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RESEARCH AND

E N G I N E E R I N G

THE UNDER SECRETARY OF DEFENSE

WASHINGTON. D C. 20301

FOREWORD

This handbook is issued under the authority of DoD Instruction 3235.1, “Test
and Evaluation of System Reliability, Availability, and Maintainability,”
February 1, 1982. Its purpose is to provide instruction in the analytical
assessment of System Reliability, Availability, and Maintainability (RAM)
performance.

The provisions of this handbook apply to the Office of the Secretary of Defense,
the Military Departments, the Organization of the Joint Chiefs of Staff, and the
Defense Agencies (hereafter referred to as “DoD Components”).

This handbook is effective immediately and may be used on an optional basis by
DoD Components engaged in system RAM.

Send recommended changes to the handbook to:

Office of the Director
Defense Test and Evaluation OUSDRE/DDTE
Washington, D.C. 20301

DoD Components may obtain copies of this handbook through their own publication
channels- Other federal agencies and the public may obtain copies from the
Naval Publication and Forma Center, 5801 Tabor Avenue, Philadelphta,Pa. 19120.

&49_
ISHAM LINDER
Director Defense
Test and Evaluation
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OFFICE OF THE UNDER SECRETARY OF DEFENSE

W A S H I N G T O N .  D.C. 20301

RESEARCH AND

E N G I N E E R I N G

MEMORANDUM FOR TEXT USERS

SUBJECT : The Application of Statistical Concepts to Test and Evaluation

Test and Evaluation of military systems and equipment is conducted by DoD to
support the assessment of system performance characteristics. These assess-
ments are an integral part of the decision process inherent in the acquisition
cycle.

In many hardware and software
controversial issue. Questions

development
which often

programs, testing has become a
arise are: How much testing is

enough? Is the hardware/software ready for testing? Are hardware requ~re -
ments, assessment parameters and critical issues adequately defined? Does the
test effort represent the minimum time and resource program consistent with
meaningful results? Have the development and operational testing cycles been
integrated so as to form an efficient evaluation program? And so on.

This text presents concepts and techniques for designing test plans which can
verify that previously established system suitability requirements have been
achieved. We realize, of course, that test resource availability ❑ ay be
adversely affected by cost, schedule and operational urgency constraints. In
such cases, alternate test plans which represent the most meaningful, timely
and cost effective approach, consistent with these constraints, must be de-
veloped. In any event, it is essential that all participants understand the
critical issues being addressed and the acquisition risks inherent in con-
ducting a limited test program.

The design and execution of sound test programs is NO accident. It requires
numerous hours of research and planning and a thorough understanding of test-
ing techniques, the test system and its operating scenario. Further, the test
results must support the development of realistic performance estimates for
the entire production run, after having tested relatively few systems. Herein
lies the usefulness of the statistical concepts contained in this text.

The topics addressed in this text will familiarize the reader with the
statistical concepts relevant to test design and performance assessment. In
short, these topics, when combined with common sense and technical expertise

u.

formulate the basis of all sound test programs.

I s h a m  Lind;r f
Director Defense
Test and Evaluation
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CHAPTER 1

INTRODUCTION

One step in the acquisition of military weapon systems and equipment is the
verification that the candidate systems do, in fact, perform in accordance
with previously specified operational requirements. The verification process
involves the design of test programs which provide an adequate data base to
support realistic assessments of hardware characteristics. This text outlines
the concepts and techniques to be used in structuring such test programs and
analyzing the resulting data.

Since verifying the performance of every hardware item to be procured is
neither practical nor possible, we base our projection of the entire popula-
tion’s performance on the assessment of an available sample. This sample may
consist of the first 10 preproduction aircraft of a projected buy of 725 or 50
percent of a lot of high-reliability pyrotechnic devices. In either case, we
are utilizing statistical techniques to project or estimate the true value of
some population’s characteristic, such as reliability, maintainability,
weight, size, etc.

The material contained in the following chapters is designed to familiarize
the reader with the various statistical concepts and techniques required to
thoroughly understand the relationships among test design, assessment and
projection of population characteristics.

The beginning chapters present background material on the three basic quanti-
tative system parameters: reliability, availability and maintainability. The
various definitions of these basic terms are discussed, as are the relation-
ships among these parameters. The statistical concepts of confidence and
producer’s and consumer’s risk are next introduced, with the majority of the
text devoted to the practical application and significance of these concepts.
The chapters utilize a combination of narrative and case studies to introduce
and illustrate the usefulness of the concepts. It will prove quite useful to
refer to the case studies while reading through the chapters. This study
technique will prove especially helpful in Chapters 7 and 8, which present
information on analyzing test data and structuring statistically adequate test
programs. Chapter 9 contains an introductory discussion of the reliability
growth concept. Chapter 10 presents qualitative aspects of test planning
along with a description of data collection requirements.

It should be noted that there is no intent here to indicate that all DoD test
programs must produce statistically significant test results. Obviously some
will, but it is essential to understand the risk associated with a proposed
test program and the confidence associated :~ith specific results before recom-
mending a course of action.

A first glance at the middle of one of the more “intense” chapters will
quickly bring the reader to the conclusion that the real title of the text
should have been “Everything You Never Knew about Statistics and Never
Will’’--SLAM!! In fact, the text could be entitled “What To Do Until the
Statistician Arrives.” Anyone able to work through the entire text without

1-1
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any questions needs no statistician--for most tasks. The text, however, makes
no attempt to eliminate the need for expert advice but rather attempts to aid
the reader in recognizing the simplicity of some concepts, the complexity of
others, the assumptions and limitations associated with all of them, and the
importance of the topic to test and evaluation in general.

1-2
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CHAPTER 2

RELIABILITY

Reliability is a term used to describe quantitatively how failure-free a
system is likely to be during a given period of operation. The ability to
express reliability numerically is crucial, because it enables us to con-
cretely identify the user’s needs, contractual specifications, test guidelines
and performance assessment.

DEFINITION OF TERMS AND CONCEPTS

Reliability

Reliability is defined as the probability that an item will perform its in-
tended function for a specified interval under stated conditions . This def-
inition does not specifically consider the effect of the age of the system.

The following adaptation is useful for systems that are repairable. Reli-
ability, for repairable systems, is the probability that an item will perform
its intended function for a specified interval, under stated conditions, at a
given age, if both corrective and preventive maintenance are performed in a
specified manner.

If a system is capable of performing multiple missions, or if it can perform
one or more of its missions while operating in a degraded condition or if the
mission test profiles represent only typical usage, then, the concept of a
EIQ$& ‘ission reliability becomes difficult to define” In such cases 7 ‘t is
preferable to use a reliability measure that is not based solely on the length
of a specified time interval but rather on the definition of a specific mis-
sion profile or set of profiles. This concept is illustrated in Case Study
2-7.

The meaning of the terms ‘fstated conditions’ and “specified interval” are
important to the understanding of reliability. The term ‘?stated conditions”
refers to the complete definition of the scenario in which the system will
operate. For a ground combat vehicle, these conditions include climatic
conditions, road surface, and loads that would be experienced during a
selected mission profile. These conditions should reflect operational usage.
The term “specified interval” refers to the length of the mission described in
a mission profile. This interval may include ❑ ultiple factors. For example,
an air defense system mission profile will define an interval containing X
rounds fired, Y hours of electronics on-time and Z miles of travel. For a
simpler system, say an air-burst artillery round, the interval may include a
single event--round detonation.

Mean Time Between Failures

Mean time between failures (MTBF) is defined as the total functioning life of
a population of an item during a specific measurement interval, divided by the
total number of failures within the population during that interval. MTBF can
be interpreted as the expected length of time a system will be operational

2-1
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between failures. The definition is true for time , cycles, miles, events, or
other measure-of-life units. These various measure-of-life units permit the
MTBF term to be tailored to the reliability requirements of a specific system.
Some examples of this tailoring are:

= Mean

- Mean

- Mean

- Mean

Failure Rate

Failure rate

rounds between failure (MRBF)

miles between operational mission failure (MMBOMF)

time between unscheduled maintenance actions (MTBUMA)

rounds between

is defined as

any

the

maintenance actions (MRBAMA)

number of failures of an item per measure-of-
miles or events as applicable). This ❑ easurelife unit (e.g., cycles, time,

is more difficult to visualize from an operational ‘standpoint than the MTBF
measure, but is a useful mathematical teti which frequently appears in many
engineering and statistical calculations. As we will see in later chapters
the failure rate is the reciprocal of the MTBF measure, or

Failure Rate = &

SYSTEM RELIABILITY DESIGN OBJECTIVES

There are two very different system reliability design objectives. One is to
enhance system effectiveness; the other is to minimize the burden of owning
and operating the system. The first objective is addressed by means of mis-
sion reliability, the second by means of logistics-related reliability.
Measures of mission reliability address only those incidents that affect
mission accomplishment. Measures of logistics-related reliability address all
incidents that require a response from the logistics system.

Mission Reliability

Mission reliability is the probability that a system will perform mission
essential functions for a period of time under the conditions stated in the
mission profile. Mission reliability for a single shot type of system, i.e.,
a pyrotechnic device, would not include a time period constraint. A system
with a high mission reliability has a high probability of successfully com-
pleting the defined mission.

Measures of mission reliability address only those incidents that affect
mission accomplishment. A mission reliability analysis must, therefore,
include the definition of mission essential functions. For example, the
mission essential functions for a tank might be to move, shoot and communi-
cate. More specific requirements could specify minimum speed, shooting ac-
curacy and communication range’.

See Case Study 2-7.
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i

Logistics (Maintenance/Supply) Related Reliability

Logistics related reliability measures, as indicated above, ,must be selected
so that they account for or address all incidents that require a response from
the logistics system.

Logistics related reliability may be further subdivided into maintenance
related reliability and supply related reliability. These parameters re-
spectively represent the probability that no corrective maintenance or the
probability that no unscheduled supply demand will occur following the comple-
tion of a specific mission profile.

The mathematical models used to evaluate mission and logistics reliability for
the same system may be entirely different. This is illustrated in Case Study
2-3.

RELIABILITY INCIDENT CLASSIFICATION

h understanding of the relationships existing between the above reliability
measures and other terms is essential to the knowledgeable application of
these parameters. Figure 2-1 illustrates the effects of these relationships
not their causes. For example, system failures may be caused
itself, by the operator, or by inadequate/faulty maintenance.

by the hardware

F18URE  2 - 1  R E L I A B I L I T Y  I N C I D E N T  C L A S S I F I C A T I O N

U N S C H E D U L E D  MA I N T E N A N C E  A C T I O N S

[

MISSION FAILURES
- - - - -  - \

S Y S T E M F A I L U R E S
I~--. - - - - -
I \
I \
i UNSCHEDULED+

1
PARTS DEMANDS/

7 - - - - - ”
/- - - - - ) I

\

---- C O N T R A C T U A L L Y  C H A R G E A B L E  S U B S E T

Mission Failures

Mission failures are the loss of any of the mission’s essential functions.
Along with system hardware failures, operator errors and errors in publica-

tions that cause such a loss are included in this region. Mission failures
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are related to mission reliability measures because they prevent complete
mission accomplishment.

System Failures

System failures are hardware malfunctions: they may or may not affect the
mission’s essential functions, and they may or may not require spares for
correction. A system failure generally requires unscheduled maintenance so
system failures heavily influence maintenance-related reliability.

Unscheduled Spares Demands

Unscheduled spares demands are used to evaluate supply-related reliability.
All unscheduled spares demands require a response from the supply system, so
they form the basis for evaluating supply-related reliability.

System/Mission Failures Requiring Spares

System/mission failures that require spares for correction are the most
critical. Mission, maintenance and supply reliabilities are affected, and the
system runs the risk of being held in a non-mission-ready status for an ex-
tended period of time by logistics delays.

Contractually Chargeable Failures

Contract requirements are often established for the subset of mission failures
and/or system failures for which the contractor can be held accountable.
Normally excluded from contractual chargeability are such failure categories
as: operator or maintenance errors; item abuse; secondary failures caused by
another (primary) failure; and failures for which a “fix” has been identified
(but not incorporated in the test article that failed). It should be noted
that, in operation, all failures (in fact, all unscheduled maintenance ac-
tions) are relevant regardless of contractual chargeability, and should there-
fore be included in operational evaluations.

SYSTEM RELIABILITY MODELS

System reliability models are utilized to describe visually and mathematically
the relationship between system components and their effect on the resulting
system reliability. A reliability block diagram or structural model provides
the visual representation while the mathematical or “math” model provides the
analytical tool to calculate quantitative reliability values.

The following notation is used in the discussion of reliability models:

Rs = reliability of the system

R = threliability of the ii subsystem

Qs  =  1 -Rs = unreliability of the system

Q i  

=  1  - R i  = thunreliability of the i subsystem
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rl= product of (Note: This operator is used in the same fashion as
Z for summation, but it indicates multiplication rather than
addition.)

Note: In the following discussion it is assumed that all subsystems function
independently of one another, that is, failures of different subsystems are
statistically independent of each other. For many systems this represents a
realistic assumption. The reliability analysis for dependent subsystems is
significantly more complex. Independent operation, practically speaking,
means that a failure of one system will not cause a change in the failure
characteristics of one or more other subsystems. Therefore, replacement of
the single failed subsystem should permit continued operation of the entire
system, because other subsystems were not affected.

Series Model

When a group of components or subsystems is such that all must function prop-
erly for the system to succeed, they are said to be in series. A system
consisting of a series arrangement of n subsystems is illustrated in the
following block diagram:

-El--m-”””--H--
The mathematical model is

R = R1R2.. .Rn= ;R.. (2.1)
s 1=1 1

See Case Studies 2-1, 2-2, 2-3, 2-5, and 2-6 for examples of reliability
series models.

Redundant Models

The mission reliability of a system containing independent subsystems can
usually be increased by using subsystems in a redundant fashion, that is,
providing more subsystems than are absolutely necessary for satisfactory
performance. The incorporation of redundancy into a system design and the
subsequent analysis and assessment of that design is a complex task and will
not be addressed here in detail. We will define the elements of redundancy
and present several simplified examples.

Redundance Characteristics. Redundance can be defined bv three basic char-
acteristics.

- First, the level at
could have redundant
redundant systems.

. .

which redundancy is applied. For example, we
pieceparts, redundant black boxes, or complete
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- Second, the operating state of the redundant element. The redundant
part, subsystem, etc. , may exist in the circuit as an active function-
ing element or as a passive, power off, element. For example, an
airport that maintains two separate operating ground control approach
radars at all times has active redundancy for that capability. Carry-
ing a spare tire in your trunk is an example of passive redundancy.

- Third, the method used to activate the redundant element. Consider
the passive redundancy case of the spare tire. The vehicle driver
represents the switching device that decides to activate the spare.
Obviously mission time is lost in installing the spare. The opposite
case is represented by the use of an electronic switching network that
senses the failure of Box A and automatically switches to Box B with-
out lost time or mission interruption.

FIGURE 2-2 PASSIVE REDUNDANCY WITH AUTOMATIC SWITCHING

AUTOMATIC

INPUT

/
!

i’
I 1
[ I

i I
\~--- -- FEEDBACK SENSING CIRCUIT- ----”-’

Our examples will consider only simple active redundancy. In this type of re-

dundancy, all the operable subsystems are operating, but only ~ is needed
for satisfactory performance. There are no standby subsystems, and no repair
is permitted during the mission. Such a system of n subsystems is illustrated
in block diagram form as:

r

1

2
L

b-...
n

Note: Simple active redundancy
requires that only one of the n
subsystems be operafig for
mission success.
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The mathematical model is

.

Q~  =  Q l Q2 . . .Qn= :Q. = ; (l-Ri).
1=1 1 i=l

R~ = 1-Q = 1- ; (l-Ri).s i= 1
(2.2)

This model again assumes that there is statistical independence among failures
of the subsystems. This assumption is important because dependence between
subsystems can have a significant effect on system reliability. Calculations
based on an assumption of independence can be erroneous and misleading. In
fact, erroneously assuming failure independence will often result in overesti-
mating system reliability for an active redundant system and underestimating
reliability for a series system.

Implications of Redundant Design. While redundant design does improve mission
reliability, its use must’ be weighed against the inherent disadvantages.
These disadvantages include greater initial cost, increased system size and
weight, increased maintenance burden and higher spares demand rates. Thes e
factors must be considered by using and procuring agencies and by testing
organizations when assessing the true mission capability and support
requirements .

Although there are some possible exceptions, redundancy generally improves
mission reliability and degrades logistics reliability. Case Study 2-3 gives
a numerical comparison between ❑ ission- and maintenance-related reliability.

Mixed Models

One system configuration that is often encountered is one in which subsystems
are in series, but redundancy (active) is applied to a certain critical sub-
system(s). A typical block diagram follows:

4 I
1 2 3 5

d w
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This type of model (or any mixed model, for that matter) is characterized by
working from low to high levels of assembly. In this case, assuming inde-
pendence and active redundancy, we can apply equation 2.2.

‘4,5,6 = 1-(1-R4) (1-R5)(1-RJ (2.3)

We can now represent the redundant configuration of 4, 5, and 6 by a single
block on the diagram.

t

1 2 3 4, 5, 6

We can now apply equation 2.1:

‘S = ‘1 R2R3R4,5 ,6

Rs ‘R1R2R3[P(ER4)(I-R5)  (1-R6) 1

See Case Study 2-4 for the numerical analysis of a mixed model.

Functional Models

(2.4)

The series, redundant and mixed models mentioned above , are hardware-oriented
in that they display hardware capabilities. In some cases, it is desirable to
model a system from a functional standpoint. As an example, the functional
reliability block diagram for a tank is shown below:

I 1 t ? r I
-{ MOVE H SHOOT ++ COMMUNICATE [—”

The functions

1 J t 1 ! 1

may be defined as:

The mobility system must be capable of effectively maneuvering
that the system can maintain its assigned position within a

- MOVE.
such
tactical scenario. Specific requirements are determined for speed,
turning, terrain, etc.

- SHOOT. The main gun must be capable of delivering effective fire at
the rate of X rounds per minute.

- COMMUNICATE. The communication system must
two-way communication with other vehicles
within specific ranges and terrain confines.

Note that this concept addresses
implies how these functions will

mission-essential
be accomplished.

be capable of providing
and with fixed stations

functions, but in no way
Generally the functional
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model approach is helpful in the program formulation stages of a program when
specific hardware information is not necessary and frequently not desired.
This type of model can provide a useful transition from operational require-
ment to engineering specifications.

Case Study 2-7 utilizes this concept to evaluate the multi-mission, multi-mode
capabilities of a system.

BELIABILITY ALLOCATION,

The previous section presented the topic of functional reliability models and
indicated that these models provided a useful means of transitioning from
operational requirements to engineering specifications. The process of trans-
itioning from operational requirements to engineering specifications is known
as reliability allocation. The reliability allocation process “allocates” the
reliability “budget” for a given system or subsystem to the individual com-
ponents of that system or subsystem. An example will prove helpful.

Suppose we have previously determined that the reliability of an electronic
subsystem A, must equal or exceed 0.90, and that this subsystem has been
designed with 5 parts all functioning in series. For this example, we will

“ assume Parts 1, 2 and 3 are the same and the best available piece part for
Part 4 has a reliability of 0.990. How can we allocate the reliability budget
for this subsystem to its individual parts?

\SUBSYSTEM A

Using equation 2.1 we have

%otal =  ‘1R2R3R4R5

= R1R2R3(0.990)R5

Solving for R1R2R3R5 we have

0.900- — =  0 . 9 0 9‘1R2R3R5 – 0.990

If we assume RI = R2 = R3 = R5 then,

4

‘1 = R2 = R3 = R5 = ~~= 0.976
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If we can locate piece parts for Part 5 with R5 = 0.985, then

R1R2R3 = ~ = ~ = 0.923. So,

3
RI =R2 =R3 =i/~”= 0.973.

Summarv of Allocation

Case I Case II

RI =R2 = R3 =R5 = 0.976 RI = R2 = R3 = 0.973

R4 = 0.990 R4 = 0.990

R5 = 0.985

Another, and somewhat more frequently used approach to reliability allocation
is one in which reliability is allocated on the basis of allowable failures or
failure rates.

The understanding of reliability allocation is important to those individuals
who must be concerned with hardware operating characteristics below the system
level. This is especially true to development and testing organizations who
are frequently faced with predicting system performance early in development,
when no full-up system exists but when subsystem or component test data may be
available.

See Case Study 2-5 for another example of reliability allocation.
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CASE STUDY NO. 2-1

Background

A system is composed of 5 subsystems, each of which must succeed for system
success. Past records indicate the subsystem reliabilities to be as shown on
the diagram.

RI = 0.9 R2 = 0.95 R3 = 0.99 R4 = 0.99 R5 = 0.9

r ,

1 2 3 4 5

Determine

System reliability.

Solution

Applying equation 2.1:

‘S = ‘1R2R3R4R5 = (0.9) (0.95)(0.99)(0.99)(0.9) =0.75

Commentary

Note that the system reliability is lower than that of the worst subsystem.
This is generally the case for a series structured system.
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CASE STUDY NO. 2-2

Background

An electronic system has 1000 components in reliability series. The reli-
ability of each component is 0.999.

Determine

System reliability.

Solution

Applying equation 2.1:

1000
R~=Il 0.999 = (0.999)1000 z 0.368

i= 1

Commentary

1. Even though a component reliability of 0.999 sounds good, the sheer number
of these components causes a low system reliability.

2. Even though 0.999 ~ 1.0, the difference is crucial. For high reliability
values, the probability of failure often gives a clearer picture. For
example, increasing the component reliability from 0.999 to 0.9999 re-

quires a ten-fold reduction of the failure probability.

3. Problems such as this, involving large powers, are solved effortlessly
with an electronic calculator with a power capability. The more tradi-
tional approach is, of course, the use of logarithms and anti-logarithm
tables.
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CASE STUDY NO. 2-3

Background

The mission reliability of the system is described by the following block
diagram. All subsystems are identical and each has a reliability of R = 0.90.
No repairs are possible during a mission, but will be made following missions
in which failures occur. Failures occur independently. For this case, we
assume that any mission failure will require an unscheduled maintenance
action.

System mission reliability and maintenance reliability (probability of no
corrective maintenance following a mission).

Solution

System mission reliability: Applying equation 2.2:

Rs = I-(l-R)n= 1-(1-0.9)3 = 1-(0.1)3 = 1-0.001 = 0.999

Maintenance reliability: An unscheduled maintenance action required by any
subsystem is chargeable to the maintenance burden of the entire system, i.e. ,
a failure, defined in this case to be a requirement for corrective maintenance
of one subsystem, is charged as a system failure. As a consequence, we model
maintenance reliability for this system using a series structure.

,

1 2 3

Applying equation 2.1:

R = Rn= (0.9)3 = 0.729s
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Commentary

1. Note that we evaluated system mission reliability; that is, the reli-
ability of the hardware alone.

2. Based on the given information, it is apparent that a system consisting of
only one of the above subsystems will have a probability of mission fail-
ure equal to 0.1 and a probability of corrective maintenance action also
equal to 0.1. The system with triple active redundancy has a mission
reliability of 0.999, which corresponds to a probability of mission fail-
ure equal to 0.001 (a 100-fold reduction). The same system has a mainte-
nance reliability of 0.729 which corresponds to a probability of cor-
rective maintenance action equal to 0.271 (approximately a 3-fold in-
crease). The procuring and using agencies must decide whether to contract
for redundancy and how much to require based on consideration of these
parameters.

3. Note that with active redundancy the system reliability is generally
greater than the reliability of the best subsystem.

4. For this example, we stipulated that any mission failure would require an
unscheduled maintenance action. The reader should note that this is not
always the case.

5. It is possible, for example, to experience the failure of one of two
redundant mission critical subsystems and still successfully complete the
mission. After successful mission completion, an unscheduled maintenance
action would be necessary to repair/replace the defective critical re-
dundant subsystem.
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CASE STUDY NO. 2-4

Background

Consider the
identical and

following block diagram.
consequently have the same

I
3

3

Determine

Components with the same number are
reliability.

D--4

RI = 0.80

R2 = 0.95

R3 = 0.70

‘4 = 0.90

System reliability assuming independence and active redundancy.

Solution

Break the system into subsystems and find the reliability for each using
equations 2.1 and 2.2 and then combine into a system model. Define:

Subsystem I as

,

1 —
>

,

2

1
,

‘I = [1-(1 -R1)2]R2
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Subsystem II as

3

*

3

3
I J

‘II = 1-(1-R3)3

Subsystem III as

‘III = I-(l-RI)(l-RII) = 1-{1-[1-(1-R1)2]RJ(1-R3)3

Then the system becomes

–-

Rs = ‘4*111 =R4{1-{1-[1-(1-R1)2]R2](1-R3)3}

= 0.90{1-{1-[1-(1-0.80) 2] (0.95) ](1-0.70)3}= 0.879

Commentary
.

The general mathematical model is often of more use than the numerical
solution, since it permits evaluating a variety of alternatives.
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CASE STUDY NO. 2-5

Background

An air defense system comprises a weapon subsystem, a vehicle subsystem and a
fire control subsystem. One of the mission profiles for the total system
requires firing 250 rounds, traveling 10 miles, and operating the fire control
system for 15 hours. The respective subsystem reliabilities for this mission
profile are:

%
= 0.95

~ = 0.99

kc = 0.90

Determine

The system is to have its reliability improved by redesign of the fire control
subsystem. What reliability is required of this subsystem to attain a system
reliability of 0.90?

Solution

This is a series system, so equation 2.1 is applied:

‘ S  =  ‘WERVERFC

Using stars to represent requirements:
+;

>.. ‘s 0.90
‘FC = Rm~ =

(0.95)(0.99) ‘0’957

Commentary

This represents a very simple form of reliability apportionment; that is,
allocating a system-level requirement among lower levels of assembly.
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Determine

What reliability is required of the fire control system to attain a system
reliability of 0.95?

Since reliability camot exceed one, the requirement camot be met. At the
very best, EC= 1.0, which would yield:

R~ = 1$/f$/& = (0.95)(0.99)(1.0) = 0.9405

Commentary

The “you can’ t get there from here” solution points out that more than just
the fire control system ❑ ust be improved if a reliability of 0.95 is to be
attained.
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CASE STUDY NO. 2-6

Background

An electronic
ponents. The
will utilize
similarity in

Determine

system currently in use has approximately 1000 series com-
reliability for a 24-hour mission is 0.95. A proposed system
approximately 2000 similar components in series. Assume a
design practices, quality of manufacture, and use conditions.

1. What is the average part reliability for the current system?

2. What reliability should be expected of the proposed system for a 24-hour
mission?

Solution 1

The “average” component reliability can be found by applying equation 2.1 to
the old system:

RS = (Ri)lOOO = 0.95

Ri = (0.95)0”001’= 0.9999487

For the new system:

RS = (0.9999487)2000 = 0.9025

Solution 2

The new system is the reliability equivalent of two of the old systems used in
reliability series. Applying equation 2.1:

RS = (0.95)(0.95) = (0.95)2 = 0.9025

Commentary

This type of prediction based on parts count is particularly useful for evalu-
ating feasibility.
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CASE STUDY NO. 2-7

Background

A design for a new long-range ocean reconnaissance/weapons control system has
been proposed. The system will be used aboard an aircraft whose reliability
is not considered in this evaluation. The system has been designed to ac-
complish six specific missions.

These missions are defined in the table below.
limitations,

Due to size, weight and power
the hardware elements peculiar to each mission must be combined

with hardware elements peculiar to other missions in order to form a complete
mission hardware set.

For example, as depicted in the table below, the mission hardware set to
accomplish Mission E is a combination of hardware elements 3, 4, and 5.

Mission Mission Description

A Long-Range A/C Surveillance

B Long/Short-Range Surface Ship Detection

c Area Sea State Information

D Subsurface Surveillance

E Long-Range Terminal Guidance of Ship
Launched Missiles

F Wide Area Weather Data

Mission-Peculiar Subsystem Reliabilities

Hardware Element: 1 2 3 4

Hardware Element Reliability: 95% 93% 99% 91%

Mission
Hardware Set

1

1,2

1,3

1,3,4

3,4,5

1,2,3,6

5 6

90% 95%

All missions are three hours in length and require the operation of all ele-
ments in the hardware set for the full three hours.

The mission-peculiar hardware can support several missions simultaneously.

Determine

1. What is the probability of successfully completing each of the six mis-

sions?

2. What is the probability of successfully completing all six ❑ issions
during a three-hour period?
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Solution

1. Since the elements function in a series relationship, the individual
reliabilities are multiplied. Hence,

‘A =Rl = 0.95

RB=R1xR2 = 0.95 x 0.93 = 0.88

RC = RI X R3 = 0.95 X 0.99 = 0.94

~ = RI X R3 X R4 = 0.95 X 0.99 X 0.91 = 0.85

~.R3xR4xR5 = 0.99 X 0.91 X 0.90 = 0.81

~ = RI X R2 X R3 X R6 = 0.95 X 0.93 x 0.99 x 0.95 = 0.83

2. The probability of successfully completing all six missions during a
single three-hour period is determined by multiplying together the individual
hardware element reliabilities. This is done because all individual hardware
elements must function throughout the three-hour period to enable all missions
to be completed successfully.

Note that the probability of completing all six missions successfully is not
correctly calculated by multiplying together the individual ❑ ission reliabil-
ities RA through ~. This approach would erroneously take individual hardware

element reliability into account ❑ ore than once.

p Total = Probability of successfully completing six missions during

Mission a three-hour period

P Total =R1XR2XR3XR4XR5X R6

Mission

= 0.95 x 0.93 x 0.99 x 0.91 x 0.90 x 0.95

= 0.68

Commentary

The significant point illustrated by this problem is that the reliability of
multi-mission/multi-mode systems should be presented in terms of their indi-
vidual mission reliabilities. This is a useful technique because it permits
us to evaluate a system’s development progress relative to its individual
capabilities rather than its total mission reliability which may prove less
meaningful. For example, if we assume that Missions A and B are the primary
missions, we see that the system has an 88% chance of successfully completing
both functions during a three-hour period. However, if we evaluate Missions A
and B along with the remaining four lower-priority missions, we fund that our
analysis of the total system capability is far different, i.e., 68% chance of
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success . Consequently, for this case, approval to proceed with system devel-
opment would likely be given based on the criticality of Missions A and B and
the relatively good probability of successfully completing Missions A and B.

In summary, for multi-mission/multi-mode systems, the presentation of indi-
vidual mission reliabilities provides a more meaningful picture of a system’s
development status and its current and projected combat capabilities as these
relate to primary mission achievement.

NOTE : If the individual mission completion times had not been equally con-
strained to the three-hour time period, we would have been required to
use the more sophisticated techniques presented in Chapter 5.
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CHAPTER 3

MAINTAINABILITY

INTRODUCTION

Maintainability and reliability are the two major system characteristics that
combine to form the commonly used effectiveness index--availability. While
maintainability is important as a factor of availability, it also merits
substantial consideration as an individual system characteristic. The im-
portance of this parameter in the national defense posture becomes even more
obvious when we consider that at least one branch of the armed services spends
one-third of its budget on system maintenance activities.

Several aspects of system maintainability must be addressed before an accurate
assessment can be undertaken. First, the difference between maintainability
and maintenance must be understood. Maintainability is a design considera-
tion, whereas maintenance is the consequence of design. The maintenance
activity must live with whatever maintainability is inherent in the design,
that is, it must preserve the existing level of maintainability and can do
nothing to improve that level. Maintenance is therefore defined as “all
actions necessary for retaining a hardware item in or restoring it to an
optimal design condition.” The second consideration is that maintainability
requirements can be specified , measured and demonstrated. Unlike reliability,
detailed and quantitative study of maintainability was not initiated until the
early 1950s. Until recently, maintainability often was viewed as a “common
sense” ingredient of design. It is now seen as a factor of the design process
and an inherent design characteristic that is quantitative in nature and
therefore lends itself to specification, demonstration, and trade-off analysis
with such characteristics as reliability and logistics support.

DEFINITION OF TERMS AND CONCEPTS

Maintainability

Maintainability is defined as a characteristic of design and installation.
This characteristic is expressed as the probability that an item will be
retained in, or restored to, a specified condition within a given period if
prescribed procedures and resources are used.

A commonly used working definition states that Maintainability is a design
consideration. It is the inherent characteristic of a finished design that
determines the type and amount of maintenance required to retain that design
in, or restore it to, a specified condition.

Maintenance

This term is defined as all actions required to retain an item in, or restore
it to, a specified condition. This includes diagnosis, repair and inspection.
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Preventive Maintenance

This term is defined as systematic inspection, detection and correction of
incipient failures either before they occur or before they develop into major
defects. Adjustment, lubrication and scheduled checks are included in the
definition of preventive maintenance.

Corrective Maintenance

This term is defined as that maintenance performed on a non-scheduled basis to
restore equipment to satisfactory condition by correcting a malfunction.

CONSIDERATEONS IN PLANNIN G MAINTAINABILITY ASSESSMENT

An understanding of the principal elements of maintainability is essential to
the assessmerit plaming process. Certain elements of a design basically
define a system’s inherent maintainability and thus determine the related
maintenance burden and affect system availability.

It is apparent, from the definition of maintainability, that the ability and
need to perform maintenance actions is the underlying consideration when
assessing maintainability. The factors which affect the frequency with which
maintenance is needed are reliability and the preventive maintenance schedule.
Those which affect the ability to perform ❑ aintenance on a given weapon system
may be broken down into three categories: the physical design of the system,
the technical personnel performing the maintenance and the support facilities
required.

The consideration of maintenance when designing a system is not new. There
have been very successful efforts in the development of automatic check out
and design for accessibility, etc. What is new is the emphasis on quanti-
tative treatment and assessment which results in a complete change in design
philosophy, design approach and design management. In the past, design for
“maximum” or “optimum” reliability and maintainability was emphasized. This
resulted in “unknown” reliability and maintainability. New techniques permit
us to bring qualitative design judgments into an area of quantitative measure-
ment. We can thus establish quantitative design goals and orient the design
to specific mission thresholds, not to “optimum” or “maximum” goals. Main-
tainability design considerations and testing intended to assess system
maintainability characteristics must be based on established quantitative re-
quirements (thresholds and goals). In addition to verifying these values, the
maintainability test and evaluation program also should address the impact of
physical design features and maintenance action frequency on system main-
tenance.

Some physical design features affect the speed and ease with which maintenance
can be performed. These features and pertinent questions are:

- Accessibility: Can the item to be repaired or adjusted be reached
easily?

- Visibility: Can the item being worked on be seen?
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- Testability: Can system faults be detected and isolated to the faulty
replaceable assembly level?

- Complexity: How many subsystems are in the system? HOW many parts
are used? Are the parts standard or special-purpose?

- Interchangeability: Can the failed or malfunctioning unit be “swapped
around” or readily replaced with an identical unit with no need for
recalibration?

In addition to the listed physical design factors, the frequency with which
each maintenance action must be performed is a major factor in both corrective
and scheduled or preventive maintenance. Thus , reliability could have a
significant impact on corrective maintenance, and such design features as
self-check-out, reduced lubrication requirements and self-adjustment would
affect the need for preventive maintenance.

Personnel and human factor considerations are of prime importance. These
considerations include the experience of the technician, training, skill
level, supervision required, supervision available, techniques used, physical
coordination and strength and number of technicians and teamwork requirements.

Support considerations cover the logistics system and maintenance organization
required to support the weapon system. They include availability of supplies,
spare parts, technical data (TOS and ❑ anuals), built-in test equipment, ex-

ternal test equipment and required tools (standard or special) and servicing
equipment.

While some elements of maintainability can be assessed individually, it should
be obvious that a true assessment of system maintainability generally must be
developed at the system level under operating conditions and using production
configuration hardware.

QUANTITATIVE MAINTAINABILITY INDICES

The following paragraphs describe the various
quantify maintainability. It is important to

mathematical indices used to
remember, however, that these

relationships merely categorize data derived from planned testing. For main-
tainability, the test plaming phase is equal in importance to the assessment
phase. Testing that does not adequately demonstrate the effect of the above
physical design features and personnel and support aspects provides data that
effectively conceal the impact of these critical elements.

Indices used to support maintainability analysis must be composed of measur-
able quantities, must provide effectiveness-oriented data and must be readily
obtainable from operational and applicable development testing. If they are,
system designers, users and testers can evaluate candidate system character-
istics and logistics and maintenance practices more precisely.
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Mean-Time-to-Repair (MTTR) or Met

MTTR is the total corrective maintenance down time accumulated during a spe-
cific period divided by the total number of corrective maintenance actions
completed during the same period. MTTR commonly is used as an on-equipment
measure but can be applied to each maintenance level individually. The MTTR
considers active corrective maintenance time only. Because the frequency of
corrective maintenance actions and the number of man-hours expended are not
considered (clock hours are used) , this index does not provide a good measure
of the maintenance burden.

Maximum-Time-to-Repair (MaxTTR) or MmaxC

MmaxC is the maximum corrective maintenance down time within which either 90
or 95 percent (as specified) of all corrective maintenance actions can be
accomplished. An MmaxC requirement is useful in those special cases in which
there is a tolerable down time for the system. Ideally, we would like to be
able to state an absolute maximum, but this is impractical because there will
inevitably be failures that require exceptionally long repair times. A 95th
percentile MmaxC specification requires that no more than 5 percent of all
corrective maintenance actions take longer than MmaxC.

Maintenance Ratio (MR)

MR is the cumulative number of man-hours of maintenance expended in direct
labor during a given period of time, divided by the cumulative number of
end-item operating hours (or rounds or miles) during the same time. The MR is
expressed at each level of maintenance and summarized for all levels of main-
tenance combined. Both corrective and preventive maintenance are included.
Man-hours for off-system repair of replaced components and man-hours for daily
operational checks are included for some classes of systems.

Particular care must be taken that the operating hour base be clearly defined.
For example, in the case of combat vehicles, either system operating hours or
engine hours could be used.

The MR is a useful measure of the relative maintenance burden associated with
a system. It provides a means of comparing systems and is useful in determin-
ing the compatibility of a system with the size of the maintenance organiza-
tion.

For fielded systems, the MR is useful in maintenance scheduling. Some care
must be exercised in relating the MR to maintenance costs, because an in-house
maintenance organization will have a fixed labor cost, independent of the
amount of actual use of the system, but principally fixed by the size of the
maintenance staff.

Mean-Time-Between-Maintenance-Actions (MTBMA)

MTBMA is the mean of the distribution of the time intervals between either
corrective maintenance actions, preventive maintenance actions or all mainte-
nance actions. This index is frequently used in availability calculations and
in statistically-oriented maintenance analyses.
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Average Number of Technicians Required

The average number of technicians required at each maintenance level provides
a quantitative means of expressing the personnel aspects of the overall main-
tenance concept. This index also provides a conversion factor from active
down time to labor hours.

Off-System Maintainability Indices

The indices MTTR, MmaxC and MR all specifically exclude off-system maintenance
actions. Off-system measures are particularly important if a system’s mainte-
nance concept involves extensive use of modular removal and replacement, since
this type of concept transfers the maintenance burden to off-system mainte-
nance. As an assessment tool, off-system maintainability measures are es-
sential. Without them, it is not possible to assess the ability of combat
environment off-system repair and logistics capability to maintain the system.
Because of the system-peculiar nature of these parameters, none are specified
here. Suffice it to say that a complete set of on- and off-system indices is
required to adequately assess system maintainability and total maintenance
burden.

Annual Support Cost (ASC)

This is the direct, annual cost of maintenance personnel, repair, parts and
transportation for all corrective (either on-system, off-system or both) and
preventive maintenance actions when the system operates X hours per year
during the Nth year of M years service life, where the system is defined as Y
units of item A, Z units of item B, etc.

The ASC provides another means of quantifying the ❑ aintenance burden of a
system. The unique feature of the ASC measure is the recognition that mainte-
nance requirements may not be uniform over the life of a system. For example,
a combat vehicle will experience a high-cost year when its engine requires
replacement or overhaul. This measure provides a means of interrelating
durability requirements and policies for scheduled maintenance.

Case Study No. 3-1 illustrates the use of several maintainability indices.

DIAGNOSTIC SYSTEMS

Introduction

One aspect of maintainability that has received significant attention in
recent system designs is the use of automatic diagnostic systems. Thes e
systems include both internal or integrated diagnostic systems, referred to as
built-in-test (BIT) or built-in-test-equipment (BITE), and external diagnostic
systems, referred to as automatic test equipment (ATE), test sets or off-line
test equipment. The following discussion will focus on BIT but most of the
key points apply equally to other diagnostic systems.
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Need for Automatic Diagnostic Systems - BIT

As technology advances continue to increase the capability and complexity of
modern weapon systems, we are relying more on the use of automatic diag-
nostics, i.e., BIT, as a means of attaining the required level of failure
detection capability. Our need for BIT is driven by operational availability
requirements which do not permit the lengthy MTTRs associated with detecting
and isolating failure modes in microcircuit technology equipment. We also
find that because BIT operates within the basic system and at the same func-
tioning speed, it therefore affords us the capability to detect and isolate
failures which conventional test equipment and techniques could not provide.
Finally, a well designed BIT system can substantially reduce the need for
highly trained field level maintenance personnel by permitting less skilled
personnel to locate failures and channel suspect hardware to centralized
intermediate repair facilities which are equipped to diagnose and/or repair
defective hardware.

As we shall discuss, BIT is
tenance problems but rather
plexity of modern electronic

not a comprehensive solution to all system main-
a necessary tool required to deal with the com-
systems.

Specifying BIT Performance

One of the more complex tasks inherent in the acquisition of modern systems is
the development of realistic and ❑ eaningful operational requirements and their
subsequent conversion into understandable and achievable contractual speci-
fications. This situation is equally applicable to BIT. Before discussing
this topic in more detail, we will present typical performance measures or
figures of merit which are used to specify BIT performance.

Percent Detection. The percent of all faults or failures that the BIT system
detects.

Percent Isolation. The percent of detected faults or failures that the system
will isolate to a specified level of assembly. For example, the BIT might
isolate to one box or to three or less printed ~“ircuit boards in a box.

Automatic Fault Isolation Capability (AFIC) . The AFIC is the product of per-
cent isolation times percent detection.

AFIC = % detection x % isolation

Percent of False Alarms. The percent of the BIT indicated faults where, in
fact, no,failure is found to exist.

Percent of False Removals. The percentage of units removed because of BIT
indications which are subsequently found to test “good” at the next higher
maintenance station.

For each of the above parameters, there is a considerable span of interpreta-
tion. For example, does the percent detection refer to failure modes or the
percentage of all failures that could potentially occur? Does the detection
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capability apply across the failure spectrum, i.e. , ❑ echanical systems, in-
strumentation, connections and so ftare, or is its diagnostic capability ap-
plicable only to electronic hardware systems?

A major contractual issue relates to the definition of failure. Should BIT
performance be viewed in terms of “BIT addressable” failures , which normally
exclude cable/connector, etc. J problems as not contractually chargeable! or in
terms of all operationally relevant maintenance actions?

An important consideration relates to exactly what failures BIT can detect.
Our BIT system will operate ineffectively if the 80% of detectable failures
occur infrequently while the remaining 20% occur with predictable regularity.
It, therefore, becomes important to specify BIT performance measures in rela-
tion to overall mission availability requirements.

Relative to isolation characteristics
basic system is

, will the BIT isolate failures while the
in an operational mode, or must the basic system be “shut

down” to permit the isolation software package to be run? How does this
characteristic impact mission requirements? Also, to what “level” will the
BIT system isolate failures? Early BIT systems were frequently designed to
fault isolate to the module level. This resulted in BIT systems as complex
as, and frequently less reliable than, the basic system. The current trend is
to isolate to the subsystem or box level based on BIT’s ability to detect ab-
normal output signal patterns. Intermediate and depot level maintenance
facilities will frequently use BIT or external diagnosic equipment to isolate
to the board or piece-part level.

The percent of false alarms is a difficult parameter to measure accurately
because an initial fault detection followed by an analysis indicating that no
fault exists can signify several different occurrences, such as:

- The BIT system erroneously detected a fault.

- An intermittent out-of-tolerance condition exists--somewhere.

- A failure exists but camot be readily reproduced in a maintenance
environment.

The percent of false
False removals may be

- Incorrect BIT

removals can be a more difficult problem to address.
caused by:

logic.

- Wiring or connection problems which manifest
equipment.

- Improper match of tolerances between the BIT and
next higher maintenance level.

themselves as faulty

test equipment at the

The resolution of each t~e of false alarm and false removal requires a sub-
stantially different response. From a logistic viewpoint, false alarms often
lead to false removals creating unnecessary demands on supply and maintenance
systems. Of potentially more concern is the fact that false alarms and
removals create a lack of confidence in the BIT system to the point where
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maintenance or operations personnel may ignore certain fault detection indica-
tions. Under these conditions, the BIT system in particular and the mainte-
nance concept in general cannot mature nor provide the support required to
meet mission requirements.

The specification of BIT performance must be tailored to the specific system
under consideration as well as the available funds and, most importantly, the
overall mission requirements. This tailoring activity must include a compre-
.hensive definition of BIT capability based upon the figures of merit presented
above.

Characteristics External to BIT

There are two important considerations, external to BIT, which must be ad-
dressed in any discussion of BIT and diagnostics. First, reliable performance
of the weapon system determines, to a large extent, the criticality of BIT
performance. If the basic system is very reliable, more than expected, a
shortfall in the BIT performance may have very limited impact on the system’s
operational utility. Second, it must be remembered that generally all system
faults that are correctable by maintenance action must eventually be detected
and isolated. Therefore, the techniques, tools, manuals, test equipment and
personnel required to detect and isolate non-BIT detectable faults can be a
major maintenance consideration.

The following example illustrates the impact of BIT on the overall maintenance
effort. It further attempts to illustrate the effect of external factors on
BIT performance.

