Downloaded from http://www.everyspec.com

Ada 95 Quality and Style:

Guidelinesfor Professional Programmers

Department of Defense Ada Joint Program Office

SPC-94093-CMC
Version 01.00.10

October 1995

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

Ada 95 Quality and Style:

Guidelinesfor Professional Programmers

SPC-94093-CMC

Version 01.00.10

October 1995

Prepared for the
Department of Defense Ada Joint Program Office

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM

SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070

Copyright 00 1995, Software Productivity Consortium, Herndon, Virginia. This document can be copied and distributed
without fee in the U.S., or internationally. This is made possible under the terms of the DoD Ada Joint Program Office's
royalty-free, worldwide, non-exclusive, irrevocable license for unlimited use of this material. This material is based in part
upon work sponsored by the DoD Ada Joint Program Office under Advanced Research Projects Agency Grant
#MDA972-92-3-1018. The content does not necessarily reflect the position or the policy of the U.S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or
publicity pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium,
Inc. SOFTWARE PRODUCTIVITY CONSORTIUM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT
THE SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS
MATERIAL ISPROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

Downloaded from http://www.everyspec.com

Ada-ASSURED is atrademark of GrammaTech, Inc.

ADARTS@ isa service mark of the Software Productivity Consortium Limited Partnership.
IBM is aregistered trademark of International Business Machines Corporation.

VAX isaregistered trademark of Digital Equipment Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Other product names, or names of platforms referenced herein may be trademarks or registered trademarks of their respective
companies, and they are used for identification purposes only.

Downloaded from http://www.everyspec.com

PREFACE

PURPOSE

The purpose of Ada 95 Quality and Style: Guidelines for Professional Programmers is to help computer
professionals produce better Ada programs by identifying a set of stylistic guidelines that will directly impact the
quality of their Ada 95 programs. This style guide is not intended to replace the Ada Reference Manual (1995) or
Rationale (1995) or to serve as a tutorial for the Ada 95 programming language. Furthermore, this book is not
intended to be a guide for transitioning from Ada 83 to Ada 95. The reader is encouraged to consult the
References for sources on these related topics.

The style guide is divided into chapters that map to the major decisions that each programmer addresses when
creating high-quality, reliable, reusable, and portable Ada software. Some overlap exists in the chapters because
not all programming decisions can be made independently. Individual chapters address source code presentation,
readability, program structure, programming practice, concurrency, portability, reusability, performance, and a
new chapter on object-oriented features.

Each chapter is divided into guidelines, using a format that supports wide usage because its content is both
prescriptive and tailorable. Each guideline consists of a concise statement of the principles that should be followed
and a rationale explaining why the guideline is important. The guidelines also provide usage examples, in addition
to possible exceptions to applying the guidelines. Many of the guidelines are specific enough to be adopted as
corporate or project programming standards. Others require a managerial decision on a particular instantiation
before they can be used as standards. In such cases, a sample instantiation is presented and used throughout the
examples.

BACKGROUND

The Ada Joint Program Office (AJPO) funded this style guide, which was created by merging a set of guidelines
for using Ada 95 with modifications to the original Ada Quality and Style: Guidelines for Professional
Programmers, version 02.01.01 (AQ& S 83) (Software Productivity Consortium 1992), developed to support Ada
83. The Ada 95 guidelines are based on the wealth of data available from the Ada 9X Project, the AJPO library,
and the Ada community at large. The Software Productivity Consortium’s (Consortium’s) technical staff authored
the update and the Advanced Research Projects Agency (ARPA) participated in the update effort.

The preexisting AQ& S 83 presented a set of guidelines to help the programmer make disciplined use of Ada's
features. In 1992, the Consortium completed the version 2.1 update to the style guide under contract to the AJPO.
The AJPO referred to that style guide as “the suggested style guide for all DoD programs.”

PUBLIC COMMENT

This new style guide is intended to provide a tool for both the novice and the experienced Ada programmer. To
meet this objective, the Consortium directly involved both the public and the best available experts from across
the Ada community. To ensure this involvement, a three-step process was defined to develop this style guide:
develop a draft baseline, conduct public and expert review, and develop afinal style guide.

The Consortium invites comments on this book to continue enhancing its quality and usefulness. The authors will
consider suggestions for current guidelines and areas for future expansion. Examples that highlight particular
points are most helpful.

" This material is based in part upon work sponsored by the Department of Defense Ada Joint Program Office, through the
Advanced Research Projects Agency under Grant #MDA972-92-3-1018. The content does not necessarily reflect the
position or the policy of the U.S. Government, and no official endorsement should be inferred.

Downloaded from http://www.everyspec.com

iv Ada95 QUALITY AND STYLE

Electronic copies of this style guide are available for downloading through the Ada Information Clearinghouse
(phone: 1(800)232-4211; e-mail: adainfoesw-eng. falls-church.va.us).

Please direct written comments to:

Christine Ausnit

Software Productivity Consortium
2214 Rock Hill Road

Herndon, VA 22070

e-malil: ausnit@software.org

fax: (703) 742-7200

or

Kent A. Johnson

Software Productivity Consortium
2214 Rock Hill Road

Herndon, VA 22070

e-mail: johnson@software.org
fax: (703) 742-7200

Please include your contact information in your comments.

Downloaded from http://www.everyspec.com

AUTHORSAND ACKNOWLEDGMENTS

The Consortium wishes to recognize all of the nearly 100 contributors to previous versions of this style guide
written to support Ada 83, including its authors, editors, and distinguished reviewers. The contributors to this
version of the style guide include the authors, Ms. Christine Ausnit-Hood, Mr. Kent A. Johnson, Mr. Rabert G.
Pettit, and Mr. Steven B. Opdahl, and the following Distinguished Reviewers, Expert Reviewers, and Technical
Advisors.

Distinguished Reviewers. Mr. Bill Beckwith, Objective Interface Systems, Inc.; Dr. Norman H. Cohen, IBM
TJIWatson Research Center; Dr. Robert Dewar, New York University; Dr. Charles B. Engle, Jr., Department of
Computer Science, Florida Institute of Technology; Mr. Jay Ferguson, NSA, Department of Defense; Mr. Ken
Garlington, Lockheed Martin, Fort Worth Company; Mr. Tim Harrison, ParcPlace-Digitak Inc.; Mr. Ed
Seidewitz, NASA, Goddard Space Flight Center; Mr. S. Tucker Taft, Intermetrics Inc.

Expert Reviewers: Mr. Brad Bafour, CACI; Dr. Bryce Bardin, Ada Consulting and Training; Mr. Philip
Brashear, CTA Inc.; Dr. Ben Brosgol, Brosgol Consulting and Training; Dr. Michael B. Feldman, Department of
Electrical Engineering and Computer Science, George Washington University; Mr. Gil Myers, NOSC ; Mr. Jim
Moore, The MITRE Corporation; Ms. Eileen S. Quann, FASTRAK Training, Inc.; Mr. Richard Riehle,
AdaWorks; Dr. Tim Teitelbaum, GrammaT ech; Dr. Joyce Tokar, Tartan.

Technical Advisors: Mr. John Barnes, John Barnes Informatics, Mr. Leslie Dupaix, OO-ALC/TISE, Hill AFB;
Mr. Dave Emery, The MITRE Corporation; Mr. Magnus Kempe, Kempe Software CE; Ms. Judy Kerner, The
Aerospace Corporation; Mr. Alexander Miethe, CCI; LtCol Pat Lawlis, AFIT/ENG, Wright-Patterson AFB.

Thanks to the other contributors who forwarded their comments, guidelines, and examples, including Lisa Chan,
Bo Sanden, Wesley Groleau, Terry D. Humphrey, Pascal Leroy, Gilles Demailly, Philippe Kipfer, Tomas
Peterson, Ted Baker, Mike Dingas, Willem Treurniet, T. A. Vo, and Dave Weller.

Special Thanksto the Following:

Ed Seidewitz, Tim Harrison, Bill Beckwith, Ken Garlington, Tucker Taft, Chuck Engle, and Don Reifer for taking
time from their busy schedules to attend the Distinguished Reviewer Technical Interchange Meetings.

Mike Evans and Dan Hocking from the Army Research Lab for providing electronic meeting support at the
Distinguished Reviewer Technical Interchange Meetings.

Philip Brashear for rewriting Chapter 10.
Mike Feldman and Brian Kallberg for their updates to the dining philosophers problem.
John Barnes for providing extracts from his new book.

GrammaTech, Inc., who made the new version of their Ada-ASSURED product available. The examples were
formatted in whole or in part using their tool.

In addition, Bobbie Troy and Mary Mallonee provided technical editing; Debbie Morgan and Lisa Smith provided
word processing; and Bobbie Troy provided clean proofing.

Downloaded from http://www.everyspec.com

vi Ada95 QUALITY AND STYLE

Downloaded from http://www.everyspec.com

CONTENTS
CHAPTER L INEEOUUCTION ...ttt ettt b e ne e e e ene e 1
1.1 ORGANIZATION OF THISBOOK......cciitiiteiiteeiteeiteesiienteesteesteesteesreesteesseessnesseesseesreesreesresssessseesseens 1
1.2 HOW TOUSE THISBOOKcctiitiiitieitieiiee ittt sttt st st sre e sbeesbeesreesaeesinesaneeneebeesnnesnnens 3
1.3 TO THE NEW AdaPROGRAMMER........cooiiiiiiiiie ittt sreesreennee 4
1.4 TO THE EXPERIENCED AdaPROGRAMMERccoiiiiiiiiiie e 4
15 TO EXPERIENCED OBJECT-ORIENTED PROGRAMMERS.........ccccoiiiiiiiiiiicseenee e 4
1.6 TO THE SOFTWARE PROJECT MANAGER......cccoi ittt 5
1.7 TO CONTRACTING AGENCIES AND STANDARDS ORGANIZATIONSccoeiiiiieiieeiieniene 5
1.8 TOAda83TOAda95 TRANSITION PLANNERS.........cccoi ittt 6
1.9 TYPOGRAPHIC CONVENTIONS.......coitiitiiitieitie ittt sttt sre e b b i reesre e sreesreesreesreesneesnee s 6
CHAPTER 2 Source Code PreSentalionc.vieiiiieiieiesie ettt sne e 9
2.1 CODE FORMATTING ...ttt ittt sttt ettt sttt eb e sb e sh e sbe st st sn e enn e b e nne e nne e nnn e s 9
2.2 SUMMARY ittt e h R R R R Rt R R e R R et R et R et R et nn e nn e nennns 19
CHAPTER 3 REAAADITTY ..ottt bbbt n e s re e 21
3.1 SPELLING ..ttt ettt h bR kR h e R Rt R et a et n et n e 21
3.2 NAMING CONVENTIONS.coiititiiitititit ettt ettt er et sb et ssn e et e s e bt e be e bt snreenneennes 24
3.3 COMMENTS. .ttt bbbt h e a e h e s b e s b et eb et b et h et e he e e s et eb e e she e s he e sbe e san e en b e enn e e aneene s 32
34 USING TYPES ...ttt b bbbt h et e e e st be e s be e sbe e s ee e aenennneeaneenns 42
3.5 SUMMARY ettt bt h e bbb R R R Rt R e R et R et R e R et enn et nennns 44
CHAPTER 4 Program SEEUCTUI @ittt ettt ettt ettt e s st e e e s bbe e e s sbbe e e s sabee e e s ansee e s sanreeassnnees 47
4.1 HIGH-LEVEL STRUCTURE ..ottt sbe e e nne e 47
A.2 VISIBILITY ettt ittt ettt h ekt a e et R e bt e bt e e e s ab e ea bt e bt e b e e b e e be e beenne e 55
4.3 EXCEPTIONS ...ttt h ettt b e e bt e bt e e e san e bt e bt e b e e be e beenbe e 60
A4 SUMMARY ..ottt R a et E e R R R et E e e bbb nne e 62
CHAPTER 5 Programming PracliCeS.........cc ittt ettt sttt be e saee e sabe s sbe e sasesseeeesaneas 65
51 OPTIONAL PARTS OF THE SYNTAX ettt sttt 65
5.2 PARAMETER LISTS ..ottt b bttt e e b sne e nne e sane s 68
ST T I = T T TSP T PPV PP 70
54 DATA STRUGCTURES........coti ittt ittt sb b b sae e sie e ssn e satesbeenneenneennnenans 74
5.5 EXPRESSIONSottt ittt ettt ettt h ettt h e s b e e b e eh e e b et ah et e e et e an e eh e e R e e ehe e he e nnn e nn e neenns 83
5.6 STATEMENTS ..ottt b b e h e e b et s b et s b et s ae e e an e be e s be e sbe e sbeeennesnneenneenns 86
A A 11 = I i I PO T RSP OT RO PPR PR 95
5.8 USING EXCEPTIONS...... ..ottt ittt sttt ettt sie s b sbe e she e sh e sse e sse s sn e sanesbeenneennnennnesnns 99
5.9 ERRONEOUSEXECUTION AND BOUNDED ERRORS..........cccoiitiiiiiiiieseesee s 102
5.10 SUMMARY .ottt sttt bt et h et a e b e h e b e b e Rt Rt R Rt R R et R et R et R et an e an e nennn s 108
CHAPTER 6 CONCUIMTEINCY ...veiiiitieie ettt e e ateee ettt e e et et e e aabee e s s aabe e e e sabee e e s ambee e e aasbee e e aabbeeasabeeaesasbeeassanbeeasannees 113
6.1 CONCURRENCY OPTIONS......ccttiiiitititiiaiiiateetee st stee s ses st ese st essesss e sssessseaneeneeseesseenreenneennes 113

vii

Downloaded from http://www.everyspec.com

viii Ada95 QUALITY AND STYLE

6.2 COMMUNICATION ...ttt sttt sttt ettt sb e h et e b e sb e b e e st e sbesbesheesbesbesbeebeeneesbesbeaneesbesbens 124
6.3 TERMINATION ...ttt b et b e s bt b e he e b e s bt s b e e b e sbesb e e he e st e ebesbesbeebesbesbeennesbesbeas 132
6.4 SUMMARY .ottt bbbt bt e e b e b e b e e h e e e b e e bt e R £ e b e bt SR e Re e b e eEe e beeRe e b ebeeaeenrenbe e 137
CHAPTER 7 POFTADIHTTY ..ttt bbbt b e e ne e 141
7.1 FUNDAMENTALS ..ottt b e h bt bt he e ae e sn s e s bt e s be e rneennnennneenns 142
7.2 NUMERIC TYPES AND EXPRESSIONS......ccuitiiiiiiiiiiiit sttt sttt 149
7.3 STORAGE CONTROL ...uttiiiitiiteeieeie sttt sttt sttt be b e bt st b e e e e sbesb e be et e sbesbeaaseneesbesbesneenbeseens 154
T4 TASKING ...ttt et e e bt s bt e sh e e s bt b et eh et eh et ea st b e e ebe e nhe e e R et en et e Rn e enn e nnn e ne e 155
7.5 EXCEPTIONS . ..ttt ettt bttt b s b e e bt eh et e bt eh st e s et e aeesbe e s b et sbe e s be e nnnennn e e nneennes 157
7.6 REPRESENTATION CLAUSESAND IMPLEMENTATION-DEPENDENT FEATURES.............. 158
.7 INPUT/OUTPUT ..ottt ettt se ettt st b b e bt bt sh et sa et ean e eae e s b e e sb e e sb et nn et nnnennnennn s 162
7.8 SUMMARY ettt bt et b e h e s b et h e Rt Rt Rt R e R et R e R e R et nn e an e nnrn 164
CHAPTER 8 REUSADITITY ..ottt b e n e e ne e 169
8.1 UNDERSTANDING AND CLARITY oottt sttt 170
8.2 ROBUSTINESSottt ittt ettt b bt h et e bt s b e e she e eh e e sh et eh et e ae e e an e be e s b e e ebe e sbe e anneanneenneenns 172
8.3 AD A PT ABILITY Lttt b bbbt b e h e h et nnenans 177
8.4 INDEPENDENCEoooitiiiii it bbbt bttt ettt nb bt et sans 191
8.5 SUMMARY ettt bbb R R R R Rt e R nhe R et R et an e ean e ne s 198
CHAPTER 9 ODjeCt-Orient@d FEALUIES.........coiiiiiiiiiiti ettt b e e b e nne e 201
9.1 OBJECT-ORIENTED DESIGNcciiiiiiiiiiiiiiiiiieieeiee sttt ettt ene b sneennesnnes 202
9.2 TAGGED TYPE HIERARCHIES. ..ottt 202
9.3 TAGGED TYPE OPERATIONS.......oeiitiiitiiititittt ettt sttt ettt sttt n e b b e sne e 209
9.4 MANAGING VISIBILITY ittt ea ettt n e st b b s neenns 217
9.5 MULTIPLE INHERITANCE......ccti ittt b e bt en e sneenns 218
0.6 SUMMARY ittt et e bt h e b e b e b e R Rt R R et E R e R et R et R et e et a bt nan e nennn s 221
CHAPTER 10 ImMpProving PerfOrMANCE.oiuiiii ittt nne e 225
10.1 PERFORMANCE ISSUES........cco ittt st sb e bt sie e b e b sbeesenesaneens 225
10.2 PERFORMANCE MEASUREMENToiiiiiiiiiie ittt ettt sbe e 225
10.3 PROGRAM STRUGCTUREooitiiitiiitieitie ittt ettt ettt sttt sb e bbb sie e saeesanesbeesbeennee e 226
10.4 DATA STRUCTURES.........ooiii ittt ettt b e bbbt bbbt et e s be e sre s b e bt e abe e b 227
105 ALGORITHMS. ...ttt b et e b e b e b e e e bt e s bt s b e e s bt et e e bt e bt e beeabeesbeenbee s 228
FOB T PES. ..ottt bt bbbt b e bbb Rt Rt bRt e b e e be b be e nre e re e re e 232
FO.7 PRAGIMAS ...ttt bt bt s bbbt e bt e bt e e bt e ebe e ebe e s bt e b e e bt e b e e be e be e be e abe e nreenre e 236
10.8 SUMMARY ...ttt ettt h e bbbt bt e bt e bt e bt e bt e e bt e e bt e eb e e eRe e bt bt e bt e be e be e nbe e nreenre e 238
CHAPTER 11 COmMPlet@ EXAMPIE ...ttt bbbt e nbe e nne e 241
11.1 PORTABLE DINING PHILOSOPHERS EXAMPLEcooiiiiiiiieiie et 241
APPENDI X A Map From Ada 95 Reference Manual to GUIdEINES...........ccoeiiiiiiiiii i 257
REFERENGCES...... ..ottt b e bt s he e sh et h e b e e a et e s e eb et she e s he e ab et e he e ean e enn e e nnesbeesnnennn s 267
BIBLIOGRAPHY ittt ettt b e b bt eb et b e ke e eh et e as e be e s R et sh et s he e e ae e enn e e an e e nn e nnenan s 273

Downloaded from http://www.everyspec.com

TABLES

Table 1: Impact of Ada 95 Features and Enhancement on Ada Style Guide Chapters

Downloaded from http://www.everyspec.com

x Ada 95 QUALITY AND STYLE

Downloaded from http://www.everyspec.com

CHAPTER 1
| ntroduction

Style is an often overlooked but very critical attribute of writing. The style of writing directly impacts the
readability and understandability of the end product. The style of programming, as the writing of source code in a
computer language, also suffers from this neglect. Programs need to be readable and understandable by humans,
not just comparable by machines. This requirement is important in the creation of quality products that not only
meet user needs but also can be developed on schedule and within estimated cost. This book is intended to help
the computer professional produce better Ada programs. It presents a set of specific stylistic guidelines for using
the powerful features of Ada 95 (Ada Reference Manual 1995) in a disciplined manner.

Each guideline consists of a concise statement of the principles that should be followed and a rationale for
following the guideline. In most cases, an example of the use of the guideline is provided, and, in some cases, a
further example is included to show the consequences of violating the guideline. Possible exceptions to the
application of the guideline are explicitly noted, and further explanatory notes are provided, where appropriate. In
some cases, an instantiation is provided to show more specific guidance that could be enforced as a standard. In
selected cases, automation notes discuss how one could automate enforcement of the guideline.

Ada was designed to support the development of high-quality, reliable, reusable, and portable software. For a
number of reasons, no programming language can ensure the achievement of these desirable objectives on its own.
For example, programming must be embedded in a disciplined development process that addresses requirements
analysis, design, implementation, verification, validation, and maintenance in an organized way. The use of the
language must conform to good programming practices based on well-established software engineering principles.
This book is intended to help bridge the gap between these principles and the actual practice of programming in
Ada

Many of the guidelines in this book are designed to promote clear source text. The goal of these guidelinesis to
improve the ease of program evolution, adaptation, and maintenance. Understandable source text is more likely to
be correct and reliable. Easy adaptation requires a thorough understanding of the software; this is considerably
facilitated by clarity. Effective code adaptation is a prerequisite to code reuse, a technique that has the potential
for drastic reductions in system development cost. Finally, because maintenance (really evolution) is a costly
process that continues throughout the life of a system, clarity plays a major role in keeping maintenance costs
down. Over the entire life cycle, code has to be read and understood far more often than it is written; thus, the
investment in writing readable, understandable code is worthwhile.

The remaining sections of this introduction discuss the organization of this book and how the material presented
can be used by people in different roles, including new Ada programmers, experienced Ada programmers, object-
oriented programmers, software project managers, contracting agencies, standards setting organizations, and
planners of the transition to Ada 95 from existing Ada 83 (Ada Reference Manual 1983) programs.

1.1 ORGANIZATION OF THISBOOK

The format of this book follows the well-received guideline format of the Ada Quality and Style: Guidelines for
Professional Programmers, version 02.01.01 (AQ&S 83) (Software Productivity Consortium 1992). The style
guide is divided into sections that map to the major decisions that each programmer must make when creating
high-quality, reliable, reusable, and portable Ada software. Some overlap exists in the sections because not all
programming decisions can be made independently.

Downloaded from http://www.everyspec.com

2 Ada95 QUALITY AND STYLE

Individual chapters address source code presentation, readability, program structure, programming practices,
concurrency, portability, reusability, and performance, and a new chapter addresses object-oriented features. Each
chapter ends with a summary of the guidelines it contains. The last chapter shows a complete implementation of
the Dining Philosophers example, provided by Dr. Michael B. Feldman and Mr. Bjorn Kallberg. Many of the
guidelines in this book were used to create this example. An appendix provides a cross-reference matrix between
the Ada Reference Manual (1995) sections and the guidelinesin this style guide.

This book is written using the general software engineering vocabulary developed over the last 20 years. Software
engineering is arapidly evolving discipline with relatively new concepts and terminology. However, to establish a
common frame of reference, needed definitions are extracted from the Ada Reference Manual (1995) and
Rationale (1995).

Throughout the book, references are made to other sources of information about Ada style and other Ada issues.
The references are listed at the end of the book. A bibliography is also provided.

In this book, the term “Ada’ refers to the latest Ada standard, released in February 1995 (sometimes also known
as Ada 95). References to the earlier Ada standard are clearly denoted as“Ada 83.”

111 Sour ce Code Presentation and Readability

Chapters 2 and 3 directly address the issues of creating clear, readable, and understandable source text. Chapter 2
focuses on code formatting, and Chapter 3 addresses issues of use of comments, naming conventions, and types.

There are two main aspects of code clarity: (1) careful and consistent layout of the source text on the page or the
screen, covered by Chapter 2, that can enhance readability dramatically; (2) careful attention to the structure of
code, covered by Chapter 3, that can make the code easier to understand. This is true both on the small scale (e.g.,
by careful choice of identifier names or by disciplined use of loops) and on the large scale (e.g., by proper use of
packages). These guidelines treat both layout and structure.

Code formatting and naming convention preferences tend to be very personal. You must balance your personal
likes and dislikes with those of other engineers on the project so that you can agree to a consistent set of
conventions that the whole project team will follow. Automatic code formatters can help in enforcing this kind of
consistency.

112 Program Structure

Chapter 4 addresses overall program structure. Proper structure improves program clarity. This is analogous to
readability on lower levels and includes issues of high-level structure, in particular the use of packages and child
packages, visibility, and exceptions. The mgjority of the guidelines in this chapter are concerned with the
application of sound software engineering principles, such as information hiding, abstraction, encapsulation, and
separation of concerns.

113 Programming Practices

Chapter 5 presents guidelines that define consistent and logical language feature usage. These guidelines address
optional parts of the syntax, types, data structures, expressions, statements, visibility, exceptions, and erroneous
execution.

114 Concurrency

Chapter 6 defines the correct use of concurrency to develop predictable, reliable, reusable, and portable software.
The topics include tasking, protected units, communication, and termination. One major area of enhancement of
the Ada language has been better support for shared data. The task mechanism had been the only available
approach to protecting shared data. The guidelines in this chapter support the use of protected types to encapsulate
and synchronize access to shared data.

115 Portability and Reusability

Chapters 7 and 8 address issues of designing for change from slightly different perspectives. Chapter 7 addresses
the fundamentals of portability, the ease of changing software from one computer system or environment to

Downloaded from http://www.everyspec.com

INTRODUCTION 3

another, and the impact of specific feature usage on portability. Chapter 8 addresses code reusability, the extent to
which code can be used in different applications with minimal change.

The portability guidelines discussed in Chapter 7 need careful attention. Adherence to them is important even if
the need to port the resulting software is not currently foreseen. Following the guidelines improves the potential
reusability of the resulting code in projects that use different Ada implementations. You should insist that when
particular project needs force the relaxation of some of the portability guidelines, nonportable features of the
source text are prominently indicated.

The reusability guidelines given in Chapter 8 are based on the principles of encapsulation and design for change.
These guidelines stress that understanding and clarity, robustness, adaptability, and independence are useful and
desirable, even when reuse is not expected, because the resulting code is more resistant to both planned and
unplanned change.

1.16 Object-Oriented Features

Chapter 9 defines a set of guidelines in common objected-oriented terms that exploit some of the features of Ada
95 that are not in Ada 83. The guidelines discuss the use of the new Ada features of type extension (tagged types),
abstract tagged types, and abstract subprograms to implement single inheritance, multiple inheritance, and
polymorphism.

117 Perfor mance

Chapter 10 defines a set of guidelines intended to enhance performance. It is recognized that some approaches to
performance are at odds with maintainability and portability. Most of the guidelinesin this chapter read “. . . when
measured performance indicates.” “Indicates’ means that you have determined that the benefit in increased
performance to your application in your environment outweighs the negative side effects on understandability,
maintainability, and portability of the resulting code.

12 HOW TOUSE THISBOOK

This book is intended for those involved in the actual development of software systems written in Ada. The
following sections discuss how to make the most effective use of the material presented. Readers with different
levels of Ada experience or different rolesin a software project will need to use the book in different ways.

There are a number of ways in which this book can be used: as a guide to good Ada style; as a comprehensive list
of guidelines that will contribute to better Ada programs; or as a reference work to consult for usage examples of
and design-tradeoff discussion on specific features of the language. The book contains many guidelines, some of
which are quite complex. Learning them all at the same time should not be necessary; it is unlikely that you will
be using all the features of the language at once. However, it is recommended that all programmers (and, where
possible, other Ada project staff) make an effort to read and understand Chapters 2, 3, 4, and Chapter 5 up to
Section 5.7. Some of the material is quite difficult (e.g., Section 4.2, which discusses visibility), but it covers
issues that are fundamental to the effective use of Ada and isimportant for any software professional involved in
building Ada systems.

This book is not intended as an introductory text on Ada or as a complete manual of the Ada language. It is
assumed that you already know the syntax of Ada and have a rudimentary understanding of the semantics. With
such a background, you should find the guidelines useful, informative, and often enlightening.

If you are learning Ada, you should equip yourself with a comprehensive introduction to the language. Two good
introductory texts on Ada 83 are Barnes (1989) and Cohen (1986). Both authors have published new books that
cover Ada 95 (Barnes 1996, Cohen 1996). Once you become familiar with these texts, you are encouraged to use
them in conjunction with Rationale (1995). The Ada Reference Manual (1995) should be regarded as a companion
to these books. The majority of guidelines reference the sections of the Ada Reference Manual (1995) that define
the language features being discussed. Appendix A cross references sections of the Ada Language Reference
Manual to the guidelines.

Downloaded from http://www.everyspec.com

4 Ada95 QUALITY AND STYLE

1.3 TOTHE NEW Ada PROGRAMMER

At first sight, Ada offers a bewildering variety of features. It is a powerful tool intended to solve difficult
problems, and almost every feature has a legitimate application in some context. This makes it especially
important to use Ada's features in a disciplined and organized way. Following the guidelines can make learning
Ada easier and help you to master its apparent complexity. From the beginning, you can write programs that
exploit the best features of the language in the way that the designers intended.

Programmers experienced in using other programming languages are often tempted to use Ada as if it were their
familiar language but with irritating syntactic differences. This pitfall should be avoided at all costs; it can lead to
convoluted code that subverts exactly those aspects of Ada that make it so suitable for building high-quality
systems. Y ou must learn to “think Ada.” Following the guidelines in this book and reading the examples of their
use will help you to do this as quickly and painlessly as possible.

To some degree, novice programmers learning Ada have an advantage. Following the guidelines from the
beginning helps in developing a clear programming style that effectively exploits the language. If you are in this
category, it is recommended that you adopt the guidelines for those exercises you perform as part of learning Ada.
Initially, developing sound programming habits by concentrating on the guidelines themselves and their
supporting examples is more important than understanding the rationale for each guideline.

The rationale for many of the guidelines helps experienced programmers understand and accept the suggestions
presented in the guideline. Some of the guidelines themselves are also written for the experienced programmer
who must make engineering tradeoffs. This is especialy true in the areas of portability, reusability, and
performance. These more difficult guidelines and rationale will make you aware of the issues affecting each
programming decision. You can then use that awareness to recognize the engineering tradeoffs that you will
eventually be asked to make when you are the experienced Ada programmer.

14 TO THE EXPERIENCED Ada PROGRAMMER

As an experienced Ada programmer, you are already writing code that conforms to many of the guidelinesin this
book. In some areas, however, you may have adopted a personal programming style that differs from that
presented here, and you might be reluctant to change. Carefully review those guidelines that are inconsistent with
your current style, make sure that you understand their rationale, and consider adopting them. The overall set of
guidelines in this book embodies a consistent approach to producing high-quality programs that would be
weakened by too many exceptions.

Consistency is another important reason for general adoption of common guidelines. If all the staff of a project
write source text in the same style, many critical project activities are easier. Consistent code simplifies formal
and informal code reviews, system integration, code reuse within a project, and the provision and application of
supporting tools. In practice, corporate or project standards may require deviations from the guidelines to be
explicitly commented, so adopting a nonstandard approach may require extra work.

Some of the guidelines in this book, particularly in the chapters on concurrency, portability, reusability,
object-oriented features, and performance, focus on design tradeoffs. These guidelines ask you to consider
whether using an Ada feature is an appropriate design decision for your application. There are often several ways
to implement a particular design decision, and these guidelines discuss the tradeoffs you should consider in
making your decision.

1.5 TO EXPERIENCED OBJECT-ORIENTED PROGRAMMERS

As an experienced object-oriented programmer, you will appreciate the effort that has gone into elegantly
extending the Adalanguage to include powerful object-oriented features. These new features are integrated tightly
with the existing language features and vocabulary. This book is intentionally written to provide a view from the
perspective of style; therefore, Ada object-oriented features are used throughout the book. Disciplined use of these
features will promote programs that are easier to read and modify. These features also give you flexibility in
building reusable components. Chapter 9 addresses object-oriented programming and the issues of inheritance and
polymorphism. Earlier chapters cross reference the Chapter 9 guidelines.

