ANC-1(1)

SPANWISE AIR-LOAD DISTRIBUTION

WAR DEPARTMENT AIR CORPS

NAVY DEPARTMENT BUREAU OF AERONAUTICS

DEPARTMENT OF COMMERCE BUREAU OF AIR COMMERCE

Issued by the

ARMY-NAVY-COMMERCE
COMMITTEE ON AIRCRAFT REQUIREMENTS

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1938

FOREWORD

0.0

0.00 The necessity for the use of a span load distribution approaching as closely as possible the true distribution occurring in flight has long been recognized. The increase in the use of cantilever monoplanes has made this matter of vital importance since the old arbitrary distribution is unsafe when applied to highly tapered wings of this type.

0.01 The National Advisory Committee for Aeronautics has made a study of span load distribution with the object of formulating a method for determining this distribution for any wing. This study has resulted in the conclusion that the theoretical distribution is in sufficiently good agreement with experimental results to justify its use as a basis for the desired method, except, in some cases, in the vicinity of the wing tip where empirical corrections to the theoretical curves have been found desirable.

0.02 The theoretical procedure described herein is one of several similiar methods that may be used, but this is believed to be the most satisfactory for the great majority of wings. Its application is demonstrated by several examples. Distribution curves of lift coefficient for a wide range of aspect ratios are include

ed for simple uniformly tapered wings. For wings which meet the specifications for which these curves were prepared, the theoretical load distribution may be obtained directly, and the empirical tip correction applied in the same manner as when the theoretical distribution is obtained by the general method.

0.03 It is admitted that the load distribution found by this procedure may not be the same as that experienced in flight, because of fuselage, nacelle or other interference, but it is believed to be much closer to the correct distribution in most cases than that which has been used in the past, and probably correct within the accuracy of the structural calculations which follow.

0.04 Although the method is intended primarily for wings, it may be used also for obtaining the distribution along the span of large tail surfaces. In such cases, however, the influence of slipstream, downwash and fuselage interference is apt to cause a much greater discrepancy between the actual distribution and that indicated by theory.

0.05 The procedure given herein is confined to the determination of the section aerodynamic coefficients along the span for definite angles of attack or for given wing coefficients. Where the coefficients are affected by Reynolds Number, as in the case of the profile-drag coefficient, an

explanation of this effect is given. The transformation of these coefficients into actual loads on the wing, including the determination of the design speeds and wing coefficients or angles of attack, and the consideration of the inertia loads will be covered in separate publications.

C.06 Special acknowledgment is due to the National Advisory Committee for Aeronautics and in particular to Mr. R.V. Rhode and to Mr. H.A. Pearson of the Staff of the Langley Memorial Laboratory, from whose reports much of that contained in the following pages has been taken.

0.1

CONTENTS

SECTION		PAGE
0.2 0.3 0.4	Foreword Contents Tables Figures References Symbols	0-1 0-4 0-9 0-11 0-12 0-14
	CHAPTER 1	
	GENERAL	
1.0 1.2 1.3 1.31 1.32 1.33 1.34 1.35	Aerodynamic Components Basic Considerations The Lotz Method Scope and Limitations of the Theory Fuselage and Nacelle Interference Empirical Tip Correction Sweepback and Dihedral Lift Coefficients near the Stall Effect of Reynolds Number Determination of the Stalling Characteristics of a Wing	1-1 1-2 1-6 1-7 1-7 1-8 1-9 1-10 1-11
	CHAPTER 2	
	METHOD OF OBTAINING THE LIFT AND INDUCED-DRAG DISTRIBUTIONS DIRECTLY FOR CERTAIN TYPES OF UNTWISTED UNIFORMLY TAPERED WINGS BY MEANS OF CHARTS.	
2.0 2.1 2.2 2.3	Scope and Limitations of Special Method Procedure for Wing with Constant mo Procedure for Wing with Variable mo Application of Empirical Tip Correction	2-1 2-3 2-8 2-12

CHAPTER 3

GENERAL PROCEDURE FOR CALCULATING LIFT AND INDUCED-DRAG DISTRIBUTIONS FOR ANY SYMMETRICAL WING AT A GIVEN ANGLE OF ATTACK.

SECTION		PAGE
3.0 3.2 3.3 3.4 3.6	Scope Table I Table II Table III Table IV Table V Table VI	3-1 3-1 3-4 3-6 3-9 3-9 3-11
3.7	Table VII	3-12

CHAPTER 4

PROCEDURE FOR DETERMINING THE LIFT AND INDUCED-DRAG DISTRIBUTIONS FOR ANY ANGLE OF ATTACK.

4.0	Ceneral	4-1
4.00	Introduction	4-1
4.01	Lift	4-1
4.02	Induced Drag	4-2
4.03	Tip Correction	4-3
4.1	Wings with no Effective Twist	4-3
4.11	Lift	4-3
4.12	Induced Drag	4-4
4.13	Angle of Attack	4-4
4.14	Example	4-5
4.2	Wings with Effective Twist	4-6
4.20	Types of Twist	4-6
4.21	Procedure for Wing with a Single	
	Symmetrical Twist	4-8
4.210	Introduction	4-8
4.211	Preliminary Computations for	
-	Wing Without Twist	4-9
4.212	Preliminary Computations for Wing	
	With Twist	4 <u>-</u> 9
4.213	Table VIII	4-10
4.214	Total Distributions	4-14
4.215	Wing Coefficients	4-14
4.22	Procedure for Wing with a Single	
	Antisymmetrical Twist	4-17
4,220	Introduction	4-17
4,221	Computations	4-18
4.23	Procedure for Wing with Variable Twist	4-21
4.24	Procedure for Wing with Multiple Twist	4-24
4.240	Introduction	4-24
4.241	Section Coefficients	4-25
4.242	Wing Coefficient	4-27
4,243	Examples	4-27
4,25	Values of k8 for Flaps and Ailerons	4-28

PAGE SECTION CHAPTER 5 PROCEDURE FOR CALCULATING LIFT AND INDUCED-DRAG DISTRIBUTIONS FOR ANTISYM-METRICAL LOADING ONLY. 5-1 5.0 General Introduction 5-1 5.00 5-1 Scope 5.01 5-2 5.1 Table I 5-4 Table II-A 5,2 5-5 5,3 Table III Table IV-A 5-5 5.4 5-5 5,5 Table V-A 5-5 5.6 Table VI-A 5-6 Table VII-A CHAPTER 6 OTHER SECTION COEFFICIENTS. Profile Drag 6-1 5,1 6.10 Division of Profile Drag 6-1 6-1 6.11 Minimum Profile Drag 6-3 6,12 Additional Profile Drag 6.2 Aerodynamic-Center Location Moment-Coefficient Distribution 6-3 6-4 6.3 6-4 5,30 Source Effect of Part-Span Flap Effect of Applying Forces at Point 6-5 6,31 6,32 6-6 Other than at Aerodynamic Center 6-6 6.33 Biplane Interference 5 - 76.34 Compressibility Effect CHAPTER 7 EXAMPLES 7-1 General Description of Wing 7.0 7 - 4

7-4

7-4

7-6

Example 1 - Special Method

Characteristics

Wing Dimensions

Tabulation of Wing Section

Description

7.1

7.10

7.11

7.12

SECTION	<u>P</u> A	<u>AGE</u>
7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.190 7.191 7.192	Other Section Coefficients Application to a Given Angle of Attack Angle of Attack Lift and Induced Drag Minimum Profile Drag	7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-12 7-13 7-14
7.193	Additional Profile Drag	
7.2	Example 2 - General Method - Untwisted Wing	7-21
7.20 7.21 7.22 7.23	Description Determination of Unit Coefficients Application to a Given Angle of Attack Tip Correction and Other Coefficients	7-21 7-21 7-21 7-23
7.3 7.31 7.32 7.33 7.34 7.342 7.342 7.344 7.345 7.346 7.347	Example 3 - Wing with Part-Span Flap Untwisted Wing Twisted Wing Unit Distributions Application to a Given Condition Determination of k6 Modification of Unit Distributions Wing Coefficients Total Distributions Alternative Method for Induced- Drag Distribution Plot of Results Other Coefficients	7-30 7-30 7-31 7-31 7-31 7-32 7-32 7-33 7-34 7-35
7.4 7.40 7.41 7.42 7.43 7.431 7.433 7.435	Example 4 - Wing with Differentially Displaced Ailerons Method of Attack Symmetrical Twist Antisymmetrical Twist Application to a Given Condition Determination of k6 Modification of Unit Distributions Wing Coefficients Total Distributions Induced-Drag Distribution by	7 - 49 7 - 50
7.436	Alternative Method Yawing Moment	7-51 7-52

SECTION		PAGE
7.437	Other Coefficients	7-53
7.438	Plot of Results	7-54
7.5	Example 5 - Wing with Angular	
. •	Velocity in Roll	7-69
7.50	Introduction	7-69
7.51	Damping Distributions	7-69
7.52	Difference between Damping and	
, , 02	Linear-Twist Distributions	7-70
7.53	Evaluation of the Damping Koment	7-71
7.54	Computation of the Combined	
. • • •	Distributions	7-72
7.55	Yawing Moment	7-75
7 56	Plot of Requite	7-76

0.2

TABLES

TEXT

TABLE	<u>I</u>	PAGE
I II	Geometric Characteristics of Wing Computation of Angle Coefficients, Bn	3-16 3-17
II-A III	Computation of Angle Coefficients, Bn - Antisymmetrical Computation of Plan-Form Coefficients, Can	5-8 3-18
IA	Constants Required in Solution of An Coefficients	3-19
V V-A VI	Constants Required in Solution of An Coefficients - Antisymmetrical Solution of An Coefficients Solution of An Coefficients - Antisymmetrical Computation of Wing Lift and Drag	5-9 3-20 5-10 3-21
VI-A	Coefficients Semiwing Lift and Drag Coefficients - Antisymmetrical	5-11
VII-A	Antisymmetrical	3-22 5-12
VIII-A	Computation of Unit Load Distributions - Single Symmetrical Twist Unit Load Distributions - Antisymmetrical	4-16 4-20
	EXAMPLE 1	
	SPECIAL METHOD	
X IX	Application of Special Method - Unit Distributions Application of Special Method - Distribution for a Given Angle of Attack, a = 15.90. &F = 0, &A = 0	7-18 s · 7-19
	EXAMPLE 2	
	GENERAL METHOD - NO TWIST	
I III .		7-24 7-25 7-26

TABLE	PAGE
VII	7-27 7-28 7-29
example 3	
ere di sua paggia pagili melakulikan di di MAP	
PART-SPAN FLAP	: .
I (T) II (T) V (T) VI (T) VII (T) VIII WI Use of Unit Values in Determining Distributions for $\alpha = 13.9^{\circ}$, $\delta_F = 60^{\circ}$, $\delta_A = 0^{\circ}$	7-37 7-38 7-39 7-40 7-41 7-42
<u>EXAMPLE 4</u> DIFFERENTIAL AILERONS	
Data Bushing a property of the	
I (T) II (T) 7 (T) VI (T) VII (T) VIII II-A IV-A VI-A VII-A VIII-A VIII-	7-55 7-56 7-57 7-58 7-59 7-60 7-61 7-62 7-63 7-64 7-65 7-66
FXAMPLE 5	
DIFFERENTIAL AILMRONS WITH ROLL	
V-A VI-A VII-A VIII Combination of Damping Distribution for Roll with Normal Distribution for α = 13.9°, δF = 0°, and δA = -30°, + 6°	. 7-77 7-78 . 7-79
OP - O = 0.44U OA	7-00

0.3

FIGURES

FIGU		PAGE
2.1	Theoretical Span Distribution of Additional	6 30
0 0	Lift Coefficient (2y/b = 0, .20, .40 and .60)	2-18
2.2	Theoretical Span Distribution of Additional	0 10
O 12	Lift Coefficient (2y/b = .80 and .90)	2-19
2.3	Theoretical Span Distribution of Additional	0.00
	Lift Coefficient (2y/b = .95 and .975)	2-20
	Factor for Induced Angle of Attack, T	2-21
	Factor for Induced Drag, C	2-22
	Theoretical Lateral Center of Tressure	2-23
	Span Distribution of Tip Act for Wing CL = 1.0	2-24
	Variation of Tip ACT with Wing CT	2-24
2.9	Effect of Aspect Ratio on Tip △CL	2-25
2.10	Effect of Taper on Tip ACL	2-25
2.11	Center of Pressure of Act	2-25
4.1	Ordinary and Split Flap kδ	4-32
6.1	Generalized Variation of Acao Scale-Effect Corrections for commax	6 - 8
6.2	Scale-Effect Corrections for class	6-9
7.1	Sketch of Wing used in Examples"	7-2
	Airfoil Section Characteristics	7-3
	Section Lift and Induced-Drag Coefficients	
	Obtained by Special and General Methods	
	$\alpha = 13.9^{\circ}, \delta_{\rm F} = 0^{\circ}, \delta_{\rm A} = 0^{\circ}$	7-20
7.4	Section Lift and Induced-Drag Coefficients	
_	for Wing with Part-Span Flap	
	$\alpha = 13.9^{\circ}, \delta_{\rm F} = 60^{\circ}, \delta_{\rm A} = 0^{\circ}$	7-44
7.5	Section Lift and Induced-Drag Coefficients	
	for Wing with Displaced Ailerons	
	$\alpha = 13.9^{\circ}, \delta_{\rm F} = 0^{\circ}, \delta_{\rm A} = -30^{\circ}, +6^{\circ}$	7-68
7 6	Section Lift and Induced-Drag Coefficients	. 30
, , 0	for Wing During Roll $\alpha = 13.9^{\circ}$, $\delta_F = 0^{\circ}$	
	$8_{0} = -30^{\circ}$, $+6^{\circ}$ and $8_{0} = +6^{\circ}$. -30°	7-81

REFERENCES

0.4

- (1) Sherman, Albert: The Aerodynamic Effects of Wing Cut-Outs. T.R. No. 480, N.A.C.A. 1933.
- (2) Glauert, H.: The Elements of Aerofoil and Airscrew Theory. Cambridge University Press, 1926.
- (3) Shenstone, B.S.: The Lotz Method for Calculating the Aerodynamic Characteristics of Wings. Journal of the Royal Aeronautical Society, May 1934.
- (4) Lippisch, A.: Method for the Determination of the Spanwise Lift Distribution. T.N. No. 778, N.A.C.A.1935
- (5) Gates, S.B.: An Analysis of a Rectangular Monoplane with Hinged Tips. R&M No. 1175, British A.R.C. 1928
- (6) Jacobs, Eastman N., Ward, Kenneth E., and Pinkerton, Robert M.: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable Density Wind Tunnel. T.R. No. 460, N.A.C.A. 1933.
- (7) Jacobs, Hastman N., and Anderson, Raymond F.: Large Scale Aerodynamic Characteristics of Airfoils as Tested in the Variable Density Wind Tunnel. T.R. No. 352, N.A.C.A. 1930.
- (8) Anderson, Raymond F.: Determination of the Characteristics of Tapered Wings. T.R. No. 572, N.A.C.A. 1936
- (9) Pearson, H.A.: Span Load Distribution for Tapered Wings with Partial Span Flaps. T.R. No. 585, N.A.C.A. 1937.
- (10) Diehl, Walter S.: Engineering Aerodynamics. The Ronald Press Company, 1936.
- (11) Lotz, Irmgard: Berechnung der Auftriebsverteilung beliebig geformter Flügel. Z.F.M. Vol. 22, No. 7, April 14, 1931
- (12) Pearson, H.A.: Theoretical Span Loading and Moments of Tapered Wings Produced by Aileron Deflection. T.N. No. 589, N.A.C.A. 1937.
- (13) Pearson, H.A.: A Method of Estimating the Aerodynamic Effects of Ordinary and Split Flaps of Airfoils Similar to the Clark Y. T.N. No. 571, N.A.C.A. 1936.

- (14) Pearson, H.A.: Empirical Corrections to the Span Load Distribution at the Tip. T.N. No. 606, N.A.C.A. 1937.
- (15) Jacobs, Eastman N., and Pinkerton, Robert M.:
 Tests of N.A.C.A. Airfoils in the Variable Density
 Wind Tunnel, Series 230. T.N. No. 567, N.A.C.A. 1936
- (16) Jacobs, Eastman N., and Sherman, Albert: Airfoil Section Characteristics as Affected by Variations of the Reynolds Number. T.R. No. 586, N.A.C.A. 1937.
- (17) Weick, Fred E., and Jones Robert T.: Résumé and Analysis of N.A.C.A. Lateral Control Research. T.R. No. 605, N.A.C.A. 1937.

(18) Jacobs, Eastman N., Pinkerton, Robert M., and Greenberg, Harry: Tests of Related Forward-Camber Airfoils in the Variable-Density Wind Tunnel. T.R. No. 610, N.A.C.A. 1957.

0.5

SYMBOLS

- b Wing span
- S Wing area
- A Aspect ratio, b2/S
- V Wind velocity
- o Mass density of air
- q Dynamic pressure, 1/2 p VZ
- w Induced downflow at a section
- L Lift on wing
- CT. Wing lift coefficient, L/qS
- cs Chord at plane of symmetry
- ct Fictitious tip chord
 - c Chord at any section
 - t Maximum thickness at any section
- Cave Arithmetical mean or average chord, S/b
 - a Angle of attack of any section referred to its chord line
 - αο Effective angle of attack of any section
 - α a Angle of attack of any section referred to its zero-lift direction, absolute angle of attack.
 - as Angle of attack of section at plane of symmetry referred to its zero-lift direction.
 - $lpha_{ extsf{So}}$ Angle of attack of section at plane of symmetry referred to its zero-lift direction when $C_{ extsf{L}}$ = 0
 - 8 Flap deflection, positive downward.
 - kδ Angular change in zero-lift direction of any section produced by flap displacement δ

- Ratio of fictitious tip chord, obtained by extending leading and trailing edges of wing to extreme tip, to the chord at the plane of symmetry, ct/cs
- Y Ratio of rounded tip length to length of semispan
- 2 Section lift (per unit length along span)
- c_l Section lift coefficient, l/qc, perpendicular to wind at infinity.

Subscripts

- b Refers to basic lift (C_L = 0)
- b1, b2, b3 Refers to specific basic lifts, several of which may exist simultaneously.
- a Refers to additional lift for any Ci
- a_1 Refers to additional lift for $C_L = 1.0$
- Refers to relative lift (C_L = 1.0)
- Ac: Increment in section lift coefficient obtained empirically and required on some wings to make theoretical values near the tip agree with experiment.
- Δc_{i} , Δc_{i} when $C_{I} = 1.0$, A = 6, and $\lambda = 1.0$
 - cdo Section profile-drag coefficient
 - cd, Section induced-drag coefficient

Subscripts

- b Refers to portion caused by basic lift (constant)
- a Refers to portion caused by additional lift (varies as C_L^2)
- al Refers to portion caused by additional lift for $C_{T_i} = 1.0$
- ab Refers to portion caused by interaction of basic and additional lifts (varies as \mathbb{C}_L)
- alb Refers to portion caused by interaction of basic and additional lifts for $C_L = 1.0$

- bb Refers to portion caused by interaction of two basic lifts (constant).
 - Refers to relative induced drag $(C_{D_i} = 1.0)$
- CD: Wing induced-drag coefficient
 - m dC_T/do of entire wing, per radian
 - $m_0 = dc_i/d\alpha_0$ of any section, per radian
 - m_s dc; $/d\alpha_0$ of section at plane of symmetry,
 - mt dc_i/dc_0 of section at extreme tip.
 - $u_0 = m_5 c_8/4b$
- ACT Increment in wing lift coefficient which must be added at wing tips to the theoretical wing CT to make it agree with test.

 Also used to denote change in lift produced by displaced flap at given angle of attack.
- ΔC_{L_1} ΔC_L for any wing when $C_L = 1.0$
 - o A factor correcting the induced drag to allow for a departure from elliptical span loading.
 - t A factor correcting the induced angle of attack to allow for a departure from elliptical span loading.
 - y Coordinate of any point along span, measured from plane of symmetry
 - y' Coordinate of a fixed point along span.
- \overline{y}_{T} Location of centroid of lift on semispan
- cose 2y/b (when y = b/2, $\theta = 0$; when y = -b/2, $\theta = \pi$)
- An, Bn, Can Coefficients in Fourier series.
 - n Circle inclosing a number refers to the line number in a table, while the sub number refers to the column number
 - Fy Lift coefficient factor for tip correction
 - F2 Aspect ratio factor for tip correction
 - F3 Taper factor for tip correction

- p. Angular velocity in roll about the wind axis
- \mathbf{C}_{I}^{*} Rolling-moment coefficient about the wind axis
- Cn' Yawing-moment coefficient about axis normal to wind
 - R Reynolds Number

CHAPTER 1

GENERAL

GENERAL

AERODYNAMIC COMPONENTS

1.0

1.00 The resultant aerodynamic load at a given location on the span of a wing is conveniently resolved into lift and drag forces, perpendicular and parallel, respectively, to the flight path and applied at the aerodynamic center with a couple about the spanwise axis. The drag force may be further broken down into profile and induced drag, the profile drag being the sum of a minimum and an additional profile drag. The curves of distribution of lift, moment, and the three component drags along the span are, in general, different and so must be separately obtained. Whether or not they are used separately in the stress analysis may be determined by practical considerations.

efficients may be obtained in terms of the aerodynamic coefficients - for example, a beam coefficient will be made up of components due to each of the aerodynamic coefficients, viz: (a) Beam component of lift coefficient; (b) Beam component of induced-drag coefficient; (c) Beam component of minimum profile-drag coefficient; (d) Beam component of additional profile-drag coefficient; and (e) In some cases a

beam component due to moment coefficient.

1.1

nent is that of lift and the greater portion of this bulletin is devoted to the distribution of the lift coefficient.

Since the induced drag is actually the flight path component of the section lift, its distribution is readily obtained during the process of calculating the lift distribution.

The distribution of the profile drag (minimum and additional) and of the moment coefficient and the locations of the aerodynamic center are discussed in Chapter 6.

BASIC CONSIDERATIONS

1.10 In a wins of infinite aspect ratio and constant airfoil section, the forces on all sections are the same, and the lift and drag coefficients which such a wing would have are known as the section characteristics for the particular section used. In such a wing, there is no downwash and the true absolute angle of attack is constant along the span and equal to the angle between the zero-lift chord and the flight path. After these characteristics are once determined for a given section, they may be used with that section regardless of where the section occurs in any wing, provided the true or local angle of attack can be determined at that particular location.

1.11 In a wing with finite span, the angle between the zero-lift chord and the flight path is no longer the true angle of attack of the sections (except when zero), because the downwash reduces the local angles of attack. When the zero-lift chords of a wing are in one plane, and the plan form is such that the chord lengths are proportional to the ordinates of an ellipse, and the same section is used throughout, the downwash angle is constant along the span. The true angles of attack of the sections, although less than the angle between the zero-lift chord and the flight path, are constant, and the section lift coefficient is the same from tip to tip and equal to the wing lift coefficient.

1.12 In a wing of any other shape or in which there is twist or a change in section along the span, the downwash angle is no longer constant along the span, and the section lift coefficient will, in general, vary. The problem then is to determine this variation in lift coefficient along the span for any given wing.

1.13 The lift coefficient at any section may be expressed as

$$c_i = m_0 \alpha_0 \tag{1.1}$$

where m_0 is $dc_i/d\alpha_0$ for the section, and α_0 is the effective angle of attack. Since, as explained above, the effective angle of attack at any section is the difference

between the absolute angle of attack with respect to the flight path and the downwash or induced angle, this may be written

$$c_t = m_0 (\alpha_8 - w/V) \qquad (1.2)$$

where α_{a} is the absolute angle of attack of the section with respect to the flight path, and w is the downwash or induced velocity at the section. V is the velocity of the airplane or the free-stream velocity. The downwash angle at any section at distance y' from the plane of symmetry may be expressed as follows (reference 1):

$$\frac{W}{V} = \frac{1}{8\pi} \sqrt{\frac{b}{z}} \frac{\frac{d}{dy} (c c_{i}) dy}{y^{i}-y}$$
 (1.3)

where c and c_l are respectively the chord and lift coefficient of the various sections along the span. The integration of this expression, most of which must be performed graphically, is explained in reference 1. The solution of (1.3) for a given location when substituted in (1.2) gives the value of the lift coefficient for that location. The induced-drag coefficient for the same location is given by

$$c_{d_1} = c_l \frac{w}{v} \tag{1.4}$$

1.14 This method would be relatively simple if it were not for the fact that c, must be known all along the span be-

fore (1.3) can be solved. The distribution can, therefore, be determined only by successive approximations. A span loading curve must first be assumed, after which several points along the span must be checked by (1.3) and (1.2). If the computed values of c; or cc; do not fall on the assumed curve, the curve must be modified and the process repeated until reasonable agreement is obtained. It is needless to say that, unless the shape of the loading curve is fairly well known at the start, this method is very tedious.

l.15 Several methods have been proposed for obtaining the distribution of lift directly, in which the circulation (c c_l V/2) is generally expressed, either as a power or a Fourier series. The Fourier series method was first used by Glauert (reference 2) in which the value of the lift is computed at four points along the semispan. In the case of a wing of irregular plan form or in which the section angle of attack changes abruptly, as when ailerons or part-span flaps are deflected, a larger number of points must be used to obtain an accurate distribution. The points may be chosen anywhere along the span and there is no limit to the number of points that may be used with this method. It is necessary, however, to solve as many simultaneous equations as the number of points taken on the semispan. Other methods are described in references 4 and 5.

THE LOTZ METHOD

1.2

1.20 Miss Lotz has developed a method based on the Fourier solution which is preferred by many (reference 11). introduced two additional series the coefficients of which are independent of the load distribution and may be separately computed. Shenstone (reference 3) gave a brief outline of the Lotz method, described a mechanical method for determining the coefficients and included a numerical example. The method of obtaining the coefficients has been simplified by Pearson (reference 9). He developed forms for the use of ten and twenty points along the semispan and gave a numerical example for a tapered wing with a part-span flap, using twenty points. This method has been used in the development of the procedure herein presented. It has the advantage of giving points closer together near the wing tip where the value of the lift coefficient usually varies most rapidly. This proves a disadvantage, however, in the case of a wing with a cut-out in the center section, because here the points are relatively far apart and it is impossible to vary the point spacing. Also, in the case of a displaced flap or sileron, the load distribution at the end of the flap or aileron is not sharply defined by this method. In such cases it may be necessary

to use a greater number of points, or it may be preferable to use one of the other available methods. No attempt is made here to explain the theory of the Lotz method, as that can be obtained from the above references with the help of a text book on Fourier series. The purpose of this bulletin is to present a procedure that can be readily followed by anyone with a knowledge of arithmetic. With this in mind, tables for the use of ten points along the semispan are given with an explanation of their use and, later, several numerical examples are carried through to further demonstrate the method. If judgment is used in modifying the chord or angle of attack in the vicinity of discontinuities, such as at the end of a cut-out or at the end of a flap, as explained later in Paragraph 4,253 and illustrated in Examples 3 and 4 of Chapter 7, ten points should be sufficient for all practical purposes in almost all cases. A procedure including the necessary. tables for the use of twenty points along the semispan may be found in reference 9.

1.3 SCOPE AND LIMITATIONS OF THE THEORY

1.31 <u>Fuselage and Nacelle Interference</u> - The method may be applied to any monoplane wing or to the individual wings of a biplane, in which case each wing is treated as a monoplane by itself, although the agreement with experimental

data is not apt to be quite so good in the case of the biplane. In most cases the wing can be assumed to extend through the fuselage unaffected, although where sufficient test data are available to show definitely the effect of a fuselage or nacelle on the lift curve of a wing, the chord or angle of attack in the portion blanketed may be modified if necessary. Where a wing tapers from the edge of the fuselage, the leading and trailing edges should be extended to the plane of symmetry to complete the wing. The distance between intersections of the leading and trailing edges on the plane of symmetry is called the root chord. Likewise, the tip chord is the distance between the intersections of the extended leading and trailing edges with a plane tangent to the tip and parallel to the plane of symmetry. The ratio of the tip chord to the root chord is called the taper ratio and is herein denoted by λ .

1.32 Empirical Tip Corrections - It has been found by experiment that near the tip the actual distribution differs slightly from that indicated by theory and it is necessary, in some cases, to apply empirical corrections to cause agreement. These corrections are a maximum for wings of constant chord, and become negligible for small values of the taper ratio λ . The first step is, therefore, to compute λ . If λ is less than about 0.5, no correction is

needed and the calculations may proceed, using the actual chords of the wing tip. If A is greater than approximately 0.5, the magnitude of the correction is sufficient to require consideration, but the necessity of applying it will depend somewhat upon the type of wing structure, as discussed later in Paragraph 2.34. Attention is called to the fact that if the correction is found to be necessary, the calculations for the theoretical distribution should be applied to the wing having square tips; that is, the leading and trailing edges of the wing should be extended to the extreme tip, and these lines used to define the chords of the tip. This will require a slight modification of the area of the wing to allow for the amount thus added. This empirical correction consists in adding Ac1 to the theoretical curve near the tip in accordance with curves furnished herein. Since these curves are intended for use with the theoretical curves for square-tip wings, it must be definitely determined, before starting the theoretical calculations by the general method, whether or not the tip correction is to be applied.

1.33 Sweepback and Dihedral - Equation (1.3) is based on the assumption that the section aerodynamic centers all fall on a straight line reaching from tip to tip and is not theoretically correct when the wing has sweepback or dihedral. For small values of either, the effect is small.

The theoretical effect of dihedral is to cause the sections near the center to take a greater proportion of the load, while sweepback tends to shift the load outward toward the tips. It does this by increasing the downwash at the center and by decreasing it near the tips, which is an effect similar to that produced by increasing the taper. Sufficient pressure distribution tests on sweptback wings are not yet available to check the theory, and nothing more than a warning will be included in the bulletin at this It is hoped that eventually the effect of sweepback can be included by using an equivalent taper that will produce approximately the same distribution. An approximate calculation indicates that a wing with uniform chord and 30-degrees sweepback may have a distribution of lift coefficient along the span somewhat similar to a wing without sweepback but tapered 2:1.

Lift Coefficient Near the Stall - The wing theory on which this procedure, except for the tip correction, is based assumes that the lift coefficient of any section is proportional to its effective angle of attack. This is approximately true for most wing sections except at angles of attack near the stall. When stalling begins at any section, the distribution, as determined by this method, is no longer valid. It is fortunate, from a structural standpoint, that the critical wing loads usually occur at angles

or attack appreciably below the stall, and there is also reason to believe that the dynamic lift curve is more apt to be a straight line and extend to values well beyond those determined in the wind tunnel under static conditions. Since most loads critical for the structure occur during a rapid change in angle of attack, such as when encountering a gust or during a maneuver, the assumption that all section lift coefficients are proportional to the angle of attack is justified. For dynamic loading, therefore, it is permissible to use the procedure of this bulletin for a value of lift coefficient at least 25 percent in excess of that for stalling under steady conditions.

1.35 Effect of Reynolds Number - At angles of attack below the stall the effect of a change in Reynolds Number on the lift and induced drag is negligible. The magnitude of the minimum profile drag, however, is a function of the Reynolds Number, as described in Paragraph 6.112, which means that the distribution along the span is modified by this effect, although the relative distribution may be assumed to remain constant. (See Paragraph 7.192). The additional profile-drag coefficient is also affected, since its value for any value of lift coefficient is a function of the maximum lift coefficient which in turn is dependent on Reynolds Number. This is discussed in Paragraph 6.12 and the determination of the profile-drag coefficient for

a given condition is illustrated in Paragraph 7.193 of the first example in Chapter 7. As stated, the angle of attack at which a section stalls, and the value of the maximum lift coefficient, are dependent on the value of the Reynolds Number. Except insofar as it affects the additional profile drag, this phenomenon is relatively unimportent for dynamic loading and has no bearing on the relative span distribution. If an investigation of the stalling characteristics of a wing is desired which involves a computation of the lift distribution under static conditions, the effect of Reynolds Number on the maximum lift coefficients of the sections is very important, as described in Paragraph 1.4 below. The location of the aerodynamic center and the magnitude of the moment coefficient about the aerodynamic center are not appreciably affected by a variation in Reynolds Number.

1.4 <u>DETERMINATION OF THE</u> STALLING CHARACTERISTICS OF A WING

1.40 While the purpose of determining the span distribution is primarily structural, it is also of interest from an aerodynamic standpoint. Since it is essential to have good lateral control when approaching a landing while flying near the stall, it is desirable to know where stalling begins along the span of the wing. In reference 8 Anderson

explains how this can be determined. The maximum lift coefficients for the sections are determined from the section characteristics and their individual Reynolds Numbers, and a curve plotted along the semispan. Several curves of lift distribution as calculated are plotted on the same graph, and one found which is tangent to the curve of maximum lift coefficients, thus showing approximately where stalling begins. This method assumes that the maximum lift coefficient for a section depends only on its effective Reynolds Number and is independent of its location in the whole wing. This has not been definitely proved. There is evidence to indicate that the lift coefficient at which a section stalls depends somewhat on the plan-form shape of the wing, and perhaps on other factors. Furthermore, if there is appreciable curvature in the section lift curves below their maximum lift points, the section lift coefficients computed by the usual method, which assumes linear variation of \mathbf{c}_l with αo, must be recomputed using modified values of mo determined for the values of α_0 found in the first calculation for the particular angle of attack which resulted in a curve tangent to the curve of maximum lift coefficients. this will result in slightly different values of α_0 , it may be necessary to recompute once more.

CHAPTER 2

METEOD OF OBTAINING THE LIFT

AND INDUCED-DRAG DISTRIBUTION DIRECTLY FOR CERTAIN

TYPES OF UNIWISTED UNIFORMLY TAPERED WINGS

BY MEANS OF CHARTS

- 2. METHOD OF OBTAINING THE LIFT
 AND INDUCED-DRAG DISTRIBUTION DIRECTLY FOR
 CERTAIN TYPES OF UNTWISTED UNIFORMLY
 TAPERED WINGS BY MEANS OF CHARTS
- 2.0 Scope and Limitations of Special Method Before describing the general method of computing the span distribution, a more simple method will be presented in which the relative distribution for the lift coefficient is read directly from charts contained herein. This method is applicable only to wings with certain definite characteristics, however. The charts give the additional-lift distribution which is equal to the total distribution only when the basic distribution is zero, as will be explained later in Chapter 4 during the description of the general procedure. In general, this method is applicable only to wings having the following characteristics:
 - (a) The zero-lift chords must all be parallel, that is, the wing must have no aerodynamic twist.
 - (b) The plan form of the semiwing must be trapezoidal except for the tip, which means that the
 leading and trailing edges must be straight from
 the plane of symmetry, or from the side of the fuselage or hull, to the beginning of a normally
 shaped wing tip.
 - (c) The charts were calculated for wings having a constant section lift-curve slope mo through-

out the span, but an approximate method of using them for wings which taper in thickness ratio is given in Section 2.2. The approximation consists in assuming that c m_0 varies linearly along the span.

- (d) The individual wings of a biplane which fall within the above classification may be treated as monoplanes with reasonable accuracy, although interference effects may cause a slightly greater divergence between the theoretical and the actual distributions.
- (e) The use of a large cut-out, the use of a straight center section with tapered outer panels, or the use of wings with curved leading or trailing edges (except at the tip) makes these curves inapplicable and the general method must be used.
 - (f) For wings which have aerodynamic twist, symmetrical or antisymmetrical (See Paragraph 4.20), but which meet the plan-form requirements given above, these charts may still be used for determining the distribution of the additional portion of the lift coefficient and the distribution of that portion of the induced-drag coefficient which varies as CL^2 , but since the C_{2n} coefficients are necessary in order to calculate the basic distributions, there is not much to be gained by using

the curves for this type of wing.

- 2.1 Procedure for Wing with Constant m_0 Given a wing that meets the specifications (a) and (b) above and has a constant value of m_0 throughout the span, the procedure is as follows:
 - (a) Determine the taper ratio, $\lambda = c_t/c_s$, where c_t is the chord of the extended wing at the extreme tip and c_s is the chord at the plane of symmetry or the intercept produced by extending the leading and trailing edges to the center.
 - (b) Calculate the true aspect ratio of the actual wing, $A = b^2/S$.
 - (c) Calculate the aspect ratio for the extended wing, $A' = 2b/c_s (1 + \lambda)$
 - (d) Obtain the section slope of the lift curve per radian, mo, for the airfoil used in the wing. All recent N.A.C.A. publications on airfoils, such as reference 15, include a table of "Fundamental Section Characteristics" from which mo may be found by multiplying the value given for ao by 57.3. If this information is not available for the airfoil section used, the slope may be approximated by the following formula given by Diehl in reference 10:

$$m_0 = 2\pi - 4.0 (t/c)$$
 (2.1)

where t/c is the thickness ratio of the section.

(e) If mo is constant throughout the span, cal-

culate A'/m_O , where A° is the aspect ratio of the extended wing found in (c) above.

- (f) Calculate Y, the ratio of the mean tip length to length of semispan (See Paragraph 2.1(h)).
- (g) The relative distribution of the additional lift coefficient $c_{\ell a_1}$, which for this type of wing is the distribution of the total lift coefficient when the wing lift coefficient $C_L = 1.0$, may now be found from Figures 2-1, 2-2 and 2-3 for the designated locations along the span. These figures consist of curves of $c_{\ell a_1}$, plotted versus taper ratio λ for four values of A^*/m_0 at eight locations along the semispan. The coefficient $c_{\ell a_1}$ is found, therefore, for the given value of λ by interpolating between the curves for the value of A^*/m_0 found in (e) above which can best be done by cross plotting.
- (h) These theoretical values of c_{lal} determined for the wing with square or trapezoidal tips should, when multiplied by the chords and the products integrated over the span, check the wing coefficient of 1.0. In order to obtain the values of c_{lal} at any given section for any given value of c_{lal} for this section by c_{lal} . If, however, the wing actually has rounded tips, the values of c_{lal}

when applied to the actual chords will not check the wing coefficient of 1.0 and it is necessary to correct the distribution by multiplying by a constant determined by integrating over the span. This is more fully explained in Paragraph 2.2(h) for the wing with varying mo.

