

1

ENGINEERING DESIGN

 HANDBOOKDESIGN FOR CONTROL OF PROJECTILE FLIGHT

CHARACTERISTICS

mendenariens, d.s. anMy matenel commans septemeta ige
C
Reproduced From
Best Available Copy

HEADQUARTERS
UNITED STATES ARMY MATERIEL COMMAND WASHINGTON. D. C. 20315

AMCP 706-242, Design for Control of Projectile Fight Characteristics. forming part of the Army Materiel Command Engineering Design Handbook Series, is published for the information and guidance of all concerned.
(AMCRD)
FOR THE COMMANDER:

SELIM D. SMITH, JR. Major General. USA Chief of Staff
OFFICIAL:

DISTRIBUTION:

Special

PREFACE

The Bagivererate Deaige Handbook of the Aray Materiel Cocrmand in a conedineted evies of hardbents sommining braie information and Imedenental data nefol is the doxign and developma; of A;ray satmiol and aytera. The Biandbooks are muthoritative referevee books of practical information and prantitative lacts helpfoll in the ducigh and derolopemeat of materiel that will aseet the nerist of the Arzed Porcri.

This bandrooks, owe of a zeries on tmannition, prowris \& gemeral ourvey of the priseipal luctsrx alfo:ing the tiget of peojectike, and damiben tie mectrod eomanoaly und for predieting and infreacing the tiget performanee.

The confeinats whict charsetertse the aepodyanmic forem asd zomeate oa mavine body ofe idmatited, method for determinisg the ecengimes applieable to a projectile Mavite a given shape and eabler of grevity leation are dmeritud
 projuetile shapes are givem.

The ter of aerodyymic owneinnts in prodieting whility, range and securnay is dmeribel Tre efecte of variations in projectile chape and euter of eravity boestion en rear, aesureey and inthality
 end tive elocts of romod-toreand variation in production lote it prometed.

required to intelligently demign ewfy type of eanveational projectile. The aeth or anm thoom bo tween conerructing a digut at suilabl inform tion, or directing the daigner to the soureen pertineat to his problem, together inith emongl beckgrooind materinl to mate it poritsle for hin to me the date in the origirel reporte Than apood approuch has been elomes in this hardibook; the meterial promated in intended to plees the durpeop in a porition to men informatioa at it in produeod by the rarion rewarel facilition.

Thin text whe prepared by B. L. Evemer, eminged by D. Vimebers, boeh of the ataf of The Bucd Conipany. Much of the material and many belphal connments were supplied by the U.S. Army Bellintio Remarel Laboratorie and by the Picatinay and Frantiond Arsenals. Pinal edition and armarian were by the Bngiseerine Eandbook Othee of Dense Univerity, pricie comtretor to the Army Bemerel Okeopering.

H1ments of the U.8. Army Material Comend
 - Cried rapmeth dirsetly to the Publieation asd Enperdaction Apeacy. Intactionang Arwy Dopet, Chablerabury, Prangivaic 17801. Coutracere choald mbuit rach raquivitiong oe ropumete to fivir comtrocting cilpors.
 whoowe and tropld te adrued to drey Do
 Durters, Neeth Careling iftya.
-
-

TABLE OF COSTENTS

Peregraph Pare
PDEFACB ... i LIAT OP ILLIETRATION8 ... LIST OP TABLES .. LI8T OP APPBNDIXES .. WST ©P \&YMBJL8 ..

CHAPTER 1 INTBODUCIION
1-1 Gamernal 21
i-2 Lepintical Comiderations $1-1$

CHAPTER 2

TRADE-OFPS
2-1 Gneral .. 21

 20 for shamion ieno 81

CHAPTEK 3
ABRODYNAMIC COEFFICIENTS
$2-1$
$8-2$
$8-21$
$2-28$
$2-2$
$8-81$
$8-88$
Gomeral
Buby Arrodymarien
Condtrete 8y ...
Ye 28
Cavio el Ri........ . 28
 88
-
Insal. 88

TAELE OF COETENTS (eGAt'd)

CHAPTER 4

TRAJECTORY CALCULATIONS

Gumerat

Biaple Partiele Trajutory 41

Method of Caleuliting Dirvetion of Tamper w Trajeetory .. 48
Erret of Projectile पime a Trajeetory th
Herivetal Triejetory . 48
Valweity ….... .48
Time of mivit... is
Tweinel Vincity .. 4
Curod Trajettry, Amtiniserat Fire 47
Eficet of Drig en Trajorery 7
Gexpral 47
Axial Dret .i... it
8utranin 2ation, $0<\boldsymbol{K}<0.8 \pm$. .

TABLE OF CONTETISS (enati)
Peragraph
Page
4-7.4
4-7.5
4-7.5.1
4-7.5.2
4-7.5.8
$4-7.5 .4$
4-7.6
$4-7.6 .1$
4-7.6.2
47.7

4-7.7.1
4-7.72
4-7.7.3
4-78
4-7.8.1
$+78$.
$4-7.8$
4-7.10
4-7.10.1
4.7 .10 .2

4-7.10.3
4.10 .4
$4-7.11 .1$
$4-7.112$
Efteet of Reynolds Number on Drag (vefificut 48
Subeonic Drag 48
Surface Roushne: and Irrogalaritien 4 .
Blant Nose .. 48
Bonthiling i Proje..................................... . $\frac{18}{}$
Trempaie Dres .. 40
\qquad
Pis-Stabilised Projectile 410

Eifet of Nowe 8hipe on Cm $_{8}$. 4-10
Freet of Boattailios cen Cs 410
Dral Plow \& 10
Spike-Nowed Proje stiles . \& 10
Undereut Projectiles 418
Ianiepherieal or Sharply Coaieal Ben Projection 418

Tavine Velocity Doe to Treanerse Filiration of
Mrasie …... . 4-18
Fim-Skabilised Projectilas is Revornd Fion......... 4 18

Cropvind Find 8ensitivity 18
Letard Detertion .. 418

CHAPTRR 5
CHOICD OF METHOD OF STABILIZATION

3ABLE OF CONTENTS (emerd)

Panayraph	Prope
5-2.4.2.1	Stability for $\lambda_{\text {nes }} \leq \lambda$
5-2.4.2.2	Stability for $\lambda=0$
5-24.3	Purther Discumions of Magnitude of Modal Vectors and Stability \qquad
5-2.5	Aerodynaraic Jump of Spin-8tabiised Projectiles 599
5-25.1	General . bo
5-2.5.2	Aerodynamic Jume referd
5-2.5.3	Megnitode of AE .. axscie jamp
5-2.5.4	Orientation cf Aerci yris rix Jump 5-11
5-25.5	Distribution of A reiv.urdic Jump 5 E-11
5-25.6	Relationhip Beracer. Aeroct dmic Jump and Q.E. 5-11
5-2.5.6.1	
5-2.6.6.2	Horizontal ©fryoneit 5-12
5-3.	Fin-Stabilized Projeetilea 5 .-12
5-3.1	Gexeral . 8-18
5-8.2	C.P.C.G. Separation §-12 $^{\text {d }}$
$5-3.3$	
5-8.3.1	fixed Fin . 5 .-18
5-38.2	Folding Fins .5-13
5-3.4	Obtaration 5 5-13
5-3.5	Arrow (Subcaliber) Projectiver ${ }^{\text {5-18 }}$
3-3.5.1	(ieneral 5 5-18
- -3.5 .2	Sabut . 5-18
-3-3.5.3	Aerocleaticity 6 -14
5-3.6	Dynamie Stability of Fin-Stabilimed Projectiles 5-14
5-3.6.1	Geperal . 5.14
5-2.62	Zero Spin . 5-14
5-3.6.3	Equilibriw Roll Rate . 5-14
5-3.63.1	Equilibrium Spin . 8-14
5-3.6.32	Torque .15
5-8.6.8s	Compratation of Equilibrium Boll Rate E-15
5-2.ex4	8empie Caleulation S-15
5-8.6.4	Comprotation of Dyamie Etebility 5-15
5-8.6.4.1	Genural $\mathrm{E}_{\text {-15 }}$
5-3.4.42	Gemple Calevietion 5-16
5-8.6.4.3	Mapus Moment Ceemeients 5 .16
5-8.7	Iemonace Inmability 6.16
5-8.7.1	Variatica of Magnitude of Yaw with Aymmotry \&-16
5-8.2.2	Reapospee Roll Rate, po \$-17
5-3.7.2.1	Computatian 6-17
5-3.7.2.2	Semple Coleniation 5-19
5-2.7.2.3	Retio of p_{f} / p_{0} to 4 roid Empasmer Inetability 5-17
5-3.8	Roll Loek-in . 5-17
5-8.9	Aerodyramic Jump of Fiu-Stabilispd Projective 5-18
5-8.10	

CHAPTER 6

ROCKET-ASSISTED PROJECTILES
6-1. Comeral 81
Momenter Livited Bituation \&1
Varietion of Murio Enersy, Chatbor Prwarte and Propelhat witi Weiat of Projectile © 2
TAZLE OF COKTEFTS (ceat'd)
,

Prinegreph		Pagr
6-2.2	Variation of Becback Accejeration	6-2
6-2.8	Earet of Roekt Adilitions on Projeetije	
	Dzuign Parameters	62
-24	Effeet of imokrt Additions on Aceuracy	$6-2$

CHAPTER 7

LIQUID-FILLED PROJECTILES

7-2 Rreet of sioehize of Liquid Filles 7-1
7-3. Computation of Deaign Parametera 7-1
7-3.1 Gyrowepie 8tability Factor 7-1
7-3.
7-3.
7-4.
Gyroweopie Stability Facto
Dymaric Stalility Factor. $7-1$
$7-2$
. $7-2$
Binid Body Treory
7.2

CHAPTER 8

RANGE TESTING OF PROTOTYPE PROJECTILES

-1.	Geapel	$8-1$
8-2	Preapire Data	
8-3.	Teuting	82
8-8.1	Scatie Toting	8
8-82	Pight Teuting	82
8-8.2.1	Vertical Target Aecarsey	$8-2$
8-3.21.1	Meseurement of Accuraey	
8-3.21.2	Temperaturt Range	
8-32.1.3	Dats Recorded	$8-2$
8-32.2	Raxat (Distance) Aceurney	
8-322.1	Kersaremear of deecriey	
2-322.2	Dete Reconded	
R-822.3	Inmaramentation	

CHAPTER 9
MANUPACTURING TOLERANCES
E

Dempaicalal Chand2.1Probine21

TABLE OR COATEATS (cmetd)

9-2.	1 I'redicted Probabl
	Dynemie Stability
	OLOssary
	\triangle PPENDIXI8
	RBPERENCES
	BIBLIOGRAPH

LIST OF ILLUSTRATIONS

migure Ne. Pan

2-1 Coordinate Syatem | $2-1$ |
| :--- |
| 4 |
| 8 |

4-1 Diagrase of Gravity Foree on Projectile
4-2 Flow Petterne on Varying Leapth, Conetant Caliber 33
4-2 Flow Petterne on Varying Leapth, Conetant Caliber 33
Diemeter Spike Nower at Supermonie Velocition 411
5-1 Abbreriated Graph of $1 / s_{0}$ 58
5-2 Graph of $1 / \mathrm{s}$, vi 5-10

LIST OF TABLES

Takle No. Pes
2-1 Redimeted Aecaracy of Aerodynamic Coeficiesta Obtained by Balliatic Range and Wind Tunnel Tate 3-7
2-2 Con*ejenta of Typical Projectiles Measured in Fret Fight and Ietimeted 3-8
3-3 Partial Liot of Baliatic Teat Banges is North Ameriea 3-9
2-4 Partial Liut of Wind Tunnels in North Americe 3-9
3-5 Lint of Beports Containing Methods of Eetirasting Coesticients 210
41 Typical 0 4
4-2 Seaple Trajoetory Colenitiva on Dest Compreter
-1 (b-inch Sample Projectile)
-1 (b-inch Sample Projectile) 45 45
-1 Semple Trajoetory for Spin-Gtabilized 5-ibet 5.7
5-2 Semple Trajectory for Spin-stabibized 5 -ine. Projeetily at OE: $=70^{\circ}$ 5-8
2-1 Proboble Variability of Roriset-A misted Projective Guaracteriatiea 9.2
I-s Eenple Trajetory for 175-mme Spin-Stabilived Projectile. 93
 94
 9-5

LIST OF APPENDIXES

Appendix No. Pege
I Sample Spin-Stabilized Projectile
A-1
A-1
II Calculation of C.G. and Redius of Gyration A-2
III Gyrowopic Stability Entimates
A. Spin-Stabilized Projectile With Boattail A.3
B. Spin-Stabilized Projectile Without Boattaii (Flat Bare) A-5
IV Comparison of Esitimitea of Ballistic Parametars By Various Methode A-6
V Dynamic Stability Eetimate A-
VI . Static Stability Eetimate of a 5 -inch Fin-Stabilised Projectile A-10
VII Projectile Ceometry A-10
VIII Aerodynamie Data Sheets
A. 30 -mm ERI Projeetile, T306E10 A. 11
B. $20-\mathrm{mm}$ HEI Projectile, T282E1 A. 12
C. Drag ve Trancation : Conical Heads A. 18
D. 2.75-inch Roeket, T131 4-14
E. $90-\mathrm{mm}$ HE Projectile, M71 A-15
F. 105-mm EE Prujeetile, M1 (Modified) غ 16
G. 4.9-ealiber Projectile ut Transonic Speede A-17
H. 90 -mis HE Projeetile, T91 A. 18
I. Eftecta of Heed Shape Variation A. 19
J. 120-man HE Projectile, M73 A. 20
2. Come Cylizder 4-21
I. Efteet of Bonttailing on $C_{D_{0}}$ A-2
M. Ereet of Boattailing on $C_{D_{e}}$ at $\mathrm{M}=2.44$ 4-28
N. Gh-mm Model of 175 -mm Projeetile, $T 203$ $1-55$
O. 7.2-ineh Spinper Rocket, T99 4.27
P. 5-ealiber A-N Spinner Rocket 4-28
Q. 7-ealiber A-N Bpinner Rocket 4-29
R. 7 -ealiber $\mathrm{A} \cdot \mathrm{N}$ Spinner Rocket and 9 -aliber A.N Spinner Preket 1.30
8. 10-ealiber Coie Cylinder 4-32
T. 105-mm HEAY Projeetile, T171 (Modifed) A-38
U. $60-\mathrm{mm}$ Mortar Projectile, T24 A-34
V. 105-mm Mortar Projectile, T53 A-95
W. 57-mm HRAT Projectile, T138E18 1-38
X. $90-\mathrm{mm}$ HEAT Projectile, T108 4-37
Y. 90 -mm HRAT Projeetile, T108 4-88
2. 10-ealiber Artow Projectile A-89
II Trajeetory Program in FORTRAN Languge 4-40

LIST OF SYMBOLS

Drage it
Maximum budy diameter, $\mathfrak{i t}$ Bese of netural logerithms
Feet per mecond
Acceleration of gravity, ft/eec
Altitude above sea !evel, ft
Acial moment of inertis, alugfit ${ }^{2}$
Tranaverse moment of idertis, olugft^{2}
$\sqrt{-1 ;}$ in complex notation indicates rotetion by 90°
Model vector, radians
Axial radius of Eyration, calibere
Traneverse radius of gration, calibers

Lift, lb
Bore travel, it
Natural loparithin
Mach number
Man, duge
Normil force, bo
Twist of rifing, cal/turn
Mangue force, lb
Chamber preemure, lib/ft
Roll rate, rad/men
Equilibrium rodl rate, sad/me
$=\sqrt{c+C D_{0} M^{2}}=a+6 M$

LIST OF SYMEOLS (cmerd)

-	$\left(9=\frac{t r}{} r^{2}\right)$	Sumacripes	Pertaine to nutation veetor
	Anguiar velocity of a noarolling mimik-6wed coordinate symemabout a borisontal exis, rad/ese (in darping moment expremion)	$:$	Pernios to preceasicn vector Perteins to agymmetry vetior
r.d	Redisos	max	Maxiguma value
\boldsymbol{S}	Froatal area f^{2}	sed	Standerd vilue
:	T.ww of projectile, ealibers	i	Duaray index: to be reploced by a moqueoce of apecific indicen whed
4	Dymmic atability factor		the suleripted quantity is usod in
*.	Dypamic stablity factor for $\operatorname{lom}_{\infty} \leq 0$	j	Seare definitioa sin sabecript i
4	Gyroweopic atability factor	J	Lercotynavic jump
T	Tempersure, ${ }^{\circ} \mathbf{F}$ Time of Sighe, mee	λ,	Daraping expomath per ealiber of
1	Time, me	\%	Repose
\boldsymbol{t}	Utitiay	ρ	Rucomat
v	Velocity or mirapea, ipe	c	Darivative with reppett to ande of
\boldsymbol{v}	Vokure of projective (includint boudary hyer over the boatriil, if provelt, it ${ }^{\text {b }}$	-	
W	Toincer ${ }^{\text {B }}$	B	Baty
I	Rane	-	Bme
8	Dindere tome trapetory, it	-	Erentive
E	Vertied ampoenot of yem, red		Equibrim
-	Erinumed mempenat of yow, rad	J	Fion
1	Year anim, rol	-	
\cdots		\square	Drivative with remeet to exi
-		7	Tumind
\bigcirc	Aover ard butmen a borisoand		Trie
-	$\bmod a=$		Derivalive wish rmpart ist timo
	-rem,		Durivaive with rmpent to milione
-	Dunity, deas		mamed, ac. H_{1} - m dr

CMAPTER 1

IITRODUCTIOA

 the duige of poojuction frud trom cuac. The profective aridured are of grocer sime and weight thes ana memily be fred from a hand-held meapon, and they arp mot equipped with raidnoer aypteme It will te aresoed that they are bedien of novelution, mantimer equippad with fing, and foy in the genart dirretion of the konitadinal aria.

The primeipel mponere of the performace of - projectile ars:
a. Ramge

1. Ieriality
e. Awearmy
d. Tiane of tint:

Tre selvee trive on by thow momare whe a
 by atmmpieric amditiom mauck velecity. ans
 and by tixich charseterintive dringed and buit info themetile.

The primary lighte emarseterintiee xtime dirvety intheoce ithe trajutery orr:
2. Dras

1. Acrutrmeair jemp
bot bete drec. mbirt ethinfy cliceter reage and timp

 cherenoriation everis:
2. Leno-jew dras comerainet
3. Tam-drat mentiont
e. Evetiesal deasits
d. Lift coel cient
e. 8ealility
4. Alymuetry cilceta
5. Wied maitivity
6. Morele blan meminivity

The lift and drag eneflecieaty are fartiens of peojentile shape and airapeed. Stability in primerily a trection of chape, airpoed, air demity, and spia rete, and of the maswer in milich the mass if the peojective in dintriboted. Musale blex ermitivity depeads oo ementially the ane paremeters a crability. Wind maitivity depeode os abe lift and drat conefieventa, an sebbility, and, in tire ancol roebet-mined projectilea, an the ratio of tivent to dras. Practically all projoetile bodire (and finc) are dripged with mational armeotry; their myenery arime in the ramatoctaring peome.
 the omater of eroviny of the fuec inm ant in in the perinetile axin.
 intimes and therofore the primery eight churen-

 in amole mocity, air dreity ad wived prone.

 Panture.

Lis Loortrical Comeldmations

mind the elements of ect, rorability, and transportability. He should avcid, where pourible, the uee of materiaks likely to br in ebort eupply during wartime. He will oftea be limited by the faeilitias for loadine the projective into the gun, and by the deaign of the gun chanber. Mout of theme eoossiderations are beyord the seope of this partiealar handbook, but are cevereid in other denign handbookx of thin series.

It in not diffeutt to desigu a projertile havina loug range. a relatirely whort time of tights, and Δx mall reand-to-reand diepertion. However, the projectile might, and probably would, have sueh a mall jearnetive ralue, or lethality, that it would - be unctese am a wrapoa. THE PRINE FUNCTION OF THE PROJELTILE DESIGNER IS TO PIND THAT COMPRONIEE ANONO RANGE, ACCI:RACE AND LETEALITY WBICH WILL BEST SLPPORT THE MISSION OF THE WEAPON SYEEEM UNDER CONSIDERA. TION.

Por crangle, modifective al ancining pro.
jective by incrsaning the length of its ogive, while preserving the overall length of the projectile, should deurrase its dras coetheient and, theretore, increase ita range. However, the atability of the round will be altered, with some effeet on securacy; the volume of the projectile will be deerensed, with rewulting decrrase in lethality (or other memare of usefulnem, as in the eave of saoke or illumination projectiles). These trade-ofler are disenmed in de. tail in the body of thin kasuibook.

In mont of the dinenmions in thin handbook is will bre tacity amumed that the dargoer is given the projectile diameter and the charaeteriaties al the gun from which it in to be firch, ie., upper limits, on chamber promare, mumie enerio and murife momentan have bees catablinted by the sun devipoer. Ocemiomally, but sot oftem, the pro jeetile devigper may be able to appeify the twint of the riding. If the davigner in aquipped to make correct deaign decisiona for any ome calibor, be will be able to cope with the problem of chocring an optimum ealiber for a siven mimine, thould that probles aries.

CEAPIEA 2

TRADE-OFFS

2-1. GEIRAL

If the solution of a trade-e proilys is ex. promed in aumbers, an intelligent comprovice betwen coaftieting geak ene caly te roweted when the eore of falling shopt of ceeh gol man bex. porwed is aumberi Purtherwore, these penalty sumbers man to in the mone symen, ie., they mout be eapable of being added or makiplied to Pthar to give a ciprifeaat mumber.

Ow meful cosoeph, berrowed troin economices. in that of "utility", expremed as a number which lime between sero, standist for usekon, and mity, ctasding for maximus nefuloes attainple in the piren situation. If the ntility of acelh element of a intuation caa be comproted, the atility of the ower. all sitcation ena he lound by meleipking. or.
 (Tive ana sing be divided by tive sumbre coe. provets if the comverion that rility earnet exead maity in to to retainel)
 ot matioine of the noture cheme of projective
 army rupuribie for defming the dititer reptive.
 mach of diftoruen rememes tor the permon, ad at

 the mefulion of bermend mume townend dimp of liget, axd improwid eoperecy. Whits the atan-

 "rapting "as the buter ove provit rempe is

atility curves The dasigner aboukl diecte the atiility curvee with the evemomer before proceding with the dexign; anat elariseation oe denign objectives in likely'to resale. Inamplon of tredoof are given trew.

2-2 HCRMSED MAICF VS WARIEAD vocutis

2-21 0ificy of scealase Projective Ammen Igmil io Iore fue tionlasd Rango

 decigen of a retbet-minead projutile to to fre from an exinting gat Renge in incroased by the 'eddition of rochot foel; mowerer, the overall hangth of the projective in limited by utability or handling comiderationg, os that as the emount of rochret tual in inerment, she volume of the warboed, and timorfore in beliolity, in docromed. Tho denigere cen emppote the tredoel curve of reage on mertaed rolame, and tis this eurve with a simph algoraie
 neme below.

[^0]Hert $X_{\text {ne }}$ and ∇Q^{2} repenent the range and markead volume, rempectively, of the standard projoetile find froe the given gun. The denign problem in to inereane the ranpe sbove In wisheust mevilicing "400 mank" warkead volume. The apestion for the enofe chown would be:

$$
\frac{x-X \cdot m}{X_{o m}}=\frac{V \alpha_{o m}}{V \alpha}-1, o
$$

mplecing the freetives by aymbole:

$$
\begin{aligned}
& 8-\frac{1}{3}-1-\frac{1-2}{3} \\
& \sin \quad Z=\frac{I-I_{m}}{I_{m}} \\
& \text { nd } B=\frac{V Q}{F C}
\end{aligned}
$$

 the range $4<\mathrm{B} \leq 1$, lat it will tart ant thet in this ermeple wo ape at ionenced in mbutione out-

Argpene tiat in comination of tiverepts prefonmen lat encriginel the two reility exive Bum trive:

of range unefulnew approsches zeno as the rave approeebes the upper linait.

Sace we loan the reletion letroen 8 and 2 , we cen expara $\|_{\mathrm{g}}$ in tran of R,

$$
U_{s}-1-\left(\frac{1}{3}-8\right)^{*}=\frac{U_{E}}{2}-1
$$

On the summptini thet the atility of tive emper mine mbetion is propertional to the peoduet of the utilition of rumoe and Fertead velume. in have

 gise to Atin eriving

2-23 Duncy of sumand Incivet Armoed

 noulone. In thin ene

and the bet cocrapromion lies at $\mathbb{R}=0.00$, where $E=1.58$ and $X=1.67 X_{\text {ac }}$ Ther remhast wtility of the ctandard proje tive being 1.0 by the criterioa, we have an extisate of the ibereave in napfulmes gained by geing to the rochet-aminted projetile, viz, 58\%.

2-2.3 Compartan of Impuls for Dillty Igan to

 Zere and Uoilty Equal to UuteyIn our examplex it doen mor make mack diffrremee which eriterion $\$ \mathrm{p}$ un, however, thil will mot always be the ewe. In generai, is sea be anid thet the we of the additive eriterion places tive optinam at the print where the ant of the clopes Q the etility earven in aera. In the maltiplientive
 the char etilities before bing sumand to mara. Aftor beeting the arm of eptimen metation, the

2-3. TAEMLATIOI OF POSSIBLE TRADE. OPPS

Denign ehanpen whieh iserremp seeuracy nomotimon decrume ranke; ranpe and ceeuracy might both be inproved by increming the cont of mant facturing the round. The tivaboal mathod outlined sbove eas be reeful in these and similer citas. tiona.

Many differeat trade-a situations are mentioocd in the Cermaion in thin madbook. For er. ample:
a. Conpatiay tive for secursey of simulation in trajectory eciealation.
b. Wartend volome for abort tine-of-tight by me of a abcaliber projectile.
e. Pange or timeot-Aisht for eceursey wisere improved stability may be othained by anploying a hich drat mafleration.
d. Werbend volume for rages of timon-aight in boettailing. or by bengtheaing the onive. Uafortanately, isermion rampe weclly digininter the unefubsen of owom an medimioinhed warteed by inermeing the dimperion (in metars) at the targer.
a. Dray for menofacturing onet in the choive of fa probic.
 and hadline apeos is the one of apor mod roond
6. 8impliein for wertred volume by miag foul. ing fons

AMEP 706-2t2

CRAPTER 3

AERODYNAMIC COEFFICIENTS

3-1. GESERAI

A large part of this handbook in concerned with the interections betwenn a projectile and the air through which it fies. Frequent use in made of the faet that many aspeets of this interaction are independent of which of the two, projectile or air, is actomlly moring; thei- relative velocity is the xignificant quantity. The besie churseteriatice of the thow of a thide, aceh a air, around a body are dencribed in Poundetions of Aerodynamiea by Kuethe and Schetser, ard in Physicel Principles of Mechenies and Acomotices by Pohl, which present many interestiag drawiogex and phatograbis of phe flow of laide, uaing dye or refbetian -aticins to make the motion ritible. The Bibliogrtaphy at the end of this haadbook linss thene and other

3-2. BODY ATMODTEABICS

4 peojeetile fying througt the $\dot{\sim}$ ermeten roversea, turbaleme aed, if its upexd in cufbiently gromt, stoek waves in the air. Both the air aad the projuetile are meoted. The ebergy coateat of these motives in applied by the kinetic esercy of the projetike, and thin tramafer of eserty implien s forer, of force gystem, between the air and the projertike. This force systere may be analyzed isto composests whiet produce changes in the linear and magular relocition mociated with eneh of the throw orthoponal axes which may be rtomen as a cepolimete symem for the domeriptive of the motion of the projectib.

3-21 Cocelisatio syoutce

The coerdinete cytum enployod in thin hand-

momente seting on a projectile thes its origin of the eenter of grevity (es.) of the projectile, ith X -acin pointing in the disection of the tangent to the trajectory (note that this direction cinangen as the projectile moven alone the trajectory) and ite Yand Z-ares in a place mormat so the Xeain. The Yexis is horisontal; the Z-aria in normal to the other two.

Many difereat overdiate arsieme are emploged by writers on projectile enoodyraming, the ohaime of a ayten biag infomoed by ceot ol dovilepmont of the mectbematice iavolved. Howover, monds all of them quane arowe in mavies the rixim ot the contre of previty of the pojection dime to

trauciation ef, mad sotation mbent, itx epenter of drevity.

3-2.2 Taw

The aerodynamic forcen are functions of the attitude of the projeetile with rempret to the diretion of motion of the e.f. relatire to the mrrounding air. If there is no wind. this direction of relative motion ix alons the tangent to the trajetory. (Since wind reloeities are small compared with projectile velorities, wind efleets are wsually introduced as correctiona) Yaw is defined as the ande between the tangent to the trajectory and the direction of the Jongitadinal axia of the projwitik. Thix angie rarien eontinucomly throughout the figeht, mapilly at finc, but, in a well behaved
 chbiliord projurtiles should quiet down to a mearly ementent yaw, called the yow of repone, wirike the yaw of In-atabilised projiztiles abould damp to very small raluex. In matheratieal analymen, the pomition of the projectile axit in uscally projeeted ento the Y, Z-plane, aiving horisoatal and a "rectical" component of yaw. These componenta are related to the yaw by the cosine and sipe of the yaw orientation ancle, asd are mally handlea mathenatically by the nae of ecmplex amabers.

8-23 Cratese Of Prumas

The arrodynamie fovese an a projection ant deurninind by the promare dindribution fonjel exints ower its whole exterior aerfeop. but in oeder to nimplify the momeroment and methomatieal mamipulation of !twow forrem wo stol only with a coprifed ont of the moultantin of the dintributed forwer Themp moultantx have a mapmitude and dircetion, and alms a print of applimation on the mady, is., a point throuph whieh the resoltont ecta. This poiat, called the center of premore (e.p.) of the forer in quention, in anouned to lic in the loagi. tudial axin of the projectik. but ite paition on thet exd dopmete on the thape of the peopeetib, tis sinepped iMach mumber). axial apia men, ead,
 Nom

"lintar" projeretio belamior in which the yam velilom exaredx 10°. The phrqume of geod dexigen ix to keep the yaw wrill below thim figure : not grealer than i°. Llowever, the center of presure of the mugnux forces ean move an appreciable cistance When the yav angle chances an nuch an 10°, and nome attempt to deseribe the effects of this e.p. morement will be made.

3-3. AERODYRAMICS FORCES AIND YOKENTS

3-3.1 Geseral

The (resultunt) forrex and momenta which are wiznifiranl fur projertile doxign are:
a. Normal foren
b. Lift
e. Drag
d. Hexnue force
e. Static moment

1. Damping moment
R. Maxnus moment
h. Boll demping moment

3-3.2 Lift and Dras

The srualtant of the promare foress on a symmetical nowspiming projectile lies in the plase coatrisiag the targent to the trajectory and the bongitudisul axie of the projectile, eallod the "yaw plase"; the point on the projectile acis throagh whiek this recultant pemen is called the center of promure of the lift oer mormal fores, since the orwaltunt may be molved cither into lift and drap momponentx, of into mormal foree and axial draf. lifft in parallet to ether Y, 7-plabe, irap in parallel to the X-mxim; eorad force in perpendicular to, and axial dras in in lipe with, the axim of the projectile. Elect pocible pair of compoonents lies, of course, in the yaw plane.

3-3.3. Bagane Feree

When a projetile in spimuime about ites lomastulinal axing the permare dintribution wor ine norevop in atiered so thet the revaltent tovee so lowger live in the plane α yew. The morodymaliciat tulber
 parant reomil to the gew clame. rogether with in

3-3.6 Yagen Iemont

The magnue forte produces a momeat about an axim through the es. parallel to the normal force. Thim magnue moment changea the yawing velocity in a way whiek deperdes on the boeation of the center of premere of the magases forse, ead on its direc. tion. The magous force and moment are a result of quisnime the projectije, and are aboent oa a monritatiag projectile; bowever, even fim-atabilised projectiles man leve apin.

3-3.7 INAL Denphey Itoment

The roll dampiaf moment is a egeple shoot the longitedinal axie of the projectiv; thin moment en A apianing beds is rolaced to the frietion ho.
twees: projectile and air. Fins produce large roll damping momenta owing to the angle of attack induced by apin.

3-4 FORCE AND MOMEXT COEFTICEETS

It has been found that the aerodynamaic lorcea and the statie moment are proportional to the dimensions of the projectile, to the dynamic pressure of the air, and to the yaw of the projectila. The three momenta ariaing from rotations are aloo proportional to their appropriate ameular velocitive. The factorx of proportionality are known a "uerodynamic coefficienta". They are not constant for a given projeetile, bat are themelver fanctiona of Meah numbere, Reypolds anmber, epin ratis, and jaw. A briaf dineunion of the force and momant coeflicients follows. For a more complete divens. aion of the merodynamic forces and moomate mio Murphy, The Frue Flight Ilation of Symmetrie Micailes, Red. 12.

3-4.1 Aerodynamic Force Conalientu

The most significant of the serodybamic forse coeflicienth are defined a follown; where

$$
q=1 / 2 p^{2}
$$

is the dynamic premure, $8=\frac{\pi}{4}$ of 2 in the troatal sme of the projectiv, and it in the yow in radian:

$$
\begin{aligned}
& C_{w}=\frac{N}{q_{S}} \\
& 0=\text { air deacity, sloce/ts } \\
& C_{L}=\frac{L}{\varphi S} \\
& \nabla=\text { mpend of projoctite ret. } \\
& \text { ative to air, tt/me } \\
& p=\text { soll rete, redime } \\
& t=\text { maximum body dian- } \\
& \text { cue of projentile, it } \\
& H=\text { mormel forme, th }
\end{aligned}
$$

$$
\begin{aligned}
& N_{8}=\text { magrues foren }
\end{aligned}
$$

All of them confleients are expreted to be frastiome of the yew ragie, a. For mall angle ($6<$ 0.17 radinin), thl, azcept G_{b} ean bo maraid to vary linmariy with JRW; chin lache to the reat of clape
 mont comvaimat deocription of the chrapetwitios of the projectil. Uring the subveript a, to donete a derivative with roppes to 4 wo ato wito:

$$
\begin{aligned}
& N=\frac{d C_{m}}{d a} g S_{a}=C_{N_{e}} g_{\alpha} \\
& L=\frac{d C_{L}}{d a} S_{\alpha}=C_{L_{\mu}} \Phi S_{e} \\
& N_{s}=\frac{d C_{M_{F}}}{d \varepsilon} S\left(\frac{p}{V}\right) \beta=C_{m_{\infty}} s\left(\frac{V}{V}\right) \theta \cdot
\end{aligned}
$$

Dran varies with the manare of the yaw, so we wite

$$
D=\left(C_{D_{0}}+C_{D_{2}} x_{0}\right) \Phi S
$$

where C_{B}, is the drag eoefloient at sero yan and $C_{0_{0}}$ in the rate of change of C_{0} with e^{3}.