You will find it easier to take advantage of many of the concepts in Chapter 9 if you have done an object-oriented
design. The results of an aobject-oriented design would include a set of meaningful abstractions and hierarchy of

Downloaded from http://www.everyspec.com
INTRODUCTION 5

classes. The abstractions need to include the definition of the design objects, including structure and state, the
operations on the objects, and the intended encapsulation for each object. The details on designing these
abstractions and the hierarchy of classes are beyond the scope of this book. A number of good sources exist for
this detail, including Rumbaugh et al. (1991), Jacobson et al. (1992), the ADARTS G&D Guidebook (Software
Productivity Consortium 1993), and Booch (1994).

16 TOTHE SOFTWARE PROJECT MANAGER

Technical management plays a key rolein ensuring that the software produced in the course of a project is correct,
reliable, maintainable, and portable. Management must create a project-wide commitment to the production of
high-quality code; define project-specific coding standards and guidelines; foster an understanding of why
uniform adherence to the chosen coding standards is critical to product quality; and establish policies and
procedures to check and enforce that adherence. The guidelines contained in this book can aid such an effort.

An important activity for managers is the definition of coding standards for a project or organization. These
guidelines do not, in themselves, constitute a complete set of standards; however, they can serve as a basis for
standards. Several guidelines indicate a range of decisions, but they do not prescribe a particular decision. For
example, the second guideline in the book (Guideline 2.1.2) advocates using a consistent number of spaces for
indentation and indicates in the rationale that two to four spaces would be reasonable. With your senior technical
staff, you should review each such guideline and arrive at a decision about its instantiation that will constitute
your project or organizational standard.

Two other areas require manageria decisions about standardization. Guideline 3.1.4 advises you to avoid arbitrary
abbreviations in object or unit names. Y ou should prepare a glossary of acceptable abbreviations for a project that
allows the use of shorter versions of application-specific terms (e.g., FFT for Fast Fourier Transform or SPN for
Stochastic Petri Net). Y ou should keep this glossary short and restrict it to terms that need to be used frequently as
part of names. Having to refer continually to an extensive glossary to understand source text makes it hard to read.

The portability guidelines given in Chapter 7 need careful attention. Adherence to them is important even if the
need to port the resulting software is not currently foreseen. Following the guidelines improves the potential
reusability of the resulting code in projects that use different Ada implementations. You should insist that when
particular project needs force the relaxation of some of the portability guidelines, nonportable features of the
source text are prominently indicated. Observing the Chapter 7 guidelines requires definition and standardization
of project- or organization-specific numeric types to be used in place of the (potentially nonportable) predefined
numeric types.

Your decisions on standardization issues should be incorporated in a project or organization coding standards
document. With coding standards in place, you need to ensure adherence to them. Gaining the wholehearted
commitment of your programming staff to use the standardsis critical. Given this commitment and the example of
high-quality Ada being produced by your programmers, it will be far easier to conduct effective formal code
reviews that check compliance to project standards.

Some general issues concerning the management of Ada projects are discussed by Hefley, et al. (1992).

1.7 TO CONTRACTING AGENCIESAND STANDARDS ORGANIZATIONS

Many of the guidelines presented here are specific enough to be adopted as corporate or project programming
standards. Others require a managerial decision on a particular instantiation before they can be used as standards.
In such cases, a sample instantiation is presented and used throughout the examples. Such instantiations should be
recognized as weaker recommendations than the guidelines themselves. In some cases, where the examples are
extracted from a published work, the author’s style is used unchanged.

Other guidelines presented in this book are intentionally phrased in terms of design choices to consider. These
guidelines cannot be instantiated as hard-and-fast rules that a project must follow. For example, you should not
interpret Guidelines 6.1.1 and 6.1.2 to mean that a project is forbidden to use tasks. Rather, these guidelines are
intended to help the designer make the tradeoffs between using protected objects and tasks, thus leading the
designer to make a more informed choice between these features.

Downloaded from http://www.everyspec.com
6 Ada95 QUALITY AND STYLE

The guidelines in this document are not intended to stand alone as a standard. In some cases, it is not clear that a
guideline could be enforced because it is only intended to make the engineer aware of tradeoffs. In other cases, a
choice still remains about a guideline, such as how many spaces to use for each level of indentation.

When a guideline is too general to show an example, the “instantiation” section of each guideline contains more
specific guidelines. These instantiations can be considered a standard and are more likely to be enforceable. Any
organization that attempts to extract standards from this document needs to evaluate the complete context. Each
guideline works best when related guidelines are practiced. In isolation, a guideline may have little or no benefit.

1.8 TO Ada83TO Ada95 TRANSITION PLANNERS

Transitioning issues fall into two major categories: the incompatibilities between the languages, in particular,
upward compatibility, and exploitation of new language features.

Upward compatibility of Ada 95 was a major design goal of the language. The small number of incompatibilities
between Ada 83 and Ada 95 that are likely to occur in practice are easily overcome (see Ada 95 Rationale [1995]
Appendix X entitled Upward Compatibility). Detailed information on compatibility issues can be found in Taylor
(1995) and Intermetrics (1995).

The transition planner can gain insight from this book into the exploitation of language features in two ways. First,
Table 1 shows the impact of new Ada 95 language features on style guide chapters. Second, Appendix A maps
Ada Reference Manual (1995) sections to specific style guidelines.

19 TYPOGRAPHIC CONVENTIONS

This style guide uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Publication titles and emphasis.

Boldfaced serif font Section headings.

Boldfaced sans serif font Subheadings for guideline, instantiation, example, rationale,

notes, exceptions, automation notes, caution, and subheadings in
Summary sections.

Typewriter font Syntax of code.

Downloaded from http://www.everyspec.com

INTRODUCTION 7

Table 1. Impact of Ada 95 Features and Enhancement on Ada Style Guide Chapters

Ada 95 Features and Enhancements | Code. | Read. | Struc. | Prac. | Conc. | Port. | Reuse.| OO Perf.
Object-Oriented Features
Type Extension (tagged types) v v v v
Controlled Types v
Polymorphism v v

Multiple Inheritance

AL NI NI NI N
<

Abstract Types and Subprograms

Program Structure and Compilation
Child Library Units v v
Generics v v

Tasking Model Revisions
Protected Types v v v v
Synchronization Mechanisms v v v V4

Declarations and Types

Access-to-Subprogram Types v v

Access Types v
Other Changes
Exceptions v v v v

Use Type and Renaming v v

Interfacing Foreign Languages v
Specialized Annexes

System Programming v
Real-Time Systems v
Distributed Systems v
Information Systems v v

Numerics v v

v

Safety and Security v v v

Code Presentation Read.
Programming Practices Conc.
Reusability 00

Legend: Code.
Prac.
Reuse.

Readability Struct.
Concurrency Port.
Object-Oriented (New) Perf.

Program Structure
Portability
Performance

Downloaded from http://www.everyspec.com

8 Ada95 QUALITY AND STYLE

Downloaded from http://www.everyspec.com

CHAPTER 2
Sour ce Code Presentation

The physical layout of source text on the page or screen has a strong effect on its readability. This chapter
contains source code presentation guidelines intended to make the code more readable.

In addition to the general purpose guidelines, specific recommendations are made in the “instantiation” sections.
If you disagree with the specific recommendations, you may want to adopt your own set of conventions that still
follow the general purpose guidelines. Above al, be consistent across your entire project.

An entirely consistent layout is hard to achieve or check manually. Therefore, you may prefer to automate layout
with a tool for parameterized code formatting or incorporate the guidelines into an automatic coding template.
Some of the guidelines and specific recommendations presented in this chapter cannot be enforced by a formatting
tool because they are based on the semantics, not the syntax, of the Ada code. More details are given in the
“automation notes” sections.

21 CODE FORMATTING

The “code formatting” of Ada source code affects how the code looks, not what the code does. Topics included
here are horizontal spacing, indentation, alignment, pagination, and line length. The most important guideline is to
be consistent throughout the compilation unit as well as the project.

211 Horizontal Spacing
guideline

» Useconsistent spacing around delimiters.

* Usethe same spacing as you would in regular prose.
instantiation

Specifically, leave at least one blank space in the following places, as shown in the examples throughout this
book. More spaces may be required for the vertical alignment recommended in subsegquent guidelines.
- Before and after the following delimiter/s and binary operators:

- * &

+

< > /= <= >=

> |

- Outside of the quotes for string (») and character () literals, except where prohibited.

- Outside, but not inside, parentheses.

- After commas (,) and semicolons (;).

Do not leave any blank spaces in the following places, even if this conflicts with the above recommendations.
- After the plus (+) and minus (-) signs when used as unary operators.

- After afunction call.

- Inside of label delimiters (<< >>).

- Before and after the exponentiation operator (x*), apostrophe (*), and period (.)

Downloaded from http://www.everyspec.com

10 Ada95 QUALITY AND STYLE

- Between multiple consecutive opening or closing parentheses.
- Before commas (,) and semicolons (;).

When superfluous parentheses are omitted because of operator precedence rules, spaces may optionally be
removed around the highest precedence operators in that expression.

example

Default String : constant String :=
“This is the long string returned by” &
“ default. It is broken into multiple” &
“ Ada source lines for convenience.”;

type Signed Whole_ 16 is range -2%**15 .. 2**15 - 1;
type Address_Area 1is array (Natural range <>) of Signed Whole_ 16;

Register : Address Area (16#7FFO0# .. 16#7FFF#);
Memory : Address_Area (0 .. 16#7FECH#);

Register (Pc) := Register(A);
X := Signed Whole_ 16 (Radius * Sin(Angle));
Register (Index) := Memory (Base Address + Index * Element_Length) ;

Get (Value => Sensor) ;

Error Term := 1.0 - (Cos(Theta)**2 + Sin(Theta)**2);
b4 = X**3;

Y = C* X + B;

Volume := Length * Width * Height;

rationale

It isagood ideato use white space around delimiters and operators because they are typically short sequences
(one or two characters) that can easily get lost among the longer keywords and identifiers. Putting white space
around them makes them stand out. Consistency in spacing also helps make the source code easier to scan
visualy.

However, many of the delimiters (commas, semicolons, parentheses, etc.) are familiar as normal punctuation
marks. It is distracting to see them spaced differently in a computer program than in normal text. Therefore,
use the same spacing as in text (no spaces before commas and semicolons, no spaces inside parentheses, etc.).

exceptions

The one notable exception is the colon (:). In Ada, it is useful to use the colon as a tabulator or a column
separator (see Guideline 2.1.4). In this context, it makes sense to put spaces before and after the colon rather
than only after it asin normal text.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

2.1.2 I ndentation

guideline
* Indent and align nested control structures, continuation lines, and embedded units consistently.
» Distinguish between indentation for nested control structures and for continuation lines.
» Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).
instantiation

Specifically, the following indentation conventions are recommended, as shown in the examples throughout
this book. Note that the minimum indentation is described. More spaces may be required for the vertical
alignment recommended in subsequent guidelines.

- Usethe recommended paragraphing shown in the Ada Reference Manual (1995).
- Usethree spaces as the basic unit of indentation for nesting.
- Usetwo spaces as the basic unit of indentation for continuation lines.

Downloaded from http://www.everyspec.com

A label is outdented three spaces:

begin
<<label>>

<statement>
end;

Theif statement and the plain loop:

if <conditions> then
<statements>

elsif <condition> then
<statements>

else
<statements>

end if;

L oops with the for and while iteration schemes:

<names:
for <scheme> loop
<statements>
end loop <name>;

SOURCE CODE PRESENTATION

<long statement with line break>
<trailing part of same statements>

<names:
loop
<statements>
exit when <conditions>;
<statements>
end loop <names>;

<names:
while <condition> loop
<statements>
end loop <name>;

The block and the case statement as recommended in the Ada Reference Manual (1995):

<name>:
declare
<declarations>
begin
<statements>
exception
when <choice> =>
<statements>
when others =>
<statements>
end <name>;

case <expressions> is
when <choice> =>
<statements>
when <choice> =>
<statements>
when others =>
<statements>
end case; --<comment >

11

These case statements save space over the Ada Reference Manual (1995) recommendation and depend on
very short statement lists, respectively. Whichever you choose, be consistent:

case is

when

<expressions>
<choice> =>
<statements>
<choice> =>
<statements>
others =>
<statements>
end case;

when

when

The various forms of selective accept and the ti

select
when <guards> =>
<accept statement>
<statements>
or
<accept statement>
<statements>
or
when <guards> =>
delay <intervals;

<statements>
or
when <guards> =>
terminate;
else
<statements>

end select;

The accept statement:

accept <specification> do
<statements>
end <name>;

case <expressions> is

when <choice> => <statementss

<statements>
when <choice> => <statementss
when others => <statements>

end case;

med and conditional entry calls:

select
<entry calls;
<statements>

or
delay <intervals;
<statements>

end select;

select
<entry calls;
<statements>
else
<statements>
end select;

select

<triggering alternatives>
then abort

<abortable parts>
end select;

separate (<parent units>)
<proper body>

Downloaded from http://www.everyspec.com

12 Ada95 QUALITY AND STYLE

A subunit:
separate (<parent units>)
<proper body>
end <name>;

Proper bodies of program units:

procedure <specifications> is

package body <name> is

<declarations> <declarations>
begin begin
<statements> <statements>
exception exception
when <choice> => when <choice> =>
<statements> <statements>

end <name>;

end <name>;

function <specifications task body <name> is
return <type name> is <declarations>
<declarations> begin

begin <statements>
<statements> exception

exception when <choice> =>
when <choice> => <statements>

<statements> end <name>;

end <name>;

Context clauses on compilation units are arranged as a table. Generic formal parameters do not obscure the

unit itself. Function, package, and task specifications use standard indentation:

with <names;
with <names;
with <names;

use <name>;

<compilation units>

generic
<formal parameters>
<compilation unit>

function <specifications>
return <types>;

package <name> is
<declarations>
private
<declarations>
end <name>;

task type <name> is
<entry declarations>
end <name>;

Instantiations of generic units and record indentation:

procedure <name> is
new <generic name> <actuals>

function <name> is
new <generic name> <actuals>

type ... is
record
<component list>
case <discriminant name>
when <choice> =>

<component list>
package <name> is when <choice> =>
new <generic name> <actuals> <component list>
end case;

Indentation for record alignment:

for <name> use
record <mod clause>
<component clause>
end record;

Tagged types and type extension:

type is tagged
record
<component list>
end record;
type is new with
record
<component list>

end record;

example

Default String constant String :=

end record;

is

“This is the long string returned by” &
“ default. It is broken into multiple” &
“ Ada source lines for convenience.”;

Downloaded from http://www.everyspec.com

SOURCE CODE PRESENTATION 13

if Input Found then
Count_Characters;

else --not Input_ Found
Reset State;
Character_Total :=
First_Part Total * First_ Part_Scale_ Factor +
Second Part Total * Second Part Scale Factor +
Default String'Length + Delimiter Size;
end if;

end loop;
rationale

Indentation improves the readability of the code because it gives you a visual indicator of the program
structure. The levels of nesting are clearly identified by indentation, and the first and last keywords in a
construct can be matched visually.

While there is much discussion on the number of spaces to indent, the reason for indentation is code clarity.
The fact that the code is indented consistently is more important than the number of spaces used for
indentation.

Additionally, the Ada Reference Manual (1995, §1.1.4) states that the layout shown in the examples and
syntax rules in the manual is the recommended code layout to be used for Ada programs:. “The syntax rules
describing structured constructs are presented in a form that corresponds to the recommended paragraphing
... . Different lines are used for parts of a syntax rule if the corresponding parts of the construct described by
the rule are intended to be on different lines It is recommended that all indentation be by multiples of a
basic step of indentation (the number of spaces for the basic step is not defined).”

It is important to indent continuation lines differently from nested control structures to make them visually
distinct. This prevents them from obscuring the structure of the code as you scan it.

Listing context clauses on individual lines allows easier maintenance; changing a context clause is less
error-prone.

Indenting with spaces is more portable than indenting with tabs because tab characters are displayed
differently by different terminals and printers.

exceptions

If you are using a variable width font, tabs will align better than spaces. However, depending on your tab
setting, lines of successive indentation may leave you with avery short line length.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

213 Alignment of Operators

guideline
* Align operators vertically to emphasize local program structure and semantics.
example
if Slot A >= Slot B then
Temporary := Slot A;
Slot A = slot B;
Slot B = Temporary;
end if;
Numerator = B**2 - 4.0 * A * C;
Denominator := 2.0 * A;

Solution 1 := (B + Square Root (Numerator)) / Denominator;
Solution 2 := (B - Square Root (Numerator)) / Denominator;

A * B+ C) + (2.0*D-E) - -- basic equation
.5; -- account for error factor

Downloaded from http://www.everyspec.com

14 Ada95 QUALITY AND STYLE

rationale

Alignment makes it easier to see the position of the operators and, therefore, puts visual emphasis on what the
code is doing.

The use of lines and spacing on long expressions can emphasize terms, precedence of operators, and other
semantics. It can aso leave room for highlighting comments within an expression.

exceptions

If vertical alignment of operators forces a statement to be broken over two lines, especially if the break is at
an inappropriate spot, it may be preferable to relax the alignment guideline.

automation notes

The last example above shows a kind of “semantic alignment” that is not typically enforced or even preserved
by automatic code formatters. If you break expressions into semantic parts and put each on a separate line,
beware of using a code formatter later. It is likely to move the entire expression to a single line and
accumulate all the comments at the end. However, there are some formatters that are intelligent enough to
leave a line break intact when the line contains a comment. A good formatter will recognize that the last
example above does not violate the guidelines and would, therefore, preserve it as written.

214 Alignment of Declarations

guideline

» Usevertical alignment to enhance the readability of declarations.

» Provide, at most, one declaration per line.

* Indent al declarations in asingle declarative part at the same level.
instantiation

For declarations not separated by blank lines, follow these alignment rules:

- Alignthe colon delimiters.

- Alignthe : = initialization delimiter.

- When trailing comments are used, align the comment delimiter.

- When the declaration overflows a line, break the line and add an indentation level for those lines that
wrap. The preferred places to break, in order, are: (1) the comment delimiter; (2) the initiaization
delimiter; (3) the colon delimiter.

- For enumeration type declarations that do not fit on asingle line, put each literal on a separate line, using
the next level of indentation. When appropriate, semantically related literals can be arranged by row or
column to form atable.

example

Variable and constant declarations can be laid out in a tabular format with columns separated by the symbols
, =, and --

Prompt Column : constant
Question Mark : constant String :
Prompt String : constant String :

40;
"2 ", -- prompt on error input
"= ",

If thisresultsin lines that are too long, they can be laid out with each part on a separate line with its unique
indentation level:

subtype User_ Response_ Text Frame is String (1 .. 72);

-- If the declaration needed a comment, it would fit here.
Input_Line Buffer : User_Response_Text Frame
:= Prompt String &
String' (1 .. User_Response_ Text Frame'Length -
Prompt String'Length => ' ');

Declarations of enumeration literals can be listed in one or more columns as:

Downloaded from http://www.everyspec.com

SOURCE CODE PRESENTATION 15

type Op_Codes_In_ Column is
(Push,
Pop,
Add,
Subtract,
Multiply,
Divide,
Subroutine Call,
Subroutine Return,
Branch,
Branch On_ Zero,
Branch On Negative) ;

or, to save space:

type Op_Codes Multiple Columns is
(Push, Pop, Add,
Subtract, Multiply, Divide,
Subroutine Call, Subroutine Return, Branch,
Branch On_ Zero, Branch On Negative) ;

or, to emphasize related groups of values:
type Op_Codes_In_Table is

(Push, Pop,

Add, Subtract, Multiply, Divide,
Subroutine Call, Subroutine Return,

Branch, Branch On_ Zero, Branch On Negative) ;

rationale

Many programming standards documents require tabular repetition of names, types, initial values, and
meaning in unit header comments. These comments are redundant and can become inconsistent with the
code. Aligning the declarations themselves in tabular fashion (see the examples above) provides identical
information to both compiler and reader; enforces, at most, one declaration per line; and eases maintenance
by providing space for initializations and necessary comments. A tabular layout enhances readability, thus
preventing names from “hiding” in a mass of declarations. This applies to all declarations: types, subtypes,
objects, exceptions, named numbers, and so forth.

automation notes

Most of the guidelinesin this section are easily enforced with an automatic code formatter. The one exception
is the last enumerated type example, which is laid out in rows based on the semantics of the enumeration
literals. An automatic code formatter will not be able to do this and will likely move the enumeration literals
to different lines. However, tools that are checking only for violations of the guidelines should accept the
tabular form of an enumeration type declaration.

215 Moreon Alignment

guideline

* Align parameter modes and parentheses vertically.
instantiation

Specifically, it is recommended that you:

- Place oneformal parameter specification per line.

- Vertically align parameter names, colons, the reserved word in, the reserved word out, and parameter
subtypes.
- Place the first parameter specification on the same line as the subprogram or entry name. If any

parameter subtypes are forced beyond the line length limit, place the first parameter specification on a
new line indented the same as a continuation line.

example
procedure Display Menu (Title : in String;
Options : in Menus ;
Choice : out Alpha Numerics) ;

The following two examples show alternate instantiations of this guideline:

Downloaded from http://www.everyspec.com

16 Ada95 QUALITY AND STYLE

procedure Display Menu On_Primary Window

(Title : in String;

Options : in Menus ;

Choice : out Alpha Numerics) ;

or:
procedure Display Menu On_Screen (

Title : in String;

Options : in Menus ;

Choice : out Alpha Numerics

)
Aligning parentheses makes complicated relational expressions more clear:

if not (First_Character in Alpha Numerics and then
Valid_Option(First_Character)) then

rationale

This alignment facilitates readability and understandability, and it is easy to achieve given automated support.
Aligning parameter modes provides the effect of a table with columns for parameter name, mode, subtype,
and, if necessary, parameter-specific comments. Vertical aignment of parameters across subprograms within
a compilation unit increases the readability even more.

notes

Various options are available for subprogram layout. The second example above aligns all of the subprogram
names and parameter names in a program. This has the disadvantage of occupying an unnecessary line where
subprogram names are short and looking awkward if there is only one parameter.

The third example is a format commonly used to reduce the amount of editing required when parameter lines
are added, deleted, or reordered. The parentheses do not have to be moved from line to line. However, the last
parameter lineis the only one without a semicolon.

exceptions

When an operator function has two or more formal parameters of the same type, it is more readable to declare
the parameters in a single one-line list rather than to separate the formal parameter list into multiple formal
parameter specifications.

type Color Scheme is (Red, Purple, Blue, Green, Yellow, White, Black, Brown, Gray, Pink);
function "&" (Left, Right : Color Scheme) return Color Scheme;

automation notes

Most of the guidelinesin this section are easily enforced with an automatic code formatter. The one exception
is the last example, which shows vertical alignment of parentheses to emphasize terms of an expression. This
is difficult to achieve with an automatic code formatter unless the relevant terms of the expression can be
determined strictly through operator precedence.

2.1.6 Blank Lines

guideline
* Useblank linesto group logically related lines of text (NASA 1987).

example
if ... then

for ... loop
end-iéop;
end if;

This example separates different kinds of declarations with blank lines:
type Employee Record is

record
Legal Name : Name;
Date Of Birth : Date;
Date Of Hire : Date;
Salary : Money;

end record;

Downloaded from http://www.everyspec.com

SOURCE CODE PRESENTATION 17

type Day 1is
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday) ;

subtype Weekday is Day range Monday .. Friday;
subtype Weekend is Day range Saturday .. Sunday;
rationale

When blank lines are used in a thoughtful and consistent manner, sections of related code are more visible to
readers.

automation notes

Automatic formatters do not enforce this guideline well because the decision on where to insert blank linesis
a semantic one. However, many formatters have the ability to leave existing blank lines intact. Thus, you can
manually insert the lines and not | ose the effect when you run such aformatter.

217 Pagination

guideline

* Highlight the top of each package or task specification, the top of each program unit body, and the end
statement of each program unit.

instantiation
Specifically, it is recommended that you:

- Usefile prologues, specification headers, and body headers to highlight those structures as recommended
in Guideline 3.3.

- Usealine of dashes, beginning at the same column as the current indentation to highlight the definition
of nested units embedded in a declarative part. Insert the line of dashes immediately before and
immediately after the definition.

- If two dashed lines are adjacent, omit the longer of the two.

example
with Basic_ Types;

package body SPC Numeric Types is

function Max

(Left : in Basic Types.Tiny Integer;
Right : in Basic Types.Tiny Integer)
return Basic Types.Tiny Integer is

begin
if Right < Left then
return Left;
else
return Right;
end if;
end Max;

function Min

(Left : in Basic Types.Tiny Integer;
Right : in Basic Types.Tiny Integer)
return Basic Types.Tiny Integer is

begin
if Left < Right then
return Left;
else
return Right;
end if;
end Min;

use Basic Types;

Downloaded from http://www.everyspec.com

18 Ada95 QUALITY AND STYLE

begin -- SPC_Numeric_Types
Max Tiny Integer := Min(System Max, Local_ Max) ;
Min Tiny Integer := Max(System Min, Local Min) ;
end SPC_Numeric_ Types;
rationale

It is easy to overlook parts of program units that are not visible on the current page or screen. The page
lengths of presentation hardware and software vary widely. By clearly marking the program’s logical page
boundaries (e.g., with a dashed line), you enable a reader to quickly check whether all of a program unit is
visible. Such pagination also makes it easier to scan alarge file quickly, looking for a particular program unit.

notes

This guideline does not address code layout on the physical “page’ because the dimensions of such pages
vary widely and no single guideline is appropriate.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

2.1.8 Number of Statements Per Line

guideline
» Start each statement on anew line.
* Write no more than one simple statement per line.
* Break compound statements over multiple lines.
example

Use:

if End Of File then
Close_File;
else
Get Next Record;
end if;

rather than:
if End Of File then Close_File; else Get_Next Record; end if;

exceptional case:

Put ("A=") ; Naturalilo .Put (A7) ; NewﬁLine;

Put ("B=") ; Naturalilo .Put (B) ; NewﬁLine;

Put ("C=") ; Naturalilo .Put (C) ; NewﬁLine;
rationale

A single statement on each line enhances the reader’s ability to find statements and helps prevent statements
being missed. Similarly, the structure of a compound statement is clearer when its parts are on separate lines.

notes

If a statement is longer than the remaining space on the line, continue it on the next line. This guideline
includes declarations, context clauses, and subprogram parameters.

According to the Ada Reference Manual (1995, §1.1.4), “The preferred places for other line breaks are after
semicolons.”

automation notes

The guidelines in this section are easily enforced with an automatic code formatter, with the single exception
of the last example, which shows a semantic grouping of multiple statements onto asingle line.

exceptions

The example of put and New_Line Statements shows a legitimate exception. This grouping of closely related
statements on the same line makes the structural relationship between the groups clear.

Downloaded from http://www.everyspec.com

SOURCE CODE PRESENTATION 19

219 Source Code LineLength

guideline

* Adhereto amaximum line length limit for source code (Nissen and Wallis 1984, §2.3).
instantiation

Specifically, it is recommended that you:

- Limit source code line lengths to a maximum of 72 characters.
rationale

When Ada code is ported from one system to another, there may be restrictions on the record size of source
line statements, possibly for one of the following reasons: some operating systems may not support variable
length records for tape 1/O, or some printers and terminals support an 80-character line width with no
line-wrap. See further rationale in the note for Guideline 7.1.2.

Source code must sometimes be published for various reasons, and letter-size paper is not as forgiving as a
computer listing in terms of the number of usable columns.

In addition, there are human limitations in the width of the field of view for understanding at the level
reguired for reading source code. These limitations correspond roughly to the 70- to 80-column range.

notes

An aternate instantiation is to limit source code length to 79 characters. The 79-character limit differentiates
the code from the FORTRAN 72-character limit. It also avoids problems with 80-character width terminals
where the character in the last column may not print correctly.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

22 SUMMARY

code formatting
» Useconsistent spacing around delimiters.
* Usethe same spacing as you would in regular prose.
* Indent and align nested control structures, continuation lines, and embedded units consistently.
» Distinguish between indentation for nested control structures and for continuation lines.
» Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).
* Align operators vertically to emphasize local program structure and semantics.
» Usevertical alignment to enhance the readability of declarations.
» Provide, at most, one declaration per line.
* Indent al declarations in asingle declarative part at the same level.
* Align parameter modes and parentheses vertically.
* Useblank linesto group logically related lines of text (NASA 1987).

* Highlight the top of each package or task specification, the top of each program unit body, and the end
statement of each program unit.

» Start each statement on anew line.

* Write no more than one simple statement per line.

» Break compound statements over multiple lines.

* Adhereto amaximum line length limit for source code (Nissen and Wallis 1984, §2.3).

Downloaded from http://www.everyspec.com

20 Ada95 QUALITY AND STYLE

Downloaded from http://www.everyspec.com

CHAPTER 3
Readability

This chapter recommends ways of using Ada features to make reading and understanding code easier. There are
many myths about comments and readability. The responsibility for true readability rests more with naming and
code structure than with comments. Having as many comment lines as code lines does not imply readability; it
more likely indicates the writer does not understand what isimportant to communicate.

31 SPELLING

Spelling conventions in source code include rules for capitalization and use of underscores, numbers, and
abbreviations. If you follow these conventions consistently, the resulting code is clearer and more readable.

311 Use of Underscores

guideline
* Useunderscores to separate words in a compound name.
example

Miles_Per Hour
Entry Value

rationale

When an identifier consists of more than one word, it is much easier to read if the words are separated by
underscores. Indeed, there is precedent in English in which compound words are separated by a hyphen or a
space. In addition to promoting readability of the code, if underscores are used in names, a code formatter has
more control over altering capitalization. See Guideline 3.1.3.

3.1.2 Numbers

guideline
* Represent numbersin a consistent fashion.
* Represent literalsin aradix appropriate to the problem.

* Use underscores to separate digits the same way commas or periods (or spaces for nondecimal bases)
would be used in normal text.

* When using scientific notation, make the & consistently either uppercase or lowercase.

* Inan alternate base, represent the a phabetic charactersin either al uppercase or all lowercase.
instantiation

- Decimal and octal numbers are grouped by threes beginning on the left side of the radix point and by
fives beginning on the right side of the radix point.

- Thexisaways capitalized in scientific notation.

21

Downloaded from http://www.everyspec.com

22 Ada95 QUALITY AND STYLE

- Useuppercase for the a phabetic characters representing digits in bases above 10.
- Hexadecimal numbers are grouped by fours beginning on either side of the radix point.
example

type Maximum Samples is range 1 .. 1.000_000;
type Legal Hex Address is range 16#0000# .. 16#FFFF#;
type Legal Octal Address is range 8#000 000# .. 8#777_777#;
Avogadro_Number : constant := 6.02216_9E+23;

To represent the number 1/3 as a constant, use:
One Third : constant := 1.0 / 3.0;

Avoid this use:

One_Third As Decimal_ Approximation : constant := 0.33333_33333_3333;
or:
One_Third Base_3 : constant := 3#0.1#;
rationale

Consistent use of uppercase or lowercase aids scanning for numbers. Underscores serve to group portions of
numbers into familiar patterns. Consistency with common use in everyday contexts is a large part of

readability.
notes

If a rational fraction is represented in a base in which it has a terminating rather than a repeating
representation, as 3#0.1# does in the example above, it may have increased accuracy upon conversion to the

machine base.

