out LIST_TYPE;

POSITION : in XNSERT COONT;

NSKS: in IDENTI~IER_TExT;

VALOR: iil NUMSER) ;
prUcf!dU~ INSERT (IN_LIST: @ out LIST_YPE;

POSITION : in INSERT_CONNT;

NANB: in TOREN_TSPE ;
VALOE : in NOMSER) ;

functionPOSITION BY_VALOE
(LIST;
VRLUE: ~~

START POSITION :

ENl_P~SI!CION :

IWtNm POSITION_COONT;

in LX ST_TYP E;
in NUBmER;

in POSITION COONT := POSITION_COONT’ FIRST;

in POSITION-COUNT := POSIT ION_COONT’ LRST)

end CM S_F~T_ITEMj .

packsge CAIS_STRING_ITEM is

fUnCtiOnEXT-CTED_vAIJJE (FRCU4_LIST: in LIST_TTPE;
ITEM_POSITION: in POSITION_COONT)

return STRING;
functiOnEXTRACTED_VALUE (?RCfd_LIST: in LIST TYPE;

ITEb_NANS : iN IDE~-I!rIER_TRXT)
IWtUm STRXNG;

functionEXTRRCTED_VALUE (FitCS._LIST: in LIST TYPE;
ITEbt_NAbllC: in TORE~_~E )

return STRING ;

procedure RSPLACE (IN_LIST: iN Out LIST_TYPIC;

ITEM_POSITION: in POS ITION_COUNT ;
VALOS : in STRING) ;

procedure FWPLACE (IN_LIST: in Out LIST TYPE;

ITEtd_NRNB : in IDEN+IFIER_TExT ;
VALUE: STRINGj ; ?

prnwhwe REPLACE (IN_LIST: ‘~ nut LIST_TYPlt;

ITR24_NRblE: in TOREN_TTPE ;

VALOE :. h STRING) ;
prOCed~ INSERT (IN_LIST: in out LZST_~E;

POSXTION : in lNSERT COUNT;

VALOE : in STRINGi;
prOCedU~ INSERT (IN_LIST : ih otttLIST_TYPE ;

.

Downloaded from http://www.everyspec.com



I .

I

10

DOD-STD- 1838 CAIS SPECIFICATION

APPENDIX B

POSITION : in
NAME: in
VALUE :

~

INSERT COUNT;

IDENTI~IER TEXT;

STRING) ; -

1 prOCHJum INSERT (IN_LIST: in out
POSITION : in

NAME: in
.. . VALUE,: iN.

functionPOSITION_BY _VALUB

LIST_TYPE;

INSERT_COUNT ;

TOKEN TYPE;

STRING) ;

(LIST~ “ in LIST TYPE;
VALUE : in.STRIiiG;

START_POSITION: in POSITION COUNT := POSIT ION_COUNT’ FIRST;
ENl_POSITION : in POSITION-COUNT :. POSITION COUNT’ LAST)

return POSITION_COUNT;

end CAIS_STRIN”G_ITSbl;

mivate
typs LIST_TYPE is (IMPLRbLENTA!rION_DEFZNED) ;
-- This type should be de fin,ed by the iJUplEuUenter.

type TONSN_TYPE is (IMP LEMENTATION_DEF INED );

-- This type should be defined by the implementer.

ENPTY LIST: amstant LIST_TYPE := IMPLSblENTATION_DEF INED ;

-- Th~a constant should be defined by the implementer.

CAIS_LIST_bllUiS&EMENT ;

with CAIS STANDARD;

with CAIS~LIST_blANAGEbfSNT ;

package CAIS_DErINITIONS is

me CAIS_STANDm;

type NODE TYPE is limitedprivate;

type NODE_KIND is (FILE, STRUCTUW&, PROCESS) ;

typa INTENT_SPECIFICATION is

(NO_ACCESS, RSAD, NRITE, APPEND, SIZA_ATTRIBUTES , NRITE_ATTRIBUTES ,

APPEND_ATTRIBUTES , RSAD_RSLATIONSHIPS , NRITE_RSLATIONSHIPS ,

APPEND_NELATIONSHIPS , READ_CONTENTS , NRITE_CONTENTS ,
APPEND_CONTIENTS , CONTROL , EXECOTE , EXCLUS IVE_RSAD ,

EXCLUSIVE_NRITE , EXCLUSIVE_APPEND , EXCLUSIVI_READ_ATTRIBOTES ,

EXCLUSIVE_NRITE_ATTRIBUTES , EXCLUS IVE_APPEND_ATTRIBUTES ,

EXCLUSIVE_READ_RELATIONSHIPS , ExCLUSIVE_NRITE_RSLATIONSHIPS ,

EXCLUSIVE_APPENL_SELATIONSNIPS , llXCLUSIVE_READ_CONTENTS ,
EXCLUSIVE_WRITE_CONTENTS , EXCLUSIVE_APPENl_CONTENTS ,

EXCLUSIVE_CONTROL) ;

type INTENT_ARRAY is’array ‘(CAIS_POSITIVN range <>) of INTENT_SPECIFICATION;

subtype PATNNAME is STRING;
subtyps REXATIONSHIP_NXY is STRING;
subtype PcsLATION_NAtdE is STRING;

subtype ATTRIBUTE_tiAbNC is STRING;

! 535

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION DOD-STD- 1838

APPENDIX B

subtype XCTRIBUTS_LIST is CAIS_LIST MANAGSM3ZNT. LIST TYPE;

subtype DISCRETIONARY_ACCESS LIST is CAIS_LIST~btANAGEMENT. LIST~TYPE;

subtype tWDATORY_ACCESS_L IS~ is CAIS_LIST_blANAGEMENT. LIST TYPE;

CUSRENT USER: CUnSta13tPATSNA14E := “‘CURRENT_USER,, ;
CKIRRENT~NODE : constantPATSNAMS := “‘CURRENT_NODE “;
CURREN’_PRCCESS : CUnStSIItPATNNAMS ;=!,:!!.

LATEST_REY : constantSXLATIONSHIP NEY := ,,#,,;

DEFAULT_RSLATION: mn5taNt FCSLATION_N~- .:= ,!D~, !;

LONG DELAY : COn.$tmtCAIS_DUPATION := CAI S_DURATION ‘LAST ;

ACCESS_VIOLATION :

ATTRIBUTE_ERROR :

DEVICE_ERROR :
EXISTING NODE ERROR :

INTENT_V~OLAT?ON :

ITERATOR_ERROR :

LOCK_ERROR :
NAME ERROR:
NODE-XIND_ERROR :

PATF&b5E SYNTAX ERROR:

PREDEFINiiD_ATTR?BUTE_ERROR :
PREDEFINED_RELATION_ERROR:

RELATIONSF!IP_ERROR:
SECURITY_VIOLATION :

STATUS_ERROR :

SYNTAX_ERROR :
USE_ERROR :

exception;

excerdion:

exception;

exceDtiOn;“

exception;

cxcevtion;

exception;

exception;
exception;

exception;

exception;
exception;

private

type NODE_TYPE is (IblPLmNTATION_DEFINED) ;.’
-- This type should be defined by the implementer.

end CAIS DEFINITIONS;

with CAI S_STANDAPD ;

package CAI S_CALENDAR is

use CAIS_STANDARD;

type TIME is private; ‘

subtype YEM_NUMBER is CAIS_INTEGER range 1901 .. 2099;
subtypa bK)WH_NDMBER is CAIS_INTEGER range 1 .. 12;
subtype DAY_NOMBER ia CfiIs_INTEGER range 1 .. 31;
subtype DAY_DUSATION iS CAIS_DURATION range 0.0 .. 86_400. O;

TINE_ERROR: exceptiun;

functionCLOCK
,,

Mum TIME;

functionYEAR (DATE: in TIMS)

return YEAR NOMSER;
functionMONTH CDATE: in TIME)

returnbmmH_54m.tEzER;
fuNctionDAY (DATE: in TIME)

●

●

●
536

Downloaded from http://www.everyspec.com



DOD-STD-1838 CMS SPECIFICATION

●

I

I

I

I

I

i

I

‘o

‘o

L

APPENDIXB

returnDAY_HOMSER;

fiInCtkInSECONDS (DATE: in TIMS)

returnDAY_DURATION;

procedure SPLIT (DATE: in TIME;
YEAR: Out YEAS_HOblSER;

WXTH : Out MONTH_NOMSER ;
DAY : Out DAY_NDMSER;

SZCONDS : Out DAY_DORATION) ;

functionTIME-OF (YSMt: in YSAR_NUMSltR;

WNTH : in KmTH NOMSER;

DAY : in DAY_Nijb!SER;

SECONDS: in DAY DUSATION)

return mms ;
fUIICti0t3“’+” (LF,~T:

RIGHT :

returnTrbts;

function “+“ (LEE’T:
RIGHT :

return TIMS;

function“-” (LEFT:

RIGHT :

IWIU171 TItdE;

function“-” (LErT:
RIGHT :

in TIME;

in CAIS_DURATION)

in CAI S_DDRATION;
in TIME)

in TIbm;

in CAIS_DUSATION)

iN TIMS;
in TIMS)

returnCAIS_DDSATIoN;
function“<” (LWT: in TIME;

RIGHT: in TINX)

return SOOLCAN;
function‘<=” (LXrT: in TIME;

RIGNT : in TINE)

return SOOLSAN ;

function“>” (LEFT: in TIbtS;
RIGHT: in TZbtZ)

returnSOoLSAH;
functim “x” (LrirT: in TIM!%;

RIGHT: in TIMS)

Mum SOOLEAH;

private

type TIMS is (IMPLEMENTATION DEWINSD) ;

-- This type should be def~ned by ,the implementer.
end CAXS_CALIWOZUt{

with CAIS_STANDASD ;
with CAIS_DEP’INITIONS ;

with CAIS_CALENDAR;
with CAIS_LIST_MANAGSMENT ;

package CAIS_NODE_t&NAGEbtSNT is

use CM s_STANDriRli;
use CAIS_DEFINITIONS ;

use CAI S_CALENDAR;
use CAIS_LIST_bfru4AGStdENT;

.

537

Downloaded from http://www.everyspec.com



.

CAM SPECIFICATION DOD-STD-1838
\

APPENDIX B

prOcedurc OREN (NODE: in out NODE_TYPE;

NAME : in PATNNAME ;
INTENT : in INTENT_J@RAY;

l!T.btE_LRdIT: iN CAIS_DUPATION :. LONG_DJ3LAY);
procedure OPEN (NODE: iN out NODE TYPE;

BASE : in NODE~TYPE ;

NSY : h sELATIONSHIP_NEY;

NELATION: in NELATION_NAME := DEFAULT_PJtLATION;

INTENT: in INTENT_ASRAY;

TXME_LIIdIT: iN CAIS_DURATION := LONG_DELAY);
procedure OPEN (NoD~: in Out NODE ‘TYPE;

NAME : iN PATHihblE ;

INTENT : in INTENT_SPECIFICATION := sEAD;

TIME LIMIT : in CAIS_DIJRATION := LONG DELAY) ;
pmcedurc OPEN (NODE~ iN Out NODE_TYPE ;

EASE : in NODE TYPE ;

NEY : iN RELA~IONSKIP KEY;

RSLATION : in SELATION_N=- := DEFAuLT PJJ.ATION;

INTENT : in INTENT_SPECIFICATION := ‘~;

TIbS_LIMIT : iN CAIS_DORATION := LONG_DELAY) ;
procedure CLOSE (NODE: iN out NODE_TYPE) ;

pMCC2&I~ CHANGE_INTENT (NODE: iN out NODE_TYPE ;
INTENT : iN INTENT ASRAY ;
TIME_LIblIT : in CAIS_D-~TION := LONG_DELAY) ;

prOcedure CiiANGE_INTENT (NODE: in out NODE_TYPE ;
INTENT : in INTENT_SPECIFICATION;

TIME_LIbfIT : in CAIS_DUPATION := LONG_DELAY) ;
fU33Cti0nIS_OPEN (NODE: in NODE_TYPE)

IWum SOOLSAN;
fUflCtiOnINTENT (NODE: in NODE_TYPE)

return INTENT_ARBAY; ●
ftmctionKIND_Or_NODE (NODE: in NODE_TYPE)

return,NODE KIND;

fUnCtiOflOPEN_F~LE_HANDLE_COONT (NODE: in NODE_TYPEY
return CAIS_NATOSAL;

functionPRIMARY_NANS (NoDE: in NODPJ_TYPE)

return PATHNANE;
functionPRIMARY_KEY (NODE: in NODE_TYPE)

return RELATIONSHIP NSY ;

fUflCtiOnPRIMARY_RELATI&? (NODE: in NODE_TYPE)

I@Um SLLATION_NAblE ;
timctionPATH-KEY (NODE: in NODE_TYPE)

return SELATIONSHIP_KEY;
fiN3CtionPATH_RsLATION (NODE: in NODE_TYPE)

Mum RELATION_NANE;
tlmctionBASE_PATN (NAblE: in PATNNAME)

return PATNNANE:
functionLAST-RELATION (NAME: in PATIiNAME)

I’f?tUmRELATION_NAblE;
finCtionLAST-RSY (NANS: in PATNNAMS)

return SELAT IONSHIP_NSY ;
fuNctionIS_OBTAIWLE (NODE: in NODIG_TYPE)

return Bx30LEAN:
fUIICtionIS_OBTAINASLE (NANE: b PATHNANE)

n?tum BOOLEAN;
liN3CtiuflIS_OBTAINASLII (sASE: ,.iN NODJE_TYPE ;

KEY : iN SX.LATIONSHIP_KEY ; ●
,1 . . . “538 :

,, ,,

Downloaded from http://www.everyspec.com



‘o

DOD-STD-1838

.APPENDIX B

RELATION: ‘in RELA!TION_NAME :=
return BOOLEAS;

tknction lS_SAbfE (NODE1: in NODE_TYPE;
NODE2: in NODE TYFE),

CAIS SPECIFICATION

DEFAULTjREL&ON)

Mum AOOLEAW;

hNICtiOnIS_SAME (NANE 1: in PATNNAMS;
NAMw2: in PATNWANE)

return SOOLEXW;
fhnCtiOn INDEX (NODE: in NODE TYPE;

MODULO : in CAIS-POSITIW
returnCAI S_NATURAL:

procedure OPEN_PARENT (PARENT: in out NODE_TYPE;

NODE : in NODE_TYPE ;

INTENT : in IWTE-~_AWY ;

TINE_LIblIT : iw CAIS_DURATION := LONG_DELAY) ;

prncedure OPEN PASINT (PAsEWT: in out NODE_TYPE ;

procedure COPY_NODE

procedure COPY_NODE

prnmdure COPY_T3tEE

prncedure COPY_TRJZE

NODE: in NODE~TYPE ;

INTENT : in IWTEW’l_SPECIFICATION := READ;

TIblS_LIMIT : in U&S_DtiTION := LONG_DELAY) :

(FROM: iw NODE_TYPE ;

!c_AASE : in NODE_llTE ;

To_ssY : in SX3ATIONSHIP_SEY;
TO_RELATION : in RELATION_NAb5 := DEFAULT_RELATION) ;

(FROM : iN NODE_TYPE ;
TO: in PATNWAMS) ;

(FROM: in NODE_TYPE ; -
TO_SASE : iw NODE_TYPE ;

To_EsY : in SELATZONSHIP_HEY:

TO_RJt~TION : iw RELATION_NANE := DEFAULT_RELATION) ;
(FROM : iw NODS_TYPE ;
To: in PATWNAWE) ;

prmerhwe XENAMS (NODE: in HODE_TYPE ;
NSW_BASE : in NODE_TYPE ;
NEW XEY : in P.ELATIONSIiIP_SXY;

NSW~RELATION : in RELATION_NAWE := DEFANLT_REmTroN) ;
procedure ~NAMS (NODE: in NODE_TYPE ;

WSW_NAWE : in PA.TNNAME);

prncedure DELETE_NODE (NODE: in out NODE_TYPE ;
TIME LIMIT : in CAIS_DUSATION := LONG_DELAY) ;

procedure DELETE_NODE (NAbtE~ in PATNNAME) ;

procedure DELETE_TSX.E (NODE: h out NODE_TYPE) ;
procedure DELETE_TRSE (NANE: in PA’X+HAME) ;

prncedure CREATE_SECOWDARY_P.ELATIONSHIP
(TARGET_NODE: in NODE_TYPE;

SOURCE_SASE : in NODE_TYP E;
NEW WEY: in RELATIONSHIP_N8Y;
WEW~RELATION: in PJILATION NAME := DEFAULT_SXLATION:

INSERITASLE : in SOOLEAS~= FALSE) ;

procedure CREATE_SECOWDARY_P.EtiTIONSHIP
(T~GET_NODE:. in NODE_TYPE;

NSW_NAME : in PATHNANS;

INHERITABLE: in SOOLEM :. FALSE) ;

procedure DELETE_SECOWDARY_RSLATIONSHIP

(SASE : in NODE_TYPE;
KEY : h RELATIONSHIP_XEY;
RSLATION: in RELATION_NANE := DEFAULT_SJXATION) ;

Procedure DELETE_SECONDAAY_RELATIONSHIP (NAME : in PATNNAME) ;

539

Downloaded from http://www.everyspec.com



CAI$ SPECIFICATION DOD-STD-1838

APPENDIX B

prOCt?dumSET_INHSRITF&CE
(SASE : in NODE_TYPE;

KEY: in RELATIONSHIP KEY;

RELATION : in REIATION_N~- := DEFAULT_~LATION;

INHERITABLE: in ROOLEAN) ;
prOCdura SET_INHZRIT~CE (NAME: in PATNNAME ;

fUnCtiOnIS_INHERITZ@LE

return BOOLEAN;

functionIS_INsERITASLE

return EOOLEAN;

INHERITABLE : iN EOOLEAN) ;

(SAEE: in NODE_YPE;
KEY : in RELAT IONSSiIP_KJ!Y;
RELATION: in ~LATION_NAME :. DEP’AULT_RSLATIoN)

(NAME: in PATHNANE)

type NODE_ITEPAToR is limitedprivate;

subtype RELATIONSHIP_KEY_PATTERN is

subtype AKLATION_NAME_PATTERN ia

type RELATIoNSHIP KIND is (PR&AkY,

RELATIONSHIP IC3Y:

KZLATION_NMii;

SECONDARY, SOTH) ;

type NODE_KIND_A&AY is irray (aIS_NATORAL range <> j

~~of NODE_KIND ;

procedure CRZATE_ITEPATOR

(ITIWATOR : in out

NODE : in

KIND : in

KEY : in

RE~TION : in
KIND_oF RELATION: in

procedure CREi?E_ITERATOR

(iTEKAtiR: in 0U4

NAbm:
,..

in

XIND : in

KEY : in

RELATION : in

-,

NODE_ITE~TOR; ‘.

NODE_TYPE ;

NODE_XXIm&ARPAY := (EILE, STRUCTURAL);
KRLATIONSHIP_KEY PATTERN := ~● ,,;

RELATION_NAbtE_PA~TEKN “:= DEFAULT_PMATrON;
RJI@TIONSHIP_KIiJD :=.PRIMARY) ; o

NODE Ii&ToR;
PATH%ME :

NODE_KIti_~Y := (P’ILE, STRUCTURAL) ;

RE~TION?HIPjKEY PATTERN := ,F● 01;
RELATION_NAUE_PA~TES14 := DEFAULT_AELATION;

KIJ’lDOF_RSLATION: in REIATIONSHIP_KIND := PRIMARY) ;
functionb&Z (ITEmTOR: in NODE ITEiATOR). . .

rdu~ EOOLEAN;

fUnCtiOn,APPROXIbtATE_SIZlc (ITERATO,R: in NODE_ITERATOR)

return CAIS_NATUPAL ;
pWXdure GET_NENT. (ITERATOR : in out NODE_ITIESATOR;

NEXT-NODE: in out NODE_TYPE :: .,.,, INTE~ : “h INTENT_&tAY;

T~_LIMIT : in . CAIS_DURATION := LONG DZLAY) ;
procedure GET_HE~ (ITp.~TOR:

-,
iN Out NODE_ITESATOR;

NEXT_NODlt i in Out NODE_TYPIE ;

INTENT : iN It$TENT_SPECIWATION := NO_ACCESS ;
TIME_LIbtIT : iN CAIS_DURiTION := LONG_DELAY) ;

procedure SKIP_NGXT (1.TERATOR: @ Out NODG_ITEkATQR) ;

fWiCtiOnWXT NANE,,(ITlrali~R: ig,N$IDE_ITERATOR)
fihim iA-TIiiiAM;’:’ : ~

procedure DELETE_ITERATQR (ITERA&R: in out’‘NODE_I’TlmwZOR) ;

pMctiure SET_CUKRENT_NODE (NODE: in NODE_~E ;
TIME LI&!IT: in CAIS_D~TION := LONG_DEULY) ;

prOcedure SET_CURPJZ~_NODE (N~~ iiiPATNNAME ;
TIME_LIMIT : h“ CAIS_DUSATION := LONG_DELAY) ; ●

. .

540

Downloaded from http://www.everyspec.com



. .

/ DOD-S~-1838 CAIS SPECIFICATION
APPENDIX B

10
prOCedtUt?GET_CURRENT_NODE

(NODFC in out NODE_TTPE ;
INTENT: in INTENT ARRAY;

TIME LIMIT: in CAIS_D-~TION := LONG_D!ZLAY) ;

pmCedUIf GET_CORRBNT_NO~E ,...

(NODE : in out NODE_TYPE;

INTENT : in INTENT_SPECIFICATION := NO ACCESS;

TIME LIMIT: .in CAIS_DVRATION := LONG_DELA=) ;

functionTIbtE_CSXATED (N~DE: in NODE_TYPE)

rctum CAIS_CALENDAR. TIME;

fimCtiOnTLME_CREXiTED (NAMm: in PATHNAMB)

return CAIS_CALmJDAR. TIME;

fuIICtiOnTIbiE_RELATIONSHIP_NRITTEN (NODE: in NODE_TYPE)

return CAIS_CALENDAR. TIME;

hmction TINE_RBIATIONSIIIP_NRITTEN (NANB: in PATNNAMB)
rctum CAIS_CALENDAR. TIME;

fundk)n TIt4E_CONTENTS_NRITTEN (NODE: in NODE_TYPS.)
return CAI S_CALENDAR. TIMP,;

functionTIME CONTENTS NRITTEN (NAME: in PATNNAME)

Mum CiiS_CALEND-M .TIME ;

fiInCtiOnTIME ATTRIBVTE NRITTEN

return CAIS_CIUENDAR .TIKE ;
functionTINB_ATTRIBVTE_NRITTEN

ralum CAIS -ENDAR. TIMS;

private

(NODE: in NOD.S_TYPE)

(NAME: in PATHNAMS)

typa NODE_ITERATOR is (IbtPLEMENTATION_DEFINED) ;

●
-- This type should be defined by the implementer.

end CAIS_NODtt_tdANAGEMENT ;

with CAIS_STANDARD ;

with CAIS_DEFINITIONS ; ,.
with CAIS_LIST_MANAGEMENT ;

package’CAIS_ATTRIBVTE_blANAGBMENT is

.,

●

,.
use CAIS_STANDAPD ;

usc CAIS_D.EFINITIONS ; . .
use CAIS_LIST_blANAGEbDINT ;

procedure CREATE_NODE_ATTRIBVTE (NODE : in NODE TYPE;

ATTRIBUTE : iN ATTR~B~E_NAME ;

vALNt : iN LIST_TYPE) ;

&JCWhNY CREATE_NODE_ATTRI&TE (NAME: in PATNNM ;
ATTRIBUTE : in ATTRIBUTE_NAME ;

VALVE : in LIST TYPE) ;

. . .

‘procedureCNEATE_PATH_ATTRIBUTE
-.

(SABE : in NODE TYPE;

REY : in RELA~IONSHIP_RNY;

RELATION: in REIATION NAME := DEFADLT sXLATION;

ATTRIBUTE: in ATTRIBUT~_NAbfF.;

VALUB : in LIST_TYPE) ;

procedure CREATE_PAT?l_ATTklIBUTE (NAME : in PATNNAMI ;
ATTRIBOTE : in ATTRIBVTE NAME;
W&us, : in LIST_TYPEY;

prOCedureDELETE_NODE_ATTRIBUTE (NODE: in NODE_TTPlt ;

54I

Downloaded from http://www.everyspec.com



.-

-

.—

.,

.,. (, ... .

C~S SPECIFICATION “ DOD-.TID.I838
,,. .. AppENDIX B

ATTRIBtiE : in ATTRIBDTE_NAME );

prOCedUre DELETE_NODE_ATTRIBUTE

prOCedUm DELETE_PATH_ATTRIBOTE

(BASE:

REY:.

RELATION :

(NAMs : iN PATHNAME ;
ATTRISUTE : in ATTRIB~E_NANB );

in NODE TYPE;

.. in RE@ONSHIP REY;

in RELATION NM- := DEFAOLT RELATION:
ATTRIBOTE : in ATTRIBUT~_NAt6i ) ;

Pmedure DELETE PATH ATTRISOTE (NAME: in PATHNANE :--

procedure SET_NODE_ATTRIBUTE

,.

prOCedUre SET_NODE_ATTRIBUTE

... .,’

pKI02&Nw SET_PATH_ATTRIBUTE

,(BASE:.
NBY:

kgLATION:

“ATTRIBUTE : iN ATTRIBUTE_NAME );

(NODE : iN NODE TYPE;
ATTRIBUTE : in ATTR=BuTE_N?+fS ;

vMm?, : illLIST_TYPE) ;
(NAME : iN PATHNAME ;
ATTRIBOTE : in ATTRIBuTE_NANE ;

VALUE : in LIST_TYPE) ;

in.NODE TYPE; 4.

hI ,RXLA~IONSHIP_REY;

in .m”LIiTION NAME :. DEFAOLT RELATION;

,” +T*RIB~E: in ATTRIBIJT~_NANE;
VALUS : in LIST TYPE) ;

procedure SET_PATH_ATTRIBoTE (NAM?: - iA PATNNAMB ;
ATTRISUT~ : iN ATTRIBuTE NANB ;
VALUE : @ LIST_TYPE~;

prOCedure GxT_NODE_ATTRIBUTE (NODE:” . in NODE_TYPE ;
ATTRIBUTE : @

..., ATTRIBUTE_NAME ;
.’

