

TABZEOF CONTENTS (Con't.)

Parazraph		Page
	CHAPTER 2. FIMITE DIMENSIONAL UNCONSTRAINED OPTIMIZATION	
2-1	Introduction	2-1
2-2	Necessary Conditions for Extrema	2-2
2-3	One-dimersional Minimization	2-6
2-3.1	Quadratic interpolation	2-6
2-32	Fibonacci Search (or Goiden Section Search)	2-7
2-4	The Method of Steepest Descent (or Gradient)	24
2-5	A Generalized Newton Method	P-11
2-5	Metiods of Conjugate Directions	$2-12$
2-6.1	The Conjusate Gradient Method	-14
2-6.2	The Method oi Fletcher and Powe!	$2-16$
2-6.3	A Conjugate Direction Method	
	Without Derivatives .	2-17
2-7	Comparison of the Various Methods	2-18
2-7.1	Method of Steepest Descent	2-18
2-7.1.1	Cost Function $f_{1}(x)$	2-18
2-7.1.2	Cost Function $f_{2}(x)$	-1\%
2-7.1.3	Cost Function $f_{3}(x) \ldots$. .	$\therefore: 0$
2-7)	Generalized Newton Method	310
2-7.2.1	Cost Function $f_{1}(x) \ldots \ldots$.	: 10
2-7.2.2	Cost Function $f_{2}(x) \ldots \ldots \ldots$? \%
2-7.2.3	Cost Function $f_{3}(x) \ldots \ldots$.	$\therefore ?$
2~7.3	Conjugate Gradient Method	2 :
2-7.3.1	Cost Function $f_{1}(x)$	2..
2-7.3.2	Cost Function $f_{2}(x)$	$2 \cdot 1$
2-7.3.3	Cost Function $f_{3}(x) \ldots$	2. ${ }^{1}$
2-7.4	Fletcher-Powell Method . . .	2-2!
2-7.4.1	Cost Function $f_{1}(x)$	2-21
2-7.4.2	Cost Function $f_{2}(x)$	2-22
2-7.4.3	Cost Function $f_{3}(x)$	2-22
2-7.5	Conjugate Directions Without Deriva'ives	2-22
2-7.5.1	Cost Function $i_{1}(x) \ldots \ldots . . .$.	2-22
2-7.5.2	Cost Function $f_{2}(x)$	2-23
2-7.5.3	Cost Function $f_{3}(x)$	2.23
2-8	An Application of Urconstiained	
	Optimization to Strtetural Analysis	2. 24
	References	225

TABLE DF CONTENTS (Con't.)

Paragraph Pase
CHAPTER 3. LINEAR PROGRAMMING
3-1 Introduction 3-1
3-2 Properties of Lineat Programs 3-2
3-3 The Simplex Algorithm 3-8
3. 3.1 Determination of a Basic Feasible Point 3-8
3-3.2 Solution of LP 3-9
3-3.3 The Degenerate Case 3-10
3-4 Minimum Weight Truss Design 3-12
3-5 An Applicat:on of Linear Programming to Analysis 3-14
References 3-17
CHAPTER 4. NONLINEAR PROGRAMMING AND FINITE DIMENSIONAL OPTIMAL DESIGN
Q-1 Introduction to the Theory of Nonlinear Prugramming (NLP) 4-1
4-1.1 Nonlinear Programming Problems 4-1
4-1.2 Global Theory 4-4
4-1.3 Local Ineory 4-5
4-2 Theory of Finite Dimensional Optimal Design 4-8
4-2.1 Finte Dimensional Optimal Design Problems 4-8
4-2.2 Local Theory 4-10
4-3 Sequentially Unconstrained Minimization Techniques (SUMT') 4-11
4-3.1 Interior Method 411
4-3.2 Exterior Method 4-14
z 4-3.3 Mixed laterior-Exterior Method 4.16
4. 3.4 Determination of an Interior Point 7-18
4. 4 Stecpest Descent Methods for NLP 4. 19
4-4.1 The Direction of Steepest Descent 4-20
4-4..: Step Size Determination 4-23
4-4.2.1 Rosen's Method for Linear Constramts 4-23
4-4. $\mathbf{C l}_{2}^{2}$ Fixed Step With Variable Weighting 4-24
4-4.2.3 Steepest Descent With Constramt Tolerances 425
44.3 A Steepest Descent Method With Constrant Eror Compensation 425

TABLE OF CONTENTS (Con't.)

Paragraph Page
4-5 Steepest Descent Solution of the Finite Dimensional Optimal Design Problem 4-27
4-5.1 An Approximation of the Problem OD 4-28
4-5.2 Solution of the Approximate Problem 4-30
4-5.3 Steepest Descent Algorithm 4-33
4-5.4 Use of the Computational Algorithm 4-34
References 4-35
CHAPTER 5. FINITE DIMENSIONAL OPTIMAL STRUCTURAL DESIGN
5-1 Introduction 5-1
5-1.1 Lightweight vs Structural PerformanceTrade-offsE-2
5-1.2 Weapon Divelopment $P_{s}: \because$!ar. Associated With Lightweight Requirenis. 5-2
5-1.2.1 Aircraft Armament 5-2
5-1.2.2 Gun Earrel Design 5-3
5-1.2.. . Towed Artillery 5-3
5-1.2.4 Other Weapon Problems 5-4
5-1.3 Plan for Technique Development 5-4
5-2 Elements of the Elastic StructuralDesign Problem5-4
5-2.1 The Optimality Criterion 5. 5
5-2.2 Stress and Disclazement Due to Static Loading 5-5
5-2.3 Natural Frequency and Buckling 5-6
5-2.4 Method of Solution 5-7
5-3 Staepest Descent Programming for Optimal Structural Design 5-7
5-3.1 Linearized Cost and Constraint Functions 5-8
5-3.2 Sterpest Descent Algorithm for Optimal Structural Design 5-10
5-3.3, Computationa: Considerations 5-10
5-4 Oprimization of Special Purpose Structures $5-11$
$5-4.1$ A Minimum Weight Column 5--11
5-4.2 A Minimum Weight Vibratirg Beam: 5-14
5-4.3 A Minimum Weiaht Portal Frame With a Natural Frequeny Coistrant 5-16
5-4.4 f Minimum Weight Frane With Multiple Falure Critera 518

TABLE OF CONTENTS (Con't.)

saragraph Page
s-4.5 A Minimum Weight Plate With Frequency
Constaints 5-20
5-5 General Treatment of Truss Design 5-22
5-5.1 Special Problem Formulation 5-22
5-5.1.1 Frequency Constraints 5-24
5-5.1.2 Stress Constraints 5-25
5-5.1.3 Buckling Constraints 5-25
5-5.1.4 Displacement Constraints 5-26
5-5.1.5 Bounds, on Design Varitbles 5-26
5-5.2 Multiple Loading Condtions 5-.28
5-5.3 Example Problems 5-28
5-6 A General Treatment of Plane Frame Design 5-36
5-6.1 Problem Formulation 5-3"
5-6.2 Stress Coustraint Calcuations 5-39
5-6.3 Example Problems 5-46
S-7 Interactive Computing in Structural Optimization 5-51
5-7.1 The Interactive Approach 5-51
5-7.2 Interactive Structural Design Using
Sensitivity Data 5-52
5-7.3 Examule Problems 5-54
5-7.4 Interactive Computing Conclusions 5-61
Keferences 5-62
CHAPTER 6. THE CALCULUS OF VARIATIONS AND OPTIMAL PROCESS THEORY
6-1 Introduction $6-1$
6-2 The Fundamental Pioblem of the Calculusof Variations6-4
6-2.1 Necessary Conditions for the Fundamental Problem 6-5
6-2.2 Special Cases and Exampies $6-8$
t- 2.3 Variat:onai Notation and Second-order
Conditions 6-10
6-2.4 Direct Methods 6-13
6-2.4.1 The Ritz Method $6-14$
6-24.2 Meihod of Finte Differences $6-15$
6-3 A Problem of Bolza 6-16
6.31 Statement of the Problem 6. 16
6-3.? A Multiplies Rule $6 \cdot 17$

AMCP 706.192

table of contents (Con't.)

Paragraph Page
0-3.3 Necessary Conditions for the Bolza
Problem 6-18
6-3.4 Application of the Bolza Problem 6-22
6-4 Froblems of Optimal Design and Control 6-27
6-4.1 Design Variable Inequality Constraints 6-28
J-4.2 State Variable Inequality Constraints 6-31
6-4.3 Application of the Theory of Optimal Design 6-33
6-5 Methods of Satisfying Necessary Conditions 6-406-5.1 Initial Value Methods (or ShootingTeciniques)6-40
6-5.2 A Generalized Newton Method 6-42
References 6-45
CHAPTER 7. OPTIMAL STRUCTURAL DESIGN BY THE INDIRECT MEIHOD
7-1 Introduction 7-1
7-1.1 The Class of Problems Considered 7-1
7-1.2 Historical Development 7-1
7-1.3 Methods Employed 7-?
7-2 A Minumum Weight Column ?-2
7-3 A Minimum Weight Structure With
Angular Deflection Requarements 7-5
7-3.1 Statement of the Problem 7-5
7-3.2 Tower With One Design Variable 7.7
7-. 2.1 Method 1. Tower With Base Rigidly Fastened to the Earth $7-8$7-3.2.2 Method 2. Tower With Ease Pinned toEarth and with Top Supported byGuy lines. 7-12
7-3.3 Tower Witi Two Design Variables 7. 13
7-3.3.1 Method I. Tower With Base Rigid!y Fastened to the Earth 7-14
7-3.3.2 Method 2. Tower With Base Pinned to Earth and With Top Supa' , rted by Guy Lines 7. 14
73.4 Discussion of Results 7-15
7.4 Minmum Weght Design of Beams WithInequality Constrants on Stress andDeflection716

TABLE OF CONTENTS (Con't.)

Paragraph		Puge
7-4.1	Statement of the Problem	7-16
7-4.2	Necessary Conditions for the Beam	
	Design Problem	. 7-19
i-4.3	Statically Indeterminate Problems	7-23
7-4.4	Solutions of the Equations of Theorem 7-1	7-24
7-4.5	Beams With Rectangular Cross Section of Variable Depth .	7-25
7-4.5.1	A Probiem Which Can Be Solved Analytically \qquad	7-29
7-4.5.2	Simply Supported Beam With Positive Distributed Load	7-32
7-4.5.3	A Problem of a More General Typ:	7-38
7-4.5.4	Conclusions	7-43
	References	7-44

CHAPTEK 8. METHODS OF STEEPEST DESCENT FGR OPTIMAL DESIGN PROBLEMS
8-1 Introduction . 8-1
?-2 A Steepest Descent Method for the Basic Optimal Design Problem . 8-2
8-2.1 The Problem Considered 8-2
б-2.2 Effects of Small Changes in Design Variables and Parameters 8-2
8.2.2 A Steepest Descent Approach 8-5
8-3 A Steepest Descent Method for a General
Optimal Design Problem 8-i5
8-3.1 The Problem Considered 8-15
8-3.2 The Effect of Small Changes in Design Variables and Parameters 8-16
8-3.3 A Steepest Descent Computational
Algarithm

Ste........................... 8-23
8-4 Steepest Descent Programming for a Class , ©Systems Described by Fatial Differental Equirns 8-25
8-4.1 The Class oi Problems Considered 8-25
84.2 Effect of Smail Changes in Desiza Variables and Pdrametiors 8-27
$\begin{array}{cc}\text { 8-4.3 A Steepest Descent Computatonal } \\ \begin{array}{c}\text { Algorithm: }\end{array} \\ & \text {. }\end{array}$

ARACP 706-192

TABLE OF CONTENTS (Con't.)

Paragraph Page
8-5 Optimal Design of an Arillery Recoil
Mechanism 8-35
8-5.1 Formulation of the Problem 8-37
8-5.2 Equations of Motion for the XM164 Howitzer 8-39
8-5.3 Steepest Descent Formulation 8-43
8-5.3.1 Determination of the Adjoint Equations 8-44
8-5.3.2 Determination of the Boundary Conditions for the Adjoint Equations 8-45
8-5.3.3 Computation of Design Improvenents 8-47
8-5.4 Results and Conclusions 8-48
References 8-49
CHAFTER 9. APPLICATION OF STEEPEST DESCENT METHODS TO OPTIMAL STRUCTURAL DESIGN
9-1 Introduction 9-1
9-2 Steepest Descent Method for Optimal
Structural Design 9-2
9-3 A Minimum Weight Column 9-8
9-4 A Minimum Weight Vibrating Beam 9-9
9-5 A Minimum Weizht Vibrating Frame 9-10
9-6 A Minimum Weight Frame $W_{i t h}$ Multiple Failure Criteria 9-14
9-7 A Minimum Weight Vibrating Plate 9-16
References 9-18
APPENDIX A CONVEXITY A-1
APPENDIX B ANALYSIS OF BEAM-TY PE STRUCTURES B-I
INDEX $1-1$

LIST OF ILLUSTRATIONS

Fig. No.	Title	Page
3-1	A System Engineering Model	1-2
1-2	Structural Requirement	1-8
1-3	Conceptual Designs	1-9
1-4	Uniform Initial Design	1-11
1-5	Direction of Steepest Descent	1-12
1-6	Tower With Rase Rigidly Fistened to the Earth	1-12
1-7	Tower With Base Simply Supported and Top Supported With Guy Lines	1-13
1-8	Sensitivity to Design Yarintions	1-14
1-9	Sensitivity to Two Performanca Indicators .	1-14
1-10	Howitzer, Towed, 105 mmi , XM1 64	1-16
1-11	'rraditional Recoil Design Goal	1-16
1-12	Recoil Distribution in Time	1-15
1-13	Sensitivity to Gun Hop	1-i7
1-14	Optimum Rersil Curve	1-17
2-1	$f(x)=(x-2)^{2}$	2-2
2-2	A Cost Function	2-3
2-3	Function of Single ${ }^{\text {Faxtiable }}$	2-7
2-4	Interval Partition	2-7
2-5	Descent Steps	2-10
3-1	Graphical Solution of Example 3-1	3-2
3-2	Polyhedral Constrain: Set	3-5
3-3	Admissible Joints for Bridge Truss	3-14
3-4	Optimum Bridge Trusses	3-14
3-5	Boundary Condition for Example 3-4	3-16
4-1	Graphical Solution of Example 4-1	4-3
4-2	First-order Corstraint Qualification	4-6
4-3	Penalty Functions	4-11
5-1	Column	5-12
5-2	Column Element	5--12
5-3	Profiles el Optimal Columas	5-14
5-4	Stepped Beam	5-14
5-5	Tyrical Elemant	515
5-6	Profile of Optimum Beam	5-16
5-7	Portal Frame	$5 \cdot 16$
5-8	Typical Elements	5-16
5-9	Optınum Portal Frame for $\omega=3000$ $\mathrm{rad} / \mathrm{sec}$	518

LIST OF IL.USTRATIONS (Con't.)

Fig. No. Tttle Page
5-10 Frame With Side Loading 5-18
5-11 Typical Elements 5-19
5-12. Profile of Optimal Frame With Multiple Criteria ($q=25 \mathrm{lb} / \mathrm{in}$.) 5--20
5-13 Rectangular Plate 5-20
5-14 Collocation Points 5-21
5-15 Optimal Design Variable $h(x, y)$ for Vibrating Plate 5-22
5-16 Description of a Tiruss 5-23
5-17 A Truss Element 5-23
5-18 Four-bar Truss (Example 5-1) 5-29
5-19 Iteration vs Weight Curves for Example 5-1, Four-bar Truss 5-29
5-20 Transmission Tower (Example 5-2) 5-31
5-21 Iteration vs Weight Curves for Example 5-2, Tronsmission Tower 5-33
5-22 47-Bar Plane Truss (Example 5-3) 5-34
5-23 Iteration vs Weight Curves for Example 5-3, 47-Bar Plane Truss 5-36
5-24 Description of a Frame 5--38
5-25 A Frame Element 5-38
5-26 Simple Portal Frame (Example 5-4) 5-46
5-27 Iteration ve Weight Curves for Example 5-4, Simple Portal Frame 5-47
5-28 Onc-bay, Two-story Frame (Example 5-5) 5-48
5-29 Iteration vs Weight Curves for Example 5-5; One-bay, Two-story Frame 5-49
5-30 Two-bay, Six-story Frame (Example 5-6) 5-49
:-31 Iteration vs Weight Curves for Example 5-6;
Two-bay, Six-story Frame, With Stress Constraints Only 5-51
5-32 Iteration vs Weight Curves for Example 5-6; Two-bay, Six-story Frame, Wit. All Constrants 5.51
5-33 Vector Change in Design Spare 5-52
5--34 Three-bar Truss 5-53
5-35 Display of Design Sensitivity Data 5-53
5-36 Local Optima 5-54
5-37 Trusses (Example 5-7) 5-55

LIST OF ILL.USTRATIONS (Con't.)

Fig. No.	Title	Page
7-12	Simply Supported Beam With Positive	
	Distributed Load	7-32
7-13	Subdivision of the Beam With Distributed	
	Load .	7-33
7-14.	Beam \%ith an Inflection Point	7-38
7-15	Subdivision of the Beam.	7-39
7-16	Volume vs Deflection Requirement	7-43
7-17	Profile of Optimal Beam for $\Delta=0.16$	7-43
7-18	Profile of Optimal Beam for $\Delta=0.15$	7-43
$8-1$	Howitzer, Towed, $105 \mathrm{~mm}, \mathrm{XM} 164$	8-36
8-2	Recoil Sorce for a Rigia Mount	8-37
8-3	Time Intervals	8-37
8-4	Schematic of XM164 105 mm Towed	
	Howitzer - Dynamic Model . .	8-39
8-5	Recoil Time Interva!	8-45
8-6	Optimal Rod Force	8-48
8-7	Optimal Control Rod Design	8-48
?-1	Simply Supported Beam.	9-2
9-2	Simply Supported ; brating Beam	9-9
9-3	Profile of Optimal Beam.	9-11
9-4	Portal Frame	9-11
9-5	Profile of Optimum Frame	v-13
9-6	Laterally Loaded Frame	9-14
$9-7$	Free Bodies	9-14
9-8	Profite of Minimum Weight ©	9-17
9-9	Simply Supported Plate	9-17
9-10	6 mitours of Optimum Pate	9-18
A-1	Examples, Convex Case and Nonconvex Case.	A-1
A-2	Graph of $f(x)=x^{2}$ in R^{1}.	A-1
B-1	Basic Beam Element ...	B-1

ARACP 705-192

LIET GF Talze es (Con't.)

Table No.	title	Poge
5-6	Optimal Design Variabie \dot{o}_{i} for	
	Vibrating Frame .	5-18

5-7 Optimal Design Variable b_{i} for
Static Frame 5-20
5-8 Vrlume of Optimum Frame 5-20
5-9 Four-bat Truss (Example 5-1) 5-30
5-10 Transmission Tower (Example 5-2) 5-32
5-11 47-bar Plane Truss (Example 5-3) 5-35
5-12 Simple Portal Frame (Example 5-4) $5-47$
5-13 One-bay, Two-story Frame (Example 5-5) 5-48
5-14 Two-bay, Six-story Frame (Exampie 5-6) 5-50
5-15 Optimum Three-member Trusses (Example 5-7) 5-57
5-16 Design information for Transmission Tower (Example 5.8) 5-59
S-17 Optimum Transmission Towers, With StressConstraints Only (Example 5-8)5-60
₹ 18 Optimum Transmission Towere With All
Constraints (Example 5-8) 5-61
7-1 Results for Column Problem 7-5
7-2 Constants 7-7
7-3(A) Weights of Simply Supported Towers, One Design Variable 7-11
7-3(B) Weights of Guy-line Supported Towers, One Design Variable 7-11
7-3(C) Weights of Towers 7-11
$7-4 \quad$ Results for Simply Supported Beam With $q(t)=t$ 7-37
7-5 Results for Beam With S-shaped Deflection Cive 7-42
9.1 Comparison of Optimal Beams 9-1!
9-2 Weight of Optimum Franes 9-13
9-3 Volume of Optimum Fiame 9-16

AMCP 706-192

The Handbook was written by Dr. EdwardJ. Haug, Jr. of the U. S. Army Weapons Command. It is based on leciure materials used by him in a two-semester graduate sequence on "Optimization of Structural Systems", taught at the University of lowa since 1968. Examples treated in the text are derived primarily from Di. Haag's research, Dr. Jasbir Aroma's University of Iowa disseriation, and the work of Messrs. Tom Streeter and Stephen Newell of the U.S. Army Weapons Command.

The Engineering Design Handbooks fall into two basic categories, those approved for celease and sale, and those classified for security reasons. The Army Materiel Command poitcy is to release these Enginecring Design Handbooks to other DOD activitics and their contractors and other Gevernment agencies in accordance with current Army Regulation 70-31, dated 9 September 1966. It wil! be noted that the majority of these Handbooks can be obtained from the National Tecinical information Service (NTIS). Procedures for acquiring these Handbooks follow:
a. Activities within AMC, DOD agencies and Government agencies other than DOD having reed for the Handbooks should direct their request on an official ior:n to:

```
Commander
Letterkenny Army Depot
ATTN: AMXLE-ATD
Chambersburg, PA 1720I
```

b. Contractors and universities must forward their requests io:

```
National Technical Information Service
Department of Commerce
Springfield, VA 22IE}
```

(Requests for classified documents must be sent, with appropriate "Need to Know" justification, to Letterkenny Army Depot.)

Comments and suggestions on this Handbook are welcome and should be addressed to:
US Army Materiel Command
ATTN: AMCRD-TV
5n01 Eisenhower Avenue
Alexandria, VA 22304

DA Forms 2028 (Revommended Changes to Publications), which are available through normal puba.cations cupnly channels, may be used for commens/suggestions.

AMCP 705.192

material in order to meet strength requirements. A more difficult problem is the proportioning of a structure so as to efficiently limit displacement and meet constraints on natural frcquency ard tuckling. For a review of the state of optimal structural design through 1967,see Ref. 2.

It appears that the analysis capability needed for computer aided design is available. The next problem to be addressed, then, is the matter of what is mesnt by best, or optimum. The idea of best enters very naturally into engineering design efiorts. In profit-motivated industries as well as in Government laboratories, the objective is to maximize some return function while satisfying constraints such as resource allocation, performance requirements, and human limitations.
')nce some return function or measure of yalue is chosen and constraints are identified, the system designer would like to have some optimal design methodology that is capable of aiding him in the determination of the bast, or practically best, system. It must be emphasized at this point that the search is not for an automatic optimization technique that can solve any design problem fed to it. Rather, the need is for an optimal design methodology that can aid the engineer in the implementation of his concepts and guide him in a direction which, if continued mdefinitely, would yield a mathematical optimum.

A key challenge to deveiopers of practical computer aids to designers is to take maximum advantage of human iudgment in the design process. The potential of interactive computation anu desigu infermation display is only now in a developing stage and holds promise for significant improvement of the value of the computer in design.

1-2 THE PHILOSOPHY OF SYSTEM ENGINEERING

In the middle 1950's a formalized approach to the development of targe-scale, man-made systems began to appear in the literature, see Refs. 3, 4, 5. This approach, which has features common to most problem solving processes, was given the name "system engineering" and is the very essence of computer aided design. A feature which sets system engineering and ccmputer aided design off from most of the logical problem solving schemes is the explicit inclusion of key considerations peculiar to engineering design of systems. A second important feature of system engineering is the attention paid to quantitative description of the system and its behavior.

The basic idea in system engineering is to begin with a statement of system requirements and objectives, and move in an organized way toward an optimum system. A process which illustrates the approach is shown a Fig. 1-1.

Figure 1.1. 4 System Engineering Model

The purpose of this text is not to give a detailed tre cment of system engineering but rather to present aspects of the theory of computer aided design, with emphasis on optinal design Tho simplified model of a sysiem engineering process -shows that optimal design is a part of system engireering, but, indeed, by no means the dominant part. The purpose of this paragrap i is to discūss the interface of optimal design ysth the remaining essential clements of system engineering.

System engineering begins with the identification of a reed by a potential user of the system to be developed. It is often the case that the user knows that he needs a sysiem to do a job, but he may have difficulty in stating his needs and objectuves quantitatively. It then becomes the joint responsibility of the system engineer and user to quantify system objectives so that a meaningful set of objectives may be established for the development to follow.

Once the needs and objectives for a system are identified, it is necessary to define functions that must be performed by the system and any subsystems that are required. This process is called function analysis, and its purpose is to pick out functions or operations that must be performed in order to accomplish the mission required of the system being developed. These functions then beconie lower levei objectives for the development of subsystems. Identification of functions tends to be qualitative in nature. However, once a function or operation is identified, it must be described in quantitative terms, if at all possible. For example, if a function mast occur quickly, the time allowed should be specified.

The next step shown in Fig. $1-1$ is one of the most difficult functions in system engineering and certanly the most difficult step
to describe analytically. Conceptual design, as its name implies, is the identification of the varicus concepts or basic system configurations that might meet the syst η objectives. It is desirable in this stcp to leave the concepts as general as possible so as not to eliminate candicate sysiems that might be very eff: utive. For example, if the function to be performed is to propel a vehicle over the surface of the earth, conceptual designs might includa wheels, tracks, legs, air cushion, etc.

It is important at this time to identify ranges of values of parameters describing the system so that, for any parameier in this range of values, the system will perform the functions identified in the previous step, i.e., the set of parameters describing admissible systems is identified. It is at this time that the experienced designer can be extremely valuable in reflecting state-of-the-art capabilities of technologies involved in the system development.

The optimal design step has as its objective the choice of the undetermined parameters identified in the previous step. These parameters must be in the ranges defined by technological limitations and system functions. The criterion for chcosing system parameters is maximization of system worth or value. It should be emphasized that a mathematically precise optimum may be impossible to attain and must therefore serve only as a goal. Methods for choosing system parameters should, however, have the property that if an optimum does exist, then given erough patience and computer time, that optimum should be approached :s a limit.

What appears to be the final step in the system engineering model of Fig. 1-1 Descrip tion, is, in reality, probably just an intermediate step. Unkss the system dosign proceatae has been unusually effective, the sys-
tem decided upon will probably not satisfy the user. More likely, it will probably not satisfy the system engineering team. Having the results of one pass through the system engineering process, the user can probably remember some constraints which he forgot to specify and which the optimum system violates. The designer probably aise wiil see concepts that he did not see before. Much as the user, he too will remember technological constraints which he forget to specify and which the optimuni system violates. Finally, the sponsoring activity will undoubtedly decide that it will be all right to decrease the measure of system value a small amount if it will save some money.

The next step in the procedure is for each member of the team to take a deep breath, sigh, and go back to work, armed with his hard earned new knowledge. It is for this purpose that all the feedback paths in the model of Fig. 1-1 are shown. This iferative procedure is then continued until the sponsoring activity decides that the system developed is what it really needs. This will probably be another human decision, rather than a programmed mathematical one.

The remaining chapters will be devoted to the problem of cosiputer aided and optimal design. If the design: mitheds presented later are ": ve of maximuin value to the reader, he suast hase a clean picture of how these methods fit inte the harier problem of system eminazing. For furthe: itterature on the basic ideas involved in system engineering, see Refs. 3, 4, and 5.

I-3 COMPUTER AIDED DESIGN IN THE MECHANIGAL SCIENCES

The theory of computer aided and optimal design is deyeloped in subsequent chapters as
it applies to the mechanical sciences. There are peculiarities of mechanical design, as opposed to classical control system design, which require specialized treatment. Further, the mathematics involved in mechanical system design is quite different from the mathematics of control theory. These distinctions are highlighted throughout the text.

In the chapters that follow, optimal control theory is interpreted as treating feedback controllers; i.e., an optimal control system hys active elements that sense errors in output, due to fluctuations in inputs, and adjust system conirols so as to maximize some measure of system performance. Optimal design, on the other hand, is taken as the problem of choosing system elements or parameters describing these elements, which are fixed for the life of the elements, so that the system is optimum in some seuse. In control literature this is called open loop control. The principal difference in the two problems is that the variables chosen in the optimal design problem are fixed for the life of the system, whereas variables in a feedback control device are to be adjusted according to inputs as the system operates. Mathematically, the difference in the two results is that the control law describes how the system variables should be adjusted as a function of the state of the system, whereas an optimum design is simply a set of parameters describing system elements and will not be changed during the life of the system. This distinction is not uniferm in the control literature but is used here to identify the class of problems treated.

In most literature on control problems, sequential systems are treated, i.e., operations of the system progress one after another as if they were occurring in tume in a pre-arranged order. Many optimal design problems are not
of this kind. For example, in designing a structure cae must be concerned with stresses due to applied loads. These stiesses are interpreted as the state of the structural system. They are determined by a bots taryvalue problem that cannot be interpreted as a sequential process (initial-value problem). In some design problems it is possibis to define auxiliary yariables so ther the governing equanons iorm an intral-vaiue probiem with auuitional constraints. This procedure, however, generally complicates the problem unnecessarily. For this reason the problems in succeeding chapters are formulated as boundary as opposed to initial-value problems.

In order to illustrate the use of the methods presented, applications are made primarily in optimal structural design. Applications are chosen to iilustrate the use of the methods on problems having a number of design variables which might be found in engincering applications. Further, since many of the methods are relatively new, it is anticipated that improvements in computational efficiency may be realized in specific problems if advantage is taken of special features of the class of problems treated.

It is appropriate to highlight a significant computational distinction between two classes of design problem. The reader may note that Chapters 2 through 5 of this text deal with pioblems in which system design and performance are specified by a finite number of parameters (real numbers). Chapters 6 through 9, on the other hand, deal with systems that are described by functions on some given space ur time domain. Mathematically, these problems are called finite and infinite dimensional, respectively. Optimization theory for these two classes of problems can be put in the same form, but there are very real differences in the computational
techniques available for design opimization. Since the subject of this handbook is compiter gids to design, the practical distinction is made here. For a unifying matuentiotic ? treatment, the ruder is referred to Ref. 7.

Fisaliy, it 15 important to realize that engineering design optmization and engineering analysis are fundamentally different in nature. In analysis. one is generally assured that a solution exists and numerical methods are generally stable. In optimai design, on the other hand, existence of even a nominal design satisfying obiectives is not assured, much less existence of an optimai design. Morecyer, even when an optimum exists, numerical methods for its solution are often quite sensitive to initial cstimates and require much computationd art for iterative convergence. These properties will be observed over and over in this handbook when example problems are treated.

It is important that the reader take a mathematical outlook when doing computer aided design and optimization. A purely intuitive approacil can lead to erroneous results that may not be apparent until someone happens onto a nominal desig. a which is vastly superior to a "surn" d" optimum design.

1.4 MATHEMATICAL PRELIMITUARIES

The level of nathematical background required for an understanding of the merhods of optimal design presented in the following chapters is a course in advanced calculus and the abilhy to use matrix notation. Since engineere often require results of rather deep mathematical analyses to solve real-world problems, several results have been accepted with references given to proofs. The purt ose of this paragraph is to present notation and
some basic mathematical ideas used throughout the text.

Since most real-world problems involve several parameters, it is convenient to utilize yentor notation. For example, rather than writing $x_{1} \ldots, x_{n}$ repeatedly, these n variables are seliected into a column vector

$$
x=\left[\begin{array}{c}
x_{1} \tag{i-i}\\
\vdots \\
x_{n}
\end{array}\right]
$$

Unless otherwise noted, all vector variables will be column vectors. A victor of the form (Eq. 1-1) may be interpreted as a point in n-dimensional real space, R^{n}. The space R^{n} is simply the collection of all n-vectors of $r \epsilon_{\ldots}$. numbers. For eyample, the real line is R^{1} and the plane is R^{2}.

It will often be convenient to deal with a collection of points in the space R^{n}. A collection of points D in R^{n} will be called a set, or a subset of R^{n}. A point x in R^{n} which is in D will be denoted $x \in D$. This :ill be the extent of set notation required in later chapters.
$\operatorname{In} R^{n}$ there is a well defined idea of length of a wetor. This analog of length in the real world with be cenuted

$$
\|x\|=\left[\begin{array}{ll}
n \tag{1-2}\\
\sum_{2} & \\
\cdots & n
\end{array}\right]^{n}
$$

and is called a noun on R^{n}. There are many rorms defined on R^{n} but Ea. $1-2$ will be sufficient for the purposes of this text. Along with the idea of norm on R^{n} goes the concept of dot product or inner pioduct. The inner product of two elements x and y of R^{n} is

$$
\begin{equation*}
\langle x, y\rangle \equiv r_{y}={\underset{1}{2}}_{1}^{n} r_{1} y_{1} . \tag{1.3}
\end{equation*}
$$

Two vectors are caied orthogonal if their inner product is zere

The idea of cuavergence of a sequeace $\left\{x^{i}\right\}_{\text {in }} R^{n}$ with $\mathrm{n} \cdot \mathrm{rm}$ (Eq. 1-2) is much like convergence of reil numbers. That is, $\lim _{i \rightarrow \infty} x^{i}=$ x if for any $\epsilon>1$) there is an $N>0$ such that $\left\|\lambda^{i}-x\right\|<\epsilon$ or ail $i>N$. An important property of sets in optimization theory is closedness. A ubset D of R^{n} is called closed if every sequence in D which converges has its limit in D.

Just as t'le idea of collecting r real numbers into a ver,tor in R^{n}, it is helpful to define a vector function $g(x)$ for $x \in R^{n}$ as

$$
g(i)=\left[\begin{array}{l}
g_{1}(x) \tag{1-4}\\
\vdots \\
\dot{g}_{m}(x)
\end{array}\right] .
$$

Such a function, called continuous at \bar{x} if for any $\epsilon>0$ there is a $\delta>0$ such that $\| g(x)$ $-g(\bar{x}) \|_{m}<\epsilon$ if $\|x-\bar{x}\|_{n}<\delta$. The subscripts m and n on the norms denote the dimencion of the space $r n$ which the norm is defined.

It will often be desirable to deal with a set of functions which satisfy

$$
\begin{equation*}
g_{i}(x) \leqslant 0, i=1, \ldots, m \tag{1-5}
\end{equation*}
$$

In this case it is convenient to define inequality among vectors as

$$
g(x) \leqslant 0
$$

where inequality is token componentwise, i.e., Eq. 1-6 is defined to mean the same thing as Eq. 1-5.

One of the most useful notations in the following chapters is the dea of the derivative of a vector function with respect to its vector
variable. This nutation is

$$
\begin{equation*}
\frac{d g(x)}{d x} \equiv\left[\frac{\partial g_{i}(x)}{\partial x_{j}}\right] m \times n \tag{1-7}
\end{equation*}
$$

where i is a row index and j is a column index. If $f(x)$ is a real valued function of $x \in R^{n}$, this notation is

$$
\begin{equation*}
\frac{d f(x)}{d x} \equiv\left[\frac{\partial f(x)_{2}}{\partial x_{1}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right] \tag{1-8}
\end{equation*}
$$

The derivative of a real valued function is often called the gradient of that function and is denoted

$$
\begin{equation*}
\nabla f(x) \equiv \frac{d f(x)}{d x} \tag{1-9}
\end{equation*}
$$

The gradient is ene of the few standard symbols which denotes a row vector rather than a column vector. Likewise, for a real valued function the matrix of second derivatives may be defined as the matrix

$$
\begin{equation*}
\frac{d^{2} f(x)}{d x^{2}} \equiv \nabla^{2} f(x) \equiv\left[\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right] \tag{1-10}
\end{equation*}
$$

An inportant theorem in the analysis of functions appearing in optimal cesign problems is Taylor's Theorem.

Taylor's Theorem: Let the rea: valued function $f(x)$ have $k+1$ continuous derivatives in R^{n}. Then for .. $\in R^{n}$, there is a point $\xi=\alpha x+(1-\alpha) y$ with $0<\alpha<1$, such that

$$
\begin{aligned}
f(y)= & f(x)+\sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_{i}}\left(y_{i}-x_{i}\right) \\
& +\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{i}}\left(y_{1}-x_{j}\right)\left(y_{i} \cdots x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\ldots+\frac{1}{k!} i+\ldots+i_{n}=k \frac{\partial^{k} f(x)}{\partial x_{1}^{i_{1}}-\partial x_{n}^{l_{n}}} \times \\
& \left(y_{1}-x_{1}\right)^{l_{1}} \ldots\left(y_{n}-x_{n}\right)^{l_{n}} \\
& +\frac{1}{(k+1)!} j_{1}+\ldots+j_{n}=k+1 \frac{\partial^{k+1} f(\xi)}{\partial x_{1}^{j_{1}} \ldots \partial x_{n}^{I_{n}}} \times \\
& \left(y_{1}-x_{1}\right)^{/_{1}} \ldots\left(y_{n}-x_{n}\right)^{j_{n}} .
\end{aligned}
$$

For proof of this theorem see Ref. 6, page 56.

In many places in the following chapters, Taylor's Theorem will te used to obtain an approximate expression for a function at a point sufficiently near a point where the function is known. The most common approximation is the one obtained by deleting second and higher order terms. For example, if $\|x-v\|$ is small,

$$
\begin{equation*}
f(y)-f(x) \simeq \frac{d f(x)}{d x}(y-x) \tag{1-12}
\end{equation*}
$$

where by Eq. 1-11 the error in Eq. 1-12 is at most a constant times $\|y-x\|^{2}$ if $f(x)$ has bounded second order derivatives. The left side of Eq. $1-12$ is generally denoted ty $\delta f(x)$, where $y-x$ is denoted δx. In this notation,

$$
\begin{equation*}
\delta f(x)=\frac{d f}{d x} \delta x \tag{1-13}
\end{equation*}
$$

Eq. 1-13 may be thought of as a total differential. Even for vector functions $g(x)$, Eq. 1-13 holds for each component so if

$$
\delta g(x) \equiv\left[\delta g_{1}(x), \ldots, \delta g_{m}(x)\right]^{T} \text {, then }
$$

AAACP 706-192

$$
\begin{equation*}
\delta g(x)=\frac{d g(x)}{d x} \delta x \tag{1-14}
\end{equation*}
$$

In later work, $g(x)$ will often be a function of $x \in R^{n}$ and $z \in R^{p}$. In this case, Eq. 1-14 is

$$
\delta g(x, z)=\frac{\partial g(x, z)}{\partial x} \delta x+\frac{\partial g(x, z)}{\partial z} \delta z
$$

where

$$
\frac{\partial \dot{g}(x, z)}{\partial x}=\left[\frac{\partial g_{1}(x, z)}{\partial x_{f}}\right]_{m \times n}
$$

and

$$
\frac{\partial g(x, z)}{\partial z}=\left[\frac{\partial g_{i}(x, z)}{\partial z_{j}}\right]_{m \times p}
$$

Most of the common notation used in later chapters now has been defined. Special notation and results required locally for some development will be defined and used there.

1.5 ILLUSTRATIVE MILITARY COMPUTER AIDED DESIGN PRCBLEMS

In this paragraph two illustrative military optimal desiga problems are formulated, and :omputer aided design techniques are outhind for their solution. The treatment here is onl; for the purpose of introducing concepts. These examples are treated in more depth in Chapters 7 and 8.

1.5.1 OFTIMAL DESIGN OF STRUJCTURES

Tlic nptimization technique described in this paargraph wa, ir tially developed for application to minimuar seight structural design proble:'rs. ior this reison, and to give an engineering inst for applic. 'ion of the technique, the method • : ll be p. . .ented aiong with examples from the feld, optumal
structural design.

As a specific example, let us consider a design problem whereby a highly directional transmission device, or perhaps a gun, is to be mounted on a tower or guri mount that is required to support the device at some given distance away from the basic supporting structure, such as the carth. A. schematic of the problem is shown in Fig. 1-2. The basic

Figure 1-2. Structuial Requirement
problem is to design a structure that supports the device under consideration and which is as light as possible for purposes of transportation and erection on the battlefield, or perhaps mounting on a helicopter. A basic design requirement for this structure is that the device mounted on the top shall not have an angular deflection of more than 0 radians, in order to hit the receiver or target. The loading that is to be considered is A wind load of up to a given velocity, which wiuld cause angular deflection of the top of the tower.

The needs and objectives in this design problem are well established, so no additional inputs need be considered at the present time. Further, the requirement that the tower support the device with only a given allowable angular deflection is the only basic function required of the tower; thus the function analysis block of Fig. 1-1 is also complete. The next stage, and one that is quite difficult to describe analytically, is that of arriving at

conceptual towess which might perform the zīyen mission.

Foxis Eifferent conceptuil designs are shown is: Fig. 1-3. The first two soncepts,

(A)

Figs. 1-3(A) and (B), involve rigidly fixing the tower at its base to the fundamental supporting structure. In both towers, variable spacing as a function of height is allowed between vertical members of cite structure. In addition,

(D)

Figure 1-3. Conceptual Designs
one of the concepts allows for varying the area of the main structural members as a function of neight. The second set of concepts, Figs. 1-3(C) and (D), involves towers that are pinned at their base to the supporting srructure and that are supported by guy wires at the top of the structure Likewise, in both of these concepts, variable spacing of the main "ertical members is aliowed. In the second concept, variation of area along the length of the tower is also allowed. li should be noted that the conceprual desigts in Fig. 1-3 can have as many subsections with differ-
ent area and spacing as desired. Three are shown for convenience in the figure.

In each of the conceptual towers of Fig. 1-3, the variables b_{4} through b_{3} des ribe the variable spacing of tie members of the tower. In two of the concepts, Figs. 1-3(B) and (D), b_{4} through b_{6} specify the variable areas in the construction of the main vertical member. These variabies serve as design parameters, in that the designer can choose these variables and completely specify the design of the tower.

ANCP 706-192

In addition to the design variables, a main part of the design problem is the behavior of the structure under wind load, since one of the major constraints on behavior of the structure is that the angular deflection of the top of the tower not exceed an angle θ. For this reason, the angular deflection of each of the joints must be determined, along with lateral deflection due to lateral wind loading. This is a relativ'sy routine analysis problem when one uses the techniques of finite element structural analysis. Not shown in Fig. 1-3, but required in the construction, are cross members which maintain syacing of the main vertical members. In order to state rhe optimal design problem nathematically, first define vectors of design variables b_{i} and state varialles \mathbf{z}_{l}

$$
\begin{align*}
& h=\left\{b_{1}, b_{2}, \ldots b_{m}\right]^{T} \tag{1-16}\\
& z=\left[z_{1}, z_{2}, \ldots z_{n}\right]^{T} .
\end{align*}
$$

Using finite element structural analysis techniques, tufine the stiffness matrix as

$$
\begin{equation*}
A(b)=\left[a_{l j}(b)\right]_{n \times n} \tag{1-17}
\end{equation*}
$$

where the dependence of stiffness on the design variables is explicitly shown. Using this matrix, the structural response is given by the following matrix equation

$$
\begin{equation*}
A(h) z=q \tag{118}
\end{equation*}
$$

where q is the wind loading matrix.
Now that the relationship between the design variables and the structural response is specified by Eq. 1-18, the next step in formulating an optimal design problem is the identification of constraints. In order to prevent dimensions or structural areas from going to zero, resulting in an unstable struc-
ture, it is required that the design variables be bounded uniformly away from zero. This is given formally by the inequality

$$
\begin{equation*}
b_{i}>b_{i o}>0, i=1, \ldots, m . \tag{1-19}
\end{equation*}
$$

The fundamental consiraint in the present problem is that the angular deflection at the top of the tower not exceed the angle θ. This is expressed analytically by the inequality

$$
\begin{equation*}
\left|z_{1}\right|<\theta \tag{1-20}
\end{equation*}
$$

The final step in formulation of an optimal design problem is to identify the cost function to be minimized. In the present case, the cost function is structural weight J and is given by an expression of the form

$$
\begin{equation*}
J=\gamma \sum_{i=1}^{m} i_{i} b_{i} \tag{1-21}
\end{equation*}
$$

where γ is material density and c_{l} are weighting factors rep resenting lengths of structural elements and weight requirements for lateral stiffners.

We now have an eptimal stzuctural design problem that is well formulated from a mathematical point of view. The objective is to find the design variables b_{1} through b_{m} that satisfy constraint Eqs. 1-19 and 1-20, and which minimize the structural weight as given by Eq. 1-21. The technique used to solve this problem, and in fact a large class of optimal system design probleins, is based on a very simple idea of engineering design. The idea of the technique is to allow small variations in some nominal design, and analyze the effect of the variatiens on the squations of the problem and the cost function associated with the problem. As a result of allowing only smail design changes, certain approximaticus

ANCP 706-192

may be made that allow the best change in designivariables to be determined in order to decrease the cost function of the problem as much as possible, while still not violating constraints of the design problem. For example, one might choose as an initial estimate of the optimal desiga a uniform tower às shown in Fig. 1-4. The estimated design variable in this case is denoted by $b^{(0)}$.

Figure 1-4. Uniferm Initial Design

Let δb be a small change in the design variable $b^{(0)}$. Any change in the design variable will result in a change in the structural response, denoted by δz. The nature of the structural analysis problem guarantees that small δb yields small δz. Further, a Taylor series approximation of terms appearing in Eq. $1-18$ yields
$A\left(b^{(0)}\right) \delta z+\frac{\partial}{\partial b}\left(\left.A(b) z\right|_{b=b}(0)\right) \delta b=0$.
If an inequality constraint is vintated, cuch as

$$
\begin{equation*}
b_{i}<b_{i 0} \tag{1-2.3}
\end{equation*}
$$

then in ordet to correct the constraint error it is required that

$$
\begin{equation*}
\delta b_{i}>b_{i o}-b_{i} \tag{1-24}
\end{equation*}
$$

Or, if the angular deflection constraint is violated, for example.

$$
\begin{equation*}
z_{1}>\theta \tag{1-25}
\end{equation*}
$$

then, to correct the constraint error it is required that

$$
\begin{equation*}
\delta z_{1}<\theta-z_{1} \tag{1-26}
\end{equation*}
$$

Finally, the change in structural weight due to the change in design δh is given by

$$
\begin{equation*}
\delta J=\gamma \sum_{i=1}^{m} c_{i} \delta b_{i} \tag{1-27}
\end{equation*}
$$

The object of the new problem is to determine δb so as to minimize the linearized cost function of Eq. 1-27, subject to constraint Eqs. 1-24 and 1-26. Due to the special nature of this problem, the optimum change δb can be determined in closed form. For a detailed derivation of this optimum perturbation, the reader is referred to Chapter 5. For discussion here, the results of this calculation will be denoted by

$$
\begin{equation*}
\delta b=\eta B+C \tag{1-28}
\end{equation*}
$$

where the vectors B and C depend on $b^{(0)}$, constraint errors, and equations of the problem. The parameter η is an undetermined parameter that plays the role of a step size, when viewed in the geometry of design variable space. For example, if there are only two design parameters b_{1} and b_{2}, the direstion of the desired change is shown by B in Fig. $1-5$, and η is a step size along that direction. In the terminology of optimization theory, B is known as the darection of steepest descent. It is analogous to the direction one would go downhill in ordel to reduce

Figure 1-5. Direction of Steepest Descent
his altitude as rapidly as possible. It is clear that on normal hills, as in most design cost functions, the direction of steepest descent changes, dependine on the location on that hill. For this reason, the direction of steepestdescent does not generally pass through the optimum point as shown in Fig . 1-5.

There are many techniques for choosing the step size η. The one used in the steepest

descent method is based on requesting a certain reduction in the cost function due to the changed δb. This request, then, determines the step $\operatorname{size} \eta$ and one can calculate δb from Eq. $1-28$. This δb is the best change in the estimated design variable $b^{(0)}$. This best change is then added to the initial estimate to obtain a new estimate that corresponds to a structure of less weight and that still satisfies the constraints of the problem, i.e.,

$$
\begin{equation*}
b^{(1)}=b^{(0)}+\delta b \tag{1-29}
\end{equation*}
$$

This process is repeated as many times as required to obtain convergence to the minimum weight structure.

The optimum towers for each of the four basic configurations chosen are shown in Figs. 1-6 and 1-7, with a table ot results being given in lable 1-1. These results were obtained

Figure 1.6. Tower With Base ${ }^{4}$ ghly Fastened to the Earth

TABLE 1.1
WEIGHTS OF TOWERS

Cantilevered

Cantilevared

	Cuy-line	Guy-line	Guy-line
Cantilevered	Supperted	Supported	Supporter,

Number of						
Desig:						
Variables	0	1	2	0	1	2
Rest Weight	$\mathrm{W}=2440.6 \mathrm{lb}$	$W=2111.4$	$W=182 i .9$	$W=1563.99$	$W=1356.6$	$W=1265.71$
treight	$h=63.7 \mathrm{in}$.	$h_{\text {max }}=91.4$	$\mathrm{h}_{\max }=80.2$	$h=46$	$h_{\text {max }}=46.5$	${ }^{\prime}$ max $=36.55$
Cross-sectional area of						
member	$A=7.96 \mathrm{lb}$	$A=697$	$A_{\text {max }}=1003$	$A=3.84$	$A=4.434$	$A_{\text {max }}=4.95$

ANCP 706-182

Figure 1.8. Sensitivity to Design Variations
of interest. For example, if δb_{1} were positive, this would indicate that an increase in the dimension b_{1} will decrease the structural weight. On the other hand if the algebraic sign of δb_{1} were negative, then an increase in δb_{1} would increase the structural weight. Likewise, the algebraic signs of δb_{A} through δb_{0} indicite the effect that a change in these element areas will have on structural weight. These data give the designer valuable information, according to which he should zhange his nominal design to improve the structure, while still satisfying all the cssential constraints.

Traditionally, in structural design by graph ics, the designer puts areas and dimensions into a structural analysis routine and then requests a stress calculation, the results of which are shown on the screen of a cathode say tube. This technique has been used by Lockheed-Georgia in the design of the C5A. While this technique has been quite useful in structural design, it is extremely difficult for the designer with only stress information to determine how he should change just one clement in the structure to reduce overall structural weight. The difficulty cones in the interplay between structural constraints. If,
on the other hand, the designer has trend information tilat he can use in altering the distribution of material in a structure, he can better use his experience in making design inprovements. This capability can be invaluable to large-scale structual desizners. It includes the effest of individual design variable changes on overall structural value, while taking into account the effect of that design change on all design constraints.

In real-world structural design problems, the designer must design his structure for more than simply light weight. He naust be concerned with structural vibration and buckling characteristics. since these are major sonrces of structural failure. Often, as in par. 1-5.1, it is possible to determine design perturbations that have a desirable effect on such strictural properties as natural frequency and weight simultaneously. Both of these factors can then be cisplayed on a cathode lay tube as shown in Fig. 1-9. In this case. δb^{1} indicates the dire tion in which the design raziable should be changed to reduce strevtural weight, and δb^{2} indicates the direction in which the varinble should be changed to increase natural frequency. This informadion can then be used by experienced design

Figure 1.9. Sensitivity to Two Pericrmanre Indicators
persumnet in making design changes that will have desiroble effects on overall airçaft structural properties, for example. in is is extremely important in large-scale structiral design due to the difficulty in determining the effect rif changes in an individual design parameter on several different structural properties. Computation of these data and interactive aspects of the technique are discussed in Chapter 5.

This design technique is feasible from a computational point of view in that very little additional computer time is required to generate sensitivity information from stress and vibration aralyses that are required. While most structural optimization work has been done in the batch mode, it is shown in Chapter 5 that utilization of the steepestdescent technique with interactive graphics is a much nore practical way to design structures, particularly in cases where several measures of structural performance are inportant.

Development and display of sensitivity information in design is a form of information transfer to design personnel. This technique depends on the availability of interactive graphics software and nardware, which are currently being developer.

1.5.3 DESIGN OF ARTIILLERY RECOIL MECHANISMS

As an application of this same op,inization rechnique to a weapon design problens. sertain aspects of the design of a lightwergiti artillery piece vill now be outlined. The requirement was stated for a lightweight artillery piece that can be fired with very short implacement time. For this reason 's was determifed that the weapon must be capable of reing fired whle it is restug on its
tires. A photograph of the first prototype of this waypon is shown in Fig. 1-10.

The recoil mechanism for this weapon was designed according to traditional recoil mechanism design goals. Namely, the objective in the design was for a constant retarding force which is transmitted by the recoil mechanism to the undercarriage, as shown in Fig. 1-11. A recoil mechanism was designed which delivered approximately this recoil force $R(t)$ as a function of time.

When the weapon was built and fired, a nearly constant recoil occurred, as desired; but, at high angles of fire, the weapon exhibited unacceptable dynamic response. During firing, the tires of the weapon compressed and after firing and the subseque.t release of the recoil forces, the weapon rebounded off the ground approximately 6 in . This unacceptable behavior required a redesign cycle for the recoil mechanism with a design goal of minimizing the dynamic response, or hop, of the weapon after firing.
it was determined that the peak recoil force could be allowed to reach $22,000 \mathrm{lb}$ withoui damaging the support structuri. The optimization problem is then to determine the recoil force $R(t)$ as a function time such that

$$
\begin{equation*}
R(t) \leqslant 22,000 \tag{1-30}
\end{equation*}
$$

and the peak dymamic response, denoted by

$$
\begin{equation*}
J=\max _{t}[h(t)] \tag{1-31}
\end{equation*}
$$

is as small as possit'e, where $h(t)$ is the height of the tires oif the ground at any time t. Grapheally, this problem is to determine a recoil force which lies beneath the $22,0000-\mathrm{ii}$ level in Fig $1-12$, and which minimzes the peak dynaria, response of the weapon. In thas

AMCP 706.192

Figure 1-10. Howitzer, Towed, $105 \mathrm{~mm}, \mathrm{XM} 164$
problem, the dynamic response $h(t)$ is determined by the second order differential equations of motion of the artillery piece.

Figure 1-11. Traditiona/ Recoil Design Goal

The same philosophy of small design changes a^{\prime} som: nominal estimate, as in the stri ctaral design problen of par. 1-5.1, was employed in this case. A sensitivity

Figure 1-12. Recoil Distribution in Time

CHAPTEA 2 FINITE DIMENSIONAL UNCONSTRAINED OPTIMIZATION

2.1 INTRODUCTION

In many engineering design problems certain information which helps to prescribethe object being designed is specified. However, a certain number of parameters called design parameters are left open to the designer's choics. These parameters must uniqueiy determine the object if the optimal design problem is to be meaningful. in the discussion which follows, the design paramecers will be denoced by $x_{1} \ldots x_{n}$ or in vector notation simply as $x=\left(x_{1}, \ldots, x_{n}\right)^{r}$.

In virtually all design problems there are restrictions on the object being designed. Ti.e 'e may include the performance required, physical limitations such on \rightarrow weight, resource limitations, and ol_{\ldots}.... ...al policy. These restrictions or constraints generally will involve the design parameters so that the range of values of design parameters may be restricted. If the vector of design parameters (hereafter called the design parameter) is viewed as an element of real Euclidean space R^{n}, then the effect of the lisied restrictions is to confine the designer's choice of design parameters to a subset D of R^{n} called the admissible set of design parameteis. The nature of this set wili be determined by the nature of the requirements placed on the system being designed. This aspect of the optimal design problem will be treated extensively in later chapters.

When one speaks of optimal design, he
must be aùle to choose, out of a collection of objects which satisfy the restrictions of the preceding paragraph, that one which is "best". Biore specifically, out of all design parameters in the adr.ussibie set D, the designer must pick that one, \bar{x}, which describes the "best" systen:. This discussion has still not given the meanitig of "best". An effective way of defining "best" is to give a real valued function whose domain of definition is the admissible set D, say $f(x)$. "Best", then, may be taken as the minimum or maximum of $f(x)$ for x in D. If the function $f(x)$ is a cost of the system being designed, then it is to be minimized. If, on the other hand, $f(x)$ is a return or profit, it is to be maximized.

The cost or return function will be defined in each optimal design problem. As a result, very little can be said about its nature in general. It is clear, however, that maximizing a real valued function $r(x)$ is equivalent to mininizing $-r(x)$. Therefore, optımal design problems may always be put into a form which may be interpreted as minimization of a cost function. For convenience this will be done in the following development.

Example 2-1: As a hypothetical optimal design problem let the scaiar x be the design parameter and $f(x)=(x-2)^{2}$ be the cost function. In Fig. $2-1$ the cost function is plotted versus x. It is clear that the minimum cost of zero occurs at $x=2$.

Lxample $2-1$ is included he.a as an aid to

AMAP 706-192

intuition in more complex problems. Even when x is an n-vector, one can think of plotting the cost function above the x-hyperplane to obtain the cost surface. The optimal design problem is then to find the lowest point on this surface.

Even though real-world optimal design problems invariably have constraints placed on the design parameter, the methods preseited in this chapter will ignore constraints. There are two reasons for considering this simplified problem in some detail. First, it may happen that the design parameter \bar{x} that minimizes $f(x)$ lies in the interior of the admissible set D. In this case the constraints play no part in locating \bar{x}. Second, even though the point \bar{x} may push some constraint to its limit and lie on the boundary of D, there are iterative methods for finding \bar{x} which require minimization of an auxiliary cosi function, subject to no constraints at each iteration. Methods which take constraints into account are presented in Chapters 3 and 4.

Two basically different methods of solving unconstrained minimization prohlems are presented in this chapter. The first method, called the indirect method, is based on derived properties of the cost function at its minimum; i.e., if one pictures himself as being at the lowest point of the cost surface ($x=2$ in Fig. 2-1), he may notice that the surfare is required to have certain special properties there. He may then use these special properties to lucate the lowest point on any such surface. This intuitive idea is made rigorous in par. 2-2.

The second method of solving optimization problems is more direct in nature and is appealing from an engineering point of view. The designer initially chooses a desigr: param-

Figure 2-1. $f(x)=(x-2)^{2}$
eter which is admissible, say $x^{(0)}$. This choice of design parameter will probably not put him at the lowest point on the cost surface. Rather than discarding this nonoptimal point and ficking another trial point at random he might attempt to find a second point $x^{(1)}$ which is closer to the lowest point of the cost sarface. The designer's view of the cost surface is limited to only a small area due to the local nature of mathematical tesis which he may perform. Using only this local information, he chooses a strategy which insures that he makes a move to a new point $x^{(2)}$ which is lower than $x^{(0)}$. The direct methods presented in pars. 2-3 to $2-7$ are just a mathematical implementation of these elementary ideas.

2-2 NECESSAPY CONDITIONS FOR EXTREMA

As described in par. 2-1, the approach taken in the indirect method is to assume $f(x)$ has a minimum at \bar{x} and then derive conditions which $f(x)$ must satisfy there. These conditions may then be used to find the minimum point of any real valued function $f(x)$. They are valuable in giving the designer an insight into the minimization portion of an optumal design problem, even when he is using direct computational methods to solve the problem Before these ideas may be developed, several definitions are required.

Definition 2-1: A real valued function $f(x)$ defined on a subset D of R^{n} has an absolute minimum at \bar{x} in D if

$$
\begin{equation*}
f(\bar{x})<f(x) \tag{2-1}
\end{equation*}
$$

for all x in D. The function $g(x)$ has an absolute nidimum at \bar{x} if $-g(x)$ has an absolute minimum there. The minimum is called strict if only strict inequalities hold in Eq. $2 \cdot 1$ for $x \neq \bar{x}$.

Note that $f(x)$ can have a strict absolute minimum at only one point in D whereas it could have an alsolute minimum at several distinct points in D provided it has the same value at all these points.

Definition 2-2: A function $f(x)$ defined on a subset D of R^{n} has a relative minimum (maximum) at \bar{x} if there exists an $\epsilon>0$ so that $f(x)$ has an arsolute minimum (maximum) in a subset of D whose points satisfy

$$
\left|x_{i}-\bar{x}_{i}\right|<\epsilon, i=1, \ldots, n .
$$

Verbally, this definition says that $f(x)$ has a relative minimum at \bar{x} if it has an absolute minimum in a sufficiently small neighborhood of \bar{x}. It is clear that if $f(x)$ has an absolure minimum at \bar{x}, then it also has a relative minimum there. The converse is not necessarily true.

Example 2-2: Locate all relative and abso lute maxima and minima of $f(x)$ on $0 \leqslant x \leqslant$ 3, where $f(x)$ is given graphically in Fig. 2-2.

The function $f(x)$ has a strict absolute maximum at $x=1$, absoiute minima (not strict) at $x=0$ and 2 , relative maxima at $x=1$ and 3 , and relative mininta at $x=0$ and 2 .

In Definitions 2-1 and 2-2 no continuty or differentiability requirements were placed on

Figure 2-2. A Cost Function
$f(x)$. Without making some assumptions as to the regularity of $f(x)$ it is difficult to verify the required inequalities. Consider the case of a function $f(x)$ of the real variable x which has two continuous derivatives. The Taylor formula is

$$
\begin{align*}
f(\bar{x}+h)= & f(\bar{x})+f^{\prime}(\bar{x}) h \\
& +\frac{1}{2} f^{\prime \prime}(\bar{x}+\theta h) h^{2} \tag{2-2}
\end{align*}
$$

where $0<0<1$. Since $f^{\prime \prime}(\bar{x}+\theta h)$ is bounded for h in a closed bounded set, it is clear that if $f^{\prime}(\bar{x}) \neq 0$ then for small enough h the linear term in h dominates the squared term sc that $f(\bar{x}+h)$ may be made both larger and smaller than $f(\bar{x})$ through cincice of the appropriate sign of h. Therefore, in cider for $f(x)$ to have a relative minimun: or maximum at \bar{x} it is necessary that $f^{\prime}(\bar{x})=0$. It follows directly fiom Eq. $2-2$ that if $f^{\prime}(\bar{x})=0$, then $f^{\prime \prime}(\bar{x})>0$ $(6 J)$ is a sufficient condition for $f(x)$ to have a relative minimum (maximum) at \bar{x}.

In case x is in R^{n}, results analogous to those just obtained are given in 1 neorem 2-1.

Theorem 2-1 Necessary Condition: Let $f(x)$ be defined on a siblset D of R^{n} and have a continuous derivative in a neighborhood of a point \bar{x} which is in the interior of D. If $f(x)$

AMCP 706-192

has a relative minimum at \bar{x} then

$$
\begin{equation*}
\nabla f(\bar{x})=0 . \tag{2-3}
\end{equation*}
$$

Sufficient Condition: Let $f(x)$ have two continuous derivatives in a neighborhood of \bar{x} and let Eq. 2-3 hold. Then if the matrix

$$
\begin{equation*}
\nabla^{2} f(\bar{x}) \equiv\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\bar{x})\right] \tag{2-4}
\end{equation*}
$$

is positive definite, $f(x)$ has a reiative minimum at \bar{x}.

For convenience in later discussions, Definition 2-3 is made,

Definition 2-3: A point at which Eq. 2-3 holds is called a stationary point of $f(x)$.

It is imperative that the reader be aware of the hypothesis of Theorem 2.1 which requires \bar{x} to be in the interior of the region D. The theoren does not apply if \vec{x} is on the boundary of D. Example $2-2$ illustrates this requisement graphically. Points $x=0$ and $x=$ 3 of Fig. 2-2 yield a relative minimum and a relative maximum, respectively, but neither point is stationary (i.e., neither satisfies Eq. 2-3). The same example also illustrates the need for verification of the differentiability properties of $f(x)$. Even though $x=1$ yields an absolute maximum of $f(x)$ and is in the interior of D, it is not a stationary point since $f(x)$ does not have a contip'wus aerivative there. This example illustrates the need to faithfully verify ail the hypotheses before Theorem $2-1$ is employed.

In order to verify the sufficiency zondition of Theorem 2-1, une must have a verifiable rest for positive definiteness of a matrix. Probably the most useful test is the following (Ref. 2, page 103): A symmetric matrix
$A=\left(a_{i j}\right)_{n \times n}$ is positive definite if and conly if the determinate of each of the matrices A_{m}, formed from the first m rows and first m columns of A, is positive, $m=$ $1, \ldots, n$.

Example 2-3: Obtain explicit necessary and sufficient conditions for $f\left(x_{1}, x_{2}\right)$ to be a minimum und a maximum at \bar{x}, wheae $\bar{j}\left(x_{1}\right.$, x_{2}) has two entinuous derivatives in D and \bar{x} is an interior poiat of D.

As necessary cond:tions for either a minimum or a maximurn, Eq. 2-3 demands

$$
f_{x_{1}}(\bar{x})=f_{x_{2}}(\bar{x})=0
$$

A sufficient condition for \bar{x} to be a minimum point for $f(x)$ is that in addition to the above equations, the matrices
$A_{1}=f_{x_{1}, x_{1}}(\bar{x})$ and
$A_{2}=\left[\begin{array}{c}f_{x_{1} x_{1}}(\bar{x}) f_{x_{1} x_{2}}(\bar{x}) \\ f_{x_{1} x_{2}}(\bar{x}) f_{x_{2} x_{2}}(\bar{x})\end{array}\right]$
hava positive determinates, i.e.,

$$
\begin{aligned}
& f_{x_{1} x_{1}}(\bar{x})>0 \text { and } f_{x_{1} x_{1}}(\bar{x}) f_{x_{2} x_{2}}(\bar{x}) \\
& \quad-\left\{f_{x_{1} x_{2}}(\bar{x})\right\}^{2}>0 .
\end{aligned}
$$

The function $f(x)$ has a relati.e maximum at \bar{x} if the function $g(x)=-f(x)$ has a relative minimum there. Therefore, in addition to $-f_{x_{1}}(\bar{x})=-f_{x_{2}}(\bar{x})=0$ sufficient conditions for $g(x)$ to have a relative minimum at \bar{x} ate

$$
\begin{gather*}
g_{x_{1} x_{1}}(\bar{x})>0 \text { and } g_{x_{1} x_{1}}(\bar{x}) g_{x_{2} x_{2}} \tag{x}\\
\quad\left[\left.g_{x_{1} x_{2}}(\bar{x})\right|^{2}>0\right.
\end{gather*}
$$

For a relative maxinum of $f(x)$ at x then

Thus far in this paragraph only properties of $f(x)$ precisely at the minimum point have been investigated. If the designer viewed the graph of $f(x)$ versus x to be a surface, then Theorem 2-1 tells him what the surface will look like when he finds its lowest point. Theorem 2-1, however, does not tell him that a lowest point exists, In order to solve his optimization problems, the designer would like to have tools which allow him to stand back from the cost surface and learn something about its global properties. Two theorems are now stated which give him a better overall vie's of the optimization problem.

Theorem 2-2: If $f(x)$ is continuous on a closed and bounded subset D of R^{n}, then $f(x)$ has an absolute minimum in D.

This theorem does not held, in general, if any of the hypotheses are deleted. Fcr example, consider the function $f(x)=x$ on $D=$ ($x \mid 0<x<1$). D is not closed and $f(x)$ does not kaye an absolute mininum in D. If $D=\{x \mid 0<x<1\}$ then D is closed and $f(x)$ has an absolute minimum at $x=0$.

Note: The hypotheses of Theorem 2-2 may be weakened by demanding that $f(x)$ be only lower semi-continuous rather than continuous. For proof, sec Ref. 1, page 58.

Theorem 2-3 depends on the concept of convexity.

Defintion 2-4: 4 subset D of R^{n} is called a convex set if whenever x and y arc in D, then the straight line segreent $x+\theta(y-x), 0<0$
<1, is also in D. A real valued function $f(x)$, defined on a convex set D is called a convex function on D if for any two points y and z in D

$$
\begin{aligned}
& f[y+\theta(z-y)]<f(y)+\theta[f(z)-f(y)] \\
& \quad 0<\theta<1 .
\end{aligned}
$$

That is, $f(x)$ is convex on D if the straight line segment $f(y)+\theta[f(z)-f(y)]$ is above the graph of $f(x)$ on the line segment $y+\theta(z-y)$ in $D, 0<\theta<1$. For a more detailed discussion of convex functions, see Aprendix A.

Theorem 2-3 gives the designer valuable information about the gobal properties of the cost function. It is proved in detail in Chapter 4.

Theorem 2-3: Let $f(x)$ be a convex function defined on a convex set D in R^{n}. Then a relative minimum of $f(x)$ oii D is also an absolute minimum of $f(x)$ on D.

This theorem is of obvious value to the designer. It assures him that it his design problem satisfies the hypotheses of Theorem 2.3 and if he has found a reiative minimum then he is through; he has also found the absolute minimum.

Computational methods for finding extrema based on the theorems of this paragraph generally involve the solution of nonlinear algebraic equations. In paticular, Eq. 2-3, which is in general nonlinear, can be solved by a numerical method to locate all admissible interior extrema. Methods for solving such equations are given in Ref. 3, Chapter 2. It generaliy has been found, however, ttat direct methods for finding extrema are superior to the solution of Eq. $2-3$. For this reason no computational

AMCP 706-192

methods based on the indirect method will be presented here.

It will be the purpose of the remainder of this chapter to present methods that the designer may use to locate interior relative minima. Relative minima on the boundary of the admissible region will be treated in Chapters 3 and 4.

2-3 ONE-DIMENSIONAL MINIMIZATION

In the direct minimization methods to follow, a multidimensional minimization problem will be reduced to a sequence of onedimensional minimization problems; i.e., the problem of determining a scalar α so that a given function $g(x)$ will be $?$ minimum.

In the problem of minimizing $f(x)$ for x in R^{n}, all the methods of solution presented in this chapter are based on successive umprovements in certain directions; i.e., at a point $x^{(i)}$ one finds a direction, s, in which $f(x)$ decreases. The object is now to move along the vector $x^{(i)}+\alpha s$, by adjusting $\alpha, \alpha>0$, until $f(x)$ is as small as possible. The resulting point is then called $x^{(i+1)}$, and the entire process is repeated. It is clear that the intermediate problem of determining α so as to ininimize $f\left(x^{(1} \quad x s\right)$ is ore-dinensional. This paragraph will de devoted to presentation of methors forsulving the ore-dimensional problem.

2-3.1 QUADRATIC INTERPOLATION

If the function $f\left(x^{(t)}+\alpha s\right)$ of the scalar variable $\alpha-x^{(1)}$ and the unit vectors are fixed - were quadratic in α, then the value of α which minimizes the function could be found by setting

$$
\frac{d}{d o}\left\{f\left|x^{(i)}+\alpha s\right|\right\}=0
$$

The object here is to treat more general functinns, but it is possible to make a quadratc approximation to $f\left[\cdot c^{(i)}+\alpha s\right]$ which will hold near the minimum point. Then, the minimum point of tie approximating function, which may be easily found, is an approximation of the frue ininimum point.

The quadratic approximation of $f\left[x^{(i)}+\right.$ $\alpha s]$ is constructed by passing a quariratic curve in α through three computed values of the function. The distance between the three trial points will be $\delta>0$, where δ is initially chosen to be a small fraction of the expected range of α. It is known, however, that if the starting point of the process is quite far from the minimum point then the rainimum point of the approximating function may not be near the true minimum joint. To prevent making large, inaccurate steps in this case, a maximun allowable step size Δ is chosen before the process brgins A reasonable choice of Δ is 50% of the expected range of α.

The following algorithm implements the procedure described:

Step 1. Define $\alpha^{0}=0$ and $j=1$.
Step 2. Compute
$f_{1}=f \mid x^{(i)}+\left(\alpha^{j-1}-\delta\right) s$
$f_{0}=f\left[x^{(1)}+\alpha^{j-1} s\right]$
$f_{2}=f\left[x^{(t)}+\left(\alpha^{j-1}+\delta\right) s\right]$.
Step 3. A quadratic polynommal in $\alpha-$ $\alpha^{\prime \cdot 1}=z$ is fitted through $\left(-\delta, f_{1}\right)$, $\left(0, f_{0}\right),\left(\delta, f_{2}\right)$. Its minimum is $z_{m}=\frac{\delta\left(f_{1}-f_{2}\right)}{2\left(f_{1}-2 f_{0}+f_{2}\right)}$, if $f_{1}-2 f_{0}$ $+f_{2} \neq 0$. If this quantity is zero, then the approximation is a

AMCP 706-192.

straight line with minimum at $z_{m}=$ $\pm \Delta$, depending on which of f_{1} and f_{2} is smaller.

Step 4. Define
$d \alpha=\min \left(\left|z_{m}\right|, \Delta\right) \cdot \operatorname{sgn}\left(z_{m}\right)$
and
$\alpha^{\prime}=\alpha^{J-1}+d \alpha$

Step 5. If $|d \alpha|$ is less than a specified tolerance, the process is stopped and α^{j} is taken as the minimum value of α. Otherwise, replace j with $j+1$ and return to Step 2.

2-3.2 FIBONACCI SEARCH (OR GOLDEN SECTION SEARCH)

The Fibonacci search technique is a method based on isolating a relative minimum in an interval and successively decreasing the size of the interval. The process thus gives successively better estimates for the location of the minimum point. For a proof that the method converges very rapidly the reader is referred to Ref. 4, page 236. Here, only the basic ideas behind the method will be given, and an iterative algorithm stated.

Starting at $\alpha=0$ one might evaluate $f\left(x^{(t)}\right.$ $+\alpha s]$ at $\alpha=\delta$ and check to see if the functionai value is smaller than at $\alpha=0$. If it is, one might then evaluate the function at $\alpha=$ 2δ and compare with the value of $\alpha=\delta$. Again if a decrease occurs, one moves on to α $=3 \varepsilon$, etc. The process will terminate when $f\left[x^{(i)} \dot{\gamma}(k+1) \delta s\right]>f\left|x^{(i)}+k \delta s\right|$. It is then known that $(k-1) \delta<\alpha<(k+1) \delta$ contains the minimum point and a more accurate result, if required, may be obtained by reducing δ and repeating the process from
$\alpha=(k-1) \delta$. If the initial step δ was too small, many steps will have to be made before the minimum point is located.

In Fibonacci search the same basic procedure is followed except that if, after a given step, the functiona! value has decreased, then the next step size is taken as 1.618 times the previous step size. In this way if the minimum point is a long way from $\alpha=0$, the Fibonacci technique will isolate it much more rapidly than the previous method with constant step size. Note that there is a penaity, in that the interval which contains the minimum point may have length much greater than 2δ. This is illustrated in Fig. 2-3.

Figure 2-3. Function of Single Variable

Once the minimum point is restricted to some interval, this interval is broken up into three subintervals by inserting points located a distance of 0.382 times the length of the interval from each end. A test is then performed to see which subinterval the minimum point lies in. For a given subinterval the partitioning is shown in Fi_{k}. 2-4.

Figure 2-4. Interval Partition

AMCP 708-192

The search process is terminated when the minimum point is isolated in a sufficiently smail subinterval.

The Fibonacci search method has the property of being best in a certain sense among all search techniques which isolate α in an interval. A measure of the effectiveness of any such technique is the ratio of the length of the largest interval in which α may lie after n steps to the length of the original interval which contained α. It is shown in R \sim f. 4, page 253 , that if $f\left[x^{(i)}+\alpha s\right.$) has a unique relative minimum as a function of α, then Fibonacci search minimizes the number of interyal partitions.

The Fibonacci search technique may now be given in the form of 2 computational algorithm:

Step 1. First an upper bound must be found for α, α_{u}. It is clear that 0 is a lower bound, α_{χ}. For a chosen small step size δ in α, let j be the smallest integer such that

$$
\begin{aligned}
& \left.f\left\{x^{(i)}+\mid \sum_{k=0}^{j} \delta(1.618)^{k}\right] s\right\} \\
& \left.=f\left\{x^{(i)}+\mid \sum_{k=0}^{j-1} \delta(1.618)^{k}\right] s\right\} .
\end{aligned}
$$

Ther upper and lower bounds on $\alpha^{(i)}$ are

$$
\begin{aligned}
& a_{u}=\sum_{k=c}^{j} \delta(1.618)^{k} \\
& \alpha_{8}=\sum_{k=0}^{j-2} \delta(1.618)^{k} .
\end{aligned}
$$

Step 2. Compuie $f\left|r^{(t)}+\alpha_{b} s\right|$, whele

$$
\begin{array}{ll}
\alpha_{a}=\alpha_{\ell}+0.382\left(\alpha_{u}\right. & \left.\alpha_{q}\right) \\
\alpha_{b}=\alpha_{q}+0.618\left(\alpha_{u}\right. & \left.\alpha_{q}\right) .
\end{array}
$$

Note that $\alpha_{a}=\sum_{k=0}^{j-1} \delta(1.618)^{k}$ so $f\left[x^{(1)}+\right.$ $\alpha_{a} s$ is knewn.

Step 3. Compare $f\left[x^{(i)}+\alpha_{a} s\right]$ and $f\left[x^{(i)}\right.$ $\left.+\alpha_{b} r\right]$ and go to Step 4,5 , or 6 .

Step 4. If $f\left[x^{(i)}+\alpha_{a} s\right]<f\left[x^{(i)}+\alpha_{b} s\right]$, then $\alpha_{q}<x^{(i)}<\alpha_{b}$. By the choice of α_{a} and α_{b}, the new points $\alpha_{i}^{\prime}=$ α_{p} and $\alpha_{u}^{\prime}=\alpha_{b}$ have $\alpha_{b}^{\prime}=\alpha_{a}$. Compute now $\dot{f}\left[x^{(1)}+\alpha_{a}^{\prime} s\right]$ where $\alpha_{a}^{\prime}=\alpha_{8}^{\prime}+0.382\left(\alpha_{u}^{\prime}-\alpha_{8}^{\prime}\right)$. Go to Step 7.

Ster 5. If $f\left|x^{(1)}+a_{a} s\right|=f\left\{x^{(1)}+\alpha_{b} s\right\}$, then $\alpha_{a}<\alpha^{(0)} \leqslant\left(r_{u}\right.$. Similar to the procedure in Step 4, pat $\alpha_{g}^{\prime}=\alpha_{a}$ and $\alpha_{u}^{\prime}=\alpha_{u}$ si) that $\alpha_{0}^{\prime}=\alpha_{b}$. Compute $f\left(x^{(i)}+\alpha_{b}^{\prime} s\right\}$ where $\alpha_{b}^{\prime}=$ $a_{1}^{\prime}+0.618\left(\alpha_{2}^{\prime}-\alpha_{2}^{\prime}\right)$. Go to Step 7 .

Step 6. If $f\left[x^{(i)}+\alpha_{a} s\right]=f\left[x^{(i)}+\alpha_{b} s\right]$. put $\alpha_{Q}^{\prime}=\alpha_{1}$ and $\alpha_{u}^{\prime}=\alpha_{b}$.
Return to Step 2.
Step 7. If $\alpha_{u}^{\prime}-\alpha_{\ell}^{\prime}$ is suitably smal!, put $\alpha^{(t)}=\frac{1}{2}\left(\alpha_{u}^{\prime}+\alpha_{q}^{\prime}\right)$ and stop. Otherwise, delete the primes on α_{v}^{\prime}. $\alpha_{a}^{\prime}, \alpha_{b}^{\prime}$, and α_{u}^{\prime} and return to Step 3

2-4 THE METHOD OF STEEPEST DE. SCENT (OR GRADIENT)

Thee sumplest and probably the best known of the direct methods of minimization is the Method of Steepest Descent (or Gradent). This method is based on the fact that if the cost surface is smooth, then its tam, cit plane is a good approximation to the urface near the pornt of tangency. The phtos phy of the

Method of Steepest Descert is apparent in its title. Dne wishes to change $x^{(0)}$ by an increment $d x$ in such a way that $f(x), x=x^{(i)}+$ $d x$, is reduced as much as possible for a given length of increment. The direction of the increment $d x$ is called the direction of steepest Gescent.

The direction of steepest descent is given by Theorem 2-4.

Theorem 2-4: Let $f(x)$ be differentiable in r^{n}. The direction of steepest descent at a point 2 is

$$
\begin{equation*}
d x=-\alpha \nabla f^{T}(\tilde{x}) \tag{2-4}
\end{equation*}
$$

where $\alpha>0$ is a scalar tacte".
The proof of Theorem $2-4$ illustrates clearly that the drection of steepest ascent is

$$
\begin{equation*}
d x=\alpha \nabla f^{T}(x) \tag{2-5}
\end{equation*}
$$

for $\alpha>0$. The reader should note carefully that Eqs. 2-4 and 2-5 give only the direction in the design parameter space R^{n} which yieldis the maximum rate of change of $f(x)$. Since the factor α is not determined explicitly, the size of step is not specified.

In order to start the steepest descent iterative technique, the designer makes the best estimate of the design parameter available, $x^{(0)}$. The gradient $\nabla f\left(x^{(0)}\right)$ is then computed at $x^{(0)}$ and a new point $x^{(1)}$ is determined by

$$
x^{(1)}=x^{(0)}-\alpha^{(0)} \nabla f^{T}\left[x^{(0)}\right]
$$

where $\alpha^{(0)}>0$ is chosen using methods of par 2-3 so that $f\left[x^{(0)}-\alpha \vee f^{T}\left(x^{(0)}\right) \mid\right.$ is a minimuma as a functon of α. If $\nabla f^{\prime}\left|x^{(0)}\right| \neq$ 0 then $\left.f\left(x^{(1)}\right\}<f \mid x^{(0)}\right\}$, so $x^{(1)}$ is taken
as a better estimate of the minimum point and the process is continued until $\nabla f\left[x^{(/ 1)}\right]=$ 0 or $a x$ is sufficiently small This method may be given in compact ${ }^{\circ}$ orm as the steepest descent algorithm:

Step 1. Make the best engineering estimate $x^{(0)}$ of the minimum point.

Step 2. Compute $\nabla f\left[x^{(i)}\right]$ and define 2 normalized gredient $s=$ $\frac{\left\|\nabla f\left[x^{(0)}\right]\right\|}{\| f^{T}\left[x^{(i)}\right] \text {. Find } s=~=~=~}$ $\alpha^{(i)}$ which minimizes $f\left[x^{i n}+\alpha s\right]$ (where i is the number of inerations completed. if $\nabla f\left[x^{(i)}\right]=0$, terminate the process and $x^{(i)}$ is a relative ninimum point.

Step 3. Put $x^{(i r 1)}=x^{(i)}-\alpha^{(i)}$ s. If $\left|\alpha^{(i)}\right|$ and $\left\|\nabla f\left[x^{(1+1)}\right]\right\|$ are less than predetermined limits, terminate the process and let $x^{(l+1)}$ be the approximation to the minimum poin!. Otherwise return to Step 2.

It is interesting to note that successive. directions of steepest descent are orthogonal to one-another in this algorithm--i.e., $\nabla f \mid x^{(i+1)} ; \nabla f^{T}\left[x^{(i)}=0\right]$. To see this, recall that $\alpha^{(t)}$ is chosen so that $f\left[x^{(i)}-\alpha s\right\}$ is a minimum in α. The necessary condition of Theorem 2-1 then requires

$$
\begin{aligned}
& 0=\frac{\partial f}{\partial \alpha}=-\frac{1}{\| \nabla f\left[x^{(i)} \left\lvert\, \| \sum_{i=1}^{n} \frac{\partial f}{\partial x}\left[x^{(i+1)}\right]\right.\right.} \\
& \frac{\partial f}{\partial x}\left[x^{(0)}\right]=-\frac{1}{\left\|\nabla f^{T}\left[x^{(i)}\right]\right\|} \\
& \nabla f\left[x^{(i+1)}\right] \nabla f^{I}\left[x^{(i)}\right]
\end{aligned}
$$

which was to be shoun.
In the case where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, Fig. 2-5 is a v:ew of the design variable space. The closed

AWCP \%(6)-192

Figure 2-5. Descent Steps
curves in this figure re lines of constant $f(x)$,
A relatively general convergence theorem pertaining to this algorithm will now be stated. The proof of this theorem may be found in Ref. 5, page 80.

Theorem 2.5: Let $f(x)$ be a continuous function defined on R^{n} and let $x^{(0)}$ be any point such that the closed set

$$
S=\left\{x \mid f(x)<f\left[x^{(0)}\right]\right\}
$$

is bounced, and $f(x)$ is twice continuously differentiable on S. Let the matiix of second derivat:- c of $f^{\prime}(x)$,

$$
H(x)=\left[\frac{\partial^{2} j(x)}{\partial x_{i} \partial x_{j}}\right]
$$

satisfy the condition

$$
i y^{T} H y \mid<M y^{T} y
$$

for sone M, every.' in R^{n}, and every x in S. Then for the sequence $\left\{x^{(i)} \mid\right.$ generated by the steepest descent algorithm:
(1) A subsequence $x^{(i m)}$ converges to a point \bar{x} in S for which $\nabla f(\bar{x})=0$.
(2) $f\left|x^{\left(i_{m}\right)}\right|$ decreases monotonically to $f(\bar{x})$.
(3) If \bar{x} is the only point in S for which $\nabla f(\bar{x})=0$, then $x^{(1)}$ converges to \bar{x}.

Several things which Theorem 2-5 does nr, say are worthy of note. First, the thenem does not guarantee that the sequerse of points $x^{(1)}$ gonerated by the Mishod of Stecpest Descent will converge. Farther, unless the assumption of (3) holds, the sequence need not cunverge io an absol;te minimum; it may converge to a selative rinimum.

The choice of the initial estimate $x^{(0)}$ can have a great deal to do with the limit point of the algorithm if it does converge. If it is not known beforenand that a unique relative minimum evsts, it is genera! practice to start the iterative process at several initial estimates. If the sequence $x^{(1)}$ converges to the same point \bar{x} each time, then one is led to believe that he has indecd found an absolute minimum. bogic such as this can cause sleepless nights, hewever, particularly if a decision involving considerable resources and perhaps even one's job depends on the outcome. For this reason, the importance of at least making a serious attempt to apply theorems such as those of par. 2-2 cannot be overemphasized Theorem 2-3, for example, if properly applied, may prevent many anxious moments.

In spite of the simplicity of the Method of Steepest Descent, it has several severe restrictions which: are discussed in Ref. 5, page 159. These are:

1. Even though convergence may be guaranteed by Theorem $2 \cdot 5$, an infinite number of iterations may be required for the minimization of even a positive definite quadratic form.
2. Each teration is caleulatud mdepen dently of the others so that no information is

AMCP 706-192

stored which might be used to accelerate convergence
3. The rate of convergence depends strongly on properties of the cost function. If the ratio of the làrgest and smallest eigenvalues of the matzix of second derivatives is large, the steepest descent algorithm generates short zig-zagging moves. Convergence is, therefore, very slow.

For an extensive treatment of modifications of the steepest descent method, which prevents certain of these difficulties, see Ref. 4, Chapter 7. Several methods, presènted in the next three paragraphs, do not suffer so severely from the problems just described.

2.5 A GENERALIZED NEWTON METHOD

In the Steepest Descent Method of par. 2-4, only first-order derivatives that determine the tangent plane of the cost surface are used to represent the behavior of this surface. One would expect that if second derivatives of the cost function were aveilable, then a quadratic function could be constructed as att approximation to the surface. The quadratic approximation should aliow for much bette: approximation of the minimum point of the cost function.

The idea of this nothod is to first use a second-degree Taylor for. ${ }^{\text {rula }}$ as an approximation to $f(x)$. If $f(x)$ is cs., vex, or just convex near a minimum point then the minimum point of the quadratic should be near the minumum point of $f(x)$. The minimum point of the quadratic approximation is then determined analytically and is taken as a good approximation of the minimum point of $f(x)$.

In order to utilize Taylor's formula inclu. ii.، wond degree terms, the following
matrix is required

$$
H(x) \equiv \nabla^{2} f(x) \equiv\left[\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right]_{n \times n}
$$

Note that it is implicitly assumed here that $f(x)$ has two derivatives. By Taylor's formula,

$$
\begin{align*}
f\left[x^{(0)}+\Delta x\right] \approx & f\left[x^{(0)}\right]+\nabla f\left[x^{(0)}\right] \Delta x \\
& +\frac{1}{2} \Delta x^{T} H\left[x^{(0)}\right] \Delta x \tag{2-6}
\end{align*}
$$

where Δx is a change in $x^{(0)}$. In case $f(x)$ is locally convex - convex in a neighborhcod of $\tilde{x}^{(0)}$ - Theorem A-3 shows that $H\left[x^{(0)}\right]$ is pösitive serni-definite. If, in addition, $H\left[\hat{\left.x^{(0)}\right]}\right]$ is positive definite, then it has an inverse. Further, $f[x(0)+\Delta x]$ in Eq. 2-6 is convex in so Theorem $2-3$ insures the existence ofa unique minionum point of the quadratic function in E4. 2-6. By Theorem 2-1, this unique minimum point is determined by

$$
\nabla f^{T}\left[x^{(0)}\right]+H\left[x^{(0)}\right] \Delta x=0
$$

or

$$
\begin{equation*}
\Delta x=-H^{-1}\left[x^{(0)}\right] \nabla f^{T}\left[x^{(0)}\right] \tag{2-7}
\end{equation*}
$$

a d the new estimate of the minimum point is $x^{(1)}=x^{(0)}+\Delta x$.

Since Eq. $2-6$ is just an approxination, $x^{(!)}$ will probably not be the precise minimum poisi; of $f(x)$. Realizing that evaluation of $H(x)$ requires computation of $n(n+i) / 2$ second derivatives of $f(x)$, one might be tempted to improve the estimate for the minimum: point before recalculating all these derivatives.

An easy way of mproving the estimate of the minimum point is to change the length of

ANCP 706-192

the step Δx without altering its direction. The scalar $\alpha \simeq 1$ will be determined by methods of par. 2-3 so as to minimize $\int\left[x^{(0)}+\alpha \Delta x\right]$.

This procedure may now be put down in the form of a computational algorithm called Generalized Newton Method:

Step 1. Make an engireering estimate $x^{(0)}$ of the r nimum point of $f(x)$.

Step 2. Compute

$$
x^{(i+1)}=x^{(i)}-\alpha^{(j)} H^{-1}\left[x^{(i)}\right]\left\ulcorner f^{T}\left[x^{(i)}\right]\right.
$$

where $\alpha=\alpha^{(i)}$ is chosen which minimizes
$f\left\{x^{(i)}-\alpha H^{-1}\left[x^{(i)}\right] \nabla f^{T}\left[x^{(i)}\right]\right\}$
as a function of α. Here, the index i is the number of iterations completed.

Step 3. If $\| \nabla\rangle f\left[.^{(i)}\right] \|$ and $\left\|x^{(i+1)} \ldots x^{(i)}\right\|$ are sufficiently small, terminate the process and take $x^{(i+1)}$ as the minumum point of $f(x)$. Otherwise, return to Siep 2.

The Generalized Newton Method presented in this paragrapn has been called the best for minimizing convex cost functions when second derivatives are available (see Ref. 5, page 162). Even in the case in which the cost fun tion is nonconvex, if the starting point $x^{(0)}$ is near enough to a relative minimum point so that the cost function is convex at $x^{(0)}$, then good convergence may still be expected.

In spite of the advantages of this method, it still has several she itcomings.

1. Even if $f(x)$ is convex in inverse of
$H(x)$ may not exist unless $H(x)$ is strictly positive definite.
2. In nonconvex problems an iteration does not necessarily decrease $f\left[x^{(i)}\right]$ when the current iterate $x^{(i)}$ is not near thes minimum oint.
3. For many engineering problems, $H(x)$ will be extremely messy if not impossible to compute efficiently.

Even in nonconvex minimization problems the Generalized Newton Method may be used in conjunction with a Steepest Desceni Method to form an extremely effective tool. The Steepest Descent Method has the property of making good progress even though only a poor estimate of the minimum point is available. As a relative minimum is approached, however, the rate of convergerice of the Steepest Descent Method decreases. At this point, however, the cost function should be convex since a minimum poiat is nearby. Therefore, the Genaralized Newton Method may be employed for rapid convergence to the relative minimum point.

2.6 METHODS OF CONJUGATE DIREC. TIONS

In par. 24 it is pointed out that the Method of Steepest Descent had rather poor convergence proferties in many problems because it uses only first-order approximations (involving only first-order derivatives). Further, the Steepest Desient Method is not a learning process in that it does not store information from past iterations. The first deficiency is corrected in par. $2-5$ where a Generalized Newton Meihod employing second derivatives is presented This method, while having outstanding convergence properties, requres the computaton of $n(n+1), 2$
second-order derivatives at each iteration (x is in R^{n}). In most engineering desizn problems this is an extremely tedious, if not impossible, task. Further, -tine Generalized Newton Method is not a learning process.

The methods presented in this paragraph require the computation of snly first derivetives. However, by making use of information obtained from prev', us derivatives, convergence is spoazid as the minimum is approached. In fact, as one of the methods piogresses, it develops an approximation to the matrix of second derivatives. In this respect the methods here have the desirable features of both the Method of Steepest Descent and the Generalized Newton Method.

All Methods of Conjugate Directions are based on the philosophy "If a method works well in minimizing all positive definite quadratic forms, then it ought to work pretty well on any smooth cost function." To be more specific, Conjugate Gradient Methods are guaranteed to minimize any positive definite quadratic form in n iterations (the design parameter is in R^{n}). Aithough this ideal behavior will not carry over to general iost functions, since a convex cost function often looks very much like a positive definte quadratic form, similar behavior could be expected. Experience has shown that this is the case.

In order to be more precise, one makes Defintion 2-5.

Defintion $2-5$: Let A be a symmetric positive deinite $n \times n$ matrix and $S^{\prime}, 1=0$ $1, \ldots, n$ - . . be nonzero vectors in R^{n}. Thw are called cor jugate with respect to A if

$$
\begin{equation*}
S^{r} A S^{\prime}=0,: \neq 1 \tag{2-8}
\end{equation*}
$$

Suce A is posthe defimte, the conjugats
vectors S^{i} are linearly independent. To see that this is true, form the linear combination

$$
\sum_{i=0}^{n} a_{i} S^{i}=0
$$

where the a_{i} are scalars. Multiplying this sum on the left by $S^{\prime} A$ yields

$$
\sum_{i=0}^{n-1} a_{i} S^{\prime} A S^{i}=a_{j} S^{\prime} T A S^{\prime}=0
$$

and since $S^{T} A S^{j} \neq 0, a_{j}=0$. Since $;$ was arburary, $a_{j}=0, j=0,1, \ldots, n-1$, and this is just th. definition of linear independence.

Consider now the problem of minimizing the conves function

$$
\begin{equation*}
f(x)=B^{T} x+\frac{1}{2} x^{T} A x \tag{2-9}
\end{equation*}
$$

where x is in R^{n}, B is an $n \times 1$ matrix and A is a symmetric positive definite, $n \times n$ matrix. The central idea of all methods based on conjugaie directions is contained in Theorem 2-6.

Theorem $-\dot{\sigma}$. Let S^{0}, \ldots, S^{n-1} be nonzero vectors in R^{n} which are conjugate with respect to the positive definite matrix A. Choose scalars $\lambda=\lambda^{(1)}, i=0, \ldots, n \cdot 1$, successively which minimize

$$
\begin{equation*}
f\left[x^{(t)}+\lambda s^{t}\right] \tag{2-10}
\end{equation*}
$$

where $f(x)$ is given in E,

$$
x^{(t)}=x^{(0)}+\sum_{k=0}^{1} x^{(1)} s^{k}
$$

and $x^{(9)}$ s any pome in R^{n} Thers $x^{(n)}$ is the absolute memmen pont w thover

The two methodi thet follow dre viluat
based on different ways of generating conjugate directions. There are an unlimited number of ways to generate conjugate directions. Severall ways are discussed in Ref. 6.

2.6.1 THE CONJUGATE GRADIENT METHOD

Given any set of n linearly independent vectors and a positive definite $n \times m$ matrix A a set of conjugate directions with respect to A can be generated by a Gram-Schmidt orthogonalization technique. Let $\nu^{0}, \ldots, \nu^{n-1}$ be linearly independent vectors and define S^{0} $=y^{0}$. iNow pat

$$
S^{1}=v^{1}+\alpha_{10} S^{0}
$$

For A-conjugacy, it is required that

$$
S^{0^{T}} A S^{1}=0=S^{0} A\left(\nu^{1}+\alpha_{10} S^{0}\right)
$$

and

$$
\alpha_{10}=-\frac{v^{1 T} A S^{0}}{S^{0 T} A S^{0}}
$$

AssL.ming S^{1}, \ldots, S^{k} are A-conjugate, put

$$
S^{k+1}=v^{k+1}+\alpha_{k+1,0} S^{0}+\ldots+\alpha_{k+1, k^{\prime}} s^{k}
$$

For A-conjugacy it is required that

$$
S^{k+1} A S^{r}=0=\nu^{k+1} T_{A} S^{r}+\alpha_{k+1, r} S^{r} A S^{r}
$$

where the second equality holds by S-conjugacy, so

$$
\alpha_{k+1, r}=-\frac{v^{k+1} T}{S^{r} A S^{r}}, r=i, \ldots, k
$$

By induction, the resulting directions are A-conjugate ar:d

$$
S^{k+1}=\nu^{k+1}-\sum_{r=0}^{k} \frac{\nu^{k+1 T} A S^{r}}{S^{r^{T}} A S^{r}}
$$

Many sets of vectors ν_{1} could be chosen to generate conjugate directions. A natural choice, however, is the set of gradient vectors of $f(x), g^{l}=\nabla f^{T}\left(x^{(i)}\right)$, where $x^{(l)}$ are defined in Theorem 2-6. Define

$$
\begin{align*}
S^{0} & =-g^{0} \\
S^{k+1} & =-g^{k+1}+\sum_{i=0}^{k} \frac{g^{k+1} r}{S^{i^{T}} A S^{i}} S^{i} \tag{2-12}
\end{align*}
$$

Alternatively,
$g^{k+1}=-S^{k+1}+\sum_{i=0}^{k} \frac{g^{k+1} T A S^{i}}{S^{T} A S^{i}} S^{i}$.
Since $f(x)=\frac{1}{2} x^{T} A x+B^{T} x$,

$$
g_{k}=\nabla f^{T}\left[x^{(k)}\right]=A x^{(k)}+B
$$

or from the proof of Theorem 2-6,

Now,

$$
\begin{align*}
g^{k T} S^{i} & =g^{i+1} S^{i}+S^{t^{T}} A\left[\sum_{\ell * i+1}^{k \cdot 1} \lambda^{(\ell)} S^{\ell}\right] \\
& =0, i<k \tag{2-15}
\end{align*}
$$

due to A-conjugacy of the S^{\prime} and

$$
\begin{equation*}
\nabla f\left(x^{(k+1)} \mid S^{k}=0, k=0, \ldots, n-1\right. \tag{2-16}
\end{equation*}
$$

From Eqs. 2.13 and 2-14

$$
\begin{align*}
g^{k T} g^{i} & =g^{k T}\left[-S^{i}+\sum_{j=0}^{i-1} \frac{g^{i T} A S^{j}}{S^{i} A S^{j}} S^{j}\right] \\
& =0,1 \quad k \tag{2.17}
\end{align*}
$$

Thus, the $g^{l}, t=0,1, \ldots, n-1$ are linearly indêpendent and the $S_{i}^{i} i=0,1, \ldots, n-1$ are A-conjugate.

The Conjugate Direction Method of Thesrem 2-6 may now be applied using the conjugate gradients S^{l}. The result is called the Conjugare Grailient Method. In order to apply this method to nonquadratic problems, it is first necessary to eliminate explicit dependence of the algorithm on the form of $f(x)$.

By definition,

$$
g^{i+1}=A x^{j+1}+B=A\left\{x^{\prime}+\lambda^{(J)} S^{\prime}\right\}+B
$$

or

$$
\begin{equation*}
g^{j+1}=g^{\prime}+\lambda^{(n)} \mathrm{AS}^{\prime} \tag{2-18}
\end{equation*}
$$

By Eq. 2-16

$$
g^{\prime+1} T S^{\prime}=0=g^{\prime} S^{\prime}+\lambda^{(\prime)} S^{\prime} T A S^{\prime}
$$

Thus,

$$
\lambda^{(j)}=-\frac{g^{\prime} I^{\prime} S^{\prime}}{{S^{\prime}}^{\prime} A S^{\prime}}
$$

Substituting for S^{j} from Eq. 2-12 and using Eq. 2-15, this is

$$
\begin{equation*}
\lambda^{(j)}=\frac{g^{\prime} S^{\prime}}{S^{\prime} S^{T} A S^{\prime}} \tag{2-19}
\end{equation*}
$$

irrom Eqs. 2-18 and 2-19

$$
A S^{i}=\frac{S^{i T} A}{g^{i}} \frac{S^{i}}{g^{i}}\left(g^{i+1}-g^{i}\right)
$$

Now,

$$
\frac{g^{k+1} T A S^{i}}{S^{T} A S^{I}}=\frac{g^{k+1 T}\left(g^{i+1}-g^{l}\right)}{g^{i} g^{i}}
$$

By Eq. 2-17, foi $i<k$, the right side of the above equation is zero. For $i=k$,

$$
\frac{g^{k+1} T}{S^{k T} A S^{k}}=\frac{g^{k+1} S^{k+1}}{g^{k T} g^{k}}
$$

Substituting this result into Eq. 2-i2 yields

$$
\begin{equation*}
S^{k+1}=-g^{k+1}+\left(\frac{g^{k+1}{ }^{T} g^{k+1}}{g^{k^{T}} g^{k}}\right) S^{k} \tag{2-20}
\end{equation*}
$$

b:4. 2-20 now gives an algorithm for determining the conjugate directions, even without knowledge of the matrix A.

For a general function $f(x)$,

$$
g^{i}=\nabla f^{T}\left[x^{(i)}\right]
$$

and the following algorithm for finding the unconstrained minimum of $f(x)$ is called the Conjugate Gradient Method:

Step 1. Make an engineering estimate $x^{(0)}$ of the minimum point and compute

$$
S^{0}=-\nabla f^{T}\left[x^{(0)}\right]
$$

Step 2. For $i=0,1, \ldots$, find $\alpha=\alpha^{(i)}$ which minimizes $f\left[x^{(i)}+\alpha S^{i}\right]$.

Step 3. Compute
$x^{(i+1)}=x^{(i)}+\alpha^{(i)} S^{1}$
$S^{i+1}=-\nabla f^{T}\left[x^{(i+1)}\right]+\beta^{i} S^{t}$
where
$\beta^{\prime}=\frac{\nabla f\left[x^{(i+1)} \mid \nabla f^{T}\left[x^{(+1)}\right]\right.}{\nabla f\left(x^{(i)}\right) \nabla f^{T}\left[x^{(i)}\right]}$.

Step 4. Terminate the process if $\left\|\nabla f\left\{x^{(i+1)}\right]\right\|$ and $\left\|x^{(i+1)}-x^{(i)}\right\|$ are sufficiently small. Otherwise, return to Step 2.

When this algorithm is applied to problems in which (f) is $n=\mathrm{ct}$ of the form of Eq. 2-9, convergence will not occur in n steps. Fletcher and Reeves recommend that after n steps the algorithm should be "restarted", i.e., $x^{(n+1)}$ should be treated as $x^{(0)}$ in the algorithm. in a sense, the first few iterations of the algorithm build up information about the curvature of the cost surface. After n iterations, this information is discerded and a new estimate of curvature is built up during the next n iterations. This method then does not accumulate information about curvature of the cost surface over the entire iteratwe process.

2-6.2 THE METHOD OF FLETCHER AMD POWELL

A second method based on 2 differer 1 set of conjugate directions was suggested by Davidon (Ref. 8) and modified by Fletcner and Powell (Ref. 9). This method is repo ted to be one of the most per riul known methods for general functions $f(x)$, (Ref. 10). A major reason for the success of this me hod is its capability to accumulate informa ion about the curvature of the cost surface du:ing the entire iterative process, even thoteh enly first order derivatives of the cost func: wn need to be come hted.

The directions $S^{(i)}$, generated by the algorthm that follows, are conugate if, $\gamma(x)$ is of the form of Eq. 2.9. This proof is given n Refs. 7 and 9. In Ref. 6 it is shown that te methoci of Fletcher and Powell fits natural y mto a large class of coniugate direction methods The derivatu n is tedous and lends
little insight into use of the method. For a direct proof of convergence, etc., the reader is referred to Ref. 7.

The computational algorithm is:

Step 1. Make an engineering estimate $x^{(0)}$ of the minimum point and choose a symmetric positive definite matrix $H^{(0)}$.

Step 2. For $t=0, \ldots$, compute
$S^{(i)}=-H^{(i)} \nabla f^{T}\left[x^{(i)}\right]$.
Step 3. Compute $\alpha=\alpha^{(t)}$ which minimizes $f\left[x^{(i)}+\alpha S^{(i)}\right]$.

Step 4. Compute
$\sigma^{(i)}=\alpha^{(i)} S^{(i)}$
$x^{(i+1)}=x^{(i)}+\sigma^{(i)}$
$H^{(i+1)}=H^{(i)}+A^{(i)}+B^{(i)}$
where
$y^{(i)}=\nabla f^{T}\left[x^{(i+1)}\right]-\nabla f^{T}\left\{x^{(i)} \mid\right.$
$A^{(i)}=\frac{\sigma^{(i)} \sigma^{(i)} T}{\sigma^{(i)^{T}} y^{(i)}}$
$B^{(1)}=\frac{H^{(i)} y^{(i)} y^{(i)^{T}} \|^{(i)}}{y^{(i)^{T}} H^{(i)} 1^{(i)}}$.

Step 5. If $\| \nabla f\left(x^{(i+1)} \mid \|\right.$ and $\| x^{(i+1)}$ $x^{\prime \prime \prime} \|$ are sufficiently small, terminate the process. Otherwise return to Step 2.

Fletcher and Poweil (kef. 9) prove that this algorthom las the following properties:

1. The matrix $H^{(i)}$ is positive definite for all, i. This implies the method will always converge to a stationary point since
$\frac{d}{d \alpha} f\left[x^{(i)}+\alpha S^{(l)}\right]_{!\alpha=0}$
$=-\nabla f\left[x^{(i)}\right] H^{(i)} \nabla f^{T}\left[x^{(i)}\right]<0$
provided $\nabla f\left\{x^{(i)}\right] \neq 0$. This means that $f\left[x^{(l)}\right]$ may be decreased by chuosing α >0 if $f\left[x^{(l)}\right] \neq 0$.
2. When this method is appiied to the positive definite quadratic from Eq. 2-9, $H^{(i)}$ converges to A^{-1}.

This method might be called a learning process in that only first derivatives are ever compute 1 , "ut as the algorithm progresses an approxi - of the matrix of second derivatives is tated. Many experienced researchers w. the area of optimization methods laud this method as one of the best available

2.6.3 A CONJUGATE DIRECTION METHOD WITHCUT DERIVATIVES

Occasionally in applications. one is faced with a problem in which computation of derivatives of the cost function is impossible or at least prohibitive from a computational point of view. There are many techniques for solving this sort of problem given in Ref. 4. An efficient technique, not presented in common tex's, was developed by Powell (Ref. 11) using conjugate directions.

A computational algorithm is presented here without proof. For a proof that the algorithm generates conugate directions the eeader is referred to Ref. 11. The computatonal algorithm is

Step 1. Make an engineerints estimate of the minimum point $x^{(0)}$ of $f(x)$. Choose vectors $s^{\prime}, j=1, \ldots, n$, iri the coordinate directions of R^{n}.

Step 2 Find $\alpha=\alpha^{k}, k=1, \ldots, n$, which $\operatorname{minimize} f\left(x^{(k-1)}+\alpha s^{k}\right\}$
where
$y^{0}=x^{(i)}$
$y^{k}=y^{k \cdot 1}+\alpha^{k} s^{k}, k=1, \ldots, n$,
and i is the number of iterations which have been completed. Note that in the one dimensional minimization for α^{k}, it is possible for $x^{k}<0$.

Step 3. Find the integer $m, 1<m<n$? which
$f\left(y^{m-1}\right)-f\left(y^{m}\right)$
is the largest and define
$\Delta=f\left(y^{m-1}\right)-f\left(y^{m}\right)$.
Step 4. Define $f_{1}=f\left(w^{0}\right), f_{2}=f\left(y^{n}\right)$, and $f_{3}=f\left(2 y^{n}-y^{0}\right)$.

Step 5. If $f_{3}>f_{1}$ or
$\left(f_{1}-2 f_{2}+f_{3}\right) \times\left(f_{1}-f_{2}-\Delta\right)^{2}$
$>\frac{\Delta}{2}\left(f_{1}-f_{3}\right)^{2}$,
put
$x^{(1+1)}=y^{n}$.

Termmate the process if $\| x^{\left(1^{+1}\right)}$
$x^{(1)} \mid$ is sufficiently man! Other-
wise retum to Step 2 with the same set of $s^{\prime}, j=1, \ldots, n$.

Step 6. If neither of the inequalities of Step 5 hold, define $s=y^{n}-y^{0}$) and find $\alpha=\bar{\alpha}$ which minimizes

$$
f\left(y^{n}+\alpha s\right)
$$

Put:

$$
x^{(i+1)}=y^{\prime}+\bar{\alpha} s .
$$

Terminate the process if $\| x^{(i+1)}$ $-x^{(i)} \|$ is sufficiently small. Otherwise return to Step 2 with the new set of vectors $x^{1}, \ldots, x^{m-1}, s^{m+1}$, ..., s^{n}, s.

For a discussion of use of the algorithm, see Ref. 11.

2.7 COMPARISON OF THE VARIOUS METHODS

During the development of the methods presented in this cnapter, theoretical advantages and disadvantages have been pointed out. As a concrete test of these methods, three functions will be minimized. Two of the functions to be treated are terribly behoved and pose a meaningful test to any general minimization technique. These functions resemble a very deep valley at whose bottom the curvature in two orthogonal directions is radically different. The third function is quadratic and poses no serious obstacle to any reasonable method. More specifically, these functions are

$$
\begin{align*}
f_{1}\left(x_{1}, x_{2}\right)= & 100\left(x_{2}-x_{1}^{2}\right)^{2} \tag{2-21}\\
& +\left(1-x_{1}\right)^{2}
\end{align*}
$$

$$
\begin{align*}
f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \left(x_{1}+10 x_{2}\right)^{2} \\
& +5\left(x_{3}-x_{4}\right)^{2} \tag{2-22}\\
& +\left(x_{2}-2 x_{3}\right)^{4} \\
& +10\left(x_{1}-x_{4}\right)^{4}
\end{align*}
$$

and

$$
\begin{align*}
f_{3}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2} \tag{2-23}\\
& +2 x_{1} x_{2}+2 x_{2}, x_{3}
\end{align*}
$$

The reader should verify that each of these functions has a strict absolute minimum point. These points are (1,1), $(0,0,0,0)$, and ($0,0,0$), respectively. Each iterative method will be started at points $(-1,1),(1,1,1,1)$, and ($1,1,1$) for Eqs. 2-21, 2-22, and 2-23, respectively. These functions will all be minimized by each of the methods of pars. 2-4 through 2-6. The stopping criterion will be that each component of the independen: variable must be within 10^{-2} of the known minimum point.

Results will be presented in tabular form so that a comparison of the behavior of each of the metnods may be made. For the sake of uniformity, each table will incluade the iteration number i, the iterate $x^{(i)}=\left[x_{1}{ }^{(0)}, \ldots\right.$, $\left.x_{n}{ }^{(i)}\right]^{T}$, and the value of the cost function.

2.7.1 METHOD OF STEEPEST DESCENT

2-7.1.1 COST FUNCTION: $f_{1}(x)=100\left(x_{2}\right.$ $\left.-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$.

Exact solution: $(1,1), f_{1}(1,1)=0$

TABLE 2-1
STEEPEST DESZCENTMETHOD ITÊRATIVE DÁTA FOR CUST Linction $f_{1}(x)$

i	$8\left[x^{(1)}\right]$	$x^{\text {a }}$ a	$x_{2}{ }^{\prime \prime}$
0	404.0	-1.0	-1.0
1	:19.97	0.2576	-0,3743
2	0.8654	0.0707	0.00067 .
3	0.318	0.452	0.1910
4	0.3648	0.448	0.199
5	0.2929	0.472	0.211
6	0.2828	0.4635	0.218
29	0.1762	0.5861	0.3373
30	0.1728	0.5846	0.3403
73	0.1081	0.0739	0.4499
74	0.1871	0.6729	0.4517

2.7.152 CUST EUNCTION: $f_{2}(x)=\left(x_{1}\right.$ $\left.+10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+$ $10\left(x_{1}-x_{4}\right)^{4}$

Exact solution: $(0,0,0,0), f_{2}(0)=0$

TABLE 2.2
STEETEST DESCENT METHOD - - ifERATIVE DATA FOR COST FUNCTION $f_{2}(x)$

1	$\left.7 x^{(1)}\right]$	$x:^{\text {(1) }}$	$x_{2}{ }^{(1)}$	$x_{3}{ }^{\prime \prime}$	$x_{4}{ }^{(1)}$
0	122.0	1.0	1.0	1.0	1.0
1	16.43	0.9055	0.055	1.0	1.0
2	18.31	0.9019	0.023	0.9958	0.9681
6	16.03	0.8925	-0.0498	0.969	0.746
0	15.06	0.886	-0.0756	0.923	0.463
9	12.25	0.641	-0.063	0.659	-0.156
10	3.00	-	0.0748	-0.16018	-0.9187
11	2.006	-1.039	0.1522	-0.258	-0.815
12	1.380	-1.043	0.078	-0.298	-0.752
13	1188	-1.033	0.1127	-0.3276	-0.7057
14	1.047	-1.021	0.0\%0	-0.362	-0.634
15	1.041	-1.015	0.00\%9	-0.363	-0.619
16	1.040	-1.012	0.c960	-0.370	-0.611
38	1.039	-1.008	0.0967	-0.373	- 0.603
34	1.039	-1.008	\%. 0968	-0.373	-0.6019

2-7.1.3 COSŤ FUNCTTION: $f_{3}(x)=x_{1}^{2}+2 x_{2}^{2}$
$+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}$

Exact solution: $(0,0,0), f_{3}(0) \doteq 0$.
TABLIE 2-3
STEEPEST DESCENTMETHOD - ITERATIVE DATA FOR COST FUNCTION $f_{3}(x)$

i	$f\left(x^{(1)}\right)$	$x_{1}{ }^{\prime \prime}$	$\dot{x}_{2}{ }^{\text {in }}$	$x_{3}{ }^{\prime \prime}$
0	9.0	1.0	i. 0	1.6
$!$	0.0714	0.2857	-0.0715	-0.0715
2	0.01311 :	0.1632	-0.153	00512
3	0.0088	0.1604	-0.114	0.006
4	0.00679	0.1245	-0.062	0.053
5	0.00243	0.078	-0.0625	0.0204
6	0.0018	0.073	-0.0476	0.02727
7	0.00063	0.0218	-0,00305	0.0133
8	0.00006	0.014	-0.00956	0.0035
9	0.00005	0.011	-0.00686	0.00485
10	0.00003	0.0041	-0.0036	0.0040

It should be noted that the SteepestDescent Method decreased the cost function rapidly on the first iteration but in the first two problems failed to converge to the minimum point That is typical hehavior for this method, farticulariy in problems for which the cost function has a long sharp valley. It should be clear that blind use of the Method of Steepest Descent can yield poor results.

2.7.2 GENERALIZED NEWTON METHOD

2-7.2.1 COST FUNCTION: $f_{1}(x)=100\left(x_{2}\right.$ $\left.-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$

Exact solution: (1,1), $f_{1}(1,1)=0$

TABLE 2.4

GENERALIZED NEWTON METHOD - ITERATIVE DATA FOR COST FUNCTION $f_{1}(x)$

\boldsymbol{i}	$f_{1}\left[x^{(i)}\right]$	$x_{1}{ }^{(i)}$	$x_{3}{ }^{(\prime)}$
0	404.0	-1.0	-1.0
1	3.981	-0.9950	0.9869
2	3.403	-0.7919	0.5832
3	2.588	-0.5248	0.2241
4	1.549	-0.1832	-0.5105
5	0.953	0.0887	-0.0271
6	0.473	0.3642	0.1063
7	0.203	0.5355	03347
8	0.0531	0.8020	0.6315
9	0.0042	0.9536	0.9049
10	0.0002	0.9900	0.9810
11	2×10^{-6}	1.0003	1.0007

$$
\begin{aligned}
& \text { 2.7.2.2 COST FUNCIION: } f_{2}(x)=\left(x_{1}+\right. \\
& \left.10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}\right. \\
& \left.-x_{4}\right)^{4}
\end{aligned}
$$

Exact solution: $(0,0,0,0), f_{2}(0)=0$

TAELE 2.5
generalized newton meitod - iterative DATA FOR COST FUNC:ION
$f_{2}(x)$

\mathbf{i}	$f_{2}\left[x^{(i)}\right)$	$x_{1}{ }^{(i)}$	$x_{2}{ }^{(i)}$	$x_{3}{ }^{(i)}$	$x_{1}{ }^{\prime \prime}$
0	137.0	1.0	1.0	1.0	2.0^{*}
1	2.137	-0.3368	0.0175	0.3396	0.3249
2	0.0496	-0.0640	0.0250	0.1050	0.1229
3	0.0025	-63591	0.0047	0.0527	0.0517
4	0.0007	-0.0236	00031	0.0263	0.0271
5	0.00001	-0.0146	0.0014	0.0161	0.0160
6	1×10^{-6}	-0.0070	0.0007	0.0078	70079

* Pote: The trial starting point ($1,1,1,1$) was a singular point for $\nabla^{2} f_{2}$ st, an alternate starting point was chosen and the algorithm converged.
2.7.2.3 COST FUNCTION: $f_{3}(x)=x_{1}^{2}+2 x_{2}^{2}$ - $\operatorname{lin}_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}$

Exact solution: $(0,0,0), f_{3}(0)=0$.

TMBLE 2.6
GENERALIZED NFirTON METHOD ITERATIVE DATA FOR COST FUNCTION $f_{3}(x)$

$\frac{i}{2}$	$f_{3}\left[x^{(i)}\right]$	$x_{1}{ }^{(i)}$	$x_{2}{ }^{(i)}$	$x_{3}{ }^{(i)}$
0	9.000	1.0	1.0	1.0
1	2×10^{5}	0.0015	0.0015	0.0015

These results indicate that the Generali. ed Newton Method is indeed very powerful. Even in the second cost function where the initial estimate caused a singularity in $\nabla^{2} f_{2}$, a second starting point yielded good results. Similar behavior has been roted in the literature, so one can expect to get good results with this method. It nust be remembered, however, that this method requires that second derizatives of the cost function be computed.

$$
\begin{aligned}
& \text { 2-7.3 CONJUGATE GRADIENT METHOD } \\
& \text { 2-7.3.1 COST FUNCTION: } f_{1}(x)=100\left(x_{2}\right. \\
& \left.-x_{1}^{2}\right)^{2}+\left(1 \quad x_{1}\right)^{2} \\
& \text { Exact solution: }(1,1), f_{1}(1,1)=0 \text {. }
\end{aligned}
$$

TABLE 2－7
 DATA FOR COST FUNCTION $f_{1}(x)$

i	$f\left[x^{(1)}\right]$	$x_{1}{ }^{\prime \prime}$	$x_{2}{ }^{\prime \prime \prime}$
0	404.0	－1．0	－1．0
	9649.	0.1143	0.0102
			0.0839
1	9649.	0.3258	0.0102
	22.19	0.5106	0.2360
2	22.19	0.5005	0.2482
	0.5033	0.6307	0.3820
3	0.5033	0.6244	0.3882
	0.2226	0.7267	0.5178
4	0.2226	0.7227	0.5212
	0.001637	0.9919	0.9827
8	0.001637	0.9842	0.9868
	0.000067	0.000013	0.998754
11	0.000067	0.999884	0.999768

2．7．3．2 COST FUNCTION：$f_{2}(x)=\left(x_{1}+\right.$ $\left.10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}\right.$ $\left.-x_{4}\right)^{4}$

Exact solution：$(0,0,0,0), f_{2}(0)=0$ ．

TABI．E 2.3
CONJUGATE GRADIENT METHOD－ITERATIVE
DATA FOR COST FUNC＇IC：N
$f_{2}(x)$

，	$1 x^{6 \prime \prime}$	$x_{1} 11$	（ ${ }^{11}$	，${ }^{11}$	$1{ }^{11}$
0	1220	10	10	10	10
	292571	09016	0.0344	046.48	1000
	29250	08637	901787	04158	09590
	3655	08361	0001	03647	06573
1	1922	08904	00563	03324	0.4438
	1927	08180	00860	03185	04540
	1211	01507	00465	0265	（1）187
	3023	0 0，410	00850	02533	04104
2	小 $\%$	03.404	f． 0281	0フリア	02025
	268	03318	0036	02079	02057
	1851	03331	J0s19	01148	02130
	01136	03159	9001	01113	$016 \% 8$
1.	00531	0030 ，	00089	00＇18	0011
	（）$(\times \times 151$	（00）93	00031	\cdots Jug	00.11
	0 （00） 51	002\％	00078	0×6	00／1：
	0 0005s，	0029\％	$0(0) 2$	004\％，	yon＇，
v		003515	0000515	010238	00750：
	0 （0x）3：	9） 0135%	003895	4073117	0023174
	（1） 1 （1）${ }^{\text {a }}$	0）03518		002408	0 （1） 117
	$1.10{ }^{1}$	1） 03530		002×311	60315

2－7．3．3 COST FUNCTION：$f_{3}(x)=x_{1}^{2}+2 x_{2}^{2}$ $+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}$

Exact solution：$(0,0,0), f_{3}(0)=0$ ．

TABLE 2.9

CONJUGATE GRADIENY METHOD－ ITERATIVE DATA FOR COST FUNCTITN $f_{3}(x)$

i	$f_{3}\left[x^{(i)}\right]$	$21^{(i)}$	$x={ }^{(i)}$	$x_{3}{ }^{(i)}$
0	9.0	1.0	1.0	1.0
	0.1181	0.3829	－0．2340	0.0744
	0.0293	0．257i	－0．2285	0.1428
1	0	0	0	0

The numerical results presented here indi－ cate that the Conjugate Gradient Method is very effective even for the Rosenbrock func－ tion $f_{1}(x)$ ．The method requires approxi－ mately the same amount of computation per step as the Steepest Descent Method but shows spectacularly improved performance．

It should be noted，however，that con－ vergence slows as the minimum point is approached．In fact，as shown in Table 2－8， convergence to the required accuracy was not attained in one case．

2．7．4 FLETCHER．POWELL METHOD

2．7．4．1 COST FUNCTION：$f_{1}(x)=100\left(x^{2}\right.$ $\left.-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$

Exact solution：$(1,1), f_{1}(1,1)=0$ ．

TABLE 2-10

FLETCHERPOHELL. METHOD-ITERATIVE DATA FOR COST FLUNCTION $f_{s}(x)$

i	$f_{s}\left[x^{(\prime \prime}\right]$	$x_{i}{ }^{\prime \prime \prime}$	$x_{2}{ }^{17}$
0	404.0	-1.0	- 1.0
1	19.97	0.2570	-0.3746
2	0.7839	0.1146	0.01249
3	0.7570	0.1422	0.005683
4	0.7424	0.1727	0.005740
5	0.5377	0.3378	0.08262
6	04013	0.3689	0.1416
7	0.2968	0.4815	0.2151
8	0.2524	0.5616	0.2909
9	0.03621	0.8286	0.678.
10	0.03216	0.8207	0.6733
11	0.02568	0.8536	0.7221
12	0.01162	0.9268	0.8511
13	0.00437	0.9342	0.8733
14	0.00106	0.9760	0.9504
15	8×10^{-6}	0.9982	0.9967

2.7.4.2 COST FUNGTION: $f_{2}(x)=\left(x_{1}-\right.$ $\left.10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}\right.$ $\left.-x_{4}\right)^{4}$

Exact suiution: $(0,0,0,0), f_{2}(0)=0$.

