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FOREWORD 

INTRODUCTION 

This is one of a group of handbooks 
covering the engineering information and 
quantitative data needed in the design, de- 
velopment, construction, and test of ordnance 
equipment which (as a group) constitute the 
Ordnance Engineering Design Handbook. 

PURPOSE OF HANDBOOK 

The Handbook on Experimental Statistics 
has been prepared as an aid to scientists and 
engineers engaged in Army Ordnance re- 
search and development programs, and espe- 
cially as a guide and ready reference for 
military and civilian personnel who have 
responsibility for the planning and inter- 
pretation of experiments and tests relating 
to the performance of Army Ordnance equip- 
ment in the design and developmental stages 
of production. 

SCOPE AND USE OF HANDBOOK 

This Handbook is a collection of statistical 
procedures useful in ordnance applications. 
It is presented in five sections, viz: 

ORDP 20-110, Section 1, Basic Concepts 
and Analysis of Measurement Data (Chapters 
1-6) 

ORDP 20-111, Section 2, Analysis of Enu- 
merative and Classificatory Data (Chapters 
7-10) 

ORDP 20-112, Section 3, Planning and 
Analysis of Comparative Experiments (Chap- 
ters 11-14) 

ORDP 20-113, Section 4, Special Topics 
(Chapters 15-23) 

ORDP 20-114, Section 5, Tables 

Section 1 provides an elementary introduc- 
tion to basic statistical concepts and fur- 
nishes full details on standard statistical 
techniques for the analysis and interpreta- 

tion of measurement data. Section 2 provides 
detailed procedures for the analysis and in- 
terpretation of enumerative and classifica- 
tory data. Section 3 has to do with the 
planning and analysis of comparative ex- 
periments. Section 4 is devoted to considera- 
tion and exemplification of a number of 
important but as yet non-standard statistical 
techniques, and to discussion of various 
other special topics. An index for the ma- 
terial in all four sections is placed at the 
end of Section 4. Section 5 contains all the 
mathematical tables needed for application 
of the procedures given in Sections 1 
through 4. 

An understanding of a few basic statistical 
concepts, as given in Chapter 1, is necessary; 
otherwise each of the first four sections is 
largely independent of the others. Each pro- 
cedure, test, and technique described is illus- 
trated by means of a worked example. A list 
of authoritative references is included, where 
appropriate, at the end of each chapter. 
Step-by-step instructions are given for at- 
taining a stated goal, and the conditions 
under which a particular procedure is strictly 
valid are stated explicitly. An attempt is 
made to indicate the extent to which results 
obtained by a given procedure are valid to 
a good approximation when these conditions 
are not fully met. Alternative procedures 
are given for handling cases where the more 
standard procedures cannot be trusted to 
yield reliable results. 

The Handbook is intended for the user 
with an engineering background who, al- 
though he has an occasional need for statis- 
tical techniques, does not have the time or 
inclination to become an expert on statistical 
theory and methodology. 

The Handbook has been written with three 
types of users in mind. The first is the per- 
son who has had a course or two in statistics, 
and who may even have had some practical 
experience in applying statistical methods 
in the past, but who does not have statistical 
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ORDP 20-111 

ideas and techniques at his fingertips. For 
him, the Handbook will provide a ready refer- 
ence source of once familiar ideas and tech- 
niques. The second is the person who feels, 
or has been advised, that some particular 
problem can be solved by means of fairly- 
simple statistical techniques, and is in need 
of a book that will enable him to obtain the 
solution to his problem with a minimum of 
outside assistance. The Handbook should 
enable such a person to become familiar with 
the statistical ideas, and reasonably adept 
at the techniques, that are most fruitful in 
his particular line of research and develop- 
ment work. Finally, there is the individual 
who, as the head of, or as a member of a 
service group, has responsibility for analyz- 
ing and interpreting experimental and test 
data brought in by scientists and engineers 
engaged in ordnance research and develop- 
ment work. This individual needs a ready 
source of model work sheets and worked ex- 
amples corresponding to the more common 
applications of statistics, to free him from 
the need of translating textbook discussions 
into step-by-step procedures that can be fol- 
lowed by individuals having little or no previ- 
ous experience with statistical methods. 

It is with this last need in mind that some 
of the procedures included in the Handbook 
have been explained and illustrated in detail 
twice: once for the case where the important 
question is whether the performance of a 
new material, product, or process exceeds 
an established standard; and again for the 
case where the important question is whether 
its performance is not up to the specified 
standards. Small but serious errors are often 
made in changing "greater than" procedures 
into "less than" procedures. 

AUTHORSHIP AND ACKNOWLEDGMENTS 

The Handbook on Experimental Statistics 
was prepared in the Statistical Engineering 
Laboratory, National Bureau of Standards, 
under a contract with the Office of Ordnance 
Research. The project was under the gen- 
eral guidance of Churchill Eisenhart, Chief, 
Statistical Engineering Laboratory. 

Most of the present text is by Mary G. 
Natrella, who had overall responsibility for 
the completion of the final version of the 
Handbook. The original plans for coverage, 
a first draft of the text, and some original 
tables were prepared by Paul N. Somerville. 
Chapter 6 is by Joseph M. Cameron; most of 
Chapter 1 and all of Chapters 20 and 23 are by 
Churchill Eisenhart; and Chapter 10 is based 
on a nearly-final draft by Mary L. Epling. 

Other members of the staff of the Statis- 
tical Engineering Laboratory have aided in 
various ways through the years, and the 
assistance of all who helped is gratefully 
acknowledged. Particular mention should be 
made of Norman C. Severo, for assistance 
with Section 2, and of Shirley Young Leh- 
man for help in the collection and computa- 
tion of examples. 

Editorial assistance and art preparation 
was provided by John I. Thompson & Com- 
pany, Washington, D. C. 

Appreciation is expressed for the generous 
cooperation of publishers and authors in 
granting permission for the use of their 
source material. References for tables and 
other material, taken wholly or in part, from 
published works, are given on the respective 
first pages. 
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addressed to Ordnance Engineering Handbook Office, Ordnance Liaison 
Group, Durham, Box CM, Duke Station, Durham, N. C. 
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PREFACE 

This listing is a guide to the Section and Chapter subject coverage in all Sections of the Handbook 
on Experimental Statistics. 

Chapter 
No. Title 

ORDP 20-110 (SECTION 1) — BASIC STATISTICAL CONCEPTS AND 
STANDARD TECHNIQUES FOR ANALYSIS AND INTERPRETATION OF 

MEASUREMENT DATA 

1 — Some Basic Statistical Concepts and Preliminary Considerations 
2 — Characterizing the Measured Performance of a Material, Product, or Process 
3 — Comparing Materials or Products with Respect to Average Performance 
4 — Comparing Materials or Products with Respect to Variability of Performance 
5 — Characterizing Linear Relationships Between Two Variables 
6 — Polynomial and Multivariable Relationships, Analysis by the Method of Least Squares 

ORDP 20-111  (SECTION 2) — ANALYSIS OF ENUMERATIVE AND 
CLASSIFICATORY DATA 

7 — Characterizing the Qualitative Performance of a Material, Product, or Process 
8 — Comparing Materials or Products with Respect to a Two-Fold Classification of Performance 

(Comparing Two Percentages) 
9 — Comparing Materials or Products with Respect to Several Categories of Performance 

(Chi-Square Tests) 
10 — Sensitivity Testing 

ORDP 20-112 (SECTION 3) — THE PLANNING AND ANALYSIS OF 
COMPARATIVE EXPERIMENTS 

11 — General Considerations in Planning Experiments 
12 — Factorial Experiments 
13 — Randomized Blocks, Latin Squares, and Other Special-Purpose Designs 
14 — Experiments to Determine Optimum Conditions or Levels 

ORDP 20-113 (SECTION 4) — SPECIAL TOPICS 

15 — Some "Short-Cut" Tests for Small Samples from Normal Populations 
16 — Some Tests Which are Independent of the Form of the Distribution 
17 — The Treatment of Outliers 
18 — The Place of Control Charts in Experimental Work 
19 — Statistical Techniques for Analyzing Extreme-Value Data 
20 — The Use of Transformations 
21 — The Relation Between Confidence Intervals and Tests of Significance 
22 — Notes on Statistical Computations 
23 — Expression of the Uncertainties of Final Results 
Index 

ORDP 20-114 (SECTION 5) — TABLES 

Tables A-l through A-37 

iv 
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DISCUSSION OF TECHNIQUES IN CHAPTERS 7 THROUGH 10 

For some kinds of tests, it may be impossible 
to obtain actual measurements. An item may 
be subjected to a test and the result of that 
particular test can be expressed only in terms of 
a pre-established classification of possible re- 
sults. The simplest kind of classification, and 
the one most widely used in practice, consists of 
just two mutually exclusive categories. For ex- 
ample, the results of the test on each item may 
be recorded as pass or fail, hit or miss, fires or 
does not fire, larger than specification limit or 
less than specification limit, etc. Some other 
problems call for classification into more than 
two categories. In classifying types of metal 
fractures, we might establish such classes as 
smooth, rough, jagged, and splintery. Glass or 
plastic material after exposure to radiation 
might be classified as transparent, translucent, 
or opaque. In screening inspection, for ex- 
ample, we may have three established catego- 
ries — accept, reject, or rework. 

Once these qualitative observations have 
been recorded in the established categories of 
the classification scheme, we may count the 
number in any category, or we may compute the 
proportion of the total which falls in any cate- 
gory. In most of the analytical procedures 
given in these Chapters, we work with propor- 
tions, not with percentages, even though final 
presentation of results may be made in per- 
centages. 

The methods given in these Chapters also 
may be used for tests where exact measurements 
could have been obtained, but actually were not 
obtained because of the expense or incon- 
venience involved.   For example, one always 

can measure a dimension; but, in large-scale 
production, go-no-go gauges may be used for 
routine checks. Whenever it is possible to ob- 
tain actual measurements, analysis of the meas- 
urements does provide more information than 
does analysis of counts. In planning experi- 
mental programs, various factors may con- 
tribute to the decision of whether to measure or 
to gauge — e.g., the availability of time, funds, 
and experienced personnel. When measure- 
ments are analyzed, the methods of these 
Chapters do not apply; the appropriate methods 
are given in ORDP 20-110, Chapters 2 
through 6. 

The problems considered in these Chapters 
parallel those of Chapters 2 through 6, as much 
as possible. Chapter 7 gives methods for 
making single estimates and interval estimates 
of a proportion. Instead of estimating the true 
average of a lot with respect to some property, 
we estimate the true proportion of items in the 
lot which have a particular property. Com- 
parisons may be made between a new product 
and a standard product, or between any two 
products, with regard to the proportion of items 
which exhibit the characteristic in question. 
Chapter 8 gives methods for making such com- 
parisons when the classification scheme consists 
of two categories. Chapter 9 gives methods 
for making such comparisons when the classifi- 
cation scheme consists of three or more catego- 
ries. Chapter 10 gives methods of analysis for 
a particular experimental situation which has 
generally been called "sensitivity testing," 

All A-Tables referenced in these Chapters are 
contained in ORDP 20-114, Section 5. 
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CHAPTER 7 

CHARACTERIZING THE QUALITATIVE PERFORMANCE 

OF A MATERIAL, PRODUCT, OR PROCESS 

7-1    GENERAL 

The problem is that of estimating the true 
proportion (or percentage) of items that have a 
given quality characteristic. The tested items 
have been classified into two previously estab- 
lished categories of classification. Methods are 
given for obtaining: 

(a) the best single estimate; and, 
(b) confidence interval estimates * of the pro- 

portion which is of interest. 
The following data will serve to illustrate the 

application of the procedures. 

Data Sample 7-1 — Proportion of Defective Fuzes 

Form: A sample of n items is selected at random 
from a much larger group. Upon ex- 
amination or test, r of the n items show 
the characteristic of interest. 

Example: Ten fuzes are taken at random from a 
production line, and are tested under a 
specified set of conditions. Four of the 
ten fail to function. 

In general, what can we say on the basis of 
our sample about the larger group with regard 
to the proportion of defective items contained 
therein? "We show how to answer two questions: 

(a) What is the true proportion P of the 
fuzes produced that would be expected to fail 
under the specified conditions? 

(b) What is an interval which we can expect, 
with prescribed confidence, to bracket the true 
proportion of defective fuzes? 

7-2    BEST SINGLE ESTIMATE OF THE TRUE PROPORTION P 

The best single estimate of the true propor- 
tion of items having a given characteristic in 
some well defined population is the observed 
proportion of items having this characteristic in 
a random sample from the population, i.e., the 
number of sample items which have the charac- 
teristic divided by the total number of items in 
the sample. 

The best estimate from Data Sample 7-1 of 
the true proportion of fuzes that will fail is 

* The reader who is not familiar with the meaning and 
interpretation of confidence intervals should refer to 
Chapter 1 and to Paragraph 2-1.3 of ORDP 20-110. 

equal to the number of defective fuzes in the 
sample, divided by the total number of fuzes in 
the sample. 

Procedure 

(1)   Compute the estimated 
follows: 

r p = - 

Example 

(1)   From Data Sample 7-1, 
p = 4/10 

= .4 

proportion p, as 
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7-3    CONFIDENCE INTERVAL ESTIMATES OF THE TRUE PROPORTION P 

7-3.1    TWO-SIDED CONFIDENCE INTERVALS 

Although the best single estimate of the true 
proportion of items having a given character- 
istic is the proportion of such items in a random 
sample, an interval estimate may be preferred. 
A two-sided confidence interval is an interval 
expected to give upper and lower limits for the 
true proportion with prescribed confidence. 

7-3.1.1    Exact Limits for n < 30.   For n < 30, 
two-sided confidence limits are given in Table 
A-22. For example, using Data Sample 7-1, 
where n - 10 and r = 4, a two-sided 95% 
confidence interval for the true proportion is the 
interval from .150 to .733. 

7-3.1.2 Exact Limits for n > 30. Forw>30, 
use the charts of Table A-24 for 90%, 95%, and 
99% confidence intervals, as desired. On the 
charts, there are two curves for each of a number 

of values of n. The upper and lower curve for 
a particular n constitute a confidence belt for 
the true proportion P. First, locate the ob- 
served proportion p = r/n, on the horizontal 
scale. From this point, travel up to the curves 
for the sample size n, and read off the upper and 
lower limits for the population proportion P. 
For example, in a sample of n = 100, where the 
observed proportion is .4, the interval from .31 
to .51 gives 95% confidence limits for the true 
proportion P. 

The three charts in Table A-24 give (1 - a) 
confidence interval estimates for a = .10, 
a = .05, and a = .01. If we use these charts 
a large number of times to make interval esti- 
mates of the true proportion P, we can expect 
100 (1 — a) % of these intervals to contain P. 
If the appropriate sample size requires inter- 
polation on the charts, the procedure of Para- 
graph 7-3.1.3 should be used instead of the 
charts of Table A-24. 

7-3.1.3    Approximate Limits for n > 30.    This method should be used in lieu of interpolation on 
the charts (Table A-24). 

Procedure 

(1) Choose the desired confidence level, 1 

(2) Look up Zi_a/2 in Table A-2. 

(3) Compute: 

Pi   =  P   -  Zl-a/2 . 

Example 

Pi - p + Zi- -V2 P(l -v) 

(1) Let 1 - a = .90 
a = .10 

(2) z.n = 1.645 

(3) Using     n = 150, 
p = .40, 
for example, 

pi = .40 - 1.645 V.0016 
= .40 - 1.645 (.04) 
= .40 - .07 
= .33 

Pa = .40 + .07 
= .47 

(4) The interval from px to p2 is a two-sided 
100 (1 — a) % confidence interval estimate 
of the true proportion P. 

(4)   The interval from .33 to .47 is a 90% two- 
sided confidence interval estimate of P. 
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7-3.2    ONE-SIDED CONFIDENCE INTERVALS 

A one-sided confidence interval estimate states that the true proportion P is less than a calculated 
proportion p'2 (or alternatively, that P is larger than p[) and the statement is made at a prescribed 
confidence level. 

7-3.2.1 Exgef Limit« for n < 30. For n < 30, one-sided confidence limits are given in Table A-23. 
For example, using Data Sample 7-1, where n = 10 and r = 4, the upper 90% one-sided confidence 
limit is .646.    (The lower 90% one-sided confidence limit would be .188 in this case.) 

7-3.2.2 Exact Limit» for n > 30. Use the charts of Table A-24 to obtain .95, .975, or .995 one- 
sided confidence intervals, by using only the upper curve, or only the lower curve, of the belt for a 
given sample size. When used in this way, the chart labelled "Confidence Coefficient .90" yields 
one-sided 95% confidence intervals, the chart labelled "confidence coefficient .95" yields one-sided 
97.5% confidence intervals, and the chart labelled "confidence coefficient .99" yields one-sided 
99.5% confidence intervals. 

If the appropriate sample size requires interpolation on the charts, the procedure of Paragraph 
7-3.2.3 should be used instead of the charts of Table A-24. 

7-3.2.3    Approximate Limits for n > 30.    This method should be used in lieu of interpolation on 
the charts (Table A-24). 

