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PREFACE ;

The Engineering Design Handbooks of the U S Army Materiel Command
are a coordinated series of handbook: containing basic. information and: -
fundamental data useful 1n the design and dévelopment of Army materiel )
and systems,

In the last several decades—certainly since World War 1I—a. great «deal of ;
work, both experimental and theoretical, hes been performed on explosives ;
and ‘their effects. There: did not -exist in.-any langusge 4 satisfactory, :
comprehensive compilation presenting a unified, self-consistent, theoretically
competent treatment of this iaterial. Also; a large'riumber .of interésting
contributions from Government-supported and ‘Government 1sboratories, :
which have now been declassified and should provide valuable information, ; ) d
was comparatively inaccessible to the average scientist and engineer. : o ’

This. Handbook attempts to correct the gtuation. ‘Presented ‘is a unified

treatment of the ifpiortant open literature in which.is included not only
drticles in professional journals but also the available military reports. of
importance, Original contributions' also have been ‘made to the theoretical
portions, Much current research on.explosion phenomena involves numerical .
solutions to complex mathematical equations of fluid dynamics, chemical ) e
kinetics, théermodynamics; and.heat transport. For this reason a description o '
of some of the novel computational techniques. (computer-codes) that have .
been.dévéloped for these purposes is included. While the Handbook is ot a {
‘comprehensive treatise on explosives, it does: discuss at length. topic areas !
that ate considéred to be of greatest value in an exposition of the principles
¢f explosive behavior of liquid and solid explosives, and thus provides-2
teadily aicessible .collection of important theoretical and experimental
results-on.explosives and explosive effects.

The Handbook does not cover the synthesis of explosive substaiices,
compilation of properties of explosives, or the manufacture of
explosives—these topics are the-subjects of existing handbooks.

'S )

P . The Engineering Design Handbooks fall into two basic categories, those
' approved for release and sale, and those classified for security reasons, The :
Army Materiel Command policy is to release these Engineering Design Hand- '

£ ; i books to other DOD activities and theix coritractors and other-Government
v E agencies in accordance with cu.rent Army Regulation 70-31, dated 9
I N < September 1966, It will be notey that the majority of these Handbooks can
' ' ' ] be obtained from the Natioral Technical Infcxmation Service (NTIS). -
,\. T - Procedures for acquiring these Handbooks follow:
B

“
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] PREFACE (Cofit'd)
. A
B a. Activities within AMC, DOD agencies, and Government agencies other-
‘than DOD having need. for the Haiidbooks should diréct their request on an
official fo¢m to:
Commanding Officer
Letterkenny Army Depot
B ATTN: AMXLE-ATD ]
T Chambersbirg, Periniylvania 17201
; b. Contractors and-universities must-forward-their requests to:
;e National Technical Information Service
- Department of Commerce
‘Springfield, Virginia 22151
(Regiests dor classified documenss mu.t be sent, with appropriate “Need to
Know" justification, to Letterkeriny Ary-Depot.)
Cominents-arid suggestionis on this Handbook are wélcome and’should be
) addressed to:
U 'S Army-Materiel Conimand
ATTN: AMCRD-TV
> Washingto;; D C 20315
(DA Forms 2028 (Recommended Changes: to Publications), which
are available through normal publications supply channels,
may be uged for comments/suggestions.)
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CHAPTER 1 INTRODUCTION

1-1 INTRODUCTORY REMARKS

Explosives ‘have been known and used for a
very long time. Black powder—a mixture of
potassium or sodium nitrate, sulfur, and carbon
black—has been employed as an explosive since
ancient times. Nitroglycerin, discovored in 1846
by Sombrero, and the invention of
nitroglycerin-based dynamite by Nobel in 1867
can. be considered as the start of the era of high
explosive technology. This.era which extends to
current times has been the develepment of a vast
number of military and commercial explosives
and explosive applications.

The devélopment of a fundamental theory of
detonation also had its beginnings in the latter
part of the 19th century, starting with the
investigations by Mallard and L» Chatelier
(1881) and of Berthelot and Vieille (1882) on
gaseous explosions. They found that the
explosion process consisted of a progressing
wave of chemical reaction and distinguished two
types of reaction waves. The first type is a
relatively slow moving flame having linear
velocities on the order of 1 to 10 cm/sec, and
the secord, a very much faster wave (i.e, a
detonation wave} moving on the order of the
speed of sound (10* to 10% cm/sec). In 1893
Shuster suggested that there is an analogy
between a detonation wave, which is supported
by energy release from chemical reaction, and a
nonreactive shock wave, which has to be
supported by a piston or -similar mechanical
soutte of energy. Shock waves had been
theoretically described in detail by Riemann
(1860), Lord Rayleigh, and others, and a
physical model consisting of a moving
discontinuity in pressure had been shown
satisfactorily to account for the observed
properties of shock waves. The laws of mass,
momeitum, and energy conservation across a
discontinuous shock front had already been
deduced by Rankine in 1870 and by Hugoniot
in 1889, The suggestion of Shuster that a
detonation wave is a reactive shock formed the
basis for the development by Chapman (1899)
and by dJouguet (1905) of the classical
hydrodynamic-thermodynamic theory of

-hydrodynamic

steady-state détonation. This theory employs an
idealized one-dimensional model in which it
is ussumed that the explosion energy s
instantaneously. released in a discofitinudu,
shock front across which the .conservaticn
conditions of Rankine-Hugoniot apply: The
velocity of the detonation wave: was assumed {c
be the minimum velocity -compatible with the
conservation equations. The
Chapman-Jouguet (CJ) theory thus defined a
unigue steady-state detonation velocity ‘which
could be -compared with experimentally
observed velocities, and detailed. calculations-Tx
gaseous detonations were shown to be in
excellent agreement with experiment.

In the period 1940-1943, Zeldovich (USSR),
von Neumann (USA), and Déering (Germany),
each working independently, refined the C-J
theory and exiended it to the case where
chemical reaction occuts in a finite zone-behind
the front of the detonation wave. This work was

stimulated by the events of World War II, which-

Mso gave great impetus to the development of
Jsauily of the 'modern high-speed élecironic and
photographic techniques for studying details of
explosion phenomena,

At the present iime there exists a substantial

corpus of theory and experimental data. that can
be said to provide a good description of many
aspects of explosion processes. The theory s,
‘however, incomplete in many respects in that-it
deals, in the raain; with idealized configurations
not met with in practice and does not treat at.all
some of the events.upon which the performance
of an explosive depends. If we use the existing
theory as a point of .departure, there are-many
areas which can be fruitfully explored in the
theoretical and experimenta} investigations,

In this handbook an attempt has becen made to
describe the principles .of explosive behavior as
they apply to condensed explosives. It has been
the principal aim 1> present a comprehensive
treatment of those topics that are necessary for
an appreciation of the literature xeporting the
results of current research. The authors have
developed most of the important relations of
thermodynamics and hydrodynamics upon
which the theoretical trcatment of explosion

. 11
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phenomena is based. The classical theory is
developed rigorously and in detail, since this
theory is the basis both for an understanding of
actual explosion phenomena and for the
theoretical investigations that are currently in
progress. The treatment of topics for which
theory is incomplete is necessarily more
qualitative and relies heavily on discussions of
experimental data arnd simple physical models.
The techniques: employed in obtaining the
experimental data are therzfore discussed in
some: detail: Much-current research on-explosion
phenomena involves numerical solutions o
complex mathematical equations of tluid
dynamics, chemical Kinetics, thermodynamics,
hydrodynamics, and heat transport. For this
reason sorie of the novel computational
techniques (computer codes) which have been
developed for these purposes have been
described

It has: not %cim the aim of the authors to
provide a coinprehiensive treatise on explosives,
but rather to-discuss at length topic areas which
are thought to be of greatest value in an
exposition of the principles of behavior of liquid
and solid explosives.

12 DESCRIPTION OF EXPLOSIVE
PROCESSES.

Explosives are sulstances or mixtures of
substances which are capable of undergoing
exothermic chemical reaction at extremely fast
rates to produce gaseous and/or solid reaction
products at high pressure and temperature. In
the -case of a typical “CHNO” explosive such as
TN'I' the molecule—which contains carben,
hydrogen, nitrogen, and oxygeu (see Table 1-1)
undergoes a decomposition reaction foilowed by
reduction-oxidation reactions which eventually
lead to low molecular weight detongtion
products such as CO,, CO, H,0, N; .and solid
carkon (cf. Chapter 3). The chemical reuctions
occur in microseconds with an energy release of
~ 10° .cal/g. For cast TNT this can result in a
‘detonation wave with pressure, temperature, and
velocity of = 200,000 atm,~ 3000°K ahd =
7000 m/sec, respeciively. The large =nergy
release and fast velocity of the detonation wave
represent a fremendous power level of energy
conversion, ® 5 X 10° W per sq cm of
detonation front, This value can be compared

12

with the total United States electric generating
capacity of &3 X 10" W. It is the high power
level and high reaction pressure generated which
give rise to the primary application of
explosives, namely, as compact sources of
energy for blasting. Other applications (e.g.,
welding) relate to the st.ong shock wave that is
associated with the detonation front.

Since the performance of an explosive
depends strongly on its energy rélease in
detonation, considerable ‘theoretical and
experimental -effort has been carried out to
predict and to measure the energy of
detonation. The thermodynamic theory
developed in- Chapter 2 and the discuasions in
Chapter 3 relste directly-to this subject.

Observation of a detonation wave progressing
along a long cylindrical charge of explosive will
show that the wave moves at constant velocity.
In the mote energetic military explosives this
velocity may 'be as high as 8000 m/sec, The
detonation velocity is relatively easy to measure
and for many years was virtually the only
expenmenta] data aviilable, However,. with tha
advent ¢ high speed electronic recuidiiig
equipment, streak camera photography; flash
X-ray, and manganin ‘pressure gages, having time
resolutions of = 10'® sec, it has been possible-to
measure detonation: ‘pressures as high a$ 460,000
atm, and particle velocities at the detonation
front fef, Chapter 5). Unfortunately,
experimental técliniques for reliable
measurement of détonation ‘temperature have
not as yet beed déveloped

The constancy of the speed of detonation can
be readily -explained in terms of
Chapman-Jouguet (C<J) theory -and the
Zeldovich-von INeumann-Déering (ZND) model
which are developed in detail in Chapters 6-8. In
this approach, the detonation wave may be
considered as a strong shock wave supported by
energy release in a small zone of chemical
reaction just behind the front of the shock, i.e.,
the detonation froni. The almost instantaneous
compression and heating of the explosive as it
passes through the detonation front triggers the
supporting chemical reactions

The stable detonation velocity as des¢ribed by
classical C-J theory represents an upper limit oy
ideal detonation velocity, and strictly refers to a
planar detonation wave. Such waves are indeed
found to be approached in cylindrical charges of
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large diazdeter. In practice, however, it is found
that in small diameter cylindrical charges the
detonation front is curved, and its velocity
depends upon the degree of charge confineme: ¢
and charge diameter, Also it is observed that for
¢ach explosive there is & critical value of charge
disineter d, below which a steady-state
detonation will not propagate. For example, d,
is about 1 em for cast TNT, about 10 cm for
ammonium nitrate, and about 160 cm for some
types of rubber-base composite propellant. The
explanation of these “nonideal” detonation
phenomena relates to the effects of charge
expansion and lateral energy losses on the rate
of chemical reaction in the detonation reactior:
zone, ‘‘Nonideal” detonation behavior is
discussed in detail in Chapters'9 and 11.

If we take a solid explosive such as cast TNT
and set a match to it, it will probably burn
(deflagrate) with a linear velonity of &1 cm/sec.
However, if we strongly shock the explosive it
will detonate at = 7 X 10° cm/sec. It'can also ke
observed that if a burning explosive is confined
or if the explosive is porous, a deflagration to
detonation transition will occiir some place in
the material. This brings up very practical
questions such as what are the.conditions which
cause the initiation of detonation in an
explosive, and why do differcnt explosives, or
éven the same explosive at different bulk
densities, xeact differently to initiating
stimuli—e.., shock, impact, friction, spark, heat,
etc.? The need to design reliable detonation
initiation devices and to prevent accidental
initiations lent early impetus to studies devoted
to characterizing the ease of initiation or
sensitivity of explosive materials,

There it now substantial evidence that all
detondtion initistion processes are essentially
‘thermal in-origin, By this is meant that initiating
external stimuli such as si:ock, impact,.and spark
cause heating of the explosive and the creation
of thermal explosion—sometimes in small
localized xegions of the explosive charge, ie.,
hot spots, The thermal explosion, if it is of
sufficient intensity, will propagate a deflagration
and/or shock wave which eventually leads to the
formation of a. detonation wave. The factors
which determine whether or not the stimulus is
sufficient to cause thermal explosion and
whether or not the thermal explosion is of
sufficient intensity to grow to detonation are

very complex, involving chemical kinetics,
thermodynamics, mass and heat transport, and
hydrodynamic flow. A detailed discussion of
thermal explosion and its application to
detonation initiation are given in Chapters 10-12.

As indicated earlier, one of the main
applications of condensed explosives is as an
energy source for blasting. The transmission of
detonation energy to the medium surrounding
an explosive relates-not cnly to the properties of
the medium but also to the properties of the
explosive; e.g., detonation velocity, -energy,
pressure, product composition, etc. The theory
of blast propagation in air and water from an
spherical explosive charge is Gescribed in detail
in Chapter 13. The theory is of significance ina
‘book on explosiveé behavior since it sets. the
foundation and limitatioris of the concept of
“TINT Equivalent” which & often used -in
evaluating explosive performance, as well as-
Torming the basis of some of the experimental
determinations of the energy-of detonation (cf.
Chapter 3).

Finally in Chapter 14 we discuss some of the
equilibrium thermodynamic and time dependent
hydrodynamic computer codes which are
currenlly beiing used in calculating explosive
propeities ana explosives’ behavior.

1-3 TYPES OF EXPLOSIVE

1t has become traditional o distinguish
between various types of explosives. Most
military explosives consist of pure compounds
or of relatively simple mixtures of explosive
compounds. In such compounds the oxygen is
normally bound in nitro- or nitrate-groups, and
the explosion reaction consists of ‘the
decomposition of the molecule of the explosive
substance. Many commercial explosives consist
of mixtures of various kinds. The mias.iic may
consist of a substance which itself is an explosive
to which are added various materials which may
serve as added fuel, added oxidizer, or inerts.
When inerts are present, their function is usually
to serve as a thermal ballast and thus to
moderate the energy available for useful work or
the temperature of the gaseous products. If one
or more of the ingradients of such raixtures is an
explosive substance, it is useful to call the
mixture a hybrid explosive, Commercial
dynamites provide an example of explosives of
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this type. A very large number of formulations
exist, each of them tailored to meet a particular
commercial need and o comply with safety
requirements imposed by the particular use.
Another-type of explosive mixture may consist
of two or more substsnces none of which of
themselves are .2xplosives. These may be called
composite explosives. Typically- they consist of
mixtuxes of a subslance serving as fuel and a
substance serving as oxidizer, Mixtures of the
oxidizer ammonium nitrate, which can only be
exploded with. great difficulty, and fuel oil are
examples of this type which have recently
‘become very prominent.as cheap blasting agents.

Most explosive charges contain a main charge
which is designed to accomplish the particular
task. for which the explosive is intended. The
common explosives with a sufficiently high
energy and pressure of explosion are normally
somewhat difficult to initiate. These materiuls
are called secondary ev losives. Typical of this
class ave the military explosives TNT, RDX, and
the commercial dynamites. To provide reliable
initiation, the charge will contain- an initiator
employing a substance easily initiated by a
thermal source or by mechanical shock but
whose energy and pressure of explosion are too
low for use as a main-charge, These materials are
called primary explosives. Lead azide and
merxcury fulminate are well-known examples. A
typical explosive device (see Fig. 1-1) consists of
a train composed of an initiating charge of
primary explosive, a main charge of secordary
explosive, and a booster charge which is initiates
by the primazy explosive and which
accomplishes the initiation of the main charge.
The booster, therefore, serves as an intermediate
step in the detonation of ‘the main charge. The
more sensitive secondary explosives are
employed as boosters, Tetryl and PETN are
frequently used for this purpose, Blasting caps
are themselves explosive trains, containing a
small amount of primary explosive and a booster
charge ‘which today is often PETN.

Some typical explosive compounds are listed
in Table 1-1. Table 1-2 gives the compositions of
some explosive mixtures,

14 SOME DEFINITIONS

We wish here to define the meanng of several
terms that are employed in the discussion of the

14

properties and behavior of explosive substances.
Some of these terms are in everyday use -with
meanings that are in varying degrees of
imprecision. Some are not even capahle of
precise definition but are in such common use as
to have a more or less established meaning
through usage. The word “explosion” is in this
categoty as Is, for example, the word “fire”.
Some terms are susceptible to exact definiticn
but are frequently misused; such & the word
“detonation”, which should only be used in the
case of reaction. by.a detonation wave,

JAn explosive can be loosely defined as a
substance capable of undergoing an explosion.
More precisely we shall employ the word as we
have in par. 1-2 to designate a substance or
mixfure of substances capable of undergoing
exothermic chamical reaction with the evolution
of gaseous products at an extremely high rate.
Explosives may be in the gaseous, liquid, or solid
state of aggregation. In this handbook we sha3l
be mainly concerned with condensed explosives:
that are either liquid or solid,

An explosion is literally the sudden outward
projection of a quantity of matter. The fsrm is,
for example, applied lo the event following the
rupture of a steam boiler in which steam and
possibly hoiler case fragments undergo a rapid
excursion. The term is also applied, for example,
to the event that follows the sudden admixture
of liquid water to molten materials at a
temperature substantially in excess of the
boiling point of water. As a final example, the
term applies to the event resultinig from the
overpressurization of any container, All of these
meanings are endorsed by everyday use.
However, in this handbook we shall employ-the
word in a more restricted sense to refer to the
overall process by means of which-an explosive
is suddenly converted to gaseous products
which; as will be shown, are-at high temperature
and pressure. We shall frequently refer to the
chemical products of this process as explosion
products.

Tt may be noted that explosives may undergo
slow reactions to gaseous products (cf, Chapter’
3). If the rate of these reactions is so siow that
high temperature and high pressure are not
obtained, the process is not an explosion,

The term thermal explosion is used in a special
sense that is fully discussed in Chapter 10. It is
the result of runaway exothermle chemical
reaction which occurs when the rate <7
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———CONFINEMENT ( METAL)

[

MAIN CHARGE OF SECONDARY
HIGH EXPLOSIVE (TNT)

—— BOOSTER CHARGE (TETRYL)

. INITIATING CHARGE OF PRIMARY
T EXPLOSIVE(LEAD AZIDE}

Ye—————— [NITIATION STIMULUS { BRIDGEWIRE)

\<-—-;—— ELECTRICAL LEADS

Figure 1-1. Model.of Explosive Charge

evolution of heat within a reacting volume is
greater than the rate at which that volume can
lose ‘heat by conduction to a heat sink which
surrounds the volume. This is a precisely. defined
process that can be fully déscribed by the laws
of chemical reaction rates and heat conduction.

For the present. we wish only to.note thatitisa

process that occurs in a static system, does not
invglve the flow-of éither reactants or products,
and in consequence does not depend upon the
laws of hydrodynamics.

, If a substance is capable of undergoing an

eacthermic reaction, which we are calling an

explosive, and if such a reaction is initiated in
some locai region of a larger mass of material,
then a reaction wave may propagate from the
point of initiation throughout the mass. Under

these circumstunces the chemical reaction takes
place within the wave. Even if the mass is
initially. static, the propagating wave: induces
flow in the material and thus is govixned by
hydrodynamical as well as c¢hemical
considerations. If the propagation velocity is

constant, the wave may be said to be

st.ady-state (even ‘though the associated' flow
may not be stationary everywhere in any frame
of reference). In general, two flow rgimes are
observed, If the propagation velocity (i.e., the
rate at which the wave advances into unreacted
material) is less than the velocity of sound in the
unreacted material, ‘the reaction wave is said to
be a deflagration. If a deflagration wave is held
stationary-by a flameholder such as a .burner rim
and the unreacted material flows through it, the
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TABLE 1-2 COMPOSITIONS OF SUME EXPLOSIVE MIXTURES
Name Composition N
Amatol Mixture of TNT and AN (80% AN, 20% TNT is typical)
Ammonium Nitrate Dynamite- 10% NG, 80% AN, 10% carbonaceotis material is typical
Rezutol 67% Barium nitrate, 33% TNT
/Blasting Gelatin 92% NG, 8% nitrocellulose
'Composition B 60% RDX, 40% TNT(with 1% wax)
ZLyclotol Mixture of RDX and TNT (50% RDX, 50% TNT is typical)
Dyngmite Mi_xture,of NG, sodium or potassiuin nitrate, and wood pulp
(40% NG is typical):
PBX 9404 Plastic bonded HMX.(94% HMX)
Pentolite Mixture of TNT and PETN (50% TNT, 50% PETN  is typical)

deflagration ‘'wave is the familiar flame. The

propagation rate of a deflagration wave is called
sither the deflagrdtion velocity or more

customarily;, in combustion literature, the
burning velocity, If the propagation velocity of
the reactioni wave is. supersonic ‘with respect to
the -unreacted material, the wave js called a

.détonation wave and its velocity of propagation

is called the detonation velocity.

It is ‘worth noting,that a process involving a
detoriation wave can always be called ‘an
explosion. However, not all explosions-involve a
detonation wave since the explosion iy result
from a deflagration ‘wave or a thermal explosion,

1In. citing various typical explosives we have
noted that they are frequently broadly classified
into primary and secondary explosives, and that
some secondary explosives are .employed as
toosters. This is a working classification ‘based
upon the use to which the substance i§ normally
put in an explosive system or train and which is
based upon a property of the material called the
sensitivity, Primary explosives are used because
they can be initiated by thermal sources such as
hof wires or flames. As a class they can also be
initiated by relatively mild blows. Such

explosives are said to have a high sensitivity. In
contrast, secondary explosives, as a clsiss, are

difficult to 'initiate: from ‘thefmal sources.-and’ i
require a relatively severe impact to initiate ( . }
e

explosion.. These explosives are considered to
have a low sensitivity.

The concept of sensitivity is, at least
historically, a qualitative one. Sensitivity has
usually been .ieasured by a variety of different
empirical tests in which samples.of explosive are
subjected te¢ controlled and measurable
initiation stimuli, Typical of such tests is one in
which the sensitivity is measured by the distance
of travel of a falling weight, ontu a small mass of
explosive, that is required fo produc¢ an
explosion. Thus, the impact sensitivity of an
explosive is its response to an impact test in a
specific drop-weight apparatus. Similarly, the
friction sensitivity is the response to an
empirical friction test. Test results depend on
the test method and' also upon a variety of
physical and chemical properties of the
explosive in a way that is not usually well
defined. In consequence; different methods of
evaluating sensitivity may not place explosives in
the same order of sensitivity.
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CHAPTER 2 THEORETICAL BACKGROUND

21 INTRODUCTION

The theoretical description of explosion
phenomena has relied mainly on the science of
thermodynamics to provide a Cescription of the
properties of the product of the decomposition
of an explosive and on the science of
hydrodynamics to formulate the laws governing
the motion of these products. It is the intention
of this chapter to present the results. of these
sciences that are required ju the later
develupment of the topics covered in this
handbook, and to state the.assumptions that.are
made in order to apply the methods ‘of these
sciences to the description of explosion
phenomena The toplcs discussed in this chapter
may ‘be pursued in greater detail in standard
treaties on thermodynamics®: and
hyidrodynamics3** .

Although this chapter and others are replete
with mathematical formulas and notation, the
nonmathematician will find the text material
amply rewarding for the time spent in reading
it—it is not essentiall that one be a
mathematician to understand the text.

2-2 DESCRIPTION OF THE COMPOSITION

In this paragraph is defined the notation used
to describe the unreacted explosive and the
explosion products. As an example of the
reaction equations to- be considered, let us
consider decomposition of the explosive TNT,
C,H,O/N,. The predominant products are
expectedtobeC CO, H,, and N,. A
conventional decomposition equahon for TY*IT is

C,H,O,N, + C + 6CO +—-H2 +—N (212)

which provides an approximation to the
composition of the explosion products. A more
general decomposition equation is

C,H;O;N;»M (q,C + ¢,CO + g;H,

(2-1b)
+q,N, +q,CO,
+ q,H,0 + ¢, H)
* Superscript bers refer to ref at the end of
a chapter.

where-g indicates the quantity (moles/gram) of-a
product and M is the gram-molecular ‘weight.of

the explosive. It is often assumed that the
composition of the mixture remaiiis “frozen”

during the flow following deccmposition, i:e.,
that each ¢ is constant. In the more general case
considered here, each g is-allowed to vary within
the constraints. of chemical equilibrium. In.
preparation for this treatment, we intrcdice a
notation which allows development of the:
thermodynamics and hydrodynamics in géneral:
terms without restriction to:the chemical nature
of the miktures.

We consider a mixture of s different chiemical
species or constituents and emplov the index i-(i
=1, 2, ... 8) as a -constituent index, Thus, for
example 1f the list of chemical species-is: C Co,
etc., the index i = 1 designates the species C the
mdex i =2 designates the species CO, etc. The
composition of the gas phase of a mii:ture of
many constituents can be described by the mole
numbers n, (i = 1, 2, .. &), 'where n
(moles/gmm) is the number of moles of the t-th
constituent in -unit weight (e.g., one gram) of
mixture. We shall assume that any condénsed
phase in the mixture is a puré phase, thus
excluding consideration of _solid or Jiquid
solutions, and we dendte by nov and i;(% the
number of moles of liquid-and: solid: gpecies i in
unit weight of the mixture. The composition of
the mixture is thus described by the numbers n,
n (%, and nf* (i =1, 2; ... 8). The phase rule
1mposes a restriction on the number of the
quantities n;1¢) and n“’ that may be nonzero.
In mixtures of practncal ‘interest, most of these
quantities will 'be zero. If they are all zéro, the
system is homogeneous, consisting of a gas phase
only.

We designate by ¢ the number of different
chemica] elements contained in ‘the s different
species comprising the mixture and employ ar
index, k(k = 1, 2, ... ¢), as an element index.
Thus, for example, if the list of elements is C, H,

‘etc,, the index k = 1 designates the element C,

the index k = 2 designates the element H, etc.
The gross composition of the system can be
described by the quantities qk (k=12 ..0),
where q, 15 the number of gram- -atomic wexght.s
of the k-th element contained in unit weight of
the mixture, If the gross composition of the

21
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system ‘of interest is described by some other set
of parameters, the quantitiés.g, can always be
obtained by simple consideration of
stoichiometry, and we assume that this has been
done, For. example, the TNT formula referred to
in Eq. 2-1a is associated with the set of numbars
which can be represented by the vector ' =
(1M, 5/M, 6 /M, 3/M).

In a system containing n.any constituents, it is
possible to select a set of constituents which are
gufficient for the complete description of the
.gress composition. Thus if the mix{ure consisted
of the selected constituents only, the amounts
of each .eleiment prezeént in the hypothetical
system would be the same as those in the system
of interest. The constituents thus sufficient to
describe the. syltem are called the components of
the system, One possible set of components for
the reaction products of INT is given in Eq.
2-1a. The.number of.components is usually, but
not necessarily, equal to the rumber of
elements. For the development here in which
the explosion .producte as well as the explosive
are- expressed as a sum of the componénts, the
number of components ¢ is set eaqual to the
number of clements. We employ an index, jij =
1, 2, .. ¢), as a component index. Thus, for
example, if the list of components ig C, CO, etc.,,
the index j = 1 designates the component C, the
index j = 2 designates the component CO, ete.

The molecular formula of the i-th constituent
or chemical species of the mixture of explosion
products can,be formally represented by

0 Q) .. yik) . ()
¥ xx“u X“m X:k 22

where X*) is the symbol of the k-th element

and o, is the subscript (which may be ze‘.-o) to
this symbol in the forumla of the i-th specxes
For every species i, the array &, (k=1,2, ... )
defines a vector

Yy = (0 e Oy ) (2-3)

that can he called the formula vector of the i-th
substance, As shown by Brinkley® it is a
necessary condition for the selection of a proper
set of components that the formula vectors of
the selected constituents be linearly
independent, which implies that the determinant
|a,k| does not vanish.

22

We denote by g, (moles/gxam) the number of
moles of the j-th component in unit weight of
the hypothetical system consisting of
components only. The-quan iities q,0=12,..
¢) are called the stoichiomel-ic comtants of the
sysiem for a particular choice -of components.
For a proper set of components we require that
the stoichiometric constants q be greater than
zero for all j, The stolchlometnc ‘constants
indicate the quantlty of each component
without regard to phasé; hénce, they are-sums of
the mole nvmbers:

= (8 () -4
g=n+n +ny (2-4)

Since this hypothetical system is to have the
same gross composition as the system of
interest, then the quantity of each elemeni must
be the same in each system. Hence

N e
/?1 o, =g, fork=12 c (Z5)
The g, provide a specification of the gross
compoutlon of the system that is an slternative
to that provided by the- q

A choice of components is generally not
unique. If it is arbitrarily assumed that the
chemical elercénts in their standard states (e.g.,
C, 0., N, ...) are members of the system (even

0\1@1 tfle concentrations of the elementary
species may be so low as to be negligible), the
elements constitute a proper " choice of
components. The elements as atoms (i.e., in
dissociated forms) always constitute a proper set
of components even though they may be present
in negligible concentrations. Then ¢ = ¢'.
However, use a set of components other than
the elements is advantageous if the hypothetical
system of components is a good approximation
to the system of interest. This will be thie case if
it is possible to select as components the
predominant species of the mixture and if the
concentrations of the species that are not
selected are small enough to be neglected as a
reasonable approximation.

If the hypothetica! system of components is
an adequate representation for the mixture
resulting from the decomposition of an
explosive, the equation for the decomposition
reaction can be written from stoichiometric
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considerations alone. An example of such a
simple reaction iz given as Eq. 2-1a. We can

-generalize the decomposition of an explosive by

the equation
1) k)

where (x) or; % %, } s the formula vector. of the
explosive of gram-molecular weight M, and Y/
represent the formulas of the constxtuents of a
hypothetical mixture of products satisfying the
critera of a proper set of compon»nts The: q; of
Eq. 2-6 satisfy Eqs. 2-5 with q =x /M A
decomposmon equation of the form of bq 2-6
is called a conuentwnal decomposition equation.
Conventional decomposition equations have
beenn widely .employed to obtain approximate
‘descriptions-of the composition of the products
of tie decomposition of explosives. The validity
of the approximation cannot be judged a priori.
In general, it is necessary to compare the results
with those of a bei:r approximation such as
that resulting from the assumption that the
éxpiosion products are in thermodynamic
equilibrium,

The calculation of the composition at
equilibrium of a system of many constituents is
carried out by 4 method of successive
approximations, "he procedure requires the
specification. of an initial approxiiatiun: If4he
caleulation is to be carried out on a computer,
the initial .approximation must be specified in a
well-defined manner. The approximation
provided by the hypothetical set of components
is well-suited for this purpose. It leads to a more
rapid convergence of the successive
approximations to the equilibrium composition
than is obtained with a physically. less realistic
initial approximation:

We now introduce the algebra required to
express the constituents in terms of the
components. Then the method of calculating
equilibriam composition of the product mixture
can be discussed. The formula vector of the i-th
constituent can be expressed as a linear
combination of the formula vectors of the
components

L By =y (=1, 2 08 (2-7a)

where y = formula vector of the j-th
component If the dissociated elements are

oM g (26)

.gram-molecular wei

taken to be the components, §, = % To each of

Eqgs. 2-7a there corresponds a chemical reaction

that can be represented formally by
=y (2-7b)

resulting in the formation of each of the
constituents of the mixture from thée
components.

For a given choice of components, the
reactions in the form of Eqgs. 2-Tb can-always be
written by inspection, using the customary. rules
for balancing chemical equations. The formal
discussion of this puagraph is intended'only to
display the meaning of the coefficients Bu, since
it is possible to formulate a computer-program
that will construct & table (matrix) of the

!§1 by Yo

-coefficients 8, from the coefficients &, .

The conservation of mass by the reactions of

‘Eqs. 2-7b can be expressed by the relations-

M= f: BM, (2-8)
where M, and (grams/moie) are -the
ts of the i:th: onstituent
and j-th component, respectively. The
conservation :of mass in the system as a whole
requires thai

£ ™t ¥ aM 29
i=1" M, = _Lq" 29)
On substituting Eqs. 2-7b into Eq. 2-9 ‘and
equating the coefficients of M',, there are
obtained

$ 0. (2) o = .
lr‘_“..1;‘3,](71, +n" 4 ) q (2-10)

(=1, 2, ..8). Eqs. 2-10.are the stoichiometric
conditions.

According to the phase rule, thé number -of
condensed phases is at most ¢ + 1 (and this
number of condensed phases can .cocxist in
equilibrium with a gas phase only for a uniquely
specified set of stoichiometric constants at a
uniquely specified temperature and pressure).
We simplify Eqs. 2-10 by making the assumption
that any condensed phase is a pure component
whose state of aggregation (solid or liquid) is
known, More gerieral threatments. of
heterogeneous systems present’ no special
difficulty but result in a considérable
amplification of the notation required for a

23
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general discussion. Thie systems of interest in

this handbook are all compatible with this

restriction, With this ussumption, Egs. 2-10 can
be written
1
m+ 2B =g {#11)
where nj is the numbér of moles of condensed
{solid or liquid) component j in unit weight of
the mixture.

If'the equilibrium composition of a mixture is
to- be -determined, the constituenits to be
considercd. must be chosen a priori. The
selection will usually imply the neglect of
certain species whose concentrations. at
equilibrium can be expected to be negligibly
small. In general, the correctness-of the choice
can only by confirmed a posteriori by a
¢aiculation demonstrating that the
concentrations of the neglected species are in
foct negligible, In some applications, additional

species may be arbitrarily excluded from

consideration even though ‘their equilibrium
‘concentrations may be significant, provided
kinetic consideratons imply that the:rate of their
formation is too small to be significant under
the conditions of their application.

We may illustrate the rtation of this section
by consxdermg the decumposmon products of
TNT. We assume a priori that the products
consist of a mixture of solid carbon with a gas
phase comprised of C, €O, H,, N, CO H,0,
H. In this list we have atblftanly negfected a
numbeér of possible dissociation products; they
can be included if desired. Because of the
mxygen deficit in the TNT molecule, we expect
the most abundant species to be C, CO, H,, N,,,
+ind wesselect these species as: compouents The
coefficients «, of the formula vectors. and g, -of
Eqgs. 2-7 are collecwd in Fig..2-1. The first four
rows of the array (matrix) of the ﬁ“ correspond
to the identities resulting from the choice of
components. The remaining rows represent the
chemical reactions of Egs. 2-T.

2C0-C =CO,
H,+C0 - C = H,0

%H, =H

by means of which those constituents that are
not components are-formed from those that are.
For TNT, C, H,O,N,,

24

q; = UM; q, = 6/M; g, = 5/M; q, = 3|M

where M = 228.18 is. the molecular weight of
TNT. The solution of Egs. 2-3 is.

L = 1/M; q, = 6/M; g5 = 5[12M; q, = 3/2M
2-3 THE LAWS OF THERMODYNAMICS

Thermodynamlcs is. .an exact mathematical
science, based upon a small number of -bagic
premises or postulates from which all the results
of the science are deduced by loglcal processés.
Apphcatlon of the science to physical systems
always involves . lditional hypotheses sepamﬁe
from the science itself. It is necessary to'assume
the relevince of the mathematical model to the
physical system to the one-to-one correlation of
quartities. employed by the science to physically
messurable properties of the system. It is also
necessary, except in trivial cases, to appeal either
to experiment or to other theory to evaluate the
various funétions required by the application of
thermodynamics in their dependence upon the
indépendent variables of the physical system.

A thermodynamic system :(closed system) i§
oné that interacts with the suifoundings by
exchanging heat and work through its boundary;
an isolated system is one that does not interact
smth the surroundings, The state of a-system is
determined by the values of its various
properties, the nature and necessary number of
which are to be determined. A sysiem is
composed of a finite number of homogeneous
parts, called phases. For some applications, it
may be necessary to consider the finite number
of nonhomogeneous regions‘ forming the
boundaries between pairs of homogeneous
phases; for most cases, the extent of such
regions is small and they can be neglected in
ccuiparison to the homogeneous regions. Some
properties of the homogeneous phases are
regarded aé fundamental; i.e., temperature,
internal energy, pressure, entropy, and volunie.

Properties such as internal energy, velume and
entropy are called extensive because their values
for a given phase are proportional to the mass of
the phase. The value of an extensive property of
an entire system is the sum of the values of eacia
of the constituent phases, The molar value of an
extensive propexty is that for a suitably defined
gram-molecular weight or mole of material. The
specific valueof an extensive property is that for

e
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unit weight (e.g.; one gram of material. We will
generally employ a capital letter to designate an
extensive property for weight M of matérial,
where M may be a suitably defined
gram-molecular weight, and the lower case letter
designates the value of the extensive property
for unit weight. A ptoperty is called intaasive if
its value for a given phase is mdependenf/of the
mass of the phase.. The temperature and jiressure
are such intensive properties.

A thermodynamic process is said to have taken:
place if a change i5 observed to have taken place
in any macroscopic property of the system. An
.infinitesimal ,procen‘ is‘a process in which there
is only en infinitesimal change in any
macroscopic property of the system. A natural
.process is an infinitesimal process that cccurs
spontaneously in real systems; an unnatural
proceas is-one that cannot occur spontaneously
in real systems. Reversible processes are-cither

natural or unnatural: processes which can occur
in- either direction between two states of
equilibrium.

The first law of thermodynamics for an
isolated system can be stated-as follows: There-
-exists a. function of the state of a uniform phdse
calléd theé enérgy which is conserved for any
process over all the phases participating in the
process, For -an infinitesimal’ process, the first
law is )

{9y

) ETARRRY (2-12)

where E(*) js the énergy of the k-th -phase,
Note that ¥ now refers to the phase (solid,
liquid, or gas), not to the élement as in ‘the
preceding paragraph. Because energy is an
extensive property, the energy of the whole
system.is defined by

E= ;z:z:"" (213)
We shall here limit consideration to the case in
which all. of the work done on a phase is
produced by the pressure exerted on the phase.
We suppose that the phase is in pressure
equilibrium with its' surroundings in the sense
that if the pressure exerted by the phase on its
surroundings is p, the pressure exerted by the
surroundings is p + dp or p - dp. Under these

circumstances the external work verformed on
the k-th phase is reversible, equals p/*' du*),
and

dE™ = 5q(k)_ p{k)dvlk) (2_14)
where 8q/%) is the heat abrorbed by thé-k-in
phase, p'*’ is the préssure of:the k-th phuse, and
dV*) js the differential increase in volume of
the .phase during the process producing. the
change dE™*) in.E(*) .,

The: second law of thermodynamics for an
isolated system can be stated as follows: There
exists a function of the state of & umform .phasge:
called the entropy which is conserved for ary
reversible process and ivhich increages for any
irreversible process over .ail of the Phases
participating in the process, For an: infinitesimal
process

st"" >0 {53
where S'*/ is the entropy of the k-th-phase. The'
equality sign refers to a reversible process angd
the inequality sxgn o an mevets.b‘e -one.
Because entropy is an extensive property, the
entropy of the whcle.system:ds delined Dy

s = zs™ (2-16)

The statement of the second lav . completed
by the further assumption that 1or a particular
phase participating in a reversible process
= §—‘1— 2:17
ds ™ (2:17)
where T'*! is tbe temperature of the uniféxm
k th.phase and 53’ is theeat absorbed by the
phase from its sarroundings in the reversible
process producing: the change dS'® in S™,
Then Eq. 2-14 can be written

E(k} T(k)dg(k) lk)dV(k)

for a reversible process.

Note that the summation of Eqs. 2-12 and
2-15 is over all of the phases performing work or
exchanging heal during the process, and the
total system described by these equations is an
isolated system for which the totsl volume is

(218)
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constant and thov~h the boundary of which no
heat flows.

In textbooks on thérmodynamics, it-is shown
that a general (mveni‘)le or ineversible)
intinitesimal change in the energy EX™) of a
phase k can be written.

dE™ = T gg™ _ o gy (219)
+ MEu dn

where M is the total mass of the system (not the
gram-molecular weight as in the previous
paragraph) u{*/ is called the chemical potentisl
of the keth phase of the ‘i-th constituent.
Equation 2-19 can be shown o be compatible
with: the first and second laws of

‘thermodynamics.

If independent variables other ‘than the
entropy and. volume are to be employed for a
particular syastem, it is convenient to define new
extensive variables: enthalpy, Helmholtz free
energy, and Gibbs free energy. The new state
varidbles are defined in terms of quantities
slready introduced; they do not provide
additional information concerning the state, The
characteristic function for the independent
variables entropy, pressure, and the mole
numbers is called the enthalpy, denoted by H,
and defined for a phase k by

H(k) = E(‘U‘ + pll} V(k) (2-20)

For the independent variables—temperature,
volume, and the mole numbexs—the
characteristic function is «called the Palmholtz
freé energy, denoted by F, and defined for a
phase k by

P = g - gt (2-21)
For the independent variables—temperature,
pressure, and the mole numbers—the
characteristic function is calied the Gibbs ixce
energy, denoted by G, and defined for a phuse &
by

g™ (222)
For any infinitesimal process of the whole

systam the extensive properties satisfy the
equations

G(") = H&) —

ds = 2ds™ ,.dH = Zan™ \
dv= Edv‘“ ,dF = ;MF‘” (2-23)
dE = %dE‘” ,dG = Eda""
When the definitions of Egs. 2-20, 2-21, and
2:22 are differeritiated and combined with Eq.
2-19, we-obtain
dHlH - ,r(k)ds(’d + V‘”dp’” + M?ﬂ"“dﬂ:“
dF = - sMaz - ptav b MEgan® } (224)

dG™ = - ST 5 Y™ gt 4 MF"‘;"‘"’W .

For = particular phue, the chemical potential
can be defined by iy one of the relations.

=1 )
k) ] )T

If the system consists of a single pure phase,

Eqs. 219 and 2-24 con be writtén
dE = TdS - pdV

(2-25)

dH - TdS + Vdp | (226)

dF = - SdT ~ pdV

dG = - SdT + Vdp
whera it is unnecessary-to relsin the superscript
label of tho phme, These expresions, for any
infinitesimal process involving only u single pure
phase, satisfy thé fimt and second laws =
expressed by Eq. 2-18,
'I‘hc variations of Eqgs. 2-23, with Egs. 2-19
2-24 are arbitrary, except that the variations
dn‘“ must satisfy the stoich...ietric
condmom. Eqs. 2-10, which we write in the
form,

33,0 = 0 (227)
When the assuription is made that a process
occurs at fixed composition, these connections

27
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are automatically satisfied since

anf® =0 (2-28)
for all i and & by definition.

The equilibrium.conditions are the conditions
under w.ich a process in an isolated system—as
described by Egs. 2-23 and 2-24, and subject to
the stoichiometric constraints of Eq. 2-27is a
reversible process, i.e., satisfies Eqs. 212 and
2-15. The analysis for thc case of fixed

composition is given in standard
thermodynamics textbooks, e.g., that of
Guggenheim?. The analysis, when the

stoichiometric conditions are eipressed in the
form of Eq. 2-27, has beén published by
Brinkley®.

Both under constant composition constraint
and under the constraint expressed by Eq. 2-27,
the mechanical and thermal equilibrium
conditions are obtaired in the form

p™ =p
™ = p

where p and T -are the uniform. pressure ‘and
temperatire, respectively, of the whole s7stem.
Foi  the general stoichiometric conditions
expressed by Eq. 2-27, the chemical equilibrium
conditions can be obtained in the form

(2-29)

(k) o .
H = RTZB, (2:30)
‘where the )\J are parameters that can be
eliminated between Eqs. 2-27 and 2-30.

In the derivation of Eqs. 2-29 and 2-30 that
has beati outlined, a process occurring at
constant total volume and constant total
‘entropy in an isolated system was considered.
The analysis can be extended to cases where the
system of interest exchangex heat with its
surroundings or performs work on its
surroundings by conceiving of an isolated system
consisting of the system of interest surrounded
by an additicnal phase and separated from it by
8. membrane impermeable to the exchange of
matter ‘but through which heat can be
transferred or upon which work can be
performed, or both, If the added phase is
agsumed fo be so large that the exchange of heat
results in a negligible change in its pressure, then
the process occurring in the system of interest

2-8

may be at constant temperaturé, or constant
pressure, or both. It .can then be showrl that Egs.
2-29 and 2-30 are the conditions that a process
be reversible when the process occurs at
constant entropy and pressure, at constant
temperature and volume, or at constant
teraperature and pressure of the system of
interest. Eqs. 2-29 and 2-30 -are thus the
conditions for any infinitesimal process to be a
wevépsible process and they are thus the general
couditions 2. equilibrium.

When Egs. 2-28 and 2-29 are satisfied, the
system is in mechanical and thenmal ejuilibrium,
but is constrained to constant compusition, It is
a state of partial equilibrium thet'may provide a
good approximation to tb~ state of a iransient
system if relaxaticn time; for equilibration of
temperature and pressare we short and
relaxation times for  equilibration of
-composition. are long compared ‘o the time
characterizing the ftranslent nsdire of -the
system, When E . 2-28 and::2:29 are satisfied,
Egs. 2-19, 2-23, and 2-24 can be writtert

dE = TdS ~ pdV

dH = TdS + Vdp
] (2-31)
dF =~ 8dT - pdV

dG = - SdT + Vdp

Eqs. 2-31 are identical with Eqs. 2-26 {or a-pure
single phase. We conclude that the equaticns for
an infinitesimal process in a mixture—which
maintaing thermal and mechanical equilibrium
during the piocees and clsc is constrained to
constant compositicn—are {dentical with those
for a single pure phase. .

When Egs. 2-29 and 2-30 are satisfied, th
system is in a state of complete equilibrium. It
may provide a good approximation to-the state
of a transient system if relaxation times for
equilibration of temperature, pressure, and
composition are al' short compased to the time
characterizing the transient nature of the
system, When Egs. 2-29 and 2-30 are satisfied,
Eq. 2-19 and the third of Egs. 2-23 can be
combined to give

. ‘ . (k}
dE = TdS - pdV + RTM?AIL"Z;ﬁuom,

In view of Eq, 2-27, this expression reduces'to
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dE = 1dS ~ pdV \2-32)

Similarly, Egs. 2-23 and 2-24 result in the
expression

dH = TdS + Vdp
dF = - SdT - pdV (2-33)
dG = - 8dT + Vdp

Eqs. 2-32 and 2-33 -are identical with Eqs. 2-26
for-a pure single phase, We conclude that the
equations for an infinitesimal process <n a
‘mixture that maintains equilibrium during the
process are identical with those for a single pure
Phase.

Using Egs. 2-29 and the extensive nature of
the enthalpy idind free energy functions, we can
also write

H=E +pV
F=E-7§ ) (234
G=H-TS

for a mixture. These expressicns have the same
form as thc.definitions given by Eqgs. 2-20, 2-21,
and 2-22 for a single phase.

The energy and enthalpy are undefined to the
extent of an arbitrary additive constant. The
entropy is tiundefined to the extenl of an
additional: arbitrary additive constant. The free
energies are thus undefined to the extent.of an
additive constant.and an additive linear function
of temperature. In practice, this lack of
definition occ¢asions no difficulty since one is
always concermned with the energy or entropy
difference between two states and these
differences are completely defined. The lack of
definition can be removed by defining for each
conctituent of a mixtuce a standard state in
whick energy and entropy are arbitrarily
assigned the value zero. It is not necessary that
the standard state be physically accessible,
provided a process can be defined that will
produce the state of interest from the standard
state and for which the change in energy and
entropy can he calculated.

Now suppose that the entropy and volume are
known as functions of the independent variables
pressure, temperature, and the mole numbers n;,
i.e., that the functions represented by,

s=3s(p, Ty n,,n)

v=up, Ty ny,een)

are known. The the sake of definiteness, we
employ the specific entropy and specific
volume, If {1) the system is a single pure phase,
if (2) the system is a mixture constrained o
constant composition, or if (3) the composition
of the systéem satisfies the equilibrium and

stoichiometric conditions at.all values of p and

T; we may regard the entropy and volume as
implicitly prescribed functions of p and T only,

ie.,
s =3s(p, T)

v=1up, T)
If a standard state. has been defined, the third of
Egs. 2-38 aiid the information summarized by
Egs. 2-35 suffice to evaluate the Gibbe free
energy as a function of pressure and
temperature. Theréfore, the furiction
g=8p T)

fhay be regarded. as known, wherc g is the
specific Gibbs free energy. The other
thermodynamic properties-are then also known.
In particular, the specifi :energy can be regarded
a known function -of pressure and, temperature
as expressed by

" (2:35)

e, T) = &, T) + Ts(p, T) - pu(p,T) {2-36)

Similarly, it may be supposed thal the eniropy
and pressure are known us functions of the
independent variables volume, temperature, and
the mole numberzn,,

s=38( Tn,n)

p=pE Ting, o)

Under thuse circumstances, we may regard the
entropy and pressure as implicitly prescribed
functions of v and T only, i.e.,

s=s(y, 1)

1 (2-37)

p=pu 1)
If a standurd state has been defined, the second
of Eqs. 2-38 and the information summarized by
Eqs. 2-37 suffice to determine the spegific
Helmholtz free energy as a function of volume
and temperature

f={fv, T)
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The other thermodynamic properties are then
also known. In particular, the specific energy
caii bé regarded: a known function of volume
and temperature, as expressed by

e(v, T) = f(v, T) ~ Ts(v, T (2-38)
Either of the expressions
v=up, T; n,, ...na)
(2-39)

r=p, T; n,n)
represent a relation between pressure, volurie,
ard temperature that is called an equation of
state. Either of the expressions

s =s(p, Ty ny,oen)

(2-40)
& =8(v; Ty npyeen) :

can be evaluated if an equation of state and
certain thermal data, to beé specified later, are
known. The information summarized by Egs.
2-4/4 is.sometimes called the caloric equation of
state, although these- data cannot usually be
expressed in analytical form.

A similar discussion results if the pairs (s,p)
and (s,v) are considered as independent
variables. Thé energy is most naturally, from a
purely thermodynamic standpoint, considered a
variable of the latter pair. However, except in an
approximation to be noted later, equation of
state and thermal data are always presented in
the forms summarized by Egs. 2-39 and 2-40 so
that the enetgy, regarded a function of entropy
and volume, is determined parametrically by Eq.
2-38 or by Eys. 2-36 and 2-37.

We conclude that the thermodynamic state of
a system is uniquely determined by the values of
two independent properties of the system (state
variables) if the laws of thermodynamics, an
equation of state, and the thermal data
summarized by one of Egs. 2-40 are
simultaneously satistied and if the system
consists of a single pure phase, a mixture
constrained to constant composition, or a
mixture whese compdsition satisfies the
stoichiometric and equilibrium conditions at all
values of the independent state variables. The
state of a system is uniquely specified in this
way from purely thermodynamic considerations
under no other circumstances.

210

24 GENERAL THERMODYNAMIC
IDENTITIES

To determine the thermodynamic properties
(such as energy, pressure, enthalpy, temperature,
specific heat, etc.) of an dctual system, it is first
nécessary to define or to determine its
composition. It is aleo-necessiry to know the
equation of state of t':¢ gaseous mixture and the
equation of  siuw -of each phase present. Then
the thermodynamic properties are determined
by the general relations.to be summarized in this
paragraph. These relations are déscribed by
partial derivatives of thexmodynamic quantities.
To determine the properties themselves, the
derivatives must be integrated along some
thermodynamic path. Examples -of such
integrated expressions are presented in
Appendix A,

The general thermodynamic relations are
derived for a heterogeneous mixture. First the
partial .derivatives of volume with respect to
temperature and pressure,. ..re derived »xd then
the derivaiives of ‘pressure withr Tespect 4o
volume: and temperature are dérived. Then
specific heats, and derivatives of entropy,
energy, enthalpy, and chemical potential are
considered, Finally the adiabatic expor:nt and
the sound speeds,are derived.

The equation of state of a heterogeneous
mixture is constructed from thé;p-u-T relations
for each of the constituent phasvs, muking use
of the fact that the volame of a mixture is the
sum of the volumes of its constituent phases. We
will let v denote the' specific volume of a
mixture, V; the molar volume of the j-th
condensed component, and 7 the volume-of the
gas phase for unit weight of mixture. For a
homogeneous system consisting of a gas phase
only, v = 7. In general, we consider

v=7+ Iy (241)
sinfe we have restricted our discussion to
mi ctures in which o~y condensed phase consists
of a pure component.