3.1.3 Capitalization

guideline

* Makereserved words and other elements of the program visually distinct from each other.
instantiation

- Uselowercase for al reserved words (when used as reserved words).

- Usemixed case for all other identifiers, a capital letter beginning every word separated by underscores.

- Useuppercase for abbreviations and acronyms (see automation notes).
example

type Second_Of Day is range 0 .. 86_400;
type Noon_Relative Time is (Before_Noon, After Noon, High Noon) ;
subtype Morning is Second Of Day range 0 .. 86_400 / 2 - 1;
subtype Afternoon is Second Of Day range Morning'Last + 2 .. 86_400;
Current_Time := Second_ Of Day(Calendar.Seconds (Calendar.Clock)) ;
if Current Time in Morning then

Time Of Day := Before Noon;
elsif Current_Time in Afternoon then

Time Of Day := After Noon;
else

Time Of Day := High Noon;
end if;

case Time_ Of Day is
when Before Noon => Get Ready For Lunch;
when High Noon => Eat_Lunch;
when After Noon => Get To_Work;

end case;

Downloaded from http://www.everyspec.com

READABILITY 23

rationale

Visually distinguishing reserved words allows you to focus on program structure alone, if desired, and also
aids scanning for particular identifiers.

The instantiation chosen here is meant to be more readable for the experienced Ada programmer, who does
not need reserved words to leap off the page. Beginners to any language often find that reserved words should
be emphasized to help them find the control structures more easily. Because of this, instructors in the
classroom and books introducing the Ada language may want to consider an alternative instantiation. The Ada
Reference Manual (1995) chose bold lowercase for all reserved words.

automation notes

Ada names are not case sensitive. Therefore, the names max_1imit, Max_rimiT, and Max_Limit denote the
same object or entity. A good code formatter should be able to automatically convert from one style to
another aslong as the words are delimited by underscores.

As recommended in Guideline 3.1.4, abbreviations should be project-wide. An automated tool should allow a
project to specify those abbreviations and format them accordingly.

314 Abbreviations

guideline

* Do not use an abbreviation of along word as an identifier where a shorter synonym exists.

* Useaconsistent abbreviation strategy.

* Do not use ambiguous abbreviations.

* Tojustify its use, an abbreviation must save many characters over the full word.

* Use abbreviations that are well-accepted in the application domain.

* Maintain alist of accepted abbreviations, and use only abbreviations on that list.
example

Use:

Time Of Receipt
rather than:

Recd Time or R Time

But in an application that commonly deals with message formats that meet military standards,
DOD_STD MSG_FMT IS an acceptable abbreviation for:

Department Of Defense_ Standard Message_Format.
rationale

Many abbreviations are ambiguous or unintelligible unless taken in context. As an example, Temp could
indicate either temporary or temperature. For this reason, you should choose abbreviations carefully when you
use them. The rationale in Guideline 8.1.2 provides a more thorough discussion of how context should
influence the use of abbreviations.

Because very long variable names can obscure the structure of the program, especially in deeply nested
(indented) control structures, it is a good idea to try to keep identifiers short and meaningful. Use short
unabbreviated names whenever possible. If there is no short word that will serve as an identifier, then a well-
known unambiguous abbreviation is the next best choice, especialy if it comes from a list of standard
abbreviations used throughout the project.

Y ou can establish an abbreviated format for a fully qualified name using the renames clause. This capability
is useful when a very long, fully qualified name would otherwise occur many times in a localized section of
code (see Guideline 5.7.2).

A list of accepted abbreviations for a project provides a standard context for using each abbreviation.

Downloaded from http://www.everyspec.com

24 Ada95 QUALITY AND STYLE

3.2 NAMING CONVENTIONS

Choose names that clarify the object’s or entity’s intended use. Ada allows identifiers to be any length as long as
the identifier fits on a line with all characters being significant (including underscores). Identifiers are the names
used for variables, constants, program units, and other entities within a program.

3.21 Names

guideline
» Choose names that are as self-documenting as possible.
» Useashort synonym instead of an abbreviation (see Guideline 3.1.4).
* Usenames given by the application, but do not use obscure jargon.
* Avoid using the same name to declare different kinds of identifiers.
example

In atree-walker, using the name reft instead of Left Branch is sufficient to convey the full meaning given
the context. However, use Time_of Dpay instead of Top.

Mathematical formulas are often given using single-letter names for variables. Continue this convention for
mathematical equations where they would recall the formula, for example:

Ax (X**2) + B*X + C.

With the use of child packages, a poor choice of package, subunit, and identifier names can lead to a visibility
clash with subunits. See the Rationale (1995, §8.1) for a sample of the resulting, rather obscure code.

rationale

A program that follows these guidelines can be more easily comprehended. Self-documenting names require
fewer explanatory comments. Empirical studies have shown that you can further improve comprehension if
your variable names are not excessively long (Schneiderman 1986, 7). The context and application can help
greatly. The unit of measure for numeric entities can be a source of subtype names.

You should try not to use the same name as an identifier for different declarations, such as an object and a
child package. Overusing an identifier in seemingly different name spaces can, in fact, lead to visibility
clashes if the enclosing program units are intended to work together.

notes

See Guideline 8.1.2 for a discussion on how to use the application domain as a guideline for selecting
abbreviations.

3.2.2 Subtype Names

guideline
» Usesingular, general nouns as subtype identifiers.
» Choose identifiers that describe one of the subtype’ s values.

» Consider using suffixes for subtype identifiers that define visible access types, visible subranges, or
visible array types.
» For private types, do not use identifier constructions (e.g., suffixes) that are unique to subtype identifiers.
» Do not use the subtype names from predefined packages.
example
type Day 1is
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday) ;

type Day Of Month is range 0o .. 31;
type Month Number is range 1 .. 12;
type Historical_ Year is range -6_000 .. 2_500;

Downloaded from http://www.everyspec.com

READABILITY 25

type Date is

record
Day : Day Of Month;
Month : Month Number;
Year : Historical Year;

end record;
In particular, pay should be used in preference to pays or pay Type.

The identifier nistorical vear might appear to be specific, but it is actually general, with the adjective
historical describing the range constraint:

procedure Disk Driver is

-- In this procedure, a number of important disk parameters are

-- linked.
Number_ Of_ Sectors : constant := 4;
Number_ Of_ Tracks : constant := 200;
Number_ Of Surfaces : constant := 18;
Sector_Capacity : constant := 4_096;
Track Capacity : constant := Number Of Sectors * Sector_Capacity;
Surface_Capacity : constant := Number Of Tracks * Track_ Capacity;
Disk Capacity : constant := Number Of Surfaces * Surface_Capacity;
type Sector Range 1is range 1 .. Number Of Sectors;
type Track Range is range 1 .. Number Of Tracks;
type Surface Range is range 1 .. Number Of Surfaces;
type Track Map is array (Sector Range) of ...;
type Surface Map is array (Track Range) of Track Map;
type Disk Map is array (Surface Range) of Surface Map;
begin -- Disk_Driver

end Disk Driver;

The suffixes _capacity, Range, and map help define the purpose of the above subtypes and avoid the search
for synonyms for the sector, track, and surface abstractions. Without the suffixes, you would need three
different names per abstraction, one to describe each of the concepts succinctly named in the suffix. This
recommendation only applies to certain visible subtypes. Private types, for example, should be given a good
name that reflects the abstraction being represented.

rationale

When this style and the suggested style for object identifiers are used, program code more closely resembles
English (see Guideline 3.2.3). Furthermore, this style is consistent with the names of the language's
predefined identifiers. They are not named integers, Booleans, Integer Type, O Boolean Type.

However, using the name of a subtype from the predefined packages is sure to confuse a programmer when
that subtype appears somewhere without a package qualification.

notes

This style guide tries to be consistent with the Ada Reference Manual (1995) in use of the terms “type” and
“subtype name.” In general, a “type’ refers to the abstract concept, as in a type declaration, while the
“subtype” refers to the name given to that abstract concept in an actual declaration. Thus, what was called a
type name in Ada 83 (Ada Reference Manual 1983) is now called a subtype name.

3.2.3 Object Names

guideline
* Usepredicate clauses or adjectives for Boolean objects.
* Usesingular, specific nouns as object identifiers.
* Choose identifiers that describe the object’ s value during execution.
* Usesingular, general nouns as identifiers for record components.
example
Non-Boolean objects:

Downloaded from http://www.everyspec.com

26 Ada95 QUALITY AND STYLE

Today : Day;
Yesterday : Day;
Retirement Date : Date;

Boolean objects:

User Is Available : Boolean; -- predicate clause

List Is Empty : Boolean; -- predicate clause
Empty : Boolean; -- adjective
Bright : Boolean; -- adjective

rationale

Using specific nouns for objects establishes a context for understanding the object’s value, which is one of the
general values described by the subtype's name (see Guideline 3.2.2). Object declarations become very
English-like with this style. For example, the first declaration above isread as“Today isaDay.”

General nouns, rather than specific, are used for record components because a record object’s name will
supply the context for understanding the component. Thus, the following component is understood as “the
year of retirement”:

Retirement Date.Year

Following conventions that relate object types and parts of speech makes code read more like text. For
example, because of the names chosen, the following code segment needs no comments:

if List Is Empty then

Number Of Elements := 0;
else

Number Of Elements := Length Of List;
end if;

notes

If it is difficult to find a specific noun that describes an object’s value during the entire execution of a
program, the object is probably serving multiple purposes. Multiple objects should be used in such a case.

3.24 Naming of Tagged Types and Associated Packages

guideline

» Useaconsistent naming convention for tagged types and associated packages.

instantiation

Naming conventions spark “religious wars’; therefore, two different instantiations are presented. The first
instantiation integrates the use of object-oriented features. Except for two special cases, it applies the same
naming conventions to declarations, independent of whether they use an object-oriented feature:

- Nametagged types no differently than subtype names (see Guideline 3.2.2).

- Use the prefix avstract_ for packages that export an abstraction for which you intend to provide
multiple implementations (see Guideline 9.2.4).

- Use the suffix mixin for packages that provide units of functionality that can be “mixed in” to core
abstractions.

The second instantiation highlights the use of object-oriented features through special names or suffixes:
- Name class packages after the object they represent, without a suffix (Rosen 1995).

- Name mixin packages after the facet they represent, appending the suffix _racet (Rosen 1995).

- Namethe main tagged type 1nstance (Rosen 1995).

- Follow the declaration of the specific type with a subtype named c1ass for the corresponding class-wide
type (Rosen 1995).

example

The following two-part example from the Rationale (1995, 884.4.4 and 4.6.2) applies the naming conventions
of the first instantiation.

For the first part of this example, assume the type set_Element Was declared elsewhere:
package Abstract_Sets is

type Set is abstract tagged private;

Downloaded from http://www.everyspec.com

READABILITY 27

-- empty set
function Empty return Set is abstract;

-- build set with 1 element
function Unit (Element: Set Element) return Set is abstract;

-- union of two sets
function Union (Left, Right: Set) return Set is abstract;

-- intersection of two sets
function Intersection (Left, Right: Set) return Set is abstract;

-- remove an element from a set

procedure Take (From : in out Set;
Element : out set Element) is abstract;
Element_ Too_Large : exception;
private

type Set is abstract tagged null record;
end Abstract_ Sets;

with Abstract_ Sets;
package Bit_Vector_Sets is -- one implementation of set abstraction

type Bit Set is new Abstract Sets.Set with private;
private
Bit_Set_Size : constant := 64;
type Bit Vector is ...
type Bit_Set is new Abstract_Sets.Set with
record
Data : Bit_ Vector;
end record;
end Bit_Vector Sets;

with Abstract_ Sets;
package Sparse Sets -- alternate implementation of set abstraction

type Sparse_Set is new Abstract Sets.Set with private;
pri&éée
end-éit7Vectorisets;
The second part of this example applies the naming convention to mixin packages that support a windowing
system:

-- assume you have type Basic Window is tagged limited private;

generic
type Some Window is abstract new Basic Window with private;
package Label Mixin is
type Window With Label is abstract new Some_ Window with private;
pri&éée
end-ﬁébeliMixin;
generic
type Some Window is abstract new Basic Window with private;
package Border Mixin is
type Window With Label is abstract new Some_ Window with private;
pri&éée
end-éérderiMixin;
The following example applies the naming conventions of the second instantiation, as discussed in Rosen
(1995):
package Shape is
subtype Side Count is range 0 .. 100;

type Instance (Sides: Side Count) is tagged private;
subtype Class is Instance'Class;

-- operations on Shape.Instance
private

end-SBaée;

Downloaded from http://www.everyspec.com

28 Ada95 QUALITY AND STYLE

with Shape; use Shape;

package Line is
type Instance is new Shape.Instance with private;
subtype Class is Instance'Class;

-- Overridden or new operations
private
end Line;

with Shape; use Shape;
generic
type Origin is new Shape.Instance;
package With Color_Facet is
type Instance is new Origin with private;
subtype Class is Instance'Class;
-- operations for colored shapes
private

end With Color Facet;

with Line; use Line;
with With Color Facet;
package Colored Line is new With Color_ Facet (Line.Instance);

Sample declarations might ook like:

Red Line : Colored Line.Instance;

procedure Draw (What : Shape.Instance);

The above scheme works whether you use full names or a use clause. Aslong as you use the same name for
all the specific types (i.e., type Instance) and class-wide types, the unqualified names will always hide one
another. Thus, the compiler will insist you use full name qualification to resolve the ambiguity introduced by
the use clause (Rosen 1995).

rationale

You want to use a naming scheme that is consistent and readable and conveys the intent of the abstraction.
Ideally, the naming scheme should be uniform in how it handles the different ways in which tagged types are
used to create classes. If the naming convention is too rigid, however, you will write code fragments that
appear dtilted from a readability point of view. By using a similar naming convention for type extension
through derivation and through generic mixin (see a'so Guideline 9.5.1), you achieve readable declarations of
objects and procedures.

notes

A naming convention for classes draws a hard line between object-oriented abstractions and other kinds of
abstractions. Given that engineers have been defining abstract data types in Ada 83 (Ada Reference Manual
1983) for over 10 years, you may not want to change the naming convention just for the sake of using type
extension with atype. You must consider how important it is to call out uses of inheritance in the overall use
of abstractions in your program. If you prefer to emphasize abstraction, in general, over the mechanism used
to implement the abstraction (i.e., inheritance, type-extension, and polymorphism), you may not want to
impose such a stringent naming convention. Y ou do not hamper quality by favoring a smoother transition in
naming conventions from abstractions developed without inheritance to those devel oped with inheritance.

If you choose a naming convention that highlights the use of object-oriented features and later decide to
change the declaration to one that does not use an object-oriented feature, the change may be expensive. You
must naturally change all occurrences of the names and must be careful not to introduce errors as you update
the names. If you choose a naming convention that prohibits the use of suffixes or prefixes to characterize the
declaration, you lose the opportunity to convey the intended usage of the declared item.

3.25 Program Unit Names

guideline
* Useaction verbsfor procedures and entries.
* Usepredicate clauses for Boolean functions.
* Usenounsfor non-Boolean functions.

Downloaded from http://www.everyspec.com

READABILITY 29

* Give packages names that imply a higher level of organization than subprograms. Generally, these are
noun phrases that describe the abstraction provided.

* Givetasks namesthat imply an active entity.
» Usenouns descriptive of the data being protected for protected units.
» Consider naming generic subprograms as if they were nongeneric subprograms.
» Consider naming generic packages as if they were nongeneric packages.
* Make the generic names more general than the instantiated names.
example
The following are sample names for elements that compose an Ada program:
Sample procedure names:

procedure Get_Next Token -- get is a transitive verb
procedure Create -- create is a transitive verb

Sample function names for Boolean-valued functions:

function Is_Last_Item -- predicate clause
function Is_ Empty -- predicate clause

Sample function names for non-Boolean-valued functions:

function Successor -- common noun
function Length -- attribute
function Top -- component
Sample package names:
package Terminals is -- common noun
package Text Routines is -- common noun
Sample protected objects:
protected Current Location is -- data being protected
protected type Guardian is -- noun implying protection
Sample task names:
task Terminal_ Resource_Manager is -- common noun that shows action

The following sample piece of code shows the clarity that results from using the parts-of-speech naming
conventions:

Get Next Token (Current Token) ;

case Current_Token is

when Identifier =»> Process_Identifier;
when Numeric => Process_Numeric;
end case; -- Current Token

if Is_Empty(Current_List) then

Number Of Elements := 0;
else

Number Of Elements := Length(Current List);
end if;

When packages and their subprograms are named together, the resulting code is very descriptive:

if Stack.Is_Empty(Current List) then
Current_Token := Stack.Top (Current List);
end if;

rationale

Using these naming conventions creates understandable code that reads much like natural language. When
verbs are used for actions, such as subprograms, and nouns are used for objects, such as the data that the
subprogram manipulates, code is easier to read and understand. This models a medium of communication
already familiar to a reader. Where the pieces of a program model a real-life situation, using these
conventions reduces the number of translation steps involved in reading and understanding the program. In a
sense, your choice of names reflects the level of abstraction from computer hardware toward application
reguirements.

Downloaded from http://www.everyspec.com

30 Ada95 QUALITY AND STYLE

See also Guideline 3.2.4 for the use of special-purpose suffixes in packages associated with tagged types.
notes

There are some conflicting conventions in current use for task entries. Some programmers and designers
advocate naming task entries with the same conventions used for subprograms to blur the fact that a task is
involved. Their reasoning is that if the task is reimplemented as a package, or vice versa, the names need not
change. Others prefer to make the fact of atask entry as explicit as possible to ensure that the existence of a
task with its presumed overhead is recognizable. Project-specific priorities may be useful in choosing between
these conventions.

3.2.6 Constants and Named Numbers

guideline
* Usesymbolic valuesinstead of literals, wherever possible.

* Use the predefined constants ada.Numerics.Pi and Ada.Numerics.e for the mathematical constants pi
and e.

* Useconstantsinstead of variables for constant values.

* Useaconstant when the value is specific to a type or when the value must be static.

* Usenamed numbersinstead of constants, whenever possible.

* Use named numbers to replace numeric literals whose type or context is truly universal.

» Useconstants for objects whose values cannot change after elaboration (United Technologies 1987).
» Show relationships between symbolic values by defining them with static expressions.

* Uselinearly independent sets of literals.

* Useattributeslike 'rirst and 'rast instead of literals, wherever possible.

example
3.14159 26535 89793 -- literal
MaxiEntries : constant Integer := 400; -- constant
Avogadros_Number : constant := 6.022137 * 10**23; -- named number
Avogadros_Number / 2 -- static expression
Avogadros_Number -- symbolic value

Declaring pi as a named number (assuming a with clause for the predefined package ada.Numerics in the
Ada Reference Manual [1995, 8A.5] allows it to be referenced symbolically in the assignment statement
below:

Area := Pi * Radius**2; -- 1f radius is known.
instead of:
Area := 3.14159 * Radius**2; -- Needs explanatory comment.

AlSD, Ada.Characters.Latin_1.Bel iSMOre expressive than character'val (8#007#).

Clarity of constant and named number declarations can be improved by using other constant and named
numbers. For example:

Bytes_Per_Page : constant := 512;
Pages_Per Buffer : constant := 10;
Buffer_ Size : constant := Pages_Per_ Buffer * Bytes_ Per_Page;

is more self-explanatory and easier to maintain than:

Buffer_ Size : constant := 5_120; -- ten pages

The following literals should be constants:

if New_Character = '$' then -- "constant" that may change
if Current_Column = 7 then -- "constant" that may change
rationale

Using identifiers instead of literals makes the purpose of expressions clear, reducing the need for comments.
Constant declarations consisting of expressions of numeric literals are safer because they do not need to be
computed by hand. They are also more enlightening than a single numeric literal because there is more

Downloaded from http://www.everyspec.com

READABILITY 31

opportunity for embedding explanatory names. Clarity of constant declarations can be improved further by
using other related constants in static expressions defining new constants. This is not less efficient because
static expressions of named numbers are computed at compile time.

A constant has a type. A named number can only be a universa type universal integer Of
universal real. Strong typing is enforced for constants but not for named numbers or literals. Named
numbers allow compilers to generate more efficient code than for constants and to perform more complete
error checking at compile time. If the literal contains a large number of digits (as ri in the example above),
the use of an identifier reduces keystroke errors. If keystroke errors occur, they are easier to locate either by
inspection or at compile time.

Independence of literals means that the few literals that are used do not depend on one another and that any
relationship between constant or named values is shown in the static expressions. Linear independence of
literal values gives the property that if one literal value changes, al of the named numbers of values
dependent on that literal are automatically changed.

See Guideline 4.1.4 for additional guidelines on choosing a parameterless function versus a constant.

notes

There are some gray areas where the literal is actually more self-documenting than a name. These are
application-specific and generally occur with universally familiar, unchangeable values such as the following
relationship:

Fahrenheit := 32.0 + (9.0 * Celsius) / 5.0;

3.2.7 Exceptions

guideline

* Useaname that indicates the kind of problem the exception represents.

example

Invalid Name: exception;

Stack Overflow: exception;

rationale

Naming exceptions according to the kind of problem they are detecting enhances the readability of the code.
Y ou should name your exceptions as precisely as you can so that the maintainer of the code understands why
the exception might be raised. A well-named exception should be meaningful to the clients of the package
declaring the exception.

3.2.8 Constructors

guideline

* Include a prefix like new, Make, Or create iN naming constructors (in this sense, operations to create
and/or initialize an object).

* Usenamesindicative of their content for child packages containing constructors.

instantiation

- Name achild package containing constructors <whatevers.Constructor.

example

function Make_Square (Center : Cartesian Coordinates;
Side : Positive)
return Square;

rationale

Including aword like New, Make, OF Create in aconstructor name makes its purpose clear. Y ou may want to
restrict the use of the prefix new to constructors that return an access value because the prefix suggests the
internal use of an allocator.

Downloaded from http://www.everyspec.com

32 Ada95 QUALITY AND STYLE

Putting all constructors in a child package, even when they return access values, is a useful organizational
principle.

For information regarding the use of Ada constructors, refer to Guideline 9.3.3.

33 COMMENTS

Comments in source text are a controversial issue. There are arguments both for and against the view that
comments enhance readability. In practice, the biggest problem with comments is that people often fail to update
them when the associated source text is changed, thereby making the commentary misleading. Commentary
should be reserved for expressing needed information that cannot be expressed in code and highlighting cases
where there are overriding reasons to violate one of the guidelines. If possible, source text should use
self-explanatory names for objects and program units, and it should use simple, understandable program structures
so that little additional commentary is needed. The extra effort in selecting (and entering) appropriate names and
the extra thought needed to design clean and understandable program structures are fully justified.

Use comments to state the intent of the code. Comments that provide an overview of the code help the
maintenance programmer see the forest for the trees. The code itself is the detailed “how” and should not be
paraphrased in the comments.

Comments should be minimized. They should provide needed information that cannot be expressed in the Ada
language, emphasize the structure of code, and draw attention to deliberate and necessary violations of the
guidelines. Comments are present either to draw attention to the real issue being exemplified or to compensate for
incompl eteness in the sample program.

Maintenance programmers need to know the causal interaction of noncontiguous pieces of code to get a global,
more or less complete sense of the program. They typically acquire this kind of information from mental
simulation of parts of the code. Comments should be sufficient enough to support this process (Soloway et al.
1986).

This section presents general guidelines about how to write good comments. It then defines several different
classes of comments with guidelines for the use of each. The classes are file headers, program unit specification
headers, program unit body headers, data comments, statement comments, and marker comments.

3.31 General Comments

guideline

* Makethe code as clear as possible to reduce the need for comments.

* Never repeat information in acomment that is readily available in the code.

* Whereacomment isrequired, make it concise and complete.

* Useproper grammar and spelling in comments.

» Make comments visually distinct from the code.

» Structure comments in headers so that information can be automatically extracted by atool.
rationale

The structure and function of well-written code is clear without comments. Obscured or badly structured code
is hard to understand, maintain, or reuse regardless of comments. Bad code should be improved, not
explained. Reading the code itself is the only way to be absolutely positive about what the code does;
therefore, the code should be made as readable as possible.

Using comments to duplicate information in the code is a bad idea for several reasons. First, it is unnecessary
work that decreases productivity. Second, it is very difficult to correctly maintain the duplication as the code
is modified. When changes are made to existing code, it is compiled and tested to make sure that it is once
again correct. However, there is no automatic mechanism to make sure that the comments are correctly
updated to reflect the changes. Very often, the duplicate information in a comment becomes obsolete at the
first code change and remains so through the life of the software. Third, when comments about an entire
system are written from the limited point of view of the author of a single subsystem, the comments are often
incorrect from the start.

Downloaded from http://www.everyspec.com

READABILITY 33

Comments are necessary to reveal information difficult or impossible to obtain from the code. Subsequent
chapters of this book contain examples of such comments. Completely and concisely present the required
information.

The purpose of comments is to help readers understand the code. Misspelled, ungrammeatical, ambiguous, or
incomplete comments defeat this purpose. If a comment is worth adding, it is worth adding correctly in order
to increase its usefulness.

Making comments visually distinct from the code by indenting them, grouping them together into headers, or
highlighting them with dashed linesis useful because it makes the code easier to read. Subsequent chapters of
this book elaborate on this point.

automation notes

The guideline about storing redundant information in comments applies only to manually generated
comments. There are tools that automatically maintain information about the code (e.g., calling units, called
units, cross-reference information, revision histories, etc.), storing it in comments in the same file as the code.
Other tools read comments but do not update them, using the information from the comments to
automatically generate detailed design documents and other reports.

The use of such tools is encouraged and may require that you structure your header comments so they can be
automatically extracted and/or updated. Beware that tools that modify the comments in afile are only useful
if they are executed frequently enough. Automatically generated obsolete information is even more dangerous
than manually generated obsol ete information because it is more trusted by the reader.

Revision histories are maintained much more accurately and completely by configuration management tools.
With no tool support, it is very common for an engineer to make a change and forget to update the revision
history. If your configuration management tool is capable of maintaining revision histories as comments in
the source file, then take advantage of that capability, regardless of any compromise you might have to make
about the format or location of the revision history. It is better to have a complete revision history appended
to the end of the file than to have a partial one formatted nicely and embedded in the file header.

3.3.2 FileHeaders

guideline

* Put afile header on each sourcefile.

* Place ownership, responsibility, and history information for the file in the file header.
instantiation

- Put acopyright notice in the file header.

- Put the author’ s name and department in the file header.

- Put arevision history in the file header, including a summary of each change, the date, and the name of
the person making the change.

example

-- Copyright (c) 1991, Software Productivity Consortium, Inc.
-- All rights reserved.

-- Author: J. Smith
-- Department:System Software Department

-- Revision History:

-- 7/9/91 J. Smith

-- - Added function Size Of to support queries of node sizes.
-- - Fixed bug in Set Size which caused overlap of large nodes.
-- 7/1/91 M. Jones

-- - Optimized clipping algorithm for speed.

-- 6/25/91 J. Smith

-- - Original version.

rationale

Ownership information should be present in each file if you want to be sure to protect your rights to the
software. Furthermore, for high visibility, it should be the first thing in the file.

Downloaded from http://www.everyspec.com

34 Ada95 QUALITY AND STYLE

Responsibility and revision history information should be present in each file for the sake of future
maintainers; this is the header information most trusted by maintainers because it accumulates. It does not
evolve. Thereis no need to ever go back and modify the author’s name or the revision history of afile. Asthe
code evolves, the revision history should be updated to reflect each change. At worst, it will be incomplete; it
should rarely be wrong. Also, the number and frequency of changes and the number of different people who
made the changes over the history of a unit can be good indicators of the integrity of the implementation with
respect to the design.

Information about how to find the original author should be included in the file header, in addition to the
author’s name, to make it easier for maintainers to find the author in case questions arise. However, detailed
information like phone numbers, mail stops, office numbers, and computer account user names are too
volatile to be very useful. It is better to record the department for which the author was working when the
code was written. This information is still useful if the author moves offices, changes departments, or even
leaves the company because the department is likely to retain responsibility for the original version of the
code.

notes

With modern configuration management systems, explicitly capturing version history as header comments
may be superfluous. The configuration management tool maintains a more reliable and consistent (from a
content point of view) change history. Some systems can re-create earlier versions of a unit.

333 Program Unit Specification Headers

guideline
* Put aheader on the specification of each program unit.
* Placeinformation required by the user of the program unit in the specification header.

* Do not repeat information (except unit name) in the specification header that is present in the
specification.

» Explain what the unit does, not how or why it doesiit.

» Describe the complete interface to the program unit, including any exceptions it can raise and any global
effectsit can have.

» Do not include information about how the unit fitsinto the enclosing software system.
» Describe the performance (time and space) characteristics of the unit.
instantiation
- Put the name of the program unit in the header.
- Briefly explain the purpose of the program unit.

- For packages, describe the effects of the visible subprograms on each other and how they should be used
together.

- List all exceptionsthat can be raised by the unit.

- Listall global effects of the unit.

- List preconditions and postconditions of the unit.

- List hidden tasks activated by the unit.

- Do not list the names of parameters of a subprogram.

- Do not list the names of package subprograms just to list them.

- Do not list the names of all other units used by the unit.

- Donot list the names of all other units that use the unit.
example

-- AUTOLAYOUT

Downloaded from http://www.everyspec.com

READABILITY 35

-- Purpose:

-- This package computes positional information for nodes and arcs
-- of a directed graph. It encapsulates a layout algorithm which is
-- designed to minimize the number of crossing arcs and to emphasize
-- the primary direction of arc flow through the graph.

-- Effects:

-- - The expected usage is:

-- 1. Call Define for each node and arc to define the graph.

-- 2. Call Layout to assign positions to all nodes and arcs.

-- 3. Call Position Of for each node and arc to determine the

-- assigned coordinate positions.

-- - Layout can be called multiple times, and recomputes the

-- positions of all currently defined nodes and arcs each time.
-- - Once a node or arc has been defined, it remains defined until
-- Clear is called to delete all nodes and arcs.

-- Performance:

-- This package has been optimized for time, in preference to space.
-- Layout times are on the order of N*log(N) where N is the number
-- of nodes, but memory space is used inefficiently.

-- Define

-- Purpose:

-- This procedure defines one node of the current graph.
-- Exceptions:

-- Node Already Defined

procedure Define
(New _Node : in Node) ;

-- Layout

-- Purpose:

-- This procedure assigns coordinate positions to all defined
-- nodes and arcs.

-- Exceptions:

-- None.

-- Position_ Of

-- Purpose:

-- This function returns the coordinate position of the

-- specified node. The default position (0,0) is returned if no
-- position has been assigned yet.

-- Exceptions:

-- Node Not Defined

function Position_Of (Current : in Node)
return Position;

end Autolayout;
rationale

The purpose of a header comment on the specification of a program unit is to help the user understand how to
use the program unit. From reading the program unit specification and header, a user should know everything
necessary to use the unit. It should not be necessary to read the body of the program unit. Therefore, there
should be a header comment on each program unit specification, and each header should contain all usage
information not expressed in the specification itself. Such information includes the units effects on each
other and on shared resources, exceptions raised, and time/space characteristics. None of this information can
be determined from the Ada specification of the program unit.

