ondP 20-111

ORDNANE

 E CORPS PAMPHLET ORDNINEE UNGINEERING DESIGN HANDBOOK ELP PMENTAL STATISTICS SECTION 2analusis of enumerative and SSIFICATORY DATA

ORDHANCE EMGINEERING DESIGN HANDBOOK SERIES

The Ordnance Engineering Denign Handbook Series, when completed, in intended to provide a compilation of principlen and fundamental data to mpplement experience ln assiating enginecra in the evolution of new denigns which will meet tactical and technical needs while al so embodying atinfactory producibility and maintainability,

As of the date of thi 5 publication, the handbooke listed below have been published or publication is pending, Copiea of these handbooke, and information on later publicatione which may be available, should be requeated from the Ordnance Engineering Handbook Office, Ordnance Liainon Group, Durham, Box CM, Duke Station, Durham, N. C.

OFFICE OF THE CHIEF OF ORDNANCE
 Washington 25, D. C., 29 June 1962

ORDP 20-111, Experimental Statistics, Section 2, Analysis of Enumerative and Classificatory Data, forming part of the Ordnance Engineering Design Handbook Series, is published for the information and guidance of all concerned.

OFFICIAL:
ALFRED A. ROBINSON
Colonel, Ord Corps
Executive Officer
H. F. BIGELOW

Major General
Chief of Ordnance

DISTRIBUTION: Special

ORDNANCE ENGINEERING DESIGN HANDBOOK EXPERIMENTAL STATISTICS

MARY G. NATRELLA

Statistical Engineering Laboratory
National Bureau of Standards

SECTION 2, STANDARD TECHNIQUES FOR ANALYSIS
 AND INTERPRETATION OF ENUMERATIVE AND CLASSIFICATORY DATA

CONSISTING OF

CHAPTERS 7 THROUGH 10

FOREWORD

INTRODUCTION

This is one of a group of handbooks covering the engineering information and quantitative data needed in the design, development, construction, and test of ordnance equipment which (as a group) constitute the Ordnance Engineering Design Handbook.

PURPOSE OF HANDBOOK

The Handbook on Experimental Statistics has been prepared as an aid to scientists and engineers engaged in Army Ordnance research and development programs, and especially as a guide and ready reference for military and civilian personnel who have responsibility for the planning and interpretation of experiments and tests relating to the performance of Army Ordnance equipment in the design and developmental stages of production.

SCOPE AND USE OF HANDBOOK

This Handbook is a collection of statistical procedures useful in ordnance applications. It is presented in five sections, viz:

ORDP 20-110, Section 1, Basic Concepts and Analysis of Measurement Data (Chapters 1-6)

ORDP 20-111, Section 2, Analysis of Enumerative and Classificatory Data (Chapters 7-10)

ORDP 20-112, Section 3, Planning and Analysis of Comparative Experiments (Chapters 11-14)

ORDP 20-113, Section 4, Special Topics (Chapters 15-23)

ORDP 20-114, Section 5, Tables
Section 1 provides an elementary introduction to basic statistical concepts and furnishes full details on standard statistical techniques for the analysis and interpreta-
tion of measurement data. Section 2 provides detailed procedures for the analysis and interpretation of enumerative and classificatory data. Section 3 has to do with the planning and analysis of comparative experiments. Section 4 is devoted to consideration and exemplification of a number of important but as yet non-standard statistical techniques, and to discussion of various other special topics. An index for the material in all four sections is placed at the end of Section 4. Section 5 contains all the mathematical tables needed for application of the procedures given in Sections 1 through 4.

An understanding of a few basic statistical concepts, as given in Chapter 1, is necessary; otherwise each of the first four sections is largely independent of the others. Each procedure, test, and technique described is illustrated by means of a worked example. A list of authoritative references is included, where appropriate, at the end of each chapter. Step-by-step instructions are given for attaining a stated goal, and the conditions under which a particular procedure is strictly valid are stated explicitly. An attempt is made to indicate the extent to which results obtained by a given procedure are valid to a good approximation when these conditions are not fully met. Alternative procedures are given for handling cases where the more standard procedures cannot be trusted to yield reliable results.

The Handbook is intended for the user with an engineering background who, although he has an occasional need for statistical techniques, does not have the time or inclination to become an expert on statistical theory and methodology.

The Handbook has been written with three types of users in mind. The first is the person who has had a course or two in statistics, and who may even have had some practical experience in applying statistical methods in the past, but who does not have statistical
ideas and techniques at his fingertips. For him, the Handbook will provide a ready reference source of once familiar ideas and techniques. The second is the person who feels, or has been advised, that some particular problem can be solved by means of fairly simple statistical techniques, and is in need of a book that will enable him to obtain the solution to his problem with a minimum of outside assistance. The Handbook should enable such a person to become familiar with the statistical ideas, and reasonably adept at the techniques, that are most fruitful in his particular line of research and development work. Finally, there is the individual who, as the head of, or as a member of a service group, has responsibility for analyzing and interpreting experimental and test data brought in by scientists and engineers engaged in ordnance research and development work. This individual needs a ready source of model work sheets and worked examples corresponding to the more common applications of statistics, to free him from the need of translating textbook discussions into step-by-step procedures that can be followed by individuals having little or no previous experience with statistical methods.

It is with this last need in mind that some of the procedures included in the Handbook have been explained and illustrated in detail twice: once for the case where the important question is whether the performance of a new material, product, or process exceeds an established standard; and again for the case where the important question is whether its performance is not up to the specified standards. Small but serious errors are often made in changing "greater than" procedures into "less than" procedures.

AUTHORSHIP AND ACKNOWLEDGMENTS

The Handbook on Experimental Statistics was prepared in the Statistical Engineering Laboratory, National Bureau of Standards, under a contract with the Office of Ordnance Research. The project was under the general guidance of Churchill Eisenhart, Chief, Statistical Engineering Laboratory.
Most of the present text is by Mary G. Natrella, who had overall responsibility for the completion of the final version of the Handbook. The original plans for coverage, a first draft of the text, and some original tables were prepared by Paul N. Somerville. Chapter 6 is by Joseph M. Cameron; most of Chapter 1 and all of Chapters 20 and 23 are by Churchill Eisenhart; and Chapter 10 is based on a nearly-final draft by Mary L. Epling.

Other members of the staff of the Statistical Engineering Laboratory have aided in various ways through the years, and the assistance of all who helped is gratefully acknowledged. Particular mention should be made of Norman C. Severo, for assistance with Section 2, and of Shirley Young Lehman for help in the collection and computation of examples.

Editorial assistance and art preparation was provided by John I. Thompson \& Company, Washington, D. C.

Appreciation is expressed for the generous cooperation of publishers and authors in granting permission for the use of their source material. References for tables and other material, taken wholly or in part, from published works, are given on the respective first pages.

June 15, 1962

Comments on and requests for copies of this Handbook should be addressed to Ordnance Engineering Handbook Office, Ordnance Liaison Group, Durham, Box CM, Duke Station, Durham, N. C.

PREFACE

This listing is a guide to the Section and Chapter subject coverage in all Sections of the Handbook on Experimental Statistics.

Chapter

No. Title

ORDP 20-110 (SECTION 1)- BASIC STATISTICAL CONCEPTS AND STANDARD TECHNIQUES FOR ANALYSIS AND INTERPRETATION OF MEASUREMENT DATA

1 - Some Basic Statistical Concepts and Preliminary Considerations
2 - Characterizing the Measured Performance of a Material, Product, or Process
3 - Comparing Materials or Products with Respect to Average Performance
4 - Comparing Materials or Products with Respect to Variability of Performance
5 - Characterizing Linear Relationships Between Two Variables
6 - Polynomial and Multivariable Relationships, Analysis by the Method of Least Squares
ORDP 20-111 (SECTION 2) - ANALYSIS OF ENUMERATIVE AND CLASSIFICATORY DATA

7 - Characterizing the Qualitative Performance of a Material, Product, or Process
8 - Comparing Materials or Products with Respect to a Two-Fold Classification of Performance (Comparing Two Percentages)
9 - Comparing Materials or Products with Respect to Several Categories of Performance (Chi-Square Tests)
10 - Sensitivity Testing
ORDP 20-112 (SECTION 3) - THE PLANNING AND ANALYSIS OF COMPARATIVE EXPERIMENTS
11 - General Considerations in Planning Experiments
12 - Factorial Experiments
13 - Randomized Blocks, Latin Squares, and Other Special-Purpose Designs
14 - Experiments to Determine Optimum Conditions or Levels

ORDP 20-113 (SECTION 4) - SPECIAL TOPICS

15 - Some "Short-Cut" Tests for Small Samples from Normal Populations
16 - Some Tests Which are Independent of the Form of the Distribution
17 - The Treatment of Outliers
18 - The Place of Control Charts in Experimental Work
19 - Statistical Techniques for Analyzing Extreme-Value Data
20 - The Use of Transformations
21 - The Relation Between Confidence Intervals and Tests of Significance
22 - Notes on Statistical Computations
23 - Expression of the Uncertainties of Final Results
Index
ORDP 20-114 (SECTION 5) - TABLES
Tables A-1 through A-37

TABLE OF CONTENTS

Paragraph Page
DISCUSSION OF TECHNIQUES IN CHAPTERS 7 THROUGH 10 x
CHAPTER 7
CHARACTERIZING THE QUALITATIVE PERFORMANCE OF A MATERIAL, PRODUCT, OR PROCESS
7-1 GENERAL 7-1
7-2 BEST SINGLE ESTIMATE OF THE TRUE PROPORTION P 7-1
7-3 CONFIDENCE INTERVAL ESTIMATES OF THE TRUE PROPORTION P 7-2
7-3.1 Two-Sided Confidence Intervals 7-2
7-3.1.1 Exact Limits for $n \leq 30$. 7-2
7-3.1.2 Exact Limits for $n>30$. 7-2
7-3.1.3 Approximate Limits for $n>30$ 7-2
7-3.2 One-Sided Confidence Intervals 7-3
7-3.2.1 Exact Limits for $n \leq 30$. 7-3
7-3.2.2 Exact Limits for $n>30$ 7-3
7-3.2.3 Approximate Limits for $n>30$ 7-3
7-4 SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION 7-4
7-4.1 Determining the Sample Size Required to Estimate the True Proportion With a Specified Limit Of Error In Both Directions (i.e., When It Is Required To Estimate P Within $\pm \delta$) 7-4
7-4.1.1 Graphical Method. 7-4
7-4.1.2 Numerical Method 7-5
7-4.2 Determining the Sample Size Required To Estimate the True Proportion With a Specified Limit Of Error In Only One Di- rection (i.e., When It Is Required To Estimate P Within $+\delta$; or, To Estimate P Within $-\delta$) 7-5

CHAPTER 8

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO A TWO-FOLD CLASSIFICATION OF PERFORMANCE (COMPARING TWO PERCENTAGES)
8-1 COMPARING AN OBSERVED PROPORTION WITH A STANDARD PROPORTION 8-1
8-1.1 Does the New Product Differ From the Standard With Regard To the Proportion of Items Which Show the Characteristic of Interest? (Does P Differ From P_{8} ?) 8-1
8-1.1.1 Procedure for $n \leq 30$ 8-1
8-1.1.2 \quad Procedure for $n>30$ 8-2
8-1.2 Does the Characteristic Proportion for the New Product Exceed That For the Standard? (Is $P>P_{0}$?) 8-3
8-1.2.1 Procedure for $n \leq 30$ 8-3
8-1.2.2 \quad Procedure for $n>30$ 8-4
8-1.3 Is the Characteristic Proportion for the New Product Less Than That for the Standard? (Is $P<P_{0}$?) 8-5
8-1.3.1 Procedure for $n \leq 30$ 8-5
8-1.3.2 Procedure for $n>30$ $8-5$
8-1.4 Sample Size Required To Detect a Difference Of Prescribed Magnitude From a Standard Proportion When the Sign of the Difference IS NOT Important 8-6
8-1.5 Sample Size Required To Detect a Difference Of Prescribed Magnitude From a Standard Proportion When the Sign of the Difference IS Important 8.7
8-2 COMPARING TWO OBSERVED PROPORTIONS 8-9
8-2.1 Comparing Two Proportions When the Sample Sizes Are Equal $8-9$
8-2.1.1 Does the Characteristic Proportion for Product A Differ From That for Product B? (Does P_{A} Differ From P_{B} ?) 8-10
8-2.1.2 Does the Characteristic Proportion for Product A Exceed That for Product B? (Is P_{A} Larger Than P_{B} ?) 8-11
8-2.2 Comparing Two Proportions When the Sample Sizes Are Un- equal and Small ($n_{A} \neq n_{B}$; Both No Greater Than 20) 8-12
8-2.2.1 Does the Characteristic Proportion for Product A Differ From That for Product B? 8-12
8-2.2.2 Does the Characteristic Proportion for Product A Exceed That for Product B? (Is P_{A} Larger than P_{B} ?) 8-14
8-2.3 Comparing Two Proportions When the Sample Sizes Are Large $8-16$
8-2.3.1 Does the Characteristic Proportion for Product A Differ From That for Product B? (Does P_{A} Differ From P_{B} ?). 8-16
Paragraph Page
CHAPTER 8 (Cont)
8-2.3.2 Is the Characteristic Proportion for Product A Larger Than That for Product B? (Is P_{A} Larger Than P_{B} ?) 8-18
8-2.4 Sample Size Required to Detect a Difference Between Two Proportions 8-18
8-2.4.1 Sample Size Required to Detect a Difference of Prescribed Magnitude Between Two Proportions When the Sign of the Difference IS NOT Important $8-18$
8-2.4.2 Sample Size Required to Detect a Difference of Prescribed Magmitude Between Two Proportions When the Sign of the Difference IS Important 8-20
CHAPTER 9
COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO SEVERAL CATEGORIES OF PERFORMANCE (CHI-SQUARE TESTS)
9-1 COMPARING A MATERIAL OR PRODUCT WITH A STANDARD 9-2
9-1.1 When the Comparison Is With a Standard Material or Product 9-2
9-1.2 When the Comparison Is With a Theoretical "Standard" 9-4
9-2 COMPARING TWO OR MORE MATERIALS OR PRODUCTS 9-6
9-3 A TEST OF ASSOCIATION BETWEEN TWO METHODS OF CLASSIFICATION 9-8
CHAPTER 10
SENSITIVITY TESTING
10-1 EXPERIMENTAL SITUATION 10-1
10-2 KÄRBER METHOD OF ANALYSIS 10-3
10-2.1 General Solution For the Kärber Method. 10-4
10-2.1.1 Procedure 10-4
10-2.1.2 Example. 10-5
Paragraph Page
CHAPTER 10 (Cont)
10-2.2 Simplified Solution (Kärber Method) For the Special Case When Test Levels Are Equally Spaced and Equal Numbers of Items Are Tested at Each Level 10-6
10-2.2.1 Procedure 10-6
10-2.2.2 Example 10-7
10-3 PROBIT METHOD OF ANALYSIS 10-8
10-3.1 Graphical Probit Solution 10-10
10-3.1.1 Procedure 10-10
10-3.1.2 Example 10-11
10-3.2 Exact Probit Solution 10-16
10-3.2.1 Procedure 10-16
10-3.2.2 Example 10-17
10-3.3 Testing Whether the Line Is An Adequate Representation of the Data 10-20
10-3.3.1 Procedure 10-20
10-3.3.2 Example 10-20
10-3.4 Using the Probit Regression Line For Prediction 20-21
10-3.4.1 Level of Stimulus x^{\prime} At Which a Specified Proportion P^{\prime} of the Individuals Would Be Expected To Respond $10-21$
10-3.4.2 Level of Stimulus x^{\prime} At Which 50% of the Individuals Would Be Expected To Respond 10-21
10-3.4.3 Proportion of Individuals Which Would Be Expected To Respond At a Specified Level of Stimulus 10-21
10-4 THE UP-AND-DOWN DESIGN 10-22
10-5 SENSITIVITY TESTS WHEN THE STIMULUS LEVELS CANNOT BE CONTROLLED 10-24

LIST OF ILLUSTRATIONS

Fig. No. Title Page
10-1. Probit regression line (fitted by eye) 10-13

LIST OF TABLES

Table No. Title Page
8-1. Observed frequencies from two samples in two mutually exclusive categories (a 2×2 table) 8-9
8-2. Rearrangement of Table $8-1$ for convenient use in testing significance with Table A-29. 8-12
9-1. Computational arrangement for Data Sample 9-1.1 9-3
9-2. Computational arrangement for Data Sample 9-1.2 9-5
9-3. Table of $\frac{f_{i j}^{2}}{n_{i} C_{j}}$ - computational arrangement for Data Sample 9-2. 9-7
9-4. Table of $\frac{f_{i j}^{2}}{R_{i} C_{j}}$ - computational arrangement for Data
Sample 9-3 9-10
10-1. Kärber method of analysis for fuze peak voltage test data 10-5
10-2. Simplified solution for the Kärber method of analysis when the test levels (x) are equally spaced and equal numbers of objects (n) are tested at each level 10-7
10-3. Graphical probit solution using Data Sample 10-1 10-11
10-4. Exact probit solution 10-17
10-5. Exact probit solution (second iteration) 10-19
10-6. Test of linearity - final probit equation 10-20

DISCUSSION OF TECHNIQUES IN CHAPTERS 7 THROUGH 10

For some kinds of tests, it may be impossible to obtain actual measurements. An item may be subjected to a test and the result of that particular test can be expressed only in terms of a pre-established classification of possible results. The simplest kind of classification, and the one most widely used in practice, consists of just two mutually exclusive categories. For example, the results of the test on each item may be recorded as pass or fail, hit or miss, fires or does not fire, larger than specification limit or less than specification limit, etc. Some other problems call for classification into more than two categories. In classifying types of metal fractures, we might establish such classes as smooth, rough, jagged, and splintery. Glass or plastic material after exposure to radiation might be classified as transparent, translucent, or opaque. In screening inspection, for example, we may have three established categories - accept, reject, or rework.

Once these qualitative observations have been recorded in the established categories of the classification scheme, we may count the number in any category, or we may compute the proportion of the total which falls in any category. In most of the analytical procedures given in these Chapters, we work with proportions, not with percentages, even though final presentation of results may be made in percentages.

The methods given in these Chapters also may be used for tests where exact measurements could have been obtained, but actually were not obtained because of the expense or inconvenience involved. For example, one always
can measure a dimension; but, in large-scale production, go-no-go gauges may be used for routine checks. Whenever it is possible to obtain actual measurements, analysis of the measurements does provide more information than does analysis of counts. In planning experimental programs, various factors may contribute to the decision of whether to measure or to gauge - e.g., the availability of time, funds, and experienced personnel. When measurements are analyzed, the methods of these Chapters do not apply; the appropriate methods are given in ORDP 20-110, Chapters 2 through 6.

The problems considered in these Chapters parallel those of Chapters 2 through 6, as much as possible. Chapter 7 gives methods for making single estimates and interval estimates of a proportion. Instead of estimating the true average of a lot with respect to some property, we estimate the true proportion of items in the lot which have a particular property. Comparisons may be made between a new product and a standard product, or between any two products, with regard to the proportion of items which exhibit the characteristic in question. Chapter 8 gives methods for making such comparisons when the classification scheme consists of two categories. Chapter 9 gives methods for making such comparisons when the classification scheme consists of three or more categories. Chapter 10 gives methods of analysis for a particular experimental situation which has generally been called "sensitivity testing."

All A-Tables referenced in these Chapters are contained in ORDP 20-114, Section 5.

CHAPTER 7

CHARACTERIZING THE QUALITATIVE PERFORMANCE OF A MATERIAL, PRODUCT, OR PROCESS

7-1 GENERAL

The problem is that of estimating the true proportion (or percentage) of items that have a given quality characteristic. The tested items have been classified into two previously established categories of classification. Methods are given for obtaining:
(a) the best single estimate ; and,
(b) confidence interval estimates* of the proportion which is of interest.
The following data will serve to illustrate the application of the procedures.

Dafa Sample 7-1 — Proportion of Defective Fuzes

Form: A sample of n items is selected at random from a much larger group. Upon examination or test, r of the n items show the characteristic of interest.

Example: Ten fuzes are taken at random from a production line, and are tested under a specified set of conditions. Four of the ten fail to function.