The equation of state of a pure condensed
phase is an expression giving

Vi=viw 7T)

The dependence of the molar volume of a pure

(242).
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condensed phase on pressure and temperature is
usually determined for each substance by
experimental measurements, and the data have
been represented by a variety of empirical
equations. Without such data, the moelar volume
of a pure cor.densed component may be
regarded—as an -approximation—a constant, and
at temperatures and pressures far removed from
ordinary values treated as an adjustable
parameter.
The equation of state of a gas phase may be an
-expression giving
T =1(p, Ting,-n) (2-43)
Later we.consider the case where pressure is a
funclion of 7, T, and the n’s. The partial molar
volume of thei-th gaseous constituent is defined

b
0y 5 for
P \on,

».T

Ingenetel T doa funchon of theform Uitn T
n,, ..n ). In textbooks.ox thermodynamics, it is

shown that

(2-44)

7T=2ZnV

: (2-45)

Therefore, Eq. 2-41 can be written

v=ZnV+ ;zn;x;' (2-46)
when the-equation of state of the gas phase is
explicit in temperature and pressure. The partial
derivatives of the volume with respect to
temperature and pressure and at constant
composition are

av v
). - ¥l 1 7)
Pt P P
— (2-47)
ov av, 815‘
v Zn\=—=] +Zn\—
P Tn ! ap T 4 ap r
where the subscript n means that the

differentiation is to be performed at constant
composition. Equilibrium partial derivatives of
the volume with respect to temperature and
pressure are related to the derivatives at constant
composition by

v £ o 3 8 n) ";
&), -6, o), e

Il L] I L
oy a6 - f0 nny - on;
ry Rl et I 2, ]t 17 5
Py \Wra P [y I\

where the equilibrium nature of the derivative is.
indicated by omitting the subscript 1. The
derivatives of the mole numbers with respect to
-temperature -and- pressure are to be determired
from the variation of the .equilibrium
composition with temperature and pressure.
Their explicit evaluation is described in
Appendix B.
Altematively, the equation of state of a gas
phase may be an expression giving
p =p(r, Tin,,~n) (2-49)
If the system consists only of a gas phase, so
that. + = 1 the avaluation of the equilihrium.
partial derivatives of pressure with respect to
temperature and mixture volume s
straightforward. It is convenient to define

(2-50)

(p, is not a partial molar quantity). From the
ordinary rules of -differentiation, we obtain- the
relations,

-a£ ~ ?£ .3 a!lnn‘
ar), \ar) T TP\ or

T n T
W\ _ ) e i“___)
arfp OTh, TUI\ O [,

The derivatives of the mole nunbers with
respect to temperature and gas velume are to be:
determined from the varistion of the
equilibrium composition for changes in these
variables, If the mixture is heterogeneous, the
xpressions for the partial derivatives of the
pressure  with respect to temperature and
mixture volume are of an awkward form because
of the mixed character of the equations of state.
To evaluate them, we first evaluate the
quantities

(2-51)
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/ ay,
CUA Y 4 Y i ) R
3 rn  \O7/ra? I\ /.
(] oV
(LATRIIEY aih BN P o (1) |
9T/, 1INoT/  \aT/,. T \op [,

Eqgs. 2:52 are obtained b:' differentiation of Eq.
2-41. Then .the fixed composition partial
defivatives of the pressure with respect to
temperature and mixture volume can be
obtainéd: from identities.

D\ _ () [
d Ton 37/ znf O
! el ,
) _(w) _ (%) (%)
97 un oT Tn oy, . 3T n

Wa. nrosasd. in a-cimilar- manner {o-evaluale the

equilibrium partial derivatives. From Eq. 2-41,
we obtain

av\ fon l
CRCHIERUC
: fav): any o (2-54)
CRORCRTR )

Then the equilibrium partial derivatives of
pressuré with respect ‘o temperature and
mixture volume can be obtained from the
identities of Eqgs. 2-51, written for the
equilibrium derivatives by the éiimination of the
subscript n.

A secondary thermodynamic property is the
heat capacity. If a system is heated from
temperature T' to T + dT, the heat absorbed ¢
by unit weight of the system i evidently
proportional to 7'

bq = ¢dT
where ¢ is the heat capacity pey unit weight. If
the changes taking place in thé heating process
are reversible, we may employ: Egs. 2-16, 2-17,
and the second of Egs. 2-29 to wtite

8q=}’§8q ''= Tds = cdT

where s is the specific entropy. If the volume is
held constant during the heating process, the

212

(2-52)

quantity ¢ is called the specific heat capacity at

constant volume and denoted by ¢,. If the

pressure is held constant during the heating

process, the constant ¢ is cailed the specific heat

at constant pressure and denoted by <,
=l

v oI/

2.
P (255)
%~ \az), .

If in addition to préssure or volume the
composition is assumed: to remain fixed during
the heating process, the heat capacities are-called
the heat capacities for constant.composition, or
more shortly, the “frozen’heat capacities. They
can be denoted by-¢, , orc, ., where

» pn

08

= Pl—1}
“n = "oty

{os
c = T{—
o)
The expressions for specific energy e and
specific enthalpy h (from Eqgs. 2-26) can be
written

de = ¢dT ~ pdv , dh = cdT + vdp

valid either for a change between equilibrium
states or for a change at constant composition.
1t {ollows that alternate-definitions fot the.heat
capacities are given by the expressions

) o
%" \or/, * % " \o7),,
Y L IR (A
L" aTJ’ e o7, pn

To evaluute the frozen heat capacity at
constant volume for a heterogeneous system, we
introduce the abbreviation

de N
= — 2_5'
Crn <M‘>m (2:58)

and employ the identity

o ™ or a &y Tn ar T (2‘59)

3 256)

(257

Ao e
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Expressions for the quantities ¢, and
(3e/d7), . are given in Appendix ‘A, and
expresslons for the derivatives of the mixture
volume are given by Eqs 2-52.

To calculate the equilibiritin heat capacxty at

(3 anl>,

T /4
o el

+ EE (8T>

where we have introduced the abbreviation

de.
an .
T

and where E;’ is the molaf energy of the j-th
condensed componént. The quantity E, isnota
povtisl molar aquantity. An. expression for E, is
gven in Append:x A Then ¢ can be obtamed
from the identity of Eq. 2-59 written for the
equilibrium derivatives by the elimination of the
subecript n.

An expression connecting the frozen and
equilibrium. heat capacities at constant pressure
can be written'in the form

_ !'8 fn n)
G = cp.n + ZI:HIHl : a'T
2\ 1.p

bn}
+ SHy \ ==
7\t A

where | is the partial molar eithalpy of the i-th
gaseous constituent

— fon
H = \on

employ:- the quantxty [

er = 55

\u»)_ = c.‘(,n + rz;'nlEl
e (2:60)

(2-61)

' (2462)

(2-63)
Yo
and where H is the molar enthalpy ot the j-th
condensed component Expressions for tae <,
and A, are given in Appendix A.

We shall have occasion to employ the fixed
composition partial derivatives of several
thermodynamic functions with respect to
temperature and pressure or with respect to
temperature and volume. They can all easily be
obtained from the définitions of the functions

W

and the therimodynamics laws by application of
the rules for partial differentiation. For purposes
of reference, we list certain of these relations
without .derivation. The derivativés. of entropy
with respect o pressure and volume at-constant

temperature are
( ?_s_ _ ap\
»\3v i BT}
B\ L
ap T aT P

The derivatives of energy and enthalpy with
respect to volume-and pressure, respectively, at

‘constant temperature are

(g—eu>r,n - T@%@;P

.’\“I'Y’I;,ri vo/p in '

1 (2-65)

Eqs. 2-64 and 2-65 complement Egs. 2-56 and

2-57. The partial derivatives of the, chemical
potential of the i-th gaseous constituent can be

written
(o8 v
: ap / T o

(3H\
ar ,” R

[3(u,/7)
[ aT ]-r,n= ) El/Tz

5‘(#;/1‘)] _
] = i

Similar relations apply to the chemical potentml-
of a pure condensed phase,

op [y

oy IT)] (287)
) =~

-y
=V
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Deéfivations of these relations can be found in
thermodynamics textbooks.

A relation between the fixed composition heat
‘capacity at. constant pressure and' that .at
constant volume can be obtained in either-of the
-equivalent forms

dv
- =~
Cpn " Cu (g ) ..<p>1..
- o2y _.a_a)
aT,D.n au'l‘

the first of which is convenient for the
independent variables v and. T, and the second of
which. is convenient for the independent
variablés p and T. It can be shown that an
expression of the same form connécts the
equilibfium heat capacities

- (&)

where the équilibrium de.ivatives of presstire: or
volume are employed in evaluating the
nghbhand side of the equations.

The ratio of the heat capacity v at constant
presure to that at constant volumé can be
defined for either the frozen:heat.capacities or
for the equilibrivm hest capamtm We define
the quantities ¥ =¢ e,

(2:68)

(2-69)

(2-70)
Yo ™ cp,n f cv,u

Using Eqs. 268 and 269, we obtain the
following useful relations:

2 GLE).
::: .1 01— (ﬂ)‘(:_:.)m
)

T "1

(271)

2
]
"
]
l

2.
-

214

The adiabatic exponent k.is defined by’
v ap)
K L et e B
p v/,

This exponent ii.used to describe the.adiabatic

(2:72)

expansion of gas#s. For detonation products k.
has a value of approximately 3,.and for pérfect.

gases K= 1.
By use of the thermodynamic identity

6 - G626
@)

Eq. 2-72 can be written

-3 )

An adiabatic exponent for fixed compomhonx,.

Can ;:x Laedafivad.] b“

AN €\ N CAW (. :
Kn——p'(\aﬁ>s.n~ 7<)</Tn (274)

If Egs. 2-73 and 2-74 are combined: with Egs.
2-71, we obtain the useful'expressions

v <ap> T (b‘p)z
K, =-— |\ + \=
p av ”I‘,n pcv,n aT un

13

(2-73)

et ehedizas

1 _.»p (a_ ) . _‘13_7:_ (a‘:;)’
Kn v ap Tn pn \aT
" (2475)
v (ap> vT .ap)2
p \ov r Pe, 0T} v
1 __p(ov) _pT (@)’
K v\op/, ve, ‘a:‘r‘p
The sound velocity ¢ is defined by
cf = (9‘1> = kpu (2-76)
e/,

where p = 1/v is the density of the mixture, A
fixed composition or frozeu sound velocity <,
can.be similarly defined by

et e g o e e e s B s

RSN
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2 _ %P = g, = Py
- kap = K.pv (277) " Con &1 v, .
o (2-81)
Eqs: 2-75 can be combined with the definition g =L (%
of the sound velocity to obtain useful ¢, \3T/,

expressions relating this quantity to -the
derivatites of the equation of state. We obtain
the relations

cz =-‘u=e ‘ai’- ——T-a—p-z N
" _au T cll,l'l &y ;J,n

(2-78)

-

)\ | I (o)
\op/, e E)T)‘r7

Physically, the frozen sound velocity
corresponds (o the -velocity of propagation of
sound waves in & limit -attained at high
fricquency and the equilibrium. sound velocity

corresponds to the propagation velocity of

sound waves in a limit attained at low
frequency.

A differential coefficient which is
complementary to-the adiabatic exponent k and
which is useful in analysis where volume and
entropy are taken as independent variables can
be dafined for an equilibriumsystem by

L (%)
3

and for u system: constrained to fixed
compasition by

(2-79)

(2-80j

These quantities are related to derivatives of the
equation of state by

It is sometimes useful tq regard the energy as a
function of pressure and volume, with the
partial derivatives

® .20 -2
au‘,,," A, Ny, A
which define the .coefficient X; for a system
constrained to fixed composiion and' the.
coefficient A for an equilibrium system. The
corresponding :derivatives of the energy with
respect to the pressure are !

(2:82)

. \
(a_i) R i . (2-83)
o5/ v e, \ap/-g &
The coefficients A,f, and k are:not independent,
but are related by the expression
K= 6(—% + 1> (2-84)

An analogous relation existd between the
corresponding coefficients for a system -of fixed
composition, .

Integrated-expressions for the thérmodynamic
properties of a gas mixture, of a condensed
phase, and of a composite heterogeneous system
are d-rived in Appendix A. Thesé expressions
give the property of interest as.the sum of two
terms: the first is the value for an- ideal system
and the second is the contribution arising from
the nonideal nature of the actual system, Terms
of the second type involved integrals of :the
equation of state. In Appendix D, we list the gas
imperfection contributions to the various
thermodynamic properties as evaluated for
several eéquations of state that have been
empioyed to describe properties of the
explosion products of explosives.

It has been noted that the equilibrium mixture
is often employed to represent the composition
of real mixtures of explosion products. The
composition of this mixture is determined by
the stoichiometric conditions, Eqs. 2-10, and by

2-16
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the chemical equilibrium conditions, Eqs. 2-30.
Because Eqgs. 2-10 are linear in tiie mole
numbers, while Eqs. 2-30 are linear in the
logarithms of the mole numbers, an iterative
procedure must be .employed to determine the
‘equilibrium mixture. A general method to solve
thiese algebraic equations is formulated in
Appendix B. This method car be emplioyed as
the-basis. for .a computer program of very broad
application, but it is not well adapted for hand
calculations. In Appendix C, there is presented a
simplified méthod of computation for systems
containing componnds -of carbon, hydrogen,
oxygen, and nitfogen in which, with the
chemical nature of the system ‘specified, it is
possible to achieve a partial separation of the
variables .and thus to simplify markedly the
computational process.

25 APPROXIMATIONS FOR THE
THERMODYNAMIC PROPERTIES ON
AN ISENTROPE

1t is possible to perform an exect calculation
of all of the properties of thé system, provided
that the equations of state exist for the various
phases comprising the system. This calculation,
however, involves a large number of successive
numerical steps, and the dependence of a
property such as the energy on the mdependent
state variables such .as.entropy ard volurie, i.e.,
the fnction e(v,s) is obtained 1mpuutly and not
analytically. For some theoretical investigations,
there is a need for approximate analytical
-expressions of such functions.

For an ideal gas of:constant: composition, the
adiabatic exponent defined by Eq. 2-74 is equal
to the ratio of the heat capacity at constant
pregsure.{o that at constant volume, k = 7. The
ther  jroperiies nf:an ideal gas are frequently
represented with sufficient accuracy by the
assumption iiat 7 is a constant, Such a gas is
called an ideal polytropic gas. The
thermodynamic properties of such gases can be
expressed in relatively simple form and the
approximation has been extensively employeéd in
the development of the hydrodynamics of
compressible fluids such as air for which at
moderate temperatures and pressures the
polytropic assumption is & good approximation.

For the products of condensed explosives, it
has been experimentally found that the

2-18

adiabatic exponent 9 is, to a good
approximation, independent of the density and
a function of entropy only for a considerabie
range of pressure. It seems proper to designate as
a nonideal polytropic gas.any gas-for which K is
constant on an isentrope.

If the adiabatic exponent js a function of
entropy only, Eq. 2-72 can be mtegrated along a
path-of-constant entropy with the result

p=4av" =ap" (2-85)
where p =1/v is the density and A =A(s) is a
function of entropy only. Eq. 2-85 can also-be
expressed‘in the form
p(v,s') = p'(v'fv) = p'(plp) (2-86)
where p’ = p(v',s'j and k = k(s'). From Eq. 2:32,
(3e/dv), = - p. Using Eq. 2-86 and mfcgratmg
alonga path of constant. entropy, we obtain

T U -
¢ - v TD - L * N
K- 1

k-1
‘where B = B(s) is a function -of entropy caly.
Eq. 2-87:cax siso be expressed in the form

1
e =+ ——(pv - pv)

where ¢’ = e(i',s'). The enthalpy h = e + pv is
given by

K o

) pv + B
- 1K (2-89)
=h + ;-:—i(pu = p'v')

where i’ = h(p's’). By using Eq. 2-76, the sound
velocity ¢ can be introduced into Egs. 2-87 and
2-89 with the result

¢? = kpv = k(k ~ 1)(e ~ B)

2-90
= (k- 1)h - B) (290

26 HYDRODYNAMICS OF REACTING

CONTINUA

The fundamental differential equations of
motion for a reacting fluid are derived in this
paragraph. For one-dimensional problims they
are simplified to the usual Eulejian and
Lagrangian equations. In par, 2-7 the raethod of

1288y
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characteristics is applied to the one-dimensional
problem. The {reatment of shock waves as
discontinuities is given in par. 2-8.

In the macroscopic description of a physical
system, the information concerning the state at
one instant of time may be considered adequate
if one can obtain from it a rezsonable
description..of the state at some later time. It is
assumed that the process can be performed in
series (making each estimate from the previous
estimate) over subintervals of the desired fime
interval with the final result insensitive to the
length of the subinterval. One expects the
procedure to fail fo. information of a given type
if the subintervals become much smaller than a
critical time interval, characteristic of the system
and of the type of information, which can he
called the “time resolution”. This paragraph is
confined to the consideration of systems and of
time resolutions for which adequate information
consiu» of a knowledge of the spatial
distribution of the following densities:

() The concentraiions. pn, expréssed in moies
per unit volume »>f each of the chemical
constituents of the systern, where.p is the mass
density .

(2) The momentum density 7 = pu, where ¥ is
the (vector) particle velocity

(3) The total energy density pfe + u?/2),
where ¢ is the specific energy as measured by an
observer moving with the fluid and u?/2, u? =
1i?)2, is the cpecific kinetic energy of mass
motion as measured by a fixed observer.

We simplify the system at the outset by
making several assumptions:

(1) The velocity of each individual species is
that of the mixture; therefore the diffusion of
gaseous species is neglected and any condensed
species is completely entrained in the flow.

(2) Heat conduction is neglected.

(8). The fluid is inviscid; hence no energy is
dissipated. by mechanical processes except across
shock discontinuities.

(4) The only force acting on the fluid. is- the
hydrostatic pressure (gravity and other body
forces are neglected).

These four assumptions produce a valid model
for the flows with which we are principally
concerned, where the bulk velocity of the fluid
is ldrge compared to relative velocities of heal
and diffusion, The model without heat
conduction nr diffusion is not an accurate one

for the flow associated with ordinary flame
propagation. For derivations of the flow
equations in which these simplifying
assumptions are not made, reference is made to
a review by Richardson and Brinkley®.

The next step is the derivation of the rate of
change of any property of the fluid. Consider
any vector or scalar property -of position and
time, G(r;t), where T’ is the position vector and V
is a movile volume whose surface ¢ moves with
velocity @. Now, the total rate of change is
separated into a partial derivative with respect.to.
time and a convective term (for this derivation,
see Band® , for example).

dthdV f —dV‘*'erll da (2-91)

where dd’ = 1 da, 7 is an outward poiriting
normal to the surface, da is a differential surface
area and G is interpreted as a dyadic if G is a
vector (see Gibbsl® for an introduction. to
dyadics), The left hand term expresses the time
rate of the quantity G averaged over the volime
V. It is equal to the sum of the:contributions of
each stationary volume element dV and the
changes associated with the movenent of the
surface. If the velocity vector @ is defined
everywhere in the volume, the surface integral
may be transformed with the aid of the Gauss;
integral theorem and we obtain the general
kinematical relction,

m fG V= y lE——-i-V (uG]dV (2-92)

v

Lonsxder an arbitrary mobile volune V whose
surface moves with the particle velocity u. In the
absence of diffusion, the time rate of change of
the species i in V can be written

d
'&; fpnl dVv = fR‘d/ (2-93)
v v

where &, is the reaction rate. Using Eq. 2-92, we
have

d(on,)
f[ —~ + V. (@pn) - R‘]dV'—‘ 0 (2-94)
\4

ot

Since the surface of the volume moves with
velocity ¥, the total mass in V is conserved
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T ‘V/‘pdV—[[at+V.(pu)]dV—0(2-95)

Considering again the mobile volume V
previously defined, one can obtain the equation
' for momentum transport by a straightforward
. application of Newton’s second law of~motion.
| According to this law, the total force acting on
the mass of fluid in V is < ual to the rate of
change of linear momentum of the fluid in V.
For an inviscid fluid in the absende of body
forces, we have

d -
- (pd =2 f
f P = ) PEaV
[ v
since the force normal tg the area dad is =pr.
Using Eq. 2-92 with G = pu, we have

fa(pu'*) N |
Tor +V.(upy) + Yp|dV =10 (2:97)
\4

where the integral of the pressure over the
surface is iransformed to a volume integral by
the use of Gauss’ theorem. The time rate of
change.of the total energy is equal to-the rate at
which work is performed on the matefial in V if
the conduction of heat is neglected. Thus,

;?_‘[p(e + u® fu) =fp W.di

Again using Eq. 2-92 and Gauss’ theorem to
transform the surfacé integral, we obtain

(2-96)

|
i
|
t
|
!

e ] il e s e e e = =it~ =

(2:98)

S 2{;[;:@ +ut/2) + V. Ule+ u'f2)

v " (2:99)
: V.@uplidv=0
The volume V of Eqs. 2-94, 2-97, 2.99, and

2-93, is arbitrary. Therefore, the integrands of
each expression must equal zero, giving
»

m +9 . (i@p) =

0 mass conservation

a(p L V. (@pd) = - yp Momenium

conser, atlon
(2-100)

4 2
3 [pte + ur2)l
+ V. Wple +u?j2) = - v. (@p)

energy conservation
d(pn,)
at

218

+ V- @pn) " R,

The equation of mass conservation is used to
simplify the other three éguations, and the
energy equation is further simplifitd by-using

the momentum equation After some
manipulation, Eqs. 2-100 beceme

9p -

— e V . =

2t (up)

a-)

-é-:‘- +% -V =-=yp

p (2-101)

de P

— + ==

ot U ve pv

o

i >
5- +tu .9n = R/p

A more familisar form of these equattons of
hydlodynamxcs iz obtained by introducing a
total time derivative by-the definition

d 9 - (2:102)
—--—:—‘—-.{. 8 - i
dt ot w:v

by means of which ‘the rates of ¢hange are
measured by an observer moving with the fluid.
Then Egs. 2-101 become

dp mass
PR 7 =0 conservation
—>
au ¥ 1 vp =0 momentum
dt p ' conservation  ° .
. (2103)
de - p_" di energy
dt p° dt conservation
dn[
— =R
o AP

and the last equation can be taken as a
definition of the quantity R;. RatesR; of
production .of the constituents of -the mixture
are not all independent but most obey the
stoichiometric conditions of par, 2-2. Thus; only
s - ¢ of the quantities. R, may be regarded as
independent.

The further developmeni of the theory of
irreversible processes of ncnuniform systems.
that are not in equilibrium is based on two
assumptions: (1) temperature T' and chemical
potentials p, can be defined as functions of the
fundamental densities pn,, pu and pfe + u?/2);
(2) T and g, can, to a good approximation, be

o AN R Sanien e e w3 e e e
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regarded as point functions of the fundamental
densities. To simplify the development, we shall
assume initally that all infinitesimal pracesses,
including chemical ones, in a given volume
element are reversible, (Later, we shall-explora
the analysis without this.assumption.) With. t%iis
assumption of reversibility we can regard & given
volume element as being in eguilibrium. The
assumption of local reversibility makes it
possible to employ the thermodynamic relation
between the various state variables in a
nonuniform system.

Eq. 2-19 for a general change in the energy can
be written

de )2 dpy, 1
q(d) (—- +=TuR  (3104)
dat ) ot dt) o TH™ ¢

(For nm‘piicity, we assume that the system is a
gas mixture. Qur conclusions are unchangea- «f
condensed phases are present, although the
as.umptions of this paregraph require that such
phases be completely ertrained in theflow.) The
reactioni rates must satisfy the stoichiometric
conditions, Eqs. 2-27, and therefore

2B =0 (=1, 2 .0) (2-105)

Now, if chemical changes in tro svstem are
revessible, the equilibrium conditions, Egs. 2-30,
are satisfied, and Eq. 2:194 can be written

1(:‘) (”") + —; Z)T6,R, (2106)

Therefore, if all of the changes, including
chemical ones, are reversible,

de ds (do)
% - 107
dt dt) dt (2107)

Combining this eqmtxon with the energy
transport equation 2-103, it follows that

o {2:108)
de
Eq. 2-108 states that the entropy contsined jin
an element of fluid doss not change as the
elem2nt moves if diffuxion and heat conduction
are neghk  :d, if the dissipative effects of
viscosity  ©neyected, and if all changes in state
of the elemiént are reversible.
1€ the processes represented by Eq. 2-104 are
not reversible, the assumption of locel
aquilibrium i3 no longer possible. In considering

—

a single element of volume one must now
employ a quasi-viermodynamics, the
justification of which is beyond the scope of this
paragraph, However, the results are that one can
define a specific entropy s such that for a fixed
volume element

Td(g7) = d(pe) - Zpd(pn) (2-109j

in which T aud g, are calulated as though the
element were in thermodynamic equilibrium.
This expression can be transformed to

/

Tds = de - <-1§2-)‘dp - Bu, dn,  (2110)
where  p' = p(Ts - e + 34 dn)
The dquantity p* ir evidently the

thermodynamically ‘detinéd rressure. In general,
it differs from the dynamici 1; defined quantity

of this paragraph because of tlie irreversible

chemical reacitons. It is usually a good
approximation to assume that the
thermodynamic and dynar . pressures are
identical. Then the equation for entropy
transport becomes
\ “1 1 .

2 aa Y —— 2111

( dt) F(‘ >0 t 1)
If chemical :eﬂctwns are jrreversible, the
entropy contained in .an Alement of fluid
changes in accord with Eq. 2-111 45 a
consequence of the entropy increase during an
irreversible process.

A steéady flow is definec as one in which all of
the .partial derivatives with respect to time-are
zero, A flow is. called subsonic, sonic, or
supersonic at & polnt as u = |T| is less than,
equal to, or greater than the velocity of sound ¢
at that peint in the particular coordinate system
being used,

7qs. 2-103 are to be solved subject to initial
and' boundary conditions and fo a specification
of the state of the fuid, i.e., a knowledge of the
function

€= e(p Pyt o)
If all of the processes occurring are reversible, so
that the energy Ctransport equation can be
replaced by the entropy transport equation as
e'(pressed by Fg. 2-108, then the state of the
system is suffic. atly specified if the function

P = plp, s)
219
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is known. Under these cifcumstances,/Eqs 2-103
can also be expressed in the form

1 dp)
(dt +pv-i=0

a oty

)

z - v
which involves derivatives of only the pressure
and particle velocity.

Eqgs. 2-103, and their alternative forms are
calied the Eulerian equations of
hydrodynamics. When supplemented—as
previously mentioned by initial and boundary
conditions and by ari equation of state, they can
in- principle be: solved to determine-p, p,.and
régarded as functions of position and time. The
initial conditions consist of a knowledge of these
quantmel as- functions of position at zome time
which is taken as the initial instant. Boundary
conditions are of two types, kinematical
(velocity and displacement conditions) and
physical (pressure). A kinematical condition is
the requirement that the components of velocity
normal to an interface he equal on both sides of
the-interface. A physical conditin-that must.be
sallafied by an inviscid fluid in contact with a
rigid: boundary is that the pressure shall be
normal to the houndary. In the case of two
inviscid fluids presenting a surface of sepmison,
the physical condition to be satisfied is that the
pressure shall be continuous at the boundary in
passing from one side tG the-other. The surface
separating two fluide or the same fluid at
different densities is called a contact surface.

The equations of hydrodynamics comprise a
system of partial differential equations of the
first order that are quasi-linear, ie., the partial
derivatives appear linearly. Formal solutions of
these equations can be obtained only in special
cases.

As ay example, the Eulerian equations of
hydrodynamics for nondissipative (ds/dt = 0)
flow van be written for motion in one dimexasion

in the form dp (au)
act? 0

(2-113)
du 3 (@),
dt  p Dx)

where u is the particle velocity in the
x-direction. The Eulerian equations for
one-cimensional. radial flow with spherical
symyhetry can be written.

dp (au) 2up
— e 22
dt P or r 0

(2-114)

g_ti + l (gg) = 0

dt  p \ax
where u is now the particle velocity in the
direction of the radial coordinate r,

There is- another mode of expression of the
fundamental -equations culled the Lagnnm
form. The label coordinates -of a point may
consist of its position: coordinates or Eulerian
coordinates at the initial instant of time. Thus &
pariial derivative with respect to time at
constant values of the label coordinates has the

‘same meaning as the opentor d/dt in Eulerian

coordinates, and
Ry
ot
where 7'is the position vector of a point at time
t. The Lagrangian repmenhhon is eipeczdly
useful for problems in which interfs.es and
boundaries must be preserved.and in which high
precision. in the conservation of mass and
momentum- iz desired. Lagrangian is genenlly
superior to [Eulerian for one-dimensional
problems but not necessarily for two- or
three-dimensional probleins,

As an example of:the Lagrange representation,
we may consider the case of plane flow inone
dimension and let ‘the label co¢rdinate of a
particle x to be ihe vialue of its position
(Ealnnan) °coordinate x at t = 0. The particle
velocity is-given by

u = (dx/0t),, (2-115)

The form taken by the equation of continuity in
Lagrangian coordinates is mest easily deduced
for the particular initial circumstances of the
fluid, Suppose that the fluid is initially uniform
with constant density p . The conservation of
mass can be expressed by

X(x 0 ) R
%0, = folx 0 (2:116)

(e, t)
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where x(x ,t) is the Eulerian coordinate at timec
t of the pomt whose Eulerian coordinate at ¢ = 0
was x ., and x({o;t) is the Eulerjan coordinate of
the pamb that was -on a plane through-the origin
at t = 0, Differentiating this .expression with
respect to x, at constant ¢, we obtain the
Lagrangian equatmn of contmmty for plane
flow of an initially uniform fluid in the form

) -2
. axo i P
‘The Lagrangian equation of motion for the same
fluid in plane flow can be obtaised. from the

second of Eqs. 2113 by the use of Egs, 2-115
and:2-117. We obtair:

3%\ "1__(3,,_): N
( tz/ * s, .axo' 0

For nondissipative flow, the entropy transport
equation has the form

(i, 0

The Lajrangian form envisages the possibility
of ¢btaining a description of the properties of
the'flow; including the Eulerian coordinates, as
functiony of the-time and the Jabel coordinates..

{2:117)

(2-118)

(2-119)

27 UNIFORMLY ISENTROPIC FLOW |N
ONE DIMENSION

We will consider an application of the
fundamental equation to a flow for which a
formal solution is possible. The flow is
considered to be in one direction—e.g., the
#-direction—which means that the properties of
the flow are functions of the x.coordinate only
and independent of the y- and z-coordinates in
a recigngular cocrdinate system. Whenever there
is a poriion of the x-t plane in which all the
material is on the-same isentrope—i.e., when the
material is uniformly isentropic or
homentropic—it is possible to transform the
fundamental equations of par. 2-6 tc another
form that is due to Riemann.

For nondissipative flow as described by the
entrapy transport equation in the form of Eq.
2-108, the pressure and the sound velocity vary
withii the flow as functions of the density only.
It is. *hen convenient to introduce the quantity

(2-1207

o= j {c/p)dp

(90/0p), = c/p

where the integral is along a path of constant
entropy and where ¢ ic the sound velocity,
defined by Eq. 2:76. The quantity ¢ is
undefined to the exteni ol an additive constant
which can be atbitrarily issigned [for
convenience of ca/culation by the asignment of
a lower limit of integration. Then Egs. 2113
and 2-108 can be written

30 . (ao) . (Z)u) -0
ot dx ¢ 9x

9—‘-4 u(a—u) + ¢ Ba)= 0
ot Ry dx

08 08

a’ "('a?) =0

Addition and subtraction of the first twe of
these equations yields the new set

1 (2-4z1)

which is due to Riemann. The form of Egs.
2-122 suggests the definition of three
characteristic directions—labeled C,, C, and
C,—by the definitions

dx

LU= =t
Tdt

dx

cdt

(2-123)

n
&
i
o

dx
C,: T
A characteristic curve in the x,t plane is defined
ag one that is tangent at every point to a
characteristic direction. Thus, Eqgs, 2-123 arte the
equations for the charactexistic curves. The
characteristics C | are evidently the parlicle

2:21

.—£—+(u+c) a](¢7+u)==‘0 ‘

- 5

?(:- +(u - ¢) —](avu) = () (2-122)
K 2

:5; *u'gx']s =0

pra A o ] < Ao A dw ke e i 2L
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‘paths in the x-t plane. With these definitions,
‘Egs. 2122 can be interpreted as stating that on
characteristic curves C

F = J+u = constant (2-124)
on characteristic curves C_
$ =0 - u = constant (2-125)

while on the particle paths.C_, the entropy is
constant. The entropy ‘ransport equativa states
that if the entropy is initially constant, it will
remain constant for flow without discontinuities
in the x-t plane. )

The quantities ¥ and 7 are called the Riémann
invariants. If' they are known at.a -given point,
then u and o are kniown there, i.e.,

o=(r+3s)2

( " (2-126)

u=(r - 3)/2 |
From these, the density .can be obtaned from
Eq. 2-120 and the pressure from the equation of
state. For materials with a constant adiabatic
exponent, as described in par. 5

o= 2¢f(k ~ 1)
An éspecially simple case occurs for k = 3, since
then ¢ = ¢, T = ¢ + u, and T ¢ - . The first two
of Eqs. 2-123 become

- \
C*.dT"r
(k = 3) (2-127)
c -gx..x._"
~rat o ?

Since ¥ is: constant along curves C, and ¥ is
conitant along lines C_, kgs, 2-127 can be
integrated to give

G, :x = Ft + constant

C : x = ~ st + constant

so that the characteristic curves of each kind are
straight lines for k = 3. This case is of practical
interest. because the explasion produsts for
condensed explosives have an adiabatic
exponent that is neax the value 3 and,
consequently, flows for waich & = 3 present, the
qualitative feature of tha flows of such gases.

In general, the characteristic curves have the
following usetul properties:

222

(1) There is a cuxve of each type through every
point on- the x-t plane,

(2) If curves of a given type having different
values of the invariant-associated with that type
intersect at a point, the flow cannot remain
continuous because different vilues of the
dependent variables would be obtained if .one
characteristic or the other were used in
computation. Thus, there will be a discontinuity
in u, p; ete. at that-point,

(8) If, in a given region, § has the same vaiue
along adjacent C_ curves, the C, ‘curves are
straight lines in that region. For ¥ is constant
along a C, curve which will cross the C_ curves
and if ¥ is also constatt along the C, .curves,
both u and o, therefore u and ¢, and therefore
the slope of the C+ cuxves must be constant.

(4) Similarly, if 7 has the ssmi¢ value along
adjacent C_ ‘curves in a given region, the C_
curves are straight lines in that region,

(5) A weak discontinuity (not a shock), i.e., a
discontinuity in a derivative of a function
without a change in the function itself, is
propagated into the flow from a boundary along
a characteristic curve.

If both- the deusity and the particle velocity
are known along a line in the x-¢ plane, then ¥
and 3 and the two characteristic directions can
be calculated for each point along the line. Such
a line may be the x-axis, in which case the
information on the line describes the initial state
of the fluid. Information may also be given as to
one or more properties of the flow along
additional paths in the x:¢ plane. For example,
the path of a piston msy be prescribed along
which the velocity u i known. Similarly, the
path of a shock wave may be given along which,
as we shall see, the density and particle velocity
are known. It is neceseary to consider biiefly the
amount of initial and boundary information-that
is required, from which the propagation
equations—Eqs. 2-124, 2-126, and
2-126—uniquely determine the flow, If a point
following « given curve in the x-¢ plane moves
supersonically with respect to the local flow,

j.e,
! ldvfdt - ul > ¢

then the curve ig called spacelike; if such a point
moves subsonically with respect to the local
flow, ie.,

fdefdt -~ ul < ¢

then it is called timelike, and if such a point

e
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moves sonically with respect to the local flow,

ie,
ldefdt - ul=c

then ‘the curve is a characteristic. In general, the
characteristic curves are not perpendicular to the
direction of flow. There is, therefore, a
dowristréeam direction on the characteristic
curves of each type. If an initial value curve is
spacelike, it lies outside the repon between the
directions of the two characteristic curves; if it is
timelike, it Ties inside the region between tre
directions of the characteristic curves. If an
initial value curve coincides with a characteristic,
a point moving along the curve moves. with
respect to ithe local fiow with the velogity of

sound, i.¢.,.
ldx/dt] = ¢

The x-axis is spacelike. The path of a pisfon
moving subsonically with scapoct to. the local
flow is timelike.

If the values. of .the dependent variables u and
g (o Fand 7) are changed at.a particular point,
this change can only affect the properties of the
flow in a -region of irfluence of that point,
which is the -angular region between the
characteristics through the point. The region cf
influénce. of a point P is sketched in Fig. 2-2.
Now, consider the arc AB of a spacelike inu "

t

valué-curve, as shown in Fig. 2-3. It is evident
that points in the x-¢t plane lying outside of the
region enclosed by the C, characteristic through
A, the C_ characteristic through 2 and the arc
AB are “unaffected by the values of the.
‘dependent variables on the arc AB. The- -region
thus enclosed iz called the domain of
dependence of' the spacelike arc AB since this
region contains all of the flow determined by
the given initial values.on AB, including the end
points, -then ‘the flow is-unique:snd- continudus
in the domain of dependsnce, including: its
boundaries. If the arc' AB is on a timelike curve,
a second intersecting curve—which may-be either
another timelike curve or =z chnm,temhc
cutve—is required, as shown in Fig. 24,
obtain a downsiream domain- of dependence, It
can be shown that only. one dependent varisble
must be specxfled on each such timelike or
characteristic curve (both bemg known at th "~
intersection) to obtain a unigue flow in the
domain of independence.

In cerfain. flows, the invariant s is- constant
over a certain region. The .C, charscteristic
curves are then straight liries, as has already been
mentioned. Flows of this type are -called
progressive simple waves. As an example-of this
type of flow, consider the case of an infinite

Figure 2-2, Region of Influence of a Point P
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tubé closed at one end by a piston initially at
test. At the initial instant of time, the material
in the- eylinder is .at rest with-u = ¢ = 0 (the:
lower .imit of integration of Eq. 2-120 is here
taken to be p , the density of the undisturbed
material). Thus, on the spacelike:x-axis, 7 = § =
0. Therefore; .both kirds of chatacteristic curves
originating oh the x-axis ‘are straight lines. The
C.. charazteristics through points on the %-axis
cover the whole x-t pline since the tube is
supposed to.be infinitely Yong. Therefore, if § =
0 on the x-axis; ¥ = 0, u = 0, and T = 2u
everywheré, and the C, characteristics- are
straight lines everywhere. :Suppose .as- shown in
TFig. 2-5, 'that the piston begins: to move in the
negative x-direction at the initial instant of time
thus ‘initiating-a rarefaction wave moving cown
the tube in the positive x-direction. The particle
velocity on-the piston path is équal to the piston
velocity and ris known on this path. Since the
C, characteristics are straight lines, theit slope is
cohstant. Since 7 is changing from. one C,
cheracteristic to.another, the slopes of the C,,

characteristics increase in moving backward into
the flow and the C_characteristics are curved. If
the piston path is specified, an-analytic solution
of the flow equations.is easily.constructed, Now
suppose that -the acceleration of the piston
ceases and its (backward) velocity becomes
constant. The characteristics of both types
originating on this part of the piston path are
then straight lines. The flow in the x-t plane thus
consisis of three regions:

-1} The-initial undisturbed-region -of -uniform:
density and zero particle velocity between the
x-axis and the C,. characteristic labeled 4 in Fig.
2.5,

(2) The simiple wave generated by the
accelerating piston in the region between the C4
characteristics labeled A and B.

(3) The final state in the region to the left of
the C,. characteristic labeled B. of uniform
density and particle velocity accommodated to
thé-piston velocity.

It will be noticed that the front of ‘the
rérefaction wave:propagates with the velocity of

»

Figure 2-3. Domain of Dependence of Arc AB of a Spacelike Initial

Value Curve
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gound in the undisturbed medium while the rear
of the wave propagates with the velocity of
sound ‘in the final medium of reduced density
plus the (negative) particle velozity in the final
medium. Therefore, the rarefaction wave
broadens as it pasies down the tube, and no
strong discontinuities occur. If the piston had
been instantaneously accelerated to its final
velocity, all of the C, characteristics in the wave

‘region would have emerged from the point at

which the piston motion began, Sucha wave is
called a centered simple wave.

Now, in contrast to the flow just discussed,
suppose that. the direction of the piston is in the

positive x-direction, as shown in Fig. 2-6,
jenerating a progressive compression wave. The:

resulting flow remains a simple wave with ¥ = 0
everywhere and, consequenilly, with C,
characteristics that ave straight lines, In-this case,
however, the C, characteristics originating on
the piston path do not diverge but converge, and

they must in consequence intersezt. It has been
noted that the flow cannot remain continuous if
two characteristics of the same type overtake
each oti.er, for different values of the flow
variables obtain on eack: of the intersecting
characteristics. The discontinuity that appearsin
a progressive compression wave is called 2 shock
wave and, in any such compression wave, shock
waves form in the body of the fluid. The
boundary between a region where characteristics

-of the samie type intersect and-one where they

do not is an envelope of these characteristics.
Intersecting. characteristicse of the same type
being. physically impossible, the shock wave
begins at the first poirnt of that envelope, If the
piston is instantanecusly accelerated to some

final finite velocity, the envelope begins on the

piston path. )

1t can be concluded that compression waves of
finite amplitude cannot propagate witkaut the
formation of shock waves. Each of the two

2 §

Figure 2-4, Domain of Dependence of Arc AB of a Timelike Initial
Vailue .Curve and Arc BC of a Timelike or Charadteristic

Initial Value Curve
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characteristic curves passing through a point
corresponds to a sound wave, the one to a
forward-moving wave and the other to a

Sackward-moving wave. The intersection of two

€, characteristics corresponds physically to the
overtaking ‘of one forward-moving sound wave
by a later one with higher velocity. When later
gound ‘waves overtake earlier ones, there is.a
steepening of wave profiles until discontinuities
of the dependent quantities velocity, pressure,
and density are formed. That such
.discontinuities should form in the case of
r‘ompmssxon ‘waves:supported: by. an. accelerating
piston is appazent in the :fact that the sound
velocity is greater in the compressed,
-adiabatically heated medium resulting from the
piston ‘motion ‘than in the: undisturbed medium.

The one-dimensional unsteady flow equations
that have- teen discussed in this paragraph are-an
cxauiple. of a general case involving two
simultaneous
equations for which two reel characteristic

first order partial differentidl

directions can be defined and which, for that
reason, are said to form a hyperbolic system. I{
the equations are linear, 25 in the example of
this paragraph, they.aze said tc be reducikle. The
equations for {two-dimensional, steady,
irrotational, tniformly isentropic flow form
such a reducible hyperbolic system. The theory
of hypetbolic systems of equations is treated in
detail by Courant and Friedrichs®.

2-8. CONSERVATION 'CONDITIONS A“ A
'DISCONTINUITY. THE HUGOMIQT
EQUATION:

A shock wave consists of a very thin regionin
which the propemes of the undisturbed medium
very mpldlv become those of the shocked

medium. The structure of this region is -

deteriined by the viscosity of the medium.and
is affected by the irfoversible process of heat
conduction along ‘the very steep tempersture

i

SHOCK
PATH

UNFORM STATE
AT REST o

Figurs.2-6. Intersecving Straight

Compression Wave

Characteristics C, During

2-27
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gradient existing in the transition region. In the
mathematical treatment of shock waves, it is
usual to idealize them by supposing that the
dependent variables change discontinucusly
from their initial to their firal states at a
mathematical surface of zero thickness. It ¢an be
assumed that (1) the flow involving such o
discontinuity is determined by the laws of
conservation of mass, momentum, and energy;
and. that (2) the irreversible nature of tiie
-discontinuous prc-ess is -described by the
condition. that the “witropy does not decrease.
Apart from the discontinuity, the flow car be
described by the differential equations for
-continuous flow described in par. 26. A more
complete discussion of shock waves is. given by
Rice; McQueen;, and Walsh*? .

We-consider a shock wave ptopagatmg in one
.dimension in the-direction: of increasing values
of the coordinate x, and we denote its velocity
with respect to ‘the undisturbed material by U.
Employing the notation exemplified in Fig. 2-7,
we fix the crign of the x-coordinate in the
moving shock wave and denote the velocity of
undisturbed’material and shocked material with
respect to this origin and in the direction of
increasing x by w, and W, .espectively. If u,
and u, are tae correspondmg velocities relative
toa fxxed coordinate system,

w (2128)

9=—U,w1=u—u‘,—U

1
The undisturbed medium is at pressure p ,
densily p,, and has specific enexgy’ e,;ard ’chc
‘shocked mu-eml is al pressure p, , densnty py:
and has specific enesgy e, .

1In a time dt, an amount of mass -p w dt is
brought up to a unit avea of the” n-ovmg

discontinuity from the right and an amxount of
mass - p, wldt is removed from unit area {0 uie
left. When dt is made véry small so that the
layers. on either side of the discontinuity are
infinitesimal, the mass brought ap on the right
must equal that removed to L., left, so that

P, = pyw; (2-129)

even if U isnot a constant. Similarly, the change
in momentum of a thin slice of matter of mass
p,w, per unit area -must be -equal: to the
resultant force acting on unit area, sa that

s, w2 - p!w" =p; - D, (2-130)
even if U is not a constant. Fidally, the work
done on tha matter in the thin: slice by the
forces acting on it must be equal to thei increase
in energy of the matter.in the slice, so-that

e, + wi/?- e, - wh/2 =Py, - pyuy(2131)

even if U is not 2 cofistant. Fot the irreversible
process at ‘the shock discontinuity, the second
law of ihermodynamics requires that
8 >3 (2-132)
By rearrangement, Eqs. 2-129 and 2-130 may be
written in the form
LW, = P U
(2-133)
Py - By £, w, (U, = wg)

Egs. 2-133 are
congervation conditions. When they sve used to

SHOCKED FLUD | UNDISTURBED FLUID
W | “wg
(ppp) ' ;u 2 (pyp)
st >
x increasing —

Figure 2-7. One-dimensional Shock Wave

2.8

called ‘the mechanical

S

e o

Y U



<

B e T e e FERTRE VUM TEU

2

3

w

Downloaded from http://www.everyspec.com

AMCP 708-180

simplify Eq. 2-131, we obtain

e - € =%, +p)y - v) (2-134)
Eq. 2-134 was obtained by Rankine and by
Hugoniot, and it is.called the Rankine-Hugoniot
equation, It contains thermodynamic quantities
only. With thermal-dat=.and an equation of state
of the material, the quantities e, = e(pl,ul) and
e, =e(p ,u ) dre determined, and therefore Fq,

2134 descnbes 4 curve in the-p-t plane for given
yalues of P, and v,, which is thé locus of all
states (Pv v,) which satisfy the consexvation
conditions for a given initial undisturbed state.
Thé cuive is-called. the Hugoniot curve and it is
said to be centered on the point {p,,

Shock waves are stable, i.e: they do not break
up into several hcks nor become a gradually
rising wave, if the isentropes satisty: the

condition
a°p
>0
(?” >

When this condition is satistied, the Hugoniot

cuive represents states which can be reached by
a shock process from the initial stete (p RURN
and shock wave-of rarefaction do.not exist.

If the state of the fluid is known on one side
of the shock ‘wave, the shock velocity and state
on the othef side of the shock wave ave
completely determined. by Eqgs. 2-133 and 2-134
it one additional quantity is given. The
additional quantity may be either a state
varidble, the shock wave velocity or the particle
velocity, except thatif the particle velocity is
given as the additional quantity, it is necessary
to specify which is the-dewnstream side of the
shock wave.,

Additional .properties of the shick wave can
be deduced directly from Eqs 2-133. Since p, >

.+ it follows that w >w,,ie., that:the ﬂow is
decelerated in passmg through the st:ock front.
It-then follows that p, > , from the first of
the mechanical conditions, It can slso be
shown—s, e.g., by Courant and Friedrichs--that
the flow velocity relative to a shcck wave is
supersonic ahead of the wave and subsonic
behind it. Therefore, C,, characteristics- through
a point hehind a shock wave overtake the wave
and the shock overtakes C,, characteristics ahead
of it. Fig. 2-8 illustrates the flow in.a steady
plane shock wave supported by a piston
propagating into a uniform fluid at rest.

For many applications of the shock wave

.conservation equations, the undisturbéd medium

is at rest in a stationary coordinat system. For
this case, the mechanical conservation:

.conditions can be writte~-in the form

u, = U1~ p,p) .
{ (2-135)
pl R = p;),u]. 5

In this case, the particle vclocity of the shocked
‘material is seen to be directed toward the shock
front.

The conservaticn equations of this puagnph
provide relations between ‘the dependent
variables on the two sides. of the shock
disconitnuity, In the tegions where the flow i
continuous, it i described by the dxtfexentlal
equations of par. 2-6, The complete flow is thus
determined by solutions of the differential
equations that -are subject to _conditions
specified on the shock path which is to be
regarded as a.-kind o* initial value curve,

229
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CHAPTER 3 ENERGY OF EXPLOSIVES

31 INTRODUCTION

Explosives are substances that rapidly liberate
their chemical -energy as heat to form gaseous
and solic decomposition products at high
pressure and temperature. The hot and very
dense detonation products produce shock waves
in the surrounding medium and upon expansion
impart kinetic energy to the surrounding
medium. The -energy released in the detonation
process and the energy available after some
degree of expansion respectively measure the
ability of the explosive to génerate shocks and
to impart motion %o the environment.
Consequently the energy of an explosive is a
measure of its performance. Moreover the heat
release in the detonation is an important
gquantity, as will be shown, in the
thermo-hydrodyndmic Chapman-Jouguet (C-J)
theory of detonation (see Chapter 6 for a
discussion of the C-J theory).

32 HEAT OF DETONATION

In priaciple, @, the heat released in a
detonation, is obtained for some standard state
‘by. Hess’ law according to

in

Q=7 n,(AHP) ~ 3 my(AH}), (31)

where n; is the number of moles the i-th species
of detonation products whose standard heat of
formation is (AH?); and m; is the number of
moles of unreacted explosive of the j-th species
whose standard heat of formaticn is (AHp);.If
the Lewis and Randall convention is used, the
right'hand side of Eq. 3-1 would be negative for
an exothermic -eaction. However, it is
customary to have Q positive for exothermic
reactions. Thus Q = ~ AH . .qon Where
AH (¢0ctionis the right hand side of Eq. 3-1. In

practice it turns out that the compositions of -

the detonation products in the C.J state, or at
different degrees of expansion, are unknown.
Since chemical equilibria can be influenced by
the total pressure of the system, the product
composition and consequently Q can change as
the products expand and the total pressure
decreaces, Expansion also results in cooling and

consequent product composition change. Below
some ‘temperature, chemical reaction rates
become so slow that further temperature and
pressure decrease (expansion) produces virtually
no further change in composition, ie., the
composition is: “frozen”. Thus any calorimetric
measuryment of the heat of detonation AH,,
may not be the @ for the C-J'state, but the heat
of reaction for some expanded ‘“frozen”
equilibrium composition, Measured heats of
reaction will vary depending -on how
the calorimeter measureipzits aic made, ie., on
how much the products are allowed to expand
before the composition is frozen. This is
probably the main réason why many conflicting
values of AH,; have 'been reported. Further
confusion arises from the fact that sometimes
calorimetric heats-of detonation are “corrected”
for the heat of vaporization of water (one-of the
major detonation products in secondary
explosives). In a calorimeter measurement water
is in its liquid state, but under detonation
conditions it is in the gaseous state. Thus to
obtain @ from calorimeter measurements a heat
of vaporization corfection should be made, but
unfortunately it is not always possible to
estimate how much water was present under
detonatlon conditions even though the amount
of water formed during the reaction in. the
calorimeter has been determined.

3-3 THERMOCHEMISTRY OF HIGH
EXPLOSIVES

Thermochemical data and empirical’ formulas
for several explosives, explosive mixtures, and
ingredients of explogive mixtures are given: in
Table 3-1, together with data for their major
decomposition products. These are important
quantities from which theoretical properties of
explosives can be calculated. There isno obvious
correlation between AH? or AH; and the
“stability” or “sensitivity” of an explosive. For
example, NG and PETN which are known to be
“‘sensitive” have large negative AFy’s, i.e, these
compounds are thermally stable with respect to
their constituent elements, On the other hand
TNT which is quite “insensitive” is almost
thermoneutral with respect to its elements.

31
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HMX and RDX which are certainly less
“sensitive’’ than PETN or MG are thermally
unstable with respeét to their elements.
Similarly AH;’s do not correlate with
sensitivity, e.g., tetryl is much-moge “senditive”
than nitromethane but (AHg)wy >
(AH )terr, ;1 Moreover it does not ner-essa.\ﬂy
follow that a positive AH? results in a large
AHy, eg, (AHd)u(ryl<(AHd)PF'I‘N
By far the best available determinations of
AII, and product composition are those of
Omellas’. His results are given in Table 3-2.
Note the eexcellént thermal and material balance
obtained. Certam useful generahza’aon can be
drawn from these data, namely: )
1, Confinement increases AH, and
changes product compomtxon in- oxygen-nsgative
explosives but.not in oxygen-balanced explosives
(see par. 3-4 and Tabie 3-6).
2. In confined oxygen-negative

explodives, at large packing density, an'

-appreciable amount of solid carbon is found in
the .products even though sufficient oxygen is
available to form CO, e.g., in. HMX

3. The ﬂuotme of ﬂuom&contaxning
explosives appears as HF in the detonation
products.
" Consider the data of Omellas (Table 3-2) for
unconfined explosives, If the products for
nconfined shots expand very rapidly so that
the pressure becomes much less than P, at T},
the temperature at which equilibria are frozen,
then these products should approach perfect gas
behavior at Ty,. If we know the equilibria
involved and their ideal equilibrium constants as
a function of temperature, we can compute T,.
Table 3-3 gives the free energy function G°/RT
for the important detonation products of CHNO*
expiosives. From these data AG°/(RT)can be
obtained for different temperatures for the
reactions of interest, and ideal equilibrium
constants computed-according to

K = - AG°/(RT) (3-2)
where
G°= standard state Gibbs free energy
R = gas constant
T = absolute temperature
Let us assume that the water-gas reaction

# Since these are the explosives of military interest all

the subsequent discussion in this chapter will be
confined to CHNQ explotives,

32

€O, +H, =CO+H,0 (a)

is the controlling equilibrium. To illustrate the
computation we will use PETN, CsHgN Oy 2; as
an example. Let X bé the number of moles of
CO, at equilibrium, and C, H, O the original
gram atoms of carbon, hydrogen -and oxygen
respectively. Then from mass balance and
Raoult’s law

C-X,

peo = HGX)
P. .

Pcoy, =5 R
¢ (3-2)

pﬂzo =';"; (O-C-X) \

Pu, =%(%H+C-O+X)
where

n, = total number of moles of gas at equilibrium
p = partial pressure
P = total pressure at equilibrium

‘The ideal equilibrium constant for reaction (a)
is

Pcorrgo  (G-X) (0-C-X)
Ka=poorpn, ~X(ACH+C-O+X)
"(5-X) (7-X)
® TXX-3)

For PETN with K = 2.96 correspending to Ty, =
1600°K:

X = 3,60.= moles COy per mole of PETN

C-X * 1.50 = moles CO per male of PETN

-C - X = 3,50 = méles Hy O per mole of PETN
‘AH+C O+ X = 0,50 = moles Hy per mole of PETN

N/2 = 2.00 = moles N, per mole of PETN

This equilibrium mixture matches  almost
exactly the composition found by ‘Omellas* for
unconfined PETN (see Table 3-2). In Table 3-4
we show that for Ty, =1600°K the corhputed
ideal gas mixtures for HMX, TNT, as well as
PETN, agree closely with the results of Omellas
for unconfined charges.