When you duplicate information in the header that can be readily obtained from the specification, the
information tends to become incorrect during maintenance. For example, do not make a point of listing all
parameter names, modes, or subtypes when describing a procedure. This information is already available

Downloaded from http://www.everyspec.com

36 Ada95 QUALITY AND STYLE

from the procedure specification. Similarly, do not list al subprograms of a package in the header unless this
is necessary to make some important statement about the subprograms.

Do not include information in the header that the user of the program unit does not need. In particular, do not
include information about how a program unit performs its function or why a particular algorithm was used.
This information should be hidden in the body of the program unit to preserve the abstraction defined by the
unit. If the user knows such details and makes decisions based on that information, the code may suffer when
that information is later changed.

When describing the purpose of the unit, avoid referring to other parts of the enclosing software system. It is
better to say “thisunit does. . .” than to say “thisunit is called by Xyztodo” The unit should be written
in such a way that it does not know or care which unit is calling it. This makes the unit much more general
purpose and reusable. In addition, information about other units is likely to become obsolete and incorrect
during maintenance.

Include information about the performance (time and space) characteristics of the unit. Much of this
information is not present in the Ada specification, but it is required by the user. To integrate the unit into a
system, the user needs to understand the resource usage (CPU, memory, etc.) of the unit. It is especially
important to note that when a subprogram call causes activation of a task hidden in a package body, the task
may continue to consume resources after the subroutine ends.

notes

Some projects have deferred most of the commentary to the end rather than at the beginning of the program
unit. Their rationale is that program units are written once and read many times and that long header
comments make the start of the specification difficult to find.

exceptions

Where a group of program units are closely related or simple to understand, it is acceptable to use a single
header for the entire group of program units. For example, it makes sense to use a single header to describe
the behavior of Max and Min functions; Sin, Cos, and Tan functions; or a group of functions to query related
attributes of an object encapsulated in a package. This is especialy true when each function in the set is
capable of raising the same exceptions.

3.34 Program Unit Body Headers

guideline
* Placeinformation required by the maintainer of the program unit in the body header.
* Explain how and why the unit performs its function, not what the unit does.
» Do not repeat information (except unit name) in the header that is readily apparent from reading the code.

* Do not repeat information (except unit name) in the body header that is available in the specification
header.

instantiation
- Put the name of the program unit in the header.
- Record portability issuesin the header.
- Summarize complex algorithmsin the header.
- Record reasons for significant or controversial implementation decisions.
- Record discarded implementation alternatives, along with the reason for discarding them.

- Record anticipated changes in the header, especially if some work has already been done to the code to
make the changes easy to accomplish.

example

-- Autolayout

Downloaded from http://www.everyspec.com

-- Implementation Notes:

-- - This package uses a heuristic algorithm to minimize the number

-- of arc crossings.

-- the algorithm, see

-- Portability Issues:

It does not always achieve the true minimum
-- number which could theoretically be reached.
-- nearly perfect job in relatively little time.

However it does a
For details about

-- - The native math package Math Lib is used for computations of

-- coordinate positions.

-- - 32-bit integers are required.

-- - No operating system specific routines are called.

-- Anticipated Changes:

- - Coordinate Type below could be changed from integer to float

-- with little effort.

Care has been taken to not depend on the

-- specific characteristics of integer arithmetic.

-- Define

-- Implementation Notes:

-- - This routine stores a node in the general purpose Graph data
-- structure, not the Fast_Graph structure because

procedure Define
(New _Node : in
begin

end Define;

-- Layout

-- Implementation Notes:

-- - This routine copies the Graph data structure (optimized for
-- fast random access) into the Fast_Graph data structure
-- (optimized for fast sequential iteration), then performs the

-- layout, and copies the data back to the Graph structure.
-- technique was introduced as an optimization when the algorithm

-- was found to be too slow,
-- magnitude improvement.

procedure Layout is
begin

end Layout;

function Position_Of (Current
return Position is
begin

end Position Of;

end Autolayout;

and it produced an order of

This

rationale

READABILITY 37

The purpose of a header comment on the body of a program unit is to help the maintainer of the program unit
to understand the implementation of the unit, including tradeoffs among different techniques. Be sure to
document all decisions made during implementation to prevent the maintainer from making the same
mistakes you made. One of the most valuable comments to a maintainer is a clear description of why a
change being considered will not work.

The header is also a good place to record portability concerns. The maintainer may have to port the software
to a different environment and will benefit from a list of nonportable features. Furthermore, the act of
collecting and recording portability issues focuses attention on these issues and may result in more portable

code from the start.

Downloaded from http://www.everyspec.com

38 Ada95 QUALITY AND STYLE

Summarize complex agorithms in the header if the code is difficult to read or understand without such a
summary, but do not merely paraphrase the code. Such duplication is unnecessary and hard to maintain.
Similarly, do not repeat the information from the header of the program unit specification.

notes

It is often the case that a program unit is self-explanatory so that it does not require a body header to explain
how it is implemented or why. In such a case, omit the header entirely, as in the case with position of
above. Be sure, however, that the header you omit truly contains no information. For example, consider the
difference between the two header sections:

-- Implementation Notes: None.

and:

-- NonPortable Features: None.

The first is a message from the author to the maintainer saying “I can’t think of anything else to tell you,”
while the second may mean “| guarantee that this unit is entirely portable.”

3.35 Data Comments

guideline
* Comment on all datatypes, objects, and exceptions unless their names are self-explanatory.
* Include information on the semantic structure of complex, pointer-based data structures.
* Include information about relationships that are maintained between data objects.
* Omit comments that merely repeat the information in the name.
* Include information on redispatching for tagged types in cases where you intend the specializations (i.e.,
derived types) to override these redispatching operations.
example
Objects can be grouped by purpose and commented as:

-- Current position of the cursor in the currently selected text
-- buffer, and the most recent position explicitly marked by the
-- user.

-- Note: It is necessary to maintain both current and desired
-- column positions because the cursor cannot always be
-- displayed in the desired position when moving between
-- lines of different lengths.

Desired_Column : Column_ Counter;
Current_Column : Column_Counter;

Current_ Row : Row_Counter;
Marked Column : Column_Counter;
Marked Row : Row_Counter;

The conditions under which an exception is raised should be commented:

Node Already Defined : exception; -- Raised when an attempt is made
-- to define a node with an
identifier which already
defines a node.
Node Not Defined : exception; -- Raised when a reference is
-- made to a node which has
not been defined.

Here is a more complex example, involving multiple record and access types that are used to form a complex
data structure:

-- These data structures are used to store the graph during the

-- layout process. The overall organization is a sorted list of

-- "ranks," each containing a sorted list of nodes, each containing
-- a list of incoming arcs and a list of outgoing arcs.

Downloaded from http://www.everyspec.com

READABILITY 39

-- The lists are doubly linked to support forward and backward
-- passes for sorting. Arc lists do not need to be doubly linked
-- because order of arcs is irrelevant.

-- The nodes and arcs are doubly linked to each other to support
-- efficient lookup of all arcs to/from a node, as well as efficient
-- lookup of the source/target node of an arc.

type Arc;
type Arc_Pointer is access Arc;

type Node;
type Node Pointer is access Node;

type Node is

record
Id : Node Pointer;-- Unique node ID supplied by the user.
Arc_In : Arc_Pointer;
Arc_Out : Arc Pointer;
Next : Node Pointer;

Previous : Node Pointer;
end record;

type Arc is
record
ID : Arc_1ID; -- Unique arc ID supplied by the user.
Source : Node Pointer;
Target : Node Pointer;
Next : Arc_Pointer;
end record;

type Rank;
type Rank Pointer is access Rank;

type Rank is

record
Number : Level ID; -- Computed ordinal number of the rank.
First_Node : Node_Pointer;
Last_Node : Node_Pointer;
Next : Rank Pointer;
Previous : Rank Pointer;

end record;

First_Rank : Rank_ Pointer;
Last_Rank : Rank_ Pointer;

rationale

It is very useful to add comments explaining the purpose, structure, and semantics of the data structures.
Many maintainers look at the data structures first when trying to understand the implementation of a unit.
Understanding the data that can be stored, along with the relationships between the different data items and
the flow of data through the unit, is an important first step in understanding the details of the unit.

In the first example above, the names current_column and current row are relatively self-explanatory. The
name pesired_column iSalso well chosen, but it |eaves the reader wondering what the relationship is between
the current column and the desired column. The comment explains the reason for having both.

Another advantage of commenting on the data declarations is that the single set of comments on a declaration
can replace multiple sets of comments that might otherwise be needed at various places in the code where the
data is manipulated. In the first example above, the comment briefly expands on the meaning of “current” and
“marked.” It states that the “current” position is the location of the cursor, the “current” position is in the
current buffer, and the “marked” position was marked by the user. This comment, along with the mnemonic
names of the variables, greatly reduces the need for comments at individual statements throughout the code.

It is important to document the full meaning of exceptions and under what conditions they can be raised, as
shown in the second example above, especially when the exceptions are declared in a package specification.
The reader has no other way to find out the exact meaning of the exception (without reading the code in the
package body).

Grouping all the exceptions together, as shown in the second example, can provide the reader with the effect
of a “glossary” of special conditions. This is useful when many different subprograms in the package can
raise the same exceptions. For a package in which each exception can be raised by only one subprogram, it
may be better to group related subprograms and exceptions together.

When commenting exceptions, it is better to describe the exception’s meaning in general terms than to list all
the subprograms that can cause the exception to be raised; such a list is harder to maintain. When a new

Downloaded from http://www.everyspec.com

40 Ada95 QUALITY AND STYLE

routineis added, it is likely that these lists will not be updated. Also, thisinformation is aready present in the
comments describing the subprograms, where all exceptions that can be raised by the subprogram should be
listed. Lists of exceptions by subprogram are more useful and easier to maintain than lists of subprograms by
exception.

In the third example, the names of the record fields are short and mnemonic, but they are not completely
self-explanatory. This is often the case with complex data structures involving access types. There is no way
to choose the record and field names so that they completely explain the overall organization of the records
and pointers into a nested set of sorted lists. The comments shown are useful in this case. Without them, the
reader would not know which lists are sorted, which lists are doubly linked, or why. The comments express
the intent of the author with respect to this complex data structure. The maintainer still has to read the code if
he wants to be sure that the double links are all properly maintained. Keeping this in mind when reading the
code makes it much easier for the maintainer to find a bug where one pointer is updated and the opposite one
is not.

See Guideline 9.3.1 for the rationale for documenting the use of redispatching operations. (Redispatching
means converting an argument of one primitive operation to a class-wide type and making a dispatching call
to another primitive operation.) The rationale in Guideline 9.3.1 discusses whether such documentation
should be in the specification or the body.

3.3.6 Statement Comments

guideline
* Minimize comments embedded among statements.
* Usecomments only to explain parts of the code that are not obvious.
* Comment intentional omissions from the code.
* Do not use comments to paraphrase the code.
» Do not use comments to explain remote pieces of code, such as subprograms called by the current unit.
* Where comments are necessary, make them visually distinct from the code.
example
The following is an example of very poorly commented code:

-- Loop through all the strings in the array Strings, converting

-- them to integers by calling Convert To_ Integer on each one,

-- accumulating the sum of all the values in Sum, and counting them
-- in Count. Then divide Sum by Count to get the average and store
-- it in Average. Also, record the maximum number in the global

-- variable Max Number.

for I in Strings'Range loop
-- Convert each string to an integer value by looping through
-- the characters which are digits, until a nondigit is found,
-- taking the ordinal value of each, subtracting the ordinal value
-- of '0', and multiplying by 10 if another digit follows. Store
-- the result in Number.
Number := Convert_ To_Integer (Strings(I));
-- Accumulate the sum of the numbers in Total.
Sum := Sum + Number;
-- Count the numbers.
Count := Count + 1;

-- Decide whether this number is more than the current maximum.
if Number > Max Number then

-- Update the global variable Max Number.

Max Number := Number;
end if;

end loop;
-- Compute the average.
Average := Sum / Count;

The following is improved by not repeating things in the comments that are obvious from the code, not
describing the details of what goesin inside of convert_To_Integer, deleting an erroneous comment (the one

Downloaded from http://www.everyspec.com

READABILITY 41

on the statement that accumulates the sum), and making the few remaining comments more visually distinct
from the code.

Sum_Integers_Converted From_ Strings:
for I in Strings'Range loop

Number := Convert_ To_Integer (Strings(I));
Sum := Sum + Number;
Count := Count + 1;

-- The global Max Number is computed here for efficiency.
if Number > Max Number then

Max Number := Number;
end if;

end loop Sum Integers_Converted From Strings;
Average := Sum / Count;
rationale

The improvements shown in the example are not improvements merely by reducing the total number of
comments; they are improvements by reducing the number of useless comments.

Comments that paraphrase or explain obvious aspects of the code have no value. They are a waste of effort
for the author to write and the maintainer to update. Therefore, they often end up becoming incorrect. Such
comments also clutter the code, hiding the few important comments.

Comments describing what goes on inside another unit violate the principle of information hiding. The details
about convert_To_Integer (deleted above) areirrelevant to the calling unit, and they are better left hidden in
case the algorithm ever changes. Examples explaining what goes on elsewhere in the code are very difficult to
maintain and almost always become incorrect at the first code modification.

The advantage of making comments visually distinct from the code is that it makes the code easier to scan,
and the few important comments stand out better. Highlighting unusual or special code features indicates that
they are intentional. This assists maintainers by focusing attention on code sections that are likely to cause
problems during maintenance or when porting the program to another implementation.

Comments should be used to document code that is nonportable, implementation-dependent,
environment-dependent, or tricky in any way. They notify the reader that something unusual was put there for
a reason. A beneficial comment would be one explaining a work around for a compiler bug. If you use a
lower level (not “ideal” in the software engineering sense) solution, comment on it. Information included in
the comments should state why you used that particular construct. Also include documentation on the failed
attempts, for example, using a higher level structure. This kind of comment is useful to maintainers for
historical purposes. You show the reader that a significant amount of thought went into the choice of a
construct.

Finally, comments should be used to explain what is not present in the code as well as what is present. If you
make a conscious decision to not perform some action, like deallocating a data structure with which you
appear to be finished, be sure to add a comment explaining why not. Otherwise, a maintainer may notice the
apparent omission and “correct” it later, thus introducing an error.

See also Guideline 9.3.1 for a discussion of what kind of documentation you should provide regarding tagged
types and redispatching.

notes

Further improvements can be made on the above example by declaring the variables count and sum in alocal
block so that their scope is limited and their initializations occur near their usage, e.g., by naming the block
compute_Average OF by moving the code into a function called average of. The computation of Max_Number
can also be separated from the computation of average. However, those changes are the subject of other
guidelines; this example is only intended to illustrate the proper use of comments.

3.3.7 Marker Comments

guideline
* Use pagination markers to mark program unit boundaries (see Guideline 2.1.7).

* Repeat the unit name in a comment to mark the vegin Of a package body, subprogram body, task body,
or block if thevegin is preceded by declarations.

Downloaded from http://www.everyspec.com

42 Ada95 QUALITY AND STYLE

* For long or heavily nested it and case statements, mark the end of the statement with a comment
summarizing the condition governing the statement.

* Forlong or heavily nested it statements, mark the e1se part with a comment summarizing the conditions
governing this portion of the statement.

example
if A Found then

elsif B Found then
else -- A and B were both not found
if Count = Max then

end if;

procedure Concatenate (...) is
begin

end Concatenate;

begin -- Abstract_ Strings

end Abstract_Strings;

rationale

Marker comments emphasize the structure of code and make it easier to scan. They can be lines that separate
sections of code or descriptive tags for a construct. They help the reader resolve questions about the current
position in the code. This is more important for large units than for small ones. A short marker comment fits
on the same line as the reserved word with which it is associated. Thus, it adds information without clutter.

The if, elsif, else, and end if Of an it Statement are often separated by long sequences of statements,
sometimes involving other it statements. As shown in the first example, marker comments emphasize the
association of the keywords of the same statement over a great visual distance. Marker comments are not
necessary with the block statement and loop statement because the syntax of these statements allows them to
be named with the name repeated at the end. Using these names is better than using marker comments
because the compiler verifies that the names at the beginning and end match.

The sequence of statements of a package body is often very far from the first line of the package. Many
subprogram bodies, each containing many negin lines, may occur first. As shown in the second example, the
marker comment emphasizes the association of the begin with the package.

notes

Repeating names and noting conditional expressions clutters the code if overdone. It is visua distance,
especially page breaks, that makes marker comments beneficial.

34 USING TYPES

Strong typing promotes reliability in software. The type definition of an object defines al legal values and
operations and allows the compiler to check for and identify potential errors during compilation. In addition, the
rules of type allow the compiler to generate code to check for violations of type constraints at execution time.
Using these Ada compiler’s features facilitates earlier and more complete error detection than that which is
available with less strongly typed languages.

Downloaded from http://www.everyspec.com

READABILITY 43

34.1 Declaring Types

guideline
» Limit the range of scalar types as much as possible.
* Seek information about possible values from the application.
» Do not reuse any of the subtype names in package standard.
* Use subtype declarations to improve program readability (Booch 1987).
» Usederived types and subtypesin concert (see Guideline 5.3.1).

example
subtype Card Image is String (1 .. 80);
Input Line : Card Image := (others => ' ');

-- restricted integer type:
type Day Of Leap Year is range 1 .. 366;
subtype Day Of Non Leap_Year is Day Of Leap_ Year range 1 .. 365;

By the following declaration, the programmer means, “| haven't the foggiest idea how many,” but the actua
base range will show up buried in the code or as a system parameter:
Employee Count : Integer;

rationale

Eliminating meaningless values from the legal range improves the compiler’s ability to detect errors when an
object is set to an invalid value. This also improves program readability. In addition, it forces you to carefully
think about each use of objects declared to be of the subtype.

Different implementations provide different sets of values for most of the predefined types. A reader cannot
determine the intended range from the predefined names. This situation is aggravated when the predefined
names are overloaded.

The names of an object and its subtype can clarify their intended use and document low-level design
decisions. The example above documents a design decision to restrict the software to devices whose physical
parameters are derived from the characteristics of punch cards. This information is easy to find for any later
changes, thus enhancing program maintainability.

Y ou can rename a type by declaring a subtype without a constraint (Ada Reference Manual 1995, 8§8.5). You
cannot overload a subtype name; overloading only applies to callable entities. Enumeration literals are treated
as parameterless functions and so are included in this rule.

Types can have highly constrained sets of values without eliminating useful values. Usage as described in
Guideline 5.3.1 eliminates many flag variables and type conversions within executable statements. This
renders the program more readable while allowing the compiler to enforce strong typing constraints.

notes
Subtype declarations do not define new types, only constraints for existing types.

Any deviation from this guideline detracts from the advantages of the strong typing facilities of the Ada
language.
exceptions

There are cases where you do not have a particular dependence on any range of numeric values. Such
situations occur, for example, with array indices (e.g., a list whose size is not fixed by any particular
semantics). See Guideline 7.2.1 for a discussion of appropriate uses of predefined types.

3.4.2 Enumeration Types

guideline
* Useenumeration typesinstead of numeric codes.
» Only if absolutely necessary, use representation clauses to match requirements of external devices.

Downloaded from http://www.everyspec.com

44 Ada95 QUALITY AND STYLE

example
Use:
type Color is (Blue, Red, Green, Yellow) ;
rather than:
Blue : constant := 1;
Red : constant := 2;
Green : constant := 3;
Yellow : constant := 4;

and add the following if necessary:

for Color use (Blue => 1,
Red => 2,
Green => 3,

Yellow => 4);

rationale

35

Enumerations are more robust than numeric codes; they leave less potential for errors resulting from incorrect
interpretation and from additions to and deletions from the set of values during maintenance. Numeric codes
are holdovers from languages that have no user-defined types.

In addition, Ada provides a number of attributes ('pos, 'val, 'Succ, 'Pred, 'Image, and 'value) for
enumeration types that, when used, are more reliable than user-written operations on encodings.

A numeric code may at first seem appropriate to match external values. Instead, these situations call for a
representation clause on the enumeration type. The representation clause documents the “encoding.” If the
program is properly structured to isolate and encapsulate hardware dependencies (see Guideline 7.1.5), the
numeric code ends up in an interface package where it can be easily found and replaced if the requirements
change.

In general, avoid using representation clauses for enumeration types. When there is no obvious ordering of the
enumeration literals, an enumeration representation can create portability problems if the enumeration type
must be reordered to accommodate a change in representation order on the new platform.

SUMMARY

spelling

* Useunderscores to separate words in a compound name.
* Represent numbersin a consistent fashion.
* Represent literalsin aradix appropriate to the problem.

* Use underscores to separate digits the same way commas or periods (or spaces for nondecimal bases)
would be used in normal text.

* When using scientific notation, make the & consistently either uppercase or lowercase.

* Inan alternate base, represent the a phabetic charactersin either al uppercase or all lowercase.
* Makereserved words and other elements of the program visually distinct from each other.

* Do not use an abbreviation of along word as an identifier where a shorter synonym exists.

* Useaconsistent abbreviation strategy.

* Do not use ambiguous abbreviations.

* Tojustify its use, an abbreviation must save many characters over the full word.

* Use abbreviations that are well-accepted in the application domain.

* Maintain alist of accepted abbreviations, and use only abbreviations on that list.

haming conventions

» Choose names that are as self-documenting as possible.
* Useasnort synonym instead of an abbreviation.
* Usenames given by the application, but do not use obscure jargon.

Downloaded from http://www.everyspec.com

READABILITY 45

Avoid using the same name to declare different kinds of identifiers.
Use singular, general nouns as subtype identifiers.
Choose identifiers that describe one of the subtype’ s values.

Consider using suffixes for subtype identifiers that define visible access types, visible subranges, or
visible array types.

For private types, do not use identifier constructions (e.g., suffixes) that are unique to subtype identifiers.
Do not use the subtype names from predefined packages.

Use predicate clauses or adjectives for Boolean abjects.

Use singular, specific nouns as object identifiers.

Choose identifiers that describe the object’ s value during execution.

Use singular, general nouns as identifiers for record components.

Use a consistent naming convention for tagged types and associated packages.

Use action verbs for procedures and entries.

Use predicate clauses for Boolean functions.

Use nouns for non-Boolean functions.

Give packages names that imply a higher level of organization than subprograms. Generally, these are
noun phrases that describe the abstraction provided.

Givetasks names that imply an active entity.

Use nouns descriptive of the data being protected for protected units.

Consider naming generic subprograms as if they were nongeneric subprograms.
Consider naming generic packages as if they were nongeneric packages.

Make the generic names more general than the instantiated names.

Use symbolic values instead of literals, wherever possible.

Use the predefined constants ada.Numerics.pi and aAda.Numerics.e for the mathematical constants
pi and e.

Use constants instead of variables for constant values.

Use a constant when the value is specific to a type or when the value must be static.

Use named numbers instead of constants, whenever possible.

Use named numbers to replace numeric literals whose type or context is truly universal.

Use constants for objects whose values cannot change after elaboration (United Technologies 1987).
Show relationships between symbolic values by defining them with static expressions.

Use linearly independent sets of literals.

Use attributes like 'rirst and 'rast instead of literals, wherever possible.

Use a name that indicates the kind of problem the exception represents.

Include a prefix like New, Make, OF create in Naming constructors (in this sense, operations to create
and/or initialize an object).

Use names indicative of their content for child packages containing constructors.

comments

Make the code as clear as possible to reduce the need for comments.

Never repeat information in a comment that is readily available in the code.

Where a comment is required, make it concise and complete.

Use proper grammar and spelling in comments.

Make comments visually distinct from the code.

Structure comments in headers so that information can be automatically extracted by atool.

Downloaded from http://www.everyspec.com

46 Ada95 QUALITY AND STYLE

Put afile header on each sourcefile.

Place ownership, responsibility, and history information for the file in the file header.
Put a header on the specification of each program unit.

Place information required by the user of the program unit in the specification header.

Do not repeat information (except unit name) in the specification header that is present in the
specification.

Explain what the unit does, not how or why it doesit.

Describe the complete interface to the program unit, including any exceptions it can raise and any global
effectsit can have.

Do not include information about how the unit fits into the enclosing software system.

Describe the performance (time and space) characteristics of the unit.

Place information required by the maintainer of the program unit in the body header.

Explain how and why the unit performsits function, not what the unit does.

Do not repeat information (except unit name) in the header that is readily apparent from reading the code.

Do not repeat information (except unit name) in the body header that is available in the specification
header.

Comment on all datatypes, abjects, and exceptions unless their names are self-explanatory.
Include information on the semantic structure of complex, pointer-based data structures.
Include information about relationships that are maintained between data objects.

Omit comments that merely repeat the information in the name.

Include information on redispatching for tagged types in cases where you intend the specializations (i.e.,
derived types) to override these redispatching operations.

Minimize comments embedded among statements.

Use comments only to explain parts of the code that are not obvious.

Comment intentional omissions from the code.

Do not use comments to paraphrase the code.

Do not use comments to explain remote pieces of code, such as subprograms called by the current unit.
Where comments are necessary, make them visually distinct from the code.

Use pagination markers to mark program unit boundaries.

Repeat the unit name in a comment to mark the vegin Of a package body, subprogram body, task body,
or block if thevegin is preceded by declarations.

For long or heavily nested if and case statements, mark the end of the statement with a comment
summarizing the condition governing the statement.

For long or heavily nested it statements, mark the e1se part with a comment summarizing the conditions
governing this portion of the statement.

using types

Limit the range of scalar types as much as possible.

Seek information about possible values from the application.

Do not reuse any of the subtype names in package standard.

Use subtype declarations to improve program readability (Booch 1987).

Use derived types and subtypes in concert.

Use enumeration types instead of numeric codes.

Only if absolutely necessary, use representation clauses to match requirements of external devices.

Downloaded from http://www.everyspec.com

CHAPTER 4
Program Structure

Proper structure improves program clarity. This is analogous to readability on lower levels and facilitates the use
of the readability guidelines (Chapter 3). The various program structuring facilities provided by Ada were
designed to enhance overall clarity of design. These guidelines show how to use these facilities for their intended
pUrposes.

The concept of child packages supports the concept of subsystem, where a subsystem is represented in Ada as a
hierarchy of library units. In general, a large system should be structured as a series of subsystems. Subsystems
should be used to represent logically related library units, which together implement a single, high-level
abstraction or framework.

Abstraction and encapsulation are supported by the package concept and by private types. Related data and
subprograms can be grouped together and seen by a higher level as a single entity. Information hiding is enforced
via strong typing and by the separation of package and subprogram specifications from their bodies. Exceptions
and tasks are additional Ada language elements that impact program structure.

41 HIGH-LEVEL STRUCTURE

Well-structured programs are easily understood, enhanced, and maintained. Poorly structured programs are
frequently restructured during maintenance just to make the job easier. Many of the guidelines listed below are
often given as general program design guidelines.

41.1 Separ ate Compilation Capabilities

guideline
* Placethe specification of each library unit package in a separate file from its body.

» Avoid defining library unit subprograms that are not intended to be used as main programs. If such
subprograms are defined, then create an explicit specification, in a separate file, for each library unit
subprogram.

* Minimize the use of subunits.

* In preference to subunits, use child library units to structure a subsystem into manageable units.
» Place each subunit in a separate file.

» Useaconsistent file naming convention.

» In preference to nesting in a package body, use a private child and witn it to the parent body.

* Useprivate child unit specifications for data and subprograms that are required by (other) child units that
extend a parent unit’s abstraction or services.

example

The file names below illustrate one possible file organization and associated consistent naming convention.
The library unit name uses the adp suffix for the body. The suffix aas indicates the specification, and any files
containing subunits use names constructed by separating the body name from the subunit name with an
underscore;

47

Downloaded from http://www.everyspec.com

48 Ada 95 QUALITY AND STYLE

text_io.ads -- the specification
text io.adb -- the body
text io_integer io.adb -- a subunit
text io fixed io.adb -- a subunit
text _io float io.adb -- a subunit
text io enumeration io.adb -- a subunit

Depending on what characters your file system allows you to use in file names, you could show the
distinction between parent and subunit name more clearly in the file name. If your file system allows the “#”
character, for example, you could separate the body name from the subunit name with a #:

text_io.ads -- the specification
text io.adb -- the body
text io#finteger io.adb -- a subunit
text io#fixed io.adb -- a subunit
text io#float io.adb -- a subunit
text io#fenumeration io.adb -- a subunit

Some operating systems are case sensitive, although Adaitself is not a case-sensitive language. For example,
you could choose a convention of all lowercase file names.

rationale

The main reason for the emphasis on separate files in this guideline is to minimize the amount of
recompilation required after each change. Typically, during software development, bodies of units are
updated far more often than specifications. If the body and specification reside in the same file, then the
specification will be compiled each time the body is compiled, even though the specification has not changed.
Because the specification defines the interface between the unit and all of its users, this recompilation of the
specification typically makes recompilation of all users necessary in order to verify compliance with the
specification. If the specifications and bodies of the users also reside together, then any users of these units
will also have to be recompiled and so on. The ripple effect can force a huge number of compilations that
could have been avoided, severely slowing the development and test phase of a project. This is why you
should place specifications of al library units (nonnested units) in separate files from their bodies.

Library unit subprograms should be minimized. The only real use for library unit subprograms is as the main
subprogram. In amost all other cases, it is better to embed the subprogram into a package. This provides a
place (the package body) to localize data needed by the subprogram. Moreover, it cuts down on the number of
separate modules in the system.

In general, you should use a separate specification for any library subprogram that is mentioned in a with
clause. This makes the witn’ing unit dependent on the library subprogram specification, not its body.

Y ou should minimize the use of subunits because they create maintenance problems. Declarations appearing
in the parent body are visible in the subunit, increasing the amount of data global to the subunit and, thus,
increasing the potential ripple effect of changes. Subunits hinder reuse because they provide an incentive to
put otherwise reusable code in the subunit directly rather than in a common routine called from multiple
subprograms.

With the availability of child library units in Ada 95, you can avoid most uses of subunits. For example,
instead of using a subunit for a large nested body, you should try to encapsulate this code in a child library
unit and add the necessary context clauses. You can modify the body of the child unit without having to
recompile any of the other units in a subsystem.

An additional benefit of using multiple, separate files is that it allows different implementors to modify
different parts of the system at the same time with conventional editors, which do not allow multiple
concurrent updatesto asinglefile.

Finally, keeping bodies and specifications separate makes it possible to have multiple bodies for the same
specification or multiple specifications for the same body. Although Ada requires that there be exactly one
specification per body in a system at any given time, it can still be useful to maintain multiple bodies or
multiple specifications for use in different builds of a system. For example, a single specification may have
multiple bodies, each of which implements the same functionality with a different tradeoff of time versus
space efficiency, or, for machine-dependent code, there may be one body for each target machine.
Maintaining multiple package specifications can also be useful during development and test. You may
develop one specification for delivery to your customer and another for unit testing. The first one would
export only those subprograms intended to be called from outside of the package during normal operation of
the system. The second one would export all subprograms of the package so that each of them could be
independently tested.

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 49

A consistent file naming convention is recommended to make it easier to manage the large number of files
that may result from following this guideline.

In implementing the abstraction defined in a package specification, you often need to write supporting
subprograms that manipulate the internal representation of the data. These subprograms should not be
exported on the interface. You have a choice of whether to place them in the package body of the parent
program or in a child package named in a context clause of the parent package body. When you place them in
the parent package body, you make them inaccessible to al clients of the parent, including extensions of the
parent declared in child packages. If these subprograms are needed to implement extensions of the parent
abstraction, you would be forced to modify both the parent specification and the body because you would
have to declare the extensions within the parent specification. This technique would then force recompilation
of the entire package (specification and body) aswell as all its clients.

