Downloaded from http://www.everyspec.com

AMC PAMPHLET

AMCP 706-177

ENGINEERING DESIGN HANDBOOK HANDBOOK

EXPLOSIVES SERIES PROPERTIES OF EXPLOSIVES OF MILLTARY INTEREST

REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 27161

HEADQUARTERS, U.S. ARMY MATERIEL COMMAND

JANUARY 1971

HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND WASHINGTON, D. C. 20315

AMC PAMPHLET No. 706-177*

ないないで、「「「「「」」」では、「」」」では、「」」」」

朝鮮

29 January 1971

4

ENGINEERING DESIGN HANDBOOK PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

Page	_
PREFACE	
ABBREVIATIONS AND SYMBOLS	
INTRODUCTION 1	
Amatcl, 80/20 12	
Amatol, 60/40	
Amatol, 50/50 16	
Ammonal	
Ammonium Nitrate	
Ammonium Perchlorate	
Anmonium PicrateSee: Explosive D	
Baratol 29	
Baronal	
Black Powder	
1,2,4-Butanetriol Trinitrate (BTTN) Liquid 40	
Composition A-3	
Composition B 46	
Composition B, Desensitized	
Composition C	
Composition C-2	
Composition C-3	
Composition C-4	
Copper Chlorotetrazole	
Cyanuric Triazide	
Cyclonite (RDX)	
Cyclotol, 75/25	,
Cyclotol, 70/30	;
Cyclotol, 65/35	
Cycloto1, 60/40	,
Cyclotrimethylene Trinitrosamine	
DBX (Depth Bomb Explosive)	
1.3-Diamino-2,4,6-Trinitrobenzene (DATNB)9	
Diarodinitrophenol	,
Diethylene Glycol Dinitrate (DEGN) Liquid	,
Bis(2,2-Dinitropropyl) Fumarate (DNPF)107	
Bis(2,2-Dinitropropyl) Succinate (DNPS)110	J
2,2-Dinitropropy1-4,4,4-Trinitrobutyrate (DNPTB)113	,

*This pamphlet supersedes AMCP 706-177, 22 March 1967, including Change 1, 20 December 1967.

TABLE OF CONTENTS (cont'd)

Downloaded from http://www.everyspec.com

2,4-Dinitrotoluene (DNT). 116 Dipenteerythritol Hexamitrate (DPERH) 119 Dynamite, Low Velocity, Picatinny Arsenal (LVD). 122 Dynamite, Hadium Velocity, Hercules (MVD). 123 EC Blank Fire. 128 EDNASee: Haleite 128 Ednatol, 55/45. 130 Ethylene Clycol Di-Trinitrobutyrate (GTNB) 133 Explosive D (Ammonium Picrate) 136 Clycorol Monolactate Trinitrate (CLTN) Liquid. 140 Clycorol Monolactate Trinitrate (CLTN) Liquid. 143 H=6. 146 Haleite (Zthylene Dinitramine) (EDNA) 150 HBX-1. 156 HBX-2. 164 HEX-48. 164 HEX-44. 164 HEX-45. 173 HTA-3. 173 HTA-3. 173 Lead Aride. 182 Lead Aride. 193 Hear-10. 186 Lead Aride. 193 Heard Aride. 193 Lead Aride. 193 Heard Aride. 193 Heard Aride. 193<		Page
Dynamite, Low Velocity, Picstinny Arsenal (LVD) 122 Dynamite, Medium Velocity, Hercules (MVD) 125 EC Blank Fire. 128 EDNASeer Haleice 128 Ednatol, 55/45. 130 Explosive of Asmonium Picrate) 133 Glycerol Monolactate Trinitrate (GLTN) Liquid. 140 Glycol Dinitrate (GDN) Liquid. 143 H=6. 166 Hasci (Ethylene Dinitramine) (EDNA) 150 HBX-3. 159 HBX-4. 166 2,4,6,2',4',6'-Hexanitro-oxanilide (HNO). 170 beta-bidt 182 Lead Xide. 182 Lead Xide. 182 Lead 2,4-Dinitro esorcinate (LDNR) 180 Lead Xide. 190 Lead Xide. 193 Mannitol Hexanitrate (MIN) Liquid (or Trimethylolethane Trinitrate) 200 MOX-12. 200 MOX-28. 213 MOX-28. 220 MOX-48. 220 MOX-68. 220 MOX-68. 220 MOX-68. 220 MOX-68. 22		
Dynamite, Hedium Velocity, Hercules (MVD)		
EC Blank Fire.		
EDNASee: Haleite Ednatol, 55/45	Dynamite, Medium Velocity, Hercules (MVD)	.125
Ednatol, 55/45. 130 Ethylane Glycol Di-Trinitrobutyrate (GTNB) 133 Explosive D (Ammonium Picrate) 136 Glycerol Monolactate Trinitrate (GLNN) Liquid 140 Glycol Dinitrate (GDN) Liquid 143 H=6 146 Haleite (Ethylene Dinitramine) (EDNA) 150 HBX-1 156 HBX-3 159 HEX-24 144 HEX-48 166 2,4,6,2 ¹ ,4 ¹ ,6 ¹ -Hexanitro-oxanilide (HNO) 170 beta-HEX 173 HTA-3 178 Lead Aride 182 Lead Aride 182 Lead Aride 193 Mannitol Hexwitrate (Nitronannite) 193 Mercury Fulminate 201 Metriol Trinitrate (MTN) Liquid (ot Trimethylolethans Trinitrate) 206 Minol-2 209 MOX-1 213 MOX-28 214 MOX-48 220 MOX-48 220 MOX-68 220 Mitrocellulose, 12.65 N (NC) 226	EC Blank Fire	.128
Ethylene Glycol Di-Trinitrobutyrate (GTNB)	EDNASee: Haleite	
Ethylene Glycol Di-Trinitrobutyrate (GTNB)	Ednatol, 55/45	.130
Glycerol Monolactate Trinitrate (GLTN) Liquid. .140 Glycol Dinitrate (GDN) Liquid. .143 H-6. .146 Heleite (Ethylene Dinitramine) (EDNA). .150 HBX-1. .156 HBX-3. .159 HEX-24. .166 2,4,6,2 ¹ ,4 ¹ ,6 ⁷ -Hexanitro-oxanilide (HNO). .170 beta-HBX. .173 HTA-3. .178 Lead Aride. .182 Lead 2,4-Dinitro 'esorcinate (LDNR). .187 Lead 4,6-Dinicroresocrinol Basic (LDNR Basic). .190 Lead Styphnate. .193 Mannitol Hexmitrate (Nitrozannite). .197 Mercury Fulminate. .201 Mox-18. .213 MoX-28. .222 Nitrocellulose, 12.6% N (NC). .226 Nitrocellulose, 13.45% N (NC). .227	Ethylene Glycol Di-Trinitrobutyrate (GTNB)	.133
Glycol Dinitrate (GDN) Liquid. .143 H=6	Explosive D (Ammonium Picrate)	.136
H-6	Glycerol Monolactate Trinitrate (GLTN) Liquid	.140
Haleite (Ethylene Dinitramine) (EDNA). 150 HBX-1. 156 HBX-3. 159 HEX-24. 164 HEX-48. 166 2,4,6,2',4',6'-Hexanitro-oxanilide (HNO). 170 beta-HEX. 173 HTA-3. 178 Lead Azide. 182 Lead Azide. 182 Lead 4,6-Dinitro esorcinate (LDNR). 187 Lead 4,6-Dinitroresocrinol Basic (LDNR Basic). 190 Lead Styphnate. 193 Mannitol Hexmitrate (Nitrogennite). 197 Mercury Fulminate. 201 Mox-2B. 215 MOX-2B. 215 MOX-48. 220 Nox-68. 222 Nitrocellulose, 12.6% N (NC). 226	Glycol Dinitrate (GDN) Liquid	.143
HBX-1	H~6,	.146
HBX-3. 159 HEX-24. 164 HEX-48. 166 2,4,6,2',4',6'-Hexanitro-oxanilide (HNO) 170 beta-HEX. 173 HTA-3. 173 HTA-3. 178 Lead Azide. 182 Lead 2,4-Dinitro esorcinate (LDNR) 187 Lead 4,6-Dinicroresocrinol Basic (LDNR Basic) 190 Lead Styphnate. 193 Mannitol Hexmitrate (Nitrogannite) 197 Mercury Fulminate. 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate) 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-4B. 220 Nox-66. 222 Nitrocellulose, 12.6X N (NC) 226 Nitrocellulose, 13.45X N (NC) 227	Haleite (Ethylene Dinitramine) (EDNA)	.150
HEX-24	нвх-1	.156
HEX-48. .166 2,4,6,2',4',6'-Hexanitro-oxanilide (HNO) .170 beta-HMX .173 HTA-3. .178 Lead Aride. .182 Lead 2,4-Dinitro emorcinate (LDNR) .187 Lead 4,6-Dinicroresocrinol Basic (LDNR Basic) .190 Lead Styphnate. .193 Mannitol Hexanitrate (Nitrogannite) .197 Mercury Fulminate. .201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate) .206 Minol-2. .209 MOX-1. .213 MOX-2B. .215 MOX-4B. .220 Nitrocellulose, 12.6% N (NC) .226 Nitrocellulose, 13.45% N (NC) .227	NBX-3	.159
2,4,6,2',4',6'-Hexanitro-oxanilide (HNO) 170 beta-HXX 173 HTA-3 178 Lead Azide 182 Lead Azide 182 Lead 2,4-Dinitro esorcinate (LDNR) 187 Lead 4,6-Dinitroresocrinol Basic (LDNR Basic) 190 Lead Styphnat# 193 Mannitol Hexanitrate (Nitrogannite) 197 Mercury Fulminata 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate) 206 Minol-2 209 MOX-1 213 MOX-2B 215 MOX-4B 220 MOX-66 222 Nitrocellulose, 12.6% N (NC) 226 Nitrocellulose, 13.45% N (NC) 227	HEX-24	. 164
beta-HMX. 173 HTA-3. 178 Lead Aride. 182 Lead 2,4-Dinitro esorcinate (LDNR). 187 Lead 4,6-Dinicroresocrinol Basic (LDNR Basic) 190 Lead Styphnate. 193 Mannitol Hexanitrate (Nitrogennite). 197 Mercury Fulminate. 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate). 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-4B. 220 MoX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	HEX-48	.166
HTA-3. 178 Lead Azide. 182 Lead 2,4-Dinitro esorcinate (LDNR) 187 Lead 4,6-Dinicroresocrinol Basic (LDNR Basic) 190 Lead Styphnate. 193 Mannito3. Hexmitrate (Nitrogannite) 197 Mercury Fulminate. 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate) 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-4B. 220 Nitrocellulose, 12.6% N (NC) 226 Nitrocellulose, 13.45% N (NC) 227	2,4,6,2',4',6'-Hexanitro-oxanilide (HNO)	.170
Lead Azide. .182 Lead 2,4-Dinitro esorcinata (LDNR) .187 Lead 4,6-Dinitroresocrinol Basic (LDNR Basic) .190 Lead Styphnate. .193 Mannitol Hexanitrate (Nitrogannite) .197 Mercury Fulminate. .201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate) .206 Minol-2. .209 MOX-1. .213 MOX-2B. .215 MOX-4B. .220 Mitrocellulose, 12.6% N (NC). .226 Nitrocellulose, 13.45% N (NC). .227	beta-HMX,	.173
Lead 2,4-Dinitro esorcinate (LDNR)	HTA-3	178
Lead 4,6-Dinicroresocrinol Basic (LDNR Basic). 190 Lead Styphnate. 193 Mannito3 Hexanitrate (Nitrogennite). 197 Mercury Fulminate. 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate). 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-4B. 220 NoX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	Lead Azide	
Lead Styphnate	Lead 2,4-Dinitro esorcinate (LDNR)	.187
Mannitol Hexanitrate (Nitrogannite) 197 Mercury Fulminate. 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethene Trinitrate) 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-3B. 218 MOX-4B. 220 MOX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	Lead 4,6-Dinicroresocrinol Basic (LDNR Basic)	190
Mercury Fulminate. 201 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate). 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-3B. 218 MOX-4B. 220 MOX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	Lead Styphnate	.193
Metriol Trinitrate (MTN) Liquid (or Trimethylolethene Trinitrate) 206 Minol-2. 209 MOX-1. 213 MOX-2B. 215 MOX-3B. 218 MOX-4B. 220 MOX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	Mannitol Hennuitrate (Nitrogannite)	197
Minol-2	Mercury Fulminate	.201
MOX-1	Hetriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate)	206
MOX-2B. 215 MOX-3B. 218 MOX-4B. 220 MOX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	Minol-2,	. 209
MOX-3B. 218 MOX-4B. 220 MOX-6B. 222 Nitrocellulose, 12.6% N (NC). 226 Nitrocellulose, 13.45% N (NC). 227	нох-1	. 213
MOX-4B	КОХ-2В	215
MOX-6B	Нох-зв	218
Nítrocellulose, 12.6% N (NC)	MOX-4B	220
Nitrocellulose, 13.45% N (NC)	МОХ-6В	222
Nitrocellulose, 13.45% N (NC)	Nítrocellulose, 12.6% N (NC)	226
	• • • •	

٦.

11

1. Sec.

TABLE OF CONTENTS (cont'd)

k.	Page
Nitroglycerin (Liquid)	
Nitroguanidine	
Nitroisobutylglycerol Trinitrate (NIBTN) Liquid)	243
Nitromethane-Seo: PLX Liquid	
Nitrostarch Demolition Explosive (NSX)	
Octol, 70/30	249
[.] Octol, 75/25	254
PB-RDX	
Pentaerythritol Trinitrate (PETRIN)	265
Pentaerythritol Trinitroacrylate (PETRIN Acrylate) (Trinitroxypentaerythritol Acrylate)	
Pentolite, 50/50; 10/90	
PETN (Pentaerythritol Tetranitrate)	
Picramide (TNA) (2,4,6-Trinitroaniline)	•
Picratol, 52/48	
Picric Acid	
PIPE	
Plumbato1	
PLX (Liquid)	
Potassium Dinitrobenzfuroxan (KDNBF)	
PTX-1	
PTX-2	
PVA-4	
PVN (Polyvinyl Nitrate)	
RDXSec: Cyclonite; Compositions A-3; B; C-2; C-3; C-4	
RIPE	
Silver Azide	
Tetracene	
Tetranitrocarbazole (TNC)	
2 4,2',4'-Tetranitro-oxanilide (TNO)	
Tetry1	
Tetrytol, 80/20	
Tetrytol, 75/25	
Tetrytol, 70/30	
Tetrytol, 65/35	
TNT (Trinitrotoluene)	

Downloaded from http://www.everyspec.com

AMCP 706-177

i٧

TABLE OF CONTENTS (cont'd)

	Page
· Torpex	
1,3,5-Triam'no-2,4.6-Trinitrobenzene (TATNB)	
Triethylene Glycol Dinitrate (TEGN) Liquid	
Trimonite	
2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)	
Trinitro Triazodibenzene	
Tripentaerythritol Octanitrate (TPEON)	
Tritonal, 80/20	
Veltex No. 448	

PREFACE

Downloaded from http://www.everyspec.com

The Engineering Design Handbook Series of the Army Materiel Command is a coordinated series of handbooks containing basic information and fundamental data useful in the design and development of Army materiel and systems. The handbooks are authoritative reference books of practical information and quantitative facts heipful in the design and development of Army materiel so that it will meet the tactical and technical needs of the Armed Forces.

AMCP 705-177, Properties of Explosives of Military Interest, is one of a series on Explosives. One hundred and ten explosive compounds or mixtures are listed herein, alphabetically, with their properties, including composition variations. These explosives were selected because of their current or probable application to military use.

The tabulated data reflect the results of tests, and were first compiled for publication at Picatinny Arsenal, Dover, New Jersey, by W. R. Tomlinson, Jr. These data were later revised by Oliver E. Sheffield, also of Picatinny Arsenal, for the Engineering Handbook Office of Duke University, prime contractor to the Army Materiel Command.

The Handbooks are readily available to all elements of AMC, including personnel and contractors having a need and/or requirement. The Army Materiel Command policy is to release these Engineering Design Handbooks to other DOD activities and their contractors and to other Government agencies in accordance with current Army Regulation 70-31, dated 9 September 1966. Procedures for acquiring these Handbooks follow:

a. Activities within AMC and other DOD agencies order direct on an official form from:

Commanding Ufficer Letterkenny Army Depot, ATTN: AMXLE-ATD Chambersburg, Pennsylvania 17201

b. Contractors who have Department of Defense contracts should submit their requests through their contracting officer with proper justification to the address listed in par. a.

c. Government agencies other than DOD having need for the Handbooks may submit their requests directly to the address listed in par. a or to:

Commanding General U. S. Army Materiel Command ATTN: AMCAM-ABS Washington, D. C. 20315

d. Industries not having Government contracts (this includes colleges and Universities) must forward their requests to:

Commanding General U. S. Army Materiel Command ATTN: AMCRD-TV Washington, D. C. 20315

e. All foreign requests must be submitted through the Washington, D. C. Embassy to:

> Assistant Chief of Staff for Intelligence Foreign Liaison Office Department of the Army Washington, D. C. 20310

All requests, other than those originating within DOD, must be accompanied by a valid justification.

Comments and suggestions on this handbook are welcomed and should be addressed to Army Research Office-Durham, Box CM, Duke Station, Durham, North Carolina 27706.

ABBREVIATIONS AND SYMBOLS

Downloaded from http://www.everyspec.com

.

~ approximately. This symbol is used before numbers. AC Advisory Council on Scientific Research and Devilopment, Great Britain. American Chemical Society. American Iron and Steel Institute. ACS ATST Ann Liebig's Annalen der Chemie. Ann chim phys Annales de chimie et de physique. armor-piercing. AP APG Aberdeen Proving Ground. atm atmosphere; atmospheric pressure. Bei1 Beilstein Organische Chemie, 4th Edition. Ber Berichte der Deutschen Chemischen Gesellschaft. BIOS GP2-NEC British Intelligence Overseas Service or Objective Subcommittee, Group 2, Halstead Exploiting Center. BM Bureau of Mines, United States Department of Interior. Bull Soc chim Bulletin de la societé chimique de France. Chemical Abstracts. CA. calc calculated. Chem Met Eng Chemical and Metallurgical Engineering. Chim et Ind Chimie et Industrie. Comptes rendus hebdomadaires des seances de Comp rend l'Academie des Sciences (Paris). centipoise. ¢p CR Comptes rendus hebdomadaires des seances de l'Academie des Sciences (Paris). dec decomposes. difference in heat (i.e., heat evolved) by decomposition. Δн n p p Deutsches Reichspatent. modulus of elasticity or "Young's modulus"; longitudinal Ë stress/change in length; (force/area)/(elongation/ length); expressed in 1b/inch². sama as E, but expressed in dynes/cm². ε' Gazzetta Chimica Italiana. Gazz chim ital GP general purpose. ΗE high explosive. HEAT high explosive antitank. Industrial & Engineering Chemistry. Ind Eng Chem J Am Chem Soc Journal of the American Chemical Society The Journal of the Society of Chemical [Industry (London). J Chem Ind J Chem Soc Journal of the Chemical Society (London). J Frank Inst Journal of the Franklin Institute. J Ind Explosives Suc Journal of the Industrial Explosives Society (Japan). J prakt Chom Journal für praktische Chemie. lead azide ĭ. A Land-Bornst Landolt-Bornstein Physikalish-Chemische Tabellen, Sth Edition (Berlin). М molar. Monatshefte für Chemie (Wein). N Mém poudr Mémorial des poudres et salpêtres (Paris). ng milligram.

Preceding page blank

:

vii

ABBREVIATIONS AND SYMBOLS (cont'd)

. •

. :

min	#inimum.
ml	milliliter.
u/s	meters per second.
HW	molecular weight.
NAVORD	Bureau of Ordnance (U. S. Navy)
NC	nitrocellulose.
D	
ⁿ 20	index of refraction, with D band of sodium as light
	source, at twenty degrees cantigrade.
NDRC	National Defense Research Committee.
NFOC	National Fireworks Ordnance Corporation.
NG	nitroglycerin.
NOL	U. S. Naval Ordnance Laboratory, White Oak, Silver
	Spring, Maryland.
NOTS	U. S. Naval Ordnance Test Station, China Lake, Calif.
NRC	National Research Council.
OB	oxygen balance.
OCM	Ordnance Committee Minutes.
OSRD	Office of Scientific Research and Development
PA	Picatinny Arsenal.
PATR	Picatinny Arsenal Technical Report.
Phil Trans	Philosophical Transactions of the Royal Society of London.
-	
Pogg Ann	Poggendorf's Annalen der Physik.
Proc Roy Soc	Proceedings of the Royal Society of London.
Rec trav chim	Recueil des traveux chimiques des Pays-Bes.
RH	relative humidity.
RI	Report of Investigation.
SAE	Society of Automotive Engineers.
SAP	semi-armor-piercing.
s ol	solution.
Spec	Specifications.
std dev	standard deviation.
TM	Technical Manual, Department of the Army.
TM/TO	joint publication, as a TN and as a Department of the
	Air Force Technical Order.
	Transactions of the Faraday Society
vac stab	vacuum stability.
Z angew Chem	Zeitschrift für angewandte Chemie.
Z anorg Chem	Zeitschrift für anorganische und allgemeine Chemie.
Z ges Schiess-	Zeitschrift für das gesamte Schiess und Sprengstoff-
Sprengstoffw	wessen (Munchen).
Z/sec	atoms of oxygen per second.

viii

1

PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

INTRODUCTION

1. PREDOMINANTLY A REPORT OF STANDARD TESTS. No effort was made to cover all the existing literature, either open or classified security information, on any explosive. Father, the main resource has been reports from facilities using standard or well-known test procedures.

2. ORIGIN. Compilation of data resulting in this handbook was undertaken by Picatinny Arsenal personnel who desired to provide a manual tabulating the characteristics of explosives, based on tests, with regard to current, and possible future, interest. The first resulting Picatinny Arsenal publication was dated 20 June 1949. Revision 1, PA Technical Report No. 1740, deted April 1958, with revisions, provides the data used herein.

3. SCOPE. Tabulated data of tests on one nundred and ten explosive compounds or mixtures include sensitivity to friction, impact, heat; performance characteristics or effectiveness in weapons; physical and chemical properties; and method of preparation, synthesis or manufacture, with comments on historical origin, and supplementary references.

4. <u>REFERENCE NOTATIONS AND SOURCES.</u> The references, as to sources of data or for more details in methods of testing, have been listed, when available, at the end of each section devoted to a given explosive compound, explosive mixture, or explosive ingredient. Where no reference is given, it can be assumed that these data represent typical values obtained by standard procedures. When available any reference should be consulted for more details in interpreting test data.

Also there are listed Picatinny Arsenal Technical Reports which contain additional information on the particular explosive. These report numbers are given in ascending order, in columns corresponding to their terminal digits, and in accordance with the "Uniterm Index" prepared for Picatinny Arsenal by Documentation Incorporated under Contract DAI-36-034-501-ORD-(P)-42 (1955).

5. EXPLANATION OF TERMS AND METHODS OF TESTING. Data are tabulated herein on three form-type pages, in the following sequence of headings. Many of these terms are self-explanatory.

a. First tabular page.

نى .

ŧ

- (1) Name of the explosive in each instance.
- (2) "Composition."
- (3) "Impact Sensitivity, 2 Kg Wt."
 - (a) Impact sensitivity test for solids. (a)*

A sample (approximately 0.02 gram) of explosive is subjected to the action of a falling weight, usually 2 kilograms. A 20-milligram sample of explosive is always used in the Bureau of Mines (BM) apparatus when testing solid explosives. The weight of sample used in the Picatinny Arsenal (PA) apparatus is indicated in each case. The <u>impact test value</u> is the minimum

^{*}Reference publications (a through q), applying to this introduction, are listed at the end of the introduction.

AMCP 705-177

height at which at least one of 10 trials results in <u>explosion</u>. For the EM apparatus, the unit of height is the centimeter; for the PA apparatus, it is the inch. In the formor, the explosive is held between two flat, parallel hardened ($C(3 \pm 2)$ steel surfaces; in the latter case, it is placed in the depression of a small steel die-cup, capped by a thin brass cover, in the center of which is placed a slotted-vented-c-lindrical steel plug, slotted side down. In the EM apparatus, the impact impulse is transmitted to the sample by the upper flat surface, in the PA, by the vented plug. The main differences between the two tests are that the PA test (1) involves greater confinement, (2) distributes the translational impulse over a smaller ares (due to the inclined sides of the die-cup cavity), and (3) involves a frictional component (against the inclined sides). ١.

Downloaded from http://www.everyspec.com

The test value obtained with the PA apparatus depends, to γ marked degree, on the sample density. This value indicates the hazard to be expected on subjecting the particular sample to an impact blow, but is of value in assessing a material's inherent sensitivity only if the apparent density (charge weight) is recorded along with the impact test value. The values tabulated herein were obtained on material screened between 50 and 100 mesh, U. S. Standard Screens where single component explosives are involved, and through 50 mesh for the mixtures.

(b) Tapact sensitivity test for liquids. (b)

The PA Impact Test for liquids is run in the same way as for solids. The die-cup is filled and the top of the liquid meniscus adjusted to coincide with the plane of the top rim of the die-cup. To date, this visual observation has been found adequate to assure that the liquid does not wet the die-cup rim after the trass cap has been set in place. Thus far the reproducibility of data obtained in this way indicate that variations in sample size obtained are not significant.

In the case of the BM apparatus, the procedure that was described for solids is used with the following variations:

1. The weight of explosive tested is 0.007-gm.

2. A disc of desiccated filter paper (Whatman No. 1) 9.5-millimeter diameter, is laid on each drop, on the anvil, and then the plunger is lowered on the sample absorbed in the filter paper.

(4) "Friction Pendulum Test." (c)

A 7.0-gm sample of explosive, 50-100 mesh, is exposed to the action of a steel, or fiber, show avinging as a pendulum at the end of ε long steel rod. The behavior of the sample is described qualitatively to indicate its reaction to this experience, i.e., the most energetic reaction is explosion, and in decreasing order of severity of reaction: snaps, cracks, and unaffected.

(5) "Rifle Bullet Impact Test." (d)

Approximately 0.5-pound of explosive is loaded in the same manner as it is loaded for actual use: that is, cast, pressed, or liquid in a 3-inch pipe nipple (2-inch inside diameter, 1/16inch wall) closed on each end by a cap. The loaded item, in the standard test, contains a small air space which can, if desired, be filled by inserting a wax plug. The loaded item is subjected to the impact of a caliber .30 bullet fired perpendicularly to the long axis of the pipe nipple, from a distance of 90 feet.

3

(6) "Explosion Temperature." (a)

A 0.02-gm sample (0.01-gm in the case of initiators) of explosive, loose loaded in a No. 8 blasting cap, is immersed for a chort period in a <u>Wood's metal</u> bath. The temperature determined is that which produces explosion, ignition or decomposition of the sample in 5 seconds, and the behavior of the sample is indicated by "Explodes" or "Ignites" or "Decomposes" placed beside the value. Where values were available for times other than 5 seconds, these have been included. For 0.1-second values, no cap was used, but the explosive was placed diructly on <u>Wood's metal</u> bath, immediately after cleaning. The value 0.1 second is estimated, not determined, and represents an interval regarded as instantaneous to the observer's eye. Dashes indicate no action.

Downloaded from http://www.everyspec.com

(7) "75°C International Heat Test." (a)

A 10-gm sample is heated for 48 hours at 75° C. The sample after this exposure is observed for signs of decomposition or volatility.

(8) "100⁰C Heat Test." (a)

,

の時代である。「日本語の構成」では、「ない語の」という

A 0.6-gm sample is heated for two 49-hour periods at 100° C. It is also noted whether exposure at 100° C for 100 hours results in explosion.

(9) "Flammability Index." (h)

The measure of the likelihood that a bare charge will catch fire when exposed to flames is the index of flammability. The test is made by bringing an oxyhydrogen flame to bear on the explosive. The maximum time of exposure which gives no ignition in 10 trials and the minimum exposure which gives ignition in each of 10 trials are determined. The index of flammability is 100 divided by the mean of the two times in seconds. The most flammable substances have high indices, e.g., 250.

(10) "Hygroscopicity."

A 5- to 10-gm sample is exposed for hygroscopicity under the stated conditions, until equilibrium is attained, or in cases where either the rate is extremely low, or very large amounts of water are picked up, for the stated time. The sample, if solid, is prepared by sieving through a 50 and on a 100 mesh screen.

(11) "Volatility."

A 10-gm sample is exposed for volatility under the stated conditions. The sample if solid is prepared by sieving through a 50 and on a 100 mesh sieve.

(12) "Molecular Weight."

The molecular weight (MW) of a mixture can be calculated from the equation

MW of mixture =
$$\frac{100}{\frac{a}{mW_1} + \frac{b}{mW_2} + \frac{c}{mW_3} + \frac{n}{mW_n}}$$

where a, b, c and n are the weight percents of the components, and mw_1 , mw_2 , mw_3 and mw_n their corresponding molecular weights.

Downloaded from http://www.everyspec.com

AMCP 706-177

(13) "Oxygen Balance."

The oxygen balance (OB) is calculated from the empirical formula of a compound in percentage of oxygen required for complete conversion of carbon to carbon dioxide (or carbon wonoxide) and hydrogen to water. When metal is present the reactions are assumed to occur in the following order:

> Metal + 0 \longrightarrow Metal Oxide C + H₂O \longrightarrow CO + H₂ CO₂ + H₂ \longrightarrow CO + H₂O 2CO + O₂ \longrightarrow 2CO₂

Procedure for calculating oxygen balance is to determine the number of gramatoms of oxygen which are excess or deficient for 100 grams of a compound. This number sultiplied by the atomic weight of oxygen gives

the oxygen balance: 1600 (2X + $\frac{Y}{2}$ = 2)

 \div molecular weight of compound = oxygen balance to CO₂ and H₂O, where X = atoms of carbon, Y = atoms of hydrogen, Z = atoms of oxygen. The oxygen balance of a mixture is equal to the sum of the percent composition times the oxygen balance for each component.

The carbon/hydrogen (C/H) ratio is calculated as follows:

Number of C atoms $(\frac{4}{3}C + \frac{4}{3}H) = C/H$ ratio Number of H atoms (100)

- (14) "Density."
- (15) "Melting Point."
- (16) "Freezing Point."
- (17) "Boiling Point."
- (18) "Refractive Index."
- (19) "Vacuum Stability Test." (a)

A 5.0-gm sample (1.0 gm for initiators), after having been carefully dried, is heated for 40 hours, in vacuo at the desired temperature.

- (20) "200 Gram Bomb Sand Test."
 - (a) Sand test for solids. (a)

A 0.4-gm sample of explosive, pressed at 3000 pounds per square inch into a No. 6 cap, is initiated by lead azide, or mercury fulminate (or, if necessary, by lead azide and tetryl), in a sand test bomb containing 200 gm of "on 30 mesh" Ottawa sand. The amount of azide, or of tetryl, that must be used, to insure that the sample crushes the maximum net weight of sand, is designated as its <u>sensitivity to initiation</u> and the net weight of sand crushed, finer than

5

30 mesh, is t rmed the <u>sand test value</u>. The net weight of sand crushed is obtained by subtracting from the total the amount crushed by the initiator when shot alone.

Downloaded from http://www.everyspec.com

(b) Sand test for liquids. (b)

The sand test for liquids is made in accordance with the procedure given for solids except that the following procedure for loading the test samples is substituted:

Cut the closed end from a No. 6 blasting cap and load one end of the resulting cylinder with 0.20 gm of lead azide and 0.25 gm of tetryl, using a pressure of 3000 psi for consolidating each charge. With a pin, prick the powder train in one end of a piece of miner's black powder fuse 8 or 9 inches long. Crimp to the pricked end a loaded cylinder, taking care that the end of the fuse is held firmly against the charge in the cap. Crimp near the mouth of the cap so as to avoid squeering the charge. Transfer a weighed portion of 0.400 gm of the test explosive to an aluminum cap, taking precautions when the explosive is liquid to insert the sample in such a manner that as little as possible adheres to the side walls of the cap, and when a solid material is being tested use material fine enough to pass through a No. 100 U. S. Standard Sieve. The caps used shall be of the following dimensions: length 2.00 inches, internal diameter 0.248-inch, wall thickness 0.025-inch. Press solid explosives, after insertion into the aluminum cap, by means of hand pressure to an apparent density of approximately 1.2 gm per cubic centimeter. This was done by exerting hand pressure on a wooden plunger until the plunger had entered the cap to a depth of 3.93 centimeters. Following are the dimensions of the interior of the cap: height 5.00 cm, area of cross section 0.312 square centimeters. Insert the cylinder containing the fuse and explosive charge of tetryl and lesd azide into the aluminum cap containing the fuse and explosive charge of tetryl and lesd azide into the aluminum cap containing the fuse and explosive for the determination of sand crushed.

(21) "Sensitivity to Initiation."

This is <u>sensitivity to initiation</u> as described under the preceding heading. The minimum detonating charge, in grams, required to detonate the explosive sample, is given.

(22) "Ballistic Mortar, % TMT." (e)

The amount of sample under test which is necessary to raise the heavy ballistic mortar to the same height to which it is raised by 10 gm of trinitrotoluene (INT) is determined. The sample is then rated, on a proportionate basis, as having a certain INT value, i.e., as being a certain percent as effective as INT in this respect. The formula is

INT value =
$$\frac{10}{\text{sample weight}} \times 100.$$

The ballistic mortar consists of a long compound supporting rod, at the end of which is supported a heavy short-nosed mortar. The mortar contains a chamber about 6 inches in diameter and 1 foot long. A projectile occupies about 7 inches of the chamber and the sample to be tested occupies a small portion of the remainder of the chamber. When the sample is detonated, the projectilu is driven into a sand bank, and the mortar swings through an angle which is marked on paper by a pencil attached to the mortar. The angle thus indicates the height to which the pendulum is raised by the explosion, and this latter represents the energy measured by this test procedure.

(23) "Trauzl Test, % TNT." (d)

A sample of the explosive to be tested (of the order of 10 gm) is exploded in a cavity, or borehole, 25-mm in diameter and 125-mm deep, in a lead block 200-mm in diameter and 200-mm in height. The borehole is made centrally in the upper face of each block, which is cast in a mold from desilverized lead of the best quality. Although these tests have been made under a variety

of conditions, where possible the data have been taken from or related to those of Reference f (Nacum). Here a No. 8 blasting cap was used for initiation of the sample contained in glass. The weight of sample used was adjusted to give, with the initiator, a total expansion of 250 to 300 cc, since within this range expansion and sample weight were linearly related under the conditions of Nacum's test. Thus expansions for equivalent weights were readily calculated, and the test value expressed in percent of the expansion of an equivalent weight of TNT.

(24) "Plate Dent Test." (d)

Two methods were used for plate dent tests.

(a) Method A - The charge is contained in a copper tube, having an internal diameter of 3/4-inch and 1/16-inch wall. This loaded tube is placed vertically on a square piece of cold-rolled steel plate, 5/8-inch thick; 4-inch and 3-1/4-inch square plate gave the same results. The steel plate is in a horizontal position and rests in turn on a short length of heavy steel tubing 1-1/2 inches ID and 3 inches OD. The charge rests on the center of the plate, and the centers of the charge, plate, and supporting tube are in the same line. A 20-gm charge of the explosive under test is boostered by a 5-gm pellet of tetryl, in turn initiated by a No. 8 detonator.

(b) Method B - A 1-5/8-inch dismeter, 5-inch long uncased charge is fired on a 1-3/4-inch thick, 5-square inch cold-rolled steel plate, with one or more similar plates as backing. The charge is initiated with a No. 8 detonator and two 1-5/8-inch diameter, 30-gm tetryl boosters.

Plate dent test value,	or relative brisance	= <u>Sample Dent Depth</u> x 100. Dent Depth for TNT at 1.61 gm/cc
		Bene Behar set wit no Trat Bud an

(25) "Detomation Rate." (g)

The detonation rates reported in the tables contained herein were determined principally by using the rotating drum camera, under the conditions stated, e.g., usually charges 1 inch in diameter, 20 inches long, wrapped in cellulose acetate sheet, and initiated by a system designed to produce high order stable detonation at the maximum rate under the particular conditions. A typical initiating system for this consisted of four tetryl pellets 0.995 inch in diameter, 0.75 inch long, pressed to 1.50 gm/cc, with a Corps of Engineers special blasting cap placed in a central hole in the end pellet.

b. Second tabular page.

(1) "Booster Sensitivity Tert." (p)

The booster sensitivity test procedures is a scaled up modification of the Bruceton method (unconfined charge). The source of the shock consists of two tetryl pellets, each 1.57 inches diameter by 1.60 inches high, of approximately 100 gm total weight. The initial shock is degraded through wax spacers of cast Acravax B, 1-5/8 inches diameter. The test charges are 1-5/8 inches diameter by 5 inches long. The value given is the thickness of wax in inches at the 50% detonation point. The weight of tetryl pellet noted is the minimum which will produce detonation with the spacer indicated.

(2) "Heat of" (calorimetric tests). (i)

Heats of combustion and explosion are generally determined on samples weighing of the order of 1 to 2 gm, in standard calorimeter bombs such as the Parr or Emerson, approximately 400 cc (for low loading density), or the Boms, approximately 45 cc (for high loading density). For

7

heats of combustion the sample is burned under about 40 atmospheres of oxygen; for heats of explosion, nitrogen, or one atmosphere of air is used.

Downloaded from http://www.everyspec.com

- (3) "Specific Heat."
- (4) "Burning Rote."
- (5) "Thermal Conductivity."
- (6) "Coefficient of Expension."
- (7) "Hardness, Mohs' Scale."
- (8) "Young's Modulus."
- (9) "Compressive Strength."
- (10) "Vapor Pressure."
- (11) "Decomposition Equation."
- (12) "Armor Plate Impact Test." (j)
 - (a) 60-mm Nortar Projectile.

A modified 60-mm, N49A2, mortar projectile is loaded with the explosive to be tested, drilled to the proper depth (about 1/2 inch), and a flat-based stoel plug screwed into the projectile to give a smooth close-fit between the plug base and the clarge. The part of the plug outside the projectile is rounded off in the form of a spherical solution. The loaded projectile with fins attached is fired from a five foot length of $2^{-5}/8$ inches ID x 3-3/8 inches OD Shelby steel tubing. The igniter and propelling charge, consisting of an igniter for a 2.36-inch rocket (basooka), 5 gm of 4F black puscer, and a quantity of shotgun propellant sufficient to give the desired velocity (read from a calibration chart) are conveniently loaded into the "gun" through a simple breach plug. The velocities are measured electronically, and the reaction, inert or affected, is determined by observation (e.g., whether or not flash occurs on impact). Within the range of flight stability of the projectile, 200-1100 ft/sac, the 50% point is located.

(b) 500-1b General Purpose Bombs.

(13) "Bomb Drop I tt."

Bomb drops are made using bombs assembled in the conventional manner, as for service usage, but containing either inert or simulated fuzes. The target is usually reinforced concrete.

c. Third tabular page.

(1) "Fragmentation Test." (1)

The weight of each empty projectile and weight of water displaced by the explosive charge is determined, and from this the specific gravity of the charge is calculated. All 3-inch and 90-mm projectiles are initiated by M2O Booster peliets, and those used with 3-inch HE, M42A1, Lot KC-5 and 90-mm HE, M71, Lot WC-91 projectiles are controlled in weight and height as follows: 22.50 ± 0.10 gm, and 0.480 to 0.485 inch.

1 is

The projectile assembled with fuze, actuated by a Plasting Cap, Special, Type II (Spec 19 -20) placed directly on a lead of comparable diameter, and booster, are placed in boxes constructed of half-inch pine. The 90-mm projectiles are fragmented in boxes 21 x 10-1/2 x 10-1/2 inches and the 3-inch projectiles in boxes 15 x 9 x 9 inches outside dimensions. The box with projectile is placed on about 4 feet of sand in a steel fragmentation tub, the detonator wires are connected, and the box covered with approximately 4 feet more of sand. The projectile is fired und the sand run onto a gyrating 4-mesh screen on which the fragments are recovered.

(2) "Fragment Velocity."

Charges 10-1/8 inches long and 2 inches in diameter, containing a booster cavity, filled by a 72-gm tetryl pellet (1-3/8 inches diameter, 2 inches long, average density 1.594) are fired in a model projectile of Shelby seamless tubing, 2 inches JD, 3 inches OD, SAE 1020 steel, with a welded-on cold rolled steel base. The projectile is so fired in a chamber, connected to a corridor containing velocity stations, that a desired wedge of projectile casing fragments can be observed. The fragment velocities are determined by shadow photographs, using flash bulbs, and rotating drum cameras, each behind three slits. The drum cameras have a writing speed of 30 meters per second.

(3) "Blast (Relative to TNT)."

The blast pressures and impulses given were determined almost exclusively with tourmaline gages, and the usual necessary specialized electrical circuits, shielded co-axial cables, oscillographs, etc. In general, the data represent results of tests with large cased charges.

(4) "Shaped Charge Effectiveness, TNT = 100." (k, m)

Unconfined charges 2 inches in diameter and 6 inches long, boostered by a 10-gm pressed tetryl pellet, set in a 20-mm pellet (truncated cone) of cast 60/40 cyclotol, are shot egainst 3-inch homogeneous armor plate at a 1-3/16 inches standoff. The course are commercial Pyrex glass finnels, sealed off at the start of the stem, 2 inches in diameter, 0.110 to 0.125 inch wall thickness.

Unconfined charges 1.63 inches in diameter and 6 inches long are tested at a standoff of 1.63 inches sgainst stacks of $4 \times 4 \times 1$ inch mild steel plates. M9A), steel cones are used. Results are averages of 4 trials.

- (5) "Color."
- (6) "Principal Uses."
- (7) "Method of Loading."
- (8) "Loading Density."
- (9) "Storage."

Ammunition and bulk explosives in storage represent varying degrees of hazard and compatibility. This has led to their being divided into a number of hazard classes and compatibility groups as indicated in subparagraphs (b) and (c) below.

- (a) Method: Wet or dry.
- (b) Hazard Class (Quantity-Distance).

Ammunition and bulk explosives are divided into quantity-distance classes, Class 1 through 12, according to the damage expected if they explode or ignite (Reference: Army Materiel Command Regulation, AMCR 385-100, <u>AMC Safety Manuel</u>, chapter 17). All standard explosives in bulk are included in four of these classes: Class 2, 2A, 9, and 12 (TM 9-1910/TU 11A-1-34).

Downloaded from http://www.everyspec.com

(c) Compatibility Group.

Explosives and ammunition are grouped for compatibility with respect to the following factors:

1. Effects of explosion of the item.

2. Rate of deterioration.

3. Sensitivity to initiation.

4. Type of packing.

5. Effects of fire involving the item.

6. Quantity of explosive per unit.

(d) Exudation.

d. Miscellaneous entries.

Where available and appropriate, the following or related data are given, in space at the bottom of the third form, or on plain pages.

1

(1) Solubility.

(2) Methods of manufacture.

- (3) Historicel information.
- (4) Bulk compressibility modulus. (q)

The direct experimental measurement of the dynamic bulk modulus of a solid is difficult, and few such measurements have been made. One apparatus has been developed a' the Naval Ordnance Laboratory and is described in detail in Reference q. Bulk modulus (its reciprocal is the compressibility) is defined as the ratic of stress to strain when the stress is a pressure applied equally on all surfaces of the sample and the strain is the resulting change in volume per unit volume.

(5) Hydrolysis tests. (o)

The 240-hour hydrolysis test is conducted as follows: A 5-gm sample of the dry nitrocellulose is weighed accurately in a tare-weighed 250-cc Pyrex flask having a ground glass connection for a Pyrex condenser. Then 100 cc of distilled water is added to the nitrocellulose in the flask and the flask fitted to the condenser. The flask is placed in a steam bath in which the water is kept boiling constantly by means of electric hotplates. At the end of 240 hours the amount of solid developed by the hydrolysis of the nitrocellulose is measured by an electromatic pH method.

(6) Sensitivity to initiation by electrostatic discharge. (n)

The samples are tested under two amounts of confinement, designated as unconfined and confined. In the unconfined test, a sample of approximately 0.05 gm is dumped into a shallow depression is a steel block and flattened out with a spatula. In the confined tests (partly confined), the sample of approximately 0.05 gm is introduced into soft-glass tube ($\sim 7 \text{ mm ID x}$ 18 mm long) which fits over a metal peg. The volume of the space around the charge at zero gap is ~ 0.15 cost st a gap of 0.6 mm, it is ~ 0.4 cc. In addition to providing moderate confinement, this system also minimizes dispersion of the sample by the test spark, and reduces the effect of material being repelled from the needle point by electrostatic field effect.

When a test is to be made, the needle point electrode is screwed up until the gap between electrodes is greater than the critical gap discharge at the test voltage. The sample is then placed in position, the high-voltage terminal of the charged condensor is switched to the point electrode by means of a morcury switch, and the electrode is screwed down until discharge occurs.

The spark energy (in joules), for zero probability of ignition, is determined.

(7) Destruction by chemical decomposition.

Burning is the preferred method of destroying explosives. Initiating type explosives (in quantity) are usually destroyed by detonation with demolition blocks. Destruction of explosives by chemical decomposition can be effectively used where small laboratory quantities are involved. Procedures given are standard for only lead azide, mercury filminate and nitrogly-cerls.

(8) Other information.

(9) References.

5. REFERENCES CITED IN INTRODUCTION.¹

a. W. H. Rinkenbach and A. J. Clear, Standard Laboratory Procedures for Sensitivity, Brisance, and Stability of Explosives, PATE No. 1401, 18 March 1944, Revised 20 February 1950.

b. W. R. Tomlinson, Jr. and A. J. (Near, <u>Development of Standard Tests -- Appleation of</u> the Impact and Sand Tests to the Study of Nitroglycerin and Other Liquid Explosioned, PATE No. 1738, 13 June 1949.

c. J. K. McIver, Friction Pendulum, PA Testing Manual 7-1, 8 Lay 1950.

d. Departments of the Army and the Air Force Joint Technical Manual and Technicri Order, IM 9-191.0/TO 11A-1-34, <u>Military Explosives</u>, April 1955.

e. J. H. McIvor, Ballistic Mortar Test, PA Testing Manual 7-2, 8 May 1950.

f. Fh. Nacum, Z zes Schless-Sprengetoffw, pp. 181, 229, 267 (27 June 1932).

g. G. J. Mueller, Equipment for the Study of the Detonetion Process, PATR No. 1465, 4 July 1945.

h. NORC Interim Report, <u>Preparation and Testing of Explosives</u>, Nos. PT-19 and PT-20, February-April 1944.

1. Linnie E. Newman, PA Chemical Laboratory Report Nos. 127815 and 134476, 11 January 1951.

j. Report AC-2983/Org Expl 179.

¹For information regarding source of references, inquiries should be made to the Commander, U.S. Army Research Office--Durham, ATTN: CRDARD-EH, Box CM, Duke Station, Durham, North Carolina 27706.

k. Eastern Laboratory. du Pont, <u>Investigation of Cavity Effect</u>, Section III, Variation of Cavity Effect with Composition, NDRC Contract W-672-ORD-5723.

Downloaded from http://www.everyspec.com

1. J. H. McIvor, Fragmentation Test Procedures, PA Testing Manual 5-1, 24 August 1950.

m. Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

n. F. W. Brown, D. H. Kusler, and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U. S. Department of Interior, Bureau of Mines, R. I. 3052, 1946.

o. D. D. Sager, Study of Acid Adsorption and Hydrolysis of Cellulose Nitrate and Cellulose Sulphate, PATR No. 174, 12 January 1932.

p. L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives, Part III, Miscellaneous</u> Sensitivity Tests, <u>Performance Tests</u>, OSRD Report No. 5746, 27 lecember 1945.

q. C. S. Sandler, An Acoustic Technique for Measuring the Effective Dynamic Bulk Modulus of Elasticity and Associated Loss Factor of Rubber and Plastics, NAVORD Report No. 1524, 1 September 1950.

W. S. Cramer, Bulk Compressibility Data on Several Explosives, NAVORD Report No. 4380, 15 September 1956.

Downloaded from http://www.everyspec.com

AMCP 706-177

• • • •

Amatol, 80/20

7.

Composition: %	ł	Moleculor Weigha:		92 ,
		Oxygen Balance:		
Ammonium Nitrate	80 20	CO, %		+1
TNT	20	CO %	+	11
		Density: gm/cc Ga	st 1.	46
		Molting Point: "C		
C/H Rotio	<u> </u>	Freezing Point: "C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	90	Boiling Point: *C		· · · · · · · · · · · · · · · · · · ·
Sample Wt 20 mg	•	Refractivo Index, ng	•	
 Picatinny Arsenal Apparatus, in. Sample Wt, mg 	15 17	n ^o		
Sample Wi, ing	↓ (n		
Friction Pendulum Test:		Vacuum Stability Test:		
Steel Shor Unaffe		cc/40 Hrs, at		
Fiber Shoe Unaffe	eted	90°C		1
Rifle Bullet Impact Test: 5 Triais		100.0		45
%		120°C	0.	95
Explosions 0		135•C		0
Partials 0		150°C	6.	•
Burned 0		200 Grem Bemb Sand Tout:		
Unoffected 100		Sand, gm	35.	5
Explosion Temperature: *C		Sonsitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating Cho	orge, gm	
1 5 Decomposes 280		Mercury Fulminate		
	ţ	Leod Azide	٥.	20
10		Tetryi	0,	07
15		Ballistic Mortur, % TNT:	(a) 13	n
20			(b) 12	
75°C International Heat Test:		Piete Dent Test:	(0) 10	
% Loss in 48 Hrs	0.06	Method		
100°C Huat Test:		Condition		
% Loss, 1st 48 Hrs	0.03	Confined		
% Loss, 2nd 48 Hrs	0.05	Density, gm/cc		
Explosion in 100 Hrs	None	Brisance, % TNT		
		Detenation Rets;	97 . 27	
Fiammability Index:		Confinement	1'one	stone
A8		Condition	(18)	Cast
Hygroscepicity: % 30°C, 90% RH, 2 days	61	Charge Diameter, in.	1.0	2.0
	 N11	Density, gm/cc	1.46	2173
Veletility:	NIT	Rote, meters/second	4500	5100

Aumatol, 80/20

Downloaded from http://www.everyspec.com

AMCP 706-177

Fregmentation Test:	Shapud Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, lb	Glazs Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragmonts: For TNT	Color: Buff-yellow
For Subject HE 3 inch HE, M42A1 Projectile, Let KC-5:	Principal Uses: Bozba, HE projectiles
Density, gm/cc Charge Wt, Ib	
Total No. of Fragmonius: For TNT For Subject HE	Method of Londing: Cast
Fregment Velocity: ft/sec (1)	Looding Density: gm/cc 1.46
At 9 ft 1900 At 25½ ft 1750	Storage:
Denuity, gm/cc	Method Dry
Binst (Relative to TNT);	Hazard Class (Quantity-Distance) Cluss 9
Air: Peak Pressure	Compatibility Group Group I
Impulse Energy	Exudation Does not exude at 65°C
Air, Confined: impulse	Booster Sensitivity Test: (a)
Under Weter: Peak Pressure	Condition Pressed Twtryl, gm 100 Wax, in. for 50% Detonation 0.83 Density, gm/cc 1.65
impulse Energy	Heat of: (d, e)
Underground: Peak Pressure Impulse Energy	Combustion, cal/gm 1002* Explasion, cal/gm 490* Gas Volume, cc/gm 930*
	*Calculated from composition of mixture.

Downloaded from http://www.everyspec.com -

.. :

AMCP 706-177

Amatol, 60/40

Composition: 96		Molecular Weight:	108
70 Anmonium Nitrate INT	60 40	Oxygen Balance: CO2 % CO %	-18 + 2
		Density: gm/cc Cast	1.60
		Melting Peint: "C	
C/H Ratio		Freezing Paint: "C	
Impact Sensitivity, 2 Kg Wt:		Bailing Point: "C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arschal Apparatus, in, Sample Wt, mg	95 16 17	Refrective Index, nº nº nº	
Friction Pendulum Test: Steel Shoe Fiber Shoe		Vocuum Stability Tost: cc/40 Hrs, at 90°C	
Rifle Bullet Import Test: Trials % Explosions Partials		100°C 120°C 135°C 150°C	
Burned Unaffected		200 Grem Bomb Sand Test: Sand, gm	41.5
Explosion Temperature: *C Seconds, 0.1 (no cap used) 1		Sencitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
5 Decomposes 270		Leod Azide	0.20
15		Tetryl	0.06
20		Bollistic Mortov, % TNT: (=)	128
75°C International Heat Test: % Loss in 48 Hrs		- Trouxi Test, % TNT: Plote Dent Test; Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs		Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		Confinement	None
Hygroscopicity: %		Condition Charge Diameter, in.	Cast 1.G
Vcletility:	NIL	Density, gm/cc Rate, maters/second	1.50 5760

11 C 1 C 1

1 STYR 7

CONTRACTOR OF

Amato1, 60/40

AHCP 706-177

٦

Fragmentation Test:		Shaped Charge Effectivenese, TNT = 100:
90 mm HE, M71 Projectile, Lot \	WC-91:	Glass Cones Steel Cones
Density, gm/cc	1.49	Hole Volume
Charge Wt, Ib	1.971	Hole Depth
Total No. of Fragments:		
For TNT	703	Color: Buff-yellow
For Subject HE	583	Principal Uses: Bomba, HE projectiles
3 lach HE, M42A1 Projectile, Let	KC-5:	Frincipal Usos: Bombs, HE projectiles
Density, gm/cc	1.57	
Charge Wi, Ib	0.827	
Total No. of Fragments:		Mashed of Los firms
For TNT	514	Method of Looding: Cast
For Subject HE	408	
		Loading Density: gm/cc 150
Fregment Velocity: ft/sec At 9 ft		
At 2514 ft		Sierage:
Density, gm/cc		Method Dry
Blast (Relative to ThIT):		Hazard Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure	95	
impulse	85	Exudation Does not exude at 65°C
Energy	24	
Air, Confined:		Heat of: (d, e)
Impulse		Combustion, cal/gm 1658*
Under Weter: Peak Pressure		Explosion, cal/gm 633* Gas Volume, cc/gm 880*
Impulse		
Energy		
Underground: Peak Pressure		
impulse		
Energy		
		*Calculated from composition of mixture.

.

.

AMCP 706-177

•

Amatol, 50/50

Composition: %	Melecular Weight:	118				
~ Ammonium Nitrate 50 TNT 50	Caygon Balanze: CO: % CO %	-27 - 3				
	Bensity: gm/cc Cast	1.59				
	Melting Paint: *C					
C/H Ratio	Freezing Paint: *C					
Impact Seasitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 95	Sailing Point: "C					
Sample Wt 20 mg	Refractive Index, ng					
Picationy Arsenal Annanatus, in. 16 Sample Vit, mg 17	ng					
	ng					
Friction Pondulum Test:	Vocuum Stability Test:					
Steel Shoe Unit fecte	667 48 1 110, 61					
Fiber Shoe Unaffecte	r g					
Ritte Buildt Impact Test: Triais	100°C	0.2				
*	120°C	1.0				
Explosions 0	135°C					
Partials 0	150.0					
Burned 0	200 Gram Bomb Sand Toot:					
Unaffected 200	Sond, gm	42.5				
Explosion Temperature: *C	Sanshivity to Initiation:					
Ssconds, 0.1 (no cap used)	Minimum Detonating Charge, g	jm				
1	Mercury Fulminate					
5 Decomposes 265	Leod Azide	0.20				
10	Tetryl	0.05				
15	Bailletic Martar, % TNT: (a)	124				
20	Trucal Test, % TNT:					
75°C International Heat Test:	Plate Deat Test:	~				
% Loss in 48 Hrs	Method	B				
100°C Heet Test:	Condition	Cast				
% Loss, 1st 48 Hrs	Confined	No				
% Loss, 2nd 48 Hrs	Density, gm/cc	1.55				
Suplasion in 100 Hrs	Brisonce, % TNT	52				
Man and Miller for James	Deteneties Rate:					
Fismmability Index:		ne None st Cast				
Hygrescapicky: 95, N11	Charge Diometer, in. 1.					
Walaatilaa.	Density, gm/cc 1.	55 1.55				
Veletility:	Rate, meters/second 64	30 6230				

16

1

.

AMCP 706-177 Amatol, 50/50 Shaped Charge Effectivences, TNT = 100: ر نحر به **Fregmentation Test:** Glass Cones Steel Cones (g) 90 mm HE, M71 Projectile, Lot WC-91: . . ! Density, gm/cc 1.55 Hole Volume 53 lapp. . 2.053 Charge Wt, Ib Hole Depth 69 à. Total No. of Fragments: Coler: Buff-yellow For TNT 703 630 For Subject HE Principal Uses: Bombs, HE projectiles 3 inch HE, M42A1 Projectile, Lot KC-5: 1.54 ... Density, gm/cc Charge Wt, Ib 0.819 **Total No. of Freqments:** Method of Locding: Cast For TNT 514 For Subject HE 385 Looding Density: gm/cc 1.59 Fragment Velocity: ft/sec At 9 ft At 25 1/2 ft Storage: Density, gm/cc Method Dry Hozard Class (Quantity-Distance) Class 9 Blast (Relative to TNT): Compatibility Group Group I Air: Peak Pressure 97 Exudation Does not exude at 65°C Impulse 87 Energy Booster Sensitivity Test: (=) Air, Confined: Condition Cast Impulse Tetryl, gm 100 Wax, in. for 50% Detonation Density, gm/cc 0.60 1.55 Under Water: Peak Pressure (đ, e) Heat of: Combustion, cal/gm 1990 Impulse Explosion, cal/gm 703* Energy 98 Gas Volume, cc/gm 855* *Calculated from composition of mixture. Underground: Specific Heat: cal/gm/°C Temp, 20% to 80°C Peak Pressure 104 **(i)** 0.383 104 Impulse 104 Bomb Drop Test: Evergy T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete: Max Safe Drop, ft 4000-5000

and the second secon

Downloaded from http://www.everyspec.com

349.

Downloaded from http://www.everyspec.com

AMCP 706-177

I

)

Amatols 80/20, 60/40, 50/50

Compatibility with Metals:

Nry - Metals unaffected are zinc, iron, tin, brass, brass tin plated, brass NRC costed, brass shellac coated, nickel aluminum, steel, steel plated with nickel, zinc or tin, stainless steel, Farkerized steel, and steel coated with acid-proof black paint. Metals slightly affected are copper, bronze, lead and copper plated steel.

Preparation:

In preparing amatols the proper granulation of ammonium nitrate is required if the maximum density of the cast amatol is desired. The ammonium nitrate should be dried so as to contain not more than 0.25% moisture. It should be heated to about 90°C before being added to the appropriate weight of molten TNT contained in a melting vessel equipped with an agitator. Continue mixing to insure uniformity and load by pouring into shell or bombs.

Origin:

Developed by the British during World War I in order to conserve TNT.

References: 2

(a) L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u>, <u>Miscellaneous</u> <u>Sensitivity Tests</u>, <u>Performance Tests</u>, OSRD Report 5746, 27 December 1945.

(b) Report AC-17/Phys Ex 1.

(c) D. P. McDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> Sensitivity Tests; <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 December 1945.

(d) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD Report No. 5406, 31 July 1945.

(e) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(f) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells, OSRD Report No. 5622, 2 January 1946.

(g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943. NDRC Contract W-672-ORD-5723.

(h) Also see the following Picatinny Arsenal Technical Reports on Amatols:

<u>o</u>	1	2	3	<u>4</u>	2	<u>6</u>	1	8	2
240 350 630 950 1300 1530	681 731 901 1051 1311 1451 1651	132 182 1302 1352 1372 1372	743 1173 1373 1323 1493 1783	364 694 734 874 1344	65 425 695 715 735 1145 1225 1345 1455 1885	266 556 660 986 1376 1446 1636 1796	1207 1457 1797 1827 2167	548 638 838 1098 1148 1388 1568 1838	549 799 920 1129 1219 1369 1559

(i) TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.

²See footnote 1, page 10.

Ammonal

Downloaded from http://www.everys

AMCP 706-177

Composition:		Meleculer Weight:	102
% Ammonium Nitrate TNT	22 67	Oxyg n Belance: C	- 55 - 22
Aluminum	11	Density: gm/cc Cast	1.65
		Meiting Point: "C	· /
C/H Ratio		Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	91	Boiling Point: *C	
Sample Wt 20 mg		Refrective Index, nm	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	11 19	nB	
		n S	
Friction Pandulum Test:		Vecuum Stebility Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials		100°C	1. I.
%		120°C 135°C	14 . l4
Explosions		135°C 150°C	
Partials			
Burned		200 Grem Bomb Sand Test:	
Unaffected		Sand, gm	47.8
Explosion Temperature: *C		Sunsitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.20
5 Decomposes 265		Lead Azide	
10 15		Tetryi	•
20		Ballistic Mortor, % TNT: (a)	122
2V		Trouxi Test, % TNT:	
75°C International Heat Test:		Piete Dent Test:	
% Loss in 48 Hrs		Method	
100°C Heet Test:		Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.10	Density, gm/cc	
Explosion in 100 Hrs	None	Brisonce, % TNT	
		Detenation Rate:	
Flammability Index:		Confinement	
Hygroscopicity: %		Condition	
117314-000-000-000-000-000-000-000-000-000-0		Charge Diameter, in.	
Veletility:		Density, gm/cc	
•		Rate, metars/second	

1.00

100 B 100 B 100 B 100

- يسخانه

Downloaded from http://www.everyspec.com

AMCP 706-177

{

!

ł

Ammonal

Fregmentation Test:	Sheped Charge Affectivaness, TNT == 190:
90 mm HE, M71 Projectile, Lat WC-91: Density, gm/cc Charge Wt, ib	Glass Corres – Steel Cones Hole Volume Hole Depth
Totol No. of Fragments: For TNT	Color:
For Subject HE 3 inch HE, M42A'l Projectile, Let KC ₇ 5: Density, gm/cc 1.65 Charge Wt, Ib	Principal Uses: Projectile filler
Total No. of Fragments: For TNT 655 For Subject HE 550	Method of Looding: Cast
	Loadiny Density: gm/cc 1.65
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry
Slast (Relative to TNT): Air: Peak Pressure Impulse Energy	Hazard Class (Quantity-Distance) Class 9 Compatibility Group Exudation
Air, Confined: Impulse Under Weter: Peak Pressure	Origin: Castable mixture developed in United States during World War I. References:
Impulse Evergy	(a) W. R. Tomlinson, Jr., <u>Physical and Explosive Properties of Military Explosives</u> , PATR No. 1372, 29 November 1943.
Underground: Peak Pressure Impulse Energy	 (b) Also see the following Picatinny Arsenal Technical Reports on Ammonals: 1108, 1286, 1292, 1308 and 1783.
Preparation: Procedure same as described under Amstols, except aluminum is added to the summonium ni- trate-TNT molten mixture under agication un- til uniformity in composition is obtained. Loading is accomplished by pouring into the supporties of the supering of	

.

