
p

DOO-STO-1703(NS)
12 FEBRUARY 19s7

SUPERSEDING
NW 81-3
2G JULY 1979

MILITARY STANDARD

SOFTWARE PRODUCT STANDARDS

,..

AMSC NO. G4044

DISTRIBUTION STATEMENT A.Approvedforpublicrelease;distributionisunhmited

AREA MCCR

\

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

NSA/CSS Manual 81-3/DOO-STDl703(NS)
15 April 1987

“FOREWORD

This manual is a compauion volume to NSA Manual 81-2, the NSA/CSS Software
Acquisition Manual. For in-house software development, it is called NSA Manual
81-3, NSA/CSS Software Product Standards Manual. For contracted software
acquisition, the document is called DOD-STO-1703(NS), Software Product

‘t Standards. It provides outlines of required documents, programming standards,
and descriptions of recommended software design methodologies. It also
identifies Data Item Descriptions recommended for use in contracted software
acquisition.

This second edition of the Manual has been designed to be more useful and
usable to software managers and software developers. Guidance has been added to
better explain the development activities associated with.preparation of the
required documents. Formats for several additional.optional documents have also
been added.

This manual is effective upon publication. It supersedes the first
edition of NSA/CSS Manual 81-3, dated 26 July 1979. Changes to the first edition
are printed in bold type. Comments and recommendationsfor improvements should
be referred to the Oeputy Director for Telecormnunications and Computer Services.

G&--&l&z
Deputy Director

for
Telecommunicationsand Computer Services

DISTRIBUTION 11
.Plus DISTRIBUTION III FOR T&R

OH T303 [963-3227s,688-7691b)

Downloaded from http://www.everyspec.com

,,’.

ii (blank)

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS

.

.

PART I -

1.1

1.2
1.2.

GENERAL

INTRODUCTION

DEFINITIONS
1 SOFTWARE

1.2.2 FIRMWARE
1.2.3 MANAGEMENT AUTHORITIES, ROLES, ANO RESPONSIBILITIES
1.2.4 SYSTEM ANO SOFTWARE
1.2.5 CONFIGURATIONMANAGEMENT BASELINES
1.2.6 OATA DICTIONARY

1.3 TAILORING

1.4 SOFTWARE TERMINOLOGY ANO THE SOFTWARE ,OEVELOPMENTPRIXESS
1.4.1 SOFTWARE REQUIREMENTS DEFINITION
1.4.2 PRELIMINARY OESIGN
1.4.3 OETAILEO OESIGN
1.4.4 REVIEWS
1.4.5 SUMMARY

1.5 REFERENCES

1.6 LIST OF OATA ITEM DESCRIPTIONS

PART II - SOFTWARE PROOUCT MANAGEMENT

2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.3
2.1.4

2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.3

SOFTWARE DEVELOPMENT PLAN
POLICY ANO REQUIREMENTS SUMMARY
GUIOANCE
GENERAL
INCREMENTAL DEVELOPMENT
SOFTWARE STANOAROS AND PRACTICES MANUAL
FORMAT FOR THE SOFTWARE DEVELOPMENT PLAN
FORMdT FOR THE SOFTWARE STANOAROS ANO PRACTICES K4NUAL

SOFTWARE QUALITY ASSURANCE
POLICY ANO REQUIREMENTS SUMMARY
GUIOANCE
GENERAL
OETERMINING THE SIZE OF THE SOFTWARE QUALITY ASSURANCE EFFORT
FORMAT FOR THE SOFTWARE QUALITY ASSURANCE PLAN

PAGE

1-3

4::
1-5
1-5
1+
1-7
1-8

1-8

1-9

;:?0
1-11
1-11
1-11

1-15

1-16

:2
2-3
2-3
2-3
2-5
2-7
2-12

2-15
2-15
2-15
2-15
2-15
2-17

iii

Downloaded from http://www.everyspec.com

PAGE

2.3 SOFTWARE CONFIGURATIONMANAGEMENT 2-21
2.3.1 POLICY AND REQUIREMENTSSUMJtARY 2-21
2.3.2 GUIDANCE 2-21
2.3.3 FORMAT FOR THE SOFTWARE CONFIGURATION MANAGEMENTPLAN 2-25

PART III - SOFTWARE DEVELOPMENT SPECIFICATIONS

‘ 3.1
3.1.1
3.1.2

SOFTWARE REQUIREMENTS SPECIFICATION 3-3
POLICY AND REQUIREMENTSSUMMARY 3-3
GUIDANCE 3-3

3.1.2.1 GENERAL
3.1.2.2 IDENTIFICATIONANO SELECTION OF COMPUTER PROGRAMS ;:;
3.1.2.3 METHOOS OF VERIFYING THE SATISFACTION OF SOFTWARE REQUIREMENTS 3-8
3.1.2.4 COMPUTER SECURITY REQUIREMENTS 3-9
3.1.3 FORMAT FOR THE SOFTWARE REQUIREMENTS SPECIFICATION 3-11

3.2
3.2.1
3.2.2
3.2.2.1
3.2.3
3.2.4

3.3
3.3.1
3.3.2
3.3.3

3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.3

SOFTWARE SYSTEM/SUBSYSTEMSPECIFICATION
POLICY AND REQUIREMENTSSUMW4RY
GUIDANCE
INTERFACE CONTROL 00CUWENTATION
FORMAT FOR THE SOFTWARE SYSTEM/SUBSYSTEMSPECIFICATION
FORki4TFOR INTERFACE CONTROL DOCUMENT

SOFTWARE PROGRAM SPECIFICATION
POLICY ANO REQUIREMENTSSUM4RY
GUIOANCE
FORK4T FOR SOFTWARE PROGRAM SPECIFICATION

3-25
3-25
3-25
3-25
3-27
3-43

3-47
3-47
3-47
3-49

SEPARATE DATA DOCUMENTATION 3-59
INTRODUCTION 3-59
GUIDANCE 3-60
SELECTION CRITERIA FOR OATA DOCUMENTATIONMETHODS 3-60
PREPARATIONOF THE DATA DICTIONARY DOCUMENT 3-61
STANDARD DATA ELEMENT NAMES 3-63
SAMPLE DATA DICTIONARY DOCUh!ENTENTRIES 3-63
FORlt4TFOR THE DATA DICTIONARY DOCUMENT 3-69

PART IV - SOFTWARE DEVELOPMENT PRACTICES

4.1 SOFTWARE ANALYSIS ANO OESIGN
4.1.1 POLICY AND REQUIREMENTSSUMMARY
4.1.2 INTRODUCTION
4.1.3 ANALYSIS AND DESIGN METHODOLOGIES

4.2 UNIT DEVELOPMENT FOLOERS
4.2.1 POLICY ANO REQUIREMENTSSUMMARY
4.2.2 GUIDANCE
4.2.3 FORMAT FOR UNIT DEVELOPMENT FOLDERS

4-43
4-43
4-43
4-45

.

i“v

Downloaded from http://www.everyspec.com

4.3
4.3.1
4.3.2
4.3.3
4.3.3.1
4.3.3.2
4.3.3.2.1
4.3.3.2.2
4.3.3.2.3
4.3.3.3
4.3.4

4.4
4.4.1
4.4.2
4.4.3

.,.

SOFTWARE DESIGN AND CODE INSPECTIONS
POLICY AND REQUIREMENTS SUMMARY
INTRODUCTION
THE INSPECTIONPROCESS /’”
PARTICIPANTS IN THE INSPECTION PROCESS
TYPES OF INSPECTIONS ..
DETAILEO DESIGN INSPECTIONS
CODE INSPECTIONS
OTHER INSPECTIONS
FORMAL INSPECTIONSTEPS
PERSONNEL CONSIDERATIONSWHEN USING INSPECTIONS

PROGRAMMING STANDARDS
POLICY AND REQUIREMENTS SUMMARY
GUIDANCE
PROGRPJ4MINGSTANDARDS AND GUIDELINES

PART V - SOFTWARE TEST AND OPERATIONS

5.1
5.1.1
5.1.2
5.1.3

::;.1
5.2.2
5.2.3

5.3
5.3.1
5.3.2
5.3.3

5.4
5.4.1
5.4.2
5.4.2.1
5.4.2.2
5.4.2.3
5.4.3
5.4.4

.5.4.5

SOFTWARE GENERAL UNIT TEST PLAN
POLICY AND REQUIREMENTS SUMMARY
GUIDANCE
FORMAT FOR THE GENERAL UNIT TEST PLAN

SOFTWARE SYSTEM INTEGRATIONAND TEST PLAN
POLICY AND REQUIREMENTS SUMMARY
GUIDANCE
FORMAT FOR THE SOFTWARE SYSTEM INTEGRATIONAND TEST PLAN

SOFTWARE SYSTEM DEVELOPMENT TEST AND EVALUATION (DT8E) PLAN
POLICY ANO REQUIREMENTS SUMMARY
GUIDANCE
FORMAT FOR SOFTWARE SYSTEM DT&E TEST PLAN

OPTIONAL TEST AND BUILD DELIVERY DOCUMENTATION
POLICY AND REQUIREMENTS SUMMARY
GUIDANCE
SOFTWARE TEST PROCEDURES
SOFTWARE TEST REPORT
BUILD DESCRIPTION DOCUMENT
FORMAT FOR SOFTWARE TEST PROCEDURES
FORMAT FOR SOFTWARE TEST REPORT
FORMAT FOR BUILD DESCRIPTION DOCUMENT

PAGE

4-53
4-53
4-53
4-53
4-54
4-54
4-54
4-57
4-57
4-57
4-63

4-65
4-65
4-65
4-67

5-3
5-3
5-3
5-5

5-9
5-9
5-9
5-11

5-19
5-19
5-19
5-21

5-27
5-27
5-27
5-27
5-28
5-28
5-29
5-33
5-35

v

Downloaded from http://www.everyspec.com

PAGE

5.5 SOFTWARE MANUALS 5-39

5.5.1 POLICY ANO REQUIREMENTSSUMMARY 5-39

5.,5.2 GUIOANCE 5-39

5;5.3 OESIGN REQUIREMENTS FOR SOFTWARE MANUALS 5-40

.5.5.4 FORMAT FOR USER’S MANUAL 5-43

5.5.5 FORMAT FOR SOFTWARE SYSTEM USER‘S 144NUAL’ ‘ 5-49

5.5.6 FORMAT FOR POSITIONAL HANOBOOKS 5-55

5.5.7 FORMAT FOR COMPUTER OPERATION MANUAL 5-59

5.5.8 FORMAT FOR PROGRAM MAINTENANCE MANUAL - 5-63

5.5.9 FORMAT FOR FIRMWARE SUPPORT MANUAL ‘: 5-69

PART VI - SOFTWARE PROOUCT ACCEPTANCE
. ;

6.1 SOFTWARE END-PROOUCT Acceptance pLAN “ :. 6-3

6.1.1 POLICY ANO REQUIREMENTSSUMMARY 6-3

6.1.2 FORMAT FOR SOFTWARE END-PROOUCTACCEPTANCE PLAN 6-5

vi

Downloaded from http://www.everyspec.com

LIST OF FIGURES

PAGE

FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 1-4
FIGURE 1-5
FIGURE 3-1
FIGURE 3-2
FIGURE 3-3
FIGURE 3-4
FIGURE 3-5

FIGURE 3-6
FIGURE 3-7
FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 4-4
FIGURE 4-5
FIGURE 4-6
FIGURE 4-7
FIGURE 4-8
FIGURE 4-9
FIGURE 4-10
FIGURE 4-11
FIGURE 4-12
FIGURE 4-13

FIGURE 4-14
FIGURE 4-15
FIGURE 4-16
FIGURE 4-17
FIGURE 5-1
FIGURE 5-2

SOFTWARE DEVELOPMENT SEQUENCE
SYSTEM ENGINEERINGACTIVITY
SOFTNARE REQUIREMENTS ANALYSIS ACTIVITY
SOFTWARE PRELIMINARY DESIGN ACTIVITY
SOFIWARE OETAILED DESIGN ACTIVITY
EXAf@LE OF A TEST AND QUALIFICATION CROSS-REFERENCE
EXAMPLE OF A TABLE THAT IDENTIFIES COKF’UTERPROGRAM
EXAh?LE OF A FUNCTIONAL REQUIREMENTS MATRIX

INDEX ,
COWONENTS

EXAMPLE OF A TA8LE ALLDCATING REQUIREMENTS TO SOFTUARE UNITS
RELATIONSHIPS 8ETWEEN DATA STORES, DATA“STRUCTURES,AND DATA
ELEMENTS

EXAMPLE OF A DATA STORE SET-USE MATRIX
EXAhF’LE.OFA OATA STRUCTURE SET-USE MATRIX
LEVEL O DATA FLOW DIAGRJ4M
PROCESS DECOMPOSITION
STRUCTU E CHART

!8ASIC N CHART
N2 CHART - CIRCLE FO~T
OECISION TA8LE PARTS
LIMITED ENTRY DECISION TA8LE
EXTENDED ENTRY DECISION TABLE
MIXEO ENTRY DECISION TA8LE
EXAt@LE OF UDF .COVERSHEET
EXAMPLE OF UOF CHANGE LCG
EXA!?LE OF REFERENCE LOG FDR MATERIAL IN A SEPARATE LCCATION
UNIT TEST CASE/REQUIREMENTS/FUNCTIONALCAPABILITIES LIST
M4TRIX

SAMPLE OETAILEO OESIGN INSPECTION CHECKLIST
GENERAL COOE INSPECTIONCHECKLIST
SAMPLE OETAILEO DESIGN INSPECTION PROBLEM LIST
SPJPLE CODE INSPECTION PR08LEM LIST
EXAMPLE OF A SOFTWARE REQUIREMENTS/TESTCASE M4TRIX
TEST PRIXEDURE TA8LE

;:3
1-13
1-13
1-14
3-22
3-31
3-33

3-76
3-76
4-8
4-1o
4-13
4-19
4-20
4-37
4-37
4-38
4-38
4-46
4-47
4-48 ““
4-!)1

4-55
4-58
4-61
4-62
5-24
5-31

vii

Downloaded from http://www.everyspec.com

.. .
,.

,

.’.

,..

.’

viii (blank)

Downloaded from http://www.everyspec.com

PART I - GENERAL

Downloaded from http://www.everyspec.com

1.1 INTRODUCTION

This is the second edition of NSAM 81-3. It describes a set of
documents and activities that comply with the policies of the NSA/CSS SoftMare
Acquisition Manual (NSAM 81-2). Figure 1-1 depicts the sequence of software
development covered by the NSA/CSS Software Acquisition Manual: It also
identifies documents required by the Manual and shows the sequence in which
they shal1 be prepared and reviewed.

Since they were published in 1978 and 1979, these manuals have’served
as the standard for the acquisition and development of software systems for
the National Security Agency/CentralSecurity Service. The new editions of
NW 81-2 and NW 81-3 take advantage of what has been 1earned in the seven
~:a;ince they were originally published. Changes to the manuals are not

. Formats for several optional documents have been added. Other PIans
and specificationshave been modified to emphasize important activities or to
make them easier to understand and use. A policy on Software Inspections has
been added to encourage more use “ofsystematic peer reviews to detect defects
and errors in software products. In several places, the manuals have been
changed to encourage, but not mandate, incremental developmentof software
systems. Changes to the original manuals are typed in bold print.

This manual is divided into six parts.. Part I provides general
information relating to the other five parts. Parts 11 through VI are sub-
divided into seventeen sections relsting to specific policies of NSAM 81-2.
~wQvel o~ the sections provide formats and contents of documents required by

- . Two other sections contain formats for separate data base
documentationand optional test documentation. The other three sections
contain progransningstandards, a description of recommended design and
analysis methodologies,and guidance on how to conduct software inspections.
Each section contains a sunmary of the applicable policy of-NW 81-2. Most
sections also have additional guidance to aid in the preparation and use of
the documents.

Software Acquisition Managers and Agency Software Oevelopment Managers
may choose to develop project-specificdocuments that differ from the
documents described in this manual. Any documents or specificationswhich
differ, however, must contain the information necessary to comply with the
policies of NW 81-2. Use of the document outlines contained in this manual
also does not guarantee that the document satisfies al1 of the requirements of
the NSA/CSS Software Acquisition Manual. Many of the policies have
requirements that cannot be directly represented in a description of format
and contents of a document. Software developers should periodicallY compare
evolving documents and ongoing activities with their associated policies to
ensure that they satisfy the provisions of the NSA/CSS Software Acwi sition
Manual.

Proposed changes to this manual must be submitted in writing to the
Oeputy Oirector for Teleconsnunicationsand Computer Services (OOT). The
Software Development Policy Change Control Board (See NW 81-2, Section 1.6)
wil1 review proposals for changing both NW 81-2 and 81-3 and reconsnend
action for 00T approval.

1-3

Downloaded from http://www.everyspec.com

t-

SOFTWARE
!OOJE.CT
Omo’o?

t

DEVELOPMENT

mlmom
coommEolo msuo

SEQUENCE
--i

Colnccl Uwoamcl
OEcln Occwlom
mm

I 1

Omoulof

Cc$olonlas Olcltm
Roo OE$occomom m_-

COfluoO
COOI:n cEwoE90m ‘-rmcmuw Conwoof

OEml mum ComoOo
OEolca

TOPmm Cofcmoomm OTMltol1
WC MmomoOI mJooc

OcucoON SouIoomnm

nooonmocmmoOoO

somoooom.omm noo (Comnm~ Woom * lcmomA

w v
cofmocEOtsooooooOocRscncEonooOoI (- . (Mcnou~ lcmiJmA

v v
SormoooWoullCosomoocfPIN [Cnwmcl~

Xofmcctcmfimcnm UBOOE~EOlmoo Iclmcm:
T

[WR9WCTOscumsfMAO [PMEcmocn~ [Como’m~
v .

wmm WJOmmO sncwosm Icowsom_ W.ooIlll

SOPWACOsmwwmcm mcmcmoa lcomEmA Ioc-oonll
.

mmm Comlol00CWEOI [Comm * loo-cowl
.

somhgf noocomuscmconoo {co8nEm~ Iso-ooslll

$OtlWAREE[UECUUIITlEClP@ [Comfm~

Son’wsooUOMU [mumosn ~ wosm ~ @OWIL1’1
v .

Sofmm ml mom *
. v +

CUIMBESCOlt1100OOCWEOl {S0IEQEIREOI~
v *

I
● Awcmlmnow mm

.

FIGURE 1-1

Downloaded from http://www.everyspec.com

1.2 DEFINITIONS

1.2.1 SOFTWARE

As used in this manual, software covers the ful1 range of ccinputer
programs, firmware, ❑icrocode, and data definitions including operating “
systems, standard utilities, file management systems, and applicatlons
programs written to implement the functions of a specific computer-based ~~
system.

1.2.2 FIRMWW

The combination of a har~are device and computer instructionsor
computer data that reside as read-only software on the hardware device. The
software cannot be readi1y modified under program control.

1.2.3 ht4NAGEhENTAUTHORITIES, ROLES, AND RESPONSIBILITIES

Acquisition Oecision Authority - Senior NSA/CSS executives (e.g.,
DOR, DD;~ DOT, 000) or their designees (e.g., AOOR, Group Chief) who, with
concurrence of the NSA/CSS System Acquisition Executive (ODR), have been ,
designated to be responsible for exercising management control and decision
and approval authority over projects and systems during the system acquisition
planning approval and acquisition phases of the systems management process.

b. Software Acquisition Manager - The person responsible to the System
Acquisition Manager for mana”ging the planning and acquisition of the software
segment(s) of a system acquisition. If no Software Acquisition Manager is
identified, the System Acquisition Manager shal1 assume the responsibilities
of the Software Acquisition Manager.

Software Development Manager - the individual in the Software
Develop;;ntOrganization responsible for managing a software development
project.

d. Software Development Organization (also referred to in this manual
as the “developer”) - The organization that designs, builds, and integrates
software to satisfy the System Acquisition Plan and, as.applicable,
procurement documents.

e. Software Quality Assurance Manager - The individual in the .Software
Development Organization responsible for the Quality Assurance function.

f. System Acquisition Manager - The individual appointed by the
Acquisition Oecision”Authority during acquisition planning who is responsible
for managing the acquisition steps of System Design, System Building and
Integration,and OT&E.

System Acquisition Organization (also referred to in this manual as
the “cu~~omer”) - The organization responsible for planning the Acquisition
Phase of the system and for insuring that the developer builds a system that

1-5

Downloaded from http://www.everyspec.com

satisfies system development requirements identified in the System Acquisition
Plan. The System Acquisition Manager is responsible for activities performed
in this organization. ,. .,

h. System Operations Customer (also referred to in this manual as the
user) - The principal representativeof the operations group(s) with
responsibilityfor reviewing and”control1ing changes to the operational
requirements and participateng during the entire Acquisition Phase. ~i5 “-

individual is identified during the System Concept Phase.

i. System Support Authority - The Chief of the organization
responsible for managing 1ife-cycle support planning functions (during the
acquisition phase) and for providing 1ife cycle support (during the
operational phase). . .

Technfcal Review Board - The people appointed by the System
Acqufsi;;on Manager to participate in reviews and assist in evaluating the ~”
adequacy of the developer’s approach to satisfying system developmant
requirements. The Board includes representativesof the Systems Operations
.Customar,System SupportAuthor.ity, and other members with necessary technical
skil1s and experience.

1.2.4 “SYSTEMAND SOFTMARE

The fol1owing definitions identify elements that apply to the computer
software portion of systems. They are particularly relevant to the
ConfigurationManagement Plan in Part II and to the Software Specificationsin
Part III.

a. Syst& - A system is a composite of ‘equipment,skills, and
techniques capable of performing or supporting an operational role. A
complete system includes all of the associated equipment, faci1ities,
material, canputer.programs, fi?mare, technical documentation,services, and
personnel required for operations and support to the degree necessary for
self-sufficientuse in its intasded operational environment.

b. Computer Program Function - A system function whose implementation
has been formal1y al1ocated to software.

c. Software System/Subsystem- The portion of a system or subsystem
that consists of one or more computer programs.

d. Computer Program - A series of instructions or statements and data
definitions in a form acceptable to a computer, designed to.cause the computer
to execute an operation or operations. Computer programs include operating
systems, job-control 1anguage procedures,assemblers, ccxnpilers, interpreters,
data maintenance/diagnostic programs, as wel1 as applications programs. A
computer program normally satisfies an end%se function and is designated for
configurationmanagement purposes as a configuration itern. It is.a “
deliverable entity which implements a specified grouping of computer program
functions.

e. Computer Program Component - A functionally or logically distinct
part of a computer program. It is distinguished in design and development as
an assembly of subordinate elements (units) of a computer program. It is
insnediatelysubordinate to a computer program and is the lowest level to which
al1ocation of a computer program functionmust be displayed.

.

1-6

Downloaded from http://www.everyspec.com

f. Unit - An aggregate of appropriately-sizedsoftware to which the
satisfactionof requirementscan be traced. It is one of a hierarchy of
entities into which a computer program component is decomposed and mu be at
any level of the software hierarchy. Typical.units are between 100 and 1000
higher-order language statements. Typical criteria for selecting units are:

(1) The Unit performs a wel1-clefined function;

(2) The unit is amenable to development by one person.within the
assigned schedule;

(3) The unit is an aggregateof software to>which the satisfactfon
of requirements can be traced;

(4) The unit is amenable to thorough testing;

(5) The unit has a cyclomatic complexity of 10 or less. (for an
explanation of this concept, see page 4-71).

9. Routine - A set of instructions and statements that exists as an
identifiableentity and carries out some wel1-clefined operation or set of
operations. It is usually the smallest compilable element of a software
system. A unit may consist of one routine or it may have several routines.’

1.2.5 CONFIGURATIONMANAGEMENT BASELINES

The NS4/CSS Systems Acquisition Manual (NSA Manual 81-1) identifies
configurationbaselines which are normally defined during’the system 1ife
cycle. The following definitions identify the configuration baselines as they
apply to software development.

a. Software Functional Baseline - This baseline is-establishedafter
top-1evel system design activities have al1ocated development requirements to
the Software System or Subsystem. It is established with publication and
approval of the Software RequirementsSpecification. lhis approval takes
place at the Software Requirements Review.

b. Allocated Baseline - This baseline is established with the
specificationof the detailed functional design and the performance of each
functional element sufficient to begin the detail design process. It is
normally established at a Preliminary Design Review during the Acquisition
Phase.

c. Product Baseline - This baseline describes the “as bui1t“ software
system in terms of its function, performance, and operational
characteristics. It is first established at the beginning of the system
integration and continues in effect until completion of the Operational Test
and Evaluation Phase. ..

1-7

Downloaded from http://www.everyspec.com

1.2.6 DATA DICTIONARY

A manual or automated file holding “dataelement definitionsand
information on how data is shared and used in a system. The dictionary ,
contains the full definition of each data element. Directories show how the ‘“’
data elements are used in files/data bases/interfaceformats, record types,
data fields, or software. The basic function is to..produceconsistent
documentation of the whole system and to encourage standardization,e.g., of
naming conventions. Many additional functions can be added, including the
building of generalpurpose software such as data validation.programs using
data.configurationsstored in the Data Dictionary.

1.3 TAILORING

The software develo~nt. policies”in the NSA/CSS Softh’areAcquikition
Manual (NSAM 81-2) and the doc~nts and activities described,i.nthis MSISUal
(NW 81-3) identify a‘sound methodology for acquiring and developing software ,
systems. There are, however, many ways to apply the methodology to.different
types of software projects and stil1 satisfy the requirements of NSAM 81-2.

When considering how to tailor the stindards,‘software.managers“should‘,
considertheir own needs as managers and the needs of the U1timate users of
the software. Many factors affect these needs. Some of them, stated as
questions here, need to be answered before any tailoring decisions are made.
They are as fol1ows:

a. How 1arge and how complex

b. Who wil1 use the software

c. Now long will it be used?

is the software product?

product?

d. Wil1 someone be required to provide 1ife-cycle support for the
product after it is developed?

e. During development,which of the following does the customer
consider most inportant: cost control, schedulecontrol, or functional
capability?

f. What are the developmrmt risks?

9. Wow 1arge is the development steff?

Based upon the answers to these questions, software managers should
determine the activities, documents, and products that developers,customers,
and users need to have a high-quality software product. If activities
prescribed by NSAM 81-2 are not necessary, Section 1.5.(pages 7 - 8) of NSAM
81-2 describes the method for requesting exceptions to the required
activities. If the software project is not 1arge enough to warrant.separate
activities and plans, they may be combined, reduced, or amplified as
appropriate. If sections within document formats are not relevant, they may
be omitted with the notation that they are not applicable.

1-8

Downloaded from http://www.everyspec.com

~.The important point is that tailoring of activities and documentsis
both acceptable and expected. There is, however, no quick, easy formula for
generalized tailoring; software managers must adapt the standards to meet the
needs of their projects. When considering how to tailor the use of standards
on a project, software managers should also reer the following axioms of
software development:

a. To be successful,a software-projectmust be wel1-managed. :

b. 6ood management requires planning, attention to detail, and
discipline.

c. Documentationis a primary vehicle with which managers manage.

d. Until a software product is tested, no one wil1 know its quality. ;

Both cust.caersand users have a vital role to play in any software
develop%nt effort; doc~ntation gives them the infor?mstionnecessary to
perform their role.

Tailoring must never eliminate activities or documentationthat wil1
cause these axioms to be compromiseal.

1.4 SOFTNARE TEI041NOLWY AND TNE SOFTNARE DEVELOPMENT PRIXESS

NSAM 81-2 and this manual assume that system-level activities required
by NSA/CSS Circular 25-5, Systems Acquisition Management, result in a thorough
system engineering exercise in which the”system objectives are decomposed into
a hierarchy of solution-independent,system-1evel functions. At this point of
development, each system function is defined only in general terms. These
manuals further assume that the solution to each system function has been
formally allocated to hardware, software, or manual systems or subsystems.
System functions al1ocated to software systems then come under the
jurisdiction of the software management policies of NSAJ481-2 and become known
as computer program functions.

At this point, the software development process begins. NSAM 81-2 and
this manual describe a three-step process for designing software systems. The
first is Softiare Requirements Definition. The second is Preliminary (or
Architectural) Design, and the third is Oetailed Oesign. The product of each
step is a Specificationthat documents the software as it evolves from a
concept to a functioning system.

1.4.1 SOFTNARE REQUIREMENTS DEFINITION

Aftar the software functions are identified, Software Requirements
Definition begins. The Software Manager analyzes the soflxvarefunctions (also
called software requirements) to determine the extent to which they should be
grouped into cosposite entities for acquisition purposes.. Each such grouping
of software functions is called a computer program and is identified, defined,

1-9

Downloaded from http://www.everyspec.com

and described in the Software Requirements Specification. Each computer
program is a software entity that must be bui1t and delivered. The size and
components of the computer programs, however, are not yet known. The Software
Requirements Definition step is completed when requirements for al1 computer
programs are defined, the Software Requiremants Specification is completed,
and the customer agrees that the requirementscan be baselined. ,

1.4.2 PRELIMINARY DESIGN

Dnce the functions of a computer program are defined, preliminary
design begins. Software design is basically a decision-makingprocess. First
the designer must identify what decisions must be made, then generate
alternative ways of making the decisions, then evaluate the alternatives.
Finally, the designer must select one alternative as the best design approach.

As a part of selecting the best design approach, the designermust.
establish the architecture of the software system that will be built. This-
means spel1ing out in general terms how the software system wi11 1ook--what
functions it will perform--how it will be built--and what major algoriths it
wI1l use. This establishes the primary elaments of the system and identifies
their relationshipswith each other. The chosen alternative and the.selected
architecture.is the preliminary des~gn documented in the Software/Subsystem
Specification.

\
During preliminary design, the individual computer program function$

may 1ose their identity in the software structure. To ensure that each
function is implemanted, this ❑anual requires that each function of software
be al1ocated and be traceable to at 1east one level 1ower than the computer
program 1evel. This requires that each computer program be broken into
components. A single function wi11 not be al1ocated to more than one computer
program; but within a computer program, functions❑ay be al1ocated to more
than one component.

Computer Program Componentsmay 1ikewise be successively decomposed
into increasinglymore detailed entities. The number of decompositionswil1
vary with the size and complexity of the Computer Program Component. Since
the exact number cannot be specified in advance, the products of component
decomposition are given the generic name “units.” A Computer Program
Component always consists of at 1east one unit and may consist of a hierarchy
of many units.

Software units are the basic building blocks for which code is
developed and integrated to form the completed software system. By
decomposing the software system into smal1 modular elements, the software is
made easier to understand, develop, maintain, and modify. Development of
units may also be easily tracked and responsibilities for developmant easily
deftned, thus increasingmanagement visibi1ity into the 10W-1evel development
process.

.

Initially, the softvlareunits are abstract functional entities.
Designers begin with functional decompositionand proceed to more detailed
functional definition, but they must also design the control architecture

1-1o

Downloaded from http://www.everyspec.com

along with interfaces and date requlrements. Software units must be”
identified to manage the sequence of actions performed.by the processing,
units. Interfaces among units must be identified. The flow of control and of
data through the software structure ❑ust be documented. Preliminary design fs

completed when the total:software structure is decomposed.into softwareunits
that wi11 perform the routine algorithmic and data processing functions
necessary to implement al1 of the input-to-outputpaths of the requirements.

1.4.3 DETAILED DESIGN

During preliminary design, software developers determine what software
units wi11 do and how they relate to each other. Criteria for selecting
units, however, are subjective because the unit has not yet been bui1t.
During detailed design, developers design the 1ogic of each software unit.
This includes cal1ing sequences, error exits, inputs, outputs, algorithins,and
processing flOW. As they design the logic, developers may find that further
decomposition is needed. Lines of code estimates may have increased past
the threshold of acceptable size, or complexity w have increased more than
anticipated.

To al1ow for further decomposition during detailed design, this ❑anual
al1ows units to be broken into several routines. Routines are the smal1est
compilable or interpretable software entities. They are the building blocks
of units. The deteiled design of each unit; including routines that make up
units, is documented in the Software Program Specification.

The result of the decomposition process from computer programs to
computer program components to units to routines is a rigorous hierarchy of
definitions schematically depicted in Figures 1-2; 1-3, 1-4, and 1-5.

1.4.4 REVIEWS

The Software Specifications defined in Part III of this manual assume a
software acquisition process that cal1s for Reviews at the completion of the
three major steps:

a. Software Requirements Review - Definition of deliverable software
entities and al1ocation of system functions to computer programs.

b. Preliminary Design Review - Specification of the complete structure
of al1 deliverable computer programs, including identificationof al1 software
units and their relations with each other.

c. Critical Design Review - Deteiled design of al1 software units
including all routines identified during detailed design.

1.4.5 SUMMARY

At the first ❑i1estone, software is designed to the computer program
1evel and is documented in the Software Requirements Specification. The
second mi1estone defines the computer program components and identifies the

1-11

Downloaded from http://www.everyspec.com

units in the software structure(but not the detailed design of the various
entities comprising the structure). ~is marks the completion of the
preliminary design and is documented in the Software System/Subsystem .
Specification. ti third milestone represents a detailed design of the
jsoftwarestructure; including the design of al1 routines within..units; and is.
doc~nted in”the SoftWan. Program Specification. ., .-.-..“~.

. . . .

1-12

Downloaded from http://www.everyspec.com

“ o ~~~“
SYs’m

ST- FUNCHON3

“B ‘m’”” B .,

FIG . 1-2 SY2TSM ENGINEERING ACTIVITY

I
SOFIWAREPIJNCTIONS

FIG 1-3 SOFTWARE REQUIREMENTS ANALYSIS ACTIVITY

CONPUTERPROGRANNO,1

F!@!z!lFzz!z!l”””-

COMPUTERPROGRAMCONPOH 1

m1 1

I
I I I

gTII,mm
mm

. . .

.

COMPUTERPROGRANCONPONENTn

m
1 1

I

+++’““12m m
mm- 16 UNIT 46

FIG 1-4 SOFTWARE PRELIMINARY DESIGN ACTIVITY

1-13

Downloaded from http://www.everyspec.com

~ PROGRAMCOMPONENT1

,

,.. r

:.”1

UNIT1

m1 I

I
1 I

,.

ml? z
ROUTINE
2,1

R02:;NE R02.:NE1:, ‘i “l-l:+, ‘ “ii+$E!?”I
I

I

ROUTINE R02~:NE
2.6

FIG .1-5 SOFTWARE DETAILED DESIGN ACTIVITY

,.

.“, .,.. ,: ,,,

1-14
“,

.,.

. .

.

,..

Downloaded from http://www.everyspec.com

1.5 REFERENCES

Thfs manual was developed from material
reference documents which are 1istealbelow:

contained in a number of

a. DoD STD 7935, Department of Defense Standard, Automated Data
systems (ADS) Documentation; dated 15 February 1983.

b. DoD-STD-2167, Mi1itary Standardi Defense System Software
Development, dated 4 June 1985.

c. NSA Manual 81-1, NSA/CSS Systems.Acquisition Manual; dated
1 June 1984.

d. Software Acquisition ~nagement Guidebooks, Electronics Systems
Division, Hanscom AF8, Massachusetts, publistiedbetween 1975 and
1978. ,

e. NSA Manual 81-3 (original version), NSA/CSS Software Product
Standards Manual; dated 26 July 1979.

1-15

Downloaded from http://www.everyspec.com

1.6 LIST OF DATA ITEM DESCRIPTIONS

This section identifiesthe Data Item Descriptions that.apply to documents
described in this manual. When this manual is used for contracted software
acquisition,it should be referred to as 000-STO-1703(NS), Software Products
Standards. The term.“Data Item Description” is used to refer to a formal
CO1lecticn of information (data) acquired during the contract software
acquisition process to support the management and technical objectives of the
project. Such CO1lections of informationare identified in the Contract Data
Requirements List (DD 1423). The specific content and organization of each is
defined in the following Data Item CIescriptions:

01-NCCR-80297
DI-MCCR-80298
01-kCCR-80300
DI-MCCR-80299
DI-MCCR-80319
DI-MCCR-80301
01-MCCR-80302
DI-MCCR-80303
DI-IKCR-80304
DI-MCCR-80305
DI-MCR-80306
01-MCCR-80307
DI-MCCR-80308
DI-MCCR-80309
OI-IKCR-8O31O
DI-MCCR-80311
DI-MCR-80312
DI-MCCR-80313
DI-h!CCR-80314
DI-MCCR-80315
DI-MCCR-80316
01-MCCR-80317
DI-k!CCR-80318

Software
Software
Software
Software
Software
Software
Software

Oevelopment P1an
Standards and Practices Manual
ConfigurationManagement P1an
Quality Assurance Plan
End-ProductAcceptance P1an ‘
Requirements.Specification
System/SuDsystem.Specification

InterfaceControl Documen~ ‘
Software Program Specification
Oata Dictionary Document
Unit Development Folders
General Unit Test Plan
Software System Integrationand Test P1an
Software System DevelopmentTest and Evaluation (OT&E) PIan
Software Test Procedures
Software Test Report
Build Description Oocument
User’s Manual
Software Systems Users Manual ‘
Positional Handbooks
Computer Operation Manual
Program Maintenance Manual
Firmware Support Manual

1-16

L

Downloaded from http://www.everyspec.com

PART II - SOFTWARE PRODUCT MANAGEMENT

Downloaded from http://www.everyspec.com

2.1 SOFTWARE DEVELOPMENT PLAN

2.1.1 POLICY ANO REQUIREMENTSSUMMARY (From NSA/CSS Software Acquisition
Manual 81-2, Policy 2.1).

Software projects shal1 be developed according to a Software
Development P1an. The plan shall be prepared by the developer prior to the
Software Requirements Review. This plan will provide a statement of the
developer’s plans for producing and controlling the development of software.

2.1.2 GUIDANCE

2.1.2.1 GENERAL

A primary function of the Software Development P1an is to ensure that
organizations developing software consider both the technical and management
aspects of software development. It also provides a means of improving
visibility into the software development process. It should identify the
products to be developed; development resources required; schedules for formal
reviews, internal developer milestones, and deliveries of products;
organizationalrelationships;and reporting and control procedures.

A Software Development Plan should be prepared by each organization
developing software for a system. When more than one organization develops
software, the System Acquisition Organization should prepare a higher-level
Software Oevelopment P1an to consolidate and integrate software development
and testina activities. This should helD to coordinate interrelated
activities-of different developers and aiso aid in”managementof support
facilities and products delivered by one developer for subsequent use or
integration by another.

For software developed on contract, the Software Development P1an may
be used as a source selection criterion. This requires that the Plan be
identified in the Request for Proposal as a specific part of the contractor’s
proposal. This emphasizes the importance of software and its proper
development and management throughout the system acquisition phase. It also
establishes the framework for the.Software Oevelopment P1an to become a
contractual document. When it becomes a contractual document, the contractor
is obligated to follow the procedures,controls and methods described in it.

2.1.2.2 INCREMENTALDEVELOPMENT

After Preliminary Oesign, there are two ways to continue software
development: through a single development effort and a single delivery of the
total software capability; or by sub-sets of the software’s functional
capability with separate, sequential (or.near sequential) development efforts
for each subset. Some cal1 the first method turnkey system development;
others cal1 it the “big bang” approach. The second method is called
incremental development or the build approach.

2-3

Downloaded from http://www.everyspec.com

There are advantages and disadvantages to either technique.
Incrementaldevelopment al 1ows software developers to demonstrate and deliver
1imited functional capabi1ities much sooner than turnkey development. Users
are able to use the system sooner and provide feedback to the developers.
Developers can learn from their experiences on early bui1ds and apply what
they have 1earned to 1ater bui1ds. Incrementaldevelopment also requires that
the software be tested sooner, longer, and more thoroughly.

Software systems that are developed in increments may take 1onger to
complete, but they can be developed with fewer people. P1anning is more
complicated because the order in which functional capabi1ities are selected
for implementation is more critical. Fewer people are needed because more
time is avai1able for them to complete the same number of development tasks.

If planning for turnkey development is easier than planning for
incremental development, managlng the implementationis much more difficult.
Schedules are shorter, more tasks have to be developed concurrently, more
people are needed to complete work in 1ess time; and there is less mergin for
error during development. Thus, problems are more 1ikely to seriously affect
the development schedule.

The point is not to argue the advantages and disadvantages of either
development approach: Whether incremental development actually takes longer
than turnkey development is debatable. Because incremental development allows
1imited functional capabi1ities to be used sooner and tested more thoroughly,
the total system, when completed, should be more mature and reliable because
it has fewer remaining defects. Whether there are formal intermediate
deliveries or not, any large system should be developed in increments.

-. For either type of development approach, software managers should
decide early in the development effort which approach their projects wil1
fol1Ow. In most cases, the advantages of incremental development wi11
outweigh the advantages of turnkey development. Only when the fol~owin9
character sties are present should turnkey development be selected:

a. The entire software system can be developed ,inless than twelve
months.

b. The software cannot practically be broken into builds.

The added cost of developing support software (emulation,
simulat;&, test) to test and integrate builds is more than 20% of the total
development cost.

that
d. The need for delivery of the total software capability is so great

managers are wi11ing to accept the added risks of turnkey development.

2-4

Downloaded from http://www.everyspec.com

PIanning for incremental development should begin during the
Requirements Definition step and continue during Preliminary Design. As soon
as the decision is made to bui1d the software in increments, developers should
begin to identify the bui1ds and plan for their implementation. They begin by
deciding which subsets of functional capabi1ity can be grouped into bui1ds.

A bui1d may consist of complete computer programs”(as defined.in the
Software Requirements Specification)or it may cut across several computer
programs. From the standpoint of management control, it is better that
complete computer programs be selected for bui1ds; but other factors must also
be considered. High-priority user requirements should be al1ocated to early
builds. High-risk, but wel1 understood requirements should also’be satisfied
in early builds. Software that interfaces with other systems,other device$,
or consnunicationslines should be scheduled in builds that will be completed
c1ose to the time that the external intetfaces are avai1able. Poorly defined
or 1ess wel1-understood requirements should be implemented in 1ater bui1ds.
Function> in a bui1d should also be compatible with each other.

Bui1ds therefore can and should be tentatively selected during the
Requirements Definition phase, but they should not be formallY established
unti1 the Preliminary Design is complete. This is.because builds should
satisfy several additional criteria that wi11 not be known unti1 the software
architecture is established. Builds should represent logical divisions of the
software architecture. Interfacesbetween builds should be kept simple. Once
a build is implemented, changes to existing buildsoftware should be kept to a
minimum. A consnonproblem of incremental development is caused when it is
belatedly discovered that software in an early bui1d is not compatible with a
later build. This problem can be minimized by considering the bui1d software
as an integral part of the complete software architecture established during
preliminary design. Interfaces between bui1ds should be examined and
localized in as few software units as possible. Complete software
requirements should always be implemented in individual builds.

After Preliminary Design Review, build implementationcan begin.
Separate Critical Design Reviews for each bui1d should be conducted as the
project is now broken into several smal1er projects. Schedules for each bui1d
have to be closely coordinated. A build should take from four to six months
from beginning of detai1ed design through completion of Bui1d DT8E.

2.1.2.3 SOFTUARE STANDAROS AND PRACTICES MANUAL

2-5

The Software Standards and Practices Manual establishes the standards,
procedures, guidelines, and restrictions that software developers wil1 follow
to develop software for a project. It tel1s developers the things theyare
supposed to do and how they are supposed to do them. Every project member, as
well as members of the acquisition team, should have a copy.

Downloaded from http://www.everyspec.com

Rather than establish detai1ed standards and practices for al1
development activitles at the heginnfng of a project, software cievelopers
should plan to provide particular sections of the manual as they are needed.
By Critical Design Review, al1 sections should be complete. A three-ring
binder will make additions and updates easy.

The Software Development Manager should assign someone, such as the
,. Software.Qualfty Assurance Manager or the Lead Software Engineer,

responsibility~for the project’s standards and practices. This person should ~
,.,be responsiblefor maintaining the manual; for assurfng that project members

know how.W follow the rules, and for ensurfng:that the rules are being . .- “. ,
followed.

2,:6

Downloaded from http://www.everyspec.com

2.1.3 FORMAT.FOR THE SOFTWARE DEVELOPMENT PLAN

SOFTWARE Development pLAN

TABLE OF CONTENTS

Section 1.

Section 2.

Section 3.

Section 4.
4.1
4.2
4.3

Section 5.

Section 6.

Section 7.

Section 8.

Section 9.

Se:~i:n 10.

10:2

section 11.

Section 12.

Introduction

Organization and Responsibi1ity

Management and Technical Controls

Resources
Personnel
Training
Oata Processing Equipment

Software Oevelopment Schedule

Risk Areas

Monitoring and Reporting

CSocumentation

Development Approach

Use of Existing Software
Coumsercially-Available Software
Existing Applications Software

Development and Test Tools

Security’Controls and -Requirements

2-7

Downloaded from http://www.everyspec.com

Section 1. Introduction. This section shal1 describe the scope,.purpose,
application,and authority of the development effort. This should include a
brief overview of the management philosophy and methodology that Wil1 be us?d
on the project.

Section 2. Organizationand Responsibility. This section shall describe the
organization,responsibilities,and structure of the groups that will be
designing,’producing, and testing all segments of the software system. It
shall also.identify the name and management position of each supervisor.

Section 3. Management and Technical Controls. This section shall describe
the management and technical controls that will be used during development,: ~
including controls for insuring that all performance and design requirements
have been.identified and implemented.

Section 4. Resources.

4.1 Personnel. This section shal1 identify the level“of manpower that wil1
be al1ocated to each.task shown in the development schedule,.including
numbers, duration of assignment, and required ski11s. This includes
administrativeand logistic support personnel. It.shall also include a
descriptionof the basis for estimating required personnel resources,
including data from parametric estimatingmodels.

When known, personnel assigned to software development tasks shal1 be
1isted by name. This section shal1 also identify security clearance
requirementsand plans for obtaining the necessary security clearances for
personnel wmki ng on the software system (if applicable).

4.2 Training. This section shall identify training required’for people
working on the project and dates by which the training.must be completed.

4.3 Data Processing Equipment. This -section.shall identify requirements for ,,
the use of data processing equipment to support the developmentof computer
programs and their subsequent testing. It shal1 also describe the plan for
assuring that the necessary hardware is available at the appropriate times.

Section 5. Software Development Schedule. This section shall present a
graphic and narrative description of the scheduled events and milestones of
the software development effort. The description shal1 explain the methods
used to develop the schedule and include data used in parametric estimating
models. The schedule shall be updated to reflect additional detail as the

2-8 ““ ‘“

. ..

Downloaded from http://www.everyspec.com

project moves through successive phases of the development cycle. By
PreliminaryDesign Review, this section shall include a development schedule
for each computer program and data base. The graphic description shal1 be a
chart identifying schedules for the following:

a. all deliverables;

b. preparation of management and test plans;

c. al1 levels of testing;

d. reviews, including major reviews and other internal milestones;

e. transition to 1ife-cycle support activity.

The chart should illustrate a relationship with project schedules.
Critical paths shal1 also be identified.

Section 6. Risk Areas. This section shall identify any high risk areas or
Issues in the software development effort. It shall also describe actions
that will be taken to minimize the risks.

Section 7. Monitoring and Reporting. This section shal1 describe the
procedure for measuring and reporting the status of program development. It
shal1 also describe the manner in which problems, risk areas, and recommended
solutions to problems wil1 be reported.

Section 8. Documentation. This section shal1 describe the approach for
developing computer program documentation and will identify the documentation
that wi11 be produced. This shall include the plan for developing test-
plarming documentation, the Software Requirements Specification, the
System/SubsystemSpecification, the Program Specification, Software Manuals,
and any other documentation.

Section 9. Development Approach. This section shal1 describe the approach
that will be taken to design and implement the software system. It shal1
identify plans for prototyping and describe how the prototyping efforts fit
into the overall development effort. It shal1 also identify whether the
software wil1 be developed as a complete system or whether it wil1 be
developed in increments and explain the rationale for the selected approach.
[f the software is to be developed in increments (builds), the method, plan,
and schedule for selecting deliverable increments shal1 be described.

‘1

2-9
I

Downloaded from http://www.everyspec.com

Section 10. Use of Existing Software.

10.1 Conanercially-available Software. This section shall describe plans for
using consnercially-available software to satisfy requirements of the system.
It shal1 identify each software package and provide the rationale for its
use. For each package, it shal1 also identify the fol1owing:

a. data rights;

b. documentation that wil1 be provided;

c. plans for certification.

10.2 Existing Applications Software. This section shall describe plans for
using existing applications software to satisfy requirementsof the system.
It shal1 also identify”who owns the software and describe plans for acquiring
it. The “descriptionshal1 also include the fol1owing information:

a. data rights;

b. documentationthat wil1 be provided;

c. plans for determining whether the software performs as expected.

Section 11. Development and Test Tools. This section shall identify the
special tools and techniques that will be used during development and testing
of the computer programs. Some examples are as follows:

a. Special simulation;

b. Data reduction;

c. Code optimizers;

d. Code auditors;

e. Special utility programs;

: f. Software security test tools.

2-1o

Downloaded from http://www.everyspec.com

Section 12. Security Controls and Requirements. This section shall identify
securitycontrols that wil1 be used during software development (e.9.,
physical security, document access controls, computer access controls,etc.).

It shall also describe the method of implementing and maintaining the security
controls. It shall also identify any unique security problems and .
instal1ation security requirementso

..

2-11

Downloaded from http://www.everyspec.com

2.1.4 FORMAT FOR THE SOFTWARE STANOARDS AtiDPRACTICES MANUAL

SOFTWARE STANDARDS AND PRACTICES MANUAL

TABLE OF”CONTENTS

Section 1. scope

Section 2. Introduction

Section 3. Requirements Analysis

Section 4. Design ,“

Section 5. Data Base Definition and COntf’01 , ,.

Section 6. Implementation ,,.

Section 7.. Inspections ~

“Section8. Program Support Libra~ ..,. .!

-.

. .

2-12

Downloaded from http://www.everyspec.com

Section 1. Scope. This section shal1 describe the purpose of the Software
Standards and Practices Manual. It shal1 also identify the software project
to which it applies and the person responsiblee for the manual.

Section 2. Introduction. This section shal1 contain a sunsnaryof the
contents of this manual. It shal1 also identify when and where particular
standards are applicable.

Section 3. Requirements Analysis. This section shal1 specify the analysis
techniques and any supporting tools that wi11 be used to define the
requirements of the software. It shal1 also prescribe rules and conventions
for applying the techniques and tools.

Section 4. Design. This section shal1 describe the project’s software design
sing. It shall prescribe standards for design representation,
procedures for use of a Program Design Language (if applicable), and other
rules and conventions for using the design methodology.

Section 5. Data Base Definition and Control. This section shal1 identifY
standards and conventions for the definition, design, management, and control
of data bases.