Other reactions which must be considered at
high pressures (confined charges) are

2C0 = €O, + C(s) (b)
CO + Hy = H;0 + C(s) (c)
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At low total pressures (unconfined charges) the
data in Table 3-3 give K. =~ 9 X 10'® and K, = 4
X 10 for the equilibria (b) and (c) at Ty, =
1600°K. Thus. the neglect of reactions (b) and
(c) at low pressure is entirely justified.
According to Le Chatelier’s Principle, reactions
(b) and (c) will shift to the right at high
pressure, and we should expect more CO,, H,0
and C(s) for confiied charges than for
unconfined charges. At high pressures, the ideal
gas laws are no longer applicable and simple
computations -of equilibrium compositions are
no longer possible wiaout the appropriate PVT
equation-of state for the products. Ornellas® has
made computations for CJ isenfrope
compositions at 1500°K and at 1800°K using
the Becker-Kistiakowsky-Wilson (BKW). and
Lennard-Jones Devonshire (LZD) equations of
state for the products. Agreement between
observed and computed product compositions is

. quite good. This suggests that T, for confined

charges is between 1500° and 1800°K in
agreement with T;, = 1600°K for unconfined
charges.
At high pressures and temperatures of the

order of 1500° to 2000°K tbe roactions

N, + 3H, = 2NH; ()

‘C(s) + 2H, =CH, (e)
are no loniger neglible if the equilibrium mixture
(heforé considering reactions (d) and (e))
contains. appreciable H,. Equilibria (a) through
(e) account for all the observed products (Table
3-2) with the exception-of very minor amounts
of:HCN.

34 COMPUTATION OF Q

Examination of computations for unconfined
charges (perfect gas) as well as the more
elaborate calculations for confined charges
BKW, LJD, etc.) clearly show that when an
explosive contains sufficient oxygen to convert
all its hydiogen to steam and its carbon to CO,
(oxygen-balanced), the water gas equilibrium
completely determines the composition of the
products. Thix equilibrium is rather insensitive
to the total pressure at equilibrium,
Conrirmation of these theoretical computations
is found in Ornellss’ tlata for confined and
uncorifined PETN (Table 3-2) which show
essentially the same prixduct composition at high

pressure and at ambient pressure. Conversely, in
oxygen deficient explosives equilibria (b)
through (e) play an important role .and -as
expected, the product compositions for an
oxygen-negative explosive are very different for
confined and unconfined charges (Table 3-2).

We now return to the question of Q the heat
released in a detonation and its relationship to
AH, which is determined. calorimetrically. Q
cannot be measured directly. It can be
computed if a. PVT equation of state is known

for the dense detonation products. Since there is:

no general:agreement about the proper form of a
PVT equation of state for detonation. products,
the best we can do is to compare Q's computed
with different-equations of state. This is done in
Table 3-5 using three rather-different equations
of state: Somewhat unexpectedly it turns out
that Q' is quite .insensitive to the type of
equation of state used. Thus Q’s computed, for a
given explosive at a given density buf using
different equations.of state, agree closely. What
appears to be even more remarkable is that for
explosives that are not too deficient in- oxygen:

Q ~ AH, 34)

and for oxygen deficient explosives
Q~ 11AH,; (3-6)

where the calorimetric measurements' AH, were
made on confined explosives. Actually this
coincidence. is not ‘totally unexpectéd. In a
calorimeter water is in the liquid state.and.even
for strong confinement one might expect some
pressure drop before the thermal measurements
are completed. In the C-J state, water is gaseous
and the pressure is at its highest possible Jevel. If
there were no pressure drop, then AH,; > Q by
the heat of vaporization
of water., However there is some pressure drop
and, consequently, the equilibria of such

reactions as (b) and (c)lie further to the right in.

the C-J state than in the calorimeter. Reactions
(b) and (c) (as well as (d) and (e) the less
important reactions) are exothermic, and their
greater degree of completion in the C.J state
tends to compensate for the effect of the heat of
vaporization of water.

Some further conclusions may be drawn from
the data in Table 3-5. As already stated, at a

3-3
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fixed density for a given explosive, @ does not
change with the equation of state but the
computed C-J temperatures do .change. The
computed C-J pressures (which are generally in
zeasonable' agreement with experiment) do not
change appreciably with these equations of
state, but .do change strongly with initial
density. Now for & given equation of state, a
change in initial density produces a much greater
change in the computed pressure than in the
computed temperature. This computed oressure
change is confirmed hy experiment. Note that
the computed @ for 4 particular-explosive in all
cases decreases as the computed pressure
decreases but that it is fairly independent of the
computed temperatures. This same trend
appeared in the data of Table 3-2 where the
freeze-out temperatures for all the explosives
were about 1600°K but the cquilibrium
pressures and product compositions varied
depending on whether the explosive was
confined or unconfined. Thus it appears that
product composition (which -determines Q) is
more strongly influenced by the final pressure
than by the final temperature of the system.

The relative nondependence of @ on C-J
temperature -may be rationalized as follows. For
oxygen-balanced or oxygen-rich explosives, the
water gas equilibrium (reaction(a)) is the
primary reaction which determines the product
composition. This. equilibrium changes rather
slowly with temperature and furthermore small
changes in equilibrium composition produce
very litile change in Q becmiqe reaction (a) is
almost thermo-neutral, ie., (AH{)co, =
(AH?)co + (AH")H ;0. For oxygen-poor
explosives the explanation is not as apparent.
Reactions (b) and (c} are sgensitive to
temperature, and they are not-thermo-neutral. It
may be that equilibria (b) and (c) lie far to the
right (as written) over wide ranges of detonation
temperature and pressure,

Two further generalizations can be made
about the results in Table 3-5. If we arrange
explosives according to their oxygen balance in
order of increaging unbalance, as we have done
in Table 3-6, then it becomes apparent that the
largest Q's are obtained with balanced explosives
and that the Q’s decrease fairly slowly for
moderately oxygen-poor explosives, and more
rapidly for oxygen-rich explosives. The reader
must be warned that there are exceptions to this

34

generalization—(e.g., Explosive D and Hydrazine
nitrate in Table 3-6).

A more fruitful approach to-a priori estimates
of Q is shown in Table 3-7. It:is.clear that Qs
based on the best available computations agree
closely with @,’s computed solely on the basis
of -initial explosive composition and
thermochemistry with the arbitrary
assumptions:

(1) Al the initially available hjdrogen
forms steam.

(2) Any oxygenremaining forms:UQ,.

(3) Any carbori reiiaififig Appéars as s6lid
graphite. .

(4)- All the nitrcgen goesto N,.

Thus qmte accurate estimates of @Q appear
posslble if the initial explosive composition. and

? of this composition are known.

35 FRAGMENT VELOCITIES

One of the most useful functions of a
secondary explosive is its ability to prodice and
accelerite fragments formed from its immediate
environment. It seems likely that the emclency
of an explosive in accelérating fragments shouid
be relat:d to the enérgy ‘contained in the
explosive. The discussior: which- follows will
show that this expectation is fulfilled.

The socalled Gumey forinulas® are very
successful in determining terminal fraginent
velocities. These formulss are derived on the
basis of three-fundamental assumptions, namely:

{1) Thé chemical energy of the explosive
is converteq into kinetic enérgy of fragments
and detonation products.

(2) The velocity distribution of the
detonation products varies linearly from zero to
the velocity of the fragment.

(8) Thr density of the products is
uniform or at lease independent of position, i.e,,
p=p(t) butp # p(x).

For cased cylindrical explosive charges these
assumptions lead to

- oM
V= [T omi (56)
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= terminal fragme.-* velocity (no air
drag)
empirical Guiney conscant (having
the dimensions of V)

C = weight of explosive

M = weight of casing
For the case of a plane wave detonation
accelerating a flat plate, the Gumey formula is

_ i/ 3
v ‘/275‘1+5M/c+4(1t5/c)2 (31

Gurney constants compuated from experimenta:
data obtained from several sources are compared
with @ in Table 3-8: On the: average (with @
-obtained from Eq. 3-4, using experimental AH,)

2E/ 2Q ~ :0.95, however, there may be a
trend for this:ratio to-decrease as p, decreases.
The results for TNT are contradictory. The.only
available: information for nitromethane (NM)
makes it appear as an inefficient plate driving
explosive. Nevertheless, the data in Table 3-8
clearly show that in one-dimensional
detonations the.chemical energy of explosives is
very efficiently convertéd into kinetic' energy
(around 90% ccavession) .of fragments and
explosion products.

%

36 AIR-BLAST

The efficiency of an. explosive in producing
air-blast is usually given in terms of equivalent
weight, 'i.e., the weight of TNT (or soine othes
standard explosive) to give the same air-blast
overpréssure a8 the tesl explosive where both
measurements are made at a fixed distance
from the charges (see Chapter 13). For
measurements made far away from the expiosive
charge, Landau and Lifshitz? have shown that
the overpressure is proportional to the initial
energy of the explosive, i.e., to mQ where m is
the mass of explosive; consequently,

equivalent weight = m°/m = Q/Q°  (3-8)

swhere the superscript o refexs to the standard
explosive.

Experimental equivalent weights are compared
to computed Q/Qryr and to experimental
AH, /(AHg)pyr in Table 3-9. Agreement
between mqyo/m and Q/Qry ¢ is seen to be
quite good. AH/[{AHy )py > mopy /m except

for Comp. B and Pentolite which contain large
propoitions of TNT. This is not surprising since
it is @ and not AH,; which should correlate with
equivalent weights. Using the approximation.of
Eq. 3-5 brings the AH, ratios into much better
agreement with the equivalint weight ratios,
except in. the case of aluminized explosives. for
which the “corrected” AH, ratio is still greater
than the equivalent weight ratio. This suggests

that in unconfined aluminized explosive charges

the .aluminum does not contribute ail its
chemical energy presumably because the

.dluminum reactions ave slower than the other

detonation reactions.

37 UNDERWATER PERFORMANCE

Price® has suggested that a criterion: of the
underwater performance of at explosive is given
by the sum-of the shock wave energy (at-a:fixed
distance which is large compared to the
explosive dimensions) and the oscillating bubble
energy. To a first approximation both shock
energy. and bubble vary directly with explosive
weight, and the sum should ‘be approximately
equal to the chemical exergy-of ‘the explosive?,
Consequently, Eq. 3-8 is .also applicable to
underwater explosions-if the m’s afe the sums of
equivalent weighis for shock wave and bubble
eriergies. The-data in Table 3-10 show excellent
agreement between equivalent weights and
Q/Qryp except for two éxplosives (TNNETB.and
PETN) which have only slight oxygen
deficiencés. As discussed in. par. '3-3 the
composition and, consequently, Q-for these two
explosives do not cliange with confineraent: For
the other explosives in® Table 3-10, and
particularly for TNT, composition could be
affected by confinement in the direction of
smaller Q@ as cuifinement is reduced. It is
conceivable that the computed Q’s for the
oxygen negative explosives are overestimates of
the actual Q’s for the conditions of the
experiment, and consequently Qpgpn/Qryr OF
Qrners/Qryr should be larger than shown in
Table 3-10.

Note that aluminum greatly adds ‘to the
underwater puerfoimance of aluminized
explosives. Presumably this is due to the longer
confinement period of the surrounding water
which- allows the aluminum reactions to go to
completion before too much expansion occurs.

35
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38 C-J PARAMETERS

In par. 3-4 we indicated that calculated Q’s for
dense explosives are insensitive' to the form of
PVT equation of state used in the computation.
This means that Q, if available expenmentally, is
a poor criterion for choosing the best equation
of gtate, On the other-hand-quite good estimates
of Q appear possible ‘based on Q, or AH,.
These eéstimates can then be used to get
approximate values of Ty the equilibrium
téniperdture of a constant volume explosion,
‘P¢y the Chapmuan-Jouguet pressure, and D the
‘stegdy detonation. velocity. Approximate values
for Ty can be obtained from

Qu
In g

Ty = + T, (8-9)
where
Q4 = heat released in an explosion
computed. on initial explosive
composition and thermochemistry
and arbitrary assignment -of products
shown in:par. 3-4.

mimber of moles of gas at equilibrium
estiiated from arbitrary reactions
used:in obtaining Q4

specific heits of ‘products averaged
over the tempetrature.range Ty, - T,
The Ty obtained from Eq. 3-9 should represent
an upper linit to T¢,, since all the chemical
enérgy is assumed to go into thermal energy of
‘the products and no allowance is made for
énergy of repulsion which surely must be
present in-the highly compressed C-J state. If the
detonation products obey the polytropic .gas
law, i.e., PV* = coiistant, then

n =

& =

D = 2Q,(1*1) (3-10)

-and

Pe; = 2Qap0(k-1) (311)
Agreement between experimental values of D
and Pc;, and those computed using Eqs. .3-10
and 3-11 is only moderacely good. Using Q, -(or
Q) and k=26 the average deviation of
computed and experimental D’s (detonation
velocity) is 5% (+5 to~13% maximum deviation)
for 13 almost voidless explosives. For these same
explosives the average deviation of computed

36

and experimental Pc, is 6%(+15 to -11%
maximum deviation). For ten other explosives
for which experimental data -are also available

the deviation is greater-than that given. Seven of

these ten explosives contain NM or TNM or
both. For other values of ¥, agreement is.even
poorer. )

A better approach for estimating P, is to use
experimental D values which are often available
where experimental Pc; dsta are not. A
convenient equation to use is

P, Ro D

e T RFT

Calculations on 26.-explosives (some ‘of these

are at about 1/2 of voidless density), usmg Eq:

3-12 and experimental D and Pgy, give an

average K of 2.8 with:a maximum range of 2.4.to

3.0. Four explosives: which give Kk’s-outside the

‘above range -are NM, TNM. and two:aluminized
Comp B mixtures.

(312)

39 MAXIMUM WORK

In an adiabatic process, according:to the. first
law, the maximum work W, ,. that.an element
of explosive can do on its sufroundings. is-AE
(note that the term adiabatic refers to-no heat
gain or loss by the element from. or to the
surroundings). For a constant volume explosjon,
explosion .products (formed in an .exo-thefmic
reaction) assumed to be a polytropic gas, .and
neglecting the Pv term for the solid unieacted
explosive,

AE = EI ‘Eo ~ E(AH;I)’DYOJII:M

\P., U
+ 7_,1 - E(AH?) explosive

Py .
=Qcv. + 'a;q:-& = = Wmax
For a polytropic gas v, may be related to v,
according to

Pus/2= Py and Py = Py’

where the subscript i refers to some intermediate
state above which the polytropic coefficient is x
and below which the coefficiént is vy =
cpley, Py, = P2 is the constant volume
explosion pressure, and the subscript o refers

. (3-13)

¥
B
'
f
\
x
b
i
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to the standard explosive. For typical vulues of
the parameters involved and an arbitraty
assignment of (P;/P;)/2 = 10® it can be shown
that Pouy

., <004
'Consequently for.a constant volume

(€.v.).explosion Wiee = @, (3-14)
Eq. 313 is slsc applicable to a C-J detonation

except that v, for a C-J detonation is different
from v, for a constant volumé explosion. For a

-C-J detonation

Pl = Plvk/(k + DI

=P,v;* and as before Piv] =P,v]
4 2%Y

v,
With the same assumplions as before Foyy
< 0.03and -D@

Woow ™ Q (3:15)

‘Becausé the pressures are different -and
consequently the chemical equlhbna could be

ditferent Qdoes not necessarily equal Q. .. The

data‘in Table 3-6 suggest that Q > Q.. ‘bécause
P>P.,

'lhere are no completely unambiguous
measurements: of the maximum work done by
an explosive; however, the Ballistic Mortar
probably come: cinsest to being a valid test of
the maximum work. In this test a standard
weight. of explosive is fired in a suspended

mortar with a tightly fitting steel projectile and

‘the ‘angle of recoil of the. mortar is measured:

Resiilts are ‘gereraily expregsed in terms of a
standard explosive, e.g., TNT. In Table 3-11 we
comp“re ineastired Ballistic Mortar reslts with
Q where both quantities are taken relative to
TNT. It is.obvious.that correlation is poor..If the
comparison is ‘made with AH, rather than Q,
con'elahon is much beétter and-it-becomes better
yét it one arbitrarily .assigns (AH; )y = 1.00
kcal/g rather than the measured (AHd)”,T =
1.09 keal/g for tightly. confinad charge.

aready -discuséed the heat: releose of TNT, but
not-of other.explosives such ai PETN, is strongly.
influeficed by confinement. The explosive loads

.in thé Ballistic Mortar are generally at fairly low

packing densities so that detonation: products
can expand slightly before:the ‘projectile’ starts
to move. During the period of acceléretion of

the projectile-there is further gas expansion and
re-equilibration of prodcts, The whole process.
'n.ppem £0-be-quite-simila¥ to what is hnppemng

in a partmlly confined charge fired in a
caloriméter.. Thus: one. mxght expect that AHj,

.and not Q is a better measure of the *maximum

work' mesfired by- ‘the Balhstlc Morfar In
Table 3-2 we show ‘that AH, ‘for TNT varies
from 0.68 to 1.09 .kcal/g depending on the
degree: of confinemént. Conséquently, th
arbitrary choice of (AHy)ryr = 1.00¢ kcal/g i
riot unreasonable iri -this case,

In the Ballistic Mortar, as in air-blast and
fragment propulsion, aluminized explosives do
not perform as well as expected from their
theoretical-Q values.
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TABLE 3-1. SOME BASIC THERMOCHEMICAL DATA oo :
. ;n >
Zaptricsd Formuly o ! o, . Source?
Pure Meplosives Yormule weisht W7 /0c ' .
. N eattmoe . - (l
— ,
Ntreglycerin (0G) CyfaNy0y 227 ~0:8 - - : N
"nm LAAAS 316 =167 5! L ] .
- LARAN M 1T L w
b € X ¥50¢ m T 183 1,00 8L [
Nitpomethane (W) LAN o -ma 1.1 a2l [ :
Teiraterinethons (TH)  C(NOY, FLU IS 1 14 - - .
, s
0 (XXX A 0 -1 LK L2 AL ;
X g0, m ew7 L6 LW !
Totryt (XX XA w0 .8 1506 147 73 b
H
BatNe ANy, M3 -39 10 L0 L {
T CHNOye ] 110 147 ol
may CARAUM M -T704 1.6 1.50 »ot. i
“Meric Auid €M W0, P TN 1.03 Aoz t
’ a¥a% .
fmantum Pierste RN O, 46 <910 - - -
(explosive D) G '
b, Bxplesive ixtures !
xm0¢ [ R U L A 106 14 i i
Cowp 3-3 €5 002511002, 10% ¢+ ¥ .24 L 3
#0/50 Cyclotel AR 40 . oaa 16 Aot
/40 matel T e R R R e oL =
< -Quaisers , Bou
Amsentum Nitrate (AN} ", w0y 0 =a7 - - o s - s
. N B &
Potusatun Witrate (KN) xn0y 1031 =118 - - : Y “
i - .
! femontim Parchlevsie () M€10, uns .m - - i w
3 o Liguid Oupgon (10X) o5 n -3 - . i N
. 4 P
1 R VC . . Totranitromethane S(wo,), 196 +33 - - ; ;
! e . H . €|
1 - 9 4 Puels v f
N L > H =
3 N JIIRT a n ° - - i :
Corves c 2 ¢ - . )
Petrolevm (Pot} ‘o) 3 -7 - - .,
A , LY Cotlulesd (Ce1) (€309 w2 - - - R
3 / P - . X |
PR . fttur s »n ° : B
¢ 0, Bagetion Wreducts L M
A e g Corden Manemide o ELRS TN - - B . 4
. . t s . :
S . DR Carbom Dimide 0, W em0 - - H B )
- e, : : Yetar (Gan) w0 1 st - . \ K
v Ll . i
S . Mydecaen Chleride w1 348 222 - . | BN
AR . § Wpdrigen Viueride w 0 ez - - N v
g Sultur Diwide 0, “ 10 - . ' L i
S 1 Aimioun Oxlds Mo, 100 =81 - . ! ’ ! L A
4,7 ' E Petsosium Oride X0 M1 M -~ - '
o N b
o < ‘ .
g . b Standsrd best uf Tersstien at 37K and | st |
v 2 . 1 ricully t of n tners tor-vaplodts ot 25 ’ ¥ “
. -, . b #xploaives were contined unless inticteted; ¥, 00} ’ W
' T 3 1AL « Lasrense Madlation Ledorstory P
. 7 ¥OL = Kaval Ordnsscy Lobavatory § i R
s ARDE » Arwomeat Resescch-ond Developmeat Catablishecn (UK.} - - -
(a) Undoatined. b o 1
3 : >
¢ 39
B - ' o N N
<& y
Y .
s o
o e, A
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TABLE3-2. CALORIMETRIC DETERMINATION OF THE HEAT AND PRODUCTS OF DETONATION! I

EXPLOSIVE PRTN PETN HMX HMX TNT TNT L FEFO
Condition Confined. Unconfined. Contined Unconfined Confined Unconfined Corifined Confined
P, (&/cc) 1,74 1.74 1,80 1,80 1.53 1483 1.13 1.60 1 :
'ﬁja(ﬁ":;l[ir 149 1.50 l.48 - 1.09. - 1:23. 2.28 . EPR S
12 N . u
UM Ly (keal/gie 150 1.51 1.51 1.33 1.16 0.68 1.28 1.35 . ‘
eal, i
Producte T
Mole/mole i
2

0 1.64 1.59 1,08 2.65 1.98 5.89 0.550 1;88
oH 0.003 <0.0002 0.039 0,000 0.099 0.009 0.083. 0,901
Cis) none none 0.97 nohe 3.65 1.0 0.095 none
HOu) 3.30 3.45 318 2,50 1.60 0.17 0.882 2.14 -
] 0.45 0.51 0.30 1,58 0.46 2.1 0.294 0.,048.
] 2.00 2.00 3.68 4,01 1.32 1.36 0.394 1.9

} |
0, 3:39° 3,50 1.92 1.44 i.25 0.083 0.261 3.18 ¥ . 2
: il
)
i

"3‘ 0:037 ©.002 0.395 nou 0.162 0;022 0.118 0,623 - ) i
HCN none none 0.008 0.0006 0.020 0.024 0.008 - . i

e - - ~ - - - - 1.87 . ) %’ )
Empirical formuls. 1 - TF
:

of explosives b sed
o products*+

5.03 5.01 4,00 1.09 2,00 6.99 Q.99(a) 5.04(W) p
£.02 7.92 .31 .06 5.03 5.08 3.04 6,30
i.0¢ 4,00 .77 .04 2.68° 2.76 0.92 4.00

11,92 11,99 8.08 8.03 6.08 6.19 1,95 10,34 ' B
- < - - - - - 1.7

-~ o X X O

From product composition and M:'l of Table 3-1.

** Compare vith empirical formula of Table 3-1.

{») Analysis of criginal materisl gave CLOO“Z.!G";KOI.M.

(b) Anslysis of original material gave cs.oo"s.-u'q.oa°1o.oo’1.a1.

(W ",
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TABLE33. IDEAL GAS FREE ENERGY FUNCTIONS (G°/(RT)) FOR DETONATION PRODUCTS

-24.95 -34.17
-25.,97 :-3,3.3‘:;
-26.20 -33.38
=26.43  -33441
226,84, ~33.59
~27:24 +33.85
<28.12 -34.70
-28.89 ~33.67
=30.19 -37.61 -11.41 ~16.1) -
©31.29  ~39.4L ~19,54 1823
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TABLE 34 WATER GAS EQUILIBRIUM FOR IDEAL GAS PRODUCTS ’ '
AT 1 ATM AND 1600°K .
Product
Composition, Explosive . . .
moles/mole PETN HMX TINT NM i .

co, 350 146 0.043 0.25 LT
co 1.80 2,54 5:86 0.76 S
H;0  3.60 2,64 0.067 -0.75 i - -

H, 0.50 146 246 0.75. ‘
N, 5:50 4.00 1.50 0.50 : -
C(s) None None 1.09 e o

NH,  16X10®  1x10* LEX10% e k S, -
CH, None None 0.012 — 1 . L]

Q* keal/g 141 1.24 0.67 0.98 ﬁ e |
*Based on compuited composition, H,0 4 ,( ‘ N - 1
' i o
i ‘o

=1 *
= ? :
4 .
. 5 ;
* o N <
¥ o g . "
- B

2
\‘. 2. )
¥ ‘ s
t el L" !
A (‘{
: o
) : |
E
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TABLE3-5, CALCULATED AND OBSERVED CJ PARAMETERS.

LA48

1.40

147

£ty = 148D

1.43

1.20 10w - -
.20
) 1.00 133 .29 1.3

s 1,50 148 - -
1 3.90 Big.w 1,43
~ 113 1.20 1.37 o
4 133 Asyeli2y
™ 1.63 127 128 3,28
163
130
1.33 By = 3,00
140 IR -
1,43
1.00 LK [BY1 18
1.03
1.00
v 179 117 - P
19 Aligel.0
Tetryl: L0 a2 - 140
170
1.50 Apgrarn
™ et 0.6 0.3 -
4 1
2/3001/3TW 1,40 144 1.0 -
0,80/, 20mH% 1.21 us9 ] -
1 1.3
b 1 144 146 -
¢ L0
TNRI) 270 148 .- -
TNV 186 140 o -

Nedey LA 3800; 1962,

.

Tickett LA 2102, 1942,
il

Zuvarey and Telagin, Dokisdy 104,452, (1964),
(1) Apin and Voakobolntkoy, WMET 117, No. J, (1941}
(22 Cited 1a LA 2909,

{2) bremtn and Pokhil, Doklsdy 138,934, {1959)
(0} p, « 180 g0y

(b) Assuaed to by the sime as for wek.

{9} £, » 223 /560

{U) NOL compusation using BKN squation,

7

282

n

328

34D
370(N

192
21309
152(3)
204,

Ho

183(c?

4040
370001}

a0

Q bestry . ¥ o ™
Py, - o S
Kxpliwive 0 Mader®  Fickett''  Zuberev''" Medor  Fiekett  Zobarev  Medar  Fickitt Tuverev
beanl 117 1.52 . 1.49 ay - 20 2830 - 4400
177 Bty « 148 4001, 420001}
107 182 LAt 1,45 280 231¢40) 10 020 4300(s) 1360
1.67 310(32) 3400R36(2)
A 00 199 142 - 102 %0 " w0 4730 i

4340

4360

. - 2308 - b .
2%002) B ~ ¢
1238 nz0 2800 ! Y
129(3) 2400(4)(2) i
14442) 3700(3)
14 ™ o deeo o r Y
235020 L ’ @ N
20249 B o
H
: o ' )
3 - 3 - i . .
B me 37N j N . ]
16200 . b )
n L 3106 3830 210 § 9 >
115(2) L N “ ‘
“o 1 ]
- ~ 2683 - - f 7 M
259(2) 5 < .
i
- Y] 320 - 4006 e .
283() 2880(1) ! X . i
; o
132 - 1340 2440 - ‘, . .
18902y 2000{2) . v .
a0} : N - oL
133 - 568 4438 - i . i
100(2) as80(2} ¢ B - ’
- i .
158 - 490 5640 - i R ;
1B 3730(3 ; o1
; PP
kol .- 3120 1600 - : - ;l
263(3) 40001} [ « o
. 208 . - . : v .
£ ms -— - ! e ) R N ‘
g v .
- v N [
.
. o
. v [
o
313 . o . j
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TABLE3-6. CORRELATIONBETWEEN Q AND OXYGEN BALANCE

Explosive

0.8 NM/0.2 TNM
BTNEYU

NG

PETN

2/ 3M/1/ 3TMM
RMX

RDX

N

Comp. B

Tetryl

TNT

TNM

Explosive D
DATNB
Hydrazine nitrate

Py,
A5
1.31
1.86
1.60
1.70
1.77
1.40
190
1.80
1.13
1.7

1.70
1.63
1.64
1.50
1.79
1.63

Q% Oxygen
keal/g Balance™*
1.61 0.00
1.49 0.00
T 47 +3.5
1.45 -4.0.
1.50  -10:0
1.30 +15.1
1.48 ~22.0
1.48  ~22.0
1.33  -39:3
1.41 -40.3.
1.41 -47:4
1.27  ~77.6
0,55 +49.0
1.27  -52
1.12 -56.

0.90 +8.4

*
Average value shown in Table 3-5

*k
Oxygen ‘balance = ~ mt

(2C atoms +H/2 8 s - O atoms)

e

L

N
a
S
4
¢
o
N
>
7
Q
5
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TABLE3-7. COMPARISON OF Qs AND Q, BASED ON AN ARBITRARY 4
DECOMPOSITION MECHANISM
1
W ' - . {‘
) *  ** B ' Cre
Explosive Po, Q, QA,, o ) - !
o/cc kcal/g kcal/g I T :
- : ‘ s
,PFTN CHN,0 1.75- '1""f° 1:52 ?‘ . 1
BI"NEU CS}‘{GNS‘OIS 1.86 1.49 }';48 , : . B s
'RDX. CBHG,NSOG 1.80 1.48 1.48 ’ o
m C'4H8N808 1,90 1.48 1 .4‘8 « )
TFTB CGHG'NG-OLl 1.70 1.»4? 1.43 ; to
TETRYL CH N0y 1.70 1.41 1.43 L e
NN CH,NO,, 1.13 1.33 1.36 c L e o
‘I.'Nfl' A C,iHSN'aOG 1.63 1,27 1 .?_8 [ . . 4
:PICRIC ACID CBHSK§°4 1.7 1.23 1.25 ‘ ) ) k4 ) .
h . i e i,' 2 N B 4 ! ’ ' -
Explosive D CGHGN‘407 . 1.70 1.07 1.08 i . L o .
PRX 5404 C.40%2.75%2.57%2,60 1% 1.4 1.47 o e,
?9!?.3-3 02.05!?2\.51",2.1,502.67 1:7 ?..40 1,39 ’
ocToL Cq. 8410, 0aM9.22%10.43 18 1.43 1.43 : !
{ “ o b
‘ b
From Table 3-5, and NOLand LASL compilations. ) ¢
b : p
From arbitrary decomposition mechanism assigning all available
oxygen to H20 and Co2 with excess carbon appearing as C(s). 1
[
{
315 ‘ - ,
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SHOTS

COMPARISON OF Q AND.GURNEY CONSTANTS FOR PLANE-WAVE

\/i:.. \ﬁi-': \/7:723 Source
idec ma/isec —
~2.0 1.4  ~0.97 s8I
1.72 min ~0.86 min
3,24 322 0,995 LAL
3.26® 3,32 1.02 LAL
3.52  3.55 1,01 LAL
3.52 23.45 20,980 SRX
3.27™ 3,28 1.00 1AL
3.5 3,14 0:995 LRt
338 3,32 0,980 1AL
3.24 2.9 0,984 L
3.42 3.3 0.988 LRL
3.42  3.21 0.938(0. P9uax)sRY
3,2® 3,29 0.985 AL
3.30% 2.7 0,960 1AL
3.22® 3.3 0.972 1AL
2.38® 3,14 0.929 LAL
3.57 3,3 0.940 LRL
3,14 0.938: LiL
3.42 310 ‘0.908 LAL
3,26 2,990 0.915 LRL |
3.22 2.9 0,930 134
3.22 3,00 0.933 noL
3.1 2.7 6,908 LKL
3.02 2,54 0.84 min, LRL
2.7 254 1.07-max "
4,02 <3.00 <0.99® sRi
3.02 52,04 0,98 LASL
3,21 2.8 0.68 LRL

2.86@ 2,18 0.76 min

TABLE 38,

XE Po.
Baratol 2,61
$3/17 HMX/Teflon 1911
‘86/14. HMX: Zluorcarbon 1.894
HMX 1,891
HwX 1,89
s4/16 MO/Kel ¥ 1.882
90/20 HMX/Viton 1.876
90/10 HEX/Viton 1.865
85/15 MX/Viton 1.865
PEX 9404 i.s0
POX 9404 1.84
78/22° HX/TNT 1.821
88/12 HMX/Pluorcarbon 1.798
$0/4,0 RDX/Xel ¥ 1,787
90/10 HMX/Urethane Polymer 1.7177
PETN 1.765
71/23- Cyclotol 1.754
932/8° HMX/PE 1.719
Comp, B grd.A .17
Comp, B-3 i.68
Conp, B-3 1.68
90/8/2 ‘RDX/P.S./D.0.P 1.675
™ 1.830
™F 1.630
T™T pressed
INT pressed
NM- 1.143
N 1,143
* Q= Alld for confined charges.

**  Determined by ¥q. 36 using experimental data

® Q = {%oiX) (Qm)\, i.¢., 8}1 other materials ussimed inert,
®) 4. £,

(c)

Plane wave lens contributes to driving the metyl.

Based on Aud for unconfined charges (see Trble 3-4).

e Ak T A, o My e S S

A i et} R i

e g At e B ot ol s i S B e A e

vt o




rom http://www.everyspec.com

3

TABLE3-8, CORRELATION OF QAND EQUIVALENT WEIGHTS FOR FREE AIR
BLAST

. Evperimental ’
Po, Q, AH4, Equivalepf .
Explosive g/ce keal/g kcal/g Weight Q/Q'm'r' AHd/ (AHd),mT
NT 1.6 1.27 1.08 1.00 1:00 1.00 !
TNETB 1.7 1.45 1.47 1.13 1.14 1.35
Gomp B-3 1.7 1.20® 1.24 1.13 1:10. 1.4 ;
98/2 RDX/Wax 1.6 1.45® 1.45® 1.19 1.14 1.33
95/% RDX/Wax 1.6 1,41 ® a® 1,19 1.11 1.29
%ﬁ:,'f':’ﬁm 1.6 1.35® 1.35® 1.0 . 1.06 1.24
PETN 1.55  1.48 1.49 x1.2 © 1.17 1.36.
$0/50 Pentolite 1.6 - 1.2 1.16 - 1.18
Explosive D #.07@ - %0.85 0.84 - |
Aluminized explosives . l
80/20 Tritomal 1.7 ii.8(® 1.63 1.0% 1.4 1.32 P
HBX-3 1.8 B 1.995 1.16 - 1,83 ‘
‘Minol IJ 1.7 - 1,51 1.24 - 1.39
Torpex I1I 1.7 -~ 1.60 1.23 - 1,47

Average of values shown in Table 3-5.

" .
Taken from J. Petes,Annals N.Y, Academy of Sciences 182, 315 (19¢8).

(a) Assumed slightly ln’li‘lgr than the 1.42 to 1,45 kcal/g computed by LJD or BKW .
methods for 64/36 RDX/TNT. i : o e

e it

® .3
Q=L lel
And =L ";(Aﬁd)i

"y L
(') Unpubl ished data, Stanford Research Institute ! /
(d)

NOL calculation using the BKW equation

(e¢) Bised on 1/3 C,HN 0 + 0.7A1,0, = 0.83H,0 + 7/3 C(s) + 1/2

2 ‘ Lo
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3 TABLE 3-10. UNDERWATER PERFORMANCE OF EXPLOSIVES { s j
. | T
¥ -
i ¢ S
§ ; .
1.7 P o
‘Equivalent U/ Uppir g ‘
Explosive Weight * f : .
TNETB 1.28 i.i4 b ,;C’__ R
® PEIN 1.35 1.18 ; ]
HMX 1.19 1.17 3 - ]
s RDX 1.16 1.17 N i
’ 5 (a) o ES Ty
95/5 RDX /Wax 1.13 1,11 i SR
75/25 cyelotol 1.12 1.12® L Co i
Comp. B 1.11 1.11 i ]
. v T
50/30 Pentolite 1.09 1.09@ i o
i Tetryl 1.08 1.1 X B '
| Explosive D 0.91 o.84 ® i s .
} AN N “:
“4 . o .
i Aluminized &ﬁ) B T >
¢ ) N @ o s
T 70/30 TNETB/Al 1.80 ~1.90% § o N
. ; HBX~3 1.59 257 @ : N
! 70/5/25 RDX/Wax/Al x1.60 x.7 <© I - i
i | |
f Relftive to TNT, this is the equivalent weight fox shock " C |
| energy + bubble énergy. Data taken from Ref. 3. . : L
(a) @ =2 niQi‘; ‘wax, if present, assumed inert ' ) PR po.\‘ i
A (b) NOL computation of Q 5, . T ’ ) *‘
. | : - G |
s c = 4 - = : ) W ;
) (c) Q= 2.42 keal/g for csuﬁns\ol ot 6AL = 3A1,0.+ 3H,0 + CO,+5C+3N, S
(d) Assuming Q = AHd { U e s
e ~ = - Sy
_— (¢) Q% 2.2 keal/g for 1/3 CJH N O+ 0.98 Al _ : L i
L . ' L . ¢ e
» 0.49A1,0, +0.538,0 + 0.47H, +C(s) 4N, o : i'

318
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/ . . ) . . . X ) L < o

; ’ o7 TABLE 3-11. CORRELATION OF DETONATION ENERGY AND MAXIMUM.WORK
(BALLISTIC MORTAR)
”
o ,, B | Ballistic Mortar Y™ &/ ()
. . i Ixplosive Relative to TNT Q“T - 4 ¢ NN .

N i N g md)ﬁh_ = 1,09 Zﬁd)m = 1:00 Kcal/g
.o, O -
i e HMX 1:50 1.17 1.36 1.48
o e AUX 1.50 ia7 1.36 1.48

PETX. 1.48 1.18 1.37 1.50
NG 1.40 1.18 1,35 1:46 i
TNETB 1.36 1.4 1.35 RTS ! °
Comp, A*3 1.35 1.06 @ 12410 ® 1.3 ® i o ER NN
‘Comp. 3. 1.33 1.10 1.14 1.24 ’ -
TetFyl 1.2 to 1.3 1.1 1.07 1.7 ! s
Pentolite 1.28 1.02(® 1,18 1.20% i '\*"ff
‘Pieric Acid’ 112 0.97 0,95 1.03: ' 0
DATIND 1.00 0.88 0,93 1.01 N
Explosive. B 0,98 0.84 ). 98 1,07 _
Minol ‘2 1.43 - i.39 1.51 |
Torpex 2 1.38 - 1.47 1.60 4
Tritonal ‘80/20 1.24 - 1.50 1,68 |
HEX-3 111 - 1.83 2.60 ]
(a) Q=LnQ; M, = Ta, (M), ]
(B) Assumed wax is completely inert ’
o

: o ]
i N
s
e
L
N I
1 Co .
, . A
N
B S
o R . “
“ o < C N
A A 3 N . R C
N 3 P -
. ( R 319 , . - > |
. o . . a o T L E
. o -y ! B 2 L
L. ] ’ o L s }
2 . o K
~
o N
.
by [
|
a - 1
vy
4
b
»
o
i
J
L
, A
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CHAPTER 4 THERMAL DECOMPOSITION OF EXPLOSIVES

41 INTRODUCTION

Explosive liquids and solids can be
decomposed by heat and light at relatively
moderate temperatures. During decomposition,
considerable heat is liberated since these
reactions are exothermic. When the rate of
decomposition in. the condensed phase is
sufficiently high, then an explosion may result
due fo self-heating, i.e., the heat generated during
decomposition exceeds heat loss to the ambient
by. conduction and other means. This phase of
decomposition. (self-heating) is analyzed in
Ciupter 10. 1t is clear that detailed information
on the stability of liquids-and. solids is needed
for two reasons. First, to determine the
conditions under which the unstable materials
may be handled with some degree of safety.
Second, to determine the conditions under
which explosion will result since many
explosions are preceded by a phase of rapid
decomposition.

The first .step in assessing the stability of a
liquid or solid is to consider the thermochemical
properties. Detailed information is needed on
rates of decomposition, activation energies, dnd
heats of decomposition. Some information on
these properties is becoming available but there
is considerable discrepancy in the values quoted
by different workers. There is also a lack of
reliable values for many of the thermal
properties such as specific heat, thermal
expansion, thermal conductivity, and other
similar properties.

If the conditions under which explosion
develops are to be controlled, then it is vital to
understand the mechanism of  the
decomposition. This has been recognized in the
last ten to fifteen years, and there are active
centers of research throughout the world
concentrating on this problem. Liquid explosives
are usually characterized by covalent bonds, and
there is considerable background of research for
related materials to make it possible to propose
reasonable decomposition mechenisms. At the
same time, the development of modern
equipment miakes possible the analysis and
identification of intermediates in small
concentrations and of short life. Mass
spectrometers, electron spin resonance and

nuclear magnetic resonance equipment,
chromatography, and spectroscopy are all being
employed-in this connection.

The majority of explosive materials, however,
are solids and here the situation is more
complex. The decomposition may be mainly a
surface reaction or it may develop in the bulk
material. Defects and impurities can influence
the course of tie reactions. It is perhaps
essential 16 have a phase chdnge oF to/melt the
solid before an appreciable desomposition rate
can: be measured. The methods used to study
explosive solids follow closely those developed
for the study of senmiconductors. It is necessary
to show the nature.of the bondsinthe solid and
to decide whether the solid is ionic or covalent.
Covalent solids can be of the valence type or of
the molecular type. For this purpose, studies are
being made of the cptical properties of the solid
(ultraviolet, wisible, and infrared' spectra;
refractive index; birefringence), as well as
electrical properties (conductivity at low and
high temperature), photoconductivity,
crystallographic ~ studies, and electron
microscope and electron diffraction studies. In
this way much has been learned about .simple
azides although it cannot be said that one can
yet speak with confidence about solids such as
lead azide.

4-2 DECOMPOSITION ENERGIES

The decomposition of most liquid arid solid
explosives results in the formation of gas. The
simplest way to follow the reaction is't.. make
pressure, time measurements in a closed system
at constant volume, These curves are sigmoid in
shape (Fig. 41), and from such .curves the rate
constant & can be obtained. Numerous relations
have been obtained experimentally for solids,
for example

Rnp = kt+ constant (4-1)

n (pf i ) (+2)

where p is the gas pressure at time ¢ and p, the
final gas pressure. For many solids nuclei are

formed in localized regions, and these play a role,
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in the decomposition. These nuclei grow and
eventually overlap ‘and interfere. Many
investigators have derived expressions to fit the
experimentsl curves in terms of the production
of nuclei. Thus, Prout and Tompkins give the

relation @

n (1—_—-‘-!-) = kt + ¢ (4:3)
where ¢ is a constant and « the fraction of
explosive decomposed; this holds for the
decomposition of many solids -such as
permanganates and oxalates, and some ‘of the
azides. Another relation. by Avrami-and Erofeev
is gaining'in popularity. Their analysis involving
three-dimensional. growth of nuclei is of the

form o (1-a) = @ty (44

For some reactions n = 4 at the beginning of the,
reactinrn and n = 3 in the decay period.

Pressure p, or
Extent of Decomposition a

When melting takes place, the nature of the
rate equation is modified. The decomposition of
liquid explosives has been successfully followed
by determining the-concentration -of one of the
products of decomposition with time, e.g., the
formation of nittogen dioxide durifg the
decomposition -of the nitrate esters or the nitro
compounds, Here, of course, the assumption is
made that the nitrogen dioxide i one of ‘the
primary products of decomposition. It iis not
intended to list here all the various methods in
use to follow decomposition sifnce these are-too.
numerous. Accounts can be found'in Chemiistry
of the Solid'Staté®, Rédctivity of Solids®, and in
many -other Symposia and. papers published in
recent years,

Once the rate constant hés beén determined,

then a study of the variation of the rate-constant

k with absolute temperature T .gives 2 measure

Time t

Figure 4-1. Thermal Decomposition Sigmoid Curve
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the activation energy E (refer to Fig. 4-2) from.
the general relation

k = Z exp EE/(RT)] (4-5)

where Z'is the pre-exponential factor and R the
gas constant, Unless it is stated specifically, the-
values for E :are usually the overall activation.
energies. Of greater interest is the value for the
activation energy for each individual step in the
decomposition complex of reactions; thesé are
gradually becoming available. More refined-
equations are -available for analysis of rate
measurements but the experimental results
obtained so far do not lend themselves to the
use of advanced theory.

Values which have been given for activation
energies of various explosivés are listed in Table
4-1. These have been selected as possible values
but the agreement between difféerent
investigators is not good. Both E and Z may vary
with  temperature, particularly at high
temperatures. Autocatalysis may also take place

N

/

Ink

and the products of decomposition can exert a
profound influence on ‘the rate. The table is
included to give an idea of the magnitude of the
energies, however, too ruch reliance should not

be placed on the absolute values giver. The

values usually range between. 30 and 50
kcal/mole, and are not very different frorn:those
notrially found for meny other nonexplosive.
materials. This is not surprising' as-the processes
involved in the decomposition: of explosive and
noriexplosive systems can be very similar, It is
the exothermic nature: of many of the

decompositions that makes the reaction run

away to explosion. Chain mechanisms.may also
play a part in the decomposition.

43 DECOMPOSITION MECHANISMS

1t will be convenient to considér explosives in
three groups:

(1) Covalent liquids and solids (the organic
nitrates -and nitrocompounds). Here the initial

siope = —-E44

¥

Figure 4-2, Plot of Logarithm of Rate Constant k vs Reciprocal of Absolute Temperature to
Determine Activation Energy from Slope of the Line .
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TABLE4-1  ACTIVATION ENERGIES AND PRE-EXPONENTIAL FACTORS FOR
SOME EXPLOSIVE LIQUIDS AND SOLIDS
Temperature
Range,. E,. logZ
Compound sc keal/mole soc’t
Nitroglycerin 160-190 50 23.5
Tetryl 211:260 38.4 154
Ethylene dinitramine 174-178 30.5 12.8
PETN 160-230 47 19.8
TNT - 37 -
DINA - 35.5 -
Picric acid 153 58 -
Lead .azide - 36-38
Silver azide below 190 44
above 190 31
Mercury- filminate 100-115 32.2

Lead styphnate

225-255 402

step in the decomposition is usually bond-fission
.and .a free radical mechanism applies.
Intramolecular elimination reactions have also
been considered.

(2) Jonic solids. Many of the primary
explosives such as the azides, metal picratés, and
acetylides belong to this group; electronic
processes will dominate the reaction mechanism.

(38) Ammonium salts. Ammonium salts in
principle belong to group (2) since they are

gerierally ioni¢ solids. There are, however, twe-

possible paths for the decomposition, and for
this reason they.are considered separately.

4-3.1 .COVALENT LIQUIDS AND SOLIDS

There is no doubt that the organic nitrates
form th~only class of materials which have been
studied in a systematic way. It is generally
agreed that the first step in the decomposition is
the fission of the oxygen-nitrogen-bond in which
an alkoxyl radical is produced. This is also the
rate determining step. Thus, for a simple
compound such as methyl nitrate

CH;0NO, ~ CH;O + NO,

The activation energies favored by Gray™® for

4

the decomposition are methyl nitrate, 38.4
kcal/mole; ethyl nitrate, 36.4 kcal/mole:

n-propyl nitraté, 37.6 keal/mole; and. this is
equated to the energy reg.red in the bond
fission process given in the given.decomposition
reaction, The reactions in the gas phase in
particulaz are homogeneous with
pre-exponential factors: approximately equal. to
103, The decompositions-are also inhibited by
the addition of nitrogen dioxide and nitric oxide

by the possible reactions of the alkoxyl radicals.

RO'in.the manner
RO- + NO, - RONO,

RO- + NO - RONO
thus indicating the way in which nitrates may be
reformed and also how nitrites- can be produced
during decomposition of the nitrate esters.

The alkoxyl radicals can undergo a variety of
reactions and rearrangements, and in the case of
the simpler alkoxyl radicals these have been
described in detail in a review by Gray and
Williams®. There may be associstion ‘with
radicals, hydrogen abstraction, rearrangements
(isomerization), decomposition of the radical to
simpler radicals and 3l Yydes or ketones,
disproportionation, ard decomposition by
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radical atiack. It is evident that all these
reactions can lead to .complex products and
these are found in the decomposition products:

For the -decomposition of a nitrate ester such
as n-propyl nitrate the following set of equations
may be written as a sequence-of reactions during
decomposition:

n-C4 ¥:.ONO; =+ n - C3H,;0 + NO,
n-C3H, 0~

C,Hy + NO,~ C,H;0- + NO
and some C,HyNO,

G,H,0 -+ CH,* + CH,0
CHy- + NO, - etc.
n-C3H,0 + NO -+ n-C; H,ONO

ete,

Schemes such as this have been proposed for
many nitrates and related esters. What is needed
is the activation energy for each step; some of
these are now-known fairly accurately.

Systems such &s glycol dinitrate, nitroglycerin,
and’ PETN will behave in the same way but,
since there are more nitrate groups in each
molecule, there is difficulty in working out the
precise order of the steps to the-final products,
Thus, glycol dinitrate would be assumed to
decompose ideally in the mannér
NO,0CH, CH,ONO, —+ 2NO, + ‘OCH,CH,0

i

2CH,0

or for more complex dinitrates -

(CHy). C,O_] NG,
CH, ~+ 2 (CH,;),CO +2 NO, + C,H,
CH,

(CHy), CO | NO,

For PETN, nitroglycerin, and related svstems,

carbony! compounds=such as -formaldehyde,
more complex aldehydes and ketones—are
formed simultaneously, and these together with
the alkyl radicsls are oxidized by +he nitrogen
dioxide. The decomposition of nitroglycerin
accelerates if the producis are alowed to
accumulate or if water ox acids ar» introduced.
Apart from gaseous praducts—such as NO, N,0,
HQO, €O, CH,, N,, and HCN—liquid and solid
residues of complicated structure-are also found.

The nitrate esters are also decomposed by
ultraviolet light, and again it is assumed that the
initial step is bond fission, First theére is the
formation of an excited state

hy
RONO, = RONO} - RO + NO,
excited state

which may revert to the ground state or
dissociate tG give free radicals,

Andreev has made an extensive study of the
decomposition of nitrate esters, and of the
effect of products and. additives on the reaction.
rate. He followed the dscompcsition of PETN in.
a variety of physical states: the solid, molten,
dissolved, and gaseous states, The rate of
decomposition is greatest in the gaseous state
and least in the solid state.

The nitroe compounds have also been studied
in some detail. A review of the decomposition of
nitromethane by Makovsky and Lenji'® records
the information available up to 1958. The vapor
phase decomposition at dilferent temperatures
and pressures has been fallowed by siatic and
flow methods. The reaction hai been shown to
be first order and a large number of the products
of decomposition identified. These include NO,
N,0, HO, CO, CH,, CO,, and traces of C,H,,
C,Hg, and NO,. More complicated products are
formed at high pressures, e.g., HON; CH,CN,
HCHO, etc. The overall aclivation energy for
decomposition is in the region of 50-53
kcal/mole, Most.investigators. favor-bond fission
as the initial step in the decomposition

CHyNQ, - CHy- + NO,
Numerous other stepr, have been proposed {o
account for the provucts of decomposition, and

some of these are, given to indicate the fype of
reactions envisaged
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CH,* + CH,NO, ~ CH, + ‘CH,NO,
‘CH,NO, + NO, - CH,0 + NO + NO,
CH,0 + NO, -+ CO + NO +H,0

2 CH,+ ~ C,H,

Reactions of-the type
CH,- + NO - CH;NO - CH, =NOH -~ HCN
+ H,0

are also probable reactions,

On the other hand. at high pressures, in the
region 12-40 atm, Makovsky'® and Guenwald
consider the reactions

CH,NO, -+ CHz;NO + O
O + CHyNO, -+ CH,0 + HNO,, etc.

may -also take place. The photolysis of
niiromethane has been studied recently by
Nicholson'? who postulates bond fission as the
initial step in the decomposition.

The decomposition of the higher nitro
alksries—e.g., nitroethane, 1 and 2
nitropropanie—has also been studied though in
leis  detail. For nitroethane, values of the
activation energy ranging between 41 and 46
kecal/mole.seem to ‘be the most reliable. There is
considerable debate concerning the first step in
the decomposition. The C-N bond strength is
estimated at 58 kcal ai:d the activation energy
measured is some 10 keal smaller than this for
nitroethane. Possible schemes starting with

C,HgNOz nd CiH; + NOz

as the first step have been evolved but the
alternative reaction

C3HsNO, -+ CuH, + HNO,

is a strong candidate, For this reason the
detailed schemes for the two rival mechanisms
will not be given; the details may be found in
the literature,

For 2-nitropropane, a careful study by Siith
and Calvert!! gives the foilowing expressiipn for
the decomposition rate constant:

k=111 X 10" exp [-39.3/(RT}], sec”(4-6)

48

This is based on propylene formation in a static
system. Many of the arguments put forward for
nitroethane also apply to the nitropropane
system. Again, there is disagreement as to thc
first step of the decomposition but the weight, is
perhaps in favor of a step of the kind

CH;CBNO,CH; ~+ CH,=CHCH, + HNO,

Here, intramolecular elimination of propylene
and nitrous acid takes place via a cyclic activated
complex. This is followed by a series .of radical
reactions. Some of t} 2se proposed are

HNO, ~ OH + NU

OH + CH,CHNO, CH,~+H;0
+ CH; CNO, CH,

-+ H,0
+ CH,CHNO; CH,

CH,CNO,CH, -+ CH,COCH, + NO

CH,CHNO,CH, ~ CH,CHNO + CH,0
- CH3CH=CH, + NO,

CH;CHNO — CH,;CNOH

CH,CNOH + NO - CH,CN + HNO,

The higher aliphatic nitrocompounds have not
been studied in sufficient .detail for likely
mechanisms to be proposed. This is also true for
some of the aromatic compounds such as picric
acid.