CHI CHI

No. of the second second

Ammonium Nitrate

17

Downloaded from http://www.everyspec.com

ANCP 705-177

Composition: 96		Molocular Weight: (H ₄ H	2 ⁰ 3)	80	
N 35	NU. NA	Oxygen Balance: CO ₂ % CO %		+20 +20	
н 5	NHI NO3	Density: gm/cc Cryst	•1	1.73	
0 60		Melting Point: *C		170	
C/ + Ratio		Freezing Point: *C	<u> </u>		
mpact Sensitivity, 2 Kg Wt:	100+	Boiling Point: "C			
Bureau of Mines Apparatus, cm Sample Wt 20 mg	2007	Refrective Index, no			
Picatinny Arsenal Apparatus, in	31	ពង			
Sample Wt, mg	17	n _{pe}			
Friction Pendulum Test:		Vacuum Stability Test:			
	ffected	cc/40 Hrs, at			
Fiber Shoe Una	ffected	90°C			
Rifle Bullet Impact Tests Trials	**************************************	100°C		0.3	
	•	120°C		0.3	
Explosions 0		135°C			
Partials Q		150°C		0.3	
Burned O		200 Grem Romb Sead Test			
Unaffected 100		Sand, gm		N11	
Explosion Temperature: *C Seconds, 0.1 (no cap used) 1		Sensitivity to Initiation: Minimum Detonating Cl Mercury Fulminate	harge, gm		
5 Ignites 465		Leod Azide		0.20	
10		Tetryl		0.25	
15					
20		Beilistic Morter, % THT:	(*)	56	
75°C International Heat Test: (a)		Treuxi Test, % TNT:			
% Loss in 48 Hrs	· 0.0	Piete Dent Test: · Method			
100°C liest Test:		Condition			
% Loss, 1st 48 Hrs	0.74	Confined			
% Loss, 2nd 48 Hrs	0.13	Density, gm/cc			
Explosion in 100 Hrs	None	Brisance, % TNT			
Flammability Index:		Detenction Retu: Confinement	(b) None	Strong	
		Condition	Solid	Liquid	
Hygroscopicity: % 30°C, 90% RH	Extreme	Charge Diameter, in.	1.25	4.5	
Veletility:		Density, gm/cc	0.9	1.4	
Decomposes	at 210°C	Rate, meters/second	1000	2500	

21

-Downloaded from http://www.everyspec.com

AMCP 705-177

1 4

Ammonium Nitrate

Beaster Sensitivity Test: Condition		Decomposition Equation: (1) Oxygen, atoms/sec 1013.8 (h) 12.3				
Tetryl, gra		(Z/sec)				
Wax, in. for 50% Detonation		Heat, kilocalorie/mole 40.5 38.3 (ΔΗ, kcal/mol)				
Wax, gm		Temperature Range, *C 243-261 217-267				
Density, gm/cc		Phose Liquid				
Hout of:	346	Armer Plets Impect Test:				
Combustion, col/gm	346					
Explosion, col/gm	980	60 mm Morter Projectile:				
Gas Volume, cc/gm Formation, cal/gm	1098	50% Inert, Velocity, ft/sec				
Fusion, col/gm	18.23	Aluminum Fineness				
Fusion, cor/gm	10.20	500-16 General Purpose Bombs:				
Specific Heat: cal/gm/*C (e)					
<u>°c</u>	,	Plate Thickness, inches				
	• 397					
-100 0.330 50 0	.414	1				
-50 0.364 100 0	. 428	11/4				
		11/2				
		1%				
Burning Rute: cm/sec						
City Sec		Somb Drop Test:				
Thermal Conductivity: cal/sec/cm/*C 2.9-3.9 x	10-4	17, 2000-16 Semi-Armor-Piercing Bomb vs Concrete:				
Coefficient of Expension:		Max Safe Drop, ft				
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:				
Volume, %/*C		Height, ft				
		Trials				
Hardness, Mohs' Scala:		Unaffected				
······································		Low Order				
Young's Modulus:		High Order				
E', dynes/cm²						
E, Ib/inch ²		1000-16 General Purpose Bernh vs Concretu:				
Density, gm/cc		14-1-1- A. A.				
Con. resive Strength: Ib/inch [*]		Height, ft				
mere strengtst; 10/ Inch-		Trials				
	·····	Unaffected				
*eper Préssure: (g) *C mm Mercul	~	Low Order				
	7	High Order				
188 3.25 205 7.45						
216 11.55						
223 15.80 237 41:8						
237 21:8						

Ammonium Nitrate

Downloaded from http://www.everyspec.com

AMCP 706-177

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 300:					
90 mm HE, M71 Projectife, Let WC-91; Density, gm/cc Charge Wt, Ib	Glass Cones St∡el Cones Hole Volume Hole Dep≀h					
Total No. of Fragmants: For TNT	Colorlezz					
For Subject HE 3 inch Hž, M42A1 Projectile, Lot KC-5: Density, gm/cc Churge Wt, ib	Principal Uses: Explosive ingredient of mixtures used in bombs or large caliber projectiles					
Total No. of Fragments: For TNT For Subject HE	Mathes of Loading: Pressed or cast depending on composition of mixture .					
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Leeding Density: gm/cc Variable Storege: Method Dry					
Blast (Relativo to THT):	Hazard Class (Quantity-Distance) Class 12					
Air: Peak Pressure Impulse Energy	Compatibility Group D Exudation None					
Air, Confined: Impulse Under Weter:	Effect (* Temperature on Impact Sensiti ity (Chemically pure grade): (b) Temp. PA Impact Test C 2 Kg Wt, inches					
Peak Pressura Impulse Energy	25 31 75 28 100 27 150 27					
Underground: Peak Pressure Impulse Energy	175 12 <u>Compatibility with Metals:</u> (a) In the presence of moisture, ammonium nitrate reacts with copper, iron steel,					
	brass, lead and cadmium. Entropy: (g)					
	cal/wolat 25 ⁰ 0 36.0					

ŧ

1018 Inch + +110 P

Ammonium Nitrate

Downloaded from http://www.everyspec.com

Solubility of ammonium nitrata, grams in 100 grams (%) of: (e)

Wa	ter	Alc	ohol	Acet	le Acid		Nitrie	Acid	Pyz	idine
000 000 000 000 000	<u>*</u> 113 192 297 421 580 871	8858 <mark>70</mark>	2.5 5 7.5 10.5	°c 16.6 27.0 80.9 101.0 120.0	5.8 20.7 125	° <u>c</u> 0 15 30 75	45.1 73.0 106 201	½ Nitric Acia 30.0 21.7 20.8 31.6	°C 25	~ 20-25

Preparation:

Amonium nitrate is prepared by the neutralization of an aqueous solution of ammonia with nitric acid and evaporation of the solution. The product which is very pure is dried in a graining kettle.

Origin:

First prepared by Glauber in 1659 and first used as an explosive ingredient in 1867 when a Swedish patent was granted to Ohlsson and Norrbin for a composite dynamite.

Destruction by Chemical Decomposition:

Ammonium nitrate is decomposed by strong alkalies with the liberation of ammonia, and by sulfuric acid with the formation of ammonium sulfate and hitric acid.

References: 3

(a) Departments of the Army and the Air Force TM 9-1910/TO lla-1-34, Military Explosives, April 1955.

(b) P. F. Macy, T. D. Ludderar, E. F. Reese and L. H. Eriksen, <u>Investigation of Sensitivity</u> of Fertilizer Grade Armonium Nitrate to Explosion, PATR No. 1658, 11 July 1947.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> Sensitivity Tests; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(e) International Critical Tables, McGraw-Hill Book Co., N. Y., Land-Bornst.

G. D. Clift and B. T. Federoff, <u>A Manual for Explosives Laboratories</u>, Vol. II, Lefax Society, Inc., Philadelphia, 1943.

(f) R. J. Finkelstein and G. Gamow, Theory of the Detonation Process, NAVORD Report No. 90-46, 20 April 1947.

(g) George Feick, The Dissociation Pressure and Free Energy of Formation of Ammonium Nitrate, Arthur D. Little, Inc., J Am Chem Soc, 76, 5858-60 (1954).

(h) M. A. Cook and M. Taylor Abegg, Isothermal Decomposition of Explosives, University of Utah, <u>Ind Eng Chem</u>, June 1956, pp. 1090 to 1095.

³See footnote 1, page 10.

Ammonium Nitrate

ded from http://www.everyspec.com

AMCP 706-177

(1)	Also che	the follow	ing Picati	inny Arsen	al Techni	Ical Repor	rts on Am	nonium Ni	tr. te:
<u>0</u>	1	2	3	<u>4</u>	٤	<u>6</u>	I	8	2
240 350 630 1290 1720	681 731 1051 1241 1311 1391 1431	182 1302 1682	743 1323 1783 2183	364 984 1094 1214 1234 1304	695 1145 1225 1455 1635 1675 1725	596 666 676 946 1106 1696	907 1117 1947 2167	548 638 938 1008 1038	799 1369 1409

Downloaded from http://www.everyspec.com

AMCP 706-177

Ammonium Perchlorate

Composition:	Molecular Weight: (ClH4NO4) 117.5
C1 30.2	Oxygen Belence: CO ₄ % +27.3 CO % +27.3
N 11.9 NH _L ClOL	Density: gm/cc 1.95
н 3.4 7	Metting Point: "C
0 54+5 C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 67 Sample Wt 20 mg	Boiling Yoint: *C Refractive Index, ng
Picatinny Arsenal Apparatus, in. 24 Sample Wt, rr g 24	ng
Friction Pendulum Test:	Vocuum Stability Test:
Steel Shoe Snaps Fiber Shoe Unaffected	cc/40 Hrs, ct 90°C
Rifle Builet Impact Test: Trials	100°C 0.13 120°C 0.20
% Explosions	135°C 150°C 0.32
Partials Burned	200 Gran Bomb Sa., "est:
Unaffected	Sand, gm 6.0
Explosion Temperature: *C Seconds, 0.1 (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate
5 435	Lead Azide 0.20
10	Tetryl 0,25
15 20	Bailistic Mortar, % TNT:
	Trouzi Test, % TNT:
73°C International Hast Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heet " and:	Condition
% Loss, 1st 48 Hrs 0.02	Confined
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc
Explosion in 100 Hrs None	Brisovice, % TNT
Flommability Index:	Detention Rate: Confinement
Hygroscopicity: %	Condition Charge Dismeter, in.
Veletility:	Density, gm/cr. Rate, meters/second

3 . Sec. 1

	Ammonium Perchlorate	AMCP 706-177
regmentation Test:	Shaped Charge Effectioness, TNT = P	00:
90 mm HE, M71 Projectile, I.et WC-91; Density, gm/cc Charge Wt, Ib	³¹ ass Cones — Steel C Hole Volume Hole Depth	lones
Total No. of Fragments: For TNT	Colorless	
For Subject HE 3 Inch HE, M42A1 Projectilo, Let KC-5: Density, gm/cc Charge Wt, Ib	Principel Uses: Explosive ingredie mixtures used in pyrotechnic as projectile filler	
Total No. of Fragments; For TNT For Subject HE	Method of Londing: Pressed or can on composition of mixture	st depending
ragment Valacity: ft/sec At 9 ft	Looding Density: gm/cc Va	riable
At 25½ ft Density, gm/cc	Storage:	_
inst (Relative to TNT):		Dry Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group	None
Air, Confined: Impulse	Solubility in Water gm/100 cc saturated solution:	
Under Wethr: Peak Pressure Impulse Energy	0°C 12 25°C 20 60°C 39 100°C 88 Preparation:	
Underground: Poak Pressure Impulse Energy	The perchlorates are prepared of the acid on a suitable base mal decomposition of certain ch by the electrolysis of chlorate	; by the ther- hlorates; and
	Heat of:	<i>(</i> /-
	Formation, cal/gm	665

۰.

Downloaded from http:/

ww.ever

Ammonium Perchlorate

-Downloaded from http://www.everyspec.com

Origin: (c)

E. Mitscherlich first prepared, in 1832, crystals of annonium perchlorate from barium perchlorate and ammonium sulfate (Pogg Ann 25, 300). T. Schlosing treated a hot solution of sodium perchlorate with ammonium chloride, and on cooling, crystals of ammonium perchlorate were obtained (Comp rend, 73, 1269, [1871]). U. Alvisi treated a mixture of 76 parts of ammonium nitrate with 213 parts of sodium perchlorate, and obtained a grop of small crystals of ammonium perchlorate which were purified by recrystallization from hot water (German Patent, 103,993, 1898). A. Miolati mixed magnesium or calcium perchlorate with ammonium chloride and crystals of ammonium perchlorate deposited from the solution of very soluble magnesium or calcium chloride (German Patent, 112, 682, 1899).

References: 4

(a) W. R. Tomlinson, Jr., <u>Physical and Explosive Properties of Military Explosives</u>, PATR No. 1372, 29 November 1943.

(b) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., New York, 1943.

(c) J. W. Mellor, <u>A Comprehensive Treatise on Inorganic and Theoretical Chemistry</u>, Vol. II, Longmanns, Green and Co., London, 1922, p. 396.

(d) Also see the following Picatinny Arsenal Technical Reports on Ammonium Perchlorate:

0	<u>1</u>	3	4	2	<u>6</u>	2
100	321	843 1783	354 604 854	1095 1725 2205	1726	1049 1969

⁴See footnote 1, page 10.

Baratol

.

Downloaded from http://www.everyspec.com

• • • • • • • •

AMCP 706-177

ċ

7

ł

. .

Composition:	Malscular Weight:	125	
Nerium nitrate 67	Oxygen Belence: CO, % CO %	-3 +13	
1NT 33	Density: gm/cc Cast	2.55	
	Molting Point: *C		
C/H Retio	Freezing Point: "C	·······	
Impect Sensitivity, 2 Kg We: Bureau of Mines Apparatus, cm 35	Boiling Point: *C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 11 Sample Wt, mg 24	Refractive Index, ng ng ng		
Friction Pandulum Test:	Vocuum Stability Toot:		
Steel Shoe Fiber Shoe	cc/40 Hrs, at 90°C		
Rifle Bullet Impact Test: Trices	100°C		
96 Explosions	135°C		
Partials	150°C		
Burned	200 Grem Bamb Sand Tast:		
Unaffected	Sand, grn	26.8	
Explosion Temperature: *C Seconds, 0.1 (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, s Mercury Fulminate	jm	
5 Ignites 385	Leod Azide	0.20	
10	Tetryl	0.10	
15 20	Ballistic Mortur, % TNT:		
	Trauzi Test, % TNT:		
75°C International Heat Test: % Loss in 48 Hrs	Plote Dent Test: (s) Method	73/27 B	
100°C Heat Test:	Condition	Cast	
% Lous, 1st 48 Hirs	Confined	No	
% Loss, 2nd 48 Hrs	Density, gm/cc Brisance, % TNT	2.52 61	
Explosion in 109 Hzs			
Flummability Index:	Confinement		
Hygroscopicity: %	Condition Charge Diameter, in.		
<u>30°0, 97% RH</u> 0.00	Density, gm/cc		
Volatility:	Rate, meters/second		

..

.

١

1 1 1 1 1 A

AMCP 706-177

Beretol

Booster Sensitivity Test: Condition	Cast	Denomposition Equation: Oxygen, atoms/sec
		(Z/sec)
Tetryl, gm	100	Heat, kilocolorie/male
Wax, In. for 30% Detonation	0.32	(ΔH, kcal/mol)
Wax, gm		Temperature Range, *C
Density, gm/cc	2.55	Phose
Heat of: Combustion, cal/gm		Annor Place Impact Test:
Explosion, cal/gm		60 mm Mortor Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineneus
Fusion, col/gm '73/25 Beratel	2.8 (d)	
		500-th General Purpuse Bemba:
Specific Heat: coi/gm/*C (d) 75/2	5 BBEALS!	Plate Thickness, inches
		1 ··· 1
0 0.147 85 0.21		114
25 0.180 90 0.20 50 0.229 100 0.17		134
	-	
Surning Rate: cm/sec		
		Bom's Brop Test:
Thermal Conductivity: cal/sec/cm/°C		17, 2000-16 Sami-Armor-Piercing Bamb vs Concrete:
Coefficient of Exponsion:		Max Sofe Drop, ft
Linear, %/*C		500-16 General Purpose Semb ve Concrete:
Volume, %/*C		Height, ft
}		Vriols
Hardness, Mahn' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm*		
E, Ib/Inch*		1000-Ib Governe Porpose Beach vs Concrete:
Density, gm/cc		
·	· · · · · · · · · · · · · · · · · · ·	Height, ft
Compressive Strength: Ib/inch ¹		Trials
		Unaffected
Vapor Pressure:		Low Order
*C mm Mercury		High Onder

14

AMCP 706-177 Baracol Flagmentation Test: Shaped Charge Effectiveness, TNT = 100: 90 mm HE, M71 Projectils, Lot WC-91: Glass Cones Steel Cones Density, gm/cc Hole Volume Hole Depth Charge Wt, Ib Total No. of Fragments: Color: For TNT For Subject HE Principal Uses: Bomb fill r 3 inch HE, M42A3 Projectile, Lor KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: **Muthod of Loading:** Cart For TNT For Subject HE Loading Density: gm/cc 2.55 Fragment Velocity: ft/sec At 9 ft At 251/2 ft Storage: Density, gm/cc Method Dry Class 9 Hazard Class (Quantity-Distance) **Blest (Relative to TNT):** Compatibility Group Group I Air: Peak Pressure Exudation Impulse Energy Preparation: Air, Confined: Impulse The appropriate weight of barium nitrate heated to about 90°C is added to moltor TNT Under Wuter: contained in a melting vessel equipped with Peak Pressure an agitator. Continue mixing until uniform, Impulse and load by pouring at the lowest practical temperature. Energy Origin: Underground: Peak Pressure Baratol, an explosive containing barium Impulse nitrate and TNT, the proportions varied to suit the required purposes, was developed Energy during World War I. \$

一方の

X

Downloaded from http://www.everyspec.com

, **1**'

AMCP 706-177

Baratol

References: 5

(a) D. P. MacDougall, Methods of Physical Testing, USRD Report No. 803, 11 August 1942.

(b) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OCRD Report No. 5746, 27 December 1945.

(c) Also see the following Picatinny Arsenal Technical Reports on Baratol:

<u>o</u>	3	<u>6</u>	<u>8</u>
2010 2160	1783 2233	2226	21.38

(d) C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PATR No. 2504, January 1959.

See footnote 1, page 10.

Baronal

Downloaded from http://www.every - **N** V L. 10

i N

ř,

Sec.

AMCP 706-177

Composition: %	Molecular Weight:	111	
Barium nitrate 50	Oxygen Balance: CO: %	-24	
TNT 35	CO %	- 7	
Aluminur 15	Density: gm/cc	2.32	
	Melting Point: *C		
C/H Ratio	Freezing Point: *C		
Impact Sunsitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 30	Boiling Point: *C		
Sample Wt 20 mg	Refractive Index, no		
Picatinny Arsenal Apparatus, In. 12 Sample Wt; mg 22	n.0		
	ang n		
Friction Pendulum Test:	Vecurim Stability Test:		
Steel Shce	cc/40 Hrs, at		
Fiber Shoe	90°C		
Rifie Bullet Impact Test: Triais	100°C		
96	120°C		
Explosions	135°C 150°C		
Partials	150°C		
Burned	200 Gram Bomb Sand Test:		
Unaffected	Sand, gm	39.8	
Explosion Temperature: *C	Sensitivity to Inivistion:		
Seconds, 0.1 (no cap used)	Minimum Detonating Charge,	gm	
) 5 Ignites 345	Mercury Fulminate		
	Lead Azide	0.20	
15	Tetryl	0.10	
20	Bellistic Morter, % TNT: (a)	96	
	Trauxi Yest, % INT:		
75°C International Heat Test: % Loss in 48 Hrs	Piete Dent Test:		
	Method Condition		
100°C Heat Test:	Confined		
% Loss, 1st 48 Hrs	Density, gm/cc		
% Loss, 2nd 48 Hrs	Brisance, % TNT		
Explosion in 100 Hrs		/h)	
Fiammability Indax:	Confinement	(b) None	
· · · · · · · · · · · · · · · · · · ·	Condition	Cast	
Hygroscopicity: %	Charge Diameter, in.	1.0	
	Density, gm/cc	2.32	

AMCP 706-177

Baronal

Fregmentation Test:	Shaped Charge Effectiveness, TNT == 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	Colorz
For TNT	Celor
For Subject HE	Principal Uses: Bomb filler
3 inch HE, M42A1 Projectile, Let KC-5:	
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fregments:	Method of Londing: Cast
For TNT	mende of Levelag: Cast
For Subject HE	
	Looding Density: gm/cc 232
Fregment Velocity: ft/sec At 9 ft	
At 25% ft	Storage:
Density, gm/cc	
	Method Dry
Blast (Relativa to TNT):	Hozard Closs (Quantity-Disturce) Class 9
Air:	Compatibility Group Group I
Peak Pressure	
Impulse	Exudation
Energy	
Air, Confined:	Preparation:
impuise	Procedure same as described under Baratol
	except aluminum is added to the barium ni-
Under Weter: Peak Pressure	trate-INT molton mixture under agitation until uniformity in comparison is obtained.
Impulse	
Energy	Booster Sensitivity Test: (c)
	Condition Cast
Underground:	Tetryl, gm 100 Wax, in. fcr 50% Detonation 0.86
Peak Pressure	Density, gm/cc 2.32
Impulse	
Energy	Heat of:
	Combustion, cal/gm 2099
	Explosion, cal/gm 1135
	Cas Volume, cc/gm 410
	}

We want the state of the second state of the

448 H 1

3

a series and the series of the s

1. 1. 1. 1. 1. 1.

R.

ų,.

Baronal

References: 6

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) Arthur D. Little Report, <u>Study of Pure Explosive Compounds</u>, <u>Part III</u>, <u>Correlation of Composition of Mixture with Performance</u>, Contract No. DA-19-020-0RD-12, 1 May 1950.

(e) S. J. Lowell, Propagation of Detonation in Long and Narrow Columns of Explosives, PATR No. 2138, February 1955.

⁶See footnote 1, page 10.

Black Powder

Composition: %	Maleculer Weight: 84
Potassium nitrate 74.0	Oxygen Belencu:
Sulfur 10.4	Nensity: jm/cc Variable
Charcoal 15.6	Meking Point: "C
C/H Ratio	Freezing Point: "C
Impect Sensitivity, 2 Kg Wit: Bureau of Mines Apparatus, cm 32	Bolling Point: "C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in, 16 Sample Wt, mg 16	Refrective Index, ក្រដ្ឋ កដ្ឋិ កដ្ឋិ
Friction Pondulum Test:	Vacuum Stability Test:
Steel Shoe Snap#	cc/40 Hrs, at
Fiber Shoe Unatfected	90°C
Rifle Builet Import Test: Triais	
. %	120°C 0.9 135°C
Explosions	150°C
Partials	
Burned	200 Gram Bomb Sand Test:
Unoffected	Sand, ym 8
Explosion Temperatury: *C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used) 510	Minimum Detonating Charge, gm
1 490 5 Tenites 427	Mercury Fulminate
	Lead Azide
10 356 15	Sensitive to igniting fuse
20	Ballistic Mortar, % TNT: 50
AV	Trouzi Yest, % TNT: (a) 10
75°C International Heat Test:	Plate Bent Test:
% Loss in 48 Hrs 0.31	Method
100°C Heet Test:	Condition
% Loss, ist 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisance, % TNT
	Detenstion Rete:
Flammability Index:	Confinement
Hygroscopicity: % 25°C, 75% RH 0.75	Condition
Hygroscopicity: % 25°C, 50% RH 1.91 30°C, 90% RH 2.51	Charge Diameter, in.
Veletility:	Density, gm/cc 1.6
· · · · · · · · · · · · · · · · · · ·	Rate, meters/second 400

A STATE OF A STATE OF A STATE OF

Black Powder

1

Downloaded from http://www.everyspec.com

AMCP 706-177

Pyş

Fregmentation Test:	Shered Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Let WC-91; Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hale Volume Hale Depth
Total No. of Fregments: For TNT	Color: Black
For Subject HE 3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Charge Wt, Ib	Principel Uses: 1. Igniter powder 2. Time rings (fuzes)
Tetel No. of Fregments: For TNT For Subject HE	Method of Loosing: 1. Loose (granulated) 2. Pressed
Fregment Velocity: ft/sec	Looding Density: gm/cc psi x 10 ³ 25 50 60 65 70 75 1.74 1.84 1.86 1.87 1.88 1.89
At 9 ft At 25½ ft Density, gm/cc	Storege:
·····	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse	Compatibility Group Group O Exudation None
Energy	10000 Vanuum Stablelikar mont
Air, Confined: impulse	100°C Vacuum Stability Test, cc gas/40 hrs: Initial Value 0.5 After 2 hours at 65°C 0.86
Under Weter: Peak Pressure	After 2 hours at 65°C, 75% RH 1.46 Sensitivity to Electrostatic
impulse Energy	Discharge, Joules: (b) Unconfined >12.5 Confined 0.8
Underground: Peak Pressure	Compatibility with Metals:
impulse Energy	Dry - Compatible with all metals when moisture content is less than 0.20%.
Initiating Efficiency:	Wet - Attacks all common metals except stainless steel.
Grams Required to Initiate	Heat of:
Igniter Comp K-31 2.0 Igniter Comp K-29 2.3	Explosion, cal/gm 684 Gas Volume, cc/gm 271

Black Powder

Downloaded from http://www.everyspec.com

Preparation:

Willow or alder charcoal, flour or sulphur and 2-3% of water are placed in a tumbling barrel and mixed for a short pariod (about 1/2 hour). The mixture is transferred to a "wheel mill" and crystalline potassium nitrate containing 3-4% moisture is added and the mixture is incorporated for several hours. During the incorporation period the mixture is kept damp (2-3% moisture) by adding water at intervals. The mill cake is then pressed at 6000 psi between sluminum plates. The pressed cakes are broken up between rubber or wood rolls. The material is screened and the various particle sizes are separated as desired. The screened material is then transferred to canvas trays and dried in hot air ovens at 60°C. If it is desired to glaze the black powder, the material before drying is polished by rotation in a tumbling barrel to give it a smooth surface. It is next screened to remove the dust. The smooth particles are then placed in a wooden barrel and rotated with graphite. The material is again screened to remove the excess graphite, and dried. Material finer than $\frac{440}{2}$ U. S. Sieve is not graphited.

WARNING

The batches of black powder must be of sufficient size to cover the bed of the "wheel mill." If the wheels run off on the bare bed, explosions usually result.

Origin:

The exact date of the discovery of black powder is unknown. Historians at ribute its discovery to the Chinese, Hindus or Arabs. The Greeks used it during the 7th Century. Marcus Graecus in the 9th Century and Roger Bacon in the 13th Century described compositions similar to the present powder. Beginning with the 16th Century, the composition of black powder containing potassium nitrate, charcoal and sulfur has remained unchanged with respect to the proportionality (75/15/10) of the ingredients.

Destruction by Chemical Decomposition:

Black powder can be desensitized by leaching with water to dissolve the potassium nitrate. The washings must be disposed of separately because the residue of sulfur and charcoal is combustible but not explosive.

References: 7

:38

and the state of the second

(a) Ph. Naoum, <u>Nitroglycerine and Nitroglycerine Explosives</u>, Baltimore, 1928.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation by</u> Electrostatic Discharges, U. S. Department of the Interior, Bureau of Mines RI 3852, 1946.

the second second with the second second

(c) Also see the following Picatinny Arsenal Technical Reports on Black Powder:

See footnote 1, page 10.

				Bla	ck Powder				AMCP 706-177
<u>0</u>	1	2	<u>3</u>	4	2	<u>6</u>	<u>7</u>	<u>8</u>	2
250 710 850 1010 1450	91 471 661 901 1111 1241 1541 1541 1711 1911 2051	222 272 322 472 492 582 762 872 1622 1622 1712 1802 1912	163 363 453 843 1053 1243 1333 1493 1543 1493 1643 1843 1843	354 554 554 574 654 654 654 864 1154 1254 1504	65 415 545 605 1145 1275 1815 1885 1905 1915	56 176 356 686 746 1256 1316 1536 1576 1586 1946	347 407 437 547 547 1097 1737 1807 1827	188 318 428 558 608 (18 (98 838 1068 1388 1528 1778 1808 1838 1928 2178	379 819 839 849 859 1259 1309 1339 1349 1589 1739 1869 1889

1,2,4-Butanetriol Trinitrate (BITN) Liqu.d

Composition: %	****_********************** ******	Molecular Weight: (C4H7N309)	241	
C 19.9		Oxygen Balance:		
н 2.9 Н2С-ОНО2		CO, % CO %	-17 10	
и 17.5 нс-ою2		Density: gm/cc Liquid	1.52	
0 59.7		Melting Point: 'C		
C/H Ratio 0.13		Freezing Point: "C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	58	Boiling Point: *C		
Sample Wt 20 mg	-	Refrective Index, no	1.4738	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	≪1 #	n25 n25		
Friction Pandulum Test:		Vecuum Stubility Test:		
Steel Shoe		cc/40 Hrs, at 90°C		
Fiber Shoe		100*C	2.33	
Rifle Bullet Impact Tust: Trials		120°C	- ••	
% Explosions		135°C		
Partiais		150°C		
Burned.		200 Gram Bomb Sand Test:		
Unaffected		Sand, gm	48.6	
Explosion Temperature: 'C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)	•	Minimum Detonating Charge, gm		
i 5 Decomposes 230		Mercury Fulminate		
10	t		0.20	
15		Tetryl	0.10	
20		Ballistic Mortor, % TNT:		
		Trougi Test, % TNT:		
73°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:		
		Method Condition		
100°C Heat Test:		Contined		
% Loss, 13t 48 Hrs	1.5	Density, gm/cc		
% Loss, 2nd 48 Hrs	1.2	Brisance, 15 TNT		
Explosion in 100 Hrs	None			
Flammability Index:	· · · · · · · · · · · · · · · · · · ·	Detensition Roto: Confinement		
		Condition		
Hygroscopicity: % (a)		Charge Dlameter, in.		
100°F, 95% RH, 24 hrs	0.14	Density, gm/cc		
Volatility: 60°C, mg/cm ² /hr	46	Rote, maters/second		

AND A CONTRACTOR OF A CONTRACT OF A CONT

1,2,4-Butanetriol Trinitrate (BTTN) Liquid

ないのであるとなっていた。

Downloaded from http://www.everyspec.com

AMCP 706-177

... ·

• •

Fregmentation Test: 90mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib		Shaped Charge Effectiveness, TNT = 100;				
		Giass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT		Color: Yello	ow oil			
For Subject HE 3 inch HE, M42A1 Projectilo, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragmonts: For TNT For Subject HE		Principel Uses: Explosive plasticizer for nitrocellulose				
		Method of Londing:				
		Loading Density: gm/cc	1.72			
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc		Sterege: Method				
Blast (Relative to TNT);		Hozard Class (Quantity-Distan	ce)			
Air: Peak Pressure Impulse Energy		Compatibility Group Exudation				
Air, Confined: Impulse		Solubility in Water, gm/100 gm, at: 20°C 60°C	(*) 0.08			
Under Water: Peak Pressure Impulse Energy		Solubility of Water in, gm/100 gm; Solubility, gm/100 gm, at 25°C, in;	0.)5 (a) 0.04			
Underground: Peak Pressure Impulse Energy		Ether Alcohol 2:1 Ether:Alcohol Acetone	-			
Heat of: Combustion, cal/gm Explosion, csl/gm Gas Volume, cc/gm	(a) 2168 1457 840	Viscosity, centipolses: Temp, 25 ⁰ C	(a) 59			

1,2,4-Butanetriol Trinitrate (BTTN) Liquid

Downloaded from http://www.everyspec.com

Preparation (Inboratory Procedure):

AMCP 706-177

To a cooled mixture of 73.8 gm of 100% nitric acid, 46.2 gms of 106.2% sulfuric acid and 60.0 gm of 96.1% sulfuric acid, 30 gms of the original (or redistilled) 1,2,4-butanetriol was added dropwise with agitation for a period of thirty minutes. The temperature of the reaction mixture was kept at $0^{\circ}-5^{\circ}$ C. When the agitation was completed, stirring was continued for one and one-helf hours. The mixture was poured into ice water, and the resulting oil suspension was extracted with three 100 mililiter portions of ether. The combined ether extracts were washed with water, then with a 5% sodium bicarbonate solution and finally with water. The neutralized extract was dried with anhydrous calcium chloride and then the ether was evaporated. The yellow oil was dried in a vacuum desiccator over anhydrous calcium chloride until the material was brought to constant weight.

Origin;

1,2,4-butanetical was first synthesized by Wagner and Ginsberg in 1894 by oxidizing allyl carbinol with potatisium permanganate under mild conditions (Ber 27, 2437). Recently the U. S. Rubber Laboratory, under the direction of P. Tawney, devised a new synthesis carried out with allyl acetate and formaldehyde to give 1,2,4-butane triacetate which was readily hydrolysed to butanetrical (U. S. Rubber Company Quarterly Report, May 1948). Working with pure 1,2,4-butanetrical prepared by an improved technique of the Wagner method, the U. S. Naval Laboratory in 1948 nitrated the butanetrical on a laboratory and a pilot plant scale (Reference a).

References: 8

(a) J. A. Gallaghan, F. Macri, J. Bednarik, and F. McCollum, The Synthesis of 1,2,4-Butanetriol and the Evaluation of Its Trinitrate, U. S. Naval Powder Factory Technical Report No. 19, 10 September 1948.

(b) Also see the following Ficatinny Arsenal Technical Reports on Butanetriol Trinitrate: 1755 and 1786.

the state of the s

1.2

and the state part of the state of the state

⁸See footnote 1, page 10.

and then the bear

Composition A-3

AMCP 706-177

· 3.

Composition: %		Malecular Weight:		227	
RDX 91	i	Oxygen Balance; CO: % CO %		-48 -23	
Wax 9		Density: gm/cc 12,	000 psi	1.65	
Yangy.		Melting Point: *C			
C/H Ratio		Freezing Point: *C			
impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: *C			
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	16	Refrective Index, nº, nº			
Sample Wt, mg	17	n ^o			
Friction Pendulum Test:		Vacuum Stability Test:			
Steel Shoe Unaffe Fiber Shoe Unaffe		cc/40 Hrs, at 90°C			
		100°C		0.3	
Rifie Builet Impact Vest: Triols		120°C		0.6	
%		135°C			
Explosions 0		150°C			
Partials 0					
Burned O		200 Gram Bomb Sand Test:			
Unoffected 100		Sand, gm		51.5	
Explosion Temperature: *C		Sensitivity to Initiation:	_		
Seconds, 0.1 (no cap used)		Minimum Detonating			
l 5 Decomposes 250	۲.	Mercury Fulminate	2	0.22*	
• 10		Leod Azide		0.25*	
15		* Alternative initi	ating charg	68	
20		Ballistic Morter, % TN		135	
••		Trauxi Test, % TNT:			
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	(b)		
		Method	в	B	
100°C Heat Test:		Condition	Pressed	Pressed	
% Loss, 1st 48 Hrs	0.15	Confined	No	No	
% Loss, 2rid 48 Hrs	0.15	Density, gm/cc	1.61	1.20	
Explosion in 100 Hrs	None	Brisance, % TNT [*]	126	75	
Flammability Index:	195	Detenation Rate: Confinement	(c)	None	
	►77	Condition		None Pressed	
Hygroscopicity: % 30°C, 90% RH	0.0	Charge Diameter, in.		1.0	
		Density, gm/cc		1.59	
Volstility: 50°C, 15 days	0.03	Rate, meters/second		8100	

Composition A-3

Fragmentation Test:		Shaped Charge Effoctiveness, TNT == 100:
90 mm HE, M71 Projectile, Lot W	C-91:	Glass Cones Steel Cones
Density, gm/cc	1.62	Hole Volume
Charge Wt, Ib	2.102	Hole Depth
Total No. of Fragments:		Celer: White-buff
For TNT	703	
For Subject HE	1138	Principal Uses: HE, SAP, AP projectiles;
3 inch HE, M42A1 Projectile, Lot i	(C-3:	Shaped Charges
Density, gm/cc	1.64	
Charge Wt, Ib	0.861	
Totel No. of Fragmants:		Method of Le ing: Preased
For TNT	514	
For Subject HE	0L7	Leading Density: gm/cc psi x 10 ³
Fragment Velocity: ft/sec		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
At 9 ft	2800	Storage:
At 251/2 ft	2530 1.61	a an
Density, gm/cc	1.01	Method Day
Blast (Relative to TNT);	······································	Hoxard Class (Quantity-Distance) Class 9
Ain		Compatibility Group Group I
Peak Pressure		
Impulse		Exudation Does not exude at 65°C when waxes melting sharply at or above 75°C are used.
Energy		
		Preparation:
Air, Confined: Impulse		A water slurry of RDX is heated to 100°C
Impaine		with agitation. Wax and a wetting agent are
Under Water:		added and the mixture, under agitation, is cooled below the molting point of the wax.
Peak Pressure		The wax costed RDX is collected on a filter
Impulse		and air dried at 75°C.
Energy		Effect of Temperature on Rate of Detonation: (e)
Underground:		16 hrs st, °C -54 21
Peak Pressure		Density, gm/cc 1.51 1.51
Impulse		Rate, m/sec 7600 7620
Energy		Booster Sensitivity Test: (d)
		Condition Pressed
		Tetryl, gm 100
		Wax, in. for 50% Detonation 1.70 Density, gm/cc 1.62
		Heat of: Combustion, cal/gm 1210

.

101

÷.

Composition A-3

AMCP 706-177

Compatibility with metals:

Dry - Aluminum, stainless sieel, mild steel, mild steel coated with acid-proof black paint and mild steel plated with nickel or zinc are unaffected. Copper, magnesium, magnesium-aluminum alloy, brass and mild steel plated with cadmium or copper are slightly affected.

Wet - Stainless steel is unaffected. Copper, aluminum, magnesium, brass, mild steel, mild steel coated with acid-proof black paint and mild steel plated with copper, cadmium, nickel or zinc are slightly affected.

Origin:

Developed by the British during World War II as RDX and beeswax. Subsequent changes in the United States replaced beeswax with synthetic waxes, changed the granulation of RDX and improved the method of manufacture.

Destruction by Chemical Decomposition:

RDX Composition A-3 (RDX/wax, 91/9) is decomposed by adding it slowly to 25 times its weight of boiling 5% sodium hydroxide. Boiling of the solution is continued for one-half hour.

References:9

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part III - Miscellaneous <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSED Report No. 803, 11 August 1942.

(c) G. H. Messelly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of K.K/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo 10,303, dated 15 June 1949.

(e) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, FATE No. 2383, November 1956.

(f) Also see the following Picati my Arsenal Technical Reports on RDX Composition A-3:

<u>o</u>	1	2	3	<u>4</u>	٤	<u>6</u>	Ĩ	<u>8</u>	2
1380 1910	1451 1761	1492 2112	1493	1424 1614 1634 2154	1325 1585 1595 1715 1885 2235	1556 1936	1687 1787 1797	1338 1388 1728 1838	1639 2179

⁹See footnote 1, page 10.

emposition: %		Molecular Weight:		224
-		Oxygan Bulance:		
rdx 60		CO, % CO %		-43 10
INT 40				
Wax, added 1				1.65
		Melting Point: *C	(1)	78-80
C/H Ratio		Freezing Point: *C		
mpact Sansitivity, 2 Kg We:		Boiling Point: *C		
Bureau of Mines Apparatus, cm Sample V/t 20 mg		Refrective Index, no		
Picutinny Arsenal Apparatus, in.	14 19	n		
Sample Wt, mg	17	n <mark>e</mark>		
riction Pendulum Test:		Vecuum Stebility Test:		
Steel Shoe Unaffected		cc/40 Hrs, ut		
Fiber Shoe Unaffected		90°C		• -
tifle Bullet Impect Test: Trials				0.7
Anne Beller Impect Fest: Fridis . %		120°C		0.9
Explosions 3		135°C		
Partials 13		150°C		11+
Burned 4		200 Grem Bomb Sand Test:	_	
Unaffected 80		Sand, gm		54.0
Explosion Temperatury: *C		Sensitivity to Initiation:		
Second., 0.1 (no cap used) 526		Minimum Detonating Ch	orge, gm	
1 368 5 Decomposes 278		Mercury Fulminate		0.22*
10 255		Lead Azide		0.20*
15 > 250		Terryl * Alternative initist	ing cha	rges
20 = 250		Ballistic Morter, % TNT:	(a)	133
	_	Treuxi Test, % TNT:	(b)	130
 'C International Heat Test: % Loss in 48 Hrs 		Plate Dent Test:	(c)	
		Method		B
00°C Heat Test:		Condition		Cast
% Loss, 1st 48 Hrs	0.2	Confined		No
% Loss, 2nd 48 Hrs	0.2	Density, gm/cc Brisonce, % TNT		1.71
Explosion in 100 Hrs	None			132
lammability Index;	177	Detension Rete: Confinement		None
		Condition		Cast
iygroscopicity: % 30⁰C, 90% RH	0.02	Charge Diameter, in.		1.0
		Density, gm/cc		1.68
foletility:				7840

100 A 3

Sec. 12 Birth

Sec. 1.

1.1

and a summer of the star for the star of the starting of

AMCP 706-177

......

、「「「「「「

Compost tion B

.

.. ..

.

Downloaded from http://www.everyspec.com

Composition B

2

AMCP 706-177

Beester Sensitivity Tast:	(a)	Decomposition Equation:		
Condition	Cast	Oxygen, atoms/sec (Z/scc)		
Tetryi, gm	100	Heat, kilocalorie/mole		
Wax, in. far 50% Detonation	1.40	(JH, kcal/mol)	_	
Wax, gm		Temperature Range, *C	2	
Density, gm/cc	1.69	Phase		
Heat of:	(e) 2790	Armer Plate Impact Test:		(e)
Combustion, cal/gm	1240			·.·
Explosion, cal/gm	1240	60 mm Martar Projecti		
Gas Volume, cc/gm		50% Inert, Velocity,	, ft/sec	209
Formation, cal/gm		Aluminum Fineness		
Fusion, cal/gm (1)	8.0	500-ib General Purpose	Bombs:	
Specific Hest: col/gm/*C (1)				
<u>°C</u>		Plate Thickness, incl		
	0. 376		Trials	% Inert
-75 0.235 75 0 0.220 85	0.376 0.354	1	4	100
25 0.254 90	0.341	14	6	50
50 0.305 100	0.312	116	2	0
		181	0	
Burning Rate: cm/sec		Bomb Drap Test:		
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armo	or-Piercing	lomb vs Concret
Coefficient of Expansion:	· · · · · · · · · · · · · · · · · · ·	Max Safe Drop, ft		
Linear, %/*C		500-16 General Purpos	e Bomb ve (Concrete:
N. 1. 01.10 m			No Seal.	See 1
Volume, %/*C		Height, ft	4000	4000
Hardness, Mohs' Scalo:		Trials	65	39
riereness, mens Scele:		Unoffected	58	36
Young's Modulus:		Low Order	2	2
E', dynes/cm ²		High Order	5	1
E, ib/inch ²				_
Density, gm/cc		1050-15 General Purpo	ee Bomb vs	Concreto:
wanany, gm/ce				
Compressive Strength: Ib/inch ² (b) 1610-2580	Trials		
Density, gm/cc	1.68	Unoffected		
		Low Order		
Voper Pressure: *C mm Mercury				
	7	High Order		

· . .

Composition B

Downloaded from http://www.everyspec.com

. . .

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:			
00 mm ME M71 Pastantia tat M6	° 61.	(g) (h) Glass Cones - Steel Cones			
90 mm HE, M71 Projectile, Lot WC		Hole Volume 178 162			
Density, gm/cc	1.65				
Charge Wt, Ib	2.187	Hole Depth 125 148			
Total No. of Fragments:		Celor: Yellow-brown			
For TNT .	703	Terton-prom			
For Subject HE	998	Principel Uses: Fragmentation bombs, HE			
3 inch HE, M42A1 Projectile, Lot K	C-5:	projectiles, grenades, shaped			
Density, gin/cc	1.67	charges			
Charge Wt, Ib	0.882				
Total No. of Freyments:		Method of Landing: Cast			
For TNT	514	weinog er Lenging:			
For Subject HE	701				
		Looding Density: gm/cc 1.68			
Fragment Velocity: ft/sec		-			
At 9 ft	2940				
At 251/2 ft	2680	Storage:			
Density, gm/cc	1.68				
		Method Dry			
Blast (Relative to TNT):	(1)	Hazard Class (Quantity-Distance) Class 9			
Air:		Compatibility Group Group I			
Peok Pressure	110				
Impulse	110	Exudation Very slight when stored at 71°C			
Energy	116	•			
•		Origin:			
Air, Confined:					
Impulse	75	RDX Composition B was developed by the			
		British between World War I and World War II.			
Under Weter: Peak Pressure	110	It was standardized by the United States early in World War II.			
	108				
Impul se		Effect of Temperature on			
Energy	121	Rate of Detonation: (1)			
Underground:		16 hrs at, °C -54 24			
Prok Pressure	104	Density, gm/cc 1.69 1.69			
Impulse	97	Rate, m/sec 7720 7660			
Energy	~ ,	Bulk Modulus at Room (j)			
Crater radius cubed	107	<u>Temperature (25°-30°C);</u>			
		% Wax in Comp B 1 2 3			
		$D_{vnes/cm^2} \times 10^{-10}$ 5.10 3.56 2.34			
		Density, gm/cc 1.72 1.70 1.68			
		Viscosity, poises: Temp, 83°C 3.1			
		Temp, 83°C 3.1 95°C 2.7			

.

S BAND

....

Y. .

AHCP 706-177

Composition B

Downloaded from

Compatibility with Metals:

Dry - Magnesium, sluminum, magnesium-sluminum alloy, mild steel, stainless steel, mild steel coated with acid-proof black paint and mild steel plated with zinc or nickel are unaffected. Copper, brass and mild steel plated with copper or cadmium are slightly affected.

Wet - Aluminum and stainless steel are unaffected. Copper, brass, mild steel, mild steel couted with acid-proof black paint and mild steel plated with cadmium, copper, nickel or zinc are slightly affected. Magnesium and magnesium-aluminum alloy are more heavily affected.

Preparation:

Water wet RDX is added slowly with stirring to molten TNT melted in a steam-jacketed kettle at a temperature of 100° C. Some water is poured off and heating and stirring are continued until all moisture is evaporated. Wax is then added and when thoroughly mixed, the composition is cooled to a satisfactory pouring temperature. It is cast directly into ammunition components or in the form of chips when Composition B is to be stored.

Destruction by Chemical Decomposition:

RDX Composition B is decomposed in 12 parts by weight of technical grade acetone heated to 45° C. While this is stirred vigorously, there is added 12 parts of a solution, heated to 70° C, of 1 part sodium sulfide (Na₂S'9H₂O) in 4 parts water. The sulfide solution is added slowly so that the temperature of the acetone solution does not rise above 60° C. After addition is complete, stirring is continued for one-half hour.

References: 10

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougell, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.

(e) Committee of Divisions 2 and 8, NDRC, Report on HBX and Tritonal, USRD Report No. 5406, 31 July 1945.

(f) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-OND-5723.

(h) Eastern Laboratory du Pont, <u>Investigation of Cavity Effect</u>, Final Report, E Lab du Pont, Contract W-672-ORD-5723, 18 September 1943.

(1) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PATR No. 2383, November, 1956.

¹⁰See footnote 1, page 10.

いいの

Composition B

(j) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1955.

(k)	Also sce	the following	ng Picati	inny Arsena	L Techn	ical Report	e on RD	(Composit	tiou B:
<u>o</u>	<u>1</u>	2	3	<u>4</u>	٤	<u>6</u>	ĩ	<u>8</u>	2
1360 1530 2100 2160 2190	1451 2131 2151	1402 1482 1592	1313 1433 1803 1983 2053 2063 2103 2233	1224 1424 1944 2004 2104	1325 1435 1585 1595 1865 1885 2055 2125 2155 2175 2235	1466 1476 1556 1756 1956 2236	1207 1437 1457 1737 1797 2007 2147	1338 1388 1438 1458 1688 1728 1828 1838 1978 2008 2138 2168	1339 1379 1469 1819 2019

(1) C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PATR No. 2504, January 1959.

Composition B, Desensitized

Downloaded from http://www.everyspec.com

AMCP 706-177

Composition:	<u>I*</u>	II**	Molecular Weight:	<u>I*</u>	11**
%				ee Cyclonite	See Comp B
RDX TNT	60 40	55.2 40.0	Oxygen Balance:		
Wax, added, (Stanolind		-0.0	E	ee Cyclonite ee Cyclonite	
or Ariatowax, 1650/ 1700F)	5		CO 48 5	ee Cyclonice	See Comp B
Vinylseal (MA28-14), added	2		Density: gm/cc Cast	165	1.65
Vistanex (B120) Albacer Wax		1.2 3.6	Melting Point: *C		
C/H Ratio			Freezing Point: "C		
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cn	1* 95	<u>11**</u>	Boiling Point: *C		
Sample Wt 20 mg	ל איי איי		Refractive Index, no		
Picatinny Arsenal Apparatus, i	n, 14	13			
Sample Wt, mg	17	16	n ₃₁		
	·		- n <mark>%</mark>		
Friction Pendulum Test:			Vecuum Stebility Test:	<u>I*</u>	<u>11**</u>
	fected		cc/40 Hrs, at		
Fiber Shoe Unaf	fected		90°C		
Rifle Bullet Impact Test: Tria			- 100°C		
• • • • •		****	120°C	0.99	0.92
g Explosions	, <u>1*</u>	<u>11**</u> 0	135*C		
Partials	0	0	150°C	11+	11+
Burned	5	0			
Unaffected	95	100	200 Gram Bemb Sand Test		<u>11**</u>
Undiffected			Sand, gm	52.7	55.0
	'C <u>I*</u>	<u>II**</u>	Sensitivity to Initiation:	<u>I*</u>	<u>11**</u>
Seconds, 0.1 (no cap used)			Minimum Detonating Cl	narge, gm	
1 5 Decomposes	060	000	Mercury Fulminate		
* ****	260	270	Leod Azide	0.22	0.26
10			Tetryl		
15 20			Baliistie Mustar, % TNT:		
			T.aude Test, % TNT:		
75°C International Heat Test: % Loss in 48 Hrs			Plate Deni Test:		
		····	Method		
100°C Heat Test:	1*	<u>II**</u>	Condition		
% Loss, 1st 48 Hirs	0.05	0.12	Confined		
% Loss, 2nd 48 Hrs	0.19	0.18	Density, gm/cc		
Explosion in 100 Hrs	None	None	Brisonce, % TNT		
Flemmability Index:	- <u></u>	· · · · · · · · · · · · · · · · · · ·	Detenation Rate: Confinement		
Hygroscopicity: %	- · · · · · · · · · · · ·		- Condition		
30°C, 90% RH	0.00	0.00	Charge Diameter, in.		
	Nil	Nil	 Density, gm/cc 		
Veletility:					

*Desensitized Comp B, designated I, uses emulsified wax. **Desensitized Comp B, designated II, uses conted RDX.

......

Composition B, Desensitized

Downloaded from http://www.everyspec.com

··· ·· · · · · ·

. . . .

• • •

Fragmentation Test:			Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Prejectile, Density, gm/cc	Let WC-91;		Hole Volum	Glass Con	es Steel (Cones
Charge Wt, Ib			Hole Depth			
Total No. of Fregments: For TNT			Celer:		Yellow-	prom
For Subject HE			Principal Uses		Bomba	
3 inch HE, M42A1 Projectile	, Let KC-S:	The second		-		
Density, gm/cc	1.65	1.65	1			
Charge Wt, Ib	0.87	0.86				
Total No. of Freyments:			Method of Lo	adina.	Cast	
For TNT	514	514				
For Subject HE	609	659	Leading Densi	ity: gm/cc	1.65	
Fregment Velocity: ft/sec						
At 9 ft At 25½ ft			Storage:	······································		
Density, gm/cc			Method			Dry
Blast (Relative to TNT);			Hozard Cla	ss (Quantity-	Distance)	Class 9
Air: Peak Pressure			Computibili	ty Group		Group I
Impulse			Exudation			
Energy			· ·			·
Air, Confined			Viscosity,		<u>1*</u>	<u>11**</u>
Impulse			Temp, 83		3.5 2.6	3.1 2.7
Under Water: Peak Prossure			References	<u>.</u>		
Impulse			(a) See	the follo	wing Picat	inny Arsenal
Energy			Technical Desensitize	Reports on	RDX Compo	sition B,
Underground: Peak Pressure			1	3	٤	6
Impulse			2.01	1313	1435	1,56
Energy	•			2053	1865	-175
*Desensitized Comp B, des emulsified wax.	ignated I,	uses				
**Desensitized Comp B, des coated RDX.	lignated I <u>I</u>	, uses				
	•		1			

the second second

Composition C

Downloaded from

5

AMCP 706-177

Composition: %		Molecular Weight:	
RDX 88.3		Oxygen Belence: CO ₂ %	
Plasticizer, non-		CO %	
explosive 11.7*		Density: gm/cc	
*Nonexplosive oily plasticize: 0.6% lecithin.	r containing	, Meiting Paint: *C	
C/H Ratio		Freezing Point: "C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Beiling Point: "C	
Sample Wt 20 mg		Refrective Index, no	
Picatinny Arsenal Apparatus, in.		11 ²	
Sample Wt, mg		ns	
		п ₃₀	
Friction Pendulum Test: Steel Shoe		Vacuum Stubility Test:	
Steel Shoe Fiber Shoe		cc/40 Hrs, at 90°C	
			0.3
Rifle Bullet Impact Test: Trials		120°C	0.7
%		135°C	0.1
Explosions 0		150°C	
Partials 0		150 C	
Burned 0		200 Gram Somb Sand Test:	
Unaffected 100		Sand, gm	46.5
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gr	n
1		Mercury Fulminete	
5 Decomposes 285		Lead Azide	0.25
10		Tetryl	0.11
15		Bellistic Mortor, % TNT: (5)	120
20		Treuxi . set. % TNT:	120
75°C International Heat Test:			
% Loss in 48 Hrs		Plate Dant Test;	*
		Method	A
100°C Heat Test:		1	and Tamped
95 Loss, 1st 48 Hrs	0.04	Confined	Yes
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	1.58 112
Explosion in 100 Hrs	None	Brisance, % TNT	114
Shammahilika Indone	·	- Detention Rate:	
Flammability Index:		Confinement	
Hygrescopicity: % 30°C, 95% RH	0.25	- Condition	
nygrescepterty: 70 30-0, 90% RH	V.27	Charge Diameter, in.	.'
Volatility: 25°C, 5 days	0.00	Density, gm/cc	
		Rate, meters/second	

Composition C

....

Frogmentation Test:	Sheped Charge Effectiveness, TNT = 100:				
	(f) (g)				
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones				
Density, gm/cc	Hole Volume 113 114				
Charge Wt, Ib	Hole Depth 101 114				
Total No. of Fragments:	Celer: White				
For TNT					
For Subject HE	Principel Uses: Plastic demolition explosive				
3 inch HE, M42A1 Projectile, Lot KC-5:	•				
Density, gm/cc					
Charge Wt, Ib					
Total No. of Fragments:					
For TN1	Method of Loading: Hand tamped				
For Subject HE					
	Looding Density: gm/cc 1.49				
Fragment Velocity: ft/sec					
At 9 ft At 25½ ft	Storege:				
Density, gm/cc					
Servery, girt co	Method Dry				
Blact (Relative to TNT):	Hozard Class (Quontity-Distance) Class 9				
Air:	Compatibility Group Oroup I				
Peak Pressure					
Impulse	Exudation Exudes above 40°C				
Energy					
Air, Confined:	Plasticity:				
Impulse	Below 0°C Brittle (0°C)				
	0-40°C Plastic				
Under Weter: Peak Pressure	Above 40°C Exudes (40°C)				
reak pressure Impulse	References:				
Energy	See references for Composition C-4.				
Underground: Peak Pressure					
Impulse					
Energy					
,					

j

54

al de de

Composition C-2

x + 5

Downloaded from http://www.everyspec

A MCP 796-177

Composition:		Molecular Weight:	
% RDX 78.7		Oxygen Belence:	
TNT 5.0		CO: %	
DNT 12.0		CO %	
MNT 2.7			······································
NC 0.6		Density: gm/cc	
Solvent 1.0		Melting Point: *C	
C/H Ratio		Freesing Paint: *C	······································
Impact Sansitivity, 2 Kg Wt:	90	Boiling Point: "C	· · · · · · · · · · · · · · · · · · ·
Bureau of Mines Apparatus, cm Sample Wt 20 ma	90	Refrective Index, no	
Picatinny Arsenal Apparatus, in.			
Sample Wt, mg		n <u>2</u>	
	••••	ng	
Friction Pendulum Test:		Vecuum Stability Test:	·····
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
	<u> </u>	100°C	2.0
Rifle Builet Impact Test: Trials		120°C	9.0
₩		135°C	
Explosions 0		150°C	
Partials 20			
Burned 0		200 Grem Bemb Sund Test:	
Unoffected 80		Sond, gm	47.5
Explusion Temperature: *C		Sensitivity to Initiation:	<u></u>
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, g	aw .
1		Mercury Fulminote	
5 Decomposes 285		Lead Azide	0.25
10		Tetryl	0.10
15			
20		Bellistie Mortor, % TNT: (a)	126
TRACING AND	فسيريا الأذاريين فتقاذ سيريا الأقفارين	Trevel Test, % TNT:	·····
75°C International Heat Test: % Loss in 48 Hrs		· Flate Dent Tast: (c)	
		Method	В
100°C Heat Test:		Condition	Hand tamped
' % Loss, 1st 46 Hrs	1.8	Confined	No
% Loss, 2nd 48 Hrs	1.4	Density, gm/cc	1. 52
	-	Brisance, % TNT	111
Explosion in 100 Hrs	None		
Fig.nmability Index:	178	Detenction Rate: (d) Confinement	Vara
· · · · · · · · · · · · · · · · · · ·			None
Hygrescepicity: % 30°C, 95% RH	0.55	Condition	Hand tamped
ulaineenhicula: 20 . 01 ADA Kr	0.33	Charge Diameter, in.	1.0
Veletility: 25°C, 5 days	0.00	Density, gm/cc	1,57
Veletility: 25°C, 5 days		Rote, meters/second	7660

- ;7

1.

<u>ئ</u>ار

AMCP 706-177

ļ

Composition C-2

Fragmentation Test:	Shapod Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth Celer: White Principel Uses: Plastic demolition explosive				
Totel No. of Fregments: For TNT For Subject HE 3 Inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, ib					
Total No. of Fragments: For TNT For Subject HE Fragment Velocity: ft/sec	Method of Looding: Hand tamped Looding Density: ym/cc 1.57				
At 9 ft At 25½ ft Density, gm/cc	Storege: Method Day				
Biest (Relative to TNT): Air: Peak Pressure Impuise Energy	Hazard Closs (Quantity-Distance) Class 9 Compatibility Group Group I Exudation Volstilizes above 52 ⁰ C				
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Plasticity: Below O ^O C Plastic (-30 ^O C) O.40 ^O C Plastic above 40 ^O C Hard (52 ^O C)* *Due to volitalization of plasticizer. <u>References:</u> See references for Composition C-4.				

Composition C-3

AMCP 706-177

Composition:		Molecular Weight:			
% RDX Tetryl TNT	77 3	Oxygen Belence: CO ₂ % CO %			
DNT MNT	10 5	Density: gm/sc			
NC	5	Melting Point: *C			
C/H Ratio		Freezing Point: *C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatu		Boiling Point: *C			
Sample Wt 20 mg Picatinny Arsenal Appara Sample Wt, mg		Refractive Index, nº nº nº			
Friction Pendulum Test:		Vacuum Stability Test:			
Steel Shoe Fiber Shoe	Unsflected Unsflected	cc/40 Hrs, at 90°C			
Rifle Bullat Impoct Test:	Trials	100°C 120°C	1.21 11+		
Explosions	9% O	135°C 150°C			
Partials Burned Unaffected	40 0 60	200 Gram Bomb Sand Test: Sand, gm	53.1		
Explosion Temperature: 'C Seconds, 0.1 (no cap used) 1 5 Decomposes 280		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide	<i>)</i> .20		
וס 51		Tetryi	0.08		
20		Ballistic Morter, % TNT: (a)	126		
	· · · · · · · · · · · · · · · · · · ·	Trauxi Test, % TNT: (b)	117		
75°C International Heat Tes % Loss in 48 Hrs	*:	Plate Dent Test: (c) Method	В		
100°C Heat Test:			d tamped		
% Loss, 1st 48 Hrs	3.20	Confined	No		
% Loss, 2nd 48 Hrs	1.63	Density, gm/cc	1.57		
Explosion in 100 Hrs	None	Brisonce, % TNT	118		
Flammability Index:		Detenction Rate: (d) Confinument	None		
Hygroscopicity: % 30°C,	95% RH 2.4	Charge Diameter, in.	id tamped 1.0		
Voletility: 25°C,	5 days 1.15	Density, gm/cc Rote, meters/second	1.60 7625		

-- 3

1

ALCONT OF THE OWNER

1976

1

......

1.1

100 C

*

AMCP 706-177

Composition C-3

Frigmuntution Test:		Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot	WC-91:	Gloss Cones Steel C	ones		
Density, gm/cc	158	Hole Volume			
Charge Wt, Ib	2045	Hole Depth			
Total No. of Fragments:		Color: Yellov			
For TNT	703				
For Subject HE	944	Principai Usos: Plastic demoliti	on avalorive		
3 inch HE, M42A1 Projectile, La	H KC-5:		ou extrustive		
Density, gm/cc	1.60				
Charge Wt, Ib	0.842				
Total No. of Fragments;		Method of Londing: Hand t			
For TNT	514	Marinos er Levelingt hand (wabed		
For Subject HE	671				
		Loading Density: gm/cc	1.58		
regment Velocity: ft/sec					
At 9 ft At 25½ ft		Sturage:			
Density, gm/cc					
		Method	Dry		
last (Relative to THT).		Hazard Class (Quantity-Distance)	Class 9		
Ain		Compatibility Group	Group I		
Peak Pressure	105		_		
Impulse	109	Exudation Exudes at 77°C	;		
Energy			•		
Air, Confined:		Plasticity:			
Impulse		Below O ^o C Ha	ird (-29°C)		
		0-40°C PI	astic		
Under Water: Peak Pressure	۰.	Above 40°C Eb	udes (77°C)		
Impulse		Booster Sensitivity Test: ()	a)		
Energy					
		Condition Pr Tetryl, gm	'255ed 100		
Underground:		Wax, in. for 50% Detonation	1.36		
Peak Pressure		Density, gm/cc	1.62		
Impulse		References:			
Energy					
		See references for Composition	on C-4.		