Procedure 

(1) Choose the desired confidence level, 1 — a. 

(2) Look up ?!_„ in Table A-2. 

(3) If a lower one-sided confidence limit is 
desired, compute 

Example 

\      n 

(4)   Alternatively, if an upper one-sided confi- 
dence limit is desired, compute 

V*  " V + «1 ha - ,_*V      n 
-V) 

(1)   Let 1 - a = .90 
a = .10 

(2) z.io = 1.282 

(3) Using     n = 150, 
p = .40, 
for example, 

pi = .40 - 1.282 v<ÖÖ16 
= .40 - 1.282 (.04) 
= .40 - .05 
= .35; 

this is the lower 90% confidence limit for P, 
the true proportion defective. 

(4) Using    n = 150, 
p = .40, 

for example, 

pi = .40 + 1.282 (.04) 
- .40 + .05 
= .45; 

this is the upper 90% confidence limit for 
P, the true proportion defective. 
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7-4    SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION 

We shall discuss two problems: 
(a) Determining the sample size required to estimate the true proportion with a specified limit of 

error in both directions; i.e., when it is required to estimate P within ±6.    (See Paragraph 7-4.1.) 
(b) Determining the sample size required to estimate the true proportion with a specified limit of 

error in only one direction; i.e., when it is required to estimate P within +6 (or to estimate P within 
-S).    (See Paragraph 7-4.2.) 

In (a), we are indifferent as to whether our estimate is too high or too low. In (b), we wish to 
protect ourselves against an overestimate, but do not worry about an underestimate (or vice versa). 

7-4.1 DETERMINING THE SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION WITH A 
SPECIFIED LIMIT OF ERROR IN BOTH DIRECTIONS, i.e., WHEN IT IS REQUIRED TO ESTIMATE P 
WITHIN  ±h 

7-4.1.1 Graphical Method. For the graphical method, the problem may be restated as follows: 
we wish to make a two-sided confidence interval estimate of P and the width of the interval should 
be not greater than 26. It, therefore, is possible to use the charts of Table A-24 in reverse; that is, 
to find the sample size belt whose maximum width (vertical distance on the charts) is equal to 2(5. 
The maximum width of confidence interval for a particular n will occur when the observed propor- 
tion is equal to 0,5. (If past records on the particular process indicate an upper or lower limit for 
the observed proportion, e.g., "the observed proportion always has been less than 0.1", one may use 
the widths of the intervals for this value of p rather than the maximum widths.) 

Procedure 

Problem: What is the sample size n required to 
estimate the true proportion P within ±5? 

(1) Choose 1 — a, the confidence coefficient to 
be associated with the resulting estimate. 
(The charts of Table A-24 can be used for 
confidence coefficients .90, .95, and .99). 

(2) Specify <5, the error permitted in the esti- 
mate. 

(3) Lacking knowledge of a safe upper or lower 
bound for P, look at the vertical line for 
p = .50. (If a safe upper or lower bound 
can be assumed, use this value of p.) 

(4) Find the pair of n curves whose separation 
on this vertical line is not more than 25. 

(5) n is the required sample size. 

Example 

Problem: What is the sample size n required to 
estimate the true proportion P within ±.10 ? 

(1)   Let I - a m .90 

Use Table A-24, 
confidence coefficient = .90. 

(2)   Let 8 = .10 

(3)   Locate, on Table A-24, the vertical line for 
p = .50. 

(4) At p = .50, n = 100 is the smallest n for 
which the interval is less than .20. 

(5) n = 100 is the required sample size. 

Note: n = 50 gives an interval approximately 
equal to .25, and n = 100 gives an interval 
approximately equal to .16, so that a sample 
somewhat less than 100 would be sufficient. 
The exact n, however, cannot be determined 
from the charts of Table A-24. 
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7-4.1.2    Numerical Method. The formula for sample size is 
«Lg« P(i - P) n = a2 

A sample of size n guarantees a probability not greater than a that our estimate of P is in error 
by more than 5. 

Since the true proportion P is unknown, we must substitute for it a value P' which is obtained 
as follows: 

(a) If no prior information about P is available, or if P is believed to be in the neighborhood of 
0.5, use P' = 0.5.    The formula then simplifies to 

n = 
zl-a/2 

462 

(b) If the true proportion P can safely be assumed to be less than 0.5, let P' be the largest 
reasonable guess for P. 

(c) If the true proportion P can safely be assumed to be greater than 0.5, let P' be the smallest 
reasonable guess for P. 
It is obvious that the largest sample size will be required when the true P is 0.5, and the purpose 
of these three rules is to be as conservative as possible. 

Procedure 

Problem: What is the sample size n required to 
estimate the true proportion P within ±5? 

(1) Choose 1 — a, the confidence coefficient to 
be associated with the resulting estimate. 

(2) Specify S, the error permitted in the esti- 
mate. 

(3) Look up Zt-a/s in Table A-2. 

(4a) If there is no prior information about the 
true proportion P, compute 

Example 

Problem: What is the sample size n required to 
estimate the true proportion P within ±.10? 

n = 
4a2 

(1)   Let 1 - a - .90 
a m .10 

(2)   Let d = .10 

(3) z.95 = 1.645 

(4a) 

(1.645)* 

2.706 

(4b) If it is safe to assume that the true propor- 
tion P is less than some value P', compute 

.04 

= 68, 
which is the required sample size. 

(4b) If it is safe to assume that the true propor- 
tion P is less than .40, for example, 

n = «S-^P'd -P') n - 
(1.645)« (0.4) (0.6) 

.01 
= 65, 

which is the required sample size. 

7-4.2 DETERMINING THE SAMPLE SHE REQUIRED TO ESTIMATE THE TRUE PROPORTION WITH A 
SPECIFIED LIMIT OF ERROR IN ONLY ONE DIRECTION, i.e., WHEN IT IS REQUIRED TO ESTI- 
MATE P WITHIN +8 IOR TO ESTIMATE P WITHIN -S) 

In some problems, we would be unconcerned if our estimate of P was too large, but would wish 
to be protected against an underestimate.    Alternatively, in other problems, an underestimate is 
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tolerable, but not an overestimate.   The error in the estimate is to be only in the direction that we 
choose. 
The formula for sample size is 

n zUaP(l -P) 
52 

A sample of size n guarantees a probability not greater than « that our estimate of P is in error by 
more than +<5 (or more than ~S, as we choose). 

Since the true proportion P is unknown, we must substitute for it a value P' which is obtained 
as follows: 

(a) If no prior information about P is available, or if P is believed to be in the neighborhood of 
0.5, use P' = 0.5.   The formula then simplifies to 

n = — 

(b) If the true proportion P can safely be assumed to be less than 0.5, let P' be the largest 
reasonable guess for P. 

(c) If the true proportion P can safely be assumed to be greater than 0.5, let P' be the smallest 
reasonable guess for P. 
The largest sample size will be required when P = 0.5, and the purpose of the rules is to be as 
conservative as possible. 

Procedure 

Problem: What is the sample size n required to 
estimate the true proportion P within +5 (or, 
within -a)? 

(1) Choose 1 — a, the confidence coefficient to 
be associated with the resulting estimate. 

(2) Specify -f-S (or - S) the error permitted in 
the estimate. 

(3) Look up Zi-a in Table A-2. 

(4a) If there is no prior information about P, 
compute 

Example 

Problem: What is the required sample size? In 
estimating P, we wish to be protected against 
making an estimate that is too small by more 
than 0.05. 

(1)   Let 1 - a = .90 
<* = .10 

(2)   Let S = -.05 

n — 
4S2 

(3) 2,90 == 1.28(& 

(4a) 

„      (1.282)' 
"~     .01 

= 164, 
which is the required i sample size. 

(4b) If it is safe to assume that the true propor- 
tion P is less than some value P', compute 

(4b) If it is safe to assume that the true propor- 
tion P is less than .40, for example, 

n = 
zl^P'jl ~P') 

n = (1.282)* (.4) (.6) 
.0025 

= 158, 
which is the required sample size. 
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CHAPTER 8 

COMPARING MATERIALS OR PRODUCTS WITH 

RESPECT TO A TWO-FOLD CLASSIFICATION 

OF PERFORMANCE 

(COMPARING TWO PERCENTAGES) 

In some situations, we are faced with the problem of comparing proportions or percentages. For 
example, the specification for a given kind of ammunition may prescribe the maximum allowable 
percentage of duds. Production lots of this ammunition will not be acceptable if they exceed this 
specified percent defective. The percentage of duds in a sample will provide an estimate of the 
percentage of duds in the lot, which then may be compared with the specified tolerance. When 
comparing an observed proportion with a specification or standard value, the procedures of Para- 
graph 8-1 are appropriate. The reader will note that the comparison is made by computing a 
confidence interval for the observed proportion and then looking to see whether the standard value 
is contained within this interval. This is a slightly different approach to answering the posed 
questions than was used in ORDP 20-110, Chapter 3, for example. Amplification of the relation- 
ship between confidence intervals and tests of significance of differences is given in ORDP 20-113, 
Chapter 21. 

A different kind of comparison is involved when we compare two percentages with each other, 
without regard to any standard value — for example, in comparing two production processes with 
regard to the percentages of defective items produced. When two percentages are compared with 
each other, the methods of Paragraph 8-2 are appropriate. 

8-1    COMPARING AN OBSERVED PROPORTION WITH A STANDARD 
PROPORTION 

8-1.1    DOES THE NEW PRODUCT DIFFER FROM THE STANDARD WITH REGARD TO THE PROPORTION 
OF ITEMS WHICH SHOW THE CHARACTERISTIC OF INTEREST?    (DOES P DIFFER FROM P,?) 

8-1.1.1     Procedure for n < 30. 

Dofa Sample 8-1.1.1 —Defectives in Sample of New Product 

Form: A sample of n items is selected at random from a much larger group. On examination, 
r of the n items show the presence of the pertinent characteristic, p = r/m is the observed 
proportion, and is an estimate of P, the true proportion for the new product. Pa is the 
known proportion of individual items in the standard product that show the pertinent 
characteristic. 

Example: A sample of 20 components is taken from a production lot after a slight change in the 
process has been made.    Three of the 20 items are classified as defectives.    The observed 
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proportion, therefore, is p = 3/20 = 0.15.   The proportion defective for this item with 
the standard process is known to be P0 => 0.10. 

The question to be answered is: Does the proportion defective in this lot, P, differ from 
the standard proportion defective (either an increase or a decrease being of interest)? 

Procedure Example 

(1)   Choose a, the significance level of the test.      (1)   Let 

Table A-22 gives 90%, 95%, and 99% two- 
sided confidence limits, appropriate to 
a = .10, a = .05, and a = .01, respec- 
tively. 

a = .10 
1 - « = .90 

Use the 90% confidence limits in Table 
A-22. 

(2) Enter Table A-22 with observed n and r. 
Select appropriate column and read the 
limits. 

(2)   From Data Sample 8-1.1.1, 
n = 20 
r = 3 

From Table A-22, the 90% two-sided con- 
fidence limits for P are 0.056 to 0.328. 

(3)   If the tabled limits do not include Pa, 
conclude that P differs from Pa. 
If the tabled limits do include P<>, there is 
no reason to believe that P differs from Pa. 

(3) Since the tabled limits do include P0 = 
0.10, there is no reason to believe that the 
proportion defective in the lot differs from 
the standard. 

8-1.1.2    Procedure for n > 30. 

Data Sample 8-1.1.2 — Performance of a New Type of Mine Fuze 

Form: A sample of « items is selected at random from a much larger group. On examination, 
r of the n items show the presence of the pertinent characteristic, p = r/n is the observed 
proportion, and is an estimate of P, the true proportion for the new product. P0 is the 
known proportion of individual items in the standard product that show the pertinent 
characteristic. 

Example: In a program of testing mine fuzes, 216 fuzes of a new type are buried, simulated 
"tanks" are run over them, and 160 "proper hits" are recorded. The observed proportion, 
p, of proper hits is 160/216 = 0.74. The specified value for proportion of proper hits is 
P0 = 0.85. 

The question to be answered is:  Does the proportion of proper hits for this fuze differ 
from the standard proportion (either an increase or a decrease being of interest)? 
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Procedure 

(1) Choose «, the significance level of the test. 

Table A-24 gives two-sided 90%, 95%, and 
99% confidence limits appropriate to 
a = .10, a = .05, and a = .01, respec- 
tively. 

(2) Compute p = r/n and locate p on the 
horizontal scale. Locate curves for appro- 
priate n. 

(3)   Read off upper and lower limits for P. 
If these limits do not include P0, conclude 
that P differs from P0. 
If the limits do include Po, there is no rea- 
son to believe that P differs from P0. 

Example 

(1)   Let        a = .10 
1 - a = .90 

Use the Chart for confidence coefficient .90 
in Table A-24. 

(2) From Data Sample 8-1.1.2, 
n = 216 
r = 160 
p = 160/216 

= 0.74 

(3) The chart does not show n = 216. Look 
at the belt for the next lower n, in this 
case n = 100. The belt for n = 100 will 
be wider than the belt for n = 216. Since 
the belt for n = 100 does not include 
P„ = 0.85, the belt for n = 216 would not 
include P0, and we conclude that the pro- 
portion of hits for this fuze does differ from 
the standard P0 = 0.85. 

8-1.2     DOES  THE   CHARACTERISTIC  PROPORTION FOR THE  NEW  PRODUCT  EXCEED THAT  FOR 
THE STANDARD?    (IS P > P0?) 

8-1.2.1 Procedure for n < 30. In terms of Data Sample 8-1.1.1, let us suppose that — in ad- 
vance of looking at the data — the important question is: Does the characteristic proportion of 
defectives in this lot exceed that for the standard? 

Procedure 

(1) Choose a, the significance level of the test.      (1) 

Table A-23 gives 90%, 95%, and 99% one- 
sided confidence limits appropriate to 
a = .10, a = .05, and a = .01, respec- 
tively. 

(2) In Table A-23, follow directions at the be-      (2) 
ginning of the table to obtain pi, a lower 
one-sided confidence limit for P. 

Example 

Let a = .05 
1 - a = .95 

Use the 95% confidence limits in Table 
A-23. 

From Data Sample 8-1.1.1, 
n = 20 
r = 3 

Pa = 0.10 is specified. 
The  value in  Table  A-23,  for n = 20, 
n - r = 17,   is  0.958.    The  lower  95% 
limit for P is equal to 1 - 0.958 = 0.042. 
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Procedure Example 

(3) If the lower limit p[ obtained in Step (2) 
exceeds P0, so that Po lies outside the confi- 
dence interval p[ < P < 1, conclude that 
the characteristic proportion for the new 
product P exceeds that for the standard 
iV 
If the lower limit obtained in Step (2) is not 
larger than P0, so that P0 lies wiihifi the 
confidence interval p[ < P < 1, there is no 
reason to believe that the proportion for 
the new product P exceeds that for the 
standard P0. 

(3) 

Since 0.042 is less than P0 = 0.10, there is 
no reason to believe that the proportion of 
defectives in the lot exceeds the standard 
proportion. 

8-1.2.2 Procedure for n > 30. In terms of Data Sample 8-1.1.2, let us suppose that —in ad- 
vance of looking at the data — the important question is: Does the characteristic proportion of 
proper hits for this fuze exceed that for the standard? 

Procedure Example 

(1)   Choose «, the significance level of the test.       (1)   Let 

By using only the lower curve of the confi- 
dence belt, Table A-24 gives 95%, 97.5%, 
and 99.5% one-sided confidence limits 
appropriate to a = .05, a = .025, and 
a = .005, respectively. 

a = .05 
1 - « - .95 

Use lower curves of the Chart labeled "con- 
fidence coefficient .90", in Table A-24. 

(2) Compute p = r in, and locate p on the hori- 
zontal scale. Locate lower curve for 
appropriate n. 

(2)   From Data Sample 8-1.1.2, 
n = 216 
r = 160 
p = 160/216 

= 0.74 
P0 = 0.85 is specified. 

(3)   Read off the lower confidence limit for P. 

If Pi is less than this limit, p[, so that 
PQ lies outside the confidence interval 
p[ < P < 1, conclude that the proportion 
for the new product exceeds that for the 
standard product. 
If Pa is larger than p[, and therefore 
is included in the confidence interval 
p[ < P < 1, there is no reason to believe 
that P is larger than P0 • 

(3) From Table A-24, confidence coefficient 
.90, f or p = 0.74 and n = 216, the lower 
95% confidence limit for P is seen to be 
approximately 0.68. 

Since P0 = 0.85 is larger than 0.68, there 
is no reason to believe that P is larger than 
Po. 

8-4 

Downloaded from http://www.everyspec.com



COMPARING OBSERVED PROPORTION WITH A STANDARD      ORDP 20-111 

8-1.3    IS THE CHARACTERISTIC PROPORTION FOR THE NEW PRODUCT LESS THAN THAT FOR 
THE STANDARD?    (IS P < Po?) 