43.2 1ONIC SOLIDS (AZIDES)

From the practical point of view, lead azide is
the most interesting of the azides. On the
gualitative side considerable information exists
on rates of decomposition, explosion
temperatures and the like, It has only been.
realized in recent years, however, that one needs
to go further into this problem of the!
decomposition of the azides. Figures were
available but no ical understanding of the
mechanism of decomposition; this is still.true to
some extent,

A start, has been mucde on the simpler azides in
the solid state which are represented as M N,

o e g = -
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and on the related compounds—the fulminates
CH O and cyanamides CN2" —since these form
an isoelectronic series. Consider a solid like
KN, . Itis known that it is composed of ions K.,
and N3; and that it is a relatively stable
compound The azide ion is a linear symmetrical
group NL3ANL1SAN-  with sixteen valence
electrons, and. the orbital system can be
represented simply as in Fig. 4-3 where the 0
-bonds, lone pairs, and the w-bonds are
indicated: The .orbitals which are of interest
from the point of view of electronic transitions
ar¢ the delocalized m, and %, nonbonding
orbitals since electrons will be excited from
‘these orbitals to higher urbitals,

‘The -azide ion is also isoelectronic with the
co, molecule -and all the values for the
v1bx~atxon frequencies—symmetrical stretching,
asymmetrical stretching, and bending—are
knowh from infrared and Raman spectra, From
these, force constants may be calculated,

i’ one considers a simple series of the
‘monovalent azldes—KN ,TIN;, AgN,,
CuN..,,Hg2 (N3) ,and organic azxdes (solid), it
is found that the stability varies- in the order
KN;> TINy > AgN, > CuN < Hig, (Ny), <solid
azxdes The stabnhty decreases aslong the series K
to Cu as the ionization potential I increases, or

more accurately as (I'- E)increases, Here Ea‘s,t/he-
electron affinity -of the azide (N, ) radical and is
in the order of 2.8 ev, although. highet valiies-
than this. have been qii6téd. The problem is to
explain why the stahility varies in tkis way; a.
reasonable explanation can be given if we use
the band theory of solids.

In the case of KN,, [=4.32 ev, E~2.8 ev;
therefore (I - E) is small. For greafest stability,
the solid should be composed of jons K* and
N3. The structure is futragonal and all
metal-nitrogen distances 'are the- same. It has
properties typical of iohic solids such as KBr,
the refractive index is low (of the order 1.5),
and. the optical absorption edge occurs in the
vacuum: ultraviolet part of theé spectrum, The
silver salts AgN, and AgBr, however, are
unstable solids and readily decompose on
heating, or during irmadiation with light of
suitable wave length or onizing radiatinn.

21'&5:1 {z—f’ 2A8 + 3N2 +Q
similar to
2AgBr = 2Ag + Br,

where Q represenis the heat of decomposition.

——{—=W, nonbonding -orbita

ione pair — N|

/ /

swy bonding. orbital
E4l

—— N ——* lone pair

/nrborm orbital

/ | /

»- T, nonbondnqorb&d

’/

Figure 4-3. Representation of the Orbital Syjitem of the Azide Ion
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The bromides are mentioned since there is in
. fact a close resemblance between the behavior of
. the azides and the con:espondmg bromides. The
jortic radii of Ag" and of K* are 1.26A and
1.33A, respectively, which are not too different.
On: the other hand, the structure of AgNj is
oitdorhombic, and there are directed bonds. In
the solid, there are four long silver-nitrogen
bonds of 2.79A and four short bonds 6f 2.56A.
The solid has a partial layer-type structure. The
physical properties depend markedly on -crystal
direction. The refractive index is, kigh and is
approximately 2:0-for ligiit of long wave length;
and the optical absorption edge is now much
further into the visible'part of the spectrum. All
these properties indicate a departure from an
. ionic type of lattice in the silver salt.
v ' The decomposition of silvet azide by heat is
) exothermic to the extent Q=148 kcal/mole.
From the-giveri chémical equation it is clear that
. while the lattice is composed mainly of ions, the
products are neuttal, so-that an electron transfer

e

4-8

mechanistn must operate at some stage of the
decomposition. Before the mechanism. of the
decomposition can be established, it is necessary
to determine ‘the -electron energy ‘levels in the
solid—in other words the energy E required to
excite un electron from the valence band to the
conduction band where, as in Fig. 4-4, we
assume the valence band is formed by the
overlap of orbitals of the azxdeN; ions while the
conduction band is formed by the overlap of
orbitals of the metal MY ions.

On the experimental side the overall activation

-energy for the decomposition .of ‘sitver azide has

been determined.from pressure-time curves, and
below 190°C the value is 44 kcal/mole or1.9ev
molecule. Some mfotmatlon is also available on
the collapse of the lattice in pmmg from silver

azide to metallic silver. This is obtained trom'

electron diffraction studies of .a crystal as it
decomposes under the action .of an eléctron
beam in the diffraction-carera. Orientd silver is
formed with lajtice parameters slightly greater

‘Conduction band
(overlap of orbitals from M*ione)

Valence band
/ (overlap ot orbitals trom N; ions)

Figure 4-4. Schematic Showing Energy E to Excite an Electror. from Valence Band to '
Conduction Band in Silver Azide
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than for normal silver, and it is concluded that a
diffusion of silver takes place to lattice sites
mdde vacant by the removal of azide ions Ny
during decomposition. This will give oriented
silver nuclei with large silver-silver gpacings.
Finally, there is a collapse to normal silver. The
silver that is formed during decomposition is
very mobile and appears on the surfuce mainly
as discrete nuclei which grow in size until they
cover the whole of the surface. The nuclei may
be less than 10A in diameter (the limit of
resolition. 6f the electron .microscope used to
determine their siza) to greater than 2000A.
These nuclei play an important part in the
decomposition, and for this reason a knowledge
of their size and distribution is needed. The
technique used is simple. Crystals of silver azide
are heated or irradiated with light giving a
surface film of silver, which consists of the large
and -small nuclei as illustrated In Fig. 4-5(A). A
carbon . film is.evaporated on to the nuclei (Fig.
4-5(B), and undecomposed silver-azide dissolved
away in dilute ammonia solution. The carlion
film floats on the liquid surface and is picked
up on an electron microscope grid which is then
studied in the normal way. It i possible
that silver forms internally along dislocations.-in
the crystal in the manner found by Mitchell and
illustrated in Fig. 4-5(C). No evidence for ‘this
type of behavior has as yet been found fox the
azides. Even with crystals of silver cyanamide
which resembles silver azide but which are more
stable, the silver is mainly at the surface. This
has been verified frequently in electron
microscope studies. The situation, as far ag
dislocations and thejr influence on the
decomposition of the azides is concerned, is that
a possibility exists that they do play a part in
the decomposition but direct proof is not at
present available. An etching technique might
perhaps give better results. The main
decompuosition seem to take place at the surface.

Reference was made earlier to use of the band
theory of solids in cornection with the
explanation of the stability of azides, and it was
stated that it is necessary to determine electron
energy levels in the -solid. The simplest way to
determine energy gaps is from the optical and
electrical properties of the solid. The optical
absorption spectra are determined in the normal
way, and one can represent the light path as in
Fig. 4-6. If I, is the incident intensity of light
and I the transmitted intensity, then in the ideal

case the absorption coefficient o in em™? is given
by the expression I=[ e™*', where ¢ is the
thickness of the crystal in cm. Absorption
coefficients o are determined as functions of the
wavelength of light v and for values of « in the
region of high absorption corresponding to 10°
to.10° cm™, it is assumed that photon energies
hv  correspond to the band gap E as shown in
Fig. 4-7. Here one is concerned with direct
transitions from the valence band to the
conduction band for values of the wave.vector.k
= 0. On a simple ideal this would ¢orrespond to
the energy requireu for the following process
but this concept should not be pushed too far:
N7 > N, + e
electron in
conduction ‘band

azide radical
(positive hole)

azide ion
in lattice

Measurements of the absorption spectra at low
temperatures, particularly at liquid ‘helium
temperatures, reveal the presence of excited
states. These are exciton levels and lie below the
conduction band (Fig. 4-8). They form a
hydrogen-like series and their frequency is given

‘by an-expression of the form

v, = v,~R/n? “-7
where v, is the frequency corresponding to the
exciton of cquantum number n, v_ is the
frequency of the series limit, and R is an
exciton Rydberg constant. In the case of the
alkali metal azides, Deb has resolved then =1, 2
and 3 lines and has found that at liquid helium
temperatures the band gap for KN; is 8.6 ev
corresponding to light of wavelength 14504 in
the vacuum ultraviolet, and the n = 1 exciton
line occurs at 1895A or 6.6 ev. These gaps are
quite Jarge.

Exciton levels have also been identified in
TIN; and AgN,. However, one now finds thaf
the absorption edge is in the vicinity of 3500 A
or 3.5 ev for silver azide. The values for the gaps
are: B, = 3.5 ev optical; E, = 0.6 ev optical
(see Fig. 4-9). These are much smaller than for
potassium azide.

E, can dso be estimated from electrical
conductivity measurements at high temperatures
but the interpretation of the results is not
always easy since both ionic and electronic
conductivity have to be considered. E, can also

N
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Figure.4-5. Showing Technique for Studying Silver Nucléi from Decomposed-Silver Azide
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CONDUCTION BAND

—.n=| exciton level

| E=35ev optical

silver azide

_valence band

Figure 4-9. Energy Gaps E, and E, .in Silver Azide
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be estimated from photoconductivity
experiments, Here it is assumed that one
measures the thermal energy required to
dissociate optically formed excitons in the
manner

% heat

N +hv = N — N, +(e)

exciton
Both TIN, and AgN, are good photocontiuctors
when they are irradiated with light near to the
optical absorption edge. The experiment is quite
a simple one, and a schematic diagram is shown
in Fig. 4-10. Light of known wavelength is
allowed to fall on to a crysta held at a DC
potential of a few volts. A photocurrent will
result and the magnitude of this photocurrent
depends on the wavelength of the light and the
temperature of the crystal. Since the resistance
of the crystal is usually high, of the order of
10*° © cm., the photocurrents are very small
and cah be in the region of 1022 A, For this
reason electrometers are in general used to
record the currents. From the variation in
photocurrent with temperature it is possible to
determine an activation energy for the

‘photoconduction process; for silver azide this is

in the region 0.38 ev. This is a. thermal energy
which can be shown to be in good agreement
with the value E, obtaned optically.

Energy gaps obtained from spectroscopic

‘measurements give optical energies. One also

needs t0 know thermal energy gaps. These are
not ‘thé ‘samé, ana arguments based on the

Franck-Condon principle led Mott and Gurmey

to give the approximate relation

K,
E, = E, \ %" (4-7)

where E, is a thermal energy, E, the
corresponding optical energy, K, the high
frequency dielectric constant, and K the static
or low frequency dielectric constant. K, is
estimated from values for the refractive index n
and for values of : corresponding to wavelengths
well away from the absorption edge K, =

Substituting the sppropriate values for silver
azide, one obtains for E, a value of 1.88 ev, This
is the thermal energy required to excite an
electron from the valence band to the
conduction band, This agrees remarkably well
with the activation energy for thermal
decomposition of 1.9 ev (below 190°C)

4-14

determined from pressure-time curves. It is
suggested in fact that E1 in Fig. 4-9 for silver
azide is connected with thermal decomposition
and. E, with the activation .energy- for
photochemical decomposition. It is, therefore,
possible to- propose a generalized scheme for the
thermal and photochemical deccmposition of
the heavy metal azides. This is shown in Table
4-2,

It must be emphasized that this scheme is very
general, The detailed mechanism is much more
complex since the presence of point defects,
dislocations, impurities, metal particles and.the
like have been ignored. In a general sense,
however, it is probably correct.and resembles in
outline the mechanism of decomposition of
silver bromide in the photographic.process.

An .attempt can also be made t6 explain how
the stability decreases along the azide series K;
Tl, Ag, Cu. Along this series E, is found to
decrease quite .appreciably; this can mean that
the rate of decomposition at a given tenperature
can ‘be. higher, The situation with KN, is a little
more complicated. The band gaps are very large
and the exciton level n = 1 is well below the
conduction band. With KN, Jacobs and
‘Yompkins assume that during decomposition, for
example by light, excitons are formed, These
may be trapped at vacant lattice sites, for
example where K™ ions are missing. The electron
from the exciton is then lost to form an F
center. The positive holes (N, ) finally can give
nitrogen gas. Such a mechanism is plausible
because just as in the case of the alkali halides,

color centers of the F center type readity form.

in the alkali azides and.could play a part in the
decomposition.

As soon as the ionization potential becomes
too large—e.g., I > 8.0 ev—the solid is no longer
composed of ions but a covalent type of solid is
formed. Examples are mercurous azide

‘Hgz(N3),, hydrazoic acid HN,, and the organic

azides. There are now directed bonds to one end
of the azide group

a
Ny——
M y

In this diagram M represents the metal,
hydrogen or organic groups, and the bonds are
shown. The distance N\ N, is now much larger
than N,N,. For exampTe in methyl azide,

CﬂaNa’ thP bond lengths and bond angles are:

Ny—— N,
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: TABLE4:2 THERMAL AND PHOTOCHEMICAL DECOMPOSITION OF SOME
{JONIC AZIDES
Thermal Decomposition Photochemical Decomposition !
) ) i Exciton formation Direct transition
1) N; =N, +e @) N5 + w=N* (1) "+ w=N, +e
formation of positive hole and formation of ’
i electron in the conduction band. an exciton
(2) 2N, 3N, @ MmN +e ;
reaction- of two -positive-holes-at thermal
the surface to give nitrogen. dissociation of X
optically !
(3) Agn'+A'g++e->Agn+ ¥ formed :
- absorption of silvex ion at a exciton: (rate |
’ inetal nucleus and electron determining i
capture. step) followed. .
‘ by steps 2,3 : ..
' column 1. ] o ! -
N Light ¢
* ¢
L) 5
o Crystal !
. N i
fensitive
Bottery vibroting reed
type electrometer
. Figure +-10. Schematjc for Studying Photoconductivity of Crystal X
o L } 418
i,: )
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If we consider hydrazoic acid as the simplest of
these covalent azides, the orbital system may be
written as shown in Fig. 4-11.

There now exigt differences in physical
properties to the ionic azides in vibration
frequencies, since all are now infrared active,
and in the decomposition behavior to heat and

light. The ‘initial step in the decomposition is

probebly bond fission, e.g, of the longest N-N
bond,
heat

—— + N,
MN, light MN 2

HN, > HN+N,

The subsequent steps in the decomposition
depend on the stability of MN if M is a metal
atom, or on the reactivity of the free radical if it
is of the type HN. For example, ammonium
azide-can be formed from hydrazoic acid. The

detailed mechanism is, however, the subject of

rather violent argument and controversy at the
present time, so that all the steps will not be
given here. In the case of the organic azides the
radical RN can undergo rearrangement
particularly if it is of the complex varjety and is
derived, for example, from triphenyl methyl and
similar groups R. Usually the covalent azides are
more stable than ‘he ionic azides, although the
statement must be qualified to some extent
since some of the covalent azides are
exceedingly unstable, .e. g BrN,, IN;, NON,
and the like. Solid HN is also sa.ld to be very
unstable but there is no rehable information on
this point.

A number of other systems are being studied
in the same way as the azides. The list would
include the acetylides, fulminates, styphnates,
and picrates. At the present time it is impossible
to predict accurately the properties of these
solids. Potassium fulminate, for example, is one
of the most unstable materials in this list and the
reason for this is not clear. It should in fact be a
reasonably stable solid. from what one knows of
the structure and other properties.

The solids previously discussed are all of the
simple type. In the case of azides and acetylides

416

formed from transition metals such as nickel and
cobalt, the situation is a little more complicated.
Here one deals with coordination complexes;
ligand-ficld theory; the study of the effects of
environment of anions on the eneygies of the
d-orbitals of the cation, has proved valuable in
discussing the optical and rmagnetic propertles
and the stability of these solids.

433 AMMONIUM SALTS

The decomposition of both ammonium nitrate
and -ammonium perchlorate has been studied
extensively. These are widely used as explosive
materials. The decomposition can, however; be
quite complex since the physical state of the
solid mry change and it is possible to have
sublimécion and melting. Ammonium nitrate in
the solid state can undergo a large number of.
phase changes over a relatively small
temperature range. This has led to useful
information on rotation of the nitrate ion and
diffur ‘0¥ f the ammonium ions in the solid.

Bev. . u 210°-260°C ammonium nitrate gives.
off nitrous oxide and water, but above 300°C
explosion can take place. Some nitrogen is-
produced and impurities, for example CI™, can
have a profound effect on the decomposition.

The overall decomposition can be represented

by
NH,NO, - N,0 + 2 H,0

Bircumshaw has discussed the decomposition
of ammonium perchlorate. The solid exists in
two modifications, orthorhombic below 240°C
and cubic above 240°C. The products of
decomposition are oxygen, nitrogen, chlorine,
chlorine dioxide, nitrous oxide, nitrogen
tetroxide, hydrochloric and perchloric acids; and
water. An unusual phenomenon is observed
during therma! decomposition of single crystals
below 300°C. An amorphous solid is left as a
residue and, strangely enough, this is also
ammonium perchlorate. A similar observation
has also been made for sodium azide by Secco.

The decomposition of ammonium perchlorate,
like ammohiuia nitrate, depends very markedly
on the surface area of the solid. In the case of
ammonium nitrate, considerable effort has gone
into the preparation of a solid of low density
(ca. 0.6) and high surface area. This material is
said to -be very sensitive to shock but there is

CBRe
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some disagreement on this, The effect of metal
oxide catalysts on the decomposition of
ammonium perchlorate can be quite marked.
Manganese dioxide, nickel oxide, chromic oxide,
cupric oxide, and zinc oxide have all been tried;
for example, the addition of zinc oxide can have
a profound etfect. In this casy, the rate and
extent of decomposition can be increased, and
the explosion temperature can be lowered by
some 200°C. Many of these effects have been
interpreted in texms of electronic processes
which occur during decompaosition; accordingly,
detailed knowledge of the catalyst, particularly
by its sémiconductor properiies, is needed.
Carbon has also been added to ammonium per-
chlorate and can influence the kinetics of the
decomposition.

The ammonium salts are jonic #olids and' just
s for the azides, ¢leciron transfer can occur
during dacompont:on. On a molecular cale one
may visualize the NH; and ClO ions in the
solid, and the formation of NH, and ClO,
radicals (under the action of mmm stimuli)
and their subsequent reactions. Another
possibility, however, is the dissociation of
NH, C10, according to the equation

NH, CIO, + NH, + HCIO,

This is referred to as proton transfer and ihe
reaction will be dominsted by the subsequent
decompasition and reactions of HCIO,. Which
of these two meéchanisms wil operate will
depend on temperature, and Galwey and
Jacobs®® have Juggested that below 280°C the
clectron transfer mechansim is the important
oiie. Here only 30 percent of the solid
decomposes and, as mentioned, the residue is
still NH Ci0, in an amorphous form. The
acuutmn enexgy for decomposition is 32
keal/mol¢ At higher temperatures, 350° -
400°C, the proton transfer mechanism will be
the more important and the activation energy
for decomposition is 39.5 kcal/mole. The proton
transfer takes place on the surface of the solid
followed by the oxidation of the ammonia gas.
Som= of the steps in the decomposition of
perchloric acid which have been proposed are

2HCIOq > H,0 + Cl Oy

2C1,0, — 2Cl; + 70, (probably a chain
reaction)

4NH, + 50, = 6H,0 + 4NO
418

The overall decomposition may be represented
3 9NH, Cl0, —+ 4H,0 + 2NO + 0, +Cl,
Similar schemes .have also been proposed for
ammonium nitrate. One favored by Russian
workers ig
NH,NO, # NH, + HNO,
4
0, + O + 0,

NH, + NO, - NH,: + HNO,

NH,- + NO, - NB,NO,
4
N,0 + H,0

NO + NH,- —+ NIL,NO - H,0

ete.
As in many schemes of this kind, there is no
problem in w-nﬁng down nco=ihle free radical
reactions. The main, difficulty is to determme
whether these in fact do take place and the
energies involved in the processes.

44 RADIATION DAMAGE IN EXPLOSION
SOLIDS

Explosive solids have been -subjected to a
variety of ionizing radiaticns and nuclear
paxtxcles. There ue elou.tron beams, x-and
y-rays, o patticles, H® i “clei, neutrons, proton

fission fragments and d',abtless others not listed

here, These would .siclude mesons and those
particles discovered in rccent yearm.
Decomposition can be induced in solids by these
particles and, by taking nonoxplosive solids as
models, some insight into the radiation damage
that 1s produced can be obtained. For the lighter
particles the damage cauced is studied by a
variety of techniques. Opical and electrical
properties, spin resonance cechniques, chemical
methods to identify new species, radicaztive
techniques — all are studied to determine
changes within the crystal such as intevstitials,
vacancies, free radicals, color centers, and
impurity formation. When the damage is
v °nsive as with fission fragments, high
resolution electron mic.oscopy coupled with
Moire' fringe techniques can show tracks and
distocation loops in the crystal
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For iohic sclids the main damage is caused by
ionization, and electron processes, similar to
those discussed earlier, operate. In addition,
thermal effects, recoil, and decomposition of the
.anion-may -occur depending on the nature of the
radiation, Covalent solids. aré in general more
:stable. Point' defects -can ‘be created; and strain
and dislocations introduced into ‘the lattice.
Localized décomposition. -has -also been found.
‘Fission fragments can cause an appreciable
iricrease in surface area of the solid. All of these
factors can influence the. rite of thesubséquént

decomposition, Although the rates of
decomposition may be enhanced, the effects
observed up to the present have not been very

spectacular, In no i:ase has an explosion resulted'

with the possible exception of electron
bombardment and-here heating has been shown
to be responsible for the explosion. This is
perhaps a fortunate result since explosive solids
are alréady sufficiently daigerous to ‘handle,
without the added concem of excemive
sensitization by ionizing radiation.
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CHAPTER 5 MEASUREMENT OF DETONATION PROPERTIES

5-1 INTRODUCTION

In Chapters 2 and 6, relationships.among the
detonation parameters are derived and discussed.
Some of these parameters—namely, velocity and
conductivity—are readily measurable quantities.
Others, such as pressure and temperature are
difficult if not impossible to measure at the
present time. In this chapter the .currem oud
most commonly ‘used techniques for the
measurement of detonation parameters are
presented. The techniques are grouped according
to the parameter being measured. Where a
technique is applicable to the measurement of
several parameters, it is discussed in detail only
when first encountered. Date representative of
some of the techniques are included. More
extensive data may be found in the references.

52 DETONATION VELOCITY

Detonation velocity D is the most readily
measured property of the detonation wave.
Consequently, much of detonation theory
centers on this quantity. A large body of theory
concerns the state of the explosive products, a
state which was perhaps the most unusual
condition of matter prior to the advent of
nuclear explosions. The explosive products in
the detonation wave consist mainly of gases,
sometimes mixed with solid particles of carbon
or metal oxides, at a very high temperature at a
density greater than that of the original solid or
liquid explosive, The pressure is enormous; and.
the behavior, therefore, is far from the near
ideal-gas behavior evidenced under more normal
conditions. The nonideality of the product gases
makes the detonation velocity in condensed
explosives depend strongly on the initial bulk
density of the explosive p,. The detonation
velocity in gas mixture does not change very
much with initial density., Empirically, the
dependence of D on p_ can be expressed quite
accurately by a linear formula: D=D  + M/p,,
where D, is the detonation velocity at unit
density, bata on the dependence of detonation
veloeity on initial density have been the major
source of information about the equation of
state of the product gases; and, although the
exact equation of state cannot be determined on

the basis of these data alone, a considerable
body of knowledge on this subject has been
obtained. This topic is taken up in Chapter 7.

5-2.1 HIGH-SPEED PHOTOGRAPHY

The extremely high and -emarkably constant
wave velocity was the phenomenon that first
attzacted scientific attention to the study of
detonation. The major experimental tool for
observing this pheonomenon has been and still
remains high-speed photography” ; to describe all
the ingenious cameras that have beer: developed
for this specific purpose would demand a book
in itself. The discussion which follows is,
therefore, limited to the most commonly. used
cameras.

The classical work was done with a
rotating-drum or a rotatingmitror camera. This
type of device, sometimes called a ‘‘streak”
camera, is vseful primarily for measuring the
velocity of a wave front or the motion of a
surface, (The drum camera principle is
illustrated in Fig. 5-1.) The field of view of the
camera lens is masked except for a narrow slit
parallel to the rotational axis of the camera, The
camera is aligned so the slit is parallel to the
direction in which velocity is to be recorded; for
example, to measure detonation velocity, the
camera is set up so that the slit is parallel to the
axis of the explosive stick. The rotating-drum
camera has the film mounted on a rotating
cylinder, preferably on the inside so that it does
not fly off. The image of the luminous wave
front leaves a diagonal trace on the film, the
slope of which is a measuxe of the velocity. A
rotating-mirror camera is similar, except that
the film is stationary and the image is swept over
it by means of a rotating plane mirror. This
makes possible much higher effective speeds,

The precision of a velocity measurement with
a streak camera depends among other things on
the “writing speed”, i.e., the velocily of the
image on the film, Present-day cameras of this
type have a speed of up to 10 mm per psec, With
such devices, velocity can be measured with an
accuracy of about 0.1 percent.

Although streak cameras have provided many
of the important data concerning detonation,
they do not furnish an image that allows one to
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divectly “see’” a phenomenon, Great advances
care about during World War II, therefore,
when very high-speed motion picture cameras

{or “framing’ cameras as they are usually called)

were -developed. (The -principal elements in the
scheme are depicted in Fig. 5-2.) With these
devices, rates up to 15.X 10° frames per second
have been obtained. Such cameras are now
available commercially, A rotating mirror is
used to -sweep the image over a baux of
individual “relay” lenses that serveto “stop” the
motion in discrete intervals and project on the
film a sequence of stationary irnages, one for
each lens. Thus, the number of frames is limited
by the number of lenses. A common camera of
this type has some 24 lenses and supplies a
corresponding number of sequential
photographs.,

So-called ““image dissection” has-been applied
to obtain much higher effective framing rates,
up to 10° or even 10? frames per second, This
téchnique involves -dividing the image into
elements that are “scrainbled” on the film,
thereby redu~ing the length of film that has to
be scanned in each frame by the rotating mirror.
To reassemble the image, the separate parts are
‘‘unscrambled” by reversing the process. Image
dissection results in a loss of detail in- those
techniques where portions bef ¥een elements.are
actually not recorded on theé film, or loss of
resolution when optical distortion of the
separate parts is involved .in displacing or
compressing the images on the film.

In photographing many high-explosive
phenomena the self-light produced by the
detonation is all that is needed to form the
desired image on the photographic plate. But in
some cases external illumination is needed. A

Figure 5-2. Optical System

common light source for this purpose is the
argon flash charge. Essentially this is just an
explosive charge such as -Composition B in an
atmosphere of .argon. Because -argon is
monatomic and has a high electronic excitation
energy, the shock wave near the surface of an
2xplosive charge produces a very high
temperature and thus an intense source of light.
By tailoring the geometry of the charge and the
size and shape of the argon envelope, thé
intensity and duration of the light can be
modified to suit the experiment. Timing of the
light flash can be synchronized by use of a
suitable circuit to fire the charge. The péak
luminosity of the.argon flash charge is said to'be
5 to 7 milion candlepower per square
centimeter. Duration may be varied from ag
little as 10® sec to- several hundred
microseconyls,

Anothe? light source for high-speed
photogzaphy 1 the exploding wire. Electrical
energy stored at nigh voltage in a condenser is
discharged into a fine wire of silver'or.copper. A
bright flash is obtdined, iasting for 50 to 60
psec. Alternatively, a spark. Jdischarge is: often'
used to.obtain a very brief exposure,

Single-exposure photographs f exploding
charges-can be made'in a variety off ways. If the.
self-luminosity is not too great, an argon flash,
charge or a spark of brief duration cen be used.
Or, if the luminosity of'the charge itself is too
high, the motion can be stopped by means of a

‘high-speed shutter®. One type of shutter

exploits the Kerr effect (see Fig. 5-3), which.is
the polarization of light passing through certain
liquids when they are subjected to a high electric
field. The Kerr shutter uses nitrobenzene in a
glass cell containing two electrodes. The cell is

AEC-Bowen Framing Camera

53




[

¥

AMCP 706-180

Downloaded from http://www.everyspec.co’m - L

situated ‘betwsyon crossed Nicol prisms, and the
assembly is placed in front of the camera lens,
When an -electrical pulse of short duration is
applied to the electrodes, light is allowed to
pass. The open time of the Kerr cell can be as

‘small-as. 8 few nanoseconds (10°? sec ). Another

type of shutter which is more convenient but
not as' fast exploits the Faraday, or
magneto-optic, effect. Here polarization is
produced-in a-dense flint glass plate by inducing
a strong magnetic field. i

52:2 PHOTO-OPTICAL SYSTEMS

‘While ‘mechanical .and: optical techniques.have
been highly developed in the photography of
detonation phenomena, the possibilities that
exist in the field of electronics involving, for
example, the photoeléctric effect and the
cathode ray tube have only recently beén
exploited. Ingenious ‘work in this area is 'the
work: of J. S. Courtney-Pratt® which has been.
directetd especially toward. the study of fast.
events on a:micro scalé, such as the initiation of
detonation in a singlecrystal of lead: azide: Onie
application-is"the .image-converter tube in. which
a photosensitive screen acts as the source of
electrons (cathode) in a cathode ray tube. With
this device the intensity of the image can be

KERR CELL

POLAROCIDS
(CROSSED) -

OBJECTIVE

‘EVENT

amplified many fold. Also, by means of
electrostatic or magnetic deflection of the
electrons, the image can be scanned at very high
speed. A combination of these techniques makes.

it possible 1o .achieve -effective writing speeds:

some 100 times- greater than those in a rotating
mitror camera: Also, a.very effective.shutter for
single-frame or multiframe photographs can be
obtained by “gating’”’ the passage of electrons.in
the ‘image converter tube. Several -ifpage
converter cameras are ‘presently .available
commercially.

523 ELECTRICAL SYSTEMS

Although the streak camecra is an important
and in some cases indispensable todl for
measuring detonati>n velocity, a more
convenient technigue‘ commonly -employed’ in

Toutine work is:the use of “ionizatioh probes”.

These detect the-passage-of the detonation wave
as a result of the electrical conductivity in the
reaction zone. A series of two .or mare such
probes are imbeddéd in the charge; spaced at
intervals along the surface. By ineans of suitable
electrical circuits, the passage of the detonation
wave front is-signaled to a cathode ray tube and
displayed on a time base. The .average
detonation velocity between two.probes may

PULSER

Figure §-3. Arrangement of a Kerr-effect Shutter
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then be calculated from the separation distance
and the time interval between signals.

The jonization probe itself may consist of two
wires held a small distance apart with a voltage
source—such as a charged condenser—applied
across the gap and.a series resistance to indicate
the passage of current. A convenient type of
probe for many purposes consists of a pair of
enamel-coveted wires that are twisted together.
The enamel is quickly burned off in the heat.of
the.detonation front.

For the time base, a combination of a
triangle-wave generator applied to the-horizontal
deflection plates of an.oscilloscope and a single
linear sweep applied- to the vertical plates gives a
long duration and high
resolution. Time markings may be applied by
means of either beam intersity modulation or
beam deflection. The circuit elements are shown
schematically in Fig. 5-4, and the type of record
obtained is shown in Fig. 5-5.

The cominon ionization probe method is
useful only for obtaining average velocities in a
sexies of intervals, When one wants to measure
accurately a rapidly changing velocity (for
example, in ionization experiments), a variation
of this technique can be used which yields a
continuous distance-time trace like *hat given by
a -streak camera. In this arrangement two long
parallel lengths of resistance wire are:inserted on
the axis of the explosive charge and attached to
a voltage source. As the detonation wave
advances it effectively shorts out the two wires
at the wave front and thus reduces the series
resistance in the electrical circuit by the
fractional extent to which the wave has
progressed along the length of the wires from
the open end. By suitable circuitry a resistance
vs time trace can be displayed on an oscilloscope
screen, which is essentially equivalent to

-distance vs time for the detonation wave,

Still another method of measuring detonation
velocity has been studied by Cook!; this
irvolves using the explosive charge as a wave
guide for microwaves.

524 D'AUTRICHE METHOD
Besides these relatively sophisticated

techniques, there is a simple velocity test known
as the D’Autriche method. This is still used to

some extent in routine westing of dynamites. It
employs a detonating cord as a standard and
gives a measure of the velocity in the test stick
compared to that in the cord. The test
acrangement is shown in Fig. 5-6. The ends of'a
loop of detonating cord are inserted in the test
stick and the middle is taped to a metal *‘teller”
rod (lead or steel are often used). The exact
mid-point of the detonating cord is marked on
the teller rod. When the stick detonates it
induces detonation in the two ends of the
detonating cord, not simultaneously, but at an
interval between equal. {o: the -test base line £
divided by the detonation velocity D, in the fest
stick. The two detonation fronts travelmg from
opposite ends of the coid with a speed. D
converge at some point a distance 9 beyond the
mid-point toward the rear end of ‘the Joop: At

‘the point of meeting head-on, ‘the drtonation

waves produce a sharp dent in the téller rod
which is readily: identified. The ratio D /D of
the velocities is equal to one-half the ratxo !Z‘ /!2

of the lengths and if D, is known, D, can be
determined. The accuracy, of course, depends
on the reliability of the value for D and on the
care with which the test is carriéd out.

5-3 DETONATION PRESSURE

The problem of measuring the extremely high
and. short-lived pressure in the detonation wave-
initially seems insurmountable. Theory predicts
the magnitude to be some hundreds of.kilcbars,
a level that may be compared, for example, to-a
head of water thousandsof miles deep. These
pressures equal of exceed the highest levels that
can be producedih any other way at the present
time. Indeed, the generation of shock waves in
materials placed in contact with high explosives
or impacted by explosively accelerated plates
affords an important unique means for studying
certain phenomena at the limit of man-made
pressures,

No direct standards or scales are available
against which pressures of this magnitude can be
compared. However, a sound basis for the
determination of pressure is provided in the laws
of motion. In fact, we now posess very accurate
measurements of pressure in the detonation of
various explosives, plus a wealth of precise data
on the behavior of many inert materials at these
high pressures®.
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‘pressure across: the front P,

The mechanical® conservation equation
expressing conservation of momentum across a
shock. front (Eq. 2-133 of Chapter 2) relates
- p, to three
measurable guantities—initial dens1ty p, of the
unshocked material, shock velocity U ar.d

particle veloclty u, of the shocked
material—according to
p-p,=puU (51)

In a steady staté wave, U is readily messured.
Determination of p, hmgco, then, on finding u.
In general; to ways aré possible to determine
u,, the most common being to measure the
velocity u re at a free surface. For a shock wave
ir-a condensed nonporous inedium, u /o O be

-equated-without much error to exactly twiceu,,

ie.,

acoustic

u, =2 (5-2)
Eq. 5-2 is rigorous only in the infinitesimal
approximation. It amounts fo
neglecting the entropy increase at the shock
front and the energy dissipated in. plastic

. deformation. For many condensed, nonporous

materials, Eq. -2 is a reasonable approximation
at high pressure. )

Another method of obtainingu, is to measure
the density p, behind the shock front by flash.
X-ray densltometzy This. value may then: be
used to determine u, through the. equation for
conservation of; massJ(Eq 2-129)

pU =Py (U~ ) &3)

A close estimate of the particle velocity

-associated ‘with the C-J pressure (equilibrium

Figure 5-5, 2ig-zag Oscilloscope
Obtained With Raster Generator

TIME MARKS
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pressure at the end of the reaction zone) in a
detonating explosive can be obtained from a
theoretical equation due to H. Jones®, which is
discussed in par. 7-3. This equation (Eq. 7-30)
relates u, fo detonation velocity and other
properties of the explosive.

u = D/[g,(2 + «)) (5-4)

where g, = 1 + dWnD/dfn p,, and ‘@ is a
dimensionless hnumber that deperids oh
certain thexrmodyhamic properties. The value of
is close to 0.25. For many explosives g, ‘is
approximately equal to 1.7; hence, one may
estimate u, from D by the approximate relation

u, = 0.26D (5-5)

Combining Eq. 5-5 and Eq. 51, one obtains
{reglecting p; )

p, = 0.260,0" (56)

Eq. 56 gives values usually within a few peréent
of those deterrnined experimentally.

Pressure measurements obtained at the Los
Alamos Laboratory”'® are. given in Table 5-1.
The niimber of significant figures reported is
indicative of the accuracy of this work. The last
line of the table gives the pressure calculated by
substitution of the values for p, and D-in the
approximate relation Eq. 5-6. The agreement
shows that this is indeed quite a useful formula.

53.1 PRESSURE IN ADJACENT PLATES:

Pressures in the detonation wave have been
very accurately determined by the meashremernt
of pressure in a metal plate in. contact with an
expiosive, The method was proposed by

Goranson® at Los Alamos in- 1945, but such:

were the rigors of the technique that results
were not forthcoming until some-ten years later.
5% Both the theory and the methods in this
type of experiment are somewhat involved-and
cannot be -discussed fully here. The reader is

TEST EXPLOSIVE
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Figure 5-6. D'Autriche Test System
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TABLES53 CHAPMAN-JOUGUET PNESSURES IN VARIOUS EXPLOSIVES

63/37 64/36 77423
Parameter RDX® TNT* Comp.B’ Comp.B' -Gvclofol®
Density p,,g/cm? 1.767 1.637 1.67 1.713 1.743
Detonation Velocity D,mfsec  863% 6942 7868 8018 8256%
C-J Pressure, kbar: meas. 3379 189.1 272 292.2 312.5
Eq.5-6 345 207 272 290 312

referred for details to the given references.
However, the basic ideas are simple. The
pressure p,, behind the shock wave in the metal
plate is determined through Egs. 5-1 and 5-2 by
a simultaneous measurement ¢f shock wave
velocity U and free-surface velocity u,, . This
determination is made for several thicknesses of
metal and extrapolated to zero or near-zéro
thickness, depending on whether the initial
pressure in the precursor shock (the so-called
‘“vor. Neumann spike’) or the Chapman-Jouguet
pressure is desired (see Fig. 5-7). The reason an
extrapolation must be made is that the shock
front in the metal is continually attenuated as it
passes through the metal because of the
“overtaking" effect of the rarefaction traveling
behind it. Thus, if one wishes to determine the
pressure sy the interface between metal and
explosive at the instant the detonation front
first reaches that point, if is necessary to know
the shock and free-surface velocity that would
be produced in aninfinitely thin'plate. When the
initial pressure p,, in the metal at the interface
is known, pressure p, in the incident detonation
wave can be calculated from the
“impedance-match” formula that govems the
interaction whicii the waie experiences at the
interface. An. approximats but quite accurate
version of this formula was:deduced by Duff and
Houston?; it is

+p0 U )

mom

pm/px = 2o, um/(pxe (5-7)
where p is the initial density, U the shock wave
velocity, and the subscripts m and x refer to
metal and explosive, yespectively,

The presre in the aljacent plate is usually
diteziuned «y measuring particle velocity, free
susface veuszily, or stress transmitted to a
second material, Techiliques for generation of

pressure pulses snd measurement of prezsure in
the second material are discusséd in the next.
three subparagraphs.

53.1.1 Pla)e Wave Explosive, Systems

A prereqisite for measurements. of pressure in
plates is aimeans to obtain a wory flat (planar)
délonation wave front. Since the wave is
initiated in a small area by a .c‘onator cap, it
starts out as a spreading sphesical front, The
problem is, therefore, to mike an explosive
“leis” that will convert the diverifing wave front
toc a plane, This development ce - -~ aboutat the
Los Alamos Scientific Laborati.y shoxtly after
World War II. The “plane wave lens” has.become
indispensible for studying strong shock waves,
The Los Alamos experiments customarily
employ an 8.in.-dismeter lehs to initiate
detonation in a precisely machined block of
-explosive. Experimental observations are
confined to the céntral portion.of the charge to
avoid edge effects (rarefactions due to lateral
axpansion), Fig. 5-7(A) shows the charge
geometry.

Fig. 5-7(B) shows the .contour {pressure vs
distance) of the detonation wave in the
explosive charge before it reaches the
explosive-metal intetiace, “The wi. 2 froni is a
shock, and this iz followed by a very rapid
pressure decay in the narrow region where
chemical reaction takes place. This portion is
called the “von Neumann spike”. Following the
steep decay, a much more gradual pressure drop
occurs in the ravefaction that proceeds from the
detonating end of the charge. This portion is
called e “Taylor wave”. The Chapman-Jouguet
point (C-J point) is at the juncture of these two
portions, i.e., at the termination of the “von
Neumann spike”. At this point chemical
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reaction is virtually complete. The C-J
conditions determine the detonation velocity as
well as other important parameters of the
explosive, This subject is discussed in Chapter 6.
The von Neumann region and the Taylor wave
are described in Chapter 8 -which deals with the
structure in the defonation,

Fig. 5-7(C) shows the shape of the shock wave
at a latér time, after it has crossed the
explosive/riets! interface. Since most metals
have a nigher acoustic impedarice than
explosives {i'e., 2l higher for the metal than for
the explosise), a shock wave rather than a
rarefaction, is reflected back from the metal
surface inco the detonation product gases in the
explosive, This reflection occurs at the instant
the: shock wave meets the interface and, since
pressure must always be equal on both sides of
the interface, ‘the transmitted shock advancing
into the metal has at that moment the same
pressure as the raflected shock in the explosive..
However, as the two shock fronts advance
traveling in opposite directions away from the
interface, the pressures change. The reflected
shock changes because the wave is traveling back
info a more rarefied region behind the
detonation front. The {ranismitted shock changes
because the front is constantly attenuated by
the rarefaction behind it. The steep von
Neumann spike region rapidly disappears in the
metal since there is now no reaction process lo
feed energy to the shock front. Duff and
Houston found that the spike vanished at a
point about 1 mm from the interface of an
aluminum plate in contact with Composition B.
Fig. 5-7(C) shows the contiguration after ihe
spike has disappeared in the transmitter wave.

The wealth of information harvested from
experiments involving measurements in adjacent
plates is illustrated by data for water, Plexiglas,
and aluminum shown in Fig. 5-8. These data
were taken from Ref. 10. Such curves are known
as Hugoniot curves (see par. 2-8) and reflect the
compressibilily of the material under dynamic
conditions in a shock wave. The data of
Professor Bridgman for Plexiglas’! are also
ploited in Fig. 5-8; these are isothermal points
obtained in static experiments, They lie
somewhat below the Hugoniot curve, as would
be expected, but their position is consistent with
the dynamic measurements, Comparison of the
pressure range covered by dynamic

510

measurements with that explored by Bricgman
dermonstrates the power of these new
techriques.

At the present fime the equation of state in
the hundreds ° kilobar ramge is known for
about thirty me..s as well as for many other
materials, Recenf measurements have yielded
data in the? megabar region for a: number of
materials®®, With this information now
available, and with certain simplifying
assumptions, only the free-surface velocity is
needed to determine pressure in a given

experiment since the shock wave velocity can be.

calculated from the particle velocity by use of
the equation of state.

53.1.2 Prassure Transducers

Recent work at several laboratories has
resulted in the development of seyeral devices
for the measurement of pressure, These are the
piezoelectric “quartz gage™2'% aund a
piezoresistive “manganini gage™ 613 both of
which are now being extensively applied to
study the response of solids to shock waves. The
manganin gage has also heen employed in
underground nuclear test prograins as an
“‘in-material” gage, measuring the stress history
of earth media close to a nuclear event.

The quartz gage is well suited to the
measurement of interface stress pulses up to
several tens of kbars and with dutations less than
the transit time through the gage. The high time
xesolution -of the gage is a consequence of the
fact that tne output signal from the gage is
proportional to the instantaneous pressure
difference across its faces, Hence, the gage need
not come into mechanical equilibrium with its
surroundings before a valid measurement of
interface stress can be made. Fig. 59 shows a
quartz gage in place on a block of metal, the rear
face of which has been subjected to an impulse

from an explisive plane wave generatos. Thig

impulse creates a shock wave propapzting from
left to right in the specimen, As the stress wave
enters the x-gut quartz disk comprising the gage,
a polarization vector P is produced by the
rolative displacement of the S** fons and the
0% jons in the quartz structure, Henge, the
electric displacement vector D = P + ¢, E in the
cryste) wingoe with time, and for external short
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circuit conditions it is shown in Ref. 14 that one
has

Y W
i(t) A(Ft-)- 2 [e, - 0} (5-8)

where i(t) denotes the short circuit current, A
the area of the crystal, f a piezoelectric constant,
U the shock velocity in the quartz, R the lens th
of the crystal, and ¢, ‘and 0, represent the
x-compenents of siress-at the stressed- electt sde
und the rear face of the quartz crsvstal,
respectively. Eq. ‘3-8 is. derived with. the aid of
several assumpticss, the .details of which -are
given in Ref. 14. Ttis equation provides a means
of measuring .tne tiime dependence of o (t) by
monijtoring: x(t) Experimentally, it is. found that
Eq. 5-8 can' be used-for peak stress amplitudes of
a fevs tens.of kbars. The short-circuit current i(t)
is monitored by photographing, with the aid of
an-oscilloscope,, the incremental time-dependent

Itage V(t) = Ri(t) developed across a small

aodistance R. We shall not describe: here the

procedures.necessary to ensure that the observed
voltage ‘transient V() is accurately proportional
to ‘the stréss difference across the crystal,
referring the reader instead to Refs, 13 through
15 for details of experimental technique and
gaga construction.

The piezoresistive manganin gage utilizes the
change in resistance resulting from « change in

‘resistivity and volume under compression as a

measure of the applied stress. A conmioti form

METAL PLATE
\///

L~

of the gage consists -of a fine wire embedded a
small distance into a block of nonconducting
material, usually a plastic. The block is placed.in
contact with the.specimen such. that the wire is
near the interface. The responsé of ihe wireis a-
measure of tlie x-component of interface stress.
The manganin gage has- been used to much;
higher pressure than the quartz gagé (neveml
hundred rather dhan. = few tens -of kilobafs).
Also, recordmg trmes available with the
manganin gage can be quite-long: of the order of
10- usec. I addition, the manga.:in gage-can be
embedded in a thin wafer within-solids' *at-ire
to be shock loaded, ‘providing .#n. n-C..cefial
measurement of the x-component rather than a
rear-surface méasurement as dozs the quartz
gage. Measurement uncertcintind -arising from:
impedance mismatch are thereby/ minimized.
The ptinciple of operation.cf tha piezoresistive
transducer is siniple. The application of pressure
changes the resistivity and volumie of a gage
wire, the resistance of which is momtored by
measuring the voltage developed dcross: the gage
when a steady currént flows in it. In pri~tice,
use is made of a pulsed gage current to obtain
substantial -output voltage. ‘Pul;ed‘ _eurrents
minimize heating of the gage wire unduly. Fig.
610 shows-the configuration.of a particiilar- gage
used in ]abantory pressure measuresnents'
The current .Jeads of the four-terminal resistor
are marl ed I whx‘e the voltage ‘e.ads are marked
V. A nat-tupped constant current pulse of about
3a peek amplitude is turned on approximately 2

X-CUT: QUARTZ CRYSTAL

ELECTRODE

r——CSIGNAL OUT

SVIEWING RESISTOR R

SHCTK BYRECTION ~————p

Figure §-9. Configuration for the Measurewcent of Interface Stress Using a Quart,, Pressure

Transducer

613

Barm S me e wS— o

——




Downloaded from http://lwww.everyspec.com

AMCP. 706-180

psec before the shock wave arrives at -the ginge
wire: By Ohm’s law, the change in gage wire
resistance- is directly proportional to the
nmphtude of tie incremental voltage developed
‘across it, and since the resistance change is in

‘tum proportional to the pressure, the manganin

gage provides a simple wiy of ‘measuring
dynamic pressures, The gage facior, i.e, the
constant k in the equatwn R{P) = kP where R
denotes resistance and “ stands for pressure, is

deterinined by calcuiating pressure from a
measurement of free-surface velocity Uf and
the shock velocity U of a shocked material in
which the gage is embedded and then by
applying the Hugoniot jump conditions
discussed in par. 3-3 to determine the pressure
mssociated with thé shock wave. Simultaneousiy,
the voltege transient V(t} is measured across the
gage. By repeating this expetiment several times,

A pressure transducer utilizing a rotational
polarization effect caused by the passage of a
shock wave through dielectric materials
consisting of polar molectiles has also been
developed! ?-21, although it appears to have
been less frequently applied in shock physics
experiments than either the mangenin gage or
the quariz gage. The pnncxple of operation of
this polarization gige is quatitatively similar to
that 0. the quartz gage. The advancing shock
wave aligs permanent dipoles present in.polar
dielectrics so-as to cause a polarization véctor to
appear in these materials, This ffect causes the
plane parallel capacitor consisting of the
dielectric and two metallic electrodes to become
chaxged, The current from this capacitor it
monjtored by measuring the voltage drop across
a small resistor in ‘an external circuit. Such a
transducer. has a fast response and is, therefore,
well suited to the study of details of:shock wave-
structure. The available recording time is
typically 2 to 3 usec, Fig. 5-11 illustrates the
kind of record obtained. The polarization
transducer appears to be less convenient to use
thaneither the manganin gage or the quartz;gage

CURRENT LEADS |
VOLTAGE LEADS. V

MANGANIN WIRE NEAR EPOXY-
METAL INTERFACE

Figure 5-10. Configuration of Manganin-epoxy Pressure Tromediucer

onie can obtain a set of poirf 1:a calibration

curve relating P and R(P). T, stion appears

to be accurately linear to ati,, ~ kbar, The

value of k_is on the o  of 00029
ohm/ohm/kbar and varies .. the alloy
compodition® ¢,
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since. a threshold. pressure of about 30 kbars
exists, below which no output signal is obtained,
and since the pressure versus output current
relations are nonlinear in ways specific to the
particular dielectric materials used.

One other pressure transducer will be
mentioned here, ie., the *‘sulfur gage’ described
in Ref. 21. Sulfur exhibits a large decrease of
electrical resistance when it is subjected to
pressures-in the-delonation range, changing from
an excelient insuiator a 1 bar to a good
conductor at 200 kbar. This property has heen
exploited in a transducer to measure pressures in
shock waves ?!*22, The response of the sulf-~

_gage is nonlinear; also unlike manganin, the plot-

of resistivity versus pressure for sulfur exhibits
marked curvature. In addition, above 200 kbar
the rrvstivity of sulfur is so Jow ‘that its
measu_.nent is inconvenient. For these reasons,
.comparatively little work has been published in
which the sulfur gage has been used to monitor
pressure wave profiles.

5-3,1.3 Particle Velocity Measurement

Various means have been employed to
measure shock and free-surface velocities in the
metal plate23, The earliest work employed a
pin technique. Pointed metal pins were spaced at
graded: distances from the frec surface. When the
surface was impelled forwazd by the impacting
shock front, it made contact with each of the
pins in tumn. The pins were wired to separate
pulse-forming circuits, and the pulses produced

CURRENT

A Shock front entars dislectric
B Shock front arrives ot second slectrode

Figure 5-11. Form of Polarization Signal from
Polarization Gage

on contact were displayed on a high~speed
oscilliscope sweep. In this way the free surface
velocity wué measuréd, To determine shock
velocity, small wells were drilled al varicus
depths in the sutface of the plate and in each
well a pin was placed almost in contact with:the
bottom surface. Thus, as the shock wave arrived
at each of these points (before reaching the main
free surface) it caused a contact to be made
almost -nstantly, In this way the shock ws. ¢
velocity was measured inside the metel plate
within a shert distance of the free surface: What
is desired is an instantaneous reading of shock
velocity at the surface. Since the shock is
constantly attenuating (a typical rate of
attenuation (.5 in. from the explosivé/mutal
interface is 10 percent per in.), it is necessary; t»
have velocity measurements within s-few-teriths
of a millimeter of the surface. The technique,
therefore, requires the utmost precision in
machining the test speciniens. Nonplanarity in
the detonation front can also lead to serious
errors. Work in this field, therefore, vepresents
the culmination of patient -effort in a 10st
demanding endzavor.

Another means to measure shock and
free-surface velocities is the “Lucite wedge”
technique® illustrated in Fig. 512(A). A
flatshottom groove is milled in the form of a
ramp, making an angle of 10° with the metal
surface. One end of a Lucite rod of rectangular
cross section is placed in thexramp and inécther
end extending about an equa! distance ixyond,
forming a wedge-shaped space be‘ween the rod
and the metal surface. The Lucite rod does not
rest directly on -the netal surface in the ramp
but is shimmed up so that there is a narrow gap
between, Likewige, a thin metal sheéet is placéd
over the under mirface of the overhanging
portion of Lucite and separated by shims so as
to form a narrow gap at the surface of ‘this
portion of the rod. The gap under the Lucite rod
is filled witih argon, When the argon is suddenly
compressed because of the movement of metal
beneath, it flashes brightly. A streak camera is
set up with the slit parallel to the long axis of
the Lucite rod; a photograph like that showr in
Fig. 5-12(B) is obtained. This yields' the shock
velocity and the free surface velocily on the
same photograph. In later work it was found
that a coating of paint filled with
“microballoons” (very tiny, hollow plastic
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Figure 5-12, “Wedge® Technigue for Measuring
Free-surface Velocity and Shock
Velocity

spheres) could be substituted for the argen-filled
gap with equal effect.