In general, what can we say on the basis of our sample about the larger group with regard to the proportion of defective items contained therein? We show how to answer two questions:
(a) What is the true proportion P of the fuzes produced that would be expected to fail under the specified conditions?
(b) What is an interval which we can expect, with prescribed confidence, to bracket the true proportion of defective fuzes?

7-2 BEST SINGLE ESTIMATE OF THE TRUE PROPORTION P

The best single estimate of the true proportion of items having a given characteristic in some well defined population is the observed proportion of items having this characteristic in a random sample from the population, i.e., the number of sample items which have the characteristic divided by the total number of items in the sample.

The best estimate from Data Sample 7-1 of the true proportion of fuzes that will fail is

[^0]equal to the number of defective fuzes in the sample, divided by the total number of fuzes in the sample.

Procedure

(1) Compute the estimated proportion p, as follows:

$$
p=\frac{r}{n}
$$

Example

(1) From Data Sample 7-1,

$$
p=4 / 10
$$

$$
=.4
$$

7-3 CONFIDENCE INTERVAL ESTIMATES OF THE TRUE PROPORTION P

7-3.1 TWO-SIDED CONFIDENCE INTERVALS

Although the best single estimate of the true proportion of items having a given characteristic is the proportion of such items in a random sample, an interval estimate may be preferred. A two-sided confidence interval is an interval expected to give upper and lower limits for the true proportion with prescribed confidence.

7-3.1.1 Exact Limits for $n \leq 30$. For $n \leq 30$, two-sided confidence limits are given in Table A-22. For example, using Data Sample 7-1, where $n=10$ and $r=4$, a two-sided 95% confidence interval for the true proportion is the interval from . 150 to . 733 .

7-3.1.2 Exact limits for $n>30$. For $n>30$, use the charts of Table A- 24 for $90 \%, 95 \%$, and 99% confidence intervals, as desired. On the charts, there are two curves for each of a number
of values of n. The upper and lower curve for a particular n constitute a confidence belt for the true proportion P. First, locate the observed proportion $p=r / n$, on the horizontal scale. From this point, travel up to the curves for the sample size n, and read off the upper and lower limits for the population proportion P. For example, in a sample of $n=100$, where the observed proportion is .4 , the interval from .31 to .51 gives 95% confidence limits for the true proportion P.

The three charts in Table A-24 give ($1-\alpha$) confidence interval estimates for $\alpha=.10$, $\alpha=.05$, and $\alpha=.01$. If we use these charts a large number of times to make interval estimates of the true proportion P, we can expect $100(1-\alpha) \%$ of these intervals to contain P. If the appropriate sample size requires interpolation on the charts, the procedure of Paragraph 7-3.1.3 should be used instead of the charts of Table A-24.

7-3.1.3 Approximate Limits for $n>30$. This method should be used in lieu of interpolation on the charts (Table A-24).

Procedure

(1) Choose the desired confidence level, $1-\alpha$.
(2) Look up $z_{1-\alpha / 2}$ in Table A-2.
(3) Compute:

$$
\begin{aligned}
& p_{1}=p-z_{1-\alpha / 2} \sqrt{\frac{p(1-p)}{n}} \\
& p_{2}=p+z_{1-\alpha / 2} \sqrt{\frac{p(1-p)}{n}}
\end{aligned}
$$

(4) The interval from p_{1} to p_{2} is a two-sided $100(1-\alpha) \%$ confidence interval estimate of the true proportion P.

Example

(1) Let $1-\alpha=.90$
$\alpha=.10$
(2) $\quad z_{.95}=1.645$
(3) Using $n=150$,

$$
p=.40
$$

for example,

$$
\begin{aligned}
p_{1} & =.40-1.645 \sqrt{.001 \overline{6}} \\
& =.40-1.645(.04) \\
& =.40-.07 \\
& =.33 \\
p_{2} & =.40+.07 \\
& =.47
\end{aligned}
$$

(4) The interval from .33 to .47 is a 90% twosided confidence interval estimate of P.

7-3.2 ONE-SIDED CONFIDENCE INTERVALS

A one-sided confidence interval estimate states that the true proportion P is less than a calculated proportion p_{2}^{\prime} (or alternatively, that P is larger than p_{1}^{\prime}) and the statement is made at a prescribed confidence level.

7-3.2.1 Exact Limits for $n \leq 30$. For $n \leq 30$, one-sided confidence limits are given in Table A-23. For example, using Data Sample 7-1, where $n=10$ and $r=4$, the upper 90% one-sided confidence limit is 646 . (The lower 90% one-sided confidence limit would be .188 in this case.)

7-3.2.2 Exact Limits for $n>30$. Use the charts of Table A-24 to obtain $.95, .975$, or .995 onesided confidence intervals, by using only the upper curve, or only the lower curve, of the belt for a given sample size. When used in this way, the chart labelled "Confidence Coefficient 90 " yields one-sided 95% confidence intervals, the chart labelled "confidence coefficient .95 " yields one-sided 97.5% confidence intervals, and the chart labelled "confidence coefficient .99 " yields one-sided 99.5% confidence intervals.

If the appropriate sample size requires interpolation on the charts, the procedure of Paragraph 7-3.2.3 should be used instead of the charts of Table A-24.

7-3.2.3 Approximote Limits for $n>30$. This method shouid be used in lieu of interpolation on the charts (Table A-24).

Procedure

(1) Choose the desired confidence level, $1-\alpha$.
(2) Look up z_{1-a} in Table A-2.
(3) If a lower one-sided confidence limit is desired, compute

$$
p_{1}^{\prime}=p-z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}
$$

(4) Alternatively, if an upper one-sided confidence limit is desired, compute

$$
p_{2}^{\prime}=p+z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}
$$

Example

(1) Let $1-\alpha=.90$

$$
\alpha=.10
$$

(2) $\quad z_{.90}=1.282$
(3) Using $n=150$, $p=.40$, for example,

$$
p_{1}^{\prime}=.40-1.282 \sqrt{.0016}
$$

$$
=.40-1.282(.04)
$$

$$
=.40-.05
$$

$$
=.35 ;
$$

this is the lower 90% confidence limit for P, the true proportion defective.
(4) Using $n=150$,
$p=.40$,
for example,

$$
\begin{aligned}
p_{2}^{\prime} & =.40+1.282(.04) \\
& =.40+.05 \\
& =.45 ;
\end{aligned}
$$

this is the upper 90% confidence limit for P, the true proportion defective.

7-4 SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION

We shall discuss two problems:
(a) Determining the sample size required to estimate the true proportion with a specified limit of error in both directions; i.e., when it is required to estimate P within $\pm \delta$. (See Paragraph 7-4.1.)
(b) Determining the sample size required to estimate the true proportion with a specified limit of error in only one direction; i.e., when it is required to estimate P within $+\delta$ (or to estimate P within - §). (See Paragraph 7-4.2.)

In (a), we are indifferent as to whether our estimate is too high or too low. In (b), we wish to protect ourselves against an overestimate, but do not worry about an underestimate (or vice versa).

7-4.1 DETERMINING THE SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION WITH A SPECIFIED LIMIT OF ERROR IN BOTH DIRECTIONS, i.e., WHEN IT IS REQUIRED TO ESTIMATE P WITHIN $\pm \delta$

7-4.1.1 Graphical Method. For the graphical method, the problem may be restated as follows: we wish to make a two-sided confidence interval estimate of P and the width of the interval should be not greater than 2δ. It, therefore, is possible to use the charts of Table A-24 in reverse; that is, to find the sample size belt whose maximum width (vertical distance on the charts) is equal to 2δ. The maximum width of confidence interval for a particular n will occur when the observed proportion is equal to 0.5 . (If past records on the particular process indicate an upper or lower limit for the observed proportion, e.g., "the observed proportion always has been less than 0.1 ", one may use the widths of the intervals for this value of p rather than the maximum widths.)

Procedure

Problem: What is the sample size n required to estimate the true proportion P within $\pm \delta$?
(1) Choose $1-\alpha$, the confidence coefficient to be associated with the resulting estimate. (The charts of Table A-24 can be used for confidence coefficients $.90, .95$, and .99).
(2) Specify δ, the error permitted in the estimate.
(3) Lacking knowledge of a safe upper or lower bound for P, look at the vertical line for $p=.50$. (If a safe upper or lower bound can be assumed, use this value of p.)
(4) Find the pair of n curves whose separation on this vertical line is not more than 2δ.
(5) n is the required sample size.

Example

Problem: What is the sample size n required to estimate the true proportion P within $\pm .10$?
(1) Let $I-\alpha=.90$

Use Table A-24,
confidence coefficient $=.90$.
(2) Let $\delta=.10$
(3) Locate, on Table A-24, the vertical line for $p=.50$.
(4) At $p=.50, \mathrm{n}=100$ is the smallest n for which the interval is less than 20 .
(5) $n=100$ is the required sample size.

Note: $n=50$ gives an interval approximately equal to .25 , and $n=100$ gives an interval approximately equal to .16 , so that a sample somewhat less than 100 would be sufficient. The exact n, however, cannot be determined from the charts of Table A-24.

7-4.1.2 Numerical Method. The formula for sample size is

$$
n=\frac{z_{1-\alpha / 2}^{2} P(1-P)}{\delta^{2}}
$$

A sample of size n guarantees a probability not greater than α that our estimate of P is in error by more than δ.

Since the true proportion P is unknown, we must substitute for it a value P^{\prime} which is obtained as follows:
(a) If no prior information about P is available, or if P is believed to be in the neighborhood of 0.5 , use $P^{\prime}=0.5$. The formula then simplifies to

$$
n=\frac{z_{1-\alpha / 2}^{2}}{4 \delta^{2}} .
$$

(b) If the true proportion P can safely be assumed to be less than 0.5 , let P^{\prime} be the largest reasonable guess for P.
(c) If the true proportion P can safely be assumed to be greater than 0.5 , let P^{\prime} be the smallest reasonable guess for P.
It is obvious that the largest sample size will be required when the true P is 0.5 , and the purpose of these three rules is to be as conservative as possible.

Procedure

Problem: What is the sample size n required to estimate the true proportion P within $\pm \delta$?
(1) Choose $1-\alpha$, the confidence coefficient to be associated with the resulting estimate.
(2) Specify δ, the error permitted in the estimate.
(3) Look up $z_{1-\alpha / 2}$ in Table A-2.
(4a) If there is no prior information about the true proportion P, compute

$$
n=\frac{z_{1-a / 2}^{2}}{4 \delta^{2}}
$$

(4b) If it is safe to assume that the true proportion P is less than some value P^{\prime}, compute

$$
n=\frac{z_{1-\alpha / 2}^{2} P^{\prime}\left(1-P^{\prime}\right)}{\delta^{2}}
$$

Example

Problem: What is the sample size n required to estimate the true proportion P within $\pm .10$?
(1) Let $1-\alpha=.90$
$\alpha=.10$
(2) Let $\delta=.10$
(3) $\quad z_{.05}=1.645$
(4a)

$$
\begin{aligned}
n & =\frac{(1.645)^{2}}{.04} \\
& =\frac{2.706}{.04} \\
& =68
\end{aligned}
$$

which is the required sample size.
(4b) If it is safe to assume that the true proportion P is less than . 40 , for example,

$$
\begin{aligned}
n & =\frac{(1.645)^{2}(0.4)(0.6)}{.01} \\
& =65,
\end{aligned}
$$

which is the required sample size.

7-4.2 DETERMINING THE SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION WITH A SPECIFIED LIMIT OF ERROR IN ONLY ONE DIRECTION, i.e., WHEN IT IS REQUIRED TO ESTIMATE P WITHIN $+\delta$ IOR TO ESTIMATE P WITHIN - $\delta 1$

In some problems, we would be unconcerned if our estimate of P was too large, but would wish to be protected against an underestimate. Alternatively, in other problems, an underestimate is
tolerable, but not an overestimate. The error in the estimate is to be only in the direction that we choose.
The formula for sample size is

$$
n=\frac{z_{i-\alpha}^{2} P(1-P)}{\delta^{2}}
$$

A sample of size n guarantees a probability not greater than α that our estimate of P is in error by more than $+\delta$ (or more than $-\delta$, as we choose).

Since the true proportion P is unknown, we must substitute for it a value P^{\prime} which is obtained as follows:
(a) If no prior information about P is available, or if P is believed to be in the neighborhood of 0.5 , use $P^{\prime}=0.5$. The formula then simplifies to

$$
n=\frac{z_{1-\alpha}^{2}}{4 \delta^{2}}
$$

(b) If the true proportion P can safely be assumed to be less than 0.5 , let $P^{\prime \prime}$ be the largest reasonable guess for P.
(c) If the true proportion P can safely be assumed to be greater than 0.5 , let P^{\prime} be the smallest reasonable guess for P.
The largest sample size will be required when $P=0.5$, and the purpose of the rules is to be as conservative as possible.

Procedure

Problem: What is the sample size n required to estimate the true proportion P within $+\delta$ (or, within $-\delta$)?
(1) Choose $1-\alpha$, the confidence coefficient to be associated with the resulting estimate.
(2) Specify $+\delta$ (or $-\delta$) the error permitted in the estimate.
(3) Look up $z_{1-\alpha}$ in Table A-2.
(4a) If there is no prior information about P, compute

$$
n=\frac{z_{1-\alpha}^{2}}{4 \delta^{2}}
$$

(4b) If it is safe to assume that the true proportion P is less than some value P^{\prime}, compute

$$
n=\frac{z_{1-\alpha}^{2} P^{\prime}\left(1-P^{\prime}\right)}{\delta^{2}}
$$

Example

Problem: What is the required sample size? In estimating P, we wish to be protected against making an estimate that is too small by more than 0.05 .
(1) Let $1-\alpha=.90$

$$
\alpha=.10
$$

(2) Let $\delta=-.05$

$$
\begin{equation*}
z_{.90}=1.282 \tag{3}
\end{equation*}
$$

(4a)

$$
\begin{aligned}
& n=\frac{(1.282)^{2}}{.01} \\
& =164 \text {, } \\
& \text { which is the required sample size. }
\end{aligned}
$$

(4b) If it is safe to assume that the true proportion P is less than 40 , for example,

$$
\begin{aligned}
& n=\frac{(1.282)^{2}(.4)(.6)}{.0025} \\
& =158 \text {, } \\
& \text { which is the required sample size. }
\end{aligned}
$$

CHAPTER 8

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO A TWO-FOLD CLASSIFICATION OF PERFORMANCE (COMPARING TWO PERCENTAGES)

In some situations, we are faced with the problem of comparing proportions or percentages. For example, the specification for a given kind of ammunition may prescribe the maximum allowable percentage of duds. Production lots of this ammunition will not be acceptable if they exceed this specified percent defective. The percentage of duds in a sample will provide an estimate of the percentage of duds in the lot, which then may be compared with the specified tolerance. When comparing an observed proportion with a specification or standard value, the procedures of Paragraph $8-1$ are appropriate. The reader will note that the comparison is made by computing a confidence interval for the observed proportion and then looking to see whether the standard value is contained within this interval. This is a slightly different approach to answering the posed questions than was used in ORDP 20-110, Chapter 3, for example. Amplification of the relationship between confidence intervals and tests of significance of differences is given in ORDP 20-113, Chapter 21.

A different kind of comparison is involved when we compare two percentages with each other, without regard to any standard value - for example, in comparing two production processes with regard to the percentages of defective items produced. When two percentages are compared with each other, the methods of Paragraph 8-2 are appropriate.

8-1 COMPARING AN OBSERVED PROPORTION WITH A STANDARD PROPORTION

8-1.1 DOES THE NEW PRODUCT DIFFER FROM THE STANDARD WITH REGARO TO THE PROPORTION OF ITEMS WHICH SHOW THE CHARACTERISTIC OF INTERESTP (DOES P DIFFER FROM Po ${ }_{0}$?)

8-1.1.1 Procedure for $n \leq \mathbf{3 0}$.

Data Sample 8-1.1.1 - Defectives in Sample of New Product

Form: A sample of n items is selected at random from a much larger group. On examination, r of the n items show the presence of the pertinent characteristic. $\quad p=r / n$ is the observed proportion, and is an estimate of P, the true proportion for the new product. P_{0} is the known proportion of individual items in the standard product that show the pertinent characteristic.

Example: A sample of 20 components is taken from a production lot after a slight change in the process has been made. Three of the 20 items are classified as defectives. The observed
proportion, therefore, is $p=3 / 20=0.15$. The proportion defective for this item with the standard process is known to be $P_{0}=0.10$.

The question to be answered is: Does the proportion defective in this lot, P, differ from the standard proportion defective (either an increase or a decrease being of interest)?

Procedure

(1) Choose α, the significance level of the test.

Table A-22 gives 90%, 95%, and 99% twosided confidence limits, appropriate to $\alpha=.10, \alpha=.05$, and $\alpha=.01$, respectively.
(2) Enter Table A-22 with observed n and r. Select appropriate column and read the limits.
(3) If the tabled limits do not include P_{0}, conclude that P differs from P_{0}.
If the tabled limits do include P_{0}, there is no reason to believe that P differs from P_{0}.

Example

(1) Let $\alpha=.10$ $1-\alpha=.90$
Use the 90% confidence limits in Table A-22.
(2) From Data Sample 8-1.1.1,

$$
\begin{aligned}
n & =20 \\
r & =3
\end{aligned}
$$

From Table A-22, the 90% two-sided confidence limits for P are 0.056 to 0.328 .
(3) Since the tabled limits do include $P_{0}=$ 0.10 , there is no reason to believe that the proportion defective in the lot differs from the standard.

8-1.1.2 Procedure for $n>30$.

Data Sample 8-1.1.2 - Performance of a New Type of Mine Fuze

Form: A sample of n items is selected at random from a much larger group. On examination, r of the n items show the presence of the pertinent characteristic. $\quad p=r / n$ is the observed proportion, and is an estimate of P, the true proportion for the new product. P_{0} is the known proportion of individual items in the standard product that show the pertinent characteristic.

Example: In a program of testing mine fuzes, 216 fuzes of a new type are buried, simulated "tanks" are run over them, and 160 "proper hits" are recorded. The observed proportion, p, of proper hits is $160 / 216=0.74$. The specified value for proportion of proper hits is $P_{0}=0.85$.

The question to be answered is: Does the proportion of proper hits for this fuze differ from the standard proportion (either an increase or a decrease being of interest)?

Procadure

(1) Choose α, the significance level of the test.

Table A-24 gives two-sided $90 \%, 95 \%$, and 99% confidence limits appropriate to $\alpha=.10, \alpha=.05$, and $\alpha=.01$, respectively.
(2) Compute $p=r / n$ and locate p on the horizontal scale. Locate curves for appropriate n.
(3) Read off upper and lower limits for P. If these limits do not include P_{0}, conclude that P differs from P_{0}. If the limits do include P_{0}, there is no reason to believe that P differs from P_{0}.

Example

(1) Let $\quad \alpha=.10$ $1-\alpha=.90$
Use the Chart for confidence coefficient .90 in Table A-24.
(2) From Data Sample 8-1.1.2,

$$
\begin{aligned}
n & =216 \\
r & =160 \\
p & =160 / 216 \\
& =0.74
\end{aligned}
$$

(3) The chart does not show $n=216$. Look at the belt for the next lower n, in this case $n=100$. The belt for $n=100$ will be wider than the belt for $n=216$. Since the belt for $n=100$ does not include $P_{0}=0.85$, the belt for $n=216$ would not include P_{0}, and we conclude that the proportion of hits for this fuze does differ from the standard $P_{0}=0.85$.

8-1.2 DOES THE CHARACTERISTIC PROPORTION FOR THE NEW PRODUCT EXCEED THAT FOR THE STANDARD? (IS $P>P_{0}$?)

8-1.2.1 Procedure for $n \leq 30$. In terms of Data Sample 8-1.1.1, let us suppose that - in advance of looking at the data - the important question is: Does the characteristic proportion of defectives in this lot exceed that for the standard?

Procedure

(1) Choose α, the significance level of the test.

Table A- 23 gives $90 \%, 95 \%$, and 99% onesided confidence limits appropriate to $\alpha=.10, \alpha=.05$, and $\alpha=.01$, respectively.
(2) In Table A-23, follow directions at the beginning of the table to obtain p_{1}^{\prime}, a lower one-sided confidence limit for P.