8-1.3.1 Procedure for n < 30. In terms of Data Sample 8-1.1.1, let us suppose that — in ad- 
vance of looking at the data — the important question is: Is the characteristic proportion of 
defectives in this lot less than that for the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

Table A-23 gives 90%, 95%, and 99% one- 
sided confidence limits appropriate to 
a = .10, a = .05, and a = .01, respec- 
tively. 

(2) Enter Table A-23 with n and r and chosen 
confidence. Read the upper one-sided 
limit p'i for P. 

(3) If the tabled upper limit pi is less than P0, 
so that Po lies outside the confidence inter- 
val 0 < P < p'i, conclude that the charac- 
teristic proportion for the new product is 
less than that for the standard. 
If the tabled limit is larger than P0, so that 
Po lies inside the confidence interval 
0 < P < pi, there is no reason to believe 
that the proportion for the new product is 
less than the standard. 

Example 

(1)   Let a .10 
1 - a = .90 

Use the 90% confidence limits in Table 
A-23. 

(2)   From Data Sample 8-1.1.1, 
n = 20 
r = 3 

Po = 0.10 is specified. 
The upper 90% limit for P is 0.304. 

(3) 

Since the tabled limit (0.304) is larger than 
Po = 0.10, there is no reason to believe 
that the proportion of defectives in the lot 
is less than the standard. 

8-1.3.2 Procedure for n > 30. In terms of Data Sample 8-1.1.2, let us suppose that — in ad- 
vance of looking at the data — the important question is: Is the proportion of proper hits for this 
fuze less than that for the standard? 

Procedure 

(1)   Choose a, the significance level of the test.      (1)   Let 

Example 

By using only the upper curve of the confi- 
dence belt, Table A-24 gives 95%, 97.5%, 
and 99.5% one-sided confidence limits 
appropriate to a = .05, a = .025, and 
a = .005, respectively. 

(2)   Compute p = r/n, and locate p on the hori-       (2) 
zontal scale.    Locate upper curve for ap- 
propriate n. 

a -= .025 
1 - a = .975 

Use the upper curve of the Chart labeled 
"confidence coefficient .95", in Table A-24. 

From Data Sample 8-1.1.2, 
n = 216 
r = 160 
p - 160/216 

= 0.74 
Po = 0.85 is specified. 
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Procedure 

(3)   Read off upper confidence limit pi for P. 

If P0 is larger than this limit, so that 
Po lies outside the confidence interval 
0 < P < pk, conclude that the proportion 
for the new product is less than that for the 
standard product. 
If Po is less than this limit, and therefore 
is included in the one-sided confidence limit 
0 < P < pä> there is no reason to believe 
that P is less than P0. 

Example 

(3) From Table A-24, confidence coefficient 
.95, for p = 0.74 and n = 216, the upper 
97.5% confidence limit for P is seen to be 
approximately 0.81. 
Since P0 = 0.85 is larger than this limit, 
we conclude that the proportion of proper 
hits for this fuze is less than for the 
standard. 

8-1.4    SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE OF PRESCRIBED MAGNITUDE FROM A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT 

Given: 

P0 = the known proportion of the population of standard items which exhibit the pertinent 
characteristic. P0 may be known from the process history, or may be given by the 
requirements of a specification or a standard. 

To be Specified for This Problem: 

5    = the absolute magnitude of the difference which is considered important to detect. 
a   = the significance level, or the risk of announcing a difference when in fact there is none. 
ß   = the risk of failing to detect a difference when in fact P, the true proportion for the new 

product, differs from the standard by an amount S (i.e., S = ]P — Po]). 

Tables to be Used: 

Table A-25 gives the required sample size for a number of values of P0 and P for a ~ .05 and 
1 — ß = .50, .80, .90, .95, and .99. This table is given largely for illustration, to demonstrate 
how the required sample size is affected by the magnitude of the P0 and S involved, and also by 
different choices of ß. For desired values of a and ß which are not included in Table A-25, use 
Table A-27, a table to convert the difference between the proportions into the form necessary for 
use with Table A-8. 

Procedure 

(1) Specify <5, the absolute magnitude of the 
difference considered important to detect. 

(2) Choose a and ß. 

(3) 

(4) 

For a = .05, and 1 - ß = .50, .80, .90, 
.95, and .99, go to Table A-25. 

Let P = Po + 5, or P = P„ - S, which- 
ever makes P closer to 0.5. 

Example 

(1) Assume P0 = .30 
Specify    6 = .10 

(2) Let         a = .05 
ß = .20 

(3) Use Table A-25 with 1 - ß 

(4) P = .30 -f .10 
= .40 

= .80 
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Procedure 

(5) If either P or Pa is less than 0.5, enter 
Table A-25 with P and P0. 
If neither P nor P0 is less than 0.5, enter 
Table A-25 with 1 - P and 1 - P0. 
In either case, the smaller of the two pro- 
portions determines the column and the 
larger determines the row in Table A-25. 

Read off n directly,   n is the required 
sample size for the new product. 

Example 

(5)   Enter Table A-25 in column .30 and 
row .40. 

The required sample size is n = 178. 

(6) For values of a, ß, and P which are not 
included in Table A-25, go to Table A-27. 
Look up: 

60 = 6 corresponding to P0 

$ — 6 corresponding to P 

(7) Compute d = j 6 - 60 \ 

(8) Enter Table A-8 with chosen a, 1 — ß, and 
d (from Step (7)). 

The tabled n is the required sample size for 
the new product. (The footnote to Table 
A-8 should be ignored.) 

For values of d not given in Table A-8, the 
sample size may be computed using the 
formula 

(6) Assume that we had wished to specify 
a = .01, ß = .20, Po = .30, and P = .40. 
From Table A-27, 

1.16 
1.37 

0.21 

(* \-all + z .-9)2 

(7) 

(8)   From   Table   A-8,   the   sample   size   for 
d = 0.2 is n = 292. 

In this area of the table, interpolation is 
not recommended. 

To obtain the sample size for d = 0.21, 
compute 

(2.576 + 0.84)* 

8-T.5 

d2 (0.21)2 

= 265 

SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE OF PRESCRIBED MAGNITUDE FROM A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT 

Given: 
Pa = the known proportion of the population of standard items which exhibit the pertinent 

characteristic.    P0 may be known from the process history, or may be given by the 
requirements of a specification or a standard. 

To be Specified for This Problem: 
6    = the absolute magnitude of the difference which is considered important to detect. 
P  = Po + $, if we wish to distinguish between P0 and a proportion larger than P0; 
or, 
P  = Po — S, if we wish to distinguish between P0 and a proportion smaller than P0. 
a   = the significance level, or the risk of announcing a difference when in fact there is none. 
ß    = the risk of failing to detect a difference when in fact the true proportion for the new 

product is P, where P = P0 + $ or P = P0 — d, depending on the choice made above. 

Tables to be Used: 
Table A-26 gives the required sample size for a number of values of P0 and P for a = .05 and 

1 — ß = .50, .80, .90, .95, and .99.    The Table is given largely for illustration, to demonstrate 
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how the required sample size is affected by the magnitude of the P0 and S involved, and also by 
different choices of ß. For desired values of a and ß which are not included in Table A-26, use 
Table A-27, a table to convert the difference between the proportions into the form necessary for 
use with Table A-9. 

Procedure 

(1) Choose a and ß. 

(2) For a = .05, and 1 - ß = .50, .80, .90, 
.95, and .99, go to Table A-26. 

(3) Let P = P„ + S, or 
P = Pa — 6, as specified. 

(4) If either P or P0 is less than 0.5, enter 
Table A-26 with P and P0. 
If neither P nor P0 is less than 0.5, enter 
Table A-26 with 1 - P and 1 - P,. 

In either case, the smaller of the two pro- 
portions determines the column and the 
larger determines the row in Table A-26. 

Read off n directly, n is the required 
sample size for the new product. 

Example 

a = .05 
ß = .10 

(1) Let 

(2) Use Table A-26, with 1 - ß = .90 

(3)   Assume P0 = 0.70 
Specify   P = 0.70 + 0.10 

= 0.80 

(4) 

Since neither P nor P0 is less than 0.5, 
take 1 - P = 0.20 

1 - P0 = 0.30. 

Use column 0.20 and row 0.30 in Table 
A-26. 

The required sample size is n = 160. 

(5) For values of a, ß, and P not included in 
Table A-26, go to Table A-27.    Look up: 

0o = B corresponding to P0 
6 = 0 corresponding to P 

(6) Compute d = 16 — 60 \ 

(7) Enter Table A-9 with chosen a, 1 — ß, and 
d (from Step (6)). 
The tabled n is the required sample size for 
the new product. 

For values of d not given in Table A-9, the 
sample size may be computed using the 
formula 

(5) Assume that we had specified a = .01, 
ß -.10, Po - .10, and P = .40. 
From Table A-27, 

<?o = .64 
6 = 1.37 

(6) d = 0.73 

(7) From Table A-9, the sample size for 
d = 0.6 is n = 37, and for d = 0.8, is 
n = 21, so that the required sample size 
for d = 0.73 is greater than 21 and less 
than 37. 
In this area of the table, interpolation is 
not recommended. 
To obtain the sample size for d = 0.73, 
compute 

n ~ rf2 n = (2.326 + 1.282)2 

(0.73)2 

_ 13.018 
.5329 

= 24.4 
As is conventional in sample size calcula- 
tions, we round up to n = 25. 
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8-2    COMPARING TWO OBSERVED PROPORTIONS 

We assume that nA and nB items are taken 
from products A and B, respectively. The 
items are to be examined or tested, and then 
classified into one of two mutually-exclusive 
categories. Some examples of two-category 
classifications are: hit or miss; pass or fail; 
white or black; damaged or not damaged; with- 
in tolerance or outside tolerance; etc. For pur- 
poses of illustration, we call the two categories 
Class I and Class II. 

After examination of the nA items, a number 
rA are classified as Class I, and after examina- 
tion of the nB items, a number rB are classified 
as Class I. The observed classification of the 
items is recorded in a two-row, two-column 
table (often called a 2 X 2 table) as shown in 
Table 8-1. Since there are just two mutually- 
exclusive classes, the entries for Class II can be 
filled in by subtracting the number recorded for 
Class I from the total number for each sample. 

TABLE 8-1.    OBSERVED FREQUENCIES FROM 
TWO SAMPLES IN TWO MUTUALLY 

EXCLUSIVE CATEGORIES (A 2 X 2 TABLE) 

Class 
1 

Class 
II Total 

Sample from A 
Sample from B 

rA 

rB 

SA nA = rA + sA 

nB = rB + Sa 

Total r s n 

The rows in the Table represent the two 
samples, and the columns are the two classes 
into which the observed items have been classi- 
fied. Entries in the Table are counts — e.g., 
in the A sample (consisting of HA items), rA 

items are found to be Class I and sA items 
(SA = nA — TA) are Class II. 

Although the problems will be posed in terms 
of proportions, and final results presented in 
terms of proportions, most of the techniques 
given use the observed counts. In terms of 
Table 8-1, if Class I is the property of interest, 
the observed proportions are pA — rA/nA and 
VB = rB/nB■ 

Since the selection of available techniques 
depends on the sample sizes involved, this sec- 
tion is organized in three subparagraphs: 

8-2.1 Comparing two proportions when the 
sample sizes are equal (nA = nB). 

8-2.2 Comparing two proportions when the 
sample sizes are unequal and small (nA ?* nB; 
both less than 20). 

8-2.3 Comparing two proportions when the 
sample sizes are unequal and large. 

In each paragraph, procedures will be given 
for answering two questions: 

(a) Does the characteristic proportion for 
product A differ from that for product B? 

(b) Does the characteristic proportion for 
product A exceed that for product B? 

As always, it is important to decide which ques- 
tion is appropriate before taking the observa- 
tions. If this is not done, and if the choice of 
the problem is influenced by the observations, 
both the significance level of the test and the 
operating characteristics of the test may differ 
considerably from their nominal values. 

8-2.1    COMPARING TWO PROPORTIONS WHEN 
THE SAMPLE SIZES ARE EQUAL 

The solution involves three operations: 
(a) Recording the observed counts in the 

form shown in Table 8-1; 
(b) Selecting the proper pair of entries from 

among the four entries in the table; and, 
(c) Comparing that pair with the "minimum 

contrast" pair given in Table A-28, to determine 
whether or not the observed contrast is sig- 
nificant at the chosen level. The procedure is 
detailed in Paragraphs 8-2.1.1 and 8-2.1.2; and, 
with a little practice, can be done quickly by 
eye. 

Table A-28 gives "minimum contrasts" for 
nA = nB = 1(1)20(10)100(50)200(100)500 cor- 
responding to significance levels a = .05 and 
a = .01 for two-sided tests (see Paragraph 
8-2.1.1); or to a = .025 and a = .005 for one- 
sided tests (see Paragraph 8-2.1.2). By "mini- 
mum contrast" is meant the "least different" 
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pair which is significant at the chosen signifi- 
cance level. A "more different" pair is of 
course significant also. For example, look at 
the entries in Table A-28 for nA = nB = 17. 
The "minimum contrasts required" at signifi- 
cance level a = .05 for the two-sided test 
(Does PA differ from PB ?) are (0, 5), (1, 7), 
(2, 9), (3, 10), etc. Since (0, 5) is significant, 
so also is (0, 6), (0, 7), etc. Since (1, 7) is 
significant, so also is (1, 8), (1, 9), etc. 

It is worth noting that Table A-28 can be 
used to give satisfactory answers for values of n 
intermediate to those tabulated (see Note to 
Table A-28). 

Data Sample 8-2.1 — Small-scale Comparison 
Test of Two Types of Mine Fuzes 

Seventeen impact fuzes of each of two dif- 
ferent types are tested, and the number of 
successful firings are recorded, as follows: 

Success        Failure 
Fuze Type     (Class I)      (Class II) Total 

Type A 
Type B 

TA = 15 
rB=l 

SA - 2 
sB = 10 

Total T = 22 s = 12 

nA = 17 
nB = 17 

n = 34 

8-2.1.1    Does the Characteristic Proportion for Product A Differ From That for Product B?    (Does 
PA Differ From PBf) In terms of Data Sample 8-2.1, we wish to compare the proportion 

of successful firings for the two types of fuzes.   The question to be answered is: Does Type A differ 
from Type B with regard to the proportion of successful firings? 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-28 provides "minimum contrasts" 
corresponding to a = .05 and a = .01 for 
this two-sided test.* 

(2) Record the observed counts as in Table 8-1. 

(3) Let: ax = smallest of all four entries 
a2 = entry in the same class as aL from 

the other sample. 
The "observed contrast" pair is the ordered 
pair (oi, o2). 
If ßi = o2, no further analysis is necessary. 
The data give no reason to believe that the 
two proportions differ. 

(4) Enter Table A-28 with sample size nA = nB. 

(5) Call the tabled pairs (Ai, At). Find the 
tabled pair where Ai <*• Oi; this is the 
"least different" pair which is significant at 
the chosen level. 

(6) If ch is equal to or larger than A2, the ob- 
served contrast is significant at the chosen 
level, and we conclude that the two prod- 
ucts differ with regard to the characteristic 
proportion considered. 
If c2 is smaller than A2, there is no reason 
to believe that the two proportions differ. 

Example 

(1)   Let a - .01 

(2) See Data Sample 8-2.1. 

(3) o, = 2 
<h = 10 

The "observed contrast" pair is (2, 10). 

(4) nA = us = 17 

(5) From Table A-28, with« = .01 and Oi = 2, 
the "least different" pair {A\, A2) = 
(2, 11). 

(6) 
Since <h = 10 is less than A2 = 11, the 
observed contrast is not significant at the 
.01 level, and we conclude that there is no 
reason to believe that the two fuze types 
differ with regard to the proportion of 
successful firings. 

* Table A-29 and the more complicated procedure oi Paragraph 8-2.2.1 can be used to conduct equivalent two-sided 
teats corresponding to a =^10, .05, J)2, and .01, when tu = ns < 20, thus extending the present two-sided test 
procedure to the underscored values of a for equal sample sizes up to 20. 
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8-2.1.2    Doe* fhe Characferittk Proportion for Product A Exceed That for Product B?    (It PA Larger 
Than PB ?)    In terms of Data Sample 8-2.1, let us suppose that — in advance of looking 

at the data — the important question is:   Does the proportion of successful firings for Type A 
exceed the proportion of successes for Type B? 

(1) 

(2) 

(3) 

Procedure 

Choose a, the significance level of the test. 
Table A-28 provides "minimum contrasts" 
corresponding to a = .025 and a <= .005 
for this one-sided test. * 

Example 

(1)   Let a - .025 

Record the observed counts as in Table 8-1.      (2)   See Data Sample 8-2.1 

Compute pA, the observed proportion for 
Product A, and pB, the observed propor- 
tion for Product B. 

If Class I is the class of interest, pA = rA/nA 

and PB = rB/nB ■ 
If Class II is the class of interest, 
PA - SAMA and pB •= sa/nB- 

(4) If PA is not larger than pB, conclude at once 
that there is no reason to believe that the 
true proportion PA is larger than PB; 
otherwise, proceed to Step (5). 

