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Fr.EFACE

The Engineering Design Handbooks of the U. S. Army Materiel Command
are a coordinated series of handbooks containing basic information and
fundamental data useful in the design and development of Army materiel
and systems.

This text treats a broad class of optimal design problems through use of a
consistent set of computational techniques ideally suited for computer
application to mechanical design problems. No attempt has been made to beI exhaustive in the treatment of optimization techniques or the full range of
mechanica! applications. Rather, the class of problems treated is concisely
formulated (in Chapters 4 and following) in terms of design and state
variabls that occur in mechanical design. A steepest-descent approach -

I which has served as a workhorse, reliable technique in fields such as
aerodynamic system design, control theory, and nonlinear programming - is
developed here for mechanical system design.

Extensive application of design optimization techniques is made in the
field of structural design, as well as in a limited number of specific weapon
design problems. The examples are presented in considerable detail, as they
are encountered in practice, to provide the practicing engineer w;th insight
into use of the methods for his class of problems. A consistent design
philosophy is maintained throughout the text to ass*- t the designer in
extrapolating the methods to classes of problems that are only similar
mathematically to the examples treated here.

The text is structured so that it can be understood and used by practicing
engineers with a good background in calculus and matrix theory. Computa-
tional algorithnis are ,tated in considerable detail so that they can be
effectively implemented by junior engineers, with only problem formulation
and general supervision provided by a senior project engimneer. As with
virtually all comouter aided design techniques, some computing art is
required for effctive implementation of these te,.hniques. The detailed
treatment of structural applications in Chapters 5, , and 9 should provide
insight into this onmiputational art. References are given to more advanced
liteiature fo' proofs ol theorems and extensions methods to other classes
, rProblems.
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F, The Handbook was wiitten, by Dr. Edward-J. Haug, Jr. of the U. S. Army
Weapons Comiiid, -It is, based on -Iecfure hiaterials -used 'by -hiffi in- a
t~-eetrF0.t~qec on "Optimization of Strutura['Systems",
taught at the University of Iowa since 1968'. Fxamples treated in the text are

~~ ~. derived, primarily from Di. Haug's-rcsearch, Dr. .Jasbir Arona's University of "

Iowa disseriation, and the work of Messrs. Tonm Streeter and Stephen Newell
of the U.S. Army Weapons Command. -

K The Engineering Design Handbooks fall into two basic categories, those
4, approved for iekase and sale, and those classified for secutity reasons. The

Army Materiel Command policy is to release these Engineering Design
Handbooks to other DOD activities and their contractors and other
Government agencies in accordance with current Army Regulation 70-31,
dated 9 September 1966. It will tic noted that the majority of these
Handbookcs can be obtained froni the National Technical Information
Service (NTIS). Procedures for acquiring those Handbooks follow:

a. Activities wilhin AMC, DOD agencies and Government agencies other
than DOD having raeed for the Handbooks should direct their iCquest on an
official formn to:

Commaander -

Letterkenny Army Depott
ATTN, AMXLE-ATD
Chambersburg, PA 17201

b. Contractors and universities must forward their rcquests to:

National Technical Information Service
Department of Commerce -

(Requests for classified documents must be sent, with appropriate "Need to
Kno" ustfiatintoLetterkenny Army Depot.)

V Comments and suggcsiions on this Handbook are welcome and should be
addressed to:

US Army Materiel Command
ATTN: AMCRD-TV
5001 Eisenhower Avenue
Alexandria, VA 22304

D)A Formis 2028 (Rzo.nmended Changes to Publications), which are
available through normial pub..cations -1py dhannels, may be used for
cun) nen IS/suggest ions.
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CH APTER 1 '"A

i i ' i-ELEMENTS OF. COMPUTERAIDED DES

1-1 'SYNTESIS, VS,'ANALYSIS INENGI sig changes are made and the structure is re. -
NEERi"46 Ei GN analyzed. This -process continues until the

designer is satisfied with his design, Thi. has
Engineering is defined (Ref. I) as "the art been the principal use of the computer in the

or -science of making practical application of design process.
the knowlede -of pure sciences such as
-physics, chenistry, biology, etc.". Although In general, then; before the designer can
broad, this definition implies that the job of assure himself that he has the best system, he
-engineeringis to synthesize, or put together, riust be capable of analyzing all candidates. I'

useful systems'by applying knowledge and li the p a half century, outstanding advances
methods derived from the "pure" sciences. in engineering analysis have been made. The
The meaning of "practical" in the given digital computer has-allowed the engineef to[

* definition should be interpreted as best, or quantitatively analyze the behavior of systems
optimal; i.e., the job of engineering design is that were examined only qualitatively in tht-

- ".. to- develop the best possible system for the past. The mechanical sciences, particularly,
given application, consistent with tit.e re- have benefited from this boom in analysis
sources allocated to the development phase. capability. Structural analysis, stress analysis, -A:"
The purpose of this handbook is to present a analysis of mechanisms, and heat transfer
class of methods that allow for efficient use analysis, just to name a few, have made
of the computer in the design process. spectacular advances in the past twenty years.

Since the computer can be viewed simply Until the early 1960's, and even to the
as a device to handle large quantities oi' data present day to a lesser extent, the attention of
and perform simple algebraic opeiations and engineering research has been focused pri-
logic rapidly, it is important to look first into madly on developing analysis capability. Dur-

-' the role of calculation in design. The usuai ing this ptriod of emphasis on analysis,
approach to design is to conceive of a inadequate attention was paid to de eioping a
candidate system and then test it to see if it synthesis, or design, capability that is able to
works. Great strides have been made with efficienrtly use the newly developed analysis
digital computers in the past two decades to methods. In sonic of the mechanical sciences,
allow for numerical analysis as a test of the this problem is paiticularly .cute. In struc-
idea, or concept, rather than previous cut-and- tural mechanics, for example, it is possible to
try techniques. For example, in structural analyze a structure under a given loading to
design one chooses the configuration and obtain accurate values for stress, displace-
member sizes, and tien, tests tihe tructure by nient, and even nitural frequency It is not
analyzing its response to given loads If the clear, however, how a ',tructure should be laid
structure does not behave as desired, then de- out and proportioned to efficiently utilize

I-I
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material in order to meet strength require- A key challenge to developers of practical
mints. A more difficult probIem is 4he pro- computer aids to designers is to take maxi- .
portioning of a structure so as to efficiently mum advantage of human ,udgment in the
limit displacement, and meet constraints on design process. The potential of interactive
natural frequency ard b uckling. 'For a review computation and. design information display
of 'he state of optimal structural design is only now in a developing stage and holds
through 1967,.seeRef. 2. promise for significant improvement of the I

value of the computer in design.,
It appears that t he analysis capability [

needed for computer aided design is available. 1-2 THE PHILOSOPHY OF SYSTEM ENGI-
The next problem- to be addressed, then, is NEERING
the matter of what is meant by best, or - .

optimum. The idea• of best enters very natu- In the middle 1950's a formalized approach
rally into engineering design efiorts. In to the development of large-scale, man-made
profit-motivated industries as well n in systems began to appear in the literature, see

2& I Government laboratories, the objective is to Refs. 3, 4, 5. This approach, which has
maximize some return function while satisfy- features common to most problem solving
ing constraints such as resource allocation, processes, was given the name "system engi-
performance requirements, and human limita- neering" and is the very essence of computer
tions. aided design. A feature which sets system

engineering and computer aided design off / -
9nce some return function or measure of from nost of the logical problem solving

value is chosen and constraints are identified, schemes is the explicit inclusien of key -

the system designer would like to have some considerations peculiar to engineering design
optimal design methodology that is capable of of systems. A second important feature of
aiding him in the determination of the best, system engineering is the attention paid to
or practically best, system. It must be e'npha- quantitative description of the system and its
sized at this point that the search is not for an behavior.
automatic optimization technique that can
solve any design problem fed to it. Rather, The basi, idea in system engineering is to
the need is for an optimal design methodol- begin with a statement of system require-
ogy that can aid the engineer in the imple- ments and objectives, and move in an orga-
mentation of his concepts and guide him in a nized way toward an optimum system. A
direction which, if continued indefinitely, process which illustrates the approach is
would yield a mathematical optimum. shown .n Fig. I-1.

N" d ..d Analysi e

Figure I 1. 4 System Engneering Model

I-2
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Thle purpose fihisiexi.;s notto- 0 iea to describe analytically. Conceptual design, as
:detailed tree cient :ofsystem engineering, but its name implies, is the identification of the
ihiie to -p efit,asp ects-of the -theory of various concepts or basic system configura-

zcomputer- aided desi !twitli eiphasis on tions that might meet the syst n objectives.
iplied- model, of-a, It is desirable in this step to leave the

s _stem-engineering process shows-that- opti- concepts as general as possible so as not to
-malt desJis azpart if, systemengiineering, eliminate candidate syskems that might be
but, indee, by nomeais thedominiant Part. very eff tive. For example, if the function to
The puiposeof this paragraph is to-discui-'s,the6  be performed is to propel a vehicle over the
interface of optim.al design , th the rernainilig surface of the earth, conceptual designs might
essential elements of system engineering. include wheels, tracks, legs, air cushion, etc.

System engineering begins with the identifi- It is important at this time to identify
cation of a need by a potential user of the ranges of values of parameters describing the
system to be: developed. It is often- the case system so that, for any parameter in, this I,
that the user knows that he needs a system to range of values, the system will p,,rform the
do a job, but he~nay have difficulty in stating functions identified in the previous step, i.e.,
his needs and objectives quantitatively. It the set nf parameters describing admissible
then becomes the joint responsibility of the systems is identified. It is at this time that the
system engineer and user to quantify system experienced designer can be extremely valu-
objectives so that a meaningful set of objec- able in reflecting state-of-the-art capabilities
tives may be establisbed for the development o,° technologies involved in the system devel-
to follow. opment.

Once the needs and objectives for a system The optimal design step has as its objective
are identified, it is necessary to define func- the choice of the undetermined parameters
tions that must be performed by the system identified in the previous step. These param-
and any subsystems that are required. This eters must be in the ranges defined by
purpose is to pick out functions or operations tions. The critezion for choosing system

that must be perfoned in order to accom- parameters is maximization of system worth
plish the mission required of the system being or value. It should be emphasized that a
developed. These functions then become mathematically precise optimum may be im-
lower levei objectives for the development of possible to attain and must therefore serve
subsystems. Identification of functions tends only as a goal. Methods for choosing system
to be qualitative in nature. However, once a parameters should, however, have the prop-
function or operation iF identified, it must be erty that if an optimum does exist, then given
described in quantitative terms, if at all erough patience and computer time, that
possible. For example, if a function t'ast optimum should be approached as a limit.
occur quickly, the tame allowed should be
specified. What appears to be the final step in the

system engineering model of Fig. I-I Descrip-
The next step shown :n Fig. I-I is one ot tion, is, in reality, probably just an inter-

the most difficult functions in system engi- medi;te step. Unless the sysicm (sign pro-
neerirng and certainly the most difficult step cedu-e has bern unusually effective, the sys-

1-3
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tern decided upon will probably not satisfy it applies to the mechanical sciences. There
the user. More likely, it will probably not are peculiarities of mechanical design, as
satisfy the system engineering team. Having opposed to classical control system design,
the results of one pass through the system which require specialized trcatmvnt. Further,
engineering process, the user can probably the mathematics involved in mechanical sys-
remember sonie constraints which he forgot tern design is quite different from the math-
to specify and which the optimum system ematics of control theory. These distinctions - - -"-

violates. The designer probably also will see ar highlighted throughout the text.
concepts that he did not see before. Much as
the user, he too will remember technological hi the chapters that follow, optimal control
constraints which he for,'.t to specify and theory is interpreted as treating feedback
which the optimum .ytem violates. Finally, controllers; i.e., an optimal control system h.,,s
the sponsoring activity will undoubtedly de- active elements that sense errors in output,
cide that it will be all right to decrease the due to fluctuations in inputs, and adjust

-I measure of system value a small amount if it system coairols so as to maximize some
will save some money, measure of system performance. Optimal de-

sign, on the other hand, is taken as the
The next step in the procedure is for each problem of choosing system elements or

member of the team to take a deep breath, parameters describing these elemen!s, which
sigh, and go back to work, armed with his are fixed for the life of the elements, so that
hard earned new knowledge. It is for this the system is optimum in some sense. In
purpose that all the feedback paths in the control literature this is called open loop
model of Fig. I-1 are shown. T "s iteiativc control. The principal difference in the two
procedure is then continued uiti! the sponsor- problems is that the variables chosen in the
ing activity decides that the syst.em developed optimal design problem are fixed for the life
is what it really needs. This will probably be of the system, whereas variables in a feedback
another human decision, rather than a pro- control device are to be adjusted according to
grammed mathematical one. inputs as the system operates. Mathematical-

ly, the difference in the two results is that the
The remaining chapters will be devoted to control law describes how the system vari-

the problem of c,,;puter aided and optimal ables should he adjusted as a function of the
design. If the (esign. ,, thcds presented later state of the system, whereas aa optimum
arc : be of maxiznui value to the reader, lie design is simply a set of paramcter describing
:?-nst h'ie a clcat picture of how dese system elements and will not be changed
methods fit into thc lan;r -robiem of system during the life of' the system. This distinction
i :,;in-.n-mg. For fui'hc.- hterature on the is not unifcm in the control literature but is
basic ideas involved in system engineering, see used here to identify the class of problems
Refs. 3, 4, and 5. treated.

1-3 COMPUTER AIDED DESIGN IN THE In most literature on control problems,
MNICHANICAL SCIENCES sequential systems are treated, i.e., operations

of the system progress one after another as if
The theory of competer aidtd and optimal they were occurring in tine in a pre-arranged

d."iga is developed in subsequent chapters as order. Many optimal design problems are not

1-4
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2. 1 of this kind. For example, in designing a techniques available for design opifzation.
struzlure c= mu tb- concerned with stresses Since the subject of this handbook is com-
due to applied loads. These stresses are puter Bid to design, the practical distinction
interpreted as the state of the structural Is made here. For a unifying matihviat-i! M
system. They are determined by a boul 'ary- treatment, the rcoder is referred to Ref. 7.

value problem that cannot be interpreted as a
sequential process (initial-value problem). !n riysally, it is important lo re;aize that
some design problems it is vossib1-c to define engineering design optmnization and engineer-
auxiliary variables so t-at the governing equa- ing analysis are fundamentally different in
tons fotmr an initial-vaiue problem with addi- nature. In -nalvyis. one is generally assured
tional constraints. This procedure, however, that a solution exists and numerical methods
generally complicates the problem unncccs- are generally stable. in optimal design, on the
sarily. For this reason the problems in other hand, existence of even a nominal
succeeding chapters are formulated as bound- desian satisfving objectives is not assured,
ary as opposed to initial-value problems. much less existence of an optimal design.

Moreover, even when an optimum exists,
In order to illustrate the use of the meth- numerical methods for its solution are often

ods presented, applications are made pri- quite sensitive to initial estimates and require
marily in optimal structural design. Applica- much computation.l art for iterative con-
tions are chosen to ilustrate the use of the vergence. These properties will be observed
methods on problems having a number of over and over in this handbook when exampl
design variables which might be found in problems are treated.
engineering applications. Further, since many

,. of the methods are relatively new, it is It is important that the reader take a
anticipated that improvements in computa- mathematical outlook when doing computer
tional efficiency may be realized in specific aided design and optimization. A purely
problems if advartage is taken of special intuitive approach can lead to erroneous
features of the class of problems treated. results that may not be apparent until some-

one happens onto a nominal desipi which is
It is appropriate to highlight a significant vastly superior to a "sure'" " optimum

computational distinction between two design.
classes of design problem. The reader may
note that Chapters 2 through 5 of this text 1-4 MATHEMATICAL PRELIMl"AARIES
deal with problems in which system design
and performance are specified by a finite The level of nathematical background re-
number of parameters (real numbers). Chap- quired for an understanding of the mnc.hods
ters 6 through 9, on the other hand, deal with of optimal design presented in the follov. ing
systems that are desciibed by functions on chapter-,, is a course in advanced calculus and
some given space or time domain. Mathemati- th:e abihty to use matrix notation. Since
cally, these problems are called finite and engineers often require results of rather deep
infinite dimensional, respectively. Optimiza- mathematical analyses to -Alve real-world
tion theory for these two classes of problems problems, several results have been acc, pted
can be put in the same form, but there are with references given to proofs. The purr )se
very real differences in the computational of this paragrvph s to present notation and

1-5
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Ivariable. This notaton is 1ak f(x)Y
IX

dg(x)_ g(x1+ *4 k a '-x
ILX'] m x n ~ (1-7) X) (n X)

where i is a row index and Iis a column index.

notation is +(k+l)!/ +.. nj k +I ax/xn

The derivative of a real valued function is
often called the gradient of that function and
is denoted For proof of this theorem see Ref. 6, page 56.

dx Talo' =_ee wil be) usd1o btina
\f) d~)(19 In many places in the following chapters,

The radent s ee ofthefew tanard approximate expression for a function at a
point sufficiently near a point where the) symbols which denotes a row vector rather function is known. The most common ap-

thana clum vecor.Likwise fo a eal proximation is the one obtained by deleting
funcionthematix o seondderve- second and thigher order terms. For exmple,

tives may be defined as the matrix if lix - i'll is small,

An important theorem in the analysis cf where by Eq. 14l1 the error in Eq. t- 12 is
functions appearing in optimal ,esign prob- at most a constant times 1[y - x112 if fix) has
lems is Taylor's Theorem, bounded second order derivatives. The left

side of Eq. 1-12 is generally denoted 'y
Taylor's Theorem: Let the real valued Sf(x), where y - x is denoted 8x. in this

function fix) have k + I continuou's deriva- notation,
tives in Rn. Then for ..El?", there is a point

ux~ + (I -a)y with 0 < a < 1, such that SA)=df S.(-3

A" Af() -Ix Xj) (l1l1 Eq. 1-13 may be thought of as a total
'~~ differential. Even for vector fumiltions g(x).

In n D2f(x) Eq. 1- 13 holds for each component so if
2 i(yi -x,)Uy -x)

6gWE) 16g1 (x).,6gm(x)j7', then
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As a specific exampe, let us consider a

-" " "In later work, g(x) will often be a functiondei n p o l m w r by a h g y d r ct nl
.: ..... ' o x n an z R . Inthi cas, Eq I-1 istransmission device, or perhaps a gun, is to be ""
. :>.', , : ":mounted on a tower or gun mount that is ''Sg(Xz) +g(x,z),

Bg -., "xz -- x X+ z (- required to support the device at some given
a:L.- .' z distance away from the basic supporting ,";

') .... wherestructure, such as the earth. A schematic of :.
~~~the problem is shown in Fig. 1-2, The basic-'

ax 2
and-

n t o x i f e u oFigure 1m2. Structual RequirementoaoRMost of the common notation used in later t i , as

~chapters now has been defined. Special nota-" -
-tion and results required locally for some problem is to design a structure that supports
6zdevelopment will be defined ano ued theres the device under consideration and which is as

light as possible for purposes of transporta-
15 ILLUS' RATIVE MILITARY COM tion and erection on the battlefield, or per

PUTER AIDED DESIGN PROBLEMS haps mounting on a helicopter. A basic designwherrequitre, sca the strtre shat the

-:.In this paragraph two illustrative military device mounted on the top shall not have anhoptimal design problems are formulated, and angular deflection of more than 0 radians, in

":omputer aided design technique,, are out- order to hit the re.eiver or tarqet. The loading
14 ,, d for their solution. The treatm,.nt here is that is to be considered isiwn odo up

iswndoao

"on1,' for the purpose of introducing concepts. to a given w locity, which w..)ld cause angular
onese examples are treated in mor depth in deflection of the top of the tower.

Chapters 7 and 8.
oThe needs and objectives in this design

1d5. 1 .-oTIMAL DESIGN OF STRUCTURES problem are well established, so no addihional
inputs need be considered at the present time.

T1-,. optimizatin technique I scribed in Further, the requirebent that the tower
this pa ragrapih wa, ir'tially devieooped for support the device with only a given allowable
application to minlmsw aveight structural angular deflection s the only basic function

u adesign probi:qs. For this re,-son, and to give required of the tower; thus the function

~an engineeriiig ;.'lfor applic.'ion of the analysis block of Fig. i-I is also complete.technique, the sethod 1I be p.rated along The next stage, and one that is quite difficult

with example, fro th fie d i )' optmal to describe analytically, i that of arriing at

1-8

Chpes7ad8

Downloaded from http://www.everyspec.com



.. .. .. .. .. .. .. . . . . .. c.. . . . .-, - ., --. ,' -7 5 - .-[ ,[ "

- - A -"- - ,. .r"- -.

AMCP 706-192

conceptual towers whikh-might pffodrn the Figs. -1-3(A) and (B), involve rigidly fixing the
• . = Imison. tower at its base to the fundamental support-

ing structure. In both towers, variab!e spacing
Four different conceptual designs are as a function of height is allowed between

shown in Fig. I-3. The flrst two concepts, vertical members of chi, structure. In addition,

b ,

4 

2

:. (A) (B)

b2)

I, igue -3 Cncpta Design

2 43 

2

b, b b, bb

Figure ~ ~ ~ ~ b 1.Cncpul ein

ioone of the concepts allows fof varying the ent area and spacing as desired. Three are
area of the main structural members as a shown for convenience in the figure.
function of sieight. The second set of con-

. cepts, Figs. 1-3(C) and (D), involves towers In each of tlh conceptual towers of Fig.
: that are pinncd at their base to the supporting I-3,. the variables b1 through b3 de'_ nbe the

structure and that are supported by guy wires variable spacing of ti:e members of the tower.
- at the top of the structure Likewise, in both In two of the concepts, Figs. I-3(B1) and (D)),

~of these concepts, variable spacing of the b4 through b6 specify the variable areas in~main vertical members is allowed. In the the construction of the main vertical member.
~second conlcept, variation of arca along the These variaIWes serve as design parameters, in
~length of the tower is also allowtd, h should that the designer can choosc these variables
i" be noted that the conceptual desigihs in Fig. and completely specify the design of the
i I1-3 can have as many sutbsections with differ- tower.

1-9
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In addition Ato the desigrn vaiibles, a main ture, it is required that the design variables be
part of thedesignprobleni is~the behavior of bounded uniformly away from zero. This is
the. structure under wind,-load, since one of given formally by the inequality
the major constraints on behavior of the
structure is that the angular deflection of the bi > blo > O, i = I,..., m. (1-19)

• top of the tower not exceed an angle 0. For
i!] ' : I I ] this reason, the angular deflection of each of The fundamental constraint in the present

the joints must be determined, along with problem is that the angular deflection at the
lateral deflection due to lateral wind loading. top of the tower not exceed the angle 0. This
This is a relativ?,y routine analysis problem is expressed analytically by the inequality
when one uses the techniques of finite ele-

°"ment structural analysis. Not shown in Fig. I z, I< 0. (-20)
:-l 1-3, but required in the construction, are": cross members which maintain spacing of the The final step in formulation of an optimal

i'ii "optimal design problemninathematically, first tion to be minimized. In the present case, the

[ ":'[ =i :defin, vectors of design variables b, and state cost function is structural weight J and is

.:. ::variables z, given by an expression of the form

(b I b, b2 .... brm Ir

= ' (I1)J = IY~ c b/ (1-21 I)z =z-, z2" . . zn T

~L

Using finite element structural analysis tech- wherey3 is material density and c are weight-
niques, define the stiffness matrix as ing factors3 rep;esenting lengths of structural

elements and weight requir¢eme.nts for lateral
A (b) = [ai, (b)]in x (1-17) stiffners.

iwhere the dependence of stiffness on the We now have an optimal st-,uctural design
:design variables is explicitly shown. Using this problem that is well formulated from a

imatrix, the structural response is given by the nrithematical point of view. The objective is

" following matrix equation o find the design variables bt through bm
• that satisfy constraint Eqs. 1- 19 and 1-20, a~id

A (h)z = q (0 18) which minimize the structural weight as given
, tDy Eq. 1-2 1. The technique used to solve this

i.j.where a is the wind loading matrix. problem, and in fact a large class of' optimal
system design problews, is based on a very

;Now that the relationship between the simple idea of engineering design. The idea of
Sdesign variables and the structural response is the technique is to allow small variations in

specified by Eq. 1-18, the next step in some nominal design, and analyze the effect
formulating an optimal design problem is the of :he'. variations on the .'quations of the
identification of constraints. (n order to problem and the -.o,t function associated with
prevent dimensions or structural areas from the problem- Ab a result of allowing only

' going to zero, resulting in an unstable struc- small design changes, certain approximatio~is

i-lu
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may tbezmade that allow the best change in 6bi > bo -b. (1-24)
desighaariables to be. determinfied'in order to, d ecre ase, the cost function of the problem as Or, if the angular deflection constraint is
much as possible,-while still not violating violated, for example,
constraints of tho -deign problem. For
example, one might, choose as an initial > 0 (1-25)
estimate of the optimal design a uniform
tower as shown in Fig. 1-4. The estimated then, to correct the constraint error it is
design variable in this case is denoted by MO).  required that

&It < 0 - z1. (1-26) " , '"

Finally, the change in structural weight due to
the change in design Sh is given by

m

6J X c=, br  (1-2')
I"

The object of the new ptoblem is to
//////// //7 /determine 6b so as to minimize the linearized

cost function of Eq. 1-27, subject to con-
straint Eqs. 1-24 and 1-26. Due to the special
nature of this problem, the optimum change
6b can be determined in closed form. For a
detailed derivation of this optimum perturba-

Let 5b be a small change in the design tion, the reader is referred to Chapter 5. For
variable b(° ). Any change in the design discussion here, the results of this calculation
variable will result in a change in the struc- will be denoted by
tural response, denoted by 6:. The nature of
the structural analysis problem guarantees 6b = 7B + C (1-28)
that small 6b yields small Sz. Further, a
Taylor series approximation of terms appear- where the vectors B and C depend on MO ),

ing in Eq. 1-18 yields constraint errors, and equations of the prob-
lem. The parameter i? is an undetertained
parameter that plays the role of a step size,A (b(O))Sz +, (A(b)z b (o))6b = 0. (1-22) when viewed in the geometry of design

variable space. For example, if there are only
If an inequality constraint is violated, such two design parameters b , and b2, the dire,-

tion of the desired change is shown by B in
Fig. 1-5, and 17 is a step size along that

bi < bio (1-23) direction. In the terminology of optimization
theory, B is known as thv direction ot

then in oidet to correct the cons.raint error it steepest descent. It 1, analogous to tr. direc-
is required that tion one would go downhill in ordei to reduce

i-I I
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b2 descent method if; based on requesting aI certain reduction in the cost function due to
, -the changed 8b. This request, then, deter-I mines the step size 71 and one can calculate 6b

S ... ' from Eq. 1-28. This 6b is the best change in
b the estimated dcsign variable b This best

change is then added to the initial estimate to
___________________b_ obtain a new est'nate tOat corresponds to a
Figure 1-5. Direction of Steepest Descent structure of less weight and that still satisfies

the constraints of the problem, i.e.,

his altitude as rapidly as possible. It is clear b (O = ) + 6b (1-29)
that on normal hills, as in most design cost
functions, the direction of steepest descent This process is repeated as many times as
change!, dependine on the location on that required to obtain convergence to the mini-
hill. For this reason, the direction of steepest- mum weight structore.
descent does not generally pass through the
optimum point as shown in Fig. 1-5. The optimum towers for each of the four

basic configurations chosen are shown in Figs.
There are many techniques for choosing 1-6 and 1-7, with a table ot results being given

the step size 7. The one used in the steepest in fable 1-1. These results were obtained

47

(A) One Design Variable (8) Two Design Variable

Figure 1.6. Tower With Base k Puly Fastened to the Earth

1-12
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I'sing a finite element model with) appr 'ni-
ifiately forty, elements so that. th resv Linfg

bltobfmaterial, and, spacing., he WASi tY
sown in, Table. 'I1 crespondinw to no

design variables aesimply the wegl,,s of the

optmur toershavig uniform me, ibe'.s and-
no variation in spacing. -,Note that there is aI
significant reduction- in structur& weight for

2, the tapered optimum towers r trer uniform
towers. Extensive examples of this kind are
presented in Chapters 5, 7, and 9.

1-5.2 APPLICATION OF TH1 SThEPEST (A) One Design (8) I'wo Design
DESCENT METV'OD IN INTERAC- Variable Variable
TIVE CO1MPUTF a AID)ED DESIGN Figure 1-7 Tower With Base Simply Supportedand Top Supported With Guy Lines

Very often in de,,ign rroblems, it is not
practical to specify As unique cost ffunction to Consider, for example, the proleia treated
be minirriized, hence tbe formal optimization in par. 1-5.1. The initial astimrite of tha.) problen described ii, par. 1-5.1 does not optimum tower was taken w~, a uniform tow,r.
apply directly. The fact that the vector B in The components of the vector 6b can br,
Eq. 1-28 is a direction of steepest descent, p-ojected on a cathode raiy tube, along with a
however, is extremely valuable information to picture of the structure as shown in Fig. 1,-8.
a designer. The ipplization of this informa- The algebraic sign of .he components of bib,
tion to a structural design problem, using corresponding to eacli of the design variables,

Iinteractive graphics, is a technique which is an indication of the effect ,' change in that
shows considerable. promise in design design variable will have on the cost function

TABLE 1-1
WEIGHTS OF TOWERS

Cuv.ine Guy-line Guy-line
Cantilevered Cantilevered Cantilevered Supported Supported Supporter.

hiumbfr of
Design~
Variables 0 1 2 0 1 2

P~est Weight W 2440.61lb W -2111.4 W"= 1827.9 W= 1563.99 W =1356.6 W -1265,71
height h=63.7 in. hmax = 91.4 h =ax80,2 h 46 hmax = 46.5 ',a 36.55
Cross-sec-
tional area of
member A 7.961lb A , 6 97 Ama 10 03 A 3.84 A =4,434 Ame 4.95

1 -13
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L~i~oi ,bo 'he other ihand, the d&signer Nas treWdinformation that he can use in altering the

1 II distribution of material in a structure, he can
better use his experierice in making design

Sb 4  inprovements. This capvbility can be invalu-
able to large-scale structu.al designers. It
includes the effect of individual design vari-

3 -able changes on overall structural value, while
0. taking into account the effect of that design

change on all design constraints.. 6b6i i In real-world structural design problems,

/7 7 7 the designer must design his structure for

4Figure 1-8. Sansitivity to Design Variations more than simply light weight. He icut -he
concerned with structural vibration and

of interest. For example, if Ob t were positive, buckling characteristics, since these are majorthis would indicate that an increase in the sources of structural failure. Often, as ip par.

dimension b, wil decrease the structural 1-5.1. it is possible to determine design

Sweight. On the other hand if the algebraic sign perturbations that have a desirable effect on

of 6b, were negative, then an increase in 6b, such structuial properties as natural fre-
quency and weight simultaneously. Both of

would inctease the structural weight. Like-
wise, the algebraic signs of 6b through these factors can then be displayed on a
5b6 indicte the effect that a change in these cathode iay tube as shown in Fig. 1-9. In this

element areas will have on structural weight. case bb I indicates the diretion in which the
These data give the designer valuable informa- design variable should be changed to reducestru,tural weight, and Wb indicates the direc-
tion, according to which he should change his w
rominal design to improve the structure, tion in which the variable should be changed
while still satisfying all the essential con- to increase natural frequency. This informa-
straints. tion can then be used by experienced design

Traditionally, in structural design by graph
ics, the designer puts areas and dimensions
imo a structural analysis routine and then
requests a stress calculation, the results of 6b 0 4

which are shown on the screen of a cathode
ray tube. This technique has been used by 6 2 S
Lock heed-Georgia in the design of the CSA.
While this technique has been quite useful in
structural design, it is extremely difficult i'or 6h b2

the designer with only stress information to 2 
"

determi ie how he 0Iould change just one 1 1el ement in the sttucture to reduce overall 7/ -

struc:ural weight. The difficulty con,es in the Fiqure 1-9. Sensitivity to Two Performance
interplay between structural constiaints. if, Indicators

1-14
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-persone! in making design changes that will tires. A photograph of the first prototype of
have desirable effects on overall dii'caft struc- this wcapon is shown in Fig. 1-10.
tural PrOperties, fdr example. Y1,s is extreme- V
ly important in large-scale sfructzral-design Tho recoil mechanism for this weapon was
duo to the difficulty in determining the effect designed according to traditional recoil mech-
S ,f changes in an individual design parameter anism design goals. Namely, the objective in
on several different structural properties. the design was for a constant -retarding force
ComputaCon of these data and interactive which is transmitted by the recoil mechanism
aspects of- ihe technique are discussed in to the undercarriage, as shown in Fig. 1-11. A
Chapter 5. recoil mechanism was designed which de-

livered approximately this recoil force R(t) as
This design technique is feasible from a a function of time.

computational point of view in that very little
additional computer time is 'equired to When the weapon was built and fired, a

-generate sensitivity information from stress nearly constant recoil occurred, as desired;
and vibration analyses that are required. While but, at high angles of fire, the weapon
most structural optimization work has been exhibited unacceptable dynamic response.
done in the batch mode, it is shown in During firing, the tires of the weapon com-
Chapter 5 that utilization of the steepest- pressed and after firing and the subseque.it
descent technique with interactive graphics is release of the recoil forces, the weppon
a much more practical way to design struc- rebounded off the ground approximately 6 hi.
tures, particularly in cases where several This unacceptable behavior required a re-
measures of structural performance are im- design cycle for the recoil mechanism with a
portant. design goal of minimizing the dynamic re-

sponse, or hop, of the .eapoti after firing.

Development and display of sensitivity
information in design is a form of information It was determined that the peak recoil
transfer to design personnel. This technique force could be allowed to reach 22,000 lb
depends on the availability of interactive without damaging the support structurm. The
graphics software and nardware, which are optimization problem is then to determine
currently being developed, the recoil force R(t) as a f.inction time such

that

1-5.3 DESIGN OF ART!LLERV RECOIL R(t)<22,000 (1-30)
MECHANISMS

and the peak dynamic response, denoted by
As an application of this same opimization

technique to a weapon design problem, cer- J = m~x [h(t)l (1-31)
tain aspects of the design of a lightwei;ht
artillery piece leill now be outlined. The is as small as pos,,ib'e. where h(t) is the height
requirement w',s stated for a lightweight of the tires oi" the ground a! any time 1.
artillery piece that can be fired with very Grarhically, this problem is to determine a
short implacciment time. For this reason , recoil force vhich lies beneath the 22,000-1b
was determhi ied that the weapon nunst 1)e level in Fig 1-12, and which minimizes the
capable of t,eing fired wlule ;t is restuig on its peak aynar'i(, response of the weapon. In this

1I-15
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functiomi is first determined, which indicates 22,00 R:)_
the, desirable directicn of change in the
nominmal design vaijable.-For example, taking
the nmrviously designe "As~t eedi: '

force a,, the nomihal base line, a sensitivity A:C
function is determined as shown in Fig. 1-3 :
If a constant multiple of this function is lnese
added to the retarding force, a reduction will
occur it, peak dynamic response and otherFire14.OtmmRclcue
constraints of thw problemr will continue to be
satiffied. The dotted curve in Fig. 1- 13 shows This sensitivity inform-ation could easily be
the altered design, which gives better charac- displayed on the w-reen of a cathode ray tube
teristics than the original design estimate. and could be used by design personnel in

determining desirab'e chipnges in the recoil
'3.- ~design. Even in this rclatively simple pmoblem .- '

it was not clear in what way thv design should .

- j RitJ be altered to obtain improved response of the -'

22,000 - artillery piece. This particular problem was
20,000 M *** ~'( solved in the batch m-,ode by doing many

o small step iterations of the kind previously
described until convergence to an optimum

Xcstet wac obtained. The optimum recoil force curve
- /Fu~t~unis shown in Fig. '-14 and resulted in a peak

Time, sec dynamic responme of less tan O.S in. D-etailed
solution of this probkcm is presented in

Figure 1- 13. Sensitivity to Gun Hop Chapter 8, par. 8-5.
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FINITE'DIMENSIONAL UNCONSTRAINED OPTIMIZAT1ON

2-1 INTRODUCTION must be able td choose, out ofa collection of

objw,:ts which satisfy the restric'tions of the [
:- . In many engineering design problems cer- preceding paragraph, that one which is

" - :tain information which helps to prescribe-the "best". MAore specifically, ut of all design
;' -object being designed is specified. However, a parameters in the adm.,sine set D, the de-
: certain number of parameters called design signer must pick that one, 3F,which describes

, pkrameters are left open to the designer's the "best" system. This discussion has still
" "choic.,. These parameters must uniquely not given the meaning of "best". An effective

-. -

i '- I determine the object if the optimal design way of defining "best" is to give a real valued
am ------------- .problem is tv be meaningful. In the discussion funution whose domain of definition is the

which follows, the d esign params.cers will be admissible set D, say f(x). "Best", then, niay
: "' [ deno~ed by x I ... xn or in vector notation be taken as the minimum or maximum off x)

°!ii- simply as x = (xJ ...., x")r. for x in D. If the function&~) is a cost of the
system being designed, then it is to be

In virtually all design problems there are minimized. If, on the other hand, .f(x) is a
Srestrictions on the object being designed. return or profit, it is to be maximized.

i L,e may include the performance required,
physical limitat;ions such '-weight, The cost or return f'unction will be defined

; : resource limitations, and oi, . ... ,al poli- in each optimal design problem. As a result, :
. !. cy. These restrictions or constraints generally very little can be said about its nature in.

will involve the design parameters so that the general. It is clear, however, that maximizing! range of values of design parameters may be a real valued function r(x) is equivalent to ,

restricted. If the vector of design parameters minimizing - r(x). Therefore, optimal design
(hereafter called the design parameter) is problems may always be put into a form .

: viewed as an element of real Euclidean space which may be interpreted as minimization of
SR' , then the effect of the listed restrictions is a cost function. For convenience this will be

:°:,.to confine the designer's choice of design done in the following development.
i parameters to a subset D of Rn called the
t : admissible set of design parametecs. The Ex-ample 2-1: As a hypothetical optimal

' nature of this se! .:l be determined by the design problem let the scaiar x be the design
- nature of the requirements placed on th~e parameter and &~) = (x - 2)2 be the cost

:•system being designed. This aspect of the function. In Fig. 2-1 the coit function is

optimal design problem will be treated ex. plotted ersus x. It is clear that the minimum
tensively in later chapters, cost of zero occurs at x = 2.

When one speaks of optimal design, lie & xaiple 2-1 is included hie., as an aid to

2-1
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;' intuition in more complex problems. Even ff,)
when x is an n-vector, one can think of
plotting the cost function above the x-hyper-
plane to obtain the cost surface. The optimal
design problem is then to find the lowest
point on this surface.

Even though real-world optimal design 0 2

problems invariably have constraizts placed... "" [Fiqure2_.1. ffX)=(X- 2) 2
i.:5:'::':" 1-" ,. on the design parameter, the methods pre-

sen~ted in this chapter will ignore constraints.
There are two reasons for considering this eter which is admissible, say x(° ). This choice
simplified problem in some detail. First, it of design parameter will probably not put him
may happen that the design parameter Y that at the lowest point on the cost surface.
minimizes J(x) lies in the interior of the Rather than discarding this nonoptimal point
admissible set D. In this case the constraints and picking another trial point at random he
play no part in locating 3. Second, even might attempt to find a second point x(1)
though the point Y may push some constraint which is closer to the lowest point of the cost
to its limit and lie on the boundary of D, surface. The designer's view of the cost
there are iterative methods for finding i surface is limited to only a small area due to
which require minimization of an auxiliary the local nature of mathematical tess which
cost function, subject to no constraints at he may perform. Using only this local
each iteration. Methods which take con- information, he chooses a strategy which f
straints into account are presented in Chap- insures that he makes a move to a new point
ters 3 and 4.x (') which is lower than x("). The direct

methods presented in pars. 2-3 to 2-7 are just
Two basically different methods of solving a mathematical implementation of these

unconstrained minimization problems are pre- elementary ideas.
sented in this chapter. The first method,
called the indirect method, is based on de- 2-2 NECESSARY CONDITIONS FOR EX-
rived properties of the cost function at its TREMA
minimum; i.e., if one pictures himself as being
at the lowest point of the cost surface (x = 2 As described in par. 2-1, the approach
in Fig. 2-1), he may notice that the surface is taken in the indirect method is to assume fix)
required to have certain special properties has a minimum at 7 and then derive condi-
there. He may then use these special prop- tions wlich fix) must satisfy there. These
erties to locate the lowest point on any such conditions may then be used to find the
surface. This intuitive idea is made rigorous in minimum point of apy real valued function
par. 2-2. f(x). They are valuable in giving the designer

an insight into the minimization portion of an
The second method of solving optimization optimal design problem, even when he is using

problems is more direct in nature and is direct computational methods to solve the
appealing from an engineeriig point of view. problem Before these ideas may be devel-
The designer initially chooses a design param- oped, several definitions are required.

2-2
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minmu at 3F i--D--f 2

f (AMCPf7W (2-1)

for all x-An D. The junct~on g(x) has an
absolute iwimumi at x if - A~x) has a~i
absolute nminimumn there. The minimum is- 01 1
called- strict If only strict inequalifies hold in3
Eq. 2-1 for x 3.

Figure 2-2 A Cost Function
Note that fix) can have a strict absolute

minimum at only one point in D whereas it fi)Wihumangseasmposast
coud aveanabslue nimm t sveal the regularity of fix) it is difficult to verify -t

distinct points in D provided it has the same threuediqulte.Cndrtecaeo
valu atall hes poits.a function fix) of the real variable x which

Defiitin 22: Afuntio fix deine on has two continuous derivatives. The TaylorDefiitin 22: funtio &)defned n frmua ia subset D of R1 has a relative minimum fruai
(maximum) at Y if there exists an e > 0 s0o ~ f)
that fix) has an qihsolute minimum (maxi-
mum) in a subset of D whose points satisfy + t( + 0Ohh 2 (-2

222

x1-l< ~i ,..,n.where 0 <0 < 1. Since f"(3F+ O/h) is bounded

Verbally, thisd"efinition says that fI has a for hi in a closed bounded set, it is clear that if
relative minimu~m at 3F if it has an absolute f') -0 0 then for small enough h the linear
minimum in a sufficiently small neighborhood tcrmn in /h dominates the squared term sc that
of 7. It is clear that if &~) has an absolute fl.7 + h~) may be made both larger and smaller
minimum at V, then it also itas a relative ttnf~truhc~ieo h prpit

convese i~not nces- sign of /h. Thcsr~fore, in order for fix) to have
* sarily true. a relativu minimnum or maximum at 7 it is

ricces~ury that f'(x- = 0. It follows directly
Example 2-2: Locate all relative and abso fioi Eq. 2-2 thatt it f'(x- = 0, theif "(7) > 0

lute maxima and minima of qix) on 0 < x~ < (< 3) Is a sufficient condition forfix) to have
3, where &i) is giveni graphically in M~g. 2-2. a relative minimium (knaximum) at 3F.

The function fi) has a strict absolute It case xv is in R", results analogous to
maximum at x = , absolute minimna (not thosc just obtained are given in 1 heorem 2-1.
strict) at x =0 and 2, relative maxima at x-I

-and 3, and relative mininia at x 0 Oand 2. T/u'vren 2- Necessary Condition: Let
A,%) be defined on a subset D of R" and have

In Definitions 2-1 and 2-2 no continuity or a continuous derivative in a neighborhood of
differentiability requirements were placedl on a point .7 which is in) the interior of D. Ilflix)
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has a relative minimum at x- then A ( a,,) X n~ is positive definite& if and
6ynly if the determinate of each of the -

Vf(j:) 0. (2-3) matrices Am , formed from the first m rows
and first m columns of A, is positive, m

Sufficient Condition: Let fix) have two con- n
tinuous derivatives in a neighborhzood of Y
and let Eq. 2-3 hold. Then if the matrix Example 2-3: Obtain explicit necessary and

sufficient conditions for .ftXI,X 2) to be af.,
aI minimum and a maximum at - whezef&xI,

V2Ai~) _ at (2-4) X2) has two icntinuous derivatives in D and ~ j
is positive definite, fix) has a relative mini-

mluni at x. s necescary .ond~tions frete ii

Frconvenience in later discussions, Defi- mu oraaxuiEq23de ns
nition 2-3 is made, I (x x a

Definition 2-3: A point at which Eq. 2-3 A sufficient condition for Y to be a
hold iscaI~d astaionay pint f fx).minimum point fai x) is that in addition to

the above t-quations, the matrices
At It is imperative that the reader be aware of

the hypothesis of Theorem 2.1 which requires A, I li (7 a nd -
.7 to be in tne interior of the region DA Th,!
theorem does not apply if Y is on th1e FfI (X-) fIX27
boundary of D. Example 2-2 illustrates this A21 XX2

requirement graphically. Points x =0 an 'I xLf . 2 ()XX()J
3 of Fig. 2-2 yield a relative minimum and a
relative maximum, respectively, but neither hazpstvdtriatie.
poilit is stationery (i.e., neither satisfies Eq.
2-3). The same example also illustrates the fX (iX n ~ () ~
need for verification of the differentiability
properties of fi(x), Even though x =I yields - f *~x( ~ 2 > 0.

an absolute maximum of Aix) and is in the
interior of D, it is not a stationary point since The function Aix) has a relati. z maximum
fIx) does not have a contiv',,us ucrivative at 3F if the function g(x) =- f(x) has a relative
there. This example illustrates the need to minimumi there. Therefore, in addition to
faithfully verify ail the hypotheses before -f() f(x) =0 sufficient conditions
rheorem 2-1 is employed, forxg(x) to haxve a relative mninimutm at 3F are

In order to verify the sufficiency condition gX (.X X 0 a A X i
of Theoremn 2-1, one must have a verifiable I
test for positivc d.-finiten2ss of a miatrix. Ig" ?)1 0.
Probably the most useful test is the follov, ing
(Ref. 2, pige 103): A synimetric matrix For a relative niaxinim of f(x) at X then
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suffkient conditions ire Q 1, is also in D:A real valued function f(x)
defined on a convex set D is called a convex

f (2)< 0andf2 () (-) function on D if for any two points y and z in

IX 2

A~y + 0 (Z - A) 1 f AY) + 0 [fAz)-f AM,
Thus far in this paragraph-only peoperties 0 Q 0 . 1.

of -fx) precisely at the minimum .point have
been investigated. If the designer viewed the That is, f(x) is convex on D if the straight
graph of-ffx) versus x to be a surface, then line segment fly) + 0 Lt(z) -f(,)] is above the
Theorem 2-1 tels him what the surface will graph of f(x) on the line segment y + O(z - y)
look like whea he finds its lowest, point, in D, 0 < 0 < 1. For a more detailed ,..
Theorem 2-!, however, does not tell him that discussion of convex functions, see Appendix
a lowest point -exists, In order to solve his A.
optimization. problems, the -deslgne'r would
like to have tools which allow-him to stand Theorem 2-3 gives the designer valuable
back from the cost surface and learn some- information about the global properties of the
thing about its.global properties. Two theo- cost function. It is proved in detal in Chapter
reins are now stated which give him a better 4,
overall view of the optimization problem.

Theorem 2-3: Let f(x) be a convex func-
Theorem 2-2: If fix) is continuous on a tion defined on a convex set D in R". Then a

closed and bounded subset D of R, thenf(x) relative minimum of fAx) on D is also an
has an absolute minimum in D. absolute minimum of f(x) on D.

This theorem does not hcld, in general, if This theorem is of obvious value to the
any of the hypotheses are deleted. Fcr ex- designer. It assures him that it his design
amplk, consider the function fix) = x on D problem satisfies the hypotheses of Theorem
(xl 0 < x , I). D is not closed and fx) does 2-3 and if he has found a relative minimum
not have an absolute minimum in D. If then he is through; he has also found the
S1= xl 0x I ) then D is closed and fx) absolute minimum.
has an absohte minimum at x = 0.

Computational methods for finding ex-
Note: The hypotheses of Theorem 2-2 may be trema based on the theorems of this para-
weakened by demanding that fix) be only graph generally involve the solution of non-
lower qmi-continuous rather than continu- linear algebraic equations. In paiticular, Eq.
ous. For proof, sec Ref. 1, page 38. 2-3, which is in general nonlinear, can be

solved by a numerical method to locate all
Theorem 2-3 depends on the concept of admissible interior extrema. Methods for solv-

convexity. ing such equations are given in Ref. 3,
Chapter 2. It generaily has been found,

Definition 2-4: N subset D of Rn is called a however, tlat direct methods fbi finding
convex set if whenever x and y am. in D, then extrema arc superior to the solution of Eq.
the straight line .egr ent x + O(y - x), 0 0 2-3. For ,is reason no computational
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methods based on the indirect method will be The object here is to treat more general
presented here. functins, but it is possible to make a

quadrauc approximation to f [.,/) + s]
It will be the purpose of the remainder of which will hold near the minimum point.

this chapter to present methods that the Then, the minimum point of tfle approximat-
designer may use to locate interior relative ing function, which may be easily found, is an
minima. Relative minima on the boundary of approximation of the true minimum point.
the admissible region will be treated n Chap-
ters 3 and 4. The quadratic approximation of f [x( 0 +

,as] is constructed by passing a quadratic
2-3 ONE-DIMENSIONAL MINIMIZATION curve in a through three computed values of

the function. The distance between the three
In the direct minimization methods to trial points will be 8 > 0, where 8 is initially

follow, a multidimensional minimization chosen to be a small fraction of the expected
problem will be reduced to a sequence of one- range of a. It is known, however, that if the
dimensional minimization problems; i.e., the starting point of the process is quite far from
problem of determining a scalar a so that a the minimum point then the minimum point
given function g(cy) will be n minimum, of the approximating function may not be

near the true minimum point. To prevent
In the problem of minimizing f(x) for x in making large, inaccurate steps in this case, a

R", all the methods of solution presented in maximum allowable iiep size A is chosen
this chapter are based on successive improve- before the process b:gins A reasonable choice
ments in certain directions; i.e., at a point xP )  of A is 50% of the expected range of a.
one finds a direction, s, in which fix) de-
creases. The object is now to move along the The following algorithm implements the
vector x ) + as, by adjusting a, a 0, until procedur. desciibed:
f(x) is as small as possible. The rebulting point
is then called x + I ), and the entire process is Step I. Define ao = 0 and = I.
repeated. It is clear that the intermediate
prolem of determining a so as to minimize Step 2. Compute
f(x(' ys) is ore-dinensional. This paragraph
will oc devoted to presentation of netl:oml f. =flx(') +(a'. - 6)s
for dytiving the one-dimensional problem.

fo= fix (' ) + c' s]
2-3.1 QUADRATIC INTERPOLATION

f2 =fix(') + (8' + 6)sl.
If the function f(x ) + os) of the scalar

variable a - x( ) and the unit vector .s are Step 3. A quadratic polynominal in a -

fixed - were quadratic in a, then the value of ao'! = z is fitted through (-- 8, f),
a which minimizes the function rould be (0, 4o), (8, f 2 ). Its minimum is
found by setting z - (fl-f ) if f, - 2fo

2(fI - 2fo +f2 )'
d.,. + + f2 0. if this quantity is zero,
do fIx t' +aaslj=0. then the approximatirn is a
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straight line with minimum at zm = (k - 1). If the initial step 8 was too
±-.+,depending on which off2 and small, many steps will have to be made before
f2 is smaller, the minimim, point is located.

Step 4. Define In Fibonacci search the same basic proce-
dure is followed except that if, after a given

dot = min (Izml,A).sgn(zn) step, the functional value has decreased, then
the next step size is taken as 1.618 times the

and previous step size. In this way if the minimum
a'a 1  +dapoint is a long way from a = 0, the Fibonacci
a/= a I + do technique will isolate it much more rapidly

than the previous method with constant step
Step 5. If Ida I is less than a specified size. Note that there is a penalty, in that the

tolerance, the process is stopped interval which contains the minimum point
and a/ is taken as the minimum may have length much greater than 25. This is
value of a. Otherwise, replace j illustrated in Fig. 2-3.
with ] + I and return to Step 2.

2.3.2 FIBONACCI SEARCH (OR GOLDEN
SECTION SEARCH)

The Fibonacci search technique is a
tmethod based on isolating a relative minimum
in an interval and successively deLreasing the .. .. "" ,
size of the interval. The process thus gives 6 2.6186 5.2326 i 9.4666
successively better estimates for the location Figure 2.3. Function of Single Variable
of the minimum point. For a proof that the
method converges very rapidly the reader is
referred to Ref. 4, page 236. Here, only the Once the minimum point is restricted to
basic ideas behind the method will be given, some interval, this interval is broken up into
and an iterative algorithm stated. three subintervals by inserting points located

a distance of 0.382 times the length of the
Starting at a = 0 one might evaluate fix0) interval from each end. A test is then per-

+ as] at t = 6 and check to see if the formed to see which subinterval the minimum
functionai value is smaller than at a= 0. If it point lies in. For a given subinterval the
is, one might then evaluate the function at a = partitioning is shown in Fig. 2-4.
26 and compare with the value of a = 6.
Agvin if a decrease occurs, one moves on to a
= 36, etc. The process will terminate when 0.382 (a-ae) 0,382 (%-

f ix t'P) - (k + l) s]  > f Ix t )  + k~ sl. It is
then known that (k - 1)5 -. a 4 (k + 1)5 K ircontains the minimum point and a more
accurate result, if required, may be obtained aa ab 0

by reducing 6 and repeating the process from Figure 2-4. Interval Partition
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The search process is terminated when the Nt hta Z 6 I 6 8 ks
winimum, point is isolated in a sufficiently a k 0
smaii LubintervaJ. ,asl is kncwn.

The Fibonacci search method lias the prop- -Step 3. Compae x' aS and x1

erty of being best in a certain sense among all + cbio and go to Step 4, 5, or 6.
search techniques which isolate a in an as Ix1

such technique is the ratio of the length of then ot, < P() < as,. By the choice
ihe largest interval in which a may lie after n of a,, and ab, the new points 04,
steps to the length of the original interval a. and tv,, a have ~r=a,'
which contained ac. It is shown in R-f. 4, pageCiipt no f[x' +as
253, that if f r x') + as) has a unique relative where o a + 0.382 (a.' v).
minimum as a function of at, then Fibonacci Go to Step 7.
search minimizes the number of interval

fpartitions. Ster 5. If f Ix") +a sI ) fix(0 + absl1,
Th bmythen a 0 < CYl : (Y. Siiiiihir to the

pr-nedure in St-ep 4, put a'
be given in the form of - omputational aind l Soae tluat a0  ab-
algorithm: Co-'1pu(te fIX") '. v a' S I whlere a1b

Step 1. First an upper bound must be Go to Step 7.
found for a, %~. It is clear that 0 isStp6Iff[)+CS

lower bound, a,. For a chosen Ste W. pula asad '
small step size 6 in a, let i be the pu i'=a un c,, b
smallest integer such that Return to Step 2.

f ii P)+II'6(161) Step 7. If a',-, is suitably small, put
/-I T

fa' I(a +) +~ aI stop..18k S
6(l61)ks)Otherwise, delete the primecs on cl

a , ae' and C and return to Step
Ther upper and lower bounds on cet ') are 3

Qu S2 (l 6 18)k 2-4 THE METHOD OF STEEPEST DE-
k-o SCENT (OR GRADIENT)

k= b (l.6l8)1. The simplest and probably thle best known
of the (direct miethods of minimization is theStep 2. ('onpu tef 100 + Cbsl, wheic Mlethod of Steepest Descent (or Gradient).
This mnethod is based on thc fact that if the

(y, + 0. 3 82 (a )cost surface IS smooth0, then~ Its tnUll)Llt pl1an1e
is a goodl approximation to the st'rface near

ab =e Q + 0.018 (a ' ). the point of taIngency. The phiIoS Phy of' thle

Z'.
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Method of Steepest Descent is apparent in its as a better estimate of the minimum point
titl. 9e wshesto hane ~ y a inre- and the process is continved until Vf [x(PJ j

mn-dx in such a way that f(x), T~=~+ 0o xi ~'iciently small This method may
dx, is reduced as much as possible for a given :,e given in compact ",)nn as the steepest
length of increment. The directioa of the dsetagrtm
increment d:: is called the direction of steep-
est descent. Step 1. Malke the best engineering estimate

x(0 ) of the minimum point.
The direction of steepest descen~t is giyvenY

by Theorem 2-4. Step 2. Compute Vf fx ] and define 2
nornialji.ed gradlent s

Theorem 2-4: Let Aix) be differentiable in, -~n'n1 v7~ 1 Find o.
W.The direction of steepest descent at a '()wi minimizes f [xi') + (Ys

point£ is(where i is the number of itea~tions
completed). If Vf [x(") = 0, ter-

dx = VfT(-') (Z-4) inate the process end P) is D
where ai> 0 is a scalar !astc,.rlt.emiiu.pit

The proof of Theorem 2-1 illustrates clear- Step 3. Put P-l X(; = UMS. If I ')
ly that the direction of steepest ascent -is and 11 V f Jx" '] II 1 are less than

predetet mined limits, terminate
dX = VfT(X) (2-5) thc process and let P~4 ') be the

approximation to the minimum
for & > 0. The reader should note carefully point. Otherwise refurn to Step 2.
that Eqs. 2-4 and 2-5 give only the direction
in the design parameter space R" which yields It is interesting to note that successive.
the maximum rate of change of &~). Since direct ions of steepest descent are orthogonal
thle factor a is not determined explicitly, thle to one-another in this algorithm -- i.e.,
size of step is not specified. VfAx (j + I 1,V/fT I Xt" = 0]. To see this, recall

that &(') is chosen so that ffx(P) - as] is a
In order to start the steepest descent mm'amum in a. Trhe necessary condition of

iterative technique, the designer makes the I iieoremn 2-1 then requires
best estimate of the design parameter mvail- I n

abl, x(O. The gradient Vfijx(()) is then Da 1-fW )1 ax'i~
computed at P~ and a new point P~ ) is a

dtermined by Ix I = 11 Vf X I II

-whcre a0 ;. 0 is chosen using methods of whtich was to be sho'% n.
paf 2-3 so thait f IxO a~fT(~.(O)) I iS a,[ 1

minmu a ~ fic~onof~. f /fI( 0 )1 In the case where X 2 JFig. 2-5 is a
0 then f Jxl Ij < f (0) 1 orl is taiken v-ew of the design variable space. Tile closed
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2 (3) If Y is thc only point in S for whichN Vfl) = 0, then x( converges to Y.

.(1) Several things which Theorem 2-5 does nrt
Ssay are worthy of note. First, the theoem

j r does not guarantee that the sequer,,e of77 -points x 0 g,nerated by the Meihod of
Steepest Descent will converge. Further, un-

X less the assumpticn of (3) holds, the sequence
need not c,,nv,:rge lo an absolhte minimum; it
may converge to a relative r~inimum.

Figure 2-5. Descent Steps
curves in this figure -re lines of constant f(x), The choice of th ;nivial estimate x( ° ) can

have a great deal tr/ do with the limit point of
A relatively general convergence theorem the algorithm if it does converge. If it is not

pertaining to this algorithm will now be known befcrrnand that a Lnique relative
stated. The proof of this theorem may be minimum e.ists, It is general practice to start
found in Ref. 5, page 80. the iterative process at several initial esti-

mates. if the sequence P) converges to the
Theorem 2-5: Let f(x) be a continuous same point Y each time, then one is led to

function defined on R' and let x(° ) be any believe that he has indeed found an absolute
point such that the closed set minimum. Logic .,;ch as this can cause sleep-

' }f less nights, however, particularly if a decision
S X I AX) < fiX(0 ) I involving considerable resources and perhaps

even one's job depends on the outcome. For
is bounded, and f(x) is twice continuously .this reason, the importance of at least making
differentiable on S. Let the mateix of second a serious attempt to apply theorems svch as
deri-- off'x), those of par. 2-2 cannot be overemphasized

Theorem 2-3, for example, if properly
f ,x)- ? applied, may prevent many anxious moments.

satisfy the condition In spite of the simplicity of the Method of
Steepest Descent, it has several severe restric-

;yTHy I< MyTy tions which are discussed in Ref. 5, page 159.

These are:
for so'ae M, every., in R", and every xinS.
Then for the sequenice [xP I generated by I. Even though convergence may be
the steepest descent algorithm: guaranteed by Theorem 2-5, an infinite num-

ber of iterations may be required for the
(I) A subsequence P"r ) converges to a minimiztion of even a positive definite qua-

point in S for which Vfl.V) n 0. dratic form.

(2) f lx(tin)l decreases monotonically to 2. Each iteration is calculakd indepen

dently of the others so that no information is
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stored which might be used to accelerate matrix is required
convergence

H(x):: V2f(X) afx
3. The rate of convergence depends strong- n x n

ly on properties of the cost function. If the
ratio of the.largest and smallest eigenvalues of Note that it is implicitly assumed here that
the matrix of second derivatives is large, the fix) has two derivatives. By Taylor's formula,

steepest descent algorithm generates short
zig-zagging moves. Convergence is, therefore, f[xt 0 ) + ax] -fixo)] + Vfix()]bx
very slow. 1

+ -AxTH[x(°)]Ax (2-6)
2

For an bxtensive treatment of modifica-
tions of the steepest descent method, which where Ax is a change in x( ) In case f(x) is
prevents certain of these difficulties, see Ref. locally convex - convex in a neighborhood of
4, Chapter 7. Several methods, pireented -in . -0)- Theorem A-3 shows thatH [ ) I] is
the next three paragraphs, doot suffer so posiive semi-definite. If, in addition,

severely from the problemisjust described. H [x(0 )] is posie definite,~then it has an
inverse. -u -h- ,[x( 0 °  +A'. in Eq. 2-6 is

2.5 A GENERALIZED NEWTON METHOD convex in,-xso Tiini2-3 insures the
existence 6fa unqi-; e niihium point of the

In the Steepest Descent Method of par. 2-4, quadratic,- funtion'in Eq. 2-6. By Theorem
only first-order derivatives that determine the 2:-1, this unique riinimua point is determined
tangent plane of the cost surface are used to by
represent the behavior of this surface. One
would expect that if second derivativs of the VfT xt0)J +H[x(0 ) Ax= 0
cost function were avilable, then a quadratic
function could be constructed as ant approxi- or
mation to the surface. The quadratic approxi-
roation should allow for much betty: approxi- 'Ax HI ix") IvfT IX(0 ) 1 (2-7)
mation of the minimum point of the cost
function. a id the new estimate of the minimum point is
!" AU) =x(O) +AX.

The idea of this m.,thod is to first use a
second-degree Taylor for.ula as an approxi- Since Eq. 2-6 is just an approxi:ation, x(l)

mation to fix). If f(%) is cz.ivex, r just con- will probably not be the precise minimum
vex near a minimum point then the minimum poYo of fix). Realizing that evaluation of
point of the quadratic should be near the l1(x) requires computation of n (n + 1)/2
minimum point of fix). The minimum point second derivatives of f(x), one might be
of the quadratic approximation is then deter- tempted to improve the estimate for the
mined analytically and is taken as a good minimum point before recalculating all these
approximation of the minimum point of fix). derivatives.

In order to utilize Taylor's fornwla in- An easy way of improving the estimate of
ci. iie - , ond degree terms, the following the minimum point is to change the length of
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the sep Ax without altering its direction. The H(x) may not exist unless H(x) is j
scalar of _ I will be determined by methods of strictly positive definite. I. -
par. 2-3 so as to minimize f!x(0) + aAxI.

2. In nonconvex problems an iteration 1' ,,-4
This procedure may now be put down in does not necessarily decrease f[xP' I "1l

the form of a computational algorithm called when the current iterate P) is not near
Generalized Newton Method: th, minimur ,oint. ,-

Step 1. Make an engineering estimate x(O) .Fr a egei po m Hx)• .. 3. Frt many engineering problems, Hix) o,,
of the n"imm point of f(x), will be extremely messy if not im-

Step 2. Compute possible to compute efficiently.

xY+', = P - - [Xt1 ) VfT[XV) Even in nonconvex minimization problems I '
a= )iconwc the Generalized Newton Method may be used

where d) in conjunction with a Steepest Descent Meth-
-minimizes od to form an extremely effective tool. The

Steepest Descent Method has the property of
f x(i)_- -aH- I[x(iI VfT 'x( I making good progress even though only a

poor estimate of the minimum point is
as a function of a. Here, the index available. As a relative minimum is ap-
i is the nuber of iterations con- proached, however, the rate of convergence of
pleted. the Steepest Descent Method decreases. Atthis point, however, the cost function should

Step 3. If 1 Kf [.c(" 1ll and II x + ) -- xU)ll be convex since a minimum point is nearby.
are suffciently small, terminate Therefore, the Generalized Newton Method
the process and take x" ' 0 as the may be employed for rapid convergence to
minimun point off(x). Otheiwise, the relative minimum point.

s return to Step 2.
rtr Se2 2-6 METHODS OF CONJUGATE DIREC-

The Generalized Newton Method presented TIONS
in this paragraph has been called the best for
minimizing convex cost functions when In par. 2.4 it is pointed out that the
second derivaives are available (see Ref. 5, Method of Steepest l)escent had rather poor
page 162). Even in the case in which the cost convergence prof erties in many problems
funtion is nonconvex. if the starting point because it uses only first-order approxi-
x(° ) is near enough to a relative ininimium iations (involving only first-order deriva-
point so thai the cost function is convex at tives). Further, the Steepest Descent Method
Sx() , then good convergence may still be is not a learning process in that it does not
expected. store information from past iterations. The

first deficiency is corrected in par. 2-5 where
In spite of the advantages of this method, it a Generalized Newton Me liod employing

still has several shctcomings. second derivatives is presented This method,
while haing outslfaning convergence prop-

1, Even if f(x) is conve( ai inverse cf erties, requires the comnputatin of n(n + 1),2
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second-order derivatives at each iteration (.x is vectors S! are linearly independent. To see
Sin R") lit most engineering desi_2P problems that this is true, form the linear combination

this is an extremely tedifous;-if not impossible,
task. Further,-' he Generalized Newton Meth- -
0d-is not a learning process. ii0

The methods presented in this paragraph where the a, are scalars. Multiplying this sum
require the computation of inly first deriva- othletby S/TAyed
tives. However, by makinp Lise of information
obtained from prev-,us derivatives, con- n1ST aI
vergence is o f as the minimum is tip- :1P aSPAS! S AS1  0
proached. In fact, as one of the methods
pi ogresses, it develops an approximation to ansicS/A 0 ,al .Sneiws
the matrix of second derivatives. In this abtar,01 ,j0,I n-,adthsi
respect the methods here have the desirable jutt.efiio flnaidpnec. 2
features of both the Method of Steepest
Descent and the Generalized Newton Method. Consider now the problem of minimizing

the conveA function
All Methods of Conjugate Directions are

based on the philosophy "if a method works Ax) = BTx + .L Ax (2-9)
S ~ well in minimizing all positive definite qua-2

dratic forms, then t ought to work pretty where x is in R", B is an nz x I mnatrix and A is
well on any smiooth cost function." To be a synimetric positive definite, ni x n matrix.
more specific, Conjugate Gradient Methods The central idea of all methods based on
are guaranteed to minimize any positive coniuga',c directions is contained in Theorem
definite quadratic form in n iterations (tile 2
design parameter is in RFZ). Although this
Wdeal behavior will not carry over to general hoet.16LtSO..,"Ibnnzr
cost functions, since a convex cost function Tveorm in Let wh .ich bronue nonzer
often looks very much like a positive definite vesecto ile whitc arfie natei wit
quadratic form, similar behavior could .be Choose scalar, X = ".i =0, ..., n 1 ,r4 expoctedl. Experience has shown that this is
tile case. sticcessively which~ minimize

In order to be more precise, one inaI~es + 1.00 1+(XS,0)

posiiod~nit -5. mari where f(x) is given in Eq Q

Definilun .2%5: Let A be a symmetric ~
1, ... n c nonzero vectors in R". A- 0
are called .oi jugate with resp~ect co A if

-and x1 o '~'I% any poil n III R, ~ 011 is tile
r1 A ! - (2-8) abo. te p.l..t '/WmR

Since A is po\*%t definite, thle conjugat( Iit two ileihlods t:idI follow m .irv i~
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based on different weys of generating con- k A S+1 r S'
b~~naf,. 5 k+1 _____jugate directions. There are an unlimited = -"'r-o STr AS

number of ways to generate conjugate direc- :7S
tions. Several ways are discussed in Ref. 6.

Many sets of vectors v, could be chosen to
2-6.1 THE CONJUGATE GRADIENT generate conjugate directions. A natural

choice, however, is the set of gradient vectorsMETHOD of fix), g' = Vff x(), where P) are defined

Given any set of n linearly independent in Theorem 2-6. Define
vectors and a positive definite n x m matrix AS': -'SO = _0
a set of conjugate directions with respect to A r0 -.g
can be generated by a Gram-Schmidt ortho- kg+TS
gonalization technique. Let v° , ... gP + E - - Si (2-12)
be linearly independent vectors and define SO 1. 0 SITA S.,--' . = Vo. Now put : ;

Alternatively,

gk+l =_,s*+ + k g+,TASs" (2-13)
For A-conjugacy, it is required that o STA S'

SOTASI =0
= STA1v +aIoS ° ) Sincef(x) 2'IXTAx +BTx,

andSgl = Vf[x(k ) ] =Ax( ) + B,

ASOS

alo -SOTAS or from the proof of Theorem 2-6,
=_vTASO

AssLningS',..... S are A-conjugate, put =g1+1 +A L i  . (21,4)

S* i  = l + I + ak+I.o'r + .. + O'k+ I.,-k .  Now,

For A-conjugacy it is required that T.,T,, ,&+ i

Sk+ITA S==PT +Ck+,r ST A S" =0,i< k (2-15)
due to A-conjugacy of the S' and

where the second equality holds by S-con-

jugacy, so Vflx(k !)ISk = 0, k = 0 ..., n - I. (2-16)

Vk+I TA Sr From Eqs. 2-13 and 2-14
otk+,r r S ,r .. k -i giT A S1 2

gk Tg, = gk T S i + E i Si S

By induction, the resulting direct'ons are I I S Si'AS

A-conjugate and = 0, 1 k (2-17)

2-14
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Thus kIT S lThus the g',i o, 09 .. ,-lr ierygI+TS k19tI
indepindent and the S =10, 1, n..-nIlare ITAS gTI

~ >I A-conjugate. ...
By Eq. 2-17, for 1 < k, the right side of theThe Conjugate Direction Method of Thec- abveqtinszroFr

rem 2-6 may now fie applied using the
conjugate gradients A' The result is called the gkIAS k+1Tg+
Conjugate Gradient Method. In orderto applySkAkTk
this- Method to nonquadratic problems, it is g g
first necessary 1o eliminate explicit depen- Substituting this result into Eq. 2- i 2yields
dence of the algorithnm on the form of 1(x).

By definition,Sk1-g+

Eq. 2-20 now gives an algorithm for determin-
gi'1  Axl' I +B =A Wx + ?U)SI) +sB ing the conjugate directions, even without

knowledge of the matrix A.
or

For a general function .1(x),

(2-1) g VfT[X(i)]

and thc following algorithm for finding the
By Eq 2-16unconstrained minimum of ftx) is called the
By Eq 2-16Conjugate Gradient Method:

/l+ITsI =0 =gI SI + ?XU) SITA
Step 1. Make an engineering estimate x(O)

Thusof the minimum point and Loin-
pute

SSo 7vfT [X(o)

Subsituing or i fom E. 212 ad uingStep 2. For i = 0, 1, ..., find a = a~i) which
Subtittin fo S1 fro Eq 2-2 ad u~gminimizesf [P + aSil.

Eq. 2-15, this is

gITS! Step 3. Compute
XU) = 9(2-19)

From Eqs. 2-18 and 2-19 Si-I Vf T1I 1) 1 + 3'Si

.5/ where.

gg =vf[x"+ I) I Vf T v('+ I)
No~v, flX(L) iVf T IxX'il

2-15
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Step 4. Terminate the process if little insight into use of the method. For a
11 III+' 11 and IJx(+ 0 - xU) direct proof of convergence, etc., the reader is
are sufficiently small. Otherwise, referred to Ref. 7.
return to Step 2.

The computational algorithm is:

When this ilgozithm is applied to problems
in wh'z!h ff.-) is nZA of the form of Eq. 2-9, Step 1. Make an engineering estimate x(O

Jconvergence will not occur in it steps. of the minimum point and choose
Fletcher and Reeves recommend that after it a symmetric positive definite .-

steps the algorithm should be "restarted", i.e., matrix H1(O).
X(n+i) should be treated as x(0 ) in the
algorithm. In a sense, the first few iterations Step 2. For 1 0, .. ,compute

of the algotithmn build up information about
the curvature of the cost surface. After n S(= 0 ~) VJT [P() 1.

iterations, this information is disci'rded and a
new estimate of curvature is built up during Step 3. Compute a which minimizes
the next n iterations. This method then does f[()+ aS~') 1.
not accumulate information about curvature;
of the cost surface over the entire iteratv',e Step 4. Compute

process. V
2-6.2 THE METHOD OF FLETCHER N2 X+ ) U)+ t,

POWELL t ' +t)C

Asecond method based on a differer iset I/(' If") + A (1) 01I

of conjugate directions was suggestel by
Davidon (Ref. 8) and modified by Fletcner where
and Powell] (Ref. 9). This method is repo-ted y0 V (+I V (to be onec of the most p*., .-ful known J~ fl~~ j-VTXi
methods for general functions fix), (Ref. 10).
A major reason for the success of this me hsod A aI
is its capability to accumulate informa ion a (1, T Y U

about the curvature of the cost surface du tin
the entire iteralive process, even thiouL:_m ( nly 01 ()IykJti

first ordler der~vatives of the cost func (on 0I)' Y
need to be coi% ited.

The directions SO generated by the i1- Step 5. If 11 Vfix""') 111 and lixti+ -

g riftin that follows, are coniugate if ,(x) is x''ill are sufficiently smnall, termi-
of the farm of Eq. 2-9. This proof is given n nate the process. Othierwise return
Ixefs. 7 and 9. In Ref. 6 it is shown that t ie to Step 2.
mnethod of Fletcher and Powell fits naturd v
into a large class of conjuigate directioni Fletcher and Powell (Ref. 9) prove that this
mnethods The derivatin r is tedious and lends algorithm h& l the following propert ies
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I. The matrix HO is positive definite for Step 1. Make an engineering estimate of
all, f. This implies the method will the minimum point x(°) of fix).
always converge to a stationary point Choose vectors s" .n, in.
since the coordinate directions of Rn.

d Step 2 Find a - , k I . n, whichfix(0 +aes(,,) 1 !0 ""
d minimize f!x(k '1) + ask I

= - ffx")IU )vfT[x(i) < 0 where

provided Vf[xt1 ) ] 0. This means that Y
f[x (0 I may be decreased by choosing a

k =k-I +aok sk k .,Io'.
> 0 ifffx( )] *. "'0 G.s k n,

2. When this method is applied to the and i is the number of iterations
positive definite quadratic from Eq. 2-9, which have been completed. Note

. G( I converges to A"'. that in the one dimensional mini-
mization for ak, it is possible for

This method might be called a learning a< 0.
. process in that only first derivatives are ever " %

, .,- compute I, ",ut as the Agorithm progresses an Step 3. Find the integer m, I < m< n -

approxi of the matrix of second deriva- which
- tives is rated. Many experienced re-

searchers a. the area of optimization methods fAy"- 1) fy",)
laud this method as one of the best available

is the largest and define
2.6.3 A CONJUGATh DIRECTION METH-

OD WITHOUT DERIVATIVES Afym 1 ) _f(y, ). 3

Occasionally in applications, one is faced Step 4. Define ft =/0,0), f2 ftyn), and
with a problem in which computation of f3 =fl2yl 0).
derivatives of the cost function is impossible
or at least prohibitive from a computational Step 5. Iff 3 > f, or
point of view. There are many techniques for
solving this sort of problem given in Ref. 4. (f - 2/ +f ) x (V, -f2 A)
An efficient technique, not presented in
common texts, was developed by Powell (Ref. A
I I) using conjugate directions. 2

put
A computational algorithm is presented

here without proof. For a proof that the . ) yn
algorithm generates conjugate directions the
reader is referred to Ref. I1. The computa- l'ermnmate the process if !I Y
tional algorithm nis' i 11 s sufficiently "Imnat Other-

2- 17
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< i wise return to Step 2 with the f 2 (x1 , x 2, X3 , x 4) (xI + 1Ox2 ) 2

same set ofsj =I. n.
.z:.'., :,. E:+ 5(X3 -X4) 2 ,,;.

Step 6. If neither of the inequalities of + 5" 3 - 4 )Y,. :.T... -(2-22)
Step 5 hold, defines = y _yO)and +(x2  (2.22.
fnd a = which minimizes + (X- 2x 3 )4

f(yfl + as).
+ lO(x -x 4 )4

Put
and

X1+ 1) (2-23&s

f3 (xl -X2,)'x +2X2 + 2X2

Terminate the process if Ijx(t+1) (2-23)
- x () II is sufficiently small. Other- + 2XIX 2 + 2X2 -X3

wise return to Step 2 with the new
set of vectors x' ,... xM , sm + 1, The reader shoula verify that each of these
..s, s. functions has a strict absolute minimum

point. These points are (1,1), (0,0,0,0), and
For a discussion of use of the (0,0,0), respectively. Each iterative method
algorithrm, see Ref. 1. will be started at points (- 1,1), (1,I,1,1),

and (1,1,1) for Eqs. 2-21, 2-22, and 2-23,
respectively. These functions will all be mini-

2-7 COMPARISON OF THE VARIOUS mized by each of the methods of pars. 2-4
METHODS tbrough 2-6. The stopping criterion will %e

that each component of the independenv
During the development of the methods variable must be within 10- 2 of the known

presented in this chapter, theoretical advan- minimum point.
tages and disadvantages have been pointed
out. As a concrete test of these methods,
three functions will be minimized. Two of the Results will be presented in tabular form so
functions to be treated are terribly behaved that a comparison of the behavior of each of
and pose a meaningful test to any general the methods may be made. For the sake of
ninimization technique. These functions re- uniformity, each table will include the itera-

semble a very deep valley at whose bottom tion number , the iterate = [x( t).
the curvature in two orthogonal directions is 1 T, and the value of the cost function.
radically different. The third function is
quadratic and poses no serious obstacle to any 2-7.1 METHOD OF STEEPEST DESCENT
reasonable method. More specifically, these
functions are

2-7.1.1 COST FUNCTION: J,(x) 100(x2
f(.l, x2 ) 100(X2 - X2 2 2 )2) - x, ) 2 .

f (2-21)
+(I X,) Exact solution: (II),f,(l,l)=0

2-18
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?ABLE 21 2-7.1.3 COST FUNCTO:" 3 x + 2x 2

STEEPFirT DESCENT METHOD - +2 3 + 2XX 2 +2x 3
I TERATIVE ORATAFO T-~~'N JCTONf (k) CS

I .Exact solution: (0,0,0),-f3 (0) 0.

TABLE 2-30 404.0- 71.0 -1.0-
1 1§.67- 0.2676 -0.3743 r.-cEETD M T41 TRTV
.2 0.8654 '.00 0. 007PETDSETMTO IEATEOAT.- FOR COST FUNCTION 63 (4)~i 4i 3 .16.462 0,1910 V-
4 0.3048 0.448 0.199L
5 0,2929 0.472 0,2V11fI 0 X,06 0.88 0.4635 0.2f8 / ~ X

29 0.1752 0.5861 0.3373
- 30 0.1728 0.5846 0.3403 0 90 1010111 0.0714 0.2857 -0.0715 -0.071573 0.1081, 0.6739 0.4499 2013 -. 53 002

74 -. 9 0.6729 -0.45-17 00 13 0.0088' 0.1604 -0.114 0.0,6
4 0.00679 0.1 245 -0062 0.053 41 I2.~2CUT FNTIN 2 x) ( 1  5 0.0243 0.078 -0.0025 0.02 04

4 ~ 2) *( 3 -'X4) U 2 2 3) + 6 0,0018 0.07 -0.0476 0.02727
-7 0.00063 0.0218 -0.00305 0.013310(XJ .-XX)4
8 0.00006 0.014 -0.00956 6.0035-
9 0.00005 0.011 -000686 0.00485

Exact solution: (0,0,0,0), f 2 (0) 0 1 .00 .01 -. 06 004

TABLE 2-2
It should be noted that the Steepest De-

]STEEVEST DESCENT METHOD.- T1ERA71VE scent Method decreased th&, cost function
DATA FOR COST FUNCTION f2 (x) rapidly on the first iteration but in the first

/ f[(IiJ (Ii ,w ~u ~two problcms failed to converge to the
minimum point That is typical behavior for

0 122.0 1.0 1.0 1.0 1.0 this method, foarticulariy in problems for
1 1643 09055 0.05 1.0 1.0 which the cost function has a long sharp

2 16.31 0.9019 0.023 0.9958 0.9581

1 <6 16.03 0.8925 -0,049P 0.969 0.746 valley. It should be clear that blind use of the
6 15.06 0.886 -0.0756 0.923 0.463 Method of Steepest Descent can yield poor
9 12.25 0.641 -0.063 0.691u -0.156 results.10 3.00 -1.048 0,0746 -0.1608 -0.919W11 2.006 -1.039 0.1522 -0,258 -0.815

12 1X580 -1.043 0.078 -0.298 -0.752 2-7.2 GENERALIZED NEWTON METHOD
1t3 1 '188 -1.033 0.1127 -0.32?6 -0.7067
14 1.047 -1.021 0.0M0 -0.362 --0.634 2-7.2.1 COST FUNCTION: f1 (x) 100(X215 1.041 -1.015 0.00/1,9 -0.369 -0.019 - )2 + (1 - x1 )2
16 1.040 -1.012 0.0960 -0.3 70 -0611
38 1.039 -1.008 0.0967 --0.33 -0.603
74 1.-039 -1.008 110968 -0.373 -0.6019 Exact solution: (1,1), fj(l,l) =0

2-19

Downloaded from http://www.everyspec.com



AMC (0..19

TABLE24 *Note: The trial starting point (1,1,1,1) was
a singular point for v2f2 st, an alternate

GENERALIZED NEWTON METHOD - ITERATIVE starting point was chosen and the algorithm
DATA FOR COST FUNCTION converged.

fa (x)

f, ix1 1J x x2 2-7.2.3 COST FUNCTION: f 3 (x) =x + 2X2
2°  0 44. -1.0 -1.0 "I 2x st" 2x"-.x2

1 3981 -0.9950 0.9869
2 3.403 -0.7919 0.5832 Exact solution: (0,0,0), f 3 (0) = 0.
3 2.588 -0.5248 0.2241
4 1.549 -0.1832 -0.5105
5 0253 0.0887 -0.0271 TABLE 2.6
6 0A73 0.3642 0.1063
7 0,203 0.5,355 03,347 GENERALIZED NWTON METHOD -* j 8 0.0531 0.8020 0.6315 ITERATIVE DATA FOR COST

9 0.0C42 0.9536 02049 FUNCTION f 3(x)
- 10 0.0002 0.9900 0.810

11 2 x 10-6 1.0003 1.0007 i f3 [x1 ] X I  x2
U )  x311

0 9.000 1.0 1.0 1.0
1 2x 10"  0.0015 0.0015 0.0015

2-7.2.2 COST FUNCTION: f 2 (x) = (xi + 1 2 x IV 0.0015 0.0015 0.0015

lOx 2 )2 + 5(x3 -X 4 )
2 +(x 2 - 2X3) 4 + 10(Xt These results indicate that the Generali. !d "\

-X4)4 Newton Method is indeed very powerful.

Even in the second cost function where theExact solution: (0,0,0,0), f2 (0) =0
initial estimate caused a singularity in vf2, a
second starting point yielded good results.

Similar behavior has been noted in the litera-TABLE 2-5
ture, so one can expect to get good results

GENERALIZED NEWTON METHOD - ITERATIVE with this method. It must be remembered,
DATA FOR COST FUNC ION however, that this method requires that sec-

f2 (x) ond deriviatives of the cost function be coin-

puted.

i f2 [X I) ! X1 (1)  X2 x 3  x.

0 137.0 1.0 1.0 1.0 2.0" 2-7.3 CONJUGATE GRADIENT METHOD
1 2,137 -0.3368 0.0115 0.3396 0.3249
2 0.0496 -0.0640 0.0250 0.1060 0.1229 2-7.3.1 COST FUNCTION: fl(x) 100(x 23 0.0025 -, 3591 0.0047 0.0627 0.0617
4 0.0007 -0.0236 00031 0.0263 0.0271 -- XI)2 + (I xo)

5 0.00001 -0.0143 0,0014 0.0161 0.0160
6 lx 106 -0.0070 0.0007 0,078 n 0079 Exact solution: (II),/1(II)=0.

?-2
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TABLE 2-7 2-7.3.3 COST FUNCTION: f3 (x) -x 2 + 2X
+~ ~ ~ 2x XX XXCONJUGATE GRADIENT METHOD-ITERATIVE + 3 2xtx 2 + 2X2X3

DATA FOR COST FUNCTION

Exact solution: (0,0,0), f3(0) = 0.
_ _ _ 1 0_X 2__ _

0 404.0 -1.0 -1.0 TABLE 2-9
9649. 0.1143 0.0102

0.0839
1 9649. 0.3258 0.0102 CONJUGATE GRADIENT METHOD -

22.19 0.5106 0.2360 ITERATIVE DATA FOR COST
2 -2.19 0.5005 02482 FUNCT;ON f3(x)

0.5033 0.6307 0.3820
3 0.5033 0.6244 0.3882

02226 0.7267 0.5178
4 02226 0.7227 0.5212 i f3 [x i ] A I 1  X-' p  X3 11

0.001637 0.9919 0.9827
8 0.001637 0.9842 0.9868 0 9.0 1.0 1.0 1.0

0.000067 0.000013 0.999754 0.1181 0.3829 -0.2340 0.0744
11 0.000067 0.999884 0.999768 0.0293 0.267, -0.2285 0.14281 0 0 0 0

2-7.3.2 COST FUNCTION: 2(x) = (x +
lOx 2 ) 2 +5(x 3 -x 4 ) 2 + (X 2 -2x 3 )4 + 10(x The numerical results presented here indi-
_x 4 )

4  cate that the Conjugate Gradient Method is
very effective even for the Rosenbrock func-

Exact solution: (0,0,0,0), f2(0) = 0. tion f (x). The method requires approxi-
mately the same amount of computatioii per

TABLE 2-8 step as the Steepest Descent Method but
shows spectacularly improved performance.

CONJUGATE GRADIENT METHOD- ITERATIVE
DATA FOR COST FUNCI IN;r2 (x)

It should be noted, however, that con-
,, , 10 ,14 ) 0', vergence slows as the minimum point is

o 1220 10 1 10 10 approached. In fact, as shown in Table 2-8,
2925 21 09016' 001341, 00642 1 0007925 V 08637 001387 04158 0 99Go convergence to tile required accuracy was not

022, 0803 00/80 0318 046403b65 08601 00101 0 364) 06573 attained in one case.1 1922 0 84104 0 0563 0 3324 0 4438
192 2 0 8;180 0 0860 0 3185 0 4640
1211 0 /10? 0 0686 026, ( 1787
J 021] 06410 0 0850 0 25J3 o 4104
2 2, 0)404 6.081 020(0 o2026 2-7.4 FLETCHER-POWELL METHOD

03169 '3 8 0)/I 0 / I13 0/ ()1I 0151 03"331 019 0 f,4ti 0 2130 ,

S 0 031 0 0305 0 00) 013,38 0 O !
0 IS I ) 151 0 09 1 0 GO 11 " A96, 0 2,

000M0/61 00294 00028 0 IVY, 00/ 2-7.4.1 COST FUNCTION: f (x) = 00(x2
0 006 010)13)1 0 w/) o 0/0 , /i0 6 .)12
0001// 001W 00011,11, (02/3 1 310 1) 0- 025C
/f) M /M1 ( 3 006.12 1) 031146 ,02 1)' ()0231/V,¢ 0 Ofl Ph 0I 3 O'X ' 3) q 0 01) f~ 108 0 ) I III

' (ill, 0 0 /30)6) ( , (M i ., Exact solution: (1,1). f, l) = 0.
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TABLE 2-10 2-7.4.3 COST FUNCTION:: f 3(x) = x+ 2x'
+2 + Z.XIX 2x 3 ,FLETCHER.POWELL METHOD-ITERATIVE +2 + + 2X2X3DATA FOR COST FUNCTONf (x)

Exact solution: (0,0,0), f3(0) 0.
f, Ix] X2

0 404.0 -1.0 - 1.0 TABLE 2-121 19.97 0.2570 -037462 0.7839 0,1146 0,01249 FLETCHER.POWELL METHOD -3 0.7570 0.1422 0.005683 ITERATIVE DATA FOR COST4 0.7424 0.1727 0.005740 FUNCTION f3(x)5 0.5377 0,3378 0.08262 Y
8 04013 0.3689 0.1416 3l I ]  x I )  x 2

(1 ' X3t
7 0.2968 0.4815 0.21518 0.2524 0.5616 0.2909 0 9.0 1.0 1.0 1.09 0.03621 0.8286 0.67P4 1 005319 0.3830 -0.2340 0.0744710 0.03216 0.8207 0.6733 2 0.02857 0,2r71 -0.2286 0.142911 0.02568 0.8536 0.7221 3 3x 10"s3  2x 1 7 -2x 10 7  -3x 1( F12 0.01162 0.9268 0.8511

13 0.00437 09342 0.873314 0.00106 0.9760 0.9504 The Fletcher-Powell Method requires slight-13 8 x 10 6  0.9982 0.9967
ly mote computation than the Conjugate
Gradient Method. However, its convergence
properties are very good as the minimum
p.int is approached, in contrast to the be-2.7.4.2 COST FUNCTION: .f2(x) = (xi havior of the Conjugate Gradient Method.

lOx 2 )2 + 5(x 3 - x4 2 + (x 2 - 2x 3 ) 4 + 10(xh
- X4 )4  

This method appears to have good prop-

erties in all ranges of the iterative process. It isExact w'ut~on: (0,0,0,0), f2 (0) = 0. more stable than the Generaliked Newton
Method in the early stages of computation
and converges more rapidly than the Gradient

TABLE 2-11 and Conjugate Gradient Methods near the
minimum point. In these respects it has theFLETCHER-POWER METHOD-ITERATIVE DATA desirable properties of other methods withoutFOR COST FUNCTION Tf (x) having their undesirable properties.

f X '1) X2 G} x11) x, ()
0 1220 10 10 10 1.0 2-7.5 CONJUGATE DIRECTIONS WITH-1 144292 09017 003472 09642 102 23775 08630 -007820 04120 09960 OUT DERIVATIVES
i 06678 08430 -003740 03618 04986
4 0 3353 02087 --0.02560 0 3644 0 3305
5 005134 01117 0006686 01883 019526 001059 007031 -0009696 01537 01526 2-7.5.1 COST FUNCTION: f(x) 100(x 27 000067 002731 -00007003 006189 0062768 00O16 002164 -0002344 005417 005409 1 4 (19 83 A 10'6 000267 -00000359 00191 00192T0 21x 10 "6 000148 0000163 0,';2 0017211 10- 7  

0C057 000060 1(Xr)3'l 000342 Exact solution: (II), f(I.11) = 0.
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AMCP 706-192[ 'ABLE 2-13 TABLE 2.14 (Cmitinued)
CONJUGATE DIRECTIONS WITHOUT fI X, x11  -2Q x t ) X4 f(/

DERIVATIVF.S METHOD-ITERATIVE DATA
FOR COST FUNCTION f,(x) 0.4421 0.0469 0.0127 02799 0.4284

2 0.1415 0.0469 0.0127 0.2799 0.2423
I f, [x f""I X1 (1) X2 1) 0.1418 0.0510 0.0127 0.2799 0.24230.1210 0.0510 -0.0015 0.2799 0.2423

0 404.0 -1.0 -1.0 0.0498 0.0510 -0.0015 0.1875 0.2423
100.1 0,0049 -1.0000 0.0246 0.0510 -0.0015 0.1875 0.1749

0.9902 0.0049 0.000 3 0.0082 0.0536 -0.0104 0.1291 0.1324
1 0.9902 0.0261 0.0211 4 0.0020 0.638 -0.0181 0.0794 0.0882

0.9485 0.0261 0.0007 5 0.0018 0.1322 -0.0147 0.0892 0.0940
0.9402 0.0429 0.0"_74 6 0.0010 0.0828 -0.0109 0.0580 0.0603

2 0.7922 0.1287 -0.0016 7 0.0005 0.04!2 -0.0057 0.0377 0.0322
0.7922 0.1815 0.0509 8 0.0000 0.0078 -0.007 0.0058 0.0050
0.6172 0.2147 0.0436

3 0.3958 0.4058 0.1440
4 0.2895 0.4785 0.2422 2-7.5.3 COST FUNCTION: f 3(x) x + 2x2
5 0.2591 0.5308 0.3015 + --X2 + 2X'x , 1
6 0.0770 0.7258 0.5225 3 + + 2x
7 0.0282 0.8564 0.7246
8 0.0125 0.8942 0.8033
9 0.0119 0.9116 0.8373

10 C.0116 0.0039 0.8218 Exact solution: (0,0,0), f 3 (0) = 0.
11 0.0125 0.9469 0.9065
12 0.0042 1.0363 1.0792

- 13 0.0002 0.9886 0.9781
14 0.0002 1.0032 1.0079 TABLE 2-15

CONJUGATE DIRECTIONS WITHOUT DERIVATIVES
METHOD-ITERATIVE DATA FOR

2.7.5.2 COST FUNCTION: f 2 (x) =  (x1  COST FUNCTION f3 (x)
-lOx 2 ) + 5(x3 - x 4 )+(x 2 - 2x3 ) +lO(x1 -

X4)

Exact solution: (0,0,0,0), .2(0) = 0. f3 Ix] xi x 2  x 3

0 9.0 1.0 1.0 1.0
5.000 -1.0000 1.0000 1.0000

TABLE 2-14 3.000 -1.0000 0.0000 1.0000
1 1.000 -1.0000 0.0000 0.0000

CONJUGATE DIRECTIONS WITHOUT DERIVATIVES 0.000 0.0000 0.0000 0.0000
METHOD-ITERATIVE DATA FOR COI',T

FUNCTION f2 (x)

i fx 1 )) x, (0 x2 fl)  x 3 fi; x 4 i) The Conjugate Directions Without Deriva-

0 122.0 1.0 1.0 1.0 1.0 tives Method is not as efficient as some of the
109.1 0.2051 1.0000 1.0003 1.0000 methods th-t require computation of deriva-
18.45 0.2051 0.1140 1.0000 1.0000 tives. However, there are many problems in
7.667 0.2051 0.1140 0.4819 1.0000 which coirputation of derivatives is either

1 2.37 1 0.2051 0.1140 0.4819 0.4284
2,157 0.0469 0.1140 0,4819 0.4284 in,possible or very difficult. In these prob-
1.075 0.0469 0.0127 0.4819 0.4284 lems, this method appears to be effective.
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2-8 AN APPLICATION OF UNCON- In this form, an iterative technique such as
2-5 AINED OPTIMIZATION TO the power (or iteration) method (Ref. 13,

/ ST.RUCTURAL ANALYSIS page 93) may bNapplied to obtain the largest
eigenvaide of the matrix K- M, and hence,

As pointed out earlier in this chapter, tie smallest eigenvalue of th,, original prob-
.opt.al design problems are seldom uncon- lem. Even though the power method is~~straLed. "rr. is, however, a large class of "

s--d iheefficient, this approach has the severe dis-
analysis 1roblems which can be solved using advantage of requiring that K- be co-
unconstrained optimization methods. In Ap- puted.
pendix B, enzrg -prfilciples which govern
equilibriu l- vibration, and stpiiity of struc- A more promising approach to the above
tures are given. The condition for equilibrium eigenvalue problem utilizes the Rayleigh
is particularly direct since it requires that, in quotient(Ref. 13, page 83), i.e., the smallest
problems for which the strain energy is eigenvalue X of Eq, 2-25 is given by
quadratic, the equilibrium state, 7, minimizes mi YTKy
Vof Eq. B-I8, Appendix B, X,= (2-27)

V =  xTKx - xTF. (2-24) If the vector y is nornwalized by fixing one of
its elements, the resulting vector denoted ,

Even in some problems which are nonlinear then Eq. 2-27 reduces to
and the total potential energy is not qua- _TK
dratic, the minimum energy principle applies. - (2-28)

In view of the quadratic form of Eq. 2-24, 'fhe minimization Eq. 2-28 may now be
conjugate direction methods are indicated. solved by any of the methods of the present
Even for nonquadratic energy expressions, chapter. The method of conjugate directions
methods for conjugate directions appear to be has been recently applie. to solve this class of
very efficient. For a much more detailed problems (Refs. 14. ,5). It is interesting to
treatment of this class of equilibrium prob- note that this exact approach to the eigen-
lems, see Ref. 12. value problem was proposed by the inventor

of conju' ite direction methods, M R.
A second structural analysis problem for Hestenes, in 1955 (Ref. 16, page 93). The

which unconstrained optimization methods technique was apparently not used in engi-
hold even more promise is the eigenvalue neering problems. however, until 1966.
problem. As shown in Appendix B. vibration
and buckling problems reduce to eigenvalue Iterative met:.ods of the kind outlined in
problems of the kind this paragraph are particularly appropriate for

iterative optimal design techniques. As dis-
Ky = XM, . (2-25) cussed in Chapter 5, the most time ,insuming

task in tcrative design methods is the re-
In this problem, the smallest eigenvalue X 1 01 analysis of the system during each iteration,
the Eq. 2-25 is sought. One method of solving i.e., after the design variable is changed
this problem is to rewrite Eq. 2 25 as slightly, analysis for stresses, displacements,

(226 arid eigenvalues must be done even though it
K At, (2-26) is expected that these quantities will be very

2-24
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.. close -to their values before the change in the miuimiization algorithm. In this way, rapid
-digvariabes. Byusing an iterative tech- convergence to thie new state of the system is
.. iiiie siascbnjugate directions, the pre- attained. This approach has beqAn applied with

ous state mat-, usedas an estim.ate to start good success (Ref. 15).
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CHAPTER 3

LINEAR PROGRAMMING

3-1 INTRODUCTION b. Power consumption must be becw a
: : specified level. ,In the preceding chapter a function f(x), x spcfedlvl

in R", was minimized wth no restrictions c. Capacitance of a proposed capacitor '

placed on the loration of the design variable must be within atainable limits.
x. Problems in the real world seld a reduce
to this form. In virtualty all engineering design 3. Aerospace vehicle guidance:
problems, requirements are placed on the
object being designed, and these requirements a. Controller thrust must be within theare stated in termsWo equations involving the capability of the thruster.[' :

design variable. More often, these require-
ments may be stated in terms of inequalities b. Total fuel consumption for a mission
involving the design variable, must be less than or equal to the vehicle's

storage capacity.
/ Examples of inequality constraints are

" - abundant in all areas of engineering design. c. Altitude must be greater than or
The following are examples: equal to zero.

1. Optimal structural design This list of typicai inequality constraints
could be expanded many-fold. it is clear then

a. Stress must be less than or equal to the that the inequality constraint must play a
yield strength of the material, central role in any unified theory of design.

b. Buckling load must be greater than The class of problem considered in this
or equal to applied loads. chapter is very restricted. C ly linear func-

tions ar to be minimized subject to con-
c. Deflection of the structure must not straints whibh are linear in the design vari-

exceed specified limits. ables. In matrix notation this is, minimize

d. Natural frequency must lie within an f(x) = CTx (3-1)
allowable range.al l rwhere C is an n x I matrix of constants. The

2O m c idgdesign variable x is required to satisfy~2. Optimal circuit design:

Ax <~ B
a. Voltage must remain within linear (3-2)

range of components. x . 0

3-1
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where A is an m x n matrix arid B is an m x I As will be seen in the following paragraph,
matrix. The inequality, Eq. 3-2, is taken as this is typical of linear programming prob-

n lems.
a,,..x1 < bl, i1 n.. n.

I- 1 Before proceeding to the next paragraph, it
- -- i.e., when one vector is less than or equal to is worthwhile to discuss the applicability of

another vector, each of the components of linear programming. The theory of linear
the vectors must satisfy this relation, programming arose out of studies of econom-

ic activities. In economics it is often the case
Example 3-1: Consider the problem of that behavior of an eco~iomic system is

minimizing predictablc only in a rather crude way, so
frequently a linear relation among variables is

f(x) = x + 2x2  (3-3) as good a representation as can be expected.

subject to the constraints In engineering design, however, it is very
seldom that the behavior of an object or

2x, +x 2 < 4 process can be described by linear expres.
sions. One might be tempted, then, to com-

X" > 0 (3-4) pletely ignore linear programming. Even
.)though it is riot directly applicable to most

x2 > 0. engineering design problems, however, linear
programming is still a very powerful tool.

The constraints, Eq. 3-4, are satisfied at all First, even though the computational pro-
points in the triangular region of Fig. 3-1. The cedures of linear programming do not carry
lines passing through this region are lines of over to the real nonlinear world, many facets
constant value of f(x). t is clear that as the of the behavior of solutions are very similar in
line is translated downward, the value off(x) more general programming problems. The
decreases and that the lowest line that still engineer who has mastered linear pro-
contains points in the admissible region oc- gramming will go into the study of the much
curs for x, + 2x2 = 0. Since this line more complex nonlinear programming armed
intersects the admissible region only at (0,0), with a powerful tool - intuition. Further, the
f(x) takes on an absolute minimum at (0,0). solution of many nonlinear problems can be

reduced to the solution of a sequence of
2 _linear programming problems. For a review of

+some of these applications of linear pro-
gramming methods see Ref. I.

3-2 PROPERTIES O- LINEAR PRO-
GRAMS

, ~11 ~ To formalize the discussion of the previous
W, ' 1)aragraph, the following definition is made.

Figure 3. 1 Graphical Solution of
Example 3.1 Den ition 3-1: The linear programming

3-2
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problem is the problem of determining that x describe an adiz.b!e object or process, i.e.,.in R" Which mizes one which performs the required service but isnot neceswariy optimal. In LP the constraint j
BRTx (3-5) set is a p6lyhedron and, according to Def. 2-4,

this constraint set i' convex. Further, accord-
i -i and which satisfies ing to the same definitfon, the cust function

LP A x) for LP is convex. If the coustraint set is "
Ax C C (3-6) bounded and nonempty, it is necessarily' a!ho

closed and all the hypotheses of Theorems 2-2
x > 0 (3-7) and 2-3 are satisfied. One then concludes that

fix) has a strict absolute minimum in the
where C 4- 0 is an m xI matrix, A is an m x n constraint and that is has no other reiative
matrix, B is an n x i matrix and the minima.
symbolism < (>) as applied to matrices means
that the relation less than or equai to (greater Further, if f(x) had a minimum in the
than or equal to) holds for correspinding interior of the constraint set, the necessary
components of thc matrices, condition of Theorem 2-1 implies V

It should be poinfei out that Eqs. 3-5 .f 0 , n

through 3-7 do not explicitly cover all linear
optimization problems. For example, it may which contradicts Def. 3-1 of LP. Therefore,
be required to maximize a linear objective f(x) cannot have a minimum point in the

function. Further, equality constraints may interior of the constraint set but must take on
be imposed and negative values of the x, may its minimum at the boundary. Weyl has
be allowed. However, all these variations on shown, in fact, that the solution must lie on
the linear programming problem may be put one of the vertices of the polyhedral con-
into the form of tie problem previously straint set (Ref. 2).
considered. An objective tunction may be
maximized by minimizing its negative, equal- In spite of this elementary theory, i: k

ity constraints are nothing more ihan a par of possible that a linear programming problem
inequality constraints (i.e., y = 0 if and only if may not have a solution. This may happen for
y < 0 and - y < 0), and a negative x, may two reasons. First, the constraint set may be
always be written as the difference between empty; and second, the constraint set may be
two new non-negative variables. There is unbounded and the cost function may be
therefore, no loss of generality in considering decreased without restriction. In order to
only the problem expressed by Fqs. 3-5 facilitate discussion of these difficulties,
through 3-7. Definition 3-3 is made.

Definition 3-2: The constraint set for the Defiition 3-3: If the constraint set of LP
linear programming problem of Def. 3-1 is the is nonempty ke:npty), the problem is iailed
set of points in R' which satisfy Eqs. 3-6 ar~d fiasible (infeasible). If the constraint set is

3-7. unbounded and the cost function is not
The constraint set associated with a prob- boinded below, then lie problem is called

lem is iust the set of design variables which unbounded.

3-3
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The concept of the dual problem that will Theorem 3-2: Let LP and LPD both be

be used in const~dting solutions of LP's will feasible. Then both have olutions 3 and Y.,
, now be discussed. The dual problem will also respectively, and B Ty = CT'.

play a major role in obtaining results for more
general optimization problems. The proof of Theorema 3-2 is involved and

, does not yield a method of constructing
Definition 3.4: The linear programming solutions. It may be found in Ref. 3, page 44,

problem of maximizing or Ref. 4, page 118.

CTy (3-8) Since the solution of LP must lie on a
vertex of the polyhedral constraint set, i

fory in R m satisfying suffices to check at most a finite number of
LPD points for the miniknum, This procedure is

Ary < B (3-9) followed in an organized way by beginning at
any vertex of the constraint set. If the cost

y > 0 function cannot be decreased by moving
along an edge of the polyhedron that inter-

. where the matrices A, B, and C are the same sects this vertex, then this vertex is the
as in LP, and are called the dual of LP. solution. If, however, the cost function de-

creases by moving along some edge, this
The results of Theorem 3-1 relating LP and policy is followed until a second vertex is

LPD are proved in Ref. 3, page 41, and Ref. reached and the cost function has been
4, page 118. reduced. Since there are only a finite number

of vertices and it is impossible to return to a
Theorem 3-1: Let x and y be in the previously occupied vertex, the process must

coistraint sets of LP and LPD, respectively, terminate at the minimum over the constraint
~Then set. :::.S

I. Cry , BTx. (3-10) In order to illustrate the argument pre- 'AI sented in the preceding paragraph, consider
2. If Cry = BTX thenxandy (3-11) Example3-2.

are, the solutions of LP aid LPD, respectively. Example 3-2: By moving along edges of

te constrain! set, solve the LPI 3. If LP (LPD) is unboupded, then LPD
(L.P) is infeasible. minimize f(x 1 , x2  2x I - X

4, If LP (L'D) is feasible and LPD (LF) is subject to
infeasible, then LP (LPD) in unbounued,

These results are useful in constructing
solutions of linear programming problems. -X, >
Tw'y are also used in providing Tl-eorem 3 2
that i central to linear program. ,g theory. -- 2x1 - 2x - 3

3-4
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........ .. x ,X2 > 0. The only move admissible is toward (1/2,
1). A unit move in this direction is obtained

Solution: The polyhedral constraint set is from
shown in Fig. 3-2.

x2

2 A121 X [~

which causes a change in f,

df Vf(l,l/2)dx + VT- - ->0.
->2 2

Figure 3-2. Polyhadral Constraint Set Tai., : - Therefore, f may not be decreased in ..moving :

The vector from the vertex (1, 1/2) so this point is the
The vector solution of the problem.

[2 The idea of moving from vertex to vertex is
-otVfr(x ,x)= O good for visualization but is poor for higher

dimensional problems. The same idea, how-
ever, can be implemented algebraically. In

whose direction as shown in Fig 3-2 is the order to obtain relations which will be re-
direction of steepest descent of f(x). Starting quired for solution of LP, define slack vari-
at (0,0) a unit movement along the x, -axis ablesu 1 ..... u m so that
yields a change

Ax-C=u0 0. (3-12)
S-df Vf(O,O)dx - 2

The cost function of Eq. 3-5 will be denoted
and a unit movement along the x2 -axis yields by the variable -
a change

, ,,w=Brx. (3-13)

df Vf(0,0)dx- I
The problem LP now takes the form

so both moves yield a decrease in fix). Choose Ax - C - u 0
the xI-axis and move to the first vertex (1,0).
The only movement rossible is in the x > 0

+ X2 -direction from (1,0). A unit move in this LP'.
direction yields u> 0

df Vf(l,O)d =  I R T Y= minimum I
which decreases f. Move in this direction to The solution of LP' is the same as the solution
the first vertex (1, 1/2). of LP.

3-5
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The information contained in Eqs. 3-12 using a method which is based largely on
and 3-13 is contained in the following matrix Thorm3.

- equation (called the simplex tableau):
Theorem 3-3: If in Eq. 3-15 b' 0, i 1,

all 1112 ... ali 1-CI X1_ IIIl .n, and - C1, 0,1 =I m,then the
I solu~tion of LP is

a21 a22 ... a2, C X2  U2

(3-14) s.c, ,.,

a,, I ar2 ... a,,n Cm X1" Urn W .

b,~ b2  ... bI0 I W '
It is clear from this theorem that any

Eq. 3-14 may be viewed as mn + Iequations method of choosing the vaiables Y, and rwhich will terminate with non-negative entriesinvovin thevarable x1 ...,x,, u1 . rns in the last row and column, except perhapsjw. At present Eq. 3-14 may be interpreted as fr6 ilsrea ehdo ovn P
deteminng u.Ur~ an w xpliitl in Before developing such a mcthod, several

terms of x1 ,... x, It might be desirable to definitions will be helpful.
determine some other combination~ of in + I

of he arible intems f te rmaiingn.Definition 3-5: In Eq. 3-15, the variables
Except in singular cases, this is possible. sPj 1.. in, are called basik variables, while

the variables r1, I 1__n are called nonbasicAssuit ip tflat in + I of the variables sj. vrals
smrnW' anc -.',e fiI determined explicitly

in terms of the iing n variables rl,..., r, n Definition 3-6: The set of variabless.
Eq. 3-14 wi!1 tie e ihe forma S I rl,. r,, will be called a basic point. If c,ra' ,.. . ~0, 1_.., it, in Eq. 3-15, thern the basic

a 1  , 1] Sjpoint will be called a basic feasible point.a-, II22 .. 2
Z a 1 a 2 .. ' 2  A certain geometric interpretation may

1r L now be given for the nonbasic variables. In
(3~15) LP' it is clear that the boundary of the

constraint set of LIP is obtained by settinga.1 I an2 '7 a C' , " S various combinations of the vat 'bles x1,i ,
it and u,./ Iit, equal to zero. !n the

b'Ib b 6 LJI space R" of the design variable x, ., vertex of
the polyhedral constraint set is obtained by

where pinies denote coefficients obtained having it equality constraints among the xi. i =
when the original set of equations is solved 1,.n i, enforced. By the discussion, this
for rI . _Sm , and w. occurs wheun r, = 0, i1 -.An edgeof this

polyhedron is a line in R" obtained by setting
The solution of LP will be constructed r,0 for n - I indices i. From Def. 3-6 and

3-6
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Eq. 3-15, it is clear that a basic feasible point [ a'~~
* corresponds to a vertex of thd Polyhedral set. +. .. akn- k

This is true since setting the.-nofibasic van-[ i '

ables of the basic feasible point equal to zero
2yields adiissible basic Variables. Further, two. c4

-k Sk.verices lieojithe:samre edg6 of the constraint' L a",
-set- if they' have ii n I of ti-.eir nonbasic 6

varabls i~ cnixon.It is thus clear how the coefficients inEq

The prociess fat interchanging the roles of-a 3-15 change as, the roles of a pair of Variables
basi an a.nonbsicvarablethu beom~ are interchanged. This process may be de-
the ental tol or ethos bsed n Teo~ scribed concisely in the language of Definition

:rern 3-3. Suppose it is desired to make ara
nonbasic variable and ra basiF, variable. If a;
* 0 then the At equation from Eq. 3-15, Definition 3-7: The entiy a;,, * 0, proded-

ing Eq. 3-16, is called the pivot of the
ar + +a',Ir1  +. ar, C- cis transformation. The trarsformation itself is

called a pivot St p.
may be solved for rlto obtain

c'~ a; a,.iThe effect of the pivot step on the coef-
ct a, '- ficient matrix of Eq. 315 niay be illustratedj~) easily by the diagram -

-*SI a .+ rl+ (3-16) O
a1, ;, I1 p~ ~iF -~1(3-18)

Usin ths exresion or ,, r ma be The diagram shown by Eq. 3.18 simply relates
eliminated from the left sides of the remain- ta ntecefcetmti fE.31 h
ing equations in Eq. 3-13. For k * this yields floigcagsocr h io srpae

follrowin as ge t urhe pivot are mutilepbyated

LAI d~]negative inverse of the pivot. All other ele-
ments in the same column as the pivot are

+ a,,. I ak, multiplied by tlw. inverse of' the pivot. All
k a j Ii other elements in the matrix a. e decreased by

thle product of the element in their colun

+aki +[a a,,+ ,a,, and the tow of the pivot, the element in their
I k - . (3-17) row and the column of the pivot and thea,, inverse of the pivot.

3
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Example 3-3: given stage of the solution process and the
-: ' Giv: primes of Eq.3-1 5 are dropped, i.e.,

I'.. j'!l5 2ra.!I = ( -9

13 iioi ,.Givea 2. 1~np -4C-m-

interchange the role of rI and S 2 _ j
. bn 6 1

Solution: The new matrix relation is
-- Primes will now be used to denote the

F"2/3 3 14/3 2 coefficients that result from a pivot step1K .applied to Fq. 3-19. These new coefficients
1/3 -2 1/3 r2 =r are determinui by applying Eq. 3-18.

-,i£"_ _"..'5/3 13 11 !3..J Lw.W.l 3-31 DETERMINATION OF A BASIC FEA-
-' ", :-' -:SIBLE POINT

It is shown in Ref. 3, page 53, -tat this
pivoting transformation preserves the dual If some elements in the right-hand column
linear programmhing problem. of the matrix of Eq. 3-19 (other than 6) are

negative, then the present choice of variables
The pivoting transformation is an organized is not a basic feasible point. Let - ck be the

tool which allows oue to interchange basic negative entry nearest the bottom of the
and nonbasic variables. It remains only to column (again eyduding 6). Since when r=
obtain an algorithm which uses this tool and 0, / = 1...n. sk  - < 0, if there are
Theorem 3-3 to construct the solution of LIP. admissible points in tlhe constraint set of LP,

then it must be possible to increase sk by
.3 THE SIMPLEX ALGORITHM increasing some r, frcm zero; i.e., there must

be some positive akj Choose Jo so that a 1 
>

As was shown in par. 3-2, !he solution of 0. This fixes the column index of the pivot.
the linear programming problem may be
reduced to the choice of pivot points, The To find an admissible row index io, con-
algorithm presented here will have two sider first that after the pivot step
phases. The first phase will co~asist of an
algorithm for obtaining a basic feasible point. ,, Co
The s,.cond phase will operate only with basic CIo = a ° /o
feasible points and will successively reduce

cost function until the hypotheses of It is clear then that candidates for the pivot
,, rem 3-3 are satisfie6. U must be limited to indices i for which

For onvenic;ce in the discussion which
follows, it is assumed that the choice of basic - 0. (3-20)
and nonbasic variables has beea made a, a a,1o

3-8
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With this restriction in mind, consider the The nrocess describe may be given quiter values of c after the pivot step with i 0 to. simply as the iterative Algorithm LP-A:

These are !Step I. Choose - ck as the lowest negative
entry (with the exception of 6) in

, + (321)the right-hand column of the co-
a101i efficient matrix of Eq. 3-19.

; In order to insure -c, > 0, i > k, it is Step 2. Choose any positive element ak/°

that ir row of the matrix of Eq.

c + - > 0, i > k, ii. (3-22) Step 3 rhoose 1i as in Eq. 3-25.

If all ;k 0 this clearly holds. If a11o < 0, Step Perform the pivot step with pivot
4 however, the -equirement, Fq. 3-22, may be

-ewritten as
Step 5. If an- - 0, 1= 1, ..., k, choose

c....( 323 that one with largest index i and
i > , i > k, ii 0 . (3-23)

al, a 1 o return to Step 1. If- c, > 0, i = 1,
m, then a basic feasible solutio',

Further, for i =k. has been found and the process

c +c>3-24 
may be terminated.

a a 3-3.2 SOLUTION OF LP

since akl ° > 0. In par. 3-3.1 an algorithm is given for
finding a basic feasible point. Once this has

Inequalities, Eqs. 3-23 and 3-24, show that been accomplished, the object is to find a
if i 0 is chosen so that second algorithm which successively reduces

a, 0 = _. , (3-25) Since by Eq. 3-19, IV = b 1r +... + b r +
010 6, it is clear that if bo < 0 for some J J0

thvn IV may be reduced by increasin, rio from

then - c, ;t 0, 1 > k and -- - ck . If - ck zero. If a pivot step is performed which makes
is still negative, the proceis m.,y be repeated. rio a basic variable then iv will be decreased
Otherwise choose the next entry above -- ck The choice of the basic variable s, which is
which is negative and repeat the process. to he made nonbasic must be made in such a

way that the point obtained after the pivot
If all the c,, i > k are ionzero, only a finitu step is still a basic feasible point, i.e., so that

number ,I' basic points are possible since the - ci > 0, i = , in. However, this is
process is monotone (nonrepeating). If there precisely 0,e restriction which led to the
exists a point with - , > 0, i = , ... ti, this choice of io in p,.n 3-3.1. Therefore, th- ;..ne

process must find it. The legenerate case in procedure for choosiop l may "c employed
which some c= 0, 1 k is dis:ussed later. here.
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Since w' = w - cioblolaoo, the pivot step Viewed geometrically, the difficulty occurs
determined here guarantees w' < w provided because the path which successive basic points
all - c, > 0, i =  , ..., m. InI this case, follow on the polygonal constraint boundary
therefore, only a finite number of pivot steps may form a closed loop. To prevent this
may be made, and the process n Tst terminate behavior with only a small error in the final
at the sokItion of the linear programming solution an entry, - c, which is zero, is
problem. Termination occurs when b; 0,1 replaced by an arbitrarily small parameter e >

.n. Theorem 3-3 shows that this is the 0. The problem is not degenerate any longer
solution of the linear programming problem. and cycling cannot occur. Therefore, the
The degenerate case where some c, = 0 will be altered probiem will proceed toward the
discussed pa7. 3-3.3. solution.

This orocess is given explicitly in Algorithm Example 3-4. Use the simplex algorithm to
LP-B solve the LP

Step I Choose any negativi entry (except minimize 2xI + 9x 2+ %3

5) blo in the bottom row of the
coefficient matrix of Eq. 3-19. subject to

Step 2. Choose io according to Eq. 3-25 xi +4x 2 +2x 3 > 5
with k = I.

3xI +x 2 +2x3 > 4
Step 3. Perform the pivot step with pivot

a.olo"  x 1 -0

Step4. If any bl < 0. = i.n, choose X2 > 0
one b, < 0 and return to Step 1.
If bl , 0, ] = 1 ... n, then the X3 > 0.
solution of LP has beer found.

First, LP' is:
3-3.3 THE DEGENERATE CASE

minimize w where
In both pars. 3-3.1 and 3-3.2 the computa-

tioral algorithms could have problems if some I 4 2 -5 1  l Ff1
c, = 0. This situation is called degenerate since
when n constraints are made equalities by 3  I 2 4 Li
putting r, = 0, j = I , one has s, = c,

which means that still another constraint is an 2 0 1 0,
equality. The degeneracy arises from the fact
that ii, Li' the a dimensional design variable x Li J
= (xI , ...,xn) satisfies n +1 linear equalities.

Therefore, the a + I equations are not linearly subj -ct to
independent.

x310 0, i=1,2,3, 0,,l2

3-10
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For the first pivot step in algorithm LP-A, pivot step leads to 7 ,9

largeond row. 1o = 2 is 1/6 2/3 - 11/6 11/6 u1 x 3
the only choice available in Eq. 3-25 and 1 1

C 1/3-113 2/3 1/3 u1= x2
c2 4 4> 0. , :i:

L17/6 -7/3 76 29/6j xl L WJ.

The pivot is a22 = 1. This pivot step inter-
changes u2 and .x,. The result is __J

- Put 1o =2,
F 11 4 -6 11 Fuul -U ~

- - =- -11/4, = 1,

-25 9 -17 36J so 50 = 2 and a2 2  -1/3 is the pivot. A pivot
step yields

-1/2 -2 -1/2 5/ u x3

Note that this basic point is already a basic X

feasible point so that the process now trans- I - 3 2 1 x2  U2
fers to algorithm LP-B. Since b', is most
negative, choose -- 1. Now, L1/2 7 3/2 5/2J x v

C1  r2 4
all a21 T

Since this is a basic feasible point and the
so .rst three elements in the third ro are
result of a pivot step is to interchange xI and pst the n the ti medae

u Ths rsuls inthebasc fesibe pintpositiv, then the solution is immediate. The
us* This results in the basic feasible point nonbasic variables are zero,

r i/1i 4/11 - 6/11 -] U = = 0L3/11 - 1/11 -4/1l I u2 2  and the basic variables take on the value

425/11 - 1/1l -37/Ill I x ' x. = 5/2, 11 = 1,andw = 5/2.

Therefore, the solution to the original 11 is

X, =0
Choose/o -. 3.

CI C2 X2= 0

- - 11/6,-.- 11/4,
a a x3

= 5/ 2 .

so io  . The pivot Is a,2 6/11 and a The minimum value of(x) attained is 5/2.
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3-4 MINIMUM WEIGHT TRUSS DESIGN" linearly independent equations in Eq. 3-26.

If a is the maximum allowable stress (bothAs, will become apparent in subsequent
tensile and compressive) f3r the material from

chfters, most ortimal design problems are
nonlinear. Even the problems considered in which the truss is constructed, then stress

constraints am.
this paragraph appear at first glance to be
nonlinear. However, it is shown that the
problem can actually be solved as a linee I S/I( oA1 . (3-27]
program. This will not be the casv in general.
The class of problems and their solutions tha, Further, if ma is the weight density of the
are discussed in this paragraph are takenfrom structural material, the total weight W of the

o ,, truss which is to be minimized isan outstanding paper by Dorm, GoniyAfd-
Greenberg (Ref. 5). Similtr results h_.&bbvp A

reported mo-e recently (Ref. 6). W = P A1Q1  (328)

The problem treated here is minimum where R, is the length of the jth member.
weight design of plane :russes with constraints
on stress. The initial restrictions on the truss The problem of minimizing W of Eq. 3-28
include only the location of joints in the subject to khe constraints of Eqs. 3-26 and
truss. Th" loads to be s, 1purted by the truss 3-27 is rot the complete truss design problem.
are applied at jints. A member with non- In addition to the equilirium conditions of
negative cross-sectional area is allowed to Eq. 3-26, a set of c-mpatibility conditions
cormect each pair of joints. If there are p between displacements cf the joints must be
;aints, there may be p(A - 1)/2 members in satisfied. These compatibility conditions will
the truss. Ira general, then, statically indeter- be nonlinear in the variables S, und A. In its
minate trusses are allowed. coi ,lete formulation, then, the truss design

pr 'em is not a linear programming prob'm.
Let A, = I... n, denote the cross- It will be shown, however, that if the con-

sectional area of jth membe" and S, the load patibility conditions are ignored and te
in that member due to the external loads problem described by Eqs. 3-26. 3-27, and
applied to the truss; S > 0 denotes tension. If 3-28 is solved, its solution satisfies the com-
In = 2u, then equilibrium of tbe joints of the patibility conditions and is, therefore, the
nuss is specified by the equations solution of the truss design problem.

aS = F., i in (3-26) Recalling that compatibility relati,iis are2; - being ignored, it is required that
whe. e Ii are compcments of applied forces at

the joints, and a are direction cosines of the I oAi / -. n. (3-29)
elements of the structure intersecting the /th
joint. All a are zero if the ith element does This is true since if I SiI < oA for some j, then
not iitersect the point of application of F In A, could be reduced with an accompanying
order to satisfy three equilibrium equations reduction in IV. The constraint, Eq. 3-27, is
for the applied loads (including reactions at therefore replaced by Eq. 3-21. The reader
supports), it is assumed there are m* = in -- 3 should note that this irgument would not be
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validif compatibility conditions were being .P', namely, find x to minimize
enforced- since4 ardductiofi in some A, may
result in a vidli'idn. of a constraint not. BtX (3-30)
involving A, explicitly.

subject to
Since by Eq. 3-29, A= 1 I 1, the optimiza-

tion problem is now to minimize Ax-C=0 (3-31)

P- X 0. (3-32)
Or i =l

Thisicar programming problem may now
subject to Eq. 3-26. In order to treat this be solvedby- he simplex method. Before the
problem as a linear programming problem, solution o4he linear programming problem
define can be takE as the solution of the truss

design proble:,W, owever, it must be shownS SJ,  if S1 , . that it satisfit "E mpatibility conditio s
=/ 0,It is clear thT ifftruss specified by 07

0if S,:jt tati sati "f con"ditions
linear programmifigrWpO0blem is staticaul~ie
determinate, it satisfies the compatibility con-

( 0, if SJl>0 = ditions trivially (i.e., there are no compatibil-I ity conditions). For the analysis here, stat-i - 3o, ifS < 0 ically determinate is taken to mean that the
member forces S/ are uniquely determined by

Now, the given loads and the equilibrium conditions
of Eq. 3-26.

As pointed out in Ref. 5, page 32, there
and will be m* posibility nonzero components of

x (basic variables) in the solution, correspond-
SI S+ r8 ing to linealy independent columns of the

matrix A; i e., only m* of the, will poEibly
Denote be nonzero. According to Eq. 3-27, thern, only

m* of the areas may be nonzero. Further,
since the rank of A is m*, the member fkrcesIS ) are uniquely determined. The resulting truss

cT = (F )... , r )  is, therefore, statically determinate and hence
is the solution of the original truss design

A (a,, - a,,)m x 2n problem.

and It is pointeJ out (Ref. 5) that the simplex
method for solving many member truss lesign

BT R I 1 . .' ,")" problems is relatively time-consuming. It is
proposed that the method be refined for this

In this notation, the problem is of the foin lass of problems to obtain a practical mcthod
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of solving engineering design problems. Sever- subinterval, the member-sizes are different. A
al examples are solved in considerable detail plot of W vs a aifd'the forms of optimal
in Ref. 5; the results of one of these problems trusses are shown in Fig. 3-4.
will be discussed here.

w
A bridge truss is to be designed to span two

points, I and 13 o; Fig. 3-3. Three vertical
levels of joints are allowed with five horizon- 24-
tal se, a total of 15 points, as shown in Fig. 22" 20-
3-3. In the general case there could be
15(14)/2 = 105 members in the truss. Loads 16
on th! floor of the truss are shown in Fig. 3-3. 14

1 2 3 4

T Figure 3-4. Optimum Bridge Trusses

The discussion here only touches on the
L 1i 40 3 highlights of the very complete treatment of

V the truss design problem in Ref. 5. TheH+ H" H,+
2 Tt vinterested reader is encouraged to study this

outstanding article in detail.
Figure 3-3. Admissible Joints for Bridge Truss

Before leaving the truss design problem, a
point of interest in the present results and in

In the solution presented in Ref. 5, it is the results obtained in future chapters may be
assumed that the truss is symmetric about the noted. In Fig. 3-4 it is clear that at two values
line of joints 7-8-9. This assumption reduces of u the form of the optimal truss changes
the number of variables to 57. Further, due to form drastically Still, even though the
the assumed symmetry, there are only 14 topology of the structure is not continuous in
independent equilibrium conditions. There- a, the weight apparently is a continuous
fore, there will be only 14 members which function of oa. The same sort of behavior
can be nonzero in the optimum truss. In the occurs in a oeam design problem with con-
solution presented in Ref. 5 the problem is straints on deflection which is discussed in
made nondimensiona! by defining cx = ht/ and par. 7-4. These problems might lead one to
0 = l/V where h and 2 are the vertical and suspect that there is some basic mathematical
horizontal spacing, respectively, and I1 and V structure of the optimal structural design
are applied loads shown in Fig. 3-3. problem that has not been uncovered.

The solution presented in Ref. 5, page 45, 3.5 AN APPLICATION OF LINEAR PRO-
for a fixed value of P(3 = I) shows that there GRAMMING TO ANALYSIS
are three subintervals of values of a on each
of which the truss has a constant geometrical • A major application of lincar programming
form. For different values of a within a given in engineering design is, oddly enough, in
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nonlinear- programming , It -is seldom- that a tial equations on x 4 x X
realistic engineering design problem can, be
formulated as an LP. Realist,. problems are m

'rge ally nonlinear When considered as a Lfz] l a(x) - (3-35)
-' ,j; 1 function of both state and design varibles.

Several techniques tif solution of nonlinear and the bou-.ary operatnr is
progranming preblems are based on approxi-
mation of the nonlinear probiem by a linear B[z] = Az(x 1 ) Bz(x2 ). (3-36)
one, at least: locally. These methods then

Ki .require that the approximating IP be solved.
This subject will be deterred until a discussion In the case of partial differential equations,

of the general theory of nonlinear pro-
gramming has !"een given. a~(x z-::L~z]= E a,(x)

l Ilm aI a n~
Ina x" Ix ... axn

A second application oi linear pro-
gramming which is of concern to the engineer (3-37)
is in the solution of linear boundary-value
problems that arise in such fields as con- and the boundary cperator is
tinuum mechanics, It should be emphasized
here that this application is not of an optinral B[z] = A (x)z (x), x on r. (3-38)
design nature, but rather tall in the field of
engineering analysis. The method to be d;-cussed treats both theI

partial and ordinary differential equations in
One of tie important methods of solving the same way. Let 0P(X),: 1, .k satisfy the

linear boundary-value problems is to approxi- homogeneous differential equation
mate the solution by a linear combination of
known functions. The question arises, "How L[ 1 = 0, in a2. (3-39)
should the coefficients be chosen so as to
obtain the 'best' approximation to the true Further, let ¢0 (x) be found such that
solution?" "Best' may b. defined in many
ways. A relatively new concept of "best" will L[ 0 ] = Q(x), in2. (3-40)
be discussed i' this pa-agraph.

Since the operator L is linear, the new
The general linear boundary-value problem function

may be stated in operator notation as
k

L [zJ =Q(x), x in P (3-33) Z =-00 + , -C.(x) (3-41)

B (zl =q(x), xonF (3-34)
satisfies the differential Eq. 3-3. regardless of

where , is th, domain of the independent the value of the constantF c, The object is
variable xcR n and 1' is its boundary. The now to find these constants so that 7 satisfies
dependent variable is a vector function of x. the boundary roditions of Eq.3-34 as closely
z(x) in Rm. In the case of ordinary differen- as possible.
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Define Examl1e 3-4: Obtain an approximate solu-
tion of

a2Z a2Z I aZAz-+ -- -- =1 (3-48)In this notation, Y will be the solution of the ax x 2 a
boundary-value problcmn if and only if

for all points xon r. z- nl={x, 2 ~1 1 I

The method to be treated here attempts to
minimize the error in Eq. 3-43 at q large 2=0 or x2  1(3-49)
number of points x', R?=!.. L, on r.
Define where n is the interior unit normal to r.

maxY Ii [Wx) I - q(xt) 11 (3-44) Put

12
The object now is to choose the constants 0 -X

as to minimize -y. To see that this is a linear
programming problem, note that Itq. 3-44 is 01
equivalent to 2 2 - (3-50)

B, ['i(x2 ) I -q(x') <y (3-45)2

and q53  8 -- 24x2  + 3x 4 .

K - 1Fix 2) +q(x2 ~ ~ (46) Note that these functions satisfy Eqs. 3-39Bi +q,(') <y (46) and 3-40.
for all iand R.

The domain fl and its boundary I' are
No~te that Eqs. 3-45 and 3-46 are linear in shown in Fig. 3-5. Partial derivatives wiih

the cand y. Since thle ymay be either reSpeOt to the interior normal are shown.
-- positive or negative, it is necessary to define 23Z a

new constants ' > 0 and C 0 such that 2o
I, a n ax2

+,.<- (347)

Now, (lhe problem of choosing -f, c1l, c,- (all aOn OX3,
non-negative) which satisfy Eqs. 3-45 and -za X]

346 and which mninimize yi is clearly a LP. T" fl

Further, it is just a restatement of thle best Figure 3-5. Boundary Condition for
approxiniation criterion of lEq. 3-44. Example 3-4
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4ZThe procedure i.'. now to form Similar inequalities in the cil. Cj a?~ will be
obtained at, all other boundary. j6ikchosen.-

_ I + C I1 2
2x~ -X2  Under the-requirements c,+ -, An4~~ ,72 O1 aCnd7> 0, the problem of minimizzi is then

+3 (&x,!0 24xx y x~ solved.

Rabinowitz in Ref. 1, page 141, reports
and, with the aid of the express&ons for az/an that an approximate solution obtained by the

* ~in Fig. 3-5, compute i + 6z-/an at L points aovMehdi
around the boundary r'. At a typical point,

SI eg., (1, 1/2), c=-0..5571, c., 00764, c. 0.002V'

(28516)C3 his ean tht atalltheboundiry points x",
. ... 7+ aF3n e 0005. Afesult called a

At this point it is required that maximum- principle from the theory of
second-order elliptic partial diffe: ential equa-

iij 3 +(c'- c- - 11/) (e2 -c-)tions then implies

-(285/16) (e3 - C3) < 7 I z(x) - z(x) < 0.0053, x in S2

and wher., z(x) is the true soltition of Eqs. 3-48
and 3-49. This powerful result guarantees that

-1/16 - (c+ - c-) + (11/4) (c+ - e)ihie approximate solution I generated by
linear programming is withiii 0.0053 of the

(285/16) (c+ - c-)~ V true solution throughout n2.
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• CHAPTER 4

NONLINEAR, PROGRAMtNG AND FINITE
DIMEN-910NAL OPTIMAL DESIGN

41NTO CTOT T ETEROF Definition 4-1: The first nonlinear pro-
KNNLI NE A R PRiOGdR A&MI NGi ( NLPi gramming probiem NLP. is: find xeR" to

'As ,ointed out in the preceding chapter, minimize, fWD ' (4-1)
inequality constraints play a central role in i
engineering design problems. The inequalities subject to NLP
treated in Chapter 3, however, are of R rather
special form, namely, they involve only linear gx AX) .4 0(4 -2
functions of the variables of the roblem. It is;J

;, - -- , ] a rare real-world design problem which can be g x)I-

~9 W

< : %)"• put into this form. In general, the inequality whr gx)=.
i L' i] constraints as well as the cost or return

, . I f'unction ir real-world problems are nonlinear. Lg, iX)
SFor this resn oegeneral theory thanreason, otews spciiditwllb." ' • .' that prabented in Chapter 3 is needed. Uls tews pcfei ~lb

V, *- assumed that f(x) and g(x) are continuously
: , ~ ~~~The class of problems considered here is difrnab.Ote thn hsdfee-

liability requirement, .flx) and g(x) are as
, ~ ~~called nonlinear programming, or math- geeaasrqidfoaprtuarrblm

Sematical programming. A vast amount of general asrqie o pnc rpolm

"d ~ ~~~literature has been devoted to this class of Ascn omo olna rgamn
problems in recent years. Several books on polm hc a culyh nlddi
the subject which contain reviews of this N P sg v nb ei ii n4 2! ~ ~~~literature are Refs. 1, 2,and 3. In view of this NP sgvnb eiiin42

l i ~ ~~extensive literature, the purpose ol this rara- Dfnto -:Tescn olna

.: graph is simply to state the nonlinear pro- po
gramming problem and present some key gamn rbe L'i:fn "t
results needed in the study of methods of

otmldsg.minim-ize f(x) (4-3)
4-1.1 NONLINEAR PROGRAMMING

]i Subject to*
PROBLEMS

SFor convenience and clarity in the de-velop- g(x) < O. N LP' (4-4)
ment of' Cethods of solution, the nonlinear
programming proble RM will ne stated in two and

iforms. The first form is gven by Definition
4 f. h(x) = 0 (4-5)

~4-1
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[ solution with only very mildj assumptions.
whee gx) x)This result is a consequence of properties ofI In the infinite dimensional optimization

gi Wx problems of Chapter 6, the space of variables
and lacks -these propertie§s o that no anal6gous

hx hi@)W result is available.

ITheorem 4-2 proivides an easy test for
K-"-.'closednessof the constraint set.

Theorem 4-2: If the functions g(x) and
Unles oherwse peciied it z~i be hex) are continuous, then the sets D and D'

assumed that fix), g(--). and hex) con- aecoedi ~
tinuously differentiable.

The boundedness hypothesis of Theorem
Very much as in the linear propp-mnming 4-1 ma be more difficult to check, par-

problem, the points x which sath~y the -nexpols.Oemt
constraints of NLP and NLP' are %charac- tiua-n oshow that there, exists a number a such that if
terized by Definition 4-3. o ' te ~x<a

Definition 4-3: The sets of -points :ncvR~ oseta L'cnatal eicu
that satisfy the constrainU t Loan see thre inP NLP acull e "lu
called constraint sets. Thi:474j aenoted ,en

D (yrR'lI g(Y)~ 0) 91+M (X)=h,(x)d,t l.,p

for INLP, andan

D'= I xeR" Ig(x) c 0Oand h(x) 01 jmpC ) l .

for NLP'.Nowv, NLP' is equivalent to the NLP:

minimize fix) :
For convenience, Theorem 2-2, which was

stated previously in Chapter 2, is given here sbett
(Theorem 4-1) as Jit applies to nonlinear sbett
programming problems. k(X) < 0,

Theoremn 4-1: Uf Ax) is continuous on D
(D') and this sct is closed and bounded in R", w Ar gx W

thk n IN LP (N LP') has a solution wvhich is anF 1
absolute minimumi of f(x) in D (D'). gin + 21,(X)

This theorem is one of the most easily This is true since
obtained yet most powerful results in opti-
mization theory. It guarantees existence of a giA)- 0, 1= tin + .tnit 2p

4-2
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is just linear programming problem, one must be
careful not to generalize too, much. To

hl(;) O, 1. p illustrate some differences between linear andnonlinear programming, two examples will

and now be treated.

- h1 (x) , 1 .... Examp!e 4-i:

which is equivalent to" :'=Minimize

h(x ' 0.
fx) (x - 3)2 + (x 2 - 3)2

It should be clear that problems of maxi-; : A subject to constraints
mizing fx) are put nr!o the form NLP or
NLP' simply by defining Tx) = - fix).
Further, constraints of the fo; m 9^(x) z, 0 are -X

transformed to-the proper form simply by
defining g(x) _-(x). These transforma- x2 < 0
tions involve no theoretital or practcal dffi-
culty. As will be seen in par, 4-2, een though x1 +x; -4< 0.

the transformation of NLP' into NLP involves
no theoretical difficrity, se.rc practical diffi- The constraint set is the shaded triangular
culties occur. The explicit characterization of region in Fig. 4-1.

equaIhty constra~ints in WLP' will be useful
S later, when methods _0 constructing solutions X
I are discussed.

(4, 0)
Comparing nonlinear programming prob- f-2

lems with the un~constraired problems of f:0
(3,R3)Chapter 2, one might conclude that the (2,f8

inatuie of the cost function f(x) will deter-

mine the location of the minimum point, with
only a check required to verify that con- (0,0) (4,0) x

straints are satisfied. Since the linear pro-
gramming problem is a special case of the Fqure 4.1. Graphical Solution of Example 4.1
nonlinear programming problem, the results
of Chapter 3 show vividly that this conclusion If the constraints are ignored, f(x) takes on
is false. In the linear problem, the cost its minimum at the point (3,3). Observing the
function plays only a minor role in the circles, which are plots of constant value
simplex algorithm and most of the computa- Lurves of f(x), it is clear that the smallest
tional effort is expended operating on the value f(x) takes on in the shaded triangle is
constraint functions. f(2,2) = 2. This is, therefote, the solution of

the problem.
While results from the linear programming

problem yield valuable insight into the non- It should be noted that even though tne

4-1
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solution occurred, oin 'the boundary, df' the increased complexity of nonlinear at; opposed
constrainit~set, it did nbt occur at a corner as,- to the linear problems is not surprising since
it would have if the problem had been linear, increased complexity generally accompanies

this transition in all mathematical disciplines
-. Example 4-2:

Minimize Due -to the compi~xity of NL.P and-NLP',
methods of obtaininig their solutions are

ft(X) (X, W ) + (X2 -generally computational in noare. Moreover,
_ in many meaningful engineering problems,

subject to constrai nts convergence proofs are not available so the
designer must depend heavily on his engineer-

-X o ing intuition. One must--be extremely careful
in applying engineering -intuition. to certainL2 '< 0 -aspects of optimization problems, however. In
n;. t_ problems of erigincering- analysis, exis-

X1 + X2 -44 0 . tence aind~tfiqueness of solutions are taken
for granted- since these properties hold for

the constraint set is just the same as in the very general classes of problems such as linear
previous problein. The cost function, hlow- elasticity, dynamics, circuit theory, and struc-
ever, has been modified. tural analysis, Existence-and uniqueness ques-

tions in optimization problems are, however,
~~~f6 ~' glrb ()tW akes on by -no m-eans trivial. For instance, before tile