Example

(1) Let $\begin{aligned} \alpha & =.05 \\ 1-\alpha & =.95\end{aligned}$

Use the 95% confidence limits in Table A-23.
(2) From Data Sample 8-1.1.1,

$$
\begin{aligned}
n & =20 \\
r & =3 \\
P_{0} & =0.10 \text { is specified. }
\end{aligned}
$$

The value in Table A-23, for $n=20$, $n-r=17$, is 0.958 . The lower 95% limit for P is equal to $I-0.958=0.042$.

Procedure

(3) If the lower limit p_{1}^{\prime} obtained in Step (2) exceeds P_{0}, so that P_{0} lies outside the confidence interval $p_{1}^{\prime} \leq P \leq 1$, conclude that the characteristic proportion for the new product P exceeds that for the standard P_{0}.
If the lower limit obtained in Step (2) is not larger than P_{0}, so that P_{0} lies within the confidence interval $p_{1}^{\prime} \leq P \leq 1$, there is no reason to believe that the proportion for the new product P exceeds that for the standard P_{0}.

Example

(3)

Since 0.042 is less than $P_{0}=0.10$, there is no reason to believe that the proportion of defectives in the lot exceeds the standard proportion.

8-1.2.2 Procedure for $n>30$. In terms of Data Sample 8-1.1.2, let us suppose that - in advance of looking at the data - the important question is: Does the characteristic proportion of proper hits for this fuze exceed that for the standard?

Procedure

Example

(1) Choose α, the significance level of the test.

By using only the lower curve of the confidence belt, Table A-24 gives $95 \%, 97.5 \%$, and 99.5% one-sided confidence limits appropriate to $\alpha=.05, \alpha=.025$, and $\alpha=.005$, respectively.
(2) Compute $p=r / n$, and locate p on the horizontal scale. Locate lower curve for appropriate n.
(3) Read off the lower confidence limit for P. If P_{0} is less than this limit, p_{1}^{\prime}, so that P_{0} lies outside the confidence interval $p_{1}^{\prime} \leq P \leq 1$, conclude that the proportion for the new product exceeds that for the standard product.
If P_{0} is larger than p_{1}^{\prime}, and therefore is included in the confidence interval $p_{1}^{\prime} \leq P \leq 1$, there is no reason to believe that P is larger than P_{0}.
(1) Let $\quad \alpha=.05$ $1-\alpha=.95$
Use lower curves of the Chart labeled "confidence coefficient . $90^{\prime \prime}$, in Table A-24.
(2) From Data Sample 8-1.1.2,

$$
\begin{aligned}
n & =216 \\
r & =160 \\
p & =160 / 216 \\
& =0.74 \\
P_{0} & =0.85 \text { is specified. }
\end{aligned}
$$

(3) From Table A-24, confidence coefficient .90 , for $p=0.74$ and $n=216$, the lower 95% confidence limit for P is seen to be approximately 0.68 .

Since $P_{0}=0.85$ is larger than 0.68 , there is no reason to believe that P is larger than P_{0}.

8-1.3 IS THE CHARACTERISTIC PROPORTION FOR THE NEW PRODUCT LESS THAN THAT FOR THE STANDARD? (IS $P<P_{0}$?)

8-1.3.1 Procedure for $n \leq$ 30. In terms of Data Sample 8-1.1.1, let us suppose that —in advance of looking at the data - the important question is: Is the characteristic proportion of defectives in this lot less than that for the standard?

Procedure

(1) Choose α, the significance level of the test.

Table A- 23 gives $90 \%, 95 \%$, and 99% onesided confidence limits appropriate to $\alpha=.10, \alpha=.05$, and $\alpha=.01$, respectively.
(2) Enter Table A-23 with n and r and chosen confidence. Read the upper one-sided limit p_{2}^{\prime} for P.
(3) If the tabled upper limit p_{2}^{\prime} is less than P_{0}, so that P_{0} lies outside the confidence interval $0 \leq P \leq p_{2}^{\prime}$, conclude that the characteristic proportion for the new product is less than that for the standard.
If the tabled limit is larger than P_{0}, so that P_{0} lies inside the confidence interval $0 \leq P \leq p_{2}^{\prime}$, there is no reason to believe that the proportion for the new product is less than the standard.

Example

(1) Let $\alpha=.10$ $1-\alpha=.90$
Use the 90% confidence limits in Table A-23.
(2) From Data Sample 8-1.1.1,

$$
\begin{aligned}
n & =20 \\
r & =3 \\
P_{0} & =0.10 \text { is specified. }
\end{aligned}
$$

The upper 90% limit for P is 0.304 .
(3)

Since the tabled limit (0.304) is larger than $P_{0}=0.10$, there is no reason to believe that the proportion of defectives in the lot is less than the standard.

8-1.3.2 Procedure for $n>$ 30. In terms of Data Sample 8-1.1.2, let us suppose that - in advance of looking at the data - the important question is: Is the proportion of proper hits for this fuze less than that for the standard?

Procedure

(1) Choose α, the significance level of the test.

By using only the upper curve of the confidence belt, Table A-24 gives $95 \%, 97.5 \%$, and 99.5% one-sided confidence limits appropriate to $\alpha=.05, \alpha=.025$, and $\alpha=.005$, respectively.
(2) Compute $p=r / n$, and locate p on the horizontal scale. Locate upper curve for appropriate n.

Example

(1) Let $\alpha=.025$

$$
1-\alpha=.975
$$

Use the upper curve of the Chart labeled "confidence coefficient .95 ", in Table A-24.
(2) From Data Sample 8-1.1.2,

$$
\begin{aligned}
n & =216 \\
r & =160 \\
p & =160 / 216 \\
& =0.74 \\
P_{0} & =0.85 \text { is specified. }
\end{aligned}
$$

Procedure

(3) Read off upper confidence limit p_{2}^{\prime} for P.

If P_{0} is larger than this limit, so that P_{0} lies outside the confidence interval $0 \leq P \leq p_{2}^{\prime}$, conclude that the proportion for the new product is less than that for the standard product.
If P_{0} is less than this limit, and therefore is included in the one-sided confidence limit $0 \leq P \leq p_{2}^{\prime}$, there is no reason to believe that P is less than P_{0}.

Example

(3) From Table A-24, confidence coefficient .95 , for $p=0.74$ and $n=216$, the upper 97.5% confidence limit for P is seen to be approximately 0.81 .
Since $P_{0}=0.85$ is larger than this limit, we conclude that the proportion of proper hits for this fuze is less than for the standard.

8-1.4 SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE OF PRESCRIBED MAGNITUDE FROM A STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT

Given:

$P_{0}=$ the known proportion of the population of standard items which exhibit the pertinent characteristic. P_{0} may be known from the process history, or may be given by the requirements of a specification or a standard.

To be Specified for This Problem:
$\delta=$ the absolute magnitude of the difference which is considered important to detect.
$\alpha=$ the significance level, or the risk of announcing a difference when in fact there is none.
$\beta=$ the risk of failing to detect a difference when in fact P, the true proportion for the new product, differs from the standard by an amount δ (i.e., $\delta=\left|P-P_{0}\right|$).

Tables to be Used:

Table A-25 gives the required sample size for a number of values of P_{0} and P for $\alpha=.05$ and $1-\beta=.50, .80, .90, .95$, and .99 . This table is given largely for illustration, to demonstrate how the required sample size is affected by the magnitude of the P_{0} and δ involved, and also by different choices of β. For desired values of α and β which are not included in Table A-25, use Table A-27, a table to convert the difference between the proportions into the form necessary for use with Table A-8.

Procedure

(1) Specify δ, the absolute magnitude of the difference considered important to detect.
(2) Choose α and β.
(3) For $\alpha=.05$, and $1-\beta=.50, .80, .90$, .95 , and .99 , go to Table A-25.
(4) Let $P=P_{0}+\delta$, or $P=P_{0}-\delta$, whichever makes P closer to 0.5 .

Example

(1) Assume $P_{0}=.30$

Specify $\delta=.10$
(2) Let $\alpha=.05$
$\beta=.20$
(3) Use Table A-25 with $1-\beta=.80$

$$
\begin{align*}
P & =.30+.10 \tag{4}\\
& =.40
\end{align*}
$$

Procedure

(5) If either P or P_{0} is less than 0.5 , enter Table A-25 with P and P_{0}.
If neither P nor P_{0} is less than 0.5 , enter Table A-25 with $1-P$ and $1-P_{0}$.
In either case, the smaller of the two proportions determines the column and the larger determines the row in Table A-25.
Read off n directly. n is the required sample size for the new product.
(6) For values of α, β, and P which are not included in Table A-25, go to Table A-27. Look up:

$$
\begin{aligned}
\theta_{0} & =\theta \text { corresponding to } P_{0} \\
\theta & =\theta \text { corresponding to } P
\end{aligned}
$$

(7) Compute $d=\left|\theta-\theta_{0}\right|$
(8) Enter Table A-8 with chosen $\alpha, 1-\beta$, and d (from Step (7)).
The tabled n is the required sample size for the new product. (The footnote to Table A-8 should be ignored.)
For values of d not given in Table A-8, the sample size may be computed using the formula

$$
n=\frac{\left(z_{1-a / 2}+z_{1-\beta}\right)^{2}}{d^{2}}
$$

Example

(5) Enter Table A-25 in column .30 and row 40 .

The required sample size is $n=178$.
(6) Assume that we had wished to specify $\alpha=.01, \beta=.20, P_{0}=.30$, and $P=.40$. From Table A-27,

$$
\begin{aligned}
\theta_{0} & =1.16 \\
\theta & =1.37 \\
d & =0.21
\end{aligned}
$$

(8) From Table A-8, the sample size for $d=0.2$ is $n=292$.
In this area of the table, interpolation is not recommended.

To obtain the sample size for $d=0.21$, compute

$$
\begin{aligned}
n & =\frac{(2.576+0.84)^{2}}{(0.21)^{2}} \\
& =265
\end{aligned}
$$

8-1.5 SAMPLE SIZE REQURED TO DETECT A DIFFERENCE OF PRESCRIBED MAGNITUDE FROM A STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT

Given:
$P_{0}=$ the known proportion of the population of standard items which exhibit the pertinent characteristic. P_{0} may be known from the process history, or may be given by the requirements of a specification or a standard.
To be Specified for This Problem:
$\delta=$ the absolute magnitude of the difference which is considered important to detect.
$P=P_{0}+\delta$, if we wish to distinguish between P_{0} and a proportion larger than P_{0};
or,
$P=P_{0}-\delta$, if we wish to distinguish between P_{0} and a proportion smaller than P_{0}.
$\alpha=$ the significance level, or the risk of announcing a difference when in fact there is none.
$\beta=$ the risk of failing to detect a difference when in fact the true proportion for the new product is P, where $P=P_{0}+\delta$ or $P=P_{0}-\delta$, depending on the choice made above.
Tables to be Used:
Table A-26 gives the required sample size for a number of values of P_{0} and P for $\alpha=.05$ and $1-\beta=.50, .80, .90, .95$, and .99 . The Table is given largely for illustration, to demonstrate
how the required sample size is affected by the magnitude of the P_{0} and δ involved, and also by different choices of β. For desired values of α and β which are not included in Table A-26, use Table A-27, a table to convert the difference between the proportions into the form necessary for use with Table A-9.

Procedure

(1) Choose α and β.
(2) For $\alpha=.05$, and $1-\beta=.50, .80, .90$, .95 , and .99 , go to Table A-26.
(3) Let $P=P_{0}+\delta$, or $P=P_{0}-\delta$, as specified.
(4) If either P or P_{0} is less than 0.5 , enter Table A-26 with P and P_{0}.
If neither P nor P_{0} is less than 0.5 , enter Table A-26 with $1-P$ and $1-P_{0}$.

In either case, the smaller of the two proportions determines the column and the larger determines the row in Table A-26. Read off n directly. n is the required sample size for the new product.
(5) For values of α, β, and P not included in Table A-26, go to Table A-27. Look up:

$$
\begin{aligned}
\theta_{0} & =\theta \text { corresponding to } P_{0} \\
\theta & =\theta \text { corresponding to } P
\end{aligned}
$$

(6) Compute $d=\left|\theta-\theta_{0}\right|$
(7) Enter Table A-9 with chosen $\alpha, 1-\beta$, and d (from Step (6)).
The tabled n is the required sample size for the new product.

For values of d not given in Table A-9, the sample size may be computed using the formula

$$
n=\frac{\left(z_{1-\alpha}+z_{1-\xi}\right)^{2}}{d^{2}}
$$

Example

(1) Let $\alpha=.05$

$$
\beta=.10
$$

(2) Use Table A-26, with $1-\beta=.90$
(3) Assume $P_{0}=0.70$

Specify $P=0.70+0.10$

$$
=0.80
$$

(4)

Since neither P nor P_{0} is less than 0.5 , take 1-P $=0.20$

$$
1-P_{0}=0.30
$$

Use column 0.20 and row 0.30 in Table A-26.

The required sample size is $n=160$.
(5) Assume that we had specified $\alpha=.01$, $\beta=.10, P_{0}=.10$, and $P=.40$.
From Table A-27,

$$
\begin{aligned}
\theta_{0} & =.64 \\
\theta & =1.37 \\
d & =0.73
\end{aligned}
$$

(7) From Table A-9, the sample size for $d=0.6$ is $n=37$, and for $d=0.8$, is $n=21$, so that the required sample size for $d=0.73$ is greater than 21 and less than 37.
In this area of the table, interpolation is not recommended.
To obtain the sample size for $d=0.73$, compute

$$
\begin{aligned}
n & =\frac{(2.326+1.282)^{2}}{(0.73)^{2}} \\
& =\frac{13.018}{.5329} \\
& =24.4
\end{aligned}
$$

As is conventional in sample size calculations, we round up to $n=25$.

8-2 COMPARING TWO OBSERVED PROPORTIONS

We assume that n_{A} and n_{B} items are taken from products A and B , respectively. The items are to be examined or tested, and then classified into one of two mutually-exclusive categories. Some examples of two-category classifications are: hit or miss; pass or fail; white or black; damaged or not damaged; within tolerance or outside tolerance; etc. For purposes of illustration, we call the two categories Class I and Class II.

After examination of the n_{A} items, a number r_{A} are classified as Class I, and after examination of the n_{B} items, a number r_{B} are classified as Class I. The observed classification of the items is recorded in a two-row, two-column table (often called a 2×2 table) as shown in Table 8-1. Since there are just two mutuallyexclusive classes, the entries for Class II can be filled in by subtracting the number recorded for Class I from the total number for each sample.

TABLE 8-1. OBSERVED FREQUENCIES FROM tWO SAMPLES IN TWO MUTUALLY exclusive categories (A 2×2 table)

	Class I	Class II	Total
Sample from A	$r_{\text {A }}$	$s_{\text {s }}$	$n_{A}=r_{A}+s_{A}$
Sample from B	r_{B}	s_{B}	$n_{B}=r_{B}+s_{B}$
Total	r	s	n

The rows in the Table represent the two samples, and the columns are the two classes into which the observed items have been classified. Entries in the Table are counts - e.g., in the A sample (consisting of n_{A} items), r_{A} items are found to be Class I and s_{A} items ($s_{A}=n_{A}-r_{A}$) are Class II.

Although the problems will be posed in terms of proportions, and final results presented in terms of proportions, most of the techniques given use the observed counts. In terms of Table 8-1, if Class I is the property of interest, the observed proportions are $p_{A}=r_{A} / n_{A}$ and $p_{B}=r_{B} / n_{B}$.

Since the selection of available techniques depends on the sample sizes involved, this section is organized in three subparagraphs:
8-2.1 Comparing two proportions when the sample sizes are equal ($n_{A}=n_{B}$).
8-2.2 Comparing two proportions when the sample sizes are unequal and small ($n_{A} \neq n_{B}$; both less than 20).

8-2.3 Comparing two proportions when the sample sizes are unequal and large.

In each paragraph, procedures will be given for answering two questions:
(a) Does the characteristic proportion for product A differ from that for product B?
(b) Does the characteristic proportion for product A exceed that for product B?
As always, it is important to decide which question is appropriate before taking the observations. If this is not done, and if the choice of the problem is influenced by the observations, both the significance level of the test and the operating characteristics of the test may differ considerably from their nominal values.

8-2.1 COMPARING TWO PROPORTIONS WHEN the sample sizes are equal

The solution involves three operations:
(a) Recording the observed counts in the form shown in Table 8-1;
(b) Selecting the proper pair of entries from among the four entries in the table; and,
(c) Comparing that pair with the "minimum contrast" pair given in Table A-28, to determine whether or not the observed contrast is significant at the chosen level. The procedure is detailed in Paragraphs 8-2.1.1 and 8-2.1.2; and, with a little practice, can be done quickly by eye.

Table A-28 gives "minimum contrasts" for $n_{A}=n_{B}=1(1) 20(10) 100(50) 200(100) 500$ corresponding to significance levels $\alpha=.05$ and $\alpha=.01$ for two-sided tests (see Paragraph 8-2.1.1); or to $\alpha=.025$ and $\alpha=.005$ for onesided tests (see Paragraph 8-2.1.2). By "minimum contrast" is meant the "least different"
pair which is significant at the chosen significance level. A "more different" pair is of course significant also. For example, look at the entries in Table A-28 for $n_{A}=n_{B}=17$. The "minimum contrasts required" at significance level $\alpha=.05$ for the two-sided test (Does P_{A} differ from P_{B} ?) are (0,5), $(1,7)$, $(2,9),(3,10)$, etc. Since $(0,5)$ is significant, so also is $(0,6),(0,7)$, etc. Since $(1,7)$ is significant, so also is $(1,8),(1,9)$, etc.

It is worth noting that Table A-28 can be used to give satisfactory answers for values of n intermediate to those tabulated (see Note to Table A-28).

Data Sample 8-2.1 - Small-scale Comparison Test of Two Types of Mine Fuzes

Seventeen impact fuzes of each of two different types are tested, and the number of successful firings are recorded, as follows:

Fuze Type	Success (Class I)	Failure (Class II)	Total
Type A	$r_{A}=15$	$s_{A}=2$	$n_{A}=17$
Type B	$r_{B}=7$	$s_{B}=10$	$n_{B}=17$
Total	$r=22$	$s=12$	$n=34$

8-2.1.1 Does the Characteristic Proportion for Product A Differ From That for Product B? (Does P_{A} Differ From P_{B} ?) In terms of Data Sample 8-2.1, we wish to compare the proportion of successful firings for the two types of fuzes. The question to be answered is: Does Type A differ from Type B with regard to the proportion of successful firings?

Procedure

Example

(1) Choose α, the significance level of the test. Table A-28 provides "minimum contrasts" corresponding to $\alpha=.05$ and $\alpha=.01$ for this two-sided test.*
(2) Record the observed counts as in Table 8-1.
(3) Let: $a_{1}=$ smallest of all four entries
$a_{2}=$ entry in the same class as a_{1} from the other sample.
The "observed contrast" pair is the ordered pair (a_{1}, a_{2}).
If $a_{1}=a_{2}$, no further analysis is necessary. The data give no reason to believe that the two proportions differ.
(4) Enter Table A-28 with sample size $n_{A}=n_{B}$.
(5) Call the tabled pairs $\left(A_{1}, A_{2}\right)$. Find the tabled pair where $A_{1}=a_{1}$; this is the "least different" pair which is significant at the chosen level.
(6) If a_{2} is equal to or larger than A_{2}, the observed contrast is significant at the chosen level, and we conclude that the two products differ with regard to the characteristic proportion considered.
If a_{2} is smaller than A_{2}, there is no reason to believe that the two proportions differ.
(4) $\quad n_{A}=n_{B}=17$
(5) From Table A-28, with $\alpha=.01$ and $a_{1}=2$, the "least different" pair $\left(A_{1}, \mathrm{~A}_{2}\right)=$ $(2,11)$.
(6)

Since $a_{2}=10$ is less than $A_{2}=11$, the observed contrast is not significant at the .01 level, and we conclude that there is no reason to believe that the two fuze types differ with regard to the proportion of successful firings.

[^1]8-2.1.2 Does the Characteristic Proportion for Product A Exceed That for Product B? (Is PA Larger Than P_{B} ?) In terms of Data Sample 8-2.1, let us suppose that - in advance of looking at the data - the important question is: Does the proportion of successful firings for Type A exceed the proportion of successes for Type B?