(5) If PA is larger than pB, let: 
a, = smallest of all four entries 
o2 = entry in the same class as at from 

the other sample. 
The "observed contrast" pair is the ordered 
pair (oi, at). 

(6) Enter Table A-28 with sample size nA =nB. 

(7) Call the tabled pairs (Alt Az). Find the 
tabled pair where Ai = d; this is the 
"least different" pair which is significant at 
the chosen level. 

(8) If (h is equal to or is larger than A2, the 
observed contrast is significant at the 
chosen level, and we conclude that the pro- 
portion for Product A exceeds that for 
Product B. 
If a2 is smaller than A2, there is no reason 
to believe that the two proportions differ. 

(3) 

(5) 

(6) 

PA = 15/17 
- 0.88 

7/17 PB 

= 0.41 

(4)   Since pA is larger than pB, proceed to 
Step (5). 

ai = 2 

<h = 10 

The "observed contrast" pair is (2, 10). 

nA = nB = 17 

(7) From Table A-28, with a = .025 and ai =■ 
2, the "least different" pair (Ai, A2) = 
(2,9). 

(8) Since at = 10 is larger than A2 = 9, we 
conclude that the proportion of successes 
for type A exceeds that for type B. 

• Table A-29 and the more complicated procedure of Paragraph 8-2.2.2 can be used to conduct equivalent one-sided 
testa corresponding to a = ^05, .025, ^01, and .005, when nA = nB < 20, thus extending the present one-sided test 
procedure to the underscored values of a for equal sample sizes up to 20. 
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8-2.2    COMPARING TWO PROPORTIONS WHEN THE SAMPLE SIZES ARE UNEQUAL AND SMALL 
{nA * nB ; BOTH NO GREATER THAN 20) 

8-2.2.1     Does the Characteristic Proportion for Product A Differ From That for Product B? 

Data Sample 8-2.2.1 — Small-scale Comparison Test of Two Types of Artillery Fuzes 

The following data are recorded from an artillery fuze-testing program: 

Fuze Type 
Fires 

(Class I) 
Does Not Fire 

(Class 11) Total 

Type A 
TypeB 

rA =4 
rB - 8 

sA =2 
sB = 2 

nA = 6 
nB = 10 

Total r = 12 s =4 n = 16 

Procedure Example 

(1) Choose a, the significance level of the test.      (1)   Let a = .02 
Table A-29 provides a listing of "significant 
contrasts" corresponding to a — .10, .05, 
.02, and .01 for this two-sided test.* 

(2) Record the observed counts as in Table 8-1.      (2)   See Data Sample 8-2.2.1 

(3) In order to use Table A-29 for this problem,      (3)   See Rearranged Data Sample 8-2.2.1 A 
we must have the data arranged in a special 
way. Arrange the data as shown in Table 
8-2 so that the results from the larger sam- 
ple are in the first row, and re-label the 
entries rlt r2, etc., as shown in Table 8-2. 
Retain the original product identification 
of the samples. 

TABLE 8-2.    REARRANGEMENT OF TABLE 8-1  FOR CONVENIENT USE IN 
SIGNIFICANCE WITH TABLE A-29 

Class 1            Class II Total 

Larger Sample                                 rx                    sj 
Smaller Sample                               r2                    s2 

Total                                         r                     s n 

* It should be noted that Table A-29 also could be used for equal sample sizes up to 20.    For equal samples and 
a — .05 or .01, however, the method of Paragraph 8-2.1.1 is recommended because of simplicity. 
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Rearranged Data Sample 8-2.2.1 A 

Fires Does Not Fire 
Fuze Type (Class I) (Class II) Total 

Larger sample (Type B) fi = 8 Si = 2 K! = 10 
Smaller sample (Type A) r2 =4 s2 = 2 n% = 6 

Total r = 12 s = 4 m = 16 

Procedure Example 

(4)   Compute the four proportions: (4) 
Pi = ri/rh Pi = 8/10 

= .80 
Pa = rs/«j 02   = 4/6 

= .67 
Ql = Si/Ml 9l   = 2/10 

= .20 
qt = St/jh ?2   = 2/6 

= .33 

(5)   If pi is larger than or is equal to p2, focus      (5)   Since pi is larger than p2, focus on Class I. 
attention on Class I. 
For use with Table A-29, take 

at = n a,! ~ n 
= 8 

Cb% = H <h — ?°2 

= 4 
If Qi is larger than or is equal to q2, focus 
attention on Class II. 
For use with Table A-29, take 

<tl   =  Si 

Ö2   =  S2 

(6)   Enter Table A-29 with nlr n2, and 01 (de- 
termined from Step (5)). 

The observed a2 (from Step (5)) must be 
equal to or smaller than the tabled o2 
(bold-face in Table A-29) for significance at 
the chosen level. Therefore, if the ob- 
served a2 is equal to or is smaller than bold- 
face Cj in Table A-29, conclude that the 
two products differ with regard to the pro- 
portion of interest. 
If the observed a2 is larger than the tabled 
(h, there is no reason to believe that the 
two products differ. 

(6)   From  Table A-29,  for nY = 10,  w, = 6, 
a,! = 8, and a = .02, the tabled a« is 0. 

Since the observed a2 = 4 is larger than the 
tabled a2, there is no reason to believe that 
the two fuzes differ in regard to the propor- 
tion which fire. 
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8-2.2.2    Does the Characteristic Proportion for Product A Exceed That for Product B?    {Is P., Larger 
Than Ps?) 

Data Sample 8-2.2.2 — Small-scale Comparison Test of Two Types of Impact Fuzes 

The following data are recorded from an impact fuze-testing program: 

(1) 

(2) 

Fuze Type 
Fires 

(Class I) 
Does Not Fire 

(Class II) Total 

Type A 
TypeB 

rA =4 
rB = 0 

sA =2 
SB = 10 

nA = 6 
nB = 10 

Total r = 4 S = 12 n = 16 

Procedure Exam 

Record the observed counts as shown in 
Table 8-1. 

Focus on the class of interest.    If this is 
Class I, compute: 

PA = rA/nA 

PB = rB/nB 

(If Class II were the class of interest pA 

would equal sA/nA, and pB would equal 
sB/nB). 
If pA is larger than pB, proceed to Step (3). 
If pA is not larger than pB, conclude at once 
that the data give no reason to believe that 
the true proportion PA is larger than PB. 

(3) Choose a, the significance level of the test. 
Table A-29 is used for this one-sided test *f or 
a = .05, .025, .01, and .005. 

(4) In order to use Table A-29 for this problem, 
we must have the data arranged in a special 
way. Arrange the data as shown in Table 
8-2 so that the results from the larger sam- 
ple are in the first row, and relabel the 
entries rit r2, etc., as shown in Table 8-2. 
Retain the original product identification 
of the samples. 

(1) See Data Sample 8-2.2.2. 

(2) Since we are interested in comparing the 
proportions of fuzes which do fire, compute: 

PA = rA/nA 

= 4/6 
= .67 

PB = rB/nB 

= 0/10 
= 0 

Since pA is larger than pB, proceed to 
Step (3). 

(3)   Let a = .01 

(4)   See Rearranged Data Sample 8-2.2.2A. 

* It should be noted that Table A-29 also could be used for equal sample sizes up to 20.    For equal sample sizes and 
- .025 and a = .005, however, the method of Paragraph 8-2.1.2 is recommended because of simplicity. 
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Rearranged Data Sample 8-2.2.2A 

Fires Does Not Fire 
Fuze Type (Class I) (Class II) Total 

Larger sample (Type B) r, =0 Si = 10 «! = 10 
Smaller sample (Type A) 

Total 

r2 = 4 s2 = 2 «2=6 

r = 4 s = 12 TO = 16 

Procedure Example 

>mj >ute the four proportions: (5) 
Pi = ri/n, Pi = 0/10 

0 
P2 = rt/n% Pi = 4/6 

.67 
7i = Si/rii ft = 10/10 

1.00 
ft = S2/TO2 g2 = 2/6 

Note that: 
Pi = PA if «A is the larger sample; 
Pi «= pB if nB is the larger sample. 

.33 

(6) If pi is larger than or is equal to p2, focus      (6) 
attention on Class I. 
For use with Table A-29, take 

ai - T-i 

a2 ■» T-2. 

If «ft is larger than or is equal to q2, focus 
attention on Class II. 
For use with Table A-29, take 

dt  = Sx 

0,2   =  Sj 

(7) Enter Table A-29 with nu n2, and the oi      (7) 
(determined from Step (6)). 
The observed a2 (from Step (6)) must be 
equal to or smaller than the tabled a2 (bold 
face in Table A-29) for significance at the 
chosen level. 
Therefore, if observed a2 is equal to or is 
smaller than bold-face a2 in Table A-29, 
conclude that the proportion of interest for 
product A exceeds the proportion for prod- 
uct B. 
If the observed a? is larger than the tabled 
<h, there is no reason to believe that the 
two proportions differ. 

Since qx is larger than ?2, focus attention on 
Class II. 

ax = Sx 

= 10 
a2 = s2 

= 2 

From  Table  A-29,  for nx = 10,  n2 = 6, 
oi = 10, and a = .01, the tabled a2 is 2. 

Since the observed a2 is equal to the tabled 
a2, we conclude that the proportion of suc- 
cessful fuzes of type A exceeds that for 
type B. 
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8-2.3    COMPARING TWO PROPORTIONS WHEN THE SAMPLE SIZES ARE LARGE* 

8-2.3.1    Does the Characteristic Proportion for Product A Differ From That for Product B?    (Doet 
PA Differ From PB ?) 

Data Sample 8-2.3.1 — Field Trials of Two Types of Mine Fuzes 

In field trials of mine fuzes, 216 of each of two new types of fuze were buried, simulated tanks run 
over them, and the number of "proper hits" recorded.   The results are as follows: 

Fuze Type Hit Not Hit Total 

Type A 
TypeB 

rA = 181 
TB = 160 

sA = 35 
SB - 56 

nA = 216 
n3 = 216 

Total r = 341 s = 91 » = 432 

Let us assume with respect to Data Sample 8-2.3.1 that the important question is: Is the propor- 
tion of hits for Type A different from the proportion of hits for Type B? 

Procedure Example 

(1)   Choose a, the significance level of the test.      (1)   Let        a - .10 

(2)   Look up x?_« for one degree of freedom in      (2)   x?»0 for 1 d.f. = 2.71 
Table A-3. 

(3)   Compute 

xJ = •(■ 

TA«B ~ TBsA I V 
nArnBs 

{See Note below.) 

(3) 

xl = 432 (4536 - 216)' 
(73656) (19656) 

- 5.57 

(4) If xl > Xi_„, decide that the two products 
differ with regard to the proportion having 
the given characteristic; otherwise, there is 
no reason to believe that the products 
differ in this respect. 

(4) Since x2 is larger than x\o, we conclude 
that the two types of fuzes do differ with 
regard to the proportion of "proper hits". 

* The procedures of this paragraph mvxl be used for large samples of unequal size, and may be used for samples ol 
equal size. If the sample sizes are equal and are included in Table A-28, the procedures of Paragraph 8-2.1 are to be 
preferred because of simplicity. 
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Procedure Example 

Note:  The  computation  of  x2 is most con-      Note:  Using  Data Sample 8-2.3.1 with this 
veniently done in terms of the actual counts in      formula: 
the table, as given in Step (3) above.    The for- 
mula can be expressed in terms of the observed 
proportions as follows: 

(n'\vA -PB\- 2) 
y2 = (108 (.097) - 1/2) 

n'p(l - p) * 108 (.789) (.211) 
_ (9.976)2 

" 17.980 
= 5.54 

2 

where 

PA = rA/nA PA = 181/216 
= .838 

pB - rB/riB pB - 160/216 
= .741 

m  rA+rB = 341/432 
nA + nB m 7g9' 

1 - p - .211 

and 

B, =    WA«* , m 46656/432 

nA + nB 108 

This formula and the formula in Step (3) are 
algebraically equivalent, but use of the form 
given in the Note requires extra arithmetic and 
rounding. In spite of the fact that the question 
is put in terms of the difference between pro- 
portions, the answer is obtained more easily and 
more accurately using observed counts, i.e., the 
formula of Step (3) is preferred. Furthermore, 
using the formula in terms of counts (Step (3)) 
highlights the fact that one cannot judge the 
difference between two proportions without 
knowing the sample sizes involved. 
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8-2.3.2    Is the Characteristic Proportion for Product A Larger Than That for Product B?    (I* PA Larger 
Than PBV)    In terms of Data Sample 8-2.3.1, let us suppose that — in advance of 

looking at the data — the important question is: Is the proportion of hits for type A larger than the 
proportion of hits for type B? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up xj_2a for one degree of freedom in 
Table A-3. 

(3) Compute: (3) 

\TASB  - 7\BSX| ~ ö) 

Example 

(1) Let         a - .025 

(2) X\i for 1 d.f. = 3.84 

n(| 
xs = 

432 (4536 - 216) 
njritBs "     "   (73656) (19656) 

= 5.57 

and 

PA = rA/nA pA  = 181/216 
- .84 

Ps = rB/nB PB = 160/216 
= .74 

(See Note at end of procedure of Paragraph 
8-2.3.1) 

(4)   If  x2 > Xi_2„ and pA is larger than pB, (4)   Since x2 is larger than x2»6 and pA = .84 is 
decide that  PA  exceeds  PB;  otherwise, larger than pB = .74, conclude that the 
there is no reason to believe the propor- proportion of hits for type A is larger than 
tions differ, the proportion of hits for type B. 

8-2.4    SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE BETWEEN TWO PROPORTIONS 

8-2.4.1 Sample Size Required to Detect a Difference of Prescribed Magnitude Between Two Propor- 
tions When the Sign of the Difference Is Not Important. Unfortunately, the sample size 

required depends on the true but unknown values of the two proportions involved. Very often, the 
experimenter has some idea of the magnitude of (or an upper bound for) one of these values, and then 
must specify the size of the difference which the experiment should be designed to detect. For a 
fixed difference to be detected, the largest sample sizes will be required if the true proportions are 
in the neighborhood of 0.5. A look at Table A-25, however, will show that over-conservatism may 
not pay. Suppose, for example, that one of the proportions can safely be assumed to be less than 
0.4. The most conservative assumption would be that it is equal to 0.4 (this being the closest 
reasonable guess to 0.5). Attempting to be over-cautious by using the value 0.45 will extract a 
heavy price in the number of tests to be run. 

Given: 

For this problem there is nothing given, but — 

Assumed: 

an estimate of one of the two proportions. 
To be conservative, make this estimate as close to 0.5 as is reasonable. 
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To be Specified for This Problem: 

a  = the significance level, or the risk of announcing a difference when in fact there is none. 
ß   = the risk of failing to detect a difference when in fact the true proportions differ by an 

amount S (i.e., \P' - P"\ - a). 
S   = the absolute magnitude of the difference which is considered important to detect. 

Tables to be Used: 

Table A-25 can be used for a = .05 and 1 - ß = .50, .80, .90, .95, and .99, and for certain 
values of the proportions. The entry in Table A-25 must be doubled to give n'\ and n' is the 
required sample size to be taken from each product. 

For other desired values of a and ß, use Table A-27, a table to convert the difference between 
the proportions into the form necessary for use with Table A-8. 

The question to be answered by the experiment is:   Does PA differ from PB ? 

Procedure 

(1) Specify S, the absolute magnitude of the 
difference considered important to detect. 

(2) Choose a and ß. 

(3) For a = .05 and 1 - ß = .50, .80, .90, 
.95, or .99, go to Table A-25. 

(4) Let P' = an estimate of one of the pro- 
portions. 
Let P" = P' + S or P' - S, whichever 
makes P" closer to 0.5. 

(5) If either P' or P" is less than 0.5, enter 
Table A-25 with P' and P" . 
If neither P' nor P" is less than 0.5, enter 
Table A-25 with 1 - P' and 1 - P" . 
In either case, the smaller of the two pro- 
portions determines the column and the 
larger of the two determines the row in 
Table A-25. 

Read off n, and double it to obtain n'. 
n' is the required sample size to be taken 
from each product. 

Example 

(1) Specify   S = .10 

(2) Let a = .05 
ß = .20 

(3) Use Table A-25 with 1 - ß = .80 

(4) Let       P' = .20 

Let      P" = .20 + .10 
= .30 

(5) Enter   Table   A-25   in  column  .20  and 
row .30. 

n = 146 
n' — 292, the required sample size 

to be taken from each product. 

(6) For other values of « and ß, and for values 
of P' and P" not included in Table A-25, 
go to Table A-27.    Look up: 

B' = 6 corresponding to P' 
6" = 9 corresponding to P" 

(7) Computed = \9' - 6"\ 

(6) Assume that we had specified a = .01, 
ß m .20, P* - .34, and P" = .44. From 
Table A-27, 

(7) 

e' = 1.25 
9" = 1.45 

d = 11.25- 1.45] 
= .20 
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(8) 

Procedure 

Enter Table A-8 with a, ft and d (from      (8) 
Step (7)). 