of design variables satisfies the constraints, it an optinitili obtained by it coiipptaticdlal
is the solution of Example 4-2. The solution algorithmn, lie shiould seriously consider tho
of this nonlinear programming problem, possibility that this optimmi is only relptive
therefore, occurs in the interior of the con- and an absolute optimum exlsts that will give

- ~-~--~ straint set. This behavior contrasts n. arply much better resulti.
with that of linem programmirg problerns

S where the solution iust occur on thle bound- Due to0 !1*1 weaknesi of ililtion InI dualmmg
-ay ?the constraint set. with optimization irotilenis iwdt 11-. :nherei

r *~'~coplnl~cxity ohf thus%, problen, . 11w Importance
*~'hsei~amples shiow conclusively that thle of theoretical rtoults coim.irning existonvc.

henceica ao 4L'results and computational dlevoted to thiese ljuestions, while p~ars. 41-3

problem, and thfis linearity is not present in in nonlinear progranning problems one
tenonlinear programming problemn. '[le of'ten obhtains a relative nimnin ot'ft l) in
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the constraint set. The question arises, "Is this 4-1.3 LOCAL THEORY
relative minimum an absolute minimum?" In
general problems it is difficult to answer this Without convexity it is difficult to say
question. There is a class of problems, how- much about global properties of-the solution
ever, in which this question is easily answered. of NLP or NPL'. Considerable theory is
Thisxlass is dcscribed by Definition 4-4. available, however, which characterizes local

minima. The approach in the local theory is
- - -Definition 4-4: If D (D') is-a convex set to suppose that f(x) has a relative minimum at

and f(x) is convex on D (D') then NLP (NLP') a point in L) or D' and then find conditions on
is called a convex programming problem. f(x), g(x), and h(x) which must hold at this

point. In this way, many points in D and D'
Theorem A-I, Appendix A, guarantees that rq'., t,,-celiminated a, candidates for a relative

if g,(x), I= 1 ..., m, are convex functions, extrema and perhaps relative extrema can
then the set D is convex. Since the equalities even be located using these conditions. Such
(Eq. 4-5) in NLP' define a surface in Rn, it is conditions, therefore, are-called "necessary".
c.ear that D' is the intersection of that In some proclems it will be possible to obtain
surface with the set ( xeRnig,(x) 4 0, i = 1, a set of conditions that, if satisfied at a point,
.. m). The surface is convex if and only if it guarantee that this point yields a relative
is a plane, or equivalently, if and only if each extrenium. Conditions of this ind, of course,
h1(x) is linear in x. Since by Theorem A-6, are called "sufficient".
Appendix A, the intersection of two convex
Wets is convex, D' is convex if gi(x), I = 1 .... As often happens in engineering, the engi-
m, are c'nvex and h1(x), = 1 ..... p are linear. neer needs a powerful result developed, in
Tihe class of problems NLP' which are convex mathematics to solve his problem. Proof of
ir, oerefore, quite restricted, this result, however, may 'be very complex

and, in fact, contribute very little to the
yeAs will be clear from what follows, con- engineer's insight into his problems. This
vexity is a-very desirable uroperty. Howevc , appears to be the case in many phases of
in the real world, many optimization iob," optin, 1'ion theory, in particular, in the
lems are nonconvex. In spite of this fact, the study of necessary and sufficient conditions
study of convex problems is justified. Many in nonlinear programming. In the remainder
results which hold only in convex problems of this paragraph resuits will be I orrowed
have led to constructive methods wnich are from matheatical developments. -
effective for finding local extrena in noncon- - - -

vex problems. Some of these met!,ods would B e i s m b n
probably never have been developed if only
general nonconvex problems had been NLP and NLP', the following conditions will

treated, be required of the constraint functions g(x)
and h(x).

One of the pnwerful results which follows
due to convexity is given in Theorem 4-3. Definition 4-5" (First-order constraint

qualification): Let x0  be a point in the
Theorem 4-3' A ,elative niimmui in a ,'onstraint set D' (or D if there are no equality

convex programming pioblem is an absolute constraints) and let the functions g(v) and
minimumn. () be dulerei lible at 0 , Then tile first-

4-5
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order constraint qualification holds at x° if la this result, and in fact, in the remainder
for any nonzero yeRn such that Vg,(x 0 )y 4 0 of this paragraph, the problem NJPY is de-
for rach i with g,(xO) = 0 and Vh(x0 )y = 0, scribed. It is clear, however, that putting p = 0
then y is tangent to a differentiable arc in NLP' yields NLP. One of the principal
passing from x inta the constraint set. results of nonlinear programming may now be

stated. For proof the reader is referred to Ref.
Geometrically, this definition says that if 1, page 20.

the vector y is a direction which, 'o first
order, appears to point from x into the Theorem 4-5: (Kuhn-Tucker Necessity
constraint set, then there is a 'urve with y as Theorem): Let the functions (x), g(x), and
tangent which actually passes from ,.o into h(x) be differentiable and let the constraint

- itraint set. The co-'ditions vg(x 0 )y < functione satisfy the first-order constraint
0 for g1(x° ) = 0 and Vh(xO) = 0 are just first qualifications at a point . in D' of NLP'. In
order perturbations of g,(x) and /x) which order that " be a relative minimum for NI "'
indicate that a small movc in the y-direction it is necessary that there exist multipliers
ought to do 'he right thing Vo gi(x . and mRm and weR P such that
n(x). This is ill':trated in Fig. 4-2.

v > 0, i- 1,..., m (4-6)

X 2 -0 Y v1g ) = 0, i 1, ..,m (4-7)

Curvean
x°   and

,0 V I (X,vv) = 0 (4-8)

where

L(xi'.w) =f(x) + rTg( ) + wTh(x) (4-9)

x- is called the "Lagrangian.
Figbre 4.2. First-order Constraint

Qualificdon In a sense, Theorem 4-5 i', an existence
theorem. It asserts that if 5F yields a relative

While all constraints do not satisfy the minimim Cor NL. then the inailiplirs v and
w exist and that Eq. 4-8 ,s satisfied. Oc.ax-

first-order constraint qualification, the follow- s an t, Dne wil r a s ar m n
ingtherem(Re. 1 pae 1) ient...a cass siona /, one will run across an argumen.ing, theorem (Ref. I, page 19) identi,. a class atmtn ojsiytl hoe tc

of conriraints which do. attempting to justify tlis theorem wnnh
states that

TI.eorem 4-4 if g(x) and h(x) are diffe-
entiablc at x°  n D' fnd nl the Sradien's
V ,(x0 ), for i wilh g,(.o) = [ and Vh 0 !
are linearly independent, 1 . p. then sitme i is defired h" t:q 4-/ a: a 0 It is
t% 'irst-order constraint qualificali n is satis- then laiined that ,ince '_ yield% a relatre
fied iinnimu rn for fit) at must yied a relative

4-6
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minimum for L(x,v,w), so VL(x,v,w)= 0 and if for every nori2ro yeRn such that
must hold. This argument is nat valid. For a Vgj0x)y = 0 for v, > 0, vg(-)y < 0 for g,(x-)
rigorous proof of Theorem 4-5 (he reader is = and v, = 0, and Vh(iny -O,it is true that
referred to Ref. 1.

yTVIL(Vv w)y > 0 (4-11)
The' rem 4-6 states additional conditions

which are required to hold if the functions then Y yields an isolated relative minimum for
.ppearing in NLP' have two derivatives. NLP'.

Theorem 4.6: (Second-order Necessary It should be noted that there is a gap
Conditions): Let fix), g(x), and h(x) have between he sufficient conditions of Theorem
two continuous derivatives at a point Y in D'. 4-7 and the necessary conditions of Theorem
Further, let the vectors vg,(x-), for all i with 4-6. Strict inequality is required in Eq. 4-11
g1(-) = 0, and h(-) be linearly independent, for a larger set of vectors y that may yield
If 7 yields a relative minimum for NLP', then only equality in Eq. 4-10. It is doubtful that a
it is necessary that there exist v and w single, tractable set of conditions exist that
satisfying Eqs. 4-6, 4-7, and 4-8. Further, for are Uoth neee,.;ary and sufficient for the
every yeRn such that Vg(x-)y = 0 when g1(3 ) generd problem NLP'.
= 0, and Vh(x)y = 0, it is necessary that

There is one class of nonlinear pro-
yVIL(7, v,w)y > 0 (4-10) gramming problems in which conditions may

be given that are both necessary and sufficient
For proof of this thorem, see Ref. I, page for ai. abselute -xtremum. This class is the

25. Note that the existence of v and iv convex programming problem.
satisfying Eqs. 4-6, 4-7, and 4-9 is a conse-
quence of Theorem 4-5. Even though this Theo,'em 4-6: Let flx) and g,(x). i = I,
theorem involves second-order conditions, it m, be continiously differentiahle and convex,
sti!l gives only necessary conditions, then necessary and sufficient conditions for Y

to be an absolu,.e minimum point of NLP are
A theorem which gives conditions which, if that there exists ik:R" such that

satisfied at some point, are su ficient to
guarantee that this point yields a relative
minimum for NLP' will now be stated. For g(-) 0
proof of this theorem, see Ref. I, page 30.

Theorem 4-7: (Second-ordzr Sufficient
Conditions): Let f(x), g(x), and h(x) be twice v, > , i = 1 ... ' in
differentiable functions at a point X If for
xeD' there exist v and iv .atisfying and

""~~ ~ ~ T(. ,i t g(T) 0 .
",g,(Px) 0) O , iV

The tuchnical presentation of par. 4-1 ends
VLt-r.w) = 0 with this satiffying result Several -,;nn,ents

4-7
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are, however, appropriate at this point. The from the theorems stated in the preceding . - -

analytic necessary and suficient conditions of paragraph.
par. 4-1 could be used to construct solutions
of NLP by solving systems of nonlinear 4-2.1 FINITE DIMENSIONAL OPTIMAL
equations. This is particularly truL of the DESIGN PROBLEMS
results of Theorem 4-8. If one reads the
.current; literature, however, he is led to the The class of problems to be treated in this
dliiilt conclusion that iterative methods paragraph is, in a sense, a special case of the
bia, d" on successive improvements are too nonlinear programming problem NLP'. How-
effective to bypass in favor of metho s that ever, by developing a theory ior the new class
rzquire solution of complicated, nonlinear, of problems which takes advantage of its
algebraic equations. special features, a more efficient solution

algorithm may be obtained.
Even if the results of par. 4-! are never

used by the designer to cons'-t%:t solutions of The general optimal design problem must
nonlinear programming problems, they are have several of the features of NLP'. Namely,
still very powerful toois. Verification of the it is required to have a cost (return) function
hypotheses of one of the theorems may mean which is to be minimized (maximized) and a
the difft. nce between going onto the con- set of constraints that describe the perfor-
puter with the comforting knowledige that a mance demanded of the object being de-
unique solution exist's As opposed to the signed. It is in the representation of con-
frustrating experience of having computer straints that the optimal design problem
print-out which may be meaningless. differs from NLP'.

4-2 THEORY OF FINITE DIMENSIONAL In most problems of design in the real-
OPTIMAL DESIGN workl, the object being d-signed is required to

beha ie according to some law of physics. This
The nonlinear programming problems of behav-ior is described anaiytically by a set of

par. 4-I are quite general and may be app!';ed variables called state variabks. Further, there
to a variety of optimization problems. As is is a second set of variableb that describe the
frequently the case with very general formula- object itself rather than its bchivior. These
tions of problems, special features of some var;ables are called design variables since they
problems within the class being studied are zrc to be chosen by the designer so hat the
not exploited. This appears to be the case object being designed perfo;ms its required
when general nonlinear programming theory function. It generally Lappens that the lws of
is applied to solve optimal design problems. physics that determine the state varhbles
lnt,,, etation of certain of the variables a;id depend on the design variables so tht two sets
constraints in the problem NLP'. w the of variables are related.
context of optimal design, yields very rfective
computatior,a! methods of soluton This To illustrate the differen.e between state
pai!igraph wiyl be devoted to stat.ng the finite and design varables. consider the following
dimensionn! optimal design prc.h!er, drawing design p,-oblens
an analogy with NLP'. and stalng necessary
and sufficient coralitions .nat follow awiectll I ltird [he Loeffcicent of damping in dn

4-it

Downloaded from http://www.everyspec.com



AMCP 706-192

automobile shock absorber so tt'peak ac- optimal design problem (OD) is a problem of
celeration in the passenger compartment due determining bceRk to
to !-o.-4 conditions is as small as possible.

~ydnmiif~z~) ~(4-12)
The coefficient -of dampIng is the design

variable since it describes the object being subject to
designed, and its magnitude is to be fixed by OD
the designer.- Acceleration on the other hand It(z~b) 0 (.3
is a state -variable since it describes theJ
behavior of the object being designed. O(z,b) 4 0 (4-14)
Further, this state variable may be determined
by Newton's laws of motion. Note that the where
desigater has no direct control over the state
voxiable. He may effect it only indirectly by h1 (z~b)
adjusting the design vzriable. This is typical of ,(zb) ,

state and design variables.
( h,,(z~b)_J
L

2. Determine the size of beams to be used 0 1(z
in a structure so that whei. a given set of loads(zb

limits, the deflection of certain points on the I ,(zb
structure is within given limits, and theLrn bJ
structure is as.jght in weight as possible. and all the functions of the probliemt are re-

Beam sizes are the design variables in this quired to have first-order deriv~atives. Furthler,
problem since they- describe the structure it is required that the (r, + 0~ vectors
being lesio ed andi !!e, must be chosen by
the designer. Stress and deflection, however, (4-16)
are state variables that are deterinndt by 3 b]
equiiibrium and force deflection relations.
Again, the designer bas no direct couitrol over arc linearly inderendent for ah i with 01(z~b)
stress and deflcction. HeI may effect these =0 and that thew atrix
quantities only 1)y varying the size or beams
;n the structure.)h417

In most real-world desilgw problems the
state and design variables are J:early idcnti- is tionsingular.
lied. In what follows, the s!tile varajblu will be

an pt-vector, zrR and the desigli %ariable will Teasipinta n nti
be a k-vector, b&-Rl. The basic elements of the Thc aZupinta n arx~
optimal design problem arc (lesntled by nonsingflar gtiaraiitees. hy the implicit itunc-
IDeinition 4-6 tion tlteorein (Ref 4. page 181). that for

give,, / thler, -, a %iiq~ olut ion of Lhq 4-1 1
O') imion 4-6 The finite diensional for, inrther ihL. stale vanal,"le determined
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from Eq. 4-13 as a function of b, is differ- linearly, independent at F. Then there exist"
entiable with respect to b. This fact will be multipliers .eRn 'and peR', with g > 0 such 4
needed later when constructive methods are that for

developed.
H fz~b +XThz~z,b) + pTO(zb) (4-21)

4-7. -LOCAL THEORY
0 (4-22)

Since it is very seldom that the state a
~±wations (Eq. 4-13) are linear in both z and

b, convexity of the constraint set and hence aH (4-23)
the problem will be radye. For this rmason, no a
global results based on convexity wvill be
discurssed. In case Eq. 4-13 is linear, however, and
global results mbay be obtain-ed by applying
the Th eorewrs 4-3 and 4-8. 9(b)=0, j= .inl. (4-24)

It is clear that ;f a new variable xeR" I k iSThe proof of this thecrein may be con-
defincii as structed by simply writing Jown the

necessary conditions of T.'eorem 4-5 in terms
(4- 8) of x and then separating the componentr of x

X Lbi(-8 as in Eq. 4-18.

then he poble OD ~y h l~r i~1 ti~In exactly the same way thc second-order .
form NIVP. According to Theorem 4Z, the necessary and sufficient conditic-is of
first-order constraint qualification will be Thres46ad -,rspcily my

satifie rotOD wit xeR + as ndeen- be stated for the problem 01). No essential
dent variabbl) if the row vectors simplification of the statements of those

theorems o-zurs, however, so the theorems[ahi al, 1 arc not restated hecre.
Bz a .... n(4! Theorem 4-9, just as Theortem 4-5, is

- difficult to use in constructing solutions of
;jot .b / (OD01 Considerable difficuilty arises because one

Liz 3~b j doea not know wich of the ineqtu4lities in
0OD is an equality. For problems with a small

for/ with 0,(z~b) =0 (4-20) number of inequality corstrl.ints this may not
be a difficult ob.;tacle, pr-ticularly if the

are. linearly inde. Penden:. Theorem 4-5 may designer has a good intuitive idea of which
now bc appiied to the problem 0OD. constraints will be qualilies. If, on the offher

,:,nrevn 4-9 (Firstordei Vere.xery Con- hand, there! art a large numnber of in-,quahity
~..015 Let al, the functions appearing ini corn raimls. thei' the number of i01ombina ~toiis

OD) be differen~tiable at a point Z. 9 whith of -.onstrain1t, which, may Ie equalities. is
s.M.sfies EqIs 4-13, 4-14, aid .1-1 F urt her large It m~ therefore, difficuilt t0 deternline
let I hz, vec;w'i, HI qs 4- 19 -20 and 4-21 ) be just Moka h Combination,. wil; bc equaitie, An;
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araly tic Aolution is extremely difficult in this of Fiacco and McCormick (Ref. 1). Theoret-
case.ical results guaranteeing convergence are.,

presented here to indicate the -level of the
Rather than attempt to use the necessary, known theory of SLIMT, rather than as a

cor'ditions to construct candidate solutions, a complete treatment of the subject.
more direct approqach will be followed. The
remai, der of this chapter will be devoted to 4-3.1 INTERIOR METHOD
direct methods of~~bI hg NLP, NLP', and
OD. The interior SUMT is based on the idea of

using the constraint functions to erect a
4M3NSEQUETIALL UCNUSRAINED barrier at the boundary of the constraint set

MINIIZAION ECHIQUE (SMT) D of NLP by adding a penalty function to

A faorit mehod f slvin dificut 'x) which approaches infinity as the bound-
A faorie mthodof olvng dffiult ary of D is approached from thz -interior.

problems, particularly among mathematicians, Once the solution of the augmented problem
is to reduce a difficult problem to a sequence is obtained, the penalty function is altered so
of easy problems. Each of t!,,e easy prob?ems as to effct f(x) less in the interior of D. This
is solved and if the method is any good, the behavior is ilfustrated in Fig. 4-3.
sequence of solutions or easy problems will
converge to flt: solution of the 0,fficult i) + Penalty Funci ia(1) I
problem-. As the title might imply, SUMT
follows just this pattern. It should be clear
that a central vaii of this method must be I
results which guarantee convergence, at leastI

in cases where solutions are known to exist. ~
Thelt mehdprsnedhrxesnialie

duces NLP and NLP' to a sequence' of Pnlyfx
auxilhjry problems which may be solved by Fnto 1

the methods of Chapter 2. The cost rwiction _____

of NLP or NLP' is augmented by a function X1~v
called a peniblty function. The penalty func- (A)
tion is formed from the constraint functions
in suchn a way that as a paramieter approaches fjx; + Penalty
zero for perhaps infinity) the unco,:st'ained Fuction (2)
miinimum of the augmecnted cost ftiw~tior.
converges to ic -nhieinn of NLP1 or NLP'.
Two basically diWferent way,. of doing this are
prestnted here Each has its comiputational
andl theoretical advaitage , andl disadvantag,_
tha: will be described Waei. Penaly(2

DueC tu the large bod) or theory concerning Fnto 2
SUMT. restlits will he pr-,sented in flfls parr (2

graph witlioui proof. '1 he reader v referred X2

SLIM to the .olnpett and well-svrittell tCe3 F~qg.qe 4.3. Penaotl Fi,nctions

4-1l
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As illustrated in Fig. 4-3, when the penalty I. l(x) is continuous and non-negative on
function is decreased on the interior of D, the the interior of the constraint set D and if'
minimum of the second augmented cost xk ) is any sequence of points in 12-
function x(2) is closer to the solution W than converging to .where g,(.;) = 0 for some/,
the minimum of the first augmented cost then k"-. I(xk) = + cc
function P 1. The idea, of course, is that the
sequence of points P)1 generated in this way 2. S(r) is continuous and if rI > r2 > 0,
converges to x. then S(r1 )> S(r2 ) 0andif risasequence

of numbers converging to zero, tifl m S(r)

It should be clear why this approach is = 0.
discussed only for NLP and not NLP'. The
constraint set of NLP' can have no interior Probably the most common penalty func-
due to the equality constraints. It is possible tions (x) and f(r) are
that NLP has no ilerior and in this case the
interior SUMT is not applicable. In what l(x) - 1 (4-26)
follows, it is assumed that the -cnstraInt set D /I I g'(x)

of NLP has an interior.
and

The sequence of points x(i) which is to
converge to the minimum point is generated S(r) = r. (4-27'
by minimizing

f(x) + S(r:) 1(x) (4-25) Any pair of functions satisfying properties

No. I and No. 2 ass.ciated with Eq. 4-25.without regard to constraints, where S(r,) l(x) however, is suitable. It may be to the

is continuous for x in the interior of D and dei ers sdatage t choos e o e
S~r, J~) = - or ay isuchtha V.0= 0 dsigner's advantage to choose another form

)(+for any I < in.Aisuc tat foecg1(in for any particular problem. For other suitable
for any I < I n. t is clcar that if one begins choices of penalty fuctions, see Ref. I, tage
an iterative minimization techmque of Chap-
ter 2 at a point in the interior of D, then a

relative minimum point will he found which
must lie in the interior of D. Otherwise, the Tile rlgoritho, tor solving NLP by the
minimizing sequence would have had to cli:nb interior point techuque is given in )efinmtion
over a portion of the auxiliary cost surface
.hal is infinitely high and none of the-,n,,his will (d0 this.

ldDejtion 4-7. The .iterior point sequen-
In order to obtain the sequence of points 14illy UnLonstramcd minimization algoritlim is

X(11, the parameter r is allow cd to approach given by the tollow:,g
zero. To insure that the ,,equtt.ne 0 1) coll-
verges to a rel:ativ" inhniurn point, the Step I. l)efinc the function
functions /(x and S(r) are required to have
the following properte '(xr) = ) + (r) ,(v. '4-28)
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where S(r) and I(x) satisfy prop- where x" is not an isolated point of
erties No. I and No. 2. Choose r. D, (4-32)
> 0 and x(° ) in the interior of the
constrain" set D. {rt} be a strictly decreasing

sequence which converges to zero. (4-33)
Step 2. Beginning at x(° ) minimize U(x,r0 )

without regard to constraints to Then for x( 0 ) sufficiently near x
obtain P ). Any of the methods and r, sufficiently small,
of Chapter 2 may be employed for
this purpose. lirx = (4-34)

Further,
Step 3. For i= 0, 1,2, ... ,chooser, > 0Fr ,

such thatr + < r,. Beginning at tim 0
() minimize U(xj + t) without SJ 0

regard to constraints to obtain
( 1), where I is the iteration in- ln fxP) I I,.'m U UIxP , I f(')

dex. (4-36)

Step A, As ri -.o, if x(i+ t) - P) II and (fIx t ) I I is monotone decreasing (4-37)
1 f xP + 0) - f [xP)l I are suffi-
ciently small, terminat, the process and
and take x + 1 as the solution of
NLP. Otherwise return to Step 3. {I[x(11 l is monotone increasing. (4-38)

In order to be sure that this algorithm will
lead to a solution of NLP, one would like to
have a result that as rk - 0. a solution is For pioof of this theorem see R,.,. 1. page
appioached. Such a result is contained in 47.