3-42 Xoment Conneients and Ilements

The moments produced by the aerodynmic foreve are referred to the ecater of gravity of the projoctile, unlem otherwime stated. The moment cectrients in the tercinolory of this handbook, ase dorivative with respeet to Jow, or with rempeot to approprinte anmular velocitica.

3-42.1 Yometit Conctinate

Them ecefliments are defined a follows:
$\frac{C_{n}}{d_{n}}=C_{E_{e}}=$ matic moment eonericient

ingping moment everineient

The tecal mervent aloat a lerisontal aris through the c.e. in given ly

$$
\begin{aligned}
& M_{0}=\frac{C_{M}}{D}+S D+\frac{\partial M}{\partial\left(\frac{\pi}{V}\right)}\left(\frac{q}{V}\right)+\frac{\partial M}{\partial\left(\frac{V}{V}\right)}\left(\frac{V}{V}\right) \\
& +\frac{C^{2}}{6}\left(\frac{\pi}{V}\right) \text { ser }
\end{aligned}
$$

[^1]ity about that axis is mero; i.e., the total angulas velocity about the horiopatal apin in $q+\dot{a} q$ arine from the eurvature of the trajectory. Therefore, in coefieient form
\[

$$
\begin{gathered}
M_{n}=1 v^{2} g\left[C_{m_{0}} E+C_{m}\left(\frac{G}{V}\right)+C_{m}\left(\frac{i}{V}\right)\right. \\
\left.+C_{m}\left(\frac{E}{V}\right)\right]
\end{gathered}
$$
\]

The frate term of the expanaion in the atatie moment, the next two are the damping moments, and the last term is the magnos moment. (Note the each term imside the tracketa mast be multiptiad by $\mathrm{K} \circ \boldsymbol{V}^{2}$ Rd
to obtain the momact)

3-42.3 1 , Irement Ariest Vertien Aris

$\boldsymbol{M}_{\text {, }}$, the amodyamic moment about the "vertieal" axis throegh the eff, in obtoised by a cimilar expancion, interehanging a and B, enbatituting i for $\dot{\alpha}$, and + for q, where $r+\dot{\beta}$ in the ancular volocity about ibe sarin.

The asrodynamie mowent abont the loagitudival axia of the projectio in, in the alomeer of a apininducing torque melt a might be peovided by ceated fine singh

$$
M_{0}=C_{4}+\left(\frac{y}{y}\right)
$$

 eficient. The dimencioalem ratio pd/V whech ap pears sbove it aften denigared by on the rpin is radiane par celiber.

3-425 Ralationely Intwom Dallitis and Acerly

The cartice mock in thi ate vas a qutan of ceerneieate within wiek of tribet the piace of the dyramie proanore, and tere tho gian of the
 elly corroet. If was the syctes need in AMCP 70. 24, Bugionerios Dwirs Blandlook, Amannition Sories, Euction 3, Brion for Contra of Pigite

a. large anount of wind thnact data obtnitual by neroxlynamiciuts.

The ballantir notution will te around for a longe tinus, ws it ix menossery to know that ropfipinats in the ballistic xyatem (which are umally donotivi hy the expita! letter K with a aubucript) ran bu: converted into the correaponding aerodynaniocorflicient alopen (or directly into those roeffeients , which are not functions of yaw) by multiplying the
ballintic syatem coeficient by $8 / \varepsilon$, e.e, $C_{N_{e}}=\frac{8}{\pi} K_{N}$.

> Por example,
$N=C_{x_{2}}\left(\frac{1}{2} v^{2} \frac{\pi}{4} d^{s}\right) a=K_{k}\left(\rho V^{2} d^{j} \sin \alpha\right.$
When sin' $a=a_{2} \quad C_{K_{0}}=\frac{8}{x} K_{N}$ by cancellation. It should be noted that for $C_{L_{i}}, C_{M_{i}}+C_{u_{i}}$, and C_{x}, the multiplier in $-\frac{8}{5}$. (Some authors we $-\frac{16}{\mathrm{~T}}$ at a multiplier, since they use $2 V$ as the denominator of their epin terma, e.g., pd/2V inatuad of yod/V.)

3-43 Compiex Xav

In the foregoing diseusaion, for the alse of simplicity, the symbol 4 was nsed for yaw angle. In the notation of Ref. 12a, a is the component of the yew angle in the "vertical" direction; the component in the horisontal direction in A and the total yaw ande, 8 , is siven by

$$
\theta=6+i e
$$

where the orientation of the yuw is $\tan ^{-1} \frac{1}{\beta}$.
The aerodyamic ecefieient slopen, or "aerodynamic derivatives", can be defined in term of a beeaces of the rotational symmetry of a projectile; their values ean be derived from measurementa made ca a model which is civen a yaw in one plare, identifed an the e-plane. (See MeShave, Kelley and Reme, Exterior Ballistirs, Ref. 7.)

3-44 IIngas Vronet Sige Convontion

If tibe projoctile i viowed from the front, A in peritive to the right and a in positive upwaed. A peojectile with righthand upin (countrer-aloekwion riten looking turn the troat) experiancen e
nughas forme dowaward when β in ponitive. If the renter of promure of thim mantum forion im aft of the e.in. of the projeretile, ther the magnum mumont in preitive niswer it adde to the ntatie monment produced by peaitive a and (m_{a}. In the miudy of tho efteel of ex. panition on the aerodynamie propection of the A-N spinner (Bef. 49), it will be eeen that $\mathbf{C u m}_{\text {go }}$ increames as the c.g. moves forward.

3-5. METEODS OR IRASURTGG THF COEFFICIENTS

3-5.1 Geatral

In order to be able to prediet the performance of a proponeri deaign, a good bit mont be fimown about the probable pattern of the air flow over the. projectile in flight. This air fiow is mathematically described by the serodynamic coeficiente, so thene must be measured or entimated. Eutimation, bs methode referred to bolow, is adequate in the preliminary deaige atages ; bowever, if the comelienti are not well eatablinhed before prototype rounde are manofiectured, the deaigner runs a great risk of a totally unacceptable performance when the first teat firinge are made. Purthermore, the procens of maximising ane dacirable cheracterintic, anch as lethality, which involves reducing other performance charactaristies, mek el atability, to their minimum acesptable values can not he imelligenthy earried out if the prineipal serodymanic conflients are not kown to a clow approwiration.

3-5.2 Tectreds of Iemenatmert

Itro methods are in common une for the meenceresment of coefmeieats, both of which yield valum which are adequate to permit consdent domisa compromises. That in, they yield not only grefieiontIf eceurate values of the coeliicients of the deaign being teated, but alvo pood entimate of the chanysu in thome coelmionts whid would ramit from amall ehange in the deaign. The two methode an:
a. Ballimic range tentiog
b. Wind tronel toutins

The mothod elowen in a particolar cane may depand on the teahaion comadarations lineta to-
low; if not, it depends on factors of time and ront. Major conssiderations are the availability of the range or the tunnel, and the speed with which the mocenary deta reduction can be performed at the availsble facility beeanse costs are nagalty sot widely differers.

Petimated securacy of aerodynamic coeflicienta obtained ly balliatic range and wind tunnel teuta in shown in Table 3-1.

3-5.3 Fictors to ice Concidered in Solection of Ilethed

The conditions aud sbjectives of the teat should be thoroughly diccumed with persoanel of the facility chooen before any work is atarted on teat models or prototypen. However, to umirt the deaigner in the prelimioary dimensaion, signitieant differences betwien the two methodis of teating are deacribed below.

3-5.3.1 Free Fight (Billiste Bange)

a Good eontrol of Mach number, velocity, ramperature, and premarea.
b. Little control of modil attitrode.
e. Moded mont be statically or exrocoopieally stable.
d. No werat to interfere with bant tow.
2. One resk covert a rage of Mach nombers.
2. Deta obtained frow shadowgrapha, photo graphe, and yaw eards, with the powibility of trlemetering some deta.

1. Deta reduction is compliented.
h. Models uanally full sate.
i. Reynolde number ean be varied by varging model sise.

3-6.32 What Trand

2. Eroellent control of Mach namber, veloaity, temperatare, and promares.
h. Exeellent ecatrol of moded ettitude.
a. Cas obtain data ca boek steble and wimable confluretiona.
d. Model sappert may interfere with ben bow.
c. Ouhs one Xiced number pere text
3. Deta obtained from foreo and moment but anem, provere tape, mellifice: photoyrapha of shedownrupha
g. Data re Inction is simple.
h. Models uanally reduced in sise.
i. Ruyoolds nouber can be varied by verging tainnel premure (it may not be pomible to teat at free-dight Begrolds namber).

For a teat of this type a projectile in mannfactured in aceordance with the preliminarv deaign drawings; if length or diameter is too great, a geometrically acaled model with a proper ment distribution may be made. The projectile is fired along a neariy fat trajectory in a exitably inetrumented building. For a deacription of such a range, its instrumentation and method of operation, aee Balliscic Reaearch Laboratoriea Beport 1044 (Bef. 13). (The U.S. Army Ballintic Remarch Laboratories at Aberdeen Proring Ground, Maryland, will be bercinafter roferred to by the initiale BRL.) The denigner should be fumiliar with the capabilitien of BRL, at thie inatallation can be of major samistance to him in any detigr problem.

As the projectile ties aleng the inatrumented range, a number of parameters of its montion are very carefully measured at sucecmive station along the renge. They ase
a. Velocity
b. Boll rate
e. Yaw ande
d. Yew orientention
e. SWerving ration

Fron the ponition verma timen (velocity) dath, the deceleration of the peojectil an be inferrod. Knowing the mam and diameter of the projeotile, and having dencuat the eurreat vabue of bave metrie prowars, tempentare, and hwoidity; we ax ahle to compate the dres and dras connoint, CD Begeat fring et the ereo mipoity can fow the
 of tringe at difenter melle monitive will pive the variation of C_{5} with Irech mumber. If the pro-
 ignition will give met trext.

All of the cancinan lined alowe can be de.

 yowing thequend and the donpine are inn

TABLE 3-1
ESTIMATED ACCURACY OF AERODYMAYIf COEFFICIENTS OBTANED BY BALLISTIC RANGE AND WIND TUNNEL TESTS

-Maximum error equals 3 and. deviations
mined early in the process of the reduction of the data, and indeed the dynamic stability of the projectile at various Mech numbers can be directly oboprved. Dynamic instability may be eatastrophiely apparent; cborrvation of the projectile in a free light condition in one of the major advantages of tenting in a ballistic range. If it is denied to orem the frets of varying initial roll sate, this may be accomplished if suitable gan tuber are available. Usually, however, the designer does not have roll rate at his disposal because even if the projectile is not designed to fit an existing gun, rotating band strength or tube wear anally puts a limit on the allowable spin rate.
(Coefficients of typical projectiles, determined in a bulliaxic range, with eatimatea of their accuracy, are given in Table 3-2, and in the Aerodynamic Data Sheets, Appendixes VIII-A through VIII-Z. A lint of the ballistic range in North Ameries which are mealy weed for projectile testing appare in Table 8-3.

3-5.5 Data Drmilety from Wind Travel Touts

A tue of thin type is rally made ca sealed adele having the exterior configuration of the
projectile's preliminary design. The interior of the model is hollow and contains mutable provisions for. mounting the model on a ming or strut which in turn is exported by a structure attached to a stationary portion of the wind transl. If the model is to spin, the internal provisions include bearings and often a drive motor. Internal arran gage balances are generally and to mamore the aerodynamic forces and moments.

All of the aerodynamic eoellicientry previously discumed can be determined in wind funnel tanta $C_{x_{q}}$ and $C_{u ;}$ can be determined separately if desired. Very securate determination a can be made if the need for such accuracy jomitien the cont.

Coefficients of a typical projectile, determined in a tunnel, with estimates of their accuracy, are given in Appendix VIII-Y.

3-5.6 Text Facilitive

A partial line of ballitis rapers and wind tarapele in North America which are suitable for astirleary projectile model tertive appears is Table $2-8$ and Table 3-4, respectively.

TABLE 3-2
COEFYICIENTS OF TYPICAL PROJECTILES MEASUELD II PREE GLIOET AND ESTIMATED

Conficionls at $M=1.3:$ determined by free flight miescurementa

3-6. TETHODS OF ETTMATING TEE COEH71CRITMS

Ance it in retefal to comeruct a projertile or projoctio modil for rmage or wind trumel turt which han no chance of swoing end which may onen
deatroy walle or indromeratation of the bellimie ragee when fired, it in mecemary to make prolizinary atimatee of the principal aerodyanis eoeflecientis before tuting. The mothodin of moling suel entimater are given in the fint of roporta, Trable

TABLE 3-3

Leomion	Usforeme	Cammex
Benintie Rmenct Laboratorica Aberdee Proving Growed Marylaod	Ref. 39 BRL Report 1048, W. Berua	Two rapere Projectizes up tw 8 inchet max. diameter
Maval Ordname Laboatory Whate Ouk, Merginad	NAVORD tes:	Three ragear two promarined
NiSA Amee Remourh Comer Mofieta Fivid, Cabforsin	NACA Repert Izen	Sevoral reage
Canodion Armameat Remearch aod Develogrant Emadimbert Quboe Cxy, Cande		Lerue rame

TABLE 3-4

PABLE 3-5
LIST OF REPORTS COMTAIMING METHODS OF ESTMATIGG COEPFICIETTS

Quenticy	Refomers	Commeat
$\begin{gathered} c_{m_{0}} \\ c_{m_{0}} \end{gathered}$	$\begin{aligned} & \text { Simmone (Ref. 20) } \\ & \text { Eitctrooth (Ref. 81) } \\ & \text { Wood (Ref. 21) } \\ & \text { Kelly (Ref. 16) } \end{aligned}$	Not reedily avilable Limited ragey of verulnom Bened oo fimmoner verd in thin haodbook (See Appeesix III-A)
$c_{n_{0}}+c_{m_{0}}$	Bitcheock (Ref. 81) Dortace (Raf. 15)	Conventional apisatebilised projectiles α leath L $C_{m_{i}}+C_{m_{z}}=0.9\left(\frac{L}{d}\right)^{1.5}$ $\left(\text { finity geod sex } 2<\frac{D^{\prime}}{d}<5\right)$ Reproducod in Murphy and 8chmidt (Re. 40)
$C_{x_{0}}$	$\begin{aligned} & \text { Martin (Ref. 40) } \\ & \text { Kcelty (RA. } 30 \text {) } \\ & \hline \end{aligned}$	See sho Ref. 40

25. 8emple inculatives are stow in the Apmodiren

Theor methok ase furndamentally bowd oa as interpolation α deta from wery may wisd tuanel and mullimie rage reate of a wide variety of
 dymemie theory in comerocting formules for yersorming the iscoepenciesme Whit thes formales chould α ancue nat tre end sur chapes which bie.
octaide of the rasge of the date on whieh they are besed, it may be secemery to ue then for unomel sampes when so ocker method of eximation is availeble. Sock shapes fhoold be tueted in a wir ${ }^{\circ}$ tuaned; moxe ballimice rame operatorn would ref wo fire theos.

Eximeled combientu of typical projurive shapen for comparime with valowe obecised in

CHAPTER 4

TRAJECTORY CALCULATIOES

4-1. GIATHAL

The parpina of a enenaleciva of a trajecory. tide curve in apmee treed by the center of gravity of the projectite, in raclly the predietion of the espeted prime of impect of the projectice. when tired at a given muede velvity and quedrast elevation. alog with the prediction at amociated quantitivs sech a time of figing, agele of fall, and velocity at impert 8ococting the rage in ctated, and the perpise of the enlentation in to thad the cerreapoeding ausibs molvisy and/or quedrat elevation : the thrre eolletaral quatitios are still of inverce. Or the trajectery many he a groned-tosir type, as for as antinirexaft projectile, for which marimea altivede, time to smelt a givm abtituse, and trojutcry cervitere are inpertant nomis.

Ex:TITVIT FACIORS

 in rect inper perconer. The peveret chage in
 1\% chase in an mpat promever in cellad is mar wrisere a "diftrobial conflevet", by chiore a "mencivity factor." 70 incters are dificuen for
 valum of the inper patometers whieb it why they mat he drumiaded iy man protertatione cad the pertireler ace α emdetime for whint they one

 mainum gine e five in Thelo 8.L.

4-3. DIGITAL COMPUTZR PROGRAMS FOR TRAJECTORY CALCDLATIOES

Inamersble trajetery micelatian have boea made, and are still being mede, tor the prodation of frige tables Up to the adreat and exmeal edoptinn of the high apeed digital compreter, there ealeulations were performed by approximele mell. ede which employed averne of clinetive veinan of
 maned foc their developters, the Gevre Commimion,
 ave sill mefel for rapid crimacime of the efinde of varictione in projectile chape, mumbe woocity and quedrant elevetion ee reage and time of fight The meemary charts and tallen, with dirvetions for their me, are give in AMCP 706-140 (Red. 97). Digital compoter programe tall inte two elmeen,

4-3.1 Eape Partich Trajetwory

The relokiots simple partiole trajumery wo crea cmamen the the caly forme an the poo juetike ase gravity, drage and is peometh theres. The morimetel and mertion anolvations doo io thow forve are amputice at monmion pointa in timo. and the romatione merimonel and wrimel
 am mopatod for wall time mink. If the thon in. urval io amoll amongt. the cimalation of the fro-
 $\alpha 0.85$ mend the time mpiond io cimene a typinal trajotocy on an IBM ise craputur man choot ton then the time of sictit of the projectite

sin-lation better than 1%, asuming that the draf coepicient earve und averaged within 2% of the trise C_{s} at all Mech numbers travenned. If no computation of yaw in made, $C_{D_{0}}$. the axile dras 00 eflecient, is the eoeficient reed. Since projectile velocity and akitude are trown at each iane point, Maci meriber is ahma arailable for enterime a tored tatile of $C_{D_{0}}$, Weeh mumber.

The particle irajectory i rery uninl in compating trade-ofs of rapr. time of aight, and iethality, partieniarty in case of a roctet-mensted projoctile. Brtentions of the peogram to compate marde velocity under the limitations on maris ewerg and mexile momenturn, and tiven thr
 note the dinnop proens

In six-depretiffuadom syctein in saldom
 an IBM 704. Thin proprete eompres the penition and maeity of the peojectile relative to all thrpe sore of the coordinette oritem (s) elvaen, a well as the portisent angles and aglar vebeitice All of
 may meand arder carnis are monlly beft aet), and therlting timinaine of tive traventy in comb fink, blowe to jav angi, gov crmatation, and

 Moct suabs mere inckind in the partiele tre-
 dimonily chet the gromopie atwility of the popjuetib and colevinte tion peo of roper. The mis.
 dind the byecrate mavile of the pepjectio.

It FOXTIAX protide entrueny engren

rocketastisted projectilea, eiber spin- or inatabilised, and single-atage rockels. The apin, yav of repowe, and tyroncopic stability computations do not allow for the premence of fin cant or nocale -ant.

The linited memory available made it necomory 10 read the headinge for the output (ace Table 41 for a mample output) irom canda Appeodix IX skorribex the input earde forming the date deck; the numbers an the input eands deseribe the projretile and its lunnchias enrirommeat. Heading rarchs are gert of the data daek and follow the numerieal dath, exoept that the fint card of the date deck identifor the projectio being procmand.

As experienced pergmaner, oc oce having meens to o ecmputer havix a larger memory, will be oble to mate magy improvemeuts in and extersions to the progras. premented here. For exwnple, thim groctren ioterpolate timenty in fading C_{0}, of $C_{\text {a }}$ from the tathe grovidod by the data diek; it may be fiefecits to reproment a given curve marienth wid with ouly mine data points Furthernoce, bile the empenter will print oat l:S8TAbLs mive 8 , is lew then unity, djramic stability munt be compected by mand.

A unneal entpent pandreed by the progran civen betow in promented is Table \&1. Projoctile dale are for the mande peojuction and te illutrate
 (Appendium J.VII).

The fore fenter relatiog the drace of the mangle projectio th that of tive Sinet/34 Nevy peajectile aterd in the enmpreter menomy wan animend to te 1.05 mine tive mby cigitant difernace in chape in the chorter ogive of the eample pojentile. The

 moneery vee eximated to iv l.14k, hand to the Wixd-simunem enterte of $1=1.72$

 vilodity at impent ando of tale, end the efic and
 et the reat clovion en the (cre lowi) in

The fundamental equations underying the compater program premented below are:

$$
\begin{aligned}
& \Delta V=\left(\frac{\text { Tinat }- \text { Drag }}{\text { Projectile Mint }}-g \sin \theta\right) \Delta t . \\
& \Delta \theta=\frac{-\cos \theta}{V} \Delta t \\
& \Delta X=(V \cos \theta) \Delta t \\
& \Delta E=(V \sin \theta) \Delta t
\end{aligned}
$$

Averaging techniques are uned to improve the aecuracy of the simnataio.

4-4. DEST COMPUTER EETTOD FOR TRAJECTORI CAICULATIOT

Refercece in made io Table +2 for the format of the dent compration. Note that the coodition, Θ_{0} and V_{5} appear in coturas 2 and 5 in ebe firut row. Starting with these initial eaditions, we mor proeced with tive enmpotation an a dlows:
a. Compate ost reainisg et tries in first row.
b. Proeed to meat row : beate C_{B} an the drap earve of the peojectile; calealate the drag. D, aceeleration, D / E, where on in the peojoctir mom in chat
e. Comprote:

$$
\begin{aligned}
& \text { (i) } \frac{d V_{e}}{2}=-\frac{D \cos \theta}{m} \\
& \text { (2) } \frac{d V_{2}}{2}-\frac{D \operatorname{cin} \theta}{m}-0
\end{aligned}
$$

d. Multiphy the cheve derivativen $d V_{p} / 4 t$ and $d V_{a} / d x$, by the earrenty cheren time interval. The rime ane $2 V_{\text {, and }} A V_{\text {, in the third rew. }}$
e. Cemprite V, and F, ot the and of the tiver inereal (they eppers in the fourth row). asil me averap velocition ower the firm time interral to cregute $A x$ and A_{2} (thind row) and the new s coll (fourth row).

1. Compute the new V iren $V=\sqrt{\Gamma^{1}+7!}$ doverminer θ trone $\theta=\tan -1 \gamma_{0} / V_{0} ;$ ind oen - and aid $\theta_{\text {; ad }}$ ampleve the fourth row, $\operatorname{mlan} \omega_{0}=\exp \left|-32 \times 10^{-1}\right|$ and $V_{0}=$ 11ic-acos.
e. Coution mave top meniaing mexime to complew the mive.

4-5. METHOD OF CALCULATER DIRECTIOI OF TATGEETE TO TRAJECTORY

It may be of intereat to disersis the equation used in the computer program for the calculation of the direction of the tangeat to the trajectory at the and of opeh time interval. In a particle trajectory, where lift and magnus force are nodected aod drate is amoned to att in line with the velocity vector, the ouly force scriag to change the dirsetion of motion is the weipat of the projectile.

Figuo 4-1. Diegre of Crovity foces en Proiectio
The inertial force, er matrifugal foree, ariving from the earretare of the trajectecy, io civea by $m V^{2} / R$, where in in the projectile mand R in the heal redim of curveture of the tuajectory. Thin is manoed (Figure 4-1) by the emproen ot the peojectile weight is the dirsetion of the redime of

$$
\frac{m}{2}-\operatorname{mos} \theta
$$

Bat γ / R in the time rate of change of the dirnetion of the radiva, adi in therefore aloo the time rate of chapge of the dirotioe of the trajectory tagmet, cisce the trigut in alway aormal to the redive veres. Dacoing the rete of elnege of dirwhima by M/den neve

$$
m v \frac{0}{1}--\operatorname{mos} \theta
$$

$$
\Delta=-\sin \theta \Delta V V
$$

TABLE 4-i
TYPICA! OUTPIT OF FORTRAN SIMPLE PARTICLE TRAJECTORI SIICR SAIPLE PROJECTILE (SEE APPETDIE 1)
 .6011891116 .0

TIME THETA	$\begin{aligned} & x \\ & z \end{aligned}$	$\begin{aligned} & \text { DIST } \\ & \text { THRUST } \end{aligned}$	$\underset{\text { URAG }}{\text { URA }}$		$\operatorname{cMM}_{M} \operatorname{DR}_{S P I I}$	$\underset{S G}{\text { USS }}$	
:90			$\begin{gathered} 1925.0 \\ 197.4 \end{gathered}$	$\begin{aligned} & 331 \\ & .000 \end{aligned}$	$\begin{aligned} & 3.59 \\ & 1.72 \end{aligned}$	$\begin{array}{r} 8: 900 \\ .224 \end{array}$	1:43
2.56	3210.	4469.	$\begin{array}{r} 1578.0 \\ 131.3 \end{array}$	$\begin{array}{r} .362 \\ .001 \end{array}$	3.79	. 905	$1: 43$ 2.11
5.85 .69	$\begin{aligned} & 6682 . \\ & 6188 . \end{aligned}$	9110:	1265.9 84.1	. 398	$\begin{aligned} & 4.14 \\ & 8.16 \end{aligned}$	$\begin{aligned} & 820 \\ & .311 \\ & .310 \end{aligned}$	$\begin{aligned} & 1: 43 \\ & 3.03 \end{aligned}$
10	10713. 9235.	14166.	$\begin{array}{r} 993: 0 \\ 34,3 \end{array}$	-290	4.91 .92	$\begin{aligned} & : 744 \\ & : 379 \end{aligned}$	1.43 4.20
$17: 72$	$\begin{aligned} & 16460 . \\ & 12203 . \end{aligned}$	20596:	$\begin{array}{r} 786.3 \\ 11.3 \end{array}$	$\begin{array}{r} 168 \\ .010 \end{array}$	$\begin{gathered} 4.32 \\ .73 \end{gathered}$	76	$\begin{aligned} & 1.43 \\ & 7.57 \end{aligned}$
72	$\begin{aligned} & 22088 . \\ & 13269^{\circ} . \end{aligned}$	26+12.	$\begin{array}{r} 684,8 \\ 8,3 \end{array}$	$\begin{aligned} & .169 \\ & .016 \end{aligned}$	4.21	$\begin{aligned} & \text { : } 684 \\ & .502 \end{aligned}$	$1: 43$ 9.76
	$\begin{aligned} & 22369 \\ & 13267 . \end{aligned}$	26686:	$\begin{array}{r} 682: 4 \\ 8,2 \end{array}$	$\begin{array}{r} .169 \\ .016 \end{array}$	4.20 .64	5 5	1.43 9.80
	$\begin{aligned} & 27631 . \\ & 12171 \text {. } \end{aligned}$	32099:	$\begin{array}{r} 686.1 \\ 8.6 \end{array}$	$\begin{gathered} .168 \\ .084 \end{gathered}$	$\begin{array}{r} 8.20 \\ 4 \\ \hline \end{array}$		
42.12	$\begin{array}{r} 32522: \\ 9173: \end{array}$	37859.	$\begin{array}{r} 762.2 \\ 11.7 \end{array}$	$\begin{array}{r} .868 \\ .009 \end{array}$	$\begin{array}{ll} 8 & 4.28 \\ 9 & .70 \end{array}$	$=745$	1.43 5.73
50:12	57001.	44371.	$\begin{aligned} & 866.5 \\ & 10.5 \end{aligned}$. 176	$\begin{array}{r}6.42 \\ \hline\end{array}$	866	1.43 3.29

Thin relationship in aloo uned in deriving the equation for $9 / \nabla$ which is presented in peragrapl 5225.

4-4. EFFECT OF PROJRCTILE MASS OT ERAJECTORY

8ivee $0_{D_{0}}$ does not vary greeth with inermang lunght to citiameter ratio, a lons, and therefore beary romad will experience a lower drag deceleration that a lightor round of the ame elliber and piseral elappe. Thin is the reason for the ne of sabeabiber or "arrow" projectilen toe antitank © anticircraft fire, where a shost time of fight to given target is of gruet inportance. The mapmer in whieh the mese of the round ar ets the velacity, time of figigt, range, and terminal velocity is chown in the treetment whieh followe.

4-4. Emersental Trajoctory

In thin eare C_{D} is monesed to be a coverant, asd the gravity earvature of the trajeetory in aramed to to meaigible.

$$
\begin{aligned}
& V=\frac{d}{d} \\
& \frac{d V}{2}=\frac{d V}{d} \cdot \frac{d}{d}=-\frac{D}{w} \cdot \frac{1}{V}=-\frac{C_{2 p} V}{2 m V}
\end{aligned}
$$

s. $\quad \vec{V}=d \ln V=-\frac{C \cos }{2 n} d$

Imeneretine give

$$
\begin{equation*}
\ln V-\frac{C_{0} \frac{8}{2}}{2}+C \tag{4-1}
\end{equation*}
$$

4-6.1.1 Viverity

 What $X_{*}=0$, indo Equetion 61:

$$
C=\ln V_{0}
$$

and

$$
\begin{equation*}
F-\nabla_{\cdot} \operatorname{eap}\left[-\frac{C_{2} E}{2}=\right] \tag{4}
\end{equation*}
$$

Which shows the isaportance of a mall C_{D} and a large mase if a high velocity in to be maintained a X. the range, increselat. Replaciag the Erontal area If by $(z / 4) d^{2}$ and m by W / a, we have

$$
\begin{equation*}
V=V_{0} \exp \left[-\frac{\pi}{8} \frac{C_{D \rho Q}}{W / d^{2}} x\right] \tag{4-3}
\end{equation*}
$$

The ratio W / d in ealled "sectional density", and in mont of the older pablication is written as m / d^{x}, using m as a aymbol for weight.

4-6.1.2 Time of Fifit

The time of sight to a siven range ean be obtained by abetituting $d x / d x$ lor ∇ and 5 arrasfing Equation 4-3

$$
d t=\frac{1}{V_{0}} \exp \left[\frac{C_{m N} S}{2 \pi} x d x\right]
$$

Integrativig

$$
t=\frac{2 m}{V, C_{m} \delta} \exp \left[\frac{C_{\sin }}{2 m} 2\right]+C
$$

and monatiteting intial condition, $\varepsilon=0$ at $t=0$

$$
\begin{align*}
& \text { give } \quad C=-\frac{2 m}{V C \cos } \\
& \text { or } t=\frac{2 \min }{\nabla C \sin S}\left\{\operatorname{ecop}\left[\frac{C_{\min }}{2 m}=1\right\}\right. \tag{4-4}
\end{align*}
$$

UF \boldsymbol{T} in the time of Aight to a given ragre X_{1} them
$\frac{\partial T}{\partial m}-\frac{T}{m}-\frac{X}{m} \cdot\left[\frac{C_{i n} B}{2 m} x\right]-\frac{1}{m}\left(T-\frac{X}{V_{r}}\right)$
Where $V_{F}=$ terminel velocity, oe volohty at $s=X$.
 the parumthon of Byeation ts is mantive gad the time of sight to a givea target dovrenne in peopoction to the ruletive inersue in the mime or wrigit of the projuctive, Am/m, proviling that ∇_{0} in indepmendent et projeetile wrighe.

Howowe, whea daipies a mand to at an acincias em, mume molocity depmado in a wry
 to matre the man of the projocile proctor then the
manes，mach of the standard projectile fired from that gun，then i^{\prime} ．will be low than the muscle velority，$V_{\text {ed，}}$ oof the simmurl projectile．This ix due to the surrmity of kerpink the muscle nomen－ tum，ant therefore the loud an there emil aymara， at of below the reperity of the neuter．We ran write

$$
V_{0}=\frac{m_{o m} V_{\text {en }}}{m} \text { for } m \geq m e n
$$

and substituting this in the Equation 44 for time of fight we get

$$
\begin{aligned}
& t=\frac{2 m^{3}}{\operatorname{mon}_{\cos } C_{x S}}\left\{\exp \left[\frac{C_{D O S}}{2 m} x\right]-1\right\} \\
& \text { and } \frac{\partial T}{\partial m}=\frac{2 T}{m}-\frac{X}{m Y_{T}} \\
& =\frac{X}{m}\left(\frac{2}{V_{\infty}}-\frac{1}{V_{7}}\right)
\end{aligned}
$$

Since the average velocity is morally not much dip－ fermat from the terminal velocity for the fat trajectories of interest to the designer（and indeed cannot be if the a sumption of constant C_{s} in to be be valid），we can conclude that increasing the projectile weight in a momentum limited attention will usually increase the time of lift．If the projectile men in lon than man then V ．is limited by ehnober promeare（a natant emery constraint，
 $\left.X / V_{y}\right)$ ．Here there in mere likelihood of deeremed time e of 佔就．

4－4．13 Torment Valets

Increased projectile weight en，however，in－ prove the terminal velocity．It we substitute $\nabla_{0}=$ ${\underset{m e n}{m}}_{m_{m a}}$ in the velocity equation，4－2，
we

$$
V=\frac{m_{\mathrm{an}} V}{m} \exp \left[-\frac{C_{\operatorname{BN}}}{2} \pi\right]
$$

and

So In man decreases with increased projectile weight for ranges which are shorter than em／ （ ${ }^{\prime \prime}$ poNs），and increment for longer ranges．For a typical 20－пии projectile weighing $0.22 \mathrm{lb}, \mathrm{C}_{\text {Dp }} 8$ might bu $0.4 \times$（1）REM7 $\times 2 / 4(0.0101)^{2}=4.1$ $x 10$＂and tho rank e beyond which inrermand projourtile weight will give inctrumel terminal ven locity will be about 1000 meters．At thin range $1 / V$ ．will be e^{-1} ，which make t the amumption of constant C_{D} questionable．The seenracy of the estimate of the erom－aver range could be improved by performing the calculation in steps．Since pro－ jectile weight generally increases faster than frontal area with increasing diameter（ $m=h a y$ ， approximately），the crom－over range generally in－ creases with projectile caliber；for a 105 －min pro－ joetile weighing $32 \mathrm{lbs}, 2 \mathrm{mi} j\left(C_{o p} 8\right)$ would be about 7000 meters on the amomption of a constant C_{D} of 0.40 ．

4－62 Curved Irajoctery，Anginireraft Fire

The analysis of antiaircraft foe is complicated by the changing air density and the inability to neglect gravity and trajectory curvature；it will not be attempted here．

4－7．EEFECT OP DRAO OI TRAJECTORY

4.1 General

The drag of a projectile has a direct fleet on its rage，time of dight，and wind sensitivity；and les directly affects both static and dynamic ats－ bility．In order to obtain long rage，abort time of fight，and minimum lateral deflection due to side winds；the dree of the projectile should be man all at pomibla．Sometimes stability considerations will lead to the seesptance of a bightero－gaw drag．Δ redvetion in yaw，obtained by improving stability decrement the yew drag and may improve aceoreay by dermeniar meredynamie jump．

The arterial on drat which follows in conked to the dreg of a projective Ling in line with the tengust to the trajectory of its es．，ie．，at mare yam． The drag coeflaient at suse yaw，$C_{A_{0}}$ ，wan in this situation be celled the axial dree cenembient．The inerves in drys，with yaw，and its merriment，C_{0} y
 braved projectile the initial yaw chape rapidly to
a mall value, wo that by far the qreater component of C_{D} i $C_{D_{0}}$. The minimisation of $C_{D_{0}}$ in, therefore. of primary importance in nearly all unsex.