Alternatively, you can implement the supporting subprograms in a private child package. Because the parent
unit’s specification is not modified, neither it nor its clients need to be recompiled. The data and subprograms
that might have declared in the parent unit body must now be declared in the private child unit’s specification
to make them visible to both the parent unit body and to any child units that extend the parent unit’s services
or abstractions. (See also Guidelines 4.1.6 and 4.2.) This use of private child units will generally minimize
recompilations within the unit family and among its clients.

In declaring the child package private, you achieve a similar effect to declaring it in the parent package body
to the extent that clients of the parent cannot name the private child in a context clause. You gain flexibility
because now you can extend the parent abstraction using child packages without having to recompile the
parent specification or its body, assuming that you do not otherwise modify the parent or its body. This added
flexibility will usually compensate for the increased dependency between units, in this case, the additional
context clause on the parent body (and other child package bodies) that names the private child package of
supporting subprograms.

412 Configuration Pragmas

guideline

* When possible, express configuration pragmas through compiler options or other means that do not
reguire modifications to the source code.

* When configuration pragmas must be placed in source code, consider isolating them to one compilation
unit per partition; if specified, the main subprogram for the partition is recommended.

rationale

Configuration pragmas are generally used to select a partition-wide or system-wide option. Usually, they
reflect either high-level software architecture decisions (e.g., pragma Task_Dispatching Policy) Of the use
of the software in a particular application domain (e.g., safety-critical software). If a configuration pragmais
embedded within a software component and that component is reused in a different context where the pragma
is no longer appropriate, then it may cause problems in the new application. Such problems can include the
rejection by the compilation system of otherwise legal source code or unexpected behavior at run-time. These
problems can be significant given the wide scope of a configuration pragma. In addition, maintenance of the
original system may require that some of these system-wide decisions be changed. If the configuration
pragmas are scattered throughout the software, it may be difficult to locate the lines that need to change.

As aresult, it is recommended that all configuration pragmas be kept in a single compilation unit if possible
to make them easy to locate and modify as needed. If this compilation unit is unlikely to be reused (e.g., a
main subprogram), then the likelihood of conflicts with future reusers is reduced. Finally, if these system-
wide decisions are indicated without embedding them in the code at all, such as through a compiler option,
then the problems described above are even less likely to occur.

exceptions

Certain pragmas (e.g., pragma suppress) can be used in several forms, including as a configuration pragma.
This guideline does not apply to such pragmas when they are not used as a configuration pragma.

Downloaded from http://www.everyspec.com

50 Ada 95 QUALITY AND STYLE

4.1.3 Subprograms

guideline

» Use subprograms to enhance abstraction.

* Restrict each subprogram to the performance of a single action.
example

Your program is required to draw a menu of user options as part of a menu-driven user interface package.
Because the contents of the menu can vary depending on the user state, the proper way to do thisisto write a
subprogram to draw the menu. This way, the output subprogram has one purpose and the way to determine
the menu content is described elsewhere.

procedure Draw_Menu

(Title : in String;
Options : in Menu) 1is
begin -- Draw Menu

Ada.Text IO.New Page;

Ada.Text IO.New Line;

Ada.Text IO.Set Col (Right Column) ;
Ada.Text IO.Put_ Line (Title);
Ada.Text IO.New Line;

for Choice in Alpha Numeric loop
if Options (Choice) /= Empty Line then
Valid Option (Choice) := True;
Ada.Text_I0.Set_Col (Left_Column) ;
Ada.Text IO.Put (Choice & " -- ");

Ada.Text IO.Put_Line (Options (Choice));
end if;

end loop;

end Draw_Menu;

rationale

Subprograms are an extremely effective and well-understood abstraction technique. Subprograms increase
program readability by hiding the details of a particular activity. It is not necessary that a subprogram be
called more than once to justify its existence.

notes
Guideline 10.7.1 discusses dealing with the overhead of subroutine calls.

414 Functions

guideline
» Useafunction when the subprogram’s primary purpose is to provide a single value.
* Minimizethe side effect of afunction.
* Consider using a parameterless function when the value does not need to be static.

* Use a parameterless function (instead of a constant) if the value should be inherited by types derived
from the type.

» Useaparameterless function if the value itself is subject to change.
example

Although reading a character from a file will change what character is read next, this is accepted as a minor
side effect compared to the primary purpose of the following function:

function Next Character return Character is separate;

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 51

However, the use of a function like this could lead to a subtle problem. Any time the order of evaluation is
undefined, the order of the values returned by the function will effectively be undefined. In this example, the
order of the characters placed in wora and the order that the following two characters are given to the suffix
parameters are unknown. No implementation of the Next_character function can guarantee which character
will go where:

Word : constant String := String'(l .. 5 => Next Character);
begin -- Start Parsing

Parse (Keyword => Word,
Suffixl => Next Character,
Suffix2 => Next Character);
end Start Parsing;

Of course, if the order is unimportant (as in a random number generator), then the order of evaluation is
unimportant.

The following example shows the use of a parameterless function instead of a constant:
type T is private;
function Nil return T; -- This function is a derivable operation of type T

function Default return T; -- Also derivable, and the value can be changed by
-- recompiling the body of the function

This same example could have been written using constants:

type T is private;
Nil : constant T;
Default : constant T;

rationale

A side effect is a change to any variable that is not local to the subprogram. This includes changes to
variables by other subprograms and entries during calls from the function if the changes persist after the
function returns. Side effects are discouraged because they are difficult to understand and maintain.
Additionally, the Ada language does not define the order in which functions are evaluated when they occur in
expressions or as actual parameters to subprograms. Therefore, a program that depends on the order in which
side effects of functions occur is erroneous. Avoid using side effects anywhere.

415 Packages

guideline
» Use packages for information hiding.
» Use packages with tagged types and private types for abstract data types.
» Use packages to model abstract entities appropriate to the problem domain.

* Use packages to group together related type and object declarations (e.g., common declarations for two
or more library units).

» Encapsulate machine dependencies in packages. Place a software interface to a particular device in a
package to facilitate a change to a different device.

» Placelow-level implementation decisions or interfaces in subprograms within packages.

» Use packages and subprograms to encapsulate and hide program details that may change (Nissen and
Wallis 1984).

example

Reading the names and other attributes of external files is highly machine dependent. A package called
pirectory could contain type and subprogram declarations to support a generalized view of an external
directory that contains external files. Its internals may, in turn, depend on other packages more specific to
the hardware or operating system:

Downloaded from http://www.everyspec.com

52 Ada 95 QUALITY AND STYLE

package Directory is

type Directory Listing is limited private;

procedure Read Current_ Directory (D : in out Directory Listing);
generic
with procedure Process (Filename : in String);

procedure Iterate (Over : in Directory Listing);

private
type Directory Listing is ...
end Directory;
package body Directory is
-- This procedure is machine dependent
procedure Read Current Directory (D : in out Directory Listing) is separate;
procedure Iterate (Over : in Directory Listing) is

begin
Process (Filename) ;

end Iterate;

end Directory;
rationale

Packages are the principal structuring facility in Ada. They are intended to be used as direct support for
abstraction, information hiding, and modularization. For example, they are useful for encapsulating machine
dependencies as an aid to portability. A single specification can have multiple bodies isolating
implementation-specific information so other parts of the code do not need to change.

Encapsulating areas of potential change helps to minimize the effort required to implement that change by
preventing unnecessary dependencies among unrelated parts of the system.

notes

The most prevalent objection to this guideline usually involves performance penalties. See Guideline 10.7.1
for a discussion about subprogram overhead.

4.1.6 Child Library Units

guideline
* If anew library unit represents a logical extension to the original abstraction, define it as a child library
unit.

* If anew library unit is independent (e.g., introduces a new abstraction that depends only in part on the
existing one), then encapsulate the new abstraction in a separate library unit.

» Usechild packages to implement a subsystem.
» Usepublic child units for those parts of a subsystem that should be visible to clients of the subsystem.

» Use private child units for those parts of a subsystem that should not be visible to clients of the
subsystem.

» Useprivate child unitsfor local declarations used only in implementing the package specification.
» Usechild packages to implement constructors, even when they return access values.

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 53

example

The following example of a windowing system is taken from Cohen et al. (1993) and illustrates some of the
uses of child units in designing subsystems. The parent (root) package declares the types, subtypes, and
constants that its clients and subsystems need. Individual child packages provide specific parts of the
windowing abstraction, such as atoms, fonts, graphic output, cursors, and keyboard information:

package X Windows is

pri&éée

end-i;windows;

package X Windows.Atoms is
type Atom is private;

pri&éée

end-i;windows.Atoms;

package X Windows.Fonts is
type Font is private;
private

end X Windows.Fonts;

package X Windows.Graphic_ Output is
type Graphic_Context is private;
type Image is private;

private

end X Windows.Graphic Output;

package X Windows.Cursors is

end X Windows.Cursors;

package X Windows.Keyboard is
end-i;windows.Keyboard;
rationale

The user can create more precise packages with less cluttered interfaces, using child library packages to
extend the interfaces as needed. The parent contains only the relevant functionality. The parent provides a
general-purpose interface, while the child units provide more complete programming interfaces, tailored to
that aspect of an abstraction that they are extending or defining.

Child packages build on the modular strength of Ada where “the distinct specification and body decouple the
user interface to a package (the specification) from its implementation (the body)” (Rationale 1995, 811.7).
Child packages provide the added capability of being able to extend a parent package without recompiling the
parent or the parent’s clients.

Child packages allow you to write logically distinct packages that share a private type. The visibility rules
give the private part of the child specification and the body of the child visibility into the private part of the
parent. Thus, you can avoid creating a monolithic package for the sake of developing abstractions that share a
private type and need to know its representation. The private representation is not available to clients of the
package, so the abstraction in the package and its children is maintai ned.

Using private child packages for local declarations enables you to have available the support declarations you
need when implementing both the parent package and extensions to the parent package. Y ou enhance the
maintainability of your program by using a common set of support declarations (data representations, data
manipulation subprograms). You can modify the internal representation and the implementation of the
support subprograms without modifying or recompiling the rest of your subsystem because these support
subprograms are implemented in the body of the private child package. See aso Guidelines 4.1.1, 4.2.1,
8.4.1,and 8.4.8.

Downloaded from http://www.everyspec.com

54 Ada 95 QUALITY AND STYLE

See also Guideline 9.4.1 for adiscussion of the use of child library unitsin creating a tagged type hierarchy.

4.1.7 Cohesion

guideline
* Make each package serve a single purpose.
» Use packagesto group related data, types, and subprograms.
* Avoid collections of unrelated objects and subprograms (NASA 1987; Nissen and Wallis 1984).

* Consider restructuring a system to move two highly related units into the same package (or package
hierarchy) or to move relatively independent units into separate packages.

example

As a bad example, a package named project Definitions iSObviously a*catch all” for a particular project
and is likely to be ajumbled mess. It probably has this form to permit project members to incorporate a single
with clause into their software.

Better examples are packages called pisplay Format Definitions, COntaining al the types and constants
needed by some specific display in a specific format, and cartridge Tape Handler, cOntaining all the types,
constants, and subprograms that provide an interface to a special-purpose device.

rationale

The degree to which the entities in a package are related has a direct impact on the ease of understanding
packages and programs made up of packages. There are different criteria for grouping, and some criteria are
less effective than others. Grouping the class of data or activity (e.g., initialization modules) or grouping data
or activities based on their timing characteristics is less effective than grouping based on function or need to
communicate through data (Charette 1986).

The “correct” structuring of a system can make a tremendous difference in the maintainability of a system.
Although it may seem painful at the time, it is important to restructure if the initial structuring is not quite
right.

See also Guideline 5.4.2 on heterogeneous data.
notes

Traditional subroutine libraries often group functionally unrelated subroutines. Even such libraries should be
broken into a collection of packages, each containing alogically cohesive set of subprograms.

4.1.8 Data Coupling

guideline
» Avoid declaring variables in package specifications.
example

This is part of a compiler. Both the package handling error messages and the package containing the code
generator need to know the current line number. Rather than storing this in a shared variable of type naturai,
theinformation is stored in a package that hides the details of how such information is represented and makes
it available with access routines:

package Compilation Status is
type Line Number is range 1 .. 2_500_000;
function Source Line Number return Line Number;
end Compilation Status;

with Compilation Status;

package Error Message Processing is
-- Handle compile-time diagnostic.

end Error_Message_ Processing;

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 55

with Compilation Status;
package Code_Generation is

-- Operations for code generation.
end Code_Generation;

rationale

Strongly coupled program units can be difficult to debug and very difficult to maintain. By protecting shared
data with access functions, the coupling is lessened. This prevents dependence on the data structure, and
access to the data can be controlled.

notes

The most prevalent objection to this guideline usually involves performance penalties. When a variable is
moved to the package body, subprograms to access the variable must be provided and the overhead involved
during each call to those subprograms is introduced. See Guideline 10.7.1 for a discussion about subprogram
overhead.

419 Tasks

guideline
* Usetasksto model abstract, asynchronous entities within the problem domain.
» Usetasksto define concurrent algorithms for multiprocessor architectures.
» Usetasksto perform concurrent, cyclic, or prioritized activities (NASA 1987).
rationale
The rationale for this guidelineis given under Guideline 6.1.2. Chapter 6 discusses tasking in more detail.

4.1.10 Protected Types

guideline

» Use protected types to control or synchronize access to data or devices.

* Use protected types to implement synchronization tasks, such as a passive resource monitor.
example

See example in Guideline 6.1.1.
rationale

The rationale for this guidelineis given under Guideline 6.1.1. Chapter 6 discusses concurrency and protected
types in more detail.

42 VISIBILITY

Ada's ahility to enforce information hiding and separation of concerns through its visibility controlling features is
one of the most important advantages of the language, particularly when “pieces of a large system are being
developed separately.” Subverting these features, for example, by excessive reliance on the use clause, is wasteful
and dangerous. See also Guidelines 5.7 and 9.4.1.

421 Minimization of I nterfaces

guideline
* Put only what is needed for the use of a package into its specification.
* Minimize the number of declarationsin package specifications.
* Do not include extra operations simply because they are easy to build.
* Minimize the context (with) clausesin a package specification.
* Reconsider subprograms that seem to require large numbers of parameters.

Downloaded from http://www.everyspec.com

56 Ada 95 QUALITY AND STYLE

* Do not manipulate global data within a subprogram or package merely to limit the number of parameters.
* Avoid unnecessary visibility; hide the implementation details of a program unit from its users.

* Usechild library units to control the visibility of parts of a subsystem interface.

* Useprivate child packages for those declarations that should not be used outside the subsystem.

* Usechild library unitsto present different views of an entity to different clients.

* Design (and redesign) interfaces after having worked out the logic of various expected clients of the
interface.

example

package Telephone Book is

type Listing is limited private;

procedure Set_Name (New_Name : in String;
Current : in out Listing);
procedure Insert (Name : in String;
Current : in out Listing);
procedure Delete (Obsolete : in String;
Current : in out Listing);
private

type Information;
type Listing is access Information;

end Telephone Book;
package body Telephone Book is
-- Full details of record for a listing

type Information is
record

Next : Listing;
end record;

First : Listing;

procedure Set_Name (New_Name : in String;
Current : in out Listing) is separate;
procedure Insert (Name : in String;
Current : in out Listing) is separate;
procedure Delete (Obsolete : in String;
Current : in out Listing) is separate;

end Telephone Book;

rationale

For each entity in the specification, give careful consideration to whether it could be moved to a child
package or to the parent package body. The fewer the extraneous details, the more understandable the
program, package, or subprogram. It is important to maintainers to know exactly what a package interface is
so that they can understand the effects of changes. Interfaces to a subprogram extend beyond the parameters.
Any modification of global data from within a package or subprogram is an undocumented interface to the
“outside” aswell.

Minimize the context clauses on a specification by moving unnecessary clauses to the body. This technique
makes the reader’s job easier, localizes the recompilation required when library units change, and helps
prevent aripple effect during modifications. See also Guideline 4.2.3.

Subprograms with large numbers of parameters often indicate poor design decisions (e.g., the functional
boundaries of the subprogram are inappropriate or parameters are structured poorly). Conversely,
subprograms with no parameters are likely to be accessing global data.

Objects visible within package specifications can be modified by any unit that has visibility to them. The
object cannot be protected or represented abstractly by its enclosing package. Objects that must persist should
be declared in package bodies. Objects whose value depends on program units external to their enclosing

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 57

package are probably either in the wrong package or are better accessed by a subprogram specified in the
package specification.

Child library units can provide distinct views of the hierarchical library. The engineer can provide a different
view for the client than for the implementor (Rationale 1995, §10.1). By creating private child packages, the
engineer can provide facilities that are only available inside the subsystem rooted at the parent library unit.
The declarations inside a private child package specification are not exported outside the subsystem. Thus,
the engineer can declare utilities needed to implement an abstraction in a private child package (e.g.,
debugging utilities [Cohen et al. 1993]) and be certain that users of the abstraction (i.e., the clients) cannot
access these utilities.

Different clients may have different needs for essentially the same resource. Instead of having multiple
versions of the resources, consider having child units that export different views for different purposes.

Designing an interface based strictly on predicting what clients “might” need can produce a bloated and
inappropriate interface. What then happens is that clients try to “live” with the interface and work around the
inappropriate interfaces, repeating code that logically should be part of the shared abstraction. See
Guideline 8.3.1 for adiscussion of interfaces from the reusability perspective.

notes

In some cases, subroutine libraries look like large, monolithic packages. In such cases, it may be beneficial to
break these up into smaller packages, grouping them according to category (e.g., trigonometric functions).

4.2.2 Nested Packages

guideline
* Usechild packages rather than nested packages to present different views of the same abstraction.

* Nest package specifications within another package specification only for grouping operations or hiding
common implementation details.

example

Annex A of the Ada Reference Manual (1995) gives an example of package specification nesting. The
specification of the generic package ceneric Bounded Length IS nested inside the specification of package
Ada.strings.Bounded. The nested package is a generic, grouping closely related operations.

rationale

Grouping package specifications into an encompassing package emphasizes a relationship of commonality
among those packages. It aso allows them to share common implementation details resulting from the
relationship. Nesting packages alows you to organize the name space of the package in contrast to the
semantic effect of nesting inside of subprograms or task bodies.

An abstraction occasionally needs to present different views to different classes of users. Building one view
upon another as an additional abstraction does not always suffice because the functionality of the operations
presented by the views may be only partially disjointed. Nesting specifications groups the facilities of the
various views, yet associates them with the abstraction they present. Abusive mixing of the views by another
unit would be easy to detect due to the multiple use clauses or an incongruous mix of qualified names.

See the rationale discussed in Guideline 4.2.1.

4.2.3 Restricting Visibility

guideline
» Consider using private child packagesin lieu of nesting.

* Restrict the visibility of program units as much as possible by nesting them inside package bodies (Nissen
and Wallis 1984) if you cannot use a private child package.

* Minimize nesting program units inside subprograms and tasks.
* Minimize the scope within which with clauses apply.
* Only witnh those units directly needed.

Downloaded from http://www.everyspec.com

58 Ada 95 QUALITY AND STYLE

example

This program illustrates the use of child library units to restrict visibility. The procedure
Rational Numbers.Reduce IS nested inside the body Of rRational Numbers tO restrict its visibility to the
implementation of this abstraction. Rather than make the text input/output facilities visible to the entire
rational number hierarchy, it is only available to the body of the child library rational Numbers.I0. This
example is adapted from the Ada Reference Manual (1995, 887.1, 7.2, and 10.1.1):

package Rational Numbers is

type Rational is private;

function "=" (X, Y: Rational) return Boolean;
function "/" (X, Y: Integer) return Rational; -- construct a rational number
function "+" (X, Y: Rational) return Rational;
function "-" (X, Y: Rational) return Rational;
function "*" (X, Y: Rational) return Rational;
function "/" (X, Y: Rational) return Rational; -- rational division
private
end Rational Numbers;
package body Rational Numbers is
procedure Reduce (R :in out Rational) is . . . end Reduce;

end Rational Numbers;
package Rational Numbers.IO is

procedure Put (R : in Rational);
procedure Get (R : out Rational);

end Rational Numbers.IO;

with Ada.Text IO;
with Ada.Integer Text IO;
package body Rational Numbers.IO is -- has visibility to parent private type declaration

procedure Put (R : in Rational) is
begin
Ada.Integer Text IO.Put (Item => R.Numerator, Width => 0);
Ada.Text IO.Put (" /")
Ada.Integer Text IO.Put (Item => R.Denominator, Width => 0);
end Put;

procedure Get (R : out Rational) is . . . end Get;

end Rational Numbers.IO;
rationale

Restricting visibility of a program unit ensures that the program unit is not called from some part of the
system other than that which was intended. This is done by nesting it inside the only unit that uses it, by
hiding it inside a package body rather than declaring it in the package specification, or by declaring it as a
private child unit. This avoids errors and eases the job of maintainers by guaranteeing that a local change in
that unit will not have an unforeseen global effect.

Restricting visibility of alibrary unit by using witn clauses on subunits rather than on the entire parent unit is
useful in the same way. In the example above, it is clear that the package Text 10 is used only by the
Listing Facilities package of the compiler.

Nesting inside subprograms and tasks is discouraged because it leads to unreusable components. These
components are essentially unreusable because they make undesirable up-level references into the defining
context. Unless you truly want to ensure that the program unit is not called from some unintended part of the
system, you should minimize this form of nesting.

See also Guideline 4.2.1 for adiscussion of the use of child units.

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 59

notes

One way to minimize the coverage of a with clause is to use it only with subunits that really need it.
Consider making those subunits separate compilation units when the need for visibility to a library unit is
restricted to a subprogram or two.

4.2.4 Hiding Tasks

guideline
» Carefully consider encapsulation of tasks.
example

package Disk_Head Scheduler is
type Words is ...
type Track Number is ...

procedure Transmit (Track : in Track Number;
Data : in Words) ;

end-biskiHeadischeduler;

package body Disk_Head Scheduler is

task Control is
entry Sign In (Track : in Track_Number) ;

end Control;

task Track_Manager is
entry Transfer (Track Number) (Data : in Words) ;
end Track Manager;

procedure Transmit (Track : in Track_ Number;
Data : in Words) is
begin

Control.Sign In(Track) ;
Track Manager.Transfer (Track) (Data) ;

end Transmit;

rationale

The decision whether to declare a task in the specification or body of an enclosing package is not a smple
one. There are good arguments for both.

Hiding a task specification in a package body and exporting (via subprograms) only required entries reduces
the amount of extraneous information in the package specification. It allows your subprograms to enforce any
order of entry calls necessary to the proper operation of the tasks. It also alows you to impose defensive task
communication practices (see Guideline 6.2.2) and proper use of conditional and timed entry calls. Finally, it
allows the grouping of entries into sets for export to different classes of users (e.g., producers versus
consumers) or the concealment of entries that should not be made public at all (e.g., initialization,
completion, signals). Where performance is an issue and there are no ordering rules to enforce, the entries can
be renamed as subprograms to avoid the overhead of an extra procedure call.

An argument, which can be viewed as an advantage or disadvantage, is that hiding the task specification in a
package body hides the fact of atasking implementation from the user. If the application is such that a change
to or from atasking implementation or a reorganization of services among tasks need not concern users of the

Downloaded from http://www.everyspec.com

60 Ada 95 QUALITY AND STYLE

package, then thisis an advantage. However, if the package user must know about the tasking implementation
to reason about global tasking behavior, then it is better not to hide the task completely. Either move it to the
package specification or add comments stating that there is a tasking implementation, describing when a call
may block, etc. Otherwise, it is the package implementor’ s responsibility to ensure that users of the package
do not have to concern themselves with behaviors such as deadlock, starvation, and race conditions.

Finally, keep in mind that hiding tasks behind a procedural interface prevents the usage of conditional and
timed entry calls and entry families, unless you add parameters and extra code to the procedures to make it
possible for callersto direct the procedures to use these capabilities.

43 EXCEPTIONS

This section addresses the issue of exceptions in the context of program structures. It discusses how exceptions
should be used as part of the interface to a unit, including what exceptions to declare and raise and under what
conditions to raise them. Information on how to handle, propagate, and avoid raising exceptions is found in
Guideline 5.8. Guidelines on how to deal with portability issues are in Guideline 7.5.

43.1 Using Exceptionsto Help Define an Abstraction

guideline

* For unavoidable internal errors for which no user recovery is possible, declare a single user-visible
exception. Inside the abstraction, provide away to distinguish between the different internal errors.

» Do not borrow an exception name from another context.

» Export (declare visibly to the user) the names of all exceptions that can be raised.

» Inapackage, document which exceptions can be raised by each subprogram and task entry.
» Do not raise exceptions for internal errors that can be avoided or corrected within the unit.

» Do not raise the same exception to report different kinds of errors that are distinguishable by the user of
the unit.

» Provideinterrogative functions that allow the user of a unit to avoid causing exceptions to be raised.
* When possible, avoid changing state information in a unit before raising an exception.
e Catch and convert or handle all predefined and compiler-defined exceptions at the earliest opportunity.
» Do not explicitly raise predefined or implementation-defined exceptions.
* Never let an exception propagate beyond its scope.
example
This package specification defines two exceptions that enhance the abstraction:

generic
type Element is private;
package Stack is

function Stack Empty return Boolean;
function Stack Full return Boolean;

procedure Pop (From Top : out Element) ;
procedure Push (Onto Top : in Element) ;

-- Raised when Pop is used on empty stack.
Underflow : exception;

-- Raised when Push is used on full stack.
Overflow : exception;

end Stack;

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 61

procedure Pop (From Top : out Element) is
begin

if Stack Empty then
raise Underflow;

else -- Stack contains at least one element
Top Index := Top Index - 1;
From_ Top = Data(Top_Index + 1);
end if;
end Pop;

rationale

Exceptions should be used as part of an abstraction to indicate error conditions that the abstraction is unable
to prevent or correct. Because the abstraction is unable to correct such an error, it must report the error to the
user. In the case of ausage error (e.g., attempting to invoke operations in the wrong sequence or attempting to
exceed a boundary condition), the user may be able to correct the error. In the case of an error beyond the
control of the user, the user may be able to work around the error if there are multiple mechanisms available
to perform the desired operation. In other cases, the user may have to abandon use of the unit, dropping into a
degraded mode of limited functionality. In any case, the user must be notified.

Exceptions are a good mechanism for reporting such errors because they provide an aternate flow of control
for dealing with errors. This alows error-handling code to be kept separate from the code for normal
processing. When an exception is raised, the current operation is aborted and control is transferred directly to
the appropriate exception handler.

Several of the guidelines above exist to maximize the ability of the user to distinguish and correct different
kinds of errors. Declaring new exception names, rather than raising exceptions declared in other packages,
reduces the coupling between packages and also makes different exceptions more distinguishable. Exporting
the names of all exceptions that a unit can raise, rather than declaring them internally to the unit, makes it
possible for users of the unit to refer to the names in exception handlers. Otherwise, the user would be able to
handle the exception only with an others handler. Finally, use comments to document exactly which of the
exceptions declared in a package can be raised by each subprogram or task entry making it possible for the
user to know which exception handlers are appropriate in each situation.

In situations where there are errors for which the abstraction user can take no intelligent action (e.g., there is
no workaround or degraded mode), it is better to export a single internal error exception. Within the package,
you should consider distinguishing between the different internal errors. For instance, you could record or
handle different kinds of internal error in different ways. When you propagate the error to the user, however,
you should use a special internal error exception, indicating that no user recovery is possible. Y ou should also
provide relevant information when you propagate the error, using the facilities provided in ada.Exceptions.
Thus, for any abstraction, you effectively provide N + 1 different exceptions: N different recoverable errors
and one irrecoverable error for which there is no mapping to the abstraction. Both the application
requirements and what the client needs/wants in terms of error information help you identify the appropriate
exceptions for an abstraction.

Because they cause an immediate transfer of control, exceptions are useful for reporting unrecoverable errors,
which prevent an operation from being completed, but not for reporting status or modes incidental to the
completion of an operation. They should not be used to report internal errors that a unit was able to correct
invisibly to the user.

To provide the user with maximum flexihility, it is a good idea to provide interrogative functions that the user
can call to determine whether an exception would be raised if a subprogram or task entry were invoked. The
function stack_Empty in the above example is such a function. It indicates whether underfiow would be
raised if pop were called. Providing such functions makes it possible for the user to avoid triggering
exceptions.

To support error recovery by its user, aunit should try to avoid changing state during an invocation that raises
an exception. If a requested operation cannot be completely and correctly performed, then the unit should

Downloaded from http://www.everyspec.com

62 Ada 95 QUALITY AND STYLE

either detect this before changing any internal state information or should revert to the state at the time of the
request. For example, after raising the exception underfiow, the stack package in the above example should
remain in exactly the same state it was in when rop was called. If it were to partialy update its internal data
structures for managing the stack, then future rush and pop Operations would not perform correctly. Thisis
always desirable, but not always possible.

User-defined exceptions should be used instead of predefined or compiler-defined exceptions because they
are more descriptive and more specific to the abstraction. The predefined exceptions are very general and can
be triggered by many different situations. Compiler-defined exceptions are nonportable and have meanings
that are subject to change even between successive releases of the same compiler. This introduces too much
uncertainty for the creation of useful handlers.

If you are writing an abstraction, remember that the user does not know about the units you use in your
implementation. That is an effect of information hiding. If any exception is raised within your abstraction,
you must catch it and handle it. The user is not able to provide a reasonable handler if the original exception
is allowed to propagate out of the body of your abstraction. You can still convert the exception into a form
intelligible to the user if your abstraction cannot effectively recover on its own.

Converting an exception means raising a user-defined exception in the handler for the original exception. This
introduces a meaningful name for export to the user of the unit. Once the error situation is couched in terms
of the application, it can be handled in those terms.

44 SUMMARY

high-level structure
* Placethe specification of each library unit package in a separate file from its body.

» Avoid defining library unit subprograms that are not intended to be used as main programs. If such
subprograms are defined, then create an explicit specification, in a separate file, for each library unit
subprogram.

* Minimize the use of subunits.

* In preference to subunits, use child library units to structure a subsystem into manageable units.
» Place each subunit in a separate file.

» Useaconsistent file naming convention.

» In preference to nesting in a package body, use a private child and witn it to the parent body.

* Useprivate child unit specifications for data and subprograms that are required by (other) child units that
extend a parent unit’s abstraction or services.

* When possible, express configuration pragmas through compiler options or other means that do not
reguire modifications to the source code. .

* When configuration pragmas must be placed in source code, consider isolating them to one compilation
unit per partition; if specified, the main subprogram for the partition is recommended.

e Use subprograms to enhance abstraction.

* Restrict each subprogram to the performance of a single action.

» Useafunction when the subprogram’s primary purpose is to provide asingle value.
* Minimizethe side effect of afunction.

» Consider using a parameterless function when the value does not need to be static.

» Use a parameterless function (instead of a constant) if the value should be inherited by types derived
from the type.

» Useaparameterless function if the value itself is subject to change.

» Use packages for information hiding.

» Use packages with tagged types and private types for abstract data types.

» Use packages to model abstract entities appropriate to the problem domain.

Downloaded from http://www.everyspec.com

PROGRAM STRUCTURE 63

Use packages to group together related type and object declarations (e.g., common declarations for two
or more library units).