S Theorem 4-I10.
h It has been noted throt,0hout the previous

Theorem 4-1: In the interior point development that if NLP ii convex - i.e.,
algorithm jast given let: Aix). g,(X). g,,, (x) are convex then

"nice" things happen. One of these "nice"
1W[). g,(x ), - -', g,n (x) be coin- tmiings is given in Thcorem 4-I I.
tinuous on the constraint set D, (4-29)

T:%'orem 4-!1: If NLP is convex with a
S(r) lnd tr) satisfy -operties No. unioue minimum point . glx), = I .= ...m.

and No. 2 (4 30) re twice contiluoLly Jiffvrentiablc, and if
E.s 4-29 tlhough 4-33 hold. then '0) gcn-

!'he interior of D be nonei)pt , (4-31D crated by the given .igorithn will converge ,o
III- i inimum point.

rlh-re be -. reltine 1imU;nu Ioini
In I) / thh x- f(vt f-)r all x It hould he not-d that S w", i o whe

III S s w ae 11t1; k'd l ood of . aOgi ri'hii ()ef 4-") ;cquired a p ;', i(O)I
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the interior of the constraint set but no 4-3.2 EXTERIOR METHOD
method -of dbtainhig such a point was given.
This question will be addressed later in this Unlike the interiof method, starting points
paragraph. for the exterior SUMT are not required to be

1, tecntraint set of NLP. The basic idea in
Exaple4-3 SlvetheLPthe exterio, method is to add to the cost -

function a penalty function that is positive
f~x , 2) 1 +x 2  iniumfor points outsidie the constraint set and zero

91XI 2 ) X1augmented cost function from being too far
.x 2 ) - ~from the constraint set if the original pstfunction fix) is "well behaved" outsi(!e

usin th intrio poit SMT.constraint set. It is clear that this approachusin th intrio poit SMT.may not be taken if fix) is inmdefined or takes
SoluioE:on negatively infinite "alues outside the con-

straint set. One very appealing aspect of the
I exterior method is that it handles equaiity as

U(X'r) = '+ x2 - r well as inequality constraints without diffi-
Th ucin () 7.L-X 2 ] culty, so that it can be used on NLP'. th

Thefuntios fx),g,(x), and g, (x) are The penalty function employed for te4
convex and by Theorem A-5, Appendix etrc ehdwl aetefr
A, so are - I g, (x) and 11g 2 (X). Since r > 0, () 4-)
U(x.r) is convex and thus has a uniqueA
minimum. To find it, put where P(t) and E(x) are required to satisfy the

conditions:

ax1  (xI 12. E(x) =0 if x is in the constraint set, and
EWx)> 0 if x is outside the, constraint set.

au r
= 0 1 -X) 2.j P"(t) is cotnou n if t2 "1 > 0,

'( > 0.~ Further, if +c

then N'~ t1) = +c

Probably the most common choicc for P(z)

X2 rPWl) (4-40)

As r- C', x, 'C anid X2  0 so tile solution and
or Eixample 4-3 is

~ (,0)Ex)= Z !g1(X) + Ig1(V)II (4-41)

4- 14
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and obtain an unconstrained minimuin
point of

whredenoted x~)

Step 4. As ti -)oo, if 11 [P)' P ~ 4 jI
and If fP1' - f[xP'')] I are

The basic idea for the exterior method was
given by R. Courant in 1943 (Ref. 5). Hesufcety matrineth
argued that if process and take P) as the solu-

tion of NLP. Otherwise, return to

7T(x, ) 'f(x) + P(1) E (x) (4-42)Stp3

wereminmizd wthot rgar tocontrantsVery much ab in the case of the interiorwere inimzed wthou regad tocertainnt
using tj and 12 with t2 > tl, then since the method, Theorem 4 -guaranteesaceti
augmented cost function is pinmaiized more mesrofucs.
when 12 is used than when 11 is used, the Thcieren 4-12: In the exterior point al-
minimum point corresponding to 12 should gorithm let:
be closer to the conitraint set and hence,-
closer to the mlnimum point of &i) on the f)g)W ... g(xbecnius

cntanse.for all x. (4-43)

An explicit algorithm for solving NLP orEx)aiPt)sifycntosN.
NLP' by this method is given in Definition EIx ad o. saify coniton No..(444
4-8.ladN2ofE.43.(4)

Definition 4-8: rheexterior point sequen- There be a relative minimum point
tially unconstrained minimization algorithm is 3F in that admissible domain D such
given by the following: that fti < &i) for all x 0 "i in

Step1. akean ngieerig ellii-zte ~o)some neighborhood of i, where Y is

of the solution of NLIP or NLP;. nta sltdpito!.(-5

Step 2. Choose t, > 0 and beginiting at The sequence ( tj is strictly in-
x(O find an unconstrained mini- cIeas!ig to + -. (4-46)
mum point of T'hen for x(0 ) sufficiently close to , and t

'x,: t f(x) + P(t, EWx sufficiently la~gt.,

denoted x~i lilt) (4-47)

Step 3 C.ontilnue WilliIh 2. by Choosing
I I and %artig from r(1-1) l'(Q )I1 - 0 (4-48)

4-15
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Urn f l xt 1) f() (4-49) 4x2 + 2t(3x2 - 1)= 0

1121 T~x') ~and
T[x(. t] =f(x) (4-50)

t

fxP)] is monotone decreasing (4-51)

E[xP)]} is monotone decreasing. (4-52) As

For proof of this theorem, see Ref. 1, page , x and x -
57. 3 3.nd

Very much as in the interior method, if the The solution is then
NLP or NLP' is convex, then convergence is /12\
guaranteed by Theorem 4-13. (x,x'2 )

Theorem 4-13- If NLP or NLP' is convex
with a unique minimum point, and if Eqs. . MIXED INTERlOVEXTERIOR
4-43, 4-44, and 4-46 hold, then regardless of METHOD
the estimates x( ,) and tp the sequence P)

generated by the algorithm given by Theorem Both the interior and the exterior methods,-12 will converge to the minimum point. presenmed in pars. 4-3,1 atid 4-3.2 are not
applicable in certain kinds of problems. In k

Example 4-4: Solve particular, the interior method cannot be usedif the interior of the constraint set is empty,

f(x,,x2 ) = x1 + 2x2 = minimum such as in the case with equality constraints. -

The exterior method connot be used if some
h(x,x) __ -I =0 constraint function is not defined or is ill-

behaved otitside the constvaint. A combina-
by the exterior point SUMT. tion of the two methods will now be given

which allows the treatment of probles
2 + IV2 + t +x -1)2 which may have both these undesirable fea-2 tures and thus could not be treated by either

a7" pure interior or exterior methods,
-=2xt ,+2t(xi +X2-1)=0

For convenience, consider NLP'

aT
- = 4x2 + 2t(xI + x, -- )= 0 minim~zef(A) (4-53)

Subtracting, subject to

4x 2 - 2x O .or x = 2x2 . g(x) ,i I. m (4-54)

"rl,, h (x) 0,1 I .... p (4-55)

4-! A
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where the set of all points which satisfy the m denoted x5'4)
inequalities Eq. 4-54, has an inttrior. As
might be expected, the constraints, Eq. 4-54, Step 4. Ac r, 4A cojf 1jjxU
will be dealt with using an interior point X(t-1Ia ]~ 1 J-fx'' r
penalty function and the constraints, Eq. y!fcenl mll"emae h
4455, will be dealt with using an exterior process and take xfQ as the"6&
point penalty function. tion of NLP'.Otews46A rl*

The penalty function used here will be S
As might be expe~1ii oriisuyoth

two mtostr
the mixed indtid; a conrF61~ euti

whr SA ~tEq. Wsaif cni given by Theorem 4-14.
No.I ndNo 2of q.4-9.Itis unesodTheorem 4-14: J.ln;4he mixed point al-
ta x)iafucinoonythe constrairt gorithm let:.'~

ing lgoith forNLPis ow gvenir. the nonempty interior of their con-
Defintion4-9.straint set and A~x), h, (x),.h,,(x)

bo continuous frlx. (4-5 8)

seqentall unonsraied iniizaional- s(r), AA KO) , jafid E(x) satisfy
gorihm s gien y te folowng:conditions No. I and No. 2 preced-

ing Eq. 4-26, and Na. I and No. 21

of the solution of iNLP'.ofE.43.(-)___

Thers exist a relative minimum
Step 2. Choose r, > 0 and tj > 0 and point 3F in the admissible domain D'

obtain an unconstrained minimnum of Eqs. 4-S4 And 4-55 combined,
of such that flu) < f (x) for all x :0
V(x,rl,tz) f(x) +S(r, ) (x) in some n'~ghborhood of Y, where

3F is not an isolated p~ji,' of D'. (4.60)
+ P(t ) E(x), (4-56)

The sequence I r, be strictly de-
denoted P ). creasing to 0 and tjIbe strictly

Step 3. Continue with i = 2, ... by choosing increasing to + (4-61)
r, < r11i and ti> t,,and starting
from P'1i) finding an uncon-
strained minimum point of Then for x(O suziciently close to XV, r,

sufficiently small, and t~ sufficiently large,
V(x,r1,t,) =f(x) -f S(r,) 1(x)

+ P~) ~x)n"'S(r,) I [P) I = 0 (4-62)
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Since (XIX) < 0is Satisfiedatllims
HIT V[x('I, , :J=~)46) > 1. Taking the limit as r -*0, then, 2 1

As I -+ it is necessary that x, + x2 -I
A.-For proof, see Ref. 1Ipage 60. -~0 or Eq. 4-66 will be violated. Therefore, In

Example 4-5: Solve
The minimum point is, therefore, (XI -X2)0

fAX 1 ,X2 )-X1 + X2 =minimum (0,1).

g(x 1, 2) -n £x 2 < 0 4-3.4 DETERMINATION OF AN INTERI.
~ OR POINT

In order to begin the interior point or thc
Solution: mixed interior-exterior point algorithm, it Is

necessary to have a point x(O which satisfies
Since g(XI, X2) is unbounded at X2  0, it a certain set of in-equalities, i&e, a point

must be treated by the interior method and itro oagvncntan e.Ltti e
inero toagve ostan et e ti esince h(x,,X2) = 0 prevents the constraint set of' inequalities bek

from having an itnrior, it must be treated by
the exteror method. From g()~0 ,.. .(.8

r ~~~~If there are other nqatisd-W1-sX I + X2 +.
RnX2 which will be treated by the exterior point

method, they are ignored for now. ~
+ *1 j VA 2 -(4)-65)J

-"-'Lety ilst estimate of isn intoe,,Ior
I~~~~ ~ ~ +2(tI+X 0 (46)e'!0"cdefined by Eq. 4-68. Denote

5XI theInequalities of' Eq. 4.68 whiich are
strictly SatIqriq'dby,; 1V

3V r'

+;AXe "1X2c now i har to strictl sa tisio
so ~ ~ ~ ~ ~ ~ ~ ~ n poisWe itiesivi ;ioe II'UNi c
4.18 by
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ffi66-;fq o m into K; •e., so that no con- derivative hiormation ,o make successive
.iii. -wichl wasoPvviously-satisfied is vio- improvements in an estimated solution of
lated, but constraints which were previously NLP. A study of the problem NLP' wX!l be
violated are, satisfied. This may be- accom- better included ,r. the next paragraph.
plished by minimizing the unconstrained cost
function Geometrically. the method presented here

will first investigate the direction of most
Uy) ") r rapid decrease in the cost function fx). As:.<=,: V,l)= :: erO)+S(r) fg i~v,)]

_16N -eX seen in par. 2-4, this is - T"(x). This
- direction is then :projectedonto. the tangent

with- respect to y, where S(r) and l(x) satisfy hyperplane to the boundary of the constraint
the four constraints - No. 1 and No. 2 set at x. A small move in the resulftig
preceding Eq. 4-26, and No. 1 and No. 2 of direction will then decrease f(x),and will not-
-Eq 4-39,- and, r -is,' st useexflss.6,aolao ofostaints .Lhis

decreased.
As soon as yU) is such that g Iy(I) I < 0 for

som I previously in N, that constraint ia:c. Instead of basing-the derivation of the
tion is switched to K. In this way, constraint method on a geometric argumer,, the work
functions from N may get to K but those in K will all be done analytically. fhe reason for
may never fall back to N. One.. all the this is twofold. First, geometric ideas in
constraints in N are switched to K, the higher dimensions are not always as clear as
piocess is stopped and the resulting y(U) is in those in two and three dimensions. Second,
the interior of the constraint set of Eq. 4-68. thle analytical method used %here will -be
If, the Wi ium 'of;U(YirAs,-"'"J§W- sf _stns-c'--~-.~-,aie "stIlr 'bnstr, nts i N, then the tinuous probl-,ms where geometric concepts

constraint set defined by Eq. 4-68 has no are much more difficult,
interior. In this case, NLP is infeasible (has no
solution) or certain of the constraints of Eq. Extensive use will be made of matrix
4-68 will have to be treated by exterior point calculus notation in this paragraph.
methods.

4-4 STEEPEST DESCENT ME'THODS FOR Recall that for g(x) = , xeR"NJPL i xUj

In (T'ipter 2 a gradient method is pre- ag F 3g,
sented for finding the minimum of an uncon- Tx I |
strained function. Such a direct method has
properties that make it attractive and worth Further, the symbol
developing for the soltion of NLP. It is clear,
however, that due tV, constraints the gradient [6 xi
method studied carier does not apply directly 6x =
to NLI'. It is the object of this paragraph to 6
develop a method which uses only first LX"
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0Z'w1l~deioteA cliageifixazi atin froiitdf -xiAe bft" o
,quati tty w h icfi, d6p efd s-n 1 dijnont efie functionsvh whch i~eeu1es at the Mo"

< 'first, Q6 ck.ngS in, that', quahtity -due~t6 thb -
.anex-i;.For example, -.6i1he sdali h oetnzW~oidadr ino

fdn 6ib 6n f(x), -chane Ax,-4x?-6xi,-isuch thfat 8x'k x fo
sufficiently: small k >_ -0 wuI 46rea86tx

SAO -viol.,.pg~anY const aints. The pibb-
-axlem-istheii to fi~dO such that

* Note that. :this-flirst-order change is juitAVh
%fii'frrm in i-Taylor expfitisitin, Ref. 4, page af Ox0)-t a
84, of fi), io bf(x) is an accurate Approxima-
tion of the change- in 1(x) only for small 8x. is ndinmurr subject to

The method to be developed here resem- g X 0  = [x Oi 0
bles an interior method in the sense of par. t x4-3. Therefore, the method of generating an

- -interior point (one which satisfies all the leA [xQ') I
constraints) presented in par. 4-3 may be
utilized to obtain a starting point. It is Ii-assumed now that his has beca dv.-e, and hat
an ertiniate x(0 ) of the solution of MYP is =I

avaiabl whch stisiesFor further convenience, define the column
g~x(O) ~ ~.vector of constraint functions which are zerogW0))< 0.as

4-4.1 THE DIRECTION OF STEEPEST DE- ~x
SCENT &(x We x~~

If the point xt0 ) is Mn the interior of t.he
constraint set, then the gradienmt method of In this notation the problem is
par. 4-4 applies and the direction in which
x(O -hould be altered is inninit L(4-71)

ax subject to

k > 0. ag 5)) 6R~ 0, (-2
ax x (-2

!n the remairing case, the point x(0 ) is on
the constraint boundary so Mxo)=0 for uT 6bg (4-73)
somne 1. For convenience define the ;et

It is assumed that at points where sever
A(x)= III g1(x)=0 ) (4-70) g,(x) =0, the gradients arc linearly indepen-
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- dent. This is enough to satisfy-hfft-orddr - ': /. .... constrai- qualification (Theorem 4-.4'i" 6t()]=
the constraint, (Eq. 4-72), Theorem 4-5, theme le,[fore, may be applied to obtain the necessary

thediconsrit E.47) hoe -,t~econditions With this new , Eq. 4-74 yields

+Tg 2Xo T= 0, (4-74) 1
ax X 0 , 2NO

where the componentp , 0, of N corre- F *,~aT
spond tog, with indices in A [x(°)]. [1 L w--x ) ax i

Assume for the. tine being that 6g, = 0 for
all iA [x() . Ther taking the transpose of afT
Eq. 4-74 and premultiplying by ag/ax yields a-[x(0)]' (4-76)

g a.fT +g ar - + 0 Note that X > 0 is required since ifA[x(0 )]
ax ax ax ax -X0 ax is empty, then Eq. 4-76 must reduce to the

negative gradient direction.
or since 69 = 0, Putting

aax + 0. a r

Since the gradients of g.[x(0 )' for x j-x ])J [X(0 )
leA i[x(°)i are assumed linearly independent,
the coet ,cient matrix of i is nonsingular and (O (4-77)

T\_ I ag afT x X IX OXJI
a aOx Fq. 4-76 becomes

If all components of , are non-neg- I l i fr[x(O)
ative, then the assumption that all 2X0  axI 6g, = 0, icA 'xO ) } is valid and 5,i which solves Substituting this into Eq. 4-73,
the problems of Eqs. 4-71, 4-72, and 4-73, is
obtained directly from Eqs. 4-74 and 4-75. 1 f [x(° ) I p P af I
On the other hand, if 0 0 for some 2Xo) ax ix.
leA[x(0 )1, then this component of g is Solving for 1/2Xo, obcones
removed from j. Equivalently, Air ( So is
redefined as =- f ,o PI Ll lx(o) -2

ax axjx(O)l ={I g, Ix(O) I = 0 and ,,0 }fUI [ Pf _ ix(O)l . (4-78)

and,' t Ix ° 'I is rdefined as
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Eq. 4-78, givs. a uit yctor V i the g2 (xi, x). = - xI - x2, + 2 < 0.
contained,-difection .f- ite &cbusntzat x .

= ~~ The rn isnowri~k of. d1eter- FiL
*miningdjust how big a stip. sh6u4W6biaken,

S1g(2,2) = 0

8x k& (4-79) g2(2,2) = -2.

whEre k> 0 must be chosen. Therefore, A[x(I)] = { 1". As required by
Step 2 of the Algorithm

Before the problem of step size is treated, af
however, an algorithm may be stated for (2, 2) = [- 1, 4]
determination of the direction of steepest
descent, namely: "a1 (2, 2)

Step 1. Using the method of par. 4-3,
obtain an estimate of the solution3,
of NLP, x(° ), which is in the
constraint set. F =1 , - ]

Step 2. Let/> 0 denote the number of the
present iteration. Compute x [1,- ] = >0
g[x()], j = 1, ... , m, and form the 4
set A[x)J. Compute af/ax(x)J
and alaxx()I for idA [x 1 ]. so A = A. For Step 4

Step 3. Comrute in Eq. 4-75. For all Xi P [10 1 .. , 1
< 0, deletei fromA x) Ito form 01 1 [1,-1]

Step 4. Compute P in Eq. 4-77 and 6x in x [1,- 11/21
Eq. 4-78. If P = 0, then this is the
solution of NLP.

Finally,

Example 4.6: Compute the directio, of U
steepest descent at the point (2.2) for the (/ /2  /2] ; 1/2] )/

NLP Ll/2 1/21 [1/2 1/2.

minimize Axx 2 ) = (,2)2 X rr
81 (1 , 2 ) x 11 NF2 [3/2/ /J 4 ~ Lg .x,2\ X4 3 L3/2•

4-22
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-4,2 STEP SIZE DETE A O ;P+-) P ) + W

£{£ "Thei'e,are~ntany~techniques presented in.the if ,'1ax[x(1+l)]Se -40. The prcessin the .i

i i: - ! literature f6r determining the size of step to algoritha; for the direction of steepest descent
3be aken in the constrained direction of is repeated from Step 2, and a n~w tep size k

• 1 steepest descent. Three of these techniques is computed as above. If, on the , aer hand,
.... -: ae presented here. Thefist technique applies af/laX[X U +l)] 8 > 0, then a re,3ti~ve midni-
>, ...... , to a specialized class of problems in which the mum has been bypassed. To 1a; ate this

"constraint functions are linear. The second relative nimum, do a ont.,dir, nsional
and third methods apply to the general search in th~e direction V.' star',."j 4* xif ) to

-nonlinea problem. obtain xU

• - .4-4.2.1 ROSEN'S METHOD FOR LINEAR This process may be summ-tid 40,,os,, -'s
. CONSTRAINTS Algorithm:

.If the constraint functions are linear, thenStp1Co ue
lnte the direction of stecpest descent c is

:= -7minfound, it may be followed without leaving the 'f o t ' haconstraint fun ti a Tonstraint gr(x)elativd

0 C, for i not in Aoxr):. This algorithm,

therefore, can lead to rather long step sizes. Step 2. Comput

Constraints here are restricted to the torm af

GTx b < 0, 1 = 1i,.

where G, is an i x I matrix of constants. The if

step size is to be determined so that k is as
small as possible and still <0

SGT(x(,) + k81 -bi = 0

for some iLA [x" 1. Only those i need to be x11 '"  x(/) + k8i
considered for which GT&. > 0, since other-
wise this constraint can never go from strict and go to Step 4.
inequality to equality. The step size k, there-
fore, is chosen as Step 3. If

m- rin [-b -G rxU/) af[P() + k 6.i16 i > 0,
k =_ i: dxGil, bx > 0 GiT6 oI

4 iA [xL )  - 1hen find k so as to n~inimize

The point x1+ I therefore is given by fix t  r k 6. I
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4.4,2 STEP SIZE DETERMINATiON x) + k6"

There are miany techniques presented inthe if f/Ox[x(I 1 )&x 4 0. The process in the
literature f6r determining the size of step to algorithia for the direction of steepest descent
be taken in the constrained direction of is repeated from Step 2, and a nw step size k
steepest descent. Three of these techniques is computed as above. If, on the ,aer hand,
are presented here. The first technique applies Of/Ox (X('1 )j8i > 0, then a re.tive mini-
to a specialized class of problems in which the mum has been bypassed. To ha ate this
constraint functions are linear. The second relative minimum, do a ont.dirknsional
and third -methods apply to the general search in ihe direction V' star.,xng ;%: x() to
nonlineai problem. obtain xU 11.

4-4.2.1 ROSEN'S METHOD FOR LINEAR This process may be summized 41, Aos,!'s
CONSTRAINTS Algorithm:

If the constraint functions are linear, then Step I. Compute
once the direction of steepest descent U is mC
found, it may be followed without leaving the k GT8= o l
constraint boundary until a constraint g1(x) = k =| 0
0, for I not in A[x)]. This algorithm,
therefore, can lead to rather long step sizes. Step 2. Compin

Constraints here are restricted to the torm f x(/+

GTx - bi , O,1 .... m
If

where G, is an n x I matrix of constants. fhe

step size is to be determined so that k is as
small as possible and still Ox , 6 I bi < 0

G;T[x(I) + k&il - bi = 0

for some i4A ix': 1. Only those i need to be x(I ' x ( ) + k8.
considered for which GT&. > 0, since other-
wise this constraint can never go from strict and go to Step 4.
inequality to equality. The step size k, there-
fore, is chosen as Step 3. If

min b GTx(I) 0 ,
i' Ix>)  1 G then find A so as to minimize

The point Y t ) therefore is given by flx~' ) [ X, ]

4-23

Downloaded from http://www.everyspec.com



-. !- .,, . ... _i

-ut XU = . . and go;to I-

Step 4. x r and goAo r, -1 -

Stp4 ~L ax ax ax ax_Step 4. IfIfl[xUl+t01-f [xUI Iandll~xU* ) -ix\x x/ tx .,,o:,,

x'11ll are sufficiently small, ter- (4-82)
mirate and take xUl) as the
solution of NLP. Otherwise, return and
to Step 2 of the constrained

:steepest-descent algcri2hm.] - 22 1 1/2 afr
g2a Tf Tf\ a8x =-E- /.-"r¢: tr j  t ";: -

44.2.2 FIXED STEP WITH VARIABLE P 7 '5ax /
WEIGHTINS3L ax j

When the auxiliary problem, lqs. 4-7) (4-83)
through 4-73, was formulated, it would have N t h e i m l
been possible to ask for the step size directly
rather than just the direction of steepest then considerable progress may be made
descent. In many eases, the oehavior of the toward the minimum point. However, sincesolution is much more sensitive to changes in the constraint functions are nonlinear, viola-one variable than another. For stability of tions may occur at any iteration. After a new
calculation then, rather than asking for a point funci) has been computed, the con-
direction U. satisfying Eq. 4-73, the designer straint runctions should be checked. If any
might request a change 6x in xU) which constraints are violated in excess of fixed ...
satisfies tolerance, the method of par. 4-3 may be used

to move xU+ ) back info the constraint set.
Sxlt6x = R2 (4-80)

The computational method is then Je-
where TV is a positive definite matrix (usually scribed in Algorithm for Steepest De".:nt
diagonal) and R is a predetermined constant. With Fixed Step Size:
The elements of IV are often chosen so that
expected changes in various components of x, Step I. Using the method of par. 4-3,
8x, wiil contribute approximately the samemagntud to T I5X. ilematrx T, thre-obtain an interior estimate of themagnitude to 6xTIVSx. The matrix tW, there- slto fNP t ~ hc sisolution of NLP, x(° ) , which is in
fore, is chosen based on the designer's ex- the constraint set. Further, choose h
perience. the weighting matrix It' and step

size Q in Eq. 4-80.
The analysis performed in obtaining the

direction of steepest descent follows with Step 2. Let j denote the number of the
only minor chantes. The only changes of present iteration. Computeg,[xU)
interest, computationally, are and form the set A [i)on . Compute

=_(.agV-1 ag)-, ag If/ --I afT 3fax[Px)j and a>/axtx')j for
\ ax ax! x a' ieA [xU.

(4-81) Step 3. Compute ,X in Eq. 4-81. For all X,
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F<.0, delete I from A [xWJ) to form vided. f[x (l ) + k6x] is decreasing, and con-
Ai(X,'[x . straints do not exceed the given-erroi toler-

ances. When either fails to hold, the resulting
Step 4. ComputeP.? in Eq. 4-82 and 6x in point is called x(J4 1 ) .

Eq., 4-83.
If the process is stopped because a con-

Step 5. Compute xU+1) =x) + x. If any stiaint is violated in excess of its given
constraints are violated excessively, tolerance, the method of par. 4-3 is used to
use'the method of par. 4-3 to get obtain a new point in the constraint set and
from xft1 'l  back into the con- the process is repeated until the minimum
straint set. point is located.

Step 6. If If[xU+l)] -f[xP)] I and 1ix* 1) This method should be most effective when
xU)ll are sufficiently small, ter- constraint functions are easily evaluated but

minate. Otherwise, return to Ste,. derivatives are costly in computer time. The
2 (possibly with altered k and IV). basic idea of the method is to prevent an

excessive number of calculations of the con-

4-4.2.3 STEEPEST DESCENT WITH VON_ stxwd direction of steepest de .-ent.

STEEAINT TOL RANCES
1 4-4.3 A Ss..EPEST DESCENT METHOD

In par. 4-4.2.2 it ' s noted that a step may WITH CONSTRAINT ERROR COM-
be made so large oi to0.violat - a constraint in PENSATION

excess of an admssible error. The method of
dlhoosing step size presented here will prevent In previous subparagraphs, steepes descentthis difficulty. npeiu uprgahseps ecn

methods were given which at boundary points
Let reasonable tolerances e be assigned to generated steps parallel to a constraint bound-

constraint functions g1(x). The object here is aty in a direction which decreased the cost
to mcve inl the constrained direction of function as rapidly as possible. Due to non-
steepest des , nt until some constraint func- linearity of the const.aint functions, and the
tion g1(x), violates the tolerance g,(x) > e,, or finite step size, however, seine constraints u ill
until a minimum of invariably be violated. It is the object in thi-

paragraph to present a new method motivated
f[xU) + kA.x1 by !he article (Ref. 6) which automatically

corrects for violation in constraints.

Let A[x/)l ( il g1[x(1)] > 0 1 be the
A uniform step size in k may be chosen and indices of constraint functions which are zero

step, fraken, checking or are violated. As in the preceding develop-
ment of this paragraph first-order Taylor

gtx ( ) + k6x] approximations will be used to approximate
functions appearing in NLP. The linearized

ror each 1=A[xU) I and e,ch step in k. The version of NLP at an approximation to the
'ultiplier k is increased monotonically pro- solution, xQ) , is
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'minimize -. te eichct'il6f (484 x.13 -88nn~q. 5a~uli~te h-Cx t1 - necessaryqond4t-8s redue * o q-88 ,4

. - -is rit a o - i, I'and Eq. 4-85 asan equhi. - R
subject to ninear'ad'cab e Ts-takenahan

thn be hdeteri'inied and .tcheck nide-to see-

l ostait a vot4- iWhether all c porefits are- no-negati e. Ifany carnapbniiis neAtic i~ hn~h

Whee g L*~ J nd ~ s tkenas he violated and it may be conclixidthkLthe kth
-desired changie in ~,i.e., the total change copintoEq485sudhaebe

taken at the designer's discretion. Usually, so allowed to be a strict inequality. Tile index k
long a4 the constraints are not violated ex- is then deleted from A.
ccssively, the full violation may be eorfected;
i.e. Premultivlying Eq.-488 by a§lax and using

Eq. 4-85 yields
g. l--x(I)], ieA[x t1 )l. (4-86)

-- + - X+ 2Saf a0
In order that step size is not excessive, it is ax ax ax b0

required that
it is assumed, as usual, that the gradients of

Warx =R (4-87) ali constraint functions which are zro or
violated are linearly independent. Therefore,

where 2 is small. Assuming Eq. 4-85 is an the coefficient matrix of X is noncingular and (
equality, necessary conditions for the
linearized ,problem are obtained by using 2 i (.. T YgT
Theorem 4-5. From ax ax/

L= f r a a T + 2Pa g. (-89)

ax a-x- g Lax ax + J3~

+ PIaxT8X Substituting Eq. 4-89 into Eq. 4-88 yieldt

and Theorem 4-5, it is nccessary that Xi 0, 1= _I r ( -_ -  1 'and 6x - x',a 'x/a7

aa aax x ax/ ax.
-+ * .+ 2PA-e 0 (4-88) ?grT / a gr

and

(4-90)
X, g-.S- Atg,) 0o, le A.

\(iax This expression for 6x could now be substi.

tuted into Eq. 4-87 to find 0. To be more
This set of equations is nor ,near in X and general, ioweve., put I/(2p) =y 3> 0 and define
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summarized, in. ,the, qteepqsi-ideicent! At-
gb2rlthmi'llth, st ralnt~Error Compensdtion.

-~~~ 1 L- tp. Make an, engine~iing estimate of

~~X~iOX solution of NLR:I.zK
(4912 Step 2. LUt-the'iteration-number be ~0~

Coih~ute 1~~ anJ or
and' A [x~l) ] And I .'

ox2 =- - A. (49) Step 3. Compute /axi] ad
axa /af/ax [x(l) I and choose the de-

sired change Aj in g.
Using this new~notation-Eq. 4-90 becomes I-

Ox =76x + x2.Step 4. Comfpute 6x and Wx in Eqs. 4-91
-und 4-92.

This representation of Ox has important prop- Step 5. Choose -f by a suitable scheme.
erties gie yTerm41.Calculate X in Eq. 4-89. If any

Theorem 4-15: Ox1 and 6X2 of Eqs. 4-91co onts2aelsthnzr
for gj x0l)] which are close to

and -92 atisy-te coditi'~szero, remove these components

1. 8XIfrom g and return to Step 3. If all
. x1 2 = 0 xi-a 0, proceed.

2..- Ogx2 = g Step 6. Form

- 5x 'y8x t + Ox 2

3. L- Oxl 0ax and A

4 6OX 1. 0 X('+ 1) X(/) + Ox.

A method o" choosing 7j still has not lb en Step 7. If I f~xt1 ')I - f(x 1 ) I I and 11 Ox 11
given. This parameter is interpreted as a are sufficiently small, terminate
step-size and may be determined by one the procesb. Otherwise return to
dimensional search or any other scheme Step 2.
Chosen by the designer. In differcat applica-
tions, different methods have proved effec- 4-5 S~tbEPr"ST DESCENT SOLUTION OF
tive. No single scheme has been found that THE FiITE DIMENSIONAL OPTIMAL
seems best. rhe choic.e of -f at this time DECIGN PROBLEM
constitutes an art as much as a science.

In thic naragraph a steepest-descent method
The u~se of this method may now be of solution of the problem OD is developed.
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Inmre y ways, the:method'of thispataph used to solve Eq. 4.5for z. The object-now
is similar to,-the method of par. 4-4. Herye is- to deteinr,'ie b, change in b(° ), denoted 6b,
however; a'distinction is made biteen design such.that

--c- and state-'.variables, :and the -two 'types of f
ariables arerentl b(1) =:b.(0 ) + b: ( --

The-problemt-tobe solved here is,just s in wilbe an "improved" design. The meaning of
Spa. -2:, Choose bdRk and.zeR"!o n,..,amize "improyed" will be made clear as the analysis

pfogresses. If the new -design vaHoble b(1 )
f(z,'b) (4-94) were substituted into 'Eq. 4-95, this equation

- could 'be solved for the corresponding new ,
subject to state variable z(1). Since the matrix

- "ah/az[z(°),b( 0)]' ib nonsingula;-, the implicit
h(z, b) = 0 O OD (4-95) function theorem, Ref. 4, page 181, guaran-

tees that if 11 8b II is small, then z(1) - z(O)

and will be small. The change in z is denoted 5z so -

that :

¢(z, b) < 0 (4-96) t
I U ()+ Sa. (4-98)

where h(z,b) = [h1(z,b),.... h,(z,b)JT, and
O(z,b) = [01(z,b), ..., Om(z,b)]T. The state 4-5.1 AN APPROXIMATION OF THE
equations, Eq. 4-95, are put into vector form PROBLEM OD ' -

here in order to take advantage of tle The basic idea in the approach to OD t
compact matrix calculus notation. presented here is to constuct an approxinia-

tion of OD which can be solved to obtain an
The steepest descent algorithm for OD is improvement 8b in b(°).The approximate

developed here by first approximating the problem is obtaineJ by making linear approxi-
nonlinear elements of OD by linear expres- inations to nonlinear functions in OD. Linear
sions in the various variables. The difference approximations to the changes in f(z,b).
between the method presented lre and that h(z.b), and 0 (z,b) due to the small changes
of par. 4-4 lies in the treatment of the state 8b in b(° ) and 5z in z(° ) are, by Taylor's
variable. In a sense, the state variable is a Formula, Ref. 7, pag Sr
nuisance since it does not really describe the
system being designed. The algorithm pre- Uf(0) b(O)l [-f(0), b(OiZ
sented here is obtained by first eliminating a-
the state variable from the linearized problem (4-99)
and then solving an explicit problem for 'a +af [ ,(O)
optimum improvement in the design varz3b .b

Very much as in par. 4-4, an engineering h[z(o)" bO) r ',o,. ,,(o)] z
estinatc u; ,o opth.iui design ib madu. It s
denoted by b(° ). Then the state equations, (4-100)
Eq. 4-95, are so!ved for the corresponding +L r (" b(O)],bj
state z(° ). Any method of analysis may be Bb '
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The set %(possibly-empty) simply, contains
all- the iidi6es. ,' Af constraints that wil be

zo), b(O)] '[o) b(O)- r-uired to-satisfy Eq 4103. To--iake
-- XHi AU use of vector calculus notation,

(4401) definthe columinmatric

-~(z~b)3:L IsA I (4-105)
In the- ddvlopnefit:.tfiat follbws, .the-argu-
ments [ O(),b(°).]. -of a1lAfuntions-will be -
understood unless otherwise explicitly noted. If the set A is empty, then is defined as
The-4mbol:S in front of a quantity simply zero; i.e., all the constraint functions, whose 2
denotes the total differential of that quantity. indices are in A are placed in a column

matrix, In ihis way, the conditions, Eq.

fSince I h[z(° ), b(0)]= 0 and z(O) + 6z is to 4-103, may now be written.
satisfy the 'qihtion.h[z(O) +8z,b)8b] -is .....
0o' the linearized version of this condition .is _8 z + ~ 4 AO, (416

_simply z Sb , (4-106)

ah ah where the column matrix 60 is defined as

Eq. 4-102 is viewed as determining 6z as a A107)
| functionof 8b. It Is clear -that Eq. 4-102 canr

be olv, for8 since the matrix ah/az hasbben ~ ~ ~ ~ ~ I asue osnua.A is empty, 40 is defined to be zero.

Inequlity constraints, Eq. 4-96, will be The object of the following analysi$ will be
treated in an approximate manner. The to choose Sb so that f[z(° ) + Sz,b(°) + 8b] i3mrethodployed i s pp ato r ir. Th f as small as possible. If this nonlinear functionmethod employed here is to require that if
0l[((° ),b(0)]  0, then of 6z and 8b i- replaced by its Taylor

approximation, the problem is to choose 8z

60/ < AO/,  (4-103) and 6b to minimize

where AO, is the required change in the value Sf=-=f6z + f 6b.
Sf=-Sz+-Sb.(4-108)

of , dut to the changes 6z and 6b in z(O) and aZ ab
b(O).

The entire argument up to this point has
For convenience of notatoi,, define the set been based on the fact that II 6b II will be

of indices small. In order to insure that this is the case,
* it wll be required that

A j .1[z(o), b(O)] , . (4-104) ,;b (4-'09)
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for e small and Wia-positivecdefinite matrix. dence on 8z is to solve Eq. 4-111 for 6z-as a
The. matrix _ will. be. uicd_:in---,.rticu!ar__ .function-.of 8b. This, however, requires the
problelms to assign 'weights to the various inversion of the matrix ahlaz. The preceding
components of 6b. This is often necessary approach of applying- necessary conditions
when the components of b represent different was-scuttled for just this reason, so another
physical quantities that may be of different method of eliminating 8z must be four
ord!sof- magriitude. Usually W is diagonal. Np.te - 'that if the terms (af/Oz) 8z an.

(a 13z) z could be found in terms of 8b,
To summarize the -approximate problem, then ,dependenco on 8z would be eliminated.

8b and 5z are to be chosen to minimize This is th approach that will be taken here
and also in a later chapter on infinite dimen-

af .f sional problems.
-8Z +2 Jb (4-110)
az ab

Define the column matrix NJ as the solu-
subject to the constraints tion of "

S6Z + 5b =O, (4-111) ah 7,j fT
ar b (4-114)az 3z

- z + - 8b < A (4-112) and the matrix X as the solution of
z ab

and=a . (4.115) -
and Oz O)z

brlV6b t .  (4-113) Note that V6 is a matrix whose columns are
ser&tions of

4.5.2 SOLUTION OF THE APPROXIMATE
PROBLEM h(4-116)

az 0

Necessary conditions of Theorem 4-9 could
now be applied directly to the approximate for leA. Note that Eqs. 4-114 and 4-115
problem, Eqs. 4-110 through 4-113. If this require tihe repeated solution of equations
course of action is followed, however, an with the same matrix on the left and different
explicit inverse of 3h/8z must be computed. right-hand sides. There are efficient computa-
Since the dimension n of this matrix is often tion codes which can construct all the solu-
quite high, this operation would be very tions simultaneously.
costly. Instead of applying necessary condi-
tions immediately, Eq. 4-111 will he used to To see how the~e newly defined matrices
eliminate the dependence of the remaining are helpful, compute the transpose of both
iunctions of the problem on 6z. Necessary sides of Eqs. 4-114 and 4-115 and multiply
conditions may then be easily applied for the through on the right by 8z to obtain
determination of 8b.

T h Oa
The obvious method of eliminating depen- X 3 - z z (4-17)
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-Z2 0 , if A is no emptyax 'z z. (4-118) £ = 0, ifA is empty. :

,Note~that the terms on the right side of these t should be noted that if the limitation,
j equations are exactly the ones which are to be Eq. sho21, o th if th liitisn

elimnate frm Eq. 4HO ad4-12. ur- Eq. 4i21, on the size of 11 6b 11 is not
eliminated from Ecis. 4- 110 and 4-11 L-. Fur efretnthpobmEs4-119 andther; the-term Oh/az) 8z that appears in both enforced, then the problem, Eqs. 4-1 Wn
te thefd tier (ah ) Sz taapersind ot. 4-120, is just a linear programming problem
left-hand sides can be obtained from Eq. ta a esle ywl-salse ehthat may be solved by well-established tech- °
4-111 as niqses of linear programming. This technique

is similar to that used in Zoutendijk's method
all -'l Sb. of feasible directions (Ref. 8). For a discus-sion of this method the reader is referred to

] Using this relation, Eqs. 4-117 and 4-118 the literature.
become Thv necessary conditions of ,'heorem 4-9

may now be applied ,o this reduced problem.WTall af
T b 7 z In order to apply the theorem and in later

z:I-N1"tions, it is required that the matrix Qr
have full row rank; i.e., that the ro-w;and (columns of 0) are linealy Id nd nt.

T r h Further, for use of the theorem ,t is required
i T-Sb E'"z. hat the column vector WSb be linearly3Z independent of the columns of 0. It may be

Substituting these relations into Eqs. 4-110 noted that these assumptions require that
and 4-112, the approximate problem be- there can be no more than k - I constraint
comes: Sb is to be chosen to minimize functiuns which are zero or positive at any

iteration. This is true since the matrix 0 has
S(only k rows and since its columns must be

S b (4119) linearly independent of 2$, there can be at
most k - I remaining linearly independent

subject to the constraints columns. These assumptions are reasonable
T from a physical point of view. If 0 had rank
r5b -c (4-120) k then the equation

SbTWIb Z2 (4-121) 26=

where
would uniquely determine 6b, and there

fT aT (412 would be no optirnizatiin problem.Q" =-~- -fr -h ' (4-122)
ab ab

The constraints, Eqs. 4-120 and 4-12 1, will
and be treated differently, so different multiplier
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notation In Theorem 4-9 will be used for 4-121 and the problem is again solved with
each. First, define the reduced number of constraints.

In any method of solution of the approxi-
t = T£ 1  iLb + Q 6b + v6bT R6b. mate problem, no information is gained if v =

0. Therefore, in the following v > 0 will be

Theorem 4-9 requires that assumej.

al T + (Solving Eq. 4-124 for 6b,t=0 = Rjr + Ar67" + 2v~brl (4-124)

6b - ( (£ + 0 A). (4-127)
where A, . 0 and V 0 2

l is now assumed (to be checked later) that
2(,t Q6b A¢I)= 0, IA (4-125) Eq. 4-120 is an equality. Substituting for Sb

from E'1 . 4-127 into the equality Eq. 4-120,
and

,(6bT V6b t) = 0. (4-126) 2v + 2%p L

At this point, a computational difficulty Rewriting this equation.
arises. It is difficult to determine 6b from
I qs. 4-124,4-125, and 4-126 since it is not
known which of the c-j,,.,;znts, Eqs. 4-120 I'' / = -. Ji , 2vA .
and 4-1"21. will be eualities and which will be
strict inequalities. The question is, "Which of Since OT is required to have full row rank
the inequalities. Eq. 4-120 or Eq. 4-121, will and IV' is nonsingular, the matrix
become stict inequalitics"' This can be inter- I , if A is empty
preted geometrically as a ,uestion of leaving = 14-128)
the boundary znd goilg into the interior of T0 It' Q6, if 4 is not empty
the coastraint set defined by Eqs. 4-120 and
4-121 It has been the experiene with this
technique that once a constraint. say 0i(z. b),
becomes zero, then for several small steps 6b
it will remain zero. This observation has led to It, el ( -' + 2vA). (4-12')
the following computational procedure. fir'
all constraints. Eqs 4-120 and 4-121, will be Note that in the unconstrained ase .,hien 4 is
assumed equalities and 6b is determined using empty, p = Oiice v T 0 and A = 0.
Eqs 4-124, 4-120. and 4-121. [hen the
algebraic %inj, of the A, ,nd P are checked It Subtituting from Fq 4-12) into I'q. 4-127
they are ali non-negative, then this i% the
desired solution of thle problem 11. onl thle 6 1i, 0r
other hand, ,ome j , or v art negative, then 2P
the constraints corresporiding to these multi-
pher are remove'd roni Eq 4-120 or Eq It' tI (4-1"0
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This expression for Bb could now be 3. 7'bb 2

substituted into bbT W6b = t2 to solve for v.
However, in practice it seems just as realistic 4. -RJ T < 0.
to choose v > 0 in an iterative process as to
'hoose t. Once v > 0 has been chosen A may An obvious check on convergence is to
be evaluated in Eq. 4-129. If any components monitor 6b and the associated reduction in f
are negative, the corresponding elements of &f. When small 6b occur and essentially no
are removed and 6b is calculated using the improvement is made in f, the process is
new k,' matrix. terminated. This test, however, leaves a great

deal to be desired since the choice of v can
yield very small steps 8b and falsely lead theTaiin inte4130forprbeine mdesigner to believe that the iterative process is

in Eq. 4-130 for 5b, define converging.

8b' = l1- 1 -M;' R"Tw-')2J (4-131) A much better test is to monitor the
constrained gradient 8b. Since in an uncon-

and strained problem the gradient must approach
zero at a minimum, one might expect that

SO = W-1 M;0 A4 (4132) once A = 0, the constrained gradient Sb
should approach zero. The real quantity

In this notation, 11b601 1 could then serve as a convergence
cIek. Theorem 4-17 makes these ideas more

1 rigoroas.
b = - -B bl + b2 . (4-133)

Theorem 4.17: Let f(z. b), h(z,b), and (z.,
b) be continuously differentiable functions. If

The vector 6b' may be interpreted as a the sequences (0)] and [P( )) generated by
constrained gradient with I/2v taken as a step the above algorithm converge to the solution.
size. The matrix which multiplies V in Eq. z b of the problem OD and if = 0 for all
4-131 e.entially projects the gradient V of sufficiently large /. then it is necessary that
the cost function onto a tangent plane to the 6bI approaches zero as/ approaches o.
constraint set. The term b2 serves to drive
any errors in constraint functions to zero.
These interpretations are supported by Theo-rem .16.4-5.3 STEEPEST DESCENT ALGORITHM
rem 4-16.

The iterative procedure developed in thisTheorem 416" The vectors 6b' and 8b2 of paragraph may be summarized as follows:

Eqs. 4-131 and 4-132 have the following

properties: Step I. Make an engineering estimate of
the optimufi design variable, b(0 ).

!. 6b TllV6b 0

Step 2 In theith iteration,j i, 0, soive Eq.
2. Q1r 6b' =0 4-95 for z(1) corresponding to 0 ).
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Step 3. Form the vector of constraint the designer should be familiar '4h the A
functions -in Eq. 4-105 and solve method of obtainirng ftle given algorithm. In
Eqs. 4-114 and 4-115 for W' and this way, problems with peculiar features

often can be treated by altering the general
algorithm slightly.

Step 4. Compute R. and £ in Eqs. 4-122
and 4-123.

There are two steps in the algorithm of par.
4-S.3' which are not complete. They are Steps
8 and 10. In Step 8, a p2xameter v is to be

Step 6. ComputeM¢ in Eq. 4-108. chosen, but no analytical method of choosing
it is given. This is the classical difficulty with

S . eb and b in Eqs. steepest-descent methods. They give a direc-
Step 1 7. Cmu 4132tion but, unfortunately, they do not allow
4-131 and Eq. 4-132.

analytical determination of a step size (l /(2v)

Step 8. Choose v > 0 and evaluate fi in Eq. in this case).

4-129. If any components of fi arc
negative, take the corresponding A simple technique for choosing v which
elements out of q and return to has worked well in a number of problems is
Step 3. givea here as a candidate scheme. Since it is

the 8b' component of 6b which tends to
Step 9. Compute reduce f, the step size determination will he

based on 6bI. The basic idea is to choose v in
order to obtain a certain percentage reduction

2v in f Let 4f (a negative quantity) be the
desired reduction in f for a single iteration

Step 10. If lf[x1+1)] - f[Px)] I and (perhaps a 5% to 10% reduction). Since for
II Sb' II are sufficiently small, ter- A - 0,
minate. Otherwise, return to Step
2.

7I- 6b. (4-134)

4-5.4 USE OF THE COMPUTATIONAL AL-
GORITHM v is chosen as

The algorithm presented in par. 4-5.3 will QJT~b,
certainly not solve all optimization problems. P (4-134)
It is presented primarily to guide the designer 2 A(
to the proper equations developed in par. 4-5
while he is solving a problem. A.most surely a In many problems v has been chosen accord-
complicated real-world optimal design prob- ing to Eq. 4-134 on the first iteration and
lem will hame some feature which is not held constant throughout the iterative pro-
explicitly contained in the general fornmula- cess. In other problems convergence prop-
tion OD. In order to utilize a steepest-d',scent ert-es were improved it v is changed during
philosophy similar to tile one developed taere, the iterative process.
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CHAPTER 5

FINITE DIMENSIONAL OPTIMAL STRUCTURAL DESIGN

5.1 INTRODUCTION" infantry equipment has presented weapon
system designers with a major challenge. In

Throughout this handbook, structural the case of air mobility, minimum equipment
optimization problems are chosen to illustrate weight is a necessary condition for maximum
the use of the design methods developed, helicopter payload. In infantry applications
There are two principal reasons for using equipment weight limits the soldier's fire-
structural problems for illustratibn. First, power and mobility.
there has been great emphasis on helicopter
and man portability of materiel, which places In seeking lightweight designs, one is
a premium on strutstural weight. Illustrative of tempted to simply use lightweight materials
Army concern with lightweight structures is and lower safety factors. It becomes apparent,
the theme of the 1970 Army Mechanics lioweer, that structural weight reduction can
Conference, "Lightweight Structures" (Ref. significantly degrade system performance. For
33). example, when the weight of an artillery piece

is reduced by 30%, dynamic response due to
A second key reason for highlighting struc- firing the weapon becomes much more severe.

tural optimization is its advanced state of In infantry weapons, the requirement of
development, relative to other areas of the reduced weight has led designers to lighter
mechanical engineerig sciences such as dy- weight operating metlanisms for inlividual
namics of machinery and mechanisms. A few weapons. In lightweight rifles, for example,
examples in these related areas are treated in bolts are much lighter than in previous weap-
this handbook, but development of coin ons and hence arc more sensitive to c.hanges in
putational techniques remains to be done. It friction due to dust and externa! pari.cs
is felt that if the reader develops a thorough than were the more massive bolts in tl'e M 14
understanding of structural optimization and and M I Rifles. There are many eamples,
computational techniques, he will be ,n a some of which will be discus.ed later in this
good position to address problems outside the handbook, of instances in which sintply re-
realm of structures. The fact that the math- ducing weight of subsystens causes problems
ematicb of structural analysis parallels that of which did not occur in heavier designs.
related mechanical disciplines strengthens this
feeling. The lightweight objective, then, requires

that the developer take in overall system view
A cursory review of Army materiel needs and consider the interation between weapoa

convinces one that light weight is a require- %%eight and perforiare of the weapon sys-
ment for a majority of weapon systems being tern As is true in virtually evwry design
develop-, by the Army. The high priority problem in %.hicli the limits oi technology are
placed on air mobility as well as lightweilght approathed, the liglhtweight weapon de'ag:n

5-i
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problem must be considered simultaneously result, the minimum weight design problem is
with elI other aspects of system design. It is often stated with explicit constraints on
not practical to expect, therefore, that one structural deflection, natural frequency, buck-
will find lightweight structural design special- ling load, and strength. A central part of the
ists operating independently of designers con- design problem, then, is representation of
cerned with other aspects of the weapon weapon system performance requirements
development. A technology is needed which that have an impact on structural design. It is
will allow trade-offs concerning weapon- often required that in doing structural design,
weight to be integrated into the overall dynamic weapon performance must be ana-
weapon design process. lyzed to assure that the proper constraints are

included in the structural design problem.
The objective in this treatment has been to

formula'e the minimum weight structural
design problem with constraints realistically 5-1.2 WEAPON DEVELOPMENT PROB-
reflecing the performance requirements of LEMS ASSOCIATED WITH LIGHT-
the weapon system. A detailed formulation WEIGHT REQUIREMENTS
and solution of this structural design problem
is presented in this Chapter as well as Chap- To further explore some of the trade-ofs,
ters 7 and 9. betw:een lightweight and Weapon system pcr-

formance, several typical problems en-
5-1.1 LIGHTWEIGHT VS STRUCTURAL countered in weapon development will be

PERFOPMANCE TRADE-OFFS discussed in this paragraph. The discussionhere is presented to highlight some typical
Normal!y, achieving a lightweight structure problems, not necessarily to identify all light-

Nornial'., acltievng a lighweight structural heeispe entdtsighlgh sromed yia
requires a reduction in the amount of material veight structural design problems faced in
used. The consequence is an increase in weapon development.
structural flexibility that causes increased
deflections, deLreased natural frequencies, 5-1.2.1 AIRCRAFT ARMAMENT
and decreased buckling loads. Conseq uity,
failure modes that were not previously criti- Some of the most critical lightweight tric-
cal, may now become limiting factor, indesgn.Forexaple i gu suporingstrc- tural development problems in weaponry
design. For example, in gun supporting strue- today are in the field of aircraft armament.
tures, tncreased deflection often reduces This is due to the very high priority placed by
effectiveness of tie weapon system by in- the Army on improved air mobility and the
creasing dispersion. There are many ways in need for minimum weigait weapon systems to
which such changes in structural performance be carried by helicopters. The combination of
can have an impact on overall system lightweight structural requirements and the
behavior, extreme environment under which the struc-

ture must perform in helicopter application.

The only effective approach to nuimum generates a very difficult class of minimum
weight structural design is to formulate tire weight strudtural design problems. The weap-
structural design problem to include con- on developer's interest in structural design for
straints on performance which are dictated by aircraft armament he3 primarily in the area of
functional use of ,lIe weapon system. As a weapon and weapon support structures.
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The key structurAl'-requirementi ih this gun 'barrel development, particularly, for=/applidatioifis'aecurate aim illj of ani automatic inifaftryautomatic _weapon application. With

weapon duri fn a great deal of emphasis being placed on
the weaponi support,,structure due to inputs lightweight infantry weapons, the barrel is afrom the weippgh, and from the airframe, natural component in which to beck weight , %"

S which vibrates duie to aerodynamic inputs, reduction. This-is -particularly true for rapid ,"
"i .nust be.conside redr in the design problem. fire weapons In which heavy barrels llie

The mbst difficult. feature of the minimum traditionally been used to alleviate tempera-
weight structural design problem for aircraft tare problems. For a particular buanti co.*
weapon applications, is- the variety of pei- figuration, decrea;cd mass tendK to cause
formance and failure constraints which must elevated temperatures and strosses, To co|i.
be treateO in the design process. Constraints plicete matters, material strengths a0,hi8ghly
must generally be placed'on stresses arising in temperature dependent, making stress co
the structure, anguiar deflection of the struc- straints difficult to handle, Another polentlal
ture at the gun mount, and natural frequency problem, as one tends toward optlinality in
of the supporting structure. These constraints barrel design, Is the possibility that material
generally appear in the form of inequalities, yield properties will become critically depen
For example, stress is required to be less than dent upon strain rates and require their
or equal to the ailowable stress for the explicit inclusion In the design process.
material. This kind of constraint is very
realistic, from an engineering point of view, Another problem, which can arise in re-
but makes the solution of the optimal design duced weight design, is harrel deflection with

) problem rather difficult. resusting reduction in weapon accuracy.
Deflection constraints must, therefore, be

In addition to altering the geometry and considered.
distribution of material in the structure to
obtain desirable performance, it is also possi- The objective of the barrel design problem
ble to induce damping into the s' icture and is to choose barrel dimensions and structural
to use active feedback control devices to material to minimize barrel weight in the
reduce response. These two mothods of re- presence of constraints on dollar cost, tem-
ducing dynamic response will require addi- perature, stres%, and perhaps strain rate. The
tional weight on board the helicopter. There optimal design problem must then include
is a trade-off between design of the structure equations of state of stress and temperature as
and design of other means of obtaining a function of time, both depending on the
improved weapon system performance. These barrel design features.
trade-offs, then, require that we treat the
aircraft weapon design problem as a system
problem, explicitly accounting for the inter- 5.1.2.3 TOWED ARTII.LERY
action between structural behavior, damping, I
and active feedback control. 1 lie principal objective in towed artillery

design is to provide support for a large-caliber
5.1.2.2 GUN BARREL DESIGN tube that will, upon firing, transmit momen-

tuin to the earth without doing damage to the
A second area in which lightweight struc- support structure and without undue dynamic

tural design is of critical importance is that of response. The fundamentals of the design

5-3
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problem then lie in the field of mechanics some of the more ccmplex-lightweight'struc-
and, in particular, are highly dependent upon tural desigitproblems faced intweapon, devel-
the weight distribution within the artillery opment. They are simplifications of the real
piece. problems but are difficult'enough to illustrate

the need for research in development of
In -traditional artillery design, the support design methods. In view of the current em-

structure is flexible but has been quite heavy phasis within the Army on air mobility knd
and stiff in the past so that the flexibility of lightweight systems, new design methods are
the structure was a higher order effect. Also, required which are capable of solving these
heavier carriages reduced the severity of the and many more lightweight design problemrs.
dynamic responseopirblem due to their higher
mass. Recent ,d'evelopments, such as the 5-1.3 PLAN FOR TECHNIQUE DEVELOP.
M102, 105 mm Howitzer, have resulted in a MENT
weapon that weighs approximately 3200 lb,
as compared to the older M0 which The remainder of this chapter will be
weighed 4500 lb. As a result of the reduced devoted to formulation and application of a
weight, problems have arisen in providing a method of structural optimization. As noted
firm support for the artillery piece on soil. at the beginning of par. 5-1, an in-depth
More recent design efforts, including the treatment of lightweight structural design
XM164, 105 mm Howitzer, and XM198, 155 provides insight into application of the gen-
mm Howitzer, have resulted in weapons eral methods of Chapter 4.
which are considerably lighter than their
predecessors. As a result of the reduced For a comprehensive review of structural
str'ictural weight of the weapon, dynamic optimization through 1967, the reader is
response in both of these weapons became referred to Refs. I and 2. Several of the major
,ritical and had to be treated as a key desig" classds of optimal structural design problems
constraint in development of the recoil mech- are outlined in Ref. 2. Some of the key papers
anism. For a discussion of a particular prob- which have appeared in the literature since
lem, the reader is referred to the artillery 1961 ,,re listed in Refs. 3 through 18.
design example of par. 8-5.

Although these are primarily mechanical 5.2 ELEMENTS OF THE ELASTIC STRUC-
system design problems, they have arisen due TURAL DESIGN PROBLEM
to the lightweight design criterion. For this
reason, when one considers lightweight struL A class of optimal structural design rrob-
tural design he must be wilhng to fit his lems in which the structure must remain
structural design problem into a larger system elastit. is treated in this paragraph. The objec-
design program and clearly understand the five of this ,'aragraph is to show how the
interfaces arising between structural and other optimization methods of Chapter 4 can he
system performance characteristics. used to solve realistic optimal design prob-

lems. No attempt is made here to present a
5-1.2.4 OTHER WEAPON PROBLEMS complete thcor) of optimal structural design

that is capable of solving all problems
The example problems cited in par. 5-1.2

are meant to illustrate the essenti 0 f.,atures of [he reader shuuld note that, e en for the
5-4
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classof problems, conidered, herd, it js not ment; buckling loads, andnaturalfreqffenCy_
pog ible-to'blindly applythe, techniques of The,:.olltion of allvai'abfes requrc .to:
Ch pker.4.A- certairamo int ofknowledge of describe-this respons'e due to aoplied 16ad will -
structural aqr,..;ty-la is equired before a reason- be denoted by the statt variable vector z. The,
able stalenient of the-design problem and a manner in which-z is related to the-dc~ign-
mdthod of- ioluion can be obtained. Even vaiables and applied loads will be discussed in
more importa ., tle structural deigner.needs some detail later inthis paragraph.
to 'hive a-ihorotW *_-knowledge -of the opti-,
mization metiiods ' f hapter 4 and their 'The cost of the structure must now be
development. Ag-wilfibe seeni in-some cases it described as a -eal valued function of the
is required that:pats of the -design problem be design and behavior variables. In keeping with
interpreted -in lkht of the derivation of the te preceding notation this function will be
optimization method. Inthis way the nicthod denoted as
may be_ adapted for solution of a particular
class of pbilnis. J = f(z, b, t). (5-1)

5.2.1 THE OPTIMALITY CRITERION where t is -ne or more eigenvalues -such :o
bunkling load and natural frequency, Befere a

The meaning of optimal or best must be meaningful discussion of treatment of the
clearly estabJished in each problem of inter- stru(tural design- problert. may be given, the
est. In order 'o have a problem which may be behavior of the structare due to loads and
solved by th; previously developed ,'-timiza- constraints on that behavior mwst be ana-
tion methods, a real valued measure of the lyzed.
cost of the struct-re (value of the structure)
must be chosen; Such measures as dollar cost
of the structure, weight of the structure, or 5-2.2 STRESS AND DISPLACEMENT DUE
dynamic response of the structure may be TO STATIC LOADING
chosen.

It is assumed for now that the structure of
XVoig with the choice of a cost function, interest is either made up of a finite number

the parameters, or dcsign variables, that repre- of distinct interconnected members or that
sant all design alternatives must be chosen. large continuous members in tht. structure
These parameters will ofter be dimensions of have been approximated by a finite number
structural members, area of member cross of elements as in finite element techniques.
sections, or locations of joints in the btruf- Further, it is assumed that the entire structure
ture. In keeping with the notation of the is described by a vector design variable b.
preceding chap.er, these design variables will
be denoted as bl,. I = I ...., m. For con- Let stresses at critical points in the struc-
venience of notation, thae variables will be ture be denoted Zi, . . ., z. and displacements
put in the vectnr form b = [b . ,, b,, IT. required for the analysis and design of the

structure be denoted zr+ ,  . ", zn. The
Invariably, the behavior of the structure behavior of the structure due to any given

under load will have to bu considered in the load may then be specified by the vector state
design problem. The response of the struLture variable z = 1: 1......, z. IT. Attention will
may i rclude quantities suLh as stress, displace- be restricted here and in the remainder of this
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chapt~r to 9tiuctures whiich dbey Hook'law, These. constraints ca -generally be wvrittenjan
i.6., At~essand,,aispiaceifient are~ determined the form

C5by linear 'eq~tiois,. It is-dea ,t:owever,-that
the--disighi iariables-play a 1ar& -part- irivtf e O(z, b. t) 40 (5-4)
respons e of th structure to loads.- The depen-
-dence -on2 thd design variibles enters ~th~se Where O(z,;= [0~~~~ . . ,zbt
linear -equations through the coefficients. The The inequality constraints Eq. 5-4, arc
equations for z.will be denoted -required to besatisfied for~eachiof the states

Zi due to different applied, loads A1.
A (b)z -P- -52

-Itis clear that the Eqs. 5-2 and constraints,
where P is a matrix o~f loads and Eqs. 5-4, fit into the formulat ion of the finite

dimensional -optimal design problem of par.
A (b) -(a,1(b)] I ,, (5-3) 4-5. r-eqtment of the restrictions imposed by

is a m~tri -wfos elcidns dpen ohtim Eq. 5-4, however, must be delayed until-
-is -mitri -woseelemnts diendon-thd similar restrictions due to other behavior

design variables, constraints are accounted for. The entire

In this formulation of the prol~lem, x and problem will be treated in par. 5-3.
may be- generalized state and baad variables.
Eq. 5-2 may 'be obtained through direct 5-2.3 NATURAL FREQUENCY AND
application of equilibrium and compatibility BUCKLING
conditions or through appILcation of -wia-
tional criterion for equilibrium. In today's As pointed out in par. 5-1, the desire to
structural analysis technology, Eqs. 5-2 are obtain lightweight structures has led to
very likely to be obtained by finite element rsnnepolm nlkwsbcln
methods (Refs. 19, 20). If the structural problems. It is necessary, then, that a mean-
analysis problem is properly formulated, the ingful optimal design methodology be capableofefrigcntansoKievhematrix A(M is nom2 .gular and z may be ofeorigcntats neinvue
obtained by solving Eq. 5-2. It is assumed that associated with the system response. The sort
the alementb-of the m atrix A4(b) are diffar- of constr. 'nt considered here is
entiable wah respea to b.

> (5-5)
In most- ra-rld structural design prob-

lems t, strucluri o r~zquired to carry a whole where Is buckling load or natural frequency
£ indly of loads that ucc-ur at different times and 'Is a lower bound on that eigenvalue.
in the life of the structure. The treatment More general restrictions than those of Eq.
here wvill be limitea to a finite number of 5-5 are Included In the general constraint, Er+
loads, denoted P1. 1 = 1, . ., s. Associated 5-4.
with each !oad is a state ?t determined by Eq.
5-2. Much as in Eq. 5-2, the equations of

vibration or buckling may be written in the
Conistraints on behavior of the structure fornm

due to each of the applied loads P ,j
include bounds on stresses and uisplacements. K (b)y Al ~(b)), (5-6)

5-6
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wherey= [yi,. " is an eignvectoi of this- quotient is the'*smallest e!genyaIu,..A-
whi6lplays the roic of-asi~itevaf-iable,. direct, .-rethod: of 'minimiiing, the Rayeigh, : -

quotient is discussed in par. 2-8..
K(b) - -[k,1(b)] , (-7

is generally, symmetric positive definite, ma- 5.2.4 METHO. OF SOLUTION
trix, and In the preceding formulatiin 'f the opti-

= (5-8) mal design probiem, the cost functions and
constraints Associated with stress and displace-

is generally also a symmetric positive definite ment can be put into the format of the
matrix. Eq. 5-6 is often obtained through problem treated in par. 4-5. The constraints

a finite element formulation of the structural associated with natural-frequency and buck-
analysis problem (Refs. 19, ~20). ling, however, are not of exactly the same

fOrm. One difficulty is that the coefficient
.There ar many methodsor omatrix for the ,cigenvector y. K(b) - $M(b),

f t gmust be singular at the solution. This clearly
eigenvalue and associated- eigenvector in Eq. contradicts the assumption in par. 4-5 thatJ 5-6. The first method requires that the inverse
of K(b) be computed. Multiplying through state variable.

Eq. 5-6 by K- I (b),

I This situation is a direct result of Murphy's
K- I(b)M(b)y (5-9) law "if anything can go wrong it will".

Actually, it is not realistic to expect that a

This problem is now in standard form and the mathematical fonulation of the kind pre-
largest eigenvalue of K- I (b)M(b) is sought. sented in par. 4-5 should contain all real-
The power method of obtaining this eigen- world design problems. Already, an important
value is quite effective (Ref. 21). It is par- problem has been encounter'J which requires
ticularly effective when a good estimate of an understanding of .! ..evelopment of par.
the eigenvector is rvailable. In the iterative 4-5 in order to include ,he new problem in
design technique, a good estimate is generally the steepest-descent algorithm. The eigenvalue
available from the prcvious iteration. The problem, fortunately, can oe treated very
power method is, therefore, well suited for nicely by the steepest-descent technique.
use in iterative techniques. This method does Developmert of the method will be done in
have the severe disadiantage that K-i(b) par. 5-3.
must be computed for each new b.

5-3 STEEPEST DESCENT PROGRAMMING
A different method of finding the smallest FOR OPTIMAL STRUCTURAL DE.

eigenvalue and associated eigenvector of Eq. SIGN
5-6 without computing K- I(b) is based on
the Rayleigh quotient us discussed in par. 2-8 !n order to obtain a steepest-descent al-
and Ref. 23. The smallest eigenvalue of Eq. gorithm for the design problem with con-
5-6 is obtained by choosing a normalized straints on r'3envalues, it is nucessary to go
vector y which minimizes the quotient back into the derivation of the algorithm of
yTK(b)y/lyTM(b)y]. The minimum value par. 4-5. The major effort required here will

5-7
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'be theiin.aration of'the siuctural design,.

.probl 61e dtaj..;an'appiq, W~t:rilbl 0f AN"! = " :  (5-I15) --"

ifhe ,kind ddksibed, by 134s. 44119 -through ;
4-121.for each 0/, 0. All this follows since t,(z.b) in

the-general formalation is simply A(b)z in thet,.1 LINEA111ZED cosT AND CON. .
.sT i!N : NCTI0N S present piiobleif so

Sinc tbe cost ain d coi stit :functions -"-=  [(b)z I:

'2', 7b .

depend. on. zi 'b,. and - the first orderb

be rturbation o these function s due to small es'

chunges Sz, 6b, aad 8r'An z, b, and '  is

+= += (-(5) -a

wit A symmetric so AT = A. -
and

Thus, the explicity dependence of Eqs. 5-10
eand 5-11 o lz can be easily eliminated. It

az M- ar 6', (-1 remain', 'q le~ermine 8r" in terms of Sb. This
probl3mhas been addressed in a completely

The problem of writing the perturbed cost rigorcus manner by Kato (Ref. 23). Explicitand cons explicitly in terms :f expreisions are given there under quite restric-

6b now reduces to obtaining explicit ex- tire hyootheses. A formal development will
presslons for the terms involving 6z and St. be givai here which obtains the same result.

From Eqs. 4-117 and 4-118, and the It is assumed that the eigenvaes and
perturbed state equation we obtain, just as eigenvectors of

Eq. 4-119,
K(b)y = M(b)y (5-16)

6z T a [A(b)z b (5-12)
aznd depend continuously on b and further, that to

first order, the following perturbation equa-
and tion is accurate

• - = - [A(bzreb (-13) K(b)6y + l- I K(b)y I Sb = b.Ti(b)y

az ab ab(5 -17)
where d and X are determined by + 2-- a [ dd(b)y 6b + c(b)ly

AXJ )-- (5-14)h z where y and t satisfy Eq. 5-16.

and If K(b) cr ot(b) is not symmetrice it is

5-8
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necessary to solve the adjoint eigenvalue tion-thatEq. 5-f7holds is highly questionable
problem, from an operator the itid point of view.

Under reasonable assumptions on- the fitite

KT(b)7 = MT(b)F (5-18) dimensiona! eigenvalue problem treated here 1K
however, Eq. 5-19 is shown to hold (Ref. 23);

that has the same eigenvalue t as Eq. 5-16 but i.e., even though the jqstificat.on given here is
a different eigenvector 37. Rearranging and not mathematically rigorous, the result, Eq. 3.

- premultiplying by y T this is 5-19, holds for a-large class of problems,

" Defining
; 37'[K(b) - tM(b)] 8y + 7T [K(b)y] 8b

Sr . [A(b)z]_ br[. [M(b)y} 5b 3b ,b

=3TtAf.(b)y + I ~L/3 7 T(b)y1ij

-- " Since the first term is a scalar, x( 3-A[K(b)y] T.

tf jK(b) -3F.218 [M(b)y I .I 7 (5-20)

and
Sincej7 is an eigenvector of Eq. 5-18, B T T T

[KT(b)- MT(b) 7 = 0 b 3b

and this equation becomes + ( [K(b)y] y

Aumn [K(b)y 6 -yT aM(b)y) 6b{1 (:=-'{' I [M(b)y 1 7 (S-21)

= j7T Af(b) y .  ,

Assuming T A(b)y * 0 which will generally x Ib/ M(b)Yl,
be the case, or

0, if is empty.

r"b KbEqs. 5-10 and 5-11 become
(5-19)

.'f" [_(b)y] 6b l'TrM(b)yl. 6J = I 6b (5-22)

and
Derivation of the perturbation formula, Eq.

5-19, has been strictly formal. The assump- = 6b. (5-23)

5-9
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The lineafized problem'is -now to minimize -M; (0 T | 1 .+ 2v,). If any
&f,,Eq. 5-22, subject tb-constraints component of IA is negative, re-

move the corresponding row from
T and return to Step 3.

Step8.bCmput

where A is the desired correct'on in con- Step 8. Compute

straint error and
6b = (- Ra' T

5bTIVlb <
and

where IV is positive defirite and is small.
This is precisely the same pr(,blem in par. 4-5, 5b2 = jj'l R£Af;0A&
Eqs. 4-119 through 4-12 1, so the theoretical
results and steepest-desceht algorithm of that and form
paragraph apply with proper interpretation. I

5b -- bl + 60.5-3.2 STEEPEST DESCENT ALGORITHM 2
FOR OPTIMAL STRUCTURAL DE-
SIGN Step 9. Compute

Step 1. Make an engineering estimate of b(T+t) = bU) + 6b. It
the optimum design variable b(°).

Step 10. If all constraints are satisfied and
Step 2. For 0, 1 ..., solve Eq. 5-2 for Sb is sufficientiy small, termi-

zq), Eq. 5-6 for yU) and W, and nate. Otherwise, return to Step 2
Eq. 5-9 for 37 (if k(b) or M(b) is and continue the process.
not symmetric) with b = b).

All te properties of 3b' and Sb derived
Step 3. Form as in Eq. 4-105. Solve Eqs. ir par. 4-5,2 hold in tJ'*.. case. Further, the

5-14 and 5-15 for NJ and X . discussion of that par igraph regarding suh
things as choosing v also hold. The reader

Step 4. Compute V and £2 in Eqs. 5-20 should refer to that paragraph for detailed
and 5-21. discussions.

Step 5. Choose Af as the desired reduction 5-3.3 COMPUTATIONAL
in corstraint error. CONSIDERATIONS

S -p ( Co.-,-.i Several comments on the computational art
used in solution of these problems are in

( 1, 1. k is empty order. First. if a feasible design was chosen
Tl initially, large steps could be taken unil oneS , ,sewhere or more constraints were violated, d, which

time the step size was reduced. Second, it was
Step 7. Choose v > ,.. ( _ w.te ip noted that a- the optimum was approached,
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oscillation occurred. By monitoring the dot number of constraints with positive compo-

product, 6bU)T 5b O - 1), oscillations were nents of p was always less than or equal to the
sensed when negative values of the dot prod- number of design variables of the problem.
uct occurred. Thus, step size, 1/(2v), was This procedure of adjusting the constraint set
divided by two when negative values of the has worked very well and has minimized the
dot product occurred on tw% oaccessive itera- possibility of divergence of the algorithm.
tions. Finally, the most effective method of
adjusting step size was to monitor successive The method piesented is relatively auto-
reductions in cost function after feasibility matic in the sense that, for the computer
had occurred. Once insignificant reductions program developed, the input data given is the
occurred, the step size was reduced to obtain only pertinent design information required
finer convergence, for solution of the problem. All the necessary

matrices and their derivatives are automati-
The Power method used to compute the cally generated in the computer. Any person

smallest eigenvalue performs quite well. At with a reasonable knowledge of FORTRAN
every iteration, the starting value for the language should be able to handle the pro-
eigenvector is taken from the previcus itera- gramming without any difficulty. The method
tion which manifested a very rapid rate of is developed to meet simultaneously displace-
eonvergence. An accuracy of 0.1% in eac! ment, strength, and frequency requirements
component of the elgenvector was used to on the structure. The technique, therefore,
compute the new eigenvector. The stiffness can be made user oriented.
matrir for the structure was inverted by the
Gauss-Jordan elimination procedure... // 5-4 OPTIMIZATION OF SPECIAL

PURPOSE STRUCTURES •
Another comment that is appropriate here

concerns the sign check on the Lagrangemultiplier vector called for in Step 7 of theoptimiza-multplir vcto pcaled or n Sep ofthe tion problems are solved in this paragraph on,
computational algorithm (par. 5-3.2). The tonpblmarslvdithsaagphocomutalgeraic sigoehm cpnen of. The an ad-hoc basis to illustrate the method ofalgerai sig ofeachcomonen ofthe par. 5-3. Subsequent paragraphs will treat
Langrainge multiple vector p was checked at par. s-a. Subeq s l tre ateachiteatin. f sme o th coponnts large scale problems in a more unified man-each iteration. if some of the components nr
were negative, then the matrix 0 and the
vector A were adjusted accoidingly. This
procedure is particularly useful whenever 5-4.1 A MINIMUM WEiGHT COLUMN
there were redundant constraint violations. in
some cases, thL number of constraints vio- A column is to be constructed by making
lated is more than the number of design its cross section piecewise uniform as shown
variables of the problem, yielding a singular in Fig. 5-1. The objective of the design
matrix coefficient of p. In such c- es numeri- problem is to choose the element areas so that
cal noise yielded a solution such that some of the column will support a vertical load P0
the components of the vector p were always without buckling or yielding under compres-
negative, indicating that the corresponding sive load. For the purpose of the present
constraints would be strictly satisfied in the problem te geometric shape of each column
next iteration. In numerical examples, the elerrent is tixed and symmetric about two
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1o  PO where ax is the allowable stress of the

Yr-. column material in compression.

fx X In order to apply the optimization method

Sb, of par. 5-3, the equations which determine
the buckling load in terms ofb = bl,.... bkIT
must be obtained. Using the generalized co-
ordinates shown in Fig. 5-2 and Eq. B-4,
Appendix B, the potential energy of the ith
element under the buckling load P is

Figure 6.1. Column PE, JuT K(b)u - Pu DI(b)uI (5-28)

orthogonal axes so that the cross-sectional where
area b, of the ith element comple.ely specifies
the element. With this assumption, if a is the II = (Ul, II, u. ut  r
second moment of the cross section of )mit
area, then is as shown in Fig. 5-2. The matrices K(b)

and D(b) are from Eqs. B-4 and B-8, Appen-
4 1 01,hi2 (5-24) dix B

In this problem, weight of the column is to Q
be minimized so that the cost function is u1 U I

k4
J = 2; biL, (5-25)

(at

where y is material density and L, is the
length of the Ith element of the column.

There are two basic constraints that must "
be satisfied in this desigi: problem. Fh'st, to I
insure that the buckling load P is not less than Figure 5-2 Column Element
th ipplied load Po, it is required that

.(5-26) 12 -6., i -12 -6LI

Second, in order to insure that the column &b - 6L, 4L' 6L, 2L.'
material does rot yield under the applied load K(b) L3 52 9)
Po, it is necessary that 1 2 6L, 12 2L,

matria des iotyild 1. 4L2 .29

Oj - (Po/b0) - 0, 6L 2' 2L 4, L
(5-27)

S .k and
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3 1 3 1 T _ . O.

SL, 20 5L1  20 ab

1 L 1 I=,., k (5-33)
20 15 20 60

D(b) = 2 (5-30) since 0, does rot depend on P, 1 = 1,..., k and
3 1 3 1

5L, 20 5i, 20[

1 Li I L(
2;0 76 20 T5 (1T/JT

~kI= - [D(b)y] Ty)
ekl ab 11 t )

Summing the total potential energies of all
the elements from Eq. 5-28 and defining a i + > 0
new variable

{0], i f Ok+I < 0. (5-34)Y = [YI , Y2 ... Y2k I T

The computations required in Eq. 5-34 are
1[ut u2, t, u4., Ut1 2T messy but they can be programmed for

automatic computation.
the total potential energy PE of the column

may be written All expressions required for direct applica-

tion of the steepest descent algorithm of par.

PEJ Y T K(b)y-P YTD(b)y 5-3 are now available. Numerical results and
2 2 profiles of optimum columns are shown in

Tables 5-1 and 5-2, and Fig. 5-3. Numerical
where K(b) and D(b) are made up ofelements data for the example problems are E = 3.0 x
of KI(b) and Dr(b) and are symmetric. Apply- 107 psi, a = 0.079577, oma x = 20,000 psi,
ing the theorem of minimum total potential and L = 10.0 in. Computation in each case
energy given in Appendix B, the governing required approximately 0.1 sec per iteration
equations of buckling are

K (b)y - P D (b)y. (5-31) TABLE 5.1
COMPARISON OF UNIFORM

AND OPTIMAL COLUMNS

Eq. 5-31 is now in the form of Eq. 5-6, with Volume of Volume of
proper interpretation of notation. Optimal Unifor:* Material

P, lb Column, In? Column, In? Savings, %

In order to implement the computational 500 0.806 0.923 12.7
aigorithm of par. 5-3, the following vectors 1Wo 1.143 1.300 12.1
are required: 1500 1.411 1.600 11.8

2000 1.640 1.840 10.9
4000 2.412 2.600 7.2

= = 1. yL 2 . .... jLk (5-32) 'Lighrest uniform column which will support load P.

5-13
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TABLE 5-2
CR03S-SECTIONAL AREAS OF OPTIMUM COLUMNS

Element
No. I P - 500 b P - 1000 lb P - 1500 lb P - 20001 b P 4000 lb

1 -0.1070 0.1499 0.1833 0.2106 0.2947
2 '0.155 0.1480 0.1809 0.2076 0.2875
3 0.1035 0.1442 0.1763 0.2023 0.7789
4 0,l0o0 0.1383 0.1691 0.1942 0.2683
5 0.0960 '0.1303 0.1593 0,A831 0.2505
6 0.0831 0.198 0.1464 0.1683 0.2302
7 0.0738 0.1064 0.1299 0.1493 0.2020
8 0.0623 0.0892 0.1088 0.12F0 0.2000
9 0.0477 0.0668 0.0812 0.1000 0.2000

10 0.0267 0.0500 0.0750 0.1000 0.2'000

together uniforn sections of beams as shown
in Fig. 5-4. The objective is to choose the
sections so that the beam is as light in weight
as possible and still satisfies constraints on
strength and natural frequency. Due to dy-
namic inputs to the beam, it is required thit
the natural -frequency of the beam be above a
given limit woo to prevent oscillation prob- (

F"ctulems.P=500 P= lt40 F - 1500

As in the preceding column design prob-
lem, the cross-sectional geometry is chosen,
but all dimensions of the cross section may be
varied in the same proportion:. Thus, if b

denotes thu area of the ith section, then the
second moment of the cross-sectional area is

7 = ab2 (5-35)

P 2000 P 4000 P -6974 where a is a constant of proportionality
Figure 5.3. Profiles of Optimal Columns depending on the geometry of the cross

section. The problem at hand is to minimize

and 15 iterations to converge on an IBM
360-65. b b2  b3

5.4.2 A MINIMUM WEIGHT VIBRATING
BEAM

Y

A beam is to be designed by piech.g Figure 5.4. Stepped Beam

5-14
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weight, so the-cost function is [ 121 j _ 6/L 1 . _ 12/ _ 64L"

kX= . biLt (S-36) =E-

i.1di) .1 1 ' q6% 1 L1:'

wheic is- material density and L, -is, the -.6J 1 !, '2,/L 614L1 4I l 2

length'of theithsection.
-(540)

As atrength constraifi, it is eq'jiared that
'Forming as 6gl.vector y, thati contain:. all

i - O, =- 1..., c .(5-37) displacemets:androtations for- the beam, the
total kinetic and potehtia, efiergies are

Wiere:b 04 0 is chosen so that theban 1"- ij~'(b~;/2 and y-K,(b)yI2, respectively.
support a -lateral- load. The coustraint oh Lagrange',e uations,.Eq. B-i 7, are then

-j natural frequency can be written as 1

-[08M(b)(t) + K(b)y(t) =0 (5-41)

By neglecting compression of the beani, For harmonic motion of the structure, y(t)
deformation of a typical element is sY own in y sin Cot, where y is just a constant vector, t is
Fig. S-5. By Appendix B, the kineti( eAergy time, and w is natural frequency. Substituting

into Eq. 5-41 and defining = w2 , the
eigenvalue equation is

& AI

2 u K(b) y = rM(b)y (5-42)

Figure 55. Typical Eleme it
The problem of minimizing J of Eq. 5-36,

subject to the constraints of Eqs. 5-37 and
of an element is ,VlM'(bs '/2, wlire, from Eq. 5-38, and with state Eq. 5-42, is in the form

B-6 of the general proolem of par. 5-3. The
steepest-descent computational algorithm of

156 - 22LI 54 13LI that paragraph can be applied dh'ectly to this

- 22L2 4L - 13L, - 3L problem.

Mf(b ) pbLi - As a numerical example, the beam problem

420 13L1  156 22L1 was solved with the data E = 3x101 psi, L =
13L- 22 4L 10 in., a = 1.0. and p = 0.00208 lb-sec / Win?.

S- 3Li 22LI 4I The computational algorithm required about
(5-39) 0.6 sec per iteration on an IBM 360-65 system

and approximately IS iterations to converge.
Results for a range of natural frequencies are

Likewise, the potential erergy of the ith given in Table 5-3 ard the profile of an
element is UITKI(b)uI/2, where, from Eq. B-4 optimum beam is shown in Fig. 5-6.
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TABLE 5.3-*
COMPARISON OF OPTIMUM BEAMSA

'Volu-me of Optinm 2
Frequency, Unifbim V6 u-me. Material

radlec arn,lin? 16? Ssvlng's,%

3130 0,935 0.897 4.06
4 0 D 0 1 .6 5 

1 .0 6 2 8 .0 5 
Y

46 1.3'97 1.269 9.74
'4800 1.663 1.481 10.94
5200 1.951- 1.727 11;4813
600 2.263' 1.993 11.93
6000 2.598 2.283 12.12

10000 7.217 6.330 12.29 1f L t

*Uniform beam of lowest volume having required
natura freqency.Figure 5.7. Portal Frame 1

IIIment stiffness matrbt fzm Appendix B is

Figure 5&6. Profile of Optimum Beam 1 6,-2 -L
E01 Rb 2  

-6L 1  4L2 6LI 2L2

.. 1.2 6L, 12 61.,3
5-4.3 A MINIMUM WEIGHT PORTAL 2~ 6

FRAME WITH A NATURAL FRE- - 6L I IL
QUENCY CONSTRAINT(53

A portal frame as shown in Fig. 5-7 is to be where L, is the length of the lth member and
proportioned so that it weighs as little as the element deformation v riabies are shown
possible and has its fundamental frequency at in Fig. 5-8. The potential energy PEof the 1th
least as large as a specified frequency o. element is
Each member of the planar frame is formed
from several un~iform sections whose areas are
to be determined as design variables. As in the.)U

3
preceding problems, the cross-sectional geom-
etry is taken as fixed and all dimensions of U1 U3

cross sections varied proportiona~y. The U

second moment of the cross-sectional area AlU2 U 4
about a centroidal axis is 1,=a2weeb s
the cross-sectional area of the ith element.

