UNCLASSIFIED

UNCLASSIFIED

AD NUMBER
AD840582
NEW LIMITATION CHANGE
TO Distribution authorized to U.S. Gov't. agencies and their contractors; Specific Authority; JUL 1968. Other requests shall be referred to Army Materiel Command, Attn: AMCRD-TV, Washington, DC 20315.
FROM Distribution: Further dissemination only as directed by Army Materiel Command, Attn: AMCRD-TV, Washington, DC 20315, JUL 1968, or higher DoD authority.
AUTHORITY
amc per dtic form 55

ENGINEERING DESIGN HANDBOOK

DESIGN OF AERODYNAMICALLY

STABILIZED FREE ROCKETS

STATEMFN: \#2 UNCLASSIFIED
This úveuatent is suirject to speciai export controls and each transmittal to foreign governments or foreign nationals may bc made only with prior approval of: Army Materiel Command, Attr: ANCRD-TV, Washir., on, D.C. 20315
HEADOHARTERS, U.S ARMY MATERIEL COMLAAD

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

The Engineering Design Handbook Series of the Ar:my Materiel Command is a coordinated series of handbooks containing basic information and fundamental data useful in the design and development of Army materiel and systems. The handbooks are authoritative reference books of practical information and quantitative facts helpful in the design and development uf Army materiel so that it will meet the tactical and technical needs of the Armed Forces.

This handbook pro ides extremely useful data for the engineer primarily interested in the prelminary design of aerodynamically stabilized free rockets. The data are arranged in a corvenient format-tables, graphs, and solution guides-which permits ready access and easy application in order to make possible the rapid respons ${ }^{\text {r }}$ req:ired of preliminary design activities. As a bonus, the chapter arrangement provides each technical area having responsibilities in the preliminary design phase with an appreciation for the data renuirements and applications of the supporting technical areas.' / -

The preparation of this handbook was initially an in-house effort of the U. S. Army Missile Command. The organizaticn of the text, data, and much of the written material originated with that agency The Chrysler Corporction Space Division, Huntsville, Alabama, under subcontract to the Engineering Handbook Office of Duke University, prime contractor to the Army Researcl: Office-Durham for the Engineering Desıgn Handbook Series-with the zontinue, 'assistance of the U.S. Army Missile Command-completed the handbook.

The Handbooks are readily available to all elements of AMC incl dmg personnel and contractors having a need and or requirement. The Army Materiel Command policy is to release these Engineering Design Handbooks to other DOD activities and their contractors, and other Government agencies in accordance with urrent Army Regulation 70-31, dated 9 September 1966. Procedures for acquiring these Handbooks follow
a. Activities within AMC and other DOD agencies should direct their reguect on an official form to:

Publications Distribution Branch
Letterkenny Army Depot
ATTN: AMXLE-ATD
Chambersburg, Pennsylvania 17201
b. Contractors who have Department of Defense contracts shruld submit their request, through their contracting officer with proper justification, to:

Director

Defense Documentation Center
(for Scientific and Technical Information)
Cameron Station
Alexandria, Virgin a 22314
c. Governmont agencies other than DOD may submit their request directly to:

Commanding Genera:
U. S. Army Materiel Command

ATTN: AMCAD.PP
Washington, D. C. 20315
or
Dirsctor
Defense Documentation Center
(for Scientific and Technical Information)
Cameron Station
Alexandria, Virginia 22314
d. Industry not having a Governmont Enntract (this includes Universities) must forward their requests to:

Commanding General
U. S. Army Materiel Command

ATTN: AMCRD-TV
Washingtor, D. C. 20315
e. All foreiga requests must be submitted through the Washington, D. C. Embassy to:

Office of the Assistant Chief of Staff for Intelligence
ATTN: Foreign Liaison Office
Department of the Army
Washington, D. C. 20310
All requests, other than those originating within the DOD, must be accompanied by a valid justification.

Comments and suggestions on this handbook are welcome and should be addressed to Army Research Office-Durham, Box CM, Duke Station, North Carolina 2 i706.

TABLE OF CONTENTS

PREFACE	i
LIST OF iLLUSTRATIONS	ix
LIST OF TABLES	xvi

Chapter 1. intreduction

CHAPTER 2. ATMOSPHERIC DATA

Paragraph		Page
3-1	Introduction	2-1
2-2	Atmospheric Properties	2-1
2-2.1	Atmospheric Density, Temperature and Pressure	2-1
2-2.2	Winds, Upper Level	2-1
2-2.3	Winds, Lewer Level	2.2
2-2.4	Regional Annual and Seasonai Deniity Models	2-2
	References	2-4
CHAPTEfi 3. SYSTEM DESICN		
3-1	General	3-1
3-2	Classes of Rockets	3-1
3-2.1	Military Rocket Systems	3-1
3-2.1.1	Artillery	3-1
3-2.1.2	Infantry	3-1
3-2.1.3	Air Defense	3-1
3-2.14	Armor	3-2
3-2.8.\%	Aviation	3.2
3-2.1.6	Logistic	3-2
3-2.1.7	Support	3-2
3-2.2	Research Rocket Systems	3-2
3-2.2.1	General	3-2
3-2.2.2	Meteorological	3-3
3-2.2.3	Ifigh Altitude Sounding	3-3
3-2.2.4	Satellites	3-3
3-2 2.5	Dispensing	3-3
3-3	Operational Modes	3-3
3-3.1	General	3-5
3-3.2	Ground-to-Ground	3-3
3-3.3	Ground-to-Air	3-4
3-34	Air-to-Air	3-4
3-3.5	Air-to-Ground . .	3-4
3-3.6	Underwater-to-Air	3-4
3-3.7	Surface/Air-to-Underwaig:	3-4
3-4	Launching Methods	3-4
3-4.1	General	3-4
3-4.2	Rail Launchers	3-4
3-4.2.1	Single	3-5

AMCP $70-200$
TABLE OF CONTENTS (cent)

Paragr		Page
3-4.3.2	Multip'e	3-5
3-4.2.3	Helical	3-5
3-4	Tube Launchers	3-5
3-4.3.1	Single	3-5
3-4.3.?	Multiple	3-5
3-4.3.3	Open Breech	3-5
3-4.3.4	Closed Breech	3-6
3-4.3.5	Restricted Breech	3-6
3-4.3.6	Gatling	3-6
3-4.4	Other Launcher Types	3-6
3-4.5	Variations	3-6
3-4.5.1	Autospin	3-6
3-4.5.2	Prespin, Automatic Dynamic-Alignment (PADA)	3-7
3-4.5.3	Spin-on-Straught-Rail (SOSR)	3-7
3-4.6	Methods of Transport	3-7
3-5	System Elements	3-8
3-5.1	General	3-8
3-5.2	Rocket	3-8
3-5.2.1	Warhead	3-8
3-5.2.2	Motor	3-9
3-5.2.2	Structure	3-11
3-5.5	Launcher	3-3
3-5.4	Ancillary Equipment	j-13
3-6	Concept Selection	3-13
3-6.1	Requırements	3-13
3-6.2	Constraints	3-14
3-6.3	Parametrics	3-14
3-6.4	System Selection	3-14
3-7	Preliminary Design	3-14
3-\%.1	Pay'oad ..	3-15
3-7.2	Propulsion .. .	3-15
3-7.3	Aerodynamics	3-15
3-7.4	Dynamics	3-15
3-7.5	Structurez	3-15
3-7.6	Performance Estimates	3-15
5-7.7	Auriliary Devices	3-15
3-8	Design Optir 2 ization . .. *	3-16
3-9	System Integration	3-16
-3-10	Fesing inetheds.	3-17
3-10.1	Static Testing	3-17
3-10.2	Flight Testing	3-17
3-10.3	Structural Testing	3-17
3-10.4	Aerodynamic Testing	3-18
3-10.5	Environmental Testing	3-18
3-11	Cost Effectiveness	3-18

TABLE OF CONTENTS (cont)

Paragraph		Paye
5-2.1.2	Real Klow	5-7
5-2.2	Nozale Centours	5-7
5-2.3	Nozzle Erosion	5-7
5-3	Fropellants	5-7
5-3.1	Grain	5.7
5-3.1.1	Chemical Compositions	5-10
5-3.1.2	Configuration Geometry	5-10
5-3.1.3	Burning Rate	5-11
5-3.1.4	Erosion	5-12
5-3.2	Ignition	5-12
5-3.3	Handling	5-13
$5-4$	Internal Ballistics	5-13
5-5	Scaling of Solid Propellant Motors	5-13
5-6	Testing	5-15
	References	5-15

CHAPTER 6. STRUCTURES

	Symbols	6-1
6-1	Genera!	6-2
6-2	Weight and Palance	6-2
6-2.1	Mass and Center of Gravicy Estimation	6-2
6.2 .2	Pitch Inertia	6-2
6-2.3	Foll Ineria	6-7
6-3	Loads	6-10
6-3.1	Transport and Handling Loads	6-10
6-3.2	Flight Loads	6-11
c-4	Stress	6-13
6-4.1	Beams	6-13
6-4.2	Columns	6-15
6-4.3	Pressure Vessels	6-15
6-4.4	Piate3	6-15
6-1.5	Joints	6-15
6-5	Safety Factors	6-19
$0-6$	níeauing	6-19
6-6.1	General	6-19
6-6.1.1	Conduction Heat Transfer	6-19
6-6.1.2	Radiation Heat Transfer	6-20
6-6.1.3	Convection Heat Tronsfer	6-21
6-6.1.4	Combined Heat Transfer	6-21
6-8.1.5	Transient Heat Transfer	6-21
E-6. 2	Combustion Chamber Heating	6-2\%
6-6.3	Exhaust Plume Heaing	6-22
6-6.4	Aerodynamic Friction Heaing	6-22
6.7	Testing	6-24
	Vieferences	6-24

TABLE OF CONTENTS (cont)

Paragraph Pagr

'		CHAPTER 7. ACCURACY		
!			Symbols	7-1
	,	7.1	Intruduction	7.2
1	' *	7.2	Defintions of Error Sources	7-2
	‘	7-3	Design Considerations Influencing Accuracy	7-2
-	;	7-\% 1	Design Considerations Associated With Speed Change	
F	,		Errors	7-2
- *	+	7-3.2	Design Considerations Associated With Angular Errors	7-3
	\div	7-3.2.1	The Effect of Aerodynamic Stability	7-3
		7-3.2.2	The Effect of Wind	7-3
	1	7-3.2.3	The Effect of Thrust Mala'irnment	7-3
\%)	7-3.2.4	The Effect of a Slow Spun	7-5
	,	7-3.25	Tiue Effect of Dispersion Reduction on the Optimum σ	7-7
4		7-4	Prelaunch Errors	7-7
	+	7-4.1	Alming Errors	7-7
	!	7-12	Eirrors Due to Variations in Meteorolugical Conditions	$7-8$
-	,	7-5	Calculation of Angular Errors	7-8
2t	,	7-6	Launch Phase Errors	7-10
24.		7-6.1	Angular Velocity	7-10
䜌	-	7-6.2	Translational Velocity	7-10
\%	,	7-6.3	Dynamic Untalance	7-14
\%	-	7-7	Propulsion Phase Errors	7-14
-	,	7-7.1	Nonrotating Rucket	7-14
\%	1	7-7.2	Dispersion Reduction Technıques	7-18
	1	7-7.2.1	Constant Spin Rate	7-18
-	1	7-7.2.2	Constant Spin Acceleration	$7-20$
\bigcirc	,	7-7 2.3	Slowly Uniform! Decreasing Spin (SUDS)	7-20
	\%	7-7.2.4	Spın-Buck	7-20
\%	\%	7-7.2.5	Prespin Automatis Dynamic Alygnment (PADA)	7.24
\%	,	7-7.2.6	Variable Acceleration	7-24
-	,	7-8	Ballistic Phase Errors	7-25
\%,	,	7-8.1	Forces Acting on the Projectule	7-25
	f.	7-8.2	Sources of Error	7-25
	T	7-8.2.1	Errors Due to Winds	7-26
	**	7-8.2.2	Change in Drag	7-27
	\cdots	7-8.2.3	Nonstandard Conditions	$7-27$
0^{36}	F	7-8.2.4	Malalignment of Fins	7-27
		7-8.2.5	Static Unbalance	7-27
;		7-8.9.6	Dynamic Unbalance	7-27
		7-8.2.7	Curvature of the Trajectory	7-27
\bigcirc		7-8.2.8	Fuzing Errors	7-27
		7-8.3	Calculation of Dispersion	7-27
-1	,	7-8.3.1	Launch Errors	7-28
		7-8.3.1.1	Malaim	7-28
=	4 *	7-8.3.1.2	Mallaunch	7-29
		7-8.3.2	Propulsion Errors	$7-30$
-		7-8.3.2.1	Wind	7-30

TABLE OF CONTENTS (cont)

Paragraph		Page
7-8.3.2.2	Thrusi Malalignment	7-30
7-8.3.2.3	Impulse Variatio.a	7-30
7-8.5. 3	Balliztic Errors	7-30
7-8.3.8.1	Density	7-30
7-8.3.3.2	Ballistie Wınd	7-31
7-8.3.3.3	Rallistic Cocfficient	7-31
7-8.3.4	Tabulation of Result,	7-31
7-8.3.5	Additional Reference Grapts	7 31
$7-9$	Statistical Methods,	731
7-9.1	Measures of Dispersion for One Error Saurce	7-32
7-9.1.1	Variance	7-32
7-9.1.	Standard Deviation	7-32
7-9.1.3	Probable Error	7-32
7-9.2	Measures of Dispersion for Several Error Sources	7-34
7-9.3	Use of Figures 7-42 and 7-43	7.34
7-10	Computation of Accuracy	7-34
7-10.1	Range Probable Error (RPE)	7-35
7-10.2	Deflection Probable Error (DPE)	$7-35$
7-10.3	Circular Probaile Error (CPE)	7-35
	References	7-92
	CHAPTER 8. AERODYRAMMICS	
	Symbols	8-1
8-1	General Design Considerations	8-3
8-2	Stability Characteristics of Rockets	8-4
8-2.1	Bodies of Revolution	$8-4$
8-2.1.1	Nose Cylinder	8-4
8-2.1.2	Boattail	$8-5$
8-2.1.3	Conical-Flare Afterbody	8-5
8-2.1.4	Oversize Head Configurations	8-16
8-2.2	Fins	8-17
8-2.3	Ring Tail	8-22
8-2.4	Stability of Complete Configuration	8-22
8-2.4.1	Gentral	8-22
8-2.4.2	Fin-Body Interierence	8-34
8-2.4.3	Fin-Fin Interference	8-37
8-2.4.4	Sample Calculation Sheet	8-42
8-3	Drag	8-4s
8-3.1	Wave Drag	3-44
8-3.1.1	Nose Wave Drag	8-44
8-3.1.2	Boattail Wave Drag	8-45
8-3.1.3	Flare Wave Drag	$8-16$
8-3.1.4	Fin Wave Drag	8-48
8-3.1.5	Ring Tail Wave Drag	$8-48$
8-3.2	Friction Drag	$8-51$
8-2.3	Base Drag	$\overline{7}-51$
8-3.3.1	Eody-of-Revolution Base Drag, Rocket Je! Onf	8-51

ABCP 703-20

LIST OF ILLUSTRATIONS icont)

Fig. No.	Title	Page
4-14	Direct Firt-Ail-Boost; Fffect of Ballistic Coefficient on Growth Factor	4-14
4-15	Direct Fire-All-Boost; Effect of Propeilant Weight	
	Fraction on Growth Factor	4-15
4-16	Sounding Rocket-All-Boost and Boost/Sustain; Effect of Growth Factor on Summit Altitude	4-16
4-17	Sounding Rocket-A!l-Boost; Effect of Prcpellant Weight Fraction on Growth leactor	4-17
4-18	Sourding Rocket-All-Boost; Effect of Ballstic	
	Coefficient on Growth Factor	4-17
\$-19	Surface to-Air-All-Boost; Effect of Time to Altitude on Growth Factor	4-1
4-20	Surface-to-Air-All-Boost; Effect of Propellant Weight Fraction on Growih Factor	4-18
4-21	Surface-to-Air-All-Boost; Effect of Ballistic Coefficient on Growth Factor	4-19
4-22	Flow Diagram	4-20
5-1	S:hematic of a Case-Bonded, Unrestricted-Burning Solid-Propellant Rocket Motor	5-2
5-2	Subsonic Flow Through a Converging Nozzle	5-3
5-3	Flow Ithrough a Supersonic (DeLaval) Nozzle	5-5
5-4	Supersonic Nozzle Area Expansion Ratios	5-6
5-5(A)	Thrust Coefficient Versus fuca Ratio for $\gamma=1.3$	5-8
5-5(B)	Thrust Coefficient Versus Area Ratio for $\gamma=1.2$	5-9
5-6	Examples of Grain Cros ${ }^{\text {-Sections }}$	5-11
5-7	Typical Grain Installations	5-11
5-8	Typical Ignizer	5-12
6.1	Volumes of Cones	6-5
6-2 (A)	Rato of Volume of Ogive to Cone Versus $1 / r$ at Various i / d 's	6-6
6-2(B)	Ratic of Volume of Ogive to Cone Versus l / r at Various l / d 's	6-6
6-2 (C)	Ratio of Volume of Tangent Ogive to Cone With Identical $1 / d$	6-7
5-3	Surface Area of Cones	6-3
6-4(A)	Ratio of Area of Ogive to Cone With Identical l / d Versus $/ / r$ at Various l / d 's Less Than or Equal To 0.5	6-9
C-4(B)	Ratio of Area of Ogive to Core With Identical l / d 	6-3
6-4(C)	Ratio of Area of Tangent Ogive to Cone With Identical $/ / d$	6-10
6-5	Axial Loads on Free Flight Rocket	6-11
6-6	Concentrated Bending Loads on Free Rocket	6-12
6-7	Circumferential Loads on Combustion Chamber	6-13
6-8	Beam-Seetion Load Distribution	6-14
6-9	Flat Plate Stress Width-to-Length Ratio Parameter	6-17
6-10	Riveted and Boited Joints	$6-17$
6-11	Welded Joints	6-18
6-12	Bolted Joints	6-19
6-13	Plane Conduction Heat Transfar Medium	6-2i'
6-14	Cylincirical Conduction of Heat Transfer Medium	6-20

LIST OF ILLUSTRATIONS (sont)

Fig. No.	ritle	ge
6-15	General Geomerry of Rocket Exhaust Plume	6.23
7-1	Variation of Angular Dispersion and Wavelength of Yaw	
	During Flight	-4
7.2	Effect of Wind on an Aerodynamically Stable Rocket	7-4
7-3	Effect of Wavelength of Yaw on Angular Dispersion Due to Wind	7-4
7-4	Effect of a Thrust Malalignment on an Aerodynamically Stable Rocket	7-5
7-5	Effect of Wavelength of Yaw on Angular Dispersion Due to Thrust Malalignment	7-5
7-6	Optimum Wavelength of Yaw for Minimum Total Dispersion	7.5
7-7	Growth of Angular Dispersion for a Rocket With a Thrust Malalignment and No Spin	7-5
$7-8$	Growth of Angular Dispersion for a Rocket With a Thrust Malalignment and a Slow Spin	7-5
7.9	Effect of Spin on the Build-Up of Angular Dispersion Due to Thrust Malalignment	7-6
7-10	Aiming Errors	-8
7-11	Definitions of Sign Conventions for the Rocket Equations of Motion	7.8
7-12(A)	Angular Dispersion Due to Mallaunch-Initial Angular Rate	7
7-12(B)	Angular Dispersion Due to Maliaunch--Initial Angular Rate	7-1
7-12(C)	Angular Dispersion Due to Mallaunch-Initial Angular Rate.	7-12
7-13(A)	Angular Dispersion Due to Mallaunch-Initial Translational Velocity	7-12
7-13(B)	Angular Dispersion Due to Mallaunch-Initial Translational Velocity	7-1
7-13(C)	Angular Dispersion Due to Mallaunch-Initial Translational Velocity	7-13
7-14(A)	Angular Dispersion Due to Wind	7-15
7-14(B)	Angular Dispersion Due to Wind	7-1
7-14(C)	Angular Dispersion Due tc Wind-Inital Translational Velocity	16
7-15(A)	Angular Dispersion Due to Thrust Malalignment-Zero Spin	7-16
7-15(B)	Angular Dispersion Due to Thrust Malaliçnment-Zero Spin	7-17
7-15(C)	Angular Dispersion Due to Thrust Malalignment-Zero Spin	7-17
7-16	Effect of Constant Spin on Angular Dispersion	7-18\%
7-17(A)	Consiant Spin	7-19
7-17(B)	Constant Spin	7-19
7-17(C)	Coraient Spin	7-20
7-18(A)	Constant Spin Acceleration	7.21
7-18(B)	Constant Spin Acceleration	7-21
7-18(C)	Constant Spin Acceleration	7 -2
-19(A)	Slowly Uniformly Decreasing Spin (SUDS)	7-22
7-19(B)	Slowly Uniformly Decreasing Spin (SUDS)	7.23
7-19(C)	Slowly Uniformly Decreasing Spin (SUDS)	7-2

Fig.No.	Title	Page
7-36(B)	Unit Effect, Range/Departure Angle Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$--Time	
	Fuze	7-7
7-36(C)	Unit Effect, Range/Departure Angle Versus $\mathrm{R} / \mathrm{R}_{\text {nax }}$ - Time	
	Fuze	7-74
7-37(A)	Unit Effect, Deflection/Wind Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Time Fuze	7-75
7-37(B)	Unit Dffect, Deflection/Wind Versus $R / R_{\text {max }}$-Time Fuze	76
7-37(C)	Unit Effect, Deflection/Wind Versus $\mathrm{R} / \mathrm{R}_{\max }$-Time Fuze	$7-7$
7-38(A)	Unit Effect, Altitude/Density Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Time Fuze	7-78
7-38(B)	Unit Effect, Altitude/Density Versus $\mathbf{R} / \mathbf{R}_{\text {max }}$-T'Time Fuze	9
7-38(C)	Unit Effect, Altitude/Density Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Time Fuze	80
7-39(A)	Unit Effect, Altitude/Velocity Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Tims: Fuze	-81
7-39(B)	Unit Effect, Altitude/Velocity Versus $\mathrm{R} / \mathrm{R}_{\mathrm{max}}$-Time Fuze	$7-82$
7-39(C)	Unit Effect, Altitude/Velocity Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Time Fuze	7-83
7-10(A)	Unit Effect, Range/Time Versus $\mathrm{F} / \mathrm{R}_{\mathrm{max}}$-Time Fuze	$7-84$
7-40(B)	Unit Effect, Range/Time Versus $\mathrm{F} / \mathrm{R}_{\max }$ - 'ime Fuze	$7-85$
7-40(C)	Unit Effect, Range/Time Versus $\mathrm{R} / \mathrm{R}_{\max }$ - Time Fuze	7-86
7-41(A)	Unit Effect, Altitude/Time Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Time Fuze	$7-87$
7-41(B)	Unit Effect, Altitude/Time Versus $\mathrm{R} / \mathrm{R}_{\mathrm{max}}$--Time Fuze	88
7-41(C)	Unit Eifest, Altitude/Time Versus $\mathrm{R} / \mathrm{R}_{\text {max }}$-Time Fuze	89
7-42	Ratio of CPE to σ_{x} / σ_{y} for Elliptical Distribution	7-90
7-43	Chart for Determination of Circular Probable Error	7.91
7-44	Variation of Range Probable Error With Range-Impact Fuze	7-91
7-45	Variation of Deflection Accuracy With Rango-Impact Fuze	-91
7.46	Variation of CPE With Range-Impact Fuze	7-91
8-1	Apparent Mass Factor	8
8-2	Normal Force Coefficient Gradient for Tangent	
	Ogive-Cylinder Configurations	8-6
8-3	Center of Pressure for Tangent Ogive-Cylinder Configurations	-7
8-4	Normal Force Coefficient Gradi ent for Cone-Cylinder	
	Configurations	8-8
8-5	Center of Pressure for Cone-Cylinder Configurations	8-9
8-6(A)	Normal Force Coefficient Gradient and Center of Pressure-4-Caliber Tangent Ogive With Varying Afterbody Length	$8-1$
8-6(B)	Normal Force Coefficient Gradient and Center of Fressure7.125° Cone With Varying Afterbody Length	
8-6(C)	Normal Force Coefficient Gradient and Center of Pressure-1.2-Power Nose With Varying Afterbody Length	$8-12$
8-7 (A $^{\text {) }}$	Normal Foree Cocfficient Gradient and Center of Pressure Varying Tangent Ogive Nose Length With Constant Afterbody Length of 6 Calibers	
8-7(3)	Normal Force Coefficient Gradient and Center of PressureVarying Conicel Nose Angle With Constant Afterhody	
	Length of 6 Calibers .	8-14
8-7(C)	Normal Force Coefficient Gradient and Center of PressureVarying n-Power Nose Shape With Constant Afterbody Length of 6 Calibers	5
$8-8$	Normal Foice Coefficient Gradient for a Boattail	8-1

A:3EP 7032001

LIST OF ILLUSTRATIONS (cont)

Fig. No.	Title	Page
8-9	Center of Pressure for a Boattail	8-17
8-10(A)	Incremental Normal-Force Coefficient Gradient for a Flare	8-17
8-10(B)	Incremental Normal-Force Coefficient Gradient for a Flare	8-18
8-10(C)	Incremental Normal-Force Coefficient Gradient for a Flare	8-18
8-10(D)	Incremental Normal-Force Coefficient Gradient for a Fiare	8-19
8-10(E)	Incremental Norral-Force Coefficient Gradient for a Flart	8-19
8-11	Subsonic Fin Normal-Force Coefficient Gradient	$8-20$
8-12(A)	Normal-Force Coefficient Gradient for Rectangular Fins	8-21
8-12(B)	Center of Pressure for Rectangular Fins	8-21
8-13(A)	Fin Normal Force Coefficient Gradient at Supersonic Mach Numbers	8 -2
8-13(B)	Fin Normal Force Coefficient Gradient at Supersonic Mach Numbers	8
8-13(C)	Fin Normal Force Coefficient Gradient at Supersonic Mnch Numbers	8-25
8-14(ハ)	Fin Center of Pressure	8-25
8-14(B)	Fin Center of Pressure	-2"
8-14(C)	Fin Center of Pressure	8-28
8-15	Fin Normal Force Coefficient Gradient Correction Factor for Sonic Leading Edge Region	8
8-16	Normai Force Coefficient Gradient and Center of Pressure for Rectangular Fins	8
8-17(A)	Incremental Normal Force Coefficient Gradient for a Ring Tail Mounted on a Cylindrical Afterbody	$8-30$
8-17(B)	Incremental Normal Force Coefficient Gradient for a Ring Tail Mounted on a Cylindrical Afterbody	8
8-17(C)	Incremental Normal Force Coeificient Gradient for a Ring Tail Mounted on a Cylindrical Afterbody	8
8-17(D)	Incremental Normal Foree Coefficient Gradient for a Ring Tail Mounted on a Cylindrical Afterbody	8-3
8-17(4)	Incremental Normal Force Coefficient Gradient for a Ring Tail Mounted on a Cylindrical Afterbody	8 832
8-17(F)	Incremental Normal Force Coefficient Gradient for a Ring Tail Mounted on a Cylindrical Afterbody	8-32
8-18	Values of Lift Ratios Based on Slender-Body Theory	8-35
8-19	Interference Effects of Fin on Body	$8-35$
8-20	Lift Factors-Influence of Fin on Body	8-36
8-21(A)	Lift of Fin (Body) for $\mathrm{a}_{\mathrm{t}} / \mathrm{m}=0$ (Rectangular Fin)	8-38
8-21(B)	Lift of Fin (Body) for $\mathrm{a} / \mathrm{/m}=0 \mathbf{0}, \overline{\mathrm{E}}$ (Clipped Delita Fin)	ถ-3¢ô
8-21(C)	Lift of Fin (Body) for $\mathrm{at} / \mathrm{m}=0.4$ (Clipps 1 Lielta Fin)	8-39
8-21(D)	Lift of Fin (Body) for $\mathrm{a} /$ / m $=0.6$ (Clipped Lelta Fin)	8-39
8-21(E)	Lift of Fin (Body) for $\mathrm{a}^{\prime} / \mathrm{m}=0.8$ (Clipped Delta rin)	8-40
8.21(F)	Lift of Fin (Body) for $a_{t} / m=1.0$ (Delta Fin)	8-40
$8-22$	Normal Force Coefficient Gradient of Multiple Fins at Supersonic Speeds	8-41
8-23	Fin Geometry	8-42
8-24	Body Geometry	8-4ij

$x i y$

LIST OF ILLUSTRATIONS (cont)

Fig. No.	Title	age
$8-25$	Configuration and Design Data for Numerical Example	8-43
$8.26(\mathrm{~A})$	Effects of Mach Number and Nose Fineness Ratio on	
	Wave Drag	8-44
8 -26(B)	Effecis of Mach Number and Nose Fineness Ratio on	
	Wave Drag	8-44
8-27	Wave Drag Coefficient of Optimum Secant Ogive	
	Cylinder at Transonic Speed	8-45
8-28	Wave Drag Coefficient of Slender Ogives at Transomic Speeds	$8-46$
8-29	Wave Drag Coefficient of Cones and Ogives at Supersonic Speeds	
8-30	Wave Drag Coefficient of Conical Buattals at Stupersonic	
	Speeds	8-47
8-31	Wave Drag Coefficient of Parabolic Boattails rit Supersonic	
	Speeds	8-47
8-32	Wave Drag Coefficient of a Boattail at Trensonic Speeds	8-48
8-33(A)	Wave Drag Coefficient of Conical Flare	8-49
8-33(B)	Wave Drag Coefficient of Conical Flare	8-49
8-33(C)	Wave Drag Coefficient of Conical Flare	8-49
8-33(D)	Wave Drag Coefficient of Conical Flare	9-49
8-33(E)	Wave Drag Coefficient of Conical Flare	8.50
8-33(F)	Wave Drag Coefficient of Conical Flare	8 -50
8-33(G)	Wave Drag Coefficient of Conical Flare	$8-50$
8-33(H)	Wave Drag Coefficient of Conical Flare	8 -50
8-33(I)	Wave Drag Coefficient of Conical Flare	8-51
8-34(A)	Wave Drag Coefficient of Fins at Supersonic Speeds	$8-52$
$8-34$ (B)	Wave Drag Coefficient of Fins at Supersonic Speeds	$8-53$
8 8-34(C)	Wave Drag Coefficient of Fins at Supersonic Speeds	$8-54$
8-34(D)	Wave Drag Ccofficient of Fins at Supersonic Speeds	$8-55$
8-34(E)	Wave Drag Coefficient o ${ }^{*}$ Fins at Supersonic Speeds	$8-56$
8-3.4(F)	Wave Drag 'oefficient of Fins at Supersunic Speeds	$8-57$
8-34 (G)	Wave Drag Coefficient of Fins at Supersunic Speeds	$8-58$
8-34(H)	Wave Drag Coefficient of Fins at Supersonic Speeds	8 -59
8 -35	Wave Drag Coefficient of Fins of Various Sectional Shapes	8-60
8-36	Wave Drag Coefficient of Rectangular Fins at Subsonic and Transonic Speeds	8.61
8-37	Wave Drag Coefficient of Delta Fins at Subsonic and Transonic Speeds	8.6
8-38	Wave Drag Coefficient of a Double Wedge Fin at	
	Transonic Speeds	$8-62$
8-39	Flat Plate Average S!ın Friction Coefficient	8-62
$8-40$	Reynolds Number as a Function of Flight Mach Number and Altitude	8-63
8-41	Base Pressure Coefficient of Cylinders, Boattails, and	
	Flares With Rocket Jet Off	8-64
8-42	Effect of Rocket Jet on Base Pressure	8-64
8-43	Base Pressure Correction for Boattail and Flared Aftrrbodies	8-65
8-44	Base Pressure on Cylindrical Bodies	8-66

LIST OF ILLUSTRATIONS (cont)

Fig. No.	riatr	Pagr
8-45	Base Fressure Coefficient ot Fins at Supersonic Speeds	8.66
8-46	Base Pressure Coefficient of Fins at Transonic Speeds	8-67
8-47	Comparison of Test Results on Full Size and Scale Model Artillery Missile	$8-69$
8-48	Relationship Between Maximum Allowable Model Dimensions and Test Section Dimension in a Specific	
	Wind Tunnel Facility	8-70
8-99	Aerodynamic Force Components	8-71

LIST OF TABLES

	No. Titla	Page
2-1	U. S. Standard Atmosphere 1962	2-2
$2-2$	Resultant Wind Conditions in the Northern Hemisphere	2-5
2-3	Extreme Annual Wind Speeds	2-11
2.4	Density and Temperature Profiles	2-14
	A. Key to Code Numbers of Density and Temperature Profiles	$2-14$
	B. Density Profiles for Tropics and Subtropics ($\mathrm{kg} / \mathrm{m}^{3}$)	2-14
	C. Density Profiles for Temperate Zone ($\mathrm{kg} / \mathrm{m}^{3}$)	2-15
	D. Density Profiles for Polar Zone ($\mathrm{kg} / \mathrm{m}^{3}$)	2-15
	E. Density Profiles for Tropics and Subtropics (\% Dev. SA)	2-16
	F. Density Profiles for Temperate Zone (\% Dev. SA)	2-10
	G. Density Profiles for Polar Zone (\% Dev. SA)	2-17
	H. Density Profiles for Tropics and Subtropics (${ }^{\circ} \mathrm{K}$)	2-17
	I. Density Profiles for Temperate Zone (${ }^{\circ} \mathrm{K}$)	2-18
	J. Density Profiles for Polar Zone (${ }^{\circ} \mathrm{K}$)	2-18
6-1	Geometrical Properties of Typical Rocket Sections	6-3
6-2	Grometric Properties of Airfoil Sections	6-16
7-1	Error Budget for Indirect Fire Rocket With Impact Fuze, Launch Quadrant Elevation 45 Degrees	7-28
8-1	Computational Table	8 74
-2	Diag Force Caiculation Sneet	8.96

CHAPTER 1

INTRODUCTION

This handbook, written for the engineer interested u_{1} the preliminary design of aerodynamically stabilized free rockets, has a twofold purpose:
a. To provide the preliminary design engineer with specific, "best available" design information and data devised to allow the rapid response required of preliminary design activities, and
b. To provide each technical area having responsibilities in the preliminary design phase an appreciation or "feel" for the data requirements and data applications of other specific technical areas.
The term free-flight rocket implies the absence of an active guidance system. Such a rocket is guided or aimed by a launching rail or tube and can be classified into one of two categories
a. Spin-stabilized
b. Aerodynamically stabiluzed The spin-stabilized rocket, as the name implies, depends upon a high rate of spin and resulting gyroscopic moments to oppose disturbing moments and forces. Conversely, the aerodynamically stabilized rocket depends upon the moments generated by a flare or fins placed aft of the center of gravity to oppose disturbing moments and forces. The aerodynamically stabilized rocket generally employs some spin history to minimize dispersion due to nonstandard conditions (body malalignment, fin malalignment, etc.). The data and concepts presented by this handbook are limited to aerodynamically stabilized free-flight rockets.

The rocket is assumed to be a rigid body, i.e., the elastic properties of the structure have been neglected. However, for sone configurations (premarily long, slender bodies) the dynamic mules of uscillation may be of sufficient ampittude to warrant detailed investigations.

Finally, there are tinree major propulsion systems that could be applicable:
a. liquid propellants
b. solid propellants
c. hybrid propellants (comismation of liquid and solid)

The applications of this handbook are limited to solid-propellant motors, used almost exclusively in free-flight aerodynamically stabilized rockets.

The basic handbook is organized into chapters, each self-contained and applicable to a particular technical area with which preliminary design is ioncerned. These aivas are: Atinospheric Data, Sysiems Design, Parametric Performance, Propulsion, Structures, Accuracy, and Aerodynam.cs.

Chapter 2, Atinospheric Data, presents climatological data pertinent to free rocket design. Chapter 3, Systems Design, discusses the factors affecting design, considering each technical area from preliminary design to actual hardware. Chapter 4. Pas ametric Performance, presents data describing the performance of various design concepts, with variations that permit consideration of trade-offs to rnaximize range for given mass or mass for given range. Chapter 5, Propulsion, presents concepts and data necessary to predict propulsion system performance, as well as improtant aspects to consider in conceptual and preliminary design. Chapter 6, Structures, presentis data and methods pertinent to structural design. Chapter 7, Accuracy, consifers both burning-phase and tallisticphase errors, the effect of these errors on rocket accuracy, and techniques necessary to estimate accuracy. Finally, Chapter 8, Aerodynemics, presents design curves and formulas that will permit the prediction of stability (force and moment) and drag characteristics for practically any conceivable aerodynamic body or combinations of bodies.

2.2 ATMOSPHERIf, PROPERTIES

2.2.i ATMOSPHERIC DENSITY, TEMPERATURE AND PRESSURE

The U. S. Standard Atmosphere (USSA) is based upon the International Civil Aviation Organization (ICAO) Standard Atmosphere to 20 km altitude. and upon the propused ICAO extenston from 20 km to 32 km . Data for the first 21 kin are in ayrreement with the Aur Research arid Developmen, Command (ARDC) 1959 Stand-
ard Atmosphere The major reason for revising standard atmospheres in recent years has ieen the ubserved uibit perturbations of artificial satc: hites due to atmuspheric drag. This subjint is beyond the present scope of interest. See Feference 2 for complete tables.

Table 2-1 presents a useful summary of at muspheric pruperties taiken frum Reterence 2.

2-2.2 WINDS, UPPER LEEVEL

The prublem of selecurg wind profile infcrmatuon for use as design criteria led to development of an eotumated synthetic profile which presented the 1 percent prubable uind speed and associated shear at the moxi critual altitude, and speeds of wher altitu des typicai for such wind fields. Subsequent investigation revealed that, if accuracs in the calculated risk is desired, the use of synthetic wind profiles is hazardous. However, logically develuped synthetic profiles are useful in prelimanary desugn. Fig. 21 is a synthetic wind prufile that was developed in 1954 to cietermine vehicle responses that wuuld be exceeded during unly 1 percent of the windiest season of the year in that area of the U. S. where tropospheric wind streams were considered the strongest. It is rea sunable to shift the curve upward or downward by as much as 5000 ft to make the peak wind speed runcide ,. th the altitude of maximum wind influence.

Ideally, in massile design and accuracy studies. the designer must know mean wind velocity and standard deviation for both hemispheres. Tab.e 2-2 gives the resultant wind direction, vecio: mean wind velocitv and the standard vector deviation for the No.thern hemisphere between $20^{\circ} \mathrm{N}$ and $80^{\circ} \mathrm{N}$ at altisudes from 10,000 to 100,000 ft for winter and summer.

See Reference 4, the Handbool. of (icophlysics and Spac, Eintironmenta, 1965, Chapter 4, for the mean wind speed, standard deviation, and corre lation between levels for a series of altitudes for each vectur component at specific stations dui. ing the winter season.

TADLE 2-1. U. S. standard atroospitere, 1 IJ2

Coornetric Altivude, km	Dessity, $\mathrm{kg} / \mathrm{m}^{3}$	$\begin{gathered} \text { Temperature, } \\ \stackrel{0}{K} \end{gathered}$
0	1.2250	283180
1	1.1217	281.651
2	1.00ss	285.254
3	0.00525	2crecs
4	0.81835	2ix2.16S
3	0.73543	255.676
6	0.65011	289.187
7	0.59002	242.700
8	0.52579	236.215
9	0.85706	229.733
10	0.41351	223.252
11	0.30430	218774
12	0.31194	216.650
13	$0205 c 50$	216.650
14	0.22785	216.650
15	0.39475	216.650
\checkmark	0.16847	216.650
17	0.18230	216.650
18	0.12165	216.650
19	0.10400	216.650
20	0.088910	216.650
21	0.075715	217.581
22	0.064510	218.574
23	0.055006	219.557
24	0.016933	220.500
28	0.040034	221.552

Piesoure. $\mathrm{N} / \mathrm{m}^{8}$	Accel. of Gravity, $\mathrm{m} / \mathrm{sec}^{\text { }}$	Sipeed of Sourd, mec
10325	9.8006	340.294
89376.2	9.8035	336.435
795014	9.3055	332.532
70121.1	9.7974	328.583
61650.4	9.7943	324.359
56048.2	9.7912	320.545
47217.6	3.7882	316.452
41105.2	97851	312.306
35651.6	9.7820	308.105
308007	97789	303.848
26499.9	9.7759	299.532
22699.9	9.7728	295.154
193954	9.7697	295.059
$16^{\prime} 79.6$	9.7667	285.859
14170.4	9.7636	235.0\%9
12111.8	9.7605	295.069
10352.8	9.7575	295.069
8849.71	9.7544	295.069
7565.22	9.7513	295.063
¢467. ${ }^{\text {® }}$	9.7483	295.0¢9
5529.30	9.7452	295.059
\$728.93	9.7422	295.703
4047.69	9.7391	296.377
3466.85	9.7361	297.049
2971.74	9.7330	297.729
2549.22	$9.730^{\prime \prime}$	298.383

the coldest temperatures, where winds are 50 percent of the indicated values.

2-2.4 REGIONAL ANAUAL AND SEASONAL DENSITY MODELS

Evaluation of flight performance aud rocket design necessarily includes the consideration of veriomal distribution of aimaspheme enviroument parameters. Our knowiedge in this field has rapidily exparded beyond the status of a "Standard Atmospheric Mocel", which can only describe the atroospheric environment as a first approximation, under limited circumstances. In recognition of these limitations, the Committee on the Extension of the Standard Atmosphere (COESA) has recenily adopted supplementaiy atmospheres (Reference 2).

Figure 2.1. Haximum Speed and Associated Shear
Fruan dandbook of Geof hysice end Spare Fanurunmente, by Shea L. Vallep, Air Force Cambituge Hesearch Laboratorics. Used by permission of copyright owner, McGraw-Hill Book Co., Inc.

These suppiements to the standard atmesphere, alutough welcomed by th. design engweer, still cannot fully describe the status of the atmosphere and are not intended to do so. Besde ss having reference models , mean condutons, the designer needs information to deseribe the dewiatuons from these preset models, usually in the form of some error fuaction or stan-lard deviations.
It has beon customary to assume a certan de. viation, e.g., th: plus-one-sigra thresholu, at every height l_{f} vel, and then to connect these points from one 1 svel to the next. The resulting synthet c aititude relationship will be call:d here the plus-one sigma envelope (to be disur.gushed from profiles). A.u, constants, suin a a 3 percent deviation for density, have been utalizec.

Such ant approach is very attrsctive because it compreses a large amount of tatisticel informauon mito a few altirude curves. However, it completely ignores the atitiode relsticnship of meteorological elements, which is admitrediy complex and caunot be expressed in sumple terms. Although it is logical to establish any probability thieshold separately at any altitude level, the curves that result when thos threshold values are combined to form a sugle vertes! profile doviate totally from realistic profiles, paricularly for density. Fig. 2-3 illustrates this pount. Imprope: design of the rocket system may result as a consequence of this negligence

Although the intraduction of more realistic profiles may incresse some of the engineers' computational work by adding a few profiles or by making his computations more complex, hopecully the engineer will thereby realize a gain for his system by svording improper design. Ideally, investigations would employ sample profiles. The disadvantage of this approach is the tremendous amount of calculations that result if individuai atmospheric conditions are used as inputs from random data selections Some of the advantages of realistic data can be retained, with a reasonable arnount of computation, by using carefully selected, sinall but repiesentative samples.
One such selection has been prepared by Dr. O. M. Essenwanger, Chief, Aerophysics Branch, Physical Science Laboratory, Army Missile Comrand, Redstune Arsenal. His coilection consists of 800 representative individual profiles, arrangei in exgh. sets of 100 profiles; two sets for each of four stations represent summer and winter conditions. Fig. 2-3 is a selection from this collection. The entire collection, on punched cards. saay be obtained from Dr. Essenwonger.
The reexi best, and also sumpler, appruach would be to use a representative profile. Their use will keep computational cffort relatively simple, but will provide reaissic estimates of actual atmuspheric cuncitions. Data ubtained tiucough use of these profiles will provide informetion un missile behavior adequate for preliminary design.
Such a set of representative profiles is the 20 sets of arr densi'v and associated temperatures presented in Table 2-4 and Fig. 2-4. These profiles may be used to represent mopan and one. sigma conditions for four zones, by summer, visin ter, and arnual reference pernuds. The o.uper profile for each condition is presented on the furst page of Table 2-4, where the numbers refer
to the subscripts in subsequent column headings and the various curves of Fig. 2-4.

Mr. H. P. Dudel of the Aerophysics Branch, Pisysicel Sciences Lab, R̂\&DD, U. S. Army Missile Command, hes published a report (Reiference 7) giving the mean, minus-one sigrua, and plus-one sigms density profiles for the midseason months of January and July at latitudes of $15^{\circ} \mathrm{N}, 30^{\circ} \mathrm{N}$. $45^{\circ} \mathrm{N}, 30^{\circ} \mathrm{N}$ and $75^{\circ} \mathrm{N}$. The asweciated temperatures are not yet available, bat will be included in a forthron ing report. In the meantime, the Committee ous Extension of the Standard Atmosphere (COESA) has announced adoption and proposed republication of the Air Force Interim Supplemental Atmospheres as published by Cole and Kintar (Reference 3). These supplementary atmospheres to the U. S. Standard Atmosphere, 1862, approximate mean conditions at the same geographic latitudes and months as does H. P. Dudel's report, Ref. 7.

REFERENCES

1. AMCP 70b-283. Engineering Design Handbow, Iterodynamucs.
2. U. S. Standard Atmusphere, 1962 COESA, NASA, USAF, L. S. Weather Bureau, U. S. Government Printmg (Ifice, Dec 1962.
3 Air Force Interim Supplemental Atmosphere to 30 Kilometers, Air Force Surveys in Geophysics No. 153, 1963.
3. Handbook of (ieophysics and Space Environments, AFCRL, MeGiraw-Hill, April 6.5.
4. AR 705-15, Change 1. Op.ration of Mat rial. Under Extreme Conditions of Environment.
5. MIL STD-210A, Climatic Extremes in Military Equ:pment.
6. H. P. D.adel, Regiona" seasoral One-Sigma Density Profiles, Aerophystes Branch, Physical Scienzes Lab. R\&DD, CSAMICOM.

[^0]Used by permission of copyright owner, McGraw-Hill Book Co., Ir c.