A third method for measuring velocities
eroploys Lucite and argon gaps in a similar way
but .does mot use the wedge. Instead, the
free-surface velocity s measured across a fixed
gap between a Lucite block and the metal
surface; Shock velocities are measured by
atlaching smali metal blocks of various
thicknesses to the surface of the main plate and
recording the transit time of the shock wave in
each by the argon-gap method,

The most recent advances in the measurement

.of particle velocity aze the Faraday {oil** and

5-16

the laser interferometer, techniques?®. With the
interferometer, the movement ~{ a reflecting
surface can ba.monitored as a . .iGtion of time.
The surface can be a fre¢ surface or in
transparent materials a reflecting plané within or
between two specimens, The Faraday foil
technique provides. a. measurement of particle
velocity in nonconductors. These two
techniques are described here briefly. _lore
detailed information can be found in. the
references. :

The laser interferometer is shown
schematically in Fig. 5-13. The parameter
measured is the free surface velocity of the

specimen meterial, The principle of operation is:

as follows. Light from t:2 single fréquercy gas
laser is focused on fiie surface of the target by
means of a lens 1. The reflected light is
recollimated: by LZ, and- then split by a beam
splitter Bl. Half the light traverses the delayleg
and is recombined with the undelayed half at
beam splitter B2. The photomultiplier ‘then
fecords a signal whose brightness depends on the
relative phases of the two beams, Since the. delay
leg is fixed and the wavelength of the inputlight
is a function of free surfiace velocity (Doppler.
shift), the number of fringes recdrded at the
photomultiplier is related to the free surface
velogity. The relation. ship: can be derived as
follows®®, The Dopplet shift is given by

ANE) = - (20——7‘—> 0) (5-9)

where A is the wavelength, ¢ the speed of light,
and u(t) is the speed of the reflecting surface at
ime ¢, The delay leg length N\ is

N\ =¢r (5-10)

where 7 is the time fur light to traverse the delay
leg. Differentiating Eq. 5-10 gives

cr
AN(t) = '(K-f) AN(E) (511)
and substituting for AN in Eq, 5-9 from Eq. 5-11
gives A
ut) = (?r) AN() (5-12)

The number of fringes AN as a function of
time are thus relaled to the reflecting surfaces
velocity by a constant A/(2r).
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The major advantnges of the laser
interferometer over previous free surface
systems are the high time resplution and the
hxgh surface velocitycapability, The limitations

in-rise time am limited by the-capability: of the

photomultiplier or oscilloscope recording
system, The bandwidth of each system is
typically 600 MHz. or a response time of ~ 1
nsec,

The Karaday foil technique utilizes th2 voltage
generated betwéen ends ol a conductor moving
in a stationary magnetic field as a measure ‘of

foil velocity. Experimentally,.a:métal. foil, small

in the direction of shock propagation is placed

SPECIMEN

in or between sections of a sample. The sample
is. placed in a uniform. magnetic field and, as the
sample is accelerited by’ the passage of a stvess
wave, the foil moves with the sample. The
voltage induced across the foil i§ monitored as a
function of time on an oscilioscope.

The relation between the voltage induced and
particle velocity i 15

= 2' (: X H/10> (5:18)
where £ is the Tlength of conductor in
millimeters, 4 s gamcle velocity in millimeters
per microsecond, F is the field:strength in gauss;

——
SHOCK
DIRECTION

REFLECTING

) / SURFACE

/ MIRROR

LENS

LASER

REFLECTING
PRISM

DELAY LEG

T PHOTOMULTIPLIER

Figure 5-13. Laser Interferomeier System (The velocity of the reflecting aurfacc is
related to the number of fringes observed by the photomultipliar.)
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and V is the voltage mn volts. The accuracy of
measurement is. limited by the ability to measure
H and the effective length § of the conductor,
and by a knowledge of the magnetic
susceptibility thange of the sample during shock
loading,

Advantages of the Faraduy foil tecl. nique are
(1) high time resolution, (2) simplicity, and (3)
most important, the-capability of measurement
within. a test spec ..en. Disadvantages are the
ditficulty in calibranion of the system and the
restriction to mreasurement in a nonconductor.

83.2 X-RAY FLASHPHOTOGRAPHY

“The use of X-ray holds great promise for the
study of explosives but until quite recently
X-ray sources have been inadequate to exploit
the technique fully.

Xeray absorption fumislies an absolute
measure of the density of matter, However, in
many applications the important observations to
be made with X-rays concern the geometrical
relationships of shock fronts and contact
surfaces; it is in this area where X-rays, because
they make it possible to “see inside” the
detonating explosive, provide a uniquely
appropriate tool. Until now the difticulty has
been the inability of available sources to
penetrate charges more than a few inches in
diameter. This has been a serious limitation. The
advent of PHERMEX?® will greatly reduce this
problem;

The majcr published work with flash X-rays
has been done by Schall?” at Weil am Rhine
(Institute de Saint Louis in ¥rance). In Ref. 27
Schall lists three determinations of.detonation
‘pressure based on flash X-ray photographs, One
method involves the acceleration. I a brass plate
in contact with explosive, By ineasuring the
cuevature of the plate in the vicinity of the wave
front, Schall estimated the pressure in
Composition B to be 1.6 X 10° atm. This figure
must underestimate the pressure at the front
because it is obtained from an average value of
the acceleration during the expansion of the
explosive gas against the plate. Accordingly, the
figure is not the ingtataneous initial value that
relates to p,.

Another pressure estimate reported ' Schall
was derived from an X-ray photograp}, showing
the houndary of the expanding gas from mn

518

unconfined charge. Schail used the following
approximate theoretical expression, ascribed to
W. Ddering and G. Burkhardt?®, which relates
the angle a that this bound:~ makes with the
charge axis and the effctive adiabatic exponent
of the product gases K:

« = 1(&:&1) -1 (5-14)
2\ - 1

From the observed aagle of 40%, « was

calculated using Eq, 5-14. The value found was

2.8. The theory of detonation (Chapter 6) shows

that the patticle velocity u, is equal to D/(k +

1); hence, from Eq, 5-1

p, = o0 f(x + 1) (5-15)

Substituting tihe value for x in Eq. 5-11, Schall
obtained a value of 2,5 X 10° atm for the
detonation pressure in Composition B.

It may be noted that the value of k obtained
by Schall from this siinple megsurement agrees
very well with the value of 2.77.obtained frarmi
the isentrope-as determined by Deal, Also, the
tactor 1/(x + 1), which on the biisis of Schall’s
work has a value of 0.26, agrees with the
number obtained independently from the
theoretical expression of Jonés in Eq. 5-6. We
have previcudy pointed to the agreement
between pressures cbtained from Johes”
expression and the meesured data (Table 5-1).
Taken ali together, these observations form a

-highly consistent picture.

By cainparing the optical density in the X-ray
photograpl: immediately behind the wave with
that in front, Schall was able to estimate the
ratio p; /p,, and hence to calculate the. pressure,
using Eq. 5-4 to find u, in terms of D. In thix
way he obtained u value of 1.9 X 10% atm for
the detonation pressure in Composition B. This
value is about 30 percent too low. The error is
probably imdicative of the limitatiohs of the
equipment in prepise quantitative measurements
of ihis kind.

An additional method of measuring
detonation pressures involves flash X-rays to
measure wave velocities in adjacent plates.
Perpendieniar incidence of a detonation at an
interface can have one of several effects,
depending o the impedance match between the
explosive and the particular inert medium in
centact. For dense metals, such as steel or lead,
perpendicular incidence always results in a
reflected shock. However, if the direction of
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waye propagation is parallel to the surface of the
metal or at a small wingle, a rarefaction is
produced in the explosive by the interaction. As
the angle of incidence is increased, a point is
reached where neither a rarefaction nor a shock
is reflected, i.e., a “match” is obtained. This
condition can be detected in flash X-ray
photographs, Dr. Jane Dewey®® of Ballistic
Research Laboratories showed that when this
condition of no reflection occurs, the
detonation pressure can be calculated from a
relationship involving the angle of incidence o
and the angle 4 by which the surface of the
metal is depressed at the edge of the advancing
detonation front. The relaticu is

2 .
o PoDsin b (6-16)
1 cos @ sin (a+ 8)

Observation of the precise angle for zero
reflection proved to be difficult bu.. ihe pressure
values obtsined independently in this manner
confirm thevalidity of figures derived by other
methods,

‘Work done with X-rays up to thepresent time
thus comrohorates very well the data obtained
from other more precise but léss direct types of
meagurements of the properties :in the
detonation wave. With the new commerciaily
available high energy’ machinés, much greater
precision in data of this sort should be possible.
More importantly, we should be able to learn a
great desl more about three-dimensional cffects
in the detonation wave (e.g., the effect of the
charge boundary) than is known at present.

'5-4 BLAST WAVE PRESSURE

Precise measurements of shock wave pressures
in air or under water are usually made by means
of piezoelectric fransducers. The favorite
piezoelectric material is tourmaline but quariz
has also been uséd. A good description of

piezoelectric blast gages anc how they are used.

is given in Ref, 31.

Measurement of pvessure in air blast waves
poses a special problem because of the large
particle velocity or “wind” assc.iated with the
shock. The presence of the gage itself disturbs
the flow in the medium and this can lead to
serious errors unless special precautions are
taken in the constructiors and mounting of the
transducer. There ae two well-defined ways to

measure the pressure in the blast wave, usually
referred tu as “side-on” and ‘“‘face-ox.” The first
term applies to a measurement of the pressure
sensed on the face of 2 transducer when it is
oriented along the direction of travel of the
shock wave, i.e., in a direction perpendicular to
the shock front. Ideally, the gige should be
mounted ‘in an infirite baffle, or wall, which is
aligned along a radius.from the explosive charge.
If the charge were-fired on the ground, a side:on

measurement could be made by mounting the

gage flush with the ground surface. For side-on
mecasurements in free air, the piezoelectric
element must be mounted in a baffle of
sufficient size and suitably shaped at the leading
edge to minimize the distortion of the pressure
field produced by the 'blast wave around the
gage. Construction of a gage designed for this
purpose at the Ballistic Reséarch Laboratories is
shown in Fig. 5-14.

Face-on ‘measurement refers...o :the recording
of pressure behind the reflected shock produced
when ihe air blast wave strikes a massive wall at
normal incidence. Sitice the air is brought to rest
by the reflection, no problem of aerodynamic
distortion arises here. A serious source of
spurious signals in this case, however, is
mechanical vibration of the wall or components
of the mounting fixture, Special precautions
must be taken to eliminate these undesirable
effects, The peak overpressure of a face-on
measurement is twice that of a side-on
measuretaent at very low pressure levels
(acoustic approximation) and increasés to
several times the side-on pressure, at higher
pressures,

For the shock waves produced imair by high
explosives, the most important parameters are
the peak pressure and positive impulse [pdt.
Under water, the energy quantity obtained by
evaluating the integral [p2dt under the
pressure-time .curve is also important for some
considerations. A pressure and flow
piicnomenon known as the “bubble pulse”,
which follows at some distar:ce behind the shock
front, is also important in underwater effects.
Some charecteristics of shoek waves in air and
water are discussed in Chapter 13,

Various mechanical devices have been used to
record shock wave effects both in air and
underwater, The best known of there is the
diaphragm or “Bikini’’ gage, the latter name
deriving from the use of this device at the first

§19
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nuclear homb tests at Bikini Island after World
War I1. This gage consists of a sheet of aluminum
foil clamped between two steel plates which
have circular opénings of various diameters,
Several nf these gages are placed face-on to the
blast at'various distances from the cha.ge. Aftfer
the charge is fired, the gages are .inspected to
determine the smallest-diameter hole in which
the aluminum foil is broken in each case. This is
a measure of the peak blast overpressure, These

gages can be calibrated with known charges by

meéans of the peak-pressure vs distance curves
that have been comniled from piezoelectric data.
If a sufficient number of diaphragm gages is used
on a test so that significant statistical averages.
can be {aken, these -devices produce quite
reliable information.

A mechanical .gage for measuring blast impulse
close to explosive charges is described in ‘Ref.
32. This gage consists simply of a projectile in a
eylindrical barrel which is mounted in the wall
ofa heavy.concrete enclosure strong enough to
withstand the blast. The projectile is placed on
the mouth of the tube where it is exposed-tc the
incident blast wave. It acquires .a velocity
proportional to the positive impulse in the, wave.
This gage appears to give quite accurate absolute

measurements in a sion where delicate
piezoelectric instru: .on is not entirely
practical.

Dewey®?, at the Shuffield Experimental

Station in Alberta, Canada, has developed a
technique to measure the air velocity associated
with the blast wave. The method involves
measuring the displacemenc of smoke trails in
motion picture photographs. It is applicable
especially to large charges of chemicai explosives
and to nuclear explosions, Good agreement with
theoretical predictions has been obtained,
except for oxygen-poor explosives like TNT. In
the case of the latter, the detonation products
continue to bum in the oxygen of the air. The
relatively slow release of energy from this source
causes an outward flow of air which contributes
to the pressure and particle velocity in the “tail”
of the blast wave, However, even for TNT, the
particle velocity data at short distances behind
the shock front are in good agreement with
theory.

55 DETONATION TEMPERATURE

The agreement; of various values of detonation
pressure reviewed in this chapter may convey

the impression that our knowledge of the
detonation state is quite secure. Actually this.is
far from true. Except for Eq. 5-5, whicl: is based
on a theoreticar deduction of Jones, the
consistency of various estimates of préssure is.
merely testimony to the -accuracy of
experimental obseriations. The concepts from
which these various means to measure pressure
are derived are the continuity -equation
(conservation of matter) .and‘ the equation of
motion (Newton’s second law). The energy
relation is not involved. Hence, experimental
observations .of pressure tell nothing about the
therm-) properties of the explosion products.
Thijs is obviously a riatter of considerable
intercst, yet, strange to say, it has receivéd
relatively little atteation from workers in this
field. The reascu§ are not apparént because
measurement; of temperature would.not seem to
be fraught with unusual -difficultizs ‘compared
with other experimental determinations on
explosives.

A method to-measure detonation temperature
and some expeiimental results-are described by
Gibson and hir coworkefs in Ref. 34. The
temperaturer determination deperds on
measurement-of the relative intensity of light at
two different wavelengths and is based: on the
Wien displacement law {6 Planck’s dis&ribution
law). There are several' assumptions implicit in
this method: (1) that the -emissivity of the
medium at the two wavelengths'is the same; this
assumption is not likely to lead to serious errors,
and (2) that the contribution to the measured
light levels. by the cooled erpansion products is
small. The\apparatus was calibrated-by standard-
methods, .using a source of known temperature.
Narrow bands of radiation at various
wavelengths were obtained with a grating
spectrograph. Several cross-checks were made in
the determinations.

A summary of the temperature results for
various explosives is given in Table 5-2. 'The
suthors varied the density of the explosives
through a cousiderable range with the hope of
answering the rather crucial guestion: whether
the temperature increases or decreases when
density is raised. They interpreted their results
to show one trend in some cases and the other in
other cases. However, the seatter is rather large
and, if the few data for explosives with initial
density below about 1.20 g/em® are left out
one is forced to conclude that these
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measurements demonstrate no statistically
significant trend one way. or another. Therefore,

in Table 5-2 the valués in the density range 1.20'

to 1.60 g/fcm® for each explosive have been
averaged. The figures in the table have probably
have an experimental standard error of about
100° to 200°K, ;

‘The results in Tabie 5-2 are not consistent
with' theoretical-values corresponding to.any one
of the several équations of state that have been
suggested: to describe the behavior of detonation
products. The equation of state i& an important
part of the theorétical treetment of high
explosives; and-Chapter. 7 s largely devoted to
this subject. If one divides the-equations of state
that have beén: proposed into those wuich (1)
postulate that little .or none -of the internal
energy in :the detonation products is due to
intermolecular repulsive forces and (2) those
which postulate that-a reiatively large fraction of
the energy is in this form, -these results generally
favor the former. Indeed the measured
tempecatures in Table £-2 for PETN, RDX, and
EDNA are comparable with the highest, values to
result from any of the state equations that has
been proposed.

A serious problem in experimental
measurement of detonation. temperature is due
to the very high temperature produced .jn gases

-either on the inside or on the outside and in the-

vicinity of the explosive charge. Unless -great
precautions are taken, it is quite possible that
radiation from shock-heated gases will be
mistaken for radiation from the detonation
products -themselves. Since the luminosity
depends on the fourth power of temperature, a
relatively smali cuantity of gas at a very high
temperature can contribute a very large amount
of radiation. This effect was discovered by

Gibson34 who found that replacing the air
occluded in ' the explosive charge with
propane—propane having amuch lower ratio of
specific heats—led to much lower apparent
temperatures, especially in charges of low bulk
density. The authors reported, however, that
these gas effects were essentially eliminated
when the charges were “impregnated” with
propane.

" It may ‘be significant that the temperature
reported for nitroglycerin in Table 5-2 is
considerably lower than would be expected in
comparison with that for the other highly
energetic explosives. PETN. and RDX. No-miatter

which equation of state is'chosen; the calculated:

detonation temperature of nitroglycerin is
among the highest for any explosive, and yet it
is far down on the scale in Tabie 5-2. This-may
be indicative that occluded gas effects, which are
certainly not serious in liquid explosives like

nitroglycerin, were not entirely eliminated in:

spite of the pains taken by the authors of Ref.
34 in-this regard.

In concluding this review of detonation
temperature, one is .compelled to say that no
completely satisfactory solution has -been
forthcoming up to tais time. Workers in the field
of detonation physics 'have in ‘this area a
challenging problem for the futixre.

56 ELECTRICAL CONDUCTIVITY IN THE
'DETONATION ZONE

Considerable interest ir xecent years has
centered on the study of electrical conductivity
in ‘the detonation zone of high explosives. In
some explosives the -conductivity is relatively
large, and there has been cohsiderable
speculation about the source of ‘this

TABLES2 EXPERIMENTAL DETONATION TEMPERATURES 3¢

.

Explosive T°K Explosive T.°K
PETN 5720 Nitroglycerin 4020 (high order)
3200 (low order)
RDX 5550 Nitromethane 3806
EDNA 5430 Dynamite
Tetryl 5180 (po = 1.05 g/em®) 2670
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phenomenon. Here we shall -only attempt to
describe ‘briefly the experiméntal methods and
indicate the nature of some of the results. The
reader may refer to the original works listed in
the references cited in this peragraph for
detailed interpretations.

In principle, various methods that have been
used to measure conductivily are similar,
although they differ in experimental detail and
rigor of treatment. By measurement of the
current i conducted between two electrodes in
contact with a detonating charge when a voltage
V is impressed, the resistance R is determined
according to Ohm’s law, i.e,, R = V/i. At any
given instant the ¢lecirodes make contact with a
conducting zone of some given shape which may
either be conjectured or experimentally mapped
out in some way. If the conducting zone is
considered to have uniform conductivity o
throughout, the value of this quantity may be
obtained from R:through the use of a factor K,
which may be called the effective “cell
constant”; thus, ¢ = K/R. The term “cell
constant” derives from the more familiar
problem of measuring the conductivity of an
electrolyte solution in & “‘cell” or container into
which the electrodes dip. The ceil constant in
this case is detérmined by tue size, shape, and
separation of the electzodes; the size and shape
of the cell; and the placement of the electrodes
in the cell or, in a word, by the “geometry” of
the measuring device.

In Ref. 35 Jameson describes a method of
placing electrical probes within the charge and
by this means determining the shape of the zone

‘having a high electrical conductivity. He finds

that this is of a conical shape, the base of the
cone being coincident with the detonation shock
front and comprising the full cross section of the
charge at this point. The conical surface
presumably represents the front of the
advancing rarefaction or “release” wave that
spreads into the detonation zone from the free
surface. Jameson made a “mock-up” of the
conical conducting zone from graphite sheets of
known electrical conductivity and in this way
determined the cell constant X for the particular
electrode arrangement used in the' explosive
experiment. The implicit assumption here is that
¢ is constant throughout the highly conducting
zone mapped out by the probes. The value
determined in this way for the resistivity of

Composition B was 0.29 ohm-cm. Within an
order of magnitude this agrees with values
reported by other-workers?®,

The method reported by Hayes®? s
considerably more elaborate. In the first place,
Hayes extended the time resolution of his
measurements about 1000-fold over other
workers, employing rianosecond circuitry where

.others had uséd microsecond circuitry. And,

instead of assuming that the conductivity
throughout the detonation zone is constant, he
has assumed that it varies as a function of time
{or distance) behind the shock front, and has
determined this function-by an-elaborate scheme
using & high-speed digital computer to analyze
the observed electrical wave form from the
conductivity probe. Hayes discovered that the
onset of conductivity begins immedialely at the
precursor shock front (see Chapter 8) and'in some
cases passes a peak witlin a few nanoseconds
(which means, in terms of distance, only:fome
several microns) behind the front. As bétween
various. explosives, the peak conductivity varies
by orders of magnitude; also the variation of
conductivity with time- is decidedly different in
various cases, Undoubtedly, this reflects wide
differences in the reaction kinetics and in the
physical and chemical natute of the reaction
products.

Fig. 5-15, reproduced from Ref. 37, shows the
conductivity profile in the detonation zone for
three explosives: nitromethane, Composition B,
and liquid TNT. Here, conductivity is shown as
a function of time. For purposes of orientation,
time may be derived from distance at the rate of
about 6 microns/nsec. Thus, the full scale on the
abscissa of Fig. 5-15 corresponds to little more
than 1 mm. The unité on the ordinate-scale in
Fig. 5-15 may be divided into 100 to obtain the
resistivity in ohm-cm: Thus the lowest resistivity
recorded for nitromethane is about 1 ohm-cm,
for Comp. B about 0.1 chm-cm, and for liquid
TNT sbout 0.01 ohm-cm. The close agreement
in the case of Comp. B with the value given by
Jameson may be noted.

The highest value of conductivity in
detonating explosives that has been recorded
thus far (liquid TNT, Ref. 37) compares with
that for an intrinsic semiconductor like
germanium, It is less by a factor of 10 than the
conductivity of graphite. If considered as a
gaseous plasma, the detonation zone in liquid

523

wﬂ Vo .




Downloaded from http://www.everyspec.com

3

RN

BT Pl

-AMCP 706-180

TNT has a rather high conductivity; but, if it is-

considered. as a condensed phase comparable
with carbon black, for example, its conductivity
is not.sutprising. Hayes’ finding in Ref. 37 that
the peak conductivity of various explosives
shows a close correlation. with the amount of
solid carbon .in the detonation products may,
therefore, have a significant bearing on the
nature of this phenomenon.

57 EMPIRICAL TESTS

In the -early development. of explosives, a
number of empirical tests. evolved to .measire

various “qualities” and “‘quantities” associated
with the explosives. Among the qualities that
different -explosives possessed’ in varying degree
was what came to be known by the French tefim
“brisance” which was méant to reflect the
shattéring ability of an exploc.é, a8
distinguished from the “power or ability to do
work in moving rock, étc. Thus, it was
recognized that the work capability was an
extensive property that depended on- the

quantity of explosive; and the term “power”,

wwhich in this connection i§ quite confusing to
‘physicists, meant a “Specifiz™ property related
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phenomenon. Here we shall only attempt to
describe briefly the experimental methods and
indicate the nature of some of the results. The
reader may refer to the original works listed in
the references cited in this paragraph for
detailed interpretations.

In principle, various methods that havé been
used to measure conductivity are similar,
although théy differ in experimental detail and
rigor of treatment. By measurement of ‘the

.current i conducted between two electrodes in

contact with a detonating charge wheén a voltage
V is impresséd, the résistance R isdetermined
according to Ohm’s law, i.e, R = V/i. At any
given instant the electrodes make contact with a
conducting zone of some given shape which may
either be conjectured' or experimentally mapped
out in some way. If the conducting zone is
considered to have uniform conductivity ¢
throughout, the value of this quantity may be
obtained from R through the use of a factor K,
which may be called the effective ‘“cell
constant”; thus, ¢ = K/R. The term “cell
constant” derives from the more familiar
problem of measuring the conductivity of an
electrolyte solution in a “cell” or container into
which the electrodés dip. The cell constant in
this case is determined by the size, shape, and
separation of the electrodes; the size and shape
of the cell; and the placement uf the electrodes
in the cell or, in a word, by the “geometry” of
the measuring device.

In Ref. 35 Jameson describes a method of
placing electrical probes within the charge and
by this means determining the shape of the zone
having a high electrical conductivity. He finds
that this is of a conical shape, the base of the
cone bring coincident with the detonation shock
front and comprising the full cross section of the
charge at this point. The conical surface
presumably represents the front of the
advancing rarefaction or “release” wave that
spreads into the detonatii m zone from. the free
surface. Jameson made a “mock-up” of the
conical conducting zone from graphite sheets of
knewn electrical conductivity -and in ‘this way
determined the cell constant K for the particular
electrode arrangementused in the explosive
experiment. The implicit assumption here is that
o is constant throughout the highly conducting
zone mapped out by the probes. The value
determined in this way for the resistivity of

Composition B was 0.29 ohm-cn. Within -an
order of magnitude ‘this agrees with values
reported by other workers?®,

The method reported by Haye:®” is
considerably more elaborate. In the first place,
Hayes extended the timé resolution of his
mensurements about 1000-fold over other
workers, employing nanosecond circuitry where
others had used microsecond circuitry. And,
instead of assuming that the conductivity
throughout the detonation zone is constant, he
has assumed that it varies.as:a function of time
(6r distance) behind the thock front, and hes
determined this function by-an elaborate scherne
using a high-speed digital computer to analyze
the observed electrical wave form from the
conductivity probe. Hayes discovered that the
onset of conductivity begins immediately at the
precursor shock front (see Chapter 8) and in some
cases passes: a peak within a few nanoseconds
(which means, in terms of distance, only some
several microns) behind 'the front. As between
various explosives, the peak conductivity varies
by orders of magnitude; also the variation -of
conductivity with time-is decidedly different in
vatious cases. Undoubtedly, this reéflects wide
differences in the reaction kinetics and in the
physical énd chemical nature of the reaction

products.

Fig. 5-15, reproduced-from Ref. 37, shows the
conductivity profile in the detonation zone for
three explosives: nitromethane; Composition B,
and liquid TNT. Hete, conductivity, is shown us
a function of time. For purposes of orientation,
time may be derived from distdnce at the rate of
about 6 microns/nsec. Thus, the full scale on the
hscissa of Fig. 5-15 corresponds to little more
than 1 mm. The units on the ordinate-scale in
Fig. 5-15 may be divided into 100 to obtain the
resistivity in chm-cm. Thus the lowest resistivity
recorded for nitromethane is about 1 ohm-cm,
for Comp. B about 0.1 obm-cm, and for liquid
TNT about 0.01 ohm-cm. The close agreement
in the case of Comp. B with the value given by
Jemeson may be noted.

The highest value of conductivity in
detoneting explosives that has been recorded
thus far (liquid TNT, Ref. 37) compares with
that .for an intrinsic semiconductor like
germanium. It is less by a factor of 10 than the
conductivity of graphite. If considered as a
goseous plasma, the detonation zone in liquid
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TNT has a rather high conductivity; but, if it.is
considered as a condensed phase compazrable
with. carbon black, for example its: conductmty
i$ ‘not surprising. Hayes’ finding in Ref. 3’7 that
the peik conductivity of various explosives
sliows a close correlation with the amount of
solid carbon in. the detonation products may,
therefore, have a sxgmhcant béarmg on the
nature. of this.phenomenon.

57 EMPIRICAL TESTS

In the eatly development, of explosives, a
number of empifical tests -évolved: t6. measure

various “qualities” ‘and “‘quantities” ‘associdted
with the explosives. Among the quahtla that
dxfferent -explosives ‘possessed, in varying degree
vias. what came to° be known by the French term'
“brigance” whlch was meant fo reflect the
shattering -ability of an explosive, as
distinguished from the “power’” or ability to.do
work in moving rock, etc. Thus; it was
recognizéd that the work capabxhty was ‘an
extensive property that depended on t.he
quantity of explosive; and the terin “power”,
which in this corineetion i quite confusing to
physicists, meant a “specific” :property rélated
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Figure 5-15. Electrical Conductivity as a Function of Time in the Detonation Reaction
Zone of Various Explosives
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to the available work per unit weight. Brisance,
on the other hand; is what one would call an
intensive property, which does not depend on
the quantity of explosive involved, providéd, of
course, it is properly detonated.

Various-lests were used that were supposed to
measure cither one .or the other of ‘the
properties, brisance and power. A. typical
brisance test, for example, was the plate-dént
tést. An explosive cartridge of a-certain diameter
was placed.-on -end.in contact with. a stecl. plate
of given dimensions and then detonated from
the opposite end. The depthi of the dent was
taken to be a measure of brisance, It was noted
that thé depth was sensibly independent of the
length of the cartridge, provided it was not so
short ‘that initiation effects interfered. One
recognizes that the test indication in this case,
i.e., the depth of the dent, is.probably closely
related to the -detonation pressure which is
independent of charge length when the
detonation wave is fully developed. Other
intrinsic properties like' density may also be
related to this phenomenon.

Among the tests for.power were the lead block
test and the Ballistic Mortar test. These are
described in Chapter 3. In this .case the test
indication—e.g., the volume of the cavity in the
block, or the swing of the
pendulum—were found to be approximately
proportional to the quantity of explosive used in
the test.

Although empirical tests such as these have

‘been largely superseded, except, in some cases,

for the routine testing of commercial explosives,
they raise an interesting question: In arriving at
a relative figure of merit for the explosive, how
is the test indication to be used? It was common
practice to use the test indication itself—for
example, the volume of the cavity in cubic
centimeters for the lead block test, or the
pendulum arc in degrees for the ballistic mortar
test. Obviously, the procedure is arbitrary in any
case. Nevertheless, one is inclined to say, on the
basis of-a given test, that a certain explosive is so
many percentage points better than another;
however, such a statement may be quite
misleading, especially if the test indication is a
highly nonlinear function of the weight of the
test charge. Under these circumstances, it is
preferable to compare the explosive on the basis
of “‘equivalent weights”, i.e., on the basis that it

mortar’

requires a certain percentage more of one
explosive to give the saine tést indication as that
given by another explosive. Indeed, if two
different empirical tests (such as the lead block
and the ballistic ‘mortar; relate to the sarie basic
extensive property in ‘the -explosive, then ‘the
felative eqi:ivalent weights for various explosives
as.registered in the two tests will be the same. If
such is -the case. thore s obviously some
justification for using ‘theée test numbers ‘to
compdre éxplosives.

The following analysis' of this problem is
quoted from Ref. 38.

“Consider a test that yields.some méasurable
indication 7, such as a length, a volume, etc. The
quantity I may be a function of several
properties of the explosive charge—such as heat
of explosion, available work, detonation
velccity, or detonation pressure. (Ih addition,.of
course, I is functionally dependent on various
parameters of the test device; but, because the
test is standardized, these parameters appear as
constant factors in the functional expression.)
Heat and work are examples of what have ‘been
termed extensive properties; the quantily G
representing such a property is proportional to
the mass m .of the explosive (ie.; G = gin.
Detonation velocity -and pressure, -on the other:
hand, are examples of .intensive properties,
which are- independent of the amount of
explosive {aside from certain nonideal effects
that are important for small amounts).
‘Representing the intensive properties by the
symbol g', we may write, in general,

I=F@gm, g) (517)

“In the case where I is a function of only a
single extensive property or linear combination
of such properties, we can write for two
different explosives 1 and 2

I = f(g,m,)

(5-18)
1, = flg,m,)
If I, is made equal to I,, then
g my = gm, (5-19)
and m ] i
m, &
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CHAPTER 6 ELEMENTARY THEORY OF THE PLANE DETONATION WAVE

6-1 INTRODUCTION

The first theoretical description of detonation
waves was given by Chapman in 1899 and
independenily by Jouguet more than a decade
later. When' considered in -detail, reaction waves
in. substances capable of exothermic reaction are
of very congiderable complexity. The
elementary theory, .as formulated by Chapman
and. Jouguet, is based on a highly ide!'ized
model. In spite of this fact, this simple theory
reproduces the main features of the
phenomenon with remarkable fidelity. The
success of the simple theory has two important
consequences: (1) it remains the principal
computational tool for the evaluation of
de.onation wave properties, and (2)-it provides
the basis from which more detailed theoretical
descriptions of particilar phenomena are
‘obtained by elaboration of the model.

The: classical ‘theory of Chapman and Jouguet
is concerned with the propagation of a
detonation wave at a constant velocity in one
dimension as, for example, in the direction of
the axis of a cylindrical stick of explosive. The
initiation process requires a separate discussion.
Because of the continuing relevance of this
theory to the description of detonation
phenomena, this chapter is devoted to a detailed

.development of its consequences.

62 THE RANKINE-HUGONIOT EQUATION

In formulating a simple model to serve as the
basis of the elementary thermo
dynamic-hydrodynamic theory of the
detonation wave, it is assumed that the chemical
reaction by means of which the explosive is
transformed into its products takes place
instantaneously so that there is a sharply defined
reaction front—treated as a mathematical
discontinuity—advancing into the unreacted
explosive. The transition across such a front is
then similar in many respects to the transition
across a shock front, In particular, it must be
subject to the general conservation laws that
apply across any discontinuity.

We consider a wave of chemical reaction
propagating in one dimension in the dircction of
increasing values of the coordinate x, and we
denote its velocity with respect to the unreacted
material by D. Employing the notation
exemplified by Fig. 6-1, we fix the origin-of the
x-¢oordinate- in ‘thé moving reaction; wave and
denote the velocity of unreacted material and
reaction products with. respect to this origin.and
in the direction of increasing ¥ by w, and w,
respectively. If 4  and.u, are the corresponding
velocities relative to a fixed coordinate system,

w,=-D;w =u -~u -D (6-1)

The explosive is at pressure p; and density p, ,

and the reaction products aré at:pressufe p, and.

density p,. The variables characterizing the flow
and those descriptive of thie thérmodynamic
state are-supposed to b2 uniform over any. plane
perpendicular to. the x-axis.

The conservation of mass and momeéntum
across the discontinuity, comprising the reaction
front, are expressed by the mechanical
conservation conditions which in ‘the present
nomenclatire can be written )

pw, = pw, =-pD=m
(6-2)
P - pa = pow92 - lef = fﬁ.(if’o - w;)

where m is the mass flux through the reaction
wave, When the condition for the conservation
of energy is combined with these mechanical
conditions, we obtain, as in the treatment of a
simple shock wave (par. 2-8), the
Rankine-Hugoniot equation

Q-6 = l/-'(pl + po)(uo - Ul) (6'3)

which, for brevity, we chall refer to as the
Hugoniot equation. Here, v = 1/p is the specific
volume; e, and e, are the specific energy
functions for unreacted material and reaction
products, respectively. If the products are
assumed to be in thermodynamic equilibrium or
if their concentrations are arbitrarily specified,
then their thermodynamic state is specified and

6-1
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e = e(p; u) (6-4)
where e(p,v) is a known function of the state
variables. The Hugoniot equation is thus a
relation between thermodynamic. quantities-that
determines the pressure p. as a function of the
specific volume v, for specified. initial pressure
p,, initial volume u, , and for specified explosive
for which ¢, at these initial conditions is fixed.
It describes all of the states: (p,u)) for given
initial state (p, ,4 )-and given explosive that .are
compatible with the conservation coaditions.
Thesc states- will be said to ibe centered on (p,,
Uo). In terms. of the-specific enthalpy function
h=e+pv (6:5)
the Hugoniot equation can be written in the
altémative form
hy=h, =P, - P YO +3) (66
The conservation conditions, Eqs. 6-2 and either
Eq. 6-3 or Eq. 6-6 have the same form as for
shock waves. However, an essential difference
arises from the fact that the specific energy and
specific enthalpy functions .of the reaction
products are different from the specific energy

-or specific enthalpy of the unreacted material,

respectively. In fact, the exothermal nature of
the reaction process is expressed by the

-assumption that the ehergy and enthalpy of the

products are less than the energy and enthalpy,
respectively, of the unreacted material when the
two quantities .are compared at the same
pressure and specific volume. This assumpticn is
sufficient t{o assure the existence of reaction

reaction as

one-dimensional, instantanecus reaction
approximation that is employed in this chapter
as a model. In particular, it requires that

e(p, v, )<e,and h(p,;u,) <h,

which are equivalent.

The heat evolved during the decomposition of
unit weight of explosive.at constant temperature
and. pressure can be evaluated from standard
thermochemical data. Denote this:quantity by g
and the initial temperature by T, , then-

g =h, - h(p,;T,) (6-8)
It i§ conventional to define an exothermal
one for which ¢, the
thermochemical heat of reaction, is positive;
explosives of practical importance ate indeed
characterized by: ¢ > 0. However, Eq. 6-7
implies the requirement that

4>h(p,u,) - hip,,T,) (6:9)

the right-hand side of which is negative for real

materials. Consequently, Eq. 6.7-carvbe:zatisfied
and, in the present approximation, reaction
waves can exist for materials whose heat of
decomposition ¢ is negative so long as‘Eq. 6-9 is
satisfied. BEq. 6-7 is evidéntly satisfied by all
explosives characterized. by the stronger
condition, ¢ > 0.

Now, consider the point on the Hugoniot
curve for whi¢n v, = v, . This point coirésponds
to an hypothetical conversion of the explosive
to its products at constant volume. Eq. 6-3
reduces to

(p.p)

wives of finite propagation velocity in the e(pyy,) = ¢, (6-10)
PRODUCTS ' EXPL_OSIVE
: —
™o "W
)

(pov R))

X increasing—>

Figure 6-1, One-dimensional Reaction Wave
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an implicit relation that can be solved for the
pressure if the specific energy ..nction is
known. This pressure, which we denote by p,
and call the pressure for con-rant volume
explosion, is determined by the specific energy
of the explosive and its initial density, a fact
made explicit by the notation

b.= ple,v,) (6-11)
since we can regard the pressure as a function
p(e,v) of the specific.energy .and specific volume.
Eq. 6-7, together with the basic assumption that

©e/2p),>0

for real systéms, shows that p, >p,. Similarly,
consider the point for which p, = p, . This point
corresponds to a hypothetical reaction .at
constant pressure. Eq. 6-6 reduces to

h(p,.v,) = h (6-12)
.an implicit relation that can be solved for the
specific volume ic the specific enthalpy function
is known. This quantity, which we denote by v,
and call the specific volume for constant
pressure combustion, is determined by the
specific enthalpy of the intact material and by
the initial pressure, a fact made explicit by the
notation

v, = v(h,.p,) (6-13)
since we can regard the specific volume as a
function v(h,p) of the specific enthalpy and
pressure. Eq. 6-7 together with the basic
assumption that

(3h/du), >0

for real systems, leads to the conclusion that
U > Uy. Thus, we have shown that the Hugoniot
curve passes through the points (pe,v,) with p,
> p, and (p,,v.) with v, > v,, instead of
through the point (p,,v,) as in the case of the
nonreactive shock wave. This characteristic of
the Hugoniot curve for a reaction wave is a
consequence of ‘he exothermal nature of the
reaction. In par. 6:3, it is shown that the
pressure p; satisfying the Hugoniot equation
centered on given initial conditions increases

with decreasing specific volume v, and theithe
Hugoniot curve is concave upward in the
(p,u)-plane.

The mechanical conservation conditipns &an:
be combined to yield the relation

= (py~ B, MYy~ 1)

Eq. 6-14 describes a straight Jine in- the
(pl Uy ) plane that is called the Ray‘lexgh lire. It
is the chord connecting: the point (p] ,v; ) to-tha
point (p v ). The propagation velogity. ‘D is
ev1dently proportlonal to the square root.ofithe
negative slope of the Rayleigh h‘ ~, Since- tbe
left-hand. mémber of thi§ expression canhot be
positive, the: pressure and specific voliame-iiust
increase or decrease in dn opposite sénse in:
passing through -the reaction wave. More:
explicitly, it is evident that.v, <-4 if py-<5p
> po-and py <Po if'Ux >, >y, Futhe'rmor’e,»,

-0’0’ (8:14)

velocity and are excluded because th
physical meaning. Thus, the Hugomot curve
consists of two branches, as shown in El' 222,
The branch for whzch vy K v, i8 r:all_fd the

is seen that the propagntxon velocxtv i fmlfe
for constant volume explosion, vy =, and:f By =
Des 1mplymg ‘instantaneous conversion i
explosive fo its products. This sts
regarded ‘a limiting one for reactlon waves,
propagating at very high velocity: When'p, =p,
and ¢y = v,, the propagation velocity s zei'o
The constant pressure combustion stas }
limiting one for reaction waves propngating mth
a small velocity.

Transitions on the deflagration bratich of é.he'

Hugoniot curve are.seen to possess thequalitative

properties ascribed to ordinary combustion:

waves, In fact the flame temperature is Gsually.
calculated on the assumption that it différs
negligibly from the temperature of the cons.ant
pressure combustion state and it is customary, in
the theory of flame propagation, to assume-that
the pressure drop through the combustion: wave
is negligible. The defiagration branch of the
Hugoniot curve does not, however, provide a
useful description of combustion waves
propagating with small velocity because Zhe
idealization of the wave as a discontinuoys
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B A8 Detonation branch e o 1
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BC Excluded states S o
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4’ CD Defiagrotion branch : .
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B Constont volume expiosion : 7
| C. ‘Constant pressure explosion 3 :
' p. B |
. po =y
A 4
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Figure 6-2, Hugoniot Curve for Detonations and Deflagrations

transition is too exireme fo provide a useful
‘model, The waves cescribed by the detonation

to the Hugoniot curve. These two states are
called Chapman-Jouguet states. Points on the

branch of the Hugoniot ¢urve are compressive.
‘Therefore; we expect that the detonation wave
observed in an actual explosive will be described,
in terms of the simple model eraployed here, by
some point on the dstonation branch of the
Hugoniot curve, After an examination of the
properties of the flows associated with each of
these branches, it is possible to understand why
the model afforas a géod description of
detonation waves.but not of combustion waves.

The properties of the Hugoniot curve and of
the flows associated with the final states
determined by it are deduced in detail in
par, 6-3. Here, wesummarize the results of
that analysis. For one final staie represented by
a point on the detonation branch and for one
final state represented by a point on the
deflagration branch, the Rayleigh line is tangent

.4

.detonation branch of the Hugoniot curve for

which the pressure is greater than that at the
Chapman-Jouguet ‘point are called strong
detonations, and those for which the pressure is
less than the Chapman-Jouguet pressure are
called weak detonations. Points on the
deflagration' branch are called weak or strong
deflagrations, according to whether the pressure
is greater than or less than, respectively, the
pressure of the Chapman-Jouguet deflagration.
A Rayleigh line with a slope somewhat less than
that through :the Chapman-Jougiet
detonation—i.e., corresponding to a greater value
of J—intersects the detonation branch at two
points, one a weak detonation and the other a
strong detonation. Similarly, a Rayleigh line
with a slope somewhat greater than that through
the Chapman-Joughet Aeflagration—ie.,
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corresponding to a-smaller value of D—intexsects
the deflagration branch. at two points, one a
weak deflagration and ‘the other a strong
deflagration. These definitions are shown on Fig.
6-3. Wé note -that, except for the
Chapman-Jouguet state, there are iwo

-detonations, oné weak and one strong, savisfying

the congervation conditions and having the same
propagation velocity. A similar statemey,, applies

to the deflagration branch -of the. .lugoniot

curve. There are no. more than the iwo
intersections of a given Raylergh line with either

‘branch-of-the curve,

The Chapman-Jouguet states.on the Hugoniot
curve have certain: unique properties which are
stated ‘here and which -are deduced the next
paragtiph. Among the various .processes starting

(A

from the specified initial state, a
Chapman-Jouguet detonation leads to a
minimum value for the propagation velocity D,
relative to the unreacted material, and a
Chapman-douguet deflagration ‘'éads to a
maximum value of this quantity. The.entropy. of
the reaction products varies along the ‘Hugoniot
curve. The entropy also attains a stationary
value at a Chapman-Jouguet point, a minimum
for a detonation and a maximum ‘for a
deflagration. The Hugoniot curve is-tangent at a
Chapman-Jouguet point to the isentrope passing
through. that point. Since the Rayleigh: line
through a Chapman-Jouguet point is tangent.to-
the Hugoniot curve, it i3 also tangen. to the
isentropé thréugh the Chapman-Jouguet.point at
that point. Chapiman in 1899 recognized that

A_B Strong detonations

B Chaprion - ouguet detonation
BC Weak defonations

DE Weak deflogrations

'E Chapmon-Jouguet deflagratons
EF Strong deflogrations

g'é‘mmm ‘Rayleigh lines

Figure 6-3, Nomenclature &i the Hugoniot Curve for Detonations and Deflagrations
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the detonation velocity correspondmg to a
tangent Raylelgh line:is a minimum.
In the regions of strong detonations and weak

.deflagrations, the isertropes rise with increasing

pressure more steeply than the Rayleigh line and
less steeply §
Conversely, in regions of weak detonations and
strong deflagrations, the isentropes rise with

‘increasing pressure less steeply than the Rayleigh.

line and more steeply than the Hugoniot curve.

These-relationships are indicated in Fig: 6-4. it-is

seen that the isentrope through the intersection
of & Rayleigh line vith. the Hugoniot curve
always lies between ‘the Raylexgh line and the
Hugoniot curve.

As a direct consequence of the nature of the
variation of entropy along the Hugoniot curve,

ceftain qualitative statements can be made as to:
thi nature of the flows associated with states
represented by points on the various sections of

the curve. These conclusions result from the
mechanical conservation conditions and are
derived in the next paragraph. As summarized,
they have been called Jouguet’s rule, It is shown
that the flow of the reaction products relative to
the reaction front i§ subsonic behind a strong

P

than the Hugonoit curve.

detonation or weak deflagration, sonic behind
a Chapman-Jo.xguet detonation or deflagration,
and supersonic behind a weak detonation or
strong deflagration. 1f we refer to F:g 6-3, these
statements are éxpressed by the réiations

lw| <.c, on AB and DE

lw = ¢;at Band E ' (6-15)

{wy] > ¢, on BC and EF

where ¢, is the véiocity of sound at the;point
(pl.v ) It is also showr that the flow ofthe
intact matérial relative to the reaction front is
supersonic ahead of a detonation wave and
subsonic shéad of a deflagration wave. Again
referring to Fig 6:3, these statefnents are
expressed by the relations,.

D > ¢ on ABC . (616)
D <¢, on DEF

where ¢_ is the speed of sound in the unrmc'/ed
mateml ‘at pressure p and specific volume v,

Figure 6-4. Hugoniot Curve (H), Rayleigh Line (R), and Isentropes (dashed curves) for (A}
Strong Detonations and Weak Deflagrations, (B) Chapman-Jouguet Detonation
and Deflugration, and (C) Weak Detonations and Strong Deflagrations
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-Considexation of the mechanical conservation
conditions reveals a further distinction bétween
detonations-and deflagrations. Eqs. 6-1 and 6-2
can be combined to yield

Uy =
“1. o W2

..P:D
Ul"UD

(6-17)

the right-hand member of which is negative. This
relation shows that the material velocity
decreases in passing thitough a stationazy

detonation front, for which v, < b,; ‘and
increases

in passing through a stationary
deflagration front, for which v; > v,. If the

unreacted material is at rest relative to fixed

coordinates.(1) i, =0 and'u, < 0 if the reaction
wave i a. deflagration, ‘and (2) u; > 0 if the
reaction wave is. a detoriation. The change of
material velocity in passing through the réaction
front is compared in Fig. 6-5 for a detonation
and a deflagration with the unreacted material at
rest. For a détonation wave, the motion of the
reaction products is direécted toward the reaction
front, and for a deflagration wave-the motion of
the reaction products is away frrm- the reaction
front, For the Chapman:Jouguet detonation: in
an explosive at.rest, the expression of Eq. 6-15

.can be written

D=u +e (6-18)

Jouguet in: 1905° recognized that the
‘propagation of the detonation wave for -which

‘the

the Rayleigh line is tangent to the Hugoniot
ctrve is sonic with respect to the reaction
products.

 The conservation -laws, ‘when applied. across
the teaction front, simply enumerate-all of theé:
states-and describe the associated flows.on either
side of the front that are. accessible for a given
Inaterial at specified initial conditions. Physical
reality does not present all of the statesthat are

:possible for the simplified model that has been
/employed When the model is refined -by

temoving: the .assumption 6t an infinitely fast
reaction and by considering-a. reaction. zone of
finiite thickness it will be concluded that weak
detonations do ‘not usually exist and strong
deflagrations can never exist. Anticipating the
vésult of that analysis, we shall give no further
consideration to these sections of the Hugoniot
curve, restriciing theé discussion to:those:sections
representing physically realizable states that are
shown on Fig. 6-6.

Jouguet’s rule indicates the reason why a
theoretical description of a reaction wave based
on- the laws of conservation across-the reaction-
front can be useful fora detonation wave and at
same time not wuseful for a
combustion wave. Since ‘the flow ahead.-of a
deflagration wave is subsonic with respect to the
wave, the flow ahead of the wave is influenced
by the deflagration wave ‘itself. This is not the
case for a detcnation wave where the flow of the
unreacted-explosive is supersonic with respect to

/W

(B)

Figure 6-5. Wave Path W and Particle path P jor (A) a Detonation and (B) a Deflagration

Withu =0
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the detonation front. It is, in fact, a
consequence of this distinction that flows
associated’ with deflagration waves have .oné
more degree of .indeterminacy than flows
associated with detonation waves, and this
additional degree of indeterminacy requires
considération: of thé conduction of heat and
diffusion of molecular species on each side of
the wave, We shali continue the analysis of weak
deflagration waves:in the next paragraph because
the results obtained will find an application
subsequently.

6-3 PROPERTIES OF THE. HUGONIOT
CURVE

_In this paragraph, the properties. of the
Hugoniot curve and of the flows associated with
AB
B

€

P o)
T
1
!
I
]
1
1
i
(@]

it will be deduced. We assume the existence of
an equation of state, both for the .unreacted
materia! and for the reaction products. The
equation of state for either medium is of the
form p = p(v,s) if the enfropy and specific
volume- are taken as independerit state variables.
We assume again that

»__ 22<0
i )
. (6-19)
ip 3
50, 2> 0

as

Thes¢ assumptions have the effect of specifying
curves- of constant entropy, s(p,v) = constant,
which form a nonirntersecting family in the

(p,v)-plane, decreasing and concave toward.

positive: v- and with the entropy increasing on

Strong detonations
Chapman- Jouguet detonation
Waeak deflagrations

Chdpman-Jouguet defidgration

oa .
oei Tangent Rayleigh lines

Vo

vy

Figure 6-6. Physically Realizable Detonation and Deflugration States
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any radius.from the origin. We assume that the
composition of the unreacted. material is fixed
and given by the -initial specifications of the
system, and that the reaction products are in

thermodynamic equilibrium. Then for either

medium, the second law of thefmodyrnamics is
expressed by

de = Tds - pdv (6-20%)

and the derivatives of Egs. 6-19, in the case of

the reaction. products, are taken at equilibrium-

composition*. The exothermic character of the
reaction is expressed by the requirement that for
the same pressure and specific volume the
specific enérgy of the unreacted material is
greater than the specific energy of the reaction
products.

The discugsion of the properties of the
Hugoniot curve is facilitated by the definition of
the Hugoniot function

Hp.w) = e(py) - e(p,.0,)

. (6-21)
+%(p + p,)0 - v,)

In terms oi this function, the Hugoniot equation

Eq. 6-3; can be written

H(pw,) = ¢, - e(p,v,) = Jp,.0,) (6:22)

The exothermal character of the reaction is
expressed by the requirement that J(p_,v,)> 0.

First, we want to prove that the entropy has at
most a single extremum on a-straight line in the
(p,v)-plane and that such an extremum is a
‘maximim, A ray R through the point (p v )
can be represented in terms of the parameter r
and two constants a and b by

p=p +ar , U=y +br
o o (6-23)
a=p,-p, , b=y -v

Then, on R, dp = adr, dv = bdr, and
ds _ (25)+ b(as) osf b(a )
ar  “\op v Z)p (6:24)

*Since Eq. 6-20 apphec either to changes at equilibrium
or to chanfel at an arbutnnly specified cornguihon the
analysis is also if It is
asstimed that the axplonon producus are constrained to
such an sarbitrarily specified constant composition.

At an extremum, ds/dr= 0, so.that an extremum

2
K 22_ TN (6:25)
s \ar} \ov?

By Eqs. 6-19, dp/0s > 0 and 92p/dv® > 0.
Therefore, at an extremuin d2s/dr? < 0. We
have proved tliat the extremum, if it exists, must
be a maximum. Therefore, the entropy can
attain at most one such stationsry value on a
straight line or ray through (p,,t,) in the
(p,v)-plane. L

‘Now, consider the value of the Hugoniot
function H(p,v) along the ray R represented by
Egs. 6-23. Differentiating Eq. 6:21 at constant
p, and v , we obtain

dH = de + Y(p + p)dv + %(v - v, )dp -(6-26)

and with Eq. 6-20, this becomes
dH = Tds - %(p ~ p,)dv
+ Y@ - v))dp (6-27)

Therefore, on the ray R
dH = Tds (6-28)

If both the entropy and the Hugoniot function
are considered functions of the parameter r on

the ray R, we have proved ‘that they are

snmultaneg_qgly stationary if either one is

stationary. Furtliermore, sin¢e-a stationary value-

of the entropy 'is a maximum, a stationary value
of the Hugoniot function is a maximum on R.
Since the entropy can attain at most one
maximum on a ray R, it follows that the
Hugomot functwn can attain at most one
maximum on R, .