TABLE 2-11

fLetcher.power method-iterative data FOR COST FUNCTION $f_{2}(x)$

1	$f\left(x^{(1)}\right]$	$x^{(1)}$	$x 2^{11}$	$x_{3}{ }^{(1)}$	$x_{4}{ }^{(1)}$
0	1220	10	10	10	1.0
1	144292	03017	003472	09642	10
2	23775	C8630	-007820	04120	09960
2	06678	08430	-008740	03618	04986
4	03353	02087	-0.02560	03694	03305
5	005134	01117	0006686	01883	01952
6	001059	007931	-0009696	01537	01526
7	000067	002731	. 00007003	006189	005276
8	000016	002164	-0002344	005.41?	005409
9	$83 \times 10^{\circ 6}$	000267	-00000359	00191	00192
10	$21 \times 10^{\circ 6}$	000148	0000163	0.'72	00172
11	$10^{\circ} 7$	0 C057	000050	1003:1	000342

$2: 22$

2-7.4.3 COST FUNCTIOR: $f_{3}(x)=x_{2}^{2}+2 x_{2}^{2}$
$+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}$
Exact solution: $(0,0,0), f_{3}(0)=0$.

TABLE 2-12

> FLETCHER.POWELL METHOD ITERATIVE DATA FOR COST FUMCTION $f_{3}(x)$

i	$t_{3}\left(x^{(i)}\right]$	$x_{1}{ }^{(i)}$	$x_{2}^{(i)}$	$x_{3}{ }^{(i)}$
0	9.0	1.0	1.0	1.0
1	005319	0.3830	-0.2340	0.07447
2	0.02857	0.2571	-0.2286	0.1429
3	3×10^{-13}	2×10^{7}	-2×10^{-7}	-3×10^{7}

The Fletcher-Powell Method requires slightly mote computation than the Conjugate Gradient Method. However, its convergence properties are very good as the minimum p int is approached, in contrast to the behavior of the Conjugate Gradient Method.

This method appears to have good properties in all ranges of the iterative process. It is more stable than the Generalized Newton Method in the carly stages of computation and converges more rapidly than the Gradient and Conjugate Gradient Methods near the minimum point. In these respects it has the desirable properties of other methods without having their undesirable properties.

2.7.5 CONJUGATE DIRECTIONS WITH. OUT DERIVATIVES
 2-7.5.1 COST FUNCTION: $f_{1}(x)=100\left(x_{2}\right.$ $\left.x_{1}^{2}\right)^{2}+\left(1 \quad x_{1}\right)^{2}$

Exact solution: (1,1), $f_{i}(1,1)=0$.

TABLE 2-13
CONJUGATE DIRECTIONS WITHOUT DERIVATIVE:S METHOD-ITERATIVE DATA FOR COST FUNCTION $f_{2}(x)$

1	$f_{1}\left[x^{\prime \prime}\right]$	$x_{1}{ }^{(1)}$	$x_{2}{ }^{\text {(i) }}$
0	404.0	-1.0	-1.0
	100.1	0.0049	-1.0000
	0.9902	0.0049	0.0000
1	0.9902	0.0261	0.0211
	0.9485	0.0261	0.0007
	0.9402	0.0429	0.0:74
2	0.7922	0.1287	-0.0016
	0.7622	0.1815	0.0509
	0.0172	0.2147	0.0436
3	0.3958	0.4058	0.1440
4	0.2895	0.4785	0.2422
5	0.2591	0.5308	0.3015
6	0.0770	0.7258	0.5225
7	0.0282	0.8564	0.7246
8	12.0125	0.8942	0.8033
9	0.0119	0.9116	0.8373
10	0.0116	0.8039	0.8218
11	0.0125	0.9469	0.9065
12	0.6042	1.0363	1.0792
13	0.0002	0.9886	0.9781
14	0.0002	1.0032	1.0079

2.7.5.2 COST FUNCTION: $f_{2}(x)=\left(x_{1}\right.$ $\left.-10 x_{2}\right)+5\left(x_{3}-x_{4}\right)+\left(x_{2}-2 x_{3}\right)+10\left(x_{1}-\right.$ x_{4})

Exact solution: $(0,0,0,0), f_{2}(0)=0$.

TABLE 2.14

CONJUGATE DIHECTIONS WITHOUTI DERIVATIVES METHOD-ITERATIVE DATA FOR COST FUNCTION $f_{2}(x)$

i	$f_{2}\left[x^{(\prime \prime}\right]$	$x_{1}{ }^{(\prime \prime}$	$x_{2}{ }^{(1)}$	$x_{3}{ }^{(i)}$	$x_{4}{ }^{(\prime)}$
0	122.0	1.0	1.0	1.0	1.0
	109,1	0.2051	1.0000	$1.000)$	1.0000
	18.45	0.2051	0.1140	1.0060	1.0000
	7.567	0.2051	0.1140	0.4819	1.0000
1	2.371	0.2051	0.1140	0.4819	0.4284
	2.157	0.0469	0.1140	0.4819	0.4284
	1.075	0.0469	0.0127	0.4819	0.4284

TABLE 2.14 (Cratinued)

i	$f_{2}\left\{x^{(i)}\right\rfloor$	$x_{1}{ }^{(11)}$	$x_{2}{ }^{(\prime)}$	$x_{3}{ }^{(1)}$	$x_{4}{ }^{(1)}$
	0.4421	0.0469	0.0127	0.2799	0.4284
2	0.1415	0.0469	0.0127	0.2799	0.2423
	0.1418	0.0510	0.0127	0.2799	0.2423
	0.1210	0.0510	-0.0015	0.2799	0.2423
	0.0498	0.0510	-0.0015	0.1875	0.2423
	0.0246	0.0510	-0.0015	0.1875	0.1749
3	0.0082	0.0536	-0.0104	0.1291	0.1324
4	0.0020	0.638	-0.0181	0.0794	0.0882
5	0.0018	0.1322	-0.0147	0.0892	0.0940
6	0.0010	0.0828	-0.0109	0.0580	0.0603
7	0.0005	0.0412	-0.0057	0.0377	0.0322
8	0.0000	0.0078	-0.007	0.0058	0.0050

2.7.5.3 COST FUNCTION: $f_{3}(x)=x_{1}^{2}+2 x_{2}^{2}$ $+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}$

Exact solution: $(0,0,0), f_{3}(0)=0$.

TABLE 2-15

CONJUGATE DIRECTIONS WITHOUT DERIVATIVES METHOD-ITERATIVE DATA FOR COST FUNCTION $f_{3}(x)$

$-\boldsymbol{i}_{3}\left[x^{(i)}\right]$	$x_{1}{ }^{(i)}$	$x_{2}{ }^{(1)}$	$x_{3}{ }^{(1)}$	
0	9.0	1.0	1.0	1.0
	5.000	-1.0000	1.0000	1.0000
	3.000	-1.0000	0.0000	1.0000
1	1.000	-1.0000	0.0000	0.0000
	0.000	0.0000	0.0000	0.0000

The Conjugate Directions Without Derivatives Method is not as efficient as some of the methods thrt require computation of derivatives. However, there are many problems in which computation of dervatives is cither inpossible or very difficult. In these problems, this method appears to be effective.

2-8 AN APPLICATION OF UNCONSTRAINED OPTIMIZATION TO =STRUCTURAL ANALYSIS

As pointed out earlier in this chapter, optimal design problems are seldom uniconstrained. Theits is, however, a large class of analysis problems which can be solved using unconstrained optimization methods. In Appendix B, enargy princigles whick govern equilibrium, vibration, and stabiifty of structures are given. The condition for equilibrium is particularly direct since it requires that, in protlems for which the strain energy is quadratic, the equilibrium state, \bar{x}, minimizes V of Eq. B-18, Appendix B,

$$
\begin{equation*}
V=\frac{1}{2} x^{T} K x-x^{T} F \tag{2-24}
\end{equation*}
$$

Even in some problems which are nonlinear and the total potential enargy is not quadratic, the minimum energy principle applies.

In view of the quadratic form of Eq. 2-24, conjugate direction methoas are indicated. Even for nonquadratic snergy expressions, methods for conjugate directions appear to be very efficient. For a much more detailed treatment of this class of equilibrium problems, see Ref. 12.

A second structural analysis problem for which unconstrained optimization methods hoid even more promise is the cigenvalue problem. As shown in Appendix E. vibration and buckling problems reduce to eigenvalue problems of the kind

$$
\begin{equation*}
K y=\lambda M y \tag{2-25}
\end{equation*}
$$

In this problem, the smallest eigenvalue λ_{1} of the Eq. $2-25$ is sought. One method of solving this problem is to rewrite Eq. 225 as

$$
\begin{equation*}
K^{-1} M y=\frac{1}{\lambda} y \tag{2.26}
\end{equation*}
$$

In this form, an iterative technique such as the power (or iteration) method (Ref. 13, page 93) may betapplied to obtain the largest eigenvalue of the matrix $K^{-1} M$ and herce, tine smallest eigenvalue of thu original problem. Even though the power method is efficient, this approach has the severe disadvantage of requiring that X^{-1} be computed.

A more promising approach to the above eigenvalue problem utilizes the Rayleigh quotient (Ref. 13, page 83), i.e., the smallest eigenvalue λ_{1} of Eq. 2-25 is given by

$$
\begin{equation*}
\lambda_{1}=\min _{y \neq 0} \frac{y^{r} K y}{y^{T} M y} . \tag{2-27}
\end{equation*}
$$

If the vector y is nomialized by fixing one of its elements, the resulling vector denoted \tilde{y}, then Eq. 2-27 reduces to

$$
\begin{equation*}
\lambda_{1}=\min _{\tilde{y}}^{\tilde{y}} \frac{\tilde{y}^{T} K \tilde{y}}{\tilde{y}^{T} M \tilde{y}} . \tag{2-28}
\end{equation*}
$$

The minimization Eq. 2-26 may now be solved by any of the metheds of the present chapter. The method of conjugate directions has been recently applied to solve this class of problems (Refs. 14. ;5). It is interesting to note that this exact approach to the eigenvalue problem was proposed by the inventor of coniug te direction methods, M R. Hestenes, in 1955 (Ref. 16, page 93). The technique was apparently not used in engneering problems. however, until 1966.

Iterative met:.ods of the kind outlined in this paragraph are particularly appropriate for iterative optimal design techniques. As discussed in Chapter 5, the most time .nsumung task in :terative design methods is the reanalysis of the system during each tteration, 1.e., after the design variable is changed sheghtly, anaiysis for stresses, displacements, and eigenvalues must be done even though it is expected that these quantities will be very
close to their values before the change in sisign variables. By using an iterative technique such as conjugate directions, the previous state may un used as an estimgte to start
the minimization algorithm. In this way, rapid convergence to thie new state of the system is attained. This anproach has been applied with good success (Ref. 15).

REFERENCES

1. C. Goffriman; Calculus of Several Variables, Harper and Row, New York, 1965.
2. S. Perlis, Theory of Matrices, AddisonWesley, Reading, Mass., 1952.
3. T. L. Saaty and J. Bram, Nonlinear Mathematics, McGraw-Hill, New York, 1964.
4. D. j. Wilde and C. S. Beightler, Foundations of Optimizotion. Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
5. A. V. Fiacco and C. P. McCormick, Noniineal progremming Sequential Unconstrained Minimization Techniques, John Wiley \& Sons, New York, 1968.
6. J. C. Pearson, On Variable Metric Methods of Minimization, Technical Paper RAC-TP-302, Research Analysis Corporation, McLean, Virginia, February 1968.
7. R. K. Williamson, Direc: Methods of Parameter Optimization for Dynamical Systems, Air Force Rept No. SAMSO TR - 69-432, July 15, 1969.
8. W. C. Davion, Fariable Metric Method for Minmization, Atomic Energy Commission R.E.D. Rept. ANL-5990. 1959.
9. R. Fletcher and M. J. D. Powell, "A Rapidly Convergent liescent Method for Minimization", The Computer 2, Vol. 6, p. 163,1963 .
10. M. J. Box,"A Comparison of Several Current Optimization Methods and the Use of Transformations in Conistrained Prcblems", The Computer J., Vol. 9, p. 67, 1966.
11. M. J. D. Powell, "An Effective Method for Finding the Minimum of Functions of Scveral Variables Without Use of Derivatives", British Computer J., Voi. 7, pp. 155-162, 1964.
12. R. L. Fox and E. L. Stanton, "Developments in Structural Analysis by Direct Energy Minimization," AIAA J., Vol. 6, No. 6, June 1968, pp. 1036-1042.
13. S. H. Crandall Engineering Analysis, McGraw-Hill, New York, 1956.
14. W. W. Bradbury and R. Fletcher, "New Iterative Methods for Solution of Eigenproblem", Numerische Muthematik, 9, 1966, pp. 250-267.
15. M. P. Kapoor, Automated Optmum Design of Structures Under Dynamic Response Restrictions, Report No. 28, Division of Solid Mechanics Structures and Mechanical Design, Case Western Reserve University, Cleveland, Ohio, Jancary 1969
16. M. R. Hestenes, "Iterative Computational Methods", Comm. Pue Appl. Mrth. Vol. 8, 1955, pp. 85-96.

CHAPTER 3

LINEAR PROGRAMMIING

3-1 INERODUCTION

In the preceding chapter a function $f(x), x$ in R^{n}, was minimized with no restrictions placed on the location of the design variable x. Problems in the real world seld a reduce to this form. In virtualty all engineering design problems, requirements are placed on the object being designed, and these requirements are stated in terms of equations involving the design variable. More often, these requirements may be stated in terms of inequalities involving the design variable.

Examples of inequality constraints are abundant in all areas of engineering design. The following are examples:

1. Optimal structural design
a. Stress must be less than or equal to the yield strength of the material.
b. Buckling load must be greater than or equal to applied tonds.
c. Deflection of the structure must not exceed specified limits.
d. Natural frequency must lie within an allowable range.

2. Optimal circuit design:

a. Voltage must remain within linear range of components.
b. Power consumption must be belqw a specified level.
c. Capacitance of a proposed capacitor must be within attainable limits.

3. Aerospace vehicle guidance:

a. Controller thrust must be within the capability of the thruster.
b. Total fuel consumption for a mission must be less than or equal to the vehicle's storage capacity.
c. Altitude must be greater than or equal to zero.

This list of typicai inequality constraints could be expanded many-fold. it is clear then that the inequality constraint must play a central role in any unified theory of design.

The class of problem considered in this chapter is very restricted. Cally linear functions are to be minimized subject to constraints which are linear in the design variables. In matrix notation this is, minimize

$$
\begin{equation*}
f(x)=C^{r_{x}} \tag{3-1}
\end{equation*}
$$

where C is an $n \times 1$ matrix of constants. The design variable x is required to satisfy

$$
\left.\begin{array}{rl}
A x & <B \\
x & <0
\end{array}\right\}
$$

where A is an $m \times n$ matrix and B is an $m \times 1$ matrix. The inequality, Eq. 3-2, is taken as

$$
\sum_{j=1}^{n} a_{i j} \cdot x_{j}<b_{i}, i=1, \ldots, n .
$$

i.e., when one vector is less than or equal to another vector, each of the components of the vectors must satisfy this relation.

Example 3-1: Consider the problem of minimizing

$$
f(x)=x_{1}+2 x_{2}
$$

subject to the constraints

$$
\left.\begin{array}{r}
2 x_{1}+x_{2}<4 \tag{3-4}\\
x_{1}>0 \\
x_{2}>0
\end{array}\right\}
$$

The constraints, Eq. $3-4$, are satisfied at all points in the triangular region of Fig. 3-1. The lines passing through this region are lines of constant value of $f(x)$. It is clear that as the line is translaied downward, the value of $f(x)$ decreases and that the lowest line that still contains points in the admissible region occurs for $x_{1}+2 x_{2}=0$. Since this line intersects the admissible region only at $(0,0)$, $f(x)$ takes on an absolute minimun at $(0,0)$.

Figure 3.1. Graphical Solution of Example 3.1

As will be seen in the following paragraph, this is typical of linear programming problems.

Before proceeding to the next paragraph, it is worthwhile to discuss the applicability of linear programming. The theory of linear programming aruse out of studies of economic activities. In economics it is often the case that behavior of an economic system is predictable only in a rather crude way, so frequently a linear relation among variables is as good a representation as can be expected.

In engineering design, however, it is very seldom that the behavior of an object or process can be described by linear expres. sions. One might be tempted, then, to completely ignore linear programming. Even though it is not directly applicable to most engineering design problems, however, linear programming is still a very powerful tool. First, even though the computational procedures of linear prosramming do not carry over to the real nonlinear world, many facets of the behavior of solutions are very similar in more general programming problems. The engineer who has mastered linear programming will go into the study of the much more complex nonlinear programming armed with a powerful tool - intuition. Further, the solution of many nonlinear problems can be reduced to the solution of a sequence of linear programming problems. For a review of some of these applications of linear programming methods see Ref. 1.

3.2 PROPERTIES OF LINEAR PRO. GRAMS

To formalize the discussion of the previous paragraph, the following definition is made.

Detmathon 3-1: The linear programming

where $C \neq 0$ is an $m \times 1$ matrix, A is an $m \times n$ matrix, B is an $n \times i$ matrix and the symbolism \& ($>$) as applied to matrices maans that the relation less than or equai to (greater than or equal io) holds for corresponding components of the matrices.

It should be pointed out that Eqs. 3-5 through 3-7 do not explicitly cover all linear optimization problems. For example, it may be required to maximize a linear objective function. Further, equality constraints may be imposed and negative values of the x_{i} may be allowed. However, all these variations on the linear programming problem may be put into the form of the problem previously considered. An objective tunction may be maximized by minimizing its negative, equality constraints are nothing more than a pair of inequality constraints (i.c., $y=0$ if and only if $y<0$ and $-y<0$), and a negative x_{i} may always be written as the difference between two new non-negative variables. There is therefere, no loss of generality in considering only the problem expressed by Fqs. 3-5 through 3-7.

Definition 3-2: The constraint set for the linear programming problem of Def. 3-1 is the set of points in R^{n} which satisfy Eqs. 3-6 and 3-7.

The constraint set associated with a problem is just the set of design variables which
describe an adrificible object or process, i.e., one which performs the required service but is not necessariy optimal. In LP the coustraint set is a polyhedrce and, according to Def. 2-4, this constraint set is convex. Further, according to the same definition, the cost function $f(x)$ for LP is convex. If the coisitraint set is bounded and nonempty, it is necessarily also ciosed and all the hypotheses of Theorems -2 and $2-3$ are satisfied. One then conchedes that $f(x)$ has a strict absolute minimum in the constraint and that is has no other relative minima.

Further, if $f(x)$ had a minimum in the interior of the constraint set, the necessary condition of Theorem 2-1 implies

$$
\frac{\partial f}{\partial x_{i}}=c_{i}=0, i=1, \ldots, n
$$

which contradicts Def. 3-1 of LP. Therefore, $f(x)$ cannot have a minimum point in the interior of the constraint set but must take on its minimum at the boundary. Weyl has shown, in fact, that the solution must lie on one of the vertices of the polyhedral constraint set (Ref. 2).

In spite of this elementary theory, it is possible that a linear programming problem may not have a solution. This may happen for two reasons. First, the constraint set may be empty; and second, the constrant set may be unbounded and the cost function may be decreased without restriction. In order to facilitate discussion of these difficulties, Definition 3-3 is made.

Defintion 3-3: If the constraint set of LP is nonempty iempty), the problem is called feasible (infeasibie). If the constraint set is unbounded and the cost function is not bounded below, than the problem is called unbourded.

ANGP 700－1空）

The concept of the dual problem that will be usex́ in constructing solutions of LP＇s will now be discussed．The dual problem will also play a major role in obtaining results for more general optimization problemıs．

Definition 3－4：The linear programming problem of maximizing

where the matrices A, B ，and C are the same as in LP，and are called the dual of LP．

The results of Theorem $3-1$ relating LP and LPD are proved in Ref．3，page 41，and Ref． 4 ，page 118.

Theorem 3－1：Let x and y be in the constraint sets of LP and LPD，respectively． Then

$$
\begin{equation*}
\text { 1. } C^{r} y<B^{r} x \tag{3-10}
\end{equation*}
$$

2．If $C^{T} y=B^{T} x$ then x and y are the solutions of LP and LPD，respectively．

3．If LP（LPD）is unbounded，then LPD （LP）is infeasible．

4．If LP（LPD）is feasible and LPD（LP）is infeasible，then LP（LPD）in unbounded．

These results are useful in constructing solutions of linear programming problems． Thisy are also used in providing Theorem 32 that is central to linear program．ug theory．

Theorem 3－2：Let LP and LPD both be feasible．Then both have solutions \bar{x} and \bar{y} ， respectively，and $B^{T} \bar{x}=C^{T} \bar{y}$ ．

The proof of Theorenn 3－2 is involved and does not yield a method of constructing solutions．It may be found in Ref．3，page 44， or Ref．4，page 118.

Since the solution of LP must lie on a vertex of the polyhedral constraint set，符 suffices to check at most a finite number of points for the mininum．This procedure is followed in an organized way by beginning at any vertex of the constraint set．If the cost function cannot be decreased by moving along an edge of the polyhedron that inter－ sects this vertex，then this vertex is the solution．If，however，the cost function de－ creases by moving along some edge，this policy is followed until a second vertex is reached and the cost function has been reduced．Since there are only a finite number of vertices and it is impossible to return to a previously occupied vertex，the process must terminate at the minimum over the constraint set．

In order to illustrate the argument pre－ sented in the preceding paragraph，consider Example 3－2．

Example 3－2：By moving along edges of the constaint set，solye the LP？

$$
\operatorname{minimize} f\left(x_{1}, x_{2}\right)=-2 x_{1}-x_{2}
$$

subject to

$$
\begin{aligned}
-x_{1} & >-1 \\
-x_{2} & >-1 \\
-2 x_{1}-2 x_{2} & >-3
\end{aligned}
$$

3-4. 离

$$
x_{1}, x_{2}>0 .
$$

Solution: The polyhedral sonstraint set is shown in Fig. 3-2.

Figure 3-2. Polyhedral Constraint Set

The vector

$$
-\alpha \nabla f^{T}\left(x_{1}, x_{2}\right)=\alpha\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

whose direction as shown in Fig 3-2 is the direction of steepest descent of $f(x)$. Starting at $(0,0)$ a unit movement along the x_{1}-axis yields a change

$$
d f=\nabla f(0,0) d x=-2
$$

and a unit movernent along the x_{2}-axis yields a change

$$
d f=\nabla f(0,0) d x=-1
$$

so both moves yield a decrease in $f(x)$. Choose the x_{1}-axis and move to the first vertex $(1,0)$. The only movement rossible is in the $+x_{2}$-direction from (1,0). A unit move in this direction yields

$$
\dot{d f}=\nabla f(1,0) d c=-1
$$

which decreases f. Move in this direction to the first vertex $(1,1 / 2)$.

The only move admissible is toward (1/2, 1). A unit move in this direction is obtained from

$$
d x=\left[\begin{array}{r}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

which causes a change in f.

$$
d f=\nabla f(1,1 / 2) d x=+\sqrt{2}-\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}>0 .
$$

Therefore, f may not be decreased in moving from the vertex $(1,1 / 2)$ so this point is the solution of the problem.

The idea of moving from vertex to vertex is good for visualization but is poor for higher dimensional problems. The same idea, however, can be implemented algebraically. In order to obrain relations which will be required for solution of LP, define slack variables u_{1}, \ldots, u_{m} so that

$$
\begin{equation*}
A x-C=u>0 . \tag{3-12}
\end{equation*}
$$

The cost function of Eq. $3-5$ will be denoted by the variable

$$
\begin{equation*}
w=B^{T} x \tag{3-13}
\end{equation*}
$$

The problem LP now takes the form

$$
\left.\begin{array}{l}
A x-C-u=0 \\
x>0 \\
u>0 \\
w={ }_{g} T_{y}=\text { minimum }
\end{array}\right\}
$$

The solution of LP^{\prime} is the same as the solution of $L P$.

AMCP 706-91

The information contained in Eqs. 3-12 and $3-13$ is contained in the following matrix equation (called the simplex tableau):

$$
\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & \cdots \tag{3-14}\\
a_{21} & a_{22} & \ldots & a_{2 n} & -c_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & -c_{m} \\
\hdashline-2 & & & & \\
b_{1} & b_{2} & \ldots & b_{n} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n} \\
u_{2} \\
\vdots \\
u_{m} \\
- \\
w
\end{array}\right],\left[\begin{array}{c}
u_{1} \\
\\
\vdots
\end{array}\right]
$$

Eq. 3-14 may be viewed as $m+1$ equations involving the variables $x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{m}$, w. At present Eq. 3-14 may be interpreted as determining u_{1}, \ldots, u_{m}, and w explicitly in terms of x_{1}, \ldots, x_{n}. It might be desirable to determine some other combination of $m+1$ of tine variables in terms of the remaining n. Except in singular cases, this is possible.

Assurn: ow that $m+1$ of the variables s_{1}, \ldots, s_{m}, and $\mathfrak{b} \cdot$ ha, hee idetermined explicitly in terms of the : x_{1}. . ing n variables r_{1}, \ldots, r_{n}. Eq. $3-14$ wild then ie àde form

where primes denote coefficients obtaned when the original set of equations is solved for s_{1}, \ldots, s_{m}, and w.

The solution of LP will be constructed
using a methed which is based largely on Theorem 3-3.

Theorem 3-3: If in Eq. 3-15 $b_{i}^{\prime}>0, i=1$, \ldots, n, and $-c_{i}^{\prime}>0, j=1, \ldots, m$, then the solution of LP is

$$
\begin{aligned}
& r_{i}=0, i=1, \ldots, n \\
& s_{j}=-c_{j}, j=1, \ldots, m \\
& w=\delta .
\end{aligned}
$$

It is clear from this theorem that any mathod of choosing the variables s_{t} and r_{f} which will terminate with non-negative entrics in the last row and column, except perhaps for δ, will serve as a method of solving LP. Before developing such a mothod, several definitions will be halpful.

Definition 3-5: In Eq. 3-15, the variables $s_{j}, j=1, \ldots, m$, are called basic variablos, while the variables $r_{i}, i=1, \ldots, n$ are called nonbasic variables.

Definition 3-6: The set of variables s_{1}, \ldots, $s_{m}, r_{1}, \ldots, r_{n}$ will be called a basic point. If c_{j} $<0, j=1, \ldots, m$, in Eq. 3-15, then the basic point will be called a basic feasible point.

A certain geometric interpretation may now be given for the nonbasic variables. In $L P^{\prime}$ it is clear that the boundary of the constraint set of LP is obtained by setting various combinations of the vainobles $x_{i}, i=1$, \ldots, n and $u_{j}, j=1, \ldots, m$, equal to zero. In the space R^{n} of the design variable x, a vertex of the polyhedral constraint set is obtained by having n equality constraints among the $x_{i}, i=$ $1, \ldots, n$, enforced. By the discussion, this occurs when $r_{i}=0, i=1, \ldots, n$. An edge of this polyhedron is a line in R^{n} obtainec by setting $r_{t}=0$ for $n-1$ indices i. From Def. 3-6 and

Eq. 3-15, it is clear that a basic feasible point corresponds to a vertex of the polyhedral set, This is true since setting the nonbasic variables of the basic feasible point equal to zero yieids admissible basic variables: Further, two vertices lie on the same edge of the constraint set if they have $n-1$ of their norbasic varuablés in comino

The process for interchanging the roles of a basic and a nonbasic variâble thus becomés the central tool for methods based on Theorem 3-3. Suppose it is desired to make s_{i} a nonbasic variable and r_{j} a basic variable. If $a_{i j}^{\prime}$ $\neq 0$ then the ith equation from Eq. 3-15,

$$
c_{i_{i}^{\prime}}^{\prime} r_{1}+\ldots+a_{i j}^{\prime} r_{j}+\ldots+a_{i n}^{\prime} r_{n}-c_{i}=s_{i}
$$

may be solved for r_{j} to obtain

$$
\begin{align*}
r_{j j}= & \frac{c_{i}^{\prime}}{a_{i j}^{\prime}}-\frac{a_{i 1}^{\prime}}{a_{i j}^{\prime}} r_{1}-\ldots-\frac{a_{i j-1}^{\prime}}{a_{i j}^{\prime}} r_{j-1} \\
& +\frac{s_{i}}{a_{i j}^{\prime}}-\frac{a_{i j+1}^{\prime}}{a_{i j}^{\prime}} r_{j+1} \tag{3-16}\\
& -\ldots-\frac{a_{i n}^{\prime}}{a_{i j}^{\prime}} r_{n} .
\end{align*}
$$

Using this expression for r_{j}, r_{j} may be eliminated from the leit sides of the remaining equations in Eq. 3-15. For $k \neq i$ this yields

$$
\begin{align*}
& {\left[a_{k 1}^{\prime}-\frac{a_{i 1}^{\prime} a_{k j}^{\prime}}{a_{i j}^{\prime}}\right] r_{1}} \\
& +\ldots+\left[a_{k j-1}^{\prime}-\frac{a_{i j 1}^{\prime} a_{k j}^{\prime}}{a_{i j}^{\prime}}\right] r_{i \cdot 1} \\
& +\frac{a_{k j}^{\prime}}{a_{i j}^{\prime}} s_{i}+\left[a_{k j+1}^{\prime}-\frac{a_{i j+1}^{\prime} a_{k j}^{\prime}}{a_{i j}^{\prime}}\right] r_{j+1} \tag{3-17}
\end{align*}
$$

$$
\begin{aligned}
& +\ldots+\left[a_{k n}^{\prime}-\frac{a_{i n}^{\prime} a_{k j}^{\prime}}{a_{i j}^{\prime}}\right] r_{n} \\
& -\left[c_{k}^{\prime}-\frac{c_{i}^{\prime} a_{k j}^{\prime}}{a_{i j}^{\prime}}\right]=s_{k} .
\end{aligned}
$$

It is thus clear how the coefficients in Eq. $3-15$ change as the roles of a pair of variables are interchianged. This process may be described concisely in the language of Definition 3-7.

Definition 3-7: The entry $a_{i j}^{\prime} \neq 0$, preĉsading Eq. 3-16, is called the pivot of the transformation. The transformation itself is called a pivot st \uparrow.

The effect of the pivot step on the coefficient matrix of Eq. $3 \cdot 15$ may be illustrated easily by the diagram

$$
\left[\begin{array}{cc}
p & 火 \tag{3-18}\\
\beta & \because
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\frac{1}{p} & -\frac{\alpha}{p} \\
\frac{\beta}{p} \gamma-\frac{\alpha \beta}{p}
\end{array}\right]
$$

The diagram shown by Eq. 3-18 simply relates that in the coefficient matrix of Eq. 3-15 the following changes occur. The pivot is replaced by its invers. All other elements in the same row as the pivot are multuplied by the negative inverse of the pivot. All other elements in the same column as the pivot are multiplied by the inverse of the pivot. All other elements in the matrix a, e decreased by the product of the element in their column and the row of the pivot, the element in their row and the column of the pivot and the inverse of the pivot.

AMCP 706-192

Example 3-3:

interchange the role of r_{1} and s_{2}.

Solution: The new matrix relation is

It is shown in Ref. 3, page 53, that this pivoting transformation preserves the dual linear programming problem.

The pivoting transformation is an organized tool which allows one to interchange basic and nonbasic variables. It remains oniy to obtain an algörithm which uses this tool and Theorem 3-3 to construct the solution of LP.

3-3 THE SIMPLEX ALGORITHM

As was shown in par. 3-2, the solution of the linear piogramming problem may be reduced to the choice of pivot points. The algorithm presented here will heve two phases. The first phase will consist of an algorithm for obtaining a basic feasible point. The s.cond phase will operate only with basic feasible points and will successively reduce - cost function until the hypotheses of : 3 , , rem 3-3 are satisfied.

For convenitace in the discussion which follow, it is assumed that the choice of basic and nonbasic variables has been made ai a
given stage of the solution process and the primes of Eq. 3 -15 are dropped, i.e.,
$\left[\begin{array}{cccc}a_{11} & \ldots & a_{1 n} & -c_{1} \\ \vdots & & \vdots & \vdots \\ a_{m 1} & \ldots & r_{m n} & -c_{m} \\ \ldots--1 & ----- \\ b_{1} & \ldots & b_{n} & \delta\end{array}\right]\left[\begin{array}{c}r_{1} \\ \vdots \\ r_{n} \\ -- \\ 1\end{array}\right]=\left[\begin{array}{c}s_{1} \\ \vdots \\ s_{m} \\ - \\ w\end{array}\right]$
Primes will now be used to denote the coefficients that resuit from a pivot step applied to Fq. 3-19. These new coefficients are determined bv applying Eq. 3-18.

3-3.1 DETERMINATION OF A BASIC FEA. SIBLE POINT

If some elements in the right-hand column of the matrix of Eq. 3-19 (other than δ) are negative, then the present choice of variables is not a basic feasible point. Let $-c_{k}$ be the negative entry nearest the bottom of tine column (again e\%oluding δ). Since when $r_{j}=$ $0, j=1, \ldots, n . s_{k}=-c_{k}<0$, if there are admissible points in the constraint set of LP, then it must be possible to increase s_{k} by increasing some $r_{j} \mathrm{frcm}$ zero; i.e., there must be some positive $a_{k j}$. Choose j_{0} so that $a_{k j_{0}}>$ 0 . This fixes the column index of the pivot.

To find an admissible row index i_{0}, consider first that after the pivot step

$$
\cdots c_{i_{0}}^{\prime}=\frac{c_{i_{0}}}{a_{i_{0} i_{0}}}
$$

It is clear then that candidates for the pivot $a_{i_{0} j_{0}}$ must be limited to indices i for which

$$
\begin{equation*}
\frac{c_{i}}{a_{1_{0}}}>0 . \tag{3-20}
\end{equation*}
$$

With this restriction in mind, consides the ralues of c_{i}^{\prime} after the pivot step with $i \neq i_{0}$.

These are

$$
\begin{equation*}
-c_{i}^{\prime}=-c_{i}+\frac{c_{i_{0}} a_{i j}}{a_{i_{0} i_{0}}} \tag{3-21}
\end{equation*}
$$

In order to insure $-c_{i}^{\prime}>0, i>k$, it is required that

$$
\begin{equation*}
-c_{i}+\frac{c_{i_{0}} a_{i j_{0}}}{a_{i_{0} / 0}}>0, i>k, i \neq i_{0} \tag{3-22}
\end{equation*}
$$

If $a_{i j 0}=0$ this clearly holds. If $a_{i j_{0}}<0$, however, the equirement, Eq. 3-22, may be rewritten as

$$
\begin{equation*}
\frac{c_{i}}{a_{i j_{0}}}>\frac{c_{i_{0}}}{a_{i_{0} j_{0}}}, i>k, i \neq i_{0} \tag{3-23}
\end{equation*}
$$

Further, for $i=k$.

$$
\begin{equation*}
-c_{k}^{\prime}=-c_{k}+\frac{c_{i_{0}} a_{k j_{0}}}{a_{i_{0} i_{0}}}>-c_{k} \tag{3-24}
\end{equation*}
$$

since $a_{k j_{0}}>0$.
Inequalities, Eqs. $3-23$ and $3-24$, show that if i_{0} is chosen so that

$$
\begin{equation*}
\frac{c_{i_{0}}}{a_{i 0_{0}}}=\min \left(\left.\frac{c_{i}}{a_{i j_{0}}} \right\rvert\, c_{i}>0\right) \tag{3-25}
\end{equation*}
$$

then $-c_{i}^{\prime}=0, i>k$ and $-r_{k}^{\prime}>-c_{k}$. If $-c_{k}$ is still negative, the process m..y be repeated. Otherwise choose the next entry above $-c_{k}$ which is negative and repeat the process.

If all the $\boldsymbol{c}_{i}, i>k$ are 1,0 nzero, only a finite number i i basic points are possible since the process is monotone (nonrepeating). If there exists a point with $-c_{1} \geqslant 0, i=1, \ldots, m$, this process must find it. The degenerate case in which some $c_{i}=0, i>k$ is dis cussed later.

The mrocess describet may be given quite simply as ihe iterative Algorithm EP-A:

Step 1. Choose $-c_{k}$ as the lowest negative entry (with the exception of δ) in the right-hand column of the coefficient matrix of Eq. 3-19.

Step 2. Choose any positive element $a_{k j_{0}}$ ir $\quad \because$ row of the matrix of Eq. :

Step 3 Choose i_{0} as in Eq. 3-25.
Step Perform the pivot step with pivot a

Step 5. If an' - , $\quad 0, i=1, \ldots, k$, choose that one with largest index i and return to Step 1. If $-c_{i}>0, i=1$, ..., m, then a basic feasible solution has been found and the process may be terminated.

3-3.2 SOL.UTION OF LP

In par. 3-3.1 an algorithm is given for finding a basic feasible point. Once this has been accomplished, the object is to find a second algorithm which successively reduces w.

Since by Eq. 3-19, $w=b_{1} r_{1}+\ldots+b_{n} r_{n}+$ δ, it is clear that if $b_{\rho_{0}}<0$ for some $j=j_{0}$ then w may be reduced by increasin ${ }_{0} r_{j_{0}}$ from zero. If a pivot step is performed which makes $r_{/_{0}}$ a basic variable then w will be decreased The choice of the basic variable $s_{i_{0}}$ which is to he made nonbasic must be made in such a way that the point obtained after the pivot step is still a basic feasible point, i.e., so that $-c_{i}>0, i=1, \ldots, m$. However, this is precisely t.e restriction which led to the choice of i_{0} in par. 3-3.1. Therefore, the : 2 :ne procedure for thoosing i_{0} may ecemployed here.

Since $w^{\prime}=w-c_{i_{0}} b_{j_{0}} / a_{i_{0} f_{0}}$, the pivot step determined here guarantees $w^{\prime}<w$ provióed all $-c_{i}>0, i=1, \ldots, m$. In this case, therefore, only a finite number of pivot steps may be made, and the process n :st terminate at the solution of the linear programming problem. Termination occurs when $b_{j}^{\prime}>0, j=$ $1, \ldots, n$. Theorem 3-3 shows that this is the solution of the linear programming problem. The degenerate case where some $c_{i}=0$ will be discussed pax. 3-3.3.

This process is given explicitly in Algorithm LP-B

Step 1 Choose any negative entry (except f) $b_{f_{0}}$ in the bottom row of the coefficient matrix of Eq. 3-19.

Step 2. Choose i_{0} according to Eq. 3-25 with $k=1$.

Step 3. Perform the pivot step with pivot
$a_{i_{0} I_{0}}$.
Step 4. If any $b_{j}<0, j=1, \ldots, n$, choose one $b_{j_{0}}<0$ and return to Step 1 . If $b_{j} \geqslant 0, j=1, \ldots, n$, then the solution of LP tas been found.

3.3.3 THE DEGENERATE CASE

In both pars. 3-3.1 atd 3-3.2 the computatioral algorithms could have problems if some $c_{i}=0$. This situation is called degenerate since when n constraints are made equalities by putting $r_{j}=0, i=1, \ldots, n$, one has $s_{i}=c_{1}=0$ which means that still another constraint is an equality. The degeneracy arises from the fact that i_{1} LI the n dimensional design variable x $=\left(x_{1}, \ldots, x_{n}\right)$ satisfies $n+1$ linear equalities.
Therefore, the $n+1$ equations are not linearly independent.

Viewed geometricaliy, the difficulty occurs because the path which successive basic points follow on the polygonal constraint boundary may form a closed loop. To prevent this behavior with only a small error in the final solution an entry, $-c_{i}$, which is zero, is replaced by an arbitrarily small parameter ϵ > 0 . The problem is not degenerate any longer and cycling cannot occur. Therefore, the altered probitm will proceed toward the solution.

Example 3-4: Use the simplex aigorithm to solve the LP
minimize $2 x_{1}+9 x_{2}+\lambda_{3}$
subject to

$$
\begin{aligned}
x_{1}+4 x_{2}+2 x_{3} & >5 \\
3 x_{1}+x_{2}+2 x_{3} & >4 \\
x_{1} & >0 \\
x_{2} & >0 \\
x_{3} & >0 .
\end{aligned}
$$

First, LP $^{\prime}$ is:
minimize w where

$$
\left[\begin{array}{cccc}
1 & 4 & 2 & -5 \\
3 & 1 & 2 & -4 \\
2 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right]=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
w
\end{array}\right]
$$

subject to

$$
x_{1}>0, \quad i=1,2,3, u_{;}>0,,=1,2
$$

3-4 MIN!MUM WEIGHT TRUSS DESIGN:

As: will become apparent in subsequent chapters, most optimal design problems are nonlinear. Even the problems considered in this paragraph appear at first glance to be nonlinear. However, it is shown that the problem can actually be solved as a lineai program. This will not be the case in general. The class of problems and their solutions tha: are discussed in this paragraph are takenfrom an outstanding paper by Dorn, Gomory, and ${ }^{3}$ Greenberg (Ref. 5). Similar results have been reported more secently (Ref. 6).

The problem treated here is minimum weight design of plane :russes with constraints on stress. The initial restrictions on the truss include only the location of joints in the truss. Th loads to be s!epoited by the truss are applied at juints. A member with nonnegative cross-sectional area is allowed to corisect each pair of joints. If there are μ ; ints, there may be $\mu(\mu-1) / 2$ members in the truss. In general, then, statically indeterminate tru:sses are allowed.

Let $A_{j}, j=1, \ldots, n$, denote the crosssectional area of j th membei and S_{j} the load in that member due to the external loads applied to the truss; $S_{j}>0$ denotes tension. If $m=2 \mu$, then equilibrium of the joints of the tuuss is specified by the equations

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} S_{j}=F_{i}, i=1, \ldots, m \tag{3-26}
\end{equation*}
$$

wheie F_{i} are compenents of applied forces at the joints, and $a_{i j}$ are direction cosines of the elements of the structure intersecting the \boldsymbol{t} th joint. All $a_{z j}$ are zaro if the j th element does not intersect the point of application of i_{i}, In order to satisfy three equilibrium equations for the applied loads (including reactions at supports), it is assumed there are $m^{*}=m-3$
linearly independent equations in Eq. 3-26.
If σ is the maximum allowable stress (both tensile and compressive) for the material from which the truss is constructed, then stress constraints are

$$
\begin{equation*}
\left|S_{j}\right|<\sigma A_{j} . \tag{3-27}
\end{equation*}
$$

Further, if ρ is the weight density of the structural material, the total weight W of the truss which is to be minimized is

$$
\begin{equation*}
w=\rho \sum_{j=1}^{n} A_{j} \ell_{j} \tag{3-28}
\end{equation*}
$$

where l_{j} is the length of the j th member.
The problem of minimizing W of Eq. 3-28 subject to the constraints of Eqs. 3-26 and 3-27 is rot the complete truss design problem. In addition to the equiliurium conditions of Eq. 3-26, a set of compatibility conditions between displacements of the joints must be satisfied. These compatibility conditions will be nonlinear in the yariables S_{j} and A_{j}. In its co: lete formulation, then, the truss design prc 'em is not a linear programming probi''m. It will be shown, however, that if the compatibility conditions are ugnored and the problem described by Eqs. 3-26, 3-27, and $3-28$ is solved, its solution satisfies the compatibility conditions and is, therefore, the solution of the truss design problem.

Kecalling that cumpatibility relations are being ignored, it is required that

$$
\begin{equation*}
\left|S_{j}\right|=\sigma \Lambda_{i} i=1, \ldots n . \tag{3-29}
\end{equation*}
$$

This is true since if $\left|S_{j}\right|<\sigma A$, for some j, then A, could be reduced with an accompanying reduction in W. The constraint, Eq. 3-27, is therefore replaced by Eq. 3-29. The reader should note that this argument would not be
valid if compatibility conditions were being enforced; since a areduction in some A_{j} may result in a violation. of a constraint not involving A_{j} explicitly.

Since by Eq. $3-29, A_{j}=\frac{1}{\sigma}\left|S_{j}\right|$, the optimization probleṃ is now to minimize

$$
w=\frac{\rho}{a} \cdot \sum_{i=1}^{n}\left|S_{j}\right| l_{j}
$$

subject to Eq. 3-26. In order to treat this problem as a linear programming problem, define

Now,

$$
S_{j}=S_{j}^{+}-S_{j}^{-}
$$

and

$$
: S_{j} \mid=S_{j}^{+}+S_{j}^{-}
$$

Denote

$$
\begin{aligned}
& x^{T}=\left(S_{1}^{+}, \ldots S_{n}^{+}, S_{1}^{-}, \ldots, S_{n}^{-}\right) \\
& C^{T}=\left(F_{1}, \ldots, \mathrm{~F}_{m}\right) \\
& A=\left(a_{i j} \mid-a_{i j}\right)_{m \times 2 n}
\end{aligned}
$$

and

$$
B^{T}=\frac{\rho}{o}\left(\ell_{1}, \ldots, \ell_{n}, \ell_{1}, \ldots, \ell_{n}\right)
$$

In this nutation, the problem is of the form

subject to

$$
\begin{equation*}
A x-C=0 \tag{3-31}
\end{equation*}
$$

$$
\begin{equation*}
x>0 . \tag{3-32}
\end{equation*}
$$

Thisitinear programming probiem may now be solvediby the simpiex method. Before the solution of the linear programming problem can be takensas the solution of the truss design problem however, it must be shown that it satisfiesthe thempatibility conditions: It is clear that tifthetruss specified by trieq linear programming $;$ problem is statically determinate, it satisfies the compatibility conditions trivially (i.e., there are no compatibibity conditions). For the analysis here, statically determinate is taken to mean that the member forces S_{j} are uniquely detarmined by the given loads and the equilibrium conditions of Eq. 3-26.

As pointed out in Ref. 5, page 32, there will be m^{*} powsibility nonzero components of x (basic varial,les) in the solution, corresponding to linearly independent columns of the matrix A; i e., only m^{*} of the S, will pos ibly be nonzero. According to Eq. 3-27, the:: only m^{*} of the areas may be nonzero. Further, since the rank of A is m^{*}, the member furces are uniquely determined. The resulting truss is, therefore, statically determinate and hence is the solution of the original truss design problem.

It is pointed out (Ref. 5) that the simplex method for solving many member truss design problems is relatively time-consuming. It is proposed that the method be refined for this class of problems to obrain a practical method

ÄSCP 708-192

of solving engineering design problems. Several examples are solved in considerable detail in Ref. 5 ; the results of one of these problems will be discussed here.

A bridge truss is to be designed to span two points, 1 and 130° Fig. 3.3. Three vertical levels of joints are allowed with five horizontal sets, a total of 15 points, as shown in Fig. 3.3. In the general case there could be $15(14) / 2=105$ members in the truss. Loads on the fioor of the truss are shown in Fig. 3-3.

Figure 3-3. Admissible Joints for Bridge Truss

In the solution presented in Ref. 5, it is assumed that the truss is symmetric about the line of joints $7-8.9$. This assumption reduces the number of variables to 57 . Further, due to the assumed symmetry, there are only 14 independent equilibrium conditions. Therefore, there will be only 14 members which can be nonzero in the optimum truss. In the solution presented in Ref. 5 the problem is made nondimensiona! by defining $\alpha=h / 1 /$ and $\beta=H / V$ where h and ℓ are the vertical and horizontal spacing, respectively, and $I I$ and V are applied loads shown in Fig. 3-3.

The solution presented in Ref. 5, page 45, for a fixed value of $\beta(\beta=1)$ shows that there are three subintervals of values of α on each of which the truss has a constant geometrical form. For different values of α within a given
subinterval, the member sizes are different. A plot of W vs α and the forms of optimai trusses are shown in Fig. 3-4.
$\dot{\otimes}$

Figure 3-4. Optimum Bridge Trusses

The discussion here only touches on the highlights of the very complete treatment of the truss design problem in Ref. 5. The intertested raader is encouraged to study this outstanding article in detail.

Before leaving the truss design problem, a point of interest in the present results and in the results obtained in future chapters may be noted. In Fig. $3-4$ it is clear that at two values of α the form of the optimal truss changes foim drastical!; Sitl!, even though the topology of the structure is not continuous in α, the weight apparently is a continuous function of α. The same sort of behavior occurs in a weam design problem witi constraints on deflection which is discussed in par. 7-4. These problems might lead one to suspect that there is some basic mathematical structure of the optimal structural design problem that has not been uncovered.

3.5 AN APPLICATION OF LINEAR PRO. GRAMMING TO ANALYSIS

- A major appiication of linear programming in engineering design is, oddly enough, in
nonlinear programming . It is seldom that a realistic engineëring design problem can be formulated as an LP. Realist!, problems are generally nonlinear when considered as a function of both state and design variables. Several techniques of solution of nonlinear programíming preblems are based on approximation of the nonlinear probiem by a linear one, at least locally. These methods then require that the approximating I.P be solved. This subject will be deacrred until a discussion of the general theory of nonlinear programming has seen given.

A second application oi linear programming which is of concern to the engineer is in the solution of linear boundaiy-value problems that arise in such fields as continuum mechanics. It should be emphasized here that this application is not of an optimal design nature, but rather talls in the field of engineering analysis.

One of tie important methods of solving linear boundary-value problems is to approximate the solution by a linear combination of known tunctions. The question arises, "How should the coefficients be chosen so as to obtain the 'best' approximation to the true solution?" "Best' may ba defined in many ways. A relatively new concert of "best" will be discussed in this paragraph.

The general lincar boundary-value problem may be stated in operator notation as

$$
\begin{array}{ll}
L[z]=Q(x), & x \operatorname{in} \Omega \\
B[z]=q(x), & x \text { on } \Gamma \tag{3-34}
\end{array}
$$

where Ω, is the domain of the independent variable $x \in R^{n}$ and Γ is its boundary. The dependent variable is a vector function of x. $z(x)$ in R^{m}. In the case of ordinary differen-
tial equations on $x_{1}<x<x_{2}$

$$
\begin{equation*}
L[z]=\sum_{i=0}^{m} a_{i}(x) \frac{\tilde{d}^{i} z}{d x^{i}} \tag{3-35}
\end{equation*}
$$

and the bour sary operatnr is

$$
\begin{equation*}
B[z]=A z\left(x_{1}\right): B z\left(x_{2}\right) . \tag{3-36}
\end{equation*}
$$

In the sase of partial differential equations,

$$
\begin{equation*}
L[z]=\sum_{|0| \measuredangle m} a_{\alpha}(x) \frac{\partial^{|\alpha|} z}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}} \tag{3-37}
\end{equation*}
$$

and the boundary cperator is

$$
\begin{equation*}
B[z]=A(x) z(x), x \text { on } \Gamma . \tag{3-38}
\end{equation*}
$$

The method to be diecussed treats both the partial and ordinary differential equations in the same way. Let $\phi_{j}(x), j: 1, \ldots, k$ satisfy the homogeneous differentral equation

$$
\begin{equation*}
L\left[\phi_{f}\right]=0, \text { in } \Omega \tag{3-39}
\end{equation*}
$$

Further, let $\phi_{0}(x)$ be found such that

$$
\begin{equation*}
L\left[\phi_{0}\right]=Q(x), \text { in } \Omega \tag{3-40}
\end{equation*}
$$

Since the operator L is linear, the new function

$$
\begin{equation*}
\bar{z}=\phi_{0}+\sum_{j=1}^{k} c_{j} \phi_{j}(x) \tag{3-41}
\end{equation*}
$$

satisfies the differential Eq. 3-35 regardless of the value of the constants c, The object is now to find these constants so that \bar{z} satisfies the boundary conditions of Eq. $3-34$ as closely as possible.

Define

$$
\begin{equation*}
\|B[\bar{z}]-q\|=\max _{i}\left|B_{i}[z]-q_{i}\right| \tag{3-42}
\end{equation*}
$$

In this notation, \bar{z} will be the solution of the boundary-value problem if and only if

$$
\begin{equation*}
\|B[\bar{z}]-q(x)\|=0 \tag{3-43}
\end{equation*}
$$

for all points x on Γ.

The method to be treated here attempts to minimize the error in Eq. $3-43$ at 3 large number of points $x^{\ell}, \ell=!, \ldots, L$, on Γ. Define

$$
\begin{equation*}
\gamma=\max _{\ell}^{\max }\left\|B\left[\bar{z}\left(x^{\ell}\right)\right]-\psi\left(x^{\ell}\right)\right\| . \tag{3-44}
\end{equation*}
$$

The object now is to choose the constants c_{j} \therefore as to minimize γ. To see that this is a linear programming problem, note that Eq. $3-44$ is equivalent to

$$
\begin{equation*}
B_{i}\left[\bar{z}\left(x^{\ell}\right)\right]-q_{i}\left(x^{\ell}\right)<\gamma \tag{3-45}
\end{equation*}
$$

and

$$
\begin{equation*}
-B_{i}\left[\bar{z}\left(x^{\ell}\right)\right]+q_{i}\left(x^{\ell}\right)<\gamma \tag{3-46}
\end{equation*}
$$

for all i and ℓ.
Note that Eqs. 3-45 and 3-46 are linear in the c_{j} and γ. Since the c^{\prime} may be either positive or negative, it is necessary to define new constants $c_{j}^{+}>0$ and $c_{j}^{-}>0$ such that

$$
\begin{equation*}
c_{j}=c_{j}^{+}-c_{j}^{-} . \tag{3-47}
\end{equation*}
$$

Now, the problem of choosing $\gamma, c_{1}^{+}, c_{j}^{-}$(all non-negative) which satisfy Eqs. $3-45$ and $3-46$ and which minimize γ is clearly a LP. Further, it is just a restatement of the best approximation criterion of Eq. 3-44.

Exan:-le 3-4: Obtain an approximate solution of

$$
\begin{equation*}
\Delta z=\frac{\partial^{2} z}{\partial x_{1}^{2}}+\frac{\partial^{2} z}{\partial x_{2}^{2}}+\frac{1}{x_{2}} \frac{\partial z}{\partial x_{2}}=1 \tag{3-48}
\end{equation*}
$$

in $\Omega=\left\{\left(x_{1}, x_{2}\right)| | x_{1} \mid<1,0<x_{2}<1\right\}$ with

$$
z+\frac{\partial z}{\partial n}=0 \text { on } \Gamma=\left\{\left(x_{1}, x_{2}\right)| | x_{1} \mid=1,\right.
$$

$$
\begin{equation*}
\left.x_{2}=0 \text { or } x_{2}=1\right\} \tag{3-49}
\end{equation*}
$$

where n is the interior unit normal to Γ.

Put

$$
\begin{align*}
& \phi_{0}=\frac{1}{4} x_{2}^{2} \\
& \phi_{1}=1 \\
& \phi_{2}=2 x_{1}^{2}-x_{2}^{2} \tag{3-50}\\
& \phi_{3}=8 x_{1}^{4}-24 x_{1}^{2} \cdot x_{2}^{2}+3 x_{2}^{4} .
\end{align*}
$$

Note that these functions satisfy Eqs. 3-39 and 3-40.

The domain Ω and its boundary Γ are shown in Fig. 3-5. Partial derivatives with respect to the interior normal are shown.

Figure 3.5. Boundary Condition for Example 3.4

The procedure is now to form

$$
\begin{aligned}
\bar{z}= & \frac{1}{4} x_{2}^{2}+c_{1}+c_{2}\left(2 x_{1}^{2}-x_{2}^{2}\right) \\
& +c_{3}\left(8 x_{1}^{4}-24 x_{1}^{2} \times_{2}^{2}+3 x_{2}^{4}\right)
\end{aligned}
$$

and, with the aid of the expressions for $\partial z / \partial n$ in Fig. 3-5, compute $\bar{z}+\partial \bar{z} / \partial n$ at L points around the boundary Γ. At a typical point, e.g., (1, 1/2),

$$
\begin{aligned}
\bar{z}+\frac{\partial \vec{z}}{\partial n}= & \frac{1}{16}+c_{1}-(11 / 4) c_{2} \\
& -(285 / 16) c_{3}
\end{aligned}
$$

At this point it is required that

$$
\begin{gathered}
1 / 10+\left(c_{1}^{+}-c_{1}^{-}\right)-(11 / 4)\left(c_{2}^{+}-c_{2}^{-}\right) \\
-(285 / 16)\left(c_{3}^{+}-c_{3}\right)<\gamma
\end{gathered}
$$

and

$$
\begin{gathered}
-1 / 16-\left(c_{1}^{+}-c_{1}^{-}\right)+(11 / 4)\left(c_{2}^{+}-c_{2}^{-}\right) \\
-(285 / 16)\left(c_{3}^{+}-c_{3}^{-}\right)<\gamma
\end{gathered}
$$

Similar inequalities in the $c_{i^{\prime}}^{+} c_{i}^{-}$and \hat{y} will be obtained at all other boundary poijis chosen. Under the requirements $c_{i}^{+}>0, c_{i}>0$, and $\boldsymbol{\gamma} \boldsymbol{\gamma} 0$, the problem of minimizing $\boldsymbol{\gamma}$ is then solved.

Rabinowitz in Ref. 1, page 141, reports that an approximate solution obtained by the above method is

This means that at all the boundary points x^{8}, $|\bar{z}+\partial \bar{z} / \partial n|<0.0053$. A sesult called a maximum principle from the theory of second-order elliptic partial differential equations then implies

$$
|z(x)-z(x)|<0.0053, x \text { in } \Omega
$$

where $z(x)$ is the true solution of Eqs. 3-48 and 3-49. This poweriul resuit guarantees that the approximate solution \bar{z} generated by linear programming is withiic 0.0053 of the true solution throughout Ω.

REFERENCES

1. P. Rabinowitz, "Applications of Linear Programming to Numerical Analysis", SIAM Review, Vol, 10, No 2, p. 12!, April 1968.
2. H. Weyi, "The Elementary Theory of Convex Polviedra", in H. W. Kuhn and A. W. Tucker, Contritutions to the Theory of Games, Annals of Mathematical Studies No. 24, Princeton Unversity Press, 1950.
3. G. Owen, Game Theory, Saunders, Philadelphia, 1968.
4. T. L. Saaty, Mather.utical Methods of Operations Research. McGraw-Hill, New York, 1959
5. Y. S. Dorn, R. E. Gomory, and H. J. Greenberg, "Automatic Design of Optimal Structures", Journal de Mecanique, Vol. 3, No. 1, March 1964, pp. 25-52.
6. W. R. Spillers and J. Farrell, "On the Analysis of Structural Design", Math. Anal. Appl. Vol. 25, 1969, pp. \%25-295.

CHAPTER 4

NONEINEAR:PROGRAMMING AND FINITE DIMENSIONAL OPTIMAL DESIGN

$4-1$ INTRODUCTIONTO THE THEORY OF NONLINEAR PROGRAMMING (NLP)

As rointed out in the preceding chapter, inequality constraints play a central role in engineering design problems. The inequalities treated in Chapter 3, however, are of a rather special form, namely, they involve only lincar functions of the variables of the r:oblem. It is a rare real-world design problem which can be put into this form. In general, the inequality constraints as well as the cost or return function ir real-world problems are nonlinear. For this reason, a more general theory than that presented in Clapter 3 is needed.

The class of problems considered here is called nonlinear programming, or mathematical programming. A vast amount of literature has been devoted to this class of problems in recent years. Several books on the subject which contain reviews of this literature are Refs. 1, 2, and 3. In view of this extensive literature, the purpose of this raragraph is simply to state the nonlinear programming problem and present some key results needed in the study of methods of optimal design.

4-1.1 NONLINEAR PROGRAMMING PROBLEMS

For convenience and clarity in the development of methods of solution, the nonlinear programming problem will be stated in two forms. The first form is given by Definition 41.

Definition 4-1: The first nonlinear programming probiem NLP, is: find $x \in R^{n}$ to

where $g(x)=\left[\begin{array}{c}g_{1}(x) \\ \vdots \\ g_{m}(x)\end{array}\right]$.
Unless otherwise specified, it will be assumed that $f(x)$ and $g(x)$ are continuously differentiable. Other than this differentiability requirement, $f(x)$ and $g(x)$ are as general as required for a particular problem.

A second form of nonlinear programming pro'slem, which may actually be included in NLP, is given by Definition 4-2.

Definition 4-2: The second nonlinear programming problem NLP^{\prime}, is: find $x \in R^{n}$ to
$\left.\begin{array}{l}\left.\quad \begin{array}{l}\text { minimize } f(x) \\ \text { subject to } \\ \begin{array}{l}g(x)<0 . \\ \text { and } \\ h(x)=0\end{array}\end{array}\right\} \text { NLP' }^{\prime} \quad(4-3) \\ \end{array}\right\}$

AACP 700-192

where $g(x)=\left[\begin{array}{c}g_{1}(x) \\ \vdots \\ g_{m}(x)\end{array}\right]$, and

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{n}(x)
\end{array}\right]
$$

Unless otheryise specified, it wall be assumed that $f(x), g(x)$, and $h(x)$. 2 continuously differentiable.

Very much as in this unear progi: mming problem, the points x which satisty the constraints of NLP and NLP are characterized by Definition 43.

Definition 4-3: The sets of points $: \in R^{n}$ that satisfy the constraints N, Neme NLI are called constraint sets. The

$$
D=\left\{x \in R^{n} \mid g(x)<0\right\}
$$

for NLP, and

$$
D^{\prime}=\left\{x \in R^{n} \mid g(x)<0 \text { and } \mathrm{h}(x)=0\right\}
$$

for NLP'.

For convenience, Theorem 2-2, which was stated previously in Chapter 2, is given here (Theoremi 4-1) as it applies to nonlinear programming problems.

Theorem 4-1: If $f(x)$ is continuous on D $\left(D^{\prime}\right)$ and this sct is closed and bousded in $R^{\prime \prime}$, thi n NLP (NL.P') has a solution which is an absolute minimum of $f(x)$ in $D\left(D^{\prime}\right)$.

This theorem is onc of the most easily obtained yet most powerful results in optimization theory. It guarantes existence of a
solution with only very mild assumptions. This result is a consequence of properties of R^{n} : In the infinite dimensional optimization problems of Chapter 6, the space of variables lacks these properties so that no analogous result is available.

Theorem +2 provides an easy test for closedness of the constraint set.

Theorem 4-2: If the functions $g(x)$ and $h(x)$ are continuous, then the sets D and D^{\prime} are closed in R^{n}.

The boundedness hypothesis of Theorem 4-1 may be more difficult so check, particuiäly in complex probiems. One must show that there exists a number a such that if $x \in D$ or D^{\prime}, then $x^{T} x<a$.

To see that NLP' can actually be included in NLP, define

$$
g_{i+m}(x)=h_{i}(x), i=1, \ldots, p
$$

and

$$
\varepsilon_{i+m+p}(x)=-h(x)=1, \ldots, p
$$

Now, NLP $^{\prime}$ is equivalent to the NLP:

$$
\operatorname{minimize} f(x)
$$

subject to

$$
\hat{g}(x)<0,
$$

where $\quad \hat{g}(x)=\left[\begin{array}{c}g_{1}(x) \\ \vdots \\ g_{m+2 p}(x)\end{array}\right]$.
This is true since

$$
g_{i}(-)<0, \imath=m+1, \ldots, m+2 p
$$

is just

$$
h_{f}\left(x^{\tilde{z}}\right)<0, j=1, \ldots, p
$$

and

$$
-h_{j}(x)<0, j=1, \ldots, p
$$

which is equivalent to

$$
h(x)=0
$$

It should ise cisar that problems of maximizing $\hat{f}(x)$ are put lito the form NLP or NLP' simply by defining $f(x)=-\hat{f}(x)$. Further, constraints of the fo: $m \hat{g}(x)>0$ are transformed to the proper form simply by defining $g(x)=-\hat{g}(x)$. These transformations involve no theoretical or practical cifficulty. As will be seen in par, 4-2, eten though the transformation oi NLP^{\prime} into NLP involves no theoretical difficulty, servie practical difficulties occur. The explicit characterization of equaltiy constraints in iNLP' will be useful later, when methods n' constructing solutions are discussed.

Comparing nonlinear programming problems with the uiconstrained problems of Chapter 2, one might conclude that the nature of the cost function $f(x)$ will determine the location of the minimum point, with only a check required :o verify that constraints are satisfied. Since the linear programming problem is a special case of the nonlinear programming problem, the results of Chapter 3 show vividly that this conclusion is false. In the linear problem, the cost function plays only a minor role in the simplex algorithm and most of the computational effort is expended operating on the constraint functions.

White results from the linear programming problem yield valuable insight into the non-
linear programming problem, one must be careful not to generalize too: much. To illustrate some differences between linear and nonlinear programming, two examples will now be treated.

Examp!e 4-1:

Minimize

$$
f(x)=\left(x_{1}-3\right)^{2}+\left(x_{2}-3\right)^{2}
$$

subject to constraints

$$
\begin{aligned}
& -x_{1}<0 \\
& -x_{2}<0 \\
& x_{1}+x_{2}-4<0
\end{aligned}
$$

The constraint sel is the shaded triangular region in Fig. 4-1.

Figure 4-1. Graphical Solution of Example 4-1

If the constraints are ignored, $f(x)$ takes on its minimum at the point $(3,3)$. Observing the circles, which are plots of constant value curves of $f(x)$, it is clear that the smallest value $f(x)$ takes on in the shaded triangle is $f(2,2)=2$. This is, therefore, the solution of the problem.

It should be noted that even though the

AMCP 706-192
K
solution occurred on the boundary of the constraint set, it did nōt occur at a comer as it would have if the problem had been linear.

Example 4-2:

Minimize

$$
f(x)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

$x+\frac{1}{2}$
subject to the constraints

$$
\begin{aligned}
& -x_{1}<0 \\
& -x_{2}<0 \\
& x_{1}+x_{2}-4<0
\end{aligned}
$$

The constraint set is just the same as in the previous problem. The cost function, however, has been modified.

Tfthentinatis drequoref; f(x) takes on its minimum at $(1,1)$. Since this combination of design variables satisfies the constraints, it is the solution of Example 4-2. The solution of this nonlinear programming problem, therefore, occurs in the interior of the constraint set. This behavior oontrasts sharply with that of linear programming probiems where the solution uiast occur on the bound-

$\rightarrow \pi=2$
These examples show conclusively that the 'pioperties of NLP, and hence, also NLP', differ corsiderably from those of IP.

Theoretical results and computational methods for NLP and NLP' will also be more complex than those for the linear programming problem. The reason for this is clear. Strong use was made of linearity of the functions mvolved in the linear programming problem, and this linearity is not present in the nonlinear programming problem. The
increased complexity of nonlinear as opposed to the linear problems is not surprising since increased complexity generally accompanies this transition in all mathematical disciplines

Dut to the complexity of NIP and NLP', methods of obtaining their solutions are generally computational in nature. Moreover, in many meaningful engineering problems, convergence proofs are not available so the designer must depend heavily on his engineering intuition. One must be extremely careful in applying engineering intuitior to certain , aspects of optimization problems, however. In ninst problems of engineering analysis, existence and uniqueness of solutions are taken for granted: since these properties hold for very general classes of problems such as linear elasticity, dynamics, circuit theory, and structural analysis, Existence-and uniqueness questions in optimization problems are, however, by no means trivial. For instance, before the designer :ommits himself to a destgn based on an optimum obtained by a computational algorithm, he should seriously conslder the possibility that this optimum is only relntive and an absolute optimum exists that will efve muci better results.

Bue to tie weaknest of intilition in dealms with optimization prohlems unt: the enherenit complexity of these problem" . the finportance of theoretical results toinatring existence. uniqueness, and necessary and sufficient cors ditions cannot be overemphasized. The remainder of this paragraph and par. 4.2 are devoted to these fuestions, winle pars. 4-3 through $4-5$ contam method for obiaining solution of NLP and NLP'.

6.1.2 GLOBAL THEORY

In nonlancar programmerg problems one often obtains a relative mmmum of $f(v)$ in
the constraint set. The question arises, "Is this relative minimum an absolute minimum?" In general problems it is difficult to answer this question. There is a class of problems, however, in which this question is easily answered. This class is dcscribed by Definition 4-4.

Definition 4-4: If $D\left(D^{\prime}\right)$ is a convex set and $f(x)$ is convex on $D\left(D^{\prime}\right)$ then NLP (NLP P^{\prime}). is called a convex programming problem.

Theorem A-1, Appendix A, guarantees that if $g_{l}(x), i=1, \ldots, m$, are convex functions, then the set D is convex. Since the equalities (Eq. 4-5) in NLP ${ }^{\prime}$ define a surface in R^{n}, it is clear that D^{\prime} is the intersection of that surface with the set $\left\{x \in R^{n} i g_{i}(x)<0, i=1\right.$, $\ldots, m\}$. The surface is convex if and only if it is a plane, or equivalently, if and only if each $h_{j}(x)$ is linear in x. Since by Theorem A-6, Appendix A, the intersection of two convex sets is convex, D^{\prime} is convex if $g_{i}(x), l=1, \ldots$, m, are convex and $h_{j}(x), j=1, \ldots, p$ are linear. The class of problems NL $^{P^{\prime}}$ which are convex ir, werefore, quite restricted.

As will be clear from what follows, convexity is a very desirable property. Howeve:, in the real world, many optimization lems are nonconvex. In spite of this fact, the study of convex problems is lustified. Many results which hold only in convex problems have led to constructive methods waici are effective for finding local extrema in nonconvex problems. Some of these mett:ods would probably never have been developed if only general nonconvex problems had been treated.

One of the powerful results which follows due to convexity is given in Theorem 4.3.

Theorem 4-3. A ielative minmum in a convex progamming problem is an absolute minimum.

4-1.3 LOCAL THEORY

Without convexity it is difficult to say much about global properties of the solution of NLP or NPL'. Considerable theory is available, however, which characterizes local minima. The approach in the local theory is to suppose that $f(x)$ has a relative minimum at a point in ν or D^{\prime} and then find conditions on $f(x), g(x)$, and $h(x)$ which must hold at this point. In this way, many points in D and D^{\prime} mote eliminated as candidates for a relative extrema and perhaps relative extrema can even be located using these conditions. Such conditions, tharefore, are called "necessary". In some proclems it will be possible to obtain a set of conditions that, if satisfied at a point, guarantee that this point yields a relative extrenum. Conditions of this rind, of course, are called "sufficient".

As often hafpens in engineering, the engineer needs a powerful resuit developed in mathematics to solve his problem. Proof of this result, however, may be very complex and, in fact, contribute very little to the engineer's insight into his problems. This appears to be the case in many phases of optinn, aition theory, in particular, in the study oî necessary and sufficient conditions in nonlinear progrerming. In the remainder of this paragraph resuits will be lorrowed from mathematical developments.

Before meaningful resuits may be given for NLP and NLP', the following conditions will be required of the constraint functions $g(x)$ and $h(x)$.

Definition 4-5. (Furst-order constraint qualification): Let x^{0} be a point in the .onstrant set D^{\prime} (or D if there are no equelity constraints) and let the functions $g(t)$ and $h(\cdot)$ be daterendable dt ${ }^{\prime \prime}$. Then the first-
order constraint qualification holds at x^{0} if for ciny nonzero $y \in R^{n}$ such that $\nabla g_{i}\left(x^{0}\right) y<0$ lor :ach i with $g_{l}\left(x^{0}\right)=0$ and $\nabla h\left(x^{0}\right) y=0$, then y is tangent to a differentiable arc passing from x^{0} into the constraint set.

Geometrically, this definition says that if the vector y is a direction which, 'o first order, appears to point from x^{0} inte the constraint set, then there is a curve with y as tangent which actually passes from x^{0} into
untraint set. The conditions $\nabla g_{i}\left(x^{0}\right) y<$ 0 for $g_{i}\left(x^{0}\right)=0$ and $\nabla h\left(x^{0}\right)=0$ are just first order perturbations of $g_{1}(x)$ and $h(x)$ which indicate that a small move in the y-direction ought to do the right thing to $g_{i}(x)$ and $n(x)$. This is illu:trated in Fig. 4-2.

Figure 4.2. First-order Constraint Qualification

While all constraints do not satisfy the first-order constraint qualification, the following theorem (Ref. 1, page 19) identh.. a class of eonstraints which do.

Th.corem 4-4 if $g(x)$ and $h(x)$ are diffe entiable at x^{0} in D^{\prime} and 11 the graden's $\nabla g_{1}\left(x^{0}\right)$, for, will $g_{1}\left({ }^{0}\right)=\left(\cdot\right.$ and $\nabla h, x^{n}$: are linearly independent, $1=1 . \quad p$, then ith 'irst-order constramt qualification is satisfred

La this result, and in fact, in the remainder of this paragrayh, the problem $N L F^{\prime}$ is described. It is clear, however, that putting $p=0$ in NLP' yields NLP. One of the principal results of non!inear programming may now be stated. For proof the reader is referred to Ref. 1, page 20.

Theorem 45: (Kuhn-Tucker Necessity Theorem:): Let the functions $f(x), g(x)$, and $h(x)$ bc differentiable and let the constraint functione satisfy the first-order constraint qualifications at a point \bar{x} in D^{\prime} of NLP^{\prime}. In order that \bar{x} be a relative minimum for $\mathrm{NI}{ }^{\text {" }}$ it is neccssary that there exist multipliers $v \in R^{m}$ and $w \in R^{p}$ such that

$$
\begin{equation*}
v_{i}>0, i \cdot 1, \ldots, m \tag{4-6}
\end{equation*}
$$

$$
\begin{equation*}
v_{i} g_{1}(\bar{x})=0, i=1, \ldots, m \tag{4-7}
\end{equation*}
$$

and
$\nabla I(\bar{x}, v, w)=0$
where

$$
\begin{equation*}
L(x, v, w)=j(x)+1^{T} \ell_{\ell^{\prime}(\alpha)}+w^{T} h(x\} \tag{4-9}
\end{equation*}
$$

is called the "agrangian.
In a sense, Theorem 4.5 ; an existence theorem. It asserts that if \bar{x} yields a relative minimum for NLP'. then the muliipiers v and w exist and that Eq. 4-8 is satisfied. Ocidsicna /, one will run across an argumen! attempting to justify this theorem wheh states that

$$
f(, 1)=f(x)+v^{T} g(x) * v^{T} / f(x)=L(r, v, w)
$$

silue : is defired b: Eq 4.1 a: $1,1=0$ it is then lamed that ance i yolds a relative minumum for ()() it must yueld a relative
minimum for $L(x, v, w)$, so $\nabla L(x, v, w)=0$ must hold. This argument is not valid. For a rigorous proof of Theorem 4.5 the reader is referted to Ref. 1.

Thenrem 4-6 states additional conditions which are required to hold if the functions appearing in NLP' have two derivatives.

Theorem 4-6: (Second-order Necessary Conditions): Let $f(x), g(x)$, and $h(x)$ have two continuous derivatives at a point \bar{x} in D^{\prime}. Further, let the vectors $\nabla g_{i}(\bar{x})$, for all i with $g_{l}(\bar{x})=0$, and $\nabla h(\bar{x})$ be linearly independent. If \bar{x} yields a relative minimum for NLP^{\prime}, then it is necessary that there exist v and w satisfying Eqs. 4-6, 4-7, and 4-8. Further, for everv $y \in R^{n}$ such that $\nabla g_{i}(\bar{x}) y=0$ when $g_{i}(\bar{x})$ $=0$, and $\nabla h(\bar{x}) y=0$, it is necessary that

$$
\begin{equation*}
y^{T} \nabla^{2} L(\bar{x}, v ; w) y>0 \tag{4-10}
\end{equation*}
$$

For proof of this thworem, see Ref. 1, page 25. Note that the existence of y and w satisfying Eqs. 4-6, 4-7, and 4-9 is a consequence of Theorem 4-5. Even theugh this theorem involves second-order conditions, it still gives oniy necessary conditions.

A theorem which gives conditions which, if satisfied at some point, are su ficient to guarantee that this point yields a relative mininum for NLP' will now be stated. For proof of this theorem, see Kef. 1, page 30.

Theorem 4.7: (Second-ordes Sufficieni Conditions): Let $f(x), g(x)$, and $h(x)$ be twice differentiable functions at a point \bar{x} If for $x \in D^{\prime}$ there exist v and w-atisfying

$$
\begin{aligned}
& v_{i}>\gamma i=1, \ldots, m \\
& \because, g_{i}(\bar{x})=0, i=1, \quad m \\
& \nabla l,(\bar{x}, w, w)=0
\end{aligned}
$$

and if for every norsuro $y \in R^{n}$ such that $\nabla g_{i}(\bar{x}) y=0$ for $v_{i}>0, \nabla g_{i}(\bar{x}) y<0$ for $g_{i}(\bar{x})$ $=0$ and $v_{i}=0$, and $\nabla h(\bar{x}) y=0$; it is true that

$$
\begin{equation*}
y^{T} \nabla^{2} L(\bar{x}, \nu w) y>0 \tag{4-11}
\end{equation*}
$$

then \bar{x} yields an isolated relative minimum for NLP^{\prime}.

It siould be noted that there is a gap between the sufficient conditions of Theorem 47 and the aecessary conditicns of Theorem 4-6. Strict inequality is required in Eq. 4-11 for a larger set of vectors y that may yield orly equality in Eq. 410 . It is doubtful that a single, tractable set of conditions exist that are loth necesary and sufficient for the general problem NLP'.

There is one class of nonlinear programming problems in which conditions may be given that are both necessary and sufficient for ans absclute extremum. This ciass is the convex programming problem.

Theorem, 4-8: Let $f(x)$ and $g_{i}(x), i=1, \ldots$, m, be continiously differentiahle and convex, then necessary and sufficient conditions for \bar{x} to be an absoluve minimum point of NLP are that there exists $x: R^{n}$ such that

$$
\begin{aligned}
& g(\bar{x})<0 \\
& y_{r} g_{i}(\bar{x})=0, i=1, \ldots, m \\
& v_{1}>G, i=1, \ldots, m
\end{aligned}
$$

and

$$
\nabla f(\bar{x})+\sum_{i=1}^{m} v_{i} \nabla g_{1}(\bar{x})=0 .
$$

The tectimea! piesentation of par. 4-1 ands with this satwisying result Severat wimetits

AMCP 706-192

are, however, appropriate at this point. The analytic necessary and sufficient conditions of par. $4-1$ could be used to construct solutions of NLP by solving systems of nonlinear equations. This is particularly truc of the results of Theorem 4-8. If one reads the cuntent literature, however, he is led to the distinct conclusion that iterative methods based: on successive improvements are too effective to bypass in favor of metheds tiat require solution of complicated, nonlinear, algebraic equations.

Even if the results of par. 4-1 are never used by the designer to constiect solutions of nonlinear progranming problems, they are still very powerinl toois. Verification of the hypotheses of one of the theorems may mean the diffe, nce between going onto the computer with the comforting knowle-fge that a unique solution exists as opposed to the frustrating experience of having computer print-out which mas be meaningless.

4.2 THEORY OF FINITE DIMENSIONAL OPTIMAL DESIGN

The nonlinear programming problems oi par. 41 are quite general and may be app! ed to a variety of optimization problems. As is frequently the case with very general formulations of problems, special features of sume problems within the class being studied are not exploited. This appears to be the case when general nonlinear programming theory is applied to solve optimal design problems. Intere ctation of certain of the varables and constaints in the problem NLP', is the context of optimal design, yields very effective computatiora! methods of solution This paagraph wit be devoted to stat.ng the finite demensiona! optumal design preniest. drawing an analogy with NLP', and sat.ng necessary and sufficent conditons ! inat follow anectly
from the theorems stated in the preceding paragraph.

42.1 FINITE DIMENSIONAL OPTIMAL DESIGN PROBLEMS

The class of problems to be treated in this paragraph is, in a sense, a suecial case of the nonlinear programming problem NLP'. However, hy developing a theory ior the new class of problems which takes advantage of its special features, a more efficient solution algonthm may be obtained.

The general optimal design problem must have several of the features of NLP'. Namely, it is required to have a cost (return) function which is to be minimized (maximized) artd a set of constraints that describe the performance demunded of the objest being designed. It is in the representation of constraints that the optimal design problem differs from NLP'.

In most problems of design in the realworlc. the object being d.signed is required to behare according to some law of physics. This behavior is described anaiytically by a set of variables coilled state variables. Further, there is a second set of variables tha! describe the object itself rather than its behiavior. These variables are called design variables since they are to be chosen by the desig:ar so that the object being designed performs ts reciaired function. It generally happens that the lews of physics that deiermine the state variables depend on the design varables so the two sets of variables are related.

To Hustrate the difference between state and design varables. consider the following aesign problems

1 Frd the coefficient of damping in on
automobile shock absorber so that peak acceleration in the passenger compartment due to toud conditions is as smail as possible.

The cocfficient of damping is the design variable since it describes the object being designed, and its magritude is to be fixed by the designer, Acceleration on the other hand is a state variable since it describes the behavior of the object being designed. Further, this state variable may be determined by Newton's laws of motion. Note that the designer has no direct control over the state variable. He may effect it only indirectly by adjusting the design variable. This is typical of state and design variables.
2. Determine the size of beams to be used in a structure so that whel, a giyen set of loads are applied stresses are within certain given limits, the deffection of certain points on the structure is within given limits, and the structure is as jght in weight as possible.

Beam sizes are the design variables in this problem since they describe the structure being designed and they must be chosen by the designer. Stress and deflection, however, are state variables that are determined by equiiibrium and force deflection relations. Again, the designer bas no direct control over stress and deflection. He may effect these quantities only 'y varying the stze of leams in the structure.

In most real-world design problems the state and design variables are siearly identfied. In what follows. the seve varibule will be an n-vector, $z \in R^{n}$, and the design tariable will be a k-vector, $b \in R^{2}$. The hasic elements of the ontimal design problem are deserbed by Detantion 4-6
intmiton f.n The finire dmensomal
optimal design problem (OD) is a problem of determining $b \in R^{k}$ to
$\left.\begin{array}{l}\text { minimize } f(z, b) \\ \text { subject to } \\ h(z, b)=0 \\ \phi(z, b)<0\end{array}\right\} O D$
where

$$
h(z . b)=\left[\begin{array}{c}
h_{1}(z, b) \\
\vdots \\
h_{n}(z, b)
\end{array}\right]
$$

$$
\psi(z, b)=\left[\begin{array}{c}
\phi_{1}(z, b) \tag{4-15}\\
\vdots \\
\phi_{m}(z, b)
\end{array}\right]
$$

and all the functions of the probiem are required to have first-order derivatives. Further, it is required that the $(n+k$) vectors

$$
\begin{equation*}
\left[\frac{\partial \phi_{i}}{\partial z}, \frac{\partial \phi_{i}}{\partial b}\right] \tag{4-16}
\end{equation*}
$$

are linearly inderendent for all i with $\phi_{t}(z, b)$ $=0$ and that the matrix

$$
\begin{equation*}
\frac{7 h}{\partial z} \tag{4-17}
\end{equation*}
$$

is nonsingular.

The assumption that the matrix $\frac{\partial z}{\partial z}$ is nonsugular guaranters, by the mphet functon theorem (Ref 4, page 181), that for given t ther. \therefore a ungue solution of $\mathrm{Eq} 4-13$ for: Further the bute var:ave - determaned

AMCP 706-932

from Eq. 4-13 as a function of b, is differentiable with respect to b. This fact will be needed later when constructive methods are developed.

4.2.2 LOCAL THEORY

Since it is very seldom that the stata stuations (Eq. 4-13) are linear in both z and b, convexity of the constraint set and hence the problem will be raze. For this reason, no global results based on convexity will be discussed. In case Fq. 413 is linear, however, global results nlay be obtained by applying the Theorems 4-3 and 4-8.

It is ciear that if a new variable $x \in R^{n+k}$ is defiriecias

$$
x=\left[\begin{array}{l}
\cdot \tag{4-18}\\
b
\end{array}\right]
$$

then ine problem $O D$ may be put into the form NI.P'. According to Theorem 44, the first-ordet constraint qualification will be satisfied fol $O D$ (with $x \in R^{n+k}$ as independent variable) if the row vectors

$$
\begin{align*}
& {\left[\frac{\partial h_{i}}{\partial z}, \frac{\partial h_{i}}{\partial b}\right], i=1, \ldots, n} \tag{4-19}\\
& {\left[\frac{\partial \phi_{j}}{\partial z}(z, b), \frac{\partial \phi_{j}}{\partial b}(z, b)\right],} \tag{4-20}
\end{align*}
$$

for j with $\phi_{j}(z, b)=0$
are linearly mdenendent. Theorem $4-5$ may now be appied to the problem OD.

Wharem 4.9 hivstordes ivecestary Conatans) Let al, the functions appearing wa OD be differertiable ar a pomt $\vec{\Sigma} .5$ whas sunsfies Eqs +13, +14, and 415 Further let the vecoos, 1 f q. $+19 \times-20$ and +21 be
linearly independent at \bar{z}, \bar{t}. Then there exist:, multipliers $\lambda \in R^{n}$ and $\mu \in R^{m}$, with $\mu>0$ such that Sor

$$
\begin{equation*}
A=f(z, b)+\lambda^{T_{h(}}(z, b)+\mu^{r} \phi(z, b) \tag{421}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial H}{\partial b}(\bar{z}, \bar{b})=0 \tag{4-22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial H}{\partial z}(\bar{z}, \bar{b})=0 \tag{4-23}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{j} \phi_{j}(\bar{z}, \bar{b})=0, j=1, \ldots, m . \tag{4-24}
\end{equation*}
$$

The proof of this thecrem may be constructed by simply writing down the necessary conditions of Theorem 4-5 in terms of x and then separating the componentr of x as in Eq. 4-18.

In exactly the same way the second-order necessary ard sufficient conditicis of Thenrems $4-6$ and $4-7$, respectively, may be stated for the problem OD. No essential simplification of the statements of those theorems oscurs, however, so the theorems are not restated here.

Theorem 4-9, just as Theorem 4-5, is difficult to use in constructing solutions of OD Considerabie difficulty arises because one does not know which of the inequalities in $O D$ is an equality. For problems with a small number of inequality constrints this may not be a difficult obitacle, nericularly if the designer has a good inturtive rdea of which constraints will be equalities. If, on the other band, thers ate a large number of inequalty con trams. ther the number of combnatons of constraines which may re equaities is large It is. therefore, dificult to determme Just wheth combmation, will be equatite, At
aralytic solution is extremely difficult in this case.

Rather than attempt to use the necessary condrtions te construct candidate solutions, a more direct approach will be followed. The remai der of this chapter will be devoted to direct methods of solying NLP, NLP', and OD.

43 SEQUENTIALLY UNCONSTRAINED MINIMIZATION TECHNIQUES (SUMT)

A favorte method of solving difficult problems, particularly among mathematicians, is to relluce a difficult problem to a sequence of easy problems. Each of the easy problems is solved and if the method is any good, the sequence of solutions of easy problems will converge to the solution of the aificult problem: As the title might imply, SUMT follows just this pattern. It should be clear that a central patis of this method must be resulis which guarantee convergence, at least in cases where solutions are known to exist.

The method presented here essentially reduces NLP and NLP' to a sequence of auxilary problems which may be solved by the methods of Chapter 2. The cost fiaction of NLP or NLP' is augmented by a function called a pensity function. The penalty function is formed from the constraint functions in such a way that as a paraneter approaches zere (or perhaps infinity) the uncorsi'ained minimum of the augmented cost function converges to itic solution of NLP o: $\mathrm{NLP}^{\mathrm{P}}$. Two basically different way' of doing this are presented here Each has its computational and theoretical advaa'ages, and disadvantages that will be described later.

Due to the large bods of theory concerning SUurt, results will be presented in lea pardgroph withour proof. The reader: referred for proofs and an evended discussions of Sump to the complets and weil-writtet tex:
of Fiacco and McCormick (Ref. 1). Theoretical results guaranteeing convergence are, presented here to indicate the level of the known theory of SUMT, rather shan as a complete treatment of the subject.

4-3.1 INTERIOR METHOD

The interior SUMT is based on the idea of using the constraint functions to erect a barrier at the boundary of the constraint set D of NLP by adding a penalty function to $f(x)$ which approaches infinity as the boundary of D is approached from this interior. Once the solution of the augmented problem is obtained, the penalty function is altered so as to effect $f(x)$ less in the interior of D. This tehavior is illustrated in Fig. 4-3.

(A)

(B)

Figure 4.3. Penart, Finctions

AMCP-706-182

As illustrated in Fig. 4-3, when the penalty function is decreased on the interior of D, the minimum of the second augmented cost function $x^{(2)}$ is closer to the solution \ddot{x} than the minimum of the first augmented cost function $x^{(1)}$. The idea, of course, is that the sequence of points $x^{(i)}$ generated in this say converges to \bar{x}.

It should be clear why this approach is discussed only for NLP and not NLP'. The constraint set of NLP' can have no interior due to the equality constraints. It is possible that NLP has no interior and in this case the interior SUMT is not appicable. In what follows, it is assumed that the constraint set D of NL.P has an interior.

The sequence of points $x^{(i)}$ which is to converge to the minimum point is generated by minimizing

$$
\begin{equation*}
f(x)+S(r) l(x) \tag{4-25}
\end{equation*}
$$

without regard to constraints, where $S\left(r_{i}\right) /(x)$ is continuous for x in the interior of D and $S\left(r_{i}\right) /(\hat{x})=+\infty$ for any \hat{x} such that $g_{j}(\hat{x})=0$ for any $1 \leq j<m$. it is clear that if one begins an iterative minimization technque of Chapter 2 at a point in the interior of D, then a relative minimum point will be found which must lie in the interior of D. Otherwise, the minimizing sequence would have had to climb over a portion of the aixiliary cost surface that is infinitely hich and rione of the methods will do this.

In order to obtain the seg:ence of ponts $x^{(\prime \prime}$, ihe parameter r_{t} is allowed to approach zero. To insure that tine sequerice $r^{(t)} \mathrm{con}$ verges to a reintive manimum point, the functions $/(x)$ and $S(r)$ are requred to have the following nropertues

1. $I(x)$ is continuous and non-negative on the interior of the constraint set D and if $\left\{x^{k}\right\}$ is any sequence of points int K^{n} converging to \dot{x} where $g_{j}(\tilde{x})=0$ for some j, then $\lim _{k \rightarrow \infty} I\left(x^{k}\right)=+\infty$.
2. $S(r)$ is continuous and if $r_{1}>r_{2}>0$, then $S\left(r_{1}\right)>S\left(r_{2}\right) \quad 0$ and if r_{j} is a sequence of numbers converging to zero, thien $\lim _{l+\infty} S\left(r_{i}\right)$ $=0$.

Probably the most common penalty functions $I(x)$ and $\Sigma(r)$ are

$$
\begin{equation*}
I(x)=-\sum_{j=1}^{m} \frac{1}{g_{j}(x)} \tag{426}
\end{equation*}
$$

and

$$
S(r)=r
$$

Any pair of tunctions satisfying properties No. 1 and No. 2 associated with Eq. 425 , however, is suitable. It may be to the designer's advantage to choose another form for any particular problem. For other suitable choices of penalty functions, see Ref. I, prage 68.

The algorithen tor solving NLP by the interior point iechomque is given in Defintion 4.7.

Defmition 4-7. The diterior pomt sequenfally unconstramed minmization algoribm is given by the followeng

Step 1. Define the function

$$
L^{\prime}(x, r)=4(x)+s(r),(v) \quad(4.28)
$$

AMCP 708-182
where $S(r)$ and $I(x)$ satisfy properties No. 1 and No. 2. Chcose r_{0} >0 and $x^{(0)}$ in the interior of the constraini set D.

Step 2. Beginning at $x^{(0)}$ minimize $U\left(x, r_{0}\right)$ without regard to constraints to obtain $x^{(1)}$. Any of the methods of Chapter 2 may be employed for this purpose.

Step 3. For $i=0,1,2, \ldots$, choose $r_{i+1}>0$ such that $r_{i+1}<r_{r}$. Beginning at $x^{(l)}$ minimize $U\left(x, r_{i}+1\right)$ without regara to constraints to cotain $x^{(l+1)}$, where l is the iteration index.

Step A. As $r_{1} \rightarrow \infty$, if $\left\|x^{(i+1)}-x^{(i)}\right\|$ and $\left.\left|f\left(x^{(l+1)}\right\}-f\right| x^{(i)}\right] \mid$ are sufficiently small, terminate the process and take $x^{(1+1)}$ as the solution of NLP. Otherwise return to Step 3.

In order to be sure that this algorithm will lead to a solution of NLP, one would like to have a result that as $r_{k} \rightarrow 0$, a solution is appraached. Such a result is contained in Theorem 4-10.

Theorem 4-19: In the interior point algorithm just given let:
$f(x), g_{1}(x), \ldots, g_{n}(x)$ be cunt timuous on the constraint set D.
$S(r)$ end $/(x)$ satisfy 1 opariocs No.
1 and No. 2.

The interior of D be nonenpty.

There be a rehtue ammum toint \bar{r} in f wheh that $f(\bar{x})$. $f(x$, for all

where \bar{x} is not an isolated point of D,
 $\left\{r_{l}\right\}$ be a strictly decreasing sequence which converges to zero. (4-33)

Then for $x^{(0)}$ sufficiently near \bar{x} and r, sulficiently small,
$\lim _{1 \rightarrow \infty} x^{(1)}=\bar{x}$.
Further,

$$
\begin{align*}
& \lim _{l \rightarrow \infty} S\left(r_{l}\right) \| x^{(1)} \mid=0 \tag{4.35}\\
& \lim _{l \rightarrow \infty} f\left(x^{(1)}\left|=\lim _{i \rightarrow \infty} U\right| x^{(1)}, r_{i} \mid=f(\bar{x})\right.
\end{align*}
$$

$\left\{f\left|x^{(1)}\right|\right\}$ is monotone decreasing (4-37) and
$\left\{i\left[x^{(1)}\right]\right\}$ is monotone increasing. (4-38)

For proof of this theorem see $R=\therefore$. , page 47.

It has been noted throughout the previous develepment that if NLP is convex - i.e., $f(x), g_{1}(x), \ldots g_{m}(x)$ are convex - then "nice" things happen. One of these "nice" tungs is given in ت̈heorem 411 .

Tiporem f-il: If NLP is convex with a mioue minimum point $\bar{x}, g,(x), 1=1, \ldots, m$. are twice contimously differentiable, and if Eas 429 through $4-3.3$ hold. hen $x^{(1)} \mathrm{gen}-$ erated by the given aigorithm will converge on the ninimum point.

It thould be noted that Sirie i of the

the interior of the constraint set but no method of obtaming such a point was given. This question will be addressed later in this paragraph.

Example 4-3: Solve the LP

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}=\text { minimum } \\
& g_{1}\left(x_{1}, x_{2}\right)=-x_{1}<0 \\
& g_{2}\left(x_{1}, x_{2}\right)=-x_{2}<0
\end{aligned}
$$

using the interior point SUMT.
Solution:

$$
U(x, r)=x_{1}+x_{2}-r\left[-\frac{1}{\dot{-}_{1}}-\frac{1}{x_{2}}\right] .
$$

The functions $f(x), g_{1}(x)$, and $g_{2}(x)$ are convex and by Theorem A-5, Appendix A, so are $-1 / g_{1}(x)$ and $1 / g_{2}(x)$. Since $r>0$, $U(x, r)$ is convex and thus has a unique minimum. To find it, put

$$
\begin{aligned}
& \frac{\partial U}{\partial x_{1}}=0=1-\frac{r}{\left(x_{1}\right)^{2}} \\
& \frac{\partial U}{\partial x_{2}}=0=1-\frac{r}{\left(x_{2}\right)^{2}}
\end{aligned}
$$

s

$$
x_{1}=r^{1 / 2}
$$

$$
x_{2}=f^{1 / 2}
$$

As $r \rightarrow C, x_{1} \rightarrow C$ and $x_{2} \rightarrow 0$ so the solution of Example 4.3 is

$$
\left(x_{i}, r_{y}\right)=(0,0)
$$

43.2 EXTERIOR METHOD

Unlike the interior method, starting points for the cxterior SUMT are not required to be in the constraint set of NLP. The basic idea in the exterion method is to add to the cost function a yenalty function that is positive for points outside the constraint set and zero inside the constraint set. This, in effect, discourages the minimum of the new augmented cost function from being too far from the constraint set if the original cost function $f(x)$ is "well behaved" outside" the constraint set. It is clear that this approach may not be taken if $f(x)$ is undefined or takes on negatively infinite values outside the constraint set. One very appealing aspect of the exterior method is that it handles equaiity as well as inequality constraints without difficulty, so that it can be used on NLP'.

The penalty function employed for the extericr method will have the form

$$
\begin{equation*}
P(t) E(x) \tag{4-39}
\end{equation*}
$$

where $P(t)$ and $E(x)$ are required to satisfy the conditions:

1. $E(x)=0$ if x is in the constraint set, and $E(x)>0$ if x is outside the constraint set.
2. $P(t)$ is continuous and if $t_{2}, t_{1}>0$, then $E\left(t_{2}\right)>E\left(t_{1}\right)>0$. Further, if $t_{i} \rightarrow+\infty$ then $\lim _{i \rightarrow \infty} P\left(t_{i}\right)=+\infty$.

Probably the most common choice for $P(t)$ and $E(x)$ is

$$
\begin{equation*}
P(t)=i \tag{4-40}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1}(x)=\sum_{j=1}^{m}\left\{g_{1}(x)+\left.\left|g_{j}(x)\right|\right|^{2}\right. \tag{4-41}
\end{equation*}
$$

and

$$
E_{2}=\sum_{f=1}^{P}\left[h_{j}(x)\right]^{2}
$$

where

$$
E=E_{1}+E_{2} .
$$

The basic idea for the exterior method was given by R. Courant in 1943 (Ref. 5). He argued that if

$$
\begin{equation*}
T(x, t)=f(x)+P(t) E(x) \tag{4-42}
\end{equation*}
$$

were minimized without regard to constraints asing t_{1} and t_{2} with $t_{2}>t_{1}$, then since the augmented cost function is peraiized more when t_{2} is used than when t_{1} is used, the minimum point corresponding to t_{2} should be closer to the conistraint set and hence, closer to the minimum point of $f(x)$ on the constraint set.

An explicit algorithrn for solving NLP or NLP' by this method is given in Definition 4.8.

Definition 4-8: The exterior poini sequentially unconstrained minimization algorithm is given by the following:

Step 1. Make an engineering estmate $x^{(0)}$ of the solution of NLP or NLP'.

Step 2. Choose $t_{1}=0$ and beginning at $x^{(0)}$ find an unconstrained minimum point of
$T\left(x, l_{1}\right)=f(x)+P\left(t_{1}\right) E(x)$
denoted $x^{(1)}$.
Step 3 Connmue with $=$?, by choosiag $i_{1}, 1,1$ and wartine from $r^{(1-1)}$
obtain an unconstrained minimum point of
$\eta\left(x, t_{1}\right)=f(x)+P\left(t_{1}\right) E(x)$
denoted $x^{(i)}$.
Siep 4. A.s $t_{i} \rightarrow \infty$, if $\left\|\left[x^{(i)}-x^{(i-1)}\right]\right\|$ and $\left|f\left[x^{(i)}\right]-f\left[x^{(l-1)}\right]\right|$ are sufficiently small, terminate the process and take $x^{(l)}$ as the solution of NLP. Otherwise, return to Step 3.

Very much as in the case of the interio: method, Theorem 4 - guarantees a certain measure of success.

Theciem 4-12: In the exterior point algorithm let:而
$f(r), g_{1}(x), \ldots, g_{m}(x)$ be continuous
for all x.
$E(x)$ and $P(t)$ satisfy conditions No.
1 and No. 2 of Eq. 4-39.

There be a relative minimum point \bar{x} in that admissible domain D such that $f(\bar{x})<f(x)$ for all $x \neq \bar{x}$ in some neighborhood of \bar{x}, where \bar{x} is not an isolated point of D.

The scquence $\left\{t_{i}\right\}$ is strictly increasing to $+\infty$.

Then for $x^{(0)}$ sufficiently close to \bar{x}, and t_{1} sufficiently la:ge,

$$
\begin{equation*}
\operatorname{lin}_{i \rightarrow \infty} r^{(n)}=\bar{x} \tag{4-47}
\end{equation*}
$$

$\lim _{i \cdot m} P\left(t_{i}\right) E\left\{x^{(i)}\right\}-0$

AMCP 706-182

$$
\begin{align*}
& \lim _{i \rightarrow \infty} f\left[x^{(i)}\right]=f(\bar{x}) \tag{4-49}\\
& \lim _{i \rightarrow \infty} T\left[x^{(i)}, t_{i}\right]=f(\bar{x}) \tag{4-50}
\end{align*}
$$

$\left\{f\left[x^{(i)}\right]\right\}$ is monotone decreasing
$\left\{E\left[x^{(i)}\right]\right\}$ is monotone decreasing. (4-52)
For proof of this theorem, see Ref. 1, page 57.

Very much as in the interior methud, if the NLP or NLP' is convex, then convergence is guaranteed by Theorem 4-13.

Theorem 4-13: If NLP or NLP' is convex with a unique minimum point, and if Eqs. 4-43, 4-44, and $4-46$ hold, then regardless of the estimates $x^{(0)}$ and t_{i}, the sequence $x^{(i)}$ generated by the algorithm given by Theorem 4-12 will converge to the minimum point.

Example 4-4: Solve

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}=\text { minimum } \\
& h\left(x_{1}, x_{2}\right)=x_{1}+x_{2}^{2}-1=0
\end{aligned}
$$

by the exterior point SUMT.

$$
\begin{aligned}
& T(x, t)=x_{1}^{2}+2 x_{2}^{2}+t\left(x_{1}+x_{2}-1\right)^{2} \\
& \frac{\partial T}{\partial x_{1}}=2 x_{1}+2 t\left(x_{1}+x_{2}-1\right)=0 \\
& \frac{\partial T}{\partial x_{i}}=4 x_{2}+2 t\left(x_{1}+x_{1}-1\right)=0
\end{aligned}
$$

Subtracting,

$$
\Delta x_{2}-i x_{1}=0 \text { or } x_{1}=2 x_{2} .
$$

Tupn

$$
4 x_{2}+2 t\left(3 x_{2}-1\right)=0
$$

and

$$
x_{2}=\frac{t}{2+3 t} .
$$

As

$$
t \rightarrow \infty, x_{2} \rightarrow \frac{1}{3} \text { and } x_{1} \rightarrow \frac{2}{3}
$$

The solution is then

$$
\left(x_{1}, x_{2}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)
$$

4.3.3 MIXED INTERIORI-EXTEFIOR METHOD

Both the interior and the exterior methods presenied in pars. 4-3.1 and 4-3.2 aie not applicable in certain kinds of problems. In particular, the interior method cannot be used if the interior of the constraint set is empty, such as in the case with equality constraints. The exterior method cannot be used if some constraint function is not defined or is illbehaved ontside the constraint. A combination of the iwo methods will now be given which allows the treatment of problens which may have both these undesirable features and thus could not be treated by either pure interior or exterior methods.

> For convenience, consider NLP'

$$
\begin{equation*}
\operatorname{minimize} f(\lambda) \tag{4-53}
\end{equation*}
$$

subject to

$$
\begin{align*}
& g_{i}(x)<0, i=1, \ldots, m \tag{4.54}\\
& k_{j}(x)=0, j=1, \ldots, p \tag{4-55}
\end{align*}
$$

where the set of all points which satisfy the m inequalities Eq. 4-54, has an interior. As might be expected, the constraints, Eq. 4-54, will be dealt with using an interior point penalty function and the constraints, Eq. $4-55$, will be dealt with using an exterior point penalty function.

The penalty function used here will be

$$
S\left(r_{i}\right) I(x)+P\left(t_{i}\right) E(x)
$$

where $S(r) I(x), P(t)$, and $E(x)$ satisfy conditons No. 1 and No. 2 preceding Eq. 4-26, and No. 1 and No. 2 of Eq. 4-39. It is understood that $I(x)$ is a function of only the constraint functions in Eq. 4.54 and $E(x)$ is a function of only those in Eq. 4-55. A general minimizing algorithm for NLP is now given in. Definition 4-9.

Definition 4-9: The mixed interior-exterior sequentially unconstrained minimization algorithm is given by the following:

Step 1. Make an engineering estimate $x^{(0)}$ of the solution of NLP' $^{\prime}$.

Step 2. Choose $r_{1}>0$ and $t_{1}>0$ and obtain an unconstrained minimum of

$$
\begin{align*}
V\left(x, r_{1}, t_{1}\right)= & f(x)+S\left(r_{1}\right) I(x) \\
& +P\left(t_{1}\right) E(x), \tag{4-56}
\end{align*}
$$

denoted $x^{(1)}$.
Step 3. Continue with $i=2, \ldots$ by choosing $r_{i}<r_{i-1}$ and $t_{i}>t_{i-1}$ and starting from $x^{(i-i)}$ finding an uncunstrained minimum point of

$$
\begin{align*}
V\left(x, r_{i}, t_{i}\right) & =f(x)+S\left(r_{i}\right) I(x) \\
& +P\left(t_{i}\right) E(x) \tag{4.57}
\end{align*}
$$

AMCP 706-192

Step 4. As $r_{i} \rightarrow 00^{0}$ and $t_{t}+\infty-$ if $\| x^{i)^{x}}$ $x^{(i-1)} \|$ and $\left.\mid f x^{(i)}\right]-f\left[x^{(i-1)}\right] \mid$ are sufficiently small, terminate, the process and take $x^{(i)}$ as the solidi ion of NLP'. Otherwise retumion Step 3.

As might be expected from study of the two methods which were combined to form the mixed method; al convergence result is given by Theorem 4-14.

为 $x^{2}+x$
Theorem 4-14: In the mixed point algorithm let:
$g_{1}(x), \ldots, g_{m}(x)$ be continuous on the nonempty interior of their connstrains set and $f(x), h_{1}(x), \ldots, h_{p}(x)$
b_{e} continuous for all x x x,

$S(r), \quad i(x), P(t)$, and $E(x)$ satisfy conditions No. 1 and No. 2 preceding Eq. 4-26, and No. 1 and No. 2 of Eq. 4-39.

There exist a relative minimum point \bar{x} in the admissible domain \bar{D}^{\prime} of Eqs. $4-54$ and 4.55 combined such that $f(\bar{x})<f(x)$ for all $x \neq \bar{x}$ in some neighborhood of \bar{x}, where \bar{x} is not an isolated point of D^{\prime}.

The sequence $\left\{r_{i}\right\}$ be strictly decreasing to 0 and $\left\{t_{i}\right\}$ be strictly increasing to $+\infty$.

Then for $x^{(0)}$ si"eiciently close to \bar{x}, r_{i} sufficiently small, and t_{i} sufficiently large.

$$
\begin{equation*}
\lim _{i \rightarrow \infty} S\left(r_{i}\right) /\left[x^{(i)}\right]=0 \tag{4-62}
\end{equation*}
$$

AMCP $708: 922$

$$
\begin{equation*}
\lim _{i \rightarrow-} P\left(t_{i}\right) E\left[x^{(i)}\right]=0 \tag{4-63}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} V\left[x^{(i)}, r_{l}, t_{i}\right]=f(\bar{x}) . \tag{464}
\end{equation*}
$$

$$
x_{2}=e^{\left[\frac{r}{2 x_{2}}\right]^{1 / 2}}
$$

Since $g\left(x_{1}, x_{2}\right)<0$ is satisfied at all times, x_{2} >1. Taking the limit as $r \rightarrow 0$, then, $x_{2} \rightarrow 1$.

As $t \rightarrow+\infty$, it is necessary that $x_{1}+x_{2}-1$ $\rightarrow 0$ or Eq. $4-66$ will be violated. Therefore, in the limit $x_{1}=0$.

The minimum point is, therefore, $\left(x_{1}, x_{2}\right)=$ $(0,1)$.

43.4 DETERMINATION OF AN INTERI. OR POINT

In order to begin the interior point or the mixed interior-exterior point algorithm, it is necessary to have a point $x^{(0)}$ which satisfics a certain set of inequalities, i.c., a point interior to a given constraint set. Let this set of inequalities be

$$
\begin{equation*}
g_{1}(x)<0, l=1, \ldots, m . \tag{4.68}
\end{equation*}
$$

If there are other inequalities or equallitios which will be treated by the exterior polilt method, they are ignored for now. is

Let $y^{(0)}$ sbe afirst estimate of an interior pontor the set defined by Eq. 4-68. Denote the inequalities of Eq. $4-68$ which are not strictly satisfied by

$$
\begin{align*}
\frac{\partial V}{\partial x_{1}} & =-1+2 t\left(x_{1}+x_{2}-1\right)=0 \\
\frac{\partial V}{\partial x_{2}} & =1-\frac{r}{x_{2} \ln ^{2} x_{2}} \\
& +2 t\left(x_{1}+x_{2}-1\right)=0 \tag{4-66}
\end{align*}
$$

Subtrasting.En. 467 from Eq. 4-66,

$$
\frac{r}{x_{2} 8 n^{2} \cdot x_{2}}=2
$$

so
4.18
move from α into K ；i．e．，so that no con－ \therefore stãint which was pieviously satisfied is vio－ lated，but constraints which were previously violated are satisfied．This may be accom－ plished by minimizing the unconstrained cost function

$$
U\left(y, r_{j}\right)=\sum_{i \in N} g_{i}(y)+S\left(r_{i}\right) \sum_{l \in K}^{\sum} I\left[g_{i}(v)\right]
$$

with respect to y ，where $S(r)$ and $I(x)$ satisfy the four constraints－No． 1 and No． 2 preceding Eq． $4-26$ ，and No． 1 and No． 2 of Eq．439－and r_{j} is a strictly decreasing．

As soon as $y^{(/)}$is such that $g_{i}\left[y^{(/)}\right]<0$ for some i previously in N ，that constraint f．anc－ tion is switched to K ．In this way，constraint functions from N may get to K but those in K may never fall back to N ．Onc all the constraints in N are switched to K ，the process is stopped and the resulting $y^{(j)}$ is in the interior of the constraint set of Eq．4－68． If the minimum of $U(y$ iritis found If the minimum of U yifing find ainse constraint set defined by Eq． 4 － 68 has no interior．In this case，NLP is infeasible（has no solution）or certain of the constraints of Eq． 4－68 will have to be treated by exterior point methods．

44 STEEPEST DESCENT METHODS FOR

 NLP䜌筑In ehapter 2 a gradient method is pre－ sented for finding the minimum of an uncor－ strained function．Such a direct method has properties that make it attractive and worth developing for the solution of NLP．It is clear， however，that due t ，constraints the gradient method studied casier does not apply directly to NLP．It is the object of this paragraph to develop a method which uses only first
derivative information to make successive improvements in an estimated solution of NLP．A study of the problem NLP＇will be better included ir the next paragraph．

Geometrically，the method presented here will first investigate the direction of most rapid decrease in the cost function $f(x)$ ．As seen in par． $2-4$ ，this is $-\nabla f^{T}(x)$ ．This direction is then projected onto the tangent hyperplane to the boundary of the constraint set at x ．A small move in the resulting direction will then decrease $f(x)$ and will not． cause excessive violation of constrants．This． process is repeated as long as fon may tex ciecreased．

Instead of basing the derivation of the method on a geometric argumer，tile work will all be done analytically．The reason for this is twofold．First，geometric ideas in higher dimensions are not always as clear as those in two and three dimensions．Second， the analytical method used here will be等 tinuous problems where geometric concepts are much more difficult．

Extensive use will be made of matrix calculus notation in this paragraph．

$$
\begin{aligned}
& \text { Recall that for } g(x)=\left[\begin{array}{c}
g_{1}(x) \\
\vdots \\
g_{m}(x)
\end{array}\right]_{m \times n}, x \in R^{n} \\
& \frac{\partial g}{\partial x}=\left[\frac{\partial g_{i}}{\partial x_{j}}\right]_{m \times n}
\end{aligned}
$$

Further，the symbol

$$
\delta x=\left[\begin{array}{l}
\delta x_{1} \\
\vdots \\
\delta x_{n}
\end{array}\right]
$$

$\because \quad$ AMCP 700-192

- will denote a change in x and a δ in frontofa quantity which depends on will denote the first order chonge in that quantity due to the change δx in \bar{x}. For example, for the scalar function $f(x)$,

$$
\dot{\delta}(\dot{x})=\frac{\partial f}{\partial x}, \delta x
$$

Noie that this-first order change is just the first term in a raylor expansion, Ref. 4, page 84 , of $f(x)$, so $\delta f(x)$ is an ascurate approximation of the change in $f(x)$ only for small δx.

The method to be deyeloped here resembles an interior method in the sense of par. 4-3. Therefore, the method of generating an interior point (one which satisfies all the constraints) presented in par. 4.3 may be utilized to obtain a starting point. It is assumed now that his has beeit cune, and sho: an ectinute $\lambda^{(0)}$ of the solution of NLP is available which satisfies

$$
g\left(x^{(0)}\right)<0
$$

44.1 THE DIRECIION OF STEEPEST DESCENT

If the point $x^{(0)}$ is in the interior of the constraint set, then the gradient method of par, 2-4 applies and the direction in which $x^{(0)}$ thould be aliered is

$$
\begin{equation*}
\delta x=-\kappa \frac{\partial f^{f}}{\partial x}\left[x^{(0)}\right] \tag{4-69}
\end{equation*}
$$

$k>0$.
In the remaining case, the point $x^{(0)}$ is on the constraint boundary so $g_{1}\left[x^{(0)}\right]=0$ for some i. For convenience define the set

$$
\begin{equation*}
A(x)=\left\{i \mid g_{1}(x)=0\right\} \tag{4-70}
\end{equation*}
$$

i.e.; the collection of indices of constraint functions whichare equalities at the poin x.

The opject is now to find a dir etion of change $0 x^{2} \theta \hat{x}$ $\delta \dot{x}=1$, such that $\delta \dot{x}=k \delta \dot{x}$ or suificiently small $k>0$ wul decrease $f(x)$ without yolating any constraints. The problem is then to find δx such that

$$
\delta f=\frac{\partial f}{\partial x}\left[x^{(0)}\right] \delta \bar{x}
$$

is minimunes subject to

$$
\begin{aligned}
& \qquad \delta g_{l}\left(x^{(0)}\right)=\frac{\partial_{j_{l}}}{\sqrt{x}}\left[x^{(0)} ; \delta \bar{x}<0\right. \\
& \qquad i \in A\left\{x^{(0)}\right] \\
& \text { जnd } \\
& \qquad \delta \bar{x}^{T} \delta \bar{x}=1
\end{aligned}
$$

For further convenience, define the column vector of constraint functions which are zero as

$$
\vec{g}(x)=\left[\begin{array}{l}
g_{1}(x) \\
\left.\operatorname{teA} A x^{(0)}\right]
\end{array}\right]
$$

In this notation the problem is

$$
\begin{equation*}
\operatorname{minimize} \frac{\partial f}{\partial x}\left[x^{(0)}\right] \delta \bar{x} \tag{4-71}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \frac{\partial \bar{g}}{\partial x}\left\{x^{(0)}\right] \delta \tilde{x}<0 \tag{4-72}\\
& \delta \tilde{x}^{T} \delta \tilde{x}=1 \tag{4-73}
\end{align*}
$$

It is assumed that at points where several $g_{j}(x)=0$, the gradients are linearly indeper-

Asticie 706-192
dent. This is enough to satisfy the fitst-order constraint. qualification (Theorem 44) for the constraint, (Eq. 4-72). Theorem 4-5, therefore, may be applied to obtain the necessary conditions

$$
\begin{equation*}
\frac{\partial f}{\partial x}+\tilde{\lambda}^{r} \frac{\partial \tilde{g}}{\partial x}+2 \lambda_{0} \delta \tilde{x}^{r}=0 \tag{4-74}
\end{equation*}
$$

where the componente, $\tilde{\lambda}_{l} \geqslant 0$, of $\bar{\lambda}$ corre spond to g_{l} with indices in $A\left(x^{(0)}\right]$.

Assume for the time being that $\delta g_{i}=0$ for all $i \in A\left(x^{(0)}\right)$. Thene taking the transpose of Eq. 4-74 and premultiplying by $\partial g \tilde{g} / \partial x$ yields

$$
\frac{\partial g}{\partial x} \frac{\partial f^{T}}{\partial x}+\frac{\partial \bar{g}}{\partial x} \frac{\partial \bar{g}^{T}}{\partial x} \tilde{\lambda}+2 \lambda_{0} \frac{\partial \bar{g}}{\partial x} s \tilde{x}=0
$$

or sirce $\delta \tilde{g}=0$,

$$
\frac{\partial \dot{g}}{\partial x} \frac{\partial f^{\gamma}}{\partial x} \div \frac{\partial g^{g}}{\partial x} \frac{\partial \tilde{g}^{T}}{\partial x} \dot{\lambda}=0
$$

Since the gradients of $g_{i}\left(x^{(0)} ;\right.$ for $t \in A\left[x^{(0)}\right]$ are assumed linearly independent, the coet cient matrix of $\bar{\lambda}$ is nonsingular and

$$
\begin{equation*}
\dot{\lambda}=-\left(\frac{\partial \bar{g}}{\partial x} \frac{\partial \bar{g}^{r}}{i x}\right)^{-1} \frac{\partial \bar{g}}{\partial x} \frac{\partial f^{T}}{\partial x} \tag{4-75}
\end{equation*}
$$

If all components of $\dot{\lambda}$ are non-negative, then the assumption that all $\left.\delta g_{l}=0, i \in A^{\prime} x^{(0)}\right]$ is valid and $\delta \tilde{x}$ which solves the problems of Eqs. 4-71, 4-72, and 4-72, is obtained directly from Eu̧s. 4-74 and 4-75. On the other hand, if $\dot{\lambda}_{i}<0$ for some $\left.i \in A \mid x^{(0)}\right\}$, then this component of g is removed from g. Equivalently, $A\left[x^{(0)}\right]$ is redefined as

$$
\hat{A}\left|x^{(0)}\right|=\left\{i \mid g_{i}\left[x^{(0)}\right]=0 \text { and } \dot{\lambda}_{2}>0\right\}
$$

and $\bar{g}\left(x^{(0)}\right)$ is redefined as
$\hat{g}\left[x^{(0)}\right]=\left[\begin{array}{l}g_{i}\left[x^{(0)}\right] \\ i \in \hat{A}\end{array}\right]$
With this new \hat{g}, Eq. $4-74$ yields

$$
\begin{align*}
& \delta \hat{x}=-\frac{1}{2 \lambda_{0}} \\
& {\left[1-\frac{\partial \hat{g}^{T}}{\partial x}\left(\frac{\partial \hat{g}}{\partial x} \frac{\partial \hat{g}^{T}}{\partial x}\right)^{-1} \frac{\partial \hat{g}}{\partial x}\right]_{\left\{x^{(0)} \mid\right.}} \\
& \frac{\partial f^{T}}{\partial x}\left[x^{(0)}\right] \tag{4-76}
\end{align*}
$$

Note that $\lambda_{\sigma}>0$ is required since if $A\left[x^{(0)}\right]$ is empty, then Eq. $4-76$ must reduce to the negative gradient direction.

Putting

$$
\begin{align*}
P= & \left(1-\frac{\partial \hat{g}^{T}}{\partial x}\left[x^{(0)}\right]\right. \\
& \times\left\{\frac{\partial \hat{g}}{\partial x}\left[x^{(0)}\right] \frac{\partial \hat{\delta}^{T}}{\partial x}\left[x^{(0)}\right]\right\}^{-1} \\
& \left.\times \frac{\partial \hat{g}}{\partial x}\left[x^{(0)}\right]\right) \tag{4-77}
\end{align*}
$$

Eq. 4.76 becomes

$$
\delta \hat{x}=-\frac{1}{2 \lambda_{0}} p \frac{\partial f^{T}}{\partial x}\left[x^{(0)}\right]
$$

Substituting this into Eq. 4-73,

$$
\frac{1}{\left(2 \lambda_{0}\right)^{3}} \frac{\partial f}{\partial x}\left[x^{(0)}\right] p^{T} p \frac{\partial f^{T}}{\partial x^{i}}\left[x^{(0)}\right]=1 .
$$

Soiving for $1 / 2 \lambda_{0}, \delta \hat{x}$ becomes

$$
\begin{align*}
\delta \tilde{x}= & -\left\{\frac{\partial f}{\partial x}\left\{x^{(0)}\right\} P^{T} \rho \frac{\partial f^{T}}{\partial x}\left[x^{(0)}\right\}^{-1 / 2}\right. \\
& \times p \frac{\partial f^{T}}{\partial x}\left\{x^{(0)}\right] . \tag{4-78}
\end{align*}
$$

AMCP ت60192:

Eq. 478 givès a unit vector $\delta \hat{x}$ in the constrained direction of steepest descent at x $=x^{(0)}$. The problem is now one of determining just how big a step shouldibe taken, i.e.,

$$
\begin{equation*}
\delta x=k \delta \hat{x} \tag{4-79}
\end{equation*}
$$

whẹre $k>0$ must be chosen.

Before the problem of step size is treated, however, an algorithm may be stated for determination of the direction of stcepest descent, namely:

Step 1. Using the method of par. 43 , obtain an estimate of the solution of NLP, $x^{(0)}$, which is in the constraint set.

Step 2. Let $j>0$ der:ote the number of the present iteration. Compute $g_{i}\left[x^{(/)}\right], j=1, \ldots, m$, and form the set $A\left[x^{(/)}\right]$. Compute $\partial f / \partial x\left[x^{(j)}\right]$ and $\partial \tilde{g}_{i} / \partial x\left[x^{(/)}\right]$for $i \in A\left[x^{(/)}\right]$.

Step 3. Compute $\bar{\lambda}$ in Eq. 475. For all $\dot{\lambda}_{1}$ < 0 , delete i from $A\left[x^{(0)}\right]$ to form $\hat{A}\left[x^{(0)}\right]$.

Step 4. Compute P in Eq. $4-77$ and δx in Eo. 4-78. If $P=0$, then this is the solution of NLP.