Procedure

(1) Choose α, the significance level of the test. Table A-28 provides "minimum contrasts" corresponding to $\alpha=.025$ and $\alpha=.005$ for this one-sided test.*
(2) Record the observed counts as in Table 8-1.
(3) Compute p_{A}, the observed proportion for Product A, and p_{B}, the observed proportion for Product B.

If Class I is the class of interest, $p_{A}=r_{A} / n_{A}$ and $p_{B}=r_{B} / n_{B}$.
If Class II is the class of interest, $p_{A}=s_{A} / n_{A}$ and $p_{B}=s_{B} / n_{B}$.
(4) If p_{A} is not larger than p_{B}, conclude at once that there is no reason to believe that the true proportion P_{A} is larger than P_{B}; otherwise, proceed to Step (5).
(5) If p_{A} is larger than p_{B}, let:
$a_{1}=$ smallest of all four entries
$a_{2}=$ entry in the same class as a_{1} from the other sample.
The "observed contrast" pair is the ordered pair (a_{1}, a_{2}).
(6) Enter Table A-28 with sample size $n_{A}=n_{B}$.
(7) Call the tabled pairs $\left(A_{1}, A_{2}\right)$. Find the tabled pair where $A_{1}=a_{1}$; this is the "least different" pair which is significant at the chosen level.
(8) If a_{2} is equal to or is larger than A_{2}, the observed contrast is significant at the chosen level, and we conclude that the proportion for Product A exceeds that for Product B.
If a_{2} is smaller than A_{2}, there is no reason to believe that the two proportions differ.

Example

(1) Let $\alpha=.025$
(2) See Data Sample 8-2.1
(3)

$$
\begin{aligned}
p_{A} & =15 / 17 \\
& =0.88 \\
p_{B} & =7 / 17 \\
& =0.41
\end{aligned}
$$

(4) Since p_{A} is larger than p_{B}, proceed to Step (5).
(5)

$$
\begin{aligned}
& a_{1}=2 \\
& a_{2}=10
\end{aligned}
$$

The "observed contrast" pair is $(2,10)$.
(6) $\quad n_{A}=n_{B}=17$
(7) From Table A-28, with $\alpha=.025$ and $a_{1}=$ 2 , the "least different" pair $\left(A_{1}, A_{2}\right)=$ $(2,9)$.
(8) Since $a_{2}=10$ is larger than $A_{2}=9$, we conclude that the proportion of successes for type A exceeds that for type B.

[^2]
8-2.2 COMPARING TWO PROPORTIONS WHEN THE SAMPLE SIZES ARE UNEQUAL AND SMALL ($n_{A} \neq n_{B}$; BOTH NO GREATER THAN 20)

8-2.2.1 Does the Characteristic Proportion for Product A Differ From That for Product B?

Data Sample 8-2.2.1 - Small-scale Comparison Test of Two Types of Artillery Fuzes
The following data are recorded from an artillery fuze-testing program:

Fuze Type	Fires (Class I)	Does Not Fire (Class II)	Total
Type A	$r_{A}=4$	$s_{A}=2$	$n_{A}=6$
Type B	$r_{B}=8$	$s_{B}=2$	$n_{B}=10$
Total	$r=12$	$s=4$	$n=16$

Procedure

Example

(1) Choose α, the significance level of the test. Table A-29 provides a listing of "significant contrasts" corresponding to $\alpha=.10, .05$, .02 , and .01 for this two-sided test.*
(2) Record the observed counts as in Table 8-1.
(3) In order to use Table A-29 for this problem, we must have the data arranged in a special way. Arrange the data as shown in Table 8-2 so that the results from the larger sample are in the first row, and re-label the entries r_{1}, r_{2}, etc., as shown in Table 8-2. Retain the original product identification of the samples.

TABLE 8-2. REARRANGEMENT OF TABLE 8-1 FOR CONVENIENT USE IN TESTING significance with table A-29

	Class I	Class II
Larger Sample	r_{1}	s_{1}
Smaller Sample	r_{2}	s_{2}
Total	r	s

[^3]Rearranged Data Sample 8-2.2.1A

Fuze Type	Fires (Class I)	Does Not Fire (Class II)	Total
Larger sample (Type B)	$r_{1}=8$	$s_{\text {I }}=2$	$n_{1}=10$
Smaller sample (Type A)	$r_{2}=4$	$s_{2}=2$	$n_{2}=6$
Total	$r=12$	$s=4$	$n=16$

Procedure

(4) Compute the four proportions:

$$
\begin{aligned}
& p_{1}=r_{1} / n_{1} \\
& p_{2}=r_{2} / n_{2} \\
& q_{1}=s_{1} / n_{1} \\
& q_{2}=s_{2} / n_{2}
\end{aligned}
$$

(5) If p_{1} is larger than or is equal to p_{2}, focus attention on Class I.
For use with Table A-29, take

$$
\begin{aligned}
& a_{1}=r_{1} \\
& a_{2}=r_{2}
\end{aligned}
$$

If q_{1} is larger than or is equal to q_{2}, focus attention on Class II.
For use with Table A-29, take

$$
\begin{aligned}
& a_{1}=s_{1} \\
& a_{2}=s_{2}
\end{aligned}
$$

(6) Enter Table A-29 with n_{1}, n_{2}, and a_{1} (determined from Step (5)).
The observed a_{2} (from Step (5)) must be equal to or smaller than the tabled a_{2} (bold-face in Table A-29) for significance at the chosen level. Therefore, if the observed a_{2} is equal to or is smaller than boldface a_{2} in Table A-29, conclude that the two products differ with regard to the proportion of interest.
If the observed a_{2} is larger than the tabled a_{2}, there is no reason to believe that the two products differ.

Example

(4)

$$
\begin{aligned}
p_{1} & =8 / 10 \\
& =.80 \\
p_{2} & =4 / 6 \\
& =.67 \\
q_{1} & =2 / 10 \\
& =.20 \\
q_{2} & =2 / 6 \\
& =.33
\end{aligned}
$$

(5) Since p_{1} is larger than p_{2}, focus on Class I.

$$
\begin{aligned}
a_{1} & =r_{1} \\
& =8 \\
a_{2} & =r_{2} \\
& =4
\end{aligned}
$$

(6) From Table A-29, for $n_{1}=10, n_{2}=6$, $a_{1}=8$, and $\alpha=.02$, the tabled a_{2} is 0 .

Since the observed $a_{2}=4$ is larger than the tabled a_{2}, there is no reason to believe that the two fuzes differ in regard to the proportion which fire.

8-2.2.2 Does the Characteristic Propartion for Product A Exceed That for Product B? (Is P_{A} Larger Than P_{B} ?)

Data Sample 8-2.2.2 - Small-scale Comparison Test of Two Types of Impact Fuzes

The following data are recorded from an impact fuze-testing program:

Fuze Type	Fires (Class I)	Does Not Fire (Class II)	Total
Type A	$r_{A}=4$	$s_{A}=2$	$n_{A}=6$
Type B	$r_{B}=0$	$s_{B}=10$	$n_{B}=10$
Total	$r=4$	$s=12$	$n=16$

Procedure

(1) Record the observed counts as shown in Table 8-1.
(2) Focus on the class of interest. If this is Class I, compute:

$$
\begin{aligned}
& p_{A}=r_{A} / n_{A} \\
& p_{B}=r_{B} / n_{B}
\end{aligned}
$$

(If Class II were the class of interest p_{A} would equal s_{A} / n_{A}, and p_{B} would equal s_{B} / n_{B}).
If p_{A} is larger than p_{B}, proceed to Step (3). If p_{A} is not larger than p_{B}, conclude at once that the data give no reason to believe that the true proportion P_{A} is larger than P_{B}.
(3) Choose α, the significance level of the test. Table A-29 is used for this one-sided test*for $\alpha=.05, .025, .01$, and .005 .
(4) In order to use Table A-29 for this problem, we must have the data arranged in a special way. Arrange the data as shown in Table 8-2 so that the results from the larger sample are in the first row, and relabel the entries r_{1}, r_{2}, etc., as shown in Table 8-2. Retain the original product identification of the samples.

Example

(1) See Data Sample 8-2.2.2
(2) Since we are interested in comparing the proportions of fuzes which do fire, compute:

$$
\begin{aligned}
p_{A} & =r_{A} / n_{A} \\
& =4 / 6 \\
& =.67 \\
p_{B} & =r_{B} / n_{B} \\
& =0 / 10 \\
& =0
\end{aligned}
$$

Since p_{A} is larger than p_{B}, proceed to Step (3).
(3) Let $\alpha=.01$
(4) See Rearranged Data Sample 8-2.2.2A.

[^4]Rearranged Data Sample 8-2.2.2A

Fuze Type	Fires (Class I)	Does Not Fire (Class II)	Total
Larger sample (Type B)	$r_{1}=0$	$s_{1}=10$	$n_{1}=10$
Smaller sample (Type A)	$r_{2}=4$	$s_{2}=2$	$n_{2}=6$
\quad Total	$r=4$	$s=12$	$n=16$

Procedure

(5) Compute the four proportions:

$$
\begin{aligned}
p_{1} & =r_{1} / n_{1} \\
p_{2} & =r_{2} / n_{2} \\
q_{1} & =s_{1} / n_{1} \\
q_{2} & =s_{2} / n_{2}
\end{aligned}
$$

Note that:
$p_{1}=p_{A}$ if n_{A} is the larger sample;
$p_{1}=p_{B}$ if n_{B} is the larger sample.
(6) If p_{1} is larger than or is equal to p_{2}, focus attention on Class I.
For use with Table A-29, take

$$
\begin{aligned}
& a_{1}=r_{1} \\
& a_{2}=r_{2} .
\end{aligned}
$$

If q_{1} is larger than or is equal to q_{2}, focus attention on Class II.
For use with Table A-29, take

$$
\begin{aligned}
& a_{1}=s_{1} \\
& a_{2}=s_{2}
\end{aligned}
$$

(7) Enter Table A-29 with n_{1}, n_{2}, and the a_{1} (determined from Step (6)).
The observed a_{2} (from Step (6)) must be equal to or smaller than the tabled a_{2} (bold face in Table A-29) for significance at the chosen level.
Therefore, if observed a_{2} is equal to or is smaller than bold-face a_{2} in Table A-29, conclude that the proportion of interest for product A exceeds the proportion for product B.
If the observed a_{2} is larger than the tabled a_{2}, there is no reason to believe that the two proportions differ.

Example

$$
\begin{aligned}
p_{1} & =0 / 10 \\
& =0 \\
p_{2} & =4 / 6 \\
& =.67 \\
q_{1} & =10 / 10 \\
& =1.00 \\
q_{2} & =2 / 6 \\
& =.33
\end{aligned}
$$

Since q_{1} is larger than q_{2}, focus attention on Class II.

$$
\begin{aligned}
a_{1} & =s_{1} \\
& =10 \\
a_{2} & =s_{2} \\
& =2
\end{aligned}
$$

(7) From Table A-29, for $n_{1}=10, n_{2}=6$, $a_{1}=10$, and $\alpha=.01$, the tabled a_{2} is 2 .

Since the observed a_{2} is equal to the tabled a_{2}, we conclude that the proportion of successful fuzes of type A exceeds that for type B.

8-2.3 COMPARING TWO PROPORTIONS WHEN THE SAMPLE SIZES ARE LARGE*

8-2.3.1 Does the Characteristic Proportion for Product A Differ From That for Product B? (Does P_{A} Differ From P_{B} ?)

Data Sample 8-2.3.1 - Field Trials of Two Types of Mine Fuzes

In field trials of mine fuzes, 216 of each of two new types of fuze were buried, simulated tanks run over them, and the number of "proper hits" recorded. The results are as follows:

Fuze Type	Hit	Not Hit	Total
Type A	$r_{A}=181$	$s_{A}=35$	$n_{A}=216$
Type B	$r_{B}=160$	$s_{B}=56$	$n_{B}=216$
Total	$r=341$	$s=91$	$n=432$

Let us assume with respect to Data Sample 8-2.3.1 that the important question is: Is the proportion of hits for Type A different from the proportion of hits for Type B?

Procedure

Example
(1) Choose α, the significance level of the test.
(1) Let

$$
\alpha=.10
$$

(2) Look up x_{1-a}^{2} for one degree of freedom in
(2) $x_{.90}^{2}$ for 1 d.f. $=2.71$ Table A-3.
(3) Compute

$$
x^{2}=\frac{n\left(\left|r_{A} s_{B}-r_{B} s_{A}\right|-\frac{n}{2}\right)^{2}}{n_{A} r n_{B} s}
$$

(3)

$$
\begin{aligned}
x^{2} & =\frac{432(4536-216)^{2}}{(73656)(19656)} \\
& =5.57
\end{aligned}
$$

(4) If $x^{2} \geq x_{1-a}^{2}$, decide that the two products differ with regard to the proportion having the given characteristic; otherwise, there is no reason to believe that the products differ in this respect.
(4) Since x^{2} is larger than x_{2}^{2}, we conclude that the two types of fuzes do differ with regard to the proportion of "proper hits".

[^5]
Procedure

Note: The computation of x^{2} is most conveniently done in terms of the actual counts in the table, as given in Step (3) above. The formula can be expressed in terms of the observed proportions as follows:

$$
\mathrm{x}^{2}=\frac{\left(n^{\prime}\left|p_{A}-p_{B}\right|-\frac{1}{2}\right)^{2}}{n^{\prime} p(1-p)}
$$

$$
\begin{aligned}
p_{A} & =r_{A} / n_{A} \\
p_{B} & =r_{B} / n_{B} \\
p & =\frac{r_{A}+r_{B}}{n_{A}+n_{B}}
\end{aligned}
$$

where
and

$$
n^{\prime}=\frac{n_{A} n_{B}}{n_{A}+n_{B}}
$$

This formula and the formula in Step (3) are algebraically equivalent, but use of the form given in the Note requires extra arithmetic and rounding. In spite of the fact that the question is put in terms of the difference between proportions, the answer is obtained more easily and more accurately using observed counts, i.e., the formula of Step (3) is preferred. Furthermore, using the formula in terms of counts (Step (3)) highlights the fact that one cannot judge the difference between two proportions without knowing the sample sizes involved.

Example

Note: Using Data Sample 8-2.3.1 with this formula:

$$
\begin{aligned}
x^{2} & =\frac{(108(.097)-1 / 2)^{2}}{108(.789)(.211)} \\
& =\frac{(9.976)^{2}}{17.980} \\
& =5.54
\end{aligned}
$$

$$
\begin{aligned}
& p_{A}=181 / 216 \\
&=.838 \\
& \\
& p_{B}=160 / 216 \\
&=.741 \\
& p=341 / 432 \\
&=.789 \\
& 1-p=.211
\end{aligned}
$$

$$
\begin{aligned}
n^{\prime} & =46656 / 432 \\
& =108
\end{aligned}
$$

8-2.3.2 Is the Characteristic Proportion for Product A Larger Than That for Product B? (is P_{A} Larger Than ρ_{B} 个) In terms of Data Sample 8-2.3.1, let us suppose that-in advance of looking at the data - the important question is: Is the proportion of hits for type A larger than the proportion of hits for type B?

Procedure

Example

(1) Choose α, the significance level of the test.
(2) Look up $x_{1-2 \alpha}^{2}$ for one degree of freedom in Table A-3.
(3) Compute:

$$
\chi^{2}=\frac{n\left(\left|r_{A} s_{B}-r_{B} s_{A}\right|-\frac{n}{2}\right)^{2}}{n_{A} r n_{B} s}
$$

$$
\begin{aligned}
x^{2} & =\frac{432(4536-216)^{2}}{(73656)(19656)} \\
& =5.57
\end{aligned}
$$

and

$$
\begin{aligned}
& p_{A}=r_{A} / n_{A} \\
& p_{B}=r_{B} / n_{B}
\end{aligned}
$$

$$
\begin{aligned}
p_{A} & =181 / 216 \\
& =.84 \\
p_{B} & =160 / 216 \\
& =.74
\end{aligned}
$$

(See Note at end of procedure of Paragraph 8-2.3.1)
(4) If $x^{2} \geq x_{1-2 \alpha}^{2}$ and p_{A} is larger than p_{B}, decide that P_{A} exceeds P_{B}; otherwise, there is no reason to believe the proportions differ.
(4) Since x^{2} is larger than $x_{.95}^{2}$ and $p_{A}=.84$ is larger than $p_{B}=.74$, conclude that the proportion of hits for type A is larger than the proportion of hits for type B.

8-2.4 SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE BETWEEN TWO PROPORTIONS

8-2.4.1 Sample Size Required to Detect a Difference of Prescribed Magnifude Between Two Propor-

 tions When the Sign of the Difference ls Not Important. Unfortunately, the sample size required depends on the true but unknown values of the two proportions involved. Very often, the experimenter has some idea of the magnitude of (or an upper bound for) one of these values, and then must specify the size of the difference which the experiment should be designed to detect. For a fixed difference to be detected, the largest sample sizes will be required if the true proportions are in the neighborhood of 0.5 . A look at Table A-25, however, will show that over-conservatism may not pay. Suppose, for example, that one of the proportions can safely be assumed to be less than 0.4 . The most conservative assumption would be that it is equal to 0.4 (this being the closest reasonable guess to 0.5). Attempting to be over-cautious by using the value 0.45 will extract a heavy price in the number of tests to be run.
Given:

For this problem there is nothing given, but -

Assumed:

$P^{\prime}=$ an estimate of one of the two proportions.
To be conservative, make this estimate as close to 0.5 as is reasonable.

To be Specified for This Problem:

$\alpha=$ the significance level, or the risk of announcing a difference when in fact there is none.
$\beta=$ the risk of failing to detect a difference when in fact the true proportions differ by an amount δ (i.e., $\left|P^{\prime}-P^{\prime \prime}\right|=\delta$).
$\delta=$ the absolute magnitude of the difference which is considered important to detect.

Tables to be Used:
Table A-25 can be used for $\alpha=.05$ and $1-\beta=.50, .80, .90, .95$, and .99 , and for certain values of the proportions. The entry in Table A-25 must be doubled to give n^{\prime}; and n^{\prime} is the required sample size to be taken from each product.

For other desired values of α and β, use Table A-27, a table to convert the difference between the proportions into the form necessary for use with Table A-8.

The question to be answered by the experiment is: Does P_{A} differ from P_{B} ?

Procedure

Example

(1) Specify δ, the absolute magnitude of the difference considered important to detect.
(2) Choose α and β.
(3) For $\alpha=.05$ and $1-\beta=.50, .80, .90$, .95 , or .99 , go to Table A-25.
(4) Let $P^{\prime}=$ an estimate of one of the proportions.
Let $P^{\prime \prime}=P^{\prime}+\delta$ or $P^{\prime}-\delta$, whichever makes $P^{\prime \prime}$ closer to 0.5 .
(5) If either P^{\prime} or $P^{\prime \prime}$ is less than 0.5 , enter Table A-25 with P^{\prime} and $P^{\prime \prime}$.
If neither P^{\prime} nor $P^{\prime \prime}$ is less than 0.5 , enter
Table A-25 with $1-P^{\prime}$ and $1-P^{\prime \prime}$.
In either case, the smaller of the two proportions determines the column and the larger of the two determines the row in Table A-25.

Read off n, and double it to obtain n^{\prime}. n^{\prime} is the required sample size to be taken from each product.
(6) For other values of α and β, and for values of P^{\prime} and $P^{\prime \prime}$ not included in Table A-25, go to Table A-27. Look up:

$$
\begin{aligned}
\theta^{\prime} & =\theta \text { corresponding to } P^{\prime} \\
\theta^{\prime \prime} & =\theta \text { corresponding to } P^{\prime \prime}
\end{aligned}
$$

(7) Compute $d=\left|\theta^{\prime}-\theta^{\prime \prime}\right|$

$$
\begin{aligned}
& \qquad n=146 \\
& n^{\prime}=292, \text { the required sample size } \\
& \text { to be taken from each product. }
\end{aligned}
$$

(6) Assume that we had specified $\alpha=.01$, $\beta=.20, P^{\prime}=.34$, and $P^{\prime \prime}=.44$. From Table A-27,

$$
\begin{align*}
\theta^{\prime} & =1.25 \\
\theta^{\prime \prime} & =1.45 \\
d & =\{1.25-1.45\} \tag{7}\\
& =.20
\end{align*}
$$

Procedure

(8) Enter Table A-8 with α, β, and d (from Step (7)).
Read off n and double it to obtain n^{\prime}. Then, n^{\prime} is the required sample size to be taken from each product.
(Rounding two-decimal values of d to the nearest value considered in Table A-8 may lead to excessively high (or low) values of n, and thence of n^{\prime}. Interpolation for values of n corresponding to values of d not considered in Table A-8 is not recommended. For values of d not given in Table A-8, the sample size may be computed using the formula

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{d^{2}}
$$

Example

(8) From Table A-8 with $\alpha=.01,1-\beta=.80$, and $d=.20, n=292$.
$n^{\prime}=584$, the required sample size to be taken from each product.