Section 6. Implementation. This section shal1 identify standards and
practices to be followed during the code and unit test phases of the project.
As a minimum, it shal1 include standards and conventions for the fol1owing:

6.1 Interface Definition and Control

6.2 Naming Conventions

6.3 Unit and Routine Construction Standards

6.4 Coding Standards

6.5 Prologue and ConnnentStandards

6.6 Unit Development Folders

6.7 Unit Testing

Section 7. Inspections. This section shal1 prescribe procedures and rules
For conducting design and code inspections.

2-13

Downloaded from http://www.everyspec.com

Section 8. Program Support Library. This section shal1 describe the
functions of the Program support Library and identify how it wi11 be used to
❑anage and control the flow of datq in the project.

2-14

Downloaded from http://www.everyspec.com

2.2 SOFTWARE QUALITY ASSURANCE

2.2.1 POLICY ANO REQUIREMENTSSU144ARY(From.NSA/CSSSoftware Acquisition Manual
81-2, Policy 2.3)

Software developers shall develop and implement an independentQuality
Assurance program to assure that the prescribed software product standards and
individual project quality requirementsare met during the software development
process. This program shall be described in a Quality Assurance Plan and shal1
provide for detection, reporting,analysis, and correction of project
deficiencies. The degree of formality and control empleyed should be influenced
by the quality specificationin the contract, the size and complexity of the
project, the significanceof the product, and the development risks.

The Quality Assurance P1an shal1 state the quality objectives of the
project as conditioned by the product requirements and the significance of the
intended application. This P1an shall be prepared by the developer before the
Software Requirements Review.

2.2.2 GUIDANCE

2.2.2.1 GENERAL

A primary role of the Software Quality Assurance Program is to identify
problems before they become serious. Problems may be defects in software
products or deficiencies in processes that affeet the development of software
products. A second function is to.assure that defects and deficiencies are
corrected. A third function is to provide education.

There are many ways to perform these functions. Large or mediumsized,
high-risk projects may require a full-time Software Quality Assurance Manager and
a supporting staff to perform the required functions. Managers of smaller,
1ower-risk projects may use different means to accomplish the quality assurance
functions. The Software DevelopmentManager and other senior project members may
assume responsibilitiesthat a full-time Software Quality Assurance Manager WOU1d
normally have. Internal reviews, audits, walkthroughs, and inspectionsm~ take
on added significance.

The important point is that someone must perform the three functions
identified in the first paragraph. Standards and plans must be established and
fol1owed; project members must understand the standards and plans; someone must
have responsibilityfor discovering defects and deficiencies;and there must be a
procedure for tracking the resolutionof problems. If these things are not done,
it can almost be guaranteed that the software project wil1 not be successful and
that its products will not be of high quality.

2.2.2.2 DETERMININGTHE S1ZE OF THE SO!7WARE QUALITY ASSURANCE EFFORT*

or
Several approaches are useful in determining the need for an increased

decreased software Quality Assurance effort. One-method is to perform a risk

Downloaded from http://www.everyspec.com

analysis of the impact of the software on the overall system. Whenever risk is
great, an intensive software quality assurance program is warranted. Another
approach is to analyze the types and thoroughnessof software testing available
on a project. It is-often difficult to design a thorough and realistic test
program which provides confidence that the software will perform properly in its ..
system operational environment. That is particularlytrue when multiple
capabilities are to be tested or when complicated interactiveenvironments are
required. Other risk factors which serve as criteria for increased emphasis on
the Quality Assurance program include:

a.

. . b.

c.

,.~.:

e.

.,. f.

9.

h.

i.

j.

k.

Complexity of software applications (e.g., real-time constraints,
complex algorithms,multiple processes).

Amount of software; potential for error increases greatly with size.

Instabi1ity of requirements.

Uniqueness:of application; i.e., has this ever been done before?

Lack of experienced personnel.

Rushed development schedules.

Mission criticality of software.

Lack of interfaceconfidence; i.e., are the interfaceswith computer
programs and other system components.incompletelydefined or 1ikely
to change?

Instabilityor unavailabilityof computer hardware and suPport
software.

Unsuitabilityof the computer and the programing language to the
application.

Unavailabilityof a realistic test environment.

If the Quality Assurance effort must be limited, emphasis should be
placed on the quality of the development specificationsand of the interface
definitionsbetween computer programs and other system components.

=-rhis section was adapted from the Air Force Guidebook, “Software Quality
Assurance,” written by George Nei1 and Harvey Gold of System Development
Co~oration, for the ElectronicSystem Division, Hanscom Air Force Base,
Massachusetts.

2-16

Downloaded from http://www.everyspec.com

2.2.3 FORMAT FOR THE SOFTWARE QUALITY ASSURANCE PLAN

SOFTWARE QUALITY ASSURANCE PLAN

TABLE OF CONTENTS

Section 1. Introduction

1.1 Purpose
1.2 Scope
1;3 Applicable Oocuments
1.3.1 Customer Oocuments
1.3.2 Developer Oocuments
1.3.3 Project-SpecificOocuments
1.4 QA Plan Maintenance
1.5 Project Software Development Cycle

Section 2. Quality Assurance Organization
2.1 QA Operational Responsibilities
2.2 QA Program Responsibi1ities
2.3 QA Reports

Section 3. Quality Assurance Functions
3.1 Quality Standards and Procedures
3.2 Audits
3.3. QA Participationin Reviews, Audits, Control Boards
3.4 Test Monitoring
3.5 Discrepancy Control Monitoring and Review
3.6 Tools, Techniques, and Methodologies

Section 4. Quality Assurance Application Areas
4.1 Work Tasking and Authorization
4.2 ConfigurationManagement
4.3 Testing
4.4 Computer Program Oesign
4.5 Computer Program Development
4.6 Software Oocumentation
4.7 Libnary Controls

I

2-17

Downloaded from http://www.everyspec.com

Section 1. Introduction

1.1 Purpose. This paragraph shall state the purpose of the plan and its
relation to other plans. It shal1 define who in the project is responsiblefor
tasks affecting software quality. It shall describe the relationshipbetween the
project QA organizationand the development and test organizations.

1.2 Scope. This paragraph shall define the specific scope and range of QA
activities.” It shall describe the quality objectives of the project, explain how
the objectives’relate to software end-product requirements,and establish the
relative priorities of the quality objectives.

1.3 Applicable Documents. This section shal1 identify the documents that apply
to the observanceof the project’s QA activities. These documents maY include
contractual requirements,customer specificationsand standards, developer
specificationsand standards,military specificationsand standards,etc..

1.3.1 Customer Documents

1.3.2 Developer Documents ,.

1.3.3 Project-SpecificDocuments

1.4 QA Plan Maintenance. This paragraph shal1 describe the procedures for
updating the QA P1an and keeping it current.

1.5 Project Software DevelopmentCycle. This paragraph shall describe or
reference a document (e.g., Software Development p]an) that describes the
project’s developmentcycle, including: activity phases, baseline events,
audits, reviews, deployment, etc.

Section 2. Quality Assurance Organization

2.1 QA Operational Responsibilities. This paragraph shall identify the person
responsible for the QA program described in this plan. It shall describe the
person’s operational relationshipto the Software DevelopmentManager.

2.2 QA Program Responsibilities. This section shall describe the major
quality-relatedresponsibilitiesof each organizationwhose functions affect
product quality (e.g., configurationmanagement, test).

2.3 QA Reports. This section shal1 identify the types of QA reports that wi11
be prepared, including their frequency and to whom the reports wil1 be given.
It shal1 also identify how the resolution of problem areas wil1 be assured.

Section 3. Quality Assurance Functions. This introductorysection shall
sunnnarizethe software QA approach for assuring that the quality objectives
defined in Section 1.2 will be achieved. Each subsection should state how QA
will help to ac,hievethe qualitY objectives.

2-18

Downloaded from http://www.everyspec.com

3.1. Quality Standards and Procedures. This section shall 1dentlfy the qual1ty
standards and procedures that the developer will prepare and maintain and QA will
monitor. Standards may include design standards, programming standards,and
documentation standards.

3.2 Audits. This section shal1 describe or reference the procedures for
preparation and execution of reviews and audits at key points in the development
cycle. It shal1 identify the QA measures to be empleyed to ensure that the
reviews and audits are conducted in accordance with the prescribed procedures.
It shal1 also describe the approach for reporting the results of QA audits and
the approach for responding to CA recommendationsresulting from the audits.

3.3 QA Participationin Reviews, Audits, Control Boards. This section shal?
describe the planned participationof QA personnel in formal project reviews,
audits, and control boards. It shal1 also define the role of QA personnel in
activities relating to delivery of documentation and software end items.

3.4 Test Monitoring. The section shall describe plans for independent
monitoring of formal test activities by software QA personnel to ensure that test
requirementsdocumented in test plans, test procedures, and the Software
RequirementsSpecification are satisfied. It shall also include plans for
reviewing test reporting to assure that actual test conditions and results are
reported.

3.5 Discrepancy Control Monitoring and Review. This section shall-describehow
software QA personnel,wi11 assure that the software discrepancy (or problem)
reporting system supports the software change control process and forms a data
base for identifyingthat problems have been resolved. It shall also describe QA
plans for review of discrepancy reports and how recommendationsfor corrective
action wi11 be reported to the Software Development Manager.

3.6 Tools, Techniques, and Methodologies. This section shal1 identify the
tools, techniques, and methodologies that will be employed to support quality
objectives and wil1 describe how their use will help to satisfy these
objectives.

Section 4. Quality Assurance Application Areas. This section shall explain how
the QA functions described in Section 3 wi11 be applied to the project’s
specific activities and products. For each project activity or project area
described, there should be an explanation of how the QA functions wi11 help to
achieve quality objectives.

4.1 Work Tasking and Authorization. This section shal1 describe how software
QA personnel wi11 monitor work tasking and authorization procedures to assure
that they are being followed. This section shall also describe procedures to
track progress of work approved schedules and resource allocations.

2-19

Downloaded from http://www.everyspec.com

4.2 ConfigurationManagement. This section shall describe the QA measures to
be applied to ConfigurationManagement activities. It will include procedures
to ensure that the objectives of the ConfigurationManagement program are being
attained.

4.3 Testing. This section shal1 identify QA measures relative to”software
testing. Software testing QA measures shal1 include:

a. Analysis of software requirements to determine testability;

b. Review of test plansand procedures for compliance with appropriate
standards and developmentrequirements;

c. Review of testrequirements and criteria for adequacy.,feasibility,
and satisfactionof requirements;

d.” Monitoring of tests and certificationthat test results are the
actual findings of the tests;

e. Review and certificationof test reports;

f. Ensuring that test-relateddocumentationis maintained to allow
repeatabi1ity of tests.

4.4 Computer Program Design. This section shal1 describe the procedures by
which design documentationis reviewed to evaluate the logic of design,
fulfillmentof requirements,completeness,and .compliance with specified
standards.

4.5 Computer Program Development. This section shall establish the procedure,
frequency,and responsibi1ity for QA auditing of Unit DevelopmentFolders to .
assess developer compliancewith project standards and procedures.

4.6 Software Documentation. This section shal1 state or reference documentation
standards to be used for all deliverable software. It shal1 describe the QA
measures to be applied to ensure delivery of correct documentationand change
information.

4.7 Library Controls. This section shal1 identify the QA procedures for
reviewing the procedures and controls for.handling of source code and their
object code from the time of their initial approval or acceptance until they
have been incorporatedinto the final deliverablemedia.

2-20

I

I

Downloaded from http://www.everyspec.com

2.3 SOFTWARE CONFIGURATEON MANAGEMENT

2.3.1 POLICY AND REQUIREMENTSSUMMARY
81-2, Policy 2.4)

(From NSA/CSS Software Acquisition Manual

Software projects shall perform configurationmanagement functions which
shal1 be described in a Software ConfigurationManagement.Plan. This Plan shal1
establish a series of baselines and methods of controlling changes to these
baselines. The degree of formalityand control empleyed and manpower used
should be conditioned by the size and complexity of the project, the
significanceof the product, and the development risks.

The P1an shal1 be prepared a!d approved by the Software Requirements
Review.

2.3.2 GUIDANCE*

ConfigurationManagement is defined in the current Joint Services”
Regulation,.NSA/CSS80-14, as:

“a discipline applying technical and administrativedirection and
surveillance to (1) identify and document the functionaland physical
characteristicsof a configuration item, (2) control changes to those
characteristics,and (3) record and report change”processing and implementation
status.”

This definition means that configurationmanagement is essentially a
support function which interacts closely with (and depends upon the proper
conduct of) engineering, design, test, and other management disciplines
necessary for acquisitionmanagement. These interrelationshipsimpose certain
restrictionson the configurationmanagement function which must be considered
when developing a configurationmanagement program. Two important restrictions
are as follows:

a. ConfigurationManagement is concerned with system elements (e.g.,
computer programs, equipment, facilities)which are designated as configuration
items;

b. ConfigurationManagement authority with system elements designated as
configuration items is 1imited to certain special, formalized aspects of their
management control.

The disciplines and restrictions historically associated with configuration
management were established before software in systems became prominent.
Procedures for managing hardware configuration items do not automatically apply
to software, and there have been problems in applying hardware configuration
management principles to computer programs.

*Material~ this section was adapt?edfrom “An Air Force Guidebook to Computer
Program ConfigurationManagement,” dated August 1977. This Guidebook was
written by Lloyd Searle of the System Development Corporation for the Electronic
Systems Division (ESD) of the Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

2-21

Downloaded from http://www.everyspec.com

Computer programs are system elements which are neither quite the same as
nor totally different from other system elements. They are intrinsicallyitems
of data and are written, recorded, translated, and reproduced in ways.that are
character stic of data as opposed to equipment. Their role as elements of an
operational system, however, are more 1ike that of equipments; and there are
reasons to manage their developmentwith techniques similar to those used for
equipment, particularlywith respect to specifications,configurationcontrol,
interfacecontrol, reviews, and testing. For managing computer program
development,therefore, procedures for managing equipment developmentmust be
tailored to take into account the unique characteristicsof computer programs.

For purposes of managing their acquisition as elements of systems,
however, computer programs’should be designated as configurationitems. The
configurationof an item refers to the totality of its functionaland physical
properties. For equipment and computer programs, these properties are defined
and documented in the fomr of specifications. Thus, specificationsserve as the
principal documentary instrumentsfor configurationmanagement.For software, .
NSAM 81-2 requires the preparationof three primary specifications: Software
RequirementsSpecification,System/SubsystemSpecificationand Program
Specification. The actual content of each specificationresults from the
primary engineeringefforts of technical analysis, design, and development.
ConfigurationManagement control begins by formally establishinga completed
specificationas an approved and accountable document. Through that action, the
configurationdescribed in the specificationbecomes an explicit point of
,departure(or baseline configuration)against which changes can be proposed and
evaluated.

The process of formulatingand implementingchanges to an approved
specificationand its baselined configurationis also primarily a technical
engineeringeffort. ConfigurationManagement controls must be applied during ‘
the change process to: (1) assure that each proposed change is evaluated in
relation to all relevant technical, schedule, and cost factors; and (2) assure
that a change that is approved and implementedis reflected in a corresponding
change to the specification. That way, the specificationwill continue to
define the current approved configurationof the system or itern.

Another important part of the ConfigurationManagement process is the
responsibilityof those involved in ConfigurationManagement to inform al1
participatingtechnical and management activities (both in the SYstem
Acquisition Organizationand the System DevelopmentOrganization)of the
configurationstatus of the system. This responsibilityis accomplishedby
disseminatingand controlling specifications,change proposals,actual changes,
and periodic status reports to all appropriateactivities.

The term “baselinemanagement” is often used to describe the process of
control described above. The baselines and attendant ConfigurationManagement
controls expand in discrete steps as specificationsare completed and approved
successivelyat the functional, allocated, and product levels (see definitions
of these baselines in the Definitions section).

2-22

Downloaded from http://www.everyspec.com

Before the specificationsare app~oved, however, the technical
documentationwhich leads to the completed specificationevolves through many
levels, forms, and iterations. Many software managers have adopted the
techniques of baseline management and applied them to exercise systematic
control over the developmentprocess which will eventuallY lead to the formal
configurationcontrol of the approved specification. As applied to the
developmentprocess, the initial design at each level is documented; each
proposed expansion, refinement,or other alteration is examined for its impact;
the working documents are modified to reflect all approved refinements;the
current status of approved design is made known to all participants;and records
are kept to provide an “audit trail” as the design evolves. This sequence is
likely to occur on an active and continuing basis as the design of the software
system is developed at successivelymore detailed levels.

Use of the term “ConfigurationManagement” to describe techniques for
this type of control during development is cunmon. This is often a source of
confusion to software managers involved in a system developmenteffort. Such
control measures do constitute management controls; they are in fact dealing
with the item’s configuration;and some aspects of the controls should involve
those with ConfigurationManagement responsibility. To distinguish between
Acquisition Management disciplines,however, the primary consideration is that
technical managers must control the process until the specificationis completed
and approved. After the specificationis approved, it is controlled by the
official ConfigurationManagement discipline described in the Software
ConfigurationManagement Plan. The techniques of management control prior to
the approval of each specificationshould be described in the Software
Development P1an.

ConfigurationManagement disciplinesmust be applied to technical
documents other than specifications(e.g., plans, manuals). They are also
affected by changes that are made to specifications. Software managers
responsiblefor development and test functions normally retain control of those
documents, but responsibilityfor tracking and reporting their status is an
integral part of CcnfigurationManagement. This is necessary to control the
effects on other documents of changes made to specifications.

2-23

Downloaded from http://www.everyspec.com

2-24 (Blank)

Downloaded from http://www.everyspec.com

2.3.3 FORMAT FOR THE SOFTWARE CONFIGURATION-MANAGEMENT PLAN

SOFTMARE CONFIGURATIONMANAGEMENT’‘PL~

TABLE OF CONTENTS

Section 1. Introduction

Section 2. Organization and Responsibilities

Section 3. Configuration Identification
3.1 Baselines
3.2 Rules for Configuration Identification

Section 4. Configuration Control
4.1 Softiare Configuration Control Procedures
4.2 Storage and Release

Section 5. Configuration Status Accounting

Section 6. Associate and Subordinate Developer Configuration
Management

Section 7. Program ImplementationSchedule

2-25

Downloaded from http://www.everyspec.com

Section 1. Introduction. This section shall define the scope of the project’s
software configurationmanagement activities, including the approach used to
accomplish software configurationmanagement as described in this plan. It
shall also identify policies and directives relating to software configuration
management for this project.

Section 2. Organization and Responsibilities. This section shal1 identify the
organizat~onal element that will perform the software configurationmanagement -
function. It shall describe the responsibilitiesof the element and describe
its interfaces W-th other organizationsW“thin and external to the project,
including other configurationmanagement organizationsassociatedWIth the
project and the project management office. It shall also identify the people
responsiblee for the project’s configurationmanagement program.

Section 3. Configuration Identification. This section shall define the,project
baselines and the project configuration identificationground rules.

3.1” Baselines. This section shall identify the baselines to be used by the
project, including as a minimum the following three:

a. Functional (Requirements);

b. Allocated (Design);

c. Product (“as-built” software system).

For each baseline, the following shall be defined:

a. Products (e.g., Software Requirements Specification,
System/SubsystemSpecification,Program Specification,deliverable
computer programs, Interface Control Documents, Data Dictionary
Mcuments, etc.);

b. Review and approval events;

c. Method of establishing the baseline;

d. Contractual significance (if applicable).

3.2 Rules for Configuration Identification. This section shall indicate
procedures for selecting and identifying software configuration items and any
additional items considered necessary by the developer. This includes the rules
for naming, marking, or identifying the items (e.g., design hierarchy names,
unit and routine naming, version-identifyingdesignators). In addition, this
section shall:

a. Define and depict (as appropriate) the software entities or levels
of software hierarchy;

2-26

I

I
I

I

Downloaded from http://www.everyspec.com

b. Describe and depict (as appropriate) the documentationwhich will De
produced and delivered. This description shall relate the software
hierarchy and the documentationhierarchy.

Section 4. ConfigurationControl

4.1 Software ConfigurationControl Procedures. This section shall identify
each configurationcontrol procedure used to maintain, or control changes to,
each baselined product. For each control procedure, it shall also describe:

a. Products subject to this procedure;

b. Change review and approval sequence;

c. Review and approval authorities. ..

This section shall also relate events in the development cycle to the
developmentof software productsand show the following for each controlled
product:

a. Period of control;

b. Degree of control applied during each period;

c. Delivery events.

4.2 Storage and Release. This section shall describe the method of controlling
the storage and release of software master tapes and copies of master
documents. It shall also describe the establishmentand operation of the
project’s program development library (or functional equivalent) and show its
relation to other software configurationmanagement activities.

S?ction 5. ConfigurationStatus Accounting. This section shall specify
procedures for collecting, recording, processing and maintaining data necessary
for producing configuration status accounting reports. This includes the
records and reports required to trace changes to controlled products during
development. This section shall also describe the problem reporting system and
its relationshipto the change control process. In addition, this section shall
identify the formats and contents of each software configurationmanagement
status account record and report.

Section 6. Associate and SubordinateDeveloper ConfigurationManagement. This
section shall describe the system for controlling associate and subordinate
developers. It shall describe how associate antisubordinatedevelopers will
support the requirementsof software configurationmanagement.

I2-27

Downloaded from http://www.everyspec.com

Section 7. Program ImplementationSchedule. This section shall establish the
maJor milestones for implementationof sof~are configurationmanagement. These
shall at least include the following:

a. Establishmentof the software configuration control board;

b. Phasing for program implementationbaselines;

c. Establishmentof each of the configuration identifications;

d. Establishment of interface control agreementswith associate
developers;

:e. Establishmentof statusaccounting procedures. ~ ,.

2-28

Downloaded from http://www.everyspec.com

PART III - SOFTWARE DEVELOPMENT SPECIFICATIONS

Downloaded from http://www.everyspec.com

3-2 (blank)

Downloaded from http://www.everyspec.com

3.1 SOFTWARE REQUIREMENTS SPECIFICATION

3.1.1 POLICY ANO REQUIREMENTSSU14iARY(From NSA/CSS Software Acquisition Manual
81-2, Policy 3.1)

All system acquisitions in tihichsoftware is to be acquired shall have a
written Software RequirementsSpecification to provide a controlled statement of
the functional,performance,design, and interface requirements for the software
end products. If the System AcqtitsitionPlan.does not include a complete
Software RequirementsSpecification,the developer shall produce such a
specificationprior to the Software Requirements Review.

3.1.2 GUIDANCE

3.1.2.1 GENERAL

The Software RequirementsSpecification identifies the computer software
whfch will be developed to satisfy functional and performance requirementsof a
system or subsystem. If computer software is developed in several subsystems,a
Software Requirements Specification should be prepared for each software
subsystem.

The first step in constructing software is to define a set of governing
requirementsthat will satisfy the operational goals of the system.
Furthermore, these governing requirementsmust interpret and reexpress the
system operational goals in “shall-statements”which reflect the first steps in
design. The system user, who may not be well versed in the best technologies to
implement the system, must understand how the goals are to be achieved at this
lower level of functional specification. The designer, who may not deeply
understand the user’s mission, must understand how and why the design is
motivated by system operational goals. Requirements-oriented“shall-statements”
in the Software Requirements Specificationare the best format to document these
top-level specificationsin terms cormsonlyunderstood by both users and
designers. When this step is completed, the succeeding steps of design and test
can take place.

Requirements analysis implies that requirementsmust exist in some form
(preferablywritten) before analysis can begin. Initially, requirementsmay be
in any of several forms. They can be raw statements of functionalcapabilities
that a user wants; they can be general statements or needs to solve some
specific.type of problem; or they can be more refined statements contained in a
system-level specificationor a concept of operations document. The important
point is that requirements should not be accepted at face value; they must be
analyzed to ensure that the developer knows the answers to the following
questions before building the software system:

3-3

/

Downloaded from http://www.everyspec.com

a.

b.

c.

d.

e.

f.

9.

h.

What has to be done?

Why does it have to be done?

What are alternate ways of doing it?

What functions should be allocated to various parts of the
system?

Is it technically feasible to implement each of the functions?

How much will it cost (time, effort, dollars) to satisfy
required functions?

Can tests be constructed to verify that functions and
requirements have been satisfied?

Will verification demonstrate that the system will solve

the

the
correct problem?”

Requirements analysis includes many activities: developing Prototypes
and computer simulations-ofthe system; conducting tradeoff analyses;
identifyingmajor risk areas; allocating requirements to computer programs;
selecting computer systems and system software; and finally, documenting the
results of these analyses in the Software RequirementsSpecification. First,
however, developers should look at the words of requirements to ensurq that they
express not just what the users say, but what they mean.

Requirements statements should be specific. They should be expressed in
quantitative,measurable terms. They should state precisely what the software
is required to do and be written in active voice. Too often, words and phrases
such as “will,” “a minimum of...,” “where possible,” “should,” “as applicable,”
“flexible,“ “instantaneous,” “timely,” and “generally”are used to express
requirements. General and imprecise words like these should not be used to
document requirements.

After developers and users have a clear understandingof the words of
requirements,developers should begin to relate the words to the first steps of
system design. Functions need to be decomposed into more detailed
requirements. Derived or previously unstated requirementshave to be identified
and docuiy+nted. Interfaces and relationships,both internal and external, must
be analyzed. Data flows and processing sequences must be identified as must
data relationshipsand data transfonnation. Through these types of analysis,
software developers should go as far into system design as necessary to answer
the questions identified earlier. Software requirementscan then be documented
in the Software Requirements Specification and reviewed at the Software
Requirements Review.

I

I

I

3-4

Downloaded from http://www.everyspec.com

The generation of a high quality requirements specificationis hard
work, and the benefits are not always insmediatelyapparent. Only when the
design begins to emerge is it possible to make an accurate judgement of the real
worth of the negotiated requirementsand of the effort expended to come to that
agreement. The benefits, however, are that top-down design will be possible,
rigorous testing will be possible, the user will be involved, and management
will be in control of the project.

3.1.2.2 IDENTIFICATIONANO SELECTION OF COMPUTER PROGRANS*

1. Identificationand selection of computer programs is one of the most
important activities required for preparation of the Software Requirements
Specification. A computer program is generally understood to be a sequence of
coded instructions,including coded values for fixed elements of data, designed
to cause an assembly of computing equipment to execute an operation or set of
operations. While some uses of the term imply arlinstructionsequence of
limited size or complexity, its use in this manual implies no such limitation.
The term refers to any set of instructions (presumablycoherent) of whatever
size or complexity. A computer program may be very large or very small,
depending more on management than on technical considerations. That is, the
determinationthat a given assembly of code constitutes a computer program is
based heavily on such factors as source, scileaule,and eventual use and
control.

2. The identificationof computer programs normally occurs during the
top-level design of a system. Top-level system design is the process by which
the complete set of equipment, computer programs? and facilities elements
contemplated for a system are separated into individually-identifiedsubsets.
The individually-identifiedsubsets are regarded as a level of management.
Specifically it is the level:

a. at which the System Acquisition Organization accepts individual
parts of the system;

b. below which the developer is responsible for management of the
development and assembly of item components;

,,

*Material in this section was adaoted from “An Air Force Guide to Commiter
Program ConfigurationManagement,;’dated August 1977. This Guidebook’was
written by Lloyd V. Searle of the System Development Corporation for the
Electronic Systems Oivision (ESO) of the Air Force Systems Command, Hanscom Air
Force Base, Massachusetts.

3-5

Downloaded from http://www.everyspec.com

c.

3.
subject to

above which the System Acquisition Organization retains
responsibility for interfaces, integration,and system performance.

The process of selecting and identifyingcomputer programs is not
“stylized” rules. Decisions should be based on experience, knowledge

of the principles and their implications,knowledge of the system functions, and
both technical and administrative considerations. The identificationof a given
assembly of computer instructions”and coded data as a computer program is
basically a technical product of the system engineering process. Although
accomplished at an early stage of development, it represents a design decision
resulting from the steps of: (a) functional analysis and definition of system
performance requirements,and (b) system design during which the defined
functional and performance requirementsare allocated among planned assemblies
of system physical elements. Designers must a“nalyzeand study computer program
design at the system or system segment level to assure that computer programs
are technically sound and”feasible. At that early stage, the designation of
computer programs constitutes a commitment to develop a deliverable end item,
e.9.-,in the form Of a tape or a disk pack, which will perform its allocated
functions when eventually assembled into the system.

4. Selection of computer program5, however, should not be based solely
on technical considerations. A significant responsibilityof Software Managers
is to plan and direct the technical analysis and design effort in such a way
that the proposed computer programs and computer program components meet
established criteria for their subsequentmanagement. They are the level at
which Software Acquisition Managers exercise formal management control over
developers in the areas of”configurationmanagement, contracting, program
control, and monitoring technical progress. In identifying computer programs,
developers should consider that the following”activities apply to each computer
program in the software system or subsystem:

Preparation of specifications;e.g., Software Requirements
Specificatio~:Software System/SubsystemSpecification,Program Specification.

b.
implementation.

c.
structure.

Proposed engineering changes and reports of change

Management information reporting against the work breakdown
.

d. Technical reviews; e.g., Software Requirements Review,
Preliminary Design Review, Critical Design Review.

3-6

,,.,.,,.,. .,,.,_, ,.,

Downloaded from http://www.everyspec.com

e. The preparation of user manuals.

f. Formal test programs.

9. Formal acceptance by the System /acquisitionManager.

5. Criteria listed in the next paragraph for identificationand
selection of computer programs should be regarded as .a “shopping list.” The
importance and applicability of the considerationsvarY.widely amon9 SYStemS.
Because the criteria are not independent of each other, all relevant factors
which apply to each computer program should be carefully considered.

6. It is generally desirable to avoid identifyingmore computer programs
than necessary. A productive approach is to begin with the tentative assumption
of a single computer program for a system or subsystem. The single computer
program should then only be broken down into separate computer progrems when
fully justified by an applicable criterion as follows:

a. Separate Computers. Ccinputerprograms to be designed for
operation in different types or models of computers must be separate computer
programs. Separate ccinputerprograms may also be identified when a given
installation uses a number of computers of the sams type/model, each performing
different functions in the system as a whole and having different sets of
interfaces with other system elements.

b. Separate Schedules. Computer programs scheduled for
development, testing, and incremental delivery at different times may be
separate computer programs.

c. Different System Functions and Uses. In general, separate
ccmputer programs should be selected for mission, support, and diagnostic
functions. Consider: intended locations of use; expected change cycles; user
personnel directly concerned with their functional and performance
characteristics;and responsibilities for control after deployment.

7. Although there may not be a single “right” solution, reasonable care
and attention to the considerations outlined above should yield sound results.
If these important considerations are ignored, the system development process
may fail. Computer programs have, at times, been identified on the basis of
system functions alonewithout adequate system design to verify their
feasibility or co”st-effectivedevelopment as separate computer programs. It is
incorrect to assume that breaking down a complex of data processing functions
into many separate computer programs will make the elements more manageable and
more visible. Neither size nor visibility is consistentwith the accepted
criteria for selecting computer programs. While one small computer program is
generally easier to manage than one large one, the total management task may

3-7

Downloaded from http://www.everyspec.com

be ‘increased f the arge.one is artificiallybroken d?~]nto several smaller.
ccinputerprograms.
(2) more difficult i

naesiraDle results may Include: tl~ Increased paperwork;
terface control; and, (3) increased development time and

costs. The result may bethat the increased number of computer-programshampers
visibility and management control rather than improves it.

3.1.2.3 METHODS’OF VERIFYING THE SATISFACTION OF SOFTNARE REQUIR~ENTS

Section 5.1 of the Software Requirements Specification identifies four
basic methods or techniques for verifying the satisfactionof functional and
performance requirements. These are: inspection, review of analytical data,
review of test data, and demonstration. These methods may be used individually
or be combined with other manual or automated techniques. They may be
applicable to unit testing, integration testing or software system.testing. The
four methods are explained as follows: . .

INSPECTION - Formal verification of compliance with a
performance % design requirementby examination of the compiler listing of the
computer program and its design documentationat the time and place of formal
testing. Inspection is the principal method by which design requirements
specified in Section 4.6 are verified. It may also apply to selected
requirements in other areas such as: verification of adherence to adopted
standards for software development (e.g., coding conventions, formats, etc.;
verification of data base requirementsby comparing data base documentationwith
a system tape listing). Inspectionis not often specified as a formal means of
verification for a requirement.

b. ANALYSIS - Formal verification by examination and study of the
ccmputer program design and coding. This method includes comparison of program
output data with data derived by independent computation through one of the
following processes:

(1) Independentbut similar programs;

(2) Hand calculations using the algorithms identified in
software specifications;

(3) Hand calculations using alternate equations or methods
equivalent to those specified in the program being tested.

Analysis is most appropriate for programsthat are primarily computational in
nature, such as orbit determination programs or coordinate conversion
equations.’ This method is typically tedious and time-consuming.

3-8

Downloaded from http://www.everyspec.com

c. DEMONSTRATION - Formal verification consists of tests performed in a
specified environment in which predesignated inputs produce known and
predictable outputs that can be readily observed. This is the basic method by
which satisfaction of requirements is demonstrated. Examples are: verification
that displays are in the format necessary to satisfy human performance
requirements; ability of the system to accept specified inputs; and performance
of specified control actions. Verification is accomplished at the time and
place of the demonstration (i.e., test).

d. REVIEW OF TEST DATA - Formal verification by examining data
outputs to determine that they are generated in the proper formt and at the
appropriate point in the data processing. This method may apply to requirements
which depend on a series of tests over more than one test occasion or under
varied conditions of operation. Appropriate techniques for this method include
the following:

(1) Internal Interface Verification - Tests that demonstrate
proper data flow between routines, units, components, and the data base.

(2) OutPut Verification”-Detailed auditing of output data to
determine that outputs are in proper format andhave correct values.

(3) Logical Path Analysis - Tests to indicate that the correct
path is taken through the code in response to the input values specified.

(4) Timing verification - Testconducted to show that the
computer program executes within the allowable time span. Verification is
typically accomplished by review of detailed test procedures, including input
data, and hardcopy printouts of test outputs. This is a common method for
verification of requirements.

3.1.2.4 CWPUTER SECURITY REQUIREJ4ENTS

Computer programs that handle DoD information (unclassified,classified,
sensitive compartmented)mst correctly perform their specified functions and do
nothing else. Functional requirements for each computer program are identified
in Section 4.2 of the Software Requirements Specification.

In addition, computer programs may have to meet special computer security
requirements. For information on cossputersecurity requirements, consult the
fol1owing documents:

CSC-STD-001-83, Department of Defense
Evaluat;~n Criteria; dated 15 August 1983

b. CSC-STD-002-85, Department of Defense
dated 12 April 1985

Trusted Computer System

Password Management Suideline;

3-9

Downloaded from http://www.everyspec.com

CSC-STD-003-85,Guidance for Applying the Department of Defense
Trustedc~ystem EvaluationCriteria in Specific Environments;dated 25 June 1985

CSC-STD-004-85,Technical Rationale Behind CSC-STD-00>85; Computer
Securit~”Requirements;dated 25 June 1985

NSA/CSS Directive 10-27, Security Requirements for Automated Oata
Process~~g (ADP) Systems; dated 29 March 1984

f. Security Policy on Intel1igence Information in Automated Systems and
‘ Networks; dated 4 January 1983 (formerly OCID 1/16)

These docuwnts should be used for guidance in specifying security
requirementsand in planning; designing, implementing,and testing computer
security features and assurances. Copies of these documents may be obtained
from the Information Services Branch (C422). The Requirements,Analysis, and
PIarming for application Systems Evaluations Division (C23) is available to
provide advice and guidance on Computer Security matters.

Computer Security requirements should be documented in Section 4.7 of the
Software.Requirements Specification.

The met,hOdcf certifying that each:requirement, including computer
security requirements,has been satisfied ❑ust be identified in Section 5 of the’ “.,
Software RequirementsSpeci.fication. ,.

3-1o

Downloaded from http://www.everyspec.com

3.1.3 FORht4TFOR SO~WARE REQUIREMENTS SPECIFICATION

SOFWIARE REQUIREMENTS SPECIFICATION

TABLE OF CONTE~S

Section 1. GENERAL
1.1 Purpose of the Software Requirements Specification

Project References
!:: Terms and Abbreviations

Section 2. SYSTEM SUMM4RY
Background

;:; Objectives
2.3 System Definition
2.4 System Diagrams
2.5 Computer Program Identification
2.6 Assumptions and Constralnts

Section 3. ENVIRONMENT
Equipment Environment

::; Support Software Environment
3.3 Interfaces
3.3.1 Interface Block Diagram
3.3.2 Interface Definition
3.4 Security and Privacy

Section 4. DETAILED CHARACTERISTICSAND REQUIREMENTS
4.1 Specific Performance Requirements
4.1.1 Accuracy and Validity
4.1.2 Timing

Computer Program Functions
::;.1 Ide~tificationof Computer Program No.1
4.2.1.1 Program Oescription
4.2.1.2 Detailed Functional and Performance Requirements
4.2.1.2.1 Title of Function
4.2.1.2.X Title of Function X
4.2,1.3 Special Requirements
4.2.N Identificationof Computer Program No. N
4.3 Inputs-Outputs
4,4 Data Characteristics
4.5 Failure Contingencies
4.6 Design Requirements
4.7 Computer Security Requirements
4.8 Human Performance Requirements

3-11

Downloaded from http://www.everyspec.com

Section 5.
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2

Section 6.

TEST AND QUALIFICATION REQUIREMENTS
Introduction
Unit Tests
IntegrationTests
Software.SystemDT&E
System DT&E

Test Requirements

NOTES

-.,

,,,

., -..

3-12

Downloaded from http://www.everyspec.com

Section 1. GENERAL

1.1 Purpose of Software Requirentmts Specification: This paragraph shall
describe the purpose of the Software.Requirements Specification in the fol1owing
words, modified when appropriate:

This Sofbdare Requirements.Specif.icationfor (Project Name) (Project
Number) is written to provide:

The soffxare requirements to be satisfied which W-ll serve as a basis
for mut~~l understandingbetween the developer and the custmner.

b. A basis for the development of software system tests.

1.2 Project References. This paragraph shal1 provide a brief summary of the
references applicable to the history and development of the project.

A 1ist of applicable documents* shall be included. At least the
fol1owing shall be identified by author or source, reference ntier, title, and
security classification:

a. System Pcquisition Pian, Project Request or Contract.

b. Previously developed technical documentation relating to this
project.

c. Significant.correspondence relsting to the project to include for”bnl
agreements to the requirements contained in the Software Requirements
Specification.

d. Documentation concerning related projects.

e. Other manuals or documents that constrain or explain technical
factors affecting project development.

f. Standards or reference documentation,such as:

(1) Documentation standards and specifications.

*When applicable, specific reference should be made to the provisions of these
documents in subsequent sections.of the Requirements SpeCifiCation.

3-13

Downloaded from http://www.everyspec.com

(2) Programmingconventiens.

(3) FII~~r Federal standards (data elements, programming 1anguages,
. .

(4) Hardware manuals, support system documentation,etc., if
necessary for an understandingof the Software Requirements
Specification.

1.3 Terms and Abbreviations. This paragraph shal1 provide an alphabetic
1isting or include in an appendix a glossary of terms, definitions,and
acronyms unique to this document and subject to interpretationby the user of
the document. This 1isting will not include item names or data codes.

SYSTEM iWMARY
. .

Section 2.

2.1 ,Background. Included within this paragraph shal1 be any information
concerning the background of the use$ and purposes of the system. Reference
should be made to higher-orderand parallel systems if needed to enhance the
general description. The relationshipbetween the project and other
capabilities being developed concurrently shall be described.

2.2 Objectives. This paragraphshall contain a brief summary of the purpose of
the proposed system. It shal1 also include a 1ist of the functional areas of
the system. It shall further identify and sununarizethe content and composition
of the Software RequirementsSpecification. The paragraph shal1 also describe
any anticipatedoperationalchanges that wil1 affect the software system and
identify any provisionswithin the system for accommodating them.

2.3 System Definition. This section shall describe (directlyor by reference)
system engineering documentationwhich graphically portrays the relationshipof
the iterns(hardwareand computer programs) to be developed. It shal1 identify
the functionalareas of the system, including subsystems,and the individual
iternsthat must be developed.

2.4’ System Diagrams. This section shall contain (directlyor by reference) the
system-levelfunctionalschematic diagrams. The diagrams shal1 be produced to
the 1evel of detai1 required to identify al1 system and subsystem functions,
including each computer program and its major functions.

2.5 Computer Program Identification. This section shall contain a 1ist of
computer programs which are a part of the system/subsystemconfiguration
described in this Specification. Computer programs shal1 be assigned unique
identifiersand be 1istedin numerical sequence.

3-14

I

I

I

Downloaded from http://www.everyspec.com

2.6’ Assumptions and Constraints. Any assumptions and constraints thatwlll
affect development and operation of the system/subsystemshall be discussed in
this paragraph. Any }imitationsaffecting the desired capability(including the
prediction of expected types of errors) and explicit identificationof any
desired capabilities that will not be provided by the proposed system/subsystem
shal1 be discussed in this paragraph. Examples of assumptions include
organizationalactions, budget decisions, operational environment or deployed
requirements. Examples of constraints include operational environment, operator
skill level, human factors (man/machineinterface), budget limitations or
development schedules.

Section 3. ENVIP,ONh’tNT

3.1 Equipment Environment. This paragraph shall provide a description of the
equipment capabi1ities required for the operation of the system/subsystem. This
paragraph wil1 present broad ‘descriptionsof the equipment presently available’
and the characteristicsof any required new equipment based on the discussion in
Section 3. A guideline for equi,pmen~to be described follows:

I a. Processor(s), including number of each on/off-line Processor and
sizes of internal storage;

b. Storage media, including number of di’k.kunits, tape units, etc.;

c. Output devices, including number of each on/off-line device;

I d. Input devices, including number of each on/off-line device;

I e. Communicationsnet, including line speeds.

3.2 Support Software Environment. This paragraph shall provide a description
of the support software with which the computer programs to be developed must
interact. Included will be support software, input and equipment simulators,
and test software, if needed. The correct nomenclature,leveJ (version),and
documentation references of each such software system, subsystem, and program
shal1 be provided. In addition, the programing 1anguage and associated
ccmpilers, the operating system, and any Data Management System to be used
shall be identified.

“13.3 Interfaces. This paragraph shal1 provide a description of the interfaces
with other systenk and subsystems.

3-15

Downloaded from http://www.everyspec.com

3.3.1 Interface B1ock Diagrain. This section shal1 gra hically portray al1
external (other systems) and internal (other subsystems! interfaceswith the
software system/subsystem. Each interface shal1 be given an identification
(title or ‘label)which will allow it to be identified in related documents and
specifications. The diagram shal1 show the flow of data and of control through
the interfaces.

3.3.2 Interface Definition. This section shal1 describe each interface
identified in Section 3.3.1. This description shal1 include the type of
interface, data transfer requirements,and design constraints iasposedupon other
equipment and ccmputer programs as a result of the design of this software
system.

3.4 Security and Privacy. ‘This paragraph shall identify the classified
ccinponentsof the system/subsystem including cc+nputerprograms, inputs, outputs
and data bases. Considerationmust be given to the fact that the combination of
items of one classificationmay produce a coinponentof a higher classification.
This paragraph shall specify the 1evel of classificationof each component. It
shall also prescribe any privacy restrictions-associatedwith the data being
handled.

Section 4. DETAILED CHARACTERISTICSAND REQUIREMENTS

This section shall define and specify all functional, operational and
performance requirements; and al1 design constraints and standards necessary to
ensure proper development and maintenance of the software system/subsystem.

4.1 Specific Performance Requirements. This.section shall describe the
specific performance requirements to be satisfied by the software
system/subsystem. This presentation shal1 be a statement of requirements,
evolved from the system analysis, on which the system design is to be based.*
The requirements shall be stated in such a manner that software system/subsystem
functions (paragraph4.2) and tests can be related to them. A quantitative
presentation of requirements shall be included, such as maximum allowed time
from query to display of data, flexibility for adapting to changing
requirements,etc.

4.1.1 Accuracy and Validity. This paragraph shal1 provide a description of
the accuracy requirements placed upon the software system/subsystem. The
following iternsmust be considered:

*Anticipated deviations from any of the standards specified by the documents
.1isted in paragraph 1.2 must be specifically indicated.

3-16

Downloaded from http://www.everyspec.com

b. Accuracy requirementsof data.

c. Accuracy of transmitteddata.

4.1.2 Timing. This paragraph shal1 provide a description of the timing
requirements placed on the software system/subsystem. If the customer has not
specified timing requirements,this paragraph shal1 describe the timing
assumptions on which software development wil1 be based. The fol1owing timing
requirements shal1 be considered:

a. Throughput time.

b: Response time to queries and to updates of data’fi.leS.

c. Response time of major functions.

d. Sequential relationshipo; functioni.

e. Priorities imposed by types of inputs and changes in modes of
operation.

f. Timing requirements for the “rangeof traffic 1oad under varying
operating conditions.

9. Sequencing and interleavingprograms and systems (includingthe
requirements for interrupting the operation of a program without loss
of data).

4.2 Computer Program Functions. This section shall describe the individual
functional requirementsof each computer program identified in Section 2.5.
Requirements shal1 be stated in quantitative terms with tolerences where
applicable. This description should relate functional requirementsto
performance requirementsand to computer programs that wil1 provide the
functions. It shall also describe how the aggregate of these functions
satisfies the performance requirements in Section 4.1.

A section shall be included for each operational function, plus special
functions such as sequencing control displays, error detection and recovery,
input and output control, real-time diagnostics, operational data recording,
etc. The description of these functions shal1 include relative sequencing,
options, and other’important relationshipsas appropriate. A subparagraph shal1
be prepared for each functional requirement’.

3-17

Downloaded from http://www.everyspec.com

‘1

4.2.1 Identificationof Computer Program No. 1 Thls section shal1 contain we
approved identification,nomenclatureand authorized abbreviation for the
computer program.

4.2.1.1 Program Description. This paragraph shal1 include a general
descriptionof the computer program and its function within the
system/subsystem.

4.2.1.2 Detailed Functional and Performance Requirements.

4.2.1.2.1 Title of Function. The basic paragraph for each function shal”
describe the functional requirementand show its relationshipwith other
functions. Each unique requirement shal1 be assigned a unique identifierwhich
may be traced in subsequentproject phases to (1) portions of the software
design and (2) test cases.

4.2.1.2.X Title of Function X. Provide informationas shown in 4.2.1.2.1for
each functional requirement to be sa.tisfied by the computer program.

4.2.1.3 Special Requirements. This paragraph shall contain detailed
descriptionsof special data processing requirementswhich are distinguishable
from other parts of Section 4.2.1.2. Examples are: instructionsfor special
formats to accommodate testing, recodlng or simulation;necessary procedures
peculiar to the computer program; recovery requirements;and special security
requirements.

4.2.N Identificationof Computer Program No. N. Provide information for each
computer program identified in Section 2.5, including a subparagraphfor each
section as identified in Section 4.2.1 and subsequent subparagraphs.

4.3 Inputs-Outputs. This section shall specify either directly or by reference
to another part of the Software RequirementsSpecificationthe sources and types
of input and output infonnation to be used in the software system/subsystem.
For inputs, this shall include a description of the information,its source(s)
and, in quantitative terms, units of measure, 1imits and/or ranges of units of
measure, and frequency of input infotmation arrival. For outputs, this shall
include a descriptionof the information, its destination(s),and, in
quantitative terms, units of measure, frequency of output information? etc.
Descriptionsand 1ayouts or examples of hard-copy reports (routine, S1tuational
and exception) as wel”las graphic or display reports may be included. Inputs
and outputs shal1 be related to the interfaces identified in Section 3.3.
When an interactive system is being described, outputs must also be related to
the system functions described in paragraph 4.2. When possible, these output,s
should be related to computer programs that wi11 produce them.

3-18

I

I

I

I

I

Downloaded from http://www.everyspec.com

4.4 Data Characteristics. This paragraph shall specify, in descriptive and
quantitative terms, the data requirements which affeet the design of the
software systemlsubsystem. It should include information on specific data
elements by name and characters, if known. Also discussed shall be
dictionaries, tables, and reference files, if,applicable. An estimate of total
storage requirements for the data and ccxnputerprograms based on a summation of
the requirements should be included. A description of the expected growth of
the data and related cmponents should be provided.

4.5 Failure Contingencies. This paragraph.shalT provide a discussion of the
requirements for recovering from failures of the hardware or software
system/subsystem, the consequences (in terms of system/subsystemperformance) of
such failures, and the alternative courses of action that may be taken to
satisfy the information requirements. The following failure contingencies shall
be included as appropriate:

Back-up. A discussion shal1 be provided of the back-up techniques
for ens~~ing the continued achievement of system functions given in paragraph
4.2. “Back-up” means the redundancy available in the event the primary system
element goes down. For example, a back-up technique for a disk output WOUld be
a tape output.

b. Fal1back. An explanation of the fallback techniques for ensuring the
continued satisfaction of the “specificrequirements of the system shall be
provided. “Fal1back” means the use of another system or other means to
accomplish the system requirements. For example, the fallback technique for an
automated system might be manual manipulation and recording of data.

Restart. A discussion shall be included of the restart capabilities
for ens~~ing effective and efficient recovery from a temporary problem within
the hardware or software systems. “Restart” capability means.a program
capabi1ity to resume execution from a point in the program before the problem
occurred, along with appropriate restoration of data.

4.6 Design Requirements. This section shall contain detailed descriptions of
design requirements for the software system/subsystemwhich are clearly
distinguishable from other parts of Section 4. These may include, but are not
1imited to, requirements for:

a. The use of progransning standards to assure: compatibi1ity among
cmnputer progransningcomponents, the production of maintainable and
understandablee computer software, etc.

b. Program design methodologies such as top-down design, modular design,
design considerationswhich ease modification, etc.

3-19

Downloaded from http://www.everyspec.com

c. Expandability (growth potential) to facilit-atemodifications and .
addjtions to ccmputer programs and features such as program hooks for future
extensions.

d. Self-monitoringproperties for both active and passive monitoring.
\

4.7 Ccqsuter Security Requirements. This section shal1 contain special
computer security requirements, including requirements for protecting classified
information in caputer programs.

This section must clearly distinguish between mandatory requirements and design
goals or options.

4.8 Human Performance Requirements. This section shall specify human
performance/humanengineering requirements for the software system/ subsystem
(e.g., maximum time for human decision making, terminal characteristics,
interface provi$ions intended to improve human interface to system, maximum
display densities of information,clarity requirements for display, etc.). When
the software system/subsystemdirectly supports a 1arger system, this section
shall cite appropriate paragraph(s) of higher-level specificationswhich
establish human performance/humanengineering requirements for al1 system
equipment. Requirements peculiar to the software system shal1 then be
referenced on an add and/or delete basis.

Section 5. TEST AND QUALIFICATIONREQUIREMENTS

This section shall specify test/qualificationrequirements,methods of
qualification,and the necessary test tools and facilities to conduct the
required qualificationtests. This section shal1 establish the requirement< for
the test plans and procedures that must be formulated for qualificationof the
software. The intent of the test effort is to verify that the requirements
stated in Section 4 of the Software Requirements Specificationhave been met.