TADLE 2-2. BESUITANT WINO COMDITIORS IN THE NORTHERN HEPAISPHERE (cont)

Reaultant wind disection (d in degrees), vector mean wind veiocity (\bar{v} in knots), and standard vector deviation (8 an knots) at various altitudes (H) for various latitucies and langitudes standard vector deviation (s min kots) at various altitudes (H) for va
in thern Hemisphere, sum aner and winter seasons. (Centinued)

$\underset{10^{3} \mathrm{ft}}{\mathrm{Et}}$	Summer																										
	0°			20*E			*-E			$60^{\circ} \mathrm{E}$			$80^{\circ} \mathrm{E}$			$100^{\circ} \mathrm{E}$			$120^{\circ} \mathrm{E}$			$140^{\circ} \mathrm{E}$			$160^{\circ} \mathrm{E}$		
	d	7	t	d	\%	3	1	∇	8	d	V	8	d	\bar{v}	8	d	\%	8	d	$\overline{\mathrm{v}}$	δ	d	$\bar{\nabla}$	8	d	$\overline{\mathrm{v}}$	8
LATITUDE $20^{\circ} \mathrm{NJ}$																											

10	115	15	16	30	10	12	05	10	13	330	03	12	240	05	15	280	07	17	210	05	15	160	05	15	150	08	10
24	125	03	15	25	08	14	05	07	15	70	07	12	110	05	15	115	05	14	165	05	10	170	03	15	130	05	13
80	165	05	15	20	05	17	05	12	15	70	12	12	80	15	15	90	15	15	90	05	15	25	03	15	350	dj	18
40	150	10	20	30	05	22	110	22	18	70	28	18	80	25	20	85	25	20	85	10	25	30	05	25	355	05	25
50	120	15	20	110	25	25	110	30	\%	90	40	25	80	45	25	75	40	25	75	20	25	65	15	25	60	10	20
60	100	20		100	25		100	35		90	35		90	40		su	40		600	ม0゙		90	$3 \hat{0}$		5	20	
70	90	30		90	30		90	30		90	30		90	30		90	30		90	40		90	40		90	30	
0	90	35		90	35		90	35		90	35		90	35		90	35		90	40		90	40		90	40	
90	90	35		90	35														90	45		90	45		90	40	
103	90	35		90	\$5														90	50		90	35		90	50	
	LATITUDE $30^{\circ} \mathrm{N}$																										
10	130	03	16	330	10	15	295	06	18	345	04	15							245	0	18	230	07	15	245	10	15
29	250	07	18	315	13	10	270	12	17	360	07	15	175	05	15				245	L	20	250	15	20	250	10	18
90	300	13	19	270	17	20	240	10	21	345	03	18	225	05	20	170	10	25	220	15	30	270	13	27	290	12	23
40	200	20	25	285	2	25	220	17	23	320	07	25	260	08	25	190	15	30	225	15	35	305	20	35	319	15	30
6	S45	35	30	220	15	cis	15	10	20	180	07	35	30	05	25	60	15	30	340	10	35	340	10	30	345	10	30
$\boldsymbol{\omega}$	170	15		150	10		150	15		30	10		90	10		90	20		50	20		70	15		40	10	
70	9	29		90	20		100	20		100	20		90	20		90	20		90	25		90	20		90	20	
00	90	2		90	25		90	25		90	30		90	30		90	30		90	30		90	23		90	25	
∞	90	3		95	25		(4)	25											90	30		90	30		90	30	
100	90	39		\$0	50		90	\$0											90	35		90	40		90	40	

TAELE 2-2. RESULTANT WIND CONDITIONS IN THE NORTHERN HEMISPHERE (cont)

Resultant wind direction (d in degrees), vector mean wind velocity (\bar{v} in knots), and standard vector deviation (8 in knots) at various oltitudes (H) for varioks latitudes and longitudes, in the Northern Hemisphere, summer and winter seasons. (Centinued)

Latitude $40^{\circ} \mathrm{N}$

| 265 | 13 | 16 | 315 | 14 | 18 | 255 | 08 | 17 | 330 | 08 | 16 | 250 | 05 | 09 | 290 | 06 | 16 | 285 | 07 | 18 | 260 | 11 | 18 | 265 | 16 | 18 |
| ---: | :--- |
| 265 | 22 | 20 | 290 | 22 | 23 | 240 | 17 | 20 | 295 | 15 | 20 | 255 | 12 | 20 | 270 | 13 | 20 | 280 | 14 | 25 | 265 | 20 | 25 | 275 | 24 | 24 |
| 265 | 30 | 28 | 280 | 32 | 30 | 270 | 38 | 30 | 230 | 33 | 30 | 260 | 34 | 25 | 255 | 20 | 26 | 270 | 23 | 35 | 260 | 37 | 37 | 280 | 34 | 32 |
| 265 | 32 | 30 | 265 | 40 | 30 | 255 | 38 | 35 | 275 | 38 | 30 | 260 | 43 | 35 | 275 | 35 | 35 | 275 | 40 | 35 | 265 | 40 | 45 | 280 | 39 | 38 |
| 265 | 25 | 25 | 260 | 30 | 25 | 260 | 35 | 25 | 260 | 30 | 25 | 265 | 30 | 30 | 290 | 25 | 25 | 280 | 30 | 30 | 285 | 25 | 35 | 285 | 20 | 30 |
| 190 | 15 | 200 | 15 | | 200 | 20 | | 200 | 20 | | 200 | 20 | | 200 | 20 | | 210 | 20 | | 220 | 15 | 220 | 10 | | | |
| 90 | 10 | 100 | 10 | 160 | 15 | 100 | 10 | 100 | 10 | | 90 | 10 | | 90 | 10 | | 90 | 10 | 80 | 10 | | | | | | |
| 90 | 20 | 90 | 20 | 90 | 20 | 90 | 20 | 90 | 20 | 90 | 20 | | 90 | 20 | | 90 | 20 | 90 | 20 | | | | | | | |
| 90 | 20 | 90 | 20 | 90 | 20 | 90 | | | | | | | | | 90 | 20 | | 90 | 20 | 90 | 20 | | | | | |
| 90 | 25 | 90 | 25 | 90 | 25 | | | | | | | | | | 90 | 20 | | 90 | 20 | 90 | 25 | | | | | |

Latitude $50^{\circ} \mathrm{N}$

260	14	20	285	10	20	260	06	19	310	08	18	280	08	17	285	07	16	315	06	17	220	0.5	19	290	08	20
265	20	28	275	14	27	260	08	24	295	13	24	280	14	25	280	13	21	290	13	25	280	12	27	285	16	28
270	27	40	270	20	35	260	14	32	290	27	33	275	20	31	275	20	27	275	18	35	285	23	35	285	25	37
270	27	35	265	24	35	250	20	35	280	27	35	270	34	32	275	30	30	270	25	36	290	27	35	290	30	40
270	15	25	260	20	35	255	25	20	275	25	25	270	25	- 25	280	20	25	275	20	25	290	20	25	290	20	30
200	10		200	10		200	10		200	10		200	10		200	15		200	10		200	10		220	10	
100	05		100	05		100	10		100	05		100	05		90	05		90	05		80	05		90	05	
90	10		96	10		90	10		90	12		90	12		90	12		90	10		90	10		90	10	
90	15		90	15		90	15											90	15		90	15		90	15	
90	20		90	20		90	20											90	10		90	10		90	10	

LAIITUDE $60^{\circ} \mathrm{N}$

245	12	20	260	08	20	270	07	20	285	08	21	250	07	19	250	05	15	280	05	16	280	65	18	280	05	19
250	16	30	260	13	27	275	10	27	290	09	27	270	09	26	270	08	22	280	08	24	275	08	24	280	08	27
255	22	45	260	20	40	280	15	32	290	14	34	270	10	35	265	10	30	270	12	27	275	14	30	275	17	34
255	22	35	200	20	32	275	20	27	280	17	28	270	18	26	270	15	25	265	16	26	280	16	28	280	12	33
255	10	20	260	10	20	270	15	20	270	15	20	270	15	15	270	10	15	270	12	20	290	10	20	300	10	25
190	05		200	05		200	05		200	05		190	05		190	05		200	05		200	05		220	05	
100	05	100	05	100	05	100	05		90	05		90	05		90	05		90	05	90	05					
90	10	90	10	90	10	90	10	90	08		90	08		90	10		90	10	90	10						
90	10	90	10	90	10										90	10		90	10	90	10					
90	15	90	15	90	15										90	10		90	10	90	10					

LaTITUDE $70^{\circ} \mathrm{N}$

LATITUDE $80^{\circ} \mathrm{N}$

270	05	15	265	07	14	260	05	15	245	05	15	245	06	15	245	05	14	250	07	15	250	08	14	255	08	16
270	05	23	270	06	22	255	05	21	255	05	20	255	08	22	255	05	23	260	09	24	260	10	24	255	11	24
270	03	30	235	07	25	240	05	25	245	05	25	250	03	26	250	03	26	260	04	26	265	05	28	265	07	30
255	0 ?	20	240	07	19	240	07	18	245	07	18	250	06	18	255	05	18	265	06	20	270	06	20	270	07	20
245	05	15	270	05	15	240	05	12	230	05	10	220	04	10	220	0.5	10	210	03	10	210	03	10	210	03	10
160	05		180	05		210	05		210	05		210	02		210	05		210	05		210	\bigcirc		210	05	
110	05		110	05		110	U5		110	05		100	05		90	as		90	05		9	05		90	05	
109	0		90	05		90	05		90	05		90	05		90	05		80	05		90	05		50	05	
90	05		90	05		90	05											20	05		90	05		90	05	
90	05		90	05		90	05											90	03		90	03		90	03	

TAREE 2－2．RESULTANT WIND CONDITIONS IN THE NORTHERN HEMISPHERE（cont）

Rusultant wind direction（d in degrees），vector mean wind velocity（vin knots），and standard vector deviation（ 8 in knots）at various altitudes（ H ）for various latitudes and longitudes in the Northern Hemisphere，summer and winter seasons．（Continued）

$\underset{108}{12}$	Winter																										
	$180{ }^{\circ} \mathrm{W}$			$100^{\circ} \mathrm{F}$			$140^{\circ} \mathrm{W}$			$120^{\circ} \mathrm{W}$			$100^{\circ} \mathrm{W}$			$80^{\circ} \mathrm{W}$			$60^{\circ} \mathrm{W}$			$40^{\circ} \mathrm{W}$			$20^{\circ} \mathrm{W}$		
	d	V	8	d	∇	8	d	\checkmark	8	d	\checkmark	8	d	V	8	d	V	8	d	∇	8	d	V	8	d	∇	8

Lattitude $20^{\circ} \mathrm{N}$

10	30
20	30
30	20
40	23
50	29
60	190
70	90
90	90
90	90
108	

30	03	18	140	03	17	170	04	15	210	04	1
300	16	27	290	08	25	225	05	21	245	14	20
230	33	35	280	25	35	260	15	30	255	30	28
255	35	35	25	40	35	290	33	35	265	38	30
295	25	30	295	30	35	225	30	30	260	20	2
190	15		265	15	15	270	15	20	270	15	20
80	6	150	08	15	70	05	15	250	08	1	
90	05		60	06	15	80	05	15	80	08	1
90	05	90	05		90	05		90	05		
90	02	90	02		90	10		90	10		

5	
20	2
20	2
25	2
20	2
15	2
15	

$\begin{array}{lll}240 & 13 & 18 \\ 250 & 27 & 25 \\ 255 & 37 & 29 \\ 250 & 33 & 25 \\ 265 & 15 & 20 \\ 220 & 05 & \\ 90 & 02 \\ 90 & 05 \\ 90 & 03\end{array}$
$\begin{array}{rlllllllllll}70 & 05 & 14 & 105 & 04 & 17 & 245 & 04 & 18 & 270 & 06 & 17 \\ 325 & 05 & 20 & 340 & 09 & 23 & 315 & 05 & 22 & 280 & 18 & 19 \\ 275 & 23 & 27 & 295 & 27 & 30 & 290 & 20 & 25 & 280 & 45 & 28 \\ 265 & 35 & 30 & 285 & 43 & 33 & 280 & 45 & 30 & 275 & 55 & 32 \\ 270 & 30 & 25 & 285 & 30 & 30 & 275 & 30 & 30 & 270 & 40 & 30 \\ 265 & 15 & 20 & 280 & 15 & 20 & 270 & 15 & & 270 & 15 & \\ 210 & 05 & 15 & 240 & 03 & 15 & 240 & 03 & & 240 & 03 \\ 90 & 03 & 15 & 80 & 05 & 15 & 110 & 03 & & 110 & 03 \\ 240 & 03 & & 90 & 05 & & 90 & 05 & & 90 & 05 \\ 240 & 05 & & 90 & 03 & & 90 & 10 & & 90 & 10\end{array}$
LATITUDE $30^{\circ} \mathrm{N}$

10

10	270
20	270
30	270
40	275
50	350
60	250
70	200
80	110
90	90
100	270

24
38
18
35
20
08
05
08
10 $\begin{array}{ll}9 & 2 \\ 30 & 2 \\ 40 & 2 \\ 40 & 2 \\ 30 & 2 \\ 20 & 2 \\ 15 & 2 \\ 20 & 2 \\ 20 & 2 \\ 30 & 2\end{array}$ $\begin{array}{ll}255 & 20 \\ 260 & 38 \\ 260 & 57 \\ 260 & 70 \\ 260 & 55 \\ 265 & 30 \\ 270 & 15 \\ 280 & 10 \\ 250 & 10 \\ 270 & 15\end{array}$ LATITUDE $40^{\circ} \mathrm{N}$
10

8
＂

$$
\begin{aligned}
& 30 \\
& 47 \\
& 65 \\
& 74 \\
& 53 \\
& 30 \\
& 10 \\
& 05 \\
& 10 \\
& 25
\end{aligned}
$$

$$
\begin{aligned}
& 25 \\
& 37 \\
& 45 \\
& 45 \\
& 40
\end{aligned}
$$

 28
39
45
45
40
20
20
10 $\begin{array}{lllllll}38 & 270 & 21 & 29 & 280 & 15 & 23 \\ 3 & 275 & 32 & 39 & 280 & 29 & 37 \\ 5 & 275 & 43 & 50 & 225 & 52 & 48 \\ 5 & 250 & 47 & 45 & 285 & 47 & 43 \\ 0 & 285 & 35 & 35 & 280 & 35 & 30 \\ 0 & 200 & 20 & 20 & 290 & 25 & 20 \\ 20 & 270 & 15 & 20 & 300 & 15 & 20 \\ 0 & 270 & 10 & 15 & 330 & 10 & 20 \\ 270 & 10 & & 330 & 10 & 25 \\ 270 & 20 & & 310 & 15 & 30\end{array}$ $\begin{array}{ll}23 & 225 \\ 37 & 275 \\ 48 & 270 \\ 43 & 270 \\ 30 & 270 \\ 20 & 200 \\ 20 & 290 \\ 20 & 200 \\ 25 & 300 \\ 30 & 300\end{array}$ $\begin{array}{ll}225 & 20 \\ 275 & 37 \\ 270 & 53 \\ 270 & 60 \\ 270 & 45 \\ 200 & 30 \\ 290 & 20 \\ 300 & 20 \\ 300 & 15 \\ 300 & 20\end{array}$ $\begin{array}{ll}23 & 270 \\ 37 & 270 \\ 45 & 270 \\ 45 & 270 \\ 35 & 270 \\ 20 & 270 \\ 20 & 220 \\ 25 & 270 \\ 30 & 270 \\ 35 & 270\end{array}$ $\begin{array}{lll}250 & 17 & 20 \\ 275 & 36 & 28 \\ 275 & 55 & 35 \\ 275 & 65 & 35 \\ 270 & 60 & 30 \\ 270 & 35 & 20 \\ 201 & 20 & 20 \\ 270 & 15 & 20 \\ 270 & 15 & 20 \\ 270 & 20 & 25\end{array}$ $\begin{array}{ll}20 & 280 \\ 28 & 290 \\ 35 & 285 \\ 35 & 285 \\ 30 & 285 \\ 20 & 270 \\ 20 & 270 \\ 20 & 250 \\ 20 & 270 \\ 25 & 270\end{array}$ 13
25
38
48
45
30
20
15
20
25 23
32
40
40
35
20
15

20 $\begin{array}{ll}280 & 08 \\ 285 & 13 \\ 280 & 23 \\ 275 & 35 \\ 280 & 30 \\ 220 & 20 \\ 270 & 15 \\ 260 & 15 \\ 270 & 10 \\ 270 & 10\end{array}$ $\begin{array}{ll}13 & 22 \\ 13 & 28 \\ 23 & 35 \\ 35 & 38 \\ 30 & 30 \\ 20 & \\ 15 & \\ 15 & \\ 10 & \\ 10 & \end{array}$ $\begin{array}{lll}315 & 07 & 19\end{array}$ | 719 |
| :--- |
| 24 |

LATITUDE $50^{\circ} \mathrm{N}$
$10 \quad 2$
250
255
255
250
25
270
250
250
270
27 $\begin{array}{lll}2 & 30 & 2 \\ 2 & 40 & 2 \\ 0 & 45 & 2 \\ 0 & 40 & 2 \\ 30 & 35 & 2 \\ 25 & 30 & 2 \\ 21 & 25 & 3 \\ 15 & 25 & \\ 15 & & \end{array}$ 280
270
270
2390
2290
290
300
290
290
290 21
32
42
42
30
20
15
20
20
25 $\begin{array}{ll}31 & 245 \\ 43 & 280 \\ 50 & 28 \\ 40 & 28 \\ 35 & 295 \\ 25 & 290 \\ 25 & 30 \\ 25 & 30 \\ 30 & 30 \\ 35 & 300\end{array}$ $\begin{array}{ll}18 & 20 \\ 31 & 3 \\ 33 & 4 \\ 39 & 3 \\ 30 & 30 \\ 25 & 3 \\ 25 & 2 \\ 20 & 30 \\ 25 & 3 \\ 30 & 3\end{array}$ $\begin{array}{lll}20 & 295 \\ 35 & 290 \\ 45 & 285 \\ 35 & 225 \\ 30 & 285 \\ 35 & 290 \\ 25 & 250 \\ 30 & 300 \\ 30 & 295 \\ 35 & 295\end{array}$

LATITUDE $60^{\circ} \mathrm{N}$
10

240	07	27	255
240	12	36	260
25	20	40	260
258	20	35	260
240	20	$3 n$	255
240	30		270
220	35		270
250	30		270
270	30		27
270	35		270

270
375
200
290
299
290
290
275
275 08
20
27
30
30
30
35
35
40
40 25
45
42
35
30
30
30
35
35
40 205 310
305
305
300
300
300
320
29
29
 ゅ上が囚゙オ 235
275
270
270
270
220
250
270
270
270 13
19
25
25
25
35
10
45
45
45
 250
245
240
235
240
270
270
270
270
270
 が5 9 220
230
240
240
240
250
250
250
270
275

 $\begin{array}{lll}245 & 20 & 32 \\ 250 & 28 & 43 \\ 255 & 37 & 55 \\ 260 & 40 & 45 \\ 270 & 35 & 35 \\ 260 & 40 & \\ 260 & 40 \\ 270 & 45 \\ 270 & 45 \\ 370 & 55\end{array}$

TAELE 2．2．KESULTANT WIND CONDITIONS IN THE NORTHERN HEMISPHERE（CONT）
Resultant wird direction（ d in degrees），vector mean wind velocity（ \bar{v} in knots），ard standard yector deviation（ 8 in knots）at various altitudes（H）for various latitudes and longitudes in the Northern Hemisphere，summer and winter seasons．（Continued）

$\stackrel{H}{10 t}$	Winter																										
	0			$20^{\circ} \mathrm{E}$			$40^{\circ} \mathrm{E}$			$60^{\circ} \mathrm{E}$			$60^{\circ} \mathrm{E}$			100＊ 2			$120^{\circ} \mathrm{E}$			$140^{\circ} \mathrm{E}$			$160{ }^{\circ} \mathrm{E}$		
	d	7	1	d	V	1	d	∇	8	d	v	8	d	∇	1	1	7	8	d	V	8	\pm	V	8	d	7	8
LATITUDE $40^{\circ} \mathrm{N}$																											
10	290	12	23	200	14	24	260	16	21	260	09	15	270	03	11	295	23	17	300	28	18	285	34	23	265	33	24
30	300	18	32	200	20	32	265	27	29	265	16	22	270	27	25	285	40	\％ 8	290	44	32	270	54	35	260	52	34
\＄0	305	23	40	290	33	45	255	40	37	270	33	35	270	44	35	295	55	35	285	60	37	270	80	42	260	75	45
40	305	32	40	200	40	40	270	55	33	265	43	37	270	55	35	290	65	40	290	70	40	270	90	40	200	80	45
50	295	30	30	200	5	35	275	15	35	270	45	30	370	50	35	270	60	35	270	65	40	260	80	40	255	70）	60
60	290	む		23	35		270	35		270	35		200	45		290	50		270	55		250	50		250	40	
70	250	25		200	30		270	30		250	30		270	35		280	40		260	40		230	40		220	25	
60	290	25		200	30		270	50		270	35		270	35		270	40		250	40		210	25		140	15	
90	270	30		270	30		270	35											270	35		260	30		240	20	
100	270	35		270	40														270	35		270	35		270	30	

Lattide $50^{\circ} \mathrm{N}$

10	290	15	26	200	12	26	260	11	25	250	08	21	275	11	20	295	18	20	315	20	18	290	15	24	250	12	27
20	300	23	36^{*}	290	16	34	270	$: 7$	30	270	14	28	285	20	30	300	26	27	310	25	30	275	¢ 2	35	280	18	35
30	305	30	50	290	20	45	275	20	34	275	18	35	290	30	38	300	35	33	305	25	35	279	25	35	240	27	40
40	305	30	40	290	20	35	275	25	32	270	25	35	200	30	33	295	AJ	37	300	45	35	270	35	35	240	40	40
50	300	25	30	290	25	35	200	25	30	275	30	25	290	30	30	275	35	35	280	40	35	255	40	35	245	40	35
$\boldsymbol{6}$	290	30		290	30		270	35		270	40		280	40		290	40		260	40		230	40		230	35	
70	220	30		290	30		270	35		270	40		220	40		280	40		250	40		230	45		220	35	
80	200	35		290	35		270	40		270	50		270	50		270	45		240	40		220	40		236	25	
90	270	40		270	40		270	40											270	40		270	40		270	30	
100	270	50		270	50														270	45		270	40		270	40	
LATITUDE $60^{\circ} \mathrm{N}$																											
10	270	16	26	290	\％	25	270	07	26	260	08	24	265	12	28	205	13	21	320	09	17	300	04	22	255	03	25
29	200	25	38	290	14	33	285	10	32	220	12	34	290	16	33	310	15	28	320	09	25	290	04	28	225	05	35
30	205	32	50	280	20	45	290	15	33	225	17	35	295	20	38	315	20	32	330	09	30	260	05	31	210	10	35
40	285	35	40	290	25	40	290	20	35	290	20	35	295	20	35	315	20	33	320	15	30	240	08	28	210	10	3
50	290	30	35	2\％，	25	35	290	20	30	225	15	25	290	15	30	290	20	30）	290	15	30	245	15	30	220	15	30
00	270	35		2＇0	30		290	30		230	25		280	25		290	25		260	20		220	30		230	20	
70	270	40		200	35		290	35		270	35		250	\＄		280	40		250	35		220	40		230	30	
80	270	40		270	40		270	35											270	35		230	40		230	35	
90	270	45		270	45		270	40											270	＇35		270	40		270	35	
100	270	50		270	Ca														270	40		270	45		270	45	
LATITUDE $70{ }^{\circ} \mathrm{N}$																											
10	260	11	23	260	11	22	25	05	23	240	35	23	245	04	23	260	04	20	310	03	17	300	03	20	300	03	23
20	235	18	32	270	13	25	200	07	25	200	io	25	290	06	26	310	06	24	330	03	22	300	03	25	235	04	27
30	260	28	46	270	18	33	200	10	30	290	12	30	310	10	23	320	08	26	50	03	25	210	02	25	250	OS	28
40	270	25	32	200	20	30	285	15	3）	290	10	30	300	10	30	320	05	23	300	03	25	220	0	25	220	10	25
50	275	25	35	285	20	30	290	15	25	290	10	25	300	05	25	290	05	25	280	03	25	240	10	25	230	15	25
60	270	30		220	35		230	35		290	30		230	30		270	25		220	20		220	30		230	40	
70	270	30		220	40		290	40		250	35		230	35		260	30		220	30		240	35		230	40	
－0	2070	35		$2{ }^{2} 70$	31		$\underline{170}$	2											270	ご		270	35		270	－	
90	270	40		270	40		270	3 F											270	25		270	35		270	40	
100	270	50		270	50																	275）	40		270	45	
LATTTUDE $60^{\circ} \mathrm{N}$																											
10	315	07	21	250	06	21	240	06	20	230	05	20	230	03	20	250	03	20	300	02	17	215	03	20	330	03	20
20	240	12	23	250	10	25	250	07	20	275	05	25	290	04	22	305	04	23	320	03	22	300	03	25	310	03	25
20	240	18	36	250	16	30	250	10	25	270	10	25	200	07	25	300	04	23	270	03	25	225	03	25	280	05	25
40	255	15	23	270	13	25	290	10	25	290	07	25	300	05	25	295	05	23	270	05	25	250	07	20	240	10	25
30	280	15	25	270	10	25	275	10	25	275	05	25	260	05	25	260	05	20	260	08	25	225	10	20	250	15	20
60	270	15		270	15		200	10		200	10		250	10		230	10		210	15		220	15		230	25	
70	200	15		20	25		270	20		260	ES		230	15		230	20		210	20		220	25		230	30	
00	270	20		270	20		270	10											270	20		270	25		230	30	
90	270	20		270	20		270	15											270	W		270	30		270	30	
100	270	40		270	40		270	35														270	40		270	35	

TABLE 2-3. EXTREME ANNUAL WIND SPEEDS

Extreme annual wind speed (fastest mile) at 50 ft above cround at the given etations:
(A) deiontes airport station (A) desiotes sirport station.

Station		$\underset{\left(\text { mile } h_{h}-1\right)}{\text { Menn }}$	$\underset{\text { (mile h-1) }}{\text { S.t. }}$	$\begin{aligned} & 1 \% \text { Risk } \\ & \text { in } 10 \mathrm{yr} \\ & \text { (mile } h-1 \text {) } \end{aligned}$
Tempr, Fle. (A)	1941.56	52	8.8	95
Mianis, Ela.	1943 -58	54	18.0	143
Whimington, N. C. (A)	1951.53	67	15.9	146
Hatteras, N. C.	1912-57	62	13.4	129
Dallas. Tex. (A)	1941.58	52	6.5	84
Washingten, D. C. (A)	194958	50	8.5	92
Dayton, Ohic (A)	1944.58	60	8.6	103
Atlanta, Ga. (A)	1953.58	50	7.4	87
Abilene, Tex. (A)	2945.58	63	136	131
Columbis, Mo. (A)	1999.58	56	0.2	85
Kıssas City, Mo.	1934-58	55	7.0	90
Bufalo, N. Y. (A)	1944-58	58	8.3	99
Albeny, N. Y. (A)	1936-58	52	8.4	94
Boston, Masa (A)	1936-50	59	12.1	119
Chicago, III. (A)	194358	51	5.6	79
Cleveland, Ohio (A)	1941.58	59	5.8	88
Detroit, Mich. (A)	1934.58	49	5.7	77
Minneapolis, Mins. (A)	1938.58	52	11.1	107
Omahe, Nebraska (A)	1936.58	59	13.1	124
El Paso, Tex. (A)	1943-58	58	4.5	80
Albuquerque, N. M. (A)	1933-58	61	10.2	112
Tucson, Ariz	1948.58	50	7.1	85
San Diego, Calli.	1940-58	36	6.0	66
Cheyenne, Wyo.	1935-53	63	6.9	97
Rapid Cily, S. D.	1942.58	66	6.7	99
Bimarck, N. D.	1940.58	66	5.2	92
Great Fall. Mont.	$1944-54$	65	3.5	88
Portland, Ore.	1950-58	57	6.8	91
New York, N. Y.	1949.58	56	4.8	82
Pittaburgh, Pa.	1935-52	52	6.2	83
	Number of Years of Data			
Fairbanke, Alaris	9	37	8.3	28
Nome, Alaske	11	61	9.1	106
Elmendort AFB, Alanke	14	45	7.1	81
Shemys Island, Alaska	10	70	6.2	101
Hickam AFB, Hawaii	37	45	8.4	86
Clark AB, Philippincs	13	39	12.2	100
Lajes Field, Asores	13	63	169	146
Albrook AFB, Canal Zone	18	26	8.1	47
San Pablo, Spain	11	77	13.3	153
Wheelus AB, Libya	14	49	11.8	108
Stutteart, Germany	15	40	4.8	65
Keflavik, lceland	9	84	10.8	133
Thale, Greenland	14	80	12.4	142
Tainan, Formosa	39	53	21.2	158
'Taipei, Formosa	39	59	21.9	\67
Itamko AR, Impen	19	43	10.0	93
Misawa AB, Japar	11	47	7.2	83
Tokyo Intl. Airyont. Japan	15	52	12.2	103
Kinupo AB, Koren	8	43	8.0	82
Bombay, India	2	50	14.2	120
Calcutta, India	6	57	7.4	93
Gaya, Iadia	6	52	6.8	85
Madras, India	6	45	7.5	82
New Deihl, Indin	6	52	3.8	70
Poona, India	6	39	6.1	69
Central AB, Iwo Jima	17	78	37.9	266
Kadraa AB, Okinawa	14	82	25.3	208

From Handbook of Grophysice and Space Environments, by Shek L. Valley, Air Force Cambridge Research I aboratorles. Used by permission of copyright owner, MeGraw-Hill Book Co., Inc.

Strongest wad (itive-min average) for temperature range observed during a heve.jr period. Wind apeeds are, is general, for 40 to 100 ft above the surface. Speeds at 10 ft are approximately 60% of the values given, exiept for the coldest temperatures, where winds are 50% of the indicated values. Stations used for this study are:

Caribou, Rice.	Jackssanville, Fla,	San Francisco, Calii.	Minneapolis, Minn.
Burlingon, Vi.	Miami, Fla.	Tatoosh 1.. Wash.	Ciicago, IIL
Bocton, Piesa.	Galveston, Tex.	Great Falls, Mone	Bufalo, N. Y.
New Yort, N. Y.	Oxlahoma City, Okla.	Gait Lake Cisy, Jlah	Pitalurgh, Pa.
Fanhington, D.C	Phoenix, Arix	Wichita, Kırsas	Columbus, Ohio
Hatteres, N. C.	Los Angriet, Calif.		

Figure 2-2. Strongest Hind for Temperalure Range

[^1]Figure 2-3. Density Deviation Versus Altitude - Worldwide, Annual

(a) Annuai variation nogitsible
(b) Variattea negilaible
B. Density Profiles for Tropics and Subtropics
(Unit: $\mathrm{kg} / \mathrm{m}^{2}$)

Altiturde (cm)	Profile Number					
	D_{1}	D_{2}	D_{5}	D_{4}	D_{5}	D_{6}
0	1.10375	1.17579	1.15053	1.21682	1.22022	1.24352
1	1.05105	1.00355	. .40576	1.10178	1.11493	1.12818
2	. 85538	De957	50503	. 99730	1.00910	1.02090
3	E7470	37702	20721	84313	. 90949	. 91785
4	.73003	.78707	5.0783	81057	. 81786	88 , 85
5	. 71150	.72022	.7205	.73067	.73636	. 74205
6	CA183	. 05227	.65750	.65980	. 68223	. 68086
7	. 57822	20715	${ }^{2012127}$. 53320	. 59433	\$5956
8	51563	52747	50045	53326	. 53195	. 53064
9	. 60705	. 47214	. 74	. 47792	47376	. 46360
10	. 1184	. 2216	. 42116	. 424%	. 41862	. 41296
18	9737	9785	87818	37243	,	3585
12	3 xan	2000	32443	32082	31662	30962
14	$2 \mathrm{OH9}$	20098	33100	.27810	-27142	28474
14	- 2317	25403	21850	23355	23317	. 22779
15	2001	22043	20000	. 20469	.20054	. 19893
16	10010	. 16103	.17903 .1523	.17545 14953	.17209 .14656	.16373 .14419
17	${ }^{10645}$. 13133	. 12023	12684	12405	. 12276
10	. 11100	. 11493	. 10300	. 10716	. 10565	. 10814
20	. 03305	. 02505	. 09201	. 05057	00944	06831
21	. 07912	00557	.077E5	. 07633	. 07576	07499
22	. 000177	. 0×325	.0600	06436	.0fati	. $0^{6} \times 2$
23	.0040	. 05785	.0003	. 03514	05456	. 05338
2	.69792	. 04029	. 04770	. 04638	. 04637	. 04505
\%	.06003	.04:00	. 04002	. 03931	. 03046	.03081

TAGLE 2-4. DENSITY AND TEMPERATURE PROFILES (cont)
E. Density Profiles for Tropics and Subtropics (Unit: Percent Deviations from U. S. Standard Atmosphere, 1962)

Aliturie (km)	Profile Number					
	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}
0	-5.0	-4.0	-2.1	- 7	. 4	1.5
1	-4.5	6	-2.2	-. 9	3	1.5
2	-4.0	-4.3	-2.0	-9	2	1.4
3	-38	-3.5	-1.8	-1.1	-. 1	. 9
4	-3.7	-2.7	-1.4	-1 1	-. 2	.7
5	-3.4	-1.9	-9	-. 8	. 0	8
6	-38	-1.2	-. 4	- 2	3	. 9
7	-2.0	-5	2	. 5	17	. 9
8	-1.2	13	1.9	1.4	1.2	. 9
9	0.0 1.2	1.19	1.5	2.6	1.4	-5
11	4.1	2.3	1.7	2.1	. 2	-1.6
12	8.0	6.0	4.0	3.7	1.5	-. 7
13	12.0	9.1	5.4	4.3	1.8	-. 7
15	15.5	11.5	6.4	4.7	23	-. 0
15	18.0	13.2	7.3	5.1	3.0	.8 1.3
18	19.0	13.9 13.7	7.6	5.4	3.4	1.3 1.3
17 18	15.0 105	13.7 12.1	7.2 6.2	5.1	3.2 2.6	1.3
18	10.5 7.5	12.1 9.7	4.2	4.3 3.0	2.6	. 9
20	5.0	7.5	3.5	1.9	. 6	-7
21	4.2	6.1	2.5	. 9	-. 2	-1.3
2	3.5	5.8	2.3	. 7	-. 4	-1.5
23	3.0	5.3	1.9	. 2	-. 8	-1.9
24	2.15	5.0 4.8	1.6	-. -.4	-1.2 -1.5	-2.3 -2.7

F. Density Profiles for Temperate Zone
(Unit: Percent Deviations from U. S. Standard Atmosphere, 1962)

Aldíude (km)	Profile Number						
	$\underline{5}$	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}	D_{13}
0	-8	-. 2	. 4	2.9	4.1	5.6	7.1
1	-1.4	-. 5	3	1.7	2.1	3.6	5.1
2	-1.5	-. 7	1	.9	. 9	2.4	3.8
3	-1.7	-1.0	-. 3	3	3	1.6	2.8
4	-18	-1.2	-. 6	-. 0	-. 1	1.0	2.2
5	-1.7	-1.2	-. 6	-. 1	- 2	8	1.8
6	-1.4	-. 9	-. 4	. 0	-. 1	6	1.4
7	- 3	-. 5	-. 0	2	-. 1	. 6	1.3
3	1	. 7	1	. 4	4	4	4
9	1.0	7	. 5	5	4	-. 1	-. 7
10	2.1	1.0	-. 0	- 1	. 7	-1.6	-3.9
11	2.2	1	-2.0	-1.8	-9		- $\mathbf{i} .0$
12	3.1	4	-2.2	-1.8	-1.0	-4.3	-7.7
13	8.8	3	-2.0	-2.1	-2.0	-4.8	-7.6
12	2.6	5	-1.5	-2.0	-2.5	-5.0	-7.5
15	28	1.0	-9	-1.8	-2.5	-4.8	-7.1
18	2.9	1.3	-3	-1.6	-2.5	-4.6	-6.8
17	3.1	1.6	1	-1.5	-2.5	-4.7	-6.8
18	3.1	18	6	-1.4	- 8	-4.6	-6.6
19	3.2	2.0	9	-1.4	-2.5	-4.5	-6.5
20	3.3		1.2	-1.3	-2.4	-4.3	-6.2
21	3.5	26	1.7	-1.1	-2.5	-4.4	-6.4
2	4.4	3.5	2.7	-4	-1.9	-3.7	-5.9
2313	2. ${ }^{2}$	4.15	3.2 3.7	-. 1	-1.8	-3.1	-5.8
2	5.6	4.5	3.7	$\frac{1}{3}$	-1.4	-3.5 -3.4	-5.76

$2-16$
AnCf $705-280$
TABLE 2-4. DENSITY AND TEMPERATURE PROFILES (cont)
G. Density Profiles for Polar Zone
(Unit: Percent Deviations from U. S. Standard Atmosphere, 1982)

Altitude (km)	Profile Number						
	D_{14}	D_{15}	D_{16}	D_{17}	D_{18}	D_{19}	D_{20}
0	2	1.4	25	9.0	15.4	17.1	18.7
1	-1.3	. 0	1.5	5.4	8.2	10.1	12.1
2	-1.6	-. 4	8	3.2	4.6	6.3	7.9
3	-1.7	-8	1	19	28	4.1	5.5
4	-1.7	-1.0	-. 2	1.1	1.8	2.7	3.7
5	-1.6	-1.0	-. 4	. 6	1.0	1.6	2.3
6	-1.2	-8	-3	.2	5	. 6	8
7	-. 7	-. 4	-. 2	-. 2	. 1	-. 5	-1.1
8	. 1	-. 1	-3	-. 9	-. 6	-2.1	-3.5
9	8	. 1	-. 6	-2.1	-2.2	-4.5	-6.7
10	1.0	-. 7	-2.5	-4.2	-4.6	-7.5	-10.3
11	-. 3	-2.7	-5.1	-7.0	-8.0	-10.7	-13.3
12	. 2	-2.6	-5.4	-7.0	-8.4	-10.8	-13.1
13	-. 2	-2.5	-4.7	-6.7	-8.4	-10.5	-12.7
14	. 1	-1.8	-3.8	-6.2	-8.1	-10.2	-12.2
15	8	-1.1	-3.0	-5.7	-7.7	-9.8	-11.8
16	1.2	-. 5	-2.2	-5.2	-7.3	-9.3	-11.4
17	1.6	. 0	-1.6	-4.7	-6.8	-8.8	-10.8
18	2.0	5	-1.0	-4.3	-6.4	-8.4	-10.4
19	2.1	8	- 5	-3.8	-6.0	-8.0	-10.6
20	2.4	1.2	.	-3.4	-5.7	-7.6	-9.5
21	3.0	1.9	9	-2.5	-5.2	-7.1	-9.0
22	3.9	2.9	2.0	-1.4	-4.2	-6.3	-83
23	4.5	3.6	2.7	-1.1	-3.7	-5.7	-7.7
24	5.1	4.3	3.4	-. 8	-3.2	-5.4	-7.5
25	5.6	4.8	4.0	- 3	-2.7	-5.0	-7.3

H. Temperature Profiles for Tropics and Subtropics (Unit: Degrees Kelvin)

Altitude (km)	Frofile Number					
	T1	T_{2}	T3	T_{4}	T_{5}	T6
0	209.5	298.2	293.1	290.5	237.3	284.1
1	293.2	235.4	239.0	285.1	281.6	278.
2	238.5	290.8	283.0	279.6	275.6	271 :
3	28.3	283.9	276.8	274.0	2703	2\%8.8
4	278.5	276.8	270.3	268.1	264.5	28j. 9
5	272.9	269.9	233.6	261.6	257.5	254.4
6	287.1	$28^{\circ} .1$	256.6	254.6	250.8	$\underline{47.2}$
7	2809	258.4	249.4	247.2	243.5	0.303
8	254.3	249.5	212.0	239.6	236.1	$\underline{23} 5$
s	23.7 .2	-2tit. $\hat{0}$	240	232.2	200	200
10	239.5	235.9	228.1	225.0	222.8	2228
11	231.6	229.5	222.6	218.4	218.7	222.0
12	223.4	223.4	213.2	213.0	213.1	221.1
13	215.4	217.3	215.4	209.8	215.3	219.6
14	207.7	213.1	213.0	203.4	213.9	$21 \% 8$
15	2500.9	209.0	210.7	2072	212.0	215.9
15	190.0	206.3	209.0	206.2	210.4	814.2
17	194.6	3082	2085	205.6	209.7	213.0
28	1000\%	2 W .4	209.2	207.3	209.13	213.0
19	201.7	259.6	311.1	209.0	211.1	213.5
20	206.5	512.9	213.0	219.7	212.4	214.3
21	210.2	215.6	21.4	212.	313.9	215.5
22	213.1	217.7	216.7	213.7	215.4	217.0
23	215.6	219.6	218.2	215.1	216.9	213.6
24	218.0	221.4	2198	216.5	218.4	220.3
25	220.4	223.2	221.4	c17.8	219.9	222.1

AR3CP 703-ICS
TAOLE 2-4. DENSITY AND TEMPERATURE PROFILES (cont)
I. Temperature Profiles for Temperate Zone
(Unit: Degrees Kelvin)

Alasure (kn)	Profile Number						
	r_{7}	T8	T,	T_{10}	T_{11}	T_{12}	T13
0	200.0	223.7	287.4	280.3	276.6	272.8	269.0
1	20.8	233.6	281.4	276.9	273.8	270.6	267.4
2	279.7	277.7	275.7	272.0	289.2	268.3	263.4
3	274.5	272.5	270.5	256.8	263.8	281.0	258.2
4	233.8	203.9	234.9	281.0	2578	255.0	252.2
5	232.6	2008	259.0	254.5	251.1	2483	2455
6	245.9	254.2	2525	247.6	244.1	241.3	238.5
7	248.7	247.1	245.5	240.3	236.7	234.0	231.3
8	20.1	259.5	237.9	232.9	229.3	226.8	224.3
9	23.4	2 2 1.9	230.8	225.9	222.0	220.5	219.0
10	2250	224.9	224.2	220.4	214.9	216.2	2163
11	2188	220.9	222.7	217.5	211.7	214.5	216.6
12	217.5	220.8	2243	217.5	211.5	214.9	217.0
13	210.3	221.8	224.7	218.2	212.5	215.6	287.7
14	219.5	2218	224.3	218.3	212.9	215.2	217.5
15	219.7	221.7	223.7	218.1	212.5	214.9	217.1
18	220.2	221.7	223.2	217.0	212.1	214.5	216.8
17	220.8	221.8	2228	217.6	211.8	214.0	216.3
18	231.4	222.2	223.0	217.5	211.4	213.6	
19	221.8	222.6	223.4	217.4	211.1	213.3	215.6
20	222.3	223.1	283.9	217.5	210.7	213.1	215.4
21	2223	223.6	224.4	217.8	210.3	212.9	215.3
22	223.1	224.1	225.1	217.9	209.9	212.7	215.4
23	223.7	24.7	225.7	218.2	209.6	212.5	215.4
24	2245	225.6	228.7	218.6	209.2	212.3	215.4
2	2255	228.7	227.9	219.1	208.8	212.1	215.3

J. Temperature Prcfiles for Polar Zone
(Unit: Degrees Kelvin)

Alditude (bm)	Profic Number						
	T_{14}	T_{15}	T_{16}	${ }^{\prime} 17$	T_{18}	T_{19}	\mathbf{T}_{20}
0	28.1	28.9	276.7	265.2	254.8	247.8	$240{ }^{2}$
1	203.3	2303	274.3	206.0	281.0	253.8	246.6
2	20.3	275.1	289.9	263.4	260.6	253.6	246.6
3	2745	259.7	204.9	258.9	256.6	249.8	243.0
4	203.8	264.0	259.2	253.4	251.0	244.5	238.0
5	232.7	257.8	252.9	248.1	244.3	238.3	232.3
6	258.0	231.0	246.0	2408	237.2	232.0	22808
7	2838	2838	2388	234.2	229.7	228.0	222.3
8	241.1	233.5	231.8	228.1	223.2	221.3	218.6
${ }^{9}$	233.5	29.5	227.4	223.5	217.3	218.5	218.7
10	2200.3	225.1 2040	224.0 227.0	221.3	215.1	218.0 219.2	221.3
11	220.2 219.3	224.0 224.5	227.0 223.5	221.6 22.3	216.5 217.1	219.2 220.0	223.1 223.6
13	2218	225.5	223.3	222.7	216.7	220.0	223.8
14	222.4	225.3	227.8	222.5	216.2	219.5	220.8
15	2292	2040	2010	2 zci .1	215.6	219.2	230.4
215	22.1	2245	228.9	2218	215.6	218.8	323.2
17	2203	224.5	220.7	221.6	214.4	218.5	223.0
18	22.7	24.8	220.7	221.3	213.8	218.2	222.8
19	223.1	220.0	2289	221.2	213.2	217.9	22.2 .6
0	223.6	225.5	227.4	221.2	812.6	217.6	222.4
21	224.1	223.9	227.9	221.1	212.0	217.4	222.2
22	224.6	222.5	228.4	220.9	211.4	217.6	222.0
23	225.1	227.0	223.9	220.7	210.8	216.6	221.8
24	2259	2278	220.7	220.9	210.2	216.2	221.6
2	283.7	228.6	2305	221.1	209.6	215.8	221.4

$2-18$
AMCP $703-200$

2.22
Figure 2-4(D). Subtropics - Seasonal Density Models

Figure 2-4(F). Temperate Zone - Seasonal Density Models

Figure 2-4(G). Polar Zone - Seasonal Densify Medels

CHAPTER 3
 SYSTEM DESIGNㅕN

3-1 GENERAL

The first point to be considered in the design of a rocket system is the purpose of the system We shall attempt to answer the first questions usually asked: To what uso will the system be put; who will use it, and how wil' it be used ${ }^{n}$ Next will be a more precise and detaled exammation of the requirements to provide a basss for developing. first, the conceptual approach and. then, the detalled design. Rocket system requarements can be documented un various forms. as will be explained in more detall later, or they can be orally expressed statements in entucipation of later, formally documented statements Re gardless of form, requirements based on real or anticipated needs should precede any syster. d.sagn in order for the design to be meaningful. With the requirements as a basis, an orderly a:d systematic procedure leading to a successiul conclusion can then be established.
Before discussing the systemitic procedure for the design of a rocket system, however, a brief survey of classes of rockets, operational modes. and launching methods will give us a conmon background and terminology for the discussion

3-2 CLASSES OF ROCRETS

3-2.1 MILITARY ROCRET SYSTEMS

In general, rocket systems used by the several branches of the armed forces are classed as milhtary systems They are used, except in several instances which will be noted later, to deliver some form of destructive warhead on an enemy target Th. types used most frequently by the Army are briefly described in the paragraphs which follow.

3-2.1.1 Artillery

Artullery rocket systerns are used in the same manner as artullery gun sysiems-to suppor porsonnel in contact with the enemy in for $\mathrm{wa}^{-1}-\mathrm{d}$ areas

They have long range capability and vary in size from small, man-handled rocket, is very large ruckets requiring heavy eq upnent for handling and luading The primary function of ar artillery rocket system is support by indrect irre, but most systems have some capaibinty for direct fire. System accuracy is probably the most mportant consideration in artillery rucket systems.