Case Description. An attack aircraft radar is composed of five line replace-
able units (LRUS) with the following BIT and system performance character-
istics.

System:

MTTR (w/BIT):

MTTR (no/BIT):

MFHBF :

Time Period of Interest:

BIT Specified:

Five (5) LRUS

2 hours (includes failures which have been
both detected and isolated)

5 hours (includes failures
been isolated but ❑ ay have

50 flying hours

2500 flying hours

Percent detection = 90’%

which have not
been detected)

Percent isolation = 90% (to the LRU level)
False alarm rate = 5% (of all BIT indications)

NOTE : Operating time is assumed to be flight time for this example.

Before beginning the analysis of this system, note that we have specified a
relatively high capability BIT system. An off-handed examination would likely
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conclude that with this extensive BIT coverage there is minimal additional
maintenance action required.

- How many total failures will be experienced (on the average) during
the 2500 flying hours?

2500 total hours + 50 mean hours between failures = 50 failures

- How many of these failures (on the average) will BIT detect?

50 failures x 90% = 45 BIT detected failures

- How many detected failures (on the average) will be isolated to an
mu?

45 detected failures x 90% isolation Z 40 failures

- What is the Automatic Fault Isolation Capability (AFIC)?

AFIC = ~ detection x % isolation (LRU level)

= 0.9 X 0.9 = 0.81 = 81%

- How many false alarm indications are expected to occur during the 2500
flight hours?

Total BIT indications = true failure detections + false alarms

and,

x = (BIT detection rate)(total failures)
+(false alarm rate)(total BIT indications)

x = (0.90)(50) + (0.05)(X)

(1-O.05)X = 45

X = 47.36

Therefore,

False Alarms = total BIT indications - true indications

=47.36 - 45

= 2.36
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- What is the total corrective maintenance time (on the average) re-
quired to repair the 40 detected/isolated failures?

Time = 40 failures x 2 hours (MTTR w/BIT) = 80 hours

- What is the total corrective maintenance time (on the average) re-
quired to repair the remaining 10 no/BIT detected/isolated failures?

Time = 10 failures x 5 hours (MTTR no/BIT) = 50 hours

- If we assume that
resolve the false
maintenance time is

Total (no/BIT)

- What is the total
the 2500 hours?

manual or no/BIT maintenance time is required to
alarm indications, what total no/BIT corrective
required for the 2500 flying hour period?

time = no/BIT failure repair time

+ false alarm maintenance time

= (10)(5) + (2)(5) = 60 hours

corrective maintenance time Mt anticipated during

Mt = BIT maintenance + no/BIT maintenance = 80 + 60 = 140 hours

- Note that even with a relatively high AFIC of 81% the no/BIT oriented
corrective maintenance represents 43% of the total anticipated cor-
rective maintenance hours.

- Note that we have not considered the impact of any scheduled/
preventive maintenance for our system. This additional maintenance is
generally not associated with BIT.

The information presented in this example is greatly simplified in that we
have ignored many of the pitfalls and controversial areas discussed in the
previous sections. Also note that we are basically dealing with planning type
information in that we are assuming that the BIT AFIC will be 81%. If, in
fact, the AFIC is 81% then 57% of the ❑ aintenance effort will be oriented
toward BIT detected/isolated failures. If the true AFIC is found to be lower,
it will be necessary to reevaluate the overall effectiveness of the entire
maintenance and logistics programs as well as total mission effectiveness.
Our next section discusses some of the difficulties involved in the design and
evaluation of a BIT system which ❑ ust perform in accordance with established
specifications.

Basic System/BIT Development and Evaluation Considerations

The development and evaluation of BIT and diagnostics has traditionally been
an activity that has chronologically followed basic system efforts. The argu-
ment usually presented is that “the basic system has to be designed and evalu-
ated before we know what the BIT is suppose to test.”

.—
This argument has some

basis in fact, but there are significant drawbacks associated with lengthy
schedule differentials between basic system and BIT design and testing. For
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example, design considerations relating to the basic system such as partition-
ing and subsystem layout determine to a large extent the required BIT design.
The BIT design is also driven by the prediction and occurrence.of basic system
failures modes which BIT is expected to address. Consequently, the two design
efforts cannot be conducted in isolation from one another.

From an evaluation viewpoint, conducting the BIT evaluation after the basic
system tests are completed may preclude BIT improvement options from being in-
corporated because the already finalized basic system design would be sub-
stantially impacted. Likewise, an inadequate evaluation of BIT which leads to
an erroneous confirmation of its capabilities (AFIC) will result in a sub-
stantial impact to system operational effectiveness.

Determination of Basic System Failure Modes and Frequency of Occurrence

The design of BIT is based upon two assumptions regarding the reliability of
the basic weapon system: accurate identification of failure modes and correct
estimation of the frequency of occurrence of the failure modes. If either of
these assumptions is proven incorrect by test or operational experience, the
resultant BIT performance is likely to be inadequate or at least less effec-
tive than anticipated. The following two situations, based on the previous
example, will illustrate the impact of these two assumptions.

- Situation 1. An unforeseen failure mode is observed in the radar
system every 250 flying hours. What impact does this have on the
no/BIT maintenance?

New failures = 2500 flying hours x 1 failure per 250 hours

= 10 failures (new).

Maintenance time associated with no/BIT detected failures

= 10 x 5 hours/failure

= 50 hours.

Total Maintenance hours = 80 + 60 + 50 = 190 hours.

Total no/BIT maintenance = 60 + 50 = 110 hours.

This represents 58% of total maintenance.

BIT (detected/isolated) maintenance = 80 hours = 42% of total.

This represents 42% of total maintenance.

Note that the discovery of one unforeseen, no/BIT detectable failure
has a relatively significant~pact on the comparable magnitude of the
two maintenance percentages.
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TABLE 3-1. PERCENT OF TOTAL MAINTENANCE HOURS

BIT No/BIT

Previous Estimate 57% 43%

Current Estimate 42% 58’%
(including new failure)

- Situation 2. One of the original BIT detectable
dieted to have a very low frequency of occurrence.
this failure was considered unnecessary and was,

failures was pre-
BIT detection for

therefore, not in-
cluded in the original BIT design to detect 90% of the fail”ures. It
is now found that the failure occurs five times as often as expected.
This is a realistic situation and one which
no/BIT maintenance man-hours.

Test and Evaluation of BIT Systems. The test and
and the reliable prediction of BIT performance are
following paragraphs present some of the factors

again directly impacts the

evaluation of BIT systems
areas of controversy. The
supporting this statement.

BIT systems are hardware/software logic networks designed to detect the
presence of an unwanted signal or the absence of a desired signal, each rep-
resenting a failure mode. Each failure mode is detected by a specific logic
network tailored to detect a specific failure. While the same network may be
designed to detect a specific failure in several components, there is no
assurance that the logic is correct until verified by test. It is possible to
project, using statistical techniques, BIT performance assuming we have a
large enough representative sample of failures.

Unlike reliability testing which has matured over the past 40 years, BIT
testing and BIT system design represent less mature technologies and are just
now beginning to receive increased management emphasis. This lack of maturity
and attention has resulted in circumstances which are not conducive to gather-
ing an adequate size, representative data base needed to support accurate and
defendable estimates of BIT performance at decision milestones. A lack of
confidence in BIT performance assessments has resulted because of these cir-
cumstances.

Since we are not content nor have the time to just wait for the basic system
to experience random failures, we decide to “cause” failures using “synthetic
fault insertion.” These faults are generally selected from a contractor-
provided list of possible faults-- all of which are thought to be detectable.
We insert these faults and BIT detects and isolates 93% of those inserted.
This does not mean that we have a 93% AFIC BIT system. Why? Because the data
is not a representative random sample of the entire failure population and,
therefore, cannot be used to make statistically valid predictions of future
performance.

While synthetic fault insertion has recognized limitations in predicting
future operational BIT performance, it is a valuable and necessary tool during
the engineering development phase. Also , fault insertion can be used to
simulate random failures which we know will occur but as yet have not been
detected during DT or OT testing. These include problems such as faulty
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connector and circuit board plug-in points as well as the effects of poor
maintenance or rough handling.

Because of the lack of system maturity (especially software) and the required
use of fault insertion, we find that there is normally insufficient good data
available to support early, accurate and defendable estimates of BIT perform-
ance. It has generally required a few years of operational exposure to de-
velop an adequate data base to support a BIT performance analysis.

Current trends support early reliability testing during development to facil-
itate identification of failure modes and timely incorporation of design
improvements. These tests provide a data base to support preliminary esti-
mates of system reliability. What is most frequently overlooked is that this
data, after minimal screening, could also be used to monitor, verify, and
upgrade BIT performance, assuming, of course, that the BIT system is
functional at this stage in development. This action requires a disciplined
approach toward the use of BIT in failure detection early in the development
cycle which has not been prevalent in previous programs.

In summary, there is, and will remain, a requirement to assess BIT performance
during the system development and Initial Operational Test and Evaluation
(IOT&E) phase. The developing and testing organizations must support this
assessment using all available data. This includes combining random failure
detection data with data from contractor demonstrations and fault insertion
trials . Early emphasis on BIT design will generally result in accelerated BIT
system maturity and more accurate early projections of BIT performance. BIT
assessment should be actively pursued throughout the deployment phase to
assure that required software and hardware changes are incorporated.
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CASE STUDY NO. 3-1

Background

A system has a mean time to repair (MTTR) of 30 minutes, and a mean time
between unscheduled maintenance actions (MTBUMA) of 50 hours. The intended
utilization (actual hours of operation) of the system is 5,000 hours per year.

Determine

1. How many

2. How many
year?

unscheduled maintenance actions are to be expected each year?

clock-hours of unscheduled maintenance are to be expected each

‘3. If an average of 1.5 technicians is required to perform unscheduled
maintenance, how many’ corrective maintenance man-hours are required each year?

4. Ten hours of scheduled maintenance are required every 1,000 hours of
operation. Scheduled
maintenance ratio (MR)

Solution

MTTR = 30 minutes

MTBUMA = 50 hours

5,000 hours/year

maintenance requires only one technician. What is the
for this system?

1.
5000Unscheduled maintenance actions ‘ ~ = 100/year

2. 30 ❑ inutes x 100 = 3000 ❑ inutes = 50 “hours
50 hours mean repair time/year

3. 1.5 x 50 = 75 man-hours/year

4. Scheduled maintenance = 10 x 5 = 50 man-hours/year

MR= maintenance man-hours
operating hours

50 + 75MR = 5000

MR= 0.025
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CHAPTER 4

AVAILABILITY

INTRODUCTION

Availability is the parameter
ability characteristics into
question, “Is the equipment

that translates system reliability and maintain-
an index of effectiveness. It is based on the
available in a working condition when it is

needed?t’ The ability to answer this question for a specific system represents
a powerful concept in itself, and there are additional side benefits that
result. An important benefit is the ability to use the availability analysis
as a platform to support both the establishment of reliability and maintain-
ability parameters and trade-offs between these parameters. As part of our
review of availability, we will separate maintainability into its components
(preventive and corrective maintenance and administrative and logistics delay
times) to determine the impact of these individual elements on overall system
availability.

DEFINITION OF AVAILABILITY

Availability is defined as a measure of the degree to which an item is in an
operable and committable state at the start of a mission when the mission is
called for at a random point in time.

ELEMENTS OF AVAILABILITY

As is evident by its very nature, approaches to availability are time-related.
Figure 4-1 illustrates the breakdown of total equipment time into those time-
based elements on which the analysis of availability is based. Note that the
time designated as “off time” does not apply to availability analyses because
during this time system operation is not required. Storage and transportation
perio~s are examples of “~ff time”.

FIGIJRE 4-I. BRE AKDOWN  OF  T OT AL  E QU I PME N T  T IME

* T O T A L  T I M E  ( T T )

DOWN -
T I M E

&ACTIVE- I-o ELAY~
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The letters “C” and “P” represent those periods of time attributed to cor-
rective or preventive maintenance, respectively, which are expended in active
repair of hardware or in waiting (delay) for resources to effect needed
repairs. This waiting or delay period can further be subdivided into admin-
istrative and logistics delay periods.

DEFINITION OF TERMS

Definitions of commonly used availability elements are given below. Several
are displayed pictorially in Figure 4-1.

TT

TCM

TPM

ALDT

TMT

TDT

OT

ST

MTBF

MTBM

MTBUMA

MDT

MTTR

Total intended utilization period, total time.

Total corrective (unscheduled) maintenance time per specified
period.

Total preventive (scheduled) maintenance time per specified
period.

Administrative and logistics down time spent waiting for parts,
administrative processing, maintenance personnel, or transpor-
tation per specified period. See Figure 4-1, Delay-Down Time
(no maintenance time).

Total maintenance time = TCM + TPM. See Figure 4-1, Active-Down
Time.

Total down time = TMT + ALDT.

Operating time (equipment in use). See Figure 4-1.

Standby time (not operating but assumed operable) in a specified
period. See Figure 4-1.

Mean time between failures.

Mean time between maintenance actions.

Mean time between unscheduled maintenance actions (unscheduled
means corrective).

Mean down time.

Mean time to repair.

MATHEMATICAL EXPRESSIONS OF AVAILABILITY

The basic mathematical definition of

Availability = A = To~lT~me =

availability is

Up Time
Up Time + Down Time “

(4.1)
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Actual assessment of availability is accomplished by substituting the time-
based elements defined above into various forms of this basic’ equation.
Different combinations of elements combine to formulate different definitions
of availability.

Operational availability is the most desirable form of availability to be used
in assessing a system’s combat potential. Achieved, and to a lesser degree
inherent availability are primarily the concern of the developing agency in
its interface with the contractor and other co-developing agencies.

Ao is an important measure of system effectiveness because it relates system
hardware, support and environment characteristics into one meaningful
parameter-- a figure of merit depicting the equipment state at the start of a
mission. Because it is an effectiveness-related index, availability is used
as a starting point for nearly all effectiveness and force sizing analyses.

Inherent Availability (Ai)

Under certain conditions, it is necessary to define system availability with
respect only to operating time and corrective maintenance. Availability
defined in this manner is called inherent availability (Ai).

MTBF
‘i = MTBF + MTTR

Under these idealized
associated with scheduled or preventive maintenance, as well as administrative
and logistics down time. Because only corrective maintenance is considered in
the calculation, the MTBF becomes MTBUMA, and, likewise, MTTR is calculated
using only times associated with corrective maintenance.

(4.2)

conditions, we choose to ignore standby and delay times

Inherent availability is useful in determining basic system operational char-
acteristics under conditions which might include testing in a contractor’s
facility or other controlled test environment. Likewise, inherent avail-
ability becomes a useful term to clescribe combined reliability and maintain-
ability characteristics or to define one in terms of the other during early
conceptual phases of a program when, generally, these terms cannot be defined
individually. Since this definition of availability is easily measured, it is
frequently used as a contract-specified requirement.

As is obvious from this definition, inherent availability provides a very poor
estimate of true combat potential for most systems, because it provides no
indication of the time required tc, obtain required field support. This term
should normally not be used to support an operational assessment.

Case Study No. 4-1 displays the usefulness of inherent availability.

Operational Availability (Ao)

Operational availability, unlike inherent availability, covers all segments of
time that the equipment is intended to be operational (total time in
Figure 4-l). The same up-down time relationship exists but has been expanded.
Up time now includes operating time plus nonoperating (stand-by) time (when
the equipment is assumed to be operable). Down time has been expanded to
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include preventive and corrective maintenance and associated administrative
and logistics lead time. All are measured in clock time.

Operational Availability = Ao =
OT + ST

OT + ST + TPM + TCM + ALDT - (4.3)

This relationship is intended to provide a realistic measure of equipment
availability when the equipment is deployed and functioning in a combat en-
vironment. Operational availability is used to support operational testing
assessment, life cycle costing, and force development exercises.

One significant problem associated with determining Ao is that it becomes
costly and time-consuming to define the various parameters. Defining ALDT and
TPM under combat conditions is not feasible in most instances. Nevertheless,
the operational availability expression does provide an accepted technique of
relating standard reliability and maintainability elements into an
effectiveness-oriented parameter. As such, it is a useful assessment tool.

Case Study 4-4 illustrates how this relationship can be used to define and
analyze the various elements of reliability and maintainability. Case Study
4-2 illustrates the calculation of Ao.

One important aspect to take note of when assessing Ao is that it is affected
by utilization rate. The less a system is operated in a given period, the
higher Ao will be. It is important therefore when defining the “total time”
period to exclude lengthy periods during which little or no system usage is
anticipated. Case Study 4-3 attempts to display this characteristic of Ao.

One other frequently encountered expression for operational availability is

MTBM
‘0 = MTBM + MDT . (4.4)

where

MTBM = mean time between maintenance actions and MDT = mean down time.

While maintenance-oriented, this form of Ao retains consideration of the same
basic elements. The MDT interval includes corrective and preventive mainte-
nance and administrative and logistics down time. This form of the Ao rela-
tionship would generally prove more useful in support of early maintenance
parameter sensitivity and definition analysis. Note that the above definition——
assumes that standby time is zero.

Achieved Availability (As)

This definition of availability is mathematically expressed as

OT
‘ a =O T + T C M + T P M ” (4.5)

Aa is frequently used during development testing and initial production test-
ing when the system is not operating in its intended support environment
Excluded are operator before-and-after maintenance checks and standby, SUpply,
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and administrative waiting periods. Aa is much more a system hardware-
oriented measure than is operational availability, which considers operating
environment factors. It is, however, dependent on the preventive maintenance
policy, which is greatly influenced by non-hardware considerations.

A GENERAL APPROACH FOR EVALUATING AVAILABILITY

The following paragraphs present a generalized approach for evaluating system
availability. It is important to note that for such an analysis to be mean-
ingful to an equipment user or developer it must reflect the peculiarities of
the system being considered.

General Procedure

1. The operational and maintenance concepts associated with system utiliza-
tion must be defined in detail using terminology compatible with the user,
developer and contractor.

2. Using the above definitions, construct a time line availability model
(see Figure 4-2) which reflects the mission availability parameters.

F I G U R E  4 - 2 M I S S I O N  A V A I L A B I L I T Y  T I M E  L I N E  M O D E L  G E N E R A L I Z E D  F O R M A T

IL TT

H

NOTE : Figure 4-2 displays elements of availability frequently included in a
quantitative assessment of availability. The up or down status of a. specific system during preventive maintenance must be closely examined.
Generally, a portion of the preventive maintenance period may be con-
sidered as uptime. Cold standby time must also be examined closely
before determining system up or down status during this period.

3. With the aid of the time line model, determine which time elements rep-
resent “uptime” and “downtime.” Don’t be mislead by the apparent simplicity
of this task. For example, consider that the maintenance concept may be
defined so that the equipment must be maintained in a committable state during
the performance of preventive maintenance.

Additionally, for multi-mission and/or multi-mode systems, it will be neces-
sary to determine up and down times as a function of each mission/mode. This
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generally will require the use of a separate time line model for each identi-
fiable mission/mode.

Likewise, separate time line models are generally required to support the
availability analyses of systems which experience significantly different
peacetime, sustained combat and surge utilization rates.

4. Determine quantitative values for the individual
‘time line models. Coordinate these values with the
contractor.

time elements of the
user, developer and

5. Compute and track availability using the definitions of availability
appropriate for the current stage of system development.

6. Continue to check availability model status and update the model as
required. Special attention should be given to updating the model as the
operational , maintenance, and logistics support concepts mature.

System Availability Assessment Considerations

As indicated in the above paragraphs, the quantitative evaluation of avail-
ability must be carefully and accurately tailored to each system. For this
reason, no detailed examples are presented in this text. However, the follow-
ing paragraphs do present concepts which will apply to various classes of
systems.

Recovery Time. Normally, availability measures imply that every hour has
equal value from the standpoint of operations and the performance of mainte-

nance and logistics activities. Normally, the operational concept requires
the system to function only for selected periods. The remaining time is
traditionally referred to as “off-time,” during which no activity is
conducted.

An alternative to the “off-time” or “cold. standby” concepts is the use of the
term “recovery time” (RT).

F I G U R E  4 - 3 M I S S I O N  A V A I L A B I L I T Y  T I M E  L I N E  M O D E L  R E C O V E R Y  T I M E  F O R M A T

Recovery time represents an interval of time during which the system may be uP
or down. Recovery time does not appear in the availability calculation which
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is based only on the TT time period. Take special note of the fact that cor-
rective maintenance time (TCM) is found in both TT and RT time intervals.
Corrective maintenance performed during the TT period is maintenance required
to keep the system in a mission ready or available status. Corrective mainte-
nance performed during the RT period generally addresses hardware malfunctions
which do not result in a non mission-ready status.

The principal advantage of using the “recovery time” analysis is that it can
provide a more meaningful availability assessment for systems whose periods of
required availability are predictable and whose preventive maintenance consti-
tutes a significant but delayable portion of the maintenance burden.

The recovery time calculation technique concentrates the availability calcula-
tion during the operational time period, thereby focusing attention on
critical up and down time elements.

The above discussion presents an alternate technique of computing system
availability, i.e., the use of the recovery time concept. Whatever technique
is selected for computing availability, it must be carefully tailored to the
system undergoing assessment

Definition of the terms used in availability analysis must be stressed. For
example, what total time (TT) period has been chosen for an analysis base?
Assume for a moment that we are assessing the AO of an operational squadron
and that we have chosen a 7-day TT period. If the aircraft normally are not
flown on weekends or are left in an up condition on Friday night it is obvious
that Ao will be higher than if a 5-day total time were selected. Reference
the discussion of recovery and standby time. See Case Study 4-3.

Other definitions associated with Ao are not quite so obvious and must be
included in pretest definition. For example, are “before and after” opera-
tional checks conducted in conjunction with preventive maintenance excluded
from down time because the equipment is assumed operable? Similarly, are
corrective maintenance diagnostic procedures logged against down time? What
if the hardware is not found defective? How is ALDT arrived at? Is it as-
sumed, calculated or observed? What is the operational status of a system
during the warm standby period?

HARDWARE REQUIREMENT ESTABLISHMENT AND TRADE-OFFS

The expression for availability frequently provides the vehicle needed to
analyze other system requirements both directly and by way of trade-offs.
Case Studies 4-4 and 4-5 provide examples of this application.

AVAILABILITY FOR MULTI-MISSION SYSTEMS

For many modern weapon systems, availability is not simply an “up” or “down”
condition. Systems such as AEGIS and HAWK have multi-mission/mode capabili-
ties and thus require detailed techniques to characterize the associated
availability states. While these multi-mission/mode characterizations may
appear different, they are indeed based on the expressions presented pre-
viously. The definition of terms, modes and states is equally important in
the analysis of these complex systems. The reliability of a multi-mission
system is examined in Case Study 2-7.
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SIMULATION MODELS

There are a number of computer simulation models available which are well
suited for evaluating interactions between system design characteristics,
logistic support, and relevant operational output measures such as operational
availability or sortie rate. Examples of such models include LCOM (aircraft),
CASEE and PRISM (carrier-based aircraft), ARMS (Army aircraft), TIGER (Ship
systems), RETCOM (combat vehicles), etc. These models provide visibility of
manpower and test equipment, queueing effects, and the impact of spares stock-
age levels on operational availability, which generally cannot be evaluated
with simple analytical formulas. Simulation models are particularly useful
for using test results to project operational availability under conditions
different from the test environment (e.g., to project availability under
wartime surge conditions). One drawback to simulation models is that they are
usually more cumbersome to use than straightforward analytical techniques.

4-8

Downloaded from http://www.everyspec.com



CASE STUDY NO. 4-1

Background

Early in the development phase of a new avionics system, it is determined that
an inherent availability of 0.92 is required. The reliability and maintenance
engineering personnel in the program office desire to analyze only what effect
this requirement has on the relationship between their disciplines, which is
appropriate in a first-look consideration.

Determine

How can this analysis be accomplished?

Solution

A straightforward analysis can be conducted by using the definition of Ai.
Remember Ai does not consider delay times nor preventive maintenance. Should
the engineers so desire and if it is considered important for this system,
they could redefine MTTR to include all maintenance.

Al = MTBF
MTBF + MTTR = 0.92

MTBF = (0.92)(MTBF + MTTR)
MTBF = (11.5)(MTTR) or
MTTR = (0.09)(MTBF)

The function MTTR = (0.09)(MTBF),  may be used directly, or it maybe plotted
as shown below. The graph is a straight line, passing through the origin,
with a slope of 0.09. For the same form of equation, the general solution is
MTTR = [(1-A)/A] (MTBF), where A is inherent availability.

A  P L O T  O F :
1 MTTR :(0.09)(MTBF)

M T T R

.-—— ———— ——

1
MT8F
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CASE STUDY NO. 4-2

Background

A system has an MTTR of 30 minutes and an MTBUMA of 50 hours. The intended
utilization of the system is 5:000 hours per year. Ten hours of preventive
maintenance are required for each 1,000 hours of operation. A mean admin-
istrative and logistic delay time of approximately 20 hours is associated with
each unscheduled maintenance action.

Determine

For a one-year period, determine OT, TCM, TPM, ALDT, ST, Ao, Aa, and Ai for a
utilization of 5,000 hours per year. Determine Ao if MTTR were reduced to
zero. Determine the maximum number of operation hours in a year - Compare Ao
and Ai.

Solution

TT = (365)(24) = 8,760 hours

OT = 5,000 hours

TCM = 5;~00 (0.5) = 50 hours

TPM = & (5,000) = 50 hours
9

ALDT = 5;~00 (20) = 2,000 hours

ST = 8,760 - (5,000+50+50+2,000) =8,760 - 7,100= 1,660

Ao = 5 , 0 0 0  +  1 , 6 6 0  =
8 , 7 6 0

Aa = 5 , 0 0 0
5 , 0 0 0  +  5 0  +  5 0

0.76

= 0.98

Ai = 5 , 0 0 0
5 , 0 0 0  +  50 =  0.99

If MTTR (for corrective maintenance only) were reduced to essentially zero

Ao = 5,000 + (1,660+50) = 6,710
5,000 + (1,660+50) + 50 + O + 2,000 8,760

Ao = 0.77

NOTE : 50 hours added to numerator represents additional available standby
time. This time had been spent on repair when MTTR was non-zero.
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Assuming ST = O, the maximum possible operating hours in a year can be deter-
mined as follows:

Ao = 5,000
5,000 + 50 + 50 + 2,000 = 0“704

(Ao)(hours/year) = (0.704)(8,760) = 6,153 hours maximum.

An alternative method for determining maximum possible operating hours assum-
ing ST = O is to solve the following equation for x.

8760 -$x+~x+~ X=X,1000

where

0 . 5— x = T C M
5 0

& x = TPM

~ x = ALDT,

The solution is x = 6,169. The difference in the two values occurs as a
consequence of rounding Ao (0.704) to three significant digits.
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CASE STUDY NO. 4-3

Background

Test planning requires that an assessment be made of some basic program re-
quirements . During this assessment, you observe that some of the assumptions
concerning availability assessment are questionable. Consider the case where
system availability is being computed, and let us assume that we have the
option of using either a 5-day test period or a 7-day test period. Note that
neither system utilization nor maintenance occurs on 2 of the 7 days. A close
review of these conditions is warranted, particularly one which permits the
utilization of a 7-day week for total time when in fact additional system
usage does not occur during 2 days of this period.

Determine

What is the impact of the utilization period choice on Ao?.

For purposes of this review, we will utilize the following parameters:

OT = 10 hours
TPM = 5 hours
TCM = 60 hours
ALDT = 22 hours

Solution

OT + ST
‘0 = OT + ST + TPM + TCM + ALDT

For: Z_.!Z!E

OT = 10 hours
ST = 158 hours

Ao = 168
168 + 87

Ao = 0 . 6 6

Commentary

OT = 10 hours
ST = 110 hours

Ao . 120
1 2 0  +  8 7

Ao = 0.58

Note the higher value obtained by including the two additional non-usage days.
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CASE STUDY NO. 4-4

Background

Because operational availability is a composite of system, support, and en-
vironmental factors, it is a useful tool in conducting analyses of the various
parameters. The following is an example of this analysis.

Determine

Develop an expression which defines MTBF as a function of OT, TT, avail-
ability, and logistics down time.

Solution

We start with the expression for operational availability:

OT + ST
‘ O =O T + S T + T P M + T C M +  ALDT’

Since TPM + TCM + ALDT = TDT, total down time,

*O . OT +  ST
0T+ST+TDT4

The denominator of this equation is total time,

OT + ST + TDT = TT,

and the numerator equals total time less TDT, thus

AO=TT-TDT
TT

TDT
‘ O = l -T T  ‘

(1)

(2)

(3)

Define DTF as the down time per failure. It is necessary to base the Ao value
on MTBF so that the MTBF may be isolated and computed.

R
The number of failures, r, is equal to OT/MTBF. Total down time is then’

TDT = (DTF)(OT/MTBF)  + TPM + (ALDT) . Assume (ADLT)P ~ O.
P

Substituting this expression in the last equation of step 3, we obtain

Ao=l- (DTF) (OT) TPM ,-—
(TT)(MTBF) TT (4)
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Solving for the MTBF, we obtain

MTBF = (DTF)(OT)
(1-Ao)(TT) - TPM “

(5)

Using the following values

TT = 90 days x 24 hrs/day = 2,160 hours

OT = 23 missions x 40 hours per mission = 920 hours

DTF = 24 hours per failure

TPM = 100 hours

and substituting into (5), we obtain

MTBF = (24)(920)
(1-0.8)(2,160) - 100 =50.0 hours.

NOTE : When using this definition of MTBF, it is important to verify that the
standby time is not forced below a zero value by erroneously defining
OT, TDT, and TT.
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CASE STUDY NO. 4-5

Background

A system currently in late development has exhibited an operational availabil-
ity of 0.66. The user has stipulated that an operational availability of a
0.75 minimum is required. In order to improve system operational availabil-
ity, it is decided to change the maintenance concept on several 10W-
reliability units. The current circuit card remove/replace concept will be
changed to a black box remove/replace. The following tabulations list the
characteristics of the existing equipment and those desired after the system
maintenance concept has been revised in an attempt to improve operational
availability.

Existing Elements Desired Elements

TT = 168 hours TT = 168 hours
TPM = 5 hours TPM = 5 hours
TCM = 60 hours TCM = to be determined
ALDT = 22 hours ALDT = 22 hours
Ao = 0.66 Ao = 0.75

Determine

New required value of TCM which must be realized if the desired Ao increase is
to be achieved.

Solution

Ao = OT + ST TT
OT + ST + TCM + TPM + ALDT = TT + TCM + TPM + ALDT

Ao = 1 6 8 1 6 8
1 6 8 + 5  + T C M + 2 2= T C M +  1 9 5

Since Ao = 0.75,

TCM = 27.4 hours

Commentary

Of course, the reasonableness or attainability
considered. Increased operational availability
creasing TPM or ALDT.

of such a reduction must be
also can be obtained by de-
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CHAPTER 5

MATHEMATICAL MODELS OF RELIABILITY

INTRODUCTION

In a general sense, we can say that the science of statistics attempts to
quantify our uncertainty about the outcome of an experiment or test. Before
we conduct an experiment, we are aware of’ the possible outcomes, but we are
not sure which of the outcomes will actually result. The mathematical model,
a logical extension of our assumptions about the experiment, quantifies our
uncertainty and provides us with a tool for analysis of the outcome.

Suppose that a system is to be put into operation. We know that after a
certain amount of operating time it will experience a failure. We would like
to know when the system will fail. Generally, any prediction about the actual
time of failure will not be accurate enough to be worthwhile. However, we can
address more confidently questions such as: “Will the system operate free of
failure for at least 500 hours?” A model that describes the experiment in
question will help us answer these questions with a certain amount of
assurance.

In this chapter, we consider three models that are pertinent to RAM consid-
erations: the binomial, the Poisson, and the exponential. The binomial and
Poisson are discrete models in that they essentially count numbers of fail-
ures. The exponential model is continuous in that it describes times between
failures . Although the Poisson model addresses discrete events, it is a
continuous time model. It counts failures as they occur over a period of
time, i.e. , the possible outcomes of the experiment, conducted on a continuous
time basis, are enumerated as numbers of failures. This distinction will
become clearer as we contrast the poisson model and the binomial model.

In its most basic form, a mathematical model of a statistical experiment is a
mathematical expression (function) that defines the probability associated
with each of the outcomes of the experiment. For our purposes, we will dis-
cuss the two basic types of models: discrete and continuous. The type of
model--discrete or continuous--is defined by the type of outcome that the
experiment provides.

DISCRETE MODELS

A discrete model is appropriate when the possible outcomes of an experiment
can be enumerated or counted. In its most basic form, the discrete model is a
mathematical expression (function) that defines the probability of each indi-
vidual outcome. A simple example is the following. Suppose a die is to be
tossed once, and the outcome of interest is the number of dots facing up when
the die comes to rest. The outcomes are {1, 2, 3, 4, 5, 6]. If we assume
that the die is “fair, ” the probabilities can be expressed as follows :

P(1) ‘P(2) ‘P(3) ‘P(4) = P(5) =P(6) = I/6.

Graphically, we display the probabilities in Figure 5-1.
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FIGURE 5-1

I 2 3 4 5 6

OUTCOME

Suppose our experiment is to toss two dice , and the outcome of interest is the
sum of the dots facing up. The set of all possible outcomes is {2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12}. The probabilities can be expressed as follows:

P(2) = p(12) = 1/36
P(3) = p(n) = 2/36

p(5) = p( 9) = 4/36

P(4) = P(10) = 3/36
P(6) = p( 8) = 5/36

P( 7) = 6/36.

Graphically, we display the probabilities in Figure 5-2.

FIGURE 5-2

—

2 3 4 5 6 7 8 9 10 II 12

OUTCOME
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GONTINUOUS MODELS

A statistical experiment often results in an outcome that is measured on a
continuous scale. Time and distance are perhaps the most common continuous
variables. In its most basic form, the continuous model is a mathematical
expression (function) useful in computing probabilities of certain outcomes.
It differs from probabilities for discrete models in that it does not define
probabilities directly. Generally, for a continuous model, it only makes
sense to consider the probability of an outcome within a range of values or a
certain interval--between 100 and 150 miles, more than 10 hours. The prob-
ability of an outcome falling within a given range is the area which lies
beneath the continuous model curve over that range. Consider the examples
below.

FIGURE 5-3 GRAPH OF THE EXPONENTIAL MODEL

I
f(x) =e-x

UJ
3
d P(OUTCOME FALLS BETWEEN I and 2)

“IS THE SHADED AREA

U

aso 0.51 I 2
OUTCOME

The probability that an outcome is between 1 and 2 is defined by the area
under the curve between the values 1 and 2. Therefore,

P(outcome falls between 1 and 2)

J 2
e-xd~ = -e-x ~ -1 -2 = o 233= = e - e . .

1

The probability that an outcome is between 0.50 and 0.51 is

I 0.51
e-xdx

0.50

-0.50 -0.51which is e - e or 0.006.
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FIGURE 5-4 GRAPH OF lJNI F O R M  M O D E L

I
f(x) =O.1 FOR IO<X <20

10 J3 16 16.1 20
O U T C O M E

Figure 5-4 illustrates another possible continuous model with the function
being f (x) = O. 1 defined on the interval 10 < x < 20.

The probability that an outcome is less than 13 is

J 13
0.1 dx,

10

which is 1.3-1.0, or 0.3. The probability that an outcome is between 16 and
16.1 is

s 16.1
0.1 dx,

16

which is 1.61-1.60, or 0.01.

BINOMIAL MODEL

The model that is used most commonly to describe the outcomes of success/fail
test programs is the binomial model. In order for a testing program to be a
binomial experiment, four conditions are required. They are:

- The test period consists of a certain number (n) of identical trials.

- At any individual time unit (trial) , the test results in a success or
failure.

- The outcome at any individual time unit is independent of the outcomes
of all other time units.

- The reliability (probability of success) of the system remains un-
changed for each trial.
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In a lot acceptance sampling test program, the third and fourth conditions are
not precisely satisfied. In such a case, the hypergeometric distribution
provides the exact analysis and must be used for small lot sizes. However, if
the sample size (n) is small compared to the lot size (N), say n/N < 0.05,
then the binomial model provides a reasonable basis for analysis. #e do not
present a discussion of the hypergeometric distribution in this text. The
reader can refer to any number of moderate level statistics textbooks for
information on the use of hypergeometric distribution.

Examples of binomial experiments are:

- firing a missile (is it launched successfully?);

- firing a missile (does it hit the intended target?);

operating any system over time (does it achieve its durable life?).

For the remainder of this section on binom’ial models, the following notation

the number of trials or test units.

the probability of failure for any trial. (We use p here as the
probability of failure instead of the more classical probability of
success because of the failure-oriented approach used by the Poisson
model) .

binomial coefficient, which by definition is equal to n!/[k!(n-k)!],
where k must be some integer between O and n inclusive. By defini-
tion, n!=n(n-1)(n-2). ..l and 0!=1.

the probability of k failures out of n trials with p the probability
of failure on any one trial.

the probability of k or fewer failures out of n trials with p the
probability of failure on any one trial.

Any binomial experiment (test program) is completely characterized by the
number of trials and the probability of failure for any given trial. The
probability of failure (p) is generally an unknown value about which testing
requirements are stated.

In Chapter 7, the binomial is used in this reversed role: the test results
will have been observed and we will make inferences about the probability of
success based on the binomial model.

For the binomial model an exact mathematical formula is used to compute prob-
abilities. We denote the probability of exactly k failures out of n trials
for a fixed probability of failure, p, by brip(k), and

>

brip(k) ‘(~) Pk(l-P)n-k.>
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The probability of k or fewer failures, termed the binomial cumulative distri-
bution function, is B* Jk), where

>

B
‘,P(k) = i~~ ‘;) Pi(’-p)n-i

k
= Zb (i). (5.2)

i=o njp

Figure 5-5 presents graphs of three binomial models. The graphs chosen por-
tray models for which the values of p are equal to 0.2, 0.5, and 0.7 with n,
the number of trials, equal to 10 in each case.

For the case p = 0.2, the graph shows that a large number of failures--more
than 5--is unlikely. Note that the most likely number of failures is 2, which
corresponds to a percentage of failures equal to 0.2. For the case p = 0.7,
the graph shows that a small number of failures--fewer than 5--is unlikely.
Once again, the most likely number of failures, 7, corresponds to a percentage
of failures equal to 0.7. For the case p = O.5, the graph shows that a mod-
erate number of failures--between 3 and 7-- is likely, with 5 failures (half of
the trials)

Computation

is large.
are:

use

use

use

being most likely.

of binomial probabilities using b or B
n9P

is cumbersome when n
npp

Three alternative methods for determining binomial probabilities

of a statistics package for a calculator,

of binomial tables, and

of an approximating distribution (Poisson or normal).

Tables of b or B
n$p

for n less than or equal to 20 are generally published
n~p

in elementary statistics textbooks. More extensive tables are available but
are not as easy to locate. A table of cumulative binomial probabilities for
selected values of n, k, and p is given in Appendix B, Table 1. When n is
larger than 20, either the Poisson distribution (p > 0.8 or p < 0.2) or the
normal distribution (0.2 < p < 0.8) provides reasonable approximations to
binomial probabilities. (See Appendix A for details on these procedures.)

In Case Studies 5-1, 5-2 and 5-3, we demonstrate the application of the
binomial model and compute probabilities associated with the model.
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FIGURE 5-5 BINOMIAL PROBABILITIES
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POISSON MODEL

The most commonly used model for describing the outcomes of a continuous time
testing program is the Poisson model. In order for a testing program to be a
Poisson experiment, it is required that no more than one event (failure) can
occur at the same time and that the number of events (failures) is related
directly to the amount of test time. Examples of Poisson experiments are:

number of failures of a system during a test cycle;

number of unscheduled maintenance actions required during a given time
period; and,

number of misfires of an automatic weapon firing over a given time
period.

For the remainder of the section on Poisson models and the succeeding section
on exponential models, the following notation is used.

A: Failure rate or average number of failures per unit

T: The length of the interval (hours, ❑ iles, etc.) of :
(e.g., mission duration, test exposure).

gA,T(k): The probability of exactly k failures during a test
length T when the failure rate is A.

time.

nterest

period of

GA,T(k): The probability of k or fewer failures during a test period of
length T when the failure rate is A.

Any Poisson experiment (test program) is completely characterized by the
length of time on test and the mean value function. The mean value function
for a specific test length is the average number of failures to occur during
the specified length. When the system has a constant failure rate for the
entire interval T, this function is simply AT. A discussion of constant
failure rate assumptions can be
ure rate of the system on test,
between failures (MTBF) which is
generally stated in terms of the

found in ~hapter 7. The value A is the fail-
A more familiar parameter is the mean time

the reciprocal of A. System requirements are
mean time between failures.

As with the binomial model, Poisson probabilities can be computed using an
exact mathematical formula. We denote the probability of exactly k failures
during a test period of length T where the failure rate is A, by gA,T(k), and

bj,#d =

The number of
probability of

~AT)ke-AT
. .

k! (5.3)

failures may be any integer value including O and O! = 1. The
k or fewer failures, termed the Poisson cumulative distribution
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function, is GA ~(k), where
)

~ (AT)ie-AT
GA,T(k) = .i=o 1!

k
= Z gA,T(i).

i=()
(5.4)

Figure 5-6 presents graphs of three Poisson models. Values for AT of 2, 5,
and 7 were chosen to demonstrate the effect of time T on the numbers of fail-
ures likely to be seen. When A, the failure rate, is fixed, the number of
failures will, in all likelihood, increase with the amount of operating time
T.

Alternative methods for computing Poisson probabilities include:

use of a statistics package for a calculator,

use of Poisson tables or charts, and

use of an approximating function.

In Case Studies 5-5 and 5-6 we demonstrate the application of the Poisson
model and compute probabilities associated with the model. Tables of gA T(k)

T
or GA ~(k) are available in many textbooks. A table of cumulative Poisson

probabilities is given in Appendix B, Table 3. Appendix B, Chart 1 is also
useful in determining cumulative Poisson probabilities. When the product AT
is greater than 5, the normal distribution provides reasonable approximations
to Poisson probabilities . (See Appendix A for details on this procedure. )

EXPONENTIAL MODEL

Generally, it is more informative to study times between failures, rather than
numbers of failures, for a continuous time testing program. The most commonly
used model for describing the times between failures for a continuous time
testing program is the exponential model. In order for a testing program to
qualify as an exponential experiment, the following conditions are required:
(1) the system is as good as new after each repair, and (2) the probability of
failure in any given interval of time is the same no matter how old a system
is and no matter how many failures it has experienced. The second condition
is an intuitive description of the so-called memoryless property. The system
cannot “remember” how old it is, nor can it “remember” how often it has
failed. The examples listed for Poisson experiments can serve also as
examples of exponential experiments.

For the exponential model, there is an exact mathematical formula used for
computing probabilities that a certain amount of time will pass before the

5-9

Downloaded from http://www.everyspec.com



F I G U R E  5 - 6 POISSON PROBABILITIES

.3 ‘ .3

AT=2
.2 “

(k)
- .2

‘i ,T

.1 “ .1

0 I I 1 , 1 , ‘ o
0 1 2 3 4 5 6 7 891011 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 1“6

.3

‘i,T
( k )

AT=7

.2 ‘

I h h* 1 I I 1 1

0 1 2 3 4 5 6 7 891011 12 13 !4 15 16

N U M B E R  O F  F A I L U R E S ,  k

,3

,2

,1

0

5-1o

Downloaded from http://www.everyspec.com



next failure. The probability that a failure will occur in some future inter-
val of time (a, b) for a system with failure rate A is

J b
Ae ‘Axdx. (5.5)

a

AxFIGURE 5-7 GENERAL EXPONENTIAL MODEL:f(x]=h-

a b
O U T C O M E

The exponential cumulative distribution function, FA(t), defines the prob-

ability that the system will fail before time t. By definition,

J
t

FA(t) = Ae-hdx = 1 - e-At.
o

(5.6)

A function of more interest to us is the reliability function, R(t), which
defines
without

the probability that the system will opera~e for t units of time
failure. By definition,

J (n
RA(t) = ~e+x -Atdx=e .

t
(5.7)

-(t/e)
The reliability function, R(t), can also be expressed as e , where 6, the
reciprocal of A, is the mean time between failures (MTBF). The reliability
function R(t) translates the effectiveness parameters A, the failure rate, or
e, the MTBF, into reliability. Reliability is the probability of failure-free
operation for a specified length of time, t.

We referred to the variable t as a time variable
Measure of life units which can be appropriate are
rounds.

As an example, suppose that the mission profile
mission duration (MD) of 40 hours and the system
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has a mean time between
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operational mission failure (MTBOFfF) of 400
the system successfully completes a mission
ability function, R(t). Now

hours. Then the probability that
can be evaluated using the reli-

R(t) = e-At = e-t’g = e -(MD/MTBOMl)

Since MD = 40 hours and MTBOMF = 400 hours, the mission reliability is
-40/400e , which reduces to 0.905. In other words, the system has a 90.5%

chance of completing the 40-hour mission.

NOTE : A useful approximation for the reliability function is :

e-t/e z I - t/e for t l e  <  0 . 1 .—

For the above example, t/El = O. 1 so that the approximation yields 0.90.

In Case Study 5-4, we demonstrate the application of the exponential model
with computations based on both models. See Case Studies 5-4, 5-5, and 5-6,
for more illustrations of this computation and other computations associated
with the Poisson/exponential model.

The reliability function e -At may also be sym-

bolized as exp(-At) or in‘l(-At) . That is, it
is the exponential function evaluated at the
point, -At, or it is the inverse of the natural
logarithm function evaluated at that point.
Some calculators evaluate the exponential func-
tion as the inverse natural logarithm function.
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CASE STUDY NO. 5-1

Background

A sensor device has an operational mission reliability of 0.90 for a 4 hour
mission. At least 3 sensors are required to locate targets. Failed sensors
will not be repaired during a mission.