NOTE: This section shal1 not incorporatedetailed test planning documentation
and operating instructions. Requirements specified in this section shal1 be the
basis for preparation and validation of other test plarming documentation.

5.1 Introduction. This section shal1 establish the requirements for
developnent of a test plan and test procedures for the entire software
system/subsystemand segments of the software system/subsystem. It shal1
specify which of the following levels of testing must be performed and which
must be formally documented:

3-20

Downloaded from http://www.everyspec.com

a. Unit tests; ,,

b. Integration tests;

c. Softdare system DT8E tests.

This section shall also describe methods of verifying the satisfaction of
functional and performance requirements described in Section 4. Methods of
qualification may include inspection of the computer program, review of analytic
data, demonstration tests, and review.of test data. Each methods shall be
defined. A QualificationCross-Reference Index (Figure 3-1) ident’ifyingtest
category, qualificationmethods, requirement reference number and quality
assurance reference number shal1 be included. Narrative information relsting to
test category shal1 be identified in subsequent subparagraphs.

5.1.1 Unit Tests. This section shall identify unit tests which are the only
source of data to qualify specific requirements in Section 4. Unit tests
accomplished in support of design and development @ich do not satisfy this
criterion need not be specified in “thissection.

5.1.2 IntegrationTests. This section shall identify tests which shall be
conducted during software integrationwhich require formal recognition by:the
customer and are oriented to verifying proper performance of the computer
program prior to Software System DT&E. Integration tests which are conducted to
support design and development need not be identified in this section. ‘

5.1.3 Software SysteniDT&E. This section shal1 identify requirements for
formal ,qualification tests of the software system to demonstrate and verify that
the requirements established in Section 4 have been satisfied, with only two
exceptions:

a. The requirement in Section 4 has been verified and satisfied by one
of the tests included in paragraphs 5.1:1 and 5.1.2;

b. The requirement in Section 4 cannot be demonstrated until Sys~em DT&E
and will be identified in Section 5.1.4.

5.1.4 System DT&E. This section shall identify requirements specified in
Section 4 which cannot be verified until System DT&E testing.

5.2 Test Requirements: This paragraph shal1-include the particular.needs for
conducting each type of testing. These shal1 include test formulas, algorithins,

as applicable. Any other information
described in Section 5.1 shall also

techniques and acceptable tolerance 1imits
needed to define the qualification methods
be included.

3-21

Downloaded from http://www.everyspec.com

TEST AND QUALIFICATION CROSSREFERENCE INDEX

SRs REQUIREMENT REQUIREMENT QUALIFICATION QUALIFICATION Sf?s
‘ARA(SRAPH NAME IDNUMBER METHOD(1) TEST (2) SECTION 6
iEFERENCE (briafdaac,iptim) LEVEL . PARAORAP}

REFERENcE

~,

,,

.,.

(1)QUALIF1CATION METHOD
1. INSPECTION
A-ANALYSIS
D-DETECTION
T-REVIEW OFTEST DATA
O- OTHER (REQUIRES EXPLANATION)

(2)QUALIFICATION TE~ LEVEL
1.UNIT TEST
2.INTEGRATION
3.SOFTWARE DT A E
4.SYgEM DT & E
s.oni.m (REQUIRESExpLANAT]ON)

Example of a Test and QualiTication Cross-Reference Index

Figure 3-1
3-22

1

Downloaded from http://www.everyspec.com

Section 6. NOTES

This section may be used to provide background material that would be of
assistance to reviewers in understandingsoftware requirements. It may include
such things as Data F1ow Diagrams, rationale for the al1ocation and groupings of
requirements into computer programs, and other informationwhich WOU1d help in
review of the document.

I

3-23

Downloaded from http://www.everyspec.com

3-24 (blank).

Downloaded from http://www.everyspec.com

3.2 SOFTWARE SYSTEM/SUBSYSTEMSPECIFICATION

3.2.1 POLICY AND REQUIREMENTS SU144ARY(FrcinNSA/CSS Software Acquisition Manual
81-2, Policy 3.3)

Software projects shal1 havcfa System/Subsystem Specification for the
defined software end products to establish a documented preliminary design
baseline from which the detailed design wil1 be developed. The System/Subsystem
Specification shal1 be developed from the Software Requirements Specification
and shal1 contain the design information needed to support the detailed
definition of the individual software system components.

The System/Subsystem Specification shall assign each unique requirement
in the Software Requirements Specification to specific components and units of
the software design and shal1 explicitly identify the mapping from requirements
to software design.

The System/Subsystem Specification shal1 identify and name al1 software
units in the software hierarchy.

3.2.2

3.2.2.’

identi
Softwa]

GUIDANCE

INTERFACE CONTROL DOCWiENTATION

During the requirements definition phase, sofbsare developers should
y external software interface requirements and document them in the
e Requirements Specification. They should identify more detailed

interface control information during the preliminary (or architectural) phase of
development. This detailed information can be documented in the
System/Subsystem Specification or in a separate Interface Control Oocument.

Although the separate Interface Control Oocument m-l1 not be coiapleted
until the preliminary design phase, software developers should decide during the
requirements definition phase how the interface control information wil1 be
documented. The decision should be based upon the following factors:

a. Nuntserof external interfaces;

b. Caplexity of the interfaces;

c. Nunber of organizations involved in defining and implementing the
interfaces;

d. Volatility of the interfaces (tendency to change).

If any (or all) of these factors is high, interfaces should be documented
in a separate Interface Control Doctncent. The plan for documenting detailed
interface control information should be described in Section 8 of the software
Development Plan.

3-25

Downloaded from http://www.everyspec.com

3-26 cblank)

Downloaded from http://www.everyspec.com

3.2.3 FORMAT FOR THE SOFTWARE SYSTEM/SUBSYSTEMSPECIFICATION

SOFTWARE SYSTEFWJBSYSTEM SPECIFICATION

TABLE OF CONTENTS

Section 1. GENERAL
1.1 ‘ Purpose.of the Syst.em/Subsy:temSpecification
1.2 Project References.
1.3 Terms and Abbreviations

Section 2. SUMM4RY OF REQUIREMEtWS
2.1 System/SubsystemDescription
2.2 System/SubsystemFunctions
2.2.1 FunctionalAllocation Description “(.?.

2.2.2 Functional RequirementsMatrix
2.2.3 Accuracy and Validity
2.2.4 Timing
2.3 Flexibility

Section 3.
3.1
3.2
3.3
3;3.1
3.3.2
3.3.3
3.4
3.5

Section 4.
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4:3.1
4.3.2
4.3.3.
4.3.3.1
4.3.3.2
4.4
4.4.1
4.4.1.1

ENVIRONMENT
Equipment Environment
Support Software Environment
Interfaces
Interface Block Oiagram
software Interfaces
Hardwar&to-Software Interfaces

Security and Privacy
Storage and Processing Allocation

OESIGN OETAILS
General Operat~ng Procedures
System Logical Flow
Program Interrupts
Control of Computer Program Components
Special Control Features

System Oata
Inputs
outputs
Displays
Description of Displays
DiSDliiYIdentification

Program”Oeicriptions
Computer Program Identification
Computer Program Component No. 1

I

3-27

—.

Downloaded from http://www.everyspec.com

4.4.1.-1.1 Computer Program Component No. 1 Graphical
Representation

4.4.1.1.2 ~~Computer Program Component No. 1
Description

4.4.1,1.3 Computer Program Component No. 1 Interfaces
4.4.1.X Computer Program No. X
4.4.1.X.1 Computer Program No. X Graphical

Representation
4.4.1.X.2 computer Program No. X Description ;
:.$: X.3 Computer Program No. X Interfaces

Computer Program No.”N.
4:5” Data Base

+ction 5.’ TEST AND QUALIFICATION ~~~

Section 6. NOTES .

3-28

Downloaded from http://www.everyspec.com

1.1 Purpose of the System/SubsystemSpecification. This paragraph shall
describe the purpose of the SSS (System/SubsystemSpecification)in the
following words, modified when appropriate:

The System/SubsystemSpecification’for [ProjectName) (Project Number)
is written to fulfill the following objectives:

a. To provide detailed definition of the software system/subsystem
functions.

Section 1. GENERAL

b. To communicate details of ’theon-going.analysisbetween users,
customers, and developers. ~

c. To define in detail the interfaces with other systems and’subsystems
and thefacilities to be”used for providing the interfaces.

1.2 Project References. This paragraph shall ‘providea brief summary of’the
references applicable to the history and developme@ of the project. At least
the following shall be specified by source or author, reference number, title,
and security classification’: -

a. Software Requirements Specification;

b. Related System/SubsystemSpecifications;

c. Any other pertinent documentationor significantcorrespondence not
specified in the Software Requirements Specification.

. . .

1.3 Terms and-Abbreviations.’This paragraph shall provide an alphabetic ~
listing or include in an appendix a glossary of tetms, definitions, or
acronyms unique to this document and subject to interpretationby the user of
the document. This listing will not include item names or data codes.

Section 2. SUt@iARYOF REQUIREMENTS. .,,

Section 2 of the System/SubsystemSpecification shall provide a summary
of the characteristics and requirements of the software system/subsystem. This
section shall be an expansion of the information published in the Software
Requirements Specification to reflect the determination of additional details.
The description shall reflect the translation of the computer system functions
to the design of the computer programs and their components. Any changes to the
characteristicsand requirements set forth in Sections 2 and 4 of the Software
Requirements Specificationmust be specifically identified.

3-29

Downloaded from http://www.everyspec.com

2.1 System/SubsystemDescription. This paragraph shall provide a general
description of the software system/subsystemto establish a frame of reference
for the remainder of the document. Higher order and parallel systems/subsystems
and Weir bcumentition shall be referenced as required h enhance this general
description. Included shall be a chart showing the relationshipof user
organizations to the major elements+of the system and a chart showing the
interrelationshipsof the system elements w“th the software system/subsystem.
These charts shall be based on or be updated.versions of the charts included in
paragraph 2.4 of the Software Requirements Specification.

2.2 System/SubsystemFunctions. This section shall describe the software
system/subsystemfunctions and identify where in the software system/subsystem
specific functional”and performance requirementswill be satisfied. There shall
be both qualitative and’quantitativedescriptions.of-how the functionswill
satisfy tie requirements.

2.2.1 Functional Allocation Description’.This section shall.describethe
overall structure and functions of each computer program in the software
system/subsystemdown to component level. This identification,which may be in
the form of hierarchical diagrams, shall identify and name all ccmputer programs
and their cc=ponents and show their relationshipwith each other. Components of
each ccmputer program identified in Section 2.5 of the Software Requirements
Specification shall also be identified in a table. Figure 3-2 is an example of
such a table. The more detailed charts to be included in Section 4 shall be
based on the charts included in this section.

2.2.2 Functional Requirements Matrix. This section shall trace the allocation
of requirements (functional’and other) identified in the Software Requirements
Specification to cc9puter program components. Each unique requirement shall be
assigned to specific ccqmnents. The name and mnemonic for each caaputer
program and cowonent shall be referenced in the tables. Figure 3-3 is an
e~le of a Functional Requirements Matrix.

. .
2.2.3 Accuracy and Validity. This paragraph shall provide a descriptionof
accuracy requirements imposed on the software system/subsystem. The
requirementswill be related to paragraph 4.1.1 of the Software Requirements
Specification. The following accuracy requirementsmust be considered:

a. Accuracy requirements of mathematical calculations.

b: Accuracy requirements of data.

c. Accuracy of transmitted data.

I

I

3-30

Downloaded from http://www.everyspec.com

COMPUTER PROGRAM COMPONENT IDENTIFICATION

COMPUTER PRDCRAM lDENTIPICATION

.. .

1.

s.

a.

I 4.

s.

6.

7.

8.

0.

10.

11,

1s.

la.

—

COMPONENT

NAME

.,

MNEMONIC ‘-

..

. .

.. SYSTEM I SUBSYSTEM SPECIFICATION
. . . . PASACRAPII REFERENCE

,.

Example of a Table That Identifies ComPuter pr09ram CmPOnents

Figure 3-2

3-31

Downloaded from http://www.everyspec.com

2.2.4 Timing. This paragraph shall provide a description of the timing
requirements placed on the software system/subsystem. If the customer has not
sp+cified timing requirements, this paragraph shall contain the timin9
assumptions on which software design is based. The requiremen.tswill be related
to paragraph 4.1.2 of the Software RequirementsSpecif!fation. The follo~n9
tirning,requirementsmay be.considered: .-

a. -~roughput time.

b. Response time to queries and to updates,of data files. .,,.

c. Response time o.fmajor system/subsystem,functions. ‘

“d. Sequential relationship of system/subsystemfunctions. ‘

e. Priorities imposed b; types of inputs and changes in modes of ~
operation.

., “f. Timing requirements for the range of traffic load under varying ,
operating conditions.,

9. Sequencing and interleavingprograms and syst@ms.(includin9,the -
requirements for interrupting the operation of a program without
loss of data). ~

2.3 Flexibility. This paragraph shall provide a description of the ca@bility
to be incorporated for adapting the softwaresystem/subsystem to changing
requirements,such as anticipated operational changes, interaction w“tt’new or
improved systems, and planned periodic changes. Cc+hponentsand procedures
designed to be subject to change.shall be identified.

Section 3. ENVIRONMENT f

This section shall expand the description of the environment given in~
the Software Requirements Specification to reflect additional analysis.
Although description of the environment may be more detailed as the result of
on-going analysis and design, it must be consistent with the environment ...
described in the Software Requirements Specification. Changes shall be
discussed in terms of the’impacts on the currently available environmental
components (equipment,software, etc.) as well as the impacts on estimates and<
functions which were based on the original planned environment.

3.1 Equipment Environment. This paragraph shall i’dentifyand describe’the .-
equipment required for operation of the software system/subsystem. Included
shall be descriptionsof the equipment presently available as well as a more
detailed discussion of the characteristics.of anY necessarY new equiPment. 1.

..

. ...,

3-32 ,.

Downloaded from http://www.everyspec.com

FUNCTIONAL REQUIREMENTS MATRIX — HK=uM--

I
SP~lPICATI(

‘ARAGRAPH

kEFERSNCE

—

IFTWARE RBQUIRSMI

RSQUIRSMENTN-
BRIEFD=CRIPTIOM

s

UJ4JU1REMSN7

ID NUMBER

TYPE

SYsrm / SUB3TSTSM
COMPONENT IN WNICN

RSQUIESlfENT1SSATISFIED

_

Example of a Functional Requirements Matrix

Downloaded from http://www.everyspec.com

Equipment requirementsshall be related to the requirementsstated in paragrapn
3.1 of the Software RequirementsSpecification. A guideline for equipment to
be described fol1ows:

a. Processor(s),including number of each on/off-lineprocessors and
sizes of internal storage;

b. Storage,media, including number of disk units, tape units, etc.;

c. Input/outputdevices; including number of each on/off-line 1/0
device;

d. Conshunications net, including 1ine speeds.

3.2 Support Software Environment. This paragraph shal1 provide a description
of the support software with which the computer programs to be developed must
interact. Includedwil1 be both support softwareand test software, if needed.
The correct nomenclatureand documentationreferences of each such software
system, computer program, and program component shal1 be provided. Included
must be a reference to the languages(compiler, assembler, program, query,
etc.), the operating system, and any Oata Management System (DMS) to be used.
This descriptionmust ielate to and expand on the information provided in
paragraph 3.2 of the Software Requirements Specification. If operation of the
computer programs to be developed is dependent upon forthcomingchanges to
support software, the nature, status, and anticipated availability date“of such
changes must be identified and discussed.

3.3 Interfaces: This section shal1 specify directly or by reference to
separate Interface Control Documents, al1 external (other systems) and internal
(between subsystems) interfacesnecessary to ensure proper developmentof
software’for the system. Each interface shal1 identify the flow oi’data and ,
control in one direction only. If data or control flows in both directions,
each direction shall be specified as a separate interface. Optionally,
interfacesmay be documented in separate Interface Control Oocuments.

3.3.1 Interface Block’Diagram. Thi$ section shal1 graphically portray the
interfacesof the computer programs with other equipment and computer programs.
Each interface shal1 be given.an identification (title or 1abel) which wil1
al1ow it to be identified in related documents and specifications. The diagram
shal1 show the data and control flow between the computer(s) and other system :
equipment. This paragraph shal1 also incorporate in subparagraphsas
appropriate,a functional block diagram or equivalent representationof the
external interfaceswith each computer program.

3.3.2 Software Interfaces. This section shal1 specify the fol1owing for each
software interface identified in Section 3.3.1:

3-34

Downloaded from http://www.everyspec.com

a. Interface identification(title or 1abel).

b. Purpose and functional description, including computer programs that
interface with each other and software units that implement the
interface.

c. Direction of the flow of data and of the transfer of control.

‘d. Formats and volumes‘ofdata to be passed and characteristicsof the
ccinsnunicationsmedium used for the transfer.

e. Type of interface, such as manual.or automatic.

f. Interface procedures, including telecoinnunications considerations.

9. Priority 1evel of the interface.data interrupt (if applicable).

h. Maximum time allowed for the receiving software element to respond
to the interface data interrupt and the effects of not responding
within the al1ocated time.

i. Design requirements imposed UpOn other computer programs as a result
of the design of.the interface.

3.3.3 Hardware-tAoftware Interfaces. This section shal1 specify the
fol1owing for each hardwar~to-software interface identlfied in Section 3.3.1:

a. Interface identification(title or 1abel).

b. Functional description, including the computer program and its
software units that implement the interface.

c. Direction of the signal.

d. Format of the signal.’

e. Frequency of the signal interface.

f. Priority of the signal.

9. Maximum time al1owed for responding to the signal, and the effect of
~ not respondingwithin the al1ocated time.

h. Design requirements imposed upon the computer programs as a result
of the design of the interface.

‘3-35

Downloaded from http://www.everyspec.com

3.4 Security and Privacy. This paragraph shall describe the classified
components of the system/subsystem,including computer programs, inputs,
outputs, and data bases. These components“wi11 be related to paragraph 3.4 of
the Software RequirementsSpecification. It shall also prescribe any privacy
restrictionsassociatedwith the data being handled.

3.5 Storage and ProcessingAllocation. This paragraph shall describe the
al1ocatjon of memory storage and processing time to computer program components,
the executive routine, and the data base. In addition, the timing, sequencing
requirements,and equipment constraints used in determiningthe allocation shall
be described. The allocations must be “consistentwith the accuracy and validity
and timing requirementsfor the system/subsystemdescribed in Sections 2.2.3
and 2.2.4. Allocations in this specificationare approximationsand are not
binding, but they should be made as close as possible tothe storage space that
wi11 be needed. The total memory al1ocation and processing time for each
computer program component and”conunondata base shal1 be summarized in a table.

Section 4. DESIGN DETAILS

4.1 General Operating Procedures. This paragraph”shal1 provide a general
descriptionof the system operating procedures. There shal1 be a descriptionof
the load, start, stop, recovery, and restart procedures.

4.2 System Logical F1OW. .This paragraph shall describe the logical flow of
both data and control in the software system/subsystem. Logical flow wi11 be
presented primarily in the form of functional flow diagrams. A top-level flow
diagram shall depict in a single figure the overall informationflow of the
software systemlsubsystem. This diagram shall refer to lower-level flow
diagrams which shal1 provide more detailed information. Lower-level diagrams
shall identify the computer program components identifiedin Section 2.2.

The diagrams shall provide an integrated presentationof the
system/subsystemdynamics of entrances and exits and.~interfaceswith al1
computer programs in the system. They wi11 effectively represent al1 modes of
operations, priorities,cycles, and special handling. They will show general”
flow from input, through the system/subsystem,to the generation of output.

4.2.1 Program Interrupts. This paragraph‘shall1ist all program interrupts and
describe their effect on designing the control logic. Each interrupt shall be
fully described as to source, purpose, type, and the required.resPonse of the
executive control.. The probable rate of occurrence of interrupts shall also be
given.

I

I

3-36

Downloaded from http://www.everyspec.com

4.2.2 Control of Computer P~gram Components. This paragraph shal1 describe how
each canputer program component obtains control. In narrative form ~t shall
then describe its sequence of processing from initiation until termination. It
shal1 also show details concerning assignment of priorities and cycle times to
computer programs and computer program components.

4.2.3 Special Control Features. This paragraph shal1 describe al1 special
control features which affeet the design of the control 1ogic but are not part
of the normal operational functiens.

4.3 System Oata. This section shal1 describe and stite the purpose of the
“inputs,outputs, data, and displ~s used in the software systemlsubsystam. Each
description shal1 include the foilowing information as applicable. Optionally,
inputs, outputs, and displays may be ‘describedwith the individual cosriputer
programs and cce!ponentsto which they relate.

4.3.1 Inputs. Each invt to the software system $hal1 be described as
fol”lOws:

a. Title and tag. ,

b. Source.

c. Format.

d. Purpose.

e. Units of measure.

f. Limits or ranges of input values.

9. lccuracy and processing requireinen~.

VO1u and frequency of arrival, including special handling (e.g.,
queuing,h~riority handling, etc.) for.hi9h density perfo~.

i. Legality checks for erroneous information.

4.3.2 outputs. Each output to the software system shal1 be described as
follows:’

a. Title and tag.

b. Oestination.

c. Format.

I

3-37

Downloaded from http://www.everyspec.com

d. Purpose.

e. Uniis of measure.

f. Limits or ranges of output Values.

9. kcuracy and precision requirements.

h. Volme and frequency of output, including special handling for
high-density periods (e.g., queuing, priority handlin9, etc.).

i. Legality checks for erroneous informstion.

4.3.3 DisPleys

4.3.3.1 Description of Displays. This.section shal1 describe the types of
displays to be developed for the user interface, e.g., input screens, help.
screens, menu.screens.

4.3.3.2 Displw Identification: This section shall describe each diSP1ay
generatid by the softdare system. For each display, the fOl10Win9.i@tWStiOn
shal1 be given:

a. Title and tag.

b. Full name.

c. Description of how the displey appears to the user.

d. Purpose of the display and i@ relationship to the processes in the
system.

e. Format, inctuding data elements and sizes.

f. Users/privileges,including type of user
access-readlwriteleditldelete.

9. Protected areas.

h:. Means of presentation, e.g., CRT, printer, etc.

i. Picture of the displey (actual or mock-up).

Identification of software units interfacingwith the “displw,
showing ~~pes of access (input/output).

3-38

Downloaded from http://www.everyspec.com

NOTE: Section 4.3.3.2 m~ be published as an annex to ‘theSystem/Subsystem
Specification.

4.4 Program Descriptions. Paragraphs 4.4.1 through 4.4.N shall‘provide
descriptions of the functions (related to paragraph 2.2 of the System/Subsystem
Specification)of the computer programs and computer program components in the
system/subsystem. If al1 computer programs are written in the same 1anguage,
the introductory paragraph :hal1 include the name of the 1anguage used. If al1
computer programs are not written in the same 1anguage, the statement,
“(mnemonic name) is written in the (identify language),“shall be irttluded,in
the introductory statements in 4.4.1 through 4.4.N.

4.4.1 Computer Program Identification. This section shal1 contain the lead ~
phrase, “This section contains the detailed,technicaldescriptionsof the
components of the (. NAME) computer program”. The fol1owing subparagraphs
shal1 be repeated for each component:

414.1.1 Computer Program Component.No. 1. This paragraph shal1 identify thet
component by functional name followed by its mnemonic within parenthesis.
Thereafter, the computer program component should be referred to by mnemonic
only. It shall also include a brief abstract of the tasks of the component and
its major functional interfaces.

4.4.1.1.1 Coqputer Program Component No. 1: Graphical Representation.This
section stsal1 present a graphical representationof the software units’fn the-
component. This may be done by structured design charts or equivalent. It
shal1 show the relationshipsamong units and depict the processing describedin
Section 4.4.1.1.2, including the sequence of operations and dectsfon points fn ~
the component. The chart shal1 depict the overal1 informationand control flow”
of the c~u~r program component and shal1 reference the Charts in paragraph: ~
4.2 that identify the computer program. ‘,

4’.4.1.1.2 Computer Program Component No. 1.Descrfptfon. Thfs section shall.:
describe in words, figures, equations, and references to paragraph 4.4.1.1.1,
the operation and design of the computer program component. Software unit+ of .
the component shal1 be identified in a table or chart which depicts the
allocation of requirementsto individual software units. Ffgure 3-4 fs an
example of such a table. This section shal1 also describe the sequential ,
functions of the coinponent(what it does first, second, etc.) and relate them to
the component’s software units. For long or complex descrfptfons, the
description should refer to graphical representationscontafned in Section
4.4.1.1.1. It shal1 also describe program 1ogic and data flow .depfctedin,
Section 4.4.1.1.1.

3-39

Downloaded from http://www.everyspec.com

.,.

UNITS OF COMPUTER PROGRAM COMPONENTS IDENTIFICATION

COMPUTER PRoGRAM COMPONENT

UNII NAME MNEMONIC IDENTIFIER REQUIREMENTS III f SSSf SPS PARAGRAPH

SW PARAG- ESTI!EENCE U~ERE?JCIE

1.

% : ,.,

8. ‘,

*

&

& ,,, ..

7. .

a

a

10.

U.

Il.

la.

14.

. . .,.,
Example of a Table Allocating Requirements to sottware units

Figure 3-4
(3-40

Downloaded from http://www.everyspec.com

4.4.1.1.3 C@uter Program Component No. 1. Interfaces. This section shall
descrfbe the relation of the computer program ccmponent to other computer
program cotaponents,to that part of the data base external to the cc+sputer
program, and where applicable to other computi”rprograms. It shal1 also
identffy the speciffc units of the component that fnterface wf@ other
components and data bases and describe interface information such as
input/output.formats, and table,f ~, file, and buffer descrfptiens.

4.4.1.X. Computer Program Component No. X.

4.4.1.X.1 Computer Program Component No. X,.Graphical Representation.

4.4.1.X.2 Cmnputer Program Component No. X Description.

4.4.1.X.3 Computer Program Component No. X Interfaces,

4.4.N Computer Program N. ‘Section4.4.1 and Subparagraphs shall be repeated
for each computer program and computer program component in the software
systemlsubsystern.

,..

4.5 ,DataBase. This paragraph shal1 include, directly or by reference to a
Data Dictionary, a definitionof the levels of data hierarchy (i.e., data base,
fi1e, record, field) and the content of each incorporated in the
system/subsystemdata base. Each item shall be described as follows:

a. Title and tag.

b. Description and parpose of content.

c. Number of records or entries.

d. Storage, to fnclude type of storage, amount of storage and, if
known, beginning and ending addresses.

e. Source of input.

f. WNhod of access.

9. Classification.

h. Data retention.

I

I

I

I

3-41

Downloaded from http://www.everyspec.com

Section 5. TEST AND QuALIFICATION.

This section shal1 consist of the following statement:

Detailed Test and Qualification Provisions are contained in the Test
PIans and procedures for this software system/subsystem. The software SYstem
DT&E Plan contains a detailed Test Case hlatrlxwhich relates each functional
requirement in the Software RequirementsSpecification to the applicable test.
The Test Plans and Test Procedures also specify any special test tools and
capabi1ities required to qualify the software system/subsystem.

Section 6. NOTES
..

This .section may be used to provide background material that would be of
assistance to reviewersi n“Understandingthe design of the computer.programs.
It may include such things as alternate design solutions, rationale’behind the
“designthat is proposed, and other informationwhich would help in review Of the
document.

I

I
3-42

Downloaded from http://www.everyspec.com

3.2.4 FORMAT FOR INTERFACE CONIROL DOCUMENT

INTERFACE CONTROL DOCUhlE~

TABLE OF CONTENTS

Section 1. GENERAL
1.1 Purpose of the Interface Control D0Cunw2nt
1.2 Project References

Section 2. INTERFACES
2.1 Interface B1ock Diagram

Software Interfaces
::: Hardware+to-Software Interfaces

I

I

.3-43

Downloaded from http://www.everyspec.com

INTERFACE CONTROL D(N3JMENT

SECTION 2- GENERAL

1.1 Purpose of the Interface Control Document. This paragraph shall
describe the purpose of this Interface Control Oocument in the fol1owing words,
modified when appropriate:

This Interface Control Document establishes the software interface
requirements for (system name).

1.2 Project References. This paragraph shal1 provide a brief sunsnaryof
the”references applicable to the identificationof interfaces to the (system
name) software. It shal1 identify the fol1owing by author or source, reference
number, title, date, and security classification:

a. System Acquisition P1an, Project Request, or Contract.

b. Previously developed technical documents relating to
the system’s interfaces.

c. Software RequirementsSpecification.

d. DoD or Federal Interface Standards.

e. Significant correspondencerelating to the System’s
Interfaces.

SECTION 2- INTERFACES

This section shall specify al1 of the external (other systems) and
internal (between subsystems) interfaces necessary to ensure proper development
of software for the system. Each interface shal1 identify the f1ow of date and
control in one direction only. If data or control flows fn both directfons,
each direction shal1 be specified as a separate interface.

2.1 Interface Block Diagram. This paragraph shal1 graphically portray
the relationshipsof the computer programs to other equipments and computer
programs with Which they must 1nterface. Each interface shal1 be given an
identification(title or label) which will allow it to be identified in related
documents and specifications. The diagram shal1 show the data and control flow
between the computer(s) and other system equipment. This paragraph shalI also
incorporate in subparagraphsas appropriate, a functional block diagram or
equivalent representationof the interface requirementsof each computer
program.

3-44

Downloaded from http://www.everyspec.com

?
2.2 Software Interfaces. This section sha?1 specify the fol1owing for

each software-t-software interface identified in Section 2.1:
I

a. Interface Identification.
I

b. Functional Description.

c. Direction of the flow of data and of the transfer of control. I
d. Formats and volumes of data to be passed.

I

e. Type of interface, such as manual or automatic. I

f. Interface procedures, 1ncluding teleconsnunications
considerations. I

9. Priority 1evel of the interface data intirrupt (if
applicable). I

h. Maximuq time alJowed for the receiving software element to
respond to the interface data interrupt and the effects of not
respondingwithin theallocated time. I

i. Design requirements imposed upon other computer programs as a
result of the design of the interface.

I
2.3 Hardwar+t~Software Interfaces. This section shal1 specify the

f011owing for each hardware-to-softwareinterface identified in Section 2.1: I
a. Interface Identification.

I
b. Functional Description.

c. Direction of the Signal.

d. Format of the Signal.

e. Transfer Protocol used for the Signal Interface.
I

f. Frequency of the Signal.

9. Priority of the Signal.
I

h. Maximum time allowed for responding to the signals, and the
effeet of not respondingwithin the allocated time.

I

. . ‘1
3-45

Downloaded from http://www.everyspec.com

i. Design requirements imposed upon the computer programs as a
result of the design of the interface.

3-46

Downloaded from http://www.everyspec.com

3.3 SOFWARE PR(kXAM SPECIFICATION

3.2.1 POLICY AND REQUIREMENTS SUht44RY(From NSA/CSS Software Acquisition Manual
81-2, Policy 3.5)

Software developers shal1 update and expand the System/Subsystem
Specification to produce a detailed Program Specification’for the defined
software end products. Upon conclusion of the Critical Design Review(s), the
Software Program Specification becomes the baseline from which code wi11 be
produced.

The detailed design shal1 be described through the routine 1evel of
software organization and the 1owest 1ogical 1evel of data base organization.
It shall emphasize timing, storage, and accuracy and shall refer to and update
the System/SubsystemSpecification.

3.3.2 GUIDANCE

The Program Specification document is designed to present more detailed
data than the System/SubsystemSpecification. Although it is a separate
document, it is in fact an expansion of the System/SubsystemSpecification and
COUId be viewed as an updated version of it. The purpose of the Program
Specification is to add enough additional detai1 to the System/Subsystem
Specification to allow the developer to being producing code.

When a software system is a complex aggregate of computer programs,
Section 4.4 of the Program Specification may be developed in increments and
reviewed at different times. These reviews should correspond to the time that
the detailed design of a computer program is cainpleted. For less complex
software systems, al1 computer programs may be reviewed at a single meeting.

The Software Acquisition Manager must approve the schedule for
preparation and review of the Program Specification.

3-47

Downloaded from http://www.everyspec.com

3.48 (blank)

Downloaded from http://www.everyspec.com

3.3.3 FORFi4TFOR SOHWARE PROGRAM SPECIFICATION

SOFTWARE PRDGRAM SPECIFICATION

TABLE OF CONTENTS

Section 1. GENERAL
1.1 Purpose of tti Program”Specification
1.2 Project References “
1.3 Terms and Abbreviations

Section 2.
2.1
2.2
2.2.1
2.2.2
2.3

Section 4.
4.1

‘:::
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.1.1
4.4.1.1.1

4.4.1.1.2

4.4.1.1.3

4.4.1.1.4

4.4.1.1.5

SUMJ44RYOF REQUIREilENTS
Program Description
Program Functions ‘.,
Accuracy and Validity ‘
Timing

Flexibility “ “

ENVIRONMENT
Support Software Environment
Interfaces
Storage and Processing Al1ocation
Security and Privacy

DESIGN DETAILS
Operating Procedures
System Logical F1ow
System Data
Inputs
outputs
Displays

Program Description and Logic
Computer Program Identification
Computer Program Component No. 1
Computer Program Component No. 1
Graphical Representation

Computer Program Component No. 1
Description

Computer Program Component No. 1
Interfaces

Computer Program Component No. 1
Data Organization

Computer Program Component No. 1
Limitations

I

3-49,

Downloaded from http://www.everyspec.com

4.4.1.X Computer Program Component No. X
4.4.1.X.1 Computer Program Component No. X

Graphical Represnetation,
4.4.1.X.2 Computer Program Component No. X Description
4.4.1.X.3 Computer Program Component No. X Interfaces
4.4.1.X.4 Computer Program Component No. X

Data Organizations
4.4.1.X.5 Computer Program ComponentNo. X LimitatiOnS
4.4.N Computer Program No. N
4.5 Data Base Character sties and Data Environment
4.5.1 Data Base Character sties
4.5.1.1 Data OrganiZation
4.5.2 Data Retention
4.5.3 ““’ Program Relationships ‘

Settion 5. TEST AND QUALIFICATION ~

Section 6. NUIES

,“, ”’”,

.,

3-50

..... .

Downloaded from http://www.everyspec.com

Section 1. GENERAL

1.1 Purpose of the Program Specification. This paragraph shall describe the
purpose of the Program Specification in the following words or appropriate
modifications thereto:

The objective of this Program Specification for (Project Name) (Project
Nutier) is to describe the design of the software system/ subsystem in
sufficient detail to permit program production by the progransner/coder.

1.2 Project References. This paragraph shall provide a brief summary of the
references applicable to the history and development of the project. A 1ist of
applicable documents shall be included. At least the following shall be
specified, when applicable, by source or author, reference number, title, and
security classification:

a. Software Requirements Specification.

b. System/SubsystemSpecification.

c. Related Program Specifications.

d. Any other pertinent documentationor significantcorrespondence not
specified in the”Software Requirements Specification.

1.3 Terms and Abbreviateens. This paragraph,shal1 provide an alphabetic
1fsting or include in an appendix a glossary of terms, definitions, or acronYms
unique to this document and subject to interpretationby users of the document.
This 1isting will not include item names or data codes.

Section 2. SUMMARY OF REQUIREMENTS

2.1 Program Description. This paragraph shal1 provide a.general description of
each computer program in the system/subsystemto estab~ish a frame of reference
for the remainder of the document. It shall include a sumnary of requirements
established in the Software Requirements Specification. The documentationof
higher-order systems/subsystemsand related’computer programs shal1 be
referenced, as required, to enhance the general description of the computer
programs contained in the Program Specification.

2.2 Program Functions. This paragraph shal1 identify and describe the function
of each computer prqgram in the software systeml,subsystem.Although
descriptions of the functions may be more refined as a result of detailed design
activities, they must be consistent with the functions described in Section 2.2
of the System/SubsystemSpecification.

3-51

Downloaded from http://www.everyspec.com

2.2.1 Accuracy and Validity. This paragraph shal1 provide a description of
accuracy requirements imposed on each computer program identified in the
System/SubsystemSpecification. The requirements wil1 be related to paragraph
4.1.1 of the Software Requirements Specificationand to paragraph 2.2.3 of the
System/SubsystemSpecification. Changes in the accuracy requirements from the
next higher-order document must be explicitly identified. The fol1owing
accuracy reqisirementsmust be considered:

a. Accuracy-requirements of mathematical calCU1ations.

b. Pccuracy requirement-sof data.

c. Pccuracy of transmitted data.

2.2.2 Timing. This paragraph shall provide a description of the ti,hihy
requirements placed on each ccmputer program. The requirementswil 1 be re’iatei
to paragraph 4.1.2 of the Software Requirements Specffication and to paragraph
2.2.4 of the System/SubsystemSpecification. Changes in the timing requirements
from the next higher-order document must be explicitly identified. For each
computer program, the fol1owing timing requirementsmay be considered: :

a. Throughput time.

b. Reponse time to queries and to updates of data fi1es.

c. Response time ‘ofmajor program functiens.

d. Sequential relationship of program functions and data flows.

e. Priorities imposed by types of inputs and changes in modes of ,
operation.

f. Timing requirements for the range of traffic 1oad under varying
operating conditiens.

9. Sequencing and interlcaving“programsand systems (includingthe ~
requirements for interruptingthe. operation of a program without 10SS’
of data).

h. 1/0 transfer time required for disk, drum,.tape, etc.

i. Internal processing time.

3-52

Downloaded from http://www.everyspec.com

?.3 Flexibility. This paragraph shal1 provide a,description of the capability
to be incorporatedfor adapting the software system/subsystemto chan9in9.
requirements,such as anticipatedoperational changes, interactionwith new or
i,nPr”vedp)ograms, and planned periodic changes. Components and procedures
?esigned to be subject to change will be identified. This paragraph will be
related to paragraph 2.3 of the System/SubsystemSpecification.

Section 3. Environment.—....-—..-—.

This section shal1 provide a short description of the environment in
which the software system will operate. It shall be based upon Section 3 of the
Software System/SubsystemSpecificationand shal1,identifyany changes that have
occuwed since then. If there have been no changes, a brief sunsnaryand
reference to the appropriate sections of the System/SubsystemSection wi11 be
occeptable for the following sections.

3.1 Support Software Environment. Refer to Section 3.2 of the System/
Subsystem Specification.

3.2 Interfaces. If applicable, refer to relevant Interface Control Documents.

3.3 Storage and Processing Al1ocation. Although sti11 not binding, this
section shal1 update the allocation of memory storage and processing tiresfor
each software unit, computer program component, computer program, consnondata
base, and executive routines. The “as-bui1t“ Program Specification shal1 use
actual results. .,

3.4 Security and Privacy. Refer to Section 3.4 of the System/Subsystem
Specification.

Section 4. DESIGN DETAILS——.

4.1 Operating Procedures. This section shal1 describe any specific procedures
necessary for operation of each computer program in the software system. It
shal1 also describe the interactionof the applications software with the
executive software.

4.2 System Logical Flow. Refer to Section 4.2 of the System/SubsysLkm
Specification. This section shall include any additional informationgained
since preparation of sections 4.2, 4,2.1, 4.2.2, and 4.2.3 of the
System/SubsystemSpecification.

4.3 System Data.

4,3.1 Inputs. Refer to Section 4.3.1 of the System/SubsystemSpecification.

4.3.? outputs. Refer to Section‘4.3.2of the System/SubsystemSpecification.

3-53

Downloaded from http://www.everyspec.com

4.3.3 Displays. Refer to”Section 4.3.3 of the System/Subsystem
Specification.

4.4 Program Description and Logic. Paragraph 4.4.1 through 4.4.N shall
provide detai1ed descriptionsof the computer programs and computer program
components 1istealin paragraph 4.4.1 through 4.4.N of the System/Subsystem
Specification.

4.4.1 Computer Program Identification. This section shall contain the lead
phrase, “This section contains the detai1ed technical descriptionsof the
computer program components of the (NAME) computer program”. The fol1owing
subparagraphsshal1 be repeated for each component:

4.4.1.1 Computer Program Component No. 1. Refer to paragraph’4.4.1.1 of the
System/SubsystemSpecification.

4.4.1.1.1 Computer Program Component No. 1 Graphical Representation.Refer to
4.4.1.1.1 of the Systeni/SubsystemSpecification. This section shall include any
additional infonnation gained since preparation of the System/Subsystem
Specification. If software units have been subdivided into routines,
1ower-level structured design charts (or equivalent) that identify alJ decision
points in the component shal1 be included. The 1owe~level charts, including
routines, should refer to higher-1evel representationsas appropriate.

4.4.1.1.2 Computer Program Component No.1 Description. Refer to paragraph
4.4.1.1.2 of the System/SubsystemSpecification. This section shal1 identify
equations to be solveal,algorithms used to solve the equations, timing and
accuracy character sties, and any special conditions for operation of routines
in the component. Within the description of each unit, this section shal1
contain the fol1owing information for each routine:

a. Routine name.

b. Purpose (brief narrative sunsnary).

c. Assumptions.

d. Sizing (code and data).

e. Cal1ing sequence, arguments and definitions,and error exits.

f. Inputs, output, and use.

9. Routines called by this routine, and calling routines.

h. Engineeringdescription (including equations and a processing flow
description expressed in a Program Design Language or other suitable
descriptive format).

3-54

Downloaded from http://www.everyspec.com

i. Restrictions and 1imitations.

4.4.1.1.3 Computer Program Component No. Interfaces. Refer to paragraph
4.4.1.J.3 of the System/SubsystemSpecification. This paragraph should include
any additional infonnation gained since preparation of the System/Subsystem
Specification. .,

4.4.1.1.4 Computer Program Component No. 1 Data Organization. This paragraph
shall contain a Jist and descriptionof all data items and tables which are
unique to and included within the computer program component. It shal1 describe
the areas of memory available for temporary storage. This paragraph shal1
include all internally-defined symbols and constants and their equivalents and
meaning.

4.4.1.1.5 Computer Program Component No. l-Limitations. This paragraph shal1
summarize any known or anticipated 1imitations of the Computer Program
Component. It shall include a Jisting of all restrictionsand constraints which
apply to the Computer Program Component, including timing requirements,
1imitationsof algorithms and formulas used, 1imits of input and output data,
associated error correction sensing, and the error checks progransnedinto the
routines.

4.4.1.X Computer Program Component No. X.

4.4.1.X.1 Computer Program Component No. X Graphical Representation.

4.4.1.x.2 Computer Program Component’No. X’Description.,,,

4.4.1.x.3 Computer Program Component No. X Interfaces.

4.4.1.x.4 Computer Program ComponentNo. X Data Organization.

4.4.1.x.5 Computer Program Component No. X Limitations..

4.4.N Computer Program N. Swtion 4.4.1 and subparagraphsshall be repeated
for each computer program in the software system/subsystem.

4.5 Data Base Characteristicsand Data Environment. This paragraph Shal1
provide a description of the files, tables, dictionaries,program
interrelationshipswith the tables, storage allocation, intermediate data
structures,and data retention requirementsof the system/subsystemdata
base(s).

4.5.1 Data Base Character itics. This paragraph shall describe
each prograkrelated file, table, dictionary or directory to include
the following: .

I

3-55

Downloaded from http://www.everyspec.com

a. Title and tag.

b. Oescription of content.

c. Parameters - start of file, end of file.

d.’ Nutier of records or.entries.

. e. Record parameters - start of record, end of record.

f. Relationship of each record to the common data base, if applicable.

9. Storage, to include type of storage, amount of.storage and, if known,
beginning and ending addresses.

h. Normal order of the file and other orders required for special
purposes.

i. Classification.

4.5.1.1 Oata Organization. .Thisparagraph shal1 describe directly or by
reference to a Oata Dictionary the relationship of the items, tables, and files
contained”within the data base. It shal1 incorporate such information as the
following:

a. A 1ist of files, specifying for each file the address in storage and
the number of tables contained in the file, etc.

b. A 1ist of tables, specifying for each table the 1ocation within the
file and number of words contained in the table, etc.

c. A list of items, identifying item location within the table, number
of lists, item type, scaling, etc.

:~;iAw5Data Retention. Data retention requirements shall be described as

a. Historic retention to include collection of data to be retained,
format, storage medium, and time paramters.

b. Periodic report data, e.g., time retained after report generation and
time retained to provide sunnnaryreports.

c. Sumnary report data, such as time retained after sumnary report.

4.5.3 Program Relationships. This paragraph shal1 describe the
interrelationshipsof the various computer program components to the various
files and tables used in the data base(s).

I

3-56

Downloaded from http://www.everyspec.com

,

Section 5. TEST AND QUALIFICATION

This section shal1 consist of the fol1owing statement:

Detai1ed Test and Qualification provisions are contained in the Test
P1ans and Procedures for this software system/subsystem. The Software System
DT&E PIan contains a detailed Test Case Matrix which relates each functional
requirement in the Software Requirements Specificationto the applicable test.
The Test P1ans and Test Procedures also specify any special test tools and
capabilities required to qualify the software system/subsystem.

Section 6. NOTES

This section may be used to provide backgroundmaterial which WOU1d be of
assistance to reviewers in understandingthe design of the computer programs.
It may also include alternate design solutions, design standards, alternate
algorithms, and alternate mathematical derivations.

3-57

Downloaded from http://www.everyspec.com

3-58 (blank)

Downloaded from http://www.everyspec.com

3.4 SEPARATE DATA DOCUMENTATION

3.4.1 Introduction

A data base is a collection of “interrelateddata that is stored
independent of the computer programs that use the data. Methods of retrieving
and modifying the data are often centrally controlled by a Oata Base
Management System (DBMS), but the term “data base” is loosely used throughout
this section to include such diverse CO1lections as sequential files,
direct-access files, inverted files, relational data bases, and network“data
bases.

If more than one software system or subsystem shares data or if data
presents unique management and control problems, Software Acquisition Managers
may wish to separate data documentation from the software specifications
provided in the first three sections of Part III. If separate documentation
is preferred, Software Acquisition Managers may use the Data Dictionary
Document described in this section.

Under NSAM 81-2, there are three acceptable methods for documenting the
data of a software system. Theyare:

a. to describe the system data in the Software Requirements
Specification, the System/SubsystemSpecification,and the Software
Program Specification;

b. to describe the system data in a separate, printed Data Dictionary
Document; or

c. to describe the data in an automated Oata Element
Dictionary/Directorywhich is capable of displaying or printing the
information for human use. It may also be able to interact with
other system software to control the use of data in the system.

The purpose of documentingthe design of data is the same as documenting
the design of computer programs: to state the requirement in functional
terms; to refine the functions in technical terms sufficient for preliminary
design; to further refine the technical terms until they are adequate for
detailed design; and to eventually complete the detailed design until it
becomes the “as-bui1t“ documentation. No matter which method or combination
is chosen for documentation of data, the same principal components must be
documented: al1 files; all record types; all items within records
(irrespectiveof their eventual,logicalor physical implementations,such as
“set,” pointer or key field value); and all pertinent information about the
use of the data. This “includesa physical description of the ,data;a logical
description; and a functional description of how the data”is used, how it is
changed, how it is removed and how its integrity is ensured.

3-59

Downloaded from http://www.everyspec.com

Descriptions of data in any of the three forms must be traceable back
through the computer program functions in the Software Requirements
Specification to the original statement of system requirements. As data
documentationbecomes progressivelymore codified during development, software
developers must take particular care to assure that this traceability is
maintained. The terminology used to describe the data must also remain
ConsiStent in all documentation produced during the acquisitionprOcesS. ,

The format of the Data Dictionary that follows in Section 3.4.3 descri~es
what “mustbe included in the completed document. It can be used as a
checklist for evaluating either of the other two acceptable methods of
documenting data.

3.4.2 GUIDANCE
.. .

3.4.2.1 SELECTION CRITERIA FOR OATA DOCUMENTATION METHODS

Software managers should examine several factors before selecting the
method of documenting data:

a.

b.

c.

d.

e.

f.

9.

h.

i.

j.

k.

Size and complexity of the system;

Extent of sharing of data between systems;

Use of a generalized data base management system;

Availabi1ity of an automated data dictionary; .

Number of data descriptions; ~~

Complexity of data structures;

Volatility of data descriptions;

Number of analysts and programmers

Number of organizations involved;

Shortage of clerical assistance;

Users of the data documentation.

involveal;

Systemsthat share 1ittle data with other systems might amro~riat.ely

I
have t~eir data descriptions included in the Software Reqfiirements” -
Specification,System/SubsystemSpecification,and Software Program
Specification.

3-60

Downloaded from http://www.everyspec.com

Systems with more complicated data requirements,such as conversion of
data from an 01d system to a new one or sharing of a data base by more than
one software system, should have their data documented separately. This will
emphasize the importanceof documenting the data and require 1ess duplication
of descriptions.

r

The greater the number and strength of the factors 1istealabove, the
greater the value of documenting data separately, possibly by automated
methods. The Data Dictionary Document provides a standard, consistent
framework for documenting information about the data used by a software
system. If an automated Data Dictionary System is available, the same
information that would go into the printed Data Dictionary Document should be
input to and available from the automated system.

Al1 systems that use a commercial Data Base Management System(DBMS 1 with
an automated data dictionary faci1ity should use the automated nn?ansof
documenting data. If a DBMS does not have the automated data dictionary, a
stand-alone data dictionary should be used if available. If an automated data
dictionary cannot be easily enhanced to support the data documentation
requirements,then missing information should be documented in the printed
form. Only in unusual cases should a new automated data dictionary be
developed for a system.

If a system wil1 use many data descriptions or if the descriptions wil1
change frequently, an automated data dictionary wi11 be useful even if the
system does not use a data base management system. This wil1 reduce typing
and automate the extensive and tedious checking required to ensure
completeness and consistency.

3.4.2.2 PREPARATION OF THE OATA DICTIONARY 00CUMENT

The decision to separately document data should be made as early as
possible, preferably during the software requirements specification phase.
The Data Dictionary Document as outlined in Section 3.4.3 is a companion to
the Software Requirements Specification, the Software System/Subsystem
Specification and the Software Program Specification. It supplements Section
4 of the Software Requirements Specification. It replaces Sections 4.5 of
the System/SubsystemSpecification and 4.5 of the Program Specification.
By the Software Requirements Review, the Data Dictionary Document should be
prepared and the fol1owing sections reviewed with the Software Requiresoents
Specificationat the Software Requirements Review meeting:

3-61

Downloaded from http://www.everyspec.com

SECTION 1 - GENERAL should be complete.

SECTION 2 - SYSTEM SUMMARY should be complete.

SECTION 3 - DATA IDENTIFICATIONAND PRLKEDURES FOR ADMINISTRATION
should be complete.

SECTION 4-. FUNCTIONAL DESCRIPTION OF THE DATA should be complete.

SECTION 5 - LOGICAL ORGANIZATIONOF THE DATA may only exist in
outline form, but should be complete to the extent that the 1ogical
representationof the data is known.

SECTION 6 - PHYSICALORGANIZATION OF THE DATA may only exist in
outline form, but should be complete to the extent that the physical
representationof the data is known.