Encapsulate machine dependencies in packages. Place a software interface to a particular device in a
package to facilitate a change to a different device.

Place low-level implementation decisions or interfaces in subprograms within packages.

Use packages and subprograms to encapsulate and hide program details that may change (Nissen and
Wallis 1984).

If a new library unit represents a logical extension to the original abstraction, define it as a child library
unit.

If a new library unit is independent (e.g., introduces a new abstraction that depends only in part on the
existing one), then encapsulate the new abstraction in a separate library unit.

Use child packages to implement a subsystem.
Use public child units for those parts of a subsystem that should be visible to clients of the subsystem.

Use private child units for those parts of a subsystem that should not be visible to clients of the
subsystem.

Use private child units for local declarations used only in implementing the package specification.
Use child packages to implement constructors, even when they return access values.

Make each package serve a single purpose.

Use packages to group related data, types, and subprograms.

Avoid collections of unrelated objects and subprograms (NASA 1987; Nissen and Wallis 1984).

Consider restructuring a system to move two highly related units into the same package (or package
hierarchy) or to move relatively independent units into separate packages.

Avoid declaring variables in package specifications.

Use tasks to model abstract, asynchronous entities within the problem domain.

Use tasks to define concurrent algorithms for multiprocessor architectures.

Use tasks to perform concurrent, cyclic, or prioritized activities (NASA 1987).

Use protected types to control or synchronize access to data or devices.

Use protected types to implement synchronization tasks, such as a passive resource monitor.

visibility

Put only what is needed for the use of a package into its specification.

Minimize the number of declarationsin package specifications.

Do not include extra operations simply because they are easy to build.

Minimize the context (with) clausesin a package specification.

Reconsider subprograms that seem to require large numbers of parameters.

Do not manipulate global data within a subprogram or package merely to limit the number of parameters.
Avoid unnecessary visibility; hide the implementation details of a program unit from its users.

Use child library units to control the visibility of parts of a subsystem interface.

Use private child packages for those declarations that should not be used outside the subsystem.

Use child library units to present different views of an entity to different clients.

Design (and redesign) interfaces after having worked out the logic of various expected clients of the
interface.

Use child packages rather than nested packages to present different views of the same abstraction.

Nest package specifications within another package specification only for grouping operations or hiding
common implementation details.

Consider using private child packagesin lieu of nesting.

Downloaded from http://www.everyspec.com

64 Ada 95 QUALITY AND STYLE

Restrict the visibility of program units as much as possible by nesting them inside package bodies (Nissen
and Wallis 1984) if you cannot use a private child package.

Minimize nesting program units inside subprograms and tasks.
Minimize the scope within which with clauses apply.

Only witnh those units directly needed.

Carefully consider encapsulation of tasks.

exceptions

For unavoidable internal errors for which no user recovery is possible, declare a single user-visible
exception. Inside the abstraction, provide away to distinguish between the different internal errors.

Do not borrow an exception name from another context.

Export (declare visibly to the user) the names of all exceptions that can be raised.

In a package, document which exceptions can be raised by each subprogram and task entry.
Do not raise exceptions for internal errors that can be avoided or corrected within the unit.

Do not raise the same exception to report different kinds of errors that are distinguishable by the user of
the unit.

Provide interrogative functions that allow the user of a unit to avoid causing exceptions to be raised.
When possible, avoid changing state information in a unit before raising an exception.

Catch and convert or handle all predefined and compiler-defined exceptions at the earliest opportunity.
Do not explicitly raise predefined or implementation-defined exceptions.

Never let an exception propagate beyond its scope.

Downloaded from http://www.everyspec.com

CHAPTERS
Programming Practices

Software is always subject to change. The need for this change, euphemistically known as “maintenance” arises
from avariety of sources. Errors need to be corrected as they are discovered. System functionality may need to be
enhanced in planned or unplanned ways. Inevitably, the requirements change over the lifetime of the system,
forcing continual system evolution. Often, these modifications are conducted long after the software was
originally written, usually by someone other than the original author.

Easy and successful modification requires that the software be readable, understandable, and structured according
to accepted practice. If a software component cannot be easily understood by a programmer who is familiar with
its intended function, that software component is not maintainable. Techniques that make code readable and
comprehensible enhance its maintainability. Previous chapters presented techniques such as consistent use of
naming conventions, clear and well-organized commentary, and proper modularization. This chapter presents
consistent and logical use of language features.

Correctness is one aspect of reliability. While style guidelines cannot enforce the use of correct algorithms, they
can suggest the use of techniques and language features known to reduce the number or likelihood of failures.
Such techniques include program construction methods that reduce the likelihood of errors or that improve
program predictability by defining behavior in the presence of errors.

51 OPTIONAL PARTSOF THE SYNTAX

Parts of the Ada syntax, while optional, can enhance the readability of the code. The guidelines given below
concern use of some of these optional features.

511 L oop Names
guideline
* Associate names with loops when they are nested (Booch 1986, 1987).
* Associate names with any loop that contains an exit statement.
example

Process_Each_Page:
loop

Process_All_The Lines_On_This_Page:
loop

exit Process_All The Lines_On_This_Page when Line_ Number = Max_Lines_On_Page;

Look_ For Sentinel Value:
loop

exit Look For Sentinel Value when Current Symbol = Sentinel;

end loop Look For Sentinel Value;

65

Downloaded from http://www.everyspec.com

66 Ada 95 QUALITY AND STYLE

end loop Process_All The Lines On_ This_Page;

exit Process_Each Page when Page Number = Maximum Pages;

end-iéop Process_Each_Page;
rationale
When you associate a name with a loop, you must include that name with the associated end for that loop
(Ada Reference Manual 1995). This helps readers find the associated end for any given loop. This is
especially true if loops are broken over screen or page boundaries. The choice of a good name for the loop

documents its purpose, reducing the need for explanatory comments. If a name for a loop is very difficult to
choose, this could indicate a need for more thought about the algorithm.

Regularly naming loops helps you follow Guideline 5.1.3. Even in the face of code changes, for example,
adding an outer or inner loop, the exit statement does not become ambiguous.

It can be difficult to think up a name for every loop; therefore, the guideline specifies nested loops. The
benefits in readability and second thought outweigh the inconvenience of naming the loops.

51.2 Block Names

guideline
* Associate names with blocks when they are nested.

example

Trip:
declare

begiﬁ- -- Trip

Arrive At _Airport:
declare

begin -- Arrive At Airport
Rent Car;
Claim Baggage;
Reserve Hotel;

end Arrive At Airport;

Visit_Customer:
declare

begin -- Visit_Customer
-- again a set of activities...
end Visit Customer;
Departure Preparation:

declare

begin -- Departure Preparation
Return_ Car;
Check_Baggage;
Wait For Flight;

end Departure Preparation;

Board Return Flight;
end Trip;

rationale

When thereis a nested block structure, it can be difficult to determine which end corresponds to which block.
Naming blocks alleviates this confusion. The choice of a good name for the block documents its purpose,
reducing the need for explanatory comments. If a name for the block is very difficult to choose, this could
indicate a need for more thought about the algorithm.

This guideline is also useful if nested blocks are broken over a screen or page boundary.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 67

It can be difficult to think up a name for each block; therefore, the guideline specifies nested blocks. The
benefits in readability and second thought outweigh the inconvenience of naming the blocks.

513 Exit Statements

guideline

* Useloop nameson all exit statements from nested |oops.
example

See the examplein Guideline 5.1.1.
rationale

An exit statement is an implicit goto. It should specify its source explicitly. When there is a nested loop
structure and an exit statement is used, it can be difficult to determine which loop is being exited. Also,
future changes that may introduce a nested loop are likely to introduce an error, with the exit accidentally
exiting from the wrong loop. Naming loops and their exits alleviates this confusion. This guideline is aso
useful if nested loops are broken over a screen or page boundary.

514 Naming End Statements

guideline
* Include the defining program unit name at the end of a package specification and body.
* Include the defining identifier at the end of atask specification and body.
* Includethe entry identifier at the end of an accept Statement.
* Include the designator at the end of a subprogram body.
* Include the defining identifier at the end of a protected unit declaration.
example

package Autopilot is
function Is_Engaged return Boolean;

procedure Engage;
procedure Disengage;

end Autopilot;

task Course_Monitor is
entry Reset (Engage : in Boolean) ;
end Course Monitor;

function Is_Engaged return Boolean is

éﬁa Is_Engaged;

procedure Engage is
éﬁa Engage;

procedure Disengage is
end Disengage;

task body Course_Monitor is

accept Reset (Engage : in Boolean) do

Downloaded from http://www.everyspec.com

68 Ada 95 QUALITY AND STYLE

end Reset;

end Course Monitor;

rationale

Repeating names on the end of these compound statements ensures consistency throughout the code. In
addition, the named ena provides a reference for the reader if the unit spans a page or screen boundary or if it
contains a nested unit.

52 PARAMETERLISTS

A subprogram or entry parameter list is the interface to the abstraction implemented by the subprogram or entry. It
isimportant that it is clear and that it is expressed in a consistent style. Careful decisions about formal parameter
naming and ordering can make the purpose of the subprogram easier to understand, which can make it easier to
use.

521 Formal Parameters

guideline
* Nameformal parameters descriptively to reduce the need for comments.
example

List_Manager.Insert (Element => New_Employee,
Into_List => Probationary Employees,
At Position => 1);

rationale

Following the variable naming guidelines (Guidelines 3.2.1 and 3.2.3) for formal parameters can make calls
to subprograms read more like regular prose, as shown in the example above, where no comments are
necessary. Descriptive names of this sort can also make the code in the body of the subprogram more clear.

522 Named Association

guideline
* Use named parameter association in calls of infrequently used subprograms or entries with many formal
parameters.

» Use named association when instantiating generics.
» Usenamed association for clarification when the actual parameter is any literal or expression.

» Use named association when supplying a nondefault value to an optional parameter.
instantiation

- Use named parameter association in calls of subprograms or entries called from less than five placesin a
single source file or with more than two formal parameters.

example
Encode Telemetry Packet (Source => Power_ Electronics,

Content => Temperature,
Value => Read Temperature_Sensor (Power Electronics),
Time => Current Time,
Sequence => Next Packet ID,
Vehicle => This Spacecraft,
Primary Module => True) ;

rationale

Calls of infrequently used subprograms or entries with many formal parameters can be difficult to understand
without referring to the subprogram or entry code. Named parameter association can make these calls more
readable.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 69

When the formal parameters have been named appropriately, it is easier to determine exactly what purpose
the subprogram serves without looking at its code. This reduces the need for named constants that exist solely
to make calls more readable. It also allows variables used as actual parameters to be given names indicating
what they are without regard to why they are being passed in a call. An actual parameter, which is an
expression rather than a variable, cannot be named otherwise.

Named association alows subprograms to have new parameters inserted with minimal ramifications to
existing calls.

notes

The judgment of when named parameter association improves readability is subjective. Certainly, simple or
familiar subprograms, such as a swap routine or a sine function, do not require the extra clarification of
named association in the procedure call.

caution

A consequence of named parameter association is that the forma parameter names may not be changed
without modifying the text of each call.

5.2.3 Default Parameters

guideline
* Provide default parametersto allow for occasional, special use of widely used subprograms or entries.
* Place default parameters at the end of the formal parameter list.
» Consider providing default values to new parameters added to an existing subprogram.
example
Annex A of the Ada Reference Manual (1995) contains many examples of this practice.
rationale

Often, the majority of uses of a subprogram or entry need the same value for a given parameter. Providing
that value, as the default for the parameter, makes the parameter optional on the majority of cals. It aso
allows the remaining calls to customize the subprogram or entry by providing different values for that
parameter.

Placing default parameters at the end of the formal parameter list allows the caller to use positiona
association on the call; otherwise, defaults are available only when named association is used.

Often during maintenance activities, you increase the functionality of a subprogram or entry. This requires
more parameters than the original form for some calls. New parameters may be required to control this new
functionality. Give the new parameters default values that specify the old functionality. Calls needing the old
functionality need not be changed; they take the defaults. Thisis true if the new parameters are added to the
end of the parameter list, or if named association is used on all calls. New calls needing the new functionality
can specify that by providing other values for the new parameters.

This enhances maintainability in that the places that use the modified routines do not themselves have to be
modified, while the previous functionality levels of the routines are allowed to be “reused.”

exceptions

Do not go overboard. If the changes in functionality are truly radical, you should be preparing a separate
routine rather than modifying an existing one. One indicator of this situation would be that it is difficult to
determine value combinations for the defaults that uniquely and naturally require the more restrictive of the
two functions. In such cases, it is better to go ahead with creation of a separate routine.

524 Mode Indication

guideline
* Show the mode indication of all procedure and entry parameters (Nissen and Wallis 1984).
* Usethe most restrictive parameter mode applicable to your application.

Downloaded from http://www.everyspec.com

70 Ada 95 QUALITY AND STYLE

example

procedure Open File (File Name : in String;
Open_Status : out Status_Codes) ;

entry Acquire (Key : in Capability;
Resource : out Tape Drive) ;

rationale

By showing the mode of parameters, you aid the reader. If you do not specify a parameter mode, the default
mode is in. Explicitly showing the mode indication of all parameters is a more assertive action than simply
taking the default mode. Anyone reviewing the code later will be more confident that you intended the
parameter mode to be in.

Use the mode that reflects the actual use of the parameter. You should avoid the tendency to make all
parameters in out mode because out mode parameters may be examined as well as updated.

exceptions

It may be necessary to consider several aternative implementations for a given abstraction. For example, a
bounded stack can be implemented as a pointer to an array. Even though an update to the object being pointed
to does not require changing the pointer value itself, you may want to consider making the mode in out to
allow changes to the implementation and to document more accurately what the operation is doing. If you
later change the implementation to a simple array, the mode will have to be in out, potentialy causing
changesto all places that the routine is called.

53 TYPES

In addition to determining the possible values for variables and subtype names, type distinctions can be very
valuable aids in developing safe, readable, and understandable code. Types clarify the structure of your data and
can limit or restrict the operations performed on that data. “Keeping types distinct has been found to be a very
powerful means of detecting logical mistakes when a program is written and to give valuable assistance whenever
the program is being subsequently maintained” (Pyle 1985). Take advantage of Ada’s strong typing capability in
the form of subtypes, derived types, task types, protected types, private types, and limited private types.

The guidelines encourage much code to be written to ensure strong typing. While it might appear that there would
be execution penalties for this amount of code, this is usualy not the case. In contrast to other conventional
languages, Ada has a less direct relationship between the amount of code that is written and the size of the
resulting executable program. Most of the strong type checking is performed at compilation time rather than
execution time, so the size of the executable code is not greatly affected.

For guidelines on specific kinds of data structures and tagged types, see Guidelines 5.4 and 9.2.1, respectively.

531 Derived Types and Subtypes

guideline
* Useexisting types as building blocks by deriving new types from them.
» Userange constraints on subtypes.

* Define new types, especially derived types, to include the largest set of possible values, including
boundary values.

» Constrain the ranges of derived types with subtypes, excluding boundary values.

» Usetype derivation rather than type extension when there are no meaningful components to add to the
type.
example

Type Table isabuilding block for the creation of new types:
type Table is

record
Count : List Size = Empty;
List : Entry List := Empty List;

end record;

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 71

type Telephone Directory is new Table;
type Department Inventory is new Table;

The following are distinct types that cannot be intermixed in operations that are not programmed explicitly to

use them both:
type Dollars is new Number;
type Cents is new Number;

Below, source Tail has avalue outside the range of Listing Paper When the line is empty. All the indices
can be mixed in expressions, aslong as the results fall within the correct subtypes:

type Columns is range First_Column - 1 .. Listing Width + 1;

subtype Listing Paper is Columns range First Column .. Listing Width;
subtype Dumb_Terminal is Columns range First Column .. Dumb_ Terminal Width;

type Line is array (Columns range <>) of Bytes;
subtype Listing Line 1is Line (Listing Paper) ;
subtype Terminal Line is Line (Dumb_Terminal) ;

Source Tail : Columns := Columns'First;
Source : Listing Line;
Destination : Terminal Line;

Destination(Destination'First .. Source_Tail - Destination'Last) :=
Source (Columns'Succ (Destination'Last) .. Source Tail);

rationale

The name of aderived type can make clear its intended use and avoid proliferation of similar type definitions.
Objects of two derived types, even though derived from the same type, cannot be mixed in operations unless
such operations are supplied explicitly or one is converted to the other explicitly. This prohibition is an
enforcement of strong typing.

Define new types, derived types, and subtypes cautiously and deliberately. The concepts of subtype and
derived type are not equivalent, but they can be used to advantage in concert. A subtype limits the range of
possible values for atype but does not define a new type.

Types can have highly constrained sets of values without eliminating useful values. Used in concert, derived
types and subtypes can eliminate many flag variables and type conversions within executable statements. This
renders the program more readable, enforces the abstraction, and allows the compiler to enforce strong typing
constraints.

Many algorithms begin or end with values just outside the normal range. If boundary values are not
compatible within subexpressions, algorithms can be needlessly complicated. The program can become
cluttered with flag variables and special cases when it could just test for zero or some other sentinel value just
outside normal range.

The type columns and the subtype Listing Paper in the example above demonstrate how to alow sentinel
values. The subtype rListing_paper could be used as the type for parameters of subprograms declared in the
specification of a package. This would restrict the range of values that could be specified by the caller.
Meanwhile, the type coiumns could be used to store such values internally to the body of the package,
allowing First _column - 1 to be used as a sentinel value. This combination of types and subtypes allows
compatibility between subtypes within subexpressions without type conversions as would happen with
derived types.

The choice between type derivation and type extension depends on what kind of changes you expect to occur
to objects in the type. In general, type derivation is a very simple form of inheritance: the derived types
inherit the structure, operations, and values of the parent type (Rationale 1995, 84.2). Although you can add
operations, you cannot augment the data structure. Y ou can derive from either scalar or composite types.

Type extension is a more powerful form of inheritance, only applied to taggea records, in which you can
augment both the type’s components and operations. When the record implements an abstraction with the
potential for reuse and/or extension, it is a good candidate for making it tagged. Similarly, if the abstraction
is a member of a family of abstractions with well-defined variable and common properties, you should
consider atagged record.

Downloaded from http://www.everyspec.com

72 Ada 95 QUALITY AND STYLE

notes

The price of the reduction in the number of independent type declarations is that subtypes and derived types
change when the base type is redefined. This trickle-down of changes is sometimes a blessing and sometimes
acurse. However, usually it isintended and beneficial.

5.3.2 Anonymous Types

guideline
* Avoid anonymous array types.

* Use anonymous array types for array variables only when no suitable type exists or can be created and
the array will not be referenced as awhole (e.g., used as a subprogram parameter).

» Use access parameters and access discriminants to guarantee that the parameter or discriminant is treated

as a constant.
example
Usel
type Buffer Index is range 1 .. 80;
type Buffer is array (Buffer Index) of Character;

Input Line : Buffer;

rather than:

Input Line : array (Buffer Index) of Character;
rationale

Although Ada allows anonymous types, they have limited usefulness and complicate program modification.
For example, except for arrays, a variable of anonymous type can never be used as an actual parameter
because it is not possible to define a formal parameter of the same type. Even though this may not be a
limitation initially, it precludes a modification in which a piece of code is changed to a subprogram. Although
you can declare the anonymous array to be aliased, you cannot use this access value as an actual parameter in
a subprogram because the subprogram’s formal parameter declaration requires a type mark. Also, two
variables declared using the same anonymous type declaration are actually of different types.

Even though the implicit conversion of array types during parameter passing is supported in Ada, it is difficult
to justify not using the type of the parameter. In most situations, the type of the parameter is visible and easily
substituted in place of an anonymous array type. The use of an anonymous array type implies that the array is
only being used as a convenient way to implement a collection of values. It is misleading to use an
anonymous type, and then treat the variable as an object.

When you use an access parameter or access discriminant, the anonymous type is essentially declared inside
the subprogram or object itself (Rationale 1995, §3.7.1). Thus, you have no way of declaring another object
of the same type, and the object is treated as a constant. In the case of a self-referential data structure (see
Guideline 5.4.6), you need the access parameter to be able to manipulate the data the discriminant accesses
(Rationale 1995, §3.7.1).

notes
For anonymous task types, see Guideline 6.1.4.
exceptions

If you are creating a unique table, for example, the periodic table of the elements, consider using an
anonymous array type.

5.3.3 Private Types

guideline
» Derivefrom controlled typesin preference to using limited private types.
* Uselimited private typesin preference to private types.
* Useprivate typesin preference to nonprivate types.
» Explicitly export needed operations rather than easing restrictions.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 73

example

with Ada.Finalization;
package Packet Telemetry is

type Frame Header is new Ada.Finalization.Controlled with private;
type Frame Data is private;
type Frame Codes is (Main Bus_Voltage, Transmitter 1 Power) ;

private
type Frame Header is new Ada.Finalization.Controlled with
record
end record;

-- override adjustment and finalization to get correct assignment semantics
procedure Adjust (Object : in out Frame Header) ;
procedure Finalize (Object : in out Frame Header) ;

type Frame Data is
record

end record;

end Packet Telemetry;

rationale

Limited private types and private types support abstraction and information hiding better than nonprivate
types. The more restricted the type, the better information hiding is served. This, in turn, allows the
implementation to change without affecting the rest of the program. While there are many valid reasons to
export types, it is better to try the preferred route first, loosening the restrictions only as necessary. If it is
necessary for a user of the package to use a few of the restricted operations, it is better to export the
operations explicitly and individually via exported subprograms than to drop a level of restriction. This
practice retains the restrictions on other operations.

Limited private types have the most restricted set of operations available to users of a package. Of the types
that must be made available to users of a package, as many as possible should be derived from the controlled
types or limited private. Controlled types give you the ability to adjust assignment and to finalize values, so
you no longer need to create limited private types to guarantee a client that assignment and equality obey
deep copy/comparison semantics. Therefore, it is possible to export a slightly less restrictive type (i.e., private
type that extends ada.Finalization.Controlled) that has an adjustable assignment operator and overridable
equality operator. See also Guideline 5.4.5.

The operations available to limited private types are membership tests, selected components, components for
the selections of any discriminant, qualification and explicit conversion, and attributes 'sase and 'size.
Objects of a limited private type also have the attribute 'constrainea if there are discriminants. None of
these operations allows the user of the package to manipulate objects in away that depends on the structure of
the type.

notes

The predefined packages pirect 10 and sequential 10 dO not accept limited private types as generic
parameters. This restriction should be considered when 1/O operations are needed for atype.

See Guideline 8.3.3 for adiscussion of the use of private and limited private types in generic units.

534 Subprogram Access Types

guideline
* Useaccess-to-subprogram types for indirect access to subprograms.

* Wherever possible, use abstract tagged types and dispatching rather than access-to-subprogram types to
implement dynamic selection and invocation of subprograms.

example
The following example is taken from the Rationale (1995, §3.7.2):

Downloaded from http://www.everyspec.com

74 Ada 95 QUALITY AND STYLE

generic
type Float Type is digits <>;
package Generic_ Integration is
type Integrand is access function (X : Float Type) return Float Type;

function Integrate (F : Integrand;
From : Float Type;
To : Float Type;
Accuracy : Float Type := 10.0*Float Type'Model Epsilon)

return Float Type;
end Generic Integration;

with Generic Integration;

procedure Try Estimate (External Data : in Data_Type;
Lower : in Float;
Upper : in Float;
Answer : out Float) is

-- external data set by other means

function Residue (X : Float) return Float is
Result : Float;

begin -- Residue
-- compute function value dependent upon external data
return Result;

end Residue;

package Float Integration is
new Generic_ Integration (Float Type => Float);

use Float Integration;

begin -- Try Estimate
Answer := Integrate (F => Residue'Access,
From => Lower,
To => Upper) ;

end Try Estimate;
rationale

Access-to-subprogram types allow you to create data structures that contain subprogram references. There are
many uses for this feature, for instance, implementing state machines, call backs in the X Window System,
iterators (the operation to be applied to each element of a list), and numerical algorithms (e.g., integration
function) (Rationale 1995, §3.7.2).

You can achieve the same effect as access-to-subprogram types for dynamic selection by using abstract
tagged types. You declare an abstract type with one abstract operation and then use an access-to-class-wide
type to get the dispatching effect. This technique provides greater flexibility and type safety than
access-to-subprogram types (Ada Reference Manual 1995, §3.10.2).

Access-to-subprogram types are useful in implementing dynamic selection. References to the subprograms
can be stored directly in the data structure. In a finite state machine, for example, a single data structure can
describe the action to be taken on state transitions. Strong type checking is maintained because Ada 95
requires that the designated subprogram has the same parameter/result profile as the one specified in the
subprogram access type.

See also Guideline 7.3.2.

54 DATA STRUCTURES

The data structuring capabilities of Ada are a powerful resource; therefore, use them to model the data as closely
as possible. It is possible to group logically related data and let the language control the abstraction and operations
on the data rather than requiring the programmer or maintainer to do so. Data can also be organized in a building
block fashion. In addition to showing how a data structure is organized (and possibly giving the reader an
indication as to why it was organized that way), creating the data structure from smaller components allows those
components to be reused. Using the features that Ada provides can increase the maintainability of your code.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 75

541 Discriminated Records

guideline

* When declaring a discriminant, use as constrained a subtype as possible (i.e., subtype with as specific a
range constraint as possible).

» Useadiscriminated record rather than a constrained array to represent an array whose actual values are
unconstrained.

example
An object of typenvame Holder 1 could potentialy hold a string whose length iSvatural 'Last:

type Number List is array (Integer range <>) of Integer;

type Number Holder 1 (Current Length : Natural := 0) is
record
Numbers : Number List (1 .. Current_Length);

end record;

An object of typename_Holder 2 imposesamore reasonable restriction on the length of its string component:

type Number List is array (Integer range <>) of Integer;
subtype Max Numbers is Natural range 0 .. 42;
type Number Holder 2 (Current Length : Max Numbers := 0) is
record
Numbers : Number List (1 .. Current_Length);

end record;
rationale

When you use the discriminant to constrain an array inside a discriminated record, the larger the range of
values the discriminant can assume, the more space an object of the type might require. Although your

program may compile and link, it will fail at execution when the run-time system is unable to create an object
of the potential size required.

The discriminated record captures the intent of an array whose bounds may vary at run-time. A simple
constrained array definition (e.g., type Number List is array (1 .. 42) of Integer;) 0O€S not capture
the intent that there are at most 42 possible numbersin the list.

54.2 Heter ogeneous Related Data

guideline
» Userecordsto group heterogeneous but related data.
* Consider records to map to 1/O device data.
example
type Propulsion Method is (Sail, Diesel, Nuclear);

type Craft is

record
Name : Common_ Name;
Plant : Propulsion Method;
Length : Feet;
Beam : Feet;
Draft : Feet;

end record;

type Fleet is array (1 .. Fleet Size) of Craft;
rationale

You help the maintainer find all of the related data by gathering it into the same construct, simplifying any
modifications that apply to all rather than part. This, in turn, increases reliability. Neither you nor an unknown
maintainer isliable to forget to deal with all the pieces of information in the executable statements, especially
if updates are done with aggregate assignments whenever possible.

Theidea is to put the information a maintainer needs to know where it can be found with the minimum of
effort. For example, if all information relating to a given cratt isin the same place, the relationship is clear
both in the declarations and especialy in the code accessing and updating that information. But, if it is
scattered among several data structures, it is less obvious that this is an intended relationship as opposed to a

Downloaded from http://www.everyspec.com

76 Ada 95 QUALITY AND STYLE

coincidental one. In the latter case, the declarations may be grouped together to imply intent, but it may not
be possible to group the accessing and updating code that way. Ensuring the use of the same index to access
the corresponding element in each of several parallel arraysis difficult if the accesses are at all scattered.

If the application must interface directly to hardware, the use of records, especially in conjunction with record
representation clauses, could be useful to map onto the layout of the hardware in question.

notes

It may seem desirable to store heterogeneous data in parallel arrays in what amounts to a FORTRAN-like
style. This style is an artifact of FORTRAN’s data structuring limitations. FORTRAN only has facilities for
constructing homogeneous arrays.

exceptions

If the application must interface directly to hardware, and the hardware requires that information be
distributed among various locations, then it may not be possible to use records.

54.3 Heter ogeneous Polymor phic Data

guideline
* Useaccess types to class-wide types to implement heterogeneous polymorphic data structures.

* Usetagged types and type extension rather than variant records (in combination with enumeration types
and case statements).

example

An array of type Employee List Can contain pointers to part-time and full-time employees (and possibly other
kinds of employeesin the future):

package Personnel is
type Employee 1is tagged limited private;
type Reference is access all Employee'Class;
private
end Personnel;

with Personnel;
package Part_ Time_Staff is
type Part Time Employee is new Personnel.Employee with
record

end record;
end Part Time Staff;

with Personnel;
package Full Time_Staff is
type Full Time Employee is new Personnel.Employee with
record
end-fécord;
end-ﬁﬁlliTimeistaff;

type Employee List is array (Positive range <>) of Personnel.Reference;

Current Employees : Employee List (1..10);

Current Employees (1)
Current Employees (2)

new Full Time Staff.Full Time Employee;
new Part Time Staff.Part Time Employee;

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 77

rationale

Polymorphism is a means of factoring out the differences among a collection of abstractions so that programs
may be written in terms of the common properties. Polymorphism allows the different objects in a
heterogeneous data structure to be treated the same way, based on dispatching operations defined on the root
tagged type. This eliminates the need for case statements to select the processing required for each specific
type. Guideline 5.6.3 discusses the maintenance impact of using case statements.

Enumeration types, variant records, and case statements are hard to maintain because the expertise on a given
variant of the data type tends to be spread all over the program. When you create a tagged type hierarchy
(tagged types and type extension), you can avoid the variant records, case statement, and single enumeration
type that only supports the variant record discriminant. Moreover, you localize the “expertise” about the
variant within the data structure by having all the corresponding primitives for a single operation call
common “ operation-specific” code.

See also Guideline 9.2.1 for a more detailed discussion of tagged types.
exceptions

In some instances, you may want to use a variant record approach to organize modularity around operations.
For graphic output, for example, you may find it more maintainable to use variant records. You must make
the tradeoff of whether adding a new operation will be less work than adding a new variant.

544 Nested Records

guideline
* Record structures should not always be flat. Factor out common parts.
» For alargerecord structure, group related components into smaller subrecords.
* For nested records, pick element names that read well when inner elements are referenced.
» Consider using type extension to organize large data structures.
example

type Coordinate is
record
Row : Local Float;
Column : Local Float;
end record;

type Window is
record
Top_Left : Coordinate;
Bottom Right : Coordinate;
end record;

rationale

You can make complex data structures understandable and comprehensible by composing them of familiar
building blocks. This technique works especially well for large record types with parts that fall into natural
groupings. The components factored into separately declared records, based on a common quality or purpose,
correspond to a lower level of abstraction than that represented by the larger record.

When designing a complex data structure, you must consider whether type composition or type extension is
the best suited technique. Type composition refers to creating a record component whose type is itself a
record. You will often need a hybrid of these techniques, that is, some components you include through type
composition and others you create through type extension. Type extension may provide a cleaner design if the
“intermediate” records are al instances of the same abstraction family. See also Guidelines 5.4.2 and 9.2.1.

notes
A carefully chosen name for the component of the larger record that is used to select the smaller enhances
readability, for example:

if Windowl.Bottom Right.Row > Window2.Top Left.Row then . . .