Neglecting strain energy due to axial defor- 1

mation of the horizontal member, the ele- Figure 5&8. Typical Eiemerts

5-1 6
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'1* 1 T'1 *h~re y~s the ect&i f l4 dipjacemenits and:P E, ~ K(i)u. 54)4-2,~rbtatfion,andP caTheluaticesK'1(b) and
"".M(b)'ae4formed- from elemfent-stiffiiess afid'

whaw miss lhtieas0:1id in'Appendik B.

'Likei, fr o Appendix ;B 'the kietic and-.the ' 4iatrikx..'or ,'tlis pofblem ~is simply
enehj 'E f h t', i al66 .i ii0rs wveight of thi'stiucir,whicii

'4 k

-~ uM~bu~ m 4ZbiL1  (5.48)

wher'z~dentes irie~eivatve'f uandWhere-p i- .defisity,'oftthe .stnictura1 material'

1lS6 212Lt5, 13h The -constrhiifiiPbse-d~oh athe: probl~em
include Iowei limits on o--iitibnal'irea

420

54 - 13LI 156 22LI q~b- 1 0 ~,.,. .54)

1L 3122L 4 2  where b0 > 0-and a. lower limiit on natural
frequency

(5.45) ~ o- 0 (550) -C

Takng ntoaco.un th laera riid ody where ,is the lowest allowable eigenvalue of
motion-of Member 2, th3 total kinetic energy Eq. 5-47, to =w
of the structure is

1 T The steepest-i lescent algorithm may now be
KE Z i'M(b)z4' 2" MH (546 applied directly. Data for the specific prob-

lems solved arc given !n Table 5-4. The results
wher M s te mss f Meber2 ad ~ is for an aluminum portal frame are given in

the horizontal velocity of point A. Tbe - n -,wt yia rfl
shown in Fig. 5-9. The design variable b,

E Rquiingharoni moionwit frquecy shows the distribution of material for a
w, the displacement vector yQt) made up of minimum wteight frame whose frequency of

all dsplaemens isvibratiort must be greater than or equal to a

de~i)diii ~si wt~scli TABLE -
where y is a constant vector. Applying MATERIAL PROPERTIES FOR ALUMINUM
Lagrange's equations and eliminating time a, dimensionless 0.07058

depedene yeld P b-SO/i .42.61&Wi0
rlb/in.2  10.3x'10'

10, n .40.009825K(b)y = ft(b)y (5-47) L, in. 10.0
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COMMAI*ISON OF uNiFoRM'.AD OPIMAL
" RA E',F(fi AO~iNM ' the same for Members I arnd 3; and Member 2 (

Ft~kiv'..6 IA' -. '

-:. - ...... converges~to the lower bound Io, so only the .4tABL o ttbf .resits for r the dare reposg ed. va or ae

Frequency, "f~rm... Opthl Weight frequencies the values for theb, for Member2
rad/w-, Fre, lb Fame lb- Reduction,%
"______..... ___, ________________ are equal to 0.350.
2000' 3.748' -1729 '53.9
3000, 8.434 2.562' 69.6 5-4.4 A-MINIMUM WEiGHT AMEWITH4000 1.4.994 350-- 76.1 MULTIPLE FAI -URECRITERIA
5000 23.428 4.6A8 80.0

To illustrate the applicability of the
stecpest-descent method for the minimum

TABLE 56, weight design of-structureswvith'-stres, buckOPTfIAL 6ESIGdNIVARIAB'LE bi  -OPTIMALROES IG ARIABLE- ling,, and displacement cofistraints, an ex-
FOR VIBRATnG FRAME

- - +,-~'r-,,l/ ample of a statically, loaded, frame problem-is
bi  2000 3000. '4000 5000 presented. Fig. 5-10 -shows the, geometrical

b, 1.577 1.964 2.907 4,020
b2  0.883 1.604 2.484 3.321
b3  0.552 1.416 1.912 2.622 B
b4  0.374 0,866 1.290 1.725

b50.350 0.360 0.671 0.836
bE 0.350 0350 0.350 0.350

34

tdgure & 10 Frame With Side Loading

configuration of the frame that is considered.
All members are assumed to be of the same
length L. Member I is subjected to a lateral
loading q(1). Member 3 has a uniform cross-
sectional area which is prescribed and will not
be allowed to vary. The connections at points
A and B are frictionless pins.

Figure 5-9. Optimum Portal Frame for
w = 3The finite element method is used to

obtain the elastic response of the system for a
specified value. It can be seen from Table , -5 given set of design variables, i.e., the cross-
that a significant material saving is possible in sectional areas of the elemenis. As in the
comparison to the portal frame with members preceding problem, the geometry of each
of constant cross section. cross section is the same with all dimensions

io18
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of'Cross section varying proporionaly. Th, where the trix, P is- derived.-fronm iohe
I,-cib" where b1 ii -th e bss, dtkiiinar~aOf, shortening of Member 2 as in par-. 54; Vand,.#s.

thelth lement. -The stiffness-niix Kbl)of in :the pieoi(us, problem, K(b),is,a-.stiffriess
a typical elen~in, Fig. 5,-! i;cn'e vrtter'as- matrix..
in pa.- '5-4.3. with geneialzed&dispkcemehts
defineAby The .cost functib n to: mizeU'in this

-pro5lem is:the structural weight ofMenbef9s

"141, 1 ' ' IT and 2which'is si ply

U 4
where, .,yis the weight.density of the traterial. A

" 1- u The weight of the. frame-is to'beminimized.
subje tbtbt-fllbwlng constraints: -V

I. Stress constraints at the Ith node-of.'
2 .,. Member 1:

Figure 5-I. Typical Elemnts =lc a E l e -s 0 1x = 0 1 a x < =0 I= ... . n ( S -5 3 ) ,

From the fundamental beam theory, ifR is
the horizontal force transmitted from the where a= Mc(b1 )/I(bt)] is bending str ss,
Member I to 3, and assuming that-Member'2 c(b) j3(b )112 is half the depth of the beam
remains straight without buckling, then at paint-1, 1 = 1,2 *n and amx is the
neglecting compression of Member 2, the maximum allowable stress. The-parametr A is
deflection at A is uA = RL3/(3EI 3). From a property of the cross-sectional geometry.

the equilibrium conditions on the transverse 2.Deflection constraint: o

forces and moments at the nodes of Member 2Dltn srt
1, the generalized displacement z, which 's

made up of the element displacements u1 can Om + I - A < 0 (5-54)

be evaluated from the following matrix equa- wta ition where uA is the horizontal deflection at the -
tion

top of Member I and A is the maximum
allowable lateral deflection of the top of theA(b)z -F (5-51) frame.

where F is a vector load and A(b) is a
symmetric matrix. In a similar manner, if y is
the displacement vector containing all ele-
ment deflections associated with Member 2, 3E133 -
the buckling load P can be determined by V+2 L3  UA -
solving the eigenvalue problem

where the first term is just the load R caiTied
K(b)y PD(b)y (5-52) by the column.
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4. Compressive 'stress tonstrainit At- thejth
fiddcoek erNN

-.4

-o~bin Member 2

tife steepest-descent algarnum ciin roW-bi
applied 'directly; G~en dati -are: -A, 4 in.; ' rr'

OMIx 1 = 85,00 psi; 0tu1C2 5,000 psi,
cross-sectional area of Member 3 is 4 in. ; L Figure 5412 Profile of Optimal-Frame
100 in.; E£ 3x107 psi, t ii 0.07958, andp= CrWithria t4 -_2 Faiure
0.5642. The rcsulting horizontal forcesRthatCreia( 2lbi.
correspond to Increasing constant lateral loads
q,,given iii Table 5-7,-are 285 lb, 409 lb, 458
lb,and;458-Ib,-rce ccdivelyi Forvq a20-And-
25 lblin., the displaceiment in Eq. 5-54 is an 54.5 A MINIMUM WEIGHT PLATE WITH
equality. For lower loads it Is a strict in- FREQUENCY CONSTRAINTS
equality. This was determined automatically A ia ueia xml nti aa
by the algorithm. The results for different A ia ueia xml nti aa

sid lodigs re ivn i Tble 5- ad 58. graph consider the problem of minimum
sideloaing aregivn i Tales .7 nd -8. weight design of the simply supported rectan-

A profile of an optimal frame is shown in Fig. gular plate shown in Fig. 5-13 subject to a Q
5-12. om pi'.,, pe era can reuie natural freque~ncy constraint. The bending

apprximk..,- - periteatio an 15 equation for plates of variable thickness is
iterations to converge on an IBM, 360.65.gie inE.-5.Vh tedfcio

TABLE 5-7 WV(xj',t) is written in the form
OPTIMAL DESIGN VARIABLE b I FOR

STATIC FRAME J( y, t) = wV(x, y) Cos Wt (5-57)
Cio,,.Sactional Aa 1,., IlLI

Mermui I Membr 2 the governing equation becomes
Elermwnt q, Wbin. q, Wbin.
No. 1 10 15 20 26 10 Is 20 25

1 149 203 2.76 4.51 0226 0271 0.286 0286
2 0.86 1.20 1.76 3.34 J.366 0.423 0.464 0.464A
3 04C 047 0.48 210 0.407 0487 0.516 0516

4 043 053 037 043 0.366 0.438 0,464 0.464
5 043 053 052 043 0226 02'1 0286 0.286

TABLE 5-8
VOLUME OF OPT!MUM FRAME

10 is q, lb/in.20 5

optimum
Volume. 604.2 533.4 558.0 656.0
inl.3  

- Figure 5- 1.1 Rectangular Plate
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"84 + D- " ' + 4 aD a .- 1 2 3 4 5
• - o .o , * * . .<.+2 +

+ V2 - 2 j-( Ir~D8w2 * • •-. :---- -,++
( L it" " t...+ . .

a2Da~w 8 Da2W4 * *

t, a , a.a- ay 2  a., *

+-4.

"=,h p w (5-58) I

'where Figure 5-14. Collocation Points

D,(x,y) = E( ) (5-59) In the steepest-descent algorithm, the cost
function that is to be minimized is

h(xy) is the thickness of the plate. -which is
the design vdriable, anid p is the dcnsity of J= pAA E h(xyl)  (5-61)
plate material.

where AA is the area of the grid squares.
When the function wi(xy) is represented in

the form The constraints imposed on the design are

w(x,y)= . A sin- sin-b ho -h(xt,Y), 0 (5-62)

(5-60) and

the eigenvalue problem can be solved approxi- - " 0 (5-63)
mately by numerical methods. The problem where ho > 0 and t'o > 0 are lower limits on
posed here is solved using a collocation plate thickness and eigenvaluc of Eq. 5-58,
technique, i.e., the differential equation is
satisfied at discrete points in the region, Fig. respectively.
5-14. The steepest-descent computational al-

gorithm applies in a directway. It should be
The number of discrete points is chosen noted that the collocation method for ap-

equal to the number of terms in the truncated proxhnate solutions of the equations for
series of Eq. 5-60. The drivatives of the natural frequency yields nonsymmetric
function D(xy) at the grid points are evalu- matrices K and AM in Eq. 5-16. Thus in this
ated by the use of finite differences. For a formulation of the plate optimization prob-
given set of design variables, i.e., h(xy), the lem, the adjoint eigenvalue problem, Eq. 5-18,
lowest eigenvalue, t= pw , and the associated must be solved along with the original eigen-
eigenvector IAmn , which plays the role of value problem. If finite element methods for
y, are determined, plate analysis had been used, symmetric
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matrices would have been*-obtahied. In this 5-5 GENERAL TREATMENT OF TRUSS
example, as well as in the preceding, a DESIGN*
minimum effori was expended to make com-
putations efficien. The emphasis has been The theory presented in pars. 5-2 and 5-3
placed.on getting results. A subsequent effort will now be applied to the case of general
Will be devoted to making algorithms more plane and space trusses. These types of
efficient. structures are encountered quite frequently in

practical situations. Most common among
The minimum weight plate problem was these are buildings, transmission towers, ; -.

solved by the algorithm of par. 5-3 with bridges, cooling towers, aircraft structures,
E = 3.0x07 psi, p = 7.43 ). 10- lb-sec 2 /in . , and lightweight military structures. In all these
, = 0.30, and wo = 1375 rad/sec. The uni- cases, it is desirable that the structure simul-

form plate with t = p(o 2 = 1400 was taken as taneously should meet strength, deflection,
the initial estimate to the optimization prob- and frequency requirements and be of mini-
lem. The dimensions of the plate are 10.0 in. mum weight. In this chapter, all these con-
by 10.0 in. and the value of ho = 0.1 in. The straints will be considered.
material is assumed to have a constant density
and so minimum weight is equivalent to 5.5.1 SPECIAL PROBLEM FORMULATION
minimum volume. The volume of the uniform
plate is 11.44 in.? and the volume of the It, the problems to be considered here,
optimal plate is 10.8 in.3 which ic a 5.6% geometry of the truss is assumed to be
material savings. Fig. 5-15 shows 25 coiloca- specified Pnd the loads are applied only at the
tion points. The numbers in tfhe network are joints. The objective function for the pro !em (

is taken as the total weight or the volume of
the truss, and the design variable for each

2 member is taken as its cross-sectional area.
0.124 0.116 0.:0o 0.100 0.100 The objective function of Eq. 5-1 in this case
0.116 0.103 0.100 0.100 0.100 is a linear function of m design variables and
0.100 0.100 0.100 0.104 0.111
0.100 0.100 0.104 0.121 0.128
0.100 0.100 0.111 0.128 0.136

J = Z piL b (5-64)
y 1.1

where p1 and L, are material density and
Figure 5-15. Optimal Design Variable h(x, y) length of member i, respectively.

for Vibrating Plate
The displacement method of structural

the values of the thickness function h(xy) at analysis is used, and nodal displacements of
each nodal point which is located at the the truss are considered as basic state vari-
center of each square. Double symmetry of ables. Therefore, the jth component of the
the optimal plate thickness was observed state variable represents the th displacement
about axes through the point (a/2, b/2). component of the truss. Fig. 5-16 shows a

simple scheme of designating joints, members,
*This pwagaph is based on the dissertation of nr J. A50. and displacement components of a truss. Fig.
Rcf. 34. 5-17 shows a bar element with sign conven-
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22 3-j(56)
X3 Where Mn -is1th11ttal, number df eleijients in,~

Figure 5i 6 Descr~'tion of a Truss the truss andX1 'isI te stif'fness mtWfrthe -'j

ith elemeint .bf ther iruss. Thle s tifffiess mirix
for the ith element may'be'writtcji as

X1 IF U' ,. F
-- 2- 2 J bgi I

(X1,X.Xs) ,- I(5-69)
(kkk LI -

where E1. is Young's Modulus of Elasticity of
the ith element. Substituting Eqs. 5-65 and

i ~ ~ S'2 -66 into Eq. 5-67, one obtains.

f Ij3T(bj,)3

-K(b)z (5-70)
}Figure 5-~ A Truss Element--- I-where

tion to be used on element forces and
deformations. Basic equations of the displace- K(b) t3Tk(b)p (5-71)

nien mehodfora tuss ay e wlttn ~is the structure stiffness matrix, which is
identical to A4(b) in Eq. 5-2. The mass matrix

u = 5-65 Al(b) for the truss may also be computed in a

F R (b)u (5-66) similar -vay, and it is given by

At(b) = 13TTj(b)13 (:,-72)
and

f=FF 5-67) where 31-(b) is form'ed from element mass
f ~3F (567) matrices and is given by

where u is the element deformation vector, P
is the element force vector, f is the vector of1
external loads applied to structural nodes, and (bI5-3
fis a rectangular trdnsformat ion matrix,I

which transforms the nodal displaccement vec-
tor z to the element deformation vector u. L -
The matrix k(b) is composed of element
stiffness matrices and is given by Here, Ali is the mass matrix for the ith
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element of the truss and is given by Assembling the matrix . of Eq. 5-21 is
more tedious. It requires a formation of

t ptb1L, 2 1 constraint set as in Eq. 4-105 which will be
6- 1 2]. (5-74) discussed in detail now. The constraint set

may be divided into five subsets, namely,
frequency, stress, buckling and displacement

Any nonstructural inass that is attached to constraints, and lower and upper bounds on
the truss may also be added to the mass the design variables. Explanation of these
matrix ofPEq. 5-72 and it may be written as subsets follows one by one and, for each

subset, matrices a/ a; a&/aq, and a/Ib are
M(b) = I3"M(b)p3 +M410  (5-75) computed.

where M. L a matrix consisting of nonstruc- 5-5.1.1 FREQUENCY CONSTRAINTS
tural-masses. In the example problems to be
prsented later. 1o is taken to be a null In the example problems, only one fro
matrix. However, there is no particular dif- quency constraint is considered. However, if
ficulty in incorporating this matrix if it is not other frequency constraints are also present,
zero. Its inclusion will simply change the these may be treated in a similar way. Since
lowest natural frequency of the truss. The the design variable vector b is available at any
derivation of the given structural analysis iteration, the matrices K(b) and M(b) are
equations and matilces is well documented in computed from Eqs. 5-71 and 5-72, respec-
the literature (Refs. 20, 24). tively. The lowest eigenvalue " and the asso-

ciated eigenvector y are then obtained from
In order to apply the algorithm of par. Eqs. 5-5 and 5-6, respectively. Prenmultiplying

5-3.2, two main matrices V and 0 of Eqs. both sides of Eq. 5-6 by K'1 (b), one obtains
5-20 and 5-21 must be computed. They can
be assembled very easily once various other
matrices required in them have been com- V (b)(b)y -yy (5-77)

puted. In the class of problems treated here
f(b) does not depend on the design variable, where - = 1/'. The power method is used to

so af(b)/8b = 0. Also, one obtains from Eq. "ind tl e largest eigenvalue -t of K(b)M(b).
5-64 'his method of obtaining the largest eigen-

value is quite efficient in the present problem,
pJ since a very good approximation to the

ab meigenvector at each iteration, except for the
first one, is available from the previous

(0 0) iteration. The lowest eigenvalue is then given
az by = 1/y. The frequency constraint may

now be written as
and J/la = 0; and from Eq. 5-14
NJ = (0 ....... O)T. Substitution of these values (5-73)
into Eq. 5-20 yields

where ' corresponus to a given frequency.
(pLI ....... p. Lm )r  (5-76) In terms of the notation used in Eq.
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5-4, Eq. 5-78 may be written as inequality (Eq. 5-82) holds in such cases. For
tension members, a, and a' art negative;

(b, z) - 0 (5-79) therefore, Eq. 5-82 is written as of < a,. The
expressions that follow are written for the

where s is a number assigned to this con- case of compression members. For tension
straint. If this constraint is violated, then members similar expressions can be readily
A, = - - = , (0 ....... 0), a0,/a" written. Inequality Eq. 5-82 may be written
.- 1, and a,/z = (0 ....... 0). as

-655.1.2 STRESS CONSTRAINTS ,(b, z, 3) =a - oO < 0 (5-83)

Since the metrix K(b) is available, Eq. 5-70 where s is an index assigned to this constraint.
can be solved for the unknown displacement In all subsequent constraint subsets, subscript
vector z. Element forces can then be com- s on 0 will have the same meaning. If Eq. 5-83
pu ed from Eqs. 5-65 and 5-66. Substitution is violated, then = - (ot - of), W/" = 0,
of Eq. 5-65 into Eq. 5-66 yields

F = Sz (5-80) - Ofr 1*/,- bF) ,
aba b, \bi ab, b

where S = K(b)/v. It may be noticed from Fig. , / ao
5-17 that two forces are specified for each and -..... L
element but the primary force remains con-
stant throughout a bar element. Therefore,
1' - F1, where superscript I denotes the where ao,/Oz, and WFi/abi may be computed

element number. Dimensions of the matri. S from Eq. 5-80.
may be reduced from 2m X n to m X a by 5-5.1.3 BUCKLING CONSTRAINTS
using this relationship. Stresses in the mem-
I ers may now be calcuiated as

Each compression member of the truss is
F1 also checked for the Euler buckling load given

oi bt (5-81) by

Once the stress for each member becomes VILA (5.84)
known, it is checked against the critical stress. .,

A number of these stresses may b i violated in
a particular iteration. The stress constraint for where "1 and are the critical buckling load
the Ith member may be written as and moment of inertia of the Ith member,

respectively. It is assumed that the moment of
o 0o (5-82) inertia of the cross section of a member can

be written as
where a' is the critical stress for member . It
should be note that, in terms of the nota- 1i = aib' (5-85)
tions used in Fig. 5-17, compressive stress in a
member is taken as positive and accordingly whcre a, is a constant depending upon the
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cross-sectional geometry of the ith member. where za is the maximum allowable ]th
This is a. convenient way of expressing the component of displacemLnt. If a particular
moment rof inertia in terms of the uross-sec- component of displacement is positive, then
tional area of a member, because the constant Eq. 5-89 is written as z, - z" < 0; and if it is
ot, can" -be specified by the designer 4uite negative, then it is written as z4- z, < 0. The
readily. Therefore, Eq. 5-84 may now be expressions that follow arc written for the
written as case of positive -displacemcnit, anfd simnilar

expressions can also be written for the case of
r.2 _,7ib negative displacement. In terms of~the nota-

L 2 (5-86) tion of Eq. 5-4 the constraint for the positive
I displacement may be written as

where 0, 70 Ecr /4L. Eq. 5-86 may be writ-
ten in terms of the critical buckling stress o , (b, z, ) = - < 0 (5-90)
as If the jth displacement component exceeds an

-b 0 bi. (5-87) allowable limit, then

Now the buckling constraint for the Ith A = - (z - Za) -0= -0 ., 0),
compression member may be written as '

z , (b = 4=-o 0. (5-88) and z =(0 ..... '0' 0).

(Jth)

If this buckling constraint is violated, then
= - (- = 0, All the displacement components are checked

and any other violation is treated in a similar
,=f ._ b ( -b I ) , way.

bb, bi, Ob b2  5-5.1.5 BOUNDS ON DESIGN VARIABLES

and-. = .. . It may be necessary to put upper and lower
3Z .. . / bounds on each design variable. This con-

straint may be demanded by many practical,
where Flab and ao,/az/ may again be architectural or structural considerations.
computed from Eq. 5-80. The buckling con- Moreover, a lower limAt on each design vari-
straints on all other compression members arc able is required in the algorithm in order to
treated in a similar way. avoid the attainment of unrealizable designs

such as ncgtive areas. This constraint may be
5-5.1.4 DISPLACEMENT CONSTRAINTS written as

The displacement components are known bL < bi < bu  (5-91)
at this stage; therefore, the constraints on
them may be written as where bL is the lower and bu is the upper

bound on the Ith design variable. Inequality
I I< (5-89) Eq. 5-91 may be split up into two parts:
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(i) Ldwer Bound on Design Variables: Problen pa. 4;3.1, the-present 'formulation,
handles it without any.difficulty.'Ifhis,cqonstiainit-,is,written asb < bu or ini ... "

tems 6f'notation-ftE4. 4 After all the constraints have been con-
sidered, th9 matrices 4/ab, ao/ar, and

S(b, . ) - b, 4 p (5-92) aiz are available and AW can be solved
from Eq. 5-5. This 'still does not allow

Violation of this constraint yields, the matr* 'g of Eq. 5.21 to be assen-
bled. The following matrices must also be

- - ( -
" b1), .A- =0, computed

a a
.. = (0 .... ,0, - 1,0,..., 0), and -(K(b)z(

ab, ~ (Ith) 5

a
o. ,K(b)y] (5-95)

-(0 . .. 0). a

(2) Upper Boundeon Design Variables: and

This constraint is very similhr to the previ- 3M(b y . (5-96)
ous onie and in the notation of Eq. 5-4 it is
written as These matrices are assembled automatically

from the quantities such asK(b), M(b), z, and
@, (b, z, ) = - bu < 0 (5-93) y, which have previously been caltulated in

the computer. The procedure of computing
If the upper bound on any design variable is the natrz< of Eq. 5-94 will be explained here;
violated, then the matrices of Eqs. 5-95 and 5-96 are

calculated in an exactly similar mariner. Eq.
_=- (b1 -b'), =0,5-71 may be written as (see Appendix B):

K ( b ) = E . T K -

(Ith) where K1 is the only quantity which is a
function of b. Now, Eq. 5-94 can be written
as follows, by substituting the above expres-

(0,..., 0). sion for K(b):az

It may be noticed here that the cross-sectional -[K(b)zJ= r/Ii .fli 41

area of any member of the truss may be Bb a
assigned a predetermined value by putting the
same upper and lower bound on it. This m, F Tr

situation may be encountered in practice due - 8b
to various reasons, and as shown in Example (5-97)
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It should be noted here that the summation constraints. This procedure of taking into
sigh in Eq. 5-97 represents'the summation of consideration all the loading cond!tions has
m matrices of dimension (n x i). The wor, ad out quite satisfactorily in the example
qupatify inside the 'differentiation sign is an problems.
n-dimensional vector whose components may
be dependent upon the design variable vector 5.5.3 EXAMPLE PROBLEMS
b. Therefore, the quantity inside,'the summa,
tion sigh is an n x m matrix for each index 1 Several trusses are designed by applying the
However, in the present case, since K, is a procedure presented in this paragraph.. A
function of only b,, the computation of Eq. computer program, based on the algorithm
5-97 is greatly simplified. Consideration of stated previously, was written in FORTRAN
each I in Eq. 5-97 generates a (n x ,n) matrix IV. The computations were performed oi the
whose only nonzero elements are in its ith University of Iowa IBM 360-65 computer. 4
column. Computation of Eq. 5-97 is per- The stiffness matrix for the structure was
formed quite readily and'automatically in the inverted by the Gauss-Jordan elimination

-computer. procedure, and the power method was used to
find the smallest eigenvalue.

All the information being available, the
matrix Q$ of Eq. 5-21 may now be assembled Results for three typical trusses are pre-
and the algorithm of par. 5-3.2 may be used sented here. All these structures were de-
to solve actual problems. signed with stress, displacement, buckling,

and frequency constraints. Examples 4-1 and
5-5.2 MULTIPLE LOADING CONDITIONS 4-2, par. 4-i.1, are compared with results in

Ref. 25. These were designed with and with-
Most structures are designed to withstand a out frequency and buckling constraints in

multiple loading environment. This is quite order to compare the results with Ref. 25.
reasonable, because only a ceitain combina- Example 4-3, par. 4-3. 1, is treated in P.ef. 26,
tion of loads may act on the structure at a and it was also designed with only stress
particular time. This situation is handled in constraints in one case to compare results
the par. 5-5.1 formulation by expanding the with Ref. 26. All sample problems had lower
state variable vector z to include al' states, limits on areas of the elements and Example
The element force vector f is also expanded 4-3 had upper limits. The program is general
accordingly. Formulation of displacement, enough to handle different lower and upper
stress, and buckling constraints must also take bounds on stresses in an element, elements of
into consideration all states of the system different materials, and a different buckling
This is handled in the manner that follows, parameter ot for each element. The examples
While formulating a particular displacement follow:
constraint, the value of displacement for each
loading case is checked and each violation is 1. Example 5-1. hve-tnode Four-bar Tuss
entered into the reduced constraint vector 0.
After this, the procedure of calculating the Fig. 5-18 shows the geometry and the
matrices alb, /ai, and 30/az is the same dimensions of the truss. Input and output
as explained earlier. An exact same procedure information is given in Table 5-9. In order to
is followed in treating stress and buckling compare the results with those of Ref. 25, the
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S 'Wohefact --th-at in tlhb first case the frequenlcy
:2), - 3c6hitfaint. was vilited by 0. 154%7, Whereas in

7n%961st. -the second case this-violatlon was 0.143%.
'Fig. 5-19 shows variation of the cost ftinction

X, 4with resec fto the h hberof iterations forN..:this pOroblem. Itiiy be n6ied that for
- x j~ratibal plir~bs .S, &oiiverg'ece was obtained'

-7v 16 4 Itisi)(4-6 eigitatiois for all the cases.

Miur .8 Four4ir*truss (Example i) 2. Example S-2Z 't rnstmlsslon Tower

trussi was first designed for striss constraints, Fig, S-20 shows the ,geometry and the
Fig. 540WA, And secofid for stress, nd- dimensiq' of. th o .Tis exanmple also is
displacetheiit constraintsi -Fig. S-i 9(B).. It traed 4n A f. I25. in this problem, the
may be~noted that the results presenited her6 cross-sectional area of each, memnber of tfie

xi t kis ais goad as thdsi pfekfdI Ref.-L
25.

35,
The ina ~zesig weghtwithonl stessWith Stuess &Displacement Constraints

The fifal.'design weight with stresstrand
dipaetconstraints, wa ~b asmuaintmeOtmmWih 14.28 lb ~

wth ea computation time was 10 sec for 12ls Wit lpa~ ~

iterations. The final design weight reported in 4' 8 1 2 16
Ref. 25 was 14.30 lb with a computation time Iteration Number
of 10 sec for 4 cycles. It is difficult to make (A) With Stress Constraints Only
an exact comparison of the computation
times because the computer used here is 26
different from that used in Ref. 25. The 2
computation times reported in Ref. 25 are on 220 5~tn on

IBM 7094-11-7044 DCS Computer. Optimum Weight"- 113.77 lb
With Ali Constraints

The truss was also designed by including 140 -Starting Point I
buckling and frequency constraints along with --- ---

other constraints. Two different starting
points were used in optimizing this truss. 60~ 2 1

Starting Point I was infeasible and Starting Iteration Number
Point 2 was feasible. The final design weight (8) With All Constraints
beginning at Starting Point I was 113.48 lb

and t Sartng Pint2 ws 11.77lb.The Figure 5-19. iteration vs Weight Curves for
slight difference in the two weights was due Example 5-.1, Four-bar Truss
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TABLE 5-9

FOUR-BAR TRUSS (EXAMPLE 5-1)

Design Information: For each member, Young's Modulus of Elasticity El, the specific weight-pi, lower limit on
area of cross section b,,and the constant rare '04 kips/in.,01 lb/in .3;01 in.2, and 1,'respectively. Thereois
no upper, limit on meihber size. The resonant friencye for the truss is 284.6Hz. For Outputl, the stress liml~is on
each mnember are :t 25.0 kipshin.' and the displacement limits at node five 'are, 0.0; 1 0.31fl and ± 0.4 in.in thex1 ,

J ~~~~X2!,,andX3-0irections, fei6vely. For Output 2,,thi eslkt foreach member'are': *16.0 kipsill.', and the
displacement limits at nod~ fie are 0.15 in..l allthreiidireiidns.-Therii are three loading conditions for the truss;
they are: in positive X1-- a iii x. dI iecti ir' , 5; 0, 0; 0, 5,16, and 0, 0, 7.5 -kip, riipcctivel y,appioda od ie

OUTPUT 1. With Stress and Displacement Constraints Only

With only strews constraints With displacement constraints, also
Time* Per Iteratilo, a 0.152 see Time'*,r Iteration -0.124 sce

Total time - 1.8211 sae Tota time -1.500 see

El. Starting Fital El. Starting Final I
No. Values, Values, No. Values, Values,

inn. In. in. I.

1 0.100 0.130 1 0,500 0.234Q
2 0.200 0.192 20.500 0.319
3 0.200 0.120 3 01500 0.184
4 0.100 0.100 4 0.500 0.128

Weight, 1.99 Weight, 3481.2
lb 1.9lb _8

OUTPUT 2. With All Constraints

S~ arting Point 1 Starting Point 2
Time per Iteration a 0.147 sac Time per Iteraion a 0.172 sec

Total time - 4.710 sac Total time a 4.640 sec

El. Starting Final El. Starting Final
No. Values, Values, No. Values, Values,

.n. In.2  In.2  In.2

1 1.000 0.543 1 2.000 0.559
2 1.000 1,961 2 4.000 1.883
3 1.000 3.635 3 8.000 3.703
4 1.000 0.479 4 1.000 0.468

Weil'bt. 69.72 113.48 Weleht. 257.68 113.77
lb ____________ lb __________
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Figure 5.20. Transmission Tower (Example 5.2)

truss is treated as an unknown design variable, cycles. The values of final design variables
and the results obtained are given in Table compare quite well with those in Ref . 25. At
5-10. The towe was designed first with only the final design point all constraints wvere
stress constraints. The. final design weight in satisfied within 0.006%.
this case was 91.13 lb with~ a computation
time of" 38 sec for I 2 iterations. The final The tower was also designcd with stress anzd
design weight reported in Ref. 25 wa:. 91.14 dispka,ement constraints and, finally', with all .

44

lb with a computation time of 9 seL for 5 the constraints included. The design weight in
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TRANSiISSION-TOWER iEXAMPLE,5.2)'

Design informatioi: For- .h member ofthe structure,,the modulusof, elasticity Elthe specif ic weight Pl, the, j
constant al, and-he stress- limits OrelC)4 kips/i-.10 Iblin.3, 1.0 atid± 40.0 klps/in.2 , picively. The lower
l;it onitis area of cross section of each member is 0.10 in. 2 for the case with stress constraints nly and 0,01-in,,
*fr oth, cases. There is no upper,1lmit on the membersiTes, the resonant frequency forth. structure is 17392 Hz,
andth', displacement limits are 0.35 in.on all d all dire tion.Theroare six loadinbcoditions, and they

av; i follows (all loads are in kips):

'tLoad -Direction of Load
Lcad Node Load Node
Cond x. .: ,C Cond. x1  .x 2  X

1 1.0 10,0 -5.0 1 0 10.0 -5.0
2 0 10.0 -5.0 2 -1.0 10.0 -5.0
3 0.5 0 0 2 4 -0.5 '0 0
0 05 0 0 5 -0.5 O 0

1 1.0 -10.0 ... 0 1 0 -10.0 -5.0
2 0 -10.0 -5.6 2 -1.0 -10.0 -5.0
3 0.5 0 0 4 4 - 0.5 0 0
6 0.5. 0 0 5 -0.5 0 0

1 0 Z0.0 - 5.0 6 0 -20,0 -5.0
2 0 -20.0 -. 5.0 20 20' -5.0

Output ,

With SZoess With Stross and Dis.I ValuesWnthVAlues i ntValesnConstraints Only piacement Constraints

El. Starting Minal Starting Final Starting FinaNo. Values, in.2  Values, in.2  Va0ueaesin., In. Values, in Values, In.

1 0.200 0.100 I.YUGO 0.010 0.500 0.010
2 0.500 0.376 3.000 2.322 2.500 2.092
3 0.500 0.376 3.000 2.322 2.500 2-.075
4 0.500 0.376 3.20c 2.322 2.500 2.095
5 0.500 0.376 3.300 2.322 2.500 2.083
G 0.500 0.471 3,000 2.768 2.500 2.357
7 0.500 0.471 3.000 2.768 2.500 2.354
8 0.500 0.471 3.000 2.768 2.500 2.360
9 0.500 0.471 3.000 2.768 2.500 2.335

10 0.200 0.100 1.000 0.010 0.500 0.035
11 0.200 0.100 1.000 0.010 0.500 0.035
12 0.200 0.100 1.000 0.010 0.500 0.087
13 0.200 0.100 1.000 0.010 0.500 0.084
14 0.200 0.100 2.00) 0.690 1.500 1.113
15 0.200 0.100 2000 0.690 1.500 1.113
16 0.200 0.100 2.000 0.690 1.500 1.112
17 0.200 0.100 2.000 0.690 1,500 1.112
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,TABLE,5&10 (Coiffd.)'

ffWith'Striis' r6ihtrsa and, Al li.tai

El. T Starting 'Fin-il 4tarlng. Final. _Starting Ailnal-
No. Valuesiln.2  'l:ir"n.2  Vlste 2  Vle;I. a~em Vale, .

18- t 0.500- 0.277 2.000: 1.52 2.0002.5
19, Ab&;o -0-.2h 2.0W0 \1.524- 2.000 2.0'd

20 05000.27 2OOQ1 .524 1.0 .046
21 A00 0.277- 2.000, 1.524 200'2.058

22- 0.500 10.38 3i000- 2.133 - 3.01 2.82
-2j 0.500 '0.380' 3.000,, ;.?33 :(.000 2,808,
24. - 0.500 0.380 '1306 2.733 3.000 i2.803-

-25 0.600 0.380 3.000 2.733 . 31000 '2.785

- - 9~i~t; 12.37 1 .1 - 7 772.4 - '546.18' 669.80 503,91-A3 '722403

the first case was 546.18 lb with a compuita- optimized for a single loading condition. The
dion time of 47 sec for 17 iterations, and'the design infornation and the results are shown
maximum constraint violation was 0'00011%. in Table 5-1 l.,ln order to compare the results
The comparable deOii weight reported in With R16f. 26, the truss was first optimized
Ref. 25 was 555. 11 lb with a computation with stress constraints only. The final design
time of 24 seclfor 7 cycles. This shows that, weight was 2,993.37 lb with a computation
when displacement constraints are also in-
cluded, the results obtained with the new 7
gradient pirojection method are slightly better70
than those of Ref. 25. For a design with all 740
the constraints included, the final weight was With All Constrints
590.32 lb with a computation time of 129 sec Optuwn WVcight - 590.32.o
for 36 iterations, and the maximum violation L3

of constraint was 0.028%. Fig. 5-21 shows 0 ihStc adDplcmn
variation of the cos: function with respect to 4osra1ntsdDslcmn
the itelation number for the last two caseb of Optimum Wecit= SW6.AM
this problem. It may be noted that for
practical purposes, convergence was obtained 580
in only 6 iterations.......

3. Example 5-3. 4 7-Bar Plante Truss 520itio 4 8 12

Ilesehematic diagram of the structureFiue52.traonvWigtcrs
with dimensions is shown in Fig. 5.2. This fiue51 ttor v Exampl t 5., res
example is also treated in Ref. 20 where it is rnissibi Tower
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Figure 1 522. 47Ba 5ln ft (Exmpl 5i3.
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TABLE 5.11

47.bAh PLANE RUSS UEAMPLe. 5.3).X

Disign Informnation: For ia~h member of the structure, the modlulus of elasticity E,, the spocif le welghit p,, and
t Ih' constant ,are ib 1,0'-klpsin. 2 , 0.284 lb/in.3, and 1.0, respectiv~ly. The resonant frequency for the structure
is 16.0 Hv irid the di'plaC6 entJirits are 1 In. on all nodeiand in i Id Irections. -There is one load ing-conidition for
the truss wil - ::±:,'---n o'ng.- 5.22. Allowable stress in it'nsi6rt for all 'members Is 2 1.28 kips/in .2 '

Final'Area, iW.

C6rnpression." With 'Stress
El. Lower Area Upper Area Stress Limit, Initial Area, Constraifts With All

No. Bound, I.0 Bound, ij*2  kls0n. In2 nly Constraints
1 3.570 -9.620 14.56 ' 5.690 3.570 .3

2 Sio9.60 4.6 5.90 .50 5.17
3 -3.570, -9.620- 14.56- 5.690, 3.57G-- 3.570
4 3.570 0 .6 9 14.56 5.690 3.570 4.473 J

3.570 9.620 14.56 5.690 3.752 6.505
6 3.570 9.620 14.56 5.690 3.570 6.124
7 3.570 9.620 - 14.56 5.690 4.212 7.777
8 3.570 9.620 14.54 5.690 5.217 9.529
9 -1.930 2.940 15.90 2.210- z 1.930 1.930

10 1.930 - 2.940 15.9 1,1 2.210 1.930 1.930
11 1.930 - 2.940 15.: Cl 2.210 2.205 2.199 T
12 1.930 2.940 iS5a11 2.210 2.205 2.205
13 1.930 2.940 15.91.1 2.210 1.930 2.940 -

14 1.930 2.940 15, 0 2.210 1.930 2.940
15 1.930 2.940 15.91. 2.210 2.205 2.119
16 1.930 2.940 15.9r 2.210 2.205 2.205
17 1.360 2.190 15.40i 2.100 1.417 2.136
18 1.360 2.190 15.40; 2.100 1.815 1.630
19 1.360 2.190 15.41; 2.100 1.360 1.360
20 1.360 2.190 15.41; 2.100 1.360 1.360
21 0.376 0.376 3.301 0.37e 0.376 0.376
22 0.376 0.376 3.. 0.376 0.376 0.376
23 0.376 0.376 3.Sii 0.376 0.376 0.376
24 0.376 0.316 3.313 0.376 0.376 0.376
25 1.360 2.190 1 2.4-c 2.100 1.360 1.455
26 1.060 2.190 12.32 2.100 1.360 1.451
27 1.360 2.190 12.32 2.100 1.360 2.137
28 1.360 2.490 12.32 2.100 1.360 1.360
29 1.360 2.190 12.32 2.100 1.360 1.492
30 1.360 2.190 12.32 2.100 1.360 1.428
31 2.940 6.040 17.47 3.850 2.940 3.774
32 2.940 6.040 17.47 3.850 2.940 2.940
33 2.940 6.040 17.47 3.850 2.940 2.940
34 2.940 6 040 17.47 3.850 2.940 5.592
35 2.94U 6.040 17.47 3.850 2.940 3.582I
36 2.940 6.040 17.47 3.850 2.940 2.940
37 0.940 1.320 4.93 1.200 0.940 0.940
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TABLE 541'AMontd.) 1
Ogutpunt: (Contd.)

I -Final Area, In.2

El oe ra Upper, Area Stress Limit, Initial Area, Constridnts With AllEl Loe Areasio it trs
No Boound, In2 Boiund, in.2  kips/in.2  in.2  Only Constraints

38 0.940 1.320 4.93 1.200 0.940 0.940
39 0.9 40 1.320 4.93 1.200 0.940 0.940
40 2.940 6.040 10.76 3.500 2.940 2.940
41 2.940 6.040 10.75 3.500 2,940 2.940
42 2.940 6.040 10.75 3.50) 2.940 2.940
43 2.940 6.040 10.75 3.500 2.940 2.940
44 2.940 6.040 10.75 3.500 2.940 1.940
45 2.940 6.040 10.75 3.500 2.940 2.940
46 2.940 6.040 10.75 3.500 2.940 2 940
47 2.9.40 6.040 10.75 3.500 2.940 2.940

Weight, lb 310.30 29.737.

final weight reported in Ref. 26 was 3,328.5 that for practical purposes, convergence oc-
lb which is considerably higher than the one curred in approxim;,.,ly 6 iterations.

___ reported herein. This may be attributed to the(
fact that-in-Ref. 26 the-memberc are divided
into eight groups so that there are only eight 4000
independent design variables, whereas in this
treatment, area of cross section of each
member of the truss is treated as an unknown 3600 With all Constraints

desig varible.With Only Stress Constraints
The truss also was designed by imposing all

the constraints. The starting point, stress 30 p~u egt29.7l
limits, and upper and lower bounds on the
areas are same as those used in Ref. 26. it 2900 t....
may bt; noted that members 21, 22, 23, and trlnumr
24 had the same upper and lowver bounds on IeainNme

areas. The final design weight was 3,771.0 lb Figure 5-23 Iteration VS Weight Curves for
with a computation time of 166 sec for 24 Example 5&3, 47.Bar Plane Truss
iterations. The maximum violation of the
constraint wvas 0.27% on stress for member
11. Fig. 5-23 shows variation of the cost 5.6 A GENERAL TREATMENT OF PLANE
function with respect to the number of FRAME DESIGN*
iteration for both the cases. It may be noted

*This paragiaph Ls based on the disseitalion of Dr J /.ota. Intspagrhn plcinofh
Ref. 34. gradient projtction method to framed struc-
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tures, will 'be presented. Rigid frames1 are clb1
3/ 4  (5-99)

found* quiteJrequentlyin practicl situations,
including, building, and vehicle structures. In and
the present work, optimization of planar
framed -structures using wide flange steel r, = 4 (5-100)
sections.is considered ,under the assumption
of. elastic, working stress analysis. Thi AISC where A, is the area of cross section, Z, is the
Steel Construction Manual (Ref. 27) is used section modulus, r, is the least radius of
for the properties of these sections. The gyration of the ith element of rigid frame, and
constraints considered are stress, buckling, a1, c, and d, are constants. These constants
displacement, natural frequcncy, and restric- can be found by plotting curves of area of
tions on design variables, cross section, section modulus, and th?.,least

radius of gyration versus the moment of
5.6.1 PROBLEM FORMULATION inertia of various economical beam and

column sections. These curves have been
In the problems considered here, the drawn by Nakamura (Ref. 28) for wide flange

geometry of the frame is assumed to b, sections of AISC Steel Construction Manual
specified, i.e., ienaths of the members or the (Ref. 27), and the same values are used in this

joint coordinates aie not treated as design handbook. This approach of obtaining con-
variables. Multiple Iading conditions for the tinuous relationship for area of cross section,
structure are treated by the procedure ex- section modulus, least radius of gyration, and
plained in par. 5-4.1. The moment of inertia the moment of inertia has also been used by
for each element is treated as the design other researchers in their work (Refs. 29, 30,
variable; therefore, b ;s a vector whose Ith 31).
component b, is the moment of inertia of the
ith element. In calculating weight or volume The objective function, Eq. 5-1, for this
of the structure, element direct stresses, ele- problem is again taken as the total weight of
ment bending stresses, area of cross section, the frame which may be written as
and the section modulus of each element
mrust be known. Also, in order to calculate m m
the allowable compressive stress for an ele- J= X P1 LAt= 2; PLatbt /2  (5-101)
ment, its least radius of gyration r, must be
known. These quantities are required as con- The displacement method of structural analy-
tinuous functions, rather than discrete num- sis is used, and nodal displacements of the

bers, in the present formulaiion. Since the frame are considered as basic state variables.
moment of inertia of each element is its only Therefore, the /th component of th., state
design variable, the quantities area of cross variable represents the jth displacemer.t com-
section, section modulus, and the least radius ponent of the frame. Fig. 5-24 shows a simpie
of gyration must be expressed in terms of the scheme ior designating joints, members, and
moment of inertia of the element. These displacement components of a frame in the
relationships of the ith element are written as structure coordinate system. Fig. 5-25 shows
follows: a frame element in the member coordinate

system with the sign convention to be used on~A, Q ,i /  (5-98)
a atelement forces and defoiniations. It may be
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noted that F1 and Et:are diect forceson the
z 4 . element, F t and F4 'are shearing forces, and

______________ z z F3'and F6 are the moments-At the end of an
3 ________

" element. The structural analysis equations

developed in par. 5-4*and in Appendix B are
3 also used 'here. The element forces are com-

x2 puted from Eq.- 5-80 which may again be
x0 written as follows:

X F = Sz (5-102)

Figure 5.24. Description of a Frame
where

x'1
x2,

S = K(b)3 (5.103)

14X wklp .kF' 5 Dimensions of the matrices K(b) and P are
Fiu 4I,, r"* ,,' ,;4 ,F' adjusted for the case of frames and F is a

vector which consists of element forces for all
£x I I the elements of the frame. The stiffness and

• A a6 mass matrices for the frame element are
x different from the truss element. They are

Figure 525. A Frame Element given by the following matrices:

1/- 1/2
a[ 0 0 at  0 0

0 12/L 2 6/LI - 12/L' 6/L

Elb 0 61LI 4 0 61L i  2.- = (5-104)
1/2 0 0 ab1 0 0 (

0 - 12/L - 61LI 0 12/L, 61Li

0 6/Li 2 0 -61Li 4

5-38
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140 0 0 70 0 0

0 156 22L 0 54 - 13L

PtLa 1 1  0 22L 4L2  0 13L - 3L 2

(5-105) f='  420 73 0 0 140 0 0 ( 105

0 54 13L 0 156 22L

0 -13L -3L 2  0 -22L 4L2

Now, as before, the matrices Q- and 0 of 2; of Eq 5-21. It requires formation of the
Eqs. 5-20 and 5-21, respectively, must be constraint vector by considering various
computed in order to apply the algorithm of constraints and computation of matrices such
par. 5-3.2. They can be readily assembled as 3r/3ar, a/8z, and a iab. The treatment of
once various other matrices have been cor- frequency, displacement, and design variable
puted. Let us first consider computatior of constraints in the case of a frame is exactly
the matrix RJ of Eq. 5-20. The matrix f(b), the same as in the case of a truss, which is
which is computed from externally applied developed in par. 5-4. So, these features will
loads, is independent of the design variable not be explained here, except for the fact that
vector b if the self weight of the elements is any point where a displacement constraint
neglected. This implies that af(b) 1ab = 0. must be imposed :s treated as a nodal point.
Also, from Eq. 5-101 one obtains Computation of matrices such as a/b

[K(b)z], a/ab IK(b)y], and a/ab [M(b)y] is
ai 1 -1/2 also carried out in the way explained in par.

"ab' 2(PLahb- 5-4. The only constraint that remains to be
considered is the stress constraint, which will

Pm Lm am bm 312) (5-106) be considered next.

5-6.2 STRESS CONSTRAINT CALCULA-
(0 ......... 0), (5-107) TIONS

and aJ/a- = 0. Eq. 5.14 now yields, =(0, Let s denote the subscript for this con-
and I = 0)T. Substituting these values into Eq. straint. If one can compute 4J,/4 and row
5..... Sbtiing vectors 4,//z and a ./ab for this constraint,
5-20, one obtains then he can assemble the matrix R. of Eq.

1J(iiab / 5-21.
The members of a framed structure are

PM -,n',, bm- 1/2)T (5-108) subjected to direct as well as bending stresses.
Thus, the effect of combined stresses must be

Next, consider computation of the matrix conddered in implementing the stress con-

5-39

Downloaded from http://www.everyspec.com



AMCP 706.192Q

straints. It should 'be noted here that a clear kL
distinction is made between the ctements and e rc (5-114)
the members of a frame. This distinction is
necessitated by the fact that a-rmember must F= allowable compressive stress
often be divided into several elements for
structural analysis and implementation of £=Young'smodulus
dispilacement constraints. On th. other hand,
the compressive stiess for all elements making On the cross.section of axially loaded col-
up a membef'is the same. In the present work, umns When kL/r exceeds C ,
henmembers subjected to direct and bendifig

stresses are required to. satisfy -the- AISe 149,

specification (Ref. 27). The permissible stress, F 1 (Kipin). (5-115)
according to this Steel Construction Manual, [kjr
are: 4. Combiea Stresses:

1. Tension:
a. Axial Compression and Bending: 2

F, '0.60F7  (5-109) Members subjected to both axial com-
pression and bending stresses shall be pro-
portioned to satisfy the following require-

Fb = 0.66 Fy (5-110) ments:

where F is material yield stress, F is (I) Whenf 4 /F4 < 0.15,
allowable tensile stress, and Fb is allowable
bending stress. +. < 1.0 (5-116)F.F.

3. Compressinn:
(2) Whenf,/F, > 0.15,

On the gross cross-sectional area of axially
loaded compression members, when kL/r, the
largest effective slenderness ratio of any un- -+ 4 f 1.0 (5-117)
braced segment, is less than C F0

(! - e and, in addition at points braced in the plhne
F. (5-ll) of bending,

F.S.

where F.S. = factor of safety = 0.61 1i.0 (5-118)

5/3 + (3/8)e - (l/8)e3 (5-112)l wvhere

C, = V2EFY (5-113) F, = axial stress that wouid be permittea
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"fxial:r re alone existed undor consideiafioni. 'M/M2 is~posi-
tive 'when the member :is" bent in

Fb popressiVi, beding 'stress that single curiihif hnd heative~when it
'woildbebpehffltted. if liendig ffb is benit in reverse 6urvature.

(c) 'For, om0pressibn meibers in frames:
,1.49X1S lbrced against joint",trinslation in,

N Cs 2(41) t~e plane of loaiding aid subjicted,to
), transve i, loadihg btweeii: their

(InE 5419, for F!, Lb ''isthe actial iupprts, the value of C may" be
'unbraced lengh" (in.), if ihe plane of determined by- rational analysis.
beidif;,rb isithe cofespondi"iadius-6f However, in lieu of 'suchanalysisi the
-gyration (in.), and k-is the effective ehh follwing values may be used.
factor in the'plane of bending.)

1 -For members--whose ends are
computed axial stress restraiied:

fb = computed compresstive bending m = 0.85
stress at the point under con-
sideration 2. For members whose ends are

unrestrained:
Cm = a coefficient whose value shall be

taken as follows: Cm = 1.0 kS-122)
(a) For compression members in frames

subject to joint translation (side- b. Axial Tension and Bending
sway):

Members subject to both axial tension and
Cm = 0.85. (5-120) bending stresses shall be proportioned to

satisfy the requirements of Eq. 5-118 where
(b) For restrained compression members fb and Fb are taken, respectively, as the

in frames braced against joint trans- computed and permitted bending tensile
lation and not subject to transverse stress.
loading between their supports in
the plane of bending: Eqs. 5-116, 5-117 and S-118 are known as

the interaction equations. These equations, of
course, are derived from the linear super-

Cm = 0.6 + 0.4 Mposition of the direct stre:" under axial load
M!2  alone and the bending stress under bending

but not less than 0.4, (5-121) moment alone. The factor Cm1(l-f a/Ft) is
used in Eq. 5-117 to account for the magnifi.

where M1 /M2 is the ratio of the cation of the primary bending moment due to
smaller to larger moments at tht; the axial load. This factor depends upon the
ends of that portion of the member, type of loading and end conditions of the
unbraced in the plane of bending member. The value of the coefficient Cm can

5-41

Downloaded from http://www.everyspec.com



AMCP 706-192

be derived for, various types of loadings and given by Eq. 5-112 includes an allovance for
members, but the values recommended in both of these factors and- is -adjusted to
Eqs. 5-120, 5-121, and 5-122 are conservative account for their varying influence. For short
and' are used in the present work. For a columns, Eq. 5-112 approaches the basic
detaileddevelopment aid discussion-of these safety factor in tension (1L67); and, at e = 1,
equations the reader is referred t6Ref. 32.- it becomes 15% higher (1.92), a value which is

then used inthe case when kL/r e xeeds':C€.
The-allowaL, -compreiii,'stress forniula, Eq. 5-112' is an approximationof a 'quarter

Eq. 5-115, is 'derived based 'on the basic sine wave between the 'wo limits, the. curve
theory of column buckling. It is'obtained by used in the specificatiGn as -best representing
dividiig the Euler buckling'stress by a factor the influence of the two factors. For a
of safety of 1.92. Therefore, F =r 2 -Elf 1.92 detailed -discussion of 'he -these factors, the
x (kL/r) 2 ] and, takingE = 3.0 x 104 'Ksi, F, reader is again referred to Ref. 32.
= 1.49 x 105l/(kL/r) 2 . Eq. 5-115 is applicable
when the largest slenderness ratio kL/r is The effective length factor k for- each
greater than or equal to C,. Experiments have member of the frame is found from the
shown that when kL/r < Cc, the values of the differential equetion
failure stress predicted by the Euler critical
stress formula are seldom attained (Ref. 32). d2y Py
This is due to the presence of residual stresses d- + T = 0, (5-123)
and other imperfections in fabrication of the dx2  EI

members. Therefore, when kL/r < C,, the where P is the buckling load, and I is the
values of the allowable stress F, are found second moment of the cross-sectional area.
from Eq. 5-1 11 which is derived based on the
parabolic approximation of the curve-critical The solution of this equation is given by
stress F, versus the slenderness ratio kL/r in
the range kL/r < C.. This approximation is
chosen based on the experimental results y(x)= D1 sin 7- x + D2 cos x
obtained at Lehigh University (Ref. 32). The As ,
value of the constant C. is found by assuming (5-129)
that the Euler critical stress formula holds
until the critical stress is Fy/2. Therefore, In rigid frames, two cases must be discussed:

r2E (I) frames without sidesway, and (2) frames
Fyl2 = (--r)j or C,= (kL/r) , = with sidesway. The transcedental equation

that comes from Eq. 5-124, while satisfying
where L and r must be expressed in the same the boundary conditions for a member of the
units. frame without sidesway, is given by Ref. 32

The factor of safety is used to account for [I(GA +GB+L GAGo (r/k) 2 - I (xlk)
small imperfections of form and loading, and

variations of support and restraint conditions x sin (/k) - (GA + GB )(7r/k) 2 + 21
from those assumed in computation, which L2
cause the true effective length to be different
from that calculated. The factor of safety , cos (r/k) + 2 = 0 (5-125)
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PAeG an OG i ~i 46# the eoiwn .eitions is-used nfifndng theio6so VEi.
'qtoi:5-12Sand -12 int hpesn o

'the intferaction Eqs. 5,416,. 51,17j. Andiy~ccA(57126) 5-1 18 'a implemented at~the 'itOf' m'.-

-thereare no, lads'between the en p'oints of'
--ifid 'aii elemfenti 'theh' the 'ifiaximiim ib'e'ding;-o.

'1 metit jsc at oie oftlie ends; 6therwise the
tL -I ctual'point'of "'aximum bending moftentis

cB~cB 5!27) oun'd" -and& the interactiow. -equations iije
implemiented.~ee'A"f x~ipeOf~e
-the,,case of4.unfo,*y,'d ithb te-id6d; on a-

-Tesu ript's diBi'ffrd: .th o-Ci- 4fdine x from theliftenid is given~by
Y Th ijclberA nd 'atJ of '-ith ider d66isidirtiozi'aid'h

Wbilt c'm d~brefe- cah- iipfe-ssed and,
reiaii ei e ,espetiveiy; -Foi G M. 3 r~ - 72 --- '(54129)

01smmAtoisetend, over Olimibers'thif ate,
cOnne ctedio jpint A anid fo-r-G the su-ma-
tions extenid: 6vei- ill -them brsiatii
conce~jbft,0q forl:he firit-case'Of
awframne'.Wit6i its 0*y the -,ivofx th0..5 (5-130)
6ff~ctive6leigtja k muist be-f6und~by ~ -~w=
solving *the; transco d~nta1 'Eq. 5-125;for-each
member o~f tfe~fame. o

For-the second case, i.e., a rigid frame with =(.31
sidesway, the transcedental equiation that
comes out of Eq. 5- 124 - while satisfying the Teeoe rmE..-2
boundary condition for a member of theA

frame-il gie by Mmx + (F21) 2 /(2w). (5-132)

(GAG (w/)2 
-36j in (nk)Eq. 5-132 is used in computing the maximum

-6(GA + GB ) Qr/k) cos (in/k) 0, equations. Now, the implementation of the
interaction equations will be considered one

(5.128) by one and the vectors a@5/az and a ./Ob wilt
be computed in each case. For the sake of

where GA and GB are given by Eqs. 5-126 simplicity, let N be the direct force on the
and 5-127, respectively. Thus, for the case of element, M max be the maximum bending
a frame with sidesway, Eq. 5-128 must be moment, k1 be the effective length factor, and
solved for k for each member of the frame. Libe the length of the member to which the
The secant method of nonlinear algebraic tth element belongs. '
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(I) jieracti6Wtq. 5-116:,'b ,~b 2,at +

Ecj.;5-1 6,,:Tor ,th ':ijaxinuium-stress inmthe N ,F0  .

theleefiten ca'in ritten as . - 'b + ZiF

,N- Mma Om- M a 1

twliere'-Z'is stiffness.
the. bea dikThe yaluieof'aMm,,lab caft be found from

In case F~. 5-i 33:isvi0Jat~d ,,n'one must Eq. 5-136 or Eq. 5=132,!which are as'follows:
compui : ,0?%' :aj;',' ,fiV hd dF,/b -afll
Therefore; frbm E": 5-J.. 34 0dor -F (5-Ao0)

/ N 'A ,€

7b 0b W 11b

ADiffrenij~ting 1q. 5-133 with respect to z. ,The value oC , /Sb r ,ie,.,in )Eq. 5-139

ifoulvd I kou Eq-11 - ri2.'.1I15.Fist, !f
+ -m (5-13S) kjLj,: C, thtu.Ii. I 1I gives ~ " Valu e of

The value of aMAnm : z depends on the
expression that defines Mma. . If Mmax oc- Fa Fy e r 3curs at an end of the element, then ab 4b '(F.S.) , 8e 1 .S.T

Mmx= F31orF t  (5-136) x (I -e2)( eh bi

and 2 2J] b

aOm x aF13 aF( 1 Fy e, [ 3

-or-- (5-137) kt (F.S.) 8 (F.S.)a)z Oz z

If Mmax occurs at a point other than the X (I -e )(I -- e2'---.--| (5-142)
ends, then Eq. 5-132 gives its valL.e, and I "2 / b J

OM,,,x aF3 F2 arF2 where
' z az .+ - (5-138)

Again, differentiating Eq. 5-133 with respect e, = --- (5-143)
to b, ic
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'vaue:2F.nd :ak +mxIt'ab

ab ~ ~ ~ ~ ~ ~ ( bb.yb(4) 4 jt NIA

Eq.-,1 th 'au'fO~ a efud ~j j 5149)

~ 5-117:'where -

Eq5-ill7 tforthliiaxlsnuzii strisi in'he N (5iO
,(tfrelernezitcan be written-as follows: .I L

0 (5-145) -Interactio,E4...1 18:
AJ~..- Next, donside&f ;q 5.1 i18; Nvhich~nmay be,

where wrte s.(o11oWs'f6r~the maximni 'itrWs~in
W t ih, elemen~ft

'~ 1l A~ Fb. (56) ~ N Ma

-If-t44i-conistraInis violate, 1kh noit must +.~(;~)
compuiite 4'ara /0 6nijdz A lca&b In
this case'6 -/,IO ' id Theret-ore, aj./ar.= O'and

- / Cm - N Al
maxf (5147) i a (5-152)

\A jF + ' 10 (5-147 iO.61,A, ZjFb-/

Differentiating Eq. 5-145 with respect to z Differentiating Eq. 5-151 with respect to z
and b, one obtains and b, one obtains

ai C~m 1, N a@, I i N IOM~,
Oz~~- -T IAF-ta'AF - (5-153)az z O.6F7A, OzZIb z

(5-148)
+\Cm0 M ac),~1 and

a I OaN N Ob,\

(5-154)
i IfaN N ab1\ N WF+ IfOamax 3Mag,; ab\

Oh A, . Vb 2bi abJ A, ;b ZF\ F- Ob 4b, b
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, Ybe noted in-the,previous equations 5.4 'and, 5 5 that ifllo v also are treated int
that Ref. 28:indweie'firstdesig ied fironly stres

constraints in- order: o -conipae -results -th,
ab1  (ith) -those of Ref: 28.

, ,.0. ,., O (5.155)
1. Example 5-4. Simple fi 'ra(]rqme

The valueof 'the-vectors such as aN/az,Theal/a, f the bcabe su ashN/tlyFig. 5-26 shows- the, dimension of -the
aVlab, AF41 /8z, aF2d jab can be found directlyfrom the :Eq. .0 hyectors8Cm ioand- frame. The momenit of-,inrtia-1f6 eachee-

aCm/abare'zero-forc6ses presribed by Eqs me nt,6f the franme isntreatdas art unknown,
5-1 20 and 5-122. For the case prescribed by and the results obtained, are shown inTable
Eq. 5-121, they are computed using the chain - The frame was first designed with only
rule of differentiation. It remains to find stress constraints. The final weight in this case
value of the vecior- ak1/~b. This vector can b was 3050.5 lb with a computation time of
computed by differentiating'Eq. 5l25,6rEq. 3.74 sec for 13 cycles. At the final design
5-128 -with -respect-to--the-design= yari ble poin the maximum constraint:-olatjon was
vector b. HoWever,:due to thefact that both 0.012% for stress in element 2. -Optimal
GA and GB arfunctionsof b, this comiputa- weight reported in Ref. 28 was 3206 lb;

tion is quite tedious and time consuming Which is higher by approximately 5%.
fhe computer. Another approach that may be
followed for computing ak a/b is to use the The frame was also designed by including
method of finite differences; but this ap- all the constraints. The resonant frequencyethit fof tinit ditferenues was 25.0 Hzap-th
proach is equally time consuming on the limit for the structure was 25.0 Hz and the
computer. Moreover, it has been observed in finl weight obtained in this case was3803.0lb with a computation time of 14.60 sec for
the numerical computation that the value of

31 iterations. At the final design point, thek, des ot cang appecibly romone maximum constraint violation was 0.0073%
design cycle to another. Therefore, without
significant loss of accuracy, the value of k, in
a particular design cycle is treated as a
constant. However, at the start of each design
cycle, k values for all the members of the 2401n.

frame are recomputed. Thus, following this
procedure, ak,/ab = (0 ....... 0). Now, all the - -

necessary information is available to assemble 2
matrix A of Eq. 5-20.

180 in. 1 4

5-6.3 EXAMPLE PROBLEMS
X 
2

Several rigid frames were optimized using
the computer program based un the algorithm 7/, ,r- -- x--/77"
of par. 5-3.1. All the problems were solved
with stress, displacement, frequency, and de- Figure 5.26. Simple Portal Frame (Example
sign variable constraints. Example problems 5.4)
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'~4~ TABLE 5.12

SIMPLE PORTAL FRAME (EXAMPLE 54

Deasign Info,'rnation: For euch element of the frame, the modulus of elasticity, the specific weight, and the yield
stress are 3 x I0W kips/in.2, 0.28386 tbin.3, &Wd 16.0 kips/in. , respectively. The constants ap c, and di are 0.58,
0O,68, and 0.67, respectively. The lowar limit on the moment of Inertia of each elerment i3 1.0 ind there is no
upper Irait The resonant frequency is 25.0 Hz and the displacement limits are 0.5 in. at nodes 2,3, and 4 in both
x,-a nd x2-direciions. There are three loading conditions for the frame; first Is uniformly distributed load of - 0.5
kip/ in. an elements 2 and 3, second is a load of 45.0 kips In x-directinn at node 2, and the third Is a ld of - 45.0
kips in xtdirecrlon at.'lode 4.

Wit Only Stress Constraints WitAl the Constraints
Conputatlon times 3.74 sec Computation tiiiie 14.60 s*.-

El. Starting Values, Final Values, El. Startin Values, Final V21u1,1,
No. in.4  in.4  No. in.4  in.'s

1 1600.0 1091.4 1 1600.0 1995.5
2 1600.0 768.3 2 1600.0 0.

I 3 l 1600.0 768.3 3 1600.0 860.3

4 1600.0 1091.3 4 1600.0 1 1995.5

Wt. lb 3947.7 3050.5 Wt, lb 3S.47.7 3803.0

for stress in A,.euent 2. Fig. 5-27 shows the in only 5 iterations in the first case and in 7
varatin f te kietie acton s he teatinsin th eodcase. Hoeein the

iterations progress. It may be noted that, for second case, the cost function continued to
practical purposes, convergence was obtained reduce for a few cycles beyond the 7th

iteration without correcting tile constraints.
This was due to the fact that the step size for

4400 ~ 1 the problem was too large.

2Example 5-5. One-bay Two-story Frame

j3400 With Only Stress Constrzants The pre-sent example is also treated in Ref.
Optimum WeIih - 3050.5 ib 28 Fig. 5-28 shows the dimensions and the

-- . O~Co ~C 03------------loading conditions for this structure. Input
2900 and output information for this example isI given in Table 5-13. This frame was first
2400____________________________ designed for stress constraints only. The final

0 4 8 1i~ 16 18 weight in this case was 8292.0 lb with a
Iteration Number computation time of 21.47 sec for 32 itera-

Figure 5-2Z. Iteration vs We~qht Curves for tions. Maximumn constraint violation at the~
Example 5.4, Simple Pp, tal design point in this case was 0.27 percent for
Frame stress in element 3. T'he comparable final
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weight reported in Ref. 28 was 8810 lb, The frame was also designed while en-
which is again higher by approximately 5.8%. forcing all constraints. The resonant frequen-

cy limit in this case was 15.0 Hz. The final.
6K/ft weight obtained in this case was 9722.5 lb

45K 45K with a computation time of 48.84 sec for 32
3 4l iterations. Maximum constraint violation war

0.38 X 10- 3 % for displacement of node 3 in
180 In. 2 7 the x -direction. Fig. 5-29 shows variation of

6 Kft the cost function with respect to iteration
45K 111 | | ]| 4 number, and it may again be noted that
11 s 6 convergence was obtained in 8 cycles in both

the cases.
180in. 8 B

X2 3. Example 5-6. Two-bay Six-story Frame

L :X 0 ,Figure 5-30 shows the geomctry and

-240.- - dimensions of the frame. This frame has 21
joints, 30 members, and 54 degrees of free-

Figure 5.28. One-bay, Two-story Frame dom. The frame was designed for four loading
(Example 5-5) conditions, and the input and output informa-

TABLE 5-13

ONE-BAY, TWO-STORY FRAME (EXAMPLE 5-5)

Design Information: For each element of the frame, the modulus of elasticity, the specific weight, and the yield
stress are 3 x 110 kips/in.2 , 0.2836 lb/In.3 , and 36.0 kdps/in. 2, rcspectively. The constants at, c, and d, are 0.58,
0.58, and 0.67, respectively. The lower limit on the moment of Inertia of each element is 1.0 in.4 and there is no
uppei limit. The resonant frequency for the frame ;s 15.0 Hz and the displacement limits are 1.0 in. at n3des 2. 3, 4.
5. u, d 7 in both x, -and x2 -directions. There are three loling condi is for the structure, and they are as shown
on Fig. S,28.

With Only Stress Constraints With All the Constraints
Computation time - 21.47 sac Computation time 48.84 sac

El. Starting Val as, Final Values, El. Starting Vslues, Final Values,
No. in.4  In.4  No. in.4  in.4

1 6400.0 3264.8 1 6400.0 3794.0
2 6400.0 001.4 2 6400.0 1436.3
3 6400.0 801.5 3 6400.0 I 845.7
4 6400.0 801.5 4 6400 u 845.7
5 6400.0 2598.7 5 6400.0 4618.8
6 6400.J) 2598.7 6 U-400.0 4618.8
7 6410.0 901.4 7 6400.0 1436.3
8 6400.0 3267 4 8 6400.0 3794.0

Wt, lb 15790.8 8292.0 We. lb 15700.8 2722.5

5-4R
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16000 - 1 f the first few iterations that reductions in the
values of the design variables for elements 23,

140o With All Constraints 24, 25, 28, 29, and 30 were relatively smaller1 than those of other elements. This is due to
Optimum Weight - 9722.5 lb nature of the gradient of objective function

12800V. With only Stress Constraints for this problem (Eq. 5-106). So, the values of
t8292.0lb these design variables were reduced con-

siderably at the 7th iteration. This is shown
11200 by the vertical drop in the graph at the 7th

iteration on Fig. 5-31. In the second case,
where all the constraints were considered,

9600 variation of the cost function with respect to
the iteration is .ihown in Figure 5-32. In this

8000 t- case, the starting point was infeasible and the
0 4 8 12 16 18 convergence was obtained in 8 iterations.

iteration Number

Figure 5-29. Iteration Number vs Weight
Curves for Example 5-5; One-

bay, Two-story Frame
X2

I _ _ _2 3

tion for the problem is given in Table 5-14. 1 2
.- The frame was first optimized by imposing I 14n

the stress constraint only. The optimum 4 6

weight in this case was 21706.6 lb with a 8 9 1
computation time of 8.32 min for 21 itera-
tions. At the final design point, the maximum
constraint violation was 0.025% for stress in 13 14 1i 144 in.
element number 25. Next, the frame was II I2
designed by imposing all the constraints. The 16 07 16 17
optimum weight in this case was 24290.1 lb A 19 20 144 in.
with a computation time of 8.7 min for 20 14 1
iterations. At the final design point, the 21 22
maximum constraint violation was 0.0072% 23 24 25 144 in.
for displacement in the x -direction at node 16 _7 18
1. All other violations were less than that. 26 27

28 29 30 144 K

19 20 21

Fig. 5-31 shows variation of the cost -- r, MM
function with respect to the iteration number. | 240
Thu starting peirit in th;s case wa; quite a . ,0n 2,jo.. ..
distance away from the optimum point.
Therefore, a larger step size was used in the Figure 5-30. Two-bay, Six-story Frame
first few iterations. Also, it was observed from (Example &6)
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TABLE 5-14

TWO-BAY, SIX-STORY FRAME (EXAMPLE 5-6)

Design Information: For each element of the frame the modulus of elasticity, the specific weight, and the yield
stress are 3 x 104 kips/in.2 , 0.2836 lb/in?, and 36.0 kips/in.2 , respectively. The constants al, c,, andd, are 0.58,
0.58, and 0.67, respectively. The lower and the upper limits on the moment of inertia of each element are 394.5 in.4

and 6699.0 in.4 , respectively. The resonant frequency of the structure Is taken as 4.0 Hz anS the displacement limits
are 2.0 in. at all nodes in both x1 - and x 2 -directions. There are four loading conditions for the frame: (1) Uniform-
ly distributed load of -4.0 klps/ft on element 1, 7, 11, 17, 21, and 27, and - 1.0 kip/ft on elements 2, 6, 12, 16, 22,
and 26; (2) Uniformly distr;buted load of - 4.0 kips/ft on elements 2, 6, 16, 22, and 26, and - 1.0 kip/ft on
elements 1, 7, 11, 17, 21, and 27; (3) Uniformly distributed load of - 1.0 klp/ft on elements 1, 2, 6, 7, 11, 12, 16,
17, 21, 22, 2E, and 27, and loads of 9.0 kips each at nodes 1, 4, 7, 10, 13, and 16 in direction tA the x-axis; (4)
Uniformly distributed load of - 1,0 kip/ft on elements 1, 2, 6, 7, 11, 12, 16, 17, 21, 22, 26, and 27, and loads of
-9.0 kips each at nodes 3,6, 9, 12, 15, and 18 In direction of x, - axis.

With Only Stress Constraints With All Constraints
Computation time - 8.32 min Computation time - 870 min

El. Starting Values, Final Values, El. Starting Values, Final Values,
No. in.4  in.4  No. in. 4  in.4

1 2400.0 450.6 1 3S4.5 473.8
2 2400.0 450.6 2 394.5 f 473.8
3 2400.0 498.6 3 394.6 467.2
4 2400.0 394.9 4 394.5 437.5
5 2400.0 498 0 5 394.5 467.2
6 2400.0 530.8 6 394.5 568.7
7 24000 E s0.8 7 .94.5 569.1
8 2400.0 394.3 8 394.5 394.5
9 2400.0 397.1 9 394.5 608.5

10 2400.0 394.1 10 394.5 394.5
11 3200.0 481.8 11 450.0 787.0
12 3200.0 481.7 12 450.0 786.4
13 3200.0 425.3 13 400.0 412.7
14 3200.0 472.7 14 450.0 794.1
15 3200.0 425.3 15 400.0 412.6
16 4000.0 521.9 16 550.0 030.2
17 4000.0 521.7 17 550.0 930.0
18 4000.0 468.3 18 550.0 561.9
19 4000.0 723.5 19 750.0 920.4
20 4000.0 467.5 20 550.0 561.8
21 4800.0 699.1 21 600.0 1019.1
22 4800.0 699.1 22 600.0 1018.7
23 4800.0 646.3 23 700 0 693.4
24 4800.0 1044.5 24 1100.0 1197.0
25 4800.0 646.5 25 700.0 693.3
26 5600.0 666.4 26 600.0 868.5
27 5600.0 666.4 27 biuO.0 867.9
28 5600.0 1099.0 28 1200.0 1245.4
29 5600.0 1489.7 29 1600.0 1658.6
30 5600.0 1099 0 30 1200.0 1245.3

Wt, lb 54290.9 217066 Wt, lb 21243 b 242901
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540 5-7 INTERACTIVE COMPUTING IN
STRUCTURAL OPTIMIZATION

48000

4000 5-7.1 THE INTERACTIVE APPROACH

Structural Optimization techniques treated
- -thus far consist of methods which seek to

3600- determine an optimum design, within a well-
defined mthematical structure, by purely

30000 - mathematical techniques. A second approach
With Only Stress Constraints consists of providing the designer with an
Optimum weight= 21706.6 lb interactive computing tool with which he can

4 ---- .... try nominal designs, get rapid analysis feed-
back, and alter his initial design based on his

0 4 8 12 16 18 knowledge of structural behavior. Both meth-
Iteration Number ods have been used with varying degrees of

Figure 5.31. Iteration Number vs Weight Curves success on a variety of design problems. In
for Examplo 5-6; Two-bay, Six- general, the first approach has been used for
Only problems with well-defined optimality cri-

teria, sucl, as minimum weight or maximum
stiffness. The second approach has bten used
to aid designers in large scale structural design
problems, primarily airframe design, such as
the Air Force C-5 transport aircraft.

25200
The possibility of utilizing a combination

of these two methods for structural design has
24400 - - been the subject of a recent paper (Ref. 36).

Optimum Weight 24290.1 lb This paragraph presents the specifics of appli-
With Al Constraints cation of the steepest-descent technique with

__23600 -designer interaction. This hybrid approach is
I. appealing from a number of points of view.

22800 First, the problem of topological design, i.e.,
determination of optimum structural configu-
ration, has been addressed with very limited

22000 success from an analytical point of view.
Topological design, in practice, is done by

2 1experienced structural designers, occasionally
0 4 8 12 16 18 with the aid of interactive computation.

Iteration Number Combined analytical and interactive com-
puting methods appear to be essential 1o t!'-s
Important class of problems. A second pro%Figure 5-32. !t~etict; ,s" Weight Curves for mara riedetohedfc':ynEx~z,.,leS6,'To~by, ix.leim area arises due to tile difficv.,y in

Exw-,!Ie &.6; Two-bay, Six-II
story Frat -c, With All Constraints formulating a single optinhality ondttion and

; 1
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mathematically precise design constraints, algorithm. The result is a hybrid structural
Often, conflicting design cor.straints and ob- optimization technique.
jectives arise during design which require
experienced judgment and defy a priori math- Reconsidering the design improvement step
ematical formulation. Such problems appear of the optimization algorithm, one might
to require an interactive computing capability draw a vetor picture in design space, as is
but should profit from analytical methods depicted .. Fig. 5-33. Here. - s,8b' is the
that are used in automated structural optimi- direction which will yield the greatest re-
zation. duction in J subject to the required con-

straints, and Sb2 is the design change required
Due to unavailability of a large scale, to give the desired constraint error correction.

interactive system, the computations for this While useful in this form, there is a better
study were simulated. Instructions were pre- display of these data for use by the experi-
pared and computations were rnmn in the batch enced structural designer. The scalar com-
mode. Output data were then displayed and ponents of - b1 an 6b2 tell the designer
analyzed just as they would be in the inter- whether he should increase or decrease his
active mode, and instructions for recomputa- individual design variables to obtain desirable
tion were given by the designer and the changes in overall structural response. Fur-
process repeated. The delay in designer inter- ther, relative importance of design variable
action is felt to degrade performance some- changes i- given. For this reason, 6b may be
what, over true interactive computing, since interpreted as a vector of design sensitivitythe designer tends to f -get pertinent detailed coefficients tha relate individual design
data during the time delay. For this reason, parameter changes to overall structural
the results of this study should provide a characteristics. It is extremely important to
conservative estimate of the designer's per- note, at this point, that these sensitivity
formance in a truly interactive mode. :oefficients account foi constraints implicitly,

i.e., the direction of caange indicated in the
5-7.2 INTERACTIVE STRUCTURAL DE-

SIGN USING SENSITIVITY DATA

The steepest-desce t optimization method 6b'
developed in this Chapter has been used to b2
solve a nunL,:r of relatively large scale struc-
tural optimization problems with good
success. All these problems, however, have
been well formulated mathematically and
have involved structures with a predetermined
form. Difficulties have occurred when certain
structural elements tend toward zero crosi
section. Further, no universa! method ha%
been found to determine the best step-size r- -,

in the optim,zation algorithm. These and 1'
other inherent difficulties in automated opti-
nization lead one to interject an experienced Igure 5-33 Vt :t.r Change ,it Design
designer into the computat:onal, optirmiatioo Sit.,e
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design parameters will not ca~te significant designer a clear picture of the manner in
violation in specified performance constraints which he should change his design pa-arneters
such as stress limits and deflection limits, to reduce total weight, subject to stress

constraints. He can now choose the desired
To illustrate these ideas, consider the reduction AJ in weight and take the resulting

simple structural design problem in Fig. 5-34. design change 6b, or if he wishes, he can input

modified design changes through an inter-
MMtI active computer terminal.

/I a number of other respects in
2 //3 whiL mode of designer interaction with

the computer alogrithm is beneficial. First, it
ppens in the automated use of the

"oritimn that oscillation of admissible de-
,ign; -c -t_ s because too large a design im-

Qprov... I has been requested. Such oscilla-
tion can on ' be identified by the dasigner
after only a few iterations and the step size
can be reduced to prevent loss of computer

Fighre 5-34. Three-bar Truss ime, which can be significant in large scale
problems. Conversely, if an estimate quite far

from the optimum is chosen to initiate the
The cost function here is structural weight. If, algor,thm, it often happens that the designer
for example, stiess in member I is at its too small a step size. The 'esult is
allowable limit under one of the loads, then a very small improvement in the design which
the indicated changes in design (- SbL, can be sensed by the designer and improved
- 6b, - b3) will not increase the stress in before excessive computation tirade Is ex-
member I. To make the design sensitivity pendcd,
data of maximum use to the designer, con-
siddr the graphical display mn Fig. 5-35. In this
display, a, ,'e the stresses in the various A second rnportant benefit trorn designer

members. This display gives the experienced i.teraction with the algorithm arises due to
the occurrence of local minima and singu-
larities :n the analytical formulation of the
design problem The problem of local mnnima
is illustrated by Fig. 5-36. Virtualh all opti-

203 rization mLthods seek local optim and do
not solve the global optimization pi )lem It

"b/ b3  is easy for an optimization technique to get

-- bb, hung up at point I and not get to point A,
which is the global minma, so the designer
must try different starting poin:s to Gbtail
'ie global solution [his is a ver, time

Figure 5 35 Disp,'v of Design Sensittviry Lonsuming anti indefinite teliniquc with very

DOta few analytical aids to the designer Part ,li the
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J(b, z, r-) changes in configuration as outlined. There
are no general optimization methods, to date,
which will remove a member during iterative
design. The reason is that as a member cross
section goes toward zero, as is required to
remove a member, the equations of structural
mechanics and stress constraints become
singular. This sort ot behavior is typical when
the configuration of a system is changed and a
different set of equations is required to
describe the behavior. At the present time,
allowing the designer to make zhanges in

Figure 5-36. Local Optima configuration appears to be the most feasible
approach, which requires that he play an
active role in the iterative optimization al-

difficulty here arises because Figur, 5-36 is gorithni.
the wrong display for the designer in that it
doeb not utilize is knowledge and experience 5-7.3 EXAMPLE PROBLEMS
with strlctures.