3-2.1.2 Infaniry

Infantry recket systems are used by cersonnel in iornard areas, in direct contact with the oppusing forces. Infantry systems art generally di-rect-fire-type weapons, usually suraller than arthlery systems, and, frequently, man-carried and -fired. The most notable type of infantry system is the antitank weapon, carried by the individual soldie, and des.gied to be firod from the shoulder Many special factors must be considered in such systims since the rocket and man are in such close contact. The weapon must be effective, yet saff to be handled and fired without endangering the user. Infantry systems as. hight. easily transported by men, and simple to fachitate fast reuction to changing battlefoeld conditions.

3-2.1.3 Air Dafens:

Air defense rocket systems are used to protect the ground soldser from enemy arrcraft. They range in size from small, individually carried and irred systems to large, complicated systems capable of attaning very high alttudes Many of these employ some type of gudanie system to enable the rocket to menouver and monteract the aurcraft evasive tactics. The free rocket systems are generally fired in number into an area where the aurcraft is or is expected to be This results in a pattern in the target areo similar to a patern of shotgun pellets fired at a tlyuge bird. The rockets in these systems are usuallv smail and simple in design to permit iarge numbers to bre used economically

AMCP 700.299

3-2.1.4 Armor

Rocket systems used by the armored forces are, in many instances, the same as those used by the infentry and artillery. The tank, armed with a diract-fizing gun or rocket system, is the primary veapon of the armored forces. The primary tarset of tanks is enemy tanks; consequently, the antitank type of rocket is generally employed. Bowever, tank weapons are also used against many types of ground tanyets. For this reason. they carry ammunition mixes suitable to the more prevalent targets expected.

3-2.1.5 Aviation

Rocket systems to be mounted cn, and fired from, Almy fixed and rotary wing aircraft have been of innreasing interest. The need for these amall aircra't to have some type of defense, and to be able to pariorm an attack function in close support of the ground soldier, has been shown to be of considerable importance, as evident in brush-fire activity in several parts of the world When this need for aerial rocket weapons firs: becnme urgent, attention was turned to adapting an appropriate rocket system originally developed to fill other reguirements. Since aircraft are used by the individual branches of the Army ground forces, rocket systems are used to accomplish the misstons assigned the using branch. In addition, airborne rockets are used for the defense against aircraft of the or,posing forces. The notable difference in these systems is that they are fired from an elevated platform that is unstable and in many instances rapidly moving. Rotary wing aircrast can stop and hover but, unlike a tank, they have no $f \mathrm{rm}$ ground base as a stredy fiving point. Many additional factors must be considered in the design of aircraft systems to permit attainment of the tactical parformance desired without endengering the aircraft or its crev:

3-2.1.s Logietic

Although no significant development of logistic rocket syst ms has occurred up to this time a. this class of rocket, it will undoubtedly play en important role in future large scale warfare. The logistic rocket is proposed as an extremely fast
direct method of delivering to ground forces all types of supplies needed on the battlefield. In this concept the payload, in read of being a destructive mechanism, is composed of iood, clothing, ammunition, medical items, or any other items of supply needed by personnel, and can be any single item or any desired mixture of items. At the destination, the payload is separated and parachuted to the ground. Rapid movement of men to forward areas and distant points by means of rocket transport has been proposed; however, much more elaborate techniques must be developed and utilized before this method of transport becomes practical.

3-2.1.7 Support

Rocket systems can also be used to support other operations. Examples of such systems are flare rockets for night operations in the battle area, tactical meteorological rockets for obtaining data necessary in attillery fire operations, rockets for delivery of some type of electronic equipment to a specified point for place-marking or transmittal of intelligence, and rockets thet will produce smoke or other visual means of spotting on a target. The uses to which rocket systems can be put in their support role seem to have no particular limit. The same design approach is used for support rocket systems as for any other rocket system; the designer is limited only by the particular dictates of the specific requirement.

3-2.2 RESEARCH ROCKET SYSTEMS

3-2.2.1 Gonaral

Research rocket systems have, in common with nuilitary rockets systems, the general characteristic of deliyoring a paylead to some designated point. Research rockets are alse made up of the same general group of components. Their prime function, however. is different. They are designed to accomplish a mission from which useful technological data will be obtaine to further a scientific understanding of a sotecfic discipline. In this role, the pryload becr mes a device to gather data for later evaluation. Su h a payload obviously necessitates a means for payload recovery and a means to μ revent payload damage or de-
struction that would negate mission completion. In a sense, many military rockets serve as research rockets duing their developmental phase. In this phase, the payload is a ballast weight or data gathering device; equipment exterior to the system also is used to gather information on the rocket flight. The knowledze obtained is used to further the understanding of rockets and their behavior as powered airborne vehicles.

3-2.2.2 Meteorological

Rocket systems have been used to place sensing devices at various altitudes in and out of the earth's atmosphere. These have the purpose of providing information about the earth's air, the winds, temperature, radiation, moisture, and other phenomena. Because these systems utilize a vertical or near-vertical trajectory, the objective is the attainment of altilude.

3-2.2.3 High Altitude Sounding

Rocket systems for scinding at high altituchs are used for obtainung some specific bit of information at altitudes ranging to several hundred mites above the earth's surface. These, like the meterological rockets, utilize a vertical or nearvertical trajectory.

3-2.2.4 Satellites

Unguided, aerodynamically stabilized rocket systems can be used to place a payload into earth orbit. The payloads of these systems are usually small sensing devices for gathering information and transmitting it back to earth. These systems are usually multstage, with the first, and perhaps a second, stage operating in the unguided or freeflight mode. In later stages, it is necessary to provide some type of guidance to permit maneuvering into an attitude to attain the desired orbital path. In these stages, the purpose of the unguided phase is to place the vehicle at some appropriate altitude from which the orbital phase can be initiated. For small payloads, this system approach results in considerable saving in guid-. ance hardware, particularly where precise orbital mechanics are not required.

3-2.2.5 Dispensing

Dispensing rocket systems can be either research or military The purpose of such a rocket system is to dispense a material, or materials, at some point in the rocket's trajectory. Examples are chaff-dispensing rockets, leaflet-dispensing rockets, smoke screen rockets, and :ockets to disseminate crystals of varinus substances for cloud seeding to nduce rain. The chaff dispensers are used to put lerge quantities of very small metallic wires into an area at some height above the ground. These wires, or dipoles, are then tracked by ground radar to determine the nature of wind currents at various altitudes. Leaflet rockets are used to deliver propaganda leaflets over areas not accessible from the ground. The poyload is released at a specific altitude and the ieaflets flutter, spread, and are carried over large ground areas by the wind. Although not in general use, cloudseeding mokets have been proposed, e.g., : rocket to dispense small pellets of dry ice into fog banks for fog removal over airports and similar areas. It appears practical to use rocket delivery methads for dispensing materials such as those described above, particularly where other means requiring human presence are not practical or are denied. The rocket's presence is almost unknown until after it has accomplished its mission.

3-3 OPERATIONAL MODES

3-3.1 General

Rockets may be designed and used in an alnıost unlimited number of ways. They have been used not only to serve military and research purposes. as discussed in the foregoing paragraphs, bit also to propel aircraft and land-based vehicles, and for other similar purposes. It is not the parpose of this handbook to discuss the many farets of rocket uses, but only t. present the uses mosi commonly omployed in military systems The paragraphs which follow will brietly descr, be the modes normally used for military rocket sy stems.

3-3.2 GROUN"O-TO-GROUND

In the ground-to-giound mode the rocket is launched from a point on the ground to a target
on the ground. Most artillery, infantry, and armor systems are used in this mode.

3-3.3 GROUND-TE-AIR

In the ground-to-air mode the rocket is launched from the ground against an aurborne target. The target may be a manned airplane, an unmanned drone, another rocket or missile, or simply a point in space. The air defense, meteorological, high altitude sounding, and dispensing rocker systems operate in this mode.

3-3.4 AIR-TO-AIR

Ths air-to-air rocket systems are used in defensive and offerisive operations from aircraft against other airborese targets. Some of the aviation rocket systems for use on fixed and rotary wing aircraft are in this category.

3-3.5 AR-TS SROUND

-Air-to-ground rocket systems are used in suppressive fire over areas of ground, for point targets on the ground, and to deny an enemy a ground position. They are fired from fixed wing and rotary wing aircraft, usually at relatively low aititudes. It is extremely difficult, except in unusual circumstances, to recognize and identify ground targets from an aircraft, and the higher the yopwing position, the more difficult this becomes. For this reason most air-to-giound rockcts do not need extremely long range cipability; however, they do need to be as accurate as possible to permit effective fire from the unstable aircraft firing platform.

3-3.6 UNDERWATER-TO-AIR

Rockot systems have been designed and built to be fixed from under the surface of a body of water and to continue flight after emerging into the atmosphere. At present, the submarinelausched POLARIS missile system is the most notable example. Alihough the POLARIS is a guided missile of considerable complexity, there is nothing inherent in rocket technology to prevent any rocket system, guided or un ijed, from
functioning in this mode. The critical factor is accuracy since the purpose of firing this type of rocket is to hit a target.

3-3.7 SURFACEIAIR-TO.UNDERWATER

These systems are the reverse of those described in the preceding paragraph. I.A these systems, the rocket is fired from a surfacs or air launching point. enters a body of water, and continues its trajectory in tiat medium. One current example is the SUBROC, or sulmmarine rocket, used by the Navy to attack underwater targets from surface ships.

3-4 LAUNCHING METHODS

3-4.1 GENERAL.

A rocket is primarily a powered, airborne vehicle. As such, it must have some point of departure, or launching point. Rocket launchers have assumed many varied shapes and sizes, depending on system requirements and intended uses. The launcher supports the rocket and points it in the desired direction before launching. During the launch operation, the launcher guides the rocket in is first motion and prevents smail disturbances irom aiverting it from the desired pati. The launcher can also be used for otner purposes, such as a packaging and shipping case, as a transporter, and for imparting other desired motions (such as spin) to the rocket during the launch phase. The paragraphs which follow describe the more common launchers and launching systems.

3-4.2 RAIL LAUNCHERS

Rail launchers derive their name from then simitiarity tu the rail of a railroad track. The rocket is supported on the rail with shoes which slide aiong the rall as the rocket moves forward. The launching shoes are usually a part of the rocket and can be fixed, retractable, or jettisoned after leaving the launcher. Since the sliding motion occurs only over a few feet of travel, friction is usually not of critical concern. Rail launchers may have a number of variations, the most common of which are described below.

3-4.2.1 Single

Single-ral launchers have one rall along which the rocket moves. The rail must have sufficient width, and the launching shoes must be so designed that lateral, or rocking, motion is prevented or held to a minmum as the rocket moves over the rail.

3-4.2.2 Multiple

Multiple-rail launchers may be interpreted in two ways. One concept is a launcher having two or more rails, each of which serves as the launch guidance for a rocket. The barrage-type rocket systems, which launch a number of rockets simultaneously, often use this launching scheme. On the other hand, a launcher with two or more rails can be used to launch one rocket. Such schemes are used to provide a more rigid launching support and, in some instances, to dispense with launching shoes. The rocket slides through the rail structure the same as it would through a tube.

3-4.2.3 Helical

For this launcher concept, the rail is twisted through a helical angle in order to impart spin to the rocket. Geneaslly, the helical rail launcher has two or more rails to provide a torsional couple to the rocket because it is impractical to impart a torsional couple with one rail. The technique is analogous to the rifling grooves in the bore of a gun or rifle. Unlike the gun, however, helicalrail launchers are nist used for spin rates of sufficient magnitude to provide spin, or gyroscopic. stabilization. The spin produced is low in magnitude for the purpose of reducing errors resulting from some of the rockct imperfections. This is discussed more fully in Chanter 7.

3-4.3 TUBE LAUNCHERS

Rockets mey be launched from tubes in much the same way as gun projectiles. The length of the tube can vary from about one rocket length to several rocket lengths, depending on the characteristics of the rocket, its intended use, the envircament in which it will be used, and accuracy considerations. This tube can have a smooth
bore or may be grooved in some manner to provide or prevent rotational motion during the launching. No launching shoes ate required on a tube-launched rocket, although devices known as bore-riders may be used to support a portion of the rocket that is smaller than the tube. The bore-riders prevent the rocket from wobbling, or balloting, as it moves through the tube, and assure its continuing in the desired direction. Tube launchers may be designed to be reusable or may be designed to be disposable after the firing of one rocket. The latter is found quite often as a part of small rocket systems, particularly the small infantry antitank systems. This allows the individual soldier to discard unnecessary encumbrances on the battlefield. For similar reasons, disposable launchers are also incorporated in aviation rocket systems to permit the launcher to be jettisoned after use. Thi most common types of tube launcher are briefly siscussed in the paragraphs which follow.

3-4.3.1 Single

Single-tube launchers are generally used in hand-held or single-man-operated rocket systems and in some systems with automatic feed mechanisms. As with any rocket system, tise choice of a single tube results frorn considerations of the system requirements and rocket characteristics.

3-4.3.2 Multiple

Multiple-tube launchers are used to provide a fast firing rate where the complexity of automatic feed mechanisms in conjunction with a single tube is either undesirable or is prohibitive. With the employment of a multiple-tube launcher, the rockets can be fired all at once, in salvo, or in fast ripples. The ability to fire one rocket at a time is also inherent and car save considerable time by nat requiring reloading after each firing. Multiple-tube launchers are frequently employed as barrage weapons, replacing a number of guns concentrated in a small area.

3-4.3.3 Open arecch

An open-breect, launcher is one where the rear end of the tube is completely open and is the
full diamster of the tube. This is the most common form of tube launcher. The gases exiting from the rocket are unrestricted in passing through and out the rear of the sube, and the tube experiences little if any reaction force.

3-4.3.4 Closed Braech

A closed-breech launcher is one in which the rear end of the tube is ampletely closed. The gases from the rocket cannot escape, and pressure builds up between the closed tube-end and the rocket. This type of tube launcher experiences a reaction force, or recoil, similar to that of a gun. Tubes of this type are generally used in places where the rocket exhaust gases would be undesirable or dangerous if allowed to exhaust rearward. The tube launcher of a tank-mounted system is an example of the closed-breech launcher. In this instance, the rocket is loaded into the tube from within the tank but the recket exhaust gases, for obvicus ressons, cannot be tolerated inside the tank.

3-4,3.5 Restricted Breech

A restricted-breesh tube launcher is one in which the rear end of the launcher has been reduced to some diameter less than the bore diameter, but not sealed off completely. This form of tube launcher is used only in instances where sone particular effect is desired. If the restriction is made in the form of a rocket nozzle, some usefu! forward tirust may be ubtained that will counteract to some degree the recoil resulting from the resiriction. The higher pressures resulting in the tube may be utilized to afford a higher muzzle velocity to the rocket without changing the rocket or increasing its size.

A3 this name implies, the gatling launcher is derived from the old Gatling gun concept. It is a form of automatic feeding launcher since, as one or several rockets ane firing, one or several tue being fed into empty tubes. The tube cluster rotates so that those tubes firing are always at a fixed josition, as are those being loaded. Several rocket systems have been designed around this
type of launcher, using the closed-breech type of tube mentioned above.

3-4.4 OTHER LAUNCHER TYPES

In many instances the simple apprcach to a launcher design is not adequate. It then becomes necessary to examine techniques and designs that will provide a necessary function, a particular motion or effect, or will impari to the rocket some required characteristic. The result may be a modification of one of the types described in the preceding paragraphs, a combination of several types, or a completely new approach. It may be necessary to add varying degrees of sophistication, or to provide additional equipment er devices for a particular effect or function. One of the more notable t zes is the zero-length launcher.
This launcher is, as its name implies, one that supports the rocket but releases it from constraints immediately, or with zero guidance upon first rocket motion. It is not too practical in most instances to achieve a true zero-length guidance; however, guidance lengths of a fraction of an inch have been achieved for small rocket systems and several inches for large systems. The rocket must be adequately supported on the launcher and must maintain its aim alignment until it is launched. Mechanical considerations generally will dictate the size and length of the attaching devices and, consequently, the guidance length in zero-length launchers.

3-4.5 VARIATIONS

3-4.5.1 Autospin

- As has already been stated, it is sometimes desirable to impa't a slow spin to rockets in order to seduce ar climinate some types of error duriug the flight phase. One method of imparting spin that has been analyzed and tested uses in the rocket a device that spins the rocket warhead in one direction; the reaction spins the propulsion motor in the opposite direction. Spmning during the flight phase, or even before rocket mation ofsurs is desiraole. Since simplicity is also important, the rocket is made to spin after it has traveled approximately one inch. In this case, the zerolength launcher is necessary, because the rocket
must be free of launcher constrauitis at the time spinning begins. It must be borne in mand that the thrust and acceleration characteristics of the rucket motor must be sultui': io mamtan the rucket in an acceptable flight attitude at this tume. utherwise, the rucket may drup ux deviate in such a manner as to make its filigin meaningiess.

3-4.5.2 Prespin, Automatic Ejnamic-Alignment (PADA)

One effect of spinnung a rocket is to cause the accrual of errors from dynamic unbalance. No rocket is perfectly balanced, and the center of mass will not lie exactly on the longitudinal axis. Even the longitudinal axis cannot be expected to be perfectly aligred since the rocket is usually made of components joined together. Consequently. the rocket will not spin these components around the longitudinal axis of symmetry, but will seek to spin about some other axis which is the dynamic axis. The rocket, if spun on a rigid launcher and attached to the launcher by rigid mounts. will be constrained to rotate around the longitudinal axis of symmetry purely from mechanical aspects. Once released from the launcher constraints, however, the rocket will seek immediately to spin around its dynamic axis, which results in errors along the flight path. The dynamics and errors resulting from this phenomenon are discussed in more detail in Chapter 7. The zero-length launcher with flexible arms supporting the rocket is one approach to gaining the beneficial effects of spinning the rocket before launching without the undesirable effects of jump at release of launcher constraints. This is more practical than attempting to design flexible shoes for the rocket. Zero length is the logical launch approach since it would be very difficult to provide flexible rails that would function in the desired manner during the guidance phast. The flexible launcher arms permit the rusket to find and aligri itself along its dy nature axis as it spins. and when launched, to mainiain the attitude attaned during the spin-up period. The critical consideration in this scheme is to make sure that the spin rate of the rocke, does not couple with the resonant frequency of the launcher arms. This can cause violent pertuibations of the rucket and possible fallure of the launcher structure. It
is desirable to stay below the critical rate or, if it is necessary to go above, to provide a spin 2. celeration sufficient to carry through the resonant point as rapidiy as possible. The name ascribed to this launcher soncept is prespin, automatic dynamir alignment launcher, or PADA (pronounced "Payday").

3-4.5.3 Spin-On-Straight-Rai! (SOSR)

Although the effects of shifting axes produce undesirable results, prespinning a rocket before launch on a rigid launcher is nevertheless sometimes beneficial. The benefits derived overshadow the ill effects of dynamic unbalance sufficiently to justify the inflexible launcher. The rocket is thus provided with bearing systems in which it ca: rotate while on the launcher and then be launched along a rail in the usual manner. This technique has been termed spin-on-straight-rail, or SOSR. Although helical rails could be used, they may be undesirable because of length. weight, or other factors. Also, the spin rate desired may not be attainable with any reasonable rail length and helix angle. In the SOSR system almost any desired spin rate can be obtained. The method of spinning can be an integral part of etther the rocket or launcher. The spin mechanism, if it is a part of the rocket, is usually a system of small rocket motors exhausting tangentially to the longitudinal axis. If the spin mechanism is a part of the launcher, it may be electrical, hydraulic, mechanical, or it may use whatever power source is most applicable. Power transmission to the rocket may be by belt, gears. or other appropriate means. The dynamic treatment of this technique is also covered in Chapler 7.

3-4.6 METHODS UF TRANSPORT

Rocket launchers can be transported an many' different ways, with or without rocket loads. The small infantry launchers designed for the individual soidier are usually hand-carried and strapsuspended, much the same as a rifle. Larger types may still be man-transportable by diviaing the system into man-load component, although the assembled launcher when it is fired may hove to be supported on a tripod or other appropriate

AMCP TOE 280
base. The larger, heavier, artillery rocket launchers are mounted on wheels and towed behind a vehicle as a trailer, or are mounted on a vehicle that is then an integral part of the launcher system. The Iargest of these systcms are frequently mounted on self-propelled, tracked vehicles to provide a maximum cross-country capability. The mobility characteristics of the rocket-and-launcher system are dictated by the system requirements and the rocket characteristics. Many of the mediurn and large moket systems are required to be air transportable. Here the designer must be conscious of both weight and size if he is to achieve a system small enough to fit into modern transport aircraft and light enough to be carried. The aviation rocket systems are mounted on, and are an integral part of, the aircraft. Size, weight, and aerodynamic characteristics of the configuration are paramount. A high-drag design can slow an aircraft to the pcint where its vulnerability to enemy air and ground fire becomes acute. Rocket armament for a tank is also an integral part of its transporter. The factors for serious consideration with these systems are that of space in the tank and that of the burned gases from the rocket. The launcher designer must provide means of exhausting the gases, must provide adequate room for the tank crew to operate, and must provide means for handling and loading the rockets from within the tark. Considerable ingenuty is required to achieve an acceptable balance of space, weight, and safety for systems that are to be operated in such closely confined spaces.

3-5 SYSTEM ELEMENTS

3-5.1 GENERAL

A recket system is made up of a number of elements, or subsystems, each of which performs a function necessary to the successful performance of the system. In general the system is composed of three main elements: (a) the rocket, (b) the launcher, and (c) the fire control device. Each of these in turn is composed of subelements, or components, each of which has a necessary fune tion to permit sucerssful operation of the whole.

In keeping with the intent and purpose of this handbook, only the rocket will be discussed in
detail. This is not to imply that the other elements are any less important, but they are more properly considered in other handbooks dealing with their particular disciplines. The launcher and fire control elements will be described sufficiertly to permit an evaluation and appreciation of the particular problems attendant upon these elements. This approach is also taken with the payload, or warhead, of the rocket, which is covered in considerable detail in other handbooks.

3-5.2 ROCKET

The rocket is composed of a payload, or warhead, a propulsion motor, and an airframe to provide structural rigidity. In the smaller, simpler rockets the warhead and propulsion motor serve also as the airframe, and no additional structure is required other than the fins or other device to provide aerodynamic stabilization.

3-5.2.1 Warhoad

The rocket warhead has a shell, or casing, which is hollow, and which may be aerodynamically shaped to serve as the nose of the rocket. An appropriate high explosive is loaded into the casing. Actuation of the explosive is performed by the fuze. The fuze may be located in a number of positions in the warhead structure, depending on its type and method of operation, and on the type of detonation desired. For high explosive warheads, the fuze may be placed at the forward tip of the warhead and may be actuated by striking the ground or another object. The shape of the warhead may take a number of forms, the selection usually being determined by the type of warhead, the aerodynamic characteristics and requirements for the rocket, the fuze type, and structural considerations. The warhead has two general parts, the shaped nose portion, or ogive. and a body, usually a cylindrical portion. The cylindrical portion may or may not be present, depending on the design requirements, but the nose or ogival portion is always used. The ogive may have a number of shapes. It may be contcal; it may have curvature and be termed a tangent or secant ogive, or it may be hemispherical. Ogival shapes and their zerodynamic, charateristucs are covered in 1. .ure detail in Chapter 8.

The material for the warhead casing is also selected according to requirements. It may be cast iron, steel, aluminum, or a combination of these or other materials. The material, in combination with the high explosive, is the destructive mechanism, and thus must have characteristics that will produce the maximum desired effect on the target.
Fuzes, as mentioned above, can be of several types. The point-detonating fuze initiates the explosive charge immediately upon striking an object. The delay fuze initiates a powder tran that delays the actual explosion for a period of time ranging from several seconds to minutes, and in some cases to hours and days. The air-burst fuze is timed to actuate at some desired point in the air above or in the proximity of the target. Fuzes may also be located at the aft end of the explosive charge with an actuating device in the nose. On impact with an object, the actuating device generates an electrical impulse to initiate action of the fuze. For some aircraft rockets the warhead should penetrate and enter the arcraft structure befcre detonation. These warheads may use a coil-type actuator, located behind the warhead, which will generate an electrical impulse on passing through the metal structure. Fuzes for actuating the explosive charge may be simple, or may be intricate devices requiring the techaical competence of a watchmaker to design, build, and assemble. These mechanisms, though precise, must ie rugged and must perform weli under the most trying eonditions.
A necessary aspect of fuze design and functioning is that of safin $_{6}$ and arming. The rocisc warhead must be kept safe to handle, even to drop, without endangering perscinel to accidental explosion. For this reason fuzes have built-in saiety devices that :nust be actuated in some manner betore the fuze can function. These safety devices range from simple pull wires, which are rennoved by hand just prior to firing the rocket, to intricate mechanical and electrical mechanisms that are actuated by the forward acceleration of the rock. et. In many instances, for safety reasons, the fuze should not be fully armed until the rocke! has moved for some distance away from its launch point. For these cases the safing and arming device may be a small escapement mechanism (similar to that of a watch) that is actuated by the forward acceleration of the rocket, removing
a blocking device between the fuze detonator and the high explosive.

For a full and comprehensive treatment of explosives, warhead design, and fuze tyecs and design, the reader is referred to other haxabooks in this series.

3-5.2.2 Motor

The rocket motor is the engine that propels the rocket from the launch point to the target. For present purposes a general description of its components will suffice A more detailed coverage of its design is presented in Chapter 5.
The motor is an internal combustion engine with a combustion chamber, an orifice through which the burning gases are expelled at high velocity, and the propellant sharge that produces the high-temperature high-pressure gases as products of the combustion process. Also included is the igniter which starts the combustion process in the chamber.

The fropellant charge, or grain, is a mixture of a suitable fucl and an oxidizer. Thus, unlike most air-breathing internal combustion encines, a rocket motor does not utilize or need the surrounding air to operate. In fact, it can and does function equally as well in a vacuum or in outer space When the propellant charge is ignited, the heat generated causes a decomposition of the chemical compounds in is structicie to produce (nmbustible gases n ne the grain surface. The gases are burned, and the process proceeds in an orderly and predictable fashion. The products of the combustion process are high temperature gases and, in some cases, solids in suspension in the gases.

Propellant grains may be oblauned in a large variety of compositions and shapes. Each is designed to uperate in a specified manner and environment, the particular manner of operation is selected to fit the perfornance requarements. The grains may be cast directly into the motor combustion chamber, or may be molded or cast into a separate container that is loaded into the chamber as a cartridge. A grain may be end-burning, as a cigarette burns, or it may have perforations in which the turning occurs. Some motors, calied multi-grain mutors. may be lopded with a number of small grains. Generally the end-bunung grains operats at low pressure over relatively long

```
mem*
```

AMCP 706-280
periods of time, whereas the perforated grains operate at medium and high pressures for relatively sliort paricods of time. Multi-grain motors are usually employed to provide extremely short burning periods at very high temperatures.

Grain compositions vary in operational characteristics. The more general types of fuel mixtures are single base, double base, triple base, and composite propellants. To the fuel is added the chemical oxidizer. Other chemical agents are added to the mixture to obtain desired performance characteristics. These agents act to inhibit or slow down the burning, to speed up burning, to stabilize the burning, to counteract or minimize temperature and pressure effects on the burning, and to produce other desirable effects.

Propellant compositions are in many instances developed to provide desirable physical characteristics. The propellant strength should be fairly uniform over wide temperature ranges, and ats density and specific volume remair as constant as possible despite temperature change. Powdered metals are adcled to some propellants to rase the combustion temperature and the usable energy. The designer is concerned with obtaining the propellant with the highest possible density and energy per unit weight since these factors will provide the least weight and size of motor to do the requirad job.

The motor combustion chamber is a pressure vessel to contain the propellant and the high-temperature, high-pressure gases during burning. An opening is provided at one end through which the gases are expelled. The size of the orifice relative to the physical dimensions and burning characteristics of the propellant grain is governed by precise mathematical relationships and differs with types of propellant and operating conditions. The motor case may be constructed of any material capable of withstanding the presrure genera ed, but it is of primary interest to keep the weight to a minimum. For this reason, the very high-strength steels, high-strength aluminum, and the glass-reinforced plastics are most often ust d. Other metals, such as titanium and magnesium, have meen used, usually to obtain some particular characteristic not afforded by the more common materials.

The mutur exit=urifice, or nozzle, as designed to have precise geometric and mathematical reladionshiyw: both with the propellant grain and
with the properties of the exhaust gases. The design usually is in the form of the De Laval nozzle with converging-diverging sections. The converging section, located before the throat orifice, is commonly called the expansion cone. Materials used in nozzle construction are generally the same as those used for the motor chamber. However, it is not unusual to employ a reinforced plastic nozzle with a steel or aluminum motor case. Sometimes the nozzle throat is lined with graphite. This material resists the erosive characteristics of the exhaust gases much better than most materials and it changes dimensions very little with changes of temperature. Because it is brittle and has little physical strength, this material must be adequately supported in the nozzle throat to prevent disintegration. Protective coatings of other types also are used to cover the entire inside surface. Particularly applicabie to nozzles made of aluminum, the coatings provide a very hard, erosion-resistant surface. These coatings, too, are very brittle in nature and must be adequately supported to prevent disintegration.
Variations of the IJe Laval nozzle have been employed on rockets. They are designed to provide a particular effect on, or enhancement of, the motor thrust characteristics. The production costs for some of these variations may be appreciably higher than for the simple conicai-section De Laval nozzle. Therefore, the effect to be gained must be weighed carefully against the added cost. One variation that has been of considerable interest and study is the plug nozzle. This is essentially an inside-out De Laval nozzle which has the characteristic of providing optimum or nearoptimum expansion characteristics for the exhaust gases at all altitudes, or, more properly stated, at all ambient pressures. Thus, this nozzle has the potential of performing equally as well at seã level às it dues in the vacuiumin of outer space. It is not too difficult to build and should compare favorably with the conventional nozzle in cost and weight.

A necessary consideration for some types of rocket motors is that of insulating the case wall For the long-time, end-burner type of propellant grains, and for cartridge-type grains where the gases may impinge directly on the case wall, the loss of strength in the material can cause rupture ar.d failure of the system. To prevent this accurence, an insulating lining that will preven.t over-
heating and loss of strength should be applied io the wall The material selected for insulation may be applied directly to the wall by painting, casting and curing it in place, or by other suitabl. mears Insulation maj also be fatricated and inserted into the motor case. The liner must be bonded to the wall with an adhesive since it will not function properly if the hot gases flow between the insulation liner and the wall. Insulating materials may be of several types. Some are charring in nature, others ablative. No one type is superior, some work best in one type of environment, others best in another environment. The best guide to selection is past experience and experiment The primary consideration is maximum effect for minimum thickness and weight since insulation reduces space available in a given chamber for propellant.

Some device is necessary to initiate propellant combustion in the chamber. The device that performs this function is called the igniter. Although i may take a number of forms, they all have the same general characteristics. The squib, a levice that receives the firing signal, may be electrical or mechanical, the latter usually being of the percussion type The electrical squib is in essence an electric match. The current passes through a resistance wire that becornes very hot, much as the cooking element of an electric stove. The hot wire ignites a small powder charge that generates hot gases. The hot igniter gases are directed against the propellant grain surface that is in turn ignited. The smal container in which the igniter is housed is usually of a brittie or very flexible material, plastic in most cases, so that it may be easily ejected through the nozzle after propellant ignition. The igniter cup must not be permitted to block the nozole throat as this would cause an extremely fast pressure rise in the motor chamber, resulting in chamber rupture.

Most propellants exhibit better ignition characteristics urder pressures considerably higher than atme;pheric. The surface of the grain igrites faster, and the flame front covers the entire burning surface much faster under elevated pressuse. To provide this pressure condition a closure, called the nozzle closure, is claced in the nozzle throat. It is designed so that the ignitor gases are not permitted to escape, but build up pressure in the combustion chamber. It is also designed to blow out of the nozzle at some predetermined
pressure, usually lower than the operating pressure of the motor. The igniter cup may function also as the nozzle closure, or a separate clesure may be provided. The closure may be of any suitable matersal, usually plastic or metal. It must exit at the desired pressure level and must be constructed in such a manner that .he nozzle or expansion cone will be undamaged as it leaves. For some aircraft rockets, the nozzle closure may be ejected at a fairly high velocity. If it were to strike a vital part of the aircraft, it could endanger both aircraft and crew. In such instances the nozzle closure should be made of a material that is very light and that preferably will disintegrate into a powder when ejection occurs. Other problems and environmental requirements may dictate that different materials and techniques be used in designing the nozzle closure.

3-5.2,3 Structure

The rocket must have a frame of some sort to tie the parts together and to provide the desired aerodynamic shape. For the smaller and simpler rockets, the components themselves frequently constitute the airframe, being joined together by threaded sections, by bolts or screws, or by a sirnple crimping proiess. The components, warhead and motor, are shaped so that the dasired aerodynamic configuration is ubtained when they are joined. As size and,or complexity inczease, it may be desirable or necessary tu provide a properly configured frame that will encluse the functional conponents. The warhead need be shaped only from a maximum effectiveness staidpulat. and the motor for maximum perfurtaance. One or both may be enclosed in the airframe, depending on the particular :ystem requizments.
The skin of the airframe is made of a lightweight material, usually alumisum or reinforced plastic. It may be shaped by drawing, hot or cold, by rolling and welding, by stretch forming, or by any other appropriate process. The particular forming process used is the result of considerations of requirements, materials, and ecunomacs. The skan is supported un a framework consisturg of bulkheads and, in some cases, stringers. The dore elaborate the structure lecumes, the more strin-. gent becume the requirements for cluse tolerances, aligninents, postioning, and shaping. For a fuily enclosed system, the components are tied to sev-
eral key bulkheads; where only part of the components are ex:losed, they may be attached to bulkheads and/or the nonenclosed member.

For some types of rocisets, several propulsion motors are used in a cluster. This arrangement provides the capability for obtaining different thrust ievels by firing varying numbers of the motors to meet varying operational conditions. The: elustared motor configuration is one that is usualiy fillly enclosed within the airframe.

Tha ruukets of immediate concern in this handbook are the free-fight aemdynamically stabilized rockets. The component that provides the aerodynamic stabilization is most often a set of fins located at the aft end of the airframe. Other means of aerodynamically stabilizing a rocket have been used and a number of proposed methods have been studied. The functional action of fins and other aerodynamic stabilization methods are covered in considerable detail in Chapters 7 and 8.

In order to stabilize a rocket along the flight path, a minimum of three fins, equally spaced circumferentially around the body, is required. The more usual configuration has four fins; however, as many as six and eight have been used to satisfy a particular set of environmental requiremen 3. Generally the fins axe either rectangular or triangular, with any number of variations of these. They may be mounted normal to the rocket centerline, or tangential to the airframe. They may be fixed or, if necessary, folded, in which case they open after the rocket is launched. They may open due to rocket acceleration or may be opened by some mechanical device such as springs, pistons and cylinders, or other appropriate means. Folding may be radial or longitudinal; for the latter, they are either forward folding or rearward folding. For some rockets it may be necessary to curve the fins to the same curvature as the airframe to provide a smooth contour prior to iaunch. This is especially true for some tube-launched rockete where restrictions of size and weight are imposed and where there is insufficient space to mount other types of fins.

The size and configuration of the fin are determined from a comprehensive study by the aerodynamicist of the flight path environment, the performance characteristics, and the configuration of the body of the rocket. As mentioned,
the available space, launching technique, and weight restrictions also play important roles in designing the fin planform.

The methcu of attaching the fins to the airframe is again determined from physical and mechanical considerations of the particular system. They may be welded, riveted, bolted, screwed, or cemented on. It is often desirable to nount them with a small cant angle tu the rocket ceriterline so that the acrodynamic reactions on the canted fins will produce a roll in the rocket.
The rocket must te attached to the jauiacher, except in the tube launcher, where the rocket merely slides through the tube ard no special attachment devices are requised. Other zypos of launchers such as rail launchers usc a cunnecting device, or launching shoe, to constrain the rocket to move in a precise and prejetermined fnanner during the launch eperation. The number of shoes required is deternined ? , the size of the rocket and the degree of comple s.ty of launching motion imparted y the launchei to the rocket. For most rocket a minimum of two shoes is usually adequate, pasticularly wi.ere the motion is simply a straight, nonrotating novement aloug the rail. The shues may be fixe 1 permanently to the rocket, may be fclding or retractable, or may be of an ejection type.

Other devices are at times included in a free rocket system to provide some desirable or necessary function. One frequently employed is a mechanism to produce sluw spin i_{1} the rocket prior to or immediately after launching. This mechanisu ranges from the small canted vanss in the exhaunt mozzale of the rocket that react to the exhaust gases, to compiex devices such as gear trauns, drive shafts, pistons operated pneumatically through helixes, and other similar ,ystems. Other devices for providing spin may be a component that (a) must be tied into the avcket system by the airframe, (i) may be a part of the airframe, or (c) may be a simple attachment-whatever the dnvice, it must have proper consideration and emphasis in the overall structural assembly. In addition, the effect of the spin produced must be considered along with the aerodynamic and acceleralion forces when analyzing the structural integrity of the airframe and component assembly.

3-5.3 LAUNCHER

The launcher, like the rocket, consists of several components each of which performs a function to provide the total required performance (see par. 3-4 above). Many of the terms used for launcher components have been carried over from artillery practice since much of the design and development work has been done by guil designers. The similarity between a rocket launcher and an artillery field piece is in many instances quite evident, the gun tube being replaced by the launcher rail. Only a brief description of the three basic launcher components will be given since this subject is more properly covered in other iexts and handbooks.

The launcher rail is the component on which the rocket rests and which guides it in its first motion of travel. The rail may take any number of forms and may also be a tube through which the rocket slides. It must have sufficient strength to support the rocket and must be scifficiently rigid to prevent successive deflections and oscillations that could cause mallaunch of the rocket.

The launcher rail is supported on an upper carriage through a truanion connection. This is the joint that provides for the angular elevation and depression of the rail, or change in quadrant elevation, nece'sary to achieve varying ranges for the rocket. If the rocket system is large, a means of assisting the elevation change-through gear trains, hydraulic pistons, or other suitable means -may be accessary. The assist mechanisra may be manually operated or may be mechanized for remcte control, faster opsration, or for lessening the burden on the launcher crew.
The launcher rail and upper carriage assembly is mounted on a lower carriage through a vertical pin connection around which it can rotate. This provides the change in azmuth, or direction of firs. Manual operations or mechanized means of assisting the motion may be provided. The lower carriage also torms the base of the launcher. It may have wheels mounted to it for towing behind a vehicle; it may be mounted on a wheeled or traeked vehicle as a self-propelled unit; or it may, for small rocket systems, have legs or a base to stand dirently on the ground.

Other equinment that may be a part of the launcher to provide a specific function or capability includes devices for imparting spin to the
rocket; the firing mechanism, either electrical or mechanical; and cranes or hoists to assist loading the rocket on the ill for the larger systems.
Launchers may consist of less than the three basic components-rail, upper carriage, and lower carriage-but, of course, must always have the rail or other device for supporting or guiding the rocket. For the antitank rocket syslems of the bazooka type, where the launcher is a tube supported on the man's shoulder, the other components do not exist; the flexibility of the man provides the necessury motion capability for changing azimuth and quadrant elevation. In other systems the carriages may net exist as sunh being reduced to nothing more than pinned joints or very simple support members.. When the system is self-propelled, the vehicle on which it is mounted may corstitute the lower carriage; however, it would not be identifiable as such if the launcher were removed. The particular system and the dictates of the system requirements wili deternine how the launcher rail is to be supported and how the required motions are to be provided.

3-5.4 ANCILLARY EQUIPMENT

Many rocket systems reguire items of special ized equipment necessary to effect total operation. Military systems are required to have the capability of functioning in all types of weather and terrain conditions anywhere in the world. Some rocket components, such as propellant grains, may te limited in their operational characteristics by iemperature or some other factor. In order to provide total copability, it is at times necessary to provide sume piece of equipment to aid, facilitate, or accornplish some function to offset the restrictions. In the case of the propellant grains that arc temperature-limited, a heating blanket is provided that can be wrapped around the outside of the motor case. This blankst has electris resistance heating elements very similar to those found in commercial electric blankets for hame use.

3-6 CONCEPT SELEC'ION

3.6.1 REQUIREMENTS

The need for a new weapo, system becomes established when a situation that carnot be

AMCP 706-200
handlod by ex'sting weapons is enccuntered etther in actain battle or by projection of what is expected to occur in future conflicts. When the need for a weapon becomps apparent, a set of general sequirements can be escablished that will satisfy the needs. The requiremente might be in the form of the amount of explosive force required to destroy the objectives as well as the mobility of the weapon and any adverse condition that might hirder its use. For instance, a requirement migh.t exist for a weapon system that could destroy a aiget of defined size and haruness in a mountainous environment.

These general :equirements for wearon sysiems are usually donumentea and mode auailatio to various groups fo ${ }^{-}$:onceptial atudies. At this point parametric sitides are made of a wide range of concepts th. .t might meet the requirements. The purpose of these studies is to determine whether the weacun should be agun, mortar, rocket, etc., and whether the concept lies in the present or foreseeable state-of-the-art.

The end results of the conceptual stidies are: the definition of the weapon system; specification of acceptable limits in range, werght, accuracy, etc.; and establishment of problem areas. These requirements cre documented and used as the basis for the preliminary design of the weapon system.

3-6:2 CONSTRANTS

It is not usually possible to proceed directly into the selection of the weapon concept. Circumstances beyond the control of the designer always exist that prevent him from achieving the weapon performance he desires. Inevitably, there are components of each system concept whose performance is limited by the siate-of-the-art to something less than required. Therefose, conotzainto are impused within which the apglyst must work.
There are two alternatives. The time allowable for the development of the weapon may permit components to be included that are outside the present capability of these components but are considered feasible within the development time of the weapon. This, a prediction of future component availability is made that is based on present research and expected resuits. In this case, the analyst is taking the chance of having to ex-
tend the time required to put the weapon in the fleid should unforeseen probiems appear in d f veioping the component. In fact, it is posside that the required performarice cannot be achicred, and thi weafois system may suffer mour thes it inume mave if tristing components had been specified at the begmning.
The second alternative is to restricl, the selection of components to those that are inmediately available. In this situation the analyst is attempting to reduce development tume at the cost of system performance. Naturally, considerable thought must be given to either approach so that the best possible weapon can be obtained in the tinue avaiiabile.

3-6.3 Parametrics

The requirements and components having been specified, a range of weapon concepts is considered that will satisfy them. The performance of each system is studied in termis of parametric variations of the important system variables. In this way it is possible further to identify problem areas and to understand the sensitivity of the overall system performance: to changes in the performance of critical items. These studies pave the wa for detailed trade-offs and the selection of the concept that best, meets the requirements.

3-6.4 SYSTEM SELECTION

The results of the parametric studies allow cach weapon concept to be compared to all others. Weighting factors can be applied to the advantages and disadvantages of each concept. Finally, a concept is selected; the system is then defined as a rocket, gun, etc.; and its acceptable performance is specified. These specifications are documented and released for the preliminary design of the weapon system.

3.7 PRELIMINARY DESIGN

The preliminary design phase, like all the other stages of the development of a weapon system, is simply a more detailed refinement of the work that preceded it. The overall process consisis of

3-8 DESIGN OPTIMIZATION

It was mentioned above that the desigu pre. cess is repetituve. The conceptual and preilmınary design phases involve similar computation, the only ditterence is the amount of detail that is included. However, the consideration of some of these details may invalidate or at least modify some of the promering mevilts. Them Antriled considerations are possible because the gress factors have previously been identified. This allows individual areas to be studied in depth. The optimization process is the consideration of the design detail- and the combisation of these details in such a way that cost, performance, and reliability are optinum.

ラ-Э SYSTEM INTEGRATIUNii

System integration is first accomplished during the concept phase design. Estimates of the design and performance characteristics of various elements of a total system are integrated to make up a hypothetical design. An infinite number of design options are available. Components or elements in a range of sizes may be assembled in combinations to make up various conitigurations. The design and periormance characteristics of each selected component or element affect the desigu and performance charncteristics of each of the components or elements of the overali rocket. The selection and integration of these elements, therefore, involve the resolution of numercas design compromises and the formulation of numerous design decisions. The objective is to select and integrate those elements that provide the best promise of achieving system performance requirements, with high reliability and minimum cost by some specified availability date.*
As dasign and development progrese, the design of each subsystem becomes more specific.

[^2]Throughout this period, coordination must be accomplished among the design groups to assure cohpatibility and to resolve design compromises. A propulsion design group may desire of high chamber pressture to provide higher engine performance. The structural design group may desire lower pressure to save girinctural weight. These are the obvious considerations of the problem and do not represent all considerations that must be made. The total range of possible chamber pressure must be investigated with respect to effects on all systems and total rockei performance. The ubjective is to determine the pressure that results in maximum overall rociet performance within cost and schedule limitations. Similar compromises must be resolved in all areas of rocket design. Each must be made on the basis of performance of all elements and the total rocket, and must include considerations of cost, schedule, performance, and reliability.
As the design becomes more refined, the design and performance estimates must be altered. Mission requirements, and the design and performance characteristics of various elements change. Payload weight may increase; mission profiles may change. A problem may occur during the development of an engine, resulting in lower than anticipated thrust. Structural weight, rigidity, etc. may vary from that originally planned. Product improvement proposals may be presented that alter the design and performance characteristics of various systems. Since the design and performance characteristics of each element affect or interact with the design and performance characteristics of each of the other elements, each alteration of original estimaies requires reintegrat.on of the locket systern. As in the problem of integrating the original rocket design, numerous solutions to each integration problem are possible. Any of several sppreaches sen be employed to ment increased mission requirements. Numerous redesigns can be initiated to regain a performance loss due to failure of a system to meet expectations. Evaluation of a produced improvement propesal may present several design altermatives. Once again, the objective is to select that approach that best meets project objectives of periormance, cost, reliability, and schedules.

Any of numerous design changes may be employed to meet increased mission requirements.

\section*{2

2}

Upon development of a design problem, such as an engine that will not produce desired thrust, several redesign alternatives must be considered The aliernative that offers the best promise of restoring the original performance with minimum cost and schedule impact must be established. Each proposed product improvement change must be evaluated on the basis of effect on all rocket systems, overall vehicle performance, cost and schedule impact of the change, etc. System integration, therefore, must be accomplished constantly throughout design and development.
In summary, system integration is first accomplished during conceptual design. Throughout the remainder of desiga and development, design compromises must be resolved and design options must be selected. Mission requirements change, and design and performance characteristics of various elements of the rocket change. Each of these changes may require reintegration of the total design. For each reintegration problem, threre are numerous alternate solutions or approaches to reintegrating the system. The objective is to ensure that the selected approach best meets performance and reliability requirements with a minimum cost hy a delivery date.