Determine

. 1. If a system employs 3 sensors, what is the probability of successfully
completing the mission?

2. If a system employs 4 sensors, what is the probability of successfully
completing the mission?

Solution

1 . We use the mathematical formula for the binomial model given in equation
5.1, with

R=l -p=o.9

p=l - 0.9 =0.1

n = 3, and

Applying equation 5.1, the probability of O failures is:

b30 #@ =(;)(O. 1)0(0.9)37.

The binomial coefficient is:

() –3 3!
o

= ()!3! = 1

The probability of O failures is:

(1)(1)(0.9)3 = 0.729.

5-13

Downloaded from http://www.everyspec.com



2. We use the binomial cumulative distribution function given in equation
5.2, with

R=l-p=O.9

p=l. 0.9 = 0.1

n = 4, and

k=]

Applying equation 5.2, the probability of 1 or fewer failures is:

J34,0.J0 = : (;)(o. l)k(o.9)(4-k)
k=o

= (:)(0.1)0(0.9)4 + (:)(0.1)1(0.9)3

The binomial coefficients are:

4
( )

4! 4
0 ‘~ ( )=l,and ~ =%=4.. .

The probability of 1 or fewer failures is:

(1)(1)(0.9)4+ (4)(0.1)1(0.9)3

= 0.656 + 0.292 = 0.948.

Commentary

For the second problem, we use the binomial cumulative distribution function
since we are required to compute the probability of O failures or 1 failure,
i.e., the cumulative probabilities of both outcomes.
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CASE STUDY NO. 5-2

Background

A lot of 500,000 rounds of ammunition is available for sale. The buyer will
purchase the lot if he has reasonable assurance that the lot is no more than

. 15% defective.

Determine

1. If the true proportion of defects is O. 15, what is the probability a
sample of size 10 will yield fewer than 2 defects? More than 3 defects?

2. If the “true proportion of defects is 0.05, what is the probability a
sample of size 20 will yield fewer than 3 defects? More than 1 defect?

3. If the true proportion of defects is 0.02, what is the probability a
sample of size 100 will yield fewer than 5 defects?

4. If the true proportion of defects is O. 15, what is the probability a
sample of size 50 will yield more than 10 defects? Between 5 and 10 defects,
inclusive?

Solutions

This is a lot acceptance sampling problem. Although the binomial model is not
technically correct, it will provide very good approximations in this case
because the ratio of sample size n to lot size N(N = 500,000) is not more than
0.0002. A further explanation of the use of the binomial model for lot ac-
ceptance sampling problems is found on page 5-5.

1. The probability of failure, p, is O. 15. For fewer than 2 defects, we
look in the tables for n = 10, the column p = 0.15, and the row c = 1. The
probability is 0.5443.

The probability of more than 3 defects is the difference between 1 and the
probability of fewer than 4 defects. The probability of fewer than 4 defects
is 0.9500, so the probability of more than 3 defects is 0.05.

2. The probability of fewer than 3 defects out of 20 is obtained directly in
the tables for n = 20, the column p = 0.05, and the row c = 2. The prob-
ability is 0.9245.

The probability of more than 1 defect is the difference between 1 and the
probability of fewer than 2 defects. The probability of fewer than 2 defects
is 0.7358, so the probability of more than 1 defect is 0.2642. ~

3. A binomial table for n = 100 is not given in the Appendix and would be
difficult to locate in other sources. However, because the sample size, n, is
large, we may use an approximation fairly confidently. Recall that there are
two approximations (poisson and normal) to the binomial presented in the text
of Chapter 5. The procedures for using these approximations are detailed in

5-15

Downloaded from http://www.everyspec.com



Appendices A-1 and A-2. Using the normal approximation (Appendix A-1) , the
probability of 4 or fewer defects out of 100 trials is

1- P(z ~ (4 + 0.5 - (100)(0.02))/~100(0.02)(0.98))  ,

which reduces to

1- P(Z ~ 1.79) = 0.9633 .

Using the Poisson approximation (Appendix A-2) , we set m = 2, c = 4, and
obtain the probability directly from Appendix B, Table 3 as 0.947.

The exact value for the probability of fewer than 5 defects, obtained from the
formula, is 0.9491, Note that, although each approximation is reasonably
close to the exact value, the Poisson has provided the better approximation.
As noted on page 5-6, the Poisson is more appropriate when p is very large or
very small (in our case, p = 0.02).

4. The probability of more than 10 defects is the difference between 1 and
the probability of fewer than 11 defects. The probability of fewer than 11
defects using the binomial tables for n = 50, the column p = 0.15, and the row
c = 10, is 0.8801. The probability of more than 10 defects is thus 0.1199.
The probability of between 5 and 10 defects inclusive is the probability of
fewer than 11 defects less the probability of fewer than 5 defects. These two
numbers are 0.8801 and 0.1121, and the difference is 0.7680. The normal
distribution is appropriate for approximating this probability. Using this
approximation, we find that the probability of more than 10 (11 or more)
defects is

P(z ~ (11 - 0.5 - (50)(0.15))/450(0.15)(0.85)) ,

which reduces to

P(z ~ 1.19) = 0.1170 .

The approximate probability of between 5 and 10 defects inclusive is

P(z ~ (5 - 0.5 - 7.5)/4m) - P(z > (lo + 0.5 - 7.5)/~)—

=P(z ~-1.19) - P(Z ~ 1.19) = 0.7660 .

Commentary

We have calculated probabilities for certain outcomes which could result from
an inspection of a sample from the lot of 500,000. To calculate these values
it is necessary to assume that we know the true proportion of defects in the
entire lot. Of couse, we do not, in fact, know this true proportion of de-
fects, but we perform this exercise in order to develop a rational plan for
sampling from the lot in order to determine whether we should accept or reject
the lot. Consider, for example, the solution to the second part of ques-
tion 1. Namely, the probability of 4 or more defects out of 10 trials when
the lot contains 15% defects is 0.05. Consequently, if the sample of 10
should yield 4 or more defects, the buyer has reasonable assurance that the
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lot contains more than 15% defects and should be rejected. Consider now
part 2 of question 4. In a preliminary step to the solution, we determined
that the probability of 4 or fewer failures when the lot contains 15% defects
is 0.1121. Consequently, if a sample of 50 yields 4 or fewer defects, the
buyer has reasonable assurance that the lot contains fewer than 15% defects
and should be accepted. We discuss in Chapter 8 methods for preparing test
plans which provide reasonable assurance to both producer and consumer. Our
purpose in presenting the above discussion is to introduce the reader to the
probabilistic analysis that takes place in the preparation of test plans or
lot acceptance sampling plans .
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CASE STUDY NO. 5-3

Background

A mechanized infantry battalion has 36 armored personnel carriers (APC) , 20
weapon stations (WS), and 5 command posts (CP). The mission reliability of an
APC is 0.70, of a WS is 0.85, and of a CP is 0.95. The entire battalion can
perform satisfactorily if at least 24 APCS, 17 WSS, and 5 CPS are operable
throughout the miss ion.

Determine

1. What is
complete the

2. What is

the probability
mission?

the probability

each type of system has enough units operating to

the mission will be successful?

3. How small do we need to make p, the probability of failure, in order to
ensure that each set of systems has a probability 0.90 of performing
satisfactorily?

4. If each of the probabilities of failure is fixed, then how many more of
each type of system is required to achieve the goal mentioned in number
3?

Solutions

The probability that a sufficient number of APCS operate throughout the mis-

sion is the probability of 12 or fewer failures out of 36 trials. Note that
p, the probability of failure, is equal to 0.30. The probability that a
sufficient number of WSS operate throughout the mission is the probability
that 2 or fewer failures occur out of 20 trials. The probability that all CPS
operate throughout the mission is the probability of no failures.

la. The probability of 12 or fewer failures out of 36 trials where p = 0.30.

i. Use Appendix B, Table 1. On page B-20 for n = 36, we look in the
column labeled 0.300 and the row r = 12. The value is 0.7365.

ii. Use Normal Approximation. (See Appendix A-1. ) Since np = (36)
(0.3) = 10.8 and np(l-p) = (36)(0.3)(0.7) = 7.56, the approximate
probability is

1- P(Z ~ (12.5 -np)/J-)

= 1- P(Z ~ (12.5 -10.8)/~~

= 1- P(Z ~ 0.62)

= 0.7324
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lb.

l.c.

iii.

Note
than

We obtain this value using Appendix B, Table 2, page B-42 in the row
marked z = 0.62 and the column labeled P(Z ~ Za).a

Use Poisson Approximation. (See Appendix A-2.) We make the identi-
fication m = np = (36)(0.3) = 10.8 and use Appendix B, Table 3. On
page B-47 we obtain the value from the column labeled 12 and inter-
polate between rows labeled 10.5 and 11.0. The value is 0.718.

that since 0.2 < p < 0.8, the normal yields a better approximation
the Poisson.

The probability of 3 or fewer failures out of 20 trials where p = 0.15.

i.

ii.

iii.

Note

Use Appendix B, Table 1. On page B-7 for n = 20, we look in the
column labeled 0.150 and the row r = 3. The value is 0.6477.

Use Normal Approximation. (See Appendix A-l.) Since np = (20)
(0.25) = 3 and np(l-p) = (20)(0.15)(0.85) = 2.55, the approximate
probability is

1- P(Z ~ (3.5-np)/J=)

= 1- P(z ~ (3.5-3)/4-”)

=1- P(Z ~0.32) = 1 - 0.3745

= 0.6255

We obtain this value using Appendix B, Table 2, page B-42 in the row
marked z = 0.32 and the column labeled P(Z ~ Za).a

Use Poisson Approximation. (See Appendix A-2.) We make the identi-
fication m = np = (20)(0.15) = 3 and use Appendix B, Table 3. On
page B-46 we obtain the value from the column labeled 3 and the row
labeled 3.00. The value is 0.647.

that since p < 0.2, the Poisson yields a better approximation than
the normal.

The probability of O failures out of 5 trials where p = 0.05. This
probability is given by equation 5.1.

(): (0.05)0(0.95)5=  (0.95)5 =0.774

Note the value of n is much too small to use an approximation. See
discussion of this concept on page 5-6.
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Max. # of System Probability

Author- Minimum Allowable Mission of Mission Success

EYus!!! ized Required Failures Reliability Binomial Normal “Poisson

APC 36 24 12 0.70 0.7365 0.7324 0.718

Ws 20 17 3 0.85 0.6477 0.6255 0.647

CP 5 5 0 0.95 0.774 -

The term System Mission Reliability is the probability that an individual APC,
Ws , or CP will successfully complete a mission. The term Probability of
Mission Success is the probability that for the individual systems at least
the required minimum number of vehicles will successfully complete the
mission.

2. APC Ws w CP > Mission Success

We use a series model to evaluate the probability of mission success. This
probability is the product of the probabilities of success for APC’S (0.737),
WS’S (0.648), and CP’S (0.774). The product is 0.37.

(See Chapter 2’s section entitled “Series and Redundancy Models.”)

3. In part 1 above , we determined that the mission success probabilities for
APC’S, WS’S, and CP’S, are approximately 0.73, 0.65, and 0.77, respectively.
If we assume that the authorized number of units of each type system remains
fixed, then we must improve the mission reliability of each type system to
achieve a success probability of 0.90 for each type system. Generally,
statistics books do not address procedures for solving this type problem but
the solutions are straightforward and logical.

a. For APC’S, the probability of 12 or fewer failures must be at least
0.90.

i. Use Appendix B, Table 1. Note that for n = 36 and c = 12, the
values in the body of the table increase as p, the probability
of failure decreases. This fact is actually true for any
values of n and c. As we move in the body of the table from
right to left, we find that the first time the probability
exceeds 0.90 is for a p of 0.25. Consequently a p of 0.25 or
less will achieve the goal.

ii. The normal approximation provides a method for determining the
desired probability, p. The approximate probability of 12 or
fewer failures out of 36 trails for ~ p is

1- P(Z ~ (12.5 - 36p)/~-) .
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The procedure is to set the above quantity equal to 0.90 and
solve for p. To accomplish this, note that we can reduce the
equation to

P(Z ~ (12.5 - 36P)/~~) = 0.10 .

Since P(Z ~ 1.28) = 0.10, the above equality occurs when

( 1 2 . 5  - 36p)/~~ = 1.28 .

To solve the equation for p, we multiply both

~

and square both sides to obtain the quadratic

156.25 - 900p + 1296p2 = 58.98p(l-p), or

1354.98p2 - 958.98p + 156.25 = O .

sides by

equation

We used the quadratic formula to find p = 0.254.

iii. The Poisson approximation provides a method for determining the
desired probability, p. Note that for c = 12 in the Poisson
tables, the probabilities increase as the value of m decreases.
Searching the body of the table in the column labeled c = 12,
we find that the probability exceeds 0.90 for the first time at
M = 8.6. Recall that m = np for the Poisson approximation.
Now n = 36 and m= 8.6, so p = 8.6/36 = 0.24.

b. For WS’S, the probability of 3 or fewer failures must be at least
0.90. The procedures for determining the probability of faiure, p,
are identical to those in part a above.

i. Appendix B, Table 1. For c = 3, as p decreases, the value in
the table exceeds 0.90 for the first time at p = 0.09.

ii. Normal Approximation. The equation to solve is

(3.5 - 20p)/~~ = 1.28 ,

and the value of p that solves the equation is p = 0.092.

iii. Poisson Approximation. For c = 3, as m decreases, the value in
the table exceeds 0.90 for the first time at m = 1.7. Conse-
quently, p = 1.7/20 = 0.085.

c. For CP’S, the probability of O failures ❑ ust be at least 0.90.
Using a direct computation, we solve the following equation for p:

()5 0
0 p (1-P)5 =  0 . 9 0 .
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Equivalently,

(1-p)5 = 0.90 or l-p = (0.90)0.2 .

The solution to the above equation is a p of 0-02.

4. If the mission reliability of the different systems cannot be improved,
then in order to achieve a success probability of 0.90 for each system, the
number of authorized units must be increased- This allows for more units to
fail during the mission, while maintaining the required strength to achieve
mission success.

a. For APC’S, the probability of at least 24 units performing success-
fully must be at least 0.90.

i.

ii.

iii.

Appendix B, Table 1.

n= 36 P(I2 or fewer failures) = 0.7365
n = 3 7 P(13 or fewer failures) = 0.8071
n = 3 8 P(14 or fewer failures) = 0.8631
n = 3 9 P(15 or fewer failures) = 0.9056

The requirement is satisfied for an n of 39.

Normal Approximation. Since the number of failures allowed
increases by one for every increase in allocation while the
number of successes remains constant at 34, we can formulate
the solution to this question more easily in terms of suc-
cesses . The approximate probability of 24 or more successes
out of n trials, for any n, when p = 0.7 is

P(Z ~ (23.5 - 0.7n)/~~n) .

We set the above term equal to 0.90 and solve for n. Since P(Z
> -1.28) = 0.90, the value of n required is the one which
~olves the equation

(23.5 - 0.7n)/~~- = -1.28 .

We perform the same manipulations as in part 3 above to obtain
a quadratic equation in n, one of whose solutions is n = 38.8.

Poisson Approximation. Let us use Chart 6 to approximate the
solution. The abscissa of the graph is labeled 0/T which is
the reciprocal of m = np. Consider the points where the curves
cross the 0.90 ordinate line.
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c 0/T n = (0.36/2’)-1 # Successes

12 0.12 27.8 = (28) 16 or more
13 0.108 30.9 = (31) 18 or more
14 0 . 0 9 7 3 4 . 4  = ( 3 5 ) 21 or more
15 0.09 37.0 ~ (38) 23 or more
16 0.083 40.2 ~ (41) 25 or more

This method shows that 38 units are not enough and that 41
units are too many. Either 39 or 40 units are appropriate.

b. For WS’S, the probability of
fully must be at least 0.90.

i. Appendix B, Table 1.

at least 17 units performing success-

n = 2 0 P(3 or fewer failures) = 0.6477
n = 2 1 P(4 or fewer failures) = 0.8025
n = 2 2 P(5 or fewer failures) = 0.9001

The requirement is satisfied for an n of 22.

ii. Normal Approximation. The equation to solve is

(16.5 - 0.85n)/~~ = -1.28 .

The solution is n = 21.9.

iii. Poisson Approximation. Use Chart 6.

c 0/T n = (0.150/T)-1 # Successes

4 0.42 15.9 (16) 12
5 0.33 20.2 (21) 16
6 0.26 25.6 (26) 20

Clearly, this method indicates that either 22 or 23 should be
sufficient.

c. For CP’S, the probability of at least 5 units performing satis-
factorily must be at least 0.90. The number of units is so small
that approximations are not appropriate. We can solve the problem
very easily using the formula for computation of binomial probabil-
ities .

bn p(k) = (~) pk(~-p)n-k>

= [k!(:k] pk(l-P)n-k
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n Probability of 5 or More Successes—

5 ( ); (0.05)
0(0.95)5 = 0.774

6 (:)(0.05)1(0.95)5  +(:)(0.05)0(0.95)6=0.96

An n of 6 is sufficient.
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CASE STUDY NO. 5-4

Background

A new combat assault vehicle is being proposed. The mean miles between mis-
sion failure (MMIMfF) is to be 320 miles. The mean miles between durability
failures (MMBDF) is to be 5771 miles. Historically, both mission failures and
durability failures have occurred at a fairly constant rate.

Determine

1. What is the mission reliability for a 50-mile mission?

2. What is the probability of operating for 4000 miles without experiencing
a durability failure?

3. What MMBDF is required to have an 80% probability of operating for 4000
miles without a failure?

Solutions

1. We use the reliability function,

- t / eR(t) = e ,

where t is mission duration and 0 is mission MMBF. Since t = 50 miles and 0 =
320 miles, the mission reliability is

-50/320e = 0.855 .

2. Durability is defined
operation without suffering
the reliability function,

-t/oR(t) = e ,

as the probability of completing 4000 miles of
a power train durability failure. Again we use

where t is the durability requirement and (3 is the power train MMBDF. Since t
= 4000 miles and 0 = 5771 miles, the mission reliability is

-4000/5771 = o soe . .

3. Once again we use the reliability function,

-t/eR(t) = e ,

but , in this case, t = 4000 miles and R(4000) = 0.80. By solving the above
equation for 0, we have

e=
‘108: R(t)
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Consequently,

o= 4 0 0 0
-log 0.80e

17,926 miles .

Commentary

Usually durability requirements are imposed on specific subsystems such as the
power train. When individual subsystems are considered, durability failures
are likely to occur with an increasing failure rate due to physical wearout of
components. In such a case, the use of the exponential model would not be
appropriate. Other distributional models of life length (such as the Weibull
distribution) would be appropriate for use in analyzing durability.
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CASE STUDY NO. 5-5

Background

A heavy truck uses 10 road wheels. Each tire’ s mean miles between failures
(MMBF) is 10,000 miles. Assume a series model for the 10 tire system.

Determine

1. What is the failure rate of each tire.

2. What is
during a 1000

3. Assuming
tire failures

the probability that a single tire will experience no failure
mile mission?

the tires operate independently, what is the probability of no
in a 500 mile mission?

4. What is the MMBF of the entire system of 10 tires.

5. How many spares should be kept so that a 500 mile mission can be com-
pleted at least 90% of the time? 99% of the time?

Solutions

1. The failure rate (A) is the reciprocal of the mean miles between failures
(MMBF). Consequently,

A.~ 1
MMBF = 10,000 = 0“0001 “

2. Using the formula for computing Poisson probabilities (equation 5.3) with
the following parameters

Mission Length (T) = 1000 miles
Failure Rate (A) = 0.0001,

we have

(AT)ke-AT
gA,T(k) = k!

P(no failures) = (AT)O e-hT = e-AT =e-(O.OOO1)(looo)
()!

-0.1e = 0.905 .

This value could have been obtained using Appendix B, Table 3, using m = AT =

0.1 and c = O. In addition, we could have used Appendix B, Chart 1 using 0/T
= l/AT = 10 and c = O.
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3. For a single tire the probability of no failures in a 500 mile mission is

k -AT
gA,T(k) = ‘AT)k:

= [(0.0001)(500)]0e-(0”0001)(500)
()!

=  0 . 9 5 1  .

Since all tires are in series, have the same failure rate and operate inde-
pendently, the probability of no failures among all 10 tires is

(0.951)10=0.605 .

4. In order to determine the MMBF of the system of 10 tires, we use the
reliability function

R(T) = e-T’O,

where T is mission length and e is MMBF. Solving this equation for 8, we
obtain

e=
-log: R(T) “

In problem 3, we determined that R(500) = 0.605 for the 10-tire system. Thus,

0= 5 0 0
-log 0.605e

= 1000 miles.

5. Mission Length (T) = 500 miles.
System Failure Rate (A) = 0.001.
(Note: MMBF = 1000 from question 4)

Using Appendix B, Table 3 with m = AT = 0.5, we have

P(no failures) = 0.607
P(less than or equal to 1 failures) = 0.910
P(less than or equal to 2 failures) = 0.986
P(less than or equal to 3 failures) = 0.998

For a 90% chance of mission completion, one spare will suffice. For a 99%
chance of mission completion, 3 spares are required. However, the improvement
in reliability from ().986 (2 spares) to ().998 (3 spares) does not appear to
warrant the extra spare.
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CASE STUDY NO. 5-6

Background

A new vehicle is under development which is required to have a MTBF of at
least 200 hours (A no more than 0.005) and a mean time to repair (MTTR) of no
more than 40 man-hours. Assume that the specifications (200 hours MTBF and 40
hours MTTR) have been met by contractor A.

Determine

1. What is the probability that a development test of 1000 hours will show
at least 10 failures?

2. What is the probability of no failures during the first 400 hours of the
test?

3. How many man-hours of repair time are expected during the 1000-hour test?

4. How much calendar time in days --operating and maintenance--based upon an
8-hour day should be programmed so that at least 10 total repairs will be
performed by a team of 4 mechanics working on 10 identical systems? We desire
that there be at least 10 failures with probability 0.90. We desire to take
only a 10~0 risk that repair time allotted will be insufficient. Assume that
each repair takes 40 hours, the mean repair time. Rework the problem assuming
each repair is completed within 60 hours.

Solutions

1 . The “background to this study indicates that this is a continuous time
testing situation. In addition, we are interested in numbers of failures and
not in times between failures, so the Poisson model is used for this analysis.
Test time (T) is 1000 hours and MTBF is 200 hours (A = 0.005). The unknown
value is the probability of 10 or more failures.

Use Appendix B, Table 3, with AT = (0.005)(100.0) = 5.0. The probability of 10
or more failures = 1 - P(9 or fewer failures).

For AT = m = 5.0, we see in the column labeled c = 9 that the probability of 9
or fewer failures is 0.968. Consequently, the probability of 10 or more
failures is 0.032.

2. Test time (T) is 400 hours and MTBF is 200 hours (A = 0.005). The un-
known value is the probability of O failures.

Use Appendix B, Table 3, with AT = (0.005)(400) = 2.0.

For AT = m = 2.0 we see in the column labeled c = O that the probability of
zero failures is 0.135.

3. Test time (T) is 1000 hours and MTBF is 200 hours (A = 0.005). MTTR is
40 hours (A = 0.025). Each repair takes 40 hours on the average. There are
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1000(0.005) or 5 failures expected. The expected repair time is 5(40) or 200
man-hours.

4. Let To be operating time needed and T be repair time needed. We desirer
that To be large enough that the probability of seeing 10 or more failures be

at least 0.9. However we must allow repair time for that number of failures
(nlo) which represents all but the upper 10% of the distribution of numbers of

failures, i.e., the probability that more than nlo failures occurring is 0.10.

a. Determine T.: Probability of at least 10 failures must be at least
0.90. “

Note: The probability of 10 or more failures = 1
fewer failures.

The probability of nine or fewer failures must be
the column labeled c = 9.0 of Table 3, we find by
probability of 9 or fewer failures is achieved when

Since m = AT and m = 14.2

b.

c.

d.

e.

T = To and

A= 0.005

We solve the following equation for T :0

To = m/A = 14.2/0.005 = 2,840 hours.

- the probability of 9 or

no more than 0.10. Under
interpolation that a 0.10
m = 14.2.

Determine nlo: Allow for 19 failures since the probability of 20 or

more failures is just under 0.10.

Determine Tr: (19)(40) = 760 man-hours

T = 760/4 = 190 clock hours.r

Determine number of days needed:

Operating hours: 2,840
Ten systems operating hours: 284 for each system
Maintenance hours: 190

Total hours: 474
Days Required: 59.25

If each reuair takes 60 man-hours. then 1140 man-hours are required.
This corre~ponds to 285 clock hours. Consequently, the total n~ber
of hours is 569 which represents 71.1 working days.

Commentary

For number 4, we have allowed 40 man-hours
repair time is indeed 40 man-hours, then

5-30

for each repair. If the average
760 total man-hours should be a
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reasonably close estimate. Computation of the risk involved with this ap-
proach is complicated and beyond the scope of this work. One procedure to
adopt is to increase the allotted time per repair as we have noted in 4e.
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CHAPTER 6

STATISTICAL CONCEPTS

INTRODUCTION

As we mentioned in Chapter .5, our assumptions about a given testing situation
lead us to the choice of a mathematical model to characterize the reliability
of a system. However, we cannot determine the actual reliability of the sys-
tem using the model until the parameters of the model, p for the binomial
model and A (or 0) for the Poisson or exponential model, have been specified.
The values of the parameters are never known with absolute certainty. As a
consequence, some form of sampling or testing is required to obtain estimates
for these parameters. The quality of the estimates is, of course, directly
related to the quality and size of the sample.

POINT ESTIMATES

point estimates represent a single “best guess” about model parameters, based

on the sample data. A distinguishing symbol commonly is used to designate the
estimate of a parameter. Most co~only, a caret or “hat” is used to designate
point estimates (e.g., 8, i(x), A). Quite often, and for our purposes, the
caret further indicates that the estimator is a maximum likelihood estimator;
that is, it is the most likely value of the parameter of the model which is
presumed to have generated the actual data.

There are criteria other than maximum likelihood used for a single “best
guess.” One other is unbiasedness. For an estimator to be unbiased, we mean
that, in the long run, it will have no tendency toward estimating either too
high or too low. The point estimates which we propose for p in the binomial
model and for A in the Poisson and exponential models are both maximum likeli-
hood and unbiased.

CONFIDENCE STATEMENTS

Point estimates represent a single “best guess” about parameters, based on a
single sample. The actual computed values could greatly overestimate or
underestimate the true reliability parameters, particularly if they are based
on a small amount of data. As an example, suppose that 20 rounds of ammuni-
tion were tested and 18 fired successfully.

The maximum likelihood and unbiased estimate of reliability is ~ = 18/20 =
0 . 9 . In other words, the system most likely to have generated 18 successes is
one whose reliability is 0.9. Note that 0.9 is the percentage of successes
actually observed in the sample. However, a system whose true reliability is
somewhat less than or somewhat more than 0.9 could reasonably have generated
this particular data set.

We use confidence limits to
could reasonably be. A 90%
< 0.982. In other words, if

address how high or low the value of a parameter
confidence interval for reliability is: 0.717 < R
being reasonable signifies being 90% confident of
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being right, then it is unreasonable to consider that a system whose reli-
ability is actually less than 0.717 or one whose reliability is actually more
than 0.982 generated the 18 successful rounds . When we desire to be more
confident, say 95% confident, that our interval conta ins the true system
reliability, we widen our interval, i.e. , we expand the group of systems
considered to have reasonably generated the data. A 95% confidence interval
for the reliability of our example system is: 0.683 < R C 0.988. Since we
are now allowing for the possibility that the system reliability could be a
little lower than 0.717 -- namely, as low as 0.683 -- or a little higher than
0.982 -- namely, as high as 0.988 -- we can now afford to be more confident
that our interval indeed contains the true value. For a fixed amount of
testing, we can only increase our confidence by widening the interval of
reasonable values.

Suppose that we desire to reduce the size of the interval while maintaining
the same level of confidence or to increase the level of confidence while
maintaining approximately the same size interval. Either of these objectives
is accomplished through increased testing, i.e., taking a larger sample. If
the system test had resulted in 27 successful firings out of 30 attempts (vice
18 out of 20) , the point estimate is still 0.9. However, the 90% confidence
interval for system reliability is: 0.761 C R < 0.972. The length of this
interval represents a 20% reduction in the length of the 90% confidence inter-
val resulting from our test of 20 units. The 95% confidence interval for
system reliability is: 0-734 < R < 0.979. This interval represents an 8%
reduction in size, but our confidence has increased to 95%. Figure 6-1 graph-
ically portrays the effect on interval length induced by changing confidence
levels or increasing sample size.

FIGURE 6-1 CONFIDENCE INTERVALS

90$fe CONFIDENCE INTERVALS
n=20

n=30
n:lDO

m,,
r ——— — i { \ I
0.0 0.7 0.8 0.9 1.0

lFn=20 THEN (0.717, 0.982)
n: 30 (0.76J, o.972)
n = 100 (0. ~z, 0 .943)
n : 1000 (0.886, 0.914)

95% CONFIDENCE INTERVALS
n=20

r
n:so

7
n= 100

“,/000
r I

1- —-— . ( ,
I 1 I ! $ I J I I r [

0.0 0.7 0.8 0.9 1.0

lFn: 20 THEN (0, 683, 0.988)
n= 30 (0. 734, 0.979)
n= 100 (0. .922, 0.951 )
n: 1000 (0.882, 0.918)
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A cautious, conservative person who buys safe investments, wears a belt and
suspenders, and qualifies his statements carefully is operating on a high-
confidence level. He is certain he won’t be wrong very often. If he is wrong
once in 100 times, he is operating on a 99% confidence level. A less con-
servative person who takes more chances will be wrong more often, and hence he
operates o-n a lower confidence level. If he is wro~g once in 20 times, he is
operating on a 95% confidence level. The confidence level, therefore, merely
specifies the percentage of the statements that a person expects to be cor-
rect. If the experimenter selects a confidence level that is too high, the
test program will be prohibitively expensive before any very precise con-

clusions are reached. If the confidence level is too low, precise conclusions
will be reached easily, but these conclusions will be wrong too frequently,
and, in turn, too expensive if a large quantity of the item is made on the
basis of erroneous conclusions. There is no ready answer to this dilemma.

We can interpret confidence statements using the concept of risk. With a 90%
confidence statement, there is a 10% risk; with a 99”A confidence statement,
there is a 1% risk. Confidence intervals generally are constructed so that
half of the total risk is associated with each limit o“r extreme of the inter-
val. Using this approach with a 90% interval for reliability, there is a 5%
risk that the true reliability is below the lower limit and also a 5% risk
that the true reliability is above the upper limit. We can therefore state
for the example system with 18 of 20 successes that we are 95% confident that:
R > 0.717. This is a lower confidence limit statement. We are also 95%
confident that: R < 0.982. This is an upper confidence limit statement. See
Figure 6-2.

F I G U R E  6 - 2 5 % 0

5°/0 R I S K  T H A T
R I S K

90?40 C O N F I D E N T  T H A T THAT
R  !S H E R E f ?  I S  I N  T H I S  I N T E R V A L R IS

~ ~YY
r — — —  — ( \

I I
0:0 0 . 7 1 7 0 . 9 8 2  1.0

L O W E R U P P E R
C O N F I D E N C E C O N F I D E N C E

L I M I T L I M I T

The classical textbook approach to confidence intervals has been to specify
the desired confidence level and determine the limit associated with this
confidence level. This approach creates a twofold problem. First, the de-
sired confidence level has to be determined. Second, the limits that are
generated are generally not, in themselves, values of direct interest. A very
practical modification is to determine the level of confidence associated with
a predetermined limit value. For example, the minimum value of a reliability
measure that is acceptable to the user is a logical lower limit. The con-
fidence in this value can then be interpreted as the assurance that the user’ s
needs are met. See Figure 6-3.
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F I G U R E  6 - 3 C O N F I D E N C E  I N T E R V A L S -  A C C E P T A B L E L O W E R  L I M I T S

1970 R I S K  T H A T 8170 C O N F I D E N T  T H A T
R  I S  B E L O W  0 . 8 U S E R S  N E E D S  A R E  M E T

~,~
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0 . 0 0 . 8 1.0

The confidence level for a lower limit of 0.8 is 81%. A system reliability of
0.8 is the user’ s minimum acceptable value (MAV) .

HYPOTHESIS TESTING

While confidence limits are generally used to define the uncertainty of a pa-
rameter value, an alternative approach is hypothesis testing. Both approaches
essentially give the same information. Hypothesis testing can be used to dis-
tinguish between two values or two sets of values for the proportion of fail-
ures in a binomial experiment, or for the failure rate in a Poisson/
exponential experiment. Let us examine hypothesis testing using a binomial
example. Typically, for a binomial experiment, it is hypothesized that the
probability of failure, p, is a specified value. While there is seldom any
belief that p is actually equal to that value, there are values of p which
would be considered unacceptable in a development program. These unacceptable
values are specified in an alternative hypothesis. Consider the following
examples.

(1) One-Sided Tests

‘ o : p = 0.3 (Null Hypothesis)

‘1
: p > 0.3 (Alternative Hypothesis)

In Case (1) , the evaluator hopes that p is no more than 0.3. He considers a p
of more than 0.3 to be unacceptable. This is a classical one-sided test.
Another type of one-sided test has the alternative hypothesis p < 0.3.

(2) Two-Sided Tests

‘ o :
p = 0.3

HI: p # 0.3

In Case (2) , the evaluator hopes that p is approximately 0.3. Values of p
much larger than or much smaller than O. 3 are unacceptable. This is a clas-
sical two-sided test.
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(3) Simple vs. Simple Tests

‘ o :P = 0 .3

‘ 1 : p = o . 5

In Case 3, the evaluator hopes that p is no more than 0.3. He considers a p
of more than 0.5 to! be unacceptable. The region between 0.3 and 0.5 is an
indifference region in that it represents acceptable but not hoped for values.
This is actually a classical simple versus simple test. This type of test is
treated extensively and exclusively in Chapter 8.

In order to conduct a statistical test of hypothesis, the following steps are
employed:

1 .

2.

3.

4.

The hypothesis, null and alternative, are specified. For our purposes, .
the null hypothesis is the contractually specified value (SV) and the
alternative hypothesis is the minimum acceptable value (MAV).

A sample size, n, is determined. This value ❑ ust be large enough to
allow us to distinguish between the SV and MAV. Chapter 8 is devoted to
procedures for determining a sufficiently large value of n.

An accept/reject criterion is established. For our purposes, this
criterion is established by specifying a value c, which is the maximum
number of failures permitted before a system will be rejected.

The sample is taken and the hypothesis is chosen based upon the accept/
reject criterion. If c or fewer failures occur, we accept the system.
If more than c failures occur, we reject the system.

I?RODUCER ‘ S AND CONSUMER’S RISKS

There are two possible errors in making a hypothesis-testing decision. We can
choose the alternative hypothesis, thereby rejecting the null hypothesis,
when, in fact, the null hypothesis is true. The chance or probability of this
occurring is called the producer’s risk, a. On the other hand, we can choose
the null hypothesis, i.e., accept it as reasonable, when in fact the alter-

native hypothesis is true. The chance or probability of this occurring is
termed the consumer’s risk, ~. See Chapter 8 for an additional discussion of
this topic.

Consider the following: A system is under development. It is desired that it
have a 300-hour MTBF. However, an MTBF of less than 150 hours is unaccept-
able, i.e. , the MAV is 150 hours. How would we set up a hypothesis test to
determine the acceptability of this new system? Our null hypothesis (desired
value) is that the MTBF is 300 hours. Our alternative hypothesis (values of
interest) is that the MTBF has a value which is less than 150 hours. To
decide which hypothesis we will choose, we detemine a test exPosure and a

decision criterion. The a risk (producer’s risk) is the probability that the
decision criterion will lead to a rejection decision when in fact the system
meets the specification of 300 hours MTBF. The ~ risk (consumer’ s risk) is
the probability that the decision criterion will lead to an acceptance deci-
sion when in fact the system falls short of the 150 hours MTBF.
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For a given test, the decision criteria can be altered to change the u and ~
risks . Unfortunately, a decision criterion which decreases one automatically
increases the other. The only way to decrease both risks is to increase the
test exposure, that is ,

— . —-
the number of test hours.

— —
We address this area below

in Chapter 8, “Reliability Test Planning.”

INTERFACE BETWEEN HYPOTHESIS TESTING AND CONFIDENCE STATEMENTS

In both test planning and data analysis situations, either hypothesis testing
or confidence statements provide an avenue of approach. The interface between
the two approaches can be best understood through the following example.

Suppose ~ is the desired producer’s risk (CY = 0.05) for the specified MTBF of
300 hours. Suppose further that ~ is the desired consumer’s risk (~ = 0.1)
for the minimum acceptable MTBF of 150 hours. The hypothesis testing approach
determines a required sample size and a specified accept/reject criterion. We
show how the same information can be obtained through confidence statements in
the following two cases. The abbreviations LCL and UCL represent Lower Con-
fidence Limit and Upper Confidence Limit, respectively.

Note that the distance between the upper and lower limits is the same as the
distance between the SV and the MAV. When this is the case we shall always be
able to make a clear-cut decision and the risks associated with the decision
will be as specified at the outset of testing.

F I G U R E  6 - 4  A C C E P T A N C E  D E C I S I O N

loo(l-~)70 =9070 loo(l-a)$!o=95vo
L C L  F O R  MTBF UCL F O R  M T B F

f - 1
I 1 1 I

-1

MA V=150 HOURS S V =  300  H O U R S
M I N I M U M S P E C I F I E D

A C C E P T A B L E V A L U E
V A L U E

Note that in Figure 6-4 the 100(1-~)% = 90% lower limit exceeds the MAV of 150
hours. In addition, the 100(1-a)% = 95% upper limit exceeds the specified
value of 300 hours. The consumer is 90% confident that the 150-hour MAV has
been met or exceeded and the producer has demonstrated that the system could
reasonably have a 300-hour MTBF. Consequent ly, we would make the decision to
accept the system.

F I G U R E  6 - 5  R E J E C T I O N  D E C I S I O N

loo(l-~)yo =9070 1 0 0 (  I-a)yo= 95°A
L C L  F O R  M T B F U C L  F O R  MTBF

r I - 1 I
MA V= 150 HOURS SV= 300 HOURS
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Note that in Figure 6-5 the 100(1-~)% = 90% lower limit falls below the MAV of
150 hours. In addition, the 100(1-cY)% = 95% upper limit falls below the SV of
300 hours. Therefore, the true MTBF could reasonably be below 150 hours and
the producer has not demonstrated that an MTBF of 300 hours is reasonable.
Consequently, we make the decision to reject the system.

TEST EXPOSURE

Perhaps one of the most important subjects to be considered in the evaluation
of RAM characteristics is the subject of test exposure. The term “test ex-
posure” refers to the amount (quantity and quality) of testing performed on a
system or systems in an effort to evaluate performance factors. In Chapter
10, we discuss the qualitative aspects of test exposure which should be con-
sidered by the test designer. The primary purpose of Chapter 8, “Reliability
Test Planning,” is to document procedures which ensure that the quantitative
aspects of test planning are adequate.

Recall the comment we made in the previous section to the effect that the
difference in the distance between the upper and lower confidence <limits was
equal to the difference in the distance between the SV and the NAV. When this
condition is achieved, we have obtained the most efficient test exposure for
the stated requirements and risks. Examples of
is inadequate or excessive are given below.
lustration of the evaluation of a proposed test

F I G U R E  6 - 6 I N A D E Q U A T E

Im (1-g )Yo=90°/o
L C L  F O R  M T B F

.

situations where test exposure
See Case Study 6-2 for an il-
exposure.

T E S T  D U R A T I O N

100(1 -a) 70=95%
UCL  F O R  M T B F

1 1 IJ
MAV  =  1!50 H O U R S S V  =  3 0 0  H O U R S

Note that in Figure 6-6 the 100(1-~)% = 90% lower limit falls below the MAV of
150 hours. The 100( 1-cY)% = 95% upper limit exceeds the SV of 300 hours. The
true MTBF could reasonably be below 150 hours or above 300 hours. Test ex-
posure is insufficient to discriminate between the MAV of 150 hours and the SV
of 300 hours with the required risk levels of 10% and 5%. If we reject the
system, the producer can legitimately claim that an MTBF of 300 hours is
reasonable for his system. On the other hand, if we accept the system, we ❑ ay
be fielding an inadequate system.
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Note that in Figure 6-7 the 100(1-f3)% = 90% lower limit exceeds the MAV of 150
hours. The 100(1-cY)% = 95% upper limit falls below the SV of 300 hours. The
consumer has 90% confidence that the 150-hour MAV has been met or exceeded.
However, the producer has not demonstrated the specified 300-hour MTBF. The
test exposure is more than required to obtain the risks of 10% and 5% for the
stated values of MAV and SV. Since the MAV has been met or exceeded, we will
probably accept the system. We may have paid a premium to obtain information
that allowed us to construct a confidence interval more narrow than required.

F I G U R E  6 - 7 E X C E S S I V E T E S T D U R A T I O N

la) (1-p)vo= 9070 100(1 -a)”/0s95Vo
L C L  F O R  M T B F U C L  F O R  M T B F

1 I I I
J

MAV= 150 HOURS SV = 300 HOURS
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CASE STUDY NO. 6-1

Background

A contract for a new electronic system specifies an MTBF of 1000 hours. The
minimum acceptable value is 500 hours MTBF. A design qualification test is to
be conducted prior to production. The test risks are to be 20% for consumer
and 10% for producer.

Determine

Describe the events which lead to acceptance or rejection of the system-

Solution

In accordance with procedures defined in Chapter 7, “Reliability Data
Analysis,” the appropriate hypothesis test is set up, the sample is taken, and
the data are analyzed.

The Positive Chain of Events

1. The contractor has met (or exceeded) an MTBF of 1000 hours.

2. There is (at least) a 0.90 probability of “passing” the test.

3 . “Passing” the test will give the user (at least) 80% confidence that the
MAV of 500 hours MTBF has been exceeded.

4. The user is assured that his needs have been met.

The Negative Chain of Events

1. The contractor has met an MTBF of 500 hours (or less).

2. There is (at least) a 0.80 probability of “failing” the test.

3 . “ F a i l i n g ” the test gives the procuring activity (at least) 90% confidence
that the contractually obligated SV of 1000 hours MTBF has not been met.

4 . The procuring activity is assured that the contractual obligations have
not been met.
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CASE STUDY NO. 6-2

Background

The specified MTBF of a targeting system is 500 hours and the minimum accept-
able MTBF is 400 hours. The contractor has proposed a development test con-
sisting of 6000 hours on the initial prototype system and 2000 hours on a
second prototype system which will contain some minor engineering advances.

The proposed test plan of 8000 hours can distinguish between the SV of 600
hours and the MAV of 400 hours for consumer’ s and producer’ s risks of slightly
over 20%. If the producer is willing to accept a 30% producer’s risk, the
proposed plan will yield a 12% consumer’ s risk.

Determine

Comment on the adequacy of the proposed test.

Solution

These risks seem
system. The test

- Test time
.

to be larger than should be considered for an important
exposure seems to be inadequate for the following reasons:

is not of sufficient length.

- Prototypes are not identical . Test time on the second prototype may
not be long enough to determine if the design improvements increase
reliability.

- Only two systems on test may be insufficient. Ideally, more systems
should be used for shorter periods of time.

A test plan having four systems accumulating about 4000 hours each will yield
producer and consumer risks of just over 10%. A further benefit is that using
four systems and operating them for a period of time about 10 times the mini-
mum MTBF should paint a pretty clear picture of the system capability through-
out a significant part of its expected age.

Note : Chapter 8 will present the analytical tools required to evaluate the
above test plan. Our objective here is to qualitatively review the
various aspects of a statistically relevant test program.

6-1o
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CHAPTER 7

RELIABILITY DATA ANALYSIS

INTRODUCTION

It is important to understand that for any realistic situation the true re-
liability characteristics of a system, or fleet of systems, are never known
with complete certainty. This is true, of course, because we have not, in
fact, actually tested every system in the total population and, practically
speaking, never could. To compensate for this lack of total information, some
form of sampling is used to obtain information about the reliability char-
acteristics inherent in a system and to quantify the level of uncertainty
about them. Of course, uncertainty continues to exist, and, as a consequence,
the reliability parameters can only be estimated. This chapter presents pro-
cedures which can be used to determine estimates for the various reliability
parameters and to quantify the uncertainty inherent in these estimates.

These procedures support the analysis of data gathered in previously conducted
tests. Planning these tests to assure that adequate sample sizes are obtained
is the topic of Chapter 8. The objective of the data analysis effort is to
determine “best estimates” of system performance parameters, such as reli-
ability, and to estimate the uncertainty associated with these “best estimate”
values.

As in previous chapters, the case studies illustrate the application and
manipulation of the mathematical concepts presented in the chapter text. Note
that in the typical Chapter 7 case study, YOU are provided the results of a
hypothetical test program and requested to develop a best estimate and con-
fidence interval for a reliability parameter.

TYPES OF RELIABILITY TESTS

Fixed Configuration and Growth Tests

There are basically two types of reliability tests. One is a test of fixed
configuration. The other is the growth, or developmental, test, which centers
on reliability improvement seen as the configuration changes during the test.
There is not, however, a clean line between these two types. For the truly
fixed configuration test of continuously operated systems, any changes in
reliability are due to the inherent characteristics of the hardware and how it
is ❑ aintained. The analysis is done as a function of system age. If there
are design changes, they have to be considered on a separate basis, perhaps by
a data set for each configuration. See Chapter 10 for more details on this
procedure.