1. Example 5-7. A Three-member Truss
A much better approach for the designer is

to look at a display such as Figure 5 35. He As an illustrative example of the technique
,an use his experience to restart the optimiza- presented in par. 5-7.2, an elementary opti-
tion algorithm at a meaningful distribution of mal design problem will be solved under a
design variables which may be quite different number of loading conditiois and a varietq of
from the design which resulted from previous constraints The effect of designer-computer
calculations. His experience, thus, aids him in interaction on rate of convergence is ex-
start ng with (ifferent trial designs. amined as well as the efft-co of changing

structural configuration.
Perhaps even more important than trying

variois distributions of design variables, the Figure 5-37(A), shows the geometry and
des,gner can utilize the display of Fig. 5-35 to dimensions of :he struLture being considered.
cl,ange the configuration of the structure This structure has been studied by S .,mit
base] on information he accumulates during (Ref. 37), Sved and Ginos (Ref. 38), and
terative design and based on his experience Corcoran (Ref. 35). Three mndeoendent load-

I-cr example he might try taking member 2 ing conditions are applied to the structure
out of the structure and optimize based on These are as follows. 40K at 45 deg, 30K at
the iaodified configuration. Very often. Q0 deg, 20K at 135 deg. The allowable stress
significant gains are made in thi% manner level for members I and 3 is ! 5 Ksi and for
Prec.-ely this behavior occurb in the three nember 2 it is ! 20 Ksi The dcnsity of the
member truss being considered material is taken as 0 10 lb/mn ' and Young',

modilus w 10' Ksm Starting from thL teasible
There are actually compelling mAthemmticd! solution. b1 - 8 0, h 2 = 2 4, h3, = 3 2, SLhinil

rtasons or allo, aing the designer to make (Rel 37) arrived t the solut ion hI
= 7 ()9).
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10 I 10 In. shown in this figure. The final solution
I I obtained by Corcoran was b, = 4.241,

22 = 2.038 with J = 7.55 lb.

.2 Considerable experimentation was done
t 23 .. 10 with this problem. Starting from a feasible

point bI = 10, b 2= 5, b3 
= 5, the solution

obtai"- d without interaction was b, = 7.064,
41J b2 = 1.971, b3 = 2.,35 and the minimum was

J= 15.97 lb. The variation of weight with
2 respect to iteration number is shown by Curve

(A) ThreobarTrus 1, Fig. 5-38. Next, by adjusting the step size
in interactive computing, the solution was
obtained in only five iterations. This is shown

8&9 In. P S-. .4 in. by Curve 2, Fig. 5-38. It was observed thatmember 2 never reached its allowable stress
level. As a second starting point, the area of

I o0in. member 2 was initially chosen to bring its
2stress to the allowable limit. The minimum

reached in this case was the same as before,
Curve 3, Fig. 5-38. Another solution was
obtained by starting from an infeasible point

(1) Corcoran Truss b, = 5.0, b, = 1 5, b3 = 0.10. The solution in
Figure 5-2Z Trusses (Example 57) this case was b, = 6.98, b 2 = 2.30, b3 = 2.68

%w ith J = 15.97 ib, Curve 4, Fig 5-38.

Next, member 3 was omitted from the
b2 = 1.849, b3 = 2.897. for which J = !15.986 Nxmme a ritdfo h

112= 1849113= 2897 fo whch 15986 structure. Startirg from a point bt 1 0,
lb. Sved and Ginos (Ref. 38) have shown that 5,ute solutiom obtain b, 80,

this is only a local minima and by omitting b2 =5 th Jol2tion obta re , F.
member 3, they obtained the solution as b . ihJ=1.1 b uv ,Fg
member., te obta5windth e so=12.2lun ay 5-39, which is same as reported in Ref 38. At

b=8.5, b2  1.5 with .= 12.812 lb. They

have also shown that it is impossible to reach
this minimum I', an iterative optimization
method unless member 3 is omitted from the 30
calculations by the designer. Corcoran (Ref. Curve 2
35) has considered configuratonal optimiza- 2E ') uric I
tion of this three-bar truss By using horizon-
tal coordinates of nodes I, 2, and 3 also as Curve 4
dPsign vrfiables, he arrved at an optimum 10 ('urv3

struLture shown in Fig. 5-37(B). As a result of C
this configurational optimization procedure, 0 2 4 6 8 10

members I and 3 were combined and their Itration N..mber
orientation is shown by member I of Fig Pigure 5-38. Ite,. d'on vs Weight Curves for

Example 5-7, Three-bar Truss
5-37(B) Member 2 attained an orientation a% With Stress Constraints Only
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35.' bl = 1 6.0, b2 = 11.31, and J = 33.94 lb. Thus,
30- Curve 5 the optimum weight obtained for this statical-

2 F "C 4 ._ly determinate case is approximately 70%
.Z higher than tho optimum weight obtained for

2°0 Curve 3- the statically indetermi;nate case.

1Ce I: was found that interactive computing
50 2 4 6 8 1 yielded convergence more rapidly than was

Iteration Number the case in the batch mode. It is expected that
Figure &39. Iteration vs Weight Curves for even more significant reduction in computing

Example &7, Mee-bar rruss time will occur in large scale problems.
With All Constrdnts

This problem was also solved by omitting
this point an interesting observation was member 2 from computation. The results
made. The maximum horizontal and the obtained in this case are given in Columns 3
vertical deflections of node 4 were as follows: and 7 of Table 5-15. The truss optimized by
with three bars, zi =0.689 x 10-2 in., Corcoran (Ref. 35) was also solved here by
z 2 = 0.595 x 10-2 in.; with two bars, first imposing the stress constraints only and
zi =0.239 x 10-1 in., and Z2 = 0.20 x 10-t 1in. then by considering all the constraints. The
Thus, although the optimum weight obtaineu results of these cases are given in Columns 4
by omitting member 3 is approximately 24% and 8 of Table 5-15.
lower than the weight obtained by including
member 3, the deflections of node 4 in the The key point in the solution is that the
former case were approximately four times configuration of the optimum design is not
greater than in the latter case. obvious from analytical considerations. A

designer's experience and insight are required
One might be led to believe flat if to select candidate configurations and then

deflection or frequency constraints were en- v,,tain the optimum design analytically. The
forced, then the optimum structure might not global solution in this case must be choben by
be statically determinate. To investigate thi, comparing relative minima. It may be ex-
possibility, displacement as well as buckling pected, in structures with greater redundancy,
and natural frequency constraints were im- that certain members may be removed during
posed. The deflection limits were taken as interactive computation when they are ob-
z =-t 0.005 in. and 22 = ± 0 005, and tile served to approach their allowable lower
lower limit on natural frequency was taken as limits.
3830 Hz. With the starting point b, = 10,
b2

= 5, b3  5, the iolution obtained was An interesting point, illustrated by Table
b, = 1) 18. b2 = 2 16. b3 = 3 85, and 5-15, is that a statically determinate truss is
J = 20 59 1l Cur.cs 2 jnd 3, F ig 5-39. When optmum when only stress constraints are
member 3 wj, omitted, the Ntarting point was imposed Quite the contrary, when the full
taken as o '. b2 10 Curve 4. Fig S-39, range of constraints are imposed, a statically
an:d as b '8. h, I0, C'urve 5, Fig 5-31) indeterminate truss is optimum (not consider-
I he solution obtained in this case was ing the configurational optimization)

S,-5(7
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TABLE 5-15

OPTIMUM THREE-MEMBER TRUSSES (EXAMPLE 5-7)

El With Only Stress Constraints With All Constraints

No. Final Area, in.' Final Area, In.'

1 2 3 4 5 6 7 8

1 7.064 8.500 7.991 Corcoran 9.180 16.00 8.485 Corcoran
Truss Truss

2 1.971 1.500 - 4.246 2.160 11.310 - 4.247

3 2.835 - 4.243 2.039 3.85t - 8.485 11.410

Wt, lb 15.970 12.812 17.300 7.555 20.59 33.94 24.000 23.115

Max.
Deff, In. 0.00689 0.02390 0.00766 0.02559 0.005 0.005 0.005 0.005

2. Example 5-8. Transmission Tower computation and the Curve I of Fig. 5-41
shows the variation of cost function with the

Fig. 5-40 shows the geometry and dimen- number of iterations. The computations of
sions of the transmission tower to be studied. this case were monitored to determine which
This problem has been considered by cross sections went to their lower bounds.
Venkayya and others (Ref. 39). The tower
has 25 members, 10 joints, 18 degrees of One set of members which attained their
freedom, and is designed for 6 loading condi- lower limits of cross-sectional area were num-
tions. The structure is indeterminate, with a bers 10, 11, 12, and 13. It was observed that
degree of indeterminacy of seven. these members carried small forces and could

be removed without causing collapse of the
The tower was designed by first imposing tower, so they were removed from the tower.

only stress constraints, and then by imposing The final values of areas of cross section of
stress, displacement, buckling, and natural the resulting structure are given in Column 2
frequency constraints. Design information is of Table 5-17. Curve 2 of Fig. 5-41 shows the
given in Table 5-16, and the fit' results variation of cost function with respect to the
obtained are shown in Tables 5-17 and 5-18. design cycle. The final w, ight in this case was
Table 5-17 shows the results when on!y stress slightly less than the previous case.
constraints are 4onside-;d, and Table 5-18
gives the results for the correspoiding cases rhe next member that reached its lower
when all the constraints are considered For limit was number I, so it was also removed
results given in Column ! of Table 5-17, all from the %tructure The r- ults of this case are
the ,nembers of lower were "icluded in the given in Column 3 of Table 5-17 and Curve 3

5-57
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TABLE 6-16

DESIGN INFORMATION FOR TRANSMISSION TOWER (EXAMPLE 5-8)

For each member of the structure, the modulus of elasticity E., the specific weight p,, the constant cc, (moment
of Inertia of Ith member, I, -a b 2 ), and the stress limits are 104 klps/in.2, 0.10 lb/in. 3, 1.0, and ± 40.0 kips/in.2 , re-
spectively. The lower limit on the area of cross section Of each member is 0.10 in. 2 for the case with stress
constraints only and 0.01 in.2 for other cases. There is no uprier limit on the member sizes. The resonant frequency
for the structure is 173.92 Hz and the displacement limits are 0.35 in. on all ncdes and in all directions. There are six
loading conditions and they are as follows (all loads are in kips):

Load Direction of Load Load Direction of Load
Cond. Nods x y z Cond. Node x y z

1 1.0 10.0 -5.0 1 0 10.0 -5.0
2 0 10.0 -5.0 2 -1.0 10.0 -5.01 0.5 0 0 2 4 -0.5 0 0

6 0.5 0 0 5 -0.5 0 0

1 1.0 -10.0 -5.0 1 0 -10.0 -5.0
2 0 -10.0 -5.0 2 -1.0 -10.0 -5.0
3 0.5 0 0 4 -0.5 0 0
6 0.5 0 0 5 -0.5 0 0

1 0 20.0 -5.0 1 0 -20.0 -5.0
2 0 -20.0 -5.0 2 0 20.0 -5.0

of Fig. 5-41. The final weight in this case was 16. and 17 reached their lower bounds but
86.94 lb, which is given slightly less than the removal of all of these members rendered a
previous case. Finally, members 14, 15, 16, structure that was geometrically unstable.
and 17 were at their lower limits of cross- However, members 14 and 16 or I S and 17
sectional area. Removal of any of these could be removed without causing the col-
members, however, would cause collapse of lapse of the structure. Results with members
the structure Members 2 and 5 or 3 and 4 15 and 17 removed are given in Column 5 of
could be removed to make the structure Table 5-17 and similar results are obtained by
determinate. The results for a statically omitting members 14 and 16 from the con-
determinate structure, obtained by removi,_o putation. The next set of members that were
members 2 and 5, are shown in Column 4 of a! their lower bounds and could be removed
Table 5-17 The final weight in this c'e was without making the structure unstable were
106.97 lb. it may be noted th: ains statically numbers 1, 12, acid 13. These were also
determinate .tructure )zelded only a local removed from the structure anti the results
optimum, Curve I,, ig 5-41 obtained in this case are given in Column 6 of

"lable 5-17 Two other nrembei% could be
Anotier sequence of removing the mere- removed from tile tructure to make it

hers that reached their lower limits of area of statically detcrminale Result obtained by
cross section was also *tied Member% 14, 15. relnt,ving 'uembevr 4 and 5. 5,tod then numbers

Downloaded from http://www.everyspec.com



AMCP 706-192

TABLE S-17

OPTIMUM TRANSMISSION TOWERS WITH STRESS CONSTRAINTS ONLY
(EXAMPLE 5-8)

Final Area, In.2

El.
No. 1 2 3 4 5 6 7 8

0.100 0.100 - - 0.100 - - -

2 0.376 0.377 0.346 - 0.384 0.364 0.272 -
3 0.376 0.377 0.346 0,100 0.384 0.366 0.272 0.272
4 0.376 0.377 0.346 0.100 0.387 0.363 - 0.272
5 0.376 0.377 0.346 - 0.385 0.365 - -
6 0.471 0.470 0.494 0.779 0.465 0.484 0.775 0.779
7 0.471 0.470 0.494 0.779 0.463 0.482 0.779 0.775
8 0.471 0.470 0.494 0.779 0.464 0.481 0.779 0.779
9 0.471 0.470 0.494 0.770 0.463 0.479 0.779 0.779

10 0.100 - - - 0.103 0.103 0.182 0.182
11 0.1CO - - - 0.103 0.103 0.182 0.182
12 0.100 - -. 0,100 - - -
13 0.100 - - - 0.100 - - -
14 0.100 0.100 0.100 0.165 0.151 0.152 0.302 0.302
15 0.100 0.100, 0.100 0.165 - - - -
16 0.100 0.100 0.100 0.165 0.151 0.152 0.302 0.302
17 0.100 0:100 0.100 0.165 - ,,,..
18 0.277 0,279 0.292 0.413 0.278 0.288 0.413 0.413
19 0.277 0.279 0.292 0.413 0.277 0.288 0.413 0.413
20 0.277 0.279 0.292 0.413 0.274 0.287 0.413 0.413
21 0.277 0.279 0.292 0.413 0.273 0.287 0.413 0.412
22 0.380 0.374 0.363 0.547 0.445 0.436 0.669 0.669
23 0.380 0.374 0.363 0.547 0.334 0.370 0.447 0.447
24 0.380 0.374 0.363 0.F47 0.442 0.436 0.669 0.669
25 0.380 0.374 0.363 0.547 0.336 0.370 0.447 0.447

Wt, lb 191.13 87.90 86.94 106.97 89.94 88.95 113.69 113.68

Max.
Deft. In. 2.288 2 305 2.311 3.489 2.486 2.453 3.614 3.615

2 and 5 ar. given, respectively, in Colunns 7 tamed by removing members I, 2, 5, 15, 16,
and 8 of Table 5-17. Computations were also 19, and 20 was optimized. The cross-sectional
carried out by removing members 2 and 3, areas of various members at the optimum
and members 3 and 4 along with niembirs I, poir.t were as follows. 3,4(0.100), 6 to
12, 13, 15, and 17 Resu'ts obtained in these 9(0.779); 10,11(0.182), 12 13(0.446),
cases were the same as those shown in 14,1-1(0302), 18,21(0775), 22,25(0537),
Columns 7 and 8 of Table 5-17 For this and 23,24(0.751). The optimLm weight in
reason, these results are not ieprodulled h ae this case was 118 I lb and lie maximnum
finally, another determinate structure, oh- dellection at this point was 3.8o I in

-t)
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r El.TABLE 6-18

OPTIMUM TRANSMISSION TOWERS WITH ALL CONSTRAINTS
(EXAMPLE 5&8)

Final Area, In.2

No. 1 2 3 4 5 6 7 8
0.Q010 0.010 - - 0.010 - - -

S 2.092 2.339 2.393 - 2.263 2.389 0.548 -
3 2.076 2.386 2.404 0.548 2.264 2.384 0.548 0.548
4 2.095 2.339 2.393 5.548 2.021 1.826 - 0.548
5 2.083 2.385 2.404 - 1.920 1.915 - -
6 2.357 2.085 2.076 7.132 2.389 2.452 6.596 6.699
7 2.354 2.084 2.076 6.857 2.186 2.042 6.483 6.296
8 2.359J 2.1,13 2.083 R.895 2.411 2.430 6.596 6.686
9 2.335 2.112 2.082 7.101 2.095 2.123 6.476 6.471

10 0.035 - - - 0.6b6 0.62 1 2.102 2.054
11 0.035 - - - 0.658 0.630 2.102 2.047
12 0.087 - - - 0.090 - - -
13 0.084 - - - 0.071 - - -
14 1.113 1.114 1.139 1.785 1.461 1.485 4.172 4.101
15 1.1,3 1.114 1.139 1.735 - - - -
16 1.112 1.117 1.146 1.727 1.438 1.498 4.170 4.167
17 1.112 1.117 1.146 1.798 - - - -)18 2.00 2.047 2.027 4.317 2.161 2.171 4.692 4.645
19 2.05-9 2.034 2.022 4.390 2.156 2.173 4.692 4.664
20 2.046 2.047 2.027 4.400 2.403 2.538 4.985 5.108
21 2.058 2.034 2.022 4.328 2.415 2.524 4.989 5.038
22 2.822 2.878 2.886 5.655 4.187 4.035 6.746 6.909
23 2.808 2.878 2.886 5.730 2.915 2.873 5.086 4.781
24 2.803 2.926 2.895 5.743 4.124 4.086 6.743 7.039
25 2.785 2.928 2.895 6.64b 2,908 2.881 5.086 4.749

Wt, lb 590.32 596.64 597.82 1060.6 625.37 626.70 1142.7 1139.9

Max.- - ___ ___ ___ ___-

DellI. In. 0.350 0.350 0250 0.350 0.350 0.350 0.350 10.350

All these tower configurations were also mumi weight of the tower incr-ised as more
optirnized by imposing all Lonstraints, i.e., iedunidant members were trmoved fron. the
stress, displacement, buckling, and natural structure.
frequency The results of these cases are given
in Table 5- 18. Curves I to 4 of Fig. 5-42 show
the variation of cost funLtion with respe,.t to 5-7.4 tNTERACTIVE COMPUTING CON
the iteration number for results of Columns I CLUSIONS
to 4 of Table 5-1 S. It can be observed from
the results of Table 5-1 8 that, for the case in ('omputiiw, times for this interaLtIVC 4o-n)
whith 111I Lonstraints were imposed. the opti pu~tirg approj 11 11L oisideraibly shorter than

5-61
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Figure 5.41. Iteration vs Weight Curves for Iteration Number
Example 5.8, Transmission
Tower With Stress Constraints Figure 5.42. Iteration vs Weight Curves for
Only Example 5.8, Transmission Tower

With All Constrints
had been experienced when the same prob-
lems were solved in the batch mode. Second,
and probably more significant, interactive
computing allows the designer to alter the right For the case when only stress con-
structural configuration in a systematic vay straints are imposed, results of Table 5-15
to seek the global optimum design. Tl. i, not
to say that a mathematically precise method indicate that minimum weight designs for
of obtaining a global optimum has been trusses with multiple loading may be statically
found, for no such method is known. It determinate. However, the results of thesecond example given in Table 5-17 indicateSappears, however, that the technique pre- seodxapegvniTbl517nictthat all statically determinate trusses may not
sented here m,;es strong use of the designer's
knowledge and intuition, and gives him a tool
with which to seek a global optimum in an
organized way. Fo. ne cae when all constraints are

imposed, results of Trables 5-15 and 5- 18 show
The results presented for the two examples that statii-ally mndeteimnate trusses dre lighter

solved in par. 5-7 are of interest in their own than the determinate trusses

REFERENCES

1. Z. Wasutynki and A Brandt. "Ihe ol Optmitm l)el gi0gol Sti U, i urc.", App!
Present State ol Knowledge in the [Field lIch ', er, Vol 16, No S M, 19031

-z-o2

Downloaded from http://www.everyspec.com



AMCP 706-192 1
PP. 341-350, kllnirn Weight Design of the General

'.russ. Division of Solid Mechanics, Struc,-
2. C. Y. Sheu and W. Prager, "Recent coures, and Mechanical Design, Case

Developments in Optimal Structural De- Restern Reserve University, Report No.
sign'", Appi. Alec/i. Rep., Vol. 2 1, No. 10, '-A June 1968.
October 1968, pp. 985-992.

10. 1. P. Felton and M. ". Rubinstein,
3. R. N. Ridha, "Minimum Weight Design of Optimal Structural Design, preprint of

Aircraft Landing Gear Reinforcement paper pitsented at SAE, Acronautic and
Rings", Proceedings AIAA/ASME 9th Space Engineering ind Manufacturing
Structures, S'tructural Dynamnics and Meeting, October 1968.

K, Materlaik Conference. April 1968.
I G. Sved a~d Z. Ginos, "Structural Opti-

4. W. A. Thornton and L. A. Schmit, Jr., mization Under Multiple Loading", It.
"Structural Synthesis of an Ablating J. Meek., Sd., Vol. 10, 1968, pp.

Termostructurail Panel", Proceedings 803-805.
ThAIS*,I 9th Structures, Structural
Dyamics and Materials C'onferepce. 12. W.A Thornton and L. A. Schmit, Jr.,
April 1968. 'eStructural Synthesis of an Ablating

i ,erinostructural Panel, NASA Report,
5. L. A. Schmit, Jr. and T. P. Kicher, "A NASA CR- 1215, December 1968.

Structural Synthesis Capability for Inte-
grally Stiffened Cylindrical Shells". Pro- 13. W. h . Morrow, 11 and L. A. Schmit, Jr.,
coedings AIAA/ASME 9th Structures, Structural Synthesis of a Stiffened C'ylini-
Structural Dynamics and M1aterials Con- der, NASA Report, NASA CR-I 217.
ference. April 1968. December 1968.

6. R. Luik and R. J. Melosh, "An Allocation 14. W. R. Spillers anid J. Farrell, "On the
Procedure for Structural Design", Pr~o- Analysis of Struc~tural Design". J. Mlait.
ceedings AIA,1/ASME 01h Structures. Anal and App/. Vol. 25. 1969, pp.
Structural Dynamics and Materials Con- 2-85-295.
ference. April 1968.

15. W. J, WVoods, "Substructure Optimization
7.W. J. Woods and J. H. Sams, Ill. "Gco- in the Theory of Structural Synthesis",

metric Optimization in the Theory of P roceedings AIAA 7th Aerospace
Structural Synthesis". Proceedings .Sciences Mfeeting. Jantwry 1909,
AIAA/ASME 9t/i Structure , Structural
Dytat jics and Materials Conference. io m . j. Trurner "Optimization )f Struc-
AprIl 1)68 tures to, Satisfy Flutter Requir~nients",

Proc cedings A fAA Strwia :uailnann,
8. R. L. Barnett and .1. C. Hermiann, High and -lcroelawtiu , Spe ,alot (Conjertw',:c

Performance Structure . NASA llqe'rl. April 19096
NA'A CR- 1038, May ! 968

17 C P Rubin. ''lynaiiuc Onmiiation o1
1) vi J Sthrader ,i In lt'orir/un lot thec C'omplex St ructu-c,'- Protc aing' 1ll1,1

(,I~

Downloaded from http://www.everyspec.com



AMCP 706-192 Q
Structural Dynamics and Aeroelasticity 27. Manual of Steel Construction. Sixth Edi-
Specialist Conference, April 1969. tion, American Institute of Steel Con-

struction, 1967.
8. R. L. Fox and M. F-. Kapoor, "Structural

Optimization in the Dynamics Response 28. Y. Nakamura, Optimum Design of
Regime: A Computational Approach", Framed Structures Using Linear Pro-
Proceedings AIAA Structural Dynamics gramming, Master's thesis, Department of
and Aeroelastlclty Specialist Conference, Civil Engineering, M.I.T., Cambridge,
April 1969. Massachusetts, 1966.

19. W. C. Hurty and M. F. Rubenstein, 29. D. Kavlie and J. Moe, "Application of
Dynamics of Structures, Prentice-Hill, Nonlinear Programming to Optimum
Englewood Cliffs, N. J., 1966. Grillage Design with Nonconvex Sets of

Variables", International Journal for
20. 0. C. Zienkiewicz, The F-inite Element Numerical Methods in Engineering, Vol.

Method in Structural and Continuum 1, No. 4, 1969, pp. 35 1-378.
Mechanics. McGraw-H ill New York,
1967. 30. D. M. Browun, and A. H. S. Ang, "~Struc-

tural Optimization by Nonlinear Pro-
21. '10 E. Becke'a and J. Hurt, Numerical gramming", Journal of the Structural

Ca16.,!qi'.)n5 and Algorithms. McGraw- Division, Proc. ASCE, Vol. 92, No. ST6,
-iiii), New Yo3rk, 1967. Dccember, 1966, pp. 3 19-340 and Vol.

93, No. ST5, October, 1967, pp.
22. S. H. Crandall, Engineering A nrivsis, 618-619.

McC-aw-Hil, New York, 1956.
31. F, Moses, and S. Onoda, "Minimum

23. T. Kato, e'erturbation Theory for Linear 7.'eight De-ign of Structures With Appli-
Operations. Springer-Verlag, New York, cation to Elastic Grillages", International
1966. Journal for Numerical Methods In Engi-

neering, Vo!. 1, No. 4, 1969, pp.
24. J. S. Przemieniccki, Theory of Matrix 31 1-331.

Structural Analysis. McGraw-Hill Book
Co. New York, 1968. 32. 'A McGuire, Steel Structures, Pie'tice-

Hall Inc. Englewood Cliffs, N. J., 1968.
25 V. B. Venkayya, N. S. Khot, and V. S.

Reddy, Energy Distribution in an Opti- 33. Proceedings, Army, Symposium on Solid
mumn Structural Design, Techinica! Report Mechanics, 19 7(1 - Lightweigh: Struc-
AFFDL-TR-68. 158, Wright-Patterson Air tutes. Army Materials and Mechanics
Force Base, Ohio 45433. March 1969. Research Center. Watertown, Mass.,

1970.
2 6 D. Johnson and D. NI Brotton, "Opti-

mumn Elastic Design of Redunuant 34 i %~rora, 9pitinal Dcsivn of Elasth Struc-
~i russes", I'.urnal o.f I/u' Struc tura Di i- iurea% Under Multiple Constraint ('ondi-
A0on, Pro( ASCL, Vol ()S, No STi 2. tons, lDisertation, University of ')wa.
)ecerner. No(), pp 2589*-.2010 1971

Downloaded from http://www.everyspec.com



MCP 706-192

35. P. Corcorn, "Configurational Optimiza- ference on Electronic Computation,
tion of Structures", International Journal Structural Mvibion of ASCE, September
of Mechanical Sciences, Vol. 12, 1970, 1960, pp. 105-132.
pp. 459.462.

38. G. Sved and Z. Ginos, "Stnictural Opti-
36. R. Douty and S. Shore, "Technique for mization Under Multiple Loading", Inter-

Interactive Computer Graphics in De- national Journal of Mechanical Sciences,
sign", Journal of the Structural Division, Vol. 10, 1968, pp. 803.805.
ASCE. Vol. 97, No. STI, Jainuary 1971, 39. V. B. Venkayya, N. S. Khot, and V. S.
pp. 273-288. Reddy, Energy Distribution In an Opti-

mun StructuralDesign, Technical Rep~ort
37. L. A. Schmit, "Structural Design by AFFDL-TR-68-158, Wright-Patterson Air

Systematic Synthesis", Second Con- Force Base, Ohio 45433, March 1969.

Downloaded from http://www.everyspec.com



~ AMCP 706-192

CHAPTER 6

THI-CALCULUS OF VARIATIONS AND OPTIMAL PROCESS THEORY

6-1 INTRODUCTION Example 6-): The shortest path between
two points, (t°,x ° ) and (t'.x t ), in the t.x

The problems of Chapt( , 2 through 5 are plane is to be found. As shown in Fig. 6-1, the
all optimal design- problems in which the particular path chosen between the two
design variables were elements of R", i.e., a points has a length associated with it. The
vector of n real numbers uniquely specified problem is to choose the curve 1(t), to W t

7 the design of the system being investigated. In t which has the shortest length. For a
many important, real-world, optimal design vooth curve x(t) the length is given by
problems the design of a system cannot be

specified so easily. For example. the thrust J~) [ Lx dt. (61-:.vector acting on a rocket during takeoff must Jd)= d. (61 t-

be continuously oriented in time so that the \dt F
rocket remains stable and follows a certain Note that in this example the quantity J(x)
path. In this example, the angles the thrust
vector makes with the rocket must be speci- to be minimized is a real number once the
fied at each instant of time during takeoff. It function x(t), 10 < t t' is chosen. In this
is clear that a function specifies the thrust sense J(x) is a real valued function of ais c afunction or curve.
direction rather than a finite number of
parameters. Example 6-2: (The Brachistochrone): Giv-

Examples of this kind of problem abourd en two points (t°,x ° ) and (t' .xl ) in a vertical
in the aircraft guidance literature and in the plane that do not lie on the same vertical line,
optimal control literature. Typical design or find a curve x@). to < t 4 ,joining them so
control variables in these problems are thrust, that a particle starting at rest will traverse the
motor torque, control surface settings, etc. curve without friction from one poin* to the
All these variables must be specified through-
out the entire interval of time an aircraft is in
the air. Similar proble,is arise in the presently
developing field of optimal stnrctural design.
In this field the design variables dre generally
variables that describe the distribution of
material in structural elements.

0U oO)

In order to illustrate the kind of problem
to be treated in this chapter, two classic
examples will be given. Figure 6-1. Shortest Path

(-I
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Other n Vi so rest possible time. Candidate 2
cus, are shown in Fig. 6-2. + (d

(.O~O)(6.4)

This notation makes it clear that 7T depends
on the entire curve transvtcrsed by the parti-

(i1.x )1sdcdt idn uv ~t,: cle. The Brachistochrone problem, therefore,

that passes through the two given point,;, and

Figure 6-2. Curve for IMAnimum Time makes T' as smnall Ps possible.

In Examaples 6-1 and 6-2 it is clear that a
curve, or equivalently a function character-

t e irtioe asoh pawrty ie th e izing the curve, is !o be found a~s the solution
the ccekraton de t 'w~y. incethe of the optimization problcm. Further, the real

Pa:tiCtr ltastS at test at (:0.x") and there Is no valued quas.,aties !o be minimized are dcer-
friction,

mi-.%! by curves or the functionas charactor-
izing those curves. Thes real valued quanti-

2 -(x- 1)ties, therefore, are functions of ftu~ctions.
2 tn?( - x)Such a ical valued function is cailled a

functional. The itunct'DnBl notation I(G) In
wherev isveloityEqs. 6-1 and 6.4 Is then interpreted as a real

valued functio:: of the function x(t,, 0 -ct-
.[(dt)', (dyt ' most common kWnd orfrunctional

'dr drencountered in calculus of variations is the
integral.

(dx~jl]12 d,(
S di/J dr The optimization problem considered here

miglit he stated as: flnd the function xjI). to
11i, that minimizes the functjowiaIAx).

whem' 1- is tin.e. Solving Eqi. 6-2 for v ; Iance m the functionals defined in E! )-I
subsituingthi ino hq 6- ~.solingfor and 6.4 reve-ils a basic flaw in this statement

dr yields of the optimization problem1 . In both c-.1srs,
the 110-.cionals are definerd only if the fune'.

Idt lion x(Ii has an integrable derivative on 10-
dT ____1___ , i.e , it J!ocsn't make sense to admit all

I !g(r x 0 )j 112 functions as candidates ',r ii. trrinum The
prLuolen, is mnote reasunably %tated find the

-Ave total tie /' rcautred fur the particle to function rit O % i -. t' . in at clas% of
i-mn.,vc from tO ' to IltI 1~ 1 s thei. functions. Dthat rluimsnzet tile itin4t. inal
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plays a role similar to the constraint sets of as

Chapterb 3, 4, and 5. , .,
, C"(a, b) =x(t), a e. t -Q b I x(t) has IThe idea of classes of functions required continuous derivatives . (6-6)ailrm n

here is basic to the mathematical field called
Functional Analysis. Classes of functions in It should be understood here that x(t) may be
this field are called function spaces. Consider, a vector valued function and the differ-
for example, the co'1ection of all continuous entiability requirement in Eq. 6-6 refers to
functions x(r) on 0 c t -c I. The graphs of each component.
several such functions are shown in Fig. 6-3.

Punction spaces may be thought of as sets
of elements, where elements in the function
space are really curves or functions. In this
way the problem of minimizing J(x) may be
viewed as picking the clement (curve) in the
appropriate function space that makes1(x) as
small as possible. This approach makes mini-mization of a functional sound very similar to

0 the programming problems of Chapter 2. With
this mental analogy one may begin his study

Fgure 6.3. Examples of Continuous Functions of the calculus of variations armed with a
powerO intuitive tool.

It is clear that there zrc infinitely many Th. basic ideas of fN-nction space theory
continuous functions but that not al) func- are presented very clearly in Ref. I. Chapter
tions are contained in this class. For xample 2.

O, 0 c I - 1/2 In connection witL vector spaces, it is oten
(t)j necessary to require that a function is small,

I, 1/2 < t < I or near the zero function. For this purpose it
is required that size of a fua;ction be defined. '1

is not continuous so it is not in thp class. This is done by defining a norm as a functic
al IIxIl on the function space of interest with

To expedite the development that tollows, the following properties:
some notation will be introduced. lhe collec-
t.on of con, ious functions on 0 . t e I II Y II > G, 11 x II = 0 implies x is the zero
described previously is ,;alled a functioii space f'mtiin (6-7)
and is denoted

11 atx I = 1 a 11 11 x II for real a (6-8)
C° (O,) = rx(),O t; I Ix(1)

mc contmuous (6-5) II x -y II x II + II Y II (6.9)

A large number of important tun.,on Examples of norms i,.,,!ua
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Ilxll"  max Ix(t) I (610) xt)0 1

for xE C 0t0, t ) and -t! +.

[Jlt 1/2 -
lIIx if=  x 2(t) d ( -1 ]",

for square integrable functions x(t), For a ___

discussion of the basic ideas of functional to  t1
analysis as they apply to optimization theory
the reader is referred to Ref. 1. Figure 6-4. A Neighborhood of(t)

With the idea of norm defined, one can
speak of relative minima of functionals. The
functional J(x) has a relative minimum at sonic modification of tho baSic optimization
.eD if there is a 6 > 0 such that problems, Without a thorougl knowledge of

the theory, the designer will probably have no
.10) Ax) Idea of how to modify the existing theory to

suit his purposes.
for all xGD with

6;2 THE FUNDAMENTAL PROBLEM OF (
I ,¢ -- x II < 5. (&l1) THE CALCULUS OF VARIATIONS

This simply says that J(x) has a minimum in a Exanples 6-1 and 6-2 have features in
sufficiently small aelghborhood of ., It is cmmon that allow ror the formulation of an
interesting to look at a neighborhood of a entira class of problems conrtaining these two,
curve in C°( 0 .0 ) wiere norm is defined by For the mke of generelity, let the variable x(t)
Eq. 6-10. In this case Eq. 6-12 simply be a vector value! function of the teal
demands that x(t) be withirn 6 of .(t) for all t variable t. i.e.,
in to ; t z tt.The neighborhood of .X in this
case is timply the collectioi, nf all continuous [S (t)1
curves which can be drawn between .( + 6 x(t) (6-13)
and.() - 6, as shown in Fig, 6-4.

The present chapter will be devoted almost
ixclusively to the theory of the calculus of where x10) are real valued run,;tions of I
variations and optimal process theory, Con-
structive methods for these problems wkl be The problem contdered !,,rc my be for-
tteatecd in the chapters to follow. A knowl- mulated as Definition 6- .
edge of this basic theory t essertial for
succr-,ful applictdion of ie iheory of opti- Dcftinkpu 6-1 (Fundame,;u'l Problem of
mal design It has been th. e~pefience of !h;: 11t, 0c;alJus of YariationsL Find a function
author that most real-world prblems require x(t) in C.(t0 .t which srk.isfic.
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X (t) x 4 for some indices I'- i r n such candidate that inuit -then -b6- hc~solu-
tion. If there are several c 'andidates, other /N

x (0')x, tforsome indjices I < I n methods n. ust be used'to choose tile Solution.
This problem will be dilcusied later.

Graphically, the method of-obtcinug on-
and-which minimizes ditions on the solution, .R(f), of the fkunda-f )

gl mental problem will be to allow small changes
/ i 1(x) = ~ ,x 'd 61) in A(t) and examine the behavior of J(x). An

0 admissible, small perturbation is 'illustrated in
Fig. 6-5. The equation for this-curve is i(t) +

where F is a real valued function of all its 05
arguments and

r It

X(6.16)IfUxJ x)

dt L J Figure 6.5. Perturbation from Optimum
If die readIer wishs lie may consider xQt) as

being a real valued funcion of t, the general- etn(t) where e is a small real number and rn(t)
Izatlon to voctor valued functions is simply a is any member of C20 0.0 ) such that
matter of notation. The conditions, Eq. 6-14,
specify sonme or all of the compollents of x(t) i 1Q0)=0, fan with x1(t0)=x 1

0  
-

at the end points of the interval O~i 1  (6-17)
4This conesponds to demanding that the i1(.i) = 0, forl with x =t) ~

curves in Examples 6-1 and 6-2 pass through
given p5oints.

To examine the effect of thi3 perturbation
6-2.1 NECESSARY CONDITIONS FOR of 1(x), substitute 2 + eij in Eq. 6.15,

THE FUNDAMENTAL PROBLEM

Only necessary condition% lfue s~1ution of 1 + En~) J P. .+ el?,' V+ 6,7')dt.
the fundamental problem of Def. 0-I1 will be to(6.18)
developed lier., i.e., the existence of a solu-
tion, t~t), in C'(i0 ,11) first will be assumied. A
set of conditiors that Al) must satihfy then Recall that i(t) is a local minimum of J(x)
will be derived. These conditions then may bc subject to Eq. 6-14, i.e., any small change in
employcil in particular probl..r. t% find W() increases J(x). For any given function
funmtions x4t) that are candidate solutions of iiff) in Cl(to~t') and satisfying Eq. ( 17, 2."')
the problem. Hopefully, there will be just one + eil(t) is in (~O :) and sati'.aes Eq. 6.14

0-5
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Jbilihis r, ~~be treated indeoqndcntly,ie.eahsiqurd

rel aledfuctonofe.Futhrforec =0O, to be. zero. One-of the- major.,resujtis -Which L
J1;TQ+ ei?),-higas aelative mmninimr anditis. follows isa'direct aplcto of-Lemma 64I.
assumed-thalt-FQ4-* x') iu,-twkice coninucuslydAfrn lable mn x and l' so thiJ2R+ ci)is a 'Lemma 6-1: If M(t): is a contifiiibus~func-
twice continuo6usly differentiable function of -tion on 10 c: -c 0 and-if
g, Theorem -2-2 then applies, and it is required
that jM(t)n(t)dt_= 0 (6-22)

-J + eil =0-. 16-19) J
'teO.forail(t) inC(, t I) with 72)(tl) 0,

The object u ow is to transform condition, te ( ,t4 ~~1 '
Eq. 6-19,,jnto conditionis dn-(t). Performing f ieinled tep f easyI
the differentiation indicated in Eq. 6-19, se gahcly nFg - on ,:

sengahcly.I-i.66apon o o-

K5T7+77 = 0, (62)7
to~

important to remember that Eq. 6-20 is
required to hold for any 7z(t) in C2 Q*t. 1 to t" ,is shown whiereM 1 Qt),, 0A. The curve

which satisfies Eq. 6-17. i1(t) is then constructed so that neither
fuinction is zero in the interval a < I < bp.

Integrating the second term In the Their integral over the entire interval Is then
intetirand of Eq. 6-20 yields nonzero which Is a contradiction of Eq. 6-22, 4

SOUP16*) =0.
Iar d ar
V5\ x dt W ') d Since the two -terms in Eq. 6-21 must each

be zero,

ii-- (6dO (123

Since the behavior of il inside the interval to for all ,n(t) in C2 (to, I ). In any stihinterval of
t 0 f and at its en' ire Independent, the to -I t 1' where i(1) is continuously

integral and boundary ins in Eq. 6-21 may differentiable, the quantity
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laF/ajx -d/dt (0F/Ox')] is cbntinu ,us. for il 1(t 0),,7(1 ),satisfying Eq. 6 14anhd
'Therefore Lemma 6-1 iplies

a 'd(OF __ax
ax dt ,_ 0)]

in that subinterval. a
at each point' of discontinuity of 'Q)

-1 , howover, i'(t)'has a jump disconitinuity
at st-,ie, point F. then [aF/ax - 4dt (aF/ax')] Condition, Eq. 6-26, Is. -a second-order
need' not,,e continftous at F and Lemma 6-1 differenial equation in .~Q) and Is called the,
inay "ot-;IW! ap over an uitra ueagrani euton. Condition, Eq. 627
containing Z Sirre Eq. 6-24 must hold in is called a transveriality condition. For each I
subirdtervals on, bnth sides of , this equation- or / such that 77,(P) or ii,(t) is not specified
may be integrated from F - 8, 8 > 0, to t to by Eq 6-4 q .7imle Fa;(P) =0
obtain or aF/Ax, (0l) =0. The condition, Eq. 6-18,

at discontinuities ,(called corners) In i'(1) is
called the Weierstrass-Erdnin comer condi-

D= P IF dt + C. (6-25) tion.

-<6vco alxi ieelecntnoss One- further necessary condition will be
TI'evecor F/a ispieewie cntiuou so important for further development. Definc

the right-hand side of Eq. 6-25 is continuous,. h eesrs -ucina
Therefore 3F/ax' is continuous even at T.

E(t, x, x', s) Ft, x. w) - F(1,x, x')Ths results mybe stated in the form of ------N m~y(6.29)
a teoro,M.

Theorem 6-1: The following conditions
must be satisfied by the solution of the The p.,of of the WVierstrass necessary condi-

probcm f De. 6I. (O, hos dervate ~ tion may be found in Ref. 2, page 149. The-
piecwis coninuus;result only will be giver, here as Theorem 6-2.

FI
-L it. WXW)Theoren 6-2: If the function i(t) is thc

solution of tite problem of Def. 6-I1, then it is

d [3 .()i':l = (F2, necessary that
-ti .- '0 0 (6-26)

at points of continuity of .i(t)
for all tO 4 t -c t' and all finite iv.

(e 4')i(: lxt The Weaerstrass conditioz' o. herm .

Llf t0,it0)i'(t)Jit0)o (627) generally is not used to generate candidate
ax, solutions of' the fundamental problem.
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I Rather, 4hen solutions. of, Eq. 6:26 are This is simply an Wgebr6-iuatiofi-b-e
Cditermined, 'Eq. 6-iO'is used tio eliminate tweeri t and §ific there Cvill-'be 'no
unsuitable functions-A. e.,;it-.rmay -tery, njl~~osat~~tgaixi ~o eeal
disqualify a function Which satisfes Eq. &-26. bpssible to pass the resultig curve thogh

-p~rticulaf, points. Thir61 that,,a solution-
The derivation -of fiecessary conditions foi tosuch'a problem-gefierally will not exist.

-the -fundamiental -problem is only' very lightly
covered'here. --tfr h fi~OWfcet Exapiple 6-3: Minimize
conditions Is coiipiet~ly -heglected. ,For out-
stadin a n pl~fbe46tfifehti of, -these -

jopics-se, Refs. 2, 3;.4, hnA5 ~xd

6&2.2. SPtCIAL CASES-ANDEXAMPLES
-for

In many POibems the formqf the function O =0xl) 1
Fftx,x')- 10ows -for 'Simplification for the
Euler-agjangeqdation,_-Eq. 6-26. in zany- Tecndto
case, q.6-26 mhfy bwritten, usingthe chiain - -E.63,i

Mie of dit'ferctiationind the notation 2

Fx K Ft. =-I--, and -But it is, therefore, impossible to satisfy x(l)
ax aX IXI so the problem has no solution.

O2F To-,get an idea of what has gone wrong,
a~aX note that since x2 (t) >. 0 for each t,

to obtain

Fx - X2, X~'~ (tOdi > 0

=0. (6-31) for any curve Va 0 -c t < 1. It is, therefore,

Thib is simply a second-order differential clear that Iif 2'there were a curve which mini-
equatin forx~t).mized 10X dt. then the minimum value of
equaion or xt).the integral would be non-negative.

Several special cases with examples will Itwsnoethtomimu ext.
nowbeconsiered.liowever, consid,-r the famiiV of curves

Case 1. Fdoes not depend on x':
X" Qt) = i.

P M. X). (6-32) These curves all satisfy the end conditions and

Eq. 6-31 ian this case isI

6-8
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Ther6fof, -it is -possible-,to ch6dse6n large The function F from.Eq.-6-Fis
enough so ,thatf dtis as.closeas desired 2 1]2

to,:zero, Hwevei, the i F i + (x')'
approaches-infinity is the function

-The-form-of the-Euler-Lgrnge- equation -inIri~4K ,. t.l -Eq. 6-35 applies in ihis case to yield

+ (X,) X/ =0

,and this is not-eveni cofithnulous-functlon, Since @x)> 0,[I + @1)1 0 and x'(t)-is
The class of functions-xn(t) ard illustrated ln required to -be continuous so [1 + (x')2 1 *0
Fig.,6-7. and-it, therefore, is required that -

i " 1"(t) 0

V or

i(t) at +1b,
I

where a and b are constants. This implies th3t
0 1 the shortest path between two points in a

Figure 6.Z Minimizing Sequence plane is a straight line. This shouldn't shake
anyone up.

In this illustration, a solution of the prob- The end conditions yield
lem exizts in the class of piecewise continuous
functions but not in the class of twice x(O) b = 0
continuously 'differentiable functions. This
problem, therefore, should serve as a warning and
that not all innocent looking calculus of
variations problems have solutions. x(l) =a =.

Case 2. F depends only on x: Therefore the solution of the problem is

F = F(x'). (6-34) x(t) = t.

Eq. 6-31 is in this cas Case 3. F depends only on: and x':

[FX,X, x = 0. (6-35) F =FHt. x), (6-36)

Example 6-4: Using the formulation of Eq. 6-26 is, in this case,
Example 6.1, find the shortest curve in the t-x
plane which passes flitzugh the points (0,0) d
and (1,1). t

6.9
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:O~.-:this reduces to

Fx ,(t.- C (6.3. l{2gX [1 + (XI)2] 12c.

-where d is in arbitrary constant. or

Case 4.,.x is a real.valued function, ind'Fxl 1X 2 -C
dPends bnty. n-x anid-i

'whee~C'~is newv constant-.
F F_(.x;xJ. (6-38)-

The ~oltian bf titis differential equation is
* . Eq.- 6-3 H s, in this case, a family of pycloids in pafaMietricform

Fx - F., x'-"F, *x" 0. +C
t= -x rC 2 - - (s -sins)

____ M11'in byx. yields2
.and,

xF-(x' 2 F x'x"Fx.x. 0. x~~ o )

This is just2

The constants C, and C2 are to be deter!
0 F. , mined so that the cycloid which passes

through the given points Is fixed.

so It should be noted that each of the
problems treated here reducedto the solution

F - x'FX. C (6-39) of a nonlinear differential eql'ation. hIil is
charazteristic of problems of the calculus of

where C is an arbitrary constant, variations. The reader is undoubtedly aware

Examle -5. oiv theiirchisochone that it is only In the simptest cases that closed
Examle -5.Solv th Brchisochone form solutions of these differential equations

problem of Example 6-2. may be obtained. Further, questions of exis-
tence and uniqueness or solutions are by no
means trivial.

The function 17 from Eq. 6.4 is

1l+x2 /2 6-2.3 VARIATIONAL NOTATION AND
F i +('2 SECOND-ORDER CONDITIONS

Eq. 6.39 applies in this case and yields For 1(x) F(t,x~x')dt,

2gX J (2gx)' (I + (X' 2 1112 define the fi:,,, variation of 1(x) as

it 16(x) -Ax +ecbx)I (6.40)
= C. de
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TF-a2 (tX, SXT

i[_. + .-T~xx, ( ti~x')xx
'de J* ' ,

I 6*O r32F
SaF 'axax

-=m'- (,x,.66 dtx

-• .'+'+x .x' +t.
tx~- J d Define

Note'tfat ai, this.d s notrequirethat-i(t) a2F
be tie solution.of the'fundamental problem. A
!f, however, x(t)= Ht) is-the solution-of. the, x

-fundafiiental.;problem, thent-iis ,c!eir,_trom 2
Eq. 6-19 that ris necessary that B- " 2a 2 )7

J() = 0, (6-41) aid

for all 8x(t) for which i(t) + e~x(t) satisfy theend.ccnditions in the fundamental problem. C= aXF

In a way quite similar to-the definition of
the first variation, the second variation may With this notation,
be defined as

67.J(x) = (5xr'ASx + o.,tBbx '
JXTx)62 J(x) =-- + eax)

+ x'TCSx') dt.
Performing the differentiation, this is

If firt,x,x9 has three derivatives, then by

62 J(x) d+ Taylor's formula
2 1 M + e4J(x + eax) = J(x) + _

d I_. [ 8x T d e-o

we L d2Ji d 3Jl

aFT e-0 le-ea 'r(t,x + e6x,x'+ e6x,)

(6-42)
+ 6x- (t,x + S5x.x, + e6x')d

ax- e-o where 0 < g < e. If we computed d3 J/de3 , It
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-would-Anvolve a'sum of terms each contdinLng whichhas largn derivatives. One might, there-
third degree terms in ft,.and'6x'For'6x and fore,,beJd to believe that, the derivative teen
-xi suficiihtly -small, this term may be in the inequality of EI. 6-43 is dominant.

-negJ cted to -obtain ,a second-order approxi- This would then require C io be positive.
-mation when e = I so that semi-definite.

i ¢+ ax) Z ax) + n 6+ l2J. To show that.this is the case, assume-that'

.. ,' tthere is a point t*, t0, < t < 0,and~a 'nnzero

Ut is.clear then-that -and 6-J play -the vector h~suchthat hC(t*h = -23 < 0. For
role. of differenti-als--theo, ~o~0f func- any cotinuous.6x() such. that, 6x'(t,*):= h,
tionals. there is an interval

Further, if (t) yields a xelative minimum t* - ci < t < t* + a> 0, such that
for the fundamental problem, then 01¢ +6x)
is a relative minimum at e 0. Itis, therefore, 8xV(tC(txt) 'C - 3 < 0
necessary'that

in:t,*-oc,4 t -c t*+ "
d2J 0

d[ Define

This Is just 1* i,
h;I sin' ]t-e, ,,4 t*+a

82J(Sr) > o, Sx(t) =
0, elsewhere

or

Ltt so that
(SxTA 6x + 6xrB6x'
( + T( h [OS , t*--t Z t + 1

+ ax'rC6x') dt 0 (6-43) 0lx'() = ,t~o elsewhere

for all xL-euch t6hat .i + x satisfy the end
conditionX for the fundamental problem, In Now, Eq. 6-43 is
what follows it will be convenient to limit
6x(t) to those varlation3 which satisfy UX(t1) 0 (6xTASx + .xTB~xI + 6x'T46x') dr

6X(P ) = 0. 04 +,.

If 6x"() is small for all t. then 6x(t) mu,'
also be small since x1i0 ) = 0. On the otner . *a 2 r(t- ,*) hT
hand, It Is possible to choose 6x:t) which is 2 sina-
zero at the endpoints and small for all t, but . .- o

6-12
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- incorrect. This-limplies TCh > Ofor allh and
+""- sifi c t 0 t heeforeund t)et postive s r-deflative '.

v: I ,, Since

this result inaybe stated sTffin or l n 6-3.,

~~Theoremi 6-3. A necessary oyditlon -forL" ' "-- stOdO the fundamental probleni to have a relative
miinimum. at M)4 is that

SI.cos0 do VFax'2

Gelftm~d and Forain tRef. 2, p. 104) indi-
- cos po, Cate iat people are prone to argue thatpoint of the solution is, a sufficient condition

where for an extremum. They point out, however,
where: that this is not <he case and, in fact, that no

local condition can provide sufficient condi-
M= m&x IhTA(t)h I tions. Fora treatment of sufficient conditions

see Refs. 2, 3, 4, and 5.
P- max IhTB(t)h I

6-2.4 DIRECT METHODS
Therefore, integration in the preceding in-
cqually yields The direct methods of the calculus of

variations seek to generate a sequence of
functions [xf") (0] such that, if t i- the

2 1 infimum oCJ(x) over all odmissible x, then

lim J.(6-44)
nl-+ 00

However, since ot may be chosen arbitrarily
snmall and P > 0 the right side will be negative Dire-t methods are capable of showing
for sufficiently small a. But this is a con- existence of solution as well as construction
tradiction. Therefore, the assumption that of approximations of the solution. It is

there exist 10 and h such that hTCh1 -. 0 is generally very difficult to prove existence of a
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solution of the non r boundary-value where a1 are concants. Classical, trigo-
problem in the necessary condii6fis for the nometrLo Fourier series is 3n example of this
fundamental problem. It is often possible, kind of representation.
however, to show that th, sequence ix(h (t)j
converges to a function SN(i) which is the In the Ritz4 fethod, the nth function in tle
solution of the fundamental problem, i.e., minimizing sequence is formed by

-., n "-+, (645) xt)(t) E ao(t) (6-46)

It is clear, however, that a seqjuence which where the 0/t) are chosen so that x1n'(t)
satisfies Eq. 6-44 may very well fail to satisfies the end conditions zssociated with
converge t-.i an ad-missib& funcilon t). This the fundamental problem. This expression ik
must necessarily he the case if no solution of then substituted into J(x) to obtain
the fundamental problem exists. From an
engineering pL nt of view, one may not be too Jlxt'nl =
concerned wig- exisience of a limit of the
sequence ixfnl ()1. Provided it is possible to
successively m4ice J, consistently better it-- "  r
suits are being obtained and the process will, Fi-t, , a1 (eJdt. (6-47)

-be continued until no further meaningful
' reduction in J may be achieved. For anrbThe object now is to choose tht coefficients

outstanding treatment of convergence of di- a 1 = 1 ... , n, so that x"JJ is as small asa,.t Iehos =e 1,f ... ng so2 that ![tH if.mllarect methods. see Ref. 2, page 192, and Ref. possible. For this purpose, it should be noted
3, page 127. that the right side of Eq. 6.47 is simpL'y a

function of n parameters. The problem is nuw
'be problem of primary interest to the to minimize this function without any otheF

engineer is the construction of a minimizing constraints. For this purpose, any of the
sequence. There are many ways of generating" "methods of Chapter 2 may be used.
such a sequenci., only two of which will be
treated here. These methods are known as the

K Ritz Method anrd the Method of Finite Differ- The property
ences. Jlxfn*,i1 . j tx tny )1
6-2.4.1 THE RITZ METHOD

follows readily from the method of deter-The Ritz Method is based on the idea of mining the aP It is clear that by choosing
representing functins by using linear com 0, P + 1) (t) = x(")(,. However, by
binations of known functiGns; i.e., given O 1) allowing a, + , to be nonzero, a larger number
I = id,.., which pieferably form a complete of functions are available as candidates f')r
set, a function is represented by minimum of J[x(" * )j than J[x1" ]. The

r-.,iium of J(x'" i)J will, therefore, cer-
= ~ a1 1(t) "tainly not be greater tian that of Jfxf") I and

Sit this is the desired result.

6 14
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In practice, the rate of convergence of This is a positive definite quadratic form, so it
[xtn}(t) dpends strongly On the functions has a unique minimum which may be ob-
0/t chosen. The number of terms required to iained by setting its first derivatives equal to
-obtair a reasonable approximation of the zero. This yields
solution is greatly reduced if these functions
are chosen based-on a reasonable engh.tering 38 20 I
estimate of the form of the solution. By 05 a -
making. a judicious choike of the /t), a good
a Proximatlon of- the solution may be ob- 20 2488 _
tained with afew as two or three terms. TSa + 34-5a 2

Example 6-6: In solving the boundary- The solution of these equations is
valve problem

a, = 0.9877
x"+ (I + t2 ) + 1 0

a2 = - 0.05433.
x(- )= x(l) 0,

Substituting these coeffizients into Eq.
it is necessary to minimize the functional 6-49,

J(X) [x'2  ( + tl)x2 _ 2X J dt x(2) (t) (3969 - 4200t 2 + 23 1 t4).) 4252
(6-48) In particular,

subject to the end conditions x(-I) = x(l) =
0. x(- ) (0) = 0.93344.

in order to minimize J(x) of Eq. 648, by If the thicu term aproximation
the Ritz Method, choose x ) a,(I -t2)+42(l - 4 ) +la 3 ( 1 -t 6

l- t).

is determined in the same manner,

If for a first approximation n = 2 is chosen,
x ) 0) = 0.93207.

x(l)¢t) = a3(I - x1)+ a2 (I _-X4). (6-49)
This might lead one to believe that both

Substituting x(2) into Eq. 648 and integrat- x(2)(t) and V(3)(t) are good appioxim..tionz
ing yields of the solution.

/(2)) 8 19 12 0 6-2.4.2 METHOD OF FINITE DIFFER-
J~x- \1 05 a1 +4-a'45 a2 ENCES

1244 2 2 The Method of Finite )ifferences, as its
+-----aa -3 at34 53a2 name implies, is simply 1,ed on the replace-

(- 15
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AMC0 706-192

ment of derivatives and the integral by finite chapters that these side conditiors generally
approximations of these co ntiuous opera- include both equality and inequality coa-
tibns. A grid, to = to, t .. ,+ is straints. An extension to inequality con-
placed on the interval t0 < I t' and the stra inks will be given in par. 6-4.
value of x(t) only at the grid points is sought,
i~e., only the pairameters x, = x(t), I , ..., n, The problem to be, treated here is given in
ar.d perhaps x(t 0 ) or x(t,,. +~ are sought. Definition 6-2.

Replacing derivatives by finite differences Definition 6-2 (P~roblem of IBoiza): The
and the integral by a finite suni, the problem problem of Dlza is a problem of finding 0),
is to determine the x1 which minimize b, xWt. to < t <in, which minimizes

I [XO tiXi..~.7 J Jg(b, t, x;)

(6-56)

Th p(Iiem I no+ipyanucn fo It, xWt) 1(t), b dtJ

Th rbemi o sml n no- su~ject to the conditiansJ
strained minimization problem in a fin;,e
dimensional space and may be solved by the dx-ftxab) t i (S)
methods of Chapter 2. ftxi,) l

6,3 A PRnBLEM OF SOLZA g,,(b,ix) L" t, t) .u(), bJ di

6,3.1 STATEMENT OF THE PROBLEM

Many real-world optimal design problems
cannot realistically be reduced to the finite 0i (x. u, b) 0,
dimensional form of Chapter 5. In many
problems the system varies continuously in Or- q. .... q. ill (6-53)
time or space, so functions rather than just
parameters must be determined. Examples 6-1 where
and 6-.2, par. 6-I, are extremely sim~ie, yet
even '.'.ey involve distribution of the con- [X, WI
trolling factor over space and timre

optiml deign roblms i~olv ides ofX(t) r)
As has beca see1 a in previous chapters, m

design variables and vte vwriables, Further, rt
sin~e the systent being designed must beI
capable of performing certain functions, side b
conditions on. tht- skite and design variablesj
occu- It has been observ-d in previous be(6-54)

6- 16
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0, Nt~, u, b) is expected to be only, piecewiie Ontinuus1 The resulting state 40, ther~fbr6,wil~havt
Ot, X, U. b)I only '-k piecewise continuous derivative iii

and t0 < 11 < t", wher-e (,x)are inter. The allowed discontinuit! -es of fo, -f - C
me~late~int~j , ~and 0, play an importatt.role in many

me;i;e :Lmns J =1, ..,in wi- geeI.qutos
real-world pnbblems. This feature allows for

prole. onidre hreitcompletely different forms of state eutos
required that the crinditions, Eqs. 6-53, shall contraints. etc., for differen~t rar~es of state

not eterineany component of x(t) ex. and time. It is, thtrefore, possible io routinely
plcty hqis eqiaetto reurn la. account for sudden changes in system be-

the ank r te marixhavior such as reverse in direction of frictional
force, motion of objects in a space where

r physical barriers or restraint surfaces exist,:0, x, u.b)l(45 logic built into the system which changes
S q X M conliguration os in staging of rockets, etc. It

shotuld' be cleat, that thesc features are re.

slna;. be q for all admnissible values of the quired in order to treat many realistic prob-
arguments. In case some constraint function. lems.
should depend only on di) ard 1, thisFoadicsonfthefctftee
constraint is called a state variable cc tstraint. Fradsustno h feto hs
This kind of constraint will be discussed in a discontinuities or more detailed necessary

laterparagaph.conditions and sufficient conditiops see Ref.

The vector variable x(t) is called tk state
va1riable, u(t) is called the df ign (or wuntrol) 6-3.2 A MULTIPLIER~ RULE
variable, and b i3 calleJ the design (or control)
parameter. Eqs. 6-52 contain the boundary A.; mentioned in par. 6.3.1. real-wvorld
conditions on the state variable and functions optimal design problems require at least the
which determine the end points of the inter- complexity of the llolza problem of Def. &-2.
val, t0 and o.2 rhe independent variable t In fact, the system designer requires all the
may be time or a space-type variable, depend- tools the mathematical theory of cptimal
ieg on the problem Veing considered. processes can give him. This requirement

points out one of the obstacles to engineers ip
The functions f0 . j' L,, and 0, are assumed utilizing the modern theories of mathematics.

to be continuously differentiable at all points This text cannot possibly present the mathe-
except 0:1.A, J = ,. ?- 1. At these points mlaical theory required of the research nraih-
the functions may have jump discontinuities; ematician who is developing the theory of
i.e., the func wli, 'Save li,~iits along any optimization. The approach taken here to
path, but limits along different paths nray by-pass this obstacle is to accept a xey
have different Ynlues. In general, even for thwi~em of Functional Analysis and then

-~.tsWith very regular functions, u(t) proceed fo develop the tools required for
may have jump discontinuities, Therefc t tdi) solv g rprobleivis of optimal design. k very4

6-il
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I poWerfulthteoremof.Liusternik and Sobolev, 633 NECESSARY CONDITIONS FOR
Rc .. 6 page 20, Will- be used- to-,obtain THE BOLZA PROBLEM I
necessary conditions for the roblem of
Bolza. the sii+plcst :Bbza ptoblem- is the one L 'J

having all its functions three times continu-
Theorem 64: If 4t), , t1, and i(t) pro- ously differendablu. Even in this~case, how- j

vide a solution to the Bolza problem of Def. ever, u(t) may be only piecewise continuous.
6-2, then there exist multipliers N, o, oV'=, To include this possibility, let t* be a point of
1, ..., r, X/t), 1 , ..., n, arid (t, = 1, .. discontinuity of any component of u(t).

q, not all zero, such that Before computing the variation called for,

" 0, (6.56) in Eq. 6-56, it should be noted that tO; ti, 1*,
and t are not .fixed but must be determined.

where This T.'ans that these special points must be
treated as parameters that are to be deter

J= ? g°(b, tI'xI)+ ' 7° g=(b, t, x'. mined, much as the design parameter b. At
first glance, this may seem to introduce no
essential complication into the problem. The+-:+.":!, It'{behavior of the allowed variations in x(t), _

t o t however, must be treated very carefully.

-- Let i be a typical point tl or t* where Wt) j:
+ E ~ dxf b may very well be discontinuous. The function f[ Jt x(l) will be changed at F by both the

independent variation in x(t), 6x(t), and the
Lshift in the point (. 6bJ. Denote the totala 1 change in di) due to both of these sources by

Ax(D. It must be assumed that there are no
q / other points ti or t* arbitririly near :, so

+ ) , b)limits from the left and right exist. For t :A ,
;Mit) is continuous so the total change Ax(t) in

Note that the symbol 8J is the first xi) due to xO:) and 6i is continuous and
variation of as defined in par. 6-2. For
proofs of this multiplier rule, the reader is " x(F) = - f) = Ax( + 0).
referred to the literature (Refs. 2,5-9).

where
This theorem says nothing about the con-

tinuity and differentiability properties of the Ax(i - 0) = &i - 0) + .(i- 0) bi
solution .(t), ii(t), and the multipliers X^(ft)
and ,tI). In general, piecewise continu.ity is and
all that may be exp-.cted of u(t). E.q. 6-51
then implies x(t) has a piecewise contiuous Ax(i+ 0) = 6x(+ 0) +'K 0W.
derivative. Th- properties of X/0 and i(t)
will be determined when necessary conditions It should be noted that this condition
are derived. imposes restrictions on 6x(i 0) and 6x(i +

6-18
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0). In particular, they are not necessarily the q
same so -x(t) on 10 < ! In need not o UO(t)00(t,x,u,b)

necessarily be continu'ous.
" " " (6.59) t ,..

'!:@"!. .Before enforcing Eq. 6-56, put in the s: htE.65 eoe ,"'-.,

s: that Eq. 6-58 becomesform

-F dxl
'g(btx)+ 7 )=G+ XT d _H dt": J= .o oht~x) .2 'b, tl,x l )  I ,, -

+ Xofo(t,x.u.b)+ E XI( t ) + dt (6-60)

x +dx r , t
- (tx'b) + X L,(t,x.ub) + 2t [1T(t)-! . Ai.

q
+ E Qot$(t.x~u,b) dt Eq. 6-56 may now be applied to yielde3" IJ

=0- AX+..+L A + _G .

+ I' d,+ d} ,xo 310

3G G+- O + 6b ,/
(6-58)

where the argument of the pair of b'aces is + [ (t ) dtx alx
the same as that of the integrand of the first J
intcgral. Note that to and I/ are simply typical
elements of their respective classes. al U - 3-b dt

For convenience in the de'ielopment that
fo llo w s , d e f in e + o r 1 1d6 y I 6

dt 86x

I

G = Xogo(b P', c1) + 1 -yg,(b.tl.xl) all a1: "
- SU - -- Sbidt

all ab I
1l(t,x ,u ,b .X .y% p ) = X T (t)f(t.x .u .b ) I t  [ d Sx _ al x

Xofo(t.x.u.b) t bt

L. E aL(t x. .b) E bit L6 19]
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- :5 - + j(t. -o)Ax - H(tr - 6)8(,'
-"Na ) B t!"

tT(, I -fi- -X (t0 + O)AX0 +H(t0 +-)6e?.

"T(, O+
0)dx(t+O) Since ihevariables Ax, dtf, 5b, &x(t), and

L dt 6ut (t) arearbitrary, (Ax' are taken as arbitrary r
1 along with 8tt so that Sxl = Axr- P6ti is

-H(t + OX, U, b) to  fixed) Lemma 6-4 applics. Applicationof'this
Lenima yields I-

+t - x (t) -H(t)] t " 8f- Theorem 6-5: If (x(f), u(t), b, ti, x1) is a
ti 1* + 0 solution of thv Bolza problem of Def. 6-2, .

then there exist multipliers'A > 0, ?V0t, I,x- _) 1O..... ,i, oy,= 1 ..... r. p#(t), P = 1, ... q, not
J, -all zero, satisfying the conditions:

11( 0, xu )6 " I

('- O, x, U, b) t. .. .. for 10 tl (6-61)dt

Integrating the first terms in each integrand
by parts yields -a ,fll* (-2.--= 0, for t 0/ :1 (6-62)

0 =a o A x ° +  "+  L x + t LG 6t
3X -x' -t 3 dt --0 (6-63)ab a

oG G+ "'"+ +- aa 0 6 + -- 6b dG

i X--6 -i(1 ° ) =0

r <A : () 8tl1

~ n) =0 (6-64)ax0

- [ !dt - [ dt D" lit + O) ,

+ XT(t- 0) -- XT(1/ 0) &V/  aG
-1 l qt - 0 ) -0 (6-65)

IIIt([/ - 0) - 11(tj + 0)] 6t# 3G
+ Tr (t, _ 0) - XT (* + 0)j 4L(t*) tr-, nu t t t -  O) + l(tl + O0) 0

IH+(t*-+ )-t1(i+O+ 6 )ixt* 0)- H(t*+0)= (6-66)

6-20
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"X(t*-;-0) -X(O!"+ 0) 4--o (6-67) equations to deterrmine the unknowns. It does

not asse'rt that a solution of Eqs. 6-61I throughi
Not tht te ncesary'coidiion, Bs. 6-67 exists. Existence theory'fbr th:e~ prob-

6-61 through -6-67,, are linear-,and 'hdmogc- lems is a difficult question that is treated' inj cous in the multipliersX0 , V*'Y;7a Af~) It ~ s 0 n I
:s, tereore, prmi&!eto choose theftnagni-

Th cndtin of Thoe S are very-A ~ -o one multiplier soAthat the remaining Thyodtos fTerm6] .xi~lc~s:wi~'-b-uziqt~ly eterine. ~ neatly the famous Pon'tfyagini Maximum Prin-
seems reasonable that if-the-'necessary condi- cipfe (Ref. 12). The condition that cofiipietik V

tion ot~ine by ettng 6 0 re t be the Mdximum Principle is un inequality which
relaed o miimiatin cr, ten ? shuld follows from the Weieistrass condition of the

not be zero. This is indeed the case and if Xo calculus of variations. This condition :s given
is required to be zero by the necessary asTerm6.
conditions, then the Bolza problem is "abnor-
mal" in a sense. Most meaningfu! problems Theorem 6-6: In addition to the condi- '
are normal a-' deined in Refs. 7, 8, and 9 and tions of Tht-brein 6-5, the solution of the
require Xo * 0. iii solving problems using the lBolza problem must satisfy the condition:
necessary conditions of Theorem 6-5, one
should first verify that ENs. 6.61 through 0-67 II[ix(),Ub,X(t! -y.01
have no solution if )'0 0. It is then
permissible to Put N~o I so that the 4 1 ( t, X(t),11(1), b. X (),,0J (3))
remaining multipliers are uniquely dteter-
mined, for all admissible U and all 1. 10 e. t . tn

Even though Eqs. 6-61 through 6-67 are For proof of this theorem see Refs. 8 andveycomplicated, it is interestintg to note that13'i13.
they provide just the right number of equa-
tions to solve for all the unknow,;., Eqs. 6-51 Another useful result is the following iden-
along with Eq. 6-61 form a system of 2n tty

tiy

Lrst-crer differential equations for x4t) and
?P(). Further, the first an~d last mecnbxrs of dl d~nEq. 6-64 may be considered as 2ni equais T =T. for t 0 it. (-69)
in botendary conditions on X and x. This is the
proper number of boundary conditions. The This condition is useful in case If does not
s,-cond equation of Eqs. 6-64 provides arv depend explicitly on r. Then 11 is constant
jump cond-tions in W~) at the intermediate between the points ti, and at these points it
points ti, 0 < / < q~. Eqs. 6-6S may he may have discontinuities governed by the
interpreted as determininp 1. i = 0' , .. ?, third equation in Eq. 6-65.
and Eq. 6-66 determines t*. Eq. 6-67 Fimply
states that X is continuous even at jump To prove this relation holds, compute
discon tintit ies in u. Finaily, Eq 6-63 deter- ?orinijly
mines the designi parameter b.

It should be clear that this argument only dif 211 a11 du 311 dxr all dA
shows that there are the proper number of T, at ud axd a d-
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~-drproblem discussed here, 0(t) is to:be ch6senf
so as to direct the motinn of the particle.

a ~ ~HdXT (t is theh co ntraiale~. ith

dli af d-AT dXa' Denoting horizontal and vertical compo-
dt at atnents of velocity of the projectile by u and v,

j ~ te~pegtively, the motion of the projectile is
as reqired.governed by the equations

6.3.4 APPLICATION OF THE BOLZA .

PROBL FMV

In order to obtain familiarity with the
B-317a -problem, several examp!es will be con-
sidered. In order to illustrate the basic ideas ii CosTO0
associated with the Bolza problems, these71
examples will be elementary. In real-world F F.0 g
problems the engineer should be prepared for sin0-
complexity that w'ill probably force him to
use a numerical method of solution. For d
examples of t1 Bolza problem in 'lie l'old of where T
aerodynamics, a field which contributea
greatly to optimal design theory, see Refs.
5, 16, and 17. The proj-ctile is fitcd from a gun at time t

0 with x(O) =y(0) 0 and !nitial velocity
Example 6-6: Vukxo~nuin Range Rocket- u(O) =V -os 00, &,(O) V sin 00, where V is

assisted Prof ectilc the mu-t-le velIocity of tie projectile. The
problem at hand is to choose 00 and 0(t) so

A projectile of mess in is acted on by a that at some future ti-ne T, the projectile will
dxed force F as showni in Fig. 6-8. The angle hit the earth as far as possible from the launch
of 0(t) is measured from the x-axis, where the point, i.e., y(T) = 0, xt 7) =maximumi.

In the notation of' the Bolza problem, 0(t)
is a design or control variable u(t), 00 is a1

Y design parameter b. T is terminal time (". and
F (x.yaui'p) is the state. Th. qua~ntity to o
o minimized Is

J 0 g(b't,x) -()

Figure 6-8. Particle in Motion Boundary conditions on the state variables are
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0 -aG.
g1*2O (0 %

84 -V(O) ~' sin O~ 0 ay(0) =7 ~ 0

g 5 =y 7) o) -(6-77)

7 X,(0) -

As dfinin hEq. 6-59,
Tj 7 4 V04

1:i+,Y3 rU(3) V CO 00J (672)

aGI
N0= X(T M

+74l 1_ V ) VSl 0 Y 7

F674 (6-78)sne ? csju -sin 0 - (6-73)-8

thse6)4's.l'
a~aG

ax (6-750)(-7) J

al and 2

N- CO -d+t sinVsinCOS

6(6374)
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'The-last two equations of.Eq. 6-78 imply -4= - -CO 0
tl1 T and t4 =t 2T. j'we'assume ihe~iblfeiii n, t +
is norma,. Wd I so 7)T) 1 ~1 so

y(t) tV sin00o -- t2g (6-84)
2

y=1

(6-81) By usteuf these equations, the last equation in

X, t2(-I TFT( i 0--IgT+- sin 0 0) =0.i~snv 0  2 2mn

Substituting fro-n Eqs. 6.77 and 6-81 into Ti mle
Eqs. 6-75 and 6-76 1

-gT
Tsi00~2Tos 0 0sin 00= 2 (6-85)

and
+ ~2The one condition which has not been

CT - t) in 0 (T -:) CS 0 0.used is Eq. 6-79. By substitution of Eqs. 6-81
and 6-83 into Eq. 6.73, Eq. 6-79 becomes

For alI t 0 T, this is

sin 0 + t2 COS 0 0- (V+L? coC+M(sf~

TF
These equations im )ly +-sin60 -g 0Q.

t2 =tan 00 By use of Eq. 6-82 this becomes
(6-82)

OQ)=00 jV inL~ co2 O + M+ sin2 Oo

Integrating the last two equations in Eq. - g7 sin 00 0,
6-70, or

U~) O 0iIF Co 0v+L TF sn0.(-6
nj I

v~~t) (6-sn83)in0~g Combining Eqs. 6-85 !r,! 6-86,

Integrating again, (vIE 2m+ i g2
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or illustrated in Fig. 6-9 and the time scale is
shown in Fig. 6-10.

-F2 2  T+ V2 =0
2- 2 / 2 m'- Thc times tj and t2 may actually coincide,

depending on the problem parameters. These
so times play the role of ti in the Bolza problem.

The equations'of motion of the spacecraft are

, I2 2 2)11/<I FFV 9P V" 9F ~ taken as

+ 7t2 m 2 2 t~)sn

'to, = - _ -- +
Substituting T from Eq. 6-87 into Eq. 6-85 r r (6-88)

then gives a-. easy equation for 00.
Suv. h(t)Fcos 0

While the results of this problem are not r In
particularly useful, the solution does illustrate
the use of the various conditions in Theorem in = h(t) q
6-5 in generating a candidate solution of the
problem. The reader, however, should not be where
led to believe that all Bolza problems may be
solved in closed form as in this example. / 1, 0 t , t

In more general problems the adjoint equa-
tions, Eq. 6-61, cannot be solved so easily in 1, t2 < t < Tclosed form. Further, the equation 311/au = 0

may ,iot y:eld so simple a condition as Eq.
6-75 for the design variable. It is often of
value to keep a procedure in mini for - -
determining the various unknowns as in this
problem, even though more realistic problems _ \ CC12f

may icquire numerical methods at each step f
in the procedure. \\

cnicor"
rExinple 6-7: Minimum Fuel Orbit Trans I'ath

i Figure 6-9. Oibit Transfer
A rocket equipped with a constant thrust

engine is lo tansfer from a circular earth
orbit of radius re to one of radius R > re

Tluus On sbruui Oft luust Onusing a minimm of !uel. The umme allowed
for this transfer is T. Further, i: i, possible t3
shut the rocket down during one time interval
of the transfer if desired. The orbits are Figure6.10 ThrustProgram
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and the boundary conditions are and

r(O) ro, u(O)= 02 I=Xru [ -- h(t)Fsin@J
11 r r2 M

v(O) = (p/ro) m(0) = n,
r( =R,u(T)=0 (6-89) +, L-" ( F sin]

v(T)=p/R)1/2 + Xm h(t)q

where The necessary conition- of Theorem 6-5
are

r radius + 3 . u

u = radial velocity

v = tangential velocity = - + '"

m = mass of spacecraft

P = gravitition constant \r r (6-90)
F = thrust /I = X[h -sin " 1

q mass flow rate during thrust
+Jv tZW)FcosoP

thrust orientation m[ 2

Sinc mo - rn(t) is (Ie amount of fuel 0. o[ Cos
consumed up to time t, the object here is to m
minimize hhFcos( (6-91)

J - /o- In(/).
xM(T)= - (6-92)

For use in Theorem 6-5, define Wt - 0) = x(t, + 0) (6-93)

G =mo - me(T) + t Jr(0) - ro) + 'f2 u(0) X(2 - 0) = X(W2 + 0)

+ 7 3 I ( 0 ) - ( / r o ) , J - 0 ) = H ( t + 0 ) ( - 4

+74 (m(0) - o I + -y [r(7) - RI H(t2 0) = /t(2 + 0)

+ -t6 u(T) + -7 IV(7) (P/R)'I/] the t, are those shown in Fig. 6-10.

6-26

Downloaded from http://www.everyspec.com



AMCP 706-102

The prospect of solving this set of equa- Definition 6-3 (Problem of Optimal De-
tions in closed form is dim indeed. A general sign): The optima! design problem is a prob-
procedure can be discussed, however, and the lem of finding u(t), b, x(t), to < t .4 t, which /
actual solution can be obtained using numneri- minimize
cal methods discussed in a later paragraph.

J go (b, tl, x1)
From Eq. 6-91, 0(t) may be determined as

(t)= Arctan U (6-95' to

subject to tie conditions
for t not in t, t < t2 , where need not be s ti
defined. The result of Eq. 6-95 may be
substituted into 2qs. 6-88 and 6-90 so that Or =f(tx,u,b), t o < t < tQ, t A t (6-97)
these equations become a set of eight first- dt
order differential equations for the state and
adjoint variables. F.qs. 6-89 and 6-92 form a f +,
set of eight boundary conditions for these g.(b, t',x')+ L. [tx(t),ut),bldt
variables. Eqs. 6-93 show that the adjoint
variable is continuous and Eqs. 6-94 deter- = 0, c-- 1,.... r' (6-98)
mine t1 and t2. A numerical procedure may A
be used to solve this problem. The resulting'"
adjoint variables may then be substituted into g (b, ti'xI) + L, [t,x(t),u(t).b Idt
Eq. 6-95 to obtain the explicit design (or to
control) variable. A problem of this kind is
discussed in Ref. 1S. The method used there < 0, a r' + I, ..., r (6-99)
to rconstrtuct a solution is completely different A'tx.,b)=0 =
from the one proposed here.

to < t < In

6-4 PROBLEMS OF OPTIMAL DESIGN
AND CONTROL and

The Bolza problemn of par. 6-3 is ot almost 00(tx,ub) 0, 0 q' + I. q,
the generality requiced for optimal design. (6-101)
The principal shortcoming of that problem is I r t <t. Ill
in the lack of generality in the constraints. It
has been no-dJ in preceding chapters that The varibles and functions appearing here are
meaningful optimal design pro'lems generally idenitual to those in Def. 6-2.
involve inequality constraints. It is the pur-
pose of this paragraph to extend the Boliza TIe inequalities in this problen are treated
problem to account for inequality constrtints, here in the manner presented in Ref. 13. The

ineqt.,dlity constraints are first reduced to
The problem treated here is given in Deini- teluality constraints, and the results of par.

tion 6-3. f)-3 are applied. In order to perform this
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reductien, define the slack variables i',., a r' required t:) 'iave rank q. For this purpose, the
+ 1. and w t, q ,.q by design vecto- must be considered as (uT,

A 71 WT),, where svT = 1vql+ .Wq)
g, (b, 1 .x1) + J , L t:,x (), u (t). dt The miatrix. Eq. 6-., becomes

(6-102)1
+ 0, ccx r, +l1,..r , _

and

0 (, ~b) + IV 2 (f) =0. , a
0 -3g(6-103) (U al,

q+ ,.. q )(6-104)
'The oonstraints, Fqs. 6-102 and 6-103, ate 2W1' 1.,- 0

equivalent to Eqst. 6,99 arid 6-101, rcspcc- UUr
tively, whcec Y. arnd o'(t) arc interpreted as
deoign ovaraineers and design variabies. With

scse equA'ty :onstraints replacinag the in- I ~
equality constraints, flhe optimai design prob- 0n , 0IV
lern beco'--s a Boiza problem. The tiece~sary Pl " "
conditions of' par. 6-3, thtrefore, may be
applied to Ois modiftied problem. This matrix is r-:quired to iave rank q. in

order for this to be possible the number of
The forin of the constraints, Eq 6-M I, ha4 Cohinins, In i q -q . must bz greater than or

a great deal ~o do vith the beha-vior of the equail to the number of rows, q, or m q n
problem. If some functioni 6 depends only 0. Furthcr, it is obvious that the first q' rows
on 1, x, and 5 then the vrobicin is conrli- mn ist be linearly independenit, or the entire
cated in intervals in winch 0,= 0 Thlis kind nhatl\ could .,.ot possibly have rank q. Next
oif constraint will be referred to as a state note that ii IV,, 0 0, Itten the 'ith row must be
variable inequJity constrain., and will b- linearly indIependent of alal the, othery row,.
treated separately. If 0 does depend explicit since it has the only sionzero eiemcnt in the in
ly on ui. then the constraint is referred to as a + Ce qth column. Thereforc, aincar indt-
design varible inequial:ty constrain~t This pendence ol the rows front q' -, to q nee-d
problem v ill now be investigated onty be considered for those ax with w. 0

fly Eq. 6-103. this ki ne same as 0,6- 0.
6-4.1 DESIGN VARIABLrE INEQUALITY

.'ONSTRAINI S
'Ithe -onclusion~ is, then, that thie niatrix.