Example 4 -6: Compute the directio of stecpest descent at the point $(2,2)$ for the NLP

$$
\begin{aligned}
& \operatorname{minimize} f\left(x_{1}, x_{2}\right)=\left(x_{2}\right)^{2}-x_{1} \\
& g_{1}\left(x_{1}, \lambda_{2}\right)=x_{1} \quad-x_{2}<0
\end{aligned}
$$

$$
g_{2}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}+2<0
$$

Firsil,

$$
\begin{aligned}
& g_{1}(2,2)=0 \\
& g_{2}(2,2)=-2
\end{aligned}
$$

Therefore, $A\left[x^{(1)}\right]=\{1\}$. As required by Step 2 of the Algorithm

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(2,2)=\{-1,4] \\
& \frac{\partial g_{1}}{\partial x}(2,2)=[1,-1]
\end{aligned}
$$

By Step 3,

$$
\begin{aligned}
\bar{\lambda}= & -\left([1,-1]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)^{-1} \\
& \times\left[1,-\frac{1}{2}\right]\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=\frac{5}{2}>0
\end{aligned}
$$

so $\hat{A}=A$. For Step 4

$$
\begin{aligned}
P & \left.=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{r}
1 \\
-1
\end{array}\right](11,-1]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)^{-1} \\
& \times[1,-1]=\left[\begin{array}{rr}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& u \hat{x}= \\
& \left.(11,-\infty]\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]\left[\begin{array}{r}
-1 \\
4
\end{array}\right]\right)^{-1 / 2} \\
& \times\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=-\frac{\sqrt{2}}{3}\left[\begin{array}{l}
3 / 2 \\
3 / 2
\end{array}\right] .
\end{aligned}
$$

44.2 STEP SIZE DETERP解NATION

There are many techniques presented in the literature for determining the size of step to be :aken in the constrained direction of steepest descent. Three of these techniques are presented here. The first technique applies to a specialized class of problems in which the constraint functions are linear. The second and third methods apply to the general nonlinear problem.

44.2.1 ROSEN'S METHOD FOR LINEAR CONSTRAINTS

If the constraint furctions are linear, then once the direction of steepest descent $\delta \hat{x}$ is found, it may be followed without leaving the constraint boundary until a constraint $g_{1}(x)=$ 0 , for i not in $\hat{A}\left[x^{(j)}\right]$. This algorithm, therefore, can lead to rather long step sizes.

Constraints here are restricted to the torm

$$
G_{i}{ }^{T} x-b_{i}<0, i=1, \ldots, m
$$

where G_{i} is an $n \times 1$ matrix of constants. The step size is to be determined so that k is as small as possible and still

$$
G_{i}^{T}\left[x^{(i)}+k \delta \hat{x}\right]-b_{i}=0
$$

for some $i \& A\left[x^{(f)}\right]$. Only those i need to be considered for which $G_{i}{ }^{T} \delta \hat{x}>0$, since otherwise this constraint can never go from strict inequality to equality. The step size k, therefore, is chosen as

$$
k=\left\{\begin{array}{l}
\min _{i}^{G_{\delta \hat{x}>0}} \\
i \notin \hat{A}\left\{x^{(/)}\right]
\end{array}\right\}\left[\frac{b_{i}-G_{l}^{T} x^{(/)}}{G_{i}^{T} \delta \hat{x}}\right]
$$

The point $x^{(/+1)}$ therefore is given by

$$
x^{(i+1)}=x^{(j)}+k \delta \hat{x}
$$

if $\rangle ; / \partial x\left[x^{(j+1)}\right] \delta \hat{x} \leqslant 0$. The process in the algorithm; for the direction of steepest descent is repeated from Step 2, and a niw step size k is computed as above. If, on the haer hand, $\partial f / \partial x\left[x^{(j+1)}\right] \delta \hat{x}>0$, then a re.ative minimum has been bypassed. To triate this relative minimum, do a ons dir, ensional search in the direction $\delta \hat{x}$ star ms $x^{(j)}$ to obtain $x^{(j+1)}$.

This process may be summ'river indoss, 's Algorithm:

Step 1. Compute

$$
\left.k=\left\{G_{i} \begin{array}{c}
\min \\
\delta \dot{x}=0
\end{array}\right\} \begin{array}{c}
i_{1}-\left(i_{i}^{r} x^{1 /)}\right. \\
r_{i}^{\prime} \delta_{i}^{\prime}
\end{array}\right] .
$$

Step 2. Compur

$$
\frac{\partial f}{\partial x}\left[x^{(n)}+x \hat{x}\right.
$$

If

$$
\frac{\partial f}{\partial x}\left[x^{(i)}: x \delta \dot{x}\right] \delta \dot{x}<0
$$

- 11

$$
x^{(f \cdot \prime)}=x^{(f)}+k \delta \hat{x}
$$

and go to Step 4.
Step 3. If

$$
\begin{aligned}
& \frac{\partial f}{\partial x}\left|x^{(\prime)}+k \delta \dot{x}\right| \delta \dot{x}>0 \\
& \text { then find } \bar{k} \text { so as to minimize }
\end{aligned}
$$

$f\left(x^{(j)}\{x \delta \dot{x} \mid\right.$

44.2 STEP SIZE DETERQ解NATION

There are màny techniques presented in the literature for determining the size of step to be saken in the constrained direction of steepest descent. Three of these techniques

* are presented here. The first technique applies to a specialized class of problems in which the constraint functions are linear. The second and third methods apply to the general nonlinear problem.

44.2.1 ROSEN'S METHOD FOR LINEAR CONSTRAINTS

If the constraint furctions are linear, then once the direction of steepest descent $\delta \hat{x}$ is found, it may be followed without leaving the constraint boundary until a constraint $g_{i}(x)=$ 0 , for i not in $\hat{A}\left[x^{(j)}\right]$. This algorithm, therefore, can lead to rather long step sizes.

Constraints here are restricted to the torm

$$
G_{i}{ }^{T} x-b_{i}<0, i=1, \ldots, m
$$

where G_{i} is an $n \times 1$ matrix of constants. The step size is to be determined so that k is as small as possible and still

$$
G_{i}^{T}\left[x^{(i)}+k \delta \hat{x}\right]-b_{i}=0
$$

for some $i \& A\left[x^{(/)}\right]$. Only those i need to be considered for which $G_{i}{ }^{T} \hat{x}>0$, sinee otherwise this constraint can never go from strict inequality to equality. The step size k, therefore, is chosen as

$$
k=\left\{\begin{array}{l}
G_{i}^{G^{r} \delta \hat{x}>0} \\
i \sharp \hat{A}\left(x^{(/)}\right)
\end{array}\right\}\left[\frac{b_{1}-G_{i}^{T} x^{(/)}}{G_{i}^{T} \delta \hat{x}}\right]
$$

The point $x^{(/+1)}$ therefore is given by

$$
x^{(j+\hat{i})}=x^{(J)}+k \delta \hat{x}
$$

if $\partial_{i} / \partial x\left[x^{(j+1)}\right] \delta \hat{x} \leqslant 0$. The process in the algorithu: for the direction of steepest descent is repeared from Step 2, and a nuw step size k is computed as above. If, on the baer hand, $\partial f / \partial \dot{x}\left[x^{(1+1)}\right] \delta \hat{x}>0$, then a re, 3 ive minimum has been bypassed. To lanate this relative mirimum, do a onedir, nsional search in the direction $\delta \hat{x}$ star ms a: $x^{(j)}$ to obtain $x^{(i+1)}$.

This process may be summixized in lioss.:'s Algorithm:

Step 1. Compute

Step 2. Compur

$$
\begin{aligned}
& \frac{\partial f}{\partial x}\left\{x^{(/)}+i ; \hat{x}\right\} \\
& \text { If } \\
& \frac{\partial f}{\partial x}\left\{x^{(i)}: x \delta \dot{x}\right] \delta \hat{x}<0 \\
& \cdots \\
& x^{(f \cdot)}=x^{(\prime)}+k \delta \dot{x} \\
& \text { and go to Step } 4 .
\end{aligned}
$$

Step 3. If

$$
\begin{aligned}
& \frac{\partial f}{\partial x}\left[x^{(\prime)}+k \delta \dot{x}\right] \delta \dot{x}>0 \\
& \text { Then find } \bar{k} \text { so as to minimize }
\end{aligned}
$$

$$
f\left(x^{(j)}+\therefore \delta \dot{x}\right]
$$

Stcp 4. Compute R in Eq. $4-82$ and δx in Eq. 483.

Step 5. Compute $x^{(0+1)}=x^{(0)}+\delta x$. If any constraints are violated excessively, use the method of par, $4-3$ to get from $x^{(/+1)}$ back into the constraint set.

Step 6. If $\left|f\left[x^{(j+1)}\right]-f\left[x^{(/)}\right]\right|$and $\| x^{(/+1)}$ $-x^{(j)} \|$ are sufficiently small, terminate. Otherwise, return to $\mathrm{Ste}_{\mathfrak{k}}$, 2 (possibly with altered ℓ and W).

44.2.3 STEEPEST DESCENT WITH CON: STRARNT YOLEKANCES

In par. 4-4.2.2 it weas noted that a step may be made so large gs to violat a constraint in excess of an admisibie error. The method of choosing step size presented here will prevent thes difficulty,

Let reasonable tolerances ϵ_{i} be assigned to constrant functions $g_{j}(x)$. The object here is to move in the constrained direction of steepest des int until some constraint function $g_{i}(x)$ violates the tolerance $g_{1}(x)>\epsilon_{i}$, or until a minimum of

$$
f\left[x^{(U)}+k i x\right]
$$

i.caliod

A uniform step size in k may be chosen and step taken, checking

$$
g_{1}\left[x^{(f)}+k \delta x\right]
$$

for each $l \in \hat{A}\left(x^{(/)}\right)$and eich step in k. The nultiplier k is increased monotonically pro-
vided $f\left[x^{(f)}+k \delta x\right]$ is decreasing, and constraints do not exceed the given error tolerances. When either fails to hold, the resulting point is called $x^{(+1)}$.

If the process is stopped because a constraint is violated in excess of its given tolerance, the metnod of par. $4-3$ is used to obtain a new point in the constraint set and the process is repeated until the minimum point is iocated.

This method should be most effective when constraint functions are easily evaluated but derivatives are costly in computer time. The basic idea of the method is to prevent an excessive number of caiculations of the consthined direction of steepest de cent.

4-4.3 A SIEEPEST DESCENT METHOD WITH CONSTRAINT ERROR COMPENSATION

In previous subparagraphs, steepesi descent methods were given which at boundary points generated steps parallel to a constraint boundaty in a direction which decreased the cost function as rapidly as possible. Due to nonlinearity of the const.dint functions, and the finite step size, however, sime constraints will invariably be violated. It is the object in ths: paragraph to present a new method motivated by the article (Ref. 6) which automatically corrects for violation in constraints.

Let $A\left[x^{(0)}\right]=\left\{i \mid g_{i}\left[x^{(/)}\right]>0\right\}$ be the indices of constraint functions which are zero or are violated. As in the preceding development of this paragraph first-order Taylor approximations will be used to approximate functions appearing in NLP. The linearized version of NLP at an approximation to the solution, $x^{(0)}$, is

$$
\begin{align*}
& \text { ANMCP } 70 \mathrm{OB}: 192 \\
& \operatorname{minimize} \delta \underline{\delta}=\frac{\partial f}{\partial x^{(I}}\left[x^{(j)}\right] \delta x \tag{484}
\end{align*}
$$

subject to

$$
\delta \tilde{g}^{\prime}=\frac{\partial \bar{g}}{\partial x}[\dot{x}(l)] \delta x<\Delta \bar{g},
$$

where $\bar{g}=\left[\begin{array}{c}g_{i}\left[x^{(j)}\right] \\ i \in A\end{array}\right]$ and $\Delta \tilde{g}$ is taken as the desired change in \bar{g}, i.e., the total change taken at the designer's discretion. Usually, so long as the constraints are not violated excossively, the full violation may be corrected; i.e.

$$
\begin{equation*}
\Delta \tilde{g}_{i}=--\tilde{g}_{i}\left[x^{(/)}\right], \quad i \in A\left[x^{(1)}\right] \tag{486}
\end{equation*}
$$

In order that step size is not excessive, it is required that

$$
\begin{equation*}
\delta x^{T} \delta x=\ell^{2} \tag{487}
\end{equation*}
$$

where ℓ is small. Assuming Eq. 485 is an equality, necessary conditions for the lincarized problem are obtained by using Theorem 4-5. From

$$
\begin{aligned}
L= & \frac{\partial f}{\partial x} \delta x+\lambda^{T}\left(\frac{\partial \bar{g}}{\partial x} \delta x-\Delta \tilde{g}\right) \\
& +\beta \delta x^{T} \delta x
\end{aligned}
$$

and Thecrem 4-5, it is necessary that $\lambda_{i}>0$, and

$$
\begin{equation*}
\frac{\partial f^{T}}{\partial x}+\frac{\partial \vec{E}^{r}}{\partial x} x+2 \beta \delta r=0 \tag{4-88}
\end{equation*}
$$

and

$$
\lambda_{i}\left(\frac{\partial g_{i}}{\partial x} \delta x-\Delta g_{i}\right)=0, \quad i \in A
$$

This set of equations is nor near in λ and
x Assuming Eq. 485 is an equality, then tha necessary conditions reduce to only Eq. 4-88 and Eq. $4-85$ as an equality. This systom linear arid can be solved. The multipierdcan then be determined and acheck made to see whether all comporients are non-ngerive. If any component is negative, say k, then the assumption that Eq. $4-85$ is an equality is violated and it may be concluded that the k th component of Eq. 485 shouid haye been allowed to be a strict inequality. The index k is then deleted from A.

Premultiplying Eq. $4-88$ by $\partial \bar{g} / \partial x$ and using Eq: 4-85 yields

$$
\frac{\partial \bar{g}}{\partial x} \frac{\partial f^{T}}{\partial x}+\frac{\partial \bar{g}}{\partial x} \frac{\partial \tilde{g}^{T}}{\partial x} \lambda+2 \beta \delta \tilde{g}=0
$$

It is assumed, as usual, that the gradients of ali constraint functions which are aso or violated are linearly independent. Therefore, the coefficient matrix of λ is nonsingular and

$$
\begin{align*}
\lambda= & -\left(\frac{\partial \vec{g}}{\partial x} \frac{\partial \vec{g} T}{\partial x}\right)^{-1} \\
& \times\left[\frac{\partial \ddot{g}}{\partial x} \frac{\partial \tilde{f} T}{\partial x}+2 \beta \Delta \bar{\xi}\right] . \tag{4-89}
\end{align*}
$$

Substituting Eq. $4-89$ into Eq. $4-88$ yielcis

$$
\begin{align*}
\delta x=-\frac{1}{2 \beta} & {\left[I-\frac{\partial \bar{g} T}{\partial x}\left(\frac{\partial \bar{g}}{\partial x} \frac{\partial \bar{g} r}{\partial x}\right)^{-1} \frac{\partial \tilde{g}}{\partial x}\right] \frac{\partial f^{T}}{\partial x} } \\
& +\frac{\partial \tilde{o} T}{\partial x}\left(\frac{\partial \check{c}}{\partial x} \frac{\partial \bar{\delta}^{T}}{\partial x}\right)^{-1} \Delta \tilde{g} \tag{4-90}
\end{align*}
$$

This expression for δx could now be substituted into Eq. $4-87$ to find β. To be more general, howeve., put $1 /(2 \beta)=\gamma>0$ and define

Using this new notation Eq. 4-90 becomes

$$
\begin{equation*}
\delta x=\gamma \delta x^{1}+\delta x^{2} \tag{4-93}
\end{equation*}
$$

This representation of δx has important prop. erties given by Theorem 4-15.

Theorem 4-15: δx^{1} and δx^{2} of Eqs. 4-91 and $4-92$ satisfy-the condtio' s

1. $\delta x^{1^{T}} \delta x^{2}=0$
2. $\frac{\partial \dot{\bar{g}}}{\partial x} \delta x^{2}=\Delta \tilde{g}$
3. $\frac{\partial \tilde{g}}{\partial x} \delta x^{1}=0$
$4 \frac{\partial f}{\partial x} \delta x^{1}=0$
A method of choosing γ still has not b pin given. This parameter is interpreted as a step-size and may be determined by onedimensional search or any other scheme chosen by the designer. In different applications, different methods have proved etfective. No single scheme has been found that seems best. The choice of γ at this time constitutes an art as much as a science.

The use of this method mav now be
summarized in the Steepest-descent Algorithm With Constraint Error Compensition. Step1. Make an engineering estimate of tiit solution of NLP'

Step 2. Let the iteration number be $\bar{\rho} \geqslant 0$ Compute $\varepsilon_{i}\left[x^{(0)}\right]$ and form $A\left[x^{(V)}\right]$ and \bar{g}.

Step 3. Compute $\partial g / \partial x\left[x^{(/)}\right]$and $\partial f / \partial x\left[x^{(f)}\right]$ and choose the desired change $\Delta \tilde{g}$ in g.

Step 4. Compute δx^{1} and δx^{2} in Eqs. 4-91 and 4.92.

Step 5. Choose γ by a suitable scheme. Calculate λ in Eq. 489. If any components λ_{1} are less than zero for $g_{i}\left[x^{(/)}\right]$which are close to zero, remove these components from g and return to Step 3. If all $\lambda_{i}>0$, proceed.

Step 6. Form
$\dot{\omega} x=\gamma \delta x^{1}+\delta x^{2}$
and
$x^{(1+1)}=x^{(1)}+\delta x$.

Step 7. If $\left|f\left(x^{(/+1)}\right]-f\left[x^{(/)}\right]\right|$and $\|\delta x\|$ are sufficiently small, terminate the process. Otherwise return to Step 2.

45 STEEPEST DESCENT SOLUTION OF THE FINITE DIMENSIONAL OPTIMAL DEEIGN PROBLEM

In tisic naragraph a steepest-descent method of solution of the problem OD is developed.

ARCP. 706-192

In many ways, the method of this paragraph is similar to the method of par. 4-4. Crere, however, a distinction is made between design and state variables, and the two types of yariablés are treated quite differently.

The problem to be solved here is, just .s in par. 4:2: Choose $b \in R^{k}$ and $z \in R^{n}$ to muamize

$$
\begin{equation*}
\dot{O D} \tag{4-95}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(z, b)<0 \tag{4.96}
\end{equation*}
$$

where $h(z, b)=\left[h_{1}(z, b), \ldots, h_{n}(z, b)\right]^{T}$, and $\phi(z, b)=\left[\phi_{1}(z, b), \ldots, \phi_{m}(z, b)\right]^{T}$. The state equations, Eq. 4-95, are put into vector form here in order to take advantage of tla compact matrix calculus notation.

The steepest descent algorithm for $O D$ is developed here by first approximating the nonlinear elements of $O D$ by linear expressions in the various variables. The difference betvieen the method presented here and that of par. 4-4 fies in the treatment of the state variable. In a sense, the state variable is a nuisance since it does not really describe the system being designed. The algorithm presented here is obtained by first eliminating the state variable from the linearized problem and then solving an explicit problem for ${ }^{1}$ is optimum improvement in the design varab..

Very much as in par. 4-4, an engineering estimatc uí wo uptiaunit uesign is made. his denoted by $b^{(0)}$. Then the state equations, Eq. 4.95, are solved for the corresponding state $z^{(0)}$. Any method of analysis may be
used to solye:Eq. 495 for 2 . The object now is to determine a change in $b^{(0)}$, derioted δb, such that ${ }^{*}$

will be an "improved" design. The meaning of "improved" will be made clear as the analysis progresses. If the new design variable : $b^{(1)}$ were substituted into Eq. 4-95, this equation could be solved for the corresponding new state variable $z^{(1)}$. Since the matrix $\partial h / \partial z\left[z^{(0)}, b^{(0)}\right]$ is nonsingular, the implicit function theorem, Ref. 4, page 181, guarantees that if $\|\delta b\|$ is small, then $z^{(1)}-z^{(0)}$ will be small. The change in z is denoted δz so that

$$
\begin{equation*}
z^{(1)}=z^{(0)}+\delta z \tag{4-98}
\end{equation*}
$$

45.1 AN APPROXIMATION OF THE

 PROBLEM ODThe basic idea in the approach to $O D$ presented here is to construct an approximation of OD which can be solved to obtain an improvement δb in $b^{(0)}$. The approximate problem is obtaine. ${ }^{\text {b }}$ by making linear approximations to nonimear functions in OD. Linear approximations to the changes in $f(z, b)$. $h(z, b)$, and $\phi_{j}(z, b)$ due to the small changes δb in $b^{(0)}$ and δz in $z^{(0)}$ are, by Taylor's Formula; Ref. 7, pas، x

$$
\begin{align*}
\delta f\left[z^{(0)}, b^{(0)}\right]= & \frac{\partial f}{\partial z}\left[z^{(0)}, b^{(0)}\right] \delta z \\
& +\frac{\partial f}{\partial b}\left[z^{(0)}, b^{(0)}\right] \delta b \tag{4.95}\\
\delta h\left[z^{(0)}, b^{(0)}\right]= & \frac{\partial h}{\partial}\left[厶^{(0)}, b^{(0)}\right] \delta z \\
& +\frac{\partial h}{\partial b}\left[z^{(0)}, b^{(0)}\right] s b \tag{4-100}
\end{align*}
$$

AMiCP 708:192

for ξ small and \bar{w}; positive definite matrix. The matrix wh will be used in particular problems to assign weights to the various components of δb. This is often necessary when the components of b represent different physical quantities that may be of different onders of magnitude. Usually W is diagonal.

To summarize the approximate problem, δb and δz are to be chosen to minimize

$$
\begin{equation*}
\frac{\partial f}{\partial z} \delta z+\frac{\partial f}{\partial b} 3 b \tag{4-110}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
& \frac{\partial h}{\partial z} \delta z+\frac{\partial h}{\partial \dot{\delta}} \delta b=0 \tag{4-111}\\
& \frac{\partial \phi}{\partial z} \delta z+\frac{\partial \phi}{\partial b} \delta b<\Delta \phi \tag{4-112}
\end{align*}
$$

ard

$$
\begin{equation*}
\delta b^{r} W \delta b<\xi^{2} \tag{4-113}
\end{equation*}
$$

45.2 SOLUTION OF THE APPROXIMATE PROBLEM

Necessary conditions of fheorem 4-9 could now be applied directly to the approximate problem, Eqs. $4-110$ through 4-113. If this course of action is followed, however, an explicit inverse of $\partial h / \partial z$ must be computed. Since the dimension n of this matrix is often quite high, this operation would be very costly. Instead of applying necessary conditions immediately, Eq. $4-111$ will he used to eliminate the dependence of the remaining lunctions of the problem on δz. Necessary conditions may ther be easily applied for the determination of δb.

The obvious method of elimanating depen-
dence on δz is to solve Eq. 4-111 for δz as a function of δb. This, however. requires the inversion of the matrix $\partial h / \partial z$. The preceding approach of applying necessary conditions was scuttled for just this reason, so another method of eliminating δz must be four 3ote- that if the ferms ($\partial f / \partial z$) δz ana ($\partial \vec{\phi}_{j}^{j} \partial z$) \hat{z} could be found in terms of δb, then dependence on δz would be eliminated. This is the approach that will be taken here and also in a later chapter on infinite dimensional problems.

Define the column matrix λ^{J} as the solution of

$$
\begin{equation*}
\frac{\partial h^{T}}{\partial z} \lambda^{J}=\frac{\partial f^{T}}{\partial z} \tag{4-114}
\end{equation*}
$$

and the matrix λ^{ϕ} as the solution of

$$
\begin{equation*}
\frac{\partial h^{T}}{\partial z} \lambda^{\delta}=\frac{\partial \phi^{T}}{\partial z} \tag{4.115}
\end{equation*}
$$

Note that λ^{δ} is a matrix whose columns are solutions of

$$
\begin{equation*}
\frac{\partial h^{T}}{\partial z} \lambda^{\phi}=\frac{\partial \phi_{j}^{T}}{\partial z} \tag{4-116}
\end{equation*}
$$

for $j \in A$. Note that Eqs. 4-114 and 4-115 require the repeated solution of equations with the same matrix on the left and different right-hand sides. There are efficient computation codes which can construct all the solutions simultaneously.

To see how these newly defined matrices are helpful, compute the transpose of both sides of Eqs. 4-114 and 4-115 and multiply through on the right by δz to obtain

$$
\lambda^{J^{T}} \frac{\partial h}{\partial z} \delta z=\frac{\partial f}{\partial z} \delta z
$$

and

$$
\begin{equation*}
\lambda^{\delta^{T}} \frac{\partial h}{\partial z} \delta z=\frac{\partial \phi}{\partial z} \delta z . \tag{4-118}
\end{equation*}
$$

Note: that the terms on the right side of these equations are exactly the ones which are to be eliminated from Eqs. 4-110 and 4-11 1 . Further; the term $(\partial h / \partial z) \delta z$ that appears in both left-hand sides can be obtained from Eq. 4.111 as

$$
\frac{\partial h}{\partial z} \delta z=-\frac{\partial h}{\partial b} \delta b .
$$

Using this relation, Eqs. 4-117 and 4-118 become

$$
-\lambda^{J T} \frac{\partial h}{\partial b} \delta b=\frac{\partial f}{\partial z} \delta z
$$

and

$$
-\lambda^{\beta^{T}} \frac{\partial h}{\partial b} \delta b=\frac{\partial \phi}{\partial z} \delta z .
$$

Substituting these relations into Eqs. 4-110 and 4-112, the approximate problem becomes: δb is to be chosen to minimize

$$
\begin{equation*}
Q^{J T} \delta b \tag{4-119}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
& e^{d^{T}} \delta b<\Delta \dot{q} \tag{4-120}\\
& \delta b^{T} W \delta b<\xi^{2} \tag{4-121}
\end{align*}
$$

where

$$
\begin{equation*}
\ell^{J}=\frac{\partial f^{T}}{\partial b}-\frac{\partial h^{T}}{\partial b} \lambda^{J} \tag{4-122}
\end{equation*}
$$

and
$\mathscr{S}^{\beta}=\frac{\partial \psi^{T}}{\partial b} \quad \frac{\partial h^{T}}{\partial b} \lambda^{\delta}$, if A is not empty

$$
\begin{equation*}
\ell^{\Phi}=0, \text { if } A \text { is empty. } \tag{4-123}
\end{equation*}
$$

it should be noted that if the limitation, Eq. $4-i 21$, on the size of $\|\delta b\|$ is not enforced, then the problem, Eqs. 4-119 and 4-120, is just a linear programming problem that may be solved by well-established techniques of linear programming. This technique is similar to that used in Zoutendijk's method of feasible directions (Ref. 8). For a discussion of this method the reader is referred to the literature.

The necessary conditions of heorem 4-9 may now be appliec o this reduced problem. In order to apply the theorem and in later nalnulations, it is required that the matrix $l^{3 T}$ have full row rank; i.c., that the cows - a^{2} (columns of x^{3}) are linearly irdependent. Further, for use of the theorem it is required that the column vector $w \delta \delta$ be linearly independent of the columns of x^{3}. It may be noted that these assumptions require that there can be no more than $k-1$ constraint functions which are zero or positive at any iteration. This is true since the matrix ℓ^{3} has only k rows and since its columns must be iinearly independent of l^{3}, there can be at most $k-1$ remaining linearly independent columns. These assumptions are reasonable from a physical point oi view. If thad rank k then the equation

$$
\ell^{\rrbracket} \delta b=\Delta \Phi
$$

would uniquely determine δb, and there would be ne optraization aroblem.

The constrants, Eqs. 4-120 and 4-121, will be treated differently, so different multipher
notation in Theoremi 4.9 will be used for each. First, define

$$
\tilde{H}=\ell^{J^{T}} \delta b+\dot{\mu}^{T} \ell^{\ell^{\top}} \delta b+\nu \delta b^{T} W \delta \delta .
$$

Theorem $4-9$ requires that

$$
\begin{equation*}
\frac{\partial H}{\partial \delta b}=0=\ell^{\prime}{ }^{T}+\tilde{\mu}^{T} \ell_{\ell^{3}}^{T}+2 \nu \delta b^{T} W(4 \tag{4-124}
\end{equation*}
$$

where $\tilde{\mu}_{1}>0$ and $\nu>0$

$$
\begin{equation*}
\dot{\mu}_{1}\left(Q^{\nu} / \delta b \quad \Delta \phi_{1}\right)=0, t \in A \tag{4-125}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu\left(\delta b^{T} W \delta b \quad \xi^{2}\right)=0 \tag{4-126}
\end{equation*}
$$

At this point, a computational difficulty arises. It is difficult to determine δb from 1 |ls. $4-124,4-125$, and $4-126$ since it is not known which of the cuasiasints. Eqs. 4120 and $4-121$, will be c'jualtities and which will be stret inequalities. The question is, "Which of the inequalites. Eq. $4-120 \mathrm{or}$ Eq. 4 -121, will become struct inequalties" " This can be interpreted eeometrically as a cuestion of leaving the boundary and gourg into the interior of the constrant set defined by Eqs. $4-120$ and $4-121$ it has been the experience with this techmque that once a constramt, say $\phi_{j}(z, b)$, becomes 2 ero, then for several small steps δb it will remain eero. This observation has led to the following computational procedure. Fir' . all constrants. Eqs $4-120$ and $4-121$, will be assumed equalties and δb is determined using Eqs 4-124, 4-120, and 4-121. Then the algebrate sign of the $\dot{\mu}_{1}$ and ν are checked it they are ali non-negative, then this is the desired solution ot the problem II. on the other hand, some $\dot{\mu}$, or v are negative, then the constrants corresponding to these mult. pher are removed trom Eq 4.120 or kq
$4-121$ and the problem is again solved with the reduced number of constraints.

In any method of solution of the approximate problem, no information is gained if $\nu=$ 0 . Therefore, in the following $\nu>0$ will be assumes.

Solving Eq. 4-124 for δb,

$$
\begin{equation*}
\delta b=-\frac{1}{2 \nu} w^{-1}\left(\ell^{J}+\ell^{\delta} \tilde{\mu}\right) \tag{4-127}
\end{equation*}
$$

I: is now assumed (to be checked later) that Eq. $4-120$ is an equality. Substituting for δb from E.f. 4-127 into the equality Eq. 4-120,

$$
\frac{1}{2 \nu} \ell^{j} w^{r-1}\left(\ell^{J}+\ell^{\delta} \bar{\mu}\right)=\Delta \phi .
$$

Rewriting this equation.

$$
\ell^{\delta} T W^{-1} \ell^{\delta} \bar{\mu}=\ldots Q^{\delta} T w^{-1} \ell^{J}-2 \nu \Delta \phi .
$$

Since $\ell^{\rho^{T}}$ is required to have full row rank and W^{-1} is nonsingular, the matrix

$$
M_{\infty}=\left\{\begin{array}{c}
1, \text { if } A \text { is empty } \\
x^{\delta} T H^{\prime-1} \ell^{\delta}, \text { if } t \text { is not empty }
\end{array}\right.
$$

is nonsingular. Therefore,

$$
\begin{equation*}
\bar{\mu}=M_{0}^{-1}\left(\delta^{T} w^{-1} \eta^{J}+2 \nu \Delta \phi\right) . \tag{4-129}
\end{equation*}
$$

Note that in the unconstraned ase when 4 is empty, $\mu=0$, ince $\ell^{d T}=0$ and $\Delta \bar{\phi}=0$.

Subuturng from Eq 4-129 mo E.c. 4-127

$$
\begin{aligned}
& \delta b=\frac{1}{2 \nu} W^{\prime}\left(1 x^{\delta} M_{\operatorname{an}^{\prime} y^{\delta}} W^{\prime}\right) \mathfrak{e}^{J} \\
& \text { 1 } \mathrm{H}^{1} 1 \mathrm{Cl}_{00}^{\prime} 0 \phi \\
& (4.130)
\end{aligned}
$$

This expression for δb could now be substituted into $\delta b^{T} W \delta b=\xi^{2}$ to solve for ν. However, in practice it seems just as realistic to choose $\nu>0$ in an iterative process as to hoose ξ. Once $\nu>0$ has been chosen $\tilde{\mu}$ may be evaluated in Eq. 4-129. If any components are negative, the corresponding elements of ϕ are removed and δb is calculated using the new f matrix.

To aid in interpreting the meaning of terms in Eq. 4-130 for δb, define

$$
\begin{equation*}
\delta b^{1}=w^{-1}\left(i-l^{\Phi} M_{\phi \phi}^{-1} \ell^{\delta^{T}} w^{-1}\right) \ell^{J} \tag{4-131}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta b^{2}=W^{-1} \ell^{\delta} M_{\phi \phi}^{-1} \Delta \phi \tag{4.132}
\end{equation*}
$$

In this notation,

$$
\begin{equation*}
\delta b=-\frac{1}{2 v} \delta b^{1}+\delta b^{2} \tag{4-133}
\end{equation*}
$$

The vector δb^{1} may be interpreted as a constrained gradient with $1 / 2 \nu$ taken as a step size. The matrix which multiplies ℓ^{J} in Eq. 4-131 escentially projects the gradient ℓ^{J} of the cost function onto a tangent plane to the constraint set. The term δb^{2} serves to drive any errors in constraint functions to zero. These interpretations are supported by Theorem 4-16.

Theorem 4-16. The vectors δb^{1} and $\delta \dot{D}^{2}$ of Eqs. $4-131$ and $4-132$ have the following properties:

1. $\delta b^{2} w \delta b^{1}=0$
2. $Q^{\delta^{T}} \delta b^{1}=0$

AMCP 706-102

$$
\text { 3. } \ell^{\phi^{T}} \delta b^{2}=\Delta \phi
$$

4. $-\ell^{J} \delta b^{1}<0$.

An obvious check on convergence is to monitor δb and the associated reduction in f. δf. When small δb occur and essentially no improvement is made in f_{2} the process is terminated. This test, however, leaves a great deal to be desired since the choice of ν can yield very small steps δb and falsely lead the designer to believe that the iterative process is converging.

A much better test is to monitor the constrained gradient δb^{1}. Since in an unconstrained problem the gradient must approach zero at a minimum, one might expect that once $\Delta \Phi=0$, the constrained gradient δb^{1} should approach zero. The real quantity $\left\|\delta b^{1}\right\|$ could then serve as a convergence cicck. Theorem 4-17 makes these ideas more rigorous.

Theorem 4-17: Let $f(z, b), h(z, b)$, and $\phi(z$, $b)$ be continuously differentable functions. If the sequences $\left[b^{(/)}\right]$and $\left[2^{(1)}\right]$ generated by the above algorithm converge to the solution, $\overline{z_{i}} \bar{b}$ of the problem $O D$ and if $\phi=0$ for all sufficiently large j, then it is necessary that δb^{1} approaches zero as j approaches ∞.

4.5.3 STEEPEST DESCENT ALGORITHM

The iterative procedure developed in this paragraph may be summarized as follows:

Step 1. Make an engineering estimate of the optimum design variable, $b^{(0)}$.

Step 2 In the j th Iteration, $j>0$, soive Eq. $4-95$ for $z^{(j)}$ corresponding to $b^{(/)}$.

Siep 3. Form the vector of constraint functions ϕ in Eq. 4-105 and solve Eqs. $4-114$ and +115 for λ^{J} and $\lambda^{\bar{\beta}}$.

Step 4. Compute ℓ^{J} and $\ell^{\$}$ in Eqs. 4-122 and 4-123.

Step 5. Choose $\Delta \phi$ in Eq. 4107.
Step 6. Compute $M_{\phi \phi}$ in Eq. 4-108.
Step 7. Compute δb^{1} and δb^{2} in Eqs. 4-131 and Eq. 4-132.

Sten 8. Choose $\nu>0$ and evaluate $\bar{\mu}$ in Eq. 4-129. If any components of $\bar{\mu}$ are negative, take the corresponding elcments out of ϕ and return to Step 3.

Step 9. Compute

$$
b^{(0+1)}=b^{(/)}-\frac{1}{2 v} \delta b^{1}+\delta b^{2}
$$

Step 10. If $\left|f\left[x^{(i+1)}\right]-f\left[x^{(i)}\right]\right|$ and $\left\|\delta b^{1}\right\|$ are sufficiently small, terminate. Otherwise, return to Step 2.

45.4 USE OF THE COMPUTAT'ONAL AL• GORITHM

The algorithm presented in par. 4-5.3 will certainly not solve all optimization problems. It is presented primarily to guide the designer to the proper equations developed in par. 4.5 while he is solving a problem. A!most surely a complicated real-world optimal design problem will have some feature which is not explicitly contained in the general formulation OD. In order to utilize a steepest-dascent philosophy similar to the one developed uere,
the designer should be familiar with the method of obtaining the given algorithm. In this way, problems with peculiar features often can be treated by altering the genera! algorithun slightly.

There are two steps in the algorithm of par. $4-5.3$ which are not complete. They are Steps 8 and 10. In Step 8, a parameter ν is to be chosen, but no analytical method of choosing it is given. This is the classical difficulty with steepest-descent methods. They give a direction but, unfortunately, they do not allow analytical determination of a step size $1 /(2 \nu)$ in this case).

A simple technique for choosing ν which has worked well in a number of problems is give, here as a candidate scheme. Since it is the δb^{1} component of δb which tends to reduce f, the step size determination will be based on δb^{1}. The basic idea is to choose ν in order to obtain a certain percentage reduction in f. Lei Δf (a negative quantity) be the desired reduction in f for a single iteration (perhaps a 5% to 10% reduction). Since for $\Delta \phi \approx 0$,

$$
\begin{equation*}
\delta f=-2^{J} \frac{1}{2 \nu} \delta b^{1} \tag{4-134}
\end{equation*}
$$

ν is chosen as

$$
\begin{equation*}
v=\cdot \frac{\ell^{J} \delta b^{1}}{2 \Delta f} \tag{4-134}
\end{equation*}
$$

In many problems ν has been chosen according to Eq. $4-134$ on the first iteration and held constant throughout the terative process. In other problems convergence properties were improved it ν is changed dunng the iterative process.

1. A.V. Fiaco and G.Y McCormick, Nomlimear Programming: Sequential Uncomstrained Minimization Techntques, John Wiley \& Sons New York, 1968.
2. J. Abadie, Ed., Nonlinear Frogramming, John-Wiley \& Sons, New York, 1967.
3. D.J. Wilde and C.S. Beightler, Foundations of Optimization, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
4. W. Rudin, Princlples of Mathematical Analysis, McGraw-Hill, New York, 1953.
5. R. Courant, "Variational Methods for the

Solution of Problems of Equilibrium and Vibrations", Bull. Amer. Math. Soc., 49, 1943, pp. 1-23.
6. 1.O. Melts, "Nonlinear Programming Methods for Optimizing Dynamical Systems in Function Space", Automation and Remote Control, No. 1, January 1958, pp. 68-73.
7. C. Goffman, Calculus of Several Variables, Harper and Row, New York, 1965.
8. G. Zoutendijk, Methods of Feasible Directions, Elsevier Publishing Company, Amsterdam, 1960.

$5 \cdot 1$ INTRODUCTION

Throughout this handoook, structural optimization problems are chosen to illustrate the use of the design methods developed. There are two principal reasons for using structural problems for illustration. First, there has been great emphasis on helicopter and man portability of materiel, which places a premium on struciural weight. Illustrative of Army concern with lightweight structures is the theme or the 1970 Army Mechanics Conference, "Lightweight Structures" (Ref. 33).

A second key reason for highiighing structural optimization is its advanced state of development, relative to other areas of the mechanical engineering sciences such as dynamics of machinery and mechanisms. A few examples in these related areas are treated in this handbook, but development of conr putational techniques remains to be done. It is felt that if the reader develops a thorough understanding of structural optimization and computational techniques, he will be in a good position to address problems outside the realm of structures. The fact that the mathematics of structural analysis parallels that of related mechanical disciplines strengthens this fecling.

A cursory review of Army materiel needs convinces one that light weight is a requirement for a majority of weapon systems being Jevelopert by the Army. The high prority placed on air nobility is well as hghtwenght
infantry equipment has presented weapon system designers with a major challenge. In the case of air mobility, minimum equipment weight is a necessary condition for maximum helicopter payload. In infantry applications equipment weight limits the soldier's firepower and mobility.

In seeking lightweight designs, one is tempted to simply use lightweight materials and lower safety factors. It becomos apparent, howeser, that structural weight reduction can significantly degrade system performance. For example, when the weight of an artillery picce is reduced by 30%, dynamic response due to firing the weapon becomes much more severe. In infantry weapons, the requirement of reduced weight has led designers to lighter weight operating mechanisms for individual weapons. In lightweight rifles, for example, bolts are nuch lighter than in previous weapons and hence are more sensitive to shanges in friction due to dust and externa! particles than were the more massive bolts in the M14 and MI Rifles. There are many e eamples, some of which will be discussed later in thus handbook, of instances in which simply reducing weight of subsystems causes problems which did not occur in heaviez designs.

The lightweight objective, then, requires that the developer take on overall system view and consider the interaction between weapon weight and performanee of the weapon system As is true in virtually every design problem in which the limits on technology are approached, the lightweight weapon desig:

In traditional artillery design, the support structure is flexible but has been quite heavy and stiff in the past so that the flexibility of the structure was a higher order effect. Also, heavier carriages reduced the severity of the dynamic responseproblem due to their higher mass. Recent developments, such as the M102, 105 mm Howitzer, have resulted in a weapon that weighs approximately 3200 lb , as compared to the older M101 which weighed 4500 lb . As a result of the reduced weight, problems have arisen in providing a firm support for the artillery piece on soil. More recent design efforts, including the XM164, 105 mm Howitzer, and XM198, 155 mm Howitzer, have resulted in weapons which are considerably lighter than their predecessors. As a result of the reduced stractural weight of the weapon, dynamic response in both of these weapons became critical and had to be treated as a key desig" constraint in development of the recoil mechanism. For a discussion of a particular problem, the reader is referred to the artillery design example of par. 8-5.

Although these are primarily mechanical system design problems, they have arisen due to the lightweight design criterion. For this reason, when one considers lightweight stru tural design he must be willing to fit his structural design problem into a larger s!stem design program and clearly understand the interfaces arising between structural and other system performance characteristics.

5-1.2.4 OTHER WEAPON PROBLEMS

The example problems cited in par. 5-1.2 are meant to illustrate the essenth! features of
some of the more complex lightweight structural designt problems faced intweapon development. They are simplifications of the real problems bur are difficult enough to illustrate the need for research in development of design methods. In view of the current enphasis within the Army on air mobility and lightweight systems, new design methods are required which are capable of solving these and many more lightwoight design problems.

5-1.3 PLAN FOR TECHNIQUE UEVELOP. MENT

The remainder of this chapter will be devoted to formulation and application of a method of structural optimization. As noted at the beginning of par. 5-1, an in-depih treatment of lightweight structural design provides insight into application of the general methods of Chapter 4.

For a comprehensive review of structural optimization through 1967, the reader is referred to Refs. 1 and 2. Several of the major classds of optinal structural design problems are outlined in Ref. 2. Some of the key papers which have appeared in the literature since 196^{7} are listed in Refs. 3 through 18.

5.2 ELEMENTS OF THE ELASTIC STRUC. TURAL DESIGN PROBLEM

A class of optimal stuctural design problems in which the structure must reman elastic is treated in this paragraph. The oljecitive of this, aragraph is to show how the optimization methods of Chapter th can he used to solve realistic optimal design prollems. No attempt is made bere to present a complete theory of optimal structural design that is capable of solving all jroblems

The reader should note that, even for the
class of problems considered here, it is not pos jble to blindly ajply the techniques of Chapter 4: A certair, amount of knowledge of structural aryysis is required before a reasonable statenient of the design problem and a mêthod of solution can be obtained. Even more importarit, the structural designer needs to have a thoroughenowledge of the optimization methods af Chapter 4 and their development. As will, be seen; in some cases it is required that parts of the design problem be interpreted in light of the derivation of the optimization method. In this way the mithod may be adapted for solution of a particular class of próblệis.

5.2.1 THE UPTTMALITY CRITERION

The meaning of optimal or best must be clearly established in each problem of interest. In ordet ' o have a problem which may be solved by th ; previously developed rptimization methods, a real valued measure of the cost of the structure (value of the stzueture) must be chosen: Such measures as dollar cost of the structure, weight of the structure, or dynamic response of the structure may be chosen.
l.oug with the choice of a cost function, the parameters, or dcsign variables, that represent all design alternatives must be chosen. These paraineters will ofter be dimiensions of structural members, area of member cross sections, or locations of joints in tine structure. In keeping with the notation oi the preceding chapter, these design variakles will be denoted as $b_{l}, l=1, \ldots, m$. For convenience of notation, these variables will be put in the vectnr form $b=\left[b_{1}, \quad, b_{m}\right]^{T}$.

Invariably, the behavior of the strusture under load will have to be considered in the design problem. The response of the structure may midude quantuties such as stress, displace-
ment; buckling loads, and natural frequency: The collection of all variables required to describe chis response due to applied load will be denoted by the stato variable vector z. The manner in which z is related to the design variables and applied loads will be discussed in some detail later in this paragraph.

The cost of the structure must now be described as a real valued function of the design and behavior variables. In keeping with t.le preceding notation this function will be denoted as

$$
\begin{equation*}
J=f(z, b, \zeta) \tag{5-1}
\end{equation*}
$$

where ζ is one or more eigenvalues such is buakling load añd natural frequency. Befcre a meaningfúl discuscion of treatment of the strut tural design problerr. may be given, the behavior of the structare due to loads and constraints on that behavior must be analyzed.

5-2.2 STRESS, AND DISPLACEMENT DUE TO STATIC LOADING

It is assumed for now that the structure of interest is either made up of a finite number of distinct interconnected members or that large continuous members in the structure have been approximated by a finite number of elements as in finite element techniques. Further, it is assumed that the entire structure is described by a vector design variable b.

Let stresses at critical points in the structure be denoted z_{1}, \ldots, z_{r} and displacements required for the analysis and design of the structure be denoted z_{r+1}, \ldots, z_{n}. The belavior of the structure due to any given load may then be specified by the vector state variable $z=\left[z_{1}, \ldots, z_{n}\right]^{T}$. Attention will be restricted here and in the remainder of this

Abstract

AM̈CP 706-192. chapter- to structures which obey Hook's law, i.ê., stress and displaceinent are determined by. linear equations. It is clear, however, that the design variables play a large part in the response of the structure to loads. The dependence on the design variăbles enters these linear equations through the coefficients. The equations for z will be denoted

$$
\begin{equation*}
A(b) z=P \tag{5-2}
\end{equation*}
$$

where P is a marrix of loads and

$$
\begin{equation*}
A(b)=\left[a_{i j}(b)\right]_{n \times n} \tag{5-3}
\end{equation*}
$$

is a matrix whose elemënts depend on the design variables.

In this formulation of the problem, x and n may be generalized state and laad variables. Eq. 5-2 may be obtained through direct application of equilibrium and compatibiitity conditions or through application of \because riational criterion for equilibrium. In today's structural analysis technology, Eqs. 5-2 are very likely to be obtained by finite clement methods (Refs. 19, 20). If the structural analysis problem is properly formulated, the matrix $A(b)$ is non: agular and z may be obtained by solving Eq. 5-2. It is assumed that the elements of the matrix $A(b)$ are differentiable wath sexpet to b.

In most real-wiorld structural design problems tre structure is soquired to carry a whole Samily of loads tha: occur at different times in the life of the structure. The treatment here will be limitea to a finite number of loads, denoted $P^{\prime} . i=1, .$, , s. Associated with each load is a state z^{i} determined by Eq. 3.2.

Constraints on behavior of the structure atie to each of the applied loads ${ }^{P}$ asy include bounds on stresses and ulsplacements.

These constraints can generally be written in the form

$$
\begin{equation*}
\phi(z, b, s)<0 \tag{5-4}
\end{equation*}
$$

where $\phi(z, b ; \zeta):=\left[\phi_{1}(z, b, \zeta) ; \ldots, \phi_{t}(2, b, \zeta)\right]^{i}$. The inequality constraints, Eq. $5-4$, are required to be satisfied for each of the states z^{f} due to different applied loads P^{\prime}.

It, is clear that the Eqs. 5-2 and constraints, Eqs. 5-4, fit into the formulation of the finite dimensional optimal design problem of par. 45. 'Treatment of the restrictions imposed by Eq. 5.4, however, must be delayed until similar restrictions due to other behavior constraints are accounted for. The entire problem will be treated in par. 5-3.

5-2.3 NATURAL FREQUENCY AND BUCKLING

As pointed out in par. $5-1$, the desire to obtain lightweight structures has led to resonance problems and, likewise, buckling problems. It is necessary, then, that a meaningful optimal design methodology be capable of enforcing constraints on eigenvalues associated with the system respouse. The sort of construint considered here is

$$
\begin{equation*}
\zeta>\zeta_{0} \tag{5.5}
\end{equation*}
$$

where $\%$ is buckling loas or natural frequency and j_{0} is a lower bound on that eigenvalue. More general restrictions than those of Eq. $5-5$ are inciuded in the general constraint. Eq. 5-4.

Much as in Eq. 5-2, the equations of vibration or buckling may be written in the form

$$
\begin{equation*}
K^{\prime}(b) y=\zeta M(b) y \tag{5-6}
\end{equation*}
$$

where $y=\left[\bar{y}_{1}, \ldots, y_{n}\right]^{x}$ is an eigenveector which plays the role of a state variable,

$$
\begin{equation*}
K(b)=\left\{k_{i j}(b)\right\}_{n \times n} \tag{5-7}
\end{equation*}
$$

is generally symmetric positive definite matrix, and

$$
\begin{equation*}
M(b)=\left[m_{i j}(b)\right]_{n \times n} \tag{5-8}
\end{equation*}
$$

is generally also a symmetric positive definite matrix. Eq. $5-6$ is often obtained through a finite element formulation of the structural analysis problem (Refs. 19, 20).

There are many methods for obtaining the eigenvalue and associated eigenvector in Eq. 5-6. The first method requires that the inverse of $K(b)$ be computed. Multiplying through Eq. 5-6 by $K^{-1}(b)$,

$$
\begin{equation*}
K^{-1}(b) M(b) y=\frac{1}{\zeta} y \tag{5-9}
\end{equation*}
$$

This problem is now in standard form and the largest eigenvalue of $K^{-1}(b) M(b)$ is sought. The power method of obtaining this eigenvalue is quite effective (Ref. 21). It is partirularly effective when a good estimate of the eigenvector is available. In the iterative design technique, a good estimate is generally availaile from the provious iteration. The power method is, therefore, well suited for use in iterative techniques. This method does have the severe disadiantage that $K^{-1}(b)$ must be computed for each new b.

A different method of finding the smallest eigenvalue and associated eigenvector of Eq. 5.6 without computing $K^{-1}(b)$ is based on the Rayleigh quotient as discussed in par. 2-8 and Ref. 23. The smallest eigenvalue of Eq. 5.6 is obtained by choosing a normalized vector y which minimizes the quotient $y^{\top} K(b) y /\left\{y^{T} M(b) y \mid\right.$. The minimum value
of this quotient is the smallest eigenvalus. A . direct method: of minimizing, the Rayleigh quotient is discussed in par. 2-8.

5-2.4 METHOD OF SOLUTION

In the preceding formulation of the optimal design probiem, the cost functions and constraints asseciated with stress and displacement can be put into the format of the problem treated in par. 4-5. The constraints associated with natural frequency and buckling, however, are not of exactly the same form. One difficulty is that the coefficient matrix for the eigenvector $y, K(b)-\zeta M(b)$, must be singular at the solution. This clearly contradicts the assumption in par. 45 that the state equations uniquely determine the state variable.

This situation is a direct result of Murphy's law "if anything can go wrong it will". Actually, it is not realistic to expect that a mathematical formulation of the kiad presanted in par. $4-5$ should contain all realworld design problems. Already, an important problem has been encounter d which requires an understanding of $:$.evelopment of par. $4-5$ in order to include the new problem in the steepest-descent algorithm. The eigenvalue problem, fortunately, can we ireated very nicely by the steepest-descent technique. Developmert of the method will be done in par. 5-3.

5.3 STEEPEST DESCENT PROGRAMMING FOR OPTIMAL STRUCTURAL DE. SIGN

In order to obtain a steepest-descent algorithm for the design problem with constraints on ézenvalues, it is necessary to go back into the derivation of the algorithm of par. 4-5. The major effort requared here will

AMCP 706:192

be the linearization of the structural design--problemyóobtajan appoximatepoblem"of the kind described by EqS: 4119 through 4121 .

ક઼-3.1 LINEARZIZED COST AND CONSTRAINT FUNCTIONS

Since the cost and constraint functions depend on z; b, and 5 ; the first order perturbation in these functions due to small chunges $\delta z, \delta b$, and $\delta \xi$ in z, b, and ξ is

$$
\begin{equation*}
\delta f=\frac{\delta f}{\partial z} \delta z+\frac{\partial f}{\partial b} \delta b+\frac{\partial f}{\partial b} \delta \xi \tag{5-10}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \tilde{\phi}=\frac{\partial \bar{\Phi}}{\partial z} \delta z+\frac{\partial \bar{\phi}}{\partial b} \delta b+\frac{\partial \bar{\phi}}{\partial \zeta} \delta \zeta, \tag{5-11}
\end{equation*}
$$

The problem of writing the perturbed cost and constraint functions explicitly in terms of δb now reduces to obtaining explicit expressions for the terms involving δz and $\delta \zeta$.

From Eqs. 4-117 and 4-118, and the perturbed state equation we obtain, just as Eq. 4-119,

$$
\begin{equation*}
\frac{\partial f}{\partial z} \delta z=-\lambda^{J^{T}} \frac{\partial}{\partial b}[A(b) z] \delta b \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \bar{\phi}}{\partial z} \delta z=-\lambda \bar{\phi} \frac{\partial}{\partial \dot{L}}[A(b) z] \delta b \tag{0-13}
\end{equation*}
$$

where λ^{J} and λ^{j} are determined by

$$
\begin{equation*}
A \lambda^{J}=\frac{\partial f^{T}}{\partial z} \tag{5-14}
\end{equation*}
$$

and
necessary to solve the adjoint eigenvalue problem.

$$
\begin{equation*}
K^{T}(b) \bar{y}=\zeta M^{T}(b) \bar{y} \tag{5-18}
\end{equation*}
$$

that has the same eigenvalue ζ as Eq. $5-16$ but a different eigenvector \bar{y}. Rearranging and premultiplying by \vec{y}^{T} this is

$$
\begin{aligned}
& \bar{y}^{T}[K(b)-\zeta M(b)] \delta y+\bar{y}^{T} \frac{\partial}{\partial b}[K(b) y] \delta b \\
& -\bar{y}^{T} \zeta \frac{\partial}{\partial b}[M(b) y] \delta b \\
& =\bar{y}^{T} \delta \zeta M(b) y \\
& \text { Since the first term is a scalar, }
\end{aligned}
$$

$$
\begin{aligned}
\bar{y}^{T} i K(b) & -\zeta M(b)] \delta y=\delta y^{T}\left[K^{T}(b)\right. \\
& \left.-\zeta M^{T}(b)\right] \bar{y}
\end{aligned}
$$

Since \bar{y} is an eigenvector of Eq. 5-18,

$$
\left[K^{T}(b)-\zeta M^{T}(b)\right] \bar{y}=0
$$

and tixis equation becomes

$$
\begin{aligned}
\left\{\bar{y}^{T} \frac{\partial}{\partial b}[K(b) y]\right. & \left.-\zeta \bar{y}^{T} \frac{\partial}{\partial b}[M(b) y]\right\} \delta b \\
& =\delta \zeta \bar{y}^{T} M(b) y .
\end{aligned}
$$

Assuming $\bar{y}^{T} M(b) y \neq 0$ which will generally be the case,

$$
\begin{aligned}
\delta \zeta= & \left\{\bar{y}^{T} \frac{\partial}{\partial b} ; \mathcal{N}(b) y\right] \\
& \left.-\zeta \bar{y}^{r} \frac{\partial}{\partial b}[M(b) y]\right\} \delta b /\left[\bar{y}^{T} M(b) y\right]
\end{aligned}
$$

Derivation of the pertarbation formula, Eq. $5-19$, has been strictly formal. The assump-

AMCP 706-192
tion that Eq. 5-17 holds is highly questionable from an operator theóretic point of view. Under reasonable assumptions on the finite dimensiona! cigenvalue problem treated hére however, Eq. $5-19$ is shown to hold (Ref. 23); i.e., even though the justification giyen here is not mathematically rigorous, the result, Eq. $5-19$, holds for a large class of problems,

Defining

$$
\begin{align*}
\ell^{J}= & \frac{\partial f^{T}}{\partial b}-\left\{\frac{\partial}{\partial b}[A(b) z]\right\}^{T} \lambda^{J} \\
& +\left\{\frac{\partial f}{\partial \zeta} /\left[\bar{y}^{T} M(b) y\right]\right\} \\
\times & \left(\left\{\frac{\partial}{\partial b}[K(b) y]\right\}^{T} \bar{y}\right. \\
& \left.-\zeta\left\{\frac{3}{\partial b}[M(b) y]\right\}^{T} \bar{y}\right) \tag{5-20}
\end{align*}
$$

and

$$
\ell^{\bar{\delta}}=\left\{\begin{array}{l}
\frac{\partial \phi^{T}}{\partial b}-\left\{\frac{\partial}{\partial b}\lfloor A(b) z]\right\}^{r} \lambda^{\beta^{\top}} \tag{5-21}\\
+\left(\left\{\frac{\partial}{\partial b}[K(b) y]\right\}^{T} \bar{y}\right. \\
\left.-\zeta\left\{\frac{\partial}{\partial b}[M(b) y]\right\}^{T} \bar{y}\right) \\
\times \frac{\partial \phi^{T}}{\partial b} /\left[\bar{y} T_{M(b) y]}\right. \\
\text { or } \\
0, \text { if } \phi \text { is ealipty. }
\end{array}\right.
$$

Eqs. 5-10 and 5-11 become

$$
\begin{equation*}
\delta J=\bar{\chi}^{j} T \bar{\delta} \tag{5-22}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \phi=\ell^{3} T \quad \delta b . \tag{5.23}
\end{equation*}
$$

AMCP 706-192

The linearized problem is now to minimize $\delta \dot{J}$, Eq. $5-22$, subject to constraints

$$
\ell^{5} \delta b<\Delta \phi
$$

where $\Delta \bar{\phi}$ is the desired correction in constraint error and

$$
\delta b^{T} W \delta b<\xi^{2}
$$

where W is positive definite and ξ is small. This is precisely the same problem in par. 4-5, Eqs. 4-119 through 4-121, so the theoretical results and steepesi-descent algorithm of that paragaph apply with proper interpretation.

5-3.2 STEEPEST DESCENT ALGORITHM FOR OPTIMAL STRUCTURAL DE. SIGN

Step 1. Make an engincering estimate of the optimum design variable $b^{(0)}$.

Step 2. For $f=0,1, \ldots$, solve Eq. $5-2$ for $z^{(j)}$, Ec. $5-6$ for $y^{()}$and $\zeta^{(j)}$, and Eq. $5-9$ for \bar{y} (if $k(b)$ or $M(b)$ is not symmetric) with $b=b^{(\prime)}$.

Step 3. Form ϕ as in Eq. 4-105. Solve Eq3. 5-14 and j-15 for λ^{J} and λ^{\jmath}.

Step 4. Compute ℓ^{J} and \mathfrak{R}^{3} in Eqs. 5-20 and 5-21.

Step 5. Choose $\Delta \phi$ as the desired reduction in corstraint error.

Spe Cone is

$$
M_{\infty}=\left\{\begin{array}{l}
1,1,5^{5} \text { is empty } \\
\ell^{3} T W^{-1} p^{-i}, \text { alsewhere }
\end{array}\right.
$$

Step \%. Choose $\nu>(1 .$. e stc.te $\mu=$
$-M_{\phi \phi}^{-1}\left(\varphi^{\beta} T W^{1} \ell^{J}+2 \nu \Delta \phi\right)$. If any component of μ is negative, remove the corresponding row from $\dot{\phi}$ and return to Step 3.

Step 8. Compute

$$
\delta b^{1}=F^{-1}\left(I-\ell^{\bar{\Phi}} M_{\phi \phi}^{1} \ell^{\bar{j}} W^{T}\right) \ell^{J}
$$

and
$\delta b^{2}=W^{-1} \varphi^{\Phi} M_{\phi \phi}^{-1} \Delta \phi$
and form
$\delta b=-\frac{1}{2 v} \delta b^{1}+\delta b^{2}$.

Step 9. Compute

$$
b^{((+1)}=b^{(i)}+\delta b .
$$

Step 10. If ail constraints are satisfied and δb^{1} is sufficientiy small, terminate. Otherwise, return to Step 2 and continue the process.

All the properties of δb^{1} and δb^{2} derived ir par. 4-5.2 hold in th: case. Further, the discussion of that par graph regarding such things as choosing ν also hold. The reader should refer to that paragraph for detailed discussions.

5.3.3 COMPUTATICNAL CONSIDERATIONS

Several comments on the computational art used in solution of these problems are in order. First. if a feasible design was chosen initialis, large steps could be taken until one or more constrants were violated, at which time the step sue was reduced. Second, it was noted that as the optımum was approached,
oscillation occurred. By monitoring the dot product, $\varepsilon b^{(/)^{T}}-\delta b^{(-1)}$, oscillations were sensed when negative values of the dot product occurred. Thus, step size, $1 /(2 \nu)$, was divided by two when negative values of the doi product occurred on twn uaccessive iterations. Finally, the most effective method of adjusting step size was to monitor successive reductions in cost function after feasibility had nccurred. Ince insignificant reductions occurred, the step size was reduced to obtain finer convergence.

The Power method used to compute the smallest eigenvalue periorms quite well. At every iteration, the starting value for the eigenvector is taken from the previcus iteration which manifested a very rapid rate of ronvergence. An accuracy of 0.1% in eac cormponent of the eigenvector was used to compute the new eigenvector. The stiffness matrix for the structure was inverted by the Gauss-Jordan elimination procedure.

Another comment that is appropriate here concerns the sign check on the Lagrange multiplier vector μ, called for in Step 7 of the computational algorithm (par. 5-3.2). The algebraic sign of each component of the Langrange multiple vector μ was checked at each iteration. If some of the components were negative, then the matrix ℓ^{3} and the vector $\Delta \phi$ were adjusted accordingly. This procedure is particularly useful whenever there were redundant constraint violations. In some cases, the number of constraints violated is more than the number of design variables of the problem, yielding a singular matrix coefficient of μ. In such \boldsymbol{r}° es numerical noise yielded a solution such that some of the components of the vector μ were always negative, indicating that the corresponding constraints would be strictly satisfied in the next iteration. In numerical examples, the
number of constraints with positive components of μ was always less than or equal to the number of design variables of the problem. This procedure of adjusting the constraint set has worked very well and has minimized the possibility of divergence of the algorithm.

The method piesented is reiatively automatic in the sense that, for the computer program developed, the input data given is the only pertinent design information required for solution of the problem. All the necessary matrices and their derivatives are automatically generated in the computer. Any person with a reasonable knowledge of FORTRAN language should be able to handle the programming without any difficulty. The method is developed to meet simultaneously displacement, strength, and frequency requirements on the structure. The technique, therefore, can be made user oriented.

5-4 OPTIMIZATION OF SPECIAL PLIRPOSE STRUCTURES

Several special purpose stuctural optimization problems are solved in this paragraph on an ad-hoc basis to illustrate the method of par. 5-3. Subsequent paragraphs will treat large scale problems in a more unified manner.

5-4.1 A MINIMUM WEIGHT COLUMN

A column is to be constructed by making its cross section piecewise uniform dis shown in Fig. 5-1. The objective of the design problem is to choose the element areas so that the colunin will support a vertical toad P_{0} without buckling or yielding under compressive load. For the purpose of the present problem the geometric shape of each column element is tixed and symmetric about two

AMCP 706-192

orthogonal axes so that the cross-sectional area b_{i} of the i th element completely specifics the element. With this assumption, if α is the second moment of the cross section of unit area, then

$$
\begin{equation*}
I_{i}=\alpha \cdot b_{i}^{?} \tag{5-24}
\end{equation*}
$$

In this problem, weight of the column is to be minimized so that the cost function is

$$
\begin{equation*}
J=\gamma \sum_{i=1}^{k} b_{i} L_{l} \tag{5-25}
\end{equation*}
$$

where γ is material density and L_{1} is the length of the i h element of the column.

There are two basic constraints that must be satisfied in this desig: problem. Finst, to insure that the buckling load P is not less than th opplied load P_{0}, it is reauuired that

$$
\begin{equation*}
\phi_{k+1} \equiv P_{0}-P<0 \tag{5-26}
\end{equation*}
$$

Second, in order to ansure that the column material does not yield under the applied load P_{0}, it is necessary that

$$
\begin{gather*}
\phi_{i} \equiv\left(P_{0} / b_{i}\right)-\sigma_{\max }<0, \tag{5-27}\\
1=1, \ldots, k
\end{gather*}
$$

$$
D^{\prime}(b)=2\left[\begin{array}{cccc}
\frac{3}{5 L_{i}} & -\frac{1}{20} & -\frac{3}{5 L_{i}} & -\frac{1}{20} \tag{5-30}\\
-\frac{1}{20} & \frac{L_{i}}{15} & \frac{1}{20} & -\frac{L_{i}}{60} \\
-\frac{3}{5 L_{i}} & \frac{1}{20} & \frac{3}{5 i_{i}} & \frac{1}{20} \\
-\frac{1}{20} & -\frac{L_{i}}{60} & \frac{1}{20} & \frac{L_{i}}{15}
\end{array}\right]
$$

Summing the total potential energies of all the elements from Eq. 5-28 and defining a new variable

$$
\begin{aligned}
y & =\left[y_{1}, y_{2}, \ldots, y_{2 k}\right]^{T} \\
& =\left[u_{1}^{2}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, \ldots, u^{k}, u^{k}\right]^{T}
\end{aligned}
$$

the total potential energy $P E$ of the column may be written

$$
P E=\frac{1}{2} y^{\tau} K(b) y-P \frac{1}{2} y^{\tau} D(b) y
$$

where $K(b)$ and $D(b)$ are made up of elements of $K^{\prime}(b)$ and $D^{\prime}(b)$ and are symmetric. App!ying the theorem of minimum total potential energy given in Appendix B, the governing equations of buckling are

$$
\begin{equation*}
K(b) y=P D(b) y \tag{5-31}
\end{equation*}
$$

Eq. $5-31$ is now in the form of Eq. $5-6$, with proper interpretation of notation.

In order to implement the computational aigorithm of par. 5-3, the following vectors are required:

$$
\begin{equation*}
\ell^{\prime}=\frac{\partial J}{\partial b}=\left|\gamma L_{1}, \gamma L_{2}, \ldots . \gamma i_{k}\right| \tag{5-32}
\end{equation*}
$$

$$
\begin{align*}
\ell^{\phi} i^{T} & =\frac{\partial \phi_{i}}{\partial b}=\left[0, \ldots, 0,-P_{0} / b_{l}^{2}, 0, \ldots, 0\right] \\
\quad i & =1, \ldots, k \tag{5-33}
\end{align*}
$$

since ϕ_{i} does r.ut depend on $P, i=1, \ldots, k$ and

$$
e^{\phi} k+1=\left\{\begin{array}{l}
-\left(\left\{\frac{\partial}{\partial b}[K(b) y]\right\}^{T} y\right. \\
\left.-P\left\{\frac{\partial}{\partial b}[D(b) y]\right\}^{T} y\right) /\left(y^{T} D y\right) \\
\text { if } \phi_{k+1}>0 \\
{[0], \text { if } \phi_{k+1}<0}
\end{array}\right.
$$

The computations required in Eq. 5-34 are messy but they can be programmed for automatic computation.

All expressions required for direct application of the steepest descent algorithm of par. $5-3$ are now available. Numerical results and profiles of optimum columns are shown in Tables 5-1 and 5-2, and Fig. 5-3. Numerical data for the example problems are $E=3.0 \times$ $10^{7} \mathrm{psi}, \alpha=0.079577, \sigma_{\max }=20,000 \mathrm{psi}$, and $L=10.0 \mathrm{in}$. Computation in each case required approximately 0.1 sec per iteration

TABLE 5.1 COMPARISON OF UNIFORM AND OLTIMAL COLUMNS

P. lb	Volume of Optimsl Column, in. ${ }^{3}$	Volume of Unifor::* Column, In 3	Material Savings, \%
500	0.806	0.923	12.7
1000	1.143	1.300	12.1
1500	1.411	1.600	11.8
2000	1.640	1.840	10.9
4000	2.412	2.600	7.2

[^0]ARACP 7C6-192

TABLE 5-2
CROSSSECTIONAL AREAS OF OPTIMUM COLUMNS

Eloment No. 1	$P=500 \mathrm{lb}$	$P=1000 \mathrm{lb}$	$F=1500 \mathrm{lb}$	$P=2000 \mathrm{tb}$	$\mathrm{P}=4000 \mathrm{lb}$
1	- 0.1070	0.1499	0.1833	0.2106	0.2947
2	-0.1055	0.1480	0.1809	0.2076	0.2875
3	0.1035	0.1442	0.1763	0.2023	0.2789
4	0,:000	0.1383	0.1691	0.1942	0.2683
5	0.0960	-0.1303	0.1593	0.1831	0.2505
6	0.0831	0.1198	0.1464	0.1683	0.2302
7	0.0738	0.1064	0.1299	0.1493	0.2020
8	0.0623	0.0892	0:1088	0.1250	0.2000
9	0.0477	0.0668	0.0812	0.1000	0.2000
10	0.0267	0.0500	0.0750	0.1000	0.2000

$\mathrm{P}=2000$

$P=4000$

$P=6974$
Figure 5.3. Profiles of Optimal Columns
together uniform sections of beams as shown in Fig. 5-4. The objective is to choose the sections so that the beam is as light in weight as possible and still satisfies constraints on strength and natural frequency. Due to lly namic inputs to the beam, it is required that the natural frequency of the beam be above a given limit ω_{0} to prevent oscillation problems.

As in the preceding column design problem, the cross-sectional geometry is chosen, but all dimensions of the cross section may be varied in the same proportio:i. Thus, if b_{i} denotes the area of the i th section, then the second moment of the cross-sectional area is

$$
\begin{equation*}
t_{l}=\alpha b_{l}^{2} \tag{5-35}
\end{equation*}
$$

where α is a constant of proportionality depending on the geometry of the cross section. The problem at hand is to minimize
and 15 iterations to converge on an IBM 360-65.

5-4.2 A MINIMUM WEIGHT VIBRATING BEAM

A beam is to be designed by piecin.g

Figure 5-4. Stepped Beam
weight, so the cost function is

$$
\begin{equation*}
J=\dot{\rho} \sum_{i=1}^{k} b_{i} L_{i} \tag{5-36}
\end{equation*}
$$

where $\boldsymbol{\rho}$ is material density and L_{l} :is the length of the ith section.

As a strength constraint, it is required that

$$
\phi_{i}=b_{0}-b_{i}<0, i=1_{i} \ldots, k
$$

where $b_{0}>0$ is chosen so that the beain wot support a lateral load. The conistraint on natural frequency can be written as

$$
\begin{equation*}
f_{k+1}=\omega_{0}-\omega<0 . \tag{5-38}
\end{equation*}
$$

By neglecting compression of the beani, deformation of a typical element is slown in Fig. 5-5. By Appendix B, the kinetic energy

Figure 5-5. Typical Eleme it
of an element is $\dot{u}^{I} M^{i}(b) \dot{u}^{\prime} / 2$, where, from Eq. B-6
$M^{\prime}(b)=\frac{\rho b_{i} L_{i}}{420}\left[\begin{array}{rrrr}156 & -22 L_{i} & 54 & 13 L_{i} \\ -22 L_{i} & 4 L_{i}^{2}-13 L_{i} & -3 L_{i}^{2} \\ 54 & -13 L_{i} & 156 & 22 L_{i} \\ 13 L_{i}-3 L_{i}^{2} & 22 L_{i} & 4 L_{i}^{2}\end{array}\right]$.

Likewise, the potential erergy of the ith element is $u^{I T} K^{\prime}(b) i^{\prime} / 2$, where, from Eq. B- 4
$K^{4}(\dot{b})=\frac{E_{i}}{L_{t}}\left[\begin{array}{cccc}12 I_{l} & -6 I_{l} L_{l} & -12 I_{l} & -6 I_{l} L_{l} \\ -6 I_{l} L_{l} & 4 I_{l} L_{l} & 6 I_{l} L_{l} & 2 I_{l} L_{l}^{2} \\ -12 I_{l} & 6 I_{i} L_{l} & 12 I_{l} & 6 I_{l} L_{l} \\ -6 I_{l} L_{l} & 2 I_{l} L_{l}^{2} & 6 I_{i} L_{l} & 4 I_{l} L_{l}^{2}\end{array}\right]$.

Forming a single vector y that contains all displacements and rotations for the beam; the total kinetic and potential energies are $j^{T} M(b) y / 2$ and $y^{T} K(b) y / 2$, respectively. Lagrange's equations, Eq. B-i 7 , are then

$$
\begin{equation*}
M(b) \ddot{y}(t)+K(b) y(t)=0 \tag{5-4!}
\end{equation*}
$$

For harmonic motion of the structure, $\nu(t)=$ $y \sin \omega t$, where y is just a constant vector, t is time, and ω is netural frequency. Substituting into Eq. $5-41$ and defining $\zeta=\omega^{2}$, the eigenvalue equation is

$$
\begin{equation*}
K(b) y=\zeta M(b) y \tag{5-42}
\end{equation*}
$$

The problem of minimizing J of Eq. 5-36, subject to the constraints of Eqs. 5-37 and $5-38$, and with state Eq. $5-42$, is in the form of the general proolem of par. 5-3. The steepest-descent computational algorithm of that paragraph can be applied diectly to this problem.

As a numerical example, the beam problem was solved with the data $E=3 \times 10^{7} \mathrm{psi}, L=$ $10 \mathrm{in} ., \alpha=1.0$. and $\rho=0.00208 \mathrm{lb} \cdot \mathrm{sec}^{2} / \mathrm{in}^{3}$. The computational algorithm required about 0.6 sec per iteration on an IBM $360-65$ system and approximately 15 iterations to converge. Results for a range of natural frequencies are given in Table $5 \cdot 3$ and the profile of an optimum beam is shown in Fig. 5-6.

table b-3 COMPARISON OF OPTMMUM BEAMS

Frequericy Pad/sec	Volum of Uniform Bom In^{3}	Optimum Votuíne, $i n^{3}$	Material Sxvings, \%
3600	0.935	0.897	4.06
4000	1.155	1.062	8.05
4400	1.397	1.269	9.74
4800	1.663	1.481	10.94
5200	1.951	1.727	11:48
5600°	2.263	1.993	11.93
6000	2.598	2.283	12.12
10000	7.217	6.330	12.29

*Uniform beam oi lowest volume having required natural frequency.

Figure 5-6. Profile of Optimum Beam

5.4.3 A MINIMUM WEIGHT PORTAL FRAME WITH A NATURAL FRE. QUENCY CONSTRAINT

A purtal frame as shown in Fig. 5.7 is to be proportioned so that it weighs as little as possible and has its fundamertal frequency at least as large as a specified frequency ω_{0}. Each member of the planar frame is formed from several uriform sections whose areas are to be determined as design variables. As in the preceding problems, the cross-sectional geomstry is taken as fixed and all dimensions of cross sections varied proportionally. The second moment of the cross-sectional area about a centroidal axis is $t_{i}=\alpha b_{i}^{2}$ where b_{i} is the cross-sectional area of the i th element.

Neglecting strain energy due to axial deformation of the horizontal member, the ele-

Figure 5.7. Portal Frame
ment stiffness matrix feom Appendix B is
$K\left(b_{i}\right)=\frac{E a b_{i}^{2}}{L_{i}^{3}}\left[\begin{array}{cccc}12 & -6 L_{i} & -12 & -6 L_{i} \\ -6 L_{i} & 4 L_{i}^{2} & 6 L_{i} & 2 L_{i}^{2} \\ -12 & 6 L_{i} & 12 & 6 L_{i} \\ -6 L_{i} & 2 L_{i}^{2} & 6 L_{i} & 4 L_{i}^{2}\end{array}\right]$
where L_{1} is the length of the i th member and the element deformation v riables are shown in Fig. 5-8. The potential energy $P E$ of the i th clement is

Figure 5-8. Typical Eiements

$$
\begin{equation*}
P E_{i}=\frac{j}{2} u^{\prime} K\left(b_{i}\right) u \tag{5-44}
\end{equation*}
$$

$$
\text { ẅhere } u^{\prime} \fallingdotseq\left[u_{1}, u_{2}, u_{3}, u_{4}\right]^{T}
$$

Likewise, from Appendix B the kinetic energy $K E$ of the typical element is

$$
K E_{i}=\frac{1}{2} \ddot{u}^{r} M_{M}\left(\hat{b}_{f}\right)^{i}
$$

whère \dot{u} dènotes time derivative of u and

$$
M\left(b_{i}\right)=\frac{\rho b_{i} L_{i}}{420}\left[\begin{array}{rrrr}
156 & -22 L_{i} & 54 & 13 L_{i} \tag{5-45}\\
-22 L_{i} & 4 L_{i}^{2} & -13 L_{i} & -3 L_{i}^{2} \\
54 & -13 L_{i} & 156 & 22 L_{i} \\
13 L_{i} & -3 L_{i}^{2} & 22 L_{i} & 4 L_{i}^{2}
\end{array}\right]
$$

Taking into acount the lateral rigid body motion of Member 2, the total kinetic energy os the structure is

$$
\begin{equation*}
K E=\sum_{l} \frac{1}{2} \dot{u}^{i} T_{M\left(b_{l}\right) \dot{u}^{l} \div \frac{1}{2} \pi \dot{u}_{A}^{2}} \tag{5-46}
\end{equation*}
$$

where \bar{M} is the mass of Member 2 and \dot{u}_{A} is the horizontal velocity of point A.

Requiring harmonic motion with frequency ω, the displacement vector $y(t)$ made up of all displacements is

$$
y(t)=y \sin \omega t
$$

where y is a constant vector. Applying Lagrange's equations and eliminating time dependence yields
$K(b) y=5 M(b) y$
(5-47)
where y is the vector of ail displacements and rotation, and $\zeta=\omega^{2}$ The matrices $K(b)$ and $M(b)$ are formed from element stiffness and mass matrices as outined in Appendix B.

Eq: 5-47 is in exactiy the form of Eq. 5-16 and the matrix for this problem is simply, weight of thè structure which is:

$$
\begin{equation*}
j^{\prime}=\rho_{i=1}^{k^{\prime}} b_{i} L_{i} \tag{5-48}
\end{equation*}
$$

where ρ is denisity of the structural material.
The constraints imposed on the problem include lower limits on cross-sectional area

$$
\begin{equation*}
\phi_{i}=b_{0}-b_{i}<0, i=1, \ldots, k \tag{5-49}
\end{equation*}
$$

where $b_{0}>0$ and a. lower limit on natural frequency

$$
\begin{equation*}
\phi_{k+1}=\zeta_{0}-\zeta<0 \tag{5-50}
\end{equation*}
$$

where ζ_{0} is the lowest allowable eigenvalue of Eq. $5-47, \zeta_{0}=\omega_{0}^{2}$.

The steepest-lescent algorithm may now be applied directly. Data for the specific problems solved are given in Table 5-4. The results for an aluminum portal frame are given in Tables 5-5 and 5-6, with a typical profile shown in Fig. 5-9. The design variable b_{i} shows the distribution of material for a minimum weight frame whose frequency of vibration must be greater than or equal to a

TABLE 5-4
material properties for aluminum

α, dimensionless	0.07058
$\rho \mathrm{lb} \cdot \mathrm{sec}^{2} / \mathrm{in} .^{4}$	2.016×10^{4}
$r . \mathrm{ib} / \mathrm{in}^{2}$	10.3×10^{6}
$\mathrm{O}, \mathrm{in}^{4}$	0.009826
L, in.	10.0

AMCP 708-192

TABLE 5.5

Frequancy, $\mathrm{rad} / \mathrm{sem}:$	Weight of Uniform Framo; lb	Weight of Optima Frame; lo	Woight Redùction, \%
2000	3.748	4729	63.9:
3000	8.434	-2.562	69\%
4000	14.994	3.590	70.1
5000	'23.428	. 4.688	80.0

TABLE 5-6,
optimal design variable b FOR VIBRATING FRAME

b_{i}	ω, ied/*e $=$			
	2000	3000.	4000	5000
b_{1}	1.577	1.964	2.907	4.020
b_{2}	0.883	1.604	2.484	3.321
b_{3}	0.552	1.416	1.912	2.622
b_{4}	0.374	0.866	1.290	1.725
b_{3}	0.350	0.360	0.671	0.836
b_{6}	0.350	0350	0.350	0.350

Figure 5.9. Optimum, Portal Frame for $\omega=3000 \mathrm{rat}^{\prime} \mathrm{vc}$
specified value. It can be seen from Table ≤ 5 that a significart material saving is possible in comparison to the portal frame with members of constant cross section.

The results for the design variables b_{i} are the same for Members I and 3 ; and Member 2 converges to the lower bound I_{0}, so only the results for Member 1 are reported. For all frequencies the values for the b for Member 2 are equal to 0.350 .

5-4.4 A MINIMUM WEIGHT FRAME WITH MULTIPLE FAILURE CRITERIA

To illustrate the applicability of the stecpest-descent method for the minimum weight design of structures with stress, buckling, and displacement constraints, an example of a statically loaded frame problem is presented. Fig. 5-10 shows the geometrical

rigure 5-10 Frame With Side Loading
configuration of the frame that is considered. All members are assumed to be of the same length L. Niember 1 is subjected to a lateral loading $q(i)$. Member 3 has a uniform crosssectional area which is prescribed and will not be allowed to vary. The connections at points A and B are frictionless pins.

The finite element method is used to obtain the elastic response of the system for a given set of design variables, i.e., the crosssectional areas of the elemenis. As in the preceding prollem, the geometry of each cross section is the same with all dimensions
of c̈oss section varying proportionally. Thus, $I_{i}=\alpha b_{i}^{2}$ where b is the cross-sectionalarea of the 7 th element. The stiffness matrix $K\left(b_{j}\right)$ of a typical element; Fig: 5.11 , can be written as in para. "5-4:3 with generalized displäcements defined by

$$
u^{i}=\left[u_{1}, u_{2}, u_{3}, u_{4}\right]^{T}
$$

Figure 5-11. Typical Elements

From the fundamental beam theory, if \mathcal{R} is the horizontal force transmitted from the Member 1 to 3 , and assuming that Member 2 remains straight without buckling, then neglecting compression of Member 2, the deflection at A is $u_{A}=R L^{3} /\left(3 E I_{3}\right)$. From the equilibrium conditions on the transverse forces and moments at the nodes of Member 1 , the generalized displacement 2 , which is made up of the element displacements u_{l} can be evaluated from the following matrix equation

$$
\begin{equation*}
A(b) z:-F \tag{5-51}
\end{equation*}
$$

where f is a vector load and $A(b)$ is a symmetric matrix. In a similar manner, if y is the displacement vector containing all element deflections associated with Member 2, the buckling load P can be determined by solving the eigenvalue problem

$$
\begin{equation*}
K(b) y=P D(\dot{b}) y \tag{5-52}
\end{equation*}
$$

where the matrix D is derived fromi the shortening of Member 2 as in par. 5-4, itand; as. in the previous problem, $K(b)$ is a stiffness matrix.

The cost function to ve minimized in this: projilem is the structural weight of Members 1 and 2 which ss simply

$$
J=\gamma \sum_{i=1}^{k} \dot{b}_{i} L_{i}
$$

where $\boldsymbol{\gamma}$ is the weight:density of the raterial.
The weight of the frame is to be minimized subject to the following constraints:

1. Stress constraints at the i th node of Member 1:

$$
\begin{equation*}
\phi_{i}=\sigma_{i}-\sigma_{\max _{1}} \leqslant 0, i=1, \ldots, \dot{m} \tag{5-53}
\end{equation*}
$$

where $\sigma_{f}=M c\left(b_{i}\right) /\left[J\left(b_{i}\right)\right]$ is bending striss, $c\left(b_{i}\right)=\beta\left(b_{i}\right)^{1 / 2}$ is half the depth of the beam at point $i, i=1,2, \ldots, m$ and $\sigma_{\text {max }}$ is the maximum allowable stress. The parameter $\bar{\beta}$ is a property of the cross-sectional geometry.
2. Deflection constraint:

$$
\begin{equation*}
\phi_{m+1}=u_{A}-\Delta<0 \tag{5-54}
\end{equation*}
$$

where u_{A} is the horizontal deflection at the top of Member 1 and Δ is the maximum allowable lateral deflection of the top of the frame.
3. Buckling constraint:

$$
\begin{equation*}
\phi_{m+2}=\frac{3 E I_{3}}{L^{3}} u_{A}-p<0 \tag{5-55}
\end{equation*}
$$

where the furst term is just the load R carried by the column.

AMCD.703-192

4. Compressivetstress constraint at the j th node of Momber 2:

$$
\begin{equation*}
\phi_{m+1+2}=\frac{p}{b_{1}}-o_{\max _{2}}<0 \tag{5-56}
\end{equation*}
$$

for b_{7} in Member 2.
The steepest-descent algoritim can row bè applied drectly: Giyen data are: $\Delta=4 \mathrm{in}$; $\sigma_{\text {max }}=85,000 \mathrm{psi} ; \sigma_{\text {mex }}=5,000 \mathrm{psi} ;$ cross-sectional area of Member 3 is $4 \mathrm{in}^{2} ; ~ L=$ 100 in .; $E=3 \times 10^{7} \mathrm{psi}, \alpha=0.07958$, and $\beta=$ 0.5642 . The resulting horizontal forces R that correspond to increasing constant lateral loads q, given in Table 5-7, are $285 \mathrm{lb}, 409 \mathrm{lb}, 458$ lb , and 458 lb ,-rerectively, For $q=20$ and $25 \mathrm{lb} / \mathrm{in}$, the displacement in Eq. 5 -54 is an equality. For lower loads it is a strict inequality. This was determined automatically by the algorithm. The results for different side loadings are given in Tables 5-7 and 5-8. A profile of an optimal frame is shown in Fig. 5-12. Comprite...- n each case required approximatc. - . . per iteration and 15 iterations to converge on an IBM 360-65.

TABLE 5.7
OPTIMAL DESIGN VARIADLE $\quad b_{i}$ FOR
STATIC FRAME

Cross-Suctional Area bi_{i}, in ${ }^{2}$								
Element	Mimers 1 q. lb/in.				Member 2 q, $\mathrm{lb} / \mathrm{ln}$.			
No. 1	10	15	20	25	10	15	20	25
1	149	203	2.76	4.51	0226	0271	0.296	0286
2	0.86	1.20	1.76	3.34	J. 366	0.433	0.464	0.484
3	048	047	0.48	210	0.407	0 487	0.516	0516
\pm	043	053	037	043	0.366	0.438	0.464	0.464
5	043	053	052	043	0220	02?1	0286	0.286

TABLE 5-8
VOLUME OF CPTIMUM FRAME

| | 10 | $10^{q, \mathrm{lb} / \mathrm{in} .}$ | 20 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Fiyure 5.12. Profile of Optimal Frame With Muitiple Failure Crizeria ($q=25$ ib/in.)

5-4.5 A MINIMUM WEIGHT PLATE WITH FREQUENCY CONSTRAINTS

As a final numerical example in this paragraph consider the probicm of minimum weight design of the simply supported rectangular plate shown in Fig. 5-13 subject to a natural frequency constraint. The bending equation for plates of variable thickness is given in Eq. 5-58. When the deflection $W(x, y, t)$ is written in the form

$$
\begin{equation*}
w(x, y, t)=w(x, y) \cos \omega t \tag{5-57}
\end{equation*}
$$

the governing equation becomes

Figure 5-1.2 Rectangular Plate
)

$$
\begin{align*}
& \dot{D} \nabla^{4} w+2 \frac{\partial D}{\partial y} \frac{\partial}{\partial x} \nabla^{2} w+2 \frac{\partial D}{\partial y} \frac{\partial}{\partial y} \nabla^{2} \dot{w}^{2} \\
& \\
& \quad+\nabla^{2} D \cdot \nabla^{2} \dot{w}-(\overline{1}-\dot{y})\left[\frac{\partial^{2} D}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}\right. \\
& \left.\quad-2 \partial^{2} D \frac{\partial^{2} w}{\partial \dot{x} \partial y} \frac{\partial x \partial y}{\partial y^{2}}+\frac{\partial^{2} D}{\partial y^{2}} \frac{\partial^{2} w}{\partial \dot{x}^{2}}\right] \tag{5-58}\\
& =h \rho \omega^{2} w
\end{align*}
$$

,where

$$
\begin{equation*}
D(x, y)=\frac{E h^{3}(x y)}{1 ?\left(1-v^{2}\right)} \tag{5-59}
\end{equation*}
$$

$h(x ; y)$ is the thickness of the plate which is the design variable, and ρ is the density of plate material.

When the function $w(x, y)$ is represented in the form

$$
\begin{equation*}
w(x, y)=\sum_{m, n=1} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{5-60}
\end{equation*}
$$

the eigenvalue problem can be solved approximately by numerical methods. The problem posed here is solved using a collocation technique, i.e., the differential equation is satisfied at discrete points in the region, Fig. 5-14.

The number of discrete points is chosen equal to the number of terms in the truncated series of Eq. 5-60. The drivatives of the function $D(x, y)$ at the grid points are evaluated by the use of finite differences. For a given set of design variables, i.e., $h(x, y)$, the lowest eigenvalue, $\zeta=\mu \omega^{2}$, and the associated eigenvector $\left\{A_{m n}\right\}$, which plays the role of y, are determined.

AMCP. 706-192.

Figure 5-14. Collocation Points

In the steepest-descent algorithm, the cost function that is to be minimized is

$$
\begin{equation*}
J=\rho \Delta A \sum_{i, j=1} h\left(x_{i}, y_{l}\right) \tag{5-61}
\end{equation*}
$$

where ΔA is the area of the grid squares.
The constraints imposed on the design are

$$
\begin{equation*}
h_{0}-h\left(x_{i}, y_{j}\right)<0 \tag{5-62}
\end{equation*}
$$

and

$$
5_{0}-5<0
$$

where $h_{0}>0$ and $\zeta_{0}>0$ are lower limits on plate thickness and eigenvalue of Eq. 5-58, respectively.

The steepest-descent computational algorithm applies in a direct.way. It should be noted that the collocation method for approximate solutions of the equations for natural frequency yields nonsymmetric matrices K and M in Eq. 5-16. Thus in this formulation of the plate optimization problem , the adjoint eigenvalue problem, Eq. 5-18, must be solved along with the original eigenvalue problem. If finite element metiods for plate analysis had been used, symmetric
matrices would have been obtained. In this example; as well as in the preceding, a minimum effort was expended to make computations efficient. The emphasis has been placed on getting results. A subsequent effort will be devoted to making algorithms more efficient.

The minimum weight plate problem was solved by the algorithm of par. 5-3 with $E=3.0 \times 10^{7} \mathrm{psi}, \rho=7.43 \times 10^{-4} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}^{4}$, $\nu=0.30$, and $\omega_{0}=1375 \mathrm{rad} / \mathrm{sec}$. The uniform plate with $\zeta=\rho \omega^{2}=1400$ was taken as the initial estimate to the optimization problem. The dimensions of the plate are 10.0 in . by 10.0 in . and the value of $h_{0}=0.1 \mathrm{in}$. The material is assumed to have a constant density and so minimum weight is equivalent to minimum volume. The volume of the uniform plate is $11.44 \mathrm{in}^{3}$ and the velume of the optimal plate is $10.8 \mathrm{in}^{3}{ }^{3}$ which is a 5.6% material savings. Fig. 5-15 shows 25 coilocation points. The numbers in the network are

0
0.124 0.116 $0 .: 00$ 0.100 0.100 0.116 0.103 0.100 0.100 0.100 0.100 0.100 0.100 0.104 0.111 0.100 0.100 0.104 0.121 0.128 0.100 0.100 0.111 0.128 0.136

Figure 5.15. Optimal Design Variable $h(x, y)$ for Vibrating Plate
the values of the thickness function $h(x, y)$ at each nodal point which is located at the center of cach square. Double symmetry of the optimal plate thickness was observed about axes through the point $(a / 2, b / 2)$.

[^1]
5.5 GENERAL TREATMENT OF TRUSS DESICN*

The theory presented in pars. 5-2 and 5-3 will now be applied to the case of general plane and space trusses. These types of structures are encountered quite frequently in practical situations. Most common among these are buildings, transmission towers, bridges, cooling towers, aircraft siructures, and lightweight military structures. In all these cases, it is desirable that the structure simultaneously should meet strength, deflection, and frequency requirements and be of minimum weight. In this chapter, all these constraints will be considered.

5.5.1 SPECIAL PROBLEM FORMULATION

In the protlems to be considered here, geometry of the truss is assumed to be specified and the loads are applied only at the joints. The ofjective function for the provem is taken as the total weight or the volume of the truss, and the design variable for each member is taken as its cross-sectional area. The objective function of Eq. $5-1$ in this case is a linear function of m design variables and may be written as

$$
\begin{equation*}
J=\sum_{i=1}^{m} \rho_{i} L_{i} b_{i} \tag{5-64}
\end{equation*}
$$

where ρ_{i} and L_{i} are material density and length of member i, respectively.

The displacement method of structural analysis is used, and nodal displacements of the truss are considered as basic state variables. Therefore, the j th component of the state variable represents the $;$ th displacement component of the truss. Fig. 5-16 shows a simple scheme of designating joints, members, and displacement components of a truss. Fig. $5-17$ shows a bar elersent with sign conven-

$$
\dot{\bar{K}}(b)=\left[\begin{array}{ccc}
K_{1} & & \\
\hdashline & \ddots & \\
\hdashline & \ddots & \tilde{K}_{m}
\end{array}\right]
$$

where m is the total number of elements in the truss and \tilde{X}_{l} is the stiffness matrix for the i th element of the truss. The stiffness batrix for the i th element may be written as

$$
\tilde{K}_{i}=\frac{E_{i} b_{i}}{L_{i}}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

where E_{i} is Young's Modulus of Elasticity of the ith element. Substituting Eqs. 5-65 and 5-66 into Eq. 5-67, one obtains.

$$
\begin{align*}
f & =\left[\beta^{T} \bar{y}(\dot{b}) \beta\right] z \\
& =K(b) z \tag{5-70}
\end{align*}
$$

where

$$
\begin{equation*}
K(b)=\beta^{T} \bar{K}(b) \beta \tag{5-71}
\end{equation*}
$$

is the structure stiffness matrix, which is identical to $A(b)$ in Eq. 5-2. The mass matrix $M(b)$ for the truss may also be computed in a similar vay, and it is given by

$$
\begin{equation*}
M(b)=\beta^{T} \bar{M}(b) \beta \tag{j-72}
\end{equation*}
$$

where $\bar{M}(b)$ is formed from element mass matrices and is given by

Here, \dot{M}_{i} is the mass matrix for the i th

$$
\begin{equation*}
f=\beta^{T} F \tag{5-67}
\end{equation*}
$$

where u is the element deformation vector, F is the element force vector, f is the vector of external loads applied to structural nodes, and β is a rectangular transformation matrix, which transforms the nodal displacentent vector z to the element deformation vector a. The matrix $\bar{K}(b)$ is composed of element stiffness matrices and is given by

AMCP 706-192

element of the truss and is given by

$$
\bar{M}_{i}=\frac{p_{i} b_{i} L_{i}}{6}\left[\begin{array}{ll}
2 & 1 \tag{5-74}\\
1 & 2
\end{array}\right] .
$$

Any nonstructural inass that is attached to the truss may also be added to the mass matrix of:Eq. 5-72 and it may be written as

$$
\begin{equation*}
M(b)=\beta^{\dot{T}} \bar{M}(b) \beta+M_{o} \tag{5-75}
\end{equation*}
$$

where M_{o} is a matrix consisting of nonstructural masses. in the example problems to be prasented later. M_{0} is taken to be a null matrix. However, there is no particular difficulty in incorporating this matrix if it is not zero. Its inclusion will simply change the lowest natural frequency of the truss. The derivation of the given structural analysis equations and matrices is well documented in the literature (Refs. 20, 24).

In order to apply the algorithm of par. 5-3.2, two main matrices ℓ^{\prime} and ℓ^{5} of Eqs. 5-20 and 5-21 must be computed. They can be assembled very easily once various other matrices required in them have been computed. In the class of problems treated here $f(b)$ does not depend on the design variable, so $\partial f(b) / \partial b=0$. Also, one obtains from Eq. 5.64

$$
\begin{aligned}
& \frac{\partial J}{\partial i}=\left(\rho_{1} L_{1}, \ldots ., \rho_{m} L_{m}\right) \\
& \frac{\partial J}{\partial z}=(0, \ldots ., 0)
\end{aligned}
$$

and $3 J / \partial \zeta=0 ;$ and from Eq. $5-14$ $\lambda^{J}=(0, \ldots ., 0)^{T}$. Substitution of these values into Eq. 5 -20 yields

$$
\begin{equation*}
\ell^{J}=\left(\rho_{1} L_{1}, \ldots . ., \rho_{m} L_{m}\right)^{r} \tag{5-76}
\end{equation*}
$$

Assembling the mairix 8^{3} of Eq. $5-21$ is more tedious. It requires a formation of constraint set ϕ as in Eq. 4105 which will be discussed in detail now. The constraint set ϕ may be divided into five subsets, namely, frequency, stress, buckling and displacement constraints, and lower and upper bounds on the design variables. Expianation of these subsets follows one by one and, for each subset, matrices $\partial \phi / \partial \hat{\varsigma} ; \partial \phi / \partial q$, and $\partial \phi / \partial b$ are computed.

5.5.1.1 FREQUENCY CONSTRAINTS

In the example problems, only one fre quency constraint is considered. However, if other frequency constraints are also present, these may be treated in a similar way. Since the design variable vector b is available at any iteration, the mairices $K(b)$ and $M(b)$ are computed from Eqs. 5-71 and 5-72, respectively. The lowest eigenvalue ζ and the associated eigenvector y are then obtained from Eqs. 5-5 and 5-6, respectively. Premultiplying both sides of Eq. 5.6 by $K^{.1}(b)$, one obtains

$$
\begin{equation*}
K^{-1}(b) M(b) y=\frac{1}{\zeta} y=\gamma y \tag{5.77}
\end{equation*}
$$

where $\gamma=1 / 5$. The power method is used to ind $t \mathrm{t} e$ largest eigenvalue γ of $K^{-1}(b) M(b)$. 'his method of obtaining the largest eigenvalue is quite efficient in the present problem, since a very good approximation to the eigenvector at each iteration, except for the first one, is available from the previous iteration. The lowest eigenvalue is then given by $\zeta=1 / \gamma$. The frequency constraint may now be written as

$$
\begin{equation*}
\zeta>\zeta_{0} \tag{5-78}
\end{equation*}
$$

where ζ_{0} corresponas to a given frequency. In terms of the notation used in Eq.
cros-sectional geometry of the i th member. This is a convenient way of expressing the moment of inertia in terms of the cross-sectional area of a member, because the constant α_{i} can be specified by the designer quite readily. Therefore, Eq. 5.84 may now be written as

$$
\begin{equation*}
P_{i}^{c}=\frac{\pi^{2} E_{i} \alpha_{i} b_{i}^{2}}{L_{i}^{2}}=\theta_{i} b_{i}^{2} \tag{5-86}
\end{equation*}
$$

where $\theta_{l}=\pi^{2} E_{i} \alpha_{l} / L_{i}^{2}$. Eq. $5-86$ may be written in terms of the critical buckling stress σ_{l}^{b} as

$$
\begin{equation*}
\sigma_{i}^{b}=\theta_{i} b_{i} \tag{5-87}
\end{equation*}
$$

Now the buckling constraint for the i th compression nember may be written as

$$
\begin{equation*}
\bar{\phi}_{s}(b, z, \zeta)=\sigma_{i}-o_{i}^{b}<0 . \tag{5-88}
\end{equation*}
$$

If this buckiing constraint is violated, then $\Delta \dot{\phi}_{s}=-\left(\sigma_{i}-\sigma_{i}^{b}\right), \partial \bar{\phi}_{s} / \partial \xi=0$,

$$
\begin{gathered}
\frac{\partial \tilde{\phi}_{s}}{\partial b_{i}}=0 \text { for } i \neq j, \frac{\partial \dot{\phi}_{s}}{\partial b_{i}}=\left(\frac{1}{b_{i}} \frac{\partial F_{i}}{\partial b_{i}}-\frac{1}{b_{i}^{2}} F_{i}\right)-\theta_{i} \\
\text { and } \frac{\partial \dot{\phi}_{s}}{\partial z}=\left(\frac{\partial \sigma_{i}}{\partial z_{i}}, \ldots, \frac{\partial \sigma_{i}}{\partial z_{n}}\right)
\end{gathered}
$$

where $\partial F_{l} / \partial b_{l}$ and $\partial \sigma_{l} / \partial z_{j}$ may again be computed from Eq. 5-80. The buckling constraints on all other compression members ar: treated in a similar way.

5-5.1.4 DISPLACEMENT CONSTRAINTS

The displacement components are known at this stage; therefore, the constraints on them may be written as

$$
\begin{equation*}
|z,|<z_{j}^{a} \tag{5-89}
\end{equation*}
$$

where z_{j}^{a} is the maximum allowable j th component of displacemunt. If a particular component of displacement is positive, then Eq. $5-89$ is written as $z_{j}-z_{j}^{a}<0$; and if it is negative, then it is written as $z_{j}^{a}-z_{j}<0$. The expressions that follow are written for the case of positive displacement, and similar expressions can also be written for the case of negative displacement. In terms of the notation of Eq. $5-4$ the constraint for the positive displacement may be written as

$$
\begin{equation*}
\bar{\phi}_{s}(b, z, \zeta)=z_{j}-z_{j}^{a}<0 \tag{5-90}
\end{equation*}
$$

If the j th displacement component exceeds an allowable limit, then
$\left.\Delta \bar{\phi}_{s}=-\left(z,-z_{j}^{a}\right) \cdot \frac{\partial \dot{\phi}_{s}}{\partial \xi}=0, \frac{\partial \dot{\phi}_{s}}{\partial b}=0, \ldots, 0\right)$,
and $\frac{\partial \dot{\phi}_{s}}{\partial z}=\left(0, \ldots \ldots, \frac{1}{(t h)}, \ldots 0\right)$.
All the displacement components are checked and any other violation is treated in a similar way.

5-5.1.5 BOUNDS ON DESIGN VAR!ABLES

It may be necessary to put upper and lower bounds on each design variable. This constraint may be demanded by many practical, architectural or structural considerations. Moreover, a lower limit on each design variable is required in the algorithm in order to avoid the attainment of unrealizable designs such as negative areas. This constraint may be written as

$$
\begin{equation*}
b_{1}^{L}<b_{1}<b_{i}^{U} \tag{5.91}
\end{equation*}
$$

where b_{i}^{L} is the lower and b_{i}^{U} is the upper bound on the ith design variable. Inequality Ec. 5.91 may be split up into two parts:

(ì) Lơwer Bound on Design Variables:

This constraint is written as $b_{i}^{L}<b_{i}$ or in terems of notation of Eq. 5:4

$$
\begin{equation*}
\tilde{\phi}_{s}(b, z, \zeta)=b_{i}^{L}-b_{i}<r \tag{5-92}
\end{equation*}
$$

Yiolation of this constraint yields,

$$
\begin{gathered}
\Delta \dot{\phi}_{s}=-\left(\dot{b}_{l}^{\dot{L}}-\dot{b}_{i}\right), \frac{\partial \dot{\phi}_{s}}{\partial \zeta}=0, \\
\frac{\partial \dot{\phi}_{s}}{\partial \dot{b}}=(0, \ldots, 0,-1,0, \ldots, 0), \text { and } \\
(i t h)
\end{gathered}
$$

$$
\frac{\partial \ddot{\phi}_{8}}{\partial z}=(0, \ldots \ldots, 0) .
$$

(2) Upper Bound on Design Variables:

This constraint is very similar to the previous one and in the notation of Eq. 5-4 it is written as

$$
\begin{equation*}
\ddot{\phi}_{s}(b, z, \zeta)=b_{i}-b_{i}^{U}<0 \tag{5-93}
\end{equation*}
$$

If the upper bound on any design variable is violated, then

$$
\Delta \dot{\phi}_{s}=-\left(b_{i}-b_{i}^{U}\right), \frac{\partial \dot{\phi}_{s}}{\partial \zeta}=0
$$

$\frac{\partial \tilde{\phi}_{s}}{\partial b}=(0, \ldots, 0,1,0, \ldots, 0)$, and

$$
\frac{\partial \bar{\phi}_{s}}{\partial z}=(0, \ldots, 0) .
$$

It may be noticed here that the cross-sectional area of any member of the truss may be assigned a predetermined value by putting the same upper and lower bound on it. This situation may be encountered in practice due to various reasons, and as shown in Example

Problem par. 43.1, the present formulation. handles it without any difficulty.

After all the constraints have been considered, the matrices $\partial \dot{\phi} / \partial \dot{b}, \partial \tilde{\phi} / \partial \zeta$, and $\partial \ddot{\phi} / \partial z$ are available and $\lambda \bar{\phi}$ can be solved from Eq. 5-15. This still does not allow the matrix ℓ° of Eq. 5-21 to be assentbled. The following matrices must also be computed

$$
\begin{align*}
& \frac{\partial}{\partial b}[K(b) z] \tag{5.94}\\
& \frac{\partial}{\partial b}[K(b) y] \tag{5-95}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial b}[M(b) y] . \tag{5-96}
\end{equation*}
$$

These matrices are assembled automatically from the quantities such as $K(b), M(b), z$, and y, which have previously been calculated in the computer. The procedure of computing the matrix of Eq. $5-94$ will be explained here: the maitices of Eqs. 5-95 and 5-96 are calculated in an exactly similar marner. Eq. 5-71 may be written as (see Appendix B):

$$
K(b)=\sum_{i=1}^{m} \beta^{T} \bar{K}_{i} \beta^{l}
$$

where \dot{K}_{1} is the only quantity which is a function of b. Now, Eq. 5-94 can be written as follows, by substituting the above expression for $K^{\prime}(b)$:

$$
\begin{align*}
\frac{\partial}{\partial b}[K(b) z] & =\frac{\partial}{\partial b}\left[\left(\sum_{l=1}^{m} \beta^{T} \bar{K}_{i} \beta^{\prime}\right) z\right] \\
& =\sum_{i=1}^{m} \frac{\partial}{\partial b}\left[\left(\beta^{T} \tilde{K}_{l} \beta^{\prime}\right) z\right] \tag{5-97}
\end{align*}
$$

AMCP 706-192

It should be noted here that the summation sign in Eq. 5-97 represents the summation of m matrices of dimension ($n \times m$). The quantity inside the differentiation sign is an n-dimensional vector whose coniponents may be dependent upon the design variable vector b. Therefore, the quantity inside the summar tion sign is an $n \times m$ matrix for each index i. However, in the present case, since \bar{K}_{i} is a function of only b_{i}, the computation of Eq. $5-97$ is greatly simplified. Consideration of each i in Eq. 5-97 generates a ($n \times m$) matrix whose only nonzero elements are in its i th column. Computation of Eq. $5-97$ is performed quite readily and automatically in the computer.

All the information being available, the matrix $l^{\bar{\phi}}$ of Eq. 5-21 may now be assembled and the algorithm of par. 5-3.2 may be used to solve actual problems.

5-5.2 MULTIPLE LOADING CONDITIONS

Most structures are designed to withstand a multiple loading environment. This is quite reasonable, because only a cestain comoination of loads may act on the struccure at a particular time. This situation is handled in the par. 5-5.1 formulation by expanding the state variable vector z to include ail states. The element force vector f is also expanded accordingly. Formulation of displacement, stress, and buckling constraincs must also take into consideration all states of the system This is handled in the manner that follows. While formulating a particular displacement constraint, the value of displacement for each loading case is checked and each violation is entered into the reduced constraint vector $\dot{\phi}$. After this, the procedure of calculating the matrices $\partial \dot{\phi} / \partial b, \partial \dot{\phi} / \partial \zeta$, and $\partial \dot{\phi} / \partial z$ is the same as explained carlier. An exact same procedure is followed in treating stress and buckling
constraints. This procedure of taking into consideration all the loading cond:tions has wor, ed out quite satisfactorily in the example problems.

5.5.3 EXAMPLE PRODLEMS

Several trusses are designed by applying the procedure presented in this paragraph. A computer program, based on the algorithm stated previously, was written in FORTRAN IV. The computations were performed on the University of lowa IBM $360-65$ computer. The stiffness matrix for the structure was inverted by the Gauss-Jordan elimination procedure, and the power method was used to find the smallest eigenvalue.

Results for three typical trusses are presented here. All these structures were designed with stress, displacement, buckling, and frequency constraints. Examples 41 and 4-2, par. 4-i.1, are compared with results in Ref. 25. These were designed with and without frequency and buckling constraints in order to compare the results with Ref. 25. Example 4-3, par. 4-3.1, is treated in Ref. 26, and it was also designed with only stress constraints in one case to compare results with Ref. 26. All sample problems had lower limits on areas of the elements and Example $4-3$ had upper limits. The program is general enough to handle different lower and upper bounds on stresses in an element, elements of different materials, and a different buckling parameter α_{i} for each element. The examples follow:

1. Example 5-1. Five-node Four-bar T?uss

Fig. 5-18 shows the geometry and the dimensions of the truss. Input and output information is given in Table 5-9. In order to compare the results with those of Ref. 25, the

Fíğüre -5-18. Four:bar: İruss (Example 5-i)
truss: was first designed for streess constraints, Fig. 5-19(A), and second for stress and displacernent constraints; Fig. $5-19(\mathrm{~B})$. It may be noted that the results presented here ăre at least as good as those presented in Ref. 25.

The final Jesign weight with only stress constraints was 9.09 lb and computation time was 1.820 sec for 12 iterations. The final design weight reported in Ref. 25 was 9.09 lb with a computation time of 4 sec for 5 cycles. The final design weight, with stress and displacement constraints, was 14.28 lb and the computation time was 1.500 sec for 12 iterations. The final design weight reported in Ref. 25 was 14.30 lb with a computation time of 10 sec for 4 cycles. It is difficult to make an exact comparison of the computation times because the computer used here is different from that used in Ref. 25. The computation timès reported in Ref. 25 are on IBM 7094-II-7044 DCS Computer.

The truss was also designed by including buckling and frequency constraints along with other constraints. Two different starting points were used in optimizing this truss. Starting Point 1 was infeasible and Starting Point 2 was feasible. The final design weight beginning at Starting Point 1 was 113.48 lb and at Starting Point 2 was 113.77 lb . The slight difference in the two weights was due

AMMĆP 70.OB-192;
to the fact that in the first cäse the frequency constraint was violated by 0.154%, whereas in the second case this violation was 0.143%. Fig. 5-19 shows variation of the cost function with respect to the number of iterations for this problem. It may be noted that for practical purposes, convergence wäs obtained in six to eightit iterations for all the cases.

2. Example 5-2. íransmission Tower

Fig. 5-20 shows the geometry and the dimensions of the tower. This example also is treated in Ref. 25. In this problem, the cross-sectional area of each member of the

(A) With Stress Constraints Only

(B) With All Constraints

Figure 5-19. iteration vs Weight Curves for Example 5-1, Four-bar Truss

FOUR-BAR TRUSS (EXAMPLE 5-1)

Design Information: For each member, Young's Modulus of Elasticity E_{b}, the specific weight ρ_{p}, lower limit on area of cross section b_{j}^{L}, and the constant n_{j} are $10^{4} \mathrm{kips} / \mathrm{in}$. ${ }^{2}, 0.10 \mathrm{lb} / \mathrm{in}{ }^{3}, 0.10 \mathrm{in}^{2}{ }^{2}$, and i, respectively. Thero is no upper limit on member size. The resonant frequency for the truss is 284.6 Hz . For Output ${ }^{\prime} 1$, the stress limits on each member are ± 25.0 kips $/ \mathrm{in}^{2}$ and the displacement limits at node five are, $0.0, \pm 0.3$ in., and ± 0.4 in. in the x_{1}., $x_{2}=$, and x_{3}-directions, respectively. For Output 2, the stress limits for each member are ± 15.0 kips $/ \mathrm{in}{ }^{2}{ }^{2}$, and the displacement limits at node five are 0.15 in. in all three directions. There are three loading conditions for the truss; they are: in positive $x_{1} \cdot x_{2}$, and x_{3}-directiors, $5,0,0 ; 0,5,0 ;$ and $0,0,7.5$ kip, respcctively, applied at node five.

OUTPUT 1. With Stress and Displacement Constraints Only

With anly streus constraints Time per iteration $=0.152$ see Total time $=\mathbf{1 . 8 2 n}$ sec			With displecement constraints, also Time per iteration $=0.124$ sec Total time $=1.500 \mathrm{sec}$		
El. No.	Starting Values, in. ${ }^{2}$	Firal Values, in. ${ }^{2}$	El. No.	Starting Values, in. ${ }^{2}$	Final Valuas, in. ${ }^{2}$
1	0.100	0.130	1	0.500	0.234
2	0.200	0.192	2	0.500	0.319
3	0.200	0.120	3	0.500	0.184
4	0.100	0.100	4	0.500	0.128
Woighs, lb	10.19	9.09	Woight, lb	34.86	14.28

OUTPUT 2. With All Constraints

Satting Point 1 Time per iteration $=0.147$ sec Totel time $=\mathbf{4 . 7 1 0} \mathrm{sec}$			Starting Point 2 Time per iteration $=0.172$ sec Total time $=\mathbf{4 . 6 4 0} \mathrm{sec}$		
El. No.	Starting Values, in. ${ }^{2}$	Final Values, in. ${ }^{2}$	El. No.	Starting Valuos, in. ${ }^{2}$	Final Valuas, in. ${ }^{2}$
1	1.000	0.543	1	2.000	0.559
2	1.000	1,961	2	4.000	1.883
3	1.000	3.635	3	8.000	3.703
4	1.000	0.479	4	1.000	0.468
Weight, lb	69.72	113.48	Weight, Ib	257.68	113.77

Figure 5.20. Transmission Tower (Example 5.2)
truss is treated as an unknown design variable, and the results obtained are given in Table 5-10. The tower was designed first with only stress constraints. The final design weight in this case was 91.13 lb with a computation time of 38 sec for 12 iterations. The fina! design weight reported in Ref. 25 was 91.14 lb with a computation time of 9 sec for 5
cycles. The values of final design variables compare quite well with those in Ref. 25. At the final design point all constraints were satisfied within 0.006%.

The tower was also designed with stress and displdcement constraints and, finally, with all the constraints included. The design weight in

AMCP 70O6-192

TABLE G-80

TRAIUSNIISSION TOVER (EXAMPLE 5:2)

Design Information: For oxch member of tha structure, the modulus of elasticity E_{f}, the specific weight ρ_{l}, the constant α_{1}, and the stress limits are 10^{4} kips/in. ${ }^{2}, 0.10 \mathrm{lb} / \mathrm{in}^{3}, 1.0$ and $\pm 40.0 \mathrm{kips} / \mathrm{in}{ }^{2}$, respectively. The lower limit on th's area of cross section of each member is $0.10 \mathrm{in}^{2}$ for the case with stress constraints only and 0.01 in. ${ }^{2}$ for othe cases. There is no upper limit on the member sizes. The resonant frequency for the structure is 173.92 Hz , and th, displacement limits are 0,35 in, on all nodes andin all directions. There are six foading conditions, and they $\overline{\mathrm{a}}=$ s follows (all loads are in kips):

Lead Cond.	Node	Exzaction at Lond			Lond Cond.	Node	Dirẹtion of Loid		
		x_{1}	r_{3}	\dot{x}_{3}			x_{1}	- x_{2}	x_{3}
1	1	1.0	10.0	-5.0		1	0	10.0	-5.0
	2	0	10.0	-5.0		2	-1.0	10.0	-5.0
	3	0.5	0	0	2	4	-0.5	0	0
	δ	-0.5	0	0	$=$	5	-0.5	0.	$\underline{0}$
3	1	1.0	-10.0	.. 5.0		1	0	-10.0	-5.0
	2	0	-10.0	-5.0		2	-1.0	-10.0	-5.0
	3	0.5	0	0	. 4	4	-0.5	0	0
	6	0.5	0	0	1	5	-0.5	0	0
5	1	0	20.0	-5.0	6 -	i	0	-20.0	- 5.0
	2	0	-20.0	- 5.0		2	0	20.0	-5.0

Output:

	With Siress Constraints Only		With Stross and Displacsment Constraints		With All Constraints	
EI. No.	Starting Values, in. ${ }^{2}$	Final Values, in. ${ }^{2}$	Staring Valuas, in. ${ }^{2}$	Final Values, in. ${ }^{2}$	Starting Vaifues, in. ${ }^{2}$	Fina: Values, in. ${ }^{2}$
1	0.200	0.100	1.500	0.010	0.500	0.010
2	0.500	0.376	3.000	2.322	2.500	2.092
3	0.500	0.376	3.000	2.322	2.500	2.075
4	0.500	0.376	3.500	2.322	2.500	2.095
5	0.500	0.376	3.300	2.322	2.500	2.083
0	0.500	0.471	3.000	2.768	2.500	2.357
7	0.500	0.471	3.000	2.768	2.500	2.350
8	0.500	0.471	3.000	2.768	2.500	2.350
9	0.500	0.471	3.000	2.768	2.500	2.335
10	0.200	0.100	1.000	0.010	0.500	0.035
11	0.200	0.100	1.000	0.010	0.500	0.035
12	0.200	0.100	1.000	0.010	0.500	0.087
13	0.200	0.100	1.000	0.010	0.500	0.084
14	0.200	0.100	$2.00{ }^{1}$	0.690	1.500	1.113
15	0.200	0.100	2000	0.690	1.600	1.113
16	0.200	0.100	2.000	0.690	1.500	1.112
17	0.200	0.100	2.000	0.690	1.500	1.112

ÀMCP. 706 -192:

TABLE $5 \cdot 10$ (Contrd.):
Ouxput: (Conion.)

	With Strôsi Conitrints Only		With Stress and Dis. placemont Constraints		With All Constraints	
El. No.	Starting Valuos, in. ${ }^{2}$	Finál Nalữ, in. ${ }^{2}$	Starting Väluegs, in. ${ }^{2}$	Final. Values, in. ${ }^{2}$	Steriting Volues, in. ${ }^{2}$	Final Yalums, in. ${ }^{2}$
188:	0.500	0.277	2.000:	1.524	2.000	2.056
19	0.500	0.277	2.000	1.524	2.000	2.053
20	0.500	0.277	2000	1.524	2.000	2.046
21	0.500 :	0.277	2.000	1.524	2.000	2.058
22.	0.500	0.380	3.000	2.733	3.000	2.822
-23	0.600	0.380°	3.000	2.733	3000	2.808
24	0.500	0.38 C	3.000	2.733	3.000	$2.803{ }^{\circ}$
25	0.500	0.380	3.000	2.733	3,000	2.785
$\begin{gathered} \text { Weight: } \\ 16 \end{gathered}$	138.37	91:13	772.24	546.18*	669.80	\% . 590.32

the first case was 546.18 lb with a computation time of 47 sec for 17 iterations, and the maximum constraint violation was $0,00011 \%$. The comparable design weight reported in Ref. 25 was 555.11 lb with a computation time of 24 sec for 7 cycles. This shows that, when displacement constraints are also included, the results obtained with the new gradient projection method are slightly better than those of Ref. 25. For a design with ail the constraints included, the final weight was 590.32 lb with a computation time of 129 sec for 36 iterations, and the maximum violation of constraint was 0.028%. Fig. 5 -21 shows variation of the cosi function with respect to the iteration number for the last two cases of this problem. It may be noted that for practical purposes, convergence was obtained in only 6 iterations.

3. Example 5-3. 4-Bar Plane Truss

The schematic diagrom of the structure with dimensions is shown in Fig. 5-22. This example is also treated ini Ref. 26 where it is
optimized for a single loading condition. The design information and the results are shown in Table 5-11. In order to compare the results with Ref. 26 , the truss was first optimized with stress constraints only. The final design weight was $2,993.37 \mathrm{lb}$ with a computation

Figure 5-21. Iteration vs Weight Curves for Example 5-2, Transmissio" Tower

Figure 5-22. 47-Bar Plane Truss (Example 5.3)
time of 115 sec for 17 iterations. At this point the stress in member 18 was violated by 0.24% and all other violations were less thon 0.035%. Another flasible design occurred at

9th iteration for which the design weight was i,998.88 lb , maximum constraint violation was 0.10% for stress in 7th member and all wher violations were less than 0.010%. The

Table 5-11

47:BAR PL:ANE TRUSS (EXÄMPLE 5-3).

Dasign information: For each member of the structure, the modulus of elasticity E_{l}, the spocific weight ρ_{l}, and the constant α_{α} are $3.0 \pi .10^{4}$ kips/in. ${ }^{2}, 0.284 \mathrm{ib} / \mathrm{in}^{3}$, and 1.0 , respectively. The resonant frequency for the structure is $16.0 \mathrm{H}_{2}$ and the di' olacement limits are 1 in. on all nodes and in ell difections. There is one loading colidition for

Output:

El. No.	Lowar Area Bound, in. ${ }^{2}$	Uppar Aroe Bound, in. ${ }^{2}$	Cómprassion Stress Limit, kips/in. ${ }^{2}$	Intial Aras, in. ${ }^{2}$	Final'Artäa, iñ. ${ }^{2}$	
					With Striess Constraints Only	With All Constraints
1	3.570	9.620	14.56	5.690	3.570	7.537
2	3.570	9.620	14.56	5.690	3.570	5.771
5	3.570	9.620	14.56	5.690.	3.57C	3.570
4	3.570	9.620	14.56	5.690	3.570	4.473
5	3.570	9.820	14.56	5.690	3.752	6.505
6	3.570	9.620	14.56	5.690	3.570	6.124
7	3.570	9.620	14.56	5.690	4.212	7.777
8	3.570	9.620	14.5.	5.690	5.217	9.529
9	1.930	2.940	15.96	2.210^{-}	1.930	1.930
10	1.930	2.940	15.91;	2.219	1.930	1.930
11	1.930	2.940	15.:	2.210	2.205	2.199
12	1.930	2.940	15.54	2.210	2.205	2.205
13	1.930	2.940	15.94	2.210	1.930	2.940
14	1.830	2.940	15. 0	2.210	1.930	2.940
15	1.930	2.940	15.92	2.210	2.205	2.119
16	1.930	2.940	15.96	2.210	2.205	2.205
17	1.360	2.190	15.41	2.100	1.417	2.136
18	1.360	2.190	15.41 ;	2.100	1.815	1.630
19	1.360	2.190	15.4;	2.100	1.360	1.360
20	1.360	2.190	15.4i	2.100	1.360	1.360
21	0.376	0.376	3.30	0.378	0.376	0.376
22	0.376	0.376	3.a゙	0.376	0.376	0.376
23	0.376	0.376	3.3i4	0.376	0.376	0.376
24	0.376	0.376	3.317	0.376	0.376	0.376
25	1.360	2.190	12.2.'	2.100	1.360	1.455
26	1.360	2.190	12.3:	2.100	1.360	1.451
27	1.360	2.190	12.32	2.100	1.360	2.137
28	1.360	2.990	12.32	2.100	1.360	1.360
29	1.360	2.190	12.32	2.100	1.360	1.492
30	1.360	2.190	12.32	2.100	1.360	1.428
31	2.940	6.040	17.47	3.850	2.940	3.774
32	2.940	6.040	17.47	3.850	2.940	2.940
33	2.940	6.040	17.47	3.850	2.940	2.940
34	2.940	6040	17.47	3.850	2.940	5.592
35	2.940	6.040	17.47	3.850	2.940	3.582
36	2.940	6.040	17.47	3.850	2.940	2.940
37	0.940	1.320	4.93	1.200	0.940	0.940

AMCPP:TOG-192.