23.44

58

!

÷ .

A STAR STAR AND AND AND A STAR AND

Composition C-4

ANCP 706-177

tp://www.everyspec.com

Composition: %		Maleculer Weight:							
RDX	91	Oxygen Beience: CO ₂ %	_						
Plasticizer, non- explosive	9#	CO %							
<pre>* Contains polyisobutylene 2.1%; motor oil. 1.6% and di(2-ethylhexyl) sebacate 5.3%. C/H Romo</pre>		Density: gm/cc Melting Point: "C Freezing Point: "C							
						Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: *C	
						Sample Wt 20 mg	19	Refractive Indax, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	27	na							
	- •	n 👷							
Friction Pendulum Test:		Vacuum Stability Test:							
Steel Shoe Unaffec	ted	cc/40 Hrs, at							
Fiber Shoe Unaffec	ted	90°C							
		- 100°C	0.26						
Rifle Bullet Impact Test; Trials	•	120°C							
Sector Se		135°C							
Portials 0		150°C							
Burned · 20									
Unoffected 80		200 Grem Bomb Sand Test: Sand, gm	55.7						
	·								
Explosion Temperatur :: *C		Sensi ' ity to Initiation:							
Seconds, 0.1 (no cr.p used)		Mir num Detonating Charge	e, gm						
1 5 290		Mercury Fulminate							
10		Lead Azide	0.20						
15		Tetryi	0.10						
20		Bellistic Morter, % TNT: (a)) 130						
20		Trausi Test, % TNT:							
75°C International Heat Test:									
% Loss in 48 Hrs		Plote Dent Test: (c)							
		Method	B						
100°C Heat Test:		Condition	Hand tamped						
% Loss, 1st 48 Hrs	0.13	Confined Density and (as	No 1.60						
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	115						
Explosion in 100 Hrs	None	Brisance, % TNT							
		— Detension Rate: (d)							
Flammability Index:		Confinement	None						
Numerousiation (V and and and	·····	Condition	Hand tamped						
Hygroscopicity: % 30°C, 95% RH	N11	Charge Diameter, in.	1.0						
Volatility:		Density, gm/cc	1.59						
v oranihiy:		Rote, ineters/second	2040						

regmentation Test:	Shaped Charge Effectivaness, TNT = 100:			
90 mm HE, M73 Projectile, Lot WC-91:	Gloss Cones Steel Cones			
Density, grr/cc	Hole Volume			
Charge Wt, Ib	Hole Depth			
Total No. of Fregments:	Color: Light brown			
For TNT	Come: Englis of Swill			
For Subject HE	Principel Uses: Plastic demolition explosi	ve		
3 inch HE, M42A3 Projectile, Let KC-5:				
Density, gm/cc				
Charge Wt, Ib				
Total No. of Fragments:	Method of Loading: Hand tamped			
For TNT	taming of the second se			
For Subject HE	Loading Density: gm/cc 1.50			
rogment Velocity: ft/sec				
At 9 ft				
At 251/2 ft	Storage:			
Density, gm/cc	Method Dry			
last (Reletive to TNT);	Hazard Class (Quantity-Distance) Cless 9			
Air:	Compatibility Group Group I			
Peak Pressure	Exudation None at 77°C			
Impulse	Exudarion None at ((C			
Energy	······································			
* Air, Confinad: Impulse	Effect of Temperature on (i) Rate of Detonation:			
	16 hrs at, °C -54 21			
Under Water: Peak Pressure	Density, gm/cc 1.36 1.35			
Impulse	Rate, m/sec 7020 7040	,		
Energy	Plasticity:			
	Below 0°C Plastic (-57°C	;)		
Underground: Peak Pressure	0-40°C Plastic	,		
Impulse	Above 40°C Plastic (77°C)			
Energy				

AMCP 706-177

Composition C-4

•

. T. W. 1929

60

. ' **K**a

Compositions C, C-2, C-3, C-4

Downloaded from http://www.everyspec.com

AMCP 706-177

Preparat'on:

In manufacturing Composition C-3, the mixed plasticizing agent is heated in a melting kettle at 100°C. Water-wet RDX is added and heating and stirring are continued until all the water is evaporated. This mixture is then cooled and hand pressed into demolition blocks or special item ammunition.

Composition C-4 is prepared by hand kneading and rolling, or in a Schrader Bowl mixer, RDX of 44 micron size or less with the polyisobutylene-plasticizer previously made up in ether. The thoroughly blended explosive is dried in sir at 60° C and loosely packed by hand tamping to its maximum density.

Origin:

Developed by the British during World War II as a plastic explosive which could be hand shaped. It was standardized in the United States during World War II and subsequent development led to mixtures designated C-2, C-3 and C-4.

Destruction by Chemical Decomposition:

Composition C-3 is decomposed by adding it slowly to a solution composed of $1 \frac{1}{4}$ parts sodium hydroxide, 11 parts water, and 4 parts 95% alcohol, heated to 50° C. After addition of Composition C-3 is complete, the solution is heated to 80° C and maintained at this temperature for 15 minutes.

References: 11

(a) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.

(b) Philip C. Keensn and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonution of Various Compounds and Mixtures, OSR') Report No. 5611, 15 January 1946.

(e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Jiv Lecture, 9 April 1948.

(1) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Sec III, Variation of Cavity Effect with Explosive Covint 1100, NDRC Contract W672-ORD-5723.

(g) Eastern Laboratory, an Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

(h) L. C. Smith and S. R. Walton, A. Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.

¹See footnote 1, page 10.

という人でいたというであるためにはないない。

AMCP 706-177

62

Compositions C, C-2, C-3, Cal.

(i) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explo-</u> sives at Several Temperatures, PATR No. 2383, November 1956.

(j) Also see the following Picatinny Arsenal Technical Reports on RDX Composition C:

	ç	<u>1.</u>	3	4	2	<u>6</u>	I /	<u>8</u>	2
Comp C	1260		1.293				.;	1518 1838	
Comp C-2 Comp C-3		1611	1293 1713	215h	1595 2695 1885	1416 1416 1556 1766	1797	1518 1518 2028	
Comp C-4					,	1766	1907	1828 1958	1819

31-5

1.1

たいで

1000 - 1000

Copper (miorotetralole

ſ

AMCP 706-177

Composition:	Aturcular Weight: (CuC2N8Cl2) 271
C 8.9 N-N	Oxygen Belance:
	CO % -30
N 41.5 $\ddot{N} - N Cu$	
C1 26.2 N-N	Denaity: gm/cc 2.04
$Cu = 23.4$ $\frac{11}{N} - N$ $CC1$	Meking Point: °C
C/H Rotio	Prezing Faint, "C
Impace Sensitivity, 2 Kg We: Bureau of Mines Apparatus, cm	Boiling Point: "C
Sample Wt 20 mg	Refractive Index, ng
Picatinny Arsenal Apparatus, in. 1; Sample Wt, mg	(1. 16 wt) 3 n ₄
	y N p
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Exq	ploded cc/40 Hrs, at
Fiber Shoe Ext	ploded 90°C
	160.0
Ritle Builet Impact Test: Trials	120*0
% Explosions	135°C
Partials	130°C
Burned	200 Course Branch Court Trank (A)
Unoffected	200 Grath Bomb Sand Test: (\$) Sand. am. 27.4 25.3
	Black porder fuse 27.4 25.3
Explosion Temperature: "C	Service to Initiation:
Seconds, 0.1 (no cop used)	Minimum Determing Charge, gm
1	Mercury Fulminate
5 305	l cod Aride 0.20 0.30
10	Tetryi 0.10
15	Ballistic Morray, % YNT:
20	
75°C International Heat Test:	Trauzi Test, % TNT:
% Loss in 48 Hrs	Plate Dext Test: Method
100°C Hoat Test:	Cendition
% Loss, 1st 48 Hrs	8.67 Confined
% Loss, 2nd 48 Hrs	0.10 Density, gm/ur
Explosion In 100 Hrs	None Brisance, % TN?
Flammability Index:	Defendition Ruito:
THE REPORT OF THE PARTY OF THE	Confinement
Hygrascopicky: % 30°C, 90% RH	3.11 Charge Diameter, in.
	Density, ym/cu
Volatility:	Rate, meters/second

Copper Chlorotetrazole

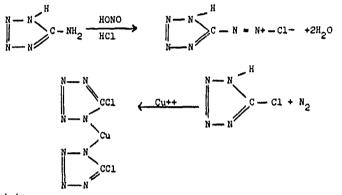
Fragmentation Test:	Shuped Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Si	test Cones			
Density, gm/cc	Hois Volume				
Charge Wt, ib	Hole Depth				
Total No. of Fragments:	Celer:	Blue			
For TNT		Dine.			
For Subject HE	Principel Uses: Primary e	explosive			
3 inch HE, M42A3 Projectile, Lot KC-S:					
Density, gm/cc					
Charge Wt, Ib					
Total No. of Frogments:	Method of Londing: Pa	ressed			
For TNT	memor of Locamy.	. 446 ¢u			
For Subject HE					
		x 10 ³ (c)			
Fregment Velocity: ft/sec	10 20 401.49 1.63 1.74	70 1.86			
At 9 ft At 251/2 ft	Sterege:				
Density, gm/cc	Method	Wet			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance	e) Class 9			
Airt	Cempatibility Group	Group M			
Peak Pressure					
impulse	Exudation	None			
Energy		فماليه والرواحي فالمراجع والمراجع والمراجع			
Air, Confined:	Stab Sensitivity:	(c)			
Impulse	Density Firing Point (neh-ounces)			
	<u>gm/cc 0% 50</u>				
Under Water: Peak Pressure	1.49 9 11	15			
Impulse	1.63 8.5 10	12			
Energy	1.74 6 7	9			
m. m. 31	1.86 4 5	6			
Underground:	Heat of:	:			
Peak Pressure Impulse	Explosion, cal/gm	432			
Energy	Specific Heat, cal/gm/°C				
	Temp range O ⁰ -30 ⁰ C Wt of sample, gm	0.155 0.8910			

64

.

100

ł


Copper Chlorotetrazole

Downloaded from http://www.everyspec.com

AMCP 706-177

Preparation: (a)

Five grams of 5-aminotetrazole are dissolved in a mixture of 200 ml of water end 70 ml of concentrated HCL. Enough kerosene or nujol (which gives a slightly cleaner product) is added to provide a layer of oil approximately 1/4" thick on the surface. With only moderate stirring and external cooling to 10° - 15° C, a solution of 5 grams of sodium mitrite in 70 cc of water is added rapidly by means of a burette extending below the oil layer. Immediately after this addition, a solution of 5 gms of cupric chloride in a minimum amount of water is added all at once, and stirring is continued for about 1 hour. The reaction mixture is allowed to stand for a few minutes till the bright blue copper salt separates. The oil is removed by decentation and may be reused. The salt is filtered; washed with water, alcohol, and ether; and dried - giving a yield of 6 grams or 74%.

Origin:

The copper salt of 5-chlorotetrazole was first described in 1929 by R. Stolle (with E. Schick, F. Henke-Stark and L. Krauss) who prepared the compound by reaction of the diazonium chloride of 5-aminotetrazole with copper chloride (Ber <u>62</u>A, 1123).

References: 12

(a) R. J. Gaughran and J. V. R. Kaufman, Synthesis and Properties of Halotetrazole Salts, PATR No. 2136, February 1955.

(b) A. M. Anzalone, J. E. Abel and A. C. Forsyth, <u>Characteristics of Explosive Substances</u> for <u>Application in Armunition</u>, PATR No. 2179, May 1955.

(c) A. C. Forsyth, Pfc, S. Krasner and R. J. Gaughran, <u>Development of Optimum Explosive</u> Trains. An Investigation Concerning Stab Sensitivity versus Loading Density of Some Initiating <u>Compounds</u>, PATR No. 2146, February 1955.

¹²See footnote 1, page 10.

AMCP 705-177

Cyanurie Triazide

Composition: 96	Molecular Weight: $(C_{y_{12}})$	204
C 17.6 N ₃	Oxygen Belence: COy % CO %	-47.1 -23.5
	Density: gm/cc Crystal	1.54
N3-C C-N3	Melting Point: *C	94
C/H Ratio	Froexing Point: *C	
Impact Sensitivity, 2 Kg We:	Boiling Paint: *C	
Bureau of Mines Apparatus, cm 1 kg vt 7 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. – Sample Wt, mg –	Refractive Index, ng ng ng	
Friction Pendulum Test:	Vecuum Stability Test:	
Steel Shoe	cc/40 Hrs, at 90°C	
Fiber Shoe	100°C	
Rifie Bullet Impact Test: Trials	120°C	
% Explosions	135°C	
Partials	150°C	• •
Burned	200 Grem Some Sand Test:	
Unoffected	Sond, gm	32.2
Explosion Temperature: *C	Sensitivity te Inifiction:	
Seconds, 0.1 (no cap used) 252	Minimum Detonating Charge, gm	
1	Mercury Fulminate	-
10		0.20
15	Tetryl	0.10
20	Ballistic Morter, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dant Test; Method	
100°C Hest Test:	Condition .	[
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
	Brisance, % TNT	
Explosion in 100 Hrs		
Explosion in 100 Hrs	Detonation Rate:	
Explosion in 100 Hrs	Confinement	-
•	Confinement Condition	-
Explosion in 100 Hrs Flammability Index:	Confinement	- 0.3 1.15

- states

1

Cyanuric Triazide

Downloaded from http://www.everyspec.com

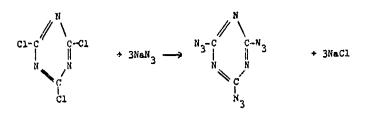
r,

AMCP 706-177

Fregmentation Test:	Shaped Charge Effectiveness, TNT = 1	100:		
90 mm HE, M71 Projectile, Let WC-91; Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Coler: Col	lorless		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principel Uses: Not used because of difficulty in controlling sensitivity.			
Total No. of Fregments: For TNT For Subject HE	Method of Loading:	Pressed		
Fregment Velecity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Looding Density: gm/cc At 200 atmospheres At 800 atmospheres Storege: Mathod	1.4 1.5		
Blast (Relative to TNT):	Hozard Class (Quantity-Distance)	Class 9		
Air: Peak Prossure Impulse Energy	Compatibility Group Exudation	Nons		
Air, Confined: Impulse				
Under Weter: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy				

ないのですが、「ないない」というできたが、

141.6


67

AMCP 706-177

Cyanuric Triazide

Preparation:

By the reaction of cyanuric chloride with an aqueous solution of sodium azide:

Recrystallization should be avoided as it leads to very large crystals which explode when oroken.

Origin:

Cyanuric Triazide was prepared in 1847 by Cabours from chlorine and mothyl cyanate. Later James improved the process (JCS 51, 268 (1887) and in 1921 E. Ott patented the preparation from cyanuric chloride and sodium azide (Ref b) Taylor and Rinkenbach prepared cyanuric triazide in a pure state and determined its properties (Ref c).

Initiating Efficiency:

Reported to be more efficient than lead saide. Cupable of inluisting Explosive D.

Solubility:

Insoluble in water; readily soluble in hot ethanol, acetone, benzer and ether.

Heat of:

Formation, cal/gm

-1090 to -1138

References: 13

(a) A. H. Blatt, Compilation of Data on Organic Explosives, OSRD Report No. 2014, 29 February 1944.

- (b) Ott and Ohse, Ber <u>54</u>, 179 (1921).
- (c) Taylor and Rinkenbach, Bureau of Mines, RI 2513 (1923).

Taylor and Rinkenbach, J Frank Inst 204, 369 (1927).

¹³See footnote 1, page 10.

Cyclonite* (RDX)

J

23.5

AMCP 706-177

Composition:		Molecular Weight: (C3H6N606)	222
C 16.3 02N-N N-1	10 ₂	Oxygen Belance: CO ₂ %	-22
н 2.7 н2 с			0.0
N 37.8 N		Density: gm/cc Crystal	1.82
0 43 <u>.2</u> NO ₂		Melting Point: *C	204
C/H Ratio 0.095		Freazing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	32	Boiling Point: *C	
Sample Wt 20 mg	8	Refrective Index, ne	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	18	កង	
· · · •		n	
Friction Pendulum Test:	•	Vecuum Stebility Test:	
Steel Shoe Explode	19	cc/40 Hrs, at	
Fiber Shoe Unaffed	ted	90°C	
Rifle Bullet Impact Test: Trials			0.7
%		120°C	0.9
Explosions 100		135°C	•
Portials O		150°C	2.5
Burned O		200 Grem Bomb Send Test:	
Unaffected 0		Sand, gm	60.2
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 405		Minimum Detonating Charge, gn	n
1 316		Mercury Fulminate	0.19#
5 Decomposes 260		Lead Azide	0.05*
10 240		* Alternative initiating chan	-
15 235 20 -		Ballistic Morter, % TNT: (a)	150
٠		Trouxi Test, % TNT: (b)	157
75°C International Haat Test:		Plate Dunt Test: (c)	
% Loss in 48 Hrs	0.03	Method	A
100°C Hest Test:		Condition	Pressed
% Loss, 1st 48 Hrs	0.04	Confined	Yes
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	1.50
Explosion in 100 Hrs	None	Brisance, % TNT	135
		Dutonation Rate:	
Fiammebility Index: (d)	278	Confinement	None
· · · · · · · · · · · · · · · · · · ·		Condition	Pressed
Hygroscopicity: % 25°C, 100% RH	0.02	Charge Diameter, in.	1.0
Ad . 1	AT.1 3	Density, gm/cc	1.65
Volatility:	Nil	Rate, meters/second	8180

*Name given by Clarence J. Bain of Picatinny Arsenal. Germans call it Hexogen; Italians call it T4; British, RDX.

AMCP 706-177

Cyclonite (RDX)

		· · · ·
Booster Sensitivity Test: Condition	Decomposition Equation: (1) Oxygen, atoms/sec 10 ^{18,5}	
Tetryl, gm	(Z/sec)	
Wax, in. for 50% Detonation	Heat, kilocatorie/mole 47.5 (AH, kcal/mol)	·
Wax, gm	Temperature Ronge, *C 213-299	
Density, gm/cc	Phase Liquid	
Heet of: Combustion, cal/gm 2285	Armer Plate Impoct Test:	
Explosion, cal/gm 1280	de la chia da Barbardia	
Gas Volume, cc/gm 908	60 mm Marter Projectile: 50% Inert, Velocity, ft/sec	
Formation, cal/gm -96	Aluminum Fineness	
Solution, cal/mol (28-55% HNO3) 7.169*		
Assuming cyclonite unimolecular	500-ib Ganeral Purpose Bombs:	
Specific Heat: col/gm/°C		
° <u>c</u> °	Plate Thickness, inches	
20 0.298 100 0.406	1	
40 0.331 120 0.427	11/4	
60 0.360 140 0.446 80 0.384	11/2	
	174	
Surning Rate:		
cm/sec	Bemb Drop Test:].
Thermel Conductivity: (h) col/sec/cm/*C 1.263 6.91 x 10 ⁻¹⁴ Density, gm/cc 1.533 6.98 x 10 ⁻¹⁴	T7, 2000-1b Semi-Armor-Piercing Bemb vs Concrete:	į
Coefficient of Expansion:	Max Safe Drop, ft	
Linear, %/^C	500-lb General Purpose Bomb vs Concrets:	
Volume, %/*C	Height, ft	
	Trials	
l'erdness, Mohs' Scele: 2.5	Unaffected	
Young's Modulus:	l.ow Order	
E', dynes/cm ²	High Order	
E, lb/inch ²		1
Density, gm/cc	1000-16 General Purpose Bomb vx Concrete:	
Denarry, giny co	Height, ft	
Compressive Strength: Ib/inch ²	Trials	
•	Unoffected	1
	Low Order	
Vapor Pressure: *C mm Mercury	High Order	
··· ,		
		-
		,

Fragmentation Test:	Shaped Charge Effectivaness, TNT == 100:
90 mm HE, M71 Projectile, Lot WC-91;	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fregments:	Color: White
For TNT	Color: White
For Subject HE	
	Principal Uses: Detonator base charge, and
3 inch HE, M42A1 Projectile, Lot KC-5:	ingredient for projectile and bomb fillers
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fragmants:	Method of Loading: Pressed
For TNT	
For Subject HE	
	Loading Density: gm/cc psi x 10 ³ 3 5 10 12 15 2
Fragment Velocity: ft/sec	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
At 9 ft	
At 251/2 ft	Storage:
Density, gm/cc	Method Wet
Blast (Reletive to TNT):	Hazard Class (Quantity-Distance) Class 9
Air:	Compatibility Group Group M (wet)
Peak Pressure	Group L (dry)
Impulse	Exudation None
Energy	
Air, Confined:	Effect of Temperature on Rate of Detonation: (k)
impulse	
	16 hrs at, °C -54 21
Under Water: Peak Pressure	Density, gm/cc 1.61 1.62 Rate, m/sec 8100 8050
	Rate, m/sec 8100 8050
Impulse Energy	Effect of Temperature on Impact Sensitivity:
Underground:	Temp. PA Impact Test
Peak Pressure	OC 2Kg Wt, inches
Impulse	Room 9
Energy	Room 9 32.2 8 104 5
	1

Cyclonite (RDX)

LISS SCHOOL STREET Downloaded from http://www.everyspec.com

ALL NOT

AMCP 706-177

÷

い 読をや いいかい

AMCP 706-177

Cyclonite (RDX)

	· · · · · · · · · · · · · · · · · · ·		and oursentiees	<u>·</u> (J)
Water	Alcohol	Acetone	Benzene	Toluene
$\begin{array}{c} \circ_{\rm C} & -\frac{6}{2} \\ 30 & 0.005 \\ 50 & 0.025 \\ 70 & 0.076 \\ 90 & 0.19 \\ 100 & 0.28 \end{array}$	ос <u>у</u> 0 0.040 20 0.105 40 0.240 60 0.579 78 1.195 Сагъса	$\begin{array}{c} \circ c & \frac{4}{5} \\ \hline 0 & 4.1 \\ 20 & 7.3 \\ 40 & 11.5 \\ 60 & 18. \end{array}$	° <u>c</u> <u></u> 20 0.05 40 0.09 60 0.20 80 0.41	$\begin{array}{c cccccc} & & & & & \\ \hline 0 & 0.015 \\ 20 & 0.02 \\ 40 & 0.05 \\ 60 & 0.13 \\ 80 & 0.30 \\ 100 & 0.65 \end{array}$
Ethyl acetate	tetrachloride	Methanol	Ether	INT
<u>°c 4</u> 28 2.9 94 18.	<u>°c </u> <u></u> 50 0.005 60 0.007 70 0.009	$ \begin{array}{cccc} $	<u>°c%</u> 10 0.05 20 0.056 30 0.076	oc % 80 4.4 85 5.0 90 5.55 95 6.2 100 7.0 105 7.9
Isoamy1 slcohol	Methyl aceiate	<u>B-Ethoxyethyl</u> acetate	Chlorobenzene	Trichloro- ethylene
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	<u>°C</u> <u>4</u> 20 2.9 30 3.3 40 4.1 50 5.6	$\begin{array}{ccc} \circ_{\rm C} & \frac{9}{20} \\ 20 & 0.15 \\ 30 & 0.16 \\ 40 & 0.19 \\ 50 & 0.25 \end{array}$	<u>oc</u> <u>4</u> 20 0.33 30 0.44 40 0.56 50 0.74	oc \$ 20 0.20 30 0.22 40 0.24 50 0.26
<u>Tetra-</u> chloroethane	Isopro- panol	Isobutanol	Chloroform	Mesityloxide
<u>°c 5</u> 38 0.09	<u>°C %</u> 38 0.18	<u>°c</u> <u>*</u> 20 0.0	<u>°c %</u> 20 0.01	<u>°c</u> ∦ 27 3.2 97 12.2
Cyclo- hexanone	<u>Nitro-</u> benzene	Nitro- ethane	Cyclo- pentanone A	cetonitrile
$\frac{\circ_{C}}{25}$ $\frac{4}{12.7}$ 97 25	$\frac{\circ c}{25}$ $\frac{4}{1.5}$ 97 12.4	<u>°c 4</u> 29 3.6 93 19	<u>°c %</u> 28 11.5 90 37	<u>°c 4</u> 28 11 82 33
	Methy]	ethyl ketone		
	<u>°c</u> 28 95	- <u>%</u> 5.6 14		

Solubility of Cyclonite; gm/100 gm of the following substances: (j)

 $\mathbf{72}$

Cyclonite (RDX)

Downloaded from http://www.everyspe

AMCF 706-177

.

) 0 T

ן זי ז 1

Solubility of Cyclonite, Holston Lot E-2-5 ir Various Solvents:

e 11

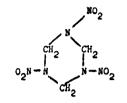
			gr	lubility n/100 gm Solvent	
Solvent	Boiling Point, C	Grade or Source	<u>28°c</u>	Heated	Crystalline Form
Acetone	56	CP	8.2	16.5 at 60°C	hexagonal-thick
Cyclohexanone	155.6	CP	13.0	24.0 at 93°C	cubic (massive form)
Ni trome thane	100.8		1.5	12.4 at 97°C	plates
Acetonitrile	81.6	Miacet Chem. Co.	11.3	33.4 at 93°C.	plates
1-Nit.opropane	126.5	EX Pract	1.4	10.6 at 93°C	short needles
2-Nitropropane	120	EK Pract	2.3	11.6 at 93°C	short needles
2,4-Pertanedione	140.5	Carbide & Carbon	2.9	18.3 at 93°C	flat prisms
Methylisobutylketone	115.8		2.4	$9.6 \text{ at } 93^{\circ}$ C	long prisms
n-Propylacetate	101.6	EK Red Label	1.5	6.0 at 93°C	long prisms, some
n-Butylformate	105.6	EK Red Label	1.4	4.6 at 93°C	long prisms
Ethyl acetste	77.1	Baker's CP	2.0	6.1 at boil.	hexagonal plates
n-Propylpropionate	121	EK Red Label	0.8	1.6 et 93°C	short prisms, some cubic
Butylacetate	126.5	EK Technical	1.1	$4.0 \text{ at } 93^{\circ}\text{C}$	long prisms
Methylethylketone	79.6		5.6	13.9 at boil.	coarse plates
Nitroethane	114.2	EK Red Label	3.6	19.5 at 93°C	plates
Isopropylacetate	88-90	CP	1.1	3.2 at boil.	long prisms
Mesityloxide	128	EK Red Label	4.8	$14.5 \text{ at } 93^{\circ}\text{C}$	plates
n-Amylacetate	16	CP	1.0	2.1 at 93°C	prisms
Dimethylcarbonate	88-91	EK Red Label	1.4	6.6 et boil.	plates
Diethylcarbonate	125-126.5	EK Red Label	0.7	3.1 41 9300	prisms
Isoamylacetate	1.32	CP	1.2	5.6 at 93°C	prisms
Ethylpropionate	98-100	EK Red Label	3.0	10.7 at 93°C	fairly thick hex plates
Methyl-n-butyrate	101.5-103.5	EK Red Label	1.2	4.9 at 93°C	needles
Cyclopentanons	130.6	EK Red Label	11.5	39.0 at 93.5°	
Acrylonitrile	77.3	Cyanamid Co.	4.0	16.4 at boil.	flat plates
Methylcellosolveaceta		Carbide & Curbon	1.6	8.8 at 93°C	massive hexagons and prisms

* EK, Eastman Kodak; Pract, practical.

1:

AMCP 706-177

Cyclonite (RDX)


Downloaded from http://www.everyspec.com

Preparation:

(Summary Technical Report of the NDRC, Div 8, Vol 1)

1.....

(CH2)6 N1 + 'HNO3 + 2N LNC3 + 6(CH3CO)2 0

Armonium nitrate and acetic anhydrids are placed in a flask and, while the mixture is stirred at 75°C, the following three liquids are introduced concurrently and proportionately: acetic anhydride, concentrated nitric acid, and a solution of hexaminy in glacial acetic acid. The final mixture is held for a short time at 75° C, diluted with water to 30% acetic acid, and simulated to hydrolyze unstable reaction by-products, which are a mixture of various nitrated and acetylated derivatives of hexamine fragmonts. After simmering, the slurry is cooled and the precipitated cyclonite removed by filtration. The yield is 78% of the theoretical amount (2 moles) of cyclonite welting at 195°C. By dissolving the amaonium nitrate in the nitric soid, a continuous process, based on 3 liquids, is possible.

The product is recrystillized from acetons, or cyclobexanone, .o (a) remove acidity, (b) control particle size and (c) to produce stable B-HMX. The preparative procedure described above, the Bachmann or Co: instion process, yields cyclonite containing 3-8% HMX.

Origin:

First prepared by Honning in 1899 (German Patent 104,280) and later by von Hertz (U. S. Patent 1, 102,693) in 1922 who recognized its value as an explosive. Not used on a large scale in employive ammunition unti. World War II.

Destruction by Chemical Decomposition:

Cyclonite (RDX) is decomposed by adding it slowly to 25 times its weight of boiling 5% sodium hydroxide. Boiling should be continued for one-balf hour.

References: 14

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSHD Report No. 5746, 27 December 1945.

- (b) Ph. Naoum, Z. ges Schiess Sprengstoffw, pp. 181, 229, 267 (27 Juna 1932).
- (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

¹⁴See footnote 1, page 10.

Cyclonite (RDX)

.com

w.everyspec

from http

Downloa

(e) Armanant Research Department (Woolwich), Solubility of RDX in Mitric Acid (ARD Expl Rpt 322/43 September 1943).

(f) Heport AC-2587.

....

(g) International Critical Tables Land. Bornst.

B. T. Fedoroff et al, <u>A Manual for Explosives Laboratories</u>, Lefax Society Inc, Philadelphia, 1943-6.

(h) E. Mutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC 2561, First Report, August 1942.

(i) R. J. Finkelstein and G. Gamov, Theory of the Detonation Process, NAVORD Report No. 90-46, 20 April 1947.

(J) International Critical Tables.

(k) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explo-</u> sives at Several Different Temperatures, MAR No. 2333, November 1956.

(1) Also see the following Pleatinny Arsenal Technical Reports on Cyclonite:

<u>o</u>	1	2	<u>3</u>	4	ź	6	I	<u>8</u>	2
1170 1290 1360 1450 1760 1930 2100	1211 1241 1311 1421 1421 1421 1561 1611 1651 1741 1751 1761 2131 2151	502 1342 1352 1372 1402 1452 1492 1532 2062 2112	863 1193 1293 1433 1503 1693 1713 1793 1923	1184 1414 1454 1614 1634 2024 2154 2204	65 1175 1185 1435 1445 1445 1445 1445 1445 1445 144	1236 1316 1416 1466 1476 1556 1756 1756 1756 1756 1756 1756 17	857 1407 1437 1517 1517 1617 1687 1797 1797 1797 1997 2227	24 38 24 58 14 98 15 78 18 38 19 58 19 58 20 28 20 28 20 28 21 78 21 98	709 1379 1429 1449 1469 1709 1909 2059 2179

AMCP 706-177

Cyclotol, 75/25

Composition:	Molecular Weight:	224		
	Oxygen Belance:			
RDX 75	CO, %	-35 - 6		
TNT 25	CO %	• 0		
	Density: gm/cc Cast	1.71		
	Making Point: "C			
C/H Ratio	Freezing Point: "C			
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: *C			
Sample Wt 20 mg	Refrective Index, no			
Picatinny Arsenal Apparatus, in.	n _{as}			
Sample Wt, mg	n2			
Friction Pendulum Test:				
Steel Shoe Unaffected	Vacuum Stability Test:			
Fiber Shoe Unaffected	cc/40 Hrs, at 90°C	r		
		0.23		
Rifie Bullet Impact Test: Trials	120*C	0.41		
%	135*C	- 1		
Explosions 30	150°C			
Partials Smokes 40				
Burned 0	200 Gram Bomb Sand Test:			
Unaffected 30	Sond, gm			
Explosion Temperature: *C	Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm			
1	Mercury Fulminate			
5	Lead Azide			
10	Tetryl			
15 20	Ballistic Mortor, % TNT:			
	Trouzi Test, % TNT:			
75°C International Heat Yest: % Loss in 48 Hrs	Plate Dent Test:			
	Method			
100°C Heat Test:	Condition			
% Loss, 1st 48 Hrs	Confined			
% Loss, 2nd 48 Hrs	Density, gm/cc			
Explosion in 100 Hrs	Brisonce, % TNT			
	Datenation Rate:			
Flammability Index:	Confinement None	None		
	Condition Cast	Cast		
Hygroscopicity: %				
· · · ·				
Volatility:	arender y ginty as			
	Charge Diameter, in. 1.0 Density, gm/cc 1.70 Rate, meters/second 8035	1.0 1.71 7938		

Cyclotol, 75/25

Downloaded from http://www.everyspec.com

٠,

. .

-:

:

AMCF 706-177

Boosto? Sansitivity Test:	Decomposition Equation:
Condition	Oxygen, atoms/sec (Z/sec)
Tetryl, gm	Heat, kilocalorie/mole
Wax, in. for 50% Detonation	(SH, kcal/mol)
Wax, gm	Temperature Range, *C
Density, gm/cc	Phase
Heat of: Comb stion. cal/am 2625*	Armer Plete impect Test:
	60 mm Morter Projectije:
daa voibine, ce/gni	50% Inert, Velocity, ft/sec
Formation, cal/gm	Aluminum Fineness
Fusion, col/gm (h) 5.0	
*Calculated from composition of mixture.	500-lb General Purpose Bombs;
Specific Heet: cul/gm/*C (h) <u>°C [°]C</u>	Plate Thickness, inches
-75 0.220 75 0.352	1
0 0.225 85 0.325 25 0.254 90 0.332	14
50 0.296 100 0.351	114
	191
Burning Rate: cm/sec	Bomb Drop Test:
Thermal Canductivity:	
cal/sec/cm/*C	T7, 2000-lb Semi-Armer-Piercing Bomb vs Concrete:
Coefficient of Expension:	Max Safe Drop, ft
Linear, %/*C	500-ib General Purpose Bomb vs Concrete:
Volume, %/*C	Height, ft
	Trials
Hardness, Mohs' Scale:	Unaffected
	Low Order
Young's Modulus:	High Order
E', dynes/cm²	
E, Ib/inch ²	1000-ib General Purpose Bomb vs Concrete:
Density, gm/cc	
	Height, ft
Compressive Strength: Ib/inch ²	Triols
	Unoffected
Vapor Pressure:	Low Order
*C inm Mercury	High Order
	1

AMCP 706-177

Cyclotol, 75/25

Frigminitation Test:		Shaped Charge Effectiveness, THT = 100:		
90 mm NS, M71 Projectile, Lot WC-91:		Glass Cones Steal Cones		
Dansity, gm/cc	1,72	Hole Volume	ľ	
Charge Wt, ib	2.22	Hole Depth		
Total No. of Fregments:		Celer: Yellowbi		
For TNT	703	Yellow-bu	111	
For Subject HE	1514	Principel Uses: Shaped charge bomb especi		
3 inch HE, M42A1 Projectile, I	Let KC-5:		on; HE projectiles;	
Density, gm/cc		grenades		
Charge Wt, Ib				
Total No. of Fregments: For TNT		Method of Loading:	Cast	
For Subject HE		Losding Density: gm/cc	1.71	
			1.11	
Fragment Velocity: ft/sec At 9 ft At 251/4 ft		Storage:		
Density, gm/cc				
· · · · · · · · · · · · · · · · · · ·		Method	Dry	
Blast (Relative to THT):	(d)	Hozard Class (Quantity-Distan	ce) Class 9	
Air:	•	Compatibility Group	Group I	
Peak Pressure	111		-	
Impulse	126	Exudation		
Energy				
		Preparation: See Composition	on B	
Air, Confined: Impulse		Origin: Developed by the British between World Wars I and II and stendarwized in the United States early in World War II.		
Under Water: Peak Pressure		Black Modulus at Room Temperature (25°-30°C):		
Impulse		Dynes/cm ² x 10-10	3.09	
Energy		Density, gm/cc	1.74	
Underground:		Absolute Viscosity, poises Temp, 85 C	210**	
Peak Pressure		90 ⁰ C		
Impulse		Efflux Vincosity, Seybolt	Seconds:	
Energy		тещ , 85 ⁰ С	9-14	
		 Compositions using Spec (Class A RDX. Composition prepared using particle size. 	1	

78

Cyclotol, 70/30

1

AMCP 706-177

Composition:	Molecular Weight:	224
RDX 70	Oxygen Balance:	
•	CO, % CO %	-37 - 8
TNT 30	CO %	- 0
	Density: gm/cc Cast	1.71
	Melting Point: *C	
C/H Ratio	Freezing Point: *C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 60	Boiling Point: "C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. 14	n	
Sample Wt, mg 20	n <mark>o</mark> n	
Friction Pendulum Test:	Vacuum Stability Test:	<u></u>
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	100°C	- 04
Kitle Buller Impoct Test: Tricis /	120°C	0.86
Explosions 30	135°C	
Portials 30	150°C	
Burned O	200 Gram Bamb Sand Test:	
Unoffected 40	Sand, gm	56.6
Explosion Temperature: ¹ C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) -	Minimum Detonating Charge, g	
1 - 5 Decomposes 265	Mercury Fulminate	0.21*
10	Lead Azide	0.20*
15	Tetryl *Alternative initiating cha	rzes.
20	Ballistic Mortor, % TNT: (8)	135
	Truuzi Test, % TNT:	
75°C Internetional Heat Yest: % Loss in 48 Hrs	Plate Dant Test; (b)	
70 - Luga III 40 FIIS	Method	в
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs 0.07	Contined	No
% Loss, 2nd 4' Hrs 0.08	Density, gm/cc	1.725
Explosion in 100 Hrs None	Brisance, % TNT	136
RhannachiPhan Indone	Detonation Rate:	
Flemmability Index:	Confinement	None
Hygroscopicity: % Nil	Condition	Cast
······································	Chorge Diamster, in.	1.0
Velatility: N11	Density, gm/cc	1.73
······	Rate, meters/second	8060

79

CT WELL

AMCP 706-177

Cyclotol, 70/30

Downloaded from http://www.everyspec.com

Fregmentation Tost:		Sheped Charge Effectivaness, TN	r = 100:
90 mm HE, M71 Projectila, Lo	WC-91:	Glass Cones S	iteel Cones (e)
Density, gm/cc	1.71	Hole Volume	
Charge Wt, Ib	2.213	Hole Depth	130
Total No. of Fragments:		Cebr:	Yellow-buff
For TNT	703		161104+0011
For Subject HE	1165	Priscipel Uses: Shaped charge	bombar
3 inch HE, JA42A1 Projectile, L	44 KC-5:	especially fr	mgmentation HE
Density, gm/cc	1.72	projectiles,	grenades
Charge Wt, Ib	0.923		
Total No. of Fragments:			
For TNT	514	Method of Londing:	Cast
For Subject HE	828		
18 - 19 a		Loading Density: gm/cc	1.71
regment Velocity: ft/sec			
At 9 ft At 25½ ft		·Storage:	
Density, gm/cc			
		Method	Dry
last (Relative to TNT):	(d)	Hazard Closs (Quantity-Distanc	e) Class 9
Air:		Compatibility Group	Group I
Peak Pressure	110		
linpulse	120	Exudation	
Energy			
Air, Cerfined:		Preparation: See Compositio	n B
Impulse		Origin: Developed by the Br World Wars I and II and	
Under Water:		the United States early	in World War II
Peak Pressure		Absolute Viscosity, poises:	*
Impulse		Temp. 85°C	
Energy		90 ⁰ C	53.2
Ded. source de		Efflux Viscority, Saybolt S	
Underground: Peak Pressure		Temp, 85°C	5
Impulse		Heat of:	**
Energy		Combustion, cal/gm	2685
		Explosion, cal/gm Gas Volume, cc/gm	1213 854
		* Composition using Spec Gr Class A RDX. ** Celculated from compositi	

Cyclotol, 65/35

Downloaded from http://www.everyspo

AMCP 706-177

والمحاد الأقاد بالمحاد والمحاد والمح		
Composition: 46	Molecular Weight:	224
RDX 55	Oxygen Balance:	
יזאיז 35	CO, % CO %	-40 - 9
TNT 35		• 9
	Density: gm/cc Cast	1.71
	Melting Point: *C	
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: *C	
Sample Wt 20 mg	Refractive Index, no	
Picetinny Arsenal Apparatus, in, Sample Wt, mg	D 23	
	ns	
Friction Pendulum Test:	Vecuum Stability Test;	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impect Test: Triala	100°C	
-	120°C	
% Explosions	135°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test;	
Unoffected	Sand, gm	55.4
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
3 Decomposes 270	Lead Azide	
10	Tetryl	
20	Ballistic Morter, % TNT: (a)	134
	Trauxi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dant Test: Method	
100 °C Heat Test:	Condition	
% Loss, ist 48 Hrs	Confined	,
96 Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisonce, % TNT	
	Detonation Rate:	
Flasamability Index:	Confinement	None
	Crudition	Cast
Hygroscopicity: % Nil	Chorge Diameter, in.	1.0
······	Density, gm, cc	1.72
Veletility: Nil	Rote, meters/second	7975

81

121

Ś.,

ب ينديني المتهمين ا

. ..

, · · ·

`` ``

AMCP 706-177

1

Cyclotol, 65/35

Fragmentation Test:	·	Shaped Charge Effectiveness, THT == 1	00:
90 mm HE, M71 Proj- w, Lo	• WC-91:	Glass Cones Steel C	Ion es (e)
Density, gm/cc	1.71	Hole Volume	
Charge Wt, Ib	2.253	Hole Depth 130	
Total No. of Fragments:		Calor: Kallar bu	
For TNT	703	Yellow-bu	ff
For Subject HE	1153	Principal Uses: Shaped charge bom	
3 inch HE, M42A1 Projectile, L	of KC-S:	especially fragme projectiles, gren	
Density, gm/cc	1.71	projecties, grea	aues
Charge Wt, Ib	0.922		
Total No. of Fragments:		Method of Londing:	Cast
For TNT .	514		
For Subject HE	769	Loading Density: gm/cc	1.71
Provide Martin States			
Fregment Velecity: ft/sec At 9 ft At 25½ ft		Sterege:	
Density, gm/cc			
		Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure		Compatibility Group	Group I
		Exudation	
Impulse			
Energy			
Air, Confined:		Preparation: See Composition B	
Impulse		Origin: Developed by the Britis	
		World Wars I and II and stand the United States early in Wo	
Under Woter: Peak Pressure		the United States early in we	uld Met 71:
		Eutectic Temperature, ^O C:	79
Impulse		gm RDX/100 gm TNT	
Energy		79°C	4.16
Underground:		95°C	5.85
Peok Pressure		Absolute Viscosity, poises:*	}
Impulse			1
Energy		Темр, 85°С 90°С	30.2 26.0
Heat of:	*	* Composition using Spec Grade	
Combustion, cal/gm	2755	Class A RDX.	-9 8-4 111
Explosion, cal/gm	1205 845		
Gas Volume, cc/gm * Calculated from compos	•		

82

日本の

Cyclotol, 60/40

roi

AMCP 706-177

	Molecular Weight:	224
60	Oxygen Belanca:	
00		-43
40	CO %	10 /
	Density: gm/cc Cast	1.68
	Melting Point: *C	·
	Freezing Point: "C	[™] a _{isp} t
75	Boiling Point: *C	•
14	Refrective Index, na	
	n	
	ns	
	Vacuum Stability Test:	·····
Unaffected	cc/40 Hrs, at	
Unaffected		
		0.29
	150*C	
	200 Gram Bomb Sund Test:	
	Sond, gm	54.6
	Sensitivity to Initiation:	
		0.22*
)		0.20*
	*Alternative initiating charg	es.
	Ballistic Mortar. % TNT: (a)	1.33
	Trauzi Test, % TNT:	
	Plate Dent Test: (b)	
	Method	В
	Condition	Cast
	Confined	No
	Density, gm/cc	1.72
	Brisonce, % TNT	132
<u>+</u>	Detention Rete:	N
		None
	Condition	Cast
NII		
Nil	Charge Diameter, in. Density, gm/cc	1.0 1.72
	75 14 19	60 Oxygen Belence: CO. % CO. % 40 Density: gm/cc Cast Melting Point: "C Freezing Point: "C Freezing Point: "C 75 Boiling Point: "C 75 Refrective Index, n% n% n% 14 n% 19 n% 10 C 100°C 120°C 135°C 150°C 200 Gram Bomb Sund Test: Sand, gm Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide Ternyl *Alternetive initiating charge Bellistic Morter. % TNT: (b) Mathod Confined Density, gm/cc

۶,

 $p \rightarrow p$

8)

<u>،</u> آ

... ;

AMCP 706-177

Cyclotol, 60/40

Fragmentation Test:		Shaped Charge Effectiveness, TNT ==	100:
90 mm HE, X71 Projectile, Lot	WC-91:	Glass Cones Steel	Cones (e)
Density, gm/cc	1.65	Hole Volume 178	162
Charge Wt, Ib	2.187	Hole Depth 125	148
Total No. of Fragments:		Color: Yel:	l ow-buff
For TNT	703		
For Subject HE	·98	Principal Uses: Shaped charge be	
3 inch HE, M42A1 Projectile, Lo	ł KC-5:	especially frag projectiles, gro	
Density, gm/cc	1.67	,	
Charge Wt, Ib	0.882		
Total No. of Fragments;		Method of Loeding:	Cast
For TNT	514		••••
For Subject HE	701	Loading Density: gm/cc	1.68
Fragment Velocity: ft/sec	(c)		1.00
At 9 ft At 25½ ft	2965 2800	Storage:	
Density, gm/cc			
		Method	Dry
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure	104	F 1.1	
Impulse	116	Exudation	
Energy			·····
Air, Confined:		Preparation: See Composition	8
Impulse		Origin: Developed by the Brit:	ish between
		World Wars I and II and star	ndardized in
Under Weter: Peak Prossure		the United States early in I	World War II.
Impulse		Bulk Modulus at Room	
Energy		Temperature (25°-30°C):	
		$Dynes/cm^2 \times 10^{-10}$	4.14
Underground: Peak Pressure		Density, gm/cc	1.72
Impulse		Absolute Viscosity, poises:*	
Energy		Temp, 85°C	12.3
Heat of:	*	90°C	· •=
Combustion, cal/gm	2820		
Explosion, cal/gm Gas Volume, cc/gm	1195 845	* Compositions using Spec Grade Class A RDX.	г туре А,
Compressive Strength: 1b/i	nep ²		
1.70 _m/cc	2200-3000		

* Calculated from composition of mixture.

4

84

......

Cyclotol, 75/25, 70/30, 65/35

Downloaded from http://www.everyspec.com

AMCP 706-177

References: 15

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) R. W. Drake, <u>Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells</u>, OSRD Report No. 5622, 2 January 1946.

(d) V. Philipchuk, Free Air Blast Evaluation of RDX-TNT-Al, RDX-TNT, and TNT-Metal Systems, National Northern Summary Report, NN-P-34, April 1956.

(e) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect.</u> Section III, Variation of Cavity Effect with Composition, NDRC Contract W-672-ORD-5723.

(f) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.

(g) Also see the following Picatinny Arsenal Technical Reports on Cyclotols;

<u>v</u>	<u>1</u>	2	3	<u>4</u>	٤	6	<u>7</u>	8	2
1290 1530	1651 1741	1482	1483. 1793 1983	1824 1834 1944 2004	1435 1585	1476 1756 1796 1876	1427 1507 1747	1398 1488 1838	1469 1509 1709

(h) C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PAIR No. 2504, January 1959.

¹⁵See footnote 1, page 10.

85

AMCP 706-177

 $\mathcal{A}_{\mathcal{A}}$

Cyclotrimethylene Trinitrosamine

Downloaded from http://www.everyspec.com

1

Composition: H % 12	Molecular Weight: (C3H6N603)	174
c 20.6	Oxyge Balance:	
H 3.5 0-N-N - N-N=	-0 CO %	-55 -28
N 48.3 H ₂ C CH ₂	Density: gm/cc	
0 27.6 N	Meiting Point: *C 105	to 107
C/H Ratio 0.12	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: 'C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Refrective Index, no	
Picatinny Arsenal Apparatus, in. 15 to 22	n ^D	
Sample Wt, mg 17 to 20	n 🐱	
Friction Pandulum Test:	Vacuum Stability Test:	(c)
Steel Shoe Unaffect		
Fiber Shoe Unaffect		
Rifle Bullet Impact Test: Trials	100°C 9.19 3.7	
. %	*Average value of 5 gm sample twice lized from isoamyl alcohol.	recryster
Explosions	• • • • •	
Partials		
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sarid, gm 59+2	54.1
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	0.200##
1 5 220	Mercury Fulminate Lead Azide	
10		0.100**
15	**Alternative initiating charges.	
20	Ballistic Mortar, % TNT:	130
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
	Method	
100°C Heat Test:	. Condition	
% Loss, 1st 48 Hrs 8.79	Confined	
% Loss, 2nd 48 Hrs 2.98	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
	Detenction Rute:	(७)
Fiammability Index:	Confinement	None
Hygroscopicity: % 30°C, 90% RH 0.02	Condition	Cast
titition of the second se	Charge Diumeter, in.	1.2
Veletility:	Density, gm/cc	1.42
·	Rote, meters/second 7000 to	7300

1537 at

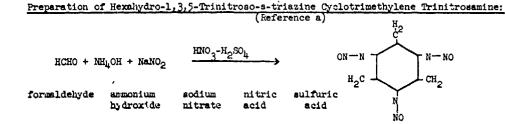
Cyclotrimethyler	e Trinit	crosamine

AMCP 706-177

:

Ζ.

fragmentation Test:	Skaped Charge Effectiveness, TNT == 100:		
90 mm HE, M71 Projectile, Lat WC-91: Density, gm/cc Charge Wt, Ib	Gloss Cones Ster Hole Volume Hole Depth	el Cones	
Total No. of Fragments: For TNT	Color:	Yellow	
For Subject HF 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb Totel No. of Fragments: For TNT For Subject TE	Principel Uses: Ingredient of p	rojecti le filler	
	Method of Loading: Pressed or cast with added melting point depressants		
	Loading Density: gra/cc	See below	
Fregment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method	Dry	
Blest (Reletive to TNT);	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse	Compatibility Group Exudation	Group M Non e	
Energy Air, Confined: Impulse	Density at Various Pressures 1b/inch ²	: (b) gm/cc	
Under Weter: Peak Pressure Impulse Energy Uneicrevound:	2,420 4,830 9,650 14,500 24,200 33,800 42,500	1.10 1.23 1.37 1.44 1.53 1.57 1.59	
Peok Pressure Impuls t Energy	Heat of: Combustion, cal/gm Explosion, cal/gm Formation, cal/gm	3158 876 -914	
	·		


87

ë,

AMCP 706-177

pier

Cyclotrimethylene Trinitrosamine

An ammoniacal solution of an amine is prepared by adding aqueous formaldehyde to ammonium hydroxide. The rate of addition of formaldehyde is regulated to maintain a solution "emperature of 30° to 35° C.

Sodium nitrite is dissolved in water and the solution or slurry is then poured into the previously prepared amine-ammonia solution and totally dissolved by stirring. This solution is chilled to below 0° C.

Into a mixed acid solution, previously prepared by dissolving concentrated nitric acid in water and adding concentrated sulfuric acid, all chilled to $-9^{\circ}C$, there is added the cold amine-nitrite solution below the surface of the acid mixture. The addition is regulated to take 20 to 30 minutes.

The resulting foamy head of cyclotrimethylene trinitrosamine is allowed to sit over the icy spent liquor for 1/2 hour and it then collected on a sintered glass funnel and washed to neutrality. The moist cyclotrimethylene trinitrosamine is removed from the funnel and sirdried on filter paper. The dry crude product melts at 105° to 107° C. Recrystallization from isoamyl alcohol gives a pure compound melting at 105° to 107° C.

Origin:

Cyclotrimethylene trinitrosamine was discovered in 1888 simultaneously by Griess and Harrow (Ber 21 (1888), p. 2737) and by Mayer (Ber 21 (1888), p. 2883) when sodium nitrite was allowed to react with hexamethylene tetramine in acid solution. This compound was later studied by Duden and Scharff (Ann 288 (1895), p. 218) and by Delepine who determined its heat of formation, which was negative (Bull Soc chim (3) 15 (1896), p. 1199). Because cyclotrimethylene trinitrosamine could be made at first in very poor yield only, it was a long time bifort is received consideration for practical application as an explosive. However, the study of cyclotrimethylene trinitrosamine was continued and investigations were made as to its behavior in mixtures with other substances (Prof. D. G. Römer "Report on Explosives,"

Destruction by Chemical Decomposition:

A STATE THE R. S. P. LEWIS CO., LANSING MICH. IN CO., LANSING MICH. & CO., LANSING MICH.

Cyclotrimethylene trinitrosamine is easily decomposed by acid or alkali and even by boiling in water.

88

and the second second second

Cyclotrimethylene Trinitrosamine

Downloaded from http://www.everyspec.com

AMCP 706-177

. . .

High Temperature Decomposition, 0.02 gm in 10 ml Test Tube: (b)

	Immersed 10 minutes in bath	heated at 50/minute
		Temp. C
(1)	Melting begins	105
	Decomposition begins	150
	Nitrous gas	160
	Entire decomposition	170
(2)	Some bubbles	110
• •	Very slow decomposition	. 150
	Decomposes in 2 minutes	200
	Decomposes in 40 seconds	250
	Inmediate decomposition	300

Long Term Stability: (b)

Cyclotrimethylene Trinitrosamine loosely packed in covered wooden boxes for six years at ambient temperature and protected from the sun:

- 1. Explosive showed no color change.
- 2. Melting point decreased from 104.5° to 104°C.
- 3. Coefficient of "Utilisation Practique" decreased from 125.5 to 123.5.
- 4. An Abel Test at 110°C gave no color to iodine starch paper in 15 minutes.

Fasion Tests, Mixtures of Cyclotrimethylene Trinitrosemine and TNT: (b)

yclotrimethylene rinitrosamine, 🎽	Melting Point, C
10	74
20	68
3C	62
40	: 55
42	55 (Eutectic)
50	55 55 (Butectic) 61
60	69
70	77
95	95

Eutectic Composition With TNT: (b) 42% Cyclotrimethylene Trinitrosamike 58% TNT

Timorie a W

Rate of Detonation, meters/second

7,000

AMCP 706-177

Cyclotrimethylene Trinitrosamine

Reaction of Cyclotrimethylene Trinitrosamine With Other Materials: (b)

Downloaded from http://www.everyspec.com

1.	Iron powder	Slight reaction
2.	Copper powder	Slight reaction
3.	Aluminum powder	Slight reaction
4.	2 parts picric acid + 1 part R-Salt	 a. Violent decomposition after 2 hours at 10°C b. Violent decomposition after 10 to 15 minutes at 100°C
5.	2 parts nitroglycerin + 1 part R-Selt	No evidence of decomposition after 5 days at 90°C

Detonation Rate: (b)

Confinement	Paper cartridge
Condition	Pressed
Charge Diameter, in.	1.18
Rate, meters/second	Density, gm/cc
5180 5760 6600 7330	0.85 1.00 1.20 1.40
7600 7800	1.50

References: 16

(a) Arthur D. Little, Inc. Progress Report No. 106, Fundamental Development of High Explosives, April 1955, Contract No. DAI-19-020-501-ORD(P)-33.

(b) Louis Médard and Maurice Dutour, "Étude Des Proprietés De Le Cyclotriméthyléne Trinitrosamine," Mém poudr, <u>37</u>, 1924 (1954).

(c) H. A. Bronner and J. V. R. Kaufman, "Synthesis and Properties of R-Salt," PATR in preparation 1959.

(d) Also see the following Picatinny Arsenal Technical Reports on Cyclotrimethylene Trinitrosamine: 1174, 2179.

16See footnote 1, page 10.

DBX (Depth Bomb Explosive)

•

!

;

1

. :

1 15 1 1 1

Downloaded from http://www.everyspec.com

1

ł

AMCP 706-177

i

.

.. ..

Composition; %		Molecular Weight:	83
Ammonium Nitrate	21	Oxygen Balance: CO ₂ %	-46
RDX	21	CO %	-26
INT	40	Density; gm/cc Cast	1.68
Aluminum	18	Melting Point: *C	
C/H Rotio		Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt:		Boiling Point; *C	•
Bureau of Mines Apparatus, cm	35	Budana Alua Jandara ID	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	13	Refractive Index, no	
Sample Wt, mg	<u> </u>	n <mark>u</mark>	
· · · ·		n	
Friction Pendulum Test:		Vecuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials		100°C	
•		120°C	6.15
% Explosions		135°C	
Partials		150°C	
Burned			ب محمد و حقوق مقاد و بنگ م در ایند که در ا
		200 Gram #omb Sand Test:	r() -
Unoffected		Sond, gm	58.5
Explosion Temperature: *C		. Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge,	gm
1		Mercury Fulminate	
5 Ignites 400)	Leod Azide	0.20
10		Tetryl	0.10
15			
20		Bellistic Morter, % TNT: (a) 146
75°C International Heat Test:		Treuzi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test: (b	•
		Method	B
100°C Heet Test:		Condition	Cast
% Loss, 1st 48 Hrs		Confined	No
% Loss, 2nd 48 Hrs		Density, gm/cc	1.76
Explosion in 100 Hrs		Brisance, % TNT	102
		Detanation Rate: (c)
Flammability Index:		Confinement	None
		Condition	Cast
Hygroscepicity: %		Charge Diameter, in.	1.6
		Density, gm/cc	1.65
Volatility:			

ļ

and the second second

91

1.1

AMCP 706-177

 $(V_{\rm pole}^{\rm eff}) = (f^{\rm eff})^{\rm eff} f^{\rm eff}$

(1, 6)

1

₹,

DBX (Depth Bomb Explosive)

Downloaded from http://www.everyspec.com

(月間)

H.A.

1.6.6.5

÷ r

Booster Sensitivity Test:	(e)	Decomposition Equation:
Londition	Cast	Oxygen, atoms/sec
Tetryi, am	100	(1./sec)
	1.35	Heat, kilocolorie/mole
Wax, in. for 50% Detonation	1.37	(JH, kcol/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc	1.76	Phase
-		_
Heat of:	(d)	
Combustion, col/gm		Armor Plate Impact Test:
Explosion, cal/gm	1700	
	_,	60 mm Mortar Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, col/gm		
		500-lb General Purpose Bombs:
Specific Heast cal/gm/*C	(d)	
-5°C, density 1.75 gm/cc	0.25	Plate Thickness, inches
, .,	,	
		1
		14
		11/2
		- 1%
Burning Rate:		
cm/sec		Somb Drop Test:
Thermal Conductivity:	_4	T7, 2000-16 Semi-Armor-Piercing Somb vs Concrete:
col/sec/cm/*C	13.2×10^{-4}	17, Adde-in Semi-Almonthereing some 17 Concisio.
Density 1.75 gm/cc		- Mar fate Durn fit
Coefficient of Expension:	6	Max Safe Drop, ft
Linear, %/°C -73°-75°C	4.5 x 10 ⁻⁵	500-lb Generel Purpose Bomb vs Concrete:
Volume, %/*C		Height, ft
		Trials
Hardness, Mohs' Scale:		
		Unaffected
Young's Modulus:	(a)	Low Order
•	10.4 x 10 ¹⁰	High Order
E', dynes/cm²	10.4 x 10	
E, Ib/inch²	1.51 x 10 ⁶	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	1.72	
		Height, ft
Compressive Strength: Ib/inch ² (d)	3210-3380	Triais
•	<i>-</i>	
Density 1.78 gm/cc		Unaffected
Vapor Pressure:		Low Order
*C mm Mercury		High Order
•		

1.1.1.1

DBX (Depth Bomb Explosive)

AMCP 706-177

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$:		
90 mm HE, M71 Projectile, Lo	ł WC-91:	Glass Cones Steel	Cones	
Density, gm/cc		Hole Volume		
Charge Wt, Ib		Hole Depth		
Torel No. of Fregments:		Celer:	Grey	
For TNT			ure)	
For Subject HE		Principal Usos:	Depth charge	
3 inch HE, M42A1 Projectile, L	Lot KC-3:	•		
Density, gm/cc				
Charge Wt, Ib				
Total No. of Fragments:		Method of Looding:	Cast	
For TNT			••••	
For Subject HE		Leading Density: gm/cc	1.61-1.69	
Fregmant Velecity: ft/sec At 9 ft				
At 251/2 ft		Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9	
Airs		Compatibility Group	Group I	
Peak Pressure	118			
Impulse	127	Exudation		
Energy	138			
Air, Conficad:		Preparation:		
Impulse		DBX can be manufactured by	slowly adding	
		water-wet RDX to molten TNT m	elted in a steam-	
Under Weter: Peak Pressure		jacketed kettle equipped with		
Impulse		all the water has evaporated, is added and with heating and		
Chergy	136	tinued, grained aluminum is a ture is cooled with stirring	dded. The mix-	
Underground:		maintain uniformity and when		
Peak Pressure		ing the mixture is cast. DBX by adding 21% ammonium nitrate		
Impulse		num to 42% cyclotol or Compos	ition B of 50/50	
Energy		RDX/TNT content plus 19% of T melted at about 100°C.	NT previously	
·			·····	

ł

93

S. W. V. S. S. Burger

ALL ADDRESS AND ADDRESS

AMCP 706-177

DBX (Depth Bomb Explosive)

Origin:

. DEX was developed and used by the United States and Great Britain during World War II.

......

References: 17

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.

M. D. Rurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(d) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(e) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo 10, 303, 15 June 1949.

(f) Also see the following Picatinny Arsenal Technica. Reports on DBX: 1585 and 1635.