In order to apply Theorem 6-5 to the Eq 6-104, wiall have raik q it and only if the
problem of Eqs o-90 OJO1, 6-98. 0-100. matrix
0- 102, arid 6- 103, the independence oftondi-
tions ex pressed b) Eq, 6. " 0 and (-- 1 03 nmt 0I 1 015be ver,i-ed, I.. the mnatrix. Eq O-i5. is o *i (1(bll
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is of full row rank. This simply says the and the conditions, Eqs. 6-110 through 6-113,
gradients of all constraint functiors (which are unchanged. Further, Theorem 6-6 yields
are equalities) with respect to the design
variable must be linearly i -w",ndent. Assum- flt,x(tU,b,X(t),7O,,,w.
ing this is the case, Themem 6-5 may be
applied. < fl[.,x(g),u(t,b,A(t),O,Yw] (o- I 15)

Define

0 = ?,ogo + . 1%,g0, (6-106) for all admisible U.

The condition, Eq. 6-112, in scalar form is
r "Go 2 (6-107) +*. (2+7 2 vpw O ,j0q + I,..., q . (6-116)

a' q
H=krf - X fo - Z - E pwOP If wo  0 0, then by Eq. 6-03 = 0. Ifw0

0, 00 < 0 and M, = 0. Therefore, Eq. 6-116
(6-108) is equivalent to

r q

E'-- . u0O(t) (I,xu,b) 0, 0 q'+ I. q

(6-109) (6-117)

Condition, Eq. 6-114, is
The quantities 11 H t l' an.a G G + G'

take the place of B and G in Theorem 6-5.
Necessary conditions for the optimal design 27 ). + I 2y.v, dt 0,
problem are, therefore,J to

dX AUT r' +.. r... . (6-110)
dt ax
an or
al t -0 (6-11 )

2 7ac,(I +'t -t°)=O, otr' I..r.

w (6-1[2) Since I t t - -A O,

G tl ), 0i'=O. a =r'+ 1 ... , r. (6-118)7- 7. - dt 0 (6. 13)

If vi =0, tl'en by Eq. 6-102, the constrait,

G 1' Eq. 6-99. is a'. equality. If r, - 0. then the
7Y- di 0 (O.114P constraint, Eq. 6-99, is a strict inequality and

-ly, = 0 Therefore. Eq. 6-118 is equivalent (o
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lye g~'t1-1 X~t° ) 0.,,
t I 0+(t,x't),ut),b] dt 0, + (?) 0 (6-124)

I ax"
aGT

t r + 1... r) (6-11)9) + (t - O) - N(/ +) 0ax2

The conditions, Eqs. 6-116 and 6-118, ac
imply H' = 0 and G' = 0 so thatF= H andG .T +H(tO + 0) =0
= G. The necessary condition, Eq. 6-115, is,
therefore, just aG

- I(tP - 0) =0 (6-125)H [ t,x( t),Ub,X( t),%0,O A

, H [tx(t),u(r),b,(t),yO] (6-120) a' _ H(t_ O) + H(t + 0) = 0"
at/

for all admisible U. It is urther shown (Refs.
5,10,12) that Xo > 0, y 0, ct r' + I ...- H(t*-0)-H(t*+0)=0 (6-126)
r. and paa(t) > 0, 0 = q' + I1... q. to <t ad tQ 0q(t* - 0) - \(t* + 0) = 0 (6-127)

The conditions obtained through applica- P(t)(tx,u.b) = 0 I. q (6-128) Q
tion of Theorem 6-5 to the optimal design
problem may now be tated as Theorem 6-7.

Theorem 6-7: If [x(t). u(t), b. t . x'l is a ga(btl.x')
solution of the optimnal design problem o1
Def. 6-3 and if the matrix, Eq. 6-105, has full + L. It x(t),uM.bl dt = 0
row rank, then there exist multipliers Xo > 0,
Xt), =I...m, -. 1. r, y 0 0, a
r' + I._r, po(t), = .... q.,,(t). 04,=q+
1 .... q, not all zero, and functions G and H i r (6-129)

of Eqs. 6-106 and 6-108 such that
(il.l all fort=t (6-130)

d - -1 ,for t t1/  (6-121) dt at
dt TV

and

-1= 0, for f # 1I (6- 122)= 11 [t,xthoU, h.X(t),,0]

3G " all t = 01t,x(t).u(t).b.X(t y,Ol (6-131)
/- I dt=0 (6-123)

ab f3r al ad im ssiblu 1.
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It should be noted th~at, just as in Theoremn plicitly on U(t),_then this vquatsvii is of the
~ZA 6-5; the number of conditons here is just frreuedi tpobl-tetdi pa;,

.- n. Existence o sluinis, however, a rule of differentiation

very difficult question that is treated in-Refs. 0 - - 2 --

cit 2  at2  atax
64 .2 STATE VARIABLE INEQUALITY

CONSTRAINTS 10p ~ df
~/T-. ' x di (6-133)

In many meaningful design problems con-
straints may involve restrictions only on the where all the arguments are omitted. If the
state variable. This is the case when some F ight side of Eq. C-133 depends explicitly on
of Eq. 6-101 depends only on t. x, and b. To u(t) then this equation is of the form treated
study this problem, just one such constraint in par. 6-..1. 7 -

needs to be considered, i.e.,
7Tis process continues until

00,0 0, to 4 1 tit . (6-132)

Let r -c t t, r - t", be an interval in 0 .L x(bl(6-134)
which 0,of Liq. 6-132 is an equality. It is *f
clear that ao,/au U , bo' the matrix, Eq.
6-103, has a zero row in this interval and inivolves u(r) explicitly in its right side and
hience cannot be of full tow rank. Theorem ut(t) c-an be dete,,niined as a function of x(t)
6-7 cannot be applied directly, so further and b, as in par. 6-4. 1. Trhe integer P~ A I

analsisis rquied.is defined to be the first integer for which this

In te itervl r4 t4 t+ 00= 0 o i is is true. The constraint, Eq. 6-132, is then
In te iteral ~ .~ ~, 0 0 i is called a P fh order state variable me 'umality

necessary that constraint.

0 =1P+ 30 dx From the theory of ordinary differential
dt at a dt

equations (Ref. 14). Eq. 6-134 throughout

From Eq. 6-97, dx/dt mady be replaced by f t < t+ and
and this relation becomes

00I t.x(r ),b I =0 (6-135)

0= d~o - O,8(tx(f),b]

+i 00P.O

ax fI£xt,()bI(6-136)

If the rightz side of this equation depends ex- are equivalent to 00= 0 throughout t
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t , t'. 'Shis, cf course, requires that 0. Theorem 6-8: If [x(t), u(t), b, t1, xi1 is a
have V piecewse continuous derivatives, solution of the optimal design problem with
and f have v_ piecewise continuous state variable inequality constraints, then
derivatives in r < t < t +. The point there exist multipliers o m 0, X (t), I = I ....
t- plays the role of a d1 in the problem n, "ya y, , . r, 0,' r' + 1. r,
stated earlier in this paragraph. .(t .1, . (t) 0,j=q'+ I...q, and

7-. i= 1, ..... v and 3 associated with a state
It will be assumed that when the right side variable constraint and 0 in t t

of Eq. 6-134 is used in place of 0, in dX af/1
computing the matrix, Eq. 6-105, this matrix dt -x' for t 0 t1, t-, t+  (6-141)
has full row rank. In this case Theorem 6-7 dt X

may be employed. To utilize this theorem,
define - =O, for t tt.t (6-142)

DG 36 t~C aff
--+ -- - dt 0 (6-143)

, (6-137) to

d G- _ X(t° ) = 0

where , =0 if 0. involves u explicitly, aGT

G=Xogo+ :X g. (6-138) aGT
x""7 +X~
/  O . Xt/+ ) 0 6-144t) j

aGT

G=YZ€ jOy  r7' - t-,x(t').b (0-139) --- +X(t- -0)-(t- +0)=0

where this sum on 0 is extended only over the X(( -0) - X(t + 0) =0
indices associited with state variable in- 3G -

equality constraints. ri- are multipliers, and t+ (t + 0) =0

if = X, f - Xofo f 027 .- -llt ) = 0

(6-140)

-2 a -BG _ 0fO) + 0)Hl +(tI +0) = 0 6-145)

With G G 6 and I replacing G and I in G ) fl( ) 0
Theoien 6-7, a set of necessary conditions for - -
this problem are o' i::- .1 They are easily
computed and are given here as Theorem 6-8 It(t 0) + II(t# + 0) = 0

6-32

Downloaded from http://www.everyspec.com



AMCP 706-192

-0) - if(t* + 0) 0 (6-146) these subintervals is not knowr before the
solution is computed. The generality of the

X(to - 0) - X(,* 0) 0 (6-147) problem makes it difficult to discuss all its
intracics without resorting to special cases and3 0(t)0(t.xub)O, 131 . q (6-148) examples.

g.(b, t. x l )  6-4.3 APPLICATION OF THE THEORY OFOPTIMAL DESIGN

S- L.[t,x(t),u(t),S] dt =0. In order to develop some f;nmiliarity with

to the methods of the preceding subpamgujphs,
several examples will be trea.ed here. These

= 1..r (6-149) problems wdl be idealizations of teal-world
pr-blems but will illustrate the basic ideas 4

dil .1which carry over into more complicated .3,
dt t 'fort t',ol(6-150) problems.

and Example 6-8: Time.optimal Steerbg of aGround Vehicle (Ref 19)

HI t,x(t). U, bAt).-y,0J
To illustrate the concepts presented in par.

H[l:x(t),u(),bX(),'O! (6-151) 64.2, an optimal vehicle steering problem will
be solved Thib problem is chosen because of

for all admissible U. its clarity of formulation and solution. A
ground vehicle (a tractor in this case) is to be

The full set of necessary conditions em. steered so that it begin it a given point and is
bodied in this theorem is awesome from a steered so that it reaches a given straight line

bodie in this theoremt issil awesom from aeil
computational point of view. The differential pan th e shortest possible time. The vehicleequaion fo x ad Xaresubjct o mlti and the line it is to reach are shown in Fig.equations for x and 'A are subject to multi-
point boundary conditions that involve a set
of undetermined multipliers. In a gross sense, Poini /, midway between the rcai wheels,
Eqs. 6-147 may be viewed as determining is located by the coordinates x (i) and x (t).
intermediate points in t o 4 r -, t" and the
associated boundary conditions on x(t) and

X 2

Use of the theorem is further coiplcated x2

by the fact that the design ve.iable may be
determined as the solution of Lq. C-142
which satisfies Eq. 6-15i. This means that u />
wil! be determined as a furcton of x, b and
all the multipliers Thk expression foi u will.. "
generally take different forms in different X1
subintervals of to % t , tn and tie spacaiig of Figure & 11. Ground Vehicle
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Orientation of the velticle is specified by a + 4 ix2 ()- X2 + X3 (T)
third variable x3 (t). Steering of the vehicle is
accomplished by choosing the angle 0(t). H = X, V COS x3 + X2 V sin x3 + X.a tan 0
From physical grounds it is clear that the , "
state of the vehicle is described by x(t) - (0 - 00) -92 (00-
[XI(tV 2 (t),Xa(t)]T and the ve'.cle is con-
trolled through choice of 0(t). Thu conditions of Cheorem 6-7 are

It is assumed that the rear axle of the ai 0
vehicle moves with a constant velocity V. In - ax,
this case, motion of the vwhicle is governed by 4
the differential equation -H=

aX2
S= Vcosx 3  '0(6-154)

=$' ( -- '-X V sinx x I
Vsinx3 (6-152) ' 3  X

•i3 = a tan 0 X2 V cos X3

where a = VIL. At the initial time t = G. x0(0)x ,  I O =  °   nd x() ° H
Sx2 (0) = A, and X3 (0) A. The TO =X3 aseO 2 0-p + P2 (6-155)

terminal time T is not determined but it is "
r-quied that X2(7) x, and x3(7) = 0 since X (T) = 0 (6-156)
the vehicle muzt be tangent to the target line ) ('
at time T. ='o.,(T)Vcosx3 (T)+. 2(TJsirx3 (T)

The steering angle is limited by + X.(T)a tan 0(7) (6-157)

- 00 < 0 < 0 o  (6-153) 111( 0 - 0) = 0  .
(6-158)

and as an idealization it is assumed that any 6-(0 -80)= 0

steering angle in - 0o 4 0 ,- 0o may be and
chosen instantaneously For a reasonable
problem it is clca: that 0o < ir/2. Further, for dH al6l
definiteness, assume lx I < ir;z and x2 > X . (6-159)

All other initial conditions can be obtained
from these by reflection in Fig. 6-1I. The first two equations in Eq. 6-154 yield

The kroblem is now in the Io.m described .(1)
in par. 6-3. For use in Theorem 6-7,

G--XT+y lx1(0)-x0° I
and Eq. 6-156 impheq t = 0. The last

+ 'Y IY2 (0) - x 1 + y [X3 (0) - x I equation in Eq 6-I54 is daen
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i3= - V cos x3. Since x0 < r/2, for t small, eithe- 0(t) = do
or 0(t) =-00. From Fig. 6-11, it is

Using !he first equation in Eq. 6-152 to reasonably clear that 0(t) = 00 and Eq. 6-152
replace V cos x3 , this is can be integrateJ to obtain

3 =  1- x x1(t)=x ° +R [sin (x3 +bt)

Therefore, - sin x ]

X3 ()= - 2x 1 () + . (6-160) x2 (t) x - R [cos (x ° + bt) (6-162)

The behavior of 0(t) may be isolated to - cos x3
two different eases. The first is 19(t)l = 00.
The second is 10(t)l < 00, in which case Eq. x 3(t)=x' +at tan 0o,
5-158 implies jil(t) = ul(t) = 0. Eq. 6-155
then shows that X3 (t) = 0. By Fq. 6-1(0 then wherex(t) is either a constant or t2 = t 3 = 0. Triis

and Eq. 6-157 then implies Xo = 0 so all X, are b =a tan 0o
zero. This is forbidden by Theorem 6-7, so
x () is a constant when 10(t) I < 0o. But it R = V/b
x1 (t) is constant .;ij) = 0 and the first
equation in Eq. 6-152 implies x3 t) 0. The This path is just a circular arc with center at
last equation in Eq. 6-152 implies 0(t) =0. (xo - R sin x, xo + R cos xo) and

counterclockwise motion.
It is clear then that if 10(t)l < 00 for some

in termal of time, the path of the vehicle must Similarly, if O(t) should become - 0o at
be c straight line parallel to the x?-axis in Fig. some time t* whe.e x, (t*) =x , (t*) = xj
6-I. and x3(t*) = x3 then the path is described by

Siice the last two terms in /1 are zero, the xi(t) =x -- R [sin (x -- bt)
only ex:icit dependence of Hl on 0 ;s through
the term X3(,)6 tan 0(1). The inequality, Eq. -- ihx x3
6-131, states that 0(t) must maximize If It is
clear then that if X3(t) -t 0, then x2 (t) =x2 + R [cos (x. -- bt) (6-163)

o(t) = 00 sgn IX3(t)), (6-161) -- cosxl

where xdt) x* - at tan 0o.

Iq! This nath is a circular arc with ctnter it (x* +sgri q -R sin 4. x* - R cos x*) and clockwise

mot:'n. Since this circulai arc must be tan-
Further, it is clear that 0() = 0 is possibl gent to the 1-n. x2 =x,, the x2-coordinate of
only when X3(t) = 0. the center must be x, R =* R cos
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Nute that by Eq. 6-152, x3%') must be
continuous, so ,' and 2 are contiuous. X R cosA +x R cosx).

22 ar continuous. Rcos~)
Therefore, the tangerit to th: paih of p. int A
in the (x1 ,, )-plane is Further, tLe relation no:ed just below Eq.

6-163 is
dx2  X'2-ta x x4 -R= xt-Ra osx.dxJ 1 x1 -R x2 cs

and this slope is continuous. This 'neans that These equations :eld
segments of the optimal path where = - 00,
0, or 00 must be tangent where they iitlrsect. , +[R R
With this information, the soluticn of th-
problem may be constructed geometrically. /2",-Rcos xO)'

- 2 -R
In Fig. 6-12 the initial arc, which is

described by Eq. 6-162, is shown leaving x*=(x0 +x' +R c
(IAx). A whole family of second arc, is 2 2 2 -

shown corresponding .o different values of
1. It may be noted by exemining the familyof paths in Fig. 6-1' that if x' > s=R + x +

R COS A, then the first arc has been followed
2 beyond a time f wlere x 3(0 = r/2. At the

point x1 (i) = x - R sin +R, x 2() =x +
R cos A it would have been possible to
construct a vertical portion, of the optimal
path. This construction is shown in Fig. 6-13.

The extreminal paths constructed for x. > s
satisfy all the conditions of the theorem so

0O

._X
1

Figure 6.12 ExtremalArcs

From the construction of Fig. 6-12 it is
ckar that the point of taigency of the two I, (t) x2 ()1
c,-cies (x, x') is at 'ie middle of the line 00

joining their centers, i.e., .xv x2 ) _X'

- (xO - R sin xO + x' + X si x3, Figure 6-13 Extremal Arcs With Straight
6Section
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that they may be opti-num. It is clear that for this case, Eq. 6-122 provides no information.
x < s there is only one possible solution of It is then required that the inequality, Eq.
the probler. For x2 > s this is not the case as 6-131, must be used to determine the design
shown for x1 = il. Both the extremals variable. For a complete treatment of this
leading to ihe path x2 = irl ',ltisfy the subject, ;ee Ref. 20.
necessary conditions of the theorem. It i%
geometrically, relatively 'ear that these are The problem treated in this paragraph is
the only two possibilities so the one with the not as complicated as most optimal design
shortest time required to get to x2 

= X is to problems occurirng in the real-world. It does,
be chose,.. the test, Eq. 6-151, may. eliminate however, illustrate some -f the features and
ot.e candidate. It seems clear that when the difficulty encouwtered in most realistic
extremal with straight liae exists, it is best. optimal design preblems. This problem should

convince the reader that the solution of
it should be ioted that if x2 > s + 2R. it is opiim2l design problems is not simply a

impossible to intersect x2 = x with only two matter of plugging numbers into formulas.
circular arcs so the extremal with a st-3ight Even though analytical methods will be
section is required. stressed in subseqcent work, the effective

solution of this ciass of problems requires a
This problem illustrates many of the basic sound understanding of :he theory of optimal

iaeas and comrlexities involved in cptimal design.
design and optimal control theory. Some of
the features are worth noting because they Example 6-9: A Constrained Brachisto-
will arise later: chrone Problem.

I. Pieced extremals. The conditions of The problem considered here is similar to
Theorem 6-7 give a set of curves or solutions Example 6-4 but with a conztraint added. It is
that must be pieced together to form the required to fi id the path through (0 0) which
optimal path in state space. In the vehicle lies above the line x2 

= I + x, tan c in the
steering problem, these curves or arcs are put (x, .x2 )-plane and that carries a particle,
together geometricaily. In more complex without friction, to the vertical line x, = x,
problems, this will have to be done analyti- in the shortest possible time. The 1'roblem is
cal'y using the conditions of "hlleorem 6-7. shown in Fig. 6-14.

2. Multip!e hq-or. As seen in the fore, Thi- problem will be treated as an optimal
going problenh, wore tKin one c rnJz.e d~eigin problem. On the assumption that there
solution may e const-u-,ted. Cond-;;or. Z-, ai4 no discontunities in the velocity vector,
6- 13 1, must then b. , sd cnoo~e the best conse.stion of energy yields
of these candidates.

3. Singular arcs. It occasionally lhappens. is 22
in the vehicle s'eefais problen, that there will
extit a set oi values of the state riabres and or
i.wilipliers such that the fuicfh - I dtie not

depend explicitly op 4. ' ariablc. (2x)2
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1 1/2 1/2
A
1" xz  =(2gx 2 ) / sin u - (2gx 2 ) tan acos I

0 t(6-167)

which does contain u explicitly. The con-
-- straint, Eq. 6-166, is, therefjre, a first-order

state variable inequality constraint.
X 2.h +x tance

2~ 11
X2 In order to employ Theorem 6-8, define

multipliers - Y1, r-, ? - such that
Figure 6.14. Bounded Brachistochrone

The equations of motion of the particle are G = T+7yxt(O) +"12x 2(0)
then

' =(2x)/2 +cosu x
I = (29X2) Cossinu(6-164) 

= r-(x- - x- tan ce - ih)
-i2 

=  (29X2) 
/ 2  sin u2

'= X,(2gx 2 ) 1 2 cosu (6-168)
where u is the angle between the x I-axis and
the tatigent to the path on which the particle X2(2gx 2 )1/

2 sin u
is to travel. This angle it specifies the curve, so
it is the design variable. The location of the ,,92) 1 2

particle is specified by the point (xt,x,) so
this is the state variable. The boundary x(cos u - tan o sin it).
conditions are

X, (0) X2 (0) = 0 Necessary conditions irom Theorem 6-8 are

X1 (7) X'i 
(6-165)

i 1 =0
The object is then to find u(t), x(t), and

x 2 (') such that a particle starting at rest at 2 = - g(2gx 2
) i 2 [XI cosiu

(0,0) reaches x(T) = x1, in minimum time T. (6-169)
The path is required to satisfy the constraint -t A2 sin u - p(cos u

0 = x2 - x, tana - It c 0. (6.,66) tan a sin u1l

Since the constraint of Fq. 6-!66 does not (2gx 2 )l2 1 Xi sin u + X2 cos u
involve tl'e design variable u explicitly, the
problem contains a state variable inequality + p(sin u + tan o cos uji =0 ,6-17t)
constraint. Computing € and substituting
from Eq '-164 yields X2 (J') -0 ((-71)
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- t Ian a + X: ( - 0) the optimum curve is givep oy
X- (t- +0)=0 7T 0<

(b-172) 2
-+ X2(ft- -0) u(t) = cc, t- < t 4 t+

- X.2 (t- + 0) =0 1w2 (T - t), t+ < t 4 T

- RI(T -0) = 0 (6-173) where

-h(t- -0)+/l(t- +0)0, (6-174) h1 cot 1

nd
= . (6-175) 2 cot c) 1/2

dt

Ideally, the solution for u(t) might proceed ir/2 - oz
by solving Eq. 6-170 for u as a furction of X (J
and p. This result could then be substitt led
into Eqs. 6-164, 6-167, and 6-.69. The t+ = T-a/(2o2 )
variables ,. x, and p could then be determined
and the results substituted back into the and
previously derived equation for . This would 1
be th desired solution It is clear that these Fr 2 "x '/2

steps would bc extremely messy so a hudstic T "g(Xi
argunnt will be used here to suggest a
solution. This solution can then be checked in r 2 ot / -- i1t

the corditiors Eqs. 6-169 through 6-175. c -+

It migh be expecte. that when 0 :0 0, then Fig. 6-15 showi solutions for tan ac 1/2
the curve is a cycloid as in Ex.imple 0-5. and several values of h.
Whenever 0 = 0 it is clear that u = a. This is,
in fact, the case and as presented in Ref. 21 The reader may very well get the impres-
ihesolutionisa ,cloid for sion from these examples that analytical

solutions of general optirial design problems
h an are extremely difficult to obtain. This is
xe r 2 indeed tht case. Therefore, either numerica:

methods must be used to solve the equations
i.e., tPe optit-um path does not touch the given as necessary conditions in the theorems,
constraint surface or some direct computational nieth!od must

be used to solve the optimal design problem.
For Some n'ierical method, of solving 'he neces-

sary conditions are presented in the next
h ~ ! 2\tr~ paragraph. Several optimal structtural Cesign

X i ( 2 problems are solv.-d in ('hap~er 7 to illustrate
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o x1 boundary-value problem to a sequence of
linear boundary-value problems whose solu-

0.1 tions converge to the solution of the non-
linear problem.

0.2
6-5.1 INITIAL VALUE METHODS (OR

0.3 SHOOTING TECHNIQUES)

In order to develop the main ideas without
getting bogged down in notation, consider the

2 .problem )f finding y(t) = ) ,(y) (t) IT,
that satisfies

Figure 6.15. Bounded Brachistochrone dy
Solution -. =fpt, Y), t t (6-176)

these methods. Direct methods of solving and
optimal design problems are presented ir later Y ( 0) = y 0i for sor. i
chapters. f(6-177)

6-5 METHODS OF SATISFYING NECES. yj(t ) = y1 , for some
SARY CONDITIONS

where the total number of conditions in Eq.
The previous three paragraphs of this chap- 6-177 is n. In order to further simplify

ter have been devoted to obtaining necessary notation, assme the components of y(t) have
conditions for optimization problems of vary- been numbered so that the first equation 
ing degrees of difficulty. It has been observed Eq. 6-177 holds for t = I. k <.
that these necessary conditions generally
reduce to some sort of boundary-value prob- Since initial-value problems are so efficient-
lem, usually nonlinear. The object of this ly integrated forward in time, the missing
paragraph is to explore ways in which the conditions on y at to may be estimated as
boundary-value problem may be solved. Tiis
topic has received considerable treatment in Of - t. i = k + I .... n (6 1 78)
the recent literature, so it will be treated only
briefly hei. . and Lq. (,-706 integrated from tP to tI using

the full set of initiai conditions from the first
Two different methods will be discussed equation at Eq. 6-177 and Eq 0-178. The

heme and will be applied to optimal structural value of y/(t ) obtained from this integration
des'gn problems in the next chapter The firt will probably not sitsfy the econd equation
method is based on a reduction of the in lq (,-177. .#.
boundary-value problem to a sequence of
mitial-value problems whose ,'Iutions con- /t .) * I, I = 4 . it (6-I 79)
verge to the solution of the original pro"iemn.
The second inethod reduces a nonlinear where E (. , and the notatiotl ol
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Eq. 6-179 is introduced to illustrate the Thle initial value problems, Eq-z. 6-182 and
dependence of the final values of y on ~.6-183, for i= k + 1,.n may be integrated

from to to~ 0 to obtain the derivacives
It is clear that a solution of the problem required in Eq. 6-181.

can be obtained if t can b2 found so that Eqs.
6-179 are equalities. To simplify rntation, Once these derivatives have been deter-

defie te clumnvecorsmined, the new estimate '. in Newton's
Method is given by

5'(t ;t) = y1(t' ;t)) for those j in Eq. 6- 177
and *- [auw: ;to)1 -a 1 O

[y) I for the same 1.
(6-184)

The conditions which arc to deterinn ! are

. (tl =Y - 0!80) The process is repeated with tl playing the
~i'(';~)Y'*((~-80) role previously occupied by to,

Ani: n.umerical method of solving algebraic
equations may be used to solve Eq. 6-189. if a This method of finding the partial deriva-
scheme lik~e Newton's Method or a Gradient tieisdrctnnaue uteqrsth
14ethod is to *'e used, it must be possible to solution of Eq. 6-182 n - k times, Further,

computeboth the differential equations. Eq. 6-176 and
6-182, must be programmed.

tial derivatives of Eq. 6-181 (or .ipproxima-
where to is an estimate of the st,!tier of El tions of them) is to use a differe,.ce quctient,
6-180. These partial derivatives mia.j be ob- i.e., Eq. 6-176 is solved for t and t + 6 where
tamned or approximated in a number )f ways. 6 _-(0. ... 0.. )T where i indicates thle ith

position anhl c is small. Therefore
The first method of determining the deriva-

tives in Eq. 6-181 is to observe that y(t) = yIa :y(t' P ; t + 6) -(- J, )
y(f;t') and furth- that the d pndence on l
is very r-'gular (Rvf. '4) so tiato 3y(t :t )/dt k6-185)
exists. Differentiating f.-mally w, ht respect

to tin E . 6-76,Once these appro inmte derivatives are

d(v) 3 f D 6-82 determined, the algorithm, Eq. 6-184, may be
dt ot 3y at 612 sd

and This appioximate method of constructing
the partial derivatives requires that the differ-

a 10 0, .,0,. _1,0. 01. . ntial equation, hq. 6-176. be solked ni k
- A 1)'.1ii innal timnes. It. 'herefore, requires

.1 pro- matelv the same amount ot comiputa-
ic = k I, .n (6-183) tion az. t',c previous schemie, but ail the
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computation is performed w;th the same set The Generalized Newton Method for
of 'ifferential equations. This method is solving Eqs. 6-186 and 6-187 is similar in
"ustrated in the problems of pars. 7-2 and philcsopity to the Newton method of solving
7-3. algebraic equations. An estimate of the solu-

tion, y(O)(t), is made and 'he right side of Eq.
A third 3cheme which makes use of differ- 6-186 is expanded about y(Oi(t) using Tay-

entiation formu!as for definite integrals is lor's formula to obtain
developed in par 1-4.

6-5.2 A GENERALIZED NEWTON MIETH. dir - T 'Y(°)(t)tYO) +f~tY(°)(t)]
OB Sf It,y(O)(t)3y(O)(t% (6-188)

A second method which is used to solve the ay
necessary conditions for optimizatiprn prob-
lem: is a Generalized Newton Method of where y()(t) is requ'red to satisfy
solving boundary-value problems. It has been
pointed out in the .orc,!oing that Bolza y41)(°) =y,, for those Iin Eq. 6-187
problems and optimal design problems may
be reduced to nonlinear boundary-value prob- y1(t(P) for those/in Eq. 6-187
lems. The method employed he.-% was devel- i7

oped forijust such probl-nis (Refs. 22, 23). (6-189)

In order to introduce the Generalied Tlh boundary-value problem for y(l)(t) is k
New an Method for boundary-value prob- linear so that if it has a solution, that solution
lems, consider 'he system of first-order equa- may be obtained by superposition techniques,
tions or any other technique for soling linear

boundatj-value problems, for that matter
=g(y.t) (6-186) (Ref. 24).

dt
The function y(l) t) is taken as an im-

where proved estimate for the solution of Eqs. 6-186
= an and 6-187. "his estimate then replaces y(o)(t)

y(t) Y ,'1). .... yn(t} anI ir the preceding inalysis. If k is the iteration

number for this process, then y(k)(t) is
g(yat) = [g1  ). r deterrmined hy

In addition to satisfying Eq. 6-186, y(t) is d, , k = al F, (k)
requirtd to satisfy . i a( ,

t , for some I +f{ty k !t)J (6-190)
(6-187)

)y,. for soale). (O- !t7)(k- I (t) 1 A. it)

where the otal number ot .onuitons in q

6-187 is n
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and the boundary conditions and

4Yk)(t°) y, for those Iin Eq. 6-187 x(tx) for some (

(6-194)
ylk)(t) =yt, for thosei in Eq. 6-187. x/(tI) x1 for some

(6-191) where the total number of boundary condi-
tions in Eq. 6-194 may be less than, equal to,

The sequence of approximations to the or greater than n, x(t) = [x,(t) ....Xn(t),
solution [y(k)(!)] is considered to have con- u(t) = [u (t). um (t) T.
verged when the difference between succes-
sive terates is sufficiently small. Theorems Defining
given in Ref. 23 show that if the initial n
estimate of the solution y(O)(t) is sufficiently H = + 7 ,
accurate, then under rather restrictive condi- t-
tions, the sequence [y(k)(t)] converges to the
solution of Eqs. 6-186 and 6-18/. Further, the necessary conditions of Theorem 6-5 are
the convergence is quadratic in the sense that
the error at the k + 1st iteration is propor- A 311
tion , to the error squared in the kth itera- .. . (6-195)
tion. This kind of convergence is extremely dt
nice.

at!
- 0 (6-196)

Even though it is difficult ot impossible to It
ve:ify the hypotheses of the convergence and
theorems in Ref. 23, it has been observed in
practice (Ref. 23; that good Lonvergence is X,(t°)= 0, 1:i in Eq. 6-194
nevertheless obtained in many real-worldt (6-197)
problems. (t) = 0, s *J in Eq. 6-194.

Since the discussion in this paragraph is on The argument used in applying the General-
ways of solving optimization problems, the ized Newton Method to the problem of
Generalized Newton Method will be applied determining x(t), u(!), and X(t) from Eqs.
more directly to this claw of prob!,fms. For 6-193, 6-194, and 6-195 through 6-197 as

the present, consider oniy the following prob- follows:
lem:

1. Solve Eq. 6-187 for
minimize J f (t~x~u)dt (6-192) = u(t'xX) (6-198)

and substitute this ,xpression into Eqs. 6-193
subject to and 6-195.

dx = f(tx.u) (6-193) 2. These differential equations then form
dt 2n first-order, nonlin-at differential equations
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in 2n variables. Further, there are exactly 2n an auxiliary parameter c, is introduced
boundary conditions in Eqs. 6-194 and 6-197. through
This nonlinear boundary-value problem is
now solved by the Generalized Newton Meth- (;2

od. [ ¢H[O(t)t=et (6-202)

3. The solution x(t), X(t) is then sub-
stituted into Eq. 6-198 to obtain the optimal where
design function.

Since the Generalized Newton Method, as H(s) = 0,,
presented here, is only capable of solving 1,s > 0.
two-paint boundary-value problems, inequa- In a sense, e, is a measure of violation of Eq.
lity constraints may not be treated explicitly. 6-201. The procedure in solving an optimal
Rather, the general optimal design problem design prob-em with a constint of this kind
with inequality constraints must be reduced i esee problem sith Eq.is to solve r sequence of problems with Eq. "
to a problem with only equality constraints. 6-202 replacing Eq. 6-201, and e (k) ap-
For example, for problems wi constraints ef proaching zero as k becomes nfinite; i.e., a
the form modified design problem is solved imposing

Ojl.x~u) < 0, (6-199) Eq. 6-202 in place of Eq. 6-201 with e,(0 ) > 0
chosen. This solution is carried out through
use of the Generalized Newton Method de- (

where 0, depends explicitly on u a trans- scribed. The problem is then solved again with
formation may be performed by introducing 0 < e( i ) < e(° ) beginning the iteradon with
an auxiliary design variable (slack variable) the solution of the preceding problem. Tho
at(t) through the relation process is repeated with 0 < e(k) < e(k 1)

until changes in successive solutions are suf-
0 (t.;:,.u) + a/(t) .= 0 (6-200) ficiently small.

It is clear that wth the new variable, Eq. The Generalized Newton Method presented
6-200 is equivalent to Eq. 6-199. The neces- here has been discussed by many authors and
sary conditions of Theorem 6-5 may now be generally has received favorable comments.
:pplt'd and the Generalized Newton Method For a more detailed discussion and examples,
utilized just as in the preceding case. see Refs. 23, 25 through 28. An outstanding

treatment of the Generalized Newton Method
In case the optimal design problems with also appears in book form (Ref. 29). A very

state variable inequality constraint., a differ- rigorous treatment of existence and con-
ent te,.hnique for elimination of inequalities vergence properties of the method is given
has proved effective. For constraints of the which applies to the control problems dis-
form cussed. The reader should note that some

writers follow Bellman in calling the method
(t,x) , 0 (6-201) described here, "Quasilinearization".
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CHAPTER 7

OPTIMAL STRUCTURAL DESIGN BY THE INDIRECT METHOD

7-1 INTRODUCTION As systems become more complex and
more emphasis is placed on minimum cost,

7-1.1 THE CLASS OF PROBLEMS CON- the designer is unable to make all the trade-
SIDERED off analyses mentally. A method of design

synthesi-, therefore, is necessary which is able
Since the beginning of engineering disci- to include all requirements on tile system and

plines, the engineer has attempted to develop the requirement of minimum cost in a unified
structures and machines that perform some design procedure. One such method for opti-
specified task. In the case of structures, a mal structural design is illostrated In this
frame or truss is required to support a given chapter.
system of loads Likewise, machines and
machine elements are, required to support 7-1.2 HISTORICAL DEVELOPMENT
loads while they perform some function.

Very early in the development of me-
The objecti'e of the examples treated here chanics of materials, methods of determining

is to illustrate organized methods that the stress and displacement for given bodies under
engineer may use to obtain a load-ca:rying the action of givea forces were emphasized.
system which is best in some serse that is As these methods became better developed,
associated with the particular application. In the question arose as to how a structure might
design of commercial goods, the dollar cost of be proportiored to sat'sfy certain require-
an el1'nent is probably the index that is to b! ments and be best in some sense. Problems of
minimized (R.f. I). In military and aerospace this kind were considered by Lagrange (Ref
applications, while dollar cost is important, 2) in 1771 and by Clausen (Ref. 3) in 1851.
frequently weight cost is even more essential.
In the example problems presented here, the Until very recent years, methods of the
criterion of minimum weirht will be chosen. calculus of variations were not sufficient for

treating realistic design problem . Probably
Until very recently, most design procedures for thi, reason, design problems were stated in

depended on the engineer's intuition and terms of a few parameters that specified the
experience in proportioning a load-carrying structure. For example, uniform beams of
system. An anatysis of the p~aposed con- undetern'ined depth are placed in a given
figuration was then made to determine wheth- configuration. The depths are then deter-
er tile system met all requirements placed on mined so that the structure supports the given
it. If not, or if the preliminary design was loads and is as light as possible. For a detailed
obviously excessively strong. the procedure bibliography of this developmen: through
was repeated until a satisfactory solution w-s 1963. see Ref. 4. For a more current bibliog-
obtained. raphy, se- Ref. 5.
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Another important methol of design devel- conditions that the solution of the optimal
aped principally by Prager nd Dracker (Refs. desigii problems must satisfy. Once this task is
6,7,8) is limit analysis. In this method of complete, the design problem is reduced to
design, the structure is allowed to reach a the determination of solutions of the neces-
state of Lbllapse due to plastic tction of the sary conditions that are candidate solutions of
material. The resulting design is, therefore, the optimal design problem. The term "in-
safe f r application of the given loads even direct" seems to describe this process quite
though permanent -deformation of the struc- well.
ture tesults. If the loads must be applied
many tim.s in the life of the structure, it will As discussed in par. 6-5, any method of
generally be required that all material in the solving the nonlinear boundary-vaiue problem
structure must remain in the elastic range at contained within the necessary conditions is
all times. For this reason, mr.hods had to be admissible. In this chapter, two problems will
developed for elastic design. be solved by shooting techniques. The prqb-

lems of par, 7-2 are treated by the shooing
In 1960, Joseph B. Keller published an technique of par. 6-f. The problems (,f par.

article on column design (Ref. 9) which 7-3. however, are treated by a modified
renewed interest in elastic, minimum weight shooting technique.
design. Several papers have subsequently been
published by Keller and his associates in , 2 A MINIMUM WEIGHT COLUMN
which a class of cigenvalue problems is trzat.d
(Refs. 10,11,12). The methods employed iWi A lightweight column of length T is to be
these papers are elegant but are not easily designed to support a given load P. The
adapted to realistic engineering problems. material is specified and has yield strength

Umax' The particular suppo-t considered is
A new method of optim .1 design has been shown in Fig. 7-1. In problems considered

deeloped by J.E. Taylor and W. Prager since
1967 (Refs. 13,14,15). This mc:zhod is based
on an energy representation of the structural P
element under consideration. A particularly
nice feature of the method is the ability to
obta'n sufficient conditions for certin classes
of design problems. However, no unified
method of constructing solutions has been
presented.

7-1.3 METHODS EMPLOYED (') Undefctej (B) Nfleri

The theorems of Chapter 6 will be em- Figiire 7.1. Column Under Consideration
ployed here for the solution of optimal design
problems. Use of the results of Chapter 6 to here, the cross section is assumed to depend
construct solutions of optimal design prob- on only one design variable, u(t), 0 < t < 7.
lems is called an indirect method of solution. The problem is to determine u(t) that mini-
This is so, because one first obtains a set of muzes th-e weight or, equivalently, the volume
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T the optLqial control problem considered in
J Aut]dt (AM-I) par. 6-4.

J0
For use in Theorem 6-7. conitruct

and satisfies the conditions,

H=-XOA(U+XIX2 -X[21
EA 2+ Px 0, A Z)' .EuJ

!. , : ~(7-.) -I -Oa

dxX(0) = , - (7) =0
dt

G = 1x (O) + X 2 x2(T.
and

Conditions, Eqs. 6-121 and 6-124, yield
P

A(u)-- mx 0 (7-3) d.__ 8H PX
A~u ma x, EJ(U)

where
.. = _ _. = . (7-5)

x() lateral deflectio- of the column dt ax2

distan . measured along the column X2 (0) 0, X, (7) = 0.

A(u) = area of the cross section The system, Eq. 7-5, reduces to

1(u) smallest moment of inertia of the d PX2
area of the cross ;e'tion about a centroidal d12 E 4
axis. All cross secticas are assumed to have (7-6)
two orthogonal a>eF of symmetry with P d(7-6

X2 0-0---()0acting through their irtersection. ;k2 (0) =0,-7 - T=0.

By defining x, = X and X2 dx Ildt, Eq.
Eq. 7-6 for X2:) is identical to Fq. 6-14 for7-2 reduces to the systen, x(t). Both *'roblems are honogeneous, how-

ever, so X2 (t) and x(i) may differ by an
=t F-f harbitrary cons'ant multiplier, say Xo, i.e., put

t X2(1) = ,ox(t) This problem is normal (Ref.

d2 -1 
('4) 17), so X0 --- 0 may be chosen as one.

dt El(u) f Condition, Eq. 6-128, of Theortm 6, is, in
this case, p(PIA(u) - oma x ) 

= 0. Two
x(0) = 0,x 2 (T) = 0. possibilities now t.,st. eitier/ = 0, or PIA(u)

ona X = 0. In the second case, u is just the
The problem is thus reduced to th,: form of algebraic solut'on of
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PIA u)(6-7a) X(O) 0, (dx 0S
t)

In~ the remaining case, 1; 0 and conditiun,
Eq. 6-122, of Theorem 6-7 is where the choice on the right side of Eq. 7-12r

must correspond to the selection in Eq. 7-11.
I /Iu)J 0. This boundary-value pAbe s ovdb

au TU EF auan iterative method based on Newton's
(7-8) Algorithm. T~ie missing init-al condition is

r~kei, ats dx/d, :0) =C Integration of the77 The design variable u(t) Is thus determiined resulting initial value problem from 0 to T
in subintervals or~ 10,Tj by either Eq. 7-7 or yields an error dx/dt(T;C) in the final value.
7-8. So that thc results of the present method
may be compareu with those obtained by This notation is chn'sen to emphasize the
Keller (Ref. 9), choose A = i and I = (ou2. dependence of x on the. estimate C of the
This corresponds to having the geomnetric mis-zing 'nitial condition. The objective is to
shiape of the cross section fixed and allowing fn ota xd(:' 0 neCi

all imesion tovaryas "2 .fou~id, the initial value problem for 4:t) may

Withthi for ofA~u)and1(u) Eq. V be solved and u(t) deternihied from Eq. 7-11.
and 7-8bcm In order to employ Newton's Algorithm,

P/u 79) a/aC (dx/dt(T;C)l is needed. It is obtained
mxby formally differentiating Eq. 7-12 with (

and respect to C to obtain

2Wx

E*u0 ~ (7-10) d2  f1'

Cordition, Eq. 6-121, of Theorem 6-7 1i \/3

requires that the expression for u be chosen X 413  ~ (7-13)
which satisfies the constraint, Eq. 7-3, and
m~zej H as large as possible. This criterion i0 dt 0
yields the choice between M)=0di(0

u) (P/amx )or xP "17-l i) wvhere the choice on the right side of Eq. 7-13
Ed ~ must correspond to the selec~tion in Eq. 7-11.

The order of taking derivatives has been
When Eq. 7-11 L~ substituted into Eq. 7-2, cianged and the notation =ax/aC intro-

duced in obtaining Ee. 7-13.

dt 2  
-E ma x) 2 o The i'erative method for determining ': is

then:J2P-2 Step 1. Make estimate C =C0

7-4
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Ae2. -1itegrate the-diffefential Auation A FORTRAN program was written to
--nEtj -7-12 w ith perform the iterative procedure. The program

dxwas -run on an IBM- 360-65 Computer and
dx required approximately 0.1 sec per iteration7ti3 and only fourto six iterations to converge.

Step -3- M4ake the adjustmenit in C Trho results for this destgn problem aire

-- 'jven in Table 7-1 and Fig. 7-2. For loads-c rdt ~~ abovo- C794 lb, the crass-stctional area is
C1  0Ad:/t Jdetermined by A =P/0axadthreuin

column is stable. A meaningftul optimal design
Step d. '1letun -to Step 2 with new esti- problem then exists only for P < 6794.mattC an repntV

7-3 A MINIMUM WEIGHT STRUCTURE
The equations deiived nere must be WITH ANGULAR DEFLECTION RE.

changed only slightly to solve colun prob- (sUIREMENTS
lems with other end conditions and other

frsof cross section. 7-3.1 STATEMEMT OF THE PROBLEM

For a numierical example of this problem, The problem considered in this paragraph is
let the cross section be circular with v.ariable the design of a portabkd communication tower
radius. In this case cet = 1/(47r). For the exam- of height L which will sopport a line-of-site
pie, let am., 20,000 psi, E 3x 107 psi, end transmission unit, a laser transmitter, forF T= 10 in. exaniplc. In order for the transmission beam

TABLE 7-1

RESULTS FOR COLUMN PROBLEM

Volume of
P. lb Volums, In.3  Uniform Column', In.? Saving. %

50 0.260 0.291 10.6
1100 0.381 0.412 12.4

200 0.607 0.595 14.7
500 0.806 0.923 12.7

1000 1.140 1.1300 12.3
1500 1.408 1.600 11.9
2000 1.640 1.840 10.9
3000 2.G48 2.260 9.3
4000 2 412 2.600 7.3
5000 2,765 2.910 5.2
0794 3 397 3.397 0.0

1Minimum Wb~gi Un, jrm Column

7-S
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The general configuration of the tower is
shown in Fig. 7-3. Three vertical members
with cross-sectional area A (t) are arranged on
the vertices of an equilateral triangle of
altitude h(t). Here t is a coordinate measured
along the length of the tower. In order to
maintain the spacing of th. vertical elements,
small cross members are inserted.

P-sn P- 100 P-00 r-1000 P-ISOO

~AAW

Figure 7.3. Tower Considered

It is assumed that the tower is constructed
of a given material with density p. Further, it
is assumed that P3h cubic units of materai are

P * 2000 P- 3000 P- 5000 P 6794 required per unit height of tower in order to
Figure 7-2 Profiles of Optimal Columns maintain the spacing of the vertical elements.

The coefficient 3 is to be determined from
(lesign experience. For this configuration the

to 'it the receiving unit, the top of the tower total weight of the tower is
ot which the transmitter unit is mounted
must undergo only a certain allowable rota- IV 3p [A(t) +#h(t)) A
tion 0 when the tower is exposed to a givenextreme uniform wind load Q pounds per unit
length of tower. Since 3p is a constant, IV is minimized if and

only if
It is required that the tower be as light-

weight as possible so that it may be trans- V= t.
ported and erected without the aid of heavy V (.1(t)+13h(t)l dt (7-14)
machinery. For this reason, the design crite- 0
rion is minimum weight. However, one addi-
tional requirement must be placed o~k the is minimum. The objective in the design
tower. In transportation and eiejtion it must prob'em is to choose A(t) and h(t) for 0 - t -
be strong enough so that it is not damaged by L, so that V is as small as possible and the
rough treatment. Therefore, it is required :hat given conditions are met.
the moment of inertia of t',e cross-sectional
area of the tower be greater than a prede- Latetal deflection of the tower due to the
termiied limit 1 every .he-. lateral "'ind load is determined by elementary
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beam theory. The differential equation for considered in par. 6-4, define
displacement is (Ref. 14)

EI(t)x" - M(t) (7-15)

X2 -X 1where
with this notation and that of par. 6-4, the

. Young's modulus of the material second-order equation 7-2 is equivalent to

1(t) = minimum moment of inertia of x' x 2 =f- lithe cross-sectional area of the (7-17)
tower M -

X =

x lateral displacement
e dig The design pnblem will ,tow be solved tor..= dt'-'Ttwo admissible configurations of the tower. .

M(t) =bending moment of tower. In order to compar2 results obtained for
the various configurations considered, a tower

The moment of inertia of the cross section is with properties of Table 7-2 will be treated.

) l(t)=2iA(t)[h(t)J2. (7-16)3 TABLE 7-2

CONSTANTS
In order to prevent damage in handling, it is
required that L - 360 i,. 0 - 0.0001 rad

Q - 8.35 Ib/it. 0 - 0.25 in.
E 3 x t07 lb/in. 1o - 172.8 in,

or in the notation ',f par. 6-4,

0=10o-l(t)< 0,0< t< L.

7-3.2 TOWER WITH ONE DESIGN VARI-
If 1(t) = Io gives a tower with angular ABLE
deflection less than or equal to 0 at the top,
then this is the optimal tower and no further For the problems considered in this p.ra-
work is reqaired. On the other hand, if this grap',h, A(i) will be held constant with the
tower has angular deflection greater than 0, value of A. Two ways of mouihting the tower
then the tower is not admissible and it is on the earth will be chosen. The first method
required that the angular displacement is will be to fix the base of the tower rigidly to
equal to 0. This is the only situation con- the earth and leave the top unsupported. The
sidered here. second mtthod will be t3 pin tie lower end to

the earth and suppott the top with guy lines.
In order to fit this nroblem into the form Since A is constant

7-7

Downloaded from http://www.everyspec.com



AMCP 706.192 Q
L par 7-3.1. Eqs. 7-17 become

V [A + h(t)]dt -4h2 (-)x0 X' X2 = A •"'

)(7-20)AL 3Q(L - t)^

I (t)dt. (-8 2 O0(-

. 4EAh 2

Minimization of V in this case is equivalent wihbudrcoitns--

to minimization of""'
xl(0) = 0 '

J= I h I(t)dt. (7-18) X2(0) = 0 (7-21)

x2(L) 
= 0

In the notation of par 6-4,
The problem stated here will now be sd.lved

fo = h (t). using Theorem 6-7. Define

7-3.2.1 METHOD 1. TOWER WITH BASE H=X +x2  L" [Q(L - -- 1 oh
RIGIDLY FASTENED TO THE 2EAh 2

EARTH /2 2 Ah"

The tower considered here is shown in Fig

7-4. The bending momenz M(t) due to the nand

G ='Yx 1 (0) +7 x2 (0)+'73 lx2(L) - 01.

The conditions of Theorem 6-7 yielCQ

X= 0
t (7-22)

// /} /
xX' 2 =X

Figure 7-4. Loading of Tower 9 [X Q(L - t)2
all L 2EA/10

w'nd i., ,=, Q , 4
+a -Ah (7-23)Q 3

M(t) =--(L - t)2 (7-19)
2

Xt(L) = 0 (7-24)

where t is measured upward front tha bottom
of the tower; the other symbols ,re defined in The gcneral solution of Eq 7-22 is

7-8
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AMCP 706-192L 1 (t) ti Since Cases 1 and 2 cover all possibilities,

(t - - t. - ,3Q(Lt)2 1/3
2hA .E or

Condition, Eq. 7-24, implies t = 0, so (7-27)

(7-25)
X 2 (t) P2. where by Eq. 6-13!, the choice in Eq. 7-27

must be made which makes
For the determination of h(t), two cases

must be considered, 36 Q(L _ t2

4EAh 2
Case I: 0. In this case

a maximum.
-Ah 2  .10 = 0
3 Let t* be a point of transition from one

expression in Eq. 7-27 to the other. Since
Theorem 6-7 requires H to be continuous,

3\11/2 when the two expressions of Eq. 7-27 evalu-
h =-ated ,t t* are substituted into H, a common

\2, / value must occur.

Case 2: 0 < 0. In this case Eq. 6-128 is Evaluate 11 as a function ot beth h2 and
h t

O = 0

and since :A 0, IA = 0. Substituting this result H(h, )i/ 1  -1
into Eq. 7-23,

1 I [t Q( L - t) lI
-C +e 62 Q( -U 0~ . (7-26) 2 2"4 Ih

2 EAWt

I h'
If X0 = 0, then, t2 0 and from Eq. 7-26, = - 2

X,. = X2 = 0. Thiis, however, violates the 2/,

condition stated in the first sentence of
Theorem 6-7. Therefore, X 0 0 and it is 11(h2) - /12

permissible o choose NO = 2

Further, since X > 0, t. > 0 in order that Q -_)_ _

Eq. 7-26 hold. Eq. 7-26 then yields 2 2 2A a hI

= 32 Q(L - t)'/3  = I h2
2EA -1 2  

h2 h

7-9
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Then form for 0 < t 4 t*. The problem is now to
determine t2

3 I  1 h
tl /-ll - 2 +h/ ---

2 2 h- The zodition whiih hrs not yet been
satisfied is x2 (L) = 0. Substituting Eq. 7-27

= , (2Jl + h2)(h 1  -ha)2
.  into Eq. 7-20 yields

2121

- /L .- t)2/3 t23
If h2 < h, at any point i, then h2 violates 2 \ 2EA) (L -

the constraint and h = h 1 . If h2 = hI at any?,
there are no alternative choices for/h. If '12 > X2  for 0 4 t 4 t*
hl at any point r, the choice h = h, must
raiaximiz. H1t); this implies 112 - H I < 0. But Q(L - t r t
this is impossible from the above bccause hl 2k10  fort
and h2 are always non-negative. Therefore. if
h1 > hI, then it is required tnat h = h,. From (7-29)
this, it is concluded that

hI(t) = maxth1 (t), h:(t) . with ::2(0) = 0.

Since h(t) is defined as the maxiaumm of two Integrating Eq. 7-29 first frora 0 to t* (as
continuous functions, h is continuous. It given by Eq. 7-28) and then from t* to L
follows that all points t* of transition from yields (
one value of Eq. 7-27 to another can be found

by equating he two expressions of h(/).X2 3L5/3 ( 3Q 113  t

The pcnt t* is then determined by 10 2|EA

/ 21 /2 5 / 2 3 /4 5 /6 3 /
h, W) 31tE 1o (2 x3+ 1010 )-1

-3t 0 t*)2 1/3 h(t*). i2=4(1)(4 ) / 2 A (7-30)

Eq. 7-30 is solved numerically for t2. Once
This solution yields two values of t*. The t2 is deermined, then Eqs. 7-27 and 7-28
requircnen, 0 . t* L results in a unique completely specify the tower. Results are
valke of t*. shown in Table 7-3(A) and Fig. 7-5(A).

f 3E218 i 7 14 This design problem has been solved analy.-

= [2,lQ (728) ically. As will become apparent as more

realistic r s are treated, one should not
For 0 , t . L, the first form of/h in Eq. expect .ain solutions in this way. In

7-27 is monotone de reasing and is zero at t = most problems, numerical methods ntst be
L It is, therefore, dear that the second form apolied to solve the differential equations
of h must hold for t* , t < L anti the first arising in the I'heorem 6-7

- 10

Downloaded from http://www.everyspec.com



AMCP 706-192

i ",(t) th Since Cases I and 2 cover all possibilities,

j~e~j(L 1/3 o

Condition,Eq. 7-24, implies t 0, so (7-27)

(7-25) (3) JI
where b, Eq. 6-131, the choice in Eq. 7-27

must be made which makesFor the determination of h(t), two cases
must be considered: 3 2 Q(L - )2

H h 4EAh 2

Case 1: 6 0. In this case

a maximum.2 "
2Ah' 10

Let t* be a point of transition from one
expression in Eq. 7-27 to the other. Susce

so Theorem 6-7 requires H to bt continuous,
/31 1when the two expressions of Eq. 7-27 evalu-

h - -h, -,teC at * are substituted into H, i common
2A vahie must occur.

Case 2: 0 < 0. In this -ase Eq. 6-128 is Evaluate H as a function of both h2 and

jUO = 0

and since 0 0- 0, p 0. Substituting this result H(ht ) -H = -h
into Eq. 7-23,

-X + 2EA " =0. (7-16) 2 t h

If X0 
= 0, then, t2 = 0 and from Eq. 7-26, = -- hI 3

X1 = X2 = 0. This, however, violates the 2
condition atated in the first sentence of
Theorem 6-7. Therefore, Xo * 0 and it is H(h2) = -H lt
permissible to choose X, -2.

Further, since X0 > C, t2 > 0 in order that I 3t 2 (! -) 1
Eq. 7-26 hold. Eq. 7-26 then yields 21 .J

h= 3l ' t 11' 3 I h
- 2EA .h2h

7-9
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X1-:7 X2

QI~t;L)(7-31)

/ The boundary conditions in this case~ are

LI ~X 2() 0732
(A) One Cositrol Variable (B) Two Control Variables

Figure 7-5. Tower With Base Rigidly Fastened X L
to the Earth

The quantity to be minimized is still given
by Eq. 6-17. In the problem conside:ed here,

7-3.2.2 METHOD 2. TOWER WITH BASEr3t -L1

PINNED TO EARTH AND WITH H=Xl\x 2 +AL4Eh
TOP SUPPORTED B.' GUY LINESL Eh

The tower considered here is shown in Fig. 3
7-6. It is convenieiat here to locate the
coordinate system at the top of the tower. G 71 x 1(0) +fIX2 (0) 01 + 3 XI(L).

rhe bending moment generated by the uni-
formwin lotd Qis I =- Q/ (( - ) ~ Conditions of Theorem 6-7 are

the differential equation for bending is O

EI~h)x"l 7 1 L).

Define x, x and X2  xl,; this is equiva- itdX 2.22.

lent to
so

X .4

Also,

/-t his equtior~ ittpfiest 2  I. _x

F,qgure 7-6. Tower With Guy Lines

7-12
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~ 1"'~t)-. of--Ef 7-51- and solntion of the boundary
- - conditions, E.7-3 2, for tj are not feasible.

Two cases must nowbe cozisiderd.' Therefore, the shooting technique of par. 6-5
Is iployid. Numeriaal results for this Orob-

-CaseX. 01Ird In this case lem are given izi Fig. 7-7(A) and Table 7-3(3).

3

1A so

~-C 1 ase 2. '0 0. In this case ui 0.
Substituting into alH/ah 0,

el (L -t) 6Qt(t -L)=0

As in t',e previous case X.0 0 0 so it is
pet uissibic to put N~o= 2 and obtain

)(A) One Control (B) Two Control
F31:( ~21t/3 Variable Variables

=2 2 EAJ
FigureU 7- oiver With Base Simply Supported

and Top Supported With Guy LinesEqs. 7-33 and 7-34 aiong with Eq. 6-131
yield

(' 310\ The modification uf Newton's Algorithm
h =t) or consists of using a corection of at most 1011o

1/3 of the values of' the unknown iteration param-Et Qt( t)21/ eters. It has been found in particular problems
Q'(L j- (7-35) that where the Newton Meth')d fails to

2 EA converge, this method will converge. The rate

the choice in Eq. 7-35 being inados which o, convergence, particularly for the first few
makes iterations, is slowed by the modification,

however.

H h -_3t,________t_ 7-3.,' TOWER WITH TWO DESIGN VARI.4EAh2  ABLES
largest.

The same two me-thiods of supporting the
The problem 's thus solved when tj is towers will again be consijered. Here. how-

Jetermined. In this case, analytical integration ever, both A and h* will be allowed to vary

7-13
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alongthe tower and play the role of design is permissible to take Xo  I. The system is
variables, then two equations for h and A with solution

14E- l. 7-16 and 7-17 remain the same in the./ (36iQ) 1  11,/2 < " ° "

present problem. However, from Eq. 7-14 h-(

(7-37)
fo A(t) + Ph(t). A(t) L-t

E 2
7-3.3.1 METHOD 1. TOWER WITH BASE

RIGIDLY FASTENED TO THE
EARTH Case 2. =0. This is

Fig. 7-4 applies and Eqs. 7-19, 7-20, and 2 (7-38)
7-21 hold in this problem. Substitution into 34 (-8

',q. 6-108 yields Eq. 7-38 along with Eq. 7-36 is a system of

three equations in h, A, and p and solving for
tl=Xlxl +X2 l2 3QL- " -Xo(A +p]h) h and A yields

2 31 /3

(7-39)
The equations for XI and ?X are just as in thze 13
preceding work, so again, A( = 1 J-

The design variables are chosen by Eqs.

7-37 and 7-39, depending on which makes 11
largest. The problem with diffe:ential equa-
lions, Eq. 7-20, and boundary conditions, Eq.

Since h plays the role of ul and A the role of 7-21, is now treated by the shooting tech-
u2, Eq. 6-122 is: nique of par. 6-5. Numerical results are given

in Table 7-3(C).
al + 2 3Q(L - t) 4
Bh 2F4h 3  7-3.3.2 METHOD 2. TOWER WITH BASE

PINNED TO EARTH AND WITH
all No + 6 3Q(L _ t)2 +'.t2 h 2 =0. TOP SUPPORTED BY GUY -IMES

TA4EAh 3T
Fig. 7-6 applies and Eqs. 7-31 arnd 7-32

(7-36) hold for this probiem. Substituting into Eq.
6-108 yeilds

As before, two cases must be considered: llX~x2+X [3Q(t -L) I
Case I. 0 < 0. This implies p = 0. From 4 J

Ell. 7-36, it is clear that 0 -- 0 implies t2 = 0 2
which contradicts Theorem 6-7. Therefore, tt

7-14
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The equaticns for-?A, and X2 are just as in.(31)11- :1
the preceding case, so again h(t) 131 0

(7-43) * 

A(t)
X2 =t(L - t)

The design variables are chosen as in Eqs.
Eqs. -122 for the design variables are 7.41 or 7-43, depending on which makes H

largest. The problem with differential equa-
=-f 3QL+ t ins and boundary conditions, Eq. 7-20, is

h 2EMh2 now solved by the shooting technique. Nu-
4 nerical results are given in Table 7-3(C).

+t 4 Ah =O

aH = + 3Qt(L - 1)2 (7-40) 7-3.4 DISCUSSION OF RESULTS
dA 4EA 2h 2

+ 4IA2 h= 2  For both types of tower uonsidered (simply

3" h= 0. supported and towers with top supported by
guy lines), the variables A aPa h could be

As bcfore, two cases must be considered: fixed at constant values, large enough that
deflection requirements are met. For a given

Case 1. 0 < 0. This implies i = 0. configuration of the tower, there is one pair
of constant values A and h which yield a

From Eq. 7-40, it is clear that ifX0 = 0, then tower at laast as light as any othew combina-
t = 0, and Xt = X2 = 0. This contradicts the tion of constant A and h. For both types of
thenrem, so X0 -# 0 and it is pcrmissible to tower, finding these values is a matter of
take X0 = I. The system is then a set of two simple algebra. Results for both towers are
equations for h and A which yields given in Table 7-3(C), referred to as towers

with no design variables. With A held constant

h(t) =3t.Q t114 (L- 1)1/2  and h(t) treated as a dcsign variable, the
V-FE / I problem can be solved for several different
t) II QN114 (7-41) values of A for both types of tower. Sum-

t)t4 (L - to 12 Mares of these solutions are given in TableA M7-3(A) and Table 7-3(B). If the tower weights
are then plotted as a function of fixed values
of A, a minimum, or best, weight can be found
(Tauic 7-3(C)). These optimum towers show a

Case 2. = 0. This is reduction in weight over the no design vari-
able case of 13.5% and 13% for the simply

A12 =1o. (7-42) supp( rted and guy-line supported towers,
respectively. Results for solutions of the

Eq. 7-42 aiong with Eq. 740 is a system of problem when both .-k) and (t) are treated
thiee equations for h, A,and p. Eliminating p as design variables are also given in Table
and snIving for h and A yields 7-3(C). These r!present reductions in weight,

7-15

Downloaded from http://www.everyspec.com



AMCP 706-192

over *he case where only the spacing h(t) is mazuinium deflection at a given point could be
allowed to vary, of 6.1% and 6.7% for tha among these.
simply supportwd and guy-line supported
towers, respectively. Similurly, these towers Note that Figs. 7-5 and 7-6 are not scale
represent respective reductions in weight over drawings of the towers, but are representative
the completely uniform (no design variables) of te general shape of the respective towers,
tower of 18.8% and 19%. as viewed on one face. Sample profiles of the

foir possible structures aie presented in Table
7-3(A), (B), and (C).

All four configurations of the struct-re
described in the preceding subp" dgraphs have 74MINIMUM WEIGHT DESIGN OF
been successfully pre.scribe r : digital com- BEAMS WITH INEQUALITY CON-
puter approach. . iBM 360-65 Computer STRAINTS ON STRESS AND DEFLEC-
was used and the programs employed Runge- T!Oh
Kutta integration with the Newton's Method
desc-ibed in the text. Convergence depended The pNblems treated thus far in this
on getting a good starting value for the chapter have only design variable inequality - -.

multiplier t. This was made more difficult by constraints. in engineering design one often
the fact that t has no physical significance so encounters problems in which it is required
that, nsequently, !ngineering intuition was that the state of the system satisfies inequal-
no help. To find a sufficiently close starting ity constraints. As seen in Chapter 6, state
value for , (i.e., a value for which the error is variable constrints are more tedious to treat
of order two or less) several different values and have feitures not encountered in prob-
of t were investigated, each increasing frow lems without state constraints. t class ot
the previous value by a factor 3f 10, and the beam design problems including state va'iable
t'rst value very close to zero. Once a starting constraints is presented in this paragraph to
value that would allow Newton's Method illustrate some of th.: features and difficulties
iterate effectively was found, t.onvergence that can arise in this difficult class of prob-
occurred in ten or less iterations, taking less lems. ahile the prlems solved are of limited

lems. Whil tinte of.0m sompute aree ofhimts
than two minutes of computer time. This practical value, they do illustrate typical
time could be reduced with increased sophisti- features that can arise in state variable con-
cation of the computer program. strained problems

Other optimal design problems can be 7.4.1 STATEMENT OF THE PROBLEM
approached with the method of this para-
graph. Also differcnt parameters could be Beams which are loaded in , ieral way
treated as variables. For instance, several (such as in Fig. 7-8) are con, cred in this
materials of ;lifferent densities and stiffness paragraph. The cross sections of the beams are
characteristics could be used in the same assumed to depend on i. vector parameter u(t)
stri cture. and th( choice could be left as a = 111 (t), u2 (t).. 1,n()1 and to be sym-
design parameter rhe loading could be a metric with respect to vertical and horizontal
function of the h~ight above the ground axes. The vertical axis of :ymmetry is as-
rather than be ,ortant. Other restrictions sumed to lie in the plune of loading The
might also be imposed, inaximum width or beams are made of a homogencoiis, isotropic,
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P where d is the distance above the neutral axis
P of the cross section.

102O . For each t, let d, [tu(t),MQt),V(t)I, i 10N
F R~.and 2. be the distances from the neutral axis
Xwhere - '

Figure 7-8. Beam Loaded in a Geieral Way p( L

lnearly elastic material with Young's modulus + 1JM(di)] E. Small deflection, elementary beam theory 2 2 t
is used throughout this paragraph. Also, the '12

effect of the-weight of the beam ons deflection +4 2(~ 2 ~ ,())
is neglected. + 2tb[dII )

Since, for a particular beam, the cross an
section is determined by u(t),

4(t) =Afu(t)J (cross-sectional area), (t 2 1()
~1/2

(7-44) + (~Q td(~'
1(i)b [ t~d 2(tVl

1(t INOt) I (moment of inertia),
respectively, are the maximnum principal

(7-45) stresses that occur in the cross section at t.
The values d, and d2 may be detrniined by

b(t,d) =blu(t),dI (width of cross section the methods of ordinary calculus, for each 2,
at d),

The problem is to determine u(t) so that
(7-46) the beam, subjected to a given loading,

contains as little material as possible and still
Q(t~d) Qfu(t),dI (first moment of area satisfies the fallowing conditions:

above d, about the
neutral axis), 1. Principal normal stress is les then or

equal to some allowable normal stress
(7-4'?) Umax*

2. Principal shear stress is less thuan or
and equal to some allowable shear stress

Tmax,
CWt C[u()l (half-depth of beam),

3. Stiffness is bounded away from zero
(7-48) (otherwise an infinitesimal change in
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load can cause the deflection to be where q(t) is idistributed load;
discontinuous).

g3[x)(O), x()(T)] = 0, s = 1, .... B, i 3;
4. Beam deflection at each point is

bounded by two giveli functions X1(t) (7-51)
and X2(t), i.e., X,(t) < x(t) < X2 (t)
with X,(1 ) < X2 (t). ap(t) ' ax (7-52)

In structural design problems, it is fre- for all t in (0,7), where M(t) is oer uding
quently sufficient to require only that the moment;
maximum flexural stress be less than max
and the maximum direct shear stress be less rp(t).< rax (7-53)
than rmax " These conditions are considerably
easier to enforce than the conditions on for 11 t in (0,7) where V(t) is sh, ar;
maximum principal stress.

I [u(t)I > 1o , (7-54)
If the beam is subjected to several loadings,

then the problem is more tedious but is no where 1o is a constant greater than zero; and
more difficult mathematically. Corresponding for all t in (0,7),
to each loading there is a a deflection curve,
bending stress, and shear stress that must X1 W e X(t) '< X2 (). (1.55)
satisfy the stated conditions.

It is assumed that the functions appearirg
Further, since the beams are made of above have the following properties:

homogeneous mterial, the weight of a beam
will be minimum if and only if its volume is i. q has a piecewise continuous derivative
minimum. Therefore, in the following the in (0,7).
quantity to be minimized will he volume.

2. A, I. C, and Q are piecewise twice
The given problem is now stated mathe- continuously differentiable.

matically: A vector function u(t) is sought
which causes the functional 3. X, and X2 have continuous second

derivatives in (0,7).
J A u(t)1dt (7-49) A solution is suught with the following

0 properties:

to be a minimum subiect to the following u (t) 1 ._m, are piecewise continu-
conditions: I

ous in (0.7).

d" EIM01 dld2x q(t) ( 2. x(t) is piecewise four times continuous-
dt2  7 1 ly differentiable in (0.7).

at all but a finite number of points in (0, 7), In case on'y maximum bending stres, aid

7-18

Downloaded from http://www.everyspec.com



AMCP 706-19'

maximum direct shear stress are lo be In the statically determinate case, the

bounded by orx and rr,ax, respectively, differential equation, Eq. 7-50, and the
corstraints, Eqs. 7-52 and 1-53, are replaced boundary conditions, Eq. 7-51, reduce to
by

dx M(t) (7-58)
lIM(t)l C[u(t)] dt2  EIMu) 8

(0 u(t)] x  (7-56)

and
and

I V(t)IQ [u(t),d3(t),Ir,'l-1 0u()M uMt)dW t ' Max (75)s = 1, 2. (7-59)

for all t in (0,T) where 43(t) = d3 [tu(t), The boundary-value r.roblem, Eqs. 7-58
M(t), V(t)] is the distance from the neutral and 7-59, is equivalent to a boundary-value
axis where the absolute value of the direct problem with a system of first-order equa-
shear stress is largest. The distance d3(t) may tions. The new problem may be written as
be determined by the methods of ordinary
calculus. dx1  (7-60)

In the case of beam design with multiple
loading requirements, there is still just one dx2 - M(t)
design variable u(t). However, c rresponding at E(u)(
to each loading there is an additional state
variable (deflection) that must satisfy condi- and
tions identical in form to Eqs. 7-50 through
7-55. The problem is to determine u(t) so that g9 IXI (0),x 2 (0),x) (T),x 2 (T)] 0,
the functional, Eq. 7-49, is minimam subject
to the condition that Eqs. 7-50 through 7-55 s = 1, 2 (7-62)
are satisfied for each loading.

where x, is defined to be r In terms of this
notation, Eq. 7-57 1 :comes

7.4.2 NECESSARY CONDITIONS FOR THEBA DEINPOLMX I (t) < x I (t) < "-2 (t).BEAM DESIGN PROBLEM X 0. 1 ( 0

The treatment which fo lows applies only It is now ciar that the beam design
to statically determinate beams, i.e., beams problem is cont,;ne, I ia the class of problems
loaded in such a w:ay that reactions at all to which par. 6.4 applies. The quantities
supports (and hence also shear and bending appearing in par. 6-4 will now be identified
moment) are determined completely by the with the physical quantities associated witlh
conditions for equilibrium of the beam. beam so that necessary conditiors for the
Changes %n formulation of the problem which beam design problem may be stated.
are necessary to consider statically indeter-
minate problems will be indicated below. Conditions, Eqs -1-52, 7-53, anJ 7-5A,

7-19

Downloaded from http://www.everyspec.com



AMCP 706-192

correspond to Eqs. 6-101; Eq. 7-55 corre- 3 A 1(u) < 0
sponds to two rstrictions of the type ex-
pressed by Eq. 6-132. The differential equa- =Yt(t) - Y2 () ,, 0
tions, Eqs. 7-60 and 7-61, correspond to Eqs.
6-97, where 0, Y(t) -Y 1 (t) 0

.t1= X2 (7-63) ( 44, 04, < 0 '-
4(6 (7-66)"

2 M (t) (7-64)4 .... (6

and in Eq. 6-96 and

.fo =A(u). (7-65) ( 05 < 0

The ends of the beam are located at the 05,2 M (7-67)
known points t = 0 and t = T. Therefore, t o  I + X1 (1), 05 0
and ti in the general variational problem are
known. Also, boundary conditions wid Since the only explicit dependence of Eqs.
gencrally be separated; i.e., some conditions 7-52, 7-53, 7-54, 7-63, 7-64, and 7-65 on t is
will be given at 0 and others at T. through M(t) and V(t), the points of discon-

tinuity of functions (t/ Pi par. 6-4) are
The state variable constraints, Eq. 7-f 5, are denoted w., including points o; discontinuity

of second-order since of 41(t) or V(t); i.e., the w, correspond to
points of application of concentrated loads or

d moments. Therefore, the o, are known.•t Vb-2 X2 _,) = X ' = X2 - X2
At each point I, tne deflection curve is

is not an explicit function of u, but tangent to one of the curves

(-1 2 - X t ) A X, = X: (1) (7-68)

or
-X'11 

1( t)-- t) + -~
El(V) X I = ' (2) (7-69)

is an explicit function of u. The same argu- and there is a neighborhood of t- in which
ment holds for x1 - X 0. this i, the only point of tangency.

In terms of the notation of Eq. 6-101. At each t6, the deflection curve becomes
tangent to one of the curves, Eqs. 7-68 or

03 = aP () - Omax 4 0 7-69. Further, there is - neighborhood of t
in which Eq. 7-55 is a strict inequality to the

02 = 7p (t) - rmax 4 0 left of t , and Eq. 7-68 or Eq 7-69 holds to
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the right of r. At the corresponding point t, dx.
the deflection curve leaves Eq. 7-68 or Eq. =(-71)
7-69. Eq. 7-68 or Eq. 7-69 then holds in (C.,
t+), Pnd Eq. 7-55 is again a strict inequality and
immediately to the right of t,.

" 2 =_ MO (7-72) '" "

If x1 (0) or xj(T) is not fixed by the dt El(u)
boundary conditions of Eq. 7-62, then one
part of Eq. 7-55 may be an equality at 0 or T. at all but a finite number of points in (0,7);
In this case O" of Eqs. 7-66 and 7-67 need not
be zero. Xo > 0

The t* are points whe-e one or moe of X, =t
Eqs. 7-52, 7-53, and 7-54 changes from strict
inequality Lo equality. Condition, Eq. 6-105, X2 = l -tit
is assumed to hold at these points.

and

According to Eqs. 6-106, 6-108o+ + > 0

JMti l for all t in (0,T), where tj and t2 may haveH [t=-X,,A (u)+ N x2- X2ITJ different values in subintervals of (0.7) which
are bounded by the t, and C,

-P) 01 - P22 - 3A3

1P4'04,2 - S 5.2 -X 0 ----- ~- -j3-

-BX 7Sg + 2;'YB a( t o

7-0)- P 0,; + 1423 + P3 0- (7-73)
(7-70) [A~~2 1 3

G =rO. 4 ,L 04 kt) + 71,4.6 0(t) + P4 04,2 +P S 05,21 = 0, = .i,

+r.s.s (t) + . t) p,= ,= ,2. 3, (7-74)

+ o.4,r 0 4,(',) + T,.4., 04 0 and

+ ,ro.s. (1) + r7 $ ( r) 44,2 AS 05,2 = 0 (7-75)

Tcorem 6-9 and Eq. 7-70 yield 'Theorem at all but a f6,ute nuinLer of pon~s in (0,T).
7-1.

0) C -- X+ O) ?,. - 0) = O,

Theorem 7-1 Necessary conditions fcr the
minimum weight beam problem are i = I, 2 (7-76)
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S(t"  )- ? (t; -0)- T'o, the boundary conditionsg. = 0, s = 1, 2, nimu.

be satisfied along with the conditions
+Tros = 0(7-77)+ o s 02 a g s

- 0() 1YS O iI,2 (7-85)X2 (t+ 0) - X2 1(t.- 0)-Tl4r Sl 'g)

+ 7, Sr = 0 (7-78) and

X (1t -+ 0) - "\ (t " 0 ) - 7 04 6 2 ag,
XI(T S= I y -S 1, 2; (7-86)

+-056 = 0 (7-79)

and the Weierstrass conditionX2 (t6" + 0) - X? US - 0) - '46

+T-sS =0 (7-8O) ii(xi U, Ni, ) 4 JH(XI u, , , )

1( +-must be satisfied for each in (0,7), where U
+ 0) - w ) + y 0 is any function which along with x, and x2

satisfies Eqs. 7-52, 7-53, 7-54, 7-55, 7-60,l(tr + 0) - f(tr - 0) - To.. X2 (t,) 7-61, and 7-62 with u replaced by U. The

- -T X2 (t) + Tsr X' (t) statement of Theorem 7-1 is now complete.

+ 7SXr 0 If there is only a scalar control variable
x'tX) 0 (7-81) u(t), then the condition of Eq. 6-105 will be
t 0) - H - 0)- 4 x violated at points t* which are intersections

of intervals in which Eq. 7-52, 7-53, or 7-54 is
- 6 -() + 1r6 ( an equality. With an additional hypothesis,

S4" G Xhowever, the conclusions of Theorem - I are

+ r7S6 X' (t6) = 0 (7-82) still valid.

l(t. + o) - /(t - 0) = 0 At a point "* co, it is assumed that $ =
72 = 0, where , > Oand 2 > 0 are any

and two of the constraints of Eqs. 7-5 2, 7-53, and
7-54. If 4 ,s defined as ' = rmin (s1 ,4 2 ), then

ti(t+ + 0) - i(t+ - 0) = 0 '> 0 replaces the conditions i I > 0 and 02
0. It is assumed that 301/Iu and O42 /0u

foi all ot, r, 6, and r/;at each of the pointsS= are not zero at t* The new constraint now
tr aiid tF, either satisfies the conditions of Eq. 6-105.

0(S) = , I (I) = 0 (7-83) If Theorem 6-8 ki applied to the newv
formulation of the problem, the result is

or identical to Theoiem 7-1 wili the exception
of Eqs. 7-73, 7-74, and 7-70. However, the

02 (S)= 02 (S) =0, (7-84) new 'omditons on u are identical to those
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implied by Eqs. 7-73, 7-74, and 7, 76. The finite number of unknown constants, or
roles played by p, and g2 in Theorem 7-1
would simply be combined in a new variable 2. The beam is supported in such a way
p. This result may be stated as Corollary 7-1. that an infinite number of constants are

required to specify the reactions (e.g., a beam
Corollary 7-1: Let there be a scalar design on an elastic foundation).

'ariable u(t) and assume that any two of the
inequality constraints, Eqs. 7-52, 7-53, and In the first case, the unknown constants
7-54 arc equalities at t*. If the first partial appear in the expressions for M and V. By
derivatives of these two constraint functions defining new state variables, x, with I > 3, to
with respect to u are not zero at t*, then be these paiameters, the following differential
Theorem 7-1 holds. equations must be satisfied:

One further result may be easily obtained. dx
If a j lau and 3a0/au are nonzero at t* and d , 3.
are of the same sign, then u is continuous at
t*. In this way, statically indeterminate prob-

lems of the first type are reduced to varia-
To prove this, it is supposed first that tional problems to which Theorem 6-8 ap-

alau> 0 and u(t* + 0) =u(t* -0)- e,e plies.
> 0. Taylor's theorem (Ref. 16, p. 56) implies

For statically indeterminate problems of
P1 t*.u(t* + 0)) = [ [t* - 0)) the se,-ond type, however, morc basic changes

in formulation must be made. The fourth-
e [t*u(t"  - 0) - 0el order differential equation, Eq. 7-50 must be

au -treated since q(t) may be q[tx(t),x2()J.
The fourth-order equation is equivalent to the

%vhere 0 < 0 < 1. But, a, /au > 0 and e > 0, first-order system
so

dx1
0=0,[t*u+0)l < 1 [t*'.u(t*-0)l =0 X2- x2

which contradicts the assumption e > 0. An dx2  X3
identical argument holds in the remaining dt El()
cases, sou[t*.u(t - 0) = 0.

dX3
7-4.3 STATIC;ALLY INDETERMINATE dt X4

PRO'B3LEMS
and

A statically indeterminate yean may be
classified as one of *.,0o types: dx4

- q(tx.x 2 )
I. The beam is supported in such a way

that all reactions are determined to within a where x, = x, x 3  At. and x 4 = V. Theorem
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6-8 now applies to statically indeterminate can be eliminated and the t," deter-
problems of the second type. mined as functions of the parameters t, and

t2, Note that /I and t2 to the left oft- need
7-4.4 SOLUTION OF THE EQUATIONS OF not equal t, and t2 to the right. In exactly

THEOREM 7-1 the same "Way, the t- are determined by Eqs.
7-79, 7-80, and 7-82. Continuity of R at t:

The Lagrange multipliers, Wo, X1, X2, are and t, determiaies the t" and t as functions
rot uniquely determined by Theorem 7-1. oft, and 62*
However, if the solt tion, x(t) and u(t), is
normal (Ref. 17, p. 214) for the problem, it is The equations previously enumerated
permissible to put ,o = 1. Theorem 7-1 then determine u,, t', t, t ,and t' as unctions of
determines the remaining X, uniquely. Abnor. t, t1, and t2. The problem would be solved
mal solutions are ; eculiar in that there may by direct integration of Eqs. '; 71 and 7-72
be no other functions, x(t) and u(t), near and application of g = 2= 0 it it and t2
them which satisfy the conditions, Eqs. 7-50 were known.
through 7-55. The procedure adopted in this
subparagraph is to assume there is a normal The conditions which determ ie t, and t2
solution and then attempt to solve for it. If are Eqs. 7-83, 7-84, 7-85, and 7-86. Eqs. 7-85
this fails, there is either no solution or the and 7-86 after elimination of 'i and Y2, yield
solution is abnormal, in which case a special two equations in tI and t2 If there are w of
analysi: is required. In the following, Xo will the points t; and t, they subdivide (0,7) into
be taken as 1. w + I subintervals. Since these are the only

possible points of discontinuity of X, and X2 , "
In order to determine u(t), consider any there are just w + I pairs, t, and t2, which

interval in which z 0 < z < 4, of the represent 2w + 2 unknown. Thus, there are
inequalities, Eqs. 7-52 through 7-55, are 2w + 2 equations from which the 2w + 2
equalities and the remaining 4 - z are strict values of tI and t2 may be determined. If this
inequalities. Eqs. 7-74 and 7-75 show that the is not the case, the problem has no solution or
4 -- z multipliers corresponding to the 4 - z the solution is abnormal.
strict inequalities are zero. Then, Eq. 7-73 is a
system of mn equations in the tit functions It is assumed now that u(t) and points 1;
ulO) and the z nonzero multipliers. Further, and tC are known functions -f t, and t2 A
the : equalities of Eqs. 7-52 through 7-55 numerical method is developed which can be
yi-!d z equations in the u,(t). Thus, there are used to ,olve the equations given above for t,
m + z equations which are to determine the ml and t2. A numerical solution is required since,
+ z unknowns. The nonzero u,(I) are first even for very simple problems, the function
eliminated and the u,(t) are then found as f 2 (t,tI t2) is far too complicated to integrate
functions of t and the parameters tI and 6 . in closed form.