TABLE 5.in:(Cont'd.)
Outpurt: (Cont'd.)

El. No.	Lower Area Bound, in. ${ }^{2}$	Upper, Arca Bound, in. ${ }^{2}$	Compressicico Stress Limit, kips/in. ${ }^{2}$	Initial Aroa, in. ${ }^{2}$	Final Area, in. ${ }^{2}$	
					With Strass Construints Only	With All Constraifits
38	0,940	1.320	4.93	1.200	0.940	0.940
39	0.940	1.320	4.93	1.200	0.940	0.940
40	2.940	6.040	10.75	3.500	2.940	2.940
41	2.940	6.040	10.75	3.500	2.940	2.940
42	2.940	6.040	10.75	3.509	2.940	2.940
43	2.940	6.040	10.75	3.500	2.940	2.940
44	2.940	6.040	10.75	3.500	2.940	3.940
45	2.940	6.040	10.75	3.500	2.940	2.940
46	2.940	6.040	10.75	3.500	2.940	2940
47	2.940	6.040	10.75	3.500	2.940	2.940
	Weight, lb			3910.30	2993.37	3771.0

final weight reported in Ref. $2 \overline{6}$ was $3,328.5$ lb which is consideratly higher than the one reported herein. This may be attributed to the fact that in-Ref. 26 the members are divided into eight groups so that there are only eight independent design variables, whereas in this treatment, area of cross section of each member of the truss is treated as an unknown design variable.

The truss also was designed by imposing all the constraints. The starting point, stress limits, and upper and lower bounds on the areas are same as those used in Ref. 26. It may be noted that members $21,22,23$, and 24 had the same upper and lower bounds on areas. The final design weight was $3,771.0 \mathrm{lb}$ with a computation time of 166 sec for 24 itcrations. The maximum violation of the constraint was 0.27% on stress for member 11. Fig. 5-23 shows variation of the cost function with respect to the number of iteration for both the cases. It may be noted

[^2]that for practical purposes, convergence occurred in approxima.oly 6 iterations.

Figure 5.23. Iteration vs Weight Curves for Example 5-3, 47-Bar Plane Truss

5.6 A GENERAL TREATMENT OF PLANE FRAME DESIGN*

In this paragraph, an application of th gradien projection method to framed struc-

5-6.1 PROBLEM FORMULATION

In the problems considered here, the geometry of the frame is assumed to bs specified, i.e., ienoths of the members or the joint coordinates aie not treated as design variables. Multipic inading conditions for the structure are treated by the procedure explained in par. 5-4.2. The moment of inertia for each element is treated as the design variable; therefore, b is a vector whose ith component b_{l} is the moment of inertia of the i th element. In calculating weight or volume of the structure, element direct stresses, element bending stresses, area of cross section, and the section modulus of each element must be known. Also, in order to calculate the allowable compressive stress for an element, its least radius of gyration r_{8} must be known. These quantities are required as continuous functions, rather than discrete numbers, in the present formulation. Since the moment of inertia of each element is its only design variable, the quantities area of cross section, section modulus, and the least radius of gyration must be expressed in terms of the moment of inertia of the element. These relationships of the i th element are written as follows:

$$
\begin{equation*}
A_{1}=a_{1} b_{l}^{1 / 2} \tag{5-98}
\end{equation*}
$$

AMCP 708-192

$$
\begin{equation*}
z_{l}:=c_{1} b_{l}^{3 / 4} \tag{5-99}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i}=d_{i} b_{l}^{1 / 4} \tag{5-100}
\end{equation*}
$$

where A_{l} is the area of cross section, Z_{l} is the section modulus, r_{i} is the least radius of gyration of the i th element of rigid frame, and a_{i}, c_{i}, and d_{i} are constants. These constants can be found by plotting curves of area of cross section, section modulus, and the least radius of gyration versus the moment of inertia of various economical beam and column sections. These curves have been drawn by Nakamura (Ref. 28) for wide flange sections of AISC Steel Construction Manual (Ref. 27), and the same values are used in this handbook. This approach of obtaining continuous relationslipp for area of cross section, section modulus, least radius of gyration, and the moment of inertia has also been used by other researchers in their work (Refs. 29, 30, 31).

The objective function, Eq. 5-1, for this problem is again taken as the total weight of the frame which may be written as

$$
\begin{equation*}
J=\sum_{i=1}^{m} \rho_{i} L_{i} A_{i}=\sum_{i=1}^{m} \rho_{l} L_{i} a_{i} b_{i}^{1 / 2} \tag{5-101}
\end{equation*}
$$

The displacement method of structural analysis is used, and nodal displacements of the frame are considered as basic state variables. Therefore, the \boldsymbol{t} th component of the state variable represents the j th displacemer.t component of the frame. Fig. $5-24$ shows a simpie scheme ior designating joints, members, and displacement components of a frame in the structure coordinate system. Fig. 5 -25 shows a frame element in the member coordinate system with the sign convention to be used on element forces and deformations. It may be

Figure 5-24. Description of a Frame

Figure 5-25. A Frame Element

$$
\tilde{K}_{i}=\frac{E_{i} b_{i}}{L_{i}}\left[\begin{array}{llllll}
a_{i} b_{i}^{-1 / 2} & 0 & 0 & -a_{i} b_{i}^{-1 / 2} & 0 & 0 \tag{5-104}\\
0 & 12 / L_{i}^{2} & 6 / L_{i} & 0 & -12 / L_{i}^{2} & 6 / L_{i} \\
0 & 6 / L_{i} & 4 & 0 & -6 / L_{i} & 2 \\
-a_{i} b_{i}^{-1 / 2} & 0 & 0 & a_{i} b_{i}^{-1 / 2} & 0 & 0 \\
0 & -12 / L_{i}^{2} & -6 / L_{i} & 0 & 12 / L_{i} & 6 / L_{i} \\
0 & 6 / L_{i} & 2 & 0 & -6 / L_{i} & 4
\end{array}\right]
$$

$\bar{M}_{l}=\frac{\rho_{l} L_{l} a_{l} b_{i}^{1 / 2}}{420}\left[\begin{array}{cccccc}140 & 0 & 0 & 70 & 0 & 0 \\ 0 & 150 & 22 L & 0 & 54 & -13 L \\ 0 & 22 L & 4 L^{2} & 0 & 13 L & -3 L^{2} \\ 70 & 0 & 0 & 140 & 0 & 0 \\ 0 & 54 & 13 L & 0 & 156 & -22 L \\ 0 & -13 L & -3 L^{2} & 0 & -22 L & 4 L^{2}\end{array}\right]$
AMCP 700-192

Now, as before, the matrices ℓ^{J} and $\ell^{\bar{\phi}}$ of Eqs. 5.20 and 5.21 , respectively, must be computed in ordes to apply the algorithm of par. 5-3.2. They can be readily assembied once various other matrices have been corsputed. Let us first consider computatior of the matrix ℓ^{J} of Eq. 5-20. The matrix $f(b)$, which is computed from externally applied loads, is independent of the design variable vector b if the self weight of the elements is neglected. This implies that $\partial f(b), \partial b=0$. Also, from Eq. 5-101 one obtains

$$
\begin{gather*}
\frac{\partial J}{\partial b}=\frac{1}{2}\left(\rho_{1} L_{1} a_{1} b_{1}^{-1 / 2}, \ldots \ldots,\right. \\
\left.\rho_{m} L_{m} a_{m} b_{m}^{-1 / 2}\right) \tag{5-106}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial J}{\partial z}=(0, \ldots . . ., 0), \tag{5-107}
\end{equation*}
$$

and $2 J / \partial \zeta=0$. Eq. $5-14$ now yields, $\lambda^{J}=(0$,, 0) ${ }^{\boldsymbol{T}}$. Substituting these values into Eq. $5-20$, one obtains

$$
\begin{align*}
\ell^{J}= & \frac{1}{2}\left(\rho_{1} L_{1} a_{1} b_{1}^{-1 / 2}, \ldots \ldots\right. \\
& \left.\rho_{m}{ }^{4} m_{m} b_{m} b_{m}^{-1 / 2}\right)^{T} \tag{5-108}
\end{align*}
$$

Next, consider computation of the matrix
ℓ^{\dagger} of Eq 5-21. It requires formation of the constraint vector ϕ by considering various constraints and computation of matrices such as $\partial \phi / \partial \zeta, \partial \phi / \partial z$, and $\partial \phi / \partial s$. The treatment of frequency, displacement, and design variable constraints in the case of a frame is exactly the same as in the case of a truss, which is developed in par. 5-4. So, these features will not be explained here, except for the fact that any point where a displacement constraint nust be imposed is treated as a nodal point. Computation of matrices such as $\partial / \partial b$ $[K(b) z], \partial / \partial b\lceil K(b) y]$, and $\partial / \partial b[M(b) y]$ is also carried out in the way explained in par. $5-4$. The only constraint that remains to be considered is the stress constraint, which will be considered next.

5-6.2 STRESS CONSTRAINT CALCULA. TIONS

Let s denote the subscript for this constraint. If one can compute $\partial \phi_{s} / \partial \zeta$ and row vectors $\partial \phi_{s} / \partial z z$ and $\partial \phi_{s} / \partial b$ for this constraint, then he can assemble the matrix ℓ^{j} of Eq. 5-21.

The members of a framed structure are subjected to direct as well as bending stresses. Thus, the effect of combined stresses must be considered in implementing the stress con-
straints. It should be noted here that a clear distinction is made between the elements and the members of a frame. This distinction is necessitated by the fact that a member must often be divided into several elements for structural analysis and implementation of displacement constraints. On the other hand, the compressive stress for all elements making up. a member is the same. In the present work, the members subjected to direct and bending stresses are required to satisfy the AISC specification (Ref. 27). The permissible stress, according to this Steel Construction Manual, are:

1. Tension:

$$
\begin{equation*}
F_{t}=0.60 F_{y} \tag{5-109}
\end{equation*}
$$

2. Bending:

$$
\begin{equation*}
F_{b}=0.66 F_{y} \tag{5.110}
\end{equation*}
$$

where F_{y} is material yield stress, F_{t} is allowable tensile stress, and F_{b} is allowable bending stress.

3. Compressinn:

On the gross cross-sectional area of axially loaded compression members, when $k L / r$, the largest effective slenderness ratio of any unbraced segment, is less than C_{c}

$$
\begin{equation*}
F_{a}=\frac{\left(1-\frac{1}{2} e^{2}\right) F_{y}}{\text { F.S. }} \tag{5-111}
\end{equation*}
$$

where F.S. $=$ factor of safet $y=$

$$
\begin{align*}
5 / 3+(3 / 8) e-(1 / 8) e^{3} \\
C_{c}=\sqrt{2 \pi^{2} E / F_{y}} \tag{5-113}
\end{align*}
$$

$$
\begin{equation*}
e=\frac{k L}{r C_{c}} \tag{5-114}
\end{equation*}
$$

$$
\begin{aligned}
& F_{a}=\text { allowable compressive stress } \\
& E=\text { Young's modulus }
\end{aligned}
$$

On the cross section of axially loaded columns when $k L / r$ exceeds C_{c},

$$
F_{a}:=\frac{1.49 \times 10^{5}}{(k L / r)^{2}}, \mathrm{Ksi}\left(\mathrm{Kip} / \mathrm{in}^{2}\right)
$$

A. Combiaed Stresses:
a. Axial Compression and Bending:

Members subjected to both axial compression and bending stresses shall be proportioned to satisfy the following requirements:
(1) When $f_{a} / F_{a}<0.15$,

$$
\begin{equation*}
\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}}<1.0 \tag{5-116}
\end{equation*}
$$

(2) When $f_{a} / F_{a}>0.15$,

$$
\begin{equation*}
\frac{f_{a}}{F_{a}}+\frac{c_{m} f_{b}}{\left(1-\frac{f_{a}}{F_{e}^{*}}\right) F_{b}}<1.0 \tag{5-117}
\end{equation*}
$$

and, in addition at points braced in the plune of bending,

$$
\begin{equation*}
\frac{f_{a}}{0.6 F_{y}}+\frac{f_{b}}{F_{b}}=1.0 \tag{5-118}
\end{equation*}
$$

where

$$
F_{a}=\text { axial stress that would be permitted }
$$

if áxial forče alờe existed

$F_{b}=$ "compressive bending stress that would be permitted if bending momentalone éxisted
$F_{e}^{j}=\frac{1.49 \times 19^{5}}{\left(k L_{b} / r_{b}\right)^{2}}, \mathrm{Ksi}$
(In Eq 5 -119, for $F_{6}^{j} L_{b}$ is the actual unbraced length (in.) in the plane of bending, r_{b} is the corresponding radius of gyration (in.); and k is the effective length factor in the plane of bénding.)
$f_{a}=$ computed axial stréss
$f_{b}=$ computed compressive bending stress at the point under consideration
$C_{m}=$ a coefficient whose value shall be taken as follows:
(a) For compression members in frames subject to joint translation (sidesway):

$$
\begin{equation*}
C_{m}=0.85 . \tag{5-120}
\end{equation*}
$$

(b) For restrained compression members in frames braced against joint translation and not subject to transverse loading between their supports in the plane of bending:
$C_{m}=0.6+0.4 \frac{M_{1}}{M_{2}}$
but not less than $0.4,(5-121)$
where M_{1} / M_{2} is the ratio of the smaller to larger moments at this ends of that portion of the member, unbraced in the piane of bending
under consideration: M_{1} / M_{2} is positive when the member is bent in single curvature and negative when it is bent in reverse curvature.
(c) For compression mémbers in frames: braced against joint translation in the plane of loading and subjécted to transverise loäding between their supports, the value of C_{m} may be determined by rational analysis. However, in lieu of such analysis; the following values may be used.

1. For members whose ends are restrained:

$$
C_{m}=0.85
$$

2. For members whose ends are unrestrained:

$$
\begin{equation*}
C_{m}=1.0 \tag{j-122}
\end{equation*}
$$

b. Axial Tension and Bending

Members subject to both axial tension and bending stresses shall be proportioned to satisfy the requirements of Eq. $5-118$ where f_{b} and F_{b} are taken, respectively, as the computed and permitted bending tensile stress.

Eqs. 5-116, 5-117 and 5-118 are known as the interaction equations. These equations, of course, are derived from the linear superposition of the direct stre:" under axial load alone and the bending stress under bending moment alone. The factor $C_{m} /\left(1-f_{a} / F_{e}^{\prime}\right)$ is used in Eq. 5-117 to account for the magnification of the primary bending moment due to the axial load. This factor depends upon the type of loading and end conditions of the member. The value of the coefficient C_{m} can
be derived for various types of loadings and members, but the values recommended in Eqs. 5-120, 5-121, and 5-122 are conservative and are used in the present work. For a detailed development and discussion of these equations the reader is referred to Ref. 32.

The allowaide compressive stress formula, Eq: $5-115$, is derived based on the basic theory of column buckling. It is obtained by dividing the Euler buckling stress by a factor of safety of 1.92 . Therefore, $F_{a}=\pi^{2} E /[1.92$ $\times(k L / r)^{2}$] and, taking $E=3.0 \times 10^{4} \mathrm{Ksi}, F_{a}$ $=1.49 \times 10^{5} /(\mathrm{kL} / \mathrm{r})^{2}$. Eq. $5-115$ is applicable when the largest slenderness ratio $k L / r$ is greater than or equal to C_{c}. Experiments have shown that when $k L / r<C_{c}$, the values of the failure stress predicted by the Euler critical stress formula are seldom attained (Ref. 32). This is due to the presence of residual stresses and other imperfections in fabrication of the members. Therefore, when $k L / r<C_{c}$, the values of the allowable stress F_{a} are found from Eq. 5-111 which is derived based on the parabolic approximation of the curve-critical stress F_{a} versus the slenderness ratio $k L / r$ in the range $k L / r<C_{c}$. This approximation is chosen based on the experimental results obtained at Lehigh Uniyersity (Ref, 32). The value of the constant C_{c} is found by assuming that the Euler critical stress formula holds until the critical stress is $F_{y} / 2$. Therefore,
$F_{y} / 2=-\frac{\pi^{2} E}{(k L / r)_{c}^{2}}$ or $C_{c}=(k L / r)_{c}^{2}=\sqrt{2 \pi^{2} E / F_{y}}$
where L and r must be expressed in the same units.

The factor of safety is used to account for small imperfections of form and loading, and variations of support and restraint conditions from those assumed in computation, which cause the true effective length to be different from that calculated. The factor of safety
given by Eq. 5-112 includes an allowance for both of these factors and is adjusted to account for their varying influence. For short columns, Eq. 5-112 approaches the basic safety factor in tension (1.67); and, at $e=1$, it becomes 15% higher (1.92), a value which is then used in the case when $k L / r$ exceeds C_{c}. Eq. 5-112 is an approximation of a quarter sine wave between the two limits, the curve used in the specification as best representing the influence of the two factors. For a detaled discussion of the these factors, the reader is again referred to Ref. 32.

The effective length factor k for each member of the frame is found from the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{P y}{E i}=0, \tag{5-123}
\end{equation*}
$$

where P is the buckling load, and I is the second moment of the cross-sectional area.

The solution of this equation is given by

$$
\begin{equation*}
y(x)=D_{1} \sin \sqrt{\frac{P}{E I}} x+D_{2} \cos \sqrt{\frac{P}{E I}} x \tag{5-129}
\end{equation*}
$$

In rigid frames, two cases must be discussed: (1) frames without sidesway, and (2) frames with sidesway. The transcedental equation that comes from Eq. 5-124, while satisfying the boundary conditions for a member of the frame without sidesway, is given by Ref. 32

$$
\begin{align*}
& {\left[\frac{1}{2}\left(G_{A}+G_{B}+\frac{1}{4} G_{A} G_{B}(\pi / k)^{2}-1\right](\pi / k)\right.} \\
& x \sin (\pi / k)-\left[\frac{1}{2}\left(G_{A}+G_{B}\right)(\pi / k)^{2}+2\right] \\
& \therefore \cos (\pi / k)+2=0 \tag{5.125}
\end{align*}
$$

AMCP תัO日: 182

wheré G_{A} and G_{B} are given byythe following equations:

$$
\begin{equation*}
G_{A}=\frac{\Sigma I_{C A} / L_{s A}}{\Sigma I_{b A} / L_{b A}} \tag{5-126}
\end{equation*}
$$

\cdots and

$$
\begin{equation*}
G_{B}=\frac{\Sigma I_{c B} / L_{C B}}{\Sigma I_{b B} / L_{b B}} \tag{5-127}
\end{equation*}
$$

- The subscripts-A=and B refer to the $\boldsymbol{i t w o n d s}$ of the member under consideration and the subscripts and b refer to the compressed and restraint menibers respectively: For G_{A}, the summations extend over all members thata are connected to joint A and for G_{B} the summations extend over all the members that are connected to joint \hat{B} : So, for the first case of as frame without sidesway, the value or the effèctive leñğth factor \dot{k} must be found by soiving the transcedental Eq. $5-125$ for each member of the frame.

For the second case, i.e., a rigid frame with sidesway, the transcedental equation that comes out of Eq. 5-124 - while satisfying the boundary condition for a member of the frame-is given by

$$
\begin{align*}
& {\left[G_{A} G_{B}(\pi / k)^{2}-36\right] \sin (\pi / k)} \\
& \quad-6\left(G_{A}+G_{B}\right)(\pi / k) \cos (\pi / k)=0 \tag{5-128}
\end{align*}
$$

where G_{A} and G_{B} are given by Eqs. 5-126 and $5-127$, respectively. Thus, for the case of a frame with sidesway, Eq. $5-128$ must be solved for k for each member of the frame. The secant method of nonlinear algebraic
equations is used in finding the roots of Eqs. 5-125 ard 5-128 in the present work.

The interaction Eqs. 5-116, 5:117, and 5-118 are implemented at the point of maximum bending moment for an element If there are no loads between the end points of an element; then the maximum bendingmoment is at one of the ends; otherwise the actual point of maximum bending moment is found and the interaction equations are implemented there As an example consider the case of a uniformly distributed ojod on a frame element (Fig 5-25) ;the moment at a distanice x from the left end is given by

$$
\begin{equation*}
M_{x}=F_{3}^{i}-F_{2}^{i} x-\frac{w x^{2}}{2} \tag{5:129}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial M_{x}^{\prime}}{\partial \dot{x}}=-F_{2}^{\prime}-w x=0 \tag{5-130}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{\max }=-\frac{\dot{F}_{2}^{\prime}}{w} \tag{5-131}
\end{equation*}
$$

Therefore, from Eq. 3-129

$$
\begin{equation*}
M_{\max }=-F_{3}^{\prime}+\left(F_{2}^{l}\right)^{2} /(2 w) \tag{5-132}
\end{equation*}
$$

Eq. 5-132 is used in computing the maximum bending stress required in the interaction equations. Now, the implementation of the interaction equations will be considered one by one and the vectors $\partial \tilde{\phi}_{g} / \partial z$ and $\partial \tilde{\phi}_{s} / \partial b$ wilh be computed in each case. For the sake of simplicity, let N be the direct force on the element, $M_{\text {max }}$ be the maximum bending moment, k_{i} be the effective length facior, and L_{i} be the length of the member to which the t th element belongs.

AMc户

-b. Interaction Equations:-
(1) Interaction'Eq. 5-116:

Eq. 5-116, for the riaximum stress in the ith elements can be written as

$$
\begin{equation*}
\tilde{\dot{\phi}}_{i}=\frac{N}{A_{i} F_{a}^{\prime}}+\frac{M_{m a x}}{Z_{j} F_{b}}-10<0 \tag{5-133}
\end{equation*}
$$

where:Z:Is the beam bending stiffiness.
In case Eq. 5.133 is yiolated when one must compute $\Delta \bar{\phi}_{s}, \partial \bar{\phi}_{s} / \partial S_{5} \partial \bar{\phi}_{s} / \partial F_{s}$ and $\partial \bar{\phi}_{s} / \partial b$. Therefore, from Eq: $5-13.3 \partial \sigma_{2} / \partial z=0$ and

$$
\begin{equation*}
\Delta \hat{s}_{t}=-\left(\frac{N}{A_{i} R_{d}}+\frac{M_{\text {max }}}{\partial_{i} \mu_{t}}-10\right)<0 \tag{5-:34}
\end{equation*}
$$

Ditieprentiating Lex. S-133 with respect to 2 ,

$$
\begin{equation*}
\dot{\partial} \dot{\partial}_{s}=\frac{1}{A_{i} F_{a}} \frac{\partial V}{\partial z}+\frac{1}{Z_{l} r_{b}^{C}} \frac{\partial M_{\max }}{\partial z} \tag{5-135}
\end{equation*}
$$

The value of $\partial M_{m \Delta x} / \partial z$ depends on the expression that defines $M_{\text {max }}$. If $M_{\text {max }}$ occurs at an end of the element, then

$$
\begin{equation*}
M_{m \in x}=F_{3}^{\prime} \text { or } F_{6}^{\prime} \tag{5-136}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial M_{\max }}{\partial z}=\frac{\partial F_{3}^{\prime}}{\partial z} \text { or } \frac{\partial F_{6}^{!}}{\partial z} \tag{5-137}
\end{equation*}
$$

If $M_{\max }$ uccurs at a point other than the ends, then Eq. 5-132 gives its valus, and

$$
\begin{equation*}
\frac{\partial M_{\max }}{\partial z}=\frac{\partial F_{3}^{\prime}}{\partial z}+\frac{F_{2}^{\prime} \partial F_{2}^{\prime}}{w \partial z} \tag{5-138}
\end{equation*}
$$

Again, differentiating Eq. 5-133 with respect to b,

$$
\begin{align*}
& \frac{\partial \dot{\phi}_{s}}{\partial b}=\frac{1}{A_{i} F_{a}}\left(\frac{\partial N}{\partial b}-\frac{N}{2 b_{i} \partial b}\right) \\
&=\frac{N}{A_{i} F_{a}^{2}} \frac{\partial F_{a}}{\partial b}+\frac{1}{Z_{i} F_{b}} \\
& x\left(\frac{\partial M_{\text {max }}}{\partial b}-\frac{3 M_{\text {max }}}{4 b_{i}} \frac{\partial b_{b}}{\partial b}\right) \tag{5-139}
\end{align*}
$$

The valué of $\partial M_{\text {max }} \partial \partial b$ cañin be found from Eq. 5-136 or Eq. 5-132, which are as follows:

$$
\begin{align*}
& \frac{\partial M,}{\partial z}=\frac{\partial F\}}{\partial b} \text { or } \frac{\partial F b}{\partial b}- \tag{5-140}
\end{align*}
$$

 is found lrom Eq, \#́r 11 or eq. 5-115. First, if $k_{i} L_{!} / f_{4}: C_{c}^{\prime}$, theinka. $5-111$ gives the vatue of Ius ind

$$
\begin{align*}
\frac{\partial F_{a}}{\partial b} & =\frac{F_{y} e_{i}}{4 b_{i}(\mathrm{~F} . \mathrm{S} .)}\left[e_{1}+\frac{3}{8 i} \frac{1}{2 . S .}\right. \\
& \left.\times\left(1-e_{i}^{2}\right)\left(1-\frac{1}{2} e_{i}^{2}\right)\right] \frac{\partial b_{1}}{\partial b} \\
& -\frac{F_{y} e_{l}}{k_{i}(\mathrm{~F} . \mathrm{S} .)}\left[e_{i}+\frac{3}{8(\mathrm{~F} . \mathrm{S} .)}\right. \\
& \left.\times\left(1-e_{i}^{2}\right)\left(1-\frac{1}{2} e_{l}^{2}\right) \frac{\partial k_{1}}{\partial b}\right] \tag{5-142}
\end{align*}
$$

where

$$
\begin{equation*}
e_{i}=\frac{k_{1} L_{i}}{r_{i} C_{c}} \tag{5-143}
\end{equation*}
$$

$\triangle M C P 708-192$

 value of F_{a} and

$$
\begin{equation*}
\frac{\partial F_{a}}{\partial b^{*}}=\frac{F F_{a} \partial b_{b}}{2 b_{l}} \frac{\partial F_{z} \partial k_{1}}{\partial b}=\frac{k_{l}}{\partial b} \tag{5-144}
\end{equation*}
$$

Substituting the appropriate expresuons in Eq- $5-139$ the value $\delta \mathrm{f} \partial \phi_{0} / \mathrm{t} b$ can be found.
(2) Interaction Eq 5 117:

Eq -5i17 for the maximum stress in the ith element can bewritten as follows:

$$
\begin{equation*}
\phi_{2}=\frac{N}{A_{i} F_{a}}+\frac{C_{m} M_{\max }}{\psi_{1}^{\prime}}-1.0<0 \tag{5.145}
\end{equation*}
$$

where

$$
\begin{equation*}
\ddot{\psi}_{1} \equiv\left(1-\frac{N}{A_{i} F_{c}^{*}}\right) Z_{l} F_{b} \tag{1}
\end{equation*}
$$

If this constraint is violated, then one must compute $\Delta \phi_{j}, \partial \phi_{s} / \partial \xi, \partial \phi_{s} / \partial z$, and $\partial \phi_{s} / \partial b$. In this case $\partial \phi_{s} / \partial{ }_{5}=0$ and

$$
\begin{equation*}
\Delta \tilde{\phi}_{s}=-\left(\frac{N}{A_{1} F_{a}}+\frac{C_{m} M_{\max }}{\psi_{1}}-1.0\right) . \tag{5-147}
\end{equation*}
$$

Differentiating Eq. 5 -145 with renpect to z and b, one obtains

$$
\begin{aligned}
\frac{\partial \tilde{\phi}_{s}}{\partial z}= & \left(\frac{1}{A_{i} F_{a}}+\frac{C_{m} M_{\max }}{\psi_{1} \psi_{2} A_{i} F_{z}^{\prime}}\right) \frac{\partial N}{\partial z} \\
& +\left(C_{m} \frac{\partial M_{\max }}{\partial z}+M_{\max } \frac{\partial C_{m}}{\partial z}\right) / \psi_{1}
\end{aligned}
$$

and

$$
\frac{\partial \bar{\phi}_{s}}{\partial b}=\frac{1}{A_{1} F_{a}}\left(\frac{\partial N}{\partial b}-\frac{N}{2 b_{i}} \frac{\partial b_{i}}{\partial b}\right)-\frac{N}{A_{1} F_{a}^{2}} \frac{\partial F_{a}}{\partial b}
$$

$$
\begin{align*}
& +\left(\dot{C}_{m} \frac{\partial M_{m a x}}{\partial b_{0}}+M_{\text {max }}=\frac{\partial C_{m}}{\partial \dot{b}}\right) / \psi_{i_{i}} \\
& \frac{C_{m} M_{\text {max }}}{\psi_{1} \psi_{2}}\left[\frac { 3 } { 4 b _ { l } } \left(1+N / A_{i} F_{i}^{i} \frac{\partial b_{i}}{\partial \xi}\right.\right. \\
& \left.-\frac{1}{A_{i} F_{e}^{\prime}} \frac{\partial N}{\partial b_{b}}-\frac{2 N_{i}}{k_{i} A_{i} F_{e}^{\prime}}-\overrightarrow{\partial b}\right] \tag{5-149}
\end{align*}
$$

whère

$$
\begin{equation*}
\psi_{2}=\left(1-\frac{N}{A_{i} F^{\prime}}\right) \tag{5-150}
\end{equation*}
$$

(3) Interáctioni Eq. 5 -118:

Next, consider Eq: 5-118; which may be. written as follows for the maximum stress in the the clement

$$
\bar{\phi}_{s}=\frac{N}{0.6 F_{y}}+\frac{M_{\max }}{Z F}-1: 0<0 .(5-151)
$$

Theretorice, $\partial \ddot{\varphi}_{s} / \partial \zeta=0$ and

$$
\begin{equation*}
\Delta \tilde{\phi}_{s}=-\left(\frac{N}{0.6 F_{y} A_{i}}+\frac{M_{\text {imax }}}{Z_{i} F_{b}}-1.0\right) . \tag{5-152}
\end{equation*}
$$

Differentiating Eq, 5-151 with respect to 2 and b, one obtains

$$
\begin{equation*}
\frac{\partial \bar{\Phi}_{s}}{\partial z}=\frac{1}{0.6 F_{y} A_{i}} \frac{\partial N}{\partial z}+\frac{1}{Z_{l} F_{b}} \frac{\partial M_{\max }}{\partial z} \tag{5-153}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial \dot{\phi}_{i}}{\partial b}= & \frac{1}{0.6 F_{y} A_{i}}\left(\frac{\partial N}{\partial b}-\frac{N}{2 b_{i}} \frac{\partial b_{i}}{\partial b}\right) \\
& +\frac{1}{Z_{i} F_{b}}\left(\frac{\partial M_{\max }}{\partial b}-\frac{3 M_{\max }}{4 b_{i}} \frac{\partial b_{i}}{\partial b}\right) . \tag{5-154}
\end{align*}
$$

- It may be noted in the previous equations that

$$
\begin{equation*}
\frac{\partial b_{1}}{\partial b}=(0, \ldots, 0,1,0, \ldots ., 0) \tag{5.155}
\end{equation*}
$$

The value of the vectors such as $\partial N / \partial z$, $\partial N / \partial \dot{b}_{2} \partial F_{2}^{l} / \partial z, \partial F_{3}^{i} / \partial b$ can be found directly from the Eq. 5-102: The vectors $\partial C_{m} / \partial z$ and $\partial C_{m} / \partial b$-are zerc for cases prescribed by Eqs. $5-120$ and $5-122$. For the case prescribed by Eq. 5-121, they are computed using the chain rule of differentiation. It remains to find value of the vector $\partial k_{i} / \partial b$. This yector can be computed by differentiating Eq. 5-125 or Eq. 5-128 with respect to the design varigble vector b. However, due to the fact that both G_{A} and G_{B} are functions of b, this computation is quite tedious and time consuming on the computer. Another approach that may be followed for computing $\partial k_{l} / \partial b$ is to use the method of finite differences; but this approach is equally time consuming on the computer. Moreover, it has been observed in the numerical computation that the value of k_{l} does not change appreciably from one design cycle to another. Therefore, without significant loss of accumacy, the value of k_{l} in a particular design cycle is treated as a constant. However, at the start of each design cycle, k values for all the members of the frame are recomputed. Thus, following this procedure, $\partial k_{f} / \partial b=(0, \ldots . ., 0)$. Now, all the necessary information is available to assemble matrix Λ of Eq. 5-20.

5.6.3 EXAMPLE PROBLEMS

Several rigid frames were optimized using the computer progiam based on the algorithm of par. 5-3.1. All the problerss were solved with stress, displacement, frequency, and design varable constraints. Example problems

5-4 and 55 that follow also are treated in Ref. 28:and were first designed for only stress, constraints in order to compare results with. those of Ref: 28.

1. Example 5-4. Simple Portal Frame

Fig. 5-26 shows the dimension of the frame. The moment of inertia for each element of the frame is treated as an unkown, and the results obtained are shown in Table 5-12. The frame was first \cdot designed with only stress constraints. The final weight in this case was 3050.5 lb with a computation time of 3.74 sec for 13 cycles. At the final design point, the maximum constraint violation was 0.012% for stress in element 2. Optimal weight reported in Ref. 28 was 3206 lb ; which is higher by approximately 5%.

The frame was also derigned by including all the consiraints. The resonant frequency limit for the structure was 25.0 Hz and the final weight obtained in this case was 3803.0 lb with a computation time of 14.60 sec for 31 iterations. At the final design point, the maximum constraint violation was 0.0073%

Figure 5.20. Simple Portal Frame (Example

SIMPLEE PORTAL FRAME (EXAMPIE 5-4)

Dasign Information: For esch element of the frame, the modulus of elasticity, the specific weight, and the vield stress are 3×10^{4} kips $/ \mathrm{in}^{2}{ }^{2}, 0.2836 .10 / \mathrm{in}^{3}{ }^{3}$, end $36.0 \mathrm{kips} / \mathrm{in} .^{2}$, respectively. The constants $g_{j} c_{j}$ and d_{j} ara 0.58 , 0.68 , and 0.67 , respectively. The lower ilmit on the monient of inertia of each elemiont is 1.0 in. ${ }^{4}$ and there is no upper limit. The rosonant frequency is 25.0 Hz and the displacement limits are 0.5 in . at nodes 2,3 , and 4 in both x_{1} - and x_{2}-directions. There are three loading zonditions for the frame; firss is uniformily distributed losd of -0.5 kip/inn on elements 2 and 3, secomi is a load of 45.0 kips in x-direction at node 2 , and the third is a load of -45.0 kips in x_{1}-direction at node 4.

With Only Stress Constraints Conequtation time $=3.74$ sec			With All the Constraints Computation time $=14.60 \mathrm{mo}$		
El. No.	Starting Values, in. ${ }^{4}$	Final Values, in. ${ }^{4}$	$E 1$. No.	Sterting Values, in. ${ }^{4}$	Final Values, in. ${ }^{4}$
1	1600.0	1091.4	1	1500.0	1995.5
2	1600.0	768.3	2	1600.0	860.3
3	1600.0	763.3	3	1600.0	360.3
4	1600.0	1091.3	4	1600.0	1995.5
Wt, lb	3947.7	3050.5	Wt, lb	3547.7	3803.0

for stress in ilexent 2. Fig. 5-27 shows the variation of the oblective .unction as the iterations progress. It may be noted that, for practical purposes, convergence was obtained

Figure 5-27. Iteration vs Weight Curves for Example 5-4, Simple Po, tal Frame
in only 5 iterations in the first case and in 7 iterations in the second case. However, in the second case, the cost function continued to reduce for a few cycles beyond the 7th iteration without correcting the constraints. This was due to the fact that the step size for the problem was too large.
2. Example S-S. One-bay Two-story Frame

The present example is also treated in Ref. 28 Fig. $5-28$ shows the dimensiens and the loading conditions for this structure. Input and output information for this example is given in Table 5-13. This irame was first designed for stress constraints only. The final weight in this case was 8292.0 lb with a computation time of 21.47 ssc for 32 iterations. Maxmum constraint violation at the design point in this case was 0.27 percent for stress in element 3. The comparable final
weight reporied in Ref. 28 was 8810 lb , which is again higher by approximately 5.8%.

Figura 5.28. One-bay, Two-story Frame (Example 5-5)

The frame was also designed while enforcing all constraints. The resonant frequency limit in this case was 15.0 Hz . The final. weight obtained in this case was 9722.5 lb with a computation time of 48.84 sec for 32 iterations. Maximum constraint violation was $0.38 \times 10^{-3} \%$ for displacement of node 3 in the Σ_{1}-direction. Fig. $5-29$ shows variation of the cost function with respect to iteration number, and it may again be noted that convergence was obtained in 8 cycles in both the cases.
3. Example 5-6. Two-bay Six-story Frame

Figure 5-30 shows the geometry and dimensions of the frame. This frame has 21 joints, 30 members, and 54 degrees of frecdom. The frame was designed for four loading conditions, and the input and output informa-

ONE-BAY, TWO-STORY FRAME (EXAMPLE 5-5)

Design Information: For each alement of the frame, the modulus of elasticity, the specific weight, and the yield stress are $3 \times 10^{4} \mathrm{kips} / \mathrm{in} .{ }^{2}, 0.2836 \mathrm{lb} / \mathrm{in}^{3}{ }^{3}$, and $38.0 \mathrm{kjp} / \mathrm{in} .^{2}$, respectively. The constants s_{j}, c_{j}, and d_{j}, are 0.58 , 0.58 , and 0.67 , respectively. The lower limit on the moment of inertia of each element is 1.0 in. ${ }^{4}$ and there is no uppet Imit. The resonant frequency for the frame is 15.0 Hiz and the displacement limits are 1.0 in , at nedes 2, 3, 4, 5. 0_{0} arid 7 in both x_{1}-and x_{2}-directions. There are three losding condi $7 s$ for the structure, and they are as shown on Fig. 5 ? 7.

With Only Strass Constraints Computation ime $=21.47$ ss 6			With Ail the Constraint Computation time * 48.84 gac		
El. No.	Starting Val ras, in. ${ }^{4}$	Final Volues, in. ${ }^{4}$	El. No.	Starting Vsiues, in. ${ }^{4}$	Fina! Valuas, in. ${ }^{4}$
1	6400.0	3264.8	1	6400.0	3794.0
2	6400.0	001.4	2	6400.0	1436.3
3	6400.0	801.5	3	6400.0	145.7
4	6400.6	$80: .5$	4	64000	845.7
5	6400.0	2598.7	5	6400.0	4818.8
6	6400.0	2598.7	6	wi00.0	4618.8
7	64.0 .0	901.4	7	6400.0	1436.3
8	6400.0	32674	8	0400.0	3794.0
Wt, lb	15790.8	8292.0	Wt, lb	15780.8	3722.5

Figure 5-29. Iteration Number vs Weight Curves for Example 5-5; Onebay, Two-story Frame
tion for the problem is given in Table 5-14. The frame was first optimized by imposing the stress constraint only. The optimum weight in this case was 21706.6 lb with a computation time of 8.32 min for 21 iterations. At the final design point, the maximum constraint violation was 0.025% for stress in elcment number 25 . Next, the frame was designed by imposing all the constraints. The optimum weight in this case was 24290.1 lb with a computation time of 8.7 min for 20 iterations. At the final design point, the maximum constraint violation was 0.0072% for displacement in the x_{1}-direction at node 1. All other violations were less than that.

Fig. 5-31 shows variation of the cost function with respect to the iteration number. The starting peint in this case was quite a distance away from the optimum point. Therefore, a larger step size was used in the first few iterations. Also, it was observed from
the first few iterations that reductions in the values of the design variables for elements 23 , $24,25,28,29$, and 30 were relatively smaller than those of other elements. This is due to nature of the gradient of objective function for this problem (Eq. 5-106). So, the values of these design variables were reduced considerably at the 7th iteration. This is shown by the vertical drop in the graph at the 7th iteration on Fig. 5-31. In the second case, where all the constraints were considered, variation of the cost function with respect to the iteration is shown in Figure 5-32. In this case, the starting point was infeasible and the convergence was obtained in 8 iterations.

Figure 5-30. Two bay, Six-story Frame (Example 5-6)

AMCP 706-192

TABLE 5-14

TWO-BAY, SIX-STORY FRAME (EXAMPLE 5-6)
Design Information: For each alement of the frame the modulus of eiasticity, the specific weight, and the yieid stress are $3 \times 10^{4} \mathrm{kips} / \mathrm{in} .{ }^{2}, 0.2836 \mathrm{lb} / \mathrm{in} .^{3}$, and $36.0 \mathrm{kips} / \mathrm{in} .{ }^{2}$, respectively. The constants a_{1}, c_{p} and d_{j} are 0.58 , 0.58 , and 0.67 , respectively. The lower and the upper limits on the moment of inertia of each element are 394.5 in. ${ }^{4}$ and 6699.0 in. ${ }^{4}$, respectively. The resonant frequency of the structure is taken as 4.0 Hz ens the displacement limits ars 2.0 in . at all nodes in both x_{1} - and x_{2}-directions. There are four loading conditions for the frame: (1) UniformIy distributed load of $-4.0 \mathrm{ki} \mathrm{\rho s} / \mathrm{ft}$ on element $1,7,11,17,21$, and 27 , and $-1.0 \mathrm{kip} / \mathrm{ft}$ on elements $2,6,12,16,22$, and 26; (2) Unifnrmly distributed load of - $4.0 \mathrm{kips} / \mathrm{ft}$ on elements 2, 6, 16, 22, and 26, and - $1.0 \mathrm{kip} / \mathrm{ft}$ on elements $1,7,11,17,21$, and 27; (3) Uniformly distributed load of $-1,0 \mathrm{kip} / \mathrm{ft}$ on elements $1,2,6,7,11,12,16$, 17, 21, 22, 28, and 27, and loads of 9.0 kips each at nodes $1,4,7,10,13$, and 16 in direction or the x-axis; (4) Uniformly distributed load of - $1.0 \mathrm{kip} / \mathrm{ft}$ on elements $1,2,6,7,11,12,16,17,21,22,26$, and 27 , and loads of -9.0 kips each at nodes $3,6,9,12,15$, and 18 in direction of $x_{1}-a x i s$.

With Only Stross Constraints Computation time $=8.32 \mathrm{~min}$			With All Constraints Computation time $=8.70 \mathrm{~min}$		
El. No.	Starting Valuas, in. ${ }^{4}$	Final Values, in. ${ }^{4}$	El. No.	Starting Values, in. ${ }^{4}$	Final Values, in. ${ }^{4}$
1	2400.0	450.6	1	354.5	473.8
2	2400.0	450.6	2	394.5	473.8
3	2400.0	498.6	3	394.5	467.2
4	2400.0	394.9	4	394.5	437.5
5	2400.0	$498{ }^{\text {c }}$	5	394.5	467.2
6	2400.0	530.8	6	394.5	568.7
7	24000	530.8	7	. 34.5	569.1
8	2400.0	394.3	8	394.5	394.5
9	2400.0	397.1	9	394.5	608.5
10	2400.0	394.1	10	394.5	394.5
11	3200.0	481.8	11	450.0	787.0
12	3200.0	481.7	12	450.0	786.4
13	3200.0	425.3	13	400.0	412.7
14	3200.0	472.7	14	450.0	794.1
15	3200.0	426.3	15	400.0	412.6
16	4000.0	521.9	16	550.0	930.2
17	4000.0	521.7	17	550.0	930.0
18	4000.0	468.3	18	550.0	561.9
19	4000.0	723.5	19	750.0	920.4
20	4000.0	467.5	20	550.0	561.8
21	4800.0	699.1	21	600.0	1019.1
22	4800.0	699.1	22	600.0	1018.7
23	4800.0	646.3	23	7000	693.4
24	4800.0	1044.5	24	1100.0	1197.0
25	4800.0	646.5	25	700.0	693.3
26	5600.0	666.4	26	600.0	868.5
27	5600.0	666.4	27	Eu0.0	867.9
28	5600.0	1099.0	28	1200.0	1245.4
29	5600.0	1489.7	29	1600.0	1658.6
30	5600.0	10990	30	1200.0	1245.3
Wt, it	54290.9	217066	We, lb	21.736	242901

Figure 5.31. Iteration Number us Weight Curves for Examplo 5.6; Two-bay, Sinstory Frame, With Stresr Constraints Only

Figure 5-32. Ifratigit os Weight Curves for Exancle 5-6; Two-bay, Six. story Frar 0 . With All Constraints

5.7 INTERACTIVE COMPUTING IN STRUCTURAL OPTIMIZATION

5.7.1 THE INTERACTIVE APPROACH

Structural optimization tecnniques ireated thus far consist of methods which seek to determine an optimum design, within a welldefined mathematical structure, by purely mathematical techniques. A second approach consists of providing the derigner with an interactive computing tool with which he can try nominal designs, get rapid analysis feedback, and alter his initial design based on his knowledge of structural behavior. Both methods have been used with varying degrees of success on a variety of design problems. In general, the first approach has been used for problems with well-defined optımality criteria, such. as minimum weight or maximum stiffness. The second approach has been used to aid designers in large scale structural design problems, primarily airframe design, such as the Air Force C-5 transport aircraft.

The possibulity of utilizing a combination of these two methods for structural design has been the subject of a recent paper (Ref. 36). This paragraph presents the specifics of application of the steepest-descent technique with designer interaction. This hybrid approach is appealing from a number of points of view. First, the problem of topological design, i.e., determination of optimum structural confighration, has been addressed with very limited success from an analytical point of view. Topological design, in practice, is done by experienced structural designers, occasionally with the aid of interactive computation. Combined analytical and interactive computing methods appear to be essential for tris important class of problems. A second prn', lem area arses due to the difficery' in formulating a sugle optimality condition and
mathematically precise design constraints. Often, conflicting design cor.straints and objectives arise during design which require experienced judgment and defy a priori mathematical formulation. Such problems appear to require an interactive computing capability hut should profit from analytical methods that are used in automated structural optimization.

Due to unavailability of a large scale, interactive system, the computations for this study were simulated. Instructions were prepared and computations were rim in the batch mode. Output data were then displayed and analyzed just as they would be in the interactive mode, and instructions for recomputation were given by the designer and the process repeated. The delay in designer interaction is felt to degrade performance somewhat, over true interactive computing, since the designer tends to of -get pertinent detailed data during the time delay. For this reason, the results of this study should provide a conservative estimate of the designer's performance in a truly interactive mode.

5-7.2 INTERACTIVE STRUCTURAL DE. sIGN USING SENSITIVITY DATA

The steepest-desce ${ }^{-1}$ optimization method developed in this Chapter has been used to solve a number of relatively large scale structural optumization problems with good success. All these problems, however, have been well formulated mathematically and have involved structures with a predetermined form. Difficulties have occurred when certain structural elements tend toward zero cros; section. Further, no universa! method has been found to determine the best step-size η in the optimization algorithm. These and other inherent difficultes in automated opt1mization lead one to interject an experiences: designer into the computatonal, optimuatio:
algorithm. The result is a hybrid structural optimization technique.

Reconsidering the design improvement step of the optimization algorithm, one might draw a vector picture in design space, as is depicted i.. Fig. 5-33. Here. $-n \delta b^{1}$ is the direction which will yield the greatest reduction in J subject to the required constraints, and δb^{2} is the design change required to give the desired constraint error correction. While useful in this form, there is a better display of these data for use by the experienced struclural designer. The scalar components of $-\delta b^{1}$ and δb^{2} tell the designer whether he should increase or decrease his individual design variables to obtain desirable changes in overall structural response. Further, relative importance of design variable changes is given. For this reason, δb^{1} may be interpreted as a vector of design sensitivity coefficients tha: relate individual design parameter changes to overall structural characteristics. It is extremely important to note, at this point, that these sensituvity coefficients account fol sonstraints implicitly; i.e., the direction of canange indicated in the

Figure 5.33 Vi it ir Change m Desizn Sface
design parameters will not casse significant violation in specified performance constraints such as stress limits and deflection !imits.

To illustrate these ideas, consider the simple structural design problem in Fig. 5-34.

Figure 5-34. Three-bar Truss

The cost function here is structural weight. If, for example, the stress in member 1 is at its allowable limit under one of the loads, then the indicated changes in design ($-\delta b \mathrm{l}$, $-\delta b_{2}^{1},-\delta b_{3}^{1}$) will not increase the stress in member 1. To make the design sensitivity data of maximum use to the designer, consider the graphical display in Fig. 5-35. In this display, σ, 'e the stresses in the various members. This display gives the experienced

Figure $535 \begin{aligned} & \text { Dispiav of Design Sensitivity } \\ & \text { Data }\end{aligned}$
designer a clear picture of the manner in which he should change his design paraneters to reduce total weight, subject to stress constraints. He can now choose the desired reduction ΔJ in weight and take the resulting design change δb, or if he wishes, he can input modified design changes through an interactive computer terminal.

I a number of other respects in whic. mode of designer interaction with the computer alogrithm is beneficial. First, it ppens in the automated use of the soritum that oscillation of admissible deugns ac tas because too large a design improvu.. I has been requested. Such oscillation can ofta, be identified by the designer after only a few iterations and the step size can be reduced to prevent loss of computer time, which can be significant in large scale problems. Conversely, if an estimate quite far from the optimum is chosen to initiate the algor.thm, it often happens that the designer chooses far too small a step size. The result is a very small improvement in the design which can be sensed by the designer and improved before excessive computation time s expended.

A second mportant benefit from designer interaction with the algorithm arises due to the occurrence of local minima and singularties in the analytical fermulation of the design problem The problem of local minima is illustrated by Fig. 5-36. Virtuall all optimization methods seek local optim. and do not solve the global optimization pi, dem It is easy for an optumization technique to get hung up at point B and not get to point A. which is the global mimma, so the desgner must try different starting points to cotan the global solution This is a very time consuming and indefinite technique with very few analytual ads to the desgener Part of the

Figure 5-36. Local Optima
difficulty here arises because Figure $5-35$ is the wrong display for the designer in that it dows not utilize nis knowledge and experience with strictures.

A much better approach for the designer is to look at a display such as Figure 535 . He can use his experience to restart the optimization algorithm at a meaningful distribution of design variables which may be quite different from the design which resulted from previous calculations. His experience, thus, aids him in start ng with different trial designs.

Perlaps even more important than trying vario'is distributions of design variables, the des.ener can utslize the display of Fig. 5-35 to clange the configuration of the structure bused on information he accumulates during rerative design and based on his experience For example he might try taking member? out of the structure and optumaze based on the mouified configuration. Very often, sugnticant gains are made in ths manner Prec.sely this behavior occurs in the three member truss being considered

There are actually compelling mathematha! reasons for allowing the dengner to make
changes in configuration as outlined. There are no general optimization methods, to date, which will remove a member during iterative design. The reason is that as a member cross section goes toward zero, as is required to remove a member, the equations of structural mechanics and stress constraints become singular. This sort of bchavior is typical when the configuration of a system is changed and a different set of equations is required to describe the behavior. At the present time, allowing the designer to make shanges in configuration appears to be the most feasible approach. which requires that he play an active role in the iterative optimization algorithm.

5.7.3 EXAMPLE PROBLEMS

i. Example 5-7. A Three-member Truss

As an illustrative example of the technique presented in par. 5-7.2, an elementary optimal design problem will be solved under a number of loading conditions and a variety of constraints The effect of designer-computer interaction on rate of convergence is examined as well as the effect of clanging structural configuration.

Figure 5-37(A), shows the geometry and dimensions of the structure being considered. This structure has been studied by S.mit (Ref. 37), Sved and Ginos (Ref. 38), and Corcoran (Ref. 35). Three indeoendent loading conditions are applied to the structure These are as follows. 40 K at $45 \mathrm{deg}, 30 \mathrm{~K}$ at 90 deg. 20 K at 1.35 deg. The allowable stress level tor members 1 and 3 is $\pm 5 \mathrm{~K} s$ and for
 materal is taken as $010 \mathrm{lb} / \mathrm{m}$ ' and Young', modulus a 10^{4} Ky startung from the teanble solution. $b_{1}-80_{1} b_{2}=24, b_{3}=32$. Shmmt (Ret 37) arrived at the solution $b_{1}=7099$.

(A) Threobar Truss

(B) Corcoran Truss

Figure 5-37. Trusses (Example 5-7)
$b_{2}=1.849, b_{3}=2.897$, for which $J=15.986$ lb. Sved and Ginos (Ref. 38) have shown that this is only a local minima and by omitting member 3, they obtained the solution as $b_{1}=8.5, b_{2}=1.5$ with $I=12.812 \mathrm{lb}$. They have also shown that it is impossible to reach this minimum ly an iterative optimization method unless member 3 is omitted from the calculations by the designer. Corcoran Ref. 35) has considered configurat'unal optimization of this three-bar truss By using horizontal coordinates of nodes 1,2 , and 3 also as design variables, he arrived at an optumum strut ture shown in Fig. 5-37(B). As a result of this conligurational optimization procedure, members 1 and 3 were combined and their orientation is shown by member 1 of Fig 5.37 (B) Member 2 attaned an ortentation as
shown in this figure. The final solution obtained by Corcoran was $b_{1}=4.241$, $b_{2}=2.038$ with $J=7.55 \mathrm{lb}$.

Considerable experimentation was done with this problem. Starting from a feasible point $b_{1}=10, b_{2}=5, b_{3}=5$, the solution obtain?d without interaction was $b_{1}=7.064$, $b_{2}=1.971, b_{3}=2.635$ and the minimum was $J=15.97 \mathrm{lb}$. The variation of weight with respect to iteration number is shown by Curve 1, Fig. 5-38. Next, by adjusting the step size in interactive compuaing, the solution was obtained in only five iterations. This is shown by Curve 2, Fig. 5-38. It was observed that member 2 never reached its allowable stress level. As a second starting point, the area of member 2 was initially chosen to bring its stress to the allowable limit. The minumum reached in this case was the same as before, Curve 3, Fig. 5-38. Another solution was obtained by starting from an infeasible point $b_{1}=5.0, b_{2}=15, b_{3}=0.10$. The solution in this case was $b_{1}=6.98, b_{2}=2.30, b_{3}=2.68$ with $J=15.97 \mathrm{lb}$, Curve 4 , Fig $5-38$.

Next, member 3 was omitted from the structure. Startirg from a point $b_{1}=10$, $b_{2}=5$, the solution obtained was $b_{1}=8.0$, $b_{2}=1.5$ with $J=12.812 \mathrm{lb}$, Curve 1, Fig. 5.39 , which is same as reported in Rei 38 . At

Figure 5.38. Iter. ion ve Weight Curves for Examole 5-7, Three-bar Truss With Stress Constraints Only

Figure 5-39. Iteration vs Weight Curves for Examp!e 5-7, Three-bai Iruss With All Construints
this point an interesting observation was made. The maximum horizontal and the vertical deflections oi node 4 were as follows: with three bars, $z_{1}=0.689 \times 10^{-2} \mathrm{in}$., $z_{2}=0.595 \times 10^{-2}$ in.; with two bars, $z_{1}=0.239 \times 10^{-1} \mathrm{in}$., and $z_{2}=0.20 \times 10^{-1} \mathrm{i}$. Thus, although the optimum weight obtaines by omitting member 3 is approximately 24% lower than the weight obtaned by including member 3 , the deflections of node 4 in the former case were approximately four times greater than in the latter case.

One might be led to believe that if deflection or frequency constraints were enforced, then the optimum structure might not be statically determinate. To investigate thipossibility, displacement as well as buckling and natural freguency constraints were imposed. The deflection limits were taken as $z_{1}= \pm 0.005$ in. and $z_{2}= \pm 0005$, and the lower limit on natural frequency was taken as 3830 Hz . With the starting point $b_{1}=10$, $b_{2}=5, b_{3}=5$, the solution obtained was $b_{1}=918 . \quad b_{2}=$? $16, \quad b_{3}=385$, and $J=2059 \mathrm{lb}$. Cures 2 and 3, Fig 5.39. When nember 3 we omited, the starting pont was taken as $b_{1}=19, b_{2}=10$ curve 4, Fig 5.39. and a $b_{1}=18, b_{2}=19$, (urve 5, Fig 5-39 The solutaon obtaned in thas case was
$b_{1}=16.0, b_{2}=11.31$, and $J=33.94 \mathrm{lb}$. Thus, the optimum weight obtained for this statically determinate case is approximately 70% higher than the optunum weight obtained for the statically indeterminate case.

Ii was found that interactive computing yielded convergence more rapidly than was the case in the batch mode. It is expected that even more sigrificant reduction in computing time will occur in large scale problems.

This problem was also solved by omitting member 2 from computation. The results obtained in this case are given in Columns 3 and 7 of Table 5-15. The truss optimized by Corcoran (Ref. 35) was also solved here by first imposing the stress constraints only and then by considering all the constraints. The results of these cases are given in Columns 4 and 8 of Table 5-15.

The key point in the solution is that the configuration of the optimum design is not obvious from analytical considerations. A designer's experience and insight are required to select candidate configurations and then vutain the optimum design analytically. The global solution in this case must be chosen by comparing relative minima. It may be expected, in structures with greater redundancy, that certain members may be removed during interactive computation when they are observed to approach their allowable lower limits.

An interesting point, illustrated by Table $5-15$, is that a statically determinate truss is opumum when only stress constraints are imposed Quite the contrary, when the full range of constrants are umposed, a statically indeterminate truss is optimum (not considering the configurational optimization)

TABLE 5-15

OPTIMUM THREE-MEMBER TRUSSES (EXAMPLE 5-7)

$\begin{aligned} & \text { El } \\ & \text { No. } \end{aligned}$	With Only Stress Constraints				With All Constraints			
	Finul Area, in. ${ }^{\text {a }}$				Final Aree, in. ${ }^{2}$			
	1	2	3	4	5	6	7	8
1	7.064	8.500	7.991	Corcoran Truss	9.180	16.00	8.485	Corcoran Truss
2	1.971	1.500	-	4.246	2.160	11.310	-	4.247
3	2.835	-	4.243	2.039	3.850	-	8.485	11.410
We, ib	15.970	12.812	17.300	7.555	20.59	33.94	24.000	20.115
Max. Dafl, in.	0.00589	0.02390	0.00766	0.02559	0.005	0.005	0.005	0.005

2. Example 5-8. Transmission Tower

Fig. 5-40 shows the geometry and dimensions of the transmission tower to be studied. This problem has been considered by Venkayya and others (Ref. 39). The tower has 25 members, 10 joints, 18 degrees of freedom, and is cesigned for 6 loading conditions. The structure is indeterminate, with a degree of indeterminacy of seven.

The tower was designed by first imposing only stress constraints, and then by imposing stress, displacement, buckling, and natural frequency constraints. Design information is given in Table 5-16, and the fir results obtained are shown in Tables 5-17 and 5-18. Table $5-17$ shows the results when on'y stress constrants are considered, and Table 5-18 gives the resuits for the corresponding cases when all the constraints are considered For resuits given in Column ! of Table 5-17, all the members of tower were :rcluded in the
computation and the Curve 1 of Fig. 5-41 shows the variation of cost function with the rumber of iterations. The computations of this case were monitored to determine which cross sections went to their lower bounds.

One set of members which attained their lower limits of cross-sectional area were numbers $10,11,12$, and 13. It was observed that these members carried small forces and could be removed without causing collapse of the tower, so they were removed from the tower. The final values of areas of cross section of the resulting structure are given in Column 2 of Table 5-17. Curve 2 of Fig. 5-41 shows the variation of cost function with respect to the design cycle. The final wight in this case was slightly less than the previous case.

The next member that reached ats lower limit was number 1 , so it was also removed from the structure The re ults of this case are given in Column 3 of Table 5-17 and Curve 3

Figure 5.40. Transmission Tower (Example 5.8)

AMCP 706-192

TABLE 6-16

DESIGN INFORMATION FOR TRANSMISSION TOWER (EXAMPLE 5-8)

For each member of the structure, the modulus of elasticity E_{i}, the specific weight ρ_{i}, the constant α_{1} (moment of inertis of i th member, $I,=\alpha, b^{2}{ }^{2}$), and the stress limits are $10^{4} \mathrm{kips} / \mathrm{in}{ }^{2}, 0.10 \mathrm{bb} / \mathrm{in}^{3}{ }^{3}, 1.0$, and $\pm 40.0 \mathrm{kips} / \mathrm{in}{ }^{2}$, respeetively. The lower limit on the area of cross section of each member is $0.10 \mathrm{in}^{2}{ }^{2}$ for the case with stress constraints only and $0.01 \mathrm{in}^{2}{ }^{2}$ for other cases. There is no upner limit on the member sizes. The resonant frequency for the structure is 173.92 Hz and the displacement limits are 0.35 in . on all nodes and in all directions. There are six loading conditions and they are as follows (all loads are in kips):

Losó Cond.	Node	Direction of Load			Load Cond.	Node	Direction of Load		
		x	γ	z			x	\checkmark	z
1	1	1.0	10.0	-5.0	2	1	0	10.0	- 5.0
	2	0	10.0	-5.0		2	- 1.0	10.0	- 5.0
	$?$	0.5	- 0	0		4	-0.5	0	0
	6	0.5	0	0		5	-0.5	0	0
3	1	1.0	- 10.0	-5.0	4	1	0	-10.0	- 5.0
	2	0	- 10.0	-5.0		2	- 1.0	-10.0	- 5.0
	3	0.5	0	0		4	-0.5	0	0
	6	0.5	0	0		5	-0.5	0	0
5				-5.0	6	1	0	-20.0	- 5.0
	2	0	- 20.0	-5.0		2	0	20.0	- 5.0

of Fig. 5-41. The final weight in this case was 86.94 lb , which is given slightly less than the previous case. Finally, members $14,15,16$, and 17 were at their lower limits of crosssectional area. Removal of any of these members, however, would cause collapse of the structure Members 2 and 5 or 3 and 4 could be removed to make the structure determinate. The results for a staticall; determinate structure, obtaned by removin. members 2 and 5 , are shown in Column 4 of Table 5-17 The final weight in this cne was 106.97 lb . It may be noted the: , whs statically determmate iructure yelded only a local optumem, Curve :, ، ig 5.41

Another sequence of removing the members that reached therr lower hmets of area of cross section was also tred Members 14, 15.

16, and 17 reached their lower bounds but removal of all of these members rendered a structure that was geometrically unstable. However, members 14 and 16 or 15 and 17 could be removed without causing the collapse of the structure. Results with members 15 and 17 removed are given in Column 5 of Table 5-17 and similar results are obtained by omitting members 14 and 16 from the computation. The next set of members that were at their lower bounds and could be removed without making the structure unstable were numbers 1, 12, and 13. These were also removed from the structure and the results obtaned in this case are given m Column 6 of Table 5-17 Two other members could be removed from the structure to make it statcally determanate Restals obtamed by remusing members 4 and 5 , wad then numbers

AMCP 706-192

TABLE 5-17
OPTIMUM URANSMISSION TOWERS WITH STRESS CONSTRAINTS ONLV (EXAMPLE 5-8)

El. No.	Finel Area, in. ${ }^{2}$							
	1	2	3	4	5	6	7	8
i	0.100	0.100	-	-	0.100	-	-	-
2	0.376	0.377	0.346	-	0.384	0.364	0.272	-
3	0.376	0.377	0.346	0.100	0.384	0.366	0.272	0.272
4	0.376	0.377	0.346	0.100	0.387	0.363	-	0.272
5	0.376	0.377	0.346	-	0.385	0.365	-	-
6	0.471	0.470	0.494	0.779	0.465	0.484	0.775	0.779
7	0.471	0.470	0.494	0.779	0.463	0.482	0.779	0.775
8	0.471	0.470	0.494	0.779	0.464	0.481	0.779	0.779
9	0.471	0.470	0.494	0.770	0.463	0.479	0.779	0.779
10	0.100	-	-	-	0.103	0.103	0.182	0.182
11	0.100	-	-	-	0.103	0.103	0.182	0.182
12	0.100	-	-	-	0.100	-	-	-
13	0.100	-	-	-	0.100	-	-	-
14	0.100	0.100	0.100	0.165	0.151	0.162	0.302	0.302
15	0.100	0.100 ,	0.100	0.165	-	-	-	-
16	0.100	0.100	0.100	0.165	0.151	0.152	0.302	0.302
17	0.100	0.100	0.100	0.165	-	-	-	-
18	0.277	0.279	0.292	0.413	0.278	0.288	0.413	0.413
19	0.277	0.279	0.292	0.413	0.277	0.288	0.413	0.413
20	0.277	0.279	0.292	0.413	0.274	0.287	0.413	0.413
21	0.277	0.279	0.292	0.413	0.273	0.287	0.413	0.412
22	0.380	0.374	0.363	0.547	0.445	0.436	0.669	0.669
23	0.380	0.374	0.363	0.547	0.334	0.370	0.447	0.447
24	0.380	0.374	0.363	0.547	0.442	0.436	0.669	0.669
25	0.380	0.374	0.363	0.547	0.336	0.370	0.447	0.447
Wt, it	91.13	87.90	86.94	106.97	89.94	88.95	113.69	113.68
Max. Defl. in	2.288	2305	2.311	3.489	2.486	2.453	3.614	3.615

2 and 5 are given, respectively, in Columns 7 and 8 of Table 5-17. Computations were also carried out by removing members 2 and 3 , and members 3 and 4 along with members 1 , 12,13,15, and 17 Resu'ts obtamed in these cases were the same as those shown in Columns 7 and 8 of Table 5.17 For thes reason. these results are not teproduced hate Fenally, another determmate structure ob-
taned by removing members $1,2,5,15,16$, 19, and 20 was optimized. The cross-sectional areas of various members at the optimum porr.t were as follows. $3,4(0.100), 6$ to 9(0.779); 10.11(0.182), 1213(0.446), $14,170302), 18,21(0775), 22,25(0537)$, and $23,24(0.751$). The optimesm weight in this case was 1181 lb and the maximum detlection at this pomi was 3.801 in

TABLE 6-18

OPTIMUM TRANSMISSION TOWERS WITH ALL CONSTRAINTS

 (EXAMPLE 6-8)| El. No. | Final Area, in. ${ }^{2}$ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 0.010 | 0.010 | - | - | 0.0:0 | - | - | - |
| 2 | 2.092 | 2.339 | 2.393 | - | 2.263 | 2.389 | 0.548 | - |
| 3 | 2.075 | 2.386 | 2.404 | 0.548 | 2.264 | 2.384 | 0.548 | 0.548 |
| 4 | 2.095 | 2.339 | 2.393 | 9.548 | 2.021 | 1.826 | - | 0.548 |
| 5 | 2.083 | 2.385 | 2.404 | - | 1.920 | 1.915 | - | - |
| 6 | 2.357 | 2.085 | 2.076 | 7.132 | 2.389 | 2.452 | 6.596 | 6.659 |
| 7 | 2.354 | 2.084 | 2.078 | 6.857 | 2.186 | 2.042 | 6.483 | 6.296 |
| 8 | 2.3519 | 2.1.13 | 2.083 | f.895 | 2.411 | 2.430 | 6.596 | 6.686 |
| 9 | 2.335 | 2.112 | 2.082 | 7.101 | 2.095 | 2.123 | 6.476 | 6.471 |
| 10 | 0.035 | - | - | - | 0.6b8 | 0.621 | 2.102 | 2.054 |
| 11 | 0.035 | - | - | - | 0.658 | 0.630 | 2.102 | 2.047 |
| 12 | 0.087 | - | - | - | 0.090 | - | - | - |
| 13 | 0.084 | - | - | - | 0.071 | - | - | - |
| 14 | 1.113 | 1.114 | 1.139 | 1.785 | 1.461 | 1.485 | 4.17? | 4.101 |
| 15 | 1.193 | 1.114 | 1.139 | 1.735 | - | - | - | - |
| 16 | 1.112 | 1.117 | 1.146 | 1.727 | 1.438 | 1.498 | 4.170 | 4.167 |
| 17 | 1.112 | 1.117 | 1.146 | 1.798 | - | - | - | - |
| 18 | $2.0 ¢ 6$ | 2.047 | 2.027 | 4.317 | 2.161 | 2.171 | 4.692 | 4.645 |
| 19 | 2.058 | 2.034 | 2.022 | 4.390 | 2.156 | 2.173 | 4.692 | 4.664 |
| 20 | 2.046 | 2.047 | 2.027 | 4.400 | 2.403 | 2.538 | 4.985 | 5.108 |
| 21 | 2.058 | 2.034 | 2.022 | 4.328 | 2.415 | 2.524 | 4.989 | 5.038 |
| 22 | 2.822 | 2.878 | 2.886 | 5.655 | 4.187 | 4.035 | 6.746 | 6.909 |
| 23 | 2.808 | 2.878 | 2.886 | 5.730 | 2.915 | 2.873 | 5.086 | 4.781 |
| 24 | 2.803 | 2.926 | 2.895 | 5.743 | 4.124 | 4.086 | 6.743 | 7.039 |
| 25 | 2.785 | 2.925 | 2.895 | 5.646 | 2.908 | 2.881 | 5.086 | 4.749 |
| Wt, lb | 590.32 | 596.64 | 597.82 | 1060.6 | 625.37 | 626.70 | 1142.7 | 1139.9 |
| Max.
 Dnfl. in | 0.350 | 0.350 | $0 . \therefore 50$ | 0.350 | 0.350 | 0.350 | 0.350 | 0.350 |

All these tower configurations were also optımized by imposing all constraints, i.e., stress, displacement, buckling, and natural frequency The results of these cases are given in Table 5-18. Curves 1 to 4 of Fig. 5-42 sinow the variation of cost function with respect to the iteration number for results of Columns i to 4 of Table 5-19. It can be observed from the results of Table 5-18 that. for the case in which all constrants were imposed, the opti
mum weight of the tower inctuased as more tedundant members were temoved fron, the structure.

5-7.4 :NTERACTIVE COMPUTING CON CLUSIONS

Computing tumes for this interactive consphating approa h are winnderably shorter than

Figure 5-41. Iteration vs Weight Curves for Example 5-8, Transmission Tower With Stress Constraints Only
had been experienced when the same problems were solved in the batch mode. Second, and probably more significant, interactive computing allows the designer to alter the structural configuration in a systematic vay to seek the global optimum design. This is not to say that a mathematically precise method of obtaining a global optimum has been found, for no such method is known. It appears, however, that the technique presented here makes strong use of the designer's knowledge and intuition, and gives him a tool with which to seek a global optimum in an organized way.

The results piesented for the two examples solved in par. 5.7 are of interest in therr own

Figure 5.42. Iteration vs Weight Curves for Example 5.8, Transmission Tower With All Construints
right For the case when only stress constraints are imposed, results of Table 5-15 indicate that minimum weight designs for trusses with multiple lcading may be statically determinate. However, the results of the second example given in Table 5-17 indscate that all statically determinate trusses may not be lighter than the indetermanate t usses.

Fo. the case when all constrants are imposed, results of Tables $5-15$ and 5.18 show that stathally mdetemmate trusse) are lighter than the determmate trusses

REFERENCES

1. 2. Wastutynski and A Brandt. "Ihe Present State of Knowledge in the Field
 Hech Rex, Vol 10. No ; May l90.
$=-02$
pp. 341-350.
1. C. Y. Sheu and W. Prager, "Recent Developments in Optimal Structural Design", Appl. Mech. Rev., Vol. 21, No. 10, October 1968, pp. 985-992.
2. R. 1. Ridha, "Minimum Weight Design of Aircraft Landing Gear Reinforcement Rings", Proceedings AIAA/ASME 9th Structures, Structural Dynamics and Materials Conference, April 1968.
3. W. A. Thornton and L. A. Schmit, Jr., "Structural Synthesis of an Ablating Thermostruciural Panel", Proceedings AIAA/ASME 9th Siructures, Structural Dynamics and Materials Confererce. April 1968.
4. L. A. Schmit, Jr. and T. P. Kıcher, "A Structural Synthesis Capability for Integrally Stiffened Cylindrical Shells". Procaedings AIAA/ASME 9th Structures, Structural Dynamics and Materials Conference, April 1968.
5. R. Luik and R. J. Melosh, "An Allocation Procedure for Structural Design", Proceedings AIA,I/ASME 0th Structures, Structural Dynamics and Materials Conference. April 1968.
6. W. J. Woods and J. H. Sams, III, "Geometric Optimization in the Theory of Structural Synthess", Proceedings AIAA/ASME 9th Structure. Structiral Dymatics and Materials Conference. Apral 1968
7. R. L. Barnett and P. C. Hermann, Hgh Performance Structure . NASA Report. NASA (K-1038, May l968

9 1 J Schrader, in ligoruthem for the

Ainimum Weight Design of the General Truss, Division of Solid Mechanics, Strucures, and Mechanical Design, Case Western Reserve University, Repert No. 34 , June 1968 .
10. 1. P. Felton and M. r. Rubinstein, Optimal Structural Design, preprint of paper pusented at SAE, Acronautic and Space Engineering and Manufacturing Mecting, October 1968.

1 G. Sved . Id Z. Ginos, "Structural Optimization Under Multiple Loading", Int. J. Mech., Scl., Vol. 10, 1968, pp. 803-805.
12. W. A. Thornton and L. A. Schmit, Jr., , The Structiaral Synthesis of an Ablating i hermostructural Panel, NASA Report, N.ASA CR-1215, December 1908.
13. W. A. Morrow, II and L. A. Schmit, Jr., Structural Synthesis of a Stiffened Cylinder, NASA Report, NASA CR-1217. December 1968.
14. W. R. Spillers ard J. Farrell, "On the Analysis of Structural Design", J. Math. Anal. and Appl. Vol. 25. 1969. pp. 285-295.
15. W. J. Woods, "Substructure Uptimization in the Theory of Structural Synthesis". Proceedings AlAA 7th Aerospace Scuences Meeting. January 1969.

16 M. J. Turner "Optmization of Structures to Satisfy Flutter Requrements", Proceedmgs AlAA Strwitural Dinamus and teroelaste thy Spectahs Conicroste. April 196

17 C P Ruhm, "Dynama Ontmmation ol Complex Structuas" Procecting, $1 / 11$

Structural Dynamics and Aeroelasticity Speciallst Conference, April 1969.
18. R. L. Fox and M. F. Kapoor, "Structural Optimization in the Dynamics Response Regime: A Computational Approach", Proceedings AIAA Structural Dynamics and Aeroelasticity Specialist Conference, A.pril 1969.
19. W. C. Hurty and M. F. Rubenstein, Dynamics of Structures, Prentice-Hall, Englewood Cliffs, N. J., 1966.
20. O. C. Zienktewicz, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hi!! New York, 1967.
21. R E. Beckeit and J. Hurt, Numerical Calct!a'mons and Algorithms, McGrawHill, New York, 1967.
22. S. H. Crandall, Engineering Anclysis, MrCraw-Hill, New York, 1956.
23. T. Kato, Herturbation Theory for Linear Operations, Springer-Verlag, New York, 1966.
24. J. S. Przemieniccki, Theory of Matrix Structural Analysis, McGraw-Hıll Book Co. New York, 1968.

25 V. B. Venkayya, N. S. Khot, and V. S. Reddy, Energy Distribution in an Optımum Siructural Design, Technica! Report AFFDL-TR-68-158, Wright-Patterson Air Fores Base, Ohu 45433. March 1969.

26 D. Johnson and D. M Brotton, "Optımum Elastic Desggn of Reduncant i russes", darinal of the Structural Dutston. Proc ASCL Vol 95, No STi2. 'ecember, 1960°, pp 2589.2610
$5.1,4$
27. Manual of Steel Construction:, Sixth Edition, American Institute of Steel Construction, 1967.
28. Y. Nakamura, Optimum Design of Framed Structures Using Linear Programming, Master's thesis, Department of Givil Engineering, M.I.T., Cambridge, Massachusetts, 1966.
29. D. Kavlie and J. Moe, "Application of Nonlinear Programming to Optimum Grillage Design with Nonconvex Sets of Variables", International Journal for Numerical Methods in Engineering, Vol. 1, No. 4, 1969, pp. 351-378.
30. D. M. Brown, and A. H. S. Ang, "Structural Optimization by Nonlinear Programming", Journal of the Structural Division, Proc. ASCE, Vol. 92, No. ST6, December, 1966, pp. 319.340 and Vol. 93, No. ST5, October, 1967, pp. 618-619.
31. F. Moses, and S. Onoda, "Minimum "̈eight Design of Structures With Application to Elastic Grillages", International Journal for Numerical Methods in Engineering. Vo!. 1, No. 4, 1969, pp. 311-331.
32. 1 McGuire, Steel Structures, PierticeHall Inc. Englewood Cliffs, N. J., 1968.
33. Proceedings, Army Symposum on Sohd Mechanics. 1970 - Lightweigh: Structures, Army Materials and Mechanics Research Center, Watertown, Mass., 1970.

341 arora, Oprmal Destron of Elasth Structures Under hialliple Constramt Condttoons. Dissertation. Umersty of 'owa, 1971
35. P. Corcoran, "Configurational Optimization of Structures", International Journal of Mechanical Sciences, Vol. 12, 1970, pp. 459-462.
36. R. Douty and S. Shore, "Technique for Interactive Computer Graphics in Design", Journal of the Structural Division, ASCE. Vol. 97, No, ST1, January 1971, pp. 273-288.
37. L. A. Schmit, "Structural Design by Systematic Synthesis", Second Con-
ference on Electronic Computation, Structural Division of ASCE, September 1960, pp. 105-132.
38. G. Sved and Z. Ginos, "Structural Optimization Under Multiple Loading", Internatlonal Journal of Mechanical Sciences, Vol. 10, 1968, pp. 803-805.
39. V. B. Venkayya, N. S. Khot, and V. S. Reddy, Energy Distribution in an Optimum Structural Design, Technical Reyort AFFDL-TR-68-158, Wright-Patterson Air Force Base, Ohio 45433, March 1969.

CHAPTER 6

THE CALCULLUS OF VARIATIONS AND OPTIMAL PROCESS THEORY

6.1 INTRODUCTION

The problems of Chapte \& 2 through 5 are all optimal design problems in which the design variables were elements of R^{n}, i.e., a vector of n real numbers uniquely specified the design of the system being investigated. In many important, real-world; optimal design problems the design of a system cannot be specified so easily. For example, the thrust vector acting on a rocket during takeoff must be continuously oriented in time so that the rocket remains stable and follows a certain path. In this example, the angles the thrust vector makes with the rocket must be specified at each instant of time during takeoff. It is clear that a function specifies the thrust direction rather than a finite number of parameters.

Examples of this kind of problem abourd in the aircraft guidance literature and in the optimal control literature. Typical design or control variables in these problems are thrust, motor torque, control surface settings, etc. All these variables must be specified throughout the enture interval of time an aircraft is in the air. Similar probleins arise in the presently developing field of optimal structural design. In this field the design variables are generally variables that describe the distribution of material in structural elements.

In order to illustrate the kind of problem to be treated in this chapter, two classic examples will be given.

Exampie 6-1: The shostest path between two points, $\left(t^{0}, x^{0}\right)$ and ($\left.t^{1}, x^{1}\right)$, in the $t \cdot x$ plane is to be found. As shown in Fig. 6-1, the particular path chosen between the two points has a length associated with it. The problem is to choose the curve $\hat{x}(t), t^{0}<t<$ t^{1} which has the shortest length. For a mooth curve $x(t)$ the length is given by

$$
\begin{equation*}
J(x)=\int_{0}^{t^{1}}\left[1+\left(\frac{j d x}{d t}\right)^{2}\right]^{1 / 2} d t \tag{6.1}
\end{equation*}
$$

Note that in this example the quantity $J(x)$ to be minimized is a real number once the function $x(t), t^{0}<t<t^{1}$ is chosen. In this sense $J(x)$ is a real valued function of a function or curve.

Example 6-2: (The Brachistochrone): Given two points $\left(t^{0}, x^{0}\right)$ and $\left(t^{1}, x^{1}\right)$ in a vertical plane that do not lie on the same vertical line, find a curve $x(t), t^{0}<t<t^{1}$, joining them so that a particle starting at rest will traverse the curve without friction from one poin' to the

Figure 6-1. Shortest Path
other in the shortest possible time. Candidate cur' 25 are shown in Fig. 6-2.

Figure 6-2. Curve for Minimum Time

Let m be tue mass of the particle and g be the accesration due to andy. Since the paaticts stats at rest at $\left(r^{0} x^{0}\right)$ and there is no friction,

$$
\begin{equation*}
-\frac{1}{2} m y^{2}=m ?\left(x-x^{0}\right) \tag{6-}
\end{equation*}
$$

whese v is velocity,

$$
\begin{align*}
\nu & =\left[\left(\frac{d t}{d r}\right)^{2}+\left(\frac{d x}{d r}\right)^{2}\right]^{1 / 2} \\
& =\left[1+\left(\frac{d x}{d t}\right)^{2}\right]^{1 / 2} \frac{d t}{d r} \tag{6-3}
\end{align*}
$$

where T is tince. Solving $E_{i j}$. 6.2 for v substituting this into Eq. 6.3 a . solving for dr yields

$$
d \tau=\frac{\left[1\left(\frac{d x}{d!}\right)^{2}\right]^{12} d t}{\left[? g\left(x x^{0}\right) j^{12}\right.}
$$

the total time I reaured for the particle ro

$$
T=J(x)=\int_{t^{0}}^{t^{1}} \frac{\left[1+\left(\frac{d x}{a t}\right)^{2}\right]^{1 / 2}}{\left[2 g\left(x-x^{\prime}\right)\right]^{17}} d t
$$

This nosation makes it clear that T deperids on the entire curve transversed by the particle. The Brachistochrone problem, therefore, is seduced to finding a curve $\hat{x}(t), t^{0} \leqslant t<t^{t}$, that passes through the two glven points and makes T as small Ps possible.

In Exaniples 6-1 and 6-2 it is clear that a curve, or equivalently a function characterizing the curve, is to be found as the solution of the optimization problem. Further, the real valued quas.aties so be minimized are determined by curves or the functions characterizing those curves. These real valued quantities, therefore, are functions of functions. Such a toal yalued function is called a functional. The cunctignal notation $J(x)$ in Egs. $6-1$ ande 64 is then interpreted as a real valued function: of the function $x(t), t^{0}<t<$ f The most common kind of functional encountered in calculus of variations is the integral.

The optimization probiem considered here migit be stated as: Find the function $x i t)^{\prime}, t^{\circ}$ $\leqslant:<d^{1}$, that minimizes the functional $J(x)$. \therefore stance at the functionals defined in Eqs $r-1$ and $6-4$ reveals a vasic flaw in this statement of the uptimization proble:s. In both cases. the füationals are defined only if the funcion $x(t)$ has an interiable derivative on t^{0} \& : \& ' 1 , 1.e, it doesn't make sense to admit all functions as candidates'or al. sitremum The proolem is mote reasunably stated find the function $\mathrm{x}(\mathrm{f}) 1^{0} \leqslant 1 \times 1$, in atass of functions (1). that minumes the lunt. mat
$J(x)$. The admissible class of functions here plays a role similar to the constraint sets of Chapters 3, 4, and 5.

The idea of classes of functions required here is basic to the mathematical field called Functional Analysis. Classes of functions in this field are called function spaces. Consider, for example, the co'lection of all continuous functions $x(r)$ on $0<1<1$. The graphs of several such functions are shown in Fig. 6-3.

Figure 6.3. Examples cf Continuous Functions

It is clear that there are infinitely many continuous functions but that not all functions are contained in this class. For wample

$$
x(t)= \begin{cases}0, & 0<t<1 / 2 \\ 1, & 1 / 2<t<1\end{cases}
$$

is not continuous so it is not in the class.
To expedite the development that tollows, some notation will be introduced. Ihe collecton of con* lous functions on $0<1<1$ described previously is ralled a function space and is denoted

$$
\begin{align*}
C^{0}(0,1)= & \{x(t), 0<t<1 \mid x(t) \\
& 1 \leqslant \text { continuous }\} . \tag{6.5}
\end{align*}
$$

A large number of important luncion
spaces may be described in a similar manner as

$$
\begin{align*}
C^{\prime}(a, b)= & \{x(t), a<t<b \mid x(t) \text { has } t \\
& \text { continuous derivatives }\} . \tag{6-6}
\end{align*}
$$

It should be understood here that $x(t)$ may be a vector valued function and the differentiability requirement in Eq. $6-6$ refers to each component.

Junction spaces may be thought of as sets of elements, where elements in the function space are really curves or functions. In this way the problem of minimizing $J(x)$ may be viewed as picking the eliment (curve) in the appropriate function space that makes $J(x)$ as small as possible. This appreach makes minimization of a functional sound very similar to the programming provilems of Chapter 2. With this mental analogy one may begin his study of the calculus of variations armed with a powericl intuitive tool.

Th: basic ideas of function space theory are presented very clearly in Ref. 1. Chapter 2.

In connection with. vector spaces, it is often necessary to require that a function is small, or near the zero function. For this purpose it is required that size of a fusction 're defined. This is done by defining a norm as a functic al $\|x\|$ on the function space of interest with the following properties:

$$
\begin{align*}
& \|r\|>G,\|x\|=0 \text { implies } x \text { is the zero } \\
& \|\alpha x\|=\|\alpha\|\|x\| \text { for real } \alpha \\
& \|x+y\|-\|x\|+\|y\| \tag{6.8}
\end{align*}
$$

Examples of norms irctude

АМС̣Р 70.6

$$
\|x\|=\max _{, 0<t \leqslant t^{1}}|x(t)|
$$

for $x \in C^{0}\left(t^{0}, t^{1}\right)$ and

$$
\begin{equation*}
\|x\|=\left[\int_{t_{0}^{2}}^{t^{2}} x^{2}(t) d t\right]^{1 / 2} \tag{6-11}
\end{equation*}
$$

for square integrable functions $x(t)$. For a discussion of the basic ideas of functional analysis as they apply to optimization theory the reader is referred to Ref. 1.

With the idea of norm defined, one can speak of relative minima of functionals. The functional $J(x)$ has a relative minimum at $\hat{S} \in D$ if there is is $\delta>0$ such that

$$
f(\hat{x})<J(x)
$$

for all $x \in D$ with

$$
\begin{equation*}
\|\hat{s}-x\|<\delta . \tag{6.12}
\end{equation*}
$$

This simply says that $J(x)$ has a minimum in a sufficiently small awighborhood of \hat{X}. It is interesting to look at a neighborhood of a curve in $C^{0}\left(t^{0}, t^{1}\right)$ where norm is defined by Eq. $6 \cdot 10$. In this case Eq. G12 simply demands that $x(t)$ be within δ of $\hat{x}(f)$ tos all t in $t^{0}<t \leqslant 1^{1}$. The neighhorhood of \hat{x} in this case is aimply the collection, of ail continuous curves which can be drawn between $\hat{X}(0)+\delta$ and $\hat{x}(t)-8$, as shown in Fig, 6-4.

The present chapter will be devoted almost exclusively to the theory of the calculus of variations and optimal process theory, Constructive methods tor these problems wall be weated in the chapters to tollow. A knowledge of this basic theory as essential for succesful application of the theory of optr mal design it has been the espetience of the duthor that most real-world problems require

Figure 6.4. A Neighborhood of $\hat{x}(1)$
some modification of the basic optimization problems. Without a thorough knowledge of the theory, the designer will probably lave no dea of how to modify the existing theory to suit his purposes.

6-2 THE FUNDAMENTAL PROBLEM OF THE CALCULUS OF VARIATIONS

Examples 6.1 and $6-2$ have features in common that allow for the formulation of an entire class of yroblems containing these two. For the suke of generelity, let the variable $x(t)$ be a vector valued function of the real variable i, i.e.,

$$
x(i)=\left[\begin{array}{c}
x_{1}(t) \tag{6-13}\\
\vdots \\
x_{n}(i)
\end{array}\right]
$$

where $x_{i}(l)$ are real valudi functions of t
The problem consdered leene moy be formulated as Definition t-:.

Dcfeltion on: (Fundametstal !roblem of the Calctahs of Variationsl. Find a function $x($ ($)$ in $C^{2}\left(t^{0} . s^{4}\right)$ which sitisfies

where F is a real valued function of all its arguments and

$$
x^{2}=\left[\begin{array}{c}
\frac{d x_{1}}{d t} \tag{6-16}\\
\vdots \\
\frac{d x_{n}}{d t}
\end{array}\right]
$$

If the reader wishes he may consider $x(t)$ as being a real valued function of t, the generalization to vactor valued functions is simply a matter of notation. The conditions, Eq. 6-14, specify some or all of the components of $x(t)$ at the end points of the interval $t^{0}<t<8^{1}$. This conesponds to demanding that the curves in Examples 6.1 and $6-2$ pass through given points.

6-2.1 NECESSARY CONDITIONS FOR THE FUNDAMENTAL PROBLEM

Only necessa:y conditions for solution of the fundamental problem of Def. 0.1 will be developed here, i.e., the existence of a solution, $\xi(t)$, in $C^{2}\left(t^{0}, t^{\prime}\right)$ first will be assumed. A set of conditions that $\hat{\delta}(t)$ must satisiy then will be derived. These conditions then may bc employed in particular problents 4 find functions $x(t)$ that are candidate solutions of the probiem. Hopefully, there will be just one
such candidate that must then-be the solution. If there are several candidates, other methods must be used to choose the solution: This problem will be discussed later.

Graphically, the method of obtcinitg conditions on the solution, $\hat{x}(t)$, of the fundamental problem will be to allow small changes in $\dot{x}(t)$ and examine the behavior of $J(x)$. An addmissible, small-perturbation is illustrated in Fig. 6 -5. The equation for this curve is $\dot{x}(t)+$

Figure 6.5. Perturbation from Optimum
$\epsilon \eta(t)$ where ϵ is a small real number and $\eta(t)$ is any member of $C^{2}\left(t^{0}, t^{1}\right)$ such that

$$
\left.\begin{array}{ll}
\eta_{1}\left(t^{0}\right)=0, & \text { for } i \text { with } x_{1}\left(t^{0}\right)=x_{1}^{0} \\
\eta_{1}\left(t^{1}\right)=0, & \text { for } / \text { with } x_{j}\left(t^{1}\right)=x_{1}^{\prime} \tag{6-17}
\end{array}\right\}
$$

To examine the effect of this perturbation of $J(x)$, substitute $\hat{x}+\epsilon \eta$ in Eq. 6-15,

$$
\begin{equation*}
J(\hat{x}+\varepsilon \eta)=\int_{f^{0}}^{t^{1}} f\left(t_{0} \dot{x}+\epsilon \eta, \hat{x}^{\prime}+\epsilon \eta^{\prime}\right) d t \tag{6-18}
\end{equation*}
$$

Recall that $\dot{x}(t)$ is a local minimum of $J(x)$ subject to Eq. 6-14, i.e., any small change in $\hat{x}(t)$ increases $J(x)$. For any given function $\eta(t)$ in $C^{2}\left(t^{0}, t^{\prime}\right)$ and satisfying Eq. $\left(i 7, \hat{l}^{\prime} t\right)$ $+\epsilon \eta(t)$ is in $C^{2}\left(t^{0}, 1^{1}\right)$ and sativises Eq. 6.14

AMCP 706-192

for alle: Thercfore, for this $n(t), J(x+t)$ is a real valued function of Further, for $\epsilon=0$, $J(\hat{x}+\epsilon \eta)$ has a relative minimum and it is. assumed that $F(t ; x ; x)$ is twice continuously differentiable in x and $x^{\prime \prime}$ so that' $J(x+\epsilon \eta$) is a twice continuously differentiable function of e. Theorem $2-2$ then applies, and it is required that

$$
\begin{equation*}
\frac{\partial}{\partial \epsilon} J(\hat{x}+\epsilon \eta)_{i=n 0}^{i}=0 \tag{6-19}
\end{equation*}
$$

The object uow is to transform condition, Eq. $6 \cdot 19$; into conditions on $\hat{x}(t)$. Performing the differentiation indicated in Eq. 6-19,

$$
\begin{align*}
& \frac{\partial:}{\partial c} J(x+\epsilon \eta)_{l=0}= \\
& \int_{t^{0}}^{t^{\prime}}\left(\frac{\partial F}{\partial x} \eta+\frac{F}{x^{\prime}} \eta^{\prime}\right) d t=0 \tag{6-20}
\end{align*}
$$

where the arguments in the partial derivatives of f in Eq. $6-20$ are $\hat{x}(t)$ and $\hat{x}^{\prime}(:)$. It is important to remember that Eq. $6-20$ is required to hold for any $\eta(t)$ in $C^{2}\left(t^{0}, t^{2}\right)$. which satisfies Eq. 6-17.

Integrating the second term in the integrand of Eq. $6-20$ yields

$$
\begin{align*}
\int_{1^{\prime}}^{\prime^{\prime}} & \left(\frac{\partial F}{\partial x}-\frac{d}{d t} \frac{\partial F}{\partial x^{\prime}}\right) \eta d t \\
& +\frac{\partial F}{\partial x^{\prime}}\left[t^{1}, \hat{x}\left(t^{1}\right), \hat{x}^{\prime}\left(t^{\prime}\right)\right] \eta\left(t^{1}\right) \tag{6.21}\\
& -\frac{\partial F}{\partial x^{\prime}}\left[\left(t^{0}, \tilde{R}\left(t^{0}\right), \hat{x}^{\prime}\left(t^{0}\right)\right] \eta\left(t^{0}\right)=0 .\right.
\end{align*}
$$

Since the behavior of η inside the interval γ^{0} $\leqslant t<t^{2}$ and at its ent re independent, the integral and boundary as in Eq. $6-21$ may
be treated independently, i.e., each is required: to be zero. One of the major results which follows is a direct application of Lemma 6-1.

Lemma 6-1: If $M(t)$ is a continüous function on $t^{0}<t<t^{1}$ and if

$$
\begin{equation*}
\int_{t^{0}}^{t^{2}} M(t) \dot{n}(t) d t=0 \tag{6-22}
\end{equation*}
$$

for all $\eta(t)$ in $C^{2}\left(t^{0}, t^{2}\right)$ with $\eta\left(t^{0}\right)=\eta\left(t^{1}\right)=0$, then $M(t)=0, t^{0}<t<t^{2}$.

The ideas involyed in the proof are easily seen graphically. In Fig. $6-6$ a point $t^{*}, t^{0}<$

Figure 6.6. Graphical Proof of Lemma 6-1
$t^{*} \leqslant t^{2}$, is shown where $M_{1}\left(t^{*}\right) *=0$. The curve $\bar{\eta}_{1}(t)$ is then constructed so that neither function is zero in the interval $a<1<0$. Their integral over the entire interval is then nonzero which is a contradiction of Eq. 6-22, so $M_{i}\left(I^{*}\right)=0$.

Since the two terms in Eq. 6-21 must each be zero,

$$
\begin{equation*}
\int_{1^{0}}^{1^{\prime}}\left[\frac{\partial F}{\partial x}-\frac{d}{d t}\left(\frac{\partial F}{\partial x^{\prime}}\right)\right] \eta d t=0 \tag{6-23}
\end{equation*}
$$

for all $\eta(r)$ in $C^{2}\left(r^{0}, 1^{1}\right)$. In any subinterval of $t^{\circ}<1<1$ where $\dot{x}(t)$ is continuously differentiable, the quantity
$\left[\partial F / \partial x-d / d t\left(\partial F / \partial x^{\prime}\right)\right]$ is continusus. Therefore Lemma 6-1 implies

$$
\begin{equation*}
\frac{\partial F}{\partial x}-\frac{d}{d t}\left(\frac{\partial F}{\partial x}\right)=0 \tag{6-24}
\end{equation*}
$$

in that subinterval.
Jr. howciver, $\hat{x}^{\prime}(t)$ has a jump discoñtinuity at sune point i then $\left[\partial F / \partial x-d / d t\left(\partial F / \partial x^{\prime}\right)\right\}$ need not be continuous at i and Lemma 6-1 say not he applied over any subinterval containing i. Sitce Eq. $6-24$ must hold in subirtervals on bnth sides of i, this equationmay be integrated from $\bar{t}-\delta, \delta>0$, to t to obtain

$$
\begin{equation*}
\frac{\partial F}{\partial x^{\prime}}=\int_{i=0}^{i} \frac{\partial F}{\partial x} d t+C . \tag{6.25}
\end{equation*}
$$

The vector $\partial F / \partial x$ is piecewise continuous so the right-hand side of Eq. $6-25$ is continuous. Therefore $\partial F / \partial x^{\prime}$ is continuous even at \bar{i}.

These results may be stated in the form of a theorem.

Theorem 6-1: The following conditions must be satisfied by the solution of the problem of Def. 6-1, $\dot{x}(t)$, whose derivative is piecewise continuous;

$$
\begin{align*}
& \frac{\partial F}{\partial x}\left[t, \dot{x}(t), \hat{x}^{\prime}(t)\right] \\
& -\frac{d}{d t}\left\{\frac{\partial F}{\partial x^{\prime}}\left[t, \dot{x}(t), \dot{x}^{\prime}(t)\right]\right\}=0 \tag{6-26}
\end{align*}
$$

at points of continuity of $\hat{x}(t)$

$$
\begin{align*}
& \frac{\partial F^{i}}{\partial x^{\prime}}\left[t^{1}, x\left(t^{1}\right), \dot{x}^{\prime}\left(t^{1}\right)\right] \eta\left(t^{1}\right) \\
& -\frac{\partial F}{\partial x^{\prime}}\left[t^{0}, \dot{x}\left(t^{0}\right), \dot{x}^{\prime}\left(t^{0}\right)\right] \eta\left(t^{0}\right)=0 \tag{6-27}
\end{align*}
$$

for all $\eta\left(t^{0}\right), \eta\left(t^{1}\right)$ satisfying Eq. $6-14$, and

$$
\begin{align*}
& \frac{\partial F}{\partial x^{\prime}}\left[\bar{i}-0 ; \hat{x}(\bar{i}-0), \vec{x}^{\prime}(\vec{i}-0)\right]= \\
& \frac{\partial F}{\partial x^{\prime}}\left[\bar{i}+0 ; \hat{x}(\bar{i}+0), \hat{x}^{\prime}(\bar{i}+0)\right] \tag{6-28}
\end{align*}
$$

at each point ${ }^{\prime}$ of discontinuity of $\dot{x}^{\prime}(t)$.
Condition, Eq. 6-26, is a second-order differential equation in $\dot{x}(t)$ and is called the Euler-Lagrance equation. Condition, Eq. 6-27, is called a tranṣersality condition. For each $/$ or j such that $\eta_{1}\left(t^{\circ}\right)$ or $\eta_{j}\left(f^{1}\right)$ is not specified by Eq. $6-14$, Eq. $6-27$ implies $\partial F / \partial x_{j}^{\prime}\left(t^{0}\right)=0$ or $\partial F / \partial x^{\prime}\left(f^{1}\right)=0$. The condition, Eq. $6-98$, at discontinuities, (called corners) in $\dot{x}^{\prime}(1)$ is called the Weierstrass-Erdmann corner condltion.

One farther necessary condition will be important for surther development. Define the Weierstrass E-function as

$$
\begin{align*}
E\left(t, x, x^{\prime}, w\right)= & F(t, x, w)-F\left(t, x, x^{\prime}\right) \\
& -\frac{\partial F}{\partial x^{\prime}}\left(t, x, x^{\prime}\right)\left(w-x^{\prime}\right) \tag{6-29}
\end{align*}
$$

The p.sof of the Weierstrass necessary condition may be iound in Ref. 2, page 149. The result only will be giver, here as Theorem 6-2.

Theoren fr2: If the function $\hat{x}(t)$ is the solution of the problem of Def. 6-1, then it is nectssary that

$$
\begin{equation*}
E\left[1, \dot{x}(t), \hat{x}^{\prime}(t), w\right]=0 \tag{-20}
\end{equation*}
$$

for all $t^{0}<t<t^{t}$ and all finite w.
The Weserstrass condition of Theorem 6.2 generally is not used to generate candidate solutions of the fundamental problem.

AMCP 708-192

Rather, when solutions of Eq. 6-26 are determined, Eq. $6-30$ ' is used to eliminate unsuitable functions, i.e., it may very well disqualify a function which satisfies Eq. 6-26.

The derivation of necessary conditions for the fundamental problem is only' very lightly covered here. Further, the theory of sufficient conditions is completely neglected. For outstanding and complete treatments of these topics see Refs. $2,3,4$, and 5 .

6-2.2 SPĖCIAL CASES AND EXAMPLES

In many problems the form of the function $E\left(t, x, x^{\prime}\right)$ ditows for simplification for the Euler-Ligrange equation, Eq. 6-26. In any case, Eq. 6.26 may be written, using the chain rule of differentiation and the notation

$$
\begin{align*}
& E_{x}=\frac{\partial F}{\partial x^{\prime}} F_{x^{\prime}}=\frac{\partial F}{\partial x^{\prime}} F_{x x^{\prime}}=\frac{\partial^{2} F}{\partial t \partial x^{\prime}} \text { and } \\
& F_{x^{\prime} x}=\frac{\partial^{2} F}{\partial x^{\prime} \partial x} \\
& \text { to obtain } \\
& F_{x}-F_{x^{\prime} t}-x^{\prime T} F_{x^{\prime} x}^{T}-x^{\prime \prime} T F_{x^{\prime} x^{\prime}} \\
&=0 \tag{6.31}
\end{align*}
$$

This is simply a second-order differential equation for $x(t)$.

Several special cases with examples will now be considered.

Case i. F does not depend on x^{\prime} :
$F=F(t, x)$.

Eg. $6-31 \mathrm{in}$ this case is

$$
\begin{equation*}
F_{x}(t, x)=0 . \tag{6-33}
\end{equation*}
$$

This is simply an algebraic equation between t and x Since there vill be no constants of integration; it will not generally be possible to pass the resutting curve through particular points. This meens that a solution to, such a problem generally will not exist.

Example 6-3: Minimize

$$
\int_{0}^{1} x^{2} d t
$$

for

$$
x(0)=0, x(1)=1
$$

The coñdition, Eq. 6-33, is

$$
2 x=0
$$

But it is, therefore, impossible to satisfy $x(1)$ $=1$ so the problem has no solution.

To get an idea of what has gone wrong, note that since $x^{2}(t)>0$ for each t,

$$
\int_{0}^{1} x^{2}(t) d t>0
$$

for any curve $\mathrm{r}_{\mathrm{i}} \mathrm{l} 0<1<1$. It is, therefore, clear that if there were a curve which minimized $\int_{0}^{1} x^{2} d t$. then the minimum value of the integral would be non-negative.

It was noted that no minimum exists. However, consider the famiy of curves

$$
x_{n}(t)=t^{n}
$$

These curves all satisly the end conditions and

$$
J\left(x_{n}\right)=\int_{0}^{1} t^{2 n} d t=\frac{1}{2 n+1}
$$

Thenereore, it is possible to choose n large enough so that $\int_{0}^{1} x_{n}^{3} d t$ is as close as desired to zero. However, the limit \because of $x_{n}^{\prime}(t)$ as n approaches infinity is the function

$$
x_{m}(t)=\left\{\begin{array}{cc}
0, & t<1 \\
i_{2} & t=1
\end{array}\right.
$$

and this is not even a continuous function. The class of functions $x_{n}(t)$ aree illustrated in Fig. 6.7.

Flyure 6.7. Minimizing Sequence

In this illustration, a solution of the problem exists in the class of piecewise continuous functions but not in the class of twice continuously differentiable functions. This problem, therefore, should serve as a warning that not all innocent looking calculus of variations problems have solutions.

Case 2. F depends only on x^{\prime} :

$$
\begin{equation*}
F=F\left(x^{\prime}\right) \tag{6-34}
\end{equation*}
$$

Eq. $6-31$ is in this caso

$$
\begin{equation*}
F_{x^{\prime} x^{\prime}} x^{\prime \prime}=0 . \tag{6-35}
\end{equation*}
$$

Example 6-4: Using the formulation of Example $6 \cdot 1$, find the shortest curve in the $t-x$ plane which passes slarjugh the points $(0,0)$ and (1,1).

The function \dot{F} from.Eq. $6-1$ is

$$
F \equiv\left[1+\left(x^{\prime}\right)^{2}\right]^{1 / 2}
$$

The form of the Euler-Lagrange equation in Eq; $6-35$ applies in this case to yield

$$
\left.-11+\left(x^{\prime}\right)^{2}\right]^{-3 / 2} x^{\prime \prime \prime}=0
$$

Since $\left(x^{\prime}\right)^{2}>0,\left[1+\left(x^{\prime}\right)^{2}\right] \neq 0$ and $x^{\prime}(t)$ is required to be continuous so $\left[1+\left(x^{\prime}\right)^{2}\right] \neq \infty$ and it, therefore, is required that

$$
x^{\prime \prime}(t)=0
$$

or

$$
x^{\prime}(t)=a t+b,
$$

where a and b are constants. This implies that the shortest path between two points in a plane is a straight line. This shouldn't shake anyone up.

The end conditions yield

$$
x(0)=b=0
$$

and

$$
x(1)=a=1 .
$$

Therefore the solution of the problem is
$x(t)=t$.
Case 3. F depends only on : and x^{\prime} :
$F=F\left(t, x^{\prime}\right)$.
E7. 6-26 is, in this case,
$\frac{d}{d t} F_{x^{\prime}}\left(t, x^{\prime}\right)=0$

AMCP 706-192

Or:- - - :

$$
\begin{equation*}
F_{x^{\prime}}\left(t, x^{\prime}\right)=C \tag{6-37}
\end{equation*}
$$

where C is an arbitrary constant.

Case $4 . \ldots$ is a realivalued function, and F depends only on x and $-x^{\prime}$:

$$
\begin{equation*}
F=F\left(x ; x^{\prime}\right) \tag{6-38}
\end{equation*}
$$

Eq. $6-31$ is, in this case,
$F_{x}-F_{x^{\prime} x} x^{\prime}-F_{x^{\prime} x} x^{\prime \prime}=0$.
Multiplying by x^{\prime} yields

$$
x^{\prime} F_{x}-\left(x^{\prime}\right)^{2} F_{x^{\prime} x}-x^{\prime} x^{\prime \prime} F_{x^{\prime} x^{\prime}}=0
$$

This is just
$\frac{a}{d t}\left(F-x^{\prime} F_{x^{\prime}}\right)=0$,
so

$$
\begin{equation*}
F-x^{\prime} F_{x^{\prime}}=C \tag{6-39}
\end{equation*}
$$

where C is an arbitrary constant.
Example 6-5. Solve the Brachistochrone problem of Example 6-2.

The function F from Eq. $6-4$ is

$$
F=\left[\frac{1+\left(x^{\prime}\right)^{2}}{2 g x}\right]^{1 / 2} \text {. }
$$

Eq. 6.39 applies in this case and yields
$\left[\frac{1+\left(x^{\prime}\right)^{2}}{2 g x}\right]^{1 / 2}-\frac{\left(x^{\prime}\right)^{2}}{(2 g x)^{1 / 2}\left(1+\left(x^{\prime}\right)^{2}\right)^{1 / 2}}$
$=C$.

This reduces to

$$
1=\left\{2 g x\left[1+\left(x^{\prime}\right)^{2}\right]^{1 / 2} C\right.
$$

or

$$
x\left[1+\left(x^{\prime}\right)^{2}\right]=C_{1}
$$

-where C_{1} is a new constant.
The solution of this differential equation is a family of cycloids in parametric form

$$
t=C_{2}+\frac{C_{1}}{2}(s-\sin s)
$$

.and:

$$
x=\frac{C_{2}}{2}(1-\cos s)
$$

The constants C_{1} and C_{2} are to be deter: mined so that the cycloid which passes through the given points is fixed.

It should be noted that each of the problems treated here reduced to the solution of a nonlinear differential equation. This is charaiteristic of problems of the calculus of variations. The reader is undoubtedly aware that it is only in the simplest cases that closed form solutions of these differential equations may be obtained. Further, questions of existence and uniqueness of solutions are by no means trivial.

6-2.3 VARIATIONAL NOTATION AND SECOND-ORDER CONDITIONS

$$
\text { For } J(x)=\int_{t}^{\prime \prime} F\left(t, x, x^{\prime}\right) d t
$$

define the fl:st variation of $J(x)$ as

$$
\begin{equation*}
\left.\delta J(x) \equiv \frac{d}{d \epsilon} J(x+\epsilon \delta x)\right|_{\epsilon=0} \tag{6-40}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{d}{d \epsilon} \int_{t^{\circ}}^{t^{2}} F\left(t, x+\epsilon^{\prime} \delta^{\prime} x, x^{\prime}\right. \\
& \left.+\epsilon \delta x^{\prime}\right)\left.d t\right|_{\epsilon-^{\prime} 0} \\
& =\int_{t^{0}}^{t^{1}}\left[\frac{\partial F}{\partial x}\left(t, x, x^{\prime}\right) \delta x\right. \\
& \left.\mp \frac{\partial F}{\partial x^{\prime}}\left(\bar{t}, x, x^{\prime}\right) \delta x^{\prime}\right] d t . \\
& =\int_{t^{0}}^{t^{1}}\left[\delta x \frac{T \cdot \partial^{2} F}{\partial x^{2}}(t, x ; x) \delta x^{T}\right. \\
& +2 \delta \frac{T^{2} \partial^{2} F}{\partial x \partial x^{\prime}}\left(t, x, x^{\prime}\right) \delta \tilde{x}^{\prime} \\
& \left.+\delta x^{\prime} \frac{T \partial^{2} \dot{F}}{\partial x^{\prime 2}}\left(t, x, x^{\prime}\right) \delta x^{\prime}\right] d t . \\
& \text { Definge }
\end{aligned}
$$

Note that ali this does not require that, $x(t)$ be the solution. of the fundamental problem. If, however, $x(t)=\hat{x}(t)$ is the solution of the fundamental problem; then it is clear from: Eg. 6-19 that it is necessary that

$$
\begin{equation*}
\delta J(\hat{x})=0 \tag{6-41}
\end{equation*}
$$

for all $\delta x(t)$ for which $\dot{x}(t)+\epsilon \delta x(t)$ satisfy the end conditions in the fundamental problem.

In a way quite similar to the definition of the first variation, the second variation may be defined as

$$
\delta^{2} J(x)=\left.\frac{d^{2}}{d \epsilon^{2}} J(x+e \delta x)\right|_{e \sim 0}
$$

Performing the differentiation, this is

$$
\begin{align*}
\delta^{2} J(x)= & =\left.\frac{d^{2}}{d \epsilon^{2}} \int_{t^{0}}^{t^{1}} F\left(t, x+\epsilon \delta x, x^{\prime}+\varepsilon \delta x^{\prime}\right) d t\right|_{\epsilon=0} \\
= & \frac{d}{d \epsilon} \int_{t^{\prime}}^{t^{\prime}}\left[\delta x^{r}\right. \\
& \frac{\partial F^{T}}{\partial x}\left(t, x+\epsilon \delta x, x^{\prime}+\epsilon \delta x^{\prime}\right) \\
& \left.+\delta x^{\prime} \frac{r_{\partial F^{T}}}{\partial x^{\prime}}\left(t, x+\gamma \delta x, x^{\prime}+\epsilon \delta x^{\prime}\right)\right]\left.d t\right|_{e=0} \tag{6-42}
\end{align*}
$$

$$
\begin{aligned}
& A=\frac{\partial^{2} F}{\partial x^{2}} \\
& B=2\left(\frac{\partial^{2} F}{\partial x \partial x^{\prime}}\right)
\end{aligned}
$$

ańd

$$
C=\frac{\partial^{2} F}{\partial x^{\prime 2}}
$$

With this notation,

$$
\begin{aligned}
\delta^{7} J(x)= & \int_{-r}^{t^{t}}\left(\delta x^{\tau} A \delta x+0_{A} \delta B \delta x^{\prime}\right. \\
& \left.+\delta x^{\prime} C \delta x^{\prime}\right) d t
\end{aligned}
$$

If $F\left(t, x, x^{\prime}\right)$ has three decivatives, then by Taylor's formula

$$
\begin{aligned}
J(x+\epsilon \delta x)= & J(x)+\left.\frac{d J}{d \epsilon}\right|_{\epsilon=0} ^{e} \\
& +\left.\frac{d^{2} J}{d \epsilon^{2}}\right|_{\epsilon=0} ^{\epsilon^{2}+\left.\frac{d^{2} J}{d \epsilon^{3}}\right|_{\epsilon \div \bar{\epsilon}} ^{\epsilon^{3}}} .
\end{aligned}
$$

where $0<\dot{\varepsilon}<\epsilon$. If we computed $d^{3} J / d \epsilon^{3}$, it

AMCP $706 \cdot 192$

-wouldinvolve a sum of terms each containing third degree terms in $\delta \dot{x}$ and δx^{\prime}. For δx and δx^{\prime} sufficiently small, this term may be negl cted to obtain a second-order approsimation whien $\epsilon=1$ so that

$$
J(x+\delta x) \approx J(x)+\delta j+\delta^{2} j
$$

It is clear then that δJ and $\delta \sim J$ play the role of differentials-in the theory of functionals.

Further, if $\dot{x}(t)$ yields a relative minimum for the fundamental problem, then $J(\hat{x}+\epsilon \delta x)$ is a relative minimum at $\epsilon=0$. It is, therefore, necessary that

$$
\left.\frac{d^{2} J}{d \epsilon^{2}}\right|_{\epsilon=0}=0
$$

This is just
$\delta^{2} J(\hat{x})>0$,
or

$$
\begin{align*}
& \int_{t^{0}}^{\mathbf{t}^{\prime}}\left(\delta x^{T} A \delta x+\delta x^{T} B \delta x^{\prime}\right. \\
& \left.+\delta x^{\prime} T C \delta x^{\prime}\right) d!>0 \tag{6-43}
\end{align*}
$$

for all $\delta x(t)$ such that $\dot{x}+\delta x$ satisfy the end conditions, for the fundamental problem. In what follows it will be convenient to limit $\delta x(t)$ to those variations which satisfy $\delta x\left(t^{0}\right)$ $=\delta x\left(1^{1}\right)=0$.

If $\delta x^{\prime}(t)$ is small for all t, then $\delta x(t)$ muc* also be small since $\delta x\left(1^{0}\right)=0$. On the otner hand, it is possible to choose $\delta \times(1)$ which is zero at the endpoints and small for all t, but
which has large derivatives. One might, thèrefore, be led to believe that the derivative term in the inequality of E.j. $6 \leqslant 3$ is dominant. This would then require C to be positive. semi-definite.

To show that this is the case, assume that thẹfe is a point $t^{*}, t^{0}<t<t^{1}$ and a ritonzero vector h such that $h^{T} C\left(t^{*}\right) h=-2 \beta<0$. For any continuous. $\delta x^{\dot{i}}(t)$ such that $\delta x^{\prime}\left(t^{*}\right)=h$, there is an interval
$t^{*}-\alpha<t<t^{*}+\alpha>0$, such that

$$
\delta x^{\prime}(t)^{\top} \alpha(t) \delta x^{\prime \prime}(t)<-\beta<0
$$

in $t^{*}-\alpha<t<t^{*}+\alpha$.

Define

$$
\delta x(t)=\left\{\begin{array}{l}
\frac{\alpha}{\pi} h \sin \left[\frac{\pi\left(t-t^{*}\right)}{\alpha}\right], t^{*}-\alpha<t<t^{*}+\alpha \\
0, \text { elsewhere }
\end{array}\right.
$$

so that

$$
\delta x^{\prime}(t)=\left\{\begin{array}{l}
h \cos \left[\frac{\pi\left(t-t^{*}\right)}{\dot{\alpha}}\right], t^{*}-\alpha<t \propto t+\alpha \\
0, \text { elsewhere }
\end{array}\right.
$$

Now, Eq. 6-43 is

$$
0<\int_{t^{\bullet}}^{s^{\prime}}\left(\delta x^{T} A \delta x+\delta x^{T} B \delta x^{\prime}+\delta x^{\prime} T\left(\delta x^{\prime}\right) d t\right.
$$

$$
=\int_{t^{\bullet-\alpha}}^{t^{\circ}+\alpha}\left\{\frac{\alpha^{2}}{\pi^{2}} \sin ^{3}\left[\frac{\left.\pi^{\prime} t-t^{*}\right)}{\alpha}\right] n^{r} A h\right.
$$

incorrect. This implies $h^{T} C h>$ Efor all h and t *: Therefore $(\boldsymbol{C}(t)$ ais positive semi-definite. Since

雨

$$
C(t)=\frac{\partial^{2} F}{\partial x^{\prime 2}}
$$

this result may be stated as Tlieorem $6-3$.
Theorem 6-3: A necessary condition for the fundamental problem to have a relative minimum at $\dot{d}(t)$ is that

$$
\frac{\partial^{2} F}{\partial x^{\prime 2}}\left[t, x(t), \hat{x}^{\prime}(t)\right]
$$

be postive semidefinite-for all t, t^{2} \& t с t^{1}.
Gelfond and Fomin (Ref. 2, p. 104) indicate that people are prone to argue that positive definiteness of $\partial^{2} F / \partial x^{\prime 2}$ at each point of the solution is, a sufficient condition for an extremum. They point out, however, that this is not the case and, in fact, that no local condition can provide sufficient conditions. For a treatment of sufficient conditions see Refs. 2, 3, 4, and 5 .

6-2.4 DIRECT METHODS

The direct methods of the calculus of variations seck to generate a sequence of functions $\left\{x^{(n)}(r)\right]$ such that, if ξ is the infimum or $J(x)$ over all dimissible x, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J\left[x^{(n)}\right]=\xi \tag{6-44}
\end{equation*}
$$

Dirent methods are capable of showing existence of solution as well as construction of approximations of the solution. It is generally very difficult to prove existence of a
solution of the nonliniear boundary-value problem in the necessary conditions for the fundamental problem. It is often possible, however, to show that the sequence $\left[x^{(n)}(t)\right]$ converges to a function $\hat{x}(\hat{i})$ which is the solution of the fundamental problem, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J\left[x^{(n)}\right]=J(\hat{x})=\xi . \tag{6-45}
\end{equation*}
$$

It is clear, however, that a sequence which satisfies Eq. $6-44$ may very well fail to converge $t=$ an atmissible function $\hat{x}(t)$. This must necessarily he the case if no solution of the fundamental problem exists. From an ergineering peint of view, one may noi be ton concerned wiit existence of a ijmit of the sequence $\left[x^{(n)}(t)\right]$. Provided it is possible to successively roiâce J, consistently better sesults are baink obtained and the process will be continued until no further meaningful reduction is J may be achieved. For an outstanding treatment of convergence of direct methods. see Ref. 2, page 192, and Ref. 3 , page 127.

The problem of primary interest to the engineer is the construction of a minimizing sequence. There are many ways of generating such a sequench, only :yo of which will be treated here. These methods are known as the Ritz Method and the Method of Finite Differences.

6-2.4.1 THE RITZ METHGD

The sitz Method is based on the idea of repiesenting functions by using linear combinations of known functicns; i.e., given $\phi_{i}(t)$. $l=1,2, \ldots$, which pieferably form a complete set, a function is represented by

$$
y(t)=\sum_{i=1}^{\sum_{i}} a_{1}(t)
$$

where a_{f} are constants. Classical, trigonometric Fourier series is $3 n$ example of this kind of representation.

In the Ritzimethod, the nth function in the minimizing sequence is formed by

$$
\begin{equation*}
x^{(n)}(t)=\sum_{i=1}^{n} a_{l} \phi_{i}(t) \tag{6-46}
\end{equation*}
$$

where the $\phi_{j}(t)$ are chosen so that $x^{(n)}(t)$ satisfies the end conditions associated with the fundamental problem. This expression is then substituted into $J(x)$ to obtain

$$
\begin{align*}
& J\left[x^{(n)}\right]= \\
& \left.\int_{t_{0}}^{b^{b}} f\left[t_{1} \sum_{i=1}^{n} a_{1} \phi_{i} i t\right), \sum_{i=1}^{n} a_{i} \phi_{l}^{\prime}(t)\right] d t_{1} \tag{6-47}
\end{align*}
$$

The object now is to choose th. coefficients $a_{i}, i=1, \ldots, n$, so that ${ }^{\prime}\left[x^{(n)}\right]$ is as small as possible. For this purpose, it should be noted that the right side of Eq. 6-47 is simply a function of n parameters. The problem is nuw to minimize this function without any other constraints. For this purpose, any of the methods of Chapter 2 may be used.

The property

$$
J\left(x^{(n+1)}\right)<J\left(x^{(n)}\right)
$$

follows readily from the method of determining the a_{f}. It is clear that by choosing $a_{n+1}=0, x^{(n+1)}(1)=x^{(n)}(1)$. However, by allowing a_{n+1} to be nonzero, a larger number of functions are available as candidates $f r$ minimum of $J\left\{x^{(n+1)}\right\}$ than $J\left\{x^{(n)}\right]$. The min:inum of $J\left(x^{(n+1)}\right)$ will, therefore, certainly not be greater tian that of $J\left[x^{(n)}\right]$ and this is the desired result.

In practice, the rate of convergence of $\left\{x^{(n)}(t)\right\}$ depends sirongly on the functions $\phi_{d}(t)$ chosen. The number of terms required to obtar a reasonable approximation of the solution is greatly reduced if these functions are chosen based oin a reasonable engineering estimate of the form of the solution. By making a judicious choive of the $\varphi(t)$, a good approximation of the solution may be obtained with as few as two or three terms.