Read off n and double it to obtain n'. 
Then, n' is the required sample size to be 
taken from each product. 
(Rounding two-decimal values of d to the 
nearest value considered in Table A-8 may 
lead to excessively high (or low) values of n, 
and thence of n'. Interpolation for values 
of n corresponding to values of d not con- 
sidered in Table A-8 is not recommended. 
For values of d not given in Table A-8, the 
sample size may be computed using the 
formula 

Example 

From Table A-8 with a = .01,1 - ß = .80, 
and d - .20, n = 292. 

n' = 584, the required sample size to be 
taken from each product. 

n = (Zl-.»/2 + Zl-fl)2 

d2 

8-2.4.2    Sample Size Required to Detect a Difference of Prescribed Magnitude Between Two Propor- 
tions When the Sign of the Difference Is Important.     Read the general discussion at the 

beginning of Paragraph 8-2.4.1. 

Given: 

For this problem, there is nothing given, but — 

Assumed: 

P' = an estimate of one of the two proportions.   P' may be P{, an estimate of PA, or Pä, 
an estimate of Ps ■ 
To be conservative, make this estimate as close to 0.5 as is reasonable. 

To be Specified for This Problem: 

a   = the significance level, or the risk of announcing a difference when in fact there is none. 
(3   = the risk of failing to detect a difference when in fact the true proportion for the other 

product is P" = P' + S or is P" = P' - S. 
o    = the absolute magnitude of the difference considered important to detect. 

Tables to be Used: 

Table A-26 can be used for a = .05 and 1 - ß = .50, .80, .90, .95, and .99; and for certain 
values of the proportions. 

For other desired values of a and ft use Table A-27, a table to convert the difference between 
the proportions into the form necessary for use with Table A-9. 

The question to be answered by the experiment is:   Is PA larger than PB ? 

Procedure 

(1)   Specify S, the absolute magnitude of the       (1)   Specify 
difference considered important to detect. 
If   the   estimate   Pi   is   available,   then Let PA', 
P" = PA - 8 ■ Then, 
If   the   estimate   PB   is   available,   then 
P" = PB + 8. 

Example 

5 = .05 

, the estimate of PA, 
P" = .10 - .05 

= .05 

= .10 
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Procedure 

(2)  Choose a and ß. (2)  Let 

(3) For a = .05, 1 - ß = .50, .80, .90, .95,      (3) 
or .99, go to Table A-26. 

(4) If either P' or P" is less than 0.5, enter     (4) 
Table A-26 with P' and P". 
If neither P' nor P" is less than 0.5, enter 
Table A-26 with 1 - P' and 1 - P". 
In either case, the smaller of the two pro- 
portions determines the column and the 
larger determines the row in Table A-26. 

(5) Read off n, and double it to obtain n'.      (5) 
ri is the required sample size to be taken 
from each product. 

Example 

« = .05 
ß = .10 

Use Table A-26 with 1 - ß - .90 

Since both P' and P" are less than 0.5, 
enter Table A-26 in column .05 and 
row .10. 

n = 232 
n' = 464, the required sample size 

to be taken from each product. 

(6) For other values of a and ß, and for values 
of P' and P" not included in Table A-26, 
go to Table A-27. 
Look up: 

8' — 8 corresponding to P' 
B" = e corresponding to P" 

(7) Computed - |f - e"\ 

(8) Enter Table A-9 with a, ß, and d (from 
Step (7)). 

Read off n, and double it to obtain »'. 
n' is the required sample size to be taken 
from each product. 

Rounding two-decimal values of d to the 
nearest value considered in Table A-9 may 
lead to excessively high (or low) values of n, 
and thence of w'. 
Interpolation for values of n corresponding 
to values of d not considered in Table A-9 
is not recommended. 
For values of d not given in Table A-9, the 
sample size may be computed using the 
formula 

n = 

(6)   Assume that we had specified o = .01, 
1 - ß = .90, P> - .70, and P" = .50. 

From Table A-27 
6' = 1.98 

6" = 1.57 

(7) d = |1.98 -1.571 
= .41 

(8)   From Table A-9, for d = .4, n = 82. 

n' =s 164 is an upper bound to the required 
sample size to be taken from each product. 

In the present instance, 

n = (2.326 + 1.282)' 
(.41)* 

13.018 
.1681 

= 78 

and n' = 156 is the required sample size to 
be taken from each product. 
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CHAPTER 9 

COMPARING MATERIALS OR PRODUCTS WITH 

RESPECT TO SEVERAL CATEGORIES OF PERFORMANCE 

(CHI-SQUARE TESTS) 

In some inspection and testing procedures, a 
two-category classification of performance (e.g., 
success or failure) is not sufficient. In inspec- 
tion work, the classification scheme might con- 
sist of three categories; for example, (1) accept- 
able, (2) reworkable, and (3) unusable. In 
process control, we might wish to record occur- 
rences of each of a number of types of defects, 
and to make comparisons between shifts or be- 
tween time periods with regard to the distribu- 
tion of the types of defects. Similarly, reports 
of types of failures of machinery, or of records of 
repairs, may call for a classification scheme with 
more than two categories. Classifications by 
size, color, and structure are other possible 
examples of classifications likely to require three 
or more categories. 

Where the classification scheme provides for 
three or more categories, the procedures of this 
Chapter are appropriate. (The methods of 
Chapter 8 could be used only if we were to 
consider a single class as, for example, success, 
with all the other classes lumped together as 
failure.) 

If the classification scheme has a large num- 
ber of categories, and if we are interested in a 
special group of these classes, the individual 
classes in the group may be combined and con- 
sidered as one grand category. For example, 
in records of the causes of aircraft accidents, we 
may consider the one large category collision, or 
we may have this information broken down into 
several classes, e.g., between two in air, with 
ground, with water, and other types of collision. 
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9-1    COMPARING A MATERIAL OR PRODUCT WITH A STANDARD 

9-1.1    WHEN   THE   COMPARISON  IS  WITH   A 
STANDARD MATERIAL OR PRODUCT 

Dafa Sample 9-1.1 —Inspections and Tests of 
Clinical Thermometers 

Form: A sample of «items is selected at random 
from a much larger group. After in- 
spection or test, each sample item (or 
observation) is classified into one of k 
categories, according to some established 
classification scheme. The result is that 
«i items are observed to be in category 1, 
rtj items in category 2, w, items in the ith 
category, etc., and 

Wi + «z + • • • + TU = n. 

Let: Pi equal the known proportion of 
standard items that are classified in cate- 
gory 1; P2 equal the known proportion in 
category 2; and P, equal the known pro- 
portion of standard items in the ith cate- 
gory. 

The relevant question to be asked is: "Does 
the new product differ from the standard with 
regard to the proportions in each category?" 

Example: The inspection and testing of clinical 
thermometers provides an illustrative ex- 
ample. Clinical thermometers are classi- 
fied into one of the following four cate- 
gories, on the basis of inspection and test: 

1. Non-defective; 

2. Defective — class A (Defects in glass, 
defective markings, dimensional non- 
conformance, etc.); 

3. Defective — class B (Defects in mer- 
cury column); 

4. Defective — class C (Nonconform- 
ance to precision and accuracy re- 
quirements). 

Over a period of time, it has been found 
that thermometers produced by a certain 
manufacturer are distributed among the 
four categories in the following average 
proportions: 

1. Non-defective — 87   percent 
IP, = 0.87); 

2. Class A — 9 percent (P, = 0.09); 

3. Class B — 3 percent (P, = 0.03); 

4. Class C — 1 percent (P, = 0.01). 

A new lot of 1336 thermometers is sub- 
mitted by the manufacturer for inspec- 
tion and test, and the following dis- 
tribution into the four categories results: 

Category 
No. of 

Thermometers 
Reported 

1 
2 
3 
4 

1188 (?!,) 
91 (n,) 
47 («,) 
10 (««) 

1336 

The question asked is: "Does this new lot of 
thermometers differ from previous experience 
with regard to proportions of thermometers in 
each category?" 
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Procedure* 

(1) Choose a, the significance level of the test. 

(2) Look up x?_„ for k - 1 degrees of freedom 
in Table A-3. 

(3) Compute nP,, the theoretical value for 
each category. 

(4) Compute 

Example 

(1) Let a - .05 
1  - a = .95 

(2) Jfc - 1 - 3 
x2

96 for 3 d.f. = 7.81 

(3) For a convenient computational arrange- 
ment, see Table 9-1. 

(4) See Table 9-1, 

(5) If x2 > x?_a, conclude that the material, 
product, or process differs from the stand- 
ard with regard to the proportions in the 
categories; otherwise, there is no reason 
to believe that they differ. 

x2 = 9.72 

(5) Since x2 is larger than x\b, we conclude 
that the new lot of thermometers is differ- 
ent from previous lots submitted by the 
same manufacturer with regard to the pro- 
portions in the respective inspection-test 
categories. 

TABLE 9-1.    COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-1.1 

Thermometer 
Class 

No. of 
Thermometer» in 

Each Category 

(m) 

Known Propor- 
tion for 

Standard Product 

(Pi) 

Expected No. 

(nP.) nPi 

1. Non-defective 
2. Class A 
3. Class B 
4. Class C 

1188 
51 
47 
10 

.87 

.09 

.03 

.01 

1162.32 
120.24 
40.08 
13.36 

1214.25 
68.87 
55.11 
7.49 

Total ft = 1336 1.00 1336.00 1345.72 

X2 = 2(n*/nPi) - n = 1345.72 - 1336 = 9.72 

* This x' procedure is based on a large-sample approximation, but if nP, > 5.0 for all categories, the approximation 
ordinarily is very good. If nP* < 5 for several categories, these categories may be pooled to obtain a theoretical 
frequency of at least 5 for the combined cells, and a corresponding improvement in the accuracy of the approximate 
solution, but at the price of some loss of resolution. 

9-3 

Downloaded from http://www.everyspec.com



ORDP 20-ni SEVERAL PERFORMANCE CATEGORIES 

9-1.2    WHEN THE COMPARISON IS WITH A THEORETICAL "STANDARD" 

The following example illustrates an application of the foregoing procedure in which the "stand- 
ard" is of a theoretical nature. 

Data Sample 9-1.2 — Breakdown« of Electricity Meter* 

Form: There are k different types of meters in current use. The total number of each type in service 
at the beginning of the service period under consideration was Nif Nit..., Nt, respectively. 
If the probability of a meter breaking down during the service period is the same for all k 
types, then we would expect the total number of breakdowns during this period to be dis- 
tributed among the k types in proportion to their respective numbers in service. For 
example, suppose that a total of n meters break down. Among these n, we would expect 
to find the proportion 

A - - - -   * tfi + N, + . . . + Nk 

of them to be of type 1; the proportion 

N2 

to be of type 2; etc. The actual number of each type that are found in the n breakdowns 
are Mi, ft»,..., W* (and nx + n^ + . . . + nk = n). The actual proportions »i/tt, fh/n, . . . , 
«*/», rarely will conform to the theoretical values, Pj, P2,. . . , P*, even when the hypothesis 
that all types are equally likely to break down is true. The relevant question is: Are the 
differences between the observed and theoretical proportions sufficient to cast doubt on the 
supposition that the probability of a breakdown is the same for all k types of meters? 

Example: There are (approximately) equal numbers of four different types of meters in service. 
If all types are equally likely to break down, the reported failures during a given period 
should be distributed (approximately) equally among the four types — i.e., 

The actual number of breakdowns reported are given in the following list. Have we evi- 
dence to conclude that the chances of failure of the four types are not all equal? 

Type of Meter No. of Breakdowns Reported 

1 30 
2 40 
3 33 
4 47 

n = 150 
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Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up x2_„ for k — 1 degrees of freedom 
in Table A-3. 

(3) Compute nPi, the theoretical frequency for 
each category. 

(4) Compute 

x2 = 2 W/nPt) - n 

(5) If X4 > x?_«, conclude that the probabili- 
ties of failure are not the same for all of the 
types*; otherwise, that there is no reason to 
believe that they differ. 

Example 

(1)   Let a = .10 
a = .90 

(2) k - 1 - 3 
x2,o for 3 d.f. = 6.25 

(3) For a convenient computational arrange- 
ment, see Table 9-2. 

(4) See Table 9-2, 

x2 = 4.62 

(5) Since x2 is not larger than x2
w, we have no 

reason to discard the hypothesis that the 
probability of failure is the same for each 
type. 

TABLE 9-2.    COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-1.2 

Type of Meier 
No. of Breakdowns 

Reported 
(n.) 

Expected No. of 
Breakdowns 

(nP;> 
nP, 

1 
2 
3 
4 

30 
40 
33 
47 

37.5 
37.5 
37.5 
37.5 

24.00 
42.67 
29.04 
58.91 

Total n = 150 154.62 

Pi = the theoretical proportion for each category.  In Data Sample 9-1.2, P, = .25 for all categories. 
Xs = 2(n?/«P<) - n = 154.62 - 150 = 4.62. 

* In reaching this conclusion on the basis of evidence that the P's are not all equal to their theoretical values, we 
are assuming, of course, that our information on the numbers of meters of each type in service is correct. In practice, 
this assumption should be checked before accepting the conclusion that the probabilities of failure are not the same 
for all of the types. 
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9-2    COMPARING TWO OR MORE MATERIALS OR PRODUCTS 

Dato Sample 9-2 — Cause* of Rejection of Metal Catting* 

Form: There are m things to be compared with regard to the percentage of items distributed among 
several categories. The m things may be materials, products, processes, shifts, time periods 
(days, weeks, months, etc.) or any other such groups of interest. From each of the m groups, 
a sample is available, and each item in the sample is classified into one of k categories. The 
data is tabulated conveniently in the following form: 

Material, Category 
Total Product, 

or Process 1 2 k 

1 
2 

m 

/u 
/» 

/ml 

/a 

fmi fmk 

«i 

Total c, c2 ck n 

where: 
m ~ number of materials, products, processes, etc., to be compared; 
k = number of categories of classification; 

«i «■ size of sample for the ith material, product, or process; 
fa = number of items of the ith kind which are classified in the/th category; 
Ci = total number in the yth category; 
n = total number of items. 

The relevant question to be asked is:  "Do the materials, products, etc., differ with regard to the 
proportion of items in the categories?" 
Example: Rejects of metal castings were classified by cause of rejection for three different weeks, 

as given in the following tabulation. The question to be answered is: Does the distribution 
of rejects differ from week to week? 

Cause of Rejection 

Sand Misrun Shift Drop Corebreak Broken Other Total 

Week 1 
Week 2 
Week 3 

97 
120 

82 

8 
15 
4 

18 
12 

0 

8 
13 
12 

23 
21 
38 

21 
17 
25 

5 
15 
19 

180 
213 
180 

Total 299 27 30 33 82 63 39 573 

Data adapted with permission from Industrial Quality Control, Vol. IV, No. 4, p. 26, 1948, from article entitled "A Training Program Become» a 
Clinic," by George A. Hunt. 
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Procedure* 

(1) Choose a, the significance level of the test. 

(2) Look up xl-e for (ifc - 1) (TO - 1) degrees 
of freedom in Table A-3. 

(3)   Compute 

«(sM-1) 
That is, compute each column total Cj. 
Compute each row total n,. For each cell 
in the table, square the number /,, and 
divide by the product ntCj. Sum the re- 
sulting values for all cells in the table; sub- 
tract one, and multiply by n. 

(4) If x2 > xf_«, decide that the materials, 
products, or processes differ with regard to 
the proportions in the categories; other- 
wise, that there is no reason to believe that 
they differ in this regard. 

(1) 

(2) 

(3) 

Let 

Example 

a = .10 
1 - a - .90 

Jfc =7 
TO = 3 

(k - 1) (m - 1) = 12 
x5

M for 12 d.f. = 18.55 

See Table 9-3 for a convenient computa- 
tional arrangement. 

x' = 45.84 

(4) Since Xs is larger than x2
w, we conclude 

that the weeks differ with regard to pro- 
portions of various types of rejections. 

TABLE 9-3.   TABLE OF -^r — COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-2 

Sand Miirun Shift Drop Corebreak Broken Other Total 

Weekl 9409 
53820 
- 0.175 

64 
4860 

= 0.013 

324 
5400 

= 0.060 

64 
5940 

= 0.011 

529 
14760 

= 0.036 

441 
11340 
- 0.039 

25 
7020 

= 0.004 0.338 

Week 2 14400 
63687 

= 0.226 

225 
5751 

= 0.039 

144 
6390 

= 0.023 

169 
7029 

= 0.024 

441 
17466 

= 0.025 

289 
13419 

= 0.022 

225 
8307 

= 0.027 0.386 

Week 3 6724 
53820 

= 0.125 

16 
4860 
- 0.003 

0 
144 

5940 
= 0.024 

1444 
14760 

= 0.098 

625 
11340 

= 0.055 

361 
7020 

= 0.051 0.356 

Total 0.526 0.055 0.083 0.059 0.159 0.116 0.082 1.080 

X2 --(ssä-1) 
= 573 (1.080 - 1) 
= 573 (.080) 
= 45.84 

' The solution is approximate, but should be quite accurate if the smallest n<C,/n > 5. 
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Simplified Computation for the Special Case m = 2.   In this case, the tabulation would consist of 
only the first two rows of the schematic table shown in Data Sample 9-2, and 

x2 = * I" «!«,   /fu _ fMy~\ 

The degrees of freedom for x2 is ft — 1. 
This form is convenient if the data are given in terms of proportions. 