The designer must seek a projectile shape which will have a amoll axial drag coetscient, $C_{D_{0}}$, and Fit hive suncient internal volume to eirry the rezucired lethal charge. He must alo avoid, a far as jomible, wurface irregularition sueh an slots, depremions of protruions. The elfcet of gempral arater roughsens varies with the velocity regime of the projectile: this will be dineomed later.

4-7.2 Axial Dras

The axial dras at sero yaw may be divided into three evaponents: wave dres, hrietion drat, and bene dras. The roiative importanee of the various eomponent depende atribingty on the Mach num. bep regime. Por example, wave dras is abment in cubsonie fight. For this resour the designer will chooee diferent shapes for round which th predeminantily in diflerent regimes; homever, many artillery projectile fy in all three regimes and a trajectory ealeulation of come mort muat be made if the optimnm dras shape is to be found.

Wind tnosel testing with preaure survers will provida a division of $C_{a_{0}}$ into its componenta; haltiatic range tecting give only the overall value. The darigner in myed to reler to Honmer, FsuidDyumic Dreg (Ref. 27) in all matters minting so dress.

4-93 Eloet of Madi tiontre

The miaplat way to dineen dres in lrom the pint of view ol a persoc deervier a poojecuil tued in \& wind trand, with air sowise anvond it It arrpeed of the poojectilo is thea cioarty the wionity of the tunnel air for emeng Epetrun of the model oot to be arpilometh altered to the promene of the model. The apeed of mand, F_{o} in the trenel air at the point at rinide the eif velocity in gemend theo give ito Mact muabr, V / V_{0} of whick the wet in loine conducted. It point is tive mishberived of the model tie sir meloetio in cioned in megoltude and dinvetion but the rened

the marfare of the model in a way which dependa ons itm elape.

4.3.1 Submaic Region, $0<\boldsymbol{x}<0.8 \pm$

The aerodynamie ecefincients of a conventional projectile are fairly comstant wicen the projertile in flying (or being tented in a wind tunnel) at Manh numiers lem than some critical number, which is usually in the vieinity of 0.8 . This is the model or "free stream" Mach number at which the flow over some part of the model reaches $M=1.0$.

$4-732$ Tramenic Region, 0 , $\ll \mathrm{M}<1.1 \pm$

At a frre atreate Mach number aliphtly above the eritical value, thr coepseients auch as In $_{\mathrm{m}}$ or (${ }_{b}$, begin to increane rapidly and the projectile is said to have paned from tive submonic to the iransonic regime.

4-7.3.3 Sepermeic Regton, $1 \pm<$ I <5

At some free stream Meeh numier mreater than 1.0 the wave aytem characteristic of comprearive flow in fully etablished, and the projectile in and to be in the appermonie regine.

4-7.3.4 E. Ypernade Ruden, $1>5$

Abow $K=8$ the firdt in tersed hypermaic. Thin ruie will not be dinemmed mery fen conventional artillery projectila tov soch hid eppedr

Contleinet

Dres cocteinent are aloo intureseed by Bypolds number; coometricelt similar projoctila of die. lerent ealibers will bave slighty diforemt C_{f} vi Mach manber ormes

4-75 8nverit Does

In the monain reme $(0<M<0.8 \pm)$ wo rould ble so luwe monded, bat me noeverily pointed, nee and eo frill a boop diampter a m by y ymiced in tive of the many comainernctions whick afivot peojoplis chape, men at mouired in veral mexises mell etrexth, peregalive methed.
type of atabilizatinn, fusing, etc. The effect of projentile shape is disenmed below.

4-7.5.1 Surfact Roughoess and Irregularities

Surface roughnew correuponding to ordinary industrial prartier will have little effeet on the dray carficient. Surfece irregularitien, wach an alots, shallow holen, and protuberunces may inerrease the drak very groully, depending on their loeation and orientation. P'usen arr often prooty deaigned in this reupeet and conssideration may be given to covering them by a windshield.

4-7.5.2 Bluat Fice

Blunting the nove of a projectile will; in the subsonic regime, have little effeet on overall drag. The important effet of blunting (ahort of a completely flat face) is to iower the critical Misch number. Small tat facta, such as appear at the noee in many point-detonating fuzen, have litrie eflect on drag. The integral of the dynamic pressure forces over a properiy shaped head will be clove to zern. and the forebody drag will accordingly be cloae to sero. The base dras ix thus she resuit of a presure deficimey over the base of the projectile; the exintence of this wubatatic (less than atmospheric) promare is evident in everyday life in the wake of truins and auromobises.

4-7.5.3 Enetralling

Hedmeing the diasoetes of the bewe below that of the aylindried body, ealled "bontailing", in a very eflective way of reducing base drag in the saboonic repime. Boatrailing aloo reduce the lift coelliciant and ebanges the pocition of the center of premare of the normal foree, moviny it forward. Thin redneea the stability of the projeetile, placing asother limit on the acsount of bontasiling that can be tolerated.

The exteat to which thin cean be done on a apin. cabilised projectile in limited by the necenity of epplying a rotating basd, whick moat be mupported by a relacively thiek well, and by the lect that the projectilo walle aft of the rotating band are ordiarcily exponed to the full elbember promere so that they muet aloo be thiek. Theme coosiderations limit tie bogth of the boattail and may "uno limit the anowat of roduction in bew ares. Une of a bollow:
bosttail avoids thene limitations, but sacrifices interual volume.
i'se of a large boattail augle (greater thun about 16°), without a rounded tranuition from the cylindrical body, cun cause the air flow to separate at the juuction, canceling all of the drag reduction.

4-7.5.4 Fia.Stablized. Projectiles

The zreo-yaw drag of finm is, of eoumm, related to their shape and nise, but these are dictated piimarily by stability considerations. While it in true that some fin profles have lem drag than a simple flat plate, the extra cost of mauufacturing the double wedge or atreamaine protle fink must be weighed.

4-7.6 Transonic Drag

4-7.0.1 Spie-Stebilised Projectile

The transition from the subbonie to the super. sonic drag regimen is eleurly illuutrated, for's typical low-drag spin stabilised projectile, in E. D. Boyer, Aerodynemic Propertine of the $90-\mathrm{mm}$ EE 1771 Shell (Ref. 79). The ogive of this projectile es. tends over about halt ita length, the boattail is half a caliber long and the boettail angle is 7°. Ita aubuonic $C_{D_{0}}$ is 0.15 , even though the rotating band area han four cireuziferential alote.

Shedowgraphe at $\boldsymbol{X}=0.88, \boldsymbol{y}=0.97$, and $M=1.05$ show the initiation of the shock waven at the pointe of abrapt chage in diameter and their prowth to fully developed waven C $_{5}$, rime from 0.15 to 0.39 in thim Xiech number interval, sacan be seen from the drey eurve in Appendir VIII-E. No shock wave appears over the now of the projectike before photograph at $\boldsymbol{M}=1.05$, when a mparated bow wave is promat. So we can say that for this projectile the transonie regime eovers the Mach number rauge from appro-imatels 0.88 to 1.06 . Note thio is culy see exraple; the numbern would be difierent for a differmat projeetile. The development of the shoek waves on the body and ans of an arrow projoctio in abown by the shadoweraplas in BRL Report 934 (Rel. 89).

The greateat port of the increace in drag in the erasec. ie regime can be ettributed to the promence of the ahoek wave and in ealled "wave dins". The bene dract peaks at about $\boldsymbol{\lambda}=1.0$; the frietion
dray becomen relatively amali an the total r_{10} in. errears.

4-7.6.2 Fin.Stablizod Projoctile

The drap of typ irus' 'anombabilixal projection in the tranmmice regirme increumen in about the name way ne doweribel nbove, an may be moen from the drag eurven prewented in Appendixen Vill.T through VIIf-Z. The designer ahould obtain axd atudy a number of shadowgraphy or echlieren photographe of projectiles of varying shapes in conjubetion with their dros curven.

4-7.7 Suparionie Drag

4-7.7.1 Dearsase of $C_{D_{0}}$ with Mach Eumber

Aftor the shock wave syatem is fully developed, whieh nerally oceurs at a free streasi Miseh number betwean 1.1 and 1.2 , we find that $C_{D_{0}}$ decreases with iservesing Mech number.
In fact, we con une $Q=\sqrt{C+C_{D_{0}} \Gamma^{2}}=a+b M$ sa am intarpolation formala: a typical not of values of the coantante might $b e c=1.6, b=0.2, c=2.7$.

The ise of C_{m} in the sopersonie regine depacie hercely an the chape of the mome. By the Tavionlinecoll sermale (2ef. 30) wo have.

$$
C_{2 p}=\left(.0010+\frac{.000}{12}\right) \cdot e^{1.8}
$$

where C_{s}, in the forebody premere dras (wave and dras) component of $C_{p, 1}$, in hals of the coor angio, in desroas, and M in Mach number.

While by this formals the lowet dray shape foe the rowe would be a cose, an ogival nowe havine a lage ogival radive will have alightly lower dras (and also afiond a creater werbend volume). I. I. Diekineon (Raf. 24) lomed from ballintic reage Arioge at $M=2.44$ that the minimum dras hred chapie of a caliber 50 projectile ($d=0.0417$ ft) we a mant ogivo having a radius twied that Of the taguat opive of the wam horcth and maximas diencher (ratios botwoun 1.7 and 2.5 meo zonety as youd).

The promee of a mall tat (or romeded) mar. five at the treat of the neme, ealled the efolet, hus
only a wmall effect on $C_{\nu_{0}}$, and indoud, if not too Inrue, may reduce $C_{\mu_{3}}$, uliuphtly below that tor a puintul num of the maxie le.spth.

4-7.7.3 Efrect of Boattalling on $C_{D_{0}}$

Hoattmilime maduers the dran of supermuie projectiles as lone me the airthum im able to follow the rontour of the body. Por each projectile chape there is a critical angio (generally about 8°) and a eritical boattail luacth (about 1 caliber at the eritical angle, looger for maller anglea) beyond which the fow will mparate from the projectile forward of the bave, reulting in a $C_{D_{0}}$ which is greater than the minimam atthinable, and which varies from round-to-round with consequent degradation of sceurney. 80e Rafis. 25 and 28.

4-7.8 Dual Frow

As a general role, we amume that projectilea haring the same ehape and ct. Loention will have the same net of serodynamic eoollicients when fired at the same Mach number (and Reynolda number), and that asall differencer in shape and surfare Anish will produce only mall diferencen in the eveficients. The outatanding exceptions to these roles are dienmed below.

4-7.8.1 Sprob-Itenod Projection

It wa leond some time ago that replecing the oxival beed of a projectile by a anoder attinder protruding from the fint lorward teee of the body woakd move the ep. of the normel force rearward, reducing $C_{x_{\text {a }}}$ and reducing the apis raie required to stabilise a spin-tebilisod round, or redveing the length of the tail required on a An-thabilized roend. Theoe epike-nowed projectiles had highar drey 00 efleients then the cosrapoeding projection with ogival bends. Aloo, for some designa, projective from the mane lot, frod under the same cooditions, exhibited drag coemeienta which fell in one or the other of two groope, with tes arragen of the two sroupe tem met an 30% apart.

Examination of uperk photographe shownd that the low drae coefbients were amociated with rounde oa which the sirtow eoparated from the apike at ita tip, whil on the high-drac rounde the fow separatod at a point about hall-way down the epike. Thit phememon we celled "dmal

The picturet, taken in the ERL supermaje wind tuasel, show that the eharacter of the fow ovar apite rome dopends an Mach

Figure 4-2. Flow Pottoms on Vorying Length, Condont Coliber 33
Diommer Spite Maser of Supersonic Vdocitios

How' : ita exixtrice wan a finction "f tho aromactry of the apike. In orifer to avoid the overurromere of dual flow, with itx moriontix effert on arelloracy, mandera mpike-numal ronatits arv firrioxharl with a manall ring news the tip of the nowe whirb inanem the rarly moparation of the flow.

Bigurp 4.2 whown the efforif of Niseh number aud nowe length on the flow juitterif frodiured by a epifo-noeed projectile.

4-782 Underett Projectiles

Another example of dual flow was found in bellintic range firing of projectics having the central part of the body deeply undereut; drag and moment coefficients varieo from round-to-round by as much as 50%. The flow pattern, whether high- or low-drag, was stable; i.e., once eatsblisted, it pernisted throughout the observed flight of the projectile. The ponibility of dual flow may some. times be deteeted by wind-tunnel tests when bal. lintic range firingz do not reveal its existence.

4 H.3 Hentopherical or Sharply Conieal Ease Projective

The point of meparation of the nirflow from the base of a projectile having a hemispherieal or sharply eopical bave will also vary from round. towound, but in a continvonsly distributed maner, to thet thin hehavior ì not clasaified as "dual thow'. The bemiapherical shape allows the wall of the base to be thinner, so that more ME can be carried, bot extre care most be taken to insure dymamic tability (see Appendix VIII-E).

4-7.9 Dras Variation with Yaw

The inereme in drag when the attitude of the projectile changes from sero yaw to a yewed ponition is elled by some writers "indueed drag." This term is borrowed from airplane terminology, and is equivalent to "dras due to lift." Por small yewn the axial drag is very mearly unchanged from its sero-yaw value, and its component parallel to the trajectory in aloo very little changed, since eos 8 $\doteq 1$ when $\delta \doteq 0$. The normal forep is inclined rearward at an angle 8,20 it hat a eomponent in the dras direetion which is civen by C_{5}. a $_{6} \delta$ when t 三sin 2 . The expreasion for the draf coefticient then becomen

$$
C_{D}=C_{D_{0}}+C_{D_{e}}
$$

However, the abmervial exweffecient of variation of druiz with yaw muarent. ''n,', in unsally about t wire malarge an (! R. . $_{\text {. }}$

While the inducril drax may be rexiluced momer.
 dynumix atability many be impaired mo that the ant rfiect on drat may be uniavorable.

The above obwervations apply to tine well an to bodien. It will be meen thit overetubilising a Inned projectile by means of a large fin fift may rowult in a C_{a} penalty as well a increaced monde blast manitivity.

4-7.10 Minexle Bint

4-7.10.1 Yamiag Velocity Dee to Tranevorce Vibration of Muszle

Nearly all projectile emerge trom a can with exsentially sero yaw. Even mortar projectilen, which have large bore clearance to facilitate drop . Gring, can lic in the tube no more than 03° out of line with the tube axis. The pomibility exieth that tranuverne vibrations of the murile may movi. the rear end of the projeetile after the es. han passed the monale; this action, at well as ay overall motion of the gun tube, can impart yawing velocity, to the projectile, but no mipnifeant axit yaw.

Equations for aerodynamic jump, which is one of the two primary flight characteristics, will bo presented leter in this haadbook. It is noted here that jump in primarily a function of initial yawine velocity, and sot of initial yaw.

4.102 Traseverse Prosears Gradinats

Tripuvirs presure exalionte in the marsile blant elin:impart some yawing velocity to the projectile if the es. of the projectile doen not eciseide with the everter of premure of the traneverne foree. Thi effeet in eoont prominent when frine with a worn gun tube. These transverse presenre gredients are probably related to the bore gav of the projertile. Good obturation reduces the premeure diflerences in the blat and shortens the elecetive blast zone, thus redneing initinl yawing velocity, eerodynamic joump, and dispersion at the target An improrement in seenracy of bot rounds over cold

[^2]roands of the same projectiles ariars chiefy from their better fif in thr tube, partly becaum bert yat is redured and partly brame abenration is improved.

4-T.10.3 Fin-Stahilisel Projextlins in Rewand Fiow

Fip-atabiliand projectibo are aleeted by othr mazede bix an y-i another way. For a whott ime citer emernower from the murshr the blex gans are theming forward ovet the fin surfacen, remoltiong in - iarge deptabilitige moment wixh can imperta sinnficent yavint melocity even though the time of artion is shere. It in of great ingortasce that the
 versed tiew be leppe as amall mopomibir.

Nang photographes of the musuke biak ap available in firiag ten n peots of the Derelegment and Proel Servicen Aberdern Provinat Gruand. Maryiand
gimee the eazere manlly vibet thomend of pieturn Per ancod, tive emertrote of the peojretile from the anoke clood can be chaerved, and the lime apent in reversed thow eutinased. Tip deca frwe the photegrephe can be eacretated with the dimperving of bits on the larmen ; theme correhciem eleaty ther the importane of exuretion for femelilived roumin.

4-7.944 Onemandu

Metrutive of she rustint thad anesial ineo

 have imelotel opecial Nortevin rimp of dime cimile to the ervime cemenomly en on Am-
 perarrent 5.3.4.

4.7 .11 Srumern

 A told projwitr will man imete tip rind he, the

and wind velocity. The wet dras force (drag minus rorket thrust) will then have a eomponent at risht anglex to the projectike velocity. In the ubwence of rocket thruat, or it drag exceedx thrumt, the projertile wilh maquire a dawnwind lateral velocity and diuplarement; if thrust exeerdx dray. the jemgertile will move upwind.

4-7.11.2 Leteral Defwetion

With ne rocter thruat, e comstant eromorind, and making the uxual moumption that the projectile alipas itwelf with ther rematent airectreun an man as it keves the muxile of the Eun, we can write a very simple experemion for the deflection of a tas irajectory by a crommind (ser H. 1'. Hitchcock, The Motion of = Vera surble Shell et Short Reages, BHL Report 1047, Apinl 1958. p. 19).

$$
Y=V_{0}\left(T-\frac{X}{V_{0}}\right)
$$

where

$$
\begin{aligned}
& I=\text { leteral defiection at } \\
& \text { ingeet, it } \\
& \nabla_{0}=\text { ercumind velocity, Ipm } \\
& T=\text { time of dight, axe } \\
& \mathbf{X}=\text { rane, } \mathrm{f} \\
& \boldsymbol{V}_{0}=\text { musde velecity, } \mathrm{f} \mathrm{p}
\end{aligned}
$$

The ouly veriable in the cheve expremion in the time of lifgt. xulatirtution for T ite equivelont, th

$\left.Y=V_{0}\left[\frac{2 \min }{\sin }\left\{\left[\frac{\cos x}{2 \pi}\right]-1\right)\right\}-x\right]$
From thic equation wo ate fad thet the boteral de-
 weiphe se emole relorict. ad inermere with inerue in Co.

Theme exhations farnime the demixeer with adifinal nemon for mentied lue dres and higa

 neve meplin).

 projetilue co tow io Appendian VIII-A twout vills The malymetioe of the pre

CHOICE OF METHOD OF STABILIZATION

5-1. STABILITY

S-1.1 Ceneral

in oeder se have a manoll indueed drag. a prujeetibe max the mabte, ir.. ite yaw of the projertion mind cleap to a semall rquilibrium angire rarty in
 rally stativ, the peojertite will rumonvore to iembir
 dynmairelly stable. the yar of the projectite will gTow continsoenty with tison, wo that the projectit will tamble or eo info 9 thei spin anle. the expected timer of giepht is rery mbor.

5-12 seadic and Gyrmoppic Stablity

statie achisity is rolated io ine panition of the rower of groware of itm acomel fore with ropect to the eet of the mojectile. If the e.p. eft of the ef. the propertite in ceaticelly waik. Le.
 tre en which well to mern the axie of the popectile to the aro-raw pmotion. If ine e.p. © aboad of itre ef.. ith aermel fonce proalwen an overtwrning mamet teodiag to iner four the yew. Honoref, if tite prepertile in mimaing ropodly
 reporly but minily ctacape dirmetion : the propective - sad to be eyrueoperelly stelve. even ithengh ceirelly treath.

of the e.p. (thim in renety a prectiesl soletioni. ar
h. Projectile in procided with a Aaring mear end or with fint surficee (fas) at the rear of the bods whick move the e.p. reupwend of the c.f., or
r. Projertile in make aromopirelly mable by upia.

5-13. Fectecs to to Conidered in Chiee of Fin-stahilication

S-1.31 Aquint

Fized fine take no kenglt without addime to the pariond rolume of the projretile. exrept id the sperial ceme of an arrow, or antealiber. pro jpetic. Potdiag 8 me cicher add to the bengeh or reduep the raluap, dependiep on the diaipa edopted. bat in any and to the complotioy of
 jeetip ot o piven maximum dieneter and own all bugit im onteod whe in payloed releme in mduend. and, in aroorel. opioncelvitiond ger jection afr cheoper then and otereurete to the reproupuedion fin macilisud propertile havine aped
 there are orererdiong tremon to the entrecy.

$5-13$ Fot

 Sien ene:
a. A Anstatimient projortip can bo terger is mepminien to ino diamuor (Mevt o mrabier

stabilised. If ther mesinior limitations on beagth (xtorius, handinge. loalitup into the gnn) are not excerded. the fin-atabilized projectile may be long enough to iave an isternal volume greater than that of the correspondine npin-atabilized round.
b. The lephality or ocher terminal urefulvens of the round may in ispaired by mpin. An example in this cetemory in the chaqed charge roend.
r. The saimion of the projectile masy require that it be firrd at hink qualrant plevatioosk Comreational spin-atabilized ronmes sumer merrer degradative in arrurwy wher gird a quarlrant fieratiom erretep than abont

4. Tir intermal arweture of tice projertion may tremel ihat the cound bromer dynamietalls
 wet he apen repidiy mongly for erromeopic atability by the gam araiable.
e. The projertile may be dexipurl to the tred fram a apocti-bove gut.

1. Piarnathilized projectikn eaz be fired trom a filind axi withoest pictime my ewoagh spin to have securacy. Inim in dose by the ure of
 clipe oes the peojertib.

Te fint repmifement tre poep on popiesiln

 malrom it expertal trajuetory mory seet. Ite
 the parourrapity wincel follow.

S-2.1 Oyrucople seanary

S-2.1.1 Orrieconte Senamy Fecter

The croomepic mavitiog of a orio-talitiond
 promeapir cacility fuewe.

$$
4-\frac{18}{4}
$$

0
$I_{s}=$ arial moment or imertix, slun- ft^{2}
$I_{5}=$ tranurnte monofut of isertia,
shive-ftz ${ }^{2}$
$p=$ axial angular vriocity, rad/me.
$*$ = atatic anoment factor. Ib-ft/radian

In the asumption shat the atatic moment varix linearly with yaw, the expermion for the atatie momeal per radian of yaw is

$$
\begin{aligned}
& \mu=\frac{\pi}{8} \operatorname{ml}^{2} \mathrm{Cl}_{\mathrm{m}} \\
& \text { - = air dingity, muth/ft }{ }^{3} \\
& d \text { = maximuin body diametri, ft } \\
& F=\text { airupeed, ft/zer } \\
& C_{m_{0}}=\text { atatir momont nemriont. } \\
& \text { pee radies }
\end{aligned}
$$

C'lowe attention munt to paid to the unitn und in
 rovelomarily omplogen in mportine encmancrumonta of the qualticin.

$5-2.12$ Condibinis on Value of sf for scumity

If $0 \leq s_{0} \leq 1$ the projective in mantate and will "tumble" within a few bumded fert of the F픈.

If s, in greatre than one. the projectile 5 groscopically table, and we then inverigate ita dymamic mabitity, a dexribed meter. Sinee of in inverely propertional to the demity of the cir, projectitn wiel are stabte at eladard atmor furrie comatition may te enctakie mina fired undue
 iure and perviare. Pravilite curiponemewts that be schen inte cocemet in eompution at: Min fert, rempled with to marretaincion in the other futere
 a bomet limit an to in the proliminary doenn mone, a ing whandard sir demeity in the compentetione.

Nese thet at thr maxile we can write

$$
a_{0}-C_{1}\left(\frac{p}{y}\right)^{0} \quad \text { wivere } r_{1}=\text { anmetant }
$$

 of the mumbe, thentitet gep terth. Ileme the

dural proferiling etarye. woukl im improwtival. The
 depondeser of fiag on Nowh mumber: this do. promenere ran ralue invalility at mowred muzab rehritios.
('onverutionsal projertilex kare airsperd murh mine rapidly than ther kow xpin. The ralue of x_{0} thus meariy atwaga invereace as the projectile tiex ioma rangp.

The atability factory of projectiles fired at high quadrant elecationa ran. uniew projertile relocity in mantaiged by rocker thruat. reach quite larme valuon at the manit of the irsjertory. owirg io
 Laric valuex are met Aetrimertial in thomoritex, but
 laree incroues in she nusilibrium yatw of the pro. jurib.

5-22 IEw AT Iquo

S-22.1 Ceneral

Twe smits rarrature of the trajeetery cives rive to as anple of raw large emough to ersate a perormion rate thieh will permait the axim of the peojectile to fellow time tangent to the trajectory. Thim equilibrive mequiremept esures the projectile to poant to the right of its fight pati (riphthand yar of repoes) when the spit of the projectile in efortwime minend from the rrar. which in the cowe with meitls all l'mitul states artillery emmanition. TH liff fore ameieted with thin angle ramon a drift to the rixat, and ow ratimate of the memaitedo al itio deift is aiven in the frime callos for the projectib. The brimer in intermed in heopine the dift mand and maiform. frum mand io monch, as pomitio.

Tiv yew of Hepem in propertional to p/P.
 dynamicelly matalit wilh rusltian lues in range and aeswrey.

8-2.23 Ioricila fir Angit of Bopmet

An approsimete osperneina i of the aneal rigits. mand yaw of repare in

Thim equation sborwit that at the mameit of a hich mugice imjectory. whore on $A=1$ aski, in nomxiderably lew than its ine level ralue, if f° in anall the 5at may be rery lerge; it may even shift oref to the left-hund equilibriom angte with dianatroce eruuttx for the trajectory predietion. thee Bef. (t), ;2. 392.

5-2.2: Traiting

An andyxim of the firut (and mont sidrifirant) term of the expremion for yat of mpene may thad

$$
d=\frac{\ln m_{2} \cos t}{1}+\ldots
$$

 pmjectile "traib" ax it nown alowa itn ifrajetory. Mearrauging the abore mpation aiven

$$
\frac{2}{4} N^{2} S C_{m_{8}} \&=I_{\infty} \frac{\cos \theta}{F}
$$

Th the left idie of the eqeation we mare the matie cerodyacraic moment, en the rigit mide me hare the axial angolar gomentum, Isp, maltiplied by the rate of chanee of direction of the tangent to the irajectory. i eem A/V (me parapraph 15). The product is a rete of eloege of angular momentan. caverd by the serodymatic moment: anverriby. the serodymanie momemi arining from the yaw ol noper it jat sullicient to chang the ampaly momentue of the geojectit ot the rute ropaisel for ite axin of the projectio to maxion eangrat io the trajuetory (in tive oretieal dane the yaw in in a plowe acemal to tor trajeevery pleme and the atatic mement in at righe amplet fo tion mation, or "prommion". of the peojectio axim wind in tio onll traw epruapie thatites).

S-22.4 Projertid Acrumetive

 manafortarime Fower will adi (wewoialdy) a
 the permibility of troelcie et the comeric. Abymentry

g-2.2.5 Methed of Comprestion of Projectio Spia

The cyromeopic stability fartor is saleniated at the muarle and is often calculated at the sammit of high angle trajertorict as an index of aummital beharior. It is recommended that the denifper eompote the raw of repose at the aummit of aveh trajetoricen and ecmpute the atability lactor at the masale and at imper.. If his computer prosreme does not inelade a running calculation of spin rate, be must extimate as well as be can what the apin rate of the projectile will be at sumamit and impert, uxing the axpromion fin the abomee of morect thruat

$$
\frac{\frac{2}{V}}{\left(\frac{p}{V}\right)_{0}} \approx \frac{\cos \theta}{\cos \theta_{0}} \exp \left[\frac{\Delta S}{2 \pi}\left(k_{0} C_{r_{y}}+C_{0}\right)\left(x-x_{0}\right)\right]
$$

Where the saburript o merev io conditions at the megianiag of the interral over which the change in p / T in being comprated, s in rlistance mesurred alome the trejectory. and $k_{8}{ }^{z}=m d^{z} / I_{-}$Thin exprenica amomes that a. C_{1}, and $C_{\text {s }}$ are cooctanats, which in mot birely. Averace ralies of these pareaplers mon te ond, and it will be seve that the approrimation for P/V may be poor. Denigpers of apionatilised projecties have been willist to artien that the projectives retained enough epin o It cache at impers and to seegpt whetever lini. twiee an enecrant chevetim men tound to be momery in text firing of the remed.

While C_{1}, in mentive. r_{n} in maelly of maliewat mapitede that P / V imercumen on projectis rive to the memait. On tive domemeliag linb tive amixe of the trajectery angle in dermaing, and
 Wile o, is the abose of eme spia-produciag
 enver.
 traforerke for a typinal b-iect projexile, wh
 tine The tenferory whil $0.3 .=2^{\circ}$ ofiers in epportacily for a dimpir chert on tive (p / V))

The trajectory caleulation givex $\quad / J_{0}=.293 / 224$ $=1.32$, so the approximate formala in verig nood for tat fire.

For the trajeetory with Q.E. $=70^{\circ}$, ther rough axtimatex of and C_{n} obraised by tating nimpir umans valuex would br moons for a moll 2 2hit for :

$$
\begin{aligned}
& \frac{n}{n}=\frac{\operatorname{coc}\left(-77.8^{\circ}\right)}{\cos 70^{\circ}} \exp \left\{\frac{(00083)(0.1355)}{1.435}\right. \\
& (6.89(-.014)+0.283) 54100\} \\
& =\frac{.2113}{.3420}=1.45
\end{aligned}
$$

The trajectory caleulation given $s / \omega_{0}=299 / 224$ $=1.29$, so the approximation in aliy toir. The use of raluce of C_{s} weighted by the are dirfance traresped, in calculating the mang, would make ibe approximation tor $/ / \mathrm{o}_{0}$ very pood.

The higl angle trajectory in promented priseipally to ahow the magniturte suactued by the yaw of repose at the sommit. The aetral yaw might be much greater becaine dromic imatability, oviog to monlinearity of the encodsmanie coellaimatis in likely to ourar at yew of this magnitale.

S-u.3 2nate

Conventional projection attaia their maximam rampe orben fred at a quadrain elevation of about ti'. Por recketemimed projectike the Q.I. tor nonximum range in ereater than 46°, reuning ap to 00° or 90° when mine a long-barning rocket wit ${ }^{\text {t }}$ a lisg retio of fret meight to tral projocti. weight. Remen chortor than the madimeto by be obsaisod by elangias the Q.E., redveine the ifter. tive roekef thench or rodociag the mumele wikeity. Bedsetion of the mosele velocisy in a weine of telope by medociag the elorto of cea pexplliat, in allod "monlag"; meed herel of macie volocitr in alluid a "mon'", and varintions of range wirhin eagh soen off oblaisod to varytag the quedrach cirvetion.

velocity variation muat be atable orep a wide rence of Nach numberx, whirh will alroum eretainly inelube tranmonio xpereds at mea lorel air deroxitirn. Slisere ("x. umually prakx in the traumitim repiose and the icyrumopir mability factor in inverwely proportioneal to lix. . utability may br at a minimum
 oble for the full ranpe of mperdm, extimates may be made by une of the shapes of the f : m . TB Mach momber eurres of peojectiles similer to the one in quertion Use 1 a entinated C_{x}. requires a greater margin of miety on the orroweopie tebility fector to.ingure thes it doen not beover lew than maity. However, if trajectory ealculation show that the projectile will apeed oaly a shoet tive is the tranowic reaiet, it may be pomible to secept a certain amonet of ingtability for that elvart time.

The oremeopic atahility fector of a coarvantionel mpintotailined peojectile mally hat its mallet velue at the sureik. Pectreterinted poojuctilea, on the ofker hand, ape more likely to become crroecopienlly manable on tho donceadiop lind of tie trajutery, mear impeet. This inter Wility can be aroidal by:
E. Dimeribating the mas of the peojectile ap that ite ese. in formard of the ranal leention in a projectile of the given aerodyramie shape.
4. Incrmine the rition twim of the gen.
e. Canting the rectet monden op poridins inveral mane of metation tiv jut love a tivgh Burle

S-24 Dy Profrety

The gew of a crentrie projoctil seced an by - linear feove end moment areteo in given by

$$
\begin{aligned}
& X_{4}=\text { initin maritento of } \\
& \text { bexenin voter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { encline verem }
\end{aligned}
$$

10
2. = preermion dimping esposent, per ualiber

- . travel of projertile, eatiborm
t) = phame anglen of time moxiri vectors ($j=1.2$)
*. - equilibrium yav
We are concerned here with the mapnitucios and xipns of λ_{1} and λ_{2}. It will be ween that the magitude of a modal rector will isersame if its amociated λ is poaitive; the larger the value of λ the more rapid is the incrence in the angnitude of the vector. The term \rightarrow_{j} in, of course, ximply a sinumoidal cseillation between +1 and -1 , and between $+i$ and $-i$. If meither of the two modal vectorn, X_{1} or X_{3} grows in magaitude at the projectile fine down range, the projectile in aid to be dymamically stable. Por dynamic tability, therefore, both λ_{s} and λ_{t} mont be equal to, or las than mana.