(i) After the correct distribution of c_{i,a_1} has been determined, the corresponding distribution of induced-drag coefficient c_{dia_1} can be calculated. It is first necessary, however, to find the angle of attack required to produce a wing lift coefficient of 1.0. This is given by

$$\alpha_{\rm E} = C_{\rm L}/m = 1/m$$
 (2.2)

in which α_a is the absolute angle of attack in radians, or the angle of attack of the wing referred to its zero-lift direction, which must be constant along the span for this procedure to apply. The slope of the lift curve of the actual wing per radian is represented by m and is determined by

$$m = \frac{m_0}{1 + \frac{m_0}{\pi A} (1 + \tau)}$$
 (2.5)

in which mo is the same as determined in (d) above, A is the aspect ratio of the actual wing, while t is a factor for the induced angle of attack that may be found from Figure 2-4. Figure 2-4 is an

alignment chart, the scale on the right being A/mo, while on the left are two sets of curves; one set representing constant values of \(\lambda \) with varying amounts of tip rounding Y , while the other set represents constant values of Y with varying λ . The tip-rounding ratio γ is the ratio of the tip length, or mean distance along the span from the extreme tip to the sections where the tip is tangent to the straight leading and trailing edges, to the semispan. In the preparation of this chart the tip shape was assumed to be elliptical, but the chart may be used with sufficient accuracy regardless of the shape of the tip rounding. To use the chart a point should be located by interpolating between both sets of curves for the values of A and Y for the wing under consideration. A straight line should then be drawn from this point to the correct value of A/mo on the right hand scale and where this line crosses the central scale is read the correct value of τ . It will be noted that rounding the tip causes a marked reduction in the value of t and that, for a given tip length, τ is a minimum when λ is approximately 0.3, depending somewhat on the aspect ratio. T is, of course, zero for an untwisted wing completely elliptical in plan form.

(j) The distribution of induced drag can now be calculated. At any given section the effective angle of attack is

$$\alpha_0 = \frac{c_{i+1}}{m_0} \tag{2.4}$$

Then the downwash angle is given by

$$\frac{\mathbf{w}}{\mathbf{v}} = \alpha_{\mathbf{a}} - \alpha_{\mathbf{o}} \tag{2.5}$$

and

$$c_{\hat{a}_{1}a_{1}} = c_{l}a_{1} \frac{\mathbf{w}}{\mathbf{v}} \tag{2.6}$$

In this way the section values of the induced-drag coefficient are found for $C_{\rm L}=1.0$. In order to obtain the values ${\rm cd_i}$ for any given value of $C_{\rm L}$, it is then only necessary to multiply these values of ${\rm cd_{ial}}$ by ${\rm C_L}^2$.

(k) When it is desired to determine the distributions at a given angle of attack, it is first necessary to determine the wing lift coefficient CL corresponding to this angle. This is given by

$$C_{L} = m \alpha_{a} \qquad (2.7)$$

(1) For a given value of $C_{\rm L}$, the corresponding value of $C_{\rm D_{\rm I}}$ is given for this type of wing by the usual formula

$$C_{D_{i}} = \frac{C_{L}^{2}}{\pi \Lambda} \qquad (1 + \sigma) \qquad (2.8)$$

in which A is the aspect ratio of the actual wing as determined in (b) above and σ is the induced drag factor found from Figure 2-5 in a manner similar to that used in determining τ from Figure 2-4.

- 2.2 Procedure for Wing with Variable mo In the proceaure just described for a wing meeting the requirements of Paragraphs 2.0(a) and 2.0(b), it was assumed that mo was constant along the span. This is not usually the case for tapered wings. A procedure will now be given for a wing in which mo varies. The method consists of substituting for the actual wing with varying mo an equivalent wing having a constant value of mo, but with a different taper so as to produce the same span loading. The results must necessarily be approximate unless c mo happens to vary linearly along the span. A very common type of tapered wing is one in which both the chord c and the thickness t vary linearly along the span, in which case, if mo varies linearly with thickness ratio t/c, c mo also varies linearly along the span and an exact solution can be obtained. The method is illustrated by example 1 in Chapter 7.
 - (a) The procedure is similar to that of Section 2.1 except that the taper ratio of the equivalent wing must first be determined. If a table of "Fundamental Section Characteristics" is available for several thickness ratios of the airfoil section

used, the respective values of ao should be multiplied by 57.3 and plotted versus t/c. A curve to represent these points may then be used from which to read the values of m_0 for the various sections of the wing. If a table of characteristics is not available, Equation 2.1 may be used to determine m_0 . If the curve of m_0 versus t/c is a straight line and the thickness tapers linearly, the taper ratio of the equivalent wing is

$$\lambda^{\circ} = \frac{m_{t} c_{t}}{m_{s} c_{s}} = \frac{m_{t}}{m_{s}} \lambda \qquad (2.9)$$

in which m_t and c_t are the values of m_0 and the chord at the extreme tip of the trapezoidal wing, and m_s and c_s are the corresponding values at the plane of symmetry. If the thickness does not taper linearly or if m_0 does not vary linearly with t/c, it is necessary to plot a curve of c m_0 along the semispan. On this plot draw a straight line to represent approximately a mean for this curve. On this straight line read the value of m_t , c_t at the tip and m_s , c_s at the centerline. Then the taper ratio of the equivalent wing is

$$\lambda' = \frac{m_t, c_t}{m_s, c_s} = \frac{m_t'}{m_s} \lambda \qquad (2.10)$$

(b) Calculate the aspect ratio of the actual

Action 1

wing, $A = b^2/s$.

(c) Calculate the aspect ratio for the equivalent square-tip wing,

$$A^{\dagger} = 2b/c_{S} \quad (1 + \lambda^{\dagger})$$

(d) Calculate the aspect ratio for the equivalent round-tip wing

$$A^{n} = A \quad \frac{(1 + \lambda)}{(1 + \lambda^{0})}$$

- (e) Calculate A"/ms and A'/ms
- (f) Calculate γ , the ratio of the mean tip length to length of semispan.
- (g) From Figures 2-1, 2-2 and 2-3 obtain the values of c_{ial} for the equivalent wing, using λ and A^{i}/m_{S} , for λ and A^{i}/m_{O} .
- (h) Calculate the values of c_{la} for the true chords by multiplying the values of c_{la} obtained above for the equivalent wing by the respective ratios of m_0/m_s .

$$c_{l_a} = c_{l'a_1} \frac{m_0}{m_s'}$$
; or $c_{l'a_1} \frac{m_0}{m_s}$ if $m_s' = m_s$ (2.11)

(i) If these values of c_{ia} are multiplied by the true chords of the wing, including those of the actual rounded tip, and integrated over the span and divided by the true wing area, the result is the wing lift coefficient which, if the tip were

not rounded and m_0 were constant, should equal 1.0. When the tips are rounded, or m_0 varies. along the span, however, the value of C_L will differ slightly from 1.0 and it is necessary to apply a correction to the c_{l_2} values to obtain the correct c_{l_3} values. The correction factor is found as follows:

$$c_{L'} = \frac{2}{5} \int_{0}^{b/2} c_{i_{a}} dy = \frac{2}{5} \int_{0}^{b/2} c_{i_{a_{1}}} \frac{m_{0}}{m'_{s}} dy (2.12)$$

The corrected relative values of c_l are found by dividing the values of c_{la} by c_{L} .

(j) The procedure for calculating the induced-drag distribution and the wing coefficients is the same as that of Section 2.1. Care must be taken to distinguish between the equivalent and actual wings, however. The slope of the lift curve for the equivalent wing is given by

$$m' = \frac{m_{s}^{t}}{1 + \frac{m_{s}^{t}}{\pi \Lambda^{W}} (1 + \tau^{t})}$$
 (2.13)

in which τ' is the value of τ obtained from Figure 2-4 for λ and A''/m_S of the equivalent wing with proper rounding. Then for the actual wing

$$m = m'$$
 $\frac{S''}{S} = m'$ $\frac{A}{A''} = m'$ $\frac{(1 + \lambda')}{(1 + \lambda)}$ (2.14)

and, as before,

$$C_{L} = m \alpha_{e} \qquad (2.7)$$

(k) The induced-drag coefficient is given as usual by

$$C_{D_{\underline{1}}} = \frac{C_{\underline{1}} \mathcal{Z}}{\pi A} (1 + \sigma) \qquad (2.8)$$

where A is the aspect ratio of the actual wing while σ is determined for the equivalent wing using λ' , A"/ms' and the ratio of tip length to semispan.

(1) Figure 2-6 gives the theoretical location of the lateral center of pressure as a fraction of the semispan for trapezoidal wings. These curves may be found useful for checking purposes. For wings with a varying m_0 , the characteristics λ' and Λ'/m_s' for the equivalent wing should be used with the curves.

2.3 Application of Empirical Tip Correction.

2.30 As previously mentioned, the theoretical lift distribution, whether obtained from these charts or by means of the general method, is not in good agreement with experiment in the region of the tips for rectangular wings or for wings with only a small amount of taper; although the disagreement is very much reduced if the tips are well rounded. In reference 14 Pearson has developed an empirical

correction based on a limited amount of test data which, when added to the theoretical lift distribution for the wing with square tip, serves to bring the calculated values into approximate agreement with experiment. Reference 14 has been used to prepare Figures 2-7 to 2-11 from which the lift increment to be added over the affected tip distance to the theoretical curve may be determined. affected tip distance was found by Pearson to be 40 per cent of the average wing chord determined by dividing the area by the span. The distribution of this $\triangle C_{\mathbf{L}}$ is given in Figure 2-7 where $\Delta c_{l,j}$ is plotted against per cent of affected tip distance and represents the actual values of the increment of section lift coefficient for a rectangular wing of aspect ratio 6 when the wing C_{L} = 1.0. The shape of this curve is independent of angle of attack or wing lift, aspect ratio, and taper ratio; although its magnitude depends on all three in accordance with Figures 2-8, 2-9 and 2-10, respectively. For a given wing, therefore, the lift coefficient increment at any section near the tip is Δc_{l_1} , from Figure 2-7, times F₁ F₂ F₃ from Figures 2-8, 2-9 and 2-10.

2.31 It should be particularly noted that this tip increment is centered near the trailing edge of the wing and its center of pressure--or aerodynamic center since it does not change with engle of attack--is given in per cent of the wing chord by Figure 2-11. In case it is desired to add

the increment section lift directly to the theoretical section lift and use only one aerodynamic center for the section, it can be done if an increment moment coefficient is also added to the basic moment coefficient for the section. This moment correction is given in reference 14, Figure 3b, or it may be computed.

2.32 For a wing with no twist, the theoretical lift distribution curve does not change in shape with angle of attack; which means that the section lift coefficient at any section for a given wing C_L can be found by multiplying the relative lift coefficient $c_{i\,a_1}$ for the section by C_L . If the ΔC_L also varied directly with C_L , the delta distribution could be added directly to the theoretical and the two treated as one, thereafter. Unfortunately, ΔC_L does not vary directly but more nearly as C_L^2 . In fact, the factor F_1 of Figure 2-8 is so nearly equal to C_L^2 , that the expression for the increment lift, instead of

$$\Delta c_l = F_1 F_2 F_3 \Delta c_{l_3}$$
 (2.15)

may be written for all practical purposes

$$\Delta c_l = C_L^2 F_2 F_3 \Delta c_{l_1} \qquad (2.16)$$

Because of this difference in the rate at which these two distributions vary with angle of attack, it is believed best to treat the tip increment as a separate and addition-

al load to be handled separately for each design condition. In this way the theory for determining \mathbb{C}_L and \mathbb{C}_{D_1} for any angle of attack may be used without regard for the tip correction. For any given angle of attack, therefore, the total lift on the wing is determined by

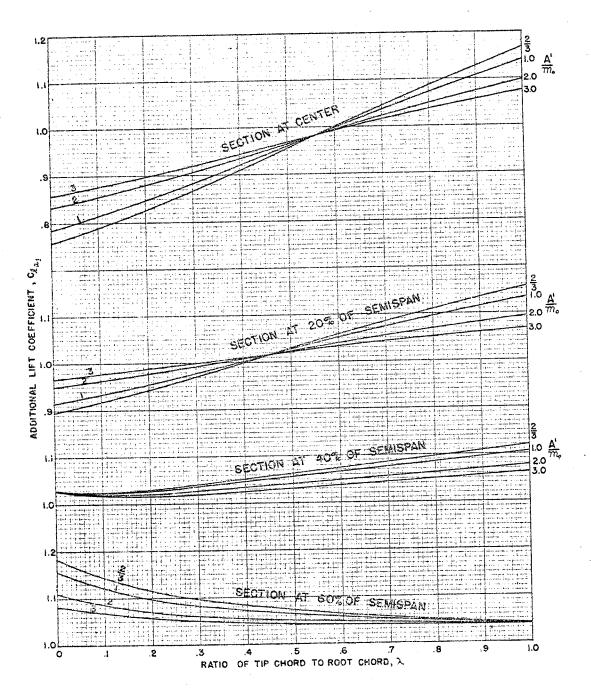
$$L = q S (C_L + \Delta C_L) \qquad (2.17)$$

in which S is the total wing area, $C_{\rm L}$ is the theoretical value for the given angle of attack and $\Delta C_{\rm L}$ is twice the load added to each wing tip expressed as a coefficient in terms of the total wing area, or

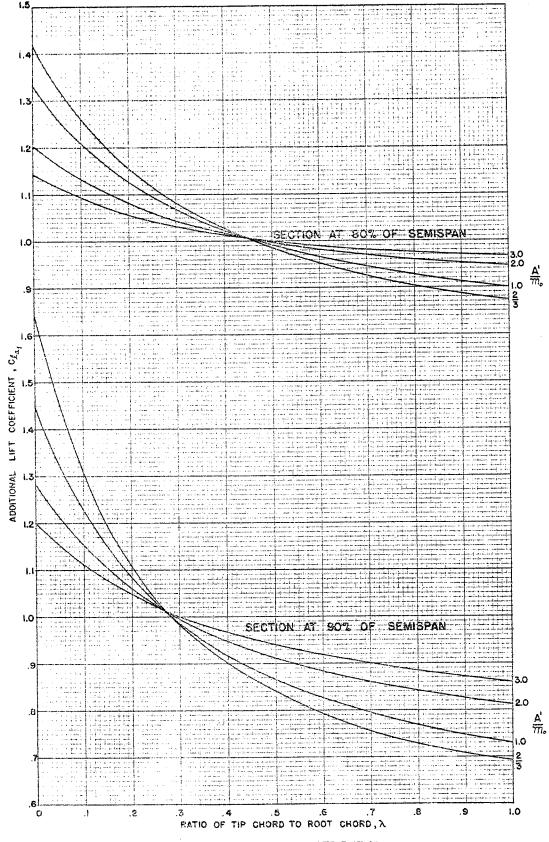
$$\Delta C_{L} = \frac{2}{5} \times F_{1} \times F_{2} \times F_{3}$$

$$y = \left(\frac{b}{2} - 0.4 \frac{s}{b}\right)$$

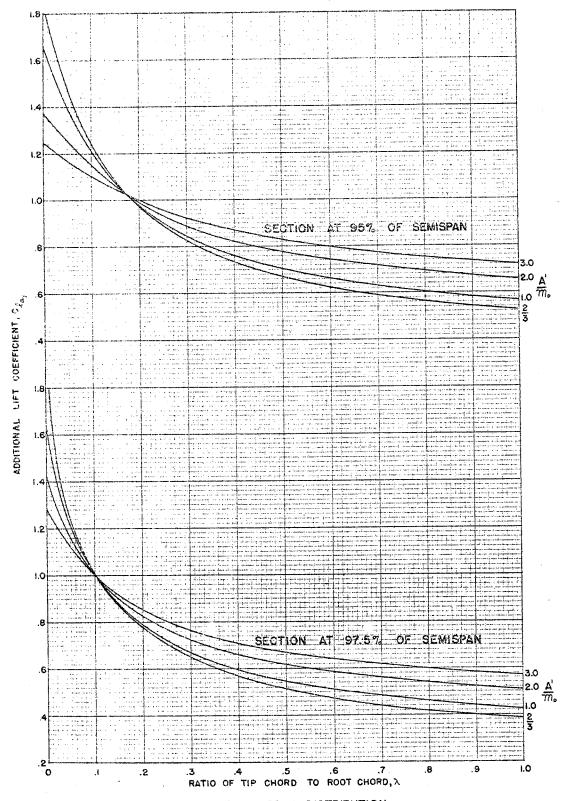
$$= \Delta C_{L_{1}} \times F_{1} = \Delta C_{L_{1}} \times C_{L}^{2} \text{ approx.} \qquad (2.18)$$


2.33 This empirical tip correction, when used, must be added to the theoretical distribution determined for a wing with square or trapezoidal tips, regardless of the actual shape of the tip. Since the curves, from which the distribution may be read directly, were calculated using square tips, the tip correction may be used in connection with them. When the taper ratio λ does not exceed about 0.5, the correction is so small as to be negligible in most cases, as can be seen by looking at Figure 2-10—and the theoretical values read from the curves may be used without correction. When the wing is such that the curves do not

apply and the general method must be used instead, it is necessary to know—if the wing has rounded tips—before starting the calculations whether or not the empirical tip corrections are to be applied. If the wing has sufficient taper or is otherwise of such a nature that it is decided not to apply the empirical tip correction, the true chords of the wing should be used. On the other hand, if it is intended to apply the correction, the chords of an extended square tip should be used in the general calculations instead, because the use of the true chords would tend to give too large a tip load after adding the correction.


2.34 For the usual cantilever monoplane with well rounded tip, the effect of the empirical tip correction is never large, because the percentage increase in bending moment produced at the root of such a wing by the additional tip load is, in most cases, small, even at high angles of attack. Under these conditions it is permissible to make conservative approximations that may save a considerable amount of work, such as calculating the tip load for a high lift coefficient and then allowing it to vary directly with C_L, instead of as C_L², by adding it directly to the theoretical lift for the corresponding angle of attack. If the wing is sensitive to torsional loads, however, it may be necessary to investigate, because whatever tip correction there is has a center of pressure well toward the trailing edge, thus producing a diving moment on the wing in the pos-

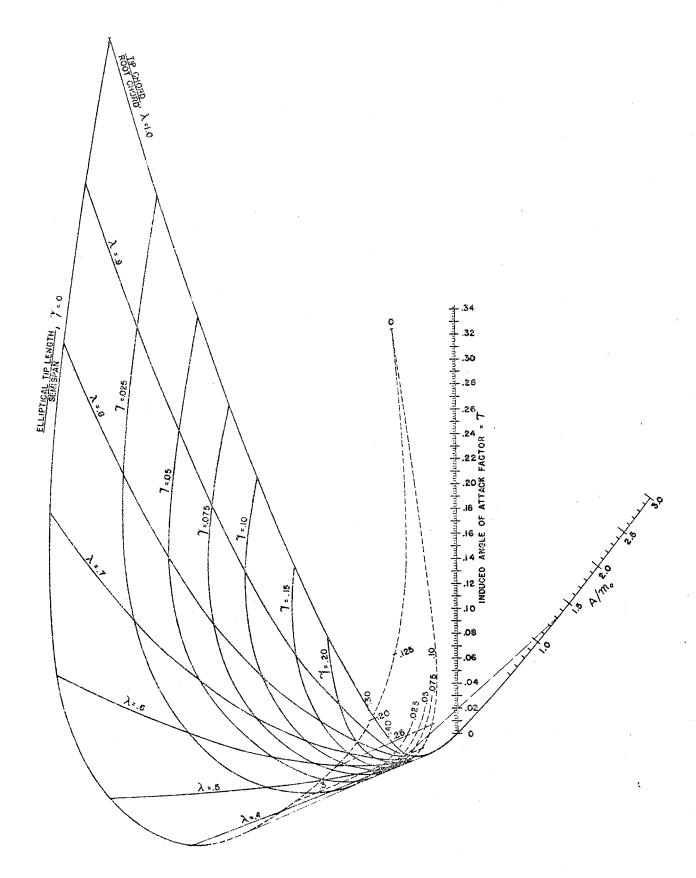
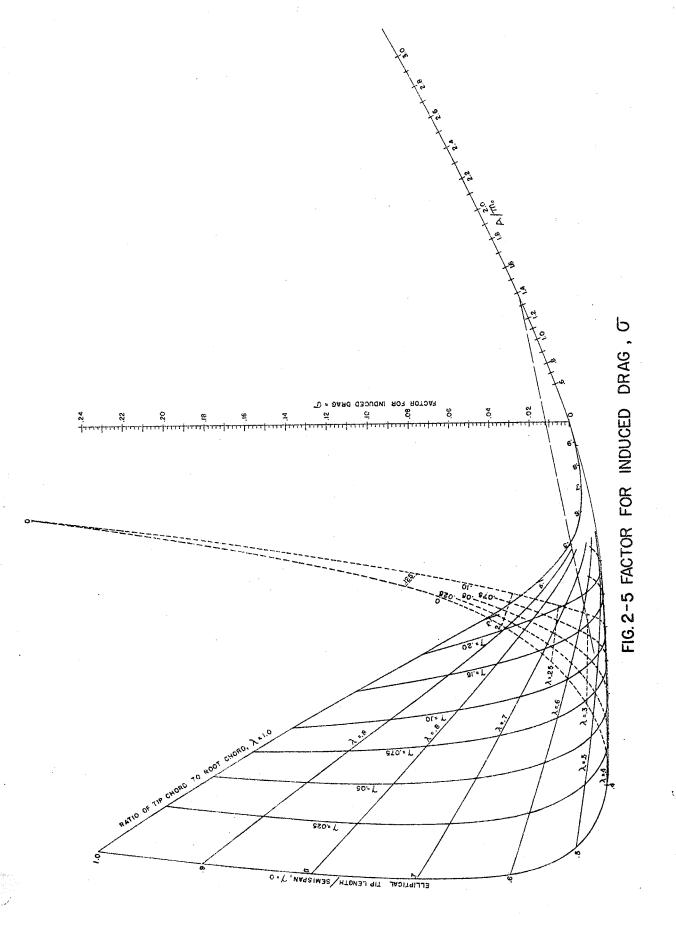
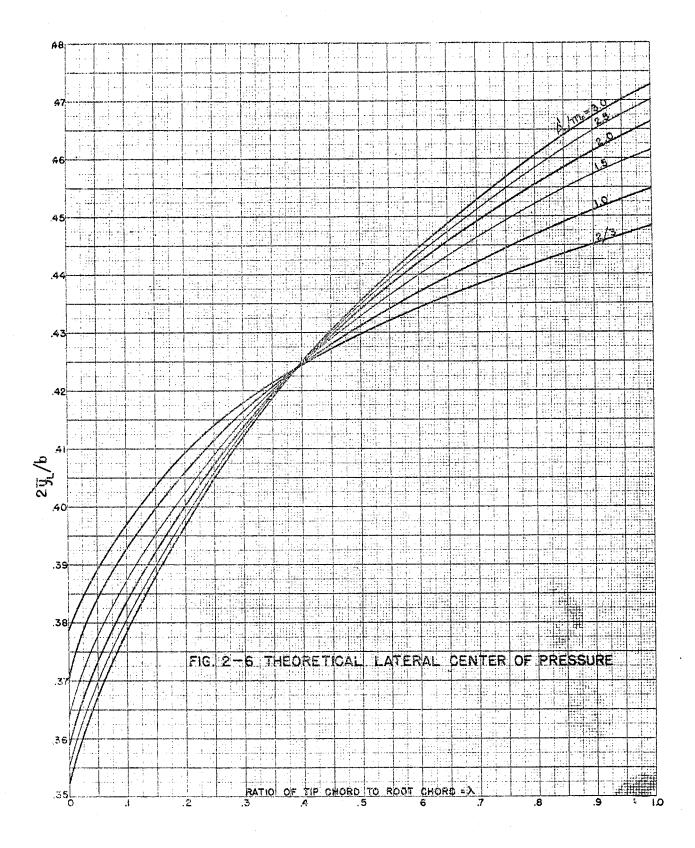
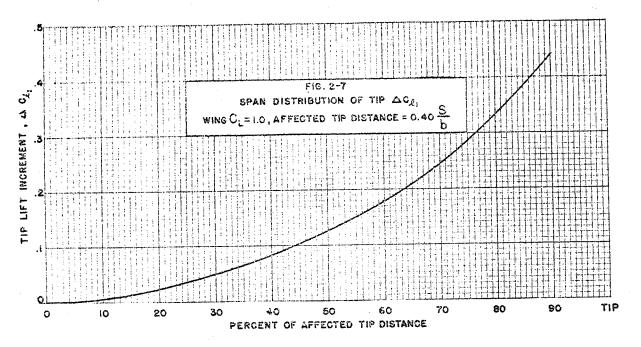
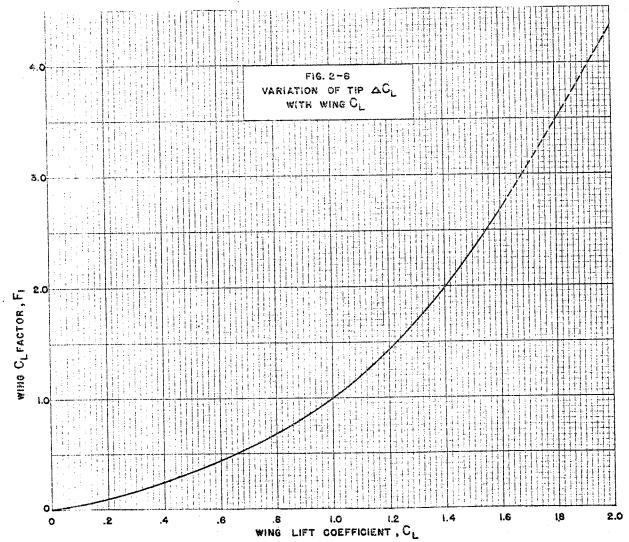
itive lift range. For semi-cantilever or braced monoplanes and for biplanes, the tip correction is much more important. This is especially true in the case of a straight biplane wing panel with two beam construction. In such a wing the extra load on the tip not only has a far greater percentage effect on the bending moment at the strut then on the root moment of a monoplane, but the center of pressure is such that all of the extra load, or even more, may fall on the rear beam. The addition of the tip load has been known to double the bending moment in the rear beam at the strut and also double the load in the rear interplane strut over the load from the theoretical distribution alone. Because of the small amount of experimental data available for the derivation of these empirical factors, it is essential that extreme caution be used in designs where the tip loading is critical. In the case of biplenes, a conservative method would be to design the general wing structure for the theoretical loading for square tips and then design the beams in the overhang, the interplane struts, and other parts affected, taking into account the empirical tip loading and being particularly conservative because of the uncertainties involved.

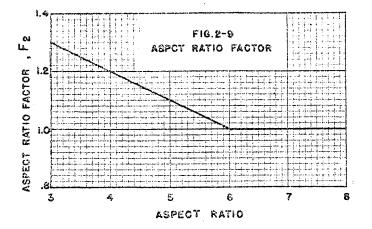

2.35 No mention has been made of the increase in drag caused by this empirical tip increment of lift. In most cases its effect would be small and it is believed conservative for the wing structure to neglect it. If desired, however, the tip increment may be assumed to act normal to the chord instead of to the line of flight, in which case there would be a component in the drag direction.

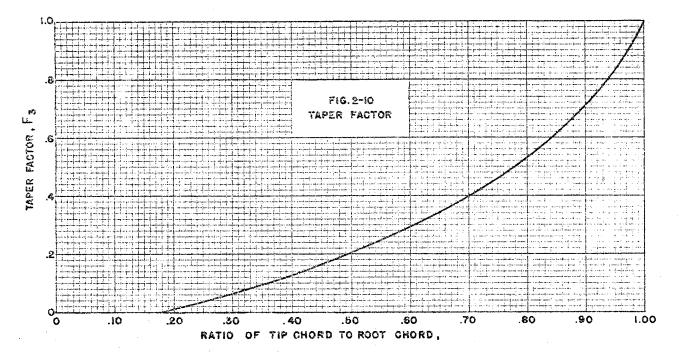
THEORETICAL SPAN DISTRIBUTION OF ADDITIONAL LIFT COEFFICIENT FIG. 2-1

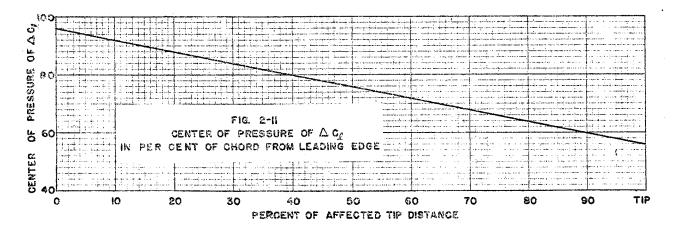
THEORETICAL SPAN DISTRIBUTION OF ADDITIONAL LIFT COEFFICIENT FIG. 2-2

THEORETICAL SPAN DISTRIBUTION
OF
ADDITIONAL LIFT COEFFICIENT
FIG. 2-3


FIG. 2-4 FACTOR FOR INDUCED ANGLE OF ATTACK, T





CHAPTER 3

GENERAL PROCEDURE FOR

CALCULATING LIFT AND INDUCED-DRAG DISTRIBUTIONS

FOR ANY SYMMETRICAL WING AT A

GIVEN ANGLE OF ATTACK

GEMERAL PROCEDURE FOR CALCULATING LIFT AND INDUCED-DRAG DISTRIBUTIONS FOR ANY SYMMETRICAL WING AT A GIVEN ANGLE OF ATTACK

- charts (Chapter 2) are not applicable, it is necessary to use the general method. The procedure which follows is for the purpose of calculating the theoretical span distribution of lift and induced-drag coefficients for any wing symmetrical about the center line for a given angle of attack. Chapter 4 will explain how to use this information to obtain the distributions for any angle of attack, and Chapter 5 will give the procedure for obtaining the basic distribution caused by an antisymmetrical distribution of angle of attack, such as that produced by displaced ailerons. The following method is illustrated by examples 2 and 3 in Chapter 7.
- 3.1 Table I Fill in Table I in accordance with the instructions of columns a and b. Extreme care should be used with this table, since there is no check on the work done here. In column a the numbers in circles represent line numbers which are made to designate the value in a particular column of a designated line by the use of a sub-number.
 - (1) Line 1 of this table gives the designa-

tions of the points along the span for which the coefficients are to be calculated.

- (2) Line 2 gives the cosines of the equally spaced angles listed in line 3 which determine the location of the points.
 - (3) Line 3 gives the angles, $\theta = \cos^{-1} 2y/b$
 - (4) Line 4 gives $\sin \theta$.
- (5) Line 5 gives the location of the points in inches from the centerline or plane of symmetry.
- (6) Line 6, the absolute angle of attack in radians will be the same for all points if the wing has no aerodynamic twist. For such wings it is convenient to use an angle of 1.0. If the wing has a flap of constant chord ratio extending over part of the span; so that the angle of attack has one constant value in this portion, which differs from the angle of attack of the remainder of the span, it is usually convenient to use an angle of 1.0 in the portion covered by the flap and zero for the remainder. In any case, this line should not be filled in without first reading Chapter 4 on the procedure for determining the distribution at any angle of attack, especially Section 4.25, if the wing has a part-span flap.
- (7) Line 7 is obtained by multiplying these values of angle of attack in line 6 by the values

of $\sin \theta$ in the respective columns of line 4.

- (8) Line 8 gives the maximum thickness of each section in inches.
- (9) Line 9 is the chord in inches at each point along the span. Note that when the tip correction is to be applied, the chords of the squared tip are to be used instead of those of the actual tip, if the tip is rounded.
- (10) Line 10 is the thickness ratio for use in determining the fundamental airfoil characteristics of the sections along the span.
- (11) Line 11 gives the slope of the lift curve per radian for infinite aspect ratio. This value is given per degree as ao under "Fundamental Section Characteristics" in all recent N.A.C.A. publications of airfoil characteristics. These values should be faired, when taken from a table, before using for a tapered wing. Diehl, in reference 10, gives a formula by means of which the approximate section slope may be determined for any normal section, which may be used when the information is not otherwise available. Expressed in radians, it is

$$m_0 = 2\pi - 4.0 \text{ (t/c)}$$
 (2.1)

where t/c is the thickness ratio of the section.

(12) Line 12 is the ratio of the slope of

the lift curve for the section at the plane of symmetry to the slope of the section at each point along the span.

- (13) Line 13 is the ratio of the chord at the plane of symmetry to the chord at each point slong the span.
- (14) Line 14 is the product of line 12 times line 13 times line 4.
- eters including total span, gross area, aspect ratio, average chord and taper ratio. It will be found convenient to list those items, which have dimensions, in both feet and inches. In cases where the tip correction is to be applied and the squared tip is being used in the calculations, all of these items involving S should be given, both for the actual wing and for the wing with squared tip.
- 3.2 Table II Fill in Table II in accordance with the following, except when the wine has no twist, in which case this table is not necessary:
 - (1) At the top of the page in the space indicated, copy the values from Table I, line 7, except that one-half the value given in Table I, column 0, is to be written under $y_0/2$. The full values in the other columns are to be copied

consecutively so that the subscript numbers of the y's immediately above the spaces are the same as the respective column numbers in Table I.

- (2) Compute r1 and r2 ss indicated.
- (3) Fill in all the spaces in the table which contain y's or r's as follows:
 - (a) For line 1, multiply .1564 by the values given at the top of the page for y9, -y3, -y7 and y1 and write the products in the respective spaces as indicated, being careful to use the proper signs.
 - (b) For line 2, multiply .3090 by the values given at the top of the page for y_8 and y_4 and fill in the four spaces.
 - (c) Fill in the next eight lines in the same way, using the correct multiplier given at the left of the table for each line, and using the values for r₁ and r₂ where indicated in the same way as the values for the y's are used.
 - (4) Total the columns and write the results in line 11.
 - (5) Obtain the sum of the values in line 11

for each of the five pairs of columns (a) and (b), and write the sums in line 12 in the respective columns (a).

- (6) Subtract each column (b) value from its preceding column (a) value in line 11, and write the results in line 13 under the respective columns (b).
- (7) Multiply the values in lines 12 and 13 by 0.4, or divide them by 2.5, and enter the results in line 14. These are double the values for the B_a coefficients as indicated in line 15.
- (8) Make the check indicated at the bottom of the page. An error is indicated if this fails to check exactly, but a perfect check does not necessarily mean that no error has been made, because an incorrect value may occur twice with different sign so as to cancel out when the sum is obtained. When the wing has no twist, all B_s coefficients except B₁ are zero and it is not necessary to fill in Table II.

3.3 Table III - Fill in Table III as follows:

(1) Fill in the spaces containing y's in lines 1 and 2, by copying the values from the respective columns of Table I, line 14; that is, y_1 is taken from column 1 of Table I, y_2 from column 2, and so on, while $y_0/2$ is one-

half the value given in column O.

- (2) Add lines 1 and 2, and write the sums in line 3 in the spaces containing v's.
- (3) Subtract line 2 from line 1, and write the results in line 4 in the spaces containing w's.
- (4) Copy the v's obtained in line 3 into the last three columns of lines 1 and 2 as designated.
- (5) Add the last three columns of lines 1 and 2, and write the sums in line 3 in the spaces containing p's.
- (6) Subtract the last three columns of line 2 from line 1, and write the results in line 4 in the spaces containing q's.
- (7) Line 5 contains column headings corresponding to the C_{2n} coefficients to be obtained in the respective columns below, the first column containing multipliers by which all values are multiplied before entering in the columns to the right.
- (8) Next fill in all the spaces to the right of the column of multipliers which contain w's, p's and q's as follows:
 - (a) For line 6, multiply .3090 by the values given in lines 3 and 4 for W4, Q2, P2, -W2, P1 and -Q1, and write the products in the respective spaces as indicated, being

careful to use the proper signs.

- (b) Fill in lines 7, 8, 9 and 10 in the same way, using the correct multiplier given at the left for each line.
- (c) It will be noted while filling in line 10 that the value for column 0 is the sum of all three p's, the value for column 20 is $(q_0 q_1 + q_2)$, while the value for column 10 is $w_0 w_2 + w_4$.
- (9) Total the columns and write the results in line 11.
- (10) Obtain the sum of the quantities in line ll for each of the two pairs of columns (a) and (b), and write the sums in line 12 in the respective columns (a).
- (11) Subtract each column (b) value from its preceding column (a) value in line 11, and write the results in line 13 under the respective columns (b).
- (12) Divide these values in lines 12 and 13, and all values in line 11 in those columns not headed by an a or b, by 5 (or multiply them by 0.2) and write the results in line 14. These are the values for the C_{22} coefficients as indicated in line 15, except C_{0} and C_{20} for which double their values are obtained.

- (13) The sum of all C_{2n} coefficients from C_{0} to C_{20} , both inclusive, should be zero. Failure to exactly equal zero indicates an error but, as in the case of the B_{n} coefficients, a perfect check does not necessarily mean that no error has been made. It should be noted that these C_{2n} coefficients are dependent only on the shape of the wing and the distribution of m_{0} , and are independent of angle of attack. In a twisted wing where at least two solutions are required, it is necessary to determine the C_{2n} coefficients only once.
- 3.4 Table IV In Table IV are listed and computed the constants necessary in solving for the A_n coefficients.
 - (1) The constant u_0 equals Table I, line 11, column 0, times Table I, line 9, column 0, divided by 4 times the full span of the wing in inches.
 - (2) The $2P_n$ values are next computed, using this value of u_0 and obtaining the values of $2C_0$, C_2 , C_6 , C_{10} , C_{14} and C_{18} from Table III, line 14.
 - (3) From the same source are taken the C_{2n} values for computing the items designated D to M inclusive.
- 3.5 Table V The general equations are given below and may be solved simultaneously for the $A_{\rm n}$ values, after sub-

stituting into the equations the values of constants given in Table IV and the values of $2B_{\rm h}$ from Table II.

$$2A_1$$
 P_1 + A_3 D + A_5 H + A_7 K + A_9 M = $2B_1$
 A_1 D + $2A_3$ P_3 + A_5 E + A_7 I + A_9 I = $2B_3$
 A_1 H + A_3 E + $2A_5$ P_5 + A_7 F + A_9 J = $2B_5$
 A_1 K + A_3 I + A_5 F + $2A_7$ P_7 + A_9 G = $2B_7$
 A_1 M + A_3 I + A_5 J + A_7 G + $2A_9$ P_9 = $2B_9$

The best way to solve these equations is by successive approximations. Since, for any normal wing, all the An coefficients are small with the exception of $A_{\mathbf{l}}$, an approximation can be quickly made by assuming them zero. By substituting the approximate value of Al thus obtained in the other equations, approximate values of the other coefficients are obtained which, when substituted in the first equation, results in a closer approximation for Al. A repetition results in closer approximations for all the coefficients. Table V is provided for a solution in this manner. This table is divided into 5 divisions of 7 lines, each division of which represents one of the five equations. Column 1 gives the operations required to obtain each coefficient when all the others are known. In column 2 should be listed the items D to M inclusive from Table IV, as called for in column 1. The values of $2B_n$ and $2P_n$ should be taken from Tables II and IV respectively, and entered in the spaces indicated. In column 3a are listed

the values of the Axcoefficients as first approximated. Since none are known at the start, A; is determined as though the others were all zero and listed in column 4a, line 7, and column 3a, lines 8, 15, 22 and 29. Az is next approximated in the same way, except that the value first found for A1 is used and the items listed in column 1 are evaluated in column 4a, where Az is listed in line 14 and in column 3a, lines 16, 23 and 30. A5, A7 and Ag are next approximated in order in the same manner, accomplishing the necessary operations in column 4a. After all the A. coefficients have been approximated in this way, they are written in column 3b, lines 1 to 4, and the whole process repeated, using the latest approximated value for each coefficient as it appears, and using columns 3b and 4b in the same manner that columns 3a and 4a were used in the first approximation. The values of An obtained in column 4b may be considered final, but the process may be repeated once more in columns 3c and 4c as a check. The most common error in solving these equations by this method is to misplace a decimal point and to carry the same error through each approximation.