Further Simplification for m = 2 When m - n2.   When there are only two rows, and the row totals 
are equal, then, 

_ jj(/ü-A/)* 
,-i fu + fa 

with k — 1 degrees of freedom. 

Note: This shortcut has an analog for m = 3 when Jii = «j = n3. For each category, take all 
three possible differences, sum the squares of the three differences, and divide by the sum of the 
three observations.   Finally, sum this quantity over all of the categories, to obtain 

yi _ ^ (fu - /«)' + (h - M + (h - SvY 
1=i fu+fv+fv 

9-3    A TEST OF ASSOCIATION BETWEEN TWO METHODS OF CLASSIFICATION 

There are situations in which individual items are classified into categories in terms of two dif- 
ferent criteria. For example, in a study of tire wear, see Swan,(1> records of scrapping of tires were 
kept and tires were classified as front and rear, left and right. In another study of the cause of 
failure of vacuum tubes, see Day,<2) the two criteria of classification were position in shell and type 
of failure. In each study the question was: Is there any association or relation between the criteria 
of classification? 

Basically, this is a different problem than the problem of Paragraph 9-2, but it is discussed here 
because of the similarity in analysis. 

We assume that we have a total of n individual items, and that each item is classified by criteria 
A and B into k and m categories, respectively. Let f# be the number of individuals in the tth 
category of A and theyth category of B. Let R, and C, be the total numbers of individuals classified 
in the ith category of A and the yth category of B, respectively. 
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We tabulate these data as follows: 

Criterion B 
Total 

1 2 . . . k 

1 /n /ii ... /» Äi 
<          2 
a /« J22 J2k Ä2 
o 

1 . . , 
'C u * * 

m /ml /m2 J mk -Km 

Total c, c, a 7J 

The relevant question to be asked is: "Is there a relation or association between the two criteria 
of classification?" 

Data Sample 9-3 — Vacuum Tube Failures 

In the development of the VT fuze during World War II, a study was made of the causes of failure 
of vacuum tubes. The criteria of classification were: position in shell and type of failure. The 
following entries are the number of tubes that failed. 

Position 
in 

Type of Failure 
Total 

Shell A B C 

Top block 
Bottom block 

75 
40 

10 
30 

15 
10 

100 = Ä, 
80 = Ä, 

Total 115 40 25 180 = n 

Adapted with permission from Review of the International Statistical Institute, Vol. 17, Nos. 5 and 4, 
pp. 129-165, 1949, from article entitled "Application of Statistical Methods to Research and Development in 
Engineering" by Besse B. Day. 

The question to be asked is: Is the type of tube failure associated with the position in the shell? 

Procedure* 

(1) Choose a, the level of significance of the 
test. 

(2) Look up x!_a for (k - 1) (m - 1) degrees 
of freedom in Table A-3. 

Example 

(1) Let a m .10 
1 - « - .90 

(2) k « 8 
TO = 2 

(k - 1) (TO - 1) = (2) (1) 
= 2 

x2
M for 2 d.f. - 4.61 

* The solution is approximate, but should be quite accurate if the smallest of RiCj/n > 5.0. 
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Procedure 

(3)  Compute 

"■-»(SSÄ-1) 
That is, compute each row total fi<. Com- 
pute each column total C,. For each cell 
in the table, square the number /,, and 
divide by the product RjCj. Sum the re- 
sulting values for all cells in the table; 
subtract one, and multiply by n. 

(4) If xJ > xf_«, conclude that there is an asso- 
ciation between the two criteria of classifi- 
cation,* otherwise, that there is no reason to 
believe that such an association exists. 

Example 

(3)   See Table 9-4 for a computational arrange- 
ment. 

x* - 180 (1.1092 - 1) 
- 19.66 

(4) Since x! is greater than x*w, we conclude 
that the type of failure is associated with 
the position in the shell. 

TABLE 9-4.    TABLE OF £-'  — COMPUTATIONAL ARRANGEMENT 

FOR DATA SAMPLE 9-3 

Typ« of Follure 

Total Potmen in »hell 

A B C 

Top block 5625/11500 
=.4891 

100/4000 
= .0250 

225/2500 
= .0900 .6041 

Bottom block 1600/9200 
= .1739 

900/3200 
= .2812 

100/2000 
= .0500 .5051 

Total .6630 .3062 .1400 1.1092 

Xs 

\ i-I  1-1 ÄtOj / 

= 180 {1.1092 - 1) 
= 180 (.1092) 
= 19.66 

REFERENCES 
A. W. Swan, "The Xs Significance Test — Expected vs. Observed Results," 

The Engineer, Vol. 186, No. 4849, p. 679, December 31, 1948. 
B. B. Day, "Application of Statistical Methods to Research and Develop- 

ment in Engineering," Review of the International Statistical Institute, 
Vol. 17, Nos. 3 and 4, pp. 129-155, 1949. 
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CHAPTER  TO 

SENSITIVITY TESTING 

10-1     EXPERIMENTAL SITUATION 

The term "sensitivity test" is commonly ap- 
plied to the following situation: 

1. A test item will respond or not respond to a 
certain level of test stimulus (e.g., a shell will 
explode or will not explode when subjected to a 
certain shock). 

2. The test is destructive to the item being 
tested, no matter what the outcome of the test. 
Either the item is destroyed completely, or the 
characteristics of the item are so changed that 
further tests are meaningless. 

3. The percentage of items expected to re- 
spond (fail, explode, die) increases as the severity 
of the test is increased. 

In this general situation, there are variable (and 
usually controllable) levels of test which can be 
applied; e.g., height of drop in a shock test, 
dosage of a poison in tests of insecticides, etc. 
We assume that each object has an associated 
critical level or threshold value. If the test 
stimulus applied equals or exceeds this critical 
level, the object responds (fails, explodes, dies). 
If the test stimulus applied does not equal or 
exceed this critical level, the object does not 
respond. For any particular object, the exact 
critical level cannot be determined. More than 
one object may be tested at a given test level, 
however, and inferences may be made about the 
distribution of critical levels in a population of 
objects from which the tested samples came. 

The experimenter obtains data of the follow- 
ing type: objects were tested at the k stimulus 
levels Xi, xi, . . ■, xk; of the m, objects tested 
at level Xt, rt responded and w< — r< did not 
respond. 

An ordnance example might involve the deto- 
nation of samples of an explosive in powder 
form by dropping a specified weight on them 
from various heights. If the weight is dropped 
from a height below the sample's critical level 
(in this ease, the lowest height at which the 
weight will cause the sample to explode), the 
sample does not explode, but the powder may 
be packed more tightly than before and, there- 
fore, the test cannot be repeated at increased 
height. If the weight is dropped from above the 
sample's critical level, the sample is destroyed. 

A partial list of the many ordnance problem 
areas in which tests of increased severity can be 
used is as follows. 

1. Sensitivity to mechanical shock: 
a. Impact tests of high explosives; 
b. Impact tests of artillery fuzes; 
c. Izod impact test of metals; 
d. Izod impact test of plastics; 
e. Impact or drop test of packing cases. 

2. High  explosives  sensitivity to  setback 
pressures. 

3. Missile components sensitivity to acceler- 
ation. 

4. Explosives sensitivity to friction. 

5. Fuzes and explosives sensitivity to ve- 
locity. 

6. Artillery fuzes and missile components 
sensitivity to voltage. 

7. Pyrotechnic materials sensitivity to elec- 
tric spark. 

8. Explosives and missile components sensi- 
tivity to temperature. 
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The following ordnance example is used to 
illustrate the computational techniques. 

Dato Sample 10-1 —Peak-Voltage Tes» of Fuze* 

Groups of fuzes are subjected to specified 
values of peak voltage. 

For each group we observe the number which 
fire in less than a specified time. The observa- 
tions are summarized as follows: 

Peak 
Voltage n r p = r/n 

10.0 12 0 0 
15.0 12 0 0 
17.5 12 1 .08 
20.0 13 2 .15 
22.5 10 3 .30 
25.0 13 6 .46 
30.0 12 8 .67 
35-0 13 9 .69 
40.0 13 11 .85 
50.0 11 10 .91 
60,0 11 11 1.00 

Several methods for collecting and analyzing 
such data are described and illustrated in this 
Chapter. Paragraphs 10-2 and 10-3 detail 
methods of analysis for the usual testing situa- 
tion, where the levels of test are assigned before 
the test begins. Paragraph 10-4 details a spe- 
cial method applicable when the test levels can 
be different for each successive object tested, 
and can be changed easily during the course of 
the experiment. Paragraph 10-5 discusses the 
situation where the test levels cannot be com- 
pletely controlled. 

Most of the methods involve assumptions 
about the distribution of the critical levels such 
as, for example, that the distribution is normal. 
The distribution of critical levels as measured in 
the original units (or natural units) may not 
meet these assumptions, but there may exist a 
transformation such that the distribution of the 
transformed values does meet the assumption. 
The logarithm of the original value is perhaps 
the most frequently used transformation. 

When a transformation is used, all comments 
on the selection of testing levels and all compu- 
tational instructions refer to the transformed 
values, not the original ones. Usually, how- 
ever, it is desirable to state the final results of 
the analysis in terms of the original units. For 
most transformations (including the logarith- 
mic), the percentile estimates* and their asso- 
ciated confidence intervals are converted into 
the original units easily. Suppose that the 
stimulus levels are originally measured in "y" 
units, and transformed values, e.g., x = log y, 
are used in the computations. If xP is an esti- 
mate of XP, as here defined,* and [a, b] is a 
1 — a confidence interval estimate of Xp, then 
antilog £P and [antilog a, antilog b] give, re- 
spectively, a point estimate and a 1 — a con- 
fidence interval estimate of yP, the (100 P)th 
percentile of the distribution of y values. This 
relationship does not hold for the means and 
standard deviations of the distributions. If m 
and s are estimates of the mean and standard 
deviation of the distribution of the x values, 
antilog m and antilog s should not be consid- 
ered estimates of the (arithmetic) mean and 
standard deviation of the distributions of y's-t 

Note: In this Chapter, normal means that the 
expected proportion of items responding at a 
stimulus level x is given by 

™-:h /->""•" dx, 

i.e., the probability that an individual item has 
a critical level or threshold value <x. 

* For any random variable X, the "(100 P)th per- 
centile" of its distribution is the value Xp such that the 
probability that X is <xp is equal to P. 

t If x = log y, then 

2 «l^loBto 
I 

- log (Ms... y„)" 

= log (geometric mean of the y's). 
Hence, antilog m will be an estimate of the geometric mean 
of the distribution of the y's. Since the geometric mean 
of a set of different numbers always is less than their 
arithmetic mean, it follows that antilog m will tend to 
underestimate the population mean of the y's. 
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10-2    KARBER METHOD OF ANALYSIS 

This method gives simple nonparametric 
estimates of the mean and standard deviation of 
the distribution of critical levels. There are 
three situations for which this method might be 
chosen: 

(1) the shape or mathematical form of the 
distribution is unknown; 

(2) quick and easy procedures for routine 
laboratory calculations are desired; and, 

(3) good initial estimates or first approxima- 
tions are needed for iterative computational pro- 
cedures; for example, the Exact Probit Solution 
given in Paragraph 10-3.2. 

The Kärber method provides very good esti- 
mates of the mean and standard deviation of the 
distribution of critical levels in most laboratory 
situations. It must be remembered that the 
Kärber method gives an estimate of the mean of 
the distribution; the mean of the distribution is 
not equal to the 50th percentile (that level x0 

such that half the objects have critical levels 
less than x0 and half have critical levels greater 
than Xo) unless it is known that the distribution 
is symmetrical about its mean. 

For further discussion of the Kärber method, 
see Cornfield and Mantel/" 

Selection of Stimulus Levels. Order the stim- 
ulus levels to be used in the test by their magni- 
tude — in other words, let xt < x^ < ... < xk. 
For the Kärber method to be applicable, Xy must 
be sufficiently low that there are no responses 
among the objects tested (r2 = 0), and xk must 
be sufficiently high that all objects tested re- 
spond {rk = nt). In other words, Xi and xt are 
to be chosen so that they are likely to cover the 
entire range of critical levels in the population. 
In addition, it is preferable to have more (and 
consequently, more closely spaced) test levels 
with fewer objects tested at each level than to 
have only a few test levels and a large number 
of objects tested at each level. 

Note: The following segments of Chapter 10 are paged and spaced as necessary to allow a facing- 
page arrangement of Procedures and Examples. Thus, Procedure steps appear on left-hand pages, 
and their associated Example steps appear on facing right-hand pages. The only exception is in 
Paragraph 10-3.3 , where both the Procedure and Example are complete on the same page. 
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10-2.1    GENERAL SOLUTION FOR THE KÄRBER METHOD 

10-2.1.1    Procedure.    Prepare a table with nine columns headed x, n, r, p, (pi+l — pi), a, a2, d, 
andd2.    (See Table 10-1.) 

(1) In column 1, enter the stimulus levels used in the test from lowest to highest — that is, 
enter Xi, x2, ..., Xk where xy < x2 < . . . < xk ■ 

(2) In columns 2 and 3, for each xt, enter the corresponding «, (number of objects tested at 
that level) and r, (number of responses). 

(3) Corresponding to each x, compute p, = — and enter this in column 4. (Remember that 

pi must equal 0 and pk must equal 1 if this solution is to be used.) 

(4) Corresponding to each X\ (except xk), compute p<+\ — Pi and enter in column 5. There 
is no entry in this column corresponding to xk. 

(5) Corresponding to each Xi (except xk), compute a; = ^±iö ', the midpoint of the interval 

from x, to Xi+j.    Tabulate the a, values in column 6.    There is no entry in this column 
corresponding to xk. 

(6) Corresponding to each a;, enter a,* in column 7. 

(7) Corresponding to each Xi (except xk), compute di = xi+1 — x,-, the length of the interval 
from Xi to xi+i. Tabulate the rf, values in column 8. There is no entry in this column 
corresponding to xk. 

(8) Corresponding to each d,-, enter dr in column 9. 

(9)   Compute m = 2(p,+1 - pi)a;, the sum of products of corresponding entries in the 5th and 
6th columns,    m is our estimate of the mean of the distribution of critical levels. 

(10)   Compute: 

Si = 2(p,+i — Pi)a,2, the sum of products of corresponding entries in the 5th and 7th 
columns; 

Si = 2(pi+i — pi)di2, the sum of products of corresponding entries in the 5th and 9th 
columns; 

i er t *^2 s-  = Si - m2 - js. 

s is our estimate of the standard deviation of the distribution of critical levels. 
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10-2.1.2 Exgmple. The observations of Data Sample 10-1 are used to illustrate the Procedure. 
The problem is to estimate the mean and standard deviation of the distribution of critical values 
of peak voltage. In this example, we assume that nothing is known about the distribution of 
critical levels, and the computations are performed in natural units. If the distribution of critical 
levels were known or presumed to be log-normal, and if the Kärber method were being used to 
provide a quick and easy answer, or to provide initial estimates for the exact probit solution 
(Paragraph 10-3.2), then the computations would have been performed on the transformed values 
x = log (peak voltage). 

The entries and calculations of Steps (1) through (8) of the Procedure are shown in columns 1 
through 9 of Table 10-1. The calculations of Steps (9) and (10) are shown at the bottom of 
Table 10-1. 

TABLE 10-1.    KARBER METHOD OF ANALYSIS FOR FUZE PEAK VOLTAGE TEST DATA 
(SEE DATA SAMPLE 10-1) 

Level of Number Number 
Stimulus, of of Objects 

Peak Objects Respond- 
Voltage Tested ing 

X n r r/» = p Pi+l — Pi a a* d d2 

Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) 

10.0 12 0 0 0 12.50 156.25 5.0 25.00 
15.0 12 0 0 .08 16.25 264.06 2.5 6.25 
17.5 12 1 .08 .07 18.75 351.56 2.5 6.25 
20.0 13 2 .15 .15 21.25 451.56 2.5 6.25 
22.5 10 3 .30 .16 23.75 564.06 2.5 6.25 
25.0 13 6 .46 .21 27.50 756.25 5.0 25.00 
30.0 12 8 .67 .02 32.50 1056.25 5.0 25.00 
35.0 13 9 .69 .16 37.50 1406.25 5.0 25.00 
40.0 13 11 .85 .06 45.00 2025.00 10.0 100.00 
50.0 11 10 .91 .09 55.00 3025.00 10.0 100.00 
60.0 11 11 1.00 

Step (9):  m = 2 (pi+i — pt) a< 
= 29.68 
= mean value of critical peak 

voltage. 