Pron Iet. 12e Tre heve

$$
\lambda_{4}=-1 / 2\left[H-\frac{2 T-H}{\sqrt{L-1 / 4}}\right]
$$

and λ_{4} differs only in having $t+$ ing between the two terme inaide the bractets.

$$
\begin{aligned}
& H=\frac{S d}{2 m}\left[C_{L_{e}}-C_{B}-k\left(C_{\varkappa_{0}}+C_{m_{0}}\right)\right] \\
& T=\frac{S}{2}\left[C_{L_{0}}+k_{0}^{+} C_{m \infty}\right]
\end{aligned}
$$

 $4 C_{4}$ we tue that oll of thenjer aredynamie corecionat enter inte the tuletrination of the daspine expearata

Murging (Eet. 12e) meempende that inesed of aimply requirin thet the $\lambda_{1} B$ eqapeaitive, wo would en an upper limit an the grater of the two which mut met be esenctal if tie projectile in to fulall ide mimion. Thia limit, repereented by es enmburipted λ In y greater then sero to cean soue growth ol imitial yen may to tolorivie,

Yaring then introlvere the. remasty Smex, An wine

$$
e_{1}=\frac{2 T+2 \lambda}{H+2 \lambda}
$$

and by use of the expromion for $\lambda_{\text {ans }}$ with the rearaints that $\lambda_{\text {ma }} \leqslant \lambda$ and $H+2 \lambda>0$, arrives at the identity

$$
\frac{1}{4}-a(2-a)
$$

Plotting thin expremion a a curve with $1 / s_{0}$ and \& to coondinaten, we get

Cooditions an to stability are a fubetion of the loeation of the point deternised by the intersmition of $1 / \mathrm{s}_{\text {, }}$ with 24 (Piourre 5-2), mamely:
a. Internection lies below eurve: Projeetike in arrocopienily atable and my te dymari. elly stable, with $\lambda_{\text {me }}<\lambda$

1. Internetion lixe co the eurve: $\lambda_{\text {ma }}=\lambda$
p. Imernectime the shove eurre: Projectile in dymamieally motalik with $\lambda_{\text {ma }}>\boldsymbol{\lambda}$ and may te gromenpically umatr.

S-242.2. scomaty for $\lambda=0$
In proction, i is ofles met equal to sers. Trem the expromion for the dysemie stability fecter in ${ }^{0}$

$$
a_{0}=\frac{2 T}{H}=\frac{2\left(C_{L_{0}}+E_{0}+C_{m_{0}}\right)}{C_{L_{0}}-C_{\theta}-L_{0}+\left(C_{m_{0}}+C_{n_{0}}\right)}
$$

 where $\lambda=0$. If the intarnetion of $1 / 4$, vith is He ebore the earie, we res entenlete λ an by macoriag Ala, the change in as mavient to sumb

the eurve, moving horisontally, and waing the following relation:

$$
\lambda_{\max }=\frac{H / 2}{1-A_{6}-\Delta_{a_{0}}} \Delta_{4} \text { when } \frac{1}{4}<1
$$

 Note that $H>0 \mathrm{im}$ one of the coustreints on as. . so the $\lambda_{\text {mas }}$ computed by the above expretmion is proitive, and one of the yaw vectors is undamped; we can eatimate the growth of this veetor from exp [2 mas] where sin travel in calibern. Similerty. when the internection liae below the eurve, use of the above expremion for $\lambda_{\text {mas }}$ will resalt in a pegative valpe with which the rate $\approx=$ iecruate of yew ean be computed

Beturning to the expremion for 2 , we note that C_{1}. in alway poritive and monaly mueb erreater than C. The demveninator of as in searly alway positive. H it is not, we choold not compuse ε_{4}. The momarator contsira the magmon motesent coreseant, C_{x}. which is usually ponitive for apiastabilised projectiles at sapermaie speod, but oftien megative at tramoaje and submonic apeedn. x_{0} is mallly poaitive, and indeed the valom of the roeficients and radii of gyration (in calibera) are suct that of mearly alwas lies betroen 0 and 2; il s_{0}. is outnide these limita, the projsetile cannot be stabilised by apin.

In BRL Report 853 (Ref. 48), Murphy disrwout the isfuester of man didtribntion on the dymmie athility of matienlly umbatic projectike. He motes that at sapersonie velocition many bodim of revolotios cearact be tebilinad by spin if the e.e. in move then two calibers att of the aentroid. The reatsoid in, of course, the point at whil the es. moold be lowed if tie projectik were of waiform deneity; it in moer the prometrical controid of ting xilhowette of the projectik. Ia any cane, therp,im an optimule e.c. bececion whill minimive ste apia rele manired tor telility, and thin optimum loretion in mavally sear, and aft of, the ernlsoid.

The cemplete craph of $1 / s_{0} \mathrm{w}$ en thenen from Def. 12s, appeare an Pigare $5-2$
 yow angle. We ceavor porevive ytmarity in the magave mamont by motrictive it is the than 10° a mo hove mound tive mocald boe sume cher ineredyamie contionier 1 hapa $C_{L_{0}}$ and H_{0} will

TABEE S-1
 (SEE APPENDIX 1)

TABLE 5-2
SAMPLE TRAJECTORY FOR SPIISTABILIRED 5-IICE PROJYCTILT
AT Q. $\mathrm{I}=70^{\circ}$
(SEE APPEMDIX 1)

TIME:S RMGEM V.FPS THETAD SPIH SG
reduee the effeet of changes in ('xy, and a amall and meariy constant y aw angle will reduce the sise of the change in magnua moment. We see immodiately the value of good obturation in keeping the initial yaw amall, and the value of high projeetile velocity in heeping the equilibrium yarr mall.

S-2.43 Further Discumion of Megitmide of Xolal Vecters and Stability

The following parakraph in taken from Murphy (kinf. 12s):

The requirement that the exporentiad coefsrients be negative throughout the fight is mueh neronger than necemary in a number of applica tion. This ean be men by the following cumple. Conaidar the enop of a apecise projectile whose axponential coefliciente are atronfly gegative for $Y \leq 2.0$ exeept for the Maek number interval (0.9, 1.1) where both exponenta are pocitive. Bxset numprical integretion sbowed that as initial maximiom angle of attect of four degrees for the haunch Mach number of awo will decay to a tenth of a degree before the Mesh number docreames to 1.1. The dynamie inatability mociated with the tranoonie velocities then will canse the maximam angin jo gmor to approximately one degree and then deercue a meand time when sabeosie stability is eatablined. Thus the "dynomieally untable" projectile ham maintaiped a eacll ande of attack over the eative irajectors.

Projpetive

5-2.3. 1 Comen

The path talem by a projectile after baving thr musib of the ges in deternised prixeipally by wiod, sprvity, drith, cerodynamic jump, and, of course, by the deretice in whiek the guin in pointing whan the projerile emergun trou the murale

Tre devigar ena reduee the maritivity of the projectif to wind by redveing $\mathrm{Cos}_{\mathrm{s}}$ of belazeing dreg by rockot thrmet i we cean suduen the seapdsoroved dieponsion dee to varyine grevity drop by scod atcuration which rodsore soond-to-reasd veriations in mande velocity. Deift abould sex vary mand from reusd to round if the projetilo yow is trept menll. In this dineunion wo will simply

imparted to the projectile by the gua in medigible, and conaider how the deaigner may reduce the remaining saurce of inacerracy, serodynamic jump.

3-25.2 Aeredynamic Juxp Delied

In the abpence of wiod, eravity, and drits, an overage line drawn throoget the ewerving path of the projectile, sueh that the projectile spends equal tivaes on esela side (or all siden) of the live, can be visualimed as a atraight line which interneotin the murcie of the gan. At the marile this menn trio. jectory lim will make an ande with the lim do. fining the diretion of the borr of the gun; thin magis in ellled the "serodyanmie jump."

Note that the plene of the ecrodyanaic jump cagle ean lie in alay orientation; jump can be up, down of aidewine. At a pertical target the effect of junap apprers as a deviation from the thooretical point of inpeet, which is compated trom the bore sight lise, eorrected for drift and gravity drop. (In fat tring wisd corrections are eeldom made; rounda are frod as rapidit an in practical, and the wind effoet is amouned to be the mane for all rousde).

5-25.3 Magoitule of Aksolypurite Jumy

The acodyamie jomp of a manactrie projective, is radiana, in give (to s clom approcimer. tiea) by

$$
\begin{aligned}
& i_{0}=\text { yeving reloeity, mancorod at } \\
& \text { red/me } \\
& \mu_{0}=\text { apinan resto } \\
& \text { rad/me } \\
& \text { b. }=\text { yow, medians } \\
& \text { the and of the } \\
& \text { blint mome }
\end{aligned}
$$

and in imagiany multipliex, if thome that the antribation of initial yow to jemp in at right angion to the linchine of the jew. Alyannery ot the majutin alde another win the orponina for Θ_{h} a twie vibied depande oe the che and bedtiol

that projectile aymmetriex be kept anall an in ecosomically feacible.
λ_{0} is uanally so small that the seoond term in the jump equetion is about an order of mapnituder nmaller than the firat. However, if the bore eleme. nume in unumully large, or if there in a merong erom wind at the grn, the yaw ziay be.larne and the mensud terim cannot br negleetect.
is varien from round to round. Good obturation will reduce its magnitude.and the magnitude of the variation. For a low drag projectile. $C_{x_{0}} / C_{L_{d}}$ in approximately equal to the distance, in calibers, between the eg. of the projeetile and thr. e.p. of the pormal foree Inereasing this distance will reduce $\theta_{\text {, }}$ for a given $\dot{\delta}_{\text {, }}$ but the dexign changea which inereme the e.p.e.s. eparation, such as an increme in the length of the projectile, of ten also iserease h_{i}^{4}. Boatteiling will decrease $C_{L_{e}}$ and ineremse $C_{y_{0}}$, increaning the e.p.e.g. separation without moeh change in $k_{i}^{?}$. Since drag is also decremed, boettailing han a very beneficial effeet on performance uniem the atability of the design is impaired; this muat be checked (see paragraph 5-2.4.). This diseuation of aerodynamic jump appliee only to dynamicolly atable projectiles.

5-2.5.4 Oximatation of Aeridyerinic Juap

The orientution of the acrodynamie jump angle alo varim fret reond to raund, becares i_{0} is a vector. Twe dircetion of \dot{d}_{0} depende ina the pattern © the ens fow in the murio biect, which in turn depmende an the bow yaw of the projectile. Sisue projeetiles loeded in the can in the mane manner probabty side the lands of the riting in the same mancer (m Ref. 56), the orientation of the blant premare beld, and therefore of i_{n} is probably bineed in one partienlar direction. Hence the dietribution of jump orientation anglee, when a mroup of rounds is Arod, is probebly sharply pentied in coe questrat.

The dindributioe of impect points on the target in reully a cirvelar (or clliptiesl) dintribatioa aboat the theoreicel point of impert of all the round maning to elange in gua diroction. The bine
dencribed in the preeeding parapraph produces a hit patters which appeare to be a rootangular dirtribution aboot a meen point of impact which is Itre "rentee of gravity" of the pattarn. Artillery Lurpetr are atwaye analysed as though thia worp Hhe trum niturtion, simee the oumter of.iapect and the vertieal and hocirontal probable errion are'very easy to compute from the coosdinates of the hits. The location of the theoretienl point of inopect is very difientt to obtain from the coordinates of the hits and cannot be compated from the boreaight hive with any ceituinty, which makes the derivation of the trae θ, distribution inpractieal.

The above diammion ie presented bocause of its implication for decifer dominions based on the recults of fring tente. Since the P.E.f and P.In. method comanonly med is theoretically imappropriate, design changes should not be based on emall semplea, ie., sroups of fewer than 15 rounds. Furthermors, sivee mont design changen are aimed at reducing caly the magnitude of Θ, and not at reducing its directional diapernion, the statiatically indefensible proedure of eliminating "maverict" round from the etror ealculations may be juatibed by the contuntion that their pointa of impect on the target were the remilt of unuaual orientations of the jump argte, not large changee in its magnitode.

5-256 Deleticentip Dotwea Aeredynaic Jump mes.

5-256.1. Vertical Conpment

In fring fer rame, the importanee of the vertical composent of θ, dependa on the quadrant slevatios of the sti. Differentiating the expremion for rager in a vecurm give an approximation of the eflet of charios in angle of doperture on raser.

$$
\begin{aligned}
& x=\frac{V_{0}^{2}}{1} \sin 20 \\
& x=\frac{2 V_{0}^{e}}{1} \cos 20_{0} 10_{0} \\
& \frac{d x}{2}=\frac{2}{\tan 2 \theta_{0}} \infty
\end{aligned}
$$

When $Q_{0}=45^{\circ}$, the change in reage in medirible. At $Q_{6}=15^{\circ}$ the change in range, in mith, in is bout
3.5 times as great as the cheoge in departure angle (in milliredians) due to aerodynamic jump, 30 at kow quadrant elevations jump is an important factor in range securacy.

5-256.2 Elorizemtal Compriment

The horivontal componeat of ©s produces a Morisontal deviation at the point of fall of the projectile, which is proportional to the are length of the setual trajectory. Since the deflection diapermon of round fired ior range is uanlly reported in mily bued on the maen range, the effect of a given borisontal jump is multiplied by the ratio of the are length of the trajectory to its borimantal projection. Agein we cen eatimate this ratio from the vacuum condition, giving

$$
\frac{\operatorname{Arc}}{\bar{Z}}=\frac{1}{2}\left[\frac{1}{\cos \theta_{0}}+\frac{1}{\tan \theta_{0}} \ln \left(\frac{\cos \theta_{0}}{1-\operatorname{tin} \theta_{0}}\right)\right]
$$

and at $\theta_{0}=45^{\circ}, \frac{A \pi}{X}=1.15$, while at $\theta_{0}=15^{\circ}$, $\frac{A r e}{X}=1.01$. Hence, this fector can be signifieant in entimating deflection P.B.'s from serodymanic jump, when $\boldsymbol{e}_{0}>40^{\circ}$.

5-3. PII-STABILIERD PROJECTILES

5-3.1 Conaral

The inconvenient fact that the center of premure of the anodynamie forem an a projectile body in chnoed invarishly forward of the c.s. of the body ean be counterseted by placing lifting surfsecs (fins) searward of the e.e. If, when the projoctile in yewed, the mocenent prodiseed by the lift foreen on the fins ingreter than that produced by the sorven on the body, the net roment will oppose the yew and the projectile will be statieally stable. In aymbelie notacioni, we have

$$
\begin{aligned}
& C_{u_{e}}=C_{w_{e s}}\left(X_{c . \rho_{.}}-X_{c . \epsilon}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \text { C.E. - C.G. }-\frac{C_{m_{e}}}{C_{m}}
\end{aligned}
$$

Where the subacript B refers to the boing and the subscript T refers to the tail. Unenberripted quantities apply to the whole projectile. The X^{\prime} 's are distances in calibera, measured from the base of the whole projectile, which is usually the base of the tail. The tail comprisas all of the fina and the (umally) cylindrical boom on which they are mounted. Arrow of subesliber projectiles have the fins mounted directly on the body, so the bese of budy, base of tail, and base of whole projectile may coincide. Folding fins may require an arbjtrary definition of their base location, depending on the deaign.

5-3.2 C.P.C.G. Separation

It will be noticed in the above equations that $X_{\text {ar.p }}-X_{\text {cG. }}$ is negrative, and $C_{m_{a}}$ will be nerative if the projectile is statically atable. C.P.C.G. is then also negative, but this quantity is aften roferred to aimply as "e.p.e.g. separation," is ealibers, and ireated as though it were unaigned.

The optimum magnitude of the e.p.e.g. teparytion is not well defined. For minimum eencitivity to masile blat the rail moment ccefficient,

$$
C_{Z_{\omega_{F}}}\left(X_{0 . p_{T}}-X_{c .0 .}\right)
$$

should be small; to minimize the yaw angle due to projectile mammetries, the total atatic moment coeflicient, $C_{x_{e}}$, thould be latge. The writer believet that the deaiss value of the e.p.e.e. eqparation sbould be far emongh above 0.5 caliber that insocuracies in entiontion of $C_{m_{0}}$ and $C_{z_{0}}$, iseleding the eflect of mannfecturios variobility, will not reduce the e.p.e.e. apparetion of any round below 0.5 ealiber. On the other hand, e.p.e-f. eparations greater than one ealiber have bean tonnd to be cocompenied by increamed disporssion at the target.

5-3.3 Itia Typ

The choice of fin type is obviousif a trede-oft problem, involving the utilities of projeetile volume, Fance, scenreoy and coun Betablinhing trade-0. corves for coel deaig, doturmining optinmm paints for anck derifon, and then comparing the optime would te a lons prosmo It is doubten that stw ehoiee will ever be made explicitly in this way, bet the intnitive martwing of choion mont fellow
them lincer: A brief diecumion of the typee of fina follown.

5-3.3.1 Fired Fin

Fixed fins of oan caliber apan are ceav to make, and oany to anke unipormily; this promotes aceuracy. However, spece mequired betreen the leading edge of the ans and the locxtion of the full body diameter in order to reduce fin-body interference and allow the fins to develop their expeeted lift. This redisee the projeetile volume-tolangth ratio. If low drag is important, the long bostail required further reduces the nseful projectile volume.

5-3.3.2 Folding Fins

Polding fins which are banched behind the projectile when is the gran tube and fanmed oat to more than one caliber span by some mechanian after the projectile has left the musale blast can produce large e.p.eg. separation without large muscle blast effects. They are expenaive and condncive to large projectile anymmetry. They need not reduce the valume-toilength ratio of the projectice as much as do fixod fins.

Folding fins which are wrapped around the projectile near ita base when in the san tube and apring out after the projectile leaves the munile, can prodvee the required atability with reabced cenaitivity to muscie blant and very little rednetion in projectile volume. They are not cbeap; the mymmetry they poodvee ean be ofleot by a large C_{m}.

5-3.4 Oincuration

Good obtaration is important for both epin. and An-etabilized projectile, enpecially a for the in-atabilised rourda. It has been schieved by the me of rabber or platic rings an or vear the eglindrieal portion of the body, or by the ues of a " a t of suitable material pleced behind the projectile (pusher obturator). The obturator is sometimes given the added function of holding folding fins in the elowed pocition; the obturator mant then break up on amergence from the izasile, nacally no problem with rubber or pletie obturators whieh ean be sotabod or, if nocmany, ieqnented. Obturators ou mortar projoctile mat brok-ap into mall moo.

Lethal fragments on ewergence; this behavior may be required for other weapon syatema. Obviouly, retp ouing the obturator in flight increasea the dras. , fin-atabilired projectiles are often fired from rifed cane. The obturator mant te deaigned to ill the grooves of the rifing, but it must not impart a high epin to the projectile. Friction between obturator and projectile will impart a alow apin which is munlly remartably aniform from round to round, and which ean to some extent be controlled by the derigner by varying the material of the obturator and the area of itm surfece of e00tact with the projectile.

5-3.5 Arrew (Subealibor) Projection

5-3.5.1 Gemeral

The large muside onergy obtainable with large caliber guns offers the pomibility of launehing a light projectile at very high velocity. If the light projectile is reduced in caliber, its weight per unit deceleration due to drag would be no great an to soon reduce its relocity below shat of a heary projectile fired trom the same gan. But if the light projeetile in reduced in caliber its weight par unit of frontal aree (sectional deserity) can in inereened up to the point at which it beoomes a new ful item for employment aguinet armor, owing to its hing etriking valocity. Since theme sulcealiber projectilee are nacelly very long in propartion to their cierretern, thay muat be siomenbilized; they are referred to an "arrow" projection.

5-3.53 Sabet

The apace betwean the sabealiter projectile and the fun tarrol is filled by an annular device callod a "atboe" The ino, atteched to the body near ite bece, have a apen equal to the gun caliber so that they and the nebot, which is navally placed near the ces. of the projectite, form two riding surfeces which teep the bore gaw of the projeotile mall.

If the projectile is propalled by a pooher obtarator, the abot hee only a cemtering function and ean be relatively light and lightly attached to the projectile. Howover, tho sabot must often provide the obtaration and trananit moat' of the scolerating focen to to the projeotile since ife mibot
area in attes grester then the beve arse of tie projeetile The sabot in then beary, and atacied to the prejectile by meass of grooves aroand tbe projectic body. Thete grooves alturaliy pive rime © abok wavet wheh iserume th das. If fired from a rifed tubr. provilion mas: be mede for rotational alippegr betwee obeurator and projerike. The albor mant leave the projectile by break-ap of mopmeatation shortly after learise the masio becaver is drae woold be incolecoble. Prapoeate of the mbot any arike the fion so the sin aust be strome. Por thin remion, and to impreve tir riding of the fase on ine interior warface of ite sum inbe. the twa are often mod-pheted Wile
 the dract they abo inerene the lift of the fimit promittion a seductive in fare vinet harceiy

 1006 Part 1 (Rad. 61).

Mochlimer ant Pomatie (Ref. ©) compiled and amelymet the dras hate oncanset in sural whistie moge frage a urrow potbution They

 rouend the drag to sieve $10{ }^{2}$ 年 of the drue of to
 in eard Wheo the in stivicomer of 16\%. the

 Af ing tracer thay

S-AS3 Ampormery

frequency $\sqrt{-w I_{0}}$ is radians per meond. Iarge deformations increase the dras of the projectile reen if they do pot threated iss integrity.

5-3.6 Dyaenic Stability of Fie-Stanitised Projectile

S-3.al Gemoal

An dreomed (at mreter kength) in the gebwriou ite apin-arabilised projectiles, a projectile is suid to he dyanaiedly seable if ite treasient yew
 fin-atebitiod projectike hevian mero epia are clway drmanicully stabie; the yam. whick is plazar, de-- -a are scroordiaf to the exprenion

$$
x-4 e^{2 x}+2-\text { (rempening }
$$

-ware

$$
\lambda=-\frac{\Delta d}{4}\left[c_{\alpha_{0}}-c_{\infty}-k_{i}^{*}\left(c_{\varepsilon_{0}}+c_{m_{j}}\right]\right.
$$

sin the uravi is catiburn aed 4, in the cmatant yew due to peogectile mymmetry, or "iria anda."
 of the tiuncery a midiable tor memel trajotorime

s-302 2ee 3yin

 wece amofocsurne mimeoces porvir mee alight tein of the tom romition in a mia moluriat

 irapetory. the deletion to to equapiry me

Salasi Equrntino Splo

gemerlily prodeced by "enatiag'" the fing or, if the projectib in acekermisted, say be prodaced by eartine the racket mamen.

S-3632 Torque

Whe the tarque in prodeced by triming or sambering the than or by canting, ie, handing op a portion of anct fing the apin rerque in produced by the litt c! the sin, rixich seto in opporite diruction an oppocite iden of the poojutio axie The angle at which the air fow over sthe projectile triter the fas deprade on the apin rate; ©the apia rute inerumos the ande of attect of the mated portion of the fix derreame and the apin terque deerrane until it jux belaset the deeckration toraue pubeed by thin friction.

3-3033. Congumaio of Equitioter Bal Bate

 Thie oprixitiven rell race ie piven by$$
\begin{aligned}
& m_{n}=-\frac{C_{L_{4}}}{C_{b}} \frac{V}{d} m_{0} \\
& \text { whare on = quilitrive roll race, red/ee } \\
& C_{t_{0}}=\text { rall macent coeticinat doe to in } \\
& \text { con (st aro apia) } \\
& C_{b}=\text { rin deapine monert coeficivat }
\end{aligned}
$$

C_{4} in a ferction of the permotent of Ea arre arich is aned; C_{0}, in abrage manion This as-
 - vien tmant mo Heroper, C_{15} / C_{4} an bo

 - thent ralime

$$
\left.\frac{C_{4}}{C_{b}}-\frac{2}{d C_{c_{0}}}-1\right]^{\left(\frac{n_{m}}{N_{0}}\right)}
$$

S-3634 Senpla Calculative

Poe ceremple, a Guel projectile with aneeatiber Ans $(t=d)$ might hove the following chareterintice:

$$
\begin{aligned}
& C_{L_{e}}=20 \text { per madian } \\
& C_{b_{j}}=-0.08 \\
& s-a .18 t \\
& 2_{0}=0.0 t^{\circ} \\
& s_{\operatorname{man}}=0.1 \mathrm{ft}^{2} \\
& \text { 4, } 4^{\circ}=0.073 \text { radina } \\
& V=1000 \mathrm{fp} \\
& \frac{C_{4}}{C_{3}}=\frac{3}{12\left[\left(\frac{0.188}{0.6}\right)\left(\frac{-0.08}{20}\right)\right]-1}\left(\frac{0.1}{08}\right)=\frac{0.6}{-1.05} \\
& \text { - - } 0.57 \\
& \text { and } \quad n_{1}=0.57\left(\frac{1000}{0.5}\right)(0.003)-123 \mathrm{rad} / \mathrm{me} \\
& \text { - } 21 \text { nev/me }
\end{aligned}
$$

 alich cen he acimeted by the expromion

$$
c_{\varepsilon_{0_{4}}}=c_{w_{0_{4}}} \frac{S}{E}
$$

Where i = aper of fing and $e=$ average fe ebord. If ive sm have more the 5° ampophet, the sove expemion bor $C_{i_{0}} / C_{y_{0}}$ mav give a -nive nome.

S-deal Gemed

It in inportare to lave s and minete of the aqilibriut atin ciere the burimed of dymait

 that lue mond to ound mare crime" Marphy's dymain seabikioy sueter, an ous ib

 velown of upin, s, apprecetren sero and $1 / \mathrm{s}_{0}$ breomes a harpe mepetive aamber. Hesce, the pomibility of dyameic inctebility in spaell whea the apia in anall

5-364.2 Sx.pite Colaintion

Our cisel fimper aned a an emple in the dieconion of epia doe to fing cent in preending pargrapha. might ale have the following charactarimion:

$$
\begin{aligned}
& I_{0}=0.18 \mathrm{dan}_{\mathrm{E}} \mathrm{ft}^{\mathrm{s}} \\
& I_{5}=30 \text { dare }-4^{2} \\
& C_{m_{j}}=-25 \text { pron rina }
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{4}=\frac{A_{0} i^{2} s C_{E_{0}}}{I^{2}} \\
= & \frac{(4)(2.0)(.00119)(1000)(0.18)(0.5)(-2.5)}{(0.15)^{2}(123)^{3}}
\end{aligned}
$$

Ohing Murgily's eritarinte

$$
\frac{1}{4}=x_{0}(\theta-\infty) \sec \lambda_{1}-\lambda_{0} \leq 0
$$

mond cim the pojutite of thi aremelo is

Frime, P4. 45 miote an that thatotine of

 ct "ningerem moner fill gem.

In any emes, the magnum moment soptheizeto of fin-tabitised projectiven are kem predirtabie than thowe of apin etebilized projectiven. For this reacion it is wive to allow as great a marrin of dymanis stability at ans be secured without falling into moonace intability, which in divorned in ethe mart parapreg.

Whit apie-mebiliond projeetime an theoreticelly acperience coiscidenee of apin and yow tro-
 to areve with finmabitimed projuction that in in divenned ther.

Agyemetry

Murphy (Ref. 120), in inis dinumbion of the aprolar metioe ol a dighty Eapmancris nimik. stown that the magnitude of the jaw dut to aym. motry ie raelly well approainated by

$$
K_{0}=\frac{1}{P-P_{r}+T}
$$

wher

$$
\begin{aligned}
& P=\frac{I_{0}}{I_{0}} \frac{2}{V} \\
& M=\frac{e_{r}}{M_{\theta}} c_{n}
\end{aligned}
$$

and 1 is a comiat oliom enpmote on thed und triou el agmantry.

If to andeinator it an and to ano an novil ite a the rank it

$$
\therefore \frac{P}{2} \pm \sqrt{\frac{P}{4}-M}
$$

tex thie in proinoly the eipoumion for se fro ynemeine of the two mald notere of you (Bet. 124). 80 ti cither the metatimel ircupiecy or the

the ante aty in molimerin; the rmant jew of projection man trooen larpe mongh to eam luen of rang and acarsey through hrge
 jentiv to tomble

s-3.721 Comprente

The ain in mat ikely to coincide with the

$$
A^{\prime}=\frac{P}{2}+\sqrt{\frac{P}{4}-M}=\frac{P}{2}\left(1+\sqrt{1-\frac{1}{4}}\right)
$$

sine

$$
\begin{gathered}
P=\frac{I_{r}}{I_{y}} \text { and } \\
\alpha=-=\frac{\alpha}{\nabla}
\end{gathered}
$$

Ser remament itmon

$$
\frac{2}{I_{*}}=1+\sqrt{1-\frac{1}{4}}
$$

$\frac{4}{18}-\frac{\mu_{2}}{I_{0}}+1-1-\frac{1}{4}-1-\frac{u_{2}}{I_{8}}-\frac{p}{y_{0}}$
Thentom 0

$$
I_{0}-I_{0}=\frac{p}{1}
$$

 Un

$$
n=\sqrt{\frac{-1}{2-1_{0}}}
$$

 mol

The cquilibrium roll gate po foe this faper win 138 malme, $0 p_{0}$ in mall sheve on ginoe boch pond of est diruethy propertional to cirpped, changet in Y aloen the trawetany do ant alter the Ad / m ratio.

Fincults

It win be men froe the expronion for μ that deerme in air demity with alititede dammen of; if the mailizrien roll zote ie grecter than In frine at high quedrant elvnecions vill decrean the chooe of regomen imability. Threfores, in firing from a rifed sta, the cirareter acoold be do-
 the mand at int thro timin at protion theol whotad roceient roll rote, on and the then choald to Luipel for an aquilinion apin ($n=\mu / \nabla$
 of ene cixcl fapr, a.011, it mavomarity high is view of in or of a.005; citive the far and ande er the parceitape of fle ares cratel coll be out in mele

 povill in gre to to rumenes trill to andigith. The arover the ador raid the thoter the time grop in che vinciof of on mine the lingtive

8-18 man tutio

moments not sonsidered in the dimenmions in this handbook ean offiet the in torque, eavaing the epin to remain at the remoant frequency long exough for the jaw due to asy moetry to grow earactrophiellly. Giving the propieetile a apis at emergeneoand at equilibrium-groeter than v_{n}, in the mechod swosemonded in this madbook for avoiding roll bet-in.

5-3.5 Aerodymaric Jump of Pin-Soubitiod Projectiles

All α the material on the merodyasmie jump of apin-mehilized projectilea (parapraph 5-2.5) applime without chage to An-atabilised armanition, with the execption that the drift of a fin-mabilived pospetile in tept amall iy rolling the projective mowly. However, is requiras very good design and mansfecture to keep the eerodynanie jump (and therefore the diaperion) of An-etabilised roasde to a low a bevel m chat α standard apia-mabilised sounde firod from the mane gun. Thie hes boes obeervad manay timea in tere frimpe of Ab-atebilised tank rounda, where opia-atabilind rocend were and as eontrol rowesh

The eerodynarix jamp angle $\theta_{\text {, }}$, in rodueed by increming the e.p.ef. mparation, n is seen in the equation in paraprepl 5-2.5.3. (e.p.ef. $\sim C_{\Psi_{\mathrm{E}}}$ / \mathcal{S}_{6}. for mall yww). Untertmetety, if thim in-
 cluinet of the teit, aby grober fin are or a bagur

 with mantime imernew in initial yewian valceity.
 repees. mpertion, and it maty woll Be, the the merodramie juap is ineromed, mot rodseed, by the chang in e.p.ee mpartion.

The e.p. Of the sarmal foree an the trody sloes cen te moved rearrard by eheariag the chape of the body: this est iseretw the e.p.e.e. mperation of the whate mojuetile with bictic or ac chmon io

 crent.

on serodynanic jump in ninimised if the rewaltant of the transverse promores on the projoctile paine through the mormal fight ep. of tie roond. However, sioce little in tricme aboat ine dimeribenion of mussle blact premure in eithar apece of tion, the bett way to reduce musie blax effeet in to relvee the magnitude and staretion of the black pemeneres on the projectile by good obturation.

It will be noticed that aerodyamie jump hat been divemed only for dynaracally stable projectiks where initial yawing velocity and e.p.es. xeparation are the quantities of intervat Piaxiabilized projectiles which are statieally mable are abo dyamically atable amben they have an uaunally hich roll ram.

5-3.10 Fin Effectiveros at Supminete 8yme (Rat. 12t)

With low appet retio fins of the arder of 10 or lean, the apan is the predominant factor tor prodocing high sormal fores entrinemita. However, when spass are limited to so grouter then aen fall body diesuter, the optiman chood loneth mon to determined. For a fixed apan there in a defaite lisit to the ebord henglik thet will gion the then eombination of aormal forer and mont romerward C.P. The morsalal fore band an body froatal are decromes with isercomian Mell mamber for - commant apea and cometant chord, and it douruma move repidy os the chood in shortincel. Thin meman

 mont rimivat eboed irgath arpare to the tuivion
 The larger chord choald be nad for the higher diach numbert.

The effeet of leadingerdye smoppock in sendigbe s for a mormal torve is somecriod if emmeint even and export recie is beld. Prom the wing theory tive int within the tip Mech mans in epppocimotety $1 /$ of the trodimomienal rabere c Thie is

the lower to the upper sartseek. If more of the fa marface in alfectod by the tip Mech comes, she bower the tatal moreal foree will bre and the further formend the (:.P. will move. If by mone mothot wr roukl prowil thin promarp bukare arounal thr tipa to mold be sbo to imodimomiomalis. a throu-dinomional enfaer. Kid platiag the fins wim attempted. By thim method it wee found thet it fan sormal foret could te inerened an moph a 40% dopending uppor the amount of fin aree alleeted by the end pletes and the amount of ead plate vidth Tre and plated fin en agiont the plain tril en the T100 trings had reteoring momeats 31% eruber anil mach hetter mecuracy. The danping eoeflicieats wie alo harger for the end-plated taile an againat the plain tail, and this eacoed the more ctable ramed to danp to $1 / 2$ anpliade in fewer egelan.

A maplete and plate videl would be clacifed an a chrouded oe rime tail. Experimental ovidenes a low Mact sumbere thown that the chroed had a tarons leadeney to eboke or bloct the air fow owe the in curforna, thereiy enuing peor fow woe then meficen This in tem coued poor liftime romber Bomover, iscee the simet velveitics hove bear roind to high Maeh nonden, ine tem. duey for tio flow to chote terwere the fine and
stroad is eliminated, and han morne loree are inerrund and C.P.'a mond rearrard.

Thr aumber of tian memenary for optimum mormal foree apprent to to cix. Thoopetirally mix Sma, setime imdepondently of meth ather, whould giva IIS times the forre of four fina, however, oxperimontally they evelly prodnes enly $\mathbf{2 0 \%}$ to 30% move, depondent upan Meh number. If mopr than mix fim are employed, the fins interfere with one amber so fur a the fow sulde are amereried, and the mormel focce sufers.