Section 4.5 of the System/SubsystemSpecification identifies and names.
the 1evels of data hierarchy. For each 1evel, it identifies the name,
contents and size of each data element..By PreliminaryDesign Review, the
Data Dictionary Document should be prepared to this 1evel of detail and
reviewed with the System/SubsystemSpecificationat the Preliminary Design
Review meeting. Sections one through four of the Data Dictionary Document,
which were completed for the Software Requirements Review meeting, should be
refined as a result of the preliminary design activities. In addition,
Section 5 of the Data Dictionary Document should be complete. Section 6 may
only exist in outline form, but should be complete to the extent that p~sical
representationof the data is known.

Section 4.5 of the Software Program Specificationcontains a complete
definition of the data base down through the lowest logical level of data base
organization. By Critical Design Review, the Data Dictionary Document should
be complete. It should then document the complete design of all data that is
a part of the software system or subsystem. It should be reviewed with the
Software Program Specificationat the Critical Design Review meeting.

The Data Dictionary Document is a technical document prepared for
programmersand data base administrators. When completed, it must be
sufficiently detailed to permit program coding and data base generation by the
developmentorganization. The documentation in this section is intended to
cover al1 types of systems; so it does not make specific data or presentation ,--
formats mandatory. In fact, the same information is co]lected whether or not
the Data Dictionary is automated. Software developers should devise the
physical formats most useful and comprehensibleto them. To achieve
consistency in documentation,however, the fol1owing practices should be
followed for alJ Data Dictionary Documents:

3-62

Downloaded from http://www.everyspec.com

a. Each graphic representation should be fol1owed by a narrative
explanation.

b. Each item of information shown in a’graphic representationmust be
consistent with standard data element names.

These graphic representations should be in the form most.appropriate to
the data being described.(e.g., record layout forms, hierarchical charts, or
CODASYL schema diagrams). They may be hand-drawn or automatically produced
using computer-supporteddesign tools.

Just as for the other specificationsdescribed in Part 111, the Final
Oata Dictionary Document, incorporatingal1 approved changes, shal1 be
delivered after completion of Software System DT4E.

3.4.2.3 STANDARD DATA ELEMENT NAMES

Many data element names and associated codes have bee~ standard.izedto
faci1itate data exchange and cormnonality of ‘datastructures. Whenever
applicable, these standard data elements must be used in all data base files.
For data bases which are developed internally, the NSA Data Standards Center
is the source for information and guidance on standardized data element ,names
and codes. For contracted development, the Software Acquisition Manager is
responsiblee for making the appropriate standards avai1able to the contractor.

3.4.2.4 SAMPLE DATA DICTIONARY DOCUMENT ENTRIES

The purpose of the data dictionary is to catalog the data entities with
their attributes. The data is divided into three types:

a. DATA ELEMENT - the smallest definable, discrete data entity or unit
of information.

b. DATA STRUCTURE - an’aggregation (CO1lection) of related data
elements, defined logically, but not in a physical
format (i.e., it is a grouping of data elements
with no specific format).

c. DATA STORE - grouping of data structures and/or data elements into
some meaningful collection.

The following example il1ustrates these concepts and the relationship
between them. Assume that the system to be developed must create PASS
REPORTS. This hypothetical’report is made up of a unique PASS number, a
Date-Time-Group,and a location. Refinement of the requirements reveals that
both the date-time group and 1ocation information are divided into additional
parts as fol1ows:

3-63

Downloaded from http://www.everyspec.com

EXPMPLE

-- --------DATE-TIME-GROUP----------~-

fiEiEtEPASS YEAR ONTH DAY HOUR MINUTES SECONDS

-----------------------------PASSREPORT---

,.

---------LOCATION----------

~

,--.-------------------------

,,

In this examssle it should be clear:that the”PASSREPORT stores.both date ‘“
~structures and data elements~ This example also illustrates a data structure
(Date-Time-GrouP)which is made UP of $mal1er”data structures (Date and Time) ~

I

which are in.turn made up of data elements.. To sunnnarize, the foilowfng 1ists
recap the date which fal1s into each of the tlyee categories:

DATA STORE: PASS REPORTS
DATA STRUCTURE: DATE, TIME, DATE-TIME-GROUP,LOCATION, al1 of

information of one PASS REPORT
DATA ELEMENT: PASS, YEAR, MONTH, DAY; HOUR, MINUTES, SECONDS,

LATITUDE, LONGITUDE, STATION
i

Figure 3-5 i11ustrates the relationships between data stores, data structures
and data elements in the same example,

I

In the figure, the Pass Report data store is composed of several
instances of Pass Report data structures. For convenience, only one Pass
Report data structure is i11ustrated to consist of a Date-Time-&oup data
structure, a Location data structure and a Pass data element. This Pass
Report data structure could represent all of the fields in a record. The Pass
data store WOU1d then be analogous to a file.

The Date-Time-Groupdata structure is composed of the Date data structure
and the Time data structure. The Year, Month, and Date date elements comprise
the Date data structure. Likewise, the Hour, Minutes, and Seconds data
elements comprise the Time date structure.

3-64

Downloaded from http://www.everyspec.com

11
~~=,[.................

J II:.?::-.= ‘~ J,(~...’isiiiamrm);:::::::::::.: F’’’’””
,., ,,. ,., ,,/ /,/,,,,,,, ,,, ,,, ,,, ,, ,., : DNA ELUKNT;.MM ELHIENT:::, ‘/,///,/. :/`/`,`/`/`,`/`,`,.`,`,`,`/`,`/`,`/`,`,`,`,`,`,`,`,`
,`,̀,`,̀/`,`/`/`,`,`,̀,`,̀,`,\,~,\,\,\,\,~,\,\,~,\ .,(lW”td?) ,.: (xrau”m) .:.:.:.\..\\....,,, ,,.,,.:\.\..\,\.
,:/:,:,:/:/:/:/:/:,:,:,:,),:,:,:,:,),:,>,:,>,:,:,:.:.:.:.:.:.:.:.:.:.:.:.:.’....:’.’.’.:.’.’...’.’.’.’.........’ ///,//,,,.\,..\\.,\.///,,,’//..

w’”
,.,,.,\.\.,\.,.........m:=:lDATA STRUCTURE: +;!i~;; :DATA ST&JCTU& ‘~;:;[~~:~

(321SSREPL2R~ :;;:;;;;;;: @?.SREPGY7~ +;~j;j

flfl:”:~:~:”::;[::,

:DATA STRUCTURE; ~j:j;;:;! :DATA STRUCTURE “;;;;j!;j
@?Hw.6!?w’?.? : ;!:::::::::,. ,@?w.@???w.-i ::2:::!

‘.’.’..’.’.’.’.(.’.’.’.’.’.’.’.:.’.(.’ ::::::::::{ ‘.’.’.’.’.’.’.’.’.’.’.’.’.’.’.’.’.’, .::;::::
.:.:.:.:::.;::...::::;;:;;::::.;:;::.:.:::.:.:.:.;.:.:.:.:.:.:.:.:.:...;::.....:.:.:.:.:.:.;.:.:.:.:.:.:.:.:.:.:.:.,.,.:.::.:.:::::::::.:::::::::.:::.:...:....::...,..::::::::::,,::.:..::::.:::.:.:.:.:.:.:::::::::.:.:.:.:.:.:::...:,:..,:...:..............,.,::.:.,:::.,,..,,.::.:.:.::::::::.:;:::::::.:::::::::::::::::::...:...:...:.:::::.:.:::.::::::.::::::.:.:.:.:::::::::::::.:..:..,,:.,.::::::::::,:,..:,::,.:,:,,..............,::,:,,:.::.:.:.:,:.:.:.:.:.;.:.;,:.:,:.:.:.:.:.:.:.....:,.,.,:,.:..........:,:,.,..:,..:,..:,:::::;::~:::..:.:.:.:::;:;:;:::::;:::::,,:.:.,.,.:.:,:,:,..:.:....,:..........................,.;.:.,.:.:.:.;.:.:.,...:.:.,.:.,.:.,.,...,...:.:.,:,.,. .. :..,.,::::;:::;::::....,...:::::::.,::::::::.:.:...:.:.:.:.:.:.:::.:.:.:.:.:.:.:::....::.:::::.:::...:...:.:::.:.:.:.:.:.:.. .::.::..:::.::..................::::;;::..:.:.:...:.,...:.:.:.:::::::::::::::::::::.::::::.::::::::.::;::.:::.:.:::.:..:,.,:.,,,.,.,:,:,:,.,~,,.:..,.,.,.:::.:::..::.,:.:.:..:, ,,...:.:.:,:.:,:.:.:.:.:.:.:,:.:.:................................ .,...,.,.,:,::::::::::::::.:::.::.,.,....:.:.:.:..::,:,::.:;::;::::::,:::::::..;:..,:.:.:.:.:.:::.:,:,......:.::.::::.:.;...:....::.:.:.:,... .:,,.,:,.. ..:..:..:.:::.:..:,:.:,.::.:...:..:.:::.::..:.:,:,..:.,:.:.;:.::::::;::.:::::::.::...::.:;:::::.:.:.:::;:::.:;:::::::::.:;:.:::::.:::::.:::.:::.:.:,::::.:::::::;:::::::,:::::.:.:.:::.:::.:.:.:::.:.:...:::.:.:.:::.:::::.:::.:..::...:.:::::::::.:::::...:..::..::..:::.:::.:::.::.;:::::::......:.,.:.,.....,.:.,.:.,.:.,,:.,,:.,,:.,.:.,.,.,.,,,,:

Figure 3-5
RELATIONSHIPSBETWEEN DATA STORES, OATA STRUCTURES,AND DATA ELEMENTS

3-65

Downloaded from http://www.everyspec.com

With these concepts in mind;“the following are sample Data Dictionary
Doiiumententries to il1ustrate the format.described in section 3.4.3. Not~ce ‘
that the attributes associated Wit.ha given en.tiyWi11 vary dependin9.on the
type of softwire system-beingdeveloped. and the types of date processed.by ..’ :
that systeO.

.“

.,, ., .,,
.:L061CAL ORGANIZATION ..: ,”,,. , .,....

DATAELEMEWEMJ4PLE .’ .“- ‘“”. : ‘,”: ..’-,’, ‘. ...

,,: ...

., : , ‘, ““’”.
... .

...

... .. .-,, ,.

~:. REFERENCE .!WEQUENCY- IFREQ :.”.. -:., ,’:. : ;,., :.:,

DESCRIPTION:.“;mis scalar:.contiin$a”desired freWencY u$ed bY the WEEP ... “: . .
process asa reference point. SWEEP Wi11 scan the f@uencY inWva~ S’2 ~~’: -...-t
100HZ about this point. The value of this variable.is chosen by .ari.,..... ..’
oparator. ..

PARENTAGE:’.“ DISPLAY-FREQ :(date s.~ucture)
,.. MESSAGE-PACKET ‘ (date StWCtUre)

VALUES: 50.0 to,l.O E9

UNITS OF MEASURE: KHz

NOMINAL VALUES: ~ default value = 155.O..KHZ .,. ”

ALIAS: “NEN-FREQ (data element)

SYNONYM: NOMINAL FREQUENCY ~ .,, ,,.,.

~~’:. .“this is notu$ed. as anindexto oth~ data ~ . ,:, ~~~.,; ,.. ;,

3-66

Downloaded from http://www.everyspec.com

DATA STRUCTURE EXAf@LE

NAME: DISPLAY-FREQ packet - DSPFRQ “

DESCRIPTION: DISPLAY-FREQ packet contains al1 of the information that
will be passed from the MAM-14ACHINE-INTERFACEprocess to the 01SPLAY-MASK
process for output on the VDT display. It contains al1 of the
information computed in the SNEEP process and fnforms the CIIS$lAY-#iASK
process which output displw risk to use.

PARENTAGE: ACTION-REQUEST (data stire)

LARGEST SOFTNARE ENTITY USIWG IT:“ process 1evel (used by
various routines)

ALIAS: NEH-FRQ

USAGE: MAN-MACHINE-INTERFACEprocess
DISPLAY-MASK process

FORKAT: IO (data

OETECTOR-TYPE
GAIN-SETTING
TEST-TYPE
FREQUENCY
BANOIIIDTH

element)

(data element)
(data element)
(data element)
(data element)
(data element)

OATA STORE EXAMPLE

NAJ4E: R4SK-1 - LOG MSK.—

DESCRIPTION: F14SK-1is a VDT “screenfonnat mask that is’displayed at
login tmne on al1 operator terminals. Thfs mask welconws.the user to the
session, prompts for password, and positions the cursor for user entry.

LARGEST SOF7WARE ENTITY USING IT: process level [used by two
routfnes) ..

USAGE: LOGIN process

CONTENT: LOGIN-K4SK (dats structure)
USER-PRIVILEGES (data structure)

RETENTION: permanent

SCOPE: avai1able to LOGIN process only

.J,.

3-67

Downloaded from http://www.everyspec.com

PHYSICAL ORGANIZATION

DATA STRUCTURE EKAMPLE

OISPLAY-FREQ - DSPFRQ

ID (1%?) ~ (1%?)
I ‘lN-SE- “q) I ‘E ‘p’ ‘lW’

sT-

FREQUEUCY (R*)

8ANDli~ (1*4)
1’

LENGTH: 20 bytes

DATA STORE EKAMPLE
/

MASK-1

lLWIN-MSK’488bytes) I

I‘SER-PR1~EGES (64 bytes) I
1 I

PARTITIONS: The MASK-1 data store is partitioned into the
K data structure and the USER-PRIVILEGES data

structure.

ACCESS METHOD: The two partitions of the file are
accessed directly using the ID field as the access key.

RELATIONSHIPOF COMPUTER PRCGRAM COMPONENTS TO
>ARTITI Ns: N process uses information from the
lSER-pR!VILEGESepartition to create a table in memwry
containing access privileges for each user group. This
table determines which prompts in the LOGIN-MASK to
display to the user.

I

I

I

3-68

Downloaded from http://www.everyspec.com

3.4.3 FORMT FOR THE OATA DICTIONARY DOCUKNT ~

DATA DICTIONARY OOCUtiNT
,.
TABLE OF CONTENT; ‘

SECTION 1 GENERAL ,.

1.1 Purpose of the Data Dictionary Document
1.2 Project References
1.3 Terms and Wbreviations

SECTION 2 SYSTEM SUMMARY ‘

2.1 system/subsystemDescriptiOn , ..
2.2 Environment

SECTION 3 DATA IDENTIFICATIONAND PROCEDURES FOR
ADMINISTRATION

3.1. Data Identification
3.2 Organizational Responsibilities
3.3 Procedures
3.4 Security and Access Controls

SECTION 4 FUNCTIONAL DESCRIPTION OF THE DATA

SECTION 5 LOGICAL organization OF THE OATA.

5.1 Oesion Description of the data
5.2 Grap~ical Rep~esentation
5.3 Data Elements
5.4 Data Structures
5.5 Data Stores
5.6 Relationship of Computer

to the Data

of the Oata

Program Components

SECTION 6 PHYSICAL ORGANIZATION OF THE DATA

6.1 P@ical Description of the Oata
6.2 Physical Description of Each Partition
6.3 Size and Storagd”Requirements
6.4 Relationshipp of Computer Program

Components to the Partitions

3-69

Downloaded from http://www.everyspec.com

\
.,. : ,

-,

SECT.ION 1 GENERAL

1.1 Purpose of the Data Dictionary Document. ~is paragraph shal1 describe
the purpose of the Data Dictionary document in the fol1owing words, modified
when appropriate: k.\.,
,. The purposes of this Data Dictionary’Document for (project name) (Project

Number) are to ‘documentthe definitions of data elements that are used in the
system”and to provide the basic design information necessary for the
construction of the system files, dictionaries, and directories:. ..

1.2 Project References. This paragraph shall identify the acquisition .
organization, development organization, and the user of the softwaresystem.
A 1ist of aml icable documents shall be included. At least the’.followin~. .
shal1 be specified,when applicable,”by source or author, reference numb~r,
title, and security classification.

a. Software Requirements Specification ~

b. Software System/Subsystem Specification

c. Program Specification

d. User’s Manual
.j “,

e. Program Maintenance Manual
....”

.,

,,

,. .,.

1.3 Terms and Abbreviations. This paragraph shall provide an alphabetic
1isting of terms, definitions, and acronyms unique to this document and
subject to interpretationby the user of the document. This 1isting will not
include item names or data codes. This glossary maybe provided as an
appendix if it is too large”to fit in this section of the document.

,, :.(

.: . . .,

SECTION 2 SYSTEM SUMMARY .>

2.1 System/SubsystemDescription. This section shall containa general
description of the software system/subsystemto”e$.tablish a frame of’reference
for the remairiderof the document. Higher order and parallel ‘,~
systems/subsystemsand their documentation shal1.be referenced as required to
enhance this general description. It shall also include a list of the ‘“ “
functional areas of the system and show the relationship between the
functional areas and the system/subsystemdata.which wi11 be described in this
document. ,.

,,
.! .’,:.

., ,’,

777?

Downloaded from http://www.everyspec.com

2.2 Environment. This,section shal1 identify the hardware and software
environment, including Data 6ase Management System, in which the system data
will be used. If the system wi1.1share an integrated data base w“th other
systems, that integrated data base shall be identified in this section.
Included shall be a discussion of any impacts on the integrated data base of
the data thatare to be used in this system as describedin Sections 4, 5, and .
6. Such impacts may include reconunendedchanges in the organizati”onof the
data in the integrated data base.that WOU1d enhance.system efficiency, the
addition to the integrated data base of new,data elements needed for this
system, etc. Recommendationsconcerning changes in existing software which
supports the integrated data”base, such as data base management systems,
should also be included. If the’system data base is .,designed.based on the
assumption that planned or recommended enhanc~nts to “eitherthe integrated
data base or its support software will be available at the time of system
implementation,these.assumptions shal1 be stated.

SECTION 3 DATA IDENTIFICATIONAND PROCEDURES “ ,
FOR ADMINISTRATION

3.1 Data Identification. This paragraph shall describe the system
labeling/tagging conventions W the extent necessary for the progransnerto use “’
the conventions as a practical working tool. For example; it should specify
the naming conventions used to identify new versions of the data and any
conventions adopted to relate the data components to software requirements and
design specifications.

The data dictionary document is ffrst written during the software -
requirements phase. At this time; the pwsical structure (e.g.i file, record)’ ...
or the implementation(e.g., 1inked 1ist; index) of the data is unknown.
Therefore it is defined only in functional terms. As the design evolves and
becomes more detai1ed, the implementationbeconissbetter defined. Additions
are made to the existing data element definitions or new data elements are
inserted as they become known to ‘reflectthe refined system and data
definitions.

Data elements at one phase of development relate to elements at the
preceding phase, but w be given different names because of language
constraints. A naming convention that shows that the elements are directly
related (or derived) enables one to easily distern the relationship. ~~

3.2 Organizational.Responsibilities. This section shal1 identify the
organization responsiblee for managing the data. Al-thoughthis organization
may change as the system proceeds from development through acceptance (and for
1ife cycle support), the planned organizations should be identified. If the
developer does not know the organization; or if it has not been identified; it
should be so stated.

3-71

Downloaded from http://www.everyspec.com

3.3 Procedures. This section shall contain the procedures and instructions
to be fol1owed by al1 personnel who wi11 contribute to the generation of the
data and who will.use it for testing or operational,purposes. It shall also -
identify and describe support programs which will be used to assist .inthe
implementationof the procedures. Manual procedures created specificallY to
handle the data shall aJso be included. The fol1owing shal1’be described:

a. Procedures for the authorizationof new data;
b. Criteria for entering data into the test data base;
c. Criteria.for entering data into the operational data base;
d. Rules for the submission of data, including formats for data

description,sheets and cards;
Review procedures to assure data”integrity;

.:: Review procedures to assure that performance.90alsare met. .,.-,

3.4 Security and Access Controls. This.section shal1 describe the procedures
for protecting the data from unauthorized access. It shal1 describe the
classified components of the systemand relate the access control-s’to them.
It shal1 also prescribe any privacy restrictions associated with the data
being handled.

-,,
.,.

SECTION 4 FUNCTIONAL DEXRIpTION OF THE DATA

This section shall describe the functional“relationshipbetween the data
and the”computer programs that wi11 make use of the data. The description
should be related to Sections 4.2 and 4.4 of the Software Requirements
Specification.

The means and timing (who, when, and how frequently of the fo~10win9
shall be described in narrative form:

a. Input Source. This includes the sources from which the data wi11
enter the system, such as: other systems, operators at terminals, -
internally-generatedcomputer processes; etc. Any displays (masks, forms,
screens, menus) used for data entry shal1 be included. Also, any validity
check~ng of the input data should be stated.

b. Uses. This means the manner in which the data will be used, such “”
as: reference material for analysts, raw source data for computer processing,
control for other processes, etc. The uses shal1 be related to the computer
program functions identified in Section 4.2 of the SOf.tWareRequirements” ‘
Specification.

c. Change. This means the processes by which the data is changed, such
as: by computer programs acting on the data, through processes control1ed by-
operators at terminals, by periodic batch replacement, orby an independent :

r.

I

3-72

Downloaded from http://www.everyspec.com

.-,,

.“

d. Removal. This means the data.retention requirements of the data,
such as: permanent retention, periodic removal, aperiodic removal, etc. It
also includes the aging seqLsnce or algorithm that will be used to identify
the data that wi11 be retired and the method of moving inactive data to backup
storage.

e. Integrity. This means the processes by which the data wi11 be
reviewed to assure that it remains valid, such as: cdmputer.processes
(periodic validation programs, performance analysis programs,’etc.) and manual
review. Also included shal1 be descriptions of backup and recovery procedures
in case the active versions are lost or damaged.

.

SECTION 5 LCKICAL ORGANIZATION OF TNE DATA

This section shal1 describe the conceptual scheme of the organization of
the data and define the data which is identified in-the System/Subsystem
Specification.

5.1 Oesign Description of the:Data. This section shall describe
the logical relationships among the data. It should be.in conceptual terms
with no reference to physical organization on storage devices or eventual
method of implementation. Itshall include the following information:

a. Constraints or infIuences“affecting al1 or part of the design, such
as existing files, software or systems

b. Rationale for the design, including the reason for adopting the
selected design.

c. Indicationof any design strategies abandoned during the design (if
relevant)

d. Grouping of thedata (or design,of the data base) including logical
partitioning of the data (or data base).and the identificationof
the 1evels of data hierarc~.

5.2 Graphical Representation of the Data. This section shal1contain a
graphical:represen$ationof the data (chart”or,diagram). It shal1 depict the
relationship among al1 the data stores, data structures, and data elements.

3-73

Downloaded from http://www.everyspec.com

i.3 Data Elements. This,,:ectionshall provide in alphabeticalorder a
isting of data elements used !n the software system. A data element is the
owest level of definable; discrete data useful in the sY$tem. KY further .
Iivisionof the data would cause it to lose meanin9. The fol10Wln9 l.iSt of,
Attributes,both logical and physical, shal1 be used to define each data
!lement:

a. Name of data.~l~nt;’

b.. Description - what”ttiedata.element“does.and how it is used.in.the. “,,,
system; - . .-,

c. “ Parentage -“nexthighest related.class of data (i.e., data
J

‘ structire) that directly “usesthe da~ element;
.:,

d. Values or.range of VtilUeS;

e. units‘ofnieasurec-g“iven for any datael emen~..th.atha:dimen.sio?a!~
meaning; ..’,

f. ‘ Nominal values - initial~value, default value; typical value (if .,:
they are appropriate); ,.;

g. Alias - when a data element is cal1ed by two Or more dif~erent
identifier names and al1 have the same attributes;

,:.,-
h. - when two or more data elements have different names and

%!efit,,attributes, but have the same functional meanin9; .‘
,., . ,.,

i. Key - identify whether data element acts as an index to.other,
related data.

,,. .:L..
Note that a data element could become a field in a record or’cell~in a

table when the focus of attention shifts from the 1ogical to the physical view
]f the data. -,

.: ..

5.4 Data Structures. A data structure is a grouping of data element! with no
specific format that are ,treatedby the system as a single logical unit. This
section shal1 con,taina description of everY data structure.defined. The
following infot%ation shal1 be provided: ,,’.. .:, ,,,.,,.. . :, ,

a.
.:,.:.., -...

Name of the data structure;

‘ b. Descriptionof the data structure (what differentiatesit from other
data structures);

. . .
3-74

. ___ -----

Z.-. r,.. .

.

I

I

Downloaded from http://www.everyspec.com

,,

..

c. Parentage - data structures and stores containing the data structure;,.

d. Largest soff+are entity using the data structure; ,,

e. Alias - when a data structure is called by two or more different
n’~s and both have the same attributes;

f. Usage - an attribute that indicates the number of times”and which
processes use a data structure;

9. Format - 1ist of the elements and the order in which they appear.

Note that a data structure COU1d be a node in a 1Inked 1ist or a record
when the focus of attention shifts from the,.abstrac,tto the physical view of
the data.

5.5 Data Stores. This section shall contain a description of every data
stare defined. The fol1owing information shal1 be provided:

a. Name of the data store; ..:.

b. Description of the data store (what it contains in 9eneral);

c. Largest software entity using t.& ‘da~”store; .‘

d. Usage - an attribute that indicates the number of times and which ~
processes use a data store;

e. Content - list the structures and/or elements;

f. Retention - timespan for keeping the data store in the SYStem; .:

9. Scope - accessibility of the data store by processes in the system. :

Note that a data store COU1d be a file or a table when the focus shifts
from the 1ogical to the physical view of the data. ,.,

5.6 Relationshipof Computer Program Components to the Data. This section ‘
shal1 portrw graphicallY the relationship of the various computer program
mmponents in the software system/subsystemto the stores,,structures, and
ale9ents. It shall provide set-use matrices that reflect the cross-indexing ‘
]f al1 of the above. Figure 3-6 is an example of a Data Store Set-Use Matrix
~nd Figure 3-7 is an example of a Data Structure Set-Use Matrix.

3-75 I

Downloaded from http://www.everyspec.com

DATA STORE SET-USE MATRIX
COMPONENT

ATA STORE INITIALIZATION USER-INpUT VALIDATION pAsS-CAWE ‘EpORT .

‘assReport .x ,x

Iask-1 x x x

lask-3 x x .x

~crt%enTab”le X

., .. ?.,..-.’ FI&lRE”“3-6 EXAMPLE OF A DATA.S~ORESET-USE‘~TRIX- “ ‘ “ ‘.“

.

DATA‘STRUCTURESET-USE MATRIX
,.. .,.,.

COMPONENT “: “ :
IATA STORE -. :‘INITIALIZATION USER-INPUT. VALIDATION PASS-CAPWRE REPORT.

Date-Tirne-&oup - “ .x” .x...

Date ‘ X’. ”’”x
.,

Time x .“ ‘x

Location
. . . “x, . x

Login-hl~sk x “’” ““x ‘ x“’: .,x .’:

User-Privil&les x,..’ x“:

Report-Mask x X.. ,.”. ., ’x.x.

.,

.,. ... FIGURE”3-7 EXIMPLE OF A DATA STi@8E’..SE@E@E ~TRIX : “~ “

,.

. ,., ,

3-76

‘

,’

....,

I

Downloaded from http://www.everyspec.com

.

,

,.

SECTION 6 PHYSICAL ORGANIZATION OF THE OATA

This section shal1 describe the conceptual scheme of the organization of
the data and define the data which is identified in the Software program
Specification. . . .

5.1 Physical Description of the Data. This section shal1 describe the
physical 1ayout of the data on the storage devices. It shal1 describe how ‘“
indices, pointers, chains or other methods are used to 1ocate the data. Hhen .
~ppropriate,a graphic representationof the data should be included. It
should also describe compaction and coding techniques that are used, including
I graphic representation of the data before and after.

The Physical representation of all data defined in Section 5.of the Oata
)ictionaryDocument must be.described in this section.” Aggregates of data.
#hich were only described as data stores or data structures must now be
iescribedin physical terms. In general the.fol1owing transformations.occur:

Data Stores may become: .,

Files

Tables

-, Linked.Lists ,,,

- Relations

Reports

- Masks :

while date structures may become:

Records.in Files ~ ,,
,.

Rows in Tables

Nodes in Linked Lists

Tuples in Relations .,

Subparts in“”Reports ., .,.

Fields in Masks

. .

.:
3-7-1

Downloaded from http://www.everyspec.com

Ihilethis 1ist is not complete, it should illustrate the way logical
.epresentations.and physical-representationsof the same data “evolvethrough
:he developmentcycle.

;.2 Physical Description of Each Partition. If the active version of any
‘ilesare separated into a number of p~sical parti.tfens, this section ,shal1
iescribe the content and function of each partition. TMs section shal1
movide the following information for each physical partition of each.file, ~”
Includingthe “aged- or ““historical”files and the backup cOPfeS:.

a. Pa;tition name
,.

,“ b. Passuord Information: the”type of passwords used and the access ~~
privilegeswhich these give to the user (The actual passwordsare
not.included.); .,

-’ c. Security classification of the content; ‘ ~“’--.,-. .’ ~~
.,. :..

d. Recording’“format.density, parity, record.leng~, block Size.;,.,

e. Primary and secondary storage media;

f. Storage device and location; ,,,,~.-r

9. Criteria for moving partitions from one ,Wdi,qn~ :a~o~er.;
,-, ,.:,.. .

h. Restrictions and limitations on uSa9e; .,..j..~~,,

i. Access method;
.,.’

j. A description of the relationships between record types in the
files, such as networks or hierarchies (not includingthe.mechanism”
used to link records together).

,“,..’ “,. ,..:..,.”>
6.3 Size and Storage Requirements. This sectionshall provide the following
information for each partition of each fi1e. Information“inthis section must
be consistent with Section 4.5 of the System/SubsystemSpecifi.cationand
Section 4.5 of the Program Specification. ,.. ,-.

a. File size in bytes, cylinders or tracks.”‘“ :““L“’

b. Any size parameters necessary for individual Data’&ise Management
Systems (DBMS). ,.. . ,,.,,..,,.-

.-’:.. ... ;”.-.:.-, .

,.
.. ...

. . .

,,

I

I
,.

. . .- ,. -.
3-78.,.

Downloaded from http://www.everyspec.com

6.4 Relationship of Computer Program Components to the Partitions.
I_hissection shal1 relate the various software units and routines (as
Identlftedin the Software Program Specification) to the physical data. If
111 the data of a given file are accessible (read, modified, or written) by

is unnecessary to 1ist every item in the file. The primary
section is as a reference for future modification.

me routine, it
>urposeof this

3-79

Downloaded from http://www.everyspec.com

1

.

. .

3-80(blank)

Downloaded from http://www.everyspec.com

.. . . PART IV - SOFTWARE DEVELOPMENT PRACTICES “. ‘-

1. . . .

Downloaded from http://www.everyspec.com

4.1 Software

4.1.1 Policy
Manual

Software

Analysis and Design

and Requirements Sumnary (from
81-2, Policy 4.1) ,.“ .

developers’“shal1 use a top-down

NSA/CSS Software Acquisition

approach to design software..
Top-down requires that the design be performed by starting WItn tne top-IeveI
system function and proceeding through a downward al1ocation, evaluation,
and iteration to successively 1ower levels of design. This design approach
enhances design traceability,completeness, and comprehensiveness.
Procedures for applying the selected design methodologies shal1 be documented
in a SofWare Standards and Practices Manual.

Design shall be initiated by establishing a functional design hierarc~,
where the top represents the overal1 mission to be performed by the total . J I~~
softuare.

(a)

(b)

(c)

Successive 1evels shal1 be obtained by breaking down and
partitioning the software into blocks with progressively greater
functional detail;

The software requirements shal1 be.al1ocated and mapped onto this
design hierarchy;

The lowest level of the design hierarchy shal1 be defined so that
its software elements Derform the routine algorithm and data
processing functions necessary to implement al1 of the input-
to-output paths of the requirements.

4.1.2 Introduction

The techniques presented in the following sections include discussions of
design methods and design representation schemes. A design method is a Set of
rules and guidelines used for abstracting, decomposing, and solving problems.
Softuare analysis and design are mental activities applied to develOP a
conceptual model of the softiare system’s functional and informational
requirements. Analysis and design methods provide guidance to the software
developer in translating the conceptual model into a software design that wil1
satisfy the requirements of the software system. Graphical Representation
schemes are the means by which developers express the conceptual model in real
terms. They coimnunicatedesign information to others and assist developers in
dealing with problem complexity and technical detail.

A methodolo~ is a CO1lection of methods chosen to complement one
another, along with the rtiles for their application. It includes
documentation, procedures; and representation schemes. The purpose of this
section is to describe a reconsnendedmethodology and related graphical
representation techniques to support top-down analysis and design. The
methodolo~ is consistent with the documentation formats described in

4-3

Downloaded from http://www.everyspec.com

Section 3 of this manual. The reconsnendedmethods are Structured Analysis
and Structured Design. The reco~nded design representation,schemesare Data
Flow Diagrams, Structure Charts, N charts,’and ProgramDesign Language
(PDL). Together, the analysis and design methods make a methodology that
satisy the requirementsof top-down analysi.sand design.

.:. ..’. {... ,.

4-4
,.

Downloaded from http://www.everyspec.com

TAEiiEOF CONTENTS .

ection 1. Structured Analysis ,.,,

Introduction
::; Data F1ow Diagrams
1.3 Process Logic

;. ..1.:’

1.4 Data Dictionary
1.5 Conclusion

ection 2. Structured Design

2.1 Introduction
2.2 Method

Design Evaluation
2:;.1 Coupling
2.3.2 Cohesion
2.3.3 Ordering of Modules and Decisions
2.3.4 Additional Heuristics
2.4 Summary

ection 3. N2 Charts

ection 4. Real-Time Design Issues

ection 5. Program Oesign Language

‘5.1 Introduction
Description

::;.1 Sequence
5.2.2 IF-THEN-ELSE Structure
.5.2.3 DO-WHILE Structure
5.2.4 DO-UNTIL Structure
5.2.5 CASE Structure .
5.2.6 DO Group Exit Structure
5.2.7 Library Segmentation

Coinplexity Measurement of PDL
::: Program Design Language Example
5.5 Program Design Language Standards

ection 6. Decision Table Standards

Introduction
::; Description
6.2.1 Parts of a Decision Table
6.2.2 Oecision Table Fothn
6.2.3 Types of Decision Tables

. . . .- .,-, ,..

4-5

Downloaded from http://www.everyspec.com

. .

TABLE OF CONTENTS (CONTINUED)

?ction 7. Sunmnaryand Recommendations

~tion 8. References .

.,, , /.

.4-.

.,

,, ,.,

:. .,..,
,. .

,, .,- .,, ,,

,. -,,.

.!

,.. .’.’. ,,.. ;, .,,
,, ‘, “.;

‘.. -, ,.,.,-, ,,
.,,.

I 4-6 >

Downloaded from http://www.everyspec.com

Section 1. Structured Analysis

1.1 Introduction

Structured Analysis provides a method for decomposing and documenting the
functional requirements of a system. The method requires the integrated and
disciplined use of graphic models of the logical system (Data Flow Diagrams),
a description of the sequence of steps necessary to transform inputs to
outputs (Process Logic), and a precise definition of data interfaces (Data
Dictionaries). Data Flow Diagrams model the flow of data through a system.
Process Logic describes the sequence of steps necessary to transform inputs to
outputs, and the Data Dictionary contains information about al1 data mentioned
on Data Flow Diagrams or in Process Logic.

1.2 Data Flow Diagrams

Data Flow Diagrams have four basic elements: (1) Data Flows, represented .
by arrows; (2) Processes, represented by circles; (3) Stores of Data, denoted
by parallel.lines; and (4) External Entities, shown as squares. Figure 4-1 is
an example of a Data Flow Diagram.

DATA FLOWS

A Data Flow is a pipeline through which data flows. The flow may consist
of a single data element or sequences of data elements. A sequence of data
elements may be ordered according to rules of “syntax” that define the legal
structure of the Data Flow. Oata Flows should only be used to show the flow
of data, not the flow of co,ntrol.

PRDCESSES

A Process is a point where data transformationoccurs. The transforma-
tion may be simple, such as placing data in a store, or quite complex, such as
converting analog data to a series of digital messages for distribution to
other external systems.

DATA STORES

A Data Store is a “frozen’ flow of information. It represents the P1ace
where data”is stored when there is a delay between the time it leaves a
Process and the time that another Process is ready to receive it.

EXTERNAL ENTITIES

External Entities represent external sources or users of data which
interface with the system. External Entitiesmay be other systems or even
people who must interact with the system.

4-7

Downloaded from http://www.everyspec.com

Product Ordering System

I
CustOmer-

Shlpment-
Notlce

Customer
4 Approved-

Order- Cuetomer-
Conflrmetlon Order

A
Valld- .

CuetOmer-
Order

Credlt-
Refueel

inventory- Productlon:
Level . Request

Credlt-

Credit
Department ,. -Credlt- Inventory

Stetus 4

I
lnventOry-

.. Updete
., ‘Work-

Order
v

Production
System 4,,”

Wsrehouse

“..

Flgun 4-1 LevelO Date Flow Diegram
.,.

‘. !,.
.

I 4-8

Downloaded from http://www.everyspec.com

1.3 Process Logic

In Data Flow Diagrams for large systems, each Process will represent a
major transformation of data that may involve much buried detail. To attempt
to describe the logic of such a Process would require so much detail that the
description would not be understandable..Hence the practice is to break each
high-level Process into more detailed, lower-level Data Flow Diagrams. This
expansion should continue until all software functions are shown. The result
is that the system may have a hierarchy of diagrams as in Figure 4-2. The
number of levels should be chosen so that processes at the lowest level can be
described in simple, well-defined logical descriptions called Process Logic.

Process Logic should describe the sequence of actions that must occur for
each low-level process to transform its input data into its proper output
data. Structured English, Decision Tables, and even prose English are
acceptable methods for describing Process Logic. Structured English resembles
a high-level Program Design Language. It combines the syntax of structured
programming constructs (sequence of operations, repetition of operations,
selection of operations) with the semantics of English.

Decision Tables are well suited for describing small, complex actions.
If neither Structured English nor Decision Tables is appropriate, any method
which effectively conmwnicates the sequence of steps required to accomplish
the function can be used.

1.4 Data Dictionary

A Data Dictionary also accompanies the set of Data Flow Diagrams for a
system. It documents aJl data in the system, including individual data
elements, data structures, and data stores. For more information on the Data
Dictionary, see Section 3.4 of this manual.

1.5 Conclusion

The combination of Data Flow Diagrams, the Data Dictionary, and Process
Logic describe the functions that the system is to perform. A complete
Software Requirements Specification, however, must also contain other
essential information, such as performance requirements and constraints,
resource constraints, and man-machine interface requirements.

Although Structured Analysis is not particularly helpfulfor defining the
other types of requirements, it is an effective technique for analyzing and
defining the functional and interface requirements for a software system. Not
only does it help the requirements analyst understand the role of data and
data transformation in satisfying software requirements,but it provides a
good technique for breaking high-level requirements into more detailed require-
ments and graphically representing the manner in which they will be satisfied.

4-9

Downloaded from http://www.everyspec.com

“Figure4-2 Process Decompoeitlorr .,
.

.

4-1o

i:

Downloaded from http://www.everyspec.com

Data Flow Diagrams may be used to supplement Section 4 of the Software
Requirements Specification and included as appendices to the Specification.

It must also be stressed that the products of Structured Analysis do not
describe the architecture or design of the system. Some design process, such
as Structured Design, must be used to transform.therequirements into a design
that meets the specified constraints.

For a complete description of Structured Analysis, please see references
(1) and (2) identified in Section 8.

,,

,,.

I

4-11

Downloaded from http://www.everyspec.com

Section 2. Structured Design

The following sections discuss Structured Design which is based on
concepts originated by L.L.’Constantine (and later published by him while
working with E. Yourdon) and by G. J. Myers and W. P. Stevens.

2.1 Introduction

Structured Design methods include techniques, strategies, and heuristics
for producing “good” designs and graphical representation schemes-for
documenting the designs. The graphical representations are Data Flow Diagrams
and Structure Charts. Data Flow Diagrams are discussed in Section 1. The
Structure Chart, which will be discussed in this section, is a modular
hierarchy diagram used to record design decisions. It shows how functions are
allocated among software units and depicts the resulting unit interfaces.

2.2 Method

As the basis for software design, Structured Design requires the designer
to consider the flow of data through a system. The flow of data is then
documented in a Data Flow Diagram. As described in Section 1, the bubbles on
the Diagram represent the points of transformationwhere the data must be
changed. There may be many intermediate transformationsor only one, but ulti-
mately, the data must reach its proper output form. Dnce the points of
transformation are identified, the designer can produce Structure Charts to
represent the functions necessary to change the data. To complete the
Structure Chart, the functions must be decomposed into subfunctions that when
combined will satisfy the requirements of the major function. The goal of
this decomposition process is to divide the software into separate pieces that
can be built with minimal effect on other parts of the software; or in other
words, to produce simple, independentmodules.

In addition to identifying software units to perform functions, the
software architecturemust include units to control the processing flow
between functional units. Thus, units near the top of the structure are
primarily controlling units. They pass data to subordinate units, control
their execution, and receive their outputs. The lower-level units do the
actual processing or computation and do not direct other units.

Figure 4-3 depicts the Structure Chart for a program called “Locate
Target.” The flow of control is shown by the lines connecting the modules.
It proceeds downward from left to right. Labeled arrows are used to show the
name and direction of data passing between the modules. Arrows with open
circles at the end indicate data items that are not control parameters. An
arrow with a closed (darkened) circle would indicate the passing of a control
flag or switch. .

I

4-12

Downloaded from http://www.everyspec.com

4 -13

Downloaded from http://www.everyspec.com

This example shows a calling structure three levels deep, with the second
level containing a module for each major function of the program. Generally,
‘a structure chart may be of any width,or depth so long as each module contains
a single entry and exit point.

2.3 Design Evaluation

Good software design involves much more than the construction of
Structure Charts. The first attempts to produce Structure Charts from Data
Flow Diagrams probably will not represent the best way to organize software
units to accomplish their intended tasks. They may need to be changed or
rearranged. Thus, in addition to rules for the construction of Structure
Charts, Structured Design provides guidelines for evaluating and improving
software designs. Three of the most important are as.follows:

Coupling - measures the relationship between modules

Cohesion - measures the substance of a single module

Ordering of modules and decisions.

Using heuristics described in the following sections, each of these
design qualities (or attributes)may be evaluated.

2.3.1 Coupling

Coupling is a measure of the relationship between modules. The premises
of the coupling guidelines are that the more independenta module, the easier
it will be to understand; and the fewer the number of paths along which
changes and errors can propogate, the better the design.

Structured Design identifies five levels of coupling. They are listed in
order from most to least desirable:

a. Data - The interface level where only the data elements needed as
input are passed to a module as explicit parameters. The calling module has
no knowledge of how the data will be used.

b. Common Data - The interface level where the required data is part of
a larger data collection.. The use’of common data structures are examples of
this level of interface. The flow of data maj be impossibleto trace through
a system designed with consnoncoupling.

c: Control - The interface ievel where a control field is established;
e.9., the use of a variable to indicate the type of processing required. This
requires the sending module to set a value in a control field and the
receiving module to test the value.

.

4-14

Downloaded from http://www.everyspec.com

d. External - The interface level“wherea module receives its input by
inspecting and using data variables which have been defined and reside in
another module. Files that are shared between modules provide external.
coupling.

e. Content - The interface level where one module must understand the
mechanics of “othermodules; e.g., to know internal switch settings. Content
coupled.modulesmay actually share lines of code.

In reality, the five levels of coupling are not precisely defined or
discrete. The implication,however, is that simple module interfaces’improve
reliability and reduce a software system’s sensitivity to change.”.The goal is
to reduce, or loosen, connections between modules.

2.3.2 Cohesion . .

Cohesiveness is a measure of the strength of association”ofelements
within a module. Good modular designs require that software be decomposed
into small, independent functional modules. Measuring cohesion enables
designers to recognize functionally cohesive and nonfunctionallycohesive
modules. A scale of cohesiveness proceeding from best to worst is as follows:

Functional - The case where a module performs a single, discrete,
logic~i transformation. A functionally-boundmodule is one in which all of
the elements contribute to the execution of one and only one task; e.g., sine
and cosine functions.

b. Sequential - The case where a program is modularized on the basis of
the control structure organization. A sequentially-boundmodule is one in
which the output of one processing element serves as input to the next
element; e.g., editing transactions and updating a master file.

Communicational - Thecase where a program is modularized
by gr~uping input and output activities”in the same module. A
comnunicationally-bound module is one in which all of the elements operate ~~~
upon the same input data set and/or produce the same output data; e.g., a
module that performs all 1/0 functions on a specific file.

d. Temporal - The case of creating separate modules to handle
time-oriented activities. A temporally-boundmodule is one whose elements are
only related in time; e.g., initializationand termination routines.

e. Logical - The case of modularizing a program by logically grouping
activities; e.g., printing a number of different error messages originating in
various segments. A “logical” module usually requires a control data element
to be passed to it to determine the type of processing to be performed.

4-15

Downloaded from http://www.everyspec.com

f. Coincidental - Coincidental cohesion occurs when there is little or
no relationship among the elements of amodule. It sometimes results from
attempts to modularize by arbitrarily segmenting programsbased upon the
number of statements.

These six levels of cohesion are neither discrete nor exclusive. The
objective is .toSegment programs into functionally cohesive modules whose
elements are all strongly interrelated. Structured Design asserti that.
coupling and cohesion are”related. Of the two, however, cohesion is the.more
‘important”concept. Lower levels of cohesiveness (e.g., coincidental) canbe
‘expectedto increase coupling (e.g., content) as.flags and switches are
introduced into the code.

.
,,

2.3.3 Ordering of Modules and Decisions

In addition to couplingand cohesion, Structured Oesigmincludes a ,.:
heuristic.to.evaluate the organization.of modul,esand decisions. The ~ ..
heuristic uses two.terms, scope of control and scope of effect, which ar,e
defined as: ‘.

a. Scope of Control - The scope of control of a module is the set of.
all modules that are subordinate tothe module in the program.organization and
the module itself. ,.

b. Scope of Effect - The scope of effect of a decisionis$the set’of
all modules that contain some code whose execution is based upon the outcome
of the decision.

/’
For any given decision, Structured Oesign asserts that the scope of

effect should be a subset of the scope of control of the module in which the
decision is located. If the scope of effect is within the scope of control,
then all modules affected by the decision are organized together. This
minimizes the complexity of program paths and reduces the strength of
coupling.

2.3.4 Additional Heuristics

Two additional heuristics for examining program organization are also
associated with Structured Design. They are:

a. Module size - Modules should be small enough to be”understandable
and have a cyclomatic complexity of ten or less. (See Section 1.2 of
Programming Standards; Software Segmentation,Module Size,.and Complexity.)

b. Reasonable span of control - The number of modules i~edidtely
subordinate to a given module should be no more than 9; preferably no more
than 7. Spans of control outside this range usually indicate that the module
is too complex. . .

.

. .

,.,

1

4-16’

Downloaded from http://www.everyspec.com

2.4 Summary

Structured Design does not provide precise rules for designing
software. It ‘doesprovide valuable guidelines for developing and evaluating
software designs. It’also provides excellent graphical representation
techniques for identifying and documenting software units that must be built. ‘
Structure Charts are particularly valuable for depicting.thesoftware .
architecture of a system as developed during the preliminary design phase.
They also help to define module interfaces. Structured Design is particularly
suited for design problems where Structured Analysis has been used to define
requirements. !,

For a complete description of Structured Design, please see references
(4), (5), (6), and (7) identified in Section8.

,

..
,,

,.

,,, ,,. ,

.

4-17

Downloaded from http://www.everyspec.com

.

Section 3. N2 charts

N2 Charts provide an excellent method for developing andgraphically
depicting interfaces. They highlight interfaces and interrelati.onshipsamong
system elements and their functions. They can be used to describe interfaces
at any’-level,whether between systems, subsystems, computer programs,
components; units or routines. By emphasizing the presence or absence of ““
interfaces,they assist in identifyingoverly-complex,awkward, and missing :
interfaces.

The basic N2 Chart and four ”simplerules for its construction’are shown
in Figure 4-4. System elements are placed on the diagonal.. The remaining
squares in the NxN matrix represent interface inputs and outputs. Outputs are
horizontal (left or right) andinputs.are vertical (UP or down);. A blank
intersection indicates that there is no interface. The description of the “
interface can be given inthe’intersecting square or the interfaces on the
chart’can be ‘representedby.numbers (Figure 4-5) accompanied by.a list
describing each interface.

N2 charts area reco~ended graphical technique for developing and
analyzing interface relationships”and dependence.esdurin9requirements t’.
definition,.architecturaldesign, and detailed design.

Fora “completedescription’ofN2.Charts,.pleasesee references (8) and
(9) identified in Section,8. ~~

,.

I
.

......
... .

,.-,

4-lB’

Downloaded from http://www.everyspec.com

,

INPUT

1
------ ;----- -----------------. /

I 1 . I

t
FWNOTION 11’

PI+F2 I Fl+ra ., /I F,-.F4 ,
OUTPUT ~ (:,) 1-

1
‘iJJ-------- 1

‘1 ““ II
I ‘ FUiW3110N I I
I F*+FI * ‘.

F2 + ~i I F2+P4 I
I .(92).; I I

[----- =’--’“
1. I
-------- I

I ‘ I ,. I
1. 1’ ?uNoT20N
I F8+P1 I F*+r,j . ~ ~s+ ?4 /

I.-1 (PJ I

I----
I

----4.L------- ~’
I -- ,1

i ‘ ‘“ l-” I ~~ PIJNcT20N
I ~4+~1 I F4-DP2 ,I ,~4+~a

+

.1 .= . I “ (;J ouTPm”

[-1 -.--1- -.---1---------

t

JNPUT:. .:.”.. ..”.

%“’Ei51CN CHARTRti ‘“

●ALLFUNCTIONSAhRONTHEDIAGONk

●tiLOUTPW&AREHORIZONTAL(LEPT”ORRI&T)

● ALL INPUTS Ah VERTICAL (UP OR DOWN)
..

● ALL NON-PUNCTION SQtiti DEPINE ONEWAY
INTERFACES BETWEEN THB ASSOCIATED FUNCTIONS

Figure 4-4 Basic N2 Chart
. -.

4-19 ‘.

.,
‘..,,’? . . .

Downloaded from http://www.everyspec.com

INPUT

1

.,. . .

,,, ,,

. . .
.,

.,
.

. .
..

.,. ,. .,...

..<.,,,.,. . ~.. .,,:., .

I r -.-1.. - -’

?uNCrlolq ,.,

~. : “&$8
,.. . .’:;; ‘“. “ , ‘“”. .

.%.. ,,..,,. ,.,.,,,.

,., . .>..,. .WNcnoN ~~.. ,., .,,,,10 .’ .,. . .- ! :,, , m+ti ‘
., ., . . ?(F4)

.’,1

--

,’“+($’,..’ .:
~.

I
. ‘7.