VALUE : iN Out ‘LIST_TYPE) ;“
pMCedUre GET_NODE_A~TRIBOTE (NAb@:’ in PATNNANE ;

... ..,. , ,“,.. ATTRISOTE : in . ATTRIB~E_NAME ;
VALUE : k Out LIST_TYPE) ;

procedure GET_PATH_ATTRIBUTE ‘.: ~ ‘

,,:, (sABE: ‘ ti- NODE TYPE ;

KEY: in tiUZIONSHIP._REY;
.,, ....... tiLATION! ‘‘in’ REL&TION_NAME := DEFA~T_RELATION:

‘ATTRIBUTE: “in . ATTRIBUTE_NAblE ;
. vALt@:” in out LIST=TYPE) ;

procedure GET_PATH_Ai’TRI?WE (N+.fE::‘ ~, PATHN~ ;
. ATTRIBOTE : in : ATTRIBOTE_NAbtE ;

,..,.,
“ kams: ~ Out LISTrTYPE) ;,<.

type ATTRIBUTE_ITERATOR
“.
IS limited.private~

subtype ATTRIBOTE_NANE_PATTERN is STRING;

procedure c&TE_NoDE_ATT&BoTE_ITEPAToR
( ITERATOR,: in’out ATTRIBUTE_ITERATOR;
NODE: in NODE_TYPE ;
PATTERN: in ATTRIBUTE NAME PATTERN := ,,● ,,);

pMCt!dUR CREATE_NODE “ATTRIBoTE ITEtiTOR ‘- --
.(ITE~TOR :% out ATTRIBUTE_ITEPATOR;,.,...,
NAb@:. in PATNNAME ;
PATTBsN:, in ATTRIBUTE NAME PATTEPX := !,● ,,);

pmedure CREATE_PATi_ATTRIBOTE ITEAATOR - -

(ITERATOR : G out ATTRIBIJkE_ITERAToR;

BABE: in NODE_TYPE ;
KEY: ill RELATIONSHIP_REY;

.,,

S42

Downloaded from http://www.everyspec.com



. . ,.

DOD-STD- 1838 CAIS SPECIFICATION
APPENDIX B

RELATION: in RELATION NAME :. DEFAVLT_RELATION;

PATTERN: in ATTRIBUTE NAblE PATTERN := ,,* ,,);
prucedure CrCGATE_PATH ATTRIBUTE. ITERATOR - -—

(rTERATOR : ii Out ATTRIBVTE_ITEBATOR;

NAME: in PATHNAME ;

PATTERN: in ATTRIBVTE NAME PATTERN := ,,●,,);

fUNCtiOIIMOR3! (ITERATOR: in ATTRXBUTC_ITERATOR)- -

IWhIrn BOOLEAN;

fUnCtiOnAPPROXIblATE_SIZE (ITERATOR: in ATTRIBUTE_ITESATOR)

mtum” CAIS_NATURM,;
function NS~_NAME (ITERATOR: in ATTRISDTE_ITERATOR)

I?turn ATTRIBOTE_NAME ;
promdurc GET_NExT_VALoE (ITERATOR: in out ATTRIBuTE_ITERAToR;

VALVB : iN Out LIST_TYPE) ;

procedure SKIP_NExT (ITERATOR: in “ATTRIB~E_ITEsAw.jR) ;

prOCPdure DELETE_ITEBATOR .(ITEBATOR: iN out ATTRIBUTE_ITERATOR) ;

private

type ATTRIBOTE_ITERATOR is (IbtPLEMENTATION_DEFINED) ;

-- This type should be defined by the implementer.

md CAIS_ATTRIBUTE_btANAGiF,bD3NT;

with CAIS_DEFINITIONS ;

with CAIS_LIST_MANAGFA4ENT ;

package CAIS_ACCESS_CO~ROL_t.tANAGEblENT is

use *IS_DEFINITIONS;

subtype GRANT_VALOIJ, is CAIS_LIST_blANAGEt4ENT .LIST_TYPE ;

subtype ACCESS_RIGHTS is STRING; ‘ ‘

functionALL_RIGHTS
rctum DISCRETIONARY ACCESS .LIS”T;

procedure

procedure

prucedure

pmcedurc

pmcedurc

SET_GSANTED_RI&TS (N6DE: in NODZ_TYPE;

GROUP_NODE : in NODE TYPE;

GRANT : in GU-_VALUZ );

SET_GBANTED_RIGIiTS (NAME: in PATHNANE ;
GROVP_NAME : in PATNtiAKS ;

<., GRANT : iN GBANT_VALVE );
DELETE_GPJ#?’TED RIGHTS (NODE “: in NODE_TYP E ;

GROUP_N$3DE : iN NODE_’fYPE) ;
DELETE_GPWTED_RIGHTS (NAME : -~ in PATNN~ ;

., GROOP_NANE: ~ PATNNAKS );

GET_GNANTED_RIGiiTS (NODE: in NODE TYPE ;

GROIJP_NODE : in NODE~TYPE ;

,GNANT : ; h out ‘G__VALVE );
GET GRANTED RIGHTS (NAI& : in PATHNAME :

fUnCtiOnIS_APPROVND

IWNrrl BOOLEAN;

fimctionIS_APPROVED

rchlm ~LBAN ;

GROUP_NAME: in PATHNAME j
G=: in out GRANT_VALUE );

(OBhCT_NODE : iN NODE TYPE; ,,

ACCESS_RIGHT: iO ACCE~S_RIGHTS )

(OBJECT_NAME : iN PATHNANE ;

ACCESS-RIGHT: in ACCESS_RIGHTS )

543

_._.

Downloaded from http://www.everyspec.com



.—.— ,

CAIS SPECIFICATION DOD-STD- 1838

APPENDIX B

procedure’AbOPT_ROLE (GROti_NODE: iN NODE_TYPE;
REY : in RELATIONSHIP_REY := LATEST RSY;

INHERITABLE : iN ~LBAN := TRUE) ;
procedure ADOPT_~LE (GROUP_NAMS: in PATNNAME;

KEY : illRZUTIONSHIP_REY := LATEST_RBY;
INHERITABLE : iN BOOLEAN := TRUE) ;

procedure UNADOPT_ROLE (NEY: iN RELATIONSHIP_REY) ;

end CAIS_ACCESS_CONTROL_MANAGEMENT ;

—

with CAIS_DE~INITIONS ;
with CAIS AcCESS_CONTROL_4ANAGEbmNT ;

with CAIS-LIST_~AG.EWNT ;

packsge ~-IS_STRUCTURAL_NODE_blANAGEblSNT is

use CAIS_DEr INITIONS ;

use CAIS_LIST_MANAGEb5ENT;

procedure CRBATE_NODE
(NODE : in Out NODE_TYPE;

WE: in NODE_TYPE ;
REY : in RXLATIONSHIP_NEY := LATEST_REY;
RELATION : in RELATION_NAblE := DEFAULT_RELATION ;
INTENT : in INTENT_ARRAY := (l=>NRITE) .;

ATTRIBUTES : in ATTRIBUTE_LIST := ~TY_LIST;
DISCRETIONtUIY_ACCESS; in DISCRETIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROIi_btANAGEMENT .ALL_RIGHTS ;
MANDATORY_ACCESS : il. MANDATORY_ACCESS_LIST := EblPTY_LIST) ;

procedure CREATE_NODE ~..~~ ,. ●
(NODE: in Out NODE_tiE ;
NAME : in PA”TNNAME ;
INTENT : in INTENT_ARRAY := (1.>NRITE) ;
ATTRIBUTES : in ATTRIBUT_LIST := BMPTY_LIST;
DISCRSTIONARY_ACCESS: in DISCRETIONAIiY_ACCESS_LIST :=

CJ41S_ACCESS_COwROL_MiNAGEMENT UL_RIGHTS ;
btANDATORY_ACCESi : in 14ANDATOF$Y_ACCESS_LIST := EMPTY_LIST) ;

procedure CREATE_NODE

(BABE : in NODE TYPE;

REY : iN RELA~IoNSHIP_REY := LATEST_~Y ;
S3LATION : in RELATION_NAME,, := DEFAULT_RELATION;

INTENT : in INTENT ASSAY :=’ (l=M?RITE) ;
ATTRIBUTES : in ATTRIB-WE_LIST := SMPTY LIST;

DISCRETIONARY_ACCESS : iN DISC~”TIONARY_ACCE9 S_LI~T :=

wIS_ACCESS_CONTROL_blANAGRMENT .ALL RIGHTS;
bfANDATORY_ACCESS : ‘in MANDATORY_ACCESS_LIST :. SblPTY_LIS~j ;

procedure CREATE_NOD6 .,,,

(NAME : in PATHNAME;
INTENT: . in INTSNT_ARRAY := (l+NN.TTE) ;
ATTRIBUTES : iN ATTRIBuTE_LIST := ENPTY_LIST ; “
DISCRETIONfiY_ACCESS : in DISCP.KTIONARY_ACCESS_LIST :=

CAIS ACCESS_CONTROL_MANi@blENT .ALL RIGHTS ;
btMDATORY_ACCESS : in NANDihORY_ACCESS_LIST := St4PTY_LISy) ;

end CAIS_STRUC~_NODE_MANAGBbfSNT ;

544

LA . ,.

Downloaded from http://www.everyspec.com



DOD-STD-1838,

APPENDIX B

with CAIS_DEFINITIONS;
with CAIS_LIST_tdANAGEbtENT ;

packsge ~IS_P~ESS_DEFINITIONS is “.
..

.,,

CAM SPECIFICATION

use CAIS_DEFINITIONS j ,..

type PROC.SSS_STATUS_KIND is (@Y, SUSPENDED , ASORTED , TEPAUNA’SED) ;
,. ..

subtypi NSSULTS_LIST is CAIS_LIST_bYANAGEMENT .LIST_TYPE ;
subtype RSSULTS_STRING is STRING;
subtype PARANETER_LIST is CAIS_LIS.T_MANAGRMSNT. LIST_TYPE;

KOOT_PKCCESS : CUmtmt PATNNAME := ,,,CU~~ JoB ,!”;
STANDASD_INPUT : cumtimt PATNNAME := “vSTN/D~-_INPUTq, ;

STANDM@_OtrrPtrr: COf15tSNtPATNNAME :. ,,,ST~l&u OmP~f, ;
STANDAND_ESROR : constsnteATriNrws := “‘STmASD-ERROR *,;

EXECUTASU IbYAGE_ERROR : exception;

end CAIS_PROC15SS_DErINITIONS;

with CAIS_STAlm~ ;
with CAIS_CALE14tMR ;

with CAIS_DErINITIONS ;

with CAIS_LIST_h4ANAGENENT ;
with CAIS_PACCESS_DEF INITIONS ;

with CAIS_ACCESS_CONTR6L_bWLNAGSbkNT ;

pWkSge CAIS_PROCESS_MANAGRMENT k

use CAIS_STANDX@D ;
,.. ,

U5e CAIS_DIEFINITIONS ;

U* CAIS_LIST_blMAGEMSNT ;
use CAIS_PROCESS_DEr INITIONS;

procsdure SPxON_PROCESS

(NODE :
rILE_NODE :

INTENT :

INPUT_PAPAMETERS :
KICY:
KELATION :

DISCRSTIONARY_ACCESS :

MANDATORY_ACCESS :
ATTRISWES :

INPUT_FILE :

OUTPUT_FILE :
ERROR_FILE :
ENVIRONtdSNT NODE:

prOcedumSPAW_~ROCESS

(NODE :

~ILE_NODE :
INTENT :

INPUT_PAPAbtSTERS :
KEY :

in out NODE_lTPE;

in NODE_TYPE ;

in INTSNT -Y;

in PANJME?i?R_LIST := SbtPTY_LIST ;

in RELATIONSHIP_KEY := LATEST_RSY;

in RSLATION_NAME := DEFAULT_RELATION ;

in DISCSXTIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_tdANAGEMENT .AL_RIGHTS ;

in MANDATORY_ACCESS_LIST := EMP~_LIST;

in ATTRIBUTE LIST := ~TY LIST;

in PATNNAbfS ~= STANDARD_I@-UT ;

in PATI#WtE := STAND-_OUTPUT ;

in PATNNAMS := STANDARD_ERROR; .,:,

in PATNN~ := C~NT_NODE );

in out NODS_TYPE;

in NODE_TYPE ;

in INTENT_SPECIFICATION := RJZAD ATTRIBUTES;

iN PARAMETER LIST := FJUPTY_LISTY

in KELATIONS~IP_NXY := IATEST_lO!Y ;

545

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION

KSLATION : in

DISCRETIONAKY_ACCESS: in

MFNDATORY_ACCE SS : in

ATTRIBUTES : in

INPDT_FILE : in

OUTPUT_FILE : in

ERKOR_R’ILE : in

ENVIRONMENT NODE : in

DOD-STD-1838

APPENDIX B

SELATION_NAME := DETAULT_RELATION ;
DISCRETIONAKY_ACCESS_LIST :=

CAI S_ACCESS_CONT~L_MANAGEMKNT .ALL_RIGHTS ; ●
MANDATORY_ACCESS_LIST := SMPTY_LI ST :

ATTRISUTE_LI ST := .EbtPTY_LIST;

PATNWAME := STANDARD_ INPUT ;

PATNNAME := STANDAPD_OUTPUT ;
PATNWAME := STANDASD_ERROR;

PATNNAMK := CURKKNT NODE) ;

procedure AWAIT_> AOCESS_CCS4PLETION
(NODE : in NODE_TYPE;

TIME_LIblIT : in CAIS_DUKATION := Lx3NG_DELAY) ;

procedure AWAIT_PROCESS_COMPLETION

(NODE : in NODE_TYPE ;

RESULTS_KETURNED: in out SXSULTS_LIST;

STATOS : out PKOCESS_STATUS_KIND ;

TIME_LLbfIT : in CAIS_DURATION := LONG_DELAY) ;

prucedure INVOKE_PRCCESS
(NODE : in out NODFi_TYSE;
FILE_NODE : in NODE_TYPE ;

INTENT : in IWTENT_ARRAY ;

RESULTS_RETUKWED : in out K14SULTS_LIST;
STATUS : Out PKOCESS_STATUS_KIND ;
IWPUT.P~TERS : in PARAWETER_LIST;

KEY : in RIELATIONSHIP_kEY := LATEST_KEY;

RELATION : in RELATION NAME := DEFAULT_RELATION ;

DISCRETIONARY_ACCE SS: in DISCRETI~NARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_14AWAGEMENT .ALL_RIGHTS ;

MANDATORY_ACCESS: in MANDATORY ACCESS_LIST := EMPTY_LIST ;
ATTXISUTES : in ATTRIBUTk-LIST := EMPTY_LIST;

IwPUT_FILE :
●

in ,PATRWAME ~=” STANDAKD_IWPUT ;

OUTPUT_FILE :
.in : PATRWAMS ‘:= STANDARD_OOTPUT ;

IiKKOR-FILE: in PAl!?lNAMS := STANDARD_ERROR;

ENVIROWMENT_NODE : in PATHNAME := COSRENT NODE;

TIME_L1611T : in ~-IS_DURATION := LOfiG_DELAY) ;
procedure INVOKE_PKOCESS ~ ! : ~

(NODE , in out NODE_TYPE;

FILE NODE : in NODE_TYPE ;
INT’& : in INTENT_SPECIFICATION := FcZAD_ATTRIBUTES ;
KESULTS_KETURNED : in out RsSULTS LIST;

STATUS : out PRCCESS~STATDS_KIND ;
IWPUT_PARAMETEKS : in PARAMETER_LIST ;

KEY : in RELATIONSBIP_KEY := LATE ST_KEY;
RELATION : in KELATION_NAME := DEFAULT_REIATION;

DISCKETIONAKY_ACCESS : iN DISCRETI%NAKY_ACCESS_LIS% :=

CAIS_AccESS_CONTRoL_mAG_~ . ALL_RIGHTS ;
MANDATORY_ACCESS: h MANDATORY_ACCESS_LIST := EMPTY_LIST ;

ATTRIBUTES : in ATTRIBUTE LIST := EMPTY LIST:

IWPIT_FILE : in

OUTPOT_FILE : h

EKRoR_FILE : in

ENVIRONWENT_NODE: in

TIhD_LIMIT : in

procedure CKEATE_JOB
(FILE_NODE : in
IWPUT_PAKAMETERS : in
KEY : in

-.
PATHWAHE := STANDASD_IWPUT ;

PATKNAME := STANDARD_OUTPUT ;
P+TNNA6fE := STANDARD_ERROR ;

PATNNAME := CURRENT_NODE ;

‘!CAIS_DDSATION := LONG_DELAY) ;

NODE_TYPE ;
PASAMETER_LIST := RbfPTY_LIST;

RELATIONS HIP_KEY := LATE ST_KEY; ●
546

Downloaded from http://www.everyspec.com



DISCRETIONARY_~CESS :

NANDATORY_ACCESS :

DOD-STD-1838 CAIS SPECIFICATION

APPENDIX B

in DISCKETIONARY_ACCESS_LIST : =

CAIS_ACCESS_CONTROL_4ANAGEMENT .ALL_RIGHTS ;
in blANDATORY_ACCESS LIST :. PMPTY_LIST;

ATTRIBUTES :

INPUT_FILE :

OUTPUT_FILE :

ERROR_FILE :

ENVIRONUENT_NODE :
DELETE_NHEN_TERbtI NATED :

in ATTRIBUTE LIST := EMPTY LIST;

in PATNNAB4E ~= STANDARD_Im-UT;
in PA’XNMAME := STANDASD_OuTPuT;

in PATHNAME :. STANDW” ESROR;

in PATNNAME :. CURRSNT_6SER;

: in BCX2LEAN :. TRUE) ;

prOCedumD%LETE~JOB (NODE: iN out NODE_TYPE) ;
procedure DELETE_JOB (NAME: iA PATNNAME) ;

procedure APPEND_RESULTS (RESULTS: in RESULTS_STRING) ;

procedure NRITE_RESULTS (RXSULTS: in RESuLTS_STRING) ;

procedure GET_RILSULTS (NODE: in NODE_TYPE ;
RESULTS : in Out RESULTS_LIST) ;

prOCduW GET_RESULTS (NODE: h NODE_TYPE ;
RESULTS : in Out RESULTS_LI ST ;
STATUS : out PKOCESS_STATUS_KIND) ;

procedure GET_RESuLTS (NANE: iN PATHNAMS ;
RESULTS : in out RSSULTS_LIST;

STATUS : out PKCCESS_STATUS_KIND );
procedure GET_AESuLTS (NAME: iN PATNNAME ;

SJLSULTS : iN out SJESULTS_LIST) ;

fmction CUSIU!NT_STATUS (NODE: in NODE_mE)
return PRCCESS_STATUS_KI ND;

function CURRENT_STATUS (NANE: in PATNNAME )

return PRCCESS_STATUS_KIND ;
prOCedurt?GET_PANAMETERS (PARAMETERS: h Out PASAblETER_LIST) ;

procedure AAORT_PROCESS (NODE: iA NOD E_TYPE ;

RESULTS : in R-ESULTS_STRING) ;

procedure ABORT_PKOCESS (NAbfE: iN PATHNAME ;

RESULTS :-in RESULTS_STRING) ;
procedure ABORT_PEu7CESS (NODE: in NODE_TYPE) ;
procedure AEORT_PROCESS (NAMS: iN PATNNAME) ;

procedure SUSPEND_PRWESS (NODE: in NODE_TYPE) ;
procedure SUSPEND_PKoCESS (NAE4E: in PATNNAME) ;

procedure NESUblE_PROCESS (NODE: iN NODE_TYPE) ;

procedure RESUblK_PROCESS (NAME: iN PATHNAblE) ;
function OPEN_NODE_NANDLE_COUNT (NODE: in NODE_TYPE)

remrn CAIS_NATURAL;
functionOPEN_NODE_HANDLE_COUNT (NAME: in PATHNAMS)

return CAIS_NATUPAL.;
finctionIO_UNIT_COUNT (NODE: in NODE_TYPE)

return CAIS_NA~;

fUnCtiOnIO_UNIT_COUNT (NAME: in PATNNAME )

IWtum CAIS_NATUiW.;
functionTIME_STARTED (NODE: in NODE_TYPE)

return CAIS CALENDAR. TIME;
functionTIMB_S~iTED (NAME: in PATHNAME)

return CAIS_CALENDAR. TIME;
functionTIME_FINISHED (NODE: in NODE_TYPE)

r-etur-CAIS_CJ&ENDAR .TINE ;
functionTIMP_FINISNED (NAME: in PATNNAME)

Mum CAIS_CALENDAR TH ;
functionbtACHINE_TIbn? (NODE: in NODE_TYPE)

r’etum CAIS DUSATXON;
finCtiOnMACHIl&-_TIMS (NAME: in PATNNAME)

547

Downloaded from http://www.everyspec.com



ChS SPECIFICATION DOD-STD- 1838

APPENDIX B

return CAIS_DURATION;

function PROCESS_SIZE (NODE: in NODE_TYPE)

return CAI S_NATUEAL;

functionPROCESS_SIZE (NAME: in PATNNAb5)

return CAI S_NATURAL;

end CAIS_PPUXESS_MANAG.EbtE~ ;

package CAIS_DEVICES is

type ACCESS_METHOD_KIND k (DIRECT, SEQUENTIAL, TEXT,

implementation_de fined) ;

type DEVICE_KIND_TYSE is (SCROLL_TERMINAL, .PAGE_TEP141NAL,
FOKM_TEPMINAL, MAGNET IC_TAPE_DRIVE, implementation.de fined) ;

end CAIS_DEVICES;

with -1 S_STANDASD ;

with CAIS_DEFINITIONS ;

with CAIS_DEVICIGS ;
with CAI S_LIST_14ANAGEblENT ;

package CAIS_IO_DEFIMITIONS is

use CAIS_STANDASD ;
ucc CAIS_DETINITIONS ;

type FILE_KIND is (SECONDARY_STOEAGE, Qm”uE, DEVICE );

type QUZUE_KIND is

(SYNCNKONOUS_SOLO, NONSiNCNKONOUS_SOLO,

NONSYNCRKONOUS_COPY , NONSYNCilKONOUS_btIMIC );

type DEvIcE_KIND_AKsAr is array (CA15_POSITIVE range <>)
of CAIS_DEVICES .DEVICE_KIND_TYPE ;

IN INTENT: Conatmt INTENT_AKSAY := (l=>*_COtiEwS) ;

IN6~_INTENT : Comtant INTENT_ARSAY := (lllW_CONTENTS , NRITE_CONTENTS) ;

00’_INTENT : comtant INTENT_AKPAY := (l=~ITE_CONTENTS ) ;
APPEND_INTENT : CwMtant INTE~_APJiY := (l=>APPEND_CONTENTS );“

UNSOUNDED_FILE_SIZE : constantCAI S_NATUPX := O ;
ONSOUNDED_QJEUE_SI ZE : COmtmt CAIS_NATUWG := O ;

DATA_ERKOR ;

~_ttRKOR :
FILE_KIND_EEROR:

FOS3_STATUS_ERKOR :
BwNCTION_iUIY_STATUS_ERROR :

mYO=_ESROR :

biODE_ENROR:
TEEbfZN~_POSITION_ERROR :

exception;
exception;
exception;

exception;

exception;
exception;

exception;
exception;

/,& 54s

Downloaded from http://www.everyspec.com



DOD-STD-1838

APPENDIX B

CAIS_IO_DEFINITIONS;

with CAIS STANDARD;

with CAIS~DErINITIONS ;

with CAIS_DEVICES ;

with CAIS IO DF.HNITIONS ;

package @-IS~IO_ATTRIBVTES k

use CAIS_STANDASD;

UW CAIS_DJ$FINITIONS ;

use CAIS_IO_DEFINIT IONS;

fmCtiOn ACCESS_MKTHOD (NODE: in NODE_TYPE)

mtum CAZS_DIZVICES .ACCESS METHOD_KIND ;

fu~thn ACCESS_blETHOD (NAME: i: PATSNAME)
returnCAIS_DEVICES. ACCESS_METHOD_KIND;

fumtbn KIND_OF_FILE (NODE: in NODE_~E)
Mum FILE_KIND;

fUIICtiOnKIND_OF_FILE (NANE: in PATNNAME)
Mum FILE_KIND;

fUIICfiIIKIND_OF_QUSUE (NODE: in NODE_TYPE)

r’c?tumQUEUE_KIND;

fiNCtiOnKIND_OF_QUEUS (NAME: in PATKNAME)
mtum QUEUE_KIND;

funCtiOOKIll_OF_DEVICE (NODE: in NODE_TYPE)
Mum DEVICIZ_KINI_ARRAY;

fUnCtiOOKIND_OF_DEVICIG (NANS: in PATHNAMF.)