3.6 <u>Table VI</u> - List in Table VI, column 1, the values of the A_π coefficients found from the solution of the equations. Calculate columns 2 and 3 as shown, and total the values in columns 2 and 3. Calculate the values of $C_{\rm L}$ and $C_{\rm Di}$ as shown. These represent the wing lift coefficient and wing

induced-drag coefficient for the angle of attack for which the calculations were made. For checking purposes, the lateral center of pressure of lift \overline{y}_L may be found as indicated.

3.7 Table VII - Fill in Table VII as follows:

- (1) Copy the values of the $A_{\mathbf{n}}$ coefficients into column a as indicated.
- (2) Fill in all columns of lines (8 12) by multiplying the A's by the proper sines, the values of which are listed above.
- (3) Enter the totals of these products in line 13.
- (4) Multiply each of the values in Table I, line 13, by the value in Table I, line 11, column 0, and enter the results in the respective columns of line 14.
- (5) Line 15, found by multiplying the values in line 13 by the respective values in line 14, gives the theoretical values of the section lift coefficient at the ten points along the semispan for this particular angle of attack when CL equals the value computed in Table VI.
- (6) In line 16 is copied the values of the section slopes from Table I.
- (7) The angles of attack are likewise entered in line 17 from Table I.

- (8) The effective angle of attack of each section is computed in line 18 by dividing the c_l values in line 15 by the respective values of m_0 in line 16.
- (9) The induced angle is found in line 19 by subtracting the effective angle from the absolute angle of attack.
- (10) Line 20 gives the theoretical values of the section induced-drag coefficient, the product of the induced angle times the lift coefficient, for this particular angle of attack.
- (11) The chords of the sections are copied in line 21 from Table I.
- (12) In line 22 the relative lift coefficients are found by dividing the c_l values of line 15 by the value of C_L found in Table VI. If the wing has no twist, so that the basic lift is zero at all sections, c_{l_1} equals $c_{l_{a_1}}$ and represents the lift coefficients when C_L = 1.0.
- (13) Line 23 represents the products of chord and section lift coefficient and, when plotted versus span, produces what is known as the span-loading curve. In cases where the wing has discontinuity in plan form as when cut-outs or a straight center section with tapered cuter panels are present, it is better to fair the span-loading curve

and then compute the $\mathbf{c}_{l\,1}$ values from this in the vicinity of the break. The \mathbf{c}_l curve is not necessarily a continuous curve in such cases.

- (14) Line 24 is computed for the purpose of a check as indicated below the table. It is simply a method of integrating the span-loading curve to obtain the value of C_L and comparing it with the value found in Table VI. The sum of all ten values in line 24 minus one-half the value in column 0 when multiplied by x and divided by 20 times the average chord should equal 1.0. This check may be accomplished graphically, if preferred.
- (15) In line 25 the relative induced-drag coefficients are found by dividing the c_{d_1} values in line 20 by the value of C_{D_1} found in Table VI. If the wing has no twist, these represent the section induced-drag coefficients when $C_{D_1}=1.0$.
- (16) The values in line 26 may be used for fairing, as described above for the lift.
- (17) Line 27 is used for the purpose of checking, in the same way that line 24 was used.
- (18) In cases where squared tips are used in the above calculations in anticipation of applying the tip correction, it is necessary to modify slightly the relative values of $c_{i,j}$ and

cdil before applying them to the wing with actual chords as was explained in Chapter 2. This can be most readily accomplished by using the actual chords in line 21 and the actual wing area in the checks at the bottom of the table. Instead of these integrations being checks in this case, they give the respective values of the factors by which c; and cdi must be divided to correct for the rounded tip.

TABLE 1. GEOMETRIC CHARACTERISTICS OF WING

	В	a	0		2	က	8	9	9		6	6	01
- W.	FRACTION SEMI-SPAN	800: 1	0	1564	.3090 4540		5878	ror.	0608	0168	.9511	.9877	00001
-		00	06	3	2	10 10	8	& 13	36	23	<u>∞</u>	ග	0
		O NIS	00000	2877	80 20 =	0168	0808	.707.	.5678	.4540	.3090 .1564	1504	0
	0 × 0	2)						ale i de la completa del la completa de la completa del la completa de la complet					
	ABSOLUTE IN PADIANS	α_a											
	(a) x	O SIN O	·			and the second s							
	MAXIMUM THICKNESS	4											
	CHOMO	O											
	6/8	+-jo						,					
3	02/da	TITO					·						
1	(1) (1)	ms/m											
12	(a) (a)	0/50											
4	((2)x(3) x (4)	(12)x(3) x 4 m2C SINO											A THE STATE OF THE
	. 0	5	1					CAVE.	$C_{AVE} = S/b$ =				
		V	" מ[פני					»					
			0							:			

TABLE II. COMPUTATION OF ANGLE COEFFICIENTS, \mathbf{B}_{π}

7.	70 m. C	45	lá .	19	i i i	u	<i>U</i> ;	L	U _E	46	47	48	79
į	TABLE	<u>.</u>	30/	~	3 (J 72	<u> </u>	~ ~ ~	<u> </u>				1
1	LINE	7						<u> </u>				<u> </u>	

	1 1 1	. id , t./ 197
1.5	57 + 59 = N. 30/2	/ - 9/ + 9a - /le
1 9 - 33 - 35 -	37 + 35 = 51, 30/4	
i	•	
¥	i	

	MULTI-	¥	<u>.</u> 9	3 -	17	5 -	15	7 -	13	9 -	
	PLIER	a	8	a	6	a	b	a	р	a	<u>d</u>
	.1564	59		- 53				- 47		91	
2	.3090		9 8		94				9 4		98
3	.4540	37		గ్రత				-4,		-33	
4	.5878		96		- 42				72		- y ₆
5	.7071	<i>9</i> 5		¥ <u>5</u>	C/Carpendadores	R:	b in the second	-55		<i>y</i> ₅	
6	.8090		94		ye			·	4g		94
7	.8910	り ፮	The state of the s	-5.	Parl and Delivery of the Parl and Delivery of			ყ ₉		-57	
8	.9511		¥2 <u></u>	1	Ye				-46		<u>- 52</u>
9	.9877	y,		<u> </u>	The Control of the Co			IJв		99	
0	1.0000		y ₀ /2	·	-50/2		Γί <u>α</u>		-50/2		y ₀ /2
11	TOTAL										
13	2+6		X		\times	·	\geq		\geq		\geq
13	a-5									\geq	
1/2	(12)% (3 2.5					The state of the s					
13	2 B 71	28,	2B ₁₉	283	28;7	295	28:5	287	2813	289	2811

CHECK: 28,-283+265-287+289-2811+2813-2815+2817-2819 = 2 % = 2 % = 2 %

NOTE: IF α_a is constant along the span, β_1 = α_S & β_3 To β_{19} are zero.

COMPUTATION OF PLAN FORM COEFFICIENTS, C2n.

TABLE IV CONSTANTS REQUIRED IN SOLUTION OF \mathbf{A}_{π} COEFFICIENTS

		l I
ITEM		,
UO	Ms Cs 4 b	
2 P ₁	200 - C2 + 2U0	
2P3	200 - 06 + 6 NO	
2 P5	200 - 010 + 10U0	
287	200 - 014+1400	
2 P 9	200 - C18 + 18 U0	
D	C ₂ - C ₄	
E	°2°−°8°	
F	c ₂ -c ₁₂	
G	C2 -C16	
H	C4 -C6	
	C4 -C10	
3	C4 -C14	
K	Ce -Ce	
L	C6-C12	
M	C8 -C10	

TABLE Σ . SOLUTION OF A_{η} COEFFICIENTS

[2	30	3 b	3 C	4a	4 b	4 C
	(C2 -C4)A3							
2	(C4 -C6)A5							
3	(C6 -C8)A7							
4	(Cg -CIO)Ag					-		
5	1+2+3-4							
6	28, - (5)	28; =		_				
7	A1 = 6 /2P;	2P1 =		_				<u></u>
			Į	1			<u> </u>	
8	(C2 -C4) A;			_				
9						-		
	(C4 -C10)A7					- <u>5</u>		
i .	(C ₆ -C ₁₂)A9		<u> </u>				-	
	8+9-10+11						+	-
	283- (2)		<u></u>				-	-
14	A3= (3)/2P3	2P3						
15	(C4 -C6) A1			•				
16	(C2 -C8) A3		- Control - Cont					
17	(C2 -C12) A7		to the second					
18	(C4 -C14) A9							
19	15+16+17+18)					<u> </u>	
20	285- (9)	285			· · · · · · · · · · · · · · · · · · ·			
2	A5 20/2P5	2 P5	F					
6	(C== C=) A:	<u> </u>						
-	(C ₆ - C ₈) A ₁		 -	-		_		
	6 (C4-G0) A3		+					
-	4 (C2-C12)A5	-			_			
i	5 (C ₂ -C ₁₆) A ₉ 6 (22)+(23)+(24)+(25)	9	<u> </u>					
-		287	. 					
	7 287 - 26 8 A ₇ 27/2P ₇							
-	0 27 67 217							
2	9 (C8 -C10) A1							
3	0 (C6-C12)A3					X LIGHT	<u> </u>	
3	(C4 -C14) A5					B.		
	C2-C16)A7		100					
[3	3 29+30+31+8	2						
· L	2 Bg - 33	289	, *					
_ [;	55 Ag* 34/2Pg	2P9	<u> </u>					

TABLE VI COMPUTATION OF WING LIFT AND DRAG COEFFICIENTS

	2	3
A, =	(A ₁) ² =	A ₁ /3 =
A ₃ =	3 (A ₃) ² =	A ₃ /5=
A ₅ =	5(A ₅) ² =	-A ₅ /21=
A ₇ =	$7(A_7)^2 =$	A ₇ /45=
A ₉ =	9(A ₉) ² =	-A ₉ /77=
	$\Sigma \pi A_{\eta}^2 =$	Σ =

$$1 + \sigma = \frac{\sum n A_n^2}{A_n^2} =$$

$$C_L = TI A U_0 A_1 = OR$$

$$\frac{TI m_S C_S}{4 C_{AVE}} A_1 = OR$$

$$C_{D_{\lambda}} = \left(\frac{1+\sigma}{\pi}\right)C_{L}^{2} = C_{D_{\lambda}} \cdot C_{L}^{2} = \frac{1+\sigma}{\pi}C_{D_{\lambda}} \cdot C_{L}^{2} = \frac{1+\sigma}{\pi}C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} = C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} = C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} = C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} = C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} \cdot C_{D_{\lambda}} = C_{D_{\lambda}} \cdot C_{D_{\lambda}}$$

COMPUTATION OF LOAD DISTRIBUTIONS

Cr	± **									CĽ₌		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a	Ь	0	ı	2	3	4	5	6	7	8	9
2	TABLE I	6	90	81	72	63	54	45	36	27	18	9
3	TABLE I	SIN 9	1.0000	.9677	.9511	.8910	.8090	.7071	.5278	.4540	.3090	.1564
4		SIN 30	-1.0000	8910	.5678	1564	.3090	.7071	.9511	.9877	.8090	.4540
5		SIN 50	1.0000	.7071	G	7071	-1.0000	7071	0	.7071	1.0000	.7071
6		SIN 79	-1.0000	4540	.5876	.9877	.3090	7071	-9511	1564	.8090	.8910
7		SIN 90	1.0000	.1564	9511	4540	.8090	.7071	5678	8910	.3090	.9877
8	AF	A,SIN 0										
9	A3°	A ₅ SIN 36										
10	A5°	A5SIN 50						ļ				
11	A7"	A7 SIN 70							<u> </u>			
12	A9=	A ₉ SIN 98									:	
13	(8)+(9)+(0)+(1)+(12)	∑A ₇₁ SIWn€)									
4	TARRET	mscs C										
15	(3) x (4)	c _L										
16	F1145 11	mo					<u> </u>	ļ	ļ	ļ	-	
17	TABLE I	αa										-
18	15/16	α,								<u> </u>		
15	17 - 18	A.								ļ		ļ.
2		C _{di} .										
2	TABLE I LINE 9	С						<u> </u>		-		
2	2 (15) / C _L	c _l ,				-						<u> </u>
2	5 (22) x (21)											
2		CC/, SIN 0										
2	5 20 / C _D	Cdi,										
2	6 (25) X (21) cc _{di}										
2	7 26 × 3	CC4 SIN 6	•									

CHECKS: $\frac{\pi}{20} \frac{b}{s} \sum_{c} c_{g} \sin \theta = \frac{\pi}{20 C_{AVE}} \left(\sum_{c} 24 - \frac{1}{2} 24 \right) = 1.0$ LINE 27: $\frac{\pi}{20} \frac{b}{s} \sum_{c} c_{g} \sin \theta = \frac{\pi}{20 C_{AVE}} \left(\sum_{c} 27 - \frac{1}{2} 27 \right) = 1.0$

CHAPTER 4

PROCEDURE FOR DETERMINING

THE LIFT AND INDUCED-DRAG DISTRIBUTION

FOR ANY ANGLE OF ATTACK.

PROCEDURE FOR DETERMINING THE LIFT AND INDUCED-DRAG DISTRIBUTIONS FOR ANY ANGLE OF ATTACK

4.0 General

- 1.00 Introduction A method has been outlined for calculating the lift and induced-drag distributions at a given angle of attack for any wing symmetrical, both in plan form and in angle of attack, about its centerline or X axis.

 The same method can be used, of course, to determine the distributions at any other angle of attack, but this is not usually necessary as will now be explained.
- can be divided into two parts called the basic-lift distribution and the additional-lift distribution. The basic is sometimes referred to as the zero-lift distribution because it represents the section lift coefficients along the span when the wing lift coefficient is zero. It depends only on the characteristics of the wing and is independent of the wing angle of attack, but is mostly affected by the distribution of angle of attack along the span. When the absolute angle of attack is constant along the span, which means that all zero-lift chords lie in the same plane or that the wing has no effective twist, the section basic-lift coefficients are all zero. The additional-lift coefficient distribution also depends on the characteristics of the wing including

the chords and section lift-curve slopes, but is independent of the twist or angle-of-attack distribution. Its shape is also independent of the wing angle of attack, but the section lift coefficient at any section is directly proportional to the wing angle of attack or to the wing lift coefficient. This can best be expressed in the form of an equation where the lift coefficient at any section for a wing lift coefficient of C_{Γ} is

$$c_{l} = c_{l_{D}} + C_{L} c_{l_{E_{1}}}$$
 (4.1)

where $c_{l\,b}$ is the lift coefficient which that particular section has when the wing lift C_L is zero and $c_{l\,a}$ is the additional lift coefficient which the section has when the wing lift coefficient C_L is l_*O_* .

4.02 Induced Drag - In a similar manner the distribution of induced-drag coefficient may be divided into partial distributions except that it is necessary to use three instead of two parts, as in the case of the lift. One part is constant or independent of angle of attack and represents the induced drag when the wing lift is zero; another part is directly proportional to the wing lift coefficient, while the third part is proportional to the square of the wing lift coefficient. When the wing has no effective twist, the first two distributions disappear and only the third part which varies as C_L^2 is present. This can also be expressed in equation form, where for a wing lift coefficient

of C_T the induced-drag coefficient at any section is

$$c_{d_i} = c_{d_{i_b}} + c_L \quad c_{d_{i_{a_1}b}} + c_L^2 \quad c_{d_{i_{a_1}}} \qquad (4.2)$$

where c_{dib} represents the induced-drag coefficient for this section when $C_L=0$, and c_{dial} represents the induced-drag coefficient at this section if the wing had no twist when $C_L=1.0$, while \dot{c}_{dialb} represents the part of the induced-drag coefficient that varies directly with C_L when $C_L=1.0$, and is caused by the interaction of the basic and additional lifts. The latter coefficient may be calculated by means of the formula

$$\frac{c_{\text{dial}}}{c_{l_{\text{al}}}} = \frac{c_{\text{dial}} \times c_{l_{\text{b}}}}{c_{l_{\text{al}}}} + \frac{c_{\text{dib}} \times c_{l_{\text{al}}}}{c_{l_{\text{b}}}}$$
(4.3)

4.03 Tip Correction - As explained in Chapter 2, certain wings require an empirical tip correction to be applied to the theoretical lift distribution to make it agree with experiment. This correction is calculated and applied in the same way whether the theoretical distribution is obtained by the general method or by the use of the curves and is fully described in Section 2.3. It must be remembered, however, that when using the general procedure, the correction must be applied to the theoretical distribution based on a wing with square tips.

4.1 Wings with no Effective Twist.

4.11 Lift - When the wing has no effective twist, all basic distributions are zero and drop out of the above ex-

pressions. The $c_{l\,l}$ in line 22 of Table VII then becomes $c_{l\,a_l}$ and the value of c_l for any of the ten points along the semispan can be found for any wing C_L by multiplying the value in line 22 by the desired C_L .

4.12 Induced Drag - The $c_{d_{\hat{1}_1}}$ in line 25 of Table VII represents the section values of the induced-drag coefficient when $C_{D_{\hat{1}}}$ for the wing is 1.0. To obtain the distribution of $c_{d_{\hat{1}}}$ or $c_{d_{\hat{1}_{a}}}$ for any given value of $C_{\hat{L}}$, it is first necessary to calculate the value of $C_{D_{\hat{1}}}$ by means of the formula from Table VI

$$c_{D_{1}} = \frac{c_{L}^{2}}{\pi A} (1 + \sigma) = c_{D_{1}a_{1}} c_{L}^{2}$$
 (4.4)

and then to multiply the values in line 25 by this C_{D_1} . An alternative and perhaps preferable method is to first obtain the distribution of $c_{d_{1}}$ by dividing the values of $c_{d_{1}}$ in line 20 of Table VII by the square of C_{L} in Table VI. It is then necessary, in order to obtain the $c_{d_{1}}$ distribution for any C_{L} , to simply multiply these values of $c_{d_{1}}$ by the desired value of C_{L}^{2} .

4.13 Angle of Attack - Before resolutions can be made into the planes of the wing structure, it is necessary to know the angle of attack at which the chosen design value of wing lift coefficient occurs. For the wing without twist, the slope of the lift curve for the wing is simply

$$m = \frac{C_L}{\alpha_a}$$
 per redian with α_a in radians (2.7)

or

$$a = \frac{m}{57.3}$$
 per degree

where $C_{\rm L}$ is the value of wing lift coefficient calculated in Table VI and α_a is the angle of attack used in line 6 of Table I (usually 1.0 radian). Since the usual expression for the slope of the lift curve for a finite wing in terms of the section slope is

$$m = \frac{m_0}{1 + \frac{m_0}{\pi \Delta} (1 + \tau)}$$
 (2.3)

it is well at this time to calculate the value of the induced-angle factor τ . Since the value of m_0 may vary along the span, it is only possible to do this in terms of the value at one particular section, and if the section at the plane of symmetry is chosen, the above formula becomes

$$m = \frac{m_{S}}{1 + \frac{m_{S}}{\pi A} (1 + \tau_{S})}$$
 (4.5)

and

$$(1 + \tau_S) = (m_S - m) \frac{\pi A}{m m_S}$$
 (4.6)

4.14 Example - The general procedure for this type of wing is illustrated by example 2 in Chapter 7.

4.2 Vings with Effective Twist.

4.20 Types of Twist - If the zero-lift chords of a wing are not all parallel, the wing is said to have effective twist. This twist may consist of any one or of any combination of the following:

(1) Symmetrical

- (a) A built-in twist, warp or washout in the wing which results in the zero-lift chords not being parallel.
- (b) A flap or other device extending symmetrically along only part of the span, the displacement or operation of which causes the zero-lift chords of that portion of the wing to be angularly displaced from their original position and from those of the remainder of the wing.
- (c) Ailerons or other lateral control devices which are drooped symmetrically to obtain increased lift and which in so doing cause the zero-lift chords of the wing to be angularly displaced.
- (d) Twist caused by the elastic deformation of the structure under load.
- (e) Ailerons which are differentially dis-

placed may be considered to be given a symmetrical displacement plus an anti-symmetrical displacement equal and opposite on the two sides. The symmetrical part may be treated similarly to item (c) above except that its action is intermittent.

(2) Antisymmetrical:

- (a) Twist caused by equal and opposite aileron displacement or the antisymmetrical portion of the displacement of differential ailerons.
- (b) Twist caused by roll or by an angular velocity of the airplane about an axis parallel to the direction of flight which causes the angle of attack to vary linearly between the center and the tip.
- (c) Gusts which impart a rolling acceleration are unsymmetrical and produce effective twist. Regardless of the spanwise distribution of such a gust, it can be divided into two separate distributions, one symmetrical and one antisymmetrical. The symmetrical portion may be further divided into a

twisted and an untwisted portion, either or both of which may be zero. If the gust were assumed to have a uniform gradient from tip to tip of the wing, the antisymmetrical distribution of lift and induced drag would be similar to that caused by a rolling velocity and there would be no effective symmetrical twist.

4.21 Procedure for Wing with a Single Symmetrical Twist

Introduction - When a wing has effective twist, the 4.210 basic distributions are no longer zero. In order to obtain the lift and induced-drag distributions at any wing lift coefficient for a wing having a single twist-or a combination of twists that may be treated as one-symmetrical about the centerline, the necessary unit distributions may be determined by following the procedure outlined below. This applies to a wing with built-in twist, as type 1(a), or to a wing with part-span flap or with drooped ailerons, as long as the distribution for only one flap or aileron angle is desired. It will be described in Section 4.23 how to use the results from these computations for one flap angle to determine the distribution for any other flap angle. The method is illustrated by example 3 of Chapter 7.

- 4.211 Preliminary Computations for Wing Without Twist The theoretical lift and induced-drag coefficient distributions are first found in the normal manner, using Tables (I-VII) for the subject wing, except that the wing is assumed to have no twist, and $\alpha_a = 1.0$ is used in line 6 of Table I for the entire span. As usual, when there is no twist, it is not necessary to compute Table II, because $B_1 = \alpha_a$ and all other B_a coefficients are zero.
- Preliminary Computations for Wing with Twist -Next repeat the above calculations except that this time the true angles of the wing are used. Any arbitrary angle of attack of the section at the plane of symmetry may be used, but where the effective twist is the result of a part-span flap, some work can be saved by using zero angle of attack for the portion of the span not covered by the In these computations it is necessary to fill in only lines 6 and 7 of Table I, since everything else in this table is the same as in the first computation. the wing has a part-span flap, Section 4.25 should be read before filling in line 6. Table II must be computed this time, but Tables III and IV do not need to be touched, because the C2n coefficients are independent of twist. The computations in Table V must be repeated using the new Bn coefficients and the same C's as before. Table VI is computed in the usual manner, but lines (16-20) and (25-27) of Table VII may be omitted for the twisted wing.

4.213 Table VIII - The distributions found in Table VII and the wing lift coefficients in Table VI for the two cases, one the untwisted wing and one the twisted wing, furnish sufficient information for obtaining the various unit distributions which is accomplished in Table VIII as follows:

- (1) The column numbers in line 1 correspond to the same numbers in Tables I and VII and serve to identify the span locations at which the section coefficients are determined.
- (2) Line 2 is copied from Table VII, line 22, for the untwisted wing and represents the additional-lift coefficient, c_{la} , distribution when $C_{\rm L}=1.0$.
- (3) Line 3 is copied from Table VII, line 15, for the twisted wing and represents the distribution of total lift coefficient for the actual wing for the particular angle of attack and flap angle used in the computations. In this table the presence of (T) after C_L or after a table number indicates the twisted wing, while its absence indicates the normal or untwisted wing.
- (4) Line 4 is obtained by multiplying the values of c_{l} in line 2 by the value of C_{L} found in Table VI for the twisted wing and represents

the additional part of the total distribution given in line 3.

- (5) Line 5 is obtained by subtracting line 4 from line 3 and represents the distribution of the basic-lift coefficient for the subject wing with the twist used in the computations.
- (6) Line 6 is copied from Table I, line 11, and represents the section lift-curve slopes.
- (7) Line 7 is copied from Table I, line 6, for the twisted wing and represents the absolute angles of attack for the sections as used in the twisted wing calculations.
- (8) Line 8 contains the absolute angles of attack when the wing $C_{\rm L}=0$, and is obtained by subtracting from the values in line 7 the constant angle obtained by dividing the value of $C_{\rm L}$ from Table VI for the twisted wing by the slope of the wing lift curve which is equal to $C_{\rm L}$ for the untwisted wing at an angle of attack of one radian.
- (9) Line 9 is obtained by dividing each value in line 5 by the corresponding value in line 6 and represents the effective angles of attack when $C_{\rm L}=0$.
- (10) Line 10 is obtained by subtracting line 9 from line 8 and represents the downwash or in-

duced angles when $C_L = 0$.

- (11) Line 11 is obtained by multiplying the values in line 5 by the corresponding values in line 10 and represents the distribution of the basic induced-drag coefficient for the subject wing with the twist used in the computations.
- (12) Line 12 is copied from Table VII, line 20, for the untwisted wing and represents the induced-drag coefficient distribution for the untwisted wing at the particular angle of attack used in the computations (1 radian).
- (13) Line 13 is obtained by dividing line 12 by the square of C_L found in Table VI for the untwisted wing and represents the distribution of that portion of the induced drag which varies with C_L^2 when $C_L=1.0$.
- (14) Line 14 is obtained by dividing the values in line 5 by the corresponding values in line 2.
- (15) Line 15 is obtained by multiplying the values in line 13 by the corresponding values in line 14.
- (16) Line 16 is obtained by dividing the values in line 11 by the corresponding values in line 14.
 - (17) Line 17 is the sum of lines 15 and 16

and represents that portion of the induced-drag distribution which varies directly with $C_{\rm L}$, when $C_{\rm T}$ = 1.0.

- (18) Line 18 is already filled in.
- (19) Line 19 is copied from Table I, line 9.
- (20) Line 20 is obtained by multiplying the values in line 11 by the corresponding values in line 19.
- (21) Line 21 is obtained by multiplying the values in line 18 by the corresponding values in line 20.
- (22) Line 22 is obtained by multiplying the values in line 17 by the corresponding values in line 19.
- (23) Line 23 is obtained by multiplying the values in line 18 by the corresponding values in line 22.
- (24) At the bottom of the table, the values of the wing coefficients $C_{\mbox{Dib}}$ and $C_{\mbox{Dialb}}$ are found by integrating lines 21 and 23.
- (25) A check on these values is then obtained by using Equation 4.10 to compute the total wing induced-drag coefficient for this wing at the value of wing lift coefficient found in Table VI for the twisted wing and comparing it with the value of CD; previously computed in this Table VI.

4.214 Total Distributions - Equations 4.1 and 4.2 may now be used in connection with Table VIII to find the total distribution of lift and induced-drag coefficients for the subject wing at any CL. The total section lift coefficient at any of the ten points along the semispan is

$$c_l = \text{Line } (5) + C_L \times \text{Line } (2)$$
 (4.7)

and the total section induced-drag coefficient is likewise c_{d_1} = Line (ll) + c_L x Line (l7) + c_L^2 x Line (l3) (4.8) where the values are taken from the lines of Table VIII indicated, for the column corresponding to the span location for which the section coefficients are desired.

4.215 Wing Coefficients - The slope of the lift curve for the wing is independent of twist as long as the respective section slopes along the span are the same in all cases. (Paragraph 4.252). The computations for the untwisted wing at an angle of attack of one radian, therefore, serve to furnish the lift-curve slope, since the wing C_L found in Table VI is equal to m as long as α_a is one radian. The value of τ is also independent of twist and is given in terms of mo for the section at the plane of symmetry by

$$(1 + \tau_S) = (m_S - m) \frac{\pi A}{m m_S}$$
 (4.6)

which is the same as given previously for an untwisted wing. In order to determine the wing lift coefficient for

a given angle of attack, it is not only necessary to know the lift-curve slope, but in the case of the twisted wing, the angle of attack for zero lift also must be known. This is found in Table VIII, line 8. If the absolute angle of attack of the section at the plane of symmetry be represented by $\alpha_{\rm S}$ for a condition for which it is desired to know $C_{\rm L}$, and $\alpha_{\rm S_O}$ be used to represent the angle of attack of this section when $C_{\rm L}=0$, as listed in Table VIII, line 8, column 0, then

$$C_{L} = m (\alpha_{S} - \alpha_{S_{O}}) \qquad (4.9)$$

The induced-drag coefficient for the wing for this value of $C_{\rm L}$ can be found by

$$C_{D_{i}} = C_{D_{ib}} + C_{L} C_{D_{ialb}} + C_{L}^{2} C_{D_{ial}}$$
 (4.10)

where C_{Dib} represents the basic induced-drag coefficient and C_{Dialb} represents the portion of the induced drag caused by the interaction of the basic and additional lifts when $C_{\text{L}} = 1.0$, both found at the bottom of Table VIII by integrating the respective distributions over the semispan, and $C_{\text{Dial}} = \frac{(1+\sigma)}{\pi A}$ for the untwisted wing found in Table VI.

TABLE VIII COMPUTATION OF UNIT LOAD DISTRIBUTIONS SINGLE SYMMETRICAL TWIST

C	<u> </u>								CL	= M=		
6	a	Ь	0	à	2	3	4,	5	6	7	8	9
2	TABLE VII LINE 22	Clai										
3	TABLEWI(T)	c ℓ									:	
4	② × C _{L(T)}	Cya										
5	3-4	c _{lb}				· · · · · · · · · · · · · · · · · · ·						
6	Table I Line II	m,								-		
7	LINE (I TABLE I (T) LINE 6	ofC=			· · · · · · · · · · · · · · · · · · ·			1				
8	(7)-C _{L7} /m	αૂ(C _L * ο)										
9	5/6	α.					-					
10	8-9	W V										
11	(5) x (10)	C _{dib}										
12	Table VII Line 20	Caj										
Č.3	15 / C5	تطنم						-				
14	3/2	C, / C,										
15	(13) x (14)	Cdia Cla. Cdia Cla. Cdia Cla.							:			
16	11/14	Cdi & Cla.		•								
17	(15) + (16)	Cdianh										
18		SIN 0	1.0000	.9877	.9511	.8910	.8090	.7071	.5878	.4540	.3090	.1564
19	TABLE I LINE 9	C .										
20	(I) × (19	CC _{d,i,b}										
21	(16) x (20)	CC41 SING										
22	(7) x (19)	CCdia,b										
23	(18) × (22)	CC _{die,b} SIN 0										

LINE 21:
$$\frac{\pi}{20} \frac{b}{S} \sum_{cc_{d_{i_b}}} \sin \theta = \frac{\pi}{200} \left(\sum_{ave} \left(\sum_{cl} - \frac{1}{2} \cdot 2l\right)_{o}\right) = C_{D_{i_b}} = \frac{1}{2} \cdot \frac{1}{2}$$

LINE 23:
$$\frac{\pi}{20} \frac{b}{S} \sum_{a,b} cc_{d_{2}a,b} = \frac{\pi}{20C_{AVE}} \left(\sum_{a,b} (23) - \frac{1}{2} (23)_{a} \right) = C_{D_{2}a,b}$$

UHECK:
$$C_{D_{i}} = C_{D_{i}_{b}} + C_{D_{i}_{a,b}} C_{L(T)} + C_{D_{i}_{a,i}} C_{L(T)}^{2} =$$

4.22 Procedure for Wing with a Single Antisymmetrical Twist.

Introduction - It was explained in Chapter 3 how to compute the section lift and induced-drag coefficients for a given angle of attack for any wing, twisted or untwisted, as long as it is symmetrical about the centerline. It has been explained in this chapter how to use the results of Chapter 3 to determine the distributions for this type of wing for any angle of attack or wing lift coefficient. The consideration of a wing, which has a twist unsymmetrical about the centerline, has so far been omitted in order to avoid confusion. It was shown in Chapter 3 that for a symmetrical wing only the odd Bn and An coefficients appear in the computations. In an unsymmetrical wing, both odd and even coefficients would ordinarily occur and considerably lengthen the computations. In a wing with unsymmetrical twist, however, the distribution of angle of attack can always be divided into one that is symmetrical and one that is antisymmetrical; by which is meant one having equal and opposite angles on the two sides, as explained under type (2) in Paragraph 4.20. Separate computations can then be made for each, the former involving only the odd coefficients and the latter only the even. The general procedure for computing the antisymmetrical distributions is given in Chapter

5 and, although the method is similar to that of Chapter 3 for the symmetrical case, most of the tables are modified and the computations must always be made for zero angle of attack at the center, in order to completely eliminate symmetrical loading and resultant wing lift. Examples 4 and 5 of Chapter 7 include computations for antisymmetrical twist. The procedure described in the following paragraph is for a wing having no other twist except the antisymmetrical twist under consideration. The procedure when one or more other twists, symmetrical or antisymmetrical, are present is described in Section 4.24.

2 or antisymmetrical twist is not far different from the regular procedure for a twisted wing as described in Section 4.21. The computations are first made for the wing without twist for an angle of attack of one radian, as before. The second set of computations, which in the other procedure could be made for the twisted wing for any convenient angle of attack, must be made in this case for zero angle of attack at the center for which the wing CL is zero. These computations are made in accordance with Chapter 5, using Tables II-A, IV-A, V-A, VI-A and VII-A in place of Tables II, IV, V, VI and VII. While in the case of symmetrical twist Table VIII was recuired to find all

the basic distributions, in this case $c_{l\,b}$ and $c_{d\,i\,b}$ are found directly in Table VII-A. Table VIII-A is, therefore, needed only to determine $c_{d\,i\,a\,l\,b}$ which is accomplished in a manner similar to that of Table VIII. In this case, however, $c_{d\,i\,a\,l\,b}$ is equal and opposite on the two semiwings and it is this which produces the induced yawing moment. The yawing moment coefficient for $C_L=1$ is found at the bottom of the table by integration. By comparing it with its value found in Table VI-A a check is obtained for the work in Table VIII-A.

UNIT LOAD DISTRIBUTIONS ANTI-SYMMETRICAL

											- 1			
6										3090				
æ					The same of the sa				promp. No. (problem) cycles (DRS)	.5878			A PARTIE AND A PAR	
7					A SUCCESSION OF THE PROPERTY OF				A PLANTAGE AND A PLAN	0808				
9					TO ALL PROPERTY OF THE PARTY OF					11 39.			The second secon	
5					A CANADA PARTIES AND A CANADA					00001			A PARTIE AND THE PROPERTY OF T	
4					The state of the s					951				
8					. Company of the company of					.8090 9511				
2										3090 5878	·			
-										.3090			j	
9	Seb.	Cha,	يون م	C _d ;	Cala	$c_{\ell_b}/c_{\ell_{a_i}}$	Cix G. / Cpa,	C,x C, / C,	Calia, b	SIN 20	O	C Cdia,b	CC,×SIN20	
В	TABLE XIIA	TABLE VII	TABLE VIIIA	TABLE VIII	$(5)/C_{L}^{2}$	(2)/(3)		(4)/(7)	6 4 6		TABLE I LINE 9	(IO × (I2)	(I) × (I3)	and the section of th
_	2	100	ব	က	တ	~	ထ	တ	2	=	2	5	4	اَر

- 4,23 Procedure for Wing with Variable Twist - It has now been explained how to obtain for any angle of attack the distributions for any wing with symmetrical (Section 4.21) or antisymmetrical (Section 4.22) twist. case of a flap or aileron, however, it may be desirable to know the distributions for several different flap These can, of course, be found by repeating the angles. above calculations for each flap angle, but this is not necessary. After the basic distributions have been found for any one flap angle, they may be found for any other flap angle in the manner described below. The same method applies to any type of twist as long as the relative distribution of absolute angle of attack along the span remains the same.
 - (a) Let (kδ)₁ represent the change in zerolift angle from neutral flap condition at any one section as used in the computations for the original flap displacement. (See Section 4.25).
 - (b) Let (k8)2 represent the change in zerolift angle from neutral flap condition at the same section caused by the second flap displacement for which the distributions are desired.
 - (c) Let subscript 1 refer to all coefficients as computed for the original

flap displacement and subscript 2 refer to the coefficients which it is desired to find for the second flap displacement.

(d) Then

$$c_{l_{b_2}} = c_{l_{b_1}} \frac{(k\delta)_2}{(k\delta)_1}$$
 (4.11)

$$c_{\tilde{a}_{\hat{b}_{\mathcal{Z}}}} = c_{\tilde{a}_{\hat{b}_{1}}} \left[\frac{(k\delta)_{\mathcal{Z}}}{(k\delta)_{1}} \right]^{\mathcal{Z}}$$
 (4.12)

$$c_{\text{dia}_{1}b_{2}} = c_{\text{dia}_{1}b_{1}} \frac{(k\delta)_{2}}{(k\delta)_{1}}$$
 (4.13)

new
$$c_{l} = c_{lb_{l}} \frac{(k\delta)_{2}}{(k\delta)_{1}} + c_{L} c_{la_{l}}$$
 (4.14)

new $c_{d_{i}} = c_{d_{ib_{l}}} \left[\frac{(k\delta)_{2}}{(k\delta)_{1}} \right]^{2} + c_{L} c_{d_{ia_{l}b_{l}}} \frac{(k\delta)_{2}}{(k\delta)_{1}}$
 $+ c_{L}^{2} c_{d_{ia_{l}}}$ (4.15)

new $c_{D_{i}} = c_{D_{ib}} \left[\frac{(k\delta)_{2}}{(k\delta)_{1}} \right]^{2} + c_{L} c_{D_{ia_{l}b_{l}}} \frac{(k\delta)_{2}}{(k\delta)_{1}}$
 $+ c_{L}^{2} c_{D_{ia_{l}}}$ (4.16)

(e) It should be noted that the amount of flap displacement has no effect on the additional distributions. The angle of zero

lift is, however, changed so that for a given angle of attack of the reference section, $\alpha_{\mathbf{S}}$

$$C_{L} = m \left[\alpha_{s} - \alpha_{s_{o_{1}}} \frac{(k\delta)_{2}}{(k\delta)_{1}} \right]$$
 (4.17)

where α_{SO_1} is the angle of attack of this section for zero wing lift with the original flap displacement. This requires that the values of m_0 remain constant for varying amounts of flap displacement.