17See footnote 1, page 10,

1,3-Diamino-2,4,6-Trinitrobenzene (DATNB)

Downloaded from http://www.everyspec.com

AMCP 706-177

Composition: % NK		Molecular Weight: (C6H5N5	06)	243
% NH C 29.6 1	2	Oxygen Balance:		
H 2.1 02N	T NO2	CO. % CO %		
N 28.8	L _{NH2}	Density: gm/cc	Crystal	1.83
0 39.5 NO	2	Melting Point: "C	(a)	290
C/H Ratio 0.380		Freezing Point; *C		
Impact Sensitivity, 2 Kg Wt:		Boiling Point: *C		
Bureau of Mines Apparatus, cm Sample Wt 20 mg		Refrective Index, no		
Picatinny Arsenal Apparatus, in.	18	ns		
Sample Wt, mg	9	n ₂₀		
Friction Pendulum Test:		Vecuum Stebility Test:		
Steel Shoe		cc/40 Hrs, at		
Fiber Shoe		90°C		
Rifle Bullet Impact Test: Trials		100.0		
%		120.0		
Explosions		135*C		
Partials		150°C		
Burned		200 Gram Bomb Sand Test:		
Unaffected		Sand, gm		46.6
Explosion Temperature: *C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating Charg	ge, gm	
1 5		Mercury Fulminate		
10		Leod Azide		0.50
15		Tetryl		0.10
20		Bailistic Mortor, % TNT:		100
		Trouxi Test, % TNT:		
75°C International Heat Test: % Loss in 48 Hrs		Flote Dent Test:		
·		Method		
100°C Hest Test:		Condition		
% Loss, 1st 48 Hrs	0.00	Confined		
% Loss, 2nd 48 Hrs	0.4	Density, gm/cc		
Explosion in 100 Hrs	tione	Brisance, % TNT		
P1		Detenation Rate:		
Flemmebility Index:		Confinement		None
Hygroscopicity: %		Condition		Pressed
III BIASCANICUT: 20		Charge Diameter, in.		0.5
Velatility:		Density, gm/cc		1.65
·		Rate, meters/second	÷	7500

AMCP 706-177

1,3-Diamino-2,4,6-Trinitrobenzene (DATNB)

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:		
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Stee	l Cones	
Density, gm/cc	Hole Volume		
Charge Wt, Ib	Hole Depth		
Total No. of Fragments;	Celor:	Yellow	
For TNT			
For Subject HE	Principal Uses:		
3 inch HE, M42A1 Projectile, Lot &C-3:			
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments:	Alethed of Loeding:	Pressed	
For TNT		1100000	
For Subject HE			
	Leeding Density: gm/cc At 50,000 psi	1.65	
Fragment Velocity: ft/sec At 9 ft			
At 251/2 ft	Storage:		
Density, gm/cc	Method	Dry	
Biest (Relative to TNT);	Hazard Class (Quantity-Distance)		
Air:	Compatibility Group		
Peak Pressure			
Impulse	Exudation	None	
Energy			
Air, Confine 1:	Cook-Off Temperature: °C	320 8	
Impuls	Time, minutes	0	
Under Water:	Heat of:		
Peak Pressure	Explosion, cal/gm	2876	
Impulse			
Energy			
Underground: Peak Pressure			
Impulse			
Energy			
	•		

WE AND BUILDING AND

13.16

CALLS CONTRACTORS

1, 3-Diamino-2, 4, 6-Trinitrobenzene (DATNB)

AMCP 706-177

Preparation:

Fifty grams (50 gm) of dry stypnnic acid was added to 200 gm of anhydrous pyridine with stirring. The resulting slurry was stirred for an additional 30 minutes. The yellow product, dipyridinium styphnate, was collected by filtration and washed with approximately 100 milliliters of diethyl ether. The product was dried over phosphorus (V) oxide, at room temperature, for 5 hours. Yield of 77 gm (94%), melting point 168° to 170°C (literature melting point 173°C).

To 50 milliliters of phosphorus oxytrichloride, 29.8 gm of the dipyridinium styphnate were added in small portions, with stirring. The reaction mixture was then warmed on a steam bath for 15 minutes. This solution was quenched in 500 gm of ice water. The light yellow precipitate was separated by filtration and washed with water until the washing was neutral to litemus. Yield of 1,3-dichloro-2,4,6-trinitrobenzene 20.4 gm (98%), MP 130° to 131°C (literature MP 128°C).

A suspension of 3 gm of 1,3-dichloro-2,4,6-trinitrobenzene in 9 milliliters of absolute methanol was prepared. This slurry was cooled to 0°C, and dry ammonis was bubbled into the stirred suspension. After 20 minutes the reaction mixture was allowed to warm to room temperature, filtered by suction and washed with methanol and ether until a negative Beilstein test for chloride ion was obtained on the washings. Yield of 1,3-diamino-2,4,6-trinitrobenze. -2.5 gm (97%), MP 288° to 290°C (literature MP 285°C).

Origin:

DATNB, also called 2,4,6-trinitro-1,3-diamino-benzol or 2,4,6-trinitro-phenylenediamine-(1,3), was first obtained by Noelting and Collin in 1884 (Ber <u>17</u>, 260) and also by Barr in 1888 (Ber <u>21</u>, 1546) from 2,4,6-trinitroresorcin dimethylether in contact with ammoniacal alcohol for several days. J. J. Blanksma obtained the same product in 1902 by reacting either 2-chloro-2,4,6-trinitroanisole or 3-chloro-2,4,6-trinitrophenetol with ammoniacal alcohol (Rec trav chim <u>21</u>, 324) and from 2,4,6-trinitroresorcin methylethyl ether with ammoniscal alcohol (Rec trav chim <u>27</u>, 56 (1908)).

Meisenheimer and Patzig in 1906 prepared DATNB in the form of yellow needles, MP 280° C from 1,3,5-trinitrobenzene hydroxylamine and sodium methylate in methyl alcohol (Ber 39, 2540). The product was slightly soluble in glacial acetic acid but poorly soluble in other solvents. It decomposed into NH₃ and 2,4,6-trinitroresorcin when boiled with dilute NaCH or KOH (5eil 13, 60).

Körner and Contardi prepared DATNB by the reaction of either 2,4-dichloro-1,3,5-trinitrobenzene or 2,4-dibromo-1,3,5-trinitrobenzene with ammoniacal alcohol at room temperature or better by heating to 10C C (Atti R. Accad Lincei (5), 171, 473 (1908)); (5) 18 I, 101 (1909)). A method of preparation by prolonged reaction of N-nitro-N-methyl-2,3,4,6-tetranitroaniline with a saturated anmonia solution was reported in 1913 by van Romburgh and Schepers (Akad Amsterdam Versl <u>22</u>, 297).

C. F. Van Duin obtained LATNE melting at 301°C by reacting a concentrated aqueous ammonia solution with N-nitro-N,N,N-trimethyl-2,4,6-trinitrophenylenediamine-(1,3) or with N-nitro-N-methyl-N-phenyl-2,4,6-trinitrophenylene/iamine-(1,3) (Rec trav chim 38, 89-100 (1919)). Later Van Duin and Van Lennep reacted concentrated aqueous ammonia with 2,4,6-trinitro-3aminoenisole or 2,4,6-trinitro-3-aminophenetol to obtain DATNE melting at 287° to 288°C (Rec trav chim 39, 147-77 (1920)). In 1927 Lorang prepared the same compound by boiling 2,4,6trinitro-1,3-bis (-nitroethyl ureido) benzene with water or by heating it with ammoniacel alcohol in a tube at 100°C (Re: trav chim $\frac{46}{26}$, 649) (Beil E 17, E II 33).

.

. .

AMCP 706-177

2., 3-Diamino-2, 4, 6-Trinitrobenzene (DATMB)

A recent report describes the preparation of DATNB in two steps from commercially available starting materials. First m-nitroaniline was nitrated with H₂SO₄-HNO₃ acid mixture to tetranitroaniline. The crude tetranitroaniline was converted by methanolic summonia to diaminotrinitro-benzene in a high degree of purity. A conversion of 100 parts of m-nitroaniline into 110 parts of DATNB was obtained by this method, which can easily be carried out on a commercial scale. ------

.

....

.....

Diszodinitrophenol

. ...

AECP 706-177

.....

Composition: %	N	Melecular Weight: (CGH2N405)	210
с 34.3 И ого ого	İ.	Oxygen Belance: CO ₂ % (.0 %	-61 -15
N 26.7 02N NO2 02N	Y NO2	Dunsity: gm/cc Crystal	1.63
0 38.1	ō	Making Point: "C	157
C/H Ratio 1.056		Freesing Points "C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mirles Apparatus, cm		Bailing Joint: *C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 4; (1 Sample Wt, mg	1 16 wt) 7 15	Refrective Index, nº , nº nº	
Friction Pandulum Test:		Vecuura Stebility Test:	
	etonates	cc/40 Hrs, at	
Fiber Shoe De	etonates	90°C	7.6
Rifle Builet Impact Test: Trials		- 100°C 120°C	(.0
16		135°C	
Explosions		150°C	
Partials			
Burned		200 Grom Bemb Sand Test:	47.5
Unoffected		Bit the powder fuse	47.5
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cop used) i 200		Minimum Detonating Charge, ym Mercury Fulminate	
5 195		Leod Azide	0.20
10 180		Tetryl	0.10
15			~~~~~
20		Bellistic Morter, % TNT: (a)	97
73°C International Heat Tast:		Traual Test, % TNT:	
96 Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
Su Loss, 1st 48 Hrs 2.	. 10	Confined	
% Loss, 2nd 48 Hrs 2.	. 20	Density, 5m/cc	
Explosion in 100 Hrs No	one	Brisonce, % TNT	
Flammability Index:		- Datanation Rate: Confinement	manaal
Hygrescepicity: % 30°C, 90% RH 0.	.04	- Condition E Charge Diameter, in.	Pressed
		- Density, gm/cc 0.9	1.5 1.6

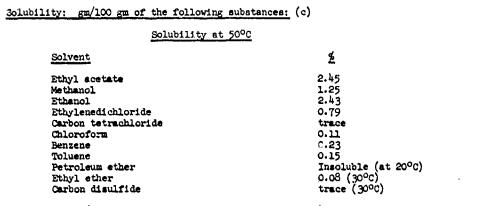
*Until it is established which picramic acid (melting point 169°C) isomer is involved (Ref: J Chem Soc, 2082, August 1949).

З

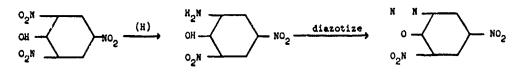
.

AMCP 706-177

4


Diazodini trophenol

Downloaded from http://www.everysp


Fregmentation Test:	Shaped Charge Effectivaness, TNT =	= 100:	
90 mm HE, M71 Projectile, Le: WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-3: Density, gm/cc		ellow needles	
Charge Wt, Ib Tatel No. of Fragments: For TNT For Subject HE	Method of Londiny:	Presued	
Fregment Vulocity: ft/sec At 9 ft At 251/2 ft	Leading Donsity: gm/cc Appm.cent 0.27 At 3000 pei 1.14 Storoge:		
Density, gm/cc 	Method Hazard Class (Quantity-Distance)	Under water Class 9	
Air: Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None	
Air, Centineel: Impulse Under Weter: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Solubility: Soluble in nitroglycerin aniline, pyridine, concentration, pyridine, concentration, and in most common or Reat of: Combustion, cel/gm Explosion, cel/gm Ges Volume, cc/gm Sensitivity to Electrostation Diucharge, Joules:	ated hydrochloric mic solvents. 3243 820 865	

Diazodinitrophenol

AMCP 706-177

Preparation: (Chemistry of Powder and Explosives, Davis)

Ten gm of picramic acid is suspended in 120 cc of 5% hydrochloric acid, and under efficient agitation at about 0°C. 3.6 gm sodium nitrite in 10 cc water is dumped into the suspension. Stirring is continued for 20 minutes, the product filtered off and washed thoroughly with icc water. The dark brown product, if dissolved in acetone and precipitated in water, turns brilliant yellow.

Origin:

Discovered by Griess in 1858 (Annalen <u>106</u>, 123; <u>113</u>, 205 (1860) and studied extensively by L. V. Clark (Ind Eng Chem <u>25</u>, 663 (1933). Developed for commercial use in 1928. This compound was patented in the United States by Professor William M. Dane.

Destruction by Chemical Decomposition:

Diazodinitrophenol is decomposed by adding the water-wat material to 100 times its weight of 10% sodium hydroxide. Nitrogen gas is evolved.

References: 18

(a) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by

¹⁸Sue footnote 1, page 10.

101

Diszodinitrophenol

Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

Downloaded from http://www.everyspec.co

(c) L. V. Clark, "Diazodinitrophenol, A Detonating Explosive," Ind Eng Chem 25, 663 (1933).

Seidell, Solubilities of Inorganic and Organic Compounds, Van Nostrand and Co., N. Y.

(d) Also see the following Picatinny Arsenal Technical Reports on Diszolinitrophenol:

<u>o</u>	2	4	٤	I	8	2
150 610 2120	1352	34 214	355	827	318 18 3 8	2179

Disthylens Glycol Dinitrate (DEGN) Liquid

ded from http://www.everyspec.com

1.

William States

AMCP 706-177

1.1

Composition:	Melocular Weight: (C4H8N207)	196
c 24.5 H_2c oNo_2	Oxygen Belanza; CO: % CO %	-41 - 8
$\frac{1}{N}$ 14.3 $\frac{1}{N_{2}C} > 0$	Density: gm/cc Liquid	1.38
$0 57.1 H_2^{-1} - 0 00_2$	Maiting Point: *C	2
C/H Ratio 0.143	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt:	Beiling Peint: *C Decomposes	160
Bureau of Mines Apparatus, cm 100+ Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg	Refrective Index, ng ng ng	1.4498
Friction Pandulum Tast:	Vacuum Stability Test:	·····
Steel Shoe Explud Fiber Shoe	es cc/40 Hrs, at 90°C	0.00000-1-1-
Rifle Buildt Impact Test: Triais %	100°C 120°C 135°C	0.3ce/20 hr/g
Explosions	150°C	
Partials Burned	200 Green Bemb Send Test	
Unaffected	Sand, gm	42.2
Explosion Temperature: *C Seconds, 0.1 (no cop used) 1 5 237 10 15	Sensitivity to Initiation: Minimum Detanating Charge, gm Mercury Fulminate Lead Azide Tetryl	'
20	Ballistic Mortar, % TNT:	90
	Trouzi Yest, % Ti4T:	77
75°C International Heat Tast: % Loss in 48 Hrs	Pleta Dent Test: Method	
100°C Heat Test:	Condition Confined	
% Loss, 1st 48 Hrs 4.0 % Loss, 2nd 48 Hrs 3.0	Density, gm/cc	
% Loss, 2nd 48 Hrs 3.0 Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Datenation Rate: Confinement	
Hygroscopicity: %	Condition Charge Diameter, in.	
Veletility: 60°C, mg/cm ² /hr 193	Density, gm/cr Rate, meters/second	1.38 6760

 $\overline{\mathcal{D}}$

第二日

Diethylene Glycol Dinitrate (DEGN) Liquid

Downloaded from http://www.everyspec.com

· · · ·

- 11 - 11

Beaster Sensitivity Test: Condition Tetryl, cm Wax, m. for 50% Detonation Wax, gm Density, gm/cc	Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/male (ΔH, kcal/mol) Temperature Range, *C Phase
Hiset of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm Fusion, cal/gm Specific Heet: cal/gm/*C Specific Heet: cal/gm/*C Specific Heet: cal/gm/*C Then al Conductivity: cal/sec/cm/*C Coefficient of Expansion: Linear, %/*C Volume, %/*C Volume, %/*C Hardness, Mohs' Scele: Young's Modulus: E', dynes/cm ² E, ib/inch ³ Density, gm/cc Compressive Strength: Ib/inch ⁴ Yeper Pressure: *C mm Mercury 20 0.0036 60 0.130	2792 Armer Plete Impect Test: 841 50 mm Marter Projectile: 796 50% inert, Velocity, fr/sec 2020 Aluminum Fineness 300-lb General Purpece Bomba: Plate Thickness, inches 1 1½ 1½

Diethylene Glycol Dinitrate (DEGN) Liquid

Downloaded from http://www.everyspec.com -

AMCP 706-177

Fregmantation Text:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total Na. of Fragmants: Far TNT	Colorless
For Subject HE 3 inch HE, M42A1 Projectile, Let KC-3: Density, gm/cc Charge Wt, ib	Frincipal Uses: Propellant compositions
Total No. of Fragments: For TNT	Mothod of Loading:
For Subject HE Fregmant Velecity: ft/sec	Looding Dessity: gm/cc
At 9 ft At 25% ft	Storage:
Density, gm/cc	Method Liquid
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure impuise Energy	Compatibility Group Exudation
Air, Confined: Impulse Under Water: Peak Pressure Impulse	Preparation: DBDN can be prepared with approxi- mately 85% yield by adding diethyleneglycol to mixed acid (50% HNO ₃ , 45% H ₂ SO _b , and 5% H ₂ O). The temperature is kept at 30°C or lower. The separated DBDN is purified by washing with successive portions of water, dilute acdium carbonate solution and water until neutral.
Energy Underground: Peak Pressure Impulse Energy	Hydrolysis, % Acid: 0.003 10 days at 22°C 0.003 5 days at 60°C 0.003 Solubility in Water, gm/100 gm, at: 25°C 60°C 0.60
Viscosity, centipoises: Temp, 20 ⁰ C 8.1	Solubility, gm/100 gm, at 25°C, in:Ether00Alcohol002:1 Ether:Alcohol00Acetone00

AMCP 706-177

Diethylene Glycol Dinitrate (DECN) Liquid

Origin:

....

11.

First prepared and studied by Wm. H. Rinkenbach in 1927 (Ind Eng Chem 19, 925 (1927) and later by Rinkenbach and H. A. Aaronson (Iri Eng Chem 23, 160 (1931)) both of Picatinny Arsenal. Used in propellant compositions by the Germans during World War II.

Destruction by Chemical Decomposition:

LEON is decomposed by adding it slowly to 10 times its weight of 18% sodium sulfide (Na₂S^o9H₂O). Heat is liberated by this reaction but this is not hazardous if stirring is maintained during the addition of DEGN and continued until solution is complete.

keferences: 19

Sec ...e following Picatinny Arsensl Technical Reports on DEGN:

<u>0</u>	<u>1</u>	· <u>2</u>	<u>3</u>	4	· <u>6</u>	ĩ	2
50 180 620 1490 1990	231 551 1391 1421	72 602 1282 1392	673 1443	հ94 16⊋4	346 1516 1616 1786	487 1427 1487 1817	279 579 1439

¹⁹See footnote 1, page 10.

106

.

Bis(2,2-Dinitropropyl) Fumerate (DNPF)

Downloaded from http://www.everyspec.com

.

1

÷

AMCP 706-177

Composition:	Moleculer Weight: (C ₁₀ H ₁₂ N ₄ 0 ₁₂)	380
с 31.6 снсо₂сн₂с(№ ₂)₂сн ₃ н 3.2	Oxygen Belence: CO3 % CO %	-59 -17
и 14.7 сноо2сн2с(NO2)2сн3	Density: gm/cc Crystal	1.60
0 50.5	Melting Point: "C Form I Form II	89 86
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+ Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 18 Sample Wt, mg 18	Boiling Point: *C Refrective Index, nm nm nm	
Friction Pendulum Test:	Vacuum Stability Test;	
Steel Shoe Unaffected Fiber Shoe Unaffected	cc/40 Hrs, at 90°C	 0.66
Rifle Builet Impact Test: Trials		
% Explosions Partials	135°C 150°C	0.91
Burned Unaffected	200 Grem Bamb Sand Test: Sand, gm	
Caspiesten Tempereture: *C Seconds, 0.1 (no cop used) 1 4 Saukes 10 15 20	Sansitivity to Initiation: Mir.: Tem Detonoting Charge, gm Mercury Fulminate Lead Azide Tetryi Bellistic Mariner, % TNT:	
75°G International Heat Test: % Loss in 43 Hrs	Plute Dent Test: Mathod	
100°C Heat Test:	Condition Confined	
% Loss, 1st 48 Hrs % Loss, 1st 48 Hrs	Density, gm/cc	
96: Lees, 2nd 48 Hrs Explosion in 100 Hrs	Brisance, % TNT	
Flammobility Index:	- Detenation Rate: Conflacment	
Hygroscopicky: %	Condition Charge Diometer, in,	
Voletility:	Bensity, gm/cc Rute, metc s/second	1.49 6050

ŧ AMCP 706-177 Bis(2,2.Dinitropropyl) Fumerate (DNPF) Shaped Charge Effectiveness, TNT == 100: Fragmontation Test: 90 mm HE, M71 Projectile, Lot WC-91: Gloss Cones Steel Cones Density, gm/cc Hole Volume Charge Wt, Ib Hole Depth **Total No. of Fragments:** Color: White For TNT For Subject HE **Principal Uses:** 3 Inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: Method of Loading: Cast For TNT For Subject HE Looding Density: gm/cc 1.50 Fregment Valocity: ft/sec At 9 ft At 251/2 ft Storuge: Density, gm/cc Method Dry Sisst (Relative to TMT); Hazard Class (Quantity-Distance) Compatibility Group Air: Peak Pressure None Exudation Impulse Energy Heat of: Air, Conflored: Combustion, cel/gm 3070 Impulse (calculated) Detonation, cal/gm 767 Under Water: (calculated) Peak Pressure Viscosity, poises: Impulse Temp, 98.9°C 106.5°C 0.586 0.435 Energy Liquid Density, gm/cc: Underground: Peak Prassura Temp, 98.9°C 106.5°C 1.382 1.375 Impulse Emergy Origin: Synthesized in 1952 by M. E. Hill of the U.S. Naval Ordnance Laboratory, White (ey, Maryland.

Downloaded from http://www.everyspec.com

NAME OF A

14

ŧ.

108

Bis(2,2-Dinitropropyl) Fumerate (INPF)

Preparation:

(a, b)

 $\begin{array}{cccc} HC-COCl & HC-CO_2CH_2C(NO_2)_2CH_3 \\ \parallel & + 2CH_3C(NO_2)_2CH_2OH & AlCl_3 & \parallel \\ HC-COCl & & HC-CO_2CH_2C(NO_2)_2CH_3 \\ \hline & & & & \\ 3.3 \ \text{mol} & 7.3 \ \text{mol} & 1.6 \ \text{mol} & 83\% \ \text{yield} \\ \hline & & & & \\ fummaryl \ chloride \ 2,2-dinitropropenol \ aluminum \ bis(dinitropropyl) \ fumarate \\ chloride \end{array}$

Dinitropropanol was mixed with chloroform (1320 milliliters) and the mixture heated to boiling. The distillate was collected in a water separator. At first the distillate was cloudy and this was dried with calcium chloride before being returned to the system. When no more water was collected in the water separator, the mixture was cooled to room temperature and the separator removed. Fumaryl chloride was introduced, followed by the aluminum chloride which was added in four equal portions. Air was blown into the flask for a minute to effect mixing, and the reaction sustained itself without the addition of heat for one hour. Steam was gradually introduced so that the reflux temperature was reached 2-1/2 hours after the beginning of the reaction. After 3 hours of reflux, the hot liquid was poured into bucket. As cooling took place the slurry was vigorously agitsted until it finally set up at room temperature. This material was broken up and mixed with dilute ice cold HCl. The solid product was collected on a sintered funnel, washed with water and with hexane. The crude material was recrystallized from methanol to give a product melting at 86°C (uncorrected), but after storage for several days the melting point was 89°C.

References; 20

(a) M. E. Hill, <u>Preparation and Properties of 2,2-Dinitropropanol Esters</u>, NAVORD Report No. 2497, 3 July 1952.

(b) D. L. Kouba and H. D. McNeil, Jr., Hercules Report on High Explosives, Navy Contract NOrd-11280, Task A, 26 May 1954

²⁰See footnote 1, page 10.

109

AMCP 706-177

AHCP 706-177

-

Bis(2,2-Dinitropropyl) Succinste (DNPS)

http://w

ww.evervsc

ec.com

Composition: %	Molecular Weight: $(C_{10}H_{14}N_{4}O_{12})$	382		
С 31.4 н 3.7	Oxygen Belence; CO3 % CO %	-63 -21		
N 14.7	Density: Jm/.: Crys.cs1	1.51		
೦ 50.2 ದ್ವಾಲ್ಮಾದರ್ಗಿಂಗಿರೆ) ವಿದ್ವ	Maiting Point: "C	86		
C/H Ratio 0.250	Frenzing Paint: "C			
Impact Sansitivity, 2 Kg Wt:	Beiling Fuint: *C			
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Jdez, ng ng ng			
Friction Pandulum Test: Steel Shoe	Vecture Stubility Test: cc/40 Hrs, at 90°C			
Fiber Shoe Rifle Bullet Impact Test: Triais % Explosions Partials	100°C 120°C 135°C 150°C	0.10		
Burned Unaffected	200 Gram Bomb Sand Test: - Sond, gm			
Explosion Temperature: *C Seconds, 0.1 (no cop used) 1 5 >400 10	Sensitivity te Initiation: Minimum Detonating Charge, gm Mercury Fulminate Leod Azide Tetryi			
20	Ballistic Mortur, % TNT:			
75°C International Heat Test: % Loss in 48 Hrs 100°C Heat Test:	Trauzi Test, % TNT: Plate Dant Test: Method Condition			
% Loss, 1st 48 Hrs	Confined			
% Loss, 2nd 48 Hrs	Density, gm/cc Brisance, % TNT			
Explosion in 100 Hrs				
Flammability Index:	Detenation Rate: Confinement			
Hygroscopicity: %	Condition Charge Diameter, in.			
Veletility:	Density, gm/cc Rate, meters/second			

1.1

- 1 A

1. P. 1. 1. 1. 142

14. 149.255 (C. 10). 14

.

Bis(2,2-Dinitropropyl) Succinate (DNPS)

AMCP 706-177

Fregmentation Test:	Shaped Charge Effectiveness, TNT = '100:
90 mm HE, /471 Projectile, Let WC-91: Density, gm/cc Cwarge Wt, Ib	Glass Cones – Steril Cones Hole Volume Hole Depth
Total No. e/ Fragments: For T NT	Color: White
For Subject HE	Principal Uses:
3 isch HE, M42A1 Prejectile, Let KC-5: Density, gm/cc	
Charge Wt, Ib	
Total No. of Fregments: For TNT	Mothod of Londing: Cast
For Subject HE	Looding Density: gm/cc
Fregment Velocity: ft/sec	
At 25½ ft Density, gm/cc	Storego: Method Day
Slast (Roletive to TNT):	Hazard Class (Quantity-Distance)
Air: Peol: Pressure	Compatibility Group
Impulse	Exudation None
Energy	
Air, Confined:	<u>Origin:</u>
Under Weter: Peak Pressure	Synthesized in 1953 by M. E. Hill of the U.S. Havel Ordnance Laboratory, White Oak, Maryland.
Impulse Energy	
Underground: Peak Pressure	
Impulse	
Energy	

i

1999 - Total II.

AMCP 706-177	<u>Bis(2</u>	2-Dinitropro	opyl) Succinate (DNPS)
Preparation:		(4)	
5сн ³ с(10 ⁵)5сн ⁵ он	+ Sil ₂ COC1	AlCl ₃	сн ₂ соосн ₂ с(No ₂) ₂ сн ₃ + 2нс). Сн ₂ соосн ₂ с(No ₂) ₂ сн ₃
dini tropropenol	succinyl chloride	aluminum chloride	bis(2,2-dinitropropyl) succinste

A methylene chloride solution of dinitropropanol (0.02 mol in 15 milliliters) was mixed with 0.01 mol of succinyl chloride. To this solution 0.003 mol of crushed anhydrous aluminum chloride was added. It was necessary to cool the reaction vessel due to the vigorousness of the reaction. After 25 minutes at room temperature the reaction solution was refluxed 1-1/2 hours. Fine needle-like crystals formed upon cooling and adding hexane. The crystals were slurried in dilute hydrochloric acid and on recrystallization from methanol gave a 93% yield of DNPS (melting point 85° to 85.6°C).

的最近的原始的正式

References: 21

(a) M. E. Hill, Synthesis of New Migh Explosives, NAVORD Report No. 2965, 1 April 1953.

²¹See footnote 1, page 10.

2,2-Dinitropropyl-4,4,4-Trinit: obutyrate (DNPTB)

Downloaded from http://www.everyspec.com

AMCP 706-177

Composition: %	Molecular Weight: (C7H9N5012) 355	
c 23.6	Oxygen Belance: CO ₂ % -29	
H 2.5 OCH ₂ C(NO ₂) ₂ CH ₃	CO % +2.3	
N 19.7 C	Density: gm/cc Crystal 1.6	8
0 54.2 CH2CH2C(NO3)	Melting Point: 'C Form I 11 Form II Form III 59	95
C/H Ratio	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt:	Builing Paint: *C	
Bureau of Mines Apparotus, cm Somple Wt 20 mg	Refrective Index, nº	
Picatinny Arsenai Apparatus, in.	n	
Somple Wt, mg	n _m	
Friction Pendulum Test:	Vacuum Stability Test;	
Steel Shoe	cc/40 Hrs, ot	•
Fiber Shoe	90'C	
Rifle Bullet Impact Yest: Trials	100°C 0.5	
· %	120°C 135°C	
Explosions	150°C	
Partials	130 €	
Burned	2^0 Gram Romb Sond Test:	
Unaffected	Sand, gm	
Rxplotion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5 300	Mercury Fulminate	
10	Lead Azide	
15	Tetryi	
20	Ballistic Moriur, % TPIT:	_
	Truuzî Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
	Method	
100°C Heet Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
Flemmability Index:	Detenative Rete: Confinement	
	Condition	
Hygroscopicity: %	Charge Diameter, in.	
	Density, gm/cc 1.6	7
Veletility:	Rate, meters/second 760	•

A State of

See.

regmentation Tost:	Shaped Charge Effectiveness, TNT = 100:
90 mm Hž, M71 Projuctile, Lot WC-91:	Girr's Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragmants:	Color: Wbite
For TNT	
For Subject HE	Principal Uses:
3 inch HE, M42A1 Projectile, Let KC-3:	
Density, gm/cc	
Charge Wt, Ib	
Total Ha. of Fragmants:	Method of Looding: Cast
For TNT	
For Subject HE	Looding Density: gm/cc 1.67
ngmanî Velecity: ft/soc	
At 9 ft At 25½ ft	Storego:
Density, gm/cc	
•	Method Dry
last (Relative to THT):	Hazard Closs (Quantity-Distance)
Airt	Compatibility Group
Peak Pressure	. Exudation None
Impulse	
Energy	
Air, Centined:	Heat of: (c) Solvent
Impulse	Transition, cal/gm CCl, DMF
	I → III 6.2 4.8
Under Weter: ' Peak Pressure :	II
Impulse	Heat of Solution, 30°C:
Energy	AH Solution, cel/gm
4 - 4 4 · · ·	Meterial CCl _h IMF
Underground: Pock Pressure	Form III 29.5 8.1
Impulse	Form I 35.6 12.8
Energy	Form II 19.1 -9.1
	Origin:
:	Synchesized in 1952 by M. E. Hill of the
	U.S. Nevel Ordnance Laboratory, White Oak, Maryland.

ww.everyspec

2,2-Dinitropropy1-4,4,4-Trinitrobutyrate (DNPTB)

Downloaded from http://www.everyspec.com

AMCP 706-177

dinitropropanol.

ษไบ*ต*ร่⊓เม∎

CH3C(NO2)2CH2COOCH2C(NO2)3 ulnitropropyl trinitrobutyrate

Dinitropropanol, trinitrobutyryl chloride and aluminum chloride were slowly wixed in car-bon tetrachloride at 60° C. This mixture w refluxed at 75° C for two hours. After the reac-tion was completed, the mixture was cooled and the crystalline product separated and purified. Water in the dimitropropeno) was removed by azeotropic distillation before the acid chloride was added. The purified product had a melting point of 95° to 96°C.

+ HC1

Crystallographic Data: (c)

Three distinct crystallographic modifications of DNPTB have been observed. These polymorphs have been characterized by means of X-ray diffraction and microscopic observation. Form I crystallizes from solution in carbon tetrachloride, chloroform, acetone, chloroformhexane, acetone-water, or methanol-water at room temperature. Prolonged standing of Form I at room temperature under the mother liquor promotes a transition to Form II. Upon solidification of molten DNPTB, Form II is always observed.

Temperature,	Average Rate, sq inch/hour	Standard Dei lation	Average Rate, mm/hour
15	0.347	0.036	0.012
20	0.435	0.025	0.128
25	0.452	0.048	0.133
30	0.475	0.049	0.140
35	0.253	0.037	0.075

Linear Rate of Transformation of Form II to Form I (0)

Both Forms I and III gave very erratic sensitivity values. The high temperature polymorph. Form II of DNPTB, gave consistent sensitivity values.

References 22

1

(a) M. E. Hill, <u>Preparation and Properties of 2,2-Dinitropropenol Esters</u>, NAVORD Report No. 2497, 3 July 1952.

(b) W. B. Hewson, Hercules Report on High Explosives, Nevy Contract MOrd-11280, Teak A, 18 October 1954.

(c) J. R. Holden and J. Wenograd, <u>Physical Properties of an Experimental Castable Explo-</u> sive 2.2-Dinitropropyl 2.4.4-Trinitrobutyrate DNPTB, NAVORD Report No. 4427, 11 December 1955.

²²Set footnote 1, page 10.

Competition: % CH ₃	Molecular Weight: (C ₇ H ₆ N ₂ O ₄)	1.82
c 46.3	Oxygen Balance: CO.g. % CO. %	-114 - 53
H 3.3 N 15.4	Pensity: gm/cc	1.521
	Melting Point: *C	71
C/H Rotio 0.579	Freezing Point: "C	
mpect Sensitivity, 2 Kg Wt:	Boiling Point: "C Decomposes	300
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenai Apparatus, in. Sample Wt, mg	Refrective Index, ng ng ng	
Friction Pendulum Test:	Vecuum Stebility Test:	<u> </u>
Steel Shoe Unaffected Fiber Shoe Unaffected	cc/40 Hrs, at 90*C	
kifle Bullet Impect Test: Triais %	100°C 120°C	0.04
Explosions O Partials O	135°C 150°C	
Burned O	200 Grem Bomb Sund Test:	
Unaffected 100	Sand, gm	19.3
Explosion Temperature: *C Seconds, 0.1 (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, grr Mercury Fulminate	1
5 Decomposes 310	Leod Azide	0.20
· 15	Tetiyi	0.25
20	Ballistic Mortar, % TNT: (a)	71
	Treuzi Test, % TNT: (b)	64
^{75°} C International Heat Test; % Loss in 48 Hrs	Plate Dent Test: Method	
00°C Heet Test:	Condition	•
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
fammebility Index:	Detenstien Rete: Confinement Condition	
Hygrescepicity: % 25°C, 100% RH 0.00	Condition Charge Diameter, in.	

Dow

baded from http://www

ŝ

116

Ļ

	2,4-Dinitrotoluene (INT) AMC	P 706-177
Fregmentation Test:	Shoped Charge Effectiveness, TNT == 160:	
90 mm HE, M71 Projectile, Lot WJ-91 Density, gm/cc Charge Wt, Ib	: Glass Cones Steel Cones Hole Volume Hole Depth	
Y otel Ne. of Fregments; For TNT For Subject HE	Color: Yellow	
3 iazh HE, M42A1 Projectile, Let & C-5; Density, gm/cc Charge Wt, ib	Principel Uses: Ingredient of propella powder, dynamites and plastic explosives	nt
Total No. of Fragments: For TNT	Mothed of Looding: Pressed, extruded c composition	r cast
For Subject HE Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Leading Density: gm/cc Varia Storage: Method Dry	ble
Blast (Relative Ir, TNY):	Hazard Class (Quantity-Distance) C222	s 12
Air: Peak Pressure impulse Energy	Compotibility Group Grou Exudation	p D
Air, Confixed: Impuise	65.5°C KI Test: Minutes 60+	
Under Weter: Peak Pressure Impulse	<u>Heat of:</u> Combustion, cal/ga (b) 1545	i
Energy Underground: Paak Pressure	Thermal Conductivity: cal/sec/cm/°C Density 1.322 gm/cc 6.28 ;	< 10 ⁻⁴
Impulse Energy		

117

1.1

C 🖬

2,4-Dinitrotoluene (INT)

W. 4 . 1 .

Downloaded from http://www.everyspec.com

Preparation:

See TNT.

Solubility: gm/100 gm of the following substances:

Ethyl	301 Alcohol	Nitro	lycerin		Water
°c	ź	<u>°C</u>	ž	<u>°c</u>	٤
25 35 45	0.16 0.29 0.49	20	30	22 50 100	0.027 0.037 0.254
55 60	0.77				

Solubility at 15°C, in:

Solvent	ž	Solvent	z
ପାପ୍ୟ 3	65.076	C _o H _c OH (absolute)	3.039
ମେଧୁ	2.431	Ether (absolute)	9.422
ଦେଅରୁ	60.644	Acreane	81.901
ଅଧାରତୀ	45.470	Ethyl acetate	57.929
ମଧ୍ୟରମ୍ଭ	5.014	CS ₂	2.306
ଜୁଣା _ର ତାନ (୨୦%)	1.916	Fyridine	76.810

Origin:

Occurs 44 75% of the products obtained on the nitration of toluene, the remaining 25% being mainly 2,6-DNY and other isomers of DNT. Also occurs as an impurity in crude TNT obtained by standard manufacturing process. Used in explosive mixtures at least since 1931.

References: 23

(a) L. C. Smith and E. G. Eyster, rhysical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

(c) Report AC-2861.

(d) Also see the following Picatinny Arsenal Technical Reports on DNT:

<u>0</u>	1	2	3	<u>4</u>	٤	<u>6</u>	I	<u>8</u>	2
810 1830	1351 1501 1651 1781 1821 2031 2221	72 372 97.1 1672 1692	43 233 343 673 1023 1663 1743 2013	394 804 1044 1084 1164 1164 1524 1524 1674 1674	1615 2125	136 1556 1816 1896	97 817 837	768 938 1538	69 149 249 279 779 1749

23See 200tnots 1, page 10,

Dipentacrythritol Hexanitrate (DPEHN)

ł

in la

AMCP 706-177

Campasition: %	Maleculer Weight: (C ₁₀ H ₁₆ N ₆ O ₁₉) 554
C 21.7 H 2.9 N 15.2 ONO ₂ ONO ₂	Oxygen Balance: CO., % -26 CO % + 3
0 00.2 CH2 CH2	Density: gm/cc Crystal 1.63
ON2OCH2C-CH2-CH2-CH2-CH2ONO2	Molting Point: °C 73.7
сн,	Freezing Point: *C
Impact Sensitivity, 2 Kg Wt:	Bailing Point: "C
Bureau of Mines Apparatus, cm 14 Somple Wt 20 mg Picatinny Arsenal Apparatus, in. 4 Sample Wt, mg 10	Rofrective Index, nº nº nº
Friction Pendulum Test:	Vocuum Stability Testi
Steel Shoe Explodes	c⊥/40 Hrs, at 90°C
Fiber Shoe Unaffected	- 100°C 3.7
Rifie Suilet Impact Test: Triais	120°C 11+
% Explosions	135°C
Partials	150°C
Burned	200 Grem Banb Send Test:
Unaffected	Sand, gm 57.4
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 300 5 Explodes 255 10	Senskivity & Initiation: Minimum Detonating Charge, gm Mercury Fulminate Løad Azide Tatryi
15 20	Bellistic Morter, % TNY: (a) 142
	Treuzi Tett, % YNT: (b) 128
75°C International Heat Test: % Loss in 48 Hrs	Fiate Dant Test: Method
160°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.11	Confined
% Loss, 2nd % Hrs 0.10	Densily, gm/cc Brisonce, % TNT
Explosion in 100 Hrs None	
Flemmebility Index:	- Detension Rate: (c) Confinement Copper tube
Nygrescepickiy: % 0.03	- Condition Pressed Charge Diameter, in. 0, 39
	Density, gm/rc 1,59
Valutility:	Rate, insters/second 7420

.

1

11

Dipentaerythritol Hexanitrate (DPEHN)

Freqmentation Tart:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fregments: For TNT	Color: White
For Subject HE 3 inch HE, MAZA1 Projectile, Let KC \: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of priming compositions
Total No. of Fregments: For TNT For Subject HE	Method of Looding: Pressed
For Subject ME	Leeding Density: gm/cc At 3000 to 4000 psi 1.59
At 9 ft At 25¼ ft Density, gm/uc	Sterege: Method Dry
Bluet (Rolative to TNT):	Hazard Class (Quontity-Distance) Class 9
Airi Peak Pressure Impulse Energy	Compatibility Group Exudation
Air, Confined: Impulse	Preparation: (Chemistry of Powder and Explosives, Davis)
Under Woter: Peck Pressure Impulse	2(HO-CH ₂) ₄ C <u>Dehydration</u> (HO-CH ₂) ₃ C-O-C(CH ₂ -OH) ₃ (⁰ ₂ NO-CH ₂) ₃ C-O-C(CH ₂ -ONO ₂) ₃
Energy Underground: Peak Pressure	Dipentaerythritol Hexanitrate is procured in the pure state (melting point 72°C) by fractional crystallization of crude PETN from moist acetone.
impulse Energy	Origin: Formed as an impurity in the prepa- ration of PEIN. Properties first described by W. Frederick and W. Brûn in 1930 (Berichts 63, 2861 (1930); Z. ges Schiess- Sprengstoffw 27, 73-6, 125-7, 156-8 (1932)).
	Heat of: Combustion, cal/gm 2260

an out the owners of

3 1117

1. 1. 1. Mar.

Dipentacrythritol Hexanitrate (DPEHN)

ed from http://www.evervspec

AXCP 706-177

References: 24

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part J.II - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) A. Stettbacher, Die Schiess und Sprengstoffe, Leipsiz, p. 363.

(c) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., New York (1943) pp. 218-203.

(d) S. Livingston, <u>Characteristics of Explosives HMX and DPEHN</u>, PATR No. 1561, 6 September 1945.

Dynamite, Low Velocity, Picatinny Arsenal (LVD)

Downloaded from http://www.everyspec.com

Composition: 99.5/0.5 RDX/1-MA dyc* 17.5 %	Molecular Weight:
TVT 67.8	Oxygen Balance:
Tripentserythritol 8.6 68/32 Vistsc No 1/DOS binders** 4.1	CO, % CO %
Cellulose acetate, IH-1 2.0	
*RDX, Class E; 1-MA is 96% pure 1-methylamino- anthraguinone.	Density: gm/cc Loading 0.9
**Vistac No 1 is low MW polybutene; DOS is	Meiting Paint: "C
dioctylsebacste. C/H Raio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureou of Mines Apparatus, cm	Boiling Print: *C
Sample Wt 20 mg	Refrective Index, nº
Picatinny Arsenal Apparatus, in. 22	n ⁹
Sample Wt, mg * 19	n ^o
Friction Pondulum Test:	
Steel Shoe Unaffected	Vocuum Stability Test:
Fiber Shoe Unaffected	cc/40 Hrs, at 90°C
	- 100°C
Rifie Sullet Impact Test: Trials	120°C 0.90
%	135°C
Explosions	150°C
Partials	
Burned	200 Grem Bamb Sand Test:
Unoffected	Sond, gm 40.5
Explosion Temperature: *C	Seneitivity to Initiatian:
Seconds, 0,1 (no cap used)	Minimum Detonating Charge, gm
1	Mercury Fulminate
5 Ignites 480	Leod Azide 0+20
10	Tetryl 0-15
15 20	Ballistic Morter, % TNT: 92
	Troual Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dant Test:
	Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hirs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisonce, % TNT
Stannanskillen tadam	- Detenstion Rote:
Flammability Index:	Confinement None
Hygroscopicity: % 0.31	- Condition Hand tamped
71°C, 95% RH. 30 days Satisfactory	Charge Diameter, in. 1,25
Veletility:	Density, gm/cc 0.9
·	Rate, meters/second 4377; or 14400 ft/sec

122

Dynamite, Low Velocity, Picatinny Arsenal (LVD)

AMCP 706-177

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
rragmantation rest.	Shaped Charge Errechtenens, 11(1 2 100;
90 mm HE, M73 Projectile, Lot WC-91; Density, gm/cc Charge Wt, lb	Glass Cones Steel Cone: Hole Volume Hole Depth
Total No. of Fragments: For TNT	Celer: Pink
For Subject HE 3 inch HE, M42A1 Prejectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Usen: Excavation, demolition, and cratering
Totel Ne. of Fregments: For TNT For Subject HE	Method of Looding: Hall Packer machine loaded
Frogmant Valacity: ft/sec At 9 ft At 25½ ft	Leading Density: gm/cc 0.9 Tamped cartridge 1-1/2" diameter, 8" long Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group A
Air, Contined: Impulse	Sensitivity to Initiation:Stick dry, No. 6 Electric capStick dry, Corps of EngineersStick wet, Corps of EngineersPositive
Under Weise; Peak Pressure Impulse Energy	Air Gep Propagation: Max distance will, inch 2-1/2 min distance will not, inch 3 Stick Water Immersion:
Underground: Peak Pressure Impulse Energy	Weight gain, \$ 9-16 <u>Heat of:</u> Fxplosion, cal/gm 625 Gas Volume, cc/gm 611 <u>Cold Storage:</u> Plastic to -65°F Low Temperature Usage:
· ·	-65°F, 1 day, M2 cap crimper Satisfactory

123

R. har att Maratak in

.

a Strather Strate

-

Dynamite, Low Velocity, Picatinny Arsenal (LVD)

Downloaded from http://www.everyspec.com

Preparation:

To date this dynamite has been prepared on a laboratory scale, the details of which are classified. It has been shown, however, to be machine loadable on a Hall packing machine.

Origin:

Nobel invented the original dynamite in 1866 and gave the name dynamite to mixtures of nitroglycerin and kieselguhr. The strength of a dynamite was indicated by the percentage of NG in the mixture. Later oridants and combustibles were substituted for the kieselguhr, and ammonium nitrate and/or nitrostarch replaced the NG, bringing into existence new types of dynamites. World War II military operations required special demolition and cratering explosives free from the objectionable characteristics of NG and many "dynamite substitutes" were developed for specific applications. The subject low velocity dynamite was developed in 1956 by Picetinny Arsenal (Ref a).

References: 25

(a) H. W. Voigt, <u>Development of Low-Velocity Military Explosives Equivalent to Commercial</u> <u>Dynamites</u>, PA Technical Report 2374, March 1957.

(b) Also see the following Picatinny Arsenal Technical Reports on Dynamites:

<u>0</u>	<u>1</u>	2	<u>4</u>	2	<u>6</u>	ĩ	<u>8</u>	2
1260 1360 1720 1760	1381 1611	782 1532	864 1464	1285	1416 1436 1506 2056	507 957	848 1828	1819

²⁵See footnote 1, page 10.

Dynamite, Medium Velocity, Hercules (MVD)

AMCP 706-177

:

Composition:	Molecular Weight:	
% RDX 75 TNT 15	Oxygen Balance: CO: % CO %	-51
Starch 5 SAE No. 10 011 4 Vistanex oil gel* 1		ding 1.1
*80/15/5, SAE No. 10 weight oil/Vistanex B- 120XC/Navy D2 wax.	Metting Point: "C	
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm' >100	Nitroglycerin Equival	ent, % 60
Sample Wt 20 mg 18	Refractive Index, no	
Picatinny Arsenal Apparatus, in. 25	ពង	
Sample Wt, mg	n 🕰	
Friction Pendulum Test:	Vecuum Stability Test:	
Steel Shoe Craciles	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	<u>^</u>
Rifle Sullet Impact Test: Trials	- 100°C	0.80
%	120°C	0.94
Explosions O	135°C	
Partials O	150°C	
Burned 10	200 Grem Bomb Send Test:	
Unaffected 90	Sand, gm	52.6
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Char	ge, gm
1 5	Mercury Fulminote	
10	Leod Azide	0.20
15	Tetryl	0.10
20	Ballistic Nuerter, % TNT:	122
40	Treuzi Test, % TNT:	
75°C International Heat Test:	Plate Dent Test:	
% Loss in 48 Hrs	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.62	Confined	
% Loss, 1st 46 Hrs 0.02 % Loss, 2nd 48 Hrs 0.12	Density, gm/cc	
Explosion in 100 Hrs None	Brisonce, % TNT	
	- Detenation Rute:	· ــــــــــــــــــــــــــــــــــــ
Flummability Index:	Confinement	None
	- Condition	Machine tamped
Hygrescepicity: %	Charge Diameter, in.	1.50
71°C, 95% RH, 30 days Satisfactory	Density, gm/cc	1.1
Voletility:		-6600; or 20,000 ft/se

41000

に見たいたというないのにないないないです。

AMCP 706-177

. . .

٠

.

Dynamite, Medium Velocity, Hercules (MVD)

. . .

90 mm HL, MY1 Projectile, Let WC-91: Density, gm/cc Glau Cones Steel Cones Total Ne. of Fregments: For TNT For Subject HE Buff 3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Buff Tetal Ne. of Fregments: For TNT For Subject HE Principal Use: Excess tion, demolition, and cratering 3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Method of Leading: Hall Packer matchine loaded For TNT For Subject HE Method of Leading: Hall Packer matchine loaded For TNT For Subject HE Leading Density: gm/cc 1.1 Tragment Velocity: ft/sec At 9 ft At 25½ ft Density: gm/cc 1.1 Baset Restaure Impulse Sensetivity to Initiation: Stick dry, No. 6 Electric cap Stick dry, No. 6 Electric cap Positive Stick dry, No. 6 Electric cap Positive Stick dry, No. 6 Electric cap Density: Corps of Engineers Positive Stick wet, Corps of Engineers Positive Stick wet, Corps of Engineers Positive Stick Vet, Corps of Positive Positive Stick Vet, Corps of Positive Positive Posi	Fragmentation Test:	Shayed Charge Effectiveness, TNT = 100:				
Chorge Wr, ib Hole Depth Tetel Ne. of Fregments: Euff For TNT For Subject HE 3 lack HE, M42A1 Projectile, Los KC-5: Density, gm/cc Chorge Wr, ib Principal Uses: Excervation, demolition, and cratering Total Ne. of Fregments: Mathed of Lossing: Hall Packer machine loaded For TNT For Subject HE Pregment Velocity: fr/sec A: At 25% ft Density, gm/cc Density, gm/cc Mathed of Lossing: Hall Packer machine loaded At 25% ft Density: gm/cc Density, gm/cc Storege: Air: Presture Impulse Exudation Energy Storege: Air: Peck Pressure Impulse Energy Useds: Veter: Peck Pressure Peck Pressure Energy Useds: Veter: Peck Pressure Peck Pressure Energy Useds: Veter: Peck Pressure Peck Pressure Energy Used segmend: Pector more store Peck Pressure Energy Used segreend: Pectof: <th>90 mm HE, M71 Projectile, Lot WC-91:</th> <th>Glass Cones Steel Con</th> <th>es</th>	90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Con	es			
Total No. of Frequents: For TNT For Subject HE Density, gm/cc J inch HE, M42A1 Projectile, Lar KC-3: Density, gm/cc Density, gm/cc Chara Excession, demolition, and cratering Tetel No. of Frequents: Mathed of Localing: Hall Packer machine loaded For TNT For Subject HE Prequent Velocity; fr/sec At 9 fr At 9 fr At 25% fr Density, gm/cc Leading Dessity; gm/cc 1.1 Cater: Mathed of Localing: Hall Packer machine loaded For TNT For Subject HE Leading Dessity; gm/cc 1.1 Prequent Velocity; fr/sec At 9 fr At 9 fr 1.1 At 9 fr At 25% fr Dessity; gm/cc 1.1 Density, gm/cc Mathod Dry Hazerd Class (Quontity-Distance) Class 9 Air: Peak Pressure Exudation Exudation Exudation Impulse Exit dry, Corp of Digineers Positive Pack Pressure Impulse Stack dry, Corp of Digineers Positive Vedergreend: Propagation: Mathed stance will, inch 1 1 Har Gep Propagation: Ma	Density, gm/cc	Hole Volume				
For TNT For Subject HE 3 inch HE, M42A1 Projectile, Lee KC-3: Density, gm/cc Density, gm/cc Charge Wt, ib Tetel Ne. of Fregments: Mathed of Lose/lag: Hall Packer machine losded For TNT For Subject HE Present Valesity: fr/sec 1.1 Cartridge 1.1/2" dismeter, 8" long 1.1 Cartridge 1.1/2" dismeter, 8" long Density; gm/cc Ar 9 fr At 25½ ft Density, gm/cc Mathed Impulse Exact Class (Quontity-Distance) Impulse Exadotion Energy Sensitivity to Initiation: Stick dry, Dro 6 Electric cap Positive Stick dry, Orps of Digineers Positive Stick dry, Corps of Lagineers Usedegreened: Peak Pressure Stick dry, Corps of Signineers Positive Stick vet, Corps of Usedegreened: Peak Pressure Mathed ef Lose/lag: 4 tons rock/ton explositive Stick vet, Corps of Usedegreened: Peak Pressure Propagation: Weight gainer 25-27 Impulse Energy Stick dry, Mathed eg Stick to -70°F Usedegreened: Peak Pressure Stick dry, Mathed eg 25-27 Impulse Freege Stick dry, Mathed eg Stick to -70°F	Charge Wt, ib	Hole Depth				
For TNT For Subject HE 3 inch HE, M42A1 Projectile, Los KC-3: Density, gm/cc Charge Wr, 1b Tetal Ne. of Fregments: For TNT For Subject HE Pregment Velocity: fr/sec At 25% ft Density, gm/cc Density, gm/cc Density, gm/cc Density, gm/cc At 25% ft Density, gm/cc Mathod Energy Air: Peck Pressure Impulse Under Weter: Peck Pressure Impulse Density of the tet TIME Peck Pressure Impulse Density of the tet TIME Density of the te	Total No. of Fragments:	Caler:	uff			
3 inch HE, M42A1 Prejectile, Let KC-5: Density, gm/cc Charge Wr, 1b Tetal Na. of Fregments: For TNT For Subject HE Leading Density: gm/cc At 9 ft At 25% ft Density, gm/cc Biset (Relative to TNT): Air: Peak Pressure Impulse Energy Undergreend:	For TNT					
Jonaity, gam/cc Charge Wr, 1b Tetal Na. of Fregments: For TNT For Subject HE Leading Density: gm/cc 1.1 Gartridge 1.1/2" disameter, 6" long Ar 9 fr Ar 25% ft Density, gm/cc Bisst (Raletive to TNT): Air Peak Pressure Impulse Energy Undergreend: Impulse Impulse Energy Undergreend: Impulse Impulse Energy Undergreend: Impulse Energy <	For Subject HE		ion, and			
Charge Wr, Ib Tetel Ne. of Fregments: For TNT For Subject HE Fregment Velocity: fr/sec At 9 fr. At 25½ fr Density, gm/cc Image: Relative to TNT): Blast (Relative to TNT): Air: Peak Pressure Impulse Energy Air, Cashined: Impulse Under Weter: Peak Pressure Impulse Under Weter: Peak Pressure Impulse Energy Under Weter: Peak Pressure Impulse Energy Under Weter: Peak Pressure Impulse Energy Under Gas Prosection: Mathed of Leeding: Hall Packer machine loaded Impulse Energy Under Gas Prosection: Peak Pressure Impulse Energy Under Gas Prosection: Peak Pressure Impulse Energy <th>3 inch HE, M42A1 Projectile, Lat KC-5:</th> <th>cratering</th> <th></th>	3 inch HE, M42A1 Projectile, Lat KC-5:	cratering				
Tetel Ne. of Frequents: Method of Localing: Hall Packer machine loaded For TNT For Subject HE Frequency Velocity: ft/sec 1.1 An 9 ft Air: Density: gm/cc Method Bisst (Relative to TNT): Method Air: Compatibility Group Impulse Exadding Earry Stack dry, No. 6 Electric cap Air: Stack dry, No. 6 Electric cap Impulse Stack dry, No. 6 Electric cap Impulse Stack dry, No. 6 Electric cap Impulse Stack dry, No. 6 Electric cap Vadar Weten: Pack Pressure Impulse Stack dry, No. 6 Electric cap Under Weten: Engineers Pack Pressure Air Gap Propagation: Man distance will not, inch 2-1/2 Quarry Performance: 4 tons rock/ton Undergressed: Stack water Immeration: Method Stack of: Energy Stack of: Deck Pressure Man distance will, not, inch 2-1/2 Quarry Performance: 4 tons rock/ton Energy Stack Water Immeration: Man distance will not, inch 2-1/2	Density, gm/cc					
For TNT For Subject HE Fregment Velocity: ft/sec 1.1 At 9 ft At 251/3 ft Density, gm/cc Storege: Density, gm/cc Method Biset (Relative to TNT): Heared Cleas (Quantity-Distance) Air: Peak Pressure Impulse Exudation Energy Statk dry, No. 6 Electric cap Under Wressure Statk dry, No. 6 Electric cap Impulse Statk dry, No. 6 Electric cap Under Wressure Math distance will, inch Impulse Math distance will, inch Undergreend: Pook Pressure Impulse Math distance will, inch Undergreend: Poik Pressure Impulse Energy Undergreend: Poik Pressure Impulse Energy Undergreend: Poik Pressure Impulse Energy Energy Stick Water Immersion: Weight gain, 5 25-27 Heet of: Poil Storege: Energy Storege: Undergreemd: Poil Storege: Energy Storege:<	Charge Wt, Ib					
For TNT For Subject HE Image: Second Stress	Total No. of Fregments:	Method of Longine: Hall Packer much	ine losdei			
Leading Density: gm/cc 1-1 Fregment Velecity: ft/sec A: 9 ft At 9 ft A: 25½ ft Density. gm/cc Storage: Density. gm/cc Method Density. gm/cc Method Blast (Relative to TNT): Hazord Class (Quantity-Distance) Class 9 Compatibility Group Group A Exudation Peak Pressure Exudation Impulse Exit dry, No. 6 Electric cap Pook Pressure Stick dry, No. 6 Electric cap Impulse Stick dry, Corps of Engineers Pook Pressure Air Gap Propagation: Max distance will, inch 1 Min distance will, inch 2-1/2 Min distance will, inch 1 Min distance will, inch 1 Min distance will, inch 2-1/2 Under Wressure Min distance will, inch 1 Impulse Energy Undergreund: Yestick Water Immeration: Weight gain, 5 Pook Pressure Stick Water Immeration: Weight gain, 5 Impulse Energy Energy Stick Water Immeration: Weight gain, 5 Cold Storage: Plastic to -70°F Low Temperature Usage: -50°F, 1 day, M2 cap <th>For TNT</th> <th></th> <th></th>	For TNT					
Frequency Velocity: ft/sec A: 21/2" diameter, 8" long A: 25% ft Storage: Density, gm/cc Method Dry Size: (Reletive to TNT): Hearond Cless (Quantity-Distance) Class 9 Air: Peak Pressure Compatibility Group Group A Impulse Exudation Exudation Air, Confined: Stick dry, No. 6 Electric cap Positive Impulse Stick dry, No. 6 Electric cap Positive Vector: Peak Pressure Engineers Positive Impulse Stick dry, No. 6 Electric cap Positive Vector: Stick dry, Corps of Engineers Positive Vector: Peak Pressure Inpulse Engineers > 50% Positive Vaderground: Peak Pressure Min distance will, inch 1 Min distance will, not, inch 2-1/2 Quarry Performance: 4 tors more region: Vector Impulse Energy Stick Water Immeraion: Weight gain, % 25-27 Impulse Energy Energion: 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Tempersture Us	For Subject HE	Landian Density on /cc	. 1			
Tregment vetery: It/sec At 9 ft At 25½ ft Density, gm/cc Blast (Reletive to TNT): Mathod Blast (Reletive to TNT): Hazord Cless (Quantity-Distance) Camposibility Group Group A Peak Pressure Exudation Impulse Exudation Mathod Exudation Air: Compatibility Group Group A Peak Pressure Exudation Exudation Impulse Exudation Exudation Under Weter: Pack Pressure Peak Pressure Impulse Energy Sensitivity to Initiation: Stick dry, No. 6 Electric cap Positive Under Weter: Pack Pressure Engineers > 50% Positive Impulse Energy Min distance will, inch 1 Min distance will, not, inch 2-1/2 Quarry Performance: 4 tons rock/ton Vadergreund: Water Immeraion: Weight gain, % 25-27 Impulse Energy 935 Gas Volume, cc/gm 945 Cold Storege: Plastic to -70°F Low Temperature Usage: -00°F7, 1 day, M2 cap						
At 25½ ft Sterregs: Density, gm/cc Mathod Dry Blace (Relative to TNT): Harod Class (Quontity-Distance) Class 9 Air: Peak Pressure Group A Impulse Energy Exudation Air: Compatibility Group Group A Peak Pressure Energy Exudation Air: Sensitivity to Initiation: Stick dry, No. 5 Electric cap Impulse Stick dry, No. 5 Electric cap Positive Stick vet, Corps of Engineers Positive Stick dry, Corps of Engineers Under Water: Peak Pressure Air Gap Propagation: Min distance will, inch 1 Impulse Min distance will not, inch 2-1/2 Quarry Performance: 4 tons rock/ton Undergreund: Stick Water Immersion: explosive Peak Pressure Stick Water Immersion: 935 Impulse Energy Stick Vater Immersion: 945 Cold Storege: Plastic to -70°F Low Tempersture Usage: -65°F, 1 day, M2 cap						
Method Dry Bisst (Relative to TNT): Hazard Class (Quantity-Distance) Class 9 Air: Peak Pressure Group A Impulse Exudation Exudation Air, Coeffined: Sensitivity to Initiation: Sensitive to an initiation: Air, Coeffined: Sensitivity to Initiation: Sensitive to an initiation: Air, Coeffined: Sensitivity to Initiation: Sensitive to an initiation: Impulse Stick dry, No. 6 Electric cap Positive Stick dry, Corps of Engineers Positive Vader Water: Engineers > 50% Positive Peak Pressure Air Gap Propagation: Min distance will, inch 1 Impulse Min distance will not, inch 2-1/2 Quarry Performance: 4 tons rock/ton Underground: Stick Water Intersion: weight gain, % 25-27 Impulse Heat of: Explosion, calgm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Usage:		Storage:				
Air: Peak Pressure Impulse Energy Air, Casfined: Impulse Under Weter: Peak Pressure Impulse Under Weter: Peak Pressure Impulse Energy Under Weter: Peak Pressure Impulse Energy Under Pressure Impulse Energy Stick Vater Immersion: Weight gain, % Composibility Group Engineers Positive Air Gap Propagation: Man distance will, inch 1 Man distance will, inch 2-1/2 Quarry Performance: 4 tons rock/ton Weight gain, % Cold Storege: Plastic to -70°F Low Temperature Usege: -65°F, 1 day, M2 cap	Density, gm/cc	Method I)ary			
Peak Pressure Exudation Impulse Exudation Air, Confined: Sensitivity to Initiation: Impulse Stick dry, No. 6 Electric cap Positive Stick dry, Corps of Engineers Positive Stick dry, Corps of Engineers Positive Under Water: Engineers > 50% Positive Peak Pressure Air Cap Propagation: Impulse Max distance will, inch 1 Impulse Min distance will not, inch 2-1/2 Quarry Performance: 4 tons rock/ton Vaderground: Stick Water Immersion: Peak Pressure Heat of: Impulse Energy Underground: 25-27 Impulse Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Usage: -65°F, 1 day, M2 cap	Biast (Relative to TNT):	Hazard Class (Quantity-Distance) (1448 9			
Energy Air, Ceefined: Impulse Impulse Peck Pressure Impulse Energy Underground: Peck Pressure Impulse Energy		Compatibility Group (roup A			
Energy Air, Cenfined: Impulse Under Weter: Peck Pressure Impulse Underground: Peck Pressure Impulse Energy Underground: Peck Pressure Impulse Energy Ene	Impulse	Exudation				
Air, Canfined: Impulse Sensitivity to Initiation: Stick dry, No. 6 Electric cap Positive Stick dry, Corps of Engineers Positive Stick vet, Corps of Engineers > 50% Positive Under Weter: Peak Pressure Impulse Air Gap Propagation: Max distance will, inch 1 Min distance will, nch 2-1/2 Underground: Peak Pressure Impulse Max distance will, inch 1 Min distance will not, inch 2-1/2 Underground: Peak Pressure Impulse Stick Water Immeraion: Weight gain, % Energy Stick Water Immeraion: Weight gain, % Underground: Peak Pressure Impulse 935 Gas Volume, cc/gm Underground: Peak Pressure 935 Gas Volume, cc/gm	•					
ImpulseStick dry, Corps of EngineersPositiveUnder Weter: Peck PressureEngineers> 50% PositiveImpulseAir Gap Propagation: Max distance will, inch 1 Min distance will not, inch 2-1/2Underground: Peck PressureQuarry Performance: Weight gain, %25-27Impulse EnergyStick Water Immeraion: Weight gain, %935 Gas Volume, cc/gm945 Cold Storage: Plastic to -70°FLow Temperature Usage: -65°F, 1 day, M2 capCorps of EngineersPositive	••	Sensitivity to Initiation:				
Under Weter: Stick wet, Corps of Peak Pressure Engineers > 50% Positive Impulse Max distance will, inch 1 Energy Max distance will, inch 1 Underground: Quarry Performance: 4 tons rock/ton Underground: explosive Peak Pressure Stick Water Immersion: Impulse Weight gain, % Impulse Explosion, cal/gm Impulse Explosion, cal/gm Impulse Old Storage: Icov Temperature Usage: -65°F, 1 day, M2 cap						
Under Weter: Engineers > 50% Positive Peck Pressure Air Gap Propagation: impulse Max distance will, inch 1 Energy Quarry Performance: 4 tons rock/ton Underground: explosive Peck Pressure Stick Water Immeration: Impulse Weight gain, % 25-27 Impulse Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Low Temperature Usage: -65°F, 1 day, M2 cap	impulse		Positive			
Peak Pressure Air Gap Propagation: Max distance will, inch 1 Min distance will not, inch 2-1/2 Energy Quarry Performance: 4 tons rock/ton explosive Undergreund: Peak Pressure Impulse Stick Water Immersion: Weight gain, % 25-27 Impulse Heat of: Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: -65°F, 1 day, M2 cap Plastic to -70°F	Under Weter:		50% Positive			
Energy Min distance will not, inch 2-1/2 Energy Quarry Performance: 4 tons rock/ton Underground: explosive Peck Pressure Stick Water Immeraion: Impulse Weight gain, % Energy 935 Gas Volume, cc/gm 945 Cold Storege: Plastic to -70°F Low Temperature Usage: -65°F, 1 day, M2 cap						
Energy Underground: Peak Pressure impulse Energy Quarry Performance: 4 tons rock/ton explosive Stick Water Immeraion: Weight gain, % 25-27 Heat of: Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Usage: -65°F, 1 day, M2 cap	Impulse					
Undergreenes: Peck Pressure Peck Pressure Stick Water Immeraion: Impulse Weight gain, % Energy Heat of: Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Usage: -65°F, 1 day, M2 cap	Energy					
Impulse Weight gain, % 25-27 Energy Heat of: 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Usage: -65°F, 1 day, M2 cap	Underground:		explosivo			
Impulse Heat of: 935 Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Ussge: -65°F, 1 day, M2 cap	Peak Pressure)F 07			
Erelosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Ussge: -65°F, 1 day, M2 cap	Impulse		-J-E1			
Low Temperature Ussge: -65°F, 1 day, M2 cap	Energy	Explosion, cal/gm				
-65°F, 1 day, M2 cap		Cold Storage: Plastic to -	70 ⁰ F			
		-65°F, 1 day, M2 cap	fectory			

Dynamite, Medium Velocity, Hercules (MVD)

. .