MUM DEVICE_XIND_ARRAY;
functionCUSAEN7_FILE_SIZE (NODE: in NODE TYPE)

MWN CAIS_%A*;

fUMtiOIICUPJIENT_FILE_S IZE, (NAME: in PATNNFi4E)
return CAIS_NATURAL;

tiC&n MARIMUM_FILE_SIZE (NODE: in NODE_TYPE)

Mum CAIS_NATUSAL;
~ functionMARIbZUM_FILl?_SI ZE “(N*: ~in !PATHNANE)

o

return CAIS_NA& ;

fimctionCUSRm4T_QUSUE_SIZE
IWtum CAIS_NA’7UW&;

functionCWNT_QUEUE_SIZE

n?tum CAIS_NATUPJ& ;

funCtiOnMAXIMUZd_QUEUS_S IZE

return CAIS_NA~ ;

functionNAXIbNJM_QUEUE_S IZE
Ietum CAIS_NA~;

end CAIS_IO_ATTRIBUTES;

CAIS SPECIFICATION

with CAIS_STANDARD ;

with CAIS_DEFINITIONS ;

with CAXS_IO_DEFINIT IONS ;

with CAIS_LIST_MANAG.ENXNT ;
with CAIS_ACCESS CONTROL_MANAGEKENT ;

generic

(NODE: in NODE_TYPE)

(NAKR: i. PATSNAblE)

(NODE: in NODE_TYPE)

(NANE: in PATSNAMS)

549

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION DOD-STD-1838

-.

.

. .

.
:;.

APPENDIX B

type ELEMSNT_TYPE is prkite;

package CAIS_DIRECT_IO ia

use CAI S_ST&KNLAD ;

use CAIS_DEFINITIONS;
use CAIS_IO_DEF INITIONS ;

use CAI S_LIST_MANAGEMSNT;

typa COUNT is range O .. implementation_defined;
subtype POS ITIVE_COUNT is COUNT range 1 .. COUNT’ -T;

type FILE TYPE is limitedprhte;

type FILE_b@DE is (IN_rILE, INOUT_rILE,, ,OUT_FILE) ;

procedure CREATE
.

(NODE : in out NODE TYPE;

FILE : in out FILE~~E;

BABE : in NODE_kiPE ;

REY : in .RELATIONS?IIP_HEY := LATEST_RBY ;

RELATION : in RELATION_NAMZ := DEFAULT_RELATION ;

INTENT : ii INTENT_~Y := INOUT_INTENT ;

b@DE : in FILE_blODE := INOUT_FILE ;
ATTRIBUTES : in ATTRIBUTE_LIST := EMPTY_LIST ;

blAXIbluM_FILE_SIZE: in CAIS_NA~ := “JNBODNDED_FILE_SI ZE;
DISCBETIONARY_ACCESS: in DISCPJZTION~Y ACCIZSS LIST ,:=

CA19_ACCESS_CONZ-iL_NiiiiGENZNT .ALL_RIGHTS :
MANDATORY_ACCESS: in blPJUDATORXAACCESS_LIS~ := BblPTY_LIST) ;

procedure CP.EATE ....,
(NODE : in out NODE TYPE;

FILE : in out rILE_TYP E;

NAMS : in PAT~ANB ; ~

INTENT : in INTENT_ARSAY i= INOUT_INTENT ;

bS3DE: in FILE MODE := INOUT_FILE ;

ATTRIBUTES : in ATTR~BUTE_LIST := ENPTY_LIST;”
MAXIMUbl_FILE_SIZE : iN CAIS~NAmIfWL := DNi30UNDED_FILE_SI 2X;

DISCRETIONARY_ACCESS: in DISCPJ3TIONARY_ACCESS_LIST :=

CAIS ACCESS_CONTROL_MANAGBbtENT .ALL_RIGNTS :
NANDATORY_ACCESS: in tiATORY_ACCESS_LIST :. ENPTY_LIST) ;

procedure OPEN (FILE: iN out FILE_Z’Y?E;

NODE : in NODE TYPE ;

M2DE : iN FILE~MOIii) ;

procedure CLOSE (FILE: in out FILE_TYSE );

procedure KESET (FILE: in out FILE_~E;

~DE : in FILE_MDE) ;
procedure SYNCHRONIZE, (FILE : in rILE_wE) ;

functionMODE (FILE: b FILE_TYPE)

return F IU_lmDE;
functionIS_OPEN (FILE: in FILE_TYPE)

return‘BOOL-;

procedure SEAD (FILE: iN

ITEM: out

FRCM: in
“procedure READ (FILE: iN

ITZM : out
procedure WRITE (FILE: in

FILE TYPE;

EL~-NT_=E ;
POS IiIVE_COUNT) ;
~ILE TYPE;

ELE&T_TYPE );

FILE_TYPE ;

. . 550

Downloaded from http://www.everyspec.com



●

.,.

DOD-STD- 1838 CAIS SPECIFICATION
APPENDIX B.’

ITEM: in ELEMENT_TYPE ;
.TO: iN POS ITIVE_COUNT );

prOce@m wrcITE (FILE: in FILE TYPE ;
ITEM : in ELE&T TYPE) ;

procsdure .SET_INDEX (FILE: iN FILE_~-E ;

TO: in POSITIVE_COUNT) ;
fUnCtiOIIINDEX (FILE: in FILE_TYPE)

IWtUrn POSITIVE COUNT;

functionSIZlt (FILET in FILE_TYPE)
return COUNT;

functionEND_OF_FILE (FILE: in FILE_TYPE)
return BOOLEAN;

private

type ~ILE_TYPE is (IMPLEMENTATION_DEF INED) ;
-- This type should be &fined by the implementer.

end CAIS_DIRSCT_IO ;

with CAIS_STANDAPD ;
with CAIS_DE)FINITIONS ;

with CAIS_IO_DE~INITIONS ;

with CAIS_LIST_NANAGZMENT ;

with CAIS_ACCESS_CONTROL MANAGEMENT;

generic
type ELENENT_TYPEis private;

package CAIS_SEQUENTIAL_IO k

use CAIS_STANDASD ;

USe CAIS_DEFINITIONS ;
U.W CAIS_IO_DEFINIT IONS ;

use CAIS_LIST_MANAGEMENT ;

type FILE_TYPE is limited private;

type FILE_bS2DE is (IN_FILE , 00’i_FILE , APPEND_FILE) ;

proceduti CREATE
(NODE ,

FILS:

BASE :
SXY :

BZ~TION :

INTENT :

~DE :
ATTRIBUTES :

bNWblUM_FILE_SIZE :

DISCSXTIONARY_ACCESS :

hNDATORy_A12CESS:

procedure CREATE,

(NODE :
rILZ :

NAME :

INTENT :

WDE :

in out NOD E_TYPE;

in out FILE TYPE;

in NODE-TYPE ;
in REW=IONSHIP_REY := LATEST REY;

in RELATION_NAbtE := DEFAULT &ATION;

in INTENT_-Y := OOT_INTE-m ;

in FILE_~DE := OUT FILE;
in ATTRIBUTE_LIST := EMPTY LIST;

in uIs_m~ :. UNSOmED_FILE_SI ZE;
in D ISCRETIONARY_ACCESS_LIST :=

CAI S_ACCESS_CONTROL_l@NAGEMENT ~_RIGHTS ;
in bNJiDATORY_ACCESS_LIST := EMPTY LIST) ;—

in out NODE TYPE;

in out FILE~TYPE;
in PATNN- ;

in INTENT_ASRAY := OUT_INTENT ;
in FILE_MODE := OUT_FILE ;

551

,

Downloaded from http://www.everyspec.com



-

CAIS-SPECIFICATION DOD-STD-1838

APPENDIX B

ATTRIBUTES : in ATTRIBUTE_LIST := EMPTT_LIST ;

MAxIMUM_FILlt_SIZE : in cArs_NAm7rw := uNBO~ED_FILE_sIZE;

DISCRETIONARY_ACCESS : h DISCRETIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTSf3L_lANAGEMENT .ALL_RIGHTS ; o

MANDATORY_ACCESS : iN btANDATORY_ACCESS_LIST := EMPTT_LIST) ;
procedure OPEN (S’ILE: in out FILE_TYPE ;

NODE :
~

NODE_TTPtI ;

~DE : in FILE_140DF,);

prucsdure CLOSE (FILE: in out FILE_TYPE)’;
p~ed”m RESZT (~ILE : in OUt FILIt_TYPE;
,..

~DE : iN FILE_MODE) ;
procedure SYNCHRONIZE(FILE: .@ S’ILE_TYPE) ;

functionb@DE (FILE: in FILlt_TYPE)

return FILE_l@DE;

function IS_OPEN (FILE: in FILE_TTPE)

return EOOLEAN;
functionEND_Or_FILE (FILE: in FILE_~E)

return BOOLEAN:
procedure

procedure

m-h-ate

READ (FILE : h FILE &P%;

ITEM: out- ELEMEN’_TTPE) ;
tiITE (FILE: io FILE_TYPE;

ITEM: in ELEbtBNT_TYPE) ;

type FILE_TYPE is (IMPLENZNTATION_DEFINED) ;
-- This type should be defined by tha implementer.

end CAI S_SEQUENT IAL_IO ;

with CAI S_STANDASD ;

with CAIS_D15FINITIONS ;

with CAIS_IO_DEFINIT IONS ;
with CAIS_LI ST_blANAGENENT ;

with CAIS_ACCESS_CONTROL_bfANAGENEN’T ;

package CAIS_TEXT_IO is

use CAIS_STANDASD;
use CAIS_DEFINITIONS ;

use CAIS_IO_DEFINIT IONS ;
use CAIS_LIST_blANAGBMZNT ;

type COUNT isrange O .. implementation_defined;
subtype POSITIVE_COUNT is COUNT rsnge 1 .. COUNT’ LAST;

subtype FIELD is CAIS_INTEGtCR range O .. implementation_dejined;
subtype mmmER_BABEis CAIS_INTEGER range 2 .: 16;

type TYPE_SET is (LONER_CABE, UPPER_CABE) ;

type FILE_TTPE is limited private; ,,

type FILIt_bSJDE is (IN_rILE, OUT_FILE, APPE~_?ILE) ;

procedure CREATE

(NODE : irlout.NODE_TYPZ ;

552

Downloaded from http://www.everyspec.com



.

DOD-STD-1838 CAIS SPECI#ICATION

APPENDIX B

FILE : in Out FILE_TYPE;

BASE.: in NODE_TYPE ;

RSY : in RzxaTxoNsnIP_wsr :. hTEsT_REY;

RELATION : in PJ?LATION_NAt4E := DEFAOLT_RSLATION ;

INTE~ : in lNTENT_ARRAY := OOT=IN’ZEiiT;

MODE : in FILE_t40DE := OUT_FILE ;
ATTRIBUTES : in ATTRIBOTE LIST := EMPTY LIST;
MAX=_FILT._SI ZE: in CAIS_NA& := UN&lND~D_FILE SIZE;
DXSCSXTION~Y_ACCESS: in DISCNETIONARY_ACCESS_LIST := -

CAIS_ACCESS_CONTROL_~AGSNENT .ALL_RIGHTS ;
blANDATORY_ACCESS: in MANDATORY_ACCESS_LIST := EMPTY LIST) ;

prucedure CNEAT.C

(NODE : in Out ‘NODE TYPE;

TXLE: in out FILE~TYPE;

NAME: in FATNNANE ; ..
INTENT : in INTENl_AR3AY := OUT_INTENT;

~DE : in FILE ~DE := OUT FILE;

ATTRIBUTES : in ATTR~BOTE_LIST := ZNPTY_LIST ;

WIMOM_FILE_SIZE: in CAIS_NATORZ& := ONSOQNDZD_TILE_SIZE ;
DI SCRtTIONTJtY_ACCESS: in DISCRETIONARY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_blANAGENENT ALL_RIGMTS;
btANDATORY_ACCESS: in MANDATORY_ACCESS_LIST := EMPTY_LIST) ;

prucedure OPEN (FILE: iw nut FILE_TYPE;
NODE : in NODE_TYPE ;

-E: in FILE_bz2DE) ;

prucedure CLOSE (FILE: in uut FILE_TYPE) ;
procedure RESET (FILE: in Out FILE_TYPE;

~DE : in FILE_MDDE) ;

p-TdUm StiCNRONIZE (FILE: in FILE_TYPE) ;

fNNCtiUri~DE (FILE: in FILE_TYPE)

return TILE_40DE ;
thnctiunIS_OPEN (FILE: in FILE_TYPE)

return SOOLSAN ;
prUCdlR SET_INPNT (FILE: in FILE_TYPE) ;

LWUCedUn SET OUTPUT (FILE: iN FILE TYPE) :

hmction cuRRi--m_INPoT’

return TILE_TYPE ;

functiunCDRAENz_OOmm
return FILE_TYPE;

prucedure SET-LINIS_LENGTti

prucedum SET_LINE_LGNGTH
prUCd~ S~T_PAGE_LE2@TH

-.

‘., . .

(FILE : itiFILIC_TYPE ;

TQ:
,.

in CCwJNT);
(To: in CONNT) ;

(FILE : in FILE_TYPE; ~~

To: in COONT) ; ..
prucedure SET_PAGE_LENGTli (TO : in COOWTj ;

fUnCtiOnLINE_LENGTH (FILE: in FILE_TYPE)
remrw COONT ;

fUNCtiOnLINS_LENGT?I

return COW ; ,.

functiunPAGE_LENGTH (FILE: in FILE_TYPE)
,,,

return COUNT; ,,,
functionPAGE_LENGTH

return COUNT ; .-. ”

prucedure NEW_LINE (FIL~:
,’.,

in FILE_TYPE ;

SPACING : in POSITIVS_CODNT := 1) ;...
prW~um NEN_LINS (SPACING: in POSITIVD_COUNT := 1) ;,

553

,..

,.,

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION DOD-STD-1838

APPENDIX B

procedure SKIP_LINE @’ILE: in FILE TYPE;

SPACING : in POSI%E_CONWT
prUCdure SKIP_LINE (SPACING: iN POSITIVE_COUNT

finCtiOnEWI_OF_LIWE (FILE: in FILE_TYPE)
return BOOLEAN;

fUnCtiOnEWD_OF_LIWS
return SCOLSAN:

pmcrdure WEW_PAGE;
pr&du~ SKIP_PAGE

prOWdurP SKIP_PAGE;
functionEND_OF_PAGE

return BOOLEAN;

function ifND_OF_PAGE
return BOOLEAN;

fINICtiOnEND_OF_FILE
return SOOLEAN;

functionEWD_OF_FILE
return sOOLSAW;

procedure WEW_PAGE (FILE: iN STLE_TYPE) ;

(FILE , in FILE_TYPE) ;

(FILE: in FILE_TYFE)

(FILE: in F’ILE_TYPE)

procedure SET_COL (FILE: in rILE_TYPE;

TO: in POSITIVE_COUWT) ;
prOCedure SET_COL (TO: iIIPoSITIVE_COuwT) ;

prO@dU~ SET_LINS (FILE: iN FILE_TYFE;

m: iN POSITIW_COUNT) ;

prucedure SET_LIWE (TO: iN POSITIvs_COuNT) ;
functionCOL (FILE: in FILE_TYPE)

return POSITIVE_COOwT;

fUNCtiOnCOL
return POSITIVE COUNT;

functionLINE (FILE ~ in FILE_TYPE)
return POSIT IVE_COUWT;

frmctionLINE
rWtum POSITIVE COUNT;

functionPAGE (FILE.: in FILE_TYPE)
retunr POSITIVE_COUNT ;

functionPAGE
return POSIT IVE_COrJNT;

procedure GET (FILE: in” FILE_TYPE ;
ITEM : out CKARACTER) ;

pMcd”~ GET (ITSM: Out CSARACTER) ;

pMCedUre POT (FIQ3: iN FILE_TYFE;
11’sbl:iirCKARACTER) ;

pmedure PUT (ITEM: in CWARACTER) ;
procedure GET (FILE: h FXLE_~E ;

ITEM : Out STRING) ;
prucedure GET (ITSM: out STRING) ;
procedure wm (FILE: in FILEi_TYPE;

ITSM: iN STRING) ;
prucedure PuT (ITSN: iN STRING) ;

procedure GET_LIWE (FILE: ir FILE TYPE;

ZTEN: out STRI~G;

LAST : out cAIs_NAToRAL) ;
procedure GET_LIWR (ITEN: out STRING;

LAST: out CAIS_NATIJRAL) ;
PIWC~Um PUT_LINE (FILS : in FILE_TYPE ;

ITEM: io STRING) ;
procedure POT_LIWS (ITEN: in STRING) ;

:= 1);
:= 1);

5s-4

Downloaded from http://www.everyspec.com



LAST :

promdurs PUT (2’0:

ITEM:
-. SET :

end ENUNEsATION_IO;

DOD-S’ID- 1838 CAIS SPECIFICATION

APPENDIX B

out CAIS_POSITIVE) :

out ST”RING;
h ENUbS;

in TYPE_SET := DEFAULT_SETTING) ;

Drivate

typs FILE_TYPE is (IMPLEMZNTATION_DEFINED) ;
-- This type should,, be defined by the implementer.

end CAIS_TEXT_IO;

with ~1 S_?T=ARD ; ,,

with CAIS_DEFINI’ZIONS ;

with CAIS_IO-DEFINITIONS ;

with CAIS_LIST_NANAGSS.iSNT ;

with CAIS_ACCESS_CONTROL_bSANAGEMENT ;

package CAIS_QUtUE_MANAGEMSNJT is

uss CAIS-STAND_ ;
use CAI S_DEFINITIONS;

use CAIS_IO_DEFINIT IONS ;
uss CAIS_LIST_MANAGFASENT ;

use CAIS_ACCESS_CONTROL_tSANAGBMENT ; . . . ..

procedurs CREATE_NONSYNCNRONOUS_COPY_@SXJE

(QUZUS.-NODJJ: in out NODE_TYPE;
FILE_~ODE : in
QUEUE_BASE : in

QuEUE_NBY : in

QUSUE_RSLATION : in
INTENT : in

ATTRIBUTES : in

DISCRETIONARY_SLCCESS: in

NODE:TYPE ;

NODE_TYPIS ;
RXLATIONSHIP_REY := “LATE ST_NEY ;
RELATION_NASQS : = DEFA~T_RELATION ;
INTENZ_ARRAY := IN_INTENT ; ‘

ATTRIBUTE_LIST := EMPTY_LIST;
DISCRETIONARY ACCESS LIST :=

CAIS_ACCESS_CONT-~L_l@i-WENBNT .JU.L_RIGHTS ;

NANDATORY_ACCESS : in bSANDATORY_ACCESS_LIST := EbSPTY_LIST ;

MAXIMDM_QUEUE_SIZE : in CAIS_NATURAL := UNSOUND~_QUEUZ_SI ZE) :
procedure CREATE_NONSYNCSSRONOUS_COPY_QUEUE

(QURUE_NODE : in out NODE_TYP Z ;
FILE NODE : in NODE ZWPE; ...

QUE~-_NAMS : in PAT&blE ;

INTENT : in INTENT_ARRAY := IN_INTENT ;

ATTRIBUTES : in ATTRIBUTE_LIST := EKPTY_LIST ;

DISCSJtTIONARY_ACCESS: in ~ DISCPJZTIONARY_ACCESS_LI ST :=

CAIS_ACCESS_CONTROL_bSANAGZASENT .ALL_RIGSiTS ;
SSANDATORY_ACCESS: hi bSANDATORY_ACCCSS_LIST := EbSPTY_LIST;

MAxIblUbS_QUEUS_SIZE : in CAIS_NATUW& := UNSOUNDED_QUSUE_SI 2S() ;
procedure CREATE-NONSYNC-NOUS_COPY_QUZUB ,,

(FILE-NODE : in NODE_TYPE;
,, .,,.

QDsUN_BASE : in NODE_TYPE :

QUNUE_NEY : in RELATIONSHIP_NIZY := LATSST_NEY;

QuEUE_RELATION : in RJSLATION_NAB@ := DifFAULT_RELATION ;

INTENT : in INTDNT_~Y :. IN-INTENT;

557

..’
.—

Downloaded from http://www.everyspec.com



,., ,

CMS SPECIFICATION DOD-STD.1838

APPENDIX B

ATTRIBUTES : in ATlSR18UTZ_LIST! := EMP~_LIST;

DISCRETIONARY_ACCESS: in DISCRETIONARY_ACCESS_LIST :=
CAIS_ACCESS_CONTROL_MANAGEt’fE~ .ALL RIGHTS;

NANDATORY_ACCESS : in NANDATORY_ACCESS_LIST .:= ZMPTY_LIST~

MAxI14uM_QUEUI_SIZE : in CAIS_NATURAL := UNBOUNDED_QUEUE_S IZE) ;

procedure CREATE_NONSYNCNRONOUS_COPY_QUEUE

(FILE_NODE : in NODE_TYPE;

QUEUE_NAMZ : in PATNNAMZ;

INTENT : “inINTE~_ARRAY := IN INTENT;
ATTRIBuTES “: in ATTRIBUTE_LIST := ‘mTY_LIST;

DISCPJiTIONARY_ACCESS: in DISCRSTIONARY_ACCESS_LIST : =
CAIS_ACCESS_CONTROL_MANAGZMENT .ALL_RIGXTS ;

MANDATORY_ACCESS : in ~ATORY_ACCESS_LI ST := ENPTY_LIST;

MANIMUM_QUEUE_SIZE : in CAIS_NATUSAL := UNBOUNDED_QUEUE_SI ZE) ;
procedure CIwATENONSYNcNRONOUS_MIMIC_QUEUE

(QUEUS_NOD& in out NOD E_TYPE;

RILE_NODE : in NODE_TYPE ;

QUEUS_BAEE : in NODE_TYPE ;

mmiJE_NsY :. in REXATIONSNIP_NSY := LATEST_REY;

QUSUELRELATION: ~‘ in REIATION_NAME := DE~AULT_RELATZON;

INTENT : in INTENT_~Y := IN_INTENT ;

ATTRIBUTES : il.’ ATTRIB~E_LIST := SMPTY_LIST ;

DISC,~TIONARY-~CIiSS: in DISCRETIONARY_ACCESS LIST :=
. . . CAIS_ACCESS_CO~,ROL_WJ’i-iEt&T .ALL_RIGHTS ;

MANDATORY_ACCESS : ‘ in’. MANDAtiRY_ACCESS_LIST := Eb@ti_LI ST ;
~IblUM_QUSUS_SIZE : in CAIS_NATURAL := UNBOUNDED_QOEU$_S XZE);

procedure CSEATE NONSYNCtiNOUS’ ~C_QUWJS

(QUikUE_NOD& @ &i” NODE-*G;
FI$E_NoDE : in NODE_TYPE ;
QUEUR_NAME :

...-,
in ; PATNN- ; ..

INTEST : in I~ENT_ARRAY .:= IN_INTI@:-

ATTRIBUTES :. in ATTRIB~E_LIS+ := EMPTY_LIST;
DISCRSTION~:-v2CESS: in : DISCRETIONARY ACCESS LIST :.

CAIS_ACCESS_CONT-iL_bN+ZMENT .ALL_RIGllTS ;
MANDAToRY_ACCESS : in .. MANDAwRY_ACCESS_LIST := EMPTY_LIST ;
~XMUM_QUEUE_SIZE : in , CAIB_NATURAL := UNSOUNDND_QUEUE_SI ZE) ;

procedure C~TE_NONSwCNRONOUS_MIMIC_QUBUE
(FILE_NoDE “: in NODE_TYPE ;
QUEUE_BABE: ‘“’in NODE_TYPE;
QuEuE_RzY : in RSLATIONSHIP_REY := LATEST_REY;

QUEUE_RELATION : in Rl?tiTION_N- := DEFAULT_RBLATION;
INTENT : in lNTENT_ARJUiY := IN_ZNT!JNT;
ATTRIBUTES : in ATTitlBUTE_LIST := EKPTY_LIST;
DISCRETIONARY_ACCESS : im DiSCRETXONMtY_ACCESS_LIST :=

CAIS_ACCESS_CONTROL_MANAGEMZNT .ALL RIGNTS ;
MANDATORY_+CCESS : in @AT0Ry_N2CE88_L19T := .EwrY_LIsT7

MAX__QUN~_SIZE : ii CAIS_NA~ :. ONAOUNDED_QUEUE_SI ZE);

procedure CREATE NONSYNCNRONOUS_~C_QUEUZ
(FILE_NODE~ in NODE_TYFE ;
.QtirjF,_NAME; in PATIINW;

INTENT i in INTENT_ASR& := IN_INl~;

ATTRIBUTES : , iu”ATTRIBUTE_LIST := EMPTY_LIST; .’