For the growth type of test, the statistical models currently available assume
that all changes in reliability are attributable to the design changes. In
other words, they assume that the inherent reliability of the hardware is
constant. The basic analysis for the growth type of test is done’as a func-
tion of test exposure, rather than age, since it is test exPosure that ~rc-
vides information for design improvements. The effects of system age can be
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dealt with separately, primarily
observed. Chapter 9 summarizes
lustrates the associated analysis

Discrete and Continuous Tests

The most elementary consideration
whether test time is measured

by considering the failure modes that are
the topic of reliability growth and il-
techniques.

in beginning a data analysis is to determine
continuously or discretely. Usuallv. this

distinction is quite obvious. An example of a test which can be analyzed
either way is the following. Suppose that a system has a durability require-
ment of 5000 hours and ten systems are available for testing. Each system is
tested until it either experiences a durability failure or successfully com-
pletes the 5000 hour test period. We can let each system be a test unit and
count as a failure any system which fails before 5000 hours. This is a dis-
crete time approach. Alternatively, we could let hours be our test units,
with the total operating hours of the 10 -systems as the test exposure. This
is a continuous time approach. Another example is the firing of an automatic
weapon, where many rounds are fired. This is a one-shot, discrete time test
if we are analyzing the ammunition, but could be considered a continuous time
test if we are analyzing the gun or any of its components. Generally, when
either appreach is appropriate, more information is obtained from the—— —.
continuous time app

-...
roach.

DISCRETE TIME TESTING

Suppose that the systems under test are single-shot systems. Each test unit
results in a distinguishable success or failure. As discussed in Chapter 5,
the binomial model will be used to represent or model system reliability when
discrete time or success/fail operations are of interest. It is assumed
throughout this discussion on discrete time testing that the conditions of a
binomial model are reasonably satisfied. (See Chapter 5.) We present data
analysis for success/fail (discrete) tests in the form of point estimates,
confidence intervals, and tests of hypotheses.

Binomial Model: Point Estimate of Failure Probability

Once the number of trials has been specified (see Chapter 8), all the informa-
tion contained in a binomial experiment rests in the number of failures that
occur. We use this information to make an assessment or an estimate of the
true probability of failure, p. Thus, our best estimate of the value of p is
the ratio of the number of failures to the number of trials . This ratio is
called the sample proportion of failures and is designated by the symbol ~,
called p-hat. We use this sample proportion of failures, j, to construct
confidence intervals for p and in testing hypotheses about p. By definition,
then

p=

j=

p.

number of failures
number of trials = sample proportion of failures

best estimate for p

true proportion of failures
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Note that true system reliability is the probability of successful operation,
therefore

R=l - p, where R is true system reliability, and

~=1 - ~ = best estimate of system reliability.

It is important that the test designer and/or evaluator understand that a
point estimate for p represents a small portion of the information contained
in the data generated by a binomial experiment. Other useful information
includes upper and lower confidence limits for the unknown parameter, p.

Binomial Model: Confidence Limits for Failure Probability

Confidence limits and their interpretation should play a vital role in de-
signing and evaluating a binomial experiment. Not only does the actual in-
terval relay a significant amount of information about the data, but also the
method of interval construction can aid the test designer in determining
adequate test exposure to meet his needs. An extensive discussion on the
interpretation of confidence intervals is given in Chapter 6.

Suppose that we observe “s” failures out of “n” trials in a binomial experi-
ment. This translates to a sample proportion of failures equal to s/n and a
sample proportion of successes equal to (n-s) /n. Tables of exact confidence
limits for the true proportion of failures for values of n less than or equal
to 30 are given in Appendix B, Table 4. As an example, suppose that n = 25
trials and s = 4 failures. A 90% upper confidence limit for p is 0.294. We
obtain this value using Appendix B, Table 4 with n = 25 in the column labeled
90% upper limit and the row labeled s = 4. For the same data, a 98% con-
fidence interval is

0.034 ~ p < 0.398.—

In this case, the values are found in the columns labeled 98% interval and the
row labeled s = 4. More examples using Table 4 are given in Case Study 7-3.

Binomial Model: Confidence Levels for Pre-Established Reliability Limits

If, after conducting a test in which we observed s failures (c = n-s SUC-
cesses) out of n trials, we wish to determine how confident we are that a
pre-established level of reliability (such as the MAV) has been met or ex-
ceeded, we may use equation 7.1 below.

Let RL designate the desired pre-established level of reliability. TO find

the confidence that RL has been met or exceeded, we evaluate the expression:

B (c-1) = ~~~ (;) RLk(l-RL)n-kn,RL
(7.1)

If we denote the value of this expression as 1 - (Y, then we are 1OO(1 - ~)%
confident that R > R

– L“
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If, on the other hand, we wish to determine how confident we are that a pre-
established level of reliability (such as the SV) has not been attained, we
may use equation 7.2.

Let ~ designate the desired pre-established level of reliability. To find

the confidence that RU has not been attained, we evaluate the expression:

‘n’%‘c) = jo(:) ~k(l-R#-k (7.2)

If we denote the value of this expression as a, then we are 100(1 - ~)% con-
fident that R <- %“

See Case Study 7-1 for an example of this technique.

The Greek letter a is used numerous times
throughout this chapter to represent a general-
ized value or designation of “RISK.” In this
chapter, u is not necessarily to be interpreted
as producer’ s risk as in Chapters 6 and 8.

Approximate Binomial Confidence Limits (Normal Approximation)

If the number of failures and the number of successes both are greater than or
equal to 5, we can obtain approximate confidence limits using the normal
distribution. The approximate 100( 1-cY)% lower limit for p, the true propor-
tion of failures, is

where f = s/n. The approximate 100(1-u)% upper confidence limit for p is

The two-sided 100(1-u)% confidence limits for p are

(7.5)
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Values for Zu and zci/2 are obtained from Appendix B, Table 2.

As an example, suppose that 5 failures in 30 trials occurred during a test.
An approximate 90% ((Y = 0.10) upper limit for the true proportion of failures
is

Substituting n = 30, and p = 5/30 = 0.166, we obtain

0.166 + 20 ~oJ (0.166)(0.834)/30 .

‘he ‘alue ‘f ‘0.10 is determined using Appendix B, Table 2. Under the column

labeled P(Z > Za) we search the values until we find the number closest to—
0.10, the value of a. The number in the column labeled Za is the desired

value. In this case, for a = 0.10, Za = 1.28. The upper limit is then

0.166 + 1.28~(0.166)(0.834)/30 ,

which reduces to 0.253. We are thus 90% confident that the true proportion of
failures is 0.253 or smaller.

See Case Study 7-3 for construction of confidence limits using normal approxi-
mation.

Approximate Binomial Confidence Limits (Poisson/Exponential Approximation)

When the sample proportion of failures is small, and the number of trials is
reasonably large--at least 30--we can obtain approximate confidence limits
using techniques described in the section on Exponential Model: Confidence
Intervals and Limits for MTBF- This is an especially useful technique for
situations involving very few failures in fairly large samples. We use the
procedure for failure terminated testing with the identifications: T = n (the
number of trials) and r = s (the number of failures). We obtain approximate
confidence limits for p, the probability of failure, by constructing confi-

dence limits for 6, the system MTBF. Because p and A are failure-oriented
parameters and 0 is a success-oriented parameter (remember that by definition
9 = l/A), an approximate confidence limit for p is the reciprocal of the
confidence limit for e. An important consequence of the reciprocity mentioned
above is that an upper confidence limit for 0 yields a lower confidence limit
for p and vice versa.

Consider the situation described in Chapter 6, where 3 failures out of 30
trials of a binomial experiment were observed. To construct an approximate
900~ confidence interval for the true proportion of failures, we let T be 30
and r be 3. The 95% confidence interval for 6 is

2T <0< 2T
2 – 2

‘u/2,2r ‘1-ci/2,2r
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since T = n= 30, r = s = 3, and o! = 0.05, we have

2(30) < (3 : ;(30)—
‘;.025,6 ‘0.975,6

2 2
‘a~ues ‘or ‘0.025,6 and ‘0.975,6 are obtained from Appendix B, Table 5. The

explanation of how to extract these values is presented below in the section
entitled “Exponential Model: Confidence Intervals and Limits for MTBF.” The

2values are X. 025 6 = 14.46 and x; 975 b = 1.24. Thus the interval for 0 is
9 Y

2(30) 2(30)
14.46 S 6 S 1.24 ‘

which, upon simplification, becomes

4.15 < 0 < 48.39 .— —

Taking the reciprocals of the limits for 0, we have that
confidence interval for the true proportion

0.021 < p < 0.241 .——

Since reliability is 1 - p, the approximate
reliability is

of failures is

95% confidence

the approximate 95%

interval for system

0.759 < R < 0.979 .——

This statement can also be interpreted as follows: We are 95% confident that
the true
based on

See Case

system reliability is between 0.759 and 0.979. This interval is
our test results where 3 out of 30 trials ended in failure.

Study 7-2 for another example of this procedure.

Point Estimates and Confidence Limits for the Difference/Ratio of Proportions

Suppose that tests have been conducted on two different types of systems re-
sulting in sample proportions of failures of fil and fi2 with sample sizes of nl

and nL, respectively. The point estimates for the difference (pl - p2) and

ratio (pl/p2) of proportions are the difference and ratio of the sample pro-

portions, i.e., ~1 - :2 and fil/627 respectively. We present the procedures

for determining confidence limits for the difference and for the ratio of the
two population proportions (pl and p ) using the normal distribution.2
proximate 100(1 - a)% lower confidence limit for the true difference
portions is

The sp-

in pro-
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The approximate 100 (1 - a)% upper confidence limit for the true difference in
proportions is

PI - P~ s (Pl - P2)~

91-62+

The approximate 100(1 -
proportions is

zaJfil(l-fil)/nl  + p2(l-p2)/n2 .

a)% confidence interval for the true difference in

;1 - :2 + p2(l-p2)/n2 s PI - P2- za/2Jp1(l-pl)/nl

z 31 - 52 + za/2h1(l-pl)/nl  + p2(l-p2)/n2 .

With high reliability systems, it is sometimes more informative for comparing
two systems to look at the ratio of proportions of failures. As an example,
suppose that the true proportions of failures for two systems are 0.01 and
0.001. We can say that one system is ten times better than the other even
though the difference is a mere 0.009. An approximate 100(1 - CY)% lower
confidence limit for the true ratio of proportions is

P1/P2 ? (p#pz)L

The approximate 100 (1 - u)% upper confidence limit for the true ratio of
proportions is

The approximate 100 (1 - ti)% confidence interval for the true ratio of propor-

In Case Study 7-4, we construct confidence limits for the difference and ratio
of population proportions.
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CONTINUOUS TIME TESTING

Suppose the systems under test operate as a function of hours, kilometers, or
other continuous measure. In such a case, the data are not solely success/
failure oriented. Generally, the times at which failures occur and the time
in operation without failures must also be considered. These types of tests
are analyzed by using a Poisson model. When the failure rate remains constant
throughout the test, the exponential distribution describes the times between
failures and provides all the information needed for the data analysis. For
the analysis presented in subsequent sections of this chapter, we will assume
that the failure rate is constant. We present below a graphical procedure to
determine if that assumption is reasonable.

Continuous Time Testing: Failure Pattern Identification

When confronted with data from a continuous time test the analyzer should
first construct an average failure rate plot. The purpose of constructing an
average failure rate plot is to help the analyst determine whether the failure
rate is increasing, decreasing, or is constant. The type of failure rate plot
that will be described considers hardware that did not have significant design
changes made, so that changes in the failure rate are due primarily to the age
of the equipment. (When substantial design changes are made, there may be
reliability growth. In that case, a different type of average failure rate
plot is used, which is based on cumulative test exposure rather than the age
of the equipment.)

The average failure rate plot is constructed as follows:

1.

2.

3.

4.

5.

6.

7.

Determine the lowest and highest equipment ages which the test experience
covers. These need not be ages at which failures occurred. This estab-
lishes the lower and upper limits of the plot. For convenience, working
limits may be set at “round” numbers above and below the lower and upper
limits , respectively.

Divide the interval encompassed by the working limits into subintervals.
The subintervals need not be of equal size.

Count the number of failures in each subinterval. (A minimum of 5 fail-
ures per subinterval is desirable, though not absolutely necessary.)

Add up the hours (or miles, rounds, etc.) of operation within each sub-
interval.

Compute the average failure rate for each subinterval by dividing the
number of failures in the subinterval by the hours (or miles, rounds,
etc.) of operation in the subinterval.

Construct a graph, with the system age (in hours, miles, rounds, etc.) on
the horizontal scale, and failure rate on the vertical scale. The aver-
age failure rates computed for each subinterval are shown as horizontal
lines over the length of each subinterval.

If the average failure rate plot has too much fluctuation to show any
kind of trend, reduce the number of subintervals and repeat steps 3
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8.

9.

10.

11.

through 6. For very small amounts of data, it may be necessary to use
only two subintervals.

From the final version of the average failure rate plot, judge whether
the failure rate trend remains constant, increases , or decreases as the
equipment ages. For small amounts of data it may be difficult to make
this judgment. In any case, statistical tests for trend may be used.

If the data are judged to have no trend, analyses based on the exponen-
tial distribution may generally be used with validity.

If the failure rate is judged to be increasing or decreasing, as a mini-
mum, a note to this effect should accompany any analyses based on the as-
sumption of exponential times between failures. To analyze data that
appear to have a trend more explicitly, a non-homogeneous Poisson process
may be fitted to the data. We do not present any analysis using a non-
homogeneous Poisson process in this chapter. If the average failure rate
plot indicates that a constant failure rate assumption is unwarranted,
the data analyst may refer to a statistics text which covers the topic of
stochastic processes in depth to aid in his analysis.

See Case Studies 7-5 and 7-6 for examples of average failure rate plots.

Exponential Model: Point Estimate of MTBF

When data are judged to show a constant failure rate, the exponential distri-
bution may be used for data analysis. Exponential analysis does not require
the use of actual failure times.

Notation T = total test exposure, the total hours, miles,
etc. , accumulated among all the items included
in the sample

r = number of failures observed

6= point estimate of MTBF

R(x) = point estimate of reliability for a specified
exposure, x

i= the point estimate of the failure rate

Formulas

6=: (7.6)

Exponential Model: Point Estimates of Reliability and Failure Rate

Point estimates of reliability and failure rate may be developed from point
estimates of MTBF as follows:

i(x) = e -x/ii

7-9
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i = 1/$ (7.8)

See Case Studies 7-7, 7-8, and 7-9 for illustrations of computing point esti-
mates.

Exponential Model: Confidence Intervals and Limits for MTBF

Notation T

r

X 2 ,

a

6 = MTBF

R(x) = reliability for
a period x

A = failure rate

= total test exposure, the total hours, miles>
etc. , accumulated among all the items included
in the sample

= the number of failures observed

= a chi-square value, identified by two sub-
scripts. To determine a chi-square value using
Appendix B, Table 5, we use the first subscript,
a function of the risk (cY), to indicate the
column, and the second subscript, a function of
the number of failures (r), to indicate the row.

= the risk that a confidence statement is in
error. Note: The symbol a used here does not
necessarily represent the producer’s risk as
discussed in Chapter 6.

[

no subscript = true
but unknown value

Used in
conjunction L subscript = lower limit

with 1 U subscript = upper limit

7-1o
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Formulas (All the formulas listed below will yield statements at the
100(1-a%) level of confidence.)

Time Terminated

When the test exposure ends at a time
other than a failure occurrence, use
Appendix B, Table 8a multipliers or
the following formulas.

Interval for specified confidence
level

2T <e< 2T (7.9a)—
‘;/2,2r+2

– 2
‘1-Q/2,2r

See Case Studies 7-7 and 7-8.

Lower limit for specified confi-
dence level

e~eL

e~22T (7.10a)

‘a,2r+2

Upper limit for specified confi-
dence level

e~ 22T
‘1-cf,2r

(7.lla)

Failure Terminated

When the test exposure ends at a
failure occurrence, use Appendix
B, Table 8b multipliers or the
following formulas.

Interval for specified confidence
level

‘LSeSeU

2T 2T
2 5852 (7.9b)

‘cY/2,2r ‘1-ci/2,2r

See Case Study 7-9.

Lower limit for specified confi-
dence level

e~eL

e?+ (7.10b)

‘a,2r

Upper limit for specified confi-
dence level

e~22T
‘1-a,2r

(7.llb)

See Case Study 7-7, See Case Study 7-9.
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Confidence That A Specific Lower Limit Has Been Attained

Time Terminated Failure Terminated

Confidence that a specific lower Confidence
limit, OL, has been attained limit, eL,

that a specific lower
has been attained

.22
‘;,2r+2 6L (7.12a) (7.12b)

Search *’ tables in row labeled Search XL tables in row labeled
2r + 2 for the numerical value, 2r for the numerical value,
2T/O. , and find the associated 2T/f3. , and find the associated
valu$-for a.

Confidence that

is 100(1-a)%.

The value, a, may also be
determined in closed form
as follows:

r (T/OL)k e-(T’eL)
@= z

k=o k!

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

is 100(1-a)%.

valu~ for a.

Confidence that

e~eL

is 100(1-CY)%.

The value, CY, may also be
determined in closed form as
follows:

- (T/OL)r-1 (T/OL)k e
(7. 13a) ~.~ k! (7.13b)

k=()

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

O~eL

is 100(1-a)%.

See Case Studies 7-7 and 7-8. See Case Study 7-9.
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Confidence That A Specific Upper Limit Has Not Been Attained

Time Terminated

Confidence that a specified upper
limit, Ou, has not been attained

2 .g
‘1-f.Y,2r (3U (7.14a)

Search X2 tables in the row labeled
2r for the numerical value, 2T/f3U,
and find the associated value for l-a.

Confidence that

6:6U

is 100(1-CY)%.

The value a may also be determined
in closed form using the following
equation:

r=l (T/8U)k e-(T/eu)
l-~ = ~ k! (7.15a)

k=o

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

is 100(1-a)%.

See Case Study 7-7.

Failure Terminated

Confidence that a specified
upper limit, 6u, has not been
attained

2 .2J
‘1-a,2r 6U (7.14b)

Search X2 tables in the row
labeled 2r for the numerical
value , 2T/OU , and find the
associated value for l-a.

Confidence that

e:eu

is 100(1-a)%.

The value u may also be deter-
mined in closed form using the
following equation:

-(T/OU)r-1 (T/Ou)k e
l-~ = ~ k! (7.15b)

k=o

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

(3:6U

is 100(1-Q)%.

See Case Study 7-9.
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Exponential Model: Confidence Intervals and Limits for Reliability and Fail-
ure Rate

Intervals for reliability and failure rate with 100(1-a)% confidence are

RL(x) s R(x) SRU(X)

(7.16)
-(x/eL) -(x/eu)

e < R(x) < e. —

and

\~A~h

I/eu : A < I/eL (7.17)—

where 0L and 0u are the lower and upper limits of the 100(1-a)% confidence

interval for El (MTBF).

Lower limit for reliability and upper limit for failure rate with 100(1-a)%
confidence are

R(x) ~ RL(x)

- (x/eL)
R(x) > e—

and

A<
-%

(7.18)

(7.19)

where 0 L is the 100(1-a)’jll lower confidence limit for 6 (MTBF),

Upper limit for reliability and lower limit for failure rate with 100(1-~)%
confidence are

R(x) : ~u(x)
-(x/eu)

R(x) < e—

and

A>
-%

A >  I/eu—

Where 6U is the 100(1-a)% upper confidence limit for 0 (MTBF).

(7.20)

(7.21)

7-14

Downloaded from http://www.everyspec.com



CASE STUDY NO. 7-1

Background

The engine for a light armored vehicle must have a 0.90 probability of com-
pleting 100,000 miles without an operational durability failure. In order to
evaluate durability, four vehicles are tested. Each vehicle is operated until
a durability failure occurs or until it successfully completes 100,OOO miles
of operation without experiencing an operational durability failure.

Determine

1. If no failures occur, what confidence do we have that the requirement has
been met or exceeded?

2. If 1 failure occurs, what confidence do we have that the probability is
at least 0.75? ~

3. If 2 failures occur, what confidence do we have that the probability is
at least 0.50?

Solution

1. Since no failures have occurred, the number of successes is 4. We use
equation 7.1 with

n = 4

S = 4

RL = 0.90.

The confidence is:

: (:)(o.9)k(o.H4-k  = (:)(0.9)0(0.1)4 +(:)(0.9)1(0.1)3
k=o

+ (:)(0.9)2(0.1)2 + (;)(0.9)3(0.1)’

= (1)(0.0001) + (4)(0.0009) + (6)(0.0081) + (4)(0.0729)

= 0.0001 + 0.0036 + 0.0486 + 0.2916 = 0.3439.

We are 34% confident that the reliability meets or exceeds 0.90.
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2. The number of successes is 3. We use equation 7.1 with

n = 4

S = 3

RL= 0.75.

The confidence is:

i (4)(0. 75)k(0.25)4-k = 0.2617.
k=() k

We are 26% confident that the reliability meets or exceeds 0.75.

3. The number of successes is 2. We use equation 7.1 with

n = 4

S = 2

‘L = 0.5.

The confidence is:

1 4

_()k~o k ((;”5)k(Oo5)4-k
= 0.3125.

We are 31% confident that the reliability meets or exceeds 0.50.

Commentary

It is interesting to note that with the small sample size, we can only reach
34% confidence that the requirement has been met or exceeded, even though we
encountered zero failures. In many cases, durability requirements are im-
possible to demonstrate at high confidence levels because sample sizes are
almost always constrained to be small.
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CASE STUDY NO. 7-2

Background

A launcher for a medium range anti-tank missile has been tested. of 100
missiles, 95 were launched successfully.

Determine

1. Point estimate of reliability.

2. Construct a 90% upper limit on the true proportion of failures using the
Poisson/exponential approximation.

3. Construct an 80% confidence interval on the true reliability using the
Poisson/exponential approximation.

Solution

1. Point estimate of p, the true proportion of failures is 5/100 = 0.05.
Consequently, the point estimate for the reliability, R, is

i= 1 - j = 1 - 0.05 = 0.95.

2. We set T=n=lOO, r= s=5, anda =0.10. The approximate 90% upper
limit for p, the true proportion of failures, is obtained by first determining
a 90% lower limit for 0. The 90% lower limit for 0 is

Oq

2T
~2

‘u,2r

> 2(100)
– 15.99

> 12.51.—

Consequently, the 90% upper limit for p is

PSPU

1
S 12.51

< 0.08.—
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Thus, we are 90% confident that the true proportion of failures does not
exceed 0.08.

3. Weset T=n=lOO, r=s =5, anda=O.20. The 80% interval for R, the
launcher reliability, is obtained by first determining an 80% interval for 0.
The 80% interval for O is

‘L SeseU

2T 2T
2 5e52

‘ci/2,2r ‘1-ct/2,2r

2(100) < e < 2(100)
18.31 – – 3.94

10.92 < 0 < 50.76.— —

Consequently, an 80% interval for p, the true proportion of failures is

1 1
50.76 ‘p S 10.92

0.02 < p < 0.09.— —

The 80% interval for the reliability, R, is

‘LSRSRU

1- 0.09 < R < 1 - 0.01— —

0.91 < R < 0.98.— —

We are 80% confident that the true launcher reliability is between 0.91 and
0.98.
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CASE STUDY NO. 7-3

Background

A new missile system has been under development and is ready for production.
The contract specifies that the producer must demonstrate a proportion of
successes at least equal to 0.85 (SV) . The user will accept as a minimum a
demonstration of at least 0.70 (MAV) . An initial production test of 30 fir-
ings was conducted for the missile system, and 6 missiles fired improperly.

Determine

1. What is our best single value estimate for the true proportion of fail-
ures?

2. Construct exact 90%, 95%, and 99 .5% lower confidence limits for the true
proportion of failures.

3. Construct exact 90%, 95%, and 99. 5% upper confidence limits for the true
proportion of failures.

4. Construct approximate 60%, 70%, 80%, and 90% two-sided confidence limits
for the true proportion of failures, using the normal approximation to the
binomial.

5. Provide an accept/reject criterion which permits the greatest number of
acceptable failures which still meets a consumer’ s risk of no more than 10%.
What is the producer’ s risk for this criterion? Is the system acceptable
under this criterion?

6. Increase the sample size to 40 and 50. Provide an accept/reject
criterion to meet a producer’ s risk of 15%. What is the consumer’ s risk for
each criterion?

Solutions

1. Point estimate: 6/30 = 0.20. This corresponds to an 80% reliability.

2. Lower confidence limits: Use Appendix B, Table 4.

a. 90% Lower limit, n = 30,
Lower limit = 0.109.

b. 95% Lower limit, n = 30,
Lower limit = 0.091.

c. 99.5% Lower limit, n = 30,
Lower limit = 0.054.

Note that the three solutions above

s = 6.

s = 6.

s = 6.

are lower confidence limits on the true
proportion of failures, i.e. , lower limits on unreliability. If we subtract
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any of the lower limits from 1, we obtain an upper limit on reliability. To
convert the 90% lower limit on unreliability (0.109) to an upper limit on
reliability, we subtract it from 1, i.e., 1 - 0.1O9 = ().891. This means that
we are 90% confident that the true reliability does not exceed 0.891.

3. Upper confidence limits: Use Appendix B, Table 4.

a. 90% Upper limit, n = 30, s = 6.
Upper limit = 0.325.

b. 95%! Upper limit, n = 30, s = 6,
Upper limit = 0.357.

c. 99.5% Upper limit, n = 30, s = 6.

Upper limit = 0.443.

Note that the three solutions above are upper confidence limits on the true
proportion of failures, i.e., upper limits on unreliability. To obtain a
lower limit on reliability, we subtract the corresponding upper limit on
unreliability from 1. The 90% lower limit on reliability is thus: 1 -
0.325 = 0.675. This means that we are 90% confident that the true reliability
exceeds 0.675.

4. Approximate two-sided .limits (normal), for j = s/n = 6/30 = 0.2:

Lower limit = $ - z~/2Jimim

Upper limit = j + za,2Jm

Note that the values for z
a/2 can be found in Appendix B, Table 2, To use the

table for two-sided limits, we convert the confidence percentage (say 60%) to
a value for ff(O.40), divide that value by 2((Y/2 = 0.20), and locate the value
for za/2 (20.20 = 0“84).

a. 60%

b. 70%

c. 80%

@ = 0.40
‘cY/2 = ‘0.20 = 0.84

Lower limit = 0.139
Upper limit = 0.261

~ = ().30
‘a/2 = ‘0.15 = 1.04

Lower limit = 0.124
Upper limit = 0.276

N = 0.20 ‘a/2 = ‘0.10 = 1.28

Lower limit = 0.107
Upper limit = 0.293
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d. 90% a=o. lo ‘ci/2 = ‘0.05 = 1.645

Lower limit = 0.080
Upper limit = 0.320

5. a. Use Appendix B, Table 1, n = 30. The probability of 5 or fewer
failures when p is 0.3 is 0.0766. (Recall that p = 0.3 corresponds
to a reliability of 0.7. ) The probability of 6 or fewer failures
when p is 0.3 is 0.1595. Because the consumer’ s risk is not to
exceed 10%, we must make our decision criterion to accept with 5 or
fewer failures and reject with more than 5 failures. The decision
criterion to accept with 6 or fewer failures results in a consumer’s
risk of 15.95%, which exceeds the requirement of a 10% consumer’s
risk. Note that the actual consumer’ s risk for the criterion to
accept with 5 or fewer failures is 7.66%.

b. Use Appendix B, Table 1, n = 30. The producer’ s risk is the prob-
ability of rejecting the system when it has met the specification of
0.15 proportion of failures (i.e. , a reliability of 0.85) . We
reject the system if 6 or more failures occur. The probability of 6
or more failures is the difference between 1 and the probability of
5 or fewer failures. The probability of 5 or fewer failures when p
is 0.15 is 0.7106. Consequently, the producer’s risk is 1 - 0.7106
or 0.2894 (28.94%) .

c. The system is not acceptable because in fact more than 5 failures
occurred.

6. a. Appendix B, Table 1, n = 40, p = 0.15. Producer’ s risk must
exceed O. 15.

r P(r or fewer failures) P(r+l or more failures)—

7 0.7559 0.2441

8 0.8646 0.1354

not

The criterion is to reject if 9 or more failures occur; otherwise,
accept.

The consumer’ s risk, the probability of accepting the system when,
in fact, it has fallen below the MAV of 0.7, is the probability that
8 or fewer failures occur when the true proportion of failures, P,
is 0.3. This value is 0.1110. Thus , there is an 11. 1% chance of
accepting a bad system with this plan.

b. Appendix B, Table 1, n = 50, p = 0.15. Producer’s risk must not
exceed O. 15.

r P(r or fewer failures)— P(r+l or more failures)

9 0.7911 0.2089

10 0.8801 0.1199
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The criterion is to reject if 11 or more failures occur; otherwise,
accept.

The consumer’ s risk (note above definition) is the probability that
10 or fewer failures occur when p is 0.3. This value is 0.0789.
Thus , there is a 7 .89% chance of accepting a bad system with this
plan.

Note that for a fixed producer’s risk (approximately 13%) , the
consumer’s risk decreases as the sample size increases. An in-
creased sample size will also result in a decreased producer’s risk
when the consumer’s risk is held approximately constant.
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CASE STUDY NO. 7-4

Background

Two contractors are competing for a contract to produce an electronic guidance
system. Twenty-five units from Contractor I and thirty units from Con-
tractor 2 have been tested. The results of the test are: Contractor 1 had 2
failures, Contractor 2 had 7 failures.

Determine

1. What is the point estimate of the difference in the true proportions of
failures for the two contractors?

2. What is the point estimate of the ratio of the true proportions of fail-
ures for the two contractors?

3. Construct an approximate 90% lower confidence limit for the difference in
the true proportions.

4. Construct an approximate 90% lower confidence limit for the ratio of the
true proportions.

5. What confidence do we
as bad as Contractor 2’s?

Solutions

1. 61 - fjz = 7/30 - 2/25

2. 61/62 = 7/30 + 2/25 =

3. Lower limit = ~1 - fiz

= 0.153 -

For a 90% lower limit, a

have that Contractor 1’s system is at least twice
At least 50% worse than Contractor 2’s?

= 0.233 - 0.080 = 0.153.

(7)(25)/2(30) = 2.91.

- zaJfil(l-fil)/nl + p2(l-p2)/n2

Za~(0.233)(0.767)/30  + (0.08)(0.92)/25

= 0.10 and Zu = 1.28. (See Appendix B, Table 2.)

The lower limit for the difference in true proportions is 0.031. This means
that we are 90% confident that the difference in the true proportions of fail-
ures is at least 0.031.

= 2.91 - Z& ti(0.233) (0.92)/25(0.08)2 .
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For a 90% lower limit, u = 0.10 and Zti = 1.28. The lower limit is thus 1.43.

This means that we are 90% confident that Contractor 1’s system is 1.43 times
worse than Contractor 2’s system.

5. To find the confidence that Contractor 1’s system is at least twice as
bad as Contractor 2’s, we must find the confidence associated with a
lower limit of 2 for the ratio. Since, by definition, the lower limit is

We set this expression equal to 2, and solve for Za to obtain

z =  (ij/fi2 - 2)/djl(l-i32)/m-jfj .Cr

Substituting 0.233 for fil, 0.08 for 62, and 25 for n2, we have

z = 0.788 .Ci

We look in Appendix B, Table 2 to find the value of u which corresponds to ZU

= 0.788. Since, by definition, P(2 ~ za) = a, the desired value of @ is

located under the column labeled P(Z ~ Za). Thus the value of a is 0.215.

This represents a 1OO(1-(Y)% = 78.5% lower confidence limit, so we are 78.5%
confident that Contractor 1’s system is at least twice as bad as Con-

tractor 2’s.

To find the confidence that Contractor 1’s system is at least 50% worse than
Contractor 2’s, we solve the following equation for zu’

51/22 - za~fil(l-62)/n2~~  = 1.5.

The solution is:

z =  (51/5-2 ~- 1.5)/ pl(l-p2)/n2p2 .a

Substituting 0.233 for ~1, 0.08 for 62, and 25 for n2, we have

z = 1.22 .a
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This corresponds to an ~ of 0.1112, so we are 88.88% confident that Contrac-
tor 1’s system is at least 50% worse than Contractor 2’s.
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CASE STUDY NO. 7-5

Background

Six electronic systems were tested. All systems had
and no design changes were introduced during the test.
tabulated below.

System Age System Age

the same configuration,
The test experience is

System Age
at Start of at Failure(s) at End of

@lS!!? Test, Hrs. Hrs. Test, Hrs.

1 0 13, 37, 60 275
2 75 154 2!30
3 0 73 290
4 150 190, 218 270
5 0 3, 52, 227 260
6 0 39, 166, 167, 209 260

Determine

Is exponential data analysis appropriate for this data set?

Solution

An average failure rate plot will be used to determine if there is a trend to
the data. The
is included to

SYSTEM I

SYSTEM 2

SYSTEM  3

SYSTEM 4

SYSTEM 5

following graph, although not a necessary part of the
aid visualization of the data.

I I
I I I

0 I I 1 I
1

; I
I I I
I [ 010 1 I
I

I
I I

0 I0 I I 0 1
I

i ; I
SYSTEM 6 0 I 0 10

J I

I I I

I I !
o I 00 200 300

SYSTEM AGE, HOURS

analysis,

The data will be broken down into three equal intervals. The steps involved

7726

Downloaded from http://www.everyspec.com



in arriving at the average failure rate for each interval are contained in the
following table.

Interval Failures Operating Hours
Average

Failure Rate

o-1oo 7 425 7/425 = 0.0165
100-200 4 550 4/550 = 0.0073
200-300 3 445 3/445 = 0.0067

These average failure rates are plotted on the following graph.

I 00 200 300
SYSTEM AGE, HOURS

The average failure rate plot suggests very strongly that there is a decreas-
ing failure rate as the system ages, and exponential data analysis should not
be used unless, at a minimum, a caveat about the decreasing failure rate is
included.

Commentary

1. Although this is a fictional data set, the pattern to the data is fre-
quently observed in real data sets.

2. For a data set of this type, it is generally useful to consider the
actual failure types and corrective actions encountered. This tends to
clarify how permanent the high initial failure rate might be.
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CASE STUDY NO. 7-6

Background

Three developmental vehicles were operated under
matched the operational mode summary and mission
vehicles had the same physical configuration.
design change was introduced to the test vehicles

test conditions that closely
profile for the system. All
Only one relatively minor

during the test. Scoring of
.test-incide~ts determined that there were 7 operational-mission failures. ‘The
following table displays the operational mission failure data.

Vehicle Odometer Odometer Odometer
Number at Start(km) a t  F a i l u r e at End (km)

1 0 None 6,147
2 0 3,721; 6,121; 6,175 11,000

9,002
3 0 216; 561; 2,804 5,012

Determine

IS exponential data analysis appropriate for this data set?

Solution

An average failure rate plot will be used to determine if there is a trend to
the data. Three equal intervals will (arbitrarily) be used.

Interval Failures Kilometers Average Failure Rate

0-4,000 4 12.000 4/12.000 = 0.00033
4,000-8,000 2 7;159 2;7,159 =
8,000-12,000 1 3,000 1/3,000 =

These average failure rates are plotted on the following graph.

0.00040 -

I
0.00030

0.00020 -

0.00010 -

0.00028
0.00033

0 4,000 8,000 I 2,000
ODOMETER READING (km)
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Since the average failure rate plot is essentially horizontal, there is
virtually no evidence of trend in the data, and exponential data analysis
procedures may be used.

Commentary

For large data sets , the average failure rate plot gives a very precise
picture of the actual failure rate pattern. For small data sets, such as this
one, chance plays a very heavy role. For example, in this case we observed
one failure in the last interval. Just one more, or one less failure in this
interval would make a drastic difference in the observed average failure rate.
More formal trend tests address whether such variations could reasonably be
due to chance alone.
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CASE STUDY NO. 7-7

Background

The vehicle system discussed in Case Study 7-6 has a mission duration of 100
kilometers. The user has stated a minimum acceptable value (MAV) of 2,000
mean kilometers between operational mission failure (MKBOMF) and the con-
tractual reliability requirement is equivalent to a 4,000 MKBOMF specified
value (SV) . The analysis in Case Study 7-6 showed no trend to the data. The
test gave 22,159 km of exposure, and 7 operational mission failures were
observed.

Determine

1.
2.
3.
4.
5.
6.
7.

Point estimate of MKBOMF, mission reliability and failure rate.
80% confidence interval for MXBOPfF and mission reliability.
80% lower confidence limit for MKBOMF.
80% upper confidence limit for MKBOPfF.
What confidence do we have that
What confidence do we have that
Does the statistical evidence

the MAV has been met or exceeded?
the SV has not been obtained?
suggest that the reliability is satis-

factory, or not?

Solutions

Because Case Study 7-6 gave no evidence of trend, exponential data analysis
procedures will be used. Note that they are all based on test exposure, T =

22,159 kilometers, and number of failures, r = 7. Actual odometer readings at
failure need not be considered, except to note that the test exposure is
“time” terminated.

1. Point estimates of 0, R(1OO), and A.

a. Apply equation 7.6

~ =x = 22,159
r 7 = 3165.6 MKBOPfF

Convert to mission reliability using equation 7.7:

ii(x) = e -x/6

ii(100) = e
-100/3165.6 = -0.0316 = o 969e . .

Convert to failure rate using equation 7.8:

~=1= 1
3165.6 = 0.000316 failures per km,

6

b. Use a reliability computer.
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The next
using the

two figures
reliability

illustrate the two-step solution procedure for part 1
computer.

J

,.

----+

\

—

L WE A R E  L O O K I N G  F O R  A  P O I N T  E S T I M A T E
2 .  N U M B E R  O F  F A I L U R E S  =  7
3. “TIME” = 2 2 . 1 5 9  T H O U S A N D  K M

4 .  P T .  E S T I M A T E  O F  “MTBF” ~ 3 . 2  T H O U S A N D  MKBOMF
5 .  P T .  E ST IMAT E  OF  FA I LU RE  RAT E  % .31 F A I L U R E S  PER T H O U S A N D S  KM

7

k C ONFIDEMEI  ~! *’”**- ‘ - ”  ‘
I -- :-i

RELIABILITY

.s ,!? 1

-!I NOTE: THE “RELIABILITY  COMPUTER” SHWN  IN THIS ILLUSTRATION CAN BE PURCHASED FROM
—  T E C H N I C A L  A$JD EPJGINIIERING  AIDS FOR M A N A G E M E N T ,  B O X  25 T A M W O R T H ,  N. H . ,  03886 I
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6. P T .  E S T I M A T E  O F  “MT BF”# 3,200 MKBOMF
Z “TIME”= M I S S I O N  D U R A T I O N  =  100 KM
8 .  PT E S T I M A T E  O F  R E L I A B I L I T Y  ~ . 9 6 9
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2. An
mission

a.

b.

c.

80% confidence interval for
R(1OO).

Using Table 8, Appendix B we
for the case of 7 failures

0 and reliability for a ~00-kilometer

obtain the confidence limit multipliers
and 80% confidence interval, i.e., 90%

upper and 90% lower confidence limits. These multipliers are 0.665
and 2.797 for the 90% lower and upper confidence limits ,
respectively. Note we use Table 8a because this is a kilometers
(i.e., time) terminated test.

‘L = multiplier (~) = (0.595)(3165.6) = 1883.5 MKBOMF

‘u = multiplier (6) = (1.797)(3165.6) = 5688.6 MXBOMF

We are therefore 80% confident that

1883.5 < 0 ~ 5688.6 MKBOMF— —

Using inequality 7.9a, we find, for a = 0.20,

2T <8< 2T
—

‘;/2,2r+2
– 2

‘1-a/2,2r

2(22,159) < * < 2(22,159)
—

‘;.1O,16
– 2

*0.90,14

Using Appendix B, Table 5 for the appropriate X2 values, we have

44,318 44,318
23.55 L 0 ~ 7.79

We are 80~ confident that

1881.9 < e < 5689.0 MKBOMT——

In other words, we are reasonably sure that the MKBOMF is not less
than 1881.9, nor greater than 5689.0.

Converting to mission reliability using inequality 7.16, we find

e-x/8L<R(x)<e -x/Ou
— —

e-100/1881.9 < *(100) < e -100/5689.0
— —

We are 80% confident that

0.948 ~R(100) ~ 0.983
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Commentary

The reliability computer cannot be used for confidence intervals since it does
not have a capability for upper limits.

3. An 80% lower confidence limit for 6.

a. Use Table 8a, Appendix B to find the multiplier for an 80% lower
confidence limit with 7 failures.

‘L = multiplier (6) = (0.684)(3165.6) = 2165.3 MKBOMF

Therefore, we are 80° ~ confident that

(3 > 2165.3 MKBOMF—

b. Using inequality 7.10a, we find

t3~22T
‘a, 2r+2

~ > 2(22,159)
– 2

‘0.20,16

Using Appendix B, Table 5 for the X2 value, we have

* > 44,318
– 20.47

We are 80% confident that

(3 > 2165.0 MKBOMF—

c . Using a reliability computer, we find
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L C O N F I D E N C E  L E V E L =  80 ‘k

N U M B E R  O F  F A I L U R E S  =  7
“ T I M E ”  = 2 2 . 1 5 9  T H O U S A N D  K M

4 .  L O W E R  L I M I T  % 2 1 . 7  T H O U S A N D  Kkl
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4 . An 80% upper confidence limit for 0.

a. Use Table 8a, Appendix B to find the multiplier for an 80% upper
confidence limit with 7 failures.

6U = multiplier (~) = (1.479)(3165.6) = 4681.9 MXBO~

Therefore, we are 80% confident that

9 < 4681.9 MKBOMF—

b. Using inequality 7.11, we find

e~22T

‘1-a,2r

~ < 2(22,159)
–2

‘0.80,14

Using Appendix B,

* < 44,318
– 9.47

Table 5 for the X2 value, we find

We are 80% confident that

e < 4679.8 MKBOMF—

Commentary

The reliability computer does not have a capability for upper limits.

5. What confidence do we have that 6 > 2,000?—

a. Using equation 7.12a, we find

2 = 2T
‘ci,2r+2 OL

2 2(22,159) = 22 159
‘(x,16 = 2000

Searching Appendix B, Table 5 in the row labeled 16 for a value of
22.159, we find values of 20.47 and 23.55. Interpolating, we obtain
a = 0.14. Confidence is 100(1-cY)% 3 100(1-0.14)%. We are approxi-
mately 86% confident that

6 > 2000 MXBOMI?—
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b. Using equation 7.13a, we find

r (T/OL)k e-(T/OL)
a= I

k=O
k!

T/8L = 2~&9 = 11.0795

r=7

~= (11.0795)0e-1*”07g5+  (11.0795)1e-11”0795
1 1

+ (11.0795)2e-11-0795  + (11.0795)3e-11.0795
2 6

+ (11.0795)4e-11.0795  + (11.0795)5e-1*.0795
2 4 120

+ (11.0795)6e-11”0795  + (11.0795)7e-11.0795
720 5040

= 0.0000 + 0.0002 + 0.0009 + 0.0035 + 0.0097

+ 0.0215 + 0.0396 + 0.0627

=  0 . 1 3 8 1

We are 86.2% confident that

6 . What confidence do we have that 6 < 4,000?

The confidence that 0 < 4,000 is the same as the confidence that 6 < 4,000.
The former statement is easier to interpret, although the latter is t~e usual
expression.

a. Using equation 7.14a, we find

2 = 2 T
‘1-a,2r ~

2
xl-a, 14

= 2(22,159) = ~1 08
4000 .
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Searching Appendix B, Table 5 in the row labeled 14 for a value of
11.08, we find values of 10.16 and 13.34. Interpolating, we obtain
l-a z 0.68. Confidence is 1OO(1-(Y)% ~ 100(0.68)%. We are approxi-
mately 68% confident that

(3 < 4 0 0 0  MKBOIW

b. Using equation 7.15, we obtain

r-1 (T/Ou)k e -(T/Ou)
l-~ = ~

k=O k!

r-1 = 6

l-ci = (5.53975)0e-5”53975 + (5.53975)1e-5”53975
1. 1

+ (5.53975)2e-5;53g75  + (5.53975)3e-5-53975
2 6

+ (5.53975)4e-5.53975  + (5.53975)5e-5-53975
2 4 120

+ (5.53975)6e-5.53975
720

= 0.0039 + 0.0218 + 0.0603 + 0.1113 + 0.1541 + 0.1708

+ 0.1577

= 0.6798

We are 68% confident that

o < 4000 MKBOMF

7. Does the reliability appear satisfactory?

We are 86% confident that the user’s needs have been met, but only 68% con-

fident that contractual obligations were not met. There is stronger evidence
that the reliability is satisfactory than not. If many more failures were
experienced, we would have low confidence that the user’s needs were met, and
we would also have higher confidence that the contractual obligations were not
met, suggesting that the reliability is not satisfactory from both
standpoints.
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CASE STUDY NO. 7-8

Background

An avionics system has the following reliability requirements: the minimum
acceptable value (MAV) = 150 hrs. MTBF, and the specified value (SV) = 450
hrs. MTBF. Three of these systems were tested for 100 hours (each) under test
conditions that closely duplicated the expected operational environment. No
failures were observed during this test.

Determine

An 80% lower confidence limit for MTBF, and the confidence that the MAV has
been attained.

Commentary

The case of a test with zero failures has some interesting features. With no
failures, there is no way to determine the type of failure pattern. If we
have some assurance that the equipment will not degrade as it ages, we can
make a constant failure rate assumption, which, in turn, permits an ex-
ponential data analysis.

If we attempt to obtain a point estimate of 9, we get:

g=z=T– = indeterminater o

Similarly, the upper limit is indeterminate. We can, however, obtain lower
confidence limits.