.

Downloaded from http://www.everyspec.com

AMCP 706-177

Prepayation:

18 . A . A .

Monufactured on standard dynamite line and packaged on a Hall packing machine. Details of handling materials and techniques of manufacture are classified.

Origin:

Military forces frequently require excavation, demolition, and cratering operations for which standard high explosives are unsuitably. Commercial blasting explosives, except black powder, are called dynamites although they may contain no nitroglycerin. The subject dynamite substitute was developed in 1952 by the Hercules Powder Company (Ref a).

References: 26

(a) W. R. Baldwin, Jr., <u>Blasting Explosives (Dynamite Substitute)</u>, Hercules Powder Company Formal Progress Report, RI 2086, 15 August 1952, Army Contract DA-36-034-ORD-110.

(b) N. W. Voigt, <u>Development of Low-Velocity Military Explosives Equivalent to Commercial</u> <u>Dynamitys</u>, PA Technical Report No. 2374, March 1957.

26See footnote 1, rage 10.

Composition: %	Molecular Weight: Approximately 503
Nitrocellulose, 13.25% N 80	Oxygen Balence:
Barium Nitrate 8	CO, % +5
Potassium Nitrate 8 Starch 3	CO % -25
Diphenylamine 0.75	Density: gm/cc
Aurine 0.25	Maiting Point: *C
C/H Ratio	Freezing Point: "C
Impact Sansitivity, 2 Kg Wt:	Beiling Pelat: *C
Bureau of Mines Apparatus, cm 19 Sample Wt 20 mg	Refractive Index, nº
Picatinay Arsenal Apparatus, in.	no.
Sample Wt, mg 20	n <u>D</u>
Friction Pendulum Test: Steel Shoe Snaps	Vocuum Stability Test:
Steel Shoe Sline Sline Sline Sline Sline Shoe	cc/40 Hrs, at 90°C
	100°C
Rifle Bullet Impact Yest: Trials	120°C
96	135°C
Explosions	150°C
Partials	
Burned	200 Gram Bond Sand Test:
Unaffected	Sand, gm 46.8
Explosion Temperature: C	Sansitivity to Initiation:
Seconds, 0.1 (no cap used)	Minimum Dutonating Charge, gm
1 5 Decomposes 200	Mercury Fulminate 0.22
	Lead Azide
15	Tetryl :
20	Bailistic Mortor, % TNT:
	Troux Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs 1.8	Plate Deat Test:
% Loss in 48 Hrs 1.8	Method
100°C Heat Test:	Condition
°i Loss, 1st 48 Hrs 2.0	Confined
% Loss, 2nd 48 Hrs 0.2	Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
	Detanetion Kate:
Flammability Index:	Confinement
Hygroscopicity: % 30°C, 30% RH 6.2	Condition Cliarge Diameter, in.
	Density, gm/cc
Voletility:	Rate, meters/second

EC Blank Fire

tp://www.ev

17: 195

T.

128

4+

AMCP 706-177 EC Blank Fire Frequentation Test: Sheped Charge Effectiveness, TNT = 100: 90 mm ME, M71 Projectile, Let WC-91: Glass Cones Steel Cones Hole Volunia Density, gm/cc Hole Depth Charge Wt, Ib Total No. of Fragmants: Celor: For TNT For Subject HE Principul Uses: Grenades; caliber .30 blank 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Yotel No. of Fragments: Method of Localing: Loose For YNT For Subject HE Leeding Density: gm/cc 0.40 Fregment Velocity: ft/sec At 9 ft At 251/2 ft Storuge: Elensity, gm/cc Method Wet Blact (Relative to TNT); Hazard Class (Quantity-Distance) Class O **Compatibility Group** Group J Ain Peak Pressure Exudation Impulse Energy Preparation: EC Blank Fire is a partially colloided propellant canufactured by a pro-Air, Confined: Impulse cess using either acetons and ethanol or a mixture of butyl acetate and benzene to gelatinize only a part of the nitrocellu-**Under Water:** lose. The process is controlled so that Peak Pressure the product passes through a No. 12 sieve Impulse and is retained on a No. 50 sieve. Energy Origin: Undergrownd: Invented in 1882 as bulk sporting (amokethe Explosive Company (whence the name "EC") in England (British Patent 619). Peak Pressure Impulse Energy References:²⁷(a) See the following Picatinny Arsenal Technical Reports on EC Blank Fire: 891, 200 232 1373 854 65 667, 120°C Heat Test: Minutes Salmon Pink 150 901, 372, 512, 822, 233, 1373, 854, 65, 667, 817, 69, 579 and 1399. Red Fumes 300+ Amplodes 300+

d from http://www.ev

st, lagar

²⁷See foutnote 1, page 10.

. Т.

1

129

5

1.1

1 1

1 Ľ, 22

Eduatol, 55/45

-

Downloaded from http://www

÷,

Composition:	Molecular Weight:	178
π Haleite (Ethylene Dinitzamine) 55	Oxygon Bolence:	
TNT 45	CO, %	-51 -17
TNT 45	Density: gm/cc Cast	1.62
	Metting Point: *C Eutectic	80
C/H Ratio	Freezing Point: *C	
Impact Sansitivity, 2 Kg Wt:	Builing Point: "C	
Bureau of Mines Apparatus, cm 95 Sample Wt 20 mg	Refrective Index, no	
Picatinny Arsenal Apparatus, in.	All A	
Sample Wt, mg 20	n ₂₀	
Friction Pendulum Test: Steel Shoa Unaffected	Vacuum Stability Test:	
Steel Shoe Unaffected Fiber Shoe Unaffected	cc/40 Hrs, at 90°C	
	- 100°C	1.0
Rifle Bullet Impact Text: Trials	120°C	11+
Explosions 0	135°C	
Explosions O Partials O	150°C	
Burned 7		
Unaffected 93	200 Gram Bound Sand Test: Sand, am	49.4
Explosion Yempereture: * 'C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 435 1 248	Minimum Detonating Charge, gr Mercury Fulminate	0.024
5 Decomposes 190	Laod Azide	0.26*
10 183		
15 176	*Alternative initiating char	248.
20 3.68	Sallistic Mortar, % TNT: (a)	119
*Composition Haleite/TNT, 60/40.	Troust Toxi, % TNT: (b)	120
75°C International Heat Tast:	Plate Dent Test:	52/48
% Loss in 48 Hrs	Method	В
100'C Heet Test:	Condition	Cast
% Loss, 1st 48 Hrs 0.2	Confined	No
% Loss, 2nd 48 Hrs 0.1	Density, gm/cc	1.62
Explosion in 100 His None	Brisance, % TNT	112
	Detenation Rate:	an a
Flammability Index: Will not continue to burn	Confinement	None
	- Condition	Cast
Hygrescepicity: % None	Charge Diameter, in,	1.0
	Density, gm/cc	1.63
Velatility:	Rate, meters/second	7340

1

Ednatol, 55/45

AMCP 706-177

······································				
Fragment You Test:			Sheped Churge Effectiveness, TNT =	100: 50/50
90 mm HE, M71 Projectile,	Let WC-91:		Glass Cones Stee	i Cones
Density, grn/cc	1.56	1.62	Hole Volume 126 1	.23
Charge Wt, ib	2.065	2.092	Hole Depth 117 1	21
Total No. of Fragmantu:			Coler:	Yellow
For TNT	703	703		
For Subject HE	842	902	Principal Uson: Projectiles, t	
3 inch HE, M42A1 Projectil	, Los XC-3:		emmunition con	ponenta
Density, gm/cc		1.60		
Charge Wt, Ib		0.845		
Total No. of Fragments:			Motion of Londing:	Cast
For TNT		514		
For Subject HE		536	Londing Doneity: gm/cc	1.65
Frequent Valacity: f0/sec				2.09
At 9 ft		2730		·····
At 251/2 fr		2430	Stereger	
Density, gm/cc		1.62	Method	Dry
			memo:	шу
Bizst (Relative to TMT):		(d, e)	Hazard Class (Quantity-Distance)	Class 9
Airs			Compatibility Group	Group I
Peak Pressure		108	1	
Impulze		110	Exudation Does t	out exude at 65°C
Energy		108		
Air, Contined:			Eutectic Temperature, °C:	79.8
Impulse			gm Haleite/100 gm TNT 79.8°C	0.48
			95.0°C	1.12
Under Walars			Compatibility with Metals:	
Peak Pressure Impulse		u = '	Dry: Brass, aluminum, stat	nless staal
		113	mild steel, mild steel costed	
Energy		113	proof black paint, and mild a	
Underground:			with cadmium or nickel are up per, magnetium, magnesium-alu	
Peak Pressure			mild steel plated with copper	
Impulse			slightly affected.	
Energy			Wet: Copper, brass, magnes	
Booster Sensitivity Te	sti	(d)	eluminum elloy, mild steel, a	
Condition		Cast	with acid-proof black paint a plated with copper, cadmium,	
Tetryl, gm War in son 500 Dat		100 1.28	are heavily attacked. Alumin	
Wax, in. for 50% Det Density, gm/ce	014 01 01	1.20	affected and stainless steel	

11

2723 340 s - 1 1

Ednatol, 55/45

这份时间的

Preparation:

Wet Haleite is added slowly to molton INT heated at about 100° C in a steam jacketed melting kettle coulpped with a stirrer. Heating and stirring are continued until all moisture is evaporated. Loading is done by pouring the mixture cooled to 85° C.

Origin:

Mixtures of Hsleite (EINA) and TNT, designsted Ednatol, were developed at Picatinny Arsenal just prior to World War II.

References: 28

(a) L. C. S ith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD</u> Report No. 5746, 27 December 1945.

(b) Philip C. Keenan and Dorothy C. Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Tenting, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Welton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Memo 10, 303, 15 June 1949.

(e) W. R. Tomlinson, Jr., Blast Effects of Bomb Explosives, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Sac III, Variation of Cavity Effect with Composition, NDRC Contract W-672-ORD-5723.

(g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

(h) Also see the following Picatinny Arsenal Technical Reports on Eduatel:

<u>o</u>	1	2	3	<u>4</u>	2	<u>6</u>	I	<u>8</u>	2
1290 1400 1420 1530	1291 1451 1651	1162 1372 1482	1193 1363 1493	1294 1434	1325 1395 1885	1796	1457 1477 1737 1797	1198 1388 1838	1 <i>2</i> 79 1469

28See footnote 1, page 10.

Ethylane Glycol Di-Trinitrobutyrate (GTNB)

÷

.. .. .

.

... ...

Downloaded from http://www.everyspec.com

- .

×.

AMCP 706-177

Composition: %	Molecules Weight: (C10H12N6016)	468
с 25.6 н 2.6	Oxygen Belence: CO ₂ % CO %	- 34 0
N 17.1	Density: gm/cc Crystal	1.63
о 54.7 сн ₂ со ₂ сн ₂ сн ₂ с(NO ₃)	Molting Point: "C	96
C/H Rotio 0.235	Freezing Point: *C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: *C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	Refrective Index, np	
Sample Wt, mg	nS	
· · · · · · · · · · · · · · · · · · ·		
Friction Pendulum Test;	Vocuum Stability Tuot:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Builet Impact Test: Trials	120°C	
%	135*C	
Explosions	150*C	
Partials		
Burried Unoffected	206 Grem Bemb Send Test: Sond, am	
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cop used)	Minimum Detonating Charge, gm	
5 50% point 230	Mercury Fulminate Leod Azide	
10	Tetryl	
15	······································	
20	Bellistic Marter, % TNT:	
75°C International Hout Test:	Treuxi Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test: Mathod	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisonce, % TNT	
Flammability Index:	Detensition Rote: Confinement	
	Condition	
Hygroscopicity: %	Charge Diameter, In.	
	Density, gm/cc	1.63
Velatility:		2103

i.

Ethylene Glycol Di-Trinitrobutyrate (GTNB)

.....

Fragmantation Test:	Shaped Chargo Effectiveness, Ti	NT == 100:	
90 mm HE, M71 Projectile, Let WC-91:	Glass Convis	Steel Cones	
Density, gm/cc	Hole Volume		
Charge Wt, Ib	Hole Depth		
Charge With 10			
Total No. of Fragments:	Celer:		
For TNT	Color:		
For Subject HE			
	Principal Uses: Casting me	dium for HE compound	
3 Inch HE, M42A1 Projectile, Lot KC-5:			
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments;			
For TNT	Method of Loading:	Cast	
For Subject HE			
	Looding Density: gm/cc	1.60	
Fragmont Velocity: It/sec			
At 9 ft			
At 2514 ft	Storage:		
Density, gm/cc	Method	Dry	
	metrica	LEy	
Blast (Kalative to TNY):	Hazard Class (Quantity-Dista	Hazard Class (Quantity-Distance)	
Airs	Compatibility Group		
Peak Pressure			
Impulse	Exudation	None	
Energy			
	· Preparation:	(a)	
Ale, Configuration		•••	
Impulse	By the addition of niglycol discrylate. As t		
Under Weturi	ration often leads to pr	oducts difficult to	
Poak Pressure	purify, a preparation fr	om ethylene glycol	
Impulse	and pure trinitrobutyric	acid is in process.	
Energy	Origins		
Undergrounds	First synthesized in :	1951 by the U.S.	
Peak Pressure	Rubber Company, Research	and Development	
Impulse	General Laboratories, Pa	ssaic, New Jersey.	
Energy	Viscosity, poises:		
	Temp, 98.9°C 106.5°C	0.246	
		0.193	
	Liquid Density, gm/cc: Temp, 98.9°C	1.467	
	106.5°C	1.459	

×

Ethylene Glycol Di-Trinitrobutyrate (GTNB)

AMCP 706-177

References;29

Ę

÷

116 1 1 10

an trade a la

(a) U. S. Mubber Company Progress Report No. 14, Navy Contract NOrd-10129, 1 February 1951 to 1 May 1951.

(b) U. S. Naval Ordnance Laboratory, Silver Spring, Maryland, Letter from Dr. O. H. Johnson to Commanding Officer, Picatinny Arsenal, 8 April 1955 (ORDEB 471.86/44-3, Registry No. 39815); and NOL Letter from Dr. D. V. Sichman to Commanding Officer, Picatinny Arsenal, 29 November 1955 (ORDEB 471.86/159-1; Serial No. 02894).

²⁹See footnote 1, page 10.

135

P - 17 18

. .

Explosive D (Ammonium Picrete)

Downloaded from http://www.everyspec.com

Cast position: %	Malacular Weight: (C6H6N407)	246
с 29.3 о-ян	Oxygon Belance:	
H 2.4 02NNO2	CO, %	-52 -13
N 22.7	Density: gm/cc Crystal	1.72
o 45.6	Melting Peint: *C Decomposes	265
C/H Ratio 0.317 NO ₂	Freezing Point: *C	
Impace Sansitivity, 2 Kg We:	Beiling Point: *C	
Buniau of Minus Apparatus, cm Sample Wt 20 mg	Refrective Index, non ag	1.508
Picatinny Arsenai Apparatus, in. 17 Sample Wt. ma 18		
Sample Wr, mg 18	bo	1.870
		1.907
Friction Foundations Test:	Vocuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	0.2
Rifle Bullet Impact Tuet: Trials		•
%	120*C	0.4
Explosions 0	135°C	
Portick 0	150°C	0.4
Burned 30	200 Grom Bomb Sand Yest:	
Unoffected 70	Sand, gm	39+5
Explainer Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cop used) 405	Minimum Detonating Charge, gm	
1 367	Mercury Fulminate	
5 Decomposes 318	Lead Azide	0.20
10 314	Tetryi	0.06
15 2 99	Ballistic Mortur, % TNT: (a)	99
20 295	Yruuzi Teat, % TNT:	77
75°C International Host Yest:	Plate Dent Test:	
% Loss in 48 Hrs	Method	A
	Condition	Proseed
100°C Hant Test:	C and	Yes
% Loss, 1st 48 Hrs 0.1	Density, gm/cc	1.50
% Loss, 2nd 48 Hrs 0.1	Brisance, % TNT	91
Explosion in 100 Hrs None		/*
Hannability Index:	Confinement	None
	Condition	Pressed
Hygroservicky: % 100% RH 0.1		
	Charge Diameter, in.	1.0
Veletility	Density, gm/cc	1,95 6850
•	Rate, meters/second	0070

1

Explosive D (Ammonium Picrate)

. ·

.

ς.

AMCP 706-177

.....

:

Fregmentation Test:		Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lat	WC-91:	Glass Cones	Steel Cones		
Density, gm/cc	1.50	Hole Volume			
Charge Wt, Ib	1.94	Hole Depth			
Total No. of Frequents:					
For TNT	703	Celer:	Yellow-orange		
For Subject HE	649	Principal Uses: AP proje	ectiles and bombs		
3 inch HE, M42A1 Projectile, Let	KC-5:				
Density, gm/cc	1.55				
Charge Wt, ib	0.82				
Total No. of Fragmonts:		Method of Loading:	Pressed		
For TNT	514		LIMBOCH		
For Subject HE	508				
			$x 10^3$		
Frequent Velacity: it/sec		· 3 5 10 1.33 1.41 1.47	12 15 20 1.49 1.51 1.53		
At 9 ft At 25½ ft		Storege:			
Density, gm/cc					
		Method	Dry		
Blast (Roistive to TNT):	······	Hozard Class (Quantity-Dis	itance) Class 9		
Airt		Compatibility Group	Group I		
Peak Pressure					
Impulse		Exudation	None at 65°C		
Energy					
Air, Confinad:		Sensitivity to Electron	static		
Impulse		Discharge, Joules:	(d)		
	•	Through 100 Mesh:			
Under Water: Peak Pressure		Confined	6.0		
Impulse		Unconfined	0.025		
Energy		Booster Sensitivity Ter			
		Condition Tetryl, gm	Pressed 100		
Underground:		Wax, in. Sov 50% D			
Peck Pressure		Density, gm/cc	1.54		
Impulse		Heat of:			
Energy		Combustion, cal/gm			
		Explosion, cal/gm	800		
		Formation, cal/gm	395		

1

Explosive D (Ammonium Picrate)

w.everyspe

17 (a)

10

A DATES OF BELLE

Preparation:

Explosive D is manufactured by suspending picric acid in hot water and neutralizing it with gaseous or liquid ammonia. As the picrete is formed, it goes into solution; on cooling, it precipitates. An excess of ammonia leads to formation of the red form of ammonium picrete. This should be avoided. The separated crystels are vashed with cold water and dried.

Effect of Storage on Sand Test Values:

			imum Mating Marge	
Stor Years	se C	Mercury Fulminate (gm)	Tetryl (gm)	Sand Crushed (gm)
0 3.5 2 # 4 #	50 Normal Normal	0.25	0.06 0.03 0.04	23 23 23 23
2 **	50	0.24		23

After 3.5 years at 50°C. After 3.5 years at 50°C and 2 years at magazine temperature.

Solubility: gm/100 gm (%), of: (e)

**

Wa	ter	!	Alcohol		1 Acetate
°C	£	°c	٤	°c	ź
20 100	1.1 75	0 10 30 50	0.515 0.690 1.050 1.890	0 10 30	0.290 0.300 0.380 0.450
		20 80	3,620	50 80	0.560

Origin:

First prepared by Marchand in 1841 and used by Brugere in admixture with potassium nitrate as a propellant in 1869. Used as a high explosive after 1900.

Destruction by Chemical Decomposition:

Explosive D (associum picrate) is decomposed by dissolving in 30 times its weight of a solution made from 1 part of sodium sulfide ($Na_2S'9H_2O$) in 6 perts of water.

References: 30

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part III - Miscellaneous <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

305ee footnote 1, page 10.

Explosive D (Ammonium Picrate)

Downloaded from http://www.everyspec.com

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.

(d) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U. S. Dept of Int, Eureau of Mines, RI 3852, 1946.

(c) Various sources in the open literature.

(f) Also see the following Picatinny Arsenal Technical Reports on Explosive D:

<u>o</u>	<u>1</u>	2	3	4	5	<u>6</u>	ĩ	<u>8</u>	2
340 870 1380	1441 1651	132 582 1172 1352 1372 1492	843	694 704 874 1234 1724	65 425 1585 1655 1725 1885 1895	266 556 796 986 1466 1796	1737 1797	328 838 1838	1729 1759

فسترجدن البارات

1794

Glycerol Monolactate Trinitrate (GLTN) Liquid

Downloaded from http://www.everyspec.com

~**EXTRAC**

1

in the system of the

Composition:	Molecular Weight: (C6H9N3011)	299
с 24.1 0 оно ₂ н 3.0 сн ₂ -0-с-си-сн ₃	Oxygen Belance: CO ₂ % CO %	30 3
N 14.1 CH-ONO2	Density: gm/cc Liquià	1.47
0 58.8 CH2-0NO2	Melting Point: *C	
C/H Ratio 0.180	Freezing Peint: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 15 (1 1b wt); 42	Boiling Point: "C	
Sample Wt 20 mg Picotinny Arsenal Apparatus, in. Sample Wt, mg	Refrective Index, n ^D _M , n ^D _M , n ^D _M , n ^D _M ,	1.8 2
Friction Pendulum Test: Steel Shoe Unaffected Fiber Shoe Unaffected	Vecuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Import Test: Trials % Explosions Partials	120°C 135°C 150°C	5.9
Burned Unaffected	200 Grem Bomb Send Text: Sand, gm	, 13,1
Explorion Temperature: *C Seconds, 0.1 (no cap used) 1 5 223 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Belliutic Merter, % TNT:	
	- Trouxi Test, % TNT:	
73°C International Heat Test* % Lots in 48 Hrs	Plate Deat Test: Method	
100°C Heet Test: % Loss, 1st 48 Hrs 2.5 % Loss, 2nd 48 Hrs 1.8 Explosion in 100 Hrs Note	Condition Confined Density, gm/cc Brisance, % TNT	
Flemmebility Index:	- Detenation Rate: Confinement	
Hygroscopicity: %	- Condition Charge Diameter, in.	
Veletility: 60°C, mg/cm ² /hr 28	 Density, gm/cc Rate, meters/second 	

140

.

.

Glycerol Monolactate Trinitrate (GLTN) Liquid

AMCP 706-177

Fragmontation Test:	Shaped Charge Effoctiveness, TNT = 100:			
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, Ib	Giass Cories Steel Hole Volume Hole Depth	Cones		
Total No. of Fragmants: For TNT For Subject NS	Color:			
For Subject HE 3 inch HE, M42A1 [°] Projectile, Let KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Gelätinizer for nitrocellulose			
Tatal No. of Fragments: For TNT For Subject HE	Method of Looding:			
	Looding Density: gm/cc			
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storege: Method	Liquiđ		
Binst (Relative 's TNT):	Hazard Class (Quantity-Distance)	Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation			
Air, Confined: Impulse	Hydrolysis, \$ Acid: 10 days at 22°C 5 days at 60°C	0.021 0.014		
Under Weter: Peak Pressure Impulse Energy	Solubility in Water, <u>gm/100 gm, at:</u> 25 ⁰ C 60 ⁰ C	<0.01 <0.015		
Underground: Peak Pressure Impulse Energy	Solubility, gm/100 gm, <u>et 25°C, in:</u> Ether 2:1 Ether:Alcohol Acetone <u>Heat of:</u> Combustion, cal/gm	2407		

NBX

A LOUIS AND

1

Glycerol Monolactate Trinitrate (GLIN) Liquid

1.1

Ĺ

A REAL PROPERTY AND A REAL

Downloaded from http://www.everyspec.com

Preparation:

Test.

WEST

Glycerol monolactate (GML) is prepared by heating a glycerol lactic acid mixture containing 4% excess lactic acid at 116°C for 112 hours with dry air bubbling through the liquid. The product which contains 0.67% free acid is carefully mixed with 6 parts of 40/60 HNO₂/H₂SO₁ maintained at 20°C, stirred for 1 hour, cooled to 5°C, and poured on ice. It is extracted with ether, water-washed, adjusted to pH 7 by shaking with a sodium bicarbonate solution, and again water-washed three times. It is then dried with calcium chloride, filtered and freed of ether by bubbling with air until minimal loss in weight is obtained. The product has a nitrate-mitrogen content of 13.43% (theoretical 14.1% N). Another batch, prepared from GML obtained from glycerol-lactic acid containing 5.5% excess glycerol, had a mitrate-mitrogen content of 14.30%, corresponding to a mixture containing 5.5% nitroglycerin. It is not considered practicable to prepare the pure GLTN.

Origin:

The preparation of a nitrated ester of lactic acid and glycerol, by nitrating a glyceryl lactate with nitric and sulfuric acids, for use in explosives, was reported in 1931 by Charles Stine and Charles Burke (U. S. Patent 1,792,515).

The preparation of glycerol monolactate by heating glycerol with equimolar proportions of a lactic acid ester of an alcohol boiling below 100° C (ethyl lactate) was patented by Richie H. Locke in 1936 (British Fatert 456,525 and U. S. Patent 2,087,980).

Reference: 31

(a) P. F. Macy and A. A. Saffitz, <u>Explosive Plasticizers for Nitrocellulose</u>, PATR No. 1616, 22 July 1946.

³¹See footnote 1, page 10.

142

Glycol Dinitrate (GDN) Liquid

ł

です。こので、後継線のために、などので、

1,1

and the second second

.

AMCP 706-177

Composition: %	Molecular Weight: (C ₂ H ₄ N ₂ O ₆)	152
C 15.8ONO2	Oxygen Belance:	
	CO₂ % CO %	0.0 21
N 18.4 CH ₂	Density: gm/cc Liquid, 25°C	
	Meking Point: *C	-20
C/H Ratio 0.092	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt:	Beiling Point: "C	
Bureau of Mines Apparatus, cm 4 (1 1b vt); 56 Sample Wt 20 mg	Refractive Index, ng	
Picatinny Arsenal Apparatus, in.	n	1.4452
Sample Wt, mg	20	214496
Friction Pendulum Test:		
Steel Shoe	Vecuum Stability Test: cc/40 Hrs, at	
Fiber Shoe	90°C	
	100°C	
Rifle Builst Impact Test: Trials	120°C	
ey, Explosions	135°C	•
Explosions Partials	150°C	
Burned	200 Gram Bomb Sund Test:	
Unaffected	Sond, gm	
Explasion Temperature: "C	Sansitivity to Initiation:	
Seconds, 0.1 (no cop used)	Minimum Detonating Charge, gr	n
l 5 Explodes - 257	Mercury Fulminate	
10	Leod Azide	
15	Tetryi	
20	Bailistic Morter, % TNT:	
	Treuzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dest Test:	
	Method	
100°C Heet Test:	Condition	
% Loss, 1st 48 Hirs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detenstion Rate:	
Fiummability Indexs	Confinement	Class tube
An analytic of the second put a con	Condition	Liquid
Hygreedepleity: % 30°C, 90% RH 0.00	Charge Diameter, Io.	10
Volatility:	Density, gm/cc	1.485
	Rote, meters/second	7300 and 2050

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

143

Glycol Dinitrate (GIN) Liquid

Frequentation Yest:	Sheped Charge Effectiveness, THT = 100:
90 mm HE, M71 Projectiki, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Totel No. of Fragments: For TNT	Color: Yellow
For Subject HE 3 lach HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of nonfreezing dynamite
Tatel Ne. of Fregments: For TNT For Subject HE	Method of Loading:
	Loeding Denaity: gm/ca
Frequent Vesucity: ft/se: At 9 ft At 25½ ft	Storege:
Density, gm/cc	Method Liguid
Blues (Relative to TNT):	Hozard Class (Quantity-Distance) Class 9
Ain Pask Pressure impuise Energy	Compatibility Group Exudation
Air, Confined: Impulse	Solubility in 1000 cc Water: Temp, ^o C Grams
Under Water: Peak Pressure	15 6.2 20 6.8 50 9.2
Impuise Energy	Viscosity, cantipoises: Fourp. 20°C 4.2
Undurground: Pook Pressure Impulse Energy	Vapor Pressure: OC umm Mercury 0 0.0044 20 0.038 40 0.26 60 1.3 80 5.9 100 22.0
	Heat of: Combustion, cal/gm 1764 Formation, cal/gm (b) 366

Glycol Dinitrate (GDN) Liquid

Downloaded from http://www.everyspec.com

AMCP 706-177

..

Preparation:

Glycol dinitrate (ethylene glycol dinitrate, dinitroglycol, nitroglycol, dinitrodimethyleneglycol) may be prepared by nitration of ethylene glycol, HOCH₂CH₂OH, with a mixed nitric acid in the same apparatus that is used for the preparation of nitroglycerin. The glycol is prepared by synthesis from sthylene, and ethylene chlorohydrin:

 $CH_2 = CH_2 \xrightarrow{HOC1} HOCH_2CH_2C1 \xrightarrow{H_2O} HOCH_2CH_2OH$

Origin:

1

Henry was the first to prepare and identify glycol dinitrate (Ber 3, 529 (1870) and Ann chim phys [4] 27, 243 (1872) but Kekulé had previously nitrated ethylene and obtained an unstable oil which he supposed to be glycol nitrate-nitrate. No immediate practical use was made of glycol dinitrate because glycol itself was relatively rare and expensive at the time. It was 1904 before a patent was granted covering the use of GDN as an explosive (DRP 179,789). but it was seven years later before its actual use as an explosive was recorded (Mém poudr 16 (1911) p. 214). The principal physical properties of GDN were determined or recorded by Rinkenbach (Ref b).

References: 32

(a) Ph. Nacum, <u>Nitroglycerin and Nitroglycerin Explosives</u>, translation, E. M. Symmes, The Williams and Wilkins Company, Baltimore (1928), p. 224.

(b) Wm. H. Rinkenbach, "The Properties of Glycol Dinitrate," Ind Eng Chem 18, 1195 (1926).

(c) Wm. H. Rinkenbach, "Glycol Dinitrate in Dynamite Manufacture," Chem Met Eng, <u>34</u>, 296 (1927).

(d) Wm. H. Rinkenbach, <u>Application of the Vacuum Stability Test to Nitroglycerin and Nitro-</u> glycerin Explosives, PATR 1624, 27 August 1946.

32See footnote 1, page 10,

a Pinney

.

AHCP 706-177

<u>н-6</u>

• `

Composition: %	Molecular Weight:	93
70 RDX 45 TNT 30	Oxygen Balence: CO ₂ %	-66
Aluminum 20	CO %	-36
D-2 Wax 5	Density: gm/cc Cast	1.74
Calcium Chloride, added 0.5	Maiting Point: *C	
C/H Ratio	Freezing Paint: "C	
Impect Sansitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Beiling Point; *C	
Sample Wt 20 mg	Befractive Index, no	· · ·
Ficatinny Arsenal Apparatus, in. (c) 14 Sample Wt, mg 18	n	
Complet wething To	n 🐱	
Friction Pendulum Test:	Vecuum Stability Test:	
Steel Shoe Unaffecter		
Fiber Shoe	90°C	
Rifle Sullet Impact Test: Trials (b)	100°C	0.47
%	120°C	
Explosions 80	135°C 150°C	
Partials	150°C	
Burned	200 Gram Samb Sand Test:	
Unaffected 20	Sand, gm	49.5
Explosion Tempereture: "C (a) Seconds, 0.1 (no cap used) """	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5 610(min) (c)	Lead Azide	0.20
10	Tetryi	0.10
15		
20	Bellistic Mortor, % TNT: (d)	135
75°C International Heat Test:	Treuxi Test, % TNT:	
% Loss in 48 Hrs	Plete Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.78	Confined	
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Confinement	(a, b) None
Hygrescopicity: % 30°C, 95% EH, 7 days 2.4	Condition	Cast
Hygrescepicity: % 30°C, 95% NH, 7 days 2. 71°C, 95% NH, 7 days 1.	in Churge Diumerer, in.	1.0
Veletility:	Density, gm/cc	1.71
	Rate, meters/second	7191

W. Carlo W.

N. 6 + 140

1999 St 16 (m. 199

Booster Sensitivity Test: Decomposition Equation: Condition Oxygen, atoms/sec (Z/sec) Tetryi, gm ¹Heat, kilocolorie/mole Wax, in. for 50% Detonation (JH, kcal/mol) Wax, gm Temperature Range, *C Density, gm/cc Phose Hent af: Annier Plate Impact Test: 3972 Combustion, col/gm Explosion, cal/gm 923 60 mm Mortar Projectile: Gas Volume, cc/gm 733 50% Inert, Velocity, ft/sec Furmation, cal/gm **Aluminum Fineness** Fusion, cal/gm 18°C (b) 10.25 500-lb General Purpose Combe: (b) Specific Heet: cal/gm/*C Plate Thickness, inches 30°C 0.269 50°C 1 0.268 114 11% 1% **Burning Rate:** cin/sec Somb Dray Test: Thermal Conductivity: cal/sec/cm/*C 35°C (b) -3 1.10 x 10 T7, 2000-16 Semi-Anner-Plansing Somb vs Concrete: Max Safe Drop, ft Coefficient of Exponsion: Linear, <u>Al</u>/inch 000 35°C 70°C 40×10^{-4} 83 x 10⁻⁴ 131 x 10⁻⁴ 500-lb General Purpose Bomb vs Concrete: Height, ft Trials Hardness, Mohe' Scale: Unaffected Low Order Young's Modulars (b) High Order 9.0 x 10⁹ E', dynes/cm² 1.30 x 10⁵ E. Ib/inch² 1000-15 General Purpose Somb vs Concrete: 1.71 Density, gm/cc Height, ft Compressive Strength: Ib/inch² See below Triols Unaffected Low Order Vapor Pressure: ۰C mm Mercury High Order Compressive Strength: 1b/inch² 1083 Density, gm/cc Ultimate deformation, % 1.71 1.32

Å.

Downloaded from http://www.everyspec.com

147

AMCP 706-177

AHCP 706-177

<u>н-б</u>

ł

Fragmantation Test:	(b)	Shaped Charge Effectiveness, TNT = 1	i30:
90 mm HE, M71 Projectile, Lut EGS-1-1 Density, ym/cc Charge Wt, Ib	7:	Giass Cones Steel Hole Volume Hole Depth	Cones
Total No. of Fragments: For Composition B	998	Color:	Gray
For Subject HE For 80/20 Tritonal	714 616	Principal Uses:	HE charge
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib			
Total No. of Fragments: Far TNT		Method of Loeding:	Cast
for Subject HE		Looding Density: gm/cc	1.71
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	· · · · · · · · · · · · · · · · · · ·
Density, gm/cc		Method	Dry
Blast (Relative to TNT);	(a)	Hazard Class (Quantity-Distance)	Class 9
Aiv: 3.25" diameter sphere Peck Pressure Δ psi Catenary Impulse NFOC Pendulum	25.4 19.8	Compatibility Group Exudation	Group I
Energy			
Air, Confined: impulse			
Under Weter: Peak Pressure			
impulse Energy			
Underground: Peak Pressure Impulse Energy			

148

<u>н-6</u>

AMCP 706-177

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity*

(Reference e)

		One-Inc	h Column	Two-Inch Column	
Explosive	Simulated Altitude, Feet	Confined D/S	Unconfined m/s	Confined m/s	Unconfined m/s
INT,	Ground	6820	6720	6670	5270
density, gm/cc 1.59	30,000	6660	6930(2)	6610	6760(4)
	60,000	6800	-	6520	6400(4)
	90,000	6810	6720	6550	6610(1)
Average	:	6798	6790	6588	6260
н-6,	Ground	7190	7360	7340	6870
density, gm/cc 1.69	. 30,000	7300(2)	7430	7360	7980
	60,000	7280	7490	7550	7010
	90,000	7300(3)	7270	7500	7000
Average		7268	7385	7438	7215

*Confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetryl booster was used to initiate each charge.

Average Fragment	Velocities a	at Various	Altitudes*	(e)

		Simulated Altitude, Feet			
Explosive Cr	Charge Diameter, Inches	Ground m/s	<u>30,000</u> m/s	<u>60,000</u> m/s	<u>90,000</u> m/s
TNT,	1	2940	2991	3119	2868
density, gm/cc 1.51	2	3623	4191	5077	4980
н-6,	1	3461	3405	3467	3563
density, gm/cc 1.71	2	4603	4726	4998	5288

"Outside diameter 2.54"; inside diameter 2.04"; length 7".

References:

See HBX-1; HBX-3 reference list.

Haleite (Ethylene Dinitramine) (EDNA)

/w

N.eve

from http

$\begin{array}{c c} & 16.0 & H_2C - N \\ H & 4.0 & H \\ N & 37.3 & H \\ O & 42.7 & H_2C - N \\ C/H Ratio 0.066 & H \\ \end{array}$	Oxygen Belance: -32 CC. % -10.5 Density. m/cc Crystal Decomposes 175+ Freezing Point: 'C Crystal	
N 37.3 0 42.7 $H_2C - N < V_2$	Melting Point: "C Decomposes 175+	
	Freezing Point: "C	
mpact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 48	Bailing Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 14 Sample Wt, mg 17	Refrective Index, ng ng ng	
riction Pandulum Test:	Vocuum Stability Test:	
Steel Shoe Unsificated	cc/40 Hrs, at	
Fiber Shoe Unaffected	- 90°C - 100°C 0.5	
lific Builet Impact Test: Trials	120°C 1.5	
%	135°C	
Explosions O Partials 60	150°C 11+	
Burned 20	200 Gram Bomb Sand Test:	
Unoffected 20	Sand, gm 52.3	
izplotian Temperature: *C	Sensitivity to Initiatian:	المزرجة محاقي
Seconds, 0.1 (no cap used) 265	Minimum Détonating Charge, gm	
l 216 5 Decomposes 189	Mercury Fulminate 0.21	
10 178	Leod Azide 0.13	
15 173	Tetryl	
20 170	Bellistic Mortor, % TNT: (a) 139	
	Trount Test, % TNT: (b) 122	
S*C International Host Yest: % Loss in 48 Hrs 0.01	Plate Dent Test: (c) Mathod A	
00°C Heat Test:	Condition Pressed	
% Loss, 1st 48 Hrs 0.2	Confined Yes	
96 Loss, 2nd 48 Hrs 0, 3	Density, gm/cc 1.50	
Explosion in 100 Hrs None	Brisance, % TNT 122	الديالاستحداد
lemmebility index: 138	Detenation Rate: Confinement Unconfi	
lygroszopiciły: % 0.01	Condition Pressed Charge Diameter, in. 1,0	
feistility: N11	Density, gm/cc 1, 40 Rate, meters/second 7570	

Haleite (Ethylene Dinitramine) (EDNA)

.

AMCP 706-177

Beaster Sensitivity Test: Condition	(d) Pressed	Decomposition Equation: (e) (e) (f) Oxygen, atoms/sec 10 ^{12.8} 10 ^{12.1} 10 ^{11.1}
		(Z/sec)
Tetryl, gm Way in the 50% Determine	100 2.09	Heat, kilocalorie/mole 30.5 37.3 30.8
Wax, in. for 50% Detonation	2.09	(14, kcal/mol) Temperature Range, *C 184-254 144-164
Wax, gm		
Density, gm/cc	1.42	Phose Liquid Solid Solid
Heat of:		Armer Plate Impact Test:
Combustion, col/gm	2477	
Explosion, cal/gm	1276	60 mm Morter Projectile:
Gas Volume, cc/gm	905	50% Inert, Velocity, ft/sec
Formation, cal/gm	134	Aluminum Fineness
Fusion, cal/gm		500-lb General Purpose Bombs:
Specific Heet: col/gm/*C		
		Pinte Thickness, inches
		1
		14
		110
		174
Burning Rote: cm/sec		······································
	······································	Bomb Drop Test:
Thermal Conductivity: col/sec/cm/*C		T7, 2000-lb Semi-Armor-Piercing Bamb vs Concrets:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/1C		500-lb General Purpose Bomà ve Concretus
Volume, %/*C		Height, ft
		Trials
Hardnass, Mahs' Scale:		Unoffected
Young's Modulus:		Low Order
E', dynes/cm ²		High Order
E, Ib/inch ²		1000-ib General Purpose Bemb vs Concrete:
Den lity, gm/cc		
Compressive Strength: Ib/inch ²		Triols
		Unoffected
• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
Veper Pressure: C mm Mercury		Low Order
C mm mercury		High Order

A MARSHA

187

57130

181 0

1.1.0

门门

Haleite (Et aylene Dinitramine) (EDNA)

. . . **.**

Downloaded from http://www.everyspec.com

小松

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 1	00:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc 1.61 Charge Wt, ib	Glass Cones Steel (Hale Volume Hole Depth	Cones
Total Na. of Fragmants: For TNF	Color:	White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: <u>95/5 Halette/vax</u> Density, gm/cc <u>1.56</u> Charge Wt, lb 	Principel Uses:	Booster
Total Ne. of Fragments: For TIT 514 For Subject HE 600	Mothed of Louding:	Pressed
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Looding Density: gm/cc ps1 x 5 10 12 15 1.28 1.38 1.41 1.44 Storage:	20 1.49
Blast (Relative to TNT): Air: Peak Pressure	Method 	Dry Class 9
impulse Energy	Exudation	None
Air, Confined: Impulse		
Under Water: Peak Pressure Impulse Energy Underground:	•	
Peak Pressure Ingulse Energy		

. .

Haleite (Ethylene Dinitramine) (EDNA)

AMCP 706-177

Compatibility with Metals:

Dry - Copper, brass, aluminum, mild steel, stainless steel, mild steel coated with acidproof black paint, and mild steel plated with copper nickel, cadmium or zinc are unaffected. Magnesium and magnesium-aluminum alloy are slightly affected.

Wet - Copper, brass, mild steel coated with acid-proof black paint, and mild steel plated with copper, cadmium, nickel or zinc are heavily corroded. Aluminum is slightly affected and stainless steel is unaffected.

Impact Sensitivities of Various Crystal Habits:

Bureau of Mines	Impact	Test,	2	Kg	WL:
Habit					8
1st plate					55
2nd plate					55
Bi-pyramid					71
Bracydome					66
Sphenoid					46

Solubility: gm/100 gm (%) of:

Wa	ter	<u>A1</u>	cohol
°c	1	°c	Ź
20 40 60 80 100	0.25 0.75 2.13 6.38 >20	20 40 60 78	1.00 2.46 5.29 10.4

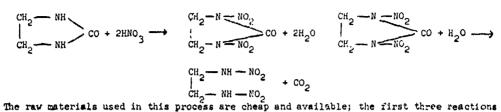
Preparation:

(Summary Technical Report of the NDRC, Div 8, Vol 1)

$$CH_2O + HCN \rightarrow HO CH_2CH$$

(98% yield)
HO CH_2CN + NH₃ \rightarrow NH₂CH₂CN + H₂O
(82% yield)

 $MH_2CH_2CH + 2H_2 \rightarrow H_2N CH_2CH_3NH_2$ (88% yield)


$$\begin{array}{c} CH_2 & H_2 \\ CH_2 & H_2 \end{array} + CO_2 \rightarrow \begin{array}{c} CH_2 & H_2 \\ CH_2 & H_2 \end{array} \right) CO + H_2 O$$

153

Haleite (Ethylene Dinitramine) (EDNA)

1

Downloaded from http://v A CONTRACTOR OF A CONTRACTOR

proceed smoothly, rapidly and in good yield (70% overall), and only the third requiren high pressures. The reaction of ethylenediamine with carbon dioxide at about 220°C and 220 atmospheres has been worked out and is more satisfactory for the preparation of ethyleneurea than the use of chlorethyl carbonate or urea and better than the reaction of acetic anhydride and ethylenediamine to yield N,N'-diacetyl-ethylenediamine which can be treated in a way similar to the above to yield Haleite.

Ethyleneures is very easily nitrated, with strong nitric acid (923). At ordinary temperature, Haleite, immediately after solution in water at 95°C. Both the nitration and hydrolysis are practically quantitative.

Origin:

First described in 1877 by Franchimont and Klobbie (Rec trav chim 7, 17 and 244) but it was 1935 before its value as an explosive was recognized. Standardized during World War II as a military explosive.

Destruction by Chemical Decomposition:

Haleite is decomposed by addition to hot, dilute sulfuric acid. Nitrous oxide, acetaldehyde and ethylene given are evolved. Haleite is also decomposed by addition to 5 times its weight of 20% sodium hydroxide.

References: 33

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing</u> of <u>Explosives</u>, <u>Part III</u> - <u>Miscellanecus</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>GGRD</u> Report No. 5746, 27 Tecember 1945.

(b) Report AC-2983/Org Ex 179.

(c) D. P. MacDougall, Methods of Physical Testing, OGRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of HFX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Memo 10, 303, 15 June 1949.

(e) R. J. Finkelstein and G. Gamov, Theory of the Detonation Process, HAVORD Report No. 90-46, 20 April 1947.

(f) M. A. Cook and M. Taylor Abbeg, "Taothermal Decomposition of Explosives." University of Utsh, Ind Eng Chem (June 1956) pp. 1090-1095.

33See footnote 1, page 10,

....

Haleite (Ethylene Dinitramine) (EDNA)

AMCP 706-177

(g) Also see the following Picatinny Arsenal Technical Reports on Haleite:

0	1	2	3	4	5	<u>6</u>	<u>7</u>	8	2	
1200 1290 1360 1360 1400 1600	1231 1451 1651	1162 1232 1252 1352 1372	1113 1493 1923	414 1294 1434	1255 1325 1395 1885	726 1796	897 1737 1797 19 37	1198 1288 1378 1388 1838	1279 1319 1379 1469 1489 2179	

HBX-1

from http

湖南

NY 12 42

Composition:		Molecular Weight:	102
RDX 40		Oxygen Balanze:	
TNT 38		CO. %	-68
Aluminum 17		CO %	- 35
D-2`Wax 5		Density: gm/cc Cast	1.72
Calcium Chloride, added 0.5		Molting Point: *C	
C/H Ratio		Freezing Point: *C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: *C	
Sample Wt 20 mg		Refractive Index, ng	
Picatinny Arsenal Apparatus, in.	16	nü	
Sample Wt, mg	21	ns	
Friction Pendulum Test: (b)		Vocuum Stability Test:	(•, b)
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe		90°C	
	// \	- 100°C	0.47
Rifle Bullet Impact Test: Trials	(b)	120°C	6.9 ⁰
% Evolutions 73		135°C	
Explosions 73		150°C	11+
Portials			
Burned Upoffected 28		200 Grem Bomb Sand Test:	48.1
Unaffected 28		Sand, gm	40.1
Explosion Temperature: *C	(a)	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminote	
5 430		Lead Azide	0,20
10		Tetryi	0.10
15		Bailistic Marter, % TNT: (2)	1.33
20		- Treuzi Test, % TNT:	+))
75°C International Heat Test:		Plate Daat Test:	
% Loss in 48 Hrs		Method	
100°C Heet Test:	(b)	Condition	
% Loss, 1st 48 Hrs	0.058	Confined	
	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
·		- Detanetian Rate:	(a, b)
Flammability Index:		Confinement	None
and and and and and	A-110	- Condition	Cast
Hygrescepicity: % 30°C, 95% RH, 7 71°C, 95% RH, 7	days 2.98 days 1.13	Charge Diameter, in.	1.0
		- Density, gm/cc	1.69
Veletility:		Rate, meters/second	7224

Salt. 0.

Section of the S

1000

.

.....

156

AND A DESCRIPTION OF THE REAL PROPERTY OF THE PARTY OF TH

i

HBX-1

AMCP 706-177

Casefficient of Expansion:(b)Max Safe DrayCasefficient of Expansion:(b)Max Safe Dray $O^{0}C$ 46 x 10 ⁻¹⁴ 500-16 Genarel F $35^{0}C$ 95 x 10 ⁻¹⁴ Height, ft $70^{0}C$ 159 x 10 ⁻¹⁴ Height, ftHardness, Moha' Scale:UnaffectedYoung's Medulus:(b)E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc1.69Height, ftCompressive Strength: lb/inch ² See belowUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffected	tion:
Image ProductImage ProductWax, in. for 50% Detonation1.25Wax, gm1.73Density, gm/cc1.73Density, gm/cc9.25Sold mm Morter P50% Inert, VeSold mm Morter P114Density, gm/cc1Density, gm/cc1Density, gm/cc1Density, gm/cc1.65Density, gm/cc1.69Height, ftTrialsDensity, gm/cc1.69Height, ftTrialsDensity, gm/cc1.69Height, ftTrialsDensity, gm/cc1.69Height, ftTrialsUnotfectedCoorder1.69Height, ftTrialsUnotfected	2 C
Wax, in. for 50% Detonation1.25($\Delta H, kcol/mol)$ Wax, gm1.73($\Delta H, kcol/mol)$ Wax, gm1.73($\Delta H, kcol/mol)$ Density, gm/cc1.73($\Delta H, kcol/mol)$ Heet ef:(b) $Armer Plete ImpactCombustion, cal/gm91960 mm Marter PGas Valuare, cc/gm50%Armer Plete ImpactFunction, cal/gm758Aluminum FinFusion, cal/gm758Aluminum FinFusion, cal/gm70°C9.25Specific Heet: cal/gm/*C(b)Plate Thicknet30°C0.26%130°C0.26%130°C0.26%130°C0.26%1Suming Rete:(b)14Coofficient of Exputation:(b)Linger, \Delta LAnchAc 10^{-1}_{L}0°C46 \times 10^{-1}_{L}35°C95 \times 10^{-3}T7, 2000-ib General PSoo-ib General PSoo-ib General PSoo-ib General PSoo-ib General PCoofficient of Exputation:(b)Linger, \Delta LAnchAc 10^{-1}_{L}0°C16 \times 10^{-1}_{L}70°C159 \times 10^{-5}Height, ftTrialsUnaffectedLow OrderYeung's Medulus:(b)E', dynes/cm21.49 \times 10^{-5}Density, gm/cc1.69Height, ftTrialsCompressive Strength: Ib/inch2See belowTrialsUnaffected$	'male
Density, gm/cc 1.73 PhaseHeat ef:(b)Combustion, cal/gm3802Explosion, cal/gm919Gas Valune, cc/gm 50% inert, VeFormation, cal/gm758Fusion, cal/gm758Fusion, cal/gm 758 Specific Heat: cal/gm/*C(b) $30^{\circ}C$ 0.249 $50^{\circ}C$ 0.249 Specific Heat: cal/gm/*C(b) $30^{\circ}C$ 0.26% $50^{\circ}C$ 0.26% 1114 116 116 1160 116 1160 116 1160 <t< td=""><td></td></t<>	
Heat of:(b)Combustion, cal/gm3802Explosion, cal/gm919Gas Valuane, cc/gm50% inert, VeFormation, cal/gm758Fusion, cal/gm758Fusion, cal/gm758Specific Heet: cal/gm/*C(b) 30° C0.249 50° C0.26% 30° C0.97 x 10^{-3}Coofficient of Expansion:(b)Linear, $\Delta LAnch$ Max Safe Drop 0° C46 x 10^{-4} 35° C95 x 10^{-4} 70° C159 x 10^{-4}Height, ftTrialsUnaffectedLow OrderHigh Order1.69E, ib/inch ² 1.49 x 10^{-5}Density, gm/cc1.69Height, ftTrial'sUnaffectedUnaffected	ige, *C
Combustion, cal/gm3802Armer Flete ImpactExplosion, cal/gm91960 mm Morter PGas Volurne, cc/gm50%50% Inert, VeFormation, cal/gm758Aluminum FinFusion, cal/gm 75°C9.25502-ib General PSpecific Heet: cal/gm/*C(b)Plate Thicknet30°C0.26%130°C0.26%150°C0.26%111411411411411511450°C0.26%150°C0.26%150°C0.26%1114114114114115114114114115114114114115114114114114114114114114114115114114114114114114114114114114114114114114114115100-1b General P0°C159 x 10^-11000-1b General P1000-1b General P1001-1b General P1001-1b General P1001-1b General P1001-1b General P1001-1b General P1001-1b General	
Explosion, cal/gm919Gas Volume, cc/gm 50% Inert, VeFormation, cal/gm758Fusion, cal/gm758Fusion, cal/gm758Specifile Heet: cal/gm/*C(b) $30^{\circ}C$ 0.249 $50^{\circ}C$ 0.249 $50^{\circ}C$ 0.26° $30^{\circ}C$ 0.26° $50^{\circ}C$ 0.26° $30^{\circ}C$ 0.26° $30^{\circ}C$ 0.26° $50^{\circ}C$ 0.26° 114 114 114 116 $30^{\circ}C$ 0.26° $50^{\circ}C$ 0.26° $30^{\circ}C$ 0.26° 114 114 114 114 114 116 116 $30^{\circ}C$ $20^{\circ}C$ $20^{\circ}C$ $20^{\circ}C$ $20^{\circ}C$ $20^{\circ}C$ $20^{\circ}T$ $20^{\circ}C$ <td< td=""><td>Test:</td></td<>	Test:
Gas Volume, ce/gmGas Volume, ce/gm60 mm Marter PFormation, cal/gm758Fusion, cal/gm 78°C9.25Specific Heet: cal/gm/*C(b) $30^{\circ}C$ 0.249Specific Heet: cal/gm/*C(b) $30^{\circ}C$ 0.26%Specific Heet: cal/gm/*C1Specific Heet: cal/gm/*C(b) $30^{\circ}C$ 0.26%Specific Heet: cal/gm/*C0.26%Specific Heet: cal/gm/*C1Specific Heet: cal/gm/*C0.26%Specific Heet: cal/gm/*C0.26%Solution Rete:114Surming Rete:114Conflicient ef Expussion:(b)Coofficient ef Expussion:(b)Coofficient ef Expussion:(b)Lincar, ΔL anch46 x 10 ⁻¹⁴ $0^{\circ}C$ 95 x 10 ⁻⁴ Height, ftTriolsUnaffectedUnaffectedLow OrderHigh OrderYoung's Medulus:(b)E', dynes/cm ² 1.49 x 10 ⁻⁵ Density, gm/cc1.69Height, ftCompressive Strength: Ib/inch ² See below	
Formation, cal/gm758Aluminum FinFusion, cal/gm 78°C9.25502-15 General PSpecific Heet: cal/gm/*C(b)9.2530°C0.249Plate Thicknes50°C0.26%1114114132134Burning Rete: cm/sec(b)1Thermel Conductivity: cal/sec/cm/*C 35°C0.97 x 10*3T7, 2000-16 SemCoofficient of Expansion: 0°C(b)Max Safe DropLinear, dL/Anch 0°C46 x 10 ⁻¹⁴ 159 x 10*4S00-16 Genaral PHeight, ft TriolsTriolsUnaffected Low OrderYoung's Medulus: E, lb/inch?(b)1.49 x 10*5Density, gm/cc1.69Height, ft Trial's Unaffected	ojectile:
Fusion, cal/gm 75°C9.25Specific Heet: cal/gm/*C(b) $30°C$ 0.249Plate Thicknes $50°C$ 0.26%1 $50°C$ 0.97 x 10°377, 2000-ib SemCoofficient of Expension: $0°C$ (b)Max Safe DrayLingar, $\Delta LAnch$ 46 x 10°4500-ib Genarel H $0°C$ 95 x 10°4Height, ftTrialsUnaffectedLow OrderHardness, Mohs' Scele:(b)Low OrderYoung's Modulus: E', dynes/cm²10.3 x 10°F', dynes/cm²10.3 x 10°1000-ib GeneratDensity, gm/cc1.69Height, ftTrialsUnaffectedCompressive Strength: lb/inch²See below	locity, ft/sec
Specific Heet: cal/gm/*CSo2-ib General PSpecific Heet: cal/gm/*C(b)Plate Thicknest $30^{\circ}C$ 0.2491 $50^{\circ}C$ 0.26%1Surning Rete:0.26%1cm/secBamb Drop Test:1%Thermal Conductivity:(b)1.97 x 10^{-3}cal/sec/cm/*C35°C2.97 x 10^{-3}T7, 2000-ib SemCoofficient of Expansion:(b)Max Safe DropLingar, $\Delta LAnch$ 46 x 10 ⁻¹⁴ So0-ib Genarel P $0^{\circ}C$ 95 x 10^{-14}Height, ft $70^{\circ}C$ 159 x 10 ⁻¹⁴ Height, ftTrialsUnaffectedLow OrderHardness, Mohs' Scele:10.3 x 10 ⁹ High OrderYoung's Modulus:(b)Low OrderE, ib/inch ² 1.49 x 10 ⁻⁵ 1000-ib GeneratiDensity, gm/cc1.69Height, ftTrialsUnaffectedLow Order1.69	ti\ess
Specific Heet: cal/gm/*C(b)30°C0.24950°C0.26%1141½1½8urning Rete: cm/sec(b)Cm/secBomb Drop Test:Thermel Conductivity: cal/sec/cm/*C 35°C0.97 x 10*3Coofficient of Expansion: 35°C(b)Coofficient of Expansion: 35°C(b)Coofficient of Expansion: 35°C(b)Linger, dLAnch 95 x 10*446 x 10*4 159 x 10*4Porc 70°C159 x 10*4Hardness, Mohs' Scele:(b)Young's Modulus: E', dynes/cm2(b)Linger, allow10.3 x 10 1.49 x 10*5Density, gm/cc1.69Height, ft TrialsCompressive Strength: Ib/inch2See belowCompressive Strength: Ib/inch2See below	
30°C0.249Plate Thicknes50°C0.26%150°C0.26%11415100-15100-15100-15100-15100-15100-151000-1511000-151000-1511000-151000-1511000-151000-1511000-151100-1511000-151100-1511000-151100-1511000-151100-1511000-151100-1511000-151100-1511000-151100-15110	urpose Sombs:
30°C 0.249 $50^{\circ}C$ 0.26° $50^{\circ}C$ 0.26° 11_4 <t< td=""><td>s inches</td></t<>	s inches
114 134 Burning Rete: cm/sec Bomb Drop Test: Thermel Conductivity: cal/sec/cm/*C 35°C 2.97 x 10 ⁻³ T7, 2000-ib Sem Coofficient of Expansion: (b) Linear, &&Anch 0°C 35°C 70°C 159 x 10 ⁻⁴ Height, ft Trials Unaffected Low Order High Order 2, dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² Density, gm/cc Log Compressive Strength: lb/inch ² See below	•,
11/211/2Burning Rote: cm/secConstantivity: cal/sec/cm/*C 35°C(b) 2.97 x 10-3Tr, 2000-lb SemCoofficient of Expansion: O°C 35°C(b) 2.97 x 10-3Coofficient of Expansion: O°C 35°C(b) 95 x 10-4Max Safe Dray 500-lb Genaral # Height, ftTr, 2000-lb SemOofficient of Expansion: O°C 35°C(b)Max Safe Dray 500-lb Genaral # Height, ftTrials UnaffectedUnaffected Low Order High OrderTool-1b General Unaffected Low Order High OrderTool-1b General High OrderTool-1b General High OrderTool-1b General High OrderTool-1b General Unaffected	
Burning Rete: cm/sec Image:	
Burning Rete: cm/sec Bomb Drop Test: Thermel Conductivity: cal/sec/cm/*C 35°C 0.97 x 10 ⁻³ T7, 2000-ib Sem Coofficient of Expansion: (b) Linear, dLAnch 46 x 10 ⁻¹ / ₁ 0°C 95 x 10 ⁻¹ / ₁ 70°C 159 x 10 ⁻¹ / ₁ Height, ft Trials Unoffected Low Order Young's Modulus: (b) E', dynes/cm ² 10.3 x 10 ⁹ Density, gm/cc 1.69 Height, ft Trials Unoffected Low Order Height, ft Trials Unoffected Low Order High Order 1.69 Height, ft Trials Unoffected Low Order High Order 1.69 Height, ft Trials Unoffected Unoffected	
cm/secBomb Drop Test:Thermel Conductivity: cal/sec/cm/*C 35°C(b) 0.97 x 10-3T7, 2000-ib SemCoofficient of Expansion: O°C(b)T7, 2000-ib SemCoofficient of Expansion: O°C(b)T7, 2000-ib SemCoofficient of Expansion: O°C(b)T7, 2000-ib SemCoofficient of Expansion: O°C(b)T7, 2000-ib SemCoofficient of Expansion: O°COT7, 2000-ib SemCoofficient of Expansion: O°COSol-Ib Gonarel IIOO-Ib Gonarel IIOO-Ib Gonarel IIOO-Ib Gonarel IITrialsUnoffectedLow OrderHeight, ftTrialsUnoffectedLow OrderHigh OrderTool-Ib Gonarel IIOO-Ib Gonarel IITool-Ib Gonarel IIOo-Ib Gonarel IICompressive Strength: Ib/inch ² Ioo-Ib Gonarel IICompressive Strength: Ib/inch ² See belowTrialsUnoffectedLow OrderHigh OrderIoo-Ib Gonarel IICompressive	
Bomb Drop Test:Thermel Conductivity:(b)cal/sec/cm/*C 35°C2.97 x 10*3Coofficient of Expansion:(b)Linear, &&Anch46 x 10*40°C95 x 10*435°C95 x 10*470°C159 x 10*4Height, ftTrialsWardness, Mohs' Scele:Young's Medulue:(b)E', dynes/cm²Density, gm/ccLineirCompressive Strength: Ib/inch²See belowTrialsUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffectedUnaffected	
Coofficient of Expansion:(b)Max Safe DrayLinear, &&Anch46 x 10 ⁻⁴ 500-16 Genaral #0°C95 x 10 ⁻⁴ 500-16 Genaral #35°C95 x 10 ⁻⁴ Height, ft70°C159 x 10 ⁻⁴ TrialsHardness, Mohs' Scele:UnaffectedYoung's Medulue:(b)E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc1.69Height, ftCompressive Strength: lb/inch ² See belowUnaffected	
Coofficient of Expansion:(b)Max Safe DrayLinear, &&Anch46 x 10 ⁻⁴ 500-16 Genaral #0°C95 x 10 ⁻⁴ 500-16 Genaral #35°C95 x 10 ⁻⁴ Height, ft70°C159 x 10 ⁻⁴ TrialsHardness, Mohs' Scele:UnaffectedYoung's Medulue:(b)E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc1.69Height, ftCompressive Strength: lb/inch ² See belowUnaffected	
Linear, & LAinch 46 x 10 ⁻¹ / ₋₁ 500-1b Genaral F 0°C 95 x 10 ⁻¹ / ₋₁ Height, ft 35°C 95 x 10 ⁻¹ / ₋₁ Height, ft 70°C 159 x 10 ⁻¹ / ₋₁ Height, ft Hardness, Moha' Scale: Unaffected Young's Modulus: (b) Low Order E', dynes/cm ² 10.3 x 10 ⁹ High Order Density, gm/cc 1.69 Height, ft Compressive Strength: 1b/inch ² See below Trials	l-Armor-Plercing Bamb vs Concret
Linear, & & Anch O'C 35 ^o C 70 ^o C Young's Medulue: E', dynes/cm ² E, lb/inch ² Compressive Strength: lb/inch ² 46 x 10 ⁻⁴ 95 x 10 ⁻⁴ Trials Unaffected Low Order 1.49 x 10 ⁻⁵ 1000-lb General Height, ft Trials Unaffected Low Order High Order Height, ft Trials Unaffected Low Order High Order Height, ft Trials Unaffected Low Order High Order Height, ft Trials Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected	o, ft
O°C 46 x 10 ⁻¹ / ₋₁ 35°C 95 x 10 ⁻¹ / ₋₁ Trials 159 x 10 ⁻¹ / ₋₁ Height, ft Trials Unaffected Low Order Young's Medulus: (b) E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc 1.69 Height, ft Trials Compressive Strength: lb/inch ² See below	urpesa Bomb vs Concrate:
Tobal Trais Hardness, Moha' Scale: Triais Young's Modulus: (b) E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc 1.69 Height, ft Compressive Strength: lb/inch ² See below	
Hardness, Mohs' Scale: Trials Young's Modulus: (b) E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc 1.69 Height, ft Compressive Strength: lb/inch ² See below Trials Unaffected Unaffected	
Hardness, Mohs' Scale: Unaffected Young's Medulus: (b) E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc 1.69 Height, ft Compressive Strength: lb/inch ² See below Trials Unaffected	
Young's Modulus:(b)Low OrderE', dynes/cm²10.3 x 109High OrderE, lb/inch²1.49 x 10^51000-lb GeneralDensity, gm/cc1.69Height, ftCompressive Strength: lb/inch²See belowTrialsUnaffectedUnaffected	
Young's Modulus: (b) E', dynes/cm ² 10.3 x 10 ⁹ E, lb/inch ² 1.49 x 10 ⁻⁵ Density, gm/cc 1.69 Heigh Order Tool-16 General Compressive Strength: lb/inch ² See below Trials Unaffected	
E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/inch ² See below Unaffected	
Density, gm/cc 1.69 Height, ft Compressive Strength: Ib/inch ² See below Triats Unaffected	
Density, gm/cc 1.69 Height, ft Compressive Strength: Ib/inch ² See below Triats Unaffected	Purpose Bomb vs Concrete:
Compressive Strength: Ib/inch ² See below Trials Unaffected	•
Unaffected	
Vanag Brassura: Low Order	
*C mm Moreum	
Compressive Strength: 1b/inch ² 1303 Density, gm/cc 1.69	
Ultimate deformation, % 1.38	

AMCP 706-177

HBX-1

Fragmentation Test:	(b)	Shaped Charge Effectiveness, TNT == 1	00:
90 mm HE, M71 Projectile, Let EGS-1- Density, gm/cc Charge Wt, Ib	17:	Glass Cones Steel (Hole Volume Hole Depth	Cones
Total No. of Fragments: For Composition B	9 9 8	Cələr:	Cray
For Subject HE For 80/20 Tritonal 3 inch HE, M42A1 Frojectile, Lot XC-S: Density, gm/uc Charge Wt, Ib	910 616	Principal Uses:	HE charge
Total No. of Fragments: For TNT For Subject HE		Method af Loeding:	Cast
	<u></u>	Looding Density: gm/cc	1.69
Fragment Velocity: ft/sec At 9 ft At 251/2 ft		Sterega:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(A)	Hazard Class (Quantity-Distance)	Class 9
Ale: 3.25" diameter sphere Peak Pressure & psi Catenary	24.7	Compatibility Group	Group I
impuise NFOC Pendulum Energy	19.6	Exudation	None
Air, Confined: Impulse			
Under Weter: Peak Pressure			
Impul se			
Energy		4	
Underground: Poak Pressure			
Impulse			
Energy			

.