DISCFUtTIONtiY_ACCiSS : b DISCRSTXONARY_ACCESS_LIST := ;

.“~S_ACCESS_CONTROL_tdANAGEMENT .ALL_RIGNTS ;
MANDATORY_ACCSSS : in MANDATORY_ACCESS_L IST :. EMPTY_LIST;

%ANIblUM_QUEW-SIZE : in CAIS_NATURAL := DNEOUNDED_QUEUE_SI ZE );
procedure C~TE-NONSYNCNRONOUS_SOLO_TEXT_QrJltUN

558

Downloaded from http://www.everyspec.com



o

I

I

●

-—–—

DOD-STD-1838 CAIS SPECIFICATION
APPENDIX B

geweric
type NDM i9 range <>;

package INTEGER_IO i9

DIEFAKILT_WIDTH: FIELD := WUM’ WIDTH;

DErAIJLT_SX.S : NUMSER_SASE := 10 ;

procedure GET (FILE: iw FILE TYPE;

ITEM: out NUM;
WIDTH : in FIELD := O) ;

Procedure GET (ITEW: out SUM;

WIDTH : in ‘ FIELD := O);
prueedure PDT (FILE: in FILE_TYPE;

ITEM: in NOM;
wIDTH: in FIELD := O ;

SASE : iw NDMSER_SASE := DEFAULT_SASE) ;
procedure PDT (ITEM: in NOM; (

WIDTH: in FIELD := O;

sARE : in NUMBER_SASE := DEFAULT_SASE) ;
procedure GET (FRON: in STRING;

ITEM : out NUbl;

LAST : out CAIS_POSITIVE) ;
prucedure PUT (TO: out STRING ;

ITEN: in Nom;

sASE: in NUMSER_SASS := DErAULT_SASE) ;

end SNTEGER_IO ;

generic

type wmbl is digits<>;

package mOAT_XO is

DIS~AULT_FOSlt: FIELD := 2 ;
DErADLT_AFT : FIELD := MUM’ DIGITS-1;
DxP’ADLT_HP : FIELD := 3;

procedure GET

Prueedure GET

procedure PUT

procedure PDT

procedure GET

procedure POT

(FILI!: in FI~_TYPE;

ITEN : out NIJM;
wIDTH : in ~IELD := O) ;

(ITEM: out mm;

WIDTH : in FIELD := o) ;

(FILE : in FILE-TYPE;
ITSM: in MUM;

FORE : in FIELD : = DEFAIJLT_FORX ;

AFT : in 9’IELD := DEFADLT_AFT;
EXP : in FIELD := DEP’AVLT-EXP ) ;

(ITEM: in NDM;
FORE : in FIELD := DEFAULT_FORS ;

AFT: in FIELD := DEFAULT_AFT ;
lnce: in FIELD := DEFAULT_EXP) ;

(FROM: in STRING;
ITEM : out NDM;
LAST: out CAIS_POSITIVS) ;

(To : out sTRING ;

ITEN : in NDM;
AFT : in FIELD := DEFADLT_APT ;

Downloaded from http://www.everyspec.com



,.- . .

.,,

CAIS.SPECWKM170N D,OD-STD-1838><
APPENDIXB

,.’
& :“ ,in ~.IEti := DEFA~T_EXP );

end7tiT IO;.”.-

gemric
typ& W& is~delta<>; -

package<rmzD_zo is .,,. ,

DEFAULT_ FORX : ~IELD := tWJld,.FO~;

prOCedUre GET

prO@IrP GET

procedure PUT

HELD := NOW AFT;
FIELD := O;

(FILE: h : FILE_TYPE ;
11’sm: out NOM;
WIDTH :,ill FIELD := O) ;
(ITEt6: out NuM;
WIDTH : ilr ,,FIELD :=”0);

prucedure PUT

prOCedUW GET

procedure PDT

end FI~D_IO;

generic: “..“.
ty@ ENDM i? (<>) ;~

package ENDMs~TIOw_IO i9 . : ‘“:
.“

(FILE :
ITEM:
FORE :

AFT :
EXP :

(ITEW:

FO~ :

APT :
EXp :
(ImOt4:

ITEM:

LAST :

(q:
ITEM:

APT :
EXP :

iw FILE TYPE;
in.NuM; -

b FIELD := DE.FAOLT FOn ;
in FIELD := DEFAULT~AFT;

b “FIELD :=’DEFAOLT_EXP ) ;
hwubl;,

k FIELD ,: = DEFAULT_FORE ;

ill FIELD := DEFAiJLT_AFT ;
in FIELD, := DEFAULT_EXP );

in STRING;

out NUM;

Uut .CAIS_POSITI~) ;

out STRING;
in Nm.l; ‘.
in Fnmn :. 6EZFAULT APT;

h FIE~ :S ‘,DEFAULT~EXP );
.,.
.

..

DEFA~T_WIDTH : ,PIELD :=’0;.
DEFAULT_SETTING : TYPE SFiT :.=UP PER_CASC ;.- .,.

prO&dUre GET

procedure,GZT
.. pr&edure POT

procedure POT

procidure Gii

(FILE: k . FILE_TYiE;

IT@3i : Out ENUM) ;
(ITEM: out ENINd);
(~ILE: in FILE TYPE;

ITEM: @ ENOM7
,WIDTH :.iw FIELD := DEFAULT_WIDTH ;

SET : in TYPE SET := DEFAULT-SETTING) ;

(XTltbt: h ENIAd7
WIDTH: @ FIELD := DE~AULT WIDTH;
SET : in ZYPE_SET := DEFA-~T_SETTING) ;
(FRCM: in ‘ STRING;
ITSM:. out ENOM;

356

Downloaded from http://www.everyspec.com



:—

DoD-STD-1838 CAIS SPECIFICATION

APPENDIX B

(QuEUE_NODE : in out NODE TYPE;

QUSUi_BASE : in NODE~TYPE ;

QuEUE~REY: in RX~TIONSHIP_NSY := LATEST NEY;

Q~~_PlmA’rION: in RJtLATION_NAUE := DEFAULT_RELATION ;

mil%NT : in INTENT_ANRAY := lN_INTENT;

ATTRIBUTES : in ATTRIB~E_LIST := EblPTY_LIST;

DISCRETIONARY ACCESS: in DIiCRETION~Y_ACCESS_ LIST :=
., CAI,S_ACCESS_COWi~OL_MMiiGEbfEt@ .~L_RIGHTS ;

MAt@ATORY_ACCESS: in .MANDATQRY” ACCESS_LIST :=.EMPTY_LIST ;

MAXIMOB_QUEUE_SI ZE: in CAIS_NAIW-W := DNBOUNDED_QDEUB_SX ZE) ;
procedure CREATE_NONSYNCSRONOUS_SOLO_TEJCT_QUBUE

(QuEUE_NODE : in out NODE_ZYPE;

QUEUZ_NAMX : in PATSNAME ;

INTENT : “ in INTENT_ANRAY := IN_INTENT ;

A~RIBUTES : in ATTRIBUTE LIST := EMPTY_LIST;

DISCRETIONARY_ACCESS: in DISCRETIOiiARY_ACCESS_LIST :=

cAI S_ACCESS_CONTROL_MANAGEbfENT .ALL_RIGHTS ;
MANDATORY_ACCESS: in bfANDATORY_ACCESS_LIST := EMPTY_LI ST ;
MAxIbtUM_QDEUE_SIZE: in CAIS_NATUSAL := UNSOUNDED_QUEUE_SI ZE) ;

procedure CSJZATIt_NONSYNCNRONOUS_SOLO_TENT_QUEUE

(QuEUB_B&9E : in NODE TYPE;

QUWJZ_NEY : in RELA~IONSHIP NEY :. LATEST_REY;

QUEUl_RZLATION ; in RX=T ION_NAl& := DEFAULT RELATION;

ItiENT : in INTENT -Y := IN INTE~-;

ATTRIBUTES : , in ATTRIB-mE_LIST :. ‘ih4PTYLIST;

DISCRETIONARY_ACCESS: in DISCSIZTIONARY_ACCE SS_LI~T :=

CAIS_ACCESS_CONTROL_MANAGSMENT .ALL_RIGHTS :
btANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := EMPTY_LIST;

h5WbtUM_QDEUE_SI ZE : in CAIS_NATURAL := UNBOUNDED_QUEUE_S IZE );

Drocedure CREATE NONSYNCNRONOUS SOLO TEXT QuEUE

(QuEUE NAbtI-:
INTE~- :.

ATTRIBUTES :

D ISCNETIONARY_ACCESS :

KANDATORY_ACCESS :

~IblDM_QUEUZ_SIZE :

generic

in FAT5N-M; -

in INTENT ARRAY := IN_INTENT;

in ATTRIB-&E_LIST := EWPTY_LIST;
in.DISCSXTION~Y_ACCESS_LIST :=

CAI S_ACCESS_CONTROL_MANAGE8tENT ALL_RIGSTS ;
in ~ATORY_ACCESS_LIST :. ~TY LIST;

in CAIS_NATURAL := UNSOUNDED_QUE~-_SI ZE );

type ELEblENT_TYPE is private;

procedure CRzATE_N0NsmcSRONOUS_SOM_SEQmmIAL_W2uE
(QUEUE_NODE : in out NODE_TYP E;

QuEUE_BASE : in NODE_TYPE ;

QUEUE_NEY : in RJILATIONSHIP_NEY := LATEST RJZY;

QUEUS_RELATION :
~

RELATION NAME := DEFAULT_~-LATION ;

INTiENT: in INTENT -Y := IN_INTENT ;

ATTRIBUTES : in ATTRIB-~E_LIST := EMPTY_LIST;

DISCRETIONARY ACCESS : in DISCRETIONARY ACCESS LIST :=

CAIS_ACCESS_CONl%OL_MAN~GEt4ENT .ALL_RIGHTS ;
MANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := SMPTY_LIST ;

MAXIMUb_QDBUE_SIZE: in CAIS_NATURAL := ONSODNDED_QUE~_SIZE) ;

procedure CREATE_SYNCtiRONOUS SOLO_TEXT_QUEUE

(QUEUN_NODE : % out NODE_TYPE;

QDEJE2BASE : in NODE_TYPE ;

Q@E_NSY : in NZLATIONSHIP_NEY := uTEST_REY ;

QUEUE_RELATION: in RELATION_NAMB := DEFAuLT_RELATION;

INTENT : in , INTENT_ARRAY := IN_INTl!NT ;

ATTRIBUTES : in ATTRIBUTE_LIST ‘:= EbtPTY_LIST ;

5.59

Downloaded from http://www.everyspec.com



—.

,CXJS S~ECIFICATION DOD-STD- 1838

APP~IX B

DISCSl?TIONARY_ACCESS: h DISCftETIONARY_ACCESS_LIST ,:=

CAIS_ACCESS_CONTROL_MANAGSMENT .ALL RIGHTS;
NANDAIQRY_ACCESS: in MANDMORY_ACCESS_LIST := PMP~_~IST) ; ●

procedure ,CREATE SYNCHRONOUS SOLI_TE~_QUNUE

(QUEUE_NOOti: % Out NODE_tiPE ;
QDSUE_NANS: in .PATNNANE;
.,INTENT: in INTENT_ARRAY := IN INTENT;,
ATTRIBUTES : in ATTRIBUTE LIST := ‘~ Ti_LIST;
DISCRETIONARY_ACCESS: in DISCNE’@&Y_ACCSSS_LIST :=

CAIS_ACCESS_CONTROL_blANAGEblENT .ALL RIGHTS;
blANDATORY_ACCESS: in MANDATORY_ACCESS_LIST := iMPTY_~IST) ;

procedure CNEATE_STNCNRONOUS SOLO_TEXT_QUEUE

(QUEUE_!3ASE : % NODE TYPE;
QUEUE_NZY : in RELA~IONSHIP_KSY := LATEST_REY;
QUEUS_~LATION , in RELAT ION_NAbfE := DEFAIJLT_SJmATION;
INTENT : h INTE,NT_ARmY := IN_INTENT;
ATTRIBUTES : in ATTRIBOTE_LIsT := EMPTY LIST;
DISCRETIONARY_ACCESS: in DISCNETIONANY ACCESS_LI~T”: =

CAIS_ACCESS_&&TROL_NANAGEMENT .~L RIGHTS ;
NANDATORY_ACCESS : in MANDATORY_ACCESS_LIST := EMPTY_LIST~ ;

prccedure CICSATE_SYNCNAONOIJS SOLC_TEn_Qusus

(QUEUE NAME : ‘in PATNNAMS;
INTE~-: : in INTENT MIRAY := IN. INTENT;
Attributes: in ATTRIB-~E_LIST :=.‘i&PTY_LIST;
D ISCRETION~Y_ACCESS: in DISCRSTIONARY_ACCESS_I, IST ;=

CAIS_ACCESS_CONTROL_bfFNAG~NT .ALL_RIGNTB ;
MANDATORY_ACCESS: in MANDATORY_ACCESS_LIST :. Eb@Y LIST) ;.-

generic .,
type ELSMSNT_TYPE. is private;

procedure CRsATE_SiNCsRONOUS SOm_SEQuENTIAL_&EUE ,,
(QUSUE_NODE : / % out ,NODE TYPE;

,,...,QUE~_SABE:, :,:,; in .-NODE:TYPE ;
QUSUE_REY : in NXLATIONSHIP=NEY := LATEST’.WY;.
QUNUE_RELATION: “” ‘ iii REIJkTXON_NAbtS := DEk”AUL~ N@TION;
INTENT : .. .i”,,. INTENT_ARRAY := IN_I~E~-;, :
ATTRIBUTES : iN ATTRXBUTE_LIST := EblPw .-LI,9T;
DISCRETIONARY. ACCESS: in DIiiCRNTIONARY ACCESS LI~T :=

●

W-mATOR~_ACCESS~LIST := EMPTY_rIST);

, . . ‘..,,. . CAIS ACCESS CONT-ML blAN-%Ii4E~”.ALL RIGHTS:
t4ANDATORY_ACCESS : in

.; -,,,.
end CAIS_QUSUE_btANAGEMEti;

-,..,..,’..,. , ,~,,

with CAIS_STMDARD; ..”, ~~
with CAIS DEFINITIONS’;

with CAIS~IO_DEFINIT IONS;

paCkSgeCAIS_SCEOLL_TESMINAI_IO is.

use CAIS_STANDARD;

use CAIS_DEFINITIONS ;
use CAIS_IO_DETXNITIONS ; ,

..7.

..-

“.,..;.:! ,’. ,
type FILE_TYPf4 is l&i@d private;

type FILIE_~DE is (IN_?ILE, OUT_FILE, INOUT_FILE) ;

.. . . . .

. .
Xa

Downloaded from http://www.everyspec.com



.—.

DOD-STD-1838 CAIS SPECIFICATION

APPENDIX B

type CNARACTER_ARRAY is array (CNARACTER) of SOOLZAN;
,:

type rDNcTIOti_REY_DESCRIPTOR is fjmited private;

subtype FDNCTION_KEY_NAME is STRING;

type TPmbtINAL_POSITION-TYPC is
record

NON: CAIS_POSITIti;

COLUMN : CAIS_POSITIVE ;

end rscmrd;

type TAs_STOP_RIND is (HORIZONTAL, VERTICM,) ;

procedure OPEN (TERMINAL: iN out FILE_TYPE;
NODE : in NODE_TYPlt ;

WDE : “ FILE_~DE) ;

procedure CLOSE (TEPMINAL: “’iiout FIL.%_TYPE) ;

fuNctiOnIS_OPEN (TERMINAL: in TILE_TYPZ)

return SOOLS.AN;

fumtiOn NUNBER_OF_PONCTION_RZYS (TERMINAL: in rILS._TYPE)

return CAI S_WATURM ;

functionItiTERCEPTZO_INPUT_CNARACTERS (TERMINAL: in S’ILlt_TYPll)
return CNARACTER_ARPAY ;

functionINTSRCEPTSD_OOTPUT_CNAiU@ZERS (TEPMINU: in FILE_TYPE)
return CRARACTER_ARirAY ;

prncedure ENASLE_FONCTION_REYS (TEPMINAL: in IfILE_TYPE;
ENASLE : in SOOLEAN) ; .“ .

functionmNCTION_SCSYS_ARS_ENASLED (TERMINAL: in FILE_TYPE)
return BOOLZAN ;

procedure SET_ACTIm-POSITION (TEEbtINAL:’in FILE_TYPE;
POSITION : in TERMINW_POSITION_YPE) ;

fuIictiOnACTIVS POSITION (TERMINAL: iN FILE TYPE)

@UrN TSRbiiNAL_Pos IT ION_TYPE;
.-

functionPAGE-SIZE (TERMINAL: in rIL~_TYPE)

ratum TERMINAL_POS IT ION_TYPE ;

pmwdure SET_TAS_STOP (TEsMINAL: in FILE_TYPE;
KIND : in TAS_STOP_KIND := NORI ZONTAL) ;

f)rmiiureCLSAR_TAS_STOP (TESMINAL : in FILE_TYPE ;
RIND : in TAB STOP KIND := HORIZONTAL) ;

procedure CLSAR_ALL_T--STOPS (TERMINAL: fi FIL~_TYPE; .,
KI,Nu : in TAS_STOP_KIND := iiORI ZONTAL) ;

procedure ms (TEii3iINU: iN FILE_TYpE;

COONT : in CAIS_POSXTIVit := 1;

‘KIND : ill TAS-STO?_RIND := ~ORIZONTAL );
Prncedure ZOUND_BZ.LL (TERMINAL: iN ~ILE_TYPE) ;

p~PdlNe POT (TSRMINAL : iN FILE_TYPE ;
ITEM : in CNARACTER) “;

pmcedlN? PoT (TSRMINAL : in FILE_TYPE ;
ITEM : in STRING) ;

INOCedIN’SGET (TSRMINAL : iN
ITZM: out

KEYS : in out
P,~ure GET (TERMINAL: in
.

ITEts: Out

LAST : nut

KZYS : in nut

FILE’_TYPE;

C~CTER;
lWNCTION_RZY_DESC,RIPTOR) ;

FILE TYPE;

STRI~G; ,

CAIS_NAW ;

FUNCTION_RZY_DESCRIPTOR) ;

561

Downloaded from http://www.everyspec.com



CAIS SPECIFICATION DOD-STD-1838

APPENDIX B

procedure CNJZATE_FUNCTION_NEY_DESCRIPTOR

(NEYS : in out ?NNCTION_~Y_DESCRIPTOR;

MAXIbNJbl_COUNT: in CAIS_POSITIW?J ;
procedure DELETE_rONCTION_REY_DESCRIPTOR

(REYS : illOut FOWCTION_NEY_DESCRIPTOR) ;

functionFuNCTION_NXY_COoNT (mtYS: in FONCTION_NZY_DESCRIPTOR)

return CAIS_NATORU ;
procedure GET_mNCTION_XNY

(RSYS : in lFUNCTION_XEY_DESCRIPTOR ;

INDEX : in CAIS_POSITIVE;
IW,y_IDENTIFIER: out CAIS_POSITIVE;
POSITION: out CAIS_NATURAL) ;

fUIICtiOnFUNCTION_REY_IDENTIS’ICATION

(TERMINAL : iw FILE_TYPE;

REy_IDENTIFIER: in CAXS_POSITIVE)
return FDNCTION_REY WANE;

fINICtiOnMoDE (TERMINAL ~ in FILE_TYPE)

retwrn FILE_bQDE;
prW?du~ sACKSPACS.(TESMINAL: h FILE_TYPE;

COUNT : in CAIS_POSITIVE := 1) ;
prUCSdNre NEW_LINE (TERMIW4L: k FILE_TYPE;

COUNT : in CAIS_POSITIVE := 1) ;
prOCt?dureNSW_PAGE (TERMINAL: b FILE_TYPE) ;

prOCedUR sESET (TERMINAL: in Out FILE_TYPE;

MDE : in FILE_bfODE) ;
procedure sYNCHRONIZE (TERMINAL: iw FILE_TYPE) ;

procsdure ENAELE_SYNCNRONI ZATION (TEPMINAL: iN FILE_TYPE;

ENASLE : h WOLEAW) ;
functionSYNCNRONIZATION_IS_ENASLED (TERMZNAL: h FILE_TYPE)

FStur!ISOOLZAN;

private

typs FILE_TYPE is (IMPLZNSNTATION_DEFINSD) ;
-- This type should be defined by the implementer.

type FUNCTION_REY_DESCRIPTOR is (IMPL.P.bDCNTATION_DEFINZD) ;
---This type should be defined by the implementer.

end CArS_SCROLL-TESJtZNAL_IO;

with CAIS_STAWDASD ;

with CAIS_DEFINITIONS ;
with CAIS_IO_DKFINITIONS ;
package CAIS_PAGE_TENblINAL_IO is

U.W CAIS_STANDAND ;

use CAIS_DEFINITIONS ;
use CAIS_IO_DEFINITIONS ;

type FILE_TYPE is limitedprivate;

ty~ FILl_NODE k (XN_FILE, 0U9_FILit, INO~_FILE) ;

type CNARACTER_ARRAY is array (CNASACTER) of BOOLEAN;

typa FONCTXON_XEY_DESCRIPTOR is limitedprivate; ●
S62

Downloaded from http://www.everyspec.com



DOD-S’TD-1838 CAIS SPECIFICATION

APPENDIX B

subtype FUNCTION_KEY_NANE is STRING;

tyf.ls

type

type

type

type

TERMINAL_POS ITION_TYPE is

recurd
Row : CAIS_POSITIVE;
COLUMN : cAIS_POSITIVE ;

end recurd;

TAS_STOP_KIND is (lioRIZONTAL, VERTICAL) ;

SELECT_RJWGE_KIND is
(FACS6_ACTIVE_POS ITION_TO_END ,

FROM_STMT_TO_ACTIVE_POS ITION ,

ALL_POSITIONS) ;

GRAPnIC_KENDITION_KIND is
(PRI16ARY_RENDITION,

SOLD ,

FAINT,

UNDEMCORE ,

SLOW_SLINR,
RAPID BLINK,

REVE=-E_INAGE) ;

GSAPHIC_AEND ITION_AKKAY is array (GRAPNIC_RENDITION_KIND)

of SCCILEAN;

DEFAULT_GRAPFiI C_REND ITION : mnstsnt GPAPHIC_RXNDITION_ARRAY := ~~

(PRINARY_RXNDITION => TRUE, SOLD. .RzvEFQIE_IMAGE => FALSE) ;

prucedure OPEN (TEKt61NAL: in out FILE_TYPE;
NODE : in NODE~TYPE ;

MODE : in FILE_6S2DE) ;

prucedure CLOSE (TERMINAL: iN out FILE_TYPE) ;
function IS_OPEN (TESMINAL: in FILS_TYPE)

return%OOLSAN ;

functionNUMBER_OF_FUNCTION_KEYS (TERNINAL: in FIL.Z_TYPE)
return CAIS_NATUSAL ;

functionINTERCEPTED_INPUT_CHAPACTERS (TERMINM : in FILE_TYPE )
return CHARACTER_APRAY;

functionINT!JKCEPTF,D_OUTPUT_C~TERS (’TERMINr&: in FSLE_TYPE)

return CHARACTER_ARKAY ;

prucedure ENASLE_mJNCTION_KEYS (TERMINAL: in FILE_TYPE;
ENASLE : in SOOLEAN) ;

f3N3Cti0nFUNCTION_KEYS_ARZ_ENASLED (TERMINAL: in FILE_TYPE)
return SOOLSAN ;

pruredure SEl!_ACTIVE_POSITION (’SERMINAL: in FILE_TYPE;

POSITION : iN TEPJtINAL_POSITION_TYPE) ;
fUnCtiUnACTIVE_POSITION (TEPJ61NAL: in FILE_TYPE )

return TERbUNAL_POS ITXON_TYPE;

fUnCtiOOPAGE_SIZE (TEPMINAL: in FILE_TYPE)
r@IN13 TERMINAL_POSITION_TYPE;

prUCedureSET_TAS_S~P (TERMINAL: h FILE_TYPE;

KIND : in TAS STOP KIND := SORIZONTW) ;

prUCed@ CLBAR_TAS_STOP (TERMINAL: id r=LE_I%E;
KIND : h Ty_SmP_KIND :. IiORIZONTti);

prucedure CLEAR_ALL-TAS_STOP S (TERMINAL: IN FILE_TYPE;

L 563

Downloaded from http://www.everyspec.com



cm SPECINCA?ON DOD-STD-1838

APPENDIXB

KIND’” in T~_STOP_KIND := HORIZONTAL

prUCWh& TAB (TERMZNAL: in FILE_TYPE;

COUNT : in CASS_POSITIVE := 1 ;
KIND: in TAB SWP_RIND := HORIZONTAL) ;

procedure SOUND_BELL ‘(TERMINAL: ‘h FILE_TYPE) ;
prSCP&NW POT (TE~I?AL : iN FILE_TYPE;

ITZWl: in ,CNARACTER) ;

pr&Pdur+ POT [TERMINAL: h. FILE_TYPE;

ITEM: iN STRING) ;
prucedure GET (TEs&INAL: in FILE_TYPE ;

ITEM: OiJt CNARACTER;

KEYS : in OUt FUNCTION_KSY_DESCRIPTOR) ;
prucedure GET (TERMINAL: k .” FILE_TYPE ;

ITSM: “out STRING;

LAST : out CAIS_NATURAL ;
KEYS : in out FONCTION_KSY_DE SCRIPTOR) ;

prucedure C~TE_rONCTION_KsY_DEsCRIPTOR

(mYs : in out FONCTION_KEY DESCRIPTOR;
MAXIMOM COUNT: in CAIS_POSITI~-) ;

prnCPdure DELETE “F~CTION-KEY_DESCRIPTOR
‘(KEYS : “in-OUtFUNCTION_KEY_DESCRIPTOR) ;

functionfWNCTION_REY_COUNT (KEYS: in b“ONCTION_SEY_DESCRIP7X)R)

return CAIS_NATORAL;
procedure GET_FUNCTION_KEY

(KSYS: . in FONCTION 10ZY_DESCRIPTOR ;
INDEx : in CAIS_POS?TZVE ; ‘“
KEY;IDENTIF IER : Out CAIS_POSITIw ;
POSITION : Out CAIS_NATORAL) ;

fINICtiOnFUNCTION~KEY_IDENTIr XATION

(TEPMZNAL : in Z’ILE ME;