In ecder to obtain marimasa tril ellectivesom owe reald mast the tail to te in a miforis foom mion, ie., artide of ay body wabe inftrencm. Thin, bowewe, is cals pemilts whan ming folding fan whoer aneep andice are reletively mall. Por flod in couficaration (creopt in the cene of arrow projectilam) the fim are eperetine mainty in che mondery hywer for frem the body. Moass of giv. ing the fa the mont eftetive lifing worfice are to mabe the eappocting body as mell a prectical, ie. trep the epan to cappert bedr diamoter an lerge m ponible ot that a groter pretion of the fin in outside ot tie bedy boundary hayer, and boattail the main tody oo that ameth milorm fom in promaded is tive sartion.

CEAPTER 6

ROCXET-ASSISTED PROJECTILES

6-1. GHIERAL

The kinetie enerey which a gun ean impart to a projectile in limited by the diameter of the bare, the lexath of travel of the projectiv in the sube, and by the carve of chamber procure wo travel. The masis energy can be increased by ming a bigeser, loager or thicker gas tube, thus increming the eone of the weapon and, mose important, deereming its mobility. But range is limited by the tivetir emerty sapplind to the pro-
 from the kimetin ecery an amount equal in mannitude to the dras foree.

To inerome saige, or to inesume elve pay. load earriod to the mere mage, or to inermes the valoeity at targot inpect, withont doernesing the motitity of the grin, the frot atop in to rutuee
 Volue an in cempetille with the projumity volume suguird by the projectio's mimion. The reat top in to add binctie ceerco to the projutity it sidia.

Dy incrualy stie leagth of the peojuatis, of by mecritcing come of the wartmed volere, a roeket motor cas be ineluded in the projoutile. The rectoct throun adde limetie esargy to the projetily in fight. The mouking projectile thealled a "roekre-mamied projoptike." or, quivaleatly, s."gus-boceted roeket." The burning of the rectet fuel ean bo controlled, or "programend," to be bee thas the drea fores, epprozimathly equal to drea. or very mad arsater for a chort pertiod.

The addition at a racket motor tammes the ant of the projuetive and ineromen the therepe

by the maximum set-beck soceleration which the propellant can tolerate without erunhing, bot this lire:ting aceeleration is surprisingly high.

6-2. YOLESTUY LITITED SITUATIOI

6-2.1 Variatice of Maccio Inergy, Cheriber Pres. sase and Propellant with Wright α Pro jectio
Hecause of the set-beck mecoluration timit, reeket-aniuted projeetile are cmolly made beavier than the conventional amaunition fired from the sane gun. The muzale velocity in then limited by the eapecity of the resoil aytien, and deermen is proportion to the iserven in projeotile wigite. If we we the subveript "std" to identity the aymbole relating to a projectike which in lagneled at the marche mamentula livit, then

$$
\omega V=m_{\infty} V_{\infty} \quad \text { (cmenaxt momintan) }
$$

aquariag, reartagiag, and diviling betk dim by twe give

Equating anuscio eserg to the integral of the work doen at the projetile by eme prearace in tho gun give

$$
A \int_{0}^{L} P_{0} d=\left(\frac{m_{m}}{m}\right) \& \int_{0}^{L} P_{t_{m}}
$$

when
P_{c} It ehamber permase
$\Delta=$ bore arve
$L=$ bore trual

Asaming the premore-travel eurves have the anme shape, $P_{s}=k P_{8, n}$ and $P_{s}=\left(\mathrm{m}_{\mathrm{mac}} / \mathrm{m}\right) P_{\text {cw }}$ then ansale enercy and chamber preasure, and consequently the weight of can propellent, are invercely proportional to the weight of the projectile, in a momentum limited citmation.

6-2.2 Variatien of Setheck Aecaleration

The methack aneeleration, b, is given by
so the setbeck aceeleration is inveinely proportional to the equare of the mans ratio.

Duelg Farsement

The rudnetion in meigist, and volume, of gro propeliant allowe sone of the extre length ceeppied by the recket apter to be inserted in the apece pecvinuly ocempied by fun propellant. Whether, and bow, thie is dose depreads on the charseteridies of the sea tube and londing symtere involval.

Lerwe increan in rate require, if macined
 pojietila langh. Eryeriveer has shown that epio-

 in the innowe of roent throut thome poujution sow down to mel oe s high angle trajietory thet thair aquiliticien yea beeces danguocoly hage. Howover, what the projectile veloeity is maintained I) a rectet which harn maris to the gancit of

projectiles as loag as 8 calibern, or poesibly longere. At 10 calibers, fin-mabilizative is almont certainly required.

6-2.4 Eficet of Recket Aditiones en Acesuracy

Loug-barning rocket, mosetimes called "ens tuiner" rockets, with thruat approximataly equal If drus, ian have a proving eround aceuracy (no witul) very little worwe then a conventional ronad fircl from the wame gun. Thrust atalizmment, which contributes heavily to the dispernion of fatt burniny rockets, is a minor inetor in the lowthruat socket. Varistion is roeket tuel speaife impuise contributce to rocket disperaion and socounts lor the alighthy inferior acearecy of lans-haraing rockets compared with conventional projeetiles when both are fred in the abeence of wisd. However, a loneberming rocket in lum alfected by wind than a conventional projectile, 0 that combet aeurey of the rocket-miated roard might well be betrer then the coaventional.

Acearacy anclyes of reetretemimed projeetike, both apir and fiserabitined, ase preneated in Bulbock and Harrington, Summery Ropeot on Nindy of the Oun-Boastad Recket Syetem, Bet. (0). These analyme, with mpporting exparimental daten are very uneful for detige; an artanive miblion. raphy in lo included. Iaitial yewing wheity, dymamie nablamee, and wind aso identifed ath major mouroes of dinpersion of epimetalifind rocicets; thrut malaligment an to aipailane in cooen of high thront and clow min. Dyeamie
 anymactiry and thro malaligament ean the if the roll rate is too how; wind in alo a major euree of dimpervion here. The reeoos for the ranill windmenitivity of anctnimer reetrie ase elv dimoned.

[^3]
CRAPTER 7

LIQUED-FILLED PROJECTILES

7-2 Gentral

Projectivn having an inoer eavity wich in partially or completely fillod with liguid ase a apecial cene of the elan of projectile having a moarigict internal structure. The yavise motion of a projeetile has monlly apel a low coesty morteit that sall trasilers of esergy between the intersel parts and the wall of the peojuctile can inerves the yaw significantly. Whea the men of the moarigid part in lerge resative to the man of tive projectile, x it in in the sere of zome liquidfiled projections the yaw may inermen wiy rapidly.

The imetability of lipuid-alled projective hee trea stodied, theretizally and experimentally,
 Some of this wowt is reported in Reft 71 to 73. Tre inometigation in mot eomplete; the aratementa made in the following paragraplen regrement eur. Nout (19e4) amonper and opivion.

7-2. ETMECT OT SLOSMINO OV ILPULD TILLS

Difercmoes is the thermal conemeinate of ax. pamion of projoetily body and liquid anche it inproction to completely sill a peojectike cavity with lipaid. Molmainal dovien for allowing ibe cevity volume to chagee with the ehnage in liquid voluse ave puible, tux set mach gat. Fille of 96%

It theo tran foeva thes the doching aboet of

 mo of Hacil in in to motenimation. Tin

leagth may reduce the voluwe of a finsar below seveptabie limita, or apinetabilisation may be dewirable for terminal refecta.

7-3 COMPUTATIOI OI DEESON parntrites

The disevaion which followe applim ouly te spin-malilimed projpation.

7-3.1 Gyrmoogic Sountey Frewt

The grociopic zebility fetor of a biquid-alled projetile is given (apperivatety) by

$$
z_{s}=\frac{I_{s, g}^{2} y^{2}}{4\left(I_{r_{y}}+c I_{r_{k}}\right) / \mu}
$$

whese

$$
\begin{aligned}
& I_{\text {s. }}=\text { axial moment } \alpha \text { inortis } \\
& \text { of rigid parta, slow fos } \\
& \text { ly. = tranvorse moment of } \\
& \text { inatio of ridid prim } \\
& \text { clum- } \mathrm{N}^{2} \\
& c \quad=a \text { cocetart releted to the } \\
& \text { vimonity of the liquid; } \\
& \text { for meter, } a=0.3 \\
& I_{i_{2}}=\text { tranovercer manat } \alpha \\
& \text { inartio of liquid parks, } \\
& \text { alueft } \\
& \text { - = tratic mameat terver, } \\
& \text { 旦-n/redian }
\end{aligned}
$$

Tw rigid parts inotude trit mal parts and
 ere ampeted choot the trial ase of the proimetio,

centrie cylinder ceexpying the full lengtik of the eavity.

7-3.2 Dyanaic StuliHay Fector

The dynamic ntability factor-compated in the unual way from aerodynamie corfieienth, exopt that 4 is given by $I_{0} /\left(m_{n} a^{t}\right)$ and k by
 the projertile rould be dyramically stable over ita trajeetory if there were 20 interaction between the liquid all and the projectile wall

7-3.3 Spin Pate

In the trameient pariod, daring which the liquid in is aequiring a spin rete equal to that of the projectile wall, the traciter of argalar momentore from wall to liquid will redues the apis rate sic the wall. Thus reduction in epin rete say be very rapid if the liquid fill hea a high vicocrity, or if berten tied to the projeetile wall are plaed in the liquid. 0 a the theory of paragraph 7-3.1, above, that the angular momentum of the liquid does not contribete to an the projectile may beome antable. Howover, the transient period in them achort that betile (or hingt vimeomity) may setanlly improve the fight. Bratien can be desiprod si=ply on the bein of the forgae mested on the biquid in firing it aspular
velocity and on the shear, due to setbeck, at the roots of the baffer.

7-4. EXGID BODY TEEORY

When all of the liyuici in rotaciag with the amse muxular velocity m the projoretile wall, the projoretile is maid to be rotating an a "rigid body." If the liufid were not all of the mano damaity, the hoavient fraction monld be elonest to the projectile wall an a result of the centrifugal Aeld, which sowomblea a gravitationul fald. The air spece, then, is as far away from the projective wall as pomible, surrousding the axie of the projectile or any colid eore, weh at a burnter tube, which may be poitionod along the projectile arim

Stewarticn's theory in eoncurned with the instability of liquid-illed projectivem roketing an a "rigid body." It was decived for eylindrical cavities completely or partially thed with liquid of pniforsa denity and low vimocity; the behaviar of text proape of round of varying reomery and pereenture of exvity filld has ham acosenfully perelieted by the nee of thin theorg. The peojectip eavity med aot be preciedy eytiodrical morar ite rman The mecteary formulas and table for applying Seowartion's eriterion of inatability are eontained in Karpor, Dymemice of Eiquid-Mrted Nhell. BRL Mmaruadum Boport 1477 (1en 72).

CFAPTER 8

RANGE TESTING OF PROTOTYPE PROJECTILES

8-1. GEIRPN.

Very few projectiles are completely satiafectory as first designed. Metal parts failure is rave, but the first teat firinge nausilly show that either range or aceuracy is not as good at was docirod or expected. In inctances where the firet group of ten or fifteen teat rousios ired gave evcellient remalta, a seoond group hat often failed io esnfirm the grod results of the firnt. Concibsions are drawn from the behavior of the teet rounds; datign changes are mede on the becia of these sonchusions; and new prototype rounds are made and fired. This teat and change mavence may go on through many eyela before an aceeptable design is reeched.

The difliculty that a devigner may ancounter in tramataing a round from the drawing board into a eneful weapon in deseribed in the following ex. cerpt trom the roport of R. R. Dickineon, The Ef. frets of Anmuler Rings and Groover, and of Body Cndoreuts on the Aarradymanic Propouties of a Cone-Cyliander Projectice of $M=1.72$ (Bef. 80):

Otten, in a projeetile's progrean from the decisper's drafting board to the amembly line, there are many changee made in the details of the projeetile's contors. As a rewult, the setwal sarodyamaic performanee of the projectile may differ from that of the decicper's predietion.
claok all of the basie design datia on projectilme eoscerns itwif with emooth coatours and cimplo grometric chepen. When practiol concidara. tione cator the pieture and tusea have to be at. weived, reliefi huw to be mechized, roteting beads leve to to edded, a projeetile whiek may have boen,
 pertationa.

The asglocer, wise traseletes the mallation's
design data into a practical piece of ammanition, should be cognizant of the differential corrections that have to be made to the predicted behavior of the projectile. The purpoee of this report (BeI. 80) is to ahow the effeet, on dras, lift, and pitching moment, of depremion asd protrosions on the surface of a body of revolution. Unfortanately, there were insufficient data to determine efleets on. the damping and magnom momenta and forece.

Obviously important to the decirner in the soundnes of the conclusions on which the dexign changes are based. This soundncen is directly related to the care taken in propariag tox, fring, and analyzing the firing trat.

8-2. PRE-FRE DATA

It is important that the denigear know esaetly what was fired and bow it wei fired. He must know what equipment was und for measuring the tea parameters, such a voloeity, timo-ol-fight, and target impact, in order to anmesthe acoursey of the numbers presented to him. Rech round fired must be precisely identified so that ita performance can be tiei to its phynical characteriatios as determined before firing.

For each round, the following phywical charsoterinties muat be detarmined and rocorded belove Aring:
a. Individual weights and dimencions of all of the signifleant components of the rousd.
b. Weight and center of grevits locetion of the projeotile, isoledias the cianleted lothal charge.
e. Amoust of wocmericity of apuite compomatal rolative to a chome relorome aria,
\qquad

whon membled into tha :amploter projectile.
d. Axial and tranavermer momenta of inertis. (Moment of :nertia data may be omitted if the projectile is fin-tabilized and it is known from a pre:rions teat that dynamic atability in not a problem.)
e. Sarface isregularities which could canse disruption of proper boundary layer fiow.
f. Round number or other identification, which abould be permaneatly marked on the projectile.

Some experiences in the manafacture of protoape projectile indicatea thas there shoaid be no difientsy in meeting the following tolerances:
2. Projectile weight: $\pm 0.6 \%$ deairn value
b. Center of grevity bocation: $\pm 0 . C 5$ inch
c. Eecentricity : ± 0.008 isch
d. Momente of inertia: $\pm 2.0 \%$ of decign value

Proetival methode of momourement of projeetile charsetaristica are deseribed in E. R. Diehineon, Physical Mecoruremonte of Projoctivar (Bef. 74).

8-3. TEsTIIE

The primary fropetion of the projectile teat facility in to ecquire teliable and unbiaed teat romalts. Eagiseering chary nuat not be beaed on cmeluaions that are tatiliceally ampored; acoordindy, the tuat mone be plansed to provide cufluoient deta for a atatiaticel aristyie- (Bal 76). It in the moperability of the tenting offieer to bmarn-comepletion of the teect, a planoed, or to reeord any comdution whieh will mate completion inpraction. The two typen of text, etatie teming and Aight tenting, are deckribed molew.

2-3.1 geate Tmetas

gentie texting in at internediate design tool, which is particularly mefal in determiantion of the tollowing:
2. Ehaped charge pmotration
(1) tasd-ol dixameo

(8) hight explocive charge: type, vetumen lomity, clapes, ato.
(s) winet of ain
b. Frmpmentution ntudion
c. Smoke tentr: chomical type, mhepe, volume, dernity, etc.
d. Rocket motor performance
e. Prupellant and high axplocive ignition ayn tens

- Many of these static tecta involve desigen thetors which contribute to the men and main diutribution, and direetly or indireetly affect fight characteriaties.

8-3.2 Flight Teating

The mimion of the projectile determinem the type of fight teai conduetod. The two moat common tentes are to detarmine vertical target acoursey and rage (diatance), each of which in dinomaed below.

8-3.2.1 Vertical Targot Acemracy

8-3.2.1.1 Mmaroment of Acexracy

Por vertical targeta, the aceurecy is expromed in terme of two probeble errort, P.E.m and P.B.r. These indicate the distribution, both borimoatally and vertically, about a evoter of impeot.

8-3.2.1.2 Tmporature Patyo

Test requates exverally specify temperatore e00. ditioniag of the teat projectiber, for © EA-bour period priof to lling. The throw temperature mages monility employed ave:
2. Hot : 12ser
b. Standard: $70^{\circ} \mathrm{F}$
e. Cold: $-40^{\circ} \mathrm{F}$

8-3.2.1.3 Deta Pococted

In pertieal target sceureay tants the peojpetim are fired on a fint trajeetory and the fellowing deta are raceeded:
2. Projectile identification ; round fimatifmetion
-. Gen identifention and coodition
a. Chage in gui dovation or cimath (if any) lutinves scands
d. Target dintason from ram

- Minale viluita

1. Coordinates of points of impact
g. Ground level meteorological conditions
h. Terminal velocity
i. Time of Alight
j. Chamber prearure
k. Burly yaw

8-3.2.2 Dane (Ditarse) Accuracy

8-3.2.2.1 Measurement of Accuracy

When texting projectiles for distance, the aceursey in measured in these two ways:
a. Probable error of range; indicating the dirtribation forward and aft of a calculated moan range.
b. Probable error of deflection: indicating dirtribation to the right and loft of the center of import Defection P.I. in severally expreened in mite, booed an the mean range.

2-3.2.22 Data Pecerded

These projective are generally texted through a range of quadrant deviations and the following data are recorded:
2. Gun and projectile identifeationa an in flat Ans
b. Quadrant elevation and azimuth of gan
e. Mrasle ricoity
d. Coordinates of points of impact or burnt
\cdot
e. Meteorological data at ground level and aloft
f. Time of fight
g. Chamber premiere $\}$ Not always
h. Early yaw $\}$ observed

8-3.2.2.3 Instrumentation
Subsequent field teens may be conducted under localized weather conditions, ranch as at the Arctic Text Branch, Big Delta, Alike. Instrumentation available for recording fight data are:
4. Photography: Pictures talion at muscle show growth of smoke cloud which is related to adequacy of obturation. Sequence photos record discarding matts or record apia ac. tivity.
b. Yaw Cards: The projectile in fred through a series of strategically bested motioned. board panels to record the attitude of the projectile relative. to its line of fight.
c. Radiosondes: 1 mall radio transmitter built into the projectile is actuated upon firing. An on-fround receiver, being ammanfive to the mill orientation of the transmitter antenna, is able to record the spin history of the projenerice.
d. Redar: Pear tracking on provide position and wiocity data throughout the frit.

CHAPTER 9

MANUFACTURING TOLERANCES

9-1. DIEERSIOEAL CHARGES

Coat fectors necemitate that tolerances on parts being produced in large quantity be less stringent than prototype manufacturing tolerancea. Dimensional changes, to facilitate production, may be made only when the figigit results will not be significantly impaired by the change; this implies that stendards for high produstin runs can be eatablisbed only after atatistical analyais of prototype fring teat data. A brief example of the type of analysis considered in presented below. Reference should be made to the Engineeriag Deaig Handbookn, Experimental Etatistica, AMCP 706-110 through AMCP 706-114, for a thorough treatment of thin important phese of datu analyin.

9-1.1 Problam

Fin minalignmant relative to the longitudinal asin of the projectile is recorded during preflight inspection. The amemblies aceepted $e^{\text {? }}$ this time moat meet the requirementu of prototype manutactaring. After teat firing the aceepted projeetilea, the impact disperion at target is recorded.

9-1.2 Analymis

A aimple recremion analysis of An minaligament varuas distanee of hit frem eentar of impact will produce numbers indicating the effeet of mianlignmeat. If the amaryis indicatee insifnifeant corralation, the rolerances on the fin dimansions whieh coatrol aligrament may be rolaced.

9-2. PREDICTED PROBABLE RAXGE ERROR

Table 9-1 presenis entimates of the probeble variability of those projectile characterintica which most significantly affect range. Theoe eatimates were gathered from ballisticians at Picatinny Arsenal, Aberdeen Proving Ground, and the Naral Ordnance Teat Station. The last column in the table presenta sensitivity factors for a particular rocketassinted projectile when fired for maximom range. These sensitivity factos, which reproent the per. cent chainge in range caused by a one percent change in the amociated round variable, were obtaired by trajectory computations ate dencribed in peragreph 4-2.

The predicted probable arror in sange, in parcent, due to eech variable in tharefore the product of the probable errss oit the varialis and ite at sociated montitivity factor. Under the mand ansumption that the errors are indepandent of each other, the retalting range probable arror of the projectile, in percent, is the square root of the sum of the squares of the individual products. Vector sums of this type can be aignificuntly reduced only by reducing their large componenta. Obvioualy, a aignifeant improvement in the range dispernion of socket-amisted projectiles could be obtained by reducing the round-ta-round variation in apecific impulse. In the abwence of rocket thrust, variations in drag eotmeient secome mont signifcent; linpernion might be improved by cloear control of the external contour of the projectile.

The foregoing paragraphs apply to high angle indirect Are. As the quadrant elovation in docreased, the relative inaportanet of the various factors changes so that in direct fire the mont im. portant items are quadrant eleration and aarody. mamic jump.

TADLE 9-1
PROBABLE VARLABLLYT OF ROCEET-ASSISTED PROJECTILE CBABACTERISTICS AID SEMSITIVITY FACTORS WEICE AITECT RAHGE

Pound Perieble	Prabile Error as \% of Yom of Varieks	Smaininity Fectur ct man rume
Projectile Wezinde	25	显
Munde Veiocity	5	8
Fan Wrinds	50	. 8
Fand spmite Inapathe	100	81
Pad Burniog Peta	20	4
Drem Corteruts	5	. 71
Bellioti Dravity of air	-30	. 77
Qendesut Eurutios	5	18

2-4. DTEAMC stalinit of 17Sy Pwojectile, Ma3?

 concive liub of ite trajetery. Paturiat to tho
 Mad member vernity the expreted veloce of in

 mentitivity of the tabitio of the polomile to rerintions in the mpmemerat and danix

 conter of grovis hamione.

 projectile Manood peoperty with veriation of ato four meadard derimenow from the carvo trual it

TABLE 9-2
SNTE TRAJECTORT FOR 175-M SPIE-STABILIED FEOJECTLE, 1437, at QI $=45^{\circ}$

$\begin{aligned} & \text { FFO } \\ & 1.000 \\ & 1470 \\ & 147.50 \\ & 147.50 \end{aligned}$	$\begin{gathered} \text { FFM } \\ 1.000 \\ V 0 \\ 3000 . \\ 2 \end{gathered}$	$\begin{gathered} \text { TYPE RE } \\ .175 \text { SPIS } \\ \text { TEMPP } \\ 59 . \end{gathered}$	$\begin{gathered} G A \\ 369 \mathrm{RET} \\ \text { SBi } \\ \mathrm{Si}^{297} \\ \text { ori } \\ 2.0 \end{gathered}$	$\begin{aligned} & 0_{1} \\ & \text { DTM } \\ & \text { - } 300 \\ & \text { OTE } \\ & .350 \end{aligned}$	$\begin{aligned} & F T \\ & 5730 \\ & M 15 T \\ & 20.00 \\ & c 002 \\ & 5.80 \end{aligned}$	$\begin{aligned} & 0 E \\ & 45 . \mathrm{nOO} \\ & \mathrm{CLP} \\ & -.015 \end{aligned}$	
. 0011891116.0							
TIME THETA	$\frac{x}{2}$	$\begin{aligned} & \text { DIST } \\ & \text { THRUST } \end{aligned}$	ORAG		CMA OR MACH SPI	$\begin{aligned} & \text { mass } \\ & M_{5 G} \end{aligned}$	
.00 .78	-		3000.0 562.1	. 203	$\begin{aligned} & 3.62 \\ & 2.68 \end{aligned}$	$\begin{aligned} & 1.000 \\ & .3: 4 \end{aligned}$	$\begin{aligned} & 4.58 \\ & 1.95 \end{aligned}$
3.46	6895. 6709.	9621.	2577.8 366.5	.222 .001	3.73 2.3	.806 .342	4.58 2.80
.07 7.92 .71	14745. 13815.	20213.	2198.8 729.5	. 240	3.87 2.67	. 642	4.58 4.17
10							
13.64	23745.	31770.	1858.3	. 260	4.04	. 509	4.58
	21066.		140.3	. 003	1.80	. 428	6.38
.21.01.52	34145.	262.	1552.6	. 279	4.30	. 408	4.58
	27972.		84.4	. 007	1.54	. 491	9.86
30.84	46693:	se090.	1282.1	. 307	4.61	. 322	4.58
	3371.3.		50.1	. 015	1.30	. 572	15.85
43.01	60831.	72479.	1108.3	. 332	4.99	. 289	4.58
-. 0	36054.		36.2	. 023	1.14	. 611	20.48
28.01-.43	76566.	88752.	1092.1	. 335	5.08		4.58
	32435.		42.0	. 019	1.10	. 627	16.30
73.01	90373.						
	22521.		1199.4	. 3210	4.9.96	. 486	4.58
80.01							
-1.02	782.		1265.5 124.2	. 325	(1.98	777	4.58 4.21
	$\begin{array}{ll} \text { RAMER } \\ 32333 . \end{array}$	Vifps.	ThgTa.D	$\begin{aligned} & 5811 \\ & .452 \end{aligned}$	$\begin{array}{ll} k & 56 \\ 2 & 2.95 \end{array}$		

(33)

MEPCRT	Ber
DATE	1963
THE OP TEST	Froe fitight

Dimancions, colibers

eg. loection from benterbers 3.0

$$
k_{0} \mathrm{cel} \text { 2.362 } 1.297
$$

TABLE 4-4
DYGAMIC STABILITY ESTMATE OF 175-ME PROJECTILE MAY

I'rujeetih Type:
Mach aumber:
Air demity:
Averge value of ecrodyravic comelinels:
$175-\operatorname{man}$ M4:37
l. 14

- = acooses duruft at 23,060 ft above min levil
$C \omega_{0} \quad=3.0$
$C_{L_{0}} \quad-15$
$C_{0} \quad-0.33$
From Uapablinesed BRL data 1938

Anin, $=0 . c 4 \mathrm{rad} / \mathrm{ml}$
Inmenter, $d=$ asts is
Axied redise of erracios, $k_{0}=0.50 \mathrm{ml}$
Traguers radies of grretion, $h_{1}=1201 \mathrm{ml}$
Projuction men, $=4.50$ ander
Orguricie thanity theter, as:

$$
\begin{aligned}
& 4(2+4)=10 \\
& \frac{1}{3}=\text { and }
\end{aligned}
$$

(25) 76 B/PNK

GLOSSARY

accursey. The peality of correctren or freedom from error. C:. precision.
aceumey of fire. The correctome of fre as judged by the diatacoe of ith ceater of impect from the center of the target.
scematic melociry. The relocity of sound warem or simular wath is a givea medioni Por variation with altitude. in sir, wr: Stasdard Atmenphore.
acedyaraic jurnp. The averse debeetion of the urajeetory which aries from the ahernatiag lift forem at a yewiat projertik. Drith which arien frow a moe-sets equilitrium angle, in not included in axrodyeavie jump.
elsopen. The apmed of a pioperile relative to :br sir is whiel it in ingersal.
AYC (able). Arny Maceriei C mand.
angie of juap. The aspie betw. as is a lize of elevation and the tine of dormertar.
 mexine of a pminetive act ti, diontion of it
 provace if a letwel wiad it: vir mape in band at the dismetion of the relaciva wiod, reblee the the dirsetion of sucioe of the c ?

 form an a bedy is the dirwetion of es. bongitodtalal axit of gymatery.
 axie of oymedory

 Is in thpentout apou the and diamor and

 cigital meppentr.
tallistic ragge A suitably instrumented area or enclocure in which projectite trajectorice can be clseely observed, as by park photocraphy ; anal ysis of the obeerrations can yield good cotimatem of the serodyoamic coeflicients of the projeotile.
blest wase. The aose of terbalent air aod propet lant gaves throagt whiek a projectiie maint by mo it leave the masie of the ras. The bleat soce ands where, and when the projectile eatacs undiatarted air.
bentrail The bece of a prosectile when chaped like the frotere of a come (a: like a roerned opive). (:I : square tron.
thene The centrai stalk or showe to which the fin nf a fio-etebilised projpectist are attectred.
bre. The interior of a cull barred or tube.
boundary inger. A this lagwe of air (or other faid) maxt to a bady, dintingainable fore the maia for by charmetwimion of ite own, at ap by frimion The haver withim wich eso majer eflete ol rimerity are momentrind.
tearront T me aftiadrical surbene α a ppojectio a which the projectith mans whin in the boow of the mapene Cenreationlly the boarroin h loeatid just at of the arive and han a oliphety larger diamotor thea the mair body. In mon come de bourcolet extunde the fell hoath of the eyliziticel trady. In mone dexigme a midde courubes is provided jet formend of the roticiact bend. In mace cther dringe a rear bourrotut is provided bliond the rotaking band, and in th-
 emprovide a mer trearoloe.
 in projerite The fremed are and in the
 on thin dientor.

GLOSSARY (cont'd)

ber wave. A chock wave caused by the comprestion of air ahead of a projectile in flight. When this ware touches the tip of the pose of the projectile. it is called an "attached bow wave" or "attached shoek."
E1. (abbr). I:S. Arms Ballistic Reacaret Labortaries.
teraing rata fior milil propmellant furk the rate of motion of the barring surface (normal to itmelf).
tharmat. The termination of conbustica in a socket Eotor owing to extonction of the propellant supply.
entions. The dinmeter of a projertire or the diameter of the borp of a gun. In rifiet arme, the ealiber in meatined from the surfsee of one land the therime A the land cireetly opposite. Ofen the ealiber decignation is bood an ameinel dioneter and repounents a clove approcimetion rather than an excet mesurureent.

Caliber \max be and at anit of langth; for example. a G-inet so-eliber gan $\left(6^{\circ} / 50\right)$ meald move a boce dinneter 14 incher and a tribe lageth of 50 ealibers or 25 fect, mamared from the brecet face to the maride.
calote Ses: arijnt.
conter of tapuet Comper of the dingertion pastern. Colonintal et ronglit it wre she emeter of grovity A s grteris of dinerve smit mane pieend at Ble prite of imecet of tie falividon rmand of the rave.
 peojective (of on the cherd of ats) threnst which the revelsent of a pircm int of evodymanic Secers panems
ennoter puste the promere eximeme whin ot cus cherlet of any time as rumeli de ive terniog of the propeliat charp. This premer

 the macele. In this mectued P. in ilectival

numilor than l'. after the projectibe has anquired a large fraction of its final veloeity.
complete reand. All of the components of ammunition necessary to fire a given pun once.
contrel reasds Ses: refercece racela
danpias expenat a numerical mesaure of the rute of rimane of the ampliturle of an ameillatiug unotion.
defaction probable errer. The directional error, runwil by dixpmenion, which will be exceeded as ofter as ant. in a large number of rounds firel nt a mingt dun metting- It is apyrozimately operighth the zreatout width of the dieperion pat. fers (for large sampies).
cessity of ais. The man of a ait volame of air. It varies with ultitude, genarelly deerening as the altitule increases, since it varie with the rurcost temperature and berometric promare. When i in altitude in feot ($h<30,000$) above
 dand dersity of dry air at seop and 14.7 pai, in 0.002378 lag/ft (NACA 1948).
derivatios. The rate change of obe varisble with rapeet to anotber. In projectil aerodynmion, the rate of ehange of a arrodyanmic conaleient with respect to a chaoge it the angritude of the yaw angle. es. the slope of the C_{m} ve eurve river the ctatie momert derivative, $C_{\text {a }}$.

 A the irajectery due to variacinn from tandarl rumilitiom

- dirincice. The mattering of shons frod un a target by the map gen (or greep of grate).
 wote erow though flriac condition as hopt at comstar a proivie. Por peretival pergeme the dieprnion errue of a particalar shet is evmidorol the dimence frow the poiat of impeet of berot

 of impet ot a sciec of shon choind tulep

 in mearowive trials.