Example 6-6: In solving the boundaryvalue problem

$$
\begin{aligned}
& x^{\prime \prime}+\left(1+t^{2}\right) x+1=0 \\
& x(-1)=x(1)=0
\end{aligned}
$$

it is necessary to minimize the functional

$$
\begin{equation*}
J(x)=\int_{-1}^{1}\left[x^{\prime 2}-\left(1+t^{2}\right) x^{2}-2 x\right] d t \tag{6-48}
\end{equation*}
$$

subject to the end conditions $x(-1)=x(1)=$ 0.

In order to minimize $J(x)$ of Eq. 6-48, by the Ritz Method, choose

$$
\phi_{i}(t)=\left(1-t^{2 t}\right)
$$

If for a first approximation $n=2$ is chosen,

$$
\begin{equation*}
x^{(2)}(t)=a_{1}\left(1-x^{2}\right)+a_{2}\left(1-x^{4}\right) \tag{6-49}
\end{equation*}
$$

Substituting $x^{(2)}$ into Eq. ó-48 and integrating yields

$$
\begin{aligned}
J\left(x^{(2)}\right)= & 8\left(\frac{19}{105} a_{1}^{2}+\frac{10}{45} 2 a_{1} a_{2}\right. \\
& \left.+\frac{1244}{3465} a_{2}^{2} \quad \frac{1}{3} a_{1}-\frac{2}{5} a_{3}\right) .
\end{aligned}
$$

This is a positive definite quadratic form, so it has a unique minimum which may be obzained by setting its first derivatives equal to zero. This yields

$$
\begin{aligned}
& \frac{38}{105} a_{1}+\frac{20}{45} a_{2}-\frac{1}{3}=0 \\
& \frac{20}{45} a_{1}+\frac{2488}{3465} a_{2}-\frac{?}{5}=0
\end{aligned}
$$

The solution of these equations is

$$
\begin{aligned}
& a_{1}=0.9877 \\
& a_{2}=-0.05433
\end{aligned}
$$

Substituting these coeffivients into Eq. 6-4\%,

$$
x^{(2)}(t)=\frac{1}{4252}\left(3969-4200 t^{2}+231 t^{4}\right)
$$

In particular,

$$
x^{(:)}(0)=0.93344
$$

If the thee term approximation

$$
x^{(3)}=a_{1}\left(1-t^{2}\right)+d_{2}\left(1-t^{4}\right)+a_{3}\left(1-t^{6}\right)
$$

is determined in the same manner,

$$
x^{(3)}(0)=0.93207
$$

This might lead one to believe that both $x^{(2)}(t)$ and $r^{(3)}(t)$ are good appioximution: of the solution.

6.2.4.2 METHOD OF FINITE DIFFER. ENCES

The Method of Finte Differences, as its name implies, is simply thed on the replace-
ment of derivatives and the integral by finite approximations of these continuous operations. A grid, $t^{0}=t_{0}, t_{1}, \ldots, t_{n+1}=t^{1}$, is placed on the interval $t^{0}<t \leqslant t^{1}$ and the value of $x(t)$ only at the grid points is sought, i.e., only the parameters $x_{i}=x\left(t_{i}\right), i=1, \ldots, n$, and perhaps $x\left(t_{0}\right)$ or $x\left(t_{n+1}\right)$, are sought.

Replacing derivatives by finite differences and the integral by a finite sunt, the problem is to determine the x_{j} which minimize

$$
\begin{aligned}
J\left(x_{i}\right) & =\sum_{i=0}^{n}\left\{F\left[t_{i}, x_{i}, \frac{x_{i+1}-x_{i}}{t_{i+1}} \frac{-t_{i}}{}\right]\right. \\
& \left.\times\left(t_{i+1}-t_{i}\right)\right\}
\end{aligned}
$$

The problem is now simply an unconstrained minimization problem in a finice dimensional space and may be solved by the methods of Chapter 2.

6.3 A PROBLEM OF BOLZA

6.3.1 STATEMENT OF THE PROBLEM

Many real-world optimal design problems cannot realistically be reduced to the finite dimensional form of Chapter 5 . In many problems the system varies continuously in time or space, so functions rather than just parameters must Le determined. Examples 6-1 and 6.2, par. 6-1, are extremely sir. 1 lc , yes even they involve distribution of the controlling factor ever space and time

As has been seen in previous chapters, optimal design probicms involve ideas of dasign variables and state viriables. Further. since the system being designed must be capable of periorring certan functions, side conditions on the state and design variables occur It has been observad in previous
chapters that these side conditions generally include both equality and inequality constraints. An extension to incquality cont straints will be given in par. 6-4.

The problem to be treated here is given in Definition 6-2.

Definition 6-2 isroblem of Boiza): The prollem of Bolza is a problem of finding $u(t)$. $b, x(t), t^{0}<t<t^{\eta}$, which minimizes

$$
\begin{align*}
J= & g_{0}\left(b, t^{\prime}, x^{i}\right) \\
& +\int_{t^{0}}^{t^{n}} f_{0}(t, x(t), u(t), b) d t \tag{6.50}
\end{align*}
$$

sujject to the conditions

$$
\begin{align*}
& \frac{d x}{d t}=f(t, x, b, b), 1^{a}<t \leq t^{n} \tag{6-51}\\
& g_{\theta}\left(b, t^{\prime}, x^{\prime}\right)+\int_{t^{6}}^{t_{a}^{n}} L_{a}[t, x(t), d(t), b] d t \\
& \tag{6.52}\\
& =0, \alpha=1, \ldots, r \\
& \phi_{\beta}(t, x, u, b)=0, \tag{6-53}\\
& \beta=1, \ldots, q, t^{n}<t \leq t^{n}
\end{align*}
$$

where

$$
\begin{align*}
& x(t)=\left[\begin{array}{c}
x_{1}(t) \\
\cdot \\
\cdot \\
x_{n}(t)
\end{array}\right], \quad u(t)=\left[\begin{array}{c}
u_{1}(t) \\
\cdot \\
\left.u_{m}^{\prime} t\right)
\end{array}\right], \\
& b=\left[\begin{array}{c}
b_{1} \\
b_{8}
\end{array}\right] \tag{6-54}
\end{align*}
$$

$$
f(t, x, u, b)=\left[\begin{array}{c}
f_{s}(t, x, u, b) \\
\cdot \\
\cdot \\
f_{n}(t, x, u, b)
\end{array}\right]
$$

and $t^{0}<t^{\prime}<t^{n}$, where $\left(t^{\prime}, x^{\prime}\right)$ are intermediate p ints $, j=1, \ldots, \eta-1$.

For the probler, considered here it will be required that the conditions, Eqs. 6-53, shall not determine any component of $x(1)$ explicitly. This is equivalent to requiring tial the rank 0° the matrix

$$
\begin{equation*}
\left[\frac{\partial \phi_{\rho}}{\partial u_{k}}(t, x, u, b)\right]_{q \times m} \tag{6-55}
\end{equation*}
$$

shiod be q for all andnissible values of the arguments. In case some constraint functio: should depend only on $x(i)$ and l, this constraint is called a state variable constraint. This kind of constraint will be discussed in a later paragraph.

The vector variatle $x(t)$ is called t. state variable, $u^{(t)}$) is called the derign (or cuntrol) variable, and b is called the design (or control) parameter. Eqs. $5-52$ contain the boundary conditions on the state variable and functions which determine the end points of the interval, t^{0} and t^{η}. The independent variable t may be time or a space-type variable, depending on the problem being considerece.

The functions f_{0}, f, L_{α}, and ϕ_{α} are assumed to be continuously differentiable at all points except $\left(t^{\prime}, x^{\prime}\right), j=1, \ldots, \eta-1$. At these points the functions mav have jump discontinuities; i.e., the func wiin have linits along ony path, but limits alung diterent paths may have difierent values. In general, even for -freras with very regulat functions, iffa) may have jump discon'muities. Therefe e $\begin{aligned} & \text { d } \beta^{\prime}\end{aligned}$
is expected to be only piecewise continituds. The resuling state $x(t)$, therefore, will have only a piecewise continuous derivative in general

The allowed discontinuities of $f_{0}, f_{i} L_{\alpha}$, and ϕ_{α} play an important role in many real-world problems. This feature allows for completely different forms of state equations, constraints, etc., for differert rarzes of state and time. It is, therefore, possible io routinely account for sudden changes in system behavior such as reverse in direction of frictional force, motion of objects in a space where physical barriers or restraint surfaces exist, logic built into the system which changes configuration as in staging of rockets, etc. It should be cleas that these features are re. quired in order to treat many realistic problems.

For a disclussion of the effect of these discontinuities or more detailed necessary conditions and sufficient conditions see Ref. 8.

6-3.2 A MULTIFLIEN RULE

is mentioned in pat. 6-3.1, real-world optimal design problems require at least the complexity of the Bolza problem of Def. 6-2. In fact, the system designer requires all the tools the mathematical theory of eptimal processes can give hin. This requirement points out one of the obstacles to engineers in utilizing the modern theories of mathematics. This text cannot possibly present the mathematical theory required of the research mathematician who is devaloping the theory of optimization. The approach taken here to by-pass this obstacle is to accept a key theurem of Functional Analysis and then procesed io develop the tools required for soly 8 rroblems of optimal design. A very
powerful theorem of Liusternik and Sobolev, Refi:-6, page 209, will- be used- to obtain necessary conditions for the problem of Bolza.

Theorem 6-4: If $\hat{u}(t), \dot{b}, t^{j}$, and $\dot{x}(t)$ provide a solution to the Bolza problem of Def. $6-2$, then there exist multipliers $\lambda_{\rho}>0, \gamma_{\alpha}, \alpha$ $=1, \ldots, r, \lambda_{i}(t), i=1, \ldots, n$, and $\mu_{\beta}(t), \beta=1, \ldots$, q, not al! zero, such that

$$
\begin{equation*}
\delta \bar{J}=0 \tag{6.56}
\end{equation*}
$$

where

$$
\begin{align*}
\vec{J}= & \lambda_{0} g_{0}\left(b, t^{l}, x^{\prime}\right)+\sum_{\alpha=1}^{r} \gamma_{\alpha} g_{\alpha}\left(b_{0} t^{\prime}, x^{\prime}\right) \\
& +\int_{i^{0}}^{t^{i}}\left\{\lambda_{0} f_{0}(t, x, u, b)\right. \\
& +\sum_{i=1}^{n} \lambda_{i}(t)\left[\frac{d x_{i}}{d t}-f_{i}(t, x, u, b)\right] \\
& +\sum_{\alpha=1}^{r} \gamma_{\alpha} L_{\alpha}(t, x, u, b) \\
& \left.+\sum_{a=1}^{q} \mu_{\theta}(t)_{\Phi_{0}}(t, x, u, b)\right\} d t .
\end{align*}
$$

Note that the symbol $\delta \bar{J}$ is the first variation of \bar{J} as defined in par. 6-2. For proofs of this multiplier rule, the reader is reierred to the literature (Refs. 2,5-9).

This theorem says nothing about the continuity and differentiability properties of the solution $\hat{x}(t), \hat{u}(t)$, and the multipliers $\lambda i(i)$ and $\mu_{5}(t)$. In general, piecewise continnity is all that may be expected of $u(t)$. Eq. 6-51 then implies $x(t)$ has a piecewise contiauous derivative. The properties of $\lambda_{\rho}(t)$ and $\mu_{\rho}(t)$ will be determined when necessary conditions are derived.

63.3 NECESSARY CONDITIONS THE BOLZA PROBEEM

FOR

The siñ̈plest Bolya problem is the one having all its functions three times continuously differenciable. Even in this case, however, $u(t)$ may be only piecewise continuous. To include this possibility, let t^{*} be a point of discontinuity of any component of $u(t)$.

Before computing the variation called for in Eq. 6.56 , it should be noted that $t^{0} ; t^{\prime}, t^{*}$, and i^{η} are not fixed but must be determined. This maans that these special points mus: be treated as parameters that are to be determined, much as the design parameter b. At first glance, this may seem to introduce no essential complication into the problem. The behavior of the allowed variations in $x(t)$, however, must be treated very carefully.

Let \bar{t} be a typical point t^{\prime} or t^{*} where $\dot{x}(t)$ may very well be discontinuous. The function $x(t)$ will be changed at i by both the independent variation in $x(t), \delta x(t)$, and the shift in the point ($\bar{t}, \delta \bar{t}$). Denote the totel change in $x(\bar{t})$ due to both of these sources by $\Delta x(\hat{i})$. It must be assumed that there are no other points t^{\prime} or t^{*} arbitmrily near i, so limits from the left and right exist. For $t \neq i$, $\dot{x}(t)$ is continuous so the total change $\Delta x(t)$ in $x(i)$ due to $\left.\delta x^{\prime} t\right)$ and $\delta \bar{i}$ is continuous and

$$
\Delta x(i) \equiv \Delta x(i-n)=\Delta x(i+0)
$$

where

$$
\Delta x(i-0)=\delta x(t-0)+\dot{x}(\bar{t}-0) \delta i
$$

and

$$
\Delta x(i+0)=\delta x(i)+0)+\dot{x}(i+0) \delta \bar{i} .
$$

It should be noted that this condition imposes restrictions on $\delta x(\bar{i} \quad 0)$ and $\delta x(\bar{i}+$

0). In particular, they are not necessarily the same so $\delta x(t)$ on $t^{0}<t \leqslant t^{n}$ need not necessarily be continuous.

Before enforcing Eq. 6-56, put \bar{J} in the form

$$
\begin{align*}
\bar{J}= & \left.\lambda_{0} g_{0}\left(b, t^{\prime}, x^{\prime}\right)+\sum_{\alpha=1}^{r} \gamma_{\alpha} n^{\prime} b_{,} t^{\prime}, x^{\prime}\right) \\
& +\int_{t^{\prime}}^{s^{\prime}}\left\{\lambda_{0} f_{0}(t, x, u, b)+\sum_{i=1}^{n} \lambda_{i}(t)\right. \\
& \times\left[\frac{d x_{i}}{d t}-f_{i}(t, x, u, b)\right]+\sum_{a=1}^{r} \lambda_{\alpha} L_{n}(t, x, u, b) \\
& \left.+\sum_{\beta=1}^{q} \mu_{\beta}(t) \phi_{\beta}(t, x, u, b)\right\} d t \\
& +\int_{t^{\prime}}^{t}\{ \} d t+\int_{t^{*}}^{:^{n}}\{ \} d t
\end{align*}
$$

where the argument of the pair of biaces is the same as that of the integrand of the first integral. Note that t^{*} and t^{t} are simpiy typical eiements of their respective classes.

For convenience in the development that foilows, define
$G=\lambda_{0} g_{0}\left(b d^{\prime}, c^{\prime}\right)+\sum_{a=1}^{r} \gamma_{a} g_{a}\left(b, l^{\prime}, x^{\prime}\right)$
$H(t, x, u, b, \lambda, \gamma, \mu)=\lambda^{T}(t) f(t, x, u, b)$

$$
\begin{aligned}
& -\lambda_{0} f_{0}(t, x, u, b) \\
& -\sum_{a=1}^{r} \gamma_{\alpha} L_{a}(t, x, u, \dot{b})
\end{aligned}
$$

$$
-\sum_{\beta=1}^{q} \mu_{\beta}(l) \phi_{\beta}(l, x, 1, b)
$$

$s 0$ that Eq. $6-58$ becomes

$$
\begin{aligned}
\vec{J}:= & G+\int_{t^{\circ}}^{t^{\prime}}\left[\lambda^{i}(t) \frac{d x}{d t}-H\right] d t \\
& +\int_{t^{\prime}}^{t^{*}}\left[\lambda^{T}(t) \frac{d x}{d t}-I T\right] d t \\
& +\int_{t^{*}}^{t^{\eta}}\left[\lambda^{T}(t) \frac{d x}{d t}-H\right] d t
\end{aligned}
$$

Eq. 6-56 may now be applied to yield

$$
\begin{aligned}
0= & \frac{\partial G}{\partial x^{0}} \Delta x^{0}+\ldots+\frac{\partial G}{\partial x^{\eta}} \Delta x^{\eta}+\frac{\partial G}{\partial t^{0}} \delta t^{0}+\ldots \\
& +\frac{\partial G}{\partial t^{\eta}} \delta t^{\eta}+\frac{\partial G}{\partial b} \delta b \\
& +\int_{1}^{\prime}\left[\lambda^{T}(t) \frac{d \delta x}{d t}-\frac{\partial H}{\partial x} \delta x\right. \\
& \left.-\frac{\partial H}{\partial u} \delta u-\frac{\partial H}{\partial b} \delta b\right] d t
\end{aligned}
$$

$$
+\int_{t^{\prime}}^{t^{\infty}}\left[\lambda^{T}(t) \frac{d \delta x}{d t}-\frac{\partial H}{\partial x} \delta x\right.
$$

$$
\left.-\frac{\partial H}{\partial u} \delta u-\frac{\partial H_{i}^{t}}{\partial b} \delta b\right] d t
$$

$$
+\int_{t^{*}}^{\eta^{n}}\left[\lambda^{7}(t) \frac{d \delta x}{d t}-\frac{\partial H}{\partial r} \delta x\right.
$$

$$
\left.\frac{\partial H}{\partial u} \delta u \quad \frac{\partial H}{\partial b} \delta b\right] d t
$$

$$
\begin{aligned}
& +\left[\lambda^{T}(t) \frac{d x^{\prime}(t)}{d t}-M!(t)\right] \left\lvert\, \begin{array}{l}
t^{i}-0 \\
t^{\prime}+0
\end{array} \cdot \delta t t^{l} .\right. \\
& -\left[\lambda^{T}\left(t^{0}+0\right) \frac{d x(t+0)}{d t}\right. \\
& \left.-H\left(t^{0}+0, x, u, b\right)\right] \delta t^{0} \\
& +\left.\left[\lambda^{T}(t) \frac{d x(t)}{d t}-H(t)\right]\right|_{t^{*}+0} ^{t^{*}-0} \cdot \delta i^{*} \\
& +\left[\lambda\left(t^{n}-0\right) \frac{d x\left(1^{n}-0\right)}{i t}\right. \\
& \left.-H\left(l^{n}-0, x, u, b\right)\right] \delta t^{\eta} .
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\lambda^{T}\left(t^{n}-0\right) \Delta x^{n}-H\left(t^{n}-0\right) \Delta t^{n} \\
& - \\
& -\lambda^{T}\left(t^{0}+0\right) \Delta x^{0}+H\left(t^{0}+0\right) \delta t^{0}
\end{aligned}
$$

Since the variables $\Delta x^{\prime}, \delta t^{\prime}, \delta b, \delta x(t)$, and $\delta u(t)$ are arbitrary, (Δx^{i} are taken as arbitrary along with δt^{i} so that $\delta x^{i}=\Delta x^{i}-\dot{x}^{i} \delta t^{i}$ is fixed) Lemma 6-1 applies. Application of this Lemma yields

Theorem 6-5: If $\left(x(t), u(t), b, t^{t}, x^{\prime}\right)$ is a solution of the Bolza problem of Def. 6-2, then there exist multipliers $\lambda_{0}>0, \lambda_{1}(t), i=$ $1, \ldots, n, \gamma_{\alpha}, \alpha=1, \ldots, r, \mu_{\beta}(t), \beta=1, \ldots, q$, not all zero, satisfying the conditions:
$0=\frac{\partial G}{\partial x^{0}} \Delta x^{0}+\ldots+\frac{\partial G}{\partial x^{\eta}} \Delta x^{\eta}+\frac{\partial G}{\partial t^{0}} \delta t^{n}$

$$
+\ldots+\frac{\partial G}{\partial t^{n}} \delta t^{n}+\frac{\partial G}{\partial b} \delta b
$$

$$
-\int_{t^{0}}^{d^{\prime}}\left[\frac{d \lambda^{T}(t)}{d t} \delta x+\frac{\partial H}{\partial x} \delta x\right.
$$

$$
\left.+\frac{\partial H}{\partial u} \delta u+\frac{\partial H}{\partial b} \delta b\right] c^{\prime} l
$$

$$
-\int_{t^{\prime}}^{t^{*}} 1 \quad 1 d t-\int_{t}^{t^{n}} 1 \quad 1 d t
$$

$$
+\left[\lambda^{r}\left(t^{\prime}-0\right)-\lambda^{T}\left(i^{\prime} \div 0\right)\right] \Delta x^{\prime}
$$

$$
-\left[H\left(t^{\prime}-0\right)-H\left(t^{\prime}+0\right)\right] \delta t^{\prime}
$$

$$
+\left[\lambda^{T}\left(t^{*}-0\right)-\lambda^{T}\left(t^{*}+0\right)\right] \Delta x\left(t^{*}\right)
$$

$$
-\left[H\left(t^{*}+0\right)-H\left(t^{*}+0\right)\right] \delta t^{*}
$$

$$
\begin{align*}
& \frac{d \lambda}{d t}=-\frac{\partial I^{T}}{\partial x}, \text { for } t \neq t^{\prime} \\
& \frac{\partial U}{\partial u}=0, \text { for } t \neq t \tag{6-62}\\
& \frac{\partial G}{\partial b}-\int_{t^{0}}^{t^{\eta}} \frac{\partial H}{\partial b} d t=0 \\
& \frac{\partial G^{T}}{\partial x^{0}}-\lambda\left(t^{0}\right)=0 \\
& \frac{\partial G^{T}}{\partial x^{\eta}}+\lambda\left(t^{\eta}\right)=0 \\
& \frac{\partial G^{T}}{\partial x^{\prime}}+\lambda\left(t^{\prime}-0\right)-\lambda\left(t^{\prime}+0\right)=0 \\
& \frac{\partial G}{\partial t^{0}}+H\left(t^{0}+0\right)=0 \\
& \frac{\partial G}{\partial t^{\eta}}-H\left(t^{\eta}-0\right)=0 \\
& \frac{\partial G}{\partial t^{\prime}} \cdots H\left(t^{\prime}-0\right)+H\left(t^{\prime}+0\right)=0
\end{align*}
$$

$$
\begin{equation*}
\lambda\left(t^{*}-0\right)-\lambda\left(t^{*}+0\right)=0 \tag{6:67}
\end{equation*}
$$

Note that the necessary conditions, zqs. 6.61 throued 6.67 , are linear and homogeneous in the multipliers $\lambda_{0}, \lambda_{i}(t) ; \gamma_{\alpha}, \mu_{\rho}(t)$. It $\therefore 3$, therefore, permissicle to choose the magnitwe of one multiplier so that the remaining runtiplic: s: will-be uniquely determined. It seems reasonable that if the necessary conditions ollained by setting $\delta \bar{J}=0$ are to be related to minimization of J, then λ_{0} should not be zero. This is indeed the case and if λ_{0} is required to be zero by the necessary conditions, then the Bolze problem is "abnormal" in a sense. Most meaningfu! problems are normal as tefined in Reft. 7, 8, and 9 and require $\lambda_{0} \neq 0$. ini solving problems using the necessary conditions of Theorem 6-5, one should tirst verify that Eqs. 6-61 through 6.67 have no solution if $\lambda_{0}=0$. It is then permissible to put $\lambda_{0}=1$ so that the remaining multipliers are uniquely determined.

Even though Eqs. 6.61 through 6.67 are very complicated, it is interesting to note that they provide just the right number of equations to solve for all the unknowsis. Eys. 6.51 along with Eq. $6.6!$ form a system of $2 n$ first-crder differential equations for $x(t)$ and r.(t). Further, the first ard last menters of Eq. 6.64 may be considered as $2 n$ equations in boundary conditions on λ and x. This is the proper number of boundary conditions. The s:cond equation of Eqs. 6.64 provides ary jump conditions in $\lambda(t)$ at the intermediate points $t, 0<t<\eta$. Eqs. 6.65 may be interpreted as determining $t^{\prime}, j=0,1, \ldots, \eta$, and Eq. 6.66 determines t^{*}. Eq. 6.67 simply states that λ is continuous even at jump discontinuities in u. Finaly, Eq $6-63$ determines the desigu parameter b.

It should be clear that this argument only shows that there are the proper number of
eçuations to determine the unknowns. It does not assert that a solution of Eqs. 6-61 thirough 6-67 exists. Existence theory for these problems is a difficult question that is treated in Refs. 10 and 11.

The conditions of Theorem 6-5 are very nearly the famous Pontryagin Moximum Principle (Ref. 12). The conditıon that completes the Maximum Principle is an inequality which follows from the Weierstrass condition of the calculus of variations. This condition is given as Thecrem 6.6.

Theoren 6.6: In addition to the conditions of Theorem 6-5, the solution of the Bolza problem must satisfy the condition:

$$
\begin{aligned}
& H\left[t, x(\cdot), U, b, \lambda(t) \gamma, 0^{1}\right. \\
& \quad<H[t, x(t), u(t), b, \lambda(t), \gamma, 0] \quad, \cdot \gamma)
\end{aligned}
$$

for all admissible U and all $t, t^{0}<t<t^{\eta}$.

For proof of this theorem see Reis. 8 and 13.

Another useful result is the following identity:

$$
\frac{d I I}{d t}=\frac{\partial I I}{\partial t}, \text { for } t \neq t^{\prime}
$$

This condition is useful in case H does not depend explecitly on t. Then H is constant between the points t, and at these points it may have discontinuities governed by the third equation in Eq. 6-65.

To prove this relation holds, compute 'ormilly

$$
\frac{d U}{d t}=\frac{\partial I I}{\partial t}+\frac{\partial U}{\partial U} \frac{d U}{d t}+\frac{\partial U}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial \lambda} \frac{d \lambda}{d t} .
$$

$$
\begin{gathered}
\text { Since } \frac{\dot{d x}}{d t}=f: \frac{\partial H}{\partial u}=0, \frac{\partial H}{\partial x}=-\frac{d \lambda^{T}}{d t}, \\
\text { and } \frac{\partial H}{\partial \lambda}=f^{T}, \text { this is } \\
\frac{d H}{d t}=\frac{\partial H}{\partial t}-\frac{d \lambda^{T}}{d t} f+f^{T} \frac{d \lambda}{d t}=\frac{\partial H}{\partial t}
\end{gathered}
$$

as required.

6.3.4 APPLICATION OF THE BOLZA PROBLFM

In order to obtain familiarity with the Bolza problem, several examples will be considered. In order to illustrate the basic ideas associated with the Bolza problems, these examples will be elementary. In real-world problems the engineer should be prepared for complexity that will probably force him to use a numerical method of solution. For examples of tr : Bolza problem in the theld of aerodynamics, a field which contributea greatly to optimal design theor $\%$, see Refs. !5,16, and 17 .

Example 6.6: Muximum Range Rockerassisted Projectile

A projectile of mess m is acted on by a rixed furse F as shov:n in Fig. 6-8. The angle of $\theta(t)$ is measured from the x-axis, where the

Figure 6-8. Particle in Motion
 problem discussed here, $\theta(t)$ is to be chosen so as to direct the motion of the particle. Hence $\theta(t)$ is the control variable.

Denoting horizontal and vertical components of velocity of the projectile by u and ν, respectively, the motion of the projectile is governed by the equations

$$
\begin{align*}
& \dot{x}=u \\
& \dot{y}=v \\
& \dot{u}=\frac{F}{m} \cos \theta \tag{6-70}\\
& \dot{v}=\frac{F}{m} \sin \theta-\xi ;
\end{align*}
$$

where $\quad=\frac{d}{d t}$

The projectile is fied from a gun at time t $=0$ with $x(0)=y(0)=0$ ana 'nitial velocity $u(0)=V \cos \theta_{0}, v(0)=V \sin \theta_{0}$, where V is the muz le velocity of the projectile. The problem at hand is to choose θ_{0} and $\theta(t)$ so that at some future time T, the projectile will hit the earth as far as possible from the launch point, i.e., $y(T)=0, x T T)=$ maximum.

In the notation of the Bolza problem, $O(t)$ is a design or centrol variable $u(1), \theta_{0}$ is a design parameter \dot{b}, T is terminal time r^{η}, and (x, y, u, v) is the state. The quantity to $0=$ minimized is

$$
J=x_{0}\left(b, t^{\prime}, x^{\prime}\right)=\cdots x(7) .
$$

Boundary conditions on the state variables are

$$
\begin{align*}
& g_{1}=x(0)=0 \\
& g_{3}=0(0)=0 \\
& g_{4}=y(0)-V \cos \theta_{0}=0 \\
& g_{5}=y(0) \doteqdot 0 . \tag{6.77}
\end{align*}
$$

$$
\frac{\partial G}{\partial G_{i}(0)}=\tilde{\gamma}_{1}=\lambda_{x}(0)
$$

Asdefined in Eq. 6.59 ,

$$
G=-\dot{\lambda}_{0} x(T)+\gamma_{1} x(J)+\gamma_{2} y(0)
$$

$$
+\gamma_{4}\left[\nu(0)-V \sin \theta_{0}\right]+\gamma_{5} \nu(T)
$$

$$
\begin{array}{r}
\frac{\partial G}{\partial \hat{y}(0)}=\gamma_{2}=\lambda_{y}(0) \\
\frac{\partial \vec{G}}{\partial \hat{t}(0)}=\gamma_{3}=\lambda_{u}(0)
\end{array}
$$

$$
\frac{\partial G}{\partial v(0)}=\gamma_{4}=\lambda_{v}(0)
$$

$$
\begin{equation*}
+\gamma_{3}\left[u(0)-V \cos \theta_{0}\right] \tag{6.72}
\end{equation*}
$$

$$
\frac{\partial G}{\partial x(T)}=-\lambda_{0}=-\lambda_{x}(T)
$$

$$
H=\lambda_{x}: 4+\lambda_{y} v+\lambda_{u} \frac{F}{m} \cos \theta
$$

$$
\begin{equation*}
i \lambda\left(\frac{F}{m} \sin \theta-g\right) \tag{6-73}
\end{equation*}
$$

where variable named subscripts are used for the $\lambda \mathrm{s}$ s.
Theorem 6-5 yields as necessary conditions

$$
\begin{align*}
& \dot{\lambda}_{x}=-\frac{\partial H}{\partial x}=0 \\
& \dot{\lambda}_{y}=-\frac{\partial I}{\partial y}=0 \\
& \dot{\lambda}_{u}=-\frac{\dot{\partial} H}{\partial u}=-\lambda_{x} \\
& \dot{\lambda}_{v}=-\frac{\partial H}{\partial v}=-\lambda_{y}, \\
& \frac{\partial H}{\partial \theta}=0=-\frac{\lambda_{\mu} F}{m} \sin \theta+\frac{\lambda_{v} F}{m} \cos \theta \tag{6.75}\\
& \frac{\partial C}{\partial \theta_{0}}-\int_{0}^{r} \frac{\partial H}{\partial \theta_{0}} d t=0=\gamma_{3} V \sin \theta_{0} \\
& -\gamma_{4} V \cos 0_{0} \\
& \gamma_{x}=\xi_{1} \\
& \text { for all admissible } \Theta \text {. } \\
& \text { Eqs. } 6.74 \text { yiell } \\
& \gamma_{x}=\xi_{1} \\
& \lambda_{y}=\xi_{2} \\
& \lambda_{u}=\xi_{3}-\xi_{1} t \\
& \lambda_{\nu}=\xi_{4}-\xi_{2} t
\end{align*}
$$

The last two equations of Eq, $6-78$ imply $\xi_{3}=$ $\xi_{1} T$ and $\xi_{4}-\xi_{2} T$. If we assume the problem is normal, $\lambda_{0}=1$ so $\dot{\lambda}_{x}(T)=1=\xi_{1}$, so

$$
\left.\begin{array}{l}
\lambda_{x}=1 \tag{6.81}\\
\lambda_{y}=\xi_{2} \\
\lambda_{u}=T \\
\lambda_{v}=\xi_{2}(T-t)
\end{array}\right\}
$$

Substituting from Eqs. 6.77 and 681 into Eqs. 6.75 and 6.76

$$
T \sin \theta_{0}-\xi_{2} T \cos \theta_{0}=0
$$

and

$$
-(T-t) \sin \theta+\xi_{2}(T-t) \cos \theta=0 .
$$

For all $t \neq T$, this is

$$
-\sin \theta+\xi_{2} \cos \theta=0
$$

These equations im lly

$$
\left.\begin{array}{l}
\xi_{2}=\tan \theta_{0} \tag{6.82}\\
\theta(t)=\theta_{0}
\end{array}\right\}
$$

Integrating the last two equations in Eq. 6-70,

$$
\left.\begin{array}{l}
u(t)=V \cos \theta_{0}+\frac{t F}{m} \cos \theta_{0} \\
v(t)=V \sin \theta_{0}+\frac{t F}{m} \sin \theta_{0}-\delta t
\end{array}\right\}(6.8 .3)
$$

integrating agion,

$$
\begin{align*}
x(t)= & t \dot{y}+\frac{t^{2} F}{2 m} \cos \theta_{0} \\
y(t)= & t V \sin \theta_{0}-\frac{1}{2} t^{2} g \\
& +\frac{t^{2} F}{2 m} \sin \theta_{0}
\end{align*}
$$

By use of these equations, the last equation in Ec. 6.71 yields

$$
T\left(V \sin \theta_{0}-\frac{1}{2} g T+\frac{T F}{2 m} \sin \theta_{0}\right)=0
$$

This implies

$$
\sin \theta_{0}=\frac{\frac{1}{2} g T}{\left(V+\frac{T F}{2 m}\right)}
$$

The one condition which has not been used is Eq. 6.79. By substitution of Eqs. 6.81 and 6.83 into Eq. 6-73, Eq. $6-79$ becomes

$$
\begin{aligned}
& \left(V+\frac{T F}{m}\right) \cos \epsilon_{0}+\xi_{2}\left(V \sin \theta_{0}\right. \\
& \left.+\frac{T F}{m} \sin \theta_{0}-g T\right)=0
\end{aligned}
$$

By use of Eq. $6-82$ this becomes

$$
\left(V+\frac{T F}{m}\right) \cos ^{2} \theta_{0}+\left(V+\frac{T F}{m}\right) \sin ^{2} \theta_{0}
$$

$$
-8 T \sin \theta_{0}=0
$$

or

$$
\begin{equation*}
V+\frac{T F}{m}=g T \sin \theta_{0} \tag{6-86}
\end{equation*}
$$

Combining Eqs. 6.85 an.: 6-86,

$$
\left(v+\frac{T F}{m}\right)\left(v+\frac{T F}{2 m}\right)=\frac{1}{2} g^{2} I^{2}
$$

- or

$$
\left(\frac{F^{2}}{2 m^{2}}-\frac{g^{2}}{2}\right) T^{2}+\frac{3}{2} \frac{F V}{m} T+V^{2}=0
$$

so
$i=\frac{-\frac{3 F V}{2 m}+\left[\frac{9 F^{2} V^{2}}{4 m^{2}}-4 V^{2}\left(\frac{F^{2}}{2 m^{2}}-\frac{g^{2}}{2}\right)\right]^{1 / 2}}{2\left(\frac{F^{2}}{2 m^{2}}-\frac{g^{2}}{2}\right)}$
Substituting T from Eq. 6.87 into Eq. 6.85 then gives ar. ensy equation for 0_{0}.

While the results of this problem are not particularly useful, the sclution does illustrate the use of the various conditions in Theorem 6.5 in generating a candidate solution of the problem. The reader, however, should not be led to believe that all Bolza problems may be solved in closed form as in this example.

In more jeneral problems the adjoint equations, Eq. 6.61 , cannot be solved so easily in closed rorm. Further, the equation $\partial H / \partial u=0$ may not yield so simple a condition as Eq. 6.75 for the design variable. It is often of value to ieep a procedure in minj for determinng the various unknowns as in this problem, even though more realistic problems may require numerical methods at each step in the procedure.

Ex.ample 6.7: Minimam Fuel Orbit Trans fer

A rocket equipped with a constant thrust engine is "o hansfer from a circular earth orbit of radius r_{0} to one of radius $R>r_{0}$ using a minimum of fuel. The ume allowed for this transfer is T. 「urther, 1 t is possibie ts shut the rocket down during one time interval of the iransfer if desired. The orbits are
illustrated in Fig. 6-9 and the time scale is shown in Fig. 6-10.

The times t_{1} and t_{2} may actually coincide, depending on the problem parameters. Thèse times play the role of t^{\prime} in the Bolza problem. The equations' of motion of the spacecraft are taken as

$$
\left.\begin{array}{l}
\dot{r}=u \tag{6-88}\\
\dot{u}=\frac{v^{2}}{r}-\frac{u}{r^{2}}+\frac{h(t) F \sin \theta}{m} \\
\dot{v}=\frac{u v}{r}, \frac{h(t) F \cos \theta}{m} \\
\dot{m}=h(t) q
\end{array}\right\}
$$

where

$$
h(t)=\left\{\begin{array}{l}
1,0<t<t_{1} \\
0, t_{1}<t<t_{2} \\
1, t_{2}<t<T
\end{array}\right.
$$

Figure 6.9. Orbit Transfer

Figure 6.10 Thrust Program
and the boundary conditions are

$$
\begin{aligned}
& r(C)=r_{0}, u(0)=0 \\
& \nu(0)=\left(\mu / r_{0}\right)^{\mathrm{i} / 2}, m(\eta)=m_{0}, \\
& r(T)=R, u(T)=0 \\
& \nu(T)=(\mu / R)^{1 / 2}
\end{aligned}
$$

where

$$
\begin{aligned}
& r=\text { radius } \\
& u=\text { radial velocity } \\
& \nu=\text { tangential velocity } \\
& m=\text { mass of spacecraft } \\
& \mu=\text { gravitation constant } \\
& F=\text { thrust } \\
& q=\text { mass now rate during thrust } \\
& \phi=\text { thrust orientation }
\end{aligned}
$$

Sinc $m_{0}-m(t)$ is ife amount of fuel consurned up to time t, the object here is to minimize

$$
J=m_{0}-m(T) .
$$

For use in Theorem 6-5, deinne

$$
\begin{aligned}
G & =m_{0}-m(T)+\gamma_{1}\left|r(0)-r_{0}\right|+\gamma_{2} u(0) \\
& +\gamma_{3}\left[v(0)-\left(\mu / r_{0}\right)^{1 / 2}\right] \\
& +\gamma_{4}\left[m(0)-m_{0}\left|+\gamma_{5}\right| r(7)-R \mid\right. \\
& +\gamma_{6} u(T)+\gamma_{7}\left[v(7) \quad(\mu / R)^{1 / 2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
H= & \lambda_{r} u+\lambda_{u}\left[\frac{\nu^{2}}{r}-\frac{\mu}{r^{2}}+\frac{h(t) F \sin \phi}{m}\right] \\
& +\lambda_{v}\left[-\frac{w}{r}+\frac{h(t) F \sin \phi}{m}\right] \\
& +\lambda_{m} h(t) \mathcal{G}
\end{aligned}
$$

The necessary concitions of Theorem 6.5 are

$$
\left.\begin{array}{c}
\dot{\lambda}_{r}=-\lambda_{u}\left(-\frac{v^{2}}{r^{2}}+\frac{3 \mu}{r^{2}}\right)-\lambda_{v}\left(\frac{u v}{r^{2}}\right) \\
\dot{\lambda}_{u}=-n_{r}+\lambda_{v} \frac{v}{r} \\
\dot{\lambda}_{v}=-\lambda_{u}\left(\frac{2 v}{r}\right)+\lambda_{v} \dot{c}_{r} \\
\dot{\lambda}_{m}=\lambda_{u}\left[\frac{h(t) F \sin \phi}{m^{2}}\right] \\
+\lambda_{v}\left[\frac{t_{1}(t) F \cos \phi}{m^{2}}\right] \\
0=\lambda_{u}\left[\frac{h(1) F \cos \phi}{m}\right] \\
-\lambda_{v}\left[\frac{h(t) F \cos \dot{m}}{m}\right] \\
\lambda_{m}(T)=-1 \\
\lambda\left(t_{1}-0\right)=\lambda\left(t_{1}+0\right) \\
\lambda\left(t_{2}-0\right)=\lambda\left(t_{2}+0\right) \tag{6-94}\\
H\left(t_{1}-0\right)=H\left(t_{1}+0\right) \\
H\left(t_{2}-0\right)=H\left(t_{2}+0\right)
\end{array}\right\}
$$

the I, are those shown in Fig. 6-10.

The prospect of solving this set of equations in closed form is dim indeed. A general procedure can be discussed, however, and the actual solution can be obtained using numerical methods discussed in a later paragraph.

From Eq. $6-91, \phi(b)$ may be determined as

$$
\begin{equation*}
\phi(t)=\operatorname{Arctan}\left(\frac{\lambda_{u}}{\lambda_{\nu}}\right) \tag{6.95}
\end{equation*}
$$

for t not in $t_{1}<t<t_{2}$, where ϕ need not be defined. The result of Eq. $6-95$ may be substituted into iqs. 6.88 and 6.90 so that these equations become a set of eight firstorder differential equations for the state and adjoint variables. Fq. 6.89 and $6-92$ form a set of eight boundary conditions for these variables. Eqs. $6-93$ show that the adjoint variable is continuous and Eqs. $6-94$ determine t_{1} and t_{2}. A numerical procedure may be used to solve this problem. The resulting adjoint variables may then be substituted into Eq. $6-95$ to obtain the explicit design (or control) variable. A problem of this kind is discussed in Ref. 18. The method used there to construct a solution is completely different from the one proposed here.

6-4 PROBLEMS OF OPTIMAL DESIGN AND RONTROL

The Boiza problem of par. 6.3 is ot almost the generality required for optimal design. The principal shortcoming of that problem is in the lack of generality in the constrants. It has been noird in preceding chapters that meaningful optimal design proilems generally involve inequality constraints. It is the purpose of this paragraph to extend the Bolza probiem to account for inequality constadints.

The problem treared here is given in Deninition 6.3.

Dejinition 6.3 (Problem of Optimal Design): The optima! design problem is a problem of fincing $u(t), b, x(t), t^{0} \leq t \leq t^{7}$, which minimize

$$
\begin{align*}
J= & g_{0}\left(b, t^{\prime}, x^{\prime}\right) \\
& +\int_{0^{0}}^{t^{\eta}} f_{0}[t, x(t), u(t), b] d t \tag{6.96}
\end{align*}
$$

subject to the conditions

$$
\begin{align*}
& \frac{a x}{d t}=f(t, x, u, b), t^{0}<t<t^{n}, t \neq t^{\prime} \tag{6.97}\\
& g_{\alpha}\left(b, t^{\prime}, x^{\prime}\right)+\int_{f^{0}}^{t^{n}} L_{\tau}[t, x(t), u(t), b] d t \\
& \quad=0, \alpha=1, \ldots, r^{\prime}
\end{align*}
$$

$\xi_{\alpha}\left(b, t^{\prime}, x^{\prime}\right)+\int_{t^{a}}^{t^{\eta}} L_{\alpha}[t, x(t), u(t), b] d t$

$$
<0, \alpha=r^{\prime}+1, \ldots, r
$$

$$
\left.\begin{array}{l}
\phi_{\beta}(t, x, u, b)=0, \beta=1, \ldots, q^{\prime}, \\
t^{0}<t<t^{n}
\end{array}\right\}(6-100)
$$

and

$$
\left.\begin{array}{l}
\phi_{\beta}(t, x, u, b)<0, \beta=q^{\prime}+1, \ldots, q . \\
t^{0}<t<t^{\eta} .
\end{array}\right\}(6-101)
$$

The var'ibles and furctions appearing here are idenu al to those in Def. 6-2.

The inequalities in this problem are treated here in the manner presented in Ref. 13. The inequality constraints are first reduced to equality constraints, and the results of par. 0.3 are apphed. In order to perform this
reduction, deline the slack variables ${ }^{\prime}, \alpha=r^{\prime}$ $+1, \ldots$, and $w_{\beta}(t), \beta=q+1, \ldots, q$ by

$$
\begin{gathered}
g_{\tau}\left(b, t^{\prime}, x^{\prime}\right)+\int_{r^{0}}^{t_{\alpha}^{n}} L_{\alpha}[t, x(t), u(t), h] d t \\
+u_{\alpha}^{2}=0, \alpha=r^{\prime}+1, \ldots, r
\end{gathered}
$$

and
$\left.\begin{array}{l}\phi_{\beta}(l, x, 1, b)+w_{B}^{2}(l)=0 . \\ \beta=q^{\prime}+1, \ldots, q\end{array}\right\}(\dot{\sigma}-103)$

The constraints, Eqs. 6.102 and $6-103$, are equivalent to Eige. 6.99 and 6-101, respectively, whe.e y_{a} ard $w_{s}(t)$ are interpreted as design varame'ers and design variables. With
iese equalty eonstrainis replacing the inequalty constrants, the optimai design problem becowns a Bolza problem. The iecessary conditions of par. 6-3, thurefore, may be applied to is is modifiet problem.

The form of the constram's, Eq or 101, has a great deal of do vith the behavior of the problem. If some function A_{β} depends only on t, x, and $\}$ then the brobiem is complicated in intervals in wasch $\phi_{9}=0$ This kind of constraint will be referred to as a state variable inequality conseraint and will bo treated separately. If ϕ_{β} does depend explacit ly on 1 , then the constrant is referred to as a deaign variable mequal:ty constrairt This probiem vill now be mesest gated

6-4.1 DESIGN VABIABLE INEQUALITY .ONSTRAINTS

In order to apply Theorem o-5 to the problem of Eqs $0.96 \quad 6.97,6-98,0-100$. tr-102, and (6-103, the independence of condtions expressed ty Eq. $0.1 \% 0$ and 6.103 must be ver.ied, 1.. the matrix. Eq 6.i5, is
required to 'ave rank g. For this purpose, the design vecio must be considered as (u^{T}, $\left.w^{T}\right)^{i}$, where $w^{T}=\left(w_{q^{\prime}+1}, \ldots, w_{q}\right)$.

The matrix. Eq. $6-5$, , becomes

This matrix is required to have rank q. In order for this to be possible the number of columns, $m+q-q$, must be grester than or equal to the number of rows, q, or $m \quad q^{\prime} \geqslant$ 0 . Further, it is obvious that the first q^{\prime} rows m ast be lineariy independent, or the entire matrin could not possibly have rank q. Next note that is $w_{x} \neq 0$, then the rth mev must be linearly independent of all the other row: sance it has the only tonzero eiemont in the in $+\alpha \quad q^{\prime}$ th column. Therefore, unear independence of the rows from q^{\prime}, 1 to q nerd onty be considered for those α with $w_{\alpha}=0$ By Eq. 6-10.3. this wine same as $\hat{a}_{n}=0$.

The onclusion is, then, has the matrix, deq 6-10t, will have raak q it and only if the matrix

$$
\begin{equation*}
\left[\frac{\partial \phi_{1}}{\partial u}\right] \cdot \phi_{1}=0 \tag{0-105}
\end{equation*}
$$

is of full row rank. This simply says the gradients of all cunstraint functions (which are equalities) with respect to the design variable must be linearly ins rendent. Assuming this is the case, Theorem 6.5 may be applied.

Define

$$
\begin{align*}
& G=\lambda_{0} g_{0}+\sum_{\sigma=1}^{r} \gamma_{\alpha} g_{\alpha} \tag{6-106}\\
& G^{\prime}=\sum_{\alpha n r^{\prime}+1}^{r} \gamma_{\alpha} \nu_{2}^{2} \tag{6-107}\\
& H=\lambda^{T} f-\lambda_{0} f_{0}-\sum_{\alpha=1}^{r} \gamma_{\alpha} L_{\alpha}-\sum_{\beta=1}^{q} \mu_{\beta} \phi_{\beta}
\end{align*}
$$

$$
\begin{equation*}
H^{\prime}=-\sum_{\alpha=r^{\prime}+1}^{r} \gamma_{\alpha} v_{\alpha}^{2} \cdots \sum_{\beta=q^{\prime}+1}^{q} \mu_{\rho} w_{\rho}^{2} . \tag{6-108}
\end{equation*}
$$

The quantities $H=H+H^{\prime}$ ana $\bar{G}=G+G^{\prime}$ take the place of H and G in Theorem 6-5. Necessary conditions for the optimal design problem are, therefore.

$$
\begin{align*}
& \frac{d \lambda}{d t}=-\frac{\partial I^{T}}{\partial x} \\
& \frac{\partial H}{\partial u}=0 \tag{6-111}\\
& \frac{\partial f^{\prime}}{\partial w}=0 \\
& \frac{\partial G}{\partial b} \int_{r^{*}}^{t^{n}} \frac{\partial H}{\partial b} d s=0 \\
& \frac{\partial G^{\prime}}{\partial v}-\int_{t^{*}}^{t^{\prime}} \frac{\partial H^{\prime}}{\partial y} d=0
\end{align*}
$$

and the conditions, Eqs. 6.110 through $6-113$, are unchanged. Further, Theorem 6-6 yields

$$
\begin{align*}
& \bar{H}[t, x(t), U, b, \lambda(t), \gamma, 0, v, w] \\
& \quad \in \bar{H}[0, x(!), u(t), b, \lambda(t), 0, v, w] \tag{0.115}
\end{align*}
$$

for all admissible U.
The condition, Eq. 6-112, in scalar form is

$$
\begin{equation*}
-2 \mu_{\beta} w_{\beta}=0, \beta=q^{\prime}+1, \ldots, q \tag{6-116}
\end{equation*}
$$

If $w_{\rho}=0$, then by Eq. $6-103 \phi_{\rho}=0$. If w_{β} $\neq 0, \phi_{\beta}<0$ and $\mu_{\beta}=0$. Therefore, Eq. G-116 is equivalent to

$$
\mu_{\beta}(t) \phi_{\beta}\left(t, x, u, b j=0, \beta=q^{\prime}+1, \ldots, q\right.
$$

(6-117)

Condition, Eq. 6-114, is

$$
\begin{gathered}
2 \gamma_{\alpha} y_{\alpha}+\int_{t^{\circ}}^{:} 2 \gamma_{\alpha}^{\prime \prime} \nu_{\alpha} d t=0 \\
\alpha=r^{\prime}+\ldots, \ldots, r
\end{gathered}
$$

or

$$
2 \gamma_{a} \nu_{a}\left(1+t^{n} \ldots t^{0}\right)=0, \alpha=r^{\prime}+1, \ldots, r
$$

Since $1+t^{n}-t^{0} \geqslant 0$,

$$
\begin{equation*}
\gamma_{\Delta} r_{\alpha}=0 . \alpha=r^{\prime}+1, \ldots, r . \tag{6.118}
\end{equation*}
$$

If $v_{a}=0$, then by Eq. 6-102, the constraist, Eq. $\left(w^{-}\right) 9$, is ar equality. If $r_{\alpha} \neq 0$. then the constraint, Eq. $6-99$, is a strict inequality and $\gamma_{\alpha}=0$ Therefore. Eq. $6-118$ is equivalent to

ARCP 706-192

$$
\begin{align*}
& \gamma_{\alpha}\left\{g_{\alpha}\left(\dot{b}, f^{\prime}, x^{\prime}\right)\right. \\
& \left.+\int_{t^{\prime}}^{t^{\eta}} L_{\alpha}[t, x(t), u(t), b] d t\right\}=0 \\
& \alpha=r^{\prime}+1, \ldots, r \tag{6-119}
\end{align*}
$$

The conditions, Eqs. $6-116$ and 6.118 , imply $H^{\prime}=0$ and $G^{\prime}=0$ so that $\bar{H}=H$ and \bar{G} $=G$. The necessary condition, Eq. 6.115 , is, therefore, just

$$
\begin{align*}
& H[t, x(t), U, b, \lambda(t), \gamma, 0] \\
& \quad<H[t, x(t), u(t), b, \lambda(t), \gamma, 0] \tag{6-120}
\end{align*}
$$

for all admissible U. It is iurther shown (Refs. $5,10,12)$ that $\lambda_{0}>0, \gamma_{\alpha}>0, \alpha=r^{\prime}+1, \ldots$, r. and $\mu_{\beta}(t)>0, \beta=q^{\prime}+1, \ldots, q, t^{0}<$ $t \leq t^{n}$.

The conditions obtained through application of Theorem $6-5$ to the optimal design problem may now be stated as Theorem 6-7.

Theorem 6-7: If $\left[x(t), u(t), b, t^{\prime}, x^{\prime}\right]$ is a solution of the optinnal design problem of Def. 6.3 and if the matrix, Eq. 6-105, has full row rank, then there exist multipliers $\lambda_{0}>0$, $\lambda_{i}(1), i=1, \ldots, m, \gamma_{\alpha}, \alpha=1, \ldots, r, \gamma_{\alpha}>0, \alpha=$ $r^{\prime}+1, \ldots, r, \mu_{\beta}(t), \beta=1, \ldots, q, \mu_{\beta}(t)=0, \beta=q^{\prime}+$ 1. ... q. not all zero, and functions G and $I I$ of Eqs. 6-106 and 6-108 such that

$$
\begin{align*}
& \frac{d \lambda}{d t}=-\frac{\partial H^{T}}{\partial x}, \text { for } t \neq t^{\prime} \tag{6.121}\\
& \frac{\partial H}{\partial u}=0, \text { tor } t \neq t^{\prime} \tag{0.122}\\
& \frac{\partial G}{\partial b} \int_{:^{\prime}}^{t^{\eta}} \frac{\partial H}{\partial b} d t=0 \tag{0.123}
\end{align*}
$$

$$
\left.\begin{array}{l}
\frac{\partial G^{T}}{\partial x^{0}}-\lambda\left(t^{0}\right)=0 \\
\frac{\partial G^{T}}{\partial x^{\eta}}+\lambda\left(r^{\eta}\right)=0 \tag{6-124}\\
\frac{\partial G^{T}}{\partial x^{I}}+\lambda\left(t^{\prime}-0\right)-\lambda\left(t^{\prime}+0\right)=0
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\frac{\partial G}{\partial t^{0}}+H\left(t^{0}+0\right)=0 \\
\frac{\partial G}{\partial t^{n}}-H\left(t^{\eta}-0\right)=0 \\
\frac{\partial G}{\partial t^{\prime}}-H\left(t^{\prime}-0\right)+H\left(t^{\prime}+0\right)=0
\end{array}\right\}
$$

$$
\begin{equation*}
H\left(t^{*}-0\right)-H\left(t^{*}+0\right)=0 \tag{6.126}
\end{equation*}
$$

$$
\begin{equation*}
\lambda\left(t^{*}-0\right)-\lambda\left(t^{*}+0\right)=0 \tag{6-127}
\end{equation*}
$$

$$
\mu_{\beta}(t) \phi_{\beta}(t, x ; u, b)=0, \beta=1, \ldots, q
$$

$$
\gamma_{\alpha}\left\{g_{\alpha}\left(i, j^{j}, x^{j}\right)\right.
$$

$$
\left.+\int_{\theta^{\prime}}^{t^{\eta}} L_{\alpha}[t, x(t), u(t), b] d t\right\}=0
$$

$$
\alpha=1, \ldots, r
$$

$$
\begin{equation*}
\frac{d I I}{d t}=\frac{\partial H}{\partial t}, \text { for } t \neq t \tag{6.130}
\end{equation*}
$$

and

$$
\begin{align*}
& H \mid t, x, x, U, b, \lambda(t), \gamma, 0\} \\
& <H\{t, x(t), u(t), b, \lambda(t), \gamma, 0\} \tag{6.131}
\end{align*}
$$

for dil admssmble ${ }^{\prime \prime}$.

Is should be noted that, just as in Theorem 6.5 the number of conditions here is just equal to the number of unknowns, so one miaht be led to belinve that a solution may be Exitid. Existence or 1 solution is, however, a very difficult question that is treated in Refs. 10 and 11.

0-4.2 STATE VARIABLE INEQUALITY CONSTRAINTS

In many meaningful design problens constraints may involve restrictions only on the state variable. This is the case when some ϕ_{β} of Eq. 6-101 depends only on t, x, and b. To study this problem, just one such constraint needs to be considered, i.e.,

$$
\begin{equation*}
\phi_{p}(t, x, b)<0, t^{0}<t<t^{\eta} . \tag{6-132}
\end{equation*}
$$

Let $t^{-}<t \leqslant t^{+}, t^{-}, t^{+}$, be an interval in which ϕ_{j} of eq. $6-132$ is an equality. It is clear that $\partial \phi_{\beta} / \partial u=0$, so the matrix, Eq. $6-105$, has a zero row in this interval and hence cannot be of full row rank. Theorem $6-7$ cannot be applied directly, so further analysis is required.

In the interval $r^{-}<t<t^{+}, \phi_{a}=0$ so it is necessary that

$$
\frac{d \phi_{g}}{d t}=0=\frac{\partial \phi_{g}}{\partial t}+\frac{\partial \phi_{g}}{\partial x} \frac{d x}{d t} .
$$

Fromi Eq. 6.97, $d x / d t$ may be replaced by f and this relation becomes

$$
\begin{aligned}
0= & \frac{d \phi_{j}}{d t}=\frac{\partial \phi_{0}(t, x(t), b]}{\partial t} \\
& +\frac{\partial \phi_{g}(t, x(t), b]}{\partial x} f(f, x(t), z(t), b)
\end{aligned}
$$

If the riaht sude of the equaton depends ex.
picitly on $u(t)$, then this equatson is of the form required in the problem treated in par. $6-4$. 1 . If not, then differentisting, through this equation with respect to t and using the chain rule of oifferentarion

$$
\begin{align*}
0= & \frac{d^{2} \dot{\phi}_{A}}{d t^{2}}=\frac{\partial^{2} \phi_{\beta}}{\partial t^{2}}+2 \frac{\partial^{2} \phi_{\beta}}{\partial t \partial x} f \\
& +f^{r} \frac{\partial^{2} \phi_{\beta}}{\partial x^{2}} f+\frac{\partial \phi_{\beta}}{\partial x} \frac{d f}{d t}, \tag{6-133}
\end{align*}
$$

where all the arguments are omitted. If the right side of Eq. C. 133 depends explicitly on $u(t)$ then this equation is of the form treated in par. 6-i.1.

This process continues until

$$
\begin{equation*}
0=\frac{d^{\nu} \phi_{p}}{d t^{\nu} \beta}\{t x(t), b \mid \tag{0-1.34}
\end{equation*}
$$

involves $u(i)$ explicitly in its right side and $u(t)$ can be determined as a function of $x(t)$ and b, as in par. 6-4.1. The integer $v_{\beta} \geq 1$ is defined to be the first integer for which this is true. The constraint, Eq. 6-132, is then called a v_{β} th order state variabie ine tuality constraint.

From the theory of ordinary differential equations (Ref. 14), Eq. ©-134 throughout $t^{-}<t<t^{+}$and

$$
\begin{equation*}
\left.\phi_{\beta} \mid t^{-}, x\left(t^{-}\right), b\right]=0 \tag{6.135}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{d \phi_{\beta}}{d t^{\prime}} \right\rvert\, i^{-}, x\left(t \quad|b|=0,1=1, \ldots, \nu_{\beta-1}\right. \tag{6.136}
\end{equation*}
$$

are equivalent to $\phi_{\beta}=0$ throughout t s

А解СР 706-192
$t<t^{+}$. Uhis, of course, requires that ϕ_{θ} have ν_{β} piecew'se continuous derivatives, and f have $\nu_{\beta-1}$ piecewise continucus derivatives in $t^{-}<t<t^{+}$. The point t^{-}plays the role of a t in the problem stated earlier in this paragraph.

It will be assumed that when the right side of Eq. 6-134 is used in place of ϕ_{β} in computing the matrix, Eq. $6-105$, this matrix has full row rank. In this case Theorem 6-7 may be employed. To stilize this theorem, define

$$
\phi_{\beta}, \nu_{\beta}=\left\{\begin{array}{l}
\phi_{\beta}, \phi_{\beta}<0 \\
d^{\nu} \phi_{\phi_{\beta}}, \phi_{\beta}=0 \\
d_{i}^{\nu}
\end{array}\right\}(6 \cdot 137)
$$

where $\nu_{\theta}=0$ if ϕ_{β} involves u explicitly,

$$
\begin{align*}
& G=\lambda_{0} g_{0}+\sum_{\alpha=1}^{\sum} \lambda_{a} g_{\alpha} \tag{6.138}\\
& \bar{G}=\sum_{\beta}^{\nu_{j-0}} \sum_{i=0}\left\{\tau_{i, \beta}^{-} \frac{d^{i} \phi_{\beta}}{d t^{t}}\left[t^{-}, x(t), b\right]\right\}(0-139)
\end{align*}
$$

where this sum on β is extended only over the indices associnted with state variable inequaity constraints, $\boldsymbol{r}_{i, \beta}$ are multipliers, and

$$
\dot{h}=\lambda^{T} f-\lambda_{0} f_{0}-\sum_{\alpha=1}^{f} \gamma_{a} L_{\alpha}
$$

$$
\sum_{i=1}^{q} \mu_{u j} \phi_{0}, \nu_{a}
$$

With $\bar{G}=G+\dot{G}$ and \bar{H} replacing C and H in Theorem 6.7, a set of necessary conditions for this problem are of ma: A They are easily computed and are given here as Theorem 6.8
6.32

Theorem 6-8: If $\left[x(t), u(t), b, t^{l}, x^{\prime}\right]$ is a solution of the optimal design problem with state variable inequality constraints, then there exist multipliers $\lambda_{0}>0, \lambda_{1}(t), i=1, \ldots$, $n, \gamma_{\alpha}, \alpha=1, \ldots, r, \gamma_{\alpha}>0,{ }^{n}=r^{\prime}+1, \ldots, r$, $\mu_{\nu}(t) \beta=1, \ldots, q, \mu_{\beta}(t)>0, \beta=q^{\prime}+1, \ldots, q$, and $\tau_{i, \beta}^{-} i=1, \ldots, \nu_{\beta}$ and β associated with a state variable constraint and $\phi_{\beta}=0$ in $t^{-}<t<t^{+}$,

$$
\begin{equation*}
\frac{d \lambda}{d t}=-\frac{\partial \tilde{H}^{T}}{\partial x}, \text { for } t \neq t^{\prime}, t^{-}, t^{+} \tag{6-141}
\end{equation*}
$$

$\frac{\partial \check{H}}{\partial u}=0$, for $t \neq t^{t}, t^{-}, t^{+}$
$\frac{\partial G}{\partial b}+\frac{\partial \bar{G}}{\partial b}-\int_{t^{0}}^{t^{n}} \frac{\partial \bar{H}}{\partial b} d t=0$
$\frac{\partial G^{T}}{\partial x^{0}}-\lambda\left(t^{0}\right)=0$
$\frac{\partial G^{T}}{\partial x^{\eta}}+\lambda\left(t^{\eta}\right)=0$
$\frac{\partial G^{T}}{\partial x^{\prime}}+\lambda\left(t^{\prime}-0\right)-\lambda\left(t^{\prime}+0\right)=0$
$\frac{\partial \bar{G}^{T}}{\partial x^{-}}+\lambda\left(t^{-}-0\right)-\lambda\left(t^{-}+0\right)=0$
$\lambda\left(t^{+}-0\right)-\lambda\left(t^{+}+0\right)=0$
$\frac{\partial G}{\partial t^{0}}+\tilde{H}\left(t^{0}+0\right)=0$
$\frac{\partial G}{\partial t^{\eta}}-\dot{H}\left(t^{\eta}-0\right)=0$
$\frac{\partial G}{\partial t^{\prime}}-\tilde{A}\left(t^{\prime}-0\right)+\dot{H}\left(t^{\prime}+0\right)=0$
$\frac{\partial \bar{G}}{\partial r^{-}}-\bar{H}\left(t^{-}-0\right)+\bar{h}(t+0)=0$
$\dot{H}\left(t^{+} \quad 0\right)+\dot{H}\left(t^{+}+0\right)=0$

$$
\begin{align*}
& \dot{I}\left(t^{*}-0\right)-\bar{H}\left(t^{*}+0\right)=0 \tag{6-146}\\
& \lambda\left(t^{*}-0\right)-\lambda\left(t^{*}+0\right)=0 \\
& \mu_{\beta}(t) \phi_{\beta}(t, x, u, b)=0, \beta=1, \ldots, q \tag{6-148}\\
& \gamma_{\alpha}\left\{g_{\alpha}\left(b, t^{\prime}, x^{\prime}\right)\right. \\
& \left.\quad \int_{t^{0}}^{t^{\eta}} L_{\alpha}\left[t, x(t), u(t), t^{\prime}\right] d t\right\}=0 \\
& \alpha=1, \ldots, r \tag{6-149}\\
& \frac{d \bar{H}}{d t}=\frac{\partial \bar{H}}{\partial t}, \text { for } t \neq t^{\prime}, t
\end{align*}
$$

and

$$
\begin{align*}
& \bar{H}[t, x(t), U, b, \lambda(t), \gamma, 0] \\
& \quad \leqslant \bar{H}[t, x(t), u(t), b, \lambda(t), \gamma, 0] \tag{6-151}
\end{align*}
$$

for all admissible U.

The full set of necessary conditions embodied in this theorem is awesome from a computational point of view. The differential equations for x and λ are subject to multipoint boundary conditions that involve a set of undetermined multipliers. In a gross sense, Eqs. 6-147 may be viewed as determining intermediate points in $t^{n} \leqslant t<t^{\eta}$ and the associated boundary conditions on $x(t)$ and $\lambda(t)$.

Use of the theorem is further complicated by the fact that the design ve.iable may be determaned as the solution of Lq. (-142 which satisfies Eq. $6-15 i$. This means that u will be determined as a furct on of λ, b and all the multuphers The expression for u will generaily take different forms in different subintervals of $1^{0}, 1<t^{n}$ and the spaing of
these subintervals is not known before the solution is compated. The generality of the problem makes it difficult to discuss all its intracies without resorting to spectal cases and examples.

6-4.3 APPLICATION OF THE THEORY OF OPTIMAL DESIGN

In ordar to develop some femiliarity with the methods of the preceding subparagt 1 phs, several examples will be trea.ed here. These problems will be idealizations of azal-world problems but will illustrate the basic ideas which carry over into more complicated problems.

Example 6.8: Time-optimal Steering of a Ground Vehicle (Ref. 19)

To illustrate the concepts presented in par. 6-4.2, an optimal vehicle steering problem will be solved This problem is chosen because of its clarity of formulation and solution. A ground vehicle (a tractor in this case) is to be stecred so that it begin at a given point and is steered so tha: it reaches a given straight line path in the shortest possible time. The vehicle and the line it is to reach are shown in Fig. 6.11.

Point A, mad:way between the rear wheels, is located by the coordinates $x_{1}(t)$ and $x_{2}(t)$.

Figure 6-11. Ground Vehicle

Orientation of the velicle is specified by a third variable $x_{3}(t)$. Steering of the vehicle is accomplished by choosing the angle $\theta(t)$. From physical grounds it is clear that the state of the vehicle is described by $x(t)=$ $\left[x_{1}(t)_{r} r_{2}(t) x_{3}(t)\right]^{T}$ and the veit.cle is controlled through choice of $\theta(t)$.

Ii is assumed that the rear axle of the vehicle moves with a constant velocity V. In this case, motion of the v hhicle is governed by the differential equation

$$
\left.\begin{array}{l}
\dot{x}_{1}=V \cos x_{3} \\
\dot{x}_{2}=V \sin x_{3} \\
\dot{x}_{3}=a \tan \theta
\end{array}\right\}
$$

where $a=V / L$. At the initial time $t=0, x_{1}^{0}(0)$ $=x_{1}^{0}, x_{2}(0)=x_{2}^{0}$, and $x_{3}(0)=x_{3}^{0}$. The terminal time T is not decermined but it is riquired that $x_{2}(T)=x_{2}^{1}$ and $x_{3}(T)=0$ sinse the vehicle must be tangent to the target line at time T.

The steering angle is limited by

$$
\begin{equation*}
-\theta_{0}<0<\theta_{0} \tag{6-153}
\end{equation*}
$$

and as an idealization it is assumed that any steering angle in $-\theta_{0}<\theta<0_{0}$ may be chosen instantancously for a reasonable problem it is clea. that $\theta_{0}<\pi / 2$. Further, for definiteness, assume $\left|x_{3}^{0}\right|<\pi_{i}<$ and $x_{2}^{1}>x_{2}^{0}$. All other initial conditions can be obtamed from these by reflection in Fig. 6-11.

The problem is now in the $16 . \mathrm{m}$ described in par. 6-3. For use in Theorem 6.7,

$$
\begin{aligned}
G= & \lambda_{0} T * \gamma_{1}\left|x_{1}(0)-x_{1}^{0}\right| \\
& +\gamma_{2}\left|x_{2}(0)-x_{2}^{0}\right|+\gamma_{3}\left|x_{3}(0)-x_{3}^{0}\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\gamma_{4}\left[x_{2}(T)-x_{2}^{1}\right]+\gamma_{5} x_{3}(T) \\
H= & \lambda_{1} V \cos x_{3}+\lambda_{2} V \sin x_{3}+\lambda_{2} a \tan \theta \\
& -\mu_{2}\left(\theta-\theta_{0}\right)-\mu_{2}\left(\theta_{0}-v\right) .
\end{aligned}
$$

The conditions of Sheorem 6-7 are

$$
\begin{align*}
\lambda_{1}= & -\frac{\partial i}{\partial x_{1}}=0 \\
\dot{\lambda}_{2}= & -\frac{\partial H}{\partial x_{2}}=0 \\
\lambda_{3}= & -\frac{\partial H}{\partial x_{3}}=\lambda_{1} V \sin x_{3} \tag{6-154}\\
& -\lambda_{2} V \cos x_{3}
\end{align*}
$$

$\frac{\partial H}{\partial \theta}=0=\lambda_{3} a \sec ^{2} \theta-\mu_{2}+\mu_{2} \quad(6-155)$

$$
\begin{equation*}
\lambda_{1}\left(T^{\prime}\right)=0 \tag{6-156}
\end{equation*}
$$

$\lambda_{0}=\lambda_{1}(T) V \cos x_{3}(T)+\lambda_{2}(T) V \operatorname{sir} x_{3}(T)$

$$
\begin{equation*}
+\lambda_{3}(T) a \tan \theta(T) \tag{6.157}
\end{equation*}
$$

$$
\left.\begin{array}{l}
\mu_{1}\left(\theta-\theta_{0}\right)=0 \tag{6-158}\\
\mu_{2}\left(\theta_{0}-\theta\right)=0
\end{array}\right\}
$$

and
$\frac{d H}{d t}=\frac{\partial H}{\partial t}:=0$.

The first two equations in Eq. $6-154$ yirld
$\lambda_{1}(i)=\xi_{1}$
$\lambda_{2}(1)=\xi_{2}$
and Eq. (r.156 imples $\xi_{1}=0$. The last pquation in Eq 6-154 is then

$$
\dot{\lambda}_{3}=-\xi_{2} V \cos x_{3}
$$

Using the first equation in Eq. 6-152 to replace $V \cos x_{3}$, this is

$$
\dot{\lambda}_{3}=-\xi_{3} \dot{x}_{1}
$$

Therefore,

$$
\begin{equation*}
\lambda_{3}(t)=-\xi_{2} x_{2}(t)+\xi_{3} . \tag{6-160}
\end{equation*}
$$

The behavier of $0(t)$ may be isolated to two differert cases. The first is $|\rho(t)|=\theta_{0}$. The second is $|0(t)|<\theta_{0}$, in which case Eq. $5-158$ implies $\mu_{1}(t)=\mu_{2}(t)=0$. Eq. 6-155 then shows that $\lambda_{3}(t)=0$. By Eq. $6-160$ then $x_{1}(t)$ is either a constant or $\xi_{2}=\xi_{3}=0$. This and Eq. 6.157 then impiies $\lambda_{0}=0$ so all λ_{1} are zero. This is forbidden by Theorem 6-7, so $x_{1}(t)$ is a constant when $|O(t)|<\theta_{0}$. But if $x_{1}(t)$ is constant $\dot{x}_{1}(t)=0$ and the first equation in Eq. $6 \cdot 152$ implies $x_{3}(t)=0$. The last equation in Eq. 6.152 implies $\theta(t)=0$.

It is clear then that if $|\theta(t)|<\theta_{0}$ for some interval of time, tie path of the vehicle must be c straight line parallel to the x_{2}-axis in Fig. 6-11.

Since the last two terms in H are zero, the only explicit dependence of H on θ is through the term $\lambda_{3}(4) a \tan \theta(i)$. The uequality, $E q$. 6.131 , states that $\theta(1)$ must maximize h It is clear then that if $\lambda_{3}(t) \neq 0$, then

$$
\begin{equation*}
\theta(t)=\theta_{0} \operatorname{sgn}\left\{\lambda_{3}(t)\right\} \tag{6.161}
\end{equation*}
$$

where

$$
\operatorname{sgn} q=\frac{1 q \mid}{q}
$$

Further, it is clear that $\theta(t)=0$ is possibla only when $\lambda_{3}(t)=0$.

Since $x_{3}^{0}<\pi / 2$, for t small, either $\theta(t)=\theta_{0}$ or $\theta(t)=-\theta_{0}$. From Fig. 6.11, it is reascnably clear that $\theta(t)=\theta_{0}$ and Eq. $6 \cdot 152$ can be integrated to obtain

$$
\left.\begin{array}{rl}
x_{1}(t)= & x_{1}^{0}+R\left[\sin \left(x_{3}^{0}+b t\right)\right. \\
& \left.-\sin x_{3}^{0}\right] \\
x_{2}(t)= & x_{2}^{0}-R\left[\cos \left(x_{3}^{0}+b t\right)\right. \\
& \left.-\cos x_{3}^{0}\right] \\
x_{3}(t)= & x_{2}^{0}+a t \tan \theta_{0}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& b=a \tan \theta_{0} \\
& R=V / b
\end{aligned}
$$

This path is just a circular are with center at $\left(x_{1}^{0}-R \sin x_{3}^{0}, x_{2}^{0}+R \cos x_{3}^{0}\right)$ and counterclockwise motion.

Similarly, if $O(t)$ should become $-\theta_{0}$ at some time t^{*} whe.e $x_{1}\left(t^{*}\right)=x_{1}^{*}, x_{2}\left(t^{*}\right)=x_{2}^{*}$, and $x_{3}\left(r^{*}\right)=x_{3}^{*}$ then the path is described by

$$
\left.\begin{array}{c}
x_{1}(t)=x_{1}^{*}-R\left[\sin \left(x_{3}^{*}-b t\right)\right. \\
\cdots \sin \left(x_{3}^{*}\right] \\
x_{2}(t)=x_{2}^{*}+R\left[\cos \left(x_{3}^{*}-t t\right)\right. \\
\left.-\cos x_{3}\right] \\
x_{3}(t)=x_{3}^{*}-a t \tan 0_{0}
\end{array}\right\}
$$

This nath is a circular are with center at ($x_{1}^{*}+$ $R \sin x_{3}^{*}, x_{2}^{*} \cdot R \cos x_{3}^{*}$) and clockwise mot'on. Smee this carculat are must be tangent to the line $x_{2}=x_{2}^{1}$, the x_{2}-coordinate of the center must be $x_{2}^{1} \quad R=\lambda_{2}^{*} \quad R \cos r^{*}$

Nute that by Eq. 6-152, $x_{3}(r)$ must be contintious, so \dot{x}_{1} and \dot{x}_{2} are continuous. Therefore, the tangert to the path of p.int A in the $\left(x_{1}, \therefore\right)$-plane is

$$
\frac{d x_{2}}{d x_{2}}=\frac{\dot{x}_{2}}{\dot{x}_{1}}=\tan x_{3}
$$

and this slope is continuous. This means that segments of the optimal path where $\theta=-0_{0}$, 0 , or θ_{0} must be tangent where they intersect. With this information, the solution of the problem may be constructed geometrically.

In Fig. 6-12 the initial arc, which is described by Eq. 6-162, is shown leaving $\left(x_{1}^{0}, x_{2}^{0}\right)$. A whole damily of second aris is shown corresponding io different values of x_{2}^{1}.

Figure 6.12. Extremal Arcs

From the construction of Fig. 6.12 it is clear that the point of tangency of the two ci:cies $\left(x_{1}^{*}, x_{2}^{*}\right)$ is at tise middle of the line joining their centers, i.e.,

$$
x_{1}^{*}=\frac{1}{2}\left(x_{1}^{0}-R \sin x_{3}^{0}+x_{1}^{*}+\kappa \sin x_{3}^{*}\right)
$$

$$
x_{2}^{A}=\frac{1}{2}\left(x_{2}^{0}+R \cos x_{3}^{0}+x_{2}^{*}-R \cos x_{3}^{*}\right) .
$$

Further, tlie relation no:ed just oelow Eq. 6.163 is

$$
x_{2}^{1}-R=x_{2}^{*}-R \cos x_{3}^{*} .
$$

These equations; :eld

$$
\begin{aligned}
x_{1}^{*}= & x_{1}^{0}-R \sin x_{3}^{0}+\left[R^{2}-\frac{1}{4}\left(x_{2}^{1}-R\right.\right. \\
& \left.\left.-x_{2}^{c}-R \cos x_{3}^{0}\right)^{2}\right]^{1 / 2} \\
x_{2}^{*}= & \frac{1}{2}\left(x_{2}^{0}+x_{2}^{1}+R \cos x_{3}^{0}-R\right) .
\end{aligned}
$$

It may be net.ed by examining the family of paths in Fig. 6-1 2 that if $x_{2}^{1}>s=R+x_{2}^{0}+$ $R \cos x_{3}^{0}$, then the first arc has been followed beyond a time i where $x_{3}(\bar{l})=\pi / 2$. At the $p \cap \operatorname{int} x_{1}(\bar{l})=x_{1}^{0}-R \sin x_{3}^{0}+R_{1} x_{2}(\bar{t})=x_{2}^{0}+$ $K \cos x_{3}^{0}$ it would have been possible to construct a vertical portion of the optimal math. This construction is shown in Fig. 6-13.

The extremal patils constructed for $x_{2}^{1}>s$ satisfy al! the conditions of the theorem so

Figure 6.13. Extremal Arcs With Straight Section
that they may be optinum. It is clear that for $x_{2}^{1}<s$ there is snly one possii)le solution of the probler ${ }^{-2}$. For $x_{2}^{2}>s$ this is not the case as shown for $x_{2}^{1}=\hat{x}_{2}^{1}$. Both the extremals leading to the path $x_{2}=\hat{x}_{2}^{\prime}$, atisify the necessary conditions of the theorem. It is, geometrically, relatively sear that these are the oniy two possibilities so the one with the stontest time required to get to $x_{2}=\hat{x}_{2}$ is to to chose.r. The test, Eq. 6 -151, ma; eliminate on.e candidate. It seems clear that when the extremal with straight line exists, it is best.
it should be noted that if $x_{2}^{1}>s+2 R$. it is impossible to intersect $x_{2}=x_{2}^{\prime}$ with oniy two circular arcs so the extrental with a st-aight section is required.

This problem illustrates many of the basic iueas and comrlexitics involved is cptimal design and optimal control theory. Some of the features are worth noting because they will arise hater:

1. Pieced extremals. The conditions of Theorem 6-7 give a set of curves or solutions that must be pieced together to form the optimal path in state space. In the vehicle steering problem, these curves or arcs are put together geometricaily. In more complex problems, this will have to be done analytical.'y using the conditions of Theorem 6-7.
2. Multip.e 5 -heromy. As seen in the foregoing problen, bore than one randidate soiution may be const wited. Condtion. Z̈. 6-131, must then be a stal iv croose the best of thase candidates.
3. Singular ares. It occasionally bappens, as in the vehicle siesung yroblem, that there will exint a set of values of the state yyribles and watipliers such that the fuesties ? doee not depend explicilly on the thsing quriable ha
this case, Eq. 6-122 provides nu information. It is then required that the inequality, Eq. $6.1^{2} 1$, must be used to determine the design variable. For a complete treatment of this subject, see Ref. 20.

The problem treated in this paragraph is not as complicated as most optimal design problems occuring in the real-world. It does, however, illustrate some of the feateres and difficuliy encouatered in most realistic optimal design preblems. This problem should convince the reader that the solution of opimal design problems is not simply a matter of plagging numbers into formulas. Even though analytical methods will be stressed in subsegrent work, the effective solution of this ciass of problems requires a sound understanding of the theory of optimal design.

Example 6-9: .1 Constrained Brachisto-

 chrone Problem.The problem considered here is similar to Example 6.4 but with a conatraint added. It is required to fi th the path through (00) which lies above the line $x_{3}=h+x_{1}$ tar α in the (x_{1}, x_{2})-plane and that carries a particle, without friction, to the vertical line $x_{1}=x_{1}^{1}$ in the shortest possible time. The problem is shown in Fig. 6-14.

This problem will be treated as an optimal deisigin problem. On the assumption that there as no discontunities in the velocity vector, conservstion of energy yields

$$
\frac{1}{2} m^{2}=m_{\mathrm{s}} x_{2}
$$

or

$$
y=\left(2 x_{2}\right)^{1 / 2}
$$

Figure 6-14. Bounded Bractistochrone

The equations of motion of the particle are then

$$
\left.\begin{array}{l}
\dot{x}_{1}=\left(2 g x_{2}\right)^{1 / 2} \cos u \tag{6-164}\\
\dot{x}_{2}=\left(2 g x_{2}\right)^{1 / 2} \sin u
\end{array}\right\}
$$

where u is the angle 'setween the x_{1}-axis and the targent to the path on which the particle is to travel. This a ngle u specifies the curve, so it is the design variable. The location of the particle is specified by the point $\left(x_{1}, x_{2}\right)$ so this is the siate variable. The boundary conditions are

$$
\begin{align*}
& x_{1}(0)=x_{2}(0)=0 \\
& x_{1}(T)=x_{1}^{2} \tag{6-165}
\end{align*}
$$

The object is then to find $u(t), x_{1}(t)$, and $x_{2}\left({ }^{\prime}\right)$ such that a particle startung at rest at $(0,0)$ reaches $. x(T)=x_{1}^{1}$ in minimum time T. The path is required to satisfy the constramt

$$
\phi=x_{2}-x_{1} \tan \alpha-h<0 . \quad(6 \cdot 166)
$$

Since the constrame of Fq. $6: 66$ does not involve the design varable " explicitly, the problem contans a state variable inequality constrant. Computing $\dot{\phi}$ and substituting from Eq ' -164 yields

$$
\begin{align*}
\dot{\phi} & =\left(2 g x_{2}\right)^{1 / 2} \sin u-\left(2 g x_{2}\right)^{1 / 2} \tan \alpha \cos \mu \\
& =0 \tag{6-167}
\end{align*}
$$

which does conrain u explicitly. The constraint, Eq. 6-166, is, therefsre, a first-order state variable inequality constraint.

In order to employ Theorem 6-8, define multipliers $-\gamma_{i}, \tau^{-}, \lambda_{i}-$ such that

$$
\left.\begin{array}{rl}
G= & T+\gamma_{1} x_{1}(0)+\gamma_{2} x_{2}(0) \\
& +\gamma_{3}\left[\cdots_{1}(T)-x_{1}^{1}\right] \\
\tilde{G}= & \tau^{-}\left(x_{2}^{-}-x_{1}^{-} \tan \alpha-h\right) \\
\dot{I}= & \lambda_{1}\left(2 g x_{2}\right)^{1 / 2} \cos u \\
& +\lambda_{2}\left(2 g x_{2}\right)^{1 / 2} \sin u \\
& u\left(2 g x_{2}\right)^{1 / 2} \\
& \times(\cos u-\tan \alpha \sin u) .
\end{array}\right\}(6-: 68)
$$

Necessary conditions irom Theorem 6.8 are

$$
\begin{aligned}
& \dot{\lambda}_{1}= \\
&\left.\begin{array}{rl}
\dot{\lambda}_{2}= & -g\left(2 g x_{2}\right)^{1 / 2}\left[\lambda_{1} \cos u\right. \\
& +\lambda_{2} \sin u-\mu(\cos u \\
\tan \alpha \sin u ;]
\end{array}\right\}(6-169) \\
&\left(2 g x_{2}\right)^{1 / 2} \mid \lambda_{1} \sin u+\lambda_{2} \cos u \\
&+\mu(\sin u+\tan \alpha \cos u)]=0 \\
& \lambda_{2}(0)=0
\end{aligned}
$$

$$
\left.\begin{array}{c}
-\tau^{-} \tan \alpha+\lambda_{:}\left(t^{-}-0\right) \\
-\lambda_{1}\left(t^{-}+0\right)=0 \\
\tau^{-}+\lambda_{2}\left(t^{-}-0\right) \\
-\lambda_{2}\left(t^{-}+0\right)=0 \\
!-\tilde{H}(T-0)=0 \\
-\tilde{r}\left(t^{-}-0\right)+\tilde{H}\left(t^{-}+0\right)=0 \\
\text { nd } \\
\frac{d \dot{H}}{d t}=0
\end{array}\right\}
$$

Idcally, the solution for $u(1)$ might proceed by solving Eq. 6.170 for w as a lunction of λ and μ. This result could then be substituted into Eqs. 6-164, 6-167, and 6-!69. The variables λ, x, and μ could then be cistermined and the results substituted back into the previously derived equation for μ. This would be the desired solution It is clear that these steps wouid be extremely messy so a hunistic argun:ent will be used here to suggest a solution. This solution can then be checked in the corditions Eqs. 6-169 through 6.175.

It migh: be expecte; that when $\phi \neq 0$, then the curve is a cycloid as in Eximple e-5. Whenever $\phi=0$ it is clear that $: \Lambda=\alpha$. This is, in fact, the case and as presented in Ref. 21 the solution is a , cluid for

$$
\frac{h}{x_{1}^{1}}>\frac{2}{\pi}\left[1-\left(\frac{\pi}{2}-\alpha\right) \text { an } \alpha\right] .
$$

i.e., the optirum path does not touch the constraint surface

For

$$
\frac{n}{x!}<\frac{2}{\pi}\left[i-\left(\frac{\pi}{2} \quad \alpha\right) \operatorname{tar} c\right]
$$

the optimum curve is given oy

$$
u(t)=\left\{\begin{aligned}
\frac{\pi}{2}-\omega_{1} t, & 0<t<t^{-} \\
\alpha, & t^{-}<t<t^{+} \\
\omega_{2}(T-t), & t^{+}<t<T
\end{aligned}\right.
$$

where

$$
\omega_{1}=\left[\frac{g(x-\pi / 2+\cot \alpha)}{2 h \cot \alpha}\right]^{1 / 2}
$$

$$
\begin{aligned}
& \omega_{2}=\left[\frac{g(\alpha+\cot \alpha)}{2\left(x_{1}^{1}+h \cot \alpha\right)}\right]^{1 / 2} \\
& t^{-}=\frac{\pi / 2-\alpha}{\omega_{1}} \\
& t^{+}=T-\alpha /\left(2 \omega_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
r= & {\left[\frac{2}{g}\left(x_{1}^{1}+h \cot \alpha\right)(\alpha+\cot \alpha)\right]^{1 / 2} } \\
& -\left[\frac{2 h}{g} \cdot \cot \left(\alpha-\frac{\pi}{2}+\cot \alpha\right)\right]^{1 / 2}
\end{aligned}
$$

Fig. 6.15 shows solutions for $\tan \alpha=1 / 2$ and severa! values of h.

The reader may very well get the impression from these examples that analytical solutiors of general optirial design problems are extremely difficult to obtam. This is indeed the case. Therefore, either aumerica: methods must be used to solve the equations given as necessary conditions in the theorems, or seme direct computational method must be used to solve the optimal design problem. Some nimierical methods of solving the necessary conditions are presented in the next paragraph. Several optumal struc:ural cesign problems are solv.d in Chapier 7 to illustrate

Figure 6.15. Bounded Brachistochrone
Solution
these methods. Direct methods of solving optumal design problems are presented ir later chapters.

6.5 METHODS OF SATISFYING NECES. SARY CONDITIONS

The previous three paragraphs of this chapter have been devoted to obtaining necessary conditions for optimization problems of varying degrees of difficulty. It has been observed that these necessary conditions generally reduce in somes sort of boundary-value problem, usually nonlinear. The object of this paragraph is to explore ways in which the boundary-value problem may be solved. This topic has received considerable treatment in the recent hterature, so it will be treated only brefly heas.

Two different methoas will be dise.ssed hete and will be applied to optimal structural des'gn problems in the next chapter The first method is based on a reduction of the boundary-value problem to a sequence of mital-value problems whose olutions converge to the solution of the original probiem. The second method reduces a nonlmear
boundary-value problem to a sequence of linear boundary-value problems whose solutiors converge to the solution of the nonlirear problem.

6.5.1 INITIAL VALUE METHODS (OR SHOOTING TECHNIQUES)

In order to develop the main ideas without getting bogged down in notation, consider the problem of finding $y(t)=\left\lfloor y_{1}(t), \ldots, y_{n}(t)\right]^{T}$, that satisfies

$$
\frac{d y}{d t}=f(t, y), t^{n}<t<t^{1}
$$

and

$$
\left.\begin{array}{l}
y_{j}\left(t^{0}\right)=y_{i}^{0}, \text { for som }>i \tag{6-177}\\
y_{j}\left(t^{1}\right)=y_{j}^{1}, \text { for some } j
\end{array}\right\}
$$

where the total number of conditions in Eq. $6-177$ is n. In order to further simplify notation, assume the components of $y(t)$ have been numbered so that the first equation in Eq. 6.177 holds for $t=1, \ldots, k<n$.

Since initial-value problems are so efficiently integrated forward in time, the missing conditions on y at t^{0} may be estimated as

$$
\begin{equation*}
y_{1}\left(1^{0}\right)=\xi_{1}, i=k+1, \ldots, n \tag{6178}
\end{equation*}
$$

and tiq. 0.176 integrated from $t^{\prime \prime}$ to t^{1} using the full set of initiai conditions from the first equation at Eq. 6.177 and Eq 6-178. The value of $y_{f}\left(u^{1}\right)$ ohtaned from this integration will probably not sitisiy the second equation in l:a 6 -177. 1. .

$$
1,\left(1^{1}, \xi\right) \neq 1,1,1=h+1 . n
$$

(6.179)
where $\xi=\left(\xi_{k}, 1, \quad, \xi_{n}\right)^{t}$ and the notation of

Eq. $6-179$ is introduced to illustrate the dependence of the final values of y on ξ.

It is clear that a solution of the problem can be obtained if ξ can be found so that Eqs. 6-179 are equalities. To simplify notation, define the column vectors

$$
\bar{y}\left(t^{1} ; \xi\right)=\left[y_{j}\left(t^{\prime} ; \xi\right)\right] \text { for those } j \text { in Eq. } 6 \cdot 177
$$

and

$$
\left.\bar{y}^{\prime}=[y]\right] \text { for the same } t \text {. }
$$

The conditions which are to determine ξ are

$$
\begin{equation*}
\tilde{v}\left(t^{1} ; \xi\right)=y^{1} \tag{6-180}
\end{equation*}
$$

An; :umerical method of solving algebraic equations may be used to solve Eq. 6-189. If a scheme lire Newton's Method or a Gradient wethorl is to he used, it must be possible to compute

$$
\begin{equation*}
\frac{\partial \bar{y}}{\partial \xi}\left(i^{1} ; \xi^{0}\right) \tag{0.181}
\end{equation*}
$$

where ξ^{0} is an estimate of the schation of E_{7} 6.180. These partial derivatives ma; be obtained or approximated in a number of ways.

The first method of determining the derivatives in Eq. $b-18!$ is to observe that $y(t)=$ $y\left(t ; \xi^{\mathrm{n}}\right)$ and furik ${ }^{-1}$ that the $\mathrm{d}_{\text {, pendence on } \xi}$ is very regular (Rti. - 4) so tit. $\ddagger \partial y\left(t ; \xi^{\top}\right) / \partial \xi$ exists. Differentiating farmally w: h respect to ξ in Eq. 6.176,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial v}{\partial \xi}\right)=\frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi} \tag{6-182}
\end{equation*}
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{array}{l}
\left.\frac{\partial y}{\partial \xi_{1}}(0)=10, \ldots, 0, \ldots, 1,0.0\right] \\
\quad 1 \\
\quad=k+1, \ldots n
\end{array}
\end{aligned}
$$

(0-183)

The initial value problems, Eqc. 6-182 and $6-183$, for $i=k+1, \ldots, n$ may be integrated from t^{0} t $u t^{1}$ to obtain the derivatives required in Eq. 6-181.

Once these derivatives have been determined, the new estimate $; 1$ in Newron's Method is given by

$$
\begin{equation*}
\xi^{1}=\xi^{0}-\left[\frac{\partial \tilde{y}\left(t^{\prime} ; \xi^{0}\right)}{\partial \xi}\right]^{-1}\left[\tilde{y}\left(t^{1} ; \xi^{0}\right)-\tilde{y}^{1}\right] \tag{6-184}
\end{equation*}
$$

The process is repeated with ξ^{1} playing the role previously occupied by ξ^{0}.

This method of finding the partial derivatives is direct in nature but requires the solution of Eq. 6-182 $n-k$ times. Further, both the differential equations. Eq. 6-176 and $6-182$, must be programmed.

A second method of constructing the partial derivatives of Eq. 6-181 (or approximations of them) is to use a differetice quctient, 1.e., Eq. $6-176$ is solved for ξ and $\xi+\delta$ where $\delta=(0, \ldots, c, \ldots, 0)^{T}$ where i indicates the i th position and c is small. Therefore

$$
\frac{\partial y\left(t^{\prime} ; \xi\right)}{\partial \xi_{i}} \approx \frac{y\left(t^{1} ; \xi+\delta\right)-y\left(t^{1} ; \xi\right)}{\epsilon}
$$

Once these approximate derivatives are determined, the algorithm, Eq. 6.184 , may be used.

This appioximate method of constructing the partial derivatives requires that the differintal equation, Eq. 6-i 76 . be solved $n \quad k$ Ahtional times. It. therefore, requires af pro matelv the same amount of compuas tion as i"e prevous scheme. but all the
computation is performed with the same set of afferential equations. This metnod is "ustrated in the problems of pars. 7-2 and 7-3.

A third scheme which makes use of differentiation formulas for definite integrals is developed in par $1-4$.

6-5.2 A GENERALIZED NEWTOR METH. OD

A second method which is used to solve the necessary conditions for optimization problems is 3 Generalized Newton Method of solving boundary-value problems. It has been pointed out in the core roing that Bolza problems and optimal design problems may be reduced to nonlinear boundary-value problems. The method employed heer was dereloped ior just such problems (Refs. 22, 23).

In order to introduce the Generalued New on Method for buundary value problems, consider the system of first-order equations

$$
\begin{equation*}
\frac{d y}{d t}=g(y, t) \tag{6-186}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.g(t)=\left\{y_{1}^{\prime} t\right), \ldots, y_{n}(t)\right]^{T} \text { and } \\
& g(y, t)=\left[g_{1}(y, t), \ldots, s_{n}(y, t)\right]^{T}
\end{aligned}
$$

In addition to satisfying Eq. $6.156, f(t)$ is required to satisfy

$$
\left.\begin{array}{l}
y_{i}\left(f^{0}\right)=y_{i}^{0}, \text { for some } 1 \\
\left.y_{(}\left(t^{1}\right)=y_{1}^{\prime} \text {, for some }\right)
\end{array}\right\}(6-187)
$$

where the cotal number of conations in i:q 6-187 is 1
$6-4 ?$

The Generalized Newton Method for solving Eqs. 0.186 and $6-187$ is similar in philcsopity to the Newton method of solving algebraic equations. An estimate of the solution, $y^{(0)}(t)$, is made and the right side of Eq. 6.186 is expanded about $y^{(0)}(t)$ using Tajlor's formula to obtain

$$
\begin{aligned}
\frac{d y^{(1)}}{d i}- & =\frac{\partial f}{\partial y}\left[t, y^{(0)}(t)\right] y^{(1)}+f\left[t, y^{(0)}(t)\right] \\
& -\frac{\partial f}{\partial y}\left[t, y^{(0)}(t)\right] y^{(0)}(t) \quad(6-188)
\end{aligned}
$$

where $y^{(1)}(t)$ is requ'red to satisfy

$$
\begin{align*}
& y_{i}^{(1)}\left(t^{0}\right)=y_{i}^{0}, \text { for those } i \text { in Eq. 6-187 } \\
& y_{j}^{(1)}\left(f^{\prime}\right)=j_{j}^{\prime}, \text { for those } j \text { in Eq. 6-187 } \tag{6-189}
\end{align*}
$$

The boundary-value problem for $y^{(1)}(t)$ is linear so that if it has a solution, that solution may be obtained by stiperfosition techniques, or any other technique for solving linear bounda: f value problems, for that matter (Ref. 24).

The function $y^{(1)}(t)$ is taken as an improved estimate for the solution of Eqs. 6.186 and 6-187. This estimate then replaces $y^{(0)}(1)$ in the preceding analysis. li k is the iteration number for this process. then $y^{(k)}(t)$ is determaned by

$$
\left.\begin{array}{rl}
\frac{d y^{(k)}}{d i}= & \frac{\partial f}{\partial y}\left[t y^{(\alpha-1)}(t)\right] y^{(k)} \\
& \left.+f\left[t, y^{(\lambda} \quad 1\right) t t\right) \\
& \partial f!\left(s^{(k-1)}(t) \mid y^{(k} \quad 1\right)(t)
\end{array}\right\}(t-190)
$$

and the boundary conditions

$$
\begin{align*}
& y_{i}^{(k)}\left(t^{0}\right)=y_{i}^{0}, \text { for those } i \text { in Eq. 6-187 } \\
& y_{j}^{(k)}\left(t^{1}\right)=y_{j}^{1}, \text { for those } j \text { in Eq. 6-187. } \tag{6-191}
\end{align*}
$$

The sequence of approximations to the solution $\left[y^{(k)}(t)\right]$ is considered to have converged when the difference between successive :terates is sufficiently small. Theorems given in Ref. 23 show that if the initial estimate of the solution $y^{(0)}(t)$ is sufficiently accurate, then under rather restrictive conditions, the sequence $\left\{y^{(k)}(t)\right\}$ converges to the solution of Eqs. 6-186 and 6-18\%. Further, the convergence is quadratic in the sense that the error at the $k+1$ st iteration is proportions to the error squared in the k th iteration. This kind of convergence is extremely nice.

Even though it is difficult ot impossible to ve.ify the hypotheses of the convergence theorems in Ref. 23, it has been observed in practice (Ref. 23; that good convergence is nevertheless obtained in many real-world problems.

Since the discussion in this paragraph is on ways of solving optimization problems, the Gencralized Newton Method will be applied more directly to this clase of problems. For the present, consider oniy the following problem:

$$
\operatorname{minimize} J=\int_{t^{0}}^{t^{2}} f(t, x, u) d t \quad(6-192 ;
$$

subject to

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x, t i) \tag{0.193}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
x_{i}\left(t^{0}\right)=x_{i}^{i} \text { for some } i \tag{6-194}\\
x_{i}\left(t^{1}\right)=x_{i}^{1} \text { for some } i
\end{array}\right\}
$$

where the tetal number of boundary cunditions in Eq. 6.194 may be less than, equal to, o: greater than $n, x(t)=\left[x,(t) \ldots x_{n}(t)\right]^{T}$, $u(t)=\left[u_{1}(t), \ldots, u_{m}(t)\right]^{T}$.

Defining

$$
H=\lambda_{0} f_{0}+\sum_{i=1}^{n} \lambda_{i} f_{i}
$$

the necessary conditions of Theorem $6-5$ are

$$
\begin{align*}
& \frac{d \lambda}{d t}=-\frac{\partial H^{r}}{\partial x} \tag{6-195}\\
& \frac{\partial H}{\partial u}=0 \tag{6-196}
\end{align*}
$$

and

$$
\left.\begin{array}{l}
\lambda_{r}\left(r^{0}\right)=0,1 \neq i \text { in Eq. } 6-194 \tag{6-197}\\
\lambda_{s}\left(r^{1}\right)=0, s \neq j \text { in Eq. } 6 \cdot 194
\end{array}\right\}
$$

The argument used in applying the Generalized Newton Method to the problem of determining $x(t), u(!)$, and $\lambda(t)$ from. Eqs. $6-193,6.194$, ans 6.195 through 6.197 as follows:

1. Solve Eq. $6-187$ for

$$
u=t(t, x, \lambda)
$$

and substitute this expression into Eqs. 6-193 and 0-195.
2. These duferential equations then form $2 n$ turst-order, nonlinat differential equations
in $2 n$ variables. Further, there are exactly $2 n$ boundary conditions in Eqs. 6-194 and 6-197. This nonlinear boundary-value problem is now solved by the Generalized Newton Method.
3. The solution $x(t), \lambda(t)$ is then substituted into Eq. 6-198 to obtain the optimal design function.

Since the Generalized Newton Method, as presented here, is only capable of solving two-point boundary-valuc problems, inequality constraints may not be treated explicitly. Rather, the general optimal design problem with inequality constraints must be reduced to a problem with only equality constraints. For example, for problems with constraints ef the form

$$
\begin{equation*}
\phi_{1}(i, x, u)<0, \tag{6.159}
\end{equation*}
$$

where ϕ_{i} depends explicitls on u a transformation may be performed by introducing an auxiliary design variable (slack variable) $\alpha_{l}(t)$ through the relation

$$
\begin{equation*}
\phi_{l}(t, \ddot{i}, u)+\alpha_{i}^{2}(t)=0 \tag{6-200}
\end{equation*}
$$

It is clear that with the new variable, Eq. 6-200 is equivalent to Eq. 6-199. The necessary conditions of Theorem 6.5 may now be spplizd and the Generalized Newton Method utilized just as in the preceding case.

In case the optimal design problems with state variaole inequality constraints, a different technique for elimination of inequalities has proved effective. For constraints of the form

$$
\begin{equation*}
\psi_{1}(1, x)<0 \tag{6-201}
\end{equation*}
$$

an auxiliary parameter ϵ is introduced through

$$
\begin{equation*}
\int_{t^{0}}^{t^{1}} \psi_{i}^{2}(t) H\left[\psi_{i}(t)\right] d t=\epsilon_{i} \tag{6-202}
\end{equation*}
$$

where

$$
H\left(s_{j}^{\prime}\right)=\left\{\begin{array}{l}
0, s<0 \\
1, s>0
\end{array}\right.
$$

In a sense, ϵ_{l} is a measure of violation of Eq. $6-201$. The procedure in solving on optimal design problem with a constraint of this kind is to solve a sequence of problems with Eq. $6-202$ replacing $\mathrm{Eq} .6-201$, and $\epsilon_{i}^{(k)}$ approaching zero as k becomes infinite; i.e., a modified design problem is solved imposing Eq. $6-202$ in place of Eq. $6-201$ with $\epsilon_{i}^{(0)}>0$ chosen. This solution is carried sut through use of the Generalized Newton Method described. The problem is then solved again with $0<\epsilon^{(1)}<\epsilon^{(0)}$ beginning the iteration with the solution of the preceding problem. The process is repeated with $0<\epsilon^{(k)}<\epsilon^{(k-1)}$ until changes in successive solutions are sufficiently small.

The Generalized Newton Method presented here has been discussed by many authors and generally has received favorable comments. For a more detailed discussion and examples, see Refs. 23, 25 through 28. An outstanding treatment of the Gencralized Newton Method also appears in book form (Ref. 29). A very rigorous treatment of existence and convergence properties of the method is given which applies to the control problems discussed. The reader should note that some writers follow Bellman in calling the method described here, "Quasilinearization".

1. D.G. Luenberger, Optlmization by Vector Spuce Methods, John Wiley, \& sons, Now York: 1969.
2. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall, Engiewood Cliffs, New Jersey, 1963.
3. N.I. Akhiezer, The Calculus of Variations, Blaisdell, New York, 1962.
4. L.E. Elsgolc, Calculus of Variations, Pergamon, London, 1962.
5. M.R. Hesteness, Caiculus of Variations and Optimal Control Theory, Joln Wiley \& Suns, New York, 1966.
6. L.J. Liusternik and V.J. Sobolev, Elements of Functional Analysis, Ungar, New York, 1961.
7. E.K. Blum, "The Calculus of Variations, Functional Analysis, and Optimai Control Problems", in Topics in Optimization, G. Leitmann Ed., Academic Press, New York, 1967.
8. M.R. Hesteness, "On Variational Theory and Optimal Control Theory", J. SIAM, Series A: Controi, Vol. 3, No. 1, pp. 23-48, 1965.
9. G.A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, 1961.
10. E.B Lee and L. Markus, Foundations of Optimal Contrul Theory, John Wiley \& Sons, New York, 1967.
11. W.W. Schmaedke, "The Existence Theory of Optimal Control Systems", in Ad-
vances in Control Systems, Vol. 3, C.T. Leondes Ed., Academic Press, New York, i966.
12. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkselidze, and E.F. Mishchenko, The Mathematical Theory of Optlmal Processes, John Wiley \& Sons, New Yorł, 1962.
13. L.D. Berkovitz, "Variational Methods in Problems of Control and Programming", J. Math. Anal. Appl., Vol. 3, pp. 145-169, 1961 .
14. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equatious, McGraw-Hill, New York, 1955.
15. G. Leitmann, Ed., Optimization Techniques, Academic Press, New York, 1962.
16. W.F. Denham, Steepest-Ascent Solution of Optimal Programming Problems, Raytheon Report No. BR-2393, Raytheon Company, Bedford, Mass., 1963.
17. A.V. Balakrishnan and L.W. Neustadt, Ed., Computational Methods in Optimization Problems, Academic Press, New York, 1964.
18. D.S. Hauge, "Solution of Multiple-are Problems by the Steepest-Descent Method', in Recent Advances in Optimization Techniques, A. Lavi and T.P. Vogl, Eds., John Wiley \& Suns, New York, 1966.
19. H.M. Hung, Time-Optimal Steering of a Ground Vehicle, presented at the 1968 Spring Meeting of S'AS, Toronto. Canada.
20. H.J. Kelly, R.E. Kopp, and H.G. Moyer, "Sir.gular Extremals", in Topics in Optimization, G. Leitmann, Ed., Academic Fress, New York, 1967.
21. A.E. Bryson Jr.: W.F. Denham, and S.E. Dreytus, "Optimal Programming Problems with hequality Constraints I: Necessary Conditions for Extremal Solutiona", AIAA J., Vol. 11, November 1963, pp. $2544-2550$.
22. L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, London, 1965.
23. P. Kenneth and R. RicGill, "Two-Point Boundary-Value-Problems Teckniques", in Advances in Control Systems, Vol. 3, C.T. Leondes, Ed., Academic Press, New York, 1966
24. H.B. Keller, Numericai Methods for Two-Point Boundary-Value Prodlems,

Blaisdell, Walt!am, Mass., 1968.
25. G. Paine, The Application of the Method of Quasiinearization to the Computation of Optimal Control, Report No. 67-49, Department of Engineering, UCLA, August 1967.
26. R.E. Kopp and H.G. Moyer, "Trajectory Optimization Techniques", in Advances in Control Systems, Vol. 4, C.T. Leondes, Ed., Academic Press, New York, 1966.

Z'. A.P. Syze, Optimum Systems Control, Prentice-Hail, Englewood Cliffs, N.J., 1968.
28. B.D. Tapley and J.M. Lewallen, "Comparison of Several Numerical Optimization Methods", J. Opt. Theory and Appl, Vol. 1, No. 1, 1967, pp. 1-32.
29. P.L. Falb, Some Successive Approxination Methods in Control and Oscllation Theory, McGraw-Hill, New York, 1971.

7.1 INTRODUCTION

7.1.1 THE CLASS OF PROBLEMS CON. SIDERED

Since the beginning of engineering disciplines, the engineer has aitempted to develup structures and machines that perform some specified task. In the case of structures, a frame or truss is required to support a given system of loads Likewise, machines and machine elements are, required to support loads while they perform some function.

The objective of the examples treated here is to illustrate organizeci methods that the eagineer may use to obtain a load-ca:rying system which is best in some serse that is associated with the pirticular application. In design of commercial goods, the doilar cost of an elpinent is probably the index that is to be. minimized (Raf. 1). In military and aerospace applications, while dollar cost is important, frequently weight cost is even more essential. In the example problems presented here, the criteriou of minimum weight will be chosen.

Until very recently, most design procedures depended on the engineer's intuition and experrence in proportioning a load-carrying system. An analysis of the pisposed configuration was then made to determine whether the system met all requirements placed on It. If not, or if the prelıminary design was obviously excessively strong. the procedure was repeated until a satisfactory solution w's obtained.

As systems become more complex and more emphasis is placed on minimum cost, the designer is unable to make all the tradeoff analyses mentally. A method of design synthesis, therefore, is necessary which is able to include all requirements on the system and the requirement of minimum cest in a unified design procedure. One such method for optimal structural design is illustrated in this chapter.

7.1.2 HISTORICAL DEVELOPMENT

Very early in the development of mechanics of materials, methods of determining stress and displacement for given bodies under the action of givea forces were emphasized. As these methods became better developed, the question arose as to how a structure might be proportiored to satisfy certain requirements and be best in some sense. Problems of this kind were consideied by Lagrange (Ref 2) in 1771 and by Clausen (Ref. 3) in 1851.

Until very recent years, methods of the calculus of variations were not sufficient for treating reaistic design problem. . Probably for this reason, design preblems were stated in terms of a few parameters that specified the structure. For example, uniform beams of undetermined depth are placed in a given configuration. The depths are then determined so that the structure supports the given loads and is as light as possible. For a detailed bibliography of this developmen: through 1963, see Ref. 4. For a more current bibliog raphy, ser. Ref. 5.

Another important methet of design developed principally by Prager and Drucker (Refs. $6,7,8$) is limit analysis. In this method of design, the structure is allowed to reach a state of collapse due to plastic action of the materiai. The resulting design is, therefore, safe for application of the given loads even though permanent deformation of the structure iesults. If the loads musi be applied many tim.s in the life of the structure, it will generally be required that all material in the structure must remain in the elastic range at all times. For this reason, mu hods had to be developed for elastic design.

In 1960, Joseph B. Keller published an article on column design (Ref. 9) which renewed interest in elastic, minimum weight design. Several papers have subsequently been published by Keller and his associates in which a class of eigenvalue problens is traatud (Refs. $10,11,12$). The methous employed in these papers are elegant but are not easily adapted to realistic engineering problems.

A new method of optim al design has been dereloped by J.E. Taylor and W. Prager since 1967 (Refs. 13,14,15). This meihod is based on an energy representation of the structural element under consideration. A particularly nice feature of the method is the sbility to obta:is sufficient concitions for certain classes of design problems. However, no unified method of constructing solutions has been presented.

7.1.3 METHODS EMPLOYED

The theorems of Chapter 6 will be employed here for the solution of optimal design problems. Use of the results of Chapter 6 to construct solutions of optimal design problems is called an indirect method of solution. This is so, because one first obtains a set of
conditions that the solution of the optimal design problems must sarisfy. Once this task is complete, the design problem is reduced to the determination of sclutions of the necessary conditions that are candidote solutions of the optimal design problem. The term "indirect" seems to describe this process quite well.

As discussed in par. 6-5, any method of solving the nonlinear boundary-varue problem contained evithin the necessary conditions is admissible. In this chapter, two problems will be solved by shonting techniques. The problems of par 7-2 are treated by the shoo:ing technique of par. $6 \div$. The problems rf par. 7-3. however, are treated by a nodified sinooting technique.

: 2 A MINIMUM WEIGHT COLUMN

A lightweight column of length T is to be designed to support a given load P. The material is specified and has yield strength $\sigma_{\text {max }}$. The particular suppot considered is shown in Fig. 7-1. In problems considered

Figure 7-1. Column Under Consideration
here, the cross section is assumed to depend on only one design variable, $u(t), 0<t<7$. The problem is to determine $u(t)$ that minimues the weight or, equivalently, the volume

$$
\begin{equation*}
J=\int_{0}^{T} A[u(t)] d t \tag{j}
\end{equation*}
$$

and satisfies the conditions,

$$
\begin{align*}
& E I(u) \frac{d^{2} x}{d t^{2}}+P x=0 \tag{7-2}\\
& x(0)=0, \frac{d x}{d t}(T)=0
\end{align*}
$$

where

$$
\begin{aligned}
& x(t)=\text { lateral deflection of the column } \\
& t=\text { distance measured along the column } \\
& A(u)=\text { area of the cross section }
\end{aligned}
$$

$l(u)=$ smallest moment of inertia of the area of the cross ietion aisout a centroidal axis. All cross secticns are assumed to have two orthogoval ases of symmetry with P acting through their intersection.

By defining $x_{1}=x$ and $x_{2}=d x_{1} / d t$, Eq. 7.2 reduces to the syster,

$$
\begin{align*}
& \frac{d x_{1}}{d t}=x_{2} \equiv f_{1} \\
& \frac{d x_{2}}{d t}=-\frac{P x_{1}}{E l(u)} \equiv f_{2} \\
& x_{1}(0)=0, x_{2}(T)=0
\end{align*}
$$

The problem is thus reduced to the: form of
the optimal control problem considered in par. 6-4.

For use in Theorem 6-7, construct

$$
\begin{aligned}
H= & -\lambda_{0} A(u)+\lambda_{1} x_{2}-\lambda_{2}\left[\frac{P x_{1}}{E I(u)}\right] \\
& -\mu\left[\frac{P}{A(u)}-\sigma_{\max }\right] \\
G= & \lambda_{1} x_{1}(0)+\lambda_{2} x_{2}(T) .
\end{aligned}
$$

Conditions, Eqs. 6-121 and 6-124, yield

$$
\frac{d \lambda_{1}}{d t}=-\frac{\partial H}{\partial x_{1}}=\frac{P \lambda_{2}}{E I(u)}
$$

$$
\begin{equation*}
\frac{d x_{2}}{d t}=-\frac{\partial H}{\partial x_{2}}=\cdot \cdot \lambda_{1} \tag{7-5}
\end{equation*}
$$

$$
\lambda_{2}(0)=0, \lambda_{1}(T)=0
$$

The system, Eq. 7-5, reduces to
$\frac{d^{2} \lambda_{2}}{d t^{2}}=-\frac{P \lambda_{2}}{E I(u)}$
$\left.\lambda_{2}(0)=0, \frac{d \lambda_{2}}{d l}(T)=0 . \quad\right\}$
Lq. 7.6 for $\lambda_{2}(t)$ is identical to Fq. 6.14 for $x(t)$. Both nroblems are homogeneous, however, so $\lambda_{2}(t)$ and $x(t)$ may differ by an arbitrary cons:ant maltiplier, say λ_{0}, i.e., put $\lambda_{2}(t)=\lambda_{0} x(t)$ This prohiem is normal (Ref. 17), so $\lambda_{0} \neq 0$ may be chosen as one.

Condition, Eq. 6-128, of Theort.m 6.7 is, in this case, $\mu\left(P / A(u) \cdots \sigma_{m a x}\right)=0$. Two possibilities now c.ast. eith.er $\mu=0$, or $P / A(u)$
$\sigma_{\text {max }}=0$. In the second case, u is just the algebraic sclut on of

$$
\begin{equation*}
P / A(u)=\sigma_{\max } \tag{7-7}
\end{equation*}
$$

Ir the remainins case, $\mu=0$ and condition,

$$
\begin{equation*}
\frac{\partial H}{\partial u}=-\frac{\partial A}{\partial u}-\frac{P_{x}^{2}}{E}\left\{\frac{\partial}{\partial u}[1 / I(u)]\right\}=0 . \tag{7-8}
\end{equation*}
$$

The design variable $u(t)$ is thus deter.nined in subintervals of $10, T$ by either Eq. 7.7 or 7-8. So that the results of the present method may be comparea with those obtained by Keller (Ref. 9), choose $A=u$ and $I=\omega u u^{2}$. This corresponds to having the geometric shape of the cross section fixed and allowing all dimensions to vary as $u^{1 / 2}$.

With this form of $A(u)$ and $I(u)$, Eqs. 7-? and $7-8$ become

$$
\begin{equation*}
P / u=\sigma_{\operatorname{mxx}} \tag{7-9}
\end{equation*}
$$

and

$$
1-\frac{2 P x^{2}}{E \alpha u^{3}}=0
$$

Cordition, Eq. 6-121, of Theorem 6-7 requires that the expression for u be chosen which satisfies the constraint, Eq. 7-3, and maies H as large as possible. This criterion yields the choice between

$$
u(t)=\left[\left(P / \sigma_{\max }\right) \circ:\left(\frac{2 P}{E \alpha}\right)^{1 / 3} x^{2 / 3}\right](7-1 i)
$$

When Eq. 7-11 is substitured into Eq. 7-2,

$$
\begin{align*}
\frac{d^{2} x}{d t^{2}}= & -\frac{P x}{E \alpha}\left[!G_{\max } / P\right)^{2} \text { or } \\
& \left.\left(\frac{E \alpha}{2 P}\right)^{2 / 5} x^{.4 / 3}\right]
\end{align*}
$$

$$
x(0)=0, \frac{d x}{d t}(T)=0
$$

where the choice on the right side of Eq. 7-12 must correspond to the selection in Eq. 7-11.

This boundary-value problem is solved by an iterative method based on Newton's Algorithm. The missing initial condition is takelt as $\left.d x / d^{\prime}, 0\right)=C$. Integration of the resalting initial value probiem from 0 to T vields an error $d x / d \prime(T ; C)$ in the final value.

This notation is chosen to emphasize the dependence oif x on the estimate C of the miseing initial condition. The objective is to find C so that $d x / a t(T: C=0$. Once C is found, the initial value jrotlem for $x(t)$ may be solved and $u(t)$ determi, led from Eq. 7-11.

In order to employ Newton's Algorithm, $\partial / \partial C\{d x / d t(T ; C)\}$ is needed. It is obtained by formally differentiating Eq. $7-12$ with respect to C to obsain

$$
\begin{align*}
& \frac{d^{2} \zeta}{d t^{2}}=-\frac{c_{\text {max }}^{2}}{E \alpha P} \text { or } \\
& \frac{1}{3}\left(\frac{P}{4 E \alpha}\right)^{1 / 3} x^{\cdot 4 / 3} \zeta \tag{7-13}\\
& \zeta(0)=0 \cdot \frac{d \zeta}{d t}(0)=1
\end{align*}
$$

where the choice on the right side of Eq. 7-13 must correspond to the selertion in Eq. 7-11. The order of taking derivatives has been culanged and the notation $\zeta=\partial x / \partial C$ introduced in obtaining Er, 7-13.

The ieraitive method for determining σ is then:

Step 1. Make estunate $C=C_{0}$
$\therefore \cdots$
Stage 2. Integrate the differential quation in Eq. $7-12$ with
$\frac{d x}{d t}(0)=c_{0}, x(0)=0$, and Eq. $7-i 3$
Step-3. Make the adjusiment in C

$$
C_{3}=C_{0}-\left[\frac{d x}{d t}\left(T / \frac{d k}{d t}(T)\right]\right.
$$

Step 4. Return tu Step 2 with new estimats $C=\tilde{\vartheta}_{1}$, and repeat.

The equations derived nere must be changed only slightly to solve colurnn problems with other end conditions and other forms of cross section.

For a numerical example of this problem, let the cross section be circular with variable radius. In this caso $\alpha=1 /(4 \pi)$. For the example, let $\sigma_{\text {max }}=20,000 \mathrm{psi}, E=3 \times 10^{7} \mathrm{psi}$, and $T=10 \mathrm{in}$.

A FORTRAN program was written to perform the itcrative procedure. The program was run on an IBM 360-65 Computer and required approximately 0.1 sec per iteration and only four to six iterations to converge.

The results for this design problem are riven in Table 7-1 and Fig. 7-2. For loads abovi- ef794 lb , the cross-sectional area is determined by $A=P / \sigma_{\text {max }}$ and the resulting columin is stable. A méaningfui optimal design problem then exists only for $P<6794$.

7.3 A MINIMUM WEIGHT STRUCTURE WITH ANGULAR UEFLECTION RE. GUIREMENTS

7.3.1 STATEMERIT OF THE PROBLEM

The problem considered in this paragraph is the design of a portable communication tower of height L which will support a line-of-site transmission unit, a laser transmitter, for example. In order for the transmission beam
table 7.1
RESULTS FOR COLUSM PROBLEM
Voluma of

P, Ib	Volume, in. ${ }^{\text {3 }}$	$\text { Uniform Column' , in. }{ }^{3}$	Saving, \%
50	0.260	0.251	10.6
100	0.381	0.412	12.4
200	0.507	0.595	14.7
500	0.806	0.923	12.7
1000	1.140	1.300	12.3
1500	1.408	1.600	11.9
2000	1.240	1.840	10.9
3 COO	2.048	2.260	8.3
4000	2412	2.600	7.3
6000	2.765	2.910	5.2
0704	3307	3.397	0.0

'Minimum Wioght Un. afm Column

ANCP 706-192

Figure 7-2. Profiles of Optimal Columns
to 'it the receiving unit, the top of the tower on which the transmitter unit is mounted must undergo only a certain allowable rotation 0 when the tower is exposed to a given extreme uniform wind load Q nounds per unit length of tower.

It is required that the tower be as lightweight as possible so that it may be transported and erected without the aid of heavy machinery. For this reason, the design criterion is minimum weight. However, one addjtional requirement must be placed on the tower. In transportation and election it must be strong enough so that it is not damaged by rough treatment. Therefore, it is required that the moment of inertia of t'se cross-sectional area of the tower be greater than a predetermined limat I_{0} every whe- - .

The general configuration of the tower is shown in Fig. 7-3. Three vertical members with cross-sectional area $A(t)$ are arranged on the vertices of an equilateral triangle of altitude $h(t)$. Here t is a coordinate measured along the length of the tower. In order to maintain the spacing of the vertical elements, small cross members are inserted.

Figure 7.3. Tower Considered

It is assumed that the tower is constructed of a given material with density ρ. Further, it is assumed that β cubic units of materiai are required per unit height of tower in order to maintain the spacing of the vertical elements. The coefficient β is to be determined from design experience. For this configuration the total weight of the tower is

$$
w=\int_{0}^{L} 3 \rho\lfloor A(t)+\beta h(t)) d t
$$

Since 3ρ is a constant, W is minimized if and only if

$$
\begin{equation*}
V=\int_{0}^{t}[A(t)+\beta h(t)] d t \tag{7-14}
\end{equation*}
$$

is minimum. The objective in the design prob'em is to choose $A(t)$ and $h(t)$ for $0<t<$ L, so that V is as small as possible and the given conditions are met.

Lateral deflection of the tower due to the lateral - ind load is determined by elementary
beam theory. The differential equation for displacement is (Ref. 14)

$$
\begin{equation*}
E I(t) x^{\prime \prime}=-M(t) \tag{7-15}
\end{equation*}
$$

where

$$
\begin{aligned}
E= & \text { Young's modulus of the material } \\
I(t)= & \text { minimum moment of inertia of } \\
& \text { the cross-sectional area of the } \\
& \text { tower }
\end{aligned}
$$

$x=$ lateral displacement
$x^{\prime \prime}=\frac{d^{2} x}{d t^{2}}$
$M(t)=$ bending moment of tower.