- (f) The above procedure is also based on the assumption that the relative distribution of $k\delta$ along the span remains the same with changing flap angle.
- (g) Where $k\delta$ is constant along the span of the flap, it is best to let $k\delta = 1$ radian for the initial computations which causes $(k\delta)_1$ to drop out of the above equations.

4.24 Procedure for Wing with Multiple Twist.

Introduction - One procedure has now been given for 4.240 a wing with one symmetrical twist (Section 4.21) and another procedure for a wing with one antisymmetrical twist (Section 4.22). Any number of these twists may exist simultaneously and, as long as they are added together to form one composite fixed twist, the above procedure may be usedprovided they are all symmetrical or all antisymmetrical. Where several types exist, however, some of which may vary or some vanish entirely under certain conditions, it will be found convenient to obtain basic distributions for each type of twist separately as though the others did not exist, and it is a necessity where some of the twist is symmetrical and some antisymmetrical. The procedure is the same as before. The first step is to make complete computations for the wing without twist in order to obtain the additional distributions. Then one additional computation must be made for each of the twists in accordance with the procedures previously outlined. A basic distribution of lift and induced drag is thus found for each type of twist, each one of which may be modified to take care of other degrees of the same type of twist, if desired. The section lift at any point of the span can then be found by simple addition, but the induced-drag coefficient is not so simple, because there is not only interaction between the additional and each basic distribution, but there is

also interaction between the various basic distributions.

4.241 Section Coefficients - Expressions are given below for a wing lift coefficient C_L for the section lift and induced-drag coefficients for a wing with three different twists, the basic coefficients for each being designated by sub-numbers 1, 2 and 3, respectively. From the general form of these equations it can be readily seen how to expand them to include any number of individual twists. The twists may be either symmetrical or antisymmetrical, or both.

$$c_{l} = (c_{lb_{1}} + c_{lb_{2}} + c_{lb_{3}}) + C_{L} c_{la_{1}}$$

$$c_{di} = \begin{bmatrix} c_{dib_{1}} + c_{dib_{2}} + c_{dib_{3}} \end{bmatrix} + \begin{bmatrix} c_{dib_{2}} \\ c_{lb_{2}} \end{bmatrix} + \frac{c_{dib_{3}}}{c_{lb_{3}}} \end{bmatrix} c_{lb_{1}} + \begin{bmatrix} c_{dib_{2}} \\ c_{lb_{2}} \end{bmatrix} + \frac{c_{dib_{3}}}{c_{lb_{3}}} \end{bmatrix} c_{lb_{1}} + \begin{bmatrix} c_{dib_{1}} \\ c_{lb_{1}} \end{bmatrix} + \frac{c_{dib_{2}}}{c_{lb_{2}}} \end{bmatrix} c_{lb_{3}} + \begin{bmatrix} c_{dib_{2}} \\ c_{lb_{2}} \end{bmatrix} c_{lb_{3}} \end{bmatrix} + C_{L} \begin{bmatrix} c_{dib_{1}} \\ c_{lb_{1}} \end{bmatrix} + \frac{c_{dib_{2}}}{c_{lb_{2}}} + \frac{c_{dib_{3}}}{c_{lb_{3}}} \end{bmatrix} c_{la_{1}} + \frac{c_{dia_{1}}}{c_{la_{1}}} (c_{lb_{1}} + c_{lb_{2}} + c_{lb_{3}}) \end{bmatrix} + C_{L}^{2} c_{dia_{1}}$$

$$+ \frac{c_{dia_{1}}}{c_{la_{1}}} (c_{lb_{1}} + c_{lb_{2}} + c_{lb_{2}} + c_{lb_{3}}) \end{bmatrix} + C_{L}^{2} c_{dia_{1}}$$

$$+ c_{L}^{2} c_{dia_{1}} (c_{lb_{1}} + c_{lb_{2}} + c_{lb_{3}}) + c_{L}^{2} c_{dia_{1}} (c_{lb_{1}} + c_{lb_{2}} + c_{lb_{3}})$$

This may be written -

$$c_{d_{1}} = \left(\sum_{l_{b}}^{c_{d_{1}b}}\right) \left(\sum_{l_{b}}^{c_{l_{b}}}\right) + C_{L} \left(\sum_{l_{b}}^{c_{d_{1}b}}\right)^{c_{l_{a_{1}}}} + \left(\sum_{l_{b}}^{c_{l_{b}}}\right)^{c_{l_{a_{1}}}} + C_{L}^{2} \quad c_{d_{1}a_{1}}$$

$$+ \left(\sum_{l_{b}}^{c_{l_{b}}}\right) \quad c_{d_{1}a_{1}}^{c_{l_{a_{1}}}} + C_{L}^{2} \quad c_{d_{1}a_{1}} \quad (4.20)$$

where

$$\sum_{\substack{c_{i_b} \\ c_{i_b}}}^{c_{d_{i_b}}} = \frac{c_{d_{i_b}}}{c_{i_{b_1}}} + \frac{c_{d_{i_b}}}{c_{i_{b_2}}} + \frac{c_{d_{i_b}}}{c_{i_{b_3}}}$$

and

$$\sum c_{lb} = c_{lb_1} + c_{lb_2} + c_{lb_3}$$

The similarity between this formula and Equation 4.2 for a simple twist should be noted. When Equation 4.20 is used it is necessary to know the values of $c_{l\,b}$ and $c_{d\,i_b}$ for each of the individual twists, but it is not necessary to know the individual values of $c_{d\,i_a\,b}$. When these have been calculated, however, in Tables VIII and VIII-A, they may be used, if Equation 4.20 is written as follows:

$$c_{d_{i}} = \left(\sum_{\substack{c_{d_{i}b} \\ c_{i}b}}\right)\left(\sum_{l_{b}}c_{l_{b}}\right) + c_{L}\left(\sum_{\substack{c_{d_{i}a_{l}b} \\ c_{l}b}}\right) + c_{L}^{2} \quad c_{d_{i}a_{l}} \quad (4.21)$$

in which

$$\sum_{\substack{c_{d_{ia_1b_1}} = c_{d_{ia_1b_1}} + c_{d_{ia_1b_2}} + c_{d_{ia_1b_3}}}$$

It is seen that, when the individual values of cdib are known, it is a rather simple matter to compute the cd;

values for any composite twist. It may be found more convenient in some cases, however, to omit all induced-drag computations until the lift distribution is found for each design condition. The distribution of total induced-drag coefficient can then be found for each design condition by using a form similar to lines 15 to 20 inclusive of Table VII, and filling line 15 with the distribution of total section lift coefficient as determined for each design condition. This latter method is almost a necessity when any part of the effective twist is caused by unsymmetrical air flow, such as occurs during a roll.

4.242 Wing Coefficient - The relation between wing CL and angle of attack is found, as before, by using the sum of the zero-lift angles of attack in place of one, as

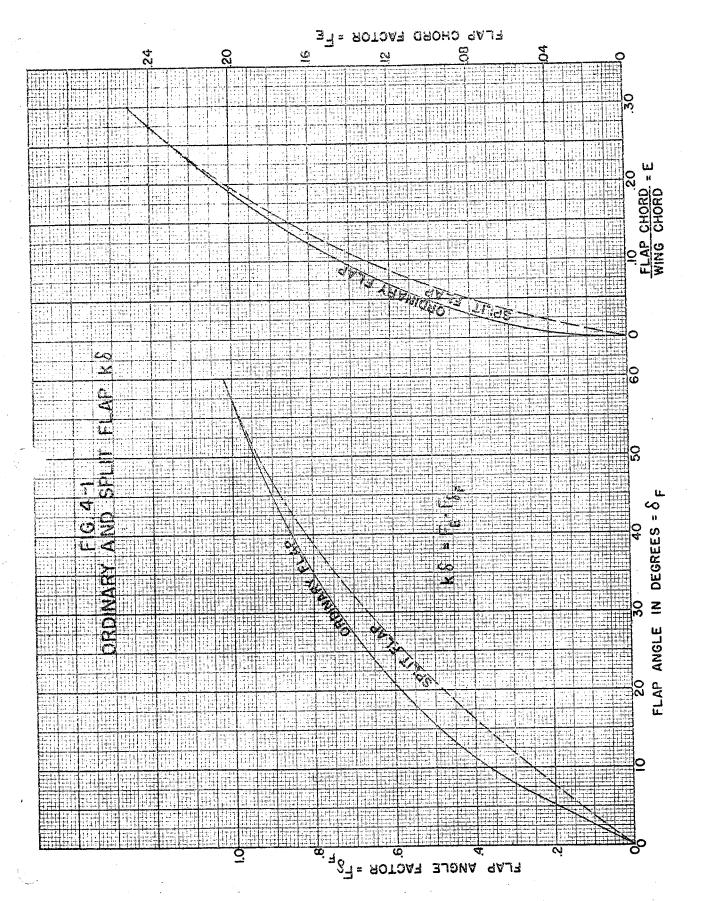
$$C_{L} = m \left[\alpha_{s} - \left(\alpha_{so_{1}} + \alpha_{so_{2}} + \alpha_{so_{3}} \right) \right] \qquad (4.22)$$

where, as before, α_s is the angle of attack of the reference section for which it is desired to know C_L , and $\alpha_{s_{O_1}}$, $\alpha_{s_{O_2}}$, and $\alpha_{s_{O_3}}$ are the respective angles of the same section when C_T = 0 for each twist separately.

Examples - The application of this method to a wing having two twists, one symmetrical and one antisymmetrical, is illustrated in example 4 of Chapter 7. The antisymmetrical twist caused by roll requires special treatment that is best described by means of an example. Example 5 has been added, therefore, to illustrate the combination of roll with two other twists.

4.25 Value of k8 for Flaps and Ailerons.

4.250 Several references have been made to this Section as giving an explanation of the angle of attack to use in Table I, line 6, when it is desired to compute the distribution for a wing with a part-span flap in operation, or when the antisymmetrical distribution from displaced ailerons is wanted. It has been explained that when E, the ratio of flap chord to wing chord, is constant along the span of the flep, it is most convenient to assume an angle of attack of zero for the portion of the span without flap, and one radian for the portion covered by the flap. Before the distribution can be found for any given flap angle δ , it is necessary to know the absolute angle of attack for the section with this particular flap displaced to this angle. The change in this angle produced by the flap displacement is usually expressed as ko, where k is theoretically a function of the chord ratio E only, but actually varies with δ as well. Furthermore, when E varies with span, it is necessary to know how ko varies with E before Table I, line 6, can be filled in. In this case when the angle of attack of the section without flap is taken as zero, the angles of attack for the points covered by the flap may be taken as ko directly or some reference section may be chosen as having one radian and the other sections taken in proportion.


4.251 The angle k8 may be taken from N.A.C.A. reports which include tables of "Fundamental Section Characteristics", as the difference between α_{lo} for the basic wing section and α_{lo} for the same section with flap displaced, and the result divided by 57.3 in order to change to radians. Where wind tunnel tests are available of a rectangular wing with the flap extending over the full span, the value k8 is readily determined as the number of degrees between the intercepts at zero lift of the C_L vs. α curves for the wing with flap and the wing without flap, respectively, divided by 57.3. If the two curves are not quite straight, they should be approximated by straight lines before reading the intercepts on the zero-lift line.

4.252 Where no information of this type is available, the value of k8 for ordinary or plain flaps and for simple split flaps may be estimated by means of the curves in Figure 4-1 which were prepared from the data in reference 13. Most of the tests on which reference 13 is based were made with wings having a thickness ratio of about 12 percent. As pointed out in reference 16, there is a tendency for the effectiveness of flaps to increase slightly with the thickness of the section. No account of this has been taken in preparing Figure 4-1, as the approximate nature of the curves scarcely warrants such refinement. These curves give reasonable results when there is no leakage at the hinge. The effectiveness, and consequently the value

of ko, is considerably reduced when there is a leakage slot at the hinge, as shown by Figure 11 of reference 17. These curves should not be used for other types of flaps, such as the slotted, external airfoil and Fowler. Most of these have the property of producing an equivalent kδ with a relatively smaller displacement. When the value of ko is obtained from Figure 4-1, the value of mo for the section with flap should be assumed to be the same as for the basic section. When obtaining ko from other sources, however, or when using other types of flaps, it is necessary to consider also the value of mo and if it differs appreciably from that for the basic section, it should be used in the computations. In general, the displacement of an ordinary flap does not change mo, while moderate displacements of a split flap usually cause mo to increase. Flaps which have the effect of increasing the chord, such as the Fowler, may be handled as though the chord remained constant and mo increased. In cases where it is necessary to use different values of mo for flaps open and closed, it is necessary also to make a separate additionallift computation for use when the flaps are open. Otherwise, the normal distribution for an untwisted wing with flaps closed can be used as the additional distribution for flaps open.

4.253 When filling in Table I, line 6, if the end of the

flap or aileron happens to fall midway between two of the ten points on the semispan, the angle of attack for one point is zero while that of the next point is ko for that section with displaced flap. When the end of the flap coincides with one of the ten points, the value of the angle of attack should be taken as one-half the value of ko at this point. When the end of the flap falls at any other location between two points, the value of the angle of attack at the nearer point should be modified by interpolation, using the angles rather than the linear distances in the interpolation. This is an approximation that seems sufficiently accurate in most cases. It really amounts to replacing a portion of the flap near the end by an equivalent portion of less effectiveness, but with greater length so that the total lift is kept the same. The distribution of coefficients near the flap end is made less abrupt and a slight error in the rolling moment also results. Where greater accuracy is desired, a system using more points should be used, such as that given in reference 9.

CHAPTER 5

PROCEDURE FOR CALCULATING

LIFT AND INDUCED-DRAG DISTRIBUTION FOR

ANTISYMMETRICAL LOADING ONLY

PROCEDURE FOR CALCULATING LIFT AND INDUCED-DRAG DISTRIBUTIONS FOR ANTISYMMETRICAL LOADING ONLY

5.0 General

- 5.00 Introduction The computations described herein must be made in connection with Section 4.22 of the preceding chapter. Since the distributions caused by ailerons or by roll may be considered as auxiliary loadings, it has been thought best to postpone, in so far as possible, all material concerning antisymmetrical loading until the procedure for symmetrical loading has been completed. Section 4.22 was included in the preceding chapter because Sections 4.23, 4.24 and 4.25 apply equally well to both types.
- 5.01 Scope The purpose of this chapter is to outline the method for obtaining the basic-lift and basic-induced-drag distributions for antisymmetrical loading, or for type 2 twist of Section 4.20. The procedure is almost identical with that given in Chapter 3 for symmetrical loading. In the case of symmetrical loading, only the odd B_n and A_n coefficients appear in the computations, while only the even coefficients occur in the antisymmetrical calculations. The main difference in the two cases is that the computations for symmetrical loading may be made for any angle of attack, because both basic and additional distributions are symmetrical. The computations for anti-

symmetrical loading, on the other hand, must be made for zero angle of attack at the plane of symmetry in order to eliminate all additional distribution. Furthermore, the wing must have no symmetrical twist-or, if it does, it must be assumed zero for the purpose of these calculationsin order to eliminate all symmetrical basic distributions. Only in this way can the odd coefficients be kept zero. There is the advantage that when the antisymmetrical lift and induced-drag distributions are obtained, they are basic and can be combined directly with other distributions in accordance with the procedure of Section 4,22, case of symmetrical loading this is not possible, because the angle of attack for zero lift is not known until after the computations of Chapter 3 have been completed. VIII of Section 4.21 is, therefore, required in order to determine the basic distributions. Table VIII-A of Section 4.22 on the other hand, is required only for the purpose of determining cdialb. The procedure of this chapter is illustrated in examples 4 and 5 of Chapter 7.

5.1 Table I - Table I will probably have been used for computing the symmetrical case previously in Chapter 3. It will, therefore, be necessary to fill in only lines 6 and 7 for this condition as all other lines remain the same. This assumes the same value for m_0 for the respective sections in the two cases.

- (a) If the effect of displaced ailerons is desired, the angle of attack of the inboard portion of the wing should be taken as zero and that for the aileron portion as ko where ko represents the change in zero-lift angle at any section produced by displacing the aileron. If the ratio of the chord of the aileron to the wing chord is constant over the span of the aileron, kô may be assumed constant and equal to one radian for this initial calculation, the distributions then being modified later to take care of any desired aileron In any case, line 6 should not be filled angle. in without first reading Section 4.25 which explains how to determine the value of ko for a wing section with flap. (See example 4 of Chapter 7).
- (b) If the damping characteristics in roll are desired, the wing may be assumed to have a linear twist from an angle of attack of zero at the center to positive and negative maximums at the respective wing tips. The magnitude of the angle of attack depends on the ratio of the angular velocity in roll to the forward velocity of the airplane. Any convenient angle of attack, such as one radian at the tip, may be used in these calculations. How to modify the results to make them applicable for any value of this

angle-which may be expressed as p'b/2V in which p' is the angular velocity in roll about the wind axis-was explained in Section 4.23. Tables I and II-A are not needed for this calculation because 2B2 = p'b/2V and all other B's are zero. and c_{d_1} distributions determined for the wing with an assumed twist are not in the correct direction for computing the damping and yawing moments, but must be resolved before they can be combined with other distributions. This is more fully explained in example 5 of Chapter 7. For small values of p'b/2V the error in rolling moment in assuming \mathbf{c}_l and $c_{\mbox{\scriptsize d}\,\mbox{\scriptsize $\mathring{\scriptsize {\scriptsize 1}}$}}$ obtained in these calculations to be normal and parallel, respectively, to the line of flight is small but the error in yawing moment is too large to neglect.

5.2 <u>Table II-A</u> - Table II-A should next be filled in for the purpose of obtaining the B_n coefficients, which in the antisymmetrical case are all even. The y's are obtained from Table I, line 7, as in the symmetrical case, except that yo is always zero. It will be noted that this table is quite similar to Table III for obtaining the C2n coefficients. It is impossible to obtain one check that includes all the B's, but the use of two checks is a help in locating the error in case one equation checks while

the other does not.

- 5.3 <u>Table III</u> The C_{2n} coefficients are obtained from Table III and are the same as for the symmetrical case, since they depend only on the plan form and the values of m_0 for the sections.
- 5.4 <u>Table IV-A</u> The constants required for the solution of the A_n coefficients are tabulated in Table IV-A. This is very similar to Table IV and is self-explanatory.
- 5.5 <u>Table V-A</u> The general equations for solving for the A_n coefficients may be obtained from those given in Section 3.5 for the symmetrical case by adding one to each sub-number, the various known constants being taken from Table IV-A instead of from IV and the $2B_n$'s from Table II-A instead of from II. In solving these equations, Table V-A is used in place of Table V which results in the values for the even A_n coefficients. The procedure is the same as for the symmetrical case.
- 5.6 Table VI-A Table VI-A is somewhat similar to Table VI for the symmetrical case. Since the total lift on the wing is zero, the expression is given for the lift coefficient on half the wing. The induced-drag coefficient is correct for the total wing when there is no symmetrical lift present. Note that the rolling moment about the wind exis is C_l qbS and depends on A_2 in the same way that the

lift depended on A_1 in the symmetrical case. Columns 1 and 5 have been added to this table in order to provide a check for cd_{ia_1b} to be calculated later in Table VIII-A. The odd A_n coefficients in column 1 are found by dividing the A's found for the wing without twist by the value of C_L corresponding to these A's; or, in other words, the A's in column 1 are the correct values for the wing without twist when $C_L = 1.0$. Then the yawing moment coefficient C_n ', found by using the sum of column 5, when multiplied by qbS gives the induced yawing moment for this particular antisymmetrical twist when the wing lift coefficient $C_L = 1.0$. The value is directly proportional to the amount of twist and to C_L . It cannot be used for a wing that has also a symmetrical twist, except to check the values of $cd_{ia,b}$, as explained in Paragraph 4.221.

5.7 <u>Table VII-A</u> - Table VII-A is used for obtaining the distributions in the same way that Table VII was used for symmetrical loading. In this case line 15 gives the distribution of the basic-lift coefficient for the particular distribution of angle of attack used in Table I, and line 20 gives the distribution of basic-induced-drag coefficient for the same condition. It should be noted that while c_{lb} is positive on one wing and negative on the other, resulting in zero wing lift, the induced drag coefficient cdib, on the other hand, is positive and equal on each semiwing,

because $c_{l\,\,\mathrm{b}}$ and $\mathrm{w/V}$ usually have the same sign. does not mean, however, that, when an antisymmetrical distribution is combined with a symmetrical loading, the induced drag for the combination is symmetrical and there is no yawing moment; because the part of the induced drag produced by the interaction of the two distributions is antisymmetrical. (See Paragraph 4.221). Line 23 is used as a check similar to the way line 24 was used as a check for the symmetrical case, except that sin 20 is used as a multiplier instead of $\sin \theta$ and the check is against the rolling-moment coefficient instead of the lift coefficient. This is done below the table where the rolling-moment coefficient is taken from Table VI-A. Line 26 is used to check the value of the wing induced-drag coefficient found in Table VI-A, and if a check of the lift on one semiwing is desired, it may be found in a similar manner using \mathbf{c}_{l} b in place of cdin. If the rolling moment checks, however, it is proof that the values of $\mathbf{c}_{l,h}$ are correct in so far as the computations in this table are concerned.

TABLE II A COMPUTATION OF ANGLE COEFFICIENTS, B_n ANTI-SYMMETRICAL

ì	TABLE I	y ₉	y _e	97	y ₆	y ₅
2	LINE?	$ \mathcal{G}_{i} $	y ₂	43	54	
3	1+2	V	V ₂	٧ ₃	Va	V ₅
4	① - ②	W	W ₂	w ₃	W4	
	MULTI-	2 - 18	4 - 10		14 8 -	12

	MULTI-	2 -	- 18	라 -	8 673	6 -	1 3	(4)	- 12	
	PLIER	a	Ь	a	6	a	6	a	Ь	10
6	.3090	Y,			·	₩3				
7	.5878		٧z	W.	W4		-V4	- W3	W2	
පි	.8090	V ₃				A,				
9	.9511		V ₄	W3	Wz		V ₂	W,	-Wa	-
- N	1.0000	V ₅				-V ₅			-	V, -V3+ V5
8 6	TOTAL									
12	а+ь									
15	а-ь	><		>						·
14	(2) k (3) 2.5									
15		282	28 ₁₈	284	2816	2B ₆	2814	288	2B ₁₂	2810

CHECKS:

TABLE WA

CONSTANTS REQUIRED IN SOLUTION OF AT COEFFICIENTS

TEM		AN	TI-SYMMETRICAL
Uo	Ms Cs		
2P2	2C ₀ -	C4 + 4U0	
294	2C ₀ -	c ₈ + su ₀	
226	2C _O -	C ₁₂ + 12 U _O	
2P8	2C ⁰ -	C16+16U0	
2P10	2C _O -	c ₂₀ *20U ₀	
D	C2	-c ₆	
E	c ₂		
F	C2	_	
G	c ₂	- c ₁₈	:
H	C ₄		
ŧ	C4	- c ₁₂	
J	C4		
К	c ₆	- c ₁₀	
L		- CH	
М	cs	- C ₁₂	

TABLE VA SOLUTION OF Am COEFFICIENTS ANTI-SYMMETRICAL

	ANTI-SYMMETRICAL									
	ı	2	за	3 b	3 C	40	4 b	4C		
i	(C2 -C6) A4									
2	(C4-C8)A6									
3	(C6 -C10)A8									
4	(C8 -C12)A10									
5	1+2+3+4							:		
ε	282 - 3	2 B ₂ =		-						
7	A2 6 / 2P2	2 P2 =		_						
G	(C2 -C6) A2			T			Ï			
9	(C2 -C10)A6									
10					 					
11	i									
—	(3 ¢ 9 + (0 ÷ (1)	 	<u> </u>		J.,					
13		28**								
l	A4= (3) / 2P4					-	1			
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	8	7	1	1	1	1		
15			<u> </u>	ļ			ļ			
16	(C2 -C10) A4							<u> </u>		
17	1,1,1									
	(C4-C16)A10			<u> </u>						
19	(S+16+17+18)					-	ļ			
20		286	s			-	1			
21	A6" @ /2P6	2P6	-							
22	(C6-C10)A2	•								
23	i i									
	(C2-C14)A6									
-	(C2 -C18)A10		a parties of							
	22+23+20+25		Б	<u> </u>						
27		288	8				İ			
	As = 27 / 2P8	2P6								
	· · · · · · · · · · · · · · · · · · ·				1	ī	1	1		
29		·	Dept.		-	-	-			
30	1					. [-			
3	+	·····	-		 	1		+-:		
32		 	1							
	29+39+31+32 			····		-				
34	+	2 B ₁₀				-				
35	A10=34 / 2P10	2P10	<u> </u>							

TABLE VI A SEMI-WING LIFT AND DRAG COEFFICIENTS ANTI-SYMMETRICAL

l	2	3	4	5
ODD CIRCULATION			•	3A, A2 =
CONSTANTS FOR NO TWIST & C. = 1.0			\$	5A ₂ A ₃ =
-	, 			7A3A4 =
				9A4A5 =
A _i =	A ₂ =	2(A ₂) ²	2 A2 =	IIA5A6 =
A3 =	A4*	4(A4)2	- 4 A4 =	13A8A7 =
Ag =	A6 *	6(A ₆) ² =	<u> </u>	15A7A8 =
A, =	A _g =	8(A _e) ²	- 8 A 8 E 10 A 10 B A 10 B	17A ₈ A ₉ =
A ₈ =	Aio "	10(A ₁₀) ²	10 A₁0 ®	19A9A10 =
	· · · · · · · · · · · · · · · · · · ·	ΣπA ² =	Σ =	$\sum (271+1) A_{22} A_{22} =$

LIFT COEFFICIENT OF SEMI-WING, C_{L_b} 4A $U_0 \Sigma$ COL. 4 =

$$C_{D_{2_0}}$$
* $WAU_0^2 \sum mA_m^2$ *

YAWING MOMENT COEFFICIENT
$$\frac{C_n'}{C_L}$$
 YAWING MOMENT TIA $U_0' \sum (2\pi + 1) A_n A_{n+1}$

$$\overline{\mathcal{G}}_{L_b} = \left[\begin{array}{c|c} \hline \mathbf{1} & \mathbf{A_2} \\ \hline \mathbf{8} \ \Sigma \ \mathbf{col.} \ \mathbf{4} \end{array} \right] \underline{\mathbf{b}} = \mathbf{Col.} \mathbf{4} \underline{\mathbf{col.}} \mathbf{4} \mathbf{Col.}$$

TABLE VII A COMPUTATION OF LOAD DISTRIBUTIONS ANTI-SYMMETRICAL

1	a	Ь		2	3	4	5	6	7	8	Ø
2	TABLE I	6	81	72	63	54	45	36	27	18	9
3	LINE 3	SIN 20	.3090	.5878	.8090	.9511	1.0000	.9511	.8090	.5878	.3090
4		SIN 48	5878	9511	9511	5878	0	.5878	.9511	.9511	.5876
5		SIN 68	.8090	.9511	.3090	5678	-1.0000	-5876	.3090	.95! !	.8090
6		SIN 88	9511	5878	.5878	.9511	0	9511	5878	.5878	.9511
7		SIN 100	1.0000	0	-1.0000	0	1.0000	0	0000.1-	0	1.0000
8	A ₂ =	A2SIN 28									
9	A _G =	A4SIN 40									
10	Á6°	A 6 SIN 60									
11	A8=	A ₈ SIN 80									
12	A _{TO} =	AIO SIN 100									
13	(8) + (9) + (0) + (1) + (2)	ΣAηSIN76									
14	TARIET	m _S c _S									
15	(3) X (4)	C _{Lb}									
16	La I NEL	$m_{\mathfrak{s}}$				<u> </u>		-			
17	TABLE I	a							<u> </u>		
18	(B) / (6)	α,									
19	(7) - (8)	₩ ∨									
20		Cdib									
2	FINE 3	C						<u> </u>		<u> </u>	<u> </u>
22	20 x 15	CCLb								-	
23	22 x 3	CC/bSIN 26									
24		SIN 6	.9877	.9511	.8910	.8090	7071	.5878	.4540	.3090	.1564
	5 20 × 21									ļ	-
20	5 25 x 24	CCdiSIN 8									

LINE 26: $\frac{\pi}{20} \frac{b}{S} \sum_{CC_{a,b}} \sin \theta = \frac{\pi}{20} \left(\sum_{AVE} \left(\sum_{C} e^{\frac{b}{2}}\right) = C_{D,b}$

LINE 23: $C_{\ell}' = \frac{\text{ROLLING MOM.}}{\text{qb S}} = \frac{\pi}{4} \text{Au}_0 \text{A}_2 = \frac{\pi}{80} \frac{\text{b}}{\text{S}} \sum \text{cc}_{\ell_b} \sin 2\theta = \frac{\pi}{80} C_{\text{AVE}} \left(\sum_{\ell=0}^{23}\right)$

CHAPTER 6

OTHER SECTION COEFFICIENTS

OTHER SECTION COEFFICIENTS

6.1 Profile Drag.

6.10 Division of Profile Drag - The section profile-drag coefficient c_{d_O} may be divided into minimum profile-drag coefficient $c_{d_{Omin}}$, which is independent of the section lift, and an additional profile-drag coefficient $\triangle c_{d_O}$ which is a function of the lift coefficient.

6.11 Minimum Profile Drag.

6.110 The value of c_{domin} for any section may be assumed to be independent of the location of the section and independent of the lift which the section has. It does depend on the smoothness of the wing surface and on the effective Reynolds Number. Its value for aerodynamically smooth wings can be found under "Fundamental Section Characteristics" in all recent N.A.C.A. publications, such as reference 15. A formula is given in reference 18 by means of which c_{domin} may be estimated for the various sections of a tapered wing. It has the form

$$c_{domin} = k + 0.0050 + 0.0033 \left(\frac{t}{c}\right) + 0.1 \left(\frac{t}{c}\right)^2$$
 (6.1)

where k (which is approximately constant for sections having the same mean line) represents the increase in c_{domin} . above that of the symmetrical section of corresponding thickness. For the 230 series of reference 15, k has a value

of approximately 0.0003. Recent information indicates that this formula tends to give values too large for the thicker sections. (See reference 16).

6.111 For wings with flaps, the value of $c_{d_{O_{min}}}$ has a very much larger value. The amount which must be added to the $c_{d_{O_{min}}}$ for the plain wing in order to obtain the value for the wing with an ordinary or split flap may be found in reference 10 or 13, when a V.D.T. test of the section with flap is not available.

6.112 The values of c_{domin} , usually given in N.A.C.A. publications, are for aerodynamically smooth airfoils at an effective Reynolds Number of about 8 million. When it is desired to find the value for some other Reynolds Number the following formula may be used -

$$c_{\tilde{d}_{O_{\min}}} = \left(c_{\tilde{d}_{O_{\min}}}\right)_{std} \left(\frac{R_{std}}{R}\right)^{0.11}$$
 (6.2)

in which R_{std} is the Reynolds Number given in the table containing $(c_{d_{Omin}})$ and is approximately 8,000,000. Since Reynolds Number is given by

$$R = \frac{\rho \, VL}{\mu} \tag{6.3}$$

in which V is the velocity in ft/sec, L is the chord in feet, and μ is a function of temperature— P/ μ being 6378 for standard air—it is seen that, in a tapered wing, the Reynolds Number at any speed for any section is proportional to the chord of that section. This means that,

in a wing tapered 3 to 1, the relative value of $c_{\rm domin}$ is increased approximately 13 percent at the tip. Since the minimum profile drag has, in most cases, a relatively unimportant effect on the loads in the structure, this scale effect may usually be neglected. (See Paragraphs 7.18 and 7.192).

6.12 Additional Profile Drag - The increase in profile drag coefficient, Δcdo, accompanying an increase in lift coefficient may be given the same span distribution as that of either cdo cr cdomin, since its value is relatively small and, in accelerated flight, uncertain. It may, if desired, be calculated for several sections along the span for any given value of lift coefficient using the generalized variation of

$$c_{d_0}$$
 with $\frac{c_l - c_{l \text{ opt}}}{c_{l \text{ max}} - c_{l \text{ opt}}}$

presented in Figure 6-1, which has been taken from Figure 45 of reference 16, and in which c_{lopt} , the optimum lift coefficient, is the lift coefficient at which the profile drag coefficient is a minimum. This is illustrated in Paragraph 7.193 of the first example in Chapter 7.

6.2 Aerodynamic-Center Location.

1

6.20 It has been described how to obtain the magnitude and direction of all the resultant forces acting on the various sections along the span of a wing. Before these

forces can be applied to the structure, it is necessary to know their points of application, which are assumed to be the aerodynamic centers of the sections. The location of the aerodynamic center is given under "Fundamental Section Characteristics" in all recent N.A.C.A. publications on airfoil characteristics, such as reference 15. pered wings where the location for only one thickness ratio is known, its location for other sections may be estimated by means of Figure 54 of reference 18, or from Figure 52 of reference 10. The location of the aerodynamic center for any particular section remains the same regardless of the location or angle of attack of the section, except that for some sections, it is necessary to use a slightly different location for the negative lift This can be avoided, however, by slightly modifying the moment coefficient in this range. (See Paragraph The aerodynamic center of a section with flap is not necessarily the same as for the plain section, although it may be convenient to assume it to be the same and modify the moment coefficient to correct for the error involved.

6.3 Moment-Coefficient Distribution.

6.30 Source - Now after the resultant forces have all been determined and applied to the sections at their aerodynamic centers there remains a couple that must be applied to each

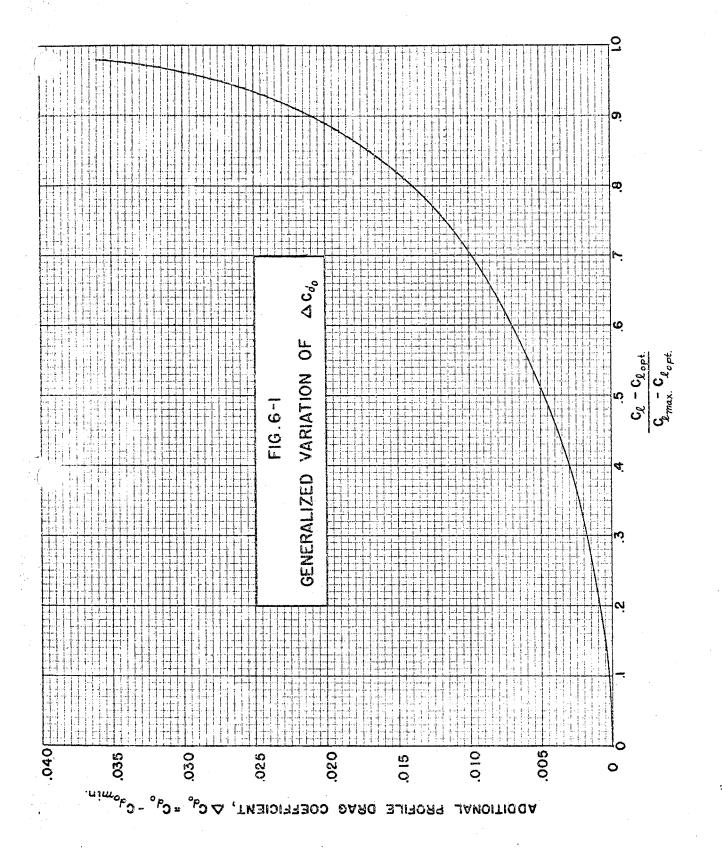
section in addition: This is accomplished by means of the section moment coefficient, which is a characteristic of the section and is independent of the section location and angle of attack, since the aerodynamic center by definition is the point about which the moment coefficient is constant. Its value is given under "Fundamental Section Characteristics" in all recent N.A.C.A. publications on airfoil characteristics, such as reference 15. Where its value is known for only one section of a wing that tapers in thickness ratio, the value of the moment coefficient for the other thickness ratios may be estimated by means of Figure 88 of reference 6. When it is desired to estimate the moment coefficient for a section with flap. it may be found by adding to the moment coefficient for the plain section the additional amount produced by the flap as given in references 10 and 13.

6.31 Effect of Part-Span Flap - When part-span flaps are used, there is some tapering effect near the end of the flap as shown in Figure 11 of reference 9. The moment coefficient for the plain section is slightly larger and that for the section with flap is slightly smaller near the end of the flap. This appears to have only a local effect, the total moment on the wing being approximately the same as though the moment changed abruptly at the end of the flap.

Effect of Applying Forces at Point Other than at 6.32 Aerodynamic Center - As previously explained, the moment coefficient about the aerodynamic center is independent of lift and, therefore, not affected by the distribution of the lift coefficient along the span. If for some reason it is desired to apply the forces at some point other than at the true aerodynamic center, the moment coefficient then becomes a function of lift and its distribution along the span is consequently affected by the span distribution of lift. Where it is desired to use an aerodynamic center only slightly different from the true location, as when the location for positive lift is used also for the negative lift range, or when the center for the plain section is used for the section with flap, it is not usually necessary to consider the effect on the distribution of moment coefficient although its effect on the magnitude of the moment should be considered.

Biplane Interference - There is one other exception to the statement that the moment coefficient of a section is independent of its location. In a biplane the moment on the upper wing is made more positive due to interference, while that of the lower wing is increased negatively an equal amount, so that the net result on the biplane is negligible. This increment is distributed along the entire span of the shorter wing but only along that portion

of the span of the longer wing that lies within the projected span of the shorter wing. Its value is a linear function of the thickness-gap ratio and is given for the upper wing by


$$\triangle^{c_{m_0}}(t/c)_{U} = 0.1 \left(\frac{t}{G}\right)$$
 (6.4)

where t is the thickness of the lower wing and G is the average gap for the portion of the spen affected. The increment for the lower wing is given by

$$\Delta c_{\text{mo}} \left(\frac{t}{G} \right)_{\text{L}} = -\Delta c_{\text{mo}} \left(\frac{t}{G} \right)_{\text{U}} \times \frac{S_{\text{L}}}{S_{\text{L}}} \times \frac{C_{\text{U}}}{C_{\text{L}}}, \quad (6.5)$$

where S_U , C_U , S_L and C_L refer to the areas and chords of the portion of upper and lower wings involved, respectively.