GLOSSARY (cont'd)

diverging yev. In the thight of a projeetile, if the angho of yaw ineremes from the initial yaw, the yatrois xikl ta bu divenrisy.
 isun uppowite to that of the zaotion of the renter af zraviny of a psojectile.
fras ceeficient. A uumimer relating drag forre to the dymamir promarn of the air soream and to the froatal area of the projectile.
Crift. The lateral deviation of the trajectory of a spin-atabilized projectile, due to the equilibring yaw.
dyentic.promart. Tine presure exerted by a suid molely by virtue of its relative motion when it striken an objeet. Preportional to dematy and the square of relative veloeity $\left[q=\left(\frac{L}{G}\right), V^{2}\right]$. it it obviountr related to the kinetie enerto pormened by, or inepsrted to. the fluid. Sometises ealled "reloeity bead."
en Shate a marrow rectengular plate integral with the tip of a fin, forming a T when rieved in the chordwice dircetion. The other sarfac* of the plate in enrred to conform to the radiux * of thr fan bore, an the end piate supplies a rid. ing murface for the fin in the berrel, as well as inerpacis the lift of the fin by preventing the fot of air aroand the fin tip from the lower to the upper surfaes.
 yew ol dymemieally table projectik deengs Fan of this sagie in dre to strmanetsy of the proientile, part to the eflet of emprity.
ceres. 1. The difervece between on checired or eaculated valse and the true ralue. i. In pan. mery. the divergence of a proint of bepect from tive eenter of impert.
Esuan ratio Ratio of lensth to dinmeter ($/ / / \mathrm{d}$) of a projectile.
Am-raluipe Of a projectik, made atatieally suble br the expedyanic momeat arimite from the poinemet of lifing surfaces af of the e.g.
fint tali. Table er chert giviac the date meoded
 ceming conditions and aloo the eoprotions thet nure to male lor eprcial coulition, unch o wind er veciation of termperateos.
enf tran Drectipive of projertle with a eqtio.
drical bave merijon, mepponed to a beattall, which sive. Numotime rallical "equare bene."
form facter. F'mitor intrulused into the denoai. nater of the balliatic monfleipat (4.v.), baned on the slanpe of the jrajeretile.
free strata The flow of air or otber huid undim'urberl by the preweuee of a (xolatively) moving lwady : xpecificully the relative now of air abeed of a shock wave.
friagiag greove. A groove eut into a rotating band to collect metal from the band while it travels through the bore. Excens metal so collected in preveuted from forming a fring buhind the rotating band. Friage fermation hom bean a cause of exces diepernion and short range.
frestal uren. The aree of the createst eireniar rrow-section of the body of a projectile $\left.j N=(x!4) d^{2}\right]$; med as the reforncee area in do fining the aerodynamic coperiejenta
gravity drof. In ballistice, the vertical drop due ro gravity ; equal to onchalf the seceleration doe to gravity multiplied by the square of the time of flight.
REAT (abbr). Hirh exploaive antitank. A term usai 10 deaipmate hipt explosive ammanition containisy a shaped ebare.
hit. An impact on a itret by a projectik.
lit prolability. The expected ratio of nember of hits to syuber of projection fred at the target.
EVAP (abt.). Hyparmineity armar-piereing-
Iypormele O of pertaining to the mped ed ob jerte moving at Meet 6 or firmete.
brpect velocity. The whocity of a prajectile at the imetant of impent an the tarpot er tarcet arm. Amo ealled "exriking reloaity."
inguine, sectal in roetretry, the prodect of the av. erage thrust (in poends) doneloped by the motor, time the burcing time (is meonds).
tecremme. Al amount of propellast added to, or taken avay from. E peppollize charg of mai. Aned or enperate lowdies enmanition to allow for differebers in rang.
indiont fire Gunfor dadivent at a taret widel ranace be aen fram the get pacition.
thathite. i materis appliad to marfoni of pro
 mathere

GLOSSARY (cont'd)

initial sacen The men of a rueket-moinied persjectile at: the maet of burninx of the rouket prospelleat.
intial yar. The yaw of a projectik in it leave the mustle blust some.
thitinl jawing mincity. The rate of change of ibe yaw of a projectile as it leaves the musale blut sone.
junp. 1. Moviment of a gin tube when the gan is fired 2 Arcle of jump (q.v.). Sec: aredymanic juan
Hill imperitity. Probability (P_{E}) that, given a hit, a single projectile will kill (i.e., deatroy) the target apminat whieh it in fired. The overall kill probebility of a singetr atot in the pruluct $P_{m} P_{g}$. wherr P_{n} in tho hit perchability, menumod to be imadrpraiderat of $\mathrm{f}_{\mathrm{r}} \mathrm{r}$.
madarer faw. A menturbalent airfow.
hat. one of the rimed sidnow in the bore of a risud gua barcel.
minal dovintion. Horisontal divtance (normal to the lise of fire) brwees the point of impeet of a single roand and the center of impeet of the proup.
Mif. The component ol the total serodynamie force perpeodicular to the relative misd, asd acting in the playe of yaw.
Une of copirtura. The peth of the projectile $=$ it laves the mamb; the diruetion of the projevtite at the imenot it cherse the mecele of the gea, providing it tees moverving metion.
the of clevation. Tte percompation of the theo -iva the gam in ore of fre.
 $0=2 .!1828$.
Ire. Quantity of material, the units of which wow manalattared meder identieal conditiona.
1 (abbr). 1. Mesh mumber. 2. In ach mape m Mas, deniracter a ctanderdised iten.
Fact. (Nomed for Erme Helt. 183e-1016, Am-
 sandw, whick out.
Moct angle. The arete ande betwema a Mect live and the lime ot simete of a movime traly.

$$
\theta_{r}=\operatorname{san}^{-1} \frac{1}{\sqrt{r^{2}-1}}
$$

Back effect An effort rruiltime frome tho fart that an objout in moving at tramoraice or mupermonic: xpervl; a compromibility frifet. Mach effect may ine censudered in cersus of (a) The changes in the air brousht on by a mbock wave, ia, changu in presururr, velocity, dencity and temperatore and ii) Chunges in aerodyamaic conficianta, nech a dras, lift, and moment comelieimats
Yach lise. A theoretical lixe reprementing the beckxweep of a cone-shaped choek wave made by as amomed infritely samall particle moring at the same speed and along the same flight pesth an an aetual body or projeetile Thin lim, as ruprosented on any plane biopeting the shoek-wave conc. form an angle with the fight path mandy monewhat more geute then the angle formed by ithe shork wave of the metual body, whiel dependa amorax other thingen upon the chepe of the bedy.
Maclimannes. The ratio of the valocity of a body to thet of sound in the modive baine considrred. Then, at mee hevel in the $\mathbf{1} / \mathrm{B}$. Standard Atmumpiose, a body moving at a Maet number of one ($K=1$) would have a volocity of 1116.2 ifp (the apeed of sound in air under thoen conditions).
Mach sumber, critient The froe atruen Melh namber at which the selative spoed of air and peojectile attrims conic velocity at some point on tho projeetile.
 mated on the bacie of the velocity of the projeetile reletive to air which in madioturbed by the persenet of the projotile.
magem force The interal thront on a retating boly whea eeted on by as airtirem haviag a relocity compomat morneal to the bedy's axis of ruation.
sagaes manat. The moneot about tho body as. prodeed by the magnos force.
men The eametant of propertionality betweon the fores an a bady and the romaltian someloration. $m=\boldsymbol{W} / \mathrm{s}$. Vabox cumedy, ia provien mer.
 with "minde."
 in ambut or mpratie sappert eparetiona mail as

GLOSSARY (cont'd)

man range. Avarage distunce reached by a group of chots fired with the xame firing data.
miplat. The flat acec formed by truncation of the apival portion of a projectile of point fuxe. sametimon the mejplat is ruturex, ami anay be railmi a "erabotte."
meteorological date. Frotm pertmining to the at momphorer, mprecially wizkl, temperaturen and air dencity, which are uncd in determising rorrectinger to basic: firing data. Often shortervel to "metio data."
medal vectern A peir of rotating arous, ealled the precemsion veetor and the nutation vector, which when added together give the mafnitude and orientation of the variable part of the yaw of the projectile at any inatant. Adding the equilibrium yaw to the variable part gives the total yaw. The precemion vector is cften vianalized a originatias on the tangent to the trajectory, and rotating slowly. The outer end of this precesion vector in taken as the origin of the nuta. tion vector, whieh rotates more rapidiy, and the reultine epicyelie motion of the outer and of tive mutation veetor reprementa the motion of the nowe of the projertile (neglerting the equilibfium yaw).
musio thet. siudden pan promure exertel at the musale of a meapon by the nuch of bot piom anul air an frion. Masele Man proredias the ramer. weme of the projectic, and forman a map of turtralent air, ans, and ancike throung which the projectile num ing. The leagh of the projectile's peth in the Mast soee varing from shont 20 teet to 200 tect, dependint on the tive of the Fun and the amount of ma leakare puth the projeetile whil in the tore.
mand ancr. Kipetic enerny of the prujectile a it cmery from the musile (plus a mall amont of energ pieked up in the muzale blent. where for a short distance the musaic graes outrum the projectile). Thie in a mpense of the power of the recepen.
Eacele mancicion the momeratus of the projive. tif (ie., prodel of man and volceity) it lave the meade. Limited by the eapecity of thr monil exptum bails ince the ren meent.
emont vinctio. Ito projuctily valocity of the
moment that the progectile ceasea to be s.a.ad upon by propellivag foreen (other than the thruat uf a rocket motor). It in obtaine? se meanurias the velucity over a distance for :ard of the gun, und correcting beck to to rgavele for the re(urdation in titabet
18S (abbr). National iuncean of Heasdarde
MOL (abbr). Naval ifrdinance İaboratory.
normal ferce. Thi component of the total serobynumic lores perpendicular to the longitudinal uxis of the projectile, and actink in the plane of yaw.
HOTS (abbr). Naval Ondnance Test Station.
antation. The occillation of the axie of a rotating iody such as a spinaint projectile. This oecil. lation is superimpoed on the slower motion of the projectile axis which is known ar proension, which see.
obturation. The act of, or meana. for, preventing the escape of gaces
obcurater. 1. A device (nowilty a ring or ped) is corporeted in a projectile to ache the tube or a weapon gertight. 2. A device incorporeted in a rocket motor to prevent enwaited ges leakage.
egive. The curved or tapered front of a projectile. The ture may or may not be included sa part of the ogive
egive seant. An quive piencrated by an are not Iankent to, but interneting at a mall anghe, the rylindriond marfee of the bedy. A meent arive may have any redin of curvature crater thas that of a tangeat oyive for the eane projectio, up to an infligite radio of ervature (ia, e utraight, conical epive); a radios twiee that $\boldsymbol{*}$? the tangent oxive is eomnon.
ugive, tangate As opive gaoratud by an avo tangent to the seecretor of the eylindrieal marface. Called "tree opive" by the Britim.
erimatation of gaw. Tre dirwetion of the plane of yaw (q.v.) relative to sump refertere direction anch a a vertical plame containiat the tangoot to the irajuetory.
corturaing mament An eupodyasenie moment toadias to incrion the yaw of the profectile. pardele trajustery. The trajectory doteraiged by fravity and revolift drae which would be docerthed by projutile whil enintained viou
 trajertury or mat metual projerelife．
piasenatife enciancy．The rutios of the work dunse on the projerplike by the projullait anw io the work that exulit！have beren donce if the maximum chamber presemare had metend on the projectile buse for the fuli travel in the bore ；i．e．，the ratio of average preusure to peak presiure．
plase of yav．The plane containing both the longi－ tridinal axis of the projectile and the tangent to the trajectory．
procmion．A cirefilar motion of the axis of rota－ tion of a spirning body which is brought about by the application of a constant torque about an axis perpendiealar to the axis．of rotation．A monconatant torque produces a noncireular pre－ cemion．
precinien．The property of heving small diaperion about the mean．C1：iceeuracy．
prumere frent．Rec ：sheck frent．
premare－travel curve．Curve showing chamber premure plotted againgt the travel of the pro－ jectile within the bore of the weapon．
probable errer．In general，a value that any civen error will as likely fall under as exeed．In gun－ nery，a maasure of the dispersion pattern aroand the center of inpect；ilalf of the obeerved im－ peets will i：$\because:$ within a band two probeble erport wide and eenternd an the eenter of impeet．
gacirant ciovatione Vertical angle betwien a morimatal plane and axi of bore of cin，juist prioe to 免riat．
paldos of gration．The dintence from the axis of rotation at which the total men of a body might be eoncentrated withoeit changing its moment of inertis aboat that azici．In this handbook rudii of erratior are moally expremed in colibers．
sange corruction．Chang of frins dete neemeny to allow for deviation in reare due to weather． material，or ammunition．
racp deviation．Diwamee by whiel a projectile tribs byyond，of alort of，the taryt mmanod clomes a lise peralint the ther－taret lime．
gange erces．Difosion betwet the rango the piat al fapent of a partienier pojeetile and therep to the menter of impect of the croep of liven find with the exme dee．
range probable error．A．Hrror in ransot thut an and or othore wrapon may loe expmeteal to exerenl an
 firing tablex for a gutimg be taken an an itulex of tho meurary of the piece．I．In deacribing the dixperion juitern of a group of ahoth，the prob－ able prror in the range direction．
range wiad．Horirontal component of true wind in the dirmetion of the line of fire．
reference rounds Ammunition rounds of known performsnce which are fired luring bellintic tests of ammunition for eomparative purpoces． Also ealled＂control roundis＂
relative velocity．The velocity of relative motion， enpecially in reapect to a projectila and the air－ atream．
relative Fisd．The velocity of the air with refor－ ence to a body in it Usarlly determined from meamarements made at such a dimance from the boily that the disturbing eteet of the body upun the air is megligible．Bqual and opposite to the relative velocity of a projectile．
resterist moment A atatic moment（q．v．）which is negutive when the anple of attack in poaitive， and vice verse．
reversed flow．Flow of the airstreas from the bace toward the nove of the projoctila，selh ex exims in the murin blet whare the blot pinat ant mov－ ing fater than the projactit．
Deypals maines．（Named after Ondorne Reyn－ olda，1842－1912，Britinh phymieist and enji－ mepr．）An index of similarity nod in the asalyia of the fivid fow about seale models in wind tun－ nel tests to determise the ramoltes to be expected of the flow sbout full－aele models．The Beymolds number is expremed in a frection，the numerntor consiating of the dematy of the finid multiplied by ite relocity and by a liaear dimenuion of the body（ea lor example ite diameter）．the de－ neminator comansing of the coelleinate of vi－ cosity of the Iruid（ $R E=\sigma V / m$ ）．
RM8 error．8oc ：stonlard ersve．
reciot meter．A momirforathines rmetion propul sien tevice that conaine ementinlty of tual chamber（s）and ashant romio（ 1 ），and that car
 wrick bot five are gronsted by couldention and

GLOSSARY (cont'd)

expanded through a nozzle(a). (lf the fuel is liguid the device ix called a "rocket engine.") rell. An angular displacement about the longitudinal axis of a projectile.
sell rate The time rate of projectile rotation sbout its longitedinal axin.
rell rate, mondimanaional. The product of roll rate and a reference iength, is for example a diameter, divided by the airmpeed ($y=p d / V)$. l:xuully called "spin."
rolling moment. An aerodynamic moment about the kngitudinal axix of a projectile tending to clannge the roll rate.
relling velocity. Anpular velocity; roll rate.
reat mans square. The muare root of the writh. metical mean of the squures of a set of numerical values.
setating band. Soft netal band around a projectile near its bese. The rotating bepd centers the projectile and makes it fit tightly in the bore, thus preventing the escape of gas, and by engeging the rifling gives the projectile its spin.
reand (of armanition). 1. Short for cemplete seand, which ree 2. A shot fired from a weapon.
seale effect. An effeet in fluid flow that remits from changing the scale but not the shape of a body around whieh the flow peenes Beymolds number is useful in the amemanent of seale eflect.
sellieren. 1. Gradients or variations in ges demaity. from the German wonl. 2. An optieal system which either cuts of ar pames a large change in light intenaity, owing to the alight refraction of the light pumaing through the gas This phemomenon in often userl to make turbulence and whock waves visible by photorraphic means: bence, "schlieren phoiographs."
anctional doastey. The rutio of the weight of a projectile to the aquare of its diameter. A momuse of the mas per unit of frontal ara, and therefore of the deceleration due to dras.
suadtivity facter. The percent change in ranpe (or deffection) produeed by a one pereent change in a parameter alkectins rapo (or detaction), meh a matio velocity or initial yawing velocity. Aloo called "diferential corbeivat." sees: 4hfopunind erreets
separation. The phenomenonin which the boundury layer of the flow over a budy placed in a moving stream of fluid (or moving through the fluid) meparates from the curfare of the body. 2. The point on the body at which the ecparation bexins. Alwo called "separation point."
artback acceleration. The peak acceleration experienced by the projectile during lannehing. lisually expressed in terms of the acceleracion due to gravity, e.g., "the retbeck aceeleration was $+0000 \mathrm{~F}^{\prime} \times{ }^{\prime \prime}$ or about $1,286,4 \mathrm{Cl} \mathrm{ft} / \mathrm{sec}^{2}$.
shock front. The outer aide of abock wave, at which the prewure rises from sero up to its peak value. Alvo called a "premare front."
shock wave. 1. A boundiary aurface or line serom which a flow of air or other tuid, relative to a loxdy or projectile pasing through the air or fluid, changex diceontinuousiy in premure, volocity; density, temperature and entropy within wh infnitesimal period of time. 2. Such a boundary surface or line that comes into being when an object moves at tranconic or supersonie speeds. 3. Such a surface or lise produced by the expansion of gaset awry from in explonion (or throush a noale).
shresd. A tabular section encireling the tipe of the fins, and naually integral with the fina. The whroud often forma a rear siding surface for the projectile in the bore of the gran.
slug. The enfincering uait of men, ebomen nela that a foree of one pound acting on a nuit man rill produce an aceeleration of one foot per wecond jur merond. Since the weight of a body is equal to the product of its man and the accoleration of gravity, the weight of a body havine a maw of one luy is 32.17 lb (at sea lavel at 45° latitude).
spar. The maximuan dimenaion of an airfoil (e.s., a coplaner pair of fins) from tip to tip.
spart range. A fring range in whieh projectilu in free flight ean bo photocraphed by the light Irom an electric eparit which in trienered by peaner of the projectilo. Ses: lallitic range
eppetice taprine. The tetal impole prodeced by baraine a poond of roekt frul. At cometant threct and man buraing rate, the throct geo

GLOSSARY (cont'd)

duced per unit of man burning rate, i.e., pounds per lb/eoc.
specific weight. Weight per unit volume.
spike. A subealiber eylinder, often slightly tapered, whiek replacea the ogive of a projectile. increaxing the drag but moving the center of premure of the lift force nearer the ham of the projectile.
sphi. See: roll rate, sondimeasional.
spia rata. See: rell rate.
spin stakilization. Method of studitixiupe a projer. tile during tight by caunung it to sotate about itx own longitudinal axia
spetting cherge. A small churge such as black powder. in a projectile under teat, to abow the location of its poiat of funetioning (usually its point of impact).
aguare base' Demeriptive of a projectile with a eglindrical bese seetion, as oppowed to a berttil, which see. Also ealled "fiat bese."
stability. A charseteriatic of a projeetile that causen it, if disturbed from its condition of equilibrium or stead;: flight, to return-to that eondition.
stallity factor, dymamic. A number related to the yaw dumping charaeterintica of a projertile.
stablity fector, gyrecopici A uumber relating itho angular momentum of a projertile to the alope of itx mporlynamic overturning moment. Iour: unul wan nole criterion of proipetion atability ami rallect simply the "utability fuetor," a. A meren. sary, but not suffleient, condition for stability in that this factor be mereter than maity; or negntive.
stakility, static. Stability in the abopenee of apin. In meperad, a mechanimin in atatically stable if any diaplacement from a rent powition ereates a foree or moment opposing the displscement.
Standard Atmocopiona The atandard atmoaphere for the United Stateo Armed Services in the IT.8. Biandard Armomphere which in that of the Iaternational Civil Aviation Organization (ICAO). This atandard atmosplere amomen a ground premerr of 760 man of meretry (14.60 pi) and a croend temperature of $15^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{P}\right)$. The temperatere throaghout the trepouphore ex-
tendiuk up to 11 kilomoterm (approx. $36,000 \mathrm{ft}$) is given by:

$$
T\left({ }^{\circ}{ }^{\prime}\right)=59-0,1056 h
$$

where h is the height ilove nea bavel meowared in feet. In the wratomenere, extending from 11 kikmuters to 25 kilemeters (approx. $82,000 \mathrm{ft}$) the temperature is moumed to be a cometant 236.66i"K ($-69.7^{\circ} \mathrm{F}^{\circ}$). Above the atratosphere ather lawx are asmumed. Teinperature in aignifcant invause the meoustic velocity in feet per meroult in given by

$$
V_{0}=49.1 \sqrt{460+T} \quad T \text { in }{ }^{\circ} P
$$

stapdard devistion: In the feld of teating, a menxure of the deviation of the individual valuen of a meriex from their mean value. The atandard deviation of a sample in expresed algebraically hy the formule
the sum of N individual muared differenom, the x_{1} are the individual valoce, \bar{x} is the mean ($\bar{x}-\frac{y}{i} f_{1} / N$), and N is the number of individuale in the sumple. The heat eatimate of a, the atandard duviation of the lot frow which the eample wan drawn, in obtainel by multiplying the sample ralue, x, by $\sqrt{N /(N-1)}$.
standard erros. The mquare root of the average of the squares of all the erros. When ersor in identified as the diflerence botwoen an obearred point and the meana of the obeorvations, atendard error becomen identieal with the semplo standard deviation. It might aloo te called the "RMS error."
standard muzie relocity. Velocity at which a given projectile is anpponed to loeve the mumele of a zon. The velocity im calculated on the bacia of the partieular gun, the propelling charse und, and the type of projectila. Firing tablen are baed oa rtandard mursie velocity.
stasdard projectiv. That projoctile which a givan gun wa prinarily derigod to tre.
static moment An serodynamio moment roleted orily to arcio of yem.
satic promure. The promoure whicit in asmied by

GLOSSARY (cont'd)

a fluid at reat, or which would be indirutad by a kake placed in the neremm mal, moving with the nume viluesity an the ni resun. It in the promurr. arining irom the random motions of the mole eulex of the Huid, rather than their organimed motion in the direction of the fow.
stendy state. The condition of a aystem which is easentially constant ifter damping out initial transients or fluctuations.
sting. A rod or type of mounting attached 10 , and extending backward from, a model, for convenience of mounting when testing in a wind tomuel.
subeonic. Pertaining to relative notion between \boldsymbol{a} body and a surrounding fluid at a speed lems than the speed of sound in the same fluid.
summit of trajectory. liighent point that a projectile reaches in its flight.
swerving motion. In fight, the motion of the center of gravity of a projectile perpendicnlar to its particle, of zero-lift, trajectory.
ystem relinbility. The probability that a mystem will perform its specified tank under stated tac:ieal and environmental conditions. This will inslode securacy.
T (iusseript). In aerodynamic data, relating to tail alone configuration.
surminal velocity. 1 . The constant velocity of a falling body attained when the reaintance of air or other ambient ftuid has become equal to the foree of gravity acting on the body. Sometimes called "limiting velocity." 2. Velocity at end of trajectory, i.e., impact velocity.
tine of fight. Blapeed time in seconds from the instant a projectile leaves the gun until the instant it strikes or burats.
telorance. The permiscible difference between the two extremes in dimersion, weight, strength or other quality which will not canse rejection of an item.
trajuetory. The curve in apace traced by the center of gravity of the projectile.
tranadias asw. A flow of fluid, about a body, that is changing from lominer fow to turbusent flow.
transenic range. The range of speeds betwean the apoed at Which one point on a body reaches supermosie apeed (relacive to the airtow is the
visinity of that point) and the npeed at which the whouk wave syntem in fully devaloped.
tragsonic spond. A apered within the transonic ranger.
traneverse axis In a projectile, ayy uxim normal to the longitudinul axis and paning through tho center of gravity.
trim. The equilibrium attitude of the longitudinal axis of the projectile relative to the tangent to the trajectory ; equilibrimm yew.
turteriant flow. An unteady flow characterized by the saper-position of repidly varying velocitias on the main veloeity of flow, in contrant to the emooth, ateady laninar flow in which velocity varies with distance bet only alowly with time.
twitt (of rifing). Inclination of the apiral grooves of the rilling to the axis of the bore of the wempon. It is expremed an the number of calibars of length in which the rifling (and therefore the projectile) maken one complete turn. A right hand twiat is avch es to impart a right hand (clockwive) rotation to the projectile when viewed from the rear. Mont U.8. guns have right hand twist.
utility. A numerial aenle for comparimg preferences between alternatives. Usually defined on the interval 0,1 becanse of ite relation to probability.
vacuan trajectory. The path of a projectile sabject only to gravity. A firat approximation to the trajectory of an actun projectile.
vecter. 1. An entity which has both magnitude and dirsetion, such as a force or velocity. 2. In connection with the yaving occillations of projec. tiles, the rotating arms which can be used to raprement the componenti of the yav are teraed modal vecters, which me.
velecity. Speed, or rate of motion, in a given direction and in a given frame of reference. In many contexts no distinction in meaning is made between speed and velocity, the symbol ∇ often being used in equations in which the magnitude of the velocity, i.e., the speed, in the only attribute of velocity which is being comsidered.
velocity leal. See: Byamic premars.
verouth, conleirat of. Ithe ratio of the shoaring atrim to the velocity gradient in a boundary

GLOSSARY (coat'd)

layer. Dependent on the fluid and on its tam. perature.

$$
A . d \cot 59^{\circ} F=3.72 \times 10^{-7} \mathrm{lb} \text {-qec/ft }{ }^{2}
$$

wale The mone of turbulent flow trehind the beme of a projectile.
Each. The murge of diaturbad mir or other fluid resulting from the pamage of something chrough the Anid. Includen the wake and bow and side wavea.
wave, expansive An oblique wave or rom net np. in supersonic flow whan the change in direction of the airflov is such that the air tendr to leave the new surface, such as flow around the junctare of a cyliader and a cone (eg., at the lorwand end of a bosttiil). This condition is called "Slow around z corner." The air after pming throagh an expanaive wave or sone has a lower density, matic premere, and freedream temperature and ha higher velocity and Mach number. Vimible a a darkenea mone in sehlieren photoraphe, theme waven are often ealled "expancion fans"
wave length. 1. The distance truveled in one period or eycle by s periodic distnrbance. 2. 01 gaw of a projectile, the diatance traveled by the projectile during one egele of yaw.
yaw. 1. The angle betwres the direction of motion of a projectile and the direction of the longitudinal axix of the projectile. \&. The acillation uf the direction of the longitudimal axi (a in "wavelengeth o! yaw'). 3. To aequire an angle of yaw: fo meillate in yaw.
yaw of repoen. Thut part of the equilibrium yaw whinh in due to gravity.
yav dras. Drap due to yaw.
yaving moment due so yaving Term somotimes used for the damping moment.
yawiag valocity. Time rate of change of yew; the change may be a change in macritude or direction, or both.
mene charge. The number of incremente of propel. Jant in a propellant charge of memifired roande, t-orresponding to the intended sone of thr.
same of fire. The range intervel which een be covrred by a round containing s given number of inrementi of propellant, i.e., the eavert te obtainable by changing quadrant clovation at a compant muzzle velocity.
zoned ammontion. Semifired or eoparate loading mmmunition in whict proviaion is male for adding or removing propellast increments

APPENDIXI
SAMPEE SPIN-STABILIZED PROJECTIIS

AYTETDIX I
CALCULATIOF OF C G. ATD RADIUS OF GYRATIOE

Approziante formale for high expiceive peojectiles are presented by Hitebectit in BRL Pepeot 620 (Ref. 81).

$$
\begin{aligned}
x_{e .6} & =0.375 \frac{t}{d} \\
k_{0}^{2} & =0.140 \\
k_{1}^{2} & =0.070+0.0504\left(\frac{l}{d}\right)^{2}
\end{aligned}
$$

Where $X_{\text {ec }}$ in the diztave trum the mexe of the projective to itn center of gravity, in matrons and 1/d in the formons mein of the projectik.
a. Allormate Methed:

For the sample projectik in 1 ppendir 1, the

Mrthod" (mor Appradix VII) an:

$$
\begin{aligned}
x_{e .6} & =150 \\
r_{0}^{2} & =0.145 \\
r_{1}^{3} & =107
\end{aligned}
$$

1. Hilcthoner Meticel:

By Ilithteoti's formaina, wo mold ax

$$
\begin{aligned}
& x_{r a}: 0.178 \times 4.1 n=1.64 \\
& n_{0}=0.140 \\
& r_{1}=0.070+0.0004(4.57)^{:}=1.21
\end{aligned}
$$

APPEMDIX III
GYROSCOPIC STABILITY ESTILATES

A. SPIE-STAEILIEED PROJECTLLE WITE BOATTAII

The followiag is a sample calculation for a spin-tabilised projectile with boattail, uaing the metiods of Wood (Ref. 21) and Simmume (Ref. 20; to ettimate the normal forse and sustue mo ment coeflicienta. Tise groonetric and mans charsc. terintien of ibe propectile are given is Appendux 1 .

Effective Base Diameter:
$d_{4}=\sqrt{\frac{P^{2}+d^{2}}{2}}$
where d = Rear body dian. $=4.98^{\prime \prime}(0.416 \mathrm{ft})$ $4=$ Bane dian. $=4.20^{\circ}$
$\alpha_{6}=\sqrt{21.7314}=4.66^{\prime \prime}$
$\frac{\text { Esfective Bere Apen: }}{S^{\prime}=.785 \&}$

$$
=.785(4.66)^{2}=17.0664 i^{2}
$$

Prontal Arce:
$N=.7854$

- .7854 (4.58) $=12.478 \mathrm{in}^{8}$
$\frac{\text { Bene Area Retio: }}{\frac{S_{0}^{6}}{S} \cdot \frac{17.0534}{19.4788}}=0.8753$
Volume of Projpecik (imelecinal bousteil boundary nyw):
$V_{0}-3$ anstis ise (ene aloulation below)

Sectios	Colmantion	Volzime, ind
1	2518 (4.15) $\left\{(3.00)^{2}+(300)(36)+(.56)^{2}\right]$	11.8076
8	From Hervard Tawne Celmbetime	2.8:40
2	1864 (8.202) 14.30$)^{4}=$	1032m
4	2518 $(2.80)\left[(4.25)^{2}+(4.30)(4.45)+(4.60)^{2}\right]$	43.603
	$V_{0}=$ Tren mamary lever Vomme $=80.8418$	

AMCP T03-92

APPTIPIX III (cented)

Mran finemest Racin:

Intermination of f_{1} and h_{n} :
(Xoe graph Appeodix in)
At aupersonie apeod:

$$
N=\frac{\sqrt{W-1}}{V / \sqrt{M}}=0.46 \text { for } M=1.76
$$

$\frac{f_{1}-1}{\sqrt{W^{2}-1}}=0.122 \mathrm{ad}$
$\frac{h-1}{\sqrt{M^{2}-1}}=2.15$
$\therefore j_{1}=1.1987$ and $f=1.2500$
Nernol Pores Coemeinan:

$$
\begin{gathered}
c_{m_{0}}-\left(2 \frac{V_{0}}{81}\right) f-[8(2.1203)](1.2000) \\
-7.70 \mathrm{men}
\end{gathered}
$$

Cumer of Prom:

$$
\text { C.P. - } \frac{C m_{0}}{C_{r_{e}}}-283 \text { menem free bee }
$$

$$
\begin{aligned}
& C_{m_{0}}-\left(2 \frac{S_{i}^{\prime}}{\delta}+s\right) s_{i} \\
& -12 \text { (1888) }+51(1.1887) \\
& \text { - } 270 \text { mal } 1
\end{aligned}
$$

(ienter of (inuvity (finm Apprectio 1):

Stacie Muneme CorPicient:

$$
\begin{aligned}
C_{\Xi_{1}} & =C_{m_{0}}(C . P .-C .0 .) \\
& =(270)(1.29)-150
\end{aligned}
$$

Gypoecopic Suability Peetor, s::
Velocity: Vd $=1505$ f p
Twin: $\quad=-2$ coliber por ture
Spin race: $=165$ rp - 1000 men man

Mar body diam: d = Q418 A Air dimity: 0 acces7t draltie

$$
\begin{aligned}
& x_{0}=\frac{f p^{2}}{\frac{1}{f} \theta}
\end{aligned}
$$

- 10

APPEEDIX III (cmet'd) GYROSCOFIC STABILI天Y ESTIMATES

B. SPIH-STABILRED PROJECTHE

WITEONT BOAETAYL (FLAT BASE)
Amane caly change from previom example is in rolame asd C. G. boration.

Sew volume: $V^{\circ}=306.5412$ in:
Mein Fineoces Racio:

$$
\frac{V_{4}}{N}=\frac{306.5412}{(19.4782)(4.93)}-2.18 \%
$$

D-trmitution of f_{1} and f_{2} : (Ner maph Approxix IV)

$$
\begin{aligned}
& N=\sqrt{M^{2}-1} \\
& \frac{f_{1}-1}{\sqrt{M}-1}=0.135 \text { and } \frac{f_{1}-1}{\sqrt{M}-1}=1.72 \\
& \therefore f_{2}=1.140 \text { and } f=1.2297
\end{aligned}
$$

Narmel Fore Conficien:

$$
C_{w_{e}}=\left(2 \frac{S_{0}^{\prime}}{J}+N\right) f . \text { wher } S_{t}=8
$$

$$
-[2(1.0)+.31(1.500)
$$

$$
=.200 \mathrm{rad}^{\mathrm{t}}
$$

Momert Cos, (about bane):

$$
\begin{aligned}
& C=0-\left(2 \frac{V}{d}\right) f=4.213 \text { (1.2597) } \\
& \text { - } 7.20 \text { zad" }
\end{aligned}
$$

Center of Promure:

$C . \dot{P}=\frac{C_{m_{0}}}{C_{w_{e}}}=200$ eatibers froma bene

Center α Gravity: C. G. in mon locited 1.s0 cullbers from base

$$
\text { C. P. - C. } 6 .-260-1.50=1.10 \text { caliber }
$$

Static Micment Cocincient:
$f_{m}=\left(M_{0}(C . P)-C . C.\right)$

$$
=(3.00)(1.10)=210
$$

Gyrumpopic Stability Pactor, st

Since the parameters- $V \&, p, n, A$

$$
\begin{aligned}
p_{0} & =1.49\left(\frac{C_{\mu_{0}} \text { with boattail }}{C_{m_{0}} \text { vitsout bonttail }}\right) \\
& =1.40\left(\frac{3.39}{3.30}\right)=1.60
\end{aligned}
$$

[^4]
Anationave

Applemix iv

COMPARISOE OF ESTIMATES OF BALEISTIC PARAMETERS BY VARIOUS YETHODS

Por comparimen rith the other minetes, al rulation by Bitcheoes's method, BIL Depent 00 (Ref. 91), itw the stave hemetiled projuction A peadix 1. are prememted matow:

$$
\begin{aligned}
& \text { a (bortail angie) } \\
& =7.5 \text { dugnem } \\
& \text { - (boathal leapth) } \\
& =05 \text { enitu. } \\
& \text { - (eylindrieal body lueget) } \\
& =108 \text { mitrer } \\
& \text { d (coivel heed lempth) } \\
& =200 \text { ealibers } \\
& \text { - (radime of acivel are) }=5.12 \text { ealivers }
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}=.553+\text { nexas }-\operatorname{A30}-\operatorname{sint}+ \\
& 2951+\sin (10 / 8)
\end{aligned}
$$

$$
\begin{aligned}
& +.124
\end{aligned}
$$

Irater of Premare:

$$
h=.0747+0.013+1.013+2022+
$$

$$
23581+2909(20 / 0)
$$

$$
k=.0747+542 n+506+1.244+.018
$$

$$
+.157 \%
$$

$4=: 291$ reliber from the twor 2.8 by Wad'm metheal)

Thin aeroment io cemidired to be letter the
 mod for projectiles which lie within the pang of hin ezperimental deta, oth Foed-8immener and metre will im gemprel he apere reliallo.

$$
\begin{aligned}
& E_{0}=1.16 \geqslant 8
\end{aligned}
$$

APPETDIX V
 DYAAYIC STABILITY ESTIMATZ

Problina: To determine 2s. The projectio will bemable if:
$\frac{1}{a_{0}}<\mu_{4}(2.0-24)$ (Red. par. 5-2.4.21)

Dats: Por protutype projectile (Appestix 1).

$$
\begin{aligned}
& C_{L_{s}}=270 \mathrm{rad}^{-1} \\
& \text { Mech }=1.72 \\
& \text { - - 48.03/322 dup } \\
& d=0.416 \mathrm{ft} \\
& I_{0}=0.0059 \text { don } 4^{\circ} \\
& i_{i}=2.2 \times 40 \text { anditis } \\
& \begin{aligned}
4= & =\frac{1}{15}=\frac{m}{1} \\
& =\left(\frac{48.00}{282}\right) \frac{(.415)}{(.055)}=684
\end{aligned} \\
& \alpha=\frac{1}{4}=\frac{\pi}{T_{0}^{2}} \\
& -\left(\frac{40.0}{2.8}\right) \frac{(4.19)}{(210)}-0.80
\end{aligned}
$$

Since our projectile har the mum baltaric shape as projertile, 90 -man, HE, M71, the ballistio copinrirate for the 90 -ma projectite at Mach $=172$ (ref. Appendix VIII-E) may be und, mendy:

$$
\begin{gathered}
c_{m=0}=0.20 \\
c_{m_{4}}+C_{n_{4}}=-20 \\
\quad: 0=0.2 x
\end{gathered}
$$

Nolution:

$$
\begin{aligned}
\alpha_{4} & =\frac{242.70+6.84(.20)!}{270-0.33-0.933(-20)}-\frac{8.14}{10.767} \\
& =0.756
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{1}{2}=\frac{1}{1.49}-a .71 \\
& 24_{0}(20-4)-0.758(20-0.753)=0.44
\end{aligned}
$$

Cooclution: Projection in mable rione:

$\left.\frac{1}{4}<a_{4}(2)+\operatorname{can}\right)$ ic:
$a_{0} 71<0.4$

APPENDIX VI

STATIC STABILITY ESTIMATE OF A 5-INCH FIN-STABILIZED PROJECTILE

 centur of promant of the tail :akow in amier to swive for wtatir atability:

$$
\text { C.P. - C. C. : }>0 . \overline{5} \text { ealiher }
$$

Solution:
(1) Body slone coefticuents at subsonic muzzic velocities

Dasa: The effective bame arè, st, and iotal boundary leyer volume are determised in a manper similn to that shown in Appendix III-A.