114 m

1.61

158

1.1.1

<u>HBX-3</u>

Downloaded from http://www.everyspec.com

AMCP 706-177

Composition: %			Melecular Weight:		64
% PDX	31		Oxygen Belence:		
INI	29		CO, %		-75
Aluminum	35		CO %		-49
D-2 Wax	5		Density: gm/cc	Cast	1.84
Calcium Chloride,	•		Melting Point: *C	·····	
	0.5	•			
C/H Ratio			Freezing Point: "C		
Impact Sansièivity, 2 Kg Wt: Bureau of Mines Apparatus,	cm		Boiling Point: "C		*****
Sample Wt 20 mg			Refractive Index, n ^o	-	
 Picatinny Arsenal Apparatus Sample Wt, mg 	s, in,	15 23	ns		
Jumple Wit, Ing		£0	. n _M		
Friction Pendulum Test:			Vecuum Stability Test:		(a, b)
Steel Shoe		Unaffected	cc/40 Hrs, et		(=, 0)
Fiber Shoe			90°C		****
m1/1. S. H. L		(b)	- 100°C		0.45
Rifle Bullet Impact Test: 7	rials	(6)	120°C		
Explosions	% 78		135°C		
Partials			150°C		
Burned			200 Gram Bomb Sand Test:		(Ն)
Unaffected	22		Sand, gm		44.9
Explosion Temporature:	·c	(4)	Sensitivity to Initiation:		
Seconds, 0.1 (no cop used)			Minimum Detonating Charge	i, gm	
1 5	500		Mercury Fulminate		
10	200		Lead Azide		0.20
15			Tetryl		0.10
20			Bellistie Morter, % TNT:	(d)	2.11
			Trousi Test, % TNT:		# * # * # * # * * * * * * * * * * * * *
75°C International Heat Tase: % Loss in 48 Hrs			Flate Dant Test:	·····	
			Method		
100°C Heat Test;		(b)	Condition		
% Loss, 1st 48 Hrs		0.70	Confined		
% Loss, 2nd 48 Hrs		0,00	Density, gm/cc		
Explosion in 100 Hrs		None	Brisunce, % TNT		
P4 4 141. 4 4			- Detenation Rutu:		(a, b)
Flammability Index:			Confinement		None
Hygroscopicity: % 30°C, 959	RH.	7 days 2.01	- Condition		Cast
(b) 71°C, 959	RH,	7 days 0.31	Charge Diameter, in.		1.0
Velatility:			Density, gm/cc		1.81
· •·•·			Rate, meters/second		6917

1. I.

-1

Å

٢,

HBX-3

Downloaded from http://www.everyspec.com

74.

ţ

ï

A Carton Sector

Booster Sensitivity Test: Condition		Decomposition Equation: Oxygen, atoms/sec
		(Z/sec)
Tetryl, gm		Heat, kilocolorie/mola
Wax, in. for 50% Detonation		(AH, kcal/mol)
Wax, gm		Temperature Range, *C
Density, gm/cc		Phase
Heat of:	(b) 4495	Armor Plate Impact Test:
Combustion, cal/gm	877	
Explosion, cal/gm	011	60 mm Mortar Projectile:
Gas Volume, cc/gm	1.45	50% Inert, Valocity, ft/sec
Formation, cal/gm	491	Aluminum Fineness
Fusion, cal/gm	9.30	500-lb General Purposa Bamba:
Specific Heat: cal/gm/*C		
30°C	0.254	Plate Thickness, inches
50 ⁰ 0	0.254	1
		134
		11/2
		194
Burning Rate: cm/sec		
		Somb Drop Test:
Thermal Conductivity: cal/sec/cm/°C 35°C	(b) 1.70 x 10 ⁻³	T7, 2000-16 Semi-Armer-Piercing Bomb vs Concrete:
Coefficient of Expension:	(७)	Max Safe Drop, ft
Lineor, AL/inch		500-là General Purpose Bomb vs Concrete:
0°C	40 x 10 4	Journa Canarar Farpene Bomb Ve Cancrete;
35°C 70°C	$\begin{array}{c} 40 \times 10^{-1} \\ 83 \times 10^{-1} \\ 130 \times 10^{-1} \end{array}$	Height, ft
70°C	130 x 10	Triois
Hardness, Mohs' Scale:		Unoffected
		Low Order
Young's Modulus:	(७)	High Order
E', dynes/cm²	11.5 × 10 ⁹	
E, 1b/inch ²	1.67 x 10 ⁵	1000-lb General Purpose Bomb vs Concrets:
Diensity, gm/cc	1.81	
Company Company L. H. H. H.	Can helow	Height, ft
Compressive Strength: Ib/inch ²	See below	Trials
		Unaffected
Vapor Fressure: C mm Mercury		Low Order High Order
	1610	
<u>Compressive Strength:</u> 1b/inch ² Density, gm/cc	1.81	
Ultimate deformation, 5	1.37	

regmentation Test:		Shaped Charge Effectiveness, TNT == 1	100:
90 mm HE, M71 Projectile, Let BGS-1-17	t:	Glass Cones Steel	Cones
Density, gm/cc		Hole Volume	
Charge Wt, Ib		Hole Depth	
Total No. of Fragments:		Coler:	Grey
For Composition B	998	Comri	Gray
For Subject HE For 80/20 Tritonal	476 616	Principal Uses:	HE charge
3 inch HE, M42A1 Projectile, Let KC-5:			
Density, gm/cc			
Charge Wt, Ib			
Total Nu. of Fragments: For TNT		Method of Loading:	Cast
For Subject HE,		Leading Banaltan and /co	1.81
agment Velocity: ft/sec		Loading Density: gm/cc	1.01
At 9 ft At 25½ ft		Storege:	
Density, gm/cc			
		Method	Dry
est (Relative to TNT).	(a)	Hazard Class (Quantity-Distance)	Class 9
Air: 3.25" diameter sphere		Compatibility Group	Group I
Peak Pressure 🛆 psi Catenary	25.5		
impulse NFOC Pendulum	20.6	Exudation	None
Energy			
Air, Confined: Impulse			
Under Water: Peak Preisure			
Impulse			
Energy			
Underground: Peak Pressure			
Impulse			
Energy			

ŕ

ь

ন্তম সাম বা

HBX-1; HEX-3

Downloaded from http://www.everyspec.com

100.00

	Moisture,	Acidity,	100°C Vac		Hygrosco 959	picity, %
Explosive Composition	2	2	cc gas	Hours		RH
					30°C	71°C
Standard HBX-1	0.73	0.011	0.47	40	+2.98	+1.13
+0.2% moisture	, -		0.68	40		-
+0.4% moisture		•	0.62	40		
+0.6% moisture	1		0.50	40		
HBX-1 without CaClo	0.00	0.029	0.36	40	-0.06	-0.25
+0.2% moisture			0.25	40		
+0.4% moisture		1	0.23	40		
+0.6% moisture		; ; [0.27	40		
HBX-1 with silics gel	0.06	0.031	0.73	40	+0.08	+0.04
				1.0		
Standard HBX-3	0.54	i 0.012	0.45	40	+2.01	+0.31
+0.2% moisture		•	0.47	40		
+0.4% moisture		ı	0.43	40		
+0.6% moisture			0.41	40		
HBX-3 without CaCl.	0.02	0.049	0.46	40	-0.06	-0.29
+0.2% moisture			0.26	40		
+0.4% moisture			0.26	40		
+0.6% moisture			0.20	40		
HBX-3 with silica gel	0.04	0.100	0.45	40	+0.09	+0.05
Standard H-6	0.71	0.017	0.47	40	+2.01	+1.77
+0.2% moisture	0.11	0.011	0.88	40	TEIVI	471 ()
+0.4% moisture			0.63	40		
+0.6% moisture			0.65	40		
H-6 without CaCl,	0.03	0.082	0.40	40	-0.06	-0.25
+0.2% moisture	-		0.10	40		•
+0.4% moisture			C.25	40		
+0.6% moisture			0.23	40		
H-6 with silics gel	0.05	0.028	0.43	40	+0.09	+0.06

The Stability of HBX Compositions Made With and Without Desiccants and Containing Added Molature *

* All samples were ground to 20/100 mesh size, 7 days before tests. Silics gel used was Fisher Scientific Company, Lot 541492, through 100 mesh U. S. Standard Sieve.

のないのであるというであるというできたのである

HBX-1; HBX-3

Downloaded from http://www.everyspec.com

Preparation:

HEX explosive mixtures are prepared by melting TNT in a steam-jacketed melt kettle equipped with a mechanical stirrer. Water-wet RDX is added slowly with stirring and heating until all the water is evaporated. Aluminum is added, and the composition is stirred until uniform. D-2 wax and calcium chloride are then added. The desensitizer wax, also known as Composition D-2, consists of 84% paraffin and other waxes, 14% nitrocellulose and 2% lecithin. The mixture is cooled from approximately 95° to 100° C to a temperature considered suitable for casting (the lowest practicable pour temperature). HEX can also be made by adding the calculated amcunt of TNT to Composition B to obtain the desired proportion of RDX/TNT. The appropriate weights of the other ingredients are added to complete the mixture.

Origin:

1. 1. j

Developed during World War II, as relatively insensitive mixtures, by adding 5% desensitizer to Torpex II, for high blast explosive applications.

References: 34

(a) O. E. Sheffield, <u>Blast Properties of Explosives Containing Aluminum or Other Metal</u> <u>Additives</u>, PATR No. 2353, November 1956.

(b) S. D. Stein, G. J. Horvat and O. E. Sheffield, <u>Some Properties and Characteristics</u> of HBX-1, HBX-3 and H-6, PATE No. 2431, June 1957.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo. 10,303, 15 June 1949.

(d) S. R. Walton, Report on the Program to Develop an Improved HBX-Type Explosive, NAVORD Report No. 1502, 26 July 1950.

(e) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, <u>Detonation</u> <u>Velocity Determinations and Fragment Velocity Determinations of Varied Explosive Systems</u> <u>and Conditions</u>, <u>National Northern Corporation Final Summery Report NNC-F-13</u>, February 1958 (Contract DAI-19-020-501-ORD-(P)-58).

(f) Also see the following Picatinny Arsenal Technical Reports on HBX Explosives: 1756, 2138, 2169.

³⁴See [cotnote 1, page 10.

1. 10

<u>HEX-24</u>

Downloaded from http://www.everyspec.com *

•••

e di suite des recents

 $\mathcal{T}_{\mathcal{T}}$

۰.

. ..

4.7

Composition:		Malacular Weight:	47.6
Potassium Ferchlorate	32	Ouygon Belence:)
(17 microns)	48	CO, % CO %	-42
Aluminum, atomized (20 microns)	40		- 34
RDX (through 325 mesh)	16	Density on/cc Apparent Pressed at 20,000 psi	1.39 2.1
Asphaltum (through 100 mesh)	λ ι	Melting Point: *C	
C/N Ratio		Freezing Paint: *C	
Impact Sanditivity, 3 Kg Wt:		Beiling Point: *C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg		Refrective Index, no	الا الله مسترين الأكريسية مستوريني .
Picatinny Arsenal Apparatus, in.	16		
Sample Wt, mg	24	nä	
		ាដ្ឋ	
Friction Pandulum Test:		Vacuum Stability Test:	
Steel Shoe	Detonates	cc/40 His, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Yest: Trials		- 100.0	1.25
•		120.0	
% Explosions		135*C	
Portials		150°C	
Burned		200 Gran Bomb Sauri Test:	
Unaffected		Sand, gm	12-5
Explosion Tomperature: 'C		Sunsitivity to Initiations	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 520		Leod Azide	0.20
10		Tatryl	0.25
)5		Ballistic Mortac, % THT:	
20		Treusl Yest, % TNT:	
75'C International Heat Test:			
% Loss in 48 Hrs		Plate Dant Tast: Method	
100'C Heat Yost:		Condition	
% Loss, 1st 48 Hrs	0.15	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 169 Hrs	lione	Brisunce, % TNT	وسريون وسريون والم
Flammability Indax:		Detenstion Rate: Confinement	
		- Condition	
Hygrascopicity: %	llone	Charge Dlameter, in.	
		Density, gm/cc	

	HEX-24 AMCP 70	/6-1 :
Fregmentation Test:	Shaped Chargo Effectiveness, TNT = 100:	<u> </u>
90 mm HE, M71 Projectile, Lat WC-91:	Glass Cones Steel Cones	
Density, gm/: c	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Celer: Grey	
For TNT		
For Subject HE	Principel Uses: HE filler for small calibe	
Stude ME MARAN Burlandle Law MC R.	Principel Uses: HE filler for small calibe projectiles	ir
3 inch HE, M42A1 Projectile, Let KC-5:	P	
Density, gm/cc Charge Wt, Ib		
Total Na. of Fragments:	Method of Looding: Pressed	
For TNT		
For Subject HE		
و بالمحمد المحمد الم	Looding Density: gm/cc	
Fragmant Valacity: ft/sec	Pressed at 20,000 psi 2.1	
At 9 ft At 25½ ft	Sterege:	
Density, gm/cc		
	Method Dry	
Biast (Relative to TNT):	Hazard Class (Quantity-Distance)	
٠ ٨١	Compatibility Group	
Ain Peak Pressure		
Impulse	Exudotion None	
Energy		
	Static Tests:	
Air, Confined:	20 mm T215El Projectile:	
Impulse	PA Peak Pressure, pui 55 MFOC 20" Blast Cube 44	
Under Water:	APO 24" Blast Cube 44	
Peak Pressure	Static Tests;	
Impulse	20 mm M97 Projectile:	
Energy		трех
	Foxboro pai 19 12.4 1 Catenary pai 46	3.0
Underground: Peak Pressure		
Impulse	APG 24" I ist Cube 36 24	32
Energy	Hest of:	
Plame Temperature, ^O K 25		
Activation Energy, kcal 20.	4 Explosion, cal/gm 1858	
Temp, °C 450 to 5'		
Specific reaction rate, k 1.64 x 10	-5	

61) T

と、当然にも、「「「」」というないで、

Composition:	Moleculer Weight:	47.6
% Potassium Perchlorate 32 (17 microns) Aluminum, flaked (1 micron) 48	Oxygen Balance: CO ₂ % CO %	-42 -34
RDX (through 325 mesh) 16 Arphaltum (through 100 mesh) 4	Density: gm/cc Apperent Pressed at 20,000 psi	0.69
	Melting Point: "C	
C/H Ratio	Freezing Point: *C	
Impect Sensitivity, 2 Kg Wt: Bureou of Mines Apparatus, cm	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, nº Mis Nº	
Friction Pendulum Test: Steel Shoe Partially detonates Fiber Shoe Unaffected	Vocuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials % Explosions	- 100°C 120°C 135°C	1.52
Partials Burned Unoffected	150°C 209 Grem Bomb Sand Test: Sand, gm	23.7
Explosion Temperature: *C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1 5 545	Mercury Fulminate Lead Azide	
10	ietryl	0.20
15 20	Ballistic Martur, % TNT:	
	Treuxi Test, % TNT:	- 'i
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc Brisonce, % TNT	
Explosion in 100 Hrs		
Flammability Index:	- Detension Rete: Confinement	
Hygroscopicity: %	- Candition Charge Diamater, in.	
Voletility:	Density, gm/cc	

HEX-48 Shaped Charge Effectiveness, THT = 100: **Fragmentation Test:** 90 mm HE, M71 Projectile, Lot WC-91: Glass Cones Steel Cones Hole Volume Density, gm/cc Hole Depth Charge Wt, Ib ١ Total No. of Fragments: Coler: Gray For TNT For Subject HE Principal Uses; HE filler for small caliber projectiles 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fregments: Method of Londing: Pressed For TNT For Subject HE Loading Density: gm/cc Pressed at 20,000 pai 1.62 Fragment Velocity: ft/sec At 9 ft At 251g ft Storage: Density, gm/cc Dry Method Hazard Class (Quantity-Distance) Blast (Relative to TNT); **Compatibility Group** Air: Peak Pressure Exudation None Impulse Energy <u>Static Tests:</u> 20 mm T21551 Projectile: Air, Confined: PA Peak Pressure, pal 1700 20" Plast Cite AP7 24" Blast Cube T? 45 42 Impulse Under Water: Static Testa: 20 mm NO? Projectile: **Peak Pressure** Impulse HEX-13 7.T 2.8 29 Tetr: Energy Fostoro psi 17.3 3.9 28 Caterary psi 43 Iuration, microsec 517 APG 24" Blast Oube 29 Underground: 560 530 10 Peak Pressure Impulse Heat of: Energy Flame temperature, ox 2342 Compution, cs1/gm 4119 Explosion, cal/gm 1735 Nextworlds George, kcel 25.4 Gas Volume, cc/gm 200 lemp, "d "pecific reaction 450 to 470 7.54 x 10⁻⁶ rate, k

167

AMCP 706-177

HEX-48

ł

Cook-Off Tests: (c)

20 mm T215El HEX-48 Loaded Projectiles With Dye-Costed RDX Top-Off

Projectile No.	Cut-Off Temp. °C	Cook-Off
l	170	Yes (198)
2	150	No
3	155	Yes (190)
4	150 to 175	No

National Northern Projectile Load:

MOX-2B (no top-off)	195
MOX-2B (Tetryl top-off)	150
MOX-2B (97/3, RDX/wax top-off)	175
MOX-2 (no top-off)	175 '

Fragment Penetration Tests: (c)

			Avg. No. of Penetrations per Round in Zone 650-1300		
Projectile	Filler	Altitude, Feet	0.020"	0.040"	0.051"
T215E1	HEX-48	Ground	352	264	282
		60,000	' 676	432	398
T282E1	MOX-2B	Ground	634	290	235
1	•	60,000	807	367	250
EDG8 Mod 0	MOX-2B	Ground	476	268	224
		60,000	672	264	256

The fragment penetration test records numbers of complete penetrations of aluminum panels of various thicknesses at 2.5 feet from the static detonation. The total penetrations recorded on the 24 ST-3 aluminum panels occurred with the projectile nose always pointed toward C^o and the base toward 180° .

The test data indicate that on the thicker panels, 0.040" and 0.051," the HEX-48 loaded T215E1 projectile produced more complete fragment penetrations at ground and altitude than MOX-2B loaded T282E1 and EX8 Mod 0 projectiles.

HEX-24; HEX-48

Downloaded from http://www.everyspec.com

AMCP 700-177

Preparation:

The HEX compositions were prepared by blending the appropriate weight of the dry ingredients in a Fatterson-Kelly twin-shell blender for at least 30 minutes.

An alternate procedure for LOO to 200 gram batches used a "Cradle-Roll" mixing device. This device consisted of a balf-barrel type contriner constructed of wood and lined with an electrical conductive material. A plastic roll was sllowed to move over the ingredients by remote control action of the container The roll action prevented caking of the mix but had no adverse effect on the particle size of the ingredients. The period of time required to obtained a uniform and intimate mixture was approximately fifteen minutes.

Origin:

+-

The development of "slow-burning" explosive mixtures which would produce increased blast effects in enclosed or nearly enclosed spaces directed attention to their use for possible military application. In 1950 Picatiuny Arsenal developed a high capacity filler for 20 m projectiles consisting of 85/10/5 RDX/aluminum/desensitizer which was more poverful than standard tetryl filler. However, in comparison with MOX type explosives, there was little doubt as to the superior performance of the MOX mixture. HEX (high energy explosive) mixtures were developed at Picatinny Arsenal in 1953 (Ref a) as superior high blast compositions suitable for use in small caliber projectiles.

References: 35

(a) O. E. Sheffield and E. J. Murray, <u>Development of Explosives-Metallized Explosives</u>-High Blast Fillers for Small Caliber Shell, Picatinny Arsenal Memorandum Report No. MR-49, 21 December 1953.

(b) O. E. Sheffield, <u>Properties of MOX-Type Explosive Mixtures</u>, PATR No. 2205, October 1955.

(c) National Northern Corporation, Letter from Dr. C. M. Seffer, Jr., to Commanding Officer, Picstinny Arsenal, 12 June 1957.

³⁵See footnote 1, page 10.

1

2,4,6,2',4',6'-Hexanitro-oxanilide (HENO)

Camposition: % Q O	Molecular Weight: (C14H5:2014)	
% 0 0 0 c 33.0 c c H 1.2 NH NH	Oxygen Bulance: CO. % CO %	-53.4 - 9.4
N 21.9 021- NO2 02N NO2	Density: gm/cc	
$ \begin{array}{c} N & 21.9 & 0_2 \\ 0 & 43.9 \end{array} $	Melting Point: "C Decomposes	302
C/H Ratio 0.797 102 102	Freezing Point: 'C	<u></u>
Impact Sen-itivity, 2 Ke Wt:	Boiking Point: "C	
Bureau r f Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 15 Sample Wt, mg , 12	Refractive Index, n ₂₀ n ₂₅ n ₂₆	
Friction Pendulum Tast: Steel Shoe Unaffected Fiber Shoe Unaffected	Vecuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials % Explosions Partials	120 C 135 C 150 C	0.40
Burned Unaffected	200 Grem Bamb Sand Test: Sand, gm	52.1
Explosion Temperature: 'C Seconds, 0.1 (no cap used) I 5 392 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercuzy Fulminate Lead Azide Tetryl	0.30 0.25
20	Ballistic Mortan, % THT:	
75°C International Heat Test:	Trouzi Test, % TNT:	
% Loss in 48 Hrs	Plate Dant Yest: Method	
100°C Hect Test:	Condition	
ab Loss, 1st 48 Hrs 0.07	Confined	
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc	
Explosion in 100 Hrs lione	Brisance, % TNT	
Flammability Index:	Detenstion Rate: Confinement	
Mygroscopicity: % 25°C, 30'S PH 0.19	Condition Charge Diameter, in	
Valatility:	Density, gm/cc Rote, meters/second	

1

2,4,6,2',4',6'-Hexanitro-oxanilide (HHO)

Downloaded from http://www.everyspec.com

AMCP 706-177

Fregmentation Test:	Shaped Charge Effectiveness, TFT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Gioss Cones Stevi Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Celer: Almost white
For Subject HE ³ _R 3 3 inch HE, M42A1 Projectile, Lat KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Igniter powder; pyrotechnic compositions
Totol No. of Fregments; For TNT For Subject HE	Method of Looding: Pressed and extruded
	Lunding Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 251/2 ft	Storage:
Density, gm/cc	Method Dry
Blast (Rolative to TNT);	Hozard Class (Quantity-Distance) Class 9
Air: Peak Pressure	Compatibility Group
Inipulse Energy	Exudation None
Air, Confined: Impulse	
Undor Water: Penik Prassure	
impulse Energy	
Underground: Peak Pressura	
Impulse Energy	

2,4,6,2',4',6'-Hexanitro-oxanilide (HNO)

Solubility in the following substances:

Solvent

Nitrobenzene Water Alcohol (Ethyl) Acetone Benzene Butyl acetate Carbon tetrachloride Dimethylformamide Ether (Ethyl) Acetic Acid Witric Acid Crystalling form <3 gm in 100 cc, at 23°C ~ 5 gm in 100 cc, at 210°C 0.10 gm in 100 cc, at 100°C Insoluble Insoluble Insoluble Insoluble Very soluble Insoluble Insoluble Soluble Long rectangular glistening platss from nitrobenzene

.everyspec.com

Preparation:

の語言である。

To prepare hexanitro-oxanilide, first prepare tetranitro-oxanilide as described herein under the entry "2,4,2',4'-Tetranitro-oxanilide (TNO)."

A 1.5 liter round bottom flask is equipped with a stirrer of the type which causes a downward swirl. The flask is jacketed for hot and cold water. 187 grams of nitric acid of specific gravity 1.49 (commercial grade) is placed into the flask and 100 grams of sulphuric acid is added to the mitric acid under agitation. The mixed acid is cooled to 10° C. 29.2 grams of tetranitro-oxanilide is clovely added to the mixed acid under rapid sgitation maintaining the temperature at 80-10°C. After the addition of the TNO is completed (approximately 25 minutes) the temperature is raised to 85°C over a period of 2 hours and held at 85°-90°C for one hour. The hexanitro-oxanilide (HNO) "slurry" is filtered on a Buchner funnel and purified as explained under "Tetranitro-oxanilide."

Origin:

A. G. Perkin in 1892 obtained hexanitro-examilide directly by heating to boiling a solution of tetranitro-examilide in a mixture of sulfuric and nitric acids. He also prepared the same compound from examilide by the action of a boiling mixture of fuming nitric and sulfuric acids (J Chem Soc <u>61</u>, 462 (1892)).

References: 36

(a) L. Gowen and R. Dwiggens, Case Gun Ignition Studies, NAVORD Report No. 2321, 13 June 1952.

(b) D. Dubrow and J. Kristal, Substitution of Tetranitro Oxanilide and Hexanitro Oxanilide for Tetranitro Carbazole, PA Pyrotechnic Research Laboratory Report 54-TF1-88, 20 December 1954.

(c) S. Livingston, Preparation of Tetranitro Carbazole, PA themical Research Laboratory Report 136, 330, 11 April 1951.

(d) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.

36See footnote 1, page 10.

beta-HMX (a)

d from http:

/www.e

AMCP 706-177

. M

Semposition: CH %	Molecular Weight: (C ₁ H ₈ N ₈ O ₈)	296
C 16.2 02N-N N-N02	Oxygen Belance; CO ₂ %	-21.6
H 2.7. H ₂ C CH ₂	CO %	0.0
N 37.9 02N-N N-NO2	Density: gm/cc Crystal	1.90
0 43.2 CH ₂	Melting Point: °C Capillary met Koffer Micro Het Sta	hod 273 ge 280
C/H Ratio 0.095	Freezing Point: "C	······
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 32	Boiling Point: *C	
Sample Wt 20 mg	Refractive Index, na	
Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg 23	n _a ,	
Sample Withing 23	n.20	
Friction Pendulum Test:	Vacuum Stability Test:	<u></u>
Steel Shoe Explodes	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials		0.37
%	120°C	0.45
70 Explosions	135°C	
Partials	150°C	0.62
Burned	200 Grem Bomb Sand Test:	
Unoffected	Sand, gm	60.4
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 380	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5 <u>327</u> 10 <u>306</u>		0.30
	Tetryl	
20	Ballistic Mortar, % TNT:	150
	Trauzi Test, % TNT:	145
75°C Internetional Heat Tasi: % Loss in 48 Hrs	Plate Dant Test: Method	
100°C Heet Test:	Condition	
% Loss, 1st 48 Hrs 0.05	Confined	
% Loss, 2nd 48 Hrs 0.03	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Datometion Rate: Confinement	
Hygroscopicity: %	Condition	
30°C, 95% RH (c) 0.00	Charge Diameter, in. Density, gm/cc	1.84

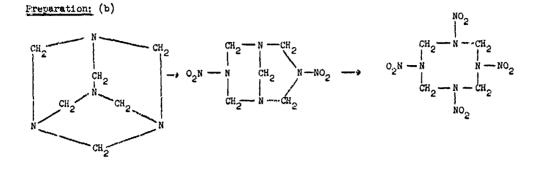
173

and state of the state of the

1,19

γ,

beta-HMX


a contraction of the

A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A S

Booster Sensitivity Test: Condition			Decomposition Equation: Oxygen, atoms/sec	(e) 10 ^{19.7}
Tetryi, gm			(Z/sec)	10
Wax, in. far 50% Deta	vation		Heat, kilocalorie/mole	52.7
Wax, gm			(SH, kcal/mol) Temperature Ronge, *C	271-314
Density, gm/cc			Phase -	Liquid
Heat of: Combustion, cal/gm		2362	Armer Plata Impact Test:	
Explosion, col/am	(e)	1356		
Gas Volume, cc/gm	.,		60 mm Martar Projectile: 50% Inert, Velocity, it/sac	
Formation, cul/gm	(e)	-60.5	Aluminum Fineness	
Fusion, col/gm				
			500-là General Purpore Bombi	N1
Specific Heat: col/gm/*C		stallized (g)		
<u>^</u>	°c		Plote Thickness, inches	
-75 0.153	85	0.283		
0 0.228	90	0.290	1	
25 0.248 50 0.266	100	0.295	11/4	
50 0.266 75 0.282	125 150	0.307 0.315	11/2	
17 01206	~,~	ر عل ٥٠ 	- 13.	
Burning Rate:				
cm/sec *			Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/*C			T7, 2000-16 Semi-Armor-Piero	ilag Bomb vs Concrete:
	·····		Max Sofe Drop, ft	
Coefficient of Expension: Linear, %/*C				•
			300-16 Ganerel Purpost Remi	s vs. Concrete:
Volume, %/*C			Height, ft	
Hardness, Mohs' Scale:	(e)	2,3	Trials	
murunus, mons' 30616;	(«)	213	Unaffected	
Young's Modulus:	<u></u>		Low Order	
E', dynes/cm?		·	High Order	
E, Ib/inch ²			1000-ib Ganeral Purpose Som	b vs Concrete:
Density, gm/cc			11.2.3.4.4	
Compressive Strength: Ib/	/inch?			
wempressive arrength: 10/	men.		Trials	
			Urioffected	
Vapar Prossure:			Low Order	
*C mr	n Mercury		High Order	

174

Two men are required to regulate the addition of reagents and control the temperature during the initial stage addition; one man can complete the procedure. A 1-liter 5-necked flask is used, the center neck for an efficient stirrer, one side neck for a thermometer, and the other necks for burrettes and a gas outlet (to water trup). The flask is placed in a pan with steam and cold water inlets, for temperature control.

Five no of acetic anhydride and 250 we glacial acetic acid are poured into the flask and the temparature brought to $45 \pm 1^{\circ}$ C, and held there for the duration of the entire reaction. The reagents (a solution of 33.6 gm hexamins in 55 gm of glacial acetic acid, 100 ec of acetic anhydride und 40 cc of a solution of 32.3/57.7-ammonium nitrate/98% nitric acid) are then added simultaneously, continuously and equivalently over a 25-minute perici. The reaction mixture is aged 15 minutes.

The second stage reagents (60 co of 42.3/57.7, ammonium nitrate/98% nitric acid and 150 co acetic anhydride) are then added simultaneously, continuously and equivalently over a 25-minute period. The mixture is aged 65 minutes, poured into 1.5 liter of water and simulated on a steam bath for 12 hours. Cool, filter and dry the RDX-HMX precipitate (yield 73% HMX).

The RDX is destroyed, leaving HMX, as follows: 1025 gm of the crude product are placed in a solution of 15 gm sodium tetraborate decalydrate in 5 liters of water, heated to boiling with sgitation, and 5 N NaOH added at the rate of 3 cc/min. When about 730 cc have been added the pH increases sharply from a little over 8.7 to over 9.7 which corresponds to complete destruction of the RDX. Filter the HMX from the hot mixture; yield 612 gm, mp 279.5°-280.5°C. Recrystallization from nitromethane yields material melting at $281^{\circ}-282^{\circ}C$.

Origin:

Was discovered as an impurity (by-product) in the mitration of hexamethylone-tetramine to form RDX. It is now manufactured directly by the process described above and has valuable use in explosive systems.

Removal of RDX from HAX-RDX Mixtures and Recovery of a RDX-HMX Mixture (This procedure appears suitable for use with mixtures containing 80% or more HMX):

175

beta-HMX

w.everyspec.com

Downloaded from

Procedure:

500 grams of HMX containing 12.25% RDX are placed in a 1500 cc beaker, 500 cc of acetone is added and the slurry is agitated for several minutes at room temperature. Before complete settling, the RDX-HMX-acetone solution is decanted.

To the residual HMX-RDX, another 500 cc of acetone is added. The slurry is heated on the steambath and while boiling, agitated for several minutes. The boiling RDX-HMX-acetone solution is decanted. The residual HMX is now washed with cold acetone into a funnel. This HMX is now taken up in 95% alcohol, filtered and dried. Yield 35,.9 gm or 70.78%.

All the acetone extracts are combined and evaporated to dryness. Yield 137.5 gm or 26.5%.

Yield Balance:

Pure HMX obtained - 353.9 gm	70.78%
Total RDX-HMX mixture recovered - 137.5 gm	26.50%
Samples taken during process - 2.4 gm Loss during process	0.128% 2.24%
Total	100.00%

Various samples were analyzed for RXD content:

1. Crude HMX	12.25% RDX
2. After first acetone washing	6.0% RDX
3. After second acetone washing	2.0% RDX
4. After third acetone washing	0.0% RDX
RDX-HMX sample recovered	54.5% RDX

Preparation of Fine Particle-size HMX by the Aspirator Method:

- 1. Dissolve 1100 gm HMX in 4400 cc of dimethyl sulfoxide.
- 2. Filter the HIX solution.
- 3. Connect a clean aspirator to the water line.
- 4. Place a 55 gallon clean drum under the aspirator.
- 5. Fasten a polyethylene tubing, long enough to reach easily to the bottom of the HMX-
- dimethyl sulfoxide container, to the side inteke of the aspirator.
- 6. Fasten to the bottom of the aspirator another polyethylene tube long enough to reach to the bottom of the 55 gallon drum.
- Open the water faucet and then place the polyethylene tube in the HMX container.
 White milky fine HMX separates out in the drum. Total duration of run is approximately 7 minutes.
- 9. After all the HAX solution is sucked out of the container, the water is turned off.
- 10. The material is filtered and water washed.
- 11. If any HMX is required, the material can be alcohol and ether washed.

A more efficient method to recover the RDX-HMX mixture;

- 1. Filter the combined hot acctone extracts.
- 2. Pour while agitating the filtered extracts into at least 4 times its volume of water.
- 3. Filter and dry, etc.

٠

AMCP 706-177

beta-HMX

Color:

White

Storage:

Exudation	None
Compatibility Group	Group L (dry) Group M (wet)
Hazard Class (Quantity-Distance)	Class 9
Method	Dry

References: 37

(a) O. E. Sheffield, E. J. Murray, A. L. Rosen and B. W. Kanouse, <u>Properties of HMX</u>, PA Chemical Research Laboratory Report No. 52-IM1-23, 7 April 1952.

(b) W. E. Bachmann, The Preparation of HMX, OSRD Report No. 1981, 3 November 1943.

(c) S. Livingston, Characteristics of Explosives HMX and DPEHN, PATR No. 1561, 6 September 1.945.

(d) R. J. Finkelstein and G. Gamow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.

(e) O. H. Johnson, HMX as a Military Explosive, NAV(RD Report No. 4371, 1 October 1956.

(f) Also see the following Picatinny Arsenal Technical Reports on HMX:

1	3	<u>6</u>	I	2
1741	2183	2016	1737	1709 2059

(g) C. Lenchitz, W. Beach and R. Valicky, <u>Enthalpy Changes, Heat of Fusion Pnd Specific</u> <u>Heat of Basic Explosives</u>, PATR No. 2504, January 1955.

³⁷See footnote 1, page 10.

AMCP	706-	177
------	------	-----

****4**1

1

HTA-3

Downloaded from http://www.everyspec.com

19

.

Composition:		Molecular Weight:	91
H-X	49	Oxygen Belance:	E)
me	29	ົງ.% ວ.%	-51 -27
	22	Density: gm/cc Cast	1.90
Aluminum	22	Melting Point: *C	
C 11 D			
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: "C	
Sample Wt 20 mg	17	Refractive Is dex, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	17 25	na	
winkie wry nig	e)	n	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	*
with the line is a weak to the second		- 100°C	
Rifle Bullet Impact Test: 10 Trials , 3/16"_Steel	י א 1/8" Al	120°C	0.37
Explosions 90	50	135°C	
Fartials		150°C	
Burned 10			
Unaffected 0	 50	200 Gram Bomb Send Test: Sand, arn	61.3
	•	Sana, gri	01.3
Explusion Temperature:	°c	Sensitivity to Initiation:	
Se onds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1	***	Mercury Fulminote	
5 Flames erratical	Ly 370	Leod Azide	0.30
10		Tetryi	
15		Bellistic Morter, % TNT.	120
20		Trouzi Test, % TNT:	
75°C International Heat Test:	·········		
% Loss in 48 Hrs		Plote Dent Test; Method	
100°C Heet Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
		Detonation Rate:	
Flemmebility Index:		Confinement	None
Hygroscopicity: %		Condition	Cast
		Charge Diameter, in, 1.	
Ne - 1 - 111		Density, gm/cc	1,90
Velatility:		Rate, meters/second	7866

<u>HTA-3</u>

.........

100

など、時代で、ため、ためであ

4

Marrie T. F.

AMCP 706-177

1

,

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec (Z/sec)
Tetryl, gm		Heat, kilosalorie/mole
Wax, in. for 50% Detonation		(ΔH , kcal/mol)
Wax, gm		Temperature Range, *C
Density, gm/cc		Phase
	·	
Heat of:	<i>*</i> *	Armor Plate Impact Test:
Combustion, cal/gm	3687	
Explosion, cal/gm	1190	60 mm Mortar Projectilo:
Gas Volume, cc/gm	680	50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, col/gm		
·		500-ib General Purpose Bambs:
Specific Heat: cal/gm/*C		
32 ⁵ to 74°C	0.245	Plate Thickness, inches
		1 1
		14
		10.2
	···	1a*
Burning Rate:		
cm/sec		Bemb Drep Test:
Thermal Conductivity:		T7, 2000-16 Semi-Armer-Piercing Semb vs Concrete:
col/sec/cm/*C		
		- Max Sali Drop, ft
Coefficient of Expansion: Linear, %/*C		
Linear, 707 C		500-ib Ganaral Purposn Bamb vs Concrete:
Valume, %/*C		
		Height, ft
Hardness, Mohs' Scale:		Trials
		Unoffected
Young's Modulus:		Low Order
E', dynes/cm ²		High Order
E, lb/inch ²		1000-ib General Purpose Bomb vs Concrete:
Density, gin/cc		
	2260	- Height, ft
Compressive Strength: Ib/inch ²	See telow	Trials
		Unaffected
Veper Pressure:		Low Order
*C mm Mercury		High Ord: r
Compressive Strength: 15/inch	#	
Average (10 tests)	2260	Ultimate Teformation: 5
High Low	25 30 1910	Average (10 tests) 2.91
	L 710	H1. h 3.22 Low 2.52
		1 LV# 4+74 1

* Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (4,000 1b) total load or 30,000 psi with a 2 minute time of dwell.

**

regmentation Test:	Shaped Charge Effectiveness, TNT = 100	•	
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cor	145	
Density, gm/cc	Hole Volume		
Charge Wt, Ib	Hole Depth		
Total No. of Fragments;	Color:	Gray	
For TNT		0103	
For Subject HE	Principel Uses; HE projectile and 1	bomb filler	
3 inch HE, M42A1 Projectile, Let KC-5:			
Density, gn./cc			
Charge Wt, Ib			
Total No. of Fragments;	Method of Locding:	Cast	
For TNT	matina at realing:	48 5	
For Subject HE			
regment Velocity: ft/sec	Looding Density: gm/cc	1.90	
At 9 ft			
At 251/2 ft	Storage:		
Density, gm/cc	Method	Dry	
last (Relutive to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air:	Compatibility Group	Group I	
Peak Pressure .		01000	
impulse	Exudation	None	
Energy			
Air, Confined:	Work to Produce Rupture: ft-lb/inch3 *		
Impulse	Average (10 tests)	2.77	
Under Water:	High	3.39	
Dider Weter: Peak Pressure	Low	2.40	
Impulse	Efflux Viscosity, Saybolt Second	<u>:</u> 24.8	
Energy			
Undarground: Peak Pressure			
impulse	1		
Energy			
	*Test specimen 1/2" x 1/2" cylind mately 3 gm) pressed at 3 tons (total load or 30,000 psi with a time of dwell.	(5.000 it)	

//www.everyspec.com

Modulus of Elasticity: *

<u></u>		lb/inch ²	•
Average		89,200	
High	:	97,400	
Low		76,300	

* Test specimen 1/1" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

Critical Pressure	119,000 psi *
Density, gm/cc	1.92

* Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases.

Preparation:

Procedure similar to that used for Torpex.

References: 38

(a) 1st Indorsement from Chief, Explosives Levelopment Section, to Chief, Explosives Research Section, Picatinny Arsenal, dated 12 May 1958. Subject: "Properties of Octols and HTA-3."

(b) R. Brown and R. Velicky, <u>Heat Capacity of HTA-3</u>, Picatinny Arsenal General Laboratory Report No. 58-HL-509, 5 May 1958.

³⁸See footnote 1, page 10.

A. 1. 1. 10. 14 1

181

The second second second second

HTA-3

AMCP 706-177

Lead Azide

Downloaded from http://www.everyspec.com

1

Composition: %	Moleculer Weight: (PbN ₆) 291
N 26.8 N=N-N-Po-N-N=N	Oxygen Balancu; CO.º % -5.5 CO % -5.5
РЬ 71.2	Density: gm/cc Crystel 4.80 Descrinated 4.38
	Multing Point: *C Decomposes
C/H Ratio	Freezing Point: *C
Impact Sensitivity, 2 Kg Wt: Pure Dextrinated Bureau of Mines Apparatus, cm 10 1?	Boiling Point: "C
Somple Wt 20 mg Picatinny Arsenol Apparatus, in. 3 5	Refrective Index, no
Picatinny Arsenol Apparatus, in. 3 5 Sample Wt, mg 30 28	nıs
	n ^b
Friction Pendulum Test:	Vocuum Stability Test: Dextrinated
Steel Shoe Explodes Fibe, Shoe Explodes	cc/40 Hrs, at 90°C
LINE TURE TURE TENTON	100°C 1.0
Rifle Sullet Impact Test: Triuls	120°C 0.07
% '	135°C
Explosions Partials	150°C
Burned	200 Gram Bomb Send Test:
Unaffected	
	Sond on Black powder fuse 19.0
Explosion Temperature: 'C Seconds, 0.1 (no cap used) 396	Sensitivity to Initiation: Minimum Detonating Charge, gm
1 356	Mercury Fulminate
5 Explodes 340	Lead Azide
10 335	Tetryl
15 335	
20 335	Belistic Morter, % TNT:
75°C International Heat Test:	Treuxi Test, % TNT: (a) 39
% Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.34	Confined
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc
Explosion in 100 Hrs Ilone	Brisonce, % TNT
Flammability Index:	Detenution Rote: Pure Lead Azide Confinement
Hygrescepicity: % Dextrinated Not Dextrinated 30°C, 30% [3] 0.0 0.03	Condition Pressed Charge Diameter, In.
Valatility:	Density, gm/cc 2.0 3.0 4.0
	Rate, meters/second 4070 4630 5180

;	Load Azide	AMCP 706-177
Fragmentation Test:	Shaped Charge Effectiveness, T	NT = 100:
90 mm HE, M71 Projectile, Lat WC-91:	Glass Cones	Steel Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments;	Coler:	White-buff
For TNT		WILLCE-CUIT
For Subject HE	Principal Uses: Detonators,	priming compositions.
3 inch HE, M42A1 Projectile, Lot KC-5:		ial blasting caps
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments;	Method of Loading:	Pressed
For TNT		riebacu
For Subject HE		· · · · · · · · · · · · · · · · · · ·
	Looding Fensity: gm/cc ps 3 5 10	i x 10 ³ 15
agment Velocity: ft/sec At 9 ft	2.62 2.71 2.96	3.07
At 251/2 ft	Storage:	
Density, gm/cc	Method	Wet
last (Relative to TMT);	Hozard Class (Quantity-Disto	ance) Class 9
Air:	· Compatibility Group	Group M (wet)
Peak Pressure		
Impulse	Exudation	lione
Energy		
Air Confined.	Compatibility with Metal	<u>a:</u>
Air, Confined: Impulse	Dry lead azide does no rode steel, iron, nickel	t react with or cor-
Under Weiter:	zine, copper, tin or rad	mium. I' does not
Peak Pressure	affect coatings of acid- oil, NRC compound or she	proof tlack raint,
impulse	the presence of moisture	corrodes zinc and
Energy	copper; and with copper, l; sensitive and dangero	it forms the extreme- us copper szide.
Underground:	<u>Cpecific Heat: cal/gm/°C</u>	
Peak Pressure Impulse	°c .	
Energy	-50 U	0.110 0.110
Heat of:	25	0.110
	50	0.110
Explosion, cal/sm 367	Thermal Conductivity:	
Cas Volume, cc/gm 308 Formation, cal/gm -346	sal/sec/cm/°C (Pure)	1.55 x 10 ⁻⁴
Formation, 281/Em - 340	all beer ciur o (filler	1777 × 10

「「「「「「「「「「」」」」」

ŝ

1

ŧ

Lead Azide

-Downloaded from http://www.everyspec.com

Compatibility with Metals:

<u>Dry:</u> Steel, iron, nickel, aluminum, lead, zinc, copper, tin, stainless steel, brass and bronze were unaffected by six years' contact with dry lead azide at ambient temperature and 50°C. Monel, chrome-nickel and Incomel were unaffected under the same conditions in two and one-half years.

<u>Wet:</u> Copper and zinc are rapidly attacked by moist lead azide, while aluminum is not attacked in 24 hours. Monel, chrome-nickel and Inconel a.e not attacked by lead azide $(\frac{1}{2})$ moisture) after 29 months' exposure at ambient temperature and 50°C, and J-1 magnesium-aluminum alloy is very slightly corroded.

ł

Lead Azite

Sample Tested	Lead Azide Dry	p	Azide lus Water	Lead A plu 20% Wa	8	plus 20% Ethyl Alco hol (95%)
Friction Pendulum Te		ن <u>الم</u>				
(All IA dextrinated)	1					
Shoe	Fiber	Fiber	Steel	Fiber	Steel	Fiber
No. of Trials Explosions Cracklings Unaffected	1 1 0	10 0 0 10	10 12 12	10 0 0 10	4 1 2 1	1 1 0 0
Impact Sensitivity,	2 Kg Wt:					
(All LA dextrinated)						
PA Apparatus, inc	ihes 4	9			9	μ
Activation Energy: ((c)					
Kcal/mole Induction Period,	seconds	23.74 0.5-10			•	
Initiating Efficience	y, Grams Requ	ired to Gi	ve Comple	te Initiat	ions of:	
		Dextrinat	ed Azide	(gm)		
TNT Tetryl RDX PETN			0.25 0.10 0.05 0.02			
Sensitivity to Stati	c Discharge,	Joules (Pu	re Lead A	zide) (b)	•	0,0070

Lead Azide

AMCP 706-177

Compatibility of Dextrinated Lead Azide with Black Powder: 100°C Vacuum Stability Test, cc/40 hr:

Sample Wt (gm)	Laterial	<u>ee</u>
1.0	Lead Azide	0.50
1.0	Black Powder	6.38
2.0	50/50, Lead Azide/Black Powder	1.26

Solubility of Pure Lead Azide; gm/100 gm of Water:

°c	ž
20	0.05

Preparation of Lead Azide (Dextrinated): (du Pont procedure)

2 Na - N = N = N + Pb $(NO_3)_2 \rightarrow Pb(N_3)_2 + 2 NaNO_3$

<u>Lead nitrate solution:</u> This is prepared by dissolving 164 lbs lead nitrate and 8.25 lbs destrine in defonized water, the solution allowed to settle, and sodium hydroxide added to bring the solution to a pH of 5.4. The final concentration of the solution is then adjusted to 7.4% lead nitrate, 0.375% destrine by addition of defonized water.

The lead azide is precipitated at a solution temperature of $160^{\circ}F$, using 60 parts lead nitrate and 50 parts sodium azide solution. The latter is added to the former in 23 minutes, under agitation (no baffles are used in the precipitation vessel), the mixture cooled to room temperature in 12 minutes, and allowed to settle 10 minutes. The mother liquor is decented and the remaining slurry washed before packing.

/ Origin:

First prepared in 1891 by T. Curtius (Ber 24, 3345-6) by adding lead acctate to a solution of sodium or announum azide. F. Hyronimus (French Patent 384,792) should be credited with the first attempt in 1907 to use lead azide with some success in the explosive industry. Its commercial manufacture started in Europe before World War II and if the United States since 1931 as military or commercial grade "dextrinated" lead azide.

Destruction by Chemical Decomposition:

Lead azide can be decomposed by

(1) mixing with at least five times its weight of a 10% solution of sodium hydroxide and allowing the mixture to stand for 16 hours. Decant the supernatant solution of sodium azide and drain into the soil.

(2) dissolving in a 10% solution of ammonium acctate and adding a 10% solution of sodium or potassium bichromate until no more lead chromate is precipitated.

(3) wetting with 500 times its weight of water, slowly adding 12 times its weight of 27% sodium nitrite, stirring, and then adding 14 times its weight of 36% nitric or glacial weetic acid. A red color produced by the addition of ferric chloride solution indicates Lead Azide is still present.

к. К.

1. S. . .

Lead Azide

Downloaded from http://www.everyspec.com

(4) dissolving in 50 times its weight of 15% ceric ammonium nitrate. The azide is decomposed with the evolution of nitrogen.

References: 39

(a) Ph. Naoum, <u>Z ges Schiess Sprengstoffw</u>, 181, 229, 267 (27 June 1932).

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) C. Lenchitz, Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Organometallic Compounds, PATR #2224, November 1955.

(d) Also see the following Picatiumy Arsenal Technical Reports on Lead Azide:

<u>0</u>	1	2	3	4	5	<u>6</u>	I	8	2
550 580 600 760 1450	561 861 1451 1651	832 852 932 1132 1152 1352 1372	393 1393 1493 2093 2133	534 784 824 941 2164 2204	255 525 1325 1485	326 856 866 1316 1486 1556	567 637 657 707 1737 2227	628 708 748 788 838 1388 1528 1838 2198	609 719 749 769 849 999 2179

³⁹See footnote 1, page 10.

Lead 2,4-Dinitroresorcinate (LDNR)

Ţ

١

Ŵ

AMCP 706-177

Composition:	Molecular Weight: (PbC6H2N2O6) 405
$ \begin{array}{cccc} c & 17.8 \\ H & 0.5 \\ N & 6.9 \\ \end{array} $	Oxygen Balance: CO ₂ % -32 CO % - 8
0 23.7 70 51.1	Density: gm/cc Crystal 3.2
	Melting Point: *C
C/H Ratio 0.549	Freezing Point: *C
Impact Sensitivity, 2 Kg Wt: Bureou of Mines Apparatus, cm 1 kg vt 30	Boiling Point: *C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refrective Index, no no no no
Friction Pandulum Test: Steel Shoe Fiber Shoe	Vecuum Stebility Test: cc/40 Hrs, at 90°C 100°C
Rifle Bullet Impact Test: Trials % Explosions Partials	120°C (73 minutes) Explodes 135°C 150°C
Burned Unaffected	200 Gram Bomb Send Test: Sond jam Black powder fuse 20
Explosion Temparature: 'C Seconds, 0.1 (no cap used) 1 5 Explodes 265 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Leao Azide Tetryl Bellistic Mortur, % TNT:
	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test: 0.20 % Loss, 1st 48 Hrs 0.20 % Loss, 2nd 48 Hrs 0.02 Explosion in 100 Hrs None	Condition Convined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rote: Confinement
Hygmscopicity: % 30°C, 90% RH 0.73	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

١.

1000

AMCP 706-177

Lead 2,4-Dinitroresorcinate (LDNR)

Fregmentation Test: Sheped Charge Effectiveness, TNT == 100:		
90 mm HE, M71 Projectile, Let WC-91:	Glass Cone	s Steel Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments;	Color:	Red or yellow
For TNT		
For Subject HE	Principal Uses:	Electric detonators
3 inch HE, M42A1 Projectile, Let KC-5:		
Density, gm/cc		
Cixinge Wt, Ib		
Total No. of Fregments:	Niethad of Loading:	Fressed
For TNT		1148654
For Subject HE	Leeding Density: gm/cc	
Re		
Fregment Velocity: ft/sec At 9 ft At 251/2 ft	Storage:	
Density, gm/cc		
	Method	Wet
Blast (Relative to TNT):	Hazard Class (Quantity-[Distance) Class 9
Air:	Compatibility Group	
Peak Pressure		
impulse	Exudation	None
Energy		
Air, Confined:		: 0.4 gm LDNR does not
Impulse	initiate tetryl pre	ssed at 3000 pai.
Under Weter:	Heat of:	
Peak Pressure	Explosion, cal/gm	270
Impulse		
Energy		
Underground: Peak Pressure		
Impulse		
Energy		
	1	

188,

Lead 2,4-Dinitroresorcinate (LDNR)

AMCP 706-177

To a solution of 5 grams of purified dinitroresorcin and 2.65 grams of anhydrous sodium carbonate in 500 cc of boiling water is added slowly a solution of 10 grams of lead nitrate dissolved in 60 cc of boiling water. The reaction mixture is constantly stirred during the addition of the lead salt and for about an hour afterward while the solution is allowed to cool to room temperature. The precipitate is filtered and washed thoroughly first with water and then with alcohol and ether. It is dried in a steam oven.

Origin:

2,4-dinitroresorcin was described in the 1881 edition of Beilstein (Beil VII, 885). The same compound was described in more detail by Weselsky, Benedikt and Hubl in 1882 (M II, 323). The lead salt of 2,4-dinitroresorcinol appears to have been prepared between World War I and World War II by treating resorcinol with nitrous acid and oxidizing the resulting dinitrosoresorcinol to dinitroresorcinol. Lead nitrate solution was then added to a solution of the 2,4-dinitroresorcinol to which sodium carbonate had been added to form the soluble sodium salt (J. D. Hopper, PATR No. 480, March 1934). The LDNR exists in two forms differing in physical characteristics but possessing similar explosive properties. These forms are red and orange in color (K. S. Warren, PATR 1448, September 1944).

References: 40

(a) See the following Picatinny Arsenal Technical Reports on Lead 2,4-Dinitroresorcinate:

<u>o</u>	<u>3</u> .	<u>4</u>	8	2
480 580	453	1004	1328 1448	859 1079

40See footnote 1, page 10.