8-2.4.2 Sample Size Required to Detect a Difference of Prescribed Magnitude Between Two Propor-

 fions When the Sign of the Difference Is Important. Read the general discussion at the beginning of Paragraph 8-2.4.1.
Given:

For this problem, there is nothing given, but -

Assumed:

$P^{\prime}=$ an estimate of one of the two proportions. $\quad P^{\prime}$ may be P_{A}^{\prime}, an estimate of P_{A}, or $P_{\dot{\prime}}^{\prime}$, an estimate of P_{B}.
To be conservative, make this estimate as close to 0.5 as is reasonable.
To be Specified for This Problem:
$\alpha=$ the significance level, or the risk of announcing a difference when in fact there is none.
$\beta=$ the risk of failing to detect a difference when in fact the true proportion for the other product is $P^{\prime \prime}=P^{\prime}+\delta$ or is $P^{\prime \prime}=P^{\prime}-\delta$.
$\delta=$ the absolute magnitude of the difference considered important to detect.
Tables to be Used:
Table A-26 can be used for $\alpha=.05$ and $1-\beta=.50, .80, .90, .95$, and .99 ; and for certain values of the proportions.

For other desired values of α and β, use Table A-27, a table to convert the difference between the proportions into the form necessary for use with Table A-9.

The question to be answered by the experiment is: Is P_{A} larger than P_{B} ?

Procedure

(1) Specify δ, the absolute magnitude of the difference considered important to detect. If the estimate P_{A} is available, then $P^{\prime \prime}=P_{A}-\delta$.
If the estimate P_{B}^{\prime} is available, then $P^{\prime \prime}=P_{B}^{\prime}+\delta$.

Example

(1) Specify $\delta=.05$

Let P_{A}^{\prime}, the estimate of $P_{A},=.10$
Then, $P^{\prime \prime}=.10-.05$

$$
=.05
$$

Procedure

(2) Choose α and β.
(3) For $\alpha=.05,1-\beta=.50, .80, .90, .95$, or .99 , go to Table A-26.
(4) If either P^{\prime} or $P^{\prime \prime}$ is less than 0.5 , enter Table A-26 with P^{\prime} and $P^{\prime \prime}$.
If neither P^{\prime} nor $P^{\prime \prime}$ is less than 0.5 , enter Table A-26 with $1-P^{\prime}$ and $1-P^{\prime \prime}$.
In either case, the smaller of the two proportions determines the column and the larger determines the row in Table A-26.
(5) Read off n, and double it to obtain n^{\prime}. n^{\prime} is the required sample size to be taken from each product.
(6) For other values of α and β, and for values of P^{\prime} and $P^{\prime \prime}$ not included in Table A-26, go to Table A-27.
Look up:
$\theta^{\prime}=\theta$ corresponding to P^{\prime}
$\theta^{\prime \prime}=\theta$ corresponding to $P^{\prime \prime}$
(7) Compute $d=\left|\theta^{\prime}-\theta^{\prime \prime}\right|$
(8) Enter Table A-9 with α, β, and d (from Step (7)).
Read off n, and double it to obtain n^{\prime}. n^{\prime} is the required sample size to be taken from each product.
Rounding two-decimal values of d to the nearest value considered in Table A-9 may lead to excessively high (or low) values of n, and thence of n^{\prime}.
Interpolation for values of n corresponding to values of d not considered in Table A-9 is not recommended.
For values of d not given in Table A-9, the sample size may be computed using the formula

$$
n=\frac{\left(z_{1-\alpha}+z_{1-\beta}\right)^{2}}{d^{2}}
$$

Example

(2) Let $\alpha=.05$

$$
\beta=.10
$$

(3) Use Table A-26 with $1-\beta=.90$
(4) Since both P^{\prime} and $P^{\prime \prime}$ are less than 0.5 , enter Table A-26 in column . 05 and row. 10 .
(5)
$n=232$
$n^{\prime}=464$, the required sample size to be taken from each product.
(6) Assume that we had specified $\alpha=.01$, $1-\beta=.90, P^{\prime}=.70$, and $P^{\prime \prime}=.50$.

From Table A-27

$$
\begin{align*}
\theta^{\prime} & =1.98 \\
\theta^{\prime \prime} & =1.57 \\
d & =|1.98-1.57| \tag{7}\\
& =.41
\end{align*}
$$

(8) From Table A-9, for $d=.4, n=82$.
$n^{\prime}=164$ is an upper bound to the required sample size to be taken from each product.

In the present instance,

$$
\begin{aligned}
n & =\frac{(2.326+1.282)^{2}}{(.41)^{2}} \\
& =\frac{13.018}{.1681} \\
& =78
\end{aligned}
$$

and $n^{\prime}=156$ is the required sample size to be taken from each product.

CHAPTER 9

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO SEVERAL CATEGORIES OF PERFORMANCE

(CHI-SQUARE TESTS)

Abstract

In some inspection and testing procedures, a two-category classification of performance (e.g., success or failure) is not sufficient. In inspection work, the classification scheme might consist of three categories; for example, (1) acceptable, (2) reworkable, and (3) unusable. In process control, we might wish to record occurrences of each of a number of types of defects, and to make comparisons between shifts or between time periods with regard to the distribution of the types of defects. Similarly, reports of types of failures of machinery, or of records of repairs, may call for a classification scheme with more than two categories. Classifications by size, color, and structure are other possible examples of classifications likely to require three or more categories.

Where the classification scheme provides for three or more categories, the procedures of this Chapter are appropriate. (The methods of Chapter 8 could be used only if we were to consider a single class as, for example, success, with all the other classes lumped together as failure.)

If the classification scheme has a large number of categories, and if we are interested in a special group of these classes, the individual classes in the group may be combined and considered as one grand category. For example, in records of the causes of aircraft accidents, we may consider the one large category collision, or we may have this information broken down into several classes, e.g., between two in air, with ground, with water, and other types of collision.

9-1 COMPARING A MATERIAL OR PRODUCT WITH A STANDARD

9-1.1 WHEN THE COMPARISON IS WITH A STANDARD MATERIAL OR PRODUCT

Data Sample 9-1.1 - Inspections and Tasts of Cilinical Thermometers

Form: A sample of n items is selected at random from a much larger group. After inspection or test, each sample item (or observation) is classified into one of k categories, according to some established classification scheme. The result is that n_{1} items are observed to be in category 1 , n_{i} items in category $2, n_{i}$ items in the i th category, etc., and

$$
n_{1}+n_{2}+\ldots+n_{k}=n
$$

Let: P_{1} equal the known proportion of standard items that are classified in category $1 ; P_{2}$ equal the known proportion in category 2; and P_{i} equal the known proportion of standard items in the i th category.

The relevant question to be asked is: "Does the new product differ from the standard with regard to the proportions in each category?"'

Example: The inspection and testing of clinical thermometers provides an illustrative example. Clinical thermometers are classified into one of the following four categories, on the basis of inspection and test:

1. Non-defective;
2. Defective - class A (Defects in glass, defective markings, dimensional nonconformance, etc.);
3. Defective - class B (Defects in mercury column);
4. Defective - class C (Nonconformance to precision and accuracy requirements).

Over a period of time, it has been found that thermometers produced by a certain manufacturer are distributed among the four categories in the following average proportions:

1. Non-defective - 87 percent ($P_{1}=0.87$);
2. Class A - 9 percent ($P_{2}=0.09$);
3. Class B -3 percent $\left(P_{3}=0.03\right)$;
4. Class $C-1$ percent ($P_{4}=0.01$).

A new lot of 1336 thermometers is submitted by the manufacturer for inspection and test, and the following distribution into the four categories results:

Category	No. of Thermometers Reported
1	$1188\left(n_{1}\right)$
2	$91\left(n_{3}\right)$
3	$47\left(n_{s}\right)$
4	$10\left(n_{4}\right)$
	$n=1336$

The question asked is: "Does this new lot of thermometers differ from previous experience with regard to proportions of thermometers in each category?"

Procedure*

(1) Choose α, the significance level of the test.
(2) Look up $\chi_{1-\alpha}^{2}$ for $k-1$ degrees of freedom in Table A-3.
(3) Compute $n P_{i}$, the theoretical value for each category.
(4) Compute

$$
\chi^{2}=\sum_{i=1}^{k}\left(n_{i}^{2} / n P_{i}\right)-n
$$

(5) If $\chi^{2} \geq x_{1-\alpha}^{2}$, conclude that the material, product, or process differs from the standard with regard to the proportions in the categories; otherwise, there is no reason to believe that they differ.

Example

(1) Let $\alpha=.05$

$$
1-\alpha=.95
$$

(2) $\quad k-1=3$
$\chi^{2}{ }_{98}$ for 3 d.f. $=7.81$
(3) For a convenient computational arrangement, see Table 9-1.
(4) See Table 9-1,

$$
\chi^{2}=9.72
$$

(5) Since χ^{2} is larger than $\chi_{.95}^{2}$, we conclude that the new lot of thermometers is different from previous lots submitted by the same manufacturer with regard to the proportions in the respective inspection-test categories.

TABLE 9-1. COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-1.1

Thermometer Class	No. of Thermometers in Each Category $\left(n_{i}\right)$	Known Proportion for Standard Product (P_{i})	Expected No. $\left(n P_{i}\right)$	$\frac{n_{i}^{2}}{n P_{i}}$
1. Non-defective	1188	. 87	1162.32	1214.25
2. Class A	91	. 09	120.24	68.87
3. Class B	47	. 03	40.08	55.11
4. Class C	10	. 01	13.36	7.49
Total	$n=1336$	1.00	1336.00	1345.72
$\chi^{2}=\Sigma\left(n_{i}^{2} / n P_{i}\right)-n=1345.72-1336=9.72$				

[^6]
9-1.2 WHEN THE COMPARISON IS WITH A THEORETICAL "STANDARD"

The following example illustrates an application of the foregoing procedure in which the "standard" is of a theoretical nature.

Data Sample 9-1.2 - Breakdowns of Electricity Meters

Form: There are k different types of meters in current use. The total number of each type in service at the beginning of the service period under consideration was $N_{1}, N_{2}, \ldots, N_{k}$, respectively. If the probability of a meter breaking down during the service period is the same for all k types, then we would expect the total number of breakdowns during this period to be distributed among the k types in proportion to their respective numbers in service. For example, suppose that a total of n meters break down. Among these n, we would expect to find the proportion

$$
P_{1}=\frac{N_{1}}{N_{1}+\bar{N}_{2}+\ldots+\bar{N}_{k}}
$$

of them to be of type 1; the proportion

$$
P_{2}=\frac{N_{2}}{N_{1}+N_{2}+\ldots+N_{k}}
$$

to be of type 2 ; etc. The actual number of each type that are found in the n breakdowns are $n_{1}, n_{2}, \ldots, n_{k}$ (and $n_{1}+n_{2}+\ldots+n_{k}=n$). The actual proportions $n_{1} / n, n_{2} / n, \ldots$, n_{k} / n, rarely will conform to the theoretical values, $P_{1}, P_{2}, \ldots, P_{k}$, even when the hypothesis that all types are equally likely to break down is true. The relevant question is: Are the differences between the observed and theoretical proportions sufficient to cast doubt on the supposition that the probability of a breakdown is the same for all k types of meters?

Example: There are (approximately) equal numbers of four different types of meters in service. If all types are equally likely to break down, the reported failures during a given period should be distributed (approximately) equally among the four types - i.e.,

$$
P_{1}=P_{2}=P_{3}=P_{1}=\frac{1}{4}
$$

The actual number of breakdowns reported are given in the following list. Have we evidence to conclude that the chances of failure of the four types are not all equal?

Type of Meter	No. of Breakdowns Reported
	n_{i}
1	30
2	40
3	33
4	$n=150$

Procedure

(1) Choose α, the significance level of the test.
(2) Look up $\chi_{1-\alpha}^{2}$ for $k-1$ degrees of freedom in Table A-3.
(3) Compute $n P_{i}$, the theoretical frequency for each category.
(4) Compute

$$
x^{2}=\sum_{i=1}^{k}\left(n_{i}^{2} / n P_{i}\right)-n
$$

(5) If $x^{2} \geq x_{1-\alpha}^{2}$, conclude that the probabilities of failure are not the same for all of the types*; otherwise, that there is no reason to believe that they differ.

Example

(1) Let $\quad \alpha=.10$
$1-\alpha=.90$
(2) $\quad k-1=3$
$\chi_{.90}^{2}$ for 3 d.f. $=6.25$
(3) For a convenient computational arrangement, see Table 9-2.
(4) See Table 9-2,

$$
x^{2}=4.62
$$

(5) Since χ^{2} is not larger than χ^{2}, we have no reason to discard the hypothesis that the probability of failure is the same for each type.

TABLE 9-2. COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-1.2

Type of Meter	No. of Breakdowns Reported $\left(\boldsymbol{n}_{\boldsymbol{i}}\right)$	Expected No. of Breakdowns $\left(\boldsymbol{n P} \boldsymbol{P}_{i}\right)$	$\frac{\boldsymbol{n}_{i}^{2}}{\boldsymbol{n P} \boldsymbol{P}_{i}}$
$\mathbf{1}$	30	37.5	24.00
2	40	37.5	42.67
3	33	37.5	29.04
4	47	37.5	58.91
Total	$n=150$		154.62

$P_{i}=$ the theoretical proportion for each category. In Data Sample 9-1.2, $P_{i}=.25$ for all categories. $\chi^{2}=\Sigma\left(n_{i}^{2} / n P_{i}\right)-n=154.62-150=4.62$.

[^7]
9-2 COMPARING TWO OR MORE MATERIALS OR PRODUCTS

Data Somple 9-2 - Causes of Rejection of Melal Castings

Form: There are m things to be compared with regard to the percentage of items distributed among several categories. The m things may be materials, products, processes, shifts, time periods (days, weeks, months, etc.) or any other such groups of interest. From each of the m groups, a sample is available, and each item in the sample is classified into one of k categories. The data is tabulated conveniently in the following form:

where:
$m=$ number of materials, products, processes, etc., to be compared;
$k=$ number of categories of classification;
$n_{i}=$ size of sample for the i th material, product, or process;
$f_{i j}=$ number of items of the i th kind which are classified in the j th category;
$C_{j}=$ total number in the j th category;
$n=$ total number of items.
The relevant question to be asked is: "Do the materials, products, etc., differ with regard to the proportion of items in the categories?'
Example: Rejects of metal castings were classified by cause of rejection for three different weeks, as given in the following tabulation. The question to be answered is: Does the distribution of rejects differ from week to week?

	Sand	Misrun	Shift	Drop	Corebreak	Broken	Other	Total
Week 1	97	8	18	8	23	21	5	180
Week 2	120	15	12	13	21	17	15	213
Week 3	82	4	0	12	38	25	19	180
Total	299	27	30	33	82	63	39	573

[^8]
Procedure*

(1) Choose α, the significance level of the test.
(2) Look up x_{1-a}^{2} for $(k-1)(m-1)$ degrees of freedom in Table A-3.
(3) Compute

$$
x^{2}=n\left(\sum_{i=1}^{m} \sum_{j=1}^{k} \frac{f_{i j}}{n_{i} C_{j}}-1\right)
$$

That is, compute each column total C_{j}. Compute each row total n_{i}. For each cell in the table, square the number $f_{i j}$ and divide by the product $n_{i} C_{j}$. Sum the resulting values for all cells in the table; subtract one, and multiply by n.
(4) If $x^{2} \geq x_{1-\alpha}^{2}$, decide that the materials, products, or processes differ with regard to the proportions in the categories; otherwise, that there is no reason to believe that they differ in this regard.

Example

(1) Let

$$
1-\alpha=.90
$$

(2)

$$
\begin{aligned}
k & =7 \\
m & =3 \\
(k-1)(m-1) & =12 \\
x_{.90}^{2} \text { for } 12 \text { d.f. } & =18.55
\end{aligned}
$$

(3) See Table 9-3 for a convenient computational arrangement.

$$
x^{2}=45.84
$$

(4) Since χ^{2} is larger than χ^{2}.00, we conclude that the weeks differ with regard to proportions of various types of rejections.

TABLE 9-3. TABLE OF $\frac{f_{j} f_{j}}{n_{i} C_{j}}$-COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-2

	Sand	Misrun	Shift	Drop	Corebreak	Broken	Other	Total
Week 1	$\frac{9409}{53820}$ $=0.175$	$\begin{gathered} \frac{64}{4860} \\ =0.013 \end{gathered}$	$\begin{gathered} \frac{324}{5400} \\ =0.060 \end{gathered}$	$\begin{gathered} \frac{64}{5940} \\ =0.011 \end{gathered}$	$\begin{gathered} \frac{529}{14760} \\ =0.036 \end{gathered}$	$\begin{gathered} \frac{441}{11340} \\ =0.039 \end{gathered}$	$\begin{aligned} & \frac{25}{7020} \\ = & 0.004 \end{aligned}$	0.338
Week 2	$\begin{gathered} \frac{14400}{63687} \\ =0.226 \end{gathered}$	$\begin{aligned} & \frac{225}{5751} \\ & =0.039 \end{aligned}$	$\begin{gathered} \frac{144}{6390} \\ =0.023 \end{gathered}$	$\begin{gathered} \frac{169}{7029} \\ =0.024 \end{gathered}$	$\begin{aligned} & \frac{441}{17466} \\ & =0.025 \end{aligned}$	$\begin{gathered} \frac{289}{13419} \\ =0.022 \end{gathered}$	$\begin{gathered} \frac{225}{8307} \\ =0.027 \end{gathered}$	0.386
Week 3	$\begin{gathered} \frac{6724}{53820} \\ =0.125 \end{gathered}$	$\begin{gathered} \frac{16}{4860} \\ =0.003 \end{gathered}$	0	$\begin{gathered} \frac{144}{5940} \\ =0.024 \end{gathered}$	$\begin{gathered} \frac{1444}{14760} \\ =0.098 \end{gathered}$	$\begin{gathered} \frac{625}{11340} \\ =0.055 \end{gathered}$	$\begin{aligned} & \frac{361}{7020} \\ & =0.051 \end{aligned}$	0.356
Total	0.526	0.055	0.083	0.059	0.159	0.116	0.082	1.080

$$
\begin{aligned}
\chi^{2} & =n\left(\sum_{i=1}^{m} \sum_{j=1}^{k} \frac{f_{j}^{f_{j}}}{n, C_{j}}-1\right) \\
& =573(1.080-1) \\
& =573(.080) \\
& =45.84
\end{aligned}
$$

-The solution is approximate, but should be quite accurate if the smallest $n_{i} C_{i} / n \geq 5$.

Simplified Computation for the Special Case $m=2$. In this case, the tabulation would consist of only the first two rows of the schematic table shown in Data Sample 9-2, and

$$
\mathbf{x}^{2}=\sum_{j=1}^{k}\left[\frac{n_{1} n_{2}}{f_{1 j}+\overline{f_{2 j}}}\left(\frac{f_{1 j}}{n_{1}}-\frac{f_{2 j}}{n_{2}}\right)^{2}\right] .
$$

The degrees of freedom for x^{2} is $k-1$.
This form is convenient if the data are given in terms of proportions.

Further Simplification for $m=2$ When $n_{1}=n_{2}$. When there are only two rows, and the row totals are equal, then,

$$
x^{2}=\sum_{j=1}^{x} \frac{\left(f_{1 j}-f_{2 j}\right)^{2}}{f_{1 j}+f_{1 j}}
$$

with $k-1$ degrees of freedom.