Solvine by Simmone' Fiquationss Ruf. 20:
$C_{w_{g}}=2\left(\frac{S_{j}^{\prime}}{S}\right)+0.5$
$-2\left(\frac{5.9074}{19.635}\right)+0.3=1.071$
$\begin{aligned} C m_{0} & =2\left(\frac{V_{0}}{S d}\right)=2\left(\frac{478.0151}{88.175}\right) \\ & =0.9212\end{aligned}$

- 9.26 calibers from base of fine
(2) Tail alone cocficients af mbounic vefocitics: Data:
Rective tail lenph: $1=3.0^{\circ}$
Aa qpan: $S=5.0^{\circ}$
encetive bace dianetre: $4=2.67^{\prime \prime}$

$$
\frac{1}{S}=0.6 \text { and } \frac{d_{1}}{S}=0.33
$$

Nodviur by Simmoner' Tablew:
$r_{1 . \%}=2.20$ (for 6 mertuugular finn)
$r_{L}=\mathrm{C}_{L_{T}}(0.74)=1.02 \mathrm{~B}$ (body interference
factor $=0.74$)
$C_{X_{T}}=C_{L}(1.80)=2.9304$ (allowance for end plates and shroud $=1.80$)
(. P. wati $=0.67$ caliber from bame of fins
(3) Static Stability |C.P. - C. G. $\mid>0.5$ caliber (Ref. per. 53.2):
Data: From part* (1) \& (2):
Cis -1.0710 at a C. P. located 9.26 colibers frow bane of fine
$r_{r y}=2.9304$ at $=C . \mu$. locmiod 0.80 aliher irom bare of fin
$r_{v_{0}}=i_{m_{n}}+V_{n_{r}}=4.0014 \mathrm{mad}^{-1}$
f: fi. = 3.fiS rulibers from bame of fina

$\left(C^{\prime} . P_{\cdot g}-(E .1(1)=0.60-3.68=-3.08\right.$ calibers

Solving (ref. par. 5-3.1):
$C_{x_{e}}=C_{N_{g}}\left(C . P_{p}-C_{.}\left(C_{2}\right)+\right.$ $C_{N_{T}}\left(C . P_{T}-C . G_{1}\right)$
C. P. - C. G. $-\frac{C_{m_{0}}}{C_{\pi_{0}}}$
$=\frac{(1.071)(5.58)+(2.9304)(-3.08)}{4.0014}$
$--\frac{3.0494}{4.0014}=-0.76$
\mid I.P. - C.G. $\mid=0.76$ caliber

Conclusion: Static stability mome adoquate since \mid C. P. - C. G. $\mid>0.5$, is., $0.78>0.5$

ARPIIDIX VII

PROJECTILE GZOMETRY

The daipm paramolers related ouly to the materinh and prometry of the projetile ase:

Waidet
Clemter of grevity lemation
Axial and tranaverm momenta of inptia

Mribede of Competation:

1. Meckenieal Intexrator (IBef. 96):
a. A meale drawing in mide of the part or as calidy.
(1) Binemion in the x dinetion at mot altered
(2) Dimenimes in the y direetion are al. tued by letinges $y_{n}=y^{2} / 2$
b. The traing is travered by the to chenieal interpetcoe (a lorim of planimcer).
P. Diel iadicaters pevide sambern, whetive to the trameroned plame arme.
d. Equatione convert dial readings "to wricht, minter of erevity, and momenta © inortia of midis of ner dation.
2. Harvard Tablew-gtendard Melbed (Eaf. 9):
3. Andyat worten from dirmerioned shataben, of drawingt, to evahaste mexith, ast, and manumats of isuria.
h. Table provide expedient method to mippiemeat tanderd equatione foe molide' of rumelation.
4. Alternate Method: Anclyt ym variationa of formula for linited monber of mild shepen, and rimpliten tarmery of perts and camelly.
5. Conpeter (R,C, s3): The migite inention of eemter of pravity, volume, pelar moneat ol inertie, memevere moment ol invtio and total moment of inertio ana be ofteind chromat me of a dipital electronio compater.

ApPETELK VML-A
30-1M EEI PSOJECEILE, T306E10
AMCP 706-242

REPORT BRL MR 813 (Raf. 78); 5RL MR 916
DATE 1955
TYPE OF TEST Free Iight

Muezte	Weight, Ib	0.216
	\Valocity fot	Variable
	Epin rete, res	Variabla
		0.0655
	\boldsymbol{v}, rod/col	0.209 er 0

Dimensions, calibers

c.g. bection from boen, colibers _1, 37 .

$$
\begin{aligned}
& Y_{x^{2}} \operatorname{shg}-\mathrm{ft}^{2} 3.94 \times 10^{-6} I_{0} \operatorname{dog} \mathrm{ff}^{2} 29.7 \times 10^{-6} \\
& k_{c} \text { col }{ }^{.370} k_{\text {real }} 1.015 \\
& \text { Coninn }
\end{aligned}
$$

Iromoric
1.15

Supenonic

2.4
c_{0}
6.6 (eacimated)
$5.3+1.0$
$1.4 \leq M \leq 3.6$
c_{i}
1.900 .1
2.0×0.1
2.6×0.2
$C_{N_{e}} \cdot C_{D_{0}}$
C_{m}
see curve

C_{b} Not moserared; assumed to be -0.01 in computadione

A-12

2.3st. 05	$2.70 \pm .05$	2.254.05
1.75x.06	1.834 .07	2.64 .12
0.154 .12	0.58 me 10	1.254.10
0.264. 20	$0.82 \pm .08$	0.934 .05
$0.37 \pm .02$	0.541.02	0.334.02
Unestanly	Stashe	stasle

ce"bers from bave
beriten
1.75 .06
.834 .07
1.254 .10
stasle
stasle

For large yaw (fS 430) Arlage at Ma 2.3 see E.T. Doecker, BRL MR ais. 1955.

APpendix vill-c
AMCP 706-242
DRAG VS TRUNCATION: CONICAL HEADS

AUTHOR(S) a. C. Charter and H. Stein	REPORT BR R 624
	DATE 1952
	TYPE OF TEST Free fight

co. location from base, calibers \qquad

Type 1
c_{0}
3.41 .0

Type 2
Type 3
Type 4
Type 5
$3.61 .2 \quad 2.0$ approx. 1.0 approx. 0 approx.
About 10 rounds of each type. C_{c} c_{m}
$C_{10}+c_{n}$
$c_{i n}$
c_{10}
cp
location
6
${ }^{2} d$
4 (2-4)
玄

AMCP 706-2A2
 2.75-5:CE ROCKBT, T131

AUTHOR(s) L. C. Macallister and W. K. Rogers

INERT ROCKET

Dinensions, colibers

c.g. lochion from trea, coilbers 1.77士. 01

At all 3 Mach nos.
M
0.85
1.0
1.15
c_{0}
5.8 approx.
$C_{\text {i. }} \quad 1.95 \pm .05 \quad 2.04 .05 \cdots 2.04 .08$
$C_{M_{0}} \quad 3.15 \pm .05$ 3.45*.08 3.45\#0.1
$C_{m_{p}}+C_{\mu_{1}} \quad-4.5 \pm 0.5 \quad-7.5 \pm 1.0 \quad-: 0 \pm 2$

$$
C_{\max } \quad-0.23 \pm 0.1 \quad-0.23 \pm 0.1 \quad-0.07 \pm 0.07
$$

$$
c_{l_{p}}
$$

ep

 epection 6 d $44^{(2-4)}$ $\frac{1}{4}$A-14
artbers from bace

APREMDIX VIII-E
AMCP 706-242

APPEMDIX VIIL-
105-M HE PROJECTILE, MI (MODLFIED)
AUMOR(S) E. T. Roscker; E. D. Boyer
REPORT BRL MR 929 (Ref. E5); BRI MR 1144 date

1955
1958
TMPE OF TEST Free Inght
Free Dight

Muezio

Dimmaions, colibers

Moch Na. c.g location from boancotbers 1.74

Mach Na.
$I_{0 . \log -1^{2} \quad 0.017}$ k_{0} col $0.380 \quad k_{p, 0 e l}^{1.185}$

A-16. The cylindrical body diametor was undercut by . 03 isch to increase the yew.
4.9-CALIBER PROJECTILE AT TRANSONIC SPEEDS

AUTHCR(S) L. E. Schmidt REPORT BRL MR 824
DATE 1954
TYPE OF TEST Free flight

Dimensions, calibers

c.9. location from base, calibers 1.23

k_{c} cal
0.345

$\frac{\text { Supersonic }}{1.3}$

6. : (estimated)

Used over whole Mach no. range

AMCP 706-242
APPETOLX VEII-H

- SO-TI ER PROJECIILS, T91

AUTHOR(S) L. C. Machillieter.

c.e. focotion from boenculters 1.95

Traneonic
0.95

$$
\frac{\text { Superaonic }}{1.8}
$$

Conneris
C_{0}

Velues shown are for tracer got ippited. With tracer ifrited. $C_{D_{0}}$ is reduced about 6\%; $\mathrm{C}_{\mathrm{M}_{4}}$ is aot changed very muck; draumic stabillty io improyed.

APPEADIX VIIL-I
AMCP 708-242
EEFECTS OF READ SHAPE VARIATION

c. ${ }^{\text {g }}$ boction from bome coinbers various

Dimmansions, colibers

Moch Na cg. location from base, colitives
\qquad

- M.T. M6l Fuze

Tronsonic
Subeoric
M Peok $C_{b x}$
C.
C_{m}
$C_{m}+C_{m}$
$C_{m o n}$
Determiaed by avaraging over time intervale ac loag as 60 sec.
cillows from bexc

cpation

s
${ }^{6} d$
$4_{0}\left(2-y_{0}\right)$
$\frac{1}{8}$

APPETDIX VIH-K COSE CYLIEDER

AMCP 706-242
Anthor(s) L. E. Schmidt
REPORT BRL MR 759 (Ref. 52)
DATE 1954
TYPE OF TEST Free filight
Type 21 - solid bronze

Dimmaions, colibers

Mach Na. c.g. location from bese, colibers 1.65

Tronesonic
Subsenic
M
0.8

$$
1.25
$$

Sypersoric $1.9 \quad 2.3$ $C_{0_{0}^{2}}$
 C_{p} cp. ${ }^{3}$

$$
2.7 \pm .05
$$

2.75※.05
2.5 $\pm .05$
2.45
callber: from beat
2.86
2.75
3.24
2.33

0.87	0.68	Computed from eurve dets
0.98	0.90	
0.31	0.43	

PART 1
Elfect of adding to leagth of projectile, and diminiahing the area of the base, by addiag boattall.

Dimmaions, coltibers

Boatail Anfle

${ }_{0 .} \quad C_{D_{0}}{ }^{\text {at } M}=1.2$
$4^{\circ}{ }^{\circ} 15^{\prime \prime}$

0.372	0.350	0.330
0.376	0.340	0.324
0.39	0.35	0.345

9*
$0.39 \quad 0.35$
$0.345 *$
0.32
$0.2880 .27{ }^{2}$
0.258
${ }^{-15}$
0.2980 .270
0.262
$0.31 \quad 0.2750 .27$
$C_{D_{0}}$ at $M=2.4$
0°
$7^{\circ} 15^{\prime}$
0.26

0.254	0.220	0.220
0.246	0.22	0.22
0.25	0.225	0.224

The $C_{D_{0}}$ values shown were rad from the curves in MR 842. The scater of the obeervations averaged about $\pm 0,005$. Variatiza in oarface finden, by affecting the boundary layer truasition, may account for much of the ecatter.

[^5]APPEMDIX vILL-L
EFFECT OF BOATTAILIAG ON C_{c} (contod)
AMCP 706-242

AUTHOR(S)
E. R. Dickinuan

REPORT BRL MR 842 (Raf. 25)
DATE 1954
TYPE OF TEST Frec Ilight

PART II
Effect of increasing the length of the boattail, and diminishing the area of the base, while kerping the overall length of the projectile constant. $d=.0655 \mathrm{ft}=20 \mathrm{~mm}$
Dimmenions, colibers

Boattail	Square Base	Boattail Length, calibers		
Anple		0.5	1.0	1.5
$0 \times$	0.256 ${ }^{\text {a }} \mathrm{C}_{\mathrm{D}_{0}}$ at $M=2.4$			
$4{ }^{\circ}$		0.243	0.224	
$7{ }^{\circ}$		0.237	0.226	0.207
	$C_{D_{0}}{ }^{\text {at }} M=3.2$			
$0{ }^{\circ}$	0.208			
$4{ }^{\circ}$				
\%*		0.19*	0.179	0.169
	$C_{D_{0}}{ }^{\text {at }} \mathrm{M}=4.0$			
$0 \cdot$	0.172			
$\mathbf{7 0}^{\circ}$		0.165*	0.151	0.144

The C_{D} values shown were read from the cirves in MR 842. The scatter of the obseivations averaged about 40.003 .

Eatimated effact of adding a driving baad (rotating ring) is to add 0.01 , or less, to the values shown assuming that the bead does not extend to within less thad 0.25 calibers of the buttaid.

These values were read ircm an interpclated curve.

Dimensions, colibars
$d=0.0417 \mathrm{ft}$
$M=2.44$

Base Area	Square Babe	Boattail Lenth, calibars	
		0.5	1.5
Frontal Area	1.0	0.76	0.39
$C_{D_{0}}$	0:263	0.248	0.228
	\#. 0.027	\$. 004	. 2.005
$\mathrm{C}_{\text {cel }}$	6.7	5.1	4.5

appindix vus-m
90-MM YODEL OF 175-M PROJECTILE, T203
AMCP 706-242
AUTHOR's)

Dimensions, calibers
 c.e. locosion from brev, colibers 1.94

$$
\begin{aligned}
& k_{c} \text { coll } \\
& \xlongequal{0.356} k_{t} \text { col } \\
& 0.952
\end{aligned}
$$

1.15 Trenoric
5.8
$1.4 \pm .08$
4.75*.05
C_{m}
$C_{m+}+C_{m o}$
-7.8
0.28 .15 .
c_{1}
$c \rho$
bection
8
$8 d_{0}$
$4\left(2-e_{0}\right)$
$\frac{1}{8}$
4.7
1.48
3. 25
1.63

3

Comments
Superponic
2.6
3.8
3.54.05
3.75
$-6.7 \pm, 35$
$0.19 \pm .04$
2.95
1.90
calculated with $y=0.314$
Projectile is dymamically stable orar this range of Mach numbers whea fired from a gian with $1: 20$ twist (N) $=0.314$).

AMCP 706-242

AUMON(S) B. G. Karpov, K. S. Krial and B. Hull

RERORT BRL MR 956
DATE 1955
TYPE OF TEST Free Iight

Murzio

Dinmanions, colibers

Moch Na c.g boction from bomacolibers 1.85

\boldsymbol{M}

1.2
C_{4}

ep	2.98
leovion	2.37

$\frac{1}{2}$
1.8
5.8
2.95
3.1*. 05

$$
-9.7 \star 0.1
$$

0.18
$0.16 \pm .05$
$\frac{\text { Syreponic }}{2.6}$
5.8
3.3
2.8. 02
-9.5

2.80	2.60
2.30	2.52

Comann
colbers from bees
ealculated with $9=0.314$
Projectile is dymamically atable over thic range of Mach numbers when fired from a gun with b:20 twiot (0.0 .314).

AMCP 706-242

APPEYDIX VIIL-P
 S-CALIBER A-N SPINIEER ROCKET

AMCP 708-2 22 7-CALIEER A-A SPIMIER ROCKET
authors
L. E. Schmidt and C. H. Murphy

Dimensions, calibers
 c.g. bocation from base, colibers 2.96

REPORT BRL MR 775 (ReI. 53)
DATE 1954
TYPE OF TEST Free flight
Type 2 model: intermediate c.g. location

Muzzls

$\begin{array}{ll}\text { Weight lb } & \frac{0.33}{\text { Variable }} \\ \text { Vadreity, fpe } & \frac{\text { Variable }}{\text { Spin rofe, rpe }} \\ \text { d,ft } & .0655=20 \mathrm{~mm} \\ \text { v, rod/col } & 0.63\end{array}$
(Pusher eabok)

1

$\frac{\text { Subeonic }}{0.8}$ Tronmoric $\frac{\text { Pak }}{1.01}$ $\frac{\text { Superronic }}{1.28}$

$$
6.6 \pm 1.3
$$

7.1\$0.8
2.0 ± 0.05
$2.0 \div 0.1$
2.2
5.2 ± 0.1
-21 ± 1

$$
-0.40 \pm .05
$$

$$
-0.024 * .0005
$$

$$
\begin{aligned}
& \text { cp } \\
& \text { boction }
\end{aligned}
$$

$$
5.4 \pm .05
$$

$$
6.0 \pm 0.1
$$

$$
-0.26
$$

$$
-0.59
$$

$$
0.17
$$

UNBTABLE

$$
\begin{aligned}
& I_{x}, \text { shog } f^{2} \quad 5.76 \times 10^{-6} I_{y} \text { sho } f^{2}{ }_{25.5 \times 10^{-6}} \\
& k_{0} \text { col } \\
& 0.364 \\
& k_{f}, \text { col }
\end{aligned}
$$

Comments

APPHMDIX VILA-W
T-CALIBER A-M SPIEEEK ROCKET

AuTHOR(S)
C. H. Murphy and
L. E. Schmidt

Dinmerions, colibers

Muezzle

REPORT BRL R 876 (Ref. 49) DATE 1953 TYPE OF TEST Free Iight Lntermediate c.g. location $\begin{array}{ll}\text { Weigh, ib } & \text { Variable } \\ \text { Valocity, fps } & \text { Variable } \\ \text { Spin role, ipe } & \text { Variable } \\ \text { d,ft } & 0.655 \\ \text { U, rod/cel } & \end{array}$

AUTHOR(s)
C. H. Murphy and L. E. Schmidt

REPORT BRL R 870 (REL. 49)
DATE 1953
TYPE OF TEST Free night Intermediate c.g. Jocation
anuzzlo

Dimensions, colibers

c.e. locution from bose, colibers 3.95
C_{m}

Conment

Dimenions, colibers

cg. locetion from bove, cotibers 3.752
105-MM HEAT PROJECTILE, T171 (YODITIED)*

Dimensions, calibars
 Moch No.
c.a. locestion from boen, coibers 3.22

Transanic
 Subeoric

M
C_{b}

| $C_{L_{e}}$ | 2.5 ± 0.2 |
| :--- | :---: | :---: |
| $C_{M_{m}}$ | \cdot |
| $C_{M_{p}}+C_{M_{m}}$ | -28 ± 7.5 |\(\left\{\begin{array}{c}\begin{array}{c}No significant

variation

with

Mach

number\end{array}

\hline\end{array}\right.\)
chlems from bex
Seatic ingtability ($C \mathrm{CM}_{3}>0$) is to be

${ }^{8} d$ $\left.4_{0}(2\}_{0}\right)$ The aise of the yaw for the sounde teated sanged from about 0.5° to 4°. 4 Modified by eliminatiag the wreach alote ta the torward sectice of the mose.

appimbix villm

COMI MORTAR PROJECTILE, 124

APPEXDIX VMb-V 105-MM MORTAR PROJECTILE, T53

AUTHOR(S)
C. P. Sabin

REPORT BRL MR 1112 (Ref. 35)
DATE 1957 TMPE OF TEST Free aight

$$
k_{0} \operatorname{col} \quad 0.343 \quad k_{r} \text { ool }
$$

$$
1.86
$$

$\frac{\text { Tranoonic }}{0.95} \cdot \frac{\text { Troneonic }}{1.06}$
10.0
C_{0}

$$
c_{L_{0}}
$$

$$
C_{m_{2}} \quad-6.40 .3
$$

$$
C_{\mu}+C_{m}
$$

$$
.70 \div 10
$$

$$
\begin{aligned}
& c_{i n} \\
& c_{p} \\
& c p
\end{aligned}
$$

cpatyon

$$
8
$$

${ }^{2} d$ $44_{0}\left(2-x_{0}\right)$ $\frac{1}{6}$

ABPEMDIX vify x
SQ11Y EREAT PROJECTILE, T108
AMCP 706-242

> ANHOOR(s) B. G. Karpov
REFORT. BRL MR 696 (Ref. 47)
DATE 1953
TYPE OF TEST. Free Ilighe

Diamenions, colibers

Mach Na. c.e locution from bave, ciribers 6.21

C_{0}
2.7
$1.2<M<1.8$
c_{m}
-6.5
$3.0 \neq 0.5$
$C_{m}+C_{m_{6}}$
${ }_{c}$

$$
-1.1 \pm 0.4
$$

$+5$

AMCP 708-242
Appmixix nirny soMM BEAT PROJECTILE, T10
AUTHOR(G) L. J. Rose and R. H. Kriager: REPORT BRL MR 763 (Raf, 93);
R. Pisiali and L. C. Minchllister
csing
DATE BRL MR 1076 (Ref. 41)
DATE 1956; 1957
TYFE OF TEST Wind swanel; Free night

Mucesto

 d,ft (iulh sealel_en225 d, ft (w-t model) 0.118U, rod/col

Dimensions, colibers

M 1.72
1.72
Body aloae Body + teil
2.43
co. losetion from bros, cotibers 6. $21(1+-1)$
\qquad

Redection of boom learth by 1.5 callbere cut $C_{\text {he }}$
in mall (whea usiag inrouded
)
call. E.pre.g. eoparation weo
aloo hatred. This relation
-1
abould trold for the oix-fin manrondod mil ace wall.

A-8

AUTHOR(S) L. C. Macalliater

Dimancions, colibers

REPOKT BRL R 934 (Ref. 89)
DATE $\quad 1955$
TYPE OF TEST Eree Ilight

v, red/cal
Cruciform thil 8\% thick vedge fins, not eanted

$$
k_{0} \text { col } 0.38 \text { _ } k_{r} \text { oal } 24
$$

AMCP 706-242

ampendix Ix
TRAJECTORY IROGRAY II FORTRAK LAMGUAGE
DIMENSION $\operatorname{cDO}(9,2), \operatorname{cMa}(9,2)$
1 FORMAY $49 H$, $58,0, F 8.0,57,1, F 6,3$
6 FORMAT (F7.2,F8.0,F8.0,F7. Y,F6.3,F6.2,F7.3,F6.2)
9 Fonat (FG. 3,F6.3,F8,3,F6.3,F6,3,F8.4)
10 FgRMAT
7 Fermat \{2H.6

100

READ
READ 6, 0,27 ,WTO,WTB SPIS,SBT, OE, WO

D0 11 I-1,9
11 READ $9, \operatorname{CbO}(1,1), \operatorname{CDO}(1,2), x, \operatorname{cma}(1,1), \operatorname{cma}(1,2)$
PRINT
PaINT 7
PENDI
PRINT, \longrightarrow
PRINT 9, FFD, FFFM, X,RXAA,RGT,D
PMSE
20
21
22
23
26

IF (SEWSE SWITCH 2) 23,26
ReNE
PRINT
PRINT $1, W$ PIITT $6, W 0,5 P I S, S B T, D T M, T$ WIST, QE
REND 1 , OLINT
PRINT 6,WTB,20,TEMP,OTL,DTE,CO2,CLP
PINT 7
THST $=0.0$
if (WTO-WTB) 29, 25.96
96 THST-(WTO-NTB) USPIS/SBT
DHessmith7/(32.17*5P15)
29 TEMPR - $518.1(459.4$ TEMP)
V40 = 1116.1 (YEMPK.5.5)
RH005 =.001189WTEMPR
RINT 10, RHCOS, VAO
mint 7
Pulse
if (SEMSE SWITCH 4) 20.97

REND, \rightarrow Theta z Thrust Drag Yow Mach Spin $S G$
PINT 7
PIMTI 0.0
TINE $=0.0$
$x=0.0$
DIST $=0.0$

A-40

APPIEDIX IX (enat'd)

```
        THT \(=\mathbf{D E}\)
        \(z=20\)
        2F-20
        \(S=.7854\) 烪**2
        PMASS = WTO/32. 17
        THETA - . 01745329 国E
        \(v=\) vo
        If (TWIST) 30,31,30
        30 SGC = \(\quad\) RGA**4/(4.0*RH005*S*D*RGT*2)
            GMU \(=6.2832 / 7 W 1 S T\)
```



```
            ENO OF INITIALIZATION
        31 if (z-30000.) 32,33,33
        32 RHO = EXPF ( \(-3.2 E-05 * Z\) )
    GO TO 34
        \(33 R 40=.38289\) *EXPF ( \(-4.6 E \sim 05 *(2-30000)\).
        34 IF (2-36500.) \(35,36,36\)
        35 VM \(=\mathrm{V} /(\mathrm{VAO}-(V A O-976) * z / 36500.\).
    GO 73
36 VM \(=\) V/970.
37 IF ( \(\operatorname{CDO}(9,1)-\mathrm{VM}) 38,38,39\)
\(38 \mathrm{CD}-\operatorname{COO}(9,2)\)
    60 TO 43
    39 Im 2
    DIFF (DIFF) WH-CDO 41,1 )
        \(\operatorname{IF}_{C D}=\operatorname{CDO}(1,2)+0 i^{42} *(\operatorname{COO}(1,2)-\operatorname{CDO}(1-1,2)) /(\operatorname{CDO}(1,1)-\operatorname{CDO}(1-1,1))\)
        60 TO 43
    \(42|x|+1\)
    60 TO 40
\(43 C D=F F D+C D\)
    IF (TWIST)44.95,44
    if (CMA 9,1 )-VH) \(45,45,46\)
    45 CM = CMA \((9,2)\)
    GO 1050
\(461=2\)
47 DIFF \(=\operatorname{VH}-\operatorname{CMA}(1.1)\)
    IF (DIFF) 48,48,49
    \(48 \mathrm{CM}=\mathrm{Cma}(1,2)+0\) iff*(CMA \((1,2)-\operatorname{CMA}(1-1,2)) /(\operatorname{CMA}(1,1)-\operatorname{CMA}(1-1,1))\)
    GO 7050
\(49 \quad 1=1+1\)
    GO TO 47
    \(50 \mathrm{CM}=\) FFHACM
    SG = SGC*(GNU**2)*PMASS/(RHO*CH)
    If (SG-1.0) 51,51,53
51 PRINT 52. SG
52 FORMAT (F10.3.10H UNSTABLE)
```



```
    \(C D=C D+C D D 2+Y R+2\)
    GACC - - 32.17 (SINF(THETA)
```



```
    ACC = GACC + (THST-DRAG)/PMASS
```

$$
\text { OT = DTL }(A C C \star A C C) \star \pm O T E
$$

IF ($0 T-0 T M$) $60,60,59$
59 DT $=$ DTH
60 IF (SEMSE SWITCH 1) 57.55
55 PIMT E PINTI-1.0
IF (PINTI) $57,57,56$
56 IF (THT THETAS $76,70,58$
70 2F-2T
57 PRINT 6, TIHE, X, O IST, $V, C D, C M$, RHO, PHASS
PRINT 6. THETA,Z, THST, DRAG, YR,VM,GNU,SG, DT
PINTT $=$ PINT
IF (SENSE SWITCH 2)54.58
54 ACCEPT G,DTL OTH
58 IF TIME-S8T $62,61,61$
61 if (TNST) $64,64,65$
$62 \mathrm{THST}=0.0$
PMASS = WTB/32.17
60 T0 57
62 IF (TIME+0T-SBT) 69,68,68
68 or - 0 MM/4.0
69 PMassmpmass-omassmot
64 DRN $=$ ORAG $\#(1,0+2,0 \pm A C C \pm O T / N)$
ACCT = GACC + (THST-DRAG) /PMASS
VRAR $=Y+(A C C+A C C T)-D T / K .0$
DS a vantiti
V - 2.0 mada - V
DIST = DIST + OS
TIME = TIME + DT
tht - theta
THAAR - THETA - 16.09MCOSF (THETA) *OT NBAR
$x=x+$ DSCCOSF (THBAR)
$2=2+05 \operatorname{SNO}^{2}$ (THBAR)

c

if (2-2F) $67,67,31$
67 OS: (2T-z) S^{\prime} IIF (TMETA)
TAME - TIME + OSN
$x \rightarrow(x+\operatorname{DS}+\cos ($ THETA $)) / 3.281$
THETA - THETA/.01745329
REEO 1
PRIMT
PRIM 6, TIME, x, V, THETA, GND, 56
PaUSE
if (SENSE SWITCH 4) 20,100
EM

SN O OTAR SYMBOL TABLE

FFD Ratio of drag coefficient curve to typical aurve in manory
FFM Ratio of static moment cofficient eufve to typleal eurve in marry,
TYPE Identification of typical drag and momert curves in many
ReA Axial radius of gyration, calibers
RGT Trangverce radius of gration, calibers
D Maximio body diameter, ft

A-42

kto	Projectile weight at launch, ib
vo	Prnjectile velocity at launch, fps
SPIS	Spectific impulse of rocket fuel, sec
SRT	Rocket motor burning time, ser
TWIST	Twist of rifling, calibers per turn
ne	Quadrant elevation, deg
VT8	Projectile weight at rocket burnjut, ib
7.0	Elevation of launcher, ft
$2 T$	Elevation of target, ft
TEMP	Air temperature at launcher, OF_{5}
COO2	Yaw-drag coefficient, per rad ${ }^{\text {2 }}$
CLP	Roll damping moment coefficient
DTL	Numerator of expression used to compute time intervals
DTE	Exponent in expression used to compute time intervals
DTM	Maximum length of time interval permitted
PINT	Number of time intervals between automatic print-outs
CDO	1) Eleanent of mach no. column in drag coefficient table
coa	2) Element of drag coeff. Column in drag coefficient table
CMA	1) Element of mach no. column in moment coefficient table
C14	2) Elearnt of static moment coeff. column in moment coeff. table
THST	Rocket thrust, lb
DMASS	Rate of change of projectile mass, slugs/sec
TEMPR	Ratio of std. absolute temp.to absolute temp. of air at launcher
VAO	Sea level ($2=0$) vel. of sound in air at temp.of air at launcher
RH005	me-half air density at sea level at air tempat launch, slugs/ft ${ }^{3}$
	Horizontal distance from launcher in range direction, ft
DIST	Arc distance along trajectory, from launcher, ft
THT	Variable carrying sign of trajogngle at beginning of time interval
	Frontal area of projectile, ft
PMASS	Projectile mass, slugs
THBAR	Trajectory angle at middle of time interval, radians
THETA	Trajectory angle at end of time interval, radians
v	Projectile velocity, fps
SEC	Constant in computarion of gyroscopic atabllity factor
GMU	Spin of projectile, rad/cal
YRC	Constant in computation of yaw of repose, $\mathrm{Et}{ }^{2}$ / slug . secc ${ }^{2}$
z	Altitude of projectile, measured from sea level, Et
RHO	Ratio of air density at alticude to density at gea level
VM	Mach number
CD	Drag coefficient
DIFF	Mach no.difference from tabular value, for interpolation in table
CM	Static moment coefficient, per redian
56	Gyroscopic stability factor
Y	yaw of repose, radians
PINTT	Counter for automatic print-out
TIME	Elapsed time since launch, sec
GACC	Projectile acceleracion along trajectory, due to gravity, ft/sac ${ }^{2}$
DRAG	Drag, 1b
ACC	Proj.ecceleration along traj.at beginning of tim interyal, $\mathrm{ft} / \mathrm{sec}^{2}$
ACCT	Proj.acceleration along traj.at end of interval, fe/sec ${ }^{2}$
DT	Length of cime intexvel, sec
VBAR	Average velocity over time interval, fp
DS	Arc distance traveled during time incerval, ft

REFERENCES

Geseral

1. R. II. Powler, E. (I. Gallop, C. N. H. Iock and II. W. Richmond, "The Aerndynamies of a Spianing Shell," Phil. Trana. Roy. Soc. (London) (A), 221, 295-387 (1920).
2. H. P. Gay, Notes on the Weights of Guns. Morters, Recoilless Weapons and Thir Ammenition, ERL Memorandum Beport 1360 , Aberdoen Proring Ground, Md., 1961.
3. H. P. Gay and A. S. Elder, The Latoral Motion of a Tank Gun end Its Effoct on the Accuracy of Pirs, BRL Beport 1070, Aberdeen Proving Ground, Md., 1959.
4. J. L. Kelley and E. J. MeShane, On the Motion of © Projective With Small or Slowly Chang. ing Faw, BRL Report 446, Aberdeen Proving Grounil, Md.; 1944.
5. R. H. Kent and I. J. MeBhane, An ELemextary Troutment of the Motion of 5 Spinaing Projectile About Its Center of Orevity, BRL Report 455, Aberdoen Yroving Ground, Md., 1944.
6. C. C. Maple and J. I. Synge, "Aerodynamic Symmetry of Projectiles," Qwert. App. Mech., Vol. V1, No. \leq (1949).
7. E. J. MeShane; J. L. Kelley and F. Reno, Ex. torior Ballistics, Univerrity of Deaver Piem, Denver, Colo, 1958.
8. J. von Neamann and O. Morgenatern, Theory of Gemes and Ecomomic Bahevior, Princoton University Proms, Princeton, N. J., 1953.
9. J. D. Nieolkidee and L. C. MecAlbiter, "A Review of Aeroballintic Range Bemearch on Winged and/or Finned Mimilea," srd Newy Symparinin on Aerobellistics, Applied Phymies

Laboratory, Silver Spring, Md, NAVORD Roport 5338, 1954.
10. Ordsance Technical Terminology. June 1962. Special Text 8T 9-152, U.S. Army Ordnance School, Aberdoen Proving Groand, Md. Alo avilable trom Clearingtone tor Federal Beientifie and Techaical Information, Springfald, Va. as PB 181465.
11. R. W. Pohl, Physioal Primoiples of Mochomics and Acouctics. Tramelated by W. M. Deame, Blectio \& Son-Ltd, Loedon, 1982.
12. a. C. B. Murphy, The Fros Plight Motion of Symmetric Mieries, BRL Beport 1216; Abardeen Proving Ground, Md., 1968.
b. R. H. Kreiger, Addrast Deliogred Before the Committes on Pin-Stebitied Ammusition at Picatinny Arsonal on 15 Boptombor 1954, BRL Technical Note 962, Aberdeen Proving Ground, Md, 1954.