3-10 TESTING METHODS

Eefore a rocket system can be released for use in the field, it must undergo a series of rigorous tests that verify its performance and integrity. Testing, therefore, is also a part of the development process. Aerodynamic testing of scale models, as well as characteristics, structures, and materials, help to establish the rocket configuration by supplementing theoretical analyses.
This paragraph discusses the role of testing in the development of the rogket systom. More detailed coverages of testing methods are available in other parts of this handbook and in the cited reference material.

3-10.1 STATIC TESTING

Static testing is primarily a check of the rocket motor performance that is accomplished iby tying down the rocket so that it cannot move. The
test rocket may be actual flight hardware or a boilerplaie model that has a structure designed to permit firing the rocket motors withou: the danger of damage.
Statir testing permits the use of extensive instrumentation. The testing can be carried out under closely controlled conditions. For these reasons static testing reveals much about the detail characteristics of many of the rocket system components. However, many of the conditions . ountered in flight, ouch as aerodynamic and dynamic loads, are not present.

3-10.2 FLIGHT TESTING

Final evaluation of the rocket system performance, as well as some phases of development. can only be accomplished by actual flight.
Development flight testing cunsists of making final adjustments of the aerodynamic configuration to provide the required stability. Study of the rocket on the launcher determines if the releasing mechanism and rocket clearances provide satisfactory initial conditions for the flight. Spin systems require extensive development testing, especially those whose ignition timing is critical, such as the Spin-Buck concept.
The final phase of testing is the performance testing where range and accuracy are compared against the expected values. Range testing is straightforward and consists of firing rounds at various quadrant elevations and propellant grain temperatures. However, a precise knowledge of atmospheric conditions is required. Extensive meteorological data are collected over the entire flight trajectory. Measurements of winds, temperature, and density are made on the ground and at altitudes along the path of the rocket.

Accuracy testing requires many rockets to be fired so that the impac points can be combined statistically to determinc operational accuracy. Atmospheric effects are eliminated by firing the rockets in pairs.

3-10.3 STRUCTURAL TESTING

The complexity of rocket structures makes it difficult to predict the structural strength of a design with sufficient confidence. The available analytical methods are inadequate to censider
the effects of stress concentiations, fasteners, bonding materials, etc. The heavy loss in performance caused by excess structural weight makes it important to keep the structure as light as possible. Therefore, the design process for rocket structures is a corabination of predictions, based on results of theory and past experience with similar structures, and of yevification by testing.

Chapter 6 presents a more complete discussion of structural testing methods.

3-10.4 AERODYNAMIC TESTING

The design of the aerodynamic configuration requires the development of a shape that will provide adequate volume for the payload while obtaining minimum drag. In addition, the accuracy requirements determine a specific level of aerodynamic stability. Aerodynamic testing, like structural testing, is a process of theoretical prediction and verification. Aerodynamic testing is thus an integral part of the development process.
A more complete discussion of aerodynamic testing methods is presented in Chapter ô.

3-10.5 ENVIRONMENTAL TESTING

Milltaxy rocikets must be able to operate under a wide range of climatic conditions. Investigetion of the effects of temperature, humidity, and other environmental influences, such as sand and rain, on the deployment and firing of the rocket system plays a very important role in determining its value as a field weapon. Some propellants smoke excessively under humid conditions. Most solid propellants must be heated by special blankets in cold climates. Factors suck as these must be identified before a weapon is ready for use in any given area of the world.

3-11 COST EFFECTIVENESS

Cost effectiveness might be thought of as getting the nost performance for the soney spent on a rocket system. However, the cancept is much more complex. There are many factors that must be considered before a value cain be at-
tached to performance. The cost of de"eloping higher levels of performance must be considered in relation to time and money. Often performance becomes all-important. For example, the need for a rocket of a given capability might be so great that any cost is justified. Other situations may justify sacrificing performance potential to meet an urgent time requirement. Another possibility is that the highest level of performance possible is not needed to satisfy the existirg requirement. The framework within which these cost-performance trade-ofis are made is called the design economy. Under war conditions, time and performance are oi utmost importance; cost plays a relatively minor role.

It should be emphasized that cost effectiveness is not so much a design method as an awareness of the relationship between cost, performance, and reliability. Cost effectiveness is the conscious evaluation of the trade-offs between tilese items according to a set of established ground rules throughout the dasign of a rocke system.

Increased performance capability does not necessarily indicate greater probability of destroying a target. The reliability of weapon systems usually decreases with increased performance since performance is usually gained at the cost of complexity.

Another consideration is the evaluation of the importance to be given the accuracy of the system. From a cost affectiveness standpoint it may be more desirable to fire several rounds of a less accurate weapon than to pay the increased cost of developing a more accurate weapon that may require only one round.

The cost and reliability of a weapon system can be significantly affected by the concentrated effort of the peopie invoived in the designa auin manufacturing process to avoid mistakes and waste. The Army has called attention to this fact in its Zero Defects program. The time and money saved by avoiding the repetilion of work because of errors refiect directly in the cost of the weapon and its availability for use against an enemy.

CHAPTER 4
 PERFORMANCE PARAMETRICS

HST OF SYMBELS

Symbol	Meoning	Symbal	meoning	
c	Ballistic coefficient parameter ($\left(\frac{1 d^{2}}{}\right)$, ps	Q	Growth factor, the ratio of gross weight to	
C^{\prime}	${ }_{\text {psi }}$ Modified form of ballistic coefficient $\left(\frac{\\| Y_{P L}}{i d^{2}}\right)$,		payload weight $\left(\frac{H_{O}}{W_{P L}}\right)$, nondimensional	
C_{D}	Drag coefficient of projectile, nondimensional	QE	Quadrant eievation, or launch angle meas-	
$C_{D_{\text {STD }}}$	Drag coefficient of a standard projectile, nondimensional		Booster mass ratio, the ratio of gross rocket weight to total weight without propellant	
d	Maximum diameter of projectile, in .	r_{B}		
$\frac{\pi}{4} d^{2}$	Reference area for aerodynamic coeificients, in. ${ }^{2}$		$\left(\frac{W_{0}}{W_{0}-W_{P}}\right)$, nondimensional	
F_{3}	Thrust of booster motor, lib		Range, km	
F_{S}	Thrust of sustainer motor, lb	R_{T}	Range to target, km	
g	Gravitational acceleration constant, $\mathrm{ft} / \mathrm{sec}^{2}$	${ }_{R_{B}}$	Range to target, km Booster burning time, sec	
i	Drag form factor ($\frac{C_{D}}{C_{D}}$), nundimensional	${ }_{t} t_{B}$	Time to target, sec	
	Total impulse of booster motor lb-sec	V_{B}	Velocity increment imparted by booster, (burnout velocity) fps	
I_{B}	Total impulse of booster motor, lb -sec			
I_{S}	Total impulse of sustainer motor, 1 lb -sec	$V_{\text {IDEAL }}$	Velocity insrement by booster in absence	
$I_{s p}$	Specific impulse delivered by rockst motor, sec	H	of drag and gravity, fps Weight, lb	
in; ln	Natural logazithm	H_{B}	Weight of rocket at burnout, lb	
PMF	Propeilant weight fraction, the ratio of pro-	H_{0}	Initial or gross weight of recket, 1b	
	pellant weight to loaded motor weight	$\\|_{p}$	Propellant, weight, lb	
	W_{p}, nondimensional	${ }^{\prime}{ }_{P L}$	Payload weight, lb	
	$\left(\pi T_{0}-H_{P L}\right)$	$Y_{\text {HAX }}$	Summit altitude, ft	

fire rocket, based on the rainge to the target R_{T}, the desired time of flight τ_{t}, and the desired burning distance or time t_{3}. In the absence of drag, the velocity requirement for a constant-acceleration boost phase is

$$
\begin{equation*}
v_{B}=\frac{R_{T}}{t_{1}-\frac{1}{2} t_{B}} \tag{4-3}
\end{equation*}
$$

Although this equation neglects the effects of drag and gravity, it is useful for approximation.

4-3.1.3 Ssunding Rocikets

In the absence of drag, the summit altitude $Y_{H A X}$ reached by a vertically launched projectile is given as

$$
\begin{equation*}
Y_{M_{A} X}=\frac{V_{B}{ }^{2}}{2 g} \tag{4-4}
\end{equation*}
$$

Therefore, an approximation of the required velocity would be

$$
\begin{equation*}
V_{B}=\sqrt{2 g Y_{W A X}} \tag{4-5}
\end{equation*}
$$

4-3.2 ESTIMATION OF ROCKET MOTOR REQUIREMENTS

If we can assume that a sufficiently accurate estimate of the velocity requirement is achieved by use of any of the methods described above, we can calculate the weight of the rocket using the relationships defined below.

4-3.2.1 Sperific Impuise and Booster-Mass Ratio

The relationship between rocket weight, specific impulse, and propellant weight is given by the "ideal" velocity equation
$v_{I D E A L}=g I_{s p} \ln \left(\frac{W_{O}}{W_{0}-W_{P}}\right)=g I_{s p} \ln \left(r_{B}\right)$
where $I_{s p}$ is the spscific impulse delivered by the rocket mootor in seconds, W_{0} is the initial or gross weight of the rocket in pounds, H_{P} is the propellant weight in pounds, and \ln is the natural logarithm. The ratio $\ddot{" I}_{n} /\left(W_{0}-W_{p}\right)$ is common.
ly referred to as the bousier-mass ratio r_{B}. This reluionship is illus rated graphically in Figure 4-2.

4-3.2.2 Propellant-hiaight Fraction

If we consider the rocket to consist of two major components--the saylcad and the rocket motor-we can define the gross weight as

$$
\begin{equation*}
. H_{0}=H_{P L}+\frac{H_{P}}{P H F} \tag{1-7}
\end{equation*}
$$

where $P M F$ is the propellant weight fraction $H_{F} /\left(H_{O}-H_{P h}\right)$, nondimensional, and the burnout werght as

$$
\begin{equation*}
W_{B}=\dot{h}_{i}+\frac{H_{P}}{P W_{F}}-W_{P} \tag{4-8}
\end{equation*}
$$

The booster-mass ritio can then be expressed as

$$
\begin{equation*}
r_{B}=\frac{W_{0}}{W_{0}-W_{P}}: \frac{W_{0}}{W_{B}}=\frac{W_{P L}+\left(\frac{W_{P}}{P H F}\right)}{W_{P L}+\left(\frac{W_{P}}{P H F}\right)-W_{P}} \tag{4-9}
\end{equation*}
$$

4.3.2.3 Growth Facter

Eq. 4-9 can be roduced to a form which expresses the weight if the rocket in a nondimensional form (growti factor Q) as follows:

$$
\begin{equation*}
Q=\frac{W_{0}}{H_{P L}}=\frac{r_{B}(P H F)}{1-r_{B}(1-P H F)} \tag{4-10}
\end{equation*}
$$

4.3.3 SUMMARY

The relationship among growth factor, propel-lant-weight fraction spacific impulae, and velocity requirement is illustrated in Figure 4-3. Information of this tye is useful since it illustrates the sensitivity of the rocket weight (for any given performanse level) to variations in specific impulse and propellant-weight fraction.
It should be remeenbered that the equations developed in paragraph 4-3 are only crude approximations of the representations of rocket performance describe!' in the paragrajhs which
AMCP 706-280

4

AMGP $\mathbf{7 0 0 - 2 8 0}$
follow. Nevertheless, they are extremely valuable in the preliminary design of any rocket. As demonstrated in the example problem at the end of this chapter, these relationships are used in the early phases of design to establish the approximate values of the important rocket variables such as $I_{s p}$ and growth factor. These values will determine if the design requirements are inconsistent with the state of the art. In addition, the approximate numbers will establish the region of interest for the more detailed analysis of the variables.

44 PARAMETRIC PERFORMANCE DATA FITR INDIRECT-FIRE SYSTEMS

44.1 DELIVERY TECHNIQUES

441.1 Trajociory Profile

The trajectory profile for an unguided surface-to-murface rocket (ballistic rocket) is shaped generally like a parabola, with an initial departure augle of between 45° and 60° for maximum range. Some large bellistic rockets are launiched vertically; however, these require a maneuver io tilt the rocket onto a ballistic path. The discussion that follows will be limited to the nonmaneuvering type of rocket.

44.1.2 Energy-Management Techniques

Among the methods that have been used to impart propulsive energy to indirect-fire rocket syatems are:
a. Boast
b. Boont/surtain
c. Staged booot

In the boost meuno continuousily throughout the flight of the rocket, or until fuel is depleted. This approach is by far the leaot complex of the above and has found use generally in the field of simple, unguided, bellistic rockets.
The boont/sustain approach consists of an initial thrust of the booster motor, followed by a constant austaining thruat of lemser magnitude. While this approach offers performance advan-
tages over the boost approach for some applications, it requires a more complex and costly motor construction.
In the staged boost approach, the total thrust is delivered by a series of booster motors, each jettisoned upon burnout. This is the most efficient means of energy-management but its use is limited to those cases where weight considerations override the cost and reliability penalties of staging, and where the hazards of falling motor cas:s can be permitted. Since very few rockets within the scope of this handbook meet these limitations, this discussion roill not include the staged boost approach.

4-4.2 PARAMETRIC PERFORMANCE DATA

The relationship between growth factor (ratio of gross rocket weight to payload weight) and range for an indirect-fire rocket system is a furction of the following items:
a. QE: launch elevation angle
b. $I_{s p}$: propellant specific impeise
c. PWF: motor propellant weight fraction
d. $w_{P L} / d^{2}$: ratio of payload weight to diameter squared
e. i: drag-icrm factor, ratio of drag coefficient of rocket under consideration to drag coefficient of standerd rocket shape for which range tables brve been computed
f. F_{B} / W_{0} : initial-thrust-to-weight ratio (boost acceleration)
g. $F_{S} / F_{\bar{B}}$: ratio of sustgin thrust to boost thrust
h. $!_{S} / I_{B}$: ratio of sustain impulse to boost impulse
The sugle at which the rocket must be launched in order to achieve maximum range is of initial interest to the designer. Fig. 4-4 presento the affeti of boont aceeleration F_{B} / W_{0} gnd growth factor Q on the optimum launch angle for an all-boost system, with fixed values of $I_{s p}{ }^{-P W F}$, und $W_{P L} / i d^{2}$. Although the data would be different if these parameters ($I_{s p}, P W F, H_{P L} / i d^{2}$) were varied, the trends of the curve are worth noting. Low accelerations requirc the highest launch angles, with the dependence of launch angle on acceleration being "ongest at low accelerations. Higher growth fai ..Jrs indicate higher launch

Figure 4-4. Indirect Fire - All-Boost; Effect of Thrust-to-Weight Ratio on Optimum Launch Quadrant Elevation
angles because the: are equivalent to longer boost burning times at any given level of acceleration.
For a boost/sustiin system, the optirnum launch angle will be a little greater than for an all-boost system, ar shown in Fig. 4-5. As the ratio of sustainer thrust to booster thrust is decreased and/or this ratio of sustainer impulse to bonster impulse is increased, an increase in optimum launch angle is indicated.
Fig. 4-6 presents the relationship between growth factor and range for as: all-boust system, with QE optimized and PHF, $I_{s p}$, and $H_{P L} / \imath d^{2}$ held constant. It is seer: that the lower accelerations permit more efficient energy-management schemes since they yield a lower growth factor for any specified range. Although this curve is constructed for only one value each of $I_{s p}$, PRF, and $H_{P L} / i d^{2}$, it is indicative of trends; we may therefore say that the growth factor (for a given range) will be inversely proportional to $I_{s p}, P K F$, and $W_{P L} / i d^{2}$. The designer would, of course, examine trade-offs between these parameters, as discussed later on in this chapter. Before leaving Fig. 4-6, however, we should note another trend of significance to the designer or to the requirements originator. Examination of the curve shows that significant range increases can be obtained for relatively minor rocket-weight increases. For example, whereas a growth factor

Figure 4-5. Indirect Fire -. Boost/Sustain; Effect of Impulse Ratio on Optimum Launch Quadrans Elevation
of about 2 is required for a range of 30 kilometers, a 25 percent increase in missile weight (an increase of Q from 2.0 to 2.5) doubles the range (to 60 km).
The relationship between growth factor and range for a boost/sustain system will be dependent upon the choice of sustainer parameters in addition to the parameters discussed above for the all-boost system. There is no unique method for determining optimum sustainer parameters since the choice will depend upor which chatacteristics of the rocket the designer is attempting to optimize; for example, weight or accuracy. The designer has a choice of methods for providing the sustainer impulse. This can be done with separate booster and sustainer motors, or by one motor with two thrust levels. In the case of separate motors, it is possible to achieve high specific impuise with each motor, bat the propellant weight fraction of the combination is usually lower than for a single motor. In the case of a single motor with two thrust levels, the specific impulse of the sustainer will be less than for the booster (due to decreased chamber pressure duxing the sustainer phase) if a constant-

Figure 4.6. Indiract Fire - All-Boost; Effoct of Range on Growth Factor
geonetry nozzle is used. For this discussion it will be assumed. that x single motor with two thrust levels and fixed nozzle geometry is used. The relationshiy between the ratio of susiainer thrust to boosicir thrust and the resulting ratio of specific impulse is presented in Fig. 4-7.
Fig. 4-8 indicates the type of parametric data which should lie generated for optimization of sustainer parameters in situations where minimizing weight is the primary coincern.

Fig. 4-9 presents the relationship between growth factor and range for a boost-sustain system, where the austainer parameters are assumed to have been fixed by considerations other than minimum weight. A comparison of these date with the data for the all-boost system will show that there are conditions for which the
 system. This results from the reduction in sustainer apecific impulse as discussed earlies.

The data above bave been presented for only one value each of $I_{s p}, P W F$, and $W_{P L} / i d^{2}$ The deaigner will be interested in knowing the sensitivity of the missile weight to variations in theme farameters also, Fig. $4-10$ presents the effects of $I_{i p}$ and $P F F$ on the growth factor for a apecific range, acceleration level, and ballistic coefficient. Fig. 4-11 presents a similar trade-4-11

Figure 4-7. Boost/S, stain Eing!ne; Variation of Specific Impulse With Thruat

Figure 4-8. Indirect Fire - Boost/Sustain; Effect of Range on Impulse Ratio

Figure 4.9. Indirect Fire - Boost/Sustain; Effect of Range on Growth Factor

AMCP 706-200

Figure 4-10. Indireer Fire - All-Boost; Effect of Propellant Weight Fraction on Growth Factor

Pigure 4-11. Indirect Fire - All-Boost; Effect of Ballistic Coefficiont on Growth Factor
off with acceleration and ballistic coefficient as variables.
The data presented above have not been intended to cover every situation. They are an indication of trends and serve to illustrate the various trade-offs which the designer must consider.

4.5 PARAMETPIG PERFORMANCE DATA FOR DIRECT-FIRE SYSTEMS

45.1 DELIVERY TECHNRQUES

45.1.1 Trajactory Profiles

Both bellistic and maneuvering types of trajectories have been used for direct-fire systems Either of these is essentially flat, however, and the degree of maneuver, if used, is generally limited. Therefore, for purposes of parameterization, no distinction is made between the two types. Generally speaking, it is sufficient for performance calculations to assume a constantaltitude, line-of-sight trajectory.

4-5.1.2 Energy-Management Techniques

Among the commonly employed energy-management techniques for direct fire rockets are:
a. Boost
b. Boost/sustain
c. Boost/ccast/sustain

The choice here will depend to some extent on the level of performance required and on the intended method of use. Considering the method of use, we mugt determine whether burning outside the launch tuke can be permitted. I I $I_{2 i}$ the cuse of direct-fire infantry weapons, this sannot wiully be pemithen; wiereas for weapons to be employed on armored vehicles, there is no problem (aside from accuracy considerations) involved in burning outside the launch tube. If burning outside the launch tube is permitted, either the boost or the boost/sustain approaches will apply. Where burning outside the tube is not permitted, the choice is between the boost and the boost/coast/sustain approaches, with the boost approach generally limited to low performance systems by the maximum velocity

AMCP 706-280
which can be attained within the limitations of the tube length and the rocket acceleration.

4.5.2 PARAMETRIC PERFORMANGE DATA

In defining the relationship between performance and physical characteristics for direct-fire rockets, it is not necessary to separate those rockets which must have a coast phase from those that do not. The reason for this is that, in the usual case, the additional time of flight will be negligible, on the order of $1 / 10 \mathrm{sec}$.
The relationships between growth factor (ratio of rocket weight to payload weight), range, and tim,? of flight are determined by:
a. $I_{\text {sp }}:$ propellant specific impulse
b. PFF: motor propellant weight fraction
c. $H_{P_{L}} / d^{2}$: ratio of payload weight to diameter squared
d. i: drag-form factor
e. F_{B} / W_{0} : ratio of initial thrust to weight
f. F_{S} / F_{B} : ratio of sustain thrust to boost thrust
g. I_{S} / I_{B} : ratio of sustain impulse to boost impulse
For initial considerations, the first four of these parameters ($I_{s p}, P H F, H_{P L} / d^{2}, i$) can usually be estimated with adequate accuracy; however, it is desirable also to examine variations of these parameters if the situation permits.

Fig. 4-12 presents the relationship between target range, time of flight, and energy-management scheme for a given set of missile characteristics. The best energy-management scheme is spen to be the boost (no sustaines) in cases where a minimum time of flight is desired. This is usually the core for systems in which the gunrer has no control over the projectile after launch. However, in cases where command guidance is used, time of flight is a secondary consideration, with the velocity of the projectile being limited by considerations of gunner capabilities, command data rates, type of command link, etc. Since the considerations involved in the determination of time of flight (or average velocity) for the command-guided case are mony and varied, it is desirable to concentrate for the remainder of this discussion on the system which

Figure 4-12. Direct Fira - Boost/Sustain; Effect of !mpulse Ratio on Time to Target
yields minimum time of flight, namely, the boost system.
Fig. 4-13 presents trade-offs with respect to growth factor, time of flight, range, and boost acceleration. A performance limit appears to. be reached at a growth factor of about 3.0 because increases beyond this point reduce the time of flight an insignificant amount. Increasing the boost acceleration radueés the time of flight, but decreases the percentage of powered flight. For example, at a growth factor of 1.7 and $F_{B} / H_{O}=20$ the burning distance is about 3 km , and we reach 4 km in 9.7 sec . It we increase $\dot{K}_{8} / \%_{0}$ to 80 , the burning distance is reduced to about 1 km and we reach 4 km in 8.5 sec . This illustration points out another of the choices facing the designer, namely, the trade-off between time to target and percentage of powered flight.

Once the designer has examined the trade-offs between range and time of flight, he may wish to

AMCP 708-260

OIREEMT FIRE - ALL BOOST
$I_{S P}=2 N_{S S C} \quad$ PMF $=.7 \quad \mathrm{MPL}_{P L} / \mathrm{K}^{2}=1.0$

Figure 4-i3. Direct Fire - All-Boost; Etfect of Grewth Factor on Minimum Time to Target
determine the effects of various design parameters on, the missaile weight (or growth factor) for a specified performance level. For example, Fig. 4-14 shows the trade-ctf between $\Pi_{p l} / i d^{2}$, F_{B} / w_{0}, and growth factor for a specified performance level of 2 km in 3 sec . Fig. $4-15$ illustrates the trade-off between PWF, $I_{s p}$ and growth factor for the same performance level.
in tive preteling jarsorephe on ettompt has been made merely to illustrate the types of tradeoffr with which the denigner of direct-fire rockets must be concerned. From this discussion, the following concluaions can be drawn:
a. For minimum time to target, the boost: sythem in superior to the boost/austain aystera.
b. The choice of boont acceleration must result from a consideration of the trade-off between time to target and percentage of powered flight desired.

Figure 4.14. Direct Fire - All.Boost; Effact of Ballistic Coefficient on Growth Factor

Figure 4-15. Direct Fire - All-Boost; Effect of Propellant Weight Fraction on Growth Factor
c. Increasing PWF, $I_{s p}, W_{P L} / i d^{2}$. or F_{B} / W_{0} results in decreased missile weight for a given payload weight añd specified performance (time to target).
d. Increasing the growth factor beyond about 3.0 results in negligible performance increase for the range of parameters studied.

46 PARAMETRIC PERFORMANCE DATA FOR SOUNDIHG ROCKETS

46.1 DEL.IVERY TECHNIQUES

4-8.1,1 Trajectory Frofite

The oriy trajectory profile to be considered here for the sounding rocket is the yertical uscent. In some cases it may be desirasile fon launch a sounding rocket away from the vertical to insure impact withir: a given area, but for pur-
poses of performance parameterization, the vertical ascent is sufficient.

4-6.1.2 Energy-Management Techriiques

The energy-management technipues which are used with sounding rockets are the same types as listed for the indirect fire rocket systems, namely:
a. Boost
b. Boost/sustain
c. Staged boost

As stated earlier, the choice between these approaches must be the result of a trade-off, considering the boost system to be the simplest, cheapest, most reliable, and least cfficient; whereas the staged boost would be the most efficient, most expensive, and least reliable. The boost/ sustaix approach would be intermediate in all of the above considerations.

4.6.2 PARAMETRIC PERFORMANCE DATA

The relationship between growth factor and peak altitude for a sounding rocket is determined by the followiag parameters: -
a. $I_{s p}$: specific impulse
b. PWF: propellant weight fraction
c. $W_{P L} / i d^{2}$: ballistic parameter
d. i: drag form factor
e. F_{B} / W_{0}) ratio of bcost thrust to takeuff weight
f. F_{S} / F_{B} : ratio of sustain thrust to boont thrust
g. I_{S} / I_{B} : ratic of sustain impule to boost impulse
In Fig. 4-16 the relationship between growth fector, energy-management scheme, bwost soceleration, and peak altitude is presested. It can be seen here that the boost/sustain approaci would provide the lowest missile weight for a given altitude. This relationship is ahown for only one value each of $I_{\text {pp }}, P W F$, and $W_{P L} / i d^{2}$, some shifting of data would occur if these parameters vere changed.
For any given maximum altitude, the growth factor will be inversely proportional to PWF, $I_{s p}$,

ABCP 708-200

Figure 4-16. Sounding Rocket - All-Boost and Boost/Sustain; Effect of Growth Factor on Summit Altitude
and Wh/id ${ }^{2}$. This is ahown in Figs. $4-17$ and $4-18$ for summit altitudes of $150,000 \mathrm{ft}$ and $250,000 \mathrm{ft}$. These curves are for the all-boost cane; bowever, the boost/sustain curves would be similar. From thene curves, we see that the lightest missile results from a bigh performance motor (high PWF and $I_{a p}$) and a large pay-lomd-to-dimmeter ratio.

47 PARABETRIC PERFORMANCE DATA FOR SURFACE-TO-AIR ROCKETS
 47.1 DELIVERY TECHNIQUES

4.7.1.1 Trajectory Profile

The unguided surface-to-air-rocket flies a ballistic trajectory and may be launched at any quad-
rant-elevation angle recessiary far intercept of the target. Usually, the rocket will be designed to reach a given alitude in a given time and, therefore, the vertical ascent is of primary concern. For this reason the vertical trajectory is normally used to size the rocket, althsugh it must be kept in mind that the distince traveled in a given time will be slightly less for trajectories other than the vertical.

4-7.1.2 Enargy-Management Fochniques

Energy-management techniques applisable to surface-to-air rockets are:
2. Boost
b. Boost/sustain
c. 'Staged boost

If we consider that minimum time to target will be desired for the surface-to-air rocket, and that

Figure 4-17. Sounding Rocket - All-Boost; Effect of Propellant Weight Fraction on Growth Factor

Figure 4-18. Sounding Rocket - All-Boost; Effect of Ballistic Coefficient on Growth Factor
achievable accuracy will limit this type of rocket to low altitude application (under $30,000 \mathrm{ft}$), the booti approach will usually be found to be the most attractive. For this reason, the discussion will be linaited to the boost approtch.

4.7.2 PARAMETRIC PERFORMANGE DATA

The relationship between growth factor and performance requirement (specified as time to a given altitude) is determined by the following parameters:
a. $I_{s, n}$: specific impulse
b. $P W F$: propellant weight fraction
c. $W_{P L} / i d^{2}$: ballistic parameter
d. i : drag-form factor
e. F_{B} / W_{0} : ratio of boost thrust to takeoff weight
Fig. 4-19 presents the relationship between growth factor, boost scceleration, and time to il-

Eigure 4.19, Surface-fo-Air - All-Boiost; Effect of Time to Altitude on Growth Focter
titude for target altitude of $20,000 \mathrm{ft}$. As seen in these curves, an increase in boost acceleration reduces the time to alsitude. An increase in growth factor above 5 would decrease time to alititude very little.
The trade-off between $I_{i p}$, PHF , and growth fector for a specified performance level of 20,060 ft in 5 sec is given in Fig. 4-20. Fig. 4-21 illus. tretes the trade-off between $P W F, I_{s p}$, and growth factor for the same performance level.
From the previous discussion, the following conclusions may be drawn:
a. increasing growth factor above 5 results in negligible performance increase for the range of parameters studied.
b. Inc `asing PHF, $I_{s p}$, and $W_{P L} / i d^{2}$ results in decreased missile weight for a given payload weight.

Figure 4-2̂0. Surfuce-fo.Air - Ail-Bowzf; Effict of Fropellant Weight Fraction on Groyth: Factor

Figure 4-21. Suffzer-to-Air - All-Boost; Effect of Ballistic Coefficient on Growth Factor

4-8 NUMÉrical EXAMPRE

isis indirect fire surface-to-surface missile design problem is presented here to illustrate the steps to be followed in designing a missile when the required performance is specified. The problem is to determine the propulsion system characteristics, the weight breakdown, and the dimensions of the vehicle that will transfer a given payload over a desired range.
The graphs presented in the preceding paragraphs of this chapter indicate the complexity of the relationships between the performance parameters. Because of these complex relationships, there is no easy way to arr.ve at a rocket configuration whech will satisfy all the required relationships and still meat the performance requirements. The only alternative is to assume some of the important rocket or motor parameters, such as body diameter and specific impulve, and calculate the performance for these assuned conditions. The calculated performance dsta are compared with the desired values; ther the origina ${ }^{1}$ assumptions are modified and the procedure is repeated until the desired results are obtained. It is easily seen theat the accuracy of the original assumptions determine the -
amount of work required to reach the final solution. This is the reason that experience with the design of rocket systems is so importini "uring the preliminary design stage.

Fig. 4-22 is a flow diagram illustrating the steps of the design procedure. Block 1 indizates the design performance specification. In this casis the rocket range and payload are specified. Blocks 2 and 3 show the parameters whose values are being assumed - that is, the first guess at the design configuration. The next sequence of blocks (4 through 8) illustrates the iterative procedure whish must be followed until the initial assumptions are verified. After the iterative process is complete, enough is known about the system to define its performance parameters. This is done in the final Block 11, headed CALCULATE.

A ballistic coefficient is assumed in the first block of the iterative loop (Biock 3). This fixes the burnout velocity, the booster-mass ratio, the burnout-to-payload-weight ratio, and the payload ballistic coefficient. Notice that the value of the payload ballistic coefficient was assumed in Block 3 and it is necessary that this value be duplicated. If this has been satisfied, there are no contradictions and the example can proceed to the defining of values.

If the payload balistic coefficient value cannot be duplicated and/or the resulling values are not realistic, it will be necessary to make a trade-off study of the parameters in the second block until all criteria are satisfied.

The numerical example which follows utilizes the logic shown in the flow diagram.

1. We shall start with a specified range R of 30.0 km and a payload weight of 890.0 lb .
2. From a knowledge of similar rockets, assume a propellant weight fraction PWF of 0.77 , a specific impulse $I_{s p}$ of 250 sec and a payioad ballistic coefficient $W_{P L} /$ id 2 of $4.0 \mathrm{~J} \mathrm{~J} / \mathrm{in}$.
3. For the required range, assume a ballistis coefficient $\mathrm{H}_{B} / \mathrm{id}^{2}$ of $4.5 \mathrm{lb} / \mathrm{in}$. Therefore, a burnout velocity V_{g} of $270 \% \mathrm{st} / \mathrm{sec}$ is necessory as shown in Fig. A-1.
4. Fior an $I_{s p}$ of 250 sec , tine booster mass ratio r_{B} is determined from Fig. 4-2 to be 1.4.

5. For a given $P M F$ of 0.77 , calculate the ratio of burnout weight to payload weight:

$$
\begin{aligned}
& \frac{H_{B}}{H_{P L}}=\frac{P H F}{1-r_{B}(1-P K F)} \\
= & \frac{0.77}{1.0-1.4(0.23)}=1.138 .
\end{aligned}
$$

6. Calculate the ballistic coefficient:

$$
\begin{aligned}
\frac{\|_{B}}{i d^{2}} & =\frac{\|_{B}}{\|_{P L}}\left(\frac{W_{P L}}{i d^{2}}\right)=1.138 \\
& =4.552 \mathrm{lb} / \mathrm{in}^{2}
\end{aligned}
$$

7. A value of $H_{B} / i d^{2}$ was assumed in Step 3 . Match this value with the value calculated in Step 6. They are the same. If they were not the same, then another value of $H_{B} / i d^{2}$ should be selected and Steps 3 through 7 repeated until they agree.
8. After satisfying Step 7, eilher calculate the growth factor Q or read it from Fig 4-3.
\rightarrow

$$
Q=r_{B}\left(\frac{H_{B}}{H_{P L}}\right)=1.4(1.138)=1.59
$$

9. The burnout weight W_{B} is calculated $W_{B}=\left(\frac{W_{B}}{W_{P L}}\right) W_{P L}=1.138(890)=1014 \mathrm{lb}$
10. The rocket diameter d can be calculated $d=\left(\frac{H_{P L}}{H_{P L} / i d^{2}}\right)^{1 / 2}=\left(\frac{890}{4}\right)^{1 / 2}=15 \mathrm{in}$.
11. Propellant weight W_{P} is found by

$$
\begin{gathered}
K_{p}=P W F\left(K_{P L}\right)(Q-1) \\
=0.77(890)(0.59)=405 \mathrm{lb}
\end{gathered}
$$

12. Motor weight H_{n} is

$$
\begin{aligned}
& W_{m}=\frac{H_{P}(1-P H F)}{P H F} \\
= & \frac{890(0.23)}{0.77}=120 \mathrm{lb}
\end{aligned}
$$

13. Total weight ψ_{T} is

$$
\begin{gathered}
H_{T}=H_{B C}+H_{P}=1014+405 \\
=1419 \mathrm{lb}
\end{gathered}
$$

CHAPTER 5

PROPULSION

LIST OF SYMBOLS

Symbol	Meoning	Symbol	Mec Mooniris	
a_{1}	Constant (see Eq. 5-19a)	v		
a_{2}	Constant (see Eq. $5-19 \mathrm{~b}$)	W	Weight, lb	
A	Area, ft^{2}	ϵ	Erosion factor (see Eq. 5-21)	
b	Constant (see Eq. 5-19b)	γ	Ratio of specific heats (C_{p} / C_{v})	
c	Effective exhaust velocity, $\mathrm{tt} / \mathrm{sec}$; speed of sound, $\mathrm{ft} / \mathrm{sec}$	$\begin{aligned} & \dot{\zeta}_{d} \\ & \zeta_{f} \end{aligned}$	Discharge correstion factor Thrust correction factor	
C_{F}	Thrust ccefficient	ζ_{0}	Velocity correction factor	
C_{p}	Specific heat at constant pressure, BTU/lb ${ }^{\circ} \mathrm{R}$	ρ	Propellant burning time, sec Density, slug/ft ${ }^{\text {t }}$	
C_{v}	Specific heat at constant volume, BTU/lb ${ }^{\circ} \mathrm{R}$	Σ	Summation	
f	Scale factor		Subictiptas:	
F	Rocket thrust, lb		atmosphere	Ambient (or atmospheric) conditions
g	Gravitational acceleration, $\mathrm{ft} / \mathrm{sec}^{2}$			
$I_{\text {total }}$	Total motor impulse, 1 lb -sec		b	Burn-out condition; burning
$I_{s p}$	Motor specific impulse, sec			surfaca (see Eq. 5-20);
K	Erosion burning constant (see Eq. 5-21); ratio of grain burning surface area to nozzle throat area		basic	Basic (or original) configuration Back pressure
m	Mass of propellant, slug		c	Combustion or stagnation
\dot{m}	Mass flow rate, slug/sec			conditions
\dot{m}^{*}	Mass flow rate that will produce a velocity equa i to the speed of sourd, slug/sec		e	Exosion condition; exit conditions
\bar{m}	Molecular weight of gas, $R_{u} /$ / ${ }^{\prime}$		exhaust	Exhaust (or exit) condition
M	Mach number		g	Propellant grain
n	Exponeat (see Eq. 5-19a); number of moles		i	Inlet (or entrance) condition
p	Combustion chember pressure parameter (see Eq. 5.23b)		${ }_{\text {max }}$	Molal value (see Eq. 5-25) Conditions for optimum ex-
P	Pressure, $\mathrm{lb} / \mathrm{ft}^{2}$			pansion (see E/a. 5-9)
$Q_{\text {R }}$	Heat of reaction at reference temperature, BTU/lb		motor scaled	Motor condition? Scaled (frora basic) config-
r	Graln burning jate, ini/sec			uration
	Universal gas constant, $1545 \mathrm{ft}-\mathrm{lb} / \mathrm{lb}$-mole *		\%	Throat (or minimum area) conditions
\bar{R}	Gas constant, R_{u} / \bar{m}		\boldsymbol{x}	Axial distance (along the
T	Temperature, ${ }^{\circ} \mathrm{R}$			nozzle centerline)

AMCP 706-260

5-1 GENERAL

A rocket is propelled by an interial combustion ergine that burns either liquid or solid fuel. The primary function of rocket propulsion is to move the warhead and airframe from the launcher to the target with prescribed accuracy. Since the oxidizer is carried internally, rocket engines call operate in the atmosphere, ajove the atmosphare, or under water. As previously indicated, this handbook will discuss only solid propellant rocket engines.

Unlike other combustion engines, a rockei motor does not contain cylinders, pistons, or turbine blades, nor does it need a supply of air to mix with the fuel. Because its oxygen supply is carried within the propellant, a rocket engine has a number of advantages over other types of power plants:
n. Thrust is practically independent of its environment and fight speed.
b. There is no altitude ceiling.
c. It functions in a vacuum.
d. Thrust per cnit of frontal area is the largest of any known propulsion engine.

The busic rocket motor consists of an igniter, a propellant charge, and a chamber that is strong enough to withstand the combustion of the propellant and the preasures thus generated. The chamber has a nozzle through which the propellant gases escape in the form of a jet. Igniter typer, propellant composition, and chamber ma-
terials vary from system to system, depending on the individual requirements. A schematic of a typical rocket motor is shown in Fig. 5-1.

Rocket propulsion involves the study of the burning rate of propellant in the motor chamber and the discharge rate of gas through the nozzle. The prossure in the motor is the result of a delicate balance between the burning of the propellant and the escape of gases through the nozzle.
For the operation of a solid propeilant motor, the chamber is loaded with a propellant charge and an igniter. Motor operation is initiated when the igniter ignites the propellant. The burning propellant furnishes at high pressure a continuous supply of gas that expands and is ejected from the chamber nozzle at high velocity.

The thrust of the rocket motor is produced by the change in momentum of the combustion gas expelled through the nozzle and the pressure forces acting on the rocket body, so that

$$
\begin{equation*}
F=\dot{m} V_{\text {exhaur }}+\left(P_{\text {exhaust }}-P_{\text {atnosphere }}\right) A_{\text {exhaust }} \tag{5-1}
\end{equation*}
$$

where F is the rocket thrust, $\dot{\operatorname{m}}$ is the flow rate of the combustion gas, $V_{\text {exhaust }}$ is the velocity of the exhaust gas, $P_{\text {exhaust }}$ is the pressure of the exhaust gas, $P_{\text {atuosphere }}$ is the atmospheric pressure, and $A_{\text {exhaust }}$ is the exhaust gas flow area. If the flow is ideally expanded in the nozzle

$$
P_{\text {exhaust }}=P_{\text {athosphere }}
$$

Figure 5-1. Schamatic of a Case-Bonded, Unrestricted-Burning Solid-Propellant Rocket Mofor
AMCP 705-240
section. Such a nozzle with convergent and divergent seentinns is called a supersonic or De Laval nozzle. The velocity at the section of minimum area (throat) will always be less than or equal to the speed of sound, depending upon the pressure ratio across the nozzle. To illustrate the flow phenomena, let us consider a supersonic nozzle with a constant upstream pressure and a variable downstream pressure as shown in Fig. 5-3. When the upstream and downstreum pressures are equal, tisere will be no flow. As the downstream pressure is seduced, the gas will begin to flow, and the exhaust velocity and mass flow will increase until the velocity at the throat is equal to the speed of sound. As the downstream pressure is furche reduced, the mass flow will remain constani notic the velocity at the throat will remain at the speed of sound. A downstream pressure will be reached at which the gas is completely expanded ideally within the nozzle and the exhaust velocity is supersonic. At do wnstream pressures lower than this, the exhaust flow remains supersonic but the gas is underexpanded within the nozale; therefore, additional expansion takes place outside the nozzle. At higher downstream pressures the gas is overexpanded in the divergent section of the nozzle, resulting in pressure shock waves and in flow separation from the nuzzle wall. Pressure shock waves are distinguished by abrupt pressure xises and a velocity change from supersonic to subsonic.
As internal entrgy is converted to kinetic energy throughout the nozzle, the gas temperature decreases. The gas pressure and density also decrease as the gas expands through the nozzle.
The above discussion presents a qualitative description of nozzle flow phenomena. The discussion which follows will present methods of defining the flow phenomena quantitatively.

5-2.1 THERMODYNAMIC RELATIONS

To design and evaluate the performance of a rocket, it is necessary to define the thermodynamic relations of the gas flow through the nozzle. The nomisi approach is to evaluate the thermodynamic relations based on the ideal flow of an ideal gas ant hen mulify these relations for the real flow of the real gis. Generally, the actual rocket motor performance is within 10 percent of the performance calculated for ideal coriditions.

5-2.1.1 Ideal Flow

Flow through nozzles is considered to be ideal when: (a) there is no friction, (b) there is no heat transier (adiabatic), (c) flow is steady, (d) flow is uniform across sections normal to the nozzle longitudinel axis, (e) flow exhausting to the atmosphere as parallel to the nozzle longitudinal axis, (f) the gas (eroducts of propellanit combustion) is homogeneous, (g) the gas is in chemical equilibrium and does not shift, and (h) the gas obeys the perfect gas laws. The above assumptions allow the definition of flow through the nozzle to be based on the isentropic thermodynamic relations and the perfect gas laws. Flow across pressure shocks cannot be considered as ideal.
If we apply the principle of the conservation of energy and consider the isentropic illow of a perfect gas, the nozzle exhaust velocity is

$$
\begin{equation*}
V_{\text {exhaust }}=\sqrt{\frac{2 g \gamma}{\gamma-1} \vec{R} T_{c}\left[1-{\frac{P_{\text {exhaust }}}{P_{c}}}^{(\gamma-1) / \gamma]}\right]} \tag{5-8}
\end{equation*}
$$

where g is gravitational acceleration ($32.2 \mathrm{ft} / \mathrm{sec}^{2}$), γ is the ratio of the gas constant pressure specific heat to constunt volume specific heat, \bar{R} is the gas constant (R_{u} / \bar{m}), T_{c} is the temperature of the gas in the combustion chamber, P_{c} is the pressure of the gas in the combustion chamber, and $P_{\text {exhourt }}$ is the pressure of the exhaust gas. For eptimum expansion, the pressure of the exhaust gas will be equal to the atmospheric pressure. If the exhaust gas pressure is greater than atmospheric, the gas will be underexpanded (because the exhaust flow area is too small) and expansion will continue to take place outside the nozzle. The relationship between the area ratio (exhaust to throat) and preseure ratio (shember to exhoust) for ideal expansion in the dive.gent section of a supersonic nozzle is shown in Fig. 5-4. If, for a given area ratio, the exhaust pressure (determined from Fig. 5-4) is less than atmosphexic, the gas will be overexpanded (as the exhaust flow area is too large) resuting in shock waves and flow separation within the divergent section of the nozzle. When the gas is overexpanded, a portion of the divergent section of the nozzle is unised and, therefore, is innecessary weight. The decrease of atmosyheric pressure with altitude

AMCP 705-260

$$
\begin{equation*}
\dot{m}=\frac{A_{t} P_{c} \gamma \sqrt{\left(\frac{2}{y+1}\right)(\gamma+1) /(\gamma-1)}}{\sqrt{E \gamma \bar{R} T_{c}}} \tag{5-11}
\end{equation*}
$$

where A_{t} is the throat area and all other symbols are as definci previously.

Under the conditions of adiabatic isentropic flow, the temperature at any axial location x in the nozzle is

$$
\begin{equation*}
T_{x}=T_{c}-\frac{\dot{\vartheta}_{x}^{2}}{1556 g C_{p}} \tag{5-12}
\end{equation*}
$$

where V_{x} is the velucity at location τ, and C_{p} is the constant-pressure specific beat of the gas. The relationships between the pressure, temperature, and density in the crabustion chamber and location x are

$$
\begin{equation*}
\frac{T_{c}}{T_{x}}=\left(\frac{p_{c}}{P_{s}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\rho_{c}}{\rho_{x}}\right)^{\gamma-1} \tag{5-13}
\end{equation*}
$$

The pressure, temperature, and density at any location x are related according to the perfect gas law as

$$
\begin{equation*}
P_{x}=\rho_{x} \bar{R} T_{x} \tag{5-14}
\end{equation*}
$$

Substituting Eqs. 5-8 and 5-11 into Eq. 5-1 yields the following expression for rocket ahrust:

$$
\begin{gather*}
F= \\
A_{\mathrm{t}} P_{c} \sqrt{\frac{2 y^{2}}{\gamma-1}\left(\frac{2}{\gamma+1}\right)^{(\gamma-1) /(\gamma-1)}\left[1-\left(\frac{P_{\text {exhaux }}}{P_{c}}\right)^{(\gamma-1) / \gamma}\right]} \\
+\left(P_{\text {exhaux }}-P_{\text {atmosphere }}\right) A_{\text {exhacx }} \quad(5-15) \tag{5-15}
\end{gather*}
$$

The thrusi coefficipni \mathcal{C}_{F} is danined as: fisclussed in this handbook, are sufficient to produce a sonir velocity in the thrioat. The sonic velocity is equal to

$$
\begin{equation*}
v_{t}=\sqrt{\frac{2 g \gamma}{\gamma+1} \bar{R} T_{c}} \tag{5-10}
\end{equation*}
$$

If we use the continuity equation, then, for stoady flow, the moss flow rate through the nozzle is

Nozzle piessure ratios, for rockets of the class

3

Thus,

$$
\begin{equation*}
F=C_{F} A_{t} P_{c} \tag{5-17}
\end{equation*}
$$

The thrust coefficient is shown graphically in Fig. 5-5 (A) and (B).