Note: This shortcut has an analog for $m=3$ when $n_{1}=n_{2}=n_{3}$. For each category, take all three possible differences, sum the squares of the three differences, and divide by the sum of the three observations. Finally, sum this quantity over all of the categories, to obtain

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(f_{1 j}-f_{2 j}\right)^{2}+\left(f_{1 j}-f_{3 j}\right)^{2}+\left(f_{2 j}-f_{3 j}\right)^{2}}{f_{1 j}+f_{2 j}+f_{2 j}}
$$

9-3 A TEST OF ASSOCIATION BETWEEN TWO METHODS OF CLASSIFICATION

There are situations in which individual items are classified into categories in terms of two different criteria. For example, in a study of tire wear, see Swan, ${ }^{(1)}$ records of scrapping of tires were kept and tires were classified as front and rear, left and right. In another study of the cause of failure of vacuum tubes, see Day, ${ }^{(2)}$ the two criteria of classification were position in shell and type of failure. In each study the question was: Is there any association or relation between the criteria of classification?

Basically, this is a different problem than the problem of Paragraph 9-2, but it is discussed here because of the similarity in analysis.

We assume that we have a total of n individual items, and that each item is classified by criteria A and B into k and m categories, respectively. Let $f_{i j}$ be the number of individuals in the i th category of A and the j th category of B . Let R_{i} and C_{i} be the total numbers of individuals classified in the i th category of A and the j th category of B, respectively.

We tabulate these data as follows:

	Criterion B				Total
	1	2	\ldots	k	
< $\quad 1$	f_{11}	f_{12}	\ldots	$f_{1 k}$	R_{1}
¢	f_{21}	f_{22}	\cdots	$f_{2 k}$	R_{2}
\%		.			
0 m	$\dot{f}_{m 1}$	$f_{m 2}$	\ldots	$\dot{f}_{m k}$	R_{m}
Total	C_{1}	C_{2}	\ldots	C_{k}	n

The relevant question to be asked is: "Is there a relation or association between the two criteria of classification?"

Data Sample 9-3 - Vacuum Tube Failures

In the development of the VT fuze during World War II, a study was made of the causes of failure of vacuum tubes. The criteria of classification were: position in shell and type of failure. The following entries are the number of tubes that failed.

Position in Shell	Type of Failure			Total
	A	B	C	
Top block	75	10	15	$100=R_{1}$
Bottom block	40	30	10	$80=R_{2}$
Total	115	40	25	$180=n$

Adapted with permission from Review of the International Statistical Inetitule, Vol. 17, Nos. 3 and 4,

The question to be asked is: Is the type of tube failure associated with the position in the shell?

Procedure*

Example

(1) Choose α, the level of significance of the test.
(1) Let
$\alpha=.10$

$$
\begin{align*}
1-\alpha & =.90 \\
k & =3 \tag{2}
\end{align*}
$$

(2) Look up $x_{1-\alpha}^{2}$ for $(k-1)(m-1)$ degrees of freedom in Table A-3.

$$
\begin{aligned}
k & =3 \\
m & =2 \\
(k-1)(m-1) & =(2)(1) \\
& =2 \\
x_{900}^{2} \text { for } 2 \text { d.f. } & =4.61
\end{aligned}
$$

[^9]
Procedure

(3) Compute

$$
x^{2}=n\left(\sum_{i=1}^{m} \sum_{i=1}^{k} \frac{f_{i j}^{2}}{R i C_{i}}-1\right)
$$

That is, compute each row total R_{i}. Compute each column total C_{j}. For each cell in the table, square the number $f_{i j}$ and divide by the product $R_{i} C_{j}$. Sum the resulting values for all cells in the table; subtract one, and multiply by n.
(4) If $x^{2} \geq x_{1-\alpha}^{2}$, conclude that there is an association between the two criteria of classification; otherwise, that there is no reason to believe that such an association exists.

Example

(3) See Table 9-4 for a computational arrangement.

$$
\begin{aligned}
x^{2} & =180(1.1092-1) \\
& =19.66
\end{aligned}
$$

(4) Since x^{2} is greater than $x^{2} .90$, we conclude that the type of failure is associated with the position in the shell.

TABLE 9-4. TABLE OF $\frac{f_{i j}^{2}}{R_{i} C_{j}}$ - COMPUTATIONAL ARRANGEMENT
FOR DATA SAMPLE 9-3

Position in Shell	Type of Failure			Total
	A	B	C	
Top block	$5625 / 11500$ $=.4891$	$100 / 4000$ $=.0250$	$225 / 2500$ $=.0900$.6041
Bottom block	$1600 / 9200$ $=.1739$	$900 / 3200$ $=.2812$	$100 / 2000$ $=.0500$.5051
Total	.6630	.3062	.1400	1.1092

$$
\begin{aligned}
\chi^{2} & =n\left(\sum_{i=1}^{m} \sum_{i=1}^{k} \frac{f_{i j}^{2}}{R_{i} C_{j}}-1\right) \\
& =180(1.1092-1) \\
& =180(.1092) \\
& =19.66
\end{aligned}
$$

REFERENCES

1. A. W. Swan, "The x^{2} Significance Test - Expected vs. Observed Results," The Engineer, Vol. 186, No. 4849, p. 679, December 31, 1948.
2. B. B. Day, "Application of Statistical Methods to Research and Development in Engineering," Review of the International Statistical Institute, Vol. 17, Nos. 3 and 4, pp. 129-155, 1949.

CHAPTER 10

SENSITIVITY TESTING

10-1 EXPERIMENTAL SITUATION

The term "sensitivity test" is commonly applied to the following situation:

1. A test item will respond or not respond to a certain level of test stimulus (e.g., a shell will explode or will not explode when subjected to a certain shock).
2. The test is destructive to the item being tested, no matter what the outcome of the test. Either the item is destroyed completely, or the characteristics of the item are so changed that further tests are meaningless.
3. The percentage of items expected to respond (fail, explode, die) increases as the severity of the test is increased.

In this general situation, there are variable (and usually controllable) levels of test which can be applied; e.g., height of drop in a shock test, dosage of a poison in tests of insecticides, etc. We assume that each object has an associated critical level or threshold value. If the test stimulus applied equals or exceeds this critical level, the object responds (fails, explodes, dies). If the test stimulus applied does not equal or exceed this critical level, the object does not respond. For any particular object, the exact critical level cannot be determined. More than one object may be tested at a given test level, however, and inferences may be made about the distribution of critical levels in a population of objects from which the tested samples came.

The experimenter obtains data of the following type: objects were tested at the k stimulus levels $x_{1}, x_{2}, \ldots, x_{k}$; of the n_{i} objects tested at level x_{i}, r_{i} responded and $n_{i}-r_{i}$ did not respond.

An ordnance example might involve the detonation of samples of an explosive in powder form by dropping a specified weight on them from various heights. If the weight is dropped from a height below the sample's critical level (in this case, the lowest height at which the weight will cause the sample to explode), the sample does not explode, but the powder may be packed more tightly than before and, therefore, the test cannot be repeated at increased height. If the weight is dropped from above the sample's critical level, the sample is destroyed.

A partial list of the many ordnance problem areas in which tests of increased severity can be used is as follows.

1. Sensitivity to mechanical shock:
a. Impact tests of high explosives;
b. Impact tests of artillery fuzes;
c. Izod impact test of metals;
d. Izod impact test of plastics;
e. Impact or drop test of packing cases.
2. High explosives sensitivity to setback pressures.
3. Missile components sensitivity to acceleration.
4. Explosives sensitivity to friction.
5. Fuzes and explosives sensitivity to velocity.
6. Artillery fuzes and missile components sensitivity to voltage.
7. Pyrotechnic materials sensitivity to electric spark.
8. Explosives and missile components sensitivity to temperature.

The following ordnance example is used to illustrate the computational techniques.

Dafa Sample 10-1 - Peak-Volitage Test of Fuzes
Groups of fuzes are subjected to specified values of peak voltage.

For each group we observe the number which fire in less than a specified time. The observations are summarized as follows:

Peak Voltage	n	r	$p=r / n$
10.0	12	0	0
15.0	12	0	0
17.5	12	1	.08
20.0	13	2	.15
22.5	10	3	.30
25.0	13	6	.46
30.0	12	8	.67
35.0	13	9	.69
40.0	13	11	.85
50.0	11	10	.91
60.0	11	11	1.00

Several methods for collecting and analyzing such data are described and illustrated in this Chapter. Paragraphs $10-2$ and $10-3$ detail methods of analysis for the usual testing situation, where the levels of test are assigned before the test begins. Paragraph 10-4 details a special method applicable when the test levels can be different for each successive object tested, and can be changed easily during the course of the experiment. Paragraph $10-5$ discusses the situation where the test levels cannot be completely controlled.

Most of the methods involve assumptions about the distribution of the critical levels such as, for example, that the distribution is normal. The distribution of critical levels as measured in the original units (or natural units) may not meet these assumptions, but there may exist a transformation such that the distribution of the transformed values does meet the assumption. The logarithm of the original value is perhaps the most frequently used transformation.

When a transformation is used, all comments on the selection of testing levels and all computational instructions refer to the transformed values, not the original ones. Usually, however, it is desirable to state the final results of the analysis in terms of the original units. For most transformations (including the logarithmic), the percentile estimates* and their associated confidence intervals are converted into the original units easily. Suppose that the stimulus levels are originally measured in " y " units, and transformed values, e.g., $x=\log y$, are used in the computations. If \hat{x}_{P} is an estimate of x_{P}, as here defined,* and $[a, b]$ is a $1-\alpha$ confidence interval estimate of x_{P}, then antilog \hat{x}_{P} and [antilog a, antilog b] give, respectively, a point estimate and a $1-\alpha$ confidence interval estimate of ψ_{P}, the $(100 P)$ th percentile of the distribution of y values. This relationship does not hold for the means and standard deviations of the distributions. If m and s are estimates of the mean and standard deviation of the distribution of the x values, antilog m and antilog s should not be considered estimates of the (arithmetic) mean and standard deviation of the distributions of $\psi^{\prime} s . \dagger$

Note: In this Chapter, normal means that the expected proportion of items responding at a stimulus level x is given by

$$
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-(x-\mu)^{2}\left(2 x^{2}\right.} d x
$$

i.e., the probability that an individual item has a critical level or threshold value $\leq x$.

[^10]
10-2 KÄRBER METHOD OF ANALYSIS

This method gives simple nonparametric estimates of the mean and standard deviation of the distribution of critical levels. There are three situations for which this method might be chosen:
(1) the shape or mathematical form of the distribution is unknown;
(2) quick and easy procedures for routine laboratory calculations are desired; and,
(3) good initial estimates or first approximations are needed for iterative computational procedures; for example, the Exact Probit Solution given in Paragraph 10-3.2.

The Kärber method provides very good estimates of the mean and standard deviation of the distribution of critical levels in most laboratory situations. It must be remembered that the Kärber method gives an estimate of the mean of the distribution; the mean of the distribution is not equal to the 50th percentile (that level x_{0}
such that half the objects have critical levels less than x_{0} and half have critical levels greater than x_{0}) unless it is known that the distribution is symmetrical about its mean.

For further discussion of the Kärber method, see Cornfield and Mantel. (1)

Selection of Stimulus Levels. Order the stimulus levels to be used in the test by their magnitude - in other words, let $x_{1}<x_{2}<\ldots<x_{k}$. For the Kärber method to be applicable, x_{1} must be sufficiently low that there are no responses among the objects tested ($r_{1}=0$), and x_{k} must be sufficiently high that all objects tested respond ($r_{k}=n_{k}$). In other words, x_{1} and x_{k} are to be chosen so that they are likely to cover the entire range of critical levels in the population. In addition, it is preferable to have more (and consequently, more closely spaced) test levels with fewer objects tested at each level than to have only a few test levels and a large number of objects tested at each level.

Note: The following segments of Chapter 10 are paged and spaced as necessary to allow a facingpage arrangement of Procedures and Examples. Thus, Procedure steps appear on left-hand pages, and their associated Example steps appear on facing right-hand pages. The only exception is in Paragraph 10-3.3, where both the Procedure and Example are complete on the same page.

10-2.1 GENERAL SOLUTION FOR THE KÄRBER METHOD

10-2.1.1 Procedure. Prepare a table with nine columns headed $x, n, r, p,\left(p_{i+1}-p_{i}\right), a, a^{2}, d$, and d^{2}. (See Table 10-1.)
(1) In column 1, enter the stimulus levels used in the test from lowest to highest - that is, enter $x_{1}, x_{2}, \ldots, x_{k}$ where $x_{1}<x_{2}<\ldots<x_{k}$.
(2) In columns 2 and 3 , for each x_{i}, enter the corresponding n_{i} (number of objects tested at that level) and r_{i} (number of responses).
(3) Corresponding to each x, compute $p_{i}=\frac{r_{i}}{n_{i}}$ and enter this in column 4. (Remember that p_{1} must equal 0 and p_{k} must equal 1 if this solution is to be used.)
(4) Corresponding to each x_{i} (except x_{k}), compute $p_{i+1}-p_{i}$ and enter in column 5. There is no entry in this column corresponding to x_{k}.
(5) Corresponding to each x_{i} (except x_{k}), compute $a_{i}=\frac{x_{i+1}+x_{i}}{2}$, the midpoint of the interval from x_{i} to x_{i+1}. Tabulate the a_{i} values in column 6 . There is no entry in this column corresponding to x_{k}.
(6) Corresponding to each a_{i}, enter $a_{i}{ }^{2}$ in column 7.
(7) Corresponding to each x_{i} (except x_{k}), compute $d_{i}=x_{i+1}-x_{i}$, the length of the interval from x_{i} to x_{i+1}. Tabulate the d_{i} values in column 8. There is no entry in this column corresponding to x_{k}.
(8) Corresponding to each d_{i}, enter $d_{i}{ }^{2}$ in column 9.
(9) Compute $m=\Sigma\left(p_{i+1}-p_{i}\right) a_{i}$, the sum of products of corresponding entries in the 5 th and 6th columns. m is our estimate of the mean of the distribution of critical levels.
(10) Compute:
$S_{1}=\Sigma\left(p_{i+1}-p_{i}\right) a_{i}{ }^{2}, \begin{aligned} & \text { the sum of products of corresponding entries in the } 5 \text { th and } 7 \text { th } \\ & \text { columns; }\end{aligned}$
$S_{2}=\Sigma\left(p_{i+1}-p_{i}\right) d_{i}{ }^{2}, \begin{aligned} & \text { the sum of products of corresponding entries in the } 5 \text { th and } 9 \text { th } \\ & \text { columns; }\end{aligned}$
$s^{2}=S_{1}-m^{2}-\frac{S_{2}}{12}$.
s is our estimate of the standard deviation of the distribution of critical levels.

10-2.1.2 Example. The observations of Data Sample 10-1 are used to illustrate the Procedure. The problem is to estimate the mean and standard deviation of the distribution of critical values of peak voltage. In this example, we assume that nothing is known about the distribution of critical levels, and the computations are performed in natural units. If the distribution of critical levels were known or presumed to be log-normal, and if the Kärber method were being used to provide a quick and easy answer, or to provide initial estimates for the exact probit solution (Paragraph 10-3.2), then the computations would have been performed on the transformed values $x=\log$ (peak voltage).

The entries and calculations of Steps (1) through (8) of the Procedure are shown in columns 1 through 9 of Table 10-1. The calculations of Steps (9) and (10) are shown at the bottom of Table 10-1.

TABLE 10-1. KÄRBER METHOD OF ANALYSIS FOR FUZE PEAK VOLTAGE TEST DATA (SEE DATA SAMPLE 10-1)

Level of Stimulus, Peak Voltage x	Number of Objects Tested n	Number of Objects Responding r	$r / n=p$	$\mathrm{P}_{\mathrm{i}+1}$ - $\mathrm{Pi}^{\text {i }}$	0	\mathbf{a}^{2}	d	d^{2}
Col. (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
10.0	12	0	0	0	12.50	156.25	5.0	25.00
15.0	12	0	0	. 08	16.25	264.06	2.5	6.25
17.5	12	1	. 08	. 07	18.75	351.56	2.5	6.25
20.0	13	2	. 15	. 15	21.25	451.56	2.5	6.25
22.5	10	3	. 30	. 16	23.75	564.06	2.5	6.25
25.0	13	6	. 46	. 21	27.50	756.25	5.0	25.00
30.0	12	8	. 67	. 02	32.50	1056.25	5.0	25.00
35.0	13	9	. 69	. 16	37.50	1406.25	5.0	25.00
40.0	13	11	. 85	. 06	45.00	2025.00	10.0	100.00
50.0	11	10	. 91	. 09	55.00	3025.00	10.0	100.00
60.0	11	11	1.00					

Step (10): $S_{1}=\Sigma\left(p_{i+1}-p_{i}\right) a_{i}{ }^{2}$

$$
=1002.4051
$$

$$
S_{2}=\Sigma\left(p_{i+1}-p_{i}\right) d_{i}^{2}
$$

$$
=27.6250
$$

$$
s^{2}=S_{1}-m^{2}-\left(S_{2} / 12\right)
$$

$$
=1002.4051-880.9024-2.3021
$$

$$
=119.2006
$$

$$
s=10.92
$$

$=$ estimated standard deviation of critical peak voltage.

10-2.2 SIMPLIFIED SOLUTION (KÄRBER METHOD) FOR THE SPECIAL CASE WHEN TEST LEVELS are equally spaced and equal numbers of items are tested at each level

10-2.2.1 Procedure. Prepare a table with columns headed x, r, p, and cumulative p. (See Table 10-2.)
(1) In the x column, enter the test levels from lowest to highest, i.e., enter $x_{1}, x_{2}, \ldots, x_{k}$, where $x_{1}<x_{2}<\ldots<x_{k}$.
(2) Enter r_{i}, the number of objects responding at each x_{i}.
(3) Corresponding to each x_{i}, compute $p_{i}=r_{i} / n$. (n is the number of objects tested at each level and is the same for all levels). Remember that p_{1} must equal 0 and p_{k} must equal 1 for this solution to be used.
(4) In the last column, enter the cumulative p, i.e., at x_{i}, the sum of all p up to and including p_{i}.
(5) Let: $x_{k}=$ highest test level.
$d=$ interval between successive test levels.
$S_{1}=$ sum of column p.
$S_{2}=$ sum of column cumulative p.
(6) Compute $m=x_{k}-d\left(S_{1}-\frac{1}{2}\right)$.
(7) Compute $s^{2}=d^{2}\left(2 S_{2}-S_{1}-S_{1}^{2}-\frac{1}{12}\right)$.

10-2.2.2 Example. In order to demonstrate the computing procedure, the fuze data (Data Sample 10-1) have been changed arbitrarily, to have equal spacing in x and equal numbers of objects at each level. Assume that 12 objects were tested at each level, and that the responses were as shown in Table 10-2. Steps (1) through (4) of the Procedure consist of preparing and filling out the four columns of Table 10-2. Steps (5) through (7) are shown at the bottom of Table 10-2.