KEY_IDENTIFIER: in CA15’~POSZTIVN)
return rUNCTION_IW.Y NAME; $ ‘ “ ~~~

fim~n I@DE (TENMINAL ~ in rILZ_TYPE) .

return FILE_WDE;

pmWhNt DELETE_CHASJiCTER (TEPMINM, : in FILE_TTPE ;

COUNT : in CAIS POSITIVE :=,1) ;
pruceilureDELETli_LI~” (TERMIN~: in Z’ILE_TYPE7

Cogtl! r:,,, in CAIS POSITIVE := 1) ;
prtlceduriEWE_CNAPACTER (TERMINAL: il-FILE_TYPE ;

CODNT : in CAXS_POSITIVE := 1) ;
prtrxdure ERASE_IN~DISPLAY (TERMINAL: iN HLIz TYPE;

SELECTION : in SELE~T SANGE_KIND) ;
prnzedure kiiE_IN_LINE (TEPAd2NAL: in rILm_TYPE7

SELECTION.:. in SELECT_RANGE_KIND) ; “
pttied;m INSERT_SPACE (TESMZNAL : in TXLE_TYPE ;

CO* : in CAIS_POSITIVE := 1) ;
p&dU~ INSERT-LINE (TERMLNAL : ,jnFILE_TYPE ;

COONT : iN CAIS_POSITIVS := 1);
fNIICti&GNAPHIC_RNNDZTION_IS_SOPPORTIZD

(TE~NAL : in FILE TYPE;
.! REti ITION : iIIGF@PtiIC_~NDITION_ARR+Y)

retrim SOOLEAN; ,., )

JNOCHhW SELECT_GRFiPIiIC_RENDITION
: (TERMZNAL : in FILE_TYPE;

RX,NDITION :,in GNAPNIC_RENDITION -Y :=

DEFAULT_GSAPHI~_kWD ITZON) ;

‘) ;

o

●
564

Downloaded from http://www.everyspec.com



DOD-STD-1838 CAIS SPECIFICATION

APPENDIX B

function MD_POSITION_SUFPORT (TER6tINAL: in rILE_TYFE)
return SOOLEAN ;

procedure RESET (TEPJtLNAL: in out FILE_TYFE;
M2DS.: in FILE MODE) ;

prucedurs SYNCNKONIZE (TERMINAL: in r~LE_TYFE );

pWedUrL? ENASLE_SYNCNRONI EATION (TEPMINAL : in ~ILE_TYPE ;

ENANLE : in SOOLEAN) ;

function SYNCKROtJIZATION_IS_ENASLED (TEPMIN~: in FILE_TYFE)

Mum SOOLEAN;

private
type rILE_TYFE is (IMPLEMZNTATION_DEFINZD) ;

-- This type should be defined by the implementer.

type mNCTION-KEY_DESCRIPTOR is (INPLENENTATION_DEF INED) ;

-- This type ahauld be &fined by the ~lcune.nter.

end CAIS_PAGS_TIESMINAL_IO ;

with CAIS_STPANJAKD ;

with CAIS_DE~INITIONS;
with CAIS_IO_DEFINIT IONS ;

package CALS_~ORM_TEPMZNAL_IO is

use CAIS-STANDARD ;
use CAI S_DEF INI TIONS ;

uss CAI S_IO_DEr INITIONS ;

typa FILE_TYPE is limited private;

typa FOPX_TYFX is limited private;

type CNARACTER_AKRAY is array (CNASACTER) of EOOLEAN;

subty~ pUNCTION_KEY_NALIEis STRING;

type --’’’””’” ‘ -A-’’”’-” —- ‘“

type

type

typa

type

..-”--.”.. . . . . . . . . . u

recurd

RON: CAIS_POSITIVE ;

COL- : CAIS_POSITIVE ;
snd rsmrd;

ASXA_INTENS I’Z_KIND is
(NONE,
NOSMAL,
HIGH) ;

AKEA_PROTECTION_KIND &

(ONPSOTECTED,

PROTECTSO) ;

AKEA_INFOT_KIND is

(GKAPHIC-CiW@CTERS ,

NDMERICS ,
ALPNASZTICS) ;

r@zA_VALW._KINO is

,.. :

L
565

Downloaded from http://www.everyspec.com



CAN SPECIFICATION DOD-STD-1838

APPENDIX B

(NO_FILL,
FILL_WITH_ZEROES,
FILL_?ISTES_SPACES) ;

subtype PRIWTASLELCHARACTER is CRASACTER range , , .. ASCII .TILDE;
.

prOCMure OPEN (TERMINAL: h out FILE_TYPE;

NODE: in : NODE TYPE);
procedme CLOSE (TERMINAL: bou. FIL~_TTPE) ;

fUnCtio.IS_OPEN (TEFu41NAL: in FILE_TYPE)

return 800LSAN ;
fUndOn NUblNER_OF_FUNCTION_KSYS (TERMINAL: in FILE_TYPE)

return CAI S_NA~;

fUIICtiOri INTERCEPTED_INPUT_CWAWXCTERS (TERMINAL: in FILE_TYPE)
return CWASACTER ARSAY:

return CWCTER-_ARSAY;-
procedure CICZATE_FOSM

(Foml:

Rows :

COLU6fNS :

ASXA_QUALIFIER_REQUIRES_SPACE :
prOCHhtR DELETE_FOSM (FORM: in Out FORh_TYPE) ;
prcechu’e COPY_FOSM(FROM: in FORM_TYPE ;

TO: !U out FORbl_TYPE ) ;
procedure DEFIll_QUALIFIED_AREA

(FOPM: in oUt FOSM TYPE;

functionINTERCEPTED ‘ouTPti CHAIUCTERS (TESJ41NAL: in FILE_TYPE)

in out FOPA._TYFE;

iu CAIS_POSITI~ ;
in CAIS_POSITIVE;
in SOOLEAN) ;

INTENSITY: in “AREA~INTENSITY_KIND := NOPU6?W;
PROTECTION: in AREA_PROTECTION_KIWD := PROTECTED;
INPUT : in ARNA_INPUT_RIND := GlW@HIC_CWAKACTER9; o
VALUE : in AREA_VALUE_KIW :. NO_FILL) ;

prOC.XhIreNXWOVE_~_QUALIFIER (FO~: iN OUt FONM_TYPE);
procedure SET_ACTI~_POSITION, (FOPM: iN out TOSM TYFE;—

POSITION : in TENJ6NlL_POSITIOW_TYPE) ;
functionACTIVS_POSITION (FORM: iN ~O~_TYPE)

return TESMN+L_POSITION_lWPE ;
pr(rCWk~ ADVAWCE_~_QUALIF IED_@,A (FOSM: in out FosM_TYPE ;

. COUNT; in CAIS_POSITIVE := 1) ;
prOWdu~ PUT (FO~: iN out FORM_&E;

IT%: iN PRIWTAELE CNARACTXR) ;
prOCedumPUT (FOl&l: in Out FOW_TYPE7

ITS6f: iN STRING)”;
procedure ENASE_M@A(FOIU.t:in out’ FOS3_TYPE) ;

ptUCdure ERASE_FOPM (FORM: ~ out W@M_TYPE) ;
prOCedu~ACTIVATE (TERMINAL: in FILE_TYPE;

FONN : in Out FOP3_TXPE) ;
pKNXdu~ GET (FOSM: in Out FORM_~E;

ITEM: Out PRXNTASLE CNiRACTER) ;
procedure GET (rosl.i:in out FOSM_TYFE7

XTEN : out STRING) ;
functionIS_FORM_~DATED (FONM: in FONM_TYPE)

return wxxJtAN; ,’,
function FUNCTION_SEY_IDENTIFICATION c: ~~

“(TERMINW”: in FILE-TYPE;

KEY_IDENTIFIER: in CAIS_POSITIVE)
return FUNCTION_KEY_NAblE ;

finctionTESblINATION_~Y (FOKN: in FORM_TSFE)

. .

566
- ——

Downloaded from http://www.everyspec.com



.,.

DOD-STD-li38 CAIS SPECI~CATION

APPENDIX B

return CAIS_NATIJSAL;

function FORM_SIZE (FORbt: in FORM_TYPE)

Mum TEKMINAI_POSITION_TYPC;

tinction TEPMINAL_SIZE (TESMINAL: in FILE_TYPE)
return TERNINAI_POSITION_TYPE;

function ARIIA_QU$&.I~IER_P.!ZQU&S_SPACE (z’OPM: in FORM_TYPE)
return “BOOLEAN;

function AREA_QUALIFIER_RKQUIRES_SPACE, (TERMINAL: in ~ILE_TYPE)

return ECOLEAN;
,..

private

type FILE_TYPE is (I16PLENZNTATION_DEHNED) ; ,.

. . This type should be defined by the hpleUWmteZ.

type FORM_’+YPE is (IMPLENENTATION_DEF INZD) ;
-- This type should be defined by the implementer.

end CAIS_FOPM_TESMINAL_IO;

with CAIS_STANDAP3 ;
with CAIS_DEFINITIONS ;
package CAIS_MAGNETIC_TAPE_IO is

use CAI S_STANDMID ;
uwt CAIS_DEIFINITIONS ;

O’LW FILE_TTPE is limited private;

type FILE_t.@DE is (IN_FILE, ONT_FILE) ;

subtype TAP E_NAMZ is STRING;

subtype TAP E_BLOCK is STRING;

type

type

type

TAPE_DRIVZ_STATUS_KIND k

(OPENED,

BtOVNT_REQUESTED,
~QNTED ,
LOADED,
CLOSED) ;

TAP E_POSITION_KXND iS
(BEGINNING_OF_VOLWME ,
END OF_VOLNME ,
END~OF_TAPE ,
AFTER_TAPE_bWM ,
OTNER] ;

T~C_RECORDING_NETHOD_KIND is

(NON_RETURIJ_~_ZERO_INVERTED ,
PKASE ENCODED,
GROUP:CODED_RECOiUUNG) ;

TAP E_S?ATIJS_ERROR: exception;

prciceduti “OPEN(TAPE_DRIVE: in out FILE-TYPE;

... .

367

L

Downloaded from http://www.everyspec.com



CAM SPECIFICATION DC)D-STD-1838

APPENDIX B

NODE: \ in NODE.TYPE;

bN)DE: k FILE~610DE] ;
prm~u~e C-SE (TAPE DRIVE: k OlltFILE_TYPE) ;

functionIS_OPEN (TAPz_DRIVE: in FILE_TTPE)

return SOOLSAN;
functionl@DE (TAPE_DRIVE: in FILE_TYPE) !

return FILE ~DE !

prcedure

procedure

procedure

i7EQUE~T_610& (TAFE_DRIVE :: , in FILE_TTFE;
NM: in TAP!J_NAMS ;
KECORD1NG_61ETHOD : ~ TwE_mCO~ING_~THOD_KIND;
INSTALL_NRITE_RING : in BOOLEAN := r=$z) ;

LOM) (TF@E DRIVN : in HLE_TTRE;
BLOC~_SI ZE : in CAIS_POSITIVE) ;

mworm (TAPE DRrvs: in FILE rows);

rm.xxlure REQUEST_DISM&INT (’l?@E_D~fi : in’FILE_TYPE) ;

~nction POSITION (TAPE DRIVS: in FILE TYPE)
return TuE_POs IT IO-N_KIND;

procedurv REirIND_TAPE (TAPE_DRIVE : ih FIIJ_TYPE) ;

procedure SKIP_TAPE_MARK (TAPE_DRIVE: in FILE_TTPE;

CODNT : iN CAIS_POSITIVE := 1) ;
procwdure NKITE_TAPE_NARK (TAPE_DRIm: in FILE_TTFE) ;

functionSTATOS (TAPE_DRIVE: in P’ILE_TTsE)

return TAP E_DRIVK_STATUS_KIND;

functionRECOSDING_MSTHOD (TAgE_DRIVE: in FILE_TTPE)
return TAsE_RECOsn rNG_6iETHOD_KIND;

function IS_NRITE_RING_INSTALLED (TAPE_DRIVE: in HLE_TYPE)

AWI’I BOOLEAN;

prOCedUre SKI.P_BLCCK (TAPE_DRIVE: h FILE_TTPE;

COUNT : in CAIS_POSITIVE := 1) ;

prcxxdure REAL_BLOCK (TAPE_DRIVE: h FILE_TYPE ;
BLOCK : Out TAFE_BLOCK ;

.LAST: out ~lS_NA~ ;
BAOCK_OVERFLOW: Out CAIS_NATDRAL);

procedure NRITE_SLCCK (TAPE_DRIVE: in FILE_TTFE;

B-s : in TAPE_BLCCK) ;

procedure RESET (TAPE_DRIVE: in out rILE-TTFE;

~DE : in FILE_btODE) ;

private

type FILE_TTPE is (IbleLEbiENTATION_DE~ INED) ;

-- This type should be defined by the implementer.
end CAIS_btAGNETIC_TAP E_IO ;

with CAIS DEFINITIONS;

with CAIS-L1 ST_W?AG=~ ;

package &..S_Ib!PORT_EXPORT is

use CAIS_DEFINITIONS ;
use CAI S_LI ST_MANAGEMENT ;

procedure 16tPORT_CONTENTS

procedure IMPORT_CONTmTS

●

(FROM: in STRING;
To: in NODE_TYFE ;
CHARACTERISTICS : illLIST_TTPE := RMP12_LIST) ;
(FR0h4: in STRING;
To: k PAT~* ; ●

568

Downloaded from http://www.everyspec.com



DOD-STD-1838 CAIS SPECIFICATION

APPENDIX B

CWC!CERISTICS : in LIST_TYPE := EMJWY_LIST) ;

procedure SXPORT_CONTmTS (rRCM: in NODE TYPE;

To: in STRI~G;

CHARACTERISTICS : in LIST_TYPE := SMPTY_LIST) ;

prucedure EXPORT_CONTDXTS (FROM: in PATNNAME ;

To: in STRING;

CHARACTERISTICS : in LIST_TYPE := EblPTY_LIST) ;

end CM S_IUPORT_ZXPORT ;

o

I
S.wsla

Downloaded from http://www.everyspec.com



DOD-STD-1838 CROSS REFERENCES

APPENDIX c

A endix C
H’Cross Reference of C S Procedures and Functions

The material contained in this appendix is not a mandatory part of the standard.

This appendix lists the CAIS procedures and functions in order to allow the reader ready
access to a description of a particular capability in the CAIS.

a-... -. - -. —, -.

*

Float Items 593

Form Terminal 588

Integer Items 593

List Items 592

Node Handles 573

Node Iterators 579

Process Control 581

Process Information 581

Queues 590

Relationship Attributes 577

Relationships 576

Scroll Terminal 585

571

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD-1838

APPENDIX C

I List Of Tables -- Continued.

Table Name Page

I’String Items I 593\

Time and Calendar 594 i
I 1 I

●
,.

‘.. ,
,i ;,.:,,.$ ,, ,. ::. :,

.,, . .

c ‘t.

I

●
572

Downloaded from http://www.everyspec.com



DOD-STD-1838

APPENDIX C
CROSS REFERENCES

L

●

Node Handles

Description of Operations Applicable Interfaces Page

Opening a handle to a named OPEN 63
node

Closing a handle CLOSE 66

Changing intent CHANGE.INTENT 67

Query for operr-ness IS_OPEN 69

Query for intent INTENT 70

Obtaining in index for a node INDEX II 84’
handle

Opening a handle to pwent OPEN_PARENT 85

Getting next open node handle GET_NEXT 111
on an iterator

Getring a handle to current node GET_CURRENT_NODE 117

Query for number of open node OPEN_NODE_HANDLE_COUNT 202
handles of a process

1

Que~ for number of open fde OPEN_FILE_HANDLE_COUNT 72
handles associated with a fde
node handle

Nodes

Description of Operations Applicable Interfaces Page

Query for node kind KIND.OF.NODE 71

Query for obtainability or IS_OBTAINABLE 81
accessiblit y

Query for sameness IS_SAME 82

Duplicating a node COPY_NODE 87

Duplicating a tree of nodes COPY_TREE 89

Ren-g a node RENAME 92

Deleting a node DELETE_NODE 94

Deleting a tree of nodes DELETE_TREE 96

Deleting a job DELETE_JOB 188
-

Get next open node handle on an GET.NEXT 111
iterator

Get path element to next node N~_NAME 114
on art iterator

,.

573 . . .

. .

-.
‘..

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD- 1838

APPENDIX c

-

.-

./ ‘

Nodes -- Continued.

Description of Operations Applicable Interfaces Page ●
Skiu next node on an iterator ISKIP NEXT 113,. —

Gettiog &eation time for a node TIME.CREATED 119

Getring the last time that any ~ME_RELATIONSHIP_WRITTEN 120
relationship. on a,, node was
modified

Getting the last t@e that any TIME_ATT’RIBUTE_WRflTEN 122
attribute on a’node was modified ,“

Getring the l~t. time that node TIME_CONTENTS_WRITTEN 121
contents were written

Setting access control SET;GRANTED_RIGHTS 154
information for a node ,,

Deleting access control DELETE_GRANTED_RIGHTS 156
information for a node

Getting the access method ‘for a ACCESSLMETHOD 218
node

Query for kind of fiie node KIND_OF_NODE 71

Query for kind of queue node KIND_OF_QUEUE 220

Query for- kind of device “fde KIND_OF_DEVICE 221
aode

,., ., . . .,, .,

Setting CURRENT.NODE SET_CURRE~_NODE 116

3eating a structural node CREATE_NODE 164

~reatirrg a process node SPA~_PROCESS 174

~reating a process node INVOKE_PROCESS 180

leating a root process riode CREATE_JOB 185

2r6ating a direct” “ffle and its CREATE 228
lode

~reatiog a sequential fde and its CREATE 237
lode

3eating a text fde and its node CREATE 246

~reating a nonsynchronous copy CREATE_NONSYNCHRONOUS_ 257
peue node COPY_QUEUE

leating a nonsynchronous. CREATENONSYNCHRONOUS_ 262
nimic queue node MIMIfZ_QUEUE

~reating a nonsync~onous solo CREATE_NONSYNCHRONOUS_ 267
ext queue node SOLO_’E~_QUEUE

. .

. 574

... , .,-

-

Downloaded from http://www.everyspec.com



DOD-STO-1838 CROSS REFERENCES
APPENDIX c

.

●

●

o

Nodes -- Continued.

Description of Operations Applicable Interfaces Page

Creating a nmtsynchronous solo CREATE.NONSYNCHRONOUS. 271
sequential queue node SOLO.SEQUENTIAL.QUEUE

Creating a synchronous solo text CREATE_SYNCHRONOUS_ 274
queue node SOLO_TE~_QUEUE

Creating a synchronous solo CREATE_SYNCHRONOUS_ 278
sequential queue node SOLO_SEQUENrLAL-QI.JEtJE

Files .’,.

Description of Operations Applicable Interfaces Page

Read and write operations lSameas specified in[1815A]” . I
‘.

Input and output operations See subsections of 5.3

Querying the kind of file IUND_OF_FILE 219

Deterr-njning the current size of a CURRENl_FILE_SIZE 222
file . . .

Determining the maximum size MAXIMUM_FILE_SIZE 223
of a fide .,

Detehing the last time that TIME_CONTENTS_WRITTEN 121
the contents of a fde were
updated

Getting the access method for a ACCESS_METHOD 218
fde

Creating a direct file ICREATE 228

Opening a direct file )OPEN 231

Closing a direct file CLOSE 232

Resetting a direct fiie RESET : 233

Synchronizing direct fdes SYNCHRONIZE 234

Creating a sequential file CREATE 237

,Opening a sequential fde OPEN 240

Closing a sequential fde CLOSE 241

Resetting a sequential fde RESET 242

Synchronizing sequential files SYNCHRONIZE ; 243

Creating a text ffie CREATE ‘ 246

Opening a text fde OPEN “’” 24S
I 1

Closing a text fde CLOSE 250

575

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD-1838

APPENDIX C

;“Files -- Continued.

Description of Operations Applicable Interfaces Page

Resetting a text fide RESET “ 251

Synchronizing text fdes SYNCHRONIZE 252

Importing the contents of a f~e IMPORT.CONTENTS 415

Exporting the contents of a fde EXPORT.COWEWS 417

Pathnsmes

Description of Operations Applicable Interfaces Page

Unique primary pathname PRIMARY.NAME 73

Lsat key of unique” primary pR~ARY_KEY ‘. 74
pathixurre .

iii.it relation name of unique PR.~@lR~LA~ON 75

Pf@Wpathnm ~ .,, ,“.

Relationship’ key ,.of Iast PATH_KE% 76
parhname element for handle’ .. ;.:.

Relation name of lit pathname pATH_R~L~~ON, 77
element for”handle

B’a.iepadmbe BASE_PATH 78

Relation name of last pathnsme LAST_RELATJON 79
element .,.

.Relationship key of last LAST_KEY “ 80
,pathname element ,.

Get path element to next node N~_NAME 114
on an iterator

,,
,.

‘Relationships

Description of Operations Applicable Interfaces Page

Rerurn+g a primary relationship RENAME 92

Deleting a primary relationship DELETE_NODE 94

Deleting” a tree of primary DELETE_TREE 96
.-, ,

relationships .,. ;

Deleting a job DELETE_JOB 1;8

Creating a secondary CREATE_SECONDARY_RELA~ONSHIp 98
relationship ●

S76

Downloaded from http://www.everyspec.com



DOD-STD- 1838 CROSS REFERENCES
APPENDIX c

●

●

●

Relationships -- Continued.

Description of Operations Applicable Interfaces Page

Deleting a secondary DELETE_SECONDARY_REL4TIONS HfP 100
relationship

Setting inheritance property of a SET_INHE~ANCE 102
relationship

Query for inheritance property IS_INHERITABLE 104
of a relationship

Setting the CURRENT_NODE SET_CURRENT_NODE 116

Query last time a relationship T’IME_RELATIONSHIP_WRJTll?N 120
was modified

Deleting access relationship DELETE_GR~ED_RIGHTS 156

Predefine Relations

Description of Operations Applicable Interfaces Page

Getting the CURRENT_NODE GET_CURRENT_NODE 117

Creating the JOB relationship CREATE_JOB 185

Deleting the JOB relationship DELETE_JOB 188

Relationship Attributes

Description of Operations Applicable Interfaces Page

Creating a path attribute ICREATE_PATH_AITRIBUTE 127

Deleting a path attribute DELETE_PATH_ATITUBUTE 131

Sening a path attribute SET_PATH_ATTRIBUTE 135

Getting a path attribute GET_PATH_AITRIB UTE !39

Seiting inheritance property of a SET_INHERITANCE 102
relationship

Query for inheritance property IS_INHERITABLE 104
of’a relationship

Query last time a relationship TIME_RELAtiONSH fP_WRITTEN :
1

120
was modified ., 1

Getting value of GRANT GET_GRANTED_RIGHTS ,, 158
attribute

577

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD-1838

APPENDIX c

Node Attributes

Descriptiorrof Operations Applicable Interfaces., Page

Creating a node attribute CREATl_NODEjATTRIBUTE 125

Deleting a node attribute DELETE_NODE_A’lTREIUTE 129

Setting a node attribute SET_NODE_ATI’RIB UTE 133

Getting a node attribute GET_NODE_ATTRIBUTE 137

Query last time that node TIME_ATTRIBUTE_WRIITEN 122
attribute was modified

Appending to RESULTS APPEND.RESULTS 190
attribute

Replacing the RESULTS WIUTE_RESULTS 191
attribute

!

Reading the RESULTS atwibute GET_RESULTS 192

Reading the CURRENT_ CURRE~_STATUS 194
STATUS attribute

Reading the PAR@lETERS GET_PARAMETERS 195
atvibute

Reading the OPEN NODE_ OPEN_NODE_HANDLE_COUNT 202
HANDLE_COUNT att~bute

Retiing the IO_UNIT_COUNT Io_uNIT_couNT 203
attribute

Reading ~~~the T~E_, -TIME:A~fUBUTE_WRI1’TEN
ATTRIBUTE_WR1’ITEN “‘ T 122

attribute

Reading ~~~the TIME_ TIME_CONTEITRS_WRITTEN 121
CONTENTS_WR1’ITEN
attribute

Reading the TIME_CREATED TIME_CREATED I 119
attribute ,. .,.

Reading ““the TIME:. ,~ME_RELATIONSHIP_WRHTEN 120
RELATIONSHIP_WRI’ITEN “ “.”
attribute

Reading the TIME.STARTED TIME.STARTED 204
atrnbute

Reading the ~_FINISHED TIME_FINISHED 205
aijribute ““” ‘“ ““’” “’””” ;~,:~ ,1 i-l

. ,,’. ;i

,.

●
578

Downloaded from http://www.everyspec.com



DOD.STD-1838 CROSS REFERENCES
APPENDIX C

●

o

0

Node Attributes -- Continued.

Description of Operations Applicable Interfaces Page

Reading the MACHINE_TIME MACHINE_TIME 206
attribute

Reading the PROCESS_SIZE PROCESS_SIZE 207
attribute

Reading the ACCESS_ ACCESS_METHOD 218
METHOD attribute

Reading the FILE_KIND KIND_OF_FILE 219
attribute

Reading the QUEUE_KIND KIND_OF_QUEUE 220
attribute

Reading the DEVICE_KfND KIND_OF_DEVICE 221
attribute

Reading the CURRENT_FfLE_SIZE 222
CURRENT_FILE_SIZE
attribute

Reading the MAXIMUM_FILE_SIZE 223
MAXIMUN_FILE_SIZE
attribute

Reading the CURRENT_QUEUf_SIZE 224
CURRE~_QUEUE_SIZE
attribute

I
Reading the MAXIMUM_QUEUE_SIZE 225
MAXfMW_QUEUE_SIZE
attribute I

Node Iterators 1

Description of Operations Applicable Interfaces Page

Creating a node iterator ICREATf_ITERATOR 107

Querj for more nodes on iterator MORE 109

Approximate size of iterator APPROXIMATE_SIZE 110

Get next open node handle on an GET_NEXT 111
iterator

Skip next node on an iterator SKIP_NEXT 113

Get path element to next node NEXT_NAME 114
on an iterator

Delete a node iterator DELETE_fT%RATOR 115

579

>

1
,.--

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD-1838

APPENDIX C
..