6.34 Compressibility Effect - Although the moment coefficient is practically independent of Reynolds Number for normal speeds, it changes considerably at extremely high speeds—as does the profile drag—because of the compressibility effect. The speed at which this effect becomes appreciable depends on the local velocity over the section and, therefore, on the angle of attack. The effect of compressibility may usually be neglected unless the airplane is designed for a terminal velocity exceeding 400 m.p.h., in which case the latest information from the N.A.C.A. high speed wind tunnel should be consulted.

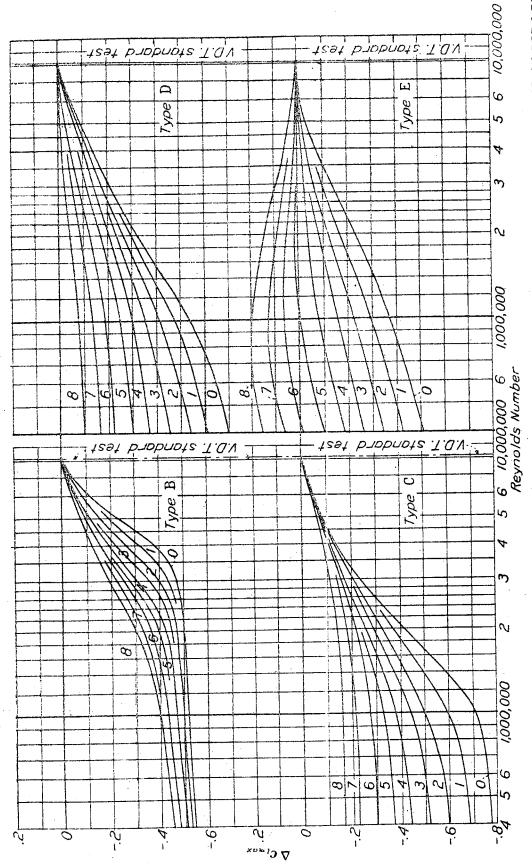


FIGURE 6-2.—SCALE EFFECT CORRECTIONS FOR G1 IN ORDER TO OBTAIN THE SECTION MAXIMUM LIFT COEFFICIENT AT THE DESIRED REYNOLDS NUMBER, APPLY TO THE STANDARD-TEST VALUE THE INCREMENT INDICATED BY THE CURVE SCALE-EFFECT DESIGNATION OF THE AIRFOIL THAT CORRESPONDS TO THE

CHAPTER 7

EXAMPLES

EXAMPLES.

General Description of Wing - In order to illustrate the methods described in this bulletin, a typical monoplane wing will be used as an example. The wing chosen is snown in Figure 7-1. The wing tapers linearly both in plan form and thickness. The N.A.C.A. Series 230 airfoil is used with a thickness ratio varying from approximately 18 to 8 percent. The section characteristics of this airfoil taken from reference 15 are plotted versus thickness ratio in Figure 7-2. The wing is so laid out that all zero lift chords, with flaps closed This means that and ailerons neutral, are parallel. under these conditions the wing has no aerodynamic twist. The wing is equipped with part-span simple split flaps that may be opened at any angle from zero to 60 degrees. Simple ailerons, differentially operated, extend from the end of the flaps to the tips, the maximum throw being 30 degrees up and 6 degrees down. The 10 percent chord points are on a line perpendicular to the plane of symmetry which gives the line of aerodynamic centers a negative sweepback of approximately 2 degrees. This and the dihedral are assumed to have a negligible effect on the distribution of loads along the span.

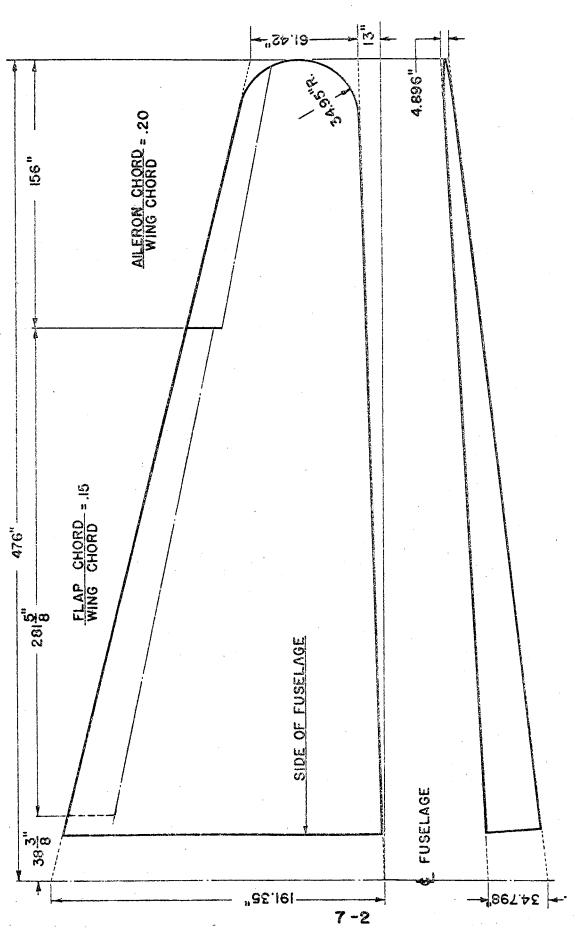


FIG. 7-1 SKETCH OF WING USED IN EXAMPLES

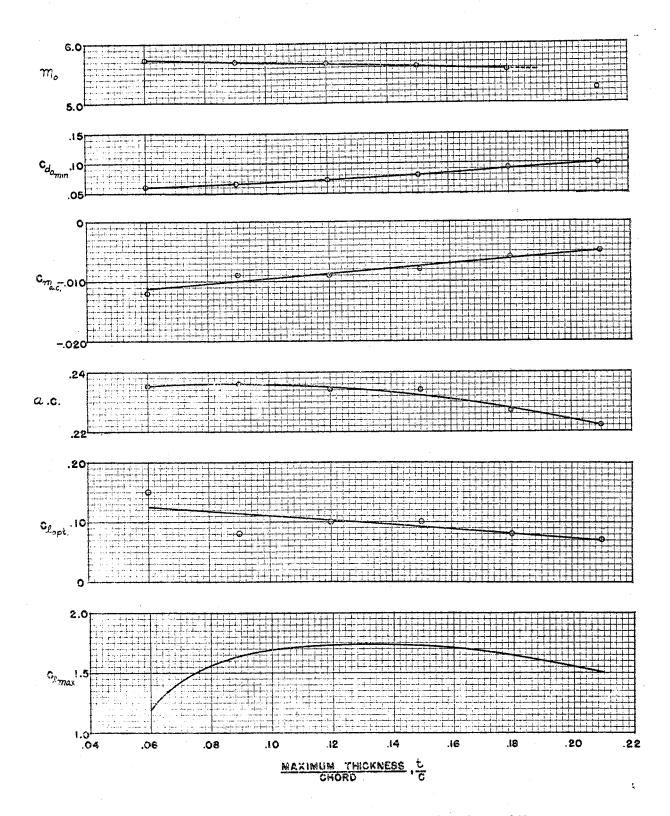


FIG. 7-2 AIRFOIL SECTION CHARACTERISTICS

7.1 EXAMPLE 1 - SPECIAL METHOD.

- 7.10 <u>Description</u> It will at first be assumed that the distribution of the loads is desired for the basic wing only, with flaps closed and ailerons neutral. An examination will show that for this condition the wing meets the requirements of Section 2.0 (a) and (b) of Chapter 2, and the special method described in this chapter may, therefore, be used. Since the thickness ratio, and consequently mo, varies along the span, the method of Section 2.2 will be followed, in which an equivalent wing having a constant mo is substituted for the actual wing for the purpose of reading c_{lap} from the curves.
- 7.11 Tabulation of Wing Section Characteristics The first step is to determine the characteristics of this equivalent wing. Table IX has been prepared as a convenient form in which to make most of the computations required by this method. Line 1 serves to designate the columns and represents several points chosen along the semispan so as to correspond to the points for which can curve are given in Figures 2-1, 2-2 and 2-3. Line 2 represents the actual distance of these points from the plane of symmetry in inches. Line 3 represents the maximum thickness and line 4 the chords of these sections in inches. It should be noted that, although the wing ends at the edge of the fuselage, it is assumed to extend to

the plane of symmetry, holding the same taper both thickness and plan. At points near the tip are given both the true thicknesses and chords, and the thicknesses and chords of a wing with square tip with the main taper both in thickness and plan extended to the extreme tip. In cases where the taper in thickness as not uniform as it is here, a curve may be extrapola &c to the center and to the tip in order to determine frese values for the extended wing. In line 5 is calculated the value of t/c for the several sections of the enterior ed wing. In Figure 7-2, in the plot of mo versus to, a straight line is seen to represent quite well the striktion of mo with t/c for the range of thickness ration used in the wing. If the wing root had been much thick it would have been necessary to use a curve because is appears to decrease rather rapidly at thickness ratios greater than The values of mo are read from this curve 18 percent. for the values of t/c in line 5 and entered in line 6. If this curve were not a straight line, it would be neces sary to compute moc in line 7 for all points of the extended wing and on a plot of moc versus y approximate the curve with a straight line. Where this straight line intersected the center line and the tip would be read the value of ms'cs and mt'ct, respectively. Since in this example mo versus t/c is a straight line, and since c varies linearly with y, moc also varies linear glong the

span and it is necessary to compute only $m_S c_S$ in column 0 and $m_t c_t$ in column 100. Each value in line 8 is found by dividing the corresponding value of m_0 in line 6 by m_S ' which is found by dividing m_S ' c_S by c_S . In this case, since m_S ' = m_S , it means dividing by the value of m_O in column 0.

7.12 <u>Wing Dimensions</u> - Before the next line can be filled in, it is necessary to obtain and list the various dimensions of the wing in accordance with Section 2.2.

b = 952 inches.

S = 830.1 square feet or 119,535 square inches.

ct = 61.42 inches.

 $c_s = 191.35$ inches.

 $m_{S}' = m_{S} = 5.574$

mt' = mt = 5.706

V

 $\lambda = 61.42/191.35 = 0.3210$

 $\lambda' = m_t c_t/m_s c_s = 350.5/1066.6 = 0.3286$

 $A = (952)^2/119535 = 7.582$

 $A' = 2b/c_s(1+\lambda') = 2 \times 952/191.35 \times 1.3286 = 7.489$

 $A'/m_s' = 7.489/5.574 = 1.344$

 $A'' = A \times (1 + \lambda)/1 + \lambda) = 7.582 \times 1.3210/1.3286 = 7.539$

 $A^{\pi}/m_{s}^{*} = 7.539/5.574 = 1.353$

 $\gamma = \frac{(34.00 + 26.61)}{2} / 476 = 30.305 / 476 = 0.0637$

7.13 <u>Lift Coefficient</u> - For $\lambda^* = .3286$, and $A^*/m_S = 1.344$

the equivalent square-tip wing, the values of c_l , an are found from Figures 2-1, 2-2 and 2-3 and entered in line 9 of Table IX. These are made to apply to the actual extended wing by multiplying each value in line 9 by the corresponding value of mo/ms in line 8, which product is entered in line 10. Line 11 is next filled in by multiplying each c_{la} value in line 10 by the corresponding chord in line 4. The true chords of the actual rounded-tip wing are used in this case. In order to obtain the corresponding wing lift coefficient, it is necessary to find the integral of c $c_{i,s}$ over the semispan, which is accomplished here by means of a modification of Simpson's Rule, the multiplying factors being listed in line 12. The values of c c_{l_a} in line 11 are multiplied by these factors in line 12 and the results entered in line 13. integration may be performed graphically, if preferred, by plotting c c_{l_a} versus fraction of semispan. In either case the wing lift coefficient is found in line 14, the area under the curve being substituted for Σ (13)/3 in case the graphical method is used. The result shows that the c_{l_a} values of line 10 are slightly too large to give a CL value of 1.0, and the true c_{l} values are found in line 15 by dividing all the c_{l_2} values in line 10 by 1.0078. c; a, values are plotted in Figure 7-3.

7.14 Lateral Center of Pressure - The lateral center of

pressure of the square-tip wing is found from Figure 2-6, for $\lambda' = .3286$ and A'/ms' = 1.344, to be .418 x 476 = 199.0 inches from the center line. This is approximate, of course, because it does not allow for the effect of tip rounding or for the empirical tip correction. That it is sufficiently accurate for checking purposes, however, may be seen by comparing it with the value found in Table VI of example 2.

7.15 Angle of Attack - Before the induced-drag distribution can be found, it is necessary to determine the angle of attack corresponding to $C_L = 1.0$. For $\lambda' = .3286$ and $\gamma = .0637$ a point is located on Figure 2-4. From this point, a straight line is drawn to a point on the A/m_O scale equal to A"/m_S' = 1.353. This line crosses the γ scale at .019 which is the value of γ' for the equivalent round tip wing. Then

$$m' = \frac{m_{s'}}{1 + \frac{m_{s'}}{A''}(1 + \tau')} = \frac{5.574}{1 + \frac{5.574 \times 1.019}{5.1416 \times 7.539}} = \frac{5.574}{1.2398} = 4.496$$

$$m = 4.496 \times \frac{1.3286}{1.5210} = 4.522$$

For $C_L = 1.0$, the absolute angle of attack in radians is

$$\alpha_{8} = \frac{1}{4.522} = .2212$$

7.16 Induced Drag - This α_a value is entered in all columns of line 16. The corresponding effective angles of attack are found in line 17 by dividing the $c_{l a_1}$ values in line 15 by the respective values of m_0 in line 6. The downwash angle w/V is found in line 18 by subtraction. In line 19 is calculated the induced-drag coefficient $c_{d a_1} = \frac{w}{V} c_{l a_2}$ by multiplying line 15 by line 18. These values represent the induced-drag coefficient when the lift coefficient for the wing $C_L = 1.0$. If it is desired to know the distribution also when the wing induced-drag coefficient $C_{D i} = 1.0$, this can be found by dividing the $c_{d i}$ values in line 19 by the wing coefficient $c_{D i}$ when $c_L = 1$, where

$$C_{\text{Dia}_1} = \frac{(1+\sigma)}{\pi A}$$

For λ ' = .3286, γ = .0637 and A^n/m_S ' = 1.353, σ is found from Figure 2-5 to be approximately .012, in a manner similar to that used for finding τ ' from Figure 2-4. Then

$$c_{\text{Dia}_1} = \frac{1.012}{3.1416 \times 7.582} = 0.04249$$

7.17 Tip Correction.

7.170 Although this particular wing has sufficient taper to make the empirical tip correction negligible, the tip loading will be computed, nevertheless, in order to demonstrate the method.

$$C_{\text{ave}} = \frac{S}{D} = \frac{119535}{952} = 125.56$$

Affected tip distance = $0.4 \times 125.56 = 50.22$ The point at which the correction begins

$$y_0 = \frac{b}{2} - 0.4 \frac{S}{b} = 476 - 50.22 = 425.78$$

Then the percent of affected tip distance corresponding to each point in Table IX is calculated by

$$\frac{y - y_0}{0.4 \text{ Cave}} \times 100 = \frac{y - 425.78}{50.22} \times 100$$

and entered in line 21. It is seen that only the last three points are affected.

 $\triangle c_{l}$ for each of these three points is read from Figure 2-7 and entered in line 22.

$$F_S = 1.0$$
 for $A^s = 7.489$ from Figure 2-9

$$F_3 = 0.080$$
 for $\lambda^2 = .3286$ from Figure 2-10

Line 22 can now be filled in and represents the Δc_l for this wing when the theoretical wing C_L = 1.0. This is plotted on Figure 7-3 and is seen to be very small for

this wing.

7.171 In order to determine the total load on the wing, it is necessary to compute ΔC_{L_1} by means of equation 2.18. This is done by multiplying the values in line 23 by the actual chords in line 4 to obtain the values of $F_2F_5\Delta c_{l_1}c$ in line 24, then multiplying the values in line 24 by the Simpson multipliers in line 25 to give the values of ΔC_{L_1} in line 26. The value of ΔC_{L_1} in this case, is seen to be negligible.

7.172 The center of pressure of the additional tip load is taken from Figure 2-11 and listed in line 27 in percent of the chord from the leading edge.

7.18 Other Section Coefficients - In Figure 7-2, in addition to m_0 , are plotted versus t/c the aerodynamic-center location, a.c., in percent of chord from the leading edge, the section moment coefficient, $c_{m_a.c.}$, and the minimum profile-drag coefficient, $c_{d_{omin}}$; all taken from reference 15. The vertical location of the a.c. is given as 3 percent above the chord line for all thickness ratios. From these curves are read and tabulated in lines 28, 29 and 30 of Table IX the values of a.c., $c_{m_a.c.}$ and $c_{d_{omin}}$, corresponding to the respective values of t/c given in line 5. The effective Reynolds Number at which these values are correct is about 8.3 millions. Although the effect of $c_{d_{omin}}$ on the structure is usually too small to warrant

taking the scale effect into account, it is done here to illustrate the method. The average chord 125.56 is divided by each chord in line 4 and the quotients raised to the 0.11 power and entered in line 31. The corrected distribution of cd_{Omin} for a Reynolds Number of 8.3 millions based on the average chord is then found in line 32 by multiplying the values of cd_{Omin} , as taken from the curves in line 30 by the respective values in line 31.

7.19 APPLICATION TO A GIVEN ANGLE OF ATTACK:

7.190 Angle of Attack - Sufficient information is now available for obtaining the section coefficients for this wing at any angle of attack. In order to illustrate the method, it will be assumed that the distributions are desired for an absolute angle of attack of 15 degrees, corresponding, for this wing, to an angle of attack of 13.90 measured from the chord line.

7.191 Lift and Induced Drag - At this angle of attack

$$C_L = \frac{m}{57.3} \times 15 = \frac{4.522}{57.3} \times 15 = 1.184$$

 $F_1 = 1.400$ from Figure 2-8 for $C_L = 1.184$

$$\Delta C_L = F_1 \Delta C_{L_1} = 1.400 \times .00038 = .00053$$

$$C_{D_i} = C_{D_{ia_1}} \times C_L^2 = .04249 \times (1.184)^2$$

$$= .04249 \times 1.402 = .05957$$

Table X is used to make the section calculations. The first five lines are copied from Table IX as indicated. The section values of c_{la} corresponding to C_L = 1.184 are round in line 6 by multiplying the c_{la} values in line 2 by C_L . The section values of Δc_l for this C_L are found in line 7 by multiplying the values of F_2 F_3 Δc_{la} of line 3 by F_1 . The values of c_{da} for this C_L are found in line 8 by multiplying the values of c_{da} in line 4 by C_L^2 , or they could have been found by multiplying the relative values of c_{da} in line 20 of Table IX by C_{Di} = .05957.

.

7.192 Minimum Profile Drag - It will now be further assumed that a V-g diagram for this airplane indicates that the limit load for the angle of attack of 15 degrees occurs at a speed of 150 miles per hour. At this speed the Reynolds Number based on the average wing chord and in standard air is

$$R = \frac{\rho}{\mu}VL = 6378 \times 150 \times \frac{88}{60} \times \frac{125.56}{12} = 14,680,000$$

The minimum profile-drag coefficients for this condition are found in line 9 by multiplying the values of $c_{
m domin}$ for a Reynolds Number of 8.3 millions in line 5 by

$$\left(\frac{R_{std}}{R}\right)^{0.11} = \left(\frac{8.3}{14.68}\right)^{0.11} = .939$$

If $c_{\mathrm{Do}_{\min}}$ for the wing is desired, it may be found by mul-

tiplying these values in line 9 by their respective chords and integrating over the semispan as was done to find C_{L} .

Additional Profile Drag - The foregoing calculations account for all the air loads except the additional profile drag. There is evidence to indicate that, during a rapid change in angle of attack, considerable time is required for this additional profile drag to reach the value indicated by static tests. In this example, however, static conditions will be assumed, in order to illustrate the method. The correct values for dynamic loading would be less than the values herein calculated, but sufficient data are not yet available for accurately determining the additional profile drag. In any case, it would probably vary with rate of change of angle of attack. Fortunately, the effect of this on the wing structure is not great, and any reasonable assumption may be made without appreciable error. At first the approximate method will be demonstrated. From reference 16, Table II, this airfoil series is seen to have the D_2 type of scale effect on maximum lift. From Figure 6-2 the $\Delta c_{l\, {
m max}}$ is found to be +.08 by extrapolation for R = 14.68 million. 7-2 are also plotted $c_{l \text{ opt}}$ from reference 15 and $c_{l \text{ max}}$ from reference 16, for a Reynolds Number of approximately 8.3 millions. It will be noted that the $c_{l \max}$ values are slightly larger than the CL walues given in reference 15. An average value of c_{l} opt will be assumed to be 0.10 and an average value for c_{l} from the curve, of 1.70 which becomes 1.78 with the Δc_{l} of 0.08 added. Then

$$\frac{C_{L} - C_{Lopt}}{C_{L_{max}} - C_{Lopt}} = \frac{1.184 - .10}{1.78 - .10} = \frac{1.084}{1.68} = .645$$

From Figure 6-1 $\Delta C_{D_0} = .0080$

$$C_{D_i} = \Delta C_{D_0} = .05957 + .0080 = .06757$$

$$(C_{D_i} + \Delta C_{D_o})/C_{D_i} = .06757/.05957 = 1.134$$

The values of c_{d_1} in line 8 are then multiplied by 1.134, and the products entered in line 10, to represent the sum of c_{d_1} and Δc_{d_0} . This is, of course, an approximation and in cases where the c_{d_1} distribution curve is very irregular as it some times is, it would be better to add Δc_{d_0} to the minimum profile drag instead, giving it either the same distribution as $c_{d_{0min}}$ or keeping its value constant along the span, whichever is preferred. Line 11 represents the total section drag coefficients.

In order to illustrate a more precise method of handling the distribution of Δc_{d_0} , lines 12 to 22 have been added in which Δc_{d_0} is given a separate distribution. The ratio of the respective chords to the average chord is computed and entered in line 12. The Reynolds Number for each sec-

tion is then found by multiplying these ratios in line 12 by the Reynolds Number computed for the average chord at the given speed, or 14.68 million. For these values of R the values of $\Delta c_{l \text{ max}}$ are read from Figure 6-2 and entered in line 14, extrapolating the curves where neces-The $c_{l_{max}}$ values for the standard value of Reynolds Number are read from the curve in Figure 7-2 for the respective values of t/c and entered in line 15. The corrected values of $c_{l_{max}}$ in line 16 are found by adding the corrections in line 14 to the standard values in line 15. values are read from the curve in Figure 7-2 and entered in line 17. Line 18 is found by subtracting each value of $\mathbf{c}_{l \, \mathrm{oot}}$ in line 17 from the corresponding value of c_l in line 6. Line 19 is the difference between the respective value of c_{l} and c_{l} opt. Line 20 is the ratio of $(c_l - c_{l \text{ opt}})$ to $(c_{l \text{ max}} - c_{l \text{ opt}})$ and is the value for which $\triangle c_{d_O}$ is read from Figure 6-1, and entered in line 21. Line 22 represents the total values of $c_{ ilde{d}_+}$ and when these are compared with line 11 it is seen that, for all practical purposes, the approximate method is satisfactory. It should be noted, however, that the true shape of the Acdo distribution in line 21 is quite different from that of $c_{d_{\dagger}}$ of line 8 and neither does it agree very well with the c_{domin} distribution. In cases where extreme accuracy is desired, it would be better to use the more refined method as illustrated by lines 12 to 22.

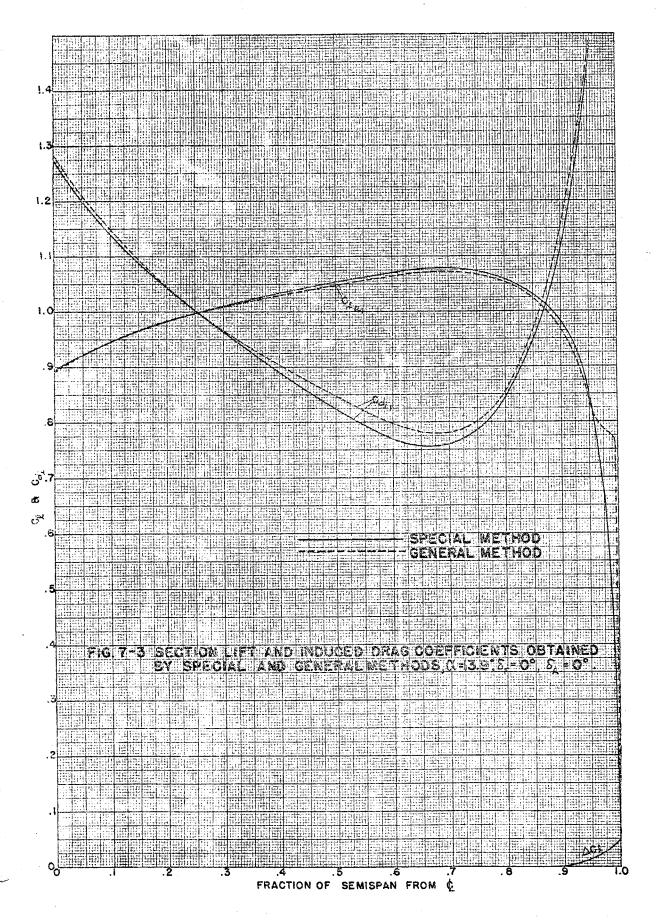

curves of c_{do} versus c_l for the wing section used are available, $\Delta c_{do} = c_{do} - c_{domin}$ may be taken directly from the curves, if desired.

TABLE IX APPLICATION OF SPECIAL METHOD UNIT DISTRIBUTIONS

1	PERCENT OF	SEMISPAN	0	20	40	60	80	90	95	97.5	100
2	① x b/200	У	0	95.2	190.4	285.6	380 . 8	428.4	452.2	464 7	476
3	FIG. 7-1	ŧ	34.80	28,82			10.88		6.39		4,896
4	FIG7-1	С	191.35	165.36					67.9	64.67 52.54	
5	3/4	t/c					.1245				.0797
6	FIG. 7-2	mo					5.648				
7	4×6	m, c	1066.6								350.5
8	6/m's	ma / man!	1.0000		1.0041	1.0077	1.0133	1.0176	1.0205		
9	FIGS. 2-1 70	$c'_{\ell_{m{a}}}$.900	.987		1.069		.968	.835	.6.6.5	0
10	8 x 9	c_{ℓ_a}	.900				1.064		.852	.680	0
11	⊕ x (0	CCa	172.2				93.0		56.4	35.7	0
12		f	.2	.8	.4	.8	.3125	.3375	.025	.10	.025
13	(1) x (2)	$f cc_{\ell_a}$	34,44	130.80	57,92	97,68	29.06	24.74	1.41	3.57	0
14	C'_ = = = 5 /6"		<u> </u>	952 11953		379.62 3	= 1.00	078			
15	® / c. [Cla	.893	.981	1.031	1.069	1,056	.977	.845	.675	0
16	荊	αa	.2212	.2212	2212	,2212	.2212	.2212	.2212	.2212	.2212
:7	(5)(6)	α,	.1602	1757	1842	.1903	.1870	.1722	1486	.1185	0
18	(i) - (i)	w/V	0610	.0455	.0370	.0309	.0342	.0490	.0726	. 1027	-
19	(5) X (8)	Cdia	0545	.0446	.0381	.0330	.0361	.0479	.0613	.0693	-
20	(9) / Co;a,	Cdi	1.283	1.050	.897	.777	.850	1.127	1.443	1,631	•
21	PERCENT OF TIP DISTANCE	AFFECTED						5.22	52,61	76.30	100
22	FIG. 2-7	Δc_{ℓ_i}						.002	.140	.300	-
23	F ₂ F ₃ × (23)	F ₂ F ₃ △ C _ℓ ,						.000	.011	.024	-
24	4 × 23	F2F3 C DCX,						.000	.729	1,261	-
25	(12) × 24)	F2F3 fc Ac2				<u> </u>		.000	.0182	.1261	-
26	△C, * €.	6/2 F 5 CA	Cz dy =	<u>δ</u> Σ	25) ≖	252 119535	х	1443 =	.00038	3	
27	FIG. 2-11	C.P.						.94	.74	.64	.55
28	FIG. 7-2	a.c.	.2275	.2288	2302	,2525	.2347	2357	.2360	.2360	.2359
29	FIG. 7-2	Cma.c.	0062	0065	0070	0078	0086	0094	0099	0101	0105
30	FIG. 7-2	Cdomin(STD)	.0092	.0088	.0085	,0080	.0072	.0069	.0066	.0065	
31		(CAVE/C)."	.954	.969	.988	1.011	1.041	1.059	1.073	1.101	
32	30 × 31)	Comin.	.0088	.0085	.0084	.0081	.0076	.0073	.0071	.0072	

TABLE X APPLICATION OF SPECIAL METHOD DISTRIBUTIONS FOR A GIVEN ANGLE OF ATTACK

C, = 1.184 $F_1 = 1.400$ PERCENT OF SEMISPAN 0 20 40 60 80 90 95 97.5 100 TABLE IX Clai 2 LINE 15 TABLE IX LINE 23 893 .981 1.031 1.069 1.056 .977 845 675 FE A CL 3 011 .024 TABLE IX Cdias 0545 .0381 .0330 0446 .0361 0479 0613 .0693 TABLE IX LINE 27 Cdomin 5 .0088 .0085 .0084 .0081 .0076 0073 0071 .0072 c_{ℓ} E $C_L \times (2)$ 1.057 | 1.162 | 1.221 | 1.266 | 1.250 1.157 ٥٥٥ م 799 0 △ C_ℓ 7 F X(3).000 .034 .015 c_{d_i} $\mathbf{x}(\mathbf{4})$ 8 .0764 .0625 .0534 .0463 .0506 .0672 0859 .0972 Cdomin .939 🗶 (**5**) 9 .0083 .0080 .0079 .0076 .0071 .0069 0067 .0068 Cd + A Cd 1.134 X(8) 10 .0606 .0525 0574 0762 0974 .1102 Cd (9) + 11 (10) 0949 0789 0685 .0601 0645 .0831 1041 1170 DETERMINING ACdo ALTERNATIVE METHOD OF ABLE IX 12 CAVE 903 696 528 593 418 10 RAVE X (2) R 13 22,37 19,33 16.29 13.26 10.22 8.71 6.14 A Clmax. FIG. 6 - 2 4 .07 .10 .10 .09 .03 .01 -.01 -.05 Cl max. FIG. 7-2 15 1.64 1.67 1.70 1.73 1.73 1.70 1.66 1.62 Clmax (corrected) (4) + (15)16 1.74 1,77 1.79 1.80 1.76 1.71 1.65 1.57 CL opt FIG. 7-2 17 .079 .082 .086 .091 .100 .107 .110 .114 Cl - Clopt (6) (17) 18 135 .175 1.150 1,050 890 685 C_L_CLOPE (16) 9 1.66 71 1.66 1,60 1.54 Ce - Cept. (18)(19)20 Clost Clopt. 589 639 668 .687 ,693 656 578 469 6-1 A Cd. 21 FIG. 0067 0080 8800 0094 0096 0085 0064 0041 C 8)⊹(9) 0914 0785 0701 0633 0673 0826

7.2 EXAMPLE 2 - GENERAL METHOD - UNTWISTED WING.

- 7.20 <u>Description</u> It will again be assumed that the distribution of the loads is desired for the basic wing only, with flaps closed and ailerons neutral. This time, however, instead of using the special method, as is permissible for this wing, the general method will be employed; since the illustration will be just as good as though it were applied to a wing of such characteristics that the special method could not be used, and it will also enable the results by the two methods to be compared.
- Petermination of Unit Coefficients It is believed unnecessary to make many comments regarding this example, as Tables I to VII are computed in accordance with the procedure cutlined in Chapter 3. The computations are made for an angle of attack of one radian. The necessary dimensions required in Table I are taken from Figure 7-1. Since λ is less than 0.5, the tip correction will not be applied and the true chords are used in line 9 of Table I. Since the basic distributions of this wing are zero, the c₁ values in line 22 of Table VII are the c₁ all values, and are plotted in Figure 7-3 in order to compare with the similar values obtained by the special method. It will be noted that the general method gives higher values at the extreme tip because of the use of the actual

chords, while the curves of the special method were based on square tips. The relative $c_{\hat{\mathbf{d}}_1}$ values in line 25 are also plotted in Figure 7-3 in order to compare with the relative values obtained by the special method.

7.22 Application to a Given Angle of Attack - The procedure for finding the distributions at a given angle of attack is similar to that illustrated by the special method (ref. 4.1). As before, it will be assumed that the c_l and c_{d_1} distributions are desired for an absolute angle of attack of 15 degrees. In Table VI the wing lift coefficient for an angle of attack of one radian is found to be 4.5215. Therefore,

$$m = \frac{C_L}{\alpha_B} = \frac{4.5215}{1.0} = 4.5215$$

Then at 15 degrees,

$$C_{L} = \frac{4.5215}{57.296} \times 15 = 4.5215 \times .26180 = 1.1837$$

The section values for $\alpha_{\rm a}$ = 15° can, therefore, be found by multiplying the values in line 22 of Table VII for $C_{\rm L}$ = 1.0 by 1.1837. Since the induced-drag coefficient for the wing when $C_{\rm L}$ = 1.0 may be found in Table VI as $\frac{(1+\sigma)}{\pi\,A} = C_{\rm D}_{\rm 1al} = .042478, \text{ the coefficient for } \alpha_{\rm a} = 15^{\circ}$ is

$$C_{D_i} = C_{D_{ia_1}} \times C_L^2 = .042478 \times \overline{1.1837}^2 = .05952$$

The section values for $\alpha_{\rm g}$ = 15° can now be found by multiplying the values in line 25 for $C_{\rm D_1}$ = 1.0 by .05952.

7.23 <u>Tip Correction and Other Coefficients</u> - The distribution of all other coefficients is accomplished in the same way as previously demonstrated for the special method. Since no tip correction is required, nothing more is needed in this simple example.

= ,3210

61.42

 $= 1.4 \times 830.1$

119535

952"

H O

7.582

 12×79.33

T.