Step (10):  S, - 2 (pi+1 - p<) a,2 

- 1002.4051 

S2 = 2 (p<+1 - p>i d? 
= 27.6250 

s* = Si - m2 - (Sj/12) 
= 1002.4051 - 880.9024 - 2.3021 
= 119.2006 

s = 10.92 
= estimated standard deviation of 

critical peak voltage. 
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10-2.2    SIMPLIFIED SOLUTION  (KÄRBER METHOD)  FOR THE  SPECIAL CASE WHEN TEST LEVELS 
ARE EQUALLY SPACED AND EQUAL NUMBERS OF ITEMS ARE TESTED AT EACH LEVEL 

10-2.2.1    Procedure.   Prepare a table with columns headed x, r, p, and cumulative p.    (See 
Table 10-2.) 

(1) In the x column, enter the test levels from lowest to highest, i.e., enter xlt x2, . . ■ , a;*, 
where xs < x2 < . . . < xk. 

(2) Enter r{, the number of objects responding at each xt. 

(3) Corresponding to each xit compute p{ = Ti/n. {n is the number of objects tested at each 
level and is the same for all levels). Remember that pt must equal 0 and pk must equal 1 
for this solution to be used. 

(4) In the last column, enter the cumulative p, i.e., at a\, the sum of all p up to and including p;. 

(5)   Let: x* = highest test level. 
d = interval between successive test levels. 

Si = sum of column p. 
S2 = sum of column cumulative p. 

(6)   Compute m = xt — d(Si — 7). 

(7)   Compute s* = &(2S2 - S1 - S[ - &)■ 
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10-2.2.2 Example. In order to demonstrate the computing procedure, the fuze data (Data 
Sample 10-1) have been changed arbitrarily, to have equal spacing in x and equal numbers of 
objects at each level. Assume that 12 objects were tested at each level, and that the responses 
were as shown in Table 10-2. Steps (1) through (4) of the Procedure consist of preparing and 
filling out the four columns of Table 10-2. Steps (5) through (7) are shown at the bottom of 
Table 10-2. 

TABLE 10-2.    SIMPLIFIED SOLUTION FOR THE KÄRBER METHOD OF ANALYSIS WHEN THE TEST 
LEVELS (x) ARE EQUALLY SPACED AND EQUAL NUMBERS OF OBJECTS (n) 

ARE TESTED AT EACH LEVEL 

Number of Objects Proportion of Objects 
Peak Voltage Responding Responding Cumulative Proportion 

X r p = r/12 

10.0 0 0 0 
15.0 0 0 0 
20.0 2 .17 .17 
25.0 6 .50 .67 
30.0 8 .67 1.34 
35.0 9 .75 2.09 
40.0 10 .83 2.92 
45.0 10 .83 3.75 
50.0 11 .92 4.67 
55.0 12 1.00 

5, = 5.67 

5.67 

S2 = 21.28 

Step (5)    xk = highest test level 
= 55 

d = interval in x 
= 5 

Si = sum of p 
= 5.67 

S2 = sum of cumulative p 
= 21.28 

Step (6)    m = xk - d (& - 5) 
= 55-5 (5.67 - .50) 
= 29.15 
= mean value of critical peak 

voltage. 

Step (7)    s2 = d* (2S2 - Si - S[ - f?) 
= 25 (42.56 - 5.67 - 32.15 - .08) 
= 116.50 

s = 10.79 
= estimated standard deviation of critical peak voltage. 
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10-3    PROBIT METHOD OF ANALYSIS 

When jt is assumed that the distribution of critical levels is of a particular type, methods for 
estimating the properties of the distribution are tailored to it. There are three types of distributions 
for sensitivity data that have been studied extensively in the statistical literature — the normal, 
the logistic, and the angular. Only the normal will be discussed in detail here because it is most 
frequently used in ordnance sensitivity testing. For the logistic, see Berkson(i> and Hodges ,<•> for 
the angular, see Knudsen and Curtis(4) and Fisher and Yates.(w When the stimulus levels used 
in the test are between the levels which cut off the lower and upper 10% of the distribution (most 
testing is performed in this range), any one of these types will fit the data nearly as well (or as 
poorly) as another, no matter what the true distribution of critical levels is. However, estimates 
of the parameters of the logistic or the angular distributions involve simpler computations than are 
given here for the normal; for example, see the technique described in Hodges'" for the logistic 
curve. 

The procedures described here assume that the distribution of critical values is normal — that 
is, for all x the proportion of objects which have critical levels between x and x + dx is equal to the 
area of some normal curve between x and x + dx. In general, the procedures are not very sensitive 
to moderate departures from normality, provided one does not extrapolate beyond the range of 
the data. 

The problem may be summarized as follows: k different levels Xi, x*, ..., xk of a stimulus are 
applied to nlr n,, ..., «* objects, with ra, n, ..., n responses, respectively. Let pt = r,/«*. 
The questions to be answered are: 

(1) At what level m of the stimulus would half of similar objects be expected to respond? Or 
equivalently, under the assumption of normality, what is the mean of the critical levels of all such 
objects? 

(2) Estimate the relation between the level of the stimulus and the proportion of objects 
responding. 

Selection of Stimulus Levels. There are no simple cut-and-dried rules. A general guide can be 
given in terms of the purpose of the experiment: 

(1) If the experimenter is interested in estimating a specific percentage point, the stimulus 
levels to be used in the test should be fairly close to that point, and should bracket the point. It is 
pertinent here to emphasize that extrapolations may lead to serious error, particularly if the 
experimenter attempts to estimate an extreme percentage point (say, the 5% or 99% point) from 
observations at stimulus levels which all lie to one side of that point. 

(2) The test levels should cover a range sufficiently wide so that the proportion responding p< 
varies from near 0 to near 1, if: 

(a)   One is interested in the relation between stimulus level and percentage response over the 
entire range; or, 
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(b) One is interested in estimating the standard deviation of the distribution of critical levels 
(or equivalently, the slope of the regression line in the probit solution); or, 

(c) One is interested in testing the assumption of normality. 

Basis of the Method. If the critical levels are normally distributed (with unknown mean p and 
standard deviation <r), then Y[, which can be determined from tables of the normal integral, is a 
linear function of the corresponding stimulus level a;,. 

Y'i is determined from: 

The "5" in the upper limit of the integral is introduced for computational convenience. 

Least squares procedures are used to estimate the best straight line passing through the k points 
{Y'i, Xi). The formulas take account of the fact that the points do not have equal weights. The 
line will be expressed as 

Yp = 5 + b(x - m) 

where m and b are estimated from the data, z is the stimulus level, and Y, is related to p, the 
probability that an object's critical level is <x, by the formula 

I e-»''2 dy = p. 
V2ir 

m is an estimate of n (the mean and 50th percentile of the underlying normal distribution), and b is 
an estimate of I/o- (the reciprocal of the standard deviation of the critical values). 

Solutions Described. We describe two methods of solution: the graphical probit method in 
Paragraph 10-3.1; and the computational (exact) probit method in Paragraph 10-3.2. The 
graphical method is much simpler, and is sufficiently precise for many purposes. When a more 
accurate solution is desired, the graphical method furnishes a first approximation for the exact probit 
method. 
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ORDP 20-m SENSITIVITY TESTING 

10-3.1    GRAPHICAL PROBIT SOLUTION 

T 0-3.1.1    Procedure.   To facilitate the calculations, prepare a table with nine columns, headed 
respectively, x, n, r, p, Y', Y, W, nW, nWx.    (See Table 10-3.) 

(1) In column x, enter the levels xl,xi, . . . ,%k used in the experiment. 

(2) In columns n and r, record the values of w, and r<, corresponding to xt. 

(3) In column p, compute the respective proportions responding, p, = Ti/rii. 

(4) Use Table A-2 to obtain z„ corresponding to p. In column Y', enter Y' = z„ + 5 corre- 
sponding to each p. 

(5) Plot Y' as ordinate against x as abscissa, on ordinary rectangular coordinate graph paper. 
See Figure 10-1. If probit paper* is available, it can be used, and the column Y' is omitted 
from the table. The percentages responding at each x (% response = 100 pt) are plotted 
on probit paper, using the left vertical scale; the right vertical scale gives the corresponding 
z9, and hence the corresponding Y minus 5. 

(6) Whichever graph paper is used, draw a straight line by eye to fit the A; points. Only 
vertical deviations from the line are to be considered in fitting; and points for which the 
value of V is outside the interval 2.5 to 7.5 may almost be disregarded unless n,- for those 
points is much larger than for points inside the interval. (Points outside this interval are 
beyond the range of the probit paper). 

(7) For each value of x plotted on the graph, read the ordinate Y of the line (on probit scale if 
on probit paper), and record the values in the Y column of the table.t 

• "Probit paper" also is called "normal deviate paper", "normal ruling", etc. 

f Instead of reading the Y values from the graph, we may complete step (8), and use the equation thus obtained 
to compute Y. 
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10-3.1.2 Example. The observations of Data Sample 10-1 were plotted on normal probability 
paper, using both x = peak voltage and x = logw (peak voltage), as abscissa. The data plot 
more nearly as a straight line when transformed using the equation x = log™ (peak voltage); there- 
fore, all of the probit method calculations are done on the transformed variable.    (See Table 10-3.) 

Steps (1) through (4) of the Procedure result in filling in the first 5 columns of Table 10-3 
(through V). 

TABLE 10-3.    GRAPHICAL PROBIT SOLUTION USING DATA SAMPLE 10-1 

Level of Number Number Proportion 
Stimulus of of Objects of Objects 

= logiopeak Objects Respond- Respond- 
Voltage Tested ing ing 

X n r P -r/n r y IV »W nWx 

1.0000 12 0 0 — 2.0 .015 0.180 0.180 
1.1761 12 0 0 — 3.2 .180 2.160 2.540 
1.2430 12 1 .08 3.59 3.7 .336 4.032 5.012 
1.3010 13 2 .15 3.96 4.1 .471 6.123 7.966 
1.3522 10 3 .30 4.48 4.5 .581 5.810 7.856 
1.3979 13 6 .46 4.90 4.8 .627 8.151 11.394 
1.4771 12 8 .67 5.44 5.3 .616 7.392 10.919 
1.5441 13 9 .69 5.50 5.8 .503 6.539 10.097 
1.6021 13 11 .85 6.04 6.2 .370 4.810 7.706 
1.6990 11 10 .91 6.34 6.9 .154 1.694 2.878 
1.7782 11 11 1.00 — 7.4 .062 0.682 1.213 

XnW = 47.573 
2 nWx = 67.761 

Steps (5) through (7) — Plot Y' against x on ordinary graph paper, as shown in Figure 10-1. 
A straight line is fitted to the plotted points by eye. The ordinate Y of the line is read off at each 
observed x, and is entered in the Y column of Table 10-3. * 

* Or, complete step (8), and use the equation Y = 5 + b{x - m) to obtain the Y values. 
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10-3.1.1    Procedure (Con») 

Note: Before proceeding further, it is often desirable to determine whether the line is an adequate 
representation of the data.    The procedure given in Paragraph 10-3.3 may be used for this purpose. 

(8) Calculate b, the slope of the fitted line, as the increase in Y for a unit increase in x. Mark 
two convenient points, c and d, on the line. Read of! the corresponding values for both x 
and Y. 

x.= Yc = 
Xt = Yd = 

Y  — Y Then b = ■  d _—-.   Read off m, the value of x corresponding to Y = 5.    (Probit = 5, 

on probit paper).   We may then write the equation of the line as Y = 5 + b(x — m). 

(9) The relation between a given level of stimulus x' and the proportion of individuals respond- 
ing p' is estimated by the relationship zv< = b(x' — m) where the p corresponding to z,- is 
given in Table A-l. (Or, this relationship can be read directly from the straight line drawn 
on probit paper.) 
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10-3.1.2   Example (Cent) 

so 

4.0 

3* 1.2 I.« 1.8 

X= log1Q    PEAK VOLTAGE 

Figure 10-1. Probit regression line (fitted by eye). 

Step (8) — The slope b of the line is calculated as follows: 

xt = 1.3 Yc = 4.0 
Xi =* 1.6 

Xi — xc 

6.0 - 4.0 

Yd = 6.0 

0.3 
= 7 

Equation of the line: 
m (the value of x at Y = 5) = 1.43. 

7 = 5 + b(x - m) 
= 5 + 7x - 10.01 
= -5.01 + lx. 

Step (9) — If we wish to estimate the proportion of individuals responding at a peak voltage =■= 18, 
for example, then: 

x' = logu 18 
= 1.255 

z9> = b{x' — m) 
- 7(1.255 - 1.43) 
= 8.785 - 10.01 
= -1.22 

p' = .11, the proportion which may be expected to respond at PV — 18. 
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10-3.1.1    Procedure (Cont) 

m is our estimate of n, the stimulus level at which we would expect half of similar indi- 
viduals to respond.  A (1 — a) confidence interval estimate of ^ may be computed as follows: 

(10)   Look up Zi-a/2 in Table A-2. 

(11)   In the column W, corresponding to each value of Y, enter the value of W obtained from 
Table A-18. 

(12)   Corresponding to each value of x, compute riW and riWx, and enter them in the last columns 
of the table. 

(13)   Compute 2w,W< and XtiiW&i, the totals for the last two columns. 

(14)   Compute s^ = r-2 \^~~yjr) > the estimate of the variance of m.   This estimate is slightly too 

small on the average, but the bias is negligible provided that x = ZnWx/2nW is approxi- 
mately equal to m.    If the two differ considerably, then the quantity 

Sm = JtoiWa? - (2nWz)*/2nW 

should be computed, and our estimate of the variance of m becomes 

Sn ~ 6« \2riW) +      Sm     " 

(15)   A (1 — a) confidence interval estimate of ft is the interval from m — Zj_a/2 sm to m 4- 2i_«/j sm 
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10-3.1.2   Example (Cont) 

Steps (10) through (15) — A 95% confidence interval estimate of ß (the level at which we would 
expect half of the individuals to respond) is obtained as follows: 

Columns W, nW, and nWx, are computed and entered in Table 10-3. 

Compute: 
XnW = 47.573 

SnWx = 67.761 
_ XnWx 

X ~  ZnW 
_ 67.761 

47.573 
= 1.424 

1    1 
WZriW 

= 49 V47T573/ 
1 

2331.077 
= .000429 

sm = .0207 

(Since 2 = 1.424, approximately equal to m (= 1.43), we do not bother to use the more 
complicated formula for sj,.) 

Let:      a = .05 
Zi-,ix = 1-96 

A 95% confidence interval estimate of p is the interval m ± 1.96 sm = 1.43 db .04, the interval 
from 1.39 to 1.47. 
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10-3.2    EXACT PROBIT SOLUTION 

The graphical solution very often is adequate, but complications in the data may make this 
solution less satisfactory in some cases and an arithmetic technique may be necessary. For 
example, the points may be too irregular for us to place any confidence in a line drawn by eye; or, 
the weights (nW), that should be attached to each point, may be so different as to make it difficult 
to adjust for them visually. 

10-3.2.1 Procedure. The probit solution given here involves a series of successive approxima- 
tions, the first of which is given by the graphical probit solution or by the Kärber method described 
in Paragraph 10-2. For the exact solution, we need a table with ten columns headed, respectively, 
x, n, r, p, Y, W, nW, nWx, y, nWy.    (See Table 10-4). 

(1) In column x, enter the levels Zj, xs, . . . , x* used in the experiment. 
(2) In columns n and r, record the values of n, and rit corresponding to a;,. 
(3) In column p, compute the respective proportions responding pt = r,/w,. 
(4) Obtain values for column Y by either method (a) or (b): 

(a) Follow instructions (1) through (7) of the graphical probit solution in Paragraph 10-3.1 
to obtain the y-values.    These then are tabulated in the table for the exact solution. 

(b) Follow instructions (1) through (10) of the Kärber method described in Paragraph 10-2 

to compute m and s.   For initial estimates, take mo = m, 5« = -; and corresponding 
s 

to each xit use the equation Yt — 5 + &o(£; — mo) to compute the values for the 
Y column of the table for the exact solution.   Unless n is very large, 1 decimal in 
Y is sufficient. If 2 decimals in Y should be required, Tables A-18 and A-19 in ORDP 
20-114 of this Handbook are not convenient; consult Finney(8) for more extensive 
tables. 

(5) In column W, corresponding to each value of Y, enter the value of W obtained from 
Table A-18. 

(6) Corresponding to each value of x, compute n,W> and tttW&i, and enter them in the nW 
and nWx columns, respectively, of the table. 

(7) Corresponding to each "expected probit" Y in the Y column, use Table A-19 to compute 
the "working probit" y, as follows: 

For Y <5.0,y = y0 + p(|); 

For Y > 5.0, v = j/100 - (1 - p) (|) ; 

where, for each Y, p is the corresponding entry in the p column of the Table, and Table A-19 

gives the values for y„ (or ym) and -y.   Tabulate the values in column y. 