-..,. .,., ,., . . . ,,

,. :..
.: ...’; ,

:....% .,

.,.

., .<. 9’.,.,.,, .,,
! I.. :.:.-,.....

,.,.
. . ..

.,,.

‘1.,

.,. ...,

. . ..

,, .. .

... .+

.
,’

.,

1,.-,..
1..

., ,-.. .. .,, “

.

,., ..,.. . .

..”. .,

.1.

,, 3,
..-

..4.,

;.. . , ., ..”5... -..

.....6.- ,.

..7,

. ,.8.. .., ..,.
,,, !,,

,.9.

10. Vi-.

Fiaure 4-5

N2 CHART-CIRCLE FORMAT

4-20

Downloaded from http://www.everyspec.com

Section 4. Real-Time Design Issues

Structured Analysis and Structured Design may not adequately address the
design of concurrent process in real-time or near real-time system. Because
software developers often find it clifficult to design and implement systems
with concurrent processes, interrupts, and severe timing Constraints, IIIanY
techniques for dealing with those problems are currently being investigated.
To date, there is little consensus on the best solution. Perhaps the best
description of current research on software design methods for real-time
systems can be found in the February 1986 issue of the IEEE Transactions on
Software Engineering (Reference3). This is a special Issue on software
design methods. Many of the articles deal with real-time design issues.

Several techniques described in that issue and in other references may
help one to design real-time systems. Three of the most promising involve the
use of Abstract Data Types, Petri Nets, or Transformational Schemas. Abstract
Data Types (Reference 12) identify design objects as formal1y specified
entities taken directly from the user’s environment. The relationships
between entities, including real-time issues, may be analyzed apart from the
detailed description of the entity. Petri Nets (Reference 13) are graphs
which may be used to model and analyze concurrent processes and timing
requirements of real-time systems. Transformational Schemas (Reference 14)
represent extensions to Data Flow Diagram Notations to include the aspects of
timing and system-level control.

Rather than provide detailed discussions here of these or other tech-
niques, designers of systems with real-time requirements are encouraged to
recognize the 1imitations of most current design methods and to be aware of
new techniques that help to deal with those limitations. Somehow, real-time
systems do get built today, but much work is currently being done to help
developers bui1d them better tomorrow.

4-21

Downloaded from http://www.everyspec.com

Section 5. Program Design Language

5.1 Introduction

Program Design Language (PDL) is a structured, natural language design
notation for describing the control structure and general organization of
computer software. Its primary purpose is to ease the translation of design
specifications into computer instructions. It provides a means by which
designers can communicate their ideas with programmers,other designers, and
users. It serves the same function as a flow chart, but it translates more
readi1y to source code and can be inserted into the source code as comments.

PDL has been characterized as a “pidgin” language in that it uses the
vocabulary of one language (ie., English) and the overall syntax of another
(i.e., a structured programming 1anguage). It is important to note that PDL’s
most important feature is the natural language representationof the software
design. The “keywords” (structuredprogramming constructs) impose a structure
on the design, but it is essentially an English language document. Since the
PDL representation is textual in nature and derives its structure from the
keywords, PDL designs are more readable and understandablethan graphical
representationssuch as flowcharts.

5.2 Description

This section describes the syntax for a set of structures recommended for
use as PDL. In the examples, a lower case letter enclosed in parentheses
(e.g., (p), (q)) represents a conditional expression written in English (not a
programming language). The term “English Language” used in the examples
indicates the English 1anguage represen”tationof the function performed by the
module.

5.2.1 Sequence

Sequential statements, the basic form of control flow, would have the
following language text representation:

Get next Master-Record
Determine Transaction-Type

I - . .. _...

4-22

Downloaded from http://www.everyspec.com

5.2.2 IF-THEN-ELSE Structure

The IF-THEN-ELSE structure causes control to be transferred to one of two
functional blocks of code based on the evaluation of the truth of a condi-
tional statement (p) acceptable to the source language. The flowgraph* for
the IF-THEN-ELSE structure is:

and the 1anguage text to be used to represent the IF-THEN-ELSE is:

IF (p) THEN
English Language

ELSE
English Language

ENDIF

*NOTE: Flowgraphs are used to show flow of control. The flow is always
assumed to be downward unless otherwise indicated.

.,. .

4-23
\

Downloaded from http://www.everyspec.com

The ELSE and its associated block of code in the IF-THEN-ELSEstructure may
be regarded as optional; if the ELSE is omitted, the flowgraphbecomes:

and the 1anguage text is: ,.

IF (p) THEN
English Language

ENDIF

The keyword“THEN is.optional.:in both casesand if presentis treated as.a
comnent.

.!.: :’
J.’;

,, ! .!
., ,

. .

I

,. ,!, ,

Downloaded from http://www.everyspec.com

,

The last keyword in the IF-THEN-ELSE structure is ELSEIF. The ELSEIF is used
when parallel conditions, not subordinate conditions, are being tested. The
flowgraph for this structure is:

and the language text is:

IF (p) THEN
English Language

ELSEIF (q) THEN
English Language

.

.

ELSEIF (Z) THEN
English Language

ELSE
English Language

ENDIF

4-25

Downloaded from http://www.everyspec.com

.2.3 “DO-WHILE’Structure

The DO-WHILE structure allows execution‘of a functional block of code A .
bile condition (p) is true. The flowgraph for the 00-hliILEstructure 1s:

:: .!?=
....

1
“ P e ~ .”.”,”’-’,

“!

F .

“:0“ ,.,.
and the 1anguage text to’be used iS:

DO MILE (P)
English Language -

ENDDO NILE ,.

. . . .

.. . . .

.,...

,,. . .- .,,

. .

,.

.

.

..

.,, .

4-26

Downloaded from http://www.everyspec.com

5.2.4 DO-UNTIL Structure

The DO-UNTIL structure allows execution of a functional’block of code ‘A
unti1 a condition (p) becomes true. The functional block of code A is
executed at least once. The flowgraph for the DO-UNTIL structure is:”

~~ f“. ,

,.
>.

A F

p. .,

T

and the language text to use is: ,. .

00 UNTIL (p)
English Language

ENDOO UNTIL

4-27

I

Downloaded from http://www.everyspec.com

5.2.5 CASE Structure

The CASE structure causes control.to be passed to one of the set of
functional blocks of code (A, B, Z) based on the value of an integer
variable i. The flowgraph for the CASE structure is:

and the text to be used to represent the CASE is:

OOCX:A(i)

En@ ish Language
.
.
.

CASE_Z:
English Language

CASE OTHER:
En~lish Language

ENDDO CASE

,..

4-28

I

Downloaded from http://www.everyspec.com

If the CASE_OTHER (default) is not used, the text which represents the CASE is:

00 CASE (i)
English Language

CASE_A:
English Language

.

.
CASE Z:
En~lish Language

ENODO CASE

These two representationsof a CASE figure can be expressed.by the
testing of parallel conditions. ‘Forexample:

00 CASE (i)
CASE1:

CA;;2: ,
S2

CASE_OTHER:

ENOD~CASE
S4

is

IF CASE1 THEN
S1

ELSEIF CASE2 THEN

ELi~
S3

ENDIF
S4

While,

OOC:::: (i)

CA;;Z:
S2’”.

CASE3:
S3

ENDDO CASE
S4,..

4-29

Downloaded from http://www.everyspec.com

is ,,

IF CASE1 THEN
S1

ELSEIF CASE2 THEN

EL;IF CASE3 THEN
..

S3
ENDIF
S4 .. ,.,

The CASE structure is a multi-branch,multi-join control structure used
to exuress’the Drocessinq of one of many possible uses. Although it is
conceptually’represented-.bytesting parallel conditions, its.ac~.ual
implementation”in a particular programing language may be quite different./“

The forms may range from the IF . . . ELSEIF . . . “ELSEIF. . . ELSE’:’. .! “ :‘
ENDIF construct to a computed GOTO. .,

5.2.6 DO Group Exit Structure ..’

When writing structured code, it is sometimes necessary to exit
prematurelyfrom a 00 structure. Although such a premature exit can,be
achieved by appropriatelysetting and testing logical switch,.variables,
readable-programs are usual1y obtained using the following keywords:

UNDO

The UNDO kevword is used to indicate a cremature exit from a DO
1’ structure. It i;dicates a transfer to the first statement imnediatelv

more

,,

following the closing statement of the DO structure to-which it is ap~lied.

CYCLE:-

The CYCLE keyword is used to indicate a premature exit f~om an iteration
of a DO structure. It indicates that control proceeds to the closing
statement (ENDDO) of the DO structure to which it is aml ied. Any subsequent
actions take pla;e as if the closing statement (ENDOO)”had
encountered as the next statement in.the DO structure.

Use of UNDO and CYCLE

These features must be used sparingly if high quality

been n&mally “

f,.,., ,

‘!., .“

programs are to be
obtained. UNDO and CYCLE‘mustbe looked upon as convenientway: out of a
difficult situation and”not as a standard way to design programs. ~

..“,”

.“. ’.,

,.

. .

4-30

Downloaded from http://www.everyspec.com

Consider the following example:

DO hliILE (p)
IF (q) THEN

IYCLE
ENDIF
B

ENODO MILE

Such CYCLE usage is not recommended because the same algorithm can be ~.
expressed in a simpler and strictly structured form as:

00 WHILE (p)
IF (q) THEN
A

ELSE

EN&F
ENDOO IwHILE

Similarly:

DO WHILE (TRUE)’
S1
UNDO IF (p) ~

ENDDO MiILE

should instead be written as:

DO UNTIL (p)
S1

ENODO UNTIL

In the preceding example, the 00 WH’ILE(TRUE) construct represents an
infinite loop.

5.2.7 Library Segmentation

The CALL construct facilitates expressing major subfunctions to be
performed where another.segment is required for specificationto a lower level.
of detai1. The CALL represents the use of a subroutine. The 1anguage text
used to represent this capability is:

CALL (English Language) “

4-31

Downloaded from http://www.everyspec.com

I

I

L

5.3 Complexity Measurement of PDL

The Cyclomatic Complexity Measure discussed in Section 4.4, Programming~
Standards, may also be applied to PDL. In fact, mea<uring complexity of PDL
is a valuable technique for controlling the testability, simplicity, and
maintainability of a design. Using the complexity measure as ,a guide can heip
the designer in making several design decisions. It can help partition
requirements on a data flow diagramt it can help evaluate the design; and it’
can help limit the complexity of code.

,,
.

5.4 Program Design Language Example
..
.,. . ~,

The following is an example of PDL as used to describe a simple .!
preprocessor design for an unspecified target “language.* The f:i,rit level
specificationmight appear as: .. .

PREPROCESSOR
.1

.,
INPUT CONTROL CARDS

,,.
,,. .

INITIALIZEWORKSpACE
INPUT SOURCE IM4GE INTO BUFFER
DO MHILE SOURCE DECK NOT Ekf’TY

,,.

DETERMINE STATEMENT TYPE AND PARAMETERS , ,,
GENERATE TARGET CODE
INPUT SOURCE IMAGE INTO BUFFER

ENDDO
RETURN

,.

“PREPROCESSOR”makes references to several subspecifica~~ens. Each has’
been given a unique, descriptive name (e.g., “INITIALIZEWORKSPACE”) by which
a subsequent refinement may be located at the next design level. The subspe,ci-
fications can then be expanded into any needed detai1 at succeeding levels.
For example, the next level of.design for the “DETERMINESTATEMENT TYPE AND
PARAMETERS” subspecificationmight appear as:

,

*Material for this example was taken f’romStandardized Development of
Computer Software by Robert C. Tausworthe of the Jet Propulsion Laboratory.

. .-.

4-32
I

,
!

Downloaded from http://www.everyspec.com

DETERMINE STATEMENT TYPE AND PARAMETERS

INITIALIZE POINTER TO FIRST CHARACTER IN BUFFER ANO
ROOT OF TEMPLATE GRAPH

00 WHILE INPUT POINTER IS NOT AT THE ENO OF THE INPUT
BUFFER
IF THE INPUT CHARACTER MATCHES THE TEl@LATE NOOE
CHARACTER THEN ADVANCE INPUT POINTER AND GRAPH
POINTER

ELSE
IF THERE IS AN ALTERNATE TEMPLATE NODE THEN

EXECUTE’GRAPH NODE ACTION COOE FOR
CURRENT NODE
SET GRAPH POINTER TO ALTERNATE NOOE

ELSE
SET STATEMENT TYPE TO “UNRECOGNIZED”
UNDO

ENDIF
ENDIF
IF THE INPUT BUFFER IS EXHAUSTED ANO GRAPH NODE “’

IS A LEAF THEN SET STATEMENT TYPE OF LEAF
NUMBER

ENDIF
ENDDO
RETURN

Note that a PDL description is procedural. Since nonprocedural
information,suchas data structure definitions are absent, al1,of the
information needed to understand the software may not be present. In the
preceding example, the “template graph” data structure has not been described
and the PDL description is less understandablewithout that information. The
design representationdoes much to promote understandability,but it is not
the whole answer.

The technique has, however, made it possible to describe the algorithms
being developed in a structured, procedural, and readable manner before any
code has been written. It allows alternative designs to be reviewed for
completeness, correctness, etc., before they are committed into formalized
documentation and code.

5.5 Program Oesign Language Standards

When used to document the detailed design of a software unit, PDL becomes
part of the Oetailed Oesign specification. The following suggested standards
will improve the readability, reliability, and maintainability of the design:

4-33

Downloaded from http://www.everyspec.com

a. f’DLstatements should be written independentof the progransning
1anguage, hardware, and operating system to be used.

b. The logic of a software element described in PDL flows downward;
control should never pass upward.

c. Statements referencing other elements such as subroutine cal1s should
contain the reason for the cal1 such as:

CALL LOGRTN TO LOG REASON FOR TERMINATION

d. PDL statements should describe functions and not just reflect the
source code statement(s) to be used. For example, the statement:

SET RETURN CODE TO REFLECT A READ ERROR

is preferred to:

SET “RETURNCODE TO -1.

e. When defining an IF-THEN-ELSEconstruct, the most frequently
occurring event wilJ be tested for first. For example, when Performing
an 1/0 operation, success rather than errors is more probable. For this
reason code for processing a successful 1/0 operation WOU1d precede error
handling code within the body of the IF-THEN-ELSEconstruct. “

f. Conditions that wil1 cause termination of a DO loop should be
identified in the’DO statement. This requirementwil1 negate the need
for the DO FOREVER statement.

9. IF-THEN-ELSEconstructs should be used in place of CASE statements.
They more closely reflect’English narrative.

I

4-34

Downloaded from http://www.everyspec.com

Section 6. Oecision Table Standards

6.1 Introduction

A decision table is a spectal form of table that codifies a set of
decision rules based on a clearly identified set of conditions and the
resulting actions. It represents in tabular form, the following three items
which are contained within the body of the decision table.

a. Conditions - Factors to consider in making a decision.

b. Actions - Steps to.be taken when a certain combination of conditions “
exist.

c. Rules - Specific combinations of c~nditions and the actions to be
taken under those conditions.

A decision table is a method of representing requirements or program
design and is best applied where there are numerous, detailed, interacting
decisions involved in a problem. Its use requires a shift in emphasis from,
process 1ogic or program design language (both of which emphasize sequence)
to a technique that considers the resulting actions as primary.

6.2 Description

6.2.1 Parts of a Decision Table”

The various parts of a decision table are:

a. Condition stub - All or part of a condition statement; i.e., a
logical question, or relational or state condition that is
answerable by a yes or no.

b. Condition entry - completion of the condition statement.

c. Action stub - Al1 or part of an action statement. An explicit
statement of the action to be taken.

d. Action entry - Completion of the action statement.

e. Rules - Unique combinations of conditions and the actions to be
taken under those conditions.

f. Header - A title and/or code that identifies the decision table.

9. Rule identifiers - Codes that uniquely,identifyeach rUle within a
table.

4-35

Downloaded from http://www.everyspec.com

h. Condition identifiers - Codes that uniquely identify each,condition
statement/entry.

i. Action identifiers - Codes-that uniquely,identify each action
statement/entry.

j. Notes - Comments concerning the contents of the table. Notes are
not required, but might be used to clarify table items..

rhe parts of a decision table are diagramed in.Figure4-6.

The m~”or steps in developing a decision table are:

a. Define the specific boundaries of the problem.

b. Identify the conditions.

c. Identify the necessary actions.

d. Identify the rules that define the “if . . . then” relationship
between conditions and actions.

5.2.2 Decision Table Form

As seen in Figure 4-7, rules (verticalcolumns R1, R2, and R3) are the
guides for a decisiontable user. Conditions are matched against those stated
in the table, allowing a specific rule to be located which then identifies the
actions to be taken.

6.2.3 Types of Decision Tables

There are three types of decision tables: ‘1imited entry, extended entry,
~nd.mixed entry. These three types are defined as follows:

a. Limited Entry Tabld (Figure4-7) - the entire condition or action
must be written in the stub. The entry is used to show whether a
particular condition is true, false, or not pertinent (Y, N, or -
(or blank)), and whether a particular action should (or should not)
be performed (X or - (or blank)).

b. Extended Entry Table (Figure 4-8) -.Part of the condition and action
statements are extended into the condition and action entries.

c. Mixed Entry Form (Figure 4-9) - Combines both 1imited and extended e
ntry forms. The two forms may be freely mixed within a table, but a s
ingle condition or action row must be’in just one format.

I

I

I
4-36

Downloaded from http://www.everyspec.com

Header

Rule Identifiers
—-—- ——- -

Condition Condition I Condition I

Idents Stubs I Entries I

I
I }

Rules

Action Action I Action
Idsnts Stubs Entries

1 I-—— ---- — -

Notes

Figurs4-6 DecisionTablePsrta

Credit Order Approval Procedure
.,’

RI R2 R3

cl CreditLimitOK Y N N

C2 Pay ExperienceFavorable Y N

Al Approve Credit “x x -

A2 Return Order to Sales — x
.

I Note:Beceflainthatthelateatcreditinformationiau~ed. I

Figure4-7 LimitedEntryDecisionTaple.

I

I

4-37

Downloaded from http://www.everyspec.com

Credit Order Approval Procedure

C21 pay Experience

Al 1. CreditAction

“A21 Order Action

OK Not OK Not OK
I

—

Approve

Favorable] Unfavorable

Approve I Dent Approve

I Re~urn to Sales

Figure.4-8 Extended EntryDecieionTable .=,,

Credit Order Approval Procedure

I RI

t%===k-
1Al CreditAction

I
Approia”

lA21Ret&ntoSalesl -

R2 i R3 I

.N N
I I

Favorable .Unfavorable
, I

Figure4-9 MixedEntry DecisionTable

4-38

Downloaded from http://www.everyspec.com

Section 7. Sunsnaryand Reconsnendations

The methodologies described in this section may be used during both the
analysis phase and the design phase. The chart below identifieseach method
and the software development activfties where they are most appropriate.

REQUIREMENTS PRELIMINARY DETAIL “’
METHOD . ANALYSIS - DESIGN DESIGN

StructuredAnalysis x“ x
Structured Design
N2 Charts x { x
Program Oesign Language x
Decision Tables x x x

Structured Analysis can be used for“any application..However, “ittends
lot to be sufficient for very 1arge, complex real-time software efforts.
ilso, data flow diagrams have no mechanism for.accurately specifying paralIel
ispects of processing. For these applications; or applications using
peal-time interrupts, the additional real-time design techniques mentioned in
Section 5 should be used to supplement Str”uctunedAnalysis to show processing
requirementsrelated to concurrency.

Structured Design is reconsnendedfor developing and representing the.
architecturaldesign of a software system. Structured Oesign, is, however,
]rimari1y concerned with organizing program modules; other techniques must be
Ised to specify the actual content of each module. Program,Design Language
[PDL) is an excellent technique for the detailed design of individual modules
?stablished by using the Structured Design technique.

N2 charts can be useful additions to the structuredmethods when the data”
H ows and interfaces are large and ccwnplex. They highlight the interfaces
)etweenunits, programs, or systems and can effectivelyprovide traceability
‘or large numbers of interfaces that may otherwise become overwhelming.

Decision tables may be used as process 1ogic in the analysis phase or as
t supplement to pro@-am oesfgn Language during detailed design. They are Wel1
;uitedfor showing complex combinations of inputs that WOU1d result fn 1ong,
Ieeplynested descriptions in PDL. Decision tables are .also valuable for
Developingtest cases sfnce each CO1umn fs, fn effect, a test case.

4-39

Downloaded from http://www.everyspec.com

;ection8. References

;tructuredAnalysis

(1) DeMarco, Tom, Structured Analysis and System Specification,New . ~
York, Prentice Hal1, 1979.

(2) Gane, C., Sarson, T., Structured Systems Analysis: Tools and .
Techniques,.McDonnel1 Douglas Corp., 1982.

;oftware Design

(3) IEEETransactions on”Software En9ineerin , VO1 SE-12, Nu@er 2,’.. :...
Febnuary~Desf9n Meth?ds. “.‘.

(4) “Stevens,W.P., Myers, G.J., Constantine, L.L., “StructuredDesign,”
IBM Systems Journal, Vol 13, No..2, 1974, pp. 115-139.

(5) Stevens, W.P., Myers, G.J’.,Constantine, L.L., Structured Design,.
New York, Yourdon, Inc., 1975.

(6) Yo”urdon,,E., Constantine,L.L., Structured Design, New York,
Yourdon, Inc., 1975.

(7) Myers, G.J., Reliable Software Through Composite Design, New York,
Petrocelli/Charter, 1974.

N2 Charts

(8) Lane, Robert J., ~, Elsevier
North-Hoi1and Inc., 1979.

(9) Class Notes, from a seminar conducted by the ‘NationalCryptologic
School, titled “Software RequirementsAnalysis and Specific,ation,”
taught by Robert J. Lane.

Real-Time Software Design

“’(10)Booth, G., Software Engineeringwith Ada,.Menlo Park, .
Benjamin/Cunsnirigs,1983.

4-40

Downloaded from http://www.everyspec.com

(11) Agersvala,T., “PuttingPetri Nets to Uork,” computer, December
1979, pp. 85-94.

(12) B.H. Liskov and S. Zilles, “Specification Techniques for.Data
Abstractions,” IEEE Transactions on Software Engineering;,Volume
SE-1, Number 1, March 1975.

(13) Coolahan, J.E. and Roussopoulos N., “A Timed Petri Net Methodology T
For Specifying Real-Time System Timing Requirements,” Proceedin s of.--q---+
fh: InternationalWorkshop on Timed Petri Nets,”Torino, Ita y, Ju y

, IEEE Catalog Number 85CH2187-3.

(14) Ward, P.T., “The TransformationalSchema: An Extension of the Data .-
Flow Diagram to Represent Control and Timing,” IEEE Transactions on
Software Engineering, Volume SE-12, Number 2, February 1986.

‘rogramDesign Language

(’15) PDL/81 Design Language Reference Guide, Caine, Farber ‘and.Gorden; .
Tnc. , 1981.

(16) PDL/81 Document Language Reference Guide, Caine, Farber and Gorden,
%sc., 1981.

IecisionTables .

(17) Hurley,R., Decision Tables in Software Engineering,.NewYork, Van v{.,,+<,,...
Nostrand ‘Rei~

4-41

Downloaded from http://www.everyspec.com

‘.$

5

,.

,>.
,. ,:,’

“.

,.

4-42 (blank)

Downloaded from http://www.everyspec.com

4.2 UNIT DEVELOPMENT FOLDERS

4.2.1 POLICY ANO REQUIREMENTS SUMMARY (From NSA/CSS Software Acquisition
Manual 81-2, Policy 4.2)

Software developers shall prepare and maintain a Unit Development
Folder (UOF) for each software unitproduced by the developer in order to
provide: (1) an organized, accessible collection of all requirements, design
data, code, and test data pertaining to that unit, as these data are produced;
and (2) unit-level schedules and status information. A UDF must be
established for each unit as soon as the unit is identified and maintained in
an accessible location throughout the software acquisition activity. They
may be organized in notebooks, folders, or on-line files.

A UDF shall contain, as a minimum: the unit’requirements; preliminary
unit design (includingstorage and timing budgets); detailed unit design;
current unit code; unit test plans, procedures, data, and.test results; and
reviewers’ comments applicable to that unit.

4.2.2 GUIDANCE

The Unit Development Folder contains the material applicable to one
software unit. .sectfon6 of the Software Standards and Practices Manual
establishes criteria for breaking down the project’s software into unitsthat I
are appropriately sized and configured. Section3.2 of the Software
Configuration Management Plan should establish rules for naming and
identifying software units. A unit may be at any level of the software
hierarchy. Typical criteria for selecting units are:-

a. The unit performs a well-defined function;

b. The unit is amenable to development by one person within the ‘
assigned schedule;

c. The unit is an ?ggregate of software to which the satisfaction of
requirements can be traced;

d. The unit is amenable to thorough testing;

e. The unit is appropriately sized. Typicalunits are between 100 and
1000 higher-order language statements. Unitsmay, however, be
smaller or larger depending on specific project needs.

f. During detailed design. the unithas an estimated cyclomatic”
complexity of 7 or less; during coding,the unit has a cyclomatfc
complexity of 10 or less.* NOTE: If the detailed design results
in a unit with a complexity greater than 7, the unit should be
decomposed into two or more routines, each with complexity of 7 or
less. When the routines that make up the unit are coded, then each
routine should have a complexity of 10 or less.

*SOURCE: N8S Special Fk[”z ation 500-99 “Structured Testing: A Testing
Methodology Using the McCabe Complexity Metric,” by Thomas J..McCabe, 1982,
p.12

4-43

Downloaded from http://www.everyspec.com

The Software Development Manager may adapt the organization and content
of Unit Development Folders to reflect needs of the project. Sections of the
UDF may be assigned to different people or they may all be assigned to one
person. Sections may be expanded, contracted, or resequenced to suit specific
situations. Some considerations for selecting the structure of a UDF are:

a. Each section should contribute to the visibility and management of
the development process;

b. The content and format of each section should be clearly defined;

c. The structure should be flexible enough to apply to a variety of
types of software units;

d. As nearly as possible, the sections should be chronologically
ordered.

Usefulness of the Unit Development Folders depends upon the realism of
the schedule and the participation and commitment of the unit developers. It
also deDends.uDon the interest and concern that software manaaers demonstrate
in.moni~oring and.achieving the mi estones identified on the.~over sheet.

4-44

Downloaded from http://www.everyspec.com

4.2.3 FORM4T FOR U!IT DEVELOPMENT FOLOERS

1. Cover Sheet. Figure 4-16 is a sample cover sheet for a Unit
Development Folder. Each UDF cover sheet shall identify the name of the
computer program, the name of the computer program component, and the names of
the routines included in the unit. The cover sheet shall identify the
sections selected for the UDF and describe the section. Each section shall
include space for the following:

a. Schedule due date;

b. Date actually completed;

c. Name of person responsible
(originator);

for completing the section

d. Name of reviewer and date of review.

For multiple routine units, a one-page composite schedule illustrating section
schedules of each section may be included.

2. UDF Change Log. Figure 4-11 is a sample UDF Change Log. The UDF
Change Log shall be included to document all UDF changesafter the initial
development is completed and the unit is put into a controlled”test or”
maintenance environment.

3. References. There will be times when code listings, test outputs or
other computer output are too large to be included in the UDF binder. When
this happens, the material may be placed in a separate, clearly-identified
location. Relevant sections of the UDF shall then identify the location.
‘igure 4-12 illustrates a typical reference log with spaces for identification
of updates made after the initial document is completed.

4. Sections of the Unit Development.Folder

Section-l. Requirements. This section identifies the specific requirements
that are to be satisfied by the unit. It should also refer to the higher-
Ievel requirement (document“andsection number) from which it was derived.

If unit or higher-level requirements change during development of the
mit, the new requirements statement shall be added and recorded. Any
assumptions,ambiguities, interpretationsor conflicts concerning the
‘requirementsshall be stated, reviewed, and approved as part of the
requirementssection.

.,

section2. Design Description. This section contains the design description
]f the.unit including the preliminary design, the detailed design, and the “as
)uilt” design. During the development process, this section containsthe

4-45

I

I

I

I

I

Downloaded from http://www.everyspec.com

,. :.’.,

.

INIT DEVELOPMENT FOLDER COVER SHEET

W,”rfsP.OGRAM COMPONENT ““,, “Au. Raln?lEs ,“CLVDEO

“SOD,..

_

EcT lad

lUh46ER

1

.$..

7

#

DATE

DESRIPTIU’4 WIGINAT-, REV IE~/OATE

DuE CCUPLETED

REeUIREMENTS

-EU8AINARY

DETAILED

D~SIGN
mSECTIm

AS9UII.T

FuNCTICUALCAPABILITIES LIST

.

CLEAN CCMPILE

UNIT CC9E lNWECTIW

.

CC+JPLETE

UNIT TESl PLAN, PROCEDURES

AND TEST DATA

TE= CA= RE9JLTS ..

DESIGN

PROBLEM RW-TS -

CCOE

NOTES

REV IEWER.S cOMMENTS

.

. :’:, .-”. EXAMPLE OF A UDF.COVER SHEET . ..

Figure 4-10

4-46

Downloaded from http://www.everyspec.com

UDF CHANGE LOG

NOTE:

Iy *nQr *h*c..u0b0I1.

UNIT NAME

-. . ..-

—

DATE PROBLEMREPoET sECTION(S)AFFECTED “ REz3ZRTIF1CATION -. REVIEWER

NUMBER .AND P’AGE NUMBERS METHOD I DATE

.—

. .

..

,-

EXAMPLE OF UDF CHANGE LOG
Figure 4-11

4-47

Downloaded from http://www.everyspec.com

UNIT LISTINGS / TEST RESULTS

VERSION NUMBER

DATE WllERELOCATED AND EoW ID~NT1rlBD
CODE TEST RESlll.TS

.. .- . .
,.

,....,”.“’.,

.
.. ..,.’ -..

...--..”.- ‘“’-’ -.
,...

.. .. .

..’” ., .,.
.-. :’,

.,- .,
“..’ .

.

.

.-

.,
. . .

-.

,.

EXAMPLE OF REFERENCE LOG FOR ~lATERIALIN A SEPARATE LOCATION
Figu~~4$-12

Downloaded from http://www.everyspec.com

current working version of the design. It must be maintained and annotated as
changes are made to the initial or preliminary design until the detailed
design documentation is completed and approved as being a “code-to”
specification for the unit. The format and content of this sectionshould be
suitable for inclusion in the Program Specification. When integration testing
is completed, the design should be updated to reflect the “as-built’!design.
This section shal1 also contain allocated storage andtiming budgets.tandbe
updated to reflect actual budgets.

When the initial detailed design is completed and ready to be
reviewed, a design inspection for the unit shal1 be.conducted (Policy 4.3).
Section 2 cannot be completed until the design inspection has been
successfully completed.

Section 3. Functional Capabilities List. This section is a list of testable
functions performed by the software unit. It describes what things a
particular unit does, preferably.insequential order. Normally, an adequate
level of breakdown has been achieved if each testable capabilitycan be
described in one or two sentences of ordinary“length. ,.

Because the Functional Capabi1ities List is generated from the
requirements of Section 1 and the detailed design of Section 2-,it provides
the basis for planned and controlled unit-level testing. In some cases, ,
however, some of the data processing functions wil1only be indirectly related
to unit requirements. When this‘happensa convenient breakdown may relate to
major segments of code and/or decision points.

The Functional Capabilities List provides’aconsistent approach to
.)testingwhich can be reviewed, audited, and understood by “anoutsider. Items
In the 1ist should be mapped to test cases to provide the rationale for each
test.

Section 4. Unit Code. This sectioncontains thecurrent source code 1isti!sgs.
for each of the routines in the unit: ‘Forunits with multiple routines,
sub-section separators should be used. The coinpletiondate for this section”
is the scheduled date for the first error-free compilation or assembly. After
the first error-free compilation,or assembly and a code inspection are
completed, the code is ready for unit-level testing. If unit code is contained
in a separate location, this section must contain a cross reference to.the.
location, including where it is located.

When the developer completes a“clean comptle of.the.unit code, a
code inspection shal1 be conducted (Policy 4.3). Section 4 cannot.be
completed until the code inspection has been successfully‘completed..~

I

-.. !
4-49 I

Downloaded from http://www.everyspec.com

Number 5. Unit Test Plan, Procedures and Test Data. This section is a
description of the testing approach for the unit. The Unit Test Plan must
conform to the standards established in the General Test plan (Policy 5.1).
An introductoryparagraph shall describe the testing approach for the unit.
Included for each test case of the unit shal1 be the following:

‘a. Identificationof any test tools or driversused;

b. Description of all test inp,utdata and/or drivers for the
case;

c. Description of expected outputs, including numerical or,other
demonstrableresults;

d. Acceptance criteria for the case;

e. Identificationof.the,requirements or functionalcapabilities
demonstrated by the case;

f. Test“scenariodescription explaining how the tests wil1 be
executed.

This section shal1 also include a summary to demonstrate that al1
testable requirements and functionalcapabilities have been tested. Figure
4-13 gives a sample format for demonstratingcompleteness. It shal1 also
identify the test data to be used in the unit test.

Number 6. Test Case Results. This section contains documentationthat
testing has occurred as described in Section 5. This documentation is a
compilation of al1 currently valid test case results and analyses necessary to
demonstrate that testing is complete. Test outputs should be identified by
test case number and 1istings should be clearly annotated to facilitatereview
of the results. If test drivers, test tools, data bases and unit code are
revised during unit testing, revision status should be recorded to facilitate
retesting. It may be necessary to record test outputs in separate binders.

Number 7. Problem Reports. This section contains status logs.and copies of
Design Problem Reports, Design Analysis Reports and-Disccepancy Reports (as
required) to document al1 design and code problems and changes subsequent to
baselining. This insures traceability for all problems and changes.
Individual status logs should summarize actions and disposition of al1
problems.

.

I

I

I

4-50””

Downloaded from http://www.everyspec.com

UNIT TEST CASE/REQUIREMENTS/FUNCTIONAL CAPABILITIES LIST MATRIX

m
PARAORAF’14

. .

Bml m5rcAsE—

m 1 2 a 4 6 e

.,

—

7 ● e

UNIT TEST CASE/REQUIREMENTS/FUNCTIONALCAPABILITIES LIST MATRIX
Figure 4-13

4-51

Downloaded from http://www.everyspec.com

lumber8. Notes. This section”contains any memos, notes, reports, etc.,
~ate to the contents”of the unit or to problems and issues involveal.

lumber9. Reviewer’s Comments. This section is a record of reviewers’
:ommentsfrom the section-by-sectionreview and sign-o.ffand from scheduled
:ndependent audits. Consnentsare usually also provided to project and 1inc.
mnagers responsiblefor development of the unit., .,

.,,

.“,:,

4-52

Downloaded from http://www.everyspec.com

4.3 SOFTNARE DESIGN AND CODE IIISPECTILNS

4.3.1 POLICY AND REQUIREMENTS SIH4ARY (Frca NSA/CSS SOf*are ~qUf Sition ~nual
81-2, policy

Sofhare developers
the early detection
having the sofhare
(normally betieen 3
material.

4.3.2 INTRODUCTION

4.3)

shal1 conduct unit designand code inspectfens’to facilitate
of errors. These inspections shal1 be accomplfshed by
unft design and code reviewedby.a-team of indfvfduals
and 7 people) who have technical.abfl.fties to review the

Softiare inspections are formal peer reviews of design and code. Although
similar to walk-throughs, they are.more structured and make more use of
inspection results than welk-throughs.” h excellent comparison of thetwo
peer-review techniques was made by Michael E. Fagan in his artfcle, “Design and
Code Inspections to Reduce Errors in Program Development,” published in the IBM
Systems Journal in 1976 (Vol. 13, Number 3):

I#alk-throughs... are practfced in many different ways, in
different places, with varying regularity and
thoroughness. This inconsistency causes the results of ‘~ ~
walk-throughs to vary widely and to be nonrepeatable.
Inspections, however, having an established process and a .
formal procedure, tend to vary 1ess and produce more
repeatable results.

The basic objectives of inspections are to detect errors and atiiguities in
software products close to the time that the products are first produced.

., Designers and programmers find out almost immediatelywhat types of errors they.....,
“ are making. By being a part of the inspection process; they 1earn how to find

their own mistakes and how to freprovethe quality of their-work . In addftion
to improving quality, inspections can actuallY reduce development time by
reducing the time and effort required for error correction during the.varfOus
1evels of software testing. They allow participants to learn much about the
software products in a short tiresand help them to handle subsequent development
and testing with more confidence and fewer false starts.

4.3.3 THE INSPECTION PROCESS

The fol1owing sectfons describe how inspections should be conducted and
identifies who should participate in them. The.types of inspectfons and.the six
formal steps for conductingan inspectionwil1 also:be described..Much-of.the
information was taken from the following publications: -

4-53

Downloaded from http://www.everyspec.com

“Inspectionsin Application Development - Introductionand
Impleme%ation Guidelines,” IBM Technical Newsletter, Number GN2D-3184, 1981.

b. “Design and Code Inspections to Reduce Errors in Program
Development,” M.E. Fagan, IBM Systems Journal, Volume 15, Nr. 3, 1976, pp.,
182-211.

4.3.3.1 PARTICIP~S IN THE INSPECTION PROCESS

The inspection team is normally composed of the moderator, the author
(developer),and one or more inspectors. Inspectors typical1y include the
technical people responsiblee for the prior and succeeding development phases.
For example, detailed design inspections should include the developer of the
preliminary design, the person who wi11 code the unit, and the person
responsiblee for testing the unit. An 1nspection team should be made of three
seven people.

The moderator controls the inspection activities and is the 1eader of the
inspection meeting. The moderator schedules each step of the inspection
process, selects the inspectors, prepares inspection reports, evaluates error
rates, determines whether a reinspection is required, and assigns each person a
role. A “reader” must be appointed to read the material aloud. A recorder
should keep a problem 1ist of al1 errors. Another person may be assigned to
find all standard vi01atiens.

4.3.3.2 TYPES OF INSPECTIONS

Inspections are most comnonly used immediately follcukng detailed unit design
and unit coding. Preliminary design, test plans, test cases, and manuals may
also be inspected. Documentation inspections can also be used to review
requirements.

4.3.3.2.1 DETAILED DESIGN INSPE~IONS

The purpose of the Detailed Oesign Inspection is to find errors and ambiguities
in the detailed design materials. No attempt should be made to correct the
errors during the inspection. Major emphasis should be placed on examining the
design for errors in logic, external 1inkages, and data areas.

In order to conduct a detai1ed design inspection, certain documents must be
complete and ready for the .inspection. A completed copy of the detailed design
for the unit and any supporting prose discussing external 1inkages or control
blocks are necessary. It also helps to have the preliminary design
documentationon hand to compare with the detailed design. A detailed deiign
inspection checklist which contains a set of prompters or clues to help uncover
errors should be used at this inspection. Figure 4-14 is an example of a
detailed design inspection checklist.

to

4-54

Downloaded from http://www.everyspec.com

Logic (LO)
.Are al1 constants defined?
.Are al1 unique values explicitly tested on input parameters?
.Are values stored after they are calCU1ated?
.Are all defaults checked explicitly: for example, blanks in an
input stream?
.If character strings are created, are they complete? Are al1
delimiters shown?
.If a keyword has many values, are they al1 checked?
.Are al1 keywords tested in a macro?
.Are al1 keyword-relatedparameters tested in a service routine?
.Are all increment counts properly initialized (O or 1)?
.After processing a table entry, should any value be decremented or
incremented?
.1s provision made for possible processing at logical checkpoints in
the program (en&of-file, end-of-volume,etc.)?
,1s all 1/0 performed on opened files?
.Are routine error conditions adequately provided for (INVALID KEY,
ON SIZE ERROR, etc.)?
.Are 1iterals shown where there should be constant’data names? ... ,.
.On comparison of group iterns,should al1 fields be compared?
“.1sthe value of a data item used before the item is-initialized?...
.Are al1 data areas shown in design necessarY or are some
extraneous?

Data Area Usage (DA)
.If design is dependent on building/creating/deleting various data
areas, are they al1 designated?
.Should a cal1ed macro provide any INCLUDES for any dataareas that
themacro expanded code may depend on?
.Does design show explicitly which area to use in a data area; that
is, if there are multiple save areas?
.If the program stores into a data area, does it store into the
correct field?
.If a value is fetched from a,data area, is the correct field
fetched?
‘.Should the’data area be boundary-aligned?
.Does a save area have niultiple uses? Can conflicts arise?’

I

I

I
SAMPLE DETAILED DESIGN INSPECTION CHECKLIST

FIGURE 4-14
4-55

Downloaded from http://www.everyspec.com

Test and Branch (TB)
.Are al1 three conditions tested; that is, greater than, equal to, and less than
zero?
.After a 1inkage, should a return code be tested?
.Is a SORT or a MERGE operation tested for successful”completion?
.Are branch legs correct; that is, should YES be NO’and NO be YES?

Return Codes/Messages (RM)
.Are messages issued for al1 error conditions?
.On exits, should a return code be set or a message issued?
.Does the message say what it means?
.Could more information be supplied in the message? .!
.Do return codes in”the design for particular situationsmatch the global
definition of the return code as documented?

Register Usage (RU)
.If a specific register is required, is it specified?
.Ooes any macro expansion use a register already in use without saving the
data?
.1s the integrity of all input registersmaintained?, .,

More Detail (MD)
.Does the design specify a process‘ambiguously,or does the process-requiremore
than ten instructions?

External Linkages (EL)
.Should a standard 1inkage be used rather than coding a sybroutine inline?
.Is the designated 1inkage the right one for the function to be performed?
.Is the data area mapped as the receiving module expects-itto be?

Standards (ST)
.Are any progransningstandards for the project in jeopardy of compromise because
of the design?

Initial Design Documentation (HL)
.Does the detailed design match the initial design?
If not, the initial design documentation:c,opldbe in ,error.

., .,-
Perfonnance (PE)
.Does the design impair the performance of this module to any significant
degree?

. .
Figure 4-1,4,($onti,nued) ,,

4-56

. .

$..

Downloaded from http://www.everyspec.com

The Software Development Manager defines the exit (or completion) criteria for the
inspection; The exit criteria define the things that must be complete before the
software product can proceed to the next developmentphase. Without explicit exit
criteria, it is not possible to certify that any given phase (for example, detailed
design) is complete. Two examples of detailed design inspection exit criteria
are: PDL wil1 be written to the 1evel where one 1ine of PDL wil1 equate to 3 to 10
1ines of actual code; and al1 rework from the detailed design inspectionswil1 be
complete and verified.

4.3.3.2.2 CODE INSPECTIONS

The Code Inspection ensures that the code is correct andthat the code matches the
design. The participants in this inspectionmust include.the moderator and the
developer of the unit being inspected. Other inspectorsmay include the designer
of the unit, the team leader, and the person who will be responsible for
maintenance or testing of the unit.

Program 1istings (the first clean compi1e/assemble) and prologues must be complete
before a code inspection. Other materials are the detai1ed design documentation
and any design change requests. There should also be a code inspection checklist
specific to the language of the code being inspected. This checklist will prompt
the inspectors to find common error types.in the code 1isting. Figure 4-15
presents a guide to the types of questions that should be in a code inspection
checklis~.

Some examples of the code inspectionexit criteria are: al1 code 1istings are
sufficientlycomnented and al1 coding standards have been followed; the code
accurately.implements the detailed design; and al1 rework from the code inspections
is complete and verified.

4.3.3.2.3 OTHER INSPECTIONS

The inspection types discussed above are the most coimnonlyused. Inspectionsmqy “-
“also be used to ensure the correctness of other deliverables. It may be valuable
to inspect the Software RequirementsSpecificationwith the user.present to ensure
that al1 of the user!s requirementsare being satisfied and that the requirements
are understood by everyone. Test plans and test cases may be inspected to ensure a
complete, accurate, and comprehensive function.verification.. Even”publications
1ike the User’s Manual can be inspected for clarity and completeness.

4.3.3.3 FORMAL INSPECTION STEPS

An inspectionconsists of six formal”steps: P1arming, Overview;Preparation,
InspectionMeeting, Rework, and Fol1ot+up. i

4-57

Downloaded from http://www.everyspec.com

FORMAT:
Are nested IF’s indented properly?
Arecoimnentsaccurate and meaningful?

- Are meaningful 1abels used?
Does the code essentially correspond to the outline of the
module in the prologue?
Are instal1ation progranming standards followed?

ENTRY & EXIT LINKAGES:
- Are initial entry and final exit correct?

For each external cal1 to another module:
Are al1 required parameters passed to each called
module?
Are the parameter values which are passed set correctly?

.-Are subroutinesentered and exited properly?

PRCN3?AMLANGUAGE USAGE:
Is the optimal verb or set of verbs used?
Is the instal1ation-defined restricted subset of the

. 1anguage used throughout the module?

sTORAGE USAGE:
Is each field initializedproperly before its first use?
Is the correct field specified?
Is each field declared as the correct variable‘type?,.

TEST AND BRANCH:
Is the correct condition tested?
Is the correct variable used for the test?
Is each branch target correct and exercised at 1east once?

PERFORMANCE:
. Is logic coded optimally?
- Are normal error/exceptionroutines provided?

MAINTAINABILITY:.
- Are 1isting controls utilized to enhance readability?
Are 1abels and routine names consistent with the logical

significanceof the code?
,.. .

LWIC :
Has al1 design been implemented?
Does the code do what the design specified?
Is each 1oop executed the correct number of times?

GENERAL CODE INSPECTIONCHECKLIST

Figure 4-15
4-58

Downloaded from http://www.everyspec.com

THE PLANNING STEP

During this step, the moderator chooses the participants for the inspection and
ensures that the inspectionmaterials aie distributed to the inspection team. The
moderator also schedules the overview and inspectionmeetings, al1owing sufficient
stw(y time for the inspectors.

THE OVERVIEW MEETING

The purpose of the overview meeting is to educate the inspection team. The
designer or coder of the unit should describe the unit’s mu”or functions and
functional relationshipsand give a detailed description of the materials. This
meeting is attended by the inspection team and any‘other project
need a more detai1ed understandingof the unit’s function. This
1ast no 1onger than one hour.

THE PREPARATION STEP

Al1 participants prepare for the inspection meeting individuallY.

personnel who may
meeting should

Their aoals are
to become thoroughly”familiar with the inspection~aterials and-to identi~y
potential defects that should be discussed at the inspectionmeeting. Iihile
examining the inspectionmaterials, the inspectors..makesure that the work product
being inspected matches the materials from the previous phase. For example, the
unit code should not deviate fram the detailed design specification.

The time required to prepare for the inspection meeting wil1 vary depending upon
the type of materials being inspected. Preparation.for a detailed design
inspection should take about one hour for every 100 1ines of PDL. For a code
inspection, preparation should take about one hour for every 125 1ines of code.

THE INSPECTION ME!31NG

Only the inspection participants should attend this meeting. Other project
personnel may interfere with thd objective of the meeting - to find errors. At the
beginning of the meeting, the moderator describes the sequence in which the
materials are to be inspected. The moderator conducts the meeting, not the
author. The author’s role is usually 1imited to answering technical questions.

During the P1anning step, the moderator appoints one of the inspectors to read
aloud the inspection materials. It is usually more effective for the reader to
paraphrase the materials instead of reading them verbatim. Paraphraseng tends to
keep the other participants more alert and helps the author.detenninewhether the
materials can be understood. As the reading proceeds, each participant 1ooks for
errors or ambiguities in the materials and for adherence to thf;’exitcriteria.

4-59

Downloaded from http://www.everyspec.com

As errors are found, the recorder (if a recorder was not appoint.ed,the
moderator perfonns this function) records them in a problem 1ist and classifies
them by error type, error category, and error severity. The error type is used
to tel1 whether there was an error in the 1ogic, prologue, program 1anguage
usage, data area usage, etc. Each c6de or design error is placed into one of
three error categories; missing, wrong, or extra. The error severity is either
major or minor. An error which causes the unit to malfunction or which would
cause incorrect results to be attained is considered a major error. Examples of
minor errors would be standards violations or defects in prologues or code
comments. Figure 4-16 is .anexample of a Detailed Design problem 1ist and
Figure 4-17 is‘an example of a Code Inspection Problem List. Problem lists are
hand-writtenduring the inspectionmeeting. As errors are found, they are
recorded in the probl‘EM1ist. Each entry should contain the error type, error
category, error severity, and a short description of the error. .

After the inspection is complete, the moderator seeks the team’s agreement on
the problem 1ist and decides whether a reinspection is required. This decision
is based upon a project’s standards. For example, an organizationmay decide
that the detailed design material may not exceed an error rate of 5% (5
defective 1ines of PDL for every 100 lines of PDL inspected) and that code may
not contain more than one major problem per 25 lines of source code. Within one
d~ of the inspectionmeeting, the moderator distributes to the participantsthe
module detail report which summarizes the number and types of errors found and
states whether a reinspection is required. The problem 1ist is attathed to this
report.

At the detailed design inspection,materials are examined for consistencywith
the initial design, correctness of every logic path through the unit, and
ambiguities in the design statementswhich could lead’to coding errors. The
emphasis is on detecting omissions.

Code inspectionsemphasize the detection of wrong rather than missing or extra
code. The correctness of structuredcode may be verified by either of two
methods. The best method is to trace main line logic through every subroutine
until the main 1ine logic ha~ been completely traced. Then all remaining
secondary paths are traced. Another method is to trace the code in a sequential
page order, starting with the main 1ine segment, fol1owed by the 1ower-1evel
segments.

An inspectionmeeting should never last longer than two hours. The participants
become less efficient at finding errors after two hours. At a detailed design
inspections,about 1301 ines of PDL can be reviewed per hour. For a code
inspection,about’150 1ines of

In the
list.
in the

rework step, the author
The moderator estilnates
inspected materials and

codecan be reviewed every hour.

THE REWORK STEP

corrects the problems specified in the problem
the time it’should take to correct the problems
schedules the fol1ow-up meeting accordingly.

4-60

Downloaded from http://www.everyspec.com

Example error types: RM -
DA -
MO-
EL -
LO -
klN-
PE -
sT -
RU -
PD -

:; -
OT -.

Return Codes/Messages
Data Area Usage
More Detai1
External Linkages
Logic
Maintainability
Prologue/Prose
Standards
Register Usage
Preliminary Design Documentation
User Specifications
Test and Branch
Other

Error categories: M - Missing
W - Wrong
E- Extra

Error severity: MAJ - Major
MIN - Minor

The fol1owing are some sample entries from a detailed design
inspection problem 1ist:

1. LO/W/MAJ PDL line 30: Initialize NAME field to all
blanks.

2. TB/W/MAJ PDL 1ine 105: Should test for NAME = spaces,
not NAME not = spaces.

3. DA/W/~lIN PDL 1ine 4: NAME field should be alphabetic,
not alphanumeric.

4. ST/W/MIN Throughout the document, the PDL keywords
should be in capital 1etters.

SAMPLE DETAILED DESIGN INSPECTION PROBLEM LIST

FIGURE 4-16

4-61

Downloaded from http://www.everyspec.com

Example error types: CC.- Code Conmsents.
DA - Data Area Usage
DE - Design Error
EL - External Linkages
LO - Logic
MN - Maintainability
PE - Performance
PR - Prologue
PU - ProgransningLanguage Usage
RU - Register Usage
SU - Storage Usage
TB - Test and Branch
OT - Other

Error categories: M - Missing
W - Wrong
E - Extra

Error Severity: M/W - Major
MIN - Minor

.,

The following are some sample entries from a code inspection problem
list:

1. LO/W/MAJ

2. PU/E/MIN

3. DA/W/M4J
..

4. LO/W/MAJ

.,

Line 169: While counting the number of 1eading
spaces in NAME. the wrong variable (I) is used
to calculate “J”.
Line 175: In NAME-CHECK, the check for SPACE
is redundant.