AMCP 706-177

)- s

5

Lead 4,6-Dinitroresorcinol Basic (LDNR Basic)

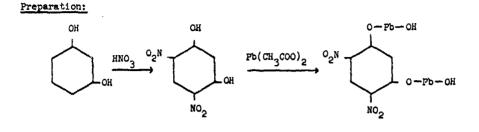
AMCP 706-177 Lead 4,6-Dinitrores	sorcinol Basic (LDNR Basic)	(
Composition:	Molecular Weight: (Pb2C6H4N208) 646	····
$^{\%}$ 0 - Pb - OH C 11.2 H 0.6 02N + OH N 4.3 02N + OH	Oxygen Balence: CO ₂ % -20 CO % - 5	
о 19.8 Рь 64.1 0 — Рь — ОН	Density: gm/cc	
NO.	Melting Point: *C 213	
NO ₂ C/H Ratio 0.177	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 1 kg wt 60	Boiling Point: "C	
Bureau of Mines Apparatus, cm 1 kg vrc 60 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, nº nº nº	
Friction Pendulum Test: Steel Shoe Fibe- Shoe	Vocuum Stability Test: cc/40 Hrs, at 90°C	
Rifie Builet Impact Tust: Trials % Explosions Partials	100°C 120°C 135°C 150°C	
Burned Uvalfected	200 Grem Bumb Send Test: Saleck Bowder fuse 15	(-
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Explodes 295 10	Sensitivity to Initiation: Minimum Datonating Charge, gm Marcury Fulminate Lead Azide Tetryl	
15 20	Ballistic Morter, % TNT:	
	Treuxi Test, % TNT:	
75°C International Heat Test: % Loss in 43 Hrs	Plete Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.4	Confined Density, gm/cc	
% Loss, 2nd 48 Hrs 0.0 Explosion in 100 Hrs None	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement Condition	ł
Hygroscopiaity: %	Charge Diameter, in.	
Veletility:	Density, gm/cc Rote, meters/second	

ragmentation Teet;	Shaped Charge Effectives	ness, TNT == 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Ca	ones Steel Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fregments:	Calor:	Red or yellow
For TNT		Ned of yellow
For Subject HE	Principal Uses;	Electric detonators
3 inch HE, M42A1 Projectile, Lot KC-5:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Londing:	Pressed
For TNT		5 2 4 00 64
For Subject HE	Loeding Density: gm/cc	
ragment Velecity: ft/sec		
At 9 ft		
At 251/2 ft	Storege:	•
Density, gm/cc	Method	Wet
last (Relative to TNT):	Hazard Class (Quantit	y-Distance) Class 9
Air:	Compatibility Group	
Peak Pressure		
Impulse	Exudation	None
Energy		
Air, Confined:		ey: 0.4 gm LINR Basic
Impulse	does not initiate psi.	tetryl pressed at 3000
Under Weter: Peak Pressure		
Impulse		
Energy		
Underground:		
Peak Pressure		
Impulse	· ·	
Energy		
	4	

R

Ģ

1.1.1


58

Lead 4,6-Dinitroresorcinol Basic (LDNR Basic)

AMCP 706-177

Lead 4,6-Dinitroresorcinol Basic (LINR Basic)

(a) One hundred grams of pure resorcin is fused in a porcelain casserole and immediately poured on a glass plate. After cooling, the cake is ground in a mortar to pass a U. S. Standard No. 6 mesh screen. Four hundred grams of 98 percent mitric acid in a one pint capacity Dewar jar is stirred mechanically while carbon dioxide snow is added in small pieces. When the temperature falls to -20° C, 40 grams of the granulated resorcin is added in small quantities. Simultaneous addition of solid carbon dioxide as required prevents a rise of temperature of more than 5 degrees throughout the entire experiment. Five minutes after the last portion of resorcin is introduced, the mixture is further cooled to minus 50°C, and finally drowned with vigorous stirring in five times its volume of cracked ice, in water. This mixture is allowed to stand for one hour and the product then filtered, washed, and partially dried, weight 43.6 grams. The crude 4,6-INR is purified by first dissolving the product in an aqueous 5 percent sodium hydroxide solution (17.4 grams of sodium hydroxide in 340 cc of water). The resulting solution is then neutralized by gradually adding it to a boiling solution of 21.4 grams of 98 percent sulphuric acid in 150 cc of water. The resulting precipitate of 4,6-INR is filtered hot on a suction filter and air-dried. Yield, 27.5 grams (37.8 percent of the theoretical).

(b) Five hundredths (0.05) mole (18.96 grams) of lead accetate is dissolved in 67 cc of warm water, into which is gradually stirred 0.10 mole (4.0 grams) of sodium hydroxide dissolved in 67 cc of water. Stirring is continued for five minutes. After settling, the white lead hydroxide is washed by decantation three times with 100 cc portions of distilled water, and used immediately for the next operation.

(c) A 0.0278 mole (5.56 grams) quantity of the 4,6-DNR prepared under (a) showe, is dispersed in 270 cc of water by vigorously beating with a motor stirrer. After heating this disper 1 to 90° C, the 0.05 mole of lead hydroxide prepared above in slurry form is introduced in small portions. Agitation is continued for three hours at 90° C. The basic lead 4,6-DNR is washed once by decentation, and again on the filter with alcohol. After drying overnight in a desiccator charged with calcium chlorids, the product weighs 15.6 grams.

Origin:

Both the 2,4- and 4,6-dinitroresorcin were described in some detail by Weselsky, Benedikt and Hubl in 1882 (M II, 323). Typke prepared the 4,6-dinitroresorcin in 1883 by hydrolyzing the nitration product of resorcin diacetate (Ber 16, 551). A more direct and economical method of preparation suitable for production scale manufacture was developed during World War II by the British (Ministry of Supply Pouch Item W-154-21a, "Manufacture of 4,6-Dinitroresorcin and Lead 4,6-Dinitroresorcinats"). This procedure consisted of preparing 4,6dinitroresorcinol by direct nitration of granulated resorcin and allowing the product in slurry to react with an excess of lead hydroxide at 90°C. This basic salt can be prepared in two forms: (1) a micro-crystalline, yellow, low-density form and (2) a denser, brick-reu form. Both products have the same chemical composition and the same sensitivity to impact (PATR 1448, September 1944).

Lead Styphnate

**** . *** ****

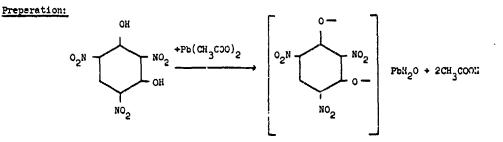
AMCP 706-177

Composition:	Molecular Weight: (PbC6H3N309) 468
$\begin{array}{c cccc} & & & & & & & \\ C & & 15.4 & & & & \\ H & & 0.6 & & & \\ N & & 9.0 & & & \\ \end{array} \begin{array}{c} & & & & & \\ 0_{2}N & & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{$	Oxygen Belence; CO₂ % CO %	-19 2
0 30.8 Pb 44.2	Density: gm/cc Crystal	3.02
NO ₂	Melting Point: "C Explodes	260-310
C/H Rotio 0.320 2	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 17	Boiling Feint: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3; (8 oz wt) 8 Sample Wt, mg 22	Refrective Index, n ₂₀ n ₂₀ n ₂₀	
Friction Pendulum Test:	Vecuum Stability Test:	
Steel Shoe Detonates	cc/40 Hrs, at	
Fiber Shoe Detonates	90°C 100°C	0.4
Rifie Bullet Impact Test: Trials	120°C	0.3
%	135*C	
Explosions De state	150°C	
Portials Burned		
Unaffected	200 Grem Bomb Send Test: Sand. am	24
	Sond, gm Black poyder fuse	<u> </u>
Explosion Temperature: *C Seconds, 0.1 (no cap used)	Sensitivity to Initiation:	
Seconds, O.I. (no cup used)	Minimum Detonating Charge, g Mercury Fulminate	Trace#
Explodes 282	Lead Axide	Trace#
10 276	* <.001 gm, alternative	
15 272		
20 267	Ballistic Mortur, % TNT:	
75°C International Heat Test:	Treuzi Test, % TNT: (a)	40
% Loss in 48 Hrs	Plate Dent Test: Mathod	
100°C Heat Test:	Condition	
% Loss, İst 48 Hrs. 0.38	Confined	
% Loss, 2nd 48 Hrs 0.73	Density, gm/cc	
Explosion in 100 Hrs Nane	Brisance, % TNT	
Flammability Index:	- Detention Rate: Confinement	
Hygroscopicity: % 25°C, 100% RH 0.05 30°C, 90% RH 0.02	– Condition Charge Diameter, in.	
Valetility:	Density, gm/cc	2.9
·	Rote, meters/second	5200

AMCP 706-177

Lead Styphnate

- 1


Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100	:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Stee! Cor Hole Volume Hole Depth	185	
Total No. of Fragments: For TNT	Celey: Orange-reddish brow	m	
For Subject HE 3 Inch HE, M42A1 Projectile, Lot KC-S: Density, gm/cc Charge Wt, Ib	Principal Uses: Igniting charge, an of priming composit		
Total No. of Fragments: For TNT For Subject HE	Method of Looding:	Pressed	
Fregment Velecity: ft/sec	Looding Density: gm/cc		
At 9 ft At 25½ ft Density, gm/cc	Storege: Method	Wet	
Blast (Relative to TNT);	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse		Group M (wet) None	
Energy Air, Confficient: Impulse	Activation Energy: kccl/mol	75.39	
Under Weiter: Peak Pressure Impulse	Induction Period, sec () Specific deat: cal/cm/ ^O C	(e)	
Energy Underground: Peak Pressure Impulse	0 25	0.141 0.158 0.164 0.167	
Energy Heat of:	~	0.101	
Combustion, cal/gm1251Explosion, cal/gm457Cas Volume, cc/gm368Formation, cal/gm-92			

Constants of the Constant Section of the Constant Section of the Constant Section of the Constant Section of the

30.39

Lead Styphnate

AMCP 706-177

Dissolve 14.4 gm lead nitrate and 1 cc of 36% acetic woid in 320 cc distilled water. Dissolve 4 gm 2,4,6-trinitroresorcinol and 1.73 gm sodium carbonate in 80 cc distilled water. Add the lead acetate solution to the trinitroresorcinol solution, under sgitation, keeping the temperature at 70° - 75° C and continue stirring for 3 hours at this temperature. Cool to 20° C in 5 hours. Evaporate the solution to 1/3 its volume, cool, filter and wash the product well with water (to neutrality).

Sensitivity to Static Discharge, joules: (b)		0+0009
Loss in Weight at	105 [°] C: \$	
3 hours 6 hours 9 hours		0.02 0.23 0.23
	for 2 Months at 80°C, on:	
Explosion Temp Sand Test Valu Sensitivity to		N11 N11 N11
Solubility, gm/10	0 gm (5) in:	
Glycol Di	acetate	
°c	2	
20-25	0.1	

Origin:

مهامه والمراهدة البراغ والروم المردية كالمرار والب

First described in 1914 by von Hurtz and found to be a relatively poor initiator by Wallbaum in comparison to other primary explosives. (Z ges Schiess Sprengstoffty 34, 126, 161, 197 (1939)). Moisak showed that lead styphnate could be used as an insulating (cover) material for lead azide providing protection from mechanical and chemical influences and, at the same time, increasing the detonating ability of the total charge (Transactions of Butlerov Inst Chem Tech Kasan (Russia) 2, 81-5 (1935).

AMCP 706-177

10 15

ţ.

• (

1

14

Lead Styphnate

Destruction by Chemical Decomposition:

Lead styphnate is decomposed by dissolving it in st least 40 times its weight of 20% sodium hydroxide or 100 times its weight of 20% ammonium acetate and adding a solution of sodium dichromate, equal to half the weight of styphnate and 10 parts of water.

References: 41

(a) Report AC-956/Org Ex 74.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation by</u> <u>Electrostatic Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) C. Lenchitz, Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Organometallic Compounds, PATR No. 2224, November 1955.

(c) Also see the following Picatinny Arsenal Technical Reports on Lead Styphnate:

<u>0</u>	1	2	<u>3</u>	<u>r</u>	<u>6</u>	<u>7</u>	<u>8</u>	2
1450 2220	11	1352 2032	453 2093	2164	1316	407 1737 2077	318	2179

⁴¹See footnote 1, page 10,

•.•

•••

の時間に、こので、

应

No. 41. 44

Mannitol Hexanitrate (Nitromannite)

AMCP 706-177

j,

Powerstate		
Kemposition:	Molecular Weight: (C ₆ H ₈ N ₆ O ₁₈) 452	
C 15.9 02NOCH	Oxygen Be'ance:	
O NORY	CO ₂ % 7.1 CO% 28.3	
н 1.8 оглосн	20.3	
N 18.6 HCONO2	Demaily: gm/cc 1.73	
0 63.8 HCONO2	Melting Point: °C 112-113	
C/H Rc io 0.133	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Burgey of Mines Apportus can 11	Seiling Peint: *C Decomposes 150	
Bureau of Mines Apparatus, cm 11 Sample Wt 20 mg	Refrective Index, n2	
Picatinny Arsenal Apparatus, in. 4		
Sample Wt, mg 11	n <mark>u</mark>	
· · · · · · · · · · · · · · · · · · ·	n3e	
Friction Pendulum Test:	Vocuum Stability Test:	
Steel Shoe Detonates	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifie Bullet impact Test: Trials	120°C	
Suctorian 96	135°C	
Explosions	150°C	
Portials		
Burned	200 Grem Bomb Sand Test:	
Unoffected	Sand, gm 68.5	
Explosion Tempereture: 'C	Sensitivity to Initiation:	_
Seconds, 0.1 (no cap used) 160-170 (a)	Minimum Detonating Charge, gm	
1 2 <u>3</u> 2 (b)	Mercury Fulminate	
5 175 (c)	Leoul Azide 0.06	
10	Tetryl	
15		
20	Bellictic Merter, % TNT:	
75°C International Heat Test:	Trauxi Yest, % TNT: (c) 172	
% Loss in 48 Hrs 0.4	Plate Dent Test:	
	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs (Frothed) 48 hours	Brisonce, % TNT	
Fianmability Index:	Detensition Rete: (d) Confinement Xes	
Hygroscopicky: % 30°C, 90% RH 0.17		99 <i>4</i>
	Charge Diameter, in, 0.5	
Voletility:	Density, gm/cc 1.73	
· · · · · ·	Rote, meters/second 8260	I

197

MP.

AMCP 706-177

Mannitol Hexanitrate (Nitromannite)

Fragmantation Text:	Shaped Charge Effectiveness, TNT ==	109:
90 mm HE, / 173 Projectile, Let WC-91;	Glass Cones Stee	Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Celer:	
For TNT		
For Subject HE	Principal Uses: Secondary charge	
3 inch HE, M42A1 Frojectile, Let KC-5:	(ref i), and in blasting be initiated by a fuse (re	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Mathed of Loading:	Fressed
For TNT		
For Subject HE	Loading Density: gm/cc	
New your parts Market for the second		
Fregment Valocity: ft/sec At 9 ft	······································	
At 251/2 ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Ain	Compatibility Group	
Peak Pressure		
Impulse	Exudation	None
Energy		
Air, Confined:	65.5°C KI Test:	1
Impulse	Minutes	6
Under Water: Peak Pressure	Heat of:	(e, 1, g)
Impulse	Combustion, cal/gm 1515	1525
Energy	Explosion, cal/gm 1390 14 Formation, cal/gm 337	54 1468 1520 345 366
Underground: Peak Pressure		
Impulse		
Enevgy		

÷.

1

Mannitol Hexanitrate (Nitremannite)

Downloaded from http://www.everyspec.com

Solubility:

- a. Insoluble in water.
- b. Slightly soluble in cold alcohol (2.9 gm at 13°C).
- c. Slightly soluble in ether (4 gm at 9°C).
- d. Very soluble in hot alcohol.

Preparation: (Laboratory Nethod) (k)

a. Cool to below 0°C, 50 gm of 98%-100% nitric acid placed in a 300 milliliter Erlenneyer Pyrex flask provided with a thermometer and immersed in an ice-salt mixture.

b. Introduce in small portions. 10 gm of d-mannitol, while swirling the flask to break up any lumps of mannite which might form. Keep the temperature below 0°C.

c. After solution is complete, add 100 gm of concentrated sulfuric acid from a dropping funnel, swirling the flask in an ice-salt mixture to keep the temperature below O^{CC} .

d. Filter the resulting porridge-like slurry through a filter paper previously hardened by treatment with mixed acid.

e. Rinse the precipitate directly on the filter with water follows: by dilute aqueous sodium carbonate and finally with water. (The resulting crude mannitol hexanitrate gives 18.2% N as determined by the nitrometer.)

f. Dissolve the crude mannitol hexanitrate in boiling alcohol and filter through a waterheated funnel.

g. Bring the filtrate to boiling and gradually add hot water until the appearance of the first turbidity.

h. Cool in an ice-salt bath, separate and dry the crystals. (Yield should be about 23 gm of material, melting rt 112° -113°C and having 18.58% N, the nitrogen being determined by the nitrometer. Theoretical yield would be 24.8 gm.)

Origin:

Mannitol hexanitrate was discovered in 1847 by Ascanio Sobrero who recommended it as a substitute for mercury fulminate in percursion caps (<u>Comp rend</u>, 1847, 121). It is the bexanitric ester of d-mannitol which is widely distributed in nature, particularly in the plant Fraxinus ornus. N. Sokoloff, a Russian chemist, investigated the explosive properties of HM and recommended in 1878 a method of preparation. Mannitol hexanitrate was thoroughly studied by Berthelot, Sarran and Vieille, Domonte, Menard, Strecker, Tichanowich (Ph. Naoum, <u>Nitroglycerin and</u> <u>Nitroglycerin Explosives</u>, Baltimore, 1928, pp. 156, 247-250), and particularly by J. H. Wigner (Ber <u>36</u>, 796 (1903)). More recent data have been reviewed by Guastalla and Racciu ("Mode: n Explosives," Industria Chimica <u>8</u>, 1093-1102 (1933)).

References:42

(a) G. C. Hale, Abstract of Available Information on the Preparation and Explosive Properties of Hexanitromannite, PA Special Report No. 238, 30 July 1925.

425ee footnote 1, page 10.

AMCP 705-177

AMCP 706-177 Mannitol Hexanitrate (Nitromannite)

(b) C. A. Taylor and W. H. Rinkenbach, "Sensitiveness of Detonsting Compounds to Frictional Impact, Impact, and Heat," J. Frank Inst <u>204</u>, 369-76 (1927).

- (c) Ph. Naoum, Z ges Schiess Sprengstoffw (Munich), pp. 181, 229, 267 (27 June 1932).
- (d) H. Kast, Z angew Chem, <u>36</u>, 74 (1923).
- (e) A. Schmidt, Z ges Schiess Sprengstoffv 29, 262, (1934).

Landolt and Börnstein, E III, p. 2914.

(f) A. Marshall, Explosives, Their Manufacture, Properties, Tests, and History, Vol III, London (1932) p. 39. Ph. Nacum, <u>Nitroglycerin and Nitroglycerin Explosives</u>, Baltimore, (1928), pp. 156, 247-250.

(g) A. Schmidt, Z ges Schiess - Sprengstoffv 29, 262 (1934) G. Fleury, L. Brissend and
P. Hoste, "Structure and Stability of Nitric Esters," Comp rend 224, 1016-18 (1947).
W. R. Tomlinson, Jr., Fundamental Properties of High Explosives. Thermodynamic Relations for
Use in the Estimation of Explosive Properties, PATR No. 1651, 22 April 1947.

(h) Serran and Vielle, Mém poudr 2, 161 (1884-1889).

(i) E. von Hurtz, U. S. Patent 1,878,652 (20 September 1932).

(j) L. A. Burrows, U. S. Patent 2, 27,899 (23 September 1947).

(k) B. T. Fedoroff, <u>Handbook of Explosives and Related Items</u>, Picatinny Arsenal (unpublished).

(1) O. E. Sheffield, Literature Survey on Mannitol Hexanitrate, PA Chemical Research Leboratory Report No. 52-TML-16, 23 January 1952.

(m) Also see the following Picatinny Arsenal Technical Reports on Mannitol Hexanitrate:

2	<u>4</u>	2	<u>6</u>
1352	24 64	85	6

Mercury Fulminate

AMCP 706-177

Camposition: %	Moleculur Weight: (HgC ₂ N ₂ O ₂) 285
c 8.4 0-N=c	Oxygen Belence: CO2 % -17
N 9.8 Hg	CO% -5.5
0 11.2 0 -N - C	Density: gm/cc Crystel 4.43
Нд 70.6	Meking Point: *C Decomposes
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 5; (1 kg Wt) 35	Boiling Points *C
Sample Wt 20 mg	Refractive Index, no
Picatinny Arsenal Apparatus, in. 2; (1 1b vt) 4 Sample Wt, mg 30	na
	ns
Friction Pendulum Test:	Vacuum Stability Vest:
Steel Shoe Explodes	cc/40 Hrs, at
Fiber Shoe Explodes	C.0.C
Rifle Bullet Impact Test: Trials	- 100°C Explodes
%	120°C
Explosions	135°C
Portials	150°C
Burned	200 Grum Bomb Sand Test:
Unaffected	Sond, gm Black bowder fuse 23,4
Explacion Temperature: *C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used) 263	Minimum Detonating Charge, gm
1 239	Mercury Fulminate
5 Explodes 210	Lead Azide
10 199	Tetryi
15 194	Bailletic Mortar, % TNT:
20 190	
75°C International Heat Test:	Piete Dent Test:
% Loss in 48 Hrs 0.18	Method
100°C Heet Test: Exploded in 16 hours	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisonce, % TNT
	Debug Debug
Flammability Index:	Detonation Rate: Confinement
·	- Condition Pressed
Hygroscopicity: % 30°C, 90% RH 0.02	Charge Diameter, in.
	Density, gm/cc 20 3.0 4.0
Veletility:	Rate, meters/second 3500 4250 5000

1

Mercury Fulminate

Downloaded from http://www.everyspec.com

Fragmentation Test:	Shoped Charge Effectiveness, TNT = 100:		
90 mm H£, A171 Projectile, Lor WC-91:	Glass Cones Steel	Cones	
Density, gm/cc	Hole Volume		
Charge Wt, Ib	Hole Depth		
Total Na of Fragments:	Color: White t		
For TNT	Color: White t	o gray	
For Subject HE	Principel Uses: Detonators and in	gredient of	
3 inch HE, M42A'l Projectile, Lot KC-5:	priming compositi	ons	
Density, gm/cc			
Charge Wt, 15			
Votal No. of Fragments:	Method of Loading: psi x 10 ³		
For TNT	3 5 10 12	15 20	
For Subject ME	3.00 3.20 3.60 3.70	3.82 4.00	
Frequent Valocity: it/sec	Loading Density: gm/n;		
At 9 ft			
At 25% ft	Starage:		
Density, gm/cc	Method	Wet	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Prassure	Compatibility Group	Group M (www.)	
	Exudation	lone	
Impuise	Excapition		
Energy			
Air, Confined:	Stab Sensitivity:		
Impuise	Density Firing Point (inc		
	<u>gm/cc 0% 50%</u>	100%	
Under Water:	3.91 3.2 4.3 4.26 1.6 2.6	5.5 5.5	
Peak Pressure	4.32 1.6 2.6	4.6	
impulse	4.50 1.6 2.5	4.0	
Energy	Activation Energy:	j.	
Underground:	kcal/mol	29.81	
Peak Pressure	Induction Period, sec	0.5-10	
Impulse	Heat of:		
Energy	Combustion, cal/gm Explosion, cal/gm	938 427	
	Explosion, cal/gm Gas Volume, cc/gm	243	
	Formation, cal/gm	-226	
	Specific Heat: cal/gm/°C	1.1	
	Thermal Conductivity: cal/sec/cm/°C 1	x 10 ⁻⁴	

Mercury Fulminate

570

Downloaded from http://www.everyspec

AMCP 705-177

Initiating Efficiency; Grams Required to Give Complete Initiation of:

_ . .

	Fulluinate,
INT Tetryl RDX PEIN	0.2) 0.20 0.19 0.17

Compatibility with Metals:

Dry: Reacts rapidly with aluminum and magnesium. Reacts slowly with copper, zinc, bress and bronze. Iron and steel are not affected

<u>Met:</u> Reacts immediately with aluminum and magnesium. Reacts rapidly with copper, zinc, brass and brouze. Iron and steel are not affected.

Sensitivity t	o Static	Discharge,	Joules: (Ъ)	0.025

The Effect of Storage at 50°C (Dry) on the Purity of Mercury Fulminate

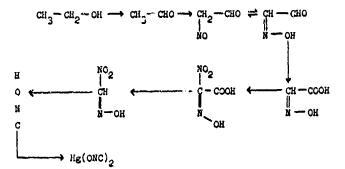
Months Storage	<u>979</u>	ecrystall <u>980</u>	2ed Lots 981	<u>982</u>	Uncrystal11 505.6-7/31	
0	99.75	99.77	99.79	99.79	98.86	0 ⁰ m
4	99.38	99+45	99.54	99.47	95+95	98.7 98.7 97.4
6 8 9					94.95	94.9
10 12 13 14	98.74 98.26 98.22	99 .56	97.49	99.06 98.79	90.65	94 .9
15 16	97•52 97•00	99.30	99.30 99.01	98.19 97.75	83.76	
17 18 23 26	95.70 94.81	98.66 98.58	98.46	96.69 95.90	79.99 74.52 63.80	

Chemistry:

Mercuric fulminate readily decomposes in the presence of aqueous solutions, chlorides, carjonate and many other materials. Due to the presence of small amounts of mercury, formed by exposure to light or elevated temperatures, it readily forms amalgams with copper, brass and bronze, thus components containing these metals must be protectively coated if used with fulminate.

Solubility, Grams of Mercury Fulminate in 100 Grams of Water (%):

°C	ar.
12	0.07
49	0.18


203

Mercury Fulminate

Downloaded from http://www.everyspec.co

Preparation:

(Chemistry of Powder and Emplosives, Devis)

Five gu mercury is dissolved in 25 cc of nitric acid (sp gr 1.42) without agitation, and this solution youred into 50 cc of 90% ethyl alcohol, resulting in a vigorous reaction, attended by evolution of white fumes and subsequent appearance of fulminate crystals. Red fumes then appear as precipitation of the product accelerates, and then white fumes again are evolved us the reaction moderates. After about 20 minutes the reaction is over; water is added, and the crystals are repeatedly washed, by desantation, with water to remove all acidi-'ty. The product is purified, rendered white, by solution in strong amonium hydroxide, folloved by reprecipitation with 30% acetic acid.

Origin:

Mercury fulminate was first prepared by John K. von Lovenstern (1630-1703) and in 1800 its preparation and properties were first described in detail by Edward Howard in a paper presented to the Royal Society of London (<u>Phil Trans</u>, 204 (1800). It was 1867 before the compound was used as an initiating agent, when Alfred Nobel invented the blasting cap and used mercury fulminate to detonate nitroglycerin (British Patent 1345 (1867)).

Destruction by Chemical Decomposition:

Mercury fulminate is decomposed by adding it, while stirring, to at least 10 times its weight of 20% sodium thiosulfate. Some poisonour cyanogen gas may be evolved.

References: 43

(a) Ph. Naoum - Z ges Schless-Sprengstoffw (Munich), pp. 181, 229, 267 (27 June 1932).

(b) F. W. Brown, D. H. Kusler, and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

⁴³See footnote 1, page 10.

Mercury Fulminate

AMCP 706-177

(c) Also see the following Picatinny Arsenal Technical Reports on Mercury Fulminate:

<u>o</u>	1	2	3	<u>4</u>	2	<u>6</u>	I	8	2
250 480 510 550 010 680 760 1220 1450	301 381 561 1651	132 452 522 582 782 932 1192 1352 1352 1372 2032	23 203 393 433 833 1183 1393 2093	144 294 534 694 784 784 874 1104	65 105 255 285 365 415 425 1365	266 366 556 866 986 1316 1486 1556 2146	277 297 407 537 567 637 857 1737	28 78 278 318 788 1838	199 609 749 849 999 1079 1389 2179

.- :

NM Star

Composition: %	Meleculer Weight: (C5H9N309)	255		
c 23.5 02NOCH2	Oxygen Belence: CO ₂ % CO %	- 35 - 3		
$H = 3.5 = 0_2 NO - CH_2 - C - CH_3$ N 16.6	Density: gm/cc Liquid	1.47		
0 56.4 02NO-CH2	Molting Point: *C	-3		
C/H Ratio 0.150	Freezing Point: *C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 47; (1 1b vt) 4 Sample Wt 20 mg	Boiling Point: "C Refractive Index, no			
Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	n <mark>2</mark> ,	1.4752		
Friction Pendulum Test: Steel Shoe Explodes Fiber Shoe	Vecuum Stability Tusk: cc/40 Hrs, at 90°C			
Rifle Bullet Impact Test: Trials % Explosions Partials	100°C cc/gm 1.9 120°C 135°C 150°C			
Burned Unaffected	200 Grem Bomb Sand Test: Sand, gm	43.7		
Explesion Tempereture: *C Seconds, 0.1 (no cap used) 1 5 Ignites 235 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl			
20	Ballistic Morter, % TNT: (a)	136		
75°C International Heat Test:	Trauzi Test, % TNT: (b)	140		
% Loss in 48 Hrs	Plate Dent Test: Method			
100°C Heet Test: 2.5 % Loss, 1st 48 Hrs 2.5 % Loss, 2nd 48 Hrs 1.8 Explosion in 100 Hrs Note	Condition Confined Density, gm/cc Brisance, % TNT			
Fiemmability Index:	Detenction Rate: Confinement Condition Charge Diameter, in.			
Hygroscopicity: % 30°C, 90% RH 0.07				
Veletility: 60°C, mg/cm ² /hr 24	Density, gm/cc Rate, meters/second			

AMCP 706-177 Metricl Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate)

206

Metriol Trinitrate (MTN) Liquid

AMCP 706-177

Fregmantation Test:	Shaped Charge Effectiveness, TN	Shapad Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Let WC-91:	Giass Cones	Steel Cones				
Density, gm/cc	Hole Volume					
Charge Wt, Ib	Hole Depth					
Tatal No. of Fragmants:	Celièr: 011v.	slightly turbid				
For TNT		erening aroun				
For Subject HE	Principal Uses: Ingredient o					
3 inch HE, M42A1 Projectile, Let KC-3:	double base	propellants				
Density, gm/cc						
Charge Wi, io						
Total Na. af Fragments;	Method of Londing:	Method of Londing:				
For TNT						
For Subject HE	Leeding Density: cm/cc	Lesčing Density: cm/cc				
Fragment Velocity: ft/sec						
At 9 ft						
At 25½ ft	Starage:					
Density, gm/cc	Method	Liquid				
Blast (Relative to TNT);	Hazard Class (Quantity-Distan	Hazard Class (Quantity-Distance)				
Air: Peak Pressure	Compatibility Group					
Impulse	Exudation					
Energy						
Air, Confined: Impulse	Solubility in Water, gu/100 gm, at:					
in pase						
Under Water: Peak Pressure	25°C 60°C	<0.015 <0.015				
Impulse	Heat of:	}				
Energy	Combustion, cel/gm	2642				
Underground: Peak Pressure	Hydrolysis, % Acid:					
Impulse	10 days at 22° C	0.018				
Energy	5 days at 60°C	0.115				

٢

ichning .

ţ

ï

•

が得たいいため

Metriol Trinitrate (MTN) Liquid

Downloaded from http://www.everyspec.com

Preparation:

Metricl (trimethylolmethylmethane) is obtained by the following procedure, based on work by Hosaeus (Annalen $\underline{276}$, $\underline{76}$ (1893):

Into a 5 liter round bottom flask is weighed 2700 gms of water. To this are added 267 gms of 36% formaldehyde and 60 gms of propionaldehyde. The mixture is stirred for a few seconds. To the mixture is added 150 gms of calcium oxide previously slaked with 600 gms of water. The mixture is heated in boiling water for four hours, and then allowed to cool spontaneously overnight. After filtering off the insoluble calcium hydroxide, the solution is heated and treated with a saturated aqueous solution of oxalic acid to precipitate all the calcium. The precipitated calcium oxalate is filtered off, and the pale-yellow filtrate concentrated as much as possible on the steam bath to a thick lemon-yellow syrup. After dissolving in ebsolute alcohol, the solution is filtered and concentrated in the steam bath to about twice the volume of the concentrated syrup. The solution is then chilled in a cold box to hasten crystallization. After allowing it to warm up to just above 0°C, the mixture is filtered. The melting point of the product (hO_{10} , gm) is then about 196°C (Hosaeus gives 199°C).

Metricl is nitrated by carefully mixing it with 3.5 parts of 65/35 HNO₃/R₂SO₄ maintained at 20°C, stirring for 30 minutes, cooling to 5°C, and pov ing the reaction mixture on ice. It is extracted with ether, water-washed, and adjusted to pH 7 by shaking with a sodium bicarbonate solution and again water-washed three times. It is then dried with calcium chloride, filtered, and freed of ether by bubbling with dry air until minute rate of loss in weight is attained. The yield is 88% of the theoretical. The yroduct has a nitrate-nitrogen content of 16.35% (calculated: 16.47%). Its refractive index at 25°C is 1.4752.

Origin:

MIN, according to Italian sources, was first prepared and patented by Bombrini-Parodi-Delfino Company of Italy under the name "mstriolo." A German Patent of 1927 also describes the preparation and gives some properties. This compound was known in France before World War II under the name of "Nitropentaglycerin" and Burlot and Thomas determined its heat of combustion (Ref b).

References: 44

(s) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

(b) E. Burlot and M. Thomas, Mem poudr 29, 262 (1939).

(c) Also see the following Picatinny Arsensl Technical Reports on Metricl Trinitrate: 1616 and 1817.

44See footnote 1, page 10.

Minol-2

AMCP 706-177

Composition: %	Molecular Weight:	71	
Ammonium Nitrate 40	Oxygan Balance; CO ₂ % CO %	- 38 - 20	
TNT 40		.62-1.68	
Aluminum 20	Density: gm/cc 1 Malting Point: *C	.02-1.00	
C/H Ratio	Freezing Point: *C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35	Boiling Point: *C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 13 Sample Wt, mg 17	Refrective Index, n <u>n</u> nii nii nii		
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vocuum Stability Test: cc/40 Hrs, at 90°C		
Rifle Bullet Impact Test: Trials % Explosions Partials Burned Unaffected	100°C 120°C 135°C 150°C	2.1	
	200 Gram Bomb Sand Test: Sand, gm		
Explosion Tempersture: *C Seconds, 0.1 (no cap used) 1 5 Ignites: 435 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl		
15 20	Ballistic Mortar, % TNT: (a)	143	
	Treuzi Test, % TNT: (b)	165	
75°C laternational Heat Test: % Loss in 48 Hrs	Plete Dont Test: (c) Method	В	
100°C Heet Test: % Loss, 1st 48 Hrs % Loss, 2:xd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisonce, % TNT	Pressed No 1.73 66	
Flammability Index: 100	Detenation Rate: (d) Confinement	None	
Hygroscopicky: %	Condition Charge Diameter, in.	Cast 1.6	
Veletility:	Density, gm/cc Rote, meters/second	1.68 5820	

1

209

1.5.

AMCP 706-177

1

山田市

C

ť

Minol-2

,

١

Beester Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm	(e) Pressed 100 1.46	Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (AH, kcal/mol) Temperature Range, *C
Density, gm/cc	1.74	Phose
Nest of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm Fusion, cal/gm	(f) 3160 1620	Armer Plate Impect Test: (1) 60 mm Morter Projectile: 50% Inert, Velocity, ft/sec 828 Aluminum Fineness 500-lb General Purpose Bombs:
Specific Hest: cal/gm/*C At -5°C Density, gm/cc	0.30 1.74	Plate Thickness, inches () 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Burning Rate: cm/sec		Bomb Drop Test:
Thermal Conductivity; col/sec/cm/°C Density, gm/cc	(b) 16.5 x 10 ⁻⁴ 1.7 ⁴	T7, 2000-Ib Semi-Armer-Pic/cing Bemb vs Concrete:
Coefficient of Expension: Linear, %/*C		Max Safe Drop, ft 500-16 General Purpose Bankb vs Concrete:
Volume, %/°C		Height, ft Trials
Hardnots, Mohs' Scale:		Unaffected Low Order
Young's Medulus: E', dynes/cm² E, ib/inch² Density, gm/cc	(b) 10 5.03 x 10 0.73 x 10 1.66	High Order 1000-Ib General Purpose Bomb vs Generate:
Comprossive Strangth: Ib/inch ² (b) Density, gm/cc Vapor Pressure: *C mm Mercury	1910-2070 1.68	Height, ft Trials Unaffected Low Order
*C mm Mercury		High Order

Mino'.-2

AMCP 706-177

Frequentation Test:		Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Let Density, gm/cc Charge Wt, lb	WC-91:	Glass Cones Steel Cones Hole Volume Hole Depth		
Tatai Na. of Fragments: For TNT		Color: Grsy		
For Subject HE				
3 inch HE, M42A1 Projectile, Le Density, gm/cc Charge Wt, ib	ŵ KC-3:	Principal Uses: Bombs and depth charges		
Teisl No. of Fragments; For TNT		Mathod of Loading: Cast		
For Subject HE		Loading Density: gm/cc 1.62-1.68		
Fregment Velocity: ft/sec At 9 ft				
At 251/2 ft		Storega:		
Density, gm/cc		Method Day		
Blast (Relative to TNT):		Hozard Class (Quantity-Distance) Class	8	
Air:		Compatibility Group Group	I	
Peak Pressure	115			
Impuise	116	Exudation		
Energy	133			
Air, Confined: Impulse	90	Preparation: Minol is a castable mixture consist:		
Under Water:		40 percent INT, 40 percent ammonium ni and 20 percent powdered aluminum and 4	trate,	
Peak Pressure	108	fore can be prepared by adding the dry	/ in=	
Impulse	126	gredients to rolten TNT at 90°C under tion. Minol slso can be prepared by		
Energy	140	25 parts of aluminum to 100 parts of 5		
Underground: Peak Pressure	134	amatol previously prepared.		
Impulse	139			
Energy	1117			

يعيق

AMCP 706-177

Minol-2

Downloaded from http://www.everyspec.com

Origin:

Minols are British ternary explosives developed during World War II. There are three formulations:

Composition, S:	Minol-1	Minol-2	Minol-3
TNT	48	40	42
Ammonium Nitrate	42	40	38
Aluminum	10	20	20

References: 45

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougell, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(e) L. C. Smith and S. R. Welton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo 10,303, 15 June 1949.

(f) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.

(g) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Technical Div Lecture, 9 April 1948.

(h) Also see the following Picstinny Arsenal Technical Reports on Minol-2: 1585 and 1635.

45See footnote 1, page 10.

MOX-1

AMCP 706-177

Ŷ

Composition:		Malacular Weight:		40.6
Oxidizin, agent (Ammonius		Oxygen Belence:		
Perchlorate)	35.0	CO, %		-44
Aluminum, atomized Cupric Oxide	26.2	CO %		-37
Magnesium, atomized	26.2	Dunckty: gm/cc	Pressed	2.0
Other ingredient (Netryl) Celcium Stearate	9•7 1•9	Molting Point: *C		
Graphite, artificial C/H Rotto	1.0	Freezing Point: *C		
				<u></u>
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	.			
Sample Wt 20 mg	13	Refrective Index, nm	•	
Picatinny Arsenal Apparatus, in. Semple Wt, mg	13	n <u>2</u>	•	
	**	n <mark>o</mark>		
Priction Pendukum Yest:		Vecuum Stobility Test:		
Stuel Shoe	Detonates	cc/40 Hrs, at		
Fiber Shoe	Unaffected	90°C		
Bills Butlas for an Real and Real		100°C		0.47
Rifle Bullet Impact Test: Trials		120°C		
% Explosions		135°C		
Porticis		150°C		
Burned				
		200 Grem Bomb Send Test	8	10.6
Unaffected		Sand, gm		T0.0
Explosion Temperature: 'C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detanating Ci	harge, gm	
1		Mercury Fulminate		
5 285		Lead Azide		0.20
10		Tetryl		0.25
15		Ballistic Mortor, % TNT:		فيعدد والمتعالية المحجب والمتعا
20		Trunzi Test, % TNT:		
75'C International Haat Test:		Plate Dent Test:		<u> </u>
% Loss in 48 Hrs Discoloration, fumes, odor	None	Method		
a na sana ang ang ang ang ang ang ang ang ang	None	Condition		
100°C Hast Test;		Confined		
% Loss, 1st 48 Hrs	0.10	Density, gm/cc		
% Loss, 2nd 48 Hrs	C.01			
Explosion in 100 Hrs	None	Brisonce, % TNT		
Flammability Index:		- Detenction Rate: Confinement		
Hygroscopicity: %		Condition Charge Diameter, in.		
		Density, gm/cc		
Veletility:		Rate, meters/second		

AMCP 706-177

時代に、「読み」にはないないない。「読いた」というという。

1 4

<u>MOX-1</u>

÷

regmentation Test: Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectike, Lat WC-91:	Glass Cones Steel Cones	
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color: Gray powder mixture	
For TNT		
For Subject HE	Principal Uses: Small caliber antisircraft	
3 inch HE, M42A1 Projectile, Let KC-S:	projectiles	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Londing: Pressed	
for TNT		
For Subject ME	Looding Density: gm/cc	
Fregment Velocity: ft/sec	At 30,000 pmi ~ 2.0	
AIGH		
At 2514 ft	Storege:	
Density, um/cc	Method Dzy	
Biust (Relative to TNT):	Hazard Class (Quantity-Distance) Cless 9	
Air: Peak Pressure Impulse	Compatibility Group Group I Bureau of Explosives Classification Class A Exudation	
Energy		
Air. Confined:	Heat of:	
limpulse	Combustion, cal/gm 4087	
	Explosion, cal/gm 2087 Gas volume, cc/gm 212	
Under Weter: Peak Pressure		
Impulse	Performance Tests:	
Enercy	20 mm T215E1 Projectile:	
	NFOC Pressure Cube 35 APC Blast Cube 40	
Underground: Peak Pressure		
Impulse	Activation Energy:	
Energy	kcsl/mol 12.5 Temp, C 300 to 380 Time to ignition, seconds 1.78 x 10 ⁻¹	
	·	

STATE AND A STATE

214

· Santa Star

MOX-2B

ų,

Downloaded from http://www.everyspec.cor

AMCP 706-177

Composition: %		Molecular Waight:	42
Oxidizing agent (Ammonium		Oxygen Belance:	
Perchlorate)	35.0 52.4		-49 -43
Aluminum, atomized Cupric Oxide	76.4		-+3
Magnesium, atomized	****	Donsity: gm/cc Pressed	2.0
Other ingredients* Calcium Stearste	9.7 1.9	Melting Point: *C	
Graphite, artificial *5.8% RDX and 3.9% TNT coated	1.0 on <u>Ammonium</u> Perchiorate.	Freezing Point: "C	
Impact Sansitivity, 2 Kg Wt:		Builing Polat: "C	
Bureau of Mines Apparotus, cm Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in.	12		
Sample Wt, mg	24	n	
······································		ពង្ហ	
Friction Pendulum Test:		Vecuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
		- 100°C	0.21
Rifle Bullet Impect Test: Trials		120°C	
% Explosions		135°C	
Partials		150°C	
Burned			
Unaffected		200 Gram Bomb <u>Sand Test:</u> Sand, gm	11.5
Explasion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	-	Minimum Detonating Charge, gm	
1	-	Mercury Fulminate	
5 37	5	Lead Azide	0.20
10		Tetryl	0.20
15		Builianic Mamar, % TNT:	
20			
75'C International Heat Test:		Treuzi Tost, % TNT:	
% Loss in 48 Hrs		Piere Dent Test:	
Discoloration, fumes, odor	None	Method	
100°C Heet Test:		Condition	
% Loss, 1st 48 Hrs	0.27	Confined	
% Loss, 2nd 48 Hrs	0.12	Density, gm/cc	
Explosion in 100 Hrs	None	Brisonce, % TNT	
		- Detenstien Kate:	
Flemmebility Index:		Confinement	
·		Condition	
Hygruscopicity: %			
		Charge Diameter, in.	
Volatility:		Density, gm/cc	
•		Rote, meters/second	

AMCP 7	06-177
--------	--------

MOX-23

Fregmentation Test:			Shuped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, La	w WC-91:		Glass Cones Steel Cones	
Density, gm/cc			Hole Volume	
Charge Wt, Ib			Hole Depth	
Total No. of Fragments:		·	u _m i Calar:	
For TNT				Grey
For Subject HE			Principel Uses: HE filler for small os	liber
3 inch HE, M42A1 Projectile, I	Let KC-5:		projectiles	
Density, gm/cc				
Charge Wt, Ib				
Total No. of Fragmonts:			Method of Loading:	Pressed
For TNT			······································	
For Subject HE			Leading Density: gm/cc	2.0
Frequent Velocity: ft/sec				
At 9 ft At 25½ ft			Staroyj:	<u></u>
Dansity, gm/cc				
			Method	Dry
Blast (Reistive to TNT):		• \	Hazard Class (Quantity-Distance)	Class 9
Air: Dare Charge:	EW#	EV#	Compatibility Group Bureau of Explosives Class A	Group I
Peak Pressure	1.02	1.34	Exudation	None
Impulse	1,00	T++T /	Excellent	NOUA
Energy Density, gm/cc		1.96		
Air, Confined:			Heat of:	
Impulse			Combustion, cal/gm	4484
Cased Charge in Air:**			Explosion, cal/gm	1472
Peak Pressure	1.09	1.44	Gas volume, cc/gm	221
Impulse	1.16	1.53	Performance Tests:	
Energy			20 mm T215E1 Projectile:	
Density, gm/cc		1.98	NFOC Pressure Cube	29
Underground: Peak Pressure			APG Blast Cube	30
Impulse			Aviation Energy:	
Energy			kcal/mol	7.6
*EW, quivalent weight as	compared	to TNT;	Temp, C 340 to	o 470
EV, equivalent volume as			Time to ignition, seconds 1.39	x 10 ⁻²
**Strong paper-base phenoli	le case.			

1

í

..../

216

5.

. •

AMCP 706-177

MOX-2B

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity* (Reference g)

Downloaded from http://www.everyspec.co

	One-In	ich Column	Two-Inch	Column
Simulated Altitude,	Confined	Unconfined	Confined	Unconfined
Feet	. m/#	m/s	m/ #	m/ 6
Ground			4730	······································
30,000	Charge v	rould not	4530(3)	Charge would
60,000	propagate	detonation.	4430	not propa- gate detona-
90,000	1 7 1		4290	tion.
Average	•		4495	

*Confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetryl booster was used to initiste each charge.

Average Fragment Velocity at Various Altitudes* (8)

		Simulated Altitude, Feet			t
Explosive	Charge Diameter,	Ground	, 30,000	(%),000	90,000
	Inches	m/#	m/ #	m/ 8	D2/45
MOX-2B, density,	1	2012	**	**	**
gm/cc 207	2	3314	3351	3247	**

*Outside diameter 2.54"; inside diameter 2.04"; length 7".

##Charge would not propagate detonation.

AMCP 706-177

MOX-38

Downloaded from http://www.everyspec.com

Composition:	Moleculer Weight:	45.6
Oxidizing agent (Potassium Nitrate) 18	Oxygen Belence:	
Aluminum, atomized 50	CO ₂ %	-52
Cupric Oxide Magnesium, atomized	CO %	-43
Other ingredients* 32	Density: om/cc Pressed	2.0
Calcium Stearate*** 2.0	Density: gm/cc Pressed	2.0
Graphite, artificial** 1.0	Melting Point: *C	
*29.1% RDX, 0.9% wax, and 2.0% TNT. **Per cent added.	Freezing Point: *C	<u> </u>
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: *C	
Sample Wt 20 mg	Refractive Index, nº	
Picatinny Arsenal Apparatus, in. 17	n ²	
Sumple Wt, mg 24		
*********	n ²	
Friction Pendulum Test:	Vecuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
	- 100°C	0.57
Rifle Bullet Impact Test: Trials	120°C	
Suplations %	135°C	
Explosions	150°C	
Partials		
Burned	200 Grem Bomb Sand Test:	
Unaffected	Sand, gm	33.2
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 . · · ·	Mercury Fulminate	
5 540	Lead Azide	0.20
10	Tetryi	0.15
15		
20	Bellistic Morter, % TNT:	
75°C International Heat Test:	Treusl Test, % TNT:	
% Loss in 48 Hrs	Plate Dant Test:	
Discoloration, fumes, odor None	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.35	Confined	
% Loss, 2nd 48 Hrs 0.13	Density, gm/cc	
	Brisance, % TNT	
Explosion in 100 Hrs None	· · · · · · · · · · · · · · · · · · ·	
Flammability Index;	Detonation Rate:	
	Confinement	
Hygrescopicity: %	Condition	
and a second s	Charge Diameter, in.	
Valatility	Density, gm/cc	
Voletility:	Rate, meters/second	

218

٢.

fragmentation Test:	Shaped Charge Effective	ness, TNT == 100:
90 mm HE, M71 Projectile, Let WC-91:	Glass C	iones at Con .
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragmonts:	Color:	Gray powder mixture
For TNT		
For Subject HE		caliber antiaircraft
3 inch HE, M42A1 Projectile, Let KC-5:	proje	otiles
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Londing;	Pressed
For TNT	-	
For Subject HE	Londing Density: gm/cc	
regment Velocity: ft/sec	At 30,000 pei	, ~ 2.0
At 9 ft At 25½ ft	Storoge:	
Density, gm/cc	•••••	
	Method	Dry
last (Relativa to TNT):	Hozard Class (Quanti	ty-Distance) Class 9
Airs	Compatibility Group	Group I
Peak Pressure	Bureau	a of Explosives Class A
Impulse		
Energy		
Ale, Confined:	Heat of:	
Impulse	Combustion, cal,	/gm 4331
Under Weter:	Explosion, cal/g	sm 980
Peak Pressure	Gas volume, co	c/gm 232
Impulse	Performance Tests:	
Energy	20 mm T215E1 Pro	
Underground:	NFOC Pressure Cu APG Blast Cube	ibe 37 52
Peak Pressure		20
Impulse	Activation Energy:	
Energy	kcal/mgl	Values not included
	Temp, TC	due to erratic ig-
	Time to ignition seconds	n, nition under condi- tions of test.

AMCP 705-177

1. 1. S. S. S.

-

MOX-4B

Downloaded from http://www.everyspec.co

Composition: %	Melecular Weight: 48
70 Oxidizing agent (Berium Nitrate) 18 Aluminum, atomized 50 Cupric Oxide Magnesium, atomized	Oxygen Belance: CO ₃ % ~53 CO % -43
Other ingredients [#] 32 Calcium Stearate ^{##} 2.0	Density: gm/cc Fressed 2.0
Graphite, artificial*** 1.0	Making Point: *C
*29.1% RDX, 0.9% wmx, and 2.0% INT. **Per cent added.	Freezing Point: "C
Isspect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 78	Boiling Paint: "C
Sample Wt 20 mg Picatinny Arsenal Apparat is, in. 18 Sample Wt, mg 26	Rafrective Index, ne ne ne
Friction Fendulum Test: Steel Shoe Sparks Fiber Shoe Unsflected	Vocuum Stability Test: cc/40 Hrs, at 90°C
Rifie Builot Impact Test: Trials % Explosions Partials	100°C 0.67 120°C 135°C 150°C
Burned Unoffected	200 Grem Bomb Sand Test: Sand, gm 33.6
Explosion Temperature: *C Seconds, 0.1 (no cop used) 1 5 610 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Leod Azide 0.20 Tetryl 0.15
15 20	Ballistic Mortar, % TNT:
	Trauzi Taut, % TNT:
73°C International Heat Test: % Loss in 48 Hm Discoloration, fumes, odor None	Plate Dant Tast: Method
100°C Heet Test: % Loss, 1st 48 Hrs 0.22 % Loss, 2nd 48 Hrs 0.12 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT
Fianmability Index:	Detension Rate: Confinement
Hygroscopicity: %	Condition Charge Diameter, in.
Veietility:	Density, gm/cc Rate, meters/sacond

regmentation Test:	Shaped Charge Effectiveness, TNT = 1	1001
90 mm HE, M71 Projectile, Let WC-91:		Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	hiole Depth	8
Total No. of Fregments:	Celur: Gray	powder mixture
For TNT		
For Subject HE	Principal Unes: Sumll caliber an	tiaircraft
3 inch HE, M42A1 Projectile, Let KC-5:	projectiles	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Mothed of Leading:	Pressed
For TNT	······································	
For Subject HE		
	Leading Donskyr gm/cc At 30,000 psi	~2.0
egment Velocity: ft/sec At 9 ft		~2.0
At 251/2 ft	Storage:	
Density, gm/cc	Method	Dry
est (Reletive to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air:	Compatibility Group	Group I
Peak Pressure	Bures	u of Explosives
Impulse		Class A
Energy		
Air, Confined:	Heat of:	
Impulse	Combustion, cal/gm	4392
Under Weter:	Explosion, cal/gm	709
Peak Pressure	Gas volume, cc/gm	208
Impulse	Performance Tests:	
Energy	20 mm T215E1 Projectile:	
Underground:	NFOC Pressure Cube APG Blast Cube	43 53
Peak Pressure		/ /
Impulse	Aviation Energy:	[
Energy	kcal/mol Values Temp, C due to	not included
		erratic igni- nder conditions t.

AMCP 706-177

語語語を読みていた。

1

.

1997 (P. 1997

MOX-6B

Downloaded from http://www.everyspec.com

Composition:		Melecular Weight:	43
% Oxidizing agent	****	Oxygen Bulance:	
Aluminum, atomized	49.2	CO: %	-50 -42
Cupric Oxide	19.7	CO %	-42
Magnesium, atomized Other ingredients* Calcium Stearate	29.6	Density: gm/cc	
Graphite, artificial *28.7% RDX coated, 0.9% wax.	1.5	Maining Point: "C	
C/H Ratio		Freezing Point: *C	
Impact Sunsitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	78	Boiling Point: "C	
Sample Wt 20 mg		Refrective Index, ng	
Picatinny Arsenal Apparatus, in.	19	02	
Sample Wt, mg	27		
		n	
Friction Pandulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials		- 100.0	0.43
46		120°C	
% Explosions		135°C	
Partials		150°C	
Burned		200 Grem Bomb Sand Test:	<u> </u>
Unoffected		Sand, gm	10.8
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, ym	
5 510		Mercury Fulminate	****
- /		Leod Azide	0.20
10		Tetryl	0.16
15		Ballistic Morter, % TNT:	
20		Trougi Test, % TNT:	
75°C International Host Test:		Pletu Dent Test:	<u></u>
% Loss in 48 Hrs Discoloration, fimes, odor	0.02/10 gm None	Method	
100°C Heet Test:	······	Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/nc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detenation Rate; Confinament	
		- Condition	
Hygroscopicity: %	0.70	Charge Diameter, in.	
30°C, 90% RH, two weeks	0.79	Density, gm/cc	
Voletility:		Rate, meters/second	

AMCP 736-177 MOX-6B Shaped Charge Effectiveness, TNT = 100: Enginemiation Test: 90 mm HE, M71 Projectile, Lot WC-91: Glass Cones Steel Conas Density, gm/cc Hole Volume Hole Depth Charge Wt, .1b Total No. of Fragments: Gray powder mixture Celer: For TNT! For Subject HE Principal Uses: Small caliber antisircraft projectiles 3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Charge Wt, Ib **Total No. of Fragments:** Method of Locding Pressed For TNT For Subject HE Louding Density: gm/cc At 30,000 pei ~2.0 Fregment Velesity: ft/sec At 9 ft At 251/2 ft Storage: Density, gm/cc Dry Method Class 9 Hazard Class (Quantity-Distance) Biest (Relative to TNT): **Compatibility Group** Group I Air: Bureau of Explosives Peak Pressure Class A Impulse Energy Heat of: Air, Conflued: Impulse Combustion, cal/gm 4293 750 204 Explosion, cal/gm **Under Weter:** Gas volume, cc/gm Pask Pressure Activation Energy: Impulse kcel/mol Energy Values not included Temp, C Time to ignition, due to erratic igni-Underground: tion under conditions Peak Pressure seconds of test. Impulse Energy

Downloaded from http://www.everyspec.com

34 C (

AMCP 706-177

MOX-1; MOX-2B; MOX-3B; MOX-4B; MOX-6B

Preparation:

 p_{i}

The various ingredients used in the preparation of MOX explosives are coated separately as follows:

Dichromated Atomized Aluminum - Seventy-five grams of chemically pure grade sodium dichromate is dissolved in 1500 milliliters of water at 100°C under mechanical agitation. Six hundred grams of the atomized aluminum powder is added gradually (2 to 3 minutes) and stirring ls continued for half an hour. The dichromated metal is filtered, washed with water (15 to 20 times) until the washings show only a slight cloudiness with silver nitrate. The water-wet product is then dried in an oven at 50°C. The dried material is hand-rolled to reduce any conglomerates, and blended before use.

Wax-Coated RDX - Eighteen grams of molten Be Square Special Wax (manufacturer's 190° to 185° Fahrenheit grade amber) is added to 582 grams of finely divided RDX (water precipitated from ocetone solution) in a water slurry under mechanical sgitation. The temperature of the wax-RDX slurry is maintained above the melting point of the wax (about 90 C). The stirring is continued for half an hour. After cooling to 50° C, the wax-coated RDX is recovered by filtration in a Büchner funnel and dried in air. The RDX thus coated and presumed to be 3% waxed RDX or a 97/3 RDX/wax mixture is hand-rolled to crush any conglowerates formed, and blended by hand before use.

INT-Coated Barium Nitrate - Thirty grams of TNT in alcohol solution is added to 270 grams of barium nitrate in an alcohol slurry under agits cion. The temperature of the TNT-barium nitrate mixture is maintained at 80°C and stirring is continued until most of the alcohol is evaporated. The coated material is spread in a thin layer on a tray to dry in air overnight. The barium nitrate thus coated with 10% TNT is reduced to an intimate mixture by hand-rolling and before use.

INT-Costed Potassium Nitrate - The INT-costed potassium nitrate is prepared by the same procedure as is used for costing barium nitrate.

<u>RDX/TNT-Coated Annonium Perchlorate</u> - The annonium perchlorate is coated by dissolving the suppropriate weights of RDX and TNT in hot alcohol. After adding the summonium perchlorate, the slurry is stirred until most of the solvent is evaporated. The treated annonium perchlorate is spread on a tray to dry overnight. Agglomerates formed during the process are crushed by hend-rolling and blending the mixture before use.

<u>THT-Coated RDX</u> - Sixty grams of molten TNT are added to a water slurry of 540 grams of finally divided RDX (water precipitated from acctone solution) under mechanical agitation. The temperature of the TNT-RDX slurry is maintained at about 90°C and stirring is continued for half an hour. After cooling to about 50°C, the TNT-coated RDX is recovered by filtration. The RDX thus treated, and presumed to be 10% coated or a 90/10 RDX/TNT mixture, is further blended by hand after rolling to crush any aggregates formed during the process.

The MOX explosive mixtures are prepared by blending the appropriate weights of the dry in; redients in a Patterson-Kelly twin-shell blender for at least 30 minutes.

Origin:

MOX type explosive mixtures were developed beginning in 1950 by National Northern, technical division of the National Fireworks Ordnance Corporation, West Hanover, Massachusetts.

MOX-1; MOX-2B; MOX-3B; MOX-4B; MOX-6B

Downloaded from http://www.everyspec.com

AMCP 706-177

References: 46

(a) A. C. Mirarchi and A. T. Wilson, <u>Development of MOX Explosives for Improved 20 mm</u> <u>Ammunition</u>, Navy Contract NOrd-10975, Task 1, National Fireworks Ordnance Corporation, First Yearly Summary, August 1950 to August 1951.

(b) A. T. Wilson, <u>Development of MOX Explosives</u>: <u>Various Oxidants in MOX</u>, First Progress Report NFOC-6, Navy Contract Nord-12382, National Fireworks Ordnance Corporation, December 1952.

(c) A. O. Mirarchi, <u>Properties of Explosives: Theory of the MOX Explosion</u>, First Progress Report NFOC-10, Navy Contract NOrd-11393, National Fireworks Ordnance Corporation, December 1952.

(d) A. O. Mirarchi, Properties of Explosives: MOX Explosives in Various Atmospheres, First Progress Report NFOC-9, Navy Contract NOrd-11393, National Fireworks Ordnance Corporation, 1952.

(e) A. T. Wilson, <u>Development of MOX Explosives</u>: <u>Composition Variations</u>, First Progress Report NFOC-7, Navy Contract NOrd-12382, National Fireworks Ordnonce Corporation, 1952.

(f) A. T. Wilson, <u>Development of MOX Explosives</u>; Various Oxidants in MOX, Second Progress Report NFOC-14, Navy Contract NOrd-13684, National Fireworks Ordnance Corporation, October 1953.

(g) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, <u>Detonation</u> <u>Velocity Determinations and Fragment Velocity Determinations of Varied Explosive Systems</u> <u>and Conditions</u>, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAI-19-020-501-ORD-(P)-58).

(h) P. Z. Kalanski, Air Blast Evaluation of MOX-2B Cased and Bare Charges, NAVORD Report No. 3755, 5 April 1956.

(1) Also see the following Picatinny Arsenal Technical Reports on MOX Explosives: 1935, 1969, 2204, 2205.

⁴⁶See footnote 1, page 10.

age in a construction of the

AMCP 706-177

1

.