5-2.1:2 Real FInw

In real nozzes, friction is present, heat is transferred; flow may be unsteady; flow and gas properties across sections of the nozzle are nonuni'form; flow is nonaxial, equilibrium shifts in the nozzle; and the gas is nonhomogeneous and imperfect. An empirically derived correction factor is generally used to account for all deviations from the ideal flow performance.
Reference 1 presents indications of the magnitude of the deviations from ideal conditions. The velocity, discharge, and thrust correction factors account for friction effects, heat transfer, imperfect gases, nonaxial flow, nonuniformity of the gases, and nonuniformity of the flow distribution. The velocity correction factor ζ_{ν} is the ratin of actual exhaust velocity to ideal exdaust velo-ity, and ranges between 0.85 and 9.98 , with an average of 0.92. The discharge correction factor ζ_{d} is the ratio of the actual mass flow rate to the ideal mass flow rate, 8.1 d ranges between 0.98 and 1.15 , with on average of 1.04. The thrust correction factor ζ_{f} i the ratio of actual thrust to ideal thrust, and ranges between 0.92 z.ad 1.0 , with an average of 0.96 . The correction factors are related as follows:

$$
\zeta_{f}=\zeta_{v} \zeta_{d}
$$

The average values of the correction factors indicated above are reconmended for preliminary design. In advanced design, it will be necessary to consider chemical equilibrium shifts through
 of the nozzle, and other effects treated only as averages in this handbook.
For a more detailed study of flow in nozzles, consult Refercnces 1 and 2.

5-2.2 HOZZ2E CONTOURS

The design of tie optimum nozzle connour requires complex analyses utilizing high-speed digi-
tal computers as cutlined in Referenve 3. In general, the contour of the divergent section is critical. The primary remurement on the convergent and throat sections is that they be well rounded to avoid disturbances in the flow.
For ease of manufacture an. 1 desizn, the use of a conical divergent section is often desirable. The cone half angle of such a section, according to Reference 4, should be aprroximately 9 deg to obtain maximum thrust. Since the nozzle should be as short as possible to reduce weight, a cone half angle as large as 18 deg can be used with only a 2 percent reduction in thrust. To prevent flow separation, angies greater than 18 deg should be avoidd. The nozzle exu? should be manufactured with a sharp edge to prevent overexpansion and flow separation.
The thrust may be increased by roughly 1 percent by using a parabolic instead of a conical divergent section. A method of approximating the optimum parabolic contour is presented in Reference 4.

5-2.3 MOZZLE EROSION

The high-velocity gases passing througin the nozzle contain solid particles that erode the inner surfases of the nozzle. Erosion at the nozzle throat is particularly serious since the flow area is increased, which alters the combustion chamber pressure, mass flow rate, velocities, and, consequently, the rocket performance. Erosion may be controlled for short durations through use of protective coatings such as chrome plating, or for longer durations by using ceramic or graphite inserts.

5-3 PROPELLANTS

The body or mass of the solid propellant, which is formed by casting, molding, or extrusion, is called the grain. It is a specific chemical composition that sustains combustion. The grain, when it is properly designed, burns at a uniform rate in a direction normal to the burning surface. Burning may be prevented on surfaces by employing intibitors that are chemically inert substances.
!

SOLID ROD
 modified intermal star

Figure 5.6. Examples of Grain Cross-Sections
Combustion gases formed at the forward sections of perforated grains must pass across the aft grain surfaces to reach the nozzle. It is desirable to keep passages through the grain large enough se that gas velocikies will be low and erosion effects on the grain surface will be reduced. Erosion will be discussed further in Par. 5-3.1.4.
For a more complete discussion of grain configuration design, see References 5, 7, 9, 10, and 11.

5-3.1.3 Burning Rate

The burning rate is the velocity at which the grain is consumed in the direction normal to the burning surface. The burning rate is generally determined empirically and presented in literature supplied by the rocket motor manufacturer.
The following two equations approximate the burning rate:

$$
\begin{equation*}
r=a_{1} P_{\varepsilon}^{n} \tag{5-19a}
\end{equation*}
$$

$\boldsymbol{*}$

$$
\begin{equation*}
r=a_{2}+b P_{c} \tag{5-19b}
\end{equation*}
$$

where r is the burning rate; P_{c} is the combustion chamber pressure; and a_{1}, a_{2}, b, and n are empirically determined constants whose values depend on the propellant composition and initial temperature. The burning rate increases with increasing chamber pressure and grain initial temperature. Typizal burning rates for the most common propellants vary between approximately 0.025 and 2.5 inches/second. The flow of high velocity gases across the grain burning surfaces increases the burning rate. This phenomenon is defined as erosina and is discussed in Par. 5-3.1.4.
The mass flow rate of propellant is related to the burning rate as follows:

$$
\begin{equation*}
\dot{m}=A_{b} \rho_{g} r \tag{5-20}
\end{equation*}
$$

where \dot{m} is the mass flow rate, A_{b} is the grain burning surface area at the particular time in question, and ρ_{B} is the grain density.

Figure 5-7. Typical Grain installations

5.3.3 HANDLING

Because they are susceptible to cracking, solid propellant grains must be handled carefully. Cracks increase the burning surface area, altering the rocket performance. Chapter 6 discusses handling procedures that can be applied to the grains.

5-4 INTERNAL BALLISTICS

The combustion chamber pressure, for a given propellant composition, is a function of the ratio of the grain burning area to the nozzle throat area. Equating the mass generation rate for steady flow (Eq. 5-20) with the nozzle mass flow rate (Eq. 5-11), utilizing the burning rate equation (Eq. 5-19), and rearranging the terms, yields
$P_{c}=\left(\frac{A_{b}}{A_{t}}\right)^{\frac{1}{1-n}}\left(\frac{\rho_{g} a_{1} \sqrt{\mathrm{~g} \bar{R} T_{c}}}{\sqrt{\gamma\left(\frac{2}{\gamma+1}\right)}{ }^{(\gamma+1) /(\gamma-1)}}\right)_{(5-22)}^{\frac{1}{1-n}}$
when

$$
\begin{equation*}
k=\frac{A_{b}}{A_{t}} \tag{5-23a}
\end{equation*}
$$

and

$$
\begin{equation*}
p=\left(\frac{\rho_{\varepsilon} a_{1} \sqrt{g \bar{R} T_{c}}}{\sqrt{\gamma\left(\frac{2}{\gamma+1}\right)^{(\gamma+1) /(\gamma-1)}}}\right)^{\frac{1}{1-n}} \tag{5-23b}
\end{equation*}
$$

then

$$
\begin{equation*}
P_{c}=p k^{\frac{1}{1-n}} \tag{5-24}
\end{equation*}
$$

where P_{c} is the combustion chamber presssure, A_{b} is the grain burning area, A_{t} is the nozzle throat area, ρ_{g} is the density of the grain, a_{1} and n are constants from the burning rate equation (Eq. $5-19$), \vec{R} is the gas constant, T_{c} is the temperature of the gas in the combustion chamber, g is the gravitational constant, and γ is the ratio of the constant-pressure specific heat of the gas to its constant-volume specific heat.

The evaluation of tne combustion chusiber gas temperature requires a detailed analysis of the chemical reaction, product composition, and product quantities. Equating the heat of reaction and the summation of the change of each of the combustion chamber products yields

$$
\begin{equation*}
Q_{R}=\sum\left[n \int_{T_{0}}^{T}\left(C_{p}\right)_{n} d T\right] \tag{5-25}
\end{equation*}
$$

where Q_{R} is the heat of reaction at reference temperature T_{0}, n is the number of moles of each product formed, $\left(C_{p}\right)_{R}$ is the constant-pressure molal specific heat of each product formed, and $\int_{T_{0}}^{T}\left(C_{p}\right)_{d} d T$ is the enthalpy change of the product formed associated with the enthalpy change from reference temperature T_{0} to combustion chamber gas temperature T. The heat of reaction is the algebraic difference between the heat of formation of the products and the heat of formation of the reactants. The heat of formation and the censtant-pressure molal specific heat of the various compounds are available in standard chemical handbooks. A more detailed discussion of the evaluation of chamber gas temperatures is presented in Reference 1. Rocket motor manufacturer's specifications and performance reports should be consulted to estimate gas temperatures.

Other factors associated with internal ballistics (such as burning rate, erosion, grain configuraton, and ignition) were discussed under Paragraph 5-3. Consult Reference 8 for a further discussion of internal ballistics.

5-5 SCALING OF SOLID PROPELLANT MOTORS

The performance characteristics of solid propellant rocket motors may be scaled within certain limitations. This means that performance data available for a besic motor may be modified and applied to a similar motor that differs from the basic in size, thrust level, total impulse, and propellant composition.

When all dimensions are varied from the basic motor dimensions by the same scale factor

$$
\begin{equation*}
F_{\text {scaled }}=f^{2} F_{\text {bce ic }} \tag{5-26}
\end{equation*}
$$

$$
\begin{align*}
\left(\frac{F}{W_{\text {motar }}}\right)_{\text {seeled }} & =\frac{1}{f}\left(\frac{F}{W_{\text {motor }}}\right)_{\text {beric }} \tag{5-27}\\
\left(I_{\text {total }}\right)_{\text {sceled }} & =f^{3}\left(I_{\text {total }}\right)_{\text {basic }} \tag{5-28}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\theta_{b}\right)_{\text {sceled }}=f\left(\theta_{b}\right)_{\text {besic }} \tag{5-29}
\end{equation*}
$$

where F is the thrust, $W_{\text {noior }}$ is the weight of the rocket motor, $I_{\text {total }}$ is the total impulse, f is a scale factor, and θ_{b} is the time required for the propellant to be consumed. In evaluating the rocket motor weight, it is assumed that the same materiale and structural criteria sre applied io the beatic and scaled motors.

When only the length of the grain (with ends restricted) is varied from the basic by the scale factor f, and when the nozale flow areas are adjusted to maintain the same chamber pressure as in the basic motor,

$$
\begin{align*}
F_{\text {sceled }} & =f F_{\text {besic }} \tag{5-30}\\
\left(A_{t}\right)_{\text {aceled }} & =f\left(A_{t}\right)_{\text {becic }} \tag{5-31}\\
\left(A_{\text {cesheurt }}\right)_{\text {aceled }} & =f\left(A_{\text {exhenx }}\right)_{\text {besic }} \tag{5-32}
\end{align*}
$$

an*

$$
\begin{equation*}
\left(W_{\text {motor }}\right)_{\text {accaled }}=f\left(W_{\text {motor }}\right)_{\text {bes ic }} \tag{5-33}
\end{equation*}
$$

where A_{t} is the nozzle throat area, $\cdot A_{\text {extenst }}$ is the nozrie exhaust flow area, and all other symbits are as defined previously. If it is desirable to change the nozzle thooat area by utilizing inserts while maintaining the same exhaust area as the bnṣic nozzle,

$$
\begin{align*}
F_{\text {sceled }} & =f \frac{\left(C_{F}\right)_{\text {scaled }}}{\left(C_{F}\right)_{\text {becic }}} F_{\text {basic }} \tag{5-34}\\
\left(I_{s p}\right)_{\text {sceled }} & =\frac{\left(C_{F}\right)_{\text {scaibed }}}{\left(C_{F}\right)_{\text {besic }}}\left(I_{\text {ap }}\right)_{\text {ase ic }} \tag{5-35}
\end{align*}
$$

and

$$
\begin{equation*}
\left(I_{\text {tetal }}\right)_{\text {achied }}=\frac{\left(N_{F}\right)_{\text {scated }}}{\left(C_{F}\right)_{\text {besic }}}\left(I_{\text {total }}\right)_{\text {betic }} \tag{5-36}
\end{equation*}
$$

where C_{F} is the thrust coefficient, $\ddot{X}_{s f}$ is specific impulse, and all other symbols are as defined previously. The above technique is not applicable if the grain erosion effects are aitered significantly.
The motor thrust level may be changed by scaling the nozzle throat area by the fastor f so that

$$
\begin{align*}
F_{\text {scaled }} & =f^{-\frac{n}{1-n}} \frac{\left(C_{F}\right)_{\text {scalet }}}{\left.i C_{F}\right)_{\text {basic }}} F_{\text {basic }} \tag{5-37}\\
\left(P_{c}\right)_{\text {scealed }} & =f^{-\frac{1}{1-n}}\left(P_{c}\right)_{\text {basic }} \tag{5-38}\\
r_{\text {scaled }} & =f^{-\frac{n}{1-n}} r_{\text {basic }} \tag{5-39}\\
\left(\theta_{b}\right)_{\text {sealed }} & =f^{-\frac{n}{1-n}}\left(\theta_{b}\right)_{\text {basic }} \tag{5-40}\\
\left(I_{\text {total }}\right)_{\text {scaled }} & =\frac{\left(C_{F}\right)_{\text {scaled }}}{\left(C_{F}\right)_{\text {basic }}}\left(I_{\text {total }}\right)_{\text {basic }} \tag{5-41}
\end{align*}
$$

and

$$
\begin{equation*}
\left(I_{a p}\right)_{\text {scalad }}=\frac{\left(C_{F}\right)_{\text {acaled }}}{\left(C_{F}\right)_{\text {basic }}}\left(I_{a p}\right)_{\text {basic }} \tag{5-42}
\end{equation*}
$$

where P_{c} is the combustion chamber pressure, r is the grain burning rate, n is the exponent in the bur"ing rate equation (Eq. 5-19), and all other symbols are as defined previously. If the grain erosion effects are significautly altered, or if the cham' "pressure during burning is not constant, this technique is not applicable. The above technique requires an iterative solution because the thrust coefficient is a function of the nozzle thrust area and combustion charnber pressure.
The total impulse may be changed by scaling the nozzie exhaust flow area, thus changing the expansion ratio so that

$$
\begin{equation*}
F_{\text {scaled }}=\frac{\left(C_{F}\right)_{\text {scaled }}}{\left(C_{F}\right)_{\text {basic }}} E_{\text {basic }} \tag{5-43}
\end{equation*}
$$

where p is the constant (combustion chamber pressure paramater) in Eq. 5-23, a_{1} is the constant in Eq. 5-19, $n_{\text {scaled }}$ is the new propellant exponent in Eq. 5-19, $n_{\text {bas ic }}$ is the old propellarit exponent in Eq. 5-19, and all other symbols are as defined previously. The abova technique is only anpligable if the gengion choranteriotion are aot altered significantly and the chamber cressure does not vary significantly during burning.
When changes in the basic motor require more than one of the techniques described above, the scaling should be performed in steps. One scaling technique should be completed and all scaled characteristics computed. This new information is used to complete the next scaling technique, and so on.

Care must be exercised in scaling motors in which erosion is significant. Erosion characteristics may not scale well even when the ratio of grain internal flow area to nozzle throat area is preserved in the scaling.

5-6 TESTING

Tests must be conducted on rocket propulsion systems during the periods of development, manufacture, and qualification. These tests are usually of the following types, although additional tests may be zequired depending on the peculiarities of the particular system:
a. Pressure proof and leak checks
b. Component functionel and operational checks
c. Static firings
d. Flight performance

In some cases it may be desirable and nesessary to test only statistical samples, while in other cases every item produced must be tested. Often it is possible to test scale models-utilizing scaling techniques discussed in Par. 5-5-thus reducing the cost, the size of the test item, and the size of the test facility. Rather than formulate rigid rules for designing test programs, the test designer should exercise freedom in establishing test criteria, basing his parameters upon the in formation required from the test and utilizing the most economical and expeditious testing methods.

Propulsion testing will be discussed in the paragraphs which follow. For a more complete presentation and an excellent bibliography, see Reference 1.
Instrumentation is required to measure forces, flows, temperatures, pressures, structural stresses, time sequences, and all other parameters-such as acceleration and vibrations-that are of interest. Instrumentation consists basically of a pickup, a sensing element, and an indicator. Auxiliany equipment, auch as alectuonic antillifiers or telemetering devices to transmit flight measurements to ground stations, may also be needed. The pickup is installed at the location where the value of a particular parameter is to be measured and transmits the magnitude of the parameter to the sensing elements. The sensing element, which often is integral pait of the pickup, gauges the magnitude of the parumeter under consideration by mechanical, electrical, or other means. The

AMCP 705-200

indicator then displays the measurements of the senaing element. The American Society of Mechanical Engineers' Power Test Codes describe various forms of instrumentation and present recammendations for their use.

Bxtensive and elaborate safety precautions are required, empecially during the rocket development perind. Although soïd pmpellants do not present the exploaive hazard exhibited by liquid propelliants, peraonnel must be located rernotely when the rocket is launched, in case of explosion or an uncontrolled flight. The ignition must be
initiated from a remote location, and the instruments must be capable of remote indication, to allow personnel to monitor and control the test in : fety. Photorraphy and television are employed extensively to observe the rocket closely during the test. For flight tests, a range must be constructed that is instrumented and is located away from inhabited areas. F'or long-range flight tests, it is n ?essary to build into the rocket a destruction sistem that can be activated from the ground if the trajectory should present a hazard to personnel or property.

REFERENCES

1. G. P. Sution, Rocket Prcpulsion Elements, John Wiley and Sons, Inc., New York, 1956.
2. H. W. Liepman and A. Roshko, Elemenis of Gasdynamict, John Wiley and Sous, Inc., New York, 1987:
3. G. V. R. Kao, "Exhaurt Nozzle Contour for Optimum Thrust", Jet Propulsion 28, (June 1958).
4. H. H. Koelle, Handbook of Aetronamtical Enginecring, McGraw-Hill Book Company, Inc., New York, 1961.
5. F.A. Warren, Rocket Propellants, Reinhold Publishing Corporation, New York, 1958.
6. J. M. Vogel, "A Qunyi-monphelogical Approach to the Geometry of Changes for Solid Propellant

Rockets: The Family Tree of Change Designs". Jet Propulsion 26, 102, (1956).
7. L. I. Epstein, "The Design of Cylindrical Propellant Grains", Jet Propulsion 26, 757. (1956).
8. R. N. Wimpress, Internal Ballistics of Solid F'wel Rockets, McGraw-Hill Book Company, Inc., New York, 1950.
9. AMCP 706-282, Engineering Design Hisndbook, Propulsion and Propellants.
10. AMCP 706-175, Engineering Design Handbook, Solid 1'ropellants, Part One.
11. AMCP 706-176 (C), Engineering Design Handbook, Solid Propellants, Part Trers (U).

CHAPTER 6
 STRUCTURES

LIST OF SYMBOLS

Symbol Meonling
a Linear acceleration, $\mathrm{ft} / \mathrm{sec}^{\text {: }}$
A Area, ft^{2}
A_{r} Cross sectional area of fin at euposed root chord (Table 6-1), ft^{2}
o Fin span, ft
c Airfuil chord length, ft
c Perpendicular distance from beam neutral surface, ft
C_{D} Acrodynamic drag coefficient, dimensionless
C_{f} Skin friction coefficient (see Chapter 8), dimensionless
$C_{N_{\alpha}}$ Aerodynamic nurmal force coefficient gradi-
${ }_{\alpha}{ }_{\text {ent, }}$ per degree
C_{p} Constant pressure specific heat, $\mathrm{BTU} / \mathrm{lb}{ }^{\circ} \mathrm{R}$
cg Center of gravity
cp Center of pressure
d Diameter, ft
D A.erodynamic drag force, lb
E Modulus of elasticity (Young's Modulus), $\mathrm{lb} / \mathrm{ft}^{t}$
F Rocket thrust, lb
F_{12} Radiation combined emissivity, absorptivity, and orientation factor, dimensionless
$h_{\text {is }}$ Inside surface heat transfer coefficient, BTU/ (sec) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R}\right)$
$h_{0 s}$ Gutside surface heat transfer coefficient, BTU/ (sec) (ftiz) ($\left.{ }^{\circ} \mathrm{R}\right)$
I Mass moment of inertia, slug-ft*; area moment of inertia, ft^{4}
k Thermal conductivity, $\mathrm{BTU} /(\mathrm{sec})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R} / \mathrm{ft}\right)$
K Coefficient of plate stress, dimensionless
l, ℓ Length or disisnge, iit
In Natural logasithm
m Mass, slug
M Mach number, dimensionless; kending moment in structure, $\mathrm{ft}-\mathrm{lb}$

Symbol
Meoning
m_{∞} Free stream Mach inumber, dinnensinnless
M.S. Margin of Safety, dimensionless
n Number of rivets
N Aerodynamic normal force, lb
$N_{N u}$ Nusselt number, dimensionless
$N_{p r}$ Prandtl number, dimensionless
$N_{\text {Re }}$ Reynolds number, dimensionless
${ }_{p}^{\text {Re }}$ Pressure, $\mathrm{lb} / \mathrm{ft}^{2}$
P Structural load (force), lb
q Dynamic pressure, $\mathrm{lb} / \mathrm{ft}^{\text {t }}$; heat transfer rate, BTU/sec
r Recovery factor, dimensionless; radius, ft
$\therefore S_{\text {ref R }}$ Rocket reference area, ft^{2}
${ }^{1} t$ Thickness, ft
${ }^{T}$ Temperature, ${ }^{\circ} \mathrm{R}$
D Overall heat transfer coefficient, ETU/(sec) (fi^{2}) ${ }^{\circ} \mathrm{R}$)
\checkmark Velocity, fps
${ }^{v}$ WidLh, ft

* Weight, lb
y Height, ft
a Thermal radiation absorptivity, dimensionless; angle of attack, deg
β Angle between the rocket longitudinal axis and the vertical, deg
γ Rasio of specific heat at constant pressure to specific heat at constant volume, dimensionless
є Thermal radiation emissivity, dimensionless
θ Time, sec
μ Dynamic viscosity, slug/ft-sec
ρ Density, slug/ ft^{3}; internal gage pressure
σ Stress, $\mathrm{lb} / \mathrm{ft}^{\text {s }}$; Stephan-Boltzmann radiation constant, $\mathrm{BIU} /(\mathrm{sec})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R}^{4}\right)$
r Shearing stress, $\mathrm{lb} / \mathrm{ft}^{2}$

Figura 6-1. Volumes of Cones

Figure 6-2(C). Ratio of Velume of Tangent Ogive to Cone With Identical ℓ / d
where $I_{C G}$ is the section moment of inertia with respect to the pitch axis, \bar{I} is the section moment of inertia with respect to the local axis that is parallel to the pitch axis, m is the mass of the section, and l is the distance between axes.
The moments of inertia of typical rocket sections can be determined from Table 6-1. The pitch moments of inertia of fins and ring tails may be approximated for preliminary design by considering the fin mass to be concentrated at the rocket base. Then,

$$
\begin{equation*}
I_{\infty}=m l^{2} \tag{6-2}
\end{equation*}
$$

where m is the mass of the fins and l is the distance between the rocket center of gravity and the base. The error due to this approximation will be less than 4 percent if the fin root chord is less than one-third, and the span less than twothirds, of the distance between the rocket base and the rocket center of gravity.
The moments of inertia are not explicitls defined in Table B-1 for rocket sections that are partially hollow and/or made up of composite
materials. The moments of inertia of thesc sections can be evaluated by employing the principle that, with respect to a common axis, the total moment of inertia is equal to the algebraic sum of the moments of inertia of the parts. For example, the total moment of inertia of a cone with a hollow cylindrical center is equal to the moment of inertia of the solid cone less the moment of inertia of the cylindrical portion.

6-2.3 ROLL INERTIA

The rocket roll inertia is the mass moment of inertia of the complete rocket configuration with respect to the longitudinal axis of symmetry. For analysis, the rocket should be divided, as before, into sections made up of homogeneous materials and easily defined geometries. Then the roll inertia of the complete configuration is the algebraic sum of the individual section moments of inertia with respect to the longitudinal axis.

Figure 6-4 (A). Ratio of Area of Ogive to Cone With Identical l/d Versus l / r for l / d Less Than or Equal to 0.5

Figure 6-4(B). Ratio of Arsa of Ogive to Cone Versus ℓ / r at Yarious ℓ / d 's
where C_{D} is the drag coefficienti, q is the dynamic premure, and $S_{\text {sff }}$ is the rocket reference area.
The bending losd components are made up of forces from aerodynamic lift and inersia of the rocket masis in the dirention purpendicular to the body axis. Manufacturing techniques permit thrust alignment to within approximately 10 sec of longitudinal axis, resulting in negligible bending lomdn. For preliminary design, the rocket section masees can be considered concentrated at the section centery of gravity, and the section lift forces concentrated at the section centers of preapure.
Fis. efe shows the bending loads acting on a rocket in flight. The inertia loads are equal to
the mass m of the section, multiplied by acceleration a, acting in a direction perpendicular to the longitudinal axis, and

$$
\begin{equation*}
m a=N-W \sin \beta \tag{6-6}
\end{equation*}
$$

where N is the total lift on the rocket, W is the total weight, and β is the angle between the body longitudinal axis and the verlical.
The normal-force coefficient gradients on the rocket sections can be evaluated as indicated in par. 8-2. The normal force N can be determined as follows:

$$
\begin{equation*}
N=C_{N_{\alpha}} \alpha q S_{\mathrm{ref}} \tag{6-7}
\end{equation*}
$$

Figura 8-6. Cor:eentrated Bending Loads on Free Rocket
6.12

where P is the axial lozd (positive if compressive and negative if tensile), and other symbols are as shown above. The rocket tins act as cantilever beams (one end fixed), with the maximum bending moment occuring at the point of attachment to the rocket body. The maximum stress due to bending at any section of the fin is

$$
\begin{equation*}
\sigma=\frac{M t}{2 I} \tag{6-13}
\end{equation*}
$$

where t is the airfoil thickness. The meihods of calculating the area moments of inertia of various airfoil sections are presented in Table 6-2.

6-4.2 COLUMNS

A column is defined as a structural member principally loaded axially in compression ans of sufficient length that failure tends to occur by buckling at compressive stresses below the elastic limit. The classical formula for buckling is that developed by Euler as

$$
\begin{equation*}
P=\frac{\pi^{2} E I}{l^{2}} \tag{6-14}
\end{equation*}
$$

where P is the buckling load, E is the material modulus of elasticity (Young's Modulus), I is the minimum centroidal mument of inercia of the cross section, and l is the column lergth. Euler's formula is only applizable to very long columns. Generally, columns must be designed on the basis of empirically-derived relationships.

The rocket body may be a column susceptible to buckling. A method of evaluating the critical buckling stress in thin-walled cylindrical columns, such as rocket bodies, was developed in Reference 9 as

$$
\begin{equation*}
\sigma_{\mathrm{Sr}}=\overline{\mathscr{K}}\left(\frac{2 t}{d_{c}}\right)^{1 . \kappa} \tag{6-15}
\end{equation*}
$$

where $\sigma_{c r}$ is the unit compress.ve stress in the cylinder wall at whach buckling will commence, E is the material modulus of elasticity, t is the cylinder wall thickness, and $\dot{\alpha}_{c}$ is the cylinder diameter. If the cylinder as also subjected to transverse loads, the critical bucklin.g stress due to the axial load is

$$
\begin{equation*}
\sigma_{c r}=\Omega\left(\frac{2 t}{d_{c}}\right)^{1.6}-\frac{4 M}{\pi d_{c}^{2 t}} \tag{6-16}
\end{equation*}
$$

where M is the bending moment due to transverse loads.

6-4.3 PRESSURE VEBEZELS

For the classes of solid propellant rackets discussed in this handbook, the combustion chamber structure is the primary pressure vessel. This structure is generally cylindrical and is subject to circumferential tensile (or boop) stresses in the walls due to the loads discusse? in par. e-3.2 and shown in Fig. 6-7. This tensile stress is

$$
\begin{equation*}
z=\frac{p r}{t} \tag{6-17}
\end{equation*}
$$

where σ is the unit tensile stress, p is the internal pressure, r is the cylinder inside radius, ard t is the wall thickness.

The internal pressure, acting on the ends of the cylindrical vessel, applies in the walls a longitudinal tensile stress that helps support the weight, drag, and inertia compressive stresses.

6-4.4 PLATES

Some of the rocket structure-such as access doors or fin panels-may be considered as flat plates, uniformly loaded and fixed around the edges. For such a rectangular plate, the unit stress is

$$
\begin{equation*}
\sigma=6 K \frac{P_{w}}{l t^{2}} \tag{6-18}
\end{equation*}
$$

where σ is the unit stress, w is the plate width, l is the piate length, P is the total load on the plate, t is the pitite thichenese, and K is a function of the width-to-length ratio, as shown in Fig. 6-9. Reference 20 presents methods of calculating the unit stress in plates of other geometries and edge conditions.

6-4.5 JOINTS

Riveted, welded, and boited joints are used in rockets of the class discussed in this haridbook.

AMCP 70c-230

FILLET TYPE
Figure 6-11. Weided Joints
whera all symbols are as defined previously.

- The bearing stress in the rivets or connected members at each rivet location is equal to the load on the rivet divided by the bearing area. Therefore, the bearing stress σ_{b} is

$$
\begin{equation*}
\sigma_{\partial}=\frac{P}{n d t} \tag{6-22}
\end{equation*}
$$

where ali symbots are as defined previcusly.
Welded joints may be used in conjunction with or an a xphlacament for riveted and bolted feints. Although there exists many types of welds, in many combinations and configurativas, only the vatutype and fillet-type shown in Fig. 6-11 will be discused as the most general and cornunon. Welded joints are subjected to shearing, tensile, and compression stresses. 'The compresaion or tensile atress in a vee-type joint is equal 6.11
to the applied load divided by the cross sectional area, at the weld, ot the thinnest member connected. Shearing is the significant stress in a fillet-type weld and is equal to the load, divided by the length of all welds in the joint, multiplied by the weld throat thickness.
Bolts may be subjected to the stresses discussed above for rivets and/or a tensile load along the longitudinal axis as shown in Fig. G-12. Eoch bolt may be considered to carry an equal portion of the tensile luad. Then the unit tensile stress in each bolt is:

$$
\begin{equation*}
\sigma=\frac{P}{n A} \tag{6-23}
\end{equation*}
$$

where P is the tensile lead, n in the tatal number of bolts in the joint, and A is the cross sectional area of the bolt.
For a more extensive treatment of joints, see Reference 11.

Figure 6-12. Bolted Joints

6-5 SAFETY FACTORS

The factor of safety is defined as the ratio of ultimate strength or yield strength of the material to the allowabie stress. The ultimate strength is used for brittle materials and the yield strength for ductile materials The factor of safety is employed to account for differences between design and actual load conditions, and for statistical variations in the structure. Large factors of safety are desirable for reliability but must be balanced against the associrted increase in structural weight.

When possible, it is advisable to base the allowable stress on test results and eliminate the use oi the factor of safety. When test data are not available, a factor of safety of 1.15 shouid be used for the strueture in general. For pressure vessels and other structures that may be a hazard to personnel, a factor of safety of 2.0 should be used.

The margin of safety is defined as the ratio of excess strength to the required strength or:

$$
\begin{equation*}
\text { M.S. }=\left(\frac{\sigma_{a} \text { llovable }}{. \sigma}\right)-1 \tag{6-24}
\end{equation*}
$$

where M.S. is the margin of safety, $a_{\text {allowable }}$ is the allowable stress, and o is the actual maximum stress. The margi: of eafety gives an indication of permissible load increases or structural strength decreases in design modification.

6-6 HEATING

6-6.1 GENERAL

Heat is transferred by the processes of conduction, radiation, and convection. In general, heat is conducted through a medium by the transport of the kinetic energy of both free electrons and molecules; heat is radiated by the transport of electromagnetic energy, requiring no transport medium; heat is convected by a combination of conduction, radiation, and the motion of a fluid mass. The heat transier is considered to be iransient if heat is being stored or released within the media involved and the temperatures of the media are varying with time The heat transfer is considered to be steady-state if the temperatures of the media do not vary with time. During steady-state conditions the one-dimensional heat transfer across any one section of a mediun is equal to the heat transferred across any other parallel section.

6-6.1.1 Conduction Heat Transiar

The one-dimensional, steady-state conduction heat transfer through it homogeneous medium with a constant themal conductivity is

$$
\begin{equation*}
q=\frac{k}{t} A\left(T_{1}-T_{2}\right) \tag{6-25}
\end{equation*}
$$

where q is the heat transfer rate, k is the thermal conductivity of the medium (obtained from material property data), A is the section area of the medium through whish the heat is transferred, ($T_{1}-T_{3}$) is the temperature difierence autis the medium, and t is the medium thickness. For a composite of plane media such as shown in Fig. 6 -13, the one-dimensional steady-state conduction heat transfer is equal to

$$
\begin{equation*}
q_{4-2}=\frac{y w\left(T_{4}-T_{2}\right)}{\frac{t_{1}}{k_{1}}+\frac{t_{2}}{k_{2}}+\frac{t_{3}}{k_{3}}+\ldots+\frac{t_{n}}{k_{n}}} \tag{6-26}
\end{equation*}
$$

ANGP 706-280

Figure 6-13. Plane Conduction Heat Transfar M=dium
or in another direction is equal to

$$
\begin{gather*}
q_{5.6}= \\
\frac{\left(k_{1} t_{1}+k_{2} t_{2}+k_{3} t_{3}+\cdots+k_{n} t_{n}\right) y\left(T_{5}-T_{6}\right)}{2}
\end{gather*}
$$

where q_{4-2} and q_{5-6} are ine one-dimensional conducion heat, transfer rates from face 4 to 2 and face 5 to 6 , respectively, with the other folur faces insulated; T_{4}, T_{2}, T_{5}, and T_{6} are the unifo\%m surface temperatures on faces $4,2,5$, and C, respectively; and all other symbols are as sitown in Eig. E-k. fros a compasito of cylindricei neediums guch as shown in Fig. 6-14, the steady-state conduction heat transfer is equal to

$$
\begin{equation*}
q=\frac{l\left(T_{z z}-T_{0:}\right)}{\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{1}}+\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{2}}+\cdots+\frac{\ln \left(r_{n} / r_{n-1}\right)}{2 \pi k_{n}}} \tag{6-28}
\end{equation*}
$$

LENGTH - \&
Figure 6-14. Cylindrical Conduction of Heat Transfer Medium
where q is the conduction heat transfer rate, $T_{i s}$ and $T_{o s}$ are the uniform surface temperatures on the inside and outside of the cylinder, respectively, and all other symbols are as shown in Fig. 6-14.

6-6.1.2 Radiation Heat Transfor

All substances above the iemperature of absolute zero emit thermal electromagnetiz energy. A body that emits and absorbs the maximum amount of heat is defined as a black body and the heat it emits is equal to

$$
\begin{equation*}
q \approx a A T^{4} \tag{6-29}
\end{equation*}
$$

where q is the heat transfer rate: σ is the StephanBolismann constant: whiah in the Engligh rysiem of units is $0.48 \times 10 \cdot 12 \mathrm{BTU} /(\mathrm{sec})\left(\mathrm{ft}^{2}\right)\left({ }^{2} \mathrm{R}\right)^{4}$; A is the surface area of the body; and T is the absolute tempersture of the body surface. Actual bodies radiate and absorb less heat than the black body. The ratio of heat emitted by a black body at the same temperature is called the emissivity c and is a function of the body material, temperature, and surface conditions. The heat radiated by an actual body is equal to

$$
\begin{equation*}
q=\epsilon \sigma A T^{4} \tag{6-30}
\end{equation*}
$$

The ratio of heat absorbed by an actual body to the total amount of heat incident on the body (that which would be absorbed by a black body) is called the absorptivity α and is a function of body material, temperature, surface condition, and heat source temperature. Emissivity and absorptivity values may be obtained from standard material handbooks.
The net radiation heat transfer between two bodies is a function of the bodies' emissivities, absorptivities, geometries, temperatures and orientations. This transfer is equal to

$$
\begin{equation*}
q_{1}=F_{12} A_{1} \sigma\left(T_{1}^{4}-T_{2}^{4}\right) \tag{6-31}
\end{equation*}
$$

where q_{1} is the radiation heat transfer rate of body $1 ; F_{12}$ is the combined emissivity, absorptivity, and orientation factor, which may be obtained from such sources as Reference 12; $A_{\text {: }}$ is the surface area of body 1 ; and Γ_{1} and T_{2} are the surface temperatures of bodies 1 and 2 , respectively. Methods of obtaining the heat transfer between three or more bodies are described in Reference 13.

Following Reference 13, we may define a radiation heat transfer coefficient as

$$
\begin{equation*}
h_{R a d}=\frac{\sigma F_{12}\left(T_{1}^{4}-T_{2}^{4}\right)}{\left(T_{1}-T_{2}\right)} \tag{6-32}
\end{equation*}
$$

By transposition and substitution in Eq. 6-31,

$$
\begin{equation*}
q_{1}=h_{\text {Rad }} A_{1}\left(T_{1}-T_{2}\right) \tag{6-33}
\end{equation*}
$$

6-6.1.3 Convaction Heat Tiansfer

The convection heat transfer between a fluid in motion and a solid is equal to

$$
\begin{equation*}
q=h A\left(T_{f}-T_{z}\right) \tag{6-34}
\end{equation*}
$$

where q is the convection heat transfer rate, h is the convection heat transfer coefficient, A is the area across which the heat is transferred, and T_{f} and T_{s} are the temperatures of the fluid and eolid, respectively. The convection coefficient; is a function of the temperatures, fluid propar. ties, solid geometry, and solid surface conditions.

The methods of evaluating convection coefficients for a variety of conditions are presented in Reference 14.

6-6.1.4 Combined Heat Transfer

Often the heat transfer under consideration takes place by the modes of conduction, radiation, and convection acting simultaneously. Therefore, it is convenient to define an overall heat transfer coefficient U which will include all modes of heat transfer preserit. For illustration, consider the cylinder in Fig. 6-14 with a hot fluid at temperature T_{H} flowing on the inside and a cold fluid at temperature T_{c} flowing on the outside. Then the steady-state heat transfer from the inside fluid to the outside fluid is

$$
\begin{equation*}
q=U A\left(T_{H}-T_{c}\right) \tag{6-35}
\end{equation*}
$$

where

$$
\begin{align*}
U= & \frac{l}{A}\left(\frac{1}{2 \pi r_{1} h_{i s}}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{i}}+\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{2}}\right. \\
& \left.+\ldots+\frac{\ln \left(r_{n} / r_{n-1}\right)}{2 \pi k_{a}}+\frac{1}{2 \pi r_{n} h_{08}}\right)^{-1} \tag{6-36}
\end{align*}
$$

h_{13} and h_{03} are the inside and outside heat transfer coefficients, respectively, for convection plus radiation.

6-6.1.5 Transient Haat Transfor

When the heat transfer is transient, the rate at which heat is stored in a medium with a constant specific heat is equal to

$$
\begin{equation*}
q=m C_{p} \frac{d T}{d \theta} \tag{6-37}
\end{equation*}
$$

where q is the rate at which keat is stored, m is the mass of the medium in which the heat is stored, C_{p} is the constant pressure specific heat of the medium, $d T / d 6$ is the time rate of temperature change in the medium.

The solutions of threc-dimensional transient heat transier problems are more difficult than

AMCP 7 7 -200

the above solutions and generally must be solved on hish-apeed digital computers.

cg. COMBUSTIGN CHAMBEIZ HEATING

The combuation process produces gas temperatures of $400 j^{\circ}$ to $7000^{\circ} \mathrm{R}$ depending on the propellant employed. Heat is transferred from the comburtion chamber gases through the structure to thie environment by coriduction, convection, and radiation. The structure may be protected from overheating by employing insulating materiak, a high heat capacity mass, or by transferring heat away to the iavironment.

The convection heat trinsfer coefficient on the inside of a cylindrical combustion chamber may be evaluated by the following relationship obtained from Reference 14:

$$
\begin{gather*}
N_{N_{4}}=\frac{h D}{k}=0.023\left(N_{R e}\right)^{0.8}\left(N_{P_{r}}\right)^{0.3} \tag{6-38}\\
N_{N_{e}}=\frac{\rho V D}{\mu} \tag{6-39}\\
N_{P_{r}}=\frac{C_{p / L}}{k} \tag{6-40}
\end{gather*}
$$

where $N_{N_{N}}, N_{N_{1}}$, and $N_{P r}$ are the dimensionless Nuseelt, Ryynolds, and Frandtl numbers, respectively; h is the convection coefficient; D is the inside diameter of the chamber: k is the thermal conduc'avity; ρ is the density; V is the velocity; μ is the viscosity; and C_{p} the constant pressure specific heat o\% the chamber gas.
The canvegtion heat transfer coefficient on the cutside surface of the combustion chaunber is a function of the airifiow properties at the particular location under consideration. If the outside surface is exposed to the airstream, the heat transfer may be evaluated as indicaiod in par. © 0 -is. For futher locations, the convection heat trausfer coefficients may be evaluated from references cited previously.

If the comibustion is over a short period of cime, steady-state conditions may not be reached. In this cese, for preliminary design, it is recommanded thet the net heat transfer to the structure at the initial temperature be evaluated over
an increment of time. The temperature rise in the structure due to heai storage can then be evaluated. Then the net heat transfer to the structure at the new temperature for the next increment of time is evaluated, and so on. The accuracy ot this method can be increased by taking smaller time increments.
The methods outlined above can also be used on the rocket nozzle with sufficient accuracy for preliminary design.

6.8.3 EXHAUST PLUME HEATING:

The rocket exhaust plume transfers heat by radiation to the rocket structure, and by convection to the launcher and surrounding equipment. The heat transferred is a function of the geometry, temperature, flow properties, and radiation properties of the plume; it is also a function of the orientation, temperature, radiation properties, and configuration of the rocket structure, lauricher, and surrounding equipment.
The plume geometry is deperdent on the exhaust gas pressure and atmospheric pressure as shown generally in Fig. 6-15. The plume geometry, temperature, and flow properties can be defined specirically, as outlined in Chapter 5, par. 5-2.1. The convection heat transfer coefficients on the launcher and surrounding equipment may be determined from references cited previously. The radiation properties of the plume depend on the operating characteristics of the rocket engine. Since this information is generally not avaidable for preliminary design, the conservative approach should be taken and the emissivity and absorptivity assumed to be equal to 0.9 .

8-8.4 AERODYNAMIG FRICTION HEATING

The heating due to aerolynamic friction on rockets of the class discussed in this handbook generally wili not be significant enough for consideration in preliminazy design. Therefore, only a cursory discussion of aerodynamic heating will be presented. For a more detailed prosentation, consult such sources as Reference 15.
Kinetic energy is imparted by frintion to the air surxounding a rocket in flight. Therefore, in the rocket boundary layer there is a kinetis tem-
density of the free stream air, V_{∞} is the free atream velocity, $C_{f o s}$ is the free stream skin friction coefficient, which is obtained as outlined in Chopter 8, par. 8-3.2. The heat transfer coefficient on cones is approximately 73 percent and 15 percent higher than flat plate values for laminar and turbulent boundary layers, respectively. Fins and cylindrical bodies may be considered as flat plates for purposes of preliminary design.

8-7 TESTING

A test program is often required to supplement the structural analyses outilined above since these analyses do not consider such factors as ssiess concentrations, statistical variations, fabrication variations, and imperfections in structuzal materials and members. Although structural testing generally will not be performed during the preliminary phases of rocket design, a cursory discussion is presented here to indicate the types of teats usually conducted and the testing methods usually employed. Tests are classified as destructive if the test item is permanently deformed or fractured, and as nondeatructive if the test item is strusturally useful after the test.
Ttup actual mechanical properties of materials may vary statistically from the generally publishell values. These variations may significontly affect the structural strength since factors of safety must be low to minimize weight. There-
fore, samples of materials are prepared and tested, conforming to stannards set by organizations such as ASME and ASTM. A detailed discussion of the testing of ingterials is presented in Reference 16.

When evaluating structural members, it is generolly desirable to employ nondestructive tests so as not to impair the usefulness of the tested item. Deep-seated irregularities such as cracks and voids in the structure can be identified by X-ray. Surface or near-surface irregularities can be identified by Magnaflux or Zyglo inspections. In the Magnafliux inspection the test item is covered by small magnetic particles which are attracted to local magnetic leakage fields around imperfections in the magnetized test item. In thr Zyglo inspection, used on nunmagnetic materials, the test item is immersed in a fluoressent fluid that poneirates and thus reveals cracks, voids, and other imperfections. Ohservation of the properties of sound waves passed ihrough the strui-ture will also reveal imperfections.
When using small factors of safety and when uncertainties exist concerning the structural strength, it is usually desirable to verify the structure by subjecting it to a proof test. This is especially true for pressure vessels. In general, proof tests are designed to subject the structure to a losd that will permanently deform it 0.01 percent or less.
For a more thorough discussion of structural testing-including vibration, creep, and impactsee Reforence 16.

References

:. M. Rhoden and D. Ifsbin, Simplified Method for Calculating the Area, Skin Weight, and Free Colxme of Ogives, Special Report, U. S. Army Minile Command, Redstone Arsenal, Alabama, 1 January 1985.
2. G. A. Greathouse zad C. J. Wesael, Eds., Deteriorisatson of Matrials, Casses and Preventative Teckniques, Diviaion of Chemistry and Chemical Technology, National Academy of
 ton, D. C.
3, G. K. Guttwein, F. K. Priebe, and S. M. Jee, Behavior of Electronic Equipment in Vehicular

I'ransportation, Tele- icoh and Electronic Industrics, December 1954.

1. Ride and Vibration Data, Special Publication of the Society of Automotive Engincers, New York. N. Y.
2. The Applicability of Existing Truck and Rai, Shock, and Vibration Data to Freight Shipment Criteria, Technical Report No. 58, Vitro Corporation of America, Silver Springs Laboratory, Silver Springe, Mid., Mareh 1964.
3. D, A. Firmage, Transportation Shock and V'ibration Studies, Project No. 8-91-06-002, Engineering and Industrial Exp. Station, University of

Fluridu, Engineering Research and Developnient Laboratories, Fort Belvoir, Va., February 1952.
7. L. E. Lamkin, Packaging Criteria, Shock and Vibration Bulletin No. 21, RDB.
8. K. W. Johnson, Design Criteria for Military Equipment Transported by Common Carrier, Shock and Vibsation Bulletin No. 16, Octeber 1950.
9. S. Kanemitsu and H. Nojima, Axial Compression T'ests of T'hin Circular Cylinders, M. S. Thesis, Guggenheim Aeronautical Laboratory, Californin Institute of Technology, 1939. Reviewed in H. S. Siefert, K. Brown, Ballistic iiissile and Space Vehicle Systems, John Wiley and Sons, Ine., New York. S. Y. 1961.
10. F. B. Seely and J. O. Smith. Advanced Mechanics of Materials, John Wiley and Sons. Inc.. New York, N. Y. 1952.
11. D. J. Peery, Aircraft Siructur, s, MeGraw-Hill Book Co. Ine., New İork, N. Y. 1950.
12. Aero-Space Applied Thermodynamics Manual, Suciety of Automotive Engineers Inc., Committee A-9. Acro-Space Environmental Control Se:stems. New York, 「ebruary 1960.
13. F. Kreith, Principles of Heat T'ranefer, International Textbook Cu., Scranton, Pa., 1958.