CHARACTERISTICS OF WING GEOMETRIC

1.0000 0,1 9 0 0 7.20 0 0 4.943 .7559 3.236 5877 .0836 .97777 1564 470.15 38.71 0.1 **(**) (D) 2,9041 5.688 .9800 3090 452.72 3618. .3090 65.89 1.0 951 6,187 .0939 0 0 5.670 125.56 2,2188 2,5318 1, 2001 1, 2819 | 1, 3365 | 1, 3461 | 1, 2866 | 1, 1300 0584 .1080 0168 8.160 .9831. 424.12 15.58 1.0 .4540 S. -5.650 CAVE. 5/62 336.58 385.08 .9865 0808 5678 10,612 86.24 1.0 .5878 ,1231 (O F) O 21.225 |17.225 | 13.658 | 1.6642 1.9235 101. 5.632 1.0 .7071 87.66 .1373 2686. .70T G G **(2**) BASIC WING (NO TWIST) 132,36 114,98 0608 5.615 .8090 .9927 216,10 279.79 5678 1.0 .1498 S S .9952 1,2655 1.4457 0188 1,0 3090 4540 .8910 5,601 .1605 C) (F) 191.35 171.03 151.20 0691. 34.798 30.122 25.560 5.590 .9971 74.45 147.08 •951.1 @ 60 1.0 N N 1761 17036 1,1188 5,581 1564 1.0000 9877 .9987 1,0000 .9877 1.0 8 .1819 5.574 1.0 **0** 0.1 (2) x (3) x (4) THSC SING 1.0 1.0 0 0 0 u V) 25 x008 @ **の** 温度の さ ms/m° C ් ර Ø Ę 0 السريد ۵ Ü 27)) ŝ 22 MAXIME ABSOLUTE RADIANS (a) (a) 1951/1900 FRACTION SEM-SPAN e x o ည်လ CHOHO (S) (B) Q× (N) * 9 **P** <u>N</u> ග N 87 6 Ø Ø, E)

COMPUTATION OF PLAN FORM COEFFICIENTS, C2n

2 LINE 14 \$\frac{1}{12}\$ \frac{1}{12}\$ \cdots \cdot	-	TABLE	H		6%	.7559	300	.8794	ŝ	1,1300	Sec.	1,2866	45 1.3461		V ₀ 50	5000	۲ ا	1.8595	۲ کی د	2.0795
Ú+© (°, 5000 (°, 1.8595 (°, 1.8595 (°, 1.8597 (°, 1.8	8				****			1,2001	€			1.3365		>						611
10-(2) w ₀ -5500 w ₁ -23477 w ₂ -1519 w ₃ -1519 w ₄ -10499 w ₄ -10499 w ₄ -1049 w ₄ -1049 w ₄ -10499 w ₄ -1049 -1049 w ₄ -1049 w ₄ -1049 w ₄ -1049 w ₄ -1049 -1049 w ₄ -1049	(4)				>-	1.8595		2.0795	 	<u> </u>		2,6231							P. 4	716
MULTI- O 20 $\frac{2}{a}$ $\frac{4}{b}$ $\frac{4}{b}$ $\frac{16}{a}$ $\frac{6}{a}$ $\frac{16}{b}$ $\frac{6}{b}$ $\frac{12}{b}$ $\frac{4}{b}$ $\frac{16}{a}$ $\frac{6}{a}$ $\frac{12}{b}$ $\frac{4}{b}$ $\frac{16}{a}$ $\frac{6}{a}$ $\frac{12}{b}$ $\frac{4}{b}$ $\frac{1}{a}$ $\frac{4}{a}$ \frac	4	Θ	<u>₹</u>		! !	1 1		, ,	 	1	1	0499		0-				j	2,5	3284
PLIER O 20 a b c b c b c c c c c	U		<u>.</u>	201			•	-	Parket Description			6	9	9) -		•	-	9		
.3090 Wq. Wq. Qq. Ho. Ho. -q. .5678 .0901 Wq. 1027 1.3878 .0991 Wl. -q. .5678 .0902 Wg. 1057 1.3878 .0991 Wl. 2044 .2564 .0991 Wl. 2044 .2564 .0004 2044 2044 413 .2564 .0004 2044	0		OZ.	0	. V	<u>ا</u> و:	d	a		¢		ఫ్ర	ď	0		,		7	-	٠,
1.3876 1.3878 1.3878 1.3851 1	1		5				¥.		er the entire for the entire for	ر د		55	- W2		The state of the s	j				
Sort	P		>			1	.0154			-,1027	H	.3878	.0991			1.385		2360		
1.0000 10.8201 2350 2544 6178	1		Č.						perti.					≩	_					
SO So So So So So So So	_				 -			°°-	393					K	777					
1.0000 10.8201 1.45 1.45 1.566 1.456 1.456 1.456 1.456 1.456 1.456 1.456 1.861 1.566 1.566 1.566 1.566 1.450 1.861 1.8	0						×			حق	1	e e	W4	ļ,		24-		~ @ 23		
.95	0)			<u> </u>	.2534			6178	1		7070°			-3.633	-	2689	·	
1.0000 1.0 1	0		-										-	3	-00	,				
1.0000 1.0 1	3							1	307					.144	1 5		_			
TOTAL 10.8201 4149 5000 8461 1.8461 5000 1.8461 5000 1.8461 5000 1.8461 8461 9401 8461 8461 8461 8461 8461 8461 8461 8461 8461 8461 8461 9402 9402 9402 9412<	6			2 + W + C	8-03 8-03	2 414	₩°			80			9AA			ô		å	A - 0/4	*
TOTAL 10.8201 4149 7748 4200 -1.5666 3925 3605 0599 4023 3412 3412 3412 3412 3404 3404 3548 3548 3548 3133 0785 3006 3006 0601 0805 0682 BY 5 2.1640 2.020 2.2390 0710 3133 0785 0601 0805 0682 C2 m 2 col 3 col	2			0.8201	7		5000		TO THE PERSON NAMED IN	8461	Ţ		5000			1.846		8461	- 22	ð۶
a + b -1.1948 -2548 4204 4204 3006 a - b 2390 0710 3133 0785 341 0601 0632 BY 5 2.1649 2.20 2.2390 0710 3133 0785 3841 0601 0632 C2 m 2 C ₀ 2 C ₂ C ₁₈ C ₄ C ₁₆ C ₆ C ₁₂ C ₁₂ HECK: 2 C ₀ + 2 C ₂ C ₄ + C ₆ + C ₆ + C ₆ + C ₁₀	==		}	0.8201	[7		8744		200	-1.5666			-,3605	,0°-	599	,402		3412	-,22	26
a-b 3548 3548 306 306 306 0601 0601 0602 0632 0682 BY 5 2.1649 0830 0710 3133 0785 3841 0601 0835 0682 C2n 2Cg 2Cg Cg	2	 					-1.194	<u> </u>	\bigvee				4204		\bigvee	:				
DIVIDE 2.1643 2390 0710 3133 0785 0801 0805 0682 BY 5 2.1643 0830 0710 3133 0785 0841 0601 0805 0682 C2 h 2 C0 2 C20 C2 C18 C4 C16 C6 C14 C8 C12 HECK: 2 C0+2 2 C2+4 C6+C6+C8+C10+C12+C14+C18+C18+C18+C18+C18+C18+C18+C18+C18+C18	5	 	A			/ \ 	X	\	548						3006					
C2T 2CO 2C2O C2 CIB C4 CIG C6 C14 CB C12	7			3.1640	ĭc•-		2390		710	3133		.0785	-3841	i	1090	80	ļ	0682	0.	458
2CO+ 2C20 + C2 + C4 + C6	<u> </u>			2 C _O	<u>م</u>		2	ن	c c	Ş		စ္ခ	ဗ္	<u>ပ</u>	<u> </u>	ဖိ		215	ت	0
		CHECK	l .	0+ 2Cg	9	C2 + C4	ာ +		ု င်	2 + 81 2 ·	•)+ ⁹¹ 0:	0.81							

7-25

TABLE IV

LONSTANTS REQUIRED IN SOLUTION OF AT COEFFICIENTS

ITEM			
Uo	Ms Cs 4 b	5,574 x 191.35 4 x 952	= .2801
2 P ₁	2C0 - C2 + 2 U0	2.1640 + .2390 +	.5602 = 2.9632
2P3	2C0 - C6 + 6U0	2.1640 + .0841 +	1.6806 = 3.9287
2 P5	2c0 - c10 + 10U0	2.1640 + .0458 +	2.8010 = 5.0108
2 P 7	200 - C14+14U0	2.1640 + .0601 +	3.9214 = 6.1455
2Pg	200 - C18 + 18U0	2,1640 + .0710 +	5.0418 = 7.2768
D	02-04	2390 + .3133 =	.0743
	C2 -C8	2390 + .0805 =	-,1585
F	c ₂ -c ₁₂	2390 + .0682 =	1708
G	C2 -C16	2390 + .0785 =	1605
H	C4 -C6	3133 + .0841 =	2292
į	C4 -C10	3133 + .0458 =	2675
J	C4 -C14	3133 + .0601=	2532
K	ce-cs	0841 + .0805=	0036
L	C ⁶ -C ¹ 5	0841 + .0682=	0159
M	C8 -C10	0805 + .0458 =	0347

TABLE Σ . SOLUTION OF A_{π} COEFFICIENTS

Ţ		2	3 a	3 ь	3 C	4 a	4 b	4 C
-	(C2 -C4)A3	+.0743		0128	0115		0010	0009
2	(C4 -C6)A5	2292		.0305	.0309		0070	0071
3	(C6 -C8)A7	-,0036		.0007	.0009			pa pa
4	(Cg - CiO)Ag	0347		.0043	.0043		0001	0001
5	(0g -00)Ag						0081	0081
6	2B ₁ - (5)	28. 8	2.0			2.0000	2.0081	2.0081
7	A; = 6 /2P1	<u>.</u>	2,9632	· 		.6749	.6777	.6777
	71-0/211							
8	(C2 -C4) A1	+.0743	.6749	.6777	.6777	.0501	.0504	.0504
9	(C2 -C8) A5	1585		.0305	.0309		0048	0049
10	(C4 -C10)A7	2675		.0007	.0009		0002	0002
11	(C6 -C12)A9	0159		.0043	.0043		0001	0001
12	(F)+(B)+(1)					.0501	.0453	.0452
13	283- (12)	283 =	0			0501	0453	0452
14	A3= (3)/2P3	2P3 *	3.9287			0128	0115	0115
15	(C4 -C6) A1	2292 .	.6749	.6777	.6777	1547	1553	1553
16	(C2 -C6) A3	1585	0128	0115	0115	.0020	.0018	:0018
17	(C2'-C12) A7	1708		.0007	.0009		0001	0002
18	(C4 -C14) A9	2532		.0043	.0043		0011	0011
19	(15)+(13)+(17)+(16)	ļ		<u></u>		1527	1547	1548
20		285	0			.1527	.1547	.1548
21	0/	<u> </u>	5.0108	_		.0305	.0309	.0309
	1.3 0/ 5	· · · · · · · · · · · · · · · · · · ·			1			
22	(C6 - C8) A1	0036	.6749	.6777	.6777	0024	0024	0024
23	(C4-C10)A3	2675	0128	0115	.0115	.0034	.0031	.0031
24	(C2-C12)A5	1708	.0305	.0309	.0309	0052	0053	0053
25	(C2 -C16) A9	1605		.0043	.0043	<u> </u>	0007	0007
26	(22)+(23)+(24)+(25					0042	0053	0053
27	287 - 26	267*	······			.0042	.0053	.0053
20	A7 (27)/2P7	2 P7 =	6.1455			.0007	\$000	.0002
25	C 8 -C10) A1	0347	.6749	.6777	.6777	0234	0235	-,0235
30		0159	0128	0115	0115	.0002	.0002	.0002
31	T	2532	.0305	.0309	.0309	0077	0078	0078
3		1605	.0007	.0009	.0009	0001	0001	0001
3		· · · · · · · · · · · · · · · · · · ·	.*			0310	±0 313	0312
3.	+=	2B ₉	0	···		+.0310	.0312	.0312
3	5 Ag 34/2Pg		7,2768		· · · · · · · · · · · · · · · · · · ·	.0043	.0043	.0043
	1 9 0/- 9							, I

TABLE VI COMPUTATION OF WING LIFT AND DRAG COEFFICIENTS

	ē.		2	3
Α, -	.6777	(A,)2=	.4593	A ₁ /3 = .2259
A3 =	0115	3 (A3)2=		A ₃ /5 =0023
A ₅ =	,0309	5(A ₈)2 =	.0048	-A ₅ /21=0015
A., 20	.0009	7(A.)2=	.0000	A7/45= .0000
A ₈ *	.0043	9(A ₉)2=	.0002	-Ag/77=0001
		$\Sigma \pi A_{\gamma \gamma}^2 =$.4647	Σ .2220

$$\sum nA_n^2 = .4647 \qquad \sum = .2220$$

$$\frac{\sum n A_n^2}{A_n^2} = \frac{.4647}{.4593} = 1.0118$$

$$C_{D_{i}} = \frac{1+\sigma}{\sqrt{NA}}C_{L}^{2} = C_{D_{i}} \cdot C_{L}^{2} = \frac{1.0118}{3.1416 \times 7.582} \times \frac{2}{4.5215} = .042478 \times 20.4444$$

FOR WING WITH NO AERODYNAMIC TWIST,
$$C_{D_{2}} = C_{D_{2}}$$

 $\frac{4 \times 2220}{3.1416 \times .6777} \times \frac{952}{2} = .41709 \times 476 = 198.53$

TABLE VII COMPUTATION OF LOAD DISTRIBUTIONS

CD; = 0.8684 Ci = 4.5215 5 6 7 8 9 a 2 3 4 Ь 0 ı TABLE I 54 45 36 27 18 9 90 81 72 63 8 2 LINE 3 TABLE 1 4540 . 3090 . 1564 .7071 5878 1.0000 .9877 .9511 8910 8090 3 SIN 6 LINE 4 .8090 9677 .4540 .7071 .9511 -1.0000-.8910 .5878 -.1564 .3090 SIN 36 4 0 .7071 0000 .7071 0 7071 -L0000-7071 1.0000 .7071 SIN 50 5 .8090 .8910 3090-.7071 -.9511 -.1564 6 SIN 78 -1.0000-4540 .5878 .9877 .7071 -.5878 0188.-.3090 .9877 7 .8090 1.0000 .1564 -.9511 :4540 SIN 90 8 A,SIN 0 At .6777 5483 4792 .3984 3077 .2094 .1060 6777 .6694 .6446 .6038 9 BE MIZEA .0115 - **3** -.0109 F.0093 -.0052 -.0114 .0115 .0102 0068 .0018 -.0036 -.0081 AgSIN 50 10 Age .0309 0 0309 .0218 0 -.0218 -.0309-.0218 .0218 .0309 .0218 A7 SIN 78 íŧ A72 ..0009 -.0001 .0007 8000 .0009 .0009 .0005 0009 .0003 ,0006 -.0004 a_ssin 90 12 A9" 0030 .0025 .0038 .0013 .0042 0043 0007 .0041 .0020 .0035 0043 8+9+10 +(1)+12 TABLE I [(1), × (13)] San Sin 70 13 .3841 .3142 .2330 .1276 .4517 7235 7017 6478 .5827 .5176 mscs 16 10.722 12.368 | 14.112 | 16.187 27.553 9.276 5.574 6.236 7.054 8.058 (13) X (14) 15 c_{ℓ} 4.8013 4.8431 .7505 4.4340 3.7716 3.5158 3758 4.5696 .6954 0328 TABLE I 776 16 5.701 5.632 5.650 5.670 5.688 5.601 5.615 LINE II 5.574 5.581 5.590 TABLE I 17 α_a 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 α, (16)18 (15) .61.67 .8408 .7820 .6631 .8551 .8599 7235 7841 8175 .8383 (17) (18)19 V .1617 .1449 .1401 .1592 2180 3369 3833 2765 2159 .1825 (19) X (15) 20 Coli 6785 .7563 .9666 1.2707 1.3476 1.1151 .9447 .8340 .7592 .6957 TABLE I LINE 9 21 C 38.71 99.48 86.24 75.58 65.89 132.36 114.98 191.35 C^{r} (15) Cl, 22 1.0711 1.0506 .9806 .8341 .7776 1.0385 1.0619 8919 .9678 1.0106 C C (22) X (21) 23 170.67 165.52 152.80 137.46 122.10 106.55 90.60 74.11 54.96 30.10 cc_ℓ,sin e (23) x (3) 24 16.98 170.67 163.48 145.33 122.48 98.78 75.34 53.25 33.65 4.71 C_D (20)Cdi, 25 1.4633 1.1131 .8011 7813 .8709 1.5518 1.0879 .9604 .8742 1.2841 ccdi 26 (25) X (21) 186.06 145.21 115.71 92.11 **7**7.**7**2 75.11 84.13 96.42 60.07 (26)(3) 27 X CC SIN 6 38.20 29.79 9.39 183.77 138.11 103.10 74.52 54.96 44.15

CHECKS: $\frac{\pi}{20} \frac{b}{S} \sum CC_{1} \sin \theta = \frac{\pi}{20C_{AVE}} \left(\sum 24 - \frac{1}{2} 24 \right) = 1.0; .001251 (799.34) = 1.0000$

LINE 27: $\frac{\pi}{20} = \sum_{s} CC_{d_{2}} \sin s = \frac{\pi}{20C_{AVE}} \left(\sum_{s} (27) - \frac{1}{2} (27)_{s} \right) = 1.0; .001251 (798.85) = .9994$

7.3 EXAMPLE 3 - WING WITH PART-SPAN FLAP

- 7.31 Untwisted Wing It will next be assumed that the distribution of the loads is desired for the same wing with the part-span split flaps open. The normal procedure would be to first calculate the distributions for the wing with no twist, but since this has already been done in the preceding section (7.2) for the normal wing, it is not necessary to repeat it here. (See paragraph 4.211).
- Twisted Wing Since the ratio of flap chord to wing 7.32 chord is constant throughout the span of the flap, it is convenient to assume an angle of attack of one radian $(k\delta = 1)$ for the portion of the span covered by the flap and zero for the remainder of the span. If there were no air leakage between the inboard end of the flap and the fuselage on a high wing monoplane, it might be possible to assume that the flap extended across without a break. Since this is decidedly not the case here and since it is usually conservative for the wing to assume no flap across the fuselage, the central portion of the wing, including the fuselage, is assumed to have the characteristics of the basic wing. In filling in line 6 of Table I, the value of aa is modified in columns 1 and 5 by interpolating between the midpoints at the bottom of the page. (See Paragraph 4.253). The remainder of the calculations are in

accordance with the usual procedure. The B_n 's are found in Table II. In computing the A_n 's in Table V, the C_{2n} and $2P_n$ values are taken from Table IV for the normal untwisted wing. Table VI is computed as usual. In Table VII, only the c_l distribution is computed and checked, since the induced drag is more conveniently handled in Table VIII. (See Paragraph 4.212).

7.33 Unit Distributions - Table VIII is completely filled in in accordance with the procedure outlined in Paragraph 4.213. In taking information from previous computations, care must be exercised in distinguishing between those for the twisted and those for the normal or untwisted wing. (To assist in this, a letter (T) has been placed after the table number at the head of each table for the twisted wing). It should be noted that the value of CDi, found at the bottom of the table by integrating the distributions, checks exactly the value computed in Table VI.

7.34 Application to a Given Dondition.

7.341 Determination of k5 - Sufficient information is now available for computing the lift and induced-drag distributions for any flap angle and for any angle of attack. It will be assumed that the wing and section characteristics are desired for this wing with the flap open 60 degrees and for an angle of attack of 13.9 degrees measured from the chord line of the normal wing section. The

value of k8 for the flap will be obtained from the curves of Figure 4-1, in order to illustrate their use. Using the curves for split flap, for E = 0.15 and for δ_F = 60,

 $k\delta = F_E F_{\delta F} = .17 \times 1.02 = .1734$ (See Sections 4.23 and 4.25)

Modification of Unit Distributions - The first step is to modify the basic distributions obtained in Table VIII for $k\delta=1.0$, so that they will be correct for $k\delta=0.1734$. This is accomplished in Table XI in lines 5, 6 and 7 by multiplying the values of c_{lb} and c_{dialb} by 0.1734, the ratio of the respective values of $k\delta$, and c_{dib} by $\overline{0.1734}$ = 0.03007—after first copying the values for $k\delta=1.0$ in lines 2, 3 and 4 from Table VIII. The values for c_{dial} and c_{lal} are copied into lines 8 and 9, since they are independent of flap angle.

7.343 Wing Coefficients - Before the section values can be found for the angle of attack of 13.9 degrees, it is necessary to determine the wing lift coefficient for this angle with the flap open 60 degrees. Since the zero-lift angle for the normal section of this wing is -1.1 degrees, this corresponds to an angle of attack of 15 degrees when measured from the zero-lift chord. If the section at the plane of symmetry is used as a reference, the true absolute angle of attack of this section is 15 degrees or 15/57.3

= 0.2618 radian, since there is no flap at this section. In Table VIII, line 8, column 0, the value of α_s for zero lift for a flap k8 of 1.0 is -.6785, which becomes -.6785 x .1734 = -.1177 for a flap angle of 60 degrees. Then by Equation 4.17

 C_L = 4.5215 [.2618 - (-.1177)] = 4.5215 x .3795 = 1.716 which is the lift coefficient for this wing with flap open 60 degrees at this angle of attack. Also, by Equation 4.16

$$C_{D_1} = .1984 \times .1734^2 - .00595 \times .1734 \times 1.716 + .042478$$

$$\times \frac{2}{1.716} = .0060 - .0018 + .1251 = .1293$$

7.344 Total Distributions. The section values of c_l are now found in line 11 by adding to the values of c_{lb} in line 5 the values of c_{la} found in line 10 for C_L = 1.716. Likewise, the values of c_{dia} are found in line 12 by multiplying the c_{la} values in line 9 by C_L^2 , and c_{diab} in line 13 by multiplying c_{dialb} of line 7 by C_L . The three partial distributions are then added to obtain the total c_{dial} in line 14. These distributions can be found for any other angle of attack by first computing C_L and then repeating lines 10 to 14.

7.345 Alternative Method for Induced Drag Distribution -

The remainder of Table XI has been added to show an alternative method of obtaining the induced-drag distribution which may be preferred by many. It is especially advantageous where several types of twist are present in the same wing, as will be demonstrated later in another example. Line 15 is copied from Table I, line 9, while line 16 is copied from Table VIII, line 8. The angle of attack for zero lift for this particular flap angle is found in line 17 as indicated. The absolute angle of attack for each section is found in line 18 by adding an angle sufficient to give the reference section the specified value. Lines 19, 20 and 21 are used to compute the effective angle, induced angle, and induced-drag coefficient in the usual way. To obtain the $c_{\tilde{\mathbf{d}}\,\hat{\mathbf{s}}}$ values for any other angle of attack for the same flap angle requires a repetition of lines 18 to 21, after first obtaining the correct values of c_l . When this method is used to compute the induced-drag distribution for each desired angle of attack, it is possible to omit all computations involving induced drag in Tables VI, VII and VIII.

7.346 Plot of Results - In Figure 7-4 are plotted the basic, additional, and total section lift, and the total induced-drag coefficients. It will be noted that all c_l curves are continuous, while the $c_{\rm d_1}$ curve is discontinuous at the ends of the flap. If more points had been

coefficients is accomplished in the same manner as that used in Sections 7.18 and 7.19 for the special method. For that portion of the span covered by the flap, an additional minimum profile-drag coefficient must be added to that for the normal wing. From Figure 5 of reference 13 for $\delta f = 60$ and E = .15

$$\Delta c_{domin} = 0.112$$

Likewise, for this portion of the span, an additional moment coefficient must be added. In the absence of better data, this may be taken from Figure 7 of reference 13, where it is seen to vary with c_l . After an inspection of line 11 of Table XI, its value may be read for $\delta_F=60^\circ$ and $C_L=1.9$ as

$$\Delta c_{\text{ma.c.}} = -0.21$$

GEOMETRIC CHARACTERISTICS OF WING

													A PARTY OF THE PROPERTY OF THE
	3	9	0	-	2	863	*	w)	හ	۴	හ	Ø	0
8	FRACTION SELECTION	0903 57	0	.1864	308	4840	5978	707.	0808	0188	1126	1188.	0000
840	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6	08	8	2	69	8	40	96	23	92	Ø,	0
4		O NES	0000	2877	188	0168	0808	.707.	983	068A.	3080	, IS 64	0
භ		1 × 5	0	1.0	1,0	1.0	1.0	0	0	0	0	0	0
ය	ASSOLUTE IN PADIENS	<u>.</u>	0	*9856*	1,0000 1,0000	1.0000	1,0000	1,0000 .1944**	0	0	0	0	0
~	(a) × (b)	ම කි ප්	0	.9735	.9511	.8910	0608*	.1375	0	0	0	0	0
60	THICKNESS	•								The second secon	هم اداران و والتالي بالماران و		
(C)	CHOND	ပ							المذاب ويوافقون وويوها				
2	<u>(6)</u>	دأس							774-337-1-1				
=	2/da	TM.						- [
∞		m _s /m											
5	(a)	0/°5											
4	 ~							de air e de l'égle vé court a parque					
}	r q	တ						CAVE. S/DB	2/8				

 $(6)_{\overline{5}} k \delta$ (49.5 - 47.75)/(49.5 - 40.5) = .1944 k δ (85.37 - 76.5)/(85.5 - 76.5) = .9856 k 5*Flap ends at $\theta = \cos^{-1}(38.375/476) = 85.37^{\circ}$; $(6)_{l} = k \delta$ **Flap ends at $\theta = \cos^{-1}(320/476) = 47.75^{\circ}$;

TABLE II.(T)

COMPUTATION OF ANGLE COEFFICIENTS, B71

FLAP k8 = 1.0

TABLE I. 9, /	2 5,	y _z	93	94	¥5	90	91	Ya	49
LINE 7 0	.9735	-9511	.8910	.8090	.1375	0	0	0	0

9, - 93 - 95 + 97 + 98 = 1.	15./2 - ya + ya = 12
.973589101375 + 0 + 0 =0550	08090 + 0 =8090

	MULTI-	-	19	3 -	. 17	5 -	15	7 -	13	9 -	88
	PLIER	a	ь	a	6	a	5	a	Ь	a.	_ ط
	4000	99		- 43	Î		į	- 47		<u> </u>	E G
Û	.1564	0		1394				0		.1.523	
2	.3090	. [У в		<i>94</i> [ĺ		94		<i>9</i> 8
ے	.3030		0		.2500	·····		12	.2500		_0
3	.4540	\mathcal{Y}_7		99	į	į	į	- y,		-53	
		0		0				4420	7 ₂	4045	- y ₆
4	.5878		46	-	-52						
		LA _	0	y 5	5591	n,		- y ₅	.5591	95	0
5	.7071	95 .0972		.0972		0389	ļ	0972	į	,0972	
		.0972	په	<u>.0972</u>	<i>y</i> 8	0509			ឫន	# U 7 1.E	54
	.8090		.6545		0	ĺ			0		.6545
-	A. A. A.	73		- 5,				99		- 47	
	.0910	_2339 _		8674				0		0	
8	.9511		5 E		36				- ყ _ნ		- Y2
	1.5011		.9046		0				0		9046
6	9677	٦,		<u> </u>				95		<i>9</i> 9	
_		.9615		Ú				.8800	14 6 0	0	11.76
10	.0000		40/2		-40/2		LL S		-Jo/2		40/2
			0		0	to the state of th	-,8090		0		0
9.6	TOTAL					0.000	#OCO	2100	0007	1550	2501
-	 	1.8526	1.5591	9096	3091	0389	-,8090	6 34U8	.8091		- 6301
12	a+6	3.4117	\times	1.2187	\times	8479	\times	1.1499	\times	4051	\times
									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
13	a-6		•2935		6005		.770 <u>)</u>		4683		.0951
14	(2) (3	<u> </u>	1-122	<u> </u>				Î			
140	2.5		.1174	4875	2402	3392	و208ء	.4600	1873	1620	و380 ،
15	287	28,	2819	283	28,7	285	2815	287	2813	289	2811

CHECK: 281-263+285-287+289-2811+2815-2815+2817-2819 = 2 4 = 2 4 =

NOTE: IF α_2 is constant along the span, θ_1 = α_S & θ_3 To θ_{19} ARE ZERO.

CHECK: 1.3647 + .4875 - .3392 - .4600 - .1620 - .0380 - .1873 - .3080 - .2402 - .1174 = .0001

TABLE Y. (1) SOLUTION OF An COEFFICIENTS FLAT ko - 1.0

3 a 3 C 4a 46 4 C 3Ь (C2 -C4)A3 -.0099 -.0097 .0743 -.1328 1303 (C4 -C5)A5 .0116 .0113 -.2292 -.0508 -.0495 ---(C6 -C8)A7 -.0036 .0002 0679 0675 -.0002 (Cg -CO)A9 0007 0007 -,0206 .0206 (1)·(2)·(3)·(4) 0022 0021 2B1 - (5) 28, = 1.3647 1.3625 1,3626 1,3647 A; . 6 /2P1 2P; = 2.9632 4605 ,4598 .4598 (C2 -C4) A .0743 4605 4598 0342 0342 0342 4598 9 (C2 -C8) A5 .0081 0078 -.1585 -.0508 -.0495 10 (C4 -C10)A7 0679 .0182 .0181 (C6 -C12)A9 -.0159 ,0206 -.0206 0003 0003 12 8+9+10+11 .0342 .0244 .0242 13 | 263- (12) 283 º - 4875 -.5217 -.5119 -.5117 14 A3= (3) /2P3 2P3 * 3.9287 -.1328 -.1303 -.1302 (C4 -C6) A1 -.2292 -.1055 4605 4598 4598 -,1054 -.1054 16 (C2 -C8) A3 -.1585 -.1328 0210 1303 .1302 0207 0206 17 (C2 -C12) A7 -,1708 0679 .0675 -.0116 -.0115 (C4 -C14) A9 ,0052 0052 0206 (15)+(16)+(17)+(18) 19 -.0845 -.0911 -.0911 285 - (19) 285 __ 3392 -.2481 -.2547 -.2481 A5 29/2P5 2 Ps = 5.0106 -.0508 -.0495 -.0495 22 (C6 - C8) Ai -,0017 -.0036 4605 4598 4598 ,0017 0017 23 (C4-C10) A3 -.2675 -.1328 -.1303 -.1302 0349 .0348 .0355 24 (C2-C12) A5 -.1708 -.0508 -.0495 -.0495 0087 0085 0085 25 (C2 -C16) A9 -.1605 0033 -,0206 -.0206 0033 26 22+23+24+25 0425 .0450 0449 27 257 - 26 267" ,4600 4175 .4150 .4151 A7 27/2P7 2 Py = 5. 1455 .0679 .0675 .0675 29 (C8 -CIO) A -.0347 4605 4598 4598 -.0160 -.0160 -.0160 30 (C6 -C12) A3 -.0159 .1328 -_1302 0021 0021 0021 31 (C4 -C14) A5 -.2532 0129 ,0508 -.0495 0125 0125 32 (C2-C16) A7 -.1605 .0679 0675 ,0675 0109 .0108 0108 33 (28)+(30)+(31)+(32) 0119 .0122 0122 34 28₉ - 33 28g - . 1620 -.1501 -.1498 -.1498 35 Ag 34 /2Pg 2Pg = 7.2768 -.0206 -.0206 -.0206

TABLE VI (T)

COMPUTATION OF WING LIFT AND DRAG COEFFICIENTS

FLAP	ks	=	1.0
------	----	---	-----

l	2	3
A = .4598	(A ₁) ² 2 .2114	$A_i/3 = .1533$
A ₃ =1302	3(A ₃) ² = .0509	A3/5 =0260
A ₅ 0495	5(A ₅) ² = .0123	-Ag/21= .0024
A ₇ = .0675	7(A ₇) ² = .0319	A ₇ /45= .0015
A ₉ =0206	9(A _g) ² = .0038	-A ₉ /77= .0003
	$\sum mA_{n}^{2} = .3103$	Σ = .1315

$$1 + C = \frac{\sum n A_n^2}{A_n^2} = \frac{.3103}{.2114} = 1.4678$$

$$\frac{\text{TT } m_{\text{SCS}}}{\text{4 } C_{\text{AVE}}} A_{\text{I}} = \frac{.7854 \times 5.574 \times 191.35}{125.56} \times .4598 = 3.0676$$

$$C_{D_i} = \left(\frac{1+\sigma}{WA}\right)C_L^2 = C_{D_i} \cdot C_L^2 = \frac{1.4678}{3.1416 \times 7.582} \times 3.0677^2 = .5799$$

TABLE MI (T)

COMPUTATION OF LOAD DISTRIBUTIONS

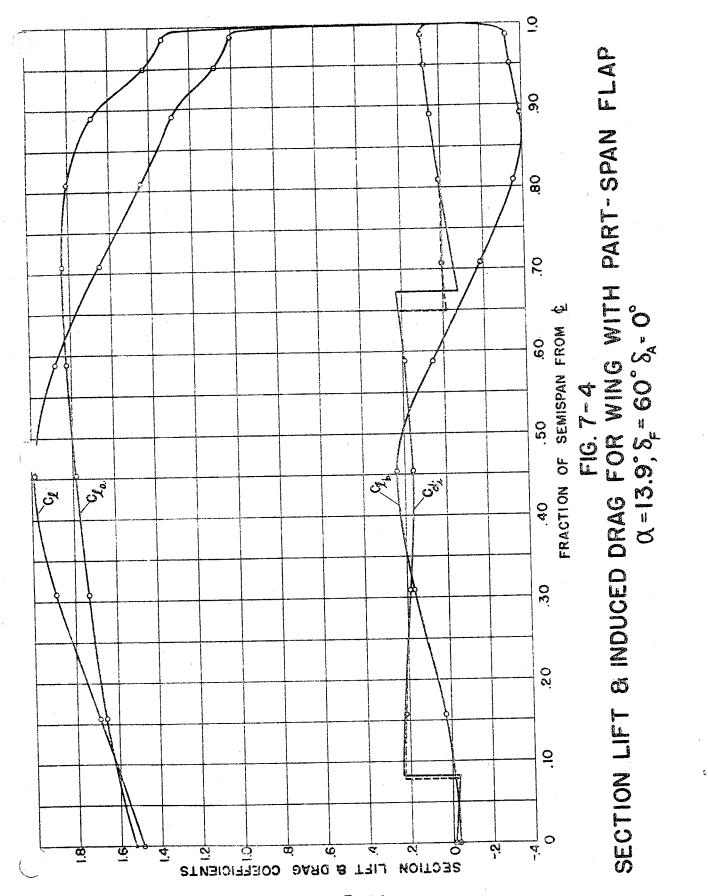
CD	<i>i.</i> **	COMPO	,,,,,,,		FLA	P kg =				C ^r	3,0677	
1	a	ь	0	ì	2	3	4	5	6	7	8	9
2	TABLE I LINE 3	6	90	81	72	63	54	45	36	27	18	9
3	TABLE I	SIN Ø	1.0000	.9877	.9511	.6910	.8090	.7071	.5878	.4540	.3090	.1564
4		SIN 30	-1.0000	8910	5878	1564	.3090	.7071	.9511	.9677	.8090	.4540
5		SIN 56	1.0000	.7071	٥	7071	-10000	7071	0	.7071	0000	.7071
G		SIN 76	-1.0000	4540	.5878	.9877	.3090	7071	9511	1564	.8090	0188.
7		SIN 98	1.0000	.1564	9511	4540	.8090	.7071	5878	OIEB.	.3090	.9877
8	A: ,4598	A _I SIN 0	.4598	.4541	. 4373	.4097	.3720	.3251	2703	,2087	.1421	.0719
9	43*1 302	a _s sin 30	.1302	.1160	.0765	.0204	0402	0921	1238	1286	1053	.0591
10	45 0495	A55IN 50	0495	0350	0	.0350	.0495	.0350	0	0350	0495	0350
11	A7= .0675	A ₇ SIN 70	.0675	0306	.0397	.0667	9020.	.0477	.0642	0106	.0546	.0601
12	Age0206	Ag SIN 90	0206	0032	.0196	.0094	0167	.0146	.0121	.0184	0064	_,0203
13	+(11)+(12)	∑A _n SIN n€	.4524	.5013	.573]	.5412	.3855	.2057	.0944	.0529	.0355	.0176
14	[(1), × (13)]	msCs C	5.574	6,236	7,054	8,058	9.276	10.722	12.368	14.112	16.187	27,553
15	(13) X (14)	C _£	2.5217	3.126	14.0426	34,3610	3,5759	2.2055	1,1675	.7465	.5746	.4849
16	TABLE I	JU6								ļ	ļ	
17	Yable I Line 6	O.a					<u> </u>				ļ ·	ļ
18	15/16	a								ļ		
19	17 - (18)	<u>~</u>	<u> </u>			<u> </u>		ļ	ļ			ļ
20		Cdi									<u> </u>	ļ
21	LINE 3	С	191.3	5171.0	3 151.8	X 132.3	6114.9	8 99.4	86.24	1 75.58	65.89	38.71
22	(15) / C _L	c _ℓ ,	.8220	1.0190	1.317	81.431	61.165	7 .7189	3806	.2433	.1873	.1581
23	22 x 21	C CL	157.2	9174.2	8199.2	5 188.1	6 134.0	3 71.5	2 32.8	2 18.3	12.34	6.12
24		cc _l , sin 0	157.29	9172.1	4 189.5	1167.6	5108.4	3 50.5	7 19.29	8.35	3.81	96
25	20 / C _D	1	<u> </u>	<u> </u>	1		_	-	1		1	1,
26	19 9			-					ļ ·			
27	26 × 3	CC SIN 6										

CHECKS: $\frac{\pi}{20} \frac{b}{s} \sum cc_{i} \sin \theta = \frac{\pi}{20C_{AVE}} \left(\sum 2\theta - \frac{1}{2} 2\theta\right) = 1.0 .001251 \times 799.36 = 1.0000$ LINE 27: $\frac{\pi}{20} \frac{b}{s} \sum cc_{di} \sin \theta = \frac{\pi}{20C_{AVE}} \left(\sum 27 - \frac{1}{2} 27\right) = 1.0$

TABLE VIII COMPUTATION OF UNIT LOAD DISTRIBUTIONS

SINGLE SYMMETRICAL TWIST

C,	■ 3.0677 L(T)		FLAP k \$ = 1.0						C_ = M = 4.5215						
ı	a	Ь	0	ı	2	3	4	5	6	7	8	8			
2	TABLE XXI	C, a,	.8919	.9678	1.0106	1.0385	1.0619	1.0711	1.0506	.9806	8341	.7776			
3	TAOLEYSTY LINE 15	c _e	2.5217	3.1261	4.0426	4.3610	3.5759	2.2055	1.1675	.7465	.5746	.4849			
4	2×CL(T)	Cfa	2.7361	2.9689	3.1002	3.1858	3.2576	3.2858	3.2229	3.0082	2.5588	2.3854			
5	3-4	c _{2b}	2144	.1572	.9424	1.1752	.3183	-1.0803	-2.0554	-2.2617	-1.9842	1.9005			
6	Table I Line II	m_{\circ}	5.574	5.581	5.590	5.601	5.615	5.632	5.650	5.670	5.688	5.701			
7		QC=3.0677	0	.9856	1.0	1.0	1.0	.1944	0	0	0	0			
8	(7)-C_1/m	α(C _{L(T)} ο)	6785	.3071	.3215	.3215	.3215	4841	6785	6785	6785	6785			
9	5/6	α,	0385	.0282	.1686	.2098	.0567	1918	3638	-,3989	3488	3334			
ເວ	®-9	<u>A</u>	6400	.2789	.1.529	.1117	.2648	2923	3147	2796	3297	3451			
it	(8) x (8)	C _d , b	.1372	.0438	.1441	.1313	.0843	.3158	+.6468	.6324	.6542	.6559			
12	Table Mi Line 20	Cal	1.3151	.9447	.8340	.7592	.6957	.6785	.7563	.9666	1.2707	1.3476			
13	(12) / C _L ²	Cesia	.05454	.04621	.04079	.03714	.03403	.03319	.03699	.04728	.06216	06592			
14	5/2	Se / Clai	2404	.1624	.9325	1.1316	.2997	-1.0086	-1.9564	2.3064	-2.3789	2.4441			
15	(13) x (14)	Cre.	0131	.0075	.0380	.0420	.0102	0335	0724	1090	1479	1611			
16	(1)/(14)	Cd. "CJa,	5707	.2697	.1545	.1160	.2813	3131	3306	2742	2750	2681			
:7	(E) + (E)	Cdiale	5838	.2772	.1925	.1580	.2915	3466	4030	3832	4229	÷.4295			
18		SIN 0	1.0000	.9877	.9511	.8910	.8090	.7071	.5878	.4540	.3090	.1564			
19	TABLE I LINE 8	С	191.35	171.03	151.20	132.36	114.98	99.48	86.24	75.58	65.89	38.71			
20	(1) x (19)	CC _{d,b}	26.25	7.49	21.79	17.38	9.69	31.42	55.78	47.80	43.11	25.39			
21	(18) x (20)	CCdz SING	26.25	7.40	20.72	15.49	7.84	22.22	32.79	21.70	13.32	3.97			
22	(E) x (1)	CCdiale	-111.73	47.41	29.11	20.91	33.52	-34.48	-34.75	-28.96	-27.86	-16.63			
23	(18) x (2)	CCdia, SINE	111.7	46.83	27.69	18.63	27.12	-24.38	-20.43	-13.15	-8.61	-2.60			


LINE 21:
$$\frac{\pi}{20} \frac{b}{S} \sum_{cc_{d_{i_b}}} \sin \theta = \frac{\pi}{20C_{AVE}} \left(\sum_{e} (2i) - \frac{1}{2} (2i)_{o} \right) \cdot C_{D_{i_b}} = .001251 \times 158.58 = .1984$$

LINE 23:
$$\frac{\pi}{20} \frac{b}{5} \sum cc_{4a,b} = \frac{\pi}{20C_{AVE}} \left(\sum 23 - \frac{1}{2} 23_0 \right) = C_{D_{2}a,b} = .001251 \times (-4.76) = -.00595$$

CHECK:
$$C_{D_{i}} = C_{D_{i}} + C_{D_{i}} \times C_{L(T)} + C_{D_{i}} \times C_{L(T)}^{2} = .1984 - .00595 \times 3.0677 + .042478 \times (3.0677)^{2}$$

 $C_{L(T)} = .1984 - .0183 + .3998 = .5799$

TABLE XI USE OF UNIT VALUES IN DETERMINING DISTRIBUTIONS FOR $\alpha_{13.0^{\circ}} \ \mathcal{S}_{_{\rm F}} = 60^{\circ} \ \& \ \mathcal{S}_{_{\rm A}} = \ 0^{\circ}$

C	= 1.716	-			F			•						
	a	b.	№ 6	C	0	١	2	3	4	5	6	7	8	9
2	TABLE VIII LINE 5	C _{ℓ b}	1.0		2144	.1572	.9424	1.1752	.3183	-1.0803	-2.0554	-2.2617	-1.9842	-1.9005
3	TABLE VIII LINE II	Cdib	1.0		.1372	.0438	.1441	.1313	.0843	.3158	.6468	.6324	,6542	.6559
48	TABLE VIII	Cdialb	1.0	1.0	5838	.277 2	.1925	.1580	.2915	3466	4030	3832	4229	-4295
5	.1734 X2	c_{ℓ_b}	.1734		0372	.0273	.1634	.2038	.0552	1873	3564	3922	3441	3295
6	(.1734) ² × 3	$c_{d_{\lambda_b}}$.1734		+.0041	.0013	.0043	.0039	.0025	.0095	.0194	.0190	.0197	.0197
7	.1734 × 4	Cdia, b	.1734	1.0	10123	.04807	.03338	.02740	.05055	06010	06988	.06645	07333	07448
8	TABLE VIII	Cdiai		1.0	.05454	.04621	.04079	.03714	.03403	.03319	.03699	.04728	.06216	.06592
9	TABLE VIII	c_{la}		1.0	.8919	.9678	1.0106	1.0385	1,0619	1.0711	1.0506	.9806	.8341	.7776
10		Cla		1.716	1.5305	1.6607	1.7342	1,7821	1.8222	1.8380	1.8028	1.6827	1.4313	1.3344
11	5 + 10	C _Æ	-1734	1.716	1.4933	1.6880	1.8976	1.9859	1.8774	1.6507	1.4464	1.2905	1.0872	1.0049
12	C _L x 8	Cdia		1.716	1606	.1361	.1201	.1094	.1002	.0977	.1089	.1392	.1830	.1941
13	C _L × 7	Cdiab	.1734	1.716	1737	.0825	.0573	.0470	.0867	1031	1199	1140	1258	1278
14	6+12+13	$c_{d_{x}}$.1734	1.716	0090	.2199	.1817	.1603	.1894	+.00/1	.0084	.0442	.0769	.086.0
ALTERNATIVE METHOD OF DETERMINING Cd;														
15	TABLE I	m,			5.574	5.581	5.590	5.601	5.615	5.632	5.650	5.670	5.688	f.7701
16	TABLE VIII	α_a	1.0	0	6785	,3071	.3215	.3215	.3215	4841	6785	6785	6785	6785
17	.1734 × 16	αa	.1734	0	1177	. 0533	.0557	.0557	.0557	- 0839	1177	1177	1177	1177
18	.3795 + 17	Qa_	.1734	1.716	.2618	.4325	. 4352	.4352	4352	.2956	.261 8	.2618	.2618	.2618
19	11) / 115)	α,	.1734	1,716	.2679	.3025	.3395	.3546	.3344	.2931	.2560	.2276	.1911	.1763
20	(8) - (9)	w/v	1734	1.716	0061	.1303	.0957	.0806	.1008	.0025	.2058	.0342	.0707	.0855
21	(1) x 20	C _d ;	.1734	1.716	0091	.2199	.1816	.1601	.1892	.0041	.0034	.04/.1	.0769	.0859

7.4 EXAMPLE 4 - WING WITH DIFFERENTIALLY DISPLACED AILERONS.

Method of Attack - In order to demonstrate the procedure when the loading is not symmetrical, an example will be taken in which the ailerons are fully deflected. The same wing as used in the previous examples and shown in Figure 7-1 will be used. The inboard flaps will be assumed closed. The normal procedure would be to first calculate the distributions for the wing with no twist, but since this has already been done in Section 7.2 for the normal wing, it is not necessary to repeat it here. the aileron displacement were equal and opposite on the two sides and the value of k were the same for positive and negative displacements, the effective twist would be completely antisymmetrical. In order to show how to handle a wing with two twists existing simultaneously, however, the ailerons will be assumed to be displaced differentially, which is the same as antisymmetrical displacement combined with a symmetrical displacement or droop. simultaneous twists could be illustrated if the inboard flaps also were assumed displaced, but it is believed that the following example will sufficiently demonstrate the method so that no difficulty will be experienced in combining any desired number of twists.