At points t. one part of Eq. 7-55 is an Expressions, Eqs. 7-85 and 7-86 generaily
equality, say the ith part V(= I or 2). In this yield two easy relations between t, and t.
case, only ro.l+ 3., and '1.1,3, r can possibly Eqs. 7-83 and 7-84, however, require succes-
be nonzero. Eqs. 7-77, 7-78, and 7-81 are sive integraion Cff'(tt 1 ,t2 ). To complicate
three equations from which r0.1+3, and matters, some limits of integration arc the
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points t .and t;, which arethemselves func- First, the equations of Theorem. 7-1 are

tions of It and 6- Therefore, Eqs. 7-83.anc" written out in detail and simplified for the
7-84 form a system of nonlinear, finite case of beam with rectangular cross section of
(nondifferential) equations in el and . vaiable depth. in pars. 7-4.5.3, 7-4.5.2, and

7-4.5.3, three specific examples are con-
A Generalized New~fori Method (Ref. 18, p. sidered. These examples range -from an easy

220) is-used to solve this set of equations. A problem in par. 7-4.5.1 to a rather complex
generalization of talbniz' Rule is used to one in par. 7-4.5.3.
compute the- req'jred derivative of integrals

ith-variable-limits 0f-ititegraftion" his rule is The cross section considered here is shown
(Ref.-16, p. 80). in Fig. 7-9. For this particular cross section, if

d g2(1)
di j gz) f2 (t,r )dt

192 () af2 (tr) dt
-g () -

1fg(),jdg2(r) ,-b4

f2 12 W 71dT

d,()Figure 7-9. Rectangular Cros Section
- 2 Ig I(r),r] dI-

where af2(t,r)fr is piecewise continuous, and Tmx > 1/2 max , Eqs. 7-52 and 7-53 are
we satisfied if and only if Eqs. 7-56 and 7-57 are
g and 92 are differentiable. It is assumed, satisfied. This result may be proved by ex-
also, that f2 and Bf2Iar are cotinuous at t pressing oP and r P as functions of d and
g(r) and g2(). applying methods of ordinary calculus. The

restriction rmax ; 1/(2 a vi%) is necessary,
since at the extreme fiber of the beam, the

7-4.5 BEAMS WITH RECTANGULAR principal shear stress is half the principal
CROSS SECTION OF VARIABLE normal stress. This relation between 7max and
DEPTH 0 ma is no restriction for design of metallic

beams. Yield stresses for steel and otherThree examples are onsiderd in this common metals satisfy this condition.

subparagraph. In each example, the beam

cross section is rectangular with fixed width In this case, there is only one design
and variable depth. Also, the constraint, Eq. variable h(t); Eqs. 7-44 through 7-48 are
7-55, is taken as

l(t) =  h 3 (t) (7-89)
- A - x(: < A (7-88) 12

where A > 0 is a constant. A \t) = bh(t) (7-90)
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b(t)b (7-91) 'i any iffirWa1 wheiV' Eq. 7-54' is%-in

b th2 (t) (7-92) 7h3 -)8

and
30

C~)= t.(7-93) h)= 14 1
2~) (LLO (7-95)

M(t) and V(t) 3re assumed to be known,
piecewise twice continuously differentiable In any interval, (t, it', where .qw,-W-i-s
functions of-t-whose discontinuities occur at an equality, direct differentiation and use of
points t = wo. Eqs. 7-71 and 7-72 yield

Eqs. 7-89 through 7-93 and Eq. 7-70 along
with Xo = 1, yield 0 12M) 7-96)"" 0= - .r(-96

-FI12M(t)]j
L Ebj(";/(7-94)

(7-94)In order for Eq. 7-96 to be satisfied, it is
necessary tlat M(t) = 0 (hence also V(t) = 0

The procedure outlined is now used to q(t)) must be identically satisfied in (r. 0.
determine h(t). In any interval wher Eq 7-56 If this is the case, h(t) is gaven by Eq. 7-95.
is an equality,

61M(t)i In any .nterval where Eqs. 7-56, 7-57, 7-54,
. Q) and 7-88 are all strict inequalities, Eqs. 7-84

and 7-75 show that pi(t) 0, = 1 .... 5. Eq.
so 7-73 then is

h~~t)= I~61M(t)i~ t  3Mt
•h-b) ,t b a_ b-+ X(t)0 (7-97)

' L a x b

In any interval where Eq. 7-57 is an so
equality,

31 VQ) 1 hWt F 2 (t)

2bh(t)
It is worthwhile to note th!at in order for

so Eq. 7-97 to hold the product X2lt)AI(t) must
be positive. That is, X2(t) and M(t) must have

h(t) =3(t) the same algebraic sign throughout any inter-
2braax val in which Eq. 7-97 holds.
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31V(t)l " - C ,\., 3E2)/
-2 /3

if Ir -ma x

.4b2\(1/2 q3
7r-.....,, ' ma'fol=

and thefunction sgn ( ')is defified-by tht;

q sgn(q) q

if3X2Q, MQ)] 1 , jfkk m foralq.

1 <0mx,,., Equatimns which determine the special
-andp t t t and mayiuowebofoud.n

the problem at hand, X, (t) and X2 (t) are
'The Weierstrass condition shows that the constant, so their derivatives are zero. Eq.
largest-of the expressi6ns in Eq. 7-98,is the 7-81 is then
propier value f h(t). fi; - O) = -; + 0) (7-100)

Eq. 7-98 in Eq. 7-64 yields
Experience has shown that on both ides of

C1 MQ) I VW1 if I I x t;, Eqs. 7-56, 7-57, and 7-54 are strict
inequalities. Assuming this is this is the case,

- IEqs. 7-94 and 1-98 together wit!' Eq. 7-83 or
-2 'I if 01 =t , 7-84 may be used to simplify Eq. 7-100. The

MAif Io = onx resuat is
xo) i--I(t; - o)M(t; - 0)] 1/4

A t) =  - -- o if I = 1 [o2 t

O (7-99) [X (t; + O)M(t; + 0)] 114 (7-101)

-C3 IX 2 ()r
1/4 if Iri max,

( Eq. 7-98 and 1 > 0 imply M(t;) 0 0, so if
x IM(t)l'14  j 1 < Omax,  M(t) is continuous at t;, then Eq. 7-101

x sgn [M(t)], and I> eo,

),2(t; - 0) = X2(t; + 0). (7-102)

Points of discontinuity of M(t) must be
where checked in Eq. 7-101 as possible t;.

x32br3  Eq. 7-96 shows that points t+ and t can
C3 =- ___ 6 a

9E occur only in intervals where M(t) (hence also
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"V(t).ahd q(t)) is identically zero. Since -this 3-
situation is not commbn in p~ractical pr6b- -b IV(Q)I
lems, such'intervals will not be discussed here.

C1 20(QM(QI V(Q) I3
According to Theorem 7-1, the points t; 36 14 

are deteminedby the condition -bx2()M(Q)I/

11(1j o) h(t + 0) (7.103) ,14

By direct computation it is seen that the Using the definition of C3 in this equationand manipulating tha result yields,..
partial derivatives m ith respect to h of the left
sides of

j3V(Q) 14  4 44 I/C 14-

lrI-max 0 X2(Q)M(Q) 9E /

I o I - ma'. 0
anI V(Q)I1] 314 64b2 . ax =4.and ×L-,'-T''E--' '

LX2QMQJ 9E

I, - I< 0 (7-105) .
By putting

are all negative at points where M(t) :/ 0 : r V(Q) l 1 114
V(t). The result stated just below Corollary
7-1 then shows that points of intersection of LX2 (O)M(Q) J
intervals in which one or more of the above
inequalities is an equality may be determined and
by the condition ( 64b'r4. a /4

h(t - 0) = h(t* + 0) . (7-104)
Eq. 7-105 becomE.

If Eq. 7-104 is used to determine t, then 3P4 - 4CP + C4 =0.
points wa must be checked in Eq. 7-1C3 as
possible t. The roots of this equation ir P are C. C. C(I +

V/2), and C(1 - V21), where i2 = - 1. The
Let Q :0 w. be defined to be a point fourth powers of the last two roots are not

of intersection of two intervals such that IH = real, so the only real solution of Eq. 7-103 is
max on one side of t '- Q and Eqs. 7-56, 64br 4

7-57, 7-54, and 7-88 are strict inequalities on I V(Q)14 max X2 (Q)M().
the other. Point Q is to be determined by Eq. 9E
7-103. Due to continuity at t Q, Eq. 7-103
may be written as (7-106)
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Siilarly, S t##:iw' ',is defiuiedtoba *eeA<, c,anid
.;oint. of.~ite cttn.6of;tw6, interyais such wee~.
that', IoIf~4"- '4e siEqs. Stgnd)E1s.
3; '7', anc. i- i ar 6tic',qu1 4001

'iiies brijtbe -6thir..Jiistas.ab,ve,.Eq. 7-103 U a a
rcduces to ' 8f)

.3',- 46P +4 g0 ga i(a). Dot v

where,

dcc
and,

/f4 +1 f07,c0diq 492 0

(7-109)

Therfore th onl rel~soutin ofEq. Leibniz' Rule, Eq. 7-87, is used repeatedly to
7-103 at,; S is

obtain Eq. -109.2
X2 (S) - (7-107)

E 7.4.5.1 A PROBLEM WHICH CAN BE
SOLVED ANALYTICALLY

In. deriving Eqs. 7-106 and 7-107, it was
assumed that Q and S were not equal to any As a first example, the cantilever beam of
w.~. The w.' are, therefore, possible choices Fig. 7-10 is considered. This problem is simple
for Q and S and must be checked in E...i nui htaslto a eotie

7-103.analytically.

In particular problems, the following two Boundary conditions for this beam are
identities are used:

X1 (0)X 2 (0) 0- (7-110)J:J f(ti)dv=(C -B) fi)
A JA JfndnA--

+ JA PJ f(tj)dt7dv, (7-08

JB JB o ?d~v 718 Figure 7- 10. Simple Cantilever Beam
7-29

Downloaded from http://www.everyspec.com



.i Y01, T-7

The~bendingmoment and-shbafr are and

MW: l 0 (Ml constant) dX2 -

-f2( W

and
and application of Eq. 7-110 yields

VWr =0.

IIFor simplicity, let 10 > 0 be small enough x2 (t) f2(,)d7 (7-113)
so that Jo0I

(121 6M 41 2 and
\b

X, W f2Qj1)d?7dv. (7-114)If this is, the case thenl 1(t) > 10 for ali t. 0oJ
Further, since r(t) 0,- Eq. 7-98 may be
simplified to The inequality f2(t) < 0 and Eq. 7-113

6M 3/2 implyX 2 < 0 in(W), so there can be no
6M 1 ifil Oax points t;. The only possible point at which

max Eq. 7-88 is an equality is It = T. Since f2(t) <
maxd

hQt) =0, Eq. 7-114 implies x I () -c 0. Therefore, if
114Q) Eq. 7-88 is an equality, it m~ust be x1(T) =6

E2 iflo0l< Um~ax' A. Further, sinre there are no 4", t+ q, or
ca. X and W~2 are continuous and there is

(7-11) only one pair of constants, tj and t2 to be
determined.

Also, Eq. 7-99 becomes It is assumed fist that x (7')> - A. In this
case, Eq. 7-86 implies

j (2bGu3 1/2

T EM 1 IImax ~=
A (W /)l4  and

iflol1< Umax' which in turn implies 1 tj 2 0. Since X
0 throughout (0,7), the second part of Eq.

(7-112) 7-111 cannot occur. Therefore, the bea,ii of
minimum weight is uniform. Eqs. 7-1 12 and

Integration of the differential equations 7-1 14 then yield

2bc1laa 122

7.30=
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-c x is the A MC76f9
s~ulf~f-h 0lepdievvdho xl(T) =(T - t*)4 )14.
t ina4'idcnefit'Alssu6h that

6E2M(71)X

If -the- deflection requirement A does not-4 9
satisfy Eq. 7-115, then it is ncesay that
x1,( '--A. Otherivise, thisariimffeflW6uld v/-34 A(T it_)5/4 +f lid

hold; and ihC'defiection-atT would violate L5' I
Eq. 7-88, Therefore, the additional boundary 2b 3  112 t
condition, 3 ETA (T-*)3

9 3 =X1(7)+ A=0, The right-hand side of this equation may be
simplifed by eliminating, either t, or t*

;mustxbe -satisfied. Tito two const~nts and t~u s 1 q .16 ic osro
~ mst owb fond.have asmuch physlcal significance as t*, it is

eliminated. The conditions x 1(7) -A

The only useful relation given by Eq. 7-86 beo s
is

This implest 2 = t r.so that j

- ( -) t*) .4T 5  (T - )3]

and only ti remai*ns to be founJ. (7-117)

On physical grounds, it is expected that the The deriative of the right side of Eq.
beam should be stiffest near t =0 in order to 7-1wihrseto 'iserat*=Tan

reduce the deflection at T efficiently. Also, poiveveyhrel.TiseashtE.
sine X islarestat 0,thesecnd artof 7-117 has at most one solution. Eq. 7-116

Eq. 7-111 would tend to stiffen the beam te eemns~adtepolmi ovd
there. It is assumed, therefore, that there is

justonepoin t~havig Ia I 0mx onitsAs a numerical example, the beam of Fig.
left and on hvn I a I < max on its rgt q -0 o 7-10, having the following properties, is con-

leftandI aI =am A onitsrigt. E. 7107for sidered:

M =:(2 x ( *). (7-116)T=1in
b =I in.

E.7-1 14 with t =T may be integratedulaX3,0 bi.using Eqs. 7-108 and 7-112 and becomes mx=300lbi.
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E= 10 lb/in.2  q(t) > 0 for all t in (0,7). The load q(t) of this

form, implies V(t) is non-negative at zero and
and decreases monotonically in (0,7). M(t) is zero

at both t = 0 and t = T. Further, on either side
M = 450 in.-lb of the point where MQ) has its (non-negative).Amaximum it is monotone. :
If A > I in., then tha'beam of minimum am t o o

weight is uniform with h = 0.30 in.

For a more meaningful problem, A = 0.5 rTTT,;- .
in. 'is -considered. Eqs. 7-117 and 7-116 yield .__ ___ _____

= 7.7 in. and =j 2.17. The precise shape .1/Y
of the optimal beam is given by Eq. 7-111. By
putting Eqs. 7-111 and 7-90 in Eq. 7-49 aid Figure 712 Simply Supporte I Beam With,: 1, Positive Distributed Lead "
performing the indicated integration, the vol- t..e
ume of the optimal beam is found to be 3.59v:.:_'. Iin? A plot of the profile of the optimzli,

beam may be made by direct sub -titution into rBf:If j d plo of then profil ofd the optimolEq. 7-111. This profile is shown In Fig. 7-11. 1. (tdt #0, then M(t) and V(t) cannotbe zer 0at the same point. There is, therefore,

no danger that the optimal beam will have
h(t) = 0 at any puint. For this reason, the

'0.431 i0.30 . constraint, Eq. 7-54, is not imposed here. (
-I I Since M(O) = M(7) = 0 and V(0) # 0*

,0 7.7 In. 0l . VQt), Iri = rmax is expected near the ends of
Figure 7-11. Cantilever Beam of Minimum Weight the beam. Toward the center of the beam,

M(t) becomes large, so Iul = m ax is expected
there. If the beam requires stiffening, the
additional material can best be used near the

By elementary computation, it is seen that point of maximum deflectioi,. This argument
(h Uniform beun which has x, (10) = - 0.5 indicates that (0,71 should be broken up into
in. and satisfies Eqs. 7-56 and 7-57 is 0.378 subintervals as shown in F-- 7-13.
In. deep; so its volume is 3.17 in? The
designed beam, therefore, has 5.35 less vol- In terms of previous notation, 11, t2, 4,
ume than a uniform beam which will satisfy and ts correspond to the notation t*; and t3
the same stress and deflection requirements. to t;. For certain ranges of A some of the

Ssubintervals shown in Fig. 7-13 will not
7-4.5.2 SIMPLY SUPPORTED BEAM appear.

WITH POSITIVE DISTR;BUTED
LOAD Provided tj and ts separate intervals in

which ITI = Tm x and Jol = am.., they are
The beam considered here is simply sup determined by Eq. 7-104 The peints t2 and

ported (see Fig. 7-12) with piecewise con- t4, when they exist, are dcermined by Eq.
tinu.-usly differentiable distributed load q1"' 7-107. Finally, t 3 is determined by Eq. 7-102.
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-7..

0 t2 t 41 t5

Figure 7-13. SubdivIsion of the Beam With Distributed Lood

The boundary conditions for this' problem Eqc-0 or 3 yed

are

X, (0) 0 7t I t

and Assuming t3 and 14 exist, the equations that

x 1 (7)0.determinc them are

Es. 7-75 and 7-76, therefore, yield M0a tx t (7-120)
El1 and

different values on opposite sides Of t3. To MOO4  (tI2E \'Xr2(

the left of t3,

X() - =In thl.s case, tj and ts are determined by Eq.*4
X20) t X 0 0 7-105. If t2 Or 14 does not exist, then tj or ts

is determined by
so

X20)= ti= (7-118) I 9E t1)~ti

(7-122)
To the right Of t3,

or

j~~l 64b2 T4,ax)

X2() 2 ~ T~)= 2 (I - f). (7-119) X~, (~ T ~)MU5 . (7-123)

The constants j and tj which are intro- It is notcd that Eqs. "1-120 through 7-123
duced in Eqs. 7-118 and 7-119, are now to be can be solved easi~y for r, and t2. but, in
determined, general, not so easily for the t V In the
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development which follows, it will be con-
venient to use Eqs. 7-120 through 7-123 to R2 

= A+(T-t 4) f2 (17t2)dil
solve for 't and 2 as functions of the tr ts

The conditions that are to determine the
unknown t, are xl(t 3) = A and x2:03) = 0. + (T- ts f 2 (7)di,
However, ;or computational reasons, a more
convenient set of equivalent conditions is.

x(0) 0 (7-124), ,

and

+It IZ:i x, (7) =0 (7-125) +f()~d ::

14 t 4 ,

where x1 (t 3) = A and x,(t.) = 0 are used as
initial conditions for integration. + | f2()djdv = 0, (7-27)

Conditions, Eqs. 7-124 and 7-125 may be .' "written exlctya
explicitlyas where P1 and R2 are introduced for nota-

tional purposes.

R, A+ t1  -f2 (7)dl?+ t2 f2 (t?)atj It is assumed now that q(t), b, E, T, a max,
t, and rmax are given. The equations that

determine the t, arc different in four distinct
ranges of the deflection requirement.' These

+t31 f 2 (], '1)d ranges of A are described in the following:

1. Ao denotes the largest deflection that
occurs when the subinterval (12, t4) does not

t, f.V appear, i.e., when the bcam is specified by
_ f2 ())didv only the first two parts of Eq. 7-98.

If A > Ao, then the beam specified by the
- t f' ~ first two parts of Eq. 7-98 is the one of

- f2 (7j)dijdv mininaum weight.

2. For A slightly less than A0 , there exist

points t2 and t4 that are deterimined by Eqs.
- 3| t~ f2(i?,t)dijd = O (7-126) 7-126 and 7-127.

As A decreases, points 12 and t4 move
and toward zero and T, respectively. There is a
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value of A, say A A,, for which either t2 or method of solution will be described for the
14 first coincides with t or Is, respectively. Case 2.
For definiteness, assime t2 I) when A
A1 . An iterative method called Generalized

Newton Method (Ref. 1 8) is used to solve for
3. For A slightly less than A,, points I, t2 and 14. The procedure begins by estimating

and t4 are determined by Eqs. 7-126 and values t2 and t4; and then making a correc-
7-127. t!"n acfording to the formula

As A decreases, points I, and 4 move - "' "R. a)?" -
toward 0 and T, respectively. There is a value t2 1 57 t 4

of A, say A = A2 , for which t4 first coincides a
with t. (7-128)

4. For A < A2 , points t, and ts are -R2 2R
determined by Eqs. 7-126 and 7-127. 1 4 L J a ' L J

This explanation of the behavior of the is where [ 1 denotes matrix inverse, and 72
not the result of a mathematical analysis. It is and T4 are improvements on the estimate.
expected on physical grounds and has been
valid in each case treated. Eqs. 7-102 and 7-107 determine f=

t3(G'3 , 2), = P1(t2), and 2 = (4). By use
The values of AI and A2 could be obtained of tl information, the derivatives in Eq.

analytically. However, their determination 7-128 are computed by the chain rule of
would be of the same order of difficui!ty as differentiation. I or example,
the optimization problem considered in this
paragrr'.ph. - R ,

a:2 R
A, and A2 can be determined by a trial (7-129)

and error scheme. For example, to determine / &R, Rt iet' d
Al, t2 is put equal to tt and Eq. 7-107 + k--"a"]
determines ri. Then, t3 is guessed and E.
7-102 solved for t2. Numerical integration of where
Eqs. 7-60 and 7-61 indicates the correction
that is to be made in t3. When t3 is located V2 - 0) -f 2 (U3 + 0)]
accurately, the resulting deflecting at t3 is A,. If
A similar procedure is lised to determine A2  is lie partial derivative c: Rt with respect to
(t4 is put equal to ts). t2 with all iariebles in R, taken as indepen-

dent,
The solution of Eqs. 7-126 and 7-127 for

the I, differs only in certain details depending aR, t " J(.(,)

on whether the given valve of A is in the d ." j 1.
range described by Cases 2, 3, or 4. The .,
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ta t dad' b = 0.25 in.

and E 107 lb/in. 2

aR1  max = 15,000 lb/in. 2

3t t a~f2 (0 3 -0) .
and

Similai expressions for the remaining deriva-
tives in Eq. 7-128 are derived with the aid of Omax = 30,000 lb/in."
Eq. 7-109.

For this problem, it was fand that
The iterative procedure for determining t2

and t 4 is: A0  = 0.774 in.

Step I. Makean estimate, i2 and t4, A, = 0.728 in. (t2 = t)

Step 2. Solve Eqs. 7-120 and 7-121 for ' and
and 1,

Step 3. Compute, numerically, all the A: = 0.470 in. (t4 = ts ).

integrals in Eqs. 7-127, 7-128, and (
the remaining derivatives corre- As has been noted, the magnitude of the
sponding to Eq. 7.129, deflection requirement A plays a major role in

the outcome of a particular problem. In order
Step 4. Cimpute the right qide of Eq. to emphasize the effect of A on the properties

7-1 28, and of the optimal beam, the numerical Pxan:tle
given was solved for eight different values of

Step 5. With this improved estimate return A. The results are presented in Teble 7-4.
to Step !.

In Table 7-4, the first colu -n coniains the
This rrocedure has been programmed for a values of A considered. The following seven

digital computer. The program was arranged columns give information which, when sub-
in such a way that only Ao, A, A2, M(t), stituted into Eq. 7-98, completely specifies
V(t), and the ph.ysical prvperties of the beam the optimal beam. The next column gives the
need to be specified. Ma.y different loading volume of this optimal beam. Tf..- final two
situations may tus be considered withQ, ut columns give te volume of the lightest beam
altering the program appreciably. of constant depth which satisfies the condi-

tions of the problne a.d the percent saving
As a numerical example, a beam with the ,ealized when the optima! beam is used

following properties is considered: instead of this uniform beam. Dashes nlave
been inserted in the table when the quantity

-(t) = t lb/in. to be tabulated does not exist.
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For each value of A, the iterative procedure and
used to solve the problem reqpfirbd appr3xi- Vtt) =0.
mately 40 see per iteatior on an IBM 1410
Computer. Further, three to six Ittrations In this problem A > T12 is assumed. "
wcre Eufficient to obtain convergence of the
iesldur W. sever, decimial places, so computing Since M(t) is never zero, the requirement
time wais not excessive. Icl 0 ax implies ht * 0 for all t. I =0 is

ipos~ible, so the requirement I > 10 is not
It is showvn (Ref. 18, p. 222) that if the - enforced.-

sequenc', of apptoxlxnations constructed by
the Ge,,ci-aized'Nevwton,4Lfgorithm converges, Eqs. 7-98 and 7-99 in this case i~re
then it must converge quadratic~Jly, i.e., the
error at the n + 1s. step is ?*!oportional to the ~\/
square of the error at the nt'ttep. This rapid bo )if lot amax
convergence was observed in the numerical m
cals. at.ins and explains why anly three to F 710
s.x iterations wjere required. ' [ b2  j ifto~oma

7-4.5.3 A PROBLEM OF A MORE and
GENERAL TYPE -C2M -1/2

'Te ))eamn considered here is loaded as f2 Wg(~t] if=10m:
ihown i' ig. 7-14. C X()-,M/

XsrnlMNO)I, if 101 < Umax'

2AI A For a given deflection requirement A there
( ' are tee possibilities concerning attainment

of the traxium deflection Either
Figure 7-14. Beam Wiffr an Inflection Point

1. Ix(t)l < A for allt,

2. 1.%(01= A fcr just one 1, or

Boundary conditions are, as in the simply 3. 1,ct)l = A for two distinct t.
supported case,

The third possibility occurs here because M(t)
X, (0) = X, (T) =3. changes sign. In Case 1, Ju = max through-

out the beam dctermines ki(f). The Case 2
For the given loading, may be treated in exactly the same way as the

problem in the preccding paragraph. Case 3 is( A!. if 0 4 '<A cnnsidered in detail here.

I- Al. if A <t< T Assumne there are two points at which
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lxQ) A; the beam w11__not arobably be 3 ( EMx)
subdivided as shown in rg. 715. 6= + T(134)

t7 (7-135)
V a V +T

iG i7 it!ii'I f1  2 ~ 3  A*6tg and

Figure7-15, Subdivision of the Beam t=T I- -EM. (7-136)

Points t and t7, where Case 3 occurs, are In obtaining the expressions for t3 and 16,

t, so they are determined by Eq. 7-102. use was made of the fact that t3 < A : t.
Further, xI(t 2 ) = A nd A I!Q) - A. Points The result, X2(t)M(t) > 0, from Eqs. 7-97
t, 3t, t6, and t& are t* and are determined by and 7-98 shows that this is true. To prove
Eq. 7-107. this, assume for definiteness t3a > A. S'nce

M() changes sign at A and X2 (t) is con-
In this problem, t2 and t7 may be points of tinuous there, X,2(A) = 0. But, since )L2(t) is

discontinuity of X, and X2. The conditions, continuous near A, it is arbitrarily near zet"
Eqs. 7-85 and 7-86 On X2 are X2 (0) X2 (T) = in a neighborhood of A. Eq. 7-130 then shows
0. Therefore, ?2 may be written as that (t) is arbitrarily near zero in a neighbor-

hood of A and this violates the condition lul
4 i x . Likewise,A '.

r' t X if t< 12 are
X2 (t) =, ' -2' t , f t2 < t < f7 Conditions that determine the ' are"- \

t4 - ) if t 7 < t t X It U2 A, X2 (02) 0

and

Solving Es. 7-102 and 7-107 for the t, X1 7  - A, X2 7  0.
yields the following:

For computationae reasons, it is more con-
: =  2 o (7-131) venient to uise the foflowing equivalent set of

conditicns:

t12 ' (7-132) x, (0) =0
r', + h2

X2(t') = 0
1M 1F (7-133)

m x x 1(t 7 ) + A =0
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and

where x1 (t2 ) =Aand X2 0t2 ) =0 are used as a

initial conditions for integration. +f2 (7X2S,3 )dridv

lvoieeijlicify, these equations ie

R, f2)A- ( 71 2Qzdn

f2 ct2 f#7f a'

(7-139)

+~ ~ and

R4=x(7)=-A

(t)7

R2 ~X207)= f2kiit 2, 3 )dnl
'2 +f 2(1,S4)didv

+ f2(t d~
1,~a f 207OP d0 (7-140)

+ M IS2S M7 0 17-38) where the R, are -'troduced for notational
purposes.

R 3 =X 1 (t7) + At- 2A Generalized Newtor. Method is used to
solve Eqs. 7-' 137 through 7-140 for the ,. An

+ V7 - t3 f2initial estimate ip i 1, 2,3, 4, is made; and a
4 33 f( 2 ~d correction is computed according to the

formula
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Tmax = 10,000 lb/in.

and
-'R WA .. -1 en x 20,000 Ib/in.

It was noted that three distinct-situations
U4 J R4  may occur depending on the value of A. In

this example, the problem breaks down as 12.1'
,(7-141) fellows:

1. If A > 0.509, then x, (t) < A for all:,
where terms on the right side of Eq. 7.141 are
omputea in ternis of the " The corrected 2. If 0.156 < A < 0.509, then there is just

guess f, then takes the place of f, and the one point t for which jx (t1 = A, and
process is repeated, 3. If A < 0.156, then there are two valuesoftfo which Ix, (t)l I

The derivatives of the R, with respect 'o o. I
the t" are computed by the chain rule of The numerical example given was solved
differentiation, Eq. 7-109, and Eqs. 7-137 for eleven different values of A. The results of

.irough 7-149. Just as in Eq. 7-129 several of these calculations are presented in Table 7-5.
these derivatives must be determined by The first column of this table consists of the
sdccessive numerical integation. values of A considered. The following ten

columns give information that, when
The matrix of derivatives which appears in substituted into Eq. 7-130, completely speci-

Eq. 7-141 has sixteen elements. Twelve suc- fies the optimal beam. The ncxt column gives
cessive definite integrals appear in one or the volume of this optimal beam. The final
more elements of this matrix. Therefore, two columns give the volume of the lightest
considerable computation is involved in each beam constant depth that satisfies the condl-
iZeration. All this computation was incor- tions of the problem and the percent saving
porated in a single computer program. realized when the optimal beam is used

instead of this uniform beam. Dashes have
As a numerical example, :he beam of Fig. been inserted in the table when the quantity

7-14 having the followirg properties is con- to be tabulated does not exist.
sidered:

For each value of A, the iterative procedure
used to solve the problem required approxi-

l =1,100 iia-b mately two minutes per itera ion on an IBM
1410 Computer. However, three to five itera-

T 40 in. tions were sufficient to obtain convergence of
the residt:e to seven dccimal places, so com-

b = 0.5 in. puting time wa; not excessive. This rapid
convergence is, again, characteristic of the

E = 101 lb/in. Generalized Newton Method.

A = 25 in. An interesting sidelight of this particular
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'ex Iamp 'lconc ,udes ,the preet sbaagah optimalbeams-with deflection rq -uirements
Plot., of voluinfe.,(of otinialsbea gieatradest 0.156 have cohsiderably

deflection> rqirenjeitbi We- ioblenii co- differentAfrmn. The' beam profiligs ofTigs.
sid&id[here is-given in Fig. 7-16. From this 7-17 nd 7-18 illustrate this difference gaP-h-

icallyi -As- &Ucrfss toward 0. 156, the jump
in h(t) a025(se.Fig. T-17) beconmes more

407 ~~~~~proPoahced.'Ho#6ver,-o eysihWls
thaji 0.156, the prs~file is continuous, ijiuch as
in Fig. 7-18.

7-4.5.4 CONCLUSIONS

The examples considered in pars. 7-4.5.2
10: and 7-4.5.3 are of the order of complexity

that might be found in actual practice. In
these examples, -a- saving -of nutorial -p7to

.I '. ' 4 O 33% is realized when nonuniform, optimal
beams are used initead of uniform beams. For

F/gu~e;~ &Vdl'uk4,iis Deflection more- complex 'loading situations, the saving
Rdqc.!r~rienrmay be even greater. From an engineerhig

viewpoint, such savings are significant.

graph, it -appears that the volume of the
optimal' beam is a continuous function of
deflecticun requirement. This is a rather re- In structural applications, this saving may
markable result in view of the fact that be offset by additional cost of fabricat~on.

ARl dimensions In Inches

1.14 0.81

0 3.2 25 40

Figure 747. Profle of Optimal Beam for A a. 16

_____________All dimensions In Inches

1.21 0.81

o 2.6 24. f 31.0 33.7 40

Figure 7.18. Profile of Optimal Beam for A = 0.15
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However, for applications in which weight is a forming nonuniform beams is not prohibitive,
prEmiumi, such is ifi aeio~sj~c _Wdrk, abilca- such is in the iiiiizfa-uie of reiforhced
tion of-iiium weight structural members concrete beams, then nonuniform otimal
may be quite feasible. Further, if the cost of beams may be used to advantage.
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CHAPTER 8

METHODS OF STEEPEST DESCENT FOR OPTIMAL PESIGN PROBLEMS

8.1 INTRODUCTION A second desirable property of a general
method of optimal design is that ii apply

As seen 'by thie examples of Chapter 7, routinely tq a large class of real-world optimal
solution of the necessary conditions for tne design problems. To be useful to the working
general problem of optimal dsign is difficult. design cmineer, the method should -pply
Even in idealized design problems numerical whenever the designer has developed the
methods must normally be employed to capability to analyze the system to be de-
construct a solution. signed. Further, the method should be ex-

plicit enouh so that a senior cngineer can set
The numerical *-,chniques for the indirect the problem up for computation and a less

method presented ir par. 6-5 and in Chapter 7 experienced junior engineer can program the
are iterative in nature. Each of the techniques algorithm for use on a digital computer.
requires that an estimate of the solution be
made before the iterative process may be The methods to be developed in this
initiated. In many cas.s, particularly in new chapter and applied in the next have many of
problem areas, the designer may have only a these nice-to-have pruperties. The basic idea
gross notion of what to expect of the solution of these direct methods is to simplify the
so his initial estimate may be poor. basic design problem so that it will readily

yield information which allow3 the designer
Convergnnce of the techniques of Chapters to make a small improvement in an estimated

6 and 7 are reported to be very poor unless optimum design. After the improvement is
good estimates of the solution are available. rade, a new and better estimate of the
In fact, these iterative techniques often di- solution of the optimal design problem is
verge for poor estimates of the solution. On obtained. The process is repeated successively
the other hand, i" a good initial estimate is to obtain small improvements in the best
available, theze methods converge very rapid- available estimate of the solution until the
ly. design obtained is sufficiently near the opti-

mum.
This discussion illustrates the need for a

workhorse technique that may be used even The basic method of simplification of the
when only poor estimates of the solution of design problem is to expand functions in-
the optimal design problem are available. The volved in the problems through use of Tay-
method should be capable of making steady lor's Formula. In this way, a simplified
improvement in an estimated solution and, in problem is obtained which serves as a good
fact, converge to the solution. Rate of con- approximation of the original problem pro-
vergence could be sacrificed for dependability vided only small changes are allowed in
if required. certain variables.

8-1
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8-2 A STEEPEST DESCENT METHOD FOR and
THE BASIC OPTIMAL DESIGN PROB-
LEM 0,#(tu; =,3 = P .. q', t ti< t',

8-2.1 THE PROBLEM CONSIDERED a(t,u) < 0, P3 7'+ , .... q, to < t t t .

In order to present the basic ideas of the (8-4)
Method of Steepest Descent, consideration
here sill be limited to optimal design prob,- Just as in Chapter 6, the variables x(t), u(t),
lems with fixed endpoints, no discontinuities and b ;,ce vectors, x(t) = [x1 ().xn(t)J T,
in the basic problems, and no intermediate u"' u [(t), ..., Um(t)]JT and b
conditions on the state variable. As seen in . bk T .1 T
par. 6-4, this eliminates state variable in-
equality constreints from direct treatment. An" nequality constraints of the form
All these features of more general optimal ;,,b) 4 0 (8-5)
design problems will be treated in par. 8-3.

Specifically, the problem treated here is to can bt transf'rmed into a constraint of the
find u(t), to ; t c t, and b which minimize form

J=gba'I)+ fo 1t~x(t),U(),b I dt Jco[t.x(t),u(t),bI

(8-1)

subject to the conditions + I [t,.v* "),u(t),bJ I dt = 0 (8-6)

dx J 8-3.- ftx u~b), t < t ' t which is then a constraint of the kind of Eq.
(8-2) 8-3.

Tie class of problems considered is, there-
g0(b, x° ,.: ) fore, fairly general. The essential features that

0' are not included are variable limits of inte-
+ L0 It, x(t),u(t),bl dt = O, gration, discontinuities in functions of the

problem (u(t) may still be discontinuous),
intermediate conditions on x(t), and state

o . r' variab inequality canstraints.
(8-3)

; =g (b.x°.x')
8-2.2 EFFECTS OF SMALL CHANGES IN

DESIGN VARIABLES AND PARAM-
+ d  LQ it. x(t)u(t),b) dt < O,J ETERS

The basic idea of the direct method of
a r' + I. ... r solving optimal design problems is to first

8-2
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construct :n estimate ul° )(t), b16) of the a 1 ...1, r, and
solution ard then find smnall changes Bu(t), 8b

j 'i such that u(°)(t) + Su(t), b(° ) - 8b is an
improve4 estimate in Dome sense. Before the 8 =  Ou, P3= 1, .... q. (8-10)
imrovcments -can be determined, analysis of
their effect on the problem must be per- In all the formulas, Eqs. 8-7 through 8-10,
formed. the functions are evaluated at [t,x()(t),u(° )

(t), b(°)] whure x(° )(t) is the solution of the
to besmaalis that an first orere yor boundary-value problem Eq. 8-2 fo x(t) withto be small so that a first order Tcylor ut) = ° (ta d = (°  . ,

expansion of the functions of the problem is a
good approximation. Since x(t) is the solution Tc simplify the work which follows, it will
of a boundary-value problem involving u(t) be convenient to climinate explicit depen-
and b, it is clear that Su(t), 8b will cause a dence of Eqs. 8-7, 8-9, and 8-10 on Sx(t).

• change 8x(t) in x(t). It is assumed here that This elimination is performed through use of
the boundary-value problem for x(t) is well the differential equation adjoint to the linear' posed, see Ref. 1, page 227, so that 5u(t), 5b th ifrnileuto"don otelna
p s f a 7 h ,equation for 6x(t) in Eq. 8-8 (Ref. 2). This
smWl implies 8x(t) small. Using this fact, equation is

ago ago ax' . - (8-Il)

OJ63" -- = b + g 5o axo dt a(

) a a) where the function h(t) will be chosen .oa - x + 8U- Ou (6-7) obtain results needed later in the develop-_5*' ment.

+ afo b dt Note that for any solution X(t) of Eq. 8-11+b . and any soition Ox(t) of Eq. 8-8,
d~x aj Of 6uOf 6bdd~
- =- Ox +- 5U + b dT dXT af

(8-8) d- Ox
di- + aou b, sOx) n="+ - x
a x ax+ hTx + XT 8X + o au SU

ax au
ag, ago ag.=- 8b+ -axo  X0  - Ox' +Xafb=hT6X+ XTUf u

8b au

+ ax + L., 6U+ XT af6b.( ax au3

aL. ' Integrating this ,quadon from to to tP and
+ ib0) dt (8-9)3b using the fundamental theorem of calculus,

8-3
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XT (tl)8x(ti) - X(t°)(x(te) =+ +T 8b] d.
kab ab

(8-'2) (8-14)::(hTX + XT E U + )T afb)au Ob / dt. Likewise, put h(t) x- [ ItuJ(O.b( ))]
and define ax* a(t) as the solution of Eq. 8-11 with

By choosing the function h(t) and the boundary conditions on ,° (t0 ) and Xo(t)
boundary conditions on X(t) appropriately, determined by
the identity Eq. 8-12 will yield the desired T
relationships. First, put h(t) = - afoTl/ax aT(ti)8x' - X1. (t°)5x °

[t,u(°),b(0) ] and define XJ(t) as the solution
of Eq. 8-11 with boundary conditions on _g. +g(
WOO) and ?O(ti) determineu by = x' ox 0 + x' (8-15)

)Ox(tl)axl -XJ ? (t°)6x0  for all YO° and 6xl !satisfying the second

ago 0 +.g! sx, (equationi of Eq. 8-8. The identity Eq. 8-15
_Og &Xo + t (-) determ-ned bouig:ry conditions just as Eq.
-x +X 8-13 did. Substituting from Eq. 8-12 into Eq.

8-9 yields
for all x 0 and 8xl satisfying the second

equation of Eq. 8-8. To see that the second
equation, Eq. 8-8, and Eq. 8-13 determine ag. ft 8La  .Taf\
conditions on X(t°) and XJ(tl), consider (he 60 5 - b + II \ + Xa r

following procedure. Determine n of the 2n ab L\ uai
variables Wxl8, Ox I. i = 1 .... n in terms of the
remaining n of these variabies. Now substitute + aLa T f b] dt.
the variables 5x0

1 . Ox'i just found into Eq. +'b ab-/ .
8-13. Eq. 8-13 may now be written asa linear (8-16)
combination of n independent 6x 1 , 6x' r
Since Eq. 8-13 must hold for all n indepen- In terms of the adjoint variables .'(t) and
dent variables 6x0

1, Ox'I previously identi- X (t), the quantities U and O54' are now
iied, the coefficients of all thtsc variables given explicitly as functions of u(t) and 5b.
must be zero. This is then a system of n The problem is now reduced to determining
equations involving only XJ(t0 ), X'(t) and bu(t) and 6b, which yield the greatest re-
known quantities. This procedure will be duction in J subject to the linearized con-
carried wit in detail in particular problems straints of the problem.

S3ubstituting from Eq. 8.12 into Eq. 8-7 It should be noted that the boundary-value
yields problems for XJ( 1) and X , tt), a = 1 ... , r,

have solutions if the boundary-value problem

ag0  [afo+Xra of' Eq. 8-8 is N% -11 posed This is a basic
J - 6b + + X property of adjouit boundary-value problemsab o b a which is proved in Ref. 2.

9-4
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8.2.3 A STEEPEST DESCENT APPROACH Note that the column vector R0t may have
different components -,t different points in t0

The problem of determining 8u(t) and 6b -4 t < . In order to assure thast constraints

delw tr t nequality constraints, Eqs. 8-3
ad8.The gument to be used here is: 6t/. -ao. c =.

sipyignore a constraint function that is
neaiebetare an iteration begins. If, on the -a ., a = r' + 1,.r (8-19)

ote tna constraint functioni is positive, an(cE
iisrequired to be reduced For example, ifandcA

> 0 or 0 (t) > 0 for some t, then it is
required that 68 a a O , c = 1,.r' and and

8 0. r'+ 1, r and 0.> 0and
-0P cop.(t), P3 1 , ... , q' and 80,(t) 4 800(t) % 4(t), P3 I q..

- ~(),q'+l1,..q and 0.). >Owvher'!
0 < a -c land 0 < c~ -c. The magnitude of a 30p(t) 4 -c(), P3q' + 1,q (8-20)
and c are chosen so that the required changesan 3B)I
8 Pa and 60,(t) are not excessively large. If ~

Sand 0(0) are not so large that the linear
appioximation is violated with a = 1, or c = I, Finally, define r
then a or c are chosen as one. fT af

For convenience, &fine two sets of indices auQ au '~ 8-1

A: {C1 a I ' ,u(),b() 01 go 3 fT

and a bb ab d

B~t) P 10 [ 1U(0 I) I> (8-22)

It should be noted that the collection BWt of FaL.T f 1
indices may change with the variable t. AIP (t) = +

Define the column vector of elements 0,, for all &rEA (8-23)
with > 0

and[](8-17) [Lgba r !c + 1 t d L.T+ I
iEAab ab 3b dt

and a similar column vector of functions 4i,,
with 0 (t) > 0 fc- all ciEA (8-24)

r ~(:) Note that A Wi is a matrix or functions with
~()(8-18) mi rows and the same number of columns as
P3EB(t)] there are indices in A The matrix 21 of

8-5

.. .... .

Kj i
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cc~nstantc lias k iow- an., the same number of G (XA T Tp T 6
columns'as M (t).+

Using the rrmatit,' notation of Eqs 8-21 + 7 obbTW Wbb + 'yrc ~'(8-29)
through 8-24 hi Eqs. 8-14, 8-16, and 8- 17.suhta

8J 9J' 6b+ Aj (t)bu dt (8-25) -0 XOA'_.yTA 0 T

2~' 8b ~ > (8 26)-~ (t) ~~.2yfoiu TW , (8-30)

Meome O) and 5b are determined, some O
mechanism must K' set up fof req~uiring that .a, - dt = G
th'tse variation~s are actually k-mall. For con- 1
venience, P'-t oeT+'TqT

dP2 = 6b TVb~b + 6u TwIV()Su di 8-1

(8-27)

coesmlenuhthat t) n bae i emsil to pu 0=1 ovn q.8-30

Theprolemisnow reduced !o finding60 1 V(t

trwaseilc eothe Bolz,- problem of18-2

exis mu~~riirs e > , -f= j(8-33)

ior~~83 an 8-> A" direc analytical> fr > an
4', an y- wtthis

Downloaded from http://www.everyspec.com



A MCP 706-192

point since Theorem 6-7 1 equires or

7T( 6 ~+4)=ly.rr64+a0)=O ' aW(t-

AT (t)[6(t) + ce (t)J 0

and some compor ents of 8 + a and 4(t) + x [(t)+AO(t)3'+ -  P(t) + C 0
c(t) will be zero. A certain amount of logic is
required to fiid -y and p(t). Since only small It is assumed that at poirts where B(t) is not
6u(t) and lAb are admitted, if 4 and (t) :re empty, a /au has full row rank, i.e., all
zero for ut°)it), b(° ) then very likely they constraint functions which are zero or posi-
will also be zero for u(°)(t) + 6u(t), b(°) + 6b. tive are independent. Since W() is non-
Following this line of reasoning, it will be singular, the matrix
assumed first that

~~A 0Q) =± rv (t)-' -'5 +a 0uV (8-34) , ,.

and is nonsingular. Therefore.

* t) + c (t) =0. t .A~)-

Then -f and pl,) are determined by substi- - 1
tuting bu(t)and 5b from Eqs. 8-32 and 8-33 xL'C (A + A Ty) - 2oc
inio these equations. The multipliers 7 and
p(t) are then determined and checked for the (8-35)
proper sign. If y. 0 fora > r' and p(t) 0
for 3 > q', then this assumption is admissible. k" iints where B(t) is empty, put a /ou =
If, on the other hand, -y. < 0 for some a > r', (t) 0 and AO(t) = I. In this way, p(t) is
then 6tps + a i -0 is incorrect and it mu~t consistently defined by Eq. 8-35 for Al t.
be that 60. + ao. < 0 should occar. This is
equivalent to simply iemoving 0. from 4 and Substituting Eq. 8-35 into Eq. 8-32
recalculating. Likewise, if p(t) M< 0 for some

. q', then 60,(t) + ao,(t) < 0 should occm I
and 01(t) should be removed from (t) and 2(t) =- 2 V' (' + A
the multipliers recalculated. So much for the
semi-mathematics, now to the calculations
based on this arhument. + 1 IV-'

-yo

If B(t) is cmpf for all r. then is not 4
defined and p(t) neeO not be determi,ed In x u (AJ+A y)
case B(t). not empty, is to be required that

8-7
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or and ,
• * 8u)-- l ' " = / ~ ~u :U '

oo a

x A" - (8-40)
au au

Eq. 8-37 becomes
x(A + A07 )

cWU-1 . A-'. (8-36) 2o (M 1+Mqy)+cM¢=ai" (8-41)-

where I is the identity matrix.
Since W() is positive definite so is is';,

Substituting bu(t) and 6b from Eqs. 8-36 and 'here is a nonsingular matrix s(t) such
and 8-33 into Eq. 8-26 and then enforcing 6f that s' (t)= sT(t)s(t). By direct multiplica-

tion, it may De verified that

t
I Rp OTW_ Rj- +d -py _ C AO+ T 

t

-- T T

Ou to yr ¢'to

xUt (1  ) ra  -  ' )u (/- '-OT A O -  My Wu ' )~ d t

x(A" Al"y)dt=-a . (8.37)
Defining y 2is =- ( .A'RI P I~7  aY

Tt + 
pLT 

M

(a IV." A'- iut A dtal

(838) X -a sT )sA^ Y1J

M O 1 Q r IV ; I v +5 AOTIV;I X S - T

(I-~~~ alr ,,"Itw,)A',
( . A' ISI; IA( x sAy] dt> 0.

08-39) (8-2)
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Therefore, M,~ is, at least positive semi- Defining
"J definite. In tha developMent that follows, itj

wifi~be assumed thatWM is positive definite 8u1 t)W A, a
and, Hence, nonsingu 1-5

Eq. 841 is now solved fory~ to obtain
x (A' -A AM P ) (8-44)

(8-4~3) -A()W 1 (IT .1 ~ 1

It should be noted that if the set of indices A x AOM-A1 (ai - cM
is empty, it does not exist so M ~ is not even ' '

defined. If, in this c&use, M . is defined as a-
one and ' zeo, then y =0in Eqs. 8-41 and A4' @ A (8-45)
8-36 reduces, appropriately. In thfs way, a
single mathematical ana~lysis holds in all cases.

SO6b =W-1 (RQ- RM- 1 M j (-6
Substituting Eq. 8-43 into Eqs. 8-33 and ) (46

8-36 yieldsan

tha xrsinsfrnd)ad baesml

-~ 6 1(i)+ 8u(t) (8-48)

..U L AO U and WbR ' 6,. (8-49)IP
au -all

and Ttheep.'rsions fo u() and b rm s.ply

x [T~7~ +(AOM -cM, ) an
tetrs W 6b 2 ar not multiplied48

and 84,o hs uniisivle n P

27e b270

and ae aritios 8~t) nd b fom qs.8-9
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In fact, if and are zero or empty, 8u(t) = of Steepest Descent. First, Relation 1 states i.

"b2  0. It appears that Su2 (t) and Sb may that the changes Su(t), b and Su 2(t), 0 2  4 tl
be interpreted as making corrections in con- are orthogonal. Relations 2 und 5 show that
straint errors, or keeping constraint functions 6u 2 (t), 8b2 provides the requested reduction
from being violated. Actually, this and more in the constraint functions. Relations 3 and 4
is true, show, as might be expected due to the

orthogonality of Relation 1, that Sul (t) SbI
Theorem 8-1: The following identities has no etffct on the constraint functions in A

among 6u), 6u2 (t), 8b', and 8b2 of Eqs. and i. Finally, Relation 6, along with
8-44 through 8-47 hold: Eqs. 8-48 and 8-49, simply states that if =0

and ¢(t) 0 then 6u(t), 6b provides a
t reducion in J.

1. bb 6 ul W~u6adu=0
io r*Before stating a computational algorithm,

:t is important to develop a test for con-
vergence to tle solution of the or.ginal
problem. The procedure here will be to-show,

2. ROT 6b" + AO T6 u 2dt -a through use of the necessary conditiens of
Chapter 6, that as the solution of the origiial
problem is approached, it1 (t) and bb' must
approach zero.

t' T By Theorem 6-7, at the solution of the
3. V€ Tb + A ' 6u'dt = 0 problem, Eqs. 8-1 through 8-4, there are,II

to  multipliers 6:), .: = I. n, v,, t r.
and (t), I = ... q such ihat for

4. LOul =l0 H = f- fo- vr L -- f (8-50)

and

SGgo+vg (8-51)

it is required tMatI"
6. - Tb' -t A'T 6u'dt 0. do aitf- = - -- 8-52)dt ax

By considering the case when and , are
empty, it is cle.tr that in order foi bt, bb to al
be in the negd:i gradient direction of J (i.e., -= 0 (8-53)
6u = - A' ad Ab = - V), -to > 0 is required.

The six relationships of Theorem 8-1 give 3G d i 0 (8.54)

the designer an intuitive feel for the Method

8-10
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at = ,a=r ,,,r(-55) Further conditions from Theorem 6-7 are,
from Eq. 6-124,

t 0t), 3q'+ 1., q. (8-56)
aGT

Corresponding to the definition of 0P and 0 i)=0(-2
in Eqs. 8.17 and 8-18, def' ie 0, Land t-as and
containing only components of P, L, g, and Aj

corresponding to elements of V. and . In this aG T (863
notation - and due to Eqs. 8-55 and 8-56 -C3t)
Eqs. 8-52, 8-53, and 8-54 become

Multiplying Eqs. 8-62 and 8-63 by 8x0 and
do T +f afo -T (857 ax, yields
di ax ax axag o T o T(o xo

T ~_ ~ _ T.T AL 0 ax0  ax0

u au au u (8-64)

(8-5 8) an

ago0g +-rI a,

+W7,(g')axl =0. (8-65)

abT abo - P )'dr 0  These equntions hold for all 6x0 and 6xI.
Adding Eqs. 8-64 and 8-65,

(8-59) - 6x0 + 'g ax,

Substituting from Eo. 8-1l Into Eq. 8-57-
yield +pT xo a x

+c dX' d-hY = - T(jo)6Xt) + WT(,)6Xl =0. (8-66)

_af T Tf T Again., Eq. 8-66 holds for all 8oA a.. 6XI .
XN (8-60)5x ax x Substituting terms from Eqs. 8-13 and 8-1S

or into Eq. 8"6,

NJ T + + l, )6X, _ jT(o)ao

a + xJ + p(-1 ')6X 0 + WT(t, )6X, = 8-7
ax w (8-7)
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for all 8x9 and 6x1 satisfying the: second Premultiplying the transpose of Eq. 8-70 by
equation of Eq. 8-8. By collecting terms, Eq. (ai/au)- ;'Yields
8-67 becomes

J [cT (. I)+XJT (tI)+pjT, T(t IX1a u

equaion f Eq 8-8 auU au au/ 872

Eqs. 8-61 and 8-i8 constiiu~'e the bound-
ary-value problem adjoint to Eil. 8-8, where Thcofienof nEq8-2sjutA )
the dependent variable is (co + V~+ X~~.Due of Eq. 8-34 which is nonsingular. Therefore,
to tbme assumed well posed t.ature of Eq. 8-2, - -r ~ ~ +~
te boundary-value problem of Eq. 8-8 has a W- -A +AA

*unique solution for all BuQt) and 6b. It is L au U 0v)J
shown in Ref. 2, Chapter 4, that in this case (8-73)
the adjoint boundary-value problem, Eqs.
8.61 and 8"8, has a unique null solution, i.e., Substituting Eq. 8-73 into Eq. 8-71,

5b 8b P [+ fT(T
(8-69)

Subatltuting for w(t) from Eq. 8-69 into + af0 T + air ]t=
Eqs. 8.58 ani 8-59 yields ab 3b ~Jd=

4~T+ orX4 T) f Qf T Uor, in the notation of Eqs. 8-22 and 8-24,
/ U -~ 4U 1 - + Q',' = 0. (8-74)

-T (8-70)
all Substituting for i in Eq. 8-73 into Eq.

and 8-70,

ago +-T ag T + T)aT -'a

to - - P+aA-P1;A

af aj0  pT ai d 0T 2K A - IV' A =0.
ab ab To auK

(8-71) (8-75)
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Prmultiplying Eq. 8-75 by AVTW-' and or,

integrating yields a• "

: (AO T W; AJ -A*W;1 x(AJ -A'O M 'M.,) =0. (8-79)
t
o

Eq. 8-79 is the desired result, u (t) = 0.

x LOT AO-1 a' W'.z A' dtau Tu Substituting 0 from Eq. 8-78 into Eq. 8-74
yields'+j AO Wu- A0vm-y
and this implies, by Eq. 8-46, that b1 =0.r,pW_ a~r - "

-A@ W at AO It is now possible to state a computational
u algorithm employing the rmults of the pre-

ceding analysis and discussion.
x LW u I t d] 0 (8-76)

i qA Computational Algorithm:Premultiplying Eq. 8-7/4 by Q TW yields, -

Step l. Make an engineering estimate
£T y i j + £ = O. (8-77) u(°)(t), b( ° ), of the optimum dc-

sign function and parameter.
Adding Eqs. 8-76 and 8-77 finally yields

Step 2. Solve Eq. 8-2 for x(° ) correspond-
ing to u(O)(t), b(0).,A10 j + ,Al 0 0 P 0

Step 3. Check constraints and form ' and
O(t) of Eqs. 8-17 and 8-18.

ft - , (8-78)
,~,i , 7)Step 4. Solve the differential equation

8-11 with h and the boundary
conditions of Eqs. 8-13 and 8-15

Substituting 0 from Eq. 8-78 into Eq. 8-75, to obtain Wc(t) and Xv *(t), re-
spectively.AJ  ,'-

Ste 5. Compute At(t), IF, AO (t), and £Q
AO IV .A in Eqs. 8-21 through 3-24 and

71u TU AO(1) in Eq. 8-34. I

+ O- ± , -MA' M Stel. o. Choose the correction factors a and
au 7U c0 in lqs. 8-19 and 8-20.

8-13

- ... .. ... .. .. .. . ;, .e, ,,, - - " .. - .. .. , .'- • . -._: . .
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Step 7. Compute M*, M, , and M in Substituting these expressions into Eq. 8-25
Eqs. 8-38, 8-39, and 8-40. and using Eqs. 8-44 and 8-46,

Step 8. Choose yo > 0 and compute 7 &r =- ".'oo I2  o
and p(t) of Eqs. 8-43 and 8-35. If - (M
any components of i with & > r', T
or ju(t) with 3 > q', are negative, . A I7 uI
redefine i and R(t) by deletingt o

corresponding terms and return to
Step S. x (I - -V -AO "_ .

Step 9. Compute Sul(t), U2(t), 6b', and
8b2 of Eqs. 8-44 through 8-47. x - A' M;,M¢,, dt

Step 10. Compute 2'oM- (i, - Mr, M'Al J M,

1( where

u ( t ) = u°)(t) - u u(t)

+ 6 u2(t) MJJ kJxP bQ+ i T IV

b(l) = b(O) _ 1 - i t b t  + SO . (IA1V I Jdt/ au _

Step 11. If the constraints are satisfied and
Sul(t) and Sb are sufficiently With Eq. 8-80 it is possible to request a
small, terminate. Otherwise, return reasonabl. magnitude for U and compute the
to Step 2 with u(O). b(0 ) being yo which ;hould give this reduction in J. In
replaced by u(1), 0 ) .  this way, it is possible to choose a reasonable

To. Experience with this method on structural
design problems, of the kind discussed in the

An algorithm of this kind invariably hi- 'ollowing chapter, has indicated that a request
volves a certain amount of computational art. of 2% to 10% reduction in tie cost function
The critical elemert of this algorithm is the on the first iteration gives a valte of yo that
choice of the parameter "to in Step 8. Once yields convergence. Often, this value of y'o
the constraints are satisfied to acceptab. must be adjusted during the iterative process
accuracy, 60(t) and b1 will be approxi- to prevent d;vergence or tc, speed con-
mately zero and l/(2yo)can be viewed as a vergence.
step size in the ,llrection &uP(1), 1b. In
this case the chuanc in u(t) and b is This matter of choosing step size in Step 8

S.requires a great deal more attention. With a
6u(t) u(it ) little experience one can develop a "feel" for2"re how to adjust Vo to get good convergence,
6b SO even in complex problems. A feasible auto-

27o natic method of choosing -o is desirable for

8-14
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use on high-speed computers. No reliable
method is known to the writer at this time. g. (b, tI,),

8-3 A STEEPEST DESCENTMETHOD FOR 4t [t,x(t,u(t),b dt = 0,

A GENERAL OPTIMAL DESIGN PROB-
LEM =1 r

(8-34) :

8.3.1 THE PROBLEM CONSIDERED g=g. (b,t/, x1) . :

The bas;c optimal design pro'.lem with
fixed endpoints, no discontinuities, and no + L. (t,x(t),u(t),b]dt < 0,
intermediate constraints was treated in Lhe . -

preceding paragraph. The problem considered r' + 1.r
here w;ll be a generalization of that problem
to include features such s variable endpoints, and
discontinuities, and intermediate constraints.
The basic idea of the method of solution will 0 = (t, u) , C t . I'll
be the same as in the preceding paragraph.
Accounting for the additional features of this = q'
problem, however, introduces some com- (8-85)
plexity into the derivation of equations. € (t~u) 0, to < t < tn,

The problem to be treated here is to
determ ine u(t), to  - t t tn,  b, and t , t ....,

tn which minimize Note that this is just a special case of the
problem of Def. 6-.. Fquality constiaints will

J = go (b, fl, x/) be included in Eqs. 8-84 and 8-85 in a natural
way during the development. It is assumed
that for given u(').bt I, and x/ the boundary-

+ fo It,x(t) u(t),bI dt (8-81) value problem, Eq. 8-82, has a contintous
ft', solution x(t). If constraints of the form

&(t,x,u,b) e 0 occur, they ma be replaced
subject to the conditions by a const72int of the form

dxo t

w fAt,x,u,b), t < t <c tn.t tl {w(t,x(t),u(t),b]

(8-82) (8-86)
+ It,..(t),u(t),b] i) dt =0.

01 (t° .X° , tnXn) = , S 1, n .... I

0 'stroints of the fcrm of Eq 8-83 are easily
treated in i direct mpnner so they need not be

WO', xt) 0, 1 = 1 ... , (8-83) reduced to the form of Eq. 8-86.

8-15
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Just as in tile method of par. 8-2, the where Ax t is the total change in xi at the

idea here will be to estimate u(° )(t),b(° ), point ti. Since x(t) is to be continuous before j
and to .... t", and then to allow small and after the vari.tion, the total change in ,
changes 6u(t) and 8b. The object is to x(t) must be continuous at each point t. This
determine 8u(t) and 8b which yield the requires that
greatest reduction in J and which satisiy
the constraints. 8x1tQ - 0) +f(t' - O)Wt Ax, -

8-? 2 THE EFFECT OF SMALL CHANGES - x(t' + 0) +f(t' + 0)6t1 (8-89)
IN DESIGN VARIABLES AND
PARAMETERS i 0,1,..., i?, where 6x(t) and 6tt are I

indpendent changes ir, x(t) and 1t.
Before the optimum changes in ut) and b

may be determined, the effect of these The independent variation in x(t), 8x(t), is
changes on J and 0. must be assessed. Since J related to 6u(t) and 6b through the varia- 'o1
and 0. have the same form, the expressions tional equ'ation
for change of a g(neral functional

d afjx.af a3/:
(6x)=-K6x +-f6u +-5 b.

Q g(bt,xi) + kt.x ),u(t),b dt au
0 to to < t < 0 , t 4- t1. (8-90)

(8-87)

will be determined and the result will be The boundary conditions, Eq. 8-82, require
applied to J and ' that 4

E.cpanding Q to first-order terms n the -L01 AX°  +_Lo 6t°  +L. A9Ax0 +3to + Axn  ,
variables u(.),b,d , and x4, vield! ax°   a:0  axn

ag AbDg &v ..+ag " (-8
b x ° +"' -sAx (8-88) + 6o' =0 (8-91)at n

+ +' Ax"  8 ",' a t  s 1.... n. Finally, the relaions of Eq. 8-83
ax" ato require that t n

+ .+ a , - F(t0 +t 0610 .. an' an,at" l-ax - 6t 0,

+ IF(t' - 0) - F(tI + 0)1 6t +
,- , . . (8-92)

+ F(tn 0) O)0t
it is clear that the variations 6xt). bu(t), 6b,
61, and Ax' are not all indpendent.

6x 11 (L 6 u x -7 -b) di.+at ab / In order to expr .s 6Q in ter.ns of oply

8-16
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6u(t) and bb'which are to be determined, Or, using the d.finition of Axt, this is
introduce the adjoint variable X(t) just as in
Eq. 8-91, gt' BF

x dt -Xr(to + 0) Axo

A 3f. aFT (8-93)
di Ox Ox + X,(to + 0)f(to + 0)6to

Integrating the identity below E~q. 8-91 from
t/ to t/+1, 0 /, + I -; 11, one obtains, just as + "'" + [ rtq -0)
in Eq. 8-92,

-(T(t" 0)l1 AX0

t) 
- 1.r(t/ - O)f(t/ - 0)

- XT(tI + tl)sx(t/ + 0)
- XT(tl + O t + 0)] atl

;Z(L6X + XT f 6U... +XT un 0) Ax'7J O x " "u"'
- '(tq _ O)f&t - )61t

XT b 6b) A (8-94)

au

Note that the boundary conditions on ,(1) + oj'and the p,'eperties of X,(i) at the points t/. / - 7b 6b . bdr"

1, .... i - I, have not yet ben specifT.
These boundary and intermediate conditions Substituting from Eq. 8-95 into Eq. 8-88,
on (t; will be the major outpv' of this yields
subparagraph. r 1

Summing all the formulas, Eq. 8.94, over/ I
0 1, 1 .. , one obtains + [29 7 - Xr(t/ l )+X~ l+o x

a7 g TI 0) +XT(t/i+ 0L

V x dt = - N7(tO + O)L(tO + 0)ax .+ ag - Xr(tn AX,.rag"
+ ... X+T(tt -0)6x(tI - 0)

Xr(ti + 0)5x(Il + O).r.. (8-95 + " - + )

+ Xr(t n 0)6x( - 0) XT(to + O)f(t°  + 0) 610

+ " ( XTaf L 1 + XT a L6b dt ag
au 3b +'. 7 + F(ti - 0) - F(t/ 4 0)

8-17
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++ "'("/ - + +) ftt -0) - 0)

_ X(tl + O)f(t I + 0)] 6tl -f0"
+ + Ta + FWl 0)+ XT(t n - O)f(t n? - 0)] 60n 0

.. 1,7 F t -0 (8-97)

+ XT(tn - O)f(t" - 0)1 56t
n  for all Axl and &tI satisfying Eqs. 8-90 and

.J 8-92.

+ + XT' f 6U In order to determine conditions on X(t/)
ta based on Eq. 8-97, a Lemma is required.

+ F +b dt. Lemma 8-1: For A. B. i = ... m < n in
/a a R" ifArT = 0 for all x in R' -uch that

(8-96)
BTx , X %- .... M

The qantities AxI 2nd St/appearing in Eq.
8-96 are required to satisfy the conditions of then there exist constants w, such that
Eqs. 8-91 and 8-92. The . -ective now is to
choose the boundary and inte, mediate condi- ATX+
tions on X(t) so that Eq. 8-96 is indepetrlent A=
of 6x1 and 6tl; i.e., so that for all x in R". k

I ,O Xr~tAxO + For proof of this Lemma see Ref. 3, page.ax0  J 12.

+ - X - O)+X T (d +0) &Y Conside, Cie expression of Eq. 8-97 as
+ -45 ATX, where the componentsif A depend on

the values of W/t') and x = (Ax0 T..... AxIT,
+ .+ _L9 -XT(tn) A 610. 6 19T. The equalities.B.x = OarejustIX1  I Eqs. 8-91 and 8-92. Denoting the multipliet.

CUP as rss = 1 .... n, and /,j = 0, 1.. 1, Eq.
+ [7tg-- F(t°  + 0) 8-98 u, comes

XT0(t + ) 6t" ,u+..,b °   n aOs
+XT(to +0)+ Z T"

+ + L- + (1 0) 1
Fut + 0) + T(t' OU)(t 0)

r 3

rt1 + O)flt I + 0) 61, + [".2- X, Wt ' 0) + XT(/ + 0)

8-18
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-axn~a XT~rq -0))+n

n~ 30 w+I x = 0 : ~ ~(8-102)
+ E 'N axn ax"axg

+ - X~tO )- TO+O~~)+0)a
s~g ax' +7, E~- Tx' a8 +Y -= 81

+~ ~ ~ ~ n TS ao+.."I t

+I --7 +.yo.1 gsat V .0(0)

L 3t'+ XTW~ - 0)f' - 0)

XT(tI - 0)f(tl - 0) XT(tI + O)f(tl + 0)

Tr(, + O)f(tl +0) + A ..l6.= 0 (8-104)

+ + RO- 0) F(eII - 0) + XT(t1 - 0)tn 0)

xf(t - 0) f(I -- 0)+ + ann+ X a:S +y, -f - 0 (8-105)
9. 1 l, 1 t

SO = 0 The object is now to eliminate the -y, and r
in order to obtain explicit conditiors on t)

(8-% ) Postrnult iplying Eq. 8-100 by f(I + 0) and
Pdhing Eq. 8-103 yields

for all Av/, sI.J = 0,1,.. Therefore,n
i~o+ 0) - F(t0 + 0) + F ro(b0 + 0)

7 +XT(t0 + 0) + I ao + 0 0( + 0 (8-106)

+0 OC0 (8-100) +h~ ag= 9

L9 X (tl0) Xr 0, +,y -- x7 0+(t ± )It.--G, ('± )

axi a~5.0~ur!0)b

(8-108( 8-107)

h~-19'
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6S 0) Eq. 8-102 by f(P - 0) and adding to Eq.
* 0) =8-105 yields

+ ~ it, 0, x(t' + 0), u(t' 0 ),b S (' )+F: t  )+Z-0

andSolving fory and substituting into Eq. 8-10'

W 0) + n10,

+ f f[t' ± ,X(t ' ), u(t' ±0),b] .XI 0xXsI'
axi

(8-109)

Since 920@0,x0 ) =0 is to determine to the - t - 0) T("~)F~' 0
total derivat. with respect to to, h0(f 0 + 0), + 5.,rt"-01

should not be z.ero. Therefore, O may be J
determined as

1 (8-112)

7o -Ot + 0) where j (to - 0) and 0,5 (0" --0*,) are defined in
Eqs. 8.107 and 8-108. Eq. 8-112 then servft

x jl + 0) -F(t0 +0) as a boundery co,!ition on X(t) at to.

+ T .to+0 (8-110) 'n- order to use Eqs. 8-! 1 ard 8- 112 as
%explicit conditions on W~() a!to and to, the
parameters -r, must be eliina~ted. This mray

Substituting Eq. 8-1 10 into Eq. 8-100 yields be accomolished by alegbraic rntnipullation in

agT n aoe- pairticular casez.. To illustrate this idea on a
x~to+ 0)>; 7problem which has been treated extensively in- - . Ox0

the Iiteraturt (Refs. 5,7,8,9), consider the
______ Fcase in which a full set of initiai conditions

e 0 ( 0 +0 - 0) is gi'. n, i.e.,

G 0 .X) =0, S = . ... 'in (8-113)
Ful +1 +0)

In thi- cawe, Eq. 8. 112 yields
11 , 0 noT

+ r 3 ( &C+)- 811 agT I
$~~O -x ?.Qt - =-

This is then a tundary condition on Wi) at

x W - 0) + F(t' - 0)1 UZI

In exactly .he same way, postrnuit.p'ying (8l4
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Eq. 8-111,othotehad is just a .coF equation with'n components which cieter- XMI' 0) ± l0) - MPO
minesr,.. rItgvsn explicit ifra
tion on il ) + ~~~ j(g1:t0) +F(t -0)

No- h oudr conditions on Xt ae0
been determined. It remains,howe'ier, to de-
termine jump zonditions on \(t) at the - F(tl + 0)
intermediate points t1, Post multiplying Ea.
8-101 by fl ± 0) and adding to Eq. 8-104 - XT (tI - 0) If(t' :t 0) - At' -- 0)]1
yields

j(tJ ± 0) + 1.(t' - 0) - F~tl+ 0) +TgIf) ft±0)- fiji + 0) 1 -.ax

-xT(:I - 0) f(:1 ±0) N4(; - 0)) This equation, the boundary conditions at
AT(h + 0) [f(/±O f(I + 0)] Eqs. 8-111 and 8-114, and the differential

equation, Eq. 8-93, are to determitie the
+ Y 2 )(8-1 I5) adjoint variable, X(t). tO < t 4 tn. ITe

0) boundary and intermediate conditions on NMi,

wher thenottionof qs. -10 thrugh were constructed so that Eq. 3-97 hoids and
8-109 ha been used. The .Thdce of limit from inurq.89beo s
the right or left (the plus or minus sign, Og CtF/F 0
rcspectively) in Eq. 8-15i ftoefr SQ= aSb + jl- T B- u(t
now. One C'r the otrier alternative will be O \O t
chosen for computational con-icnience.OF-

3F (-.- x A~k b di
It is assuioed that (fhe condition Slla'.xl) + Osb+ X bT

0 determnines tl as a function of x1, so it is
required thit the total e-rivative of IQJ with or
respect to 11, h'01 ±_ 0), not be zero.

Therefore, from~ Eq. 8115, 6Q Fab 13 OLb ]6

I ±0) ~ ±0)+FQ1 + 1---+'.-.- u(t)dt. (8-117)

- (1 0) Lqi1 ± 0) . At' 0)) This equation meets the objective of this
subparagraph, nanely, determination of the

+ XTiI 0~ J~'±  0,f(, ± dep.endence of 6Q on 6b and 6vQt) explicitly.
+ X , W+ 0% i W ) -Pt/'. ) SnceQ was any functional, tlim result can be

applied to the particular fuiictionals of the
S& tUit: *his~ exression into Eq. 8-10 1, present problem, l and 4'.. To obtain &I aad

8-21
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80., deii ') and X1c( 1) as the solution ag t  r
of Eqs. 8W3, 8-! 1, 8-114, and 8-116 with -a- I +

ab D
g=go and F=fo for ?J(t) (8-118) afT  \'P(I t (8-122)

3b

and
and

g g. andF=L. for Xc"-(t). (8-119)
& , T r
n'{t = 7 --- + X "(t). (8-1 23)

In this notation, Eq. 8-117 yields a l8

ago r afo In i:his Potation

b 1 
AJT(t)6u(t)dt (8-124)

+X V (t) -j dt Sb

abJ F and

" 6ka = Ru r' 6b + Aa (t)6u()dt

+ W () -L 6u(t)dt (8-125)

and The problem of this paragraph is now in
= a approximately the same state as the problem

~ I~ + U.0 of par. 8-2 was in E~qs. 8-14 and 8-16. Before
3b L + -b proceeding to derive a steepest descent al-gorithm, however, several comments are in

+ ) af]dt b order,

3L, First, the choice of limit from the right or
• 3. ~left was not made in Eq. 8-116. This choice ist ll generally made depending on the distribution

of .. of boundary conditions on the state variable.
( j6(t)dt, If most of the boundary conditions on x(t)

are given at t0, for example, then most of the
For a more comnpaect nottuon define boundaiy conditions on X(t) will be givei. at

0 , Since the adioint equations ar. linea,
+ +~ [a 4 afT Jt d 'werposition techniques may be used to solve

ab 3 b ' ab "j the boundary-value problem. These tech-
(8-120) niques involve sevetrl integrations of Eq. 8-93

from in 'o to with different starting con-
If T af ditions at t" . These integrations must account= (t) - - X- I (t) (8-121)

A l l) all ( for the itimp condition, Eq 8-116. The

9-21
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integration then proceeds from the right and S21/ x(!/)] #
Eq. 8-1 16 should then be used to determine

- ) in terms of ),(t + 0) so that the One might argu. that the function x(t) is
integration may continue. For this reason, the close to the actual ,'ate and examine the
minus sign is chosen in Eq. 9-116 so that effect 3n &2(t',x(t/)] of :altring t', i.e.,

X(t - 0) = Xt + 0) + a 
tl t

U21x dx
+ Tx T 61/ = V (t j t ) &t1
+u -0)-L(: Wt

1___ a(I -O x dt

(t/ - 0) (8-127)

+ F(t1 - 0) - F(t + 0) vhere the plus or minus sign is chosen

depending on whether 6tl should be positive
+ X(tI + 0)1f(t; - 0) or negative to make 121(t/ + t!), x(t/ + t1) = 0.

The change 6t is tien chosen and if it is not
too large, the state equations need not be

- f(t+ 0)1 3 . (8-126) re-integrated. This -rgument corresponds to a
ax' Newton-type algorithm for the determinatio;,

Since the state equations have previously beei of ti. This proceduie should be used af-"
integrated, g(tI - 0) and 121(t' - 0) can be evcry variation in u(t) and b and subi,' t

computed in Eqs. 8-107 and 8-109. integraticn of the state equations, sincr . )
will be altered with an accompanying Jtp,&

The second matter that requires discussion lion in I.
is the determination of t ! and its variation, j =
0.1, .. r/. If the state equations form an
iiitial-value problem (all initial conditions TIONAL ALGORITHM
2jven) then one can make an estimate foi u(t)
and b and integrate Eq. 8-93 from o toward The problem o deterining 6ub' .,,5b
tq (or t toward t' if all boundary cothditions which reduce J and satisfy other coi,.,raintswill now be solved j-ist a-, in par 'As in
are given at 0"). As the integration progresses,
I92(tx) can be monitored and the value of t the preceding paragraph, if s-nie o, f,(t)] or

for which it is zero is called fl. The siturtion is is less than zero, it will b , ed. If, on
not so easy in case the state equation, form a the other har'd, 0. . 0 or 01:..(t)1 . 0,
boundary-value problem. then it will be required that

One method of determining t/ requires that SO,,= -a

a reasonable cstimate of tI be available,
perhaps from engineering intuition or prelim- and
mary analysis. The state equations are then
integrated using the engineering estimates for 6 a =
u(t) and b. It is likely that for the solution
x(t), where 0 < a < I and 0 c < I

8-23
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A.st as in par. 8-2, define two sets of and
indicesrA')1

All (t) J.(8-133)
and That is, the columns of 2R' and AP' (t) are 2c

erd A*, (t) for those ci with i. > 0. Now,
B(' {0 1 OP 1, '00(f(t > T6 + 0;:AJ T (6u(tdt (8-134)

whier;e u0 (W and W~) are the beginning and
estiwntte of the design variable and design T ~
parameter, resi-ixtively, and x(O0 (t) is the 6 ~ b + A (t)5ug:)dt.
issocit-d solution of the state equations. 1
Further. di.fine tire colimn vectors of con- (8-135)
stsaint functions

The problem of this paragraph is now to
fir.d 6u(t) and bb to minimize V, subject to[2 Eqs 8-130 and] 8-131. Although the symbols

lct'l i(8-128) have a slightly different origin, this problew. is
precisely the same as that given by Eqs. 8-19,

and 8.20, and 8-25 of par. 8-2. All the ana!ysis
required to determine Su(t) and 6b follows

- (~I~u~o)I~l]and Theorem 8-1 h:olds. The only difference is
(8-129) that r' I ; Theorem 8-1 must be interpreted aisL .~ t0 in the present problem.

By the argument of pair. 8-2, it will be The algorithm of par. 8-2 may now be
required that given with~ references to equations of t11:s

paragraph.

6ia= (8-1 30) A lgoriimn.

and Step 1. Make an engineering estimate
(8-131)u( 0)(t), ht0 ) of the optimum de-

- . (-131)sign function and parameter.

Using the notation of Eqs. 8 '-2 and Step 2. Estimate tO. 11 ...t, and solve
8-123. define the matrices Eq.- 8-8'- for xI W

~ 1Step, 3. Adjust P~ as relumied by the diSLus-
= I 1sion below Eq. 8-127 and reconi-

L C J(8-1 32) J).t VIM ii required

8- 24
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Step 4. Check constraints and form 4small, terrminate. Otherwise, pro-
and (t)of Eqs. 8428 and 8-129. ceed to Step 13.

Step 5. Solve the differential equation, Eq. Step 13. Adjost t0 , t', .. , tr, as required by
8-92, with boundary and inter- the discussion below Eq. 8-127.
mediate conditions of Eqs. 8-111I, Return to Step 2 with ut0 ), b(0 )
8-114, and 8-116. The solutioms being replaced by u(') and bt1 ).
corresponding to the functions,
Eqs. 8-118 and 8-I119, yield X() Fo r a n alternate development of the al-
and X00(t), respectively. gorithmn in the special case of a full set of

initial conditions, wee Refs. 5 and 7. S.everal
Step 6. Compute 2-', A'(t), Q1 , 1,9Y (t), and example problems are solved in Ref. 5.

AO(t), in Eqs. 8-120, 8-1219 8-132.
8-133, and 8-34, respe~.tively.

8-4 STEEPEST DESCENT PROGRAMMING
Step 7. Choose the correction factors a FOR A CLASS OF SYSTEMS DE-

and c in Eqs. 8-130 and 8-131L SCRIBED BY PARTIAL DIFFtREN-

Step 8. Compute At,,, ,, ,, and M in TIAL EQUATIONS
Eqs. 8-38, 8-39, and 8-40. 8-4.1 THF CLASS OF PROBI EMS LON-

SlDER~r'
Step 9. Chooae yVo > 0 and compute y and

pqt) oi Eqs. 8-43 and 8-35. If t!ny Thtus far, all problt;.- considered have had
compnens o ywit a r' or their stzte -ariable spe~cified by algebraic

p(t), with 13 > q'are ne,,ative, equations or boundary-value problems w,
redefine 4' and d) by deleting ordinary differential equations. It iN possible,

coresoningtemsand return to however, that the state of tl', systenm being
step 6. considered is governed by a boundary-value

probiemn with partial differentia' equations. In
Step. 10. Cocnpute bul(t), 50jj(t), 6b', such cases, the state and design variables are

ar,d Wh of Eqs. 8-44 through functions of more than one independent
8-47 variable. One may then think of the design

variable as being distributed o,.,r an area,
Step. 11. Compute volume, or higher dimensional space Foi this

reason, such priblenfis have been described as

U0' )(t) = tj --( 6111(f) distributed parameter systems

A gieat deal of work Iiaz been done on
+ sill (I~ h:r~~d ~~. have a

I time-like variable (Refs. 12.1 3); i c.. a variable
W bto) - -y 6bi1 + 6bj' .wh:cl. makes the gov~erning differential :,Iua-

2y~ tion hyperbolic or par..bolic. In this para-
Step 12. If the constraints are satisfied and graph, :onsideration will be limited to static

Sulut) and 6b' are sut,ic~ itly problemis %ich as equilibrium of )lates, shells,

8-25
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etc. These problems are described by linear, l(X1 t= + + "t. 10, 01 + + k
e' iptic, partial differential equations (Ref. I).