Solutions

1. 80% lower confidence limit for 9.

a. Note that the technique of using the multipliers from Table 8,
Appendix B, cannot be used for the case of zero failures.

b. Using inequality

e ~ ~2T

‘a, 2r+2

7.10a, we f i n d

We have in this case, T = 300, a = 0.2 and r = 0, so

~ > 2(300)
– 2

XO.2,2
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Using Appendix

~ > 600
– 3.22

B, Table 5 for the X2 value, we find

We are 80% confident that 0 > 186.3 hrs MTBF—

b. Using a reliability computer, we find

1.
2 .

3 .

r 4.

C O N F I D E N C E  L E V E L =  80%

NUM6EROF  F A I L U R E S  = O

T I M E =  3 0 0  H O U R S

L O W E R  L I M I T  ~ 186 H O U R S

2 I

uPOINT ‘ 2

F&%

RELIABILITY
AND

C ONFIDENCE
FOR

C ONTINUOUS

ESTIMATE ‘yi2&.9\- i
II

--
DIRECTIONS ~=
T.an41kulnlnomwam*-m  s
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2. Confidence that O > 150—

a . As noted in part 1 of this problem, Table 8 cannot be used for the
case of zero failures.

b. Using equation 7.12a, we find

2 . 2T
‘cr,2r+2 ~

2(300) = ~ o
X:,2 = 150 “

Searching Appendix B, Table 5 in the row labeled 2 for a value of
4.0, we find values of 3.22 and 4.6o. Interpolating, we obtain a ~
.13. Confidence is 100(1-u)’j$ = 100(1-0.13)%. We are approximately
87% confident that

0 > 150 hrs MTBF—

c. Using equation 7.13a, we find

r (T/OL)k e-(T’OL)
~. 2

k=() k!

For r =0, this simplifies to

In this case,

Cf=e - ( 3 0 0 / 1 5 0 )  =

We are 86.5% confident

6 > 150 hrs MTBF—

e-z = 0.135

that
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CASE STUDY NO. 7-9

Background

A system is being tested using test plan
upper test value (SV) is 100 hours MTBF,
hours MTBF. The required test duration

XIIC from Appendix B, Table 6. The
and the lower test value (MAV) is 50
is 940 hours, and 14 failures are

rejectable. The source ‘of data for this test plan is not relevant for this
case study, but is presented here for future reference. Chapter 8 contains
detailed discussions on the formation and use of this and other test plans.

The seventh failure has just occurred after only 57 hours of test exposure.
Because of the excessive number of failures , an evaluation is to be done at
this point in the test. Preliminary analysis of the data showed no evidence
of trend, i.e., failure rate appeared constant,

Determine

1. Point estimate of MTBF.

2. 80% confidence interval for MTBF.

3. 80% lower confidence limit for MTBF.

4. 80% upper confidence limit for MTBF.

5.’ What confidence do we have that the lower test value has been met or
exceeded?

6. What confidence do we have that the upper test value has not been at-
tained?

7. Does the statistical evidence suggest that the reliability is satis-
factory or not?

Commentary

Because an evaluation is being made at this point based on what was observed,
we do not have a legitimate random sample. The true risks in making decisions
based on such an analysis are difficult to determine. They are, in fact,
substantially higher than the ones associated with the original plan. Conse-
quently, the following analyses are all somewhat pessimistically biased.

Solutions

Since the seventh failure has just occurred, this is failure terminated data.

1. Point estimate of 0.
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Applying equation 7.6, we obtain

2 . h 80% confidence interval for 0.

a. Use Table 8b, Appendix B to obtain the confidence limit multiplier
for the case of 7 failures and 80% confidence interval, i.e., 90%
upper and lower confidence limits. Note we are using Table 8b
because the test is failure terminated.

8U = multiplier (6) = (2.797)(8.14) = 14.63 hrs. MTBF

‘L = multiplier (~) = (0.665)(8.14) = 5.41 hrs. MTBF

We are therefore 80% confident that

5.41 < 0 < 14.63 hrs. MTBF—

b. Using inequality 7.9b, we find, for cr = 0.20,

2T 2T
2 5° 52

‘a/2,2r ‘1-a/2,2r

Using Appendix B, Table 5 for X2 values:

1 1 4 1 1 4
2 1 . 0 7  ‘6 s 7 . 7 9

We are 80% confident that

5.41 ~ 6 ~ 14.63 hrs MTBF

3. An 80% lower confidence limit for 6.

a. Use Table 8b, Appendix B to find the multiplier for an 80% lower
confidence limit with 7 failures.

‘L = multiplier (~) = (0.771)(8.14) = 6.28 hrs. MTBF

Therefore, we are 80% confident that

9 > 6.28 hrs. MTBF—

b. Using inequality 7.10b, we find

0+-
‘a,2r

7 - 4 3
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Using Appendix B, Table 5 for the X2 value, we find

114
* ~ 18.15

We are 80% confident that

6 > 6.28 hrs MTBF.

4. An 80$ upper confidence limit for 0.

a. Use Table 8b, Appendix B to find the multiplier for an 80% upper
confidence limit with 7 failures.

‘u = multiplier (6) = (1.479)(8.14) = 12.04 hrs. MTBF

Therefore, we are 80° L confident that

0 < 12.04 hrs. MTBF—

b. Using inequality 7.11, we find

e~22T

‘1-u,2r

Using Appendix B, Table 5 for the X2 value, we obtain

114
0  59.47

We are 80% confident that

9 < 12.04 hrs MTBF—

5. What confidence do we have that e > 50?—

a. Using equation 7.12b, we find

‘;,2r = 2T/OL

X:,14 =  2 ( 5 7 ) / 5 0  =  2 . 2 8

Searching Appendix B, Table
2.28, we find that we are
0.995. The confidence is
0.5%.

5 in the row labeled 14 for a value of
beyond the end of the table, and a >
loo(l-a)%, 100(1-o.995)%, or less than

We are less than 0.5% confident that

9 ~ 50 hrs MTBF
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b.

6 . W h a t

a .

b .

7 . Does

S i n c e  w e
exceeded,

Using equation 7.13b, we find

r-1 (T/OL)k e - (T/f3L)
@.~

k=() k!

where

T/eL =57/50 =1.14 and r-1=7- 1=6.

Solving equation 7.13b, we find c1 = 0.9998.

We are 0.02% confident that 6 > 50 hours MTBF.—

confidence do we have that 0 < 100?—

Using equation 7.14, we find

x:-a,14
2 ( 5 7 )=—---14.l4

100

Searching Appendix B, Table 5 in the row labeled 14 for a value of
1.14, we find that we are well beyond the end of the table, and l-~
z 1.0. The confidence is 100(1-o)%, 100(1.0)%, or essentially 100%.

We are essentially 100% confident that

e < 100 hrs MTBF—

Using equation 7.15, we find

- (T/OU)r-1 (T/$U)k e
l-a = z

k=O
k!

where

T/OU=0.57andr-1=7 -1=6

Solving equation 7.15, we find l-a = 0.99999.

We are essentially 100% confident that

(3 < 100 hrs MTBF—

the reliability appear satisfactory?

have essentially O% confidence that the lower test value is met or
and since we have essentially 100% confidence that the upper test

value is not met, there is overwhelming evidence that the reliability is not
satisfactory , even taking into consideration the fact that the analysis may be
somewhat pessimistically biased.
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In this case, the evidence is so strong that we can even state that we are
99. 98% confident that 6 ~ 50 hrs MTBF, though, ordinarily, upper limit state-
ments are associated with the upper test value, and lower limit statements are
associated with the lower test value.

Commentary

Test plan XIIC from Appendix B, Table 6 required a test duration of 940 hours
to achieve true producer’s and consumer’s risks of 0.096 and 0.106, re-
spectively. Since the system appears to be “failing miserably,” the user has
chosen to stop testing after 57 hours. No doubt this is a wise decision from
an economic standpoint. However, the user should be fully cognizant that the
risks associated with his abnormally terminated test are not 0.096 and o.1o6,
nor are they the ones advertised in the preceding computations. The calcula-
tion of the true risks is well beyond the scope of this work.

7 - 4 6
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CHAPTER 8

RELIABILITY TEST PLANNING

INTRODUCTION

This chapter presents the techniques for determining the amount of test expo-
sure required to satisfy previously established program reliability require-
ments. The reader will note that Chapter 7 addresses the topic of reliability
data analysis. There, we assumed that the test data had already been
gathered. We then used the available data to determine point estimates for
reliability parameters and to stipulate the uncertainty associated with these
estimates.

Chapter 8 presents techniques for designing test plans which can verify that
previously specified reliability requirements have been achieved. We realize,
of course, that the required test exposure and/or sample size may exceed the
available resources. In such cases, alternative test plans, consistent with
program constraints, must be developed. In this chapter, we also present
methods which make it possible to clearly identify the inherent risks associ-
ated with a limited test program.

PRIMARY TEST DESIGN PARAMETERS

Upper and Lower Test Values

Two values of system reliability are of particular importance in the design of
a reliability test plan. These are referred to as the upper test and lower
test values. In some cases, only a single value is initially apparent, the
second value being only implied. These two values and the risks associated
with them determine the type and magnitude of testing required.

The upper test value is the hoped for value of the reliability measure. An
upper test MTBF is symbolized as 6., and an upper test reliability is symbol-

ized as R
o“

A test plan is designed so that test systems whose true reli-

ability parameters exceed 0
0

and R
o

will, with high probability, perform

during the test in such a way as to be “accepted. ”

The lower test value is commonly interpreted in two different ways that may
initially appear contradictory. One interpretation is that this lower value
of the reliability measure represents a rejection limit. The other interpre-
tation is that this value is minimally acceptable. The apparent conflict is
resolved by viewing the lower test value as the fine line between the best
rejectable value and the worst acceptable value. A lower test MTBF is symbol-
ized as (3 1’ and a lower test reliability is symbolized as R1“ Systems whose

true reliability parameters having values less than 61 and RI will, with high

probability, perform in such a way as to be “rejected. ”
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The upper and lower test values serve to divide the reliability, or MTBF,
scale into three distinct regions as shown in Figure 8-1. Note that the
region between R 1 and R

o
is neither bad enough to demand rejection nor is it

good enough to demand acceptance. This region is necessary since we will
never precisely know the true reliability of the system.

F I G U R E  8 -  I R E G I O N S D E F I N E D  B Y  R. A N D  R
I

o

“  B A D ” “ GOOD ”

M A V * Sv *

“x /
R , R. I

T R U E  R E L I A B I L I T Y ,  R

*MAY  BE  D I F F E R E N T  D E P E N D I N G  ON  ACT U AL  MAT U R I T Y .
S E E  F O L L O W I N G  P A R A G R A P H .

The user’ s reliability requirement should be stated as a minimum acceptable
value (MAV) ; that is, the worst level of reliability that the user can tol-
erate and accept. The contractually specified value (SV) is a value somewhat
higher than the MAV. For reliability qualification tests prior to production,
the lower test value is the MAV, and the upper test value is the SV. Earlier
in the development process, fixed configuration tests may be conducted to
demonstrate the attainment of lower levels of reliability at specified mile-
stones. In such cases , upper test and lower test values should be consistent
with the stage of the development process.

In the above paragraphs, we have been discussing population parameter values
only. These values are never known with absolute certainty, so we are forced
to base an evaluation of system performance characteristics on sample data.
Let us conclude this section with a discussion of sample reliability values
and how we can interpret them to aid us in making our system reliability
assessment.

One objective of this chapter is the determination of an accept/reject
criterion for a test to be conducted. As an example, consider the value RT in

Figure 8-2 below. The term ~ is that value of the sample reliability which

corresponds to the maximum allowable number of failures that can occur during
testing and still result in acceptance of the system.

If we test our determined number of articles and find that R is largersample
than ~, then we accept the system because there is high probability that the
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I I
i

0 . 0 Rr 1.0

sample system(s) come from a population of systems whose true reliability R
exceeds R ~, the minimum acceptable value (MAV) (see Figure 8-1) for this test.

Note that when R is larger thansample ~, we have confidence that the true

reliability exceeds the MAV. We should not interpret this result as an indi-
cation that the contractor has met the SV. Further, if R is smallersample
than RT, we will reject the system because there is high probability that the

sample system(s) come from a population whose true reliability R is lower than

‘ o  ‘
the SV for this test. Note that when R is smaller than RT, we havesample

confidence that the true reliability falls short of the SV. We should not
interpret this result as an indication that the MAV has not been met, but
rather that the MAV has not been demonstrated at a sufficiently high level of
confidence.

Consumer’ s Risk (~) and Producer’ s Risk (a)

The consumer’s risk ((3) is the probability of accepting the system if the true
value of the system reliability measure is less than the lower test value. It
can be interpreted in the following ways:

1. $ represents the maximum risk that the true value of the reliability
measure is, in fact, less than the lower test value.

2. From an alternative viewpoint, if the acceptance criterion is met, there
will be at least 100(1-~)% confidence that the true value of the reli-
ability measure equals or exceeds the lower test value.

The producer’ s risk (a) is the probability of rejection if the true value of
the reliability measure is greater than the upper test value. It can be
interpreted in the following ways:

1. The probability of acceptance will be at least (1-a) if the upper test
value is, in fact, met or exceeded.

2. From an alternative viewpoint, if there is a rejection decision, there
will be at least 100(1-cY)% confidence that the true value of the reli-

ability measure is less than the upper test value.

Case study 8-1 illustrates the relationship between ~ and ~.
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Pre- and Post-Test Risk Considerations

Before proceeding on with the application of the consumer’s
risk concept, it is important to understand the contrast that
pre-and post-test risks.

and producer’s
exists between

The Q and ~ risks represent uncertainties that exist in the test planning or
pre-data environment discussed in this chapter. Once data has been gathered
and we have accepted or rejected the system, we find that the risk environment
is altered. For example, we take a sample and decide to accept the system.
At this point the producer’s risk is eliminated; the consumer’ s risk remains
but is less than the maximum that would exist had the sample reliability,
R been exactly equal to RT.sample’

If, on the other hand, Rsample is less than RT’ ‘“e” , we reject the system, we

find that the consumer’ s risk is eliminated since there is no risk of ac-
cepting a bad system. Likewise, the producer’ s risk is less than the maximum
that would exist had the sample reliability R been exactly equal to RT.sample

In this chapter, we are concerned with pre-test risks. We determine the
maximum a and ~ risks and then calculate the required test exposure and ac-
ceptable number of failures which will limit our risk to the max:

TEST DESIGN FOR DISCRETE TIME TESTING : BINOMIAL MODEL

mum levels.

Four values

the

the

the

- the

specify the plan for a binomial test. They are:

specified or desired proportion of failures (pO) ,

maximum acceptable proportion of failures (pl) ,

consumer’s risk (~) ,

producer’s risk (a) .

The test plan itself consists of a
(c). The value c represents the
suits in acceptance of the system.

sample size (n) and an acceptance criterion
maximum number of failures which still re-

It is usually not possible to construct a
plan which attains the exact values of a and f3. There are however plans which
attain risks which do not exceed u and P. We shall present methods for de-
termining these types of plans , though in a real world situation, the user and
producer may trade off some protection to achieve other goals .

The following paragraphs present exact and approximate procedures to be used
in planning a Discrete Time-Binomial Model test program. The “exact pro-
cedure” presents the equations used to determine the two values required to
specify a binomial test plan. These equations are presented here for the sake
of completeness. The “approximate solution” procedure, which makes use of the
binomial tables to simplify the procedure, is intended for use by our readers.
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Exact Solution Procedure

The exact procedure for determining test plans for the four values listed
above is to solve the following two inequalities simultaneously for c and n.

n

k=:+$)p; ‘l-pO)n-k < a
—

(8.1)

(8.2)

There are an infinite number of solutions to this pair of inequalities. The
plans of interest are, of course, those which minimize the sample size (n)
required. Solving inequalities 8.1 and 8.2 directly is next to impossible
without the aid of a computer. MIL-STD-105D contains numerous binomial test
plans which may be used for reliability applications. We should point out
that the user unfamiliar with this document will find it difficult to inter-
pret, thus we present the following procedures.

Approximate Solution Procedures

The following so-called approximate procedures utilize the normal and Poisson
distributions to obtain approximate solutions to equations 8.1 and 8.2 and
thereby estimate values of the sample size (n) and the acceptance criterion
(c). After approximate values for these parameters have been obtained, we may
then use the values in conjunction with the binomial tables (Appendix B) and
the previously selected and fixed values of a and P to “fine tune” the aP-
proximate values of n and c.

Test Planning Using Normal Approximation. The normal distribution provides
good approximations for solving inequalities 8.1 and 8.2, especially for
moderate values of p (O. 1 ~ p ~ 0.9). Using this information, we obtain the
approximate solutions for n and c as follows.

n =

c =

Z:(PO-P:) + Z2(P1-P; ) + 2zaz JPOP1(l-PO)(l-P1)
?

(P1-PO)2

z Jnpo(l-po) + npo - 0.5 .a

(8.3)

(8.4)

Generally, the values computed using equations 8.3 and 8.4 are good approxima-

tions for the test plainer. When p. and pl are very small (less than 0.05) ,

the procedure is not recommended. Fine-tuning of the test plan may still re-
quir~ solving the original
producer.

As an example, suppose that
0.85 (pl = O. 15) , while the

inequalities or some bargaining with user and/or

the minimum acceptable reliability of a system is
contractually specified reliability is 0.95 (P. =
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0 . 0 5 ) . Consumer and
For a= 0.11, Za= 1

and z
P

are obtained

tion, we have

n = {(1.225)2(0.

producer risks of 0.11 are required, i.e., a = ~ = 0.11.
.225 and for ~ = 0.11, z = 1.225.

P
(These values of Za

from Appendix B, Table 2.) Using the normal approxima-

0 5 - 0 . 0 0 2 5 )  +  ( 1 . 2 2 5 )2 ( 0 . 1 5 - 0 . 0 2 2 5 )

+ 2(1.225)2~(0.05)  (0.15)(0.95) (0.85)]/(0.15-0.05)2

= 49.6

and

C = 1.225~(49.6) (0.05)(0.95) + (49.6)(0.05) - 0.5

= 3.9 .

The values of n = 49.6 and c = 3.9 are initial approximations. In order to
fine tune the test plan, we round these values to n = 50 and c = 4 and use the
binomial tables (Appendix B, Table 1). For an n of 50 and a c of 4, the
probability of c or fewer failures when p = pl = 0.15 is 0.1121. In addition,

the probability of c or fewer failures when p = p. = 0.05 is 0.8964. Thus ,

for the test using a sample size of 50 with a maximum acceptable number of
failures of 4, the producer’s risk a = 1 - 0.8964 = 0.1036, and the consumer’s
risk ~ = 0.1121. Note that these values were obtained directly from Appendix
B, Table 1. It would, however, have been difficult at best to decide where to
begin looking in the binomial tables without having first used the normal
approximation for guidance.

Test Plaming Using Poisson Approximation. The Poisson distribution also
provides reasonable approximations to inequalities 8.1 and 8.2. All this
amounts to is substituting np for At or t/fl in the Poisson distribution equa-
tion. Consequently, approximate values for n and c are obtained by solving
the following inequalities.

c (npl)ke-npl
z k! 2 P.

k=()

c (npo)ke-npO
z

k=() k! ?l-a”

Standard test plans and procedures

(8.5)

(8.6)

for the Poisson (exponential) are readily
available and may be used in lieu of solving inequalities 8.5 and 8.6. This
subject is discussed in the “Sources of Exponential Test Plans” section of
this chapter. To use these plans in this context, we let 90 = l/Po, el

 =

l/Pl , n = T, and use the acceptable number of failures as given.
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As an example, suppose that the minimum acceptable reliability of a system is
0 . 9  (pl = O. 1) and the contractually specified reliability is 0.95 (p. =

0 . 0 5 ) . Consumer and producer risks are to be 20%, i.e., ci = f3 = 0.20. To use
the Poisson approximation, we define 00 = I/p. = 1/0.05 = 20 and 01 = I/pl =

1 / 0 . 1  =  1 0 . The discrimination ratio, f30/el, is 2. Note that test plan XIVC

in Appendix B, Table 6, has a and ~ risks of 19.9% and 21.0%, respectively.
This plan requires a test duration T, corresponding to n for this example, of
(7.8)(01) or 78, with five or fewer failures being acceptable.

The term “discrimination ratio” and the use of Appendix B, Table 6, test plans
are discussed in detail in the following section.

Case Studies 8-1, 8-2, and 8-3 demonstrate the development of binomial test
plans for a variety of iY and ~ values.

TEST DESIGN FOR CONTINUOUS TIME TESTING: EXPONENTIAL MODEL

The main feature of test planning for continuously operating systems based on
the exponential distribution is the assumption that the systems have a con-
stant failure rate.

Requirement Interpretation

When the user’s requirement is stated in terms of an MTBF, there is an impli-
cation of a constant failure rate. This does not mean that the system must
have a constant failure rate. It means, instead, that the need remains con-
stant. Figure 8-3 illustrates that the user’s needs may be met during only a
portion of the time during the life of a system.

F I G U R E  8 - 3  U S E R  R E Q U I R E M E N T S  V$ S Y S T E M  P E R F O R M A N C E

I I

I
P E R I O D  W H E N  U S E R S

I
I R E Q U I R E M E N T S  A R E  M E T

SYSTEM

~~  nYwRE
F A I L U R E

R A T E I
~FAILURE  RATE

i I A C C E P T A B L E

I I TO THE USER

I I
I I

S Y S T E M  A G E

Constant System Failure Rate Assumption

The assumption that the system to be tested has a constant failure rate may
not be a good one, but it is a practical necessity for determining
of testing required. In theory, with the constant failure rate
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only the total test exposure is important. That is (in theory), one system
could be tested for the required test exposure, or many systems could be
tested for a short time.

In practice, a test should be planned with a moderate number of systems on
test for a moderate period of time. This makes the test relatively insensi-
tive to the constant failure rate assumption. For example, one organization
recommends that at least three systems be tested for at least three times the
MAV (each) . These are constraints imbedded in the required total test
exposure.

Discrimination Ratio

The discrimination ratio, d = O./O1, is a parameter useful in test planning

for the exponential model. (For the binomial model, it is necessary to con-
sider the upper and lower test values, P. and Pl, explicitly along with the a

and ~ risks. ) An interesting feature of the exponential model is that only
the ratio of the upper and lower test values, d = O./O1, along with the u and

P risks need to be considered. As a consequence, test plans for the ex-

ponential models address explicitly the discrimination ratio as a planning
parameter.

Sources of Exponential Test Plans

There are, numerous methods and references available for developing exponential
test plans. Three such approaches are:

1. MIL-STD 105D and MIL-HBK 108.

2. MIL-STD 781C Test Plans.

3. Poisson Distribution Equations .

Reference to MIL-STD 105D and MIL-HBK 108 is included here solely for the sake
of completeness. It is our intention that the reader become familiar with
methods of exponential test plaming using MIL-STD 781C and the Poisson dis-
tribution equations. These methods are described below. All the necessary
excerps from MIL-ST’D 781C are provided in Appendix B, Tables 6 and 7.

MIL-STD 105D and MIL-HBK 108. MIL-STD 105D is a document devoted primarily to
binomial and Poisson sampling plans, and as such, is mentioned in the previous
section. The Poisson sampling plans may be used for continuous time reli-

ability tests. MIL-HBK 108 is devoted to reliability testing based on the
exponential distribution. However, it is limited in use for our purposes
because it describes test plans for the situation when the test time per unit
on test is preset and the number of units is determined. We iterate here that
these documents are difficult to interpret, and as such, should only be wed
by a person familiar with their content.

MIL-STD 781C. The required excerpts from MIL-STD 781C are provided in Appen-
dix B, Tables 6 and 7. Both
reader to design a test program
following paragraphs detail the

tables provide information which enable the
which addresses established requirements. The
use of both tables.
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Appendix B, Table 6: Exponential Test Plans for Standard Discrimination. . —
Ratios. This table presents information which supports the de-velopment of a
test plan based on discrimination ratios of 1.5, 2.0, and 3.0. For each of
these discrimination ratios, four test plans are provided which attain ap-
proximate u and ~ risks of 10% and 10%, 10% and 20%, 20% and 20%, and 30% and
30%. Figure 8-4, in conjunction with the following example problem, il-

lustrates the use of Appendix B, Table 6. -

I Test
Plan

IXC*

xc

XIC

XIIC

XIVC

u“WC

XVIC

XVIIC

—

FIGURE 8-4. HOW TO USE APPENDIX B, TABLE 6

— 1 . Identify rows corresponding to the specified “d”.
(If not in Appendix B, Table 6, use Table 7 plans.)

—2 . Identify desired ci and f3 risks.

—3 . Identify test plan number (for refere&ce).

r

4. Identify test duration multiplier.

5. Determine total test time as 61 times multiplier.

6. Identify accept/reject criteria.

L

True
Decision

Risks

a P
12.0% 9.9%

10.9% 21.4%

17.8% 22.4%

9.6% 10.6%

19.9% 21.0%
f

q 9.4% 9.9% I
1 4

10.9% 21.3%

17.5% 19.7%

Discrimination
Ratio O./O1

1.5

1.5

1.5

2 . 0

2 . 0

Test
Duration

Multiplier (M)
T = M(31

4 5 . 0

2 9 . 9

2 1 . 1

1 8 . 8

4
5 . 4

4 . 3

Accept-Reject
Failures

Reject Accept
(Equal (Equal
or More) or Less)

37 36

26 25

18 17

14 13

6 5

6 5

4 3

3 2

*NOTE : C refers to Revision C of MIL-STD-781.
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How To Use Appendix B, Table 6. As an example, suppose that the upper
test MTBF is 900 hours and the lower test MTBF is 300, so that the discrimina-
tion ratio (d) is 900/300 = 3. Consumer and producer risks of approximately
10% for each are required. Now , as shown in Figure 8-4, test plan XVC has 01
and $ risks of 9.4% and 9.9%, respectively, and the discrimination ratio is 3.
Test plan XVC requires a test length (T) of 9.3 times the lower MTBF of 300,
S O T = (9.3)(300) = 2790 hours. The acceptance criterion is to accept with 5
or fewer failures and reject with 6 or more failures. Note that if the upper
test MTBF had been 90 and the lower test MTBF had been 30, the same test plan
is appropriate. However, in this situation the test duration (T) is (9.3)(30)
or 279 hours , whereas the accept/reject criterion remains the same.

Case Study 8-4 is another example illustrating the use of this table.

Appendix B, Table 7: Supplemental Exponential Test Plans. This table
presents information

%
ich supports the development of a test plan based on

combinations of u and risks of 10%, 20%, and 30%. Figure 8-5, in conjunc-

tion with the following example problem, illustrates the use of Appendix B,
Table 7.

How to Use Appendix B, Table 7. Concerning Figure 8-5 and Appendix B,
Table 7, note the following:

If the discrimination ratio, d, is not given exactly in the tables, going to
the next lower value will give a conservative (i.e., longer) test time
requirement.

Consider once again, the example where 00 = 900, 61 = 300, and the desired @

and ~ risks are 10° ~ each. Recall that the discrimination ratio was 3. TO
select a test plan from Figure 8-5, we search the column labeled as a 10%
producer’s risk to find the number closest to 3. In this case, test plan IO-6
has a discrimination ratio of 2.94. The test duration is (9.27)(300) or 2781
hours with 5 being the maximum acceptable number of failures. Note how this
plan compares with test plan XVC which has the same acceptance criterion,
requires 2790 hours of test time, and has a discrimination ratio of 3. Case
Study 8-5 further illustrates the use of this table.

Graphical Representation of Test Planning Parameters. Figure 8-6 graph-
ically illustrates the interaction between a and @ risks and test length for
three-commonly used discrimination ratios. The graphs do not provide complete
test plaming information since no acceptance criterion is specified. These
curves are useful tools for conducting tradeoff analyses between risk levels
and test length. Note that some of the specific test plans presented in
Appendix B, Tables 6 and 7 are displayed on the curves, i.e., 30-7, 1O-19,
20-7, etc.

To illustrate how the graphs may be used, consider that 01 = 100 hours, 00 

=

150 hours, and a test duration of 2500 hours is affordable. To enter the

8-10
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FIGURE 8-5. HOW TO USE APPENDIX B, TABLE 7

1. Identify desired ~ risk (10% f3 risk table
shown below).

L

2. Identify column for desired a risk.

3. Identify row for d.

4. Identify test plan number (for reference).r 5. Identify total test time multiplier.

—

6. Determine total test time as 01 times multiplier.

—7. Identify accept/reject criteria.

i1

Test
Plan
No’s

1o-1

1 0 - 2

1 0 - 3

1 0 - 4

1 0 - 5

a
1 0 - 7

1 0 - 8

10-9

1o-1o

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

No. Failures Test Duration
Multiplier (M)

Ace. Rej. T=MO 1

0 It 2.30

1 2 I 3.89

2 3 I 5.32

3 4 I 6.68

4

5. :Iu
6 7 10.53

7 8 11.77

8 9 12.99

9 10 14.21

1 0 11 15.41

11 12 16.60

12 13 17.78

13 14 18.96

14 15 20.13

15 16 21.29

16 17 22.45

17 18 23.61

18 19 24.75

19 20 25.90

8-11

6.46

3.54

2.78

2.42

2.20

2.05

1.95

1.86

1.80

1.75

1.70

1.66

1.63

1.60

1.58

1.56

1.54

1.52

1.50

1.48

10.32

4.72

3.47

2.91

2.59

2.38

2.22

2.11

2.02

1.95

1.89

1.84

1.79

1.75

1.72

1.69

1.67

1.62

1.62

1.60

l—

21.85

7.32

4.83

3.83

3.29

m
2.70

2.53

2.39

2.28

2.19

2.12

2.06

2.00

1.95

1.91

1.87

1.84

1.81

1.78
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F I G U R E  8-6

GRAPHICAL REPRESENTATION
OF TEST PLANNING PARAMETERS ’30

T = TOTAL TEST
EXPOSURE

NOTE :
P LOT T I N G  P O I N T S  AR E
CODE D  T O  I N D I CAT E  T H E
MI L-STD  781C TEST  PLAN
THESE PLANS ARE CONTAINED

. 2 0
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,10
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.30
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P

.10

0
0

. 3 0

. 2 0

B

.10

0

—  2 0 - 4

\
10-14

\

5 10 15 2 0
T / 81
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t
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graphs, use d = 6./01 = 150/100 = 1.5 and T/Ol = 2500/100 = 25. Reading up

through the three curves , we find the following risk combinations:

a =  0 . 3 0 $ =  0 . 1 0

c1 =  0 . 2 0 P =  0 . 1 6

cl = 0 . 1 0 P = 0.26

If one of these combinations is tolerable, the test length is adequate. To
reduce one or both risks, the test duration must be increased. Tolerating
greater risks permits reduction of the test duration. Case Study 8-6 further
illustrates the use of these graphs.

Figure 8-7 is a graphical portrayal of the interaction between test length and
risk when ci and P risks are equal. Curves for each of the three values (1.5,
2.0, 3.0) of the discrimination ratio appear on the same graph. Case Study
8-6 illustrates the use of Figure 8-7.

Poisson Distribution Equations. When a standard test plan for a specific com-
bination of 9.,01, a, and @ is not available, the test designer may use the

Poisson equations to develop a test plan.

The following notation is used in the discussion of the Poisson equation
technique.

T = Total test exposure

6 = True MTBF

c = Maximum acceptable number of failures

filo = Upper test MTBF

‘1 = Lower test MTBF

a= Producer’s risk

13 = Consumer’s risk

P(aclO) = Probability of accepting the system assuming the true MTBF is
6.

P(rej e) = Probability of rejecting the system assuming the true MTBF is
e.

The probability of acceptance is the probability that no more than a certain
(acceptable) number of failures will occur. This probability can be computed
using the equation:

~T,e)ke-(T/@
P(aclO) = :

k=O
k!

8-13

(8.7)
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This is the Poisson Distribution Equation. This distribution and assumptions
regarding its applications are discussed in Chapter 5.

The consumer’s risk (~) is the probability that during the test no more than
the acceptable number of failures will occur when the true MTBF is 0 1“ Conse-
quently,

~=P(ac 9=01)

= P(c or fewer failures $=61) ,

where c is the maximum acceptable number of failures. Thus ,

c (T/O1)k e-(T/O1)
f3=z k! . (8.8)

k=o

The producer’s risk (a) is the probability that during the test more than the
acceptable number of failures will occur when the true MTBF is (3o“ Conse-
quently,

u = P(rej (3=8.)

= P(c + 1 or more failures 6=0.) .

Since

P(c + 1 or more failures e=~o) = I - P(c or fewer failures e=flo) ,

we have that

c (T/90)ke-(T/00)
(Y = l-z

k=O
k!’

or equivalently,

c (T/Oo)ke-(T’gO)
l-a=z

k-O
k! (8.9)

In order to determine the complete test plan, we must solve equations 8.8 and
8.9 simultaneously for T and c.

Solving these equations directly without the aid of a computer is too tedious
and time consuming to be considered practical. We therefore present the fol-
lowing graphical solution procedure which utilizes the Poisson Chart, Chart
No. 1 in Appendix B.

8-15 ,,
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Graphical Poisson Solution Procedure. we wish to find a test exposure,
T, and an acceptable number of failures, c, such that the probability of
acceptance is ~ when 0 = 91 and I - a when 9 = f3

0“ This is done graphically

with the use of a transparent overlay.

On an overlay sheet, draw vertical lines at 6/T = 1 and t3/T = f30/61. Draw

horizontal lines at probabilities ~ and 1 - a, forming a rectangle. Slide the
,overlay rectangle horizontally until a curve for a single value of c passes
through the lower left and upper right corners. (It may not be possible to
hit the corners exactly. Conservative values of c will have curves that pass
through the horizontal lines of the rectangle. ) This value of c is the ac-
ceptable number of failures. Read the value of 0/T corresponding to the left
side of the rectangle. Divide 01 by this value to find T, the required test

exposure. The following numerical example illustrates the use of the graph-
ica~ ~~olsson Solution Procedure.

We wish to find the required test exposure, T, and acceptable number of fail-
ures c; such that when the MTBF, O = el = 100 hours, the probability of ac -

ceptance, ~, will be 0.20 and then El = f30 = 300 hours the probability of

acceptance, 1 - a, will be 0.90.

An overlay rectangle is constructed as shown.

FIGURE 8-a OVERLAY CONSTRUCTION TECHNIQUE

(?T
I * O 3.G

Sli ~ :.g the rectangle to’ the left, we find that when c = 3 the fit is close,
but .,; . i.ghtly higher risks must be tolerated. Going to c = 4, the curve passes
thr. .h the horizontal lines of the rectangle. At the left of the rectangle,
0/3’” “:. i4, so the required test exposure is approximately 100/0. 14 = 714
hours and the acceptance criterion is 4 or fewer failures.

8-16
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F I G U R E  8 - 9  O V E R L A Y C U R V E  M A T C H I N G P R O C E D U R E

OPERATING CHARACTERISTIC (OC) CURVES

Introduction

In the previous sections of this chapter, we have discussed methods for de-
veloping test plans which achieve required ~ and ~ risks. The test plan
itself is specified by the test exposure and the maximm acceptable number of
failures. For a test plan developed using the methods in this chapter, we
know that the producer’ s risk (the probability of rejecting a good system) for
the specified value (SV) is (Y and the consumer’ s risk (the probability of
acceptance) for the minimum acceptable value (MAV) is ~. In addition, to
assess a test plan proposed by another party, we have shown methods for com-
puting the producer’s risk and the consumer’s risk for the SV and MAV, re-
spectively. A graphical tool which provides more complete information about a
specific test plan is the operating characteristic (OC) curve. The OC curve
displays both acceptance and rejection risks associated with all possible
values of the reliability parameter and not merely the SV and MAV. By def-
inition, an OC curve is a plot of the— probability of acceptance (the ordinate)— —.
versus the reliability parameter value (the abscissa) ..—

Figure 8-10 contains the operating OC curve for test plan XVICC from MIL-
STD 781C, with (31, the lower test MTBF, assumed to be 100 hours.

Consider a single point on the curve, say an MTBF of 200 hours and a prob-
ability of acceptance of 0.63. This means that for test plan XVIIC (test
duration of 430 hours, accept with 2 or fewer failures) , a system which has a
true MTBF of 200 hours has a 63% chance of passing this test, i.e. , being
accepted. A system requires an MTBF of around 400 hours in order for the
producer to be at least 90% confident that the system will be accepted. A
system whose true MTBF is about 80 hours has only a 10% chance of being ac-
cepted.

8-17
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F I G U R E  8 - 1 0  O P E R A T I N G  C H A R A C T E R  tSTIC (OC) C U R V E

1.0

. 9

.8

.2

.1

c1

A C C E P T  W I T H  2  O R  F E W E R  F A I L U R E S

( T E S T  P L A N  XVIIC, M I  L-STD 781C)

o I 00 2 0 0 3 0 0 4 0 0 5 0 0
MT8F,  H O U R S

F O R  T H I S  E X A M P L E  8T I S  A S S U M E D  T O  E Q U A L  100 HOURs

Operating characteristic curves for all the test plans in Appendix B, Table 6
of this text can be found in Appendix C of MIL-STD 781C. However, OC curves

for the test plans in Appendix B, Table 7, of this text are not available in
MIL-STD 781C.

OC Curve Construction

The OC curve shown in Figure 8-10 is a representation of the mathematical
model used to compute the reliability for a system. We have discussed two
basic models in previous sections . The Poisson/exponential model 1s used for
systems undergoing continuous time testing and the binomial model is used for
discrete time tests.

The OC curve specifically displays the relationship between the probability of
acceptance and MTBF.

8-18
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For the Poisson/exponential model, we indicated in equation 8.7 that

IP(ac 0) = J (T/O)k e-(T’O)
k=o

k!

where

k = Number of failures

T = Total test time

O = Values of MTBF

c = Maximum acceptable number of failures

Referring to Figure 8-10, let

selected test plan XVIIC from
two failures. Using 01 = 100

430 hours for test plan XVIIC

on the curve by calculating P(ac El) for different values of 0. As
for e= 215 hours

(8.10)

us assume that 01 = 100 hours and that we have

Appendix B, Table 6 which permits a maximum of
hours , which corresponds to a test duration of

(T = 4.301), and c = 2, we can determine points

o -2=2e ~ 21e-2 + 22e-2—  —  —
o 1 2

= 0.135 + 2(0.135) + 2(0.135)

= 0.676 .

By choosing a sufficient number of values for 0 between O and 500
ing the probability of

For the binomial model,
equation

an example,

and comput-
acceptance for each, we can construct a smooth curve.

the probability of acceptance is expressed by the

IP(ac p) = ; (n)
~_. kpk(l-p)n-k

;
n! k n-k=

k=o [k! (n-k)!] P (l-P)

where

n = Number of trials

8-19
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c = Maximum acceptable number of failures

p = Probability of failure on any trial.

By inserting specific values for n, k and by varying the probability of fail-
ure on any trial, p, we can compute values of the probability of acceptance
which permit us to construct an OC curve.

For example, by letting n = 5 and c = 2, calculate the probability of accept-
ance for p = 0.1.

P(ac p=O.1) = 5!0! (5-())! (0.1)0(1-0.1)5-0+  &:l)! (0.1)1(1-0.1)5-1

5!
+ 2! (5-2)! (0.1)2(1-0.1)5-2

_ (120)(1)(0.9)5 + (120)(0.1)(0.9)4+ (120)~:j@~~(0.9)3—
120 24

=  ( 0 . 9 )5  +  (0.5)(0.9)4+  ( 0 . 1 ) ( 0 . 9 )3

=  0 . 5 9  +  0 . 3 3  +  0 . 0 7  =  0 . 9 9 .

Thus ,

P(ac p=O.1) = 0.99 .

As expected, the probability of acceptance is very high since we have designed
a relative easy test to pass.

8-20
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CASE STUDY NO. 8-1

Background

A mechanical system which controls the aiming point of a large-caliber gun is
under development. The specified and minimum acceptable values for the prob-
ability of aiming correctly are 0.85 and 0.70 respectively. Testing requires
that expensive projectiles be fired for each trial, and only 20 rounds are
allotted for testing.

Determine

1. Propose a test plan which equalizes the consumer’s and producer’s risks.
What are the risks?

2. The user can tolerate a risk of no worse than 5%. What test plan gives
the best (smallest) producer’s risk?

Solutions

1. As mentioned in Chapter 6, “Statistical Concepts”, consumer’ s risk in-
creases when producer’s risk decreases, and vice versa, when the sample size
is fixed. Theoretically, there is a point where they are equal or almost
equal.

It is also important to understand that the analytical interpretation of pro-
ducer’ s and consumer’ s risk when determining the solution to question no. 1.
The producer’ s risk is the probability of rejecting a system which meets the
SV of 0.15 proportion of failures (reliability of 0.85). For a given accept/
reject criterion (determined by a value c which represents the maximum number
of failures which results in acceptance of the system) , the producer’ s risk,
Ci, is the probability that c + 1 or more failures occur. The consumer’s riks
is the probability of accepting a system which exceeds the MAV of 0.30 propor-
tion of failures (reliability of 0.70) . For the same accept/reject criterion,
the consumer’ s risk, ~, is the probability that c or fewer failures occur.
Below is a section of binomial tables for n = 20, extracted from Appendix B,
Table 1.

p. ~-(-y = ~.

P(c or fewer failures) P(c or fewer failures) P(c+l or more failures)
Pl = 0.30 Po = 0.15c p. = 0.15

—

o 0 . 0 0 0 . 0 4 0 . 9 6
1 0 . 0 0 0 . 1 8 0 . 8 2
2 0 . 0 3 0 . 4 0 0 . 6 0
3 0 . 1 1 0 . 6 5 0 . 3 5

J4 0.24 0.83 0.17 I

5 0.42 0.93 0.07
6 0.61 0.98 0.02
7 0.77 0.99 0.01
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The proposed test plan is to accept with 4 or fewer failures and reject with 5
or more failures. The consumer’s and producer’s risks are 0.24 and 0.17,
respectively.

2. From the above table, we see that test plans which have the maximum
acceptable number of failures (c) of O, 1, and 2, and satisfy the consumer’s
risk of no more than 5%. The best (smallest) producer’ s risk occurs when
c = 2, the risk being 0.60.
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CASE STUDY NO. 8-2

Background

A new, highly reliable missile system is under development. The specified
reliability (SV) is 0.98, and the minimum acceptable reliability (MAV) is
0.85.

Determine

1. Design test plans for producer’ s risks of 5%, 10%, and 20%, with a con-
sumer’s risk of 5%.

2 . Design test plans for a producer’ s risk of 10% and for a consumer’s risk
of 10%.

3. Redo number 2 if the MAV is 0.92 instead of 0.85.

Solutions

Note that a reliability of 0.98 corresponds to a proportion of failures, or
unreliability, of 0.02, and a reliability of 0.85 corresponds to a proportion
of failures, or unreliability, of 0.15. Thus , we list our test planning
parameters p. and pl as 0.02 and 0.15, respectively.

la. P. = 0.0? pl = 0.15 ~ = 0.05 p = 0.05

i. Normal Approximation. In order to determine a starting point for
our analysis, we calculate approximate values of n and c using
equations 8.3 and 8.4. For values of Za and z

P’
use Appendix B,

Table 2.

n = {(1.645)2(0.02-0.0004) + (1.645)2(0.15-0.0225)

+ 2(1.645)2
~(0-02) (0.15 )(0.98 )(0.85 )}/(0.15-O- 02)2

= 39.6

c = (1.645) ~(39.6) (0.02)(0.98) + (39.6)(0.02) - 0.5

= 1.7
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ii. Poisson Approximation (Appendix B, Chart 1, with np = T/El, the
reciprocal of #/T)

npc 1. n—
npo l-a c1—

o 3.0 20.0 0.40 0.05 0.69 0.32
1 4.7 34.3 0.63 0.06 0.88 0.12

2 6.3 42.0 0.84 0.05 0.94 0.06

3 7.8 52.0 1.04 0.05 0.97 0.03

NOTE : a = P(c + 1 or more failures)
f3 = P(c or fewer failures)

l-a = P(c or fewer failures)

iii. Proposed Test Plans. It appears from i and ii above that a good
starting point for fine tuning is an n of 40 and c of 2. Using
Appendix B, Table 1 to fine tune, we propose the following test
plans.

n c c1. — — P

40 2 0.04 0.05
39 2 0.04 0.05
38 2 0.04 0.06
37 2 0.04 0.07

~’ 36 2 0.03 0.08

x
The protection afforded by this plan seems to be adequate though the
consumer’s risk is 8% (slightly above the required 5%).

lb. Po = 0.02 PI = 0.15 U=O.1O p = 0.05

i. Normal Approximation

n = {(1.28)2(0.02-0.0004) + (1.645)2(0.15-0,0225)

+ 2(1.28)(1.645) ~(0.02) (0.15)(0.98)(085) ]/(0.15-0.02)2

= 34.8

c = (1.28) ~(34.8) (0.02)(0.98) + (34.8)(0.02) - 0.5

= 1.3
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ii. Poisson Approximation (Appendix B, Chart 1)

npc 1 npn o E—l-a a. — —

0 3.0 20.0 0.40 0.05 0.69 0.31

11 4+7 34.3 0.63 0.05 0.88 0.12 I

2 6.3 42.0 0.84 0.05 0.94 0.06
3 7.8 52.0 1.04 0.05 0.97 0.03

iii. It appears that a good starting point for fine tuning is an n of 35
and c of 1. The following test plans are proposed.

n c Ci— — — J?