7.41 Symmetrical Twist - The tables for symmetrical aile-

ron displacement will be computed first as though this were the only twist present. These computations are similar to those made in the preceding section for the wing with inboard flap open. The absolute angle of attack for the inboard portion of the wing is taken as zero in line 6 of Table I. A slightly different procedure is used in obtaining the $k\delta$ or α_{a} values for the part of the wing containing the aileron than was used in the case of the inboard flap. Since, because of tip rounding, the ratio of aileron chord to wing chord is not constant along the span, it is not convenient to use a constant kô of 1.0. absence of better information, the value of $k\delta$ is assumed to vary with chord ratio E in accordance with $F_{
m E}$, read from the curve for ordinary flap in Figure 4-1 for the values of E at each span location. These values of $F_{\rm E}$ are used as $k\delta$ in Table I, which is the same as assuming an aileron displacement of one radian, or $F_{\delta_{\overline{F}}}$ = 1.0. As in the case of the inboard flap, the value of $k\delta$ or $\alpha_{\bf a}$ at the inboard end is modified, because the end of the aileron does not fall midway between the two adjacent points. Since the values of α_{g} are so much smaller than in the previous examples where one radian was used, it has been found desirable to carry one more place in the computations, not because the accuracy warrants such action, but because better checks are obtained at the various places where checks are provided. Some work could be saved by using

 a_a values ten times as great, which would eliminate many zeros necessary only for locating the decimal point. This would be the same as using a value of $F_{\delta F}$ = 10.0. (See Section 4.21).

7.42 Antisymmetrical Twist - The antisymmetrical computations are made in a similar manner, using the same Table I as for the symmetrical case. Table IV-A is necessary because the combination of C_{2n} coefficients are not the same as those for the symmetrical computations, although the plan-form coefficients themselves are, of course, the same. It should be noted that values of C_{D_1} and C_1 found at the bottom of Table VII-A and the value of C_n / C_L , found at the bottom of Table VIII-A by integrating the distributions, check the respective values computed in Table VI-A. (See Section 4.22).

7.43 APPLICATION TO A GIVEN CONDITION.

7.431 Determination of k8 - Sufficient information is now available for computing the lift and induced-drag distributions for any aileron displacement and for any angle of attack. It will be assumed that the wing and section characteristics are desired for this wing with one aileron up 30 degrees and the other one down 6 degrees, and for an angle of attack of 13.9 degrees measured from the chord line of the normal-wing section. It will be assumed that

the aileron is equally effective whether displaced upward or downward, and that $k\delta$ may be found from the ordinary flap curves of Figure 4-1, as

$$k\delta = F_E F_{\delta F}$$

These curves are based on tests of ordinary or plain flaps with no leakage at the hinge. Ailerons may have characteristics quite different, and may be more effective in one direction than the other. Where possible, therefore, the section characteristics of the actual aileron-wing combination should be used. From Figure 4-1

$$F_{\delta_F}$$
 = -.738 for δ_F = -30°

and

$$F_{\delta_F}$$
 = +,230 for δ_F = +6°

These values may be divided into symmetrical and antisymmetrical parts,

as
$$F_{\delta_A} = -.254 - .484$$
 for $\delta_A = -30^{\circ}$

and
$$F_{\delta_A} = -.254 + .484$$
 for $\delta_A = +.60$

7.432 Modification of Unit Distributions - The next step is to modify the basic distributions obtained in Tables VIII and VIII-A for $F_{\delta_F} = 1.0$, so that they will be correct for $F_{\delta_A} = -.254$ and $\pm .484$ for the symmetrical and antisymmetrical cases, respectively. This is accomplished in Table XII, where by is used to indicate the basic symmet-

rical distribution, b₂ the antisymmetrical, and b without a subscript a combination of both. The values, for $F_{\delta_A} = 1.0$, of $c_{l\,b_1}$ and $c_{d\,i_{a_1}b_1}$ are multiplied by -0.254, and $c_{d\,i_{a_1}b_2}$ by $(-.254)^2$; those of $c_{l\,b_2}$ and $c_{d\,i_{a_1}b_2}$ are multiplied by .484, and $c_{d\,i_{b_2}}$ by $(.484)^2$ —in lines 8 to 13—after first copying the values for $F_{\delta_A} = 1.0$ in lines 2 to 7 from Tables VIII and VIII-A. The values of $c_{d\,i_{a_1}}$ and $c_{l\,a_1}$ are copied into lines 14 and 15 since they are independent of aileron displacement.

Wing Coefficients - Before the section values can be found for the angle of attack of 13.9 degrees, it is necessary to determine the wing lift coefficient for this angle with the ailerons displaced -30° and +6°. The zerolift angle for any section of the normal wing is -1.1 degrees, which corresponds to an angle of attack of 15 degrees when measured from the zero-lift chord. If the section at the plane of symmetry is used as a reference, the true absolute angle of attack of this section is 15 degrees, or 15/57.3 = 0.2618 radian. In Table VIII, line 8, column 0, the value of as for zero lift for a symmetrical aileron displacement of one radian (F $_{\delta A}$ = 1.0) is -.04290, which becomes $\alpha_{sol} = -.254 \times (-.04290) = +.01090$ for F_{δ_A} = -.254. Since antisymmetrical displacement produces no total wing lift, the value of $\alpha_{so_2} = 0$. by Equation 4.22,

$$C_L = m \left[\alpha_s - (o_{sol} + \alpha_{so2}) \right]$$

 $= 4.5215 \left[0.2618 - (.01090 + 0) \right] = 4.5215 \times .2509 = 1.1344$

which is the lift coefficient for this wing with ailerons displaced -30 degrees and +6 degrees at this angle of attack. Also, by Equation 4.16

 C_{D_1} = .00806 x (-.254)² + .01002 x (.484)² + (-.254 x (-.000387) x 1.1344 + .042478 x (1.1344)² = .00052 + .00235 + .00011 + .05466 = .05764 and from Table VI-A

$$C_{l}$$
 = .06590 x .484 = .03190

7.434 Total Distributions - The section values of c_l for the two sides are now found in lines 18 and 19 by first adding in line 17 to the value $c_{l\ b_1}$ in line 8 the additional lift found in line 16 for C_L = 1.1344, and then adding and subtracting the value of $c_{l\ b_2}$ in line 11. For this particular aileron displacement the distributions of c_l can be found for any other angle of attack by first computing C_L and then repeating lines 16, 17, 18 and 19. Lines 20, 21, 22 and 24 are used to compute $c_{d\ b_1b_2}$, the portion of $c_{d\ b_1}$ caused by the interaction of the basic lifts. It should be noted that this portion has a different sign on the two sides because of the change in sign

of $c_{l \text{ bo}}$ and, therefore, introduces an additional yawing moment that would not be present if there were no symmetrical twist. In lines 25 and 26 the total values of c_{din} are found for each side. These two lines represent the portion of the induced-drag coefficient that is independent of angle of attack and depends only on the aileron displacement. In lines 27 and 28 the values of cdianb, which represent the total portion of induced-drag coefficient that varies directly with C_{T} for a wing $C_{L} = 1.0$, are found by simply adding these values for the two separate twists. These are multiplied by the value of wing C_{L} in lines 29 and 30, to find the correct values for this particular angle of attack. The same is done for cdia in line 31 and the final totals for the two sides are found in lines 32 and 33 by addition. For this particular aileron displacement, the distributions of cd; can be found for any other angle of attack by first computing $C_{T_{i}}$ and then repeating lines 29 to 33. (See Section 4.24).

7.435 Induced-Drag Distribution by Alternative Method It is seen that the computations for unit distributions of induced drag become rather long in such an example and would be even more so if another twist, such as open in-board flaps, had been assumed. The remainder of Table XII has been added, therefore, as was done in the previous example in Table XI to show an alternative method of obtain-

ing the induced-drag distribution. This method requires lines 41 to 48 to be repeated for each angle of attack for which the distributions are desired, but it makes it unnecessary to compute any of the first 30 lines in Table XII, except lines 1, 2, 5, 8, 11, 15, 16, 17, 18 and 19, and makes it possible to omit all computations involving induced drag in Tables VI, VII, VIII, VI-A and VII-A, while Table VIII-A may be omitted entirely. The alternative method does not separate the various portions of the induced drag, but simply calculates the total value for a given condition. The calculations in lines 34 to 48 of Table XII are self-explanatory, and are twice as long as they would be if it were not necessary to calculate each side separately because of the unsymmetrical twist.

7.436 Yawing Moment - Lines 49 to 52 have been added to calculate the yawing moment produced by the interaction of the two basic-lift distributions. This is done by integrating the values of cdiblb2 in line 24 as was done for cdialb in Table VIII-A. This could be done by the method of Table VI-A, if the odd An coefficients were known for the wing with symmetrical twist at zero lift. The yawing-moment coefficient found in Table VI-A and checked at the bottom of Table VIII-A is for an antisymmetrical aileron displacement of one radian, on the wing without other twist, at a lift coefficient of 1.0. The yawing moment coeffi-

cient for this particular example can be found by adding to the basic value of -.00083, found at the bottom of Table XII, that caused by the additional lift, which is found by modifying the value of .00834 from Table VI-A or VIII-A, for F_{δ_A} = .484 and C_L = 1.1344, or

$$C_n' = -.00083 + .00834 \times .484 \times 1.1344$$

= -.00083 + .00458 = .00375

This can be checked, if desired, by subtracting the total cdi values on one wing, line 33 or 48, from those on the other wing, line 32 or 44, and then integrating the difference in the same manner as was done with the cdiblb2 values at the bottom of Table XII, except that if the same formula is used, the answer must be divided by two.

7.437 Other Coefficients - The determination of the other coefficients is accomplished in the same manner as that used in Sections 7.18 and 7.19 for the special method. For that portion of the span covered by the aileron, an additional minimum profile-drag coefficient must be added to that for the normal wing. From Figure 4 of reference 13

$$\Delta c_{domin} = 0.055$$
 for $\delta_A = -30^{\circ}$ and E = .20

and
$$\Delta c_{\text{domin}} = 0.004 \text{ for } \delta_{\text{A}} = +6^{\circ} \text{ and } E = .20$$

Where better information is available for the particular

type of aileron it should be used. It will be noted by comparing lines 32 and 33 of Table XII that, in the region of the aileron, there is a difference in section cd, of approximately .095, causing an adverse yawing moment. This would be increased slightly by the additional profile drag, if taken into account. It is apparent, therefore, that the difference in minimum profile drag produced by the large differential is only about half the amount required to balance the induced yawing moment. Since these values are based on a simple hinged flap, the advantage of using a device, such as a Frise balance, to increase the drag on the up aileron side is shown. Likewise, for this portion of the span, an additional moment coefficient must In the absence of better data, this may be taken from Figure 6 of reference 13 where it is seen to vary with c_l . After an inspection of lines 18 and 19 of Table XII, the values may be read as

$$\Delta c_{\text{ma.c.}}$$
 = +.17 for δ_{A} = -30° and C_{L} = 0.70

and

$$\Delta c_{\text{ma.c.}} = -.04 \text{ for } \delta_{\text{A}} = +6^{\circ} \text{ and } C_{\text{L}} = 1.40$$

7.438 Plot of Results - The values of c_l and c_{d_1} are plotted for the full span wing in Figure 7-5.

GEOMETRIC CHARACTERISTICS OF WING

2
AN
\Box
4
اين
,
O RADI
J.,0
II
п
r_0
1
-
9
~
٠٠,
ANGLE
FLAP
⋖
\Box
نعا
-
Ξ
ILERON
벋
14
\vdash
-

.	9	ڡ	0		O	ĸ	*	w	ဖ	[-	œ	0	9
~	FRACTION SEMI-SPAR	24 ±080	0	.1564	.3090	4540	5876	707.	3080	0168	3511	.9877	000001
K 3		•	08	188	21	83	6	96	36	23	3	6	0
*		SE G	00001	5877	e. =	0.00	0808	1707.	5.87.8	.4540	3090	1564	0
6	Fig. 7-1	E						.2000	2000	,2000	,2028	9080	
n	Fig. 4-1	кδ						.2045	,2045	1	.2060	.1285	
© .	ABSOLUTE In Radians	d.	0		0	0	0	34	.2045		,2060	.1285	
P -	(a) x (b)	g sin e	0	0	0	0	0	.11646	.12021	.09284	.06365	.02010	
ග	MAXIMUM	4									,		
G)	СНОЯО	ပ											
5	6 / 3	မျပ			-	Control of the Contro							
****	de/da	m°											
2	0	ms/m°											
<u>8</u>	(C) (C)	2/s2										÷	
4	(EX(3)X (4)												
		Contract of the second of the			of other participants of the state of the st	NOTIFICATION OF THE PROPERTY OF THE PARTY OF	and conditions to produce to the first	anti-wise turnaperatory	1	Tremostra and account of the	ng dalam ang yar dar water dalam in		Transferd description of the second second

 $C_{AVE} = S/b^2$ $(6)_5 = k\delta(47.75 - 40.5)/(49.5 - 40.5) = .8056 k\delta$ *Flap Ends at $\theta = \cos^{-1}(320/476) = 47.75^{\circ}$;

TABLE II. (T)

COMPUTATION OF ANGLE COEFFICIENTS, B70 AILERON FLAP ANGLE = 1.0 RADIAN

TAB	LE	I.	90/2	٤,	y 2	5 3	94	55	40	51	y e	79
LIN		7	0	0	0	0	0	.11646	.12021	.09284	.06365	.02010

4,	- 43	, - y ₅	+ 57	*	49	= /l,	3./2		44	4	y _s	=	Λ ₂	
0	-0	11646	+,0928	9 +	0201	0==00352	0	- 0	+.	063	65 :	= .	06365	

	MULTI-	1 -	19	3 -	17	5 -	15	7 -	13	9 -	11
1	PLIER	a	6	a	ط	OL.	b	a	ь	a	<u>_b_</u>
6	.1564	59		- 43			· }	- 47	-	9,	
·	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.00314		0	44			.01452	y _A	0	<i>9</i> 8
2	.3090	ŀ	9 ₈	-	0	.	1	-	0		.01967
		97	.01967	59	- 		-	-4,		-53	
3	.4540	.04215	de la company	.0093.3				0		0	
4	.5878		. Y6		- 42				72		- ყ _€
49	.5016		.07066		0			- 55	0	- 5 <u>-</u>	07066
5	.7071	<i>4</i> 5		55		76.		08235		.08235	
		.08235	94	.08235	7 ₈	002/9		UQE39	ye		ya.
	.6090		0		.05149	İ			.05149		0
7	sei o	Уz		- 5 ₁				¥9 <u></u>		- 47	
Ľ	.0310	0		0	<u> </u>	<u> </u>		.01791		08272	- Ld .
8	.9511		92		9e	,			- <i>y</i> & 11433		- <u>42</u>
-		9,	0	97	.11/33			<u>45</u>		<i>y</i> 9	
9	.9877	0		.09170				0		01,985	
	10000	l Ü	40/2	007275	- 40/E		Πz		-yo/2.		40/2
10	1.0000		0		0		.06365		0		0
11	TOTAL	.12764	.09033	-18318	.165 8 2	00249	.06365	07896	06284	01948	-05099
		1.12/04		1							
15	a+b	.21797		.34900		.06116		14,180		0315	
13	a-b		00007	\sim	.01736	><	06614	\times	01612		.07047
-	(2)%(13	$\langle \cdot \rangle$.03731		1.011,00		100024	<u> </u>		<u> </u>	
14	2.5	.08719	.01492	.13960	.00694	.02446	02646	05672	00645	-01260	02819
15	1	28	2819	283	28,7	285	2815	287	2B ₁₃	289	2811

CHECK: 281-283+285-287+289-2811+2813-2815+2817-2819 = 2 4 = 2 4 = 2 4 NOTE: IF & IS CONSTANT ALONG THE SPAN, B = Q & B 3 TO B19 ARE ZERO. .08719-.13960+.02446 + .05672 - .01260 -.02819 -.00645 +.02646 +.00694 -.01492 = .00001

TABLE V. (T) SOLUTION OF A COEFFICIENTS AILERON FLAP ANGLE = 1.0 RADIAN

			1151/1011 11/	ti ithogan	1.0 100718	· 		
	ı	2	за	3 Ь	3 C	4 a	4 b	4 C
i	(C2 -C4)A3	.0743		.03498	.03476		.00260	.00258
2	(C4 -C6)A5	2292		.00733	.00698		00168	00160
3	(C6 -C8)A7	0036		00749	00754		.00003	.00003
4	(C8 - C10)A8	0347		00142	00144		.00005	.00005
5	1 2 3 6						.00100	.00106
6	28, - (5)	28; =	,08719	-		.08719	.08619	.08613
7	A1 = 6 /2P.1	2P ₁ *	2,9632	-		.02942	.02909	.02907
8	(C2 -C4) A1	.0743	.02942	02000	02007	00210	0023.5	00216
9	(C2 -C8) A5	1585	.02542	.02909	.02907	.00219	.00216	.00216
10	(C4 -C10)A7			,00733	.00698	7	00116	00111
11	(C 6 -C12)A9	2675		00749	00754		.00200	20200.
12	8+9+10+(1)	0159		00142	00144	.00219	.00002	20000.
13	2B ₃ - (12)	28- 5	13960			.13741	.13658	.00309
14	A3=(13)/2P3	<u>-</u> _	3.9287	-		.03498	.03476	.03475
	~3 (9/ ± · 3			-			.00770	
15	(C4 -C6) A1	2292	.02942	.02909	.02907	00674	00667	00666
16	(C2 -C8) A3	1585	.03498	.03476	.03475	00554	00551	00551
17	(C2 -C12) A7	1708		~.00749	00754		.00128	.00129
18	(C4 -C14) A9	2532		00142	00144		.00036	.00036
19	15+16+17+18					01228	01054	01052
50	28 ₅ - (19)	285°_	.02446		·	.03674	.03500	.03498
21	A5= 20/2P5	2 P5 =_	5,0108	_		.00733	.00698	.00698
22	(C6 - C8) Ai	0077	200.40		T			
23		0036	.02942	.02909	.02907	00011	00010	00010
24		2675	.03498	.03476	.03475	00936	00930	00930
25	(C2 -C16) A9	1708	.00733	.00698	.00698	00125	00119	00119
26	(22)+(23)+(24)+(25)	1605		00142	00144	03.000	.00023	.00023
27	287 - 26	28-=	05672		***************************************	01072	01036 04636	01036
26	A ₇ 27/2P ₇		6.1455			00749	00754	00754
			N	T			1	1
29	(Cg -CIO) AI	0347	.02442	.02909	,02907	00102	00101	00101
30	(C6 -C12) A3	0159	.03498	.03476	.03475	00056	00055	00055
31	(C4 -C14) A5	2532	.00733	,00698	.00698	00186	00177	00177
32	(C2-C18)A7	1605	00749	.00754	00754	00120	.00121	.00121
33	29+30+31)+32					00224	00212	-,00212
34	28 ₉ - 33	28 ₉ •	-,01260	-	·····	01036	01049	01048
—	Ag 34/2Pg							

TABLE VI (T)

COMPUTATION OF WING LIFT AND DRAG COEFFICIENTS

AILERON FLAP ANGLE = 1.0 RADIAN

ı	2	3
A = .02907	(A ₁) ² .000845	A ₁ /3 = .00969
A ₃ .03475	3 (A ₃) ² .003623	A3/500695
A ₅ 00698	5(A ₅) ² = .000244	-As/21=00033
A, =00754	7(A-)2 .000398	A-/45=00017
Ag =00144	9(A ₉) ² .000019	-A ₈ /77=.00002
	$\sum nA_n^2 = .005129$	∑ z .01616

$$1 + \sigma = \frac{\sum n A_n^2}{A_1^2} = \frac{.005129}{.000845} = 6.069$$

$$\frac{77}{4} \frac{7858}{\text{Cave.}} = .7854 \frac{5.574 \times 191.35}{125.56} \times .02907 = .19395$$

$$C_{D_{i}} = \frac{1+\sigma}{\pi A} C_{L}^{2} = C_{D_{i}} C_{L}^{2} = \frac{6.069}{3.1416 \times 7.582} \times .19395^{2} = .25479 \times .037617$$

FOR WING WITH NO AERODYNAMIC TWIST,
$$C_{02} = C_{02}$$
, $C_{02} = C_{02}$, $C_{02} = C_{0$

TABLE VII (T) COMPUTATION OF LOAD DISTRIBUTIONS

C_{D_2}	· •		AILER		ANGLE =	: 1.0 RA	DIAN			C _L .	19395	
	a	ь	0	ı	2	3	4	5	6	7	8	9
2	TABLE I	9	90	8:	72	63	54	45	36	27	16	9
3	TABLE 1	SIN 0	1.0000	.9877	.9511	.8910	.8090	.7071	.5878	.4540	.3090	.1564
4		SIN 30	-1,0000	8910	5876	1564	.3090	.7071	.9511	.9877	.8090	.4540
5		SIN 50	1.0000	.7071	O	7071	-10000	7071	0	.7071	0000.1	.7071
6		SIN 70	-1,0000	4540	.5878	.9877	.3090	7071	9511	1564	.8090	.8910
7		SIN 98	1.0000	.1564	95	4540	.8090	.7071	5876	01 2 3	.3090	.9877
8	A F .02907	A,SIN 6	.02907	.02871	.02765	.02590	.02352	.02056	.01709	.01320	.00898	.00455
9	A3 * .03475	A35IN 36	- . 034 7 5	-,03096	-02043	00543	.01074	.02457	.03305	.03432	.02811	.01578
		A ₅ SIN 5@	.00698	.00494	0	00494	00698	00494	0.	.00494	.00698	30494
1	Į.	A7 SIN 78	.00754	.00342	00443	00745	0023	.00533	.00717	.coris	-00610	.00672
1	A 00144	A ₉ SIN 90	00144	000æ	.00137	.00065	.00116	00102	.00085	.00128	00044	-,00142
13	(B) + (D) + (Q) + (1) + (12)	∑A _n SiNn9	.00740	.00588	.00416	.00873	.02379	.04450	.05816	.05492	.03753	.01713
14	[(1), x (13)]	mscs C	5.574	6.236	7.054	8.058	9.276	10.722	12.368	14.112	16.187	27.553
15	(13) X (14)	c _ℓ	.04125	.03667	.02934	.07035	.22068	.47713	.7 1932	.77503	.60750	.47198
16	TABLE I	77%										
17	TABLE I LINE 6	aa										
18	15/16	α,										
19	17 - 18	<u>₩</u> ∀										
20	(19) X (15)	Cdi										
21	TABLE I	С	191.35	171.03	151.20	132.36	114.98	99.48	86.24	75.58	65.89	38.71
22	(15) / C _L	C _L ,	.21268	.18907	.15128	.36272	1.1378	2.4601	3.7088	3.9960	3.1323	2.4335
23	(22) X (21)	c c _l	40.696	32.337	22.874	48,010	130.824	244.731	319.847	302.018	206.337	94.201
24	23 × 3	CC _L , SIN 0	40.696	31.939	21.755	42.777	105.837	173.04	9188.006	137.116	63.774	14.733
25	20 / CD2			ļ								
26	25 x 21	ccdi							ļ			1
27	26 x 3	CCd SIN 6				<u> </u>			<u> </u>			

CHECKS: $\frac{\pi}{20} \frac{b}{s} \sum cc_{\ell_1} \sin \theta = \frac{\pi}{20C_{AVE}} \left(\sum 24 - \frac{1}{2} 24\right) = 1.0$; .0012510 x 799.334 = .99997 LINE 27: $\frac{\pi}{20} \frac{b}{s} \sum cc_{\ell_1} \sin \theta = \frac{\pi}{20C_{AVE}} \left(\sum 27 - \frac{1}{2} 27\right) = 1.0$

TABLE VIII COMPUTATION OF UNIT LOAD DISTRIBUTIONS SINGLE SYMMETRICAL TWIST

C	L(T) = .19399	5		ATTURON	FLAP A	NGLE = 1	L.O RADI	JN	C ^r .	: m=	4.5215	
ê	a	Ь	O	f	2	3	4	8	6	7	8	9
2	TABLE XII LIME 22	Clay	.8919	.9678	1.0106	1.0385	1.0619	1.0711	1.0506	.9806	.8341	.7776
3	TABLEYET LINE 18	c _ℓ	.04125	.03667	.02934	.07035	.22068	.47713	.7193%	.77 503	.60750	.47198
4	2 × C _{L(T)}	Cla	.1.7298	.18770	- 19601	.201 <i>4</i> 2	.20596	.20774	.20376	19019	.16177	.15087
5	3-4	C _{Ph}	13173	15103-	16607	13107	.01472	.26939	.51556	.58484	.24573	.32116
8	Table I Line II	m,	5.574	5.581	5.590	5.601	5.615	5.632	5.650	5.670	5.688	5.701
7	TABLE I (T)	Jan Li	0	0	0	0	0	.1647	.2045	.2045	.2060	.1285
8	7-G,/m	α[C[= 0)	04290	04290	04290	04290	34290	.12180	.16160	.16160	.16310	.08560
છ	\$/6	α。	02363	02706	02982	02340	.00262	.04783	.09125	.10315	.07836	.05633
10	8-8	\	01927	01584	01308	01950	- . 04552	.07397	.07035	.05845	.08474	.02927
8.1	(g) x (t0)	C _{d,2} b	.00254	.00239	.00218	.00256	00067	.01993	.03627	.03418	.03777	.00940
12	table we line 20	C₄ _à	1.1151	.9447	-8340	.7592	.6957	-6785	.75 63	. 3666	1.2707	1.3476
13	(5) / C ₅	Cultical	.05454	.04621	.04079	.03714	.03403	.03319	.03699	.04728	.06216	.06502
14	5/2	Complete Contraction	1/,770	15605	16492	12621	.01386	.25151	.49073	.59641	.53438	.41301
15	(13) x (14)	Carr Csr	00806	00721	00673] 300469	.00047	.00835	.01815	.02820	.03322	.02723.
16	11 / (14)	Cdi & Csa.	01720	01532	01322	_,02028	04834	.07924	.07391	.05731	.07068	.02276
17	(15) + (16)	Cdiale	02526	02253	01995	02497	0478	.08759	.09206	.08551	.10390	.04999
18		SIN 0	1.0000	.9877	.9511	.8910	.8090	.7071	.5678	.4540	.3090	.1564
19	Table I Line 9	C	191.35	171.03	151.20	132.36	114.98	99.48	86.24	75.58	65.89	38.71
50	(i) x (i9)	CC _{dib}	.4860	.4088	.3296	.3388	0770	1.9826	3.1279	2.5833	2.4887	.3639
21	(18) × (2C)	CC4, SING	.4860	.4038	.3135	.3019	0623	1.4019	1.8386	1.1728	.7690	.0569
22	(17) x (19)	CC _{dia,b}	-2.834	-3.853	-3.016	-3.305	-5.504	8 .7 34	7.939	6.463	6.846	1.935
23	(13) x (22)	CC _{d, L,b} SIN 6	-4.834	-3.806	-2.869	-2.945	-4.453	6.1.62	4.667	2.934	2.115	.303

LINE 21:
$$\frac{\pi}{20} \frac{b}{S} \sum_{c} c_{d_{i_b}} \sin e = \frac{\pi}{200} \left(\sum_{ave} \left(\sum_{c} 2i\right) - \frac{1}{2}(2i)_{0}\right) \cdot C_{D_{i_b}} = .001251 \times 6.4391 = .00806$$

LINE 23:
$$\frac{\pi}{20} \frac{b}{S} \sum cc_{i_{a,b}} e = \frac{\pi}{20C_{AVE}} \left(\sum e^{3} - \frac{i}{2} e^{3} c\right) = C_{D_{i_{a,b}}} = .001251 \times (-0.309) = -.000387$$

HECK:
$$C_{D_{i}} = C_{D_{i}} + C_{D_{i}} C_{L(T)} + C_{D_{i}} C_{L(T)} = .00806 - .000387 \times .19395 + .042478 \times (.19395)^{2}$$

= .00806 - .00008 + .00160 = .00958

TABLE II A COMPUTATION OF ANGLE COEFFICIENTS, Bn

ANTI-SYMMETRICAL

AILERON ANGLE = 1.0 RADIAN

1	table I	49	.02010	ys	.06365	47	.09284	46	.12021	45	.11646
2	LINE 7	<i>y</i> ,	0	y ₂	0	53	0	44	0	<u></u>	0
3	1+2	V,	.02010	V2	.06365	V 3	.09284	V	.12021	V ₅	.11646
4	1-2	W,	.0201.0	W ₂	.06365	W ₃	.09284	Wa	.12021		

	MULTI-	2 -	18	4 -	16	6 -	14	8 -		10
	PLIER	a	ь	a	ь	a	ь	a	ь	
6	.3090	.00621				V₃ .02869				
		.000.2	٧z	W.	Wa		-V4	-₩3	₩2	į
7	.5878		.03741	.011.81	.07066		07066	05457	.03741	
8	.8090	∀ ₃ .07511				V. .01626				
 -		•017==	V4	W ₃	W ₂		V ₂	M.	-W4	
9	.9511		11433	.08830	.06054		.06054	.01912	11433	
		V ₅				-V ₅				V, -V3+ V5
10	1.0000	.1.1646				11646			-	.04372
11	TOTAL		.15174	.10011	.13120	07151	01012	.03545	07692	.04372
12	a+6	.34952		.23131		08163	\geq	11237		
13	1		.04604		03109	\geq	06139	\times	.04147	
14	(2) g (3) 2.5	.1.3981	.01842	.09252	01244	03265	02456	0449	.01659	.01749
15	28 _n	282	28 18	284	2B ₁₆	286	2814	288	2812	2810

CHECKS:

$$5878(28_2 + 28_8 - 28_{12} - 28_{18}) + .9511(28_4 + 28_6 - 28_{14} - 28_{16}) = 2 y_8 = 0$$
OHECKS:

.13981 + .03265 + .01749 + .02456 + .01842 = .23293; 24 = .23292

.5878(.13981 - .04495 - .01659 - .01842) + .9511(.09252 - .03265 + .02456 + .01244)

= .03518 + .09213 = .12731; 24 = .12730

TABLE MA

CONSTANTS REQUIRED IN SOLUTION OF AT COEFFICIENTS

~ ~~~~	AN	TI-SYMMETRICAL	
ITEM	AILE	RON ANGLE = 1 RADIAN	
UO	M ₅ C ₅	5.574 x 191.35 <u> </u>	.2801
2P2	2C _C - C ₄ * ***O	2.1640 + .5133 + 1.1204 =	3,5977
2P4	2C ₀ - C ₆ + 9U ₀	2.1640 + .0805 + 2.2408 =	4.4853
226	200 - C12 + 12 U0	2.1640 + .0682 + 3.3612 =	5.5934
2P8	2C0 - C16 + 16 U0	2.1640 + .0785 + 4.4816 =	6.7241
^{?®} 10	200- CEG*20UO	2.1640 + .0415 + 5.6020 =	7,8075
D ₀	c ₂ -c ₆	2390 + .0841 =	1549
E	c ₂ -c ₁₀	2390 + .0458 =	1932
F.	c ₂ - c ₁₄	2390 + .0601 =	1789
G	c2 - c18	2390 +.0710 =	1680
Ħ	C4 - C8	3133 + .0805 =	2328
ŧ	C4 - C12	3133 + .0682 =	2451
J	C4 - C16	3133 + .0785 =	2348
K	ce - c ¹⁰	0841 + .0458 =	0383
L	C6 - CH	0841 + .0601 =	0240
844	C8 - C12	0805 + .0682 =	0123

TABLE YA SOLUTION OF An COEFFICIENTS ANTI-SYMMETRICAL

	ANTI-SYMMETRICAL AILERON ANGLE - 1.0												
	ı	2	3 a	3 b	3.0	40	4 b	4C					
1	(C2 -C6) A4	1549		.02197	.02154		~.00340	00334					
2	(C4-C8) A6	2328		00346	00354		.00081	.00082					
3	(C6 -C10)A8	0383		00575	00572		.00022	.00022					
4	(C8 -C12)A10	0123		.00214	.00214		00003	00003					
5	()°(2) *(3) *(4)						00240	00233					
6	28 ₂ - (5)	2 B ₂ =	.13981			.13981	.14221	.14214					
7	Ag = 6 / 2F2	2 P2 =	3.5977		.03886	.03953	.03951						
6	(Co = Co) A o					Γ							
9	(C2 -C6) A2		.03886	. 03953	.03951	00602	00612	00612					
	(C2-C10)A6			00346	00354		.00067	.00068					
10	(C4 - C12) A 8	ł .		00575	00572		.00141	.00140					
11	(C ₆ -C ₁₄)A ₁₀			.00214	.00214		00005	00005					
12	(B+(9)+(10)+(11)			·		00602	00409	00409					
13	284 - (12)		_09ವಿ5೬	<u> </u>		.09854	.09661	.09661					
14	A4* 3 / 2P4	2742	4.4853	-		.02197	.02154	.02154					
15	(C4 -C8) A2	~ 2328	.03886	.03953	.03951	00905	00920	00020					
16		,	.03197	.02154		00303	00416	00920					
17	(C2 -C14)A8			00575	00572			00416					
18	(C4-C16)A10			.00214	.00214		.00103	00050					
19	(5+6+17+18				.00211								
20	28 ₆ - (19)		- 03265			01329 01936	01283	01284					
21	A6" 20 /2P6		5.5934		·	00346	00354	00354					
							100004	00354					
22	(C6-C10)A2		.03886	.03953	.03951	00149	00151	00151					
23	(C4 - C12) A4		.02197	.02154	.02154	00538	00528	00528					
24	(C2 -C14)A6	1789	00346	00354	00354	.00062	.00063	.00063					
25	(C2 -C18)A10	1680		.00214	.00214		00036	00036					
26	22+23+24+25					00625	0065£	00652					
27	288 - 26	288	04495	·		03870	03843	03843					
28	Ag * 27 / 2Pg	2P8 '	6,7241			00575	00572	00572					
29	(Cg -C12) A 2	03.05					Γ						
30	(C6 -C14) A 4	0123	.05886	.03953	,03951	00048	-,00049	00049					
31	(C4 -CIE) A 6	0240	.02197	.08154	.02154	00053	00052	00052					
32	(C2 -C18) A8		00346	00354	~.00354	.00081	.00083	.00083					
33	(9+30+31+32)	1680	00575	- 00572	00572	.00097	.00096	.00096					
34	28 ₁₀ - 33	2 B	01940	- 		.00077	.00075	.00078					
35		····	.01749			.01672	.01671	.01671					
22	A10 = 34 / 2Pi0	2410 =	7,8075			.00214	.00214	.00214					