TABLE 10-2. SIMPLIFIED SOLUTION FOR THE KÄRBER METHOD OF ANALYSIS WHEN THE TEST LEVELS (x) ARE EQUALLY SPACED AND EQUAL NUMBERS OF OBJECTS (n) ARE TESTED AT EACH LEVEL

Peak Voltage \mathbf{x}	Number of Objects Responding \boldsymbol{r}	Proportion of Objects Responding $\mathbf{p}=\boldsymbol{r} / \mathbf{1 2}$	Cumulative Proportion
10.0	0	0	0
15.0	0	0	0
20.0	2	.17	.17
25.0	6	.50	.67
30.0	8	.67	1.34
35.0	9	.85	2.09
40.0	10	.83	2.92
45.0	10	.92	3.75
50.0	11	1.00	4.67
55.0	12	$S_{1}=5.67$	5.67
			$S_{2}=21.28$

$$
\begin{aligned}
& \text { Step (5) } \quad x_{k}=\text { highest test level } \\
& =55 \\
& d=\text { interval in } x \\
& =5 \\
& S_{\mathrm{I}}=\text { sum of } p \\
& =5.67 \\
& S_{2}=\text { sum of cumulative } p \\
& =21.28 \\
& \text { Step (6) } m=x_{k}-d\left(S_{1}-\frac{1}{2}\right) \\
& =55-5(5.67-.50) \\
& =29.15 \\
& =\text { mean value of critical peak } \\
& \text { voltage. } \\
& \text { Step (7) } \quad s^{2}=d^{2}\left(2 S_{2}-S_{1}-S_{1}^{2}-\frac{1}{12}\right) \\
& =25(42.56-5.67-32.15-.08) \\
& =116.50 \\
& s=10.79 \\
& =\text { estimated standard deviation of critical peak voltage. }
\end{aligned}
$$

10-3 PROBIT METHOD OF ANALYSIS

When it is assumed that the distribution of critical levels is of a particular type, methods for estimating the properties of the distribution are tailored to it. There are three types of distributions for sensitivity data that have been studied extensively in the statistical literature - the normal, the logistic, and the angular. Only the normal will be discussed in detail here because it is most frequently used in ordnance sensitivity testing. For the logistic, see Berkson ${ }^{(2)}$ and Hodges, ${ }^{(2)}$ for the angular, see Knudsen and Curtis ${ }^{(4)}$ and Fisher and Yates. ${ }^{(8)}$ When the stimulus levels used in the test are between the levels which cut off the lower and upper 10% of the distribution (most testing is performed in this range), any one of these types will fit the data nearly as well (or as poorly) as another, no matter what the true distribution of critical levels is. However, estimates of the parameters of the logistic or the angular distributions involve simpler computations than are given here for the normal; for example, see the technique described in Hodges ${ }^{\left({ }^{(2)}\right.}$ for the logistic curve.

The procedures described here assume that the distribution of critical values is normal - that is, for all x the proportion of objects which have critical levels between x and $x+d x$ is equal to the area of some normal curve between x and $x+d x$. In general, the procedures are not very sensitive to moderate departures from normality, provided one does not extrapolate beyond the range of the data.

The problem may be summarized as follows: k different levels $x_{1}, x_{2}, \ldots, x_{k}$ of a stimulus are applied to $n_{1}, n_{2}, \ldots, n_{k}$ objects, with $r_{1}, r_{2}, \ldots, r_{k}$ responses, respectively. Let $p_{i}=r_{i} / n_{i}$. The questions to be answered are:
(1) At what level m of the stimulus would half of similar objects be expected to respond? Or equivalently, under the assumption of normality, what is the mean of the critical levels of all such objects?
(2) Estimate the relation between the level of the stimulus and the proportion of objects responding.

Selection of Stimulus Levels. There are no simple cut-and-dried rules. A general guide can be given in terms of the purpose of the experiment:
(1) If the experimenter is interested in estimating a specific percentage point, the stimulus levels to be used in the test should be fairly close to that point, and should bracket the point. It is pertinent here to emphasize that extrapolations may lead to serious error, particularly if the experimenter attempts to estimate an extreme percentage point (say, the 5% or 99% point) from observations at stimulus levels which all lie to one side of that point.
(2) The test levels should cover a range sufficiently wide so that the proportion responding $\boldsymbol{p}_{\boldsymbol{i}}$ varies from near 0 to near 1 , if:
(a) One is interested in the relation between stimulus level and percentage response over the entire range; or,
(b) One is interested in estimating the standard deviation of the distribution of critical levels (or equivalently, the slope of the regression line in the probit solution); or,
(c) One is interested in testing the assumption of normality.

Basis of the Method. If the critical levels are normally distributed (with unknown mean μ and standard deviation σ), then Y_{i}^{\prime}, which can be determined from tables of the normal integral, is a linear function of the corresponding stimulus level x_{i}.
Y_{i}^{\prime} is determined from:

$$
p_{i}=\int_{-\infty}^{\gamma_{i}^{\prime}-5} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

The " 5 " in the upper limit of the integral is introduced for computational convenience.

Least squares procedures are used to estimate the best straight line passing through the k points (Y_{i}^{\prime}, x_{i}). The formulas take account of the fact that the points do not have equal weights. The line will be expressed as

$$
Y_{p}=5+b(x-m)
$$

where m and b are estimated from the data, x is the stimulus level, and Y_{p} is related to p, the probability that an object's critical level is $\leq x$, by the formula

$$
\int_{-\infty}^{y_{p}-\sigma} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2} d y=p
$$

m is an estimate of μ (the mean and 50th percentile of the underlying normal distribution), and b is an estimate of $1 / \sigma$ (the reciprocal of the standard deviation of the critical values).

Solutions Described. We describe two methods of solution: the graphical probit method in Paragraph 10-3.1; and the computational (exact) probit method in Paragraph 10-3.2. The graphical method is much simpler, and is sufficiently precise for many purposes. When a more accurate solution is desired, the graphical method furnishes a first approximation for the exact probit method.

10-3.1 GRAPHICAL PROBIT SOLUTION

10-3.1.1 Procedure. To facilitate the calculations, prepare a table with nine columns, headed respectively, $x, n, r, p, Y^{\prime}, Y, W, n W, n W x$. (See Table 10-3.)
(1) In column x, enter the levels $x_{1}, x_{2}, \ldots, x_{k}$ used in the experiment.
(2) In columns n and r, record the values of n_{i} and γ_{i}, corresponding to x_{i}.
(3) In column p, compute the respective proportions responding, $p_{i}=r_{i} / n_{i}$.
(4) Use Table A-2 to obtain z_{p} corresponding to p. In column Y^{\prime}, enter $Y^{\prime}=z_{p}+5$ corresponding to each p.
(5) Plot Y^{\prime} as ordinate against x as abscissa, on ordinary rectangular coordinate graph paper. See Figure 10-1. If probit paper* is available, it can be used, and the column Y^{\prime} is omitted from the table. The percentages responding at each x (\% response $=100 p_{i}$) are plotted on probit paper, using the left vertical scale; the right vertical scale gives the corresponding z_{p}, and hence the corresponding Y minus 5 .
(6) Whichever graph paper is used, draw a straight line by eye to fit the k points. Only vertical deviations from the line are to be considered in fitting; and points for which the value of Y^{\prime} is outside the interval 2.5 to 7.5 may almost be disregarded unless n_{i} for those points is much larger than for points inside the interval. (Points outside this interval are beyond the range of the probit paper).
(7) For each value of x plotted on the graph, read the ordinate Y of the line (on probit scale if on probit paper), and record the values in the Y column of the table. \dagger

[^11]10-3.1.2 Example. The observations of Data Sample $10-1$ were plotted on normal probability paper, using both $x=$ peak voltage and $x=\log _{10}$ (peak voltage), as abscissa. The data plot more nearly as a straight line when transformed using the equation $x=\log _{10}$ (peak voltage); therefore, all of the probit method calculations are done on the transformed variable. (See Table 10-3.)

Steps (1) through (4) of the Procedure result in filling in the first 5 columns of Table 10-3 (through Y^{\prime}).

TABLE 10-3. GRAPHICAL PROBIT SOLUTION USING DATA SAMPLE 10-1

Level of Stimuius logiopeak Voltage \mathbf{x}	Number of Objects Tesfed n	Number of Oblects Respond- ing \boldsymbol{n}	Proportion of Objects Respond- ing $\mathbf{p = r / n}$	\mathbf{Y}^{\prime}	\mathbf{Y}	\mathbf{W}	$n W$	$n W \mathbf{x}$
1.0000	12	0	0	-	2.0	.015	0.180	0.180
1.1761	12	0	0	-	3.2	.180	2.160	2.540
1.2430	12	1	.08	3.59	3.7	.336	4.032	5.012
1.3010	13	2	.15	3.96	4.1	.471	6.123	7.966
1.3522	10	3	.30	4.48	4.5	.581	5.810	7.856
1.3979	13	6	.46	4.90	4.8	.627	8.151	11.394
1.4771	12	8	.67	5.44	5.3	.616	7.392	10.919
1.5441	13	9	.69	5.50	5.8	.503	6.539	10.097
1.6021	13	11	.85	6.04	6.2	.370	4.810	7.706
1.6990	11	10	.91	6.34	6.9	.154	1.694	2.878
1.7782	11	11	1.00	-	7.4	.062	0.682	1.213

$$
\begin{aligned}
\Sigma n W & =47.573 \\
\Sigma n W x & =67.761
\end{aligned}
$$

Steps (5) through (7) - Plot Y^{\prime} against x on ordinary graph paper, as shown in Figure 10-1. A straight line is fitted to the plotted points by eye. The ordinate Y of the line is read off at each observed x, and is entered in the Y column of Table 10-3. *

[^12]
10-3.1.1 Procedure (Cont)

Note: Before proceeding further, it is often desirable to determine whether the line is an adequate representation of the data. The procedure given in Paragraph 10-3.3 may be used for this purpose.
(8) Calculate b, the slope of the fitted line, as the increase in Y for a unit increase in x. Mark two convenient points, c and d, on the line. Read off the corresponding values for both x and Y.

$$
\begin{array}{ll}
x_{c}= & Y_{c}= \\
x_{d}= & Y_{d}=
\end{array}
$$

Then $b=\frac{Y_{d}-Y_{e}}{x_{d}-x_{c}}$. Read of m, the value of x corresponding to $Y=5 . \quad$ (Probit $=5$, on probit paper). We may then write the equation of the line as $Y=5+b(x-m)$.
(9) The relation between a given level of stimulus x^{\prime} and the proportion of individuals responding p^{\prime} is estimated by the relationship $z_{p^{\prime}}=b\left(x^{\prime}-m\right)$ where the p corresponding to $z_{p^{\prime}}$ is given in Table A-1. (Or, this relationship can be read directly from the straight line drawn on probit paper.)

10-3.1.2 Example (Cont)

Figure 10-1. Probit regression line (fitted by eye).

Step (8) - The slope b of the line is calculated as follows:

$$
\begin{aligned}
& \begin{array}{l}
x_{c}=1.3 \\
x_{d}=1.6
\end{array} \\
& \qquad \begin{aligned}
b & =\frac{Y_{d}-Y_{d}}{x_{d}-x_{c}} \\
& =\frac{6.0-4.0}{0.3} \\
& =7 \\
m & Y_{d}=6.0
\end{aligned} \\
& \\
& m \text { (the value of } x \text { at } Y=5)=1.43 .
\end{aligned}
$$

Equation of the line:

$$
\begin{aligned}
Y & =5+b(x-m) \\
& =5+7 x-10.01 \\
& =-5.01+7 x
\end{aligned}
$$

Step (9) - If we wish to estimate the proportion of individuals responding at a peak voltage $=18$, for example, then:

$$
\begin{aligned}
x^{\prime} & =\log _{10} 18 \\
& =1.255 \\
z_{p^{\prime}} & =b\left(x^{\prime}-m\right) \\
& =7(1.255-1.43) \\
& =8.785-10.01 \\
& =-1.22 \\
p^{\prime} & =.11, \text { the proportion which may be expected to respond at } P V=18 .
\end{aligned}
$$

10-3.1.1 Procedure (Cont)

m is our estimate of μ, the stimulus level at which we would expect half of similar individuals to respond. A $(1-\alpha)$ confidence interval estimate of μ may be computed as follows:
(10) Look up $z_{1-\alpha / 2}$ in Table A-2.
(11) In the column W, corresponding to each value of Y, enter the value of W obtained from Table A-18.
(12) Corresponding to each value of x, compute $n W$ and $n W x$, and enter them in the last columns of the table.
(13) Compute $\Sigma n_{i} W_{i}$ and $\Sigma n_{i} W_{i} x_{i}$, the totals for the last two columns.
(14) Compute $s_{m}^{2}=\frac{1}{b^{2}}\left(\frac{1}{\Sigma n W}\right)$, the estimate of the variance of m. This estimate is slightly too small on the average, but the bias is negligible provided that $\bar{x}=\Sigma n W x / \Sigma n W$ is approximately equal to m. If the two differ considerably, then the quantity

$$
S_{x x}=\Sigma n_{i} W_{i} x_{i}^{2}-(\Sigma n W x)^{2} / \Sigma n W
$$

should be computed, and our estimate of the variance of m becomes

$$
s_{m}^{2}=\frac{1}{b^{2}}\left(\frac{1}{\Sigma n W}\right)+\frac{(m-\bar{x})^{2}}{S_{x x}}
$$

(15) A $(1-\alpha)$ confidence interval estimate of μ is the interval from $m-z_{1-\alpha / 2} s_{m}$ to $m+z_{1-\alpha / 2} s_{m}$.

10-3.1.2 Example (Cont)

Steps (10) through (15) - A 95% confidence interval estimate of μ (the level at which we would expect half of the individuals to respond) is obtained as follows:

Columns $W, n W$, and $n W x$, are computed and entered in Table 10-3.

Compute:

$$
\begin{aligned}
\Sigma n W & =47.573 \\
\Sigma n W x & =67.761 \\
x & =\frac{\Sigma n W x}{\Sigma n W} \\
& =\frac{67.761}{47.573} \\
& =1.424 \\
s_{m}^{2} & =\frac{1}{b^{2}} \frac{1}{\Sigma n W} \\
& =\frac{1}{49}\left(\frac{1}{47.573}\right) \\
& =\frac{1}{2331.077} \\
& =.000429 \\
s_{m} & =.0207
\end{aligned}
$$

(Since $\bar{x}=1.424$, approximately equal to $m(=1.43)$, we do not bother to use the more complicated formula for s_{m}^{2}.)
Let: $\quad \alpha=.05$
$z_{1-\alpha / 2}=1.96$
A 95% confidence interval estimate of μ is the interval $m \pm 1.96 s_{m}=1.43 \pm .04$, the interval from 1.39 to 1.47 .

10-3.2 EXACT PROBIT SOLUTION

The graphical solution very often is adequate, but complications in the data may make this solution less satisfactory in some cases and an arithmetic technique may be necessary. For example, the points may be too irregular for us to place any confidence in a line drawn by eye; or, the weights ($n W$), that should be attached to each point, may be so different as to make it difficult to adjust for them visually.

10-3.2.1 Procedure. The probit solution given here involves a series of successive approximations, the first of which is given by the graphical probit solution or by the Kärber method described in Paragraph 10-2. For the exact solution, we need a table with ten columns headed, respectively, $x, n, r, p, Y, W, n W, n W x, y, n W y$. (See Table 10-4).
(1) In column x, enter the levels $x_{1}, x_{2}, \ldots, x_{k}$ used in the experiment.
(2) In columns n and r, record the values of n_{i} and r_{i}, corresponding to x_{i}.
(3) In column p, compute the respective proportions responding $p_{i}=r_{i} / n_{i}$.
(4) Obtain values for column Y by either method (a) or (b):
(a) Follow instructions (1) through (7) of the graphical probit solution in Paragraph 10-3.1 to obtain the Y-values. These then are tabulated in the table for the exact solution.
(b) Follow instructions (1) through (10) of the Kärber method described in Paragraph 10-2 to compute m and s. For initial estimates, take $m_{0}=m, b_{0}=\frac{1}{s}$; and corresponding to each x_{i}, use the equation $Y_{i}=5+b_{0}\left(x_{i}-m_{0}\right)$ to compute the values for the Y column of the table for the exact solution. Unless n is very large, 1 decimal in Y is sufficient. If 2 decimals in Y should be required, Tables A-18 and A-19 in ORDP 20-114 of this Handbook are not convenient; consult Finney ${ }^{(6)}$ for more extensive tables.
(5) In column W, corresponding to each value of Y, enter the value of W obtained from Table A-18.
(6) Corresponding to each value of x, compute $n_{i} W_{i}$ and $n_{i} W_{i} x_{i}$, and enter them in the $n W$ and $n W x$ columns, respectively, of the table.
(7) Corresponding to each "expected probit" Y in the Y column, use Table A-19 to compute the "working probit" y, as follows:

$$
\begin{aligned}
& \text { For } Y \leq 5.0, y=y_{0}+p\left(\frac{1}{Z}\right) \\
& \text { For } Y \geq 5.0, y=y_{100}-(1-p)\left(\frac{1}{Z}\right)
\end{aligned}
$$

where, for each Y, p is the corresponding entry in the p column of the Table, and Table A- 19 gives the values for y_{0} (or y_{100}) and $\frac{1}{Z}$. Tabulate the values in column y.
(8) For each value of y, calculate the value $n_{i} W, y_{i}$, and enter it in column $n W y$.
(9) Compute:

$$
\begin{aligned}
& \Sigma n_{i} W_{i}, \text { the sum of column } n W \\
& \Sigma n_{i} W_{i} x_{i}, \text { the sum of column } n W x \\
& \Sigma n_{i} W_{i} U_{i}, \text { the sum of column } n W y \\
S_{1}= & \Sigma n_{i} W_{i} x_{i}^{2}, \text { the sum of the products of elements in columns } x \text { and } n W x . \\
S_{2}= & \Sigma n_{i} W_{i} x_{i} y_{i}, \text { the sum of products of corresponding elements in columns } n W x \text { and } y . \\
S_{8}= & \Sigma n W y^{2} \\
S_{x z}= & S_{1}-(\Sigma n W x)^{2} / \Sigma n W \\
S_{x y}= & S_{2}-(\Sigma n W x)(\Sigma n W y) / \Sigma n W \\
S_{v v}= & S_{s}-(\Sigma n W y)^{2} / \Sigma n W
\end{aligned}
$$

10-3.2.2 Example. The observations of Data Sample 10-1 are used for illustration, and the line fitted graphically in Paragraph 10-3.1 is used as the first approximation.

Steps (1) through (3) consist of filling in the first four columns of Table 10-4.
Step (4) - The Y values entered are copied from the Y column of the graphical probit solution (Table 10-3). These are the ordinates of the line at each observed x.
Step (5) through (8) - fill in the remaining columns of Table 10-4.

TABLE 10-4. EXACT PROBIT SOLUTION

$\log _{10} P V$ x	No. of Objects Tested n	No. of Objects Responding r	Proportion of Objocts Respond- $\stackrel{\text { ing }}{=r / n}$	Expected Probit Y	W	nW	$n W x$	Working Probit y	$n W y$
1.0000	12	0	0	2.0	. 015	0.180	0.180	1.695	0.305
1.1761	12	0	0	3.2	. 180	2.160	2.540	2.745	5.929
1.2430	12	1	. 08	3.7	. 336	4.032	5.012	3.602	14.523
1.3010	13	2	. 15	4.1	. 471	6.123	7.966	3.972	24.321
1.3522	10	3	. 30	4.5	. 581	5.810	7.856	4.476	26.006
1.3979	13	6	. 46	4.8	. 627	8.151	11.394	4.900	39.940
1.4771	12	8	. 67	5.3	. 616	7.392	10.919	5.436	40.183
1.5441	13	9	. 69	5.8	. 503	6.539	10.097	5.461	35.709
1.6021	13	11	. 85	6.2	. 370	4.810	7.706	6.020	28.956
1.6990	11	10	. 91	6.9	. 154	1.694	2.878	5.966	10.106
1.7782	11	11	1.00	7.4	. 062	0.682	1.213	7.766	5.296

$$
\text { Step (9) } \begin{aligned}
\Sigma n W & =47.573 \\
\Sigma n W x & =67.761 \\
\Sigma n W y & =231.274 \\
S_{1} & =\Sigma n W x^{2} \\
& =97.4232 \\
S_{2} & =\Sigma n W x y \\
& =335.4415 \\
S_{x z} & =S_{1}-(\Sigma n W x)^{2} / \Sigma n W \\
& =0.9073 \\
S_{x y} & =S_{9}-(\Sigma n W x)(\Sigma n W y) / \Sigma n W \\
& =6.0244
\end{aligned}
$$

10-3.2.1 Procedure (Coni)

(10) Compute:

$$
\begin{aligned}
& b=S_{x y} / S_{x x} \\
& x=\Sigma n W x / \Sigma n W \\
& y=\Sigma n W W_{y} / \Sigma n W
\end{aligned}
$$

The equation of the probit regression line is

$$
Y=y+b(x-\dot{x})
$$

The procedure for obtaining the best line is an iterative one, and in theory we should repeat the above procedure until the same equation is obtained for two successive iterations. Practically, we often may be able to see that an additional iteration will not change the equation materially.