Line 299: The underscore symbol should be used
instead of the vertical bar.

Line 352: The code does not match the
s~ecification. Any combination of alpha,
blanks,

SAMPLE CODE

and numbers should“be‘al1owed;

INsiwciIoN iROtiEhI

FIGURE ~17 “--

LIST

4-62

Downloaded from http://www.everyspec.com

THE FOLLOW-UP STEP

During the follow-up step, the moderator verifies the completeness and accuracy of
the reworked materials and gives formal approval to the work, thereby al1owing the
development effort to move forward. If the amount of rework warrants another
inspectionmeeting, one may be scheduled at this time.

4.3.4 PERSONMEL CONSIDERATIONSHHEN USING INSPECTIONS

Data from inspections should never be used to evaluate software developers. The
goal of inspections is to detect errors. The number of errors detected depends
upon the thoroughness of the inspection. If many errors are found during an
inspection, this means that the inspection process is working, not that the
developer is inadequate. If people,fear that data from inspectionswil1.be used
“to evaluate them, inspectionswill be of 1ittle benefit to a project.

4-63

Downloaded from http://www.everyspec.com

i.. !

I

4-64 (blank)

Downloaded from http://www.everyspec.com

4.4

4.4.

PRMRAMMING STANDARDS

POLICY AND REQUIREMENTSSUMVARY From NSA/CSS Software Acquisition
Manual 81-2, Policy 4.4)

Software projects shal1 use programming standards to promote
uniformity, readability, understandability, maintainability,and other quality
character sties of the software products. Where applicable, suchstandards
should also contribute to portability of software between computers and to
compatibility with existing and future support software. Either the
programming standards specified in the contract or identified in the NSA/CSS
Software Product Standards Manual or developed for a specific project shal1
be used. The developer shal1 demonstrate plans to periodically audit design
and code to assess adherence to the project prograrmningstandards.
Programming standards shal1 be documented in a Software Standards and
Practices Manual.

4.4.2 GUIDANCE

The Programming Standards define the standards to be followed during
software design, code, and subsequent 1ife cycle support. The objectives of
the standards are twofold: (1) to produce a high quality software product
(code and documentation),and (2) to reduce the 1ife cycle costs of that
product. A project’s programming standards shall contain, as a minimum:

1. The standards to be used for preface test and in-1ine cormnents;

2. Higher order and assembly language coding standards for every
language that is used by the project to generate code;

3. Structured programming standards for every higher order language
that is used by the project to generate code;

4. Project-uniquedesign standards (e.g., duty cycle, memory
utilization, maximum routine size, input/output, interfaces).

Assembly 1anguage shal1 be allowed only in areas where code efficiency,
storage or machine dependency requires it. The developer must identify and
justify al1 areas where assembly language is required and obtain approval from
the Software Acquisition Manager before proceeding.

Proararmninastandards are necessar.vif the software development process
is to beco~e a di~ciplined activity. How;ver, the standards cannot
in a “cookbook”manner. Tileyrequire judgment in their application
compliance andto provide waivers for specific instances whenthere
appropriate rationale.

be dpplied
to ensure
is an

4-65

Downloaded from http://www.everyspec.com

I

‘,

I

4-66 (blank)

Downloaded from http://www.everyspec.com

4.4.3 PROGRAMMING STANDARDS ANO GUIDELINES

SECTION 1.
1.1
1.2
1.3

SECTION 2.
2.1
2.2

SECTION 3.
3.1
3.2
3.3
3.4
3.5

SECTION 4.
4.1
4.2
4.3
4.4
4.5
4.6

::;
4.9

.4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.19.1
4.19.2
4.19.3
4.19.4
4.19.5

TABLE OF CIINTENTS

INTRODUCTION
Progranrning Style
Software Segmentation, Module Size, and Complexity
Ada

STRUCTURED PRCYGRAMMING
Theory
Constructs

IMPLEMENTATION -
FORTRAN 77
PL/1
c
Structured Programming in S/371JAssembly Lan9ua9e
Ada

MODULE CONSTRUCTION
Completeness
Function
Entry/Exit
Declarations
Imbedded Constants
Arguments
Exponents
Mixed Mode Arithmetic
Explicit Branching
Error Handling
Range Checks
Indices and Subscripts
Loop Termination
Use of Labels and Names
Global and Shared Variables
Standard Linkage Conventions
Input and Output
Naming Standards
Preface Commentary Standards
NAME Section
PURPOSE Section
INPUT/OUTPUT Section
PARAMETER Section
CALLS Section

4-67

Downloaded from http://www.everyspec.com

4.19.6 GLOBAL DATA SeCtion
4.19.7 RESTRICTIONS SectiOn
4.19.8 ABNORMAL END Section
4.’19.9 METHOD Section
4.20 In-Line Commentary Standards
4.21 Indentation and Paragraphing Standards

SECTION 5. PRODUCT DEVELOPMENT LIBRARY
5.1 Introduction
5.2 Manual Product Development Library
5.3 Basic Product Development Library
5.4 Fu’11Product Development Library with Management Data

Collection and Reporting

I
.

I 4-68

Downloaded from http://www.everyspec.com

Section 1. INTRODUCTION

1.1 Progransning Style

When the design of a new software system is complete and wel1 documented
in the Program Specification, the process of translsting the detailed design
into executable software begins. If the architectural and detailed design
describe each software capability as a standalone unit, the translation
process wil1 be relatively straightforward. The interfaces between software
units wil1 become argument 1ists for subroutine cal1s; or they wil1 turn into
data structures that are read into or written out of independentlyexecuting
programs. If the data referenced in the Program Specification is already
defined in the Data Dictionary Document, the declaration of the argument 1ist
or data structureswil1 be easily accomplished.

In ‘a“simi1ar fashion, if the Program Specification portrays the design as
a hierarchy of independent unfts with clearly defined interfaces, the software
can be developed in a top-down, structuredmanner. Units at the top of the
hierarchy can be programed and tested thoroughly without considering the
processing that occurs at 1ower levels of the software architecture. The
technique of defining the interfaces between units so that one unit does not
need to know how the other translates inputs into outputs is called
“informationhiding.” If information“hiding is considered during the design
phases, it wil1 be easy to achieve in the coding phase by developing the
interfaces exactly as they were designed and documented in the Program
Specification. After the top level units in the architecture are implemented
and tested, 1ower 1evels of units can be added and tested.in the same way.
Succeeding levels of software can then be built from the top of the
architecture to the bottom until the entire software system is coded.

A top down, structured approach, combined with the information hiding,
has several advantages:

The system is easy to understand because each 1ayer in the software
hiera~~hy is made of units and routines smal1”enough to be easily understood.
This is especially important when changes need to be made to the completed
system.

b. Isolating problems in the software is easy because each Jayer in the
software architecture can be completely tested before moving to the next 1ower
1evel.

When units are completely defined by a Program Design Language and a
descr~~tion of their interfaces, they can be coded by someone who has 1ittle
knowledge of the system or of the surrounding modules. Each unit can be
implemented and tested independently. This gives the Software Oevelopment
Manager tremendous flexibility in assigning software units to programmers for
coding and unit testing. ,

I

I

4-69

Downloaded from http://www.everyspec.com

It should be apparent that a detai1ed design that embodies structured
progransningtechniquesand structured design techniquesmakes the progransning
phase simpler. Program Design Language wil1 have the same complexity value as
the code that is developed. A unit with a span of control of three can be
coded to have the same span of control. The key to success in creating
modular, structured software is to design it that way.

Given that the modularity, control structure, and communicationswithin a
software system are 1argely defined during the design phase, software projects
can gain additional benefits by adopting standards for programing style.
These are to some degree dependent upon the programming 1anguage which will be
used. Later sections in this chapter address 1anguage-specific standards.
However, some style guidelines are applicable regardless of the implementation
1anguage. The goal of project-specificprogramming standards is to make the
software easy to read and understand. Mel1-structured programs”meet this
goal. They can be read from beginning to end without having to jump back and
forth through the source code. They are also organized hierarchicallY. h%e
highest 1evel of the hierarchy may contain subroutinecal1s, procedure cal1s,
or macro cal1s to 1ower-level routines. When completed, the lower-level
routine wil1 return to the higher-1evel and resume execution following the
point-of-cal1.

Wel1-structured,readable code is attained by using the basic constructs
of structured progransning described later in this chapter. Each of the
constructs has a consnoncharacter stic: a single entry point and a single
exit point. This means that the only way to enter a software element is at
the beginning, and the only way to leave it is at the end. Al1 that can be
seen from the outside of an element of co,deand the single entry and exit
points are the variables that enter and 1cave at those points.

Stylistic conventions adopted in the analysis and design phases should
continue during the progransningactivities. Names used in the Data Dictionary
Document to reference data should be emulated in data declarations. Data
names should convey what the data is and how it is used. In-1ine consnents
explain functions which may not be discernible from the program statements.
Minimizing the use of global data reduces the risk of unpredictableresults.
These issues and other important considerationsare discussed More fullY in
the remaining sections of this chapter.

4-70

Downloaded from http://www.everyspec.com

1.2 Software Segmentation, Module Size, and Complexity

The intent of modularization is to segment software into discrete -
functional elements that are understandable,maintainable, and testable. Two
principles govern the modularization process: functional decomposition should
result in independent,cohesive units that are a natural decomposition of the
problem; and modularization should be governed by “size” or “testabi1ity” of
units. In other words, units must not be so complex that they are
untestable. Size 1imitations are useful indicators for software units that
may need additional decomposition,but they should not force artificial
segmentation of functional b]ocks of code. In addition, a block of ,codewhich
is 1ess than maximum length does not guarantee a module with reasonable ~
complexity.

Complexity Measures provide an excellent quantitative basis for
nodularizationand allow identificationof software units which may be
difficult to test or maintain. They should be used in conjunction with size
}imitations to aid in controJling software segmentation. The complexity
neasure briefly presented in this section is derived from T. J. McCabe’s work
on complexity measures.*

,.,

The approach taken is basically a mathematical‘technique,drawn from
graph theory, which is used to measure’the number of paths.through a program.
:omplexity is controlled by setting the 1imits..onthe number of paths that a
software element may contain. The approach is complicated by.the fact that
iny program with a backward branch contains an arbitrary number of paths.
This complexity measure focuses on the set of basic paths that, when taken in
combination,wil1 generate every possible path.

The paper describes three methods of evaluating the complexity.of a
program. Two of the methods require’that the control paths of the program be
?xpressedas a directed graph. The program control graph has a unique entry
~nd exit node, each node in the graph corresponds to a block of code.whose
Flow is sequential, and arcs correspond to branches in the program.

,,

.
...

*McCabe, T. J., “A ComplexityMeasure,” Proceedings of the Second
InternationalConference on Software Engineer~ng, IEEE, October 6, San
+-anclsco,Cal1fornla.

See also McClure, C. L., “A Model for Program Complexity Analysis?”
proceedingsof the Third InternationalConference on Software Engineering,
~ Atlanta, Georgia.

I

4-71

Downloaded from http://www.everyspec.com

The third method avoids drawing program control graphs and determines
:omplexity by counting the number.of conditions (IF tests) in a structured.
program and addingone. Compound IF statements such as<

IF Cl AND C2 THEN

are treated as

IF Cl THEN IF C2 THEN

whichcontains t.woconditions.’.Case.structurescan besimulated by Parallel ~,. : :
IF statements. For example:

DOc:g~: (i)
: S1 ,..

., CASE2’: .S2 ..
ENDDO CASE ,,”. . :.

is “equivalent” to: : . .“.‘ .. - ,- :. :
..

“IF CASE1..THENS1
ELSE IF CASE2 THEN S2.

If there i“sa default case: a’”.DO..CASE~w;th,Ncases wil1 have N-1’conditions. .. .,
Case statements.lacking a defaultcase can.:beevaluated by.counting‘the number, ;
of cases; ie:; N.cases then N,conditions. . ~ . ‘ ,.

Consider the folIowing code framents:

IF p THEN” IF p THEN
code A code A

ELSE IF q THEN “ENDIF ,,,
code B. IF q THEN

ELSE IF r THEN code B
code C ENDIF

ELSE ‘. , IF r THEN
code D code C

ENDIF ELSE
ENDIF code D
“ENDIF ENDIF

, Fragment A Fragment B

Using.the“predicatec.ounti’ngmethod (number of IF tests P1us 1$:;both:
ti,agmentshave the same complexity value (4). ,., “,’’.’, .

,?.
:.. -

4-72

Downloaded from http://www.everyspec.com

:

-.

While this method is perhaps the easiest to use, a more useful complexity
measure is to compute the number of possible paths through a structured
program. If we compute the number of possible paths through each fragment,
fragment A has a complexity value of 4, but fragment B has a complexity value
of 8.

The point of this discussion is that the traditional approach to
combatting complexity (i.e.,“dividing the.program into smal1, well-structured,
independent modules that interact in a restricted manner.)is not a complete
methodology. Quantitative techniques should be used to analyze program
complexity. They should include, at a minimum, an examination of the number
of possible execution paths and the control structures and variables used to
direct path selection.

Establishing reasonable limits on nwdule size and Complexity for each
project is essential. Software Development.Managersmust set and enforce
standards for module size and complexity. The standards should.be rationally
enforced to avoid artificial segmentation. The intent .ofsize and complexity
standards is to produce software that is understandable,maintainable, and
testable.

For more detailed discussions on software.complexity and.its relation to
software testing, consult McCabe’s article in the”‘“Proceedingsof the Second
InternationalConference on Software Engineering,n and NBS Special Publication
500-99, “Structured Testing: A Testing Methodology Usjng the McCabe
Complexity Metric,” 1982.

4-73,.

Downloaded from http://www.everyspec.com

1.3 Ada*@

This section‘describesthe principal features of Ada,’a‘new programming
language developed under sponsorship of the Department of Defense. Ada is a
high-level, general purpose programming language designed initially for large,
real-time embedded computer systems applications. It can also be used for
many other types of applications.

Ada was designed to improve three areas relatin9 to.comPut@r Pro9rammin9:‘‘
program reliability and maintenance, programrning as a human activity, and
language efficiency. Emphasis was placed on program readability over ease of
writing. The syntax-of the language uses English-likeconstructs rather than
encoded forms. Ada also provides the ability to assemble a program“from
independently-producedsoftware components.

An Ada program is”made of one or more program units. There are four forms.
of Ada program units. Subprograms define executable algorithins. Package
units define CO1lections of.entities. Task units define parallel
computations, and-generic units define parametrized forms of packages and
subprograms. These program units can be compiled separately. Each program
unit normally consists of two parts: a specificationcontaining information
that must be visible to other program units, and a body containing,
implementationdetails.that need not be visible to other’Pro9ram units. “

Within the context of these program units, Ada has many of the,best
features found in PASCAL, ALGOL, PL1, FORTRAN, and COBOL. It.also contains
additional features not found in other languages. The combination of
desirable features of current programming languages and new features-embodying
improved software engineering methods make Ada a good 1anguage for many
applications. Following is a description of the most distinctive Ada
features.

SEPARATION OF PROGRAM SPECIFICATIONANO PROGRAM BODY

In Ada, the specificationof a program unit is its interface with the
outside world. It tel1s software developers what they need to know to use the
program unit. It identifies the data objects (parameters)that must be
supplied when the unit is called and the data objects that the unit will
return to the caller. The body contains the code statements that are executed
when the program unit is called. Once the program unit’s specificationhas
been compiled, it can be put into an Ada 1ibrary. Developerscan then design
and code new program units that call the first unit. They do not need to know
anything about the body of the first unit.

@Ada is a registered tra&nark of the U.S. Department Of DefenSe.

*The information in this section section was taken from two sources: (1)
Reference Manual for the Ada Programming Language, ANSI/MIL-STO 1815A-1983;
c.ea February I985, and publlsnea by ne unlted States Oe artment of

RDefense; and (2) Software Engineeringwith Ada63by Gady BOOC , the
Benjamin/CummingsPublishing Company, Inc., 15 .

—

4-74

Downloaded from http://www.everyspec.com

Separation of specificationand body supports “top-down”design and
prograimning. If a high-level program unit calls a lower-level unit, then the
high-level unit can be designed, cod$d, and compiled when the specification of
the lower-level unit is completed. Using a dummy version of the lower-level
unit’s body allows the higher-level unit to be tested before the body of the
lower-level unit has ever been designed.

Separation also 1oosens connections (“coupling”)between program units.
It makes the coupling that does exist explicit and understandable. In Ada,
software elements are coupled through ‘theirspecifications, not their bodies.
This reduces the “ripple“ effeet when changes are made to Ada source code.

I DEFINITION OF NEM DATA TYPES

Most programming languages have a small set of built-in data types, such
as integers, real numbers and character strings. Typically, they allow
prograrmnersto define and name multiple instances of a given data type, such
as integer or string variables; but programmers often need to use data objects
that are not part of the built-in sets.

Ada allows programmers to define new types of data objects built from
primitive data types. Just as the familiar arithmetic operations (+, -, *,
iind/) are legal operations on objects of the built-in data type “integer,”
Ada al1ows programmers to define “legal” operations of the new data type.

The 1egal operations of user-defined data types can be grouped with the
names and structures of the data types themselves into a package and placed in
an Ada 1ibrary. Then programmers can treat the new user-defined data types as
if they were built-in types. They can manipulate objects of the new types
with sets of operations defined for those types. Ada prevents manipulation of
those objects unless they have been explicitly defined.

User-defined data types k.upportseveral software engineering principles.
They support the idea of programming in terms of objects natural to an
application and operations natural to the manipulation of those objects. This
idea is called “object-oriented”programming. They also support the concept
of “informationhiding” by keeping from users al1 information that they do not
need to knQw. In addition, user-defined data types loosen coupling between
program units. The less a unit knows (and uses) about implementationof the
objects it manipulates, the lower its.coupling with other elements that use
the same objects.

I
4-75

Downloaded from http://www.everyspec.com

STRONG TYPING

Ada reauires that every declaration of a data object specify its data
type. The data type determines the operations that may legally be applied to
objects of that type and the values that such objects,may have. This is
called strong typing.

Strong typing supports the principle that errors should be detected as
early as possible in the development process. Because the types of all
objects are known at compile time, the compiler can detect many errors

involving type conflicts. It can detect attempts to assign a value to an
object that is not in the set of legal values for objects of that type. At
compilation time, Ada can also check errors between separately-compiled
programs.

GENERIC PROGRAM UNITS

A generic program unit is a template or skeleton of package program units
or subprogram program units that can be written once and tai1ored to meet
specific needs at translation time. Thus, generic program units”define a unit
template, along with generic parameters, that allow programmers to use the
genericunit in many instances. They are not executable; so they may not be
used directly. To create a generic program unit, programmers take the
“specificationpart of a package or subprogram and add a prefix, called the
generic part, that defines the generic parameters. By specifying values for
the generic parameters, programmers may use the generic unit in other program
units without explicitly creating separate units to process objects of
different types if the algorithms are identical.

Generic program units support the principle of procedural abstraction.
Programmersmay work with a high-level procedure, such as a sort, and ignore
low-level details such as data types. They may use the high-level algorithm
without having to write the lQw-level coding details about specific data
types.

TASKING

In his book, Software Engineeringwith Ada, Grady Booth says the
fol1owing:

In the real-world problem space, there are often a
number of activities logicallY occurring at the same time.
For example, an aircraft autopilot may be continuously

4-76

Downloaded from http://www.everyspec.com

monitoring several sensors, such as airspeed and angle of
attack, waiting for user requests, and control1ing several
independent devices, such as control surfaces and
throttles. In addition, some devices, such as navigation
aids, may use asynchronous hardware interrupts to request
service.

Most existing high-order languages provide little support for dealing.with
such concurrent activities. Software developers WOU1d have to use the
facilities of the host operating system or write unique multitasking assembly
language routines. Ada, however, is designed to handle this type of real-time
application.

Ada supports real-time applications by alIowing a developer to specify
that certain program units run concurrently. Tasking program units are
entities that proceed in parallel except‘at points where they synchronize.
Ada provides commands that allow tasks to’synchronize or “rendezvous,” under a
variety of conditions.

PORTABILITY

Portabilitymeans the.ability to tfansfercomputer programs from.one ,
computer to another. Any language with machine-independentconstructs
provides portability, but Ada offers a higher degree of portability than most
other ‘languages. There are several reasons for this:

Input/Output. In most languages 1/0 is 1imited and inflexible.
The resul~“is that individual computer systems must supplement the standard
1/0 of the language with nonstandard features. These nonstandard features
must be recoded when a program is “ported” from one machine to another. In
Ada, the problem is circumvented by the package feature. A group of 1/0
routines can be grouped in one package in much the same way that a package
implements a new user-defined data type. The user can define a package of 1/0
routines to provide a specific type of 1/0 capability or to access a specific
1/0 device.

b. Low-Level Features. However much developers may hide low-level
details of physical implementation, they must always implement low-level
programs and data structures. Because most high-1evel 1anguages do not
provide a convenient way “ofexpressing those low-level details, they must be
implemented in assembly language. Ada, however, has features for providing
such lo~-level details so that no assembly language code is required. It
provides the capability for generating the correct code to manipulate objects
of the given type on a new machine.

I

Downloaded from http://www.everyspec.com

c. Standardization. Most languages have no strict standard. Even
those that“do have nonstandard dialects that are similar but not identical.
The Department of Defense is placing much emphasis on ensuring that there are
no dialects of Ada, either subsets or supersets. They have developed
eJaborate procedures for testing, validating, and certifying Ada compilers.
These procedurescontain tests to verify that every approved Ada compiler
implements and correctly interprets the requirements of the language as stated
in the Reference Manual for the Ada Programming Language (ANSI/MIL-sD-1815A
current version dated 17 February 1983). In fact, the Ada Joint Program
office has registered the item Ada as a trademark in an effort to ensure that
only compilers that have passed the validation tests are even called “Ada”.

The Department of Defense sponsored the development of Ada to deal,With
many of the.wel1-documented problems associated with the development and
maintenance of software systems. 8y having many modern software engineering
principlesembedded in the 1anguage, advocates believe that the use of Ada
wil1 improve productivity,al1ow code to be reused, reduce time required for
module integration,and reduce costs of life-cycle support. @ more compilers
are cert’ified and their performance improved, the use of Ada .in Government and
in“industrywill grow.’ This is not because the use of Ada has been mandated. ~
by”the Department of Defense, but.because many who know the 1anguage believe..
that it has great promise: ,., .,

. .

.-. ,. ’... ,,.

,.,. .,..

.,

.

.. ..

4-78

—

Downloaded from http://www.everyspec.com

Section 2. Structured Programming

Structured programming is designed to minimize software complexity.
Its major objective is to simplify the program development process by
standardizeng the number of logic structures used to construct software. Much
of a program’s complexity is caused by the presence of arbitrary branching;
forward and backward branches that are not part of wel1-defined structures,
for example. Arbitrary branching makes it difficult to detetmine the state of
a program at any given point (e.g., value of a variable, program paths
traversed). Furthermore, as a program undergoes change during development and
maintenance, its ccmlplexityoften increases.

2.1 Theory

Structured programming copes with complexity by using a few simple
structures that aid in minimizing the number of software interactions and
interconnections. It is based on new mathematical foundations for
programming. Four propositions are central to structured programming (see
Mills, H.D., “Mathematical Foundations for Structured Programming,” FSC
72-6012, IBM Corp., February 1982). They.are, in order of logical
precedence:

a, Top-Down Corollary: ‘Everyproper program logic can be represented by
one of the following three structures:

(1) 00 f THEN g
(2) IF C THEN f ELSE g
(3) WHILE C DO f

where “f” and “g” are proper programs each with one entry and one exit, “c” is
a determinable condition (i.e., a test) and “IF”, “THEN”, “ELSE”, “WHILE”, and
“DO” are logical connective. The “Top-Down Corol1ary” guarantees that
structured programs can be written or read “top-down”, i.e., in such a way
that the correctness of each segment of a program depends only on segments
already written or read and on the functional specificationsof any additional
segments referred to by name.

Structure Theorem: “Everyproper program logic is equivalent to a
progr~rnobtained by iteratfng and nesting the three structures (1), (2), and
[3) above. The “Structure Theorem” proves that arbitrary flowcharts with
unrestricted control branchfng can be represented using a finite site of
structures with a reduction in the complexity.

4-79

Downloaded from http://www.everyspec.com

c. Correctness Theorem: If a program is structured as in (b) and if the
domain of the data space on which “f” operates in [3) is not redefined
dynamically in the looping process, the correctness of the entire program can
be proved by successively proving that the data spaces ,foreach structure at
each level of iteration or nesting are transformed in a specified way. The
“CorrectnessTheorem” shows how standard mathematical practices can be applied
to proving the correctness of structured programs.

d. Expansion Theorem: The freedom by which a proper program 1ogic “f”
may be refined into one of the forms (1), (2), or (3) above is limited as
follows:

(1) DO g THEN h can replace “f” whenever there exists a functional
decompositionof “f” into “g” and “h” in which f=h(g), i.e., “f” is the result
of program logic “h” operating on the computer state at the completion of
,,II
9. ..

(2) IF c THEN g’ELSE h can replace “f” whenever a logic condition
“c” can be found whose domain is the same as that of “f”. .Then“g” and “h”
are fully determined.

(3) WHILE c DO g can replace “f” whenever a function “g” can be
chosen which, when iterated, ultimately reaches “f”. The condition “c” is
determinedas that condition which recognizes that “g” has reached “f”.

2.2 Constructs

As shown in Section 2.1, any proper program (i.e., a program with one
entry and one exit) is equivalent to a program that contains only the
following logic structures:

- Sequences of two or more operations
- Conditional branch to one of two operations and return

(IF a THEN b ELSE c)
- Repetition of an operation while a condition is true
(DO-MI-IILEp)

Each of the above structures represents a proper program. A 1arge and complex
program may then be developed by appropriate sequencing and nesting of these
three basic structures. The logic flow always proceeds from the beginning to
the end without arbitrary branching.

I

I

.
4-80

Downloaded from http://www.everyspec.com

,,.

., .,..

Two extensions to these three basic logic structures have been defined to
improve readability of source code. They are DO-UNTIL and CASE. These .donot
affect the spirit of structured programming, and in some cases may result in
more efficient use of computer time and storage. DO-UNTIL is a variant of the
00-WHILE and provides an alternate form of looping structure. It differs from
00-WHILE in that the condition is tested after the operation rather than
before. CASE is a multibranch, multijoin control structure used to select one
of the mdny possible processing alternatives.

Thus; structured 1anguage code need contain only the following five.1ogic
control structures:

- Sequence of two or more operations
- Conditional branch to one of two operations and return

(IF P THEN a ELSE b)
- Reoetition of an ooeration whi1e condition is true

(DOWHILE P) “
- Repetition of an operation unti1 a condition is ,true
(DO UNTIL P)

- ~e~fon of one of several possible operations

These control structures can be graphically representedby three kinds of
nodes; function, decision, and connection. The symbols for these nodes are:

I

n F

I

FunctionNode

u1

0
I

I

P’

[01 1

ConnectionNode

.:-DecisionNode

.,

4-81

Downloaded from http://www.everyspec.com

I

The flow of execution through these nodes fol1ows the arrows. The
function node represents a defined set of processing (which might be a single
statement or as much as an entire program). A decision node represents a
multi-way branch whose outcome is defined by the state of the tested
condition. Finally, the collector node represents the joining of two or more
1ogic paths.

Having described the basic constructs and a nomenclature for representing
them, graphic representationsof the five programming constructs are as
follows:

Sequenceoftuooperations: @~ati~n -ted uhilea conditionistrue:

+-q-y]:, ~~~True

H~~SE
...+~’-,‘“”o=Conditionalbranchtooneof tuooperationsandRtUrn :,

True EEE.,, ., F

-Fn3’ ~~

‘“WP: ~~~

Ezizl”

,.

4-82

Downloaded from http://www.everyspec.com

Operationrepeateduntila conditionisTrue:

False

+)-m-()’
DDO-~IL

Conditionalbranchtooneof fouroperationsandreturn:

ElCf!SE

4-83

Downloaded from http://www.everyspec.com

Section 3. Implementation

This section discusses the actual implement~tionof the structured
programming constructs for each of several higher-order languages.

3.1 FORTRAN 77

While FORTRAN 77 does feature an IF-THEN-ELSEstructure, the remaining
constructs must be simulated. Though this “simulation” adds to complexity
(due to the needed branching around blocks of code), it can enhance the
readabi1ity of code if used properly.

IF-THEN-ELSE Structure

The IF-THEN-ELSE structurecauses control to be transferred to one of two
functional blocks of code (A or B) based on the evaluation of a logical
expression (p). As mentioned above,’FORTRAN.77directly supports this
construct as follows:

/
IF (P1) THEN

code A
ELSE~~d~p~) THEN

. .

ELS~IF (pn) THEN
code Y

ELSE
code Z

ENDIF

In the above example, a series of tests are.performed until the expression is
,,true,l.or the “n” cases are exhausted. In the latter case, code block Z (the
default code) is executed.

DO Structures

The DO structures allow iterative execution of a functional block of code
(Al based on a logical expression [P). If the test i$ made Prior to the
execution of code (A), it is a DO-WHILE structure. If the test is made after
code (A), it is a 00-UNTIL structure.

4-84

I

L

Downloaded from http://www.everyspec.com

The FORTRAN 00 is essentially a specialized 00-UNTIL and its use to
simulate the 00 structure is rather clumsy. A body of code is iterated until
a loop index exceeds a test value. In addition, the statements within its
range are executed at least once. The 00 structures can easily be simulated
using a logical IF in conjunction with GOTO statement:.

00-WHILE

The code structure used to represent the 00-WHILE is:

0010 CONTINUE
IF [p) THEN

code A
GOTO 0010

ENO IF

00-UNTIL

DO-UNTIL is simulated thusly:

0010 CONTINUE
code A
IF (.NOT. (p)) GOTO 0010

FORTRAN 00

The FORTRAN 00 is a command to execute“the statements that physically
follow it, up to”and including the numbered statement indicating the end of
the 00’s range. Since the FORTRAN 00 is essentially a specialized 00-UNTIL
structure, it is desirable to have specific guidelines for using this.FORTRAN
capability. It is acceptable to use a FORTRAN 00 where the loop must progress
incrementally. For example, only repetitive structures that require varying
indexes and that also use the indexes in the body of the loop should be
implemented using the FORTRAN DO,

In general, thinking in terms of FORTRAN DO’s, rather than DO-WHILE or
DO-UNTIL constructs, encourages the idea that loops should progress
arithmeticallywith a control variable running from 1 to n in steps of m.
Although there are methods for mapping an arbitrary sequence into an
arithmetic progression, they tend to obscure the actuaJ logic and make the
program more susceptible to error. The control structure should not conceal
the reason for the 1oop or terminating condition.

4-85

I

Downloaded from http://www.everyspec.com

CASE Structure

The CASE structure causes control to be passed to one of a set of
functionalblocks of code (A, B, Z) based on the value of an integer
variable i. The CASE structure can be simulated using either a computed GOTO
statement or a sequence of IF-THEN-ELSEstructures. The choice should be
based on the density of the set as expressed by the following ratio:

number of CASE values
--
(maximumCASE value) - (minimumCASE value) +1

The density of a set increases as the ratio approaches one. Except for high
density sets, the CASE structure should be simulated using IF-THEN-ELSE
structures.

Computed GOTO Simulation of the CASE Structure.

The value of the integer variable, i, may need to be normalized since
control is passed to one of the set of functional blocks of code (A, B, .,’.,
Z) based on the value of i, equal to (1, 2, n). Some FORTRAN compi1ers
provide that if the value of i is outside the range 1 i n, the next
statement is executed. Others will treat it as being an undefined statement.
It is therefore recommended that the value of i be tested before entering the
CASE control logic structure. Out-of-rangevalues should res,ult in control
being transferred to the default code (if present) or to the end of the case
structure.

The default code and the “GOTO OOnO” immediately following the computed
GOTO statement are provided for compilers that provide for execution of the
next sequential statement when i is not within the range of the computed
GOTO.

Statements with the structure are indented“fromthe DO CASE and ENDDO
comment 1ines (which define the beginning and end of the fi9Ure). Statements
within each case are indented from each CASE comment 1inc.

If the functional blocks of code are identical for more than one case,
the appropriateentries in the computed.GOTO statement should contain the same
label. Further,.ifno action is to be performed for specific values of i, the
appropriateentries should point to the end of the structure.

NOTE: The statement 1ines prefixed with “/* comment */” are for illustrateve
purposes only and do not represent executable FORTRAN code.

I

!
4-86’

Downloaded from http://www.everyspec.com

Consider the following example:

/* comment */ DO CASE (I)
GO TO (001O, 0040, 0010, 0020, 0001,.0030) , I

/* comment */ CASE OTHER :

0001 CONTINUE
default code
GOTO 0040

/* comment */ CASE 1:--CASE 3:

0010 CONTINUE
code for cases 1 and 3
GOTO 0040

/* comment */ CASE 4:

0020 CONTINUE
code for case 4
GOTO 0040

/* comment ‘/ CASE 6:

0030 CONTINUE
code for case 6

0040 CONTINUE

/’ comment ‘/ ENDOO CASE

For i=1 and i=3, the same functional block of code wil1 be executed; for
i=2, no processing will be perfotmed; and for i=5 and i out-of-range, the
default code wil1 be executed.

IF Simulation of the CASE Structure

Implemeriting the CASE structure using ir,computed GOTO can waste memory
when the density of the set is low. Consider the following example:

CASE values = 1, 2, 3, 4, 5, 100, 200
Density = .035

,,

4-87

Downloaded from http://www.everyspec.com

If the computed GOTO statement is used, 200 branch labels (for CASE values 1
through 200 inclusive) must be specified in the statement. Memory can be
reduced if the CASE is simulated using the IF-THEN-ELSEstructure.

CASE structure simulation using the IF-THEN-ELSE structure is relatively
straightforward. Each CASE value is tested by a series of parallel tests,
i.e., an IF...ELSE IF...ELSE...ENDIF sequence. If the CASE values are not
equally probable, it may be better to use the IF...ELSE IF..sequence, testing
the most 1ikely values first.

Restricted FORTRAN Statement Usage

In order to maintain structured programmingconcepts, certain allowable’’’”””r
statements shall not be used except as required in the definition of standard
program structures. Unless required by standard program structure definition,
unconditional branching should not be used.

The GOTO statement is used in the definition of the following-
structures: DO-WHILE, DO-UNTIL and CASE. The computed GOTO is used in the
CASE standard structure. These shall not be used except in.the indicated .
structures.

The arithmetic IF should not be used. The IF-THEN-ELSE structure (with
nesting.sometimes required) will provide the same capability.

Statement numbers shal1 be used only on CONTINUE and FOLRMATstructures.

Other uses of the preceding statements shal1 be avoided..

. .

I

4-88

Downloaded from http://www.everyspec.com

3.2 PL/I

PL/I supports al1 of the basic structured programming structures. Once
the principles of structured programming are understood, writing structured
programs in PL/I can be accomplished with relative ease. .

IF-THEN-ELSE Structure

The IF THEN-ELSE structure causes control to be transferred to one of two
functional blocks of code (A or B) based on the evaluation of a.’lo9ical
expression (p).

If (p) THEN
DO;
code A .

ENO;
ELSE

DO,
code B

ENO;

The ELSE is verticallY.aligned with’”theIF, and s.tatements.controlled‘by the
THEN and ELSE shal1 be indented to show the span of control. A 00 group
(i.e., DO; ...END;) should be used in the THEN and ELSE portions of the -IF
statement to ensure that the span of control is explicit and understood. The
ELSE statement is optional and if not used would result in the following
code:

IF (p)
DO;
code:A

END;

DO Structures

The DO structures allow interactjve execution of a functional block of
code (A) based on a logical expressions(P). If the test is made prior to the
execution of code (A), it is a DO-WI{ILEstructure. If the test is made after
code (A), it is a DO-UNTIL structure. PL/I contains the control structures
necessary to implement the structured programming structures.

.4-89

Downloaded from http://www.everyspec.com

O-WHILE

The basic PL/I format for the DO-WHILE is:

DO WHILE (P):
code A

END;

One form of.the DO-WHILE with indexing is:

DO idl =c~gl *to exp2 by exp3 WHILE (p);

END;

. Th~ repeat option“providesan alternative method of specifying successjve
faluesofthe control variables as in: ,,

. DO idl = expl REPEAT (exp2) HHILE (p);
code A

END;

Another;”variation leaves;the predicate implicit inthe i.ndexing
,,

parameters:

DO idl = expl TO exP2 BY.exp3; ;
,.

,-
code A

END;

DO-UNTIL

The DO-UNTIL control structure executes a function’.and then tests a
logicalexpression to detennine whether to repeatit. The.code wit~in the
loop is always executed at least once and the loop terminates on a true .
condition. The basic PL/I DO-UNTIL is:

DO UNTIL (P);
code A

END; “-.

Consult’a PL/1”manual for variations of.this basic format. .

,,..

I 4-90

Downloaded from http://www.everyspec.com

CASE Strutture

The CASE structure selects one ‘ofa set of functional blocks of code
based on the value of an expression (e):

SELECT (e);
WHEN (el)

code A;
UHEN (e2)

code B;

WHEN (en)
code Z;

OTHERWISE
default code;

END

In this example, e and el...en are expressions. Mhen control redCheS the.

SELECT statement, (e) is evaluated. The expression in the first WHEN clause
(el) is evaluated and compared with (e). If the two are equal, code (A) is
executed; otherwise, successive expressions (e2..en) are evaluated until
either a match is found (and corresponding code is executed) or the choices
are exhausted. In the latter case, the default code is executed
unconditionally,

INCLUDE Capabi1ity

‘The capability of nesting blocks of code with other code blocks is useful
to top-down ‘programming. A projram, in PL/I terms, can consist of one or.more
external and/or internal procedures, or code incorporated from a library with
an %INCLUDE statement.

4-91

Downloaded from http://www.everyspec.com

3.3 c

Programs written in C offer some of the best opportunities for good
structured code. The 1anguage supports al1 of the structured constructs ‘ ~
discusssd in section 2.2. In addition, C promotes the concept of bui1ding a
program with modular units, many of which can be reused in other
programs/functions.

IF-THEN-ELSEStructure

The IF-THEN-ELSE structure causes control to be transferred to.one of two
functional blocks of code based on the evaluation of a logical exwessi.on
(p). The construct can easily be extrapolated to an n-way branch. The more
general form fol1ows:

IF [Pi)
{
code A;

.

iLSE IF [pn) ,.
1’
code Y;

/LSE
{
code Z;
)“
ENDIF

In the above examples, a series of tests are performed until either the
expression evaluates to “trtie”or ‘the“n” cases are exhausted. In the 1atter
case, code block Z (the default code) is executed.

00 Structures

The DO structures al1ow interactive execution of a functional block of
code [A) based on a logical expression (P). If the test iS made Prior to the
execution of code (A), it is a DO-UNTIL structure.

While C supports the spirit of both the DO-WHILE and DO-UNTIL constructs,
their syntacticalappearance can easily confuse the issue; the DO-UNTI.L
construct looks like a DO-WHILE looP.

I

4-92

Downloaded from http://www.everyspec.com

DO-WHILE

C‘S DO-WHILE construct is coded as fol1ows:.

WHILE (p)
{ I* while */

code A;
1 /* while */

AS long as condftion P evaluates to,“true”,”the code contained wfthjnithe
braces is executed.

00-UNTIL

As noted above, this construct can be visuallY’deceiving. Its format
suggests a 00-WHILE loop:

00
{ /* do ●/

code A;
) /* dc.*/

WHILE (p);

Close examination of the above logic should convince one that the spirit of
the 00-UNTIL construct is preserved. Code wi11 be perfoimed (at least once)
until the condition p evaluates to false.

CASE Structure

The CASE structure selects one of a set of functional blocks of code
based on the value of an expression (e). The C equivalent of the CASE
statement is the SWITCH statement. Its format is:

SWITCH (e)
(/* case *I

CASE VI :
code a;
BREAK;

CASE V2 :
code b;
BREAK;
.

DEFAilLT:
code z;
BREAK;

} (* case *!

4-93

I

Downloaded from http://www.everyspec.com

The expression (e) is successively compared to values V1...vn. If a case is
found whose value is equal to the value of e, the program statensent/block ‘
fol1owing the respectfve CASE statement is executed. Ncte that contrary,to
typical C form, multiple statements within a CASE code block are separated
solely by semicolons, not enclosed in braces!

The BREAK statement sfgnals the end of a particular case and “effectfvely
transfers program flow to the statement fol1owing the SWITCH’s closing brace.
Fai1ure to {nclude a BREAK statement results in the execution not-Only of the
statements in the case which matched, but al1 subsequent cases until either a
BREAK statement of the SUITCH’s closing brace is encountered.

The DEFAULT case is optional. It resembles the ELSE statement 1n the
IF-THEN-ELSEconstruct. If the expression (e) does not match any of the
preceding case values, the DEFAULT case code is executed. The BREAK statement
in the DEFAULT case shown above is somewhat superf1uous s{nce there are no
executable statements prior to the SWITCH’s terminating brace. Its inclusion,
is simply a style preference to aid In future maintenance. ..

,..

,.

4-’94

. . .. -

I

Downloaded from http://www.everyspec.com

3.4 Structured Programming in S/370 AssemblY Lan9ua9e

Since assembly language is,so closely tied to a specific processor, it is
impossible to present a generic approach to implementing the structured
constructs. Since it is widely used, S/370 Assembly Language is described
here as a representative example. The concepts are easiJy transportable to
other assembly language environments.

IF-THEN-ELSE Structure

The lF-THEN-ELSE structure causes control to be transferred to one of two
functional blocks of code (A or B) based on the evaluation of a predicate
(P). Macro implementationof this structure is:

IF (p)
code A

ELSE
code B

ENDIF

The format of the predicate (p) may take one of three forms. They are:

a. condition mask

b. operation code, operand 1, OpWdfSd 2, condition mask

compare instruction, operarid1, condition mask, operand 2 and are
discussedc~n the paragraphs below.

a. Condition Mask

The user can supply a condition mask.having a vilue from 1 to 14, or
a one or two character alphabetic mnemonic indicator. The valid alphabetic
expressions are identical to the extended branch mnemonic instruction codes
except that the leading “B” is dropped.” In addition, relational expressions
for comparison purposes such as LT and LE are included as valid operands. The
1ist of the mnemonics and equivalent masks is shown in the following table.

I

4-95

Downloaded from http://www.everyspec.com

Mnemonics and EquivalentConditional Masks

t4nemonic Meaning Conditional Mask

o Ones or.Overf1ow 1
P Plus 2
H High 2
GT Greater Than
L Low :’
u Minus or Mixed 4,
LT Less Than 4
NE Mot Equal 7
NZ Not Zero
E Equal ,;
EQ Equal 8
z Zero
NL Not LOW 1; ‘.

Not Minus 11
:: ’.’ Greater Than or Equal .11
NP Not Plus, 13
NH Not High 13
LE Less Than Equal
NO Not Ones .;:

Thus the instructions:

IF(EQ) and IF(8)

wi11 result in the same mask value to the branch or conditional instruction.

The alphabetic indicators.listed above are usuallY associated with the
instructionswhich”set the condition code and are more meaningful when used in
conjunction with them. Therefore, the user’is al1owed to w ite both the
instructionand the condition code mnemonic (or’actual value) to be used in
the branch instruction. Any two-operand instructionsare permitted. Two
formats exist for this option, one specificallyfor compare instructions and
one for al1 other types.

4-96

I

Downloaded from http://www.everyspec.com

b. Operation Code, Operand 1, Operand 2, Condition Mask

In non-compare instructions the user SUPP1ies an operation code, two
operands, and a condition mask. The instruction is written as it would appear
in an assembly 1anguage program with the exception that the operation code and
the first operand are separated by a comma, and the entire instruction is
enclosed in parentheses. The instruction is followed by the conditional mask
desired. Thus;

IF (AR,R2,R5,NM)

is interpreted as “if the content of register 2, after the content of register
5 has been added to it, is not minus, then ...”

c. Compare Instruction, Operand 1, Condition Mask, Operand 2

The format for the compare instruction differs from the
non-comparison type in that the relational operand appears between the two
operands being compared rather than after the second operand.

IF (CLC, 0(8,R2), GT, 8R2))
..

is interpreted as “if the logical comparison of the character string
referenced by 0(8,R2) is greater than the character string referenced by
8(R2), then ...”

The ELSE in the IF-THEN-ELSE structure is optional and if not used,
the macro reduces to:

IF (P)
code A

ENOIF

Code blocks shal1 be indented to indicate the scope of control of the
logic structure.

DO Structures . .

The DO structures allow iterative execu-tionof a functional block of code
(P) based on the evaluation of a predicate (P). If the test is made prior to
the execution of code A, it is a DO-WHILE structure. If the test is made
after code A, it .isa DO-UNTIL structure.

4-97

Downloaded from http://www.everyspec.com

Si”ncethe assembly language has branch instructionswhich can decrement
(or increment),compare, and branch (or not) depending upon the result of the
comparison, an indexed DO macro is presented. The indexed DO is a specialized
DO-UNTIL structure.

DO WHILE/UNTIL

The DO macro is used to control looping operations. The 9eneralized fo~
of the code to”represent the DO-WHILE is:

DO WHILE = (condition)
code A

ENDDO

and the format used to represent the DO-UNTIL is:

DO UNTIL = (condition)
code A

ENDDO

Statements within each structure (code A) should be “indentedto indicate the
scope of control of the logic structure.

The keyword operands (UNTIL=, WHILE=) are used with a pnedicate whose
format is identical to those described in the preceding IF-THEN-ELSE section.
Thus:

DO WHILE = (NP)
code A

ENDDO

provides for looping while the condition code is not positive, whereas:

.DO UNTIL =.(CLI, BYTE, EQ, C’A’)
code A

ENDDO

.provi’desfor loopinguntil the logical comparison of BYTE.and C’A! is equal.

4-98

Downloaded from http://www.everyspec.com

Indexing DO

The execution of the indexing DO is-governed by the keyword operands
FROM=, TO=, BY=. Each of the three keywords can indicate a register and an
optional value. The code structure is:

DO FROM = (rl,i), TO = (r2,j),.BY = (r3,k)
code A

ENDDO

with the recommended indentation as indicated.

CASE Structure

The CASE structure causes control to bepassed to one of a set of
functional blocks of code (A, B, . . ., Z) based on the value of an integer
variable. The macro for the CASE structure is:

CASENTRY (r)
CASE Number, Number, . . .
code A

CASE Number, Number, . . .
code B

ENDCASE

The CASE is used to implement’a decision process where there are a number
of conditions and subsequent actions to be taken under those conditions.
Control is transferred to a block of code having a given case number, when
that number is found in a specified general register (r). The determination
of the correct block of code to execute involves the use of a vector of
addresses.

The starting macro (CASENTRY) has one operand. It specifies a general
register which contains the case number of the block of code to be executed.
The other macro in the CASE macro set which has operands is the CASE macro.
The case numbers, which are to be assigned tcithe block of code following the
CASE macro, are 1istealas operands. Zero and negative numbers are not valid
case numbers. More than one case number may be assigned to each CASE macro
and they need not be in any specified sequence. If more than one case number
is to be assigned, they must be separated by commas.

4-99

Downloaded from http://www.everyspec.com

Note that the CASE structure is not defined if the value .ofthe integer
variable (general register) is out of range. Therefore, the general register
must be checked before entering the CASE structure. In addition, every case
number must be specified within the range of case numbers to ensure that the
proper code is executed. Where the density of the set of case numbers is
sparse (i.e., few case numbers having a wide range), alternate control logic
should be considered such as an .IF...ELSE IF...ELSE
IF...ELSE...ENDIF...ENDIF...ENDIF construct.

Restricted Use of Assembly Language Statements

In order to preserve the structured programmingconcept,’certain
instructions should be used on an’exception basis only. These are: branch
instructions--branchon condition, branch on count, and branch on index. They
involve the’language capability which affects change of control.

.+.

.,

,’

.;, .,,,. ,”, ,.:
,. ..:,. .,

4-1oo

.1

I

Downloaded from http://www.everyspec.com

3.5 Ada

Ada supports al1 of the structured programming structures. Further, Ada
permits these structures to be empleyed in concurrent processing (via the
Tasking model inherent with every validated Ada compiler) as well as in
sequential operations.

Boochl gives the following high-level view of Ada:

“An Ada system is composed of one or more program units, each of
which may be separately compiled. Program units consist of “subprograms”,
“packages” and/or “tasks”. A “subprogram” is either a procedure or function,
and it expresses a single action. A “task”, on the other hand, defines an
action that is 1ogical1y executed in parallel with other tasks. A task may,be
implemented on a single processor, a multiprocessor, or a network of
computers. A package is a CO1lection of computational resources, which may
encapsulate data types, data objects, subprograms, tasks or even other
packages. A package’s primary purpose is to express and enforce a user’s
logical abstractions within the language.”

For a more detai1ed explanation, a copy of the Language Reference Manual
should be consulted,2

IF-THEN-ELSEStructure

The IF-THEN-ELSE structure causes control to be transferred to one of
several functional blocks of code based on the evaluation of the 1ogical
expression (P).

if P then
code-block A;

else
code-block B;

end if;

Ada al1ows a variant on the IF-THEN-ELSE,denoted IF-THEN-ELSEIF. The
IF-THEN-ELSEIFstructure allows control h pass to one of multiple blocks
based on further evaluation of additional logicals.

lBooch, Grady: “Software ~,.=’‘:erfng with Ada,” The Benjamin/Cummings
Publishing Company, Inc.,.Menlo Park, CCA, 1983

2“Ada Progransning Language,” ANSI/ML-STD-lB15A, Department of Defense,
22 January 1983

4-101

Downloaded from http://www.everyspec.com

if P then
code-block A;

elseif P2 then
code-block B;

elseif P3 then
code-block C;

...
else

code-block Z;
end if;

In any case, the subsequent sub-blocks are optional. That is, an if-then .
may exist without either an else of elseif part.

if P then
code-block A;

end if;.

(In any case, execution continues at this point.)

In the above example, if P evaluates as TRUE, then code-block A fs
executed, then control fal1s to the next instruction after the “end if”. If P
is FALSE, then control passes to the next instruction after the “end if”.