.2 Attribute Iterators

Description of Operations Applicable Interfaces Page

Creating an iterator over node CREATE_NODE_A~rn UTE-lTERATOR 142
attributes

Creating an iterator over CREATE_PATH_ATTRLB UTE_ITERATOR 144
relationship attributes

Query for more attributes on MORE 146
iterator

Approximate size.of iterator. APPROXIMATE_SIZE 147

Get next anribute name on an NE~_NAh4E 148
iterator

Get next attribute value on an GET_NEXT_VALUE 149
iterator

Skitr next attribute on an iterator SKIP_NEXT 150
1 I

Delete an attribute iterator \ DELETE_lTERATOR 151
.

Access Control

Description of Operations Applicable Interfaces Page
I
Value of all predefiied access IALL_RIGHTS 153
rights

Setting access control SET_GRANTED_RIG r.fTs 154
information for a node

Deleting access control DELETE_GRANTED.RIGHTS 156
information for a node

Get value of granted rights GET_GRAN’TED_RIGHTS 158

Query approved access rights LS_APPROVED 159
for a process

Adouting a role ADOPT_ROLE 160

Unadopting a role IUNADOPT_ROLE 162

●

::,

.1

Downloaded from http://www.everyspec.com



DOD-STD-1838 CROSS REFERENCES
APPENDIX c

●

Process Control

Description of Operations Applicable Interfaces Page

Creating a spawned process and SPA~_PROCESS 174
its process node

Creating a process node and INVOKE.PROCESS 180
calling the process

Creating a root process node CREATE_JOB 185

Deleting a job DELETE_JOB 188

Waiting for a process to AW~_PROCESS_COMPLETION 178
complete

Abortirrg a process ABORT.PROCESS 196

Suspending a process SUSPEND_PROCESS 198

Resuming a suspended process RESUME_PROCESS 200

Process Information

Description of Operations Applicable Interfaces Page

Appending to RESULTS APPEND_RESULTS 190
attribute

Replacing the RESULTS WRITE_RESULTS 191
attribute

Reading the RESULTS attribute dET_RESIJLTS
.,

192

Detemring the current status of a CURRE~_STATUS 194
process

Getting the parameters list of a GET.PARAMETERS 195
process

Quesy for number of open OPEN_NODE_HANDLE_COl_INT 202
handles of a process

Query for number of input and IO_UNIT_COUNT 203
output units used by a process

Que~ for time that a process TIME.STARTED 204
started

Query for time that a process TIh4E_FINISHED 205
finished

Query for time that a process MACHINE--TIME 206
has been active

Query for the size of a process PROCESS-SIZE 207

581

Downloaded from http://www.everyspec.com



.4

.

CROSS REFERENCES DOD-STD- 1838

APPENDIX C

Process Information -- Continued.

Description of Operations Applicable Interfaces Page

Query approved access rights IS_AppROVED 159
for a process

Input Output

Description of Operations Applicable Interfaces Page

I Read and write operations ISame as,specified in [1815A] I
Input and output operations See subsections of 5.3

Creating a direct fde and its CREATE 228

node

Opening a duect file OPEN. 231

IClosing a direct ffle ICLOSE I 232

Resetting a direct ffle RESET, 233

Synchronizing direct fdes SYNCHRONIZE 234.,,

Creating a sequential fde and its CREATE .,, . . 237
I I

Opening a sequential ffle OPEN. 240

Closing a sequential fde CLOSE 241

Resetting a sequential fde RESET ,.. 242

Synchronizing sequential fdes SYNCHRONIZE ~ ., ,.. 243

Creating a text ffle and its node CREATE ,, 246

Opening a text fde \ OPEN 249

Closing a text fife ICLOSE 250

Resetting a text fiie RESET 251

Svnchronizinfz text fdes ISYNCHRONIZE 252

E
Query the last time that node
contents were written

Query number of. input and
output units used by a process

Query access method of a ffle
node

Quew the kind of ffle node

ACCESS_METHOD 218

I

KfND_QF_FILE 219

IQuery the kind of queue fde IKIND_OF_QUEUE [ 220
I node I 1,

●

●

●
5.42

Downloaded from http://www.everyspec.com



●

DOD-STD-1838 CROSS REFERENCES
APPENDIX C

Input Output -- Continued.

.Description of Operations Applicable Interfaces Page

Que~ the kind of device ffle KIND.OF.DEVICE 221
node

Query the current size of a fde CURRENT_FILE_SIZE 222

Query the maximum size of a MAXIMUM_FILE_SIZE
fde

223

Query the current size of a CURRE~_QUEUE_SIZE 224
queue

Query the maximum size of a M AXIMUMQUEUE_SIZE 225
queue

1 File Handles

Description of Operations Applicable Interfaces Page

Query for number of open fde OPEN_FILE_HANDLE_COUNT
handles” associated with a fiie

72

node handfe

Opening a dmcr file handle OPEN 231

Closing a direct ffle handle CLOSE 232

Resetting a direct file handle RESET 233

Synchronizirrg duect fdes SYNCHRONIZE 234

Opening a sequential file handle OPEN 240

Closing a sequential fde handle CLOSE 241

Resetting a sequential ffle RESET

I
242

handle

Synchronizing sequential ffles SYNCHRONIZE 243

Opening a text ffle handle OPEN 249

Closing a text fde handle CLOSE 250

Resetting a text file handle RESET 251

Synchronizing text fdes SYNCHROMZE 252
I 1

Opening a scroll terminal fde OPEN 287
handle

1 1

Query open-ness of a scroll Is_oPEN 289
terminal ffle handle

1 1

Closing a scroll terminal fiie CLOSE 288
handle.

583

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD- 1838

APPENDIX C

File Ha&lles -- Continued.

&scription of Operations - Applicable Interfaces Page

Resetting a scroll terminal fde RESET
liar@le

315

Synchronizing scroll terminal SYNCHRONIZE 316
fdei

Setting scroll terminal fde ENABLE.SYNCHRONIZATION I 317
handle synchronization

Query scroll terminal file handle SYNCHRONIZATION_IS_ENABLED 318
synchronization

Opening a page te~inal fde OPEN 323
handle

Query open-ness of a page IS_OPEN 325
terminal fide handle

Closing a page terminal fde CLOSE 324

Resetting a page terminal ffie RESET 358
handle

Synchronizing page terminal SYNCHRONIZE 359
files .
Setting page termimd ffie handle ENABLE_SYNCHRONIZATION 360
synchronization

Querj page. terminal” file himlle SYNCHRONIZATTON_IS_ENABLED 36i
sjmchronization

.,

@6hing a form terminal ftie OPEN : 364
handle ,.

Query open-ness of a form IS.OPEN 366
terminal ffie handle

Closing a form terminal ffie CLOSE 365
handle

@ening a tape drive ffle handle OPEN ‘ 395

Qu?v opkrr-ness of a tape drive IS_OPEN 397
fiie handle

Closing a tape drive fide handle CLOSE 396

Resetting a tape drive ffle handle RESET 413

I
o

0

. -- . . . .

584

Downloaded from http://www.everyspec.com



DOD-STD-1838 CROSS REFEREIfCES

●

●

●

APPENDIX C

Scroll Terminal

Description of Operations Applicable Interfaces Page

opening a scroll terminaf ffle. opEN 287

Query open-ness of a scroll IS.OPEN 289
terminal fde handle

Closing a scroll terminal file CLOSE 288

Resetting a scroll terminal fide RESET 315

Setting scroll terminal file ENABLE.SYNCHRONIZATION 317
handle synchronization

Query scroll terminal f~e handle SYNCHRONIZAT’ION_IS_ENABLED I 318
synchronization

Synchronizing scroll terminal SYNCHRONIZE 316
files

Query number of function keys NUMBER_OF_FUNCTION_KEYS 290

Intercepted input characters INTERCEPTED_INPUT_ 291
CHARACTERS

Intercepted output characters INTERCEPTED_OUTPUl_
CHARACTERS I 292

Enabling function keys for ENABLE_FUNf3’ION_KEYS,, 293
terminal \.

Query of function keys enabled FUNCTION_KEYS_ARE_ENABLED 294

Setting the active position SET_AC~VE_POS~ON 295

Query of the actjve position ACITVE_POSITION , 296

Query of the size of the terminal PAGE_SIZE 297

Setting tab stop~ on the terminal SET_TN_STOP 298

Clearing tab ~tops on the CLEAR_TAB_STOP 299
terminal cLEAR_.4LL_TAB_sToPs 300

Advancing to next tkb position TAB 301
on the terminal

Sounding the terminal bell SOUND_BELL 302

Writirrg to the terminaf PUT 303

Reading a character tiom the GET ’304
terminal

Readiig all available characters GET 305
from the terminal

..
i,

585

Downloaded from http://www.everyspec.com



—-

CROSS REFERENCES DOD-STD-1838

APPENDIX C

Scroll Terminal -- Continued.

Description of Operations Applicable Interfaces Page

Creating a function key CREATE;FUNCTION_KEY_DESCRIFTOR 306
descriptor

Deleting a ‘fimction key DELETE_FuNCTION_KEY_DESCRIPTOR 307
descriptor

Query number of function keys FUNCTION_KEY_COUNT 308
read from terminal

Query function key usage for the GET_FUNC’ITON_KEY 309

terminal

Get Function key identification FUNCTION_KEY_lDENTIFICATION 310

Query for mode of the terminal MODE 311

Backspacing BACKSPACE 312

Advancing to next line NEW_LINE 313
I 1

Advancing to next page NEW_PAGE 314

Page Terminal

Description of Operations Applicable Interfaces Page

Opening a page terminal fde OPEN 323
htidle

Query open-ness of a page “IS_OPEN 325
terminal ffle handle

C1osing a page termimd file’ CLOSE 324,

●

Resetting a page termirial fde RESET 358
handle /

Synchronizing page terminal SYNCHRONIZE 359
ffles

Setting page terminal ffle handle ENABLE_SYNCl@ONIZATION 360
synchronization

Query page terminal fde handle SYNCHRONZATION_IS_ENABLED 361
synchronization

Number of function keys NUMBER_OF_FUNCTION_KEYS 326

Intercepted input characters INTERC.EPTED_INPUT_ 327
CHARACTERS

Intercepted output characters INTERCEPTED_OLiTP~_ “328
CHARACTERS

●
586

—.

Downloaded from http://www.everyspec.com



●

●

●

DOD-STD-1838 CROSS REFERENCES

APPENDIX C

Page Terminrd -- Continued.

Description of Operations Applicable interfaces Page

Enabling function keys for IENABLE_FUNCTION_KEYS 329
Lerminal

Query of function keys enabled FUNCTION_KEYS_ARE_ENABLED 330

Setting the active position SET.ACTIVE_POSITION 331

Query of the active position ACTIVE.POSITION 332

Query of the size of the terrninaf PAGE_SIZE 333

Setting tab stops on the terminal SET_TAB_STOP 334

Clearing tab stops on the CLEAR_TAB_STOP 335
terminal CLEAR_ALL.TAB_STOPS 336

I

Advancing to next tab position TAB 337
on the terminal

Sounding the terminal bell ISOUND_BELL

Writing to the terminal IPUT 339 I
Reading a character from the GET 340

terminal

Reading all available characters GET 341
from the terminal

I I

Creating a function key ICREATE_FUNCTION_KEY_DESCRIPTOR I 342
descriptor

Deleting a function key DELETE_FUNCTfON_KEY_DESCRIPTOR 343
descriptor

Query number of function keys FUNCTION_KEY_CO~ 344
read from terminal

I

Query function key usage for the GET_FUNCTION_KEY 345
terminal

Get function key identification FUNCTION_KEY_IDENTIFICATION 346

ouerv for mode of the terminal MODE 347

Deleting characters DELETE_CHARACTER 348

Deletin8 lines DELETE_LLNE 349

Erasing characters ERASE_CHARACTER 350

Erasing characters in a display IERASE_IN_DISPLAY 351

Erasing characters in a lie IERASE_lN_LINE 352

Inserting spaces in a line INSERT_SPACE 353

Inserting ‘ lines in the output INSERT_LINE 354
termird

587

Downloaded from http://www.everyspec.com



‘CROSS REFERENCES DOD-STD- 1838

APPENDIX c

I page ~enind -- Continued.

Description of Operations Applicable Interfaces Page

.@rery for graphic rendition GRAPHIC_RENDITION_IS_SUPPORTED 355
Supprl . .

Selecting the graphic rendition SELECT_GRAPHIC_RENDITION 356

Determining the effect of END_POSITION_S UPPORT 357
writing to the end position of the
terminal

FOW Terminal

. Description of Operations Applicable Interfaces Page

Opening a form terminal file OPEN ‘“ 364

Query open-ness of a file handle IS.OPEN 366

Closing “aform terminal fiie CLOSE 365

Number of function keys NUMBER_OF_FUNCTION_KEYS 367

Intercepting input characters INTERCEPTED_INPti_ 368
CHARACTERS

Intercepting output characters INTERCE,~ED_OUTP~_ 369
CHARACTERS ●

Creating a form CREATE_FORM 370

Deleting a forpr DELETE_FORM 371

\ copying a form COPY_FORM ; 372 I

Deftig a qtialified area DEFINE_QUALIFIED_@EA 373

Removtig a- area qualifier REMO~_AREA_QUALIFIER 374

setting the”titive position SET_ACTIVE_POSITION 375

Query of the active position ACfIVE_POSITION 376

Moving to the’ next qualified ADVANCE_TO_QUALIFIED_AREA 377
area. -

Writing to the form PUT 378

Erasing a qualitled area ERASE_AREA 379

,,E,r@ng”a form El$ASE_FORM 380

A ctivating a form on the AtTITVATE ; 381
terminal ,,.

Reading horn the form G~ 382

Que~” for changes to a form IS_FORM_UPDATED 383

/ ●
58S

Downloaded from http://www.everyspec.com



DOD-STD-1838

APPENDIX c

CROSS I&ERENCES

●

Form Terminal -- Continued.

Description of Operations Applicable Interfaces Page

Get function key identification FUNCTION.KEY.IDENTIFICATION 384

Q.e~”for die termination key TERMINAITON_KEY 385’

Query for size of the form FORM_SJ.ZE - 386

Query for the termimd size TERMINAL_SIZE 387

Queiy for the area quafitier AREA_QUALIFIER_REQUIRES_SPACE 388
requiring space in the form

Query for the area qualifier AREA.QUALIFIER_REQUJR~_SPACE 389

requirirrg space on the terminal

Magnetic Tape

Description of Operations Applicable Interfaces Page

O’~ning a tape drive fie OPEN 395

Query open-ness of a tape drive IS_OPEN 397
file handfe

Closing a tape drive file. CLOSE 396

Resetting a tape drke ffle handle RESET 413

Query for mode of the tape drive MODE 398

Requesting a tape mount REQUEST_MOUNT 399

Requesting a tape dismount REQUE($T_DISMOUNT 402

Loading a tape LOAD 400

Unloading a tape UNLOAD 401

Query for the positon of a tape POSITION 403

Query for the recording mode of RECORDING.METHOD 408
a tape

Query status of a tape drive STATUS 407

Query whether or not a write lS_VVfUT’E_lUklG_INSTALLED 409

ring is installed
1 1

Rewind the tape I REWIND_TAPE 404

Skipping tape marks on a tape ‘SKIP.TAPEJWA.RK .405

Writing tape marks on a tape WRITE_TAPE_MARK . 406

“Reading blocks from a tape READ_BLOCK 411

Writing blocks to a tape WRITE_BLOCK 412

ISkipping blocks on a tape ISICIP.BLOCK I 41OI

-.
5s9

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD- ( 838

Queues

+scription of Operations Applicable ~terfaces Page

Opening a queue fiie node OPEN
handle

6?

Closing a queue fde riodeharidle CLOSE 6f

Opening a sequential queue fde OPEN 24C
handle

I

Reading elements from a CAIS_SEQUENTIAL_IO. READ
sequential queue F

Writjng elements to a sequential CAIS_SEQUENTIAL_IO. WRITE
queue

Closing a sequential queue ffle CLOSE
htidle

241

Resetting a sequential queue fde RESET
handle

242

Opening a text queue fie handle OPEN 249

Reading elements from a text CAIS_TEXT_IO subprograms
queue

Writing elements to a text queue CAIS.TEXT_IO subprograms

~losing a text queue fde handle CLOSE 250

lesetting a text queue fde RESET ... 251
l.@le I I
Jrrerying the kind of queue KIND_OF_QUEUE 220

lete nninirrg the current size of a CURRENT_QUEUE_SIZ~ 224
preue ‘”

)eterrnining the maximum size MAXIMUMQUEUE_SIZE 225
If a queue

hating a nonsynchronous copy CREATE_NONSYNCHRONOUS_ 257
Iueue node COPY.QUEUE

;reating a nonsynchronous CREATE_NONSYNC HRONOUS_ 262
nimic queue node MIMIC_QUEUE

Yeadng a nonsynchronous solo CREATE_NONSYNCHRONOUS_ 267
:xt queue node SOLO_TE~_QUEUE

~~ating a nonsyncbronous solo CREATl_NONSYNCHRONOUS_ 271
equential queue node SOLO_5EQUENTIAL_QUEUE

;~ating’ a synchronous ‘solo text CREATE_SYNCHRONOUS_ 274
ueue node SOLO_TE~_QUEUE

., :< )C..

●

●

.— -

5$0

Downloaded from http://www.everyspec.com



DOD-STD-1838 CROSS REFERENCES

APPENDIX c

r
Queues -- Continued.

Description of Operations Applicable Interfaces Page

Creating a synchronous solo CREATE_SYNCHRONOUS_ 278
sequential queue node SOLO_SEQUE~AL.QUEUE

import Export

Description of Operations Applicable Interfaces Page

Importing the contents of a fde IMPORT_CONTENTS 415

Exporting the contents of a ffle EXPORT.CONTENTS 417

List Management

Description of Operations Applicable Interfaces Page

Copying a list COPY_LIST 427

Making a list empty SET_TO_EMPTY_LIST 428

Converting from text to list form CONVERT_TEXT_TO_LIST 429

Converting from list form to text TEXIFORM 430

Query equality of two lists IS_EQUAL 431

Deleting an item from linear list DELETE 432

Query kind of list KINJ_OF_LIST 433

Query kind of list item KIND_OF_ITEM 434

Inserting sequence of items into SPLICE 435
list

Concatenating two lists CONCATENATE_LISTS 436

Extracting a list from a list EXTRACT_LIST 437

Query number of items in a list INUMBER_OF_lTEMS

Query position of current list POSITION_OF_CURRENT_LIST 439

Query whether the current list is CURRENT_LIST_lS_OUTERMOST 440
outermost list

I I

Making the next outer linear list MAKE_CONTAINING_LIST_CURRENT 441
the current list

Making this item’s list the MAKE_THIS_lTEM_C~NT 442
current list

Query the length of the text TEXT_LENGTH 444
form of a list or of a list item

591

Downloaded from http://www.everyspec.com



CROSS REFERENCES -.DOD.STD-1838
APPENDIX c

1“”” List M&agernent ‘-- Contiimed.

Description of Operations ‘Applicable Interfaces Page

Getting the name of a narhed GET_lTEM_N~”E 446
item

Query the position of a named POSITION_BY_NAME 447
item”

List Items

Description of Operations Applicable hrterfaces Page

Extracting a list value from a list EXTRAi3_VALUE 449

Replacing a list value in a list REPLACE 451

Inserting a list vahre in a list INSERT 453

Locai~g a list item by value in a POSITION_BY_VAIXJE 455
list -

,

‘ ;.”! Identifier Items .,

Description of Operations Applicable Interfaces Page

Gopying a token COPY_TOH3FJ 458

Converting an identifier from CONVERT_TEXT_TO_TOKEN 459
text to token form

,. ,

Converging an identifier from TE,~_FORM .“., 460
“token to text form

Qnery equality of two identifier IS_EQUAL 461

tokens

Extracting an identifier item E~~_VALUE 462
from a list ,,, .

Replacing an identifier item in a @pLACE
list, -”

464

.,,.

Inserting. an identifier item intoa INSERT 466
~~list ‘ ‘-’”

~L~ating “ as-- identif~r-vahred POSITION_BYj~,@JE” 468
item by. v~ue withh.,a list ‘:

,, ...!, #

,, ,., ,, , ,,.,..J,,,,L,
,.,, ,

,,.

●

592

Downloaded from http://www.everyspec.com



●

●

DOD-STD-1838 ‘CROSS REFERENCES
APPENDIX C

IntegerItems ....

Description of Operations Applicable Interfaces Page

Converting an integer to its text TEXT.FORM 470
form .

Extracting an irrteger item from EXlTLM2TED_VALUE 471
a list

Replacing an irrteger item in a REPLACE 473
list

Inserting an integer item into a INSERT 475
list

Locating an integer-valued item POSITION.BY.VALUE 477
bv value within a list

Float Items

Description of Operations Applicable Interfaces

Converting a floating point TEXT_FORM
value to its text form

Extracting a floating point value EXTRACTED.VALUE
item from a list

Replacing a floatirrg poim value REPLACE
item in a list

Insetting a floating point value INSERT
item imo a list

Locating a floating point-valued POSITION.BY.VALUE
item by vafue within a list 1

Page

479

480

482

484

486

String Items

Description of Operations Applicable Interfaces Page

Extracting a string item from a EXllU4CTED_VALUE 489
list . . .

Replacing a string item in a list REPLACE 491

Insetting a string item into a list INSERT 493

Locating a string-valued item by POSITION_BY_VALUE ~ 495
value within a list

●

593

Downloaded from http://www.everyspec.com



CROSS REFERENCES DOD-STD-1838
APPENDIX c

Tne and Calendar

Description of Operations Applicable Interfaces Page

Getting the current time CLOCK 499

Extracting year from time YEAR 500

Extracting month from time MONTH 501

Extracting day from time DAY 502

Extracting seconds from time SECONDS 503

Converting time into year, SPLIT 504
month, day and seconds

, \

Combiniig yea, month, day and TIME.OF 505
seconds into time

Addition of time and duration “+” 506

Subtraction of time and duration “-” 507

Comparing vahres of time “<” “, <=:>, ‘<>?. “, >=*. 508

594

Downloaded from http://www.everyspec.com



●

DOD-STD-1838

APPENDIX D

Appendix D
Syntax Summary

The material contained in this appendix is not a mandatory pszt of the standard.

This appendm summarizes the syntax descriptions given throughout thk document. Lexical
categories not defrned here are found in [1815A] Section 2. The notation used is a form of
Backus-Naur Form (BNF):

Words identify syntactic categories;
[1 identify optional items;
{,) identify items which may be repeated zero or more times;

separates alternatives;
.._..— separates the Iefi-hsmd and right-hand sides of productions.

The following definitions are global.

identifier ::= letter {
graphic_character ::= lener

] digit

underline ] letter_or_digit }

I special_character
I space_character

letter_or_digit ::= letter I digit
lener ::= upPer-cme_lener [ lower_caSe_lener
underline .._..—
digit ::=6111213141516171819
upper_case_lener ::= AI BICIDIEI FIG IHIIIJIKILIMl

NIOIPIQIRI SIT IUIVIWIXlyl Z
lower_case_letter ::= alblcldlelflglhliljlklllm]

nlolplq lrlsltlulvlwlx IYIZ.
..- “1#/&l’ l(l)[*l+l,l-l.l /1:special_character . .–

l;l<l=l>l_ll

SYNTAXSUMMARY

10. Pathname Syntax
The syntax for pathnames is specified as follows:

patbnazne ::= relatiomhip_key_designator {path_element )
Iparft_element{path_element )

1:
path_element ::= ‘relation_name [ ( [relationship_’key_designatorl ) 1

I .relationship_key_designator
relation_narne ::= identtiler
relationship_key_designator ::= relationsMp_ke y

::= lWn:i~>re~l #
relationship_ke y
idendiler~refm ::= letter { [underline] lener_or_digit ) [underlie]

Note that the relation name DOT must have anon-empty relationship key.

I

595

Downloaded from http://www.everyspec.com



,,

‘sYir’ixsUMMARY “ DOD-STD-1838

APPEMXX D

20. GRANT Attribute Value Syntax
The syntax for GRANT attribute values is’as follows”

gr.grtt_attribute_value ::= ( [ grmt-item (, grmt-item ) 1 )
grant_item ::= ( [ necess~_right => ] resulting_rights_list )
necessary_right ::= identifier
resrdting_nghts_list ::= identifier

I ( identifier (, identifier] )

30. Classification Attribute Value Syntax
The syntax for classification attribute values is as follows:

object_classif@ation ::= classification
subje&_classification .”- classification..-
claasiflcation i:= ( hierarchical_classification

[, non_hierarchical_categories] )
hiermchicsl_classitlcation ::= keyword
non_hierarchical_categories ::= ( keyword {, keyword} )
keyword ‘ ::= identifier

40. Lkt External Representation Syntax
The syntax for the external representation of lists is w follows(

list

narned_list
umyuned_list
empty_Iist
nsmed_item
item_name.
item_value

::=

..-..-

..-..-

.._..-

.._..-

.._..-

.._..-

.irsteger_number ::=
float_number ::.
quoted_s@ing ::=

named_list
I urrnamed_list “!,,
I empty_list
( named_item ( , named_item ) ) ~
( item_vaIqe (‘, item_@ue } )

() )...
item_name => item_value
ident~ler
list ,.