Ĩ

ł

Mitrocellulose, 12.6% N (NC)

Downloaded from http://www.everyspec.com

Composition:	Molocular Weight: (272, 39),	1
C 26.46 H 2.78 H $_2$ C H X N 12.60 X H H	Oxygen Belence: CO ₂ % -35 CO % 0.6	
0 58.16 x• 0NO2	Density: gm/cc	
	Meiting Point: "C Decomposes	
C/H Ratio 0.23	Freezing Point: "C	
Impect Sensitivity, 2 Kg Wt:	Boiling Paint: *C	
Bureau of Mines Apparatus, cm B Sample Wt 20 mg Picatirny Arsenal Apparatus, in. 3 Sample Wt, mg 5	Refractive Index, ng ng ng ng	
Friction Pandulum Tost:	Yacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at 90°C 0.17	
Fiber Shoe		
Rifle Bullet Import Tast: Trials	120°C 16 hours 11.+	
%	135°C	
Explosions	150°C	
Partials Burnet		<u> </u>
Burned Unaffected	200 Grem Bomb Sand Test: Sand, arr. 45.0	
	Sond, gm 45.0	
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
l 5 Decomposes 170	Mercury Fulminate	
10	Lead Azide 0.10	
15	Tetryl	
20	Ballistic Morter, % TNT:	
	Trouzi Test, % TNT:	
75°C Internetional Heat Test: % Loss in 48 Hrs	Plate Deut Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detenation Rate:	
Flemmability Index:	Confinement	
	Condition	
Hygroscopicity: % 30°C, 90% RH 3	Charge Diameter, In.	
	Density, gm/cc	
Veletility: 60°C, mg/cm ² /hr 0.0	Rote, meters/second	

のないないというないで、

Nitrocellulose, 13.45% N (NC)

AMCP 706-177

Composition: H o'	Molocular Weight:	(286.34) _n
с 25.29 Х.н	Oxygen Belence:	
H 2.52 H ₂ C-	CO, %	-29
N 13.45 X H A	CO %	4.7
o 58.74 o x	Density: gm/cc	
н	Melting Point: "C	Decomposes
C/H Ratio 0.23	Freezing Point: *C	
Import Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 9	Boiling Point: "C	
Somple Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. 3	nB	
Sample Wt, mg 5	nª	
Friction Pendulum Test:	Vocuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	0.42
Fiber Shoe	90°C	
Rifle Bullet Impact Test: Trials		1.5
%	120°C	11.+
50 Explosions	135°C	
Partials	150°C	
Burned	200 Grem Benik Send Test:	
Unaffected	Sand, gm	49.0
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge	r, gm
1	Mercury Fulminate	
5 230	Lead Azide	0.10
10	Tetryl	
15		
20	Bellistic Morter, % TNT:	125
73°C Internetional Heat Test:	Treuzi Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test: Method	
.100°C Heet Test:	Condition	
% Loss, 1st 48 Hrs 0.3	Confined	
% Loss, 2nd 48 Hrs 0.0	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
	Defunction Rate:	
Flemmebility Index:	Confinement	
	Condition	
Hygroscopicity: % 30°C, 90% RH ~2	Charge Diameter, in.	
	Density, gm/cc	1.20
Veletility: 60°C, mg/cm ² /hr 0.0	Rate, meters/second	7300

227

AMCP 706-177

Ĵ,

Nitrocollulose, 14.14% N (NC)

Composition:	Melecular Weight:	(297.15) _n
$\begin{array}{c} & & \\ C & & 24.25 \\ H & & 2.77 \\ N & & 14.14 \end{array} \xrightarrow{H_2C} H \\ & & \\ X \\ & & \\ X \\ & \\ \end{array}$	Oxygen Belance: CO4 % CO %	-24 8
0 59.24 X=0N0 ₂	Density: gm/cc 1.	65-1.70
	Matting Point: 'C Dec	ощровев
C/H Rotio 0.23	Freezing Point: *C	
Import Sensitivity, 2 Kg Wt: Bureou - i Mines Apparatus, cm - 8	Bailing Polet: *C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	ពដ្ឋ	
	n ₂	ļ
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	2.10
Fiber Shoe	90°C 100°C 14 hours	1.46 11.+
Rifle Bullet Impact Test: Trials		11.+
~ %	135°C	
Explosions	150°C	
Partials Burned		
Unaffected	200 Grew Bomb Send Test: Sand, gm	50.0
		52.3
Explosion Temperatury: "C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 1	Minimum Detonating Charge, gm Mercury Fulminate	
5	Lead Azide	0.10
10	Tetryl	
15		
20	Bullistic Mortur, % TNT:	
	Trouxi Test, % TNT:	
75°C International Haat Test: % Loss in 48 Hrs	Plata Dant Test:	
	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs		
Flammability Index:	Detention Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH → 1	Condition Charge Diometer, i	
Veletility: 60°C, mg/cm ² /hr 0.0	Density, gm/cc Rate, meters/second	

Nitrocellulose (NC)

Downloaded from http://www.everyspec.com

AHCP 706-177

Fragmentation Test:	Shapod Charge Effectiveness, YNT == 10G.
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Celer: White
For Subject HE 3 inch HE, M42A1 Projectile, Lat KC-3: Density, gm/cc Charge Wt, Ib	Principal Uses: Pyroxylin (12% N), blasting explosives; pyrocellulose (12.60% N), suckeless powder; guncotton (13.35% N minimum), propellants
Total Na. of Fragments: For TNT For Subject HE	Method of Looding:
	Looding Density: gm/cC
Fregment Volecity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method Wet (8% to 30% weter)
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 12
Air: Peak Pressure Impulse Energy	Compatibility Group Group M (vet) Exudation None
Air, Confined: Impulse Under Water: Peak Pressure	Heat of: Combustion, cal/gm 2409* 2313** 2228*** Explosion, cal/gm 855* 965** 1058*** Gas Volume, cc/gm 919* 883** 853*** Formation, cal/gm 617* 561*** 513***
Impulse Energy	* 12.6% N ** 13.45% N *** 14.14% N
Underground: Peak Pressure Impulse Energy	Vapor Pressure: 0 mm Mercury 25 0.00 60 0.00

3

AMCP 706-177

Nitrocellulose (NC)

Solubility in Water, gm/100 gm, at:	12.6% N	13.45% N	14.0% N
25°C 60°C	Insolubla Insoluble	Insoluble Insoluble	Insoluble Insoluble
Solubility, gm/100 gm, 25°C, in:		1	
Ether Alcohol	Insoluble Very slight- ly soluble	insoluble	Insoluble Insoluble
2:1-Ether:Alequol	Soluble	Slightly soluble (6%-11%)	Practically insoluble (1 + %)
Acetone	Soluble	Soluble	Soluble
240-Hour Hydrolysis Test, % Nitric Acid	1.22	1.03	

Preparation of Nitrocellulose from Cotton Linters; (Laboratory Procedure)

<u>Nitration:</u> Second cut cotton linters, previously dried to a moisture content of less than 0.5%, are nitrated by immersion in mixed acid under the following conditions.

Ratio of Mixed Acid to cotton 55 to 1

Composition of Mixed Acid (approximate)

- a. for 12.6% N: H2SO4 63.5%, HNO3 21%, H20 15.5%
- b. for 13.4% N: H2SOL 68%, HNO3 22%, H2O 10.0%

Temperature of acid at the start 34°C

Time of nitration 24 minutes

During the nitration period the mixture is turned over occasionally to keep the acid homogeneous. The mixture is then filtered on a Buchner funnel with suction for about three minutes and then drowned repidly with strong hand stirring in at least 50 volumes of cold water. After the nitrocellulose has settled, most of the water is decanted and fresh water added. The nitrocellulose-water mixture is boiled and the acidity adjusted to 0.25% to 0.50% as H_2SO_4 . The sour boil is continued for at least 24 hours for pyrocellulose and at least 40 hours for gun-cotton. Additional boiling with changes of water are made in accordance with the governing specification (JAN-N-244).

<u>Pulping:</u> The nitrocellulose is then pulped in a laboratory Holland-type paper beater. Enough sodium carbonate is added to keep the reaction faintly alkaline to phenolphthalein. Pulping is continued to the desired degree of fineness.

<u>Posching:</u> After washing the nitrocellulose from the beater, the mixture is filtered and the product boiled for 4 hours with fresh water while stirring mechanically. From time to time a little sodium carbonate solution is added to maintain the mixture faintly sixeline to phenolphthalein. The water is decanted and the boiling continued. According to the specification, the total boiling treatment with posching is as follows:

Nitrocellulose (NC)

AMCP 706-177

4 hours boiling with or without sodium carbonate

2 hours boiling without sodium carbonate

1 hour boiling without sodium carbonate

1 hour boiling without sodium carbonate.

Each boil is followed by settling and change of water.

<u>Washing:</u> The nitrocellulose is then washed by mechanical agitation with water. A minimum of two washes are given. If a sample taken after the water washes gives a minimum test of 35 minutes in the 65.5° C Heat Test and 30 minutes in the $13^{4}.5^{\circ}$ C Heat Test, the nitrocellulose is satisfactorily stabilized. Otherwise additional washes should be given.

Origin:

Cellulose occurs in nature. It is wood fiber, cell wall and the structural material of all plants. Cotton fiber is pure cellulose. Mitrocellulose was discovered about 184γ by C. F. Schonbein at Basel and R. Bottger at Frankfort-on-the-Main independently of each other when cotton was nitrated. T. J. Pelouze had nitrated paper earlier (1838) and was probably the first to prepare nitrocellulose.

<u>Pyroxylin</u> or collodion, which is soluble in a mixture of ether and ethenol, contains from 8% to 12% nitrogen. It is used in the manufacture of celluloid and in composite blasting explosives.

<u>Pyrocellulose</u>, a type of nitrocellulose of 12.64 nitrogen content, completely soluble in a mixture of 2 parts other and one part ethanol, was developed by Mendeleev (1891-1895). This material, when colloided, formed the first smokeless powder for military use in the United States (1898).

<u>Guncotton</u> for military purposes today contains a minimum of 13.35% nitrogen. It is only elightly soluble in ether-ethanol, but completely soluble in acetone. Principal use is in flashless powders and as flame carriers. 14.14% N nitrocellulose represents a theoretical limit.

In the manufacture of propellants, there is used a mixture of pyrocellulose and guncotton (blended nitrocellulose) of 13.15% to 13.25% nitrogen content.

Destruction by Chemical Decomposition:

Nitrocellulose is decomposed by adding it, with stirring, to 5 times its weight of 10% sodium hydroxide heated to 70° C. Stirring is continued for 15 minutes after all the nitro-cellulose has been added.

References: 47

(a) See the following Picatinny Arsenal Technical Reports on Nitrocellulose:

47See footnote 1, page 10.

AMCP 706-177

Nitrocellulose (NC)

<u>0</u>	1	2	3	<u>14</u>	٤	6	ĩ	<u>8</u>	2
10 380 420 660 730 960 1020 1100 1210 1240 1300 1320 1320 1320 1320 1320 1320 132	$\begin{array}{c} 41\\ 101\\ 231\\ 351\\ 831\\ 971\\ 1031\\ $	72 332 42 5 5 5 6 6 5 2 2 2 2 2 2 2 2 2 2 2 2 2	13 33 43 233 2473 2473 2473 2473 2473 247	4 24 1174 3374 892578 102078 102011 1123379 102578 102011 1123379 102578 102011 112339 102578 10211 112339 102578 100578 1000000000000000000000000000000000000	125 475 485 555 7965 1065 1135 1265 1375 1375 1375 1375 1375 1915 1955	86 576 586 1016 1026 1256 1256 1316 1556 1516 1556 1616 1786	167 327 407 717 787 987 1197 1207 1307 1407 1487 1587 1587 1587 1587 1587 1587 1587 15	8 198 208 380 588 588 778 838 858 858 1223 1438 1528 1678 888 1918 208 208 208 208 208 208 208 208 208 20	19 29 69 2799 659 7799 659 7799 1159 13299 13299 13299 13299 13299 14399 16199 1809 99 1809 99 1159 12309 13299 13399 14399 16199 1809 1809 1809 1809 1809 1809 1809 1

Nitroglycerin (Liquid)

Downloaded from http://www.everyspec.com

AMCP 706-177

Composition: %	Molecular Weight: (C ₂ H ₅ N ₃ O ₉) 227
C 15.9 $H_2C - 0NO_2$ H 2.2 $HC - 0NO_2$	Oxygen Belance: 3.5. CO ₃ % 24.5
$\begin{array}{c} n \\ n \\ n \\ n \\ n \\ n \\ n \\ n \\ n \\ n $	Density: gm/cc 25°C, Liquid 1.591 20°C, Liquid 1.596
$n_{2} = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$	Meiting Point: *C Labile form 2.2 Stable form 13.2
C/H Ratio 0.109	Freazing Point: "C
Impact Sansitivity, 2 Kg Wt:	Beiling Point: °C Decomposes 145
Bureau of Mines Apparatus, cm 15 Sample Wt 20 mg	Refractive Index, no. 1.4732
Picatinny Arsenai Apparatus, in, 1 15 wt 1 Sample Wt, mg	ດີ 1.4713 ກະ
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Explodes	cc/40 Hrs, at 90°C cc/gw/6 hrs 1.6
Fiber Shoe	90°C cc/gm/6 hrs 1.6
Rifie Builet Impact Test: Trials	120°C
% Explosions 100	135°C
Partials 0	150°C
Burned 0	200 Grem Bomb Sund Test:
Unaffected 0	Sand, gm Idquid method 51.5
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryi
20	Ballistic Mortur, % TNT: (a) 140
	_ Treuzi Test, % TNT: (b) 181
75°C International Heat Test: % Loss in 48 Hrs	Plate Dont Test: Method
100°C Heet Test:	- Condition
% Loss, 1st 48 Hrs 3.6	Confined
% Loss, 2nd 48 Hns 3.5	Density, gm/cc Brisance, % TNT
Explosion in 100 Hrs None	
Flemmability Index:	- Detension Refe: Confinement Glass Steel
	Condition Idquid Idquid
Hyproscepicity: % 30 ⁰ rt, 00% Bit 0.06	
Hygrescepicity: % 30°C, 90% RH 0.06 Veletility: 60°C, mg/cm ² /hr 0.11	Charge Diameter, in. 0.39 1.25 Density, gm/cc 1.6 1.6

A. M. A. A. A. PART

-/ }

Į

\$

AMCP 706-177

34

Nitroglycerin (Liquid)

Beester Sensitin Condition	my test:		Decomposition Equation:	17 .	•••••••••••
Tetryl, gin			Oxygen, atoms/sec (Z/sec)	10 ^{17.3}	10 ^{19.2}
	50% Detonation		Heat, kilocalorie/male	41.4	h.e. •
Wax, gm			(AH, kcal/mol)		45.0
Density, gm/	cc		Temperature Range, *C Phase	90-135 Liquid	125-150
Heat of:		•		mrdar a	Liguið
Combustion,	cai/gm	1616	Armer Plate Impact Test:		
Explosion, cal	/gm	1600			
Gas Volum		715	60 mm Morter Projectile:		
Formation, ca		400	50% inert, Velocity, ft,	/sec	
Fusion, cal/a	n	700	Aluminum Fineness		
Detonation	, cal/gm	1486	. 500-lb General Purpose Bo	mbe.	
Specific Hent: co	al/gm/*C			*****	
Liquid		0.356	Plate Thickness, inches		
Solid		0.315	1		
		(AC +0	11/2		
			114		
Russian # .			1.74		
Burning Kets: cm/sec			- /•		
			Somb Drap Test:		·····
Thormal Conduct	ivity:				
cal/sec/cm/*C	1		77, 2000-16 Semi-Armer-Pi	ercing Bomb vs	Concrete:
Coefficient of Exp	ensions		Max Safe Drop, ft		
Linear, %/*C			500-ib General Purpose See		
Volume, %/*C				WE VE GORCIEN	
Manfanan berber			Height, ft Triols		
Hardness, Mohs' S	icale)		Unaffected		
Young's Modulus:			Low Order		
E', dynes/cm ²			High Order		
E, Ib/inch ²			High Uroll'		
Density, gm/cc			1000-lb General Purpose Bor	wb vz Concrete	:
	the indirects		Height, ft		
Compressive Steam		1	Trials		
Compressive Streng		1			
			Unaffected		
lapar Pressure:			Low Order		
C ma Merc	ury <u>°c</u>	mn Mercury			
C ma Merc	<u>ury ⁹c</u> 60	0.0188	Low Order		
Vapor Pressure: C <u>ma Merc</u> 0.00025	<u>ury ⁹C</u> 60		Low Order		

TP Ulas

234

1

Nitroglycerin (Idquid)

AMCP 706-177

Frugmentation Test:	Sheped Charge Effectiveness, TNT == 100:
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Colorless
For Subject HE 3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Charge Wt, ib	Principel Uses: Propellant ingredient, demoli- tion explosive ingredient, grenade burster ingredient
Total Ne. of Fragments: For TNT	Method of Londing:
For Subject HE	Loading Density: gm/cc
Fregment Velocity: ft/sec At 9 ft At 25½ ft	Sterege:
Density, gm/cc	Method With acetone or other desensitizer generally not stoled
liast (Relative to TNT):	Fazard Class (Quantity-Distonce) Class 9
Air: Peak Pressure	Compatibility Group
Impulse Energy	Exudation
Air, Confined: impulse	Heat of Transition, cal/gm; Transition:
Under Weter: Peak Pressure	Liquid> labile 5.2 Labile> stable 28.0 Liquid> stable 33.2
Impulse Energy	Hydrolysis, % Acid:
Underground: Peak Pressure	10 days at 22°C < 0.002 5 days at 60°C 0.005
impulse Energy	82.1°C KI 1est: Minutes 10+

AMCP 705-177

Nitroglycerin (Liquid)

Gas Evolved at Atmospheric Pressure, cc:

Sample Wt, gm	1	6
Temperature, °C	65	75 40
Time, hours	20	40
Volume of gas, cc	nil	n ± 1

Viscosity: (c)

°c	Centipoises
10	69.2
20	36.0
30	21.0
μõ	13.6
50	9.4
60	6.8

Fragmentation Test:

20 mm HE, Mark 1, Projectile, Total No. of Freguents for:

22 17 Nitroglycerin

Minimum Propagating Diameter: (d)

<u>% Dimethylphthalate</u> <u>in NG</u>	Min. Propagating Diameter, inches	Maximum Dismeter for 2 Failures in 2 Trials, inches
0	(3/16 Cairns)	1/16
5		1/8
10	1/8	3/16
15	1/4	3/8
20	3/4	7/8
22.5	1	1-1/2
25	1.55	2

Sensitivity to Electrostatic Discharge, Joules (test condition, unconfined; no value given for confinement): > 12.5

Solubility, grams of nitroglycerin/100 gm (%) of:

Water Alcohol		cohol	Trichlor	ethylene	Carbon Tetrachloride		
°c	<u>ب</u>	°C.	ž	°C	2	°C	Ź
15 20	0.16 0.18	() 7,0	37•5 54•0	Rm	22	Rm	2
50	0.25	100	;; 4 .0				

236

議論にいる

Nitroglycerin (Liquid)

gm/100 gm (%), at 25°C in

Euner * 2:1,Ether:Alcohol > 100

Acetone

AMCP 706-177

Downloaded from http://www.everyspec.com

Ambient 1
Soluble in all Proportions in:
Methanol
Acetone
Ether
Ethyl acetate
Anyl acetate
Methyl nitrate
Ethyl nitrate
Nitroglycol
Tetranitrodiglycerine
Acetic acid
Bendane

ź 1

Carbon Disulfide

°C

Pheno1 Pyridine Xylene Nitrobenzene p-Ni trotoluene Idauid DNT Chloroform Ethyl chloride Ethyl bromide Tetrachloroethylene Dichloroethylene Trimethyleneglycol Dinitrate

Solubility in NG, of:

Alcohol		D	DNT		MT	Water		
°c	ž	°c	ž	°c	ž	<u>°c</u>	ź	
0 20	3.4 5.4	20	35	20	30	25	0.06	

Preparation:

Toluene

сн₂-0802 - OH -ONO2 + 3HNO3 + 38,0 ·OH CH CD 2 CH2-0402 CH2-

Glycerine is usually nitrated at 25°C, or below, by adding it very slowly to a well agitated mixture of nitric and sulfuric acids, e.g., 40/59.5/0.5, nitric acid/sulfuric acid/water, us-ing an acid/glycerine ratio of approximately 5. Agitation of the reaction mixture is accomplished by use of compressed air. A rapid temperature rise, or appearance of red fumes, automatically requires dumping of the charge, immediately, into a drowning vessel filled with water. After all the glycerine has been added to the nitrator, agitation and cooling are con-tinued until the temperature drops to about 15°C, and the charge is then run into a separator where the NY rises to the top, and is run off to the neutralizer. The nitroglycerin is warhed first with water, then with sodium carbonate, and finally with water. The resultant NO when washed with water, produces washings which do not color phenolphthalein, and itself is neutral to litmus paper.

AMCP 706-177

Nitroglycerin (Liquid)

Origin:

2

Nitroglycerin was first prepared in 1846 or 1847 by Ascanio Sobrero, an Italian chemist (Mem Acad Torino (2) 10, 195 (1847)). For several years after this discovery, nitroglycerin attracted little interest as an explosive until Alfred Nobel in 1864 patented improvements in its manufacture and mothod of initiation (British Patent 1813). Nobel gave the name dynamite to mixtures of nitroglycerin and non-explosive absorbents, such as chercoal, siliceous earth or Kieselguhr (British Patent 1345 (1867)). Later developments led to gelatine dynamites, ammonia dynamites, and so called straight dynamites. The first propellants using nitroglycerin were called Ballistite (Nobel, British Patent 1471 (1888)) and Cord.te (Abel and Davar, British Patents 5614 and 11,664 (1889)).

Destruction by Chemical Decomposition:

Nitroglycerin is decomposed by adding it slowly to 10 times its weight of 18% sodium sulfide (Na₂S.9H₂O). Heat is liberated by this reaction; but this is not hazardous if stirring is maintained during the addition of nitroglycerin and continued until solution is complete.

References: 48

. .

(a) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

- (b) Ph. Naoum, Z ges Schiess-Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
- (c) Landolt Bornstein, <u>Physikalisch-Chemische Tabellen</u>, 5th Ed. (1923).

International Critical Tables.

B. T. Fedoroff et al, A Manual for Explosive Laboratories, Vol I-IV, Lefax Society, Inc., Philadelphia, 1943, 1946.

(d) H. A. Strecker, Initiation. Propagation and Luminosity Studies of Liquid Explosives, OSRD Report No. 5609, 3 December 1945.

(e) /	Uso i	see i	the	fol	lowing	Picatinny	Arsens]	. Technical	Rep	orts	QĽ	Nitrogl	ycerin:
----	-----	-------	-------	-----	-----	--------	-----------	---------	-------------	-----	------	----	---------	---------

<u>o</u>	1	2	3	<u>4</u>	٤	<u>6</u>	I	<u>8</u>	2
620 660 800 1020 1150 1210 1410 1620 1680	511 551 701 891 1031 1041 1151 1221 1611 1651 1651 1651 1651 1731 1781 1851 2021 2181 2201	652 672 792 922 1142 1362 1542 1662 1692 1742 1992	233 343 673 903 1023 1643 1663 1863 1993	454 494 1024 1074 1084 1454 1524 1624 1671 1754	1155 1235 1955 2015	1206 1456 1496 1556 1616 1786 1816 1896 2056	817 837 1197 1297 1637 1817 1847	768 1348 1398 1738 1918 2098	69 249 579 709 1349 1359 2119

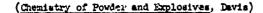
48See footnote 1, page 10.

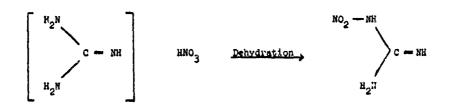
Nitroguanidine

Downloaded from http://www.everyspec.com

AMCP 706-177

Composition:		Melecular Weight: $(CH_4N_4O_2)$	1.04
C 11.5 NH	?	Oxygen Balance: CO ₂ %	-31
н 3.9 ни с		CO %	-15.4
N 53.8 NH		Density: gm/cc Crystal	1.72
0 30.8 NO	2	Malting Point: *C	232
C/H Ratio 0.038		Freezing Point: *C	
mpoct Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	47	Boiling Point: *C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	26 7	Refrective Index, nº nº nº	
riction Pondulum Test:	(•)	Vecuum Stebility Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Lifie Bullet Impact Text: 5 Trials	(e)		0.37
96	\-/	120°C	0.44
Explosions 0		135*C	
Portials G		150°C	
Burned O		200 Grow Bomb Sund Test:	
Unoffected 100		Sand, gm	36.0
Explosion Temperature: *C Seconds, 0.1 (no cop used)		Sanskivity to Initiation: Minimum Detonating Charge, gm	
1		Niercury Fulminsie	
5 Decomposes 275		Lead Azide	0.20
10		Tatryi	0.10
15 20		Bailistic Mortur, % TNT: (a)	104
40	•	Truuni Test, % TNT: (b)	104
S'C International Haat Test:	0.01	Plate Dent Tget: (c)	
% Loss in 48 Hrs	0.04	Method	*
IOG'C Heat Tast:		Condition	Pressed
% Loss, 1st 48 Hrs	0.18	Confined	No
% Loss, 2nd 48 Hrs	0.09	Density, gm/cc	1.50
Explosion in 100 Hrs	None	Brisonce, % TNT	95
formebility Index;	<u></u>	Detenation Rate: (e) Confinement	
tygroscopicity: % 30°C, 90% RH	None	Condition Charge Diameter, in.	
Velatility:	None	Density, gm/cc	1.55
	11011	Rate, meters/second	7650


AMCP 706-177


Nitroguanidine

Fragmentation Test:	Shaped Charge Effectiveness, THT $=$ 100:	
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Con Hole Volume Hole Depth	H
Total Na. of Fregments: Far TNT	Celer: Colorie	
For Subject HE	Principal Uses:	
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Propellant composition ingredie bursting charge ingredient	nt,
Total No. of Fregmentz; For TNT For Subject HE	Method of Loading:	
	Loading Density: gm/cc	
Fregment Velocity: ft/sec	At 3000 psi	0.95
At 9 ft At 25½ ft	Storoga:	
Density, gm/cc	Method	Dry
Blast (Reletive to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure	Compatibility Group	Group I
Impulse	Exudation	1
Energy		
Air, Centined:	Solubility, gm/100 gm (%), in:	e l
Impulse	Water 25	0.44
Under Weter: Peck Prassure	1.0 N Potassium Hydroxide 25	1.2
impulse	40% Sulfuric Acid 0	3.4*
Energy	# gm/100 cc solution	8.0*
	Booster Sensitivity Test:	(4)
Underground: Peak Pressure	Condition	Pressed
Impulse	Tetryl, gm Wax, in. for 50% Detonation	100 0.67
Energy	Density, gu/cc	1.41
	Heat of:	
	Combustion, cal/gm Explosion, cal/gm Cas Volume, cc/gm Formation, cal/gm	1995 721 1077 227

Nitroguanidine

Preparation:

Four hundred gms of dry guanidine nitrate is added in small portions to 500 cc concentrated sulfuric acid at 10° C, or below. As soon as all crystals have disappeared the milky solution is poured into 3 liters of ice-water, and allowed to stand until crystallization is complete. The product is filtered, rinsed with water, and recrystallized from about 4 liters of boiling water, yield about 90%.

Origin:

Nitroguanidine was first prepared in 1877 by Jousselin, but it was 1900 before it found use in propellant compositions. During World War I, nitroguanidine was used by the Germans as an ingredient of bursting charge explosives.

Destruction by Chemical Decomposition:

Nitroguanidine is decomposed by dissolving in 15 times its weight of 45% sulfuric acid at room temperature and varming the solution until gas is evolved. Heating is continued for one-half hour.

References: 49

(a) L. C. Smith and E. G. Lyster, <u>Physical Testing of Explosives</u>, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) Canadian Report, CE-12, 1 May-15 August 1941.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Bousters</u>, NOL Memo 10, 303, 15 June 1949.

(e) Departments of the Army and the Air Force TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.

⁴⁹See footnote 1, page 10.

AMCP 706-177

ч

Nitroguanidine

(f) Also see the following Picatinny Arsenal Technical Reports on Nitroguanidins:

<u>0</u>	<u>1</u>	2	3	<u>6</u>	I	<u>8</u>	2
1490	1 391 2181 2201	1282 1392 2142	1183 1423 2193	1336	907 2177	758	1439 1749

Nitroisobutylglycerol Trinitrate (NIBTN) Liquid

ŝ

第二日 いいの

han Namara nagalar 184 Ĵ

d from http://www.everyspec.com

AMCP 706-177

Composition: %	Molecular Weight: (C4H6N4011)	286		
	Oxygen Belence:			
02 ¹⁰ 012	CO: %	0.0		
H 2.1 $O_2NO-CH_2 \longrightarrow C - NO_2$				
.N 19.6	Density: gm/cc 20 ⁰ C	1.64		
0 61.5 02NO-CH2	Maiting Point: *C			
C/H Ratio 0.126	Freezing Point: *C	-39		
Impact Sansitivity, 2 Kg Wt:	Boiling Point: *C			
Bureau of Mines Apparatus, cm 25 Sample Wt 20 mg	Refractive Index, nº			
Picatinny Arsenal Apparatus, in.	n0			
Sample Wt, mg		1.4896		
	n	1.4874		
Friction Pandulum Test:	Vocuum Stability Test:			
Steel Shoe	cc/40 Hrs, at			
Fiber Shoe	90°C			
Rifle Builet impect Test: Triais	- 100°C			
	120°C			
% Explosions	135°C			
Partials	150°C			
Burned	200 Grem Bomb Sand Test:			
Unaffected	Sand, am 0,2 gu sample absorb	ň.		
	by 0.2 gm of kleselgubr	28		
Explosion Temperature: *C	Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm			
} 5 Ignites 185	Mercury Fulminate			
	Lead Azide			
15	Tetryl			
20	Ballistic Mortor, % TNT:			
	Trauzi Teet, % TNT:			
75°C International Haat Test: % Loss in 48 Hrs	Platu Dent Test:	<u></u>		
	Method			
100°C Heet Test:	Condition			
% Loss, 1st 48 Hrs	Confined			
% Loss, 2nd 48 Hrs	Density, gm/cc			
Explosion in 100 Hrs	Brisance, % TNT			
	Detenation Rute:			
Flammability Index:	Confinement G1	as (1 mm vall		
	Condition	Liquia		
Hygreecopicity: %	Charge Diameter, in.	0.39		
Veletility:	Density, gm/cc	1.64		

,Ľ

1

AMCP 706-177

.

な歴史の言

Nitroisobutylglycerol Trinitrate (NIBTN) Liquid

Fregmentation Test:	Shaped Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, ib	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragmonts: For TNT	Color: Yellow oil				
For Subject HE 3 inch HE, M42A1 Projectile, Let KC-3: Density, gm/cc Charge Wt, Ib	Principel Uses: Gelatinizing agent for nitrocellulose				
Total No. of Fragments: • For TNT For Subject HE	Method of Looding: Looding Density: gm/cc Storege: Method Liquid Hazard Cluss (Quontity-Distance)				
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc					
Blast (Relative to TNT):					
Air: Peak Pressure Impulse Energy Air, Confined:	Compatibility Group Exudation Solubility: Soluble in methyl and ethyl alcohols, ace-				
Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure	tone, ether, ethylenedichloride, chloroform and benzene. Insoluble in water, carbon disulphide, and petroleum ether. <u>Toxicity:</u> Slight, decidedly less than nitroglycerin. Gelatinizing Action:				
Impulse Energy	Flight on nitrocellulose. 82.2°C KI Test: Minutes 2				

Nitroisobutylglycerol Trinitrate (NTBIN) Liquid

AMCP 706-177

Preparation:

A total of 675 gm 37% formalin is added to 150 gm nitromethane containing 2 gm potassium carbonate hemi-hydrate. The first 200 gm formalin is added slowly, keeping the temperature below 30° C, and then the heat of reaction is allowed to raise the temperature to 80° C, and the mixture then heated two hours at 90° C. The reaction mixture is then concentrated at reduced pressure and diluted, and this process repeated several times to remove formaldehyde. After the linal concentration the cooled mixture is filtered and the crystalline product recrystallized from alcohol and then several times from ether and dried.

The nitrated product is then obtained by nitrating 50 gm nitroisobutylglyce col with 300 gm mixed acid (60/38/2, sulfuric acid/nitric acid/water) below 15°C for 1.5 hours.

Origin:

This explosive (also called Trimethylolnitromethane Trinitrate, Nitroisobitanetriol Trinitrate, Nitroisobutylglycerin Trinitrate and incorrectly but widely used Nitroisobutylglycerol Trinitrate) was first described in 1912 by Hofwimmer (Z ges Schiess - Sprengstoffw 7, 43 (1912). Hofwimmer prepared the compound by the condensation of 3 moles of formaldehyde with 1 mole of nitromethane in the presence of potassium bicarbonate, the subsequent nitration of the product. The explosive can now be produced from coke, air, and natural gas.

References: 50

(a) H. A. Asronson, Study of Explosives Derived from Nitroparaffins, FATR No. 1125, 24 October 1941.

(b) M. Aubry, Mém poudr, 25, 197-204 (1932-33); CA 27, 4083 (1933).

(c) A. Stettbacher, Mitrocellulose 5, 159-62, 181-4, 203-6 (1934); CA 29, 1250 (1935).

(d) W. de C. Crator, U.S. Patent 2,112,749 (March 1938); CA 32, 3964 (1938).

(e) H. J. Hibshman, E. H. Pierson, and H. B. Hass, Ind Eng Chem <u>32</u>, 427-9 (1940); CA <u>34</u>, 3235 (1940).

(f) A. Stettbacher, Z ges Schless Sprengstoffv 37, 62-4 (1942); CA 38, 255 (1944).

⁵⁰See footnote 1, page 10.

Nitrostarch Demolition Explosive (NSX)

d from http://www

Downlo

÷

Composition: %		Molecular Weight:	325
Nitrostarch (12.50% N)	49	Oxygen Belance:	
Barium Nitrate	40	CO. %	-12
Mononitronaphthalene	7	CO %	
Paranitroaniline	3	Density: gm/cc	
OIL	1	Melting Point: *C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt:	·	Boiling Point: "C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	21	Refractive Index, no	<u> </u>
Picatinny Arsenal Apparatus, in.	8	na	
Sample Wt, mg			
		n	
Friction Pendulum Tast:		Vacuum Stability Test:	
	es, snaps	cc/40 Hrs, at	
Fiber Shoe Unaffe	cted	90°C	
Rifie Bullet Impact Test: 10 Trials	8 Trisls*	- 190°C	11+
%		120°C	
Éxplosions 90	¥0	135*C	:
Partials Ö	13	150°C	
Burned 0	0	200 Gram Bamb Sand Test:	
Unoffected 10 #Packed in paper	87	Sand, gm	39.5
Explation Temperature: "C		Sansifivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.26
5 Decomposes 195 10		Leod Azide	••
15		Tetryl	
20		Bailistic Morter, % TNT: (a)	96
		Yrauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	0.2	Plate Dant Test:	<u> </u>
		Method	
100°C Heet Test:		Condition	
% Loss, 1st 48 Hrs	0.3	Confined	
% Loss, 2nd 48 Hrs	0.3	Density, gm/cc	
Explosion in 100 Hrs	None	Brisonce, % TNT	
Fianmability Index:		- Detenation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH	2.1	- Condition Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

Nitrostarch	Demolition	Emlosive	(NSX)
NT CLOS CALCU	Demotration	DEDITIONIA	(IIII)

}

AMCP 706-177

Fregmuntation Test:	Shapod Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones – Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Calor:	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb	Principal Uses: Demolition, bursting charges, and priming compositions	
Total No. of Fregments: For TNT	Method of Looding: Hand tamped	
For Subject HE Fragmant Valocity: ft/sec	Leading Density: gm/cc Apparent 0.92	
At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) (1285 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation None	
Air, Cenfined: Impulse Under Water:	120°C Heat Test: Selmon Pink 70 Red Fumes 255	
Peak Pressure Impulse	Explodes 256	
Energy Underground: Peak Pressure Impulse Energy		

2±7

Nitrostarch Demolition Explosive (NSX)

Downloaded from http://www.everyspec.com

تر -

<u>.</u>':

Preparation: (b)

The nitration of starch proceeds with the formation of hexanitro starch according to the following equation:

$2C_6H_{10}O_5 + 6HNO_3 \rightarrow C_{12}H_{14}O_4(ONO_2)_6 + 6H_2O_5$

Tapicca starch is considered the best for nitration purposes, although other starches give fairly stable products. The starch, pretreated to remove oils, fats and water soluble impurities, is dried and screened. Feeding of the dried starch into stainless steel nitrators containing mixed acid (62%-63% HNO₃ and 37%-38% H₂SO₄) is done slowly with constant agitation or the mixture. The heat evolved must be controlled by cooling coils. The mitrated starch is separated from the spent acid, washed with a large amount of water and centrifuged. Final drying is on trays heated to 35^{0} -40°C with air. This product is so sensitive even a static discharge might cause explosion.

Nitrostarch demolition explosives contain a high percentage of nitrostarch, an oxidizing agent, mineral oil, a stabilizer and/or other ingredients.

Origin:

Nitrostarch was first prepared in 1833 by Branconnot, who called it xyloidine (Ann chim phys [2] 52, 290 (1833)). T. J. Pelouze studied xyloidine further and reported its explosive properties (Compt rend 7, 713 (1838). It found military use in the United States during World Wars I and II as blasting explosives and as an ingredient of bursting charges and priming compositions.

References: 51

(a) W. R. Tomlinson, Jr., <u>Physical and Explosive Properties of Military Explosives</u>, PATR No. 1372, 29 November 1943.

(b) G. D. Clift and B. T. Federoff, <u>A Menual for Explosives Laboratories</u>, Vol I, Lefax Society, Inc., Philadelphia (1942).

(c) Also see the following Picatinny Arsenal Technical Reports on Nitrostarch Explosives:

1	5	<u>4</u>	ĩ	<u>8</u>	2
1611	782 2032	1034	1117	838 848	1269

51Sea footnote 1, page 10.

AMCP 706-177

Octo1, 70/30

Composition:		Molecular Weight:	265
HMX	70	Oxygen Balance: CO ₂ %	28
INT	30		-38 -7•5
	50	Density: gm/cc Cas	it 1.80
		Molting Point: *C	
C/H Ratio		Freezing Point: "C	
Impact Sonaltivity, 2 Kg Wt:	<u></u>	Boiling Point: "C	<u></u>
Bureau of Mines Apparatus, cm Sample Wt 20 mg		Refructive Index, De	
Picatinny Arsenal Apparatus, in.	18	n2	
Sample Wt, mg	26	n	
Friction Pendulum Test:		Vocuum Stability Test:	
Steel Shoe	Unsflected	cc/40 Hrs, at	
Fiber Shoe	Unsifected	90°C	
Rifle Builet Impact Test: Trials		- 100°C	
96		120*C	0.37
70 Explosions		135°C	
Partials		150°C	
Burned		200 Gram Bemb Sand Yest:	
Unaffected		Sond, gm Exploratory	58.4
Explosion Temperature:	°C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	***	Minimum Detonating Charge, gm	
5 Flames erraticall	y 335	Mercury Fulminate	
10	~ ~~~	Lood Azide	0,30
15		Tetryi	
20		Ballistic Morter, % TNT:	115
		Treval Test, % TNT:	
75°C International Heat Test:		Plate Dant Yest:	
% Loss in 48 Hrs		Method	
100°C Host Test:		 Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisonce, % TINT	
			<u></u>
Finnmability Index:		Confinement	None
		Condition	Cast
Hygroscopicity: %		Charge Diameter, in.	1.0
		Density, gm/cc	1.80
Valetility:		Rate, metars/second	8317
		· · · · · · · · · · · · · · · · · · ·	

AMCP 706-177

V

Octo1, 70/30

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalorie/mole
Wax, gm		(ユH, kcal/mol) Temperature Range, °C
		Phose
Density, gm/cc		PROSE
Hent of:	2722	Armor Plate Impoct Test:
Combustion, cal/gm	1074	
Explosion, cal/gm		60 mm Mortar Projectile:
Gas Volume, cc/gm	847	50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, cal/gm		500-16 General Purposa Bombs:
Specific Heat: cal/gm/°C		
••••••••		Plate Thickness, inches
		1
		112
		114
		14,
Burning Rate:		
cm/sec		Somb Drop Test:
Thermal Conductivity:		
coi/sec/cm/°C		77, 2000-16 Semi-Armer-Plarcing Bomb vs Concrete:
Coefficient of Expension:		Max Safe Drop, ft
Linear, %/*C		500-lb General Purpose Bomb vs. Concrete:
Volume, %/*C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unoffected
		- Low Order
Young's Modulus:		High Order
E', dynes/cm²		righ broat
E, Ib/inch³		1000-ib General Purpose Bomb vs Concrete:
Density, gm/cc		
	1510	Height, ft
Compressive Strength: Ib/inch*	See below	Trials
		Unaffected
Vapor Pressure:		Low Order
C mm Mercury		High Order
Compressive Strength: 1b/inch ²	*	
Average (10 tests) High	1510 1740	Ultimate Deformation: %
Low	1330	Average (10 tests) 2.26 High 2.58 Low 1.97

*Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Fregmentation Test:	Shaped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91:	Gloss Cones Steel Conss Hole Volume	
Density, gm/cc Charge Wt, lb	Hole Deptin	
Total No. of Fragmants: For TNT	Color:	Buff
For Subject HE	Principal Uses: HE projectile and bomb	filler
3 inch HE, M42A1 Projectile, Let KC-5:		
Density, gm/cc. Charge Wt, ib	· · ·	
Terei Ne. of Fragments: For TNT	Instead of Loading:	CLat
For Subject HE	Leading Denuity: gm/cc	1.80
Fregment Velocity: ft/sec At 9 ft At 25½ ft	Stereget:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distorice)	Class 9
Air: Peak Pressure	Compatibility Group	Group I
Impulse	Exudation	
Energy		
Air, Continud: Irapulse	<u>Mork to Produce Rupture:</u> ft-lb/inch ³ Average (10 tests)	* 1.55
Under Weter: Peak Pressure	High Low	1.87 1.10
Impulse	Efflux Viscosity, Seybolt Seconds:	5.9
L-ergy	:	
Undergreand: Peak Pressure		
impulse Energy		
	"Test specimen 1/2" x 1/2" cylinder (mately 3 gm) pressed at 3 tons (6,00 total load or 30,000 psi with a 2 min time of duall.	0 16)

<u>Octol, 70/30</u>

1

1.00

		One-Inch Column		Two-Inch Column	
Explosive	Simulated Altitude,	Confined	Unconfined	Confined	Unconfine
	Fret	m/s		3/8	E/ 8
70/30, RDX/INT; density, gm/cc 1.62	Ground	7900	8100	7660	8030
density, gay ee not	30,600	8020	8120	7900(4)	7800
	60,000	8040	8140	8010	7950
	90,000	8060	7980	8010	7710
Average		8005	8085	7895	7873
70/30, HMX/TNT; density, gm/cc 1.61	Ground	7960	7900(4)	7870	7640(4)
density, gavee 1.01	30,000	8050	8060	7930	7710
	60,000	8020	7930	78-30	7650
	90,000	7950	8000	7940	7650
Average		7995	7973	7908	7663

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity* (Reference b)

470/30 Octol confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetry booster was used to initiate each charge.

		1	Simulated A	ltitude, Fe	
Explosive	Charge Disme	Ground m/s	30,000	<u>60,000</u> ≊∕≋	<u>90,000</u> ⊒∕∎
70/30, RDX/INT	1	3415	3672	3666	3685
	2	4647	5192	6236	6011
70/30, HMC/INT	1	3366	3680	4014	3617
	. 5	4703	5464	6089	6111

Average Fragment Velocities at Various Altitudes* (g)

*Outside dismeter 2.54"; inside diameter 2.04"; length 7".

Octo1, 70/30

AMCP 706-177

64 y./

Tene	17.	Strength:*
74119		

	lb/inch ²
Average (8 tests)	169
High	204
Lov	128

*Test specimen as per Picstinny Arsensl sketch XL-076B, at 21°C.

Modulus of Elasticity:*

Average (10 tests)	1b/inch ² 73,200
High	79,300
Low	63,000

"Nest specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

語言と

Critical Pressure	92,000 p#1*
Density, gs/cc	1.72

*Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases/

Pit Fragmentation Test:

105 mm ML HE Projectile:

·····	ويتقارب والترجيح والترجيح	
Weight Gi	oup, grains	No. of Fragments
1/2 -	2	1297
2 -	5	665
5 -	10	497
10 -	25	661
25 -	50	471
50 -	75	247
75 -	150	32?
150 -	750	ji sa sa sa sa sa sa sa sa sa sa sa sa sa
750 -	2500	12
Total Nuz	aber	4467

253

it in the topic of the party

Octo1, 75/25

Composition: %		Malacular Weight:	276
HMX	75	Oxygen Bolonce: CO ₂ %	- 35
INT	25	CO %	-6.3
		Density: gm/cc Cast	1.81
		Making Point: *C	
C/H Ratio		Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Bailing Paint: "C	
Sample Wt 20 mg Picotinny Arsenal Apparatus, in.	17	Refrective Index, n ^D ₁₀	
Sample Wt, mg	25	n _{as}	
· · ·	-	n	
Friction Pandulum Test:		Vocuum Stability Test:	
Steel Shoe	Unaffected	cc/40 His, at	
Fiber Shoe	Unaffected	90°C	****
Rifle Builet Import Yest: 10Triais \$		- 100°C	
3/16" Steel	1/8" A1	120*C	0.39
Explosions 70	70	135°C	
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	
Unoffected 30	30	Sond, gm Exploratory	62.1
Explosion Tamperature:	°C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1	-	Mercury Fulminate	***
5 Flames erratically	350	Leod Azide	0.30
10 15		Tetryl	****
20		Ballistia Mortur, % TNT:	116
40		Tresul Test, % TNT:	
75°C International Heat Test:		Plate Dest Test:	
% Loss in 48 Hrs		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisonce, % TNT	
		- Detenstion Rote:	
Flammability Index:		Confinement	None
Muunaanus laba - A		Condition	Cast
Hygrascople Hys 96		Charge Diameter, in.	1.0
Veletility:		Density, gm/cc	1.81
· ••••••••		Rate, meters/second	8643

1.8

1. 1. 1. 1.

12

The A Press

Octol, 75/25

AMCP 706-177

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc		Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (AH, kcal/mol) Temperature Range, °C Phase
Neet ef: Combustion, cal/gm	2676	Armer Platu Impact Test:
· · · ·	1131	
Explosion, cal/gm	830	40 mm Morter Projectile:
Gas Volume, cc/gm	0,00	50% Inert, Velocity, ft/sec
Formation, cal/gm	29.4*	Aluminum Fineness
Fusion, cal/gm *Calculated for 76.9% HMX, 23.1%		500-ib Genzrei Parpose Bembe:
المين في الجاري منتخذ في المركبة المسلحين في منتخر الم المسلح الم المركبة المسلحين المركبة المسلحين ا	**	200-is Causiel Laibres course:
Specific riest: (al/gm/*℃	0.200	Plate Thickness, inches
Specific Heat: cal/gm/*C -79°C -80° to +80°C	0.240	
33° to 74° C	0.245	1
90° to 150°C	0.323	11/2
**Determined for 76.9% HMX, 23.1%	INT.	114
		194
Burning Rate:		
cm/sec		
		Somb Drop Test:
Thermal Conductivity:		
col/sec/cm/*C		T7, 2000-16 Semi-Armer-Piercing Jemis vs Concrete:
		Max Safe Drop, ft
Coefficient of Expension:		
Linear, %/°C		500-16 General Purpose Bomb vs Cuncrote:
Volume, %/*C		Halaba da
		Height, ft
Herdness, Mohs' Scale:		- Trials
		Unaffected
Young's Modulus:		Low Order
E', dynes/cm²		High Order
E, lb/inch [*]		
Density, gm/cc		1000-Ib General Purpose Namb ve Constrates
		Height, ft
Compressive Strength: Ib/inch ^a	1340	Trials
	See below	Unaffected
Mune : Pressures		Low Order
Vupsz Prossure: *C mm Mercury		High Order

Compressive Strength: 1b/inch ²		112 Advanta Defense d
Average (10 tests) High	1340 1560	Ultimate Deformation: 4
row	1040	Average (10 tests) 2.43 High 2.89 Low 2.04

***Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total losd or 30,000 psi with a 2 minute time of dwell.

١

2

AMCP 706-177

1.000

Octol, 75/25

Frugmantation Test:	Shaped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Totel No. of Fregments: For TNT For Subject HE	Celer:	Buff
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principel Uses: HE projectile and bomb	filler
Totel Ne. of Fragments: For TNT For Subject HE	Method of Loading:	Cast
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc Storage: Method	1.81 Dry
Slast (Relative to TNT): Air: Peak Pressure Impulse	Hazard Class (Quantity-Distance) Compatibility Group Exudation	Class 9 Group I
Energy Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Work to Produce Rupture: ft-1b/inch ³ Average (10 tests) High Low Efflux Viscosity, Saybolt Seconds:	* 1.31 1.57 1.07 9.0
Underground: Peak Pressure Impulse Energy	*Test specimen 1/2" x 1/2" cylinder (a mately 3 gm) pressed at 3 tons (6,000 total load or 30,000 psi with a 2 min time of dwell.	0 16)

Octol, 75/25

AMCP 706-177

Fragment Velocity Test:

M26 Hand Grenade:

Explosive	Average Fragment Velocity, ft/sec over lat 6 feet
Composition B	4948
75/25 Cyclotol	4908
75/25 Octal	5124

Tensile Strength:*

の時代にいる

;				lo/inch ²
	Average	(10	tests)	266
l	High	•		330
:	Low			226

*Test specimen as per Picatinny Arsenal sketch XI-076B, at 21°C.

(#)

(a)

Modulus of Elasticity:*

	1b/inch ²
Average (10 tests)	62,100
High	75,900
Low	45,200

*Test specimon $1/2" \ge 1/2"$ cylinder (approximately 3 gas) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

Critical Pressure : 76,000 pai* Density, gu/cc 1.80

*Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases.

Pit Frequentation Test:

105 mm ML HE Projectile:

Weight Group, grains	No. of Fragments
1/2 - 2	1611
1 2 - 5	ן דרי ן
5 - 10	535
10 - 25	719
25 - 50	480
50 - 75	246
75 - 150	.339
150 - 750	1 29 3
750 - 2500	: 8
Total Number	5008

سر ر جنب

Octol, 70/30; Octol, 75/25

Downloaded from http://www.everyspec.com

Preparation:

Water-wet HMX is added slowly to molten TNT in a steam-jacketed kettle at a temperature of 100°C. The mixture is heated and stirred until all moisture is evaporated. The composition is cooled to a satisfactory pouring temperature and cast directly into ammunition components or prepared in the form of chips to be stored for later use.

References: 52

(a) 1st indorsement from Chief, Explosives Development Section, to Chief, Explosives Research Section, Picatinny Arsenal, dated 12 May 1958. Subject: "Properties of Octols and HTA-3."

(b) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, <u>Detonation Veloci-</u> ty Determinations and Fragment Velocity Determinations of Varied Explosive Systems and Condi-tions, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAT-19-020-501-ORD-(P)-58).

52See footnote 1, page 10.

PB-RDX

1

AMCP 706-177

Composition: %		Molecular Weight:	245
RDX	90	Oxygen Balance:	(0)
Polystyrene (unmodified)	8.5	CO, % CO %	-62 -18
Dioctylphthalate	1.5	Density; gm/cc Unpressed Pellet pressed at 30,000 psi	0.81
		Melting Point: *C	
C/H Ratio		Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Unpressed 28 15 20	Bailing Paint: "C Refractive Index, n ^D n ^D n ^D n ^D	
Friction Pendulum Test:		Vocuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: 10 Trials *	······································		0.41
%		120°C 135°C	0.41
Explosions 10		150°C	
Portials 90			· · · · · · · · · · · · · · · · · · ·
Burned O Unaffected O		200 Grem Bomb Sand Test: Sand, gm	
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Saokes 275 10 15 20		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryi Bellistic Morter, % TNT:	
		_ Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:	· · · · · · · · · · · · · · · · · · ·	Detonation Rate: Confinement	
Hygroscopicity: %		Condition Charge Diameter, in.	
* Test procedure described in May 1956.	PATR No. 2247,	 Density, gm/cc Rate, meters/second 	

259

and the set in the second of the second

PB-RDX

ί.

Basster Sensitivity Test:	Decomposition Equation:
Condition	Oxygen, atoms/sec (Z/sec)
Tetryl, gm	Heat, kilocalorie/mole
Wax, in. for 50% Detanation	(ΔH, kcal/mol)
Wax, gm	Temperature Range, *C
Density, gm/cc	Phase
Heat si:	Armer Plets Impect Test:
Combustion, cal/gm 3027	
Explotion, cal/gm 983	40 mm Martar Projactiles
Gas Valume, cc/gm	50% inert, Velocity, ft/sec
Formation, cal/gm	Alumisum Fineness
Fusion, cal/gm	500-S Ganarai Purpose Sombe:
Specific Heat: cal/gm/*C	
	Plate Thickness, Inches
	R .
	11/4
	114
	1%
Buncing Rote:	
cm/sec	Some Dray Yests
Thermal Conductivity:	•
cal/sec/cm/*C	57, 2000-16 Somel-Ancore Plancing 7 and ve Concessor
	Adam Cada Nama da
Caufficiant of Expansion:	Max Sate Drop, ft
Linear, %/*C	560-16 General Parpose South vs Constants"
Volume, %/*C	Height, ft
	Trials
Hardness, Mahu' Scale:	Unaffected
	Low Order
Young's Modulus: See below	High Order
E', dynes/cm²	
E, Ib/inch [*]	1000-% General Purpose Nemb vs Concrete:
Dansity, gm/ce	
	Height, ft
Compressive Strength: (b/inch [#] 2403 2149 Percent 8.9 13.1	Triols
۵٬۹۶۳ مې د د د د د د د د د د د د د د د د د د	Unaffected
Vuper Pressure:	Low Order
C mm Mercury	High Order
Young's Modulus: * (a) Temperature Ambient 95°C	
E, 1b/inch ² (avg of 5) 39,953 34,831	
Density, gm/cc 1.60 1.57	

*Pellets (Lot CAC-595-55) 0.750 inch diameter by 0.750 inch long, pressed at 30,000 psi with 30-second dwell.

Fregmentation Test:	Shaped Charge Effectivences, TNT = 100:			
90 mm HE, M71 Projectile, Let WC-91:		Glass Cones Ste	el Conas	
Density, gm/cc	Hole Volume	1		
Charge Wt, Ib	Hole Depth			
Total No. of Fragmeniu:	Celor		White	
For TNT			HIT AS	
For Subject HE	Princips! Uses:	High mechanica	1 strength	
3 inch HE, M42A7 Projectile, Let KC-3:		explosive	-	
Density, gm/cc				
Charge Wt, ib				
Total No. of Fragments:	Method of Luce	ling:	Pressed	
For TNT		-		
for Subject HE	Leading Dansib	Loading Density (m/cc. Pressed, pai x 10 ³		
	0 10 20 30			
iragment Velocity: ft/sec At 9 ft At 25½ ft	1.10 1.49 Sterege:	1.59 1.62		
Density, gm/cc	arden and a			
Denary, Buy co	Method		Dry	
liest (Relative to TNT);	Hazard Class (Quantity-Distance) Class		Class 9	
Air: Peak Pressure	Compatibility Group		Group I	
Impulse	Exudation	•	None	
Energy				
Air, Cenfined: Impulse	Rockwell Re 1/2 inch di	rdness, "R" Scal. ameter Penetrato	e: (a) r, 60 Kg Load:	
Under Weter:	Pellet	Specific		
Peak Pressure	<u>No.*</u>	Gravity	Hardness	
Impulse	1	1.624	84	
Energy	2 3 4 5 6	1.623	90	
	2	1.611 1.600	84 80	
Underground:	5	1.590	75	
Peak Pressure		1.571	73	
Impulse	7	1.548	62	
Energy	8	1.524	49	
	*Pellets (Lo	t HOL-E-93) were and 3/4 inch high	1-1/2 inches	

 $\mathbf{y}_{\mathbf{b}}$

Downloaded from http://www.everyspec.com

語語語のなかが、現在の言語

のなどの

PB-RDX

-Downloaded from http://www.everyspec.com

Sensitivity of PB-RDX and 98/2 RDX/Stearic Acid Pellets* to Initiation by Type II Special Blasting Capa (a)

Dell et-				ase of Ca	0,450		
Pellets	0.250	0.,00	0.350	0.400	0.420	0.500	0.750
PB-RDX with Pellet Density 1.55 gm/cc	-						
No. of Triels	1	8	5	6	2	1	1
Average Depth of Plate Indentation, inches **	0.082	0.090	0.087	0.080	0.080		
No. of Failures	0	1	3	4	1	1	1
PB-RDX with Pellet Density 1.60 gm/cc							
No. of Trials	3	8	9	4	3	5	2
Average Depth of Place Indentation, inches **	0.090	0.089	0.087	0.084	0.087	0.075	
No. of Failures	٥	0	2	3	2	3	2
98/2 RDX/Stearie Acid With Pellet Density 1.53 gm/cc	_						
No. of Trials	5	3	5	5	5	5	5
Average Depth of Plate Indentation, inches **	0.109	0.096	0.095	0.092	0.097	0.087	فليعيدن
No. of Failures	٥	1	0	3	4	4	5

* Pellets 0.92 inch diameter, 0.375 inch height.

** Mild steel plate 5" x 5" x 1".

Performance of PB-RDX as Booster: (b, d)

Ton 2.75 inch HEAT ML Rocket Heads were unarflected in performance by storage at 71°C for 25 days. Thus, PB-RDX was not desensitized by contact with TNT-bearing explosives. Tetryl, similarly used, becomes desensitized when stored in bursting charges at elevated temperatures.

In addition, 108 modified M307A1 57 mm projectiles were fired for performance against armor. Each round contained a PB-RDX booster pellet. There was no evidence in these firings that the projectiles were inadequately boostered.

Preparation:

The purchase description sheet for polystyrene-bonded RDX (X-PA-PD-1088, 25 October 1956) requires that the PB-RDX shall be a mixture of RDX, coated and surrounded by a homogeneous mixture of polystyrene and dioctylphthalate. The specified percentage of RDX shall consist of a mixture of 75% Type B, class A RDX and 25% Type B, Class E RDX. The granulation of the unpressed composition shall be as follows:

T	nrough U. S. Standard Sieve No.	Minimum %	Maximum K	24
	6	100		
	12	<u>,</u> 60		÷
	20		2	i i
	35		<u> </u>	

We methods have been reported for the preparation of PB-RDX (Reference: Los Alamos Scientific Laboratory, Contract W-7405-Eng 36 with U.S. Atomic Energy Commission, Report No. IA-1448). The earlier method employed a Baker-Perkins type mixer to blend the components. This procedure gave a product with good pressing characteristics. However, the molding composition was nonuniform in granulation and tended to be dusty. The slurry method of PB-RDX preparation gave a product which was uniform, free-flowing and dustless. In addition, PB-RDX granulated by the slurry method exhibited watisfactory drying, handling and pressing characteristics.

The final procedure incorporating the better features found from the study of such variables as solvents, solvent/plastic ratios, lacquer addition and temperature, agitation, RDX particle size distribution, dispersants and rosin additive, was as follows (Reference c):

Forty-two and five-tenths grams (42.5 gm) of polystyrene and 8 cc dioctylphthalate were dissolved in 200 cc toluene in a lacquer dissolver. Steam was introduced into the jacket until the temperature reached 65°C. The lacquer was agitated constantly until it was ready to be added to the granulator. This lacquer contained a 1:4 ratio of plastic-plasticizer to toluene.

Four hundred and fifty grams (450 gm) of RDX and 4500 grams of H_2O (ratio 1:10) were added to the granulator. The agitator was set for 400 rpm and the temperature was raised to 75°C by introducing steam into the jacket. The temperature differential between the lacquer solution and the RDX/water slurry was 5° to 10°C.

The lacquer solution was poured through the charging funnel into the granulator. As soon as the lacquer was added, a solution of gelatin in water was added, and the mixture was agitated until the lacquer was well dispersed in the RDX slurry (approximately 5 minutes). Granulation took place at this point. Steam was intraduced again into the jacket to distill the solvent until the temperature reached 98° C. Cooling water was then run into the jacket to cool the batch to 40° C. The coated material from the granulator was collected on a Buchner funnel and dried in a tray at 70° C for 24 hours. Temperatures below 70° C did not furnish enough heat, but a temperature of 80° C produced stickiness and caking of PB-RDX.

Origin:

An explosive consisting of RDX coated with polystyrene plasticized with dioctyphthalate was initially developed in 1952 for the Atomic Energy Commission by Los Alamos Scientific Taboratory of the University of California (Contract W-7405-Eng 36 with U. S. Atomic Energy

263

PB-RDX

PB-RDX

Commission, Report No. IA-1448). The specific formulation of 90/8.5/1.5 RDX/polystyrene/ dioctylphthalate was subsequently standardized by Los Alamos. This explosive, originally designated PBX, has been redesignated PB-RDX. The detailed requirements for the present polystyrene-bonded RDX(PB-RDX) are given in purchase description X-PA-PD-1088, 25 October 1956.

References: 53

(a) P. J. Zlotucha, T. W. Stevens and C. E. Jacobson, <u>Characteristics of Polystyrene-Bonded RDX(PB-RDX)</u>, PATR No. 2497, April 1958.

(b) A. J. Pascazio, The Suitability of a Bare PEX Booster Fellet in the 2.75 Inch MI HEAT Rocket Head, PATR No. 2271, November 1955.

(c) J. L. Vermillion and R. C. Dubberly, <u>Plastic-Bonded RDX</u>, <u>Its Preparation by the Slurry</u> <u>Method</u>, Holston Defense Corporation, Control No. 20-T-16 Series A (PAC 1081), 5 March 1953.

(d) C. J. Eichinger, <u>Report on Cartridge HEAT 57 mm M307A1 (Mod)</u> with <u>Modified Copper</u> Liner, Aberdeen Proving Ground, Development and Proof Services, First Report on OC Project TA3-5204, October 1957.

³See footnote 1, page 10.

ί.

Pentserythritol Tripttrate (PETRIN)

Downloaded from http://www.everyspec.com

AMCF 786-177

Charles and the

17

Composition: %	Melesuier Weight: (C5H9N3010)	en			
c 22.1	Oxygen Balance:				
CH_ONO_		-2% 3			
и 3.3 носи2 - си20но					
N 15-5 -	Density: gm/cc	1.54			
0 59.1 CE20H02	Moliting Point: *C	26 to 28			
C/H Ratio 0.141	Freezing Point: "C				
Import Sensitivity, 2 Kg We:	Builing Point: "C 4 mm Hg Decomposes	130			
Bureou of Mines Apparatus, cm Sample Wt 20 mg	Refrective Index, no				
Picatinny Arsenal Apparatus, in. 5 to 10	n2				
Sample Wr, mg 38					
	n				
Friction Pendulum Yest:	Vacuum Stability Test:				
Steel Shoe	cc/40 Hrs, at				
Fiber Shoe	90°C				
Rifie Bullet Import Text: Trigis	100°C	2.54 to 5.6			
	120°C				
Sectoria Sectoria	135°C				
Partials	150°C				
Burned					
Unoffected	200 Green Bond Sead Test: Sand, am				
Unotrected	sana, gm				
Explosion Temperature: *C	Sensitivity to Initiation:				
Seconds, 0.1 (no cop used)	Minimum D**/nating Charge, gm				
1	Mercury Fulminate				
5	Louid Aside				
10	Tetryi				
15					
20	Bellistic Merter, % TNT:				
75°C International Heat Test:	Trouni Teet, % TNT:				
% Loss in 48 hirs	Plate Dant Test: Method				
	Constition				
100°C Huat Test:	Confined				
% Loss, 1st 48 Hrs					
% Loss, 2nd 48 Hrs	Density, gm/cc				
Explosion in 100 Hrs	Brisonce, % TNT				
Riemanahilia, Indus.	Ditension Rate:				
Planmability Index:	Confinement				
Hugensenteiten W	Condition				
Hygroscopicity: %	Charge Diameter, in.				
M-Indillan.	Density, gm/cc				
Velatility:	Rate, maters/second				

AL AL 265

Pentaerythritol Trinitrate (PETRIN)

• ·

 -

1

Downloaded from http://www.everyspec.com

Fragmentation Test:	Shaped Charge Effectiveness, TNT == 109:
90 mm HE, M71 Projectile, Let WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hale Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	Celer: White
For TNT	will Ce
For Subject HE	Principal