Ada also permits qualified execution“ofmultiple conditionals. That is,
if P were actually made up of two evaluations (e.g., A=B and B=C), then
normally A=B WOU1d be evaluated and B=C WOU1d be evaluated. Those results
would be combined in a Boolean AND operation to produce a logical result. Ada
permits the user to define conditional evaluation of other parts of the
overal1 condition with the “and then” and the “or else”.

If P1 and then P2 then ... indicates that if-and-only-ifthe P1 conditional
evaluates to TRUE is the evaluation of the P2 conditional to be performed.
Similarly, if P1 or else P2 then ... indicates that if-and-only-ifthe PI
conditional evaluates to FALSE is P2 to be evaluated. This saves time on
evaluations and can prevent the evaluation of an erroneous conditfon.
Further, it explicitly defines what the evaluation is and 1eaves the choice up
to the user. Many 1anguages employ the “lazy evaluation” as fmplied by the
“and then” and the “or else,” but it is left up to the user to find out what
each implementationdoes.. With Ada, the user wi11 always have both options.

‘4-102

Downloaded from http://www.everyspec.com

j (76, structure I
The CASE statement is another example of a conditional. This structure

is most useful when many alternatives are available or when an expression may
take on many values and an “if” WOU1d be unwieldy. In the fol1owing example,
P1 is an object/expressionwhich will evaluate to a discrete value. 01 and 02
are individual/sets/ranges of values which pl may take on and the code-block
is that code to be executed when PI evaluates to any of the values in the
associated “when” statement. (The “=>” is read as “then’’..)

case P1 ts
when 01 =>

code-block;
when 02 =>

code-block;
. . .
when other => (tIiisis optional if-and-only-ifthe above

conditions exhaust the entire range of values to which the expression P1 can
evaluate.)

code-block;
end case;

00 Structures

00 Structures are constructed based on the basic loop ... end loop;
construct.

1Oop

code-block(s); ‘

end loop;

The above construct wi11 cause the execution of the contained
code-block(s) “forever”. To better fit the accepted corolIary, Ada has a
“while P loop ... end 100P;” construct. The fol1owing example reflects the
100P execution while some condition(P) evaluates to TRUE:

while P loop
●

code-block(s)

end loop;

4-103 (i

Downloaded from http://www.everyspec.com

There is no specific “DO-UNTIL”,but it may be simulated with the basic
1oop structure and the “EXIT WHEN” statement iiwnediatelybefore the “end 1oop”
statement. The “EXIT WHEN” indicates that when condition P evaluates to TRUE,
control transfers to the instruction immediately following the nearest “end
1oop” statement.

1Oop
code-block(s);
exit when P;

end loop;

To improve the maintainabilityof code, Ada permits “user-defined”
iteration. The form is “FOR identifier in some-range-of-value1oop ... end
loop;”. In the fol1owing example, P1 and P2 represent begin and end points of
some discrete type (e.g., integer, enumeration, character, etc.) where PI is
1ess that P2;”over which V is incrementedone member at a time. To reverse
(decrement) the direction, the word “reverse” fol1ows the keyword “in“.

for V in P1 .. P2 1Oop
code-block(s);

end loop;

Include Capability

The capability to reuse blocksof code in other code blocks is a useful
programing technique. A program may import external source code, in-~ine,
with the pragma INCLUDE (“file name where source code resides”) statement..

SimiIarJy, operations, types and objects may be “imported” from 1ibraries
via the “contextclause” by means of the “with” statement. “With” makes the
visible elements of a 1ibrary package available to the Ada program. This
differs from the “include” Pragma in that WITHing sets up external references
to objec”tcode and the ‘sourcefile is not changed during comPi1ation.

4-104

Downloaded from http://www.everyspec.com

Section 4. Module Construction

Each software module shall be constructed to have.the following
characteristics.

4.1 Completeness

The beginning and end of any program or control segment shall be
contained in a single structured module.

4.2 Function

Each module shal1 perform a single well-defined function, where al1 the
elements of the module contribute to performing only one function. In
addition, implementation details of the module should be hidden from all other
modules. Should the implementation details change, only the module performing
the function would be directly affected and only that module would require
modification.

4.3 Entry/Exit

Each module shal1 contain a single entry and a single exit. Upon
completion of processing, modules shall return to the cal1ing routine, not
exit to another module. Interfaces (entry and exit conditions and parameters)
shall be clearly indicated and defined.

4.4 Declarations

Declarative and data statements in a module shal1 be placed after the
preface commentary block and before the first executable statement. Although .
more than one data declaration per 1ine is permissible, care should be taken
to ensure that complex data structures are defined clearly.

4.5 Imbedded Constants

Literal constants shal1 not be imbedded in executable statements and
shall be avoided in declarations or record and array sizes. Constants shal1
be defined in the declaration section of the program so that needed changes
can be made in one line of code. Examples of possible imbedded constants
are:

,’
Array sizes
Value of pi

: Indexing information in DO FOR loops
Array subscription

t Record sizes or line lengths.

4-105

Downloaded from http://www.everyspec.com

4.6 Arguments

In general, arguments in call statements shall not contain arithmetic or
logical expressions. Each argument shall be represented by a single
variable. The number and types of arguments in the call to a module shal1 be
the same as the module’s formal parameter 1ist; i.e., no short cal1s. In
addition, any dummy elements used in the cal1 must be identified.

4.7 Exponents

Whole numbers used as exponents shal1 be expressed as integers;i.e.,
A**3 not A**3.00

4.8 Mixed Mode #rithmetic

Mixed Mode arithmetic expressions shal1 be critical1y examined and
avoided if possible. Iihenno other recourse is available, evaluate the
expression carefullY to ensure that the type conversionyields the expected ‘
results. To help future code maintenance, a consnentshould bring attention to
the conversion. The intent is to make any type conversions explicit.

4.9 Explicit Branching

In order to implement structured programming, it is necessary to prohibit
the use of explicit branching (GOTO type instructions). Only branching
instructionswhich are necessary to simulate structured programmingconstructs
are permitted.

4.10 Error Handling

Al”]errors shal1 be 1egged to record their occurrence and to
facilitate1ater analysis of error conditions. There must be a record of
al1 errors that occur in the system.

Al1 error conditions shal1 have known responses. The potential
effects of errors shall be known in advance and responses determined
before they occur.

Errors shal1 not be permitted to propagate. They should be
discovered at the place where they occur and shall be handled in such a
manner that one error does not cause others, producing a cascading
effect.

Upon encounter ng an error which does not perrnit further execution
of the module, the module or operating system shall free any resources
the module has acquired before it terminates..

I

I

4-106

Downloaded from http://www.everyspec.com

4.11 Range Checks

Limit checks shall be perfomu?d to ensure that variable contents are
within the expected range of values. If a variable value does not fal”lwithin
the specified 1imits, appropriate error action shall be taken. The domain of
al1 variables shal1 be specified during design, declared during
implementation, and checked during operation. Examples of variables which
shall be range checked are:

Parameters
.,

Array subscripts

Variable parameters in DO CASE structures

. Variables used as initial, incremental or terminal values in
looping structures.

4.12 Indices and Subscripts

Loop index parameters and array subscripts shal1 be expressed as integer
constants or variables. Mhen the 1anguage supports it, they may be expressed
as enumeration data types.

4.13 Loop Termination

Loop tetmination shall be guaranteed. Tennination conditions shal1 not
depend on the correctnessof assumptions made concerning the loop parameters
unless these assumptions have been verified immediately prior to loop entry.

4.14 Use of Labels and Names

Labels and names shalj be meaningful and obviously unique. Labels such
as LABOT1 and LABOTl are confusing, and typographical errors are easy to make
and difficult to discover,

4.15 Global and Shared Variables

Global or shared variables should be avoided. When a variable is shared
between two or more modules, each module must trust the other modules to use
the variable properly. Reliance on correct use involves a risk that may not
be acceptable.

Variables which are required in more than..onemodule should be
communicated as arguments. Limiting the scope of variables helps to ensure
that the exact meaning ?f a variable is known.

4-107

Downloaded from http://www.everyspec.com

In those cases where there is clear technical justificationfor the use
of coimnondata,.the following restrictionswil1 apply:

Only common areas which’can be accessed by name will be used
(e.g., FORTRAN’s named COMMON).

The 1ength and description of common data areas wi’11be the same
“ for each module using the block.

When possible, only one copy of the common block wil1 be
maintained and, when possible, must be “INCLUOE”d. in each module
rather than coded in-1inc.

4.16 Standard Linkage Conventions

If the module is ‘beingimplemented in assembly language, standard
conventions for communications between modules shal1 be defined and used. The
goal is to construct modules which are independent, self-contained,and which
communicate with other modules in wel1-defined ways. Some items which should
be considered are:

Registers shall be saved before relinquishingcontrol’to another
module and restored when control is returned.

. Communication shall be via an argument 1ist.

. There shall be a standard method for communicating the calling
module’s return address.

4.17 Input and Output

Input routines and output routiriesshal1 be CO1lected into a 1imited
number of modules. Assembling these routines into a.small number of modules
facilitates”the monitoring and controlling of input and output data. In
addition, modification is“made easier by having these routines restricted to a
limited area.

4.18 Naming Standards
,.,

The names for units of code and data.shal1 be descriptive of their
functions or content. They shal1 be related to other software and supporting
iterns,while foilowing 1anguage conventions and constraints. Special prefixes
and suffixes may be appended to indicate additional informationsuch as data
types of variables or task entry points.

I

I

4-108

I

Downloaded from http://www.everyspec.com

4.19 Preface Commentary Standards

The foilowing contains standards for a set of comments to be used as
in-source documentation for every program module. Each module of code shall
contain a standardized block of comment statements, immediately following the
module declaration, which describes the module’s function, usage and operation
requirements. The preface shall be identified by.a unique coimoentline
indicator to faci1itate automated searches and extractions of information.
The preface commentary shal1 contain, at a minimum, the foilowing
information.

4.’19.1 NAME Section - The NAME section of the preface block shal1 contain the
name used to identify the module, its version identifier, and its entry
point.

4.19.2 PURPOSE Section - The PURPOSE section of the preface block shall
contain a brief description of the purpose/functionof the module.

4.19.3 INPUT/OUTPUTSection - The INPUT/OUTPUT section of the preface block
shal1 contain the name of each 1/0 file used by the module with an indication
of whether the file is input to the module, output from the module or both.
In addition, modules utilizing interactive screen 1/0 should provide a brief
synopsis of the screen’s function.

4.19.4 PARAMETER Section - The PARAMETER section of the preface block shal1
provide a definition of all arguments required by the module and all values
(output parameters) returned by the module. The definition of parameters
shall include: name, data type, size, and functional use.

4.19.5 CALLS Section - The CALLS section of the preface block shal1 provide a
list of all routines called by this program module and a 1ist of all routines
that cal1 this program module.

4.19.6 GLOBAL DATA Section - The GLOBAL DATA section of the preface block
shall provide a 1ist of al1 common or global data used in the program
nodule.

4.19.7 RESTRICTIONS Section -’The’RESTRICTIONS section of the preface block
shall contain a list of any special or unusual features which restrict or
Iimit the module’s performance cha,racteristies.

$.19.B ABNORMAL ENO Section - The ABNORMAL section of the preface block shal1
:ontain a 1ist of abnormal return conditions and actions.

4-109

Downloaded from http://www.everyspec.com

$.19.9 METHOD Section - The METHOO section of the preface block shall contain
i detai1ed description of the methods used by the module to perform the
Function described under PURPOSE. This functional description shall reference
iny documents which contain pertinent illustrations,graphs and tables, or
ihich provide more “detailconcerning equations solved and algorithms.
~mpleyed.

$.20 In-Line CormnentaryStandards

Commentary within the body of source code shal1 define the processing
oeing performed. These comments shall identify the purpose of each control
statement. A control statement is defined as onewhich conditionally alters a
iata value or alters the sequential execution of statements. For ease of
“eading, comnents may be grouped at the beginning of a set of
logically-contiguous statements. They should be positioned so.as not to
~bscure the “visualcues about program structure provided by indentationand
pdragraptling.As a minimum, in-1ine comments should precede blocks of one or
nore of each of the following:

IF statements - Describe the reason the action is performed if the
test is satisfied

Input/Outputstatements - Identify the nature of the record or
file being processed

;>
DO “statements- Describe the reason the action is being performed

- CALL statements - Describe the reason the procedure is beingcal led

4.21 Indentationand Paragraphing Standards

Source code shall be clearly indented to indicate the span of control of
a structured figure so that logical relationships in coding correspond to
physical positions on program 1istings. Executable statements are restricted
to one per 1inc. The continued portions of.statementsrequiring more than one
1ine should be indented in a block beneath the first 1ine of that statement.
More than one data declaration per 1ine is permissible; some logical order of
data declaration should be used, however (d.9., alphabetical). Lengthy
statements, such as complicated conditional branches, should be broken down
into sequences of shorter,code. Bl”ank1ines or their equivalent shal1 be
us@d to provide proper separation of routines and to enhance readabi1ity;

I

I

Downloaded from http://www.everyspec.com

I
\

●

Section 5. Product Development Library

5.1 Introduction

A product development library is a practical necessity in the
implementationof modern programming technology. It serves as a’repository
for the data necessary for the orderly development of computer programs. A
product development 1ibrary has foUr components: I

1 Internal libraries are used to store data (e.g.; source code, object
code, input data) in machine readable form.

I 2. External 1ibraries are used to store corresponding data in hard copy
(human readable) form. I

3. Computer procedures provide easy access to computer processing of
data stored in internal 1ibraries. These include procedures for compiling and
assembling source code, 1ink editing, and system testing. I

4. Office procedures specify such things as the maintenance procedures
for both internal and external 1ibraries, and standard formats for external
libraries. 1
The components of the product development1ibrary should establish and ensure
that there is an exact correspondencebetween the internal (computerreadable)
and external (programmer readable) versions of the developing system. This
basic correspondence is established by the computer and office procedures.

I A product development 1ibrary may be implemented in”any of the following
forms: a manual system, a basic system with some automated support, and a
third level (the most automated level) with full management data CO1lection.

‘1

I 5.2 Manual Product Development Library
I

The most rudimentary system is a manual, non-automatedone. The manual
system is the easiest and least expensive way of collecting data. It should
be implemented in accordance with the following:

a. General Requirement. A computer program and data repository .shal1 be
established and maintained under control of a 1ibrarian in a central
location. Faci1ities and procedures for the generation, storage, and
maintenance of al1 software developed shal1 be implemented. The procedures
established shal1 provide the fol1owing:

4-111

Downloaded from http://www.everyspec.com

/

(1) The identificationand delegation of responsibilitiesfor
clerical and record keeping functions associated with the programming process
and the maintenance of the 1ibrary.

(2) The delegation of responsibilitiesfor all machine operations
with regard to such items as project iflitiation/termination, program test
philosophy,output media/frequency,etc.

(3) The procedures for recording, cataloging, and filing of all code
generated on the project, both intermediateand final; and for the retention
of supersededcorrected code for stated retention periods.

(4) A method.for controlling the version(s) of the code contained in
the library and the method for providing visibility into this process by.
configurationmanagement personnel.

(5) A method for‘CO1letting and disseminatingbasic management data
on the use of the 1ibrary facilities and status of the programming
activities.

5.3 Basic Product Development Library

A basic system should be implemented in accordance with the following:

General Requirement. A data repository shal1 be maintained in two
formsy” Data is stored in an internal 1ibrary which is computer-residentin
machine readable form. The identical data is also stored in an external
1ibrary which is in hard copy form, in organized project notebooks.
Procedures shal1 be established for this repository to define:

(1) The delegation of clerical and record keeping operations
associatedwith the programing process and the maintenance of both the
internal and external 1ibraries.

(2) The delegation of all machine operations with regard to such
areas as project initiation/termination,program test philosophy,output
media/frequency,etc.

(3) The requirements for the recording, cataloging, and filing of
al1 code generated in the project, both intermediateand final; and for the
retention of superseded corrected code for stated retention periods.

b. Source Data Maintenance. The product development 1ibrary shall be
structurallyorganized to provide the following capabilities:

I

I

4–112

Downloaded from http://www.everyspec.com

(1) Data File Storage - The capability to store within the internal
1ibrary files of source and object code, control language, code enabling the
loading and execution of several files stored, etc.

(2) Data Access - Direct access of a single unit of stored data in a
timely fashion. Further, the capability to perform a multi-1ibrary search
during retrieval of input for purposes of compilation, 1inkage, execution, and
output processing.

(3) Library Backup - A capability to recover from inadvertent 1oss
or destructionof data. This involves back-up storage on a storage unit
independentof the internal 1ibrary (e.g., magnetic tape, disk pack, punched
cards) and also the regeneration of the 1ibrary data files from this back-up
storage. This back-up capability shal1 selectively regenerate and restore
data so that it is possible to recover portions of the total product
development 1ibrary data base without the need to perform ful1 storage dump
and restore operations.

(4) Data Maintenance. The capability to add, delete, or replace one
or more units of data in an internal library file; to copy one or more
segments of data from one 1ibrary to another. Further, the automatic
generation of program stubs for segments of source code which remain to be
developed (coded) and are not currently stored within the 1ibrary. Lastly,
the capabi1ity to merge two data fi1es from two different product development
libraries into a single data file.

Output Processing. This involves the output of data stored in the
file(~) and the output of related control data for use by both programming and
management personnel. As a minimum, data output shal1 include:

(1) Project Status Listings - Status informationwith regard to a
section within a project to include such,items as module name, date/tirIte
informationretrieved, storage space allocated and used, module language,
creation/1ast update, number of 1ines per module.

(2) source Listings - Printed output of any segment which is in
card-image format. The output contains such items as print date/time, segment
type, 1ine numbering and,nesting-indentation,segment update information.

(3) Program Structure Report - This output (for a specified module)
illustrates a hierarchically nested and indented list of all modules which are
referenced by an “include” statement, either in the originally requested
module or in modules which are themselves “included.” Provisionsare also
included with regard to the “cal1” statement. An alphabeticallyarranged 1ist
of all referencedmodules follows the hierarchical listing.

4-113

Downloaded from http://www.everyspec.com

(4) Magnetic Tape - The capability to copy one or more specific
segments of data or files of data onto magnetic tape for permanent storage or
for distributionto other computer facilities.

d. PrograrmningLanguage Support. This capabi1ity includes the
validationand compilation of program source code stored in the product
development1ibrary. The product development 1ibrary shal1 interface with or
invoke pre-compilersand compilers for the purposes of syntax checking of both
structuredand unstructured source code, compiling the source code, and
storing the resultant object module within the 1ibrary. Further, it shall
provide 1oad module generation to execute the necessary computer programs
(i.e., to convert object modules into executable programs, to store the
resultingmachine code in the 1ibrary, to 1oad the program for subsequent
execution).

e. Library System Maintenance. To provide procedures to generate and
maintain the product development 1ibrary system. This includes,product
development1ibrary installation; initializationof product development
1ibrary projects; creation of any product development l,ibrarydata files
(sections);deletion of a section, 1ibrary, or project; and backup/restore
either on a project, library, or section level.

f. Prfvacy/AccessConstraints. The product development 1ibrary shall
provide for the integrity of the data stored. This includesmaintaining the
separationof different versions of projects/programsunder development,
control over inadvertentdestructionof data, and protectionof data from
unauthorizedaccess.

5.4 Ful1 Product Development Library with Management Data Collection
and Reporting

A full product development 1ibrary with management data collection and
reporting shall contain the functions defined for the Basic Product
DevelopmentLibrary and the additionalcapability of providing full
privacy/accessconstraints, documentationsupport, and management
data/collection/reportingas specified herein:

Privacy/AccessConstraints. The product,development1ibrary shal1
provi~~ control over the integrity and security of the data stored within the
1ibrary; namely, control over different versions of prOJectS/Pro9ranIsunder
development,control over the inadvertentdestructionof data, and control
with regard to the protection of data from unauthorized access. The design
requirements1isted herein arenot intended to support the protection of
classified data.

(1) Data Integrity - Procedures shal1 be established for maintaining
control over multiple versions of a program and also control over various

levels of Dr~ with wlflc . .

4-114

Downloaded from http://www.everyspec.com

r
version. A version is defined as a complete program or program system as it
exists at a specific point in time, usually related to a specific milestone in
the development cycle. The ob,jectivqof version and 1evel control is to allow
a development and/or maintenance group to manipulate multiple versions of the
same program system (e.g., operational version, development version,
maintenance version) stored in separate 1ibraries without unnecessary
duplication of source or object code. With version control, it is possible to
merge data from several 1ibraries for the purpose of performing tests.

(2) Data Destruction - Procedures shal1 be established to 1imit data
destruction [and 1ikewise data recovery) to authorized personnel only. At a
minimum, these procedures shall establish controls at the project, 1ibrary,
and data file levels as defined for the designated product development 1ibrary
installation. Further, the product development 1ibrary design shal1 prevent
the addition or copying of data segments into a product development library
file if segments with the same names already exist in the file.

(3) Data Protection - The product development 1ibrary shal1 contain
facilities for the protection of data stored in project files and for the
prevention of unauthorized access and update.

b. Management Data Collection and Reporting (MDCR). This capability
involves the collection and storage of data related to program development and
maintenance and subsequently, the generation of management reports containing
the data and/or summaries of data. A separate management data file is
generated and maintained for each project for which management data is
collected. The minimum requirements for the MDCR are as follows:

I (1) Functional Requirements. The major processing functions
required to satisfy the MDCR functional requirements are:

(a) Collecting - A facility to automatically gather and
store necessary data in indi~idual computerized‘databases such as test
data, source code, object code, etc.

(b) Updating”- A capability to add, delete or replace
management data.

(c) Archiving - The capability to record historical
management ‘data.

(d) Reporting - A facility to retrieve and output
managemerstdata in a convenient and meaningful manner.

I

Downloaded from http://www.everyspec.com

(2) Collection and Reporting Levels. The MDCR shal1 collect,
update, accumulate, and report data at different levels of the software
hierarchy.

(3) Data Classes and Types. Collected data stored in the product
development 1ibrary to support planning and managing the software development
shall be as follows:

(a) Project Environment Definition - This data, entered at the
system level during the early stages of a project (i.e., Software Requirements
Specificationof System/SubsystemSpecification),shal1 define such items as
project title, narrative descriptionof project, milestone schedule including
start/end dates, project personnel needed (job tYPe, famfliaritY with hardware
and program language, experience level, number, etc.), estimated
travel/workspacerequirements, project complexity and hierarchical structure,
informationregarding estimated amounts and types of documentationto be
produced (i.e., standards, users guides, test plans and reports, installation
manuals, etc.), and project summary reporting format/frequency.

NDTE: Storage of the above data in the product development 1ibrary is
optional since it may be acceptable to collect this data on a
one-time manual form.

(b) System Descrip~ion Definition - This data describes the
modules and programs constituting the software system being developed. This
data, most of which should be automaticallycollected, contains such items as
module or program name, development state/end dates, programmer S)
responsible,number of 1ines of source code, program language, revision
number/date,etc.

(c) Computer Utilization Definition - This data describes the
usage of the computer facility. It includes such times as estimated computer
turnaround time, job name, jeb submitted/received times, programmer name, and
number of runs per job.

(d) Resource Cost Definition - This data describes the dollar
cost and/or man-months needed for the project in terms of several categories
(e.g., personnel, travel, computer time) stored on a reporting CYC1e/period
basis. The data consists of such items as project name, man-month effort for
each reporting cycle by personnel type (i.@., managers, programmers, analYsts,
clerical), material costs (supplies,equipment rental, etc.) for each
reporting CYC1e, personnel/travelcosts, computer time/costs,and
m~scellaneous costs (special hardware, office space, etc.).

I

I
4-116

Downloaded from http://www.everyspec.com

(e) Program Product Definition - This data includes information
pertinent to the quality assurance and production of source code such as
number of compilations/assemblies,1ines of source code affected (inPut,
added, deleted, changed), informationpertinent to eff!ciencyldocumentation
improvementsrealized, errors experienced (keying clerical, standard
omissions/misinterpretations,etc.), and extensions/changesto initial
software requirements specificationfor project/program.

(4) Report Classes. A report generation capability shal1 be
included in the MDCR to output at least the following information:

(a) Program Module Statistics - Statistics output relative to
each of the hierarchical levels. Detailed reports produced at the module and
unit level contain such informationas period of reporting cycle.,module
name/programmer,module version, 1ast date modified, number of update
executions, number of 1ines of source code involved both cumulative and for
the reporting period. Summary type reports are produced at the project 1evel
and contain such information as name, start “date,number of programs/modules,
number of 1ines of higher order language source, and number of 1ines of
assembly code.

(b) Computer Utilization Statistics - These reports include
both detailed reports and summary reports for the project manager. Examples
of data reported are job name, number of runs both to date and for the
reporting period, average computer turnaround time both to date and for the
reporting period, and maximum computer turnaround time both to date and for
the reporting period.

(c) Program Product Statistics - These reports track the
program development and update activity. Data shal1 include reasons for
making the updates.

(d) Program Structure Reports - These reports 1ist the total
tree structure of the program starting at the module specified by the user and
including al1 “included” or “called” source modules. The reports wil1 also
include a cross reference 1isting of al1 “inc.1uded” or “called” source
modules.

(e) Historical Reports - The archival data to be retrieved
would be identifiedby using search criteria supplied by the user such as
project name, date range, and range of project size (expressed in terms of
project source modules). These reports wil1 contain cost data and key
historical data items from the other MDCR Report Classes cited in this
paragraph for both active and inactive software projects.

4-117

Downloaded from http://www.everyspec.com

,.,

c. DocumentationSupport. The basic requirements include the storage,
update and output of product”development 1ibrary data as specified for the
t40CR. Other desirable, but not required, capabilities are as follows:

(1) Print in a user specified sequence one or more modules of
program stored in the product development1ibrary. There also should be a
capability to merge segments of program design language, program source code,
and textual data into one output listing.

(2) Format an output 1isting in accordance with the following user
supplied information: header to be printed at tdp of page; spacing between
segments of’data; spacing between 1ines of output; and number of 1ines to
print on a page.

(3) Automatic page numbering beginning with a user-suppliedpage
number.

(4) Pririta title pagecontaining: document title, document date,
author’s name, organization and address.

,,,
(5). Generate a magnetic tape in print image form..,This allows the

distributionof documentation,irimachine.readable fo~ for easy storage.and
reproduction.

4-118

Downloaded from http://www.everyspec.com

PART V - SOFTWARE TEST AND OPERATIONS

Downloaded from http://www.everyspec.com

5-2 (Blank)

Downloaded from http://www.everyspec.com

5.1 SOFTWARE GENERAL UNIT TEST PLAN

5.1.1 POLICY AND REQUIREMENTS SUMMARY (From NSA/CSS Software Acquisition
Manual 81-2, Policy 5.1).

Software developers shal1 prepare a General Unit Test Plan which
defines the scope and standards for the testing that must be successfully
completed for each software unit.

The General Unit Test Plan shall contain, as a minimum:

a. General project standards for unit test thoroughness;

b. A description of how the.developer wil1 conduct and monitor unit
testing to assure compliance with the Plan;

c. An identificationof unit test input data that must be supplied by
external sources and the plan for obtaining these data.

5.1.2 GUIOANCE

This document should not describe.any test cases. It is a project-wide
scope and standards document for unit-level testing. Unit-specific test
information (e.g., unit test case descriptions)appears in each Unit
Development Folder.

5-3

Downloaded from http://www.everyspec.com

.GENERALUNIT TEST PLAN

TABLE OF CONTENTS

Section 1. Purpose and Scope

Section 2. Applicable Documents
2.1 Standards

Section 3. General Project Standards for Unit Testing

Section 4. Unit Test Implementation

Section 5. Unit Test Input Data from External Sources

Section 6. Quality Assurance

I

I
5-5

Downloaded from http://www.everyspec.com

I

Section 1. Purpose and Scope. This section shall describe the purpose and
scope of unit testing and shall describe its relationship to other test
phases.

Section 2. Applicable Documents. This section shal1 identify al1
documentationthat is used as a basis for this test plan, including
documentation that is required to support the unit testing that is being
specified. The document title, number, date of issue, etc., shall be
presented for each document 1isted.

2.1 Standards. This paragraph shal1 reference any specificationsor other
relevant standards that will be used during the test design, during the
preparation of the test plan, or during unit testing.

Section 3. General Project Standards for Unit Testing. This section shall
describe general project standards for thoroughness of unit testing. Examples
of standards for unit tests are as follows:

a. Verification of al1 computations using nominal, singular, and
extreme data values;

“b. Verification of all data input options;

c. Verification of all data output options and formats, including
error and informationmessages;

d. Exercise of all executable statements in each unit at least
once;

e. Test of options at branch points in each unit.

Se;tion 4. Unit Test Implementation. This section shall describe how the
developer will conduct and monitor unit testing to assure compliance with this
plan. Some examples are:

a. A description of the criteria and techniques to verify
compliance of the code with unit-level design budgets (e.g.,
sizing, accuracy, timing);

b. A description of how the project wil1 verify, at the unit
level, that applicable interface requirements have been
satisfied;

c. A description of the support software that will be needed for
unit testing (e.g., test data generators, test drivers,
dynamic path analyzers).

5-6

Downloaded from http://www.everyspec.com

. .

Section 5. Unit Test Input Data from External Sources. This section shall
Tdentify unit test input data that must be SUPP1ied by external sources (e.g.,
users) and the plan for obtaining these data.

Section 6. Quality Assurance. This section shall define the developer’s
management procedures for reviewing and evaluating unit test results. I

5-7

Downloaded from http://www.everyspec.com

5-8 (Blank)

Downloaded from http://www.everyspec.com

5.2 SOFTWARE

5.2.1 POLICY
Manual

SYSTEM INTEGRATION‘ANDTEST PLAN

ANO REQUIREMENTS SUMMARY (From NSA/CSS Software Acquisition
81-2, Policy 5.2)

Software projects shall plan for and conduct software integration and
test activities which will be accomplished prior to Software System 0T8E.
These test activities shal1, asa minimum:

a. Integrate the software units into a cohesive, nominally executing
software product;

b. Demonstrate the satisfaction of the complete requirements set in
the Software Requirements Specification; ..

c. Demonstrate software operability over a range of operating
conditions (normal and abnormal).

These activities shal1 be described in a Software System Integration
and Test PIan. Essential test resources, including test support tools and
equipment, shal1 be available and ready by the start of associated test
activities.

A preliminary version of the Software System Integrationand Test P1an
shal1 be prepared prior to PDR. The complete plan shal1 be prepared prior to
CDR and, as appropriate, updated prior to the initiation of the integration
and test activity.

Before integration testing begins, the Software Acquisition Manager
shal1 meet with the Oeveloper to evaluate the adequacy of the test planning
and preparation activities. After integration testing is completed, the
Software Acquisition Manager shal1 evaluate test results and verify that the
software is ready for Software System DT&E.

5.2.2 GUIOANCE

The Software Integrationand Test activity includes the integration of
software units into builds and the integration of single builds into larger
builds. When al1 of the bui1ds have been assembled, integrated, and tested,
the final build is a fully integrated software system that executes in a
control1ed test environment. The Software Integrationand Test P1an describes
the approach for al1 1evels of software integration and the plan for testing
the software elements as they are joined to form an operational conflguration.

For each build, the first integration tests should demonstrate that
software units execute together. Once this is proved, a second group of tests
should be planned to verify the control paths through the software. This
includes testing to ensure that controls exercised through the man-machine
fnterface and other external sources are correct and that internal control
paths function as they were designed to function. The next group of

5-9.

Downloaded from http://www.everyspec.com

integrationtests should test the internal data integrity of the software.
., These tests may require instrumentationto monitor data values and system

changes affected by changes in data values. After the software passes these
integration tests, a fourth group of tests should be conducted to verify
support to external software interfaces,performance, accuracy, error
recognition,-and recovery. As new builds are added to existing bui1ds,
additional tests should be conducted to demonstrate that features and
capabi1ities of earlier builds sti11 function correctly with the new features
and capabilities.

5-1o

Downloaded from http://www.everyspec.com

5.2.3 FORMAT FOR THE SOFTWARE SYSTEM INTEGRATIONANO TEST PLAN

SOFTWARE SYSTEM INTEGRATIONAND TEST PLAN

TABLE OF CONTENTS

Section 1. Purpose and Scope
1.1 Relationship to Other Test Activities

Section 2. Applicable Documents
2.1 Oevelopment Specifications
2.2 Standards
2.3 Other Publications

Section 3. Integrationand Test Identification

Section 4. Resources Required
4.1 Personnel Requirements

Faci1ities/Hardware
::: Interfacirig/SupportSoftware

Section 5. Test Management
5.1 IntegrationTest Team Organization & Responsibilities
5.2 Responsibilitiesof Other Organizations
5.3 Product Control
5.4 Test Control

Evaluation and Retest Criteria
::: Test Reporting
5.7 Test Review
5.8 Test Data Environment

Section 6. Test Structure and Design
6.1 Test Levels
6.2 Test Approach
6.3 Test Inputs
6.4 Test Cases/Classes of Tests
6.5 Test Identification

Section 7. Software Requirements to be Satisfied Through Integration
Testing

7.1 Software Requirements
7.2 Requirements Verification Traceability

Section 8. Schedules

5-11

Downloaded from http://www.everyspec.com

5-12

Downloaded from http://www.everyspec.com

Section J. Purpose and Scope (PDR). This section shall describe the
purpose and scope of software system integration testing and describe its
relationship to other test phases. It shall describe the top-level concepts
and goals for integration and the strategy for fulfilling these goals. It
shall also describe how the integration strategy will provide for verification
of essential system services, such as an augmented operating system or a new
file manager, before beginning integration of software using these services.

1.1 Relationship to Other Test Activities (PDR). This section shall
describe an activity network which shows the interdependenciesamong the
various integration test events and schedules.

Section 2. Applicable Documents (PDR). This section shall identify al1
documentation that is used as a basis for this test plan, including
documentation required to support the integration testing that is being
specified. For each document 1isted, the document title, number, date of
issue, etc., shall be given.

2.1 Development Specifications (PDR). This paragraph shall 1ist al1
development specifications (e.g., Software Requirements Specification,
System/SubsystemSpecification, Program Specification, Interface
Specifications) that identify the items being tested.

2.2 Standards (PDR). This paragraph shall 1ist any specificationsor other
relevant standards that are used during the test design, during preparation of
the test plan, or during integration testing.

2.3 Other Publications (PDR). This paragraph shall identify reference
documents, manuals, diagrams, exhibits, etc., that are used with this test
plan or activities described in this test plan.

Section 3. Integration and Test Identification (PDR). This section shall
Identify the computer programs that will be tested and turned over for formal
Software System Development Test and Evaluation. It shall also identify the
criteria used to select “Builds” (or capability increments) for integration
and testing.

Section 4. Rpsources Required.

4.1 Personnel Requirements (PDR). This section shall describe the
responsibilities, authority, and particular knowledge and skil1s required for
personnel conducting integration testing activities. It shall also describe
the number of people involved in this activity.

I

5-13 I

Downloaded from http://www.everyspec.com

4.2 Facilities/Hardware(PDR). This section shall identify the
facilities, computer hardware, and interfacing hardware to be used for
integration. It shall also identify any planned transitions in facility
location, computer hardware, or interfacing hardware during integration, and
the plans for accommodating problems associated with the transitions (if
any).

4.3 Interfacing/SupportSoftware (PDR). This section shall describe
interfacingand support software needed to conduct the integration test
activity (e.g., operating system, pre-processors,test,drivers, test data
generators, post-processors,other computer programs).

Section 5. Test Management

5.1 IntegrationTest Team Organization and Responsibilities (PDR). This
paragraph shall describe individual and organizational responsibilitiesfor
conducting and coordinating the integration testing activity. It shall also
identify the names of people who are responsible for the activities.

5.2 Responsibilitiesof Other Organizations (PDR). This paragraph shal1
identify any responsibilitiesor requirements for participationof customer,
user, or other organizations in the integration testing activity.

5.3 Product Control (PDR). This paragraph shal1 identify the software and
hardware control procedures to be used during integration testing. These
procedures can be included by reference to the ConfigurationManagement Plan,
if applicable.

5.4 Test Control (CDR). This paragraph shall describe procedures to be used
by integration test personnel for controlling integration test activities and
products produced during those activities (e.g., deck submittal, output
storage, team meetings, etc.).

5.5 Evaluationand Retest Eriteria (CDR). This section shall define the
developer’smanagement procedure for reviewing and evaluating test results.
The evaluation criteria (successfultest criteria or accept/reject 1imits) for
each test shal1 be the means for determining success or failure of the tests.
This section shal1 also identify the criteria for retesting integration
tests.

5.6 Test Reporting (PDR). This paragraph shall identify requirements and
procedures for preparing and reviewing reports of formal and informal testing
at each level of integration testing. This includes reporting results of
integration testing to both the developer’s and the customer’s project
management.

5-14

.

:

I

I

Downloaded from http://www.everyspec.com

5.7 Test Review (PDR). This paragraph shall identify the informal
developer reviews of each level of integration testing. It shall also
identify the formal developer review at the conclusion of integrationand test
that will determine the readiness of the software system for formal Software
System DT&E.

5.8 Test Data Environment (PDR). This section shal1 identify the
activities required to generate and validate the software data base to be used
in integration testing. It shal1 also identify the activities required to
produce: (a) nominal or calibration test data, and (b) stress test data
(including noisy and otherwise imperfect data) for each level of integration.

Section 6. Test Structure and Design

6.1 Test Levels (PDR). This section shal1 identify the “Builds”
(capability increments) which wil1 undergo integration and testin9. Within
each BuiId, it shal1 i“dentifythe levels of integration and test to be
conducted (e.g.,.task, sub-function,function).

6.2 Test Approach (PDR). This paragraph shall identify the test approach
for each test level and Build (or capability increment). It shall also
describe the concepts and methods for stressing the software system (e.g.,
with noisy and otherwise imperfect input data, or with peak loads) during
integration testing.

6.3 Test Inputs (CDR). This section shal1 identtfy how each Software entitY
to be tested (at each level of integration)will obtain necessary test data
(e.g., from a test generator, from deliverable software previously verified
during integration).

6.4 Test Cases/Classes of Tests (PDR). This section shall identify the
integration tests and classes of test cases to be executed for each capability
increment. The level of detail should be appropriate for the project. Some
examples of classes of tests include:.

a. Computatiorialtests to verify the accuracy of computer programs in
achieving quantitative results:

l). Data handling tests to demonstrate that specific features are
effectively accomp!ished (e.g., data collection and merger; data
conversion,bad data disposition, data accountability, linking table functions,
etc.). .

Interface tests to demonstrate that groups of handler routines
funct;& properly and that the peripheral device reactions‘areacceptable.
AII interfacesmust be tested. Tests should include each input/output

5-15

Downloaded from http://www.everyspec.com

.

medium, exercise all transaction formats and code translation,and verify
error rejection according to the performance requirement.

d. Processing tests to demonstrate the effectiveness of equipment
performance,data flow, privacy checks (authentication,access restrictions
and reaction to i11egal penetration attempts), operator functions, and related
features as 1istealin the Development Specifications.

e. Saturation tests to overload the computer by creating the conditions
necessary to activate overload software safeguards (e.g., threshold alarm
notice, overload spillover function, halt input, remove low speed devices,
etc.).

f. Recoverytests to demonstrate the ability to recover all data lost at
disruption time. A test for each (disk/drum/tape)recovery method must be
conducted and provide evidencethat-al1 data was in fact recovered.

6.5 Test Identification(CDR). For each Build, this section shall identify
and describe each”integration testthat wil1 be,conducted.. Each test shal1 be
described as fol1ows:

a. Test Identification.

b. Purpose.

c. Software elements to be integrated and tested..

d. Input data.

e. Evaluation method/acceptancecriteria.

Section 7. Software.Requirementsto be Satisfied Through IntegrationTesting

7.1 Software Requirements (PDR). This section shall identify (possibly by
reference to specificationdocuments or specificationidentifiers) the
requirementswhose satisfactionwi11 be demonstrated by the integration test
activity.

7.2 RequirementsVerification Traceability (PDR). This section shall
present the rela~ionship of the software requirements to the test structure
and design described in Section 6.

Section 8. Schedules (PDR). This section shal1 refer to the schedule
information in the integration and test activity network of Section 1.1. It
shall identify the schedule for conducting particular tests or levels of tests
identified in Section 6 and the order in which the tests will be conducted.
The schedule may be presented in terms of general periods (weeks or months)
for the tests.

5-16

Downloaded from http://www.everyspec.com

Section 9. Turnover Criteria

9.1 Beginning of the Integration Test ActivitY (pDR). This section shall
describe the criteria for beginning integration testing.

9.2 Completion of the IntegrationTest Activity (PDR). This section shal1
define the criteria for ending the integration test activity and beginning
Software System DT&E testing.

Section 10. Notes. This section may be used to present examples, charts,
exhlblts, flow charts, traceabi1ity matrices, data value content, etc., that
are too lengthy or bulky to be included in the’test Plan..

5-17

Downloaded from http://www.everyspec.com

I
L

;

.

,

5-18 (81ank)

Downloaded from http://www.everyspec.com

5.3 SOFTWARE

5.3.1 POLICY
Manual

SYSTEM DEVELOPMENT TEST ANO EVALUATION

AND REQUIREMENTSSUMMARY (From NSA/CSS
81-2, Policy 5.3)

(DT&E) F’LA”

Software Acquisition

Software developers shal1 have a Software System OT&E Test Plan and
Test Procedures to provide a control1ed definition of the project’s DT&E test
program.

A preliminary Software System OT&E Test Plan shall be reviewed at POR.
The complete Software System OT&E Test Plan shal1 be reviewed in a CDR session
for the purpose of achieving written agreement with the developer that the
execution of the defined test cases in a manner described in the Plan, using
an approved data base and with test results which satisfy the defined
acceptance criteria, will result in acceptance of the software end products.

The DT&E test program shal1 be directed by a developer test
organization which is independent in the sense that it is not subordinate to
those responsible for designing and coding the software system.

For interactive or operator-orientedsoftware, where the test results
are dependent on a specific scenario of conditions, software system OT&E test
procedures shal1 be required. These procedures shal1 be derived from the
Software System OT&E Test P1an and shall be placed under project configuration
control prior to the start of OT&E testing.

5.3.2 GUIDANCE

The Software System DT&E Plan is prepared in two stages: (1) a
preliminary version by PDR, and (2) a complete version by CDR. The format
described in Section 3 notes the parts that should be completed by PDR. The
remaining parts should be completed by COR. Software Development Test and
Evaluation (OT&E) is the final level of software testing. It is a planned,
structured demonstrationthat the software satisfies functional and
performance requirements. It requires custom participation and approval.

Software OT&E must include enough tests to demonstrate the following:

a. The software can support the ful1 range of operational
capabi1i.tiesrequired by the Software Requirements Specification.

b. The software satisfies performance requirementsand operational
and development constants.

c. The software suppo”rtsexternal interface requirements.

d. The software can support man-machine and system control
interfaces.

5-19

Downloaded from http://www.everyspec.com

5-20 (Blank)

Downloaded from http://www.everyspec.com

5.3.3 FORMAT FOR THE SOFTWARE SYSTEM DT&E TEST PLAN

SOFTWARE SYSTEM DT&E PLAN

TABLE OF CONTENTS

Section 1.
1.1
1.2
1:3
1.4

Section 2.

Section 3.
“3.1
3.2

Section 4.

Section 5.
5.1
5.2
5.3

Section 6.

Section 7.
7.1

Section 8.

Section 9.
9.1
9.2

Section 10.

Section 11:

General
Introduction
Purpose
Criteria for Conducting Software System DT&E
Project References

Test Requirements and

Test Descriptions
Classes of Tests
Test Case Structure

Acceptance Criteria

Software Requirements/TestSpecification

Resources Required
Personnel Requirements
Faci”1ities/Hardware
Support Software

Oata Base for Software System DT&E

Test Management
Protocols

Customer Support Requirements

Software System DT&E Test Schedules
Master Test Activity Schedule
Activity Network for DT&E Testing

Software Modifications and Retest Criteria

Notes

5-21 “

Downloaded from http://www.everyspec.com

Section 1. General

1.1 Introduction (PDR). This sectioh shall contain a brief overview of the
entire document. It shall emphasize the important concepts or considerations
involving Development Testing and Evaluation of the software system and the
plan describing the activities.

1.2 Purpose (PDR). This section shal1 describe the objectives and purpose
of the DT&E plan. It shallexplain the relationshipof Software System DT&E
to other test phases, including integration testing and.system-level testing.

1.3 Criteria for Conducting Software System DT.5E(PDR). This section shall
define the criteria by which the software system wil1 be judged ready for
DT8E. (This section should be the same as Section 9.2 of the Software System
Integration and Test Plan.)

1.4 Project References (PDR). This section shall 1ist the reference
documents applicable to the development.ofthe software system.

Section 2. Test Requirements and Acceptance Criteria (PDR). This section
shal1 contain the test requirenwsts for the software end-product acceptance
and criteria for acceptance of the software system by the customer.

Section 3. Test Descriptions

3.1 Classes of Tests (PDR). This section shall describe the classes of
software DT&E tests and their dependency relationshiPS with each other. For
each class of tests, this section shall identify:

a. Test purpose. .,

‘b. Software requirements to be demonstrated by the test.

c. Special software, hardware and facility configurations to be used.

d. Test input environment and output conditions.

e. Critical analysis techniques relating test output to acceptance
criteria.

3.2 Test Case Structure (CDR). This section shal1 describe in subparagraphs
3,2.1 through 3.2.n each test to be conducted for software DT8E testing. For
each test, it shall identify:

5-22
.,

Downloaded from http://www.everyspec.com

a. Test identification.

b. The software requirement to be demonstrated by the test.

c. Test input requirements.

d. Software and hardware configuration to be used.

e. Support software to be used.

f. Major software entities to be exercised by the test.

9. Test output requirements.

h. Test output analysis method.

i. Uniquely-identifiedacceptance criteria.

Section 4. Software Requirements/TestSpecification [CDR). This section
shal1 present a table correlating software requirements (from the Software
Requirements Specification)with tests (DT&E tests plus applicable lower-
level tests) which demonstrate satisfaction of the requirements. Figure 5-1
is an example of a Software Requirements/TestCase Matrix.

Section 5. Resources Required (PDR).

5.1 Personnel Requirements (PDR). This section shall describe the number
and qualities of people who wi11 conduct Software System DT&E.

5.2 Facilities/Hardware (PDR). This section shall identify the facilities,
computer hardware, and interfacing hardware to”be used in CT&E testing. It
shall also identify any planned transitions in facility location, computer
hardware or interfacing hardware for DT&E testing.

5.3 Support Software (PDR). This section.shall describe the support
software to be used in DT&E testing. It shal1 also include plans for
obtaining this software and for.validating it prior to the start of DT&E
testing.

Section 6. Data -Basefor Software System DT&E (PDR). This section shal1
describe the data base to be used in DT&E testing. It shall also include
plans for obtaining approval of it prior to the start of DT4E testing. In
addition, this section describes any plans for obtaining data from support
software, support hardware or “1ive” sources.

I

I

5-23

Downloaded from http://www.everyspec.com

SOFTWARE REQUIREMENTS / TEST CASE MATRIX
.,,

INSTRUCTIONS MAIk ●l “X” is & appreprizb box =keh * Wrticm[ar Tent CMe Imllr tc,ta s

mfiware reqmirememt Mark ● “P* den . ted ~r$idlr te.k s rctiremeai snd i~.

dide im $he Iui colamm+ich TeM CaSeatake- bogelbr [II& ~s~ a reqmiremcmt.

Une ●dditional formE if more -We is reqtircd.

.

SOFTWARE TEST CASE

SOFTWARE REQUIREMENTS IDENTIFICATION I TEST CASES
REQUIREMENT SPECIFICATION FULLY TEST

ID PARAGRAPH RRQUIRRMENT!
REFERSNCE

FIGURE 5-1 EXAMPLE OF A SOFTWARE REQUIREMENTS/TESTCASE MATRIX

5-24

Downloaded from http://www.everyspec.com

Section 7. Test Management (PDR). This section identifies the
participants in the Software DT&E phase and the job that each participant
wil1 perform. It must identify who is responsible for obtaining, providing,
and validating the following:

a. Software under test.

b. Support software.

c. Hardware.

d. Facilities.

e. Test drivers.

f. Test data bases.

7.1 Protocols (CDR). This section shal1 describe the protocols to be
fol1owed by the developer in reviewing, reporting, and accepting test
executions and results. This includes the means of control1ing changes to
test plans, test procedures, and other test materials.

Section 8. Customer Support Requirements (CDR). This section shall summarize
requirements for customer-provided hardware, software, data, documentation.
facilities, and support during DT&E testing.

Section 9. Software System DTfiETest Schedules.

9.1 Master Test Activity Schedule (PDR). This section indicates the
time-phasing of the various classes of DT&E tests. This includes the expected
duration of each category of DTi3Etests. This schedule must be compatible
with development schedules and delivery dates.

9.2 Activity Network for DT&E Testing (CDR). This section shall contain an
activity network for DT&E testing. It must include each test case and show
the order in which each wil1 be conducted and the interdependenciesamong
test events. The activity network should also show the time-duration for each
activity.

Section lD. Software Modifications and Retest Criteria (CDR). This section
shal1 define the criteria and procedures for incorporateng software
modifications and performing retest with the software modification.

5-25

Downloaded from http://www.everyspec.com

5-26

Downloaded from http://www.everyspec.com

5.4 OPTIONAL TEST AND BUILD DELIVERY DOCUMENTATION

5.4.1 POLICY ANO REQUIREMENTS SUMMARY (From NSA/CSS Software Acquisition
Manual 81-2, Policies 5.2 and 5.3)

For interactive or operator-oriented software, where the test results
are dependent upon a specific scenario of conditions, the Software AcquiSftion
Manager or the Software Development Manager may require that Software Test
Procedures be prepared. These procedures shal1 be derived from the Software
System Integrationand Test PIan and the Software System OT&E PIan and shal1
be placed under project configuration control prior to the start of the test
activity.

The Software Acquisition Manager may require that the developer prepare
a Software Test Report to document the status and results of integration tests
and Software DT&E tests.

5.4.2 GUIOANCE

5.4.2.1 SOFTWARE TEST PROCEDURES

Software Test Procedures contain the detai1ed procedures for conducting
integration tests and acceptance (DT&E) tests. They relate to specific tests
identified in Section 6 of the Software System Integrationand Test PIan and
Section 3 of the Software System DT&E P1an. For tests identified in those
plans, Software Test Procedures describe the steps necessary to conduct the
tests. They also provide a place to document the results of each test.

Software tests are often conducted by test personnel who did not design
or write the code being tested. If high-quality tests are to be conducted,
software testers must pay careful attention to the task of writing test
procedures. They should keep the fol1owing two points in mind when developing
the procedures:

The test procedures should be recipe-1ike and describe the step-
by-stepa~ctions necessary to conduct the tests and evaluate the results. ThiS

al1ows them to be executed and understood by personnel who are not intimately
familiar with the design.

b. The test procedures must be procedure-orientedrather than essaY-
style generalities. This al1ows members of the acquisition team to certify
that the procedures were fol1owed to the 1etter.