The moment of inertia of the cross section is

$$
\begin{equation*}
I(t)=\frac{2}{3} A(t)[h(t)]^{2} \tag{7-16}
\end{equation*}
$$

In order to prevent damage in handing, it is required that

$$
I(t)>I_{0}>0, \quad 0<t<L
$$

or in the notation of par. 64,

$$
\phi=I_{0}-I(t)<0, \eta<t<l .
$$

If $I(t)=I_{0}$ gives a tower with angular deflection less than or cqual to θ at the top, then this is the optimal tower and no further work is required. On the other hand, if this tower has angular deflection greater than 0 , then the tower is not admissible and it is required that the angular displacement is equal to 0 . This is the only situation considered here.

In order to fit this nroblem into the torm
considereci in par. 6-4, Gefine

$$
\begin{aligned}
& x_{1}=x \\
& x_{2}=x_{1}^{\prime}
\end{aligned}
$$

with this notation and tuat of par. $5-4$, the second-order equation 7-2 is equivalent to

$$
\begin{align*}
& x_{1}^{\prime}=x_{2} \equiv f_{1} \tag{7-17}\\
& x_{2}^{\prime}=-\frac{M}{E I} \equiv f_{2} .
\end{align*}
$$

The design problem will now be solved for two admissible cenfigurations of the tower.

In order to compara results obtained for the various configurations considered, a tower with properties of Table $7-2$ will be treated.

TABLE $7-2$ CONSTANTS

$$
\begin{array}{ll}
L=360 \mathrm{in} . & \theta=0.0001 \mathrm{rad} \\
Q=8.35 \mathrm{ib} / \mathrm{ik.} & \beta=0.25 \mathrm{in} . \\
E=3 \times 10^{7} \mathrm{lb} / \mathrm{in} . & I_{0}=172.8 \mathrm{in}^{4} .
\end{array}
$$

7-3.2 TOWER WITH ONE DESIGN VARIABLE

For the problems considered in this peragraph, $A(6)$ will be held constant with the value of A. Two ways of mounting the tower on the earth will be chosen. The first methoc will be to fix the base of the tower rigidiy to the earth and leave the top unsupported. The second method will be to pin the lower end to the earth and support the top with guy lines. Since A is constant

$$
\begin{aligned}
V & =\int_{0}^{L}[A+h(t)] d t \\
& =A L+\beta \int_{0}^{L} h(t) d t .
\end{aligned}
$$

Minimization of V in this case is equivalent to minimization of

$$
\begin{equation*}
J=\int_{0}^{L} h(t) d t . \tag{7-18}
\end{equation*}
$$

In the notation of par 6-4,
$f_{0}=h(t)$.

7.3.2.1 METHOD 1. TOWER WITH BASE RIGIDLY FASTENED TO THE EARTH

The tower considered here is shown in Fig 7-4. The bending momen: $M(t)$ due to the

Figure 7-4. Losding of Tower
wind ivid Q as

$$
M(t)=-\frac{Q}{2}(L-t)^{2}
$$

where t is measured upward from the bottom of the tower; the cther symbols are defined in
par 7-3.1. Eqs. 7-17 become

$$
\left.\begin{array}{ll}
x_{1}^{\prime}=x_{2} & \equiv f_{1} \tag{7-20}\\
x_{2}^{\prime}=\frac{3 Q(L-t)^{2}}{4 E A t^{2}} & \equiv f_{2}
\end{array}\right\}
$$

with boundary conditions

$$
\left.\begin{array}{l}
x_{1}(0)=0 \tag{7-2i}\\
x_{2}(0)=0 \\
x_{2}(L)=0
\end{array}\right\}
$$

The problem stated here will now be sclved using Theorem 6-7. Define

$$
\begin{aligned}
H= & \lambda_{1} x_{2}+\lambda_{2}\left[\frac{3 Q(L-t)^{2}}{2 E A h^{2}}\right]-\lambda_{0} h \\
& -\mu\left(I_{0}-\frac{2}{3} A h^{2}\right)
\end{aligned}
$$

and

$$
\left.G=\gamma_{1} x_{1}(0)+\gamma_{2} \check{x}_{2}(0)+\gamma_{3} x_{2}(L)-0\right] .
$$

The conditions of Theorem 6-7 yiek:

$$
\begin{align*}
& \lambda_{1}^{\prime}=0 \tag{7-22}\\
& \lambda_{2}^{\prime}=-\lambda_{1} \\
& 0=\frac{\partial H}{\partial h}=-\lambda_{0}-\lambda_{2}\left[\frac{0 Q(L-t)^{2}}{2 E A h^{3}}\right]
\end{align*}
$$

$$
\begin{equation*}
+\mu \frac{4}{3} A h \tag{7-23}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}(L)=0 \tag{7.24}
\end{equation*}
$$

The general solution of Eq 7.22 is

$$
\lambda_{1}(t)=\xi_{1}
$$

$$
\lambda_{2}(t)=-\xi_{2}-\xi_{1} t .
$$

Condition, Eq. 7-24, implies $\xi_{1}=0$, so

$$
\lambda_{1}(t)=0
$$

$$
\lambda_{2}(t)=-\xi_{2}
$$

For the determination of $h(t)$, two cases must be considered:

Case 1: $\phi=0$. In this case

$$
\frac{2}{3} A h^{2}-I_{0}=0
$$

s

$$
h=\left(\frac{3 I_{0}}{2 A}\right)^{1 / 2} \equiv h_{1}
$$

Case 2: $\phi<0$. In this case Eq. 6.128 is

$$
\mu \phi=0
$$

and siace $\phi \neq 0, \mu=0$. Substituting this result inio Eq. 7-23.

$$
\begin{equation*}
-\lambda_{C}+\frac{6 \xi_{2} Q(I-t)^{2}}{2 E A h^{3}}=0 \tag{7.26}
\end{equation*}
$$

If $\lambda_{0}=0$, then, $\xi_{2}=0$ and from Eq. 7-26, $\lambda_{1}=\lambda_{2}=0$. This, however, violates the condition stated in the first sentence of Theorem 6-7. Therefore, $\lambda_{0} \neq 0$ and it is permissibie o choose $\lambda_{0}=2$

Further, since $\lambda_{0}>0, \xi_{2}>0$ in order that Eq. $7-26$ hold. Eq. $7-26$ then yields

$$
h=\left[\frac{3 \xi_{2} Q(L-t)^{2}}{2 E A}\right]^{1 / 3}=n_{2}
$$

Since Cases 1 and 2 cover all possibilites,

$$
n=\left\{\left[\frac{3 \xi_{2} Q(L-t)^{2}}{2 E A}\right]^{1 / 3}\right. \text { or }
$$

$$
\begin{equation*}
\left.\left(\frac{3 I_{0}}{2 A}\right)^{1 / 2}\right\} \tag{7-27}
\end{equation*}
$$

where by Eq. 6-13!, the choice in Eq. 7-27 must be made which makes

$$
H=-h-\frac{3 \xi_{2} \varrho(L-t)^{2}}{4 E A h^{2}}
$$

a maximum.

Let t^{*} be a point of transition from one expression in Eq. 7.27 to the other. Since Theorem 6-7 requires H to be continuous, when the two expressions of Eq. 7.27 evaluated at t^{*} are substituted inio H, a common value must occur.

Evaluate $I I$ as a function of beth h_{2} and h_{1}

$$
H\left(h_{1}\right) \equiv H_{1}=-h_{1}
$$

$$
-\frac{1}{2}\left[\frac{3 \xi_{2} Q(L-t)^{2}}{2 E A}\right] \frac{1}{h_{\mathrm{i}}}
$$

$$
=-h_{1}-\frac{1}{2} \frac{h_{2}^{3}}{h_{1}^{2}}
$$

$$
H\left(h_{2}\right) \equiv H_{2}=-h_{3}
$$

$$
-\frac{1}{2}\left[\frac{{ }^{3} \dot{\xi}_{2} Q(L-r)^{2}}{2 E A}\right] \frac{1}{h_{2}^{2}}
$$

$$
=-h_{2} \frac{1}{2} \frac{h_{2}^{3}}{h_{2}^{2}}
$$

Then

$$
\begin{aligned}
H_{2}-H_{1} & =-\frac{3}{2} h_{2}+h_{1}+\frac{1}{2} \frac{h_{2}^{3}}{h_{1}^{2}} \\
& =\frac{1}{2 h_{1}^{3}}\left(2 h_{1}+h_{2}\right)\left(h_{1}-h_{2}\right)^{2} .
\end{aligned}
$$

If $h_{2}<h_{1}$ at any point \hat{t}, then h_{2} violates the constraint and $h=h_{1}$. If $h_{2}=h_{1}$ a: any \hat{i}, there are no alternative choives for h. If $t_{2}>$ h_{1} at any point t, the choice $h=h_{1}$ must nuteximizr. H(t); this implies $H_{2}-H_{1}<0$. But this is impossible from the above bccause h_{1} and \boldsymbol{h}_{2} are always non-negative. Therefore. if $h_{2}>h_{1}$, then it is required wat $h=h_{2}$. From rhis, it is concluded that

$$
h(t)=\max \left[h_{1}(t), h_{2}(t)\right] .
$$

Since $h(t)$ is defined as the maxinimin of two continuous functions, h is continutous. It follows that all points t^{*} of transition from one value of Eq. 7-27 to another can be found by equating the two expressions of $h(t)$.

The pcint t^{*} is then determined by

$$
\begin{aligned}
h_{1}\left(t^{*}\right) & =\left(\frac{3 J_{0}}{2 A}\right)^{1 / 2} \\
& =\left[\frac{3 \xi_{2} Q\left(t_{1} \cdot t^{*}\right)^{2}}{2 \dot{E} A}\right]^{1 / 3}=h_{7}\left(t^{*}\right) .
\end{aligned}
$$

This solunion yields two values of t^{*}. The requirmeni $0<t^{*} \leqslant L$ results in a unique value of ι^{*}.

$$
\begin{equation*}
t^{*}=!\left[\frac{3 E^{2} I_{0}^{3}}{2 A \xi_{2}^{2} Q^{2}}\right]^{1 / 4} \tag{7-28}
\end{equation*}
$$

For $0 \leqslant t$, L, the first form of h in Eq. $7-27$ is monotone decreasing and is $2 e r$ at $t=$ l. It is, therefore, clear that the second form of h must hold for t^{*} - $t \leqslant L$ and the first
form fer $0<t<t^{*}$. The problem is now to determine ξ_{2}.

The condition wiich hes not yet been satisfied is $x_{2}(L)=\theta$. Substituting Eq. 7-27 into Eq. 7.20 yields

$$
x_{2}^{\prime}=\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{3 Q}{2 E A}\right)^{1 / 3}(L \cdots t)^{2 / 3} \frac{\xi_{2}^{-2 / 3}}{\xi_{2}} \\
\text { for } 3<t<t^{*} \\
\frac{Q(L-t)^{2}}{2 E I_{0}}, \text { for } t^{*}<t<L
\end{array}\right.
$$

with $::_{2}(0)=0$.

Integrating Eq. $7-29$ first Sroni 0 to t^{*} (as given by Eq. 7-28) and then from t^{*} to L yields

$$
\begin{align*}
& x_{2}(L)=\frac{3 L^{5 / 3}}{10}\left(\frac{3 Q}{2 E A}\right)^{1 / 3} \xi_{2}^{-2 / 3} \\
& -\frac{E^{1 / 2} I_{0}^{5 / 12}\left(2^{3 / 4} \times 3+101_{0}^{5 / 6}\right)}{(24)^{1 / 4} 10 Q^{1 / 2} A^{3 / 4} \xi^{-3 / 2}}=0 \tag{7-3C}
\end{align*}
$$

Eq. 7.30 is sotved numerically for ξ_{2}. Once ξ_{2} is de:ermined, then Eqs. 7.27 and 7.28 completely specify the tower. Results are shown in Table 7-3(A) and Fig. 7-5(A).

This design problem has been solved analy.lcally. As will become apparent as more realistic $r \quad s$ are treated, one should not expect ain solutions in this way. In most problems, numerical methocis must be apolied to solve the differental equations arising in the theorem 6.7

 Guy－line
Supported －

 Number or
Design
Variables
Eest Weight

(A) One Coaltsol Variable

Figure 7-5. Tower With Base Rigidly Fastened to the Earth

7.3.2.2 METHOD 2. TOWER WITH BASE PINNED TO EARTH AND WITH TOP SUPPORTED B: GUY LINES

The tower considered here is shown in Fig. 7.6. It is convenieat here to locate the coordinate system at the top of the tower. The bending moment generated by the uniform wind load Q is $M=-Q / 2 t(t-l)$ so the differential equation for bending is

$$
E I(h) x^{\prime \prime}=\frac{Q}{2} t(t-L)
$$

Define $x_{1}=x$ and $x_{2}=x_{1}^{\prime}$; this is equivalent to

Figure 7.6. Tower With Guy Lines

$$
\left.\begin{array}{l}
x_{1}^{\prime}=x_{2} \equiv f_{1} \tag{7-31}\\
x_{2}^{\prime}=\frac{Q t(t-L)}{2 E I} \equiv f_{2}
\end{array}\right\}
$$

The boundary conditions in this case are

$$
\left.\begin{array}{l}
x_{1}(0)=0 \tag{7-32}\\
x_{2}(0)=0 \\
x_{1}(L)=0
\end{array}\right\}
$$

The quantity to be minimized is still given by Eq. 6-17. In the problem conside:ed here,

$$
\begin{aligned}
H= & \lambda_{1} x_{2}+\lambda_{2}\left[\frac{3 Q t(t-L)}{4 E A h^{2}}\right] \\
& -\lambda_{0} h-\mu\left(I_{0}-\frac{2}{3} A h^{2}\right) \\
G= & \gamma_{1} x_{1}(0)+\gamma_{2}\left[x_{2}(0)-\theta\right]+\gamma_{3} x_{1}(L) .
\end{aligned}
$$

Conditions of Theorem 6-7 are

$$
\begin{aligned}
& \frac{d \lambda_{1}}{d t}=\frac{\partial H}{\partial x}=0 \\
& \frac{d \lambda_{2}}{i t}=\frac{\partial H}{\partial x_{2}}=-\lambda_{1}
\end{aligned}
$$

so

$$
\begin{aligned}
& \lambda_{1}(t)=\vdots \\
& \lambda_{2}(t)=-\xi_{2}-\xi_{1} t
\end{aligned}
$$

Also,

$$
\lambda_{2}\left(l_{1}\right)=0
$$

Ihis equation meplies $\xi_{2}=-\xi_{1}$: .sc

$$
\lambda_{1}=\xi_{2}
$$

$$
\dot{\lambda}_{3}=\xi_{1}(L \sim t) .
$$

Two cases must now be considereá:

\therefore Caserl. $\phi=0$. In this case

$$
\frac{2}{3} A h^{2}-I_{0}=0
$$

so

$$
\begin{equation*}
h_{1}=\left(\frac{3 I_{0}}{2 A}\right)^{1 / 2} \tag{7-33}
\end{equation*}
$$

Case 2. $\phi<0$. In this case $\mu=0$. Substituting into $\partial H / \partial h=0$,

$$
-\lambda_{0}-\frac{\xi_{1}(L-t) 6 \varrho t(t-L)}{2 E A h^{3}}=0
$$

As in t'e previous case $\lambda_{0} \neq 0$ so it is pet nissible to put $\lambda_{0}=2$ and obtain

$$
\begin{equation*}
h_{2}=\left[\frac{3 \xi_{1} Q t(L-t)^{2}}{2 E A}\right]^{1 / 3} \tag{7-34}
\end{equation*}
$$

Eqs. 7.33 and 7.34 along with Eq. 6.131 yield

$$
\begin{align*}
h(t)= & \left\{\left(\frac{3 I_{0}}{2 A}\right)^{1 /}\right. \text { or } \\
& {\left.\left[\frac{3 \xi_{1} Q l(L-t)^{2}}{2 E A}\right]^{1 / 3}\right\} } \tag{7-35}
\end{align*}
$$

the choice in Ęq. 7.35 being madr: which makes

$$
H=-h-\frac{3 \xi_{1} Q t(L-t)^{2}}{4 E A h^{2}}
$$

largest.

The problem is thus solved when ξ_{1} is jetermined. In this case, analytical integration
of-Eq. $7-31$ and sol:tion of the boundary conditions, Eq. 7-32, for ξ_{1} are not feasible. Therefore, the shooting technique of par, 6-5 is employẽd. Numerical results for this problem are given in Fig. 7-7(A) and Table 7-3(B).

Figure 7.7. -ower With Base Simply Supported and Top Supported With Guy Linus

The modification of Newton's A!gorithm consists of using a correction of at inost 10% of the values of the unknown iteration parameters. It has been found in particular problems that where the Newton Method fails to converge, this method will converge. The rate oi convergence, particularly for the first few iterations, is slowed by the modification, however.

7.3.: TOWER WITH TWO DESIGN VARI. ABI.ES

The same two nethods of supporting the towers will again be considered. Here, however, both A and n will be allowed to vary
along, the tower and play the role of design variables.

Eqs. 7-16 and 7-17 remain the same in the present problem. However, from Eq. 7-14

$$
f_{0}=A(t)+\rho h(t)
$$

7-3.3.1 METHOD 1. TOWER WITH BASE RIGIDLY FASTENED TO THE EARTH

Fig. $7-4$ applie: and Eqs. 7-19, 7-20, and $7-21$ hold in this problem. Substitution into「i. 6-108 yields

$$
\begin{aligned}
H= & \lambda_{1} x_{2}+\lambda_{2}\left[\frac{3 Q(L-t)^{2}}{4 E A h^{2}}\right]-\lambda_{0}(A+\rho h) \\
& -\mu\left(I_{0}-\frac{2}{3} \cdot 1 h^{2}\right)
\end{aligned}
$$

The equations for λ_{1} and λ_{2} are just as in the preceding work, so again,

$$
\begin{aligned}
& \lambda_{1}(t)=0 \\
& \lambda_{2}(t)=-\xi_{2}
\end{aligned}
$$

Since h plays the role of u_{1} and A the role of u_{2}, Eq. 6-122 is:

$$
\begin{align*}
& \frac{\partial H}{\partial h}=-\lambda_{0} \beta+\frac{\xi_{2} 3 Q(L-t)^{2}}{2 F 4 h^{3}}+\mu \frac{4}{3} A h=0 \\
& \frac{\partial H}{\partial A}=-\lambda_{0}+\frac{\xi_{2} 3 Q(L-t)^{2}}{4 E A h}+\mu \frac{2}{3} h^{2}=0 \tag{7-36}
\end{align*}
$$

As before, two cases must be considered:

Case 1. $\phi<0$. This implies $\mu=0$. From E! $.7-36$, it is clear that $\lambda_{0}=0$ implies $\xi_{2}=0$ which contradicts Theorem 6-7. Therefore, it
is permissiole to take $\lambda_{0}=1$. The system is then two equations for h and A with solution

$$
\left.\begin{array}{ll}
h(t)=\left(\frac{3 \xi_{2} Q}{\beta^{2} E}\right)^{1 / 4} & (I-t)^{1 / 2} \\
A(t)=\left(\frac{3 \xi_{2} Q \beta^{2}}{E}\right)^{1 / 3} & \frac{(L-t)^{1 / 2}}{2} \tag{7-37}
\end{array}\right\}
$$

Case 2. $\phi=0$. This is

$$
\begin{equation*}
\frac{2}{3} A h^{2}=I_{0} \tag{7-38}
\end{equation*}
$$

Eq. 7.38 along with Eq. 7-36 is a system of three rquations in h, A, and μ and solving for h and A yields

$$
\begin{aligned}
& h(t)=\left(\frac{3 I_{0}}{4 \beta}\right)^{1 / 3} \\
& A(t)=\left(\frac{3 I_{0} \beta^{2}}{2}\right)^{1 / 3}
\end{aligned}
$$

The design variables are chosen by Eqs. 7-57 and 7.39, derending on which makes H largest. The problem with differential equations, Eq. 7-2C, and boundary conditions, Eq. $7-2.1$, is now treated by the shooting technique of par. $6-5$. Numerical results are given in Table 7-3(C).

7-3.3.2 METHOD 2. TUWER WITH BASE PINNED TO EARTH AND WITH TOP SUPPORTED BY GUY LIMES

Fig. 7-6 applies and Eqs. 7-31 ard 7-32 hold for this probiem. Substituting into Eq. 6-108 yeilds

$$
\begin{aligned}
H= & \lambda_{1} x_{2}+\lambda_{2}\left[\frac{3 Q t(t-L)}{4 E A h^{2}}\right] \\
& \cdots \lambda_{0}(A+\beta h)-\mu\left(I_{0}-\frac{2}{3} A h^{2}\right)
\end{aligned}
$$

The equations for λ_{1} and λ_{2} are just as in the preceding case, so again
$\lambda_{1}=\xi_{1}$

$$
\lambda_{2}=\xi_{1}(L-t)
$$

Eqs. -122 for the design variables are

$$
\left.\begin{array}{rl}
\frac{\partial H}{\partial h}= & -\lambda_{0} \beta+\frac{\xi_{1} 3 Q t(L-t)^{2}}{2 E A h^{2}} \\
& +\mu \frac{4}{3} A h=0 \tag{7-40}\\
\frac{\partial H}{\partial A}= & -\lambda_{0}+\frac{\xi_{1} 3 Q r(L-1)^{2}}{4 E A^{2} h^{2}} \\
& +\mu \cdot \frac{2}{3} h^{2}=0
\end{array}\right\}
$$

As before, two cases must be considered:
Case 1. $\phi<0$. This implies $\mu=0$.
From Eq. 7-40, it is clear that if $\lambda_{0}=0$, then $\xi_{1}=0$, and $\lambda_{1}=\lambda_{2}=0$. This contradicts the thenrem, so $\lambda_{0} \neq 0$ and it is purmissible to take $\lambda_{0}=1$. The system is then a set of two equations for h and A which yields

$$
\left.\begin{array}{l}
h(t)=\left(\frac{3 \xi_{1} Q}{\rho^{2} E}\right)^{1 / 4} t^{1 / 4}(L-t)^{1 / 2} \\
A(t)=\frac{1}{2}\left(\frac{3 \xi_{1} Q \beta^{2}}{E}\right)^{1 / 4} t^{1 / 4}(L-t)^{1 / 2}
\end{array}\right\}(7-41)
$$

Case 2. $\phi=0$. This is

$$
\begin{equation*}
\frac{2}{3} A h^{2}=I_{0} \tag{7-42}
\end{equation*}
$$

Eq. 7-42 aiong with Eq. 7-40 is a system of thee equations for h, A, and μ. Eliminating μ and snlving for h and A yields

$$
\begin{aligned}
& h(t)=\left(\frac{3 I_{0}}{4 \beta}\right)^{1 / 3} \\
& A(t)=\left(\frac{3 I_{0} \beta^{2}}{2}\right)^{1 / 3}
\end{aligned}
$$

AMCP 706-192

The design variables are chosen as in Eqs. 7-41 or 7-43, depending on which makes H largest. The problem with differential equati ins and boundary conditions, Eq. 7-20, is now solved by the shooting technique. Numerical results are given in Table 7-3(C).

7.3.4 OISCUSSICN OF RESULTS

For both types of tower considered (simply supported and towers with top supported by guy lines), the variables A and h could be fixed at constant values, large enough that deflection requirements are met. For a given configuration of the tower, there is one pair of constant values A and h which yield a tower at least as light as any other combination of constant A and h. For both types of tower, finding these values is a matter of simple algebra. Results for both towers are given in Table 7-3(C), referred to as towers with no design variables. With A held constant and $h(t)$ treated as a design variable, the problem can oe solved for several different values of A for both types of tower. Summaries of these solutions are given in Table $7.3(\mathrm{~A})$ and Table $7.3(\mathrm{~B})$. If the tower weights are then plotted as a function of fixed values of A, a minimum, or best, weight can be found (Tavie 7-3(C)). These optimum towers show a reduction in weight over the no design variable case of 13.5% and 13% for the simply supperted and guy-line supported towers, respectively. Results for solutions of the problem when both $A(t)$ and $h(t)$ are treated as design variables are also given in Table $7-3$ (C). These represent reductions in weight,
over the case where only the spacing $h(t)$ is allowed to vary, of 6.1% and 6.7% for thit simply supported and guy-line supported towers, respectively. Similurly, these towers represent respective reductions in weight over the completely uniform (no design variables) tower of 18.8% and 19%.

All four configurations of the structrre describeci in the preceding subpor agraphs have been successfitly prescriber, ry a digital computer approdch. an IBM 360-65 Computer was used and the programs employed RungeKutta integration with the Newton's Method described in the text. Convergence dependec on getting a good starting value for the multiplier ξ. This was made more difficult by the fact that ξ has no physical significance so that, n nsequently, angincering intuition was no heip. To find a sufficiently close starting value for ξ, (i.e., a value for which the error is of order two or less) several different values of ξ were investigated, each increasing from the previous value by a factor of 10 , and the first value very close to zerc. Once a starting value that would allow Newton's Method lierate effectively was found, convergence occurred in ten or less iterations, taking less than two minutes of computer time. This time cowd be reduced with increased sophistication of the computer program.

Other eptimal design problems can be approarhed with the method of this paragraph. Also different parameters could be treated as variables. For instance, several materials of tifferent densities and stiffness characteristics could be used in the same stricture. and the choice could be left as a design parameter the loading could be a function of the hight above the ground rather than be cortant. Other resurictions might also be imposed, naxımum width or
marinum deflection at a given point could be among these.

Note thet rigs. 7-5 and 7-6 are not scale drawings of the towers, but are representative of the general sinape of the respective towers, as viewed on one face. Sample profiles of the four possible structures are presented in Table 7-3(A), (B), and (C).
7.4 MINIMUM WEIGHT DESIGN OF BEAMS WITH INEQUALITY CONSTRAINTS ON STRESS AND DEFLEC. TION

The problams treated thus far in this chapter have only design variable inequality constraints. In engineering design one often encounters problems in which it is required that the state of the system satisfies inequality constraints. As seen in Chapter 6, state variable constraints are more tedious to treat and have features not encountered in problems without state constraints. γ class of beam design problems including state variable constraints is presented in this paragraph to illustrate some of the features and difficulties that can arise in this dafificult class of problems. While the proolems solved are of limited practical value, they do illustrate typical features that can arise in state variable constrained problems

7.4.1 STATEMENT OF THE PROBLEM

Beams which are loaded in a neral way (such as in Fig. 7-8) are con ered in this paragraph. The cross sections of the beams are assumed to depend on a. vector parameter $u(t)$ $=\left\{u_{1}(t), u_{2}(t), \ldots, u_{m}(t)\right\}$ and to be symmetric with respect to vertical and horizontal axes. The vertical axis of :ymmetry is assumed to lie in the plane of loading The beans are made of a homogencons, sotropic,

Figure 7.8. Beam Loaded in a Ge,ieral Way
linearly elastic material with Young's modulus E. Small deflection, elementary beam theory is used throughout this paragraph. Also, the effect of the weight of the beam on deflection is neglected.

Since, for a particular beam, the aross section is Getermined by $u(t)$,

$$
\begin{array}{ll}
A(t)=A[u(t)] & \begin{array}{l}
\text { (cross-sectional area), } \\
I(t)=I[u(t)] \\
\text { (moment of inertia), }
\end{array} \\
b(t, d)=b(u(t), d] & \begin{array}{l}
\text { (width of cross section } \\
\text { at } d),
\end{array} \\
Q(t, d)=Q[u(t), d] & \begin{array}{l}
\text { (first moment of area } \\
\text { above } d, \text { about the } \\
\text { neutral axis), }
\end{array}
\end{array}
$$

and
$C(t)=C[u(\cdot)] \quad$ (half-depth of beam),
where d is the distence above the neutral axis of the cross section.

For each t, let $d_{1}[t, u(t), M(t), Y(t)], i \sim 1$ and 2, be the distances from the neutrai axis where

$$
\begin{aligned}
\sigma_{p}(t)= & \frac{1}{2}\left[\frac{|M(t)| d_{1}(t)}{I(t)}\right] \\
& +\frac{1}{2}\left\{\frac{M^{2}(t) d_{1}^{2}(t)}{I^{2}(t)}\right. \\
& \left.+4\left(\frac{V^{2}(t) Q^{2}\left[t, d_{1}(t)\right]}{I^{2}(t) b^{2}\left[t, d_{1}(t)\right]}\right)\right\}^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{p}(t)= & \frac{1}{2}\left\{\frac{M^{2}(t) d_{2}^{2}(t)}{I^{2}(t)}\right. \\
& \left.+\left(\frac{V^{2}(t) Q^{2}\left[t, d_{2}(t)\right]}{I^{2}(t) b^{2}\left[l_{1} d_{2}(t)\right]}\right)\right\}^{1 / 2}
\end{aligned}
$$

respectively, are the maximum principal stresses that occur in the cross section at t. The values d_{1} and d_{2} may be deturnined by the methods of ordinary calculus, for each t.

The problem is to determine $u(t)$ so that the beam, subjected to a given loading, contains as little material as possible and still satisfies the folowing conditions:

1. Principal normal stress is less than or equal to some allowable normal stress $\sigma_{\text {max }}$.
2. Principal shear stress is less than or equal to some allowable shear stress $\tau_{\text {max }}$.
3. Stiffness is bounded away from zero (otherwise an infinitesimal change in
load can cause the deflection to be discontinuous).
4. Beam deflection at each point is bounded by two givet functions $X_{1}(t)$ and $X_{2}(t)$, i.e., $X_{1}(t) \leqslant x(t)<X_{2}(t)$ with $X_{1}(t)<X_{2}(t)$.

In structural design probiems, it is frequently sufficient to require only that the maximum flexural stress be less than $\sigma_{\text {max }}$ and the maximum direct shear stress be less than $\tau_{\text {max }}$. These conditions are considerably easier to enforce than the conditions on maximum principal stress.

If the beam is subjected to several loadings, then the problem is more tedious but is no more difficult snathematically. Corresponding to each loading there is a a deflection curve, bending stress, and shear stress that must satisfy the stated conditions.

Further, since the bearis are made of homogeneous material, the weight of a beam will be minimum if and only if its volume is minimum. Therefore, in the following the quanticy to be minimized will he volume.

The given problem is now stated mathematically: A vector function $u(t)$ is sought which causes the functional

$$
\begin{equation*}
J=\int_{0}^{\tau} A[u(t)\} d t \tag{7-49}
\end{equation*}
$$

to be a minimum subiect to the following conditions:

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left\{E \|\left[u(t) \left\lvert\, \frac{d^{2} x}{d t^{2}}\right.\right\}=q(t)\right. \tag{750}
\end{equation*}
$$

at all but a finite number of points in $(0, T)$,
where $q(t)$ is uistributed load;

$$
\begin{align*}
& g_{s}\left[x^{(i)}(0), x^{(i)}(T)\right]=0, s=1, \ldots, B, i<3 ; \tag{7-51}\\
& (7-51) \tag{7-52}\\
& \sigma_{p}(t)<\sigma_{\max }
\end{align*}
$$

for all t in $(0, T)$, where $M(t)$ is eending moment;

$$
\begin{equation*}
\tau_{p}(t)<\tau_{\max } \tag{7-53}
\end{equation*}
$$

for all t in $(0, T)$ where $V(t)$ is shwar;

$$
\begin{equation*}
I[u(t)] \geqslant I_{0}, \tag{7.54}
\end{equation*}
$$

where I_{0} is a constant greater than zero; and for all t in $(0,7)$,

$$
\begin{equation*}
X_{1}(t)<x(t)<X_{2}(t) . \tag{7.55}
\end{equation*}
$$

It is assumed that the functions appearing above have the following properties:

1. q has a piecewise continuous derivative in $(0, T)$.
2. A, I. C, and Q are piecewise twice continuously' differentiable.
3. X_{1} and X_{2} have continuous second derivatives in $(0, T)$.

A solution is scught with the following propertics:

1. $u_{j}(t, i=1, \ldots, m$, are piecewise continuous in $(0,7)$.
2. $x(t)$ is piecewise four times continuously differentiable in (0.7).

In case on'y maximum bending stres: and
maximum direct shear stress are io be bounded by $c_{\text {max }}$ and $\tau_{\text {max }}$, respectively, constraints, Eqs. 7.52 and 1-53, are replaced by

$$
\begin{equation*}
|\sigma(t)|=\frac{|M(t)| C[u(t)]}{I[u(t)]}<\sigma_{\max } \tag{7-56}
\end{equation*}
$$

and
$|T(t)|=\frac{|Y(t)| Q\left\{u(t), d_{3}(t)\right]}{[u(t)] b\left[u(t), d_{3}(t)\right]}<\tau_{\text {max }}$
for all t in $(0, T)$ where $d_{3}(t)=d_{3}[t, u(t)$, $M(t), V(t)]$ is the distance from the neutral axis where the absolute value of the direct shear stress is largest. The distance $d_{3}(t)$ may be determined by the methods of ordinary calculus.

In the case of beam design with multiple loading requirements, there is still just one design yariable $u(t)$. However, c rresponding to each loading there is an additional state variable (deflection) that must satisfy conditions identical in form to Eqs. 7-50 through 7-55. The problem is to determine $u(t)$ so that the functional, Eq. 7-49, is minimum subject to the condition that Eqs. 7-50 through 7-55 are satisfied for each loading.

7.4.2 NECESSARY CONDITIONS FOR THE BEAM DESIGN PROBLEM

The treatment which fo lows applies only to statically determinate beams, i.e., heams loaded in stich a vay that reactions at all supports (and hence also shear and bending moment) are determined completely by the conditions for equilibrium of the beam. Changes in formulation of the problem which are necessary to consider statically indeterminate problems will be indicated below.

In the statically determinate case, the differential equation, Eq. 7-50, and the boundary conditions, Eq. 7-5i, reduce to

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\frac{M(t)}{E I(t)} \tag{7-58}
\end{equation*}
$$

and

$$
\begin{align*}
& g_{s}\left[x(0), x^{\prime}(0), x(T), x^{\prime}(t)\right]=0 \\
& \quad s=1,2 \tag{7-59}
\end{align*}
$$

The boundary-value problem, Eqs. 7-58 and 7-59, is equivalent to a boundary-value problem with a system of first-order equatinns. The new problem may be written as

$$
\begin{equation*}
\frac{d x_{1}}{d t}=x_{2} \tag{7.60}
\end{equation*}
$$

$-\frac{d x_{2}}{d t}=-\frac{M(t)}{E I(i d)}$,
and

$$
\begin{align*}
& g_{s}\left(x_{1}(0), x_{2}(0), x_{1}(T), x_{2}(T)\right]=0 \\
& \quad s=1,2 \tag{7.62}
\end{align*}
$$

where x_{1} is defined to be x In terms of this notation, Eq. 7.57 t :comes

$$
X_{1}(t)<x_{1}(t)<\because_{2}(t) .
$$

It is now civat that the beam design problem is containe: i in the class of problems to which par. 6-4 applies. The quantities appearing in par. 6.4 will now be identified with the physical quantities associated with beam so that neceswary conditiors for the beam design problem may be stated.

Conditions, eaqs i-52, 7.53, and 7.5A,
correspond to Eqs. 6-101; Eq. 7-55 corresponds to two restrictions of the type expressed by Eq. 6-132. The differential equations, Eqs. 7-60 and 7-61, correspond to Eqs. 6-97, where

$$
\begin{align*}
& f_{1}=x_{2} \tag{7-63}\\
& f_{2}=-\frac{M(t)}{E I(u)} \tag{7-64}
\end{align*}
$$

and in Eq. 6-96

$$
\begin{equation*}
f_{0}=A(u) \tag{7-65}
\end{equation*}
$$

The ends of the beam are located at the known points $t=0$ and $t=T$. Therefore, t^{0} and t^{1} in the general variational problem are knoven. Also, boundary conditions will gencrally be separated; i.e., some conditions will be given at 0 and others at T.

The state variable constraints, Eq. 7-55, are of second-order since

$$
\frac{d}{d t}\left(X_{2}-\kappa_{1}\right)=X_{2}^{\prime}-x_{1}^{\prime}=X_{2}^{\prime}-x_{2}
$$

is not an explicit function of u, but

$$
\begin{aligned}
\frac{a^{2}}{d t^{2}}\left(X_{2}-x_{1}\right) & =X_{2}^{\prime \prime}(t)-x_{2}^{\prime}(t) \\
& =X_{2}^{\prime \prime}(t)+\frac{M(t)}{E I\left(t^{\prime}\right)}
\end{aligned}
$$

is an explicit function of u. The same argument holds for $x_{1}-X_{1} \geqslant 0$.

In terms of the notation of Eq. $6 \cdot 10 \mathrm{i}$,

$$
\begin{aligned}
& \phi_{1}=\sigma_{p}(t)-\sigma_{\max }<0 \\
& \phi_{2}=\tau_{p}(t)-\tau_{\max }<0
\end{aligned}
$$

$$
\phi_{3}=I_{n}-I(u)<0
$$

$$
\phi_{4}=y_{1}(t)-Y_{2}(t)<0
$$

$$
\phi_{5}=Y_{1}(t)-y_{1}(t)<0
$$

$$
\phi_{4,2}=\left\{\begin{array}{l}
\omega_{4}, \phi_{4}<0 \tag{7-66}\\
-\frac{M(t)}{E I(u)}-X_{2}^{\prime \prime}(t), \phi_{4}=0
\end{array}\right.
$$

and

$$
\phi_{5,2}=\left\{\begin{array}{l}
\phi_{5}, \phi_{5}<0 \tag{7-67}\\
\frac{M(t)}{E I(u)}+X_{1}^{\prime \prime}(t), \phi_{5}=0
\end{array}\right.
$$

Since the only explicit dependence of Eqs. $7-52,7-53,7-54,7-63,7-64$, and $7-65$ on t is through $M(t)$ and $V(t)$, the poinis of discontinuity of functions ($t /$ iv par. 6-4) are denoted ω_{α}, including points oi discrntinuity of $M(t)$ or $V(t)$; i.e., the ω_{α} correspond to points of application of concentrated loads or moments. Therefore, the ω_{a} are known.

At each point ${\underset{r}{r}}_{\sim}^{\sim}$, the deflection curve is tangeat to one of the curves

$$
\begin{equation*}
x_{1}=X_{:}(t) \tag{7-68}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}=\alpha_{2}(l) \tag{7.69}
\end{equation*}
$$

and there is a neighborhood of t_{r}^{2} in which this s. the only point of tangency.

At each t_{δ}, the deflection curve becomes tangent to one of the curves, Eqs. 7.68 or 7-69. Further, there is $:$ neighborhood of t_{8} in which Eq. $7-55$ is a sirict inequality to the left of t_{i}^{-}, and Eq. 7.68 or Eq 7.69 holds to
the right of t_{δ}^{-}. At the corresponding point t_{δ}^{+}, the deflection curve leaves Eq. $7-68$ or Eq. 7-69. Eq. 7.68 or Eq. 7.69 then holds in (t_{δ}^{-}, t_{δ}^{+}), and Eq. $7-55$ is again a strict inequality immediately to the right of t_{δ}^{+}.

If $x_{1}(0)$ or $x_{1}(T)$ is not fixed by the boundary conditions of Eq. 7.62, then one part of Eq. $7-55$ may be an equality at 0 or T. In this case $\phi_{s}^{\prime \prime}$ of Eqs. 7.66 and 7.67 need not be zero.

The t_{η}^{*} are points where one or moce oî Eqs. 7-52, 7-53, and 7-54 changes from strict inequality in equality. Condition, Eq. 6-105, is assumed to hold at these points.

According to Eqs. 6.106, 6-108

$$
\begin{aligned}
& \dot{H}=-\lambda_{1} A(u)+\lambda_{1} x_{2}-\lambda_{2}\left[\frac{M(t)}{E I(u)}\right] \\
& -\mu_{1} \phi_{1}-\mu_{2} \phi_{2}-\mu_{3} \phi_{3} \\
& -\mu_{4} \phi_{4,2}-\mu_{5} \phi_{5,2} \\
& \dot{G}=\sum_{s=1}^{B} \gamma_{s} g_{s}+\sum_{\alpha} \gamma_{B r \alpha}\left(t-\omega_{\alpha} ;\right. \\
& G=\tau_{0,4, C} \phi_{4}\left(\tau_{\delta}^{\bar{\delta}}\right)+\tau_{1,4, \delta}^{-} \phi_{4}^{\prime}\left(\tau_{\delta}^{-}\right) \\
& +\tau_{0, s, \delta}^{-} \phi_{s}\left(t_{\delta}^{\prime}\right)+\tau_{i, s, s}^{-} \phi_{s}^{\prime}\left(r_{\delta}^{-}\right) \\
& +i_{0,4, r} \phi_{4}\left(t_{r}^{-}\right)+\tau_{1,4, r}^{-} \phi_{4}^{\prime}\left(t_{.}^{-}\right) \\
& \left.+\tau_{0, s, \phi}^{*} \phi_{s}\left(t_{r}\right)+\tau_{i, s, r}^{\cdot} \phi_{s}^{\prime}\left(t_{r}^{-}\right)\right\} \\
& \text {(7.70) }
\end{aligned}
$$

Theorem 6-9 and Eq. 7.70 yield Theorem 7.1.

Theorem 7-I Nevessary conditions for the minimum weight beam problem are

$$
\frac{d x_{1}}{d t}=x_{2}
$$

and

$$
\begin{equation*}
\frac{d x_{2}}{d t}=-\frac{M(t)}{E I(u)} \tag{7-72}
\end{equation*}
$$

at all but a finite number of points in ($0, T$);

$$
\begin{aligned}
& \lambda_{0}>\hat{0} \\
& \lambda_{1}=\xi_{1} \\
& \lambda_{2}=\xi_{2}-\xi_{1} t
\end{aligned}
$$

and

$$
\lambda_{0}^{2}+\lambda_{1}^{2}+\lambda_{2}^{2}>0
$$

for all t in $(0, T)$, where ξ_{1} and ξ_{2} may have different values in subintervals of $(0, T)$ which are bounded by the t_{s} and t_{s};

$$
\left.\begin{array}{l}
-\lambda_{0} \frac{\partial \AA(u)}{\partial u_{j}}-\lambda_{2} \frac{\partial}{\partial u_{j}}\left[\frac{M(t)}{E I(u)}\right] \\
-\frac{\partial}{\partial u_{j}}\left[\mu_{1} \phi_{i}+\mu_{2} \phi_{2}+\mu_{3} \phi_{z}\right. \\
\left.+\mu_{4} \phi_{4,2}+\mu_{5} \phi_{5,2}\right]=0, j=1, \ldots, m_{i} \tag{7-74}\\
\mu_{5} \phi_{i}=0, l=1,2,3
\end{array}\right\}(
$$

and

$$
\begin{equation*}
\mu_{4} \phi_{4,2}=\mu_{5} \phi_{5,2}=0 \tag{7.75}
\end{equation*}
$$

at all but a forite number of pomis in $(0, T)$.

$$
\lambda_{1}\left(\omega_{\alpha}+0\right)-\lambda_{1}\left(\omega_{\alpha}-0\right)=0
$$

$$
\begin{equation*}
i=1,2 \tag{7.76}
\end{equation*}
$$

$$
\begin{align*}
& \lambda_{1}\left(t_{r}^{-}+0\right)-\lambda_{1}\left(t_{r}^{-}-0\right)-\tau_{0<r}^{*} \\
& +r_{05 r}^{-}=0 \tag{7-77}\\
& \lambda_{2}\left(t_{r}^{-}+0\right)-\lambda_{2}\left(t_{i}^{*}-0\right)-\tau_{i a r}^{\sim} \tag{7-85}\\
& +\tau_{15 r}^{-}=0 \tag{7-78}\\
& \lambda_{1}\left(t_{\delta}^{-}+0\right)-\lambda_{1}\left(t_{\delta}^{-}-0\right)-\tau_{04 \delta}^{-} \tag{7-86}\\
& +\tau_{0 \leqslant 6}^{-}=0 \tag{7-79}\\
& \lambda_{2}\left(t_{\delta}^{-}+0\right)-\lambda_{2}\left(t_{\delta}^{-}-0\right)-\tau_{14 \delta}^{-} \\
& +\tau_{15 \delta}^{-}=0 \tag{7-80}\\
& \dot{H}\left(\delta_{x}+0\right)-\tilde{H}\left(\omega_{\alpha}-\jmath\right)+\gamma_{B+\alpha}=0 \\
& \tilde{H}\left(t_{r}^{-}+0\right)-\tilde{H}\left(t_{r}-0\right)-\tau_{0}^{-} \cdot X_{2}^{\prime}\left(t_{r}\right) \\
& -\tau_{1}^{-} X_{2}^{\prime \prime}\left(t_{r}^{-}\right)+\tau_{0}^{-} r_{r} X_{1}^{\prime}\left(t_{r}\right) \\
& +\tau_{i s r}^{-} X_{1}^{\prime \prime}\left(t_{r}^{-}\right)=0 \tag{7.81}\\
& \dot{H}\left(r_{\delta}^{-}+0\right)-\tilde{H}\left(i_{\delta}^{-}-0\right)-\tau_{04 \delta} X_{2}^{\prime}\left(i_{\delta}^{-}\right) \\
& -\tau_{14 \delta}^{-} X_{2}^{\prime \prime}\left(r_{\delta}^{-}\right)+r_{\sigma \delta \delta}^{-} X_{1}^{\prime}\left(t_{\delta}^{-}\right) \\
& +\tau_{1}^{-} \leqslant \delta X_{1}^{\prime \prime}\left(t_{\delta}^{-}\right)=0 \tag{7-82}\\
& \tilde{H}\left(t_{\eta}^{*}+0\right)-\tilde{H}\left(t_{\eta}^{*}-0\right)=0
\end{align*}
$$

and

$$
\dot{H}\left(t_{\delta}^{+}+0\right)-\tilde{H}\left(t_{\delta}^{+}-0\right)=0
$$

fo: all α, r, δ, and η; at each of the poiats $\delta=$ t_{r}° and t_{δ}^{-}, ether

$$
\begin{equation*}
\phi_{1}(S)=\phi_{1}^{\prime}(S)=0 \tag{7-83}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi_{2}(S)=\phi_{2}^{\prime}(S)=0 \tag{7.8.4}
\end{equation*}
$$

the boundary conditions $g_{s}=0, s=1,2$, mus. be satisfiec along with the conditions

$$
\lambda_{i}(0)=\sum_{s=1}^{2} \gamma_{s} \frac{\partial g_{s}}{\partial x_{i}(0)}, i=1,2
$$

and

$$
\lambda_{i}(T)=\sum_{s=1}^{2} \gamma_{s} \frac{\partial g_{s}}{\partial x_{i}(T)}-i=1,2
$$

and the Weierstrass condition

$$
\tilde{H}\left(x_{i} U, \lambda_{i}, t\right)<\check{H}\left(\lambda_{i}, u, \lambda_{i}, t\right)
$$

must be satisfied for each t in $(0, T)$, where l is any function which along with x_{1} and x_{2} satisfies Eqs. 7-52, 7-53, 7-54, 7-55, 7-60, $7-61$, and 7.62 with u replaced by U. The statement of Theorem $7-1$ is now compicte.

If there is only a scalar control variable t((t), then the condition of Eq. 6-105 will be violated at points t_{η}^{*} which are intersections of intervals in which Eq. 7-52, 7-53, or $7-54$ is an equality. With an additional hypothesis, however, the conclusions of Theorem i-1 are still valid.

At a point $* * \omega_{\alpha}$, it is assumed that $\psi_{1}=$ $\psi_{2}=0$, where $\psi_{1}>0$ and $\psi_{2}>0$ are any two of the constraints of Eqs. 7.52, 7-53, and 7-54. If $\hat{\psi}$ s defined as $\hat{\psi}=\min \left(\psi_{1}, \psi_{2}\right)$, then $\hat{\psi}>0$ replaces the conditions $\psi_{1}>0$ and ψ_{2} $\rightarrow 0$. It is atssumed that $\partial \psi_{1} / \partial u$ and $\partial \psi_{2} / \partial u$ are not ℓ ero at t^{*} The new constraint now satisfies the conditions of Eq. $6-105$.

If Theorem 6.8 is applied to the nev formulation of the problem, the result is identical to Theorem 7.1 weth the exception of Eqs. 7.73, 7.74, and 7.76. However, the new "onditions on 4 are identical to those
implied by Eqs. 7.73, 7.74, and 7.76. The roles played by μ_{1} and μ_{2} in Theorem 7-1 would simply be combined in a new variable $\hat{\mu}$. This result may be stated as Corollary 7-1.

Corollary 7-1: Let there be a scalar design tariable $u(t)$ and assume that any two of the inequality constraints, Eqs. 7-52, 7-53, and $7-54$ arc equalities at t^{*}. If the first partial derivatives of these two constraint functions with respect to u are not zero at t^{*}, then Theorem 7-1 holds.

One further result may be easily obtained. If $\partial \psi_{1} / \partial u$ and $\partial \psi_{2} / \partial u$ are nonzero at t^{*} and are of the same sign, then α is continuous at $t *$.

To prove this, it is supposed first that $\partial \psi_{1} / \partial u=0$ and $u\left(t^{*}+0\right)=u\left(t^{*}-0\right)-\epsilon, t$ >0. Taylor's theorem (Ref. 15, p. 56) implies

$$
\begin{gathered}
\psi_{s}\left[t^{*}, u\left(t^{*}+0\right)\right]=\psi_{1}\left[t^{*}, u\left\{t^{*}-0\right)\right] \\
-\epsilon \frac{\partial \psi_{1}\left[t^{*}, u\left(t^{*}-0\right)-\theta \epsilon\right]}{\partial u}
\end{gathered}
$$

where $0<\theta<1$. But, $\partial \psi_{1} / \partial u>0$ and $\epsilon>0$, so

$$
\left.0=\psi_{1}\left[t^{*}, u+0\right)\right]<\psi_{1}\left[t^{*}, u\left(t^{*}-0\right)\right]=0
$$

which contradicts the assumption $\epsilon>0$. An identical argument holds in the remaining cases, so $u\left\{t^{*}, u\left(l^{*}-0\right)\right\}=0$.

7-4.3 STATKALLY INDETERMINATE PROBLEMS

A statically indeterminate owam may be classified as one of :tro types:

1. The beam is supported in such a way that all reactions are determined to within a
finite number of unknown constants, or
2. The beam is supported in such a way that an infinite number of constants are required to specify the reactions (e.g., a beam on an elastic foundation).

In the first case, the unknown constants appear in the expsessions for M and V. By defining new state variables, x_{j} with $l \geqslant 3$, to be these parameters, the following differential equations must be satisfied:

$$
\frac{d x_{i}}{d t}=0, i>3
$$

In this way, statically indeterminate problems of the first type are reducen to variational problems to which Theorem $6-8 \mathrm{ap}$ plies.

For statically indeterminate problems of the second type, however, more basic changes in formulation must be made. The fourtiorder differential equation, Eq. 7-50 must be treated since $q(t)$ may be $q\left[t, x_{1}(t), x_{2}(t)\right]$. The fourth-order equation is equivalent to the first-order system

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \\
& \frac{d x_{2}}{d t}=-\frac{x_{3}}{E I\left(u_{j}\right)} \\
& \frac{d x_{3}}{d t}=x_{4}
\end{aligned}
$$

and

$$
\frac{d x_{4}}{d t}=-q\left(t, x_{1}, x_{2}\right)
$$

where $x_{1}=x_{1} x_{3}=M$, and $x_{4}=V$. Theorem
6.8 now applies to statically indeterminate problems of the second type.

7-4.4 SOLUTION OF THE EQUATIONS OF THEOREM $7-1$

The Lagrange multipliers, $\lambda_{0}, \lambda_{1}, \lambda_{2}$, are rot uniquely determined by Theorem 7-1. However, if the solt cion, $x(t)$ and $u(t)$, is normal (Ref. 17, p. 214) for the problem, it is permissible to put $\lambda_{0}=1$. Theorem 7-1 then determines the remaining λ_{i} uniquely. Abnor. mal solutions are $;$ eculiar in that there may be no other functions, $x(t)$ and $u(t)$, near them which satisfy the conditions, Eqs. 7-50 through 7-55. The procedure adopted in this subparagraph is to assume there is a normal solution and then attempt to solve for it. If this fails, there is either no solution or the solution is abnormal, in which case a special analysis is required. In the following, λ_{0} will be taken as 1 .

In order to determine $u(t)$, consider any interval in which $z 0<z<4$, of the inequalities, Eqs. 7.52 through 7.55, are equalities and the remaining $4-z$ are strict inequalities. Eqs. 7.74 and 7.75 show that the $4-z$ muttipliers corresponding to the $4-z$ strict inequalities are zero. Then, Eq. 7-73 is a system of m equations in the m functions $u_{j}(t)$ and the z nonzero multipliers. Further, the $=$ equalities of Eqs. $7-52$ through 7.5 s yie!d a equations in the $u_{j}(t)$. Thus, there are $m+z$ equations which are to determine the m $+z$ unknowns. The nonzero $\mu_{l}(i)$ are first eliminated and the $u_{f}(t)$ are then found as functions of t and the parameters ξ_{1} and ξ_{2}.

At points $t_{\text {, }}^{-}$one part of Eq. $7-55$ is an equality, say the j th part $(j=1$ or 2). In this case, only $\tau_{0, j+3, r}^{-}$and $\tau_{1, j+3, r}^{*}$ can possibly be nonzero. Eqs. 7.77, 7.78, and 7.81 are three equations from which $\tau_{0.1+3, \%}^{\sim}$ and
$\tau_{1, /+3, r}^{\sim}$ call be eliminated and the t_{r}^{-r} determined as functions of the parameters ξ_{1} and ξ_{2}. Note that ξ_{1} and ξ_{2} to the left of t_{r}^{-}need not equal ξ_{1} and ξ_{2} to the right. In exactiy the same way, the t_{σ}^{-}are determined by Eqs. 7-79, 7-80, and 7-82. Continuity of \bar{H} at t_{δ}^{+} and t_{η}^{*} determines the t_{6}^{+}and t_{η}^{*} as functions of ξ_{1} and ξ_{2}.

The equations previously enumerated determine $u_{j}, t_{\eta}^{*}, t_{r}^{-}, t_{\delta}^{-}$, and t_{i}^{+}as iunctions of t, ξ_{1}, and ξ_{2}. The probiem would be solved by direct integration of Eqs. $; 71$ and ?.72 and application of $g_{1}=g_{2}=0$ it $\dot{\xi}_{1}$ and ξ_{2} were known.

The conditions which determ is ξ_{1} and ξ_{2} are Eqs. 7-83, 7-84, 7-85, and 7-86. Eqs. 7-85 and 7-86 after elimination of γ_{1} and γ_{2}, yield two equations in ξ_{1} and ξ_{2}. If there are w of the points t_{r}^{-}and t_{δ}^{-}, they subdivide $(0, T)$ into $w+1$ subintervals. Since these are the only possible points of discontinuity of λ_{1} and λ_{2}, there are just $w+1$ pairs, ξ_{1} and ξ_{2}, which represent $2 w+2$ unknown. Thus. there are $2 w+2$ equations from which the $2 w+2$ values of ξ_{1} and ξ_{2} may be determined. If this is not the case, the problem nas no solution or the solution is abnormal.

It is assumed now that $u(t)$ and points t_{r}^{-} and r_{δ} are known functions of ξ_{1} and $\xi_{2} A$ numerical method is developed which can be used to solve the equations given above for ξ_{1} and ξ_{2}. A numerical solution is required since, even for very simple problems, the function $f_{2}\left(t, \xi_{1}, \xi_{2}\right)$ is far too complicated to integrate in closed form.

Ex!ressions, Eqs. 7-85 and 7-86 generaly yield two easy relations between ξ_{1} and ξ_{2}. Eqs. $7-83$ and 7-84, however, require successive integration of $f_{2}\left(t, \xi_{1}, \xi_{2}\right)$. To compleate matters, some limits of integration are the

AMCP 706-192

$$
\begin{align*}
& b(t)=b \tag{7-91}\\
& Q(t)=\frac{b}{8} h^{2}(t) \tag{7.92}
\end{align*}
$$

and

$$
\begin{equation*}
C(t)=\frac{1}{2} h(t) \tag{7-93}
\end{equation*}
$$

$H(t)$ and $V(t)$ are assumed to be known, piecewise twice continuously differentiable functions of t whose discontinuitiss occur at points $t=\omega_{\alpha}$.

Eqs. 7-89 through 7-93 and Eq. 7-70 along with $\lambda_{0}=1$, yield

$$
\begin{equation*}
\tilde{H}=-b h+\lambda_{1} x_{3}-\lambda_{2}\left[\frac{12 M(t)}{E b}\right] h^{-3} \tag{7.94}
\end{equation*}
$$

The procedure outlined is now usea to determine $h(t)$. In any interval where Eq. 7-5; is an equality,

$$
\frac{6|M(t)|}{b h^{2}(t)}=\sigma_{\max }
$$

so

$$
h(t)=\left[\frac{\left.6 \mid M^{\prime} t\right) \mid}{b \sigma_{\max }}\right]^{1 / 2}
$$

In any interval where Eq. 7.57 is an equality,

$$
\frac{3|V(t)|}{2 b h(t)}=\tau_{\max }
$$

so

$$
h(t)=\frac{3|v(t)|}{2 b \tau_{\max }}
$$

In any inferval where Esp. 7.54 is an equalitiy,

$$
\frac{b h^{3}(t)}{12}=I_{0}
$$

30

$$
h(t)=\left(\frac{12 I_{0}}{\grave{b}}\right)^{1 / 3}
$$

(7-95).

In any interval, $\left(t_{8}^{-}, t_{8}^{ \pm}\right)$, where Eq: $7-86$ is an equality, direci differentiation and use of Eqs. 7-71 and 7-72 yield

$$
\begin{equation*}
0=-\frac{12 M(t)}{E h^{2}(t)} . \tag{7.96}
\end{equation*}
$$

In order for Eq. 7-96 to be satisfied, it is necessary that $M(t)=0$ (hence also $V(t)=0=$ $q(t)$) must be identicalis satisfied in $\left(t_{\delta}^{-}, t_{\delta}^{+}\right)$. If this is the case, $h(t)$ is gaven by Eq. 7-95.

In any interval where Eqs. 7-56, 7-57, 7-54, and 7-88 are all strict inequalities, Eqs. 7.84 and 7.75 show that $\mu_{1}(t)=0,1=1, \ldots, 5$ Eq. 7.73 then is

$$
\begin{equation*}
-b+\lambda_{3}(t)\left[\frac{36 M(t)}{E b}\right] h^{-4}(t)=0 \tag{7.97}
\end{equation*}
$$

so

$$
h(t)=\left[\frac{30 \hat{\lambda}_{2}(t) M(t)}{E b^{2}}\right]^{1 / 4}
$$

It is worthwhile to note that in order for Eq. $7-97$ to hold the product $\lambda_{2}(/) M(t)$ must be positive. That is, $\lambda_{2}(t)$ and $M(t)$ must have the same algebraic sign throughout any interval in which Eq. $7-97$ holds.

$$
\begin{aligned}
& \text { Wi a more compact notation, }
\end{aligned}
$$

The Weierstrass condition shows that the largest of the expressions in Eq. 7-98 is the proper value of $h(t)$.

Eq. 7-98 in Eq. 7.64 yields

$f(t)=\left\{\begin{array}{ll}-C_{1} M(t)|V(t)|^{-3}, & \text { if }|\tau|=\tau_{\text {max }} \\ -C_{2}|M(t)|^{-1 / 2} \\ x \operatorname{com}[M(t)], & \text { if }|\sigma|=\sigma_{\max } \\ -\frac{M(t)}{E I_{0}}, & \text { if } I=I_{0} \\ -C_{3} \mid \lambda_{2}(t) \Gamma^{-3 / 4} \\ x|M(t)|^{1 / 4} \\ x \operatorname{sgn}[M(t)],\end{array}\right\} \begin{aligned} & \text { if }|\tau|<\tau_{\text {max }}, \\ & |\sigma|<\sigma_{\text {max }}, \\ & \text { and } I>I_{0},\end{aligned}$
where

$$
C_{3}=\frac{32 b^{2} r_{\max }^{3}}{9 E}
$$

$$
\begin{aligned}
& c_{2}=\left(\frac{2 b \sigma^{3}}{3 E^{2}}\right)^{1 / 2} \\
& c_{3}=\left(\frac{4 b^{2}}{9 E}\right)^{1 / 4}
\end{aligned}
$$

and the function sgn () is defined by the relation

$$
q \operatorname{sgn}(q)=q
$$

for réal q.
Equations which determine the special points $t_{n}^{*}, t_{5}^{+}, t_{\sigma}^{*}$, and t_{η}^{*} may now be fouñu. In the problem it nand, $X_{1}(t)$ and $X_{2}(t)$ are constant, so their derivatives are zero. Eq. 7.81 is then

$$
\begin{equation*}
\bar{H}\left(t_{r}-0\right)=\bar{H}\left(t_{r}+0\right) . \tag{7-100}
\end{equation*}
$$

Experience has shown that on both ides of t_{f}, Eqs. 7.56, 7.5\%, and 7.54 are strict inequalities. Assuming this is this is the case, Eqs. 7.94 and $\uparrow-98$ together with Eq. 7-83 or 7.84 may he used to simplify Eq. 7-100. The resu't is

$$
\begin{align*}
& {\left[\lambda_{2}\left(t_{r}-0\right) M\left(t_{r}-0\right)\right]^{1 / 4}} \\
& =\left[\lambda_{2}\left(t_{r}+0\right) M\left(t_{r}+0\right)\right]^{1 / 4} . \tag{7-101}
\end{align*}
$$

Eq. 7.98 and $I>0$ imply $M\left(t_{r}\right) \neq 0$, so if $M(t)$ is continuous at t_{r}, then Eq. $7-101$ reduces to

$$
\begin{equation*}
\lambda_{2}\left(t_{r}-0\right)=\lambda_{2}\left(t_{r}+0\right) . \tag{7-102}
\end{equation*}
$$

Points of discontinuity of $M(t)$ must be checked in Eq. 7.101 as possible t_{r}.

Eq. 7-96 shows that points t_{8}^{+}and t_{δ}^{-}can occur only in intervals where $M(t)$ (hence also

ANCP 708-192

$V(t)$ and $q(t))$ is identically, zero. Since this situation is not comion in practical problems, such intervals will not be discussed here.

According to Theorem 7-1, the points t_{η}^{*} are determined by the condition

$$
\begin{equation*}
\tilde{H}\left(t_{\eta}^{v}-0\right)=\tilde{H}\left(t_{\eta}^{*}+0\right) . \tag{7-103}
\end{equation*}
$$

By direct computation it is seen that the partial derivatives w ith respect to h of the left sides of

$$
\begin{aligned}
& |\tau|-\tau_{\max }<0 \\
& |\sigma|-\sigma_{\max }<0
\end{aligned}
$$

and

$$
I,-I<0
$$

are all negative at points where $M(t) \neq 0 \neq$ $V(t)$. The result stated just below Corollary 7-1 then shows that points of intersection of intervals in which one or more of the above inequalities is an equality may be determined by the condition

$$
\begin{equation*}
h\left(t_{\eta}^{*}-0\right)=h\left(t_{\eta}^{*}+0\right) . \tag{7-104}
\end{equation*}
$$

If Eq. $7-104$ is used to determine t_{η}^{*}, then points ω_{α} must be checked in Eq. 7-1C3 as possible t_{η}^{*}.

Let $Q=t_{\eta}^{*} \neq \omega_{a}$ be defined to be a point of intersection of two intervals such that $|\tau|=$ $r_{\text {max }}$ on one side of $t-Q$ and Eqs. 7-56, $7.57,7.54$, and 7.88 are strict inequalities on the other. Yoint Q is to be detennined by Eq. 7-103. Due to continuity at $t=Q$, Eq. 7-103 may be written as

$$
\begin{aligned}
& -b\left(\frac{3}{2 b \tau_{\max }}\right)|V(Q)| \\
& -C_{1} \lambda_{2}(Q) M(Q)|V(Q)|^{-3} \\
& =-b\left(\frac{36}{E b^{2}}\right)^{1 / 4}\left[\lambda_{2}(Q) M(Q)\right]^{3 / 4} \\
& -C_{3}\left[\lambda_{2}(Q) M(Q)\right]^{1 / 4}
\end{aligned}
$$

Using the definition of C_{3} in this equation and manipulating the result yields

$$
\begin{aligned}
& \frac{3|V(Q)|^{4}}{\lambda_{2}(Q) M(Q)}-4\left(\frac{64 b^{2} \tau_{\max }^{4}}{9 E}\right)^{1 / 4} \\
& \times\left[\frac{|V(Q)|^{4}}{\lambda_{2}(Q) M(Q)}\right]^{3 / 4}+\frac{64 b^{2} r_{\max }^{4}}{Q E}=0 .
\end{aligned}
$$

By putting

$$
P=\left[\frac{|V(Q)|^{4}}{\lambda_{2}(O) M(Q)}\right]^{1 / 4}
$$

and

$$
C=\left(\frac{64 b^{2} \tau_{\max }^{4}}{9 E}\right)^{1 / 4}
$$

Eq. 7-105 become;

$$
3 P^{4}-4 C P^{3}+C^{4}=0
$$

The roots of this equation ir P are $C, C, C(1+$ $\sqrt{2} i)$, and $C(1-\sqrt{2} i)$, where $i^{2}=-1$. The fourth powers of the last two routs are not real, so the only real solution of Eq. 7.103 is

$$
|V(Q)|^{4}=\left(\frac{64 b^{2} \tau_{\max }^{4}}{9 E}\right) \lambda_{2}(Q) M(Q)
$$

Similarly, $S=\omega_{\boldsymbol{c}} \neq \omega_{\text {a }}$ is defined to be a point of intersection of two intervals suich that iof $\sigma_{\text {max }}$ on one side of S and Eqs. $756,7-57,7.54$, and 7.88 are strict inequal ities on the other. Just as above, Eq. 7-103 reduces tó

$$
3 \hat{P}-4 \hat{C} \hat{p}+\hat{C}^{4}=0
$$

where-

$$
\hat{P}=\left[\frac{M(S)}{\lambda_{2}(S)}\right]^{1 / 4}
$$

and

$$
\hat{C}=\left(\frac{\sigma_{\text {max }}^{2}}{E}\right)^{1 / 4}
$$

Therefore, the only real solution of Eq. $7-103$ at $t=S$ is

$$
\begin{equation*}
M(S)=\left(\frac{\sigma_{\max }^{2}}{E}\right) \lambda_{2}(S) \tag{7-107}
\end{equation*}
$$

In deriving Eqs. 7-106 and 7-107, it was assumed that Q and S were not equal to any ω_{α}. The ω_{α} are, therefore, possible choices for Q and S and must be checked in Sq. 7-103.

In particular problems, the following two identities are used:

$$
\begin{align*}
& \int_{A}^{C} \int_{A}^{\nu} f(\eta) d \nu=(C-B) \int_{A}^{B} f(\eta) d \eta \\
& +\int_{A}^{B} \int_{A}^{\nu} f(\eta) d \eta d \nu \\
& +\int_{B}^{C} \int_{B}^{\nu} f(\eta) d \eta d \nu \tag{7-108}
\end{align*}
$$

where $A<B<C$, and

$$
\begin{align*}
\frac{d}{d \alpha} & {\left[\begin{array}{l}
\delta_{1}(\alpha) \\
=
\end{array} \int_{g_{1}(\alpha)}^{\nu} f(\eta, \alpha) d \eta d \nu\right] } \\
& \quad \int_{g_{1}(\alpha)}^{g_{3}(\alpha)} \int_{\delta_{1}(\alpha)}^{\nu} \frac{\partial f(\eta, \alpha)}{\partial \alpha} d \eta d \nu \\
& \quad\left[g_{2}(\alpha)-g_{1}(\alpha)\right] \\
& +\left[\int_{\left.g_{1}(\alpha), \alpha\right] \frac{d g_{1}(\alpha)}{d \alpha}}^{y_{z_{2}}(\alpha)} f(\eta, \alpha) d \eta\right] \frac{d g_{2}(\alpha)}{d \alpha} .
\end{align*}
$$

Leibniz' Rule, Eq. 7-87, is used repeatedly to obtain Eq. 7-109.

7-4.5.1 A PROBLEM WHICH CAN BE SOLVED ANALYTICALLY

As a furst example, the cantilever beam of Fig. $7-10$ is considered. This problem is simple enough that a solution can be obtained analy tically.

Boundary conditions for this beam are

$$
\begin{equation*}
x_{1}(0)=x_{2}(0)=0 \tag{7-110}
\end{equation*}
$$

Figure 7-10. Simple Cantilever Beam

A

The bending moment and shear are

$$
M(t)=M>0(M \text { constant })
$$

and
$V(t)=0$.
For simplicity, let $I_{0}>0$ be small enough so that

$$
\left(\frac{12 I_{0}}{b}\right)^{1 / 3}<\left(\frac{6 M}{b \sigma_{\max }}\right)^{1 / 2}
$$

If this is the case then $I(t)>I_{0}$ for all t. Further, since $\tau(t)=0$, Eq. 7-98 may be simplified to

$$
h(t)= \begin{cases}{\left[\frac{6 M}{b \sigma_{\max }}\right]^{1 / 2},} & \text { if }|\sigma|=\sigma_{\max } \\ {\left[\frac{36 \lambda_{2}(t) M}{E b^{2}}\right]^{1 / 4},} & \text { if }|\sigma|<\sigma_{\max }\end{cases}
$$

Also, Eq. 7-99 becomes
$f_{2}(t)=\left\{\begin{array}{l}-\left(\frac{2 b \sigma_{\max }^{3}}{3 E^{2} M}\right)^{1 / 2}, \text { if }|\sigma|=\sigma_{\max } \\ -\left(\frac{4 b^{2} M}{9 E}\right)^{1 / 4}\left|\lambda_{2}(t)\right|^{-3 / 4},\end{array}\right.$
if $|\sigma|<\sigma_{\max }$.

Integration of the differential equations
$\frac{d x_{1}}{d t}=x_{2}$
7.30
and

$$
\frac{d x_{2}}{d t}=f_{2}(t)
$$

and application of Eq. 7-110 yields

$$
\begin{equation*}
x_{2}(t)=\int_{0}^{t} f_{2}(\eta) d \eta \tag{7-113}
\end{equation*}
$$

and

$$
x_{1}(t)=\int_{0}^{t} \int_{0}^{\nu} f_{2}(\eta) d \eta d \nu
$$

The inequality $f_{2}(t)<0$ and Eq. 7-113 imply $x_{2}<0$ in ($0, T$), so there can be no points t_{r}. The only possible point at which Eq. 7-88 is an equality is $t=T$. Since $f_{2}(t)<$ 0 , Eq. 7-114 implies $x_{1}(t)<0$. Therefore, if $\mathrm{Eq}, 7-88$ is an equality, it must be $x_{1}(T)=$ $-\Delta$. Further, since there are no $t_{r}^{\prime \prime}, t_{\delta}^{+}, t_{\sigma}^{\prime}$, or $\omega_{\alpha}, \lambda_{1}$ and λ_{2} are continuous and there is only one pair of constants, ξ_{1} and ξ_{2}, to be determined.

It is assumed fist that $x_{1}(T)>-\Delta$. In this case, Eq. $7-86$ implies

$$
\lambda_{1}(T)=\xi_{1}=0
$$

and

$$
\lambda_{2}(T)=\xi_{2}-T \xi_{1}=0
$$

which in turn implies $\xi_{1}=\xi_{2}=0$. Since $\lambda_{2}=$ 0 throughout ($0, T$), the second part of Eq. 7-111 cannot occur. Therefore, the bean of minimum weight is uniform. Eqs. 7-112 and $7-114$ then yield

$$
x_{1}(T)=-\left(\frac{2 b \sigma_{\max }^{3}}{3 E^{2} M}\right)^{1 / 2} \frac{T^{2}}{2}
$$

Therefore, Eq: $7-1.11$ with $|\sigma|=$ ' $\underline{m}_{\text {max }}$ is the solution: of the problem provided the dêflection requirement $\Delta \Delta$ is such that

$$
\begin{equation*}
\Delta>\left(\frac{b \dot{\sigma}_{m a x}^{3} \dot{T}^{4}}{6 E^{2} M}\right)^{1 / 2} \tag{7-115}
\end{equation*}
$$

If the deflection requirement Δ does not satisfy Eq. 7-115, then it is necessary that $x_{2}(T)=-\Delta$ Otherwise, this argument would hold; and the deflection at T would violate Eq. 7-88. Therefore, the additional boundary condition,

$$
g_{3}=x_{1}(T)+\Delta=0
$$

must be satisfied. The two constants ξ_{1} and ξ_{2} must now be found.

The only useful relation given by Eq. 7-86 is

$$
\lambda_{2}\left(\hat{i}=\xi_{2}-\xi_{1} I=0\right.
$$

This implies $\xi_{2}=\xi_{1} T$, so that

$$
\lambda_{2}(T)=\xi_{1}(T-t),
$$

and only ξ_{1} remains to be founs.
On physical grounds, it is expected that the beam should be stiffest near $t=0$ in order to reduce the deflection at T efficiently. Also, since λ_{2} is largest at $t=0$, the second part of Eq. 7-111 would tend to stiffen the beam there. It is assumed, therefore, that there is just one point t^{*} having $|\sigma|<\sigma_{\text {max }}$ on its left and $|\sigma|=\sigma_{\text {max }}$ on its right. Eq. 7-107 for t * is

$$
\begin{equation*}
M=\left(\frac{\sigma_{\max }^{2}}{E}\right) \xi_{1}\left(T-t^{*}\right) \tag{7-116}
\end{equation*}
$$

Eq. 7-114 with $t=T$ may be integrated using Eqs. $7-108$ and 7.112 and becomes

$$
\begin{aligned}
x_{1}(T)= & \left(T-t^{*}\right) 4\left(\frac{f b^{2} M}{9 E}\right)^{1 / 4} \\
& \times \xi_{1}^{-3 / 4}\left[\left(T-t^{*}\right)^{1 / 4}-T^{1 / 4}\right] \\
& -4\left(\frac{4 b^{2} M}{9 E}\right)^{1 / 4} \\
& \times \xi_{1}^{-3 / 4}\left[\frac{4}{5}\left(T-t^{*}\right)^{5 / 4}+T^{1 / 4} t^{*}\right] \\
& -\left(\frac{2 b \sigma_{\max }^{3}}{3 E^{2} M}\right)^{1 / 2}\left(T-t^{*}\right)^{2}
\end{aligned}
$$

The right-hand side of this equation mas be simplified by eliminating either ξ_{1} or t^{*} through use of Eq, 7-116. Since ξ_{1} does not have as much physical significance as t^{*}, it is eliminated. The conditions $x_{1}(T)=-\Delta$ becomes

$$
-\Delta=\left(\frac{2 b \sigma_{\max }^{3}}{3 E^{2} M}\right)^{1 / 2}
$$

$$
\begin{equation*}
\times\left[\frac{3}{10}\left(T-t^{*}\right)^{2}-\frac{4}{5} T^{5 / 4}\left(T-t^{*}\right)^{3 / 4}\right] \tag{7-117}
\end{equation*}
$$

The derivative of the right side of En. $7-11 \%$ with respect to t^{*} is zero at $t^{*}=T$ and positive everywhere else. This means that Eq. 7-117 has at most one solution. Eq. 7-116 then determines ξ_{1} and the problem is solved.

As a numerical example, the beam of Fig. 7-10, having the following properties, is considered:

$$
\begin{aligned}
& T=10 \mathrm{in} \\
& b=1 \mathrm{in} \\
& \sigma_{\max }=30.000 \mathrm{lb} / \mathrm{in.}^{2}
\end{aligned}
$$

$$
E=10^{7} \mathrm{db} / \mathrm{in} .^{2}
$$

and

$$
M=450 \mathrm{in} .-1 \mathrm{~b}
$$

If $\Delta>1$ in., then the , beam of minimum weight is uniform with $h=0.30 \mathrm{in}$.

For a more meaningful problem, $\Delta=0.5$ in. is considered. Eqs. 7-117 and 7-116 yield $t^{*}=7.7 \mathrm{in}$, and $\xi_{1}=2.17$. The precise shape of the optimal beam is given by Eq. 7-111. By putting Eqs. 7-111 and 7-90 in Eq. 7-49 and performing the indicated integration, the volume of the optimal beam is found to be 3.59 in ${ }^{3}$ A plot of the profile of the optimal beam may be made by direct sur ititution into Eq. 7-111. This profile is shown in Fib_{6} 7-11.

Figure 7-11. Cantilever Beam of Minimum Weight

By elementary computation, it is seen that the uniform beam which has $x_{1}(10)=-0.5$ in. and satisfies Eqs. 7-56 and 7.57 is 0.378 in. deep; so its volume is $3.7 .8 \mathrm{in}^{3}$. The designed beam, therefore, has 5.3% less volume than a uniform beam which will satisfy the same stress and deflection requirements.

7-4.6.2 SIMPLY SUPPORTED BEAM WITH POSITIVE DISTRIBUTED LOAD

The beam considered here is simply supported (see Fig. 7-12) with piecewise continucusly differentiable distributed load $q^{\prime \prime}$
$q(t)>0$ for all t in ($0, T$). The load $q(t)$ of this form impiies $V(t)$ is non-negative at zero and decreases monotonically in $(0, T) . M(t)$ is zero at both $t=0$ and $t=T$. Further, on either side of the point where $M(t)$ has its (non-negative) maximum it is monotone.

Figure 7-12. Simply Sipporte I Beam With Pcsitive Distributed Lcad
I. $\int_{0}^{T} q(t) d t \neq 0$, then $M(t)$ and $V(t)$ cannot be zer 0° at the same point. There is, therefore, no danger that tite optimal beam will have $h(t)=0$ at any puint. For this reason, the constraint, Eq. 7-54, is not imposed here.

Since $M(0)=M(T)=0$ and $V(0) \neq 0 \neq$ $V(t),|\tau|=\tau_{\text {max }}$ is expected near the ends of the beam. Toward the center of the beam, $M(t)$ becomes large, so $|\sigma|=\sigma_{\text {max }}$ is expected there. If the beam requires stiffening, the additional material can best be used near the point of maximum deflection. This argument indicates that (0,7) should be broken up ints subintervals as shown in $\mathrm{F}^{\text {: }}$-7-13.

In terms of previous notation, t_{1}, t_{2}, t_{4}, and t_{5} correspond to the netation t_{η}^{*}; and t_{3} to t_{r}. For certain ranges of Δ some of the subintervals shown in Fig. 7.13 wiil not appear.

Provided t_{1} and t_{5} separate intervals in which $|\tau|=\tau_{\text {max }}$ and $|\sigma|=\sigma_{\text {max }}$, they are determined by Eq. 7-104 The prints t_{2} and t_{4}, when they exist, are decermined by Eq. 7-107. Finally, t_{3} is determined by Eq. 7-102.

Figure 7-13. Subdivision of the Boam With Distributed Load

The boundary conditions for this prob!em are

$$
x_{1}(0)=0
$$

and

$$
x_{1}(T)=0
$$

Eqs. 7-75 and 7.76, therefore, yield

$$
\lambda_{2}(0)=\lambda_{2}(T)=0 .
$$

The constants ξ_{1} and ξ_{2} in λ_{2} may have different values on opposite sides of t_{3}. To the left of t_{3},

$$
\lambda_{2}(0)=\xi_{2}-\xi_{1} \times 0=0
$$

so

$$
\begin{equation*}
\lambda_{2}(t)=-\xi_{1} t=\zeta_{1} t \tag{7-118}
\end{equation*}
$$

To the right of t_{3},

$$
\lambda_{2}(T)=\xi_{2}-\xi_{1} T=0
$$

so

$$
\begin{equation*}
\lambda_{2}(t)=\xi_{2}^{\prime}\left(-\frac{t}{T}\right)=\zeta_{2}\left(1-\frac{t}{T}\right) . \tag{7-1!9}
\end{equation*}
$$

The constants ζ_{1} and ζ_{2}, which are introduced in Eqs. 7-118 and 7-119, are now to be determined.

Eq. 7-102 for t_{3} yields

$$
r_{3}=\frac{T Y_{2}}{T \zeta_{1}+\zeta_{2}}
$$

Assuming t_{2} and t_{4} exist, the equations that determine them are

$$
\begin{equation*}
M\left(f_{2}\right)=\left(\frac{o_{\max }^{2}}{E}\right) \zeta_{1} \prime_{2} \tag{7-120}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(t_{4}\right)=\left(\frac{a_{\max }^{2}}{E}\right) \zeta_{2}\left(1-\frac{t^{4}}{T}\right) \tag{7-121}
\end{equation*}
$$

In this case, t_{1} and t_{s} are determined by Eq. 7-105. If t_{2} or t_{4} does not exist, then t_{1} or t_{5} is determined by

$$
\begin{equation*}
\left|V\left(t_{1}\right)\right|^{4}=\left(\frac{64 b^{2} r_{\text {max }}^{4}}{9 E}\right) \zeta_{1} t_{1} M\left(t_{1}\right) \tag{7-122}
\end{equation*}
$$

or

$$
\begin{align*}
\left.V^{\prime}\left(t_{5}\right)\right|^{4} & =\left(\frac{64 b^{2} \tau_{\text {max }}^{4}}{9 E}\right) \\
& x_{s_{2}}\left(1-\frac{t_{5}}{T}\right) M\left(t_{5}\right) \tag{7-123}
\end{align*}
$$

It is noted that Eqs. ${ }^{7.120}$ through 7.123 can te solved easi,y for ζ_{1} snd ζ_{2}, but, in generat, not so easily for :he \boldsymbol{f}. In the

AMCP, 706-192

development which follows, it will be convenient to use Eqs. 7-120 through 7-123 to solve for ζ_{1} and ζ_{2} as functions of the t_{i}.

The conditions that are to determine the unknown t_{i} are $x_{1}\left(t_{3}\right)=\Delta$ and $x_{2}\left(t_{3}\right)=0$. However, ior computational reasons, a more convenient set of equivalent conditions is .

$$
\begin{equation*}
x_{1}(0)=0 \tag{7-124}
\end{equation*}
$$

and

$$
x_{1}(T)=0
$$

where $x_{1}\left(t_{3}\right)=\Delta$ and $x_{2}\left(t_{3}\right)=0$ are used as initial conditions for integration.

Conditions, Eqs. 7-124 and 7-125 may be written explicitly as

$$
\begin{aligned}
R_{1}= & \Delta+t_{1} \int_{0}^{t_{1}} f_{2}(\eta) d \eta+t_{2} \int_{t_{1}}^{t_{2}} f_{2}(\eta) d \eta \\
& +t_{3} \int_{t_{2}}^{t_{3}} f_{2}\left(\eta, \zeta_{1}\right) d \eta \\
& -\int_{0}^{t_{1}} \int_{0}^{\nu} f_{2}(\eta) d \eta d \nu \\
& -\int_{t_{1}}^{t_{2}} \int_{t_{1}}^{\nu} f_{2}(\eta) d \eta d \nu \\
& -\int_{t_{2}}^{t_{2}} \int_{t_{2}}^{\nu} f_{2}\left(\eta, \zeta_{1}\right) d \eta d \zeta=0(7-126)
\end{aligned}
$$

and

$$
R_{2}=\Delta+\left(T-t_{4}\right) \int_{t_{3}}^{t_{4}} f_{2}\left(\eta, \zeta_{2}\right) d \eta
$$

$$
+\left(T-t_{5}\right) \int_{s_{4}}^{t_{5}} f_{2}(\eta) d t_{1}
$$

$$
+\int_{t_{3}}^{t} \int_{t_{3}}^{v} f_{2}\left(\eta, \zeta_{2}\right) d \eta d \nu
$$

$$
+\int_{t_{4}}^{t_{1}} \int_{t_{4}}^{\nu} f_{2}(\eta) d \eta d \nu
$$

$$
\begin{equation*}
+\int_{i_{1}}^{T} \int_{i_{s}}^{\nu} f_{2}(\eta) d \eta d \nu=0 \tag{7-127}
\end{equation*}
$$

where P_{1} and R_{2} are introduced for notational purposes.

It is assumed now that $q(t), b, E, T, \sigma_{\text {max }}$, and $\tau_{\text {max }}$ are given. The equations that determine the t_{i} arc different in four distinct ranges of the deflection requirement.' These ranges of Δ are describud in the following:

1. Δ_{0} denotes the largest deflection that occurs when the subinterval $\left(t_{2}, t_{4}\right)$ does not appear, i.e., when the bcam is specified by only the first two parts of Eq. 7-98.

If $\Delta>\Delta_{0}$, then the beam specified by the first two parts of Eq. $7-98$ is the one of minirnum weight.
2. For Δ slightly less than Δ_{0}, there exist points t_{2} and t_{4} that are determined by Eqs. 7-126 and 7-127.

As 1 decreases, points t_{2} and t_{4} move toward zero and T, respectively. There is a
value of Δ, say $\Delta=\Delta_{1}$, for which either t_{2} or t_{4} first coincides with $t_{\text {: }}$ or t_{5}, respectively. For definiteness, assume $t_{2}=t_{3}$ when $\Delta=$ Δ_{1}.
3. For Δ slightly less than Δ_{1}, points t_{1} and t_{4} are determined by Eqs. 7-126 and 7-127.

As Δ decreases, points t_{1} and $:_{4}$ move toward 0 and T, respectively. There is a value of Δ, say $\Delta=\Delta_{2}$, for which t_{4} Sirst coincides with t_{5}.
4. For $\Delta<\Delta_{2}$, points t_{1} and t_{s} are determined by Eqs. 7-126 and 7-127.

This explanation of the behavior of the t_{1} is not the result of a mathematical analysis. It is expected on physical grounds and has been valid in each case treated.

The values of Δ_{1} and Δ_{2} could be obtained analytically. However, their determination would be of the same order of difficllty as the optimization problem considered in this paragmph.
Δ_{1} and Δ_{2} can be deiermined by a trial and error scheme. For example, to determine Δ_{1}, t_{2} is put equal to t_{1} and Eq. 7-107 determines ζ_{1}. Then, t_{3} is guessed and E_{7}. $7-102$ solved for ζ_{2}. Numerical integration of Eqs. 7-60 and 7-61 indicates the correction that is to be made in t_{3}. When t_{3} is located accurately, the resulting deflecting at t_{3} is Δ_{1}. A similar procedure is ised to determine Δ_{2} (t_{4} is put equal to t_{5}).

The solution of Eqs. 7-126 and 7-127 for the t_{i} differs only in certain details depending on whether the given value of Δ is in the range described by Cases 2, 3, or 4. The
method of solution will be described for the Case 2.

An itcrative method called Generalized Newton Method (Ref. 18j) is used to solve for t_{2} and t_{4}. The procedure begins by estimating values \hat{i}_{2} and \hat{i}_{4}; and then making a correct:in according to the formula

where []$^{-1}$ denotes matrix inverse, and \vec{i}_{2} and \vec{t}_{4} are improvements on the estimate.

Eqs. 7-102 and 7-107 determine $i_{s}=$ $t_{3}\left(\zeta_{1}, \zeta_{2}\right), \zeta_{1}=\zeta_{1}\left(t_{2}\right)$, and $\zeta_{2}=\zeta_{2}\left(t_{4}\right)$. By use of tl information, the derivatives in Eq . $7-128$ are computed by the chain rule oi differentiation. I or example,

$$
\begin{align*}
\frac{\partial R_{1}}{\partial t_{2}}= & R_{1 \cdot s_{2}} \\
& +\left(\frac{\partial R_{1}}{\partial \zeta_{1}}+\frac{\partial R_{1}}{\partial t_{3}} \frac{\partial t_{3}}{\partial \xi_{1}}\right) \frac{\partial d \zeta_{1}}{a t_{2}}
\end{align*}
$$

where

$$
R_{1, t_{3}}=t_{2}\left[f_{2}\left(t_{2}-0\right)-f_{2}\left(t_{2}+0\right)\right]
$$

is the partial derivative $c: N_{i}$ with respect to t_{3} with all varicbles in R_{1} taken as independent,

$$
\frac{\partial R_{1}}{\partial g_{1}}=t_{3} \int_{i,}^{t_{1}} \frac{\partial f_{2}\left(\eta_{1} \zeta_{1}\right)}{\partial \zeta_{1}} d \eta
$$

and

$$
\frac{\partial R_{1}}{\partial t_{3}}=t_{3} f_{2}\left(t_{3}-0\right)
$$

Similal expressions for the remaining derivatives in Eq. 7-128 are derived with the aid of Eq. 7-109.

The iterative procedure for determining $\boldsymbol{t}_{\mathbf{2}}$ and t_{4} is:

Step 1. Ma夫e an estimate, \hat{i}_{2} and \hat{i}_{4},
Step 2. Solve Eqs. 7-120 and 7-121 for ζ_{1} and ζ_{2},

Step 3. Compute, numerically, all the integrals in Eqs. 7-127, 7-128, and the remaining derivatives corresponding to Eq. 7-129,

Step 4. Compute the right side of Eq. 7-128, and

Step 5. With this improved estimate return to Step 1.

This procedure has been programmed for a digital computer. The program was arranged in such a way that only $\Delta_{0}, \Delta_{1} \Delta_{2}, M(t)$, $V(t)$, and the p.ysical pruperties of the beam need to be specified. Mar.y different loading situations may thus be considered without altering the program appreciably.

As a numerical example, a beam with the following properties is considered:

$$
a(t)=t \mathrm{lb} / \mathrm{in} .
$$

$$
\begin{aligned}
T & =40 \mathrm{in} \\
b & =0.25 \mathrm{in} . \\
E & =10^{7} \mathrm{lb} / \mathrm{in.}^{2} \\
\tau_{\max } & =15,000 \mathrm{lb} / \mathrm{in.}^{2}
\end{aligned}
$$

and

$$
a_{\max }=30,000 \mathrm{lb} / \mathrm{in}^{.}{ }^{4}
$$

For this problem, it was fuand that

$$
\begin{aligned}
& \Delta_{0}=0.774 \mathrm{in} . \\
& \Delta_{1}=0.728 \mathrm{in.}\left(t_{2}=t_{1}\right)
\end{aligned}
$$

and

$$
\Delta_{2} \quad=0.470 \mathrm{in} .\left(t_{4}=t_{5}\right)
$$

As has leen noted, the magnitude of the detlection requirement Δ plays a major role in the outcome of a particular problem. In order to emphasize the effect of Δ on the properties of the optimal beam, the numerical exan:ole given was solved for eight different values of Δ. The results are presented in Teble 7-4.

In Table 7-4, the first columen coniains the values of Δ considered. The following seven columns give information which, when substituted into Eq. 7.98, completely specifies the optimal beam. The next column gives the volume of this optimal beam. Tr.e final two columns give lie volume of the lightest beam of constant depth which satisfies the conditions of the problem and the percent saving sealized when the optimal beam is used instead of this uniform beam. Dashes have been inserted in the table when the quantity to be tabulated does not exist.

For each value of Δ, the iterative procedure used to solve the problem recuired ayproximately 40 sec per ite,ation on an IDM 1410 Computer. Further, three to six iterations wore sufficient so obtain convergence of the sesidue to sever decimal places, so computing time was not excessive.

It is shown (Rel. 18, p. 222) that if the sequenc ${ }^{\kappa}$ of approximations constructed by the Gevaraized Neviton Algorithm converges, then it mast converge quadratically, i.e., the error at the $n+1$ st step is roportional to the square of the error at the $n^{\text {r }} 2$ step. This rapid convergence was observed in the numerical cal at.ons and explains why only three to s, it iterations were required.

7-4.5.3 A PROBLEM OF A MORE

 GENERAL. -YPEThe leam considered here is loaded as shown i' is. 7-14.

Figure 7.14. Beam Witt an Inflection Point

Boundary conditions are, as in the simply supported case,

$$
x_{1}(0)=x_{1}(T)=0 .
$$

For the given loading,

$$
M(t)=\left\{\begin{aligned}
M . & \text { if } 0<t<A \\
-M . & \text { if } A<t<T
\end{aligned}\right.
$$

and
$V(t)=0$.
In this problem $A>T / 2$ is assumed.

Since $M(i)$ is never zero, the requirement $|a|<\sigma_{\max }$ implies $h \neq 0$ for all $t . I=0$ is imposible, so the requirement $I>I_{0}$ is not enforced-

Egs. 7-98 and 7-99 in this case are
$h(:)=\left\{\begin{array}{lr}\left(\frac{6 M}{b \sigma_{\text {max }}}\right)^{1 / 2}, & \text { if }|\sigma|=\sigma_{\text {max }} \\ {\left[\frac{36 \lambda_{2}(t) M(t)}{E b^{2}}\right]^{1 / 4},} & \text { if }|0|<\sigma_{\max }\end{array}\right.$
and
$f_{2}(t)= \begin{cases}-C_{2} M^{-1 / 2} & \\ x \operatorname{sgn}[M(t)], & \text { if }|\sigma|=\sigma_{\mathrm{max}}:: \\ -C_{3}\left|\lambda_{2}(t)\right|^{-3 / 4} M^{1 / 4} \\ x \sin [M(t)], & \text { if }|\sigma|<\sigma_{\mathrm{max}} .\end{cases}$
For a given deflection requirement Δ there are three nossibilities concerning attainment of the maxium deflection Either

1. $|x(t)|<\Delta$ for all t,
2. $|x(t)|=\Delta$ for just one t, or
3. $|n(t)|=\Delta$ for two distinct t.

The third possibility occurs here because $M(t)$ changes sign. In Case $1,|\sigma|=\sigma_{\text {max }}$ throughout the beam determines $h(l)$. The Case 2 may be treated in exactly the same way as the problem in the preceding paragraph. Case 3 is considered in detail here.

Assume there are two points at which
$|x(t)|=\Delta$; the beam witl not probably be subdivided as shown in Fig. 7-15.

Figure 7.15. Subdivision of the Beam

Points t_{2} and t_{7}, where Case 3 occurs, are t_{r}, so they are determined by Eq. 7-102. Further, $x_{1}\left(t_{2}\right)=\Delta$ ànd $\underline{t}_{1}\left(l_{1}\right)=-\Delta$. Points t_{1}, t_{3}, t_{6}, and t_{8} are t_{η}^{*} and are determined by Eq. 7-107.

In this problem, t_{2} and t_{7} may be points of discontinuity of λ_{1} and λ_{2}. The conditions, Eqs. 7.85 and 7.86 on λ_{2} are $\lambda_{2}(0)=\lambda_{2}(T)=$ 0 . Therefore, λ_{2} may be written as
$\lambda_{2}(t)= \begin{cases}\zeta_{1} t & \text { if } 0<t<t_{2} \\ \zeta_{3}-\zeta_{2} t & , \text { if } t_{2}<t<t_{7} \\ \zeta_{4}\left(\frac{t}{T}-1\right) & , \text { if } t_{7}<t<t .\end{cases}$

Solving Eqs. 7-102 and 7-107 for the t_{i} yields the following:

$$
\begin{align*}
& \therefore_{1}=\left(\frac{E M}{\sigma_{\max }^{2}}\right) \frac{1}{\zeta_{1}} \tag{7.131}\\
& t_{2}=\frac{\zeta_{3}}{\zeta_{1}+\zeta_{2}} \tag{7.132}\\
& t_{3}=\frac{\zeta_{3}}{\zeta_{2}}-\left(\frac{E M}{\sigma_{\max }^{2}}\right) \frac{1}{\zeta_{2}} \tag{7-133}
\end{align*}
$$

$$
\begin{align*}
& t_{6}=\frac{\zeta_{3}}{\zeta_{2}}+\left(\frac{E M}{\sigma_{\max }^{2}}\right) \frac{1}{\zeta_{2}} \tag{7-134}\\
& t_{7}=\frac{\zeta_{3}+j_{4}}{\frac{\zeta_{4}}{T}+\zeta_{2}} \tag{7-135}
\end{align*}
$$

and

$$
\begin{equation*}
t_{8}=T\left[1-\left(\frac{E M}{v_{\max }^{2}}\right) \frac{1}{\zeta_{4}}\right] \tag{7-136}
\end{equation*}
$$

In obtaining the expressions for t_{3} and t_{6}, use was made of the fact that $t_{3}<A: t_{6}$. The result, $\lambda_{2}(t) M(t)>0$, from Eqs. 7-97 and $7-98$ shows that this is true. To prove this, assume for definiteness $t_{3}>A$. Since $M(t)$ changes sign at A and $\lambda_{2}(t)$ is continuous there, $\lambda_{2}(A)=0$. But, since $\lambda_{2}(t)$ is continuous near A, it is arbitrarily near zers in a neighborhood of A. Eq. 7-i 30 then shows that $h(t)$ is arbitrarily near zero in a neighborhood of A and this viola'es the condition $|\sigma|$ $<o_{\text {max }}$. Likewise, $A=\mathrm{t}_{6}$.

Conditions that determine the ζ_{i} are

$$
x_{1}\left(t_{2} ;-\Delta, x_{2}\left(t_{2}\right)=0\right.
$$

and

$$
x_{1}\left(t_{7}\right)-\Delta, x_{2}\left(t_{7}\right)=0 .
$$

For computational reasons, it is more convenient to use the following equivalent set of conditicns:

$$
\begin{aligned}
& x_{1}(0)=0 \\
& x_{2}\left(t_{7}\right)=0 \\
& x_{1}\left(t_{7}\right)+\Delta=0
\end{aligned}
$$

ÄM̈с 700-192:

and

$$
x_{1}(T)=0
$$

where $x_{1}\left(t_{3}\right)=\Delta$ and $x_{2}\left(t_{2}\right)=0$ are used as initial conditions ins integration.

More explicity, these equations are

$$
R_{1}=\dot{x}_{1}(0)=\bar{\Delta} \dot{r} t_{1} \int_{0}^{t_{1}} f_{2}(\eta) d \eta
$$

$$
+t_{2} \int_{t_{1}}^{t_{3}} f_{2}\left(\eta, \zeta_{1}\right) d \eta
$$

$$
+\int_{0}^{t_{1}} \int_{0}^{\nu} f_{2}(\eta) d \eta d \nu
$$

$$
\begin{equation*}
-\int_{t_{1}}^{1_{2}} \int_{t_{1}}^{\nu} f_{2}\left(\eta, y_{1}\right) d \eta d \nu=0 \tag{7-137}
\end{equation*}
$$

$$
R_{2}=x_{1}\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} f_{2}\left(\eta, 5_{2}, y_{3}\right) d \eta
$$

$$
+\int_{1,}^{1_{1}} f_{2}(\eta) d \eta
$$

$$
\begin{equation*}
+\int_{t_{1}}^{t,} f_{2}\left(\eta, 5_{2}, \zeta_{3}\right) d \eta=0 \tag{7-138}
\end{equation*}
$$

$R_{3}=x_{1}\left(t_{7}\right)+\Delta=2 \Delta$

$$
+\left(t_{7}-t_{3}\right) \int_{t_{:}}^{t_{1}} f_{2}\left(\eta, \zeta_{2}, 5_{3}\right) d \eta
$$

where terms on the right side of Eq. 7-141 are somputea in terms of the $\hat{\zeta}_{l}$. The corrected guess $\bar{\zeta}_{i}$ then takes the place of $\hat{\zeta}_{i}$ and the frocess is repeated.

The derivatives of the R_{i} with respect :o the ζ, are computed by the chain rule of differentiation, Ec. 7-109, and Eqs. 7-137 arough 7-140. Just as in Eq. 7-129 several of these deri:atives must be determined by successive numerical integration.

The matrix of derivatives which appears in Eq. 7-141 has sixteen elements. Twelve successive definite integrals appear in one or more elements of this matrix. Therefore, considerable computation is involved in each iteration. All this computation was incorporated in a single computer program.

As a numerical example, the beam of Fig. $7-14$ having the following properties is considered:

$$
\begin{aligned}
& M=1,100 \mathrm{in} .-\mathrm{lb} \\
& T=40 \mathrm{in} . \\
& b=0.5 \mathrm{in} . \\
& E=10^{7} \mathrm{lb} / \mathrm{in}^{2} \\
& A=25 \mathrm{in} .
\end{aligned}
$$

$$
\tau_{\max }=10,000 \mathrm{lb} / \mathrm{in}^{2}
$$

and

$$
a_{\max }=20,000 \mathrm{lb} / \mathrm{in}^{2}
$$

It was noted that three distinct situations may occur depending on the value of Δ. In this example, the problem breaks down as fcllows:

1. If $\Delta>0.509$, then $x_{1}(t)<\Delta$ for all t,
2. If $0.156<\Delta<0.509$, then there is just one point t for which $\left|x_{3}(t)\right|=\Delta$, and
3. If $\Delta<0.156$, then there are two values of t for which $\left|x_{1}(t)\right|=\Delta$.

The numerical example given was solved for eleven different values of Δ. The results of these calculations are presented in Table 7-5. The first column of this table consists of the values of Δ considered. The following ten columns give information that, when substituted into Eq. 7-130, compietely specifies the optimal beam. The n ext column gives the volume of this optimal beam. The final two columns give the volume of the lightest beam constant depth that satisfies the cond!tions of the problem and the percent saving realized when the optimal beam is used instead of this uniform beam. Dashes have been inserted in the table when the quantity to be tabulated does not exist.

For each value of Δ, the iterative procedure used to solve the problem required approximately two minutes per itera ion on an IBM 1410 Computer. However, three to five iterations were sufficient to obtain convergence of the residce to seven decimal places, so computing time was not excessive. This rapid convergence is, again, characteristic of the Generalized Newton Method.

An interesting sidelight of this particular

ANCP $700-102$.

TAELE 7-5
RESULTS FOR BEAM WITH S-SHAPED DEFLECTION CURVE

${ }^{\text {' }}$ Volume of lightest beam of constant depth which satisfies all the requirements of the problem.
example concludes'the present subparagraph. A plot of volume of optimal beam) versus deflection requirement for the problem considered there is given in Fig. 7-16. From this

Figiura-716. Volume os Deflection Reqüreñent
graph, it appears that the volume of the optimal beam is a continuous function of deflection requirement. This is a rather remarkable result in view of the fact that
optimal beeams with deflection requirements greater and less than 0.156 haye considerably different form. The beam profiles of "Figs. 7-17 and 7-18 illustrate this difference graphically. As- Δ decreases toward 0.156 , the jump in $h(t)$ at $t=25$ (see. Fig. $F-17$) becomes more pronounced. However, for Δ very slightly less than 0.156 , the profile is continuous, much as in Fig. 7-18.

7-4.5.4 CONCLUSIONS

The examples considered in pars. 7-4.5.2 and 7-4.5.3 are of the crder of complexity that might be found in actual practice. In these examples, a saving of mutcrial up to 33% is realized when nonuniform, optimal beams are used instead of uniform beams. For more complex loading situations, the saving may be even greater. From an engineering viewpoint, such savings are significant.

In structural applications, this saving may be offset by additional cost of fabrication.

Figure $7 ゙ \mathfrak{} 7$. Profile of Optimal Beam for $\Delta=0.16$

Figure 7.18. Profile of Optimal Beam for $\Delta=0.15$

AMCP 706-192

However, for applications in which weiglt is a prēmium, süch às in aerospace work, fabrication of minimum weight structural members may be quite feasiblc. Further, if the cost of
forming nonuniform beams is not prohibitive, such as in the manufacture of reinforced concrete beams, then nonuniform optimal beams may be used to advantage.

REFERENCES

1. R. A. Ridha and R. N. Wright, "Minimum Cost Design of Frames", J. of the Structural Division, ASCE, Vol. 93, No. ST4, pp. 165-183, August 1967.
2. J.L. Lagrange, "Sur la forces des Ressorts plies", Mem Acad., Berlin, 1771.
3. T. Clausen. "Uber die For architektonischer Saulen", Bulletin physicomethematique de l'Academic, T. s.., pp. 386-379: St. Petersburg, 1851.
4. Z. Wasiutynski, and A. Brandt, "The Present State of Knowledge in the Field of Optimum Design of Structures", App. Mech. Reviews, Vol. 16, No. 5, pp. 341-350, May 1963.
5. C.Y. Sheu and W. Prager, "Recent Developments in Optimal Structural Design", App. Mech. Revlews, Vᄀl. 21, No. 10, pp. 985-9y, 2, October 1968.
6. D.C. Drucker and R.T. Shield, "Design for Minimum Weigh:", Proc. 9 in International Congr. Appl. Mech., Brussels, 1956.
7. W. Prager, "Minimum-Weight Design of a Portal Frame", Proc. ASCE Vol. 82, 1956.
8. D.C. Drucker, "On Minimum Weight Design and Strength of Nonhomogeneous

Plastic Bodies", Proc. Symposium IUTAM, pp. 139-146, Warsaw, 1958.
9. J.B.Keller, "The Shape of the Strongest Column", Archive Rath. Mech. Anal., Vol. 5, pp. 275-285, 1960.
10. I. Tadjbakhsh and J.B. Keller, "Strongest Columns and Isoperametric Inequalities for Eigenvalues", J. Appl. Mech., Vol. 29, No. 1, p. . 159-164, March 1962.
11. J.B. Keller and F.I. Niordson, "The Tallest Column', J. of Math. and Mech., Vol. 16, No. 5, pp. 433-446, 1966.
12. F.I. Niordson, "The Optimal Design of a Vibration Beam", Quarterly of Appl. Math., Vol. 23, No. 1, pp. 47-53, April 1965.
13. W. Prager and J.E. Taylor, "Problems of Optimal Structural Design", J. Appl. Mech., Vol. 35, No. 1, pp. 102-106, March 1966.
14. J.E. Taylor, "Minimum Mass Bar for Axi.l Vibration at Specified Natural Frequency", AlAA J., Vol. S, No. 10, pp. 1911-1913, October 1967.
15. S.F. Taylor and C.Y. Liu, "On the Optimal Design of Columns", AIAA J., Vol. 6, No. 8, August $1=68$.

CHAPTER 8

METHODS OF STEEPEST DESCENT FOR OPTIMAL DESIGN PROBLEMS

8.1 INTRODUCTION

As seen by the examples of Chapter 7, solution of the necessary conditions for the general problem of optimal design is difficult. Even in idealized design problems numerical methods must normally be employed to construct a solution.

The numerical 'ochniques for the indirect method presented ir par. 6-5 and in Chapter 7 are iterative in nature. Each of the techniques requires that an estimate of the solution be made befcre the iterative process may be initiated. In many cases, particularly in new problem areas, the designer may have oully a gross notion of what to expect of the solution so his initial estimate may be poor.

Convergonce of the techniques of Chapters 6 and 7 are reported to be very poor unless good estimates of the solution are avalable. \ln fact, these iterative techniques often diverge for poor estimates of the solution. On the sther hand, if a good initial estimate is available, the:e methods converge very rapidly.

This discussion illustrates the need for a workhorse technique that may be used even when only poor estimates of the solution of the optimal design problem are available. The method should be capable of making steady improvement in an estimated solution and, in fact, converge to the solution. Rate of convergence could be sacrificed for dependability if required.

A second desirable property of a general method of optimal design is that is apply routinely to a large class of real-world optimal design problems. To be useful to the working design ensineer, the methoa should apply whenever the designer has developed the capability to analyze the system to be designed. Further, the method should be explicit enough so that a senior cngineer can set the problem up for computation and a less experienced junior engineer can program the algorithm for use on a digital computer.

The methods to be developed in this chapter and applied in the next have many of these nice-to-have pruperties. The basic idea of these direct methods is to simplify the basic design problem so that it will readily yield information which allows the designer to make a small improvement in an estimated optımum design. After the improvement is hade, a new and better estimate of the solution of the optimal design problem is obtained. The process is repeated surcessively to obtain small improvements in the best available estimate of the solution until the design obtained is sufficiently near the optimum.

The basic method of simplification of the design problem is to expand functions involved in the problems through use of Taylor's Formula. In this way, a simplified problem is obtained which serves as a good approximation of the original problem provided only small changes are allowed in certain variables.

8-2 A STEEPEST DESCENT METHOD FOR THE BASIC OPTIMAL DESIGN PROB. LEM

8-2.1 THẼ PROBLEM CONSIDERED

In order to present the basic ideas of the Method of Steepest Descent, consideration here will be limited to optimal design problems with fixed endpoints, no discontinuities in the basic problems, and no intermediate conditions on the state variable. As seen in par. 6-4, this eliminates state variable inequality constreints from direct treatment. All these features of more general optimal design problems will be treated in par. 8-3.

Specifically, the problem treated here is to find $u(t), t^{0}<t<t^{1}$, and b which minimize

$$
\begin{equation*}
J=g_{0}\left(b, x^{4}, x^{1}\right)+\int_{t^{0}}^{t^{1}} f_{0}[t, x(t), u(t), b] d t \tag{8-1}
\end{equation*}
$$

subject to the conditions

$$
\begin{aligned}
& \left.\begin{array}{ll}
\frac{d x}{d t}=f(t, x, u, b), & t^{0}<t<t^{1} \\
0_{s}\left(x^{0}, x^{1}\right)=0 & s=1, \ldots, n
\end{array}\right\} \\
& \begin{aligned}
\psi_{\alpha}= & g_{\alpha}\left(b, x^{0}, x^{1}\right) \\
& +\int_{t^{0}}^{t^{\prime}} L_{\alpha}[t, x(t), u(t), b] d t=0,
\end{aligned} \\
& \alpha=1, \ldots, r^{\prime} \\
& \psi_{\alpha}=g_{\alpha}\left(b, x^{0}, x^{1}\right) \\
& +\int_{t^{\circ}}^{t^{1}} L_{\alpha}[t, x(t), u(t), b] d t<0, \\
& \alpha=r^{\prime}+1 r
\end{aligned}
$$

and

$$
\left.\begin{array}{l}
\phi_{\beta}(t, u)=0, \beta=1, \ldots, q^{\prime}, t^{v}<t<t^{\prime}, \tag{8-4}\\
\phi_{\beta}(t, u)<0, \beta=\eta^{\prime}+1, \ldots, q, t^{0}<t<t^{1}
\end{array}\right\}
$$

Just as in Chapter 6, the variables $x(t), u(t)$, and b :, re vectors, $x(t)=\left[x_{1}(t), \ldots, x_{n}(t)\right]^{T}$, $u(t):\left[u_{1}(t), \cdots, u_{m}(t)\right]^{T}$, and $b=$ $\left[b_{1}, \ldots, b_{k}\right]^{T}$.

> An' inequality constraints of the form

$$
\begin{equation*}
\omega(i, 4, u, b) \leq 0 \tag{8-5}
\end{equation*}
$$

can be transtormed into a constraint of the form

$$
\begin{align*}
& \int_{t^{\circ}}^{t^{\prime}}\{\omega[t, x(t), u(t), b] \\
& +\mid \omega[t, x \cdot t), u(t), b] \mid\} d t=0 \tag{8-6}
\end{align*}
$$

which is then a constraint of the kind of Eq. 8-3.

The class of problems considered is, therefore, fairly general. The essential features that are not included are variable limits of integration, discontinuities in functions of the problem ($u(t)$ may still be discontinuous), intermediate conditions on $x(t)$, and state variablu inequality constraints.

8-2.2 EFFECTS OF SMALL CHANGES IN DESIGN VARIABLES AND PARAM. ETERS

The basic idea of the direct method of solving optımal design problems is to first
construc: in estimate $u^{(0)}(t), b^{(0)}$ of the solution ard then find sunall changes $\delta u(t), \delta b$ such that $u^{(0)}(t)+\delta u(t), b^{(0)}+\delta b$ is an improved estimate in soine sense. Before the improvements can be determined, analysis of their effect on the problem must be performed.

In this analysis, $\delta u(i)$ and δb-aro required to be small so that a first order Tcylor expansion of the functions of the problem is a good approximation. Since $x(t)$ is the solution of a boundary-value problem involving $u(t)$ and b, it is clear that $\delta u(t), \delta b$ will cause a change $\delta x(t)$ in $x(t)$. It is assumed here that the boundary-value problem for $x(t)$ is well posed, see Ref. 1, page 227, so that $\delta u(t), \delta b$ small implies $\delta x(t)$ small. Using this fact,

$$
\begin{align*}
& \delta J= \frac{\partial g_{0}}{\partial b} \delta b+\frac{\partial g_{0}}{\partial x^{0}} \delta x^{0}+\frac{\partial g_{0}}{\partial x^{1}} \delta x^{1} \\
&+\int_{t^{\circ}}^{t^{\prime}}\left(\frac{\partial f_{n}}{\partial x^{2}} \delta x+\frac{\partial f_{0}}{\partial u} \delta u\right. \tag{8.7}\\
&\left.+\frac{\partial f_{0}}{\partial b} \delta b\right) d t \\
&\left.\begin{array}{rl}
\frac{d \delta x}{d t}= & \frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial u} \delta u+\frac{\partial f}{\partial b} \delta b \\
\frac{\partial \theta_{4}}{\partial x^{0}} \delta x^{0} & +\frac{\partial \theta}{\partial x^{1}} \delta x^{1}=0, s=1, \ldots, n
\end{array}\right\}(\delta \tag{8-8}\\
& \delta \psi_{a}= \frac{\partial g_{a}}{\partial b} \delta b+\frac{\partial g_{a}}{\partial x^{0}} \delta x^{0}+\frac{\partial g_{a}}{\partial x^{1}} \delta x^{1} \\
&+\int_{t^{\prime}}^{\delta^{1}}\left(\frac{\partial L_{\alpha}}{\partial x} \delta x+\frac{\partial L_{a}}{\partial u} \delta u\right. \\
&\left.+\frac{\partial L_{a}}{\partial b} \delta b\right) d t
\end{align*}
$$

$\alpha=1, \ldots, r$, and

$$
\begin{equation*}
\delta \phi_{\beta}=\frac{\partial \phi_{\beta}}{\partial u} \delta u, \beta=1, \ldots, q \tag{8-10}
\end{equation*}
$$

In all the formulas, Eqs. 8-7 through 8-10, the functions are evaluated at $\left[t, x^{(0)}(t), u^{(0)}\right.$. $\left.(t), b^{(0)}\right]$ whare $x^{(0)}(t)$ is the solution of the boundary-value problem Eq. 8-2 fo: $x(t)$ with $u(t)=u^{(0)}(t)$ and $b=b^{(0)}$.

Tc simplify the work which follows, it will be convenient to climinate explicit dependence of Eqs. 8-7, 8-9, and 8-10 on $\delta x(t)$. This elimiration is performed through use of the differential equation adjoint to the linear equation for $\delta x(t)$ in Eq. 8.8 (Ref. 2). This equation is

$$
\begin{equation*}
\frac{d \lambda}{d t}=-\frac{\exists f^{T}}{\partial x} \lambda+h(t) \tag{8-11}
\end{equation*}
$$

Where the function $h(t)$ will be chosen :o obtain results needed later in the development.

Note that for any solution $\lambda(t)$ of Eq. 8-11 and any soiation $\delta x(t)$ of Eq. 8 -8,

$$
\begin{aligned}
\frac{d}{d t}\left(\lambda^{T} \delta x\right)= & \frac{d \lambda^{T}}{d t} \delta x+\lambda^{T} \frac{d \delta x}{d!}=-\lambda^{T} \frac{\partial f}{\partial x} \delta x \\
& +h^{T} \delta x+\lambda^{r} \frac{\partial f}{\partial x} \delta x+\lambda^{T} \frac{\partial f}{\partial u} \delta u \\
& +\lambda^{T} \cdot \frac{\partial f}{\partial b} \delta b=h^{T} \delta x+\lambda^{T} \frac{\partial f}{\partial u} \delta u \\
& +\lambda^{T} \frac{\partial f}{\partial b} \delta b .
\end{aligned}
$$

Integrating this aquation from t^{0} to t^{1} and using the fundamental theorem of calculus,

AMCP 706-192

$$
\begin{align*}
& \lambda^{T}\left(t^{1}\right) \delta x\left(t^{1}\right)-\lambda^{T}\left(t^{0}\right) \delta x\left(t^{\mathrm{C}}\right)= \\
& \int_{t^{\circ}}^{t^{1}}\left(h^{T} \delta x+\lambda^{T} \frac{\partial f}{\partial u} \delta u+\lambda^{T} \frac{\partial f}{\partial b} \delta b\right) d t . \tag{8-!2}
\end{align*}
$$

By choosing the function $h(t)$ and the boundary conditions on $\lambda(t)$ appropriately, the identity Eq. $8-12$ will yield the desired relationships. First, put $h(t)=-\partial f_{0}^{T} / \partial x$ $\left[t, u^{(0)}, \mathrm{b}^{(0)}\right]$ and define $\lambda^{J}(t)$ as the solution of Eq. 8-11 with boundary conditions on $\lambda^{J}\left(t^{0}\right)$ and $\lambda^{J}\left(t^{2}\right)$ determineo by

$$
\begin{gather*}
\lambda^{J^{T}}\left(t^{1}\right) \delta x^{1}-\lambda^{J^{T}}\left(t^{0}\right) \delta x^{0} \\
\quad=\frac{\partial g_{0}}{\partial x^{0}} \delta x^{0}+\frac{\partial g_{1}}{\partial x^{3}} \delta x^{1} \tag{8-13}
\end{gather*}
$$

for all δx^{0} and δx^{1} satisfying the second ecquation of Eq. 8-8. To see that the second equation, Eq. 8.8, and Eq. \&-13 determine conditions on $\lambda^{J}\left(i^{0}\right)$ and $\lambda^{J}\left(t^{1}\right)$, consider the following procedure. Determine n of the $2 n$ variables $0 x_{i}^{0}, \delta x_{i}, i=1, \ldots, n$ in terms of the remaining n of these variabies. No:v substitute the variables $\delta x^{0}{ }_{i}, \delta x_{i}{ }_{i}$ just found into Eq. 8 -13. Eq. $8 \cdot 13$ may now be written as a linear combination of n independent $\delta x^{0}{ }_{i}, \delta x^{1}{ }_{i}$ Since Eq. $8-13$ must hold for all n independent variables $\delta x_{i}^{0}, \delta x^{1}{ }_{i}$ previously identiijed, the coefficients of all these variables must be zero. This is then a system of n equations involving only $\lambda^{J}\left(l^{0}\right), \lambda^{J}\left(r^{1}\right)$ and known quantuties. This procedure will be carried unt in detail in particular problems

Substituting from Eq. 8 -12 into Eq. 8-7 yields

$$
\delta J=\frac{\partial g_{0}}{\partial b} \delta b+\int_{t^{\circ}}^{r^{\prime}}\left[\left(\frac{\partial f_{0}}{\partial b}+\lambda^{\prime} r \frac{\partial f}{\partial u}\right) \delta u\right.
$$

$$
\begin{equation*}
\left.+\left(\frac{\partial f_{0}}{\partial b}+\lambda^{J^{T}} \frac{\partial f}{\partial b}\right) \delta b\right] d t . \tag{8-14}
\end{equation*}
$$

Likewise, put $h(t)=-\frac{\partial L_{o}}{\partial x}\left[t, u^{(0)}, b^{(0)}\right]$
and define $\lambda^{\psi \alpha}(t)$ as the solution of Eq. 8-11 with boundary conditions on $\lambda^{\psi_{\alpha}}\left(t^{0}\right)$ and $\lambda^{\nu_{\alpha}}\left(t^{1}\right)$ determined by

$$
\begin{align*}
& \lambda^{\psi_{\alpha}^{T}}\left(t^{1}\right) \delta x^{1}-\lambda^{\psi_{\alpha}^{T}}\left(t^{0}\right) \delta x^{0} \\
& =\frac{\partial g_{\alpha}}{\partial x^{0}} \delta x^{0}+\frac{\partial g_{\alpha}}{\partial x^{1}} \delta x^{1} \tag{8-15}
\end{align*}
$$

for all δx^{0} and δx^{1} satisfying the second equation of Eq. $8-8$. The identity Eq. 8-15 determined boundery conditions just as Eq. 8-13 did. Substituting from Eq. $8-12$ into Eq. $8-9$ yields

$$
\begin{align*}
\delta \psi_{\alpha}= & \frac{\partial g_{\alpha}}{\partial b} \delta b+\int_{1^{\prime}}^{t^{\prime}}\left[\left(\frac{\partial L_{\alpha}}{\partial u}+\lambda^{\nu} \frac{\partial f}{\partial u}\right) \delta u\right. \\
& \left.+\left(\frac{\partial L_{\alpha}}{\partial b}+\lambda^{\psi_{\alpha}^{T}} \frac{\partial f}{\partial b}\right) \delta b\right] d t . \tag{8.16}
\end{align*}
$$

In terms of the adjoint variables $\lambda^{J}(t)$ and $\lambda^{\nu} \alpha(t)$, the quantities δJ and $\delta \psi_{\alpha}$ are now given explicitly as functions of $\delta u(t)$ and δb. The problem is now reduced to determining $\delta u(t)$ and δb, which yield the greatest reduction in J subject to the linearized constraints of the problem.

It should be noted that the boundary-value problems for $\lambda^{J}(t)$ and $\lambda^{\psi} \alpha_{(}(t), \alpha=1, \ldots, r$, have solutions if the boundary-value problem of Eq. 8.8 is w.ll posed This is a basse property of adjomt boundary-value problems wheh is proved in Ref. 2 .

8.2.3 A STEEPEST DESCENT APPROACH

The problem of determining $\delta u(t)$ and δb to minimize (maximum negative of) δJ must deal with tha inequality constraints, Eqs. $8-3$ and 8-4. The gument to be used here is: simply ignore a constraint function that is negative beiore an iteration begins. If, on the other hand, a constraint function is positive, it is required to be reduced For example, if $\psi_{\alpha} \geqslant 0$ or $\phi_{\beta}(t)>0$ for some t, then it is required that $\delta \psi_{\alpha}=-a \psi_{\alpha}, \alpha=1, \ldots, r^{\prime}$ and $\delta \psi_{\alpha}<\cdot i \psi_{\alpha}, \alpha=r^{\prime}+1, \ldots, r$ and $\psi_{\alpha}>0$ and $\delta \phi_{\beta}(t)=-c \phi_{\beta}(t), \beta=1, \ldots, q^{\prime}$ and $\delta \phi_{\beta}(t)<$ $-c \phi_{\beta}(t), p=q^{\prime}+1, \ldots, q$ and $\phi_{\beta}(t)>0$ where $0<a<!$ and $0<c<1$. The magnitude of a and c are chosen so that the required changes $\delta \psi_{\alpha}$ and $\delta \phi_{\beta}(t)$ are not excessively large. If ψ_{α} and $\phi_{\beta}(t)$ are not so large that the linear appioximation is violated with $a=1$, or $c=1$, then a or c are chosen as one.