Hcving shown that the -entropy and the
Hugoniot function simultaneously attain
maxima at not more than -oneé point on any-ray
in the (p,v)-plane; we want to prove that there is
one such point on any Rayleigh line
corresponding to finite propagation velocity. In
view of Eq. 6-24, the entropy is @ maximum on
R if

ap _ 22 _
-a'l‘)' ==-pc = a/b (6-29)

Along any Rayleigh line, defined by Eq. 6-14

afb=-p2D*< 0 (6-30)

Cem——. S o

// .
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“Therefore, the entropy—and simultaneously, the

Hugoniot function—attains a muximum at a

point (p,v) determined by

pc =p D ‘

(6-31)
P =p@v3s), ¢ =c(vs)

together with Egs. 6-22, where the sound speed
c is a _ sitive quantity and a function of the
state of the gas. Eq. 6-31 is the condition that e
line of slope a/b 0é tangent to an isentrope. By
Eqs. 6-19, the slope of any isentrope is always
negative, incfédsing monotonically with
increasing v. For a gas, the slope tends
asymptotically ‘¢ zero as v increases
indefinitely. The.slpre, any isentrope has a
point of tangericy %3 3 line of specified slope a/b
if a/b < 0, and suc’; ‘2 line is parallel to the
Raylexgb lme of the:same. slope through a fixed
;¥ Eqgs. 6-19, the entropy

through the origin in:the (p,v)-plane, there exists
an' isentrope whose tongent .of specified slope
a/b passes. through the fixed initial point and is
thus identical with the Rayleigh line. Therefore,
Egs. 6:22-and 6-31 always possess a solution. We
have. proved that the entropy and the Hugoniot
tunction simultaneously attain ‘maxima at.one
and only one point on ‘every Rayleigh line
corresponding to finite propagation velocity.
Each' point (p1, ) ‘on._ the Hugoniot curve
described by Ed, §2: is ona Rayleigh line
defined ‘by Eq. 6-14 when. the propagation
velocity D is fixed by the point (p,,v, ). Since
the Hugoniot function is constant on the
Hugoriot cuive and since it attains a maximum
on a Rayleigh line, the ‘laylclgh line througn

(P, ,b; ) must have a second:intezsection with the

Hugomot curve—i.e,, (py;v})—unless (p,,v)isa
point on the Rayleigh line at whlch the
Hugoniot function is a maximum. Since the
Hugohiot function attains only a single
maximum on a Rayleigh line, a Rayleigh lirie
cannot intersect the Hugoniot curve at more
than two points. We now consider the case of
two intersections and, for definiteness, we let
vy <u,. Then the requirément that the slope of
the Rayleigh line be negahve impliés that p; >
P1. We call the point (pj,u;) an upper point
and the point (p, ,v,) a lower point. An upper
point on the detonntxon branch of the Hugoniot
curve is a strong detonation; on the deflagration

610

¢lly along any radius.

branch, an upper point is a weak deflagration. A
lower point on the detonation branch is-a weak.
detonation, and a lower point on ‘the
deflagration branch is a strong deflagration.

Since the Hugoniot function has the same
value at the two points (p; ,v; ) and (p},v})-of
the intersection of a Rayleigh liie with the
Hugoniot curve, it attaing 2 maximum-at some
intermediate point. The entropy attains a
maximum at the same intermediate point.
Therefore

ds
- >0 at (p,.0)
‘ (6-32)
ds -
o <0 at (pp,v) )
on the detonation branch (where v, <v_) and
ds
T <0 at (p,,,)
(6-33)
ds
- >0 at (p),v)
on the deflagration branch (where v > v,).

Since dp/0s > 0 by Eq. 6-19, we can write, for,

either branch

1 p\ [ds
bl-; v, (oa) (d) <0 at (p2y)

1 op) fds (6:34)
——-—u] (33) (r> >0 at (p )

By use of Egs. 6-23, 6-24, and 6-30, these
ineguclities become

plel - D" <0 at (py)

(6-35)
pfcf - ijz > 0 at (py)
Because of the conservation of mass acrass the

discontinuity, Eq. 6-2, these statements can be
transformed to

Ul >e¢, at (p,u
[T > e, at (ppy) (6:36)

L §
Gy <e, at (p,v)

We have proved thal the gas flow relative to the
reaction front is sitbsonic bekind an upper point,
ie., a strong detonation or weak deflagration;
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and supersonic behind a lower point, i.e,, a weak
detonation or strong deflagration. These
conclusions form a part of Jouguet’s rule.

If a Rayleigh line intersects the Hugohiot
curve at a single point, then the Hugoniot
function attains a maximum on the Rayleigh
line at the point of intersection. Consequently,
the entropy is a maximum on the Rayleigh line
at-the point of intersection and

ds

3 0 (6-37)
Using Eqs. 6-23, 6-24 and 6:30, we have, at such
an intérsection,

pf‘cf = p:Dz (6-38),
and tkis relation implies that
G = ¢ (6-39)

If the Rayleigh line intersects the Hugoniot
curve at a single point, the state described by
such an.intersection is a Chapman-Joug.iet state.
We-have proved that the gas flow relative to the
reaction front is sonic behind a
Chapman-Jouguet state. This is the property
formulated by Jouguet in 1905, and this
conclusion forms another part of Jouguet’s rule.

We have noted that the Hugoniot function
attains a stationary (maximum) value on the
Rayleigh line through a Chapman-Jouguet point
at the Chapman-Jouguet point. Along -the
Hugoniot .curve, dH(p, ,v; ) = 0. Therefore, the
‘Rayleigh line through the Chapman-Jouguet
point is tangent at that point to the Hugoniot
curve, i.e.,

d . -
L R Wall S ,p:'DZ (6-40)
dy, v - b

at a Chaprnan-Jouguet point. Since this Rayleigh
line is also tangent to the isentrope passing
‘through -the Chapman«louguet point, the
Hugoniot curve is tangent at a Chapman-Jouguet
point to the isentrope through the point. It
follows that the entropy attains a stationary
value on the Hugoniot curve at a
Chapman-Jouguet point. Thus, we have shown
that

Q.

0 W 6-41
:i_v':"'pxcx (6-41)

at a Chapman-Jouguet point, an expression that
can be obtained by combining Egs. 6-38 and
6-40, and we have also s1.0Wn that

ds, =0 (6-42):

on the Hugoniot curve, an expression that can
‘be obtained from Eq. 6-27 with dH(p1 3, ) =
and Eq. 6-40. If the equation of ithe RaVIelgh
line, Eq. 6-14 is differentiated,

2 . B .
DdD = (v .li" u) [%(p, - gy, ©43

1~ o,

- 10, - 000, ]
Using Eq. 6-40, we see that '
dD =0 (6-44)

at a Chapman- Jouguet point. We have proved
that among the various reactive flows described
by the Hugoniot curve; the Tow for a
Chapman-Jouguet point leads 6. 1 5tatlonary
value for the velocity of ti2 s.sction front
relative to the unreacted mal.nal “Hir i8 the
property u_ientlfleu by "hapman in
1899,

‘Along the Hugoniot curve, where dH(p,v;) =
0. Eq. 6-27is.

Tds, = %(py - P,Mv, = (o, - 3,)dp; (8-4%)-

The pressure is.given by the-equation of:stateas
a function of specific volume and entropy. Usmg
Eqgs. 6-19 we can write

dp; = - picidv, + (3p/as)dy,  (6-46)
and transform Eq. 6-45 to

ds, . L, b
AT>,<;3)= %y, - v )0} ¢] - pjp’).)
1

{ (6-47)
A=1+ %0, ~v) (—;ng) s

where we have employed Eq, 6-14 to eliminate
the pressure difference -2 -wp

Before discussing the m\phcahon of Eq. 647,
it is necessary to consider the behavior of the
function A. Since 9p/ds > 0 by Egs. 6-19, this
quantity is clearly positive everywhere on the

61
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deflagration branch of the Hugoniot curve,
where v; > v,, and av the point on the
detonation branch for constant volume
explosion, v; = v,. Consequently, on the
deflagration branch, in view of Egs. 6-35,

ds
—4 >0if ple? > D (6-48)
dy,
i.e., for-a weak deflagration; and
ds
E—:<Oxf piel < plD? (2-49)

1
i.e:, for a strong deflagration. From Eqs. 6-42
and 6-45 we obtain the relation

2
v
DdD =( . ) T,ds, (6-50)
Uy - U, !
from which we infer that
dy o

for a weik or for a strong deflagration,
respectively. If the slope of the Rayleigh line is
increased, so that the velocity D-is decreased, we
see ‘that the specific volume of ‘the upper (weak
deflagration) intersection with the Hugoniot
curve decreases and the specific volume of‘the
lower (sttong -deflagration) intersection
increagses. In the limit of zero slope and zero
velocity, the upper intersection must coincide
with the specific volume for’ constant pressure
combunstion since p, p > p, Theé specific
volume of the lower mtersectlon tends toward
infinity as the slope of the Rayleigh line tends
toward zero because of Eq. 6-14. Conversely, if
the slope of the Rayleigh line is decreased, so
that the velocity D is increased, the specific
volume of the upper intersection increases and
the specific volume of the lower intersection
decreases, Since v; < v,, these intersections
eventually coalesce as the slope of the Rayleigh
line contiriues to clecrease. It has been shown
that such a single point of intersection is a
Chapman-Jouguet point.

Before applying Eq. 6-47 to the detonation
branch of the Hugoniot curve, we want to show
that the coefficient A is positive everywhere on
this branch, To do this, we can adapt an analysis
due to Becker. Consider any Rayleigh line
intérsecting the Hugoniot curve at two
points—i.e., (p; ,v;) and (p,,u,)—where v} < v, s0

6-12

that p; > p,. Each of thesé points satisfies the

Hugoniot equation, Eq. 6-22. If e, iseliminated
between the two relations obtained when Eq.
6-22 is speclahzed in turn to the two points and
if account is taken of the fact that both points
are on.the same Rayleigh line, it is easy to show
that

e(py.0) - e(pyy) = %(p, + p)(Y, ~ V) (6-59)
This relation will be recognized to be the
Hugoniot equatmn -centered -on- (p;t;) for a
shock wave in the reaction products, and itisa
condition that a shocked state (p',v") i st
satisfy for given initial state (p,i,). (Eq.6-52
coincides with Eq. 6-20 only at the two points
of intersection of the Rayleigh line with the

reaction Hugoniot cuive.) Now, we consider p;

and v} to be variables satisfying Eq. 6-52 and
obtain, by differentiation at constant, p, and Uy
ahd the use of Eq. 6-19, the relation

T dsy = Y(py - Pdv; - (Y - 4)dp; (6-53)

where the prime indicates that ‘the.quantity so
designated is evaluated at (p v’). We again regard
the pressure a function of eni 1tmpy and specmc
volume so the relation equivalent to Eq. 6-46
applies, and Eq. 6-53:becomes

Y AT - %
[1 + Y] - vo')(i,)<5§->].(1’;) '&%f
2 1 1

- o} - ot - 2]

where we have again employed the fact that the-
two points are on the same Rayleigh line. By Eq.
6-35, the right.oand member of Eq. 6-52 is
negative. It has been shown, as for example by
Courant and Friedrichs, that .ds, /dv{<<0 for a
shock wave described by Eq. 6-52 in a medium
whose equation of state conforms to Egs. 6-19.
Therefore

9,
1+ %(v - Ul)( )(;’)1 >0 (6-55)

The specific volume v, of the lower intersection
can be allowed to approach as closely as is
desired the initial volume v, so that p; = p, as

vy ~*v,. Then, it is necessary that p; = =as vy
- v,. From Eq. 6-55, we conclude that A > 0 as

(6-54):
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the pressure increases indefinitely. We have
noted that A > 0 when v; = v,. Since the
pressure and temperaturé, and their derivatives
are continuous functions of the entropy and
specific volume; the coefficient A, the derivative
ds,/dv,, and the right-hand member of the first
of Eq. 6-47 must be continuous on the Hugoniot
curve, Therefore, the coefficient A which has
been shown to be positive for the maximum and
minimum valies of v; on the detonation branch
of the Hugoniot curve, is positive-everywhere on
the detonation branch of the Hugoniot curve.
From Eq. 6-47, we now conclude that on the
detonation branch of the Hugoniot curve

ds, e 22 2.2 ;

;-Jl< 0if pyc; > p, D (6-56)
i.e., for a'strong detonation; and

ds :

;;:> 0if o ¢} < p’D* (6-57)

i.e.,, for a weak detonation. Using Eq. 6-50, we
infer that.

dv, ﬂl
D <0or D >0 (6-58)

for a strong or for a weak detonation,
respectivély. If the slope of the Rayleigh line is
décreased, so that the velocity D is increased, we
see that the specific volume of the upper (strong
detonation) intersection with the Hugoniot
curve decreasés and the specific volume of the
Iower (weak detonation) intersection increases.
In the limit of negatively infinite slope and
infinite velocity, the lower intersection must
coincide with that for constant volume
explosion since vy <v; =v,. The pressure of the
upper iritersection tends toward infinity as the
slope of the Rayleigh line becomes negatively
infinite, because of Eq. 6-14. Conversely, if the
slope of the Rayleigh line is increased so that the
velocity D is decreased, the spééific volume of
the upper intersection increases and the specific
volume of the lower intersection decreases.
Since vy <u,, these intersections eventually
coalesce as the slope of the Rayleigh line
continues to increase. Such a single point of
intersection has been shown to be a
Chapman-Jouguet point.

The character of the stationary values of
entropy and propagation velocity at
Chapman-Jouguet points can be described

specifically. Differentiating Eq. 6-47 and using
Eqs. 6-38 and 6-42, we obtain

d’s 3%p
AT, ——‘) = -y - v (»——) (6-69)
1(dvf ¢ = %) w*/s

at a Chapman-Jouguet point. Since 3%p/dv% > 0
by Egs. 6-19 and since A > 0, we conclude that

dz‘s1 ) d A
— < 0or— >0 (6-60)
dy; du;

for a Chapman-Jouguet deflagration or
detonation, respectively. From Eq. 6-60 we have

d’p? % ¥ dz"x
= 2= (1) = (66D
dul Ul - Un‘ ; - ~U1

at a Chapman-Jouguet point. Therefore,

D? da*p? .
d:‘ <0or— >0 (6-62)
dvy du

Jjor a Chapman-Jouguet deflagration or

detonation, respectively. It follows that the
entropy and propagation velocity are relative
maxima at a Chapman-Jouguet deflagration and
relative minima at a Chapman-Jouguet
detonation, Since the entropy is a maximum-ata
Chapman-Jouguet. deflagration, there is at most
on¢ Chapman-Jouguet:point on the deflagration
bianch of the Hugoniot curve. We have
demonstrated the existence of .one such point
separating a region of strong deflagrations: from
one of weak -deflagrations, Therefore, the
deflagraion Liranch. consists of two sections, the
one consisting..of a strong deflagration and the
other of weak deflagrations, separated by a
Chapman-Jouguet point. Similarly, we conclude
that the detonation branch of the Hugoniot
curve is divided by a Chapman-Jouguet point
into an upper section consisting of strong
detonations and a lower section consisting of
weak detonations. The properties now
attributed to the Hugoniot curve require that

dp, d*p
— <0, — >0 (6-63)
dU1 dyl

and these properties are a direct consequence of
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the assumptions regarding the equation of siate
that are expressed by Eqs. 6-19.

In order to establish Jouguet’s rule for the
state .ahead of the reaction front, we define a
Hugoniot function H, for the -unreacted
mat.rial by

H (pv) = ¢, (0,0) - ¢ (p,.0,)

+ Y(p + Dy Wv-v)
where we regard the final state (p, »0, ) as tixed
and where ¢, (p,v) is the specific energy function
for the unreacted material. The Hugoniot
equation, Eq. 6-24, can now be written

Hp,v,) = e(p,,0) - €,(0,.0) (665
= ~J(p,,0,)

(6-64)

-where the exothermal nature of tiiereaction is

expressed by the requirement that J(p,,v,) > 0.
The curve defined by Eq. 6:65 is sketched in
Fig. 6-3. It consist of two branches, one of
which is the locus of initial states from which
the specified final state can be reached when the
final state is a detonation, the other being the
locus of initial states when the same final state is
a deflagration. An analysis identical to that
previously employed demonstrates that the
Hugoniot junction and entropy of the unreacted
material -attain one and only one stationary
value along the Rayleigh line and that this
stationary value is, for each function, a
maximum. In the present case, 4 Rayleigh line
can have only a single intersection with either
brdnch of the Hugoniot cuxve defined by Eq.
6-65. If a second intersection with one of the
branches were to exist, the function H, , which
vanishes at (p,,v,), ‘would have the same negatwe
value at each intersection and hence a
minimum on the Rayleigh line between:the two
intersections; this is impossible. Therefore, a
second intersection with the same branch of this
curve is impossible. For the present choice of
variables, the Rayleigh line can be represented in
terms of a-parameter r, by

P=p tan , v=0 +br,
(6-66)
a=p -p , b=y -y

where a/b =—p2D? by Eq. 6-14. The expression
analogous to Eq. 6-24 for the unreacted material
is

6-14

ds, 0s, b o2e?
A i A
e \op (" ko c‘t) (6-67)

Since the entropy attains a maximum on the
Rayleigh line at a point between (Py .0, ) and
(Po,Uo), it follows that ds,/dr, < 0 at (p,,v,)
for an intersection with either b:anch. If we
recall that 3s/9p > 0 by Egs. 6-19, Eqs. 6-66 and
6-67 lead to the result

v, - u)c: - D) <0 (6-68)

Therefore D > ¢, ifv; > v, and the final state is
a deflagration, and D < ¢, if v; <v, and the
final state is a detonation. We-have shown that
the flow relative to the reaction front is subsonic
ahead of a deflagration wave and supersonic
ahead of a deionation wave. These statements
form part of Jouguet’s rule,

6-4 EXISTENCE AND UNIQUENESS OF
FLOWS INVOLVING REACTION WAVES

The Hugoniot ecuation does not suffice to
determine umqueIr a reaction stute and
propagation velocity that can be identified with
the unique detonation wave that is usually
observed experimentally. Therefore, it is
necessary to supplement the conservation
conditions with additionaL information. The
source of this information is the pature of the
entire flow fleld on each side of the reaction
dxscontmulty These flow. fields are determined
by the partial differential equations of
hydrodynamics. The equatiohs must be satisfied
in any region that is free of discontinuities and
they are to be solved, in the present case of flow
in one dimension, subject to initial’ conditions
specified on the x-axis and to boundary
conditions specified on the rear boundary, If the
problem is formulated in this manner, the
mechanical conditions across the reaction front
and the Hugoniot equation are supplementary
conditions that must be satisfied on each side of
the discontinuity by the solutions of the
hydrodynamic equations in the continuous
regions. They can be thought of as connecting
the solution in one region, that of the unreacted
material, to the solution in the adjacent region,
that of the reaction products. In serving this
purpose, they implicitly prescribe the path, e.g.,

P,
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x(t), of the reaction wave in the (x,i)-plane. The
existence and uniqueness of solutions of the
‘hydrodynamic equations in flows involving a
reaction front has been discussed in an elegant
manner by Courant and Friedrichs, whose
treatment is followed in this paragraph.

In par. 2-7, it is remarked that a curve in. the
(x,t)-plane on which are specified data to which
the Hydfodynamic equations are subject is
timelike if the flow relative to the cwurve is
subsonic, and that such a curve is spacelike if the
flow relative to the curve is supersonic. 1%.ds
shown that the solution of a flow problem in a.
region between two curves is ‘unique in two
cases: if both curves are timelike, one quantity is
-specified on each curve and two quantities are
specified at their intersection; or if one curve is
spacelike with two:quantities specified.on it, the
other curve is timelike with one quantity
specified on it. With the aid of Jouguet’s rule,
these principles can be employed to consider the
determinacy of flows involving a detonation
wave.

For definiteness, we consider a.semi-infinite
mass.of explosive, initially at rest with u, =-0,
extending from x = 0 to x =«; and we assume
that a reaction propagating in the direction -of
positive x begins on-the plane x = 0 at the time ¢
= 0. Although one is usually concernied with the
case where the end x = 0 is completely open or
consists of a rigid wall, it is illuminating to
consider the. more general problem in which the
end is conceived to be a piston which starts to
move from the end x = 0 at the time ¢t = 0:with
specified constant velocity u, .

‘i'he path P of the piston in the (x,t)-plane is
timelike since it is identical with that of the
particles adjacent to it. The particle velocity of
the adjacent particles is equal to the piston
velocity u so thst u.is specified on the path P.
The initial values u = u, = 0 and p = p,
are gpecified on the x-axis which is to be
regarded as spacelike. However, these regions are
separated by the unknown path W of the
reaction wave, and it is necessary to consider
separately the flow in the two regions into
which the (x,t)-plane is divided by W. We may
suppose that the propagation velocity of the
wave, i.e., the slope of W, is arbitrarily fixed and
constant,

If the wave is a detonation, W is, by Jouguet’s
rle, supersonic when observed from the

unreacted material. Then, between W and the
x-axis, the flow is uniquely determined by the
quantities prescribed on the x-axis at £ = 0 so
that u and p are constant everywhere in that
region and equal to u, andp, , respectively. The
conservation conditions across the wave front,
Eqgs. 6-2 and 6-3, then prescribe u; and p, for
the specified value D of the slope of W. We may.
now regard W as -an initial curve for the region
between P and W on which the-quantities u = uy
andp = p, are prescribed.

Mow suppose that W represents a strong
detonation. By Jouguet’s rule, ¥ is. timelike
when observed from the reaction products,
Since P and W are both timelike, their slopes u,
and D cannot both be arbitrarily specified. This
is because the value of u on W, which is fixed by
the initial conditions and the velocity D, isalso:
fixed in accordance with the existence rule by
the specification of u on P, of p on W, and-of u
and p at the intersection of P and W. Therefgre,
for a strong .detonation wave of specified
propagation velocity, it is necessary. to adjustthe
piston path P so thabup = u, . It-follows:that the-
flow between the piston and the strong
detonation wave-is uniform-with

Poh {669)

and that the flow for a strong detonation is
completely deterrnined by :the piston velonity:
anid initial conditions. If the first of Egs. 6-2 is
combined with Eq. 6-1, then when u, = 0 we
have

u, = D - vp)

(6-70)
Differentiating with respect to v, at constant
P, We obtain

du u

1 1\ dD

—_— =(-—-> — - p, b
D

for a strong detonation, dD/dv, < 0. Therefare
duy/dvy <0. If we denote by uf the particle
velocity of the reaction producis for a
Chapman-Jouguet detonation, we conclude that
the velocity of the piston, supporting a strong
detonation, is subject to the restriction

*
p-3
llp e I.ll

(8-71)

(6-72)
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We have shown that just one flow invol"ing-a
strong detonation s 3+ .ssible and that *.e piston
velocity must satisfy Eg. 672, 1 the limit given
by the equality sign, ihie detcnation is a
Chapman-Jouguet detonation. The flow in a
strong detontation is illustrated by Fig. 6-7 in
which are shown the piston path P, the wave
path. W, and a typxcal particle path.

We must now consider flows mvolvmg a
detonation wave for which u,<u. It is to'be
noted that flows involving. weai( detonation
cannot be excluded on dynamical grounds when
the reaction zone is represented by a
mathematical discontinuity. By Jouguet’s rule,
the wave path of‘a weak detonation is
supersonic or spacelike when viewed from the
reaction products, and a flow associated with a
weak detonation consequently possesses a higher
degree of indeterminacy than is the case for
strong- detonations. For this reason; it is possible
to construct flows involving a wéak detonation
and compatible with a prescribed piston velocity
in a number of ways. Thus, the uniqueness of a
perticular flow cannot be demonstrated, as was
possible for a strang detonation. In fact, if shock
waves in the reaction products are admitted as
pert of the solution, the flow behind a weak
detonation can be lccommodated to a piston

velocity satisfying Eq. 6-72. These solutions are

not discussed further since it has been noted
that weak detonstions are eliminated by
consideration of the structure of the reaction
zone,

For the case up< u¥, a flow involving a
C\hapman-.lnuguet detonation can be
constructed and is therefore. possible. In this
cage, the pamcle velocity, equal fo u¥ ‘behind
the detonatiun wave, is adjusted to the piston
velocity u_ by a centered rarefaction wave,
Since a ﬁxapman-dougl tet detonation wave
front, (Eq. 6-18), dnd the head of the
rarefaction wave moves with the same velocity,
the rarefaction wave follows the detonation.
front immediately. The wave path W and the
chancteristic C, :ssuing from the point x =0, ¢
= Qcoincide. This flow is iliustrated by Fig. 6-8
which shows the piston path P, the wave path W,
a fypical particle path and characteristics C,
throigh the centered rarefaction wave, In
particular, if the end x = 0 is fixed—so that i, =
0 or open, correspondmg to u, 2 0'1
Chspman-Jouguet detonation is possible. The
ChapmanJouguet hypothesis consists of the
assumption that it is this flow that actually
exists in the case of an.unsupporteéd deionation
wave in the absence of a piston. Weak
detonation waves having been eliminated from
consideration, it is likely that no other solution
exists,

In Fig 6-9, the particle velocities -at a given
instant of time between the wave front and the
piston are compared-for four different values of
the piston velocity, For two of these values,
strong detonations result and for the other two,
one of them representing zero piston. velocity,
the detonation is a .ChapmanJouguet

w

X

Figure 6-7. Flow in a Strong De‘onation
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3’ e detonation. A graph of the pressure would be  arbitrarily prescribed on. W. By Jouguet’s xule, !
; qualitatively similar to this figure, the wave path W is also-timelike with xespect to ]} B
g In a deflagration process, the wave path W is  the reaction. products if the wave is 4 weak ~
timelike with respect to the unreacted material  deflagration. It follows that the. flw is-uniquely § )
E 'n  accordarice with Jouguet’s rule. determined when one quantlty,, the path W ora b i
consequently, the flow in the unreacted quantity aheéad of W, is prescribed. For a i !
matérial it not determined by the prescribed deftagration process- mth 3. > U, We have @i, Q. ! 3
vaitzes of pressure and particle velocity, p, and by Eq. 6-17. It is possible for-the wave to.move ) |
4,, -on the x-axis, and one quantity can be into ‘the unreacted material at rest only if the 3: '
o ; -
@ ;
i .
R ‘ ‘ b — : y ‘ ’ ) . o : ‘ o 1
L () ) X : H : e
o Figure 6-8. Flow in Chapman-Jouguet-Detonation . L .
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Figure 6-9, Particle Velocity Behind Detonation Waves: Strong Detonation (a) and (b); '
Chapman-Jouguet Detonations (b), (c), and (d) ‘
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the piston is withdrawn with a speed at least
equal to that of the reaction products behind
the tront, u, <u,.Ifu, >y, and in particularif u;
= 0, the:pattem of the flow must involvea new
feature. In this case, the adjustment of the
particle velocity to that at the rear boundary is
possible only if a precompression shock wave is
generated by the deflagration wave in the
unreacted material. of a suitable strength so that
after the-particles are accelecated in the forward
direction by the shock wave they are retarded
by the deflagration wmve and so attain the
volocity obtaining at the rear boundiry. This
flow is illustrated-in Fig. 6-10 for a closed end,
u, = 0, where the shiock path S, the wave path
W, and a particle path are shown. The

occurrence of a precompression shock wave is,in.

conformity with Jouguet’s rule. Since the flow
ghead of the deflagration wave is subsonic
relative to the wave front, the wave influences
the state of the material ahead of it. Fnr any
‘arbxtnnly prescribed wave path W and piston
path with u >u, ,there is a uniquely-determined
precompremon shock S and flow bétween S and
P. It is to be noted that flows exist for a
specified shock wave involving arbntranly chosen
strong defiagration waves followed by
rarefaction or shock waves, Strong.deflagration
waves having been eliminated from
-consideration, it is likely that the solution
described: involving a weak deflagration is the

ohly solution that exists. One degree of
indeterminacy remains: either shock path S -or
the wave path ¥/ can be chosen- arbitrarily with &
prescribed piston velocity. Additional
information, to be found by an examination of
reaction -and transport processes in the interior
of the wave, must be employed uniquely to
determine the flow. .

We conclude this discussion of the flows
agsociated with reaction-waves by showing that a
deflagration. wave with its'precompression.shock
wave is formally equivalent to .a detonation
wave, Through a shock wave of velocity U, the
pressure of the unreacted material is raised from
p, to p and the specific volume decreased
from v, . The mass flux m through: the
shock wave is, by the continujty equation,

m=pw, = p'i (6-73)
where p’ = 1/v' and w' is.the flow velocity of the
shocked unreacted msteml, relative to ‘the
shock front. Through the deflagration wave of
velocity D, the pressure is reduced from p 1o
P, and the specific volume incieased from- v' to
vy. If the mass flux is the samé through both
waves,

m = p'w' = pow, (6-74)

/
[ ¢ Particle.
/“s-

X

Figure 6-10. Flow in Weak Deflagration With Closed End
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and therefore
Polly = P W, (6-75)

The conservation of momentum through the
shock and defiagration waves.requires that

P - b =W, - |
(6-76)
’ 1o, 182 2
p=p =pw) - pw,
so. that, by the elimination of p|
P, = P, = oW - pywl (6-77)

These conservation conditions can be combined

to yield

P-p Bp-P P -D
= - <

v -, v - v RS

= m? (6-78)

The Hugoniot equations for the shock and
deflagration waves are

,'eo(pliv") - ca(pmuo) = l/é(pl + Po)("’o - UI)
eo,,) - @) = %, + P - v,)
(6-79)

respectively; where &, (p,v) is the specific energy
function. of the unreacied material, Eliminating
e (p'v') from these expressions and using Eq.
6-78, we obtain

e(p,.0,) - (B, )

(6-80)
= %(p, + P )Y, - v,)
Egs. 6-75, 6-77 and 6-80, are identical with Eqgs.
6-2 and 6-3 for a single reaction process from
the state (p , v, ) to the state (pl, v, ).The shock
and detlagmhon waves hnve the same
propngm n veloclty D = U when the mass flux
is the same through each wave and, by Eq. 6-78,
the points (p',v’) and (pl.v) lie on the same
Rayleigh line. Fig. 6-11, ilustrating the
Hugoniot curve for the (wenk) deflagration and
the shock wave, shows that the equivalent single
process is a detonation. The curve A' AQ is the
Hugomot curve of the shock wave, centered on
(p,.,), in the unreacted material, glven by the
first of Egs. 6-79. The curve B'B is the
deflagration branch of the reaction Hugomiot
curve centered on (p',v’), given by the second

of Egs. 6-79, and also the detonation branch of
the reaction Hugoniot curve centered on
(Po»V ), given by Eq. 6-80. The Rayleigh line
ABO is drawn tangent to the reaction Hugoniot
curve and thus corresponds to a
Chapman-Jouguet detonation. centered .on
(p,,Us) Or to a ChapmanJouguet deﬂagratlon
centered on (p! v' ). The Rayleigh line A’ B' O
corresponds to a strong detonation or a weak
deflagration. It is evident that a strong
detonation is formally ‘equivalent to a ‘weak
deflagration preceded. by a2 shock and a.
Chapman-Jouguet detonation to a
Chapman-Jouguet deflagration preceded by a
shock, the mass flux through shock and
deflagration waves being identical.

65 THE CHAPMAN-JOUGUET HYPOTHESIS

The Chapman-Jouguet hypothesis states that
the detonation wave for which

w, =C, (6-81)

is the one that actually occurs when the reaction
wave is unsupported. The assumption that the

flow satisfying Eq. 6-81 is to be identified with

the experimentally obsexved unsupported
detonation wave was advanced independently by
Chapman and by Jouguet. This hypothesis
selects one state from the continuum of states
described by the Hugoniot equation and
compatible with the conservation conditions.
Consequently, Eq. 6-81-togéther with the
consetvation conditions, Eqs. 6-2 and 6-3, and
an equation of state for the reaction
products -suffices to determine the detonation
velocity, the state of the reaction products, and
their velocity with respect to the detonation
front, These relations thus constitute a theory of
the detonation wave. It can be used to calculate
the detonation properties for particular
‘explosives, and the calculated values can be
tested by comparison with experiment.

Support was given to the Chapman-Jouguet
hypothesis by the agreement obtained between
calculated and obeerved properties of the
detonation wave for explosives expected to
conform to the model of one-dirensional flow
and for which an equation of state is known,
The detonation wave propagating along a pipe
filled with an explosive gas mixfure appears to

6-19
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fulfill this conditions. For such a system, the.

ideal gas equation of state is sufficiently
accurate. "Of particular interedt, because of the
frequency of citation in the literature, is the
work of Lewis and Friauf®, who carried out the
first critical expeérimental test of theory. They
treated’ mixtures of hydrogen and oxygen,
diluted by various gases, and in their calculations
they .considered the -effect of dissociation
equilibria on the final.composition of the gases.
Good agreement was -obtained ‘between
calculated’ and. observed values -of -detonation
‘velocity. The mixtures presented a considerable
variation in the energy released and in the initial
density. For this mixture, elementary theory
-adequately predicts the principal propertiés of
the detonation wave. .

In theoretical justification of the
Chapman-Jouguet hypothesis, strong
detonations can :at once be eliminated.rs states
to be identified with an unsupported wave. It
was shown in the last paragraph that strong

detonations exist only: for a supported wave
where the piston velocity is greater than the
particle velocity behind a Chapman-Jouguet

wave, If the piston velocity is less than this.

limiting value, and in particular if the rear
boundary is either fixed or free, rarefxchon
waves from the rear boundary can eventually
overtake and aftenuate a strong detonation
because of the subsonic nature of the ilow

behind it. The process of attenuation wili cease

when the wave has decayed to a
Chapman-Jouguet ‘wave-because the-flow behin 1
+hé wave then becomes sonic. Therefore, we

conclude that a strong detonation is.
hydrodynamically unstable if the wave is.

unsupported.

To illusirate this point further, considér the
hypothetical situation represented by Fig. 6-12,
in which the pision P, initially supporting a
strong detonation wave, is suddenly stopped,
creating, at that instant a rarefaction wave that
overtakes and weakens the detonation wave. The

Figure 6-11. A Detonation as a Deflagration With a Precompression Shock
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¢
initial straight portion of »/ represents the strong
detonation wave, the later straight portion the
Chapman-Jouguet wave, and the ¢urved portion
‘a transition region. Two particle paths are
shown, one through the strong detonation and
the other through the ChapmanJouguet
detonation. i )

Prior to about 1940, when the analysis was
refined by consideration of the finite extent of
the reaction zone, weak detonations were
eliminated by unconvincing plausibility

-arguments. Becker” showed that the entropy of

a strong detonation state is greater than that of
the weak detonation state with. the same
propegation velocity and inferred that the
former state is therefore' the more probable.
Weak detonations: being thermodynsmically
unstable relstive ‘to the corresponding strong
detonations end strong detonatioris being
dynamically unstable, hé concluded that the
Chapman-Jouguet detonation wave is-the stable
one, ‘Scorah® showed the Helmholtz frée enetgy
to be a minimum for the Chapman-Jouguet
state. He interpreted this result to mean that the
Chapman-Jouguet state corresponds to a

maximum degradation of energy and is therefore-

the most probable one. Commenting on the
generally unsatisfactory nature of
thermodynamic arguments of this sort,
Zeldovich® remsrked that an‘increase. in-entropy
does not guarantee the éxistence of ashock;a
piston to compress tiie gas is also necessary.
Brinkley and Kirkwood!® have treated the
dynamic stability of the detonation wave by
considering the energy available in the explosive
products (o support the propagation of the
detonation froni and the hydrodynamic
conditions. operating in the flow behind the
front. ‘Their analysis is developed in the
paragraphs which follow. ‘
" The propagation of a deonation front, like
the propagation of an unreactive shock wave,
requires a-continuous supply-of-energy from the
rear. The work done by the medium to the rear

-of the front on the intact medium ahesd of the

front in. the time element dt is pudt, the
sibecript 1 being used to-designate conditions

immediately to .the rear of the front at an

instant of time £,. If we now fix attention on.
theé total mass of explosion products initially

I
:/»Fhrtlclo ’-7‘_-———"’//
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Figure 6-12, Attenuation of a Strong Detonation Wave by a Rarefaction Wave
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contained in the region from the rear boundary
x, =0 to the planex | =x; for times subsequent
to the instant ¢, when the wave front reaches
x,, we note that the total work done by this
pottioa of the medium on the medium ahead of
it, designated W(x, ), is

H(x,) = f pudt (6-82)
iy

where the integral is along the particle path of
the particlés initially at the'point , .

The secular behavior of the integrand pu (for a
given eléiment of the medium) has.an important
bearing on, the behavior of the detonation wave
when it is in an unsteady. state.. The proof which
follows: shows that ‘the sign of [d(pu)/dt].,,
determines the sign of the acceleration of the
wave front.

Defining for the Lagrangian rate of change of
the quantity pu a time constant u to be
evaluated at.the shock front, i.e.,

1__ 1 Pew (6-83)
M plul at xq

we make the arbitrary assumption that u> 0 after
external or self-generated initiation effects have
died out and the wave has become
self-sustaining.

Although this assumption is made a priori,
there is strong reason to accept its validity. It
can readily be shown, for example, that this
condition follows if there is a rarefaction
immediately behind the .detonation front, a
xarefaction being defined for this purpose by the
two conditions

dp op
¢ 0, (E )l 0 ( )

Since—in the absence of shocks in the flow—a
given element of matter remains in an isentropic
condition, the pressure will decrease when the
density decreases. Also, the flow velocity will
decrease when the pressure gradient is positive
according to the equation of motion. Therefore
the presence of a rarefaction as so defined is a
sufficient condition for u to be positive.

We now proceed to establish a connection
between this condition on g and the secular
behavior of an unsteady detonation.

6-22

For inviscid flow without heat conduction, the
hydrodynamic equations of continuity and
momentum can be written in terms of a
Lagrangian space coordinate (see par: 2-6) for
flow in one-dimension in the form

TECR

o \OX, pc ) )
po\ox,] o |
ou 1 fop\ _ :

at ' p, (ax) 0

The Lagrangian coordinate x  is the position
of the element of fii:ii at ¢ = 0 whose position at
time ¢ is x. The time and Lagrangan coordinaté
are taken to be independent variables and. the
Eulerian. -coordinate x is regarded a finction
x(x,t) with' '

O0x N LAY
u= 57 and g, = p l(ax,,) (6-86)

Eqgs. 6-85- .are supplemented 'by ‘the entropy
transport equation, which is not explicitly
employed; by initial and boundary conditions;
and by the conservation. conditions across the
reaction discontinuity which implicitly prescribe
the path of the.discontinuity in.the.(x, ,t)-plane.
As 'has préviously been pointed out, the
discontinuity conditions prescribe a
one-parameter continuum.of possible detonation
states and can be used, when suppleniented by
an equation of state, to express all of the
detonation properties as functions of any-one of
the properties selected as argument. For
convenience, the unreacted explosive is assumed
to be-at rest. The second of Eqs. 6-2 can then be
written

p, - p, =pu,D (6-87)

An operator in which the detonation wave -is
stationary is defined by
d 9 3
—=—+ D — 6-88
dt ot ax, (6-88)

1f Eqgs. 6-85 are specialized to the high pressure:
side of the detonation wave and the partial time
derivatives eliminated with the aid of Eq. 6-88,
we obtain

e iy A T ——
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’ap (o ) ou
— = D —
at (axa Po X,
V00
du,
1 Bu ap
——— D —
dt 0x,, A B;;a
1 1

where: ithe subecript unity indicates that the
quantity so designated is to be evaluated
immediately behind the detonation wave, Since
the detonation front is assumed to be a
mathematical .discontinuity, the conservation
conditions -across ‘the discontinuity must be
satisfied whether -or no; the state behind the
wave is steady. Eq. 6:87 can therefore be
différentiated, with the result

Also from Eq. 6-88-and the definition of u, we
can write

1\(4&),1 ("_)2(@_)
- \dt dt] b, \2
1 [ 4, \d By \9%, 1

D aul 1 (6-91‘)
+ o —— - —
u, \ox, M
1

‘Egs. 6-89, 6-90, and 6-91 can be solved for
dp, /dt in terms of u and the properties of the
reaction products behind the detonation front.

The result can be written,
1(%) .
p \a@ (6-92)
13 . G
KL+ g+ [{pylp,u D)L + 8 - G)

where

G =1~ (g, D(p,c)? (6-93)

or, in view of the first of Eqs. 6-2
G=1-[(D- u)e]? (6-94)
To determine the sign of thie denominator-of
the term in brices of Eq. 6-92, the equation of
the Rayleigh line Eq. 6-14, can be rearranged
Py = Py = P D*(1 - p,y) (6-95)
and-differentiated with-respect to.v, atconstant

p, and g, - Theresulting expiession-connects the-

derivative dD/dp; with.the slope dp, /du; of the
Hugoniot curve, When it is simplified with the
aid -of Eq: 6-70 and the definition: -of g
introduced, the expression ,

(6-96)

is obtained. Sincé dp, /dvl, <0, g > 1/2
Therefore, (1 + &) miv (% + & - G)«the latter
being equal to g + [paD/(p ¢y )]2—are positive

and. the denominator of the term in bracés of
Eq 6-92 is pos.tive everywhere on. the-Hugoniot
curve,

In view of the assumption that u iz positive,
the sign of dp, /dt is seeri to be oppdsite- t6 that
of G. Thetefore, it follows that

dp,
a — <0 whenp1>pl and D <u +o
dpl
s =Owhenp, = pfandD = u +e¢
dp.

— > Owhenpy <pland D >u g
where p} is the pressure behind a
Chapman-Jouguet.detonation wave.

‘This analysis indicates that both strong and
weak detonations are dynamically unstable and
tehd with time to the Chapman-Jouguet state, T¢
also indicates. that the Chapman-Jouguet state is
stable since its properties' do not change with
time, In particular, it is demonstrated that the
propagation velocity of the Chapman-Jouguet
detonaticn: is constant, a result that is in accord
with experimental observations. The analysis
must, however, be regarded’ a plausibility
argument since it is subject to the bdsic

623
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assumption that was made with respect to the
nature of the flow behind the detonation wave.
We defer to a later chapter further consideration
of the Chapman-Jouguet hypothesis and now
examine the results that.can be obtained with
the theory that has been formulated.

66 THEORY OF THE DETONATION
VELOCITY AND OF THE
THERMODYNAMIC STATE OF THE
EXPLOSION GAS

VWhen. supplementéd by an‘equation of state of
the reaction-products and-the Chapman-Jouguét
hypothesis;. the ‘ccnservation ¢onditions across

the -detonation wave suffice to.-determine a

unique final state, flow velocity, and
propagation velocity when the state of the
unreacted explosive is specified. In this
paragraph, we dssemble these relations and
efféct a partial reduction .of the equations. By
using thermodynamic relations of general
validity; we formulate the gereral
one-dimensional theory of the detonation
velocity and detonation properties, We assunie,
without loss of generality, that the unreacted
explosive is at rest with reference to a stationary
origin-of coordinates.

The -conservation conditions across the
detonation wave have been expressed by Egs.
6-2 and 6-3. For the explosive at rest with u, =
0, these relations can be written

PD =p (D~ u) (697
P, - 2, = pD'(1 - p,v) (6-98)

e, = & =, = p)v - v)  (6-99)

The first of these expressions is the equation for
the conservation of mass and is identical with
the first of Eqs. 6-2. The second, which is the
same as Eq, 6-95, can be obtained by rearranging
the equation of the Rayleigl line, Eq, 6-14, and
is the result of combining the equations for the.
conservation of masé and momentum, The third
is the Hugoniot equation, Eq. 6-3, which is the
1esult of combining the equation for the
conservation of energy with the mechanical
consexvation conditions.

The Chapman-Jouguet hypothesis results in a
supplementary condition, Eq. 6-18,

-6-24.

D=u +¢ (6:100)

Eliminating the particle velocity u, with thé

aid of Eq. 6-97, we obtain an alternative.

expression
D = pyc;/ps (6-101)

It is convenient to eliminate the speed of sound
by the introduction of the adiabatic exponent«
defined: by

K= (3 8npfd 8n p), (6-102)

in terws.of which the speed.of sound'is given by

PRV (6-103)

The adiabatic exponent is a function of the
thermodynamic state of the gas. For an ideal
g5, it is equal to.the ratio of the heat capacity
at constant pressure to the heat capacity at
constant volume. With the aid of Eq.-6-103, Eq.
6-101 can be transforried to ‘

D* = Kk,p,p, IPs
(6-104)
i, = K(Py,p;)
Eq. 6-104 can be employed to elimihate the

detonation velocity from Eq, 6-98. We then
obtain the result

2, o
1- == '%('i - ) (6-106)
pl po

We have obtained from Eqgs. 6-97 to 6-100 a pair
of expressions, Egs. 6-97 and 6-104, from which
the detonation velocity and particle velocity of
the reaction products can be calculated after the
pressure p, and specific volume », of the
reaction products have been determined, i.e.,

D = 4,k P, b;

u, = D(1 - pu,)

and a pair of expressions, Egs. 6-99 and 6-105,
involving thermodynamic quantities only

€= €& = %(pl O Ul)

(6-106)

(6-107)

1-plp = Kl(plvo - 1)

R
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that suffice to determine p, and v;. We must
now consider the solution ‘of the latter pair of
‘equations.

Egs. 6-107 contain two functions of the state
of the reaction ;products, the specific energy ¢
and. the adiabatic exponent .k,; whose
dependence cn the state variables p; and v, is

‘made explicit by the introduction of an
-equation-of state, As a:practical matter, it isnot

convenient to express either of these quantities,
either analytically or by means of tables,
directly: in- terms. of thesé- two- state variables.
Consequently, the -equation of state introduces
an -additional state vuriable—e.g:, the-entropy or
temperature—and Egs. 6-107 ate then to be
solvea simultdneously with the equation of state
for the- thrée. state variables, ‘Since the*Hugoniot
equation: expresses a condition: on- the energy of
the reaction products and since the energy-is the

characteristic thermodynamic function for
systems described in terms of entropy and
volume, it would be consistent to empley: an.
equation of state having entropy-and volume the
independent variables. Howeéver, again- as a
practical matter, the thermodynamic-data to be
employed in the evaluation of the energy
difference-e, -, are of mich a nature as to
require: the selection of {emperature as :an
indéependent state variable and the form of
equations of statée for nonideal -gases makes
appropriate the selection .of the volume :as-the.
second.independent state variable. The effect of
this choice of variables, which is an: unnatural
one from a thermodynamic viewpoint, is to
confer-on the resulting set.of equations-a.degree:
of algebraic complexity thut is not required of
the formal presentation of-the theory. A-method
for thei¥ solution is presented in Appendix F.

6-25
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CHAPTER 7 APPLICATION OF THEORY TO CONDENSED EXPLOSIVES

7-1 INTRODUCTION

It has been noted in Chapter 5 thal the
detonation velocity of solid and liquid
explosives is observed to be in the range 4000 to
8000 m per sec, and that for a given explosive in
cylinders of large diameter the detonation
velocity is very nearly a linear function of the
initial bulk density. Since the pressures and
temperatures of the reaction products at the
detonation wave front lie far outside of the
region that can be explored by ordinary
experimental methcde, the variation of
detonation velocity with initial density has
constituted the chief experimental fact for
determining thé pressiure, density, and particle
velocity. In recent years, this evidence has been
supplemeéented by isolated -experimental
determinations of the detonsiion pressure.
However, it is necessary to employ the theory to
evaluate the state of the detonation products at
any point other than that for which a diréct
experimental determination is available.

Since 1940, a large amount of wo~k has been
done in an effort to formul & . generally
applicable equation of state to supjlement the
hydrodynamic equations of the theory of the
detonation wave. The work hadthe objectives of
determining the physical and chemical
properties of the detonation gas in sufficient
detail so as to make possible the evaluation of its
thermodynamic state behind the detonation
front and during its iseniropic expansion from
the detonation state. The latter information ‘s
necessary for the solution of flow problems
when the initial boundary couditions are
determined by the detonation wave.

In much of this work, the theory has been
employed in an inverted form—using
experimental values of the detonation velocity
and, when available, of the detonation
pressure—to evaluate the parameters of an
equation of state of assumed form. The equation
of state obtained in this way can be employed to
evaluate the unknown properties of the
detonation wave in the explosive for which the
equation was calibrated. If the pazameters of ths
equation can be related to the basic molecular
parameters of the explosive and if the form of
the equation is sufficiently general, the theory

can be used to predict the properties of other
explosives,

Attempts have %een made to employ
theoretical equativns of state, based on
molecular models, for a priori calculations of the
detonation velocity and the properties of the
detonation products. The most interesting of
these efforts has entailed a very substantial
degree of algebraic complexity in the resulting
computational procedure. The theoretical
approach is of great intérest as a program of
beasic research in the theory of the properties of
matter at high temperature and very high
density. It may provide valuable qualitative
guidance in the formulation of empirical
eguations in relatively simple analytical forin
that are in at least approximate agreement with
the requirements  basic theory. As &
compatational procedure to evalilate detonation
properties for practical applications, the
theorstical approach has been disappointing.

The inverse procedure, involyving the
calibration of an eguation of state of assumed
form by experiméntal values of the detonation
velocity, has been pursued with much
elaboration of mathematical and numerical
detail. The parameters of the equation of:state
depend upon the composition of the gas, The
latter, if not assumed a priori .on the basis of &
conventional reaction scheme, are détermined
by the thermodynamic equilibrium cenditions
which depend on the equation of state.
Furthermore, it is necessa~: to conduct -the
calculation of equilit:;um composilion and
evaluation of thz nermodynamic properties of
the gas with the temperature as an independent
variable, even though this state variable is an
unnatural choice from the point of view of the
hydrodynamic equations themselves. The
introduction of the temperature as a parameter
of the problem leads to a degree of algebraic
complexity that is absent from the fundamental
equations, Because the simplifying assumptions
employed by different workers have varied, the
literature contains a variety of results on the
properties of the detonation products;
consequently, a comprehensive review of the
field is impossible within the scope of this
chapter,

71
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In some applications, estimates of the
detonation properties and to first order of their
variation with the parameters of the system, e.g.,
the heat or energy of explosion and the initial
density, will suffice. Such calculations do not
justify elaborate computational procedures
requiring computers and they will usually be
based on an a priori specification of composition
by means of a conventional decomposition
scheme. In such calculations, simplicity of
procedures js of greater importance than full
mathematical rigor, and. the equation of state
may be of physically unrealistic form provided
the properties of hesic interest are not seriously
sffected thereby.

In other applications, it may be desired to
secure the most precise evaluation of the
«etonation properties that is possible. Such
calculations will usually, at this time, be
conducted on computers. It will commonly be
required that the ccmposition of the ges satisfy
the thermodynamic equilibriut conditions and
that the equation of state have a form that is
physically plausible, A computational procedure
that is suitable for use on an computer is usually
differont from one that is suitable for desk
calculation, in that iterative methods of solution
are extensively employed to reduce the
complexity of the program.

In this chapter several equations of state
suitable for the two types of application are
described, In the case of the forms that are
suitabie-for rapid éstimates, the solution of the
hydrodynamic equations is developed in some
aigebraic detail. In the moxe elaborate case, the
solution is extremely laborious when co:.ducted
by hand, and we give explicit equations in the
form in which they are conveniently utilized in
the formulation of a computer pr.gram,

7-2 THE ABEL EQUATIOM OF STATE

The simplest of ine various empirical
equations that seek to describe the dependence
of the pressure of noniceal gases on temperature
and volume is that of van der Waal’s. In the
form, due to Abel, that is appropriate for
applications at high temperature, it can be
written

plv-a) = nRT (7-1)

7-2

in which o is a constant volume correction ot
covolume for unit weight of gas, This equation
was first employed to solve the Hugoniot and
Chapman-Jouguet equations by Taffanel and
D'Autriche! and it has been extensively uied in
connection with: calculations for condensed
explosives by Schmidt?. The Abel equation can
be obtained as the low density limiting form of
the equation of state of a gas at high
temperature composed of hard spheres.
Therefore, it can be expected to describe the
nonideal hehavior of gases only if the specific
volume is large compared fo the covolume
constant, This quantity turns cutto be of thesame
order of mag.:zade as the specific volumie of the
explosion gases from conventional explosives at
custcmary values of the initial density.
Conzequently, a theory of the detonation
velocity based on this equation of state can be
expected to yield aceurate results only at initial
densities that are much lower than those of
practical interest for condensed explosives. In
spite of this fundemental limitation, such a
theory is of practicas value benause it yields
simple relations giving useful esiimates of the
detonation properties.

Application of the general relations of Chapter
2 for the nonideal gas comxection to the
thermodynamic properties of the explosion gas
leads to the result that efv,T) = ¢°(T), ie., that
the gas is thermodynamicelly ideal with a
specific energy function independent of the
specific volume, a function of temperature only,
and equal to the specific energy function of the
ideal ges at-the same temperature. It follows that
¢ =cp andy=c, /c, =7 foragas described by
the Abel equation of state, where the superscript
zero refers to the ideal gas and ¢, and ¢, are the
specific heats of the gas at constznt pressure and
constant volume, repectively, Furthermore,

hp.T) =e + pv = h°(T) + ap

(7-2)
k=9 vfv-a)

where h° is the specific enthalpy function for
the ideal gas and ¥ is the adiabatic exponent, k
= (3 &n p/2 8% p),.

Inn par. 6-5, it was shown that the detonation
pressure p, and detonation specific volume are
determined by the solution of Eqg. 6-107
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1-p,/

When these relations have been supplemented by
an equation of state and solved, the detonation
velocity D and particle velocity u, can be
evaluated by Eqs. 6-106

=Ky (P v, - 1)

D-=u, ',_-"1'}"1[’1

u=D(1- pu)

(7-4)

With a condense? .explosive, the pressure p; is
the order-of 10* to'11® atm. Therefore, p, can
be neglected in comparison to p,. With this
simplification and with the introduction of the
entbalpy function and the heat of reaction g,
defined by Eq. 6-8,.Egs. 7-3 can be written

By RO(T,)= @ + 5 R0, + 8)

COORR S (¥

By use of Eqs. 7-2 and introduction of the

average specific heat at constant pressure f

¢S (T - T,} = h(Ty) - h°(To)  (T6)
Eqgs. 7-5 become
G h-T) (1

= q+p (v, + v -20/2

=@, %ty +1) (1-8)
Eq. 7-8 is the desired expression for the specific
volume of the explosion gas in the
Chapiman-Jouguet detonstion stats, When the
pressure is eliminated from Eq. 7-7 by means of
the equation of state and the specific volume o,
by means of Eq. 7-8, we obtain

Tl_-[c: : 1.‘ g + ?—:—-

e 7.9
e "t oy mr, T )
An alternative form, because ¢ = S+ nR,is

ond the process is repested until sucressive

T [ 1 g %
s | — = i
T Lok " 2vo) " nRT, " nr (710

where ¢ =q + nRT -p v. #q+nRT isthe

o, a,.0

energy of explosion. It will. be noticed that the

temperature Ty is a constant independent of the:

initial density. Because of the foc of the Abel
equation of state, these: exprossions for the
temperature are the rame as thoixthat would be
obtained with the ideal gas equiiion of state. (In
fact, Eq. 7-9-can be obtained-from Eqs: ¥<10-by
neglecting p, comuoared to p,, as we have done
here, and substituting the ideal gas equation.of
state.)