I quoted_string
I integer_number
1float_number
I identifier
[-] integer
[-] decimal_literal t ~. ‘,,:
string_literal

,. ..,. ,,’

,., . . .-

—

5%

Downloaded from http://www.everyspec.com



I

DOD-STD- 1838 CAN ACCESS CONTROL MANAGEMENT
APPENDIX E

Ap endix E
?CAIS Access ontrol Management

The material contained in this appendix is a mandatory part of the standard.

The reference manual of each CAIS implementation must include an appendix (c~ed
Appendix E) that describes irnplementationdependent aspects of access control management
for that implementation.

10. Package Replacement
Thii section describes an implementation-dependent replacement for Package CAIS_
ACCESS_CONTROL_MANAGEMENT as described in Section 5.1.4. The implementation
behavior of such a replacement package must be documented herein. As a minimum,
Appendix E must include:

a. A description of the security model, if a model different from the model.
described in Section 4.4 and Section 5.1.4 is chosen.

b. A description (using the method of description that is described in Section 4.2)
of the interfaces replacing those in Section 5.1.4.

20. General Access Control
This section describes irnplementation-depmdent items related to access control.

a. A description of the interfaces for the creation, modification or deletion of
group nodes as well as the effects of the deletion of group nodes.

b. A description of the interfaces for the creation, modification and deletion of the
relationships of the predefmed relation DEFAULT_ROLE, in particuk for
those emanating from nodes representing the executable image of a progrim.

c. A description of the effects of aerations of group memberships or of
relationships of the predefine relation DEFAULT_ROLE on concurrently
executing processes.

d. A description of the keys of relationships of the predefmed relation
ADOPTED_ROLE when the relationships are created implicitly.

e. A description of the hierarchical classification level set and the
non-hierarchical category set (when mandatory security is implemented).

f. A description of the criteria that allow an executing process. (subject) to

establish or alter an access relationship to a group node. For some interfaces,
the exception ACCESS_VIOLATfON is raised if the executing process
(subject) is not allowed to establish or alter an access relationship to the given
group node according to these criteria.

g. A description of the possible vahres of a node’s claasillcation as an objector as
a subject.

I
L--

597/S98

-..

Downloaded from http://www.everyspec.com



DOD-STD-1838 IMPLEMENTATION DEPENDENCIES

APPENDIX F

●
Appendix F

Implementation Dependencies

The material contairted irr this appendix is a mandatory part of the standard. ‘

Reliance on any information provided in this appendix endangers transportability of tools.

This appendix describes those aspects of a CAM implementation which are implementation-
dependent. Some of these aspects are explicitly noted in the CAIS specification and the
implementation behavior should be documented herein. Other aspects may be the result of
implementation choices and ambiguity in the CAIS specificatio~ it is recommended that
such observed qnbiguities k reported to the Ada Joint Program Office as design feedback.
(See Section 1.2, page 2, on application guidance.)

The reference manual of each CAIS implementation must include an appendix (called
Appendix F) that describes all implementation-dependent characteristics other than those
covered in Appendix E. The Appendix F for a given implementation must list in pwticular

a. Implementation-defied pragmatic limits.

b. Implementation-defied exceptions.

c. Whether and when nodes whose primary relationships have been deleted are
actually removed.

●
d. The effect on existing node iterators of creation or deletion of relationships.

e. The effect on existing attribute iterators of creation or deletion of attributes or
relationships.

f. The meaning of the vahres returned by the TIME_STARTED (see Section
5.2.2.16, page 204) and TIME_FINISHED (see Section 5.2.2.17, page 205)
interfaces.

g. The package CAIS_DEVICES.

h. The revised Table XI and additional packages to supper! any afJowed
extensions made by the implementation to the types defined in the package
CAIS.DEVICES.

i. Other aspects of any implementation explicitly noted aa implementation-
dependent in the CAIS specification; these must be identified by CAIS Section
number and must describe the implementation choices made.

I
‘1

‘o
5$WOI

I .

Downloaded from http://www.everyspec.com



DOD-STD-1838

INDEX

1Index
AREA INPGI’ KIND 363# -- Iaic,t key 29

+, CA3S_CALEN73AR 306

-, CAIS_CM-ENT3& S37

, .. ..mnt ~,me,, W& 31, 78

<, CAIS_CALENDAR S38
<=, CAIS.CALENDAR 508

>, CAIS_CALETVOAR X38
>=, CAIS_CALENDAJt 508

Abmi 7, 16S,178
Abort PK.XS 94, 1%
ABORTJROCESS 1%, 197
ACCCSS7, 14.36,40, 154,156,172.173,511,517,519

m a ncdc 7.35,36

S..s .1s.s Appmvod awes. rights
ACCCSSdwking 7,35
ACUSSammal 7, 19,35.597

discrcti.nary 7,9, 11,35,36, 152

inf.mmtim 54, 1S2,154,156, 164,174,180, 185,246
inandatmy 7, 11, 12.35, 4S. 52, 56, 152

nwcbankms 152
ruks 48

ACCCSSmlati.n$hip 7, 14,40.153.158.519
Access ri8ht 7,35,36,40, 4Z 48,517,519

Cmsuailm 7.35, 55
disae.ti.nary 42
EK2STENC13 7,42

A.CZSSwnchronizatim 57.63
ACCESi_ME3HOD 218, S19
ACCESS_METHOD_KIND 214
ACCFX._VIOLATION 40,5.5.56
A..usibk 7,42
ACTIVATE 381.385
Activation 174,‘180, 185.521
Active pmitim 8, 2S4.319,362,376

xlvawe 8,284, 295, 301.303, 313,314, 319,331, 337, 339,
362

precede 13,284,295,319.362
ACHVE_FQSITTON 2%, 332,376
Ad. extemd file 2223
Ada R08rammin8 SuppwI Envir.mment 1,8
Additi.rial interface.

dsiinitio” 20
Adopt a ml. 8,37, 160
ADDPT_RoIX 37, ISO
Adcwed mka .f a DWSS 37,42, 160.51I
A13&FDJLOLi 8, 16,37, K43,16L 172, 173,517,597
ADVANCS.TO_QUALIFE!D_ARSA 377

ALL-K3GHI_S 44, 153
APPEND 44,58
APPEND ATTRIBUTES 43.59
~:coNrEws 44,59
APPENc_2NlXN2 215
APPKNL3_RH.ATIoNm 43,60
APPEND RESULTS 190.192
Andicati;n G.idaxc 2

Ab~ved =-s righ~ 8.42.48.159
APPROKIhfATE_SEE 110, 147
APSE i, 12

S= ,ISO Ada Pmgr-ing Suppti Envimnnwtt
Ama q.alifkr 8,362,373,374,377,382, 3S8,3S9

AREA:INTEN~~Y_KINO 363
AREA_PRDTECSTON_KIND 363
ARE&QUALIFIER_REQUIRF,S_SPA~ 381,388,389
AREA_VALUE_KJN32 363
Amib.te 8,22,32,87,510

ACCESS_METHOD 209,218,519
CURRENT_FBJ_SIZE 222,519
CURRENT_QUEW_SIZE 224,519
CWRRENT_STATUS 169,194,519
DEVICEJC2ND 209,221,519
FTL13_KIND 209.219,519.520
GRANT 40,42, 152,154,158,172, 173,511,517, S19,596
HIOHE.ST_CLASSffICATION S2,519
U43DX3TABLE 519
IO_UNIT_COUNT 169,203,519
iteratim type. andwbtypcs 141
itemmr 8. 11, 141
LOWEST.CLASSIFICATION 52, S19
MACHNE_TIME 169,206,520
MAKIMUM_F13J_SlZE 223,520
MAXIMUM-QUEIX_SiZE 223,520
mmne 32, 123
NODE_KINO 519
0B3E~_CZASStFICATION 51,520
0FZN_NODE_HANL3LE_COUNT 169,202,520
PARAMEI’ERS 169,195.5Z7
PROCESS_S2ZE 169,207,5Z3
QOEUE_KIND 209,233,520
RESULTS 169,190.191, 192.520
SUB2ECT_CLASSIFICATION 51,520
TIME_AT33GBUI’E_WRJlTE24 122521
TIN5.CONTENTS.WRITI’EN 121,52I
TIME_CR3L4TED 119,52I
TIMl_FTNISHED 169,20S.52I
TlM_RELATIONSHlP_WTGT3EN 120.52I
TW_STARTED 169,204,52 I
,,1”. S7LE 7I
“.1”, P3UxEss 71
.,1.. STRUC3WRAL 71

A3TRIBUT3_ERROR 55
AlTR[BU31_ITERAT0R 141
AlTRIBUt7Z_LIST 54
AITRIBUE_NAME 54.141
AlTR03WI’E_NAME_PATTEKN 141
A WAIT_PROCESS_COMPLETION 178

BACKSPACT 312
Bw node 8,29,31,53
BASE_PATH 7S

CAIS_ACCESS_CONROL_WAGEb5ENf 19,40,53,152,
597

CAIS_ATTRIBUTE_M.ANAGEhSEN2 53
CAIS_CALENOAR 497
CAM DEFINITIONS 53
CA3S:DEVICES 214
CA3S_DlRECTJ0 226,512
CAIS_DURAITON 4%
CA3S_FLOAT_lTEM 478
CAIS_FORM_TERMINAL_IO 362
CAISJDENTlF3E3_lTEM 457
CAIS_1h5FORT_EKFURT 414
CAIS_lNITGER 496
cALs_3NTEoEL_m2M 469
CAIS_IO_A~BUTf?S 217

601 I

Downloaded from http://www.everyspec.com



DOD-STD- 1838

INDEX

CAIS_IO_DEF2N~IONS 2[5
CA1S_LLST_f3EM 44s
CAIS_LIST_ WAGEMENT 123.425
CAIS_MAONETfC_TAPE.10 392
CA2S_NAlUSAL 496
CA2S_NODE_6L4NAGE6tEN1’ 53
CAIS_PAOE_TZRM2NAL_I0 319
CAIS_FOSfT3VE 4%
CAIS_PBAGMATICS $39
CAISJZ+3CESS_M.4NAGEMSNT 57, 172
CA3SJTW3CESS.DEW2 WT20NS 17I
CA1S_QUEVE_MANACEMEN2 253
CALS SCROLL TERMINAL 10 2S4
cA2s:sFQtiAL_10 23:,512
CA2S_STR!MG_lTEM 488
cAls_sTRu CfURAt_NODE.M,M4AGEMEtW 53. S7, 163
CA2S_TEX_10 244
Canmkd list textmpr.s.mwi.n 8,422,430
Cawnicd text fwm mptintatio. 470,479
CAPACt2K_ERROR 509
C= di~timticm 123,421,423
CHANGE_ fNTENI 57, 5S,59,60,61,67, 6S

CHARACf%R_ARiWY 286,321.363
C3as.ificmim 4S,51, 52,S%

hierarchical 4S, 51
law 52
kv.] 52

CLEAR_W_TAB_STOPS X30,336
CLF.AR_TAB_STOP 299.335
CLOCK 499
CLOSE 57,66, .5S,232,241,230, 2S1,2SS,324, 365.396
closed II. handle 232,241. 2S0,2SS,324, 3%
Cl.& node Iwndk 8,53.57
CONCATENAll_LISTS 436
C.m,blu

ACCESS_RELATIONSHfPS_OF_OBfEC2 511
ADOPTED_ROLES_OF_PRCWESS 511
AT2’R3BfJTES_PER_RELAT20NSH3P 511
AlT3GBUTES PER_NODE 510

LAT20NsHlPS_0F-0B3EC2 51I
3CF..SS 511

R.RF2,AT20NSHLP 511

CAfS_ACCES@i
CA2S_ADDPTEO_ROLES_OF_PR(
CAU.ATTR2BU2ES.P3X
CA3S:AT22UB~Sj%R:NODE 510
CAIS_DIRWT_[O_fNDEX_RANGE_UTPER_BOUND

<17..-
CAIS_DU2Eff_10_REC3JR2_S fZE 512
CA1S_ELEhSENTS_OF_AT2RfBUTf3_lTE3WTOR 510
CA2S_ELEMENTS_OF_NODE_2TERATOR 510
CA3S_EMANAT2NG_FNMARY_RELATIONSfDPS_PER_

NODE 510
CAIS_EMANATfNG_SECONDARY_fWMTIONSHIpS_

PHt NODE 510
~MS_FF2.&HANOLES_PER_PRCCESS 513
CAIS_GRANT_2TEMS_ON-GRANT_AlTRJBLTf2 51i
CA3S_GROUP_N0DES 511
CAfS_2L3ENT2FER.LENOTH 50$
CA1S_lDENTfFEl_fTEM_LE2WT33 513
CAIS_LENGTH_OF_PRIMARY_PATH 511
CA2S.L1fl.LENGTH 5[3
CAIS-LIST-MAXIMUM DIGITS 514
CAIS:LIST:TEXT_LfZNti 514
CAIS_MAX3MGM_lNIEGER 514
CAL_MAX3MUM_TAPE_BLOCR_LEN0233 513
CAfS_MfNtMUM_fNTEGER S14
CAfS_MINIMGM_TAPE_BL~LENOIH 513
CAIS_NODE_f14FJ13LES_PER_PRCCESS 509
CAfS_NODES_fN_C33PY_TRES 509
CMS_NODES_3N_DELEIE-TREE 510
CAIS_NUMBER-OF:NODES 511
CAIS_PATHNAMJ3_LENGT33 509

,,,

CURRENT:PROCESS 55
CURRENT_USER 55, i72
DEFAULT GRAPHIC RF.NDtTIGN 321
DEFAULT:RELAT1O~ 55
DIRECT_IO_lNDEX_RANGE_UPPEB_BGUND 512
DIRECT_[O_fNDEX_RANGE_UPfW_BOUND 512
DIRE~_IO_RECtJRI_S IZE 512
DDfECi_10_RE03RD_SLZE 512
ELEMEN7S_OF_AT33UB UlZ-fTERATOR 510
ELEMENTS_OF_NODE_lTERATOR 510
EMANATlNG_PfG6LAxY_RW.ATIONSHI~_PEr_NODE

510
EMANATlNG_SECONT3ARY_RELATIONSHfPS_PER.

NOOE 510
FTLEHANOLES PER PROCESS 513
F2LE:STORAGE:UN1’&E 513
GBAiVT_~MS_ON_GSANlAT21UBUTE 5I i
GROUP_NODFS 511
IOEN71FfEI_flEM LENGTH 513
IL3ENlTFTE3-LfiNO-~ 509
LATEST_XEy 27,55
L1ST_LENf3TH 513
LIST_MAXIMUM_DIGITS 514
LIST_m_LENOTH 514
LONG_DEL4Y 55
MAX3MUM_lNTEGER 514
MAXIMUM_TAPE-BLCKX_LENGTH 5i3
MEMORY_STOR4GE_UN~_SfZE 513
MINIMUM_ lNTEGER 514
MtN3MUM_TAPE_BLCR7X_LENG3H 513
NODE_HANDLES_PER_PROCF,SS 509
NODES-IN_COPY-TREE 509
NODES-lN_DEL~_TREE 510
PATWNAME_LENO’fH 509,514
QUEUE-STOfLAGE_UN3T_SfZE 513
ROGT_PRCC=S 17I

STANDARI:OUTPUT 17I
STR2NG_ITEM_LENOTH 514
TEXT_IO_COLUMNS_PEi_LfNE 512

=-10-LfNES.PF2f_FIf-E 512
TEXT-IO_L3NES_PEKPAGE 512
UNRESTRICTED 509

Con*”b s. 22
of a file “O& 22
of a pmmwMm&22
of a stnlcc”ralnode 22

CONTROL 44,61
CONVERT-TEXT_TO_LIST 429
CONVERT-=_TO_TO~ 4s9

@Y q=.. 9
see ,1s0 Qume. mpy

COPY_FORM 372
CO~_LIST 427
cOPY_NODE S7, SS,S9
COPY_TOKEN 458
coPY_’rRim 89,$0,509

cwyi+ n~ 57

●

602

Downloaded from http://www.everyspec.com



DOD-STD-1838

INDEX

●

●

●

Cmmled fil. 9
Cou~kd file node 253
CREATE 57,228,237,246
CWIATE_FORM 370
CRIATE_FUNCfION.KELDESCR2PTOR 306,342
CREATE_~TOR 107,110

~~_JOB 14,27,57,152,169,185,195
CREATE_NODE 57,164,165,166
CREATE NODE.ATI’RIBOTE 125
C3WATE-NODE-ATIWNJTE -TOR 142
CRSATE:NONSiWfRONOLiS_COPY_QUEUE 257
CREATE_NONSYNCTIRONOUS_MIMtC_QUEUE 262
CREATE_NONSYNCHRONOUS_SOLf_SEQUENITAL.
QUEUE 271
CREATE_N0NSYNC3fRONOUS_SOLO_TEKT_QUEUE 267
CREATE_PATf_A2TRIBUTE 127,128
CREATE PAT3.ATHUBUTE.ITERATOR 144
CREATE:SECO~DARY_REL~T10NSH3P 24,98,99
CREATE_SYNCHRONOUS_SOLO_SEQUENTtAL_QUEUE
278
CREATE_SYNC3fR0NOUS_ SOL0_TERT_QL02UE 274
Ctwting .&,.

tile 87,89,228,237,246

PKC=S 172.174. ISO. MS
SUWmml 87, 89, 163

C.mmt job 9,27, 171
current tinw list 421,435,436,441,442
Cumnt “de 9.27,55, 117
Cumnt P,-,. 9,29,55, 116,117, 159,164
Cwmnt P,W.SSSnode 9,29,31, 162
C.ment statw 1.$3
Current.s, 9,27
coRREN_FILE_srzE 222,519
CURF@W_JOB 9,23,27, !72, 173,517
CURRENT_L1311S_OUTERMOST 440
CUSRENT_NODE 9,25.27.29,31, 5S. 116,172,173,511
CURRBNT_PROCESS 55
~ OUEIJES!ZE 224.519
CVRREV7:<TATU~ L59,194,519
cURRENT_USER 9,23,27,31,55, 172,173,185,517

DATA_ERROR 2IS
DAY 502
DAY_DGR4TION 498
DAY_NUMBER 49S
&fault gm.p.& 9,36.37, 172,173
Lkf..lt =1.tim mm. 55
DEFAULT_ORAYHIC_REND7TION 321
DEFAULT_RELAITON 53
DEFAULT.ROLE 36.37.517,597
D- 0-UALIF7ED ASSA 373
DEL~- ;32 -
DELEf7_CHARACfER 348
DELETS_FOfW3 371
DELETE FUNCHON KEY DESCRIPICIR 307,343
DELEIX:GRANTED_~IGfiS 156
DELfS1’E_-TOR 109,110,115, 151
DELE3T.JOB 24, 188
DELETI-LINE 349

Ocvi.. name 9, 25
DEVICE_ERROR S5
D!3V1CE_KIND 519
DEVICE_KIND_ARMY 215
DEVICE KIN31TYPE 214
Direct ti7, 519–
Dm.tfilc 512.513
D~m_Io_ND=_mOB_W~&BOm 512
DfBECf_IO_RECORL_SIZF 512
Discmti&q .x.a. .hc~ting 48
Discrctimmy m. .ontml 7,9, 3S. 36, 152
Discretionaryaw- .O.!JOI~ights t I
Diwetimq acws rights 42, 153,174, 160, 185
DISCRETIONARY ACCESS 40.164.172, 173.174.180.185
DKfETfONAJtY:ACCESS_LliT ti. 153
DOT 10,3 I, 36,37. 5[7, 595

Element(of , fik) 9,228,235,244
EMANAT3NO_PRMARY_RELAT10NSHIPS_PQ?.NODE
<In

EMANATINO_SECONDARY_RELATIONSHIPS_PER_NODE
510
Empy list 10.419,423,428,429,432, 445
EMPTY_LIST 425
ENAsLE_FUNCITON_REYS 293,329
ENABLE SYNCHRONUATION 317.364
Bnd p.xiti-m 10,362.378,382
END_SBROR 215
END_OF_FfLE .283
EN32_FCMT30N_SUPPORT 339,357
ERAsE_AREA 379
ERASE_CHARACOZR 350
ERASE_FORM 3S0
ERASE.!MDISPLAY 321.351
ERASE:IN:LINE 321,352
Excq,tion

ACLT.SS_V10L41TON 40,55.56
A3TR3BOTl_ERROR 55
CAPACITY_ERROR 216,509
DATA_ERROR 215
Df3VtCS_ERROR 55
EIW_ERROR 215
SDLECWTABLE IMAGE ERROR 171
EKfSTLNO_NO~E_ERK~R 5S
FLLE_KIND_ERROR 215
P0R3.f_STATUS_33?J10R 215
FuNLTION_KEY_STAIUS_ERROR 215,216

UWEN’7_V10LAT30N 55
fTEM_KIND_ERROR 425
=TORJ?RROR 55
LAYOGl_ESROR 215.216
LIST_KfNl_ESROR 425
LIST_FUSfTION_ERROR 425
LDC2LERROR 55.94, 197
MODE_ERROR 215,216
NAMU2RROR 52,55,56
NAMED_LLYT_ERROR 425
NODE_KfND_ERROR 55,56
PATHNAME.SYNTAZERROR 55,56
PREDti ATfRIB-~ ERROR 55.56DELE73?:NODE 24,94,95,96, 188

DELE3T_NODE_AlTRfBU7E 129 PREDEF7NElH+ELAT30N_tiOR 55,56
DEL~_PAT3_ATTR3BUf’E 131, 132 RSLATIONS~_ERJtOR 55,56
DELE7E SECONDARY REfATIONSHIP 24.95.102, 101 RESOURC3_ElULOR 5C9
DH.E!3Z:TRBE 24,96,>7,510
L3d.singnob. 24,57,94,96, 1S6, 188,510,597
Dqm5wt prcc.,s 9,24,27
Oqcndent p-,. “de 52
Rtmninimg accesstigk 40
&vice 9, 16,23,52,517
Evicc file 9,211

SEARCH =OR 425
SECUR&VIOLATION 52,55,’56, 177
STATUS_ERROR 55,56
SYNTAX_ER3fOR 55,56, 42S
TAPE_STATUS_ERROR 394
TERMINAL_FQsmlON_ERROR 215.216
TOKENJRROR 420,425

.——

.[

603

1

Downloaded from http://www.everyspec.com



DOD-STD. 1838

IIi13EX

USE_ERROR 55.56 ‘“
Ex..pti.nu .56,599

&tir,iti.n 20
inmkmcntatian&fncd 509

EXCL’USlVQQPENL3 58
EXCLUSIVE_APPEIW_RELATIONSHrPS 60
EXCLUSIVS_.4FPEN3_A’f3RIBUTE.S 59
EXCLUSIVE APPEND CONTENTS 59
ExcLusm:cmfstol w
EXCLUSlVE_B2?.AD 58
ExcLusfvE_RFAD_Amf.rfEs 59
ExcLusm_READ_coNfENfs 58
EKCLUS3VE_ W_RELATIONSWPS fJ3
EXCLUS~_WRf3Z 58,96, 188
EKLUSfW_WRITE.ATTfUBf 7filS 59
ExcLuslvE_wRffE-coN-fENTs 5s
EXCLUSIVE_WWTEJLELATIONSHIPS b40
F.x.cutabk itnage 37, 171,172,173,517,597
E2CKT7fABLB_lMAGE 172 [73,5 I7
E20W_JfABLf_lMAGE_ERROR 17I
EG3CUf32 44.61
Executeunderk authority 40

EXw.tiC- Il. 14, 15,22, 168, 174,180,185
fms’fmcz 7.43
Exiwcnc. .f. nc& 55
EXlS3TNQ_NODE_ERROR 55
FXTDRT.COMENTS 417
F.Ktcnd Ilk 10.22,23
Externalrqncseu.xim 514,5%
EXTRACf_LLST 437
EX7RACf_VALUE 449,462

,,

EXfRAC1’E3_VALUE 471,480,489

Fik 10,12,22.71,519
Fik handk 10,11,20S,23I
Fik ncdc 10,16,22,23,25.27, SZ 87,89,92
Fik h-kc 414
F73.EXIND 215.519.520

., ,,

~=KIND_tioR”215
,,,,

--MODE 227.236.245.253,321.392 “‘ ~
Ff2&TYPE 10.208,227,236,245, 286,~21, 363,392 “;”
Flcating pint equality 420

,.,.

Fm 10.14, 15,362373
!,

Fmtcnninal 15.211,362,363 ‘ “’
FCOU._SIZE 381,386
FOBh_STATUS_EIfROR 215
FDRhLTERMLNAL 519

~tiTWE 363
FUNC310N_KEY_COGNf 304.305, ~8. 309, 340, 341;344,
7A5. .
3W4cf10N_KEy_DBSCfGFf0R 286; 321, :
FUNCfION_KEY_IDENTFICATION 310,’346,3S4
R3NCfION_KEY_NAME 286.32!, 363
FUNCfION_KEY_STATUS-ESROR 215,216 ~,
FfJNCfION_KEYS_ARE3N+B~D 294,330

GET 169,28,2304, ?05, 340,341,382.519
GEI’_CURRENf_NODE 57, 117,11S “
GEf_FUNCfION_KEY 3C9,345
0ET_GSL4NfED~GHTS 158 ~~ ‘ ‘ ‘J
G=_ ffEM_NAME 446

‘.,, , ,, .;,J;,.