Downloaded from http://www.everyspec.com

78 Ada 95 QUALITY AND STYLE

545 Dynamic Data

guideline
» Differentiate between static and dynamic data. Use dynamically allocated objects with caution.

* Use dynamically allocated data structures only when it iS necessary to create and destroy them
dynamically or to be able to reference them by different names.

» Do not drop pointers to undeallocated objects.

» Do not leave dangling references to deallocated objects.

» Initialize al access variables and components within a record.

» Do not rely on memory deallocation.

» Deadllocate explicitly.

» Uselength clausesto specify total allocation size.

. Provide handlersfor storage Error.

* Usecontrolled types to implement private types that manipul ate dynamic data.

* Avoid unconstrained record objects unless your run-time environment reliably reclaims dynamic heap
storage.

» Unless your run-time environment reliably reclaims dynamic heap storage, declare the following items
only in the outermost, unnested declarative part of either a library package, a main subprogram, or a
permanent task:

- Accesstypes

- Constrained composite objects with nonstatic bounds

- Objects of an unconstrained composite type other than unconstrained records

- Composite objects large enough (at compile time) for the compiler to allocate implicitly on the heap

» Unlessyour run-time environment reliably reclaims dynamic heap storage or you are creating permanent,
dynamically allocated tasks, avoid declaring tasks in the following situations:

- Unconstrained array subtypes whose components are tasks

- Discriminated record subtypes containing a component that is an array of tasks, where the array size
depends on the value of the discriminant

- Any declarative region other than the outermost, unnested declarative part of either a library
package or a main subprogram

- Arrays of tasksthat are not statically constrained

example
These lines show how a dangling reference might be created:
Pl := new Object;
P2 := P1;

Unchecked Object Deallocation (P2);

Thisline can raise an exception due to referencing the deallocated object:
X := Pl.all;

In the following three lines, if there is no intervening assignment of the value of p1 to any other pointer, the
object created on the first line is no longer accessible after the third line. The only pointer to the allocated
object has been dropped:

Pl := new Object;
Pl := P2;

The following code shows an example of using Finalize to make sure that when an object is finalized (i.e.,
goes out of scope), the dynamically allocated elements are chained on afreelist:

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 79

with Ada.Finalization;
package List is
type Object is private;
function "=" (Left, Right : Object) return Boolean; -- element-by-element comparison
... -- Operations go here
private
type Handle is access List.Object;
type Object is new Ada.Finalization.Controlled with
record
Next : List.Handle;
... -- Useful information go here
end record;
procedure Adjust (L : in out List.Object);
procedure Finalize (L : in out List.Object);
end List;

package body List is
Free List : List.Handle;

procedure Adjust (L : in out List.Object) is
begin

L := Deep Copy (L);
end Adjust;
procedure Finalize (L : in out List.Object) is
begin

-- Chain L to Free_List
end Finalize;

end List;
rationale

See aso Guidelines 5.9.1, 5.9.2, 6.1.5, and 6.3.2 for variations on these problems. A dynamically allocated
object is an object created by the execution of an allocator (new). Allocated objects referenced by access
variables allow you to generate aliases, which are multiple references to the same object. Anomalous
behavior can arise when you reference a deallocated object by another name. This is called a dangling
reference. Totally disassociating a still-valid object from al names is caled dropping a pointer. A
dynamically allocated object that is not associated with a name cannot be referenced or explicitly deall ocated.

A dropped pointer depends on an implicit memory manager for reclamation of space. It also raises questions
for the reader as to whether the loss of access to the object was intended or accidental.

An Ada environment is not required to provide deallocation of dynamically allocated objects. If provided, it
may be provided implicitly (objects are deallocated when their access type goes out of scope), explicitly
(objects are deallocated when ada . unchecked Deallocation iScalled), or both. To increase the likelihood of
the storage space being reclaimed, it is best to call ada.Unchecked Deallocation explicitly for each
dynamically created object when you are finished using it. Calls t0 ada.Unchecked Deallocation alSO
document a deliberate decision to abandon an aobject, making the code easier to read and understand. To be
absolutely certain that space is reclaimed and reused, manage your own “free list.” Keep track of which
objects you are finished with, and reuse them instead of dynamically allocating new objects | ater.

The dangers of dangling references are that you may attempt to use them, thereby accessing memory that you
have released to the memory manager and that may have been subsequently allocated for another purpose in
another part of your program. When you read from such memory, unexpected errors may occur because the
other part of your program may have previously written totally unrelated data there. Even worse, when you
write to such memory you can cause errors in an apparently unrelated part of the code by changing values of
variables dynamically allocated by that code. This type of error can be very difficult to find. Finaly, such
errors may be triggered in parts of your environment that you did not write, for example, in the memory
management system itself, which may dynamically allocate memory to keep records about your dynamically
allocated memory.

Keep in mind that any unreset component of a record or array can also be a dangling reference or carry a bit
pattern representing inconsistent data. Components of an access type are always initialized by default to nui1;
however, you should not rely on this default initialization. To enhance readability and maintainability, you
should include explicit initialization.

Whenever you use dynamic allocation, it is possible to run out of space. Ada provides a facility (a length
clause) for requesting the size of the pool of allocation space at compile time. Anticipate that you can still run
out at run time. Prepare handlers for the exception storage Error, and consider carefully what aternatives
you may be able to include in the program for each such situation.

Downloaded from http://www.everyspec.com

80 Ada 95 QUALITY AND STYLE

Thereis aschool of thought that dictates avoidance of all dynamic allocation. It islargely based on the fear of
running out of memory during execution. Facilities, such as length clauses and exception handlers for
Storage_Error, provide explicit control over memory partitioning and error recovery, making this fear
unfounded.

When implementing a complex data structure (tree, list, sparse matrices, etc.), you often use access types. If
you are not careful, you can consume all your storage with these dynamically allocated objects. You could
export a deallocate operation, but it is impossible to ensure that it is called at the proper places; you are, in
effect, trusting the clients. If you derive from controlled types (see Guidelines 5.3.3, 5.9.6, 8.3.1, 8.3.3, and
9.2.3 for more information), you can use finalization to deal with deallocation of dynamic data, thus avoiding
storage exhaustion. User-defined storage pools give better control over the allocation policy.

A related but distinct issue is that of shared versus copy semantics: even if the data structure is implemented
using access types, you do not necessarily want shared semantics. In some instances you really want :- to
create a copy, not a new reference, and you really want - to compare the contents, not the reference. You
should implement your structure as a controlled type. If you want copy semantics, you can redefine adjust to
perform a deep copy and - to perform a comparison on the contents. Y ou can also redefine Finalize to make
sure that when an object is finalized (i.e., goes out of scope) the dynamically allocated elements are chained
on afreelist (or deallocated by ada.unchecked Deallocation).

The implicit use of dynamic (heap) storage by an Ada program during execution poses significant risks that
software failures may occur. An Ada run-time environment may use implicit dynamic (heap) storage in
association with composite objects, dynamically created tasks, and catenation. Often, the algorithms used to
manage the dynamic allocation and reclamation of heap storage cause fragmentation or leakage, which can
lead to storage exhaustion. It is usually very difficult or impossible to recover from storage exhaustion or
Storage_Error Without reloading and restarting the Ada program. It would be very restrictive to avoid all
uses of implicit allocation. On the other hand, preventing both explicit and implicit deallocation significantly
reduces the risks of fragmentation and leakage without overly restricting your use of composite objects,
access values, task objects, and catenation.

exceptions

If a composite object is large enough to be allocated on the heap, you can still declareit asan in Or in out
formal parameter. The guideline is meant to discourage declaring the object in an object declaration, a formal
out parameter, or the value returned by a function.

Y ou should monitor the leakage and/or fragmentation from the heap. If they become steady-state and do not
continually increase during program or partition execution, you can use the constructs described in the
guidelines.

5.4.6 Aliased Objects

guideline
* Minimize the use of aliased variables.
» Useadlasing for statically created, ragged arrays (Rationale 1995, §3.7.1).

* Use diasing to refer to part of a data structure when you want to hide the internal connections and
bookkeeping information.

example

package Message Services is
type Message Code Type is range 0 .. 100;

subtype Message is String;

function Get Message (Message Code: Message_Code_ Type)
return Message;

pragma Inline (Get Message) ;
end Messageiservices;

package body Message Services is
type Message Handle is access constant Message;

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 81

Message 0 : aliased constant Message := "OK";
Message 1 : aliased constant Message := "Up";
Message 2 : aliased constant Message : "Shutdown" ;
Message 3 : aliased constant Message := "Shutup";

type Message Table Type is array (Message Code Type) of Message Handle;

Message_Table : Message_Table_ Type :=
(0 => Message 0'Access,
1l => Message_ 1'Access,
2 => Message_ 2'Access,
3 => Message_ 3'Access,
-- etc.
)i

function Get_ Message (Message_Code : Message_Code_Type)
return Message is
begin
return Message_Table (Message_Code) .all;
end Get Message;
end Messageiservices;

The following code fragment shows a use of aliased objects, using the attribute 'access to implement a
generic component that manages hashed collections of objects:

generic

type Hash Index is mod <>;

type Object is tagged private;

type Handle is access all Object;

with function Hash (The_ Object : in Object) return Hash Index;
package Collection is

function Insert (Object : in Collection.Object) return Collection.Handle;
function Find (Object : in Collection.Object) return Collection.Handle;

Object_Not_Found : exception;
pri&éée

type Cell;

type Access_Cell is access Cell;
end Collection;
package body Collection is

type Cell is

record
Value : aliased Collection.Object;
Link : Access_Cell;

end record;

type Table Type is array (Hash Index) of Access Cell;

Table : Table Type;

-- Go through the collision chain and return an access to the useful data.
function Find (Object : in Collection.Object;
Index : in Hash Index) return Handle is
Current : Access_Cell := Table (Index);
begin
while Current /= null loop
if Current.Value = Object then
return Current.Value'Access;

else
Current := Current.Link;
end if;
end loop;
raise Object_Not_ Found;
end Find;
-- The exported one
function Find (Object : in Collection.Object) return Collection.Handle is
Index : constant Hash Index := Hash (Object);
begin
return Find (Object, Index);
end Find;

end Collection;

Downloaded from http://www.everyspec.com

82 Ada 95 QUALITY AND STYLE

rationale

Aliasing alows the programmer to have indirect access to declared objects. Because you can update aliased
objects through more than one path, you must exercise caution to avoid unintended updates. When you
restrict the aliased objects to being constant, you avoid having the object unintentionally modified. In the
example above, the individual message objects are aliased constant message strings so their values cannot be
changed. The ragged array is then initialized with references to each of these constant strings.

Aliasing allows you to manipulate objects using indirection while avoiding dynamic allocation. For example,
you can insert an object onto a linked list without dynamically allocating the space for that object (Rationale
1995, 83.7.1).

Another use of aliasing isin alinked data structure in which you try to hide the enclosing container. Thisis
essentialy the inverse of a self-referential data structure (see Guideline 5.4.7). If a package manages some
data using a linked data structure, you may only want to export access values that denote the “useful” data.
You can use an access-to-object to return an access to the useful data, excluding the pointers used to chain
objects.

547 Access Discriminants

guideline

e Use access discriminants to create self-referential data structures, i.e., a data structure one of whose
components points to the enclosing structure.

example

See the examples in Guidelines 8.3.6 (using access discriminants to build an iterator) and 9.5.1 (using access
discriminants in multiple inheritance).

rationale

The access discriminant is essentially a pointer of an anonymous type being used as a discriminant. Because
the access discriminant is of an anonymous access type, you cannot declare other objects of the type. Thus,
once you initialize the discriminant, you create a “permanent” (for the lifetime of the object) association
between the discriminant and the object it accesses. When you create a self-referential structure, that is, a
component of the structure isinitialized to point to the enclosing object, the “constant” behavior of the access
discriminant provides the right behavior to help you maintain the integrity of the structure.

See also Rationale (1995, 84.6.3) for a discussion of access discriminants to achieve multiple views of an
object.

See also Guideline 6.1.3 for an example of an access discriminant for atask type.

54.8 Modular Types

guideline

* Use modular types rather than Boolean arrays when you create data structures that need bit-wise
operations, such as and and or.

example

with Interfaces;
procedure Main is

type Unsigned Byte is mod 255;
X : Unsigned Byte;
Y : Unsigned Byte;
Z : Unsigned Byte;

X1 : Interfaces.Unsigned 16;

begin -- Main
Z := X or Y; -- does not cause overflow
-- show example of left shift
X1l := 16#FFFF#;
for Counter in 1 .. 16 loop
X1 := Interfaces.Shift Left (Value => X1, Amount => 1);
end loop;

end Main;

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 83

rationale
Modular types are preferred when the number of bits is known to be fewer than the number of bitsin a word

and/or performance is a serious concern. Boolean arrays are appropriate when the number of bits is not
particularly known in advance and performance is not a serious issue. See also Guideline 10.6.3.

55 EXPRESSIONS

Properly coded expressions can enhance the readability and understandability of a program. Poorly coded
expressions can turn a program into a maintainer’s nightmare.

55.1 Range Values

guideline
* Use 'rirst OF 'Last instead of numeric literals to represent the first or last values of arange.
* Use 'range Or the subtype name of therangeinstead of 'First .. 'Last.
example
type Temperature is range All Time_Low .. All Time_ High;
type Weather Stations is range 1 .. Max Statioms;
Current Temperature : Temperature := 60;
Offset : Temperature;

for I in Weather_ Stations loop

Offset := Current Temperature - Temperature'First;
end-iéop;
rationale
In the example above, it is better to use weather Stations in the for loop than to use
Weather Stations'First .. Weather Stations'Last OF 1 .. Max Stations becauseitis clearer, less error-

prone, and less dependent on the definition of the type weather stations. Similarly, it is better to use
Temperature'First iNthe offset calculation thanto use a11 Time 1ow because the code will still be correct if
the definition of the subtype Temperature is changed. This enhances program reliability.

caution

When you implicitly specify ranges and attributes like this, be careful that you use the correct subtype name.
It is easy to refer to avery large range without realizing it. For example, given the declarations:

type Large Range is new Integer;
subtype Small Range is Large Range range 1 .. 10;

type Large Array is array (Large Range) of Integer;
type Small Array is array (Small Range) of Integer;

then the first declaration below works fine, but the second one is probably an accident and raises an exception
on most machines because it is requesting a huge array (indexed from the smallest integer to the largest one):

Array 1 : Small Array;
Array 2 : Large Array;

5.5.2 Array Attributes

guideline
* Usearray attributes 'rirst, 'Last, OF 'Length instead of numeric literals for accessing arrays.
* Usethe 'range of the array instead of the name of the index subtype to express a range.

* Use 'rangeinstead of 'rirst .. 'Last tO expressarange.
example
subtype Name String is String (1 .. Name_ Length) ;

File_Path : Name_String := (others => ' ');

Downloaded from http://www.everyspec.com

84 Ada 95 QUALITY AND STYLE

for I in File Path'Range loop
end-iéop;
rationale

In the example above, it is better t0 use Name string'Range in the for l0op than to USE Name string Size,
Name String'First .. Name String'Last, OF 1 .. 30 because it is clearer, less error-prone, and less
dependent on the definitions of Name string and Name string size. If Name string iS changed to have a
different index type or if the bounds of the array are changed, this will still work correctly. This enhances
program reliability.

55.3 Parenthetical Expressions

guideline
* Use parentheses to specify the order of subexpression evaluation to clarify expressions (NASA 1987).

* Use parentheses to specify the order of evaluation for subexpressions whose correctness depends on left
to right evaluation.

example
(1.5 * X**2) /A - (6.5*X + 47.0)
2*T + 4*Y + 8*Z + C

rationale

The Adarules of operator precedence are defined in the Ada Reference Manual (1995, §4.5) and follow the
same commonly accepted precedence of algebraic operators. The strong typing facility in Ada combined with
the common precedence rules make many parentheses unnecessary. However, when an uncommon
combination of operators occurs, it may be helpful to add parentheses even when the precedence rules apply.
The expression:

5 + ((Y ** 3) mod 10)
is clearer, and equivalent to:

5 + Y**3 mod 10

The rules of evaluation do specify left to right evaluation for operators with the same precedence level.
However, it is the most commonly overlooked rule of evaluation when checking expressions for correctness.

554 Positive Forms of Logic

guideline
* Avoid names and constructs that rely on the use of negatives.
» Choose names of flags so they represent states that can be used in positive form.
example
Use:
if Operator Missing then
rather than either:
if not Operator_ Found then
or:
if not Operator Missing then
rationale

Relational expressions can be more readable and understandable when stated in a positive form. As an aid in
choosing the name, consider that the most frequently used branch in a conditional construct should be
encountered first.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 85

exceptions

There are cases in which the negative form is unavoidable. If the relational expression better reflects what is
going on in the code, then inverting the test to adhere to this guideline is not recommended.

555 Short Circuit Formsof the Logical Operators

guideline

* Useshort-circuit forms of the logical operators to specify the order of conditions when the failure of one
condition means that the other condition will raise an exception.

example
Use:

if Y /= 0 or else (X/Y) /= 10 then

or:

if Y /= 0 then
if (X/Y) /= 10 then

rather than either:

if Y /= 0 and (X/Y) /= 10 then
or:

if (X/Y) /= 10 then

to avoid Constraint Error.
Use:
if Target /= null and then Target.Distance < Threshold then

rather than:
if Target.Distance < Threshold then
to avoid referencing afield in a nonexistent object.
rationale

The use of short-circuit control forms prevents a class of data-dependent errors or exceptions that can occur as
a result of expression evaluation. The short-circuit forms guarantee an order of evaluation and an exit from
the sequence of relational expressions as soon as the expression’s result can be determined.

In the absence of short-circuit forms, Ada does not provide a guarantee of the order of expression evaluation,
nor does the language guarantee that evaluation of arelational expression is abandoned when it becomes clear
that it evaluates to ralse (for and) or True (for or).

notes

If it is important that all parts of a given expression always be evaluated, the expression probably violates
Guideline 4.1.4, which limits side-effects in functions.

55.6 Accuracy of Operations With Real Operands

guideline
* Use<-and >=inrelationa expressionswith real operands instead of -.
example
Current Temperature : Temperature := 0.0
Temperature Increment : Temperature := 1.0 / 3.0
Maximum_ Temperature : constant = 100.0
loop

Current Temperature :=
Current Temperature + Temperature Increment;

exit when Current Temperature >= Maximum Temperature;

end-iéop;

Downloaded from http://www.everyspec.com

86 Ada 95 QUALITY AND STYLE

rationale

Fixed- and floating-point values, even if derived from similar expressions, may not be exactly equal. The
imprecise, finite representations of real numbers in hardware always have round-off errors so that any
variation in the construction path or history of two real numbers has the potential for resulting in different
numbers, even when the paths or histories are mathematically equivalent.

The Ada definition of model intervals also means that the use of <= is more portable than either < or -.
notes

Floating-point arithmetic istreated in Guideline 7.2.7.
exceptions

If your application must test for an exact value of a real number (e.g., testing the precision of the arithmetic
on a certain machine), then the - would have to be used. But never use - on real operands as a condition to
exit aloop.

5.6 STATEMENTS

Careless or convoluted use of statements can make a program hard to read and maintain even if its global structure
iswell organized. Y ou should strive for simple and consistent use of statements to achieve clarity of local program
structure. Some of the guidelines in this section counsel use or avoidance of particular statements. As pointed out
in the individual guidelines, rigid adherence to those guidelines would be excessive, but experience has shown
that they generally lead to code with improved reliability and maintainability.

5.6.1 Nesting

guideline
* Minimize the depth of nested expressions (Nissen and Wallis 1984).
* Minimize the depth of nested control structures (Nissen and Wallis 1984).
* Try using simplification heuristics (see the following Notes).
instantiation
- Do not nest expressions or control structures beyond a nesting level of five.
example
The following section of code:
if not Condition 1 then
if Condition 2 then
Action A;
else -- not Condition 2
Action B; -
end if;
else -- Condition 1
Action C; -

end if;

can be rewritten more clearly and with less nesting as:

if Condition 1 then
Action Cj;

elsif Condition_2 then
Action_ A;

else -- not (Condition_ 1 or Condition_2)
Action B;
end if;

rationale

Deeply nested structures are confusing, difficult to understand, and difficult to maintain. The problem liesin
the difficulty of determining what part of a program is contained at any given level. For expressions, this is
important in achieving the correct placement of balanced grouping symbols and in achieving the desired

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 87

operator precedence. For control structures, the question involves what part is controlled. Specificaly, is a
given statement at the proper level of nesting, that is, is it too deeply or too shallowly nested, or is the given
statement associated with the proper choice, for example, for if or case statements? Indentation helps, but it
is not a panacea. Visually inspecting alignment of indented code (mainly intermediate levels) is an uncertain
job at best. To minimize the complexity of the code, keep the maximum number of nesting levels between
three and five.

notes
Ask yourself the following questions to help you simplify the code:
- Can some part of the expression be put into a constant or variable?

- Does some part of the lower nested control structures represent a significant and, perhaps, reusable
computation that | can factor into a subprogram?

- Can| convert these nested i £ statementsinto a case Statement?
- Amlusing else if wherel could beusing e1sif?
- Can| reorder the conditional expressions controlling this nested structure?
- Isthere adifferent design that would be simpler?
exceptions

If deep nesting is required frequently, there may be overall design decisions for the code that should be
changed. Some algorithms require deeply nested loops and segments controlled by conditional branches.
Their continued use can be ascribed to their efficiency, familiarity, and time-proven utility. When nesting is
required, proceed cautiously and take special care with the choice of identifiers and loop and block names.

5.6.2 Slices
guideline
» Usedlicesrather than aloop to copy part of an array.
example
First : constant Index := Index'First;
Second : constant Index := Index'Succ (First);
Third : constant Index := Index'Succ (Second) ;

type Vector is array (Index range <>) of Element;

subtype Column Vector is Vector (Index);

type Square Matrix is array (Index) of Column Vector;
subtype Small Range 1is Index range First .. Third;
subtype Diagonals is Vector (Small Range) ;

type Tri Diagonal is array (Index) of Diagonals;
Markov_Probabilities : Square_ Matrix;

Diagonal Data : Tri Diagonal;

-- Remove diagonal and off diagonal elements.

Diagonal Data(Index'First) (First) := Null Value;
Diagonal Data(Index'First) (Second .. Third) :=

Markov_ Probabilities (Index'First) (First .. Second);
for I in Second .. Index'Pred(Index'Last) loop

Diagonal_Data(I) :=
Markov_Probabilities(I) (Index'Pred(I) .. Index'Succ(I));

end loop;
Diagonal_Data(Index'Last) (First .. Second) :=

Markov_ Probabilities (Index'Last) (Index'Pred(Index'Last) .. Index'Last);
Diagonal Data(Index'Last) (Third) := Null Value;

rationale

An assignment statement with slices is simpler and clearer than a loop and helps the reader see the intended
action. See also Guideline 10.5.7 regarding possible performance issues of slice assignments versus |oops.

Downloaded from http://www.everyspec.com

88 Ada 95 QUALITY AND STYLE

5.6.3 Case Statements

guideline
* Minimize the use of an others choicein a case Statement.
* Do not use ranges of enumeration literalSin case statements.
* Usecase statements rather than if/e1sif Statements, wherever possible.
* Usetype extension and dispatching rather than case statements if, possible.

example
type Color is (Red, Green, Blue, Purple);
Car Color : Color := Red;

case Car_Color is

when Red .. Blue =>
when Purple => ...
end case; -- Car_ Color

Now consider achangein the type:
type Color is (Red, Yellow, Green, Blue, Purple);

This change may have an unnoticed and undesired effect in the case statement. If the choices had been
enumerated explicitly, 8s when Red | Green | Blue =»> instead Of when Red .. Blue =», then the case
statement would not have compiled. This would have forced the maintainer to make a conscious decision
about what to do in the case of vel1ow.

In the following example, assume that a menu has been posted, and the user is expected to enter one of the
four choices. Assume that user choice IS declared as a character and thal Terminal 10.get handles errors
in user input. The less readable alternative with the 1 £/e1s1 £ statement is shown after the case statement:

Do_Menu_Choices_1:
loop

case User_Choice is
when 'A' => Item := Terminal IO.Get ("Item to add");
when 'D' => Item := Terminal IO.Get ("Item to delete");

when 'M!' => Item := Terminal IO.Get ("Item to modify");
when 'Q' => exit Do_Menu Choices_1;
when others => -- error has already been signaled to user
null;
end case;

end loop Do_Menu_Choices_1;

Do_Menu_Choices_2:
loop

if User Choice = 'A' then
Item := Terminal IO.Get ("Item to add");

elsif User_ Choice = 'D' then
Item := Terminal IO.Get ("Item to delete");

elsif User_ Choice = 'M' then
Item := Terminal IO.Get ("Item to modify");

elsif User Choice = 'Q' then
exit Do_Menu Choices_2;

end if;
end loop Do_Menu_Choices_2;

rationale

All possible values for an object should be known and should be assigned specific actions. Use of an others
clause may prevent the devel oper from carefully considering the actions for each value. A compiler warns the
user about omitted valuesif an others clause is not used.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 89

Y ou may not be able to avoid the use of others in a case Statement when the subtype of the case expression
has many values, for example, universal integer, Wide_Character, Of Character). If your choice of values
is small compared to the range of the subtype, you should consider using an if/elsif Statement. Note that
you must supply an others alternative when your case expression is of a generic type.

Each possible value should be explicitly enumerated. Ranges can be dangerous because of the possibility that
the range could change and the case statement may not be reexamined. If you have declared a subtype to
correspond to the range of interest, you can consider using this named subtype.

In many instances, case statements enhance the readability of the code. See Guideline 10.5.3 for a discussion
of the performance considerations. In many implementations, case statements may be more efficient.

Type extension and dispatching ease the maintenance burden when you add a new variant to a data structure.
See also Guidelines5.4.2 and 5.4.4.

notes

Ranges that are needed in case Statements can use constrained subtypes to enhance maintainability. It is
easier to maintain because the declaration of the range can be placed where it is logically part of the
abstraction, not buried in a case statement in the executable code:

subtype Lower Case is Character range 'a' .. 'z';

subtype Upper Case is Character range 'A' .. 'Z';

subtype Control is Character range Ada.Characters.Latin 1.NUL ..
Ada.Characters.Latin 1.US;

subtype Numbers is Character range '0' .. '9';

case Input_Char is
when Lower Case => Capitalize (Input_Char) ;
when Upper Case => null;

when Control => raise Invalid Input;
when Numbers => null;
end-éése;
exceptions
It is acceptable to use ranges for possible values only when the user is certain that new values will never be
inserted among the old ones, as for example, in the range of ASCII characters: 'a' .. 'z'.
564 L oops
guideline

* Use for loops, whenever possible.

* Usewnile loops when the number of iterations cannot be calculated before entering the loop but a simple
continuation condition can be applied at the top of the loop.

* Useplainloopswith exit statements for more complex situations.
* Avoid exit statementsin while and for looOps.
* Minimize the number of waysto exit aloop.
example
To iterate over al elements of an array:
for I in Array Name'Range loop
end-iéop;
To iterate over al elementsin alinked list:

Pointer := Head Of List;
while Pointer /= null loop

Pointer := Pointer.Next;
end loop;

Downloaded from http://www.everyspec.com

90 Ada 95 QUALITY AND STYLE

Situations requiring a*“loop and a half” arise often. For this, use:

P_And Q Processing:
loop
P;
exit P_And Q Processing when Condition Dependent On P;

end loop P_And Q Processing;

rather than:

P;

while not Condition Dependent On P loop
Q;
P;

end loop;

rationale

A for loop is bounded, so it cannot be an “infinite loop.” This is enforced by the Ada language, which
requires a finite range in the loop specification and does not allow the loop counter of a for loop to be
modified by a statement executed within the loop. This yields a certainty of understanding for the reader and
the writer not associated with other forms of loops. A for loop is also easier to maintain because the iteration
range can be expressed using attributes of the data structures upon which the loop operates, as shown in the
example above where the range changes automatically whenever the declaration of the array is modified. For
these reasons, it is best to use the for loop whenever possible, that is, whenever simple expressions can be
used to describe the first and last values of the loop counter.

The while loop has become a very familiar construct to most programmers. At a glance, it indicates the
condition under which the loop continues. Use the while loop whenever it is not possible to use the for loop
but when there is a simple Boolean expression describing the conditions under which the loop should
continue, as shown in the example above.

The plain loop statement should be used in more complex situations, even if it is possible to contrive a
solution using a for Or while lOOp in conjunction with extraflag variables or exit statements. The criteriain
selecting a loop construct are to be as clear and maintainable as possible. It is a bad idea to use an exit
statement from within a for or while loop because it is misleading to the reader after having apparently
described the complete set of loop conditions at the top of the loop. A reader who encounters a plain loop
statement expectsto see exit Statements.

There are some familiar looping situations that are best achieved with the plain loop statement. For example,
the semantics of the Pascal repeat until loop, where the loop is always executed at least once before the
termination test occurs, are best achieved by a plain loop with a single exit at the end of the loop. Another
common situation is the “loop and a half” construct, shown in the example above, where a loop must
terminate somewhere within the sequence of statements of the body. Complicated “loop and a half”
constructs simulated with while loops often require the introduction of flag variables or duplication of code
before and during the loop, as shown in the example. Such contortions make the code more complex and less
reliable.

Minimize the number of waysto exit aloop to make the loop more understandable to the reader. It should be
rare that you need more than two exit paths from a loop. When you do, be sure to use exit Statements for all
of them, rather than adding an exit statement to a for Or while lOOp.

5.6.5 Exit Statements

guideline
* Useexit statements to enhance the readability of loop termination code (NASA 1987).
* Useexit when ... ratherthan if ... then exit whenever possible (NASA 1987).
* Review exit statement placement.

example
See the examplesin Guidelines 5.1.1 and 5.6.4.

rationale

It is more readable to use exit statements than to try to add Boolean flags to a while loop condition to
simulate exits from the middle of aloop. Even if all exit statements would be clustered at the top of the loop

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 91

body, the separation of a complex condition into multiple exit statements can simplify and make it more
readable and clear. The sequential execution of two exit Statements is often more clear than the short-circuit
control forms.

Theexit when formispreferabletotheif ... then exit form becauseit makestheword exit morevisible
by not nesting it inside of any control construct. The it ... then exit form isneeded only in the case where
other statements, in addition to the exit statement, must be executed conditionally. For example:

Process_Requests:
loop
if Status = Done then

Shut_Down;
exit Process_Requests;

end if;

end loop Process_Requests;

Loops with many scattered exit statements can indicate fuzzy thinking regarding the loop’s purpose in the
algorithm. Such an algorithm might be coded better some other way, for example, with a series of loops.
Some rework can often reduce the number of exit statements and make the code clearer.

See also Guidelines5.1.3 and 5.6.4.