For convenience, difine two sets of indices

$$
A=\left\{\alpha \mid \psi_{a}\left[x^{(0)}, u^{(0)}, b^{(0)}\right] \geqslant 0\right\}
$$

and

$$
B(t)=\left\{\beta \mid \phi_{\beta}\left[t, u^{(0)}(t)\right]>0\right\}
$$

It should be noted that the collection $B(t)$ of indices may change with the variable t.

Define the column vector of elements ψ_{α} with $\psi_{\alpha}>0$

$$
\dot{\psi}=\left[\begin{array}{l}
\dot{\psi}_{\alpha} \tag{8-17}\\
\alpha \in A
\end{array}\right]
$$

and a similar column vector of functions $\phi_{\beta}(1$, with $\phi_{\beta}(t)>0$

$$
\dot{\phi}(t)=\left[\begin{array}{c}
\phi_{\beta}(t) \tag{8-18}\\
\beta \in B(t)
\end{array}\right] \text {. }
$$

Note that the columa vector $\bar{\phi}(t)$ may have different components $2, t$ different points in t^{0} $<t<t^{2}$. In order to assure that constraints are satisfied, it will be required that

$$
\left.\begin{array}{c}
\delta \psi_{\alpha}=-a \psi_{\alpha} \quad \alpha=1, \ldots, r^{\prime} \\
\delta \psi_{\alpha}<-a \psi_{\alpha}, \alpha=r^{\prime}+1, \ldots, r \\
\text { and } \alpha \in \Lambda
\end{array}\right\}(8-19
$$

and

$$
\left.\begin{array}{c}
\delta \phi_{\beta}(t)=-c \phi_{\beta}(t), \quad \beta=1, \ldots, q^{\prime} \\
\delta \phi_{\beta}(t)<-c \phi_{\beta}(t), \quad \beta=q^{\prime}+1, \ldots, q \\
\text { and } \beta \in B(t) .
\end{array}\right\}(8-20)
$$

Finally, define

$$
\begin{aligned}
& \Lambda^{J}(t)=\frac{\partial f_{0}^{T}}{\partial u}+\frac{\partial f^{T}}{\partial u} \lambda^{J}(t) \\
& \ell^{J}=\frac{\partial g_{0} T}{\partial b}+\int_{t^{\circ}}^{t^{\prime}}\left[\frac{\partial f_{0} T}{\partial b}+\frac{\partial f^{T}}{\partial b} \lambda^{J}(t)\right] d t
\end{aligned}
$$

$$
\begin{equation*}
\Lambda^{\psi}(t)=\left[\frac{\partial L_{\alpha}^{T}}{\partial u}+\frac{\partial f^{T}}{\partial u} \lambda^{\psi_{\alpha}}\right] \tag{8-22}
\end{equation*}
$$

$$
\begin{equation*}
\text { for all } \dot{\alpha} \in A \tag{8-23}
\end{equation*}
$$

and

$$
\ell^{\nu}=\left[{\frac{\partial g_{\alpha}}{\partial b}}^{r}+\int_{t^{\circ}}^{t^{\prime}}\left(\frac{\partial L_{\alpha}}{\partial b}+\frac{\partial f^{T}}{\partial b} \lambda^{\nu \alpha}\right) d t\right] .
$$

$$
\begin{equation*}
\text { ic: all } \alpha \in A \tag{8-24}
\end{equation*}
$$

Note that $\Lambda^{\dot{\nu}}\left({ }^{(}\right)$is a matrix of functions with m rows and the same number of columns as there are indices in A The matrix ℓ^{ν} of

AMCF 706.192

constante has k row ana the same number of columns'as $\Lambda^{\psi}(t)$.

Using the matri: notation of Eqs 8-21 through 8-24 in Eqs. 8-14, 8-16, and 8-17.

$$
\begin{align*}
& \delta J=\ell_{0}{ }^{T} \delta b+\int_{t^{0}}^{t^{1}} \Lambda^{J^{T}}(t) \delta: \partial d t \tag{8-25}\\
& \delta \bar{\psi}=\ell^{\psi^{T}} \delta b+\int_{t^{0}}^{r^{1}} \Lambda^{\psi^{T}}(t) \delta u d t \tag{8-26}
\end{align*}
$$

Beioie $\hat{\delta} u(t)$ and δb are determined, some mechanism must F . set up for recuiring that these variations are actually mall. For convenience, pist

$$
\begin{equation*}
d P^{2}=\delta b^{T} w_{b} \delta b+\int_{t^{0}}^{z^{2}} \dot{\partial} u^{T} w_{u}^{\prime}(t) \delta u d t \tag{8-27}
\end{equation*}
$$

\cdots..2re W_{b} and $W_{u}(t)$ are chosen as positive definite weigbting matrices and $d P$ is to be chosen small enough that $\delta u(t)$ and δt are sufficiently small.

The yroblem is now reduced to tinding $\dot{n} u(t)$ and δb which mininize δI subject to Eqs. $8-19,8-20$, and $8.2 i$. This problsm is now a special case of the Bolze probiem of par. i-4. Accordi:g to Theorem 6-7, there exist mulryliers $\lambda_{c}>C, \gamma=\left[\begin{array}{c}\gamma_{\alpha} \\ c \in A\end{array}\right], \gamma_{\alpha}>0$ ior $\alpha>r^{\prime}, \mu(t)=\left[\begin{array}{c}\mu_{\rho}(t) \\ \beta \in B(t)\end{array}\right] \begin{gathered}{\left[\mu_{\beta}(t)>v \text { for } \beta>\right.}\end{gathered}$ 4^{\prime}, and $y=$ with

$$
\begin{align*}
H= & {\left[-\lambda_{0} \Lambda^{J}-\gamma^{T} \Lambda^{\psi^{T}}(t)-\mu^{T}(t) \frac{d \bar{\phi}}{\partial u}\right] \delta u } \\
& -\gamma_{0} \delta u^{T} w_{i} \delta u+\mu^{T} c \bar{\phi}
\end{align*}
$$

$$
\begin{align*}
G= & \left(\lambda_{0} \Lambda^{\prime T}+\gamma^{T} \ell_{\ell^{\psi}}{ }^{\tau}\right) \delta b \\
& +\gamma_{0} \delta b^{T} W_{b} \delta b+\gamma^{T} c \bar{\psi} \tag{8-29}
\end{align*}
$$

such that

$$
\begin{align*}
\frac{\partial H}{\partial \delta u}= & 0=-\lambda_{0} \Lambda^{J^{T}}-\gamma^{T} \Lambda^{\psi} \\
& -\mu^{T}(t) \frac{\partial \bar{\phi}}{\partial u}-2 \gamma_{0} \delta u^{T} W_{u} \tag{8.30}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial G}{\partial \delta b} & -\int_{1 \cdot}^{r^{2}} \frac{\partial H}{\partial \delta b} d t=0 \\
& =\lambda_{0} \cdot v^{r}+\gamma^{T} \ell^{2}+2 \gamma_{0} \delta b^{T} w_{b} \tag{8-31}
\end{align*}
$$

In tne following development, it will be assumed that the problem is normal so that it is permissible to put $\lambda_{0}=1$. Solving Eqs. $8-30$ and 8.31 for $\delta u^{\prime} t$, and δb, respectively, yields

$$
\begin{align*}
\delta u(t)= & -\frac{1}{2 \gamma_{0}} w_{u}(t)^{-s} \\
& -\quad \overline{\left.\Lambda^{J}(t)+\Lambda^{\psi}(t) \gamma+\frac{\partial \ddot{\phi}^{T}}{\partial u} \mu(t)\right]} \tag{8-32}
\end{align*}
$$

and

$$
\begin{equation*}
\delta b=-\frac{1}{2 \gamma_{0}} w_{b}^{-1}\left(l^{J}+l^{\nu} \gamma\right) \tag{8-33}
\end{equation*}
$$

In order io con:plete the determination of $\delta u(t)$ and $\delta b, \mu(t)$ and γ must be eliminated from Eqs. 8-32 and 8-33. A direct analytical elimination of $\mu(t)$ and γ is not feesuble at this

Substituting Eq. 8-35 into Eq. 8-32

$$
\begin{aligned}
\xi u(t)= & -\frac{1}{2 \gamma_{0}} w_{u}^{-1}\left(\Lambda^{J}+\Lambda^{\nu} \gamma\right) \\
& +\frac{1}{2 \gamma_{0}} w_{u}^{-1} \frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\nu^{-1}} \\
\times & \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\left(\Lambda^{J}+\Lambda^{\nu} \gamma \xi\right. \\
& c W_{u}^{-1} \frac{\partial \dot{\phi}^{r}}{\partial u} \Lambda^{\theta^{-1}} \dot{\phi}
\end{aligned}
$$

AMCP 76E-192

or

$$
\begin{align*}
\delta u(t)= & -\frac{1}{2 \gamma_{0}} H_{u}^{-i} \\
& \times\left(I-\frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1}\right) \\
& \times\left(\Lambda^{J}+\Lambda^{\psi} \gamma\right) \\
& -c W_{u}^{-1} \frac{\partial \tilde{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \ddot{\phi} . \tag{8-36}
\end{align*}
$$

where l is the identity matrix.
Substituting $\delta u(t)$ and δb from Eqs. 8-36 and $8-33$ into Eq. $8-26$ and then enforcing $\delta \bar{\psi}$ $=-a \bar{\psi}$,
$-\frac{1}{2 \gamma_{0}} \ell^{\psi^{T}} W_{b}^{-1}\left(\ell^{J}+\ell^{\psi} \gamma\right)-c \int_{\theta^{0}}^{t^{\prime}} \Lambda^{\nu^{T}}$
$\times w_{u}-1 \frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \dot{\phi} d t-\frac{1}{2 \gamma_{0}} \int_{t^{\prime}}^{t^{\prime}} \Lambda^{\nu} r$
$\times W_{u}^{-1}\left(I-\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{-1} \frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1}\right)$
$\times\left(\Lambda^{\prime} \quad \Lambda^{\dot{\nu}} \gamma\right) d t=-a \bar{\psi}$.
Defining

$$
\begin{align*}
& M_{\dot{\nu} J}=\ell^{\psi} W_{h}^{-1} \ell^{J}+\int_{0}^{t^{\prime}} \Lambda^{\nu^{r}} W_{u}^{-}: \\
& \because\left(1-\frac{\partial \phi^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} W_{u}^{\cdot-1}\right) \Lambda^{J} d t \tag{8.38}
\end{align*}
$$

$$
M_{\nu \nu}=Q^{\prime} T W_{b}^{-1} Q^{\nu}+\int_{1}^{\prime^{\prime}} \lambda^{\nu} w_{u}^{-1}
$$

$$
\times\left(1 \cdot \frac{\partial \dot{\phi}^{r}}{\partial u} \Lambda^{\rho^{-1}} \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\right) \wedge^{*} d t
$$

$$
(4-39)
$$

and

$$
\begin{equation*}
M_{\psi \phi}=\int_{t^{0}}^{t^{\prime}} \Lambda^{\psi^{T}} W_{u}^{-1} \frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \dot{\phi} d t \tag{8-40}
\end{equation*}
$$

Eq. 8.37 becomes
$\frac{1}{2 \gamma_{0}}\left(M_{\psi J}+M_{\psi \psi} \gamma\right)+c M_{\psi \phi}=a \dot{\psi} \cdot(8-41)$

Since $W_{u}(t)$ is positive definite so is W_{u}^{-1}, and there is a norsingular matrix $s(t)$ such that $W_{u}^{-1}(t)=s^{T}(t) s(t)$. By direct multiplication, it may oe verified that

$$
\begin{aligned}
& y^{T} M_{\psi \psi} y=y^{T} Q^{\top} W_{b}^{-1} Q^{\psi} y \\
& +\int_{t^{0}}^{f^{\prime}} y^{r} \Lambda^{\nu^{T}} W_{u}^{-1} \\
& \times\left(l-\frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{\rho^{-1}} \frac{\partial \dot{\phi}}{\partial u} W_{u}^{-1}\right) \Lambda^{\nu} y d t \\
& =y^{T} \ell^{\psi}{ }^{T} W_{b}^{-1} \ell^{\nu} y \\
& +\int_{t^{0}}^{t^{\prime}}\left[\left(l-s \frac{\partial \bar{\phi}^{T}}{\partial u} \lambda^{\rho^{-1}}\right.\right. \\
& \left.\left.\times \frac{\partial \bar{\phi}}{\partial u} s^{T}\right) s \Lambda^{\nu} y\right]^{T} \\
& \times\left[\left(1-s \frac{\partial \bar{\phi}^{r}}{\partial u} \Lambda^{\rho^{-i}} \frac{\partial \bar{\phi}}{\partial u} s^{r}\right)\right. \\
& \left.\times s \Lambda^{\psi} y\right] d t>0 \text {. }
\end{aligned}
$$

Therefore, M_{ψ}, is at least positive semidefinite. In the development that follows, it will be assumed that: $M_{\psi \psi}$ is positive definite and, fience, nonsingular.

Eq. $8-41$ is now solved for γ to obtain

$$
\begin{equation*}
\gamma=M_{\psi \psi}^{-\frac{1}{\psi}}\left[2 \gamma_{0}\left(\omega \bar{\psi}-c M_{\psi \phi}\right)-M_{\psi J}\right] . \tag{8-43}
\end{equation*}
$$

It should be noted that if the set of indices A is empty, $\bar{\psi}$ doss not exist so $M_{\psi \nu}$ is not even defined. If, in this case, $M_{\psi \psi}$ is defined as one and ψ ze: 0 , then $\gamma=0$ in Eqs. $8-41$ and 8.36 reduces, appropriately. In this way, a single mathematical analysis holds in ali cases.

Substituting Eq. $8-43$ into Eqs. 8-33 and 8.36 yields

$$
\begin{aligned}
\delta u(t)= & -W_{u}^{-1}\left(I-\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi}-1 \frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1}\right) \\
\times & {\left[\frac{1}{2 \gamma_{0}} \Lambda^{J}+\Lambda^{\psi} M_{\nu \psi}^{-1}\left(a \bar{\psi}-c M_{\psi \phi}\right)\right.} \\
& \left.-\frac{1}{2 \gamma_{\rho}} \Lambda^{\psi} M_{\psi \psi}^{-1} M_{\psi \delta}\right] \\
& -c W_{u}^{-1} \frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{\psi^{-1} \bar{\phi}}
\end{aligned}
$$

and

$$
\begin{aligned}
\delta b= & -\frac{1}{2 \gamma_{0}} W_{b}^{-1} \ell^{J} \\
& -W_{c}^{1} \ell^{\prime} M_{\psi \psi}^{-1}\left(a \bar{\psi}-c M_{\psi 0}\right) \\
& +\frac{1}{2 \gamma_{0}} W_{b}^{-1} \ell^{\psi} M_{\psi}^{-1} M_{\psi J}
\end{aligned}
$$

Defining

$$
\delta u^{l}(t)=W_{u}^{\cdot}{ }^{1}\left(t-\frac{\partial \tilde{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \ddot{\phi}}{\partial u} W_{u}^{-1}\right)
$$

$$
\begin{align*}
& \times\left(\Lambda^{J}-\Lambda^{\psi} M_{\psi}^{-1} N_{\psi} J\right) \tag{8-44}\\
\delta u^{2}(t) & =-W_{u}^{-1}\left(I-\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1}\right) \\
& \times \Lambda^{\psi} M_{\psi \psi}^{-1}\left(a \bar{\psi}-c M_{\psi \phi}\right) \\
& -c W_{u}^{-1} \frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \dot{\phi} \tag{8-4.5}
\end{align*}
$$

$$
\begin{equation*}
\delta b^{1}=W_{b}^{-1}\left(\ell^{J}-\ell^{\psi} M_{\psi \psi}^{-1} M_{\psi J}\right) \tag{8-46}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta b^{2}=-W_{b}^{\cdot 1} \ell^{\psi} M_{\psi \psi}^{-1}\left(a \bar{\psi}-c M_{\psi \phi}\right) \tag{8-47}
\end{equation*}
$$

the expressions for $\delta u(t)$ and δb are simply

$$
\begin{equation*}
\delta u(t)=-\frac{1}{2 \gamma_{0}} \delta u^{1}(t)+\delta u^{2}(t) \tag{8-48}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon b=-\frac{1}{2 \gamma_{0}} \delta b^{1}+\delta b^{2} \tag{8-49}
\end{equation*}
$$

The variations $\delta u(t)$ and δb from Eqs. $8-48$ and $8-49$ could now be substituted into Eq. $8-27$ to determine γ_{0}. However, since $d P$ has no real physical significunce, one might just as well choose γ_{0}. It is interesting to note that the terms $\delta u^{2}(t)$ and δb^{2} are not multiplied by an undetermined parameter. Further, note that each term in the definitions, Eqs. 8.45 and $8-47$, of these quantities, invoives $\bar{\phi}$ and $\bar{\psi}$.

АМСР 706-192

In fact, if $\dot{\phi}$ and ψ are zero or empty, $\delta u^{2}(t)=$ $\delta b^{2}=0$. It appears ihat $\delta u^{2}(t)$ and δb^{2} may be interpreted as making corrections in constraint errors, or keeping constraint uunctions from being violated. Actually, this and more is true.

Theorem 8-1: The following identities among $\delta u^{1}(t), \delta u^{2}(t), \delta b^{1}$, and δb^{2} of Eqs. $8-44$ through $8-47$ hold:

1. $\delta b^{1} W_{b} \delta b^{2}+\int_{t^{\circ}}^{t^{2}} \delta u^{1} W_{u} \delta u^{2} d t=0$
2. $\ell^{\nu^{T}} \delta b^{2}+\int_{\theta^{\circ}}^{t^{\prime}} \Lambda^{\nu^{T}} \delta u^{2} d t=-a \bar{\psi}$
3. $\ell^{t^{t}} \quad \hat{\partial} b^{1}+\int_{t^{0}}^{t^{2}} \Lambda^{\nu^{T}} \delta u^{1} d t=0$
4. $\frac{\partial \check{\phi}}{\partial u} \delta u^{\prime}=0$
5. $\frac{\partial \bar{\phi}}{\partial u} \delta u^{2}=-c \bar{\phi}$
6. $-\ell^{J^{T}} \delta b^{1}-\int_{t^{0}}^{I^{\prime}} \Lambda^{J T} \delta u^{2} d t<0$.

By considering the case when $\bar{\phi}$ and $\bar{\psi}$ are empty, it is clear that in order fnt $\delta u, \delta b$ to be in the negaine gradient direction of J (i.e., $\delta u=-\Lambda^{J}$ and $\left.\delta b=-l^{J}\right), \gamma_{0}>0$ is required.

The six relationships of Theorem 8 -1 give the designer an intuitive feel for the Method
of Steepest Descent. First, Relation 1 states that the changes $\delta u^{1}(t), \delta b^{1}$ and $\delta u^{2}(t), \delta b^{2}$ are orthogonal. Relations 2 and 5 show that $\delta u^{2}(t), \delta b^{2}$ provides the requested reduction in the constraint functions. Relations 3 and 4 show, as might be expected due to the orthogonality of Relation 1, that $\delta u^{1}(t) ; \delta b^{1}$ has no effect on the constraint functions in $\bar{\phi}$ and $\bar{\psi}$. Finally, Relation 6 , along with Eqs. 8-48 and 8-49, simply states that if $\bar{\psi}=0$ and $\ddot{\phi}(t)=0$ then $\delta u(t), \delta b$ provides a reduction in J.

Before stating a computational algorithm, it is important to develop a test for convergence to the solution of the original problem. The procedure here will be to show, through use of the necessary conditiens of Chapter 6, that as the solution of the original problem is approached, $\delta u^{1}(t)$ and δb^{1} must approach zero.

By Theorem 6-7, at the solution of the problem, Eqs. 8-1 through 8-4, there are multipliers $\omega_{l}(t),:=1, \ldots, n, \nu_{\alpha}, \alpha=1, \ldots, r_{\text {. }}$. and $\xi_{\beta}(t), \beta=1, \ldots q$ such that for

$$
\begin{equation*}
H=\omega^{T} f-f_{0}-\nu^{T} L \cdot \cdot \xi^{T} \phi \tag{8-50}
\end{equation*}
$$

and

$$
\begin{equation*}
G=g_{0}+\nu^{T} g \tag{8-51}
\end{equation*}
$$

it is required that

$$
\begin{equation*}
\frac{d \omega}{d t}=-\frac{\partial H^{\Gamma}}{\partial x} \tag{8-52}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial H}{\partial u}=0 \tag{8-53}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial G}{\partial b} \int_{t^{+}}^{\prime^{\prime}} \frac{\partial U}{\partial b} d t=0 \tag{8.54}
\end{equation*}
$$

$$
\begin{align*}
& \nu_{\alpha} \psi_{\alpha}=0, \quad \alpha=r^{\prime}+1, \ldots, r \tag{8.55}\\
& \xi_{\beta}(t) \phi_{\beta}(t)=0, \beta=q^{\prime}+1, \ldots, q . \tag{8-56}
\end{align*}
$$

Corresponding to the definition of $\dot{\psi}$ and $\tilde{\phi}$ in Eqs. 8-17 and 8-18, def ie $\bar{\nu}, \bar{L}, \overline{\xi_{1}}$, and $\tilde{\xi}$ as containing only components of ν, L, \underline{q}, and ξ, corresponding to elements of $\bar{\psi}$ and $\bar{\phi}$. In this notation - and due to Eqs. 8-55 and 8-56 Eqg. 8-52, 8-53, and $8-54$ become

$$
\begin{aligned}
& \frac{d \omega^{T}}{d t}=-\omega^{T} \frac{\partial f}{\partial x}+\frac{\partial f_{0}}{\partial x}+\bar{\nu}^{T} \frac{\partial \bar{L}}{\partial x} \\
& \omega^{T} \frac{\partial f}{\partial u}-\frac{\partial f_{0}}{\partial u}-\bar{\nu}^{T} \frac{\partial \tilde{L}}{\partial u}-\bar{\xi}^{T} \frac{\partial \bar{\phi}}{\partial u}=0
\end{aligned}
$$

(8-58)

$$
\begin{align*}
& \frac{\partial g_{0}}{\partial b}+\bar{\nu}^{T} \frac{\partial \bar{g}}{\partial b} \\
& -\int_{t^{\circ}}^{t^{2}}\left(\omega^{T} \frac{\partial f}{\partial b}-\frac{\partial f_{0}}{\partial b}-\bar{\nu}^{T} \frac{\partial \dot{L}}{\partial b}\right) d t=0 \tag{8.59}
\end{align*}
$$

Substituting from Eo. 8-11 into Eq. 8-57 yield

$$
\begin{align*}
& -\frac{d \omega}{d t}+\frac{d \lambda^{J}}{d t}+\frac{d \lambda^{\nu}}{d t} \bar{\nu}= \\
& -\frac{\partial f^{T}}{\partial x} \omega-\frac{\partial f^{T}}{\partial x} \lambda^{J}-\frac{\partial f T}{\partial x}-\lambda^{\nu} \bar{\nu} \tag{8-60}
\end{align*}
$$

or

$$
\begin{align*}
& \frac{d}{d t}\left(\omega+\lambda^{J}+\lambda^{\nu} \tilde{\nu}\right)= \\
& -\frac{\partial f^{T}}{\partial x}\left(\omega+\lambda^{J}+\lambda^{\nu} \dot{\nu}\right) . \tag{8.61}
\end{align*}
$$

Further conditions from Theorem 6-7 are, from Eq. 6-124,

$$
\begin{equation*}
\frac{\partial G^{T}}{\partial x^{0}}-\omega\left(t^{0}\right)=0 \tag{8.62}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial G^{T}}{\partial x^{1}}+\omega\left(t^{1}\right)=0 \tag{8-63}
\end{equation*}
$$

Multiplying Eqs. $8-62$ and $8-63$ by δx^{0} and δx^{1} yields

$$
\begin{equation*}
\frac{\partial g_{0}}{\partial x^{0}} \delta x^{0}+\tilde{\nu}^{T} \frac{\partial \bar{g}}{\partial x^{0}} \delta x^{0}-\omega^{T}\left(t^{0}\right) \delta x^{0}=0 \tag{8-64}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{\partial g_{0}}{\partial x^{1}} \delta x^{1}+\bar{\nu}^{r} \frac{\partial \bar{g}}{\partial x^{2}} \delta x^{2} \\
& +\omega^{T}\left(r^{1}\right) \delta x^{1}=0 . \tag{8-65}
\end{align*}
$$

These equations hold for all δx^{0} and δx^{1}. Adding Eqs. 8-64 and 8-65,

$$
\frac{\partial g_{0}}{\partial x^{0}} \delta x^{0}+\frac{\partial g_{0}}{\partial x^{1}} \delta x^{1}
$$

$$
\begin{align*}
& +\bar{\nu}^{r}\left(\frac{\partial \dot{g}}{\partial x^{0}} \delta x^{0}+\frac{\partial \tilde{g}}{\partial x^{i}} \delta x^{1}\right) \\
& -\omega^{T}\left(t^{0}\right) \delta x^{0}+\omega^{T}\left(t^{1}\right) \delta x^{1}=0 \tag{8.66}
\end{align*}
$$

Aguir, Eq. 8-66 holds for all δx^{0} a. ' δx^{1}.
Substituting terms from Eq̧. 8-13 and 8-15 into Eq. 8-66.

$$
\begin{align*}
& \lambda^{J^{T}}\left(f^{1}\right) \delta x^{\prime}-\lambda^{J T}\left(t^{0}\right) \delta x^{0} \\
& \quad-\bar{\nu}^{T}\left[\lambda^{\nu}{ }^{T}\left(t^{1}\right) \delta x^{1}-\lambda^{\nu} T\left(t^{0}\right) \delta x^{\bullet}\right] \\
& -\omega^{T}\left(t^{0}\right) \delta x^{0}+\omega^{T}\left(t^{1}\right) \delta x^{1}=0
\end{align*}
$$

AMCP 7OOS-192

for all δx^{0} and δx^{1} satisfying the second equation of Eq. $8-8$. Bu collecting terms, Eq. $8-67$ becomes

$$
\begin{align*}
& {\left[\omega^{T}\left(i^{2}\right)+\lambda^{j^{T}}\left(t^{1}\right)+\tilde{\nu}^{T} \lambda^{\psi^{T}}\left(t^{1}\right)\right] \delta x^{1}} \\
& \quad-\left[\omega^{\tilde{T}}\left(t^{0}\right)+\lambda^{J^{T}}\left(t^{0}\right)+\tilde{\nu} \lambda^{\psi^{T}}\left(t^{0}\right)\right] \delta x^{0}=0 \tag{8-68}
\end{align*}
$$

for all δx^{0} and δx^{1} satisfying the second equation of Eq. 8-8.

Eqs. $8-61$ and $8-i 8$ constidute the bound-ary-value problem adjoint to Eh. 8-8, where the dependent variable is $\left(\omega+\lambda^{J}+\lambda^{\nu} \bar{\nu}\right)$. Due to the assumed well posed sature of Eq. 8-2, the boundary-value problem of Eq, $8-8$ has a unique solution for all $\delta u(t)$ and δb. It is shown in Ref. 2, Cuapter 4, that in this case the adjoint boundary-value problem, Eqs. $8-51$ and $8-68$, has a unique null solution, i.e.,

$$
\begin{equation*}
\omega(t)+\lambda^{J}(t)+\lambda^{\psi}(t)=0, \quad t^{0}<t<t^{1} \tag{8-69}
\end{equation*}
$$

Substituting for $\omega(t)$ from Eq. $8-69$ into Eqs. 8.58 and 8.59 yields

$$
\begin{align*}
& -\left(\lambda^{J^{T}}+\tilde{\nu}^{T} \lambda^{\nu} T\right) \frac{\partial f}{\partial u}-\frac{\partial f_{0}}{\partial u}-\tilde{\nu}^{T} \frac{\partial \dot{L}}{\partial u} \\
& -\dot{\xi}^{T} \frac{\partial \dot{\phi}}{\partial u}=0 \tag{8.70}
\end{align*}
$$

and

$$
\begin{gather*}
\frac{\partial g_{0}}{\partial b}+\bar{\nu}^{T} \frac{\partial \dot{g}}{\partial b}-\int_{t^{\prime}}^{t^{\prime}}\left[-\left(\lambda^{\prime} T+\tilde{\nu}^{T} \lambda^{\nu} T\right)\right. \\
\left.\times \frac{\partial f}{\partial b}-\frac{\partial f_{0}}{\partial b}-\bar{\nu}^{T} \frac{\partial \dot{L}}{\partial b}\right] d t=0 . \tag{8.71}
\end{gather*}
$$

Premultiplying the transpose of Eq. 8 -70 by $(\partial \bar{\phi} / \partial u) W_{u}^{-1}$ yields

$$
\begin{align*}
& \frac{\partial \tilde{\phi}}{\partial u} w_{u}^{-1} \frac{\partial \tilde{\phi}^{T}}{\partial u} \tilde{\xi}= \\
& \\
& -\frac{\partial \tilde{\phi}}{\partial u} w_{u}^{-1}\left(\frac{\partial f^{T}}{\partial u} \lambda^{J}+\frac{\partial f_{0}^{T}}{\partial u}\right) \tag{8-72}\\
& \quad-\frac{\partial \tilde{\phi}}{\partial u} w_{u}^{-1}\left(\frac{\partial f^{T}}{\partial u} \lambda^{\psi}+\frac{\partial \tilde{L}^{T}}{\partial u}\right)_{\tilde{j}} .
\end{align*}
$$

The coefficient of $\tilde{\xi}$ in Eq. 8-72 is just $\Lambda^{\phi}(t)$ of Eq. $8-34$ which is nonsingular. Therefore,

$$
\begin{equation*}
\ddot{\xi}=-\Lambda^{\phi^{-1}}\left[\frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\left(\Lambda^{J}+\Lambda^{\nu} \bar{\nu}\right)\right] . \tag{8.73}
\end{equation*}
$$

Substituting Eq. 8-73 into Eq. 8-71,

$$
\begin{gathered}
\frac{\partial g_{0}{ }^{T}}{\partial b}+\frac{\partial g^{T}}{\partial b} \tilde{\nu}+\int_{t^{\circ}}^{t^{1}}\left[\frac{\partial f^{T}}{\partial b}\left(\lambda^{J}+\lambda^{T} \tilde{\nu}\right)\right. \\
\left.+\frac{\partial f_{0}^{T}}{\partial b}+\frac{\partial \tilde{L}^{r}}{\partial b} \tilde{\nu}\right] d t=0
\end{gathered}
$$

or, in the notation of Eqs. 8-22 and 8-24,

$$
\begin{equation*}
\ell^{J}+\ell^{\Delta} \bar{\nu}=0 . \tag{8-74}
\end{equation*}
$$

Substituting for $\dot{\xi}$ in Eq. $8-73$ into Eq. 8-70,

$$
\begin{aligned}
& -\Lambda^{J}-\Lambda^{\nu} \dot{\nu}+\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1} \Lambda^{J} \\
& \quad+\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{-1} \frac{\partial \dot{\phi}}{\partial u} W_{u}^{-1} \Lambda^{\nu} \bar{\nu}=0 .
\end{aligned}
$$

Premultiplying Eq. $8-75$ by $\Lambda^{\psi^{T}} W_{u}^{-1}$ and integrating yields

$$
\begin{align*}
& \int_{t^{0}}^{t^{2}}\left(\Lambda^{\psi^{T}} W_{u}^{-1} \Lambda^{J}-\Lambda^{\psi} W_{u}^{-1}\right. \\
& \left.\times \frac{\partial \tilde{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1} \Lambda^{J}\right) d t \\
& +\left[\int _ { t ^ { 0 } } ^ { t ^ { 1 } } \left(\Lambda^{\psi^{T}} W_{u}^{-1} \Lambda^{\psi}\right.\right. \\
& -\Lambda^{\psi} W_{u}^{-1} \frac{\partial \tilde{\phi}^{r}}{\partial u} \Lambda^{\phi^{-1}} \\
& \left.\left.\times \frac{\partial \tilde{\phi}}{\partial u} W_{u}^{-1} \Lambda^{\psi}\right) d t\right] \tilde{\nu}=0 \tag{8-76}
\end{align*}
$$

Premultiplying Eq. $8-14$ by $\ell^{T} W_{b}^{-1}$ yields,

$$
\begin{equation*}
\ell^{\psi^{T}} W_{o}^{-1} \ell^{J}+\ell^{\psi} W_{b}^{-1} \ell^{\psi} \tilde{\nu}=0 . \tag{8-77}
\end{equation*}
$$

Adding Eqs. 8.76 and 8.77 finaily yields

$$
M_{\nu J}+M_{\nu \nu \nu} \tilde{\nu}=0
$$

so

$$
\begin{equation*}
\bar{D}=-M_{\psi}^{-1} M_{\psi J} . \tag{8.78}
\end{equation*}
$$

Substituting $\bar{\nu}$ from Eq. 8.78 into Eq. 8.75,

$$
\begin{aligned}
\Lambda^{\prime} & -\Lambda^{\psi} W_{\psi}^{-1} M_{\psi J} \\
& -\frac{\partial \bar{\phi}^{r}}{\partial u} \Lambda^{\nu^{-1}} \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1} \Lambda^{J} \\
& +\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1} \Lambda^{\psi} M_{\psi \psi}^{-1} M_{\psi J}=0
\end{aligned}
$$

or,

$$
\begin{align*}
& \left(I-\frac{\partial \tilde{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \tilde{\phi}}{\partial u} w_{u}^{-1}\right) \\
& \times\left(\Lambda^{J}-\Lambda^{\psi} M_{\psi \psi}^{-1} M_{\psi J}\right)=0 . \tag{8-79}
\end{align*}
$$

Eq. $8-79$ is the desired resuit, $\delta u^{1}(t)=0$.
Substitutialg $\bar{\nu}$ from Eq. 8-78 into Eq. 8-74 yields.

$$
\ell^{J}-\ell^{\psi} M_{\psi \psi}^{-1} M_{\psi J}=0
$$

and this implies, by Eq. $8-46$, that $\delta b^{1}=0$.
It is now possible to state a computational algorithm employing the rtiults of the preceding analysis and discussion.

A Computational Algorithm:

Step 1. Make an engineering estimate $u^{(0)}(t), b^{(0)}$, of the optimum design function and parameter.

Step 2. Solve Eq. $8-2$ for $x^{(0)}$ corresponding to $u^{(0)}(t), b^{(0)}$.

Step 3. Check constraitits and form $\bar{\psi}$ ans: $\ddot{\phi}(t)$ of Eqs. 8-17 and 8-18.

Step 4. Solve the differential equation $8-11$ with h and the boundary conditions of Eqs. 8-13 and 8-15 to obtain $\lambda^{J}(t)$ and $\lambda^{\nu \alpha}(t)$, respectively.

Sten 5. Compute $\Lambda^{J}(t), \ell^{\prime}, \Lambda^{\psi}(t)$, and ℓ^{ν} in Eqs. 8-21 through 3-24 and $\mathrm{N}^{\circ}(1)$ in Eq. 8-34.

Step 0 . Choose the correction factors a and r in Eqgs. 8.19 and 8-20.

AMCP 706-192

Step 7. Compute $M_{\psi J}, M_{\psi \psi}$, and $M_{\psi \phi}$ in Eqs. 8-38, 8-39, and 8-40.

Step 8. Choose $\gamma_{0}>0$ and compute γ and $\mu(t)$ of Eqs. 8-43 and 8-35. If any componenis of γ with $\alpha>r^{\prime}$, or $\mu(t)$ with $\beta>q^{\prime}$, are negative, redefine $\tilde{\psi}$ and $\bar{\phi}(t)$ by deleting corresponding terms and return to Step 5.

Step 9. Compute $\delta u^{1}(t), \delta u^{2}(t), \delta b^{1}$, and δb^{2} of Eçs. 8-44 through 8-47.

Step 10. Compuie

$$
\begin{aligned}
u^{(1)}(t)= & u^{(0)}(t)-\frac{1}{2 \gamma_{0}} \delta u^{1}(t) \\
& +\delta u^{2}(t) \\
b^{(1)}= & b^{(0)}-\frac{1}{2 \gamma_{0}} \delta b^{1}+\delta b^{2} .
\end{aligned}
$$

Step 11. If the constraints are satisfied and $\delta u^{1}(t)$ and δb^{2} are sufficiently small, terminate. Otherwise, return to Step 2 with $u^{(0)}, b^{(0)}$ teing replaced by $u^{(1)}, b^{(1)}$.

An algorithm of this kind invariably involves a certain amount of computational art. The critical elemert of this algorithm is the choice of the parameter γ_{0} in Step 8. Once the constraints are satisfied to acceptable accuracy, $\delta u^{2}(t)$ and δb^{2} will be approximately zero and $1 /\left(2 \gamma_{0}\right)$ can be viewed as a step size in the direction $\delta u^{1}(t), \delta b^{1}$. In this case the change in $u(t)$ and b is

$$
\begin{aligned}
& \delta u(t)=-\frac{1}{2 \gamma_{0}} \delta u^{\prime}(t) \\
& \delta \dot{b}=-\frac{1}{2 \gamma_{0}} \delta b^{1}
\end{aligned}
$$

Substituting these expressions into Eq. $8-25$ and using Eqs. 8-44 and 8-46,

$$
\begin{aligned}
\delta J= & -\frac{1}{2 \gamma_{0}}\left[\ell^{J} W_{b}^{-1}\left(\ell^{J}-\ell^{\psi} M_{\psi \psi}^{-1} M_{\psi J}\right)\right. \\
& \therefore \int_{t^{\circ}}^{t^{2}} \Lambda^{J} w_{u}^{-1} \\
& \times\left(I-\frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \tilde{\phi}}{\partial u} w_{u}^{-1}\right) \\
& \left.\times\left(\Lambda^{J}-\Lambda^{\psi} M_{\psi \psi}^{-1} M_{\psi J}\right) d t\right] \\
& =\frac{1}{2 \gamma_{0}}\left(M_{J J}-M_{\psi J^{T}}^{M_{\psi}^{\prime-1} M_{\psi J}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
M_{J J}= & \ell^{J} W_{b}^{-1} \ell^{J}+\int_{t}^{t^{\prime}} \Lambda^{J T} W_{u}^{-1} \\
& \times\left(I-\frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{-1} \frac{\partial \dot{\phi}}{\partial u} W_{u}^{-1}\right) \Lambda^{J} d t .
\end{aligned}
$$

With Eq. $8-80$ it is possible to request a reasonabl. magnitude for δJ and compute the γ_{0} which should give this reduction in J. In this way, it is possible to choose a reasonable γ_{0}. Experience with this method on structurai design problems, of the kind discussed in the iollowing chapter, has indicated that a request of 2% to 10% reduction in the cost function on the first iteration gives a vaine of γ_{0} that yields convergence. Often, this value of γ_{0} must be adjusted during the iterative process to prevent divergence or th speed convergence.

This matter of choosing step size in Step 8 requires a great deal more attention. With a little experience one can devalop a "feel" for how to adjust \%o to get good convergence, 2 even in complex problems. A feasible autonatic method of choosing γ_{0} is desirable for
use on high-speed computers. No reliable method is known to the writer at this time.

8.3 A STEEPEST DESCENT METHOD FOR A GENERAL OPTIMAL DESIGN PROBLEM

8.3.1 THE PROBLEM CONSIDERED

The basic optimal design pro lem with fixed endpoints, no discontinuities, and no intermediate constraints was treated in the preceding paragraph. The problem considered here will be a generalization of that problem to include features such s variable endpoints, discontinuities, and intermediate constraints. The basic idea of the method of solution will be the same as in the preceding paragraph. Accounting for the additional features of this problem, however, introduces some complexity into the derivation of equations.

The probiem to be treated here is to determine $u(t), t^{0}<t<t^{\eta}, b$, and t^{0}, t^{2}, \ldots, f^{7} which minimize

$$
\begin{align*}
J= & g_{0}\left(b, t^{\prime}, x^{\prime}\right) \\
& +\int_{t^{0}}^{t^{\eta}} f_{0}[t, x(t) u(t), b] d t \tag{8-81}
\end{align*}
$$

subject to the conditions

$$
\left.\begin{array}{l}
\frac{d x}{d t}=f(t, x, u, b), t^{0}<t<t^{n}, t \neq t^{\prime} \\
\theta,\left(t^{0}, x^{0}, t^{n}, x^{n}\right)=0, s=1, \ldots, n \tag{8-83}
\end{array}\right\}(t
$$

$$
\left.\begin{array}{c}
\psi_{\alpha}=g_{\alpha}\left(b, t^{\prime}, x^{\prime}\right) \\
+\int_{t^{\prime}}^{r^{\eta}} L_{\alpha}[t, x(t), u(t), b] d t=0, \\
\alpha=1, \ldots, r^{\prime} \tag{8-34}\\
\psi_{\alpha}=g_{\alpha}\left(b, t^{\prime}, x^{\prime}\right) \\
+\int_{t^{\circ}}^{t^{\eta}} L_{\alpha}[t, x(t), u(t), b] d t<0, \\
\alpha=r^{\prime}+1, \ldots, r
\end{array}\right\}
$$

and

$$
\left.\begin{array}{c}
\phi_{\beta}(t, u)=0, t^{0}<t<t^{\eta} \tag{8.85}\\
\beta=1, \ldots, q^{\prime} \\
\phi_{\beta}(t, u)<0, t^{0}<t<t^{\eta} \\
\beta=q^{\prime}+1, \ldots, q .
\end{array}\right\}
$$

Note that this is just a spucial case of the problem of Def. 6.J. Fquality constraints will be included in Eqs. 8.84 and 8.85 in a natural way during the development. It is assumed that for given $u\left({ }^{(}\right), b, f^{\prime}$, and x^{\prime} the boundaryvalue problern, Eq. 8-82, has a continuous solution $x(t)$. If constraints of the form $\omega(f, x, u, b)<0$ occur, they may be repiaced by a const:-aint of the form

$$
\begin{align*}
& \int_{t^{\prime}}^{t^{\eta}}\langle\omega(t, x(t), u(t), b\} \\
& \left.+\left|\omega\left\{t_{, ~}(t), u(t), b\right)\right|\right\} d t=0 \tag{8.86}
\end{align*}
$$

Cr istraints of the ferm of Eq 8.85 are easily treated in a direct menner so they need not be reduced to the form of Eq. 8-86.

AMCP 706-192

Just as in the method of par. 8.2 , the idea here will be to estimate $u^{(0)}(t), b^{(0)}$, and t^{0}, \ldots, t^{η}, and then to allow small changes $\delta u(t)$ and δb. The olject is to determine $\delta u(t)$ and δb which yield the greatest reduction in J and which satis, y the constraints.

8-3 2 THE EFFECT OF SMALL CHANGES IN DESIGN VARIABLES AND PARAMETERS

Before the optimum changes in $u(t)$ and b may be determined, the effect of these changes on J and ψ_{a} musi be assessed. Since J and ψ_{α} have the same form, the expressions for change of a general functional

$$
\begin{equation*}
\left.Q=g\left(b, t^{\prime}, x^{\prime}\right)+\int_{t^{0}}^{t^{\eta}} r\left[t, x_{i}^{\prime} t\right), u(t), b\right] d t \tag{8.87}
\end{equation*}
$$

will be determined and the result will be applied to J and ψ_{a}.

Expanding Q to first-order terms in the variables $u(),. b_{1}{ }^{\prime \prime}$, and λ^{\prime}, vieide

$$
\begin{align*}
\delta Q & =\frac{\partial g}{\partial b} \times b+\frac{\partial g}{\partial x^{0}} \Delta x^{0}+\ldots+\frac{\partial g}{\partial x^{\prime}} \Delta x^{\prime} \tag{8-88}\\
& +\ldots+\frac{\partial g}{\partial x^{\eta}} \Delta x^{\eta}+\frac{\partial g}{\partial t^{0}} \delta t^{0}+\ldots+\frac{\partial g}{\partial t^{\prime}} \delta t^{\prime} \\
& +\ldots+\frac{\partial g}{\partial t^{\eta}} \partial t^{\eta}-F\left(t^{0}+(\cdot) \delta t^{0}+\ldots\right. \\
& +\left[F\left(t^{\prime}-0\right)-F\left(t^{\prime}+v\right)\right] \delta t^{\prime}+\ldots \\
& +F\left(t^{\eta}-0\right) \delta t^{\eta} \\
& +\int_{\cdot}^{. \eta}\left(\frac{\partial F}{\partial x} \delta x \frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial b} \delta b\right) d t .
\end{align*}
$$

where Δx^{d} is the total change in x^{d} at the point t^{l}. Since $x(t)$ is to be continuous before and after the variation, the total change in $x(t)$ must be continuous at each point t. This requires that

$$
\begin{gather*}
\delta x^{i}\left(t^{\prime}-0\right)+f\left(t^{\prime}-0\right) \delta r^{\prime}=\Delta x^{l} \\
=\delta x^{i}\left(t^{l}+0\right)+f\left(t^{i}+0\right) \delta t^{l} \tag{8-89}
\end{gather*}
$$

$i=0,1, \ldots, \eta$, where $\delta x(t)$ and δt^{l} are indpendent changes in $x(t)$ and t.

The independent variation in $x(t), \delta x(t)$, is related to $\delta u(t)$ and δb through the variational equation

$$
\begin{align*}
\frac{d}{d t}(\delta x) & =\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial u} \delta u+\frac{\partial f}{\partial b} \delta b, \\
t^{0} & <t<t^{\eta}, t \neq t^{\prime} \tag{8.90}
\end{align*}
$$

The boundary conditions, Eq. 8-82, require that

$$
\begin{gather*}
\frac{\partial \theta_{s}}{\partial x^{0}} \Delta x^{0}+\frac{\partial \theta_{s}}{\partial t^{0}} \delta t^{0}+\frac{\partial g_{s}}{\partial x^{\eta}} \Delta x^{\eta} \\
+\frac{\partial \theta_{s}}{\partial t^{\eta}} \delta t^{\eta}=0 \tag{8-91}
\end{gather*}
$$

$s=1, \ldots, n$. Finally, the relations of Eq. $8-83$ require that

$$
\frac{\partial \Omega^{i}}{\partial x^{i}} \Delta x^{i}+\frac{\partial \Omega^{i}}{\partial t^{i}} \delta r^{\prime}=0
$$

$$
\begin{equation*}
.=0,1, \ldots, \eta \tag{8-92}
\end{equation*}
$$

It is clear that the variations $\delta x(t)$. $\delta u(t), \delta b$, δt^{\prime}, and Δx^{t} are not all indpendent.

In order to expres δQ in ter.ns of orly
$\delta u(t)$ and δb which are to be determined, introduce the adjoint variable $\lambda(t)$ just as in Eq. 8-91,

$$
\begin{equation*}
\frac{d \lambda}{d t}=-\frac{\partial f^{T}}{\partial x} \lambda-\frac{\partial F^{T}}{\partial x} \tag{8-93}
\end{equation*}
$$

Integrating the identity below Eq. 8-91 from t^{\prime} to $t^{t+1}, 0<l, j+1<\eta$, one obtains, just as in Eq. 8-92,

$$
\begin{align*}
& \lambda^{T}\left(t^{\prime+1}-0\right) \delta x\left(t^{\prime+1}-0\right) \\
&-\lambda^{T}\left(t^{\prime}+0\right) \delta x\left(t^{\prime}+0\right) \\
&=\int_{l}^{l^{\prime+1}}\left(-\frac{\partial F}{\partial x} \delta x+\lambda^{T} \frac{\partial f}{\partial u} \delta u\right. \\
&\left.\cdot \lambda^{T} \frac{\partial f}{\partial b} \delta b\right) d t \tag{8-94}
\end{align*}
$$

Note that the boundary conditions on $\lambda(t)$ and the prepertics of $\lambda(0)$ at the points $f^{\prime} .1=$ 1, ..., $\eta-1$, have not yet beer specified. These boundary and intermediate conditions on $\lambda(t)$ will be the major outpit of this sabparagraph.

Summing all the formulas, Eq. 8.94, over ; $=0,1, \ldots, \eta \cdots 1$, one obtains

$$
\begin{aligned}
& \int_{t}^{t^{n}} \frac{\partial F}{\partial x} \delta x d t=-\lambda^{T}\left(t^{0}+0\right) \delta_{n}\left(t^{0}+0\right) \\
& +\ldots+\lambda^{r}\left(t^{\prime}-0\right) \delta x\left(t^{\prime}-0\right) \\
& -\lambda^{T}\left(t_{f}+0\right) j x\left(t^{\prime}+0\right)+\ldots \\
& +\lambda^{r}\left(t^{\eta}-0\right) \delta x\left(t^{n}-0\right) \\
& +\int_{t^{n}}^{t^{\eta}}\left(\lambda^{T} \frac{\partial f}{\partial u} \delta u+\lambda^{T} \frac{\partial f}{\partial b} \delta b\right) d t
\end{aligned}
$$

Or, using the odfinition of Δx^{\prime}, this is

$$
\begin{aligned}
\int_{r^{0}}^{t^{\eta}} \frac{\partial F}{\partial x} \delta x d t= & -\lambda^{T}\left(t^{0}+0\right) \Delta x^{0} \\
& +\lambda^{T}\left(t^{0}+0\right) f\left(t^{0}+0\right) \delta t^{0} \\
& +\ldots+\left[\lambda^{T}\left(t^{\prime}-0\right)\right. \\
& \left.-\lambda^{T}\left(t^{\prime}+0\right)\right] \Delta x^{\prime} \\
& -\left[\lambda^{T}\left(t^{\prime}-0\right) f\left(t^{\prime}-0\right)\right. \\
& \left.-\lambda^{T}\left(t^{\prime}+0\right) f\left(t^{\prime}+0\right)\right] \delta t^{\prime} \\
& +\ldots+\lambda^{T}\left(t^{\eta}-0\right) \Delta x^{\eta} \\
& -\lambda^{2}\left(t^{\eta}-0\right) f\left(t^{\eta}-0\right) \delta t^{\eta} \\
& +\int_{t^{\bullet}}^{f^{\eta}}\left(\lambda^{T} \frac{\partial f}{\partial u} \delta u\right. \\
& \left.+\lambda^{T} \frac{\partial f}{\partial b} \delta b\right) d t
\end{aligned}
$$

Substituting from Eq. 8 -95 into Eq. 8-88, yields

$$
\begin{aligned}
\delta Q= & \frac{\partial g}{\partial \delta} i \dot{b}+\left[\frac{i l g}{\partial x^{0}}+\lambda^{T}\left(t^{0}\right)\right] \Delta x^{0}+\ldots \\
& +\left[\frac{\partial g}{\partial x^{\prime}}-\lambda^{T}\left(t^{\prime}-0\right)+\lambda^{T}\left(t^{\prime}+0\right)\right] \Delta x^{\prime} \\
& +\ldots+\left[\frac{\partial g}{\partial x^{n}}-\lambda^{T}\left(t^{n}\right)\right] \Delta x^{n} \\
& +\left[\frac{\partial g}{\partial t^{0}}-F\left(t^{0}+0\right)\right. \\
& \left.\lambda^{T}\left(t^{0}+0\right) f\left(t^{0}+0\right)\right] \delta t^{0} \\
& +\ldots+\left[\frac{\partial g}{\partial t^{\prime}}+F\left(t^{\prime}-0\right)-F\left(t^{\prime}+0\right)\right.
\end{aligned}
$$

AMCP 706-192

$$
\begin{gather*}
+\lambda^{T}\left(t^{\prime}-0\right) f\left(t^{\prime}-0\right) \\
\\
\left.-\lambda^{T}\left(t^{\prime}+0\right) f\left(t^{\prime}+0\right)\right] \delta t^{\prime} \tag{8-97}\\
+\ldots+\left[\frac{\partial g}{\partial t^{\eta}}+F\left(t^{\eta}-0\right)\right. \\
\left.+\lambda^{T}\left(t^{\eta}-0\right) f\left(t^{\eta}-0\right)\right] \delta t^{\eta} \\
+\int_{t^{\prime}}^{t^{\prime \prime}}\left[\left(\frac{\partial F}{\partial u}+\lambda^{T} \frac{\partial f}{\partial u}\right) \delta u\right. \\
\\
+ \\
\left.+\left(\frac{\partial F}{\partial b}+\lambda^{T} \frac{\partial f}{\partial \dot{\delta}}\right) \delta b\right] d t .
\end{gather*}
$$

$$
\begin{aligned}
& +\ldots+\left[\frac{\partial g}{\partial t^{\eta}}+f^{(}\left(t^{\eta}-0\right)\right. \\
& \left.+\lambda^{T}\left(t^{\eta}-0\right) f\left(t^{\eta}-0\right)\right] \delta t^{\eta}=0
\end{aligned}
$$

for all Δx^{\prime} and δt^{\prime} satisfying Eqs. $8-90$ and 8-92.

In order to determine conditions on $\lambda\left(t^{\prime}\right)$ based on Eq. $8-\AA 7$, a Lemma is required.

Lemma 8-1: For $A, B_{i}, i=1, \ldots, m<n$ in R^{n} if $A^{r} y=0$ for all x in R^{n} cuch that

$$
B_{i}^{T}==0, i=1, \ldots, m
$$

The quantities Δx^{\prime} and of $^{\prime}$ appearing in Eq. $8-96$ are required to satisfy the conditions of Eqs. 8-91 and 8-92. The c yective now is to choose the boundary and inte.mediate conditions on $\lambda(t)$ so that Eq. 8.96 is indepefient of Δx^{\prime} and δt^{\prime}; i.e., so that

$$
\begin{align*}
& {\left[\frac{\partial g}{\partial x^{0}}+\lambda^{r}\left(t^{0}\right)\right] \Delta x^{0}+\ldots} \\
& +\left[\frac{\partial g}{\partial x^{\prime}}-\lambda^{-}\left(t^{t}-0\right)+\lambda^{T}\left(t^{\prime}+0\right)\right] \Delta x^{\prime} \\
& ++\left[\frac{\partial g}{\partial x^{n}}-\lambda^{T}\left(t^{n}\right)\right] \Delta x^{\eta} \\
& +\left[\frac{\partial g}{\partial t^{0}}-F\left(t^{0}+0\right)\right. \\
& \left.\quad \lambda^{T}\left(t^{0}+0\right) f\left(t^{0}+0\right)\right] \delta t^{\nu} \\
& +\left[\frac{\partial g}{\partial t^{\prime}}+t^{\circ}\left(t^{\prime} \quad 0\right)\right.
\end{align*}
$$

$$
F\left(t^{\prime}+0\right)+\lambda^{\tau}\left(t^{\prime} \quad 0\right) f\left(t^{\prime} \quad 0\right)
$$

then there exist constants ω_{1} such that

$$
\begin{equation*}
A^{T} x+\sum_{i=1}^{m} \omega_{i} B_{i}^{r}=0 \tag{8-98}
\end{equation*}
$$

for all x in R^{n}.

For proof of this Lemma see Ref. 3, page 12.

Consider ithe expression of Eq. $8-97$ as $A^{T} x$, where the components if A depend on the values of $\lambda\left(t^{\prime}\right)$ and $x=\left(\Delta x^{0 T}, \ldots, \Delta x^{\eta T}\right.$, $\left.\delta t^{0}, \ldots, \delta t^{n}\right)^{T}$. The equalities $B_{i}^{T} x=0$ are just Eqs. 8.91 and 8.92. Denoting the multipher. ω_{1}, as $\tau_{s}, s=1, \ldots, n$ and $\gamma_{j}, i=0,1, \ldots, \eta$. Eq. 8.98 uecomes

$$
\left.\lambda^{r}\left(t^{\prime}+0\right) f\left(t^{\prime}+0\right)\right] \delta t^{\prime}
$$

$$
\begin{aligned}
& {\left[\frac{\partial g}{\partial x^{0}}+\lambda^{T}\left(t^{0}+0\right)+\sum_{:=1}^{n} \tau_{i} \frac{\partial \theta_{s}}{\partial x^{0}}\right.} \\
& \left.\quad+\gamma_{0} \frac{\partial \Omega^{0}}{\partial x^{0}}\right] \Delta x^{0} \\
& \quad++\left[\begin{array}{lll}
\frac{\partial g}{\partial x^{\prime}} & \lambda^{I}\left(t^{\prime}\right. & 0)+\lambda^{T}\left(f^{\prime}+0\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\gamma_{j} \frac{\partial \Omega^{\prime}}{\partial x^{\prime}}\right] \Delta x^{\prime} \\
& -\ldots+\left[\frac{\partial g}{\partial x^{\eta}}-\lambda^{r}\left(t^{\eta}-0\right)\right. \\
& \left.+\sum_{s=1}^{n} \tau_{s} \frac{\partial \theta_{s}}{\partial x^{n}}+\gamma_{\eta} \frac{\partial \Omega^{\eta}}{\partial x^{n}}\right] \Delta x^{n} \\
& +\left[\frac{\partial g}{\partial t^{0}}-F\left(t^{0}+0\right)-\lambda^{\tau}\left(t^{0}+0\right) f\left(t^{0}+0\right)\right. \\
& \left.+\sum_{s=1}^{n} r_{s} \frac{\partial \theta_{s}}{\partial t^{0}}+\gamma_{0} \frac{\partial \Omega^{0}}{\partial t^{0}}\right] \delta t^{0} \\
& +\ldots+\left[\frac{\partial g}{\partial t^{\prime}}+F\left(t^{\prime}-0\right)-F\left(t^{\prime}-0\right)\right. \\
& -\lambda^{T}\left(t^{\prime}-0\right) f\left(t^{\prime}-0\right) \\
& -\lambda^{T}\left(t^{\prime}+0\right) f\left(t^{\prime}+0 j+\gamma_{j} \frac{\partial \Omega^{\prime}}{\partial!^{\prime}}\right] \delta_{i^{\prime}} \\
& +\ldots+\left[\frac{\partial g}{\partial t^{\eta}}+F\left(t^{\eta}-0\right)\right. \\
& +\lambda^{f}\left(t^{n}-0\right) f\left(t^{n}-0\right)+\sum_{s=1}^{n} r_{s} \frac{\partial \theta_{s}}{\partial t^{n}} \\
& \left.+\gamma_{\eta} \frac{\partial \Omega^{n}}{\partial t^{\eta}}\right\rfloor \delta t^{\eta}=0 \\
& \text { (8-9s) }
\end{aligned}
$$

for all $\Delta x^{\prime}, \delta r^{\prime} . j=0,1, \ldots, \eta$. Therefore,

$$
\begin{align*}
& \frac{\partial g}{\partial x^{0}}+\lambda^{T}\left(t^{0}+0\right)+\sum_{s=1}^{n} T_{s} \frac{\partial \theta_{s}}{\partial x^{0}} \\
& \quad+\gamma_{0} \frac{\partial \Omega^{0}}{\partial x^{0}}=饣 \\
& \vdots \\
& \frac{\partial g}{\partial x^{\prime}}-\lambda^{T}\left(t^{\prime}-0\right)+\lambda^{T}\left(t^{\prime}+0\right)+\gamma_{j} \frac{\partial \Omega^{\prime}}{\partial x^{\prime}}=0
\end{align*}
$$

$$
\begin{align*}
& \vdots \\
& \frac{\partial g}{\partial x^{n}}-\lambda^{\tilde{r}}\left(t^{n}-0\right)+\sum_{s=1}^{n}=\frac{\partial \theta_{s}}{\partial x^{n}} \\
& +\gamma_{n} \frac{\partial \Omega^{\eta}}{\partial x^{\eta}}=0 \\
& \frac{\partial g}{\partial t^{\eta}}-F\left(t^{0}+0\right)-\lambda^{T}\left(t^{0}+0\right) f\left(t^{0}+0\right) \\
& +\sum_{s=1}^{n} T_{s} \frac{\partial \theta_{s}}{\partial t^{0}}+\gamma_{0} \frac{\partial \Omega^{0}}{\partial t^{0}}=0 \\
& \vdots \\
& \frac{\partial g}{\partial t^{\prime}}+F\left(I^{\prime}-0\right)-F\left(!^{\prime}-U\right) \\
& +\lambda^{T}\left(l^{\prime}-0\right) f\left(t^{\prime}-0\right) \\
& -\lambda^{T}\left(t^{\prime}+0\right) f\left(t^{\prime}+0\right) \\
& +\gamma_{i} \frac{\partial \Omega_{j}}{\partial t^{j}}=0 \tag{8-104}\\
& \vdots \\
& \frac{\dot{o}_{\dot{o}}}{\partial t^{n}}+F\left(t^{n}-0\right)+\lambda^{T}\left(t^{n}-0\right) f\left(t^{n}-0\right) \\
& +\sum_{s=1}^{n} \tau_{s} \frac{\partial A_{s}}{\partial t^{n}}+\gamma_{n} \frac{\partial \Omega^{n}}{\partial t^{\eta}}=0 . \quad(8-105)
\end{align*}
$$

The object is now to eliminate the γ_{i} and r_{s} in order tu obtain explicit conditions on $\lambda(t)$. Postmultiplying Eq. $8-100$ by $f\left(t^{\circ}+0\right)$ and adding Eq. $8-103$ yields

$$
\begin{aligned}
\dot{g}\left(t^{0}+0\right) & -F\left(t^{0}+0\right)+\sum_{s=1}^{n} \tau_{s} \dot{\theta}_{s}\left(t^{0}+0\right) \\
& +\gamma_{0} \dot{\Omega}^{0}\left(t^{0}+0\right)=0
\end{aligned}
$$

whe, e

$$
\begin{aligned}
\dot{g}\left(t^{\prime} \pm 0\right) & =\frac{\partial g}{\partial t^{i}} \\
& +\frac{\partial g}{\partial r^{\prime}} f\left(t^{l} \pm 0 . x\left(t^{\prime} \pm 0\right), u\left(f^{\prime} \pm 0\right), b\right)
\end{aligned}
$$

(8.107)

ARACP 70G-192

$$
\begin{align*}
& \dot{\theta}_{s}\left(t^{\prime} \pm 0\right)=\frac{\partial \theta_{s}}{\partial t^{l}} \\
& +\frac{\partial \theta_{s}}{\partial x^{t}} f\left[t^{l} \pm 0, x\left(t^{\prime} \pm 0\right), u\left(t^{\prime} \pm 0\right), b\right] \tag{8-108}\\
& \text { and } \\
& \dot{\Omega}^{i}\left(t^{l} \pm 0\right)=\frac{\partial \Omega^{\prime}}{\partial t^{i}} \\
& +\frac{\partial \Omega^{I}}{\partial x^{i}} f\left[t^{l} \pm 0, x\left(t^{i} \pm 0\right), u\left(t^{i} \pm 0\right), b\right] .
\end{align*}
$$

Since $\Omega^{0}\left(t^{0}, x^{0}\right)=0$ is to determine t^{0}, the rotal deriva!: with respect to $t^{0}, \dot{\Omega}^{0}\left(t^{0}+0\right)$, should not be zero. Therefore, \% may be determined as

$$
\begin{align*}
& \gamma_{0}=-\frac{1}{\dot{\Omega}^{0}\left(t^{0}+0\right)} \\
& \times\left[\begin{array}{l}
\dot{g}\left(t^{0}+0\right)-F\left(t^{0}+0\right) \\
\\
\left.+\sum_{3=1}^{n} \tau_{3} \dot{\theta}_{3}\left(t^{0}+0\right)\right] .
\end{array} .\right.
\end{align*}
$$

Substituting Eq. 8-110 into Eq. $8-100$ yields

$$
\begin{align*}
\lambda\left(t^{0}+0\right)= & -\frac{\partial g^{r}}{\partial x^{0}} \cdots \sum_{s=1}^{n}: \frac{\partial \theta_{s}^{c}}{\partial x^{0}} \\
& +\frac{1}{\dot{S} \Omega^{0}\left(t^{0}+0\right)}\left[\dot{g}^{\left(t^{0}+0\right)}\right. \\
& -F^{0}\left(t^{0}+0\right) \\
& \left.+\sum_{z=1}^{n} \tau_{s} \dot{\theta}_{s}\left(t^{0}+0\right)\right] \frac{\partial \Omega^{0} T}{\partial x^{0}} \tag{8-111}
\end{align*}
$$

This is theil a tuundary condition on $\lambda(6)$ at $i^{\prime \prime}$

In exactly , he same way, postmultipeng

Eq. 8 -102 by $f\left(f^{\eta}-0\right)$ and adding to Eq. 8.105 yields

$$
\begin{aligned}
& \dot{\bar{G}}\left(t^{\eta}-0\right)+F\left(t^{\eta}-0\right)+\sum_{s \sim:}^{n} \tau_{s} \dot{\theta}_{s}\left(f^{\eta}-0\right) \\
& \dot{r} \gamma_{\eta} \dot{\Omega} \dot{\Omega}^{\eta}\left(f^{\eta}-0\right)=0
\end{aligned}
$$

Solving for γ_{η} and substituting into Eq. 8-10 ${ }^{\circ}$ yields

$$
\begin{aligned}
& \lambda\left(t^{\eta}-0\right)=\frac{\partial g^{T}}{\partial x^{\eta}}+\sum_{s=1}^{n} \tau_{s} \frac{\partial \theta_{s}^{T}}{\partial x^{\eta}} \\
& -\frac{1}{\dot{\Omega}^{\eta}\left(t^{n}-0\right)}\left[\begin{array}{l}
\dot{g}\left(t^{\eta}-0\right)+F\left(t^{\eta}-0\right) \\
\left.\quad+\sum_{i=1}^{n} r_{s} \dot{\theta}_{s}\left(t^{n}-0\right)\right] \frac{\partial \leq 2^{n}}{\exists x^{\eta}}
\end{array}\right.
\end{aligned}
$$

where $\dot{g}\left(t^{\eta}-0\right)$ and $\dot{\theta}_{s}\left(t^{\eta}-0\right)$ are defined in Eqs. 8-107 and 8-108. Eq, 8-112 then serves as a boundary coustion on $\lambda(t)$ at t^{η}.
in order to use Eqs, 8-11: and 8-112 as explicit conditiens on $\lambda(t)$ at t^{0} and t^{η}, the parameters r_{s} must be climinated. This may be accomolisted by alegbraic ne, niputaton in particular cases. To illustrate this idea on a problem which has been treated extensively in the literature (Refs. $5,7,8,9$), consider the case in which a full set of initiai conditions is git n, i.e.,

$$
\begin{equation*}
\theta_{s}\left(t^{0}, x^{0}\right)=0, \quad s=1, \ldots n \tag{8.113}
\end{equation*}
$$

In thr case, Eq. 8.112 yields

$$
\begin{align*}
& \lambda\left(t^{n}-0\right)=\frac{\partial g^{T}}{\partial x^{n}}-\frac{1}{\Omega^{n}\left(t^{n}-0\right)} \\
& \times\left[\dot{g}\left(t^{n}-0\right)+F\left(t^{n}-0\right)\right] \frac{\partial \Omega n^{n}}{\partial x^{n}}
\end{align*}
$$

Eq. 8-111, on the other hand, is just a:-ctor equation with η components which determines $\tau_{1}, \ldots, \tau_{n}$. It gives no explicit information on $\lambda\left(f^{0}+0\right)$.

Now the boundary conditions on $\lambda(t)$ have been determined. It remains,however, to determine jump conditions on $\lambda(t)$ at the intermediate points t^{\prime}. Postmultiplying Eo. 8-101 by $f\left(t^{\prime} \pm 0\right)$ and adding to Eq. 8-104 yields

$$
\begin{align*}
& \dot{g}\left(t^{\prime} \pm 0\right)+F\left(t^{\prime}-0\right)-F\left(t^{\prime}+0\right) \\
& \quad-\lambda^{T}\left(t^{\prime}-0\right)\left[f\left(t^{\prime} \pm 0\right)-f\left(t^{\prime}-0\right)\right] \\
& \quad+\lambda^{T}\left(t^{\prime}+0\right)\left[f\left(t^{\prime} \pm 0\right)-f\left(t^{\prime}+0\right)\right] \\
& \quad+\gamma \dot{\Omega}^{\prime}\left(t^{\prime} \pm 0\right)=0 \tag{8-115}
\end{align*}
$$

where the notation of Eqs. 8-107 through $8-109$ har been used. The theice of hmit from the right or left (the plus or minus sign, respectively) in Ey, $8-115$ is left open for now. One or the other alternative will be chosen for computational conemience.

It is assuased that the condition $\Omega^{\prime}\left(f^{\prime} \cdot x^{\prime}\right)=$ 0 determines t^{l} as a function of x^{\prime}, so it is required that the total c^{\prime} rivative of Ω^{\prime} with respect to $t^{\prime}, \dot{\Omega}^{\prime}\left(t^{\prime} \pm 0\right)$, not be zero. Therefore, fron Eq. 8.115,

$$
\begin{aligned}
Y_{j}= & -\frac{1}{\dot{\Omega}^{\prime}\left(t^{\prime} \pm 0\right)}\left\{\dot{g}\left(t^{\prime} \pm 0\right)+F\left(t^{\prime}-0\right)\right. \\
& -i^{\prime}\left(t^{j}+\mathrm{C}\right) \\
& -\lambda^{t}\left(t^{\prime}-0\right)\left\{f\left(t^{\prime} \pm 0\right) \cdot f\left(t^{\prime}-0\right)\right\} \\
& +\lambda^{T}\left(t^{\prime}+0 ;\left\{f\left(t^{\prime} \pm 0\right)-f\left(t^{\prime}+0\right)\right]\right\}
\end{aligned}
$$

S. Whine his ex ression into Eq. 8.101,

$$
\begin{aligned}
\lambda\left(t^{\prime}+0\right) & -\lambda\left(t^{\prime}-0\right)=-\frac{\partial g^{T}}{\partial x^{\prime}} \quad(3-116) \\
& +\frac{1}{\dot{\Omega}^{\prime}\left(t^{\prime} \pm 0\right)}\left\{\dot{g}\left(t^{\prime} \pm 0\right)+F\left(t^{\prime}-0\right)\right. \\
& -F\left(t^{\prime}+0\right) \\
& -\lambda^{T}\left(t^{\prime}-0\right)\left[f\left(t^{\prime} \pm 0\right)-f\left(t^{\prime}-0\right)\right] \\
+ & \left.\lambda^{T}\left(t^{\prime}+0\right)\left[f\left(t^{\prime} \pm 0\right)-f\left(t^{\prime}+0\right)\right]\right\} \frac{\partial \Omega^{T}}{\partial x^{\prime}}
\end{aligned}
$$

This equation, the boundary conditions at Eqs. 8-111 and 8-114, and the differential equation, Eq. 8-93, are to determine the adjoint variable, $\lambda(t), t^{0} \leqslant t \leqslant t^{\eta}$. Tlie boundary and intermediate conditions on $\lambda(t$, were constructed so that Eq. 8.97 hoids and in lurn, Eq. $8-96$ becomes

$$
\begin{align*}
& \delta Q= \frac{\partial g}{\partial b} \delta b+\int_{t^{\circ}}^{t^{\eta}}\left[\left(\frac{\partial F}{\partial u}+\lambda^{T} \frac{\partial j}{\partial u}\right) \delta u(t)\right. \\
&\left.+\left(\frac{\partial F}{\partial b}+\lambda^{T} \frac{\partial f}{\partial b}\right) s b\right] d t \\
& \text { or } \\
& \begin{aligned}
\delta Q= & {\left[\frac{\partial g}{\partial b}+\int_{t^{\circ}}^{t^{\eta}}\left(\frac{\partial F}{\partial b}+\lambda^{T} \frac{\partial f}{\partial b}\right) d t\right] \delta \dot{t} } \\
& +\int_{t^{\circ}}^{t^{\eta}}\left(\frac{\partial F}{\partial u}+\lambda^{2} \frac{\partial f}{\partial u}\right) \delta u(t) d t . \quad(8-1
\end{aligned}
\end{align*}
$$

This equation meets the objective of this subparagraph, namely, determination of the dependence of δQ on $\dot{o} \dot{o}$ and $\delta u(t)$ explicitly. Since Q was any functiona, thes result can be applied to the particular functionals of the present problem, J and ψ_{a}. To obtan $\delta /$ and

AMCP 706-192

$\delta \psi_{\alpha}$, derint $\lambda^{\prime}(t)$ and $\lambda^{\varphi^{\prime} \alpha}(t)$ as the solution of Eqs. 8.93, 8-1 il, 8-114, and 8-116 with

$$
\begin{equation*}
g=g_{0} \text { and } F=f_{0} \text { for } \lambda^{J}(t) \tag{8-118}
\end{equation*}
$$

and

$$
\begin{equation*}
g=g_{\alpha} \text { and } F=L_{\alpha} \text { for } \lambda^{\psi_{\alpha}}(t) . \tag{8-119}
\end{equation*}
$$

In this notation, Eq. 8-117 yields

$$
\begin{aligned}
\delta J=\left\{\frac{\partial g_{0}}{\partial b}+\right. & \int_{t^{\prime}}^{t^{\eta}}\left[\frac{\partial f_{0}}{\partial b}\right. \\
& \left.\left.+\lambda^{j^{T}}(t) \frac{\partial f}{\partial b}\right] d t\right\} \delta b \\
& +\int_{t^{*}}^{t^{\eta}}\left[\frac{\partial f_{0}}{\partial u}\right. \\
& \left.+\lambda^{J^{T}}(t) \frac{\partial f}{\partial u}\right] \delta u(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
\delta \psi_{a}=\left\{\frac{\partial g_{\alpha}}{\partial b}\right. & +\int_{\theta^{c}}^{\prime^{\eta}}\left[\frac{\partial L_{\alpha}}{\partial b}\right. \\
& \left.\left.+\lambda^{\nu_{a}}(t) \frac{\partial f}{\partial b}\right] d t\right\} \delta b \\
& +\int_{t^{\prime}}^{\prime^{\eta}}\left[\frac{\partial L_{\alpha}}{\partial u}\right. \\
& \left.+\lambda^{\psi_{a}}(t) \frac{\partial f}{\partial u}\right] \delta u(t \times d t
\end{aligned}
$$

For a more compact notation define

$$
\begin{align*}
& \ell^{\prime}=\frac{\partial g_{0}^{T}}{\partial j}+\int_{-}^{t^{\eta}}\left[\frac{\partial f_{0}^{T}}{\partial b}+\frac{\partial f^{T}}{\partial b} \lambda^{J}(t)\right] d t \tag{8-120}\\
& \Lambda^{\prime}(t)=\frac{\partial f_{\rho}^{T}}{\partial u}+\frac{\partial f^{T}}{\partial u} \lambda^{J}(t) \tag{8-121}
\end{align*}
$$

$$
\begin{align*}
& \ell^{\psi / s}=\frac{\partial g_{\alpha}^{T}}{\partial b}+\int_{t^{\circ}}^{t^{\eta}}\left[\frac{\partial L_{\alpha}^{T}}{\partial b}\right. \\
&+\frac{\partial f^{T}}{\partial b} \lambda^{\left.\psi_{\alpha}(t)\right] d t}
\end{align*}
$$

and

$$
\begin{equation*}
\Lambda^{\psi_{\alpha}}(t)=\frac{\partial \Sigma_{\alpha}^{T}}{\partial u}+\frac{\partial f^{T}}{\partial u} \lambda^{\psi \alpha}(t) \tag{2}
\end{equation*}
$$

In this rotation

$$
\begin{equation*}
\delta J=\ell^{J} \tau b+\int_{t^{\circ}}^{t^{\pi}} \Lambda^{J T}(t) \delta u(t) d t \tag{8-124}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta w_{\alpha}=\ell^{\psi_{\alpha}} \delta b+\int_{t^{0}}^{t^{\eta}} \Lambda^{\psi_{\alpha}^{T}}(t) \delta u\left(\left(k_{d} t\right)\right. \tag{8-125}
\end{equation*}
$$

The problem of this paragraph is now in approximately the same state as the problem of par. 8-2 was in Eqs. 8.14 and 8-16. Before proceeding to derive a steepest descent algorithm, however, several cumments are in order.

First, the choice of limit from the right or left was not made in Eq. 8-116. This choice is generally made depending on the distibution of boundary conditions on the state variable. If most of the boundary conditions on $x(t)$ are given at ι°, for example, then most of the boundary conditions on $\lambda(t)$ will be givet, at t^{n}. Since the adjoint equations arc linear, "rperposition techniques may be used to soive the boundary-value problem. These teckniques involve seveas integrations of Eq. 8.93 from t^{η} io t^{0} with different starting conditions at t^{n}. These integrations must account for the lump condition, Eq 8-116. The
integration then proceeds from the right ard Eq. 8-116 should then be used to determine $\lambda\left(t^{\prime}-0\right)$ in terms of $\lambda\left(t^{\prime}+0\right)$ so that the integration may continue. For this reason, the minus sign is chosen in Eq. E-116 so that

$$
\begin{align*}
\lambda\left(t^{\prime}-0\right)= & \lambda\left(t^{\prime}+0\right)+\frac{\partial g}{\partial x^{\prime}} \\
& \cdot \frac{1}{\dot{\Omega}^{\prime}\left(t^{\prime}-0\right)} \dot{g}\left(t^{\prime}-0\right) \\
& +F\left(t^{\prime}-0\right)-F\left(t^{\prime}+0\right) \\
& +\lambda\left(t^{\prime}+0\right)\left(f\left(t^{\prime}-\eta\right)\right. \\
& \left.-f\left(t^{\prime}+0\right)\right\} \frac{\partial \Omega^{\prime} T}{\partial x^{\prime}} \tag{8-126}
\end{align*}
$$

Since the state equations have previously been integrated, $\dot{g}\left(t^{\prime}-0\right)$ and $\dot{\Omega}^{\prime}\left(t^{\prime}-0\right)$ can be computed in Eqs. 8-107 and 8-109.

The second matter that requires discussion is the determination of t^{\prime} and its variation, $j=$ $0.1, \ldots, \eta$. If the state equations form an nitialvalue problem (all initial concitions given) then one can make an estimate for $u(t)$ and b and integrate Eq. 8.93 from t^{0} toward t^{n} (or t^{n} toward t^{c} if all boundary conditions are given at t^{η}). As the integration progresses, $\Omega^{\prime}(t, x)$ can be monitored and the value of t for which it is zero is cailed t^{\prime}. The siturtion is not so easy in case the state equation form a boundary-value problem.

One method of determining t requires that a reasonable estimate of t^{\prime} be available, perhaps from engineering intuition or preliminary analysis. The state equations are then integrated using the engineering estumates for $u(t)$ and b. It is likely that for the solution $x(t)$,

$$
\Omega^{\prime}\left[r^{\prime}, x\left(t^{\prime}\right)\right] \neq i
$$

One might argu: that the function $x(t)$ is close to the actual shate and examine the effect on $\Omega^{\prime}\left[t^{\prime}, x\left(t^{\prime}\right)\right]$ of a!eering t^{\prime}, i.e.,

$$
\begin{align*}
& \delta \Omega^{\prime}\left[t^{\prime}, x\left(t^{\prime}\right)\right]=\frac{\partial \Omega^{j}}{\partial t^{\prime}} \delta t^{\prime} \\
& \quad+\frac{\partial \Omega^{\prime}}{\partial x} \frac{d x}{d t} \delta t^{\prime}=\dot{\Omega}^{j}\left(t^{j} \pm 0\right) \delta t^{\prime} \tag{8.127}
\end{align*}
$$

where the plus or minus sign is chicsen depending on whether δt^{l} should be postive or negative to make $\Omega^{\prime}\left(t^{\prime}+t^{\prime}\right), x\left(t^{\prime}+t^{\prime}\right)=0$. The change δt^{\prime} is then chosen and if it is not too large, the state equations need not be re-integrated. This asgument corresponds to a Newton-type algorithm for the determinatio: of t^{j}. This procedure should be used af ${ }^{2} \cdots$ eviry variation in $u(t)$ and b and subis' • it integration of the state equations, sincs $\alpha, i)$ will be altered with an accompanying $\left\{\frac{1}{2} \mu_{i}\right.$. tion in t^{\prime}.

R.3.3 A STEEPEST DESCENT COM: TIONAL ALGORITHM

The problem oi determining $\delta u\left(f^{\circ}\right.$, wd δb which reduce J and satisfy other con raints will now be solved just as in par ' As in the preceding paragraph, if same,$\left.i^{\prime} u(t)\right]$ or ψ_{α} is less than zero, it will be eque ed. If, on the other hand, $\psi_{\alpha}>0$ or $\left.\phi_{j}: \ldots(t)\right]>0$, then it will be required that

$$
\delta \psi_{a}=-a \psi_{\alpha}
$$

and

$$
\delta \phi_{\beta}=c \phi_{\beta}
$$

where $0<a<1$ and $0<c<1$

AMCP 706-192

just as in par. 8-2, define two sets of indices

$$
A=\left\{\alpha \mid \dot{\psi}_{\alpha}\left[x^{(0} \quad u^{(0)}, \zeta^{(0)}\right]>0\right\}
$$

and

$$
B(t)=\left\{\beta \mid \phi_{\beta}\left[l, z^{(0)}(t) ; 0\right\}\right.
$$

where $u^{(0)}\left(r^{\prime}\right.$ and $b^{(0)}$ are the beginning estimate of the design variable and design parameter, respectively, and $x^{(0)}(t)$ is the assorittul solution of the state equations. Further, define the column vectors of constaint functions

$$
\dot{\psi}=\left[\begin{array}{l}
z_{x} \tag{8-128}\\
\alpha \in A
\end{array}\right]
$$

and

$$
\ddot{\phi}(t)=\left[\begin{array}{c}
\phi_{\beta}\left(t, u^{(0)}(t)\right] \tag{8-129}\\
\beta \in B
\end{array}\right] .
$$

By the argument of par. 8-2, it will be required that

$$
\delta \bar{\psi}=-a \bar{\psi}
$$

and

$$
\begin{equation*}
\delta \bar{\phi}(t)=-\dot{\phi}(t) . \tag{8-131}
\end{equation*}
$$

Using the notation of Eqs. 8 i.2 and 8.123. define the matrices

$$
e^{\nu}=\left[\begin{array}{l}
\rho^{\nu \alpha} \tag{8-13?}\\
\alpha \in A
\end{array}\right]
$$

and

$$
\Lambda^{\psi}(t)=\left[\begin{array}{c}
\Lambda^{\psi_{\alpha, t}} \tag{8-133}\\
\\
\alpha \in,
\end{array}\right]
$$

That is, the columns of ℓ^{ψ} and $\Lambda^{\psi}(t)$ are $\ell^{\psi_{\alpha}}$ and $\Lambda^{\psi_{\alpha}}(t)$ for those α with $\psi_{\alpha}>0$. Now,

$$
\begin{equation*}
\delta J=\ell^{J^{\pi}} \delta b+\int_{0^{0}}^{t^{\eta}} \Lambda^{J^{r}}(t) \delta u(t) d t \tag{8-134}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \bar{\psi}=\ell^{\psi} \delta b+\int_{1^{\circ}}^{t^{\eta}} \Lambda^{\psi^{T}}(t) \delta u(t) d t . \tag{8.135}
\end{equation*}
$$

The problem of this paragraph is now to fird $\delta u(t)$ and $\delta \dot{v}$ to mininize $\delta \prime$, subject to Eqs $8-130$ and $8-131$. Althougi the symbols have a slightly different origin, this problem is precisely the same as that given by Eqs. $8-19$, $8-20$, and $8-25$ of par. 8-2. All the analysts required to determine $\delta u(t)$ and δb follows and Theorem 8.1 tolds. The only difference is that t^{\prime} in Theorer: $8-1$ must be interpreted as t^{η} in the prevent problem.

The algorithm of par. 8-2 may now be given with references to equations of this paragraph.

Algorithm.

Step 1. Make an engineering estimate $u^{(0)}(t), b^{(0)}$ of the optimum design function and parameter.

Step 2. Estumate $t^{0} .1^{1} \ldots . .1^{n}$, and solve Eq. $8.8=$ or $x^{0}(t)$

Ster 3. Adjust t^{\prime} as requaned by the discussion below tq. 8.127 and recompite $x^{0}(t)$ if requred

Step 4. Check constrants and form $\bar{\psi}$ and $\bar{\phi}(t)$ of Eqs. 8-i28 and 8-12.9.

Step 5. Solve the differential equation, Eq. 8-92, with boundary and intermediate conditions of Eqs. 8-111, $8-114$, and $8-116$. The solutions corresponding to the functions, Eqs. 8-118 and 8-119, yicld $\lambda^{J}(t)$ and $\lambda^{\downarrow \alpha}(t)$, respectively.

Step 6. Compute $\ell^{J}, \Lambda^{J}(t), \ell^{\psi}, \Delta^{\nu}(t)$, and $\Lambda^{\phi}(t)$, in Eqs. 8-120, 8-121, 8-132. 8-133, and 8-34, respeutively.

Step 7. Choose the correction factors a and c in Eqg. 8-130 and 8-131.

Step 8. Compute $M_{\psi}, M_{\psi \psi}$, and $M_{\psi \phi}$ in Eqs. 8-38, 8-39, and 8-40.

Step 9. Choose $\gamma_{0}>0$ and compute γ and $\mu(t)$ oi Eqs. $8-43$ and 8-35. If ,ny components of γ, with $\alpha>r^{\prime}$, or $l^{\prime}(t)$, with $\beta>q^{\prime}$ are ne; ative, redefine ψ and $\dot{\phi}(t)$ by deleting corresponding terms and return to siep 6.

Step. 10. Cr mpute $\delta u^{\prime}(t), \delta u^{2}(t), \delta b^{2}$, and δb^{2} of Eqs. $8-44$ through 8-47

Step. 11. Compute

$$
\begin{gathered}
\begin{aligned}
u^{(1)}(t)=u^{(0)}(t) & -\frac{1}{2 \gamma_{0}} \delta u^{1}(t) \\
& +\delta u^{2}\left(r^{\prime}\right.
\end{aligned} \\
b^{(1)}=b^{(0)}-\frac{1}{2 \gamma_{0}} \delta b^{1}+\delta b^{\prime} .
\end{gathered}
$$

Step 12. If the constraints are satisfied and $\delta u^{1}(t)$ and δb^{1} are sutacia tily
small, terminate. Otherwise, proceed to Step 13.

Step 13. Adjust $t^{0}, t^{1}, \ldots, t^{r}$ as required by the discussion below Eq. 8-127. Return to Step 2 with $u^{(0)}, b^{(0)}$ being replaced by $u^{(1)}$ and $b^{(1)}$.

For an alternate development of the algorithon in the spectal case of a fu!! set of initial conditions, set Refs. 5 and 7. Siveral example problems are solved in Ref. 5 .

8-4 STEEPEST DESCENT PROGRAMMING FOR A CLASS OF SYSTEMS DE. SCRIBED BY PARTIAL DIFFIEREN. TIAL EQUATIONS

8-4.1 THF CLASS OF PROBIEMS CON. SIDERET,

Thus far, all proble. " considered have had their stute variable srecified by algebraic equations or boundary-value problems is ordinary differential equations. It is possible, however, that the state of tlas system: being considered is governed by a boundary-value probrem wilh partial differentia? equations. In such cases, the state and design variables are functions of more than one independent variable. One may then think of the design variable as being distributed oiar an area, volume, or higher dimensional space Fol this reason, such problems have been described as distributed parameter systems

A great deal of work has been done on
 time-like variable (Refs. 12.13); ic., a varable whech makes the governing differental inuation hyperbolic or parubohc. In thes paragraph, :onsideration will be limted to static problems such as equilbrimm of nlates, shells,

ARMCP 706-192

etc. These problems are described by linear, eliptic, partial differential equations (Ref. 1).

The boundary-value problem treated will be denoted

$$
\begin{align*}
& L(u, b)[z]=Q(x, u, b), x \in S z \tag{8-136}\\
& B(v, b)[z]=q(x, v, b), x \in \Gamma \tag{8-137}
\end{align*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{T}$ is the independent variable which ranges over the domain $\Omega\}$ in R^{k} with boundary Γ. The vector $u(x)=$ $\left\{u_{1}(x), \ldots, u_{m}(x)\right\}^{T}$ is the design variable cuer S., $v(x)=\left[\nu_{1}(x), \ldots, \nu_{\tau}(x)\right]^{T}$ is the design variable over Γ (boundary design), and $b=$ $\left(b_{1}, \ldots, b_{y}\right)^{T}$ is the design parameter. The state variable $z(x)=\left\{z_{1}(x), \ldots, z_{n}(x)\right\}^{T}$ is to be determined by the boundary-value problem, Eqs. 8-i 36 and $8-137$, which is linear once u, v, and b are specified. It is important to note, however, that the problem depends in a nonlinear way on u, v, and b.

An example of the form of the differential operators $L(u, b)\{z\}$ and $B(\nu, b)|z|$ is

$$
\begin{align*}
L(u, b)[z] & =\sum_{|a|<\pi_{i}} a_{a}(x, u, b) \\
& \times \frac{\partial|\alpha| z}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{k}^{\alpha_{k}}} x \in \Omega \tag{8-138}
\end{align*}
$$

and

$$
\begin{align*}
\Delta(v, b) \mid z\} & =\underset{|\beta|<\eta}{\Sigma} b_{\beta}(x, v, b) \\
& \times \frac{i \mid \beta_{1}}{d x_{1}^{\beta_{1}} \ldots \partial x_{k}^{\beta_{k}}}, x \in 1 \tag{8-139}
\end{align*}
$$

where

$$
\alpha=\left(\alpha_{1}, \ldots . \alpha_{k}\right)^{r}, \beta:\left(\beta_{1}, \ldots, \beta_{k}\right)^{r}
$$

$$
|\alpha|=\alpha_{1}+\ldots+\alpha_{k},|\beta|=\beta_{1}+\ldots+\beta_{k} .
$$

The object of the problem is to de:ermine $u(x), x \in \Omega, \nu(x), x \in \Gamma$, and b such that

$$
\begin{align*}
J= & \int_{\Gamma} g_{0}(x, z, v, b) d \Gamma \\
& +\iint_{\Omega} f_{0}(x, z, u, b) d \Omega \tag{8-140}
\end{align*}
$$

is a minimum subject to the constraints of Eqs. 8-136 and 8.157,
$\psi_{\alpha}=\int_{r} g_{a}(x, z, v, b) d \Gamma$
$+\iint_{\Omega} i_{\alpha}(x, z, u, b) d \Omega=0$,
$\left.\begin{array}{rl}\alpha & =1, \ldots, r^{\prime} \\ \psi_{\alpha} & =\int_{r} g_{a}(x, z, v, b) d \Gamma \\ & +\int_{\Omega} L_{\alpha}(x, z, u, b) d \Omega<0, \\ \alpha & =r^{\prime}+1, \ldots, r\end{array}\right\}$
$\left.\begin{array}{l}\phi_{i}(x, u)-0, x \in \Omega, i=1, \ldots, \xi^{\prime} \\ \phi_{i}(x, u)<0, x \in \Omega, i=\xi+1, \ldots, \xi\end{array}\right\}$
and
$\left.\begin{array}{l}\omega_{j}(x, y)=0, x \in \Gamma, j \cdot i, \ldots, \zeta^{\prime} \\ \omega_{1}\left(x, v v^{\prime}<0, x \in \Gamma, j=\zeta^{\prime}+1, \ldots, \zeta .\right.\end{array}\right\}$
The method of solving this probiem will be
 Ah estimate $u^{(0)}(x)$, ${ }^{(0)}(x)$, and $b^{(0)}$ will be made and changes sought which reduce J, subject to the constraints of the problem. Before desirable changes in $u^{(n)}, y^{(0)}$, and $b^{(0)}$ may be determined, of course, their

AMCP 706-102
effect on function in the probiem must be exanined.

8-4.2 EFTECT OF SMALL CHANGES IN DE:㴗N VARIABLES AND PARAME-「ERS

It will be assumea in the following that the boundary-value problew, Eqs. 8-136 and $8 \cdot 137$, is well-behaved in the seese that small changes δu in $u^{(0)}, \delta v$ in $\nu^{(0)}$, and $\delta \delta$ in $b^{(0)}$ yield a new solution $z^{(0)}+\delta_{z}$ (where $z^{(0)}$ is the solution corresponding to the estimated design functions and parameters), where δz is small.

To first order, δz must satisfy the linearned boundary-value problem.

$$
\begin{align*}
L\left[u^{(0)}, b^{(0)}\right]\left(\delta_{z}\right) & \left.+\Delta_{u} L\left[u^{(0)}, b^{(0)}\right]!z^{(0)}\right] \delta u \\
& +\Delta_{b} L\left[u^{(0)}, b^{(0)}\right]\left\{z^{(0)}\right] \delta b \\
& =\frac{\partial Q}{\partial u}\left[x, u^{(0)}, b^{(0)}\right] \delta u \\
& +\frac{\partial Q}{\partial b}\left[x, u^{(0)}, b^{(0)}\right] \delta b(8-14 \tag{8-144}
\end{align*}
$$

for $x \in \Omega$ and

$$
\begin{align*}
भ\left[\nu^{(0)}, b^{(0)}\right](\delta z) & +\Delta_{v} B\left[v^{(0)}, b^{(0)}\right]\left[z^{(0)}\right] \delta v \\
& +\Delta_{b} B\left[v^{(0)}, b^{(0)}\right]\left[z^{(0)}\right] \delta b \\
& =\frac{\partial q}{\partial \nu}\left[x, v^{(0)}, b^{(0)}\right] \delta v \\
& +\frac{\partial q}{\partial b}\left[x, v^{(0)}, b^{(0)}\right] \delta 0 \tag{8-145}
\end{align*}
$$

for $x \in \Gamma$, where
$\Delta_{v}, i(x, u, b)[z]=\frac{\partial}{\partial u} L(x, u, b)[z]$
$\Delta_{b} L(x, u b)[z]=\frac{\hat{c}}{\partial b} L(x, u, b)[z]$
$\Delta_{v} B(x, v, b)[z]=\frac{\partial}{\partial v} B(x, v, b)[z]$
$\Delta_{b} B(x, y, b)[z]=\frac{\partial}{\partial b} B(x, y, b)[z]$
$(8-146)$

Fo: convenience in the following development, the arguments of L and B will always be taken as $u^{(0)}, \nu^{(0)}$, and $\dot{i}^{(0)}$.

The functionais J and ψ_{α} are of the same general form, so, for their analysis defint

$$
\begin{equation*}
P=\int_{\Gamma} g(x, z, v, b) d \Gamma+\iint_{\Omega} F(x, z, u, b) d \Omega . \tag{8-147}
\end{equation*}
$$

Once the dependence of P on changes in u, v and b is determined, the result may be applied directly to J and ψ_{α}.

To first order terms.

$$
\begin{align*}
P= & \left.\int_{i}^{\prime} \frac{\partial g}{\partial z} \delta z+\frac{\partial g}{\partial v} \delta v+\frac{\partial g}{\partial b} \delta b\right) d \Gamma \\
& +\iint_{\Omega}\left(\frac{\partial F}{\partial z} \delta z+\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial b} \delta b\right) d \Omega . \tag{8-148}
\end{align*}
$$

In ordcr to make use of Eq. 8.148 in the determination of $\delta u, \delta v$, and δb, it is desirable to elanatate explicit dependence on δz. This is Jone through use of the adjoint operator L*defined by

$$
\begin{gather*}
\iint_{\Omega}\left\{\lambda^{T} L(u, b)[\delta z]-\delta z^{T} L^{*}(u, b)[\lambda]\right\} d \Omega \\
=\int_{\Gamma}[\lambda]^{T} C[\delta z] d \Gamma \quad(8-149) \tag{8-149}
\end{gather*}
$$

$\dddot{w}^{\prime} . .\left[\{\lambda]\right.$ and $\left.C_{i}^{\prime o} z\right]$ are ciffecicntial cpeâto lhe form of the operators A, C, and L^{*} is de ter mined by integrating $\lambda^{T} L(u, b)[\delta z]$ by parts.

Putting

$$
\begin{equation*}
L(u, b)[\lambda]=\frac{\partial F^{T}}{\partial z} \tag{8-150}
\end{equation*}
$$

Eq. $8-148$ becomes

$$
\begin{gathered}
\delta P=\int_{\Gamma}\left\{\frac{\partial g}{\partial z} \delta z-A\left[\lambda^{T}\right] C[\delta z]+\frac{\partial g}{\partial v} \delta v\right. \\
\left.+\frac{\partial g}{\partial b} \delta b\right\} d \Gamma \\
+\iint_{\Omega}\left\{\lambda^{T} L(u, b)[\delta z]+\frac{\partial F}{\partial u} \delta u\right. \\
\end{gathered}
$$

Substituting from Eq. $8-144$ for $L(u, b) \mid \delta z]$, this is

$$
\begin{aligned}
& \delta \beta \quad \iint_{\Omega}\left\{\frac{\partial F}{\partial u}-\lambda^{r} \Delta_{u} L(u, b)[z\}\right. \\
& \left.+\lambda^{T} \frac{\partial Q}{\partial u}\right\} \delta u \\
& +\left\{\frac{\partial F}{\partial b}-\lambda^{T} \Delta_{b} L(u, b)\{z\}\right. \\
& \left.\left.+\lambda^{\tau} \frac{\partial Q}{\partial \dot{\partial}}\right\} \delta b\right) d \Omega \\
& +\int_{r}\left\{\frac{\partial g}{\partial z} \delta z-A(\lambda)^{T} C i \delta z\right]+\frac{\partial g}{\partial v} \delta v \\
& \left.+\frac{\partial g}{\partial b} \delta b\right\} d \Gamma \\
& \text { (8.151) }
\end{aligned}
$$

The objective now is to eliminate explicit dependence of δP on δz. This may be done by requiring that

$$
\begin{equation*}
\left.\frac{\partial g}{\partial z} \delta z-X_{1}\right]^{T} C[\delta z] \tag{8.152}
\end{equation*}
$$

be explicitly independent of δz for all δz satisfyir, Eq. 8-145. This may be in'erpreted as requaring that on Γ certain components of δz be determined from Eq. 8.145 in terms of $\delta v, \delta b$, and the remaining δz. The coefficients of all components of δz remaining in Eq. \$-151 must then be set equal to zero. These equations will then yield boundary conditions for $\lambda(x)$.

Assuming all this calculation has been completed and $\lambda(x)$ determined, Eq. 8-151 may be written as

$$
\begin{aligned}
& \begin{aligned}
\delta P=\iint_{\Omega} \Lambda^{T}(x) \delta u d \Omega & +\int_{\Gamma} \Pi^{T}(x) \delta v d \Gamma \\
& +\delta^{r} \delta \zeta
\end{aligned} \\
& \text { Where }
\end{aligned}
$$

$$
\Lambda(x)=\frac{\partial F^{T}}{\partial u}-\Delta_{u} L(u, b)\{z] \lambda+\frac{\partial Q^{T}}{\partial y} \lambda
$$

$\Pi(.)=$. coefficient of δv in Eq. $8-151$ after substitution

$$
\begin{aligned}
\ell=\iint_{\Omega}\left\{\frac{\partial F^{T}}{\partial b}\right. & \cdot \Delta_{b} L(u, b)[z] \lambda \\
& \left.+\frac{\partial Q^{T}}{\partial b} \lambda\right\} u \Omega
\end{aligned}
$$

$+\int$ \{corfficient of $\delta \dot{0}$ in Eq $8-151$
r after substutution)dr

By putting

$$
\begin{equation*}
g=g_{0}, F=f, \tag{8-154}
\end{equation*}
$$

and

$$
\begin{equation*}
g=g_{\alpha}, F=L_{\alpha} \tag{8.155}
\end{equation*}
$$

onc obtains

$$
\begin{align*}
\delta J=\iint_{\Omega} \Lambda^{\prime} r(x) \delta u d \Omega & +\int_{\mathrm{F}} \Pi^{J^{T}}(x) \delta v d \Omega \\
& +{\ell^{J}}^{T} \delta b \quad(8-156) \tag{8-156}
\end{align*}
$$

and

respectively.
The expressions, Eqs. 8.156 and 8.157 , give the desired explicit dependence of δJ ard $\delta \psi_{a}$ on $\delta u, \delta v$, and δb. The problem is now reduced to determination of $\delta u, \delta r$, and δb which give the grea est reduction in J stibject to the constraints of the problem

8-4.3 A STEEPEST DESCENT COMPUTA. TIONAL ALGORITHM

The provedure will now be to choose δu, δv, and δb so as to minimize $\delta /$ subject to the constrants Eqs. $8-141$ through 8.143 , just a in pars $8-1$ through 8.3 In order to insure Ea 8-141, detine

$$
\bar{\psi}=\left[\begin{array}{l}
\psi_{\alpha} \tag{8-158}\\
\\
\mu \in A
\end{array}\right]
$$

> where

$$
\begin{equation*}
A=\left(\alpha \mid \psi_{\alpha}>0\right) \tag{8-159}
\end{equation*}
$$

It will be required that

$$
\begin{equation*}
\delta \bar{\psi}=-C_{5} \bar{\psi} \tag{8-160}
\end{equation*}
$$

where C_{1} is a constant between zero and one. The idea here is to drive ψ_{α} toward zero if a constraint is violated or will be violated by a change in the design variables or parameters.

For convenience in later de'elopment, define

$$
\left.\begin{array}{c}
\Lambda^{\psi}(x)=\left(\Lambda^{\nu \alpha} ; \alpha \in A\right) \tag{8-161}\\
\Pi^{\nu}(x)=\left(I^{\nu \alpha} ; \alpha \in A\right) \\
Q^{\nu}=\left(Q^{\nu \alpha}, \alpha \in A\right)
\end{array}\right\}
$$

In this notation,

$$
\delta \tilde{\psi}=\iint_{\Omega} \Lambda^{\dot{\nu}}(x)^{T} \delta u d \Omega
$$

$+\int_{V} \Pi^{\nu^{\top}}(\kappa) \delta y^{r} d \Gamma^{\top}+\ell^{\nu} \delta b$.
(8.162)

Likewise, definc

$$
\dot{\phi}(x)=\left[\begin{array}{c}
\psi_{1} \tag{8-163}\\
1 \in n(\cdots)
\end{array}\right]
$$

AMCP 7O6-192
and

$$
\bar{\omega}(x)=\left[\begin{array}{c}
\omega_{j} \tag{8-164}\\
j \in E(x)
\end{array}\right]
$$

where

$$
\begin{equation*}
D(x)=\left\{i \mid \phi_{1}(x)>0\right\} \tag{8-165}
\end{equation*}
$$

and

$$
\begin{equation*}
E(x)=\left[j \mid \omega_{j}(x)>0\right] \tag{8.166}
\end{equation*}
$$

It will be required that

$$
\begin{equation*}
\delta \bar{\delta}(x)<-C_{2} \bar{\phi}(x), \quad x \in \Omega \tag{8-167}
\end{equation*}
$$

and

$$
\delta \bar{\omega}(x)<-C_{3} \overline{u^{\prime}}(x), x \in \Gamma
$$

where

$$
\begin{align*}
& 0<C_{2}<1 \text { and } 0<C_{3}<1 \\
& \delta \bar{\phi}(x)=\frac{\partial \bar{\phi}}{\partial u}(x) \delta u(x)
\end{align*}
$$

and

$$
\begin{equation*}
\delta \bar{\omega}(x)=\frac{\partial \bar{\omega}}{\partial \nu}(x) \delta v(x) \tag{8.170}
\end{equation*}
$$

Before determining $\delta u, \delta \nu$, and $\delta b, r$ device should be introduced to insure that these quantities are small as is required in order that the preceding first order analysis is a good approximation to realty. The engineer snould choose positive definite weighting matrices $w_{u}(x), w_{v}(x)$, and w_{b} su as to associate a relative importance to all the variables. It is then required that

$$
\begin{aligned}
d P^{2}= & \iint_{\Omega} \delta u^{T} W_{u} \delta u d \Omega \\
& +\int_{\Gamma} \delta \nu^{T} W_{v} \delta v d \Gamma+\delta b^{T} W_{\dot{j}} \delta b
\end{aligned}
$$

(8-171)
where $d P$ is "small". The choice of $d P$ will be discusce? later.

The design variables and parameter, $\delta u, \delta y$ and δb, are now to be chosen to minimize $5 J$ of Eq. 8-156 subject t Eqs. 8-160, 8-167, :-168, and 8-171.

A multiplier rule of Liusternik ain: Sobolev, Ref. 14, page 209, will now be applisd to the gre in problem. It guarantees the existence 0 . multipliers, $\mu(x), x \in \Omega, \mu_{l}(x)$ $>0, l>\xi^{\prime}, \nu(x), x \in \Gamma, \nu_{j}(x)>0, j>\zeta^{\prime}, \gamma, \gamma_{\alpha}$ $>0, \alpha>r^{\prime}, \lambda_{0}>0$, and γ_{0} such that

$$
\begin{equation*}
\delta(\delta \vec{J})=0 \tag{-172}
\end{equation*}
$$

for all $\delta u, \delta v$ and δb, where

$$
\delta \bar{J}=\iint_{\Omega}\left[-\grave{\lambda}_{0} \Lambda^{\prime}(x)-\gamma^{T} \Lambda^{\nu}(x)\right.
$$

$$
\begin{gathered}
-\gamma_{0} \delta u^{r} W_{u} \\
\left.-\mu^{T}(x) \frac{\partial \bar{\phi}}{\partial u}\right] \delta u d \Omega \\
+\int_{V}\left[-\lambda^{0} \Pi^{\prime}{ }^{T}(x)-\gamma^{r} \Pi^{\mu^{T}}(x)\right. \\
-\gamma_{0} \delta v^{T} W_{\nu} \\
\left.-\nu^{T}(x) \frac{\partial \tilde{\omega}}{\partial v}\right] \delta v d \Gamma
\end{gathered}
$$

$$
+\left[\begin{array}{lll}
-\lambda_{0} \varrho^{T} & \gamma^{T} \ell^{\nu} & -\gamma_{0} \delta b w_{i}
\end{array}\right] \delta b
$$

$$
(8-173)
$$

Using δJ of Eq. 8-173 in Eq. 8-172

$$
\begin{aligned}
& \delta(\delta \bar{J})=0=\iint_{\Omega}[-\lambda_{0} \Lambda^{J^{T}}(x) \\
&-\gamma^{r} \Lambda^{\psi^{T}}(x) \\
&-2 \gamma_{0} \delta u^{T} W_{u} \\
&\left.-\mu^{T}(x) \frac{\partial \dot{\phi}}{\partial u}\right] \delta^{z} u d \Omega \\
&+\int_{\Gamma}\left[-\lambda_{0} \Pi^{s T}(x)\right.
\end{aligned}
$$

$$
-\gamma^{r} \Pi^{\nu^{T}}(x)-2 \gamma_{c} \delta v^{r}{ }_{v}
$$

$$
\left.-\nu^{T}(x) \frac{\partial \tilde{\omega}}{\partial \nu}\right] \delta^{2} v d \Gamma
$$

$$
+\left[-\lambda_{0} \mathcal{Q}^{T}-\gamma^{T} \varrho^{\psi}\right.
$$

$$
\begin{equation*}
\left.-2 \gamma_{0} \delta b k_{b}^{\prime}\right] \delta^{2} b \tag{8-17i}
\end{equation*}
$$

for all $\delta^{2} u(x), x \in \Omega, \delta^{2} v(x), x \in \Gamma$, and $\delta^{2} b$. This implies

$$
\begin{align*}
& -\lambda_{0}^{J}(x)-\Lambda^{\nu}(x)-2 \gamma_{0} w_{u} \delta u(x) \\
& -\frac{\partial \dot{\phi}^{T}}{\lambda u} \mu(x)=0 \tag{8.175}
\end{align*}
$$

for $x \in \Omega$

$$
\begin{align*}
& -\lambda_{0} \Pi^{J}(x)-\Pi I^{\dot{\omega}}(x) \gamma-2 \gamma_{0} W_{v} \delta v(x) \\
& -\frac{\partial \bar{\omega}}{\partial r} \nu(x)=0
\end{align*}
$$

for $x \in \Gamma$, and

$$
\begin{equation*}
-\lambda_{0} e^{J} \quad \ell^{\downarrow} \gamma \quad 2 \gamma_{0}: v_{b} b=0 \tag{8-177}
\end{equation*}
$$

At this point it is assumed that the problem is normal so that $\lambda_{0}=1$ may be chosen. Eqs. 8-175 through 8-177 yield

$$
\begin{align*}
& \delta u(x)=\frac{1}{2 \gamma_{0}} W_{u}^{-1}(x) \\
& x\left[-\Lambda^{J}(x)-\Lambda^{\psi}(x) \gamma-\frac{\partial \dot{\phi}^{T}}{\partial u} \mu(x)\right] \\
& x \in \Omega \tag{8.178}
\end{align*}
$$

$\delta \nu(x)=\frac{1}{2 \gamma_{0}} w_{r}^{-1}(x)$
$x\left[-\Pi^{J}(x)-\Pi^{\psi} \gamma\right.$
$\left.-\frac{\partial \tilde{\omega}^{T}}{\partial \nu} \nu(x)\right], x \in \Gamma$
and

$$
\delta b=\frac{1}{2 \gamma_{0}} H_{s}^{-1}\left(\rho^{J}-\nabla^{\psi}\right.
$$

Asstme for the present that Eqs. 8-167 and 8-168 are equalities. Substituting Eqs. 8-178 and 8.179 into Eqs. $8-167$ and $8-168$ yieids

$$
\frac{1}{2 \gamma_{0}} \frac{\partial \bar{\phi}}{\partial u} \|_{u}^{-1}\left(\Lambda^{J}-\Lambda^{\nu} \gamma-\frac{\partial \bar{\varphi}^{T}}{\partial u} \mu\right)=
$$

$C_{2} \bar{\phi}, x \in \Omega$
and

$$
\begin{aligned}
& \frac{1}{2 \gamma_{0}} \frac{\partial \dot{\omega}}{\partial r} w_{1}^{\prime}\left(H^{\prime} H^{v} \gamma\right. \\
&\left.\frac{\partial \bar{\omega}^{\prime}}{\partial r} \nu\right)=c ; \dot{\omega} \quad x \in I
\end{aligned}
$$

ANCP 706－192

since w_{u}^{-1} and ψ_{y}^{-1} are positase definite，the matrices（ $\partial \dot{\phi} / \partial u$ ）$w_{u}^{-1}\left(\partial \dot{\phi}^{T} / \partial u\right)$ and（ $\partial \dot{\omega} / \partial 川$ ） $W_{v}^{-1}\left(\partial \dot{u}^{T} / \partial v\right)$ are pocitive semi－definite．It will be assumed that they are positive definite and hence nonsingular．In case $\bar{\phi}$ or $\dot{\omega}$ is empty，thin the terms maltiplying μ and ν do not exist．In th：s case simply define $\mu=\nu=0$ and $(\partial \dot{\phi} / \partial u) W_{k}^{-1}\left(\partial \dot{\phi}^{T} / \partial u\right)=(\partial \dot{\omega} / \partial v) W_{v}^{-1}$ $\left(\partial \omega^{2} / \partial \nu\right)=1$ ．in any ci ic．

$$
\begin{align*}
\mu(x)= & \Lambda^{\phi^{-1}}\left[2 \gamma_{0} C_{2} \bar{\phi}+\frac{\partial \dot{\phi}}{\partial u}-w_{u}^{\prime-}\right. \\
& \left.\times\left(-\Lambda^{\prime}-\Lambda^{+} \gamma\right)\right], x \in \Omega \tag{8-181}
\end{align*}
$$

where

$$
\Lambda^{\rho}=\frac{\partial \dot{\partial}}{\partial u} W^{-1} \frac{\partial \dot{\phi}^{T}}{\partial u}
$$

and

$$
\begin{array}{r}
v(x)=\Lambda^{\omega^{-1}}\left[2 \gamma_{0} C_{3} \dot{\mu}+\frac{\partial \dot{\omega}}{\partial v} w_{v}^{-1}(-I!\right. \\
\left.\left.-x^{\prime} \gamma\right)\right], x \equiv 1 \quad(2-182) \tag{9.182}
\end{array}
$$

where

$$
\Lambda^{\omega}=\frac{\partial \bar{\omega}}{\partial r} w_{v}^{-1} \frac{\partial \bar{u}^{r}}{\partial v}
$$

Substituting from Eqs．8－181 and 8－． 82 into Egs． 8.178 and $8-1^{-1}$ ，yields

$$
\begin{aligned}
& \delta u(x)=\frac{1}{2 \gamma_{0}} W_{u}^{\prime-}\left[\left(l-\frac{\partial \tilde{\phi}^{r}}{\partial u} \Lambda^{\theta^{-1}}\right.\right. \\
&\left.\frac{\partial \dot{\phi}}{\partial u} V_{u}^{-1}\right) \\
& \times\left(\cdots \Lambda^{J}-\Lambda^{2} \gamma\right) \\
&\left.-\frac{\partial \phi^{T}}{\partial u} \Lambda^{\phi^{-1}} \sim \gamma_{0} r_{i} \bar{\phi}\right]: x \in \Omega
\end{aligned}
$$

（8．18．3）

$$
\begin{aligned}
\delta v(x)= & \frac{1}{2 \gamma_{0}} w_{v}^{-1}\left[\left(1-\frac{\partial \bar{\omega}^{T}}{\partial v} \Lambda^{\omega}{ }^{-1}\right.\right. \\
& \left.\frac{\partial \tilde{\omega}^{\bar{\omega}}}{\partial v} w_{v}^{-1}\right) \\
& \times\left(-\Pi^{J}-\Pi I^{\psi} \gamma\right) \\
- & \left.\frac{\partial \tilde{\omega}^{T}}{\partial v} \Lambda^{\omega^{-i}} 2 \gamma_{0} C_{3} \dot{\omega}\right], x \in \Gamma
\end{aligned}
$$

In order to determine γ ，these expressions are substituted into Eq．8－160．Using Eq．8－182， the resultirg equation is

$$
\begin{align*}
& -\frac{1}{2 \gamma_{0}} M_{\psi J}-\frac{1}{2 \gamma_{0}} M_{4 \psi} \div-C_{2} M_{\psi 0} \\
& -C_{3} M_{\psi j}=-C_{1} \dot{\psi-1} \tag{8-185}
\end{align*}
$$

where

$$
\begin{align*}
& M_{\psi J}=\iint_{\Omega} \Lambda^{L} W_{u}^{-1}\left(1-\frac{\partial 耳^{T}}{\partial u} \Lambda^{\epsilon^{-1}}\right. \\
& \left.\times \frac{\partial \bar{\phi}}{\partial u} \cdot w_{u}^{-1}\right) \Lambda^{j} d \Omega \\
& +\int_{\Gamma}^{\dot{*}} \Pi^{\dot{*}} w_{1}^{-1}\left(i-\frac{\partial \bar{\omega}^{T}}{\partial v} \Lambda^{\psi^{-1}}\right. \\
& \left.\times \frac{\partial \dot{\omega}}{\partial v} W_{v}^{-1}\right) \mu^{J} d V^{\prime} \\
& \rightarrow \mathbb{C l}^{\top} W_{b}^{\prime} Q^{j} \tag{8-186}
\end{align*}
$$

$$
\begin{align*}
& M_{\nu \downarrow}=\iint_{\Omega} \Lambda^{\nu} w_{u}^{-1}\left(I-\frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}}\right. \\
& \left.\times \frac{\partial \tilde{\phi}}{\partial u} W_{u}^{-1}\right) \Lambda^{\psi} d \Omega \\
& +\int_{r} \Pi^{\psi} H_{y}^{-1}\left(I-\frac{\partial \dot{\omega}^{T}}{\partial \nu} \Lambda^{\psi^{-1}}\right. \\
& \left.\times \frac{\partial \bar{\omega}}{\partial v} w_{v}^{-1}\right) \mathbb{1}^{\psi} \\
& +Q^{\psi} w_{b}^{-1} \ell^{\psi} \tag{8-187}\\
& M_{\psi_{\phi}^{-}}=\iint_{h} \Lambda^{\psi^{T}} w_{u}^{-1} \frac{\partial \dot{\phi}^{T}}{\partial u} \Lambda^{-1} \ddot{\phi} d \Omega \tag{8-188}
\end{align*}
$$

and
$M_{\nu: J}=\int_{V} \Pi^{\psi^{T}} W_{v}^{-1} \frac{\partial \dot{\omega}^{T}}{\partial v} \Lambda^{\omega^{-1}} \dot{\omega} d \Gamma$.

It was shown in par. $8-2$ that the matrices in the integrands for $\mathcal{A}_{*}{ }_{\nu}$ are positive semidefinite. Therefore, $M_{3 \nu}$ is at least positive serni-definite. It will be assuned in what follows that $M_{\psi \sim}$ is positive definite and, therefore, noasinguiar. Solving Eq. 8.185 for γ then yields

$$
\begin{align*}
\gamma= & M_{\psi \psi}^{-1}\left[2 \gamma _ { 0 } \left(C_{1} \dot{\psi}-\left(A_{\psi \dot{o}}-C_{3} A_{\psi \dot{\omega}}^{\prime}\right)\right.\right. \\
& \left.-M_{\psi j}\right] . \tag{8-190}
\end{align*}
$$

Subs ${ }^{\prime}$ ituting γ fiom Eq. $8-190$ into Eq 8-180, Eqs. 8-183, and 8-184 7 leld

$$
\begin{equation*}
\delta u(x)=-\frac{1}{2 \gamma_{0}} \delta u^{\prime}(x)+\delta u^{2}(x) \tag{8.101}
\end{equation*}
$$

$\delta v(x)=-\frac{1}{2 \gamma_{0}} \delta \nu^{1}(x)+\delta y^{2}(x)$
and
$\delta b=-\frac{1}{2 \gamma_{0}} \delta b^{1}+\delta b^{2}$
where

$$
\begin{aligned}
\delta u^{\prime}(x) & =w_{u}^{-1}\left(l-\frac{\partial \tilde{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\right) \\
& \times\left(\Lambda^{J}-\Lambda^{\psi} M_{\psi \psi}^{-1} M_{\psi J}\right), x \in \Omega \quad(8-194! \\
\delta u^{2}(y) & =W_{u}^{-1}\left(I-\frac{\partial \phi^{T}}{\partial u} \Lambda^{\phi^{-1}} \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\right)
\end{aligned}
$$

$$
\times\left[\Lambda ^ { \psi } M _ { \psi \psi } ^ { - 1 } \left(\cdots C_{1} \tilde{\psi}+C_{2} M_{\psi \dot{\phi}}\right.\right.
$$

$$
\left.\left.+C_{3} M_{v \bar{\omega}}\right)\right]
$$

$$
\cdots C_{2} W_{u}^{-1} \frac{\partial \bar{\phi}^{T}}{\partial u} \Lambda^{\phi^{-1}} \dot{\phi}, x \in \Omega
$$

$$
\delta v^{1}(x)=w_{\psi}^{-1}\left(I-\frac{\partial \bar{\omega}}{\partial v} \Lambda^{\omega^{-1}} \frac{\partial \bar{\omega}}{\partial v} w_{v}^{-1}\right)
$$

$$
\times\left(\Pi^{J}-\Pi^{\nu} M_{v \vee \sim}^{-3} M_{\nu J}\right), x \in \Gamma \quad(8-196)
$$

$$
\delta v^{2}(x)=w_{v}^{-1}\left(1-\frac{\partial r}{\partial v} \frac{-T}{\partial v} \Lambda^{-1} \frac{\partial \bar{v}}{\partial v} w_{v}^{-1}\right)
$$

$$
\times\left[\Gamma _ { i } ^ { i } M _ { \psi \psi } ^ { - 1 } \left(C_{1} \dot{\psi}+C_{2} M_{\psi \dot{0}}\right.\right.
$$

$$
\begin{equation*}
\left.\left.+C_{3} M_{i=}\right)\right] \tag{8-197}
\end{equation*}
$$

$$
C_{3} w_{v}^{-1} \frac{\partial_{-}^{-j}}{\partial r} \Lambda^{\omega^{-1}} \omega, x \in \Gamma
$$

AAKCP 70S-192

$$
\begin{equation*}
\delta b^{1}=w_{b}^{-1}\left(k^{J}-\ell^{\psi} M_{\psi \psi}^{-1} M_{\psi j}\right) \tag{8-198}
\end{equation*}
$$

and

$$
\begin{align*}
\delta b^{2}= & w_{b}^{-i} \chi^{\psi} M_{\psi \psi}^{-1}\left(-C_{1} \psi+C_{2} M_{\psi j}\right. \\
& \left.+c_{3} M_{\psi \dot{\psi}}\right) \tag{8.199}
\end{align*}
$$

It should be noted that if there were no constraints then $\delta a, \delta v$, and δb would reduce to $-\frac{1}{2 \gamma_{0}} \Lambda^{J},-\frac{1}{2 \gamma_{0}} \Pi^{J}$, and $-\frac{1}{2 \gamma_{0}} \ell^{J}$, respectively. In order that the change $i n$ design variables and parameters should be in the negative gradient cirection, it is clear that $\gamma_{0}>0$ is required. The magnitude of γ_{0} could be determined by substituting Eqs. 8-191 through $8-199$ into Eq. 8-171. How. ever, $d P$ must be chosen so it may be just as well to simply cheose γ_{0} in Eqs. 8-191, 8-192 and 8-193.

Just as in the probiems oi pars. 8-2 and 8-3, the variations $\delta u^{\prime}(x), \delta u^{2}(x), \delta v^{1}(x), \delta v^{2}(x)$, δh^{4}, and δb^{2} satisfy Theorem, 8-2.

Theorem S-2: The ahove variations satisfy the identities

1. $\delta b^{1 r} w_{b} \delta b^{2}+\int_{F} \delta v^{1} W_{v} \delta v^{2} d \Gamma$
$+\iint_{\Omega} \delta u^{1} w_{u} \delta u^{2} d \Omega=0$
2. $\ell^{\nu}{ }^{T} \delta b^{2}+\int_{V}{\| I^{\nu}}^{\Gamma} \delta v^{2} d \Gamma$

$$
+\iint_{B} \Lambda^{2} \delta 6:^{2} d S 2=-C_{1} \psi
$$

3. $Q^{*}{ }^{r} \delta b^{1}+\int_{V} \|^{\nu} r^{r} \delta v^{2} d r^{r}$
$+\int_{\Omega} \Lambda^{\nu} r d u^{1} d \Omega=0$
4. $\frac{\partial \tilde{\phi}}{\partial u} \partial u^{2}=-C_{2} \dot{\phi}, \Delta \Omega \Omega$
5. $\frac{\partial \ddot{\phi}}{\partial u} \delta u^{t}=0$, in Ω
6. $\frac{\partial \bar{\omega}}{\partial r} \delta y^{2}=-C_{3} \dot{\omega}$, on Γ
7. $\frac{\partial \bar{\omega}}{\partial \nu} \delta v^{1}=0$, on Γ
8. $-\ell^{J^{T}} \delta b^{\prime}-\int_{\mathrm{T}} \mathrm{II}^{J^{r}} \delta \nu^{\prime} d \Gamma$
$=\iint_{\Omega} \Lambda^{J^{T}} \delta u^{1} d \Omega<0$

A computational algorithm may now be stated based on this development and the arguments presented in par. 8-2.