At the discretion of the Software Acquisition Manager, separate Test
Procedures may be prepared for each test or the procedures may be combined in
a single document to cover a group of tests.

5-27

Downloaded from http://www.everyspec.com

5.4.2.2 SOFTUARE TEST REPORT

Software Test Reports record the results of any level or type of
software tests. They document the results of testing”that has been conducted
at various stages of development and provide the Software.Acquisition Manager
with a means of assessing whether the software can progress to the next stage
of development.

Although not mandatory, Software Test Reports are reconnnendedfor
reporting the results of testing at several points:

a. completion of integration testing of each build;

b. completion of integration testing of the entire software system;

c. cc+npletionof Software DT6E.

5.4.2.3 BUILD DESCRIPTION DOCUMENT

The Build Oescription Document identifies the functional capabilities
of “eachincremerkal build of software that is delivered for implementation.It
also fdentiffes al1 physical products.to be delivered and provides
instructions for implementing the build in an operational configuration. A
Build DescriptionDocument should accompany the delivery andimplementation of
each incrementalbuild.

5-28

I

Downloaded from http://www.everyspec.com

5.4.3 FORMAT FOR SOFTWARE TEST PROCEDURES

SOFTNARE TEST PROCEDURES

TABLE OF CONTENTS

Section J.

Section 2.

Section 3.

Section 4.
4.1
4.2
4.3

Section 5.

Section 6.

Test Identification

Equfpment and Software

Input Oata

Procedures
Initiation
Operation
Terinination/Restart

Test ReSUlts

Evaluation

I

I

1

5-29

Downloaded from http://www.everyspec.com

Section 1. Test Identification. This section shal1 identify the specific
test from the Software System DT&E PIan (Section 3) or the Software System
Integrationand Test P1an (Section 6) to which these procedures apply.

Section 2. Equipment and Software. This section shal1 identify al1 equipment
and test support software required for the test.

Section 3. Input Data. This section shal1 describe the input data
required to conduct the test.

Section 4. Procedures. This section shal1 contain al1 of the test steps
required to conduct the test. Steps shal1 be written and 1istealsequential y
in the order in which they wil1 be implemented. They shal1.identify a?1
actions required by the person conducting the test. They shal1 also describe
the expected r’esult from each action that is taken. Figure 5-2.is an example
of a Test Procedure Table that may be used to document test procedures.
Procedures shal1 be specified for the fol1owing:

4.1 Initiation. This section shal1 1ist the step required to.begin the test,
including the f011owing:

a. Equipment Activation.

b. Input Data Activation.

c. Program Initiation..

d. Setting of Parameters.

4.2 Operation. This section shal1 identify each step in the test procedure.
For each step, the expected result shal1 also be identified.

4.3 Termination/Restart. This section shal1 identify the steps required to
terminate and (as applicable) restart the test. This shall also include
procedures for assuring the necessary output data is available for
evaluation.

Section 5. Test Results. This section shal1 1ist the results of the test.
It shall fdentify each step where a discrepancy occurred. It may include
opinions as to the cause of the discrepancy and reconmw!ndationsfor
correction. It shal1 also identify each discrepancy report prepared as a
result of the test.

5-30

i

I

Downloaded from http://www.everyspec.com

SYSTEM NAME

TEST IDENTIFICATION:

PERSON RESPONSIBLE FOR TEST:

‘DATE TEST CONDUCTED:

.
Number Test Procedure Expected Results Results

Obtained
(yes/nO~

1,

NOTES: (Ezplanotion ofdiscrepancies; Recommendations Jorcorrectiue action.

Figure 5-2 TestProcedureTable

5-31

Downloaded from http://www.everyspec.com

—

Section 6. Evaluation. This section shall contain an evaluation of the
test. shall”identify successes, deficiencies,limitations or other
constraints detected during the test. It shall also include reconsnendations
for subsequent actions as a result of the test.

,,.

!,

5-32

Downloaded from http://www.everyspec.com

CAA EllDM.5T CIID CllCTUADC TFCT DFD(WT., .7.- , V,”--, , “,. +“, , ““,. L , .-- , ,.-, “r. ,

SOFTWARE TEST REPORT

TABLE OF CONTENTS

Section 1. General
Purpose of the Software Test Report

1:; Project References

Section 2. Test Results

Section 3. Test Evaluation

Section 4. Reconsnendations

..

..

5-33

Downloaded from http://www.everyspec.com

Section 1. General.

1.1 Purpose of the Software Test Report. This paragraph shall describe the
purpose of this Software Test Report. It shall summarize the results of tests
that have already been conducted and identify testing that remains to be
condu@ed.

1.2 Project References. This paragraph shall identify documents applicable
to software testing of the system. It shall identify the following by author
or’source, reference number, title, date, and security classification:

a. Software Requirements Specification.
.,

b. Software Test Plans.

c. Software Test Procedures.

d. Software Development Plan.

e. Previously developedtechnical documents related-to software
testing.

Section 2. Test Results. This section shall identify each test that has been
conducted during the applicable testing period. For each test, it shall
ssmsnarizethe objective of the test and the result of the test. It shall also
identify all Software Problem Reports that have been prepared as a result of
the test.

Section 3. Test Evaluation. This section shall present an evaluation of the
software tests that have been conducted. It shall identify functional
deficiencies,limitations, or constraints that have been detected during the
testing process. For each deficiency, this section shall describe the impact
on the software and on the developmenteffort if the deficiency is not
corrected. It shall also identify the effort required to correct the
deficiency.

This section shall also evaluate whether the software that has
been tested is ready for subsequent stages of testing or acceptance (if
applicable).

Section 4. Recomasendations. This section shall contain reconrnendation,sfor
correcting deficiencies (where and how).

5-34

Downloaded from http://www.everyspec.com

5.4.5 FORMAT FOR BUILO DESCRIPTION 00CUMENT

Section 1.
1.1
1.2

Section 2.

Section 3.

Section 4.

Section 5.

BUILD DESCRIPTION DOCUMENT

TABLE OF CONTENTS

General
Purpose of the Build Description Oocument
Build-Related Documentation

Inventory of Materials Released

Functional Capabilities and Software Elements

Implementation Instructions

Possible Problems and Errors

5-35

Downloaded from http://www.everyspec.com

Section 1. General.

1.1 Purpose of the Build Description Document. This paragraph shall describe
the purpose of the Build Description Document in the following words, modified
as appropriate:

This document describes the capabilities and products of Build (Build
name, number) of the (name) Software System/Subsystemfor the (name) System.

1.2 Build-RelatedDocumentation. This paragraph shall provide a sunsnary.of
the references related to the products and capabilities of the Build
sofWare. It shall identify the following by author or source, reference
number, relevant section, title, date, and security classification:

a. Software Requirements Specification.

b. Software Development Plan.

c. Software System/SubsystemSpecification.

d. Software Program Specification.

e. Software System Integrationand Test plan.

f. Software System DT&E Plan.

9. Previously-developedtechnical documents relating to Incremental
Development of the software.

Section 2. Inventory of Materials Released. This section shall identify all
physical products which are part of the Build delivery. It shall also
identify all utility and support software required to operate, install, or
regenerate the incrementalcapabilities of the Build.

Section 3. Functional Capabilities and Software Elements. This section shall
~dentify the functional capabilities and the software elements to be
implementedin the Build Software. This identificationmay be done directly
or by reference to related specifications.

Section 4. Impl+ntatfon Instructions. This section shall describe (either
directly or by reference) the procedures for installing and implementing the
software in this incrementalBuild.

5-36

-

I

I

Downloaded from http://www.everyspec.com


~~~~;o~ 50 Possible Problems and Errors. This section shall identify
~ti~e~problems and known errors which need to be corrected in the Build
software. It shall also state the actions that are being taken to resolve the
problems and correct the errors.

5-37

Downloaded from http://www.everyspec.com



5-38 (Blank)

Downloaded from http://www.everyspec.com



5.5 SOFTWARE M4NUALS

5.5.1 POLICY AND REQUIREMENTS SUF!J.WRY(From NSA/CSS Software Acquisition
Manual 81-2, Policy 5.4)

Software developers shall produce software manuals which contain
instructions necessary to operate, use, and maintain the deliverable software
system.

During the system acquisition planning phase, Software Acquisition
“Managers shall identify the set of software manuals that software developers
must produce to meet the requirements of this policy. These manuals may
include a User’s Manual, an Operations Manual, a Software Maintenance Manual,
and a Firmware Support Manual.

The Operations Manual shall contain, as a minimum, a description of how
to set up, execute, select options and interpret output for software
operation.

The User’s Manual shall include, as a minimum, the operational
procedures needed to provide users with instructions necessary to execute the
software. It shall also relate the operational procedures to the operational
system functions.

A Software Maintenance Manual shall contain, as a minimum, sufficient
information to enable an experienced programmer to modify the code and data in
the computer programs and the procedures of the software system. It shall
also contain instructions for installing programs and procedures in the
operational environment.

By Preliminary Oesign Review, early versions of each software manual
shall be available for review. The early versions shall describe the
man/machine interface with the software, computer hardware and other system
equipment.

5.5.2 GUIOANCE

Software Acquisition
satisfy the requirements of
included here. They are as

a. User”’sManual

Managers may ’selectseveral types of manuals to
this policy. A variety of acceptable formats are
follows:

1. User’s Manual

2. Software System Users Manual

3. Positional Handbooks

b. Computer Operation Manual
.,

1. Computer Operation Manual

5-39

Downloaded from http://www.everyspec.com



c. Software Maintenance Manuals

1. Program Maintenance Manual

2. Firmware Support Manual

Manual content and format should be specificallydesigned to meet the
needs of the intended user. Software Acquisition Managers may require that
manuals be developed from formats in this section or they may use the formats
as guidelines to develop new formats that are more appropriate for their
needs. In either case, manuals should be organized to explain the system in
terms of applicationand operation and should be as self-containedas
possible. Reference to other documents should be minimal. The text must be
factual, concise, specific, clearly worded, and illustrated. Sentence forms
should be simple and direct. Abbreviated tabular data such as charts; tables,
checklists, and diagrams should be used whenever practicable.

Technical detail reflected in the manuals should be expressed in
wording that is easily understood. Unless essential for practical
understandingand application, discussions of theory should be omitted.
Manuals should not use phraseology requiring a specialized knowledge. They
should emphasize specific steps to be followed, the results which may be
expected or desired, and the corrective measures required when such results
are not obtained.

5.5.3 DESIGN REQUIREMENTS FDR SiFTWARE MANUALS

The primary requirement of a manual is that the intended.audiencebe
able to use it. A well-designed manual will help meet this objective.
Following are specific requirements for designing software manuals:

FORM4T. Each document shall have the following parts: a title
page, aa~elease page, a change log, a table of contents, the main body of
text, a glossary, and illustrations. Optional parts are a list of figures or
illustrations,a list of tables, appendices, and an index. Each page shall
contain the page number and page content heading.

1. The title pagecontains the title of the manual and the date of
the manual.

2. The release pagecontains a description of the version of the
software system with which the manual.is compatible.

3. The change log indicates change pages and shows the publication
date of each page.

4. The table of contents contains a list of topic headings taken
from the main body of the text. The page number of the topic headings shall
be listed.

5. The optional list of figures or illustrations
of the titles of figures or illustrations. The page numbers

I illustrationsshall be listed.

contains a list
of the figures or

.1

5-40

Downloaded from http://www.everyspec.com



6. The’optional list of tables contains a list of table titles.
The page numbers of the tables shall be listed.

7. The main body of the text is divided into chapters. Each main
topic shall constitute a chapter.

8. The glossary shall contain all specialized terms used within
the manual.

9. The optional appendices may contain any auxiliary material
deemed necessary in the use of the manual or the software system. Examples
are tables and worksheets.

10. The optional index contains reference page numbers of each
topic listed.

b. PAGINATION. Pages may be numbered consecutively throughout the
document, or through a chapter only.

c. TOfIC HEADINGS. Topic headings shall clearly indicate the order of
subordination. Parts, chapters sections, paragraphs, figures, and tables
shall have brief descriptive titles. Major headings may be centered.
Subordinate topic headings shall be left-justifiedon the page. Indented
headings may be used if further subordination is required.

d. ILLUSTRATIONSAND OIAGRAMS. Illustrationsand diagrams shall be
used whenever the result will be a more effective presentation of information.

NOMENCLATURE. Nomenclature shall be consistent throughout a
particu;;r set of manuals. Standard acronyms and abbreviationsmay be used if
they are first defined in the text. They shall also be defined in the
glossary.

f. SPACE CONSERVATION. Layout shall not constrain usability or
, clarity of material. If blank space improves the effectiveness of

communication, blank portions of pages are permitted.

9. USERS AIOS. Summaries and printed tables shall be provided where
appropriate to aid the user of the manual.

h. COLLATING, ORILLING, ANO BINDING. Collating, drilling, and type of
covers shall be as directed by the customer and/or user.

/

5-41

Downloaded from http://www.everyspec.com



I

~5-42 (Blank)

Downloaded from http://www.everyspec.com



K K A FtlRMAT FfiR IICFRIC MAUIIAI-. -.- , “.”-! . “.. ““-.. - . ““. ”..-

Section 1.
1.1
1.2
1.3

Section 2.
2.1
2.2
2.3
2.4
2.5

Section 3.
3.1
3.2

:::
3.5
3.6

;::
3.9

Section 4.
4.1
4.2

::;
4.5
4.6
4.7

Section 5.

USER’S MANUAL

TABLE OF CONTENTS

6eneral
Purpose of the User’s Uanual -
Terms and Abbreviations
Security and Privacy

System Smnary
System Functions
System Operation
System Configuration
Performance
Data Base

Operating Instructions
System Initialization
Execution Options
User.Inputs
System Inputs
Execution
Restart and Recovery ,.
outputs
Termination
Error Messages

Oata Update Procedures :,:
Frequency
Restrictions
Sources
Access Procedures
Update Procedures
Recovery and Error.Correction Procedures
Tenninatfon Procedures

Notes

5-43

Downloaded from http://www.everyspec.com



Section 1. General.

1:1 Purpose of the User’s Manual. This paragraph shal1 describe the purpose
of the User’s Manual. It shal1 also identify for whom it is intended.

1.2 Tersnsand Abbreviations. This section shal1 provide an alphabetic
listing or include in an appendix a glossary of terms, definitions, and
acronyms used in this document and subject to interpretationby users of the
system. This list will not include item names or data codes.

,,, .
.,,

1.3 Security and Privacy. This paragraph shal’1describe the classified
components of the system, including inputs, outputsj data bases, and comput@r
programs. It will also prescribe any privacy restrictionsassociated with the
use of the data.

,,.
,, ,.

Section 2. System Sunsnary.
,,. ;.

,,

2,.1 System Functiens.“ This section shal1 describe the functions’of.the ‘~
system and show how they support the user. The description shall iIIC1ude:

a. The’purpose, reason, or rationale fOr “tieSystem.’.“’~”,‘:.. .4

b. Capabilities and operating improvements provided by..th~’sjstem.,

c. Additional features, character.isties; and advantages.corik.ide~d ‘.
appropriate in furnishing’a clear, general description.of the sys~m ,”
and the benefits derived from it.

d. Functions performed by the system, such as preproc”ek.singor .
postprocessingdata input or output from a primary processor;
maintenance of data files; etc. ,:. . . .

2.2 System Operation. This paragraph shal1 explain the P1 ationships of the
functions by the system with its sources of input and destinationsof output.

2.3 System Configuration. This section shal1 descri’bethe system to which
this user’s manual applies. It shal1 identify the hardware and software
required to support the operational environment of the system. It shal1 also
provide a-brief descriptionof the purpose of’each Part of the’system.

2.4 Performance. This section shaJJ describe.the overal1 perfo-imance s
capabi1ities of the system.~ Some examples of performance measures.and
informationof interest are as follows:

5-44‘

I

Downloaded from http://www.everyspec.com



...

a. Input - types, volume, rate of inputs accepted.

b, Output - types, volume, accuracy, rate of outputs that the system
can produce.

c. Response time - include qualifications,where necessary, that
affect response time in processing operational reports, such as
1isting a tape, compi”ling an object program, etc. Type and VOIume
of input and equipment configuration are examples of items that
may influence running time and, consequently, response time.

d. Limitations - for example, maximum size per unit of input, format
constraints, restrictions on what data files may be queried and by
what location, 1anguage constraints.

e. Error rate - capabilities for detecting various legal and logical
errors and the means provided for error correction.

f. Processing time - show typical processing times.

9. F1exibi’1ity - note Provisions al1owing extension of the usa9e of
thesystem.

h. Reliability - note system provisions that support, for e~ample,
alternate processing or a switch-over capability.

2.5 Data Base. This section shall identify the data files that are
referenced, supported, or kept current by the system. The description
should be brief and should include the type of data in the file and how the
data is used. If the system does not have a file query capability,,this
section shal1 also include a description of data elements in the data
base.” This description shall include information such as the following:

a. Data @lement name.

b. Synonymous name. .,

c. Definition.

d. Format.

e. Range of values

f. Unit of measurement.
I

5-45

Downloaded from http://www.everyspec.com



9. Data item names, abbreviations,and codes.

If this information is contained in a data dictionary, this section may
refer to an entry in the dictionary. Any variations from the format or data
items in either inputs or outputs shal1 be identified.

Section 3. Operating Instructions. The following sections shal1 provide
instructions for operating each function identified in Section 2.1. As
appropriate,operating instructionsmay be given for each function
sequentially or they may be given for interrelated functions in the order that
procedures are implemented by the user.

3.1 System initialization. This section shal1 describe the steps necessary
for initializing the System prior to its operation. If a separate Operator’s
Manual has been prepared, this section may refer to appropriate sections that
provide system initialization procedures.

3.2 Execution Options. This section s,hal1 -describethe execution options
available’to the user when exetuting the.systemand its individual functions.

3.3 User Inputs. This section shall describeuser inputs to the syst~.

3.4 System Inputs.’ This section shal1 identify inputs to the System (other
than user inputs). AS applicable,.descriptions of inPuts maY !nclude,t?e
follm.ng:

a. Purpose. ,., ,

b. Content. .>.

c. A:s&iated inputs. ,, ,“

d. Origin of inputs.

e.’ Datafiles associated with the inputs. ,,

f. Security considerations.

3.5 ExM’ution. This section”shal1 describe the step-by-stepprocedures for.
executing’functions in the.system. Included shal1 be the sequence of steps
required to access the data “base. Also included shal1 be the steps necessary
to produce the various diSP1ays’and retrievals availableto the users.
Graphical representationsof”the displays.shal1 be included along,with a
description of their relationships to the procedures and functions.

5-46
I

Downloaded from http://www.everyspec.com



3.6 Restart and Recovery. This paragraph shal1 describe the procedures for
restarting execution of the functions when they have been interrupted.

3.7 outputs. This section shal1 identify outputs from the system. As
applicable, descriptions of outputs may include the following:

(1) output - 1ist the outputs produced by the system showing their
relationship to the inputs.

(2) Purpose of output - explain the reason for the output and note
conditions or events that require its generation by the system.

(3) Content of output - describe in general terms the information
provided by the output.

(4) Associated outputs - identify other system outputs that complement
the information in this output. ,

(5) Distribution of outputs - note the recipients of the output..

(6) Security cmideratim$.

(7) Other - describe additional.iternsof general information.

3.8 Termination. This section shal1 describe procedures for terminating
execution of the functions. It shal1 give procedures for both normal and
abnormal termination.

3.9 Error Messages. This section shal1 1ist al1 error messages produced by
the software system that can be displayed to the user. It shall also describe
the error associated with each message and identify the proper user response
to the message.

Section 4. Data Update Procedures (if applicable).

4.1 Frequency. This paragraph wil1 describe the frequency of data
updates.Information.such as the events that cause the update may be included.

4.2 Restrictions. This paragraph shall describe any restrictions on updating
the data base. Included may be such factors as:

a. Users authorized to update.

b. Time periods when such updating is allowed.

c. Information for ensuring that only authorized updates are allowed.

I
.’.

. .

5-47

Downloaded from http://www.everyspec.com



4.3 Sources. Included in this paragraph will be a list of the sources used
to obtain the data that will make up each update.

4.4 Access Procedures. This section shall describe the sequence of steps
required to access the data base. Included will be such information as the
name of the system or subsystem being called and other control information
such as access restrictions. . .

4.5 Update Procedures. Paragraph 4.5.1 through 4.5.n shall provide
information to enable an authorized user to update data in the system data
base. For each ‘typeof ‘updateprocedure, information such as the name of the
operation, input formats, and sample responses may be included.

4.6 Recovery and Error Correction Procedures.. This section shal1“identify
error codes and messages. It shall also indicate their meanings and describe c
corrective actions that should be taken. Any user-initiated recovery .,..
procedures and validity checks shal1 also be included. .,..’,

4.7“‘TerminationProcedure’$.” This paragraph”shal1 present the step-by-step
sequence of actions necessa~ to terminatethe update. ,,

Section 5. Notes. This section shal1 contain any general information that
will help the user understand”the”’operation of the system and how the User’s
Manual”relates to its operation.

.

. !:

,.
,..

(.

‘,
,, .,.

,.i

.,..-, ,, ...

5-48

I

Downloaded from http://www.everyspec.com



KKG rnQMAT FnD CnFTWARF QV<TFM II<FR’ < MANIIAI., ..,.- ! “!. !-! I “1. -“! . . ...0.- -.-..-!. ““-. . - . . . . . . . .

TABLE OF CONTENTS

Section 1. INTRODUCTION

Section 2. GLOSSARY

Section 3. SOFTWARE SYSTEM CAPABILITIES

Section 4. FUNCTIONAL DESCRIPTION

Section 5. USAGE INSTRUCTIONS

Section 6. OPERATING INSTRUCTIONS

Section 7..APP.ENDIX

.. ..

,, .:

,1 - .,

5-49

Downloaded from http://www.everyspec.com



I

Content. The user’s manual for a software system or subsystem
shall contain the following:

Section 1. Introduction. A description of the manual’s purpose, scope,
organizationand content.

Section 2. G1ossary. Terms used in the manual.

Section 3. Software System Capabilities:

a. Purpose. A descriptionof the purpose of the software
system.

b.’ General Description.’A description of the system, giving
an overview of the system and its operation.

,C.“ Function Performed. Identificationof the specific
functiens”performed by the software system. (This may be in termsof systems
operations, uses, outputs, etc.)

Section 4. Functional”Description. A description of each specific function
WIth the software system. The following subparagraphs shall be repeated for.
each function:

a. Title of Function. A descriptive title of the specific
function.

b. Description of Function. A summary descriptionof the
specific function, including:

(1) Purpose and uses of function.

(2) Descriptionof system inputs.

“ (3)‘ Description of expected output and results.

(4) Relationship to other functions.

(5) Summary of function operation.

Secti”on5. Usage Instructions...How to use each speci.fic-.function. .Wis.:pall. ..
Include the following:

I

I

5-50

Downloaded from http://www.everyspec.com



a. Preparation of Inputs. A definition of the system inputs,
other than those required to operate the computer program (see paragraph f2).
These inputs constitute the basic data that are to be processed by the
software system. The definition shall include:

(1) Title of inPuts.

(2) Description of inputs.

(3) Purpose and use.

(4) Input media.

(5) Limitation/restrictions.

(6) Format and content.

(7) Sequencing (e.g., formalized deck structure).

(8) Special instructions.

(9) Relationship of inputs to outputs.

b. Results of Operation; A definition of expected results
after completion of software system operation.

(1) Description of results.

(2) Form in which results will‘appear. .

(3) Output format and content.

(4) Instructionon use of outputs.

(5) Limitations/restrictions.

(6) Relationshipof outputs to inputs.

(7) Examples.

c. Error messages. A description of error messages
associatedwith the function and corrective action to be.taken.

Section 6. Operating Instructions. Procedures required to operate the
software system. It shall include the following:

5-51

Downloaded from http://www.everyspec.com



a. Operating Procedures. The step-by-step procedures
required to:

(1) Initiate the Software System. Procedures shal1
include reading computer programs into the computer, establishing the required
mode of operation (if more than one), initially setting required parameters,
providing for inputs and outputs, and operating the computer programs.

(2) Maintain Software System Operation. Procedures shall
be specified to maintain operation of the computer pr~gram where operator
interventionis required.

f3) Terminate and Restart the Software System. Procedures
shall be specified for normal and unscheduled termination of computer program
operations, as wel1 as restarting the computer programs.

(4) Software System Generation Procedure. This section
shal1 describe procedures that are necessary to create a new version of the
master code media (for example, master tape).

(5) Symbolic Updating Procedures. This section shall
describe the procedures to be followed to effect symboltc changes to the
software system. Th,isdiscussion should present a step-by-stepdescription of
the updating processes. As necessary, appropriate data sets and inputs wil1
be described.

b. Operator Inputs. A complete descriptionof all the
control formats of each computer program, including the function or purpose of
each field, will be given. All inputs, other than those described in
paragraph e(l); required to operate the computerprogram shall be defined in a
similar manner as follows:

[1) Title of input.

(2) Pu~ose and use.

(3) Input media. “

(4) Limitations/restrictions.

(5) Format and content.

c; Operator Outputs. A complete descriptionof the output
format other than those described in paragraph e(2), of each,computer
program: This shall include samples of each type of possible

5-52

Downloaded from http://www.everyspec.com



output format. Furthermore, a cross-reference 1ist between output fields and
input control fields shall be given, so-that the users of the software system
may readily determine the effect of certain input fields on each output
field. Tinissubparagraph shall include, but not be 1imited to, the
following:

(a) Title of output.

(b) Purpose and use.

(c) Output media.

(d) Output format.

(e) Output content (symbols, codes, etc.).

9. Appendix. The appendix may include information bound
separately for convenience, as in the case of:classified appendix or a large
body of data.

5-53

Downloaded from http://www.everyspec.com



5-54 (Blank)

Downloaded from http://www.everyspec.com



---------- . . . . . . .---- ..”

5.5.5 FORYAI FIJK PUS1 I lUNAL HANUUUUK>

POSITIONAL HANDBOOK

TABLE OF CONTENTS

Section 1. INTRODUCTION

Section 2. OPERATOR POSITIONS

Section 3. NORMAL OPERATING PR02EOURES

Section 4. EMEffiENCYOPERATING PROCEDURES

i“

5-55

/

Downloaded from http://www.everyspec.com



‘“Foreach operator position, Positional Handbooks describe the
procedures for the operating computer-associatedconsoles and related
equipment. Operating procedures are based upon the functions to be performed
by the software system. They describe the responsibilities,duties, and
operating procedures of operational positions. Emphasis.is on the actions
required by operators of the position; discussion of sub-system functions and
theories of operations is included only as necessary to clarify instructions
in operational procedures.

The handbooks provide operators with a comprehensiveunderstanding
of position responsibilitiesand duties. They provide the operator.with a
ready referenceof position duties and the necessary step-by-step procedures
for the operation of position equipment. A handbook is:normally prepared for
each operating position. Individual handbooks.may be combined into a single
volume for the total software system.

Positional Handbooks will be prepared using the following
guidelines:

Section 1. INTRODUCTION. The introduction to each handbook shall specify the
operator position covered and briefly explain the extent of the instructions
provided. When necessary, the introductionmay also contain special
informationconcerning any noteworthy or unusual features of the contents.

Section 2. OPERATOR POSITION. A comprehensive description of the specific
operator position shall be provided. This will include a complete job
descriptionof the specified position, describing in detail positional
responsibilitiesand duties, defining the knowledge and capabilities the
operator must possess in order to perform his position duties, and 1isting
operator positions in his charge and operator positions to whom he is directly
responsible.

Section 3. NORMAL OPERATING PROCEDURES:

a. This section shall“containintroductorymaterial providing
general informationconcerning operator action procedures. It shal1
sequentiallynumber paragraph headings and designate the precise title of each
action which can be taken at the operator position. Graphical representations
of displays that are part of the operating procedures shall accompany the
description. The text for each action shall include an explanation of why the
action is taken and shall detail step-by-step procedures,restrictions, and
results. The explanation of the purpose of the action should summarize those
factors that need to be considered before the action is taken. Additionally,
factors and procedures that need to be considered after the action has been
decided upon but before the required action procedures are initiated should be
discussed.

I

I
5-56

Downloaded from http://www.everyspec.com



.

I
b. Step-by-step procedures shall be 1isted specifying the

sequence of operations to accomplish the action. I

c. A 1isting of restrictions shal1 specify the computer
program restrictions unique to the action which, if applied to the procedure
being taken, would be identified as an illegal action.

Section 4. EMERGENCY OPERATING PROCEDURES. This section shall discuss
emergency conditions, such as computer failure or equipment malfunction, that
require startover operations to initiate or reestablish CYC1ing of the
operational computer program. This section shal1 contain such information as
the effects of computer downtime on data storage, descriptions of the various
modes of startover that may be used to reinitiate operation of the system, and
1istings of the duties and responsibilitiesof the operator position durifig
startov~r.

5-57

I

Downloaded from http://www.everyspec.com



5-58 (Blank)

]

Downloaded from http://www.everyspec.com



1.

5.5.7 FORM4T FOR COMPUTER OPERATION MANUAL

Section 1.
1.1

1.2
1.3
1.4

Section 2.
2.1

:::
2.4

Section 3.
3.1
3.1.1
3.1.2
3.2
3.3

:::
3.6
3.7

Section 4.
4.1
4.2

Section 5.

COMPUTER OPERATION MANUAL

TABLE OF CONTENTS

General
Purpose of the Computer Operation Manual
Project References
Terms and Abbreviations
Security and Privacy

System Overview
System Application
Program Inventory
File Inventory
Processing Overview

System Operation
System Preparation and Setup
Power On/Off
Initiation
Operating Procedures
Input/Output
Monitoring Procedures
Auxiliar.Y/Off-LineRoutines
Recovery-Procedures
Special Procedures

Diagnostic Features
Error Oetection/Diagnostic
Computer System Olagnostic

Notes

Features
Features

[

I

5-59

I

Downloaded from http://www.everyspec.com



Section 1. General.

1.1 Purpose of the Computer Operation Manual. This paragraph shal1 describe
the purpose of the Computer Operation Manual. It shal1 also identify for whom
it is intended.

1..2 Project References< At 1east the fol1owing documents,when applicable,
shall be specified by author or source, reference number, title, date, and
security classification:

a. Users Manual.

b. Program Maintenance Manual.

c. Other pertinent documentationon the Project.

.1.3 “Te~s “and Abbreviations.- This section shal1 provide an.alphabetic
1isting or include in an appendix a glossary of terms, definitions,and
acron.ym.$used in this document and subject to interpretationby operators of
the system.

1.4 Security and Privacy. This paragraph shall describe the classified
components of the system, including inputs, outputs, data bases, and computer
programs. It will also prescribe any privacy restrictions
associated with the use of the data.

Section 2. System Overview.

2.1 System Application. A brief description of the system shall include its
purpose and uses.

2.2 Program Inventory. This paragraph shal1 provide an inventory in tabular
form of the software used by the system. Ttiis1isting shall include the
program full name, program ID, and classificationof the program.

2.3 File Inventory. This paragraph shall 1ist al1 permanent files that are
referenced,created, or updated by the system. Included should be information
such as the file name, file IO, storage’medium, and required storage (number
of tapes or disks).

2.4 ProcessingOverview. This paragraphwill provide informationwhich is
applicable to the processing of the system. Separate paragraphsmay be used
as needed to cover system restrictions,waivers of operational standards,
informationoriented toward specific support areas (e.g., tape 1ibrary) or
other processing requirements such as the following:

5-60

Downloaded from http://www.everyspec.com



a. Interfaceswith other systems.

b. Other pertinent system-relate~ information.

Section 3. System Operation. .

3.1 System Preparation and Setup. This section, in the subparagraphsbelow,,
Shall describe the procedures for’system preparation and setup prior to -system
operation.

3.1.7 Po,yerOn/Off. ‘Thjsparagraph‘shal1 explain the step-by-step proceduns
required to power-on and power-off the equipment for operational and stand-by
mode.

.,
3.1.2 Initiation. This section shal1 describe the following:

1. The equipment setup and the procedures required for pre-
operation.

2. The procedures necessary to bootstrap the system and to-1oad,
programs.

3. The coimnoncoimnandsfor system initiation (e.g., ‘program
interrupt/recoveryand system priority organization).

3.2 Operating Procedures. This section shal1 describe the steps for system
restart after system initiation. If more than one mode of operation is
available, instructions for the seJection of each mode shal1 be provided.This
section shal1 contain sufficient detail so that al1 option points are well
identified and so that recovery from any step in error may be accomplished
without starting over if technically possible.

3.3 Input/Output. This secti?n shal1 describe input/outputmedia and explain
detailed procedures required for each. This section shal1 briefly describe
the operating system control 1anguage. This section shal1 also 1ist operator
procedures for interactive messages/replies (e.g., describe password use, 1og
on/1og off procedures, and file protection requireMentS).

3.4 Monitoring Procedures. This section shalJ describe the requirements for
monitoring the computer program in operation. Trouble and malfunction
indications shal1 be delineated, with correspond ng corrective actions.
Evaluation techniques for fault isolation shal1 be described to the maximum
extent practical. Conditions which require computer’shutdown or aborting, and
specific abort procedures, shal1 be described. Procedures for on-1ine
interventions,trap recovery, and operation consnunicationsshal1 also
be included.

.,. . .-.,

,:
.,.,,,,,
..+.

I

I
.

5-61

Downloaded from http://www.everyspec.com



..

—.

3.5 Auxiliary/Off-Line Routines. Procedures required to operate al1
auxiliary/off-1ine routines of the system shal1 be explained. ‘ :

3.6 Recovery Procedures. This secbion shal1 explain procedures to follow for
each trouble occurrence or program error (e.g., give detailed instructions to
obtain system dumps). This section shal1 describe the steps to be taken by..
the operator to restart system operation after an abort or interruption of
operation. Procedures for recording information concerning a malfunction .:
shal1 also be included.

3.7 Special Procedures. This section shal1 include any additional
instructionsrequired by’the operator (e.g., system alarms, program/system
security considerations, preparation.of the computer system for a.diagnostic
run, switch over to a redundant system).

Section 4. Diagnostic Features. ?.

4.1 Error Detection/Diagnostic.Features. This section’shal1 briefly describe
the error detection/diagnosticfeatures of operational programs. The purpose
for each error”’detection/diagnosticfeature shal1 be.described. For each
description, its value/meaning shal1 be stated. ~~ ,,..,,

4.2 Computer System Diagnostic Features. This section shal1 inform the
operator of avai1able software for”hardware.diagnostics by reference-tothe :
applicable publication. .-.

..
S@ction 5.” Notes. This section shall contain any.general”information that
will help the ccaputer‘operatorunderstand tie operatjon of ~~. S~SteM.

. . . . .
.,. .

5-62

-i

I

I

.-.

.,

I

Downloaded from http://www.everyspec.com



5.5.8 FORMAT FOR PROGRAM MAINTENANCE llANUAL

PROGRAM MAINTENANCE MNUAL

TABLE OF CONTENTS

1.3
1.4

Section 2.
2.1
2.2
2.3
2.4

Section 3.
3.1
3.2
3.3
3.3.1
3.3.2

Section 4.
4.1
4.2
4.3
4.4
4.5
4.6

Section 5.

General
Purpose of the Program Maintenance Manual : .
Project References
Terms and Abbreviations
Security and Privacy

:
,,..

System Description
System Application
General Oescription
Program Descriptions.
Unique Run Features

Environment
Equipment Environment
Support Software
Data Base
General Characteristics
Organization and Detailed Description .,

Program Maintenance Procedures
Conventions
Yerification Procedures !

Error Conditions
Special Maintenance Procedures
Special Maintenance Programs
Listings

Notes

\,

.

5-63

I

I

Downloaded from http://www.everyspec.com



Section 1. General.

1.1 Purpose of the Program Maintenance Manual. This paragraph shal1 describe
the purpose of the Program Maintenance Manual. It shal1 also identify for
whom it is intended.

1.2 Project References. This paragraph shal1 provide a brief sunsnaryof
references applicable to the history and development of the software system.
It shal1 also identify the acquisition organization, the development
organization, andthe user organizations ). At least the following documents
shal1 be identified by author or.source, reference number. title, date, and
security classification:

a. Sofbare Requirements Specification.

,. b. Software System/SubsystemSpecification.

c. Software Program Specification. ,.

d. Data Dictionary.Document.

e. User’s Manual.

f. Computer Operation Manual.

1.3 Terms and Abbreviations. This section shal1 provide an alphabetic
1ist~ng or include in an appendix a glossary of terms, definitions,and
acronyms used in this document and subject to interpretationby maintainers of
the software system. .>

1.4 Security and Privacy. This paragraph shall describethe classified ,.
components of the system, including inputs, outputs, data basesi and computer
programs. It shal1 also prescribe any privacy restrictionswith the use of
the data. .... ...

Section 2. System Description.

2.1 System Application. This section shall explain the purpose of the system
and the functions that it performs.

2.2 General Description. This section shal1 provide a description of the
system in terms of its overal1 functions. This shal1 include a description of
the functions of each”computer program and computer program component. It
shal1 also”include a‘graphical representationshowing the relationshipof each
computer program witliother major elements of the system.

. .
. . .

5-64

Downloaded from http://www.everyspec.com



2.3 Program Descriptfons. “rhepurpose of this section is to provide
information that WOU1d be of value to software maintainers in understanding
the software system. “rhissect’ion sha’1’1F’irst identify al1 computer programs
that make up the system (Spec’ia’lMairt’tenanceprograms shalJ be d’iscussed in
Section 4.4, Special Maintenance Procedures). Fol1owfng the ‘identification,
al1 computer program components shal’1be icient’if’ied.Foul”1wing a narrative and
graphic description of each component, each software urrit shal1 be described
as folIous:

a. Identification-Url”itt“i’t’lqiJnd‘tag.

b. Functions - a brief description of the unit functions.

“ I c. Detailed Documentation“- Refer to the applicable portion of the
Program Specification (Section 4.4.1 - 4.4.!I)or provfde equivalent
1evel of information.

2.4 Unique Run Features. This section shal1 describe any unique features of
the operation of the software system that are not included in the Computer
Operation Manual.

Section 3. Environment.

3.1 Equipment Environment. This paragraph shal1 discuss the equipment
configuration and its general characteristicsas they apply to the system,

3.2 Support Software. This paragraph shall 1ist support software used.by the
system and identify the appropriate versions or release numbers utiderwhich
the system was developed.

I

I 3.3 Data Base. Information in this paragraph shal1 include a complete
description of the nature and content of each data base used by the system
including security considerations. I
3.3.1 General Characteristics. This section shal1 provide a general
description of the characteristics of the data base,”including:

a. Identification- name and mnemonic reference. List the programs and
program components usfng the data,base.

b. Data Permanency - note whether the data base contains static data
that a program can reference, but may not change, or dynamic data
that can be changed or updated during system operation. Indicate
whether the change is periodic or random as a function of input
data. I

I [
5-65

Downloaded from http://www.everyspec.com



c. Storage - specify the storage media for the data base (e.g., tape,
disk, internal storage) and the amount of storage required.

d. Restrictions - explain any limitations on the use of this data base
by software elements in the system.

3.3.2 Organizationand Detailed Description. This section shal1 refer to
the specific 1ocation within the Program Specificationor Data Dictionary
Oocuasentwhere the internal structure of the data base is 1ocated. If
internal structure is not documented in those documents, the equivalent1evel
of detai1 shal1 be documented in this section.

Section 4. Program Maintenance Procedures. This section shall provide
1nformatlon on the specific procedures necessary for the programmer to
maintain the software that makes up the system.

4.1 Conventions. This paragraph will explain all rules, schemes, and
conventions that have been used with the system. Informationof this nature
could include the following items:

3. Design of mnemonic identifif!rsand their application to the tagging
or labeling of programs, units, routines, records, data fields,
stoage areas, etc.

b. Procedures and standards for charts, 1istings, serialization,
abbreviationsused in statementsand remarks, and symbols in charts
and 1istings.

c. The appropriate standards, fully identified,may be referenced in
lieu of a detailed outline of conventions.

d. Standard data elements and related features.

4.2 VerificationProcedures. This paragraph shall include requirements and
procedures necessary to check.the performanceof a software element fol1owing
its,modification. Procedures for periodic verificationof the software may
also be included.

4.3 Error Conditions. A descriptionof error conditions shall also be
included. This description shal1 include an explanation of the source of the
error and recommendedmethods to correct it.

4.4 Special Maintenance Procedures. This paragraph shall contain any special
procedureswhich have not been described elsewhere in this section. Specific
informationthat may be appropriate for presentation includes:

“i

I

I

I

5-66

Downloaded from http://www.everyspec.com



a. Requirements,procedures, and verificationwhich may be necessary to
maintain the system input-output components, such as the data base.

b. Requirements, procedures, and verificationmethods necessary to
perform a Library Maintenance System run.

4.5 Special Maintenance Programs. This paragraph shall contain an inventory
and description of any special programs (such as file restoration, purging..
history files) used to maintain the system. These programs shall be described
in the same manner as those described in paragraphs 2.3 and 2.4.

a. Input-OutputRequirements. Included in this paragraph shall be the
req~irements concerning materials needed to support the necessary maintenance
tasks. When a support system is being used, this paragraph should reference
the appropriate manual.

b. Procedures. The procedures, presented in a step-by-stepmanner, ,
shal1 detail the method of preparing the inputs, such as structuring and
sequencing of inputs. The operations or steps to be followed in setting up,
running, and terminating the maintenance task on the equipment shall be
given.

4.6 Listings. This paragraph shal1 contain or provide a reference to the
location,.of the program 1isting. Comments appropriate to particular
instructions shal1 be made if necessary to understand and follow the listing.

Section 5. Notes. This section shal1 contain any general information that
aids in understanding this manual or in understanding how to document, -...
maintain, develop, or modify the software system.

. I
5-67

Downloaded from http://www.everyspec.com



. . ..

5-68 (Blank)

Downloaded from http://www.everyspec.com



5.5.9 FORMAT FOR FIRMWARE SUPPORT MANUAL

.

FIRMWARE SUPPORT MANUAL

TABLE OF CONTENTS

Section 1. General
1.1 Purpose of the“Firmware Support Manual
1.2 Project References
1.3 Terms and Abbreviations
1.4 Security and Privacy

Section 2’. Device Information
Device Description

::; Instal1ation and Repair Procedures
2.3 Limitations

Section 3. ProgransningEquipment and Procedures
3.1 Progransning Hardware
3.2 Progransning Software
3.3 Progransning Procedures

Section 4. Vendor Information

Section 5. Notes’

5-69

Downloaded from http://www.everyspec.com



ection 1. General.

.1 Purpose of the Firmware Support Manual. This paragraph shal1 describe
he purpose of the Firmware Support Manual. It shal1 also identify for whom
t is intended.

.2 Project References. This paragraph shal1 provide a brief sunsnaryof
e?erence5 applicable to the history and development of the Parts of the
ystem that contain firmware. It shal1 also identify the acquisition
rganization, the development organization, the user organization,and the
rganization(s)responsiblee for providing 1ife-cycle support for the system.
t least the following documents shall be identified by author or source,
eference number, title, date, and security classification:

.a. Software Requirements Specification.

b. Software System/SubsystemSpecification.

c. Software Program Specification.

d. Data Dictionary Document.

e. User’s Manual.

f. Computer Operation Manual.

9. Program Maintenance Manual.

.3 Terms and Abbreviations. This section shal1 provide an alphabetic
isting or include in an appendix a glossary of t6rms, definitions, and
cronyms used in this document and subject to interpretationby maintainers of
he firmware parts of the system.

.

.4 Security and Privacy. This paragraph shal1 describe the classified
omponents of the system, including inputs, ouputs, data bases, computer
rograms, and firmware. It shal1 also prescribe any privacy restrictions with
se of the data;

ection 2. Device Intonation.

.1 Device Description. Thi’ssection shal1 contain a complete physical
ascription of the firmware components of the system, e.g., Read-Only- Memory
R~), Progransnable Read-Oniy-Memory (PROM), Eraseable Read-Only-Memory
EROM), switches, or strapping. As a minimum, the following shal1 be
escribed for each firmware component:

5-70

Downloaded from http://www.everyspec.com



.’

‘ ,,

a.

b.

c.

d.

e.

‘ f.

Memory size (e.g., words, bytes, or bits);

Operating characteristics (e.g., access time, power reqssirements,and..
logic levels);

Pin functional descriptors;

Logical interfaces;

Manufacturer’s part number;

Internal and external identification scheme used on a~. device.

2.2 Installation and Repair Procedures. This sectfon shalI contain .
procedures for installation, replacement, and repair for each firmwaredevice.
or board. This shal1 include procedures for removal and replacement of
boards; addressing scheme and implementation;socket number for each device;
description of the host board 1ayout; and the available (unused) portion of
each firmware device or board.

2.3 Limitations. This section shal1 describe the operational and
environmental 1imits to which the devices may be subjected and stil’
satisfactoryoperation.

Section 3. ProgransningEquipment and Procedures.

3.1 ProgranrningHardware. This section shal1 describe the equipment to be
used for progransningand reprogranrnfngeach firmware device. It shall :
identify computer peripherals, general-purpose equipment, and special
equipment used for device 1oadfng, burn-in, and test (includingverification
that the proper content is stored). Each piece of equipment shal1 be
identffied by manufacturer, manufacturer’s designation, and any special
features. A description of the major function of each piece of equipment
shall also be fncluded.

3.2 Programning Software. This section shal1 describe the software to be
used for programing and reprogransnfng each firmware device, including al1
software for device 1oading, burn-in, and test. Each software item shal1 be
identified by vendor, vendor’s designation, version, and any special
features. A description of the m~”or function of each piece of software shall
also be included.

3.3 Progransning Procedures. This section shal1 describe the procedures to be
used for progransnfng and reprogranming each firmware device including logic
data generation and device loading, burn-in, and test. It shal1 identffy al1
equipment and software necessary for each procedure.

5-71
‘i-.

Downloaded from http://www.everyspec.com



Section 4. Vendor Information. llis section shall contain data supplied by
the original device vendor or refer to the relevant documentation.The
descriptfon shal1 descrfbe the capabf1ities of the device and the methods of
reaching the capabi1itjes.

Sectfon.5. Notes. This sectfon shal1 contain any general info&ation that :
aids in.understandingthfs manual or fn understanding how to document, “’
+OSfntafn, develop or?modffy the fimware devfces that are used ‘in”the
system. ,,

. .

.

,.
,,

,.. “,

,’
., ...

,,-,

. ‘,

,.

‘,,
:,

, . .

. .

,.. ,

,,
,.,

,.

,.-.
.,

., . .,

5-72

Downloaded from http://www.everyspec.com



Downloaded from http://www.everyspec.com



6-2 (blank)

Downloaded from http://www.everyspec.com



.s,

-.

6.1 SOFTWARE ENO-PROOUCT ACCEPTANCE PLAN

6.1.1 POLICY ANO REQUIREMENTS SIJMWY (From NSA/CSS Software
Acquisition Manual 81-2, Policy 6.1)

Software developers shall fol1ow an orderly procedure, governed by a
Software End-ProductAcceptance P1an, to prepare for and achieve acceptance of
al1 software deliverables and services called for in the System Acquisition
Plan. This planshall be maintained until acceptance, along with a file of
acceptance related data which record receipt and acceptance of all end products
and services.

As a minimum, the fol1owing end products shal1 be required in a form and
format designated by the System Acquisition Organization:

(a) Software Program Source Code and Listings;

(b) Build Description Oocuments (when the sof-are is
developed and delivered in increments);

(c) Software Requirements Specification;

(d) Software System/SubsystemSpecification;

(e) Software Program Spacification;

(f) SoftvfareManuals;

(g) Software Configuration Management oats Base;

(h) Software Test P1ans and Test Cases;

(i) Software Test Procedures;

(j) Test Programs and test data files;

(k) SoftWar@ Test Reports;

(1) Hardware diagnostic software for al1 hardware
c~nents in the operational hardware configuration;

(m) Mdi tional end products required by the Software Life
Cycle Support organization.

6-3

Downloaded from http://www.everyspec.com



,.

.’

r.

. .

,,

-?

6-4 (Blank)

Downloaded from http://www.everyspec.com



‘)

‘*

,

,.

*“
c

6.1.2 FORMAT FOR SOFTWARE END-PRODUCT ACCEPTANCE PL~

SOFTWARE END-PRODUCT ACCEPTANCE PLAN

TABLE OF CONTENTS

Section 1. Purpose

Section 2. Applicable Documents

Section 3. kceptance Identification

Section 4. Items of Acceptance

Section 5.: Implementation

,..

.,

., .,.....

6-5

Downloaded from http://www.everyspec.com



Section 1. Purpose. This section describes the purpose of this PIan, which is
to present an orderly procedure for preparing for and achieving acceptance of
al1 software products required by the‘acquisitionorganization.

Section 2. Applicable Documents. This section ‘shall1ist all references that
relate to acceptance of end-products and services by the acquisition
organization. This may include the System Acquisition PIan, contractual
references, change proposals, Contract Data Requirements List, etc.

Section 3. Acceptance Identification. This section shall define the meaning Of
“customer acceptance”of iterns. It shall also define what constitutes
“close-out”of an item. Two example statements are as fol1ows: ,.,,.,. .3 ,..,.,-

(1) “Customer approval” of this Software End-Product Acceptance
P1an indicates that the customer agrees to the criteria foracieptance “of iterns~:’
listed in this plan and that items for acceptance are 1imited .tothose described
in the plan.

(2) “Close-out”of an item means that no additionalwork by the .
developer is expected or required unless changes or WintenanCe are..necessarY.

This section shal1 also ide~tify the instrument of acceptance for
each end item.

Section 4. .Items of Pcceptan.ce. This section shall contain a table or Tist
sumnarlzlng the end-product and services which are required by the acqui%ition
organization. The 1ist should be as follows:

Item Number Item Name Reference

.

:Folltiing the’1ist, a sunsnarysheet for,each listed item shall,be
included. The.sunsnmy sheets shall include the foilM”n9 ‘ “
information: ,,.

,. a. “Descriptivetitle;

b“..>~Degree of customer concurrence.required; ~ ... ~.,

Downloaded from http://www.everyspec.com



P

Section 5.
_for:

c. Format of the deliverable itern;

d. Schedule for producing, delivering, and (if applicable)
obtaining approval of the it-em;

e. References to the itern(contract or otherwise);

f. Criteria for acceptance of the itern;

9. Name of person who wil1 accept the itern;

h. Procedure and schedule for custonwr review and acceptance. :

Implementation. This section shall identify the developer’s plan

a. Tracking progress toward close-out of each end-product and
service;

b. Conducting the acceptance audit.

..
\

‘\
‘%*“.s. GovERNMENTP.,N,INGOFFICE,lg8,–704w,,73052 6-7

Downloaded from http://www.everyspec.com



Downloaded from http://www.everyspec.com