The object of the problem is to de:ermine
The boundary-value problem treated will uwx, xGe2. Y(x), xer, a::d b such that

be denoted
J= f gO(x~z~vb)dr

B(v,t-)zl =q(x,Yb),xGfT (8-137) + ff fO(x,z,u,b)dn. (8-140)a

where x = (x1 ,x2 ,. xk )T is the independent is a minimumi subject to the constraints of
variable which ranges over the domain 91 in Eqs. 8-136 and 8.137,
Rk with boundary P. The vector u(x) =~

111 , .' x)Tis the design variable f ga(x~z~vb)dP

variable over r (boundary design), and"e b. v=x [+ (x.f~) T is the design
(b1 ,.. b)T is the design parameter. The state n ~ aXZUbd20
variable z(x) = IzI(x),..z. (X)IT is to beI
determined by the boundary-value problem, 1 , ... , r'
Eqs. 8- i36 and 8-137, which is linear once u, (8-141)
v. and b~ are specified. It is important to note, =Sg, (x. z, P. b)dP
however, that the problem depends in a
nonlinear way on u, v, and b. I

+ ff L,(x~z,u,b)dn-< 0,
An example of the form of the differential 1

operators L(u~b)[l and B(v,b)lzl is a = r' + 1. ... , r

I e. r,(8-142)

X alz XE2(8-138) J,
a.___xG'- and

and W,(X V)0, Y F P . '(S-143)
ft(Y,b)Izl 2: b b(xv, b) W, (X.V 'C 0,XE P, ='

(8-39) The method of solving this piobkmn will be
~~~A'~~4 t x- ~ ~ aic AwatIis vf p.ais. 8-2 and 8-3.

JX..3k At. est-,inuret u(0 )(x). r(o)(0), and 0 ) will be
niad Pil ;nanges sought whiihI reduce J,

where subject to tC constraints of 0 e problem,
C, =(a,,C,,). p k )TBefore desirable changes in is0), 00), and
a = a~.k ), ~ ~,.., ( ) may be determined, of course, their

8-26
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: effect on function in the probleni must bi for xer, whlere .
examined.

ApL~x xu, b)[z] =Ti~~~z

8-4.2 EFf:ECT OF SMALL CHANGES IN
DEA.GN VARIABLES AND A,, L(x,u O)[N =-b L(x,u4,b)iz J _ .
PARAME"ERS

It will be assumeo"In the following that the A B(x'ii'b)[z!ABx 1z = B(X'v'b)[zl)

boundary-value problein, Eqs. 8-136 and
8-1137, is well-behaved in the sense that small
changes Su in u0° ) , byv in V0° , and 81 !,n b(° )  =B(x,v,b)[! Bxvb[z)
yield a new solution P( ) + 6z (wihere z( ) is a
the solution corresponding to the estimated

Sdesign functions and parameters), where 6z is Fo: convenience in the, following develop-
small. mient, the arguments of L and B will always

be taken as it(' ), v(°), and W( ) .

To first order, 6z must satisfy the lin-
eanizzd boundary-value problem. The functionals J and 0.o are or tN' same

general form, so, for their analysis definL
L[t (° ), b(° ) I (Az) + A UL[u (° ), b(° ) ] z(° )) bit

P f g(x,z. vb)dF + f$ F(x.zu,b)d .
+ AbL I u(°), b() -z(°) b[b r (8-147)

=.QB- [x ut°) b(°)J it Once 0-. dependence of P on changes in it, v
au and b is determined, the result may be applied

directly to i andia n
+ -Q Ix. u(0). b(° ) I 6bTo(8-144) To first order terms,

for xsolt and crpag ig t tgh estiate

be ake asz +O and b 3b

q[ v(°),b t0 ) (8z) + APB [v(°),h (b)] [z(0)) 6v
+A ibB[O)fb(O)][z(O)bb + f ( "F bz + S 6+au b b d2.

bq x b ](8-148)

aQ

In otdtr to mnake use of Eq. 8-148 in tht.
aq ' .termiiotion or bit. by, and b, it is desirable+7bIx Vb(b) 66 to ena ate explthi, deppenence o n 6z. This

is do through use of the ujoint operator
(8-145) L * d ore, emd by

8 -d g7
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(TL(ub)[Sz] - SJL-(u,b)[I} d2 The objective now is to eliminate explicit
ffn dependence of SP on 6z. This may be done by

requiring that
: JA[]TC[Szjd (8-149)

r ag rIT~z
7 . ¢(8-152)

w . I [X] and C&5z] are ... c,.al opera-
tc he form of the operators A, C¢, and L* be explicitly independent of 6z for all Sz
is dt tei mined 'y integrating XTL(u.b)[6zl by satisfyir Eq. 8-145. This may he interpreted
parts. , requiring that on P certain components of

Putting Sz be determined from Eq. 8-145 in terms of
Sv, Sb. and the remaining Sz. The coefficients

=Fr  of all components of 8z remaining in Eq.
Lz (-151 must then be set equal to zero. These

Eq. 8-148 becomes equations will then yield boundary conditionsaf g +bg 6v for;'()

SP= "i z Sz-A[XTiC[6z l + 61.

Assuming all this calculation has been
6b dP completed and X(x) determined, Eq. 8-151ab d may be written as

6T bPS P= ffAT(x)Sud.1+ j T(x)Svd P

+ XrL(u,b)[Szl I' L u t

+ aF 6b [ ti2 . + ff
ab where

Substituting from Eq. 8-144 for L(u.b)1tz1. A F aQT
this is AWx =i- - ALlu,b)WzX + - X

-L r- XT .b)[z]SP f a, fI(x:)= coefficient of 61 in Eq. 8-151 after

substitution

all t - aJLu AL(u.b)(z]X

jab b nr + Y' X d9

+ Q 6 d ab
+X b~ ~I b)

+ f [cofficient of 6Sb in Eq 8-151
+ - Sz )A T 6 r after substitutionldf

4_ 6b I d[ (8-1i) (8-153)

8-28
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[By putting '-

gg 0, F~f) (8-154) (8-158)

and where

g =g,, F = L0  (8-155) A =(ce4i 0). (8-159)

one obtains It will bc required that

6=- C1 'P (8-160)
V' ffMjT(x)Su da + f IJT (xSd&M

fl r

T 8b (-5) where C, is a constant between zero and one.
.1- 2 Sb (-156) The idea here is to drive 'Pa toward zero if a

and constrtint is violated or will be violated by a
change in the design variables or parameters.

50 ff A"* (x)it d92 For convenience in later de-elopmrent,
n define

+ f j ,* (x)6v dl' 9~ 6b

A1'(x aGA)

respectively. llv W)=( 110-; cEA) (8-161)

The expressions, Eqs. 8-156 and 8-157, give Q ( = aEA
the desired explicit dependence of Vi ard In this nlotation,

W.on 6u, Si', and Sb. The problemn is now
reduced to determination of 6ut, 6r., and 6b 6=f~ XTIJ
which give the gxea est reduction in J subject rif~()~S ~
to the constraints of the pmoblen

8-4.3 A STEEPEST DESCENT COMPUTA- + f nIV (xOidV'+9 S b. (8-162)
TIONAL ALGORITHM 1

The pro~.edure will now be to choose 6u, Likewise, det'inc
6Y, and 6b so as to iminuze V1 subject to tL~e
constraints Eqs. 8-141 through 8-143, just % (X = 813
in pars 8-1 through~ 8-3 In order to insure [5 f) t8-6
Eq 8-14 1.define L 1 ~'
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and dP'= ff6uT VU 8uda

CN~X) = 1  1 1 (8-164) + 8-VTWbv dr+ SbTW bb
LIE=E(x)J

where (8-171)
wi-.tre dP is "small". The choke of dP will be

DWx) (I OP() >01 (8-165) discus--J 'ater.

and T.he design variables and parameter, 5u, 6v
and 6b, are now to be chosen to minimize V1

E(x UI I wl(x) , 01 (8-166), of Eq. 8-156 subject i Eqs. 8-160, 8-167,
J- 168, and 8-17 1.

It will be required that
A multiplier rule of Liustkrnikl an~!

6R)4- C24Y), XES2 (8-167) Sobolev, Ref. 14, page 209, will now be
applied to the vr,- -, problem. It guarantees

and the existerice o. nultipliers, p(c), xrI2, I1,(x)

bcj(x < - C3c,x), xGI' (8-168) > , a > N' o >0, and -0 such that

where 5(67) =0 (3-172)

0 < C,2 4 I and 0 < C3 'I for all 6u, Sv and 6b, where

a~ x .~.(u () (6I7~ = ff[ TO x - YT*A~~

andnI

5c() W -y-- (x)5v(x). (8-170) 'YOSt ~V.

Before determining 3u, 5P', and 6b, r device - ,T (X) .5ud2
should be introduced to insure that these
quantities are small as is required in order that + fV xOnjT(X) -- -y(flp T(,V)
the preceding first order analysis is a good
approximation to reality. The engineer snould
ch oose positive definite weighting matricesTIV
W.(xW, JV,(x), and lWb so, as to associate a-
relative importance to all the variables. It is
then required that - iT(X ;) 5 ~6rdF

+ [ , -- T y ~q -- Y. 6b It'~

(8-173)

8-30
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Using 87 of Eq. 8-173 in Eq. 8-172 At th':, poirt it is assumed that the problem

() =-is normal so that 7 = I may be chosen. Eqs.
6(ay) 0 f[X A (x 8-175 through 8-177 yield

_ yTA* Tox

- 27 0ouTW .Ix W - x

+ f[- xOTW(x)
r x GS (8-178)

- ll r6x - 2d rl' Byx r(x) [I-

v I
+ °2 TT [

- l"' P(X) ,x (E (8-179)

- 2vosblsb] 62 b, and

. (8-174)

6b=L 1V0(, 1  (8-180)
for all 62 ua), xEfZ, 62p(x), xEl', and Pb. 2YO b

This implies Assume for the present that Eqs. 8-167 and
-t(x) - AM (x) -- 2-y.o I u 610) 8-168 are equalities. Substituting Eqs. 8-178and 8-179 into Eqs. 8-167 and 8-168 yields

a~a r-.- a- (8xO18.75) 1 a ,,_, a r )

forxE.2 ('), .G$E2

-X lJ W(x) - 1 (x)y - 2'y. IV,61'(x)

- r ((X) = 0 and

I| - I t ' l ' l lI 'y

forx C', ind (
- Xo ~go -Y 2yo¢b :: 0. (8-177) - ('& dzl1
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Since W~u tan4 47! are positive definite, the IV, _ _T ,r
Sic IV. . Y v(x) - W' w A-mitrices (oiau' W-1 (ap 7/au) and (a,1/',) [(I- "

W- (ac T/av) are po.itive semi-definite. It )
will be assumed that they are positive definite IV-
and hence nonsingular. In case q or w is
empty, tli.n the terms irnltiplying p and v do
not exist. In ths case simply define p v= 0 x (-Il -P*,=)
and (Olau) IV,' (a3T/rau) (3./av) IV-
(a (2Y!v) .- I. In any c ie. 0& r A -2 /oC3 (5 xe p "

,u(x) = AO , 2 '°  + It, -

-(8 184

(-.A '-  A , )] x ,. (8-181)

where !n order to determine 7, these expressions are

AO = 0substituted iito Eq. 8-160. Using Eq. 8-182,
a 1 -the resultirg equatios is

and

v(x)- Aw [2oC3 ' I - IJ (- I i IV -I

I 1
RioI), x [ (9-182)

where - CoA1l, , -C, 08185)

ar

Stbstituting from Eqs. 8-181 and 8-,82 into Where

E:s. 8-178 tind 8-1", yields-- ;[(i.§ A°  ' ~ CvC,° , (,~ -A8"(X) (I-Bu  -- €  ej = W~ - A.

-x- uI A d2

xt''- A 'y / / 8 TAt-+ JIPTIV-1 11- "-

-~11
-, A9 - -y(,-.v't X' [) X - v

(1- (8-186)

8-3 2
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0I = IA' .11- LO AO1 v(x) by6 ' (x)-r 671(x) (8-192)M; J f \ all 2,yo

xAda2 and

au

r where

+-- fA fT I; I-AO 8-187 x (AJ - AA _' A1,,) xe -n (8-194)

fl all (8-188) 6 2 x ~ ~ A

and ( all + 3u

T rfJt-~ A~ ~P x[MM-f1, (.. Czi +C2Atj

It was shown in par. 8-2 tha temaces c 3w1,
in the itgad o yf tepstv ei
definite. Therefore, At.~ 0 is at least positive
serii-definite. it will be assumed in wvhat T'~ M- ()wfollows thu1t J/,~ ~ is positive definite and, 60 (X) IV A I IY'

therefore, nonsinguiar. Solving Eq. 8-185 for
-y then yields x (nJ - fuA', At,,~), xEP (8-196)

-Y= Atf; [21 0(c1  - '.!.j C3Np,)

Substituting y fiom Eq. 8-190 into Eq 0 r~A;~(,~
8- 180, Eqs. 8-183, and 8-184 yield +C 1 .,)1 (8-197)

6u(x) 61- Su(X) + 611,(X) (8-191) A--' W2 x-27yo C3 IVI~A ~~

8-33
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Sb '(9, 20Q AC' M,) (8-198)2

and

+ C3 AIfj (8-199) 6. -5"'rl - C3 C4 on I'

It should be noted that if there were no
constraints then Sa, 5v, and 6b would reduce 7. -wavl 0, on I'

2hyo 2 ndo270 8. PiT bbI - f IIJ'r5Pdr
respectively. In order that the change in r1
design variables and parameters should be in fA"6 2<0the negative gradied~ direction, it is clear that f '6'~
-y > 0 is r,;quired. ThtL magnitude of 'yo
could be determinAd by substituting Eqs. A computational algorithm may now be
8-191 through 8-199 into Eq. 8-171. How-, stated based on this development and the
ever, a'? must be chosen so it may be just as aruet rsne npr -2.
well to simply chcose -f in E%1s. 8-191, 8-192
and 8- 193. Algorithm (

Just as in the prohtens oi pars. 8-2 and 8.3, Step 1. Maike ar. engineering estimate
the variations bu' (x), bu'(xW, 60 (x), 5v'(x), ,OA Vo)(x), b(0 ) of the opti-
6h' I,and b" satisfy Theorem, 8-2.mu deinfctosadpa-

Theorm S-2: The above variations satisfyStp2mmdeinucinsadI2)
the identities

ztO)(x) crepnigto 1(1()
1. 6b IV SbO + f 6 wv II ' 1dr i,')0(x) and ()

Step 3. Check constrainib and form 0i,
+ ff bu IW, 6u'd&2 =0 and c of Eqs. 8-158, 8-163, and

8-104.

2. 0'T0 + f IPr6,d11 Step 4. Solve the differential eq1uation, E~q.
T 8-150, subject to the boundary

+ ff AO 6u -dS2 -C1  conditions generated by Eq. 8-152
ki with & and F- given by Eqs. 8-154

T 6b, + I ii' 60'd) and 8-155, to obtain NJ andX
11 respectively.

+ JJ A' w bu'dS2- 0
ii Step 5. Compute A"(x). IIJ(.x), '.A (r).

8-34
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W'Wx, and V~ in tqs. 8-153 and As int par. 8-2, if after several iterations the
6 161, constraints are all satisfied, 6V2̂ (X), BV2(X),

and W/, will all be zero. In this case,
Step 6. Choose the correction factiurs C1,

C2, and C3  in Eqs. 8-160, 8-167, ~M l~A~ 820

Step 7. QC rnpute M,,,. M M n hr
Alo' in Eqs. 8-186 through 8-189. M~QTb;

Step 8. Choose 'yo > 0 and compute -1,
pXx), and vPx in Eqs. 8-190
8-181, and 8-182. If any compo- x Aw - irI'dr
nents of y with a > r., m(x with) \ p a
> tor v(x) with / j are f
negative, re-define 4', 0_(x), and + ff A' T IV;
6(x), by deleting corresponding
termsx and return to Step S.a

Step 9. Compute 60'(x), 802(x), bv'(x), au, at. /V Vdt
6p2 (X), 6b' Iand 0b2 in Eqs. 8-194
through 8-199. Just as in par. 8-2, one can now specify a

reasonable, desired reduction 6J in J. The
Step 10. Compute formulation, Eq. 8-200. provides a means of

finding -yo that, based on the preceding linearU(01-C)14()(X buI Wapproximations, wil! yield th'e desired reduc-u( rx) 2o dion in the cost function.

+ Sill(x)
8-5 OPTIMAL DESIGN OF AN ARTIL-

),('(X) (O)() SO(X)LERY RECOIL MECHANISM*
f~o An artillery weapon mounted on tires or

+ 60W(x tracks has som~e undesirable features. Unlike
the hard mount (weapon rests on a base
plate), the flexible mount will have a pitch50= ()- I b I -r6b . motion. During the recoil stroke, when the2,yo weapon is fired at 75-deg elevation, the tres

Step 11. If the constraints are satisfied and load up or compress; and when countecrecoil
60'(x), 60'(x), and bbl are sinf- begins, the tires act like a spring and unload
ficiently small, terminate. Other- sending the tires off the ground. It is quite
wise, return to Step 2 w~ith obvious that, when the weapon comes to rest,
t 0()W 0A)Wx, and b0 ) re- the likelihood of it being zeroed in for the
pfaced by it")(x) 0 "(4, and 'Tne tesuIis of this paiagraph repteent the v*ork of Mr,

W), respectively. T' D Stteeter, Ref 15.
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Figure 8-.1. Howitzer, Towed, 109 mmn, XM 8164

next round has been reduced considerably, modeling for the high-speed digital computer.
u-specially for high ratc of fire weapons. This To do this, the steepest descent numerical
ihenomenon is known as a setondary recoil technique is used to minimize thie hop or

effect, because an additional acceleration pitch motion of the weapon anid, at the same

tcrm enters into the recoil equations. Beca.ise time, to deternmne the necessary control
of this secondary recoil effect, the recoil rod * design tha~t will minimize hop
mechanism design becomes much more dif-
ficult. For short recoil, the orifice areas in the The recoil equationi for a rigid mount is of'
recoil mechanism ine designed at maximum the form
elevation (75 deg). Therefore, wli,.n elcvrition
is mentioned throughout the renuirfler of X 4 f(X)X 2 + g(x) = 1,(,) 18-201)
this report, it ;efers tc maximum elevaticn.
The weapon positioned for high-angle fire is where x is thie displaLCment of tne recoiling
shtjwn in Fig 8-I1. p~arts. g(x) is a iestoring force, and hr(t) is the

The purpos. ot' this paiagr;,,ph will he to *The contvi rod ina hydraulic recoil nicchinisin is a rod of
ouvselop at systematic rc Oil mhIC ni,1sml design varijbi :zoss sekion %hich ino~es through a itter orifikc

during retoil and varK the drca of the orifice to ..ontioi
procedure chlaracterized hy mnat hemn'al t"011~o force iCNCi
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breech force due to firin,. In the second term
of this equatiin, the expression for the effect
of the control rod orifice areas can also be R(1)
obtaiied from a predetermined recoil force*, /
R(t). For the flexible mount, Eq. 8-201 is
coupled with the equat'on describing the Time
pitch motion of the weapon and thus yielding

two second-order nonlinear ordinary differen-
tial equations with prescribed initial condi- Rigid Mount
tions. R(t) will be taken as the cont:ol
variable which is to be determined to mini-
mize hop (the pitch notion of the weapon)
subject to other design constraints. The 85.1 FORMULATION OF THE PROBLEM
orificz area is t',Cn determined ta provida this
recoil force. During the recoil, counterrecoil cycle, there

as-. four different tiniub %v:.ich are of concern.
This study was performed .n a develop- These are shown in Fig. 8-3

mental weapon, namely, the XM 164. 'he
XM164 . is a ightweight, split-trailed towed - I Time

t
o  

t
I  

2 t3

105 mm howitzer with the XM44 hydropneu-

matic recoil mechanism. Unlike a rigid mount,
the XM 164 is flexible and is fired while Figure 8-3. Time t.-tervals./ resting on rubber tires.

In Fig. 8-3, the ,pecial times noted are:

For a rigid mount weapon, the resisting
force R(t) on the recoiling parts is designed
with a trapezoidal shape as shown in Fig. 8-2.
With the proper design of the control rod t°  = firing of rounu
orifice area, the flow of oil in the recoil
mechi-iisin is controlled and such a force, as tI = end of the recoil stroke
shown in Fig. 8-2, can be obtained. Hlowever,
when a force (Shaped as in Fig. 8-2) is t' = time at which maximum hop occurs
designed for the flexible mount, the question
is asked, "Can this for-e be applied with some t' = end of counterrecoil
other 'best' shape, such that it will reduce the
pit'h of the weapon?" This is the basic At these four times certain conditions must
question with which this design problem is be satisfid from the design requirements. At
concerned. time to tile initial con .tins for the state of

tile systt m are given. At tine I the displace-
ment of tile recoiling parts is reqtired to be

*rhe recodl force , the ielatdiS fotre on the terward equal to some specified value and the velocity
traveling barrel during recoil, due to throttiing )f oil
through the variable area orlflce Gf tile recoiling parts must be equal to zero.

8-37
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At timne t2 the velecity of the pitch motion intermediate and terminal constraint func-
must be zero (necessary condition for maxi- tions occur; x, and x, are the velocities of
.mum pitch), and the displacement of the the recoiling parts and pitch motion, respec-
pitch motion is to be a minimum. Note that it tively; x2 and x4 are the displacements of the
will be possible for t2 to vary between tI and recoiling parts and pitch motion, respectively;
t3. Therefore, the hop or pitch motion will be 0 is the constraint on the displacment
minimized for the entire counterrecoil stroke. of the recoiling parts such that at the end of
At the final time r3, which is the end of the recoil shoke the displacement will be
counterrecoil, *he reroiling parts must return eAactly equal to ?max inches. 2 - 0 is the
to their original position, and the velocit-, of constraint demanding that the recoiling parts
the recoiling parts w'll be some specified value return to the latch position at the end of
v3" This is to insure that the recoiling parts counterrecoil. 3 = 0 is the constraint which
.uturn to the latch position. It will also be requires that the velocity of the recoiling
demanded tl~at the total cycle time be equal parts come into thc latch position at a
to c. seconds. velocity V3 incites per second. 2' = 0 defines

the time at which the erd of the recoil cc,.,rs;
Formulating this pro'lcm into the mathe- 1 = 0 defines the times at which the pitch

matical notation of par. 8-3 yields velocity is zero and the one with the largest
displacement is selected, thus defining the

Minimize J = x4 02) 0g (8-202) time at which maximum hop occurs; and r,

= 0 defines the total cycle time to be exactly
subject to the equality constraints: equal to c. seconds.

€', =x 2(t) -o + tn.1 x "=g1 =0 It was previously mentioned that :he rod
force was taken as fhe design (control) vari-

=x2 (tl) - 1 =0 able, instead of the orifice areas. Using the
rod force as the design variable simplifies the

3 =x 1 ( " i - V3  3 =0 problem, and it also gives the engineer more
(8-203) insight into the design process since he has an

I = x ' W 0 intuitive feel for the force levels the weapon
system he is designing can tolerate. Thus,

2' A t 2 ) =0 immediately the engineer can specify an
admissible upper limit for the recoil force, say

i2 l t t -CT = 0 Ra. , fo." his design, and this value may be
varied by the engineer for any redesign. TI.e

with the full set of initial conditions following inequality constraint, therefore,
must hold for all time t.

X1 (0) = x3 (0) 'x 4 (O) = 0 (8204) =R(,)-Rmdx < 0 0< 1 :t (8-205)

r 2 (0) = no The o, timization problem has novv been
formulated. All that must be (.:;i12 now is to

where ,, i = 1.2,3 are intermediate and put the problem ir,, the steepest descent
terminal constraint functions to be satisfied; formulation. Par. 8-5.2 simplifies the equa-
$V, and 1 define the tunes at which the ;ions of motion for the XM 164 Howitzer.

8-38
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8-5.2 EQUATIONS OF MOTION FOR THE ri recoil displacement
XM164 HOWITZER

distance fromt center line of trun-
Asche-iatic diagram showing the moving nion to center line of recoil1ingK parts and variables defining the dynamic parts (vertical)

model of the XM 164 Howitzer is shown in;
Fig. 8-4. In explanation of this physic I
idealization, the folowing variables are e- .. distance from cente.- line of

fined: /spade to center line of trunnion

weight of recoiling parts /(horizontal)
It angle of tcievation of gun tube

lVb = weight of elevating parts lefs
recoiling parts =t dis ance from center line of

spade to center line of trunnion
IVd =weight of nonelevating parts (vertw~al)

Ma7 = mass of recoiling parts pitch angle of weapon

z ZBt

*t Ilrud k

Figure 8-4. Schem atic V' XM 164 105 mir Towed Howitzer - Dynamic Model

8-3')
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R Q) =rod for-e ipplication

B(Q) = breech forc.-Ol = static value of

9 = accelerhtjou due to gravity C = damping coefficient

pU - coefr,..ient of' friction k =spriny, constant oi' tire

S, fricticen force (guide) q = distance from center line of trun-
niop to rear of cradle (horizon-

S2  friction foree (guide) tal)

Mb =mass of elevatng parts less : ecoil- q2 = distance from center line of trun-
ing parts nion to front of cradle (horizon-

tal)
7b distance fr-nm center line ot trun-

Mlon to mass ccriter of TV, (hori- 2 =distance from ceater line of trun-
zontal) nion to R&t) application (verti-

cal1)
rb distanct from center line of trun-

nion to mass center of IV, (verti- Of distance from center line of trun-
cal) nion to bottom of rail (vertical)

AMd mass of nonL~evating parts = distance from center lhae of trun-
nion to top of rail (vertical',

Yd distance from center line of ~ , = distance from tires to trail spadesspade to mass ccnter of W~d

(horzonal)Y.Z = axes fixed in trunnion. parallel to
Zd =distance from centzr line of X-, y-axes

spade to mass center of l'd ' = axes fixed in carriage(:,ertical)

'a =tiaverse moment of i..ertia of lWa H,Z =axes fixed in cradle
about its own CG

lb raverse moment of inertia of W~b Trhe differential equations to be solved are,about its own CG Ref. 16:

Id traverse rnomen of inertia of lVd At!, y, - si nV+ z ,c3y) $
about its own CG

(T? + y, cosyf + z, siny) I
=distance from center line of trun-

niorn to center line of BMt R(: BM(1 -- Ai~g sin(-t + 0
8-40
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.0~( Si I + I S2 1) sgn ~) (8-206) tively, for thu XM 164 Howitzer. Eqs. 8-208
and 8 209 determine the guide friction.[~ ~ ~ (M , cosy +Z, sirre)" .Mb[1(nb Cos'yth oloin

+ tb CO')] + Md(yd~ dZ)1

Id + 2Mt (i? -I y cosry + z, siny) -oo= 0

~M, $'(q+ y, cos7'-+ z, siny) The cos (,y + 4') and the sin (,y + 4') then
become

x ('- y, sin-/ + z -osy) =d() - I)

x (~y, sin j+ z, cosy/) sin (,y + 0)siny - 01 s~r7/2 + 0cos-.

- g ~1 (Q + y, cosy + z, sin-y) From these approximations and the follow-
ing definitions, Eqs. 8-206 and 8-207 can be

X cOS('y + 6) + /I.4 (yd COS4' - Zd Fii4' simplified. For simplification, define:

)+ Alb, U, coso1 - Z, $10+ 17b, cos(-y + 4)CON I =M11

(8-207) CON3 -),(I St I + I S2 1) sgn (i

COIJ4 -y, cosf + z, sin-7

+ ( 7 + y, osy + z si -f'; CO N 5 Alb [ (f 7b cosy + y, - , Sin-Y)2
- + Z~ cos-y - y. siny)#2 I + ( 1f7 + Z,+ cosY)11

+ Afd CVYd + Z2) + a + h+ 1d
~S1 + S2 -M,9cCSly+ 0) (8-208)

CON6 -y, silly -I z, cos-y

V0') + I?'!) -

CON? sin-f

CON9 =cos7
+ I S2 I~-~) sgn(4) . (8-209)

CON10 - Al0 - g -CON8
Eqs 8-206 aild 8-207 Ire the translational

and~ fola,;I ~~ of 11t , respec- CON I I M0a g -CON8/2

8-41
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CON14'-~ 2M -C-

CONI2~~+Ci1 C0N +O3 COWS - kON

CONI3=-21CON39 CON 15+ C0N36C02
C0+ C0N28 4. CON3O

CO 1 = - ,,C N / C ON40 -At CO 2 C N 23+CO
With~~~ theeC0lnit9+C0n 3IU.h i n

C7ON20 M. 4-C N 8C073 ma 0n24+be 0N27+C0N33a
CON2 8-. -ON4-ON9 CN I+ CON34+CN3t)

C0N22 = -MCON6*CON4+CON

CON238=g9Md Y 1C+ON9

CON24 = 8 gCON9-
CON25 gM 0'CON+9CO/22

CON27 =g-gM~ (8N'C N 827 210wb)w~tea
CON2 b IAMaCO4*ON/ ONI + CON24~ + (? - U)

CON2 2=~CON 13 + CON3 O~

C0N29 = gMA Td'C +ONt/2
C0N+ CON8- Z+ + AI3 *n*~

CON30 = 9.41 b -C,0t

+02 CO3 -~ 'y + CON .O2

CON31 = - gMAf -b CON812 +CONI7+$ -t B(t)CON7

CON32 =g 41. CONS + (R(t) + CON3J -C0N6 + CON I8-n
C0N33 =gM0, -CON4-CON8 + CON] 9.?0 + CON37-0 2

C0N34 = Afb*?b 't~CONS (8-211I)
8-42
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E0i. '8-210 -and 8-214 car~ be put into the xi
.following form

VI I+ V I-1 2 VI 3 2 7 (8-214)

V2 2 i V2 3

wheicWhet. this is accomplished, tht following
frtrde equatios yield th6,pi6perf67mzla

Y, CON! tion that will'bo jsed'in the steeoest-descent I
PI 2  CON2 - -v 3 2  1 V 3

V13 R(t) -B(r) +CON3+CON1O I-I'P2 f
+CONl11.402 +M 2 A 2 x1 f q812
+ CONI12.$2 +* CON40O-

Y4 1  0 3= P23/V22 ;f

P2 2 =M0,(i7+ CON4)2 + CON5 h4 X3 f 4

8.5.3 STEEPEST DESCENT FORMULA-
V23 =CONl3.I~i+CON1471 TO

+ CN3*~+ CN3~ ~The optimal design problem can be stated
C039 +as follows: Deterinte the dosign variable

~ CN162i1 RQ) in the interval 0 4: t ; t3So as to

+ CN!7q 2 +B(*CN7minimize J X4(12) (8-216)

+ [RQt) + CON31 -CQN6 subject tu the constraints

+CO~8-~CO~9*~~ 2  1 = X2(t') n10+,a 0

CON37.02  ~~x(1 3)- 170 =

Eq. 8-212 can now be written as t 3 a) V0 (8-2! 7)
n,1 =x1(:)=0

J=2/2 (8-213) R22 =X301)=0

S13 = 3 - CT=OBy making the following definitions, Eqs.
8-2 13 can be put into first order form:

8-43
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=R(t)-Rmax . 0 (8-218) x 'a2 /2

and satisfying
/(v1 v 22) 1= 1,2,3,4

=f (8-219)
ft=_v1 2X3(CON13"X2 + CONI4)" >

where the components of the vector f are ax. V,+

given in Eq. 2-21.) and initial conditions are (VI I V22)X(~v= 1'-'< (0 3()= 4()=0 X 0
x1 (O)=x 3 O)=x 4(O)=0, x2(0)=o. 0f.. = ( ViiV 2 2 [2MaV 3(X2 +CON4)

The minimization problem stated here
starts with an estimated design for R(t), +Mv 2 2x2- v1 (CONl3"xlx3
analyzes it, and then improves on the design.
The steepest descent technique of par. 8-3 is + CON32"x 4 + CON16.x2
used here to solve the design problem stated.
The first step in implementing the computa- + 9ON2 8 + CON! 9'x,)]
tional algorithm of par. 8-3.3 is computation
of auxiliary variables required for the al- -(v 13 V2 2 - V1 2 v2 3 )
gorthm.

12" [lV3 I(X2 + CON4)] I(v2v= 2

8-5.3.1 DETERMINATION OF THE AD- aft = 2
JOINT EQUATIONS x 3

- 12 (CONI3'xlx2 +CONI4'xl
The aJjoint equations are, from Eq. 8-93 ....N.

a raX) 0 g - C+ 2CONI6'x 3x2

+ 2"CON17 3 )l(V(v1 V2 2 )

where the vectors f and x are defined in Eqs. aft
8-215 and X = (X, 2, X3, X4)7. V22(2CONI IX4 +CON40)

- v 2 (CON38 + CON32"x2
aft- ( 11 2 )[ a V2 2)-xj (VIV2) 13rx 3 + 2"CONi9'x2x

/ V. V 32
'-  + 2"C0N37"x4 )/(v 1 Iv2 2 )

- - 2ax, / kax /
af2 _ af 2 =0_f2 = f2

a~~~ f00= f

(0,12 3VO , a x , x o

-413 P 2 - V 1v2 3) rx, - - x /2

8-44

Downloaded from http://www.everyspec.com



xr-: AMCP 706-192

1 1,2,3,4 8-5.3.2 DETERMINATION OF THE
BOUNDARY CONDITIONS FOR

-fs THE ADJOINT EQUATIONSi;':" :" " X3" x (CONI3"x2 + CONl4)/V22

Because of the intermediate constraint
[ 3functions, we must evduate X at :-andtl- to
I V2 2 (CON I- 3'Callow for any discontinuities which may occur

across t2 and t' . Since the initial conditions
+CON16,xl +CON18 for the ad, at equations are fiven at t3 , these

equations are integrated backwaeds on the
+ CONI9x,) time interval shown -n Fig. 8-5. Integration is

a3 + N /carried out by integrating from t3 to t 2 l ,

-2M App'i.ation of Eq. 8-116 provides new initial

3X3 (CONI3'xIx 2 +CONI4"xi - C +
to  ti t2  3  Ttime

:7- + 2'CON 16"x3x2 + 2CON17 'x 3 )/' 2+ +Figure 8-5 Recoil Time Interval

aX (CON38 +CON32"x 2 + 2"CON19 conditions at t 2 . Integration is then per-formed from P - to t " . Likewise, using new

X2X4 +2CON37X 4 )/V2 2  initial conditions at t', integration is then
performed to to.

- 0, -= 0, - 1,-L-Z 0. It is the object of this paragraph toax .ax2  ax3  o. 4  determine the initial conditions at t0, t2-,and

t' - for the four different integrations per-

The adicint equations now become formed on the adjoint equations, i.e., for Vi,
2, ff3, and J.

__ . -. 01 Since 923 of Eq. 8-293 does not depend

0, exp;ictly on x, aS2 3/ax 0 and Eq. 8-' 14
1f reduces to

af2  0 01 g_ 2 1 X~t3 )
A (8-220) aX0

aft f Thus,
*aX3 ax'3  T

"-* j XJ(t) ( 0 ,0 ,0 ,0)T

0 - 0I X (1(,,, 0,0)T
PX X4 01 j 8-22 1

X (t 3) (&,lO)T
where the partial derivatives are as computed I
in this paragraph. X', (t3) (l,0,0,0)T

8-4
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1it ridn~ofiEq-i4&22 Obickwarid fromi t' Thus, Eq. 8-222 yields
to -(1 +0 cnnitffect i, wsugth
unluai coiiditlOiv ; .821 I'c Eq.

8220, is 'hobii6geneo us. n and the initialus~a f

tda i!(t;' + ,0) +) 0. Whie [o~il
4 X(:+ 6) -ad* nd: 2,+,0)'wIll-not zero,

th y"~yb iee1a n6wn. There is now,
adequate 14inf~ntin 46! 'ue SEq. -8-1 i6 to 0
determine 7 (P2 0), for-all f..ar adjoint C.O~f 0

In o, zr r~fid \(t2 - 0) in Eq. 8-116, ~ ( OIQ 0-Q 0 823
choose the minus sign alternative throughout
and obtaina-d4

X02 -~ 0)X220
- { ~ ,(f: -)-fltl +0)1 J

k~2~Ao -0)

+ AT(tl + 0) ffQ2 -0) it may be noted that 01(t + 0) 0 will
7. result from integration of the homogeneousI( ~2?Eq. 8-220.

(8-222) Finally, at P', Eqs. 8-107 and 8-1%! yield

Using lLqs. 8-107 and 8-109 to determine k't 0) 0
j(P -0) and SNI2 -0), one obtains at P2 -0 1

i" W - 0)f 2h(t' -0)

?W: -0) -f4 (" -0) (' 1 -0) 0

~i(t, 0)--0 &(t, -0) 0

i 2(t2  0)= and

and Replacing P2 with " and x2 with x I in Eq.
-222 provides the provner jump cor.ditops at

e12(t2 _-0) =f3{t2 -0). tI. They are

8-46
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X' -o0)- V' +0) where ,WR(t) is a weighting factor, set equal r's:-
( Ij to one In this example.

A01; - 0) 0 ,"

With these factors defined, one must
0] 2] [choose the magnitude of constraint error

)',-v - - correction to be used, in Step 7. In the
current problem, reasvnable design estimates

9,(t, - 0)-,(t' +) (8-224) led to smkfl errors, sea c = I was chosen.

A* 'r0' + OHMI,' -o)--' foi For Step 3, only the following routine
f,(t' "0)1 rumerical integrations are required:

_-_______ -____(I + 0

.0) [0
wher-"

Eq. 8-220 may now be integrated from 13 4

to t0 ,1 ithjumps at t2 andt0 defined by Eqs. {1, if< 0.
8-223 and 8-224. This completes compitation d(t)
required by Step 5 of the algorithm of par. 0, if 0 > 0
8-3.3.

8-5.3.3 COMPUTATION OF DESIGN IM- 00, = A AO dt .
PROVEMENTS

The remaining steps of the comput.tional gt -

algorithm of par. 8-3.3 require only routine .|dr.
calculaticn. Some of the key formulas are to
highlighted here to illustrate use of the Lq. 8-80 was used to find yo so that a ten
algorithm. In Step 6, the following calcula- percent reduction in cost function is sought.
tior.s are effected: From Eq. 8-43 (since a = c = I)

af?
A J ( t) = " ' " , (t) - t l 0 1 - o A 0 A ,

and from Eq. 8-35

p(t) =- Ae(,) - 1 [(I - d(t))(AJ + A11 ,)A 1 =t) X 0(1) I= 1, 2 3,

- 2yol.

Iv . ifo> 0 At any points where pl) < 0, delete this
A* (t)- point from the domain of (t) and return to

0 ifr0< 0. Step 6.

8-47
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Finally, the improved design is provided by impoitant factor in reducing the hnp; i.e,, the
Step 11 of the algor~thm, where entries are faster the recoilin parts acceleate during this
computed directly from Eqs. 8-44 and 8-45. period, the greater the reduction in hop. As
While these formulas are a bit messy, they are one would expect, an increase in allowable
routinely programmed matrix computations recoil length also reduces hop significantly.
which are no real challenge to the ,tomputer. An incrtase in the maximum rod force will

also reduce hop, for example, if the reccil I°

8-5.4 RESULTS AND CONCLUSIONS force is allolved to ootain the value 24160 lb
in constraint set of Eq. 8-225, the hop can be

"A Fig. 8-6 represents the optimal recoil force reduced an additional 0.32 in. Fig. 8-7 shows
to minimize hop at 75-deg qtuadeant elevation

XM164 Control Rod Design Comlparisn Betwnen
2 Psesent Grooves and Optimumn Grooves fr Minim m

-iOP at 75-deg Quadrant Elevation and 115% Maxh' m
20 -P ssuret Breech Fo:xe

04.00 Present Groove Design
SL 0.12

0 02 040 50 60 708090 100110120130 140 00
Tlmemec 0.04Grooves for MinimumTimemsec 0.04Hop for R(t) < 22,000 lb-

Figure 8.6. Optimal Rod Force U OP o

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

with the following constraints: Recoil Length, in.

Figure 8-7. Optimal Control Rod Design
R(t) 4 22000 lb 1

(8-225)
recoil length = 28 in. (

a possible variable orifice area design for short
The resulting hop for this case is 1.53 in., i.e., recoil. The orifice a.eas were obtained from
the tires loave the ground 1.53 in. for a 115% the recoil force in Fig. 8-6. The resulting force
maximum rated p.essure breech force. If the levels from the new groove design are indicated
constraints were relaxed, such that b) the dotted lines from 0.110 sec to 0.13

sec, Fig. 8-6. The recoil force is the same as
R (t) < 23500 lb 1 the optimal shaped force curve from 0 to

(8-226) 0.110 sec. The increase in hop is approxi-
recoil length = 29 in. mately 0.1 in. The recoil length changed a

very small amount.
the resulting minimal hop is 0.88 in.

An interesting side pcint is that of the
speed of convergence. The nominal design

The ac.celeration of the recoiling parts variable R(t) used for the first iteration was
during the first portion of i.unterrecoil is an such that at the end of counterrecoil the
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r -ilng parts were 250 in. aw y from the to -optimize tire characteristics for the final
latch pogltion and the required finalvelocity configuration in the tire itself. In, order to
of-61i c, was 96 in./sec. In approximately obtain optimum weapon performance for
14 Kfterations, convergence was obtained flexible mount systems, such information as
which seems to be very fast if one considers tire pgformance could be incorporated .into
the cumplexity of the equations involved, the mathematical model and, perhaps tire

characteristics could also be optimized in the
Results from fring tests,show a sip ,"ficait environment for which they are being used.

reduction (50% or more), in hop can be
achieved simply by increasing the tire pres- The technique used here has the capability --

sure. Because tire perfo.mance information is to optimize many design parameters simulta-
not presently available, it was assumed neously. If there exist other senslitive param-
throughout this analysis that the spring rate eters, consideration should be given to opti-
of the tires was constant (linear spring). mize them along with the design varialS R(t).
Therefore, it is not known what results would This study clearly indicates that weapon
be obtained under a nonlinear spring model. performance can be improved by using
Tire manufacturers are nvestipating methods methods of optimal design.
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CHAPTER 9
APPLICATION OF STEEPEST DESCENT METHODS TO

OPTIMAL STRUCTURAL DESIGN

9-1 INTRODUCTION particular problem. For this reason, it is more
difficult to give a general formulation of the

The same general class of optimal structural problem into which every structural design
design problems considered in Chapter 5 is problem will fit.
treated in this chapter by using the theoretical
results and computational algorithms de- Examples of difficulties that may occu: in
veloped in Chapter 8. For a discussion of the particular problems include the dependence
essential elements of the design problem to be of boundary conditions on design parameters
considered, the reader is refufred to par. 5-2. and design variables, inequality constraints for

stress which involve state and design variables
The basic difference between problems that must be transformed to functional con-

treated in this chapter and those treated in straints, and interrelationships between eigen-
Chapter 5 is in the nature of the design vaiues and state variables at particular point,
variables and the associated state variables in the structure. Each of these peculiar
that describe the response of tie structure. In features will be treated as it arises in a
this chapter, distribution of the material along particular problem. This requires that the -
members of the structure will be continuous cesigner who is using continuous optimization
as opposed to discrete, as treated in Chapter methods for structural design must -.nder-
5. Consequently, continuous variation of stand the origin of the methods well enough
stress, displacement, and eigenfunctions along so that he can alter the computational al-
membeis of the structure will need to be gorithms as required to fit his particular
determined. In this sense, the present problem problems.
is infinite dimensional whereas the aroblem
treated in Chapter 5 was finite dimensional. While the previous discussion might ndi-
The optimal structoiral design problem, there- cate that one encounters only difficulties
fore, will involve boundary value problems as when using continuous methods as opposed
opposed to algebra problems. to discrete methods, there appears to be a

potential "or more efficient computational
The continuous design problem treated in methods in Ohe infinite dimensi',nal problem

this chapter will have more features to ac- than in the finite dimensional formulation.
count for than did the discrete problem. For Further, it is clear that the infinite dimen-
example, there will be differential equations, sional formulation can yield a true optimum
boundary conditions, poit.twise inequality while the discrete formulation of the problem
constraints, and functional constraints, will generally yield only an approximate A
Further, nonclassical analysis problems may optimum. In the following pLragraph, a rela-
arise which require special techniques for each tively general formulation of the infinite

9-1
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dimens-onal optimal structural design prob- r is the boundary of that region. L and B are
lem is gSien, and the computational algorithm differential operatorb on 2 and r, respective-
based on theory of Chapter 8 is developed. In ly. The Punctions Q and q are generally
following paragraphs, this theory and com- related to loads.
putational algorithm are applied to example
problems. Alterations in the general theory To better fix the idea of operators, con-
are made as they are required in tl'e solution sider the simply supported beam of Fig. 9-1.
of individual problems.

9-2 STEEPEST DESCENT METHOD FOR P(X)o
OPTIMAL STRUCl URAL DESIGN

In the structural design problems treated
here, the design is to be spcified by a vector (x)

design function u(x) = fu(x), ..., u,(x)l r

and a vector design parameter b = [b,
b IT, where the independent variable x may Figure 9.1. Simply Supported Beamp
be a real variable, a two dimensional variable
x [x1, x2 I T, or a three dimensional variable
x = [x 1, x , x23 T, depending on whether The bou.Jary value probLam in this case is
material is to be aistributed over a line, a simply
surface, or a volume. In addition to the design
variables u(x) and b, there will be state d~z
variables z(x) = [zI(x) ... , z,(x) T represent- Ldu)z=El()- M(x)=Q (9-3)
ing stress and dicplacement under load and
y(x) = [y(x), .... yq(x)J!T representing3 mode and
shapes for vibration or by kling.

For the purposes of convenience in nota- Bz = )= q. (9-)
tion and generality, the system equations will Lz ( ) o
be written in operator notation similar to that
used in par. 8-4. Only linear behavior will be Here, u(x) is a variable which uniquely speci-
co:.sidered so that stress and deflection are fled the beam cross section and determines
determined by the linear boundiry-value the design, E is Young's modulus, z(x) is
oroblem deflection, and Al'x) is the bending moment

that is computed from the dist,,buted load
L(u h)z = Q(.,b), xEf2 (9-1) p(x).

and In this example, S2 is jus' the interval (0, 1)
and I consists of the two endpoints x = 0

Bz = q, xEr (9-2) and x = I. The advantage in the notation of
Eqs. 9-1 and 9-2 is that it is convenient and at

In this notation, S2 is the region over which the saine time applied to a large class of
the material of the structure is distributed and problems. For -r. example of a problem in

9-2
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whii4Zl is a subsetof two dimensional space, Constraints of the form i?(x,z-,u,b)-4 0 forxEll _
see par. 9-7 will have to be reduced to functional con-

straints as in Eq. 8-6.
In addition to response duv t-) static load,

it is necessary to treat the response of a Beginniig with an engineering estimate of
structure to dynamic loads. One important the design variables u(x) and b, Eqs. 9-3
characteristic of a structure, which is cla~sl- through 9-6 may be solved for z(x), y(x), and
fietu as dynamic res,)onse, is natural frc- r. A perturbation, (Su, 5b), in th,. design leads
quency. Another response, which mu'. be to perturbations in the cost and constraint
treated, is buckling. Bo0th buckling lezis and functions
natural freque.cies are deternied, in the
present class of problems, by linear eigenvalue U1= 6 b + - t + 8

rblems. Again using operator notation, Jb at\8~Z
these pr'iblems may be written in the form-A

K(u b)y =tA1(u, b)y, xG11 (9-5) +l 6t d 9-0

and
60 Su. xeST, zl.,r(9-li)

yov , xGI' (9-6) au 6

where t is the eigenvalue and y(x) the =L.6b +2. 6t+ gI6
asso'ciated eigenfunction or mode shape. The ab fiJO
oper ators K and M generally relate to stiffness
and ma',s, respectively. In conservative prob-
lems they will be symmetdc (Ref. 1) (formal- + ag u+2 b /SI
ly self-tidjoin!) but in nonconscri axive syj-
tems, the.' will not be symmetric. The more I , ., 9-12)
general unsylimetrit.. case is treated here.

The object, as in preceding work, is to
The optimal design problem is that of eliminate explicit dependencies on 5z and St.

minimizing First, the periurtation equation for 8z is

J f(b.t) + f f f(x. z, i.b)&M (9-7)a
I., b)#Wz +-ILu~b)zJ bu

subject to the pointwise conisraints a aQ

OP(xu) -c 0, -E!'Z, I = , ..., r (9-8) + oaQ~ ,b'., b 61 (-3

and the funciional cons,! ints +--8.xS
B& =0, x on r.

e1(b~) +I fg~eu~b~S2 In certain problems, the boundary con-
II S (9-9) ditions may depend on the design parameter

9-3
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* ''b.' In "that, -case, the perturbed boundary -and -

ab f ?
instead Of Eq. 9.13. In this case, methods of
Par. 8-4 must be applied to particular prob. ~

To eliminate 6:, integration of aISf
f )XTL~z d'Z by Parts yields operators L* in + ul'u

andB *on r such that + __ ,~re

f f TL~ - BzTL*Xjdfl 0 (91)r4"- a

fOr all 6z ana ? satisfying BSz 0 and 8*X+
0 on r. 5_

Solving CL\1

az ~ It remais only to eliminate explicit depen-

B"'X'0, x c-r (9-15) dence on St. Under very restrictive hypoth-
eses, Kato (Ref. 2) haj obtaineu a relationship

and among Sr, 6b, and 8u. This relationship is
L *),' agIT ' ~derived here formally. It is assumed that S

-az (9XG16) and Sy depend continuously on Sb and Su
(9-16) and further that the following perturbation

fi*)I 0,XGPformula holds:

and substituting into Eqs. 9-10 nd 9-12,a
using Eq. 9-13, one obtains K(u,b)by +- IK(u~b)y]6u

___ f rr,riaQ
SJ SU* +~ * a K(u,b)yJSb

ab
a WOW~b I + aflSudS2 6 jMfu.b)y + t -2- fM(u~b)v I Sui

_SUI ) oujl au

+ j afo+ V' fjrf - Mub)yJ6b +.M(u,b)6yab _5b Bab

+ .T1a Just as in Eq. 9.14, integration by parts
+ 7 may be used to obtain the operators K*

a VI MWl and C* adjoint to K - AM and C. Thiese
- Tb WOWZ)]j dM J b (9-17) operators are defined by the relation

9.4
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___ ~ L y)dfli ffj9Qc*W be eip szdtha t6 04. -1 is obtainedb
- strictly 16"i~a cau iti± are ede

- mathematical qd~itldns concerning,, th en-
r Mw)da cral validty of this result For a tatmitnt of

- the subject- of-perturbition theory in- linear
for ill )w and 3- satisfying -C~w 0 -and C' operators, the reieri is referred to Ref. 2.
~0on r'. Let 31satisfy

An expression for 6r in terms of.8u ana 6blA
Y~3 ~ 1 x6T may not be-substituted into Eqs. 9.17 and

- (?-20) 9-18. Defining
N o*7, xeP r

kPremultilig 91 J f 1  aQT
an enagnterms yields b

{ffYTM~dflJ6~ (u,bzl)]~

ff~ n

ffnKy.yT o~ ndl

[(5 K(u~b)yj)F
+ f (T -L K(ub)y l a~I-[Mub.Y)7

I K(ub)yl Su- dfj +3b

abT... AMub"" I +~ (L'b'T 1

- r b* Mu dfl Sb - -jb~

(9-21)

The first term on the right is +Laf ,f7 Jd

f f IYTK~y - tTAfv IdaZj (Xu~)I

x r -,a7((* (1MK)JdS20y

o ~a~ IM(ub)yJ)YT

by definition of the adjoint operator. It must (9-23)

9-5i

Downloaded from http://www.everyspec.com



?~ ~ - -. 4-y

AMCP 706-192

I E aQTDefine vector constraint functions RX)
8b.containing those constraint functions 0,(x)>

0 and ~'containing constra'nt functionals
\ 7', 0. Define

- (ub'z1) Ixi"
b ''aJ I..

A~x W I for all Itwith 0,(x) >

10

~ 7' and

(T- uIMu,bjyjj yi A; (x I o l it l 1

(9-24) (9-30)

andDefining A (x) and A to be desired
rgI raQT reduction in constraint error, the linearized

A~=.L jproblem is to choose 8ucx) and 6b to mini-
aU L 8 Umize

a!8,/f 7MdJ subject to

A; 75u - A 0, for xES2 (9-32)

- [i. ((u,b)yJ 37]

(9-25) and

Eqs. 9-17 anxd 9-18 become SbT IV b + f f u (v)bu da2
n

ff <~' ud2 (-6 0 (9-34)

and The weighting matrices IV, ard WV,(x) are

8 '7=',I chosen positive definite and t is small. TI'is
=&I6b + f f A'/6u M . (9-27) optimization problem for 6u and Sb coincides

n with the p,-Alerns of pars. 8-2 and 8-3 for

9-6
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ordinary differential equations and with the ~ T +U AT~
problem of par. 8-4 for partial differential W ~ i
equations.

X ail, M- w')V; A; f
Determination of a solution proceeds at, aSZ

exactly as in Chapter 8 so only the resulting
computational algorithm is given here. and

Steepest Descent Algorithm for Optimall au 0fA '; L M'A
Structural Design

Step 1. Make an engineering estimate of Se .Cos tpie'o>0adeau
the solution ,SO)(x) and b()

ate
Step 2. For/n , (1, ..., solve Eqs. 9-1, 9-2, 7

9-5, and 9-6 for z() YU), and t(I). Y-A1 [2,yo(A +M )

Step 3. Check the constraints of Eqs. 9.8 ~
and 9-9 and form i and ' contain-
;ng the constraints not strictly
satisfied. and

Step 4. Solve the boundary value prob- p(x) U [2M0'[2
lems, Eqs. 9-15 and 9.16, for 00
and %1&J corresponding to 0, 0.-
Solve the eigenvalue problem, Eq. + V,- I 7(A-'+ A~-)
9-20, for j.

Ste S.Chose he orrctins n cn-If any :omponents of -y or jx)areStep5. hooe th corecionsin on-negative, delete the corresponding
straint er'ors '54 and Alp. components of & and i, respective-

Step6. Ealute R, A, R", ad AO inly, End ieturn to Step 5. Other-
Step6. valate , M Q~, an A~ inwise, continue.

Eqs. 9-22 through 9-25 and com-
pute Step 8. Compute

M,1,W a 2 IVQJJ AJ - -i

Al ff A. .IV,
2 IV - Ik, + 31IU 

-

M' d~~~2 x(al~ MA~
X 1_ 2L M 13 ~_IA 9

(Aj -M Q'A
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a X t-I aT the method of steepest descent, to illustrate
5u2()W~1 V ~ '4 the direct application cf this technique to

optimal structural design. The mathematical

W;formulation of the problem is given In par
au 7-2 and will be used here with a change in

x[AWM (A~M~)Inotation to be consistent with par. 9-2.

= Wb1 (' - MFixing cross-sectional geometry and allow-
8b ;12 Rm- MP, ing cross-sectional area u(x) to vary, as in par.

and 7-2, yields

6b2 ~ ~ ~ ~ X =W7 a;(~+~, IxcU 100 (9-35)

The optimization problem is W~ choo.se u(x), 0
and fo~rm x .4 L to minimize

u(1/ ) = uU)(X) - uI Wu1 Jx) u(x)dx (9-36)

+ 6u2(x)subject to the constraints

and POP- P < 0 (9-37)

5+ b2  0 /x Q0(9-33)

Step 9. If all -onstraints are satisfied and n
SOW(x and 6b1 are sufficiently
small, terminate. Otherwise, return d2 Y
to Step 2. K ,.2 _;7M U)

The results of Thcorem 8-2 hild for the (9-39)
optimal perturbati3ns, and it may be shown
that a necessary condition for convergence to Y (0) 0
a local optimum is Su I(x) and 8b I approach (z IH I
zero. Discussions of Chapter 8 on use of the dy (
algorithm apply. They will not be repeated L L l L ] (-0
here.

where the coordinate system is as stiown in
9.3 A MINIMUM WEIGHT COLUMN Fig. 7-1 with y replacing x and x replacing ~

A minimum weight column problem has In its present form, the boundary-value
been solved in pars. 5-4 L.id 7-2 to illustrate pioblem is just as in Eqs. 9-5 and 9-6 and Is
the use of two optitnizatien techniques. The self-adjoint, so y =y in par. 9-2. For use in
same problem is solved in this paragraph, by the steepest-descent algorithm, Eq. 9-23 is

9-8
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A-= 1 (9-41) Specifically, the problem consider.,d here is
the determination of the distribution of ma-

and Eq. 9-25 is terial along the centerline of a simply sup-
ported beam (see Fig. 9-2) so that the beam

3y2a..)  L y 2 (x) will be as light as possible and still have itsEau3(X)/f LEau2( dx fundamental frequency at least as large as a
0 predetermined frequency coo. Further, so that

(9-42) the beam can support a minimum level of
bending moment, it is required that the

The computational Jgorithm of par. 9-2 second moment of its cross-sectional area
now applies directly to the present problem. shall aiways be at least as large as a positive
The solution of the eigenvalue problem, Eqs. constant 1o.
9-39 and 9-40, was obtained using the finite
element analysis technique outlined in par.
5-4. The solution of this continuous problem '
raquired approximately the same time per [
itetation as the discrete technique but fewer
iterations were generally required for con-
vergence. Exactly the same results as given in Figure 9-2 Simply Supported Vibrating Beam
par. 7-2 were obtained. The reader is referred
to that paragraph for a tabulation of results. As in the column problem of the precedingparagraph and par. 7-2, the geometry of the

cross section is fixed and all dimensions are9.4 A MINIMUM WEIGHT VIBRATING allowed to vary proportionally. If the area is
BEAM denoted u(t), then

As was pointed out in par. 7-2, the paper 1(t) =u 2 (t) (9.43)
by Kaller (Ref 11, Chapter 7) in 106 0
presented a mathematically elegant method of where t is the minimum second momept of a
designing the minimum weight column. The cross scction with the given geometry and
same method was applied by Niordson (Ref. uni. area.
12, Chapter 7) in 196:, to find the simply
supported beam of maximum natural fre- Since the material is to be specified with
quency for a given volume of material in the constant density, minimum weight is equiva-
beam. This method of solution resulted in a lent to minimum volume. The quantity to be
horribly nonlinear differential equation with minimized is, therefore,
serious singuarities. While a solution was
obtained for the vibrating beam problem, it is J =f(-44
doubtful that the method could be extendd 

(9-44)

for the solution of mulimemler structural The constraint on I(i) discussed previously
design problems. The methods of Chapter 8, can now be written as
on the other hand, are quit, general and will
be used in this paragraph to routinely solve a 10 -- aud(t) < 0 (9-45)
minimum weight beam design problem with
constraints on natural frequency. where 1 > 0 is given.

9-9
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Termiigfaueof the problem to be with boundary conditions

freqerc Ifthebea 16has a yJ (0) --Y,(L) 0
fundamental natural frequency of wo or (-9
higher, then this is clearly the optircm beam. Y2(0) =y2(L) =0)

On the other hand, if this beam has a natural
freqjuency below wo, then there must be The boundary-value probl-m, Eqs. 9-48
points along the beam for Which au2(1) > 10 nz99 ssi-doits 7! a.92
and a mneaningful designi problem exists. The The optimal desigr. problem Is well-deIned
inequality on natu~ral frequen'.y is and the notation of par. 9-2 applies directly.

From Eq. 9-23,
WO - 4 0(9-46)

There are several ways in which the natural and fromt Eq. 9-25,
frequ.mcy of vibration of a beam may be
related to the design of the beam u(t). Thef2y
relationship chosen here is the boundary-value Al' =j If uy dx .
probleni describing lateral displacement Eu
during oscillation. It is given in Ref. 3 ?-

Th. computational steepest-descent algorithm
may now be implemented in a direct manner.

d2 ~d2w)
dx2 \.tu dxv 2 Ip~ As a numerical example, the given problem

I r-s solved with the data E = 3 x 10" psi, L
iv(0) =w(L)= 0 f (9-41) l0 in., a 1.0, and p =0,002cS slug/in-' The

w"(L J igenvalue prot!.,m was solved through u-c of
W$P(O wl#L) 0a finite element structural analysis program.

Even though there was no attempt at making
the co'nputstional routines efficient, only 7

where prime denotes different iat-o n with see per iteration on an IBMI 360-65 Computer
r'spect to x. were required. For must natural freque.ncies,

10 to 15 iterations were sufficient for con-
In ordler to put the boundary-value prob- vergen-e to within nimrical accuracy of the

lem, Eq. 947, ir-to the form Eqs. 9-I and 9-2, computations. Results for a range of natural
define yj w, y2 =Eau2(d~yj1dx21). and Areqjuencies are given in Table 9-I1. The general
pwo l The problem, Eq. 9-47, is then snapes of profles of several of the optimum

beams are shown in Fig. 9-3 to illustrate the
Fd2 Y2 1 0 f optimum distribution of material.
Ix i

Ly~ &2= 9-5 A MINIMUM WEIGHT VIBRATINGLd~y YI Y FRAME
U-d;- 'Tau2JThe distribution of mate. al along members

(9-48) )f the frame shown in Fig. 94 is to be

9-10
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TABLE 9- W2

COMPIARISON 6F OPTIMAL BEAMS, L x 23Z tX

I~ifrm Rduor

rodlwc 1n64hvngs

3600 0.9353 0.8967 4.13 WJJ7 .17
Iwo0 1.1546 1.0583i 8.34
4400 1.3971 1.2536 10.27 K L
4800 1.13627 1,4740 11.35 Fiue94. Portal Fiarne
5200 1.9514 137189 11.92 -:
5600 2.2631 1.9847 12.30
6G00 2.6980 2.2)05 12.61 frequency greater than or equal to a given wo.

10000 7.2165 6.3172 12.46 Further, as a form of strength requirement
I(x) > 10 > 0 is required.

*Uniform boom of lowest volum, having requi. d natural
rii atnc

.qcyFor convenience, all members have the
same length and all cross sections have the

determined so that the frame is as lightweight sm emtybtmyb cldb atr'
as pssile nd as funametalnatral that varies with x. In this case, the area of

cross sections u,(x), i = 1,2,3, uniquely
I' determine the design of (lie beams when the

3,600 ud/secbeam material is chosin. Further, the second -

moment of the cross-sectional areas are

4~00ra~scc ~ 1(x) a'j ul(x W

where a, is a constant depending on the
Lross-sectional geometry chosen.

6,000 fa/c Defining

Y2 =Ell11

Y3 W92

10,000 radisec 

.. 
Iw 2

Figure 9-3. Profile of Ogimal Beam Y6 [ l3 1V3

9-I 1
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the differential eqi,.tions for vibration of the The perturbation boundary conditions '~
frame are from Eq. 9-51 are

1YI 6yyl(BMW 0 ay~l;)=5y$(0)

Y1 - EiY3 0 8A (0) 0 Sy' 1(L)= 6y'3 (0)

SY3(0) 0 SAW=L)8y'(0)

Y3 -7 jY4 0 8y 3 (L) 0 SY2(L)5y(0 BM

A' U3YI SyS(L)=0 6Y4(L)= 8y6(L) Z'

YS-~Y L J oly' (L)O0

(9-50) &()+6~o

where r pW2. Boundary' conditions are 8u(xy(L
Y, (0) 0 y, (L)-y (0) U

A (O) 0 A (L) Ay'(0) .

Y3(0)= 0 Ay(4) Y's (0) Two integrations by parts and cimination of
boundary terms through use of Eqs. 9-5) and

Y3 (L) 0 Y2 (L)=Y4 (0) 9-52 yield

ys(L) 0 Y4 (L)= y6 (L) (91 (L
I yTJy dx YTK6y dx

A (L) + 0) 6U o(

if U2JL~d] y1(9-53)

The boundary-value problem, Eqs. 9-50 Since the boundary value problem, Eqs.
and 9-51, is written in seif-adjoint form. The 9-50 and 9-51, is self-adjoint, 7 = y in the
last bounuary condition in Eq. 9-51 is jus general formulation. The derivation of Eq.
Newton's second law applied to horizontal 9-21 holds and Eq. 9-53 may be substituted
motion of Member 2. This boundary con- along with
d,)n does not fit Eq. 9-6 exactly due to
dependence on the design variable u2 (x). It f.L Lx=
will have to be treated as a special case J TM6Y dyTmy dx
according to the comment following Eq. 9-13. Jof

9-12
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to obtain This is procisely~the fom: okq.jp- 7,,andthe
remainder f'hte

(~Lstbepest descent a ~ihnis 'valid, It-should

IJJbe noted, that -thigdifivation iiforial, and
(L rigorous verification of. 134-944 is'expectd:

Iy K to' be-e'xtemely'4ifticult. .

~""''~ The-algorlthm of par. 9-2 was used to solve
this proqbezn in a-direct mfanner. Xhl6e*eige-

1[f U()+ L value problemi was solved approximately- by a
.1 ~~ ~52(x~x Yi(L)finite blement rehod. Data for this problem

"'1 .10are a 0.079S8, p = 2.616x10 4 Ib-sec2/in. 4,
E = 10.3x 106 psi,!10 =.00982Sn.4, and L

r2110.0 in. Weights of optimum frames are EivenLi Eai I sj In Table 9-2 for several frequency require-
mnents, and the profile of an optimum frame is

2Y4 shown in Fig. 9-5.

TABLE9.2

C1 2y d WEIGHT OFOPIMUM FRAMES

Solving Cor at, CaA,, radluc 2000 3000 4000 5000

I Optimum
L 2 2Weigh~t. lb 1,73 2.56 3.59 4.69

+ uy + 2A +~y(~ U3Y2 I-
Ec~2

fl[tY- 1813 }dx
(9-54)

By making the obvious choice for M, Eq.
9-54 can be written

Li Tat A~ 6u dx (9-55) Figure 9-5. Profile of Optimum Frame

JoJ
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'-M6 AMIIMUM. WEIHT ________

MULTIPLEFAILURE9RI"T2R1A- 2

4n , Wutotstru t4Wial Si- Oprbk nis, con-;'

4srt iji u ijembr -slie;, dif"in and
-buckllng ar* iiOfoirccd~ilnthe rinifiim,*e kt

iiatefjine 'ibwiiin Fli. 9-6. 'Area iIs Figure 9-Z. Free Bodies

the thhd member moves - (.' L) units to the t~~
YL,

2 right. Taus, by elementary beam theory (Ref.
3)

T- 3w(L)EC13  (-6

q x) 3

The differential equation of deformation of
the first member is

IEui 1I(x)w"1"=-q(x) (9-57)
Figure 9-6. Laterally Loaded Frame and the boundary conditions areW

W(O) 0
allowed to vary along the length of 1W~ ftnl.
and second members but the geometrical W'(O) =0
shape of the cross section is fixed. Thus, (9-58) 0~

iv"(L) 0 -
11W) = aud() 3El0v(L)

-(Ect, u1 ") (L)
where G, depends on the cross-sectional geom- .
etry and u,(x) 'i the cro3s-sectional area of the
Ith member at the point x. The size of the To get the boundary-value problem, Eqs.
third member is fixed and all members are 9-57 and 9-58. into the form of Eq. 9-1,
taken the same lengthI. define

Frec body diagrams of th~e members are Z,=I
shown in Fig. 9-7. (9-59)

2 'I)

The third member is uniform with constant
moeulus El3. Further, axial deformation of The boundary-value problein, Eqs. 9-57 and
the second member is neglected so the top ot 9.58, is tiien

9-14
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and
z2

Lz llIj 2)1 W + o 01 ,2 (9-67)
The constraint, Eq. 9-65, requires that -the

-q~x) (96~ axial load T in the second member be less
(x) than or equal the buckling load'. A limit SisL oj placedd on horizorstal deflection ofthe top of

the frame in Eq. 9-66. The constraints, Eq.
9-67, are included to insure that member

and cross section does not go to zero anywhere. A
more realistic constraint would be on bending

Z( stress but this would require a constraint of
the form of Eq. 8-6. This constraint will be

Z11(0) 01 included in subsequent work but will not be
__z 2()0 treated here.[3E13zl(L) Th. constraints, Eqs. 9-65 and 9-56, do not

-2 4(L) - (L L0 J fit directly into thL. basic formulation of this l
(9-61) text and require special treatment. The lin-

The equations which determine buckling eridfomofteetntaitae
load P of the second member are 5E ,() P1A i (.8

L3))k:LY /
Ky _2y" =P - L' PAy (9-62) and

(i~t2U2
and - 8z1(L) A0 (9-69)

0y l~ O t remains to obtain expreszions for 8z I(L)

1y(LiL0  (963) and 6P expiiotiy in terms of 6u1(x). Fror, .-q.
9-2 1, 6P' ma~y be expressed in terms of 6ui2(x).

The objective in the design problem is to I re ooti nepeso o
choose i(x) and ti2 (X) to minimize the .z() r'nsictt iia oE.91
weigl't of the first two m-nibers, is needed. Integration twice by parts of

j y f. x 2 o)d 96) J XTL8z dx yields

0

The constraints to be enforced are ~ f 8 Xd

L3 zl(L) - P 40 (9-65) =(X 16,2 z' 2 ? 6z2

z()-S<0(9-66) + 2-M 2 6Z ) 1

9-15
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Choosing X such that L?. 0, substituting for Eqs. 9-1 and 9-5, are formally self-adjoirnt so
L5z, from Eq. '9-13, and using the lineprized L* = L, K* = K, and M* =M in the general
boundary conditions of Eq. 9-6!1, this be- theory. Since the boundary-value problem, 1
comes Eqs. 9-62 and 9-63, is self-adjuint, j7 = y andr"

the computation required in Step 2 of the
- 2Asteepest descent algorithm is considerably ~ '

3f ottaN redt' ced. "
(13 E!, ofThes problem is now easily put in the form

of(L th ,le f a.92 as solved by
dietapplication of the algorithm of that

- tj(0)8z21(0) paragraph with the data S =4 in., L =100 in.,
E = 3.00070 psi, oi = 0.07958, 10 0.0147

+ X~ ~&~ (0), and area of member 3 is 4.0 in? The
volume of the optimum frame for several r

+ X2(L)8z1(L)
r'noptimum frame is shown in Fig. 9-8.

TABLE 9-3
The adjoint variable is chosen to satisfy LX VOLUME OF OPTIMUM FRAME (
0 but no boundary conditions have yet been

specified. Choosing q, lb/In. 10 15 20 25 p
Optimum

3E .1 L- 2 ( Volume, 502.1 531.1 656.0 653.9
La !~(9-71)In

the Identity, Eq. 9-70, becomnes 9-7 A MINIMUM WEIGH7, VI8RAA'NG
PLATE

rL
SzI (L)Fu it3 (V 6u 1(x)dY In order to illustrate the us, of the

J0L A~ux) ~steepest desccnt method in highter Jimen-
(9-72) sional problemns, a minimum weight vibrating

plate prcblcin will be solved. A rectangular
Thius an explicit relationship between 6it and plate, Fig. 9-9, is specified by its thickness
6z2 (L) has been found and may be substi- function hdx 1. x2 ) over the plate. 'lle object
tuted directly into the linear constraints, Eqs. here is to choose /:(x1. X2 ) such that the
9-68 and 9-69. With proper choice of nota- weight of uic platc is as small as possible
tion, these inequalities fit into the form of subject to th" constraint that the natural
Eq. 9-33. frequercy of lateral vibration is greater tihan

or clual to a given frequency w. Further, due
Ir. this problem the differential equations, to applied loads, a conistraint of the form is

9-16
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2

Figure 9-.Profile of Minimum Weight [tame Al l . i:;,y h(x1,x 2)Flgure9.9 Simply Supported Piate

h0xx)h(X 1.X2) - 0 (-73)

enforced. In the present problem, h((l 2 jax)Oya(0, x2)= 0
is taken as a constant h~.

Y(.X2 )0, Y4(0, X2) 0
Denoting bendnr moments (Ref. 4) byy 1 (9-75)

~M, Y2 =M , and Y3 =M and the lateral Y2 (X, 0) =0, Y2(x1 , b) =0) displacement by Y4 =w, the equ2tirinsj
gerning lateral vibration mvbe written yd4X 1 , 0) =0, ydx, , b) = 0

(Ref. 4) In self-adjoint form as

.1 '0 1 The coordinate system and simrply supported
boundary of the plate are shown in Fig. 9-9.

a'; 4~ -0 To complete the formulation of this prob-
* ax Eh'lem in terms of the preceding theory, a cost

I(h~u* u~rhy function is defined by

- Y3 0

[hyJ.]j7J:(x 1. x2)dx IdX2  (9-76)

(9-74)
where y is weight density of the plate

where =pW2 and w is the- natural frequency material. The strength constraini in this prob-
of vibration of the plate. The boundary-value lem is taken as Eq. 9-73 and the ei&,envalue
problem for the simply supported plate with constraint is
differential equations, Eqs. 9-74, is self-
adjoint with the boundary conditions PW,- ' 0 (9.77)

9-17
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A

geeaIb be fpr -. Th oanS n i. .x1 7 pi 74x0 bscis problem is now~ in the formn of the (Ref. 5). Data for this problem are a b 5.0
this case is simply the rectangular region of in.4 , v =0.30, o'nd o 1375 radlsec. A
the plate tha! is of dimension two, Further, uniform plate witn t p(.)' = 1400 was taken
since the boundary-value problem, Eqs. 9-74 as the initial estimate. The volume of the4and 9-75, i~iself-adjoint, y j7 in the theory of optimum plate is 10.71 in? Double sym-

41par. 9-2. metry of the optimum plate was observed
about the axes through (a12,b/2). One quarter

Using the definition of K and MA 0 t - of the optimum plate with contour lines is
'1h(X 1,X2) in Eq. 9-73, and e1(r) p - r in shown in Fig. 9-10.
I Eq. 9-77, frori Eq. 9-23,

A' ly(9-78) 2

andfrom Eq. 9-25 2Pi2Y 81 gy , 1
A [36(y' El 4

(9.79) 0.10 0.12

This prohilem is now in the form of the
general problem of par. 9-2. It was solved byb
direct application of the algorithm of that 2
parqgraph. The eigenvalue ind eigenfunction
for the vn'iable thckness plate were deter-
mined -ipproximately by the Ritz techn~ique Figure 9- 10. Contours of Optimum Pia'9
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APPENDIX A

CONVEXITY

Convex, functions and sets as defined in X X2

Chapter. 2 play an important role in optimiza-
tion theory. It is generally possible to obtain
much more comprehensive :results in nen-near programming problems that are convex

than in the nonconver, case. Some of the
more impoitant results due to convexity are
given in Chapter 4, par. 4-2. (A) (8 "

In order that this appendix is se:f-. ... . .. ~~Figure A.1. Ev'amples;Convex Case and I.'-
contained, definitions of general convex sets Nonconvex Case
and functions will be repeated here. For a
complete treatment of convexity, the reader
is referred to Ref. 1. and y. This is precisdy the property which

characterizes convex functions. Analytically,
Definition A-]: Let D be a subset of Rn.D th;s property is expressed by the inequality

is calle a convex set if for any points x and y "'A
in D, x + O(y - x) is also in D for all 0 such flz + 0(y - z) < f(z) + Olfuy) - f(z]that 0 < 0 -4 1. ';'

for all 0 with 0 < 0 < 1.

The collection of points x + 0(y - x), 0 <
0 < 1, is just a straight line from x to y. Def. The same idea holds in R" where convex
A-I just says, then, that a set in R" is convex functions are characterized by
if tMe straight line joining any pair of points in
the set lies entirely in the set. For example, in Definition A-2: Let 'he real valued func-
R' (the plane) the set of points inside the tion f(x) be defined on the convex subset D
unit circle is convex (see Fig. A-l (A)) whereas
the star-shaped region in Fig. A-I(B) is not
convex. W x) x2

Convex functions have as their prototype
f(x) = x1 in R 1. The graph of this function is
shown in Fig. A-2. Note in this figure that if a
straight line is constiucted betwe'n any two
points (z, f(z)I and (y f(y)l, then this line is
above the graph cff(x) .t all points between z Figure A-2. Graph of f(x) = x in R

A-1
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of R". TIeIn f(x) is called a convex function if All these 'Zesirable properties of convex (~'
for any points z and Y in DA functions will go to waste unless one is able to

test a given function for convexity. The
flz + O(y - ZJ <fAz) + a(fAy) -A~z)JI following three theorems provide useful tests: A

(A-1) 1. Theorem A-3. If f(x) is twice contin-
uously differentiable in a conve:. subset D of

for all 0with 0' <~ 0 . R", it is convex in D if an cv,:y if the
quadratic form

Convex functic'is i convex sets are
related as is shown in S~T [L / (or ST VlpS) (A-3)

Theorem A-1: The set of points D i RR
which, satisfy g1(x) < 0, I= 1, ..., m, is convex is positive-seinidefinite at each point in D.
if each of the functions g1(x) is convex in Rn.

2. Theorem A-4: If the functions q1(x), I =
One further property of c6nvex functinns 1, ..., r, are convex in the convex subs.-t D of

is extremely important for applications. It is R" and a,1 > 0, I= 1,., r, then
established by

Z' cv1q(x)
Theorem A-2: If f(x) is differentiable and

.onvex on the con-ex subset D of R", then 's onvex H-iD.

ftx ~f~) -vfy)(z - y)2) 3. Theorem A-": If g(x) is twice contin-
for allz andyin D. ously differentiable, g(x) < 0, and g(x) is I
for ll zand in t.onvex; then, I /(x)J is convex.
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APPENDIX B_4

ANALYSIS OF BEAM-TYPE STRUCTURES

U44

Finite and discrete element methods of 3

structural analysis (Refs. 1,3), require aU,3
knowledge of. the behavior of each element in -px

ihe structure. Once each element is described, Figure B-i1. Basic Beam Element
then the governing equations of the entire
structure may bo derived. E2nergy methods are
generally used to obtain the governing equa- WWx U 3 (2X3 - 32X2 + 23) _L4. (2X3

tions.

B-1 ELEMENJT ANALYSIS - 22. ( 3
-2

(B-2)

In order to apply energy theorems for the + 21)1x) -:H6 (X3 
- x)

22 X)
analysis of a sth'ucture, the potential energy
du( to strain, kinetic energy, and change in Itsolbetrsdththeoniuna) xternal dimensions due to bending must be Itsolbetrsdththeoniuna
described. The basic idea is to assign general- dipae ntsxisueoltoontdnl
fed displacement functions, which are of the sri nteba n o u otecag
frm expected in structurai deformation and in length caused by the lateral displacement

thtaeunqeyspecified when the displace- x)
.ment of both ends of the b-.ani is known. A The potential energy PE due to deformna-

vention issonin Fig. B-i. The displace-
rnent u1 12, U3, and U4 are comporents of I(d\ 2 d
endpoint displacement and its and U6 ar2f dx)
endpoint rotations.V

The I',ngitudinal displacem~ent of a point x, +TVEd-7 ) dx
o < x 4 2, on the beam due to iongitudinal 0(13-3)

strain is apprcoximatee byI(2 /_u 2 \ I

T AEk 1_ +T) dx +- I

S(U:U 6 II 12(B 1

x is approximated by + -5 x -4) + LI 6-6x- 2)2)J dx
Q2 -I

Downloaded from http://www.everyspec.com



AMC 706-192 
Z:

AV -AR'.----- 0 0 0 0 40 0 0 0
70 ~ ~ ~ 14 0 .2I AVS 0 0 V

0~-N 121 - 2 1 A.4 PA 4-2 3

AMCP N(B-69

which is orU U3 4 SU
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B-2 VARIATIONAL PRINCIPLES V(u) U(u) + 2(u) (B-9)

In most structural analysis work it is more Equilibrium states of a structure can now
convenient to use variational principles to be characterized in term., of the total poten-
describe the state of the structure than it is to tial energy. For unconstrained conservative
use Newton's laws dir-.ctly. For use in analysis systems, a necessary and sufficient condition
of the structures considered here, the basic that u be an equilibrium state is that
variational principles are stated. These piin-
ciples apply to systems that are unconstrained
in tl. particular coordinate system chosen; a V(u) = E art 0 (B-IO)
i.e., once the coordinates, , = ,..., n, that "t ,u,
describe the state of the system are chosen, for all 3u. This is equivalent to
there are no algebraic relationships between
these variables. Further, it is required that all a V(u)
force-state relationships for external or in- = 0, 1 1,...n. (B-ll)
temal forces are continuous, i.e., small "
change: in state yield only small changes in
fo,'ces. This result is proved in Ref. 2, page 23.

Let W' denote the work done by all forces
on a structure due to an admissible displace- A second result is ihat a conseilative,ment. Then, the system is called conservative unconstrained system is in stable equilibrium
if Then or sydoe i al di se tat at a state u if and only if the total potential/ if the work IV' donie in any displacenment that

returns to the original state is zero; i.e., the energy is a -ative minimum at it. This result
system is conservative if no energy is required is proved in Ref. 2, page 30. For the kind of
to change the state of the structure and bring structural systems considered here, it is

further shown, Ref. 2, page ')11, that at ait back to the original state along any path. A
structure would be ncnconseivative, for buckling load l'c,, the second variation mustbe positive semi-definite, i~c.,
example, if sliding friction or viscous damping
were present.

a2 v
Starting from some reference state of the 621111) StT (U)6u > 0 (B- 2)

structure 14o, define the stored energy in the "4structure at state it to be (it). Note that and ,urther that there is a 6-a such that
since the system is conservative, U(u) depends
orly on u and not on the path the state 32 V
;,ariable followed ;n getting from uo to iu. 52 V(u) 6 -T.--.() 61  =0. (B-13)
Likewise, the negative of work done by the au
exteraal forces acting on the structure due to
the change in state variables will be denotcd The inequality, Eq. B-12, shows that zen is
92(u). Again, 92(u) depends only on the final a relative nininum and Eq. B-13 shovs that
state and not on the path from uo to u With relative mininimum is attained for Su = 6b7. For
this notation, the total potential energy V(u) 62 p'(u ) treated as a function of 5u, then, it i%
is defined LS ne),essary that

11-3
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at 8u w~ 8W. Thus where m1i are element irisses. in the nl~oatioi

The~~o coniton Eq. I "'A eemie ukin ut

1trucotu , Eq.c byn i4l, d th~e structure utin

is governed by IgrLagrangessequations of motio-.~= ,*,n. are IT simpl

motion. First, define dhe kinetic energy T as Tuthe quadratic form ,
B-3 EQUATIONS OF STRUCTURAL

T u 4M (B-iS5) ANALYSIS

where Tim given variational principle- may be i
applied to obtain th. governing equations of

M JMJstructural analysis. The element properties
described by Eqs. B-4, B-6, arnd B-8 may be

and the m,, are generalized inass,!s. The useu to generate the potential and kinetic
generalized mass matrix M is defined by th :niergy of the entire structure. From the'Itransformation definitions, Eqs. B-9 and B-1I5,

z = f(Z) V ~E # Z(Uk + ukFk (13-18)
/ k

4 wherc

Z = [l, Zand

and Z, are components of phySiLil displace- T Z JE' (B- 19)
merit of the masses of the structure. There-
fore, where superscript I denotes the jth element of

the structure, k denote; the components of
T.~~~l P [ay' displacement at joints, Fk is the component
2 1' aiL\Z J of external force corresponding toi u.k, and ik

is the displacement in the s-m direction as
[(bJ ' ~1uk but due to the AQ components of barLM I J deformaticon. The displacements i- will be

B4
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determined from structure geometry and the I
Ak of individual members kiven-in Eq. B-8. 2 2TK 1Z IKu
For determfinfing the equdi~liim equations ad
B-11I, the displacements jUk are generally
neglected sirce thyare a cs udai nu M IML
so they will be small if no buckling occurs. It 2 2/
is just these quadratic terms, 'however, that
predict b-icklinj beh wiord of iuctdres. whcre summationis taken over all,elements of

the structure and K' afid MI are defined in
If a composite displacement vector u is Eqs. B4 and B-S. The equations for displace-

formed from the components of all the ment, buckling, -ind dynamic motion May
member displacements, then matrices K and now be determined directly from Eqs. Bi 1,
M may be defined by B-14, and B-17.
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