5.6.6 Recursion and Iteration Bounds

guideline
* Consider specifying bounds on loops.
» Consider specifying bounds on recursion.

example
Establishing an iteration bound:
Safety Counter := 0;

Process_List:
loop
exit when Current Item = null;

Current Item := Current Item.Next;

Safety Counter := Safety Counter + 1;

if Safety Counter > 1 000_000 then
raise Safety Error;

end if;

end loop Process_List;

Establishing arecursion bound:

subtype Recursion_Bound is Natural range 0 .. 1_000;
procedure Depth First (Root : in Tree;
Safety Counter : in Recursion_Bound

:= Recursion Bound'Last) is
begin
if Root /= null then

if Safety Counter = 0 then
raise Recursion Error;

end if;

Depth First (Root => Root.Left Branch,
Safety Counter => Safety Counter - 1);

Depth First (Root => Root.Right Branch,

Safety Counter => Safety Counter - 1);
... -- normal subprogram body
end if;

end Depth First;

Downloaded from http://www.everyspec.com

92 Ada 95 QUALITY AND STYLE

Following are examples of this subprogram’ s usage. One call specifies a maximum recursion depth of 50. The
second takes the default (1,000). The third uses a computed bound:

Depth First (Root => Tree_ 1, Safety Counter => 50);

Depth First (Tree_2);

Depth First (Root => Tree_ 3, Safety Counter => Current Tree_ Height) ;
rationale

Recursion, and iteration using structures other than for statements, can be infinite because the expected
terminating condition does not arise. Such faults are sometimes quite subtle, may occur rarely, and may be
difficult to detect because an external manifestation might be absent or substantially delayed.

By including counters and checks on the counter values, in addition to the loops themselves, you can prevent
many forms of infinite loops. The inclusion of such checks is one aspect of the technique caled Safe
Programming (Anderson and Witty 1978).

The bounds of these checks do not have to be exact, just realistic. Such counters and checks are not part of the
primary control structure of the program but a benign addition functioning as an execution-time “ safety net,”
allowing error detection and possibly recovery from potential infinite loops or infinite recursion.

notes
If aloop usesthe for iteration scheme (Guideline 5.6.4), it follows this guideline.

exceptions

Embedded control applications have loops that are intended to be infinite. Only a few loops within such
applications should qualify as exceptions to this guideline. The exceptions should be deliberate (and
documented) policy decisions.

This guideline is most important to safety critical systems. For other systems, it may be overkill.

56.7 Goto Statements

guideline
e Do not use goto Statements.
rationale

A goto statement is an unstructured change in the control flow. Worse, the label does not require an indicator
of where the corresponding goto statement(s) are. This makes code unreadable and makes its correct
execution suspect.

Other languages use goto Statements to implement loop exits and exception handling. Ada' s support of these
constructs makes the got o Statement extremely rare.

notes

If you should ever use a goto Statement, highlight both it and the label with blank space. Indicate at the label
where the corresponding goto statement(s) may be found.

5.6.8 Return Statements

guideline
* Minimize the number of return Statements from a subprogram (NASA 1987).
* Highlight return statements with comments or white space to keep them from being lost in other code.
example
The following code fragment is longer and more complex than necessary:
if Pointer /= null then

if Pointer.Count > 0 then
return True;

else -- Pointer.Count = 0
return False;
end if;

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 93

else -- Pointer = null
return False;
end if;

It should be replaced with the shorter, more concise, and clearer equivalent line:

return Pointer /= null and then Pointer.Count > 0;

rationale

Excessive use of returns can make code confusing and unreadable. Only use return Statements where
warranted. Too many returns from a subprogram may be an indicator of cluttered logic. If the application
requires multiple returns, use them at the same level (i.e., asin different branches of a case statement), rather
than scattered throughout the subprogram code. Some rework can often reduce the number of return
statements to one and make the code more clear.

exceptions
Do not avoid return Sstatementsif it detracts from natural structure and code readability.

5.6.9 Blocks

guideline
* Useblocksto localize the scope of declarations.
* Useblocksto perform local renaming.
* Useblocksto define local exception handlers.
example

with Motion;
with Accelerometer Device;

function Maximum Velocity return Motion.Velocity is
Cumulative : Motion.Velocity := 0.0;

begin -- Maximum Velocity
-- Initialize the needed devices
Calculate_Velocity From Sample_ Data:

declare
use type Motion.Acceleration;

Current : Motion.Acceleration := 0.0;
Time Delta : Duration;
begin -- Calculate Velocity From Sample Data
for I in 1 .. Accelerometer Device.Sample Limit loop

Get_Samples_And Ignore_Invalid Data:
begin
Accelerometer Device.Get Value (Current, Time Delta) ;
exception
when Constraint_ Error =>
null; -- Continue trying

when Accelerometer Device.Failure =>
raise Accelerometer Device Failed;
end Get_Samples_And Ignore_ Invalid Data;

exit when Current <= 0.0; -- Slowing down

Downloaded from http://www.everyspec.com

94 Ada 95 QUALITY AND STYLE

Update Velocity:
declare
use type Motion.Velocity;
use type Motion.Acceleration;

begin
Cumulative := Cumulative + Current * Time Delta;
exception
when Constraint_ Error =>
raise Maximum Velocity Exceeded;
end Update Velocity;

end loop;
end Calculate Velocity From Sample Data;

return Cumulative;

end Maximum Velocity;

rationale

Blocks break up large segments of code and isolate details relevant to each subsection of code. Variables that
areonly used in a particular section of code are clearly visible when a declarative block delineates that code.

Renaming may simplify the expression of agorithms and enhance readability for a given section of code. But
it is confusing when a renames clause is visually separated from the code to which it applies. The declarative
region alows the renames to be immediately visible when the reader is examining code that uses that
abbreviation. Guideline 5.7.1 discusses a similar guideline concerning the use clause.

Local exception handlers can catch exceptions close to the point of origin and allow them to be either
handled, propagated, or converted.

5.6.10 Aggregates

guideline
* Usean aggregate instead of a sequence of assignments to assign values to all components of arecord.
* Usean aggregate instead of atemporary variable when building a record to pass as an actual parameter.
* Usepositional association only when there is a conventional ordering of the arguments.

example

It is better to use aggregates:
Set_Position((X, Y));

Employee Record := (Number => 42,
Age => 51,
Department => Software Engineering) ;

than to use consecutive assignments or temporary variables:

Temporary Position.X := 100;
Temporary Position.Y := 200;
Set_Position (Temporary Position) ;

Employee Record.Number = 42;
Employee Record.Age = 51;
Employee Record.Department := Software Engineering;

rationale

Using aggregates during maintenance is beneficial. If a record structure is altered, but the corresponding
aggregate is not, the compiler flags the missing field in the aggregate assignment. It would not be able to
detect the fact that a new assignment statement should have been added to alist of assignment statements.

Aggregates can also be a real convenience in combining data items into a record or array structure required
for passing the information as a parameter. Named component association makes aggregates more readabl e.

See Guideline 10.4.5 for the performance impact of aggregates.

5.7

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 95

VISIBILITY

As noted in Guideline 4.2, Ada's ability to enforce information hiding and separation of concerns through its
visibility controlling features is one of the most important advantages of the language. Subverting these features,
for example, by too liberal use of the use clause, is wasteful and dangerous.

5.7.1

The Use Clause

guideline

When you need to provide visibility to operators, use the use type clause.
Avoid/minimize the use of the use clause (Nissen and Wallis 1984).
Consider using a package renames clause rather than ause clause for a package.

Consider using the use clause in the following situations:
- When standard packages are needed and no ambiguous references are introduced
- When references to enumeration literals are needed

Localize the effect of al use clauses.

example
Thisis amodification of the example from Guideline 4.2.3. The effect of ause clauseislocalized:

package Rational Numbers is

type Rational is private;

function "=" (X, Y : Rational) return Boolean;
function "/" (X, Y : Integer) return Rational; -- construct a rational number
function "+" (X, Y : Rational) return Rational;
function "-" (X, Y : Rational) return Rational;
function "*" (X, Y : Rational) return Rational;
function "/" (X, Y : Rational) return Rational; -- rational division
private
end Rational Numbers;
package body Rational Numbers is
procedure Reduce (R : in out Rational) is . . . end Reduce;

end Rational Numbers;

package Rational Numbers.IO is

procedure Put (R : in Rational);
procedure Get (R : out Rational);

end Rational Numbers.IO;

with Rational Numbers;

with Rational Numbers.IO;
with Ada.Text IO;

procedure Demo Rationals is

package R_IO renames Rational Numbers.IO;

use type Rational Numbers.Rational;
use R _IO;
use Ada.Text IO;

X : Rational Numbers.Rational;
Y : Rational Numbers.Rational;

Downloaded from http://www.everyspec.com

96 Ada 95 QUALITY AND STYLE

begin -- Demo_Rationals
Put ("Please input two rational numbers: ");
Get (X);
Skip_ Line;
Get (Y);
Skip_ Line;
Put ("X / Y
Put (X / Y);
New_ Line;
Put ("X * Y = ");
Put (X * Y);
New Line;
Put ("X + Y = ");
Put (X + Y);
New_ Line;
Put ("X - Y = ");
Put (X - Y);
New Line;

end Demo_Rationals;

rationale

These guidelines allow you to maintain a careful balance between maintainability and readability. Use of the
use Clause may indeed make the code read more like prose text. However, the maintainer may also need to
resolve references and identify ambiguous operations. In the absence of tools to resolve these references and
identify the impact of changing use clauses, fully qualified names are the best alternative.

Avoiding the use clause forces you to use fully qualified names. In large systems, there may be many library
units named in with clauses. When corresponding use clauses accompany the with clauses and the simple
names of the library packages are omitted (as is allowed by the use clause), references to external entities are
obscured and identification of external dependencies becomes difficult.

In some situations, the benefits of the use clause are clear. A standard package can be used with the obvious
assumption that the reader is very familiar with those packages and that additional overloading will not be
introduced.

The use type clause makes both infix and prefix operators visible without the need for renames clauses. You
enhance readability with the use type clause because you can write statements using the more natural infix
notation for operators. See also Guideline 5.7.2.

You can minimize the scope of the use clause by placing it in the body of a package or subprogram or by
encapsulating it in ablock to restrict visibility.

notes

Avoiding the use clause completely can cause problems with enumeration literals, which must then be fully
qualified. This problem can be solved by declaring constants with the enumeration literals as their values,
except that such constants cannot be overloaded like enumeration literals.

An argument defending the use clause can be found in Rosen (1987).
automation notes

There are tools that can analyze your Ada source code, resolve overloading of names, and automatically
convert between the use clause or fully qualified names.

5.7.2 The Renames Clause

guideline
* Limit the scope of arenaming declaration to the minimum necessary scope.

* Rename a long, fully qualified name to reduce the complexity if it becomes unwieldy (see
Guideline 3.1.4).

» Userenaming to provide the body of a subprogram if this subprogram merely calls the first subprogram.

* Rename declarations for visibility purposes rather than using the use clause, except for operators (see
Guideline 5.7.1).

* Rename parts when your code interfaces to reusable components originally written with nondescriptive or
inapplicable nomenclature.

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 97

* Useaproject-wide standard list of abbreviations to rename common packages.
* Provideause type rather than a renames clause to provide visibility to operators.

example

procedure Disk Write (Track Name : in Track;
Item : in Data) renames
System Specific.Device Drivers.Disk Head Scheduler.Transmit;

See also the example in Guideline 5.7.1, where a package-level renames clause provides an abbreviation for
the package rational Numbers IO

rationale

If the renaming facility is abused, the code can be difficult to read. A renames clause can substitute an
abbreviation for a qualifier or long package name locally. This can make code more readable yet anchor the
code to the full name. Y ou can use the renames clause to evaluate a complex name once or to provide a new
“view” of an object (regardless of whether it is tagged). However, the use of renames clauses can often be
avoided or made obviously undesirable by carefully choosing names so that fully qualified names read well.

When a subprogram body calls another subprogram without adding local data or other agorithmic content, it
is more readable to have this subprogram body rename the subprogram that actually does the work. Thus, you
avoid having to write code to “ pass through” a subprogram call (Rationale 1995, 811.12).

The list of renaming declarations serves as a list of abbreviation definitions (see Guideline 3.1.4). As an
alternative, you can rename a package at the library level to define project-wide abbreviations for packages
and then with the renamed packages. Often the parts recalled from a reuse library do not have names that are
as general as they could be or that match the new application’s naming scheme. An interface package
exporting the renamed subprograms can map to your project’ s nomenclature. See al'so Guideline 5.7.1.

The method described in the Ada Reference Manual (1995) for renaming a type is to use a subtype (see
Guideline 3.4.1).

Theuse type clause eliminates the need for renaming infix operators. Because you no longer need to rename
each operator explicitly, you avoid errors such asrenaming a + to a -. See also Guideline 5.7.1.

notes

You should choose package names to be minimally meaningful, recognizing that package names will be
widely used as prefixes (e.g., Pkg.Operation Of Object : Pkg.Type Name;). If you rename every package to
some abbreviation, you defeat the purpose of choosing meaningful names, and it becomes hard to keep track
of what al the abbreviations represent.

For upward compatibility of Ada 83 programs in an Ada 95 environment, the environment includes
library-level renamings of the Ada 83 library level packages (Ada Reference Manual 1995, 8J.1). It is not
recommended that you use these renamings in Ada 95 code.

5.7.3 Overloaded Subprograms

guideline

* Limit overloading to widely used subprograms that perform similar actions on arguments of different
types (Nissen and Wallis 1984).

example
function Sin (Angles : in Matrix Of Radians) return Matrix;
function Sin (Angles : in Vector Of_ Radians) return Vector;
function Sin (Angle : in Radians) return Small Real;
function Sin (Angle : in Degrees) return Small Real;
rationale

Excessive overloading can be confusing to maintainers (Nissen and Wallis 1984, 65). There is aso the danger
of hiding declarations if overloading becomes habitual. Attempts to overload an operation may actually hide
the original operation if the parameter profile is not distinct. From that point on, it is not clear whether
invoking the new operation is what the programmer intended or whether the programmer intended to invoke
the hidden operation and accidentally hid it.

Downloaded from http://www.everyspec.com

98 Ada 95 QUALITY AND STYLE

notes
This guideline does not prohibit subprograms with identical names declared in different packages.

5.7.4 Overloaded Operators

guideline
* Preserve the conventional meaning of overloaded operators (Nissen and Wallis 1984).
* Use":" toidentify adding, joining, increasing, and enhancing kinds of functions.
* Use"-"toidentify subtraction, separation, decreasing, and depleting kinds of functions.
» Useoperator overloading sparingly and uniformly when applied to tagged types.
example
function "+" (X : in Matrix;
Yo in Matrix)
return Matrix;
Sum := A + B;
rationale
Subverting the conventional interpretation of operators leads to confusing code.

The advantage of operator overloading is that the code can become more clear and written more compactly
(and readably) when it is used. This can make the semantics simple and natural. However, it can be easy to
misunderstand the meaning of an overloaded operator, especially when applied to descendants. This is
especially true if the programmer has not applied natural semantics. Thus, do not use overloading if it cannot
be used uniformly and if it is easily misunderstood.

notes

There are potential problems with any overloading. For example, if there are several versions of the “.”
operator and a change to one of them affects the number or order of its parameters, locating the occurrences
that must be changed can be difficult.

575 Overloading the Equality Operator

guideline
» Define an appropriate equality operator for private types.
* Consider redefining the equality operator for a private type.

* When overloading the equality operator for types, maintain the properties of an algebraic equivalence
relation.

rationale

The predefined equality operation provided with private types depends on the data structure chosen to
implement that type. If access types are used, then equality will mean the operands have the same pointer
value. If discrete types are used, then equality will mean the operands have the same value. If a floating-point
type is used, then equality is based on Ada model intervals (see Guideline 7.2.7). You should, therefore,
redefine equality to provide the meaning expected by the client. If you implement a private type using an
access type, you should redefine equality to provide a deep equality. For floating-point types, you may want
to provide an equality that tests for equality within some application-dependent epsilon value.

Any assumptions about the meaning of equality for private types will create a dependency on the
implementation of that type. See Gonzalez (1991) for a detailed discussion.

When the definition of "-" is provided, there is a conventional algebraic meaning implied by this symbol. As
described in Baker (1991), the following properties should remain true for the equality operator:

- Reflexive: a = a

- Symmetricc: a =b ==>Db = a

- Transitive: a=>b

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 99

In redefining equality, you are not required to have a result type of standard.Boolean. The Rationale
(1995, 86.3) gives two examples where your result type is a user-defined type. In a three-valued logic
abstraction, you redefine equality to return one of True, False, OF Unknown. IN @ vector processing application,
you can define a component-wise equality operator that returns a vector of Boolean values. In both these
instances, you should also redefine inequality because it is not the Boolean complement of the equality
function.

5.8 USING EXCEPTIONS

Ada exceptions are a reliability-enhancing language feature designed to help specify program behavior in the
presence of errors or unexpected events. Exceptions are not intended to provide a general purpose control
construct. Further, liberal use of exceptions should not be considered sufficient for providing full software fault
tolerance (Melliar-Smith and Randell 1987).

This section addresses the issues of how and when to avoid raising exceptions, how and where to handle them, and
whether to propagate them. Information on how to use exceptions as part of the interface to a unit includes what
exceptions to declare and raise and under what conditions to raise them. Other issues are addressed in the
guidelinesin Sections 4.3 and 7.5.

581 Handling Versus Avoiding Exceptions

guideline
* Whenitiseasy and efficient to do so, avoid causing exceptions to be raised.
* Provide handlers for exceptions that cannot be avoided.
* Useexception handlers to enhance readability by separating fault handling from normal execution.
» Do not use exceptions and exception handlers as goto Statements.

* Do not evaluate the value of an object (or a part of an object) that has become abnormal because of the
failure of alanguage-defined check.

rationale

In many cases, it is possible to detect easily and efficiently that an operation you are about to perform would
raise an exception. In such a case, it is a good idea to check rather than alowing the exception to be raised
and handling it with an exception handler. For example, check each pointer for nu11 when traversing a linked
list of records connected by pointers. Also, test an integer for O before dividing by it, and call an interrogative
function stack_1s_Empty before invoking the pop procedure of a stack package. Such tests are appropriate
when they can be performed easily and efficiently as a natural part of the algorithm being implemented.

However, error detection in advance is not always so simple. There are cases where such a test is too
expensive or too unreliable. In such cases, it is better to attempt the operation within the scope of an
exception handler so that the exception is handled if it is raised. For example, in the case of a linked list
implementation of a list, it is very inefficient to call a function entry Exists before each call to the
procedure Mmodify Entry Simply to avoid raising the exception Entry Not_ Found. It takes as much time to
search the list to avoid the exception as it takes to search the list to perform the update. Similarly, it is much
easier to attempt a division by a real number within the scope of an exception handler to handle numeric
overflow than to test, in advance, whether the dividend is too large or the divisor too small for the quotient to
be representable on the machine.

In concurrent situations, tests done in advance can also be unreliable. For example, if you want to modify an
existing file on amultiuser system, it is safer to attempt to do so within the scope of an exception handler than
to test in advance whether the file exists, whether it is protected, whether there is room in the file system for
the file to be enlarged, etc. Even if you tested for all possible error conditions, there is no guarantee that
nothing would change after the test and before the modification operation. You still need the exception
handlers, so the advance testing serves no purpose.

Whenever such a case does not apply, hormal and predictable events should be handled by the code without
the abnormal transfer of control represented by an exception. When fault handling and only fault handling
code is included in exception handlers, the separation makes the code easier to read. The reader can skip all
the exception handlers and still understand the normal flow of control of the code. For this reason, exceptions

Downloaded from http://www.everyspec.com

100 Ada 95 QUALITY AND STYLE

should never be raised and handled within the same unit, as a form of a goto Statement to exit from a 1o0p,
if, case, Ol block Statement.

Evaluating an abnormal object results in erroneous execution (Ada Reference Manual 1995, §13.9.1). The
failure of alanguage-defined check raises an exception. In the corresponding exception handler, you want to
perform appropriate cleanup actions, including logging the error (see the discussion on exception occurrences
in Guideline 5.8.2) and/or reraising the exception. Evaluating the object that put you into the exception
handling code will lead to erroneous execution, where you do not know whether your exception handler has
executed completely or correctly. See also Guideline 5.9.1, which discusses abnormal objects in the context
OfAda.Unchecked7Conversion.

5.8.2 Handlersfor Others

guideline

* When writing an exception handler for otners, capture and return additional information about the
exception through the Exception Name, Exception Message, Of Exception Information SUDpPrograms
declared in the predefined package ada . Exceptions.

* Useothers only to catch exceptions you cannot enumerate explicitly, preferably only to flag a potential
abort.

* During development, trap others, capture the exception being handled, and consider adding an explicit
handler for that exception.

example

The following simplified example gives the user one chance to enter an integer in the range 1 to 3. In the
event of an error, it provides information back to the user. For an integer value that is outside the expected
range, the function reports the name of the exception. For any other error, the function provides more
complete traceback information. The amount of traceback information is implementation dependent.

with Ada.Exceptions;

with Ada.Text IO;

with Ada.Integer Text IO;
function Valid Choice return Positive is

subtype Choice Range is Positive range 1..3;

Choice : Choice Range;
begin

Ada.Text IO.Put ("Please enter your choice: 1, 2, or 3: ");

Ada.Integer Text IO.Get (Choice);

if Choice in Choice_ Range then -- else garbage returned
return Choice;

end if;

when Out_of Bounds : Constraint_ Error =>
Ada.Text IO.Put_Line ("Input choice not in range.");

Ada.Text_ IO.Put_Line (Ada.Exceptions.Exception Name (Out_of Bounds)) ;
Ada.Text IO.Skip Line;

when The_ Error : others =>
Ada.Text IO.Put_Line ("Unexpected error.");
Ada.Text_ IO.Put_Line (Ada.Exceptions.Exception Information (The_ Error)) ;
Ada.Text IO.Skip Line;

end Valid Choice;
rationale

The predefined package ada.Exceptions alows you to log an exception, including its name and traceback
information. When writing a handler for others, you should provide information about the exception to
facilitate debugging. Because you can access information about an exception occurrence, you can save
information suitable for later analysisin a standard way. By using exception occurrences, you can identify the
particular exception and either log the details or take corrective action.

Providing a handler for otnhers alows you to follow the other guidelines in this section. It affords a place to
catch and convert truly unexpected exceptions that were not caught by the explicit handlers. While it may be
possible to provide “fire walls’ against unexpected exceptions being propagated without providing handlersin

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 101

every block, you can convert the unexpected exceptions as soon as they arise. The others handler cannot
discriminate between different exceptions, and, as a result, any such handler must treat the exception as a
disaster. Even such a disaster can still be converted into a user-defined exception at that point. Because a
handler for others catches any exception not otherwise handled explicitly, one placed in the frame of a task
or of the main subprogram affords the opportunity to perform final cleanup and to shut down cleanly.

Programming a handler for others requires caution. You should name it in the handler (eg.,
Error : others;) t0o discriminate either which exception was actually raised or precisely where it was
raised. In general, the others handler cannot make any assumptions about what can be or even what needs to
be “fixed.”

The use of handlers for others during development, when exception occurrences can be expected to be
frequent, can hinder debugging unless you take advantage of the facilities in ada.Exceptions. It iS much
more informative to the developer to see a traceback with the actual exception information as captured by the
Ada.Exceptions Subprograms. Writing a handler without these subprograms limits the amount of error
information you may see. For example, you may only see the converted exception in a traceback that does not
list the point where the original exception was raised.

notes

It is possible, but not recommended, to use exception_1d to distinguish between different exceptions in an
others handler. The type Exception 1d IS implementation defined. Manipulating values of type
Exception_Id reduces the portability of your program and makes it harder to understand.

5.8.3 Propagation

guideline
» Handle all exceptions, both user and predefined.

* For every exception that might be raised, provide a handler in suitable frames to protect against undesired
propagation outside the abstraction.

rationale

The statement that “it can never happen” is not an acceptable programming approach. You must assume it
can happen and be in control when it does. You should provide defensive code routines for the “cannot get
here” conditions.

Some existing advice calls for catching and propagating any exception to the calling unit. This advice can
stop a program. Y ou should catch the exception and propagate it or a substitute only if your handler is at the
wrong abstraction level to effect recovery. Effecting recovery can be difficult, but the alternative is a program
that does not meet its specification.

Making an explicit request for termination implies that your code is in control of the situation and has
determined that to be the only safe course of action. Being in control affords opportunities to shut down in a
controlled manner (clean up loose ends, close files, release surfaces to manua control, sound alarms) and
impliesthat all available programmed attempts at recovery have been made.

5.84 L ocalizing the Cause of an Exception

guideline
» Do not rely on being able to identify the fault-raising, predefined, or implementation-defined exceptions.

* Use the facilities defined in ada.Exceptions tO capture as much information as possible about an
exception.

» Useblocksto associate localized sections of code with their own exception handlers.
example

See Guideline 5.6.9.
rationale

In an exception handler, it is very difficult to determine exactly which statement and which operation within
that statement raised an exception, particularly the predefined and implementation-defined exceptions. The
predefined and implementation-defined exceptions are candidates for conversion and propagation to higher

Downloaded from http://www.everyspec.com

102 Ada 95 QUALITY AND STYLE

abstraction levels for handling there. User-defined exceptions, being more closely associated with the
application, are better candidates for recovery within handlers.

User-defined exceptions can also be difficult to localize. Associating handlers with small blocks of code helps
to narrow the possibilities, making it easier to program recovery actions. The placement of handlers in small
blocks within a subprogram or task body also allows resumption of the subprogram or task after the recovery
actions. If you do not handle exceptions within blocks, the only action available to the handlers is to shut
down the task or subprogram as prescribed in Guideline 5.8.3.

As discussed in Guideline 5.8.2, you can log run-time system information about the exception. You can also
attach a message to the exception. During code development, debugging, and maintenance, this information
should be useful to localize the cause of the exception.

notes

The optimal size for the sections of code you choose to protect by a block and its exception handlers is very
application-dependent. Too small a granularity forces you to expend more effort in programming for
abnormal actions than for the normal algorithm. Too large a granularity reintroduces the problems of
determining what went wrong and of resuming normal flow.

5.9 ERRONEOUSEXECUTION AND BOUNDED ERRORS

Ada 95 introduces the category of bounded errors. Bounded errors are cases where the behavior is not
deterministic but falls within well-defined bounds (Rationale 1995, §1.4). The consequence of a bounded error is
to limit the behavior of compilers so that an Ada environment is not free to do whatever it wants in the presence
of errors. The Ada Reference Manual (1995) defines a set of possible outcomes for the consequences of undefined
behavior, as in an uninitialized value or a value outside the range of its subtype. For example, the executing
program may raise the predefined exception program_Error, Constraint_Error, OF it may do nothing.

An Ada program is erroneous when it generates an error that is not required to be detected by the compiler or
run-time environments. As stated in the Ada Reference Manual (1995, §1.1.5), “The effects of erroneous
execution are unpredictable.” If the compiler does detect an instance of an erroneous program, its options are to
indicate a compile time error; to insert the code to raise program_Error, possibly to write a message to that effect;
or to do nothing at all.

Erroneousness is not a concept unique to Ada. The guidelines below describe or explain some specific instances of
erroneousness defined in the Ada Reference Manual (1995). These guidelines are not intended to be all-inclusive
but rather emphasize some commonly overlooked problem areas. Arbitrary order dependencies are not, strictly
speaking, a case of erroneous execution; thus, they are discussed in Guideline 7.1.9 as a portability issue.

591 Unchecked Conversion

guideline
* Useada.unchecked Conversion Only with the utmost care (Ada Reference Manual 1995, §13.9).
* Consider using the 'va1iaq attribute to check the validity of scalar data.

» Ensure that the value resulting from ada.unchecked conversion properly represents a value of the
parameter’ s subtype.

* |solatethe use of ada.Unchecked conversion in package bodies.
example
The following example shows how to use the 'va1ia attribute to check validity of scalar data:

Downloaded from http://www.everyspec.com

PROGRAMMING PRACTICES 103

with Ada.Unchecked Conversion;
with Ada.Text IO;
with Ada.Integer Text IO;

procedure Test is

type Color is (Red, Yellow, Blue);
for Color'Size use Integer'Size;

function Integer To_Color is
new Ada.Unchecked Conversion (Source => Integer,
Target => Color) ;

Possible Color : Color;
Number : Integer;

begin -- Test

Ada.Integer Text IO.Get (Number);
Possible_Color := Integer_To_ Color (Number) ;

if Possible_Color'Valid then
Ada.Text_ IO.Put_Line (Color'Image (Possible Color)) ;
else

Ada.Text_ IO.Put_Line ("Number does not correspond to a color.");
end if;

end Test;

rationale

An unchecked conversion is a bit-for-bit copy without regard to the meanings attached to those bits and bit
positions by either the source or the destination type. The source bit pattern can easily be meaningless in the
context of the destination type. Unchecked conversions can create values that violate type constraints on

subsequent operations. Unchecked conversion of objects mismatched in size has implementati on-dependent
results.

Using the 'valid aftribute on scalar data allows you to check whether it is in range without raising an
exception if it is out of range. There are several cases where such a validity check enhances the readability
and maintainability of the code:

- Dataproduced through an unchecked conversion

- Input data

- Parameter values returned from aforeign language interface

- Aborted assignment (during asynchronous transfer of control or execution of an abort Statement)
- Disrupted assignment from failure of alanguage-defined check

- Datawhose address has been specified with the 'address attribute

An access value should not be assumed to be correct when obtained without compiler or run-time checks.
When dealing with access values, use of the 'va1id attribute helps prevent the erroneous dereferencing that
ﬂ“ghtOCCUfﬂ“efUQTK}Ada.UncheckediDeallocation,UncheckediAccess,OrAda.Unchecked7Conversion.

In the case of a nonscalar object used as an actual parameter in an unchecked conversion, you should ensure
that its value on return from the procedure properly represents a value in the subtype. This case occurs when
the parameter is of mode out Or in out. It is important to check the value when interfacing to foreign
languages or using a language-defined input procedure. The Ada Reference Manual (1995, §13.9.1) lists the
full rules concerning data validity.

5.9.2 Unchecked Deallocation

guideline
* Isolatethe use of Ada.Unchecked Deallocation in package bodies.
* Ensurethat no dangling reference to the local object exists after exiting the scope of the local object.

Downloaded from http://www.everyspec.com

104 Ada 95 QUALITY AND STYLE

rationale

Most of the reasons for using Ada . Unchecked Deallocation With caution have been given in Guideline 5.4.5.
When this feature is used, no checking is performed to verify that there is only one access path to the storage
being deallocated. Thus, any other access paths are not made nu11. Depending on the value of these other
access paths could result in erroneous execution.

If your Ada environment implicitly uses dynamic heap storage but does not fully and reliably reclaim and
reuse heap storage, you should not use ada . Unchecked Deallocation.

593 Unchecked Access

guideline
* Minimizethe use of the attribute uncheckeda_access, preferably isolating it to package bodies.
* Usetheattribute uncheckeda_access only on datawhose lifetime/scopeis “library level.”
rationale

The accessibility rules are checked statically at compile time (except for access parameters, which are
checked dynamically). These rules ensure that the access value cannot outlive the object it designates.
Because these rules are not applied in the case of unchecked access, an access path could be followed to an
object no longer in scope.

Isolating the use of the attribute unchecked Access means to isolate its use from clients of the package. You
should not apply it to an access value merely for the sake of returning a now unsafe value to clients.

When you use the attribute unchecked access, You are creating access values in an unsafe manner. Y ou run
the risk of dangling references, which in turn lead to erroneous execution (Ada Reference Manual
1995, 8§13.9.1).

exceptions

The Ada Reference Manual (1995, §13.10) defines the following potential use for this otherwise dangerous
attribute. “ This attribute is provided to support the situation where alocal object is to be inserted int