The specific heats and the heat capacity ratio-

are slowly varying functions of temperature. Eq.
7-9 or 7-10 is easily solved by iteration. The
specific heat and the ratio y° are evaluated for
an approximate value of the temperature, an
improvéd value of the temperature is obtained
by: solution of ohe or the-other of the equations,

approximations are in satisfactory agreement,
Application of thé theory based on the Abel
equation is-not usually of syificient accuracy to
justify a caleulation of the -equitibrium
composition of the explosion gas. If a special
application is such .as-to justify this elaboration,
the composition may be adjusted at each stage
et the iteration by a calculation of the
equilibrium compoiition at the approximate
values of the temperature and specific volume of
the detonation
described in Chapter 2, The activity coefficients
f, that are needed for the calculation ar¢ easily
shown to be f. = v/(v~0a), independent of
temperature and composition, It Wi usually
suftice to base the application on a conventional
composition as described in Chapter 3,

By substitution of the equation of state and
Eq. 7-8 into Eqs. 7-4 and the-second of Egs. 7:2,
expressions for the detonation velocity, particle
velocity, and adiabatic exponent of the
detonation products are obtained.

0
fnr 1 o
D (1m+°{p> ‘/nRTll”f

0,

u, =\uRT [} (711)
Kl = (710 +“pa)/(1 "‘apo)
13

state, using the methods:
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For an explosion gas described by the Abel
equation, the particle velocity u, is independent
of the initial density p_.

It is a convenient computational device to
define hypothetical ¢‘ideal” detonation
properties calculated for the actual explosion gas
composition and initial density but with the
ideal gas equation of state. If such quantities are
designated with. a superscript zero, expressions
for theit calculation are obtaified at once from
Eqs. 7-11 by setting a = 0. Thus, when the
explosion. products .are -deseribed. by. .the Abel

equation, T = T] anc u, = uj, we can write

K o
v /"1, =1+ op, Iy

- (7-12)
D/p® = (1 ap,)
where
vy =l + 1)
D = (3 + 1) \RTY f?

(7-13)
u’ =\’nRT: A

and where T} is obtained by the solution of Eq.
7-9 or 7-10.

An approximate solution of Eq. 7-10,
sufficiently accarate for -estimates of the
detonation properties, can be obtained by
factoring the term ¢2/nR from the coefficient of
T, /T, dnd assuining that the heat capacity is
independent of the tempersture in evaluating
the remainder. If, in addition, we neglect ¢/ T
compared to ¢, we-obtain

T, =T =247 /‘[(7;‘ +1) ?] (7-14)

Substituting this expression into Eqs, 7-1 and
7-13: and using Eq. 7-8, we obtain

q

o =oftBy
)6
1 =
D= <1 T qu'(y;’ +1)nR/e] 1 (7-15)
4, =Y24'(1 + DR/

74

which, {ogether with Eq. 7-8, can be used to
furnish estimates. of the detonation properties.if
a value of the covolume o is known. A .useful
relation is obtained by eliminating ¢ between
the first two of these equations

B = 0 Dz(l;ﬁe) (716)

7+l

which can be used to estimate the detonastion

pressure from an experimental value of the:

detonaticn velocity if the covolume « is known.
One can estimate the covolume constant by
comparison of an observed detonation velocity
with a value calculated by the first of Egs. 7-11.
This procedure is not strictly consistent with the
assumptiom‘r on which that equation are based
since it will be found that the covolume; assum4d
in the derivation to be constant;.depends upen the
initial density. It doés, however provide a simple
method of estimating the
propetties of the explosion gas whén a
detonation velocity has been experimentally
determined that is superior to a votal neglsct ¢f
the effects of gas imperfection. If the detonation
velocily has beén measured as a “unction of the
initial density, the quantity g, = i + dfnD/dtn
p, can ie tvaluated from the experimental data.
By differentiation of the first of Egs. 7-11, we
obtain the result
o= (g, - 1)/(p,8,) (1-17)
By substitution into Eqs. 7-8, 7.16, and the
third of Eqs. 7-11, we obtain the relations

=gyt -1
Y N £-17 |

poD2 1 1 k
p = Tn ;—70+1
i (4 1

that depend only on observed guantities and on
the heat capacity ratio for which a sufficiently
accurate estimate can be made for an
approximate composition and an approximate
temperature.

The application of these approximate
equations can be illustrated by a calculation for
Composition B consisting of 64% RDX, 35%
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TNT, and 1% wax, by weight. The detonation
velocity for this mixiure is accurately known
and the adiabatic exponent x; has been
evaluated .experimentslly at a single initial
density, These data suffice for the evaluation of
experimental values of the detonation pressure,
density, and particle velocity at the initial
density for which the admbahc exponent is
known. According to Deal®,the experiméntal
values of the detonation veloclty can be
represented’ by

D =2639 +3127p,

where 0 is in m/sec and p, isin gfce. Atp,
1.714, Deal reports that K, = 2.77.

We employ the conventional decomposition
scheme

C, Hy,O,N, , »4.4C0 + 1.25H,
+1. 6H20 + 245N,

to define the composition of the explosion
products, according to which the oxygen is
considered: to veact first to form CO and then to
the extent possible with hydrogen to form
water. This reaction yields 0.0434 mole of
gnsequs praducts per gram of explosive and an
energy of explosion ¢’ = 1,068 kcal/g at 25°C.
The natio 9° = 1.25 between 3400° and
B000°K. The results of the calculations are

73 DETERMINATION OF THE
DETONATION STATE FROM
VELOCITY.DATA

The wusual procedure for formulating an
equahon of state: descriptive of the detonation
products of condensed explosives has involved
the assumption of an analytical form of the
equation and the evaluation of its parameters
from experimentel values of the detonation
velocity. It has sometimes been erroneously
claimed that the fact that this program.can-be
accomplished implies that the assumed form of
the equation of state is valid and that the
thermodynamic properties calculated with .its
aid are accurately evaluated. It tums out that
various different.forms of the equation lead to
approximately the fame values of thone
variables, that are explicit in the hydrodym.mlc
equations but to widély different values of those
variables, such a3 the temperature, that appear as
parameters cfthe problem.

It is insthuctive to consider the general
problem of determining the thermodynaxmc
state of detonation gases using the
hydrodynamxc theory aiid an experimental curve
D = Fi(p. ). %iqs. 7-3.and the first of Eqs. 7-4 can
be rearrange:i-to the Jotin

Py =RD (L~ p,0,)

o "‘"“E?r*‘v"‘r‘v’v'——"‘_W—"
Downloaded from http://www.everyspec.com

) summarized in Table 7-1, o - (7-19)
3 e, - e, = hD*(1- p,u,)
i The unexpectedly good agreement between the
; estimatés and the experimental values at p_ where the Chapman-Jouguet equation is written
b 1.714 is. unquestionably fortuitous, and’ t ’
i cannot be assumed that equally good agreement K =P, /(- py) (7-20)
would extend to lower initial densities, were
) experimental values to be available. The In these expressions, we have without loss in
comparison does imply that very useful generality neglected the initial pressure p,
[ estimates can be obtained by simple calculations ~compared to the detonation pressure p,. The
i when experimental values of the detonation equation of stzte is customarily taken to be an
velocily are available. expression of the form
TABLE7-1  ESTIMATES OF THE DETONATION PROPERTIES OF COMPOSITION B
P, Rlce I'A a, ccfg Ky pyRlcc p,.atm 7,.°K
. Eq.7-18 Exp, Eq.7-18  Exp. Eq.718 Exp. Eq 711 Eq. 714
5 10 1543 0352 247 1404 94.5 4370 408¢
3 1.25 1.697 0.502 2.61 1728 146 4370 4080
1.5 1.640 0.260 2,69 2,060 216 4370 4060

1714 1.670 0,234 276 2.1 2338 2335 289 | 280 4370 4060
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p=p T, ...n...) (7-21)
expressing the pressure as a function of the
temperature, specific volume, and the mole
numbers of each constituent of the mixture-of
reaction products. The mole-nuzabers n, may be
fixed a priori by an assumed composltlon or
determiried as functions of specific volume and
temperature by Eq. 7-21 together with the
equilibrium conditions. Either case implies the
existence of an,implicitly defined function

p=p{v, T) (7-22)
By means of the laws of thermodynamics, the
entropy of the .detonation products is
determined as a function - of specific volume and
temperature

s=3s(v, T)

and Eqgs. 7-22 and 7-23 togethér imply the
existence of an implicitly defined function

(7-23)

P=p 8) (7-24)

The ususl progrim for determining an equation
of state in the form of Eq. 7-21, subject either
to the equilibrium conditions or to an a priori
specification of the composition, is the formal
equivalent of determining function 7-24 for
given values of p_,e_, and D = D(p ) by means
of Eqs. 719, .20 end the laws of
thermodynamics. By use of the thermodynamic

relations B_e_ or _ai .
2, " \ew), " P

and the definition
k= -(3®% p/d hv),

Brinkley* has pointed out that the Jacobian

J(—i)

v, 8

venishes at the point (p, ,v;) satisfying Eqgs.
7-19-and 7-20. This means that these equations,
the thermodynamic relations, and the observed
data can be satisfied together with any urbitrary
function s = s(v) or T = T(v). The program of
evaluating the thermodynamic state is thus

76

indeterminate in general, and determinacy
requires the introduction of some restriction
having the effect of specifying the arbitrary
function, This is accomplished by assuming a
form for the equation of state but the
experimental data provide no criterion for the
correctness of the assumption.

Jones® has remarked: that Eq, 7-22 represents
a -surface in the p,u,T space and that the
maximum amount of information thai can be
derived from a D(p_ ) relation would fix a'line of
a certain length.on thxs surface, Thus, when one
attempts to analyze detonation velocity data by
fixing on one surface by the assumption of an
equation of state, the result islargely arbitrary
gince there are evidently any number of surfaces
which contain the same line. Jones concludes
that very little information about.the form of
the equation of state can he obtained from
detonation velocity data but that if a form is
assumed, then the values of its.parameters can in
general be determined: It foilows that the

assumption of a form of equaticn must be

guided in the main’by considerations of physical
plausibility.

The first-of Eqs, 7-19 defines-a ruled surface in
Py, Y, 't, space. The second-of these equations
determines a curved surface in the same space
which, according to the Chapman-Jouguet
f.heory, touchea the ruled'surface along aline p,

=p, (u v (v ) that can be called the
Chapman-.!ouguet ’locul In an investigation of
the properties of gases.that can be deduced from
measurements of the detonation velocity, Jones
has deduced from this gecmetrical circumstance
a telation that is of great practical value. Egs.
7-19 are written in implicit form

F(p,,t,,,) = p,D°(1 - p,u)} = P, = 0

G(p,,v,0,) =e, ~ ¢ - Yep, (1 - pv) = 0

(7-25)

The condition thet the surfaces definea by these
equations be in contact is that at any point of
contact the direction cosines of the normals to
the two surfaces be equal, This condition leads
to two relations

(9F/dv,)/(9F/dp,) = (3G/3v,)/(3G/3p,) (1-26)

(9F/du,)/(3G/Av,) = (3F/2v,)/(dG/duv,)
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On evaluation of the derivatives, the first
relation leads to Eq. 7-20 which is an expression
of the Chapman-Jouguet condition. The second
relation leads to a new resuit, Defining a
thermodynamic quantity A by

Y
A 3v

(7-27)
.and noting the thelmodynamxc relation
1fe) 1,1
v ')p_ . K A (7-28)
Jones obtained the relations
p, =a,0"[g,(2 + \)
1 1 i
v == |1~ -
1 p, [ &(2+ M]
(7-29)

D2
§ =€ty /[z.,’ @+ 7\)’]

K =g(2+N-1

from the second of Eqgs. 7-26, together with Egs.
7-19-and 7-20. Furthermore,-from the second of
Eqs. T-4
u, = D/{g;(2 + N)) (7-30)

In these expressions, g, = 1+dn D/a Lnp,, as
defined and employed in the last paragnph

The utility of these relations resides in the fact
that A contains all of the thermodynamic
information that is required when the
detonation velocity is krown experimentally
and g, can be evaluated. Jones shows that this
quantlty is essentially positive so that Eqs. 7-29
and 7-30 with A = 0 previde upper limits to P1'
e,, and u, and lower limits to v, and Kk,
Furthermore, Jones shows that A is msensxtwe to
the forin of the equation of state and that it lies
in the iuge 0 <A << 2 Rather accurate
estimates of A can be made with approximate
equations of state, thus making possible the
direct evaluation of those properties of the
detonation products that are of principal
interest in studies of their subsequent flow.
Using available equation of state data for

nitrogen, Jones estimated that A is not likely to
be greater than 0.25.

In par. 7-2, reference was made to the
experimental determination by Deal of the value
of the adiabatic exponent for Composition B at
an initial density p, = 1.714 gjcc. The
measurements made in this investigation
permitted the evaluation of the pressure as. a
function of specific volume along the isentrope
passing through the Chapman-Jouguet point.
The experimental data were quite well
‘represented, partn.ularly in the neighborhood of
the Chapman-Jouguet point, by the simple
adidbatic law

=p, (/Y ", & =217 (7-81)
with constant adiabatic exponent, where p, =
p(v,83 ) p,(v) is the pressure on the isentrope
passing through the experimental
Chapman-jouguet. point {py, vij. Along an
mentmpe obeying Eq. 7-31, the.specific energy
is given. by

e =ef + (- pF ) - 1)

where e, = e(u;s})and e, = e(p3, v;) {We have
employed an astemk to dejignate properties.at
tha experimental Chapman-Jouguet point for b,
=1.714 gfcc.)

The equation of siate of the detonation
products could be determined if, in addition.to
the known isentrope, the energy were known on
a single nonistentropic curve in the same region
since the rate of change of energy along an
isentrope is defined by the first law of
thermodynamics and the nonisentropic curve
would provide initial data for the integzation.
Fickett and Wood® bhave shown thal the
isentrope and the Chapman-Jougueé locus
passing through the experimental point (p,,v; )
lie close together in the (p,v)-plane. They
expand the energy as a Taylor series in the
pressure about the point on the isentrope having
the same specific volume and assume that the
expansion can be terminated after the term of
first order. For points near the experimental
isentrope, this assumption leads to an equation
of state

(1-32)

(p. ) = ¢ + fi(p - p)v (7-33)
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where B‘ is the value on the experimental
isenitrope of the quantity

1 f[de
-4 )

The Chapman-Jouguet locus for varying initial
density is completely determined by Egs. 7-28
to 7-34. Fickett and Wood have obtained the
solition by nv- erical methods. The original
papér should be consulted for details. Their
tesults for the coefficients 8, k, and A are listed
for several values of the initial density in Table
7-2. The values of the other detonation
properties can be evaluated at once by means of
the basic hydrodynamic equations previously
given.

The results listed in Table 7-2 depend only on
the validity of Eq. 7-33; are independent of any
assumptions regarding the form of a temperature
explicit equation of state; and did iot require
evaluation of the composition of the product
¥as. Eq. 7-33 is correct to terms of first order in
the increment (p - p,} and is probably a vevy
good approximation when employed to
determine the Chapman-Jouguet locus since that
curve lies close to the experimental isentrope.
Although the namerical solution of the equation
is tedious, this method is probably ‘the best
available for the calculation of p,,v,, and x; as
functions of p  along the Chapman-Jouguet
locus. Its application requires the-availability of
an experimental Chapman-Jouguet point and, in
the absence of an experimental isentrope, the
further assumption that the isentrope can be
represented by equations in the form of Egs.
7-31 and 7-32. Additionally, the calculations
summarized in Table 7-2 can be employed as a
criterion: for the physical plausibility of assumed
analytical forms of the equation of state.

(7-34)

7-4 MODIFICATIONS OF THE ABEL

EQUATION

When the simple Abel equation of state with a
constant covolume was employed by Schmidt?
and others o describe the detonation products
of condensed explosives, it was found that the
covolume, evaluated to secire agreement with
experimentai detonation velocities, is a function
of the initial density. This theoretical
inconsistency should have led the early workers
to reappraise the aralysis. and it has led
subsequent workers to remave the inconsistency
by adopting less restrictive assumptions. The
Abel equation

p(v - @) = nRT

can be made to describe the state of any
substance if « is a suitably prescribed function
of two state variables, e.g., a = a (p,v). However,
it was shown in the last par. 7-3 that a-curve
D(p,) does not provide sufficient information to
evaluate the function a in this generality, and
some refiriction must be placed upon it.
Restrictions that are sufficient, but less
restrictive than the specification « = constant
employed in par. 7-2, are &= x(v} or & = (p).
The first of these has been employed by Cook?
in extensive calculations. The-second has been
employed by Jones in calculations for the
explosive PETN.

Cook employs a modified Abel equation of

state in the form

plv - o(v)] = nRT (7-35)
According to this equation
foe ap>
—} =T\—=) -p =0 .
(Bv),. (bT , 14 (7-36)

TABLE 7-2 THE DERIVATIVES f, K, AND AALONG THE CHAPMAN-JOUGUET
LOCUS FOR COMPOSITION B

P, i
1.714 1.77
1.6 1.79
1.4 1.82
1.2 1.86
1.0 1.91

7-8

K A
2.1 0.256
2.74 0.267
2.67 0.260
2.59 0.262
2.50 0.266
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80 that a gas described by Eq. 7-35 can be:said
to be thermodynamically ideal with e(v,T) =
e’ (T), ¢, = ¢? Furthetmore, the specific
enthalpy h = e +pv =¢e° + nRT + pa(u) = h +
poi(v) so that c, =c: and'y*cn/c =4°, At the
high density of the detonation products one
would expect the specific energy function to
have a substantial contribution from the energy
of gas imperfection arising from repulsive terms
in the intermolecular ‘potential junction. This
expectation is confirmed by molecular theories
of the properties of dense gas, such as that of
Lennard-Jones and Devonshire, which is at least
qualitatively correct. The consequence of Eq.
/-35 that is expressed by Eq. 7-36 does not
appear, therefore, to be physically plausible.

The adiabatic exponent k can be evaluated by
Eq. 7-35 and the relation

NLE /A N CAY 2 .37
-2 -GG, o

‘We obtain the expression

K= ( ) (-« @) (7-38)

where o’ (v) ig- the derivative of & with respect;
to v. Egs. 7-3, with the neglect of p compared
top, , become

v = (T + )T+ 1)

T; LnR 2L nRTo nR

‘where

T =97 [1+d(@)] (7-40)

and where ¢ = [¢°(T} )-e°(T )T~ T )1san
average specnﬁc heat at constant volume and q
is the energy of explosion. It may be noted that
Eqgs. 7-39 have the same form as the solutions of
Taffanel and D’Aubriche! for the unmodified
Abel equation of state, Egs. 7-8 and 7-10, with
the quantity I" replacing the heat capa .ty ratio
4. Eqgs. 7-4 can be written

r'+1
=(. -NRT T
(1+an,, "R §(7-41)

u = \,nRT1 r

E[’E—; -1—] ) ql \ :‘u? (7-39).

The adiabatic exponent can be evaluated with

= (T +ap,)/( - ap,) (7-42)

Eqgs. 7-41 and 7-42 are analogous to Egs. 7-11
based on the Abel equation of state.

Cook has applied Eqs. 7-39 through 7-42 to'a
large number of explosives. His method of
calculation was iterative, commencing with the
solutions based on the Abel equation. At each
state of the iteration, he calculated the
equilibrium composxhon ‘of the detonation
products. He has in this way determined the

function a(v) from the experiment D(p ) for

the explosives consideréd. He concludes that-the
tiinction o(v) found in this way is indepéndent
of the composition of the detonation gas and
may be used for the a priori calculation of
detonation propertles The function a(v) as
determined by Cook is:shown in Fig. 7-1. Some
of the results obtained with this: equation of
state are listed in Table-7-3.

1f"Cook’s equation of state is-to be employed
in a forward calculation of ‘the detonation
properties, the calculation must be ‘performed
by successive approximations. The
Taffanel-D’Autriche! solutions expresied by
Eqs. 7-8 and 7-10 provide a -convenient iirst
approximation. If the calculation is to be
elaborated by the a.ssumptxon that the
detonation products are in- equilibrium; the
compositions cah be adjusted at each stage of
the iteration by an equlhbnum calculation
employing the methods detziled’ in Chapfer
The activity coefficients f;, appropriate for an
equilibrium calculation at specified temperature
and specific volume, are given by

- 1 _‘] a(v)
o g / [RT <an) u [v - a(v)u]dv
(7-43)

and have been tabulated by Cook. These
coefficients are independent of composition and
temperature and, as noted in Chapter 2, result in
a calculation of the equilibrium composition
that is no more difficult than that for an ideal
gas.

Jones has employed a modified Abel equation
of state in the form

plv -~ a(p)] = nRT

Vs
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TABLE7-3 DETONATION PROPERTIES OF SOME PURE -EXPLOSIVES’ i
Po Uy g Tx’ 4y Py )
Explosive g/em® em?® g moles/g 2K m/sec 10% atra
PETN 1.0 0.725 0.0352 5350 1540 85 '
16 0.478 0.0349 5700 1820 225 i
RDX 1.0 0.723 0.0405 5250 1660 95 !
1.6 0.469 0.0405 5750 2000 255. ;
TNT 1.0 0.740 0.0331 3700 1250 60 :
16 0.505 0.0245 4170 1340, 150 \
Tetryl 1.0 0.752 0.0370 4200 1340 75
1.6 0.485 0.0355 1670

4700 200

and apphed it to the exploswe PETN. Accordmg
to this equation

oh o
=y Pf o] = 745
(ap) v-T (a i’)p a(p) (7-45)

so that a gas described by Eq. 7-44 has the
pecific enthalpy and energy functions
p
h=0(T) + / a(p)dp
o (7-46)

e=°e°(T)+f°¢(P)dP~P°l(P)

and ¢§,=¢cp, ¢, =¢f, Y=cp/c, =", Since this form
of equation predicts a contribution to the
enefgy from gas imperfection, it appears
intuitive.y to be a more plausible form than that
employed by Cook.

This -equation of state appeass to have been
applied only to the explosive PETN. For- this
material, Jones has employed the detonation
velocity data of Friederich®to evaluate the
function a(p). For an equation of state of the
assumed form, the coefficient A, defined by Eq.

7-27, is A=q° -1 (7-47)
and it may be regarded a constant to a good
approximation. Then by means of Egs. 7-29, the
detonation properties can be evaluated directly
from the experimental D(p ) curve, Using Eqgs.
7-29 and 7-46, Jones shows that o(p) can be
evaluated by the numerical solution of

p a(p)

»
- A\ Masd Na+h o | dp
cu {2 /[p o

o
7-10

(7-48)

where ¥ is a function of p given parametucanly
in terms of p_ by

D? 2%, ~ 1
o ") o ng (149
2(2“_7\)( > Ag' (7-49)

1+ N¥ =

together with the first of Eqs. 7-29, where ¢’ is
the energy of explosion. Jones’ determination of
the function a(p) for BETN is shown:in. Fig. 7-2.
Calculated values of the detonation properiies
are listed in Table 7-4. The energy of gas
imperfection resulting from this form of the
equation of state is shown in the last column of
the table, The quantity increases strongly with
increasing .initial density and is responsible for
the downwatd trend of the temperature.

The Jones modification .of the Abel equation
of state does not appear to have been applied to
other explosives, and its application at the
present time to an ¢ priori calculation would
require an assumption thet the function afp) is
independent of composition. If such an
assumption should turn out to be justified, the

;equation should. provide a useful and relatively

simple method for the calculation of detonation
products having the desirable feature that the
energy of gas imperfection is not neglected. The
analytical form of the equation is such as not to
yield useful expressions by-a partial reduction of
the equation, similar te that employed in-our
description of the Abel equation or of Cook’s
modification of it, It would be most convenient
in this case to conduct the calculation in the
general manner described in par. 6.5, using, if
desired, the methods of Chapter 2 to evaluate
the ethbnum composition.

o
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The-coefficient \ defined by Eq, 7-27 is given
by Eq. 7-47-when the modified Abel equation of
state employs the assumption o= a(p), and by

A=(y - 1)/~ @) (7-50)
when the assumption a = a(v) is made. We have
employed- these expressions together with Eqgs.
7:29 and the observed: D(p ) to estimate the.
adiabatic exponent x on the Chapman-jouguet
locus' for Composition B. We employ the same
assumptions as were employed in par. 7-2 and

take 9° = 1.25, independent of the initial

conclude that the assumption o =.cfv) is inferior
to the assumption « = afp). Furthermore, we can
conclude that the simple Abel equation when:
calibrated by obeérved detonation velocities at
ea~h initial density can be used for reliable
estimates-of the detonation properties in apite of
the mathematical inconsistency that atténds its
use,

76 APPLICATION OF THE
CHAPMAN-JOUGUET CONDITION TO
MIXTURES WITH VARYING
COMPOSITION

AMCP 708-180 !

§ J b, 1

i 3 z

- TABLE74  DETONATION PROPERTIES OF PETN® i

Py, D, u, Py Uy, T, E, ;

3; g/cm? mfsec m/sec 10° atm em®/g °K cal/g j

0.50 3940 1305 26 1.34 4870 135 i

% 0.75 4720 1415 50 0.933 4630 246 ]

! 1.00 5560 1560 86 0.719 4400 375. ;
1.26 6450 1710 137 0.588 4160

IS

B
B
£

/

o density, The results are summarized in Table 7-5
. where we include for comparison the values The application of the Chapman-Jouguet
i obtained by Fickett and Wood, and previously  theory to the calculation of the properties of the
listed in Table 7-2. ) detonation products- has been based on the
The results for @ = constant and a-=afp) are solution of two equations ‘between
identical because both assumptions lead to the  thermodynamic properties, Eqs. 7:3, which-with
same estimate of the coefficient ), namely 7°-  the equation of state siiffice to specify the
E 1. These results are in rather good agreement  thermodynamic state of the product gas. The !
with the resulis of Fickett and Wood. The gpplication of the second of these, which has \
results based on the assumption a=afv) are  been employed in the form i
systematically much higher than the other '
rezults. If the caloulations of Fickett and Waod k(pu -1)=1 (7-5%y !
, are used as a standard of comparison, we 117 !
K ° TABLE 7.6 THE ADIABATIC EXPONENT FOR COMPOSITION B ALONG THE
N CHAPMAN-JOUGUET LQCUS R
9 :
, : -l
. P, o = Const, « = afv) o = afp) Table 7-2
‘ 1714 2.76 3.80 2.76 2.711
< 1.6 2.72 3.66 272 2.74
o 14 2.66 3.43 2.65 2,67
. 1.2 2,57 3.1& 2,87 2.59
‘ 1.0 247 2.92 2.47 2.50
_ 713
p_—
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and which is a statement of the
Chapman-Jouguet condition, requires further
discussion for calculations in which the
composition of the product gas is determined by
the équilibrium conditions and in which, in
consequence, the composition will in general
vary in moving from one state point to another.

If we recall that the adiabatic exponent is
defined as the derivative

K= (3% p/d tn p), (7-52)
it is necessary to specify the way in which the
differentiation is to he performed in cases where
the composition is a function of state. It has
been imylicitly assumed in the reduction of the
equations presented in the preceding paragraphs
of this chapter that the differei.tiation is
performed at constant composition. The
quantity so obtained may be called the
adiabatic exponent for fixed composition or,
more shortly, the “frézen” adiabatic exponent.

TFor calculations in which the composition is
assumed to be fixed, there is no incompleteness
in the definition of the quantity k since the
“frozen” quantity is evidently consistent with
the a priori.assumption as to composition.

It has been noted in Chapter 2 that the laws of
thermodynamics for mixtures with fixed
composition or for mixtures with equilibrium
composition assume the same form as for
systems of one constituent, The thermodynamic
state functions and their derivatives for mixtures.
are thus completely defined in texms of two
state variables either when the composition is
fixed a priori or the composition is the
equilibrium composition. In particular, a
differential coefficient such as the adiabatic
exponent is a well defined function of the
thermodynamic state when it is specified that
the equilibrium conditions in differential form
ate to be satisfied when the differentiation of
Eq. 7-52 is performed. The quantity so obtained
may be cailed the adiabatic exponent for
equilibrium composition or. more shortly, the
“equilibrium" adiabatic exponent,

The sound velocity and the adiabatic exponent
are related by the expression,

02 = Kp/p (7'53)
Therefore two sound velocities, a frozen sound

7114

velocity or an equilibrium sound velocity, are
obtained, depending vpon whether the frozen or
equilibrium value of the adiabatic exponent iz
employed i.. Eq. 7-53. In physical terms, the
former quantity is the velocity of propagation of
acoustic waves in the limit of wery high
fréquencies; the latter, the velocity forthe limit
of very low frequencies. Now Eq. 7-52 is an
expression of the Chapman-Jouguet condition
that the detonation velocity is equal to the local
sound velocity with reference fo the detonation
products. Consequently, the application of the
theory is not completely specified until the
meaning of sound velocity (and of the quaritity
k) is further specified. There is no
thermodynamic argument that will definé the
proper quantity unambiguously.

In Chapter 8, we discuss in some deta:s the
question of completing the statement of the
Chapman-Jotiguet condition by specifying the:
nature of the sound velocity. It appears that the
equlhbnum sound velocity is properly employed
in cases that are truly one:-dimensional.
However, we believe, in at.least some instances
where the one-dithénsional case is employed.as a
simplified model of an actual two-diménsional
explosive charge, it is more appropriate to
employ the frozen sound speed in the statement
of the Chapman-Jouguet condition. These
questions will be more completely considered in-
Chapter 8. We here wish only totake note-of the
fact that the numerical results of a calculation 6f
the detonation properties will depend to some
extent on the assumption used with respect to
the statément of the Chapman-Jouguet
condition. As a practical matter, the distinétion
between the two forms of the Chapman-Jouguet
condition is largely academic. Cowan and
Fickett? report that pressures calculated using
an equation of state due to Halford,
Kistiakowsky, and Wilson, differed by lass than
1% at an initial density of 1.2 g/cm® and were
almost identical at high initial density, the
pressure being higher when calculated from the
equilibrium Chapman-Jouguet condition.

Almost all of the calculations that have been
reported have employed a Chapman-Jouguet
condition based on the frozen sound speed.
(Most authors thave regarded this an
approximation.) If il is desired to base the
Chapman-Jouguet condition on the equilibrium
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sound speed, two methods of computation ¢
possible. The first, which has been employed by
Cowan and Fickett, is to construct the
equilibrium Hugoniot curve in the neighborhood
of the Chapman-Jouguet point, using only the
first of Eqs, 7-3. snd-to determune by triail or by
graphical or numerical interpolation the point
on the Hugoniot curve resulting in the minimum
detonation velouity. This procedure clearly. is
equivalent to employing the equilibrium sound
velocity in  the statsment of .the
Chapman-Jouguet condition. The second, which
we prefer because it requires substantially less
computation, is to employ the general iterative
procedure described in Appendix F which,
together with the methcds for eva™ating
equilibriuri  compiosition and  equilibrium
thermodynamic  propertie described  in
Appendix B, ieads fo a direct solution of the
problem,

The frozen composition Chapman-Jouguet
condition appears generally to be an entirely
adequate approximation. It is much more easily
employed. Even su, the general iterative
procedure of Appendix F remains, in our
opinion, the most straightforward
computational approach for any equation of
state except the simple forms suitable for order
of magnitude estimates. In Appendix B, we have
described computational procedures in detail for
evaluating the thermodynamic properties of

.equilibdum: ‘mixtures. The Chapman-Jouguet

poiny is then determined by an iterative
procedure involving thermodynamic quantities
only. The computational procedure is thus
cempletely prescribed if the équation of state is
presentad in analytical form.

7-6 EXPLOSIVES WHOSE
CONTAIN A SOLID PHASE

PRODUCTS

The products of detonation of an explosive
may congist nci -only of an homogeneous gas
mixture but also of a mixture of gas with various
condensed  constituents,  Nongaseous
constituents may be present in the products
because species Tound in the reaction condense
at the prevailing detonation temperature and
density, Explosives such as tetryl or TNT have a
marked oxygen deficiency end, as a result, {ree
carbon is formed as a reaction product. Some
commercial explosives arz cor ounded with
chemically inert diluents present i the original

explosive mixture, and these malerials form
condensed phases in the detcnation products.

The first case where some of the reaction
products are condensed cdn be treated in a
direct manner. It is natural to assume that such
products are in thermal equilibrium with the
gaseous reaction products and cofapletely
entrained by them. These assum:ptions applied
to explosives con‘aining inert diluents are more
arbitrary in nature and will be the more closely
appliceble the finer the particle size of the
diluent and the lower its conJentration. For the
case of inert diluents, Taylor'? has compared
calculations in which thermal equilibrium is
assumed with calculations in which it is assumed
that there is no heat transfer to the diluent.
Complete entrainment was assumed in each caie,
and Taylor concludes that the assumption -of
thermal equilibrium: results in the betler
theoretical model.

The preisure of the gas phase is represented by

4n equation of siate as an expression of the

general form
p=p(,T) (7-54)

where v, may be defined as the volume of the
gas phiase for unit total weight of explosion
products. Since the volume ¢f gas und of
condensed phases is additive

vE Y, (1-55)

where v is the specific volume of thie mixture as
previously defined and v, is the volume of
condensed phases for unit total weight of
products, Furthermore,

v = InV (7-56)
condensed
phases

where n, is the number of moles of the i-th
condensed species from unit weight of explosive
and V, is the molar volume of the i-th condensed
species. In the case of an explosive producing
solid carbon, such as INT, this expression is
gimply

v =nV, (7-57)

The general form of the equation of state for a
mixture of gas and condensed species expressed
in terms of the specific volume of the mixture,
can now be written in the form

718
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p=plv-u,T) (7-58)
where v_is, in general, a function . pressure
and temperature,

An equation of state of the Abel tyve can be
written in the form

p(v - @)=nRT

o - (7-59)
o=+ U‘

where n is the number.of moles of gas produced
by unit weight of explosive, Thus the quantity a
becomes an effective covolume, and the
equation has the same form for a mixture of gas
and condensed phase as for & gas phase alone. In
caléulations that are -calibrated by cbserved
detonation velccitics: such- a8 have been
described previou:ly, o may be considered: (1)
an adjustable constant as in the. Abet equation,
(2) a function a (v) as has been done by Cook, or
(3) « function a(p) as would be appropriate in a
calculation employing the Jones modification of
the Abel equation.

In a priori calculations of the detonation
properties using an equation of state with
known parameters, the quantity v, must be
evaluated, This requires knowledge of the
cuncentration of each condensed species iri the
detonation products and the molar volume of
each species at the temperature and pressure of
the detonation gas, The former .quantity
concentration must be based on an initial
estimate that is improved as the overall iteration
procedure progresses by successively more
accurate determinations obtained from the
solution of the equilibrium conditions, The
molar volumes of the condensed species can
usually be taken as constants of the system
unless their concentrations are very large. They
can  be evaluated, when {lie necessary
compressibility and thermal expansion dat«
exist, at a temperature and pressure in the range
of detonation conditions and thereafter held
conatant, Lacking such data, the molar volume
at ambient conditions can be employed as an
estimate. The overall precision with which the
equatinn of state of the gas 1s known does not
appear for most applications to warrant an
claborate equation oc & .2 for condensed
species. Furthermore, as a practical matter, the
use of more accurate forms is awkward because

718

such forms are explicit either in the pressure or
in the molar volume of the solid and they are
not easxly combined with the equation.nf state:
of the gas which is expliciti the volume of'the
gas. We cite; however, the work of Cowan and
Fickett? who have quoted an equation.of state
for carbon (graphite) with parameters that are
derived from experimental measurements- of the
shock Hugoniot curvé in graphite, It is an
accurate but extremely-cunibersome equation of
state for carbon that could be employed ir
calculations if the high aceuracy could be
justified by comparable accutacy in the other
parameters involved.

7-7 THE VIRIAL EQUATION OF STATE

According to the virial theorem, the equation:
of state for gases can always be written in the
form

P, B(T) O D(T)
— =] 4 b b . (6
nRY u, v, v: (7-60)

where B(T), C(T), D(T),. .. are the first, secord,
third, ete., virial coefficients which are funciions
of wmpemture and composition but nat of
volume. For molecules with an intesaction

wn€érgy that can be expressed as a function of the

intermolecular distance, the second virial
coefficient can be theoretically evaluated. For
ncnatiracting rigid spherical molecules, the virial
coelficients are independent of temperature, For
such a gas, the third virial coelficient has been
calculated by Boltzmann and Jiger aad the
fourth virial coefficient by Happel and
Majumbar® 2, For the gas of rigid nonattracting
spheres, the virial equation to cubic terms in the
density has the form

Py, 2!
= 21+ 2 4o ao5(%)+0.2860(05 ) 76D
nRT Y, v' ‘

At high temperature, Hirschfelder
Roseveare!® proposed the equation

P, b 3
—L a1 +—+ 0.625{— b
nRT e ¢

‘s o (162)
b b

+0.2869 (—f)+ 0.1928 <7>
vﬂ UE
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where the second virial coefficient is calculated
according to the theory of imperfect gases in the
limit of vanishing density and is found at high
temperatures t0 be nearly independent of
temperature. Thus, the second virial coefficient
can be evaluated theoretically, and its evaluation
makes possible a theorefical evaluation of the
higher virial. coefficients for a hard sphere gas

‘which is taken to be a satisfactory model of a

real gas at high temperature. The value of the
fifth virial coefficient in. the expression given
was chosen to make the equation agree at high
density with the free volume theory of liquids of
Hirschielder, Stevenson, and Eyring 4

The calculated high temperature second virial
coefficients of some species appearing as
explosion products are listed in Table 7-6.
The coefficients in Table 7-6 are for pure gases.
Rules for mixtures having a theoretical
justification are quite complex in form, In view
of the approximation, only the simplest
combination rule can be justified and the
formula

b=E np, (763)

has been employed in applications of Eq. 7-62.

Hirschfelder and his coworkers have employed
Eq. 7-62 in extensive calculations of the
thermodynamic prcperties of the products of

propellants, Its apphcation to the a priori

cilculation of the properties of the detonation
products of condensed explosives is due to
Paterson? ©, It is-of the form

py, = nRT F<§-\’ {7-64)
”
so that if b is a constant Y
OE ap
Pidad 2 = 86
o T(aT p=0 (7-66)

and ¢, = ¢f, ¥ =c¢/cy * 7°. The equation neglects
the ene.gy of gas. imperfection and will, for this
~eason, overcstimate the temperature of the
cetonation products. Paterson justifies this
neglect by stating that il is justified-at low initial
densities and will affect to only a small extent
all properties except temperature at higher
initial densities,
Eq. 7-:62 can be written in the Abel form

p {y, - o(v,)] = nRT (7-66),

where

a(v,) = v, [+~ 1/F()
x = b/u‘

Therefore, :the quantity I" can be calculated by
the relation

rey [z--— "F(ﬂﬂ (1:68)

and the solution for the Chapmpn-Jouguet

.-Jint, based on: ‘the frozen Chapman-Jouguet
condztxon, s given by Egs. 7-39. Thus. the
modified Boltzmann sorm of the virial equation
of state can be employed to obtain: an a:prior,

[ ¢37)

TABLE7-6 HIGH TEMPERATURE SECOND VIRIAL COEFFICIENTS OF
GASEOUS DETONATION PRODUCTS®

Species | b, cm®/mole  Species i by, em® /mole
co,* 37.0 NO 21.2
co 33.0 N, 34.0
H, 14.0 CH, 3.0
H,0 7.9 NH, 15.2
0, 305

* Ai densities wherc the CO, molecule is assumed not
to rotate, At lower demltm. with ;outwn permitted,
tha value of by for CO is 63.0 cm” /mole,
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theoretical evalugz.ion of the function cr(v) that
was evaluated empirically by Cook.

The results of some of Patetson’s
calculations—using the equation of state Eq.
7-62, the frozen Chapman-Jouguet condition,
and assuming equilibrium .composition of the
detonation products—are given in Tsble 7-7,
Paterscn has also -applied .his equation of state
to calculations for a Jarge number of commercial

blasting explosives.

In these-calculations all of ‘the necessary data
were dclermined  without reference tfo
detonation  experiments. Considering the
completely a priori nature of the calculations,

surprisingly good agreement with experimental

detoriation velocities was obtained, particulsxly

.at’the lower values of the initial density.

787 THALFORDKISTIAKOWSKYWILSON
EiJATION OF STAYVE

An extensive computation of the detonation
state was carried out by Brinkley and Wilson!?
employing an empirical form of equation of

provide for a contribution due to gas
imperfecticn to the energy content of the gas.
The parameters of the equation were calibrated
in part by :the use of experimental detonation
velocity data and in part from theoretical
considerations. Since the origitial work, this
equation has had many mniodifications as new
data became avnilable. The most extensive and
most recent re.ision has been carried -out by
Cowan and Fickett who were able to
supplement experimental velocity -data with
some experimental pressure rneasureinents.

Cowan and Fickett employ an équation of
state in the form

py, = nRTF(x) ]
Fx) = 1+ xef* {
x =k (T +0)M

k= El‘n‘kl

Here, v, is the volume of gas from unit weight of
explosive; n, is the number of moles.of the i-th

/\|)
» (I -

e e g am

e e i o

stite that was proposed by Halford, gaseous constituent from unit weight of o
Kistiakowsky, and Wilson'®. The equation isa  explosive; &, f§, and 0 are empirical constants; . ;
: modified form of one that was originally and the k, are empirical constants, characteristic N “
! emoloyed by Becker to epresent an of the individual species, having the nature of 4
| experimental nitrogen isctherm. It was modified  covolumes. The cohstant # was added to the
. by the omissica of terms that are significant  original form fo suppress a spurious minimum v
| only it low temperature and in such a way as to  that the unmodified form presented in-curves of 1
! TABLE?7-7 DETONATION PROPERTIES OF SOME CONDENSED EXPLOSIVES! :
W ; . 7
' por Uly T)l Pl» \ulv D» .
. E Exgloc‘ive 'g(cma emdfg :5 10° atm. m/sec m(sec z . .
! Nitroglycerin. 160  0.505 5640 199 1650 8060 : o
PETN 0,50 1.362 5000 21,3 1175 3670 ' : :
; 1.00 0,760 5150 3.8 1340 5660
. g 150 0540 5340 188 1650 8150 o
et TNT 0.50  1.354 3873 12.4 894 2710 , " !
IR 1.00 0.769 3873 44.2 1010 4400 : )
Yo i P 1.50 0.560 3890 124 1196 6970 ‘ |
' :\ Tetryl 0.50 1.366 4500 15.6 1000 3140 .
1.00  0.770 4600 56.9 1150 5000 i o o
1.50 0.550 4790 160 1375 7850 . ‘
o 718 w 3
(‘
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pressure versus temperature at constant volume,
Cowan and Fickett have employed:the value 0 =
400°K. in all of their work.

When Eq. 7-69 is employed as the equation of
state, the specific energy e, of gas imperfection,
where e=e° + ¢, is given by

¢/(nRT) = « T+0
which is a rapidly increasing function of the gas
density at constant temperature.

Eqgs. 7-69 and 7-70 can be written in an
approximate form

T )(F— 1) (7-70)

e = a(pv' - nRT) (7-71)

it we negiect 6/T compared to unity. Now, it

can be shown from the virial theorem that if
attractive forces are neglected in comparison
with repulsive -forces in the intermolecular
potential function and if the latter varies
inversely as the n-th power of the intermolecular
distance, then

e= (3/n)(pul - nRT) (7-72)

Thus, Eq. 7-71 is of the correct form for the
internal energy of a gas that is sufficiently dense
so that attractive forces can be neglected in
comperison with repulsive forces. Furthermore,
the parameter & can be identified with the
quantity 3/n, where n is the exponent of the
repulsive term in an intermolecular potentml
functiori of thie Lennard-Jores ope. From
theoretical considerations, n>6so that a <!%.
Cewan and Fickett fouad the best overall fit

‘with experimental data with the value a = 14,

The high -value of this coefficient reflects the
fact that attractive forces are not entirely
negligible at any gas density. Also, there is now
evidence that an inverse power law for the
repulsive term is toa “hard” for dense gases.

The discussion of th, last paragraph. is not, of
caysse, a complete justification of the form of
the essentially empirical equation of state, Eq.
7-69. It does, however, indicate that this
equation takes account of the energy of gas
imperfection in a way that is physically plausible
and in this respect, at least, is superior to the
other forms of equation of state that have been
considered. Unfortunately, itz use in routine
caleulations involves a considerably more

elaborate computational: program. It is not
conveniently employed for desk computations,
and it.is most suitably employed in calculations
employing.a computer for which the effort -of
préparing a compufer program can be justified.
We can summarize the values of the equation

of state parameters adopted by Cowan and
Fickett as follows: .

a=0.50:

B=0.09

0 =400°K
The values of the &, are given in Table 7-8.

TABLE7-8  VALUES OF THE CONSTANTS k?

Species C kX Species k¥
Hy 3636 co, 6407
N, 6267 NO 4148

Table 7-9 contains values of some detonation
properties of several explocives calculated with
Cowan and Fickett's form of the
Halford-Kistiakowsky-Wilson equation of state,
Experimental values and some calculated values
by Cook and by Paterson are included for
compa.ison.

Cowan and Fickett conclude that reasonably
good agreemment between calculated and
observed quantities is obtained except for
explosives such as TNT with large oxygen
deficit. In the case of TN the calculated values
are unsgtisfactory even though an elaborate
equation of state was used for solid carbon. The
causc of this discrepancy is nét understood at
the present time,

‘The equation of stare employed by Cowan and
Fickett leads to detonation temperatures that
decrease with increasing initial density. This
behavior follows from the fact that the equation
of state results in a contribution to the energy
due to gas imperfections as a strongiy increasing
function of density. It will be noted from Table
7-9 that the calculated temperature is

*A more extensive list of the constants ¥ 1+« to the
best avatlable exﬂoslves property data, x ¢ ‘tained in
repﬁrts é:y C. Mader, LASL, which 'have not been
pubtishe:

119




Downloaded from http://www.everyspec.com

substantially lower than for eguaticns of state
for which the energy of gas imperfection is zero.
Cowari and Fickett conclude that the
Halford-Kistiakowsky-Wilson equation of state is
probebly fairly reliable if its-use is restricted to
explosives which. are similar to those that were
inciuded:in the determination of its parameters,
and to pressurés and volumer that are not too

different from those at the Chapman-Jouguet
point. There appears to be no justification for its
use in an extended extrapolation.

We conclude this chapter by remarking that
the-problem of formulating a generally adequate
equation. of state is not solved. The
Halford-Kistiakowsky-Wilson. equation: appears
to be the best available,

TABLE79 COMPARISON OF CALCULATED DETONATION FROPEQTIES
Py D, T P
Explosive Source grm? m/sec db/dp,  °K 107 atm Xy A
. P —— —— vy __ —— —
RDX Experimental 18 8066 3470 282 2.92 0.82
«Cowan & Fickett. 16 8037 2250 2788 269, 2.79 0.30
Cook 1.8 8040  ~ 3870 5750 258 301 ~034
RDX Experimental 18 336 '3,08:
Cowan & Fickett 18 344 "
INT Experimontal 16 6840 2800 166 344 068
Cowan & Fickett 16 8894 3120 2718 193 3.58 0.25
Cook 16 7030 ~ 3660 4170 150 4.20 0.84:
Paterson 16 6790 3310 3900 125 4.81 1.26
INT Experimental 164 178 3.48
Cowan & Fickett 164 204 291
RDX/TNT, 78/22  Experimental 1.765 313 2.82
Cowsn & Fickett 1,765 307 2:90
Comp. B Experimental 1,718 288 2.7%
Cowan & Fickett 1718 281 2.89
7-20
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CHAPTER 8 STRUCTURE OF THE PIANE DETONATION WAVE: FINITE
REACTIO.. ZONE

8-1 INTRODMCTION

The elementary theory of plane detonation
waves, described in Chapter 6, is based on 2
model in which the reaction zone is idealized as
a mathematical plane, thus implying &
detonation reaction of infinite rate and a
reaction zone- of zero thickness. The properties
of the detonation. wave are then deiermined by
the expressions for the transport of mass,
momentun;, énd energy across che discontinuity;
by the Chapman-Jouguet condition which
provides a sufficient description of the fow
behind the detonafion front; and by the
equation of state and thermal properties of the
«detonation products. The properties cf the
detonation wave are independent of the rate of
the -detonation reaction according to this

“ idealized modei.

This elemeritary theory correctly describes the
main features of the detonation process. In
particular, it correctly predicts the detonation
velocity and the thermiodynamic state of the
detonation products of cylindiical explosive
charges initiated' at. one end; provided, the
diameter of the charge is not too small.
However, extension of the theory to more than
one dimension—eg, to the spherica
charge—involves mathematical difficulties that
result from the over-idealization of the reaction
zone to a mathematical surface. Many details of
the detonation pre jéss in finite charges—e.g., the
effect of charge diameter on the detonation of
small cylindrical charges—areidetermined by the
structuré of the réaction zone. In this chapter,
the consequences of a more realistic model
which takes account of finite reaction rates are
investigated; however, we limit the treatient to
plane waves propagating in one dizection.

82 CONSERVATION CONDITIONS FOR
STEADY REACTION WAVES IN ONE
DIMENSION

We assume the existence of a wave of chemical
reaction propagating in one .lirection parallel to
the x-axis of a rectangular coordinate system
and assume ihat the properties of the flow are
constant on planes perpendicular to the

direction of propagation. We fix the origin of
the coordinate system in the moving reaction
wave and -assume that there ekists a region of
finite extent in the moving cocrdinate system'
within which the flow is steady.

The hydrodynamic equations for inviscid flow
without heat conduction or diffusion have been
given in par, 2-6. For flow in one dimension,
they can be written

LA L
ar  P\ax

do  1fo)
@ ey C

de_p (d)
dt  p*\dt)-

In these equations, p is the pressure, p is the
density, e is the specific energy, and w is the
particlé velocity measured with respect to the
moving origin of coordinates. The operator d/d¢
is the mobile time derivative, denoting the rate
of change with respect to time.as measvred by
an observer moving. with the fluid, i.e.,

d 2,2 82
dt ot 8x 82)

For steady one-dimensional flow, partial
derivatives with respect to time vanish and Egs
8-1 become

dp dw'
— — = 0,
<@+ G

dw 1 [dp ,
—}+ ={=—=) =0, (8-3)
v (dx) P dr) (

where, in the steady state, the properties of the
fluid are functions only of the space coordinate
x, measured relative to the moving coordinate
system. Eqs. 8-3 can be integrated, with the
result

8%

{8-1).

e h o o e ———A o e i




Downloaded from http://www.everyspec.com

4

AMCP 708-180

wp = M = constant
p + M2v = P = constant (84)
e + pu + Yw® = Q = constant

where ¢ is the specific volume. The new
coristants have the tollowmg significance: M is
the mass current, P is the dynamic pressure, and
 is the kinetic enthalpy. The three quantities
aré constants of the flow in a region ‘where the
flow is steady and where the effects.of viscosity,
heat, conduction, and diffusion can be neglected.

Eqgs. 8-4 are supplemented by the reaction rate
egquations of par. 2-6

/dn 8:5)
p(dt ) B @

and by the stoichiometric con. ions given in
par. 2-2

Zhm =g {8-6)

where the stoichicmetric constant q; is the
number of moles of the j-th component in unit
weight of a hypothetical mixture consisting of
components only. Without loss of generality, we
can assume that the componerits are assigned the
labeis i =1, 2,.. . ¢, so that constituents that are
not components are assigned the labelsi=c +1,

c+2,,..5Eqs &Smd&ﬁcmthenbewntten
in a more explicit form that takes into account
the-fact that only theR,|=c+1 c+2,.

can be 1ndependentl), speclfled For the stendy
abnte these expressions are

dn, R,

— = — =c+ 1, .

& o i=c+1, .8

""”‘:"'253,1—'12,.0
W . (TRl

(8-7)
The rates R, are linear combiiiations of the rate
ezpremon !’or the elementary reactions occurring
in the e on of reactive flow. These rate
expressions depend upon the composition,
temperature, and pressure. Therefore

B =2(T p;n.un) (88)

and if the mechanism of the reaction.is known,

. the expressions summarized by Eq. 8-8 can, at

82

least in principle, be evaluated. Egs. 8:4 are also
supplemented by an equation of state which we
may take to be an expression of the form.

p =ply, T; n, .n) (8-9)
Now, we suppose that fluid is moving from

left to right, ie,w>0.(This convention is
opposite to that employed in Chapter 6.}

Further, we-suppose that the material to the left

of the plane x = 0'is in the uniform state PP,

with w, = D and R, =0 for.alli. Atthe planex
= 0, we-consider tv'o cases, First, assume that
the-properties of the flow are continuous at this
plane. Then the constants of Eqs. 8-4 -are given

by M =p,D

P =p, + D" 1(8-10)

D =¢ +py + D

where e, is the specific energy of the
nonreacting fluid in the .uniférm state.
Alternatively, assume that the reacting. fluid in
the region x>0 is. connected to the uniform
norireacting. fluid in the regionx <0 bya shock
wave fixed in thé plane x = C, If the properties
of the shocked fluid at x = 0 are designated by a
prime, we have

M= pv'

P =p +plw) (811)
Q= e: + p’u' + ,/z(w:)z

Here ¢! is the specific energy of the material at
pressure p' and specific volume v hiving the
samie composition as the material in the uniform
stateat p, and v . Assuming that the shock can
be reptesented by a \dxscontnuwa transition
from the unshocked fo the sghocked state at
constant compotition, we may .employ
conservation conditions of par. 28 dnd
transform Egs, 811 to expressions that are
identical with Eqs. 8-10. Thus Egs. 8-10 can be
employed for the two cases under consideration,
Combining them with Egs. 8-4, we obtain

pw=pD }
p+pu® =p +pD* s(s'lz)

e+pv+%w’=eo+pouo+‘/’eDz

()
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The left-hand members of Egs. 812 are
evaluated at fixed arbitrary values of the
x-coordinate, x>0, It the first of Egs. 8-12 is
employed to eliminate w from the second, we
obtain

D% = -0 =~ B, - ) (213)

If the first and second of Eqs. 812 are
employed to eliminate w and D from the third,
we ¢htain

€= e, = A(p + po)u - v) (&14)

If we denote hy u = D - w the particle velocity in
the regionx >0 relative to that of the uniform
state existing in the region x <0, the first of Eqs.
8-12 beccmes

(D - u) = p,D (8:15)

If the uniform state is at rest in a laboratory
system of coordinates, u is the particle velocity
in a laboratory system of coorlinates.