OEr_mxf 57, 106, Io7, 109,110,iii, 112,I 14 ::l”; , “
GE1’_NW_VALUE 141:142, 144.“146,<!47, 149’”;;; ‘
G~_NODE_AT1’RIBUIF 137 /,,,

GEf PARAMETERS 195 ,,

GETIPA33_AT13wJTE 139
GET_RFSULTS [69, 178.192
GRANf 40,42, 152,154, 158,172.173,511.517, 519,5%
C3fLANf_VA2,UE 152
GRAPH3C_CHARACTERS 363

(3W1C_WNDlTION_ ARRAY 32I
GRAPHIC_RENDlT10N_IS_SU3W3RTED 355
GRAPHIC.RENDITION.KIND 32I
Group 10, 13.16,36, (72, 173,518
Group name 10,36
Gm.pncdc IO, 13, 14,36,37.40.172.173,511,517,518

Hie(atihicd .Iawific.ti.n 15,48
kcywmd 5I
level 48,5 I

HIGHEST_LIASSIFICATION 52,519

I&ntiftc.ti.n )0, 31
by fmtbnzane 32
.f. node 10.31
.f. ml.ti.nship 10,32

I&ntifie, .q.dity 421, 46!
I&.tiIl.r item 513
Idmtitk text 10.420.421
IDENT2F3ER_TExT 420,425,426,457
Identify . node 31
IMFORT_CONfENKS 4($
IN INTENf 215
I..;c.s$ibk 11,36,65,71,81,82,99, 108
INDEX 84
lnkit 27
kdtr,~itabk 11,519
Initiate I I
Initiatedpccccss 11.22
InitiatingF.CXCSS11,22, 1.5S
INOLllfN3ZNT 215
InputandOutput 23

Scm 2
INSERT 453,466,475, 4S4,493
INSERT_CKWNI 425
INSERT LfNE 354
INSERTISPA~ 353
Inks., qudky 420
1N3ENf .48,55,57,70, 177

APPEND 58
APPEND_ATfRIBUTES 59
APPm_cONfENTs 59
APPEPQSXLATIONSHtPS 643
CONTROL 60
EXCWJSWE APPEND 58
EXCLUSIVE:APPEND_fS&LATIONSHIPS @
EXCLUSIV&4FTENL3_A37R3BUTES 59
EXC5JJStVE_APPENL_C0NTENTS 59
EXCLUSIVZ CC3NfROL 60
EXCLUSIVE-- 58
EXC71NVE_REA13_AT17f1BUfES 59
f2XCLUSIVS_SEAD_CONTE14TS 58
EXCLUSIW_READ_REL4T20NSH3PS .54
EXCLUSIVE WRTff3 58.%. 188
ExCLUSIVEIWfU’R3_A= UTES 59
EXCLUSNE_WRCfE_CO~S .58
EXCLUStW_WR2TE_RELATIONSHlPS 60
EX33CLTIT 6I
NO_ACCESS 36,58,82
READ 58
RE.AL_A3TR1BUTE,S 59
RS,W_CKINIENTS 58
BEAD_RF.LATIONSH3PS 60
Wsfm 58

WR137_ATlXlBU1’ES S9
WR3T!.CONTENTS 58
WRITE_RE1.ATIONSH fPS 64

lNfENT ARRAY 54
INIENT:SPECIFICATION S4
lNfENl_VIOLATION 55

●

604

Downloaded from http://www.everyspec.com



I

I

●

●

●

DOD-STD-1838

INDEX

lNTERCEFTED_INPUf_CHAXACfERS 291,327,368
lNTERCEPTED_OUTPm_C31ARACTERS 292,328,369
Infmface I 1
Intend I-II. II, 208
Intempability 1, 1I
INVOKE-PRCCESS 57, 152,169.180, 183>195
Inv.kcd p,ace,, 1s4
Io_uNmcouN7 169,X)3.519
IS:APPR6VED 159
lS_EQUAL 425,461
lS_FORM_GPDATED 383
IS_ES3ERlTABLE 104
IS_OBTAINABLE 8I
lS_OPEN 69,289,325, 3.%,397
IS_SAME 82
1S.WR2TE RING INSTALLED 409
kc; name ‘Il. 41;,421, 423
hem ,.1.. 11,419,421
lTEM_KIND 425
lTEM_KNL_ERROR 425

.
See ,1s. Attribu~ [tam, andNc,ic Ite,aw

ffERATO~ERROR 55

Job 11,25.27, 185,518

Key 11,23,27,55,98
Keyword 51
Keyword nmnber 5I
Kind 22
KIND_OF_DEVICE 22I
K2ND_OF_FILE 219
KIND_OF_lTEM 434
KlNL3_0F_LIST 433
KIND_OF_NODE 7I
KFND_OF_QUEUE 2Z3

Labeling 51
Last pab element 74,75,76.77,78,79,80, 123
~ST_KEY 80, 114
LAST_RSLATION 79, 114
Latest key 11,29,55
LATEST.KEY 27,55
LAYOU3 ERROR 215,216 \ “
Lincarli.s-9, 10, 12, 17,419,421,423
Lie-s- listntanipulatimn 9.421
Lkt 12, 14.513,514,596

.Ia.ssifkati.ans 419
equality 422
item IO, 12, 16,419,420,421, 422,423,425, 429
,Quctum. 9
text repte~mtation 423 ,

LIST KIND 425
LIST:KIND_ERROR 425
LIST_FOSITION_ERROR 425,426
LIST_SIZE 425 ,
LLST_TEXf 42? 4~, 426
LIST_3YPE 9, 12,32,425
LOAO 400
kck 58.66,87.94,96, 111,188
LOCK ERROR 55.94.197
LONG;DELAY 5S
LOWEST_CLASSIFICATION 52,5 ~9 ,:

MACHINE TIME 169.206.520
Magnetic b~ drive 23,399
hl.gwtic tip drive file 12,21% 3S0
MAGNETIC_TAPE_DR3VE 519
MAK3_03VfAtNING_LIST_CURRENT 44I
MAKE3TUS_lTEM_CURR&Vf 442

Mnn&tmy ame~ mnu.1 7, 11, 12,35,48,52.56, 152
MANDATORY_ACCf2SS 51, 164, 174, 180, 185, 228, 237,
246,257,262,267,271, 274,278
MANDATORY_ACCESS_LISf %
b5AK2Mf2M_FILS_SlZE 223,520
MAXIMUM_QUEUS_SIZE 225.52u
Mimi. queue 12

see ,!s. Queue,mimic
MIMIC_FILE 233,262,2S2,518
MODE 311,347,398
MODE.ERROR 215.216
MONfii WI1
MONfH_NUMBER 498
MORE !06, 1~, 141,142,144, 146

Name [2
NAME_ERROR 52,5.5,56
Named itmn 12.419
Natncd list Iz 419,429,446
NAMSD_LBTJjKROR 425,426
Nested list ,tmctwe 12,421
Nested ,ublist 12,42 [
NSW_LtNS 313
N33W PAGE 314

H--NAME 10+, 107.114, 141,142.144.147, 148
NO_ACCESS 36,58,82
Nc& 10.12.22

dektiw, 57
handk 8, 1213.16.48,53,63.520
i&mtifi..ti.m 10,31
iteratm I 1, 12, 106,107
Management 53
non-existing I& 24, 32
p== 29
,ywn-kvd 23
lIiV~d 32
nndtain.ble 24

Ncde kind 12
Node nmdsl 1, 19

~- k
NODE_ffE3L4TOR 106
NODE.KEWJ 54.519
NODE:KINJ_tiY 106
NODE_KIND_ERROR 55,56
NODE_TYPE 12,53,54,66
Non.hiemdicd c.teg.rk. 15,4s.51. 597.
Nmvm+wn.ua a.e~e 12

k also I&m, Inmlynchmo.
NONSYNCHRONOUS_COPY 520
NONSYNCFfRONOUS_MIMIC 520
NONSYNCH3tONOUS_SOL0 520
N.XCS

defmitkm 2I
Null key 12,29,31

N3JMsEKOFJLJIf~oN-KEYS 2$0.310.326.346, 367,
384
NUbU3ER_OF_lTSMS 438

Object 13,35,36,40,42,48,51, 159, 174,180, 185.517
Object .Imiticati.n 519,520
Object ckwifxati.n kbd 52
0B3ZCT_CIASSlFICATION 51,520
—.
Obtainable 13,24
OPEN 57,63, 6S, 66,68.85, 118, 167,231,240,249,281, 287,
323,364.390,395
C@. file bmdk 13,66,208,287,323,513

$~~~;~k 13.16>~. 52,53,55,57, 63; 65,82, 1I 1,

Ope’n.plrad.m 57

605

—.

‘- \

Downloaded from http://www.everyspec.com



,L+
-

.

—

r-”

DOD-STT3-1838

INDEX

OPEN FILE HANDLE COUNT 72
0PEN:NOD~_MANL3LiJ_COUNf 169,202,520
OPEN_PARENT 57,85,86
OpcWi.ns 48

,.,

CW’.INTENT 215,
Oul,$mosl linearlist 437,440

Page twkind M, 211,319
PAGE_SIZE 291,333
PAGE_TERM3NAL 519
PA8AhSE3ZR_LIST 171
Pminae. 5XJ

&tinkiOn 20
Pant 13.16.24.172.173.518

=Iatioihip 92 l&
Path 13,29

ektnent 8, Il. [3, 29, 31,53, lf4. S[ 1
uIimaN 29
;nique.primy 16

PATH_3U3Y 76.108
PATH_FCSLAT20N 77, 108
P+kwne 8,9, 10, 11.13,29.31, 3=4,78, 79, 123,509,512,517,
595

, .. ,“m”t pm,, “C& 3I

PA2’3TN*_LENGTH 514
PAT33NAME SYNTAX ERROR ’55.56
Palabilily 1~2 -
Positi.n 10,13.2S4,319,362,403
PDS~lON_BY_N.ANCZ 447

,’. ,

mSITION_BY.VALUE 455,46s. 477.486. 49S
FOS3TION-COUiW 425
POSmONIOF_ CUR3UNI_LIST 439
Potentialmemker I3,37, 1.50,51s
PDTENTLALMEMBER “’10. 13,36,37,40, Si8
Pfagnlati.s 2, 13;509:599

.sqe 2
.. . .

Precede the active po.iti.m 284, 29S,319,362
Prcdefd ace.. rights -,,

ALL RIGHTS 44
AFTiNo44
‘4PTEN13_AT2TUSL71’ES 43 .

APPEND_coN2ENTs44 . “,’ ~ “.
APPEND_REUTIONSHIPS 43
~NIROL 44 .,.

EXECUTE.”’
EXISTENCE 43
READ44
READ_ATT3UBUTES 43

REAo-cm+miw-s 43
R2L4D_p.EtATIoNsH3ps 43
m44 ,-
U’122TEA3TR3BuTF.s 43

“--- -. . . .

1.14.36.40.154. 1S6.172 173.S1l.; 17.519

UR2TElm7EN-Ts 43

~-fwLA730Ns3DPs 43
Pmdel%d rckli--- ‘J. ...

ACC12SS 7
ADD~_ROb 8, i6. 37, IL+ 162,172,1;3; 51;: 597
CWRRENT_JOB 9, 2S, 27, 172,17~ ~f7
CURREN_NODE 9,25,27,29
c1
DEFAULT_ROLE 36
DEW(33 9, 2S,27,17
OUT 10,31,36,37,5
E?ZCUTABLf_2MAC
GROUP 36, 172,.173,518
JOB 2S, 27, 18s,518 “
M2hsIc_FlLE 518
PARENT 13, 14.24,36, 164, 172.17;. S18

,., .,..
), 31, 116,172,173, s17

TJKRENT_USER 9,23,27,31.172, 173, 18S.S17, ,,
5,37, S17,S97 ,> ,.
72,173,517 “
i17,59s ,, .. !’.
GE 172.173,S17 “’

FOTENTIAL_MEhfBER 10, 13,36,37,40, S18
ST~ARL3_ERKOR 169, 172.173.S1S

606

STANOARL3_UWUT 169,172, [73,S18
STANOARD_OUTPUT 169,172,173,S18
USER 17.25,27, 172, 173,S18

PREDEITNF,o..A3TR3 BuTEERROR S5.S6
PREDEFNEDjWLATION_;SROR S5,56
Pr@y dmi.an,hip 13, 14, 17,24, 89,92,94, 9S, 96, 164, 189,
510,S18
PR2MARY ..KEY 74
PR3MARYINAME 73
PR3MARY_RlLATION 75
PR2NTABLE_CHARAClZR 363
Pnxcss 2.12.14, Is, 22.71.519

.batim, 94, 168,169, 178,180.184,196
Ada @k. 22
creati.n 172.174, 1S0,185
cunent 29
d+adcnt 9, 24,27
ititiated II, 22
initi,tin8 II, 22
inki.ti.n 168
ncde 14,22,29,94, 171, 172
,oet 9, 11, 14,27. 18s, 188
scope 2
tcnninati.n 1S,16$.,169,172178, 180.184
tree 9, II. 14.27, 168

processSUNS 181,184, 194
ABORTED 181,S19
REAOY 174, 180,181, [8S. S19
SUSPENDED 181.S19
TERMINATED 94.181, S19

PROCESS_SEE 169.207,S20
PRCCESS_STA7’US_KEND 17I
Program 14, 168

~w=
def~ition 20

PUT 169,303,339,363,378, S19

Qualified area 8, 14,362373

QWUC 14,22.23.519, Sm
..p~ 9, 2S3,2S7
tik 14,211,253, S13,s20
~i!nic 9. 12.2S3.262.518
n.m.y+whr.rmtu 12,254,257, 262,267,27t
solo 1s,233
s.10 qwntid 271,278
s.1. text 267, 274

wc~o.o.s ~s. 233,274. 2?8
usedfm p~m.s ..m.ni..[i.n 22,233

QUEm_KtNL3 215, sm

RSAL2 44,58,282
READ_ATTR3BUTES 43, S9

W_BLOCX 4I I
R3?AI.CONTZNTS 43,58

REAO-KELAT20NsHFS 43,60,65
READY 174. lPQ, 18S,S19
SECORL31NG_MZTHOD 408
Relation 14,23

ACCESS 3640
AL30PTED_R0LE 37,597
CUR3flNT_J0B 23,27
CURRENT_NODE 2S, 27,29,31
CURRENT_USER 23.27,31
DEFAULT.ROLE 36.37,597
DEVICE 9,.25,27, 172,173,S17
DIYr 31.36,37
GROUP 36
JOB 2S. 27
name 10,13, 14,23, 29, 31,32, 75, 77,98, ,(36, ,,4, ,64
P-T 36, 164 ●

Downloaded from http://www.everyspec.com



DOD-STD- 1838

INDEX

10fENTL4L_WMBER 36,37,40
mc-def~d 25
i35ER 25,27

RELAT30N.NAME 54
KBLAITON_NAME_PATTERN 106
Rd.timship 14,22,23

idmtific.tien 10,32
key 10, 11,13, [4, 23,29.74,76,80, 106, 114,595
key &sig.a.~ 14,29,31,32, 164
latestkc, 29
pdrn~ ‘ 13, 14,24
mdiig 35
wc.ndwy 14.24
SMI,C.ncde 23
lmget “Cd. 23

RELAT10NSH13_ERKOR 55,56
RELATIONSHIP_KEY 54
RELAT10NSHlF_KEY_PA2TERN 106
RELATIONSH3P_KlND 106
REMOVE_AR32,_QUALF3ER 374
RENAMJ3 24,92.93
Rmami.g. file 92
Renaming mO&s 57
REPLACE 451.4&f, 473,482,491
REoUEST DISMOUNT 3%. 402
RE&E.ST:MOUNI 399
RESET 233,242.251, 315.358.413
RESOURCS_ERROR s09
RESULTS 169, 150,191, 192,520
RESULTS_LIST 11i
R3sfJLTs_STRING 171
Resume 15, 168
REsUME PROCESS 2fx3
REW3?40:TAPE 404

●
R.alc 14,36.37,511,517 . .

ROOtprme., nc& 9, 11, 14,27, 2!).’37, 171.172185, [88, 5!8
RCOT.PROCESS 171

scroll tmnin,i I5.211, 2s4
SCROL3.TEILWNAL 5I9
SEARCF_ERROR 425,426
Secmdary rcl.tionsbip 14, 24, 89, 95, 98, lCXJ,101, 174, 180,
IRS 510
Scsordzy sto,.ge file 15,22.23.211
SECONDS 503
SccuriN level 15.52
SECUSilTY_VIO~”TION 5Z 55,56, 177
SELECT_GRAPHlC_RE2WSffION 356
SEL.W.RANGE KIND 32I
San@i.-&sc@i&3 20

ad6iti0nd intafxc. 20
exceptiws 20
nom 21
paranwm 20

PUT.* ’20
SEQUENTIAL 319

sw...ti~ file 5M 513
SEf ACITV33 FOS17TON 295.33 L 375
SET:LXRRFiT_NODE 116
SET_GKANTEL_RIGHTS 40, 154
sHf_mHERffAiwE 102
S&T_iSODE-ATLIUSUTE 133
SET_PATH-ATTRIBUTE 135,136
SEf_TAB_STOP 29S,334
SET_TO_SbfPTY_LIST 428
SK2P.BLOCK 410
SKIP-NSXT 106, 107, lW, 110, [ 1
1Y2
SKIP-TAPEJ3ARK 405
solo queue 15

3, I 14, 141, 142 144, [46,

See .1,. Queue.SOIO
SOUNt)_BELL 302,338
SOum IImk 13.14, 15, 16,23,24,518
SPAWN_PROC&SS S7, 1S2, 169, 174,176,1SO,
SPLICE 435
SPLIT 504
STANDARL_ERROR 169,171, 172,173,518

sTAND*_- i69, !71, {72, 173,518
STANOAB3_OUTPUT 169,171,172173,518
Stat pwitim 15,36Z 378,380,382
STATUS 392,407
STATUS_ERKOR 55, S6
Sting quali~ 420
Sting item S14
STRUCTURAL. 1271,519

I95

Suuctwd ncik 15.16,22,25,87,89, 9Z 163.164
COlucnu 22

Subject 15,35,36,40,42,48,51. 159,174, 180,185,517
Subjectclas.itkai.. 520
Subject.Iassifxati.m I*LwI 52
SUEOELT_CLASSIFICATION 51.520
Sqend 15,168, 178,199

*. ah.. prccem. S.mensim
SUSPENT3_PRCClNS 198,199
Spdmmiz.tim 15
SYNC3LRONlZ4TION_IS_ENABLED 318,361
SYNCHRONIZE 234.243. 2s2. 316.359
Synchmn..S qm.e 15

se. also Que.., sy”chrmou$
SYNCSDIONOUS_SOLO 520
SYNTA5.ERROR 55,56,425.426

sysffm-1ev.1 nde 15, 16,25,36.517,518,523

TAR 301, 337
TAB_sTOP_K2ND 286,321
Tam.drive 22
T.> mark 405,406
TAPE_ffLCKTC 392
TAPE_DR3VE_STATUS_KIND 392
TAPE_NAM3? 392
T~_POSfftON_KLW3 392
TAPE_REC08DFNO_MET3fOD_K3ND 3Y2
TAPE_STATUS_ERKOR 394
Targelnc& 12, 13, [4, 15,16, 17,23,24,36,40,71,87, 89, 9K
107
Task 15.22,23
Tc.nniml 22,23
Tmniml file 15,21I
_lNAL_FOSlT30N_ERROR 215,216
TSRMN4L_PDS12’ION_TYPE 286,321,363
2T3RMlNAL_SLZE 381,387
TERMINATED 94
Tmninalim .f. D=* 15.168
TERMENATION1KEY 385
m 519
Text file 512
TEX3 PORM 430.460,470.479
TsxTIEiwTH.i&”
TIME 4!71,498
TW_ATfRIBUT’S_WfGITEN 122,521
TLME_CONTENfS_~ 121,521
T1603_cT/EATED 119,521
TLMS.ERROR 498
TLME_l+W353D 169,20S, 321
Tf.MSlIb2fI 57
TM-OF 505
TIMSIKELA2TONS~_WR12TEN 120,521
T~_sTARTED 169,204.521
T. obtainaccess 35
Token 16.420,421,458,459,460. 461,462,513

.<

607

Downloaded from http://www.everyspec.com



/

.

DOD-STD-1838

INDEX

TOREN.ERROR 420,425,426
TOKEN_TYPE 4W,425,457
T.wl 1.16.599

set 1.8,16
Tq-kvdna6c 16,23, %

&vicencde 27,112
fiknd 27,517
maunnh 36.172.518
Lr’d 9, 17,z;n, B,xs,17L 517.518

Track 16,24,53,65,92.93
Tranmortatilitv 1,16.599

Unad&i. mk” 16,37
UNAOOPTROL@ 37.162
UNBOUI&3J3LE_iQE 2IS
UNBOUNDE23-QW3UE-S2ZE 21S
Undefined token 16.423
UniquePrimary@ 16,29, %
Unique@u,-y pailmam 16,24. 3), 73,74.75,92188
uNloAD 39Q,40!
Unmmedibm 16, 17.419
Unnamedlist 17,419,429
Unokxaimbk 17,24,36,65,71,81,82. 94,99, 101,108
UNRESTRICTED W9
USE..ERROR 55,56
Use– 16, 17,25,27, 172, 173,518

mmu 17,25
r10de25

Utilities 2
S-20F 2

WTUTE 44, 38.2s2,512
w3uTE_AmUkTzs 43,59
wTU3EBLCCK 412
wmsjmms 43.58

WUT’ER-EIATIONSH2PS 43, m
WRf’Tt_RESULTS 191,192
WRfTE_TAF?_MARK 406

608

●

Downloaded from http://www.everyspec.com



DOD-STD-1838

,-

Preparing Activity:
Air Force -02

(Project MCCR/IPSC 0208)

custodians

Army - CR
Naw -EC
Air ;Orce -10

Review Activities:

Army - CR, AV
Navy - SH, TD
Air Force -17,02
Other - DC

User Activities:

Army -

Navy - OM, Naval Telecommunications Command
Air Force -
Other - DC, DH, Defense Mapping Agency

Agent: Ada Joint program Office -

I

I

●
609

.. ,

Downloaded from http://www.everyspec.com



.. .._
.“

DOD-MD-1838

Postscript: Submission of Comments

For submission of comments on DOD-STD- 1838, we would appreciate them being sent by
ARPANETiM3LNET to the addreaa:

CAB-COMMENT at ADA20.ISI.HXJ

If you do nm have ARPANET access, please send the comments by mail 10:

Ada Joim program O’ffice
Room 3E1 14, Pentagon
Washington, DC 20301-3081

For mail comments, it will assist us if you are able to aend &m on 5 l/4-inch double-sided double-density 360
Kbyte floppy diskette formaetsd for MS-DOS. But even if you can manage this, please also send us a paper
COPY,in case of problems with reading h diskette.

AU comments am sorted and processed mechanically in order to simplify their analysis and to facilitate giving
ekm proper consideration.To aid this prckeaa you am kindfy requested to precede each comment with a
four-line header.

! Secdon ...
! Version DGD-STD-1838
! Tnpic ...
! Rationale ...

The section line includes the aecdon number, the paragraph number enclo=d in parentheses, your name m
affiliation (nr both), and the date in ISO standard form (year-month-day). AS an example, berc ia the section Iim
of a cmnment from a previous version

! Sestion 03.02.01(12) A. Garg~ 82-04-26

71w version line, forcommenta on tbe military standard, ahoufd only contain “DOD-STD-1838”. Its purpose is

to dis+gfih cmnmenta that refer t6 different versiona.
‘Ik topic line sbmdd contain a one line summary of the ccmment. ‘Ibis line is essential, and you axe kindly
asked to avoid topics such m “Typo” or “Editorial comment” which wifl not convey any information when
printedin a table of contents. Aa sOexample of an information topic line; wm.si&r

! Tcpic FILE NODE MANAGEMENT

Note also that nothing prevents the topic line fmm including SU the information of a comment, as in the
folfowing topic line:

! Topic haest: “... are (impli+fy) +tin+i by ...”
.,. ,,.’ !,,

Aa a tinal example here is i cmnpleti comment
. .

,..

! Section 03.02,01(12) A. G~~aro g5-01-15 ~‘“
! VesaiOnMILSTD-CAIS
! Topic FILE NODE MANAGEMENT
Change “component” to’ kbcomponent” in last sentence.
OtiWiX, the statement ia inconsistent with ek detined

., “use of subcomponent in 3.3, wbicb saya that’ ~,..
.’, ,, aubeompowxa are exclu&d wkn tkterm component is
?, used instead of aubcomponent.

610

Downloaded from http://www.everyspec.com



$.

STANDARDIZATION DOCUMENT IMPROVEMENT PRtiL-.
(Seehuuctkms - Reww W)

WCUUENTNUMBER 2, 00 CUUENTTITLE

1
NAMEOf 6U@M1~lNL7 ORGANIZATION

mons$s [Snwl, city, Ebb. ZIP cd)

PnOmLEM AREAS

* r“apgh NUmml d W.,dirw

b. -— w.dl.l@

TV?Rof OnaANl=TIW (M-

f-J VmmO”

r-J W.

❑ MA”urAcr””E”

❑ e,la$n ,M,:

o

●

●

h + .. :

Downloaded from http://www.everyspec.com