1. W. H. McAdams, Heat Transmission, McGrawHill Book Co. Inc. , New York, 1954.
2. Robert W. Truitt, Fundamentals of Aerodynamic Heating, The Ronald Press Co., New York 1960.
3. Proceedings of the Society for Experimental Stress Analyses. All volumes, B. E. Rossi, Society for Experimental Stress Ànalyres, 21 Bridge Square, Westport, Conn.
4. AMCP 706-13\%, Engineering Jesign Handbook, Maintainability Guide for Design.

CHAPTER 7
 ACCURAGY

LIST OF SYMBOLS

Symbo!	Meoning
C_{D}	Aerodynamic drag coefficient, nondimensional
$C_{n q}$	Aerodynamic damping moment coefficient, nondimensional
${ }_{N}$	Aerodynamic , rmal force coefficient, per rad
	ircular probable error

CPE Circular probable error
d Reference diameter of projectile or rocket, ft
G Rocket acceleration due to thrust, $\mathrm{ft} / \mathrm{sec}^{2}$
g Gravitational acceleration, $\mathrm{ft} / \mathrm{sec}^{2}$
I Moment of inertia, slug. ft^{2}.
$I_{s p}$ Specific impulse, sec
k Radius of gyration, ft
L Thrust moment arm due to malalignment, ft
ℓ_{t}, l_{s} Aerodynamic static margm, cal
e_{t}, l_{t} Distance from center of gravity to point of thrust application, ft
In Natural logarithm
m Projectile mass, slug
N Number of sample values taken from a universe of statistical values
n_{o} Number of revolutions made by rocket during first wavelength of yaw
P Nondimensional launcher length (actual Ifuncher length $/ \sigma$)
PE Probable error
p Rocket spin rate, rad/see
q Component of projectile angular velocity in the direction of projectile y axis, rad/sec
R Standard range, km
s Computed standard deviation
S Aerodynamic reference area, ft^{2}
S Nondimensional burning distance (actual burning distance $/ \sigma$)
t Time of flight, sec; Student's t velue
u, w Components of projectile velocity in the direction of x and z axes, $f t / s e c$

Symbol Meaning
V Estimate of population variance
V Projectile velocity, it/fsec
V_{v} Wind velocity, $\mathrm{ft} / \mathrm{sec}$
w Wind velocity in fl ght-path plane, $\mathrm{ft} / \mathrm{sec}$
w_{Z} Wind velocity normal to flight path, $\mathrm{ft} / \mathrm{sec}$
X, Y, Z Earth-fixed launch coordinate system
x, y Specific sample value taken from a universe of statistical values
\bar{x}, \bar{y} Estimate of μ based on available sample values,
a Angle of attack, degrees or rad
β Dispersion reduction parameter ($\beta=$ dispersion with reduction technique/dispersion with no reduction technique)
$\gamma_{\text {Ts }}$ Steady state flight path ongle with no disturbances, mils
Δ Incremental change in the variable following the symbol
δ Thrust malalignment angle, mils
δ_{F} Aerodynamic malalignment angle, mils
Angle between rocket longitudinal axis and principal axis, mils,
θ Projectile pitch attitude angle, measured from horizontal, rad
f Mean of a universe of statistical values
ρ Atmospheric density, slug/ft ${ }^{3}$
σ Yaw oscillation distance or wavelength, ft ; standard deviation of a sample of size N
$\sigma_{\text {. }}$ Initial oscillation distance, ft
$\sigma_{s y s}$ Standard deviation of a system containing n statistical variables
$\sigma_{z}\left(\sigma_{y}\right)$ Standard deviation of the $x(y)$ values
ϕ Projectile roll angle, rad
ψ Projectile yaw attitude angle, measured from vertical launch plane, rad
∂ Partial derivative

7-1 INTRODUCTION

Accuracy is the measure of the ability of the rocket systam to position the payload at a given point at warhead event. Various exror sources irherent in the racket sustem, tugether with e\%ternal conditions suin as winds, cause a dispersion of the payload ixom its intended path. To determine the accurasy of a rocket system, a series of rockets are launohed under carefully controlled conditions. The \& tual flight paths of the rockets are compared to es idealized trajectory in order to calculate the dispersion. As in the study of the accuracy of any mechanical instrument or system, the error soures are iurst identified and then categorized as to whether they are predictable (allowing a comransation to be made) or random. The most sigeificant factors influencing the accuracy of free rocizets have been identified by extensive conparizons between experimental tests and theory. This chapter is a detailed discussion of the error souries. The main objective is to describe how the designer musi compensate for the errors in order to achieve the level of accuracy required by the mission specifications.

7-2 DEFINITIONS CF ERROR SOURCES

The flight of a rocket is divided into three phasese:(1) the launch phase, (2) the propulsive or burning phase, and (3) the ballistic phase. Error sources are labeled according to the phase of flight during which the error causes the rocket to deviate from the idealized trajectory. For example, a burning phase error will cause n deviation to occur between launch and bismout. If no additional errors are encountered during the ballistic phase, the burning phase error will still result in a dispersion of the warhead event. The total error, including prelaunch errors not associated with flight, is the net dispersion due to ail errors.
a. Prelaunch Errors. All errors, including aiming errors and prelaunch corrections, that are accrued before rocket ignition.
b. Launch Phase Errors. Those errors that are associated with and result from the launch phase, including the initial conditions transmitted to the rocket by the launcher and dynamic unbalance effects of the rocket.
c. Propulisive Phase Errors. The dispersions ihai resuit from such errors as thrust malalignment, noustandard metecrological conditions, aerodynamic assymmetries, and propulsion variations.
d. Ballistic Plase Errners. Those disnersi, in that occur during the period from propulsion cutoff to the end of flight.

The following paragraphs will be concerned with the individual error sources and metheds for computing approximate dispersions.

7.3 DESIGN CONSIDERATIONS influencing accuracy

The effect of design variables on accuracy and the delicate trade-off process involved in dispersion reduction can be more easily understood by dividing all errors into two grotps: (i) speed change errors, and (2) angular errors.

7-3.1 DESIGN CONSIDERATIONS ASSOCIATED WITH SPEED CHANGE ERRORS

The speed change errors are characterized by a change from the nominal velocity attained at propellant burnout. These errors, which result in an error in the plane of the trajectory, are due primarily to the variability present in the propulsion system. Any variation in a parameter that influences the delivered total impulse will obviously result in a different burnout velocity of the rosket. These include wariations in:
a. Total loaded propellant
b. Propellant specific impulse due to chemical composition
c. Specific impulse due to physical quantities (e.g., nozzle throat diameter)
d. Inert parts weight

In addition to propulsion system variability effecis, the burning time and thrust of solid propellant rockets are effected by propellant temperature. Even hhough the temperature has a negligible effect on total impulse, it does affect the burnout velocity because the rocket is subjected to a different drag history.
Speed change errors are a function of mechanical design manufacturing control, and propellant selection These items are discussed in more de-

$!$

Figure 7-4. Effect of a Thrust Malalignment on on Aerodynamically Stable Rocket

The figure indicates that a thrust malalignment causes an aerodynamically stable rocket to rotate until the aerodynamic corrective moments are equal to the moment caused by the malaligned thrust.
Fig. 7.5 shows the effect of σ on the angular dispersion due to thrust malalignment.

For minimum thrust malalignment effects, the designer should select the smallest possible value of σ (maximum aerodynamic stability).

Combining the two error sources produces Fig. $7-6$ which suggests an optimum value of σ for minimum total dispersion during burning. The designer may adjust the rocket parameters to obtain this value of σ.
Thé conflicting requirements on the wavelength of yaw result because an attempt was made to decrease two different types of errors by the same method, changing aerodynamic stability. We shall now consider a different method by which the dispersion caused by a body-fixed error, such as thrust or fin malalignment, can be reduced.

7-3.2.4 The Effect of a Slow Spin

Fig. 7-7 describes the build-up of the dispersion of 2 nonrotating rocket with a thrust malalignment. Because the thrust is applied in an unchanging direction, the dispersion grows steadily with lime. Fig. $7-8$ shows the effect of giving the rocket a slow spin about its longitudinal axis. In this case the direction of the thrust changes as the body rotates. The result is a reduction in the total angular dispersion.

AMCP 706.280

Figure 7.5. Effect of Wavalength of Yaw on Angular Üispersion Due to Thrust Malalignment

Fifure 7.6. Optimum Wovalength of Yaw for Minimum Total Disparsion

Figure 7.7. Growth of Angular Dispersion for a Rocket With a Thrust Malalignment and No Spin

Figure 7.8. Growth of Angular Dispersion for a Rocket With a Thrust Malalignment and a Slow Spin

Figure 7.9. Effect of Spin on the Build-Up of Angular Dispersion Dee to Thrust Malalignment

FY. 7-9 dencribes the variation of the angular diapersion with dintance for a typical rocket with and witthout a alow spin.
From the above discuscion, it followa that apin of any kind will have some eiffect on the angular dimpersion of a rocket. The significant factor that determines the effect of a spin technique is the relation between the rotational motion of the body-fixed error and the rotational motion of the rocket about a lateral axis. The rotational mo. Aion of the rocket has been dhown to be charasterived by the wavelength of yaw; therefore, it is expected that this parameter will have a strong influance on the effectiveness ct any apin program.
Ae was ahown in Fig. 7-1, most of the angular dimpersion taken place during the first yaw oscillation. The spin motion during this period will have the most influence on the sngular dispermion.

If the spin is constant or increasing in the same direction, the error will tend to accumulate because the acceleration of the rocket causes the influence of the malalignment te decrease as the rocket momentum increases. Therefore, the dispersion caused by the first half of the spin cycle is not completoly compensated for by the second half. A uniform spin program will always result in some finite error.

The above considerations have led-investigators to study nonunform spin piogians witu the intention of developing techniques that would result in zero angular dispersion. The simplest programi to visualize is the instantaneous, 180 deg rotation of the v ?hicle â: some point in the trajectory. The point is chojen so that the eccumulation of angular dispersion to that point is completely eliminated ky reversing the direction of the drror. This concept has been incor-
porated into thr Spin-Buck Program which is discussed in par. 7-7.2.4.
Par. 7-7:2 discusses several spin programs which have been of interest to designers of free rockets.

7-3.2.5 The Effect of Dispersion Reduction on the Ontimum os

The ainount of dispersion reduction obtained from any giver spin program is measured by the para neter β which is the ratio of the tispersion riith no spin to the dispersion with the spin proyram. Other paragraphs in this chapter indicate values of β for several spin programs. Once estimates of β are known, one can find the optimum value of σ which accounts for the combined effects of the spin-program on thrust malalignment and of the effect of winds. For short launcher lengths:

$$
\begin{equation*}
\sigma_{O P T}=\left[\frac{4 \pi k^{2} V_{v}}{\sqrt{G} L \beta}\right]^{2 / 3} \tag{7-2}
\end{equation*}
$$

where
$\dot{j}=$ rocket radius of gyration, ft
$V_{V}=$ wind velucity, ft/sec
$G=$ rocket acceleration, f_{t} / sec^{*}
$L=$ thrust malalignment distance, ft
$\beta=$ dispersion reduction factor, dimensionless
The dispersion for this value of g is given by

$$
\begin{equation*}
\gamma_{T S}=\sqrt{\frac{3}{8}}\left[\frac{(4 \pi)^{2} L \beta V_{v}^{2}}{G k^{2}}\right]^{1 / 3} \tag{7-3}
\end{equation*}
$$

It is shown in the following paragrephs that the optimum design depends on yaw oscillation wavelength, launching technique, and error source magnitude. In order that these items may be evaluated, these paragraphs present more detailed discussion of the errors and the means of computing dispersion under varying conditions.

7-4 PRELAUNCH ERRORS

When preparing to launch a recket at a specified target, we must first establish the launch
angle in the vertical plane ($Q E$) and the azimuth angle under standard conditions. The term standard here applies to the flight that exis's under arbitrarily choser meteorological, positional, and material conditions. Corrections must then be made to this standard aiming for variations of the conditions existing for a given flight from the standard. Both the standard aiming and the corrections are generally obtained from a firing table which is a cate'og of standard trajectories and corrections for nonstandard conditions. For example, the usual rocket firing table includes the following:
a. Pertinent data for the standard trajecteries of the rocket.
b. Corrections to the standard aiming to compensate for rotation of the earth.
c. Corrections to the standard launch elevation $(Q E)$ to compensate for variation in propeliant temperature, uninhibited propellant weight; atmosphoric pressure, density and temperature; inert weight, and wind.
d. Corrections to the standard azimuth aiming for wind.

7.4.1 AIMIMG ERRORS

Aiming errors may exist due to any combination of the following:
a. Incorrect determination of the standand aiming from the firing table.
b. Error in positioning of the launcher.
c. Incorrect determination of the corrections to be applied for the nonstandard flight.
These errors, while due to differeni causes, all result in a physical displacement of the launcher from that position required for the rocket to acquire the target. The errors at payload disposition resulting from aiming errors of the launcher are:

$$
\begin{equation*}
\Delta Y .=\Delta \psi_{0} R \tag{7-4}
\end{equation*}
$$

$$
\begin{equation*}
\Delta X=\left.\Delta \theta_{0} \frac{\partial R}{\partial \theta}\right|_{Y=\text { conx }} \tag{7-5}
\end{equation*}
$$

$$
\begin{equation*}
\Delta t=\left.\Delta \theta_{0} \frac{\partial t}{\partial \theta}\right|_{n=\mathrm{cont}} \tag{7-6}
\end{equation*}
$$

Figure 7-10. Aiming Errors

7-4.2 ERRORS DUE TO VARIATIONS IN METEOROLOGICAL CONDITIONS

In making corrections for nonstandard conditions, one assumes a knowledge of the existing nonstandard conditions. Any variation in conditions from the assumed values introciuces an error at the point of warkead disposition. These errors may be treated in the same manner as those described below for the iaunch, propulsive, and ballistic piames.

7.5 CALCULATIONS OF ANGULAR ERRORE

The angular error of a rocket is obtained by solving the differential equations of motion throughout the flight. The equations can be solved with as much generality as desired on an automatic computer. Values are chosen for the error sources and a number of parametric runs are made. The results can then be combined statistically as outlined in par. 7-10.

Figure 7-11. Definitions of Sign Conventions for the Recket Equations of Motion
If we assume missile symmetry about the lon-
 angle approximations are valid--and if we omit gyro effects due to missile roil, then the six-de-groe-of-freedom equations of motion become decoupled in the vertical and horizontal planes. Furthermore, the motion in the two planes is identical except for the gravity terms in ihe vertical plene. (The effect of gravity is equivalent to a bias errur and will not be considered in these equations.) We can then determine the solution
in only one nlane, thus simplifying the prohlem sonsiderably. The equations to be solved then become

$$
\begin{align*}
& \dot{u}=\{G\rfloor-\frac{\rho u^{2}}{2}\left[\frac{C_{D} S}{m}\right] \tag{7-10}\\
& \dot{w}=q u-\frac{\rho u}{2}\left[\frac{C_{N} S}{m}\right]\left(w+w_{Z}\right)+[G] \delta \cos \phi \tag{7-11}\\
& \dot{q}=-u\left[\frac{4 \pi^{2}}{\sigma^{2}}\right]\left\{w+w_{Z}\right. \\
&-\left[\frac{C_{m q} d}{2 C_{N_{\alpha}} l}\right] \tag{7-12}
\end{align*}
$$

$$
\begin{equation*}
\dot{X}=u \tag{7-13}
\end{equation*}
$$

$$
\begin{equation*}
\dot{Z}=w-u \theta \tag{7-14}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\theta}=q \tag{7-15}
\end{equation*}
$$

$$
\begin{gather*}
\dot{\phi}=f(t) \text { (This is specified by the spin } \\
\text { program.) } \tag{7-16}
\end{gather*}
$$

where
$u, w=$ components of the rocket velocity in the directions of the χ_{b} and Z_{b} body axes, $\mathrm{ft} / \mathrm{sec}$
$q, \dot{\phi}=$ components of the zocket angular velocity in the directions about the Y_{b} and X_{b} bedy axes, rad/sec
$\theta=$ rocket pitch angle, rad
$\phi=$ rocket roll angle, rad
$\dot{X}=$ component of the rocket velocity in the slant range dirention, $f t /$ /ees
$\dot{Z}=$ component of the rocket velocity normal to the slant range direction, $\mathrm{ft} / \mathrm{sec}$
$G=$ rocket acceleration due to the thrust, $\mathrm{ft} / \mathrm{sec}^{2}$
S_{D} a aerodynamic drag coefficient, nondimensional
$m=$ rocket mass, slug
$S=$ aerodymamic reference area, ft^{2}
$C_{N_{\alpha}}=$ aerodyriamic normal force gradient, rad-1
$C_{a q}=$ aerodynamic damping moment coefficient, dimensionless
$l_{s}=$ acrodyaamic static suargin, cal
$l_{f}=$ isstance from center of gravity to point of thrust application, it
$d=$ reference body diameter, ft
$k=$ ruciet radius of gyration, ft
$\delta=$ thrust malalignment angle, rad
$\delta_{\boldsymbol{F}}=$ aerodynamic malalignment angie, rad
$w_{z}=$ component of wind in direction of the Z_{6} body axis, $\mathrm{ft} / \mathrm{sec}$
$\sigma=$ wavelength of yaw, ft
$\rho=$ atmospheric density, slug $/ \mathrm{ft}^{\mathrm{z}}$
$X_{b}, Y_{b}, Z_{b}=$ body-fixed axes with origin at the center of gravity and X_{b} along the missile axis
The six expressions in brackets compleiely specify all the rocket characteristics needed to calculate its motion. Therefore, if the rocket motion is tabulated for variations in each of the six expressions, the results will be applicable to any configuration for which these parameters are known.

Examination of the solutions of the above equations for typical rocket systems indicates that only a relatively few parameters have first-order effects on the angular dispersion. These are the rocket acceleration G, the wavelength of yaw σ, the nondimensional launcher length P, and the burning distance S.

For the equations above, the launcher affects the motion of the rocket through the initial conditions. For convenience, we shall use a nondimensional expression for the launcher length:

$$
P=\frac{\text { launcher length }}{\sigma}
$$

The effect of launcher length, then, is represented by an initial value of velocity;

$$
\begin{equation*}
u_{p}=\sqrt{2 P} G \sigma \tag{7-17}
\end{equation*}
$$

where $u_{p}=$ velocity in $\mathrm{ft} / \mathrm{sec}$ at the end of the launcher.

These equations can now be solved on an analog or digital computer and the dispersion at the end of flighi determined for any given error source.

AMCP 706 -280

A more informative approach for the designer is to consider each phase separately and identify the major contributors to the latent error.* In sack fligh; phase aifferent forces preaminate; therefore. the irnportant purameters change. In the following subparagraphs the important parameters for each phase will be discussed.

Considering the errors in each flight phase separately has two advantages: (1) the equations can he simplified by including only the forces that predominate during the phase, and (2) the simplified equations can be manipuluted to provide analytical solutions. The availability of aualytical whutions is of great benefit to the adesigner because the important variables or tombinations of variables that determine the angular error can be earily sdentified. These results can then be sombined with computer calculations that provide the required accuracy.
Analytical results have been prepared wherever pomible and have been plotted with computer issulis in-iniusirave their accuracy.
The criterion chosen for determining the accuracy of a rocket sygtem during the launch and propulsive phases is the dispersion at warhead event. The effects of various errors and the effectivenesa of several dispersion xeduction tech niques will be considered in terms of the steadyatate flight path angular error. This representation alkiws rapid evaluation of the accuracy of the rocket without resorting to the complex methods of axcounting for ballistic phase errors presented in par. 7-9.
The ro:ket equations were solved, using an automatic computer, for the burning phase of flight. The angular dispersion at the end of the boost phase is approximated by the following expreation:

$$
\begin{equation*}
\gamma_{\tau S}=\theta-\frac{v}{u}+\frac{q k^{2}}{u l_{z}}-\frac{\rho S d C_{n q}}{4 m u l_{s}}\left(w+w_{z}\right) \tag{7-18}
\end{equation*}
$$

where the values of θ, w, u, q and the aerodynamic parameters are those at burnout. $\gamma_{T S}$ is determined by computing $\left.\lim _{t \rightarrow \infty} \frac{X}{2}\right|_{u}$ which is the

[^3]steady state, post-boost angular dispersion of the direction of the velocity. Iaus, for calculating the effect of the hoost phase on cispersion at warhead event, $\gamma_{\mathbb{S}}$ may be treated as an aiming error. The missile is assumed to be launched with the initial condutions taken from booster burnout.

7.6 LAUNCH PHASE ERRORS

During the launching process the rocket is deflected from its intended path by motion of the launcher and motion caused by the release of the launcher constraints. The results are conditions undesirable at the beginning of the propulsion phase. These conditions are separated into three modes of motion: (1) initial angular velocity about a lateral axis, (2) initiai translational velocity normal to the launcher axis, and (3) angular velocity resulting from rocket dynamic unbalance when some form of spin on the launcher is used. Subparagraphs 7-6.1 through 7-6.3 present the angular dispersion at flight termination caused by these initial conditions.

7.5.1 ANGULAR VELOCITY

Figs. 7-12 (A), (B), (C) show the angular dispersion caused by an initial angular velocity of 100 mils per sec. The launcher length, the wavelength of yaw, and acceleration have substantial effects on the dispersion. The dispersion is minimized by increasing the launcher length and the rocket acceleration while keeping the aerodynamic stability as high as possible, i.e., 2 small value of σ.

7-6.2 TRANSLATIONAL VELDCITY

Figs. 7-13 (A), (B), (C) show the effect of an initial translational velocity of 1 ft per sec, normal io the launcher line, on the angular dispersion. The lau:cher length does not significantly affect the dispersion. An increase in the wavelength of yaw has a beneficial effect that is significant for rockets with high aerodynamic stability. Increasing the rocket acceleration causes a decrease in the dispersion for all cases consideryd.

Figure 7-12(C). Angular Dispersion Due to Mallauach - Initial Angular Rate

Figure 7-13(A). Argular Dispersion Due to Mallaunch - Initial Translational Velocity

Figure 7-13(B). Angular Disparsion Due to Mallaunch - Initial Translational Velocity

Figure 7-i3(C). Angular Dispersion Due to Mallaunch - Initial Translational Velocity
WAVEL.ENGTH OF YAW $\sigma, 100$ FEET

AMCP 708-280

The angular dispersion due to initial translational velocity is minimized by making the rocket acceleration as high as possible and the aerodynamic stability low.

76.3 DYNAMIC UNBALANCE

Dynamic unbalance is caused by spinning the rocke? about its ge metric longitudinal axis rather than its principal axis of inertia. When the rocket is sipun on the launcher, release of the launcher constraints will result in a motior. chaiacteristic of the force-free precession of a rigid body unless the rocket is spinning about its principal axis of inertia (i.e., its dynamic axis). The dynamic unbalance effect limits the spin rate that can be used to reduce thrust malalignment effects.
The precescion motion is, for all practical purposes, an angular velocity at launch. The magnitude of this initial angular velocity is:

$$
q_{\text {equiv }}=p t
$$

where:
$p=$ rocket spin rate, rad/sec
$q_{\text {equiv }}=$ equivalent initial angular rate due to dynamic unkalance, rad/sec
e $=$ angle between the rocket longitudinal and p-incipal axes, rad
Afier determining the equivalent angular velocity, Figs. 7-12, 7-13, and 7-14 can be used to, determine the angular dispersion.
The dispersion due to dynamic unbalance is minimized by incrasing the launcher length and the rocket acceleration while maintaining a high level of aerodynamic stability. In addition, the dynamic unbalance rangle e should be kept as amall as possible by careiul design and care in manufacturing. The spin rate should be kept as low as possible after considering the requirenent for seducing the dispersion due to thrust malalignment.
Par. 7-7.2.6 describes how the effect of dynamic unbalances at launch can be reduced by a unique inuncher design.

7-7 PROPULSION PHASE ERRURS

Angular errors which originate during the propulaion phase of flight are primarily caused by
wind normal to the direction of flight, and thrust malalignment. A qualitative description of the effect of wind and thrust malalignment was given in par. 7-3. This paragraph presents some quantitative results which describe the effects of the important rocke': parameters on the angular dispersion caused by the same two error sources, wind and thrust malalignment. These results can be used for preliminary accuracy estimates.

Par. 7-ड showed how spinning the rocket about its longitudinal axis will reduce dispersion caused by body-fixed error sources such as thrust malalignment. The major portion of this paragraph is devoted to describing the effectiveness of several spin programs developed to minimize the angular error due to body-fixed error sources In most applications, the choice of a spin technique is heavily influenced by the difficulty of mechanically implementing it. Therefore, while several of the methods presented here result in near-zero dispersion, complexity of the devires needed to carry out the spin program limit its use to systems where high accuracy requirements justify extreme measures.

7-7.1 NONROTATING ROCKET

Figs. 7-14 (A), (B), (C) and 7-15 (A), (B), (C) show the angular error caused by a 10 ft per sec wind normal to the flight path of the rociset and by a 0.5 -mil thrust malelignment on a nonrotating rocket.
Since the wind force on a symmetric rocket does not depend on the roll erientation, spin tioes not affect the dispersion due to wind. Therefore, Figs. 7-14 (A), (B), (C) are applicable io any rocket system.
As was pointed out in par. 7-3, the angular dispersion due to wind is minimized by keeping the aerodynamic stability as low as possible. The figures indicate that liauncher length has very little eifect on the wind dispersion. The rocket acceleration should be large.
The dispersion due to thrust malalignment is minimized by keeping the aerodynamic stability us high as possible. The effect of acceleration is most significant for rockets with low stability. The angular dispersion increases with incretsing acceleration. The effect of launcher length is significant under all conditions-a long launcher is desirable.

AMCP 700-220

Figurs 7-15(A). Angular Dispersion Due to Thrust Malalignment - Zero Spin

Figure 7-15(B). Angular Dispersi4,i Due to Thrus: Malalignment - Zero Spin

Figure 7.15(C). Angular Dispersion Due to Thrust Malalignment - Zero Spin

WAVELENGTH OF YAW $\sigma, 100$ FEET
Figure 7-17(C). Constant Spin

7-7.2.2 Constant Spin Acceleration

The dispersion reduction technique which is probably the easiest to implement is the constant spin acceleration. This can be achieved by canting the nuzzies of the rocket moturs (if more than one motor is used) or by placing fins in the rocket exhaust. Unfortunately, due to the slow initial spin, the technique is not as effective as the constant spin.
Figs. 7-18 (A), (B), (C) present the effects of the rocket variables on the dispersion reduction factor for constant spin acceleration. The most significant variable is the wavelength of yaw. The wavelength should be long to minimize the dispersion.

7-7.2.3 Slowly Uniformly Decreassing Spin (SUDS)

The preceding spin programs always result in some finite dispersion. According to the mathematical theory of rocket flight (see Reference 6), it is possible to devise spin programs which re-
sult in zero angular dispersion. One such program is that of a Slowly Uniformly Lecreasing Spin (SUDS); another is the Spin-Buck program.

The SUDS program begins with a constant spin which is followed by a constant deceleration. The initial spin rate and the value of the decelerathon ate functions of the rocket parameters. The angular error is very sensitive to changes in the spin rate or the deceleration. For this reason it is not possible to achieve zero dispersion in practice. Also, the limitations of the rocket theory make the zero dispersion result invalid. Figs. 7-19 (A), (B), (C) present the dispersion redurtion for SUDS when the assumptions of the rocket theury are removed.

7-7.2.4 Spin-Buck

The Spin-Buck program is an attempt to elimınate the angular dispersion caused by thrust malalignment by reversing the spin direction of the rocket. By this reversal, the errur accumulated prior to the reversal should be cancelled by the
ARMCP 766-880
(
Figure 7-18(C). Constant Spin Acceleration

Figure 7.19(A). Slowly Uniformly Decreasing Spin (SUD:

Figure 7:19(B). Slowly Uniformly Decreasing Spin (SUDS)

Figure 7-19(C). Slowly Unifo:mli; Decreasing Spin (SUDS)

Figue 7.20. Effoct of Wavslength of Yaw on Eicek Distence for Zero Angular Dispersion

From a practical standpoini, one shortcoming of shis onncent is the hagh sencitivity of the dis persion reduction factor to errors in the rotation distance. Fig. $7-21$ indicates that, for a rocket acceleration of 40 g 's, an error in rotat:on or buck distance of 7 percent produces a 40 -percent change in the dispersion reduction tactor.

The Spin Burk program is aciomplished by firing two banls of spin rockets, one sollowing the other and in opposing direstions. The nei resui: is sumilar to the adealized case discussed abre. A small restdual soin is allowed, to re-7-2:
duce the effect of any error related to maccuracies in the system.
Field tests of the Spin-Buck program indıcate that a dispersion reduction factor of 0.1 is possible

7.7.2.5 Prespin Automatic Dynamic Aliz. \cdot ment (PADA)

The FAIA concept for dispersion reduction differs from those discussed above m that it is not simply a method of spinning the rocket to reduce the effect of thrust malahignmer., but incorporates a novel launcher design to zeduce errors due to mallaunch, thrust malalignment, and dynamic unbalance. Par. 7-3.2.2 pointed out that control of these errors allows the aerodynamic stability requirement to be reduced. This control also results in a decrease in the rocket's wind sensitivity.

Development of the PADA launcher evo'ved from. the desire to launch a rocket with an initial spin rate. The probiem of bulky launchers, which developed in past attempts at launching spinning rockets, was eliminated by mounting the launching shoes on rings atiached to the rocket by bearings. The dynamic unbalance effect-which normally limits the maximum srin rate (par. 7-7. 2.1)-has been overcome by a spring suspension system, designed so that natural frequency of transverse angular motion of the rocket on the ?auncher is considerably less than the rocket spin frequency. The result is that the recket dynamic axis aligns itself with the spin axis. Theoretically (Reference 8), PADA launchers can be constructed that will reduce the effect of dynamic unbalance by more than 90 percent, and possibly even by as much as 99 percent.

7.7.2.6 Variable Acceleration

The final dispersion reduction technsqu: is unusual in that it does not uthlize spin of any kind. Instead, the dispersion reduction is accomplished by changing the acceleration history of the rocket. This can be done with a throttleable rooket motor or with a combination of rocket motors. The example we shall consider bere 13 a rocket with two levels of acceteration. The thrust level is assumed to vary instanta:e, rusly at the same point in the flught (Reference 9).

TOTAL DRAG VECTIOR

Figure 7.22. Action of Winds on a Free Rocket
in addition to dispersion of the flight path, errors associated with fuzing the warhead must also be considered.

7-8.2.1 Errors Due to Winds

The action of winds on a free rocket in its ballistic phase (Figure 7-22) generatc.; three perturbing forces that affect the missile trajectory:
a. Change in Drag Magnitude. Bollistic wind will cause a change in air speed and, consequently, in dynamic pressure and drag force magnitude. This effect will usually be negligible.
b. Lift Ferces. A change in wind velocity normal to the ballistic flight path will cause an angle of attack, ard consequently, the develop-
ment of a lift force. Since this is a tronsient effect, it is usually very small.
c. Change in Drag Direction. In its steady state response to a normal wind. a stable mussile wili be oriented at some angle with respect to is zero-wind flight nath Since the totel drag ferce vector still lies aloraz the missile axis, it will cause an acceleration in the downwind direction until the missile dispersion velocity reaches the wind velocity. This is the predominant force causing tallistic wind error. Since high-altitude winds can reach high velocity-e.g., the jet stream-an attempt is frequently mede to compensate for the winds $: n$ the aiming process. This can be accomplished by use of data from firing tables, weather balloons, etc.

7-8.2.2 Change in Drag

A projectule will seldom heve an actual drag history exactly the same as the one used in the calculation of the ideaiized trajectory. Inaccuracies inherent in the methods of determining drag-as well as inaccuracies resulting frcm manufacturing errors atd damage in handling-are typical causes of these drag deviations. Therefore, the effect of changes in the ballistic coeffirient C must be considered as a source of dispersion.

7-8.2.3 Nonstandard Conditions

A departure from nonstandard atmospheric conditions will also be considered. This effect is equivalent to a change in drag.

7-8.2.4 Malalignment of Firis

Projectiles with fins that have become malaligned or bent due to careless handling or manufaciuring error will cause aerodynamic forces resulting in dispersion. Howe:er, fin malalignment will also cause a slow spin which tends to reduce the effect of the error (Reference 1, p. 60).

7-8.2.5 Static Unbalance

Mianufacturing tolerances usually result in the projectile center of gravity being located of the longitudinal axis. The aerodynamic forces will then produce a moment resulting in an angle of attack. The dispersion due to static unbalance can be reduced by a slow spin.

7-8.2.6 Dynamic Unbalance

Manufacturng tolerances plus the unavodable unsymmetric placement of small components or uncven propellant-burning will resulk in the inertial spin axis being displaced from the projuctule centerline. Therefore, if spin is used to reduce wher sources of dispersion, error will be introduced due to dynamic unbalance. Fortunately this effect can ussally be kept small by careful design and manufacturing cuntrol so that the conflictıng requirements can be sáisfied without introducing a significant amount of dispersion.

7-8.2.7 Curvature of the Trajectory

The trajectury of the projectile during the balhastic phase will app-iximate a parabolic arc An aerodynamically stable vehicle will attempt to keep its axus aligned with the flight path. However, the inherent resistance of the body to rotation (aerodynamic damping) will cause the projectule axis to lag behind the changing flight path direction. This phenomenon is called the yaw of repose (Reference 1, p. 58), which causes a small dispersion unaffected by spin.

7-8.2.8 Fuzing Errors

a. Impact Fuzing: With impact fuzing (a special case of altitude fuzing), the errors are those associated with the dispersion of the trajectory. There are no errors introduced by the fuzing technique itself.
b. Time Fuziig: With tune fuzing, variation in fuze action time introduces errors in addition to those associated with the dispersion of the trajectory. The result will be additional range and altitude dispersions of the warhead at the time of detonation.

7-8.3 CALCULATION OF DISPERSION

The preceding paragraphs have presenteu methods that can be used to determune the condition of the rocket at motor burnout. The dispersion at burnout associated with the launch and propulsion phases has been given. With the burrout conditions as inputs, the graphs in this paragrojh determine the dispersion of the rocket at warhead event. In addition to the launch and propulsion errors, the crrors associated with the ballistic phase are introduced. The final results are the disporsions of the reelet at wanhend event, caumed by the error sources throughout the fligit. For the purpose of this handbook only those bailistic phase errors which have the greatest influence on the accuracy have been included. These errors have been taken to be (1) change in atmospheric denstty, (2) change in the ballistic coefficient, and (3) ballistic wind.

The graphs in tuis paragraph give the changes in range and deflection for unit changes in the several rocket variables. The plotted data are

TABLE 7-1. ERRO'R BUDGET FOR INDIRECT FIRE ROCKET WITH IMPACT FUZE

LAUNCH QUADRANT ELEVATION 45 DEGREES

Source	One Sigma Magnitude	$\begin{gathered} \Delta Y, \\ \text { meters } \end{gathered}$	\pm, meters	$\begin{aligned} & \Delta Y_{1} \\ & \text { mils } \end{aligned}$	Δn, mils
I. Launch Errors					
A. Melaim	0.5 mil	14.2	0	0.5	0
B. Mallaunch					
a. Translation	1.0 ft sec	-71.0	0	-2.50	0
b. Rotation	$q=10.0 \mathrm{ft} \mathrm{sec}$	55.6	0	1.95	0
c. Dynamic Unbalance	1.0 mil	55.6	0	1.95	0

II. Propulsive Errors
A. Wind
B. Thrust Malalignment
C. Impulse
$3.9 \mathrm{ft} / \mathrm{sec}$
1.0 mil
$2.0{ }^{c} /$

222.0	0	7.80	0
182.0	0	6.40	0
0	76.0	0	2.67

III. Ballistic Errors

A.	Density	1.0%	0	222.0	0	7.80
B.	Ballistic Wind	$8.1 \mathrm{ft}, \mathrm{sec}$	117.0	148.0	4.11	5.20
C.	Ballistic Coefficient	1.0%	0	222.0	0	7.80

the results of nume:ous digital computer calculations. The graphs are used by determining the nominal quadrant elevation and range, which in iurn are used to establish the unit effects. The example calculations in pars. 7-8.3.1 thitough 7-8.3.4 illustrate how the dispersion at warhead event is calculated and tabulated into an error budget, used in the further calculation of probable error components (see par. 7-19).
Given: Indirect fire rocket with impact fuze and constant spin; ballistic coefficient $C=$ $\frac{\#_{B O}}{i d^{2}}=4.0$; range at quadrant elevation for maximum range $=28.5 \mathrm{~km}$; wavelength of yaw $\sigma=510 \mathrm{ft}$; specific
impulse $I_{s p}=250 \mathrm{sec} ;$ mass ratio $r_{B}=$ 1.4; $G=48.0 \mathrm{~g}$; quadrant elevation $Q E$ $=4.5 \mathrm{deg}$ nondimensional launcher length $P=0.0$. Typical one-sigma values assumed for the errors are as listed in Table 7-1.
Find: The dispessiuns at warhead event.
Solution: See calculations which follow.

7-8.3.1 Launch Errors

7-8.3.1.1 Malaim

Malaim errors will result in the impaci puint being deflected off to the side of the desired im-
pact. If the malaim error $\Delta \psi$ is 0.5 mil , the
error will be

$$
\begin{aligned}
& \Delta Y=(\Delta \psi) R \\
& \Delta Y=0.5 \mathrm{mil}\left(\frac{\mathrm{rad}}{1000 \mathrm{mils}}\right) 28.500 \mathrm{~m} \\
& \Delta Y=14.23 \mathrm{~m}
\end{aligned}
$$

With a ballistic coefficient C of 4.0, a maximum range R of $28,500 \mathrm{~m}$ and with the use of Fig. 7-23,
 By use of Fig. 7-24(B) in conjunction with the above information, the ratio of a percent change in_{1} range per change in departure angle is determined. In this example, the range we are interested in is the maximum value. Thus, the ratio. of range desired to maximum range is unity. As seen in Fig. 7-24(B), the partial derivative $-\frac{\partial R}{\partial \hat{\theta}}$ is zero; thus, an error in malaim results in a negligible error in range for maximum range.路

Figure 7-23. Initial Velocity Versus Maximum Range

7-8.3.1.2 Mallaunch

A translational error of 1.0 fps will result in an angular dispersion, $\gamma_{\text {is }}$, of -2.5 mils as obtained from Fig. 7-13(A). If the same formula is used as in par. 7-8.3.1.1 above, the error in deflection becomes

$$
\begin{aligned}
\Delta Y & =\left(\frac{-2.5}{1000}\right) 28,500 \\
\Delta Y & =-71 . m
\end{aligned}
$$

The ilange in range as the result of a mallaunch is zero for the same reason as presented above. A rotation error q of $10 \mathrm{mil} / \mathrm{sec}$ will result in an anguiar dispersion, as found in Fig. 7-12(A), of

$$
\gamma_{\mathcal{T S}}=19.5 \mathrm{mils}\left(\frac{10 \mathrm{mil} / \mathrm{sec}}{100 \mathrm{ail/sec})}\right)
$$

$$
\gamma_{T \mathcal{T S}}=1.95 \mathrm{mils}
$$

This assumes that the angular dispersion, as a function of G and σ, is affected lineariy by rotation rate q.

$$
\begin{aligned}
& \Delta Y=\left(\frac{1.95}{1000}\right) 28,500 \\
& \Delta Y=55.6 \mathrm{~m} \\
& \Delta R=0
\end{aligned}
$$

For a dynamic unbalance error of 1.0 mil with a spin rate of $10 \mathrm{rad} / \mathrm{sec}$

$$
q=P_{t}=10(1)=10 \mathrm{mzl} / \mathrm{sec}
$$

From Fig. 7-12

$$
\begin{aligned}
& \gamma_{T S}=1.95 \mathrm{mils} \\
& \Delta Y=\left(\frac{1.95}{1000}\right) 28,500 \\
& \Delta Y=55.6 \mathrm{~m} \\
& \Delta i=0
\end{aligned}
$$

7-8.3.2 Propulsion Errors

7.8.32.1 Wind

With a wind error of 3.9 fps , and the use of Fig. 7-14(A), the angular dispersion is

$$
\begin{aligned}
& \gamma_{T S}=20\left(\frac{3.9}{10}\right)=7.8 \mathrm{mil} \\
& \Delta Y=\left(\frac{7.8}{1000}\right) 28,500 \\
& \Delta Y=222 \mathrm{~m} \\
& \dot{\Delta i}=0
\end{aligned}
$$

7-8.3.2.2 Thrust Malalignmeni

The spinning of the vehicle is an attempt to minimize the thrust malalignment error. Fig. $7-17(\lambda)$ gives a dispersion reduction factor β :

$$
\beta=0.16\left(\frac{1}{0.5}\right)=0.32
$$

Fig. 7-15(A) gives the angular dispersion

$$
\begin{aligned}
& \gamma_{T S}=20 \mathrm{mz} \mathrm{l} \\
& \Delta Y=A_{Y} R \\
& \Delta Y=0.32\left(\frac{20}{1000}\right) 28,500 \\
& \Delta Y=182 \mathrm{~m} \\
& \Delta R=0
\end{aligned}
$$

7-8.3.2.3 Impulse Väriation

From Fig. 4-8, if we generate a plot of $I_{s p}$ versus burnout velocity for a constant booster-mass-ratio and calculate

$$
\frac{\Delta V_{B}}{\Delta I_{\mathrm{sp}}}=9.1
$$

For an impulse error of 2 percent

$$
\begin{aligned}
\Delta V_{B} & =9.1 \Delta I_{s p} \\
\Delta I_{s p} & =0.02 I_{s p} \\
\Delta V_{B} & =9.1\left(0.02 I_{s p}\right) \\
& =0.182(250) \mathrm{ft} / \mathrm{sec} \\
\Delta V_{B} & =45.5 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

From Fig. 7-25(B)

$$
\begin{aligned}
& \frac{\partial R}{\partial V}=1.67 \\
& \Delta R=(157)(45.5) \\
& \Delta R=76 \mathrm{~m} \\
& \Delta Y=0
\end{aligned}
$$

7-8.3.3 Ballistic Errors

7-8.3.3.1 Dansity
The dersity error is 1.0 percent.
From fig. 7-2i'E)

$$
\frac{\partial R}{\partial g}=0.78
$$

$$
\begin{aligned}
& \% \Delta R=1 \%(0.78)=0.0078 \\
& \Delta R=0.0078(28,500) \\
& \Delta R=222 \mathrm{~m} \\
& \Delta Y=0
\end{aligned}
$$

7-8.3.3.2 Ballistic Wind

The ballistic wind error is 0.1 fps.
From Fig. 7-27(B)

$$
\begin{aligned}
\frac{\partial K}{\partial V_{V}} & =0.064 \frac{\%}{f p s} \\
\% \Delta R & =0.064 \quad(9.1) \\
& =0.519 \% \simeq 0.0052 \\
\Delta R & =0.0052 \quad(28,500) \\
\Delta R & =148 \mathrm{~m}
\end{aligned}
$$

From Fig. 7-28(B)

$$
\begin{aligned}
\frac{\partial Y}{\partial V_{\psi}} & =0.05 \frac{\%}{f p s} \\
\% \Delta Y & =0.05(8.1) \\
& =0.405 \% \simeq 0.0041 \\
\Delta Y & =0.0041(28,500) \\
\Delta Y & =117 \mathrm{~m}
\end{aligned}
$$

T-8.3.3.3 Ballistic Coefficient

The bailistic cetefinient error is 1.0 percent.
This error is estimated as if it were an error in density. Thus, from Fig. $\overline{\mathrm{x}}-\overline{\mathrm{E}} \hat{\mathrm{b}}$ ($\overline{\mathrm{B}})$

$$
\begin{aligned}
& \frac{\partial R}{\partial C}=0.78 \\
& \% \Delta R=1 \%(0.78)=0.78 \%=0.0078 \\
& \Delta R=0.0078(23.500) \\
& \Delta R=222 \mathrm{~m} \\
& \Delta Y=0
\end{aligned}
$$

7-8.3.4 Tabulation of Results

The results of the above calculations are tabulated in Table 7-1.

7-8.3.5 Additional Reference Grapis

The sample calculations above have all dealt with a rocket armed with an impact fuze. Figs. 7-29 and 7-30 give additional reference data for this type of rocket, and Figs. 7-31 through 7-41 give similar reference data for a rocket with a time fuze.

7-9 STATISTICAL METHODS

Up to this point, this chapter has been concerned with identifying the sources of error in a rocket system and determining the effect of each error source on the dispersion of the rocket at warhead event. We shall now consider how to use this information to determine the probability of hitting a given target with a rocket system subject no known error sources. More precisely, the problem is find the radius of the circle within which one-half of all the rockets will impact.
Since the error sources are statistical in nature, we can only speak in terms of expected values and probabilities, and it will be necessary to separate the error sources according to their statistical nature. Let us first summarize the basic concepts of statistical analysis used to determine the accuracy of rocket systems. We shall then apply these concepts to determine the circular probable error CPE for the example problem of par. 7-8.3. The following definitions are useful:
a. Fixed Bias Errors. Let us assume that, because of a manufacturing error, the sight for a particular rocket launcher is malaingned with the launcher rail. This will result in a center of impact that is not in line with the intended direction as established by the sight. This +ype of error is called a fixed bias error. We shall not consider fixed bias exrors further brcause we may assume that they can always lee discovered, and compensated for, by systematic tests.
b. Random Bias Errors. Errors which exist for a specific set of shots fixed at the same ele-

vation and deflection setting-such as the misreading of an unchanging wind or the missetting of the quadrant elevation angle-are called random bias exrors. Methods will be described for computation of these errors; however, in the uescription of dispersion, the errors will not be considered since, when prior knowledge of these disturbances exists, correction can be made through such metheds as prelaunch computation and aiming.
c. Randiom Errors. The computation of these errors is the main topic of pars. 7-4 through 7-8. These errors are due to thruit malalignment, weight variations, maiaim, incomplete compensation for random bias errors, and many other causes.
The remainder of this chapter is concerned with detarmining the CPE from a knowledge of the random errors.

7-9.1 MEASURES DF DISPERSION FOR ONE ERROR SQURCE

In reducing sample dispersion data to determine the accuracy of a missile system, we must show how the values are distributed about their center of impact. This discussion will include procedures used to compute these measures of dispersion in one- and two-dimersional distributions.
The most common measures of dispersion for one-dimensional distribution are the variance, standard deviation, and probable error.

7.9.1.1 Vaziance

The variance σ^{2} of a population (the whole class about whici conchasions are to be made) is defined as the average of the squares of the distances from the universe mean. If a sample of N values is drawn from a mpoulation, with mean μ, the variance of the population is estimated by the equation

$$
V=\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{N}
$$

where x_{i} are the sample values.