Examining Eqs. 8-7 aund &12 we note that we
have s + 3equations connecting the s + 4
variables n, p, p, 4, and D when the uniform
state is specified, (The equation of state and
thermal properties of the -explosion products
determine the specific energy e as a function of
n,
f(‘)r detonations, to ‘tha absence of the
Chapinan-Jouguet condition from the equations.
Insofar as these equations are concerned, we
may regard D as 4 parametér whose value can be
specified. Egs. 8-7 and 8-12 are then in a formal
sense determinant, determining each of the
dependent variables as functions of x and D.
Thus, the solutions of Egs, 8-7 and 812
determine a two parameter sequence of states
through the moving reaction wave. It is
necessary, in principle, to determine the values
of D for which these equations have suitable
solutions. For the general case of multiple
simultaneous reactions terminaving in an
equilibrium state, this presents a formidable
problem,

A model that is easily visualized and that

provides a useful description of the reaction
wave is obtained by assuming that the reaction
proceeds toward a final invariant composition
that can be specified a priori independently of

b, and p.) The indeterminacy cor¢esponds,

final press..e and density. A progress variable &
can then be introduced by the relation.

e®) = te,(w) + 1 Heoloy)  (8-16)

where ¢, is the specific energy of the products
and e_ is the specific energy of the reactants,
each considered a function of p and v, In this
approximation, Eq. 8-14 can bé written

Eel(pl—) *+ (1~ E)eo () 817
= 6 (0,0,) = Yalp + p)Y, - V)

where p and v are to be regarded as functions of
the progress variable £, When &= 1, Eq. 8-17 is
jdentical with the Hugoniot equation for
instantaneous reaction, Eq. 817 describes a
fam)ly of curves in the (p,v)-plane, each member
of which is labeled by a value of £ with 0 <E<1.
For exothermic processes w1the (p,v)>ey (PY)
this family consists of nonintersecting ‘curves
{hat are concave upward. Eq. 8-13 is the
equation for the Rayleigh line. With p and v
regarded as functions of £, the reaction in s
steady reactlon wave is.constrained to states on
this line, When we employ the subgcript unity to
identify properties of the flow when £ = 1, Eqs.
813 mld 817 becorme identical with the
analogous expressions of Chapter 6.

8-3 THE STEADY DEFLAGRATION WAVE

The branches of the family of curves given by
Eq. 8-17 for which p(§} <p, describe the states
in a steady deflagration wave that satisfy the
conservation equatizns, These curves are shown
in Fig. 81, together with & Rayleigh line OABC.
This Raylelgh line répresents two different
processes with the same propagation velocity D.
One consists of a discontiniuous frunsition in the
unreacted material from the state O to the state
C, followed by the reaction zone representad by
the segment of the Rayleigh line CB along which
¢ charges from O to 1, tarminating in state B
which is a strong deflagration. The other consists
of the continuous transition from the state O to
the state 4, which is a weal: deflagration, slong
the segient of the Rayleigh line OA for which §
changes from 0 tu 1. It has been noted in par.
2-8 that a nonreactive rarefaction shock, as in
the transition from O to C, does not exist since
it would entail a decrease in entropy and violate

83
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the second law of thermodynamics. It follows
that strong deflagrations are impossible for the
assumptions made. Therefore, starting at the
point O with p,, v,, the state point can only
reach the pper intersection A without passing
through regions for which £>1.The-only states
on the final Hugoniot curve of Fig. 8-1 thut are
physically ‘admissible are the weak:deflugrations
lying  between (and including) the
Chapman-Jouguet deflagration J and the
constant pressure deflagration for which P,

In Chapter 6, we noted that a -useful
description of deflagration waves is not ohtained
frem the hydrodynamic equations in which heat
conduction and the diffusion of chemical species
are neglected. The propagation velocity of a

‘defligration wave is determined by these

transport processes from the reaction zone
upstréam into ‘the reactants. In the ‘theory of
flame propagatior, the dxlferenhal conservation
equations .are ntnted s0.a8.to anciude the effects
of viscosit, diffus .n; heat conduction, and the
rate -of chémical reaction. For particular
boundary conditions, ‘these equations possess a

solution only for a unique value of the wave

pol"

velocity. In a deflagration wave, the Teaction
must be initiated by heat conducted
upstream from the reaction zone :intc the
medium ahead of the reaction zone.

84 THE STEADY DETONATION WAVE

We begin our discussion' of the structure of
plane detonation waves by commenting on {thé
role of transport processes. in the mechanism of
the detonation réaction. The solutions of the
steady one-dimensional heat
conduction-convection equation and of the
steady one-dimensional diffusion-convection
equation are characterized by

e-x/x‘o

where x is the distance and x, is a characteristic
distance. For thermal r.onduchon, x, = ofw,
whete « js the thérmal diffusivity and w is the
particle. velocity in the frame of reference within
Which the motwn is steady. For: diffusion, %, =
D/w, - ‘here D is the diffusion constant. The
thermal diffusivity and - ‘diffusion constant are
each of -order unity or less, when expressed in
units of square centimeters per second. ‘The

Figure 8-1. ‘Family of Hugoniot.Cuyves for Steady Deflagration Wave
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particle velocity associated with a detonation
wave is of order 10° to 10° cm/sec. Therefore,

the characteristic length x_ is of order 10" cm

or-less.

We need to consider two different possible
mechanisms for initiating the chemical reaction.
Tt may be-effected by the diffusion of chemical
species into the unreacted: material or it may
consist of an initiation reaction that is 0-th order
in its products. If the initiation is exclusively of
the first type, the detonation wave may be
conceived of 2s a shock wave
combined with a diffusion wave similar to a
diffusion flame. To satisfy the boundary
conditionc at the reaction front by a
temiperature or concentration distribution with a
characteristic length of 10°® cm or less, it would
be necessary to postulate a reaction rate of
unreagsonably high salue, so that the reaction
zone width is.also of the order of magnitude of
the characteristic length. In‘this connection, it is
to be remarked that the particle velocity in

-diffusion flames is many orders of magnitude

less than in detonation waves and the
characteriscic lengths of the former (diffusion
flames) are correspondingly many ordexs of
magnitude greater than those of the latter
(detonation waves). It follows that the effects of
transport processes can be entirely neglected i1
the reaction zone of the detonation reaction,
except for their occurrence within ashock front
where their effects are adequately described by
the conservation laws across a discontinuity. The
primary  contribution to the initiation
mechanism must, be by an initiation reaction
that is 0-tk order in iig.oroducts,

These considerations lead tc a model wherein
the initiation reaction has a negligible rate
before thr front and an appropriately laige rate
behind it, 1.e., to-2 model wherein the reacticn 1s
initiated by the shock front Sus’: 3 mpde! was
independently postulatzd ha “rovick, von
Neumann, and Doering s Ton lingoudcl
curves oreseribed vy kq. 8-17 fox- theupreacted’

‘ateriel imunserdinzely Lahing the sheck front (&

=), for the completel, veucted matexial (£=1),
and-for an interinediste degree of reaction are
sketched in PRig, -2, The Rayleigh line OABC
1epresents two different processes with the same
propagation velceity . One consists of a
continusus ‘tansition- frum the state O to the

state 4, which s a weak detonation along the

the state with Iowcs*

_reacuion cay reaery Mie

rt‘xzn\.,)v .. shogk %

segment of the Rayleigh line OA for which £
changes from 0- to 1. The other consists of a
discontinuous transition through # shock front
in the unreacied material to the state C on the
Hugoniot curve for £ = followed by the
reaction zone, represented by the sexyment of the
Rayleigh line CB along which § charges from. 0
to 1. The state B.is evidently a strong-d«tonation
and the second process corresponds s that
postulated: by Zeldovich, von Neumann, and
Déering. In Chapter 6, it was remarked that a

detonation wave is formally equivalent to a

shock wave followed by a deflagration wave.
Thus, the detonation states of Fig. 8-2 centerad
on the initial state O can be regarded as @
deflugration wave centered on the state C. It was
also remarked that a strong detonation wave is a

shock wave fcllowed by a weak deflagration; a°

weak detonation wave is a shidek followedshy 2
strong deflagration, ana a Chapman-Jdouguet
detonation is a; sheek  followed by a

Chapman-Jougue doﬂr-gratmn Ty dae nzenaus'

paragraph; it wus  snown it & sticsg
deflagration dues aot exist. if 142 »wp voat, Lox
the assumptizus mede, & weuk-detouation-fices
not .cx5t. Therefors, sfncting from & hork wave
in the unreacted maveiial cénmr:d -a« the.point
2 with p v, , the g.ate rn‘vxeechthe

upper mtersectlor B .

curve fof the unrex m_ Lo
complete reaction, ling OJ ds
tangent, to tie huganict fa¢ complate
reaction; it fap{esgnt,s ﬂn ceaciion vrive
terminating ir - "hapmap—o'mguef detonanon,

Prior to the éeseription: of the rex.iicn zone
given by Zeldovich, von-Neum»r  and Déering,
it was gugsoste aatk the tefm‘ ion nccurs at a

cqqgtant e oqual wire Dagman-deguet
pressure 1: I&o{'o;fa - ghis hipoihers, “he

proCess curxSls B of o Escontinious > xm*tmr,
’ﬂ: froma che stale ¢ fo the
state " on the isitial Bagomot curvs, Followed:
by 2 fensticn at the constard pressie p}‘K Itis
readil, centhat su chr pro- ege cannot reprosent

A gitiunary sesciion Lene ¢ 2 the initial

shuckal state and fipw verc-ed stafe lie on
ditécipt  Rpgleigh  tnes, ' and O
wspectively.

Wank  etoravons, under the a»sun‘ptsr =
macle, are 1mpf‘solble Furthermore, a rarefacting

25
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wave will originate in the explosion produets,
and will overtake and weaken a strong
detonation until it becomes. 4 Cihapman-Jotiguet
detonation. Therefore, the Chapman-Jouguet
detunation is the detonatjon that is etable.

It has been assumed that the family of
Hugoniot curves, labeled by @ value cf the
degree of reaction £,0<t<1, form a family of
nonintersecting cuxves such as has been sketched
in Fig 8-2. This will be the case if, as has been
assimed, the reaction procesds to a fixed
invariant miszture of products and if the
exothermicity condition, e, (p,v)> e (p,v),
satisfied at all values of the prassure and speufm
volume. However, von Neumanr: has pointed out
that the family of Hugoniot cutves may have a
difféerent form if the reaction is.nut. exothermic
at all pressures: and densities; Such & condition
piay, in principle, arise if the mechanism of the
explosion reaction consists of several different
elementary reactions whose reletive conttnbutlon
to-the oversi.decomposition may depend on the
strength of the initiating shock wave and one or

_

P,

more of which may be endothermic. In such &
case, the Hugoniot curves may intersect and
liave an envelope, as shown in Fig. 8-3. 1t would
then re possible for the process to consist of a
discontinuous.transition from the state O to the
state B on the Hugoniot curve for & = 0,
followed ¥ -a reaction desciibed Uy the segment
of the-Rayieigh line BA. during which £ changes
continuously from 0 to- 1. The point A on the
Hugoniot curve for £ = 1 is a weak. detonation,
and the Rayleigh line OAB is tangent to the

.envelope %o the Hugoniot cuxves and. represents

the only process for which £ takes on all. values
frola 0 to 1. This solution is known as von
Neumann’s pathological wea': detonation. No
case of the actual existence o} such a detonation
is known.

85 FLOW BEHIND A CHAPMAN-JOUGUET

WAVE

Riemann’s equations (see par. 2:7} can be
employed to construct the nonsteady flow

Figure 8-2. Family of Hugoniot Curves for Steady Detonation Wave
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behind a Chapman-Jouguet discontinuity. At the
discontinuity, located at x = Dt, the explosion
products -are characterized by the -quantities
U;,p1, and ¢, which are determined by the
Chapman-Jouguet condition, the Hugoniot
equations, and the equation of state. One of
these .quantities may have an arbitrary initial
distribution behinA the front. The whole flow
can then be determined as a simple wave.

For definiteness, we suppose that the steady

detonation begins at.a-piston face located atx =

0. at t = 0. The Chapman-Jouguet particle
velocity #, i§ accomriodated to the piston
velocity, assumed to be less than u,, by a
centered simple wave, ie., by an unsteady
rarefaction wave, The C,. characteristics of such
awave:are straight lines with the equation

x = (u+e)t

(8-18)

The Chapman-Jouguet point, which is a

discontinuity between the steady reaction zone

and the nonsteady rirefaction wave, follows a
psth in the (x,t)-plane which is the €
characteristic

x=(u +e¢)t=Dt (8-19)

In par. 27 it was'remarked that the Riemann.
invariant 3 is constant throughout this simple
wave. Because of this circumstance

4y —o(p)=u- a(n).

»
a
J pe

. o= (8-20)

The function ¢ «can be regarded. a known
function of the pressure along the isentrope

Figure 8-3.

The von Neumann Pathological Weak Detonation
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passing through the Chapman-Jouguet state,
‘Therefore, Eq. 820 provides one relation
between the: pressure p and the particle velocity
u. Along this isentrope, the acoustic velocity ¢
can also be regarded a known fuuction of the
pressuve. Eq.. 818 thus provides a second
relation, comiecting the pressure and particle
velocity to the reduced distance-variable x/Dt

u +e(p)= (u, +cM(x/Dt) (&8-21)

Eqs. 820 and 821 determine the particle
velocity and pressure in the rarefaction: wave as
functions of the reducéd distance x/D¢. For
general equations ‘of state, they can be solved
humerically from tables of ¢ and 0 versus the
pressure. When the pressure distribution through
the rarefaction wave is known, the distributions
of the other thermodynamic variables through
the wave are determined since ‘these variables
depend only on the pressure along a prescribed
Jisentrope,

If the explosion products obey a polytropic
law, Eqs. 8-20 and 8-21 can be solved expliv.itly.
If the adiabatic exponent is ¥, the results can be
written in the form

g_=1+ 2 D(-1)
uy K+1 uy
e__2 k-1 D§ - uy
c, Kk+1 k+1 D-u
(8-22)
.-p—_ 2 K_ng'-u‘;tﬂ(lK"l
p, k+1 k+1 D-ul
p 2 K_ng'-ul 21K —1
—_—= +
py letl k+1 D-uy

where { = x/Dt. It wils be noted that the particle
velocity and acoustic velocity are linear
functions of the reduced distance { for this case.
The solution for a polytropic gas was obtained
by Taylor, and the unsteady flow behind the
Chapman-Jouguet defonation is sometimes
called the Taylor wave. Eqs. 8-22 assume a
particularly simple form when k = 3, Then

88

1 4
¢ . % D¢ - + 1‘
¢ D -y

(8-23)
¢ - 3

5—1m{ 1hq
Py !
£y, K-y + 1
Py D-u

In this case, the density is also a linear:function
of the reduced distance {. This particular
solution is' of interest since the explosion
products of condensed explosives obey,
approximately, a polytropic law wita an
adiabatic exponent in the neighborhcod of
8 %6, It can, therefore, be expected to display
qualitatively the features of the flow associated
with such explosives.

The transient portion of the flow is terminated
by the straight characteristic along which the
particle velocity is equal to the piston velocity.
Th* _haracteristic separates the transient flow
from a uniform flow. The uniforn flow is found
by the solution of Eqgs. 8-20 and 8-21 with u set
equal to the piston velocity. The case of steady
detonation initiated at a rigid fixed wall
corresponds to a terminal characteristic along
which u = 0. In the polytropic caze; from the
first of Eqgs. 8-22; the uniform state at rest
extends from the back wall to a point given by

/

+1/u
§=1—£—lkﬁanu=0
2 \D (8-24Y

=1- 2(u/D)y fork =3

For cundensed explosives, the ratio u, /D ~1/4
so that § = 1/2 when & = 3, For this case, the
pressure on e back wall can be calculated from
the third of Eqs. 8-23, Using K = 3,{=1/2, and
u, /D = 1[4, we obiain the order of magnitude
result p/p, =~ 8/27.

From these considerations, we see that the
reaction zone is followed by a column of
forward-moving explosion products, the length
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of which increases linearly with time. For a solid
explosive, the length of this column is of the
order of one-half the distance traversed by the
detonation wave from its point of initiation. If
initiation is at a rigid wall, the column of
forward-moving products is followed by a
colurmn of stationary gas which also increases in
length and within which the pressure is constant.

Shear” has employed numerical methods to
solve Eqgs. 820 aud 821 for the explosive
pentolite at a loading density of 1.65 g/cm?. He
employed the equation of state of Halford,
Kistiakowsky, and Wilson to construct the
isentrope through the Chapman-Jouguet state
and obtained the function o by numerical
integration. The particle velocity and pressure
through the Tayfor wave for a detonation
originating at a rigid surface as determined by
these calculations are shown in Fig. 8-4. It is
interesting to note that in Shear’s detailed

calculations, u = 0 and p/p, = 0.295 at{'= 0.483.

For the polytropic gas with x = 3, D = 4u_, we
have obtained the estimate, u = 0 and p/p, =
0.296 at { = 0.5.

Suppose that the peint x = 0 represents an
interface between explosiv.-and ajr, i.e., that the
plane of initiation is unconfined and that a
Chapman-Jotiguet detonation is initiated at t =0
on thie interface. There will then result a
backward flow of explosion ‘products in the
negative x-direction. This flow is the same ‘as
though the piston of our model is conceived to
begin to-move at ¢ = 0 with a constant velocity
sufficient to reduce the pressure on the piston to
the ambient air pressure. The velocity of the
air-explosion  product interface can be
determined by solving Eqs. 8-20 and 8-21 with p
= p,. For .he polytropic case, and neglecting p,
compared: to p,, we obtain from Eqs. 8-22 the
result

i=f—i}'-2 >whenpz0
woox -1 u\-1
(8-25)
=2~ D/, for = 3

Thus, for a condensed explosive with k =3,D =
4u,, we obtain the order of magnitude result
chatu/u, ~-2,

Wé have-seen that when the rear surface of the
explosive charge is unconfined, the flow behind
the reaction zone consists of a column of
forward-moving explosion products, the length

of which increases linearly with time, followed
by a column of backward-movirg products
whose length also increases lineatly with time.
For a solid explosive, the length of the
backward-moving products is of the order of
twice the length of the forivard-moving products
and the negative velocity of the air-product
interface is of the order of twice the (forward)
particle velocity of the Chapman-Jouguet state.

Equations of state of detonation products
5.6.% have been generated from hydrodynamic
properties -of the products meesured by
impedance mismatch methods®'1° . The early
work of Lawion and Skidmore, and Deal
showed that shock compressions and adiabatic
expansions: of the detonation products {from:the
Chapman-Touguet state in many high. explosives
are consistent with a p-lytropic -e., -ation of
state. The value of the polytropic index above
100 kbar is found to be about 3, Further work
by Skidmore and Hart on overdriven
detonation waves in Composition B in the 300
kbar regime indicates that the simple polytropic
relationship with a constant index appropriate
to the Chapman-Jouguet state i adequate for
predicting  overdriven  detonation  wave
properties, shock compressions, and adidbatic
expansions from a given overariven state.
Equations oi state of detonation products
applicable over a wider pressure range below the
Chapman-Jouguet state have been generated for
many explosives by Wilkins'? and coworkers at
the Lawrence Radiation Laboratory. The basis
of the method s to use the
enexgy-pressure-volume eguatlion -of state ot the
products as a variable in a two-dimensional code
for calculating the radial expansion of a copper
vessel containing a -detonating explosive.
Numerical experiments are performed with a
computer until calculated expansions agree with
those observed -experimentally.

8.6 THE DETONATION WAVE WITH
EQUILIBRIUM PRODUCT COMPOSITION

In order to provide an easily visualized model
of the detonation wave reaction zone, we
assumed in par, 8-4 that the detonation reaction
proceeds to a fixed composition that is known a
priori. With this assumption, it was possible to-
define a *‘degree of reaction” and to employ this
parameter to characterize points within the
reaction zone at which the reaction is

8.9
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incomplete. The degree of reaction was thus
described by the progress variable £, defined by
Eq. 816 as the fraction of the energy of
explosion released at the point in the reaction
zone characterized by a particular value of £.
Under these-assuraptions, Hugoniot curves can
be constructed for all points in the reaction zone
between the ihitiating shock wave and the point
at which the reaction is complete, each curve
being labeled by-a value of {£. Within the context

-of the model employed, theseé curves have

physical meaning, representing the locus .of all
states that are compatible with the conservation
conditions and for which the amount of energy
released is given by Eq. 8-16. Under these
assumptions, no ambiguity is enicountered in the
statement of the Chapman-Jouguet condition
since the Hugoniot curve for complete reaction
is a cuxve-for constant composition. This curve is
tangent to an isentrope along which the
composition is constani and whuse slope is
characterized by the frozen sound speed in
which the differeritiation is performed at
cceastant composition. The Chapman-Jouguet
condition can thus be written in the usual way
in teris of the frozen speed of sound.

However, the final Hugoniot cu.ve is supposed
to describe the states that ate compatible with
the conservation conditions when all of the
reaction rates R; of Eqs. 8-7 have vanished, i.e,,
whenn the explosion products are in
therm odynarnic equilibrium. Therefore, the final
Hugoniot curve of Fig. 8-2 does not necessarily
represent physically accessible states of the
explosion products and it may, in fact, not even
be a good apvroximation to the states that can
actually be reached from different points.on the
initial Hugoniot curve,

Suppose that the segment of the Rayleigh line
CB of Fig. 82 represents an actual reaction
process, initiated at the state C on the initial
Hugoniot curve and te;minating at the state B.
In general, the Hugoniot curves labeled with
different values of the progress variable § and
drawn for constant composition represent
physically real (i.e., accessible) states only at
their points of intersection with this particutar
Rayleigh line, If a different process—represented
by a Rayleigh line frora a different point on the
initial Hugoniot curve—is considered, the fixed
composition Hugoniot curves, drawp for
particular values of the progress variable ¢, will

not in general coincide with those for the first
process. In other words, the sequence of states
between the initial Hugoniot curve and the final
(equilibrium) Hugoniot cuzve, each of which
represents a locus of physically real states,
depends not only on the fraction of energy
reieased but also on the position on the initial
Hugoniot cu~ve from which the process starts.
Thus, in- general, the sequence of states in the
reaction zone of a detonation wave depends-on a
progress variable such as £ and an additional
pararaeter- which may be-the detonation velocity
D.

Although it is evident that a single parameter
coes not suffice in principie to- prescribe a
unique family of cutves of the von. Neumann
type (such. as those of Fig. 8-2), descriptive of
states within the reaction zone that are:reached
from any poinc on the initial Hugoniot curve,
such a model may provide a useful’approximate
description. This would be the case if only one
reaction process were to be involved, or
alternatively if all other reactions were to have
much faster reaction rates so that a state of
quasi-equilibirium:is approximately established at
each stage. In practice, 1 singlé reaction will
hardly ever be sufficient to describe the reaction
process, but it may very well happen that one
particular step is much slower than the rest.
Thus, for example, in granula¥ explosives it can
frequently be assumed that grain or surface
burning determines the rate of release of enetrgy,
and that this process is followed by equilibration
among the products at a much faster rate.

It has been customary tacitly to assume that
the equilibrium sound speed should be
employed in defining the stable velocity of a
detonation wave that is not supported by a
piston when the reaction terminates in an
equilibrium state, Although inany numerical
calculations have been conducted in which the
frozen sound speed was employed- for this
quantity, it bas been assumed, either explicitly
or implicitly, that this simplification is an
approximation, justified by the fact that the tvio
different statements of the Chapman-Jouguet
condition do not lead to very different values of
the detonation velocity.

Wood and Kitkwood"® have shown that if a
stable Chapm .i-Jouguet detonation wave exists,
its velocity must be determined by a
Chapmsan-Jouguet condition in which the

811
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equilibrium sound speed is employed. This
implies a physical model in which the reaction is
initiated in a shock front.and terminates at the
leading edge of a rarefaction wave at which
point the reaction is complete and thé explosion
products are in thermodynamic equilibrium.
Consider the reaction pictured in Fig. 8-5 that is
initiated at the point C on the initial Hugoniot
curve S and during which the state point moves
along the Rayleigh line CB' B. Let the point B
be an equilibrium state at which the Rayleigh
Iine is tangent to Hugoniot curve F at fived
composition for the composition of the point B.
Let the Hugoniot curve E be the curve for
equilibrium states that is also centered on the
point (p_,u ). This curve evidently passes
through the ‘point B. It can be shown by the
thermodynamic equilibrium conditions that the
curve E lies to the left of the curve F for
pressures ‘gieater than the pressure at the point
B. The Rayleigh line CB thus has a point of
intersection with the equilibritim at a point, say
B', that lies between the points C and B. It
follows that the predicated process cannot
terminate .at the state B'but must terminate at
the state B’ which also an equilibrium state.
Now, the wave of minimum velocity that
terminates in a point on the equilibrium
Hugoniot cutve is the wave whose Rayleigh line
is tangent to the equilibrium Hugoniot curve. It
has been shown in Chapter 6 that the
equilibrium Hugoniot curve is tangent to an
equilibrium isentrope at its point of tangency to
the Rayleigh line. Thus the slope of the Rayleigh
line at this point is characterized by the
equilibrium sound speed. Qur physical model
implies that this is the speed at which the
rarefr stion wave advances into the explosion
products. It is vo be noled that this argument
does not prove the stability of the postulated
flow.

The curves for the rates of the chemical
reactions that occur in the reaction zone as
functions of time must be asymptotic to the

time axis for any rzasonable rate laws.
Therefore, if the reaction terminates in an
equilibrium  state, the separation distance

between the shock front and rarefaction wave
must, in the one-dimensional case, be infinite,
This formal result is without substantial
practical imporxtance for two reasons. The first is
that even in the theoretical one-dimensional

812

case, the reaction of substances of practical
interest is substantially complete in a short
distance behind the shock fromnf, so that an
effective reaction zone thickness exists that is
finite but of somewhat indeterminate extent
within which all but an infinitesimal amount of
the energy of reaction is released. The second is
that in detonation waves of explosive charges of
finite extent, the position of the rarefaction
wave in the flow is unambiguously fixed by
other dynamical considerations. Thus, these
considerations ‘of the nature of the stability
conditions for the one-dimensional detonation
wave are mainly of theoretical interest.
Although the matter is not satisfactorily settled,
it appears from these considerations to be
plausible that a. detonation wave with a steady
reaction zone terminating at a xarefaction wave
in an equilibrium state exists only in an
asymptotic-sense.

On this basis, the results are .physically
reasonable. The isentropes which appear in a
theory based on equilibrium ‘Hugoniot curves
must necessarily themselves correspond to
equilibrium  changes. This is physically
acceptable since the infinitesimal rarefactions
that enter into the Chapman-Jouguet theory are
presumably real rarefactions, involving a change
in composition when the system is one in which
such changes can occur. Since we are here
concerned: with the asymptotic properties of a
rarefaction wave whose gradient approaches zero
with time, it is physically acceptable that the
sound speed appearing in the theory be that
characteristic for the propagation. of scund in
the limit of zero frequency.

We have shown that a steady reactive flow
exists in which the reaction is initiated in a
shock wave and terminated at a rarefaction wave
advancing into the equilibrium mixture of
explosion products with the equilibrium velocity
of sound. (We have not shown that this flow is
stable.) We now want t{o exclude other
possibilities. Brinkley and Richardson'* haye
supposed that the rarefaction wave is located a
finite and fixed distance downstream from the
shock wave. They have shown that a steady flow
exists between the shock wave and the leading
edge of the rarefaction wave, and that the
propagation velocity of the rarefaction wave
rélative to the explosion products is the frozen
scund speed. They culled such flows subideal
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Chapman-Jouguet -states. Since the reaction is
complete an infinite distance downstream, it
follows that the reaction is proceeding in the
unsteady rarefaction wave.

Now we wish to show that, if the chemical
reaction is still proceeding in the rarefaction
wave, a pressure pulse-must eventually overtake
its front. In- a rarefaction wave there are two
possibilities: either a signal overiakes the front
of a signal does not overtake the front. Let us
make the hypothesis. that a signal does not
overtake the front. Then the rarefaction wave
will, in the passing of fime, approach a steady
state (in- most cases ‘this steady state will be a

uniform state; however, we do not need to

assurne this here). Now suppose that upstream
ahead of the rarefaction front we have a subideal
Chapman-Jouguet state and, consequently, that
*he rarefaction front is moving with a constant
velocity équal to the velocity of the shock front.
We have alréady shown that, in this case; the

Po

second law of thermodynamics allows the
existence of the-steady state only upstream:from
the rarefaction frorit. Therefore, the hypothaesis
must be false-since it implies that a steady state
is approached on the downstream side of the
rarefaction front. Consequently, a signal must
overtake the rarefaction front. To-completé the
argument, we must show that this signal inust be
a  positive pressure pulse.  Reasonable
assumptions concerning the variation of sound
velocity with pressure will imply that a
rafefaction wave cannot overtake .a rarefaction

wave: therefore, the sighal fist be a positive

pressure pulse (which may or may not crest up
into a shock). ’

These arguments are limited to the case in
which the reaction is not coinpléte at the
rarefaction front. This required use of a subideal
Chapman-Jouguet state ‘between the shock and

rarefaction fronts, and the: corvesponding finite:

separation distance between theé fronts. If the

Figure 8.5. Constant Composition and Equilibrium Hugoniot Curves*®
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reaction is complete at the rarefaction front, the
ideal Chapman-Jouguet state will exist between
the two fronts, and the rarefaction front will be
an infinite distance downstream from the shock
front. In this case a rarefaction wave can behave
in the usual fashion, with no signals overtaking
its front, and can approach a uniforin steady
state without contradiction since there is now
no definite limit downstream for the steady
state.

These considerations lead us to the conclusjon
that, jn the one-dimensicnal case, if the reaction
is not fomplete at the rarefaction front, the
chemical energy will not be lost forever behind
the front. At leasi a certain fraction of the
energy must eventually be delivered upstream.in
the form of a positive pressure pulse. However,
in two- or three-dimensional processes a sidewise
expansion in the rarefaction wave is possible
with the result that signals mey never overtake
the front, and the total amount of the chemical
energy libesated in the rarefaction may never be
delivered upstream.

Brinkley and  Richardson  erroneously
concluded that the propagation velocity, the
asymptotic ideal Chapman-Jouguet wave in
one-dimension, is defined by the frozen sound
speed. We have shown that this cannot be the
case and have inferred from arguments of
physical plausibility and from the demonstration
of Wood and Kirkwood that the asymptotic
wave, if it exists, is characterized by the
equilibrium sound speed. In an earlier paper,
Kirkwood and Wood®® had reached & milarly
erroneous conclusions. They had noted that
when specialized to one-dimensional flow, the
general equations for reactive flow give a syslem
of hydrodynamic equations which is hyperbolic
and irreducible, and for which the characteristic
sound speed is the frozen sound speed. This
property of the equations led them fo the same
conclusion that had beer. reached by Brinkley
and Richardson. Subsequently, Wood and
Kirkwood presented the elementary proof, that
has been summarized, that the frozen
Chapman-Jouguet state cannot be reached in a
one-dimensional steady detonation.

Wood and Salsburg'® have conducted the
most complete theoretical study of the existence
and stability of steady state supported
one-dimensional detonation waves, It is beyond
the scope of our treatment to reproduce their
analysis in detail. Their work is, however, the
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definitive treatment at this time of this subject.
They  consider the possible steady
one-dimensional flows that can occur in a
medium in which an arbitrary number of
chemical reactions proceed behind an initiating
shock wave, and they investigate the stability of
solutions to the chemjcal rate equations in
conjunction with such flows. They show that,
under suitable conditions on the chemical rite
functions, there are stable solutions resulting in
2quilibrium final states for detonatjon velocities
equal to or greater than those for an equilibrium
Chapman-Jouguet condition corresponding to
tangency of the Rayleigh line to the equilibrium
Hugoniot curve. They suggest thdt these
solutions correspond to piston-supported
detonations after the decay of initiation
transients, and that the equilibrium
Chapman-Jouguet detonation is stable with
1espect to, the removal of the piston after a
sufficiently long time. They also show that the
frozen Chapman-Jouguet detonation, in which
equilibrium is attained at a point where the flow
velocity is sonic in terms of the frozen sound
speed, is unstable.

87 FINE STRUCTURE OF DETONATION
IN GASES ANL! LIQUIDS

Experimental investigations since the late
1950's have shown that self-sustaining gaseous
detonations propagate as three-dimensional
nonsteady waves faj:her than as one-dimensional
steady-state waves. In view of this discovery, it is
necessary to give a brief discussion of recent
developments in the study of detonation
structure. For more details the reader is referred
to the reviews of Wagner'’; Oppenheim,
Manson, and Wagner*? ; Scho$t? ; Soloukhin? ;

Shchelkin® ; van Tiggelen and de Soete??;

Strehlow?® ; and Edwards24 .

Although Chapman-Jouguet theory predicts
gaseous detonation velocities to within a_few
percent %% , recent experimental studies 1921
2528  have led to the conclusion that the
one-dimenssonal model of the detonation wave
is an approximation. Careful examination of
gaseous detonation shows that the detonation
front has a fine structure composed of a system
of unsteady interacting shocks and is not a plane
shock. The existence of such fine structure in
self-sustaining gaseous detonation shows the
detonation to be a three-dimensional nonsteady
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phenomenon that exhibits steady gross
characteristics. White?® first associated the fine
structure with turbuilence in the reaction zone,

but it was lecer identificd with Mach
interactions®”® ., In a  self-sustaining
detonation, points at which the forward

propagating curved shocks intersect travel across
thé detonation front as waves?®>. These
transverse waves occur at the detonation front as
Mach stems or; triple shock intersections of finite
amplitude3!32 ., As shown by Oppenheim and
Urtiew?® , the motion of the triple points writes
the patternon the smoked surface in studies of
detonation structure- wploying the smoke irack
technique developea  -Denisov and Troshin®2 .

The occurrence and structure of transverse
waves have bec amined extensively by
Strehlow and coworkers®4 37 . The experimental
evidence .suggests that transverse waves are an
inherent property of the flow behind a shock
that initiates an exothermic reaction. Transverse
waves are produced in initiation of detonatior.in
controlled one-dimensional experiments, and are
observed  repeatedly in  self-sustdining,
overdriven, and  spherical  detinations.
Examination of cell patterns on smoke track
records shows that transverse waves exhibit a
well-regulated spacing in many self-sustaining
detonations. The regularity depends on the
confining geometry and the nature of the
chemical system supporting the detonation. In
rectangular tubes, the characteristic size of a
regular patter is dictated by the initia} pressure
level and the amount of diluent present in the
reactive mixture. At present, transverse wave
spacing is thought to be controlled primarily by
induction and recombination zone kinetics, but
can be influenced by the tube containing the
detonation.

A theoretical treatment of the stability of
steady one-dimensional detonation waves, based
on the assumption of a square wave reactio:
zone, was started by Shchelkin®® and continued
by many workers. The restrictions imposed by
the square wave model have recently been
removed by Erpenbeck3%4l and Strehlow, et
al.4243  who considered a more realistic
reaction zone. The studies of Erperiveck on the
response of an overdriven discontinuity to a
transverse harmonic perturbation in the reaction
zone indicate that instability depends on the
frequency of the disturbance, the activation

energy of the assumed first-order excthermic
reaction, and the amount the detonation is
overdriven. The stability conditions for high
frequency {ransverse waves show systems with
sufficiently low activation energy to be stable.
The studies of Strehlow and Fernandes*? and
Barthel and Strehlow4® on the beiiavior of a
high frequency coherent transverse acoustic
wave in the reaction zone give two important
results. The first of these is that a shock with
exothermic reaction, of Mach number greafer
than 3, is unstable to a transverse avoustic
disturbance. The second is the possibility of the
wavefront of a sonic disturbance producing
multiple shock contacts which asymptotically
approach a regular spacing related to the
reaction zone thickness.

Theoretical studies show that hydrodynamic
instabilities are to be expected in flows where 2
shock initiates an exothermic reaction, and are
consequently -consistent with experimental
observations.

Although the mechanism of propagation of a
self-sustaining gaseous detonation is qualitatively
understood, there is no satisfactory model at the
present time for calculating quantitative
properties of the fine structure. It can be
concluded that the gaseous -detonation wave
with steady gross properties contains an intrinsic
unsteadiness on a scale some 1 order of
magnitude greater than the one-dimensional
reaction zone thickness, The overall motion is
sustained by the collisions of Mach interactions
which continually provide new centers of
reaction as the shocks propagating forward
attenuate, The detonation front as a whole
propagates at very clese to Chapiran-Jouguet
velocity, even though the velocity of a leading
shock in the front varies from a value 10 to 20
percent above to 10 to 20 percen' below the
Chapman-Jouguet  value. Since the
Chapman-Jouguet hypothesis is successful in
predicting detonation velocity, it must be of
some significance even though ai the present
time it cannot be justified on structural and
stability considerations.

Experimental jnvestigations of self-sustaining
detonation in liquids have not been as conclusive
as those of self-sustaining detonations in gases.
Detonations i liquids are more difficult to
study experimentally than detonations in gases
because they generate pressures in the 100 kbar
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regime; The experimental observation of fine
sttucture in. the detonation front in
nitromethané and its mixtures with acetone led
Dremin4447 to-postulate that detonations in:all
liquids' shHould exhibit fine structure simiia¥ to

that in gases. However, the detonation fronts:in
nitroglycerin, dinitroglycerin, and
tetranitromethane were found?*® to -be smooth
and to.exhibit.no fine structure:
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CHAPTER 9 DETONATION WAVES OF CYLINDRICAL AND SPHERICAL
SYMMETRY

9-1 INTRODUCTION

The theoretical development of the previous
chapters has béen limited to detonation waves in
one dimension in which the wave front is planar
and the flow behind the front is parallel. A
rather complete description of this idealized
wave is possible, becduse of the simple

geometry. The theory-of plane detonation waves-

is strictly applicable only to asemi-infinite mass
of explosive. The treatment becomes a good
approximation fo charges of finite size if the
dimension of the charge perpendicular to the
direction of propagation of the wave is large
enough so that edge effécts become of negligible
importance, and if the dimension in the
directioni of propagation is large compared to
the distance.in which transients arising from the
initiation process exist.

Explosive charges of practical interest are, of
course, of finite size. One expects the
one-dimensional theory to apply to a ¢ylindrical
charge of explosive, initiated at one end and
with the wave propagating in the direction of
the axis of the cylinder if the cylinder is
contained in a perfectly rigid casing and if the
interaction of the explosion products with the
casing wall has inegligible effect on the main flow
behind the detcnation wave, Such a situation is
allowed in the case of an explosive gas mixture
contained in a mefal tube if the tube diameter is
nottoo small. .

The pressures; developed in the explosion
reaction of a condensed explosive at the reaction
front are of the order of 10° atm. At such
pressures, material cannot be completely
contaiied and it is impossible to conceive of a
perfectly rigid envelope. Consequenily, the
material velocity of the product gases has a
radial component and the flow cannot be
one-dimensional. One: expects, therefore, that
the one-dimensional theory will have asymptotic
velocity, becoming the more realistic the larger
the diameter of the cylindrical' chexge.
Cylmdqqal charges of finite diameter are
expecﬁed to differ in their behavior from that of
the ifeal one-dimensional charge to a degree that
depends on the diameter of the charge and on
the nature of the confining envelope.

In a cylindrical charge of explosive, the flow
of the reaction produeis must have cylindrical
symmetry. The detonation velocity along «
finite  cylindrical charge is  observed,
experimentally, to be constant afier a short
distance in which initiation transients disappear.
It is, therefore, appropriate to assume that the
flow in the reaction zone of such a charge is
stationary (in a coordinate-system moving with
ihe wave). The equations of hydrodynamics for
steady flow with cylindrical symmetry are
approximately as tractable as those for plane
unsteady flow. Some progress has been made in
the theoretical description of the flow in steady
detonation waves in cylindrical charges, but a
theory of the effect of finite charge diameter-on
the detonation velocity in such charges cannot
be said to exist.

A further type of nonparallel flow that has
received limited theoretical attention is the flow
with spherical symmetry resulting from
initiation in a large mass of explosive at & point.

These two instances involving nonparallel flow
of the reaction products are the only ones that
have been amenable to evén limited theoretical
study. It is thus apparent -that the traditional
methods of classical physics have not been
employed: to describe the detonation process in
any actual explosive charge of two or three
physicai dimensions. The material of this chapter
is intended to display the limitations of the
one-dimensional theory and to assist in the
understanding of the reasons why actual
detonations may differ in their properties from
the predictions of the theory. In the present
state of knowledge, the theory cannot provide
all of the design data needed for the rational
design of an explosive charge for a particular
application.

9-2 THE EFFECT OF CHARGE DIAMETER
ON THE DETONATION VELOCITY

Soon after detonating explosives began to be
studied, it was observed that the detonation
velocity of a cylindrical charge of explosive,
initiated at cne end and with the wave
propagating in the direction of the axis of the
charge, derends upon the diameter of the charge
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and upon the nature of the charge confinement.
The velocity increases with increasing charge
diameter in charges wiih {he same confining
envelope and with increasing strength of
cornfinement at constant finite .diameter. At

constant confinement and with increasing:

diameter, the detonation velocity approaches
asymptotically a limiting value which, on
physical grounds, wé consider to. be that
predicted by the one-dimensional théory. If D is
the observed detonation veélocity for charge
‘diameter. d (i.e, D = D(d)) ang- D the ideal
value gi ‘sh by -oné-dimernisional theory, then
D/D,~> 1 ad->=» (9-1)
This behavior is illustrated in Fig. 91, in
which the detonation velocity of RDX at a
density of 0.9 g/cm® is plotted against the
reciprocal of the cylinder radius. The

represented by a straight line. (Experimental
data on the variation of detonation velocity with
charge diameter nave been represented in the
literature in-graphs employing the radius instead
of its xeciprocal-as abscissa, Since the detonation:
velocity is expected to.approach the idesl limit
asymptotically as the radius goes to- infinity,
there can he no justification for this mode of
treatment of the data, calling as it-does for an
extrapolation of infinity.)

It is found experimentally that the slope of

curves such as that of Fig. 9-1 depends.strongly

on the density of thé explosive, its chemical
nature, and its state of aggregation, The velocity
depends on the charge diameter more strongly
for explosives at low loading dénsity than for
the same explosive at high loading density, for
pressed  granular  explosives than for
homogeneous cast explosives, for composite
explosives than for pure explosive compounds,

experimental data .are séen to be wel'l and for explosives of low energy release than for
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Figure 9-1. Effect of Charge Diameter on the Detonation Velocity of RDX, p ..~ 0.9 (Ref. 1)
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those of high energy release. Thus, a high energy
explosive such as PETN has a smaller
dependence of velocity on charge diameter thian
does one sucti as TNT. Cast TNT has a smaller
dependence than does pressed TNT at about the
same density. The dependence for a pressed
TNT charge of high density is less than that for a
pressed charge at low density. At low density,
the dependence of the velocity on charge
diameter is strongly influenced by the particle
size of the explosive, being the .greater the
greater the particle size. The latter observation
suggests that the rate of decomposition of a
granular explosive is controlled by the rate of a
surface reaction -of the individual particles. By
contrast, in homogeneous explosives that can be
expected to undergo a bulk homogeneous
decomposition reaction, only a relatively small
dependence of detonation velocity on charge
diameter is obsexved.

Although the general features of the
depepdence of detonation velocity on charge
diameter and the nature of the confinement
have beer studied experimentally for many
years, atten'pts to explain the effectin terms of
the hydrodynamics and thermodynamics of the
system were not made until about 1940. Since
that time a qualitative understanding of the
effect has been gained but a satisfactory
quantitative theory of -the phenomenon does not
exist.

In the onedimensional case, the
Chapman-Jouguet coridition has been shown to
-define a surface aviv.» which. energy cannot be
transmitted. In the infinite charge of explosive,

,or alternatively in a finite charge under ideal
confinement, the reaction is complete at this
surface and this surface lies an infinite distance
downstream from the leading edge—the shock
wave—of the detonation wave, In the last
chapter, it was stated that steady reaction zones
can be shown to exist between a surfice defined
by a frozen sound velocity Chapman-Jouguet
condition and the 'shock wave, where this
surface is a finite distance from the shock front
in 2 region where the reaction is incomplete, but
that such steady flows are unstable. These
theoretically steady but unstable configurations
of shock wave and rarefaction front were called
subjdeal Chapman-Jouguet states, If a cylindrical
charge of explosive is imperfectly confined, the
high pressure explesion producls will expand

laterally, and this lateral expansion ‘will begin at
the intersection between the initiating shock and
the boundary- of the charge. Thus, both in the
reaction zone, which we may assume to be a
region of steady flow, and in the expansion
wave, which cannot be a region of steady flow,
the vector particle velocity of the explosion
products will have a nonvanishing radial as well
as axial component. The region. of steady flow is
followed: by a two-dimensional rarefaction wave:
that is determined by ‘boundary conditions
prescribed on the interface between explosion
products and surrounding medium, As a
consequence, the leading edge of the rarefaction
wave, propagating into the explosion products
with the local velocity of sound, must be fixed
in space relative to the position. cf the shock
front. Shock front and head of rarefaction wave
are surfaces of revolution about the axis of the
cylindrical charge defining a reaction zone
having the shape of a meniscus and a volume
characterized by two linear dimensions, of
which one is the diameéter of the explosive
charge and the other can be taken to be the
distance on the-axis of the charges between the
shock front and the rarefaction front.

As far as the propagation of the detonation
wave is concerned, the reaction is drrested-at an
intermediate stage corresponding to only a
partial release of the energy of explosion.
Energy released in the rarefaction wave-cannot
be transmitted across the sonic surface
comprising the head of the rarefaction wave, and
it is expended in partial suppcet of the lateral
expansion of the gas in the rarefaction wave.
Only the energy that is released ahead of the
sonic surface is effective in supporting the
propagation of the detonation wave. The
consequence of the establishment of -a.
two-dimensional analogue of the subideal
Chapman-Jouguet state that has previously been
considered, with an energy deficit caused by
incomplete reaction on the sonic surface, is a
decrease in the detonation velocity

There is a further mechanical consequence of
the lateral expansion of the reaction products in
finite cylinders of explosive. Work is performed
in maintaining the radial component of particle
velocity which, as we have already noted, is
nonvanishing in the steady reaction zone. Asa
consequence, not all of the energy released in
the region of steady flow is effective in
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supporting the axial propagation of the wave,
and- the detonation velocity is less for diverging
flow than for parallel flow with the same energy
release.

Divergent flow across a shock front implies a
curved shock front and vice versa. Flow crossing
an: oblique shock is tumed toward the shock.
Therefore, the shock front is convex toward the
intact explosive and concave toward the reaction
zone. The assumptions that have been made in
formulating the model that has been described
are supported by experiméntal Shservations of
the curvature of the front in cylindrical
explosive cnarges. The .observations are made
with a streak camera with the axis of the
cylinder oriented- in the direction of the camera
optical axis and with the wave propagatmg
toward the -camera. The detonation wave is
observed f{o emerge first from the explosive
charge at the axis.

The curvaturé of the shock front, the
divergence of the flow in the reaction zone; and
the extent of the region of steady flow are

détermined by the diameter of the chatge and

the nature of the confinement. The thecretical
caleulation of the curvature (or, alternatively, of
the flow divergence) would require the solution
of a complex hydrodynamical problem involving
the formation of shock wave or waves in the
exterior medium and  requiring  the
determination of the location of the contact
surface between explosion products and exterior
medium, In a bare charge, surrounded by air, a
cylindrically symmetric shock wave will be
propagated outward in the air. If the charge is
cased, a shock wave i§ propagated into the
casing. If the casing is thin, the problem is
further complicated by the subsequent
reflection of this shock wave at the boundary
beiween casing and air, resulting in a reflected
wave and a trarsmitted wave into the air
surrounding the cased charge.

The shape of the reaction zone may be
characterized by the diameter d of the reaction
zone and the axial distance @, of separation
between shock front and the head of the

rarefaction wave. If the surrounding medium is

defined, and the problem of fully describing its
motion could be solved, these two dimensions
would fully characterize the region of steady
reaction upon which the propagation of the
wave depends. The only dimensionless
combination of these lengths is the ratio a,/d,
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and no other characteristic lengths can occur in
the theory. Therefore, from -dimensional
considerations alone, we can write

D/D_ = F(a,/d) (9-2)

The function F can always be represented by its
MacLaurin expansion. Taking into account the
asymptotic behavior sumr, rized by Eq. 9-1, we
can write

D/D, =1 + A(a,/d) + (9-3)

where A is a constant and where. for small values
of e, /d the higher order terms can be neglected.
It will be noticed that the data shown in Fig. 9-1
is. well represented by an equation linear in 1/d.
1t is, in fact, generally true that experimental
data for the veloclty deficit i in finite cylindrical
charges can be represented, for small values of
the deficit, by Eq. 9-3. The r-oportionality
constant Ado is a function of the confinement
on the charge for charges of a given density.

9:3 DIVERGING FLOW WITHIN A
CYLINDRICALLY SYMMETRIC
STEADY REACTiON ZONE

When a detonation wave progresses in the
direction of the axis of a cylindrical charge of
explosive, it is found experimentally that the
rate of propagation is constant and that the
leading shock wave is convex in the direction of
propagation of the wave. These observations
iraply that a steady reaction zone exists and that
the reaction zone has cylindrical symmatry. In
order to connect such a flow region with a
stationary  {in  laboratory  coordinates)
downstream boundary on which the values of
the varicus quantities describing the flow are
prescribed, it is necessary to postulate a
cylindrically symmetric unsteady expansion
wave, Thus, we may consider the flow illustrated:
schematically by Fig. 9-2, in which the
coordinate system is at rest in the wave front,
the x-axis being coincident with the axis of the
cylindrical charge of explosive with origin in the
wave front and with the radial coordinate r
measuring the distance from the x-axis. The
intact explosive moves from right to left with
constant velocity w, = D. To the left of the
wave front, the particle velocity vector has an
axial component w_ and a radial component w,.
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If u and w are the axial and radial components,
respectivély, of particle velocity relative to
laboratory coordinates,

w =D-u
(9-4)
W= w
Wood and Kirkwood? ‘have considered the
flow illustrated By Fig. 9-2, assuming a .single
chemical réaction in the steady reaction zone.
The progress of such a reaction can be described
by &.progress. variable A which has-the value 0'at
the wave front where the reaction is initiated
and the value 1 when the reaction is.complete,
The rate equation for such a reaction cin be
written
dx
priak (9-5)

where the rate function R is a function of the
instantaneous state of the system. Since the
mgbile time derivative is

d @ 3 ]
— — -y} — —— 9-6
+(D - u) ot (9-6)

dt ot o oor
Eq. 9-5 becomes
9A oA
U)o — =
D -u) - w o R

for.the steady flow under consideration.

The differential e{juations for the conservation
of mass, momentuim, and energy are given in
par. 2-6. For cylindrically syminetric flow, they
are the equation of continuity

_‘2’ T p(@) + 2 [_r_a(rw)]‘ 20 (9-T)

d \ox r oor
the equations of motion
dt  p \ox
' (9-8)

do 1 fo))
dt  p\or

and the equation for energy transport

de ds p [de
= Tl=] + =5 ] + RAF -
it T(dt) pz ( dt) R (9-9)
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where AF is the change in free energy for the
reaction occurring in the reaction zone.

For the postulated steady flow, Wood and
Kirkwood? transformn these hydrodynamic
equations into the form

b-\op_au_ . wfon) 1foe)
o Jax ox O pd\er) ¥ l_'Br”
LN ) JY 1.
ox ) P\ (9-10)
. Ow 0w} 1 fop
(D~ uj Fl “’(ar) p (ar)
; r
d¢ p [op)| yde b ap]
- E L5 (2 LAY 4 |
® ”“[ax P (ax)]“"l_ar I3 (ar)_.,- 0

where ¢ is here the frozen sound speed

¢ = (3p/op), , (9-11)
and 0 js the quantity
o= [
) (@12

Instead of attempting a complete solution of
these equations, Wood and Kirkwood specializé
them to the axis of symmetry (r =-0) whete w =
0, Op/dr-= 9 and 8p/0r = G: When theresults
are solved for the .derivatives of the axial
component of particle velocity and pressure
with Tespect to the coordinate x, there are
obtained

B 1 o\
e)--i o]

9:13)
Yol
dx P R PP

Je_pfor)_
A e

where

_ SN2 2
G=1~- (D~ u)yle (9-14)

and where the superscript zera-indicates that the
derivative so.designated is evaluated on the axis,
r=0Q
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Now, the postulated flow has been assumed to
consist of a steady reaction zone that is
connected to the rear boundary by an unsteady
expansion wave. The surface separating these
two regimes must be a weak discontinuity. At
such a surface, the axial derivatives of pressure
and axial component of particle velocity .are
discontinuous. If these quantities are
-discontinuous on the surface separating the:two
regions, and in particular if they are
discontinuous at the intersection of this surface
with the x-axis-at the point labeled x-= a, in Fig.
9-2, the righi-hand side of the first two of Eqgs.
9-13 are indeterminate-at x = a_. Therefore, atx
=a

G=0orD=u+c (9-15)
and’
dw
E = gR/[2 (9-16)

Eq. 915 is identical in form. to the
Chapman-Jouguet condition for the plane
detonation wave. It is appropriate, therefore, to
refer to the surface separating the steady
reaction zone and the unsteady expansion wave
as the Chapman-Jouguet surface. The rélation
states that the rarefaction wave advances.into
the explosion produ