Algorithm

Step 1. Make an engincering estimate $u^{(0)}(x), v^{(0)}(x), b^{(0)}$ of the optimum design functions and paraincter.

Step 2. Solve Eqs. 8-1.76 and 8-137 for $z^{(0)}(x)$ corresponding to $u^{(0)}(x)$, $v^{(c)}(x)$, and $b^{(0)}$.

Step 3. Check constraints and form $\dot{\psi}, \dot{\phi}$, and $\dot{\omega}$ of Eqs. 8-158, 8-163, and 8-164.

Step 4. Solve the differential equation, Eq. 8 -150, subject to the boundary conditions generated by Eq. 8-152 with g and F given by Eqs. 8.154 and 8-155, in obtain λ^{J} and $\lambda^{\nu} \alpha$, respectively.

Step 5. Compute $\Lambda^{\prime}(x), \|^{J}(\lambda), \ell^{J}, A^{+}(x)$.

Step 6. Choose the correction facturs C_{1}, C_{2}, and C_{3} in Eqs. 8-160, 8-167, and 8-168.

Step 7. Compute $M_{\psi j} M_{\nu v}, M_{v \phi}$, and $M_{\omega \omega}$ in Eqs. 8-186 through 8-189.

Step 8. Choose $\gamma_{0}>0$ and compute γ, $\mu(x)$, and $\nu(x)$ in Eqs. $8-190$ $\delta-181$, and $8-182$. If any components of γ with $\alpha>\gamma^{\prime}, \mu\left(x^{\prime}\right.$ with i $>\xi^{\prime}$, or $\eta(x)$ with $j>\xi^{\prime}$ are negative, re-define $\bar{\psi}, \bar{\phi}(x)$, and $\dot{\omega}(x)$ by deleting cortesponding terms and return to Step 5.

Step 9. Compute $\delta u^{1}(x), \delta u^{2}(x), \delta v^{1}(x)$, $\delta \nu^{2}(x), \delta b^{1}$, and δb^{2} in Eqs. 8-194 throwin 8:199.

Step 10. Compute

$$
\begin{aligned}
& u^{(1)}(x)= u^{(0)}(x)-\frac{1}{2 \gamma_{0}} \delta u^{1}(x) \\
&+\delta u^{2}(x) \\
& p^{(1)}(x)= \nu^{(0)}(x)-\frac{1}{2 \gamma_{0}} \delta v^{1}(x) \\
&+\delta v^{2}(x) \\
& s^{(1)}=b^{(0)}-\frac{1}{2 \gamma_{0}} \delta b^{1}+\delta b^{2} .
\end{aligned}
$$

Step 11. If the constramts are satisfied and $\delta u^{1}(x), \delta \nu^{1}(x)$, and δb^{\prime} are suffficiently small, terminate. Otherwise, return to Step 2 with $u^{(0)}(x), y^{(0)}(x)$, and $b^{(0)}$ replaced by $u^{(1)}(x), v^{(1)}(x)$, and $b^{(1)}$, respectively.

Ats in par. 8-2, if after several iterations the constraints are all satisfied, $\delta \nu^{2}(x), \delta \nu^{2}(x)$, and δb^{2} will all be zero. In this case,
$B J=-\frac{1}{2 \gamma_{0}}\left(M_{J J}-M_{\psi J}^{T} M_{\psi \psi}^{-1} M_{\psi J}\right)$
where

$$
\begin{aligned}
M_{J J}= & \ell^{J} W_{b} \ell^{J}+\int_{i} \mathrm{II}^{J} W_{v}^{-i} \\
& \times\left(l-\frac{\partial \tilde{\omega}}{\partial v} \Lambda^{\omega}-\frac{\partial \tilde{\omega}}{\partial v} W_{v}\right) \Pi^{J} d \Gamma \\
& +\iint_{\Omega} \Lambda^{J} W_{u}^{-1} \\
& \times\left(1-\frac{\partial \dot{\phi}}{\partial u} \Lambda^{\rho}{ }^{-1} \frac{\partial \tilde{\phi}}{\partial t} w_{u}\right) \Lambda^{J} d \Omega
\end{aligned}
$$

Just as in par. 8-2, one can now specify a reasonable, desired reduction δJ in J. The formulation, Eq. 8-200, provides a means of tinding γ_{0} that, based on the preceding linear approximations, will yield the desired reduc. rion in the cost function.

8.5 OPTIMAL JESIGN OF AN ARTIL. LERY RECOIL MECHANISM*

An artillery weapon mounced on tires or tracks has some undesirable features. Unlike the hard mount (weapon rests on a base plate), the flexible mount will have a pitch motion. During the recoil stroke, when the weapon is fired at 75 -deg elevation, the tires load up or compress; and when counterrecoil begins, the tires act like a spring and unload sending the tires off the ground. It is quite obvious that, when the weapon comes to rest, the likelihood of it being zerced in for the

[^3]AMCP 706-192

Figure 8-1. Howitzer, Towed, 105 mm, XM 164
next tound has been reduced considerably, especially for high rate of fire weapons. This phenomenon is known as a secondary recoil effect. because an additional acceleration term enters into the recoil equations. Because of this secondary recoil effect, the recoil mechanism design becomes much more difficult. For short recoil, the orifice areas in the recoil mechanism ane designed at maximum elevation (75 deg). Therefore, when elcuation is mentioned throughout the remamer of thas report, it iefers to maximum elevation. The weapon positioned for high-angle fire is shown in Fig \$-1.

The purpose of this paragreph will be to develop a systematic reconl mechamsm desgn procedure characterzed by mathematiod
inodeling for the high-speed digital computer. To do this, the steepest descent numerical technique is used to minimize the hop or pitch motion of the wearon and, at the same time, to determine the necessary control rod * design that will minimize hop

The recoil dquation for a rugd mount is of the form

$$
\left.x+f(x) x^{2}+g(x)=h(1) \quad 8-200\right)
$$

where x is the displacement of the recoling parts. $g(x)$ is a lestoring force. and $h(t)$ is the

[^4]breech force due to firing. In the second term of this equation, the expression for the effect of the control rod orifice areas can also be obtained irom a predetermined recoil forse*, $R(t)$. For the flexible mount, Eq. 8.201 is coupled with the equation describing the pitch motion of the weapon and thus yielding two second-order nonlinear ordinary differential equations with prescribed initial conditions. $R(t)$ will be taken as the cont:ol variable which is to be determined to minimize hop (the pitch motion of the weapon) subject to other design constraints. The orifies arei is then determined to provide this recoil force.

This study was performed en a develop. mental weapon, namely, the XM164. the XM16S is a :ightweight, split-trailed towed 105 mm howitzer with the XM44 hydropneumatic recoil mechanism. Unlike a rigid mourt, the XM164 is flexible and is fired while resting on rubber tires.

For a rigid mount weapon, the resisting force $R(t)$ on the recoiling parts is designed with a trapezoidal shape as shown in Fig. 8-2. With the proper design of the control rod orifice area, the flow of oil in the recoil meche nista is controlled and such a force, as shown in Fig. 8-2, can be obtained. However, when a force (ehaped as in Fig. 8.2) is designed for the flexible mount, the question is asked, "Can this for 2 be appliedi with some other 'best' shape, such that it will reduce the pitch of the weapon?" This is the basic question with which this design problem is concerned.

[^5]

Figure 8-2. Recoil Force for a Rigid Mount

8-5.1 FORMLLLATION OF THE PROBLENI

During the recoil, counterrecoil cycle, there ana four different times wi:ich are of concern. These are shown in Fig. 8-3.

Figure 8.3. Time i.7tervals

In Fig. 8-3, the special times noted are:

$$
\begin{aligned}
& t^{0}=\text { firmg of rouns } \\
& t^{1}=\text { end of the recoil stroke } \\
& t^{2}=\text { time at which maximum hop occurs } \\
& t^{3}=\text { end of counterrecoil }
\end{aligned}
$$

At these four times certain condtions must be satisifad from the design requirements. At time t^{0} the inital con tions for the state of the system are given. At tume d^{1} the displacement of the recolling parts is required to be egtal to some speciffed value and the velocity cf the recoiling parts must br equal to zero.

At tine t^{2} the velccity of the pitch motion must be zero (necessary condition for maximum pitch), and the displacement of the pitch motion is to be a minimum. Note that it will be possible for t^{2} to vary between t^{2} and t^{3}. Therefore, the hop or pitch motion will be minimized for the entire counterrecoil stroke. At the final time t^{3}, which is the end of counterrecoil, the recoiling parts must return to their original position, and the velocity of the recoiling parts will be some specificd value v_{-3}. This is to insure that the recuiling perts ceturn to the latch position. It will also be demanded tbat the total cycle time be equal to c_{T} seconds.

Formulating this protlom into the mathematical notation of par. 8-3 yieids

$$
\begin{equation*}
\text { Minitnize } J=x_{4}\left(t^{2}\right) \equiv g_{0} \tag{8-202}
\end{equation*}
$$

subject to the equality constraints:

$$
\left.\begin{array}{l}
\psi_{1}=x_{2}\left(t^{1}\right)-\eta_{0}+\eta_{\mathrm{n}, \mathrm{ax}} \equiv g_{1}=0 \\
\psi_{2}=x_{2}\left(t^{3}\right)-\eta_{0} \equiv g_{2}=0 \\
\psi_{3}=x_{1}\left(t^{3}\right)-V_{3} \equiv g_{3}=0 \\
\Omega^{\prime}=x_{1}\left(t^{1}\right)=0 \tag{8-203}\\
\Omega^{\prime}=\lambda_{3}\left(t^{2}\right)=0 \\
\Omega^{3}=t^{3}-c_{T}=0
\end{array}\right\}
$$

with the full set of initial conditions

$$
\left.\begin{array}{l}
x_{1}(0)=x_{3}(0)=x_{4}(0)=0 \tag{8.204}\\
x_{2}(0)=n_{10}
\end{array}\right\}
$$

where $\psi_{i} i=1,2,3$ are intermediate and terminal constraint functions to be satisfied; Ω^{1}, Ω^{2}, and Ω^{3} define the tunes at which the
intermediate and terminal constraint functions occur; x_{1} and x_{3} are the velocities of the recoiling parts and pitch motion, respectively; x_{2} and x_{4} are the displacements of the recoiling parts and pitch motion, respectively; $\psi_{1}=0$ is the constraint on the displac'ment of the recoiling parts such that at the end of the recoil stroke the displacement will be exactly equal to $\eta_{\text {max }}$ inspes. $\psi_{2}-0$ is the constraint demanding that the recoiling parts return to the latch position at the end of counterrecoil. $\psi_{3}=0$ is the constraint which requires that the velocity of the recoiling parts come into the latch position at a velocity V_{3} inches per second. $\Omega^{1}=0$ defines the time at which the erd of the recoil corars; $\Omega^{2}=0$ defines the times at which the pitch velocity is zeru and the one with the largest displacement is selected, thus defining the tinte at which maximum hop occurs; and $\sqrt{2}{ }^{3}$ $=0$ defines the total cycle time to be exactly equal to c_{T} seconds.

It was previously mentioned that the rod force was taken as the design (coutrol) variable, instead of the orifice areas. Using the rod force as the design variable simplifies the problem, and it also gives the engineer hore insight into the design process since he has an intuitive feel for the force levels the weapon system he is designing can tolerate. Thus, immediately the engineer can specify an admissible upper limit for the recoil force, say $R_{\text {max }}$, fo: his design, and the value may be varied by the engincer for any redesign. Tl.e following inequality constraint, therefore, must hold for all time :

$$
\begin{equation*}
\phi=R(1)-R_{\mathrm{max}}<0 \quad 0<t<t^{3} \tag{8-205}
\end{equation*}
$$

The o, timuzation problem has now been formulated. All that must be c. ne now is to put the problem irsu the sterpest descent formulation. Par. 8-5.2 simplifies the equasions of motion for the XM164 Howizer.

AMCP 70E-192

$R(t)$	$=$ rod forse
$B(t)$	$=$ breech forie
δ	$=$ acceleration due to gravity
μ	- coeffr:ment of friction
S_{1}	$=$ friction force (gude)
S_{2}	$=$ friction fores (guide)
M_{b}	$=$ mass of elevating parts less : ©coiling parts
η_{b}	$=$ distance from center line ot trunnlon to mass center of W_{b}^{\prime} (horizontal)
5	$=$ distance from center line of trunnion to mass center of w_{b} (vertical)
M_{d}	$=$ mass of nonelevating parts
y_{d}	$=$ distance from center line of spade to mass center of W_{d} (horizontal)
z_{d}	$=$ distance from center line of spade to mass center of W_{d} (.ertical)
I_{a}	$\begin{aligned} &= \text { tuaverse moment ot i.uertia of } W_{a} \\ & \text { about its own CG } \end{aligned}$
J_{0}	$\begin{aligned} & =\text { traverse moment ot inertia of } W_{b} \\ & \text { about its ow'n CG } \end{aligned}$
I_{d}	$\begin{aligned} & =\text { traverse momenc of thertia of } W_{d} \\ & \text { about its own CG } \end{aligned}$
ζ_{1}	$=$ distance from center line of trunnion to center line of $B(t)$

$$
\begin{aligned}
& \text { ?pplication } \\
& \phi_{s t}=\text { static value of } \phi \\
& c \quad=\text { damping cuefficient } \\
& k=\text { spring constant oit tire }^{\prime} \\
& q_{1}=\text { distance from center line of sun- } \\
& \text { nion to rear of cradle (horizon- } \\
& \text { tal) } \\
& q_{2}=\text { distance from center line of trun- } \\
& \text { nion to front of cradle (horizon- } \\
& \text { tal) } \\
& \zeta_{2}=\text { distance from center line of trun- } \\
& \text { nion to } R(t) \text { application (verti- } \\
& \text { cal) } \\
& \alpha \quad=\text { distance from center line of trun- } \\
& \text { nion to bottom of rail (vertical) } \\
& \beta \quad=\text { distance from center lute of trun- } \\
& \text { nion to top of rail (vertical; } \\
& \text { I. = distance from tires to trail spades } \\
& Y, Z=\text { axes fixed in trunnion. parallel to } \\
& x \text {-, } y \text {-axes } \\
& y, z=\text { axes fixed in carriage } \\
& \mathrm{H}, \mathrm{Z}=\text { axes rixed in cradle } \\
& \text { The differential equations to be solved are, } \\
& \text { Ref. 16: } \\
& \left.M_{a}\{\bar{\eta}-1\}-y_{t} \sin \gamma+z_{t} \cos \gamma\right) \ddot{\beta} \\
& \left.-(\eta+y, \cos \gamma+z, \sin \gamma) \dot{\phi}^{2}\right] \\
& =R(t) \quad B(t)-M_{a} g \sin (\gamma+\phi)
\end{aligned}
$$

ARICP 706-192	
$\mathrm{CON} 12=M_{a} \cdot \mathrm{CON} 4$	CON35 $=M_{b} \cdot \underline{g} \cdot \xi_{b} \cdot$ CON 9
CON13 $=-2 M_{a}$	$\begin{aligned} \operatorname{CON} 35= & \operatorname{CON} 20+\operatorname{CON} 22+\operatorname{CON} 25 \\ & +\operatorname{CON} 28+\operatorname{CON} 30 \end{aligned}$
CON14 $=-2 M_{a} \cdot$ CON4 $\quad+$ CON $28+$ CON30	
CON15 $=-k \cdot \phi_{s t}$	$\begin{aligned} \operatorname{CON} 37= & \operatorname{CON} 21+\operatorname{CON} 23+\operatorname{CON} 26 \\ & +\operatorname{CON} 29+\operatorname{CON} 31 \end{aligned}$
CON16 $=M_{a} \cdot$ CON 6	$\begin{aligned} \text { CON } 38= & \operatorname{CON} 24+\operatorname{CON} 27+\operatorname{CON} 33 \\ & +\operatorname{CON} 34+\operatorname{CON} 35-k \end{aligned}$
CON17 $=M_{a} \cdot$ CON $6 \cdot$ CON $40+$ CON3 + CON3 $-m h$	
CON18 $=-\mathrm{g} \cdot M_{a} \cdot$ CON9	
CON19 $=8 \cdot M_{a} \cdot \operatorname{CON9/2~}$	
CON20 $=-g \cdot M_{a} \cdot$ CON $4 \cdot$ CON9	With these dethntions, Bqy, \&:06 and $8-207$ may now be written as
CON21 $=8 \cdot M_{a} \cdot \mathrm{CON} 4 \cdot \mathrm{CON} 9 / 2$	$\mathrm{CONL} \cdot \ddot{\eta}+\operatorname{CON} 2 \cdot \ddot{\phi}=R(1) \cdots n(1)$
CON22 $=-g \cdot M_{d} \cdot y_{d}$	$+\mathrm{CON} 3+\mathrm{CON} 10$
$\operatorname{CON} 23=8 \cdot M_{d} \cdot y_{d} / 2$	$+\mathrm{CON} 11 \cdot \phi^{2}$
CON24 $=g \cdot M_{d} \cdot z_{d}$	$+M_{a} \cdot \eta \cdot \phi^{2}$
$\operatorname{CON} 25=-g \cdot M_{b} \cdot y_{t}$	$+\operatorname{CON} 12 \cdot \dot{\phi}^{2}$
$\operatorname{CON} 26=8 \cdot M_{b} \cdot y_{t} / 2$	$+\phi \cdot \mathrm{CON} 40$
$\operatorname{CON27}=g \cdot M_{b} \cdot z_{b}$	$\left[M_{a}(\eta+\operatorname{CON} 4)^{2}+\operatorname{CON}^{5} 1:=\right.$
$\operatorname{CON} 29=\delta \cdot M_{b} \cdot \pi_{b} \cdot \operatorname{CON} 9 / 2 \quad+\operatorname{CON} 38 \cdot \phi+\operatorname{CON} 32 \cdot \eta \phi$	
$\operatorname{CON} 30=g \cdot M_{b} \cdot \zeta_{b} \cdot \operatorname{CON} 8 \quad+\operatorname{CON} 39-c \phi+\operatorname{CON} 16 \cdot \phi^{2} \eta$	
CON31 $=-g \cdot M_{b} \cdot \zeta_{b} \cdot \operatorname{CON8/2} \quad+\operatorname{CON17} \cdot \dot{\phi}^{2}+B(t) \cdot \operatorname{CON} 7$	
$\operatorname{CON} 32=g \cdot h l_{a} \cdot$ CON $8 \quad+\{R(t)+\mathrm{CON} 3) \cdot \mathrm{CON} 6+\mathrm{CON} 18 \cdot \eta$	
CON33 $=g \cdot M_{a} \cdot \mathrm{CON} 4 \cdot \mathrm{CON} 8$	$+\operatorname{CON} 19 \cdot \eta \cdot \phi^{2}+\operatorname{CON} 37 \cdot \phi^{2}$
CON34 $=M_{b} \cdot g \cdot \eta_{b} \cdot$ CON 8	(8.211)

Eqs. $8: 210$ and $8-211$ can be put into the following form

$$
\left.\begin{array}{rl}
v_{13} \ddot{\eta}+v_{12} \ddot{\phi} & =v_{13} \\
v_{22} \ddot{\phi} & =v_{23}
\end{array}\right\}(8-212)
$$

where

$$
\begin{aligned}
\nu_{11}= & \operatorname{CON} 1 \\
\nu_{12}= & \operatorname{CON} 2 \\
\nu_{13}= & R(t)-B(r)+\operatorname{CON} 3+\operatorname{CON} 10 \\
& +\operatorname{CON} 11 \cdot \phi^{2}+M_{a} \eta \dot{\phi}^{2} \\
& +\operatorname{CON} 12 \cdot \dot{\phi}^{2}+\operatorname{CON} 40 \cdot \phi \\
v_{21}= & 0 \\
v_{22}= & M_{a}(\eta+\operatorname{CON} 4)^{2}+\operatorname{CON} 5 \\
\nu_{23}= & \operatorname{CON} 13 \cdot \dot{\eta^{\prime} \phi} \eta+\operatorname{CON} 14 \cdot \dot{\eta}^{\dot{\phi}} \\
& +\operatorname{CON} 38 \cdot \phi+\operatorname{CON} 32 \cdot \eta \phi \\
& +\operatorname{CON} 39-i \phi+\operatorname{CON} 16 \cdot \dot{\phi}^{2} \eta \\
& +\operatorname{CON} 17 \cdot \phi^{2}+B(t) \cdot \operatorname{CON} 7 \\
& +(R(t)+\operatorname{CON} 3] \cdot \operatorname{CON} 6 \\
& +\operatorname{CON} 18 \cdot \eta+\operatorname{CON} 19 \cdot \eta \cdot \phi^{2} \\
& +\operatorname{CON} 37 \cdot \phi^{2}
\end{aligned}
$$

Eq. 8-212 can now be written as

$$
\left.\begin{array}{l}
\ddot{\eta}=\left(v_{13} \cdot v_{22}-v_{12} v_{23}\right) /\left(\nu_{11} \cdot v_{22}\right) \\
\ddot{\phi}=z_{23} / v_{22} .
\end{array}\right\}
$$

By making the following definitions, Eqs. 8.213 can be put into first order form:

Wher. this is accomplished, the following firstorder equations yield the proper fo mulation that will be used in the steepest-descent schems:

The ortimal design problem can be stated as follows: Determine the design variable $R(t)$ in the interval $0<t<t^{3}$ so as to

$$
\begin{equation*}
\operatorname{minimize} J=x_{4}\left(t_{2}\right) \tag{8-216}
\end{equation*}
$$

subject to the constraints

$$
\left.\begin{array}{l}
\psi_{1}=x_{2}\left(t^{2}\right)-\eta_{0}+\eta_{\mathrm{max}}=0 \tag{8-2!7}\\
\psi_{2}=x_{2}\left(t^{3}\right)-\eta_{0}=0 \\
\psi_{3}=x_{1}\left(t^{3}\right)-V_{3}=0 \\
\Omega^{1}=x_{1}\left(t^{1}\right)=0 \\
\Omega^{2}=x_{3}\left(t^{2}\right)=0 \\
\Omega^{3}=t^{3}-c_{T}=0
\end{array}\right\}
$$

AMEXP 706.192

$$
\begin{equation*}
\phi=R(t)-R_{\mathrm{m} \mathrm{xx}}<0 \tag{8-218}
\end{equation*}
$$

and satisfying

$$
\begin{equation*}
\dot{x}=f \tag{8-219}
\end{equation*}
$$

where the components of the vector f are given in Eq. 2-215 and initial conditions are

$$
x_{1}(0)=x_{3}(0)=x_{4}(0)=0, x_{2}(0)=\eta_{0} .
$$

The minimization problem stated here starts with an estimated design for $R(t)$, analyzes it, and then improves on the design. The stcepest descent technique of par. $8-3$ is used here to solve the design problem stated. The first step in implementing the computational algosithm of par. 8-3.3 is computation of auxiliary variables required for the algorithm.

8.5.3.1 DETERMINATION OF THE AD. JOINT EQUATIONS

The a Jjoint equations are, from Eq. 8-93

$$
\dot{\lambda}=-\left[\frac{\partial f}{\partial x}\right]^{T} \lambda, 0<t<t^{3}
$$

where the vectors f and x are defined in Eqs.

$$
\begin{aligned}
& 8-215 \text { and } \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)^{T} . \\
& \begin{aligned}
\frac{\partial f_{1}}{\partial x_{1}}= & \left\{(v _ { 1 1 } \nu _ { 2 2 }) \left[\nu_{13}\left(\frac{\partial v_{22}}{\partial x_{i}}\right)\right.\right. \\
& +v_{22}\left(\frac{\partial v_{13}}{\partial x_{i}}\right)-\nu_{12}\left(\frac{\partial \nu_{23}}{\partial x_{i}}\right) \\
& \left.-v_{23}\left(\frac{\partial v_{12}}{\partial x_{i}}\right)\right] \\
& -\left(v_{13} \nu_{22}-v_{12} v_{23}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \left.x\left[v_{11}\left(\frac{\partial v_{22}}{\partial x_{i}}\right)+v_{22}\left(\frac{\partial v_{11}}{\partial x_{i}}\right)\right]\right\} \\
& /\left(v_{11}^{2} v_{23}^{2}\right) \quad i=1,2,3,4
\end{aligned}
$$

$$
\frac{\partial f_{1}}{\partial x_{2}}=-v_{12} x_{3}\left(\operatorname{CON} 13 \cdot x_{2}+\text { CON14 }\right)
$$

$$
/\left(\nu_{11} v_{22}\right)
$$

$$
\frac{\partial f_{1}}{\partial x_{2}}=\left\{v _ { 1 1 } v _ { 2 2 } \left[2 M_{a} v_{13}\left(x_{2}+\text { CON } 4\right)\right.\right.
$$

$$
+M_{a} \nu_{22} x_{3}^{2}-v_{12}\left(\operatorname{CON} 13 \cdot x_{1} x_{3}\right.
$$

$$
+\operatorname{CON} 32 \cdot x_{4}+\operatorname{Con} 16 \cdot x_{3}^{2}
$$

$$
\left.\left.+\operatorname{CON} 18+\operatorname{CON} 19 \cdot x_{4}^{2}\right)\right]
$$

$$
-\left(\nu_{13} \nu_{22}-\nu_{12} \nu_{23}\right)
$$

$$
\left.x\left\{2 A_{a} v_{12}\left(x_{2}+\operatorname{CON} 4\right)\right]\right\} /\left(v_{11}^{2} v_{22}^{2}\right)
$$

$$
\frac{\partial f_{1}}{\partial x_{3}}=\left[v_{22}\left(2 M_{a} x_{2} x_{3}+2 \cdot \operatorname{CON} 12 x_{3}\right)\right.
$$

$$
-\nu_{12}\left(\operatorname{CON} 13 \cdot x_{1} x_{2}+\operatorname{CON} 14 \cdot x_{1}\right.
$$

$$
-C+2 \cdot \operatorname{coN} 16 \cdot x_{3} x_{2}
$$

$$
\left.\left.+2 \cdot \operatorname{CON} 17 \cdot x_{3}\right)\right] /\left(v_{11} v_{22}\right)
$$

$$
\begin{aligned}
\frac{\partial f_{1}}{\partial x_{4}}= & {\left[v_{22}\left(2 \cdot \operatorname{CON} 11 \cdot x_{4}+\operatorname{CON} 40\right)\right.} \\
& -v_{12}\left(\operatorname{CON} 38+\operatorname{CON} 32 \cdot x_{2}\right. \\
& +2 \cdot \operatorname{CON} 19 \cdot x_{2} x_{4} \\
& \left.\left.+2 \cdot \operatorname{CON} 37 \cdot x_{4}\right)\right] /\left(v_{11} v_{22}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}= & 1, \frac{\partial f_{2}}{\partial x_{2}}=0, \frac{\partial f_{2}}{\partial x_{3}}=0, \frac{\partial f_{2}}{\partial x_{4}}=0 \\
\frac{\partial f_{3}}{\partial x_{1}}= & {\left[v_{22}\left(\frac{\partial v_{23}}{\partial x_{2}}\right)-v_{23}\left(\frac{\partial v_{22}}{\partial x_{i}}\right)\right] / v_{22}^{2} }
\end{aligned}
$$

$$
\begin{aligned}
& i=1,2,3,4 \\
& \frac{\partial f_{3}}{\partial x_{1}}=x_{3}\left(\operatorname{CON} 13 \cdot x_{2}+\operatorname{CON} 14\right) / \nu_{22} \\
& \frac{\partial f_{3}}{\partial x_{2}}=\left[v _ { 2 2 } \left(\operatorname{CON} 13 \cdot x_{1} x_{3}+\operatorname{CON} 32 \cdot x_{4}\right.\right. \\
& +\operatorname{CON} 16 \cdot x_{3}^{\frac{5}{3}}+\operatorname{CON} 18 \\
& \left.+\operatorname{CON} 19 \cdot x_{4}^{2}\right) \\
& \left.-2 M_{n} v_{23}\left(x_{2}+\text { CON4 }\right)\right] / \nu_{22}^{2} \\
& \frac{\partial f_{3}}{\partial x_{3}}=\left(\operatorname{CON1} 3 \cdot x_{1} x_{2}+\operatorname{CON} 14 \cdot x_{1}-C\right. \\
& +2 \cdot \operatorname{CON} 1\left(\cdot \cdot x_{3} x_{2}+2 \operatorname{CON17} \cdot x_{3}\right) / y_{22} \\
& \frac{\partial f_{3}}{\partial x_{4}}=\left(\operatorname{CON} 38+\operatorname{CON} 32 \cdot x_{2}+2 \cdot \operatorname{CON} 19\right. \\
& \left.\cdot x_{2} x_{4}+2 \cdot \operatorname{CON} 37 \cdot x_{4}\right) / v_{22} \\
& \frac{\partial f_{4}}{\partial x_{1}}=0, \frac{\partial f_{4}}{\partial x_{2}}=0, \frac{\partial f_{4}}{\partial x_{3}}=1, \frac{\partial f_{4}}{\partial x_{4}}=0 .
\end{aligned}
$$

The adjoint equations now become

$$
\dot{\lambda}=-\left[\begin{array}{llll}
\frac{\partial \dot{I}_{1}}{\partial x_{1}} & & \frac{i f_{3}}{\partial x_{1}} & 0 \tag{8-220}\\
\frac{\partial f_{1}}{\partial x_{2}} & 0 & \vdots & x_{2} \\
3 x_{2} & 0 \\
\frac{\partial f_{1}}{\partial x_{3}} & 0 & \frac{\partial f_{3}}{\partial x_{3}} & 1 \\
\frac{\partial f_{1}}{\partial x_{4}} & 0 & \frac{\partial f_{3}}{\partial x_{4}} & 0
\end{array}\right]^{1} \lambda
$$

where the partial derivatives are as computed in this paragraph.

8-5.3.2 DETERMINATION OF THE BOUNDARY CONDITIONS FOR THE ADJOINT EQUATIONS

Because of the intermediate constraint functions, we must evaluate λ at t^{2--} and t^{1-} to allow for any discontinuities which may occur across t^{2} ard t^{1}. Since the initial conditions for the ad' at equations are given at t^{3}, these equations are integrated backwaids on the time interval shown in Fig. 8-5. Integration is carried out by integrating from t^{3} to t^{24}. Appiivation of Eq. 8-116 provides new initial

Figure $8 \cdot 5$. Recoil Time Interval
conditions at t^{2-}. Integration is then performed from t^{2-} to t^{1+}. Likewise, using new initial conditions at t^{1-}, integration is then performed to t°.

It is the object of this paragraph to determine the initial conditions at t^{3}, t^{2-}, and t^{1-} for the four different integrations performed on the adjoint equations, i.e., for ψ_{1}, ψ_{2}, ψ_{3}, and J.

Since Ω^{3} of Eq. $8-293$ does not depend expicatly on $x, \partial \Omega^{3} / \partial x=0$ and Eq. $3 \div 14$ reduces io

$$
\lambda\left(t^{3}-0\right)=\frac{\partial g^{r}}{\partial x^{3}} .
$$

Thus,

$$
\left.\begin{array}{l}
\lambda^{J}\left(t^{3}\right)=(0,0,0,0)^{T} \tag{8-221}\\
\lambda^{\psi_{1}}\left(t^{3}\right)=(0,0,0,0)^{T} \\
\lambda^{4} \cdot\left(t^{3}\right)=(0,1,0,0)^{T} \\
\lambda^{h_{3}}\left(t^{3}\right)=(1,0,0,0)^{T}
\end{array}\right\}
$$

Angriog ion

Integration of Eq $8=200$ backward fromi f^{3} to $\left(t^{2} ;+0\right)$ can now tereffected, using the inital conditions of Eq: 8 -221, Buice Eq. $8-220$ is homogeneous in λ and the initial conditions on λ^{J} and $\lambda^{k_{2}}$ are zero, it is clear what $\lambda^{Y}\left(t^{2}+0\right)=\lambda^{v i}\left(t^{2}+0\right)=0$. While $\lambda^{\psi_{2}}\left(i^{2}+0\right)$ and $\lambda^{\psi_{3}}\left(r^{2}=0\right)$ will not be zero, they maybe treated as known. There is now. adequate rifomation to: wse Eq. $8-1$; 6 to determine : $\lambda\left(\mathrm{f}^{2}-0 \mathrm{f}\right.$ for all fuar adjoint variables.

In os ler in fund $\lambda\left(f^{2}-0\right)$ in Eq. 8-116, choose the minus sign alternative throughout and obtain

$$
\begin{align*}
\lambda\left(f^{2}-0\right)= & \lambda\left(t^{2}+0\right)+\left(\frac{\partial g}{\partial x^{2}}\right) \\
& -\left(\frac{1}{\sqrt{\delta^{2}}\left(t^{2}-0\right)}\right)\left\{\dot{\delta}\left(t^{2}-0\right)\right. \\
& +\lambda^{T}\left(t^{2}+0\right)\left[f\left(t^{2}-0\right)\right. \\
& \left.\left.-f\left(t^{2}+0\right)\right]\right\}\left(\frac{\partial \Omega^{2}}{\partial x^{2}}\right) \tag{8.222}
\end{align*}
$$

Using liqs. $8-107$ and $8-109$ to determine $\dot{g}\left(t^{2}-0\right)$ and $\dot{\Omega}\left(t^{2}-0\right)$, oue obtains at $t^{2} \cdots 0$

$$
\begin{aligned}
& \dot{g}^{J}\left(t^{2}-0\right)=f_{4}\left(t^{2}-0\right) \\
& \dot{g}_{1}\left(t^{2}-0\right)=0 \\
& \dot{g}_{3}\left(t^{2}-0\right)=0 \\
& \dot{g}_{3}\left(t^{2}-0\right)=0
\end{aligned}
$$

and

$$
\dot{\Omega}_{2}\left(r^{2}-0\right)=f_{3}\left(t^{2}-0\right)
$$

Thus, Eq. $8-222$ yields
a?d

It may te noted that $\lambda^{\psi_{1}}\left(t^{1}+0\right)=0$ will result from integration of the homogeneous Eq. 8-220.

Finaily, at t^{2}, Eqs. 8-107 and 8-105 yield

$$
\begin{aligned}
& \dot{\delta}^{J}\left(t^{1}-0\right)=0 \\
& \dot{g}^{b_{2}}\left(t^{1}-0\right)=f_{2}\left(t^{1}-0\right) \\
& \dot{g}^{\dot{v}_{2}}\left(t^{1}-0\right)=0 \\
& \dot{g}^{\dot{\omega}_{2}}\left(t^{1}-0\right)=0 \\
& \text { and }
\end{aligned}
$$

$$
\dot{\Omega}^{\prime}\left(t^{1}-0\right)=f_{1}\left(t^{1}-0\right)
$$

Replacing t^{2} with " , and x^{2} with x^{1} in Eq. ,-222 provides the proner jump corditons at 1'. They are

Eq. $8-220$ may now be integrated from 8^{3} to $t^{0}, ~ \sqrt{\text { ith }}$ jumps at t^{2} and t^{t} defined by Eqs. $8-223$ and $8-224$. This completes compstation required by Step 5 of the algorithm of pas. 8-3.3.

8.5.3.3 COMPUTATION OF DESIGN IMPROVEMENTS

The remaining steps of the computational algorithm of par. 8-3.3 require only routine calculation. Some of the key formulas are highlighted here to illustrate use of the algoritim. In Step 6, the following calculatiors are effecied:

$$
\begin{aligned}
& \Lambda^{J}(t)=\frac{\partial f^{T}}{\partial R} \lambda^{J}(t) \\
& \Lambda^{\nu^{\prime}(t)}=\frac{\partial f^{T}}{\partial R} \lambda^{\nu^{\prime}(t)} \\
& i=1,2,3 . \\
& \Lambda^{\theta}(t)=\left\{\begin{aligned}
w_{R}^{-1}(\therefore) & \text { if } \phi>0 \\
0, & \text { if } \phi<0 .
\end{aligned}\right.
\end{aligned}
$$

where $W_{R}(t)$ is a weighting factor, set equal to one in this example.

With these factors defined, one must choose the magnitude of constraint error correction to be used, in Step 7. In the current problem, reasunable design estimates led to small errors, so $a=c=1$ was chosen.

For Step 3, only the following routine rumerical integrations are required:

$$
M_{\psi J}=\int_{t^{e}}^{t^{\prime}} \Lambda^{\psi^{T}} d(t) \Lambda^{J} d t
$$

whers

$$
\begin{aligned}
& d(t)= \begin{cases}1, & \text { if } \phi<0 \\
0, & \text { if } \phi>0\end{cases} \\
& M_{\nu \nu}=\int_{r^{0}}^{t^{2}} \Lambda^{\nu^{T}} d(t) \Lambda^{\nu} d t \\
& M_{\psi \phi}=\int_{t^{0}}^{t^{1}} \Lambda^{\nu^{T}} \ddot{\phi} d t .
\end{aligned}
$$

aiq. $8-80$ was used to find γ_{0} so that a ten percent reduction in cost function is sought. From Eq. 8-43 (sinie $a=c=1$)

$$
\gamma=M_{\psi \psi}^{-1}\left[2 \gamma_{0}\left(\dot{\psi}-M_{\psi \phi}\right)-M_{\psi j}\right]
$$

and from Eq. $8-35$

$$
\begin{aligned}
\mu(t)= & -\Lambda^{\circ}(t)^{-1}\left[\left({ }^{1}-d(t)\right)\left(\Lambda^{J}+\Lambda^{\nu} \gamma\right)\right. \\
& \left.-2 \gamma_{0} \phi\right] .
\end{aligned}
$$

At any poinss where $\mu(t)<0$, delete this point from the domain of $\dot{\phi}(t)$ and return to Step 6.

AMCP 7U6-192

Finally, the improved design is provided by Step 11 of the algorithm, where entries are conputed directly from Eqs. 8-44 and 8-45. While these formulas are a bit messy, they are routinely programmed matrix computations which are no real challenge to the computer.

8-5.4 RESULTS AND CONCLUSIONS

Fig. 8-6 represerss the optimai recoil force to minimize hop at $75-\mathrm{deg}$ suadiant elevation

with the following constraints:

$$
\left.\begin{array}{l}
R(t)<22000 \mathrm{lb} \tag{8-225}\\
\text { recoil length }=28 \mathrm{in} .
\end{array}\right\}
$$

The resulting hop for this case is 1.53 in., i.e., the tires leave the ground 1.53 in . for a 115% maximum rated p.assure breech force. If the constraints were relaxed, such that

$$
\left.\begin{array}{l}
R(t)<23500 \mathrm{lb} \tag{8-226}\\
\text { recoil length }=29 \mathrm{in} .
\end{array}\right\}
$$

the resulting minimal hop is 0.88 in .

The acceleration of the recoiling parts during the first portion of cuunterrecoil is an
important factor in reducing the hnp; i.e, the faster the recoilirz parts accelerate during this period, the greate: the reduction in hop. As one would expect, an increase in allowatle recoil length also reduces hop siguificantly. An increase in the maximum rod force will also reduce hop, for example, if the recril force is allowed to ootain the value 24160 lb in constraint set of Eq. 8-225, the hop can be reduced an additiunal 0.32 in . Fig. 8.7 shows

Figure 8.7. Optimal Control Rod Design
a possible variable orifice area design for short recoil. The orifice a eas were obtained from the recoil force in Fig. 8-6. The resulting force levels from the new groove design are indicated b) the dotted lines from 0.110 sec to 0.13 sec, Fig. 8-6. The recoil force is the same as the optimal shaped force curve from 0 to 0.110 sec . The increase in hop is approximately 0.1 in . The recoil length changed a very small amount.

An mteresting side pcint is that of the speed of convergence. The nominal design variable $R(t)$ used for the first iteration was such that at the end of counterrecoil the
recoiling parts were 250 in . away from the latch pogition and the required final velocity of 6 in $/ \mathrm{sec}$, was $96 \mathrm{in} . / \mathrm{sec}$. \ln approximately 14 terations, convergence was obtained which seems to be very fast if one considers the cumplexity of the equations involved.

Results from firing tests, show a sign:icant reduction (50% or more); in hop can be achieved simply by increasing the tire pressure. Because tire perfo.mance information is not presently available, it was assumed throughout this analysis that the spring rate of the tires was constant (linear spring). Therefore, it is not known what results would be obtained under a nonlinear spring model. Tire manufacturers are investipating methods
to optimize tire characteristics for the final configuration in the tire itself. In order to ootain optimum weapon performance for flexible mount systems, such information as tire parformance could be incorporated into the mathematical model and perhaps tire characteristics could also be optimized in the environment for which they are being used.

The technique used here has the capability to optimize many design parameters simultaneously. If there exist other sensitive parameters, consideration should be given to optimize them along with the design variat' $\mathrm{s} R(t)$. This study clearly indicates that weapon performance can be improved by using methods of optimal design.

REFERENCES

i. R. Courant and D. Hibert, Methods of Mathematical Physics Vol. 2, Interscience, New York, 1962.
2. C. Lanczos, Linear Differential Opera. tors, Van Nostrand, London, 1961.
3. M. R. Hestenes, Calculus of Variations and Optimal Consrol Theory, John Wiley \& Sons, New York, 1966.
4. H. J. Kelley, "Methods of Gradients", in G. Leitmann, Ed., Optinizution Techniq_es, Academic Press, New York, 1962.
5. W. F. Denham, Steepest-Ascent Solution of Optimal Programming Problems, Report No. BR-2393, Raytheon Co., Bedford, Mass., April, 1963.
6. R. E. Kopp, and K. G. Moyer, "Trajectory Optimization Techniques", in C. T.

Leondes, Ed., Advances in Control Systems, Vol. 4, Academic Press, New York, 1966.
7. D. S. Hague, "Solution of Multiple-Are Problems by the Steepest-Descent Method", in A. Lavi and T. P. Vogl, Eds., Recent Aavances in Optimization Techniques, Wiley, New York, 1966.
8. B. D. Tapley, and J. M. Lewallen, "Cornparison of Several Numerical Optimization Metlinds", J. Opt. Theory and Appl., Vcl 1, 1967, pp. 1-32.
9. A. P. Sage, Optimum Systems Control, Prentice-Hall, Engleword Cliffs, New Jersey, 1968.
10. E. J. Haug Jr., R. S. Newell, and T. D. Strecter, Optimal Design of Elastic Structural Flements, Tech. Rept. SY-R1-69,

AmeP 700 -102

Systems Analysiss Directorate, Headquarters, US Army Weapons Conmand, Rock İland; illinois 1969 :
11. E. Be Lee and LeMarkus; Foundations of Opimál Control Theoity, Wiley, New York, 1967
12. P. K. Wangi "Control of Distributed Parameter 'Systems", in C. Ti Leondés, Ed.; Aduances in Control Systems, Vol. 1, Académic Press, Nèw York, 1964.
13. W. L. Brogan, Cotimal Control Theory Applied to Systems Described by Partal Differential Equations, Report 青o. 65-29, Department of Engineering,' UCLA, Los Angeles, 1965.
14. L. A. Liusternik and V. J. Scbölev, Elèmènts of Furictional:Añalysts, Ungar Nêw York, 1961.
15. T. D. Strester, Optimal Weapon Stabllty By a Steepest-Descent Method, Tech. Rept. SY-R2-59, Systems Analysis Directoraté, US.S. Army Weapons Cónmand, Rork Island, ill, Aŭg 1969.
16. J. W. Frantz and R. H. Coberly, Design of Control Rod for XM44 Recoll Mechanism (XM164 Howitzer) Using Coupled Rotational and Translational Equations of Motion, Technical Notes, U.S. Army Weapoas Command, Rock Island, Illinois, August 1968.

AMCP 700-192

dinuensional optimal structural design problem is giten, and the computational algorithm based on theory of Chapter 8 is developed. In following paragraphs, this theory and computational algorithm are applied to example problems. Alterations in the general theory are made as they are required in tre solution of individual problems.

9-2 STEEPEST DESCENT METHOD FOR OPTIMAL STRUCIURAL DESIGN

In the structural design problems treated here, the design is to be spicified by a vector design function $u(x)=\left[u_{1}(x), \ldots, u_{m}(x)\right]^{T}$ and a vector design parameter $b=\left[b_{1}, \ldots\right.$, $\left.b_{p}\right|^{T}$, where the independent variable x may be a real varisble, a two dimensional variable $x=\left[x_{1}, x_{2}\right]^{T}$, or a threc cimensional variable $x=\left(x_{1}, x_{2}, x_{3}\right)^{T}$, depending on whether material is to be aistributed over a line, a surface, or a voiume. In addition to the design variables $u(x)$ and b, there will be sate variables $z(x)=\left[z_{1}(x), \ldots, z_{n}(x)\right]^{T}$ representing stress and dicplacement under load and $y(x)=\left\{y_{1}(x), \ldots y_{q}(x)\right\}^{T}$ representing mode shapes for vibration or buckling.

For the purposes of convenience in notation and generality, the system equations will be written in operator notation similar to that used in par. 8-4. Only linear behavior will be coisidered so thot stress and deflection are determined by the linear boundary-value oroblem

$$
\begin{equation*}
L(u h) z=Q(u, b), \quad x \in \Omega \tag{9.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B z=q, \quad x \in \Gamma \tag{9-2}
\end{equation*}
$$

In this notation, Ω is the region over which the material of the structure is disiributed and
Γ is the boundary of that region. L and B are differential operators on Ω and Γ, respectively. The tunctions Q and q are generally related to loads.

To better fix the idea of operators, consider the simply supported beam of Fig. 9-1.

Figure 9.1. Simply Supported Beam

The bour. dary value problem in this case is simply
$L(u) z=E I\left(\cdot{ }^{\prime}\right) \frac{d^{2} z}{d x^{2}}=-M(x) \equiv Q$
and
$B z \equiv\left[\begin{array}{l}z(0) \\ z(1)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \equiv q$.
Here, $u(x)$ is \rfloor variable which uniquely specified the beam cross section and determines the design, E is Young's modulus, $z(x)$ is deflection, and $M(x)$ is the bending moment that is computed from the dist,huted load $p(x)$.

In this example, Ω is jus the interval 0,1) and Γ consists of the two endpoints $x=0$ and $x=1$. The advantage in the notation of Eqs. $9-1$ and $9-2$ is that it is convenient and at the same time applied to a large class of problems. For ire example of a problem in
which $\sqrt{2}$ is a subset of two dimensional space, see par, 9-7.

In addition to response due to static load, it is necessary to treat the response of a structure to dynamic loads. One important characteristic of a structure, which is clacsifieu as dynamic resjonse, is natural froquency. Another response, which murt be treated, is buckling. Both buckling lesas and natural frequencies are determilıed, in the present class of problems, by linear eigenvalue problems. Again using operator notation, these pmblems may be written in the form

$$
\begin{equation*}
K(a b) y=\zeta M(u, b) y, \quad x \in \Omega \tag{9-5}
\end{equation*}
$$

and

$$
\begin{equation*}
C y=0, \quad x \in \Gamma \tag{9-6}
\end{equation*}
$$

where ζ is the eigenvalue and $\gamma(x)$ the assuciated eigenfunction or mode shape. The operators K and M generally relate to stiffness and mass, respectively. In conservative protlems they will be symmetric (Ref. 1) (formally selforidjoin:) but in nonconservaive sjstems, the, will not be symmetric. The more general urisy umetric case is treated here.

The optimal design problem is that of minimizing

$$
\begin{equation*}
J=f_{0}(b, \zeta)+\iint_{\Delta} f_{1}(x, z, u, b) d \Omega \tag{9-7}
\end{equation*}
$$

subject to the pointwise constraints

$$
\begin{equation*}
\phi_{1}(x, u)<0, \quad \in \in 2, \quad i=1, \ldots, r \tag{9-8}
\end{equation*}
$$

and the funcional cons: : ints

$$
\begin{align*}
\dot{\psi}_{j}= & e_{j}(b, \zeta)+i \int_{s} s_{j}(<, \ldots, u, b) d \Omega<0, \\
j & =1, \ldots, s \tag{9-9}
\end{align*}
$$

Constraints of the form $\eta(x, z, u, b)<0$ fo: $x \in \Omega$ will have so be reduced to functional constraints as in Eq, 8-6.

Beginning with an engineering estimate ot the design variables $u(x)$ and b, Eqs. 9-3 through 9.6 may be solved for $z(x), y(x)$, and \}. A perturbation, $(\delta u, \delta b)$, in thr design leads to perturbations in the cost and constraint functions

$$
\begin{align*}
\delta J= & \frac{\partial f_{0}}{\partial b} \delta b+\frac{\partial f_{0}}{\partial \zeta} \delta \zeta+\iint_{\Omega}\left(\frac{\partial f_{1}}{\partial z} \delta z\right. \\
& \left.+\frac{\partial f_{1}}{\partial u} \delta u+\frac{\partial f_{1}}{\partial b} \delta b\right) d \Omega \quad(9-10) \tag{9-10}\\
\delta \phi_{l}= & \frac{\partial \phi_{l}}{\partial u} \delta u, \quad x \in \Omega, \quad i=1, \ldots, r \quad(9-11) \tag{9-11}\\
\delta \psi_{i}= & \frac{\partial e_{l}}{\partial b} \delta b+\frac{\partial e_{j}}{\nu \zeta} \delta \zeta+\iint_{\Omega}\left(\frac{\partial g_{l}}{\partial z} \delta z\right. \\
& \left.+\frac{\partial g_{j}}{\partial u} \delta u+\frac{\partial g_{j}}{\partial b} \delta b\right) d \Omega, \\
& j=1, \ldots, s . \tag{9-12}
\end{align*}
$$

The object, as in preceding work, is to eliminate explicit dependencies on δz and $\delta \zeta$. First, the periurtation equation for δz is

$$
\left.\begin{array}{c}
L(u, b) \delta z+\frac{\partial}{\partial u}[L(u, b) z] \delta u \\
+\frac{\partial}{\partial \dot{o}}[L(u, b) z] \delta b=\frac{\partial Q}{\partial u} \delta u \\
+\frac{\partial Q}{\partial b} \delta b, \quad x \in \Omega \\
B \delta z=0, \quad x \text { on } \Gamma .
\end{array}\right\}
$$

In certan problems, the boundary conditions may depend on the design parameter

AMCP 700-102

b. In that case, the perturbed boundary conditior is

$$
B \delta z+\frac{\partial}{\partial b}[B(b) z] \delta b: 0
$$

instead of Eq. 9-13. In this case, methods of par. 8-4 must be applied to particular problems.

To eliminate δz, integration of $\iint \lambda^{T} L_{i} z d^{j} 2$ by parts yields operators L^{*} in Ω and B^{*} on Γ such that

$$
\begin{equation*}
\iint_{\Omega}\left[\lambda^{T} L \delta z-\delta z^{T} L^{*} \lambda\right] d \Omega=0 \tag{9-14}
\end{equation*}
$$

for all δz ana \rangle satisfying $B \delta z=0$ and $B^{*} \lambda=$ 0 on r.

Solving

$$
\left.\begin{array}{l}
L^{*} \lambda^{J}=\frac{\partial f_{3}{ }^{T}}{\partial z}, x \in \Omega \tag{9-15}\\
B^{*} \lambda^{J}=0, x \in \Gamma
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
L^{*} \lambda^{\psi} /=\frac{\partial g_{l}}{\partial z}, \quad x \in \Omega \\
B^{*} \lambda^{\psi} /=0, \quad x \in \Gamma
\end{array}\right\}
$$

and substituting into Eqs. 9.10 ind $9 \cdot 12$, using Eq. 9-13, one obtains

$$
\begin{align*}
\delta J= & \frac{\partial f_{0}}{\partial \zeta} \cdot \delta \zeta+\int_{\Omega^{\prime}} \Gamma_{L^{\prime}} r\left(\frac{\partial Q}{\partial u}\right. \\
& \left.\left.-\frac{\partial}{\partial u}[L(u, b) z]\right)+\frac{\partial f_{1}}{\partial u}\right] \delta u d \Omega \\
& +\left\{\frac{\partial f_{0}}{\partial b}+\iint_{\Omega}\left[\frac{\partial f_{1}}{\partial b}\right.\right. \\
& +\lambda^{\prime} T\left(\frac{\partial Q}{\partial b}\right. \\
& \left.\left.\left.-\frac{\partial}{\partial b}(L(u, b) z)\right)\right] d \Omega\right\} \delta b \tag{9.17}
\end{align*}
$$

-and

$$
\begin{align*}
\delta \psi_{j} & =\frac{\partial e_{j}}{\partial \zeta} \delta \zeta+\iint_{\Omega}\left[\lambda^{\psi j} j^{T}\right. \\
& \times\left(\frac{\partial Q}{\partial u}-\frac{\partial}{\partial u}[L(u, b) z)\right) \\
& \left.+\frac{\partial g_{j}}{\partial u}\right] \delta u d \Omega \\
& +\left\{\frac{\partial e_{j}}{\partial b}+\iint_{\Omega}\left[\frac{\partial g_{j}}{\partial b}\right.\right. \\
& +\lambda^{\psi_{j}}\left(\frac{\partial Q}{\partial b}\right. \\
& \left.\left.\left.-\frac{\hat{i}}{\partial b}[L(u, b) z]\right)\right] d \Omega\right\} \delta b \tag{9-18}
\end{align*}
$$

It remai.,s only to eliminate explicit dependence on $\delta \zeta$. Under very restrictive hypotheses, Kato (Ref. 2) has obtaineu a relationship among $\delta \zeta, \delta b$, and δu. This relationship is derived here formally. It is assumed that $\delta \zeta$ and δy depend continuously on δb and δu and further that the following perturbation formula holds:

$$
\begin{align*}
& K(u, b) \delta y+\frac{\partial}{\partial u}[K(u, b) y] \delta u \\
& \quad+\frac{\partial}{\partial b}[K(u, b) y] \delta b \\
& = \\
& \quad \delta \zeta M(u, b) y+\zeta \frac{\partial}{\partial u}[M(u, b) y] \delta u \tag{9-19}\\
& \quad+\zeta \frac{\partial}{\partial b}[M(u, b) y] \delta b+\zeta M(u, b) \delta y
\end{align*}
$$

Just as in Eq. 9-14, integration by parts may be used to obtain the operators K^{*} ζM^{*} and C^{*} adjoint to $K-\zeta M$ and C. These operators are defined by the relation

AMCP 700-192

$$
\begin{align*}
\ell^{\psi j^{*}} & =\frac{\partial e_{j}^{T}}{\partial b}+\iint_{\Omega}\left\{\frac{\partial g_{j}^{T}}{\partial b}+\left[\frac{\partial Q^{T}}{\partial b}\right.\right. \\
& \left.-\left(\frac{\partial}{\partial b}[L(u, b) z]\right)^{T} \cdot\right] \lambda^{\psi} / \\
& +\left[\frac{\partial e_{j}}{\partial \zeta} / \iint_{\Omega} \bar{y}^{T} M y d \Omega\right] \\
& \times\left[\frac{\partial}{\partial b}([K(u, b) y])^{T} \bar{y}\right. \\
& \left.\left.-\zeta\left(\frac{\partial}{\partial b}[M(u, b) y]\right)^{T} \bar{y}\right]\right\} d \Omega \tag{0-24}
\end{align*}
$$

and

$$
\begin{align*}
\Lambda^{\psi J}= & \frac{\partial g_{j}^{T}}{\partial u}\left[\frac{\partial Q^{T}}{\partial u}\right. \\
& \left.-\left(\frac{\partial}{\partial u}(L(u, b) z]\right)^{T}\right] \lambda^{\psi /} \\
& +\left[\frac{\partial e_{j}}{\partial \zeta} / \iint_{\Omega} \bar{y}^{T} M y d \Omega\right] \\
& \times\left[\frac{1}{\partial u}([K(,: b) y\})^{T} \bar{y}\right. \\
& \left.-\zeta\left(\frac{\partial}{\partial u}[M(u, b) y]\right)^{j} \bar{y}\right] \tag{9.25}
\end{align*}
$$

Eqs. 9-17 and 9-18 become

$$
\begin{equation*}
\delta J=\ell^{\prime} \delta b+\iint_{\Omega} \Lambda^{\prime T} \delta u d \Omega \tag{9.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \psi_{l}=\ell^{\psi_{j}} \delta b+\iint_{\Omega} \Lambda^{\psi} \delta u d \Omega \tag{9.27}
\end{equation*}
$$

Define vector constraint functions $\bar{\phi}(x)$ containing those constraint functions $\phi_{i}(x) \geqslant$ 0 and ψ containing constraint functionals ψ_{l} >0. Detine

$$
\begin{align*}
& \Lambda^{\bar{\phi}}(x)=\left[\left.\frac{\partial \phi_{l} T}{\partial u} \right\rvert\, \text { for all } i \text { with } \phi_{l}(x)>0\right] \\
& Q^{\bar{\psi}}=\left[Q^{\psi} / \mid \text { for all } j \text { with } \psi_{l}>0\right]
\end{align*}
$$

and

$$
\begin{equation*}
\Lambda^{\bar{\psi}}(x)=\left[i^{\psi} / \mid \text { for all } j \text { with } \psi_{j}>0\right] \tag{9-30}
\end{equation*}
$$

Defining $\Delta \ddot{\phi}(x)$ and $\Delta \tilde{\psi}$ to be desired reduction in constraint error, the linearized problem is to choose $\delta u(x)$ and δb to minimize

$$
\begin{equation*}
\delta J=\ell^{J^{T}} \delta b+\iint_{\Omega} \Lambda^{J^{T}} \delta u d \Omega \tag{9-3i}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\Lambda^{\dot{\rho}^{T}} s u-\Delta \bar{\phi}<0, \text { for } x \in \Omega \tag{9-32}
\end{equation*}
$$

$$
\ell^{\psi^{T}} \delta b+\iint_{\Omega} \Lambda^{\dot{\nu}^{T}} \delta u d \Omega-\Delta \dot{\psi} \leqslant 0
$$

and

$$
\begin{align*}
& \delta b^{T} W_{b} \delta b+\iint_{\Omega} \delta u^{T} W_{u}(x) \delta u d \Omega \\
& -\xi^{2}<0 \tag{9-3九}
\end{align*}
$$

The weighting matrices W_{b} and $W_{w}(x)$ are chosen positive definite and ξ is small. Tris optimization problem for δu and δb coincides with the pijolems of pars. $8-2$ and $8-3$ for

ordinary differential equations and with the problem of par. 8-4 for partial differential equations.

Determination of a solurion proceeds exactly as in Chapter 8 so only the resulting computational algorithm is given here.

Steepest Descent Algorithm for Optimal Structural Design

Step 1. Make an engineering estimate of the solution $\|^{(0)}(x)$ and $b^{(0)}$.

Step 2. For $j=n, 1, \ldots$, solve Eqs. $9-1,5-2$, $9-5$, and $y-6$ for $z^{(j)}, y^{(j)}$, and $\zeta^{(j)}$.

Step 3. Check the constraints of Eqs. 9.8 and 9-9 and form $\bar{\phi}$ and $\bar{\psi}$ containing the constraints not strictly satisfied.

Step 4. Solve the boundary value problems, Eqs. 9.15 and $9-16$, for λ^{J} and $\lambda^{\psi /}$ corresponding to $\psi_{j}>0$. Solve the eigenvalue problem, Eq. 9-20, for \bar{y}.

Step 5. Choose the corrections in constraint er ors $\Delta \ddot{\phi}$ and $\Delta \bar{\psi}$.

Step 6. Evaluaie $\left.\ell^{J}, \Lambda^{J}, \ell^{\star}\right)$, and Λ^{ν} in Eqs. 9-22 through 9-25 and compute

$$
M_{\partial \phi}(x)=\frac{\partial \bar{\phi}}{\partial u} w_{u}^{-i} \frac{\partial \bar{\phi}^{T}}{\partial u}
$$

$$
M_{\psi J}=Q^{\dot{\nu}} w_{j}^{-3} \psi^{j}+\iint_{\Omega} \Lambda^{-i} w_{u}^{-1}
$$

$$
\times\left(l-\frac{\partial \dot{\phi}^{T}}{\partial u} M_{\phi \phi}^{-1} \frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\right) \Lambda^{J} d \Omega
$$

$$
\begin{aligned}
M_{\psi \psi}= & \ell^{\psi} T W_{b}^{-1} \chi^{\psi}+\iint_{\Omega} \Lambda^{-T} w_{u}^{-1} \\
& \times\left(I-\frac{\partial \dot{\phi}^{T}}{\partial u} M_{\phi \dot{\phi}}^{-1} \frac{\partial \dot{\phi}}{\partial u} w_{u}^{-3}\right) \Lambda^{\psi} d \Omega
\end{aligned}
$$

and

$$
M_{\psi \phi}=\iint_{\Omega} \Lambda^{\dot{\psi} T} w_{u}^{-1} \frac{\partial \ddot{\phi}^{T}}{\partial u} M_{\phi \phi}^{-1} \Delta \ddot{\phi} d \Omega
$$

Step 7. Choose stepsize $\gamma_{0}>0$ and evaluate
$\gamma=-M_{\psi}^{-1}\left[2 \gamma_{0}\left(\Delta \dot{\psi}+M_{\psi \phi}\right)\right.$

$$
+M_{\psi J} I
$$

and

$$
\begin{aligned}
\mu(x)= & -M_{\phi \rho}^{-1}\left[2 \gamma_{0} \Delta \bar{\phi}\right. \\
& \left.+\frac{\partial \bar{\phi}}{\partial u} w_{u}^{-1}\left(\Lambda^{j}+\Lambda^{\bar{\nu}} \gamma\right)\right] .
\end{aligned}
$$

If any somponents of γ or $\mu(x)$ are negative, delete the corresponding components of $\dot{\psi}$ and $\bar{\phi}$, respectively, and teturn to Step 5. Otherwise, continue.

Step 8. Compute

$$
\begin{aligned}
5 u^{1}(x)= & u_{u}^{-1}\left(1-\frac{\partial \bar{\phi}^{T}}{\partial u} M_{\phi \phi}^{-1}\right. \\
& \left.\frac{\partial \dot{\phi}}{\partial u} W_{u}^{-1}\right) \\
& \times\left(\Lambda^{j}-\Lambda^{\dot{\nu}} M_{\dot{\psi}}^{-1} M_{\psi j}\right)
\end{aligned}
$$

AMCP 706-192

$$
\begin{aligned}
& \delta u^{2}(x)= W_{u}^{-1}\left(I-\frac{\partial \bar{\phi}^{T}}{\partial u} M_{\phi \phi}^{-1}\right. \\
&\left.\frac{\partial \bar{\phi}}{\partial u} W_{u}^{-1}\right) \\
& \times\left[\Lambda^{\bar{\psi}} M_{\psi \psi}^{-1}\left(\Delta \bar{\psi}+M_{\psi \phi}\right)\right] \\
& \delta b^{1}= W_{b}^{-1}\left(\ell^{J}-\ell^{\psi} M_{\psi \psi}^{-1} M_{\psi J}\right)
\end{aligned}
$$

and

$$
\delta b^{2}=W_{b}^{-1} 2^{\bar{\psi}} M_{\psi \psi}^{-1}\left(\Delta \dot{\psi}+M_{\psi \psi}\right)
$$

and form

$$
\begin{aligned}
u^{((+1)}(x)= & u^{())}(x)-\frac{1}{2 \gamma_{0}} \delta u^{2}(x) \\
& +\delta u^{2}(x)
\end{aligned}
$$

and
$b^{(1+1)}=b^{(1)}-\frac{1}{2 \gamma_{0}} \delta t^{1}+\delta b^{2}$
Step 9. If all onstraints are satisfied and $\delta u^{1}(x)$ and δb^{1} are sufficiently small, terminate. Otherwise, return to Step 2.

The results of Thiorem 8.2 hold for the optimal perturbations, and it may be shown that a necessary condition for convergence to a local optimum is $\delta u^{1}(x)$ and δv^{1} approach zero. Discussions of Chapier 8 on use of the algorithm apply. They will not be repeated here.

9.3 A MINIMUM WEIGHT COIUMN

A minimum weight column problem has been soived in pars. $5-4 \leq 7 d 7-2$ to illustrate the use of two optimizaticn techniques. The same problem is solved in this paragraph, by
the method of steepest descent, to illustrate the direct application of this technique to optimal structural design. The mathematical formulation of the problem is given in par. 7-2 and will be used here with a change in notation to be consistent with par. 9-2.

Fixing cross-sectional geometry and allowing cross-sectional area $u(x)$ to vary, as in par. $7-2$, yields

$$
\begin{equation*}
I(x)=\alpha u^{2}(x) \tag{9-35}
\end{equation*}
$$

The optimization problem is tu chocse $u(x), 0$ $<x<L$ to minimize

$$
\begin{equation*}
J=\int_{0}^{L} u(x) d x \tag{9-36}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
& \psi \equiv P_{0}-P<0 \tag{9-37}\\
& \phi \equiv P / u(x)-\sigma_{\max }<0 \tag{9.39}
\end{align*}
$$

and

$$
K(u) y \equiv \frac{d^{2} y}{d v^{2}}=-P \frac{1}{E \alpha u^{2}} y \equiv P M(u) y
$$

where the coordinate system is as shown in Fig. 7-1 with y replacing x and x replacing i.

In its present form, the bnundary-vaiue problem is just as in Eqs. 9-5 and 9.6 and is self-adjoint, so $y=y$ in par. 9-2. For use in the steepest-descent algorithm, Eq. 9-23 is

The computational algorithm of par. 9-2 now applies directly to the present protlem. The solution of the eigenvalue problem, Eqs. $9-39$ and $9-40$, was obtained using the finite element analysis technique outlined in par. 5-4. The solution of this continuous problem required approximateiy the sarne time per ateration as the discrete technique but fewer iterations were generally required for convergence. Exactly the same results as given in par. 7-2 were obtained. The reader is referred to that paragraph for a tabulation of results.

9-4 A MINIMUM WEIGHT VIBRATING BEAM

As was pointed out in par. 7-2, the paper by Killer (Ref 11, Chapter 7) in 1960 presented a mathematically elegant method of designing the minimum weight column. The same method was applied by Niordson (Ref. 12, Chapter 7) in 196; to find the simply supported beam of maximum natural frequency for a given volume of material in the beam. This method of solution resulted in a horribly nonlinear differential equation with serious singularities. While a solution was obtained for the vibrating beam proolem, it is doubtful that the method could be extended for the solution of mulimemter structural design problems. The methods of Chapter 8 , on the other hand, aze quitr general and will be used in this paragraph to routinely solve a minimum weight beam design problem with constraints on natural frequency.

Specifically, the problem considerid here is the determination of the distribution of material along the centerline of a simply supported bcam (see Fig, 9-2) so that the beam will be as light as possible and still have its fundamental frequency at least as large as a predetermined frequency ω_{0}. Further, so that the beam can support a minimum level of bending moment, it is required that the second moment of its cross-sectional area slall always be at least as large as a positive constant I_{0}.

Figure 9.2. Simply Supported Vibrating Beam
As in the column problem of the preceding paragraph and par. 7-2, the geometry of the cross section is fixed and all dimensions are allowed to vary proportionally. If the area is denoted $u(t)$, then

$$
\begin{equation*}
I(t)=\alpha u^{2}(t) \tag{9-43}
\end{equation*}
$$

where α is the minimum second moment of a cross section with the given geometry and uni: area.

Since the material is to be specified with constant density, minimum weight is equivalent to minimum volume. The quantity to be minimized is, therefore,

$$
\begin{equation*}
J=\int_{0}^{L} u(t) d t \tag{9-44}
\end{equation*}
$$

The constraint on $l(t)$ discussed previously can now be written as

$$
\begin{equation*}
\phi=I_{0} \cdots \alpha u^{2}(t)<0 \tag{9-45}
\end{equation*}
$$

where $I_{0}>0$ is given.

ANCP 706-192

The remaining feature of the problem to be accounted for is the constraint on natural frequer.cy If the beam with $\alpha u^{2}(t)=I_{0}$ has a fundamental natural frequency of ω_{0} or ligher, then this is clearly the optirsum beam. On the other hand, if this beam has a natural freauency below ω_{0}, then there must be points along the beam for which $\alpha u^{2}(t)>I_{0}$ and a meaningtul design problem exists. The inequality on natural frequenty is

$$
\begin{equation*}
\omega_{0}-\omega<0 \tag{9-46}
\end{equation*}
$$

There are several ways in which the natural frequancy of vibration of a beam may be related to the design of the beam $u(t)$. The relationship chosen here is the boundary-value problery describing lateral displacement during oscillation. It is given in Ref. 3 ?,

$$
\begin{align*}
& \frac{d^{2}}{d x^{2}}\left(E \alpha u^{2} \frac{d^{2} w}{d x^{2}}\right)=\rho w^{2} u w \\
& w(0)=w(L)=0 \tag{9-47}\\
& w^{\prime \prime}(0)=w^{\prime \prime}(L)=0
\end{align*}
$$

where prime denotes differentiation with respect to x.

In order to put the boundary-value problem, Eq. 947, irto the form Eqs. 9.1 and 9.2, define $y_{1}=w, y_{2}=E \alpha u^{2}\left(d^{2} y_{1} / d x^{2}\right)$, and $\rho \omega^{2}=5$. The problem, Eq. $9-47$, is then

$$
L y \equiv\left[\begin{array}{l}
\frac{d^{2} y_{2}}{d x^{2}} \tag{9.48}\\
\frac{d^{2} y_{1}}{d x^{2}}-\frac{y^{2}}{E \alpha u^{2}}
\end{array}\right]=\zeta\left[\begin{array}{l}
0 \\
u y_{1}
\end{array}\right] \equiv \zeta M y
$$

with bouncary conditions

$$
\left.\begin{array}{l}
y_{1}(0)=y_{1}(L)=0 \tag{9-49}\\
y_{2}(0)=y_{2}(L)=0
\end{array}\right\}
$$

The boundary-value problen, Eqs. 9-48 and 9-49, is self-adjoint sc $y=\bar{y}$ in par. 9-2. The optimal desig. problem is well-defined and the notation of par. 9.2 applies directly. From Eq. 9-23,

$$
\Lambda^{J}=1
$$

and from Eq. 9-25,

$$
\lambda^{\psi}=-\left(\frac{2 y \frac{3}{2}}{E \alpha u^{3}}-\zeta y_{1}^{2}\right) / \int_{0}^{i} u y_{1}^{2} d x .
$$

The computational steepest-jescent algorithm may now be implemented in a direct manner.

As a numerical example, the given problem r 'ss solved with the data $E=3 \times 10^{7} \mathrm{psi}, L=$ $10 \mathrm{in} ., \alpha=1.0$, and $p=0.002 \mathrm{c} 3$ slug/in ${ }^{3}$ The eigenvalue prot:?m was solved through use of a finite elentent structural analysis program. Even though there was no attempt at making the computstional routines efficient, only 7 sec per iteration on an IBM $360-65$ Computer were required. For most natural frequencies, 10 to 15 iterations were sufficient for convergense to within numarical accuracy of the computations. Results for a range of natural ${ }^{\text {'requencies are given in Table 9-1. The general }}$ snapes of profites of several of the optimum beams are shown in Fig. $9-3$ to illustrate the optimum distribution of material.

9.5 A MINIMUM WEIGHT VIBRATING frame

The distribution of mate, ial along members si the frame shown in Fig. 9.4 is to be

ANCP 708-192

the differential equations for vibration of the frame are

$$
K y \equiv\left[\begin{array}{l}
y_{2}^{\prime \prime} \\
y_{1}^{\prime \prime}-\frac{1}{E I_{1}} y_{3} \\
y_{4}^{\prime \prime} \\
y_{3}^{\prime \prime}-\frac{1}{E I_{2}} y_{4} \\
y_{6}^{\prime \prime} \\
y_{3}^{\prime \prime}-\frac{1}{E I_{3}} \cdot y_{6}
\end{array}\right]=\rho \omega^{2}\left[\begin{array}{c}
u_{1} y_{3} \\
0 \\
0 \\
u_{3} y_{5} \\
0
\end{array}\right] \equiv 5 M y
$$

where $\zeta=\rho \omega^{2}$. Boundary conditions are

$$
\left.\begin{array}{rl}
y_{1}(0)=0 & y_{2}(L)=-y_{5}(0) \\
y_{1}^{\prime}(0)=0 & y_{1}^{\prime}(L)=y_{3}^{\prime}(0) \\
y_{3}(0)=0 & y_{3}^{\prime}(L)=y_{5}^{\prime}(0) \\
y_{3}(L)=0 & y_{2}(L)=y_{4}(0) \\
y_{5}(L)=0 & y_{4}(L)=y_{6}(L) \tag{9.51}\\
y_{5}^{\prime}(L)=0 & \\
y_{2}^{\prime}(L)+y_{6}^{\prime}(0)= \\
& -\left[j \int_{0}^{L} u_{2}(x) d x\right] y_{1}(i)
\end{array}\right\}
$$

The boundary-value problem, Eqs. $9-50$ and $9-51$, is written in self-adjoint form. The last bounuary condition in Eq. $9-51$ is just Newton's second law applied to horizontal motion of Member 2. This boundary condit:on does not fit Eq. 9.6 exactly due to dependence on the design variable $u_{2}(x)$. it will have to be treated as a special case according to the comment following Eq. 9-13.

The perturbation boundary conditions from Eq. 9.51 are

$$
\begin{aligned}
& \delta y_{1}(0)=0\left.\delta y_{1} ; L\right)=-\delta y_{5}(0) \\
& \delta y_{1}^{\prime}(0)=0 \delta y_{1}^{\prime}(L)=\delta y_{3}^{\prime}(0) \\
& \delta y_{3}(0)=0 \delta y_{3}^{\prime}(L)=\delta y_{5}^{\prime}(0) \\
& \delta y_{3}(L)=0 \delta y_{2}(L)=\delta y_{4}(0) \\
& \delta y_{5}(L)=0 \delta y_{4}(L)=\delta y_{6}(L) \\
& \delta y_{5}^{\prime}(L)=0 \\
& \delta y_{2}^{\prime}(L)+\delta y_{6}^{\prime}(0)= \\
&-\left[\frac{5}{5} \int_{0}^{L} \delta u_{2}(x) d x\right] y_{1}(L) \\
&-\left[\zeta \int_{0}^{L} u_{2}(x) d x\right] \delta y_{1}(L)
\end{aligned}
$$

Two integrations by parts and cimination of boundary terms through use of Eqs. 9-51 and 9-52 yield

$$
\begin{align*}
\int_{0}^{L} \delta y^{T} K y d x= & \int_{0}^{L} y^{T} K \delta y d x \\
& -\left[\zeta \int_{0}^{L} \delta u_{2}(x) d x\right] y_{1}(L) \tag{9-53}
\end{align*}
$$

Since the boundary value problem, Eqs. $9-50$ and 9.51 , is self-adjoint, $\bar{y}=y$ in the general formulation. The derivation of Eq. 9-21 holds and Eq. 9-53 may be substituted along with

$$
\int_{0}^{L} y^{T} M \delta y d x=\int_{0}^{L} \delta y^{T} M y d x
$$

to obtain

$$
\begin{aligned}
\left\{\int_{0}^{L} y^{T} M y d x\right. & \} \delta \zeta= \\
& \int_{0}^{L} \delta y^{T}[K y-\zeta M y] d x
\end{aligned}
$$

$$
+\left[\zeta \int_{0}^{L} \delta u_{2}(x) d x\right] y_{1}(L)
$$

$+\int_{0}^{L}\left\{\left[\frac{2 y_{2}^{2}}{E \alpha_{1} u_{i}^{3}}\right] \delta u_{1}\right.$ $+\left[\frac{2 y_{4}^{2}}{E \alpha_{2} u_{2}^{3}}\right] \delta u_{2}$ $\left.+\left[\frac{2 y_{6}^{2}}{E \alpha_{3} u_{3}^{2}}\right] \delta u_{3}\right\} d x$

Solving for $\delta\}$,

$$
\begin{align*}
\delta \zeta= & {\left[\frac{1}{\int_{0}^{L}\left(u_{1} y_{1}^{2}+u_{2} y_{3}^{2}+u_{3} y_{5}^{2}\right) d x}\right] } \\
& \times \int_{0}^{L}\left\{\left[\frac{2 y_{2}^{2}}{E \alpha_{1} u_{1}^{3}}\right] \delta u_{1}\right. \\
& +\left[\frac{2 y_{4}^{2}}{E \alpha_{2} u_{2}^{3}}+\zeta y_{1}(L)\right] \delta:_{2} \\
& \left.+\left[\frac{2 y_{6}^{2}}{E \alpha_{3} u_{3}^{2}}\right] \delta u_{3}\right\} d x \tag{9-54}
\end{align*}
$$

By making the obvious choice for Λ^{ξ}, Eq. $9-54$ can be written

$$
\begin{equation*}
\delta \zeta=\int_{0}^{L} \wedge \xi^{\tau} \delta u d x \tag{9-55}
\end{equation*}
$$

AMCP 706-192.

This is precisely the form of Eq, 9-27, and the remainder of the general derivation of the steepest descent algorithm is valid. It should be noted that thip derivation is formal, and rigorous verification of Eq. 9-54 is'expected: to be extremely difficult.

The:-algorithm of par. 9-2 was used to solve this problem in a direct mannes. The cigenvalue problem was solved approximately by a finite tiement niethod. Data for this problem are $\alpha=0.07958, \rho=2.616 \times 10^{4} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} .^{4}$, $E=10.3 \times 10^{6} \mathrm{psi}, I_{0}=0.009825 \mathrm{in} .^{3}$, and $L=$ 10.0 in . Weights of optimum frames are given in Table $9-2$ for several frequency requirements, and the profile of an optimum frame is shown in Fig. 9-5.

TABLE 9-2

WEIGHT OF OPTIMUM FRAMES

ω_{0}, red/sec	2000	3000	4000	5000
Optimum				
Weigt.t, lb	1.73	2.56	3.59	4.69

Figire 9.5. Profile of Optimum Frame

AMci 706-192:

96 A MINMUM WEIGHTTFPAME WITH SMULTIPLE FALLUREGRITERIA

In môst struictưal désign problems, constraints, of several kinds niust be treated simultaneously In the present problem, con straints on member size; deflection, and bucking are enforced in the minimum weight design of the frame shown in Fig. 9-6. Area is

Figure 9-5. Laterally Loaded Frame
allowed to vary along the length of the first and second members but the geometricai shape of the cross section is fixed. Thus,

$$
I_{1}(x)=\alpha_{i} u_{i}^{2}(x)
$$

where c_{y} depends on the cross-sectional geometry and $u_{1}(x)$'s the cross-sectional area of the th member at the point x. The size of the third member is fixed and all members ate taken the same length.

Free body diagrams of the members are shown in Fig. 9.7.

The third member is uniform with constant moculus $E I_{3}$. Further, axial deformation of the second member is neglected so the top ot

Figure 9.7. Free Bodies
the thid member moves $-h^{\prime}(L)$ units to the right. Tius, by elementary beam theory (Ref. 3)

$$
\begin{equation*}
T=-\frac{3 w(L) E I_{3}}{L^{3}} \tag{9-56}
\end{equation*}
$$

The differential equation of deformation of the first member is

$$
\begin{equation*}
\left[E \alpha_{1} u_{1}^{2}(x) w^{\prime \prime}\right]^{\prime \prime}=-q(x) \tag{9-57}
\end{equation*}
$$

and the boundary conditions are

$$
\begin{align*}
& w(0)=0 \\
& w^{\prime}(0)=0 \tag{9-58}\\
& w^{\prime \prime}(L)=0 \\
& -\left(E \alpha_{1} u_{1} w^{\prime \prime}\right)^{\prime}(L)=\frac{3 E I_{3} w(L)}{L_{3}}
\end{align*}
$$

To get the boundary-value problem, Eqs. 9.57 and 9.58 . into the form of Eq. 9.1 , define

$$
\left.\begin{array}{l}
z_{1}=w \tag{1}\\
z_{2}=i \dot{E} c_{1} u_{1} w^{\prime \prime}=Z \dot{Z} \alpha_{1} u_{1}^{2} z_{1}^{\prime \prime}
\end{array}\right\}
$$

The beundary-value problem, Eqs. 9.57 and 9.58 , is titen

$$
\begin{align*}
& L z \equiv\left[\begin{array}{l}
z_{2}^{\prime \prime} \\
z_{1}^{\prime \prime}-\left[1 / E \alpha_{1} u_{1}^{2}\right] z_{2}
\end{array}\right] \\
&=\left[\begin{array}{c}
-q(x) \\
0
\end{array}\right] \equiv Q(x) \tag{9-60}\\
& \text { and } \\
& B z \equiv\left[\begin{array}{l}
z_{1}(0) \\
z_{1}^{\prime}(0) \\
z_{2}(L) \\
-z_{2}^{\prime}(L)-\frac{3 E I_{3} z_{1}(L)}{L^{3}}
\end{array}\right]=\left[\begin{array}{l}
0-60) \\
0 \\
0 \\
0
\end{array}\right] \equiv q \tag{9.61}
\end{align*}
$$

The equations which determine buckling load P of the second member are

$$
\begin{equation*}
K y \equiv y^{\prime \prime}=P\left(\frac{1}{E \alpha_{2} u_{2}^{2}}\right) y \equiv P M y \tag{9.62}
\end{equation*}
$$

and

$$
C y \equiv\left[\begin{array}{l}
y^{\prime}(0) \tag{9.63}\\
y(L)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The objective in the design problem is to choose $u_{1}(x)$ and $u_{2}(x)$ to minimize the weight of the first two members,

$$
\begin{equation*}
J=\gamma \int_{0}^{L}\left\{u_{1}(x)+u_{2}(x)\right] d x \tag{0.64}
\end{equation*}
$$

The constraints to be enforced are

$$
\begin{align*}
& \psi_{1}=-\left(\frac{3 E I_{3}}{L^{3}}\right) z_{1}(L)-P<0 \tag{9.65}\\
& \psi_{2}=-z_{1}(L)-S<0 \tag{9.66}
\end{align*}
$$

AMCP 706-192

$$
\begin{align*}
& \text { and } \\
& \qquad \phi_{i}=-\alpha_{1} u_{i}(x)+I_{0}<0 \quad i=1,2 \tag{9.67}
\end{align*}
$$

The constraint, Eq. 9-65, requires that the axial load T in the second member be less than or equal the buckling load. A limit S is placed on horizortal deflection of the top of the frame in Eq, $9-66$. The constraints, Eq. 9.67, are included to insure that member cross section does not go to zero anywhere. A more realistic constraint would be on bending stress but this would require a constraint of the form of Eq. $8-6$. This constraint will be included in subsequent work but will not be treated here.

The constraints, Eqs. 9-65 and 9-56, do not fit directly into the basic formuation of this text and require special treatment. The linearized forms of these constraints are

$$
\begin{equation*}
-\left(\frac{3 E l_{3}}{L^{3}}\right) \delta z_{1}(L)-\delta P \leqslant \Delta \psi \tag{9.68}
\end{equation*}
$$

and

$$
\begin{equation*}
-\delta z_{1}(L)<\Delta \psi_{2} \tag{9-69}
\end{equation*}
$$

It semains to obtain expressions for $\delta z_{1}(L)$ and δF^{\prime} expicitly in terms of $\delta u_{1}(x)$. From. Eq. 9-21, δP may be capressed in terms of $\delta u_{2}(x)$.

In order to obtain an expression for δz : (L), a Geen's identity similar to Eq. 9.14 is needed. Integration twice by parts of $\int_{0}^{L} \lambda^{T} L \delta z d x$ yields

$$
\int_{0}^{L} \lambda^{T} L \delta z d x=\int_{0}^{L} \delta z^{T} L \lambda d x
$$

$=\left(\lambda_{1} \delta z_{2}^{\prime}=\lambda_{1}^{\prime} \delta z_{2}\right.$
$\left.+\lambda_{3} \delta z_{1}^{\prime}-\Lambda_{2}^{\prime} \delta z_{1}\right)\left.\right|_{0} ^{L}$.

AMCP jog-192.

Choosing λ such that $L \lambda=0$, sebstituting for $L \delta z$, from Eq. $9-13$, and using the linearized boundary conditions of Eq. 9-61, this becomes

$$
\begin{align*}
\int_{0}^{L}\left(\frac{-2 z_{2}}{E \alpha_{1} u_{1}^{3}}\right) \delta \dot{u}_{1} d x & = \\
& -\lambda_{1}(L)\left(\frac{3 E i_{3}}{L^{3}}\right) \delta z_{1}(L) \\
& -\lambda_{1}(0) \delta z_{2}^{\prime}(0) \\
& +\lambda_{1}^{\prime}(0) \delta z_{2}(0) \\
& +\lambda_{2}(L) \delta z_{2}(L) \\
& -\lambda_{2}(L) \delta z_{1}(L) \tag{9.70}
\end{align*}
$$

The adjoint variable is chosen to satisfy $L \lambda$ $=0$ but no boundary conditions have yet been specified. Choosing

$$
\left.\begin{array}{c}
-\frac{3 E I_{3}}{L^{3}} \lambda_{1}(L)-\lambda_{2}(L)=! \tag{9.71}\\
\lambda_{1}(0)=\lambda_{1}^{\prime}(0)=\lambda_{2}(L)=0
\end{array}\right\}
$$

the identity, Eq. 9-70, becomes

$$
\begin{equation*}
\delta z_{1}(L)=\int_{0}^{L}\left[\frac{-2 z_{2}(x) \lambda_{2}(x)}{F \cdot u_{1} u_{1}^{3}(x)}\right] \delta u_{1}(x) d x \tag{9.72}
\end{equation*}
$$

Thus an explicit relationship between δu and $\delta z_{1}(L)$ has been found and may be substituted directly into the linear constraints, Eqs. $9-08$ and 9-69. With proper choice of notation, these inequalities fit into the form of Eq. 9-33.

In. this problem the differential equations,

Eqs. 9.1 and 9.5, are formally self-adjoirt so $L^{*}=L, K^{*}=K$, and $M^{*}=M$ in the general theory. Since the boundary-value problem, Eqs. 9-62 and 9-63, is self-adjuint, $\bar{y}=y$ and the computation required in Step 2 of the steepest descent algorithm is considerably redrced.

This problem is now easily put in the form of the prol iem of par. 9-2. 1^{\prime} was solved by direct application of the algorithm of that paragraph with the data $S^{\prime}=4 \mathrm{in}$., $L=100 \mathrm{in}$,, $E=3.0 \times 10^{7} \mathrm{psi}, \alpha=0.07958, I_{0}=0.0147$ in^{4}, and area of member 3 is $4.0 \mathrm{in}^{2}$ The volume of the optimum frame for several values of q is given in Table 9.3. The profile r ' an optimum frame is shown in Fig. 9-8.

TABLE 9.3
VOLUME OF OPTIMUM FRAME

| q. Ib/in. | 10 | 15 | 20 | 25 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Optimum
 Volume,
 in. | 502.1 | 531.1 | 556.0 | 653.9 |

9.7 A MINIMUM WEIGH: VIBRA:ING plate

In order to lllustrate the us of the steepest desecit method in higher dimensional problems, a minimum weight vibrating plate preblem will be solved. A rectangular plate, Fig. 9.), is specilied by its thickness function $h\left(x_{1}, x_{2}\right)$ over the plate. The object here is to choose $h\left(x_{1}, x_{2}\right)$ such that the weight of the plate is as small as possible subject to the constraint that the natural frequercy of lateral vibration is greater tian or equal to a given frequency ω. Further, due to applied loads, a constraint of the form is

$$
\begin{equation*}
h_{0}\left(x_{1}, x_{2}\right)-h\left(x_{1}, x_{2}\right)<0 \tag{9.73}
\end{equation*}
$$

enforced. In the present problem, $h_{0}\left(x_{1}, x_{2}\right)$ is taken as a constant h_{U}.

Denoting bendine moments (Ref. 4) by y_{1} $=M_{x}, y_{2}=M_{y}$, and $y_{3}=M_{x y}$ anc the lateral displacement by $y_{4}=w$, the equations governing lateral vibration may be written (Ref. 4) in self-adjoint form as

where $\zeta=\rho \omega^{2}$ and ω is the natural frequency of vibration of the plate. The boundary-value problem for the simply supported plate with differential equations, Eqs. 9-74, is selfadjoint with the boundary conditions

Figure 9.9. Simply Supported Piate

$$
\left.\begin{array}{l}
y_{1}\left(a, x_{3}\right)=0, y_{1}\left(0, x_{2}\right)=0 \tag{9.75}\\
y_{4}\left(a, x_{2}\right)=0, y_{4}\left(0, x_{2}\right)=0 \\
y_{2}\left(x_{1}, 0\right)=0, y_{2}\left(x_{1}, b\right)=0 \\
y_{4}\left(x_{1}, 0\right)=0, y_{4}\left(x_{2}, b\right)=0
\end{array}\right\}
$$

The coordinate system and simply supported boundary of the plate are shown in Fig. 9-9.

To complete the formulation of this problem in terms of the preceding theory, a cost function is defined by

$$
\begin{equation*}
J=\int_{0}^{b} \int_{0}^{a} \gamma l:\left(x_{1}, x_{3}\right) d x_{1} d x_{2} \tag{9.76}
\end{equation*}
$$

where γ is weight density of the plate material. The strength constraint in this problem is taken as Eq. 9-73 and the eigenvalue constraint is

$$
\begin{equation*}
\rho \omega_{0}^{2}-\zeta<0 \tag{9.77}
\end{equation*}
$$

AMCP 706-192

This problem is now in the form of the general problem of par. 9-2. The domain Ω in this case is simply the rectangular region of the plate that is of dimension two. Further, since the bcundary-value problem, Eqs. 9.74 and $9-75$, is self-adjoint, $y=\bar{y}$ in the theory of par. 9-2.

Using the definition of K anc $M, \phi \equiv h_{0}$ $h\left(x_{1}, x_{2}\right)$ in Eq. 9-73, and $e_{j}(\zeta) \equiv \rho \omega_{0}^{2}-\zeta$ in Eq. 9-77, frot. Eq. 9-23,

$$
\begin{equation*}
\Lambda^{I}=\gamma \tag{9-78}
\end{equation*}
$$

and from Eq. 9-25

$$
\begin{gather*}
\Lambda^{\psi} l=-\left[\frac{36\left(y_{i}^{2}-2 \mu y_{1} y_{2}+y_{3}^{2}\right)+18(1+\mu) y_{3}^{2}}{E h^{4}}\right. \\
-\zeta y_{4}^{2} \tag{9-79}\\
\end{gather*}
$$

This problem is now in the form of the generai problem of par. 9-2. It was solved by direct application of the algorithm of that parggraph. The eigenvalue ind eigenfunction for the variable thickness plate were determined approximately by the Ritz techrique
(Ref. 5). Data for this problem are $a=b=5.0$ in., $E=3.0 \times 10^{7} \mathrm{psi}, \rho=7.45 \times 10^{-4} \mathrm{lb}-\mathrm{sec}^{2} /$ in. ${ }^{4}, \nu=0.30$, and $\omega_{0}=1375 \mathrm{rad} / \mathrm{sec}$. A , uniform plate with $\zeta=\rho \omega^{2}=1400$ was taken as the initial estimate. The volume of the optimum plate is $10.71 \mathrm{in}^{3}$, Double symmetry of the optimuin plate was observed about the axes through $(a / 2, b / 2)$. One quarter of the optimum plate with contour lines is shown in Fig. 9-10.

Figure 9-10. Contours of Optimum Plare

REFERENCES

1. C. Lanczos Lincar Differential Operctors, Yan Nostrand, London, 19F1.
2. T. Katu, Perturbation Theory for Liniar Operators, Springer-Verlay, New York, New York, 1966.
3. A. Higdon, F. H. Ohlsen, and W. B. Stiles,

Mechanics of Materials.
4. C. T. Wang, Applied Elasticity. McGrawHill, New York, 1753.
5. S. G. Mikhlin, Variational Methods in Mathcmatical Physics, MacMillan, New York, 1964

APPENDIX A

CONVEXITY

Convex functions and sets as defined in Chapter 2 play an important role in optimization theory. It is generally possible to obtain much more comprehensive results in nenlinear programming problems that are convex than in the nonconvers case. Some of the more important results due to convexity are given in Chapter 4, par. 4-2.

In order that this appendix is seifcontained, definitions of general convex sets and functions will te repeated here. For a complete treatment of convexity, the reader is referred to Ref. 1.

Definition $A \cdot 1$: Let D be a subset of R^{n}. D is calle? a convex set if for any points x and y in $D, x+\theta(y-x)$ is also in D for all θ such that $0<0<1$.

The collection of points $x+\dot{\theta}(y-x), 0<$ $\theta<1$, is just a straight line from x to y. Def. A-1 just says, then, that a set in R^{n} is convex if the straight line joining any pair of points in the set lies entirely in the set. For example, in R^{2} (the plane) the set of points inside the unit circle is convex (see Fig. A-1(A)) whereas the star-shaped region in Fig. A-1 (B) is not convex.

Convex functions have as their prototype $f(x)=x^{2}$ in R^{1}. The graph of this function is shown in Fig. A-2. Note in this figure that if a straight line is constructed betwe \mathfrak{n} any two points $\{z . f(z)]$ and $[y f(y)\}$, then this line is alove the graph $\mathrm{cf} f(x)$: t all points between 2

Figure A-1. Ey amples; Consex Case and Nonconvex Case
and y. This is preciscly the property which characterizes convex functions. Analytically, this property is expressed by the inequality

$$
f[z+\theta(y-z)]<f(z)+\theta[f(v)-f(z)]
$$

for all 0 with $0<0<1$.
The same idea holds in R^{n} where convex functions are characterize, by

Defintion A-2: Let the real valued function $f(x)$ be defined on the convex subset D

Figure A-2. Graph of $f(x)=x^{2}$ in R^{1}

AMCP 708192

of R^{n}. Then $f(x)$ is called a convex function if for any points z and y in D.

$$
f\{z+\theta(y-z)\}<f(z)+\partial[f(y)-f(z)]
$$

for all θ with $0<\theta<1$.
Convex functions ana convex sets are related as is shown in

Theorem A-1: The set of points D in R^{n} which satisfy $g_{i}(x)<0, i=1, \ldots, m$, is convex if each of the functions $g_{1}(x)$ is convex in R^{n}.

One further property of convex functions is extremely important for applications. It is established by

Theorem A-2: If $f(x)$ is differentiable and convex on the convex subset D of R^{n}, then

$$
\begin{equation*}
f(x)>f(y) \div \square f(y) \cdot(z-y) \tag{A-2}
\end{equation*}
$$

for all z and y in D.

1. R. T. Rockafeller, Convex Analysis, Princeton University Press, Yrinceton, N.J., 1570.

REFERENIE

All these cesirable properties of convex functions will go to waste unless one is able to test a given function for convexity. The following three theorems provide useful tests:

1. Theorem A-3: If $f(x)$ is twice sontinuously differentiable in a conve:: subset D of R^{n}, it is convex in D if an cniy if the quadratic form

$$
S^{T}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right] b\left(\text { or } S^{T} \cdot \nabla^{2} f \cdot S\right)
$$

is positive-semidefinite at each point in D.
2. Theorem $A-4$: If the functions $q_{i}(x), i=$ $1, \ldots, r$, are convex in the convex subset D of R^{n} and $\alpha_{1}>0, t=\{, \ldots, r$, then

$$
\sum_{i=1}^{r} \alpha_{1} q_{i}(x)
$$

's convex in D.
3. Theorem A-r: If $g(x)$ is twice continubusly differentiable, $g(x)<0$, and $g(x)$ is sonvex; then, $1 /[g(x)]$ is convex.

APPENDIX B

ANALYSIS OF BEAM-TYPE STRUCTURES

Finite and discrete element methods of structural analysis (Refs. 1,3), require a knowledge of the behavior of each element in the structure. Once each element is described, then the governing equations of the entire structure may be derived. Z̈nergy methods are generally used to obtain the governing equations.

B. 1 ELEMENT ANALYSIS

In order to apply energy theorems for the analysis of a structure, the potential energy duc to strain, kinetic energy, and change in external dimensions due to bending must be described. The basic idea is to assian generalized displacement functions, which are of the form expected in structurai deformation and that are unizuely specified when the displace.ment of both ends of the beant is known. A typical beam with its deformation sign convention is shown in Fig. B-1. The displacement u_{1}, u_{2}, u_{3}, and u_{4} are comporents of endpoint displacement and u_{5} and u_{6} are endpoint rotations.

The longitudinal displacer.ent of a point x, $0<x<\ell$, on the beam due to iongitudinal strain is apprcximated by

$$
\begin{equation*}
s(x)=-u_{1}\left(\frac{x-\ell}{\ell}\right)+u_{2} \frac{x}{\ell} . \tag{B-1}
\end{equation*}
$$

Lateral displacement of the beam at a point x is approximated by

Figure B-1. Basic Beam Element

$$
w(x)=\frac{u_{3}}{\ell^{3}}\left(2 x^{3}-3 \ell x^{2}+\ell^{3}\right)-\frac{u_{4}}{\ell^{3}}\left(2 x^{3}\right.
$$

$$
\begin{equation*}
\left.-3 \ell x^{2}\right)+\frac{u_{5}}{\ell^{2}}\left(x^{3}-2 \ell x^{2}\right. \tag{B-2}
\end{equation*}
$$

$$
\left.+\ell^{2} x\right): \frac{u_{6}}{\ell^{2}}\left(x^{3}-\ell x_{2}\right)
$$

It should be stressed that the longitudinal displacement $s(x)$ is due only to longitudinal strain in the beam and not due to the change in length caused by the lateral displacement $w(x)$.

The potential energy $P E$ due to deformation of the beam is (Ref. 2):

$$
\begin{aligned}
P E= & \frac{1}{2} \int_{V}^{Q} A E\left(\frac{d s}{d x}\right)^{2} d x \\
& +\frac{1}{2} \int_{0}^{\ell} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2} d x \\
= & \frac{1}{2} \int_{1}^{8} A E\left(-\frac{u_{1}}{\ell}+\frac{u_{2}}{\ell}\right)^{2} d x+\frac{1}{2} \\
& \int_{0}^{\rho} E I\left[\frac{u_{3}}{l^{3}}(12 x-6)-\frac{u_{4}}{l^{3}}(: 2 x-6 \ell)\right. \\
& +\frac{u_{5}}{\ell^{2}}\left((x x-4 \ell)+\frac{u_{6}}{l^{2}}(6 x-2 \ell)\right]^{2} d x
\end{aligned}
$$

AMCP 706-192

which is

$$
P E=\frac{1}{2} u T \frac{E}{R^{3}}\left[\begin{array}{cccccc}
A R^{2} & -A R^{2} & 0 & 0 & 0 & 0 \\
-A R^{2} & A R^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 12 I & -12 I & -6 R & -6 \pi R \\
0 & 0 & -2 I & 12 I & 6 I R & 6 \pi R \\
0 & 0 & -6 J R & 6 I R & 4 / R^{2} & 2 J R^{2} \\
0 & 0 & -6 / R & \epsilon R & 2 / R^{2} & 4 I R^{2}
\end{array}\right] u
$$

(B-4)
where $u=\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right]^{T}$.

Similarly, the kinetic energy $K E$ of the beam is

$$
K E=\frac{1}{2} \int_{0}^{\ell} p A\left(\frac{d s^{2}}{d t}+\frac{d w^{2}}{d t}\right) d x
$$

$$
=\frac{1}{2} \int_{0}^{\ell} \rho A\left\{\left[-\dot{u}_{1}\left(\frac{x-l}{l}\right)+\dot{u}_{2} \frac{x}{\ell}\right]^{2}\right.
$$

$$
+\left[\frac{\dot{u}_{3}}{l^{3}}\left(2 x^{3}-3 \ell x^{2}+\ell^{3}\right)\right.
$$

$$
-\frac{\dot{u}_{4}}{\ell^{3}}\left(2 x^{3}-3 l x^{2}\right)
$$

$$
+\frac{\dot{u}_{5}}{l^{2}}\left(x^{3}-2 l x^{2}+l x\right)
$$

$$
\left.\left.+\frac{\dot{u}_{6}}{\ell^{2}}\left(x^{3}-l x^{2}\right)\right]^{2}\right\} d x
$$

13.2
$K E=\frac{1}{2} u^{T} \frac{\rho A Q}{420}\left[\begin{array}{cccccc}140 & 70 & 0 & 0 & 0 & 0 \\ 70 & 140 & 0 & 0 & 0 & 0 \\ 0 & 0 & 195 & 54 & -228 & 13 \ell \\ 0 & 0 & 54 & 156 & -13 \ell & 22 \ell \\ 0 & 0 & -222 & -13 \ell & 4 R^{2} & -3 R^{2} \\ 0 & 0 & 138 & 22 \Omega & -38^{2} & i R^{2}\end{array}\right]$.
(B-6)
The shortening of the beam $\Delta \ell$ due to the lateral displacement is

$$
\begin{align*}
\Delta l & =\ell-\int_{0}^{0}\left[1-\left(\frac{d w}{d x}\right)^{2}\right]^{2} d x \\
& \approx \int_{0}^{\ell} \frac{1}{2}\left(\frac{d w}{d x}\right)^{2} d x \\
& =\frac{1}{2} \int_{0}^{\ell}\left[\frac{u_{3}}{l^{3}}\left(6 x^{2}-6 l x\right)\right. \\
& -\frac{u_{4}}{l^{3}}\left(6 x^{2}-6 l x\right) \tag{B-7}\\
& +\frac{u_{5}}{l^{2}}\left(3 x^{2}-4 l x+\ell^{2}\right) \\
& \left.+\frac{u_{6}}{l^{2}}\left(3 x^{2}-2 l x\right)\right]^{2} d x
\end{align*}
$$

or

$$
\Delta Q=u r\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{c} & \frac{3}{58} & -\frac{3}{58} & \frac{1}{20} & \frac{1}{20} \\
0 & 0 & -\frac{3}{58} & \frac{3}{58} & -\frac{1}{20} & -\frac{1}{20} \\
0 & r & \frac{1}{20} & -\frac{1}{20} & \frac{Q}{15} & -\frac{8}{60} \\
0 & 0 & \frac{1}{20} & -\frac{1}{20} & -\frac{8}{60} & \frac{8}{15}
\end{array}\right] u . \quad(\mathrm{B}-8)
$$

(B-5)

AMCP/70:-192

$$
\frac{\partial \partial_{i}}{\partial \delta u_{i}}\left[\delta^{2} V(u)\right]=0, i=1, \ldots, n
$$

at $\delta u=\delta \bar{u}$. Thus

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial u^{2}}(u) \delta \bar{u}=0 \tag{B-14}
\end{equation*}
$$

The condition, Eq. b-14, determines buckiing loads for the struciural system. All this analysis requires, of course, that $V(u)$ is at least twice continuously jifferentiable.

These laws are for static behavior of the structural syssem Dynaraically, the structure is governed by Lagrange's equatinns of motion. First, define the kinetic energy T as the quadratic form

$$
\begin{equation*}
T=\frac{1}{2} \dot{u}^{T} M \dot{u} \tag{B-15}
\end{equation*}
$$

where

$$
M=\left[m_{i j}\right]
$$

and the $m_{i j}$ are generalized masses. The generalized mass matrix M is detined by the transformation

$$
z=f(Z)
$$

wherc

$$
Z=\left\{Z_{1}, \ldots, Z_{p}\right\rceil
$$

and Z_{i} are components of physical displacement of the masses of the structure. Therefore,

$$
\begin{aligned}
& T=\frac{1}{2} \sum_{i=1}^{p} \dot{Z}_{i}^{2} m_{l}=\frac{1}{2} \sum_{i=1}^{p}\left[\left(\frac{\partial f}{\partial Z}\right)^{-1} \dot{u}\right]^{r} \\
& \quad \times m_{l}\left[\left(\frac{\partial f}{\partial Z}\right)^{-1} \dot{u}\right]
\end{aligned}
$$

$$
=\frac{1}{2} \sum_{i=1}^{p} \dot{u}^{T}\left[\left(\frac{\partial f^{T_{i}}}{\partial Z}\right)^{-1} m_{i}\left(\frac{\partial f}{\partial Z}\right)^{-1}\right] \dot{u}
$$

where \dot{m}_{i} are element risses. In the nutation of Eq. B-1 5 ,

$$
M=\sum_{i=1}^{p}\left[\left(\frac{\partial f^{T}}{\partial Z}\right)^{-1} m_{l}\left(\frac{\partial f_{l}}{\partial Z}\right)^{-1}\right]
$$

Putting

$$
\begin{equation*}
L=n-V \tag{B-16}
\end{equation*}
$$

Lagrange's zquations of motion are simply (Ref. 2, page 239)

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}_{j}}\right)-\frac{\partial L}{\partial u_{i}}=0, i=1, \ldots, n \tag{B-17}
\end{equation*}
$$

B-3 EQUATIONS UF STRUCTURAL ANALYSIS

The given variational principle^ may be applied so obtain th: governing equations of structural analysis. The element properties described by Eqs. B-4, B-6, and B-8 may be useu to generate the potential and kinetic nergy of the entire structure. From the definitions, Eqs. B-9 and B-15,

$$
\begin{equation*}
V=\sum_{l} P E^{j}-\sum_{k}\left(u^{k}+\bar{u}^{k}\right) F^{k} \tag{B-18}
\end{equation*}
$$

and

$$
\begin{equation*}
T=\sum_{j} K E^{\prime} \tag{B-19}
\end{equation*}
$$

where superscript / denotes the j th element of the structure, k denotes the components of displacement at joints, F^{k} is the component of external force corresponding to u^{k}, and \bar{u}^{k} is the displacement in the same direction as u^{k} but due to the $\Delta \ell$ components of bar deformaticn. The displacements \vec{u}^{k} will be

[^6]AMCP 706-192

$$
\frac{1}{2} u^{T} K u=\frac{1}{2} \sum_{j} u^{i} K^{\prime} u^{\prime}
$$

and

$$
\frac{1}{2} \dot{u}^{r} M \dot{u}=\frac{1}{2} \sum_{j} \dot{u}^{\prime} M^{\prime} \dot{u}^{\prime}
$$

whore summation is taken over all elements of the structure and K^{\prime} and M^{\prime} are defined in Eqs, B-4 and B-5. The equations for displacement, buckling, and dynamic motion may now be determined directly from Eqs. B-1 1 , B-14, and B-17.

REFERENCES

1. O. C. Zienkjewicz, The Finite Element Method, McGiaw-Hill, London, 1967.
2. H. L. Langhaar, Energy Methods in Apblled Mechanics, Wiley, New York, 1962.
3. J. S. Przemieniecki, Theory of Matrix Structural Analysls, McGraw-Hill, New York, 1968.

AMCP 706.192

INDEX

Absolute maximum, 2-3
Absolute minimum, 2-3
Adjoint equation, 8-3, 8-17, 8-28, 8-44
Admissible set, 2-1
Basic feasible point, 3-6
Basic puint, 3-6
Basic variables, 3-6
Bnlza Problem, 6-17
Boundary design variable, 8-26
Bounded linear program, 3-3
Buckling constraints, 5-6,5-25

Calculus of variations, 6-1
Closed set, 1-6
Collecation technique, 5-21
Column optimization, 5-11, 7-2, 9-8
Computer aided design, 1-4
Conceptual design, 1-2
Configuration optimization, 5-54
Conjugate directions, 2-13
Conjugate direction methods, 2-12
Conjugate gradient method, 2-14, 2-20
Constraint, $1-10$
Constraint set, 3-3, 4-2
Continuity, 1-6
Control variables, 6-1, 6-17, 6-22
Convergence, 1-6
Convex function. 2-5
Convex programming problem, 4-5
Convex set, 2--5
Corners, 6-7
Cost function, 1-10, 1-15

Degencrate linear program, 3-10
Desigli sensitivity factors, coefficients, $1-14$, 5-52
Design variable constraints, 5-26, 6-17, 6-28
Design variabla, parameter, 1-9, 2-1, 3-1, 4-8, 5-5, 6-1, 6-17

Design variable space, $1-11$
Differentiability, 6-3
Direst methods, 2-2, 6-13
Direction of steepest descent, 1-11, 2-9, 4-20
Displacement constraints, 5-5, 5-26
Distributed parameter system, 8-25, 9-2
Dual linear program, 3-4

Eigenfunction, y-3
Eigenvector, 5-7
Elastic structural design, 5-4
Elliptic partial differential equations, 8-26, 9-3
Euler-Lagrange equation, 6-7
Exterior SUMT method, 4-14

Feasible linear program, 3-3
Fibonacci search, 2-7
Finite dimensional optimal design, 4-8
First order constraint quali? jation, 4-5
Fletcher-Powell Method, 2-16, 2-21
Frame optimization, 5-36
Frequency constraint, 5-6, 5-24
Function analysis, 1-2
Function spaces, 6-3
Functional, 6-2
Functional analysis, 6-3
Fundamental problem of the calculus of variations, 6-4

Generalized Newton Method for boundary value problems, 6-41
Generalizea Newton Method, 2-11, 2-19
Global properties, 2-5
Golden section search, 2-7
Gradient, 1-7
Gtadient method, 2-8
Gun barrel design, 5-3
Gun hop, 1-15, 5-4

INDEX (Con't.)

Helicopter armament, 5-2

Indirect metnod, 2-2, 7-1
Inequality constraint, 3-1
Infeasible linear prográm, 3-7
Initial value meî̀ods, 6-40
Inner product, 1-6
Interactive computation, 5-51
Interactive computer aided design 1-13
Interactive graphics, 1-i3
Interior SUMT method, a-10

Kuhn-Tucker necessary conditions, 4-6

Leitniz' Rule, 7-25, 7-29
Light weight weapon stiucturos, 5-2
Linear independence (of vectors), 2-13
Lincar programming, 3-1
Linearization, 5-8
Mathematical programming, 4-1
Minimizing sequence, 6-14
Minimum weight structures, 5-1
Mixed SUMT method, 4-16
Multiple failure criteria, 5-18
Multiple loading, 5-6, 5-28
Natural frequency constraints, 5-6, 5-24
Necessary condition, 2-3, 4-6, 4-7, 4-11, 6-5, 6-18, 5-30
Newton's Mcthod (equation solving), 7-4,
7-25, 7-35, 7-40
NLP, 4-1
Nonbasic variables, 3-5
Nonlinear programming, 4-1
Norm, 1-6, 6-3
Normal Bolza Problem, 6-2!, 8-6, 8-31

One-dimensional minimization, 2-6
Operator equation, 8-26, 9-2
Optimal control, 6-1, 6-27, 6-33

Optimal process theory. 6-1
Optimality criteria (structures), 5-5
Orthogonal vectors, 1-6

Perturbation equations, 5-8
Pieced extremials, 6-37
Pivot, 3-7
Pjvot step, 3-7
Plate optimization, 5-29, 9-16
Pontryagin Maximum Principle, 6-21
Portal frame optimization, 5-16, 9-10
Positive definite matrix, 2-4
Power method, 5-7, 5-24

Quadratic interpolation, 2-6
Quasilinearization, 6-44
Rayleigh quitient; 5-7
Recoil mechanism design, 1-15, 8-35
Relative maximum, 2-3
Relative minimum, 2-3,6-4
Ritz Method, 6-14
Second-order necessary conditions, 4-7, 6-10
Second-order sufficient conditions, 4-7
Self-adjoint operator, 9-3, 9-10, 9-12, 9-17
Sensitivity analysis, factor, 1-14, 5-52
Sensitivity function, 1-17
Sequentially unconstrained minimization techniques (SUMT), 4-10
Set, 1-6
Shooting technique, 6-40, 7-2
Singular arcs, 6-37
Simplex algorithm, 3-8
Simplex tableau, 3-6
State variable, 1-10, 4-8, 5-5, 6-17
State variable incquality constraint, 6-28,

$$
6-31.6-37,7-20
$$

Stationary point, 2-4

Steepest Descent Methor, 2-8,2-18, 4-19, 5-7, 8-1
Step size, 1-11, 1-12, 4-22, 4-23, 4-27, 4-34, 5-11
Stress constraints, 5-5, 5-25, 5-39
Strict absolute minimum, 2-3
Structural topology, 3-14
Subset, 1-6
Sufficient condition, 2-4, 6-8
Synthesis, 1-1
System engineeing, 1-2
Taylor's Theorem, 1-7
Timelike variable, $8-25$
Topological dešign, 5-54
Transversality coudition, 6-7

Truss oftimization, 5-22
Unbounded linear program, 3-3
Unconstrained problem, 2-1
Variational notation, 6-10, 6-11
Vector, 1-6
Vector derivative, 1-7
Vector function, 1-6
Vector inequality, 1-6
Viorating beam optimization, 5-14
Vibration constraints, 5-6
Well posed problem, 8-3
Weierstrass-Erdmann corner condition, 6-7
Weierstrass nacessary condition, 6-7

```
            14

\section*{(AMCRD-TV)}
```

FOR THE COMMANDER:

```


JOSEPH W. PEZDIRTZ
Major General, USA Chicf of Staff

Avallabie to NWC activities, 000 agencies, and Govermaent agenctes from Letterkenny Arwy Depot, Chambersburg, PA 17201. Avallable to contractors and universities from hational fechnical Information service (NIIS), Department of Comerce, Springfield, VA 22151 EXCEPT HERE NOTEO.
© 706 -
Title
100 Design Guldarce for Preducibility
104 Value sngineering

107
EfHents of Armument Engineering, Part One, Sources of Energy lements of
gallistics
lements of Arainent Engincering, Part Three, Neapon Systers and Component
Pables of the Cumblative Binomial Probabilities
Experimental Statistics, Section l, Basic Concepts and Analysis of Measurement Data inperimental Statistics. Section 2. Anelysis of Enumerative and Classificatory Dava
Experimental statistics. Sectior, 3 , Planning and Analysis of Comparative Cxperiatents experimental Statistics, Section 4, Special Topics
Experimental Statistics, Section 5, Tables avirommental series, fart Une, gasic Environmentel Concepts
Eny ronnental series, Part Two, Basic Environ riteral factors
Systems
Packaging and Paink Engineering
Hydraulic flutas
Electrical wirc and Cable
Infrared Minicary Systems. Part one
Infrared Military Systers. Part Two (U)
Dasign for Air Transport and Airóroo of Haterie * Kaintenance Engince:-ing
*Mainta inability Engineering Theory and Practice
Malntainabilizy Guide for jesion
inventions, Patents. And Related Maters
Servamechanisms, Section 1, Theory
Seryomechanisas, Section 2; Measurement and signil Converters
erroxechanisms, Secifor 3. Arpilification ervomechanisms. Section 4; Power Elements and rejectorles
for p.ojectles for piojectlies
Interior ballistics of Guns
160(S) Elements of Teiminal Ballistics, Part One, Klll mechonisms and Vulnerability (U)
161(S) Elements of Temalnal sall'stics, Part Two. Collection and Analysis of Oata Conceming Coliects
Jargets (U)
16c(SRD) E Elements of Terminal Ballistics, Part Three, Application to \(v\), stile and Space Targets (U)
165 ilguid-Filled \({ }^{\text {orojectlle Design }}\)
170(C) **Arror and Its Applications (U)
\(176(C) 1\)
177
\(178(c)\)
Solid Propeliants; Part Two ( \({ }^{\prime \prime}\) )
Properties of Explosives of Military Interest Properties of Explosives of Military Interest. Section 2 (U) (REPLACEO BY -171)
- explosive trains

Principles of Explosive Behavior
Explosions In Rir, Part One
- Explosions in Alr, Part Two (U) Military Pyrotechnics. Part One, Theory and Application.
Military Pirotectrics, Part Iwo, Sa'ety, Procedures and Glossary
Military Pyrotechnics Part Three, Properties
of Materials Used in Pyrotechnic Compositions
Rilitary Pyrotechnics, Part Four, Design of
Ancunition for Pyrotechnic Effects
Miltary Pyrotechnics, Part Five, Bibliography
Aray Weapon System Andlysis
System Andysis and Cost-Effectiveness
Development Guide for Rellability, Part One,
introduction. Background, and Pisnaing for introduction. Background, and Pianning for Aray Materiel Requiresent
Development fulde for Rellability, Part iwo, Design for Reliability
evelopment Gulde for Relladility, Part inree, Rel
Reliasility weasurement Cevelopment Gulde for Rel
Cevelopment Gutd for Reliability, Part fies. Contracting for Reliability
Oevalopment Guide for Rellabil tathematical Appendix and Glossary \(5 t x\),
notr preparation.-not avallable
- OBSAEIE--out of stock
- re:isilu lader pheparatio
onor available sRoh MTIS
\begin{tabular}{|c|c|}
\hline No. 706- & - Iitie \\
\hline 201 & *Helicopter Engin.ering, Part One, Preliasinary Design \\
\hline 202 & *Helicopter Engineering, Part Two, Detail Desion \\
\hline 203 & Helicopter Engineering, Pare Three, Qualifica-
tion Assuran, \\
\hline 204 & Helicopter Performance Testing \\
\hline 205 & *Timing Systems and Compenents \\
\hline 210 & fuzes \\
\hline \(211(\mathrm{C})\) & fuzes, Proximity, Electrical, part one (U) \\
\hline \(212(5)\) & Fuzes, Proximity, Electrical, Part Two (U) \\
\hline 213 (s) & Fuzes, Proximity, Electrical, part Three (u) \\
\hline 214 (S) & Fuzes, Proximity, Electrical, Part four (U) \\
\hline \({ }_{235}^{215}\) (C) & Fuzes, Proximity, Electrical, Part five (U) \\
\hline 238 & *Recoilless Rifle weapon Systems \\
\hline 239 & *Small Arme Meapon Systems \\
\hline 240(S) 1 & Grenades (U) \\
\hline 242 & Design for Control of Projectile Flight Characteristics (RFPLACES -246) \\
\hline 24 & Amaunition, Section 1, Artillery Ammunition-General, with Table of Conteris, Glossary. and Index for series \\
\hline 245(C) & Immunition, Section 2, Design for Terminal Effects (u) \\
\hline 246 & +Armunition, Section 3, design for Control of Flight Characteris :ics (REPLACED BY -242) \\
\hline 171 & Ammunition, Section 4, Design for Projection \\
\hline 248 & +Ammunltion, Section 5, Inspection Asfects of Artillery Ammunttion Desion \\
\hline 249 & Ampnition, Section 6 , Menufacture of Metallte Corponents of artiliery Ammaition \\
\hline 250 & Guns--Gentral \\
\hline 251 & Muzzl, Devices \\
\hline 252 & Cun Tubes \\
\hline 253 & -Breech Mechanisa Desion \\
\hline 255 & Spectral Characteristics of Muzzle Flash \\
\hline 260 & Autonstic Meapons \\
\hline 270 & **Propellant Actusted Devices \\
\hline 280 & Design of Aerodynamically Stabilized Free Rockets \\
\hline 28)(SRD)/ & - Heapon System Effectivaness (u) \\
\hline 282 & -Propulsion and Propellants (REPLACED AY -285) \\
\hline 263 & Aerodynamics \\
\hline 281(c) & Trajectories (U) \\
\hline 285 & Elements of Alrcraft and Missile Propulsion (REPLACES -282) \\
\hline & Structures \\
\hline 2901 \({ }^{\text {c }}\) ) & Harhests--General (U) \\
\hline 291 & Surface-to-Air Missiles, part One, Systen Integration \\
\hline 292 & Surfactetetalr Missiles, Part two U":ran. Control \\
\hline \[
\begin{aligned}
& 293 \\
& 294(5) \theta
\end{aligned}
\] & Surface-to-AIr Missiles, Part Three, Conputers Surface-to-Air Missiles, Part four, Hissile \\
\hline & Armament (U) \\
\hline 295(S!) & Surface-ts-AIr hissiles, Part five, Countermeasures (U) \\
\hline 296 & Surface-to-AIr Missiles, Part Slx, Structures \\
\hline 297(5) & Surface-to-Air Missiles, Part Seven, Sample \\
\hline & Problem (U) \\
\hline 327 & fire Control Systeas--General \\
\hline 329 & Fire Control Conouting systems \\
\hline 331 & Cospensating Eleatents \\
\hline \(335(\) SRD \()\) & -Design Engineers' Nucicar Effects Manual, Yolume i, Munitions and Mespon Systems (U) \\
\hline (SRD & *Design El. खineers ' Nuclear Effects Manual, Yolume it, Electronic 5 stems and Logistical Systems (u) \\
\hline \[
37(S R O)
\] & -Design Enqireers' Nuclear Effects Manual, Volume (II, Nuclear Environment (II) \\
\hline 38(SRD) & - \({ }^{\text {Dos }}\) ign Engineers' Nuclear Effects Henual. Volung (V. Nuclear Effects (U) \\
\hline 340 & Carriages and Mounts-atene \\
\hline 341 & Cradies \\
\hline 342 & Recoll Systems \\
\hline 343 & Top Carriages \\
\hline 344 & Bottem Carriages \\
\hline 345 & \{quilibrstors \\
\hline 366 & Elevating Mechanisas \\
\hline 347 & Traversing Mecianisms \\
\hline 350 & Wheeled Arenibians \\
\hline 355 & The Automotive Assenbly \\
\hline 356 & Automotive Suspensions \\
\hline 358 & automotive bodies and Hulls \\
\hline 360 & -Hilitary "enicle Electrical Systems \\
\hline 445 & Sodot Yecrnology Engineering \\
\hline
\end{tabular}```


[^0]:    'Lightest uniform column which will support losd $P$.

[^1]:    *This paragraph is based on the dissertation of Dr J. Arora, Ref. 34.

[^2]:    "This paragraph is based on the dissertation of Dr J frora, Ref. 34.

[^3]:    -The tesults of this paragraph reptesent the wosk of Mr. T D Strieter, Ref 15.

[^4]:    -The conterl rod in a hydraulac recoll mechanism is a rod of variable vass wition whith moves through a larger onflice during recoil and vark the alea of the onfice to contiol teconl force level

[^5]:    "The recoll force is the retarding forse on the ter rwatd traveling bartel during recoll, due to throtting of oll through the variable ares orfice

[^6]:    $00^{2}{ }^{2}$
    determined from structure geometry and the $\Delta \ell^{\prime}$ of individual members given in Eq. B-8. For determining the equilibrium equations B-11, the displacements $\bar{u}^{k}$ are gencrally neglected sirce they are at lcast quadratic in $u$ so they will be small if no buckling occurs. It is just these quadratic 'terms, however, that predict tickling beh vior of fuctures.

    If a composite displacement vector $u$ is formed from the components of all the member displacements, then matrices $K$ and $M$ may be defined by