Next Iteration:

The procedure for obtaining an additional iteration is as follows: Make a table with nine columns headed $x, n, p, Y, W, n W, n W x, y, n W y$. (See Table 10-5.)
(11) Copy the three columns, x, n, p from Table 10-4.
(12) For each value of x, compute the corresponding value of Y, using the equation

$$
Y=\bar{y}+b(x-\bar{x})
$$

calculated in the previous iteration.
(13) Follow instructions of steps (5) through (10).

To test whether the line is a good fit to the data, use the test procedure outlined in Paragraph 10.3.3, using the \bar{y}, \bar{x}, and b obtained from the last iteration performed, to compute a new

$$
Y=9+b(x-x)
$$

for each value of x used in the test.

10-3.2.2 Example (Cont)

$$
\begin{array}{ll}
\text { Step (10)- } \quad \begin{array}{l}
x=\Sigma n W x / \Sigma n W=1.4244 \\
\bar{y}
\end{array}=\Sigma n W y / \Sigma n W=4.8615 \\
b=S_{x v} / S_{x x}=6.640
\end{array}
$$

The equation of the probit regression line is

$$
Y=\bar{y}+b(x-\bar{x})=-4.5965+6.640 x
$$

Next Iteration. An additional iteration is shown in Table 10-5. The first three columns (x, n, p) of Table $10-5$ are copied from Table 10-4. The Y column is calculated by substituting observed values of x in the equation shown in Step (10) above. The remaining columns of Table 10-5 are filled in as described in Steps (5) through (8) of the Procedure.

TABLE 10-5. EXACT PROBIT SOLUTION (SECOND ITERATION)

The equation of the probit regression line is:

$$
Y=\bar{y}+b(x-\bar{x})=-4.6812+6.703 x .
$$

Using this equation to calculate values of Y, the Y values obtained differ very little from those obtained on the first iteration, and no further iterations are considered necessary.

10-3.3 TESTING WHETHER THE LINE IS AN ADEQUATE REPRESENTATION OF THE DATA

10-3.3.1 Procedure. To facilitate the calculations, we require a table with ten columns: x, n, $r, Y, P, n P, 1-P, n P(1-P), r-n P$, and $\frac{(r-n P)^{2}}{n P(1-P)}$. See Table 10-6.
(1) Choose α, the level of significance of the test. In columns x, n, r, copy the values from the probit solution table. If the graphical probit solution was used, copy the Y column of that table as the Y column here. If the exact probit solution was used, use the \bar{y}, \vec{x}, and b obtained from the last iteration performed to compute, corresponding to each x,

$$
Y=y+b(x-\bar{x})
$$

and tabulate these values in the Y column here.
(2) Look up $x_{1-\alpha}^{2}$ for $k-2$ degrees of freedom in Table A-3. $k=$ number of rows in the table (see Table 10-6).
(3) Put $z_{P}=Y-5$, and for each Y, using Table A-1, obtain the value of P corresponding to z_{P}.
(4) Compute the required quantities in the last columns of the table.
(5) Obtain $\chi^{2}=\sum_{i=1}^{k} \frac{\left(r_{i}-n_{i} P_{i}\right)^{2}}{n_{i} P_{i}\left(1-P_{i}\right)}$, the sum of the values in the last column.
(6) If $x^{2} \leq x_{1-\infty}^{2}$, decide that there is no reason to believe that the line does not adequately represent the data. If $\chi^{2}>x_{1-a}^{2}$, decide that the straight line does not adequately describe the relation between stimulus and response. If a significant value of χ^{2} is obtained, check to see whether an unusually large contribution to x^{2} comes from one class or from a few classes with very small expected values, i.e., small $n P$ or $n(1-P)$. If this is the case, several such classes may be combined (for details, see Finney ${ }^{(6)}$).
10-3.3.2 Example. The test of the final probit equation is shown in Table 10-6. If $\alpha=.05$, we find in Step (2) that $\chi_{.05}^{2}$ for 9 d.f. $=16.92$. In Step (5), the calculated $\chi^{2}=2.37$. Since this is not larger than $\chi^{2}{ }_{95}$, we accept the fitted line.

TABLE 10-6. TEST OF LINEARITY - FINAL PROBIT EOUATION

$l_{l_{10} P V}$ x	\boldsymbol{n}	\boldsymbol{r}	\boldsymbol{P}	$n P$	$\mathbf{T}-P$	$n P(1-P)$	$r-n P$	$\frac{(r-n P)^{2}}{n P(1-P)}$	
1.0000	12	0	2.02	.0014	0.02	.9986	0.02	-.02	.02
1.1761	12	0	3.20	.04	0.48	.96	0.46	-.48	.50
1.2430	12	1	3.65	.09	1.08	.91	0.98	-.08	.01
1.3010	13	2	4.04	.17	2.21	.83	1.83	-.21	.02
1.3522	10	3	4.38	.27	2.70	.73	1.97	.30	.05
1.3979	13	6	4.69	.38	4.94	.62	3.06	1.06	.37
1.4771	12	8	5.22	.59	7.08	.41	2.90	.92	.29
1.5441	13	9	5.67	.75	9.75	.25	2.44	-.75	.23
1.6021	13	11	6.06	.86	11.18	.14	1.57	-.18	.02
1.6990	11	10	6.71	.96	10.56	.04	0.42	-.56	.75
1.7782	11	11	7.24	.99	10.89	.01	0.11	+.11	.11

$$
x^{2}=2.37
$$

10-3.4 USING THE PROBIT REGRESSION LINE FOR PREDICTION

The procedures which follow describe how to use the probit regression line for estimation, including confidence interval estimates. If a nonsignificant value of χ^{2} was obtained in the test of linearity, Paragraph 10-3.3, the formulas given here are directly applicable. If a significant value of χ^{2} was obtained, these formulas do not apply without adjustment. For details, see Finney. ${ }^{(6)}$

10-3.4.1 Level of Stimulus x^{\prime} Af Which a Specifed Proportion P^{\prime} of the Individuais Would Be Expected To Respond.

Single Estimate

(1) Choose P^{\prime}
(2) Use Table A-2 to find z_{P} corresponding to P^{\prime}
(3) Let $Y^{\prime}=5+z_{P^{\prime}}$
(4) Compute $x^{\prime}=\tilde{x}+\left(Y^{\prime}-\bar{y}\right) / b$.

This x^{\prime} is the value at which we would expect a proportion P^{\prime} of the individuals to respond.

Confidence Interval Estimate

For a confidence interval estimate, see Finney. ${ }^{(0)}$
10-3.4.2 Level of Stimulus x^{\prime} At Which 50% of the Individuals Would Be Expected To Respond.
The estimate of μ, the mean and the 50 th percentile of the distribution of critical levels, is

$$
m=x+\frac{1}{b}(5-y)
$$

A ($1-\alpha$) confidence interval estimate of μ is computed as follows:*
(1) Look up $z_{1-\alpha / 2}$ in Table A-2.
(2) Compute

$$
s_{m}^{2}=\frac{1}{b^{2}}\left[\frac{1}{\Sigma n W}+\frac{(m-x)^{2}}{S_{x x}}\right]
$$

(3) A $(1-\alpha)$ confidence interval estimate of μ is the interval from $m-z_{1-\alpha / 2} s_{m}$ to $m+z_{1-\alpha / 2} s_{m}$.
10-3.4.3 Proportion of individuals Which Would Be Expected To Respond At a Specifed Levei of Stimulus. The probit regression equation $Y=\bar{y}+b(x-z)$ gives the expected value of $Y\left(Y^{\prime}\right)$ at a specified value of $x\left(x^{\prime}\right)$.

The variance of Y, s_{Y}^{2}, is given by the formula

$$
s_{Y}^{2}=\frac{1}{2 n W}+\frac{\left(x^{\prime}-\bar{x}\right)^{2}}{S_{x \not}}
$$

A ($1-\alpha$) confidence interval estimate for Y at a single specified value of x is given by the formula

$$
Y^{\prime} \pm t_{1-a / 2} s_{Y}
$$

If we want to make confidence interval statements for several values of x using the same fitted line, however, we must use the wider interval given by

$$
Y^{\prime} \pm \sqrt{2 F} s_{Y}
$$

as discussed in Chapter 5 (see Paragraph 5-4.1.2), ORDP 20-110.

[^13]
10-4 THE UP-AND-DOWN DESIGN

The up-and-down design, sometimes called the "Bruceton" method, is one of a class of designs that are called staircase methods because the test level for the next trial or group of trials depends on the results of the preceding trial or group of trials. In the up-and-down design, only one object is tested at a time. Starting at a level where about 50% responses are expected, the test level is moved up one level after each non-response, and down one level after each response. The experiment is concluded after a specified number of trials.

The use of the up-and-down design, of course, presumes that it is convenient to test one object at a time and all staircase methods presume that the results of test can be known immediately, and that the test level can be adjusted quickly and easily.

If x 's represent responses, and o 's represent non-responses, then the pattern of the experiment looks like this:

The up-and-down design and its analysis are described in detail here. The Procedure assumes normal distribution of the critical levels and, in such a case, gives a more accurate estimate of the mean (which also is the 50th percentile) than any other method described in this Chapter. For further discussion of the up-and-down method, see Brownlee, Hodges, and Rosenblatt, ${ }^{(7)}$ Dixon and Massey, ${ }^{(8)}$ Dixon and Mood, ${ }^{(9)}$ For a completely worked-out example of an ordnance application, see Culling. ${ }^{(10)}$ Other staircase methods are described in Anderson, McCarthy, and Tukey. ${ }^{(11)}$

The up-and-down design requires initial guesses of the mean and standard deviation of the distribution of critical levels ($x_{0}=$ guess for mean, $d=$ guess for standard deviation). The method of estimation makes some allowance for a poor initial guess of the mean x_{0}, and, in fact, is a particularly useful way of estimating the mean when the experimenter has little idea what the true mean is. So long as the initial guess for the standard deviation is between half and twice the true standard deviation of the distribution, the method of estimation described is appropriate.

Determine equally-spaced test levels, $\ldots, x_{-3}, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, x_{3}, \ldots$, so that the distance between two successive levels is $d . \quad\left(d=x_{1}-x_{0}=x_{0}-x_{-1}\right.$, etc.). The first object is tested at level x_{0}; if it "responds," the second object is tested at level x_{-1}; if it "does not respond," the second object is tested at level x_{1}. Similarly, each succeeding object is tested at the level one step below the level used in the preceding test if it resulted in a "response," or, at the level one step above the level used in the preceding test if it resulted in "no response."

Procedure. Count the total number $R=\Sigma r_{i}$ of responses, and let $N=\Sigma n_{i}$ be the total number of objects tested. If $R \leq \frac{N}{2}$, perform steps (1) through (6); if $R>\frac{N}{2}$, perform steps (1) through (6^{\prime}).

When $R \leq \frac{N}{2}$:
(1) Prepare a four-column table with columns headed y, r, j, j^{2}.
(2) Let: $y_{0}=$ the lowest level at which a "response" occurred
$y_{1}=$ the level one step above y_{0}
$y_{2}=$ the level two steps above y_{0}
$y_{k}=$ the highest level at which a 'response" occurred.
Enter $y_{0}, y_{1}, \ldots, y_{k}$ in column y.
(3) In column r, corresponding to each y_{j}, enter $r_{j}=$ the number of "responses" at level y_{j}.
(4) Enter the numbers $0,1, \ldots, k$, in column j.
(5) Corresponding to each entry in column j, enter its square in column j^{2}.
(6) Compute:
$A=\Sigma j r_{j}$, the sum of products of corresponding entries in columns r and j.
$B=\Sigma j^{2} r_{j}$, the sum of products of corresponding entries in columns r and j^{2}.

$$
\begin{aligned}
m & =\psi_{0}+d\left(\frac{A}{R}-\frac{1}{2}\right) \\
\mathrm{s} & =1.620 d\left(\frac{R B-A^{2}}{R^{2}}+.029\right)
\end{aligned}
$$

When $R>\frac{N}{2}$:
(1') Prepare a four-column table with columns headed $y, n-r, j, j^{2}$.
$\left(2\right.$ ') Let: $\boldsymbol{y}_{0}=$ the lowest level at which "no response" occurred
$u_{1}=$ the level one step above y_{0}
$y_{2}=$ the level two steps above y_{0}
$\boldsymbol{\nu}_{k}=$ the highest level at which "no response" occurred.
Enter $y_{0}, y_{1}, \ldots, y_{k}$, in column y.
(3') In column $n-r$, corresponding to each y_{j}, enter $n_{j}-r_{j}$, the number of "no response" at level y_{j}.
(4') Enter the numbers $0,1, \ldots, k$, in column j.
(5') Corresponding to each entry in column j, enter its square in column j^{2}.
(6) Compute:
$A=\Sigma j\left(n_{j}-r_{j}\right)$, the sum of products of corresponding entries in columns $n-r$ and j
$B=\Sigma j^{2}\left(n_{j}-r_{j}\right)$, the sum of products of corresponding entries in columns $n-r$ and j^{2}.

$$
\begin{aligned}
m & =y_{0}+d\left(\frac{A}{N-R}+\frac{1}{2}\right) \\
s & =1.62 d\left\{\frac{(N-R) B-A^{2}}{(N-R)^{2}}+.029\right\}
\end{aligned}
$$

m is our estimate of the mean (and the 50th percentile) of the distribution of critical levels.
s is our estimate of the standard deviation of the distribution of critical levels.

10-5 SENSITIVITY TESTS WHEN THE STIMULUS LEVELS CANNOT BE CONTROLLED

The methods discussed in Paragraphs $10-2$ through 10-4 assumed that the stimulus levels can be preassigned and accurately controlled. Although this is the usual case in experimental work, there are times when conditions cannot be sufficiently well controlled to insure that the level used is exactly the one that the experimenter intended to use. For example: he may intend to fire a group of 10 projectiles, each at a velocity of $2000 \mathrm{f} / \mathrm{s}$; but, because of random variation in velocities for a fixed charge, the actual observed velocities range from 1975 to $2020 \mathrm{f} / \mathrm{s}$.

In such a case, when the level used in the test can be measured directly, the experimenter has two choices for analyzing the data. If the actual levels used cluster so closely about the intended levels that:
(1) there is no overlapping between two of these clusters;
and,
(2) the range of any cluster is so small that the probability of "response" at any of the actual levels differs little from the probability of response at the intended level;
then the experimenter may simply assume that each test was conducted at the intended level, and use the methods already presented in Paragraphs 10-2 through 10-4. However, if one or both of these conditions are not met, none of the methods described in this Chapter are valid. Techniques for handling such data when the underlying distribution is normal are described in Golub and Grubbs. (12)

REFERENCES

1. J. Cornfield and N. Mantel, 'Some New Aspects of the Application of Maximum Likelihood to the Calculation of the Dosage Response Curve," Journal of the American Statistical Association, Vol. 45, pp. 181-209, 1950.
2. J. Berkson, "A Statistically Precise and Relatively Simple Method of Estimating the Bio-assay with Quantal Response, Based on the Logistic Function," Journal of the American Statistical Association, Vol. 48, pp. 565-599, 1953.
3. J. L. Hodges, Jr., "Fitting the Logistic by Maximum Likelihood," Biometrics, Vol. 14, No. 4, pp. 453-461, December 1958.
4. L. F. Knudsen and J. M. Curtis, "The Use of the Angular Transformation in Biological Assays," Journal of the American Statistical Association, Vol. 42, pp. 282296, 1947.
5. R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural, and Medical Research, Hafner Publishing Co., New York, N.Y., 5th ed., 1957.
6. D. J. Finney, Probit Analysis, Cambridge University Press, 1947.
7. K. A. Brownlee, J. L. Hodges, Jr., and M. Rosenblatt, "The Up-and-Down Method
with Small Samples," Journal of the American Statistical Association, Vol. 48, pp. 262-277, 1953.
8. W. J. Dixon and F. J. Massey, Jr., Introduction to Statistical Analysis (2d ed.), Chapter 19, "Sensitivity Experiments," McGraw-Hill Book Co., Inc., New York, N.Y., 1957.
9. W. J. Dixon and A. M. Mood, "A Method for Obtaining and Analyzing Sensitivity Data," Journal of the American Statistical Association, Vol. 43, pp. 109-126, 1948.
10. H. P. Culling, "Statistical Methods Appropriate for Evaluation of Fuze Explosive Train Safety and Reliability," NAVORD Report 2101, U. S. Naval Ordnance Laboratory, White Oak, Maryland, October 1953.
11. T. W. Anderson, P. J. McCarthy, and J. W. Tukey, "Staircase Method of Sensitivity Testing," NAVORD Report 65-46, U. S. Navy Bureau of Ordnance, Washington, D. C., March 1946.
12. A. Golub and F. E. Grubbs, "Analysis of Sensitivity Experiments When the Levels of Stimulus Cannot Be Controlled," Journal of the American Statistical Association, Vol. 51, pp. 257-265, 1956.

[^0]: * The reader who is not familiar with the meaning and interpretation of confidence intervals should refer to Chapter 1 and to Paragraph 2-1.3 of ORDP 20-110.

[^1]: * Table A-29 and the more complicated procedure of Paragraph 8-2.2.1 can be used to conduct equivalent two-sided tests corresponding to $\alpha=.10, .05, .02$, and .01, when $n_{A}=n_{A} \leq 20$, thus extending the present two-sided test procedure to the underscored values of α for equal sample sizes up to 20 .

[^2]: - Table A-29 and the more complicated procedure of Paragraph 8-2.2.2 can be used to conduct equivalent one-sided tests corresponding to $\alpha=.05, .025, .01$, and .005 , when $n_{A}=n_{B} \leq 20$, thus extending the present one-sided test procedure to the underscored values of α for equal sample sizes up to 20 .

[^3]: * It should be noted that Table A-29 also could be used for equal sample sizes up to 20. For equal samples and $\alpha=.05$ or .01 , however, the method of Paragraph 8-2.1.1 is recommended because of simplicity.

[^4]: * It should be noted that Table A-29 also could be used for equal sample sizes up to 20 . For equal sample sizes and $\alpha=.025$ and $\alpha=.005$, however, the method of Paragraph 8-2.1.2 is recommended because of simplicity.

[^5]: * The procedures of this paragraph must be used for large samples of unequal size, and may be used for samples of equal size. If the sample sizes are equal and are included in Table A-28, the procedures of Paragraph 8-2.1 are to be preferred because of simplicity.

[^6]: *This χ^{2} procedure is based on a large-sample approximation, but if $n P_{i} \geq 5.0$ for all categories, the approximation ordinarily is very good. If $n P_{i}<5$ for several categories, these categories may be pooled to obtain a theoretical frequency of at least 5 for the combined cells, and a corresponding improvement in the accuracy of the approximate solution, but at the price of some loss of resolution.

[^7]: * In reaching this conclusion on the basis of evidence that the P's are not all equal to their theoretical values, we are assuming, of course, that our information on the numbers of meters of each type in service is correct. In practice, this assumption should be checked before accepting the conclusion that the probabilities of failure are not the same for all of the types.

[^8]: Data adapted with permision from Induatrial Quality Confrol, Vol. IV, No. 4, p. 26, 1948, from article entitled "A Training Program Becomen a Clinic," by George A. Hunt.

[^9]: *The solution is approximate, but should be quite accurate if the smallest of $R_{i} C_{j} / n \geq 5.0$.

[^10]: * For any random variable X, the " $(100 P)$ th percentile" of its distribution is the value x_{P} such that the probability that X is $\leq x_{P}$ is equal to P.
 \dagger If $x=\log y$, then
 $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} \log y_{i}$
 $=\log \left(y_{1} y_{2} \ldots y_{n}\right)^{\frac{1}{n}}$
 $=\log$ (geometric mean of the $\left.y^{\prime} \mathrm{s}\right)$.
 Hence, antilog m will be an estimate of the geometric mean of the distribution of the η 'g. Since the geometric mean of a get of different numbers always is less than their arithmetic mean, it follows that antilog m will tend to underestimate the population mean of the y 's.

[^11]: - "Probit paper" also is called "normal deviate paper", 'normal ruling", etc.
 \dagger Instead of reading the Y values from the graph, we may complete step (8), and use the equation thus obtained to compute Y.

[^12]: - Or, complete step (8), and use the equation $Y=5+b(x-m)$ to obtain the Y values.

[^13]: - This method is sufficiently good for most purposes. For an exact method, see Finney. ${ }^{(8)}$