Generally, μ is not known, and an estimated mean \bar{x} of the sample values must be used. If \bar{x} is substituted for μ, V becomes a biased estimator of the variance. (Reference 17, pp. 31-32) This bias can be corrected by using ($N-1$) instead of N. The unbiased estimator s^{2} of the population variance then becomes

$$
\begin{equation*}
\therefore^{2}=\frac{\sum_{i=1}^{N}\left(x_{2}-\bar{x}\right)^{2}}{N-1} \tag{7-20}
\end{equation*}
$$

7-9.1.2 Siandard Deviation

The standard deviation σ is the most important measure of dispersion. The standard deviation is the deviation from the mean value μ of a set of random values such that approximaiely 68 percent of the values are between μ minus σ and μ plus σ. It is a more anderstandable measure of dispersion than the variance, because the standard deviation is the square root of the variance and, therefore, has the same dimensions as the variable. The siandard deviation is estimated from a sample of size N by the equation

$$
\begin{equation*}
s=\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2} \tag{7-21}
\end{equation*}
$$

where s is the estimator of σ. Computation can be simplified by the algebraicaliy equivalent form

$$
\begin{equation*}
s=\frac{1}{N(N-1)}\left[N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x^{N}\right)^{2}\right]^{1 / 2} \tag{7-22}
\end{equation*}
$$

7-9.1.3 Probable Error

The probable error PE is the deviation from the mean μ such that 50 percent of the sbservations are expected to lie between μ minus the probable error and μ plas the probable error It can be found from a percentage of the normal distribution table (Reference 29. p. 230), that the

AMC: 706-280

Figa. 7-42 and 7-43 can be used. Their use will be deycribed in par. 7-9.3.

7-9.2 MEASURES OF DISPERSION FOR SEVERAL ERROR SOURCES

The measures of dispersion previously discussed are used when the erro:e are from one source. For the total error resulting from several independent error sources, the root-sumsquare (vector sum) method is used. The total error is determined by squaring the errors from each source and then summing them. The squar roo: of this summation is the total error. (Reference $15, \mathrm{p}$. 201.) in equation form

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{N}^{2}} \tag{7-31}
\end{equation*}
$$

For a two-dimensional distribution, the total errr in each dimension must be found ard the aver.ge of the two taken to obtain the total error for the system

$$
\begin{gather*}
(\sigma,)_{t o t}=\sqrt{\sigma_{x 1}^{2}+\sigma_{x 2}^{2}+\cdots+\sigma_{x N}^{2}} \\
\vdots \quad\left(\sigma_{y}\right)_{t o t}=\sqrt{\sigma_{y y}^{2}+\sigma_{y 2}^{2}+\cdots+\sigma_{y N}^{2}} \tag{7-32}\\
\vdots \sigma_{y y}=\frac{\left(\sigma_{x}\right)_{t o t}+\left(\sigma_{y}\right)_{t o t}}{2}
\end{gather*}
$$

The CPE is then found by the equation

$$
\begin{equation*}
C P E=1.1774 \sigma_{s y s} \tag{7-35}
\end{equation*}
$$

This method is used extensively in the research and development phase of a missile system. The CPE required in order for the missile system to mant its avera! accuracy requirement is found. The average (one-sigma) errors of each of the independent error sources are found by testing each of these componen's. By simulation, the effects of these one-sigme values on the range and deflection of the nissile at the impact poini are found. These errors in range and deflection are then combined by the root-sum-square method to get the total error for the system. The CFE is computed and compared with the required CPE. If this computed CPE does not meet the 1.34
requirements, some or all of the components that contribute to the total error m.ust be improved. In this manrer, the best design of the missile components can be determined.

Figs. 7-42 and $1-43$ can be used to estimate the CPE of an elliptical distribution.

7-9.3 USE OF FIGS. 7-42 AND 7-43

Figs. 7-42 and 7-43 provide a more accurate estimate of the circular proable error for an elliptical distribution. The value of K in the equation

$$
\begin{equation*}
C P E=K) \times(\text { Standard Deviction }) \tag{7-36}
\end{equation*}
$$

can be more accurately determined. The value 11774 is the standard value used for K, tiat this value is correct only when the horizontal and vertical standard deviations are equel:

$$
\sigma_{x}=\sigma_{y} .
$$

The major difference between Figs. 7-42 and $7-43$ is that Fig $7-42$ uses the aveange of the stendard deviation in the horizontal and vertical position for the computation of the CPE while Fig. 7-43 uses the larger of the two standard deviations, i.e.:

$$
\begin{gather*}
C P E=K\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right) \text { (Fig. 7-42) } \tag{7-37}\\
C P E=K \sigma_{\text {aax }} \text { (Fig. 7-43) } \tag{7-38}
\end{gather*}
$$

For Fig. 7-42, the smaller of tir two standard deviations is divided by the larger. 'The ratio is then read on the horizontal axis and extended to the curve. The vertica! value of this point on the curve is the value of X in Eq. 7-37.
For Fig. 7-43, the miniryum value of the tw, siandard ueviatioñs is divided by the maximum and the ratio is the vertical value on the curve. This point on the curve is the value of h in Eq. 7-38.

7-10 COMPUTATION OF ACCURACY

Using the results of the example dispersion calculation which are presented in Table i-1, one can determune the probable errurs in range and
deflection as well as the CPE. The example calculation considers only one quadrant elevation. The change in tbe accuracy of a rocket system with range is very important since a variation in target range is to be expected.

7-10.1 RANGE PROBABLE ERROR (RPE!

The values given in Table 7-1 are one-sigma dispersions. Therefore, using the formula from par. 7-9.2

$$
\begin{gathered}
\sigma_{\text {RACE }}=\sigma_{\text {ITTAL }} \\
=\sqrt{(2.67)^{2}+(7.8 C)^{2}+\left(5 . \frac{2}{}\right)^{2}+(7.80)^{2}} \\
=12.5 \mathrm{mils}
\end{gathered}
$$

From par. 7-9.1.3, range probable error

$$
\begin{gathered}
\text { RDE }=0.674\left(\sigma_{\text {PANCE }}\right) \\
=0.674(12.5)=8.42 \mathrm{mils}
\end{gathered}
$$

Fig. $7-44$ indicates the variation of RPF with rasge for a typical free rocket with an impa t fuze.

7-10.2 DEFLECTION PROBABLE ERROR (DPE)
Again from Table 7-1

$$
\sigma_{\text {DEFLLECTIOW }}=\sigma_{D_{\text {TOTAL }}}
$$

$=\left[(0.5)^{2}+(2.50)^{2}+(1.95)^{2}\right.$
$\left.+(1.95)^{2}+(7.80)^{2}+(6.40)^{2}+(4.11)^{2}\right)^{1 / 2}$
$=11.5 \mathrm{ml} / \mathrm{s}$
Deflection probable error

$$
D P E=(0.674)(11.5)=7.75 \mathrm{mils}
$$

Fig. 7-4E indicates the variation of DPE with range for a typical free racket with impacî iuze.

7-10.3 CIRCULAR PROBABLE ERROR (CPE)

From the results presented in par. 7-9.2

$$
\begin{aligned}
\sigma_{\mathrm{sys}} & =\frac{\sigma_{\mathrm{R}_{\text {TOTAL }}}+\sigma_{\mathrm{D}}{ }_{\text {TOTAL }}}{2} \\
& =\frac{12.5+11.5}{2} \\
& =12.0 \\
C P E & =1.1774 \sigma_{s y s} \\
& =1.1774(12.0) \\
& =14.1 \mathrm{mils}
\end{aligned}
$$

Fig. 7-46 indicates the variation of CPE with range for a typical free rocket with impact fuze.

AMPP 706-280

AMCP 706-280
\longrightarrow

4
AMCP 706.280
I
Figure 7.27(A). Unif Effect, Range/Wind Versus $R / R_{\text {max }}$ - Impact Fuze

,

$-$
$[$

. 9
∞

AMCP 706-280

Figure 7-29(C). QE Versus $R / R_{\text {max }}$ - Impact Fuze

AMCP 703-280

Figure $7-30(\mathrm{C})$. Time of Flight Versus $R / R_{\max }-I_{\text {mpact }}$ Fuze
AMCP 706.280

Figure 7-31(A). QE Versus $R / R_{\text {max }}-$ Time Fuze

AMCP 708-280

AMCP 708-280

Figure 7-37(B). Unit Effact, Deffection/Wind Versus $R / R_{\text {max }}-T_{i m e} F_{\text {ixe }}$

I

AMCP 706.280

AMCP 706-280

Figure 7-40(B). Urit Effect, Ronge/Time Versus $R / R_{\text {max }}$ - Time Fuze

AMCP 700-260

Figura 7-41(C). Unit Effect, Alsifude/Time Versus $R / R_{\text {max }}$ - Time Fuze

Figure 7-43. Cisort for Defermination of Circular Probable Error

Figure 7-44. Variation of Range Probable Error Wish Range - Impoct fiuze

Figure 7-4j. Variation of Dallection Accuracy With Range - Impact Fuze

Figure 7-4\%. Variation of CPE With Pange -
Impact Fuxe

REFERENCES

1. J. B. Rosser, et al, Mathematical Theory of Rocket Flight, McGrsw-Hill, Inc., New York, 1947.

2 L. Davis Jr., et al, E'sterior Ballisticz of Rockets, D. Van Nostrand Co., 1958.
3. R. A. Ra: K_{111}, "The Mathematical Theory of the Motion of Rotaied and Uurotated Rockets", Philosophical Transactions of the Royal Society of London, Series A, No. 837, 241, 467-585, Cambridg: U'niversity Press, London, 1949.

1. F. R. Newton, Spin Programs Which Cause the Dispersion Produced by Thrust Malalignment to Vanish, The University of Tennessee, Knoxville, Tenn., 1855.
2. R. E. Maerker and R. R. Newton, Spin Programs Which Cause Dispersion Prodzaed by Thrust Malalignment to !'unish, Part II, The University of Tennessee, Knoxville, Tenn., 1955.
3. R. R. Newton, Spin Programs Which Cause Dirpersion Produced by Thrust Malalignment to V'anish, Part III, D yartment of Phyaics, Tulane University, New Orleans, Le., 1956.
4. M. W. Hunter, et al. "Some Recent Aerodynamic Techniques in Design of Fin-Stabilized FreeFlight Dissiles for Minimum Dispersion," Journal of the Ieronaxtical Sciences, 571-7 (June 1956).
5. W. C. MeCorkle. Recent Developmirais in High Iccwracy Free Rocket İrapons Systems (U), Carde Report: : AX! 8, Redstone Scientific Information Center, Redstone Arsenal, Ala., April. 1959.
1). R. K. Newton, E:ffeet of Variable Acceleration U'pon the Dispersion of Kin-Stabilized Rochets, Report PH-RR-10, University of Tenti see Department of Physics, Knoxvilie, Tenn., April 1. 1953.
io. ii. S. Burmgton and I. C. May, Jr., Handbook of Probability and Statistics With Tables, Handbook Publishers, Inc. Sandusky, Ohio, 1953.

11 S. S. Chin, Misal Fonfıguration Design, Mc Graw-Hili. Inc., 1961.
12. L Davis, Siatistical Methods in Research and Production, Thard Ed+ion. I'. 'rer, New York. 1961.
13. E. Freud, Modern Elementary Statistacs, Pren-tice-Hall, Sew York, 1952.
1:. E. S. Keeping and J. F. Keeney, Mathematics of Staristics, Vart One, Third Edition, D. Van Wostrand, New York, 1954.
15. G. A. Korn and I. M. Korn, Math matical Handbook for Scientis's and Engeneers, Mc-Graw-Hill, Inc., New York, 1931.
16. F. Mosteller, R. E. F. Rourke, and G. B. Thomas, Jr., Prubalility and Statistics, Addison-Wesley, Readiag, Massachusetts, 1961.
17. E. L. Crow, F. A. Davis, and M. W. Maxfield, Statistics Manual, U. S. Naval Ordnance Test Station, China Lake, Cal:fornia, 1955.
18. W. Volk, Applied Statistics for Engineers, M:-Graw-Hill, Inc., New York, 1955.
19. H. S. Scigjent, Required Accuracy of Corporal Fire, JPL Publication 25, 15 Aprl 1954.
20. J. W. Haugiy, Catoulation of Missile Accuracy From aciual T'est Flight Data, Army Ballistic siissile Agency Heport No. RG-TN-2-61, 13 Jan 1961.
21. C.E.P. for Correlated Unequal Standard Deviations, G.M. 41.2-108, Ramo-Woolridge, 28 Oct 1957.
22. Ayprosimating to the Circular Probable Eirror of an Elliptical ((aussian Distribution (C), Royal Aircraft Eistablishment. T. M. No. G. W. 300. March 1957.
23. Pat Maxwell, Jr., Eistimation of the C.E.P. of a Missile System from the Results of Firings, (G. H. TR-1:39, Ramu-Woolridgr, 3 Apri! 105%.

2i. M. I. Eaton, Accuracy C.E.P. Estimates, NAMTC TMR 105, Burean of Aeronautics, : Jan 1957.

CHAPTER 8 AERCUTYNAMICS

LIST OF SYMBOLS

Symbol	Meoning	Symbol	Meunies
a^{*}	Sonac velocity, ft sec	P_{c}	Motor chamber pressure, l' ${ }^{\text {/ft }}$ '
\cdots	Fia cut cut iactor isee Fig. 8-23)	q	Dynamic pressure, lb,'ft:
α_{1}	Fin gevinêtiy-flow parameter (see Fig. 8.21)	$n, \hat{R} .$	Radius, ft Reynolds numbe:-
A	Area, ft^{2} (general reference area)	r te	Ring tralling edge (the 'ocation of ring
${ }^{4} \tau$	Jet throat area, ft^{2}		tranling edge with respect to base of body;
$A R$	Fin aspect ratio (fin span squared/fin area)	S	values aft of body base are positive.) Area, ft : (particular reference area)
b	Fin suan, ft	$\mathcal{S}_{\text {eff }}$	Effective area (see par. 8-2.4.3), ft^{2}
-	Fin chord, ft	TE	Trailing edge
\bar{c}	Fin mean chord (see Fig. 8-23), ft	t	Fin thickness, ít
cl	Cord length	V	Rocket velocity, ft sec
C_{D}	Drag coefficient	$X ; x$	Axial distance, ft
C_{j}	Total skin friction coefticient	Y	Laterai distance, ft
C_{F}	Thrust coefficient	$\boldsymbol{\alpha}$	Angle of attack, rad or deg
C_{M}	Pitching moment coefficient	β	$\sqrt{M_{\infty}^{2}-1}$
${ }^{\boldsymbol{H}}{ }_{\boldsymbol{\alpha}}$	Pitching moment conficier.t gradient	γ	Ratio of specific heats
${ }_{C}^{C_{V}^{*}}$	Normal force coefficient Normal force coefficient gradient, per rad or per deg	δ	Boattail half angle, degrees; factor for fin correction (spe Fig. 8-15)
C_{p}	Pressure coefficient	Δ	Incremen:
${ }_{C G}$	Center of gravity location (axially from nose)	-	Included angle of fin leading edge (see Fig. 8-23), deg
d	Diamerer ft ; differential	η	Spanwise location of fin mean chord (stee
D	Lrag force, lb		Fig. 8-23)
f	Fineness ratio (l/d)	θ	Cone or flare half angle, deg
h	$\mathrm{F}_{\text {in }}$ base thickness (see Fig. 8-40)	λ	Fin taper ratio
I	Correlation prameter for in-fin interferencr	^	Fin leading edge sweep angle, deg 3.2116
$k_{2}-k_{1}$	Mass factor (see Eq. 8-1)	ρ	Atmospheric density, slug/ft ${ }^{3}$
$n_{f(b)}$	Inierierence f́acior	¢	
$K_{(f)}$	Interference factor	Subseripta:	
E,l	Length measure, ft	Suberip	
led	Leading edge diameter, ft	$a, a b$	Afterbody
in	INat'ra! iugarithm	b	Body
m	Fin geometry-flow pararneter (see Fig.	B	Base
	8-21); factor for Iig. 8-35	bo	Ronket moter lurnout conditions
M	Mach number; pitching moment, ft-lb	$b:$	Boattail
n	Number of tins; exponent for power law	c	Cylinder; cone
	nose	$c / 2$	Fin mid-chord
N	Normal force, lb	cyl	Cylinder
P	Static pressure $12 / \mathrm{ft}^{2}$	$c p$	Center of pressure

LIST OF SYMBOLS (Cont)

```
Subecripmet Mecring
    e Exposed value
    f Flare; fin; friction
    jb Forebody
    fe Exposed fin
    fl Flare
    g Rocket launch condition
    IF Interference trse
    J Jet (or nozzle exit plane) conditions
    le Leading edge
    n Nose
    o,\infty Free streara or stagmation conditions
    Planform
```

 Subacriptat Mooning
 \(r\) Root chord
 re Exposed root chord
 ref Reference condition
 \(r t\) Ring tail
 \(T\) Total
 : Tip chord
 te Trailing edge
 theory Theoretical prediction
w Wave ùrag; "wetted" conarnon
2D Two dimensional consideration
1 Perpendic, ?ur measure

卷
 8-1 GENERAL DESIGN CONSIDERATIONS

This chapter will discuss the aerodynamic aspects of free rocket design and will indicate means of predicting the significant aerodynamic coefficients. Simply stated, the usual aerodynamic design goal is to slect an rxternal configuration a.hich provides stable flight weth minimum drag through the destreci altitude-velocity range.

For a rocket to possess flight stability, a restormg moment must be produced when its longitudinal axis is rotated from the flight direction, i.e., when an angle of attack exists. This flight stability is achieved in the case of aerodynamically stabilized rockets by selecting the external configuration such that the center of pressure of aerodynamic forces normal to the longitudinal axis is located farther aft of the rocket's nose tip than the center of gravity. Since the aerodynamic forces are proportional to angle-of-attack (the angle between the ilizht direction or velocity vector and the longitudinal axis of the rocket), any deviation will produce a moment to restore the axis to its aligned condition. When the cenier of pressure is aft of the center of gravity, the rocket is said to be statically stable.

The degree of aprodynamic stability, or the static margin requirement, varies with the desured accuracy of each rucket and its design approach. Fur example, a rozket designed for minimum dispersion during powered free flight requires a specific tailoring of the static margin over its Mach number regime, while a high-acceleration rciket which achieves most of its velocity prior tr) release from t._ launcher requires onls tian the stability margin remain with certain upper and lower buands. The width of this stability band is governed primarily by the requiremeni io mainiain a significant spread between the roll and pitch-yaw frequencies.

Although the static margin is of paramount interest to the acciracy of a free rocket during the powered, high-ac deration phase, the aerodynamic drag or axial force is a prime factor affecting the accuracy and performance during the sustain and ballistic flight phases. For an unguided rocket, the aiagle of attack is noininally zero; thereiore, the axial and drag forces are equal. The general yoal is to keey the axial forie coefficient $\mathbf{a 3}$. low as possible, consistent with other design considerations such as body
length, weight, and structural rigidity. Reduction of the axial force coefficient is more important generally for inairect-fire, artillery-type rockets where the sustain and ballistic flight times are much greater than that of the boost phose. Axial force reduction in this case can result in either a lighter and smaller rocket for a specified maximum range, or increased range for a fixed rocket size and weight. In addition, improved accuracy is achieved by reduced zensitivity 10 atmospheric variations during the ballistic flight tecause it is primarily through the aeroiynamic axial force that non-gravitational acceleratiors are transmitted to the rockei.

The external configuration of a free rocket can vary significantly depending on the tradiooff between aerodynamic requirements imposed by performance and accuracy considerations, and other system requirements. Some generalization can be made, however, based on past designs. Typically, the rocket's external configuration consists of a pointed body-of-revolution housing payload and propulsion unit. with a stabilizing device attached to the aft section. A circular crosssection is preferred because its symmetry about the longitudinal axis makes for simplicity, both in manufacturing and in determining aerodynamic coefficients and mass-inertia properties. To the rocket body, which normally is aerodynamically unstable, various normal-force-producing devices are attached at its aft end to provide the necessary restoring moment for stability. Thin-profile planar fins, spaced evenly around the circumference of the body, are used in many rocket designs as stabilizing devices. This type of fin usually will produce the maximum stabilizing moment with minimum weight and axial force penalties. W'ien minimum overall diameter is a dominanc desixn consideration, the ring-tail and conical rlare become of greater interest. A ring-tail will produce, at both subsonic and supersonic velocities, approximately twice the restoring moment of a cruciform planar fin with equal total span and chord. The conical flare is of interest for restricted-diameter rockets with maximum velocities above auproximately $5000 \mathrm{ft} / \mathrm{sec}$. On the basis of projected planform area, a conical flare will produce better than twice the normal force of cruciform fins at hiypervelocity speeds. However, the axial force of a flare greatly exceeds that of fins providing equal restoring moment.

[^4]not exist. The great multitude of parameters affecting tive configuration selection asually results in its choice being based on past design experience ard aesthetic values rather than an optimization study.

In order to estimate the aerodynamic stability characteristics for complete rocket configurations sind to provide design guidance, it is necessary to know the aerodynamic coefficients of each major rocket component and interference between components. The paragraphs which follow will discuss first the stability paraneters for various rocket foreoody shapes, fins, ring-tails, conical flares, and boattails; and then will discuss how these component aerodynamic coefficients are combined to arrive at values for the complete configuration. Wherever possible, simple analytical or semi-empirical equations will be presented along with charts to make aeroaynamic estimates. No effort will be made to provide the theoretical bssis or experimental substaintiation for the data presented since numemus textbooks and reports exist which discuss these topics in great detail. Finally, a detailed computational chart will summarize sources and methods of obtaining design data, and will provide a format and check list for design computation.

-2 STABILITY CHARACTERISTICS OF ROCKETS

2-2.1 RODIES OF REVOLUTION

-2.1.1 Hess Cylimetar

The forebody of a rocket normaily consists of a pointed cone, an ogive, or a power series curve, followed by a cylindrical section. The slenderbody theory provides a simple means of expressing the stability characteristics of these bodies in terms of the geometric parameters only, as follows:

$$
\begin{equation*}
\left(\frac{d C_{N}}{d x}\right)_{b}=\frac{\left(k_{2}-k_{1}\right)}{S_{r e j}}\left(\frac{d S}{d \dot{x}}\right) \sin 2 \alpha \tag{8-1}
\end{equation*}
$$

which, when integrated from $x=0$ to $x=l$, gives

$$
\begin{equation*}
\left(C_{N_{\alpha}}\right)_{b}=2\left(k_{2}-k_{1}\right) \frac{S_{B}}{S_{r c f}} \tag{8-2}
\end{equation*}
$$

In the above expressions
$C_{N} \quad=$ normal force coefficient
$C_{N_{\alpha}}=$ normal force coefficient gradient, per rad or per deg (see par. 8-2.4.1)
b $\quad=$ body
$a \quad=$ angle of attack, the angle between the longitudinal axis of the rocket and the velocity vector, in rad or deg
$k_{2}-k_{1}=$ apparent mass factor
$l=$ body length, ft
$d S \quad=$ incremental cross-sectional area, ft^{2}
$d x \quad=$ incremental axial distance, ft
$S_{B} \quad=$ body base area, ft^{t}
$S_{\text {ref }}=$ reference area, ft^{2}
The factor ($k_{2}-k_{1}$) is the apparent mass factor as derivad by Munk (Reference 1). The values for ellipsoids of revolution presented iff Fig. $\hat{\delta}-\mathrm{i}$ represent a reasonable approximation for any axisymmetrical body of comparable fineness ratio. The center of pressure mey be assumed to act at the centroid of the nose projected area for $M_{0}<1$.

The fundamental assumptions of the theory are that all second order partial derivatuves of velocity can be neglected, and that velocity perturbations along the bood axis are small compared to the transverse values. The solution inaplies that adding cylinder length to the nose ius no effect, and that there is no compressibility effect due to varying Mach number. However, experimental data and more refined theoretical solutions, too complex to discuss here, shuw these eifects to be signiticant. The reader is referred to References 2, 3, and 4 for further details of

Figurs 8-1. Apparent Mass Factor
these solutions. In the absence of more precise solutions, the slender body theory should be ued in the subsonic-throunh sonic Mech number ry age.
At supersonic Mach numbers, the normal-force coefficient gradient and center-of-pressure estimates should be obtained, respectively. from Figs. 8-2 and 3-3 for tangent-ogive-cylinder bodies, and from Figs. 8-4 and $8-5$ for cone-cylinder bodies. These curves were extracted from Reference 5 and were constructed from empirical data covering a Mach-number range from 1.4 to 7.0 and a nose-fineness ratio range from 3.0 to 7.0. Stated accuracies are ± 10 percent for nonnal-force coefficient and 0.5 calibers for center of pressure.

A fairly extensive experimental study of the effects of particular nose shapes and cylindrical lengths is presented in Reference 6. Aerody-namic-stability parameters were determined at Mach numbers from 0.8 to 4.5 for tangent-ogive, conical, and power-series noses, all with a fineness ratio of four, combined with cylinder lengths of from 4 to 11 calibers. The effect of changing the nose-fineness ratio from 3 to 5 for conical and tangent-ogive shapes was determined for a cyliindrical afterbody length of 6 calibers. Since the overall study covers body configurations of general interest to free rocket design, the pertinent results are presented in Figs. 8-6(A), (B), (C) and $8-7(A)$, (B), (C). These results should give normal-force coefficient gradients within ± 5 percent and center of pressure within $\pm .1$ caliber for the range of test variables. Whenever the body of interest falls within the range of test variables, it is recommended that the stability parameters be established from these data.

Where the rocket propulsive nozzle is smaller in diameter than the body cylinder, the rocket afterbody may be tapered to form a boattail, which reduces base drag. The normal loading over this boattail is negative, thus reducing the total nor-mal-force coefficient and shifting the center of pressure forward. The slender-body theory predicts the normal-force coefficient gradient tu be:

$$
\begin{equation*}
\left(\Delta C_{N_{\alpha}}\right)=-2 \frac{s_{b t}}{S_{r e f}}\left[1-\left(\frac{d_{b t}}{d_{c}}\right)^{2}\right] \tag{8-3}
\end{equation*}
$$

where

$S_{b t}$	$=$	cross-sectional area of boattail at its smallest diameter, i^{2}
$d=$	diameter, ft	
$b t$	$=$	bnattail
c	$=$	cylinder
Δ	$=$	increment

It is recommended that slender-body theory predictions be used for the subsonic-to-sonic Machnumber range since systematic empincal investigations are not available.
At supersonic Mach numbers, Fig. 8-8 (Reference 5) wi'l provide normal-force coefficient gradients for conical boattanls located behind a semiinfinite cylinder; i.e., the local flow conditions upstream of the boattail are equal to the free stream conditions. These data, derived from linearized theory calculations and slender-body theory predictions, have not been verified by a detailed comparison with experimental data. Therefore, no statement can be made concerning the expected accuracy.
The center-of-pressure for the boattail normal force is located approximately $0.6 l_{b t}$ from the cylinder-boattail juncture at subsonic Mach numbers. The center of pressure at supersonic Mach numbers may be evaluated from Fig. 8-9, taken from Reference 5.
It is recommended that the data in this section be used for boattail angles of less than 10 deg and ratios of $\frac{d_{b}}{d_{c}}$ greater than 0.8 to avoid flow separation from the boattail.

8-2.1.3 Conical-Flare Afterbody

A conical-flare afterbody can be added to uose cylinder configurations to provide aerodynamic stability. The slender-body prediction fos the incremental normal force coefficient gradien: of a flared afterbody is

$$
\begin{equation*}
\left(\Delta C_{N}\right)_{a_{1} \text { flare }}=2 \frac{S_{f}}{S_{\text {ref }}}\left[1-\left(\frac{a_{c}^{\prime}}{d_{f}}\right)^{2}\right] \tag{8-4}
\end{equation*}
$$

AMCP 705200

Figur: 8-6(:). Horma! Force Coefficient Gradient and Center

${ }_{\mathrm{p} / /^{d} \mathrm{x}}$

Fizure B-ì(C). Normal Force Coufficient Gradient and Center of Pressure -.. 1/2-Poway Nose
(

AMCP 708-200

Figure a-s. Nisemat Force Copficient Grasiont for : Bootsoll
and center of pressure of the normel-force-increment is

$$
\begin{equation*}
\left(\frac{x_{c}}{l_{f}}\right)_{f}=\frac{\frac{d_{c}}{d_{f}}\left(\frac{d_{c}}{d_{f}}+1\right)-2}{3\left[1-\left(\frac{d_{c}}{d_{f}}\right)^{2}\right]} \tag{8-3}
\end{equation*}
$$

where	
$\chi_{5 p}=$	axial distence from ryinder-figre juncture to the itime center of
	premsure, it
$i_{j}=$	total ¢lare length, ft
$f=$	clare
d_{e} -	cone diameter, ft
$d_{f}=$	flare diameter it
0 -	

NOTE: Values of $\frac{X_{\text {sp }}}{l_{f}}$ measured rearward from the cylinder-flare juncture are negative.
The important geometric parameter is seen to be the ratio of forebody cylinder-diameter to base diameter. Flare angle and Mach number do not influence the flare normal-force within the lim:tations of the slender-body assumptions. To a limited degree, the experimental data of Reference 7 verify this trend at transonic Mach numbers and for flare angles of less than 8 degrees.

The actual normal-force contribution of flared afteriodies is shown by other theories (References 8 and 9) and by experimental resulis to be infiueneed by flow conditions forward of the flare, as well as by flare angle and length. Also, large flare angles (greater than about 10 deg) are known to cause flow separation at the cylin-der-frustum juncture, which alters considerably the local normal-force loading in this region. Precise estimates of the flared-afterbody stability contribution must conqider the complete upstream flow sield, including boundary-layer characteristics.

For preliminary design estimates, however, the incremental normal-force evefficient gradionts presented in Figs. $8-10(\mathrm{~A})$ through (E) ars considered adequate. These data were computed from slender-body theory and correlate fairly well with the experimental data presented in Reference 10.

For values of d_{f} / a_{c} greater than 1.5, location of the center of pressure of the incremental normal force - as predicted by slender-body theory varies from approximately 50 percent to 68 percent of the flare length aft of the flare leading edge. The use of 50 percent, for flare geometric variations within the parameters of the investigations described in References 7 and 10 , is therefore consistrnt with the cverall experimental accuracy. The combination of data in Figs. 8-10 with cone-cylinder or ogive-cylinder forebody data derived from par. 8-2.1.1 should provide overaij nomal-force coefficiont gradients within ± 10 pariont and center-of-piessure locations within ± 0.5 seliker.

8-2.1.A Oversize Head Ceningurations

Occasionally the nose section is required to have a larger diameter than that of the cyimdincsl

Figure 8-10(D). Incrementai Normal-Force Coafficient Gradient for a Flare

Figure 8-10(E). Incremental NomalaForea Coefficinnt Gradiant for a Flare

Figure 8-11. Subsonic Fin Normal-Force Coefficiant Gradient
(par. 8-2.4). Throughout this discassion, thicknem will be considered small relative to fin chord sirce the general gractice is to minimize profile thickneas for reduction of drag and weight.
Theoratical studies have shown the aspect ratio to be the dominant geometric factor governing the liffing characteristics of unswept wings or fins. The normal-force coefficient slope varies fram $\frac{\pi(A R)}{2}$, for a very low aspect ratio (appreaching zero), to 2π for an aspect ratio approaching infinity. A simple correlation bused on liftingline theory (Reference 11) gives

$$
\frac{C_{\overbrace{\alpha}}}{A R}=\frac{2 \pi}{2+\left[(A R)^{2}\left(\mathcal{B}^{2}+\tan ^{2} \Lambda_{\frac{c}{2}}\right)+4\right]^{1 / 2}}
$$

astuming that the zection lift coefficient equals 2\% and where
$A R=\quad$ fin aspoet retio (fin span squared; fin area)
$B=\sqrt{M_{\infty}^{2}-1}$

$m_{\infty}=$	free stream Mach number
$\hat{A}=$	fin sweep angle, degrees
$\frac{c}{2}=$	fin min-chord position

This equation, plotted in Fig. 8-11, is valid for thin unswept or swept fins of any aspect ratio and for Mach numbers to 0.6. However, for low-aspeci-ratic fins which are of primary interest to rockei designers, valid resulis can be expected up to Mach numbers approaching one. Subsonically, the fin conter of pressure may be assumed at 25 percent of the mean aeredynamic chord \vec{c}. measured rearward from the leading edge.
The momplow zature of tizaisunic filow has precluded reasonably simple mathematical solutions for the flow field about fins, excopt in the case of thin fins with very low aspeet ratios. The linearized siender-wing theory predicts that

$$
\begin{equation*}
C_{N_{\alpha}}=\frac{\pi}{2}(A R) \tag{8.7}
\end{equation*}
$$

Utilizing transonsc-similarity laws, McDevitt (Reference 12) obtained from experimental data the correlation shown in Figs. 8-12(A) and (B) for rectangular planform fins. At Mach number

1, linearized-wing-theory predistion matches the experimentai data where $(A R)(t / c)^{1 / 3}$ is less than one. Therefore, it is suggested that lincar-izod-wing theory be used as a guide for planforms other than rectangular in the sonic region.

Iine.trized fiow theory las been found to be on acsurate means of predicting supersonic stability characteristics of thin-profile fins. Thicknesy effects are important, primartly when the Mreh line emanating from the leading edge rostsaction lies close to the leadirg edge. Reference 33 presents charts, based on linearizeci theory, to estimstr normal-force coefificient gradient and center of pressure for swept leading-edge fins of nearly arbitrary planform.

Tizs. 8-13(A), (B), (C) and 8-14(A), (B), (C), respectively, ane duplications of the deneralized charts for normal-force coeificient gradient and center of pressure. Fig. 8-14 prevides reasonable extimates of center of pressure for the subsonic. transonic, and surersonic regions for ali iin plantorens other than rectangular. A correction to the theoretical $C_{N_{\alpha}}$ for thickness efiecis is given in Fig. 8-15 for swept fins with wedge leading sdges. Use of this figure is explained in this computational sheets, par. 8-2.1.4. Thickness has only a minor effeci oa center-of-presurie, and $n 0$ correction to the theoretical estimatics is considered receasary.

The supersonic normal-iorce soefficient slope and senter-of-pressure of rectangular-pisnform fins an derived by linearized theory (Reference 14) are presented in Fig. 8-16. 'Mlese data are walid for $\beta(A R) \geq 0.5$.

A sereral presentation of linearized-supersonicwing theory and serodynamic estimation warts can be found in Pulerence 15; the rearier is referred to this work for fin planiorm not covered by the charts herein.

gen RiNs TAIL

The nomaidfurce coefficient gradients for ring fins installedin a cylindrical afterbody are presented in Figs. 8-17(A) through (F), taken from Reference 16, ior Miach numbers from 0.8 to 3.0 . The figure shows the normal-force coefficient gradiant for yarious chord lengths and ring diameters plotted in a "carpet plot". Three different positions of the ring trailing-edge relative to the body base are indicated by the solid, chain-
dashed, and dasheri lines.
As ring tails are often used in conj: action with oversized heads, it should be noted tiont the reference an a o: the lift curve is the cross-sectional area of the cylindrical afterbody or which the ring is installed. The data used ix, E"ts 6-17 were obtained from w.nd tunnel tests on rings having a 4° double-wedge section, with the inside surface of thes ring diverging at 4° irom the body centerline. (See sketch on Fig. 8-17.) Included are the effects of interference betione the ixuiy, support strut, and ring on the normal-force coefficient gradient.

It shouid be noted that the test date are for rings whase trailing-edge diameter is lerger than the leading-elge diameter. However, the charts should provide reasonsbly sceurate lift estimates for other ring configurations, provided that the minimum and maximum diameters of the ring are withii. the limits of minimum and maximum dianseters of the 4° ring case.
The center-of-pressure is assumed to be at the ring mid-choid point.

8-2.4 STABLLITY OF COMPLETE CONF!GUHATION

-24.1 Gangeal

In the previous paragraphs, consideration has been given to the prediction of force and momert characteristics of individual free flight rocket components. When the force and moment charscteristics of the complete configuration are computed, tion major factors must be considered:
a. The data for the individual components may be summer for the total =ally if a consistent set of data is used.
h. Cartain interference effects must be accounted for when the components are joined to form the complete configuration.

The firat factor mncornu enugtihility retwonn the force and moment coefficiants; i.e., the force refficients must be reduced on a common reference area and the moment coefficients must be reduced on a common reference area and lengith as well as a common reference point.
To expiain further, the normal force crefficient. gradient is defined as

$$
\begin{equation*}
C_{N_{x}}=\frac{N}{P^{\alpha a A_{r i f}}} \text { for small values of } \% \tag{8-8}
\end{equation*}
$$


```
*
```

AMCP 706-260

(B)

$+$

Fịure $\bar{\delta}$-i $\mathbf{i}(\hat{A})$. Fin Cantar of Pressure
8.25

AMCP 706－290

（F）

Fiquas 8－14（C）．Fin Centur of Fresucre

Fingere 3.17(A). Incremental Normal Force Coofficient Gredient for a Ring Tail Mountod on a Cylindricai Aftarbody

Figure b:17(B). Incremental Nomal Force Coafficient Gradient for a Ring Tail Hounsid on a
23 Cyindrien! Afterbody

Figure 8-17(E). Incremental Nemai Fwes Cowfficiant Godient ior a Ring Tail Mcunted on o Cylindricai Aherbady

Figuns bily (F). Incremental Normal Force Coofficient Gradient for a Ring Teil Mountod on a Cylindicieal Aftaribody

$$
\begin{gathered}
C_{\alpha_{j i n}}=.060 \cdot d e g \\
=(.060)(57 . .) i r a d-3.43 / r a d
\end{gathered}
$$

Àext select a common reference area (usually the body eylindrical cross-sectional area is selected) as $A_{: z_{i}}=A_{\text {cyl }}$.
Then,

$$
C_{N_{a b o d v}}=2 \cdot v_{i}+2 d
$$

(based an body cross-sectional area)

$$
C_{i_{\text {thady }}}=2,0 / r_{a d}\left(\frac{A_{c \times l}}{A_{r e f}}\right)
$$

$$
\text { (based on common area } A_{r e f} \text {) }
$$

$$
C_{i_{\alpha /: 7}}=3.43 / \mathrm{rad}
$$

$$
\text { (bnsed on fin planfor: area } A_{p} \text {) }
$$

$$
C_{A_{x f 2 n}}=3,43\left(\frac{A_{p}}{A_{r e l}}\right)
$$

(based on common area $A_{\text {ref }}$)
The total (sum of body and fin) normal-force coefficient gradient is, then, expressed as

$$
\begin{gather*}
C_{x_{\alpha} T}=C_{N_{\alpha \text { bddy }}}+C_{\lambda_{a f i n}} \\
=2.0 \text { irad }+3.43\left(\frac{A_{p}}{A_{r e t}}\right) / \mathrm{rad} \tag{9.10}
\end{gather*}
$$

and the reference area for the total coefficient $C_{N_{\alpha} T}$ is $A_{\text {ref }}$.

The moment coefficient grad:ent is defined as follcws for small values of a :

$$
\begin{equation*}
C_{N_{\alpha}}=C_{N_{\alpha}}\left(\frac{X_{c f}}{l_{r e f}}\right)=\frac{H}{q A_{r e f} l_{r e f} \alpha} \tag{8-1i}
\end{equation*}
$$

where

$M=$
$X_{c p}=$
pitching moment, ft-lb
axial distance from reference point to center of pressure, fi

As previously explaned, radian ur degree measuzes may be used A comparison of the expresslons for $C_{2}{ }_{\alpha}$ and $C_{t_{\alpha}}$ indicates that, in addition to a commen area reterence, the mument coeifictenz mus! be reduced on a common: reference length and a common reference point.

To illustrate, assume we have obtained the following data concerning the conitgurations shown in the sketch below:

$$
\begin{gathered}
\left.C_{\Lambda_{\alpha \text { body }}}=2.01 r a d \text { (based on } \frac{\pi d_{z}^{2}}{4}\right) \\
l_{i p_{b a i y}}=\frac{2}{3} l_{n}(\text { in } f t)
\end{gathered}
$$

$$
C_{a f: n}=3.0 / \mathrm{rad} \text { (based on } \frac{\pi i_{c}^{2}}{4} \text {) }
$$

$$
\left(\frac{\lambda_{c p}}{c}\right)_{f i n}=0.5 \text { (in root-chord iengths) }
$$

First. a reference length and point must be sslected (usually the hody diameter and nose of the body, respectively, are selected).
Then, when

$$
i_{i-i}=\frac{\pi i_{r}^{2}}{\dot{4}}, i_{r e f}=i_{c} \quad a n d \dot{z}
$$

Reference point $=$ nose tip

$$
\begin{equation*}
C_{x_{\alpha \text { body }}}=\left(C_{v_{\alpha \text { body }}}\right)\left(\frac{2}{3} \cdot \frac{l_{n}}{d_{c}}\right) \tag{8-12}
\end{equation*}
$$

$$
\begin{equation*}
C_{i 4} \approx \text { bexdy }=2 \cdot\left(\frac{?}{3} \cdot \frac{i_{n}}{d_{c}}\right) \tag{6-13}
\end{equation*}
$$

AMCP 700－280
When

$$
A_{r e j}=\frac{\pi d_{e}^{i}}{4} \cdot \hat{l}_{r e f}=c_{r} \quad a n d
$$

Reference point $=$ junction of fin root chord and brety stiryare

Thating ryfatane，when

$$
\begin{aligned}
& A_{=\xi ;}=\frac{\pi t_{z}^{2}}{i_{4}^{2}}, l_{z z i}=d_{=} \text {anij} \\
& \text { Heference point = nose tip }
\end{aligned}
$$

Now，since both momant coofficients have a conmon reference area，reierence length，and reference point，y can write

$$
\begin{equation*}
C_{m_{a} T}=C_{M_{a b o d y}}+C_{m_{a!i n}} \tag{8-16}
\end{equation*}
$$

or

$$
\begin{array}{r}
C_{w_{\alpha} r}=2.0\left(\frac{2}{3} \cdot \frac{i_{n}}{d_{s}}\right) \tag{8-20}\\
+3.0\left[\frac{l_{n}+i_{a b}+\left(\frac{X^{\prime \prime}{ }_{c p} f_{\Delta n}}{c_{r}}\right)}{d_{c}}\right] c_{\tau}
\end{array}
$$

where

$$
\begin{aligned}
& A_{r e t}=\frac{\pi d_{c}^{2}}{4}, i_{i i j}=d_{r} \text { and } \\
& \text { rieference point }=\text { nose tip }
\end{aligned}
$$

The total center－of－pressure may be found as

$$
\left(X_{c p}\right)_{\text {Total }}=\left(\frac{C_{c_{\alpha}}}{C_{\delta_{\alpha}}}\right)_{\text {Total }}\left(d_{c}\right)
$$

$$
\begin{align*}
& =\frac{\frac{2}{\pi}}{\left(1-\frac{r}{b}\right)^{2}}-\left\{\left(1+\frac{r^{4}}{b^{4}}\right)\left[\frac{1}{i} \operatorname{Tar}^{\cdot 1} \frac{1}{2}\left(\frac{b}{r}-\frac{r}{b}\right)+\frac{\pi}{4}\right]\right. \\
& \left.-\frac{r^{2}}{b^{2}}\left[\left(\frac{b}{r}-\frac{r}{b}\right)+2 \operatorname{Tun}: \frac{r}{b}\right]\right\} \tag{8-18}\\
& k_{i \neq 1}=\frac{C_{Y_{\alpha} f(b)}}{C_{i_{\alpha f}}}
\end{align*}
$$

where a_{0} is the body angle n^{i} attack．r is the body radius in feet．and y is the lateral distance from the body centerline in feet．If we utilize the approach of Reforcnce 18 slender－body the－ ory，the ratio of fin normal force in the presence of a body tc tin nomal furce of the solated fin （anteriference factor）is
measured rearward from the onse thp or the total
centeronf－pmesoure expressed in tody diamecers （or calibers）is

$$
\begin{equation*}
\left(\frac{x_{a p}}{d}\right)_{\text {Yotal }}\left(\frac{C_{x_{a}}}{C_{N_{a}}}\right)_{\text {Non! }} \tag{8-1,9}
\end{equation*}
$$

mfusured rearward fron，the inces lip．
The sefond major stactor to be corisiuered con． certs the fin－boily and sio－fin interterance eifects． Thes are coyerod an greater detail in the para－ grepins which follo：

8－2．6．2 Fin－Bociy Interistence

When fins are ittached to a bor－y－of－revolution， interíerence effects increase the no．mal force over that for the isolated fins．This interference effect is particularly mportan：for luw－aspect－ ratio fins where the tin span is approximately equal to the body diametar．

The presence of a cyindrical afterbody in－ duces an increased local angle－of－attack along the fin span．If we neglect the nose effects a rea－ sonably accurate prediction of the upwash dis－ tribution in the horizontal plare is given by Paskin（Reference 17）to be

$$
\frac{\infty}{c_{0}}=\left|i+\left(\frac{1}{y}\right)\right|
$$

$C_{N_{\alpha f i n}}$ for the appropriate Mach number. Then, multiplying the value of $\mathcal{C}_{N_{\alpha} ; \text { in }}$ by the appropriate value of $S_{\text {eff }} / S_{f}$ (dependent on number of fins) yields the total fin contribution, based on a reference area equal to the exposed planform area of one fin. It should be emphajized shat the data in Fig. $8-22$ were developed for, and are directly applicable only to, the particular planforms indicated. However, the data may be used as a guide for predicting the characteristics of other planforms.

When the value of I is less than one, the Mach cone emanating from the leading edge of one fin does not impinge on adjacent fins. Therefore, the ratio of the multi-fin normal-force coefficient
gradient to the twin-fin gradient (4 fins, 2 equally loaded) is a function of the number of fins only, and can be written as

and the four-fin data may be computed by meth. ods previously presented.
AMCP TW2 230

$A=$ TAPER RATIO $=\mathrm{Ct} / \mathrm{Cf}$
$\mathrm{a}=\mathrm{CI}$ ITOUT FACTOR $=$ TAH ϵ TTAN ϵ_{t}
FIN AREA (Sf)
$3 f-\frac{b c_{0}}{2}(1-3)(1+i)$

$$
m c_{0}^{2} \operatorname{TAN} \in(1-a)\left(1+\lambda^{3}\right)
$$

ASPECT RATIO (AB)
$A R=\frac{b^{2}}{S_{f}}=\frac{4 \text { TAN } \epsilon(1-\lambda)}{(1-\alpha)(1+\lambda)}$
GUTOUT FACTOR
SMEEP ANGLES
TAN c $=\mathrm{a}$ TAM $\times\left(=\frac{b}{2 c_{0}(1-\lambda)}=\frac{3+a}{4 \operatorname{TAN~} \Lambda_{c / 4}}\right.$
$a=\operatorname{TAN} \in / T A N \in t$
$-1-\frac{4(1-\lambda) T A N \epsilon}{A R(1+\lambda)}$
$\operatorname{TAN} \Lambda_{k E}=\operatorname{TAN} \Lambda_{c / 4}+\frac{(1-4 k)(1-\lambda)}{A R(1+\lambda)} ; k=$ PERCENT CHOKD FOR DESIRED SWEEP

MEAN AERODYMAMIC CHORD

$c=\left(2 / 3 x_{0}(I-\hat{a})\left(1+\frac{\lambda^{2}}{1+\lambda}\right)=4 / 3 \sqrt{\frac{A}{A R}}\left(\frac{1}{1+\lambda}\right)\left(1+\frac{\lambda^{2}}{1+\lambda}\right)\right.$

Figure 8.23. Fin Geometry

Suparsonicaily, the center of pressure may be assuried ${ }^{\text {f }}$ at tha mid-point of the mean aerodynamic chond \bar{c}, s.eiusured rearward from the leadaire edge of the fini.