Ertimation and Momorment of Aosodynanic Coancinats

13. I. Bluestone, Plexible Nocele Irmanal No. 3, Model Design Critoria and Tumal Opopeting Conditions (BRL Bupersonic Wind Tumen), BRL Memorandum Beport 711, Aberdean Prov. ing Ground, Md, 1958.
14. W. E. Buford and B. Shatasoif, The Effecte of Pinemass Retio and Meok mimber on the Normal Force and Conter of Prasoure of Comicel end Ogival Heed Botice, BRL Mermorandum Boport 760, Abwerenen Proving Groned, Md. 1954.
15. W. H. Dorrance, "Non-teady Eupersoaic Flow

REFERENCES (cont'd)

About Pointed Bodies of Revolution," J. Aeronaut. Sci. 18, 505 (1951).
16. H. R. Kelley, The Esismation of Nc:-rnal Force and Pitching Moment Coefficients for Blant Base Bodies of Revolution at Largc Angles of Attack, Naval Ordnance Test Station Technical Memorandum 998, ('hina Lake, California, 1963.
17. J. C. Mesifulen, Wind Tunnel Testing Pacilities at the Ballistic Researeh Laboratories, BRI, Memorandum Report 1292, Aberdeen l'roving Ground, Md., 1960.
18. 1. II. Murphy, The Measurrment of Noulincar Forces and Moments by Means of Pree Flight Tests, BRL Report 974, Aberdeen Proving Ground, Md., 1956.
19. W. K. Rogern, Jr., The Transomie Pree Plight Range, BRL Report 1044, akerdeen Proving Ground, Md., 1958.
20. N. Simmore, Simplifed Methods for Estimating Static Stability of Air and Underwater Projectiles, A.D.E. Projeet Note 21, Fort Fialstead, 1952. See alro: A.D.E. Technical Report 3-54, 1954.
21. R. M. Wood, Quick Methods for Estimating the Static Aorodymamic Coeficients of Shell, BRL Memorandum Roport 854, Aberdeen Proving Ground, Md., 1954.

Drag

22. A. C. Chartern and R. H. Kent, The Relation Batween The Skin Priction Dreg and the Spin Reducing Torque, BRL Report 287, Aberdeen Proving Ground, Md., 1942.
23. 24. C. Charters and R. A. Turetaky, Determination of Base Pressure frow Pree-Flight Date, BrL Report 653, Aberdeen Proving Ground, Md. 1948.
1. R. R. Dickinson, Some Aerodynamic Effects of Head Shape Variation at Mach Number 3.44, BRL Memorandum Report 838, Aberdeen Proving Ground, Md, 1954.
2. E. R. Dickinson, The Efect of Boattering on the Dreg Cosficient of Cone-Cylinder Projectiles at Suporromic Volocitice, BRL Memoman.
dum Report 842, Aberdeen Proving Ground, Md., 1954.
3. T. Hailperin, Comparicon of Boat-tail and Square Bese: Part I, BRL Memorandam Beport 347, Aberdeen Proving Ground, Md, 1945.
4. S. F. Hoerner, Flusd-Dynamic Drag, Published by the autbor, 48 Buateed Dr., Midland Park, N.J., 1958.

- I2x. L. C. MacAllister, The Drag of a $1 / 3$ Scale Model of the $3000-4$. Bomb $M 118$ from a Mach Nwmber of 0.7 to 1.2 as Obtained from Pres Plight firinys, BRL Report 927, Aberdeen Proving Ground, Md., 1955.

99. C. T. Odom, A Dreg Coeficient of $\mathbf{E E}$ Shell for the New Scrice of Pield Artillery Weepons, BRL Memorandura Report 1013, Aberdeen Proving Ground, Md., 1956.
100. G. I. Taylor and J. W. Maceoll, "The Air Preesure on a Cone Moving at High Speeds," Proc. Roy. Soc. (London) 139, 278 (1933).
101. N. Tetervin, Approximate Arelyois of Effect on Drag of Truncating the Comical Nose of s Body of Bevolution in Expersonic Flow, NOL Technical Report 62-111, Naval Ordnanee Leboratory, White Oak, Md, 1962.
102. R. N. Thomen, Some Comments on the Form of the Drag Coeficient et Supprsomic Valocity, BRI, Report 542, Aberdeen Proving Ground, Md., 1942.

Dual Fiow

B3. B. G. Karpov and M. J. Piddington, Ifect on Drag of Two Stable Flow Confouratione Over the Nose Spike of the $90-\mathrm{mm}$ T 316 Projectice, BRL Technical Note 955, Aberdoca Proving Ground, Md., 1954.
34. 4. 8. Platou, Body Nace Shepes for Obtaining High static Stabitity, BRL Yemorandom Beport 592, Aberdeon Proving Ground, Md. 1952.
35. a. C. P. Sebin, The Aesodynamin Propertias of a Apitenloosd Sholl at Iremeomic Valocitict, BEL Memarandum Report 1112, Abardean Proving Cruand, Md, 1857.
b. R. H. Krimer, peper promated at the Fin.

REFERENCES (cont'd)

Ninhilizal Ammunitiont Mympxwium, Pieatinny Armuinal, (!)-2x) (Netober 1955.

Megnus Force and Moment

36. E. R. Benton, "'Supersonic Magnua Effecta on a Finned Mizuile," AIAA Journal, January 1964.
37. E. D. Boyer, Pree Flight Range Tests of a 10 celiber Cone Cylinder, BRL Memorandum Report 1258, Aberdeen Proving Ground, Md., 1960.
38. W. E. Buford, Magnus Effects in the Case of Rotating Cylinders and Sheli, ERL i Memorandum Report 821, Aberdeen Proving Ground, Md., 1954.
39. II. R. Kelley, An Andytical Method for Pre. dieting the Magnus Porers and Moments on Spinning Projectiles, Naval Ordnance Test Station Technieal Memorandum 1634, China Lake, California, 1954.
40. J. C. Martin, On Megnus Effects Caused by the Boundery Layer Displecemont Thickness on Bedies of Revolution at 8 mell Angols of $4 t$ tack, BRL Report 870 (Revined), Aberdeen Proving Ground, Md., 1955.
41. B. Pixiali and L. C. Macalliater, Efect of Megnus Torque on the Yeon Demping of the $90-\mathrm{mm}$ F108E45 8hall, BRL Memorandum Report 1076, Aberdeen Proving Groand, Md., 1957.
42. A. 8. Platou and J. Stembers, The Magnue Charactaristices of a $30-\mathrm{mm}$ Airaraft Bullet, BRL Repert 994, Aberdeen Proving Ground, Md, 1956.
43. A. S. Pluton, The Megnue Force on a 8hort Body at Bupwromic Speods, BRL Report 1062, Aberdeen Proving Ground, Md., 1969.
44. 4. 8. Platon, The Megmus Fores on E Rotating Cylinder in Trencomic Crose Flowa, BRL Report 1150, Aberdeen Proviag Ground, Md, 1961.
1. 2. 8. Platon, The Megme Porce on E Pinned Eody, BRL Beport 1193, Aberden Proving Ground, MA., 1868.

Dypamic Stablity

46. B. B. Holx and J. D. Nicolaidew, A Method of Determining some Aerodynamic Cosfisionts from Supersonic Fres Flight Teats of a Eoll. ing Mistile, BRL Report 711, Aberdeen Proving Ground, Md., 1949.
47. 2. B. G. Karpov, Aerodymamic and Flight Cheracteristics of the $90-\mathrm{mm}$ Fin-Stabilised Shell, HEAT, T108, BRL Memorandrm Report 696, Aberdeen Proving Ground, Md., 1953.
b. B. G. Karpov, S. Krial and B. Hull, Aerodynamic Charsctoristices of the $175-\mathrm{mm} ~ T 203$ Shell and the $175-\mathrm{mm}$ Squard-Base Shell With Free M51A5, BRL Memorandum Report 956, Aberdeen Proving Ground, Md., 1955.
1. C. H. Murphy, On Stabitity Criteric of the Kel ley-MeShame Lincarized Theory of Yaving Motion, BRL Report 853, Aberdeen Proving Ground, Md., 1953.
2. C. H. Murphy and L. E. Sebmidt, The Effeet of Longth on the Acratymamic Charmeteristies of Bodies of Renolution in Supersonic Flight, BRL Report 876, Aberdoen Proving Ground, Md., 1953.
3. J. D. Nicolaiden and T. F. Grifin, On a Fluid Mechanion for Roll Leck-in and Rolling Speedup Due to Augle of Atteck of Crueiform Confoxretions, Navy BuOrd Technical Note 16, Wamington, D.C., 1955.
4. J. A. M. Sehmidt, a study of the Resonating Yaving Motion of Anymmatrical Misoilas By Years of Anelog Computer Simulation, BRL Beport 922, Aberdeen Proving Ground, Md., 1954.
5. L. E. Schmidt, The Dymomic Properties of Pure Comes and Come Cyliaders, BRL Memorandum Report 759, Aberdeen Provint Groand, Md, 1954.
6. L. E. Schmidt and C. B. Murphy, The Aerodymemic Proportice of the 7 -alibor ArmyNowy Spinner Bocket in Tremeomic Flight, BRL Memorandum Report 775, Aberdeen Proving Ground, Md., 1954.
7. W. E. Sooth, The Ef oet of a Betating Bend Upon Some Aorodymamic Cosploionts of the 7-aliber Army-Neoy Spinnor Bocket at Meoh

REFERENCES (cont'd)

1.8, BRL Memorandum Report 1302, Aberdeen Proving Ground, Md., 1960.
55. R. A. Turetsky, Dynamic Stability of Spinner Rocket Models Pired in the Free Plight Aerodynomic Range, BRL Memorandum Report 526, Aberdeen Proving Ground, Md., 1950.

Acrodymamic Jump

56. J. G. Darpas, Transverse Forces on Projectiles Which Rotate in the Berrel, translated by H. P. Hitcheock, BRL Memorandum Repurt 1208, Aberdeen Proving Ground, Md, 1959.
57. C. H. Murphey, Comments on Projectile Jump, BRL Memorandum Report 1071, Aberdeen Proving Ground, Md., 1957.
58. C. H. Murphey and J. W. Bradley, Jump Due to Aerodymamic Asymmetry of a Miesile With Varying Roll Rate, BRL Report 1077, Aber. deen Proving Ground, Md., 1959.
59. W. B. Simor, Investigation of the Casece of Hign Diopersion of the Production 90 -man PinStabilized Sichl, HEAT, T108E40, BRL Memorandum Report S§7, Aberdeen Proving Ground, Md., 1956.
60. S. J. Zaroodiny, On Jminp Due to Murelc Disturbances, BRL Beport 703, Aberdeen Proving (iround, Md., 1949.

Arrew Projoctile

61. W. II. Allan, "Sabote Uned at the Thompeon Aeroballintio Leboratory:" Proceedinige of the Aerodyramic Bange Symporinin, Jenwery 1957, BRL Report 1005, Part I, Aberdeen Proving Ground, Md., 1957.
62. L. C. MecAllister, Dreg Proportias and Own Laxmehizg Long Arrow Projactiles, BRL Memorandum Report 600, Aberdeen Proving Ground, Md., 1952.
63. L. C. MacAlliater and B. J. Bomehke, The Drag Properties of Beverel Winged and Bilaned Come-Cylinder Mocis, BRL Memorandum Report 849, Aberdeen Proving Ground, Md. 1954.
Q. 8. T. Marte, L. C. MeAlifiter, J. W. Gehring, H. D. Vitacliano and B. T. Bentley, Pamieriify

Test of u U Upper Atmosphere Gua Probe Systow, BRL Memc. Idum Report 1368, Aberdeen Proving Ground, Md., 1961.
(ii). G. Taylor, Sabot-Lawnching Syatemn for Bxpernmextal Penetrators, BRL Memorandum Report 1505, Aberdeen Proving Ground, Md., 1963.

Rocket-Assisted Projectilas

66. I. Davis, J. W. Follin and L. Bliteer, The Exterior Ballistics of Rockets, D. Van Nostrand N. Y., 1958.
67. C. H. Murphey, Advances in the Dymamic Anclysis of Reage Data, BRL Memorendun Report 1270, Aberdeen Proving Groand, Md, 1960.
68. S. J. Zaroodny, Ox the Scaling of Rockets, BRL Memorandam Beport 1421, Aberdeen Proving Ground, Md., 1962.
69. R. C. Bullock and W. J. Harrington, 8 ummary Report on Study of the Gmy-Booutad Rocket System, PSR-9/8, North Curolina State College, Raleigh, N. C., 1962.
70. S. J. Zaroodny, Aecuracy of Unguided Fimaed Rockets, BRL Report 1232, Aberdeen Proving Ground, Md, 1964.

Liguid-Filline Projeetlos

71. 13. G. Kerpov, Experimental Obeervatione of the Dywamic Behevior of Liquiz-Pitlea ghell, BRL Report 1171, Aberdeen Proving Grownd, Md. 1902.
1. B. G. Kerpor, Dymamics of Liquid-Fillad ghell, Aids for Designers: ©) Milarr's Greph, b) Stewartion's Tcbles, BRL Meworandury Raport 1477, Aberdeen Proving Groand, Md, 1963.
2. K. Stewarteon, "On the Stability of a Bpinning Top Contianing Liquid," ". Ptuid Meeh. 5, Part 4 (1959).

Pretectspe Tuedey

74. E. B. Diekingon, Phyrioal Meagurumants of Projectites, BRL Technical Note 874, Aber deen Proving Groond, Md, 186.

REFERENCES (cont'd)

75. AMCP 706-110, Enginewriug Design Hundbook, Experimental Statistics, Section 1, Zavic Comeepts and Analysis of Measkrement Data.
75 AMCP 706-112, Engineering Deaign Handbook, Experimental Statistics, Section 3, Plan ming und Axdysis of Comparative Experiments.
76. Test und Evaluation S'ommand Materiel Test Procedures, TECP 700-700, Aberdeen Proving (Hround, Md.

Aerodynamic Data-Spinaers

78. E. D. Boyer, Aerodynamic Charceteristics of $20-\mathrm{mme}$ Shell, $\mathrm{HEI}, \mathrm{T} 282 \mathrm{E} 1$, BRL Memorandum Report 813, Aberdeen Proving Ground, Md., 195:-
79. E. D. Boyer, Aerodynamic Properties of the $90-\mathrm{mm} \boldsymbol{H E} \mathbf{M} 71$ Shell. BRL Memorandum Report 1475, Aberdeen Proving Ground, Md, 1963.
80. E. R. Dickinson, The Effects of Anaulor Rings and Grooves, and of Body U 'ndercuts on the Aerodynamic Properties of a Cone-Cylinder Projectile at $M=1.72$, BRL Memorandum Seport 1284, Aberdeen Pruring Ground, Md., 1960.
81. H. P. Hitchoock, Aerodynamic Data for Spinning Projectiles, BRL Report 620 (1947), with Errata Sheet (1952), Aberdeen Proving Ground, Md.
82. II. K. Kelly, The Subronic Aerodynomic Characteristies of Scueral Spin-stabilized Rocket Models, I. Static Cocficients. Naval Ordnance Test Station Technical Memorandum 375. Chine Leike, California, 1953. II. Magnus Coefficients, Naval Ordnance Toat Station Technieal Memorandum 376, Chins Lake, Califor. nis, 1953.
83. L. C. MacAlliater, The Aerodynamic Proper. ties and Related Dispersion Charactoristion of - Hemiephoricel-Base Sholl, $90-\mathrm{mm}, \boldsymbol{H E}, \mathrm{T91}$, With and Without Tracer Element, BRL Memorandum Report 990, Aberdeen Proving Ground, Med, 1958.
84. IL (.. MeeAllinter, Commonts on the Efrect of Proched and Plein Pues Cowers on the dove.
dynamic Properties of the $90-\mathrm{mm}$ T91E1 Shell a: $M=1.2$, BRL Tochair al Note 1119, Aberdeen Proving Gsound, Kd., 1957.
N5. E. T. Roecker, The Aerodynasxic Properties of the $105-\mathrm{mm}$ HE Shell, M1, in Subsomic and Transonic Plight, BRL Memorandum Report 929, Aberdeen Proving Ground, Md., 1955.
85. I. E. Sehmidt and C. H. Murphey, Rffect of Spix on Actodynamic Proportices of Bodies of Heuclution, BRL Memorandum Report 715, Aberdeen Proving Ground, Md., 1953.

Aerodyaamic Data-Fingers

87. E. D. Boyer, Aerodynamic Propertics of 60 mm Mortar Skell, T24, BRL Memorandum Report 1020, Aberdeen Proving Ground, Md, 1956.
gs. R. H. Krieger and J. M. Hughea, Wind Tunael Tests on the Budd Company T153, 120-mm HEAT Spike Nuse, Folding Fin Projoctide, BRL Memorandum Repori 738, Aberdeen Proving Ground, Md., 1953.
88. L. C. MacAllister, The Aerodynamic Propertise of a Simple Non-Bolling Pinned Cona-Cylinder Coufiguration Between Mech Numbers 1.0 and 2.5, BRL Report 934, Aberdeen Proving Ground, Md., 1955.
89. L. C. MacAllister and B. T. Boerkas, Aerodymemic Properties, Spin, and Lamactiany Cheracteristics of $105-\mathrm{mm}$ Morter shell T53E1 With Two Types of Pins. BRL Memorandom Report 618, Aberdeen Proving Ground, Md, 1952.
90. M. J. Piddington, Some Aerodynamic Properties of a Typical Fin-Stabilised Ordnance Shell, BRL Memorandum Report 1215, Aberdeen Proving Ground, Md., 1959.
91. A. S. Platon, The Effect of Eigh stability Noess on Finned Confouretions, BRL Technical Note 707, Aberdeen Proving Ground, Md., 1952.
92. L. J. Booc and B. H. Krieper, Wind Twanel Testr of the T100, $90-\mathrm{mm}$ EEAT Projectite at Yech Numbor 1.72, BRL Memorandum Roport 768, Aberdeen Pruring Ground, MCd, 1364.

REFERENCES (cont'd)

Projectile Geometry

!4. Tub/rx for the Jrmitm of Mirrilea, Nlafi, (Momputation Imbosutory, Ilarvaril Univerrity. (Sumbrider., Man., 194k.
45. Hechanical Integration for Nalids of Remolw. tion, Development Engineering Division, Artillery Ammunition Department, Franizford Arsenal, Phi?adelphia, Pa.
96. AMCP 706-<47, Eryineering Deaign Handbook, Ammanition Earien, Section 4. Design for
frujrction.
 bucok, Itullintiex Nuriow, Trajpetoriex, Difirernlial Xeffela, and Data for Projectilas.
Ix. Juy I. Politser, "Nhel" A Computer Progrem for Drtermining the Physical Proportics of Artillery Shell and Related Iteme, Teihnical Memorandum Beport No. ORDBB-DR1-14 (SAAS No. 36). Pieatinny Armenal, Dover, N.J.. 1962.

BIBLIOGRAPHY

Gearal

1. H. J. Coon, Evaluation of Shell, $\boldsymbol{H E}, 81-\mathrm{mm}$, M362, Hodified, BRL Technical Note 1288, Aberdeen Proving Ground, Md., 1959. (ConAdential)
2. E. R. Dickinson, Design of a Duetile Cast Iron Shell for the $155-\mathrm{mm}$ Howitzer, BRL Technical Note 1196, Aberdeen Proving Ground, Md, 1958. (Confidential)
3. B. G. Karpor and J. W. Bradley, 4 Btudy of Cewess of Bhort Banges of the 8-inck T317 Shell, BRL Report. 1049, Aberdeen Proving Ground, Md., 1958. (Secret-Restricted Lata)
4. L. C. Macallister, Comparative Piniggs of 105 mim Shall T131E31 and $105-\mathrm{mm}$ Shell Mi from Unmodified and Counterbored M2A1 Howitzer Tebes, BRL Technical Note 739, Aberdeen Proving Ground, Md., 1952. (Confidential)
5. I. C. Mecallistor, "Some Problema Amocinted with the Determination, from Range Firingm, of Dynamic Stability of Bellintic Mimile Reentry 8hapen," Proceadings of the Aerody. mamic Range Sympatimm, Jonuery 1957, BRL Report 1005, Part II; Aberdear Proring Ground, Md., 1957. (Confdential)
6. B. Sedney, Lerodymamic Eeating of the Projective $20-\mathrm{mm}, \mathrm{HEL}$, L 56 A 1, Pree M 505 , BRL Memorandum Report 1037, Aberdeen Proving Ground, Md., 1956.
7. En. Sedney, Anrodynomic Eecting Problerns in Shell Dacign, BRL Beraot 1043, Aberdeen Proving Ground, Md, 1958.

Fodmation and Yomsaromoat of Aerelymanic Ce. Climats
8. D. DeMeritte and 4 . May, " 1 Comparimon of Aerodyania Dete fram Wiod Tumole and

Free Flight Ranges," 3rd Navy Sympasium on Asrobollietics, Applied Phylice Laboratory, Silver Spring, Md, NAVORD Beport 5338, Paper 22, 1954.
9. G. E. Hanson, 4 Mothod for Estimating Foreas, Moments and Dreg Due to Lift Aeting on Slender Bodias and Pis-Stebiliced Bodies at Supersonic Speeds (Inctudes IBM 1620 programa) Beport Na Rs.TR-63-2, U.S. Army Mimile Command, Redrtose Armanal, Ala, 1963. DDC No. AD 335ist. (Confdential)
10. R. H. Krieger, The Aarodynamic Davign of Fin-Stabilized 4 mamanition, BRL Memorandum Beport 971, Aberdeen Proving Ground, Md, 1956. (Confidential)
11. A. S. Pintor, Body Nose Shaper for Obteining High Static Stubility, BRL Memorandum Report 592, Aberdeen Proving Ground, Md, 1952.
12. W. B. Scoth, Some Leroilymamic Proportica of - $105-\mathrm{mm}$ Model of the $155-\mathrm{mm}$ T358 8hell. BRL Memorandum Report 1369, Abeodena Proving Ground, Md, 1962.
13. 2. R. H. Whate and H. E. Hodeina, Effede of Nows Shepe and Boesticil Angle on Btetic Alerodynamic Characteriation of a $105-\mathrm{mem}$ 8hall at Meek 4.0, 4.5 and 5.0, Pieetinny Aromal Tretnical Kemor ydum 1248, Dover, N.J. 1964. b. Blizabeth \& Dichisean, Bome Awralymamis Effecte of Varying the Bedy Lougth and Bead length of a Spinming Projectiza, BRL Memorastars Baport 16St, Abarden Proving Groond, Ma, 1965.

Arrow Projection

14. R. C. Hegote, "Abrohmamie Charmetaridice o Fir-Beactail Combinatione at $\mathbf{M}=2.00, "$

BIBLIOGRAPHY (coat'd)

Srad Nayy Symposimm on Arroballistics, A!plienl Physics Limboratory, Silver Sprimg, Md., NaV(JRI) Report 5338, Paper 14, 1954. (Confideutial)
15. F. G. King and R. H. Kent, Kill Prabability of the 127/60 Gun for Two Drag Estimates, and Comparison with the Loki Rocket, BRL Memorandum 721, Aberdeen Proving Ground, Md., 1954. (Confidential)
15. A. R. Krenkel and J. F. Mello, "High Angle of Attaek Aerodynamic Rolling Moments and Stability Phenomena for Cruciform WingBody Combinations," 3rd Navy Symposium on Aeroballistics, Applied Physica Laboratory, Silver Spring, Md., NAVORD Beport 5338, Paper 13, 1954. (Conbidential)
17. M. J. Piddingtoa, Retardation and Volocisy Historice of an e-prein Flechette, BRL Memorandum Report 1140, Aberdeen Proving Gromad, Md., 1958. (Confidentinl)
18. M. J. Piddington, The Drag Characteristics of a 102-grain Plcchette (XM110), BRL Mem. orandum Report 1501, Aberdeen Proving Ground, Md., 1963. (Confidential)
19. M. A. Sylventer, Wind Tranel Tests of Eyper. relacity Cone Cylinder Pinned Projectiles at Mach Numbers 4.00, 4.53 and 4.89, BRL Memorandua Report 1166, Aberdeen Proving Ground, Mä., 1968.

Deng

20. R. R. Dickinson, Dasign Dete for a Sories of HI Projectile Bhapes at Meeh Number 3.0, BRL Memorandum Report 920, Aberdeea Provine Groond, Md., 1956.
21. E. R Diekinoon, The Effetivonase of BaceBloed in Reducing Dreg of Boettsited Bodices at Expornonic Volocities, BRL Memorandon. Beport 12At, Abwodem Proving Gronsd, Md.; 1960.

12 G. D. Kabl, 8upprsonic Dres and Bees Pressure of a 70° Coxe Cylindor, BRL Memoran. dum Report 1178, A berdeen Proving Groasd, Md. 1958.
24. M. J. Piddington, Bome Briof Cummonts on the Drap and Stavitity of the 37 -min Apettion Pro-
jectill; HKI, Tethnical Nute 1416, Aberdeen Proving Uround, Md., 1961. (Confidential)
24. E. J. Kouchke and M. J. Piddington, Drag end Dispersion of Banded Spheres With and Wishout stringa, BRL Memorandum Report 995, Aberdren Proving Ground, Md., 1956.
25. M. A. Sylveater and R. H. Lirieger, Wind Tunnel Tests of the T310E11, gownm HE Pro. jectile With Varying Spike Nose and Spoot Type-Body Parameters, BRL Memorandum Report 1146, Aberdeen Proving Ground, Md, 1958.

Dual Fiom

26. E. D. Boyer, Drac and Stebility Proportice of the $\triangle V C O 52$ Nase Come Model, BRL Teehnical Note 1145, Aberdeen Proving Ground, Md., 1957. (Confidential)
27. E. D. Boyer, Drag and Stabitity Proportice of. the AVCO 13 Noss Cone Model, BRL Teehniea: Note 1147, Aberdeen Proving Ground, Md., 1957. (ConSdential)
28. H. H. Album, Spiked Blunt Bodias in Supersomic Flow, Lir Force Offee of Scientific Beseareh Report 307, Wehingtoa, D. C., 1961.

Dymeak Stalaity

29. B. G. Karpor and 8. Krial, Aerrdynamic Cher.
 Its Modifications, with Fret M51A5, BRL Memorandom Raport 1057, Aberdeen Proving is Ground, Md., 1957. (Conidential)
30. L. C. Macallinter, Some Inctabitisy Problems With Re-entry Shapes, BRL Memorandum Report 1224, Lberdeen Proving Groand, Md., 1959. (Confidential)
31. M. J. Pidaington, The Effats of Spin and Megnus Torque on a Spike-Nam. Fin-Sta bilieci, HEAT Projectils, $76-\mathrm{mm}$ T1805:s, BRL Memorandum Beport 1810, Aberdeen Proving Ground, Md., 1960. (Consdential)

Foiding Fin Cuaractorimete:
32. R. H. Krieger, Wind Tmanal Trete of the TPd 73 mm HEAT Projectice, BRL Momorasduan

BIBLIOGRAPEY (cont`d)

-Heport 51y, Abercleen l'roving Ground, Md., 1950. (ConEdential)
:1K. K. II. Krieger and J. M. Hughea, Wind Tumed Tests of the Chamberlain Corporation $76-\mathrm{mm}$ Tils Polding. Fin EEAT Projectiz, BRL Memorandum Report 790, Aberdeen Proving Ground, Md., 1954. (Conffdential)
34. R. H. Krieger, Wixd Tunnal Tests of a $76-\mathrm{mm}$ HEAT Projectile With Thin Poiding Pins, BRL Memorandum Report 8i6, Aberdeen Prov. ing Groand, Md., 1954. (Confidential)

Liquid-Filled Prejectiles

35. a. G. Sukol, Some Experiments With the Iiquid-Filled, Impulvirely Slarted, Spinming (:ylinder, BRL Technical Note 1473, Aberieen l'roving Ground, Md, 1962.
b. 13. U. Karpor, Dynemice of a Liquid-Pilled Shall: Inelabilidy Dwring Spin-up, BRL Memorandum Beport 1629, Aberdeen Proving Ground, Md., 1965.
36. H. M. Stolier, Apparatus for Study of Flwid Motion in a Spinming Cylinder, BRL Teehnical Note 1355, Aberdeen Proving Ground, Md., 1960.
37. E. H. Wedemayer, The Oasteady Flow Within © Spinming Cylinder, BBL Report 1225, Aberdean Proving Groand, Md., 1963.

Megnes Force and Moneat

38. 8. Fagin, "Magaua Charactoristice of Typieal Projectile Confirurationa (12.75 -ineh 48 Roitret; Called 'Weapon A' and 7-ealiber A-N Stimer Bocket)," 3re Nevy Symparivm on Aoroballietice, Applied Phyica Inboratory, Epring, Md, NAVORD Report 53s8, Paper 2. 1954. (Confidential)
1. H. R. Eelly and G. R. Thacker, The Effeet of Eigh Spin on the Megmes Force on $\&$ Cylinder at Emall Aagles of Atteck, NAVORD Baport 5034, 1968.
2. W. Lechuek and W. Sparts, Find Tumed Megmes Charectoriatice of the 7 -ationer A-N Epinmer Rechet, NAVORD Report 3813, 1204.

Recirot-Audetad Projoction

41. B. D. Boyer, Comparieos of Aeradynamic Charecteristics of Live and Inert 70-mmen 7281 Gma-Boosted Rockets, BRL Memorandum Roport 1086, Aberdeen Proving Ground, Md. 1957.
42. S. J. Harbet and S. Wamerman, Second Status Report, Besearch and Development of Boasted Artillery Projostilor, Picatinny Arsenal Tochnical Mermorandum Beport 1183, Dover, NJ., 1963. DDC No. AD 339982 (Confidential)
43. F. H. MaIntoah, The Theory and the Calculetions of the Beharior of Salf-Aligning Bockets, BRL Report 1228, Aberdeen Proving Ground, Md., 1963.
44. G. J. Pietrangeli, I. Faro and W. Amon, "Rem. jet Eragine Deaign Optimiration and the Comparative Performance Evaluation of Brpersonic Diffuerw for Long Ragge Triton Missile," 3rd Navy Symporinem on Aeroballietics, Applied Phyzica Laboratory, Silver Spring, Md., NAVORD Beport 5338, Paper 7, 1954.
45. Design Studies on a $105-\mathrm{mm}$ Gum-Boosted Pocket. Final Report, A. D. Little, Ine., Cambridge, Mana, prepared for Picatinny Armenal, Dover, N.J., 25 Jenuary 1963. DDC No. AD 336539. (Conideptial)
46. 5-inch 38-celiber Rocket Euctained Projectibes, The Budd Company, Philedalphie, Pa, propared for Burean of iNaval Weapone, Study Project BM-2061, Novembar 1861. (Consdential)

Spha of Piestabitrod Projectiva

47. R. D. Boyer, and M. R. Yemger, Lerodymamic
 Technical Note 1094, Aberdeen Proving Ground, Med., 1956. (Confdential)
48. J. W. Bradioy, 1 Comparion of Menoured Spin Eietories of $105-$ min Mocter Shall T59E1 With Solutions of Limmeried Roll Equation, BRL Momoraadum Raport 1074, Aberdoen Proving Ground, Md., 1867.
49. J. W. Bradiey, 4 Ccmparion of Yicoured

AMOP 700-242

BIBLIOGRAPHY (cont'd)

Spin Hictorics of 81 -mm Kortar 8hsll T28E6 With Solstions of Limacried Roll Equation, BRL Technieal Note 1234, Aberdeen Provirg Ground, Md., 1958. (Confidential)
50. B. G. Karpor and W. R. Simon, Effectivonas of Ecoeral Simple IKethods of Aerodynamie Coutrol of Spin of the $90-\mathrm{mm}$, IRSAT, T109. 540 Sheh, BRL Memorandum Report 879, Aberdom Proving Grownd, Md, 1955.
51. M. J. Piddingtor, Some Aerodynamic Proportices of 7 woo $90-\mathrm{mm}$ 8pized-Nase 8hell, T300E53 and T316R6, BRL Memorandum Ropart 1082, Aberdzen Provint Ground, M, 1957. (Confilential)
52. A. 8. Platon, Roll Cherectariatice of Of-acis Pin Conficuration, BRL Memorendum Roport 936, Aberdeen Proving Gromed, M, 1956. (Contidential)

ENGINEERING DESIGN HANDBOOK SERIES

[^0]: \because re:

[^1]:

[^2]: sum netiman min 2

[^3]:
 net trane

[^4]:
 the sero-yaw drace cunficiand.

[^5]: The 9 . T. 5 caliber bostrail was a dyammically unstable coafiguration; thece date are for a 9°. 1.25 celiber boattail.