35 1 0.15 0.03
34 1 0.15 0.03
33 1 0.14 0.03
32 1 0.13 0.04
31 1 0.13 0.04
30 1 0.12 0.05
29 1 0.11 0.05

*I 28 1 0.11 0.06 1
‘The actual risks exceed the required risks of 10% and 5% but not to
any significant extent.

l.c. PO = 0.02 pl = 0.15 a =  0 . 2 0 p =  0 . 0 5

i. Normal Approximation

n = {(0.84)2(0.02-0.0004) + (1.645)2(0.15-0.0225)

+ 2(0.84)(1.645) ~(0.02j (0.15)(0.98)(0.85) )/(0.15-0.02)2

= 29.4

c = (0.84) ~(29.4)(0.02)(0.98) + (29.4)(0.02) -0.5

= 0.72

ii. Poisson Approximation (Appendix B, Chart 1)

np ~c np on P—l-a a— — —

0 3.0 2.0 0.40 0.05 0.69 0.31

I 1 4.7 34.3 0.63 0.05 0.88 0.12
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iii. It appears that a good starting point for fine tuning is an n of 25
and c of 1. The following programs are proposed.

n c a— — — @

* 25 1 0.09 0.09

2 5 0 0 . 4 0 0 . 0 2

$’Generally, there is no reasonable test plan for the input values
given. A very large sample size is required to achieve an Q’ of
0.20. (For n = 40, a = 0.19, and @ = 0.01, with a c of O.) This
sample size seems unwarranted. Our recommendation is to use the n
of 25 and the c of 1.

2. PO = 0.02 PI = 0.15 ~=o.lo p = 0.10

i. Normal Approximation

n = {(1.28)2(0.02-0.0004) + (1.28)2(0.15-0.0225)

+ 2(1.28)2 ~(0.02) (0.15 )(0.98 )(0.85 )]/(0.15-0.02)2

= 24.2

C=(

= o

.28) ~(24.2) (0.02)(0.98) + (24.2)(0.02) - 0.5

86

ii. Poisson Approximation (Appendix B, Chart 1)

npc 1 npon “E —l-a a— — —

o 2.3 15.3 0.31 0.10 0.74 0.26

1 3.9 26.0 0.52 0+10 0.90” 0.10 I
2 5.2 35.0 0.70 0.10 0.96 0.04

iii. It appears that a good starting point for fine tuning is an n of 25
and c of 1. The following programs are proposed.

n c a— — — E

‘$ 25 1 0.09 0.09 I
24 1 0.08 0.11

+<
The test plans with a sample size of 25 fits well. The sample size
can be reduced by 1 to 24 if the consumer allows his risk to be 11%.

8-26

Downloaded from http://www.everyspec.com



3.

i.

ii.

iii.

P*  = 0-02 PI = 0.08 a=o.lo (i=o.lo

Normal Approximation

n= {(1.28)2(0.02-0.0004) + (1.28)2(0.08-0.0064)

+ 2(1.28)2 ~(0.02)(0.08)(0.98)(0.92)]/(0.08-0  .02)2

= 77.0

C  =  ( 1 . 2 8 )  ~(77 .0)(0.02)(0.98)  +  (77.o)(o-02)  -  0 - 5

=  2 . 6

Poisson Approximation (Appendix B, Chart 1)

npc 1 npn o P—l-a 0’. — —

1 3.9 48.8 0.87 0.10 0.75 0.25
2 5.3 66.3 1.32 0.10 0.88 0.12

3 6.7 83.8 1.67 0.10 0.91 0.09

4 8.0 1 0 0 . 0 2 . 0 0 0 . 1 0 0 . 9 4 0 . 0 6

It appears that a good starting point for fine tuning is an n of 75
and c of 3. The following programs are proposed.

n c c1 E— — —

75 3 0.06 0.14
76 3 0.07 0.13
77 3 0.07 0.13
78 3 0.07 0.13
79 3 0.07. 0.11

80 3 0.08 0.10
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CASE STUDY NO. 8-3

Background

An operational test is being
must work for at least three
ability of 0.85 and a minimum

considered for a disposable survival ratio which
hours. The ratio has a specified mission reli-
acceptable mission reliability of 0.7. A number

of radios will be put on test for-three hours each and the-number of failures
recorded.

Determine

1 . Propose some test plans for a producer’s risk of about 10% and consumer’s
risks of about 10%, 20%, and 30%.

2. Propose a test plan for a minimum acceptable reliability of 0.5 with a
user risk of 2% and a producer risk of 20%.

Solutions

Note that a reliability of 0.85 corresponds to a proportion of failures or
“unreliability” p. of 0.15.

la. Po = 0 . 1 5 PI =  0 . 3 Ci=o.lo fl=o.lo

i. Normal Approximation

n = {(1.28)2(0.15-0.0225) + (1.28)2(0.3-0.09)

+ 2(1.28)2 {(0.15)(0.3)(0.85)(0.7)]/(0.3-0. 15)2

= 48.4

C= 1.28 ~(48.4) (0.15)(0.85) + (48.4)(0.15) - 0.5

= 9.9

ii. Poisson Approximation (Appendix B, Chart 1)

npc 1 npn o P_l-ci— 0!—

7 12.0 40.0 6.o 0.10 0.75 0.25
8 13.0 43.3 6.5 0.10 0.80 0.20
9 14.0 46.7 7 . 0 0 . 1 0 0 . 8 3 0 . 1 7

1 0 1 5 . 5 5 1 . 7 7 . 7 0 . 1 0 0 . 8 5 0 . 1 5

11 16.5 55.0 8.2 0.10 0.88 0.12
12 18.0 60.0 9.0 0.10 0.89 0.11
13 19.0 63.0 9.5 0.10 0.90 0.10
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iii. It appears that a good starting point for fine tuning is an n of 50
and c of 10. The following programs are proposed.

n c a— — — E

5 0 1 0 0 . 1 2 0 . 0 8
4 9 1 0 0 . 1 1 0 . 0 9

! 48 10 0.10 0.10 I

lb. P. = 0.15 pl =0.3 a= 0.10 p= 0.20

i. Normal Approximation

n = { ( 1 . 2 8 )2 ( 0 . 1 5 - 0 . 0 2 2 5 )  +  ( 0 . 8 4 )2 ( 0 . 3 - 0 . 0 9 )

+  2 ( 0 . 8 4 ) ( 1 . 2 8 )  ~(0.15)(0.3)(0.85)(0.7)}/  ( 0 . 3 - 0 . 1 5 )2

= 31.5

C  =  ( 1 . 2 8 )  ~(31 .5)(0.15)(0.85)  +  ( 3 1 . 3 ) ( 0 . 1 5 )  -  0.5

= 6.78

ii. Poisson Approximation (Appendix B, Chart 1)

npc 1— n—
npo f! l-a o!—

6 9.1 30.7 4.6 0.20 0.82 0.18

7 10.3 34.3 5.1 0.20 Q.85 0.15 1
8 11.5 38.3 5.7 0.20 0.88 0.12
9 12.5 41.7 6.3 0.20 0.90 0.10

10 13.8 46.o 6.9 0.95 0.20 0.05

iii. It appears that a good starting point for fine tuning is an n of 35
and c of 7. The following programs are proposed.

35 7 0.14 0.13
34 7 0.12 0.16
33 7 0.11 0.19

I 32 7 0 . 1 0 0 . 2 1  I

8 - 2 9
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l.c. P. = 0 . 1 5 PI =  0 . 3 0 ~=().1() p =  0 . 3 0

2 .

i. Normal Approximation

n = {(1.28)2(0.15-0.0225) + (0.526)2(0.3-0.09)

+ 2(0.526)(1.28) ~(O. 15) (0.3)(0.85)(0.7) ]/(0.3-0.15)2

= 21.7

C  =  ( 1 . 2 8 )  ~(21 .7)(0.15)(0.85)  +  ( 2 1 . 7 ) ( 0 . 1 5 )  -  0.5

=  4 . 9

ii. Poisson Approximation (Appendix B, Chart 1)

npc 1— n—
np o l-a

4 5.9 19.7 2.9 0.30 0.82 0.18

~5 7 . 0 2 3 . 3 3 . 5 0 . 3 0 0 . 8 7 0 . 1 3 J
6 8 . 4 2 8 . 0 4 . 2 0 . 3 0 0 . 8 9 0 . 1 1

iii. It appears that a good starting point for fine tuning is an n of 22
and c of 5. The following programs are proposed.

2 2 5 0 . 1 0 0 . 3 1 1
2 3 5 0 . 1 2 0 . 2 7

Po = 0 . 1 5 PI = 0.5 a = 0.20 p =  0 . 0 2

i. Normal Approximation

n = {(0.84)2(0.15-0.0225) + (2.06)2(0.5-0-25)

+ 2(0.84)(2.06) ~(0.15)(0.5)(0.85)(0.5)}/  (0.5-0.15)2

= 14.4

C  =  ( 0 . 8 4 )  ~(14.4)  (0.15)(0.85)  +  (14.4)(o.15)  -  0.5

=  2 . 8

8 - 3 0
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ii. Poisson Approximation (Appendix B,

npc 1 npn o— —

Chart 6)

E—1-CY c1—

2 7.5 1 5 . 0 2 . 2 5 0 . 0 2 0 . 6 3 0 . 3 7

3 9 . 1 1 8 . 2 2 . 7 0 0 . 0 2 0 . 7 3 0 . 2 7

4 1 0 . 6 2 1 . 2 3 . 2 0 0 . 0 2 0 . 8 0 0 . 2 0

iii. It appears that a good starting point for fine tuning is an n of 15
and c of 3. The following programs are proposed.

n c CY— — — 1?

t 15 3 0 . 1 8 0 . 0 2  I

14 3 0.16 0.03
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CASE STUDY NO. 8-4

Background

A communication system has minimum acceptable value (MAV) of 100 hrs MTBF, and
a specified value (SV) of 150 hrs MTBF.

Determine

How many hours of test are required for design qualification prior to a pro-
duction decision if we desire a and ~ risks of 10% each?

Solution

In this case, a “standard” test plan may be selected from Appendix B, Table 6.
Test plan IXC satisfies these inputs. The required test duration is

T = (45.0)(01) = (45.0)(100) = 4500 hrs.

The accept/reject criterion for this test plan is to accept if we encounter 36
or fewer failures. Bear in mind though, that the acceptance criteria may
require violation, depending on the nature of the failures and the verifica-
tion of corrective action.

Commentary

1. In order to make the test less sensitive to the constant failure rate
assumption, it would be desirable to have at least 3 systems tested for at
least 3(100) = 300 hours each. The remainder of the 4500 hours may be satis-
fied with these or other systems. See section entitled “Constant Failure Rate
Assumption” for a discussion of this topic.

2. The test duration of 4500 hours is very long! (The equivalent of 187.5
24-hour days). Putting more systems on test will reduce the calendar time
requirement, but 4500 hours of test exposure are still required. The required
test exposure is high because of the low discrimination ratio, d, and the
relatively low CY and ~ risks. Plans with higher risks may be worth considera-
tion to see how much the amount of testing may be reduced.
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CASE STUDY NO. 8-5

Background

An air defense system has a minimum acceptable value (MAV) of 80 hours MTBF
and a specified value (SV) of 220.

Determine

How many hours of testing are required to give the
needs have been met? The producer requires 90%
will be accepted if it meets the SV.

Solution

user 80% assurance that his
assurance that his product

The 80% user assurance is equivalent to a consumer’s risk of $ = 0.20, and the
90% contractor assurance is equivalent to a producer’s risk of ~ = 0.10.

60
=220, 81=80, d=~= 2.75.

Because the discrimination ratio is 2.75, the “standard” test plans from
Appendix B, Table 6, cannot be used. Appendix B, Table 7, will be considered.

For the 20% $ risk, and entering the 10% CY risk column, we find a discrimina-
tion ratio of 2.76 available, which is very close to 2.75. This is test plan
number 20-5. The required test duration is

T = (6.72)(01) = (6.72)(80) = 537.6 hrs.

The accept/reject criterion is to accept with 4 or fewer failures.
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CASE STUDY NO. 8-6

Background

A radar system is
sentially a fixed

under development. A test is to be run which will be es-
configuration test. At this stage of development, an MTBF

of 200 hours is planned; but assurance is desired ~hat the MTBF is not lower
than 100 hours. For cost and schedule reasons, a test exposure of 300 hours
has been proposed.

Determine

Is this amount of test exposure adequate? If not, what is an adequate amount
of testing?

Solution

The upper test value, 00, is 200, and the lower test value,
exposure, T, is 300 hrs.

For a quick and simple look at the adequacy of the proposed

0 ~, is 100. Test

test, we will use
Figure 8-7. (For the convenience of the reader, the graphs in Figures 8-6 and
8-7 have been reproduced and annotated below.) Entering Figure 8.7 with T/61

= 300/100 = 3 and d = 90/el = 200/100 = 2, we find that the proposed test

exposure results in risks slightly above 30%. The amount of testing proposed
is minimally adequate for this stage in the program.

We may use Figure 8-7 to determine an adequate test duration. At about 580
hours, a = $ = 0.25. At about 900 hours, a = ~ = 0.20. At about 2000 hours,
~ = p = ().10. At 580 hours, the risks are fairly high. A ~ risk of 25% is
perhaps tolerable, but an a risk of 25% means a 25% chance of an erroneous
“back to the drawing board” decision.

A test duration of about 900 hours looks reasonable, particularly if we reduce
~ by letting ~ increase. To investigate this possibility, we may use
Figure 8-6. From the graph for d = 2, we find that test plan 30-8 with
a = 0.10, $ = 0.30 and T = 981 looks reasonable. (Test plan 30-5 with
~ = ().20, ~ = 0.30 and T = 589 is another attractive possibility) . A test
duration of about 900 hours is recommended.

~

The process of trading test length for testing risks is inherently somewhat
subjective. Actual problems of the type illustrated in this case should, of
course, explicity address time, cost, and other penalties associated with the
test.
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CASE STUDY NO. 8-7

Background

A program manager desires to demonstrate an MTBF of at least 200 at a 90%
confidence level.

Determine

The minimum test length required, and an evaluation of the proposed test plan.

Commentary

The correct interpretation of the background statement is that the MAV is 200
hours and the consumer’s risk is 10%.

Solution

The absolute minimum test length is that which permits making the desired
confidence statement with zero failures. Applying inequality 7. 10a we have:

0 ~ ~2T
‘a, 2r+2

200 = 2T

*:.1O,2

~ _ 200(4.60)
2 = 460.0 hours

of test exposure.

NOTE : Values of x: Zr+z are found in Appendix B, Table 5.
>

An MTBF of 200 can be demonstrated at a 90% confidence level by completing
46o.o hours of test exposure with zero failures.

To evaluate this proposed test plan, we will use an OC curve. To construct
the OC curve, we use equation 8.10.

P(ac

P(ac

e) =

e) =

Probability of acceptance for a given value of 6
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For T = 460.0 and C = O

P(ac 9) = e -(460.0/0)

A few of the points for plotting the OC curve are tabulated below.

f.o

. 8

. 6

P(OC18)

. 4

. 2

c

1 0 0
2 0 0
5 0 0

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

w
0 . 0 1 0
0 . 1 0 0
0.398
0.631
0.794
0.858
0.891

I

---
I 000 2 0 0 0 3 0 0 0

8
M T B F  (!-f O U R S )

4 0 0 0 5000
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Commentary

The curve shows that the proposed test plan does , in fact, achieve a con-
sumer’s risk of 10% for the MAV of 200 hours. Let us now examine the OC curve
for this test plan through the eyes of the contractor.

The curve shows that a system whose true MTBF is 650 hours has only a 50%
chance of passing the test, i.e., being accepted. In addition, for a system
to have a 90% chance of being accepted, it must have a true MTBF of 4,400
hours. In other words, for the contractor to obtain a producer’ s risk of 10%,
he needs to manufacture a system whose true MTBF is 4,400 hours. To have a
50/50 chance of passing the test, he needs to manufacture a system whose true
MTBF is 650 hours. The lesson to be learned here is that consideration must
be given to both the upper test value (SV) , the lower test value (MAV) , and
the risks associated with them in designing or evaluating a test plan- The
test planner or evaluator should be concerned with obtaining the minimal test
exposure plan which protects both the consumer and producer. To ignore either
aspect can be a dangerous policy.

b
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CHAPTER 9

RELIABILITY GROWTH

JNTRODUCTION

Initial prototype models of complex weapon systems will invariably have inher-
ent reliability and performance deficiencies that generally could not have
been foreseen and eliminated in early design stages. To uncover and eliminate
these deficiencies, we subject these early prototypes and later more mature
models to a series of development and operational tests. These tests have
been specifically planned to stress the system components to predetermined
realistic levels at which inadequate design features will surface as system
failures. These failures are analyzed, design modifications incorporated, and
then the modified system is tested to verify the validity of the design
change.

This testing philosophy utilizes the test-analyze-fix-test (TAFT) procedure as
the basic catalyst in achieving system reliability growth. The ultimate goal
of a reliability growth program, and, ideed, the entire test program, is to
increase system reliability to stated requirement levels by eliminating a
sufficient number of inherent system failure modes.

A successful system reliability growth program is dependent on several
factors. First, an accurate determination must be made of the current system
reliability status. Second, a test program must be planned which subjects the
system to test exposure and stress levels adequate to uncover inherent failure
models and to verify design modifications. Third, the program manager must
address the availability of test schedule and resource required to support the
“TAFT” procedure.

TO adequately control the above and other factors inherent in the reliability
growth process, it is important to track reliability growth throughout the
testing program. This is accomplished by periodically assessing system reli-
ability (e.g., at the end of every test phase) and comparing the current reli-
ability to the planned level of achievement for that point in time. These
assessments provide the necessary data and visibility to support necessary
corrective management initiatives.

The following paragraphs present the analytical tools required to plan a
reliability growth program and those useful in tracking the actual growth of a
system during consecutive test phases.

WJA.BILITY GROWTH CONCEPTS

Idealized Growth

For a system under development, reliability generally increases rapidly early
on and at a much slower rate towards the end of development. It is useful at
the begiming of a development program to depict the growth in reliability as
a smooth curve which rises at slower and slower rates as time progresses.
This curve, known as the idealized growth curve, does not necessarily convey
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precisely how the reliability will actually grow during development. Its
purpose is to present a preliminary view as to how a program should be pro-
gressing in order for the final reliability requirements to be realized. The
model for the idealized curve is the Duane Growth Model, the primary feature
of which is the every decreasing rate of growth as testing progresses.

The development testing program will usually consist of several major test
phases. Within each test phase, the testing may be conducted according to a
program which incorporates fixes or design changes while testing is in pro-
cess, at the end of the test phase, or both. If we divide the development
testing program into its major phases and join by a smooth curve the proposed
reliability values for the system at the end of these test phases , the re-
sulting curve represents the overall pattern for reliability growth. This is
called the idealized reliability growth curve. The idealized curve is very
useful in quantifying the overall development effort and serves as a sig-
nificant tool in

Planned Growth

The planning of
program, before

the planning of reliability growth.

reliability growth is accomplished early in the development
hard reliability data are obtained, and is typically a joint

effort between the program manager and the contractor. Its purpose is to give
a realistic and detailed indication of how system reliability enhancement is
plamed to grow during development. Reliability growth planning addresses
program schedules, testing resources and the test exposure levels. The ob-
jective of growth planning is to determine the number and length of distinct
test phases, whether design modifications will be incorporated during or
between distinct test phases and the increases in reliability to ensure that
the achieved reliability remains within sight of the idealized growth values.

Growth Tracking

The primary objective in tracking reliability growth is to
reliability values at the end of each test phase. The
ability is usually determined by one of two methods. The
method is reliability growth analvsis. However, should

obtain demonstrated
demonstrated reli-
first and preferred
the data not lend.-

themselves to this type of analysis, then the second method, an engineering
analysis, should be used. Reliability growth analysis is useful for combining
test data to obtain a demonstrated estimate in the presence of changing con-
figurations within a given test phase. Engineering analysis is employed when
the reliability growth analysis procedure is inappropriate. We do not address
engineering analysis in this text.

IDEALIZED GROWTH CURVE DEVELOPMENT

The first step in planning reliability growth is the development of an
idealized growth curve. The development of this curve is based on the fol-
lowing three parameters :

‘1 = length of initial test phase.

MI = average MTBF over the first test phase, tl.

G’ = a parameter which addresses the rate of growth.

9-2
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The idealized curve, illustrated in Figure 9-1, is a graph of the function
M(t) where:

{

‘I in the interval O<t<t– 1

M(t) = and

M1(t/t#(l-a)-l in the interval t>tl .

MF

F I G U R E  9-] I D E A L I Z E D  G R O W T H  C U R V E

t=

-M ~= SPECIFIED  V A L U E— —.—  . — .  ——

i

‘M,  (:) ’(,-aj’

I L

( 9 . 1 )

t, T I M E T

The idealized growth curve development procedure starts with the determination
of the initial test phase length (tl) and the average MTBF over the initial

test phase (MI) . There is no exact procedure for determining values of these

parameters. The initial test phase length (tl ) may be determined through a

joint effort of both the contractor and the program manager. Perhaps an
initial test has already been performed, in which case both tl and MI are

known. If this is not the case, then the determination of a value for MI

would in all likelihood require the expertise of individuals familiar with
present day capabilities of the actual system in question or other similar
systems. The parameter, MI , should be a realistic estimate of what the sys-

tem’s average MTBF will be during the initial test phase, i.e. , before any
significant design weaknesses can be detected and modifications developed,
implemented and tested.

The parameter a represents the rate of growth necessary to achieve an MTBF of
MF (the contractually specified value) after a total of T hours of testing.

The specified value MF represents the user~s desired capability and is deter-

mined by means of extensive battlefield as well as logistics analyses. The

9 - 3
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total amount of testing T is a value which is determined through a joint con-
tractor and program manager effort and is based upon considerations of cal-
endar time and number of
For fixed values of tl,

braically by solving the

MF =

There is no closed form

prototypes available in addition to cost constraints.

‘I ‘ T, and ~, the value for a is calculated alge-

equation

M1(T/tl)a(l-a)-l . (9.2)

solution for u in equation 9.2. However, an approxi-
mation for u is given below.

1/2u = loge(tl/T)-l + {(loge(T/t1)+l)2 + 210ge(MF/M1)] . (9.3)

This is a reasonably good approximation when (Y is smaller than 0.4. The
approximation will always be on the high side but within two decimal places
for values of u less than 0.3. Programs which require a growth rate (a)
greater than 0.3 should be viewed somewhat skeptically and those which require
an ~ greater than 0.4 are far too ambitious to be realistic.

PLANNED GROWTH CURVE DEVELOPMENT

Once the idealized curve has been constructed, it is used as a basis for
developing a plamed growth curve. The planned growth curve displays, in
graphic terms, how the producer plans by stages to achieve the required final
MTBF . The curve is divided into portions which represent the different test
phases. The entire curve indicates graphically where in the development
program reliability is expected to grow, and where it is expected to remain
constant. The curve depicts increases in reliability resulting from design
improvements. At any given time during development testing, the planned
growth curve value can be higher than, lower than, or equal to the idealized
growth curve value. The idealized curve serves as a guide for the preparation
of the planned curve. At no time in the plaming of reliability growth should
the separation between values on the curve be large. If this is the case,
then unquestionably the re is some point during development where an un-
realistic jump in reliability is expected to occur.

As we mentioned earlier, the planned growth curve should graphically display
how reliability is expected to grow. Growth, of course, will generally occur
as a result of incorporating design modifications. These modifications may be
incorporated during the test phase, resulting in a smooth gradual improvement
in reliability, or at the end of the test phase, resulting in a jump in reli-

ability from the end of one test phase to the beginning of the subsequent test
phase. In Figure 9-2 , we present a planned growth curve which illustrates the
effect on reliability of design improvements incorporated during, and at the
completion of, the various test phases. Note that the rate of growth is
gradually decreasing as the system matures.

The portion of the planned growth curve between time zero and tl is identical
to the idealized growth curve.

9 - 4
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Delayed fixes are
During all of test

incorporated after each of the first three test phases.
phase 2 and early in test phase 3, fixes are incorporated.

Fixes are incorporated during the final test phase, and the MTBF grows to the
required specified value. It is not a good practice to allow for a jump in
reliability at the end of the final test phase even though fixes may be in-
corporated. The reason is that there is no test time available to determine
the impact of these fixes.

The planned growth curve is an indication of how the required MTBF might be
achieved and is developed by using the idealized curve as a guide.

Figure 9-3 illustrates the graphical relationship between the plamed growth
curve and the corresponding idealized curve. A point on the planned curve at
any given time in the program represents the level of reliability to be
achieved at that time.
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FIGURE 9-3 EXAMPLE OF A PLANNED GROWTH CURVE AND
CORRESPONDING IDEALIZED CURVE
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TIME ‘i

RELIABILITY GROWTH TRACKING

The objectives of growth tracking include:

- Determining if growth is occurring and ~o what degree,

- Estimating the present reliability, and

- Formulating a projection of the reliability expected at some future
time.

The methods discussed in this section are directed toward reliability growth
tracking using a mathematical model. Parameters of the model are estimated
using data which have been accumulated during a given test phase. Using this
model and the parameter estimates, we can determine present and projected
reliability values. The present value represents the reliability inherent in
the existing configuration. A projected value represents the reliability of
the system expected at some future time. Projected values take into account
the effect of design improvements intended to correct observed failure modes
or failure modes which further testing will surface. Generally growth track-
ing analysis is performed at the end of a major test phase.

9 - 6
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The mathematical model we shall use for
rate as a function of time. The value
system after t units of testing, and

r(t) = A~tp-l,

growth tracking describes
r(t) denotes the failure

the failure
rate of the

(9.4)

where A and ~ are parameters of the model which determine the scale and the
shape of the curve. The reciprocal of r(t) is the MTBF of the system after t
units of testing. We fit the model to the actual test data using maximum
likelihood estimates for A and ~. (See Chapter 6 for a discussion of maximum
likelihood estimates. )

When actual failure times (tl, t2, . . . tN) are known and the test phase is

time truncated, i.e. , at time T, the estimate for @ is

i=
N

N
NlogeT- 2 logeti

i=l

The estimate for A is

(9.5)

~=

When the test

and

x=

A

N/TP . (9.6)

phase is failure truncated, i.e. , at time tN, the estimates are

N
N-1 >

(N-l)logetN- Z logeti (9.7)
i=l

A
N/Tp . (9.8)

In either case, the estimate of r(t) is

(9.9)

The reciprocal of ~(t) is the estimate of the MTBF of the system after a test
period of length t, that is

ii(t) = .&, .
Confidence limits for MTBF may be determined by multiplying point estimates of
MTBF by the multipliers found in Table 9 of Appendix B.

When actual failure times are not known, the calculation of maximum likelihood
estimates requires a complicated iterative procedure which can only be
achieved using a computer algorithm. In addition, the estimates are not as

9-7
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accurate as they would be if actual failure times are known and used. It is
important then to collect the actual failure times (in total test time) during
development testing. See Chapter 10 for more information on this topic.

In Case Studies 9-1 and 9-2, we demonstrate the procedures for preparing
idealized and planned growth curves and for tracking reliability growth.

9-8
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CASE STUDY NO. 9-1

Background

A new helicopter system has been proposed. It
between Mission Failure (MTBM2?) of 50 hours.
an average MTBMF of 20 hours can be expected

is required to have a Mean Time
Past experience has shown that
during the initial test phase.

Four test phases are planned, and the manufacturer intends to use test-
analyze-fix-test (TAFT) during all but the final test phases. Delayed fixes
will be incorporated at the end of all but the final test phase.

Determine

1. Construct the idealized curve for the program when the initial test phase
is 100, 200, 300 hours, and the total test time is 1000 hours.

2. Construct an idealized curve and a planned growth curve when the total
test time is 2000 hours, and the four test phases are of equal length.

Solutions

l a .  tl =  1 0 0 T = 1 , 0 0 0

‘I = 20 %= 50

i . Solve for a in the model, using the approximation 9.3

a = loge(loo/looo)-l + [(loge(looo/loo)+l)2

+ 210ge(50/20)]l’2

= 0.267

ii. Determine points on the curve using equation 9.1

M(t) = M1(t/tl)%-a)-l

t—

<100

100

3 0 0

5 0 0

7 0 0

9 0 0

1000

M(t)

2 0

27

3 6

4 2

4 6

4 9

5 0

9 - 9
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iii. Sketch the curve.

5 0

40

2 0

10

I I I !
100 3 0 0 5 0 0 7 0 0 9 0 0 I O(M

H O U R S

lb. tl = 200 T = 1000

‘I = 20 1$= 5 0

i. Solve for u

& = loge(200/1000)-1 + {(loge(looo/200)+l)2

+ 210ge(50/20)t’2

=  0 . 3 3

ii. Determine points on the curve, using equation 9.1

t M(t)—

<200 2 0

2 0 0 3 0

4 0 0 3 7

6 0 0 4 3

8 0 0 4 7

1000 5 0

9-1o
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iii. Sketch the curve.

1o1-

.

L--J-+..
2 0 0 4 0 0 6 0 0 8 0 0

H O U R S

l.c. tl = 300 T = 1000

MI = 20 MF = 50

i . Solve for a

a = log (300/1000)-1 + {(loge(looo/300)+l)2e

+ 210ge(50/20)}l’2

=  0 . 3 8

ii. Determine points on the curve, using equation 9.1

t M(t)—

< 3 0 0 2 0

3 0 0 3 2

5 0 0 39

7 0 0 4 4

9 0 0 4 9

1000 5 0

9-11
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iii. Sketch the curve

50

4 0

10

2. ‘1 = 500

MI = 20

L I I I
3 0 0 5 0 0 7 0 0 9 0 0

HOURS

T = 2000

MF = 50

i . Solve for a

a = loge(500/2000)-l + {(logJ2000/5oo)+l~

= 0.356

+ 210ge(50/20))]l’2

ii. Determine points on the idealized curve, using equation 9.1

t M(t)—

<500 20

500 31

1000 40

1500 46

2000 50

9 - 1 2
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iii. Sketch the idealized curve and superimpose a planned growth curve.

r I I I I
I I IPHASE I P H A S E  2 P H A S E  3 I PHASE 4

I
I

5 0
I t

I I
I I I I

I I

I I

; I I Ix
3 0

L~

I
I

I 1 I
I

2 0 I
I

II I I I I

Commentary

1, Note, for the

phase (tl) affects

be too ambitious.

enough so that the

5 0 0 I 000 1500 2000
H O U R S

solution to question 1, how the length of the initial test

the growth parameter a. The a of 0.38 in part c. may even

The initial test phase leng”th (tl) should, however, be long

average MTBF of M7 is achievable.
4.

2. Note that, at various times during the test, the planned growth curve
either exceeds or falls below the idealized curve. The relatively low values
of the planned curve toward, and at the end of, the second test phase may be
cause for some concern. Some fairly substantial increases in reliability are
required during the third test phase to get the program back on track.

9-13
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CASE STUDY NO. 9-2

Background

For the system proposed in Case Study No. 9-1, the data from the final test
phase have been collected. The failure times as measured in total test hours
are {12, 70, 105, 141, 172, 191, 245, 300, 340, 410, 490}.

Determine

1. Calculate the MTBMF of the system at the end of the final test phase.

2. Calculate a 90% lower limit on the system MTBMF.

Solution

la. If we assume no growth during this test phase, the estimated MTB~ is
the ratio of the total time to the number of failures . This value is 500/11
or 45.4 hours.

lb. If fixes are being incorporated during this test phase as suggested in
the background for Case Study No. 9-1, then a reliability growth analysis is
more appropriate than one based upon the assumption of no growth, as in la.

i. Maximum likelihood estimate for ~ is

j = 11/{((11) loge500) - (loge 12+loge70+logelo5  +loge141+

loge172+loge191+ loge245+loge300+ loge340+loge410+ loge49o)l

~ = 0.89

ii. Maximum likelihood estimate for A is

i = 110 89 =  0 . 0 4 4
( 5 0 0 )  .

iii. Estimated MTBMF after

;(500) = 0.0198,
;(500), which is

final test phase

and the estimated
50.6 hours.

MTBMF is the reciprocal of

. for a time terminated test, we find the lower2. Using Appendix B, Table 9,
90% confidence limit multiplier for 11 failures to be 0.565. The lower limit
is

~ (0.565)(50.6)

9-14
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> 28.6..

We are 90% confident that the true MTBMF is at least 28.6 hours.

Commentary

The estimated MTBMF assuming no growth is 45.4 hours. (See la. above.) Note
that this estimate was computed using the number of failures and does not take
into account the actual failure times. It cannot show that the times between
successive failures seem to be increasing. If fixes are being incorporated
during the test, then the reliability growth analysis is more appropriate-
With this analysis, the estimated MTBMF is 50.6 hours. The type of analysis
used, however, should not be determined by the data but rather by a realistic
assessment of the test program.

.
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APPENDIX A

~

A-1 NORMAL APPROXIMATION TO BINOMIAL -. . . . . . . . . A-2

A-2 POISSON APPROXIMATION TO BINOMIAL . . . . . . . . . A-3

A-3 NORMAL APPROXIMATION TO POISSON . . . . . . . . . . A-4

A-1

Downloaded from http://www.everyspec.com



A-1. NORMAL APPROXIMATION TO BINOMIAL

When p, the probability of failure on a given trial, is moderate (0.2 ~ p ~
0.8) and n the number of trials is large (n ~ 30), the normal distribution
provides reasonable approximations to binomial probabilities. This approxima-
tion is detailed below. Note that Z is the notation for the standard normal
variable. (See Appendix B, Table 2.)

The probability of k or fewer failures out of n trials is approximately equal
to

i
1- P(Z ~ (k+ O.5-np)/~=j) .

The probability of at least k failures out of n trials is approximately equal
to

P(Z ~ (k-O.5-np)/~-”) .

The probability of between kl and k2 failures out of n trials inclusive is
approximately equal to

We

so

As

P(Z ~ (kl-0.5-np)/~_) - P(Z ~ (k2+0.5-np)/~=)

have listed the approximations in the form

P(Z ~ a)

that the use of Appendix B, Table 2 is direct.

an example, suppose that n = 40 and p = 0.3. The probability of between 10
and 20 failures inclusive is

P(z ~ (lo-o.5-(40)(o.3)/J(40)(o.3)(o.7))

- P(Z ~ (20+0.5-(40)(0.3)/~(40)(0.3) (0.7)) .

Simplifying we obtain

P(z > - 0.86) - P(Z ~ 2.93).—

Now from Appendix B, Table 2, we find that P(Z ~ - 0.86) = 0.8051 and P(Z ~
2.93) = 0.0017. Consequently, the probability that between 10 and 20 failures
inclusive occur is approximately 0.8034.

The value using a set of binomial tables is 0.8017.

A-2
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A-2 . POISSON APPROXIMATION TO BINOMIAL

When p, the probability of failure on a given trial, is extreme (p < 0.2 or p
> 0.8) and n, the number of trails, is large (n > 30), the Poisson–distribu-
~ion provides reasonable approximations to binom~al probabilities. We make
the identification m = np and use Poisson tables to determine the prob-
abilities of events in a binomial experiment.

AS an example, suppose that n = 40 and p = 0.05, so that m = 40(0.05)”  = 2.
The probability of between 5 and 10 failures is the difference between the
probability of 10 or fewer failures (1 .000) and the probability of 4 or fewer
failures (0.947) . (See Appendix B, Table 3.) The difference is 0.053. Using
a set of binomial tables we obtain 0.0480.

A-3
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A-3 . NORMAL APPROXIMATION TO POISSON

When the product AT is greater than 5, the normal distribution provides
reasonable approximations to Poisson probabilities. The approximation is
detailed below. Note that Z is the notation for the
(See Appendix B, Table 2)

The probability of k or fewer failures during time T

1- P(Z ~ (k+O.5-AT)/~) .

The probability of at least k failures during time T

P(Z ~ (k-O.5-AT)/~) .

standard normal variable.

is approximately

is approximately

The probability of between kl and k2 failures inclusive during time T is
approximately

P(Z ~ (kl-0.5-AT)/@) - P(Z ~ (k2+0.5-AT)/~) .

We have listed the approximations in the form

P(Z ~ a)

so that the use of Appendix B, Table 2 is direct.

As an example, suppose that the failure rate A is 0.01 and the test time T is
1000 hours. The probability of between 8 and 15 failures inclusive is

P(Z ~ (8-O.5-(0.01)(1000)/~(0.01)(1000)  )

- P(2 ~ (15+o.5-(o.ol)(looo)/J(o  .01)(1000)) .

The above expression reduces to

P(2 ~ -0.79) - P(2 ~ 1.74).

Now P(Z > -0.79) = 0.7852 and P(Z > 1.74) = 0.049, so the probability  that

between 8–and 15 failures inclusive o;cur is approximately 0.7443.

Using the Poisson tables (Appendix B, Table 3), we obtain the probability more
precisely as 0.731.

.!
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APPENDIX B

Table

1

2

3

4

5

*6

*7

8

9

Chart

1

BINOMIAL TABLES . . . . . . . . .

NORMAL TABLES . . . . . . . . . .

CUMULATIVE

CONFIDENCE

CHI SQUARE

POISSON PROBABILITIES .

LIMITS FOR A PROPORTION

TABLE . . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

EXPONENTIAL TEST PLANS FOR STANDARD DISCRIMINATION
RATIOS . . . . . . . . . . . . . . . . . . . . .

SUPPLEMENTAL EXPONENTIAL TEST PLANS . . . . . . . .

EXPONENTIAL CONFIDENCE LIMIT MULTIPLIERS
FOR MTBF . . . . . . . . . . . . . . . . . . . .

CONFIDENCE LIMIT MULTIPLIERS FOR MTBF
TIME TERMINATED
TESTS . . . . .

CUMULATIVE POISSON

RELIABILITY GROWTH
. . . . . . . . . . . . . . . . .

PROBABILITIES . . . . . . . . . .

~

B- 2

B-41

B-45

B-51

B-61

B-63

B-64

B-65

B-68

B-70 -

*Extracted from MIL-STD 781C, Tables II and III. Operating character-
istic (OC) curves for the test plans shown in Table 6 can be found in
MIL-STD 781C, Appendix C.
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TABLE 1

BINOMIAL TABLES

Table gives probability of c or fewer failures,

NOTE: Only excerpts of binomial tables required
to work case studies are provided in Table 1.
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P = P(failure)
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TABLE 2

NORMAL TABLES

The letter Z represents the standard normal variable.

The notation Za is defined by the relationship

P(z ~ Za) = a.

-z u
a

Note t h a t
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TABLE 2. NORMAL TABLES
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.9082

.9099

.9115

.9131

.9147

.9162

.9177

.9192

.9207

.9222

.9236

.9251

.9265

.9279

.9292

.9306

.9319

.9332

P (Zzza)=a

.1587

.1562

.1539

.1515

.1402

.1469

.1448

.1423

.1401

.1379

.1357

.1335

.1314

.1292

.1271

.1251

.1230

.1210

.1190

.1170

.1151

.1131

.1112

.1093

.1075

1056
:1038
.1020
.1003
.0085

.0968

.09s1

.0934

.0918

.0901

.0885

.0869

.0853

.0838

.0823

.0808

.0793

.0778

.0764

.0749

.0735

.0721

.0708

.0694

.0681

.0668

B-42
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‘ a

1.50
1.s1
1.52
1.53
1.64

1.s5
1.56
1.57
1.58
1.69

1.60
1.61
1.62
1.63
1.64

1.6S
1.66
1.67
1.68
1.69

1.70
1.71
1.72
1.73
1.74

1.75
1.76
1.77
1.7s
1.79

1.80
1.81
1.82
1.83
1.84

1.85
1.86
1.87
1.86
1.89

1.90
1.91
1.92
1.93
1.94

1.95
1.96
1.97
1.98
1.99

Z.w

P (z~-z=!

.9332

.9345

.0357

.9370

.9382

.9394

.9406

.9418

.9429

.9441

.9452

.9483

.9474

.9484

.9495

.9505

.9515

. 9S25

.9535

.9545

.9554

.95$4

.9573

.9582

.9591

.9599

. M08

.9616

.9625

.9633

.9641

. WU9

.96.56

.9664

.9671

.9678

.9686

.9693

.9699

.9706

.9713

.9719

.9726

.9732

.9738

.974

.9750

.9756

.9761

.9767

.9773

P(Z2za)=a ‘ a

.0668

.0655

.0643

.0630

.0618

-0606
.0594
.0582
.0571
.0559

.0548

.0537

.0526

.0516

.0505

.0495

.0485

.0475

.0465

.0455

.0446

.0436

.0427

.0418

.0409

.0401

.0392

.0384

.0375

.0367

.0359

.0351

.0344

.0336

.0329

. axm

.0314

.0307

.0301

.0294

.0287

.0281

.0274

.0268

.0262

.0256

.0250

.0244

.0230

.0233

.0227

2.00
2.01
2.02
2.03
2.04

2.06
2.06
2.07
2.08
2.09

2.10
2.11
2.12
2.13
2.14

2.1s
2.16
2.17
2.18
2 . 1 9

2:20
2 . 2 1
2 . 2 2
2 . 2 3
2 . 2 4

2 . 2 5
2.26
2 . 2 7
2 . 2 8
2 . 2 9

2 . 3 0
2 . 3 1
2 . 3 2
2 . 3 3
2 . 3 4

2 . 3 5
2 . 3 6
2 . 3 7
2 . 3 8
2 . 3 9

2 . 4 0
2 . 4 1
2 . 4 2
2 . 4 3
2 . 4 4

2 . 4 5
2 . 4 6
2 . 4 7
2 . 4 8
2 . 4 9

2.50

P(z~-za;

.9773

.9778

.9783

.9786

.9793

.9708

.9803

.9808

.9812

.9817

.9821

. D826

.9830

.9834

.9838

.9842

.9846

.9850

.9854

.9857

.9861

.9864

.9868

.9871

.9875

.9878

.9881

.9884

.9687

.9890

.9893

.9806

. 98Q8

.9901

.9*

.9906

.9909

.9911

.9913

.9916

.9918

.9920

.9922

.9925

.9927

.9929

.9931

.9932

.9934

.9936

.9038

?(zzza)=ct ‘ a

.0227

.0222

.0217

.021!4

.0207

.0202

.0197

.0192

.0188

.0183

.0179

.0174

.0170

.0166

.0162

.0158

.0154

.0150

.0146

.0143

.0139

.0136

.0132

.0129

.0125

.0122

.0119

.0116

.0113

.0110

.0107

.0104

.0102

.0099

.0096

.0094

.0091

.0089

.0087

.0064

.0082

.0080

.0078

.0075

.0073

.0071

.0W9

.0068

.0066

.0064

.0062

2.50
2.61
2.62
2.53
2.64

2.65
2.56
2.57
2.58
2.59

2.60
2.61
2.62
2.63
2.64

2.65
2.66
2.67
2.68
2.69

2.70
2.71
2.72
2.73
2.74

2.75
2.76
2.77
2.78
2.79

2.80
2.81
2.82
2.83
2.84

2.85
2.86
2.87
2.88
2.89

2.90
2.91
2.92
2.03
2.04

2.9s
2.96
2.97
2.98
2.99

a.m

‘(z~-za)

.9938

.9940

.9941

.9943

.9945

.9946

.9948

. 9W9

.9951

.9952

.9953

.9955

.9956

.9957

.9959

.9960

.9961

.9962

.9963

.9964

.9965

.9966

.9967

.9968

.9969

.9970

.9971

.0972

.9973

.9974

.9974

.9975

.9976

.9977

.9977

.9978

.9979

.9$79

.9980

.9981

.9981

.9982

.9983

.9983

.9984

.9984

. W85

.9985

.9986

.9986

.9987

?(z~za)=a

.0062

.0060

.0059

.0057

.0055

.0054

.0052

.6051

.0049

.0048

. 0CU7

.0045

.lxn4

.0043

.0041

.0040

.0039

.0038

.0037

.0036

.0035

.0034

.0033

.0032

.0031

.0030

.0029

. (M28

.0027

.0026

.0026

.m25

. ($324

.0023

.0023

. (M22

.0021

.(X)21

.0020

.0019

.0019

.0018

.!3)17

.0017

.0016

.0016

.(X)15

.0015

.0014

.0014

.0013

E-43

Downloaded from http://www.everyspec.com



TABLE 2. Now TABLES (CONT. )

‘ a

3.00
3.01
3.02
3.03
3.04

3.03
3.06
3.07
3.08
3.09

3.10
3.11
3.12
3.13
3.14

3.16
3.16
3.17
3.18
8.19

3.20
3.21
3.22
3.23
3.24

3.25
3.26
3.27
3.28
3.29

3.30
3.31
3.32
3.23
3.34

3.35
3.36
3.37
3.33
3.30

3.40
3.41
3.42
3.43
a.44

3.45
a.46
a.47
a.48
a.49

a.ao

.9987

.0087

. QQ87

.9988

.9988

.9989

.9989

. 9Q8Q

. 9wto

.9990

.9990

.9891

.9991

.9991

.9992

.9992

.9992

.9992

. ma

.0993

.9993

.999a

.9994

.9994

.9994

.9994

.9994

.9995

.0996

.9996

.9996

.9995

.9996

.9996

.9996

.9996

. WM.

.9996

.9996

.9997

.9997

.9997

.9997

.9997

.9997

.9997

.9997

.9997

.9997

.9998

. 9QQ8

B–44

P(Z2zJ=a

.0013

. IX!13

. a313

.0012

. (X)12

.Cu)ll

.0011

.0011

.M1O

.0010

.0010

.0009

:%%
.OoLM

.0006

.0008

.0m8

%%

.0m7

.0m7

.0006

.Oixns

.Oam

.0006

.0006

. 0CQ5

. 0(X15

.IMo5

.0005

:E
.0m4
.Wo4

.OoM

.@lo4

.OoM

:%%

.0003

.0m3

:%
.UJoa

.0003

.0003

.Cmo3

.0003

.Lxxn

.0002

Downloaded from http://www.everyspec.com



TABLE

CUMULATIVE POISSON

Description and Instructions

This table lists values of

c i - m
GL,T[c) = Z ~ , m = AT.

i=f)

The table is indexed horizontally by c and vertically
by m, and the tabled probabilities are rounded to the
nearest 0.001. See Chapter 5, section ● ntitled
“Poisson Hodel” for a discussion of the Poisson dis-
tr ibut ion  funct ion , G*, T(C).