(8) For each value of y, calculate the value niWtyit and enter it in column nWy. 
(9) Compute: 

2 riiWi, the sum of column nW 
2 iiiWiXi, the sum of column nWx 
2 niW,y4, the sum of column nWy 

Si >■ 2 riiWiX*, the sum of the products of elements in columns x and nWx. 
Si = 2 n(W<X4fi, the sum of products of corresponding elements in columns nWx and y. 
St = 2 nWy2 

S„ -Si-{2 nWz)*/2 nW 
Sxv = S2 - (2 nWx) (2 nWy)/2 nW 
S„„ = S, - (2 nWy)*/2 nW 
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10-3.2.2   Example.   The observations of Data Sample 10-1 are used for illustration, and the 

line fitted graphically in Paragraph 10-8.1 is used as the first approximation. 
Steps (1) through (3) consist of filling in the first four columns of Table 10-4. 

Step (4) — The Y values entered are copied from the Y column of the graphical probit solution 
(Table 10-3).   These are the ordinates of the line at each observed x. 

Step (5) through (8) — fill in the remaining columns of Table 10-4. 

TABLE 10-4.    EXACT PROBIT SOLUTION 

loguPV 

X 

No. of 
Object» 
Tested 

n 

No. of 
Obiects 

Respond- 
ing 

r 

Proportion 
of Ob|ects 
Respond- 

ing 
p = r/n 

Expected 
Probit 

Y W nW nWx 

Work- 
ing 

Probit 

Y nWy 

1.0000 12 0 0 2.0 .015 0.180 0.180 1.695 0.305 
1.1761 12 0 0 3.2 .180 2.160 2.540 2.745 5.929 
1.2430 12 1 .08 3.7 .336 4.032 5.012 3.602 14.523 
1.3010 13 2 .15 4.1 .471 6.123 7.966 3.972 24.321 
1.3522 10 3 .30 4.5 .581 5.810 7.856 4.476 26.006 
1.3979 13 6 .46 4.8 .627 8.151 11.394 4.900 39.940 
1.4771 12 8 .67 5.3 .616 7.392 10.919 5.436 40.183 
1.5441 13 9 .69 5.8 .503 6.539 10.097 5.461 35.709 
1.6021 13 11 .85 6.2 .370 4.810 7.706 6.020 28.956 
1.6990 11 10 .91 6.9 .154 1.694 2.878 5.966 10.106 
1.7782 11 11 1.00 7.4 .062 0.682 1.213 7.766 5.296 

Step (9)  —  2 nW - 47.573 
2 nWx = 67.761 
2 nWy = 231.274 

S, = 2 nWx* 
= 97.4232 

S» = 2 nWxy 
= 335.4415 

S„ = Si - (2 iiWxy/Z nW 
m 0.9073 

S„ = St- (2 nWx) (2 nWy)/Z nW 
- 6.0244 
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10-3.2.1    Procedure (Cont) 

(10)   Compute: 

b = Szv/Sxz 
x = 2 nWx/2 nW 
g = 2 nWy/Z nW 

The equation of the probit regression line is 

Y = g + b(x - £). 

The procedure for obtaining the best line is an iterative one, and in theory we should repeat the 
above procedure until the same equation is obtained for two successive iterations. Practically, 
we often may be able to see that an additional iteration will not change the equation materially. 

Next Iteration: 

The procedure for obtaining an additional iteration is as follows: Make a table with nine columns 
headed x, n, p, Y, W, nW, nWx, y, nWy.    (See Table 10-5.) 

(11) Copy the three columns, x, n, p from Table 10-4. 

(12) For each value of x, compute the corresponding value of Y, using the equation 

Y = y + b(x - X) 

calculated in the previous iteration. 

(13) Follow instructions of steps (5) through (10). 

To test whether the line is a good fit to the data, use the test procedure outlined in Paragraph 
10.3.3, using the g, X, and b obtained from the last iteration performed, to compute a new 

Y = g + b{x - *) 

for each value of x used in the test. 
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10-3.2.2    Example (Cont) 

Step (10) — X = 2 nWx/2 nW - 1.4244 
5 = 2 nWyfL nW = 4.8615 
6 = 8*,/S„ = 6.640 

The equation of the probit regression line is 

Y m g + ft(* - x) m -4.5965 + 6.640 x. 

Next Iteration. An additional iteration is shown in Table 10-5. The first three columns (x, n, p) 
of Table 10-5 are copied from Table 10-4. The Y column is calculated by substituting observed 
values of x in the equation shown in Step (10) above. The remaining columns of Table 10-5 are 
filled in as described in Steps (5) through (8) of the Procedure. 

TABLE  10-5.    EXACT PROBIT SOLUTION (SECOND ITERATION) 

logioPV 

X 

No. of 
Objects 
Tested 

II 

Proportion 
of Objects 
Respond- 

ing 
P = *•/» Y W nW nWx y nWy 

1.0000 12 0 2.0 .015 0.180 0.180 1.695 0.305 
1.1761 12 0 3.2 .180 2.160 2.540 2.745 5.929 
1.2430 12 .08 3.7 .336 4.032 5.012 3.602 14.523 
1.3010 13 .15 4.0 .439 5.707 7.425 3.964 22.623 
1.3522 10 .30 4.4 .558 5.580 7.545 4.477 24.982 
1.3979 13 .46 4.7 .616 8.008 11.194 4.904 39.271 
1.4771 12 .67 5.2 .627 7.524 11.114 5.432 40.870 
1.5441 13 .69 5.7 .532 6.916 10.679 5.482 37.914 
1.6021 13 .85 6.0 .439 5.707 9.143 6.036 34.447 
1.6990 11 .91 6.7 .208 2.288 3.887 6.217 14.224 
1.7782 11 1.00 7.2 .092 1.012 1.800 7.592 7.683 

Step (10) — 2-2 nWx/2 nW 
= 1.4358 

5 = 2 nWy/X nW 
= 4.943 

t> = Sxv/Szx 

= 6.703 

Step (9) — 2 nW - 49.114 
2 nWx - 70.519 
2 nWy - 242.771 

S, - 2 »ffx1 = 102.2663 
S2 = 2 nWxy = 355.3694 
St = 2 nWy* = 1247.7433 

Sxx = 1.0135 
SX1/ = 6.7933 
S„ - 47.7238 

The equation of the probit regression line is: 

Y = $ + b(x - x) = -4.6812 + 6.703 z. 

Using this equation to calculate values of Y, the Y values obtained differ very little from those 
obtained on the first iteration, and no further iterations are considered necessary, 
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10-3.3   TESTING WHETHER THE LINE IS AN ADEQUATE REPRESENTATION OF THE DATA 

10-3.3.1    Procedure. 

r, Y, P, nP, 1 - P, nPO      P), r 

(1) 

nP, and See Table 10-6. 

(2) 

(3) 

(4) 

To facilitate the calculations, we require a table with ten columns: x, n, 
(r - nP)1 

nP(l - P)' 
Choose a, the level of significance of the test. In columns x, n, r, copy the values from the 
probit solution table. If the graphical probit solution was used, copy the Y column of that 
table as the Y column here. If the exact probit solution was used, use the p, 2, and b 
obtained from the last iteration performed to compute, corresponding to each x, 

Y = g + b(p - *) 

and tabulate these values in the Y column here. 

Look up Xi_ for k — 2 degrees of freedom in Table A-3. k = number of rows in the table 
(see Table 10-6). 

Put ZP = Y — 5, and for each Y, using Table A-l, obtain the value of P corresponding to zp. 

Compute the required quantities in the last columns of the table. 

(5)  Obtain x* = TJ (r,- - n<P<y 
inJPJX -Pi) 

, the sum of the values in the last column. 

(6) If x2 < x?_, decide that there is no reason to believe that the line does not adequately 
represent the data. If xJ > xf_«, decide that the straight line does not adequately describe 
the relation between stimulus and response. If a significant value of xz is obtained, check 
to see whether an unusually large contribution to x2 comes from one class or from a few 
classes with very small expected values, i.e., small nP or n(l — P). If this is the case, 
several such classes may be combined (for details, see Finney'6'). 

10-3.3.2 Example. The test of the final probit equation is shown in Table 10-6. If a = .05, 
we find in Step (2) that x8», for 9 d.f. = 16.92. In Step (5), the calculated x2 = 2.37. Since this 
is not larger than x%6, we accept the fitted line. 

TABU 10-6.    TEST OF LINEARITY —FINAL PROBIT EQUATION 

log.oPV n T y P tiP 1 -P irf»{l - P) r-nP 
(r - nP)* 

X «P{1 - P) 

1.0000 12 0 2.02 .0014 0.02 .9986 0.02 -.02 .02 
1.1761 12 0 3.20 .04 0.48 .96 0.46 -.48 .50 
1.2430 12 1 3.65 .09 1.08 .91 0.98 -.08 .01 
1.3010 13 2 4.04 .17 2.21 .83 1.83 -.21 .02 
1.3522 10 3 4.38 .27 2.70 .73 1.97 .30 .05 
1.3979 13 6 4.69 .38 4.94 .62 3.06 1.06 .37 
1.4771 12 8 5.22 .59 7.08 .41 2.90 .92 .29 
1.5441 13 9 5.67 .75 9.75 .25 2.44 -.75 .23 
1.6021 13 11 6.06 .86 11.18 .14 1.57 -.18 .02 
1.6990 11 10 6.71 .96 10.56 .04 0.42 -.56 .75 
1.7782 11 11 7.24 .99 10.89 .01 0.11 + .11 .11 

2.37 
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10-3.4    USING THE PROBIT REGRESSION LINE FOR PREDICTION 

The procedures which follow describe how to use the probit regression line for estimation, in- 
cluding confidence interval estimates. If a nonsignificant value of x2 was obtained in the test of 
linearity, Paragraph 10-3.3, the formulas given here are directly applicable. If a significant value 
of x2 was obtained, these formulas do not apply without adjustment.    For details, see Finney.C6) 

10-3.4.1 Level of Stimulus x' At Which a Specified Proportion P' of the Individual» Would Be 
Expected To Respond. 

Single Estimate 
(1) Choose P' 
(2) Use Table A-2 to find zp- corresponding to P' 
(3) Let Y' = 5 + zP. 
(4) Compute x' = £ + (Y' - g)/b. 

This x' is the value at which we would expect a proportion P' of the individuals to respond. 

Confidence Interval Estimate 
For a confidence interval estimate, see Finney.(9) 

10-3.4.2    Level of Stimulus x' At Which 50% of the Individuals Would Be Expected To Respond. 

The estimate of n, the mean and the 50th percentile of the distribution of critical levels, is 

m = x + T (5 - 5). 

A (1 — a) confidence interval estimate of n is computed as follows:* 

(1) Look up 2i_«/2 in Table A-2. 
(2) Compute 

s2  = 
&2 ll,nW "*"     5«    J 

(3)   A  (1 — a)  confidence interval  estimate of n is the interval from m — Zi_„/2 sm to 
m  -\- Zl-a/2 Sm • 

10-3.4.3 Proportion of Individuals Which Would Be Expected To Respond At a Specified Level of 
Stimulus. The probit regression equation Y = § + b(x — x) gives the expected value of Y(Y') at 
a specified value of x{x'). 

The variance of Y, s2
r, is given by the formula 

^ _ _L_ J_ (»' - «3? 
Sr     2nW +     S„     * 

A (1 — a) confidence interval estimate for Y at a single specified value of x is given by the 
formula 

Y' ±*i_fl8r. 

If we want to make confidence interval statements for several values of x using the same fitted line, 
however, we must use the wider interval given by 

Y' ± V2FSy, 

as discussed in Chapter 5 (see Paragraph 5-4.1.2), ORDP 20-110. 

• This method is sufficiently good for most purposes.    For an exact method, see Finney.<« 

10-21 

Downloaded from http://www.everyspec.com



ORDP 20-1 n SENSITIVITY TESTING 

10-4    THE UP-AND-DOWN DESIGN 

The up-and-down design, sometimes called the "Bruceton" method, is one of a class of designs 
that are called staircase methods because the test level for the next trial or group of trials depends 
on the results of the preceding trial or group of trials. In the up-and-down design, only one object 
is tested at a time. Starting at a level where about 50% responses are expected, the test level is 
moved up one level after each non-response, and down one level after each response. The experi- 
ment is concluded after a specified number of trials. 

The use of the up-and-down design, of course, presumes that it is convenient to test one object 
at a time and all staircase methods presume that the results of test can be known immediately, 
and that the test level can be adjusted quickly and easily. 

If x's represent responses, and o's represent non-responses, then the pattern of the experiment 
looks like this: 

Y2 

Y1 

Y, 

Y.t 

x 

O X X 

a o 

The up-and-doivn design and its analysis are described in detail here. The Procedure assumes 
normal distribution of the critical levels and, in such a case, gives a more accurate estimate of the 
mean (which also is the 50th percentile) than any other method described in this Chapter. For 
further discussion of the up-and-down method, see Brownlee, Hodges, and Rosenblatt/" Dixon 
and Massey/8' Dixon and Mood.(9) For a completely worked-out example of an ordnance applica- 
tion, see Culling.(10)   Other staircase methods are described in Anderson, McCarthy, and Tukey.ai) 

The up-and-down design requires initial guesses of the mean and standard deviation of the 
distribution of critical levels (x0 = guess for mean, d = guess for standard deviation). The method 
of estimation makes some allowance for a poor initial guess of the mean x0, and, in fact, is a par- 
ticularly useful way of estimating the mean when the experimenter has little idea what the true 
mean is. So long as the initial guess for the standard deviation is between half and twice the true 
standard deviation of the distribution, the method of estimation described is appropriate. 

Determine equally-spaced test levels, ,,., «_,, «_*, aj_j, x0, Xi, Xt, %»,..., so that the distance 
between two successive levels is d. (d = Xi — x0 = x0 — x_lr etc.). The first object is tested at 
level x0; if it "responds," the second object is tested at level £_,; if it "does not respond," the 
second object is tested at level Xi. Similarly, each succeeding object is tested at the level one step 
below the level used in the preceding test if it resulted in a "response," or, at the level one step above 
the level used in the preceding test if it resulted in "no response." 
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Procedure. Count the total number if = Sr< of responses, and let N = £n.j be the total number 

of objects tested. If R < 5-, perform steps (1) through (6); if R > ;r-, perform steps (1') 

through (6'). 

When R < - : 

(1) Prepare a four-column table with columns headed y, r, j, j2, 
(2) Let:y0 = the lowest level at which a "response" occurred 

2/1 = the level one step above y0 

y2 = the level two steps above yQ 

yk = the highest level at which a "response" occurred. 
Enter y0, yt, .... yk in column y. 

(3) In column r, corresponding to each y,, enter r, = the number of "responses" at level yj. 
(4) Enter the numbers 0, 1, . .. , k, in column ;'. 
(5) Corresponding to each entry in column j, enter its square in column p. 
(6) Compute: 

A = 2 j r,, the sum of products of corresponding entries in columns r and ;, 
B = S p tj, the sum of products of corresponding entries in columns r and j2. 

s = 1.62M (^^r^2 + -029) ■ 

When R > ~ : 

(1')    Prepare a four-column table with columns headed y, n — r, j, j1. 
(2')    Let: y0 = the lowest level at which "no response" occurred 

yx = the level one step above y„ 
y2 = the level two steps above y0 

yi = the highest level at which "no response" occurred. 
Enter y0, j/i, . . ., yk, in column y. 

(3')    In column n — r, corresponding to each ylt enter n, — r;, the number of "no response" 
at level y^. 

(4')    Enter the numbers 0, 1, . . ., k, in column j. 
(5')    Corresponding to each entry in column /, enter its square in column j2. 
(6')    Compute: 

A = Sj (n,- — Tj), the sum of products of corresponding entries in columns n — r and j 
B — ^j2 {tij — Tj), the sum of products of corresponding entries in columns n — r and/2. 

m 

s = 1.62c? 

m is our estimate of the mean (and the 50th percentile) of the distribution of critical 
levels, 

s is our estimate of the standard deviation of the distribution of critical levels. 
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10-5    SENSITIVITY TESTS WHEN THE STIMULUS LEVELS 
CANNOT BE CONTROLLED 

The methods discussed in Paragraphs 10-2 
through 10-4 assumed that the stimulus levels 
can be preassigned and accurately controlled. 
Although this is the usual case in experimental 
work, there are times when conditions cannot be 
sufficiently well controlled to insure that the 
level used is exactly the one that the experi- 
menter intended to use. For example: he may 
intend to fire a group of 10 projectiles, each at a 
velocity of 2000 f/s; but, because of random 
variation in velocities for a fixed charge, the 
actual observed velocities range from 1975 to 
2020 f/s. 

In such a case, when the level used in the test 
can be measured directly, the experimenter has 
two choices for analyzing the data. If the 
actual levels used cluster so closely about the 
intended levels that: 

(1) there is no overlapping between two of 
these clusters; 

and, 

(2) the range of any cluster is so small that 
the probability of "response" at any of 
the actual levels differs little from the 
probability of response at the intended 
level; 

then the experimenter may simply assume that 
each test was conducted at the intended level, 
and use the methods already presented in 
Paragraphs 10-2 through 10-4. However, if 
one or both of these conditions are not met, 
none of the methods described in this Chapter 
are valid. Techniques for handling such data 
when the underlying distribution is normal are 
described in Golub and Grubbs.(U1 
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