TABLE VI A SEMI-WING LIFT AND DRAG COEFFICIENTS ANTI-SYMMETRICAL

	2	3	4	5
ODD CIRCULATION	(134011 0 = 100(10) 0 2011			3A, A2 3.01777
CONSTANTS FOR NO	constants for zero angle of attack of basic			5A2A3 =00050
L	wing and aileron			7434 =00038
	radian.			9A4A5 = .00132
A,14988	A ₂ = .03951	2(A ₂) ² .003122	$\frac{2}{3}$ A ₂ = .026340	IIA5A6 =00027
A3 =00254	A4 5 .02154	4(A4)2 .001856	- # A4 "005744	13A8A7 *00001
A5 = ,00683	A6 =00754	6(A ₆) ² = .000075	6 A6 *000607	15A7A8 =00002
A ₇ .00020	Ag =00572	8(A ₆) 2 .000262	- 63 A8 .000726	17A8A900009
Ag .00095	A10 5 .00214	10(A ₁₀) ² .000046	312000. " O00216	19A9A10 .00004

 $\Sigma n A_{\pi}^{2} = .005361$ $\Sigma = .020931 \Sigma (2n+1) A_{\pi} A_{\pi + 1}^{=} .01786$

LIFT COEFFICIENT OF SEMI-WING, $C_{L_b} = 4A$ Uo \sum COL. 4 = 4 x 7,582 x .2801 x .020931 = .1778

$$T_{D_{1_{b}}} = TAU_{0}^{2} \sum \pi A_{\pi}^{2} = 5.1416 \times 7.592 \times \frac{2}{12001} \times .005361 = .01002$$

ROLLING MOMENT COEFFICIENT, C' = ROLLING MOMENT = TT AU A2 .7854 x 7.582 x .8801 x .03951

YAWING MOMENT COEFFICIENT $\frac{C_n}{C_L} = \frac{\text{YAWING MOMENT}}{\text{QDS}} = \frac{11A}{4} = \frac{2}{\sqrt{2}} (2\pi + 1) A_n A_{n+1}$ $= .7854 \times 7.582 \times 12801 \times .01786 = .00834$

$$\overline{y}_{L_{b}} = \frac{\pi}{8 \sum_{col.} 4} \frac{b}{2} = \frac{3.1416 \times .02951}{8 \times .020931} \times \frac{952}{2} = .74127 \times 476 = 352.847$$

TABLE VII A COMPUTATION OF LOAD DISTRIBUTIONS ANTI-SYMMETRICAL

AIL	ERON ANGLE	= 1.0 RAI	IAN	~10	11-54	tanat	INIOM	٠			
	a	ь	8	2	3	4,	5	6	7	8	8
2	TABLE I	8	81	72	63	54	45	36	27	18	9
3		SIN 20	.3090	.5878	.8090	.9511	1.0000	.9511	.8090	.5878	.3090
ą		SIN 40	5876	9511	9511	5878	0	.5878	.9511	.9511	.5878
5		SIN 60	.8090	.9511	.3090	5878	-1.0000	-5878	.3090	.9511	.6090
6		SIN 80	951i	5878	.5678	.9511	0	9511	5876	.5878	.9511
7		SIN 100	1.0000	0	000Q.I-	0	1.0000	0	000ai-	0	1.0000
8	^2". 03951	A ₂ SIN 20	.01221	.02322	.03196	.03758	.03951	.03758	.03196	.02322	.01221
9	* .02154	A4SIN 40	01266		02049			.01266		.02049	
10	^6 *00354	A ₆ SIN 60	00286	00337	00109	.00208	.00354	.00208	00109	00337	'- . 00286
11	^6 00572	a _e sin ee	.00544	.00336	00336	- . 00544	0	.00544	.00336	00336	00544
12	40°.00214	a _{io} sin 100	.00214	0 -	.00214	0	.00214	0	-,00214	0	.00214
13	(B)+(9)+(D) +(11)+(B)	Za _n sinn6	.00427	.00272	.00488	.02156	.04519	.05776	.05258	.03698	.01871
14	Table i (i), x (3)		6.236	7.054	8.058	9.276	10.722	12.368	14.112	16.187	27.553
15	(3) X (4)	c _{/b}	.02663	.01919	.03932	.19999	.48453	.71438	.74201	.59860	.51552
16	TABLE I	7771	5.581	5.590	5.601	5.615	5.632	5.650	E KUTHERI TOURING	5.688	5.701
17	table i Line 6	α_a	0	0	0	0	.1647	,2045	.2045	.2060	.1285
18	B / 6	α.	.00477	.00343	.00702	.03562	.08603	.12644	.13087	.10524	.09043
19	17 - 18	< ₹	00477	- 00343	00702		1			.10076	.03807
20	(9) x (15)	Cdib			-,00028				.05463	.06031	.01963
21	Table 1 Line 9	<u>^</u>			132.36				75.58	65.89	38.71
22	20 x (15)	CCLb	4.555					61.608	56.081	39.442	19.956
23	€ ∂ × ③	CC _L SIN 26		1.706	4.210	21.871	48.201	58.595	45.370	23.184	6.166
24		SIN 6	.9877	.9511	.6910	.8090	.7071	.5878		.3090	
25	20 x 21	GC _{dik}	022	009	037	819	3 .7 92	4.809	4.129	3.974	.760
26	25 x 24	CC _{d,S} IN 0	022	009	033		2.681	2.827	1.875	1.228	.119

LINE 26:
$$\frac{\pi}{20} \frac{b}{5} \sum_{CC_{Ab}} \sin \theta \frac{\pi}{20C_{AVE}} \left(\sum_{C} e^{b}\right) = C_{D_{Ab}} = \frac{3.1416}{2511.2} (8.003) = .01001$$

BLE XIII A

LOAD DISTRIBUTIONS ANTI-SYMMETRICAL AILERON ANGLE = 1.0 RADIAN

ANTI-SYMMETRICAL CL = 4.5215 AILERON ANGLE = 1.0 RADIAN	a b 1 2 3 4 5 6 7 8 9	ABLE VIIA CL 02663 01919 03932 19999 48453 717,38 74201 59860 51552	E VIII Cfa, 9678		TABLE VIII C4: .9447 .8340 .7592 .6957 .6785 .7563 .9666 1.2707 1.3476	4. 2. 2.	02752 01899 03786 18833	/Ga, .00127 .00077 .00141 .00641 .01501 .02515 .03578	$4/7$ $G_{i_b}^{\kappa} G_{a_b}/G_{b_b}$ 003160074003781 .08427 .08200 .07220 .08404 .02961	I	SIN 20 .3090 .5878 .8090 .9511 1.0000 .9511 .8090 .5878 .3090	 (10) × (12) C Cd; a, b 590 361 793 -3.610 9.876 9.241 8.161 8.477 2.838	6 182	$\frac{\Pi}{80c}\sum_{n=0}^{\infty} (n) = .00031276(26.658) = .00834$
	a,	TABLE XII		TABLE VI	TABLE XI			×	\sim	4		×	×	$=\frac{\pi}{80c^{\Sigma}}$

TABLE XII USE OF UNIT VALUES IN DETERMINING DISTRIBUTIONS FOR $\alpha = 22.2^{\circ}$, $\delta_{\rm p} = 2^{\circ}$
				,	-F		,	A						
	a	ь	rs _A	C _L	0	ı	2	ક	4	5	6	7	8	9
1 - 1	TABLE VIII	^с і,	1.0		1,173	15173 -	16667	.13107	.01477	26,039	51556	58484	.N.573	35116
	TABLE VIII	cdib.	1.3	-	.00754	00::30	. กระบร	.00256	00067	01993	03627	.03418	.03777	,37940
	TABLE VIII	°a1a,6,		1.0	.02526	02253 -	.01995	.02497	04787	.05759	.09206	08551	.10?90	.04999
	LINE 2	clb.	1.6	_	0	.02663	.01919	.03932	.19997	.48453	.71438	.74201	.59860	.51552
-	TABLE VILA	catb,	1.0	. 1	0	.00013 -	.00006	.00028	00712	.03812	.05576	05463	.06031	.01963
	TABLE VIIIA	cdla,b,		1.2	0	.00345	,00239	.00599	03140	.09928	.10715	10795	.12865	.07331
8	854 ×(2)	clb,	254	-	-		04233	.03329	00374	06843	13095	14955	11372	08157
9	(.254)3x (3)	cdit.	254			+.00015	.00014		~00004	+.00129	+.00234	00221	+, 00244	+.00061
10	254 x(4)	cala,b,	.254	1.0	00642		00507	.00634	.01216	92225	02338	.02172	n2639	0127
11	.484 x(5)	c _l ,	2.74	<u> </u>	1	01269	.00929	.01903	.09680	.23451		.35913	.28972	.24951
12	(,484)°x(6)	calb.	124		0		00001	00007		. 22893		.01260	.01413	.90460
13	.484 x 7	odin.ba	.484	1.0	0 1	.0003	.00116	.00290			.05186	.05226	,06227	.03548
14	TABLE VILL	c _c ,	1450				.04079	.03714		.03319	.07699	.04728	.06216	.06572
15	TABLE VIIL	cla,		1.0	.054.54	.0/.621		1.0385	1.0619]	1,0506	,9806		.7776
	LINE 2 1.1544 *(15)	c _{la}		1.0	.8919						1.1918	1.1124		.8821
16	(16)+(8)	cla+clb.	-	1.13///	1.5218		1.1464	1.1781	1,2046	1.1467	1.0608	.9639	.8330	.8005
18	(17) + (11)	c ₁	754		1.0453			1.2114			1.4066	1.3230	·	1.0500
	$\overline{\mathbb{G}}$	c _l	230	1.134/	1.0453	1.1492	1,1980	1.2304		1.3812	.7150	.6048	-5423	1
_			738	1.1344	1.0453	1.1234		1.1924	1.1041	.9122	-			
20	(11) / (8) (9) × (20)	$\frac{cq^{l^{2}} \times c^{l^{2}} \cdot c^{l^{k'}}}{c^{l^{k'}}}$	{		٥	,32603	.21947	.57164	25.892		2.6404			1
21	\times	call x cl p clp	 		0	+,00005	+,00003	+.00010	+ 00104	00442	1			00187
22	(12)/(20)	Co. Co.	`{	<u> </u>	۰	_,00009	20005	00012	000006	00261	-00 <u>475</u>	00529		00150
23	(9)+(12)	calb + calb	<u> </u>		.00016	\$1000.	.00013	.00010	1		.01540	T	01657	1,00521
24	(21) + (22)	cd1,0,		!	0	00004	00002	0000	.00110	-,0070	01115	1.01063	1	00337
25	(23) 4 (24)	c _d _l _b	230		.00016	80000	,00011	.00000	B0006	.00319	.00427	.004,38	100461	.0018/.
26	(23) - (24)	c _d ; _b	738	ļ -	.00016	.00016	.00015	.0001	203283	.01725	.02653	.07564	02833	1
27	(10) + (13)	c _d l _{o,b}	.230	1.0	.00642	.00405	.00391	.00344	00302	.02580	.02848		.03588	.02278
28	(10) - (13)	cdla,b	-,738	1.0	.00642	.00739	.00623	.00924	-02736	0703	OL.07524	0739	809866	04818
29	1.1344 *(27	·d _{lab}	230	1.1344	,00728	.00459	.00447	.00390	0034	.02927	103231	.03464	04070	02584
30	1.1344x(28)	cal a b	738	1.1344	.00728	.00838	.00707	.01048	03134	0797	508525	0839	T	.05466
31	1.1344×(14)	cd10	<u> - </u>	1.1344	.07019	.05947	.05249	04779	04379	.04:71	0,760	.06084	.07999	.08483
32	25,(29)+(31) cd _i	,230	1.1344	.07763	.06414	.0573/	.05177	.0397	.07517	08778	.09986	12550	.11251
33	(26)-(30)-(31	c _{d1}	738	1.1344	.07763	.06801	.05971	.05839	.0720	0197	9-01122	,00256	.00774	.03875
L			ALT	ERNAT	IVE M	ETHO	OF	DETER	MINING	c _d	<u>. </u>	,		
34	Fuar II	m,			5.574	5.581	5.590	5,601	5.615	5.632	5.650	5.670	5.688	5.701
35	CHIE O	ا م	1.0	0	0429	034290	0429	9429	00429	0 .12180	.16160	.16163	16310	.08560
36	FUAC 11	Wag	1.0	0	0	0	0	0	0	.1647	.2045	.2045	.2060	.1285
37		αa,	254	0	.01090	.01090	.0109	.01090	,0109	0309	40410	5041	15 . 9414	37:17
38	.484 ×36		.484	0	0	0	0	0		+.0797	0989	3+.0789	8+.0997	1230.+
39	(37) + (38)		.230	0	1	.01090	.0109	0 .0109	01090	.0487	05793	.0579	.05877	.04045
40	37 - 3B	α	-,738	o	ì	.01690		0,0199		01106	55 .3400	3 .1400	1411	30839
41	. 2509 + (39		230	1.1344	,2618	.2618	.2618		T .	.2996	7 .3088	3 .3088	3 .3091	2913
42	(18) / (34)		.230	1.1344	i	T	T	1 .2196	-			.2333	3 .1977	38 .18418
43	41) - 42	₹	230	1.1344	1	1		T	2 .03069	1	3 .05987	.0755	0 .11179	.1071
44	(18) x (43)	c _d	.230	1.134	i	.06423	1		2 .039%		8 .08421	T	9 .1255	
45	.2509 +(40)		738		}	.2618	.2618	- ;	1	-				7 .1669
46	(19) / (34)	α.	7	8 1.1344	7	3 .20129			9 .1966	T	7 .12655			
47	$+\times$	₩		1			.05082		1 .0651		72015			
46	$1 \times - \times$	 	738		1	T	,05994		2 .0719		810112			
49	1	SIN 20	738	1.1344	0	1	587	-	9511		0 .9511	_		8 .309
50	7651E 1	6	+	+-	 	 	†	+		+-	+	+		+
51			+-	+	1-0		151-20		6 114.9	i .				
52	$+$ \sim \sim	C Calibada SIK	20	+	0	0068	1		26 +.126			1	-	-
	· @@ ^ @!/	0,0,	1	1	0	-,000,1	00	191 - 200	221 +.12	03690	; [91]	0 650	U 45	55040

 $C'_{\pi} = \frac{\Pi}{80C_{AVE}} \Sigma (52) = .00031276(-5.6478) = -.000827$ 7-67

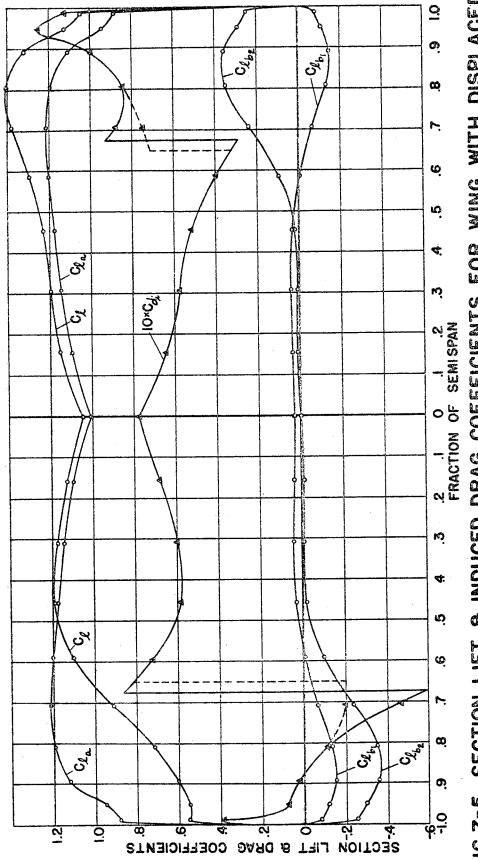


FIG. 7-5 SECTION LIFT & INDUCED DRAG COEFFICIENTS FOR WING WITH DISPLACED AILERONS. Q = 13.9°, Sr = 0° SA = -30°, +6°

7.5 EXAMPLE 5 - WING WITH ANGULAR VELOCITY IN ROLL.

Introduction - It has been shown in the preceding 7.50 section how the lift and induced-drag distributions may be obtained for a wing with displaced ailerons. It should be emphasized that these conditions exist only for an instant after the ailerons are assumed to be thrown hard over, before the airplane has time to obtain an angular velocity in roll. With the ailerons in this position, the resulting rolling moment gives the airplane an angular acceleration which causes it to roll. As soon as a rolling velocity develops, a damping moment occurs which opposes the roll. This damping moment is produced by a change in angle of attack, caused by a combination of the forward velocity with a velocity normal to the flight path, that varies linearly along the span from zero at the center to maximum positive and negative values at the respective wing The purpose of this example is to demonstrate the calculation of the distributions of lift and induced-drag coefficients resulting from the roll and their combination with the other distributions.

7.51 <u>Damping Distributions</u> - For the purpose of computing the damping distributions, the wing is first assumed to have an antisymmetrical linear twist in which the angle of attack at each section is given by p'y/V, in which

p'/V is the ratio of the angular velocity about the wind axis to the forward velocity. The antisymmetrical tables are used, in which the angle of attack at the extreme tip, p'b/2V. is taken as one radian, in which case the angles of attack at the other points are given by line 2 of Table It can be shown that for a wing with such a twist and zero angle of attack at the center, all of the Bn coefficients are zero, except B2 which is equal to 0.5. It is, therefore, unnecessary to fill in Table II-A and, since the same wing will be used as in the previous examples, Table I does not need to be repeated. The \mathbf{A}_n coefficients are found in Table V-A, using 2B2 = 1.0, and obtaining the values of the other constants from Table IV-A of the preceding section. Table VI-A is filled in except for columns 1, 3 and 5. The section values of c_{lh} for a wing with this twist are computed in Table VII-A in the usual manner, and a check of Ci' made by comparing the integrated value at the bottom of this table with the value calculated in Table VI-A. All calculations involving induced drag may be omitted.

7.52 <u>Difference Between Damping and Linear Twist Distributions</u> - The reason for omitting the induced drag in the computations for the damping distribution is that such a distribution, if computed, could not be combined in the usual manner with other loadings. This is because the di-

rections in which the section lifts act in a uniformly twisted wing are not the same as for a wing during roll; since they act normal to the local wind at all times, and this direction changes when the wing is rolling. This difficulty is overcome, as will be shown later, by using the alternative method of computing the cd; distributions for the combined loadings. The same procedure would be necessary in the case of an unsymmetrical gust, where the effective twist is likewise caused by a twist in the relative wind, rather than by a twist in the wing itself.

The damping distribution will be combined with the loadings determined in the previous example for the wing with flap displacement zero, ailerons up 30 degrees and down 6 degrees, at an angle of attack of 13.9 degrees with the chord line. Before this can be accomplished, it is necessary to decide on the magnitude of the damping loads to be used, since the damping distribution was calculated for a unit value of p.b/2V. For this purpose, it will be assumed that the right aileron is displaced down and the left up, which will start the airplane rolling to the left. The angular velocity will continue to increase until the damping moment becomes equal to the rolling moment applied by the displaced ailerons before rolling started, at which angular velocity the airplane will continue to roll at a uniform rate as

long as the ailerons are held in this position. The rolling-moment coefficient applied by the ailerons was found to be 0.03190 in Paragraph 7.433. Since the damping moment coefficient for $(p^*b/2V) = 1.0$ was found in Table VI-A to be 0.46571, the value of $p^*b/2V$ for maximum rolling velocity is

$$\frac{p \cdot b}{2V} = \frac{.03190}{.46571} = .06850$$

The total distributions for each wing will be computed, both for the condition when the rolling velocity has reached its maximum, and for the same rolling velocity with the ailerons fully reversed.

- 7.54 Computation of the Combined Distributions The computation of the total loadings is accomplished in Table XIII and, since four different distributions of both c_l and c_{d_1} are necessary, the work will be described in detail in order to avoid confusion.
 - (1) Line 1 gives the usual column headings, except that a column for p'b/2V has been added to distinguish between unit value and the value indicating the actual damping loads used; and a column for F_{δ_A} indicating by the use of +.230 and -.738 whether the aileron is down or up, respectively.
 - (2) Line 2 gives the distribution of the damping $\mathbf{c_l}$, here designated as $\mathbf{c_l}_{\mathrm{b}}$, for p'b/2V as

copied from Table VII-A, line 15.

- (3) Line 3 gives the value of the section slopes as originally given in Table I, line 11.
- (4) Line 4 gives the value of $c_{l\,b}$ for a value of p'b/2V = .06850, found by multiplying line 2 by .06850.
- (5) In line 5 is copied from Table XII, line 41, the absolute angles of attack for the wing with alleron down before rolling starts.
- (6) Line 6 gives the \mathbf{c}_l distribution for the wing with aileron down as given in Table XII, line 18, before rolling starts.
- (7) Line 7 is found by subtracting line 4 from line 6 and represents the \mathbf{c}_l distribution on the down alleron side after maximum rolling velocity has been reached.

-(

- (8) Line 8 gives the effective angles of attack found by dividing the c_l values in line 7 by the m_0 values in line 3.
- (9) Line 9 is found by subtracting line 8 from line 5 and represents the angle between the relative wind at each section and the direction of flight.
- (10) Line 10 is found by multiplying line 7 by line 9 and represents the induced-drag-coefficient distribution for the wing with alleron down

after maximum rolling velocity has been reached.

- (11) Line 11 is found by adding line 4 to line 6 and represents the c_l distribution on the down aileron side immediately after fully reversing the ailerons at maximum rolling velocity. If it is assumed that the right aileron is down at the start, this line gives the values for the left wing after reversing the ailerons.
- (12) The c_{d_1} distribution for this same wing after the ailerons are reversed is found in line 14 by means of lines 12 and 13 in the same way as was done above for the other wing before reversing the ailerons.
- (14) Line 16 gives the \mathbf{c}_l distribution for the wing with alleron up, as given in Table XII, line 19, before rolling starts.
- (15) Line 17 is found by adding line 4 to line 16 and represents the c_l distribution on the up alleron side after maximum rolling velocity has been attained.
- (16) The $c_{\mbox{d}i}$ distribution is computed in the same way as before in lines 18, 19 and 20.

- (17) Line 21 is found by subtracting line 4 from line 16, and represents the \mathbf{c}_l distribution on the up aileron side immediately after fully reversing the ailerons at maximum rolling velocity. If it is assumed that the right aileron is down at the start, this line gives the values for the right wing after reversal of the ailerons.
- (18) The $c_{\tilde{d}_{\dot{1}}}$ values are found for this condition as for the others.
- 7.55 Yawing Moment Lines (25-31) have been added to Table XIII for the purpose of computing the yawing-moment coefficient. This is done by the usual integration, except that, in this case, one-half the differences in cd; values on the two wings for each condition are used; because the distribution of cd; is unsymmetrical but not antisymmetrical. The value of Cn' for the wing was found to be 0.00872 immediately before reversing the ailerons and .00122 immediately after reversal. In Paragraph 7.436 the value before rolling started was found to be .00375. This shows that the change in Cn' produced by a complete reversal of the ailerons is twice that produced by full displacement before rolling starts, as it should be:

 $.00872 - .00122 = .00750 = 2 \times .00375$

This neglects, of course, the yawing produced by the increase in profile drag of a displaced aileron.

7.56 Plot of Results - The values of c; and cd; for the full span wing before and after the ailerons are reversed at maximum rolling velocity are plotted in Figure 7-6.

TABLE VA SOLUTION OF An COEFFICIENTS ANTI-SYMMETRICAL

 $\frac{p^*b}{2V} = 1.0$

				2v .				
	1	2	за	3 b	.30	40	4 b	40
1	(C2 -C6) A4	1549		.00960	.01028		00149	00159
5	(C4-C8) A6	2328		.01190	.01208		00277	00281
3	(C6 -C10)A8	0383		.00225	.00231		00009	00009
4	(Cg -C12)A10	0123		.00087	.00089		00001	00001
5	1-2-3-4)					00436	00450
€	282-3	2 B ₂ =	1.0	_		1.0	1.00436	1.00450
7	Ag = 6 / 2P2	2 P2 *	3.5977	-	.2780	.27917	.27921	
6	(Cg -C6) A2	75.0		T		1	T	
9	(C2 -C10)A6	1549	.2780	.27917	.27921	04306	04324	04325
10	(C4 - C12) A 8	1	7	.01190	.01208		00230	00233
11	(C6 -C14)A10	- 2451		.00225	.00231	 	00055	00057
12	6+9+0+11	 		.00087	.00089		-,00002	00002
13	284 - (2)	 				04306	04611	04617
14	A4 13 / 2P4	254*				.04306	.04611	.04617
	72.4	2 - 4 -	4.4853	_	,	.0096	.01028	.01029
15	(C4 -C8) A2	-,2328	.2780	.27917	.27921	06472	06499	06500
16	(C2 -C10) A &	1932	.0096	.01028	.01029	00185	00199	00199
17	(C2 -C14)A8	1789	·	.00225	.00231		00040	00041
18	(C4-C16)A10	2348		.00087	.00089		00020	00021
18	(15)+(6)+(17)+(18)	-				06657	06758	06761
20	28 ₆ - (9)	²⁸ 6 *	0			.06657	.06758	.06761
21	A6 20 /2P6	2P6 =	5,5934	_		.01190	.01208	.01209
22	(C = C \)					·	· · · · · · · · · · · · · · · · · · ·	
23	$(C_6 - C_{10})A_2$.2780	.27917	.27921	01065	01069	01069
24	(C4-C12)A4		.0096	.01028	.01029	00235	00252	00252
-	(C2-C14)A6	1789	.01190	.01208	.01209	00213	00216	00215
25	(C2 -C18)A10	1680	=	.00087	.00089		00015	00015
26	22+23)+24+25					01513	01552	01552
28	28 ₈ - (26)	286 :				.01513	.01552	.01552
20	Ag * (27) / 2Pg	2P8 *	6.7241			.00225	.00231	.00231
29	(C8 -C12) A2	0123	.2780	.27917	270 21	00540		
30	(C6 -C14) A 4	0240	.096	.01028	.01029	00342 00023	00343	00343
31	(C4 -C16)A6	- 2348	.01190	.01208	.01209		00025	00025
32	(C2 -C18) A 8	1680	.00225	.00231	.00231	00279	00284	00284
33	29+30+31+32			.00.001	.00231	00038	00039	00039
34	2B ₁₀ - 33	2610 *	О			.00682	00691	00691
35	A10=34 / 2P10	2P10 =	7,8075				.00691	.00691
						.00087	.00089	.000ಡ9

TABLE VI A SEMI-WING LIFT AND DRAG COEFFICIENTS ANTI-SYMMETRICAL

 $\frac{p'b}{2V} - 1.0$

	2	3	4	5
ODD CIRCULATION				3A, A2 =
CONSTANTS FOR NO TWIST & C. = 1.0				5A2A3 =
ווווסו בי סב				7A3A4 =
				9A4A5 =
A ₁ ×	A ₂ * .27921	2(A ₂) ² =	2 A ₂ = .18614	IIA5A6 =
A ₃ *	A4 .01029	4(A4)2	- 15 A00274	13A6A7 =
A ₅ =	A6 .01209	6(A ₆) 2	§ A ₆ = .00207	15A7A8 =
A, =	Ag .00231	8(A ₀) ²	- 63 A800029	17A8A8 =
A ₉ =	A10 .00089	10(A ₁₀)2	00000 * 01A 80	19A9A10 =

 $\sum nA_n^2 = \sum -18527 \sum (2n+i)A_nA_{n+i}$

LIFT COEFFICIENT OF SEMI-WING, C_{L_b} 4A $U_0 \Sigma$ COL. 4 = 4 x 7.582 x .2801 x .18527 = 1.5738

ROLLING MOMENT COEFFICIENT, C' = ROLLING MOMENT = TT AU A2 .7854 x 7.582 x .2801 x .27921 qb S = .46571

YAWING MOMENT COEFFICIENT CONTROL TO THE TOTAL OF THE TOT

$$\overline{y}_{L_{b}} = \frac{11 \quad A_{2}}{8 \sum_{col.} 4} = \frac{3.1416 \times .27921}{8 \times .18527} \times \frac{952}{2} = .59182 \times 476 = 281.70$$

TABLE WILA

COMPUTATION OF LOAD DISTRIBUTIONS ANTI-SYMMETRICAL

				~ ~ ~ ~ ~ ~	.,	TAINAL POP	IRICA	-			-
ı	a	G	Į	2	3	4	5	6	7	8	9
2	Table I Line 3	9	81	72	63	54	45	36	27	18	9
3		SIN 26	.3090	.5678	.8090	.9511	1.0000	.9511	.8090	.5878	.3090
4		SIN 40	5878	9511	9511	5878	0	.5878	.9511	.9511	.5878
5		SIN 68	.8090	.9511	.3090	5678	-1.0000	-5676	.3090	.9511	.8090
6		SIN 80	9511	-5876	.5878	.9511	0	9511	5878	.5876	.9511
7		SIN IOO	1.0000	0	00001-	0	1.0000	0	000QI	.0	1.0000
8	A2 . 27921	AZSIN 28	.0863	.1641	.2259	.2656	.2792	.2656	.2259	.1641	.0063
9	A . •.01029	A ₄ SIN 40	0060-	0098	0098	0060	0	.0060	.0098	.0098	.0060
10	A6 °.01209	A 6 SIN 60	.0098	.0015	.0037	0071	0121	0071	.0037	.0115	.0098
11	As =.00231	A 6 8 M 8 O	0022	0014	.0014	.0022	0	0022	0014	C014	,0022
12	40.00089			0	0009	0	.0009	0	0009	0	,0009
13	+(1)+(2)	Σa ₇₇ sinπo	.0888	.1644	.2203	.2547	.2680	.2623	.2371	,1868	.1052
14	Table I [(1).×(3)]	MISCS C	6.236	7.054	8,058	9,276	10.722	12.368	14,112	16.187	27,553
15	(13) X (46)	c _{lb}	.5538	1.1597	1.7752	2.3626	2.8735	3,2441	3,3460	3,0237	2.8986
16	TABLE I	<i>™</i> ,									
17	table I Line 6	αa									
18	(b) / (6)	α.									
18	10 - 10	<u>∧</u>									
20	(B) X (LS)	Cdib									
21	table i Line 9		171.03	151.20	132.36	114.98	99.48	86,24	75.58	65 . 89	38.71
22	20 × 16	CCLP	94.72	175.35	234.97	271.65	285,86	279,77	252.89	199.23	112.05
23	23 x 3	CC/P SIN 50	29.27	103.07	190,09	258,37	285.86	266.09	204,59	117,11	34.62
24		SIN 0	.9877	.9511	.8910		.7071			.3090	
25	20 × 21	CCdžb									
26	25 x 24	CC, SIN 0									

LINE 26. $\frac{\pi}{20}$ $\frac{b}{5}$ $\Sigma cc_{ib} sin e <math>\frac{\pi}{20}$ C_{AVE} (Σe) . C_{Dib}

LINE 23 : C. - ROLLING MOM. - T AUO A2 - T 5 CC2 SIN 20 - T 80 CAVE (\$\sum_{\text{Q}} \subseteq \subseteq \text{CAVE}

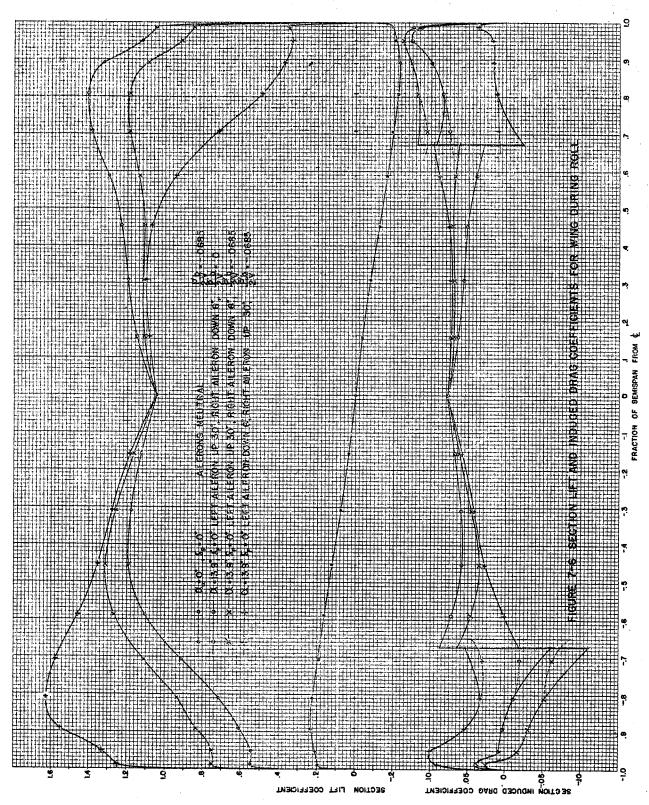

 $= .00031276 \times 1489.07 = .46572$

TABLE XIII

MBINATION OF DAMPING DISTRIBUTIONS FOR ROLL WITH NORMAL DISTRIBUTIONS FOR $\alpha = 13.9\% S_F = 0^{\circ}, 8. S_A = -30^{\circ}, +6^{\circ}$

	a.	b	#0 2V	FSA	0	١	2	3	4	5	6	7	8	9
2	TABLE VII A	C _L	1.0	-	٥	5538	1-1597	1 -77 52	2-3626	2.8735	3-2441	3.3460	3.0237	2.8986
3	TABLE I	m.	_	-	5.574	581	5.590	5.601	5.615	5.632	5.650	5 .67 0	5.688	5.701
4	2 × 2	Cé	06850		0	.0379	.0794	.1216	.1618	.1968	.2222	2292	.2071	.1986
5	TABLE XIL	αa	0	.230	.2618	.2618	.2618	.2618	.2618	.29967	.30883	.30883	.30917	29135
6	Table XII Line 18	CL	0	.230	1.0453	1.1492	1.1980	1.2304	1.2977	1.3812	1.4066	1.2230	1.1.227	1.0500
7	6 - 4	C/ - C/,	06850	.230	1.0453	1.1113	1.1186	1.1088	1.1359	1.1844	1.1844	1.0938	.9156	.8514
8	7/3	α	06850	.230	.1875	.1991	.2001	.1980	.2023	.2103	.2096	.1929	.1610	.1493
9	5 - 8	w/v	06850	.230	.0743	.0627	.0617	.0638	.0595	.0894	.0992	.1159	.1482	.1421
10	7 × 9	Cdi	06850	.230	.0777	.0697	.0690	.0707	.0676	.1059	.1175	.1268	.1357	.1210
9.5	6 + 4	Cf +Cf	+.06850	.230	1.0453	1.1871	1.2774	1.3520	1.4595	1.5780	1.6288	1.5522	1.3298	1.2486
12	11 / 3	α.	+.06850	.230	.1875	.2127	.2285	.2414	-2599	.2802	.2883	.2738	.2338	.2190
13	(5) - (12)	w/V	+.05850	.230	.0743	.0491	.0333	.0204	.0019	-0195	.0205	.0350	.0754	.0724
14	(i) x (13)	Cdi	+.06850	.230	.0777	.0583	.0425	.0276	.0028	.0308	.0334	.0543	.1003	.0904
15	TABLE XII	αa	0	738	.2618	.2618	.2618	.2618	.2618	.1/.025	.11087	.11087	10977	.16697
3	TABLE XII	c _L	0	738	1.0453	1,1234	1.1794	1.1924	1.10/1	.9122	.7150	.6048	•5433	.5510
17	16 + 4	C2 + C26	+.06850	738	1.0453	1.1613	1.2588	1.3140	1.2659	1.1090	.9372	.8340	.7504	.7496
18	17/3	α,	+.06850	738	.1875	.2081	.2252	.2346	.2254	.1969	.1659	.1471	.1319	.1315
19	(15) - (18)	W/V	+.06850	738	.0743	.0537	.0366	.0272	.0364	0566	0550	0362	0221	+.0355
20	(9) X (7)	Cdi	+.06850	738	.0777	-0624	.0461	.0357	.0461	0628	0515	0302	0166	+.0266
2!	(IS) - (4)	C_2 - C_2,	06850	738	1.0453	1.0855	1.1000	1.0708	.9423	.7154	.4928	.3756	.3362	.3524
22	21/3	α.	06850	738	.1875	.1945	.1968	.1912	.1678	.1270	.0872	.0662	.0591	.0618
23	(15) - 22)	w/v	06850	738	.0743	.0673	.0650	.0706	.0940	.0133	.0237	.0447	.0507	.1052
24	23 × 21	Cdi	06850	738	0777	.0731	.0715	.0756	.0886	.0095	.0117	.0168	.017 0	.0371
25		SIN 26		ļ	0	.3090	.5878	.8090	.9511	1,0000	.9511	.8090	.5878	.3090
26	Table I Line 9	С			191.35	171.03	151.20	132.36	14.98	99.48	86.24	75.58	65.89	38.71
27	25 x 26	C×SINSE		ļ <u>.</u>	0	52.848	88.875	107.08	109.36	99.48	82.023	61,144	38.730	11.961
28	10 - 20				0	.0073	.0229	0350	0215	.16877	1690	.1570	.1523	.0944
29	27 x 28				0	.386	2.035	3.748	2.351	16.782	13.862	9.600	5.899	1.129
30	24 - (4)				0	.0148	,0290	.0480	.0858	0213	0217	0375	.0833	0533
31	27 × 39				0	.782	2.577	5.140	9.383	-2.119	-1.780	-2.293	-3.226	638

LINE 29, $C_n' = \frac{\pi}{80C_{AVE}} \frac{1}{2} \sum_{(3)} = \frac{.90031276}{2} \times (55.792) = .00872$ NE 31, $C_n' = \frac{\pi}{80C_{AVE}} \frac{1}{2} \sum_{(3)} = \frac{.90031276}{2} \times (7.826) = .00122$ 7-80