Examp le 1 . Assume a Poisson model where the failure
r a t e  (A) i s  0 . 0 1 6  a n d  t h e  t i m e  ( T )  i s  2 0 0  h o u r s .
Thus, m = AT = (0.016)(200) = 3.2. To find the prob-
abil i ty of  5 or fewer f a i l u r e s  o c c u r r i n g ,  w e  l e t
m= 3.2,  C = 5 and read the value directly from the
tsble as 0.895.

Exsmp le 2 . The  probabi l i ty  o f  ●  xact ly  c  fa i lures
occurring is

P(c or fewer failures)

- P(c-1 or  fewer  fa i lures ) .

For m = 3.2 and c = 5, this probability is

0.895 -  0.781 = 0.114.

Note that this example shows how to obtain values o f
the function gA ~(c) as defined in Chapter 5.

,-

EXSMP le 3. The probability of mnre than c failures
occurring is

1- P(c or fewer failures).

For m = 3.2 and c = 5, this probability is

1 - 0.895 = 0.105.

.

B-45

3

PROBABILITIES

E-
0.01
0.02
0,03
0.04
0.05

0.06
0.0’7
0.08
0.09
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

0.52
0.54
0.56
0.58
0.60
0.62
0. w
0.66
0.68
0.70
0.72
0.74
0.76
0.’78
0.60

0
.990
.980
.970
.961
.951

.942

.932

.923

.914

.905

.887

.869

.852

.635

.819

.803

.787

.771

.756

.741

.726

. ?12

.698

.664

.670

.657

.644

.631

.619

.607

.595

.583

.571

.560

.549

.538

.527

.517

.507

.497

.487

.477

.468

.458

.449

1

L. 000
L. 000
1.000
.999
.999

.998

.998

.997

.996

.995

.993

.991

.988

.986

.982

.979

.975

.972

.967

.963

.959

.954

.949

.944

.938

.933

.927

.922

.916

.910

.904

.897

.891

.885

.878

.871

.865

.858

.851

.844

.627

.830

.823

.816

.809

2

. . 000
!. 000

L 000
L 000
1.000
L 000
L 000
L 000
L 000
.999
.999
.999
.998
.998
.998
.997
.996
.996
.995
.994
.993
.992
.991
.990
.988
.987
.986

.984

.982

.981

.979

.97’7

.975

.973

.971

.968

.966

.963

.961

.958

.955

.953

3

L OOC
L OOC
L 000
L 00C
L OOC
L.  000
L OOC
1. OOC
1.000
L. 00C
.999
.999
.999

.99:

.99$

.99$

. 99[

. 99[

. 99[

.99[

. 96i

.997

.997

. 99[

. 99(

.99:

.99:

.994

.99

.99:

.99:

.99:

.99

4

L OOC
L  Oo c
L OOC

L 00(
L 00C
1. 00(
L. 00(

L. 00(

L. 00(
1. 00[
L. 00(
L. 00(
L. 00(

L. 00(
. ~$

. 9 9 9

.999

.999

.999

.999

.999

.899

.999

5

L  000
. . 000
. . 000
1. 00C
1 . 000
L  000
L 00C
L 00C
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TABLE 3. cmmxmm pOIsSON PROIImIHTCES (C ONT. )

~
c

m

0.82
0.84
0.86
0.88
0.90

0.92
0.94
0.96
0.98
1.00

1.10
1.20
1.30
1.40
1.50

1.60
1.70
1.80
1.90
2.00

2.20
2.40
2.60
2.80
3.00

3.20
3.40
3.60
3.80
4.00

4.20
4.40
4.60
4.80
5.00

5.20
5.40
5.60
5.80
6.00

6.20
6.40
6.60
6.80
‘7. 00
7.20
7.40
7.60
7.80
8.00

0 1

.440 .802

.432 .784

.423 , .787

.415 .780

.407 .772

.399 .765

.391 .758

.383 .750

.375 .743

.368 .736

.333 .699

.301 .663

.273 .627

.247 .592

.223 .558

.202 .525

.183 .493

.165 .463

.150 .434

.135 .406

.111 .355

.091 .308

.074 .267

.061 .231

.050 .199

.041 .171

.033 .147

.027 .126

.022 .107’

.018 .092:

.015 .078

.012 .066 ~

.010 .056:

.006 .048

.007 .040:

.006 .OM;

.005 .029

.004 .024

.003 .021

.002 .017

.002 .015

.002 .012

.001 .010

.001 .009

.001 .007

.001 .006

.001 .005

.001 .004

.000 .004
,000 .003

2

.950

.947

.844

.940

.937

.934

.930

.927

.923

.920

.900

.879

.857

.833

.809

.783

.757

.731

.704

.677

.623

.570

.518

.469

.423

.380

.340

.303

.269

.238

.210

.185

.163

.143

.125

.109

.095

.082

.072

.062

.054

.046

.040

.034

.030

.025

.022

.019

.016

_l
.014

3 4

.998

.998

.998

.998

.998

.997

.997

.997

.997

.996

.995

.992

.989

.986

.981

.976

.970

.964

.956 i

.847i

.928 I

.9M~

.877 !

.848

.815

.781

.744

.706

.668

.629

.590

.551

.513

.476

.440

.406

.373

.342

.313

.285

.259

.235

.213

.192

.173

.156

.140

.125

. Iii!

.100

c
m I 15

5.601 1.000
5.80 L 000
6.00 .999
6.20 .999
6.40 .999

6.60 .999
6.80 .998
7.00 .998
7.20 .997
7.40 .996

7.60 .995
7,30 .993
8.00 .992

16 175 6 7 19

.990

.989

.988

.988

.987

.986

.984

.983

.982

.981

.974

.966

.957

.846

.934

.921

.907

.891

.875

.857

.819

.779

.736

.692

.647

.603

.558

.515

.473

.433

.395

.359

.326

.284

.265

.238

.213

.191

.170

.151

.134

.119

.105

.093

.082

.072

.063

.055

.048

.042

..000

..000

..000

..000

..000

..000

..000

..000
.999
.999

.999

.998

.998 I

.997 ~

.996

.984

.992

.990

.987

.983

.975

.964

.951

.935

.916

.895

.871

.844

.816

.785

.753

.720

.686

.651

.616

.581

.546

.512

.478

.446

.414

.384

.355

.327

.301

.276

.253

.231

.210

.191

;. 000
:.000
:.000

.999

.999

.999

.999

.998

.998

.997

.996

“1. 000
1.000
1.000
1.000L 000

1.000

1.000
L 000
1.000
.999
.999

.999

.998

.997

.997

.995

.993

.988

.983

.976

.966

.955

.942

.927

.909

.889

.867

.844

.818

.791

.762

.732

.702

.670

.638

.606

.574

.542

.511

.480

.450

.420

.392

.365

.338

.313

.599 I..000

.999 \l. 000

.999 h. 000

22_15L_,A. 000
,.000
,.”000

,.000
,.000
.999
.999
.999

.998

.997

.995

.992

.988

.983

.977

.969

.960

.949

.936

.921

.905

.887

.867

.845

.822

.797

.771

.744

.716

.687
,658
.628
.599
.569
.539
.510
.481
.453

9
~

.000

.000

.999

.999

.998

.99’7

.996

.991

.992

.989

.985

.980

.975

.968

; 960
,951
.941
.929
.916

.902

.886

.869

.850

.830

.810

.788

.765

.741

.717

~~
~

..000
,.000
.999
.999

.999

.998

.’397

.996

.995

.993

.990

.988

.984

.980

.975

.969

.963

.255

.947

.937

.926

.915

.902

.888

10
~

,.000
.000
,.000
.999
.999
.998
.997

.996

.994

.992

..990

.986

.982

.9’77

.972

.965

.957

.949

.939

.927

.915

.901

.887

.871

.854

.335

.816

12 14

..000

..000

..000

..000
.999
.9991
. 998!
.996

.984

.992

.988

.984

.979

.972

.964

.955

.8%

.932

.918

.903

.886

.867

.847

.826

.803

.780

.755

.729

.703
,676
.648
.620
.593

!. 000
!. 000

L 000
,999
.999
. !399
.398

.997

.996

.995

.993

.391

.989

.986

.982

.973

.973

.967

.961

.954

.945

.936

.000

.000

.000

.999 L. 000

.999 1.000

.999 1.000

.998 .999

.997 ,999

.996 .999

.395 .998

.994 .997

.992 .997

.990 .996

.987 .994

.984 .993

.980 .991

. 97s .989

.971 .986

.966 .983
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10
-xR
,774
.752
.729
.706

.682

.658

.633

.608

.583

.521

.460

.402

.347

.297

.252

.211

.176

.145

.118

.077

.049

.030
JllQ

8
=
.565
.537
.509
.482
.456

.430

.404

.380

.356

.333

.279

.232

.191

.155

.125

.100

.079

.062

.048

.03’7

.022

.013

.007

.004

9
x
.666
.640
.614
..587
.561
.535
.509
.483
.458

.397

.341

.289

.242

.201

.166

.135

.109

.088

.070

.043

.026

.015

.009

n

Tm
.857
.840
.822
.803

.783

.763

.741

.719

.697

.639

.579

.520

.462

.406

.353

.304

.260

.220

.185

.127

.085

.055
*

13
.960
. 95?
.945
.936
.926

.916

.904

.892

.879

.864

.825

.781

.733

.682

.628

.573

.518

.464

.413

.363

.275

.201

.143
&m_

14
.979
.975
.970
.965
.959

.952

.944

.936

.927

.917

.888

.854

.815

.772

.725

.675

.623

.570

.518

.466

.368

.281

.208
J@

x o 1 2 3 4 5
=
.157
.142
.128
.116

.104

.093

.084

.075

.067

.050

.038

.028

.020

.015

.011

.008

.006

.004

.003

.001

.001

.000

.000

6 7
.290 .425
.267 .399
.246 .373
.226 .348
.207 .324

.189 .301

.173 .279

.157 .258

.143 .239

.130 .220

.102 .179

.079 .143

.060 .114

.046 .090

.035 .070

.026 .054

.019. .041

.014 .032

.010 .024

.008 .018

.004 .010

.002 .005

.001 .003

.001 .002

12
-x%
.915
.903
.890
.876

.861

.845

.828

.810

.792

.742

.689

.633

.576

.519

.463

.409

.358

.311

.268

.193

.135

.092
JxiJ

8.2
8.4
8.6
8.8
9.0

9.2
9.4
9.6
9.8
,0.0

0.5
.1.0
,1.5
,2.0
,2.5

,3.0
.3.5
,4.0
,4.5
,5.0.
6.0
,7.0
8.0
,9.0—

R
T
8.4
8.6
8.8
9.0

9.2
9.4
9.6
9.8

10.0

10.5
11.0
11.5
12.0
12.5

13.0
13.5
14.0
14.5
15.0

16.0
17.0
18.0
19.0

.000

.000

.000

.000

.000

.000

.000

.000

.000

.003

.002

.002

.001

.001

.001

.001

.001

.001

.000

.000

.000

.000

.000

.012

.010

.009

.007

.006

.005

.005

.004

.003

.003

.002

.001

.001

.001

.000

.000

.000

.037

.032

.028

.024

.021

.018

.016

.014

.012

.010

.007

.005

.003

.002

.002

.001

.001

.000

.000

.000

.089

.079

.070

.062

.055

.049

.043

.038

.033

.029

.021

.015

.011

.008

.005

.004

.003

.002

.001

.001

.000

.000

m I 30 31 32 33 34 i~

16.0 I .999 1.000 I I 1
17
.998
.997
.997
.996
.995

.993

.992

.990

.980

.986

.978

.968

.954

.937

.916

.890

.861

.827

.790

.749

.659

.564

.469

.378

18
z
.999
.999
.998
.998

.997

.996

.995

.994

.993

.988

..982

.974

.963

.948

.930

.908

.883

.853

.819

,742
.655
.562
.469

19
5
.000
.999
.999
.999

.999

.998

.998

.997

.997

.994

.991

.986

.979

.969

.957

.942

.923

.901

.875

.812

.736

.651

.561

20 21

..000

..000

..000
.999
.999

.999

.998

. 99C

.994

.991

.986

.980

.971

.960

.947

.911

.861

.799

.725

15
G
,987
,985
.982
,978

,974
,969
,864
,958
.951

.932

.907

.878

.844

.806

.764

.718

.669

.619

.568

.467

.371

.287

.215

16
%F
.994
.993
.991
.989

.987

.984

.981

.977

.973

.960

.944

.924

.899

.869

.835

.798

.756

.711

.664

.566

.468

.375

.292

17.0 .999 .99911.000
18.0 .997 .998 .999 1.000
19.0 .993 .996 .998 .999 .999 1.000

.000

.000

.000

.999

.999

.999

.999

.998

.997

.995

.992

.988

.983

.975

.965

.952

.936

.917

.868

.805

.731

.647

22
=
L 000
L 000

.999

.999

.998

.997

.995

.992

.989

.983

.976

.967

.942

.905

.855

.793

23 24 25 26 27

L. 000
.999
.999
.998

.996

.991

.983

.989

28

,.
1.000
.999, .

29
-

.000

.000

.999

.999

.998

.996

.994

.991

.986

.981

.963

.937

.899

.849

.

,

1.000
.999
.999

.998

.997

.995

.992

.989

,978
.959
.932
.893

1.000
.999

.999

.998

.997

.996

.994

.987

.975

.955

.927

1.000

1.000
.999
.999
.998
.997

.993

.985

.972

.951

1. Ooc

-L.999 1. Ooc

.998 .99$

.995 .997

.990 .994

.980 .98[
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TABLE 3. CUMULATIVE POISSON PROBABILITIES (CONT.)

9 10
.005 .011
.003 .006
.002 .004
.001 .002
.000 .001

.000 .001
.000

R~
20.0
21.0
22.0
23.0
24.0

25.0
26.0
27.0
28.0
29.0

30.0
31.0
32.0
33.0
34.0

7
x
.000
.000

11=
.021
.013
.008
.004
.003

.001

.001

.000

.000

12
=
.039
.025
.015
.009
.005

.003

.002

.001

.001

.000

13

.066

.043

.028

.017

.011

.006

.004

.002

.001

.001

.000

.000

16
-
.221
.163
.117
.082
.056

.038

.025

.016

.010

.006

.004

.002

.001

.001
J2QQ

31

%z!
.985
.973
.956
.932

.900

.859

.809

.752

.687

.619

.548

.476

.408
~

8
=
.002
.001
.001
.000

14 15

.105 .157

.072 .111

.048 .077

.031 .052

.020 .034

.012 .022

.008 .014

.005 .009

.003 .005

.002 .003

.001 .002

.001 .001

.000 .001
.000

17
-
.297
.227
.169
.123
.087

.060

.041

.027

.018

.012

.007

.005

.003

.002
&lJ

32

18

-xii
.302
.232
.175
.128

.092

.065

.044

.030

.020

.013

.008

.005

.003
Jlg

33
=
.997
.994
.989
.981
,969

.950

.925

.992

.850

.801

. 744

.682

.615

.546
~

19

.470

.364

.306

.238

.180

.134

.097

.069

.048

.033

.022

.014

.009

.006
~

34

20
.559
.471
.387
.310
.243

.185

.139

.101

.073

.051

.035

.024

.016

.010
~

22
=
.721
.640
. 556
.472
.392

.313

.252

.195

.148

.110

.081

.058

.041

.028
*

25-
.888
.838
.777
.708
.632

.553

.474

.398

.327

.264

.208

.161

.123

.092
Qg

40

26
=
.922
.883
.832
.772
.704

.629

.552

.474

.400

.330

.267

.212

.166

.127
*

41
=

.999

.999

.998

.996

.992

.986

.978

.966

.949

.926

.898

27 28

.966

.944

.913

.873

.823

.763

.697

.625

.550

.475

.403

.335

.274

.220
J7!J

43

29 30

.978 .987

.963 .976

.940 .959

.908 .936

.868 .904

.818 .863

.759 .813

.693 .755

.623 .690

.549 .621

.476 .548

.405 .476

.338 .406

.277 .340

.224 .280

24

.843

.782

.712

.635

.554

.473

.396

.324

.260

.204

.157

.119

.088

.064
~

21 23
=
.787
.716
.637
.555
.473

.394

.321

.256

.200

.153

.115

.084

.061

. C43
J&3

35- - -
20.0
21.0
22.0
23.0
24.0

25.0
26.0
27.0
28.0
29.0

30.0
31.0
32.0
33.0
~

.644

.558

.472

.389

.314

.247

.190

.144

.106

.077

.054

.038

.026

.018
g

.948

.917

.877

.827

.768

.700

.627

.551

.475

.401

.333

.271

.216

.170
*

42=

1.000

.999

.999

.997

.995

.991

.965

.976

.964

.946

.924

.995

.991

.983

.971

.953

.929

.896

.855

.805

.748

.685

.617

.547

.477
~

.999

.997

.994

.988

.979

.966

.947

.921

.888

.846

.797

.741

.679

.613
&

.999

.998

.996

.993

.987

.978

.964

.944

.918

.884

.843

.794

.738

.677
&

~ 51 52 53 54 55
31.0 1.000
32.0 .999 1.000
33.0 .999 .999 1.000
34.0 .998 .998 .999 .999 1.000

%-
20.0
21.0
22.0
23.0
24.0

25.0
26.0
27.0
28.0
29.0

30.0
31.0
32.0
33.0
34.0

36 37 38 39
. 000
.999
.998
.996
.992

.985

.976

.961

.841

.914

.880

. 839

.790

.735

.674

.999

.999

.997

.995

.991

.984

.974

.959

.938

.911

.877

.835

.787

.732

, . 000
.999
.999
.997

1.000
.999
.998

L.  000
.999

.998

.996

.993

.988

.979

.968

.951

.929

.901

.866

44 T45 46

. 9 9 9  1.000

. 9 9 9  . 9 9 9

.998 .999

.996 .998

.993 .996

.988 .992

.981 .987

.971 .980

47 48 49 I 50.994
.990
.983
.972
.956

.997

.994

.989

.981

.970

. . 000
.999
.998
.997
.994

.990

.984

.975

.962

.944

L 000
.999
.998
.996

.994

.989

.983

.973
.960

. . 000
.999

.999

.997

.995

.992

.966

!. 000

.999

.998

.997

.995

.991

.999

.999
,998
.997
.994

. . 000
.999
.999
.998
.996

.935

.908

.873

.832

.783

.954

.932

.904

.870

.828
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TABLE 3. CUMULATIVE POISSON PROBABILITIES (CONT. )

130

7

.227

.181

.141

.109

.083 1
I

.062

.045 ,

.033

.024

.017

. ol~

.008 I

.005 !

.004
5

~

35.0
36.0
37.0
38.0
39.0

40.0
41.0
42.0
43.0
44.0

45.0
46.0
47.0
48.0
49.0

~
35.0
36.0
37.0
38.0
39.0

40.0
41.0
42.0
43.0
44.0

45.0
46.0
47.0
48.0
49.0

17
=
.001
.000

32
=
.345
.286
.233
.187
.148

.115

.088

.067

.050

.037

.026

.019

.013

.009

.006

18

.001

.001

.000

.000

33

19

z
.001
.001
.001
.000

20-
.004
.003
.002
.001
.001

. Ooc

21
=
.008
.005
.003
.002
.001

.001

.000

.000

22=
.013
.008
.006
:004
.002

.001

. 00?.

.001

.000

23
.021
.014
.009
.006
.004

.003

.002

.001

.001

.000

25

GG
.035
.024
.017
.011

.008

.005

.003

.002

.001

.001

.001

.000

26

mo
.051
.037
.026
.018

.012

.008

.006

.004

.002

.002

.001

.001

.000

16
-
.000

31

24

.032

.022

.015

.010

.007

.004

.003

.002

.001

.001

.000

.000

.099 .134 .177

.074 .102 .138

.054 .077 .106

.039 .057 .080

.028 .041 .059

.019 .029 .043

.013 .021 .031

.009 .014 .022

.006 .010 .016

.004 .007 .011

-L_.003 .004 .007
.002 .003 .005
.001 .002 .003
.001 .001 .002
.000 .001 .001

.

45 I34 35 36 37 38 39 40 41

.863

.822

.774

.721

.664

.603

.541

.479

.419

.361

.307

.258

.214

.175

.141

.283

.230

.184

.145

.112

.086

.064

.048

.035

.025

.018

.012

.009

.006

.004

.410

.347

.289

.237

.191

.151

.118

.091

.069

.052

.038

.028

.020

.014

.010

.478

.411

.349

.291

.240

.194

.155

.121

.094

.0’72

.054

.040

.029

.021

.015

.545

.478

.413

.351

.394

.242

.197

.158

.124

.097

.074

.056

.042

.031

.023

.610

.544

.478

.414

.353

.296

.245

.200

.161

.127

.099

.077

.058

.044

.032

.672

.609

.544

.478

.415

.355

.299

.248

.203

.164

.130

.102

.079

.060

.046

.729

.670

.607

.543

.479

.416

.356

.301

.251

.206

.166

.133

.105

.081

.062

.780

.726

.668

.606

.542

.479

.417

.358

.303

.253

.208

.169

.136

.107

.084

.825

.777

.724

.666

.605

.542

.479

.418

.360

.305

.256

.211

.172

.138

.110

.8951  . 9 2 1 .941

.860 .892 .918

.819 .857 .989

.771 .816 .854

.719
I

.768 / .813

.662 ~ .716 .766

.602 .660 I .714

.541 .601 .658

.480 .540 .600

.420 .480 , .540
,

.958

.939

.915

.886 [

.851

.810

.763

.712 I.656 i

.599 I

.540

.480

.423

.367 I

.315 I

.363 ~ .421 .480

.3091 .364 .422

. 260\ .311 .366

.216 .263 .313

.177 .2191 .265

~
59 I 60x-

35.0
36.0
37.0
38.0
39.0

40.0
41.0
42.0
43.0
44.0

45.0
46.0
47.0
48.0
49.0

46 47 48 49

.990

.964

.976

.965

.949

50 -51-
.996
.993
.989
.982
.973

.961

.845

.925

.900

.870

.634

.794

.749

.700

.647

55 56 57 5852-
.997
.995
.992
.988
.981

.972

.960

.943

.923

.898

.867

.832

.791

.746

.698

53
.998
.997
.995
.992
.987

.980

.971

.958

.841

.921

.895

.865

.829

.789

.744

54-
.999
.998
.997
.994
.991

.986

.979

.969

.956

.939

.918

.893

.862

.827

.787

.970

.955

.937

.913

.883

.848

.807

.760

.709

.655

.598

.539

.481

.423

.368

.979

.968

.953

.934

.910

.880

.845

.804

.758

.707

.653

.597

.539

.481

.424

.985

.977

.966

.951

.932

.908

.878

.642

.801

.756

.705

.652

.596

.538

.481

.993

.989

.983

.975

.963

.999

.999

.998

.996

.994

.990

.985

.978

.968

.954

.937

.916

.890

.860

.824

. 000
.999
.999
.998
.996

.993

.990

.984

.977

.966

.953

.935

.914

.888

.857

1.000 ‘
.999 1.000
.999 .999

.998 I .999

.997 .998

.995 .997

.992 .994

.987 .991

. 5s1 .9s7

.973 .980

.962 .9’72

.948 . S60

.930 I .846

.

. . 000
.999
.998
.997

.996

.993

.989

.983

.975

.965

.951

.934

.912

.886

.999

.999

.998

.997

.995
,992
.988
.982

.974

.963

.949

.932
,910

.930

.905

.875

.840

.799

.947

.927

.902

.872

.837

.753

.703

.650

.595

.538

.796

.751

.701

.649

.594
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E~
39.0

40.0
41.0
42.0
43.0
44.0

45.0
46.0
4?. o
48.0
49.0

61

L. 000

.999

.999

.998

.996

.964

.991

.986

.979

.971

.959

TABLE 3. cm f mvmm POISSON PROBABI LITIES (coNT.)

1.000
.999 .999
.999 .999
.997 .996
.986 .997

.994 .996

.990 .993

.985 .989

.978 .984

.969 .977

W64 65 66

.999 1.000

.999 .999 1.000

.998 .999 .999

.997 .998 .999

.995 .997 .998

.993 .995 .997

.989 .992 .995

.984 .988 .992

67 i 68

1.000

.999 .999

.999 .999

.998 .998

.996 .997

.9941 .996

69 70 71 72

1.000
.999 1.000
.999 .999 1.000
.998 .999 .999 1.000
.997 .998 .999 .999

73
=

.999I74 75

1.000
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TABLE 4

CONFIDENCE LIMITS FOR A PROPORTION

The observed proportion in a random sample is s/n.

The table gives lower and upper confidence limits as well as
two-sided confidence intervals. The values under the
100(1 - a/2)% lower and upper confidence limits form the
100(1 - (r)% confidence interval. As an example, suppose
that n = 15 and s = 4. The 95% lower confidence limit for
p, the true proportion, is 0.097 and the 95% upper confi-
dence limit for p is 0.511. Thus we are 95% confident that
p is greater than 0.097 and we are 95% confident that p is
smaller than 0.511. However we are only 90% confident that
p is between 0.097 and 0.511. Thus the interval (0.097,
0.511) is a 90% confidence interval. See Chapter 6 for a
detailed discussion of confidence limits and intervals.

.

,
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TABLE 4. CONFIDENCE LIMITS FOR A PROPORTION

.

,

-------------  ---------- . -------.  ----------------  ?-----------------------
80% 8!5% 90% 95% 98% 99%

INTERVAL INTER.VAL INTERVAL INTERVAL INTERVAL INTERVAL

90% 90% 92. 5% 32. 5% 95% 95% 97. 5% 97. 5% 99% 99% 99; 5% 99. 5%

Lwr. Upro Lwr. Upr. Lwr. Upr. Lwr. Upr. Lwr. Upr. Lwr. Upr.
Limit Limit Limit Limit Limit L i m i t Limit Limit Limit ~imit Limit Limit

,
s “n-l s
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TABLE 4. coNmmcE LIMITS FOR A pRopORTION (CONT.)
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TABLE 4. CONFIDENCE LIMITS FoR A PROPORTION (CONT. )
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80% 85% 90% 95% 98%

IliTEIWAL INTERVAL INTERVAL lZiTERVAL INTEPVAL

90% 90% 32. 5% 92. 5% 95% 95% 97. 5% 97. 5% 99%

Lw’r. Upr. LWr. Upr. LWr. Upr. LWr. Upr. Lv?r.

Limit Limit Limit Limit Limit Limit Limit Limit Limit T-199%
INTERVAL

99. 5% 99.5%

Lwr. Upr.

Limit imit

II-15
o .219

.002 .319

.017 .&05-

.01J3 .llal

.078 s:~

.lls

.153
.213
,266

$;

:R ?.+  ;

.11L2
.47 ..? %
.0]6 .327
.0?+
.1 ?S :g
.172

.159
.&s + .25&

;$ :W
Ae$

.158

.210 .616

.26s+
:x-

:~J j9&

.516 .89o

.5a 7 .933

.663 .970

.71L6 . 7 5 -

.842

:* g

:a :2:
.135- J+:
.179
.229 .81?1
.282
.340 :%’
.bo3 .942
.IL71 .%9
.547 .Wo
..532 .999
-.7% .

0 .298
JI02

.0:7 .lJa6

.024 .561

:%: :W

.117 .7U$

.159
m~.  MJ-

.312 .920

.ln .61L0

.2U .700

.340 .756

.360 .809

.U3 .658

.llE9 .903

.560 A+i
~:~r

.9;7
.819

.JA&9 .922

.519 .957

.595 ● .983

.Rx .998

..IC = 1

.0:1 f.2 0
. 3 9

.010 .430

.029 Jo 3

.055 +

.08’9
. 5 6 9
.63o 7;;;; gi i

.cJla5 + .99; $.075-

.109 .n

.1117

.190 :K! i

.2 5
d

.853
.2 7 .’391 1:

:LJ .9y- &
.925 +
.97

.55; .973 ~~

.718 1.

0 .1$
.oo5-
.029 .3X9
.053 .391
.103 JJ59
.II18 .523

.1% .585-

.247 .6L3

:%. M

.0:2

.016

.Obo

.073
.110

.152

.1 8
1.2 7

.2?9

.Y5k

A%

.753

.902

.9h8

.125 + .687

.166
A
. 7 9

.212

.261 .8%

.323 .r/5-

;~ :M.
.971

J: .990
.9P

.750

$8
.96o
.901b
.998

1

a - 1 7

o .127
.0G5 .210
.032 .201!
.*7
.107 :R
.1s1 .b78

o : .Ild
.005 - .227
.027 .302
.059
.097

:~7J

.139 A97

o
.001

.#

.01 j -

.033 :g

.06.9

.103 .560

o .?58
.36>

.0~6 JAI

.021 .510

.olb3 4573

.070 .631

.166 .580

.212

.26o ;$

.311
.%4 .788

.420 .834

.lk70 .876

.539 A;;*
.604
.67L .979

r% .y7

.317 .6.58.255 + .709

.197
AIzll g

.111 .68 -

.137 t

.175
.219 #
.266

.325 + ,899

.369 .930

.42? .957

.lb90 .979

.559 .9914

.537

.732 ;

.197 .537

.Zlba
.297 M
y& .703

.?sk

.U: .603
.8k9

.581b .893

.bL8 ~~3;

.716

.183 .556

.231 .623

.281 .661
:3:

.719

.769

.W .617
g$ ~;
.698 .973

..1!+? .617
.181L .672
29 .722
.27a
.329 :11!

:gl ~

.566 .962

.636 .905 ●

.??3 .999
. 1

:8 $’LJ
.52o
.590

.973

.991

.790 .9;4

.8?3
.773 .9P
.859

.y:%3

n-laro .120
1 .& .199

.269

; HJ $!+
5

0
1

j

i

1:

11
12
1
1
1~

ii

.110 ,658

::$+ # $;:  XJ+
.JJ7

.272 .247- .835 +

.319

g g,- $j. $.:

.5k? .975- .512 .%0

.609 .992 .579 .99L

.6al$ .q9 .65L

.77k .7L5  ● i

B-54

Downloaded from http://www.everyspec.com



TABLE 4. CONFIDENCE LIMITS FOR A PROPORTION (CONT.)

[ :
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TABLE 4. CONFIDENCE LIMITS FOR A PROPORTION (CONT.)

------------ --------------------- ----------------------- -------------
80% 85% 90’% 95’% 98% 99%
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.26o

.295
.332
.370

.705-

.7L0
● .7714

.805

.837

.325-J:;

.J433.4711

.516.s58A&
A9fb

A&

.685 +

.723

.759

.282 .642

.329 .681

.358 .n8

.397 .75b
An .798

.479 .822

.521 .85&
;56; + .8a +

.91 i
.658 .9kl

.709 .965 ●

.76o .985-

.817 .998

.88> 1

J& .857
.89k

.&95 + .920
S% .91!3

.%L

AQ .8o?
.8b2

.585 .87

.632 .90t

.679 .99

.726 Ag:
.779

::3- “9:7

.539 .981

.693 .9y

.751t

.825 + 1

.742 .953

.793 .979

.91b7 .9:5

.909
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TABLE 4. CONFIDENCE LIMITS FORA PROPORTION (CONT.)

1 ;------ ------ ______ ______ _______ .-_y_ —_______ ______ __________ _________
80% 85% 90% 95% 98% 99%

NTE13VAL INTER.VAL INTERVAL INTERVAL INTERVAL NTERVAL

90% 90% 2.5% 32. 5% 95% 95% 97. 5%’ 97. 5% 99% 99% 99. 5% 99. 5%

Lvm. Upr. Lwr. Upr. Lwr. Upr. LWr. Upr. LWr. Upr. Lwr. Upr.

Limit Limit Limit JJimit ,Limit Limit Limit Limit ~imit ~irnit Limit ~imit
1 1 I v 1 1 t w 1 I ! ! r

s n-25 s

o .088 A;: o ;pll~ a 37
1 .O:b .0:3

0 .168 0 .191 0
.1L$7 .C02 .41 :Zog .237 .262 1

2 .021 .199 .01’9 .213

J

.Ollb
22 ~; . 3 1 2

.:6 .296 .O:k .321
.olL5- .21+8 .Olbo .262 .03! .016 .3Q9 .Olli
.072 .065- .310

.371b
.057 j

:%
.330

.068 :%
.ON .398 .028

.101 .092 .355*
.ll.zlb

.082 .375 ● .~sb .W .Ou A70

6
::;~ :g y- ;%
.132 .110 .&20 .09k .Un .077 .l@8 .066

.139 .U2
.511+ 6.

J
.121 .b91b .101 .531 .oa9 .555 +

9 t
.170 .5011 .l&9 .535 + .127 .571 .113 pj+ i

.230 .508 .218 .52 .202
10

.5k2b .180 .575- .155+ .610 ::%
.245+ .5U .252 .563 ..2 M .583 .211 .613 .185- .6118 .670 1:

11 .301 .587 .287 .6o2 .27o .621 .21A .651 .216 AU .197 .705 + 11

~j :jg” f;- :g g
.3n5+ .659 .278 .687 .48 .nv .228 .739 12
.3kl .695- .3# .722 .281 .752 .261 .772
.377 .T 30 .756 ;*$ .7811 .295- .fio3 ;$
Al 7 .7614 .3?7 .789 JA5 + .330 .932

L6 .L9Z .770 A76 .782 A56 .798 AZ;+ .820 ~g .8k5- .367 .860 16

;! $f$ g
.517 .815 + .L96 .830 .851 f: .l+05- .897
.558 .8&

i .$$ ~;
. 506 - .879 .469 . U 5 - .911 H

.601 .87
20 .660 .899

.5U9 .906 .512 .923 .IJ36
.6kb5-

.931b
.908 .593 .932 .$56 .9& .530 .95k ::

21 .705 + .9$8 .690 ;;3; + .670 .943
$t:  ;~:

.6o2 .94.6 .576

g j;; $’ ;% q

SE a
.n8 .966 .653 .982 .626 22
.769 .986 .7&o .70k .9911 .679

.998 .7%
qt. 23

.79 .730
::;:

.763 Zlb
.92.2 .902 x .863 .832 : .%9 1 25

n - 2 6

.oa5- 0 .095- 0 .109
:

.132 .162
.n:lb

o .184 0
.ll@ .0.23 .~sk .002 .170

2
.W”l .196 ; .229 .253 1

.021 .192 .017 .205 + .01 lb .223 .C09 .251
3

.006
.033

,286
:gb; ..2:9 .253 .032 m;

. mob .no
.Ozk .302 .017

;z;~ .062 .299 X#
.337

:2:  :?4- ?i E+
j

: .089 . 3L3
:Owk$

.097 .%3
.349
.394

.126 .370 .117 ..3a5+ .106 .lbo5*

i
.M16 .L.27

.090 .2!% .073 .L73
.157 All .L31J .447

.06k :49;
.116 .b711 m:;

.laa .1451 .177 .467
j;j :%

.51 k .0a5  +
.lib3 .518 .55 II .109 .570 :

.22 ! .k91 .209 .506
1:

;::; .557 .149
.254 .529 .242 .5 L5-

.592 .13f+ .615- i;
.594 .177 .620 .161 .651

11 .2a9 .567 .275 + .582 .258 .6o2
12

.23&  .632 .2o6
J2$ .6o& Jl; .619 ,292 .638 2;$

.la9 .686 n

;> .655 ●

.266 .666 .237
.51U

:%- :jg- Sg f$

.218
.299 .701 .269

.n9 :
.396 .676

.731 .21L9 .751

15 .433
.33k .73k .302

.711
.763 .zal

.%9
.782 L#

.766 .3% .794 .311b .811

16 A71 .7116 ;:;:+ .758 J@ .77 f+ .ko6 .372
:y! .U #

.3J+9 .839 16
.509 .779 gl .lb714 .aw

ii .5L9 .8I2 .53J
t

.513 ~~7
.llk3 .408 .385+ .866
.laz .8 7 .e91 H

19 .589 .a~3 s;; .a5 s:;
.U2

20 .8a)
.522 .a k .IL85

.630 .a7b - .891J
.903 .U2

. .561$ .910 .527 .927
.915- 19

.502 .936 20

21 .672 .903 .657 .911 .637 .921 .606 A;t .570 .948 .5&5- .956 21
.701 .938 .682

g :% 59
.9116

.?it? .962 .728
.651 .615 +

.968
.967

.699
.5W y; 22

.795- .983 .777 .986
.976

$# :{i
A 38

.749 .991 .690 .9% :$
.a58 .996 .aba .997 .830 .998 .8011 .999 .71b7 L

26 .915+ 1 .905 + 1 .891 1 .868 1 .838 1 .816 1 26

n - 2 7

o 0 :p3$ .091 0 m~ + .12a
.0:3

0 0 .157 c .178 0
.168 .002 .001 .190 0 .222 .21A5- 1

j“ :g g ?0 ;j- g; ~;+ :3 $

.006 .277 .0:14 .300

.o17 .326 .013 .351

.032 ;g; 1:$ m39 j
.085 + .063 .050

6 .121 J;: .112 . }72
7

.101 .392
.151

.086 .4.?3 .070 .lt58
.lU JA3 .Ibx

.061 .483
.129

8 .Ial Akb .li52
.111 A63 .093

.170
f; .082

.157 .&71
:jz:

.138 .502 .117 .Iolb i
:p212 .201 A90

12
.186 .509

.512-
.165+ j;: .1143 .571L .128 .597 9

.232 .527 .217 .5}67 .191t .169 .610 .15L .633 10
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TABLE 4. CONFIDENCE LIMITS FOR A PROPORTION (CONT.)

------------  -------  ---------------  ----------------------

80% 85% 90% 95% 98%
INTERVAL INTERVAL INTERVAL INTERVAL INTERVAL

90’% 90% 2.5% 95% 97. 5% 99% 99%

------ -----T199’%
INTERVAL

99.5% 99.57

LWr. Upr.

Limit imit

Lwr. Upr. LWr. Upr. Lwr. Upr. Lvm. Upr. Lwr. Upr.

Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit
r

s n-q s

.26k .5bk .2kf3 .58
i

:;;? .612 .199 .61L5 +
.297 .600

.181
.280 .61 :~k~

.66?

.331 .635-
.209

.313 .6 3
2

::
.287- 2; g .m

.700

:&5 + .669
.23a

. 3k7 A  7 .319 .n 3
.731

.a69 .762 :2
.703 .382 .720 .353 .76+ .321 .791 15

.277 .5119

.31L ,5R5-

:g:  g+

11
12

;$

lb
17
la

;:

21
72
23
211
25

26
27

JJa? .7 ’2
.7 3

;% !.8t&
.843
.872

.776
,806
.435-
.242
.889

.355- .802

;tg g;

.502 .907

.5U.2 y:

.583

.62? .96a

.671t ;g~

.723

.773
.843 :

Ii;; .8;9
.eb5

. 3 .872

.b39 .9*

.IL77 .918

.6U .879

.583 .907

.725 + ;~b

.709

.815- .5”?

.628 .8a8
.669 .915-
.711 .91@
;~g; + .963

.9L3

.6o0 .999

.62b9 .92b

.692 .9148

.7.37 .%9.735- .987

.911$

.937

.95.4

.976

.W1

.527 .939

.559 .958

.603 Al;

.61L9

.700 .W6. ,’. (
.063 .990
.915 1

.952 .77

.909
a: .W9

1
.755 +
,822 :

26
27

5-2B

o
.Oo11
.019
.Ol!o
.061+
.059

.1 7
t. 1 5 -

.I?ll

.204

.23g+

.267

.299

.331

.355-
.399

.L13

.MA
:yuh

.57d

.51:  ●

A::

.735-

.777
.321
.934
.921

..379

.132
,179
.223
.265+
.306

.3&

.3a5-

.L.7a

.459

.W6

.532
;~;;

.$.35+

.(s9

.701
m;

.795:

.825

.955 +

.~83

.9X1

.936

.960

.931

.996
1

J&
.016
.035+

:%:

.Ioe
m;+

:;:;

.Zyt

.m6
J:

.3M

.U9

.&sh

.M9

.525

.563

. .s.01

.M@

.479

.721

.761b

:ao;

.912

.09d

.l&3

.191
236
.279
.321

.360

.399

.437

.I$?k

.52.1

.51J6

.5a~

.&lb

.iL9
, 55Z

.7111

.71v5

.777

..907

.835

A65.
A;;

.91@

.965-

.9U
.997

1

0
.002
.013
.030
.050
.073

.098

.Izl+

.151

.179

.2o8

.2%

.269

. 3Q1

.333

.366

.&o*

.435-

.1470

.506

.5143

.5t31

.620

.b51
mJJ

Jg

.399

.101

.159

.Zca

.ak

.298

.339

;$

.@

.530

.565 +

.600

.63k

.657

.599

.732

.762

.792

.821

.a2L9

.876

.902

.927
,950
.970

.987

.99a
1

.0:1

. 0Q9

.023

.Obo

.061

.083

.107

.132
.1 “9
t.1 :)

.215 t

.2115-

i
.27 +
.x
.339

:g

.;76

.51 j

.551.590,331
;;:~

.755-.31-/

.877

.123

.183

.2 5+
d..? 2

. n?

.39

.klo

jg

.559

.59LI

.626

.6s1

.69 II

.725-

.755 ●

.7t35-
$:

.ti’e

.a93

.917

.9>9
:%

.W1

.999
1

0
0

005 +
.016
.031
.Olla

.068

.ciJ9

.112
J 37
.163

:%

.2L7

.277

..wa

. 3ko
m;
Au
.k79

.S16
Sg +
.639
.?81$

. 7 2
i,7 5+

.eka

.272
.237
.291
.3m

Ilr

.2I69

.@8

:~:-

.61P?

.661
m;

.772

.000
.827
.852
.am
.900

.921

.9112

.959

.975-

.928

.9?

1

:

j

6
7
8
9

10

11
12
13
lIL
15

;;

i;
20

::
23
2!+
25

26
27
2a

.152

.215-

.260

.326

.%1

.UXI

tit-
:\&

.593

.527

.bbo

.692

.723

.753

J%

.b37

.853

.911

.932

.952

.959

.9U

.9y -

1

0

.Oh

.012

.0.25  ●

.042

.059

.079

.1OQ

.12>

.2M

.173

.2(XJ

.22a

.257

.287

.]lQ

.351

. >9&
All 9
.I155  +

.I192

.531
Sg

.650

.709

.76

.82i
●

u-29

To1232 .075
A .12a
.Olc .173
.0)? .215
.062 .257
.0a5 .297

0
.003
.@16
.034
.0%.079

.oas

.139

.165 +

.229

.27o

.310

0
.001
.Ootl
.022
.039
.058

.119 0

.178 0

.2?8 .005+

.27k .015 +

.317 .030

.35a .CI16

.11!7

.205

.26o

.>07

.350

.292

.167
: .2 0

.Oo11 i ;.2 2

.012 . ?30

.C221 Ni

. 0 3 9
j

.0:2

.012

.029
.olb9
.070

L~ .112 .335-
.1 ho .372

i .15a .II09
.197 A$i +

1: .226

11 .257 .515 +
12 .2d8

i
.5 0

;! :;; j~;

1$ .41 ‘( .6al
A50 .712

:2 ;:;- .7L3
19 .?74
20 .555- .+03

.1OII . 3&9

.131 .397

.15a .k211

.lii5 .I160

.215- .I195 +

.21bs - .530

.215- :%+

.304

.39 .330

.370 .662

.0911

.119

.1&5 +

.172

.2W

.369
A06
.U3
.lb79
.51&

.5L9

.583

.616
.6L9
.680

.080 .397

2:;
.035+
.lL72

.153 .50a

.1”/9 .5113

.065 ● .1132

.066 jg

.108

.132 .5k.2

.15.7 .577

S+c+ M;*
.096 .530.119.lIJZ :?$
.167 .6 ?2
.192 .bSb
.219 .595-
.2b7 .72b
.276 .753

i
J

.207 .s77 .la2 .610

.235 + .611 .209
:;;?.25L A;; .23?

.2911 .266 .70s-

.$s+ .7c5- .2% + .73J4

.229

.259

.2a9

.320

.3S2
y;+ .731

.ao8
.368 .a33
. Lr31 .850
.lA35- .881

y; .6911
.725 ●

.47C .75s ●

.505- .7t?5 .

.5L0 ..91L

J6$ .711 .3s7 .736
.7L1 .339 .755-

.lL51 .771 M; .793
:g .900 .M21

.828 1 .I192 .947
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TABLE 4. CONFIDENCE LIMITS FOR A PROPORTION (CONT.)

------------  -------------  ---------  ------  ----- —-----  ------ ------  -------

80% 85% !30% 95% 98% 99%
INTERVAL INTER.VAL INTERVAL INTERVAL INTERVAL INTERVAL

90% 90% 92. 5% 92. 5% 95% 95% 97. 5% 97. 5% 99% 99% 99. 5% 99. 5?

LWr. Upr. Lwr. Upr. Lwr. Upr. Lwr. Upr. Lvir. Upr. Lwr. Upr,

Limit Limit Limit &imit .Limit Limit Limit Limit &inlit Jimit Limit &irnit
s n.29 s

22 .591 .832 .576 .8112 .5s7 .855-
22 .628 .860 .613 .059 .591t .881

.528

y ?,*  :;
.651 .896 Ag .906

~< #j # ~- g?- $: ;

.69o .921 .930 y: ;;

.730 .9h11 .712 .951 .683 .961 .650 .970 .976

.78& .961

g
.a27 X;-  :%

.7SL . 9 n
.902

.726 .970 A)J
xl!