-2.4.4 Sample Caloulation Shest

: - Table 8-1 was constructed to summarize the principies and sommulas presented in par. 8-2 Stability Charar.teristics of Rockets. The table also illusirates in numerical examples the use of the formulas and dita curves pessented in par.
 for computation of fin geometry. Fig. 8-24 dofines lengths and diameters associaved with boattail, flare, and finned configurations. Finally, Fig. 8-25 prosents an example configuration, with paxtinent design data, as a basis for computation of furce and moment characteristics. Entries shown in Table 8-1 were developed for this configuration. The superscript circled numbers appearing in Tabie 8-1 indicate that values for the expressions so annotated come from the column number corresponding to the superscripi.

es mag

Eximation of tuag for free reckets can be restricted to zero-lift since the rucket follows a ballistic patk. The total dres on tha rocket is the sum of the wave drag produced by pressure foress normal to all aurfaces except the base, plus the \#hin friction dras produced by forces tangential to the surfaces, phus the bese dras produced by pressure forces sining normal to the buse. The drag coefficient C_{D} is equal to the drag iorct D in pounds divided by $1 / \rho \rho^{7} S_{r e f}$, where ρ is the atmospheric danity in sluge per ft^{3}, V is the racket velocity in $f t$ per and $S_{\text {ref }}$, is the reference area, in quare feet, on which C_{0} is based.

z-3! vave grag

Wave aras is present on the rosket nose, the afterbody (iwattail or flare), and the fins or other stabilising surizces. Since wave drag is produced by pressiures notmal to the surface, no wavedrag component is present on the cylindrical section.

2-3.1.1 Nose Wave Drac

The nose shapes of free rockexs are usually slunder since there are no large volume requirtments to enclose guidance systems or related components. Butura the nosi with a radus equal 0.1 times the maximum hody dianeter avoids a sharp point for manufacturing anc safety reasons, yet causes only a negligible increase in dras and has no appreciable offect ma sev, dynamic estimates.

Nos wave drag is mfluenced prmarij by ineness rato, nose shape, and Mach number. The general trend of rose wave-drag characteristics is shown in Figs. 8-26(A) and (B). For most alender nose shapes, the coefficient is zero below a Mach numbe: of about 0.8 to 0.9: sises sharply through the transonic region; and decreaces with increasing supersonic Mach number. The coofficiert decreases with increasing nose finenass ratio. Hicwever. in gractical dezign, nose fineaess ratios are limited by rocket totai-length requirements, weight requirements, and increasing friction drag.

For preliminary design estimates, the family of nose shapes-ntinierset for free ruckets is bounded

Figure 8-26(A). Effects of Mach Number and Nose Fineness Ratio on Wave Drag

Figure 8.26(8). Effects of Mach Number and Nose Fineness Ratio on Wave Drag

Figure 8-27. Wava Drag Coofficient of Optimum Secai:: Ogive Cylinder at Trensonic Spasad
by cones and ogives. A secant ogve. formed by a circular asc with twice the radus of a taragent ogive, ytelds marimum wave drag for low supersonic Mach numbers (Reference 22); drag characteristics of this nose shape are presented in Fig. 8-27. For higher Mach numbers, a secant ogive with 2.5 to 3 times the radius of a tangent ogive is optimum. However, when optimizing overallconfiguration nose shape, factors other than drag. must be considered.

The transonic wave-drag coefficient of general ogives is presented in Fig. 8-28. Unfortunately, there is no apparent, reliable correlation of transonic wave-drag for cones. It is suggested that estimates be guided by Fig. 8-26 and other experimentai cata, such as References 23 and 24.

Vaiues of supersonic irave drag for cones and general ogives are presented in Fig 8-29 as a more detailed extension of values presented in Fig. 8-26.

8-3.1.2 Boattail Wave Drag

When the exit diameter of the rocket nozzle is smaller than the body-cylinder diameter, the afterbody of the rocket may be tapered to form a boattail and reduce the base drag. This technique, however, increases the wave drag on the configuration. An optinum boattail co.afiguration, therefore, results from balancing the ixscrease in wave drag with the reduction of base drag.

Figure 8.32. Wave Drag Coefficient of a Boattail et Trensonic Speods
tests where the Reynolds numbors are lower than would be expected in actual flight. The wavedrag coefficient determined experimentally (Reference 27) for a series of clares is presented in Figs. 8-33(A)-(I).

$$
\ldots-
$$

8-3.1.4 Fin Wave Drag

The wave drag on fins is small (on the order of 10 percent) compared to the total rocket drag. The drag is influenced strongly by thickness-tochord ratio and sectional shape. Figs. 8-34(A)(H) present the theoretical wave drag coefficient, based on planform area, at zero-lift for various sectional shapes und planforms. The discontinuities in the curves will not exist in practice, and values at transonic speeds are not precise. The wave drag for sectional shapes not shown in Fig. 8-34 may be evaluated as follows: in Fig. 8-34, find the wave drag coefficient for a double-wedge section having the same thickness and planform geometry as the sectional shape-of-interest; multiply the value so obtained by the factor for the particular shape from Fig. 8-35. The product will be the desired wave drag coefficient.

The transonic wave drag coefficient of rectangular and delta planform fins is shown in Figs. 8.48
$8-36$ and 8-37. The wave drag for other planforms will be between the values on these two curves for fins with the same sectional shape, thickness-to-cherd ratio, and aspect ratio.

8-3.1.5 Ring Tail Wave Drag

The ring tail wave drag cocfficient, based on an árbitrary reierence area $S_{\text {ref }}$, may be evaluated by multiplying the two-dimensional drag coefficient by the product of ring-tail circumference times chord length (or "rolled out" planform area):

$$
\begin{equation*}
C_{D_{v}}=\frac{\pi d_{r}(c)\left(C_{D_{v}}\right)_{(2 \text { dimensional })}}{S_{\text {ref }}} \tag{8-24}
\end{equation*}
$$

At supersonic speeds, the two-dimensional drag coefficients for particular sectional shapes may be obtained from Fig. 8-35. At transonic speeds. the two dimensional drag coefficient for a symmetrical double-wedge may be obtained from Fig. 8-38. For other sections, the double-wedge value should be multiplied by the appropriate modifying factor in Fig. 8-35.
The drag evaluated above will be slightly higher than the actual flight data due to the interfer-

$$
S_{\text {rel }}=\frac{n \theta_{c}^{2}}{4}
$$

(A)

Figure 8.33(A) \& (B). Wave Drog Coefficient of Conical Flare

$$
S_{\text {rel }}=\frac{-d_{c}^{2}}{4}
$$

Figure 8-33(C) \& (D). Wav: Drag Coeticient of Conical Flare

Figure 8.33(1). Wave Drag Coefficient of Conical Flare
ence effects of the struts attaching the ring tail to the rocket body. However, since these effects are small compared to the total rocket-drag and the computation of the effects is complex, interference may be neglected for preliminary design.

For further discussion of interference, see Reference 25.

8.3.2 FRICTION DRAG

The friction drag depends primarily on conditions of heat transfer, position of transition from laminar to furbulent boundary layer, Reynolds number, and Mach number. The method presented in this paragraph for evaluating the fric-tion-drag coefficient is a rapid approximate method. More precise solutions are presented in References 26 and 27.
The average skin-friction coefficient (frictiondrag coefficient) for flat plates, based on the
wetted area, is presented in Fig. 8-39 as a function of Mach number and Reynolds number. Reynolds number per foot of length, as a function of Mach number and altitude, may be obtained from Fig. 8-40. The flat-plate coefficient should be used for fin and ring tail surfaces. Correlation of experimental data has shown that the skinfriction coefficient for bodies of revolution is approximately 15 percent higher than theftai-plate values (Reference 28). Therefore, for preiliminary design purposes, the values oltained from Fig. $8-39$ should be multiplied by 1.15 when the $\leq \ldots$ face is a body of revolution.

8.3.3 BASE DRAG

Base drag is the result of pressure forces due to airflow separation from rearward-facing steps such as body bases and fin trailing edges. The drag is affected by the geometry of the rearwardfacing step and by the properties of the airstream approaching the step, including boundary-layer conditions. A rocket exhaust complicates the base flow phenomenon by adding a second stream with different propertics, boundary layer conditions, and approach geometry. The mixing of and interaction between the air and rocket exhaust streams produce a complex fluid mechanics problem.
General curves and empirical relations will be presen ${ }^{4}$ d to allow a rapid estination of base drag of a quality suitable for preliminary estimates. No attempt will be made to discuss in detail the effects of various parameters on base drag. Insufficient experimental data exist, throughout the range of parameters, to allow use of design charts.

8-3.3.1 Body-of-Revolution Base Drag. Rockat Jet Off

The boundary layer approaching the body base of free rockets is generally turbulent. For cylindrical afterbodies, the variation of base-pressure coefficient (negative of base-drag coefficient, based on the area seen by base pressure) with Mach number is well defined. For boattailed and flared afterbodies, several methods of estimating base pressures are presented in References 22 and 29. These methods, however, have

Figure 8.34(A). Wave Dreg Coofficiont of Fins of Supersonic Spusds

2.5

Fiqure 8-34(B). Wave Drag Cosificient of Fins at Supersonic Speods

AMCP 70E.280

Figure 8-34(E). Wave Drag Coefficient of Fins at Supersonic Speeds
2.56
Figure 8-34(F). Wove Drag Coefficient of Finz of Suprisonic Speeds

Figure 8.34(H). Wave Drag Copfficient of Fins at Supersonic Speeds

AMCP 705-200

TYPE	PROFILE	TWO DIMENSIONAL DRAG COEFFICIENT BASED ON PLANFORM AREA	FACTOR
SYMMETRICAL DOUBLE WEDGE		$\frac{4}{M}\left(\frac{t}{c}\right)^{2}$	1
DOUBLE WEDGE		$\frac{1}{M} \cdot\left(\frac{l}{c}\right)^{2} \cdot \frac{1}{m(1-m)}$	$\frac{1}{4 m(1-m)}$
SINGLE WEDGE		$\frac{1}{M} \cdot\left(\frac{t}{c}\right)^{2}$	$\frac{1}{4}$
CROPPED DOUBLE WEDGE		$\frac{1}{m}\left[\left(\frac{t}{c}\right)^{2} \cdot \frac{1}{m}+\frac{(t-h)^{2}}{c^{2}(1-m)}\right]$	$\frac{1}{4}\left[\frac{1}{m}+\frac{\left(1-\frac{h}{l}\right)^{2}}{1-m}\right]$
SYMETRICAL PARALLEL DOUBLE WEDGE		$\frac{2}{M}\left(\frac{t}{c}\right)^{2} \cdot \frac{1}{m}$	$\frac{1}{2 m}$
PARALLEL DOUBLE WEDGE		$\frac{1}{m} \cdot\left(\frac{t}{c}\right)^{2}\left[\frac{1}{m_{1}}+\frac{1}{m_{2}}\right]$	$\frac{1}{4}\left[\frac{1}{m_{1}}+\frac{1}{m_{2}}\right]$
SYMMETRICAL BICONVEX ćcítcúutát ók PARABQLIC ARCS)		$\frac{4}{M} \cdot \frac{4}{3} \cdot\left(\frac{1}{c}\right)^{2}$	$\frac{4}{3}$

Figure 8-35. Wave Drag Coefficient of Fins of Various Sectional Shapes

AMCP 703-220

Figure 8-38. Wove Drag Coefficient of a Double Wedge Fin at Transonic Speeds

'

Figure 8-40. Reynolds Number as a Function of Flight Mach Number and Altitude
not been confirmed by experiment throughout the Mach-number range or through a sufficient range of afterbudy geometric parameters.
The variation of base pressure with Mach number for a cylindrical body (based on experimental correlations) and boattailed or fiared afterbodies is presented in Fig. 8-41. Although it is uncertain that afterbody angle is the major parameter affecting base pressure. it is presented in this manner for convenience. If nominal-length boattails and flares are considered. the data presented will be adequate for preliminary design purposes.

8-3.3.2 Body-of-Revolution Base Drag, Rocket Jet On

A typical example of the base pressure. with the effects of the rocket jet considered. is shown in Fig. 8-42. Examination of the figure reveals several important facts concerning free rocket design. During hoost. wheri the jet exit diameter usually approaches the base diameter. base drag is relatively unimportant. The combination of high chamber nrossure. high base 'pressure and small base-annulus area results in a low base drag or even a hase thrust. For sustainer operation, the jet-exit-to-base-diameter ratio and jet-to-free-stream pressure ratio are usually low. resulting in high values of base drag, mounting to as much as 50 to 70 percent of the total drag. After burnout, the effect of residual burning must be cunsidered. Mass added to the base region as a result of residual burning serves to increase the pressure ratio in the base region, re-
sulting in base pressures considerably higher than would be predicted for the jet-off case. This phenomenon is shown by the peak in base pressure at low jet-to-free-stream pressuze ratios. This decrease in base drag due to residual burning effects may lead to errors in range prediction if not considered.

Previous design charts for engineering estimates of jet-on base pressure have been based on a limited amount of unreiated experimental data from various sources, which give reasonable estimates only if the configuration closely matches that on which the data were obtained. A theoretical method for predicting base pressure is presented in Reference 30. This method predicts trends of various parameters independently and can handie several parameters not easily simulated in wind turnel tests. The method, however. is very complex and requires the use of high-storage-capacity computers.

A method, based on the thrust coefficient, has been developed (Refcrence 31) which allows rapid prediction of base pressures suitable for engineering estimates. For a cylindrical afterbody, the base pressure is given by

$$
\begin{equation*}
\frac{P_{B}}{P_{-}} \frac{\frac{3}{5}\left(C_{F}\right)^{\frac{1}{3}}}{\frac{1}{u^{*}}} \tag{8-25}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{F} \frac{\text { Thrust }}{P_{c} A_{T}} \tag{8-26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{a^{2}} \cdot \sqrt{\left(\frac{y-1}{?}\right) w^{2}\left(1-\frac{y-1}{2} w^{2}\right)^{-1}} \tag{8-27}
\end{equation*}
$$

and the base pressure coefficient is defined as

$$
\begin{equation*}
\varepsilon_{\mu_{B}} \frac{P_{2} \ldots P_{B}}{\frac{1}{3} \rho_{x} r_{2}^{2}} \frac{1-\frac{P_{B}}{P_{x}}}{\frac{\gamma}{2} \mathbb{U}_{2}^{2}} \tag{8-28}
\end{equation*}
$$

In the above equations,

$$
\begin{array}{ll}
P_{B} & \text { base pressure, } \mathrm{lb} / \mathrm{ft} t \\
P_{c} & \text { motor chamber pressure, lio } / \mathrm{ft}^{2}
\end{array}
$$

AMCP TOE-200

Figure 8-41. Base Pressure Coefficient of Cylinders, Boolysila, and Flares With Rocket Jet Off

Figure 8-42. Effect of Pocket Set on Bese Pressure
$P_{\alpha}=$ free stream pressure. $\mathrm{lb} / \mathrm{ft}^{\prime}$
$V=$ velocity, fps
$V_{\infty}==$ free stream velocity, fps
$a^{*}=$ sonic velocity, fps
$C_{F}=$ thrust coefficient
$A_{T}=$ jet throat area, ft:
$C_{P_{B}}=$ base pressure coefficient
$P_{\infty}=$ atmospheric density. slug ft^{3}
$\gamma=$ ratio of specific heats
$\|=$ Mach number:

For bodies with flared or boattailed afierbodies, $P_{B i} P_{\infty}$ is corrected by use of Fig. 8-43. The stated correlation agrees well with most of the available experimental data. It is applicable at jet-to-free-stream pressure ratios above the value where base pressure is minimum (represented by the neraly linear portion of the curves in Fig. 8-42).

To give an indication of the characteristics of bise pressure through a more complete Mach number and jet-pressure range, Fig. 8-44 has been prepared. This figure represents a cylindrical body and a nozzle having a jet Mach number of about 3.0. The solid curves represent either experimental data or the correlation curve. The dashed curves are extrapolated values.

8-3.3.3 Firi Base Drag

The boundary layer approaching the kase of fins and other stabilizing urfaces is generally turbulent. The effects of profile shape on the base-pressure coefficient at supersonic speeds with a turbulent boundary layer is small. Fig. 8-45 provides a good estimate of tin base-pressure coefficient at supersonic speeds. At transonic and subsonic speeds, the ratio of trailing edge thickness to chord length is significant, and Eig. 8-46 should be used as a guide for estimating the base pressures.

8-3.4 DRAG CHAKACTERISTICS OF COMPLETE CONFIGURATIONS

8-3.4.1 Interterence Effects-Fin on Base

The presence of fins on rockets affects the external flow characteristics and usually results in increased base drag. The most important parameters appear to be fin thickness, fin longitudinal position. number of fins. and free-stream Mach number. Experimental data on the effects of fins are sparse if all important parameters

Figure 3-13. Bass Piessure Correction for Boattailed and Flared Afferbodics

AMCP 703-280

Figure 8-44. Base Pressure on Cylindrical Bodies

Figwe 8-45. Basu Pressure Coefficient of Fins at Supersonic Speeds
are considered. It is suggested that the empirical relation developed in Reference 29 be used in estimating fin effects on base diag:

$$
\begin{equation*}
\Delta C_{D_{b}}=\frac{t}{c}\left(\frac{0.825}{.1^{2}}-\frac{0.05}{4}\right) n \tag{8-29}
\end{equation*}
$$

where
$t c=$ thickness-to-chord ratio of fins and $n=$ number of fins
This relation is limited to the case where the fin trailing edge is flush with the base. Predicted values using this relation appear to be high at Mach numbers below about 2 ; with reasonable agreement for Mach numbers greater than 2.

8-3.4.2 Computational Table

The anrag characteristics of the complete canfiguration are computed by summing the individual component drag coefficients, based on a common refarence area. Table 8-2, Drag Force Calculation Sheets, which follow, indicate the method of obtaining the drag ccefficients of the

Figure 8-46. Base Pressure Coefficient of Fins at Transonic Speeds
individual components and of the complete configuration based on the configuration presented in Fig. 8-25.

8-4 AERODYNAMAIC TESTING

The aerodynamic performance of rockets may be evaluated by theoretical estimates, flight testing, or wind tunnel testing. Theoretical estimates, due to lack of refinement, often fail to provide adequate quantitative serodynamic data. Flight testing provides a slow rate of data collection; does not allow adequate control of the test ar-
ticle; and is expensive because the test article is usually expended. Wind tunnel testing, however, allows precise control of the rarameters infiuencing flight characteristics. A wide scope of the problems associated with placing a rocket in a selected trajectory-such as stability, drag, and propulsion system influence-may be investigated in a complete wind tunnel program.
An indication of the wind tunnels available in the United States is given in References 32 and 36. While this list is not current and therefore incomplete, the uniqueness of the available tunnels dictates the necessity for matching particular

AMCP 706-280

tunnel chararteristics to the particular test requirements. Tunnel operating capabilities and aize are foremost among the considerations in selecting a test facility. However, consideration of availability, accessory equipment, and cost of test time cannot be ignored.

Wind tunnels are normally classified according to their operating speed range as follows:

Tunnel Classification		Mach Number Range
Subsonic		Less than 0.7
Transonic		0.7 ± 01.2
Supersonic	1.2 to 5.0	
Hypersonic	Greater than 5.0	

Due to inherent problems associated with operating at different speed (or Mach number) ranges, wind tunrel facilities usually elect to operate only within the range of their classification Mach numbers. Since a large portion of the rockets considered in this handbook operate over a wide range of the Mach number spectrum, complete lesting will require more than one facility. The upper limit for supersonic tunnels, $H=5.0$, has been set from conside axions of operating procedures and not abrupt changes in flight characteristics. When air is expanded to a Mach number of approximately five and above, the attendant large change in the temperature resulis in liquefaction of the air. To prevent this, heaters of large caparity, or a medium other than air, inay be used in maintain temperatures above the liquefaction point.

The Reynolds-number capability of a wind tunnel is an important consideration. Matching the full-size-rocket Mach number and Reynolds number on the scale model insures that flow patterns are similar and that the measured forces and moments may be scaled up to the full-size rocket Reynolds-numbor a a function of Mogh number and altitude is presented in Fig. 8-40. The flow pätterns become fully established at a Reynolds number of approximately two million, and therefore the requirement for matching Reynolds namber above this value nay be relaked.
The capsbility for matching flight environment temperature in a wind tunnel is only important in the study of high velocities, such as may be
produc.ai ty reentry trajectories. Flight environment temperatures are not significant on the classes of rocket considered in this handbook.
The investigation of the influence of a propulsion system on the aeroaynamic characteristics of a rocket requires a facility with the capability of propulsion testing or propulsion jet simulation. Operation of a propulsion system in a tunrel requires a means for removing the combustion products from the tunnel airstream, and creates fire and explosion hazards. Propulsion jet simulation is much simpler. Jets of compressed gases such as air or nitrogen will closely simulate exhaust flow patterns. The hazards connected with this technique are only those normal to high pressure storage and transmission. Jet exhaust conditions may be more closely simelated by the decomposition of hydrogen peroxide. but personnel hazards require special storage and handling procedures.
It is desirable to test the full-size rocket in odder to have the maximum degree of confidence in the inta. Generally, however, this is not practical, and a scaled-down test model must be fabricated. Model-size decisions must be based on (1) characteristics to oe investigated, (2) instrumentation located in the model interior, (3) model support capabilities, and (4) size of available test facilities.

The model scale must be large enough so that the component parts which are normally exposed to free stream flow on the full-size article will not be submerged in the boundary layer of the test model. It is desirable that the selected scale provide a boundary layer of the same character that will exist on the full-size artucle. To maintain a desirable scale and duplicate boundary. layer conditions, the boundary layer often must be controlled by artificial means. There are practical limits to the duplication of small details of the full-siza rocket. Duplicated details such as surface condition, wall protiberances, screll heads, and small gaps in the scale model usually parve only to increase the fabrication cost, and affect the data to such a small extent that measuring accuracies do not reveal their prosence. The tolerances used in manufacturing the fullsize rocket should be considered in development of the test model. The data presented in Fig. $8-47$ show a comparison of the test results obained from a full-size model and ann enght-percent scale

AMCP 706-230

0_{c}, deg	x / d	MACH NUMBER						
		1.5	2	2.5	3	4	5	6
10	2	$y / d=1.90$	1.20	0.95	0.80	0.55	0.60	635
	4	3.80	2.40	1.90	1.70	1.30	1.15	1.00
	6	5.60	3.65	2.80	2.50	2.00	1.70	1.50
	8	7.50	4.90	3.80	3.30	2.60	2.30	2.13
	10	9.60	6.10	4.70	4.15	3.30	2.90	2.63
20	2	2.30	1.60	1.35	1.20	1.00	1.00	0.95
	4	4.45	3.20	2.60	2.30	1.90	1.70	1.55
	6	6.50	4.65	3.65	3.10	2.55	2.30	2.15
	8	8.60	5.95	4.65	4.00	3.25	2.85	2.65
	10	10.70	7.20	5.60	1.90	3.95	3.40	3.10
HEL ${ }_{\text {a }}$	2	3.75	2.65	2.20	2.00	1.70	1.65	1.60
	4	5.95	4.10	3.35	3.00	2.75	2.30	2.23
	6	8.00	5.37	4.45	3.90	3.20	2.95	2.80
	8	10.05	6.70	5.40	4.70	3.90	3.60	3.40
	10		7.95	6.35	5.60	4.65	4.20	3.90
-		deg $=44.5$	32.5	\% 6.5	21.5	16.0	33.4	11.0

Figure C-48. Relationsinip B'rween Maximum Allowabla Model Dimensions and Tast Section Dimersion in a Specific Wind Tunnsi Facility
8.70

Figure 3-49. Aciodynamic Force Components
rated load. To obtain the greatest accuracy, a balance should be selected with a maximum load rating corresponding closely to the predicted tesi: loads, especially if small changes in the total loads are to be measured.
Balances are compensated to operate in temperature environments as high as $180^{\circ} \mathrm{F}$. At higher temperatures, a means of cooling must be provided.

Detailed knowledge of the effect of the flow over a model may be obtained by measuring surface pressure with manometers or transducers. Transducers are preferred for greater accuracy and faster response time. Measuring devices should be located near the test model, and the orifices and connecting lines should be large enough
to prevent utnecessary time delays in sensing pressure changes.
Temperature measurements are made by thermocouples which are selected for the expected temperature range and compatibility with tunnel read-out instrumentation. Reference 34 presents information on the performance of various types of thermocouples.
Flow visualization techniques are useful in making cualitative evaluations of the flow over a model. Subsonic flow patterns may he determined by okserving tufts ettached to the surface of the moiel. Areas where the flow exhibits unusual turbulnnce or separates from the model surface may be identified by coating the surface with a volatile substance and observing evaporation rates. At supersonic velocities, the compression and expansion waves emanating from the model surfaces are characterized by marked changes in density which may be identified by shadowgraphs, schlierens, or interferometers.
A recommended source of information in planning wind tunnel tests is the descriptive literature issued by each test facility. This literature provides detailed information for all problem areas covered in the foregoing discussion. The Ballistic Research Laboratories at Aberdeen Proving Ground, Maryland, described in Reference 35 , provide the most readily available facilities ior Army-sponsored wind tunnel tests.

REFERENCES

1. M. M. Munk, The derodynamic Forces on A: A:ship Hulls, NAC-TR-184, 1924.
2. M. D. Van Dyke, "First and Second Order Theory of Supersonic Flow Past Bodies of Revolution," Jourzal of Aeronautical Sciences 18, 161-78 (March 1951).
3. H. S. Tsien, "Supersonic Flow Ouer un! Inolined Body of Revolution," Journal of Aeronautical - Sciences 12, 480-3 (October 1938).
t. M. D. Van Dyke, Practical Calculation of SecondOrder Supersonic Flow Pasi Nonlifing Bodiex of Revolution, NACA TN 2744, July 1952.
万. Royal Aeronautical Socicty Data Sheets, Aerodynamics, London, England, 1960.
4. D. J. Spring, The Effect of Nose Shape and Afterbody Length on the Normal Force and Nes: tral Point Location of Axisymmetrical Bodies at

Mach Numbers from 0.8 to 4.5, Keport No. RF-TR-64-13, Army Missile Command, Huntsville, Alabama, August 1964.
7. D. J. Spring, The Static Stability Characteristics of Screral Cone-Cylinder-Flare-Cylivder Configurations st Mach Numbers 0.4 to 4.5, Report No. RF-TR-63-14, Army Missile Command, Huntsville, Alabama, 1968.
8. C. A. Syvertson and D. H. Dennis, A Second Order Shock Expansion Method Isplicable to Bodies of Revolution Near Zero Lift, NACA TR 1828, 1957.
9. A. H. Shapiro, The Dyniamica and Thermodynamics of Compressible Fluid Flow, The Ronald Press Company, New York, 1953.

REFERENCES (Cont)

10. J. H. Hendernon, Normal Force Pitching Moment and Center of Pressure of Eighty Cone-Cylinder-Fruetrum Boatice of Revolution at Mach Numbers 1. 5 to 4.04, Report No. 6RsF, Ordnance Mïize:Hé Laboratories, Huntsville, Alabuma, 1956.
11. J. G. Lowry and B. C. Polhamus, A Method for Predicting Lift Incremente Due to Flap Deflection at Low ingles of Attack in Incompressible Flow, NACA TN 8911 , January 1957.
12. J. B. McDevitt, A Correlation by Meaxe of Tramoonic Similarity Rules of Experitientally Defermined Characteristics of a Series of Symmetrical and Cambered Wings of Rectangular Planform, NACA TR 1258, 1955.
13. D. E. Hook and J. W. Carlaon, USÁF Stability and Control Handbook, Wright Patterson Air Force Bace, Ohio.
14. P. A. Lageratrom and M. E. Gzaham, Lowu dopect Ratio Rectangular Wings in Supereonic Hlowe, Keport No. SM 18110, Dougles Aircraft Company, Santa Monica, California, December 1947.
15. E. Lapin, Charts for the Compuiation of Lift and Drag of Finite Wings at Supersonic Speeds, Report No. SM 13480, Douglas Aircraft Company: Santa Monica, Čalifornia, 1949.
r6. Loongitadinal Stibility Characteritics of a Series of Ring Tride on Bodies of Reoolution at Mich Nismbers from 0.8 to 4.0 , Meport No. RF-TR-as-7, Army Misoile Cominand, Hunt:ville, Alabema.
16. L. Reckin, Determination of Upiwash Around a Body of Revolution at Superconic Velocitiće. Report No. CM-251, Applied Fhyoics Laboratory, The John Hopkins University, 1946.
17. W. C. Pitt, J. N. Nieleen, and G. E. Keattari, Lift and Center of Preisure of Wing-Body-Tail Combinations at Subsomic, Tromeonic, anc' Gugarsomic speeds, NACA TR 1807, 1959.
18. G. Morikawa, "Superıonic Wing Body Lift," Journal of Aeronantical Sciencen 18, 217-28 (April 1951).
19. G. Morikawa, The Wing-Bedy Problem for Linearised Supertonic Flow, Progrese Repoit No. 4116, Jet Propulaion Laboratory, California -Inotitute of Technology, 1949.
20. J. L. Potter, N. M. Shapiro, and W. D. Murphree, An Interference Factor for Mulifisinned Trail Aosemblies ix Suferscrie Fitow, Report No.

$0 \cdot 72$

2R12F, Ordnance Misnile Laboratoriea, Huntsville, Alabama, May 1956.
22. Handbook of Supersonic Aerodynamics, Section 8, "Bodies of Revolution," Report 1488 (Volume 3), Bureau of Naval Weapons, Department of the Navy, Washington, D. E., October 1961.
23. W. E. Storey, Jr., Collection of Zero-Lift Drag Data on Bodies of Revolution from Free-Flight Investigations, NASA TR-R-100, 1961.
24. Aerodynamics Facilities Section Staff, Aerodynamic Characteristics of Spherically Blunted Cones at Mach Numbers from 0.5 to 5.0, Report MTP-AERO-61-38, Marshall Space Flight Center, Huntsville, Alabaina, 1961.
25. P. R. Connolly, The Zero-Lift Foredrag and Body Bcae Drag Coefficient of a Series of Ring-Tail-Struf-Body Configurations at Mach Numbers from 0.8 to 4.5, Report No. RD-TR-6E-8, Army Missile Command, Huntaville, Alabama, 1963.
26. D. R. Chapman and M. W. Rubesin, "Temperature and Velocity Profiles in the Compresaibie Liaminar Boundary Layer with Arbitrury Distribution of Surface Temperature," Journal of Aeronautical Sciences 16, 5 $\$ 7-65$ (September, 19:49).
27. D. B. Lee and M. A. Faget, Charts Adapted from lian D'riests Turbulent Flat Plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat Tiznafer Cocfficient, NACA TN 3811, October, 1956.
28. R. W. Truitt, Fundumestals of Aerodynamic Heating, The Ronald Presn Company, New York, 190:
29. E. E. Hinneywell, Completion of Power-Off Base Drag Data and Empirical Methods for Predicting Power-Off Base Drag, Repoot No. TM 884-837, Convair, Pomona, California, 1959.
м0. H. H. Korst, W. L. Chow, and © W. Wument, Research un Transonic and Supersonic Flow of - Real Fluid at Abrupt Increases in Cross Secifia, NiE Tech Note 892-s, University of Illinois, Urbann, Ilifnois, December 1950.
31. C. E. Brasxell, n Correlation of the Base Presanre on a Body of Revolution With A Cold Jet Eshawting Through the Bace, Army Misaile Cormanad, Hintaville, Alabama.
32. National Wind Tunnel Smmmary, Aeronantics Parel of the Aeronautics and Astronantics Coordination Board, Department of Defense and

National Aeronautica and Space Administration, Washington, D. C., $19 \rho_{i}$.
33. Test Facilitics Handbook, Arnold Engineering and Development Center, Arnold Air Force Station, Tennessee, July 1968.
34. R. L. Walker, Heat and Temperature Measurcment, Prentice-Kiall, Inc., New York, 1950.
35. J. C. McMullen, Wind Tunnel Testing Facilities at the Ballistic Research Laborateries, Aberdeen Proving Ground, Maryland, 1080.
86. AMCP 706-342, Engineering Design Handbook, Design for Control of Projectile Flight Characteristics.

8.4

AMCP 700-200

TABLE: 8-1. COMPUTATIOMAL TABLE (cont)

-7,7

TABLE 8-1. COMPUTATIONAL TABLE (cont)

TABLE 8-1. COMPUTATIDNAL TABLE (cont)

TABLE E-1. COMPUTATIONAL TABLE (cont)

TABLE 8-1. COMPUTATIONAL TABLE (cont)

TABLE 8-1. COMPUTATIONAL TABLE (cont)

TABLE 8-1. COMPUTATIONAL TABLE (cont)
length of boattail

TABLE 8-1. COMPUTATIONAL TABLE (cont)

TAELE \&-1. COMPUTATIONAL TABLE (comt)

TABLE 8-1. COMPUTATIONAL TABLE (cont)
variable for abscissa entry, Fig. $8-16$
(Note: β AR ≥ 0.5 for clata to apply)

TABLE 8-1. CEmputational table (cont)

TABLE 5-1. COMPuTATIONAL TABLE (cont)

TABLE 8.1. COMPUTATIONAL TABLE (cont)

TARLE E-2. DRAG.FORCE CALCULATION SHEET (cont)

TAEiEE 8-2. DRAG FORCE CALCULATION SHEET (cont)

TABLE 2-2. DRAG FORCE CALCULATION SHEET (cont)

TABLE 8-2. DRAG FORCE CALCULATION SHEET (cont)

TABLE E-2. dRAG fORCE CALCULATIOH SHEET (cent)

TARLE 8-2. DRAG FORGE GALCULATISN SHEET (cont)

TABLE 8-2. drag force calculation sheet (cont)

A

Absorptivity, 6-6.1.2, 6-21
Accuracy - Rocket System, 7-1, 7-2
Actuating Device, 3-5.2.1, 3-9
Aerodynamic Friction Heating. 6-6.4, 6-2"2
Aerodynamic Stability, 7-3.2.1, 7-3
Aerodynamic Testing, 3-10.4, 3-18; 8-4, 8-67
Angular Errors, 7-3, 7-2; 7-5, 7-8
Angular Dispersion, 7-3.2.1, 7-3
Autospin, 3-4.5.1, 3-6
Auxiliary Devices, 3-7.7, 3-15
Axial Load Component, 6-3.2 ($\mathfrak{6}-11$
Axis of Inertia, 7-6.3, 7-14

B

Ballistic Coefficient, 4-2.3, 4-3; 7-8.3.3.3. 7-31
Ballistic Phase Errors, 7-2, 7-2; 7-8, 7-25
Base Drag, 8-3.3, 8-51
Beams, 6-4.1, 6-13
Bearing Stress, 6-4.5, 6-18
Bending Load Components, 6-3.2, 6-11
Boattail Wave Drag, 8-3.1.2, 8-45
Body Drag Force Calculation Sheet. 8-3.4.2, 8-66;
Body Geometry, Figure 8-24, 8-43
Body in Presence of Fin, 8-2.4.2, 8-34
Body-of-Revolution Dase Drag
Rocket Jei Oñ, b-3.3.1, 8-51
Rocket Jet On, 8-3.3.2, 8-63
Boost/Sustain System, 4-4.2, 4:!
Boost System, 4-5.2, 4-14 ,
Booster Mass Ratio, 4-3.2.1, 4-5
Burning Phase Error, 7-2, 7-2
Burning Kate, 5-3.1.3, 5-11
C
Center of Gravity, 6-2.1, 6-2
Circular Probable Error, 7-9, 7-31; 7-10.3. 7-35
Columns, 6-4.2, 6-15
Combustion Chamber Heating, 6-6.2, (i-22
Combustion Chamber Pressure, 5-4, 5-13
Composite Propellants, 5-3.1.1, 5-10
Computational Table, 8-3.4.2, 8-66
Conicai Divergent Section, 5-2.2, z-7
Constant Spin Acceleration, 7-7.2.2, 7-20

Constraints. Weapons, 3-6.2, 3-14
Cost Effectiveness, 3-11, 3-18
Cruciform, 5-3.1.2, 5-10
D
Deflection Probable Error, 7-10.2, 7-35
De Laval Nozzle, 3-5.2.2, 3-10
Density Model
Annual, 2-2.4, 2-2
Seasonai, 2-2.4, 2-2
Design Data, Figure 8-25, 8-43
Design Optimization, 3-8, 3-16
Direct Fire Rockets, 4-3.1.2, 4-3
Discharge Correction Factor, 5-2.1.2, 5-7,
Dispersion
At Warhead Event, 7-8.3, 7-27
Due to Wind, 7-3.2.2, 7-3
Reduction, 7-3.2.5, 7-7; 7-7.2, 7-18
Double-Base Propellants, 5-3.1.1, 5-10
Drag Form Factor, 4-4.2e, 4-8
Drag, Free Range Equation, 4-3.1.1, 4-3
Ductility, 6-1, 6-2
Dynamic Ünbalance, 7-8.2.6, 7-27
Dynamic Unbalance Effect, 7-6.3, 7-14
E
Elastic Limit, 6-1, 6-2
Emissivity, 6-6.1.2, 6-21
Energy-Management Techniques, 4-2, 4-2; 4-4.1.2. 4-8; 4-5.1.2, 4-12; 4-6.1.2, 4-15; 4-7.1.2. 4-16
Environmental Testing, 3-10.5, 3-18
Erosion, 5-3.1.4, 5-12
Exhaust Plume Heating, 6-6.3, 6-22
F
Fin Base Drag, 8-3.3.3, 8-65
Fin Geometry, Figure 8-23, 8-42
Fin in Presence of Body, 8-2.4.2, $8-34$
Fin Wave Drag, 8-3.1.4, 8-48
Fin Body Interferences, 8-2.4.2, 8-34
Fins
Coplanar, 8-2.2, 8-19
Cruciform, 8-2.4.3, 8-37
Low Aspect Ratio, 8-2.2. 8-20
Rectangular Planfurm, 8-2.2, 8-20
Ring Tail, 8-2.3, 8-22

AMCP 706-280

Swept, 8-2.2, 8-20
Unswept. 8-2.2, 8-20
Flare Wave Drag, 8-3.1.3, 8-46
Flight Testing, 3-10.2, 3-17
Friction Drag, 6-3.2, 8.51
Fuze, 3-5.2.1, 3-9
Furing Errurs. 7-8.2.8, 7.27
G
Grain, 5-3.1, $5-7$
Grain Compasition. 3-5.2.2, 3-9
Growth Fector, 4-2.3, 4-3; 4-3.2.3, 4-5; 4-3.3. 4-5
H
Hardress, 6-1, 6-2
Heat Transfer. 6-6.1, (6-1:)
I
Ideal Flow, 5-2.1.1, 5-4
Ideal Velocity Equation, 4-3.2.1, 4-3
Ignition, 5-3.2, 5-12
Impulse Variation, 7-8.3.2.3, 7-30
Indirect Fire Systems, 4-3.1.1, 4-3
Insulating Materials, 3-5.2.2, 3-1.0
Internal Combustion Engine, 5-1. 5-2
Internal Cylindrical Surfaces, 5-3.1.2, 5-11
Internal Star Design. 5-3.1.2, 5-10
1
Joints. 6-4.5, 6-15
1
Launch Phase Errors, 7-6. 7-10
Launcher Length, 7-7.2.1, 7-18
Launcher Rail, 3-5.3, 3-13
Law of Proportionality of Stress to Strain. 6-1, 6.2
Linearized Flow Theory, Fins. 8-2.2. 8-22
Linearized Slender Wing Theory. Fins. 8-2.2, 8-20
Linearized Supersonic Wing Theory, Fins, 8-2.2, 8.22

Listing Line Theory. Fins, 8-2.2, 8-20
Loads, 6-3, 6-10

M

Malaim, 7-8.3.1.1. 7-28
Malalignment of Fins. 7-3.2.4. 7-27

Mallaunch. 7-5.3.1.2, 7-29
Margin of Safety, 6-5, 6-19
Mass, 6-2.1, 6.2
Flow Rate. 5-2.1.2, 5-7
Material Modulus of Elasticity, 6-4.2. 6-5 5
Methods of Rocket Transport, 3-4.E. 3-7
Military Rocket Systems, 3-2.1, 3-1
Modulus of Elasticity, 6-1, 6-2
Motor
Combustion Chamber, 3-5.2.2. 3-11
Exit Orifice, 3-5.2.2.3-10
Thrust Level, 5-5, 5-13
Multi-Fin Configuration, 8-2.4.3, 8-37

\mathfrak{N}

Nose Wave Drag, 8-3.1.1. 8-44
Nozzle
Closure, 3-5.2.2, 3-11
Contours. 5-2.2, 5-7
Erosion, 5-2.3, 5-7
Exhaust Velocity, 5-2.1.1. 5-4
Numerical Example, 4-8, 4-19

0
Ogive Nose, 6-2.1, 6-2
Operational Modes, 3-3. 3-3
Oversize Head Configuration, 8-2.1.4, 8-16

P

Parabolic Section, 5-2.2, 5-7
Parametric Performance, 4-2, 4-2; 4-4, 4-8; 4-5.2. 4-13; 4-6.2, 4-15; 4-7, 4-16; 4-7.2. 4-18
Parametrics. 3-6.3. 3-14
Payload, 3-7.1, 3-15
Performance Estimates. 3-7.6. 3-15
Plates, 6-4.4, 6-15
Plug Nozzle, 3-5.2.2. 3-10
Prelaunch Errors, 7-4, 7-7
Preliminary Design, 3-7, 3-14
Prespin Automatic Dynamic
Alignment (PADA), 7-7.2.5, 7-24
Launcher, 3-4.5.2, 3-7
Fressure Vessels, $\hat{\text { - }}$-4.3, 6-15
Propellant
Charge or Grain, 3-5.2.2, 3-9; 5-3.1, 5-7
Weight Fraction, 4-3.2.2, 4-5
Proportional Limit, 6-1, 6-2
Propulsion Phase Error. 7-7, 7-14

Range Probable Error, 7-10.1, 7-35
Real Flow, 5-2.1.2, 5-7
Recovery Temperature, 5-6.4, 6-23
Requirements, Weapons, 3-6.1, 3-13
Research Rocket Systems, 3-2.2, 3-2
Ring Tail Wave Drag, 8-3.1.5, 8-48
Rocket
Launchers, 3-4.1, 3-4
Motor, 3-5.2.2, 3-9
Motor Requirement, 4-3.2, 4-5
Nozzle, 5-2, 5-3
Pitch Inertia, 6-2.2, 6-2
Roll Inertia, 6-2.3, 6-7
Rod and Tube, 5-3.1.2, 5-10

S

Sample Calculation Sheet, 8-2.4.4, 8-42
Shearing Stress, 6-4.5, 6-17
Six Degree of Freerlom Equations, 7-5, 7-8
Slender Body Theory
Boattail, 8-2.1.2, 8-5
Conical Flare Afterbody, 8-2.1.3, 8-5
Nose Cylinder, 8-2.1.1, 8-4
Slowily Uniformly Decreasing
Spin (SUDS), 7-7.2.3, 7-20
Solid Propellant Motor, $0-1,5-2$
Sonic Velocity, 5-2.1.1, 5-6
Sounding Rockets, 4-3.1.3, 4-5; 4-6, 4-1)5
Specific Impulse, 4-3.2.1, 4-5
Speed Change Errors, 7-3.1, 7-2
Spin, 7-3.2.4, 7-5
Spin Buck, 7-7.2.4, 7-20
Spin-On-Straight Rail (SOSR), 3-4.5.3, 3-7
Squib, 3-5.2.2, 3-11
, Standard Atmospheric Model, 2-2.1, 2-1
Static Testing, 3-10.1, 3-17
Static Unbalance, 7-8.2.5, 7-27
Stress, 6-4, 6-13
Structural Testing, 3-10.3, 3-17
Synthetic Wind Profile, 2-2.2, 2-1
System: Elements, 3-5, 3-8
System Integration, 3-9, 3-16

T

Temperature Profile, 2-2.4, 2-3; Table 2-4, 2-14
Testing, 5-6, 5-15; 6-7, 6-24
Thickness Effect, Fins, 8-2.2, 8-22
Thrust Correction Factor, 5-2.1.2, 5-7
Thrust Malalignment, 7-3.2.3, 7-3
Total Drag, 8-3, 8-44
Total Error, 7-2, 7-2
Total Moment of Inertia, 6-2.2, 6-7
Trajectcry Profile, 4-4.1.1, 4-8; 4-5.1.1, 4-12; 4-6.1.1, 4-15; 4-7.1.1, 4-16
Twin Fins, 8-2.4.3, 8-37

4

Ultinate Strength, 6-1, 6-2
v
Vr,riable Acceleration Technique, 7-7.2.6, 7-24
Velocity
Correction Factor, 5-2.1.2, 5-7
Requirement, 4-3.1, 4-3
Vertical Ascent, 4-6.1.1, 4-15
w
Warhead, 3-5.2.1, 3-8
W/ave Drag, 8-3.1, 8-44
Winds
Lower Level, 2-2.3, 2-2
Upper Level, 2-2.2, 2-1
Y
Yaw Oscillation Uistance, 7-3.2.1, 7-3
Yield Point, 6-1, 6-2

[^0]: From I/andhooh of Cipiphifirs and Syurt Vimironmints, by Shea L. Valley. Air Force Cambridge Researel Laboratories.

[^1]: From Handbook of Geophyrics and Space Encironmente, by Shea I. Valley, Air Force Cami idge Research Laboratoriex. Used by permission of copyright owner, McGraw-Hill Book Co., Ime.

[^2]: "The manufacturing, opezations, maintenance, and logistics problems and conts associated with each candidate design must also ke considered, and can easily be controlling factors in the selection of design options. Fixed and variable corts for anticipated launch rates etc. must bu considered. costs for anticipated launch rates etc. must me considered.
 However, thit fiandbook is concerned primarily with the However, this tiandbook is cencerned primarily with the
 integration of the rocket system, particularly with respect to design and performance characteristics and design and aivelopment costs and schedules of rocket systems. Therefore no extensive discussion of manufacturing, operations, maintsnance, and logistics factors is included.

[^3]: The latent sigular error is the error at the end of a given pisen. The idealized trajectory murt then be usei ${ }_{i t}$ determine the error at the exd of fight.

[^4]:

 AMCP 706-280

 It should ie clear from the preceding discussion that a "best" aerodynamic configuration does