.9e5- .570 .988 26

.872
.988 .772

.996
.992 .995- .718 .996 2’7

.q8 .822
.92!$

.9;9 .792
1

.773 1 28
.915- 1 .902 .861 .853 i .833 ?. 29

ia.w

o .:;+ .08 )
1

.095 +
Aj .;3

o
.2?

m6 o .1142 0
L 311

.162 0
.1149 WI-.~~~+ .L7.2 o

.16o
.202 .223

j $: g
.012

:: g
.1%+ .L”,g .221 .005 + .O:k :.G.2

.028
~1

.2?b
.021 .265 +

.047
mf - .298 .012 .320

.038
.068

.307 .30
.056 .3J+7 .fJk5 - .*1 :W :Zi !

i .109 .325- .101 .33: .091

~ :$:- :% g; $+ $g- 34 ~; :&: ::’ :y” .05L .W

:;;; :43
.073 ;$9
.093 i

.ls2
10

;:9$+
.2z8 J&b .2o7 J&

.147 :WJ
.293

.114 .550
.173 .151 .551 .137 .533 J

11 .2L8 .500 .235 .221
:Fub

.533 .199
.250

.561 .176 .59L .1;0 .616 11

g $0 g g:  ;; ;g g

.227 ;;;: .201 .626 .105 + .6JJ7 12
.279 .2s5- .228 .657 .211 .677

.283 .6 7
3 :

.2 6 .587 .237
.3a3

.707 i
.6 7 .21b .716 .265- .735+ 1i

16 .401 .662
:g ~: {g :;::

.3L3 .717 .7Ut

H :% y

.293
. 37h

.763
.745 ●

A06
:it; .n2 .323 .769 “

:%1 %

$
19 .7 2 .76k- K

.nk .799

$

.3 3 .a15-

20 .53& .7 2 :5%
A;:

.793
A* .8211 .Ib .3 I@ 19

.6n . lb39 .Blb9 . 17 .36> 20

a .568 .8s0 .55b .821
22 .603 .8 S .s89 .8&8 .535- :&3g .506 .853 A&3 .873

.570
A50 .M6

.5kl .87?

;! :$+ ::;?+ g $~ ‘ g: :;:5+ :2:: :%

.896 M; .907 z
.5&3 .917

.31 ?
.580 .937

.927 23

.932 .6.53
.557

.619
.9L.i &k

. 955+ .596 .962

25. .751 .9k2 .738 .9h6 .120

;g :%;- ;*. :;!

.693 .962 .66o . 9 2

;! :;g :$;
.735- .979 .702 i.9 5* :t ~$ :!

A;: .997 h’:
.992 .7&8 . y 5 -

30 1 .917 1
.999 .793

.905- 1 .8MI  1 .858 1
;~y ; ;:
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TABLE 5

CHI SQUARE TABLE

The body of the table contains values of

The table is indexed horizontally by A and vertically by
even values for v. The parameter v is a function of the
number of failures (r) and the parameter A is a function
of the risk (a) .

Example. The number of failures (r) is 13 and a is 0.05.
find

2
‘1-ci,2r+2 “

Since v = 2r + 2 and r = 13, v = 28. The parameter A is
1- a or 0.95. Using the table directly, we obtain that

‘:.95,28 = 16.92 .

For degrees of freedom greater than 100 use

X:YA = 0.5(ZA + J-)2 .

Values of zA are given in Table 2.
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TABLE 5. CHI SQUARE TABLE

v

z
4
6
8

10
12
14
lb
18
20
22
.?4
26
28
30
32
3$
3b
38
40
4,?
44
46
48
50
52
54
56
56
6 0
62
64
66
68
70
72
7+
76
70
eo
8Z
04
06
d8
90
9 2
94
9 6
98

1 0 0

. 9 9 5 . 9 9 0 .900

.01
, 2 1
. 6 7

1 . 3 4
2 . 1 5
3.Ob
+.07
5 . 1 4
6 . 2 5
7,62
8.62
9 . 8 7

1 1 * 1 3
12.44
13,77
15,10
16,41+
17.tlb
19.26
20.67
Z2.1O
23.55
Z5.01
?6,48
2?,96
29.45
30.95
32.+6
33,98
35.50
37.04
38.58
40.13
41,68
43,.?5
44,81
46.39
47.97
49.5>
51.14
52.74
5$.34
55.95
57,5b
59*17
60.79
62.41
64.04
65.67
67.30

. 02
● 30
.bl

1.64
2.55
3.57
4.65
5.s1
7.00
13.Z5
9.53
10.85
12.19
13.55
14*94
16.35
17.78
19.21
20.60
22.14
Z3.63
25.12
26.63
28.15
29.68
31.?2
32.77
34*33
35.eQ
37,46
3?.04
40.b3
42.22
43,62
$5.42
+7.03
48.65
50.27
51.69
53.52
55.lb
56.80
56*44
f)o.b9
61.74
63,39
65.05
b6,71
bi3.3ij
70,05

● ❉❊✏✌
.+3

L.i)
2.03
3.ofJ
4,111
5.36
6.61
7.90
9.23
10.59
11*Q9
13,40
14,04
lb, 30
17.70
19.27
20,78
22,29
23,0:
25,37
26.93
?6.49
30.07
31.65
33..?4
34.05
36.$5
38,07
39,69
41.32
$2.95
44.?$9
46,23
47,80
49.54
51*?O
52.06
5+,~3
56.?0
57*17C
5Q.56
61,.25
6? .93
64.63
66.32
68.02
6~.72
71,43
73.13

,075

90:1
.48

1.24
2,10
3.24
4,40
5.62
6.90
fl.z3
9. ?Q

10,98
12,40
13,64
15.30
16.77’
18.29
19.$0
21.33
22,8?
2$.+2
25.99
27.56
20.15
30,75
3.?,35
33.96
35,5P!
37,20
3fi,p4
40,$7
42.12
43,77
45.42
47.OP
46.75
50. 42
52.10
53,78
55.~6
57,17
50,C4
60,53
62.23
63.03
65.f,4
67.35
6Q,06
70.70
72,50
74.22

.’750 ,Qllo . 8 0 0 .750 .500 .250 ● 200 ● loo .050

.10

.71
1 . 0 3
2 . 7 3
3,94
7.?2
6*57
7.96
Q*39

loons
1 2 . 3 4
13*O4
15,38
16.Q2
lr,49
20.07
ZI.66
Z3.Z6
24.88
26,51
28, 14
29.79
31.44
33.10
34, 76
3 h .  44
3C.12
3~*flo
41,49
43, 19
44.89
46.59
4f3.30
50.02
51,74
53.%6
55.19
5(,..?2
5n.(*5
60.39
62.13
63.P8
6?.f,2
67,37
6~,13
70.nf7
72,6+
74.40
76, 16
77.~3

*21
1,06
Z.20
3.49
4.86
6.30
7.79
9.31

10.86
12.44
14.04
15.66
17.z9
18.9%
Z0,60
22.27
23.95
25.64
Z7.34
z~.ob
30.77
32.49
34.22
35*95
37.69
39.44
41.19
42.94
+4.70
46.+6
4e,z3
50.00
51.77
53.55
55..33
57*1Z
58.90
60.69
f12,49
64.28
66,06
67.00
69.60
71.49
73.29
75.10
76,Q2
70,73
60.54
nz.36

,45
1.65
3.c’r
4,59
6.18
7.81
9.47

11.15
12.06
14.58
16.31
lR.06
lq,e2
21.59
23,36
25.15
26.94
28.73
30.54
3.?,35
34.16
35,98
37,80
3~.b3
41.46
43*Z9
+5*1Z
46,96
4R,00
50,65
5 2 . 4 9
5 4 , 3 4
56.19
5r.05
50,9(3
6 1 , 7 6
63.6Z
65,4I3
6 7 . 3 5
69.?1
7 1 . 0 8
7 2 . ? 5
74*FZ
76,69
78,r6
9 0 . 4 4
07.31
0 4 . 1 ’ 3
86.(?7
07,?5

, 5P
1,9.?
3 . 4 5
5 , 0 7
6 , 7 4
8.4+

1 0 . 1 6
1 1 . 9 1
13,68
1 5 , 4 5
17,24
1 9 . 0 4
Z0,84
ZZ,66
24,$8
26, 30
Z8*13
2 9 , 9 7
31,81
3 3 , 6 7
35. 5Z
3 7 . 3 7
39*Z3
4 1 . 0 9
4 2 . 9 5
4 4 . s 1
4 6 , 6 8
4 8 . 5 5
50.  *Z
5 2 , 3 0
54.18
56,  06
57.95
59, 82
61, 70
6 3 , 5 9
(>5 .48
67, 37
6 9 . 2 6
7 1 * 1 5
7 3 . 0 4
7 4 . 9 4
7fJ,R3
7 8 , 7 3
0 0 . 6 3
rlz.53
n4,43
8 6 . 3 3
nlJ.z3
9 0 .  1+

1.39 Z*77 3,2Z
3 . 3 b 5.39 5.9Q
5.35 7.04 8.56
7.34 10.2Z 11.03
p: lZ.55 13.44

14.85 15,81
13,34 17.12 10.15
15.34 19.3,’ ZO.47
17,34 Z1,61 ZZ.76
19.34 23,83 Z5.04
21.34 26.04 Z7,30
Z3.34 Z8.Z4 Z9.56
Z5,34 30.44 31,80
Z7*34 32.6Z 3+*O3
29,34 34,80 36.25
31.34 36.9.i 38.47
33.34 39.14 40.68
35.34 41*3O 42,88
37*34 43.46 45.08
39*34 45.61 47.26
41,34 47.76 49.45
43,34 49,91 51.63
+5,34 5Z.05 53,81
47*34 54.19 55.99
49*34 56.33 58.16
51.34 58,4b 60.32
53*34 60,59 62,49
55,34 62.72 64,65
57*34 64.05 66.01
59.34 b6, 98 68,97
61.34 69,10 71,12
63.34 71,Z2 73,27
65.34 73.34 75.42
67.34 75,46 77.56
69.34 77.57 7Q.71
71*34 79.69 81,85
73*34 01.80 03.99
75,34 83,91 06.13
77,34 86.02 08.27
79.34 88.13 90.40
61.34 90.Z3 92.53
83034 92.34 94 .6b
85,34 94,44 9 6 , 7 9
87,34 96,54 98.9Z
89,33 98,b5 101.05
91.33 100.75 103.17
93,33 102,85 105.30
95.33 104.94 107.42
97.33 107.04 109.54
9’?,33 109,14 111.66

4.60 5.’79
7.78 9.49

10,65 12.60
13.36 15.51
15.99 18.31
18.55 Z1003
21.07 23.69
23.55 26.30
Z5*99 28.88
ZO.4Z 31*4Z
30,82 33.93
33*ZO 36.4Z
35,?7 38.89
37*9Z 41.34
40.Z6 43.78
42.59 46,20
44.91 +8*6I
47*ZZ 51,00
49,52 53.39
51.00 55.75
54.08 58.12
56.36 60.$8
58.63 62.83
60.90 65.17
63.16 67s50
65.41 69.83
67,67 7Z.15
69.91 74.46
72,15 76.77
74.39 79,08
7 6 . 6 2 01.38
78.05 83.67
81008 ‘05.96
83.30 88.Z5
65.5Z 90.53
87,74 92.81
89.95 95.08
QZ.lb 97.35
94.37 99,61
96.57 101.88
98,77 104.14
100.97 106,39
103,17 108.65
105.37 110,90
107.56 113.14
109*75 115.39
111094 117.63
114.13 llQ.87
116.31 1Z2.11
11P*49 lz4.34

.025

7.38
11.15
1$.46
17.55
2(3,50
Z3.35
Z6.13
Z8,86
31,54
34.18
36.79
39.38
41.94
4$.47
4 6 . 9 9
49.50
51.98
54.45
56.91
59,34
61.78
64.20
66.62
69.03
71.42
73,81
76,20
78,57
80.94
83.30
85,66
68.01
90,35
92.69
95.03
97,36
99.68

102.00
104.32
106,63
108,94
111,25
113.55
115.84
118.14
120.43
122.72
125,00
127.Z8
lZ9,5b

.020

7,82
11.66
15003
18,17
21.17
2$.06
26.88
Z9.64
32.35
35.03
37,67
40.28
42.06
45.43
47.97
50.49
53*OO
55.50
57.96
60,44
62.90
65.34
67.78
70.20
72,6Z
75.03
77.43
79.82
82.21
84.59
86.96
89.33
91.69
94.04
96.39
98,74
101.08
103.42
105.75
loe.07
110.40
112.7Z
115.03
117.35
119.65
121,96
124.26
126.56
1Z8.85
131.15

.010 ,005

9 . 2 2  1 0 . 5 9
13.28 1%.82
16.01 18*55
20.06 21,94
23.19 2 5 , 1 5
26.25  28 .25
29.17  31 .38
32oO3 3+*3Z
34.83 37.21
37.59 40.05
40.31 4Z.04
43,00 45.60
45.b6 48.33
48.30  51 .04
50.91 53.71
53,51 56.37
56,08 59.00
58.64 61.62
61,18 b%,22
63,71 66.80
6 6 , 2 3 69.37
6 8 . 7 3 71.93
71.22 74.47
73.70 77.00
76.17 79,52
78,63 82,03
81.09 8$.53
83,53 87.03
05.97 89.51
88.40 9L.90
90.02 94.45
93.23 96.91
95.64 99.36
96,04 101.80
100.44 104.2+
102.83 106.60
105.22 109.10
107.60 111.52
109*97 113.94
112.3+ 116,35
114071 118,75
117.07 121.15
119.43 123.55
121.78 125.94
124.13 128.32
126.48 130.71
126*8Z 133.00
131,15 135.46
133.49 137.83
135.62 140.19
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Test
Plan

IXC

xc

XIC

XIIC

XIIIC

XIVC

Xvc

XVIC

XVIIC

XIXC

Xxc

XXIC

TABLE 6

EXPONENTIAL TEST PLANS FOR STANDARD DISCRIMINATION RATIOS

True
Decision Discrimination

Risks Ratio t30/01

a

12.0%

10.9%

17.8%

9.6%

9.8X

19.9%

9.4%

10.9%

17.5%

28. 8X

28. 8X

30. 7%

P
9.9%

21.4%

22. 1%

10.6%

20. 9%

21.0%

9.9%

21.3%

19.7%

31.3%

28. 5X

33. 3%

1.5

1.5

1.5

2.0

2.0

2.0

3.0

3.0

3.0

1.5

2.0

3.0

Test
Duration

Multiplier (M)
T = Mel

45.0

29.9

21.1

18.8

12.4

7.8

9.3

5.4

4.3

8.0

3.7

1.1

Accept-Reject
Failures

Reject Accept
(Equal (Equal
or More) or Less)

37 36

26 25

18 17

14 13

10 9

6 5

6 5

4 3

3 2

7 6

3 2

1 0
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Test
Plan
No’s

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
1o-1o
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20

20-1
20-2
20-3
20-6
20-5
20-6
?0-7
20-8
20-9
20-10
20-11
2 0 - 1 2
2 0 - 1 3
212-14
20-15
2 0 - 1 6
20-17
2 0 - 1 8
2 0 - 1 9
2 0 - 2 0

30-1
3 0 - 2
3 0 - 3
30-L
3 0 - 5
3 0 - 6
3 0 - 7
3 0 - 8
3 0 - 9
3 0 - 1 0
30-11
3 0 - 1 2
30-13
3 0 - 1 4
30-15
3 0 - 1 6
30-17
3 0 - 1 8
30-19
3 0 - 2 0

NOTE :

TABLE 7

SUPPLEMENTAL EXPONENTIAL TEST PLANS

No. Failures Test Duration
Multiplier (Ii)

kc. Rej . T = M81

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
IL
15
16
17
18
19

0
1
2
3
L
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 Percent Consumer’ s Risk (~)
1 2.30
2 3.89
3 5.32
k 6.68
5 7.99
6 9.27
7 10.53
8 11.77
9 12.99

10 14.21
11 15.41
12 16,60
13 17.78
16 18.96
15 20.13
16 21.29
17 22.45
18 23.61
19 24.75
20 25.90

20 Percent Consumer’s Risk (~)
1 1.61
~ 2.99
3 6.28
J 5.51
5 6.72
6
?
8
9

10
11
12
13
14
15
16
17
18
19
20

7 . 9 1
9 . 0 7

:0.23
1 1 . 3 8
1 2 , 5 2
1 3 . 6 5
16.78
1 5 . 9 0
1 7 . 0 1
1 8 . 1 2
1 9 . 2 3
2 0 . 3 4
21.4k
2 2 . 5 4
2 3 . 6 3

Discrimination Ratio 0./61
For Producer’s Risk
30% 20%——

Test Plans
6.46
3.54
2.78
2.42
2.20
2.05
1.95
1.86
1.80
1.75
1.70
1.66
1.63
1.60
1.S8
1.56
1.54
1.52
1.50
1.48

rest Plans
.i.51
2.73
2.24
1.99
1.85
1.75
1.68
1.62
1.57
1.5L
1.51
1.48
1.46
1.44
1.42
1.40
1.39
1.38
1.37
1.35

30 Percent Consumer’s Risk 03) Test Plans
1 1.20 3.37
2 2.44 2.22
3 3.62 1.89
4 4.76 1.72
5 5.89 1.62
6 7.00 1.55
7 8.11 1.50
8 9.21 1.46
9 10.30 1.43

10 11.39 1.40
11 12.67 1.38
12 13.55 1.36
13 14.62 1.34
lh 15.69 1.33
15 16.76 1.31
16 17.83 i.30
17 18.90 1.29
18 19.96 1.28
19 21.02 1.27
20 22.08 1.27

10.32
4 . 7 2
3.h7
2 . 9 1
2 . 5 9
2 . 3 8
2 . 2 2
2 . 1 1
2 . 0 2
1.95
1 . 8 9
1 . 8 4
1.79
1 . 7 5
1.72
1.69
1.67
1 . 6 2
1 . 6 2
1.6o

7 . 2 2
3 . 6 3
2 . 7 9
2 . 4 0
2 . 1 7
2 . 0 3
1.92
1.83
1.77
1 . 7 2
1 . 6 7
1.64
1 . 6 0
1 . 5 8
1.55
1 . 5 3
1.51
1 . 4 9
1 . 4 8
1 . 4 6

5 . 3 9
2 . 9 6
2 . 3 5
2 . 0 7
1.91
1 . 7 9
1.71
1 . 6 5
1.6o
1 . 5 6
1 . 5 3
1 . 5 0
1.&8
1.45
1.43
1.L2
1 . 4 0
1.39
1 . 3 8
1 . 3 6

10%

2 1 . 8 5
7 . 3 2
4 . 8 3
3 . 8 3
3 . 2 9
2 . 9 4
2 . 7 0
2 . 5 3
2 . 3 9
2 . 2 8
2 . 1 9
2 . 1 2
2 . 0 6
2 . 0 0
1 . 9 5
1.91
1.87
1 . 8 4
1.81
1.78

15.26
5 . 6 3
3 . 8 8
3 . 1 6
2,76
2 . 5 1
2 . 3 3
2 . 2 0
2 . 0 9
2 . 0 1
1.9&
1.89
1 . 8 4
1 . 8 0
1 . 7 6
1.73
1.70
1.67
1.65
1 . 6 3

11.43
.4.59
3 . 2 8
2 . 7 3
2 . 4 3
2 . 2 2
2 . 0 8
1 . 9 8
1 . 9 0
1 . 8 3
1 . 7 8
1.73
1.69
1 . 6 6
1 . 6 3
1 . 6 0
1.S8
1 . 5 6
1 . 5 4
1 . 5 2

The “Acceptable Observed 21TBF” column found in tlIL-STD-781C  bas been deleted
because a small but critical rounding error ❑ akes them inconsistent with the
acceptf reject criteria in the “No. Failures” column.
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TABLE 8

EXPONENTIAL CONFIDENCE LIMIT MULTIPLIERS FOR MTBF

Table 8 contains multipliers used to calculate confidence
intervals and limits for MTBF. The table entries are
based on an exponential model of system failures. Table
8a applies to time terminated tests and Table 8b applies
to failure terminated tests.

Example

Given the following test information:

T = 1000 hours (time terminated)

r= 4 failures

1000;=7 = 250 MTBF

Find: 90% upper and lower confidence limits and 80% con-
fidence interval for MTBF.

Note: Test is time terminated; therefore, use Table 8a.

Multiplier for 90% upper limit = 2.293

Multiplier for 90% lower limit = 0.500

Upper Limit = 6U= (2.293)(250) = 573.25 MTBF

Lower Limit = 9L = (0.500)(250) = 125.00 MTBF

Consequently, an 80% confidence interval is

125.0 < 0 < 573.25 MTBF——
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TABLE 8a

EXPONENTIAL CONFIDENCE LIMIT MULTIPLIERS FOR MTBF

(Time Terminated Testing)

Total No.
of Failuresr1

2
3
4
5
6
7
8
9

10
11
12
13
14

L

15
16
17
18
19
20
30

40%
Interval

70% 70%
Lower Upper
Limit Limit

0.410 2.804
0.553 1.823
0.630 1.568
0.679 1.447
0.714 1.376
0.740 1.328
0.760 1.294
0.777 1.267
0.790 1.247
0.802 1..230
0.812 1.215
0.821 1.203
0.828 1.193
0.835 1.184
0.841 1.176
0.847 1.169
0.852 1.163
0.856 1.157
0.861 1.152
0.864 1.147
0.891 1.115

60%
Interval

80% 80%
Lower Upper
Limit Limit

0.334 4.481
0.467 2.426
0-544 1.954
0.595 1.742
0.632 1.618
0.661 1.537
0.684 1.479
0.703 1.435
0.719 1.400
0.733 1.372
0.744 1.349
0.755 1.329
0.764 1.312
0.772 1.297
0.780 1.284
0.787 1.272
0.793 1.262
0.799 1.253
0.804 1.244
0.809 1.237
0.844 1.185

80%
Interval

90% 90%
Lowe r Upper
Limit Limit

0.257 9.491
0.376 3.761
0.449 2.722
0.500 2.293
0.539 2.055
0.570 1.904
0.595 1.797
0.616 1,718
0.634 1.657
0.649 1.607
0.663 1.567
0.675 1.533
0.686 1.504
0.696 1.478
0.705 1.456
0.713 1.437
0.720 1.419
0.727 1.404
0.734 1.390
0.740 1.377
0.783 1.291
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TABLE 8b

EXPONENTIAL CONFIDENCE LIMIT MULTIPLIERS FOR MTBF

(Failure Terminated Testing)

Total No.
of Failures

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30

40%
Interval

70% 70’%
Lower Upper
Limit Limit

0.801
0.820
0.830
0.840
0.849
0.856
0.863
0.869
0.874
0.878
0.882
0.886
0.889
0.892
0.895
0.897
0.900
0.902
0.904
0.906
0.920

2.804
1.823
1.568
1.447
1.376
1.328
1.294
1.267
1.247
1.230
1.215
1.203
1.193
1.184
1.176
1.169
1.163
1.157
1.152
1.147
1.115

60%
Interval

80% 80%
Lower Upper
Limit Limit

0.621 4.481
0.668 2.426
0.701 1.954
0.725 1.742
0.744 1.618
0.759 1.537
0.771 1.479
0.782 1.435
0.796 1.400
0.799 1.372
0.806 1.349
0.812 1.329
0.818 1.312
0.823 1.297
0.828 1.284
0.832 1.272
0.836 1.262
0.840 1.253
0.843 1.244
0.846 1.237
0.870 1.185

80%
Interval

90% 90%
Lower Upper
Limit Limit

0.434
0.515
0.564
0.599
0.626
0.647
0.665
0.680
0.693
0.704
0.714
0.723
0.731
0.738
0.745
0.751
0.575
0.763
0.767
0.772
0.806

9.491
3.761
2.722
2.293
2.055
1.904
1.797
1.718
1.657
1.607
1.567
1.533
1.504
1.478
1.456
1.437
1.419
1.404
1.390
1.377
1.291

b
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TABLE 9

CONFIDENCE LIMIT MULTIPLIERS FOR MTBF
TIME TERMINATED RELIABILITY GROWTH TESTS*

The table gives lower and upper confidence limit multi-
pliers which can also be used as multipliers for two-sided
confidence intervals. The table is indexed horizontally
by level of confidence and vertically by number of fail-
ures observed. To obtain the desired confidence limit, we
take the product of the appropriate multipler and the
point estimate of MTBF.

When N, the total number of failures, is large (> 100), we
may use a normal approximation to obtain a multiplier.
Specifically,

Lower Limit Multiplier for 100(1-a)% Confidence

= (1 + za/J2F)-%

Upper Limit Multiplier for 100(1-cY)% Confidence

= (1 - za/J2ii)-2.

Lower and upper limit multipliers for a 100(1-u)Z confi-
dence interval are, respectively

(1 + Za,zmio-z
and

(1 - za,2/@)-2

‘alues ‘f ‘ a  and ‘a/2
can be found in Appendix B, Table 2.

*~ultipliers for failure terminated tests are not included
in this text.
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Total No.
f Failures

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
35
40
45
50
60
70
80

100

TABLE 9

CONFIDENCE LIMIT MULTIPLIERS FOR MTBF

TIME TERMINATED RELIABILITY GROWTH TES’T$’

80%
Interval

90% 90%
Lower Upper
Limit Limit

0.261
0.333
0.385
0.426
0.459
0.487
0.511
0.531
0.549
0.565
0.579
0.592
0.604
0.614
0.624
0.633
0.642
0.650
0.657
0.664
0.670
0.676
0.682
0.687
0.692
0.697
0.702
0.706
0.711
0.729
0.745
0.758
0.769
0.787
0.801
0.813
0.831

18.660
6.326
4.243
3.386
2.915
2.616
2.407
2.254
2.136
2.041
1.965
1.901
1.846
1.800
1.759
1.723
1.692
1.663
1.638
1.615
1.594
1.574
1.557
1.540
1.525
1.511
1.498
1.486
1.475
1.427
1.390
1.361
1.337
1.300
1.272
1.251
1.219

90% 95%
Interval

9.5% 95%
Lower Upper
Limit Limit

0.200
0.263
0.312
0.352
0.385
0.412
0.436
0.457
0.476
0.492
0.507
0.521
0.533
0.545
0.556
0.565
0.575
0.583
0.591
0.599
0.606
0.613
0.619
0.625
0.631
0.636
0.641
0.646
0.651
0.672
0.690
0.705
0.718
0.739
0.756
0.769
0.791

38.660
9.736
5.947
4.517
3.764
3.298
2.981
2.750
2.575
2.436
2.324
2.232
2.153
2.087
2.029
1.978
1.933
1.893
1.858
1.825
1.796
1.769
1.745
1.722
1.701
1.682
1.664
1.647
1.631
1.565
1.515
1.476
1.443
1.393
1.356
1.328
1.286

Interval
97.5% 97.5%
Lower Upper
Limit Limit

0.159
0.217
0.262
0.300
0.331
0.358
0.382
0.403
0.421
0.438
0.453
0.467
0.480
0.492
0.503
0.513
0.523
0.532
0.540
0.548
0.556
0.563
0.570
0.576
0.582
0.588
0.594
0.599
0.604
0.627
0.646
0.662
0.676
0.700
0.718
0.734
0.758

78.660
14.550
8.093
5.862
4.738
4.061
3.609
3.285
3.042
2.852
2.699
2.574
2.469
2.379
2.302
2.235
2.176
2.123
2.076
2.034
1.996
1.961
1.929
1.900
1.873
1.848
1.825
1.803
1.783
1.699
1.635
1.585
1.544
1.481
1.435
1.399
2.347

98%
Interval

99% 99%
Lower Upper
Limit Limit

0.124
0.174
0.215
0.250
0.280
0.305
0.328
0.349
0.367
0.384
0.399
0.413
0.426
0.438
0.449
0.460
0.470
0.479
0.488
0.496
0.504
0.511
0.518
0.525
0.531
0.537
0.543
0.549
0.554
0.579
0.599
0.617
0.632
0.657
0.678
0.695
0.722

I

198.700
24.100
11.810
8.043
6.254
5.216
4.539
4.064
3.712
3.441
3.226
3.050
2.904
2.781
2.675
2.584
2.503
2.432
2.369
2.313
2.261
2.215
2.173
2.134
2.098
2.068
2.035
2.006
1.980
1.870
1.788
1.723
1.671
1.591
1.533
1.488
1.423

:
Multipliers for failure terminated tests are not included in this text.
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CHART 1. CUMULATIVE POISSON PROBABILITIES

USE OF CHART 1

General

The chart of cumulative Poisson probabilities, for given
the probability of c or fewer failures. The chart was
venience of use at the expense of
use the Cumulative Poisson Table
(Poisson Distribution Equation) .

Probability of c or Fewer Failures

precision. For more
(Appendix B, Table

values of f3/T, gives
constructed for con-
precise evaluations,
3) or equation 8.7

To find the probability of c or fewer failures , enter the chart with 0/T on
the horizontal scale. Move vertically to the curve for c, then move hori-
zontally to read the probability value on either vertical scale. This is the
probability of c or fewer failures .

Example: The MTBF of a system is 100 hours . What is the probability of 3
or fewer failures in 200 hours of use?

e = 100
T = 200

f3/T = 100/200 = 0.5
C = 3

.e6

The probability of 3 or fewer failures is approximately 0.86.

Probability of Exactly c Failures

To find the probability of exactly c failures, find the probability of c or

fewer and the probability of c-1 or fewer. The probability of exactly c is

B-70
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the difference between these two probabilities.

Example: The MTBF of a system is 100 hours. What is the probability of
exactly 3 failures in 200 hours of use?

e = 100
T = 200

f)/T = 100/200 = 0.5
c = 3

c-1 = 2

.86

.68

0 .5

probability of exactly 3 failures is approximately 0.86 - 0.68 = O. 18.The

Test Exposure and Acceptance Criterion-Continuous Time Test

We wish to find a test exposure, T, and an acceptable number of failures, C!
such that the probability of acceptance is (1 when 0 = el and 1 - a when

0 =
‘o “ This may be done graphically with the use of an overlay.

On an overlay sheet, draw vertical lines at 0/T = 1 and 6/T = flo/61. Draw

horizontal lines at probabilities @ and 1 - a, forming a rectangle. Slide the
overlay rectangle horizontally until a curve for a single value of c passes
through the lower left and upper right corners. (It may not be possible to
hit the corners exactly. Conservative values of c will have curves that pass
through the horizontal lines of the rectangle. ) This value of c is the ac-
ceptable number of failures. Read the value of 6/T corresponding to the left
side of the rectangle. Divide 61 by this value to find T, the required test
exposure.

ExamDle

We wish to find the required test exposure, T,
ures c; such that when ,the MTBF, 0 = 61 = 100

ceptance, ~, will be 0.20 and then 0 = 60 =
acceptance, 1 - a, will be 0.90.

“
B-71
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An overlay rectangle is constructed as shown.

I I
I I
I I—-— - - ’ - - - .

- El

- - - - - - , 9 0

—-- --— - - - - — —  —— - . 2 0
I I
I I

* I i
1.0 3.0

Sliding the rectangle to the left, we find that when c = 3 the fit is close.
but slightly higher risks must be tolerated. Going to c = 4, the curve passe:
through the horizontal lines of the rectangle. At the left of the rectangle,
0/T = O .  1 4 ,  s o  t h e  required test exposure  is approximately  100/0.  14 = TllI

hours and the acceptance criterion is 4 or fewer failures.

. [4
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INDEX

ACCEPTANCE CRITERIA 8-4, 8-10
AGE DEPENDENT ANALYSIS (Fixed Configuration) 7-1, 10-3

Supporting Data Base 10-3, 10-10
AUTOMATIC TEST EQUIPMENT (ATE)(see Diagnostic Systems, Automatic)
AVAILABILITY

Achieved 4-4, 4-10
Assessment Considerations 4-6
Definition of 4-1
Elements of 4-1
Evaluation Approach to 4-5
Inherent 4-3, 4-9, 4-10
Mathematical Expressions of 4-2
Multi Mission/Mode 4-7
Relationship to Maintainability/Reliability 3-1
Simulation Models 4-8

BINOMIAL MODEL 5-4
Assumptions Pertaining to 5-4
Confidence Limits, Calculation of 7-3, 7-19ff

Normal Approximation 7-4, 7-19ff
Poisson Approximation 7-5, 7-17ff

Hypothesis Testing 6-4
Normal Approximation 5-6, 5-16, 5-18ff
Point Estimate of Failure Probability 7-2, 7-19
Point Estimate of Reliability 7-3, 7-17
Poisson Approximation 5-6, 5-16, 5-18ff
Probability Computation 5-13ff, 5-15
Probability Plot 5-7
Test Design 8-4ff

Normal Approximation 8-5, 8-23ff
Poisson Approximation 8-6, 8-23ff

BIT (BITE)
Automatic Fault Isolation Capability (AFIC) 3-6, 3-8 ~
Characteristics External to 3-8
Development and Evaluation Considerations 3-10
Percent Detection 3-6, 3-8
Percent False Alarms 3-6, 3-7, 3-8
Percent False Removals 3-6, 3-7, 3-8
Percent Isolation 3-6, 3-8
Test and Evaluation of 3-12

COMBINING DT AND OT DATA 10-6
COMPUTER, RELIABILITY 7-28, 7-30ff
CONFIDENCE LEVELS FOR PREESTABLISHED RELIABILITY LIMITS

Binomial Model 7-3ff, 7-15ff
Exponential Model 7-12ff, 7-3off, 7-39ff, 7-42ff

CONFIDENCE LIMITS 6-2
Difference of Two Proportions 7-6, 7-23ff
Failure Rate, Calculation of 7-14

1
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CONFIDENCE LIMITS (cent’d)
Lower 6-3
MTBF, Calculation of 7-10ff, 7-30ff, 7-39ff, 7-42ff
Proportion of Failures, Calculation of

Binomial Model 7-3, 7-19ff
Normal Approximation to Binomial 7-4, 7-19ff
Poisson Approximation to Binomial 7-5, 7-17ff

Ratio of Two proportions 7-7, 7-23ff
Reliability, Calculation of (Exponential Model) 7-14, 7-30
Upper 6-3

CONFIDENCE STATEMENTS
Definition of 6-1
Interface with Hypothesis Testing 6-6
Interpretation of 6-2ff

CONSTANT FAILURE RATE ASSUMPTION 7-9, 7-27, 7-28, 8-7
CONSUMER’S RISK 6-5, 7-21ff, 8-3ff
CONTINUOUS MATHEMATICAL MODEL 5-3

Exponential (see Exponential)
Poisson (see Poisson)
Uniform 5-4

CONTINUOUS TIME TEST 7-2, 7-8
Constant Failure Rate Assumption 7-9, 7-27, 7-28, 8-7
Design of 8-7ff
Failure Pattern Identification 7-8, 7-27, 7-28

CRITERIA, ACCEPTANCE 8-4, 8-10

DATA BASE COMPOSITION
Age Dependent Analysis, for 10-3
Combining DT and OT Data 10-6
Early Deployment Data 10-6

Field Data Retrieval System 10-6
Lead-The-Force 10-7

Growth Analysis, for 10-4
DIAGNOSTIC SYSTEM, AUTOMATIC (see BIT)

Definition of 3-5
Need for 3-6

DIFFERENCE OF PROPORTIONS
Confidence Limits, Calculation of 7-6, 7-23ff
Point Estimate, Calculation of 7-6, 7-23ff

DISCRETE MATHEMATICAL MODEL 5-1
Binomial (see Binomial)
Hypergeometric 5-5

DISCRETE TIME TEST 7-2ff
Binomial Model 7-2ff
Design of 8-4ff

DISCRIMINATION RATIO 8-8, 8-32ff

EARLY DEPLOYMENT DATA RETRIEVAL 10-6
ESTIMATES

Maximum Likelihood 6-1
Point 6-1
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EXPONENTIAL MODEL 5-3, 5-9
Confidence Limits for Failure Rate 7-14
Confidence Limits for MTBF 7-10ff, 7-30ff, 7-39ff, 7-42ff
Confidence Limits for Reliability 7-14, 7-30ff
Failure Rate, Point Estimate 7-10, 7-30ff
MTBF, Point Estimate 7-9, 7-30ff, 7-42ff
Reliability, Point Estimate 7-10, 7-30ff
Test Design

Graphical Representation of Test Planning Parameters 8-10ff
MIL-STD-105D and MIL-HBK-108 8-8
MIL-STD-781C 8-8ff
Poisson Distribution Equations 8-13ff

EXPOSURE, TEST 5-8, 6-6ff, 6-10, 8-32ff

FAILURE PROBABILITY, CONFIDENCE LIMITS
Binomial Model 7-3

FAILURE PROBABILITY, POINT ESTIMATE
Binomial Model 7-2
p-Hat 7-2

FAILURE RATE
Confidence Limits, Calculation of 7-14
Constant, Assumption 7-9, 7-26, 7-28, 5-8, 8-7
Definition of 2-2
Plot of 7-8, 7-27, 7-28
Point Estimate, Calculation of 7-30ff, 5-27, 5-29, 7-10

FAILURE,TERMINATED TEST 7-llff, 7-42ff
FAILURES

Contractually Chargeable 2-4
Mission 2-3
Pattern Identification 7-8
System 2-4

FAULT (SYNTHETIC), INSERTION 3-12
FIELD DATA RETRIEVAL SYSTEM 10-6
FIXED CONFIGURATION TEST 7-1

GROWTH (RELIABILITY) TEST 7-1, 9-1
Supporting Data Base 10-4, 10-11

GROWTH (RELIABILITY) TEST CONCEPTS
Growth Tracking

Confidence Limits for MTBF 9-7, 9-14ff
Definition of 9-2
Point Estimates of MTBF 9-7, 9-14ff
Supporting Data Base 10-4, 10-6ff

Idealized Growth
Curve Development 9-2, 9-9ff
Definition of 9-1
Duane Growth Model 9-2
Growth Rate 9-2ff, 9-9

Planned Growth
Curve Development 9-4, 9-13
Definition of 9-2

3
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HYPOTHESIS TESTING
Acceptance Criteria 8-4
Binomial Model 6-4, 7-21ff
Interface with Confidence Statement 6-6
Procedure 6-4

INDEPENDENCE OF SUBSYSTEMS 2-5

MAINTAINABILITY
Assessment Considerations 3-2
Definition of 3-1
Off-System Indicies 3-5
Physical Design Factors Affecting 3-2
Quantitative Indices 3-3, 3-14

MAINTENANCE
Annual Support, Cost.of 3-5
Corrective 3-2
Definition of 3-1
Preventive 3-2

MAINTENANCE RATIO (MI?) 3-4, 3-14
MAXIMUM LIKELIHOOD EST.IMATE 6-1
MAXIMUM-TIME-TO-REPAIR (MaxTTR) 3-4
MEAN TIME BETWEEN FAILURE (MTBF)

Confidence Interval, Calculation of 7-10ff, 7-30ff, 7-39ff, 7-42ff
Definition of 2-1
For Poisson Model 5-8
Point Estimate, Calculation of 7-9, 7-30ff, 7-42ff

MEAN-TIME-BETWEEN-MAINTENANCE-ACTIONS (MTBMA) 3-4, 3-14
MEAN-TIME-TO-REPAIR (MTTR)(McT) 3-4, 3-14
MINIMUM ACCEPTABLE VALUE (MAV) 7-30, 6-5ff, 6-9, 6-10, 7-39, 7-42, 8-lff
MISSION FAILURES 2-3
MISSION RELIABILITY 7-28, 7-30
MODELS, MATHEMATICAL

Continuous 5-3
Exponential 5-3, 5-9
Poisson 5-8
Uniform 5-4

Discrete 5-1
Binomial 5-4
Hypergeometric 5-5

MODELS, SYSTEM RELIABILITIES
Functional 2-8
Mixed 2-7, 2-15, 10-8ff
Redundant 2-5, 2-13
Series 2-5, 2-11, 2-12, 2-13, 2-19, 10-9

NON-HOMOGENEOUS POISSON 7-9
NORMAL APPROXIMATION TO BINOMIAL 5-6, 5-16, 5-18ff

Confidence Limit Calculations
Difference/Ratio of Proportions 7-6ff, 7-23ff
Proportion of Failures 7-4, 7-19ff

—
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NORMAL APPROXIMATION TO BINOMIAL (cent’d)
Test Design 8-5, 8-23ff

NULL HYPOTHESIS 6-4ff

OPERATING CHARACTERISTICS CURVE
Construction of

for Binomial Model 8-19ff
for Poisson Model 8-19, 8-37

Definition of 8-17

PLOT, FAILURE RATE 7-8, 7-27, 7-28
POINT ESTIMATE

Definition of 6-1
Difference of Proportions 7-6, 7-23ff
Failure Rate (Exponential) 7-10, 7-30ff
Maximum Likelihood 6-1
MTBF (Exponential) 7-9, 7-3off, 7-42ff
Proportion of Failures (Binomial) 7-2, 7-19
Ratio of Proportions 7-6, 7-23ff
Reliability 7-3, 7-9, 7-3off
Unbiased 6-1

POISSON APPROXIMATION TO BINOMIAL 5-6, 5-16, 5-18ff
Confidence Limit Calculation 7-5, 7-17ff
Test Design 8-6, 8-23ff

POISSON MODEL 5-8
Assumptions Pertaining to 5-8
Graphical Solution Procedure 8-16
Non-Homogeneous 7-9
Normal Approximation to 5-9
Probability Computation 5-27, 5-29
Probability Plot 5-10

PRODUCER’S RISK 6-5, 7-21ff, 8-3ff
PROPORTION OF FAILURES (Binomial Model) 7-2

Confidence Limits, Calculation of 7-3, 7-19ff
Point Estimate 7-2, 7-19
Ratio/Difference of Proportions

Confidence Limits, Calculation of 7-6, 7-23ff
Point Estimate, Calculation of 7-6, 7-23ff

RATIO OF PROPORTIONS
Confidence Limits, Calculation of 7-7, 7-23ff
Point Estimate, Calculation of 7-6, 7-23ff

RECOVERY TIME 4-6
REDUNDANCY

Active 2-6
Characteristics of 2-5
Implications of 2-7
Model, System (see Models, System)
Passive 2-6

RELIABILITY
Allocation of 2-9, 2-17
Computer 7-30ff

5
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RELIABILITY (cent’d)
Confidence Limits, Calculations of (Exponential Model) 7-14, 7-30ff
Definition of 2-1
Function 5-11, 5-25, 5-28
Growth (see Growth) 9-1
Incident Classification 2-3
Logistics Related 2-3
Maintenance/Supply Related 2-3, 2-13
Mathematical Models of 5-lff
Mission Related 2-2, 7-27
Multi Mission/Mode 2-20
Point Estimate, Calculation of (Binomial) 7-3, 7-17
Point Estimate, Calculation of (Exponential) 7-9, 7-30ff
Preestablished Limits, Confidence Level for

Binomial Model 7-3
Exponential Model 7-12ff, 7-30ff

Repairable Systems of 2-1
System Models

Functional 2-8
Mixed 2-7, 2-15, 10-8ff
Redundant 2-5, 2-13
Series 2-5, 2-11, 2-12, 2-13, 2-19, 10-8

Tests, Types of 7-1
RISK

Calculation of, Binomial Model 7-21, 8-23ff, 8-28ff
Calculation of, Exponential Model 8-32ff
Consumer’s 6-5, 6-9, 6-10, 7-21ff, 8-3ff, 8-21ff
Producer’s 6-5, 6-9, 6-10, 7-21ff, 8-3ff, 8-21ff

SAMPLE SIZE 8-4, 8-23ff
SAMPLING, LOT ACCEPTANCE 5-5, 5-15ff
SPARES DEW, UNSCHEDULED 2-4
SPECIFIED VALUE 6-5ff, 6-9, 6-10, 7-30, 7-39, 7-42, 8-lff
STATISTICAL INDEPENDENCE 2-5
SYSTEM FAILURES 2-4
SYSTEM MODEL

Series (see Models; Reliability)

TEST-ANALYZE-FIX-TEST (TAFT) 9-1, 9-9
TEST DESIGN

Consumer’s and Producer’s Risk (see Risk)
For Binomial Model 8-4ff, 8-21ff, 8-23ff, 8-28ff
For Exponential Model 8-7ff, 8-32, 8-33ff, 8-37ff

MIL-STD-105D and MIL-HBK-108 8-8
MIL-STD-781C  8-8ff, 8-32
Poisson Distribution Equations 8-13ff

Graphical Poisson Solution Procedure 8-16
Upper and Lower Test Values (see Test Values)

. . 6
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TEST EXPOSURE
Adequate 6-6
Definition of 6-7
Excessive 6-7
Inadequate 6-7
Relationship to Confidence Intervals 6-6, 6-7
Total 5-8, 6-6ff, 6-10, 8-32ff

TESTS
Continuous Time 7-2, 7-8, 8-7
Discrete Time 7-2, 8-4,
Failure Terminated 7-llff, 7-42ff
Fixed Configuration 7-1
Growth 7-1
Time Terminated 7-llff, 7-30ff, 7-39ff

TEST VALUES
Lower (MAV) 6-5ff, 6-9, 6-10, 7-30, 7-39, 7-42, 8-lff, 8-21ff
Upper (SV) 6-5ff, 6-9, 6-lo, 7-30, 7-39, 7-42, 8-lff, 8-21ff

TIME
Administrative and Logistics Down 4-1
Operating 4-1, 4-2
Recovery 4-6
Standby (Warm/Cold) 4-1, 4-2, 4-5
System Down 4-1
System Off 4-1
System Up 4-1
Terminated Test 7-llff, 7-30ff, 7-39ff
Total (for Availability) 4-1, 4-2
Total Maintenance 4-1, 4-2

UNBIASED ESTIMATE 6-1
UNIFORM MATHEMATICAL MODEL 5-4
UNSCHEDULED MAINTENANCE ACTIONS 2-3, 2-4
UNSCHEDULED SPARES DEMANDS 2-4
UPPER TEST VALUE (see Test Values)

Discrimination Ration 8-8

ZERO FAILURE EVALUATION 7-39ff, 7-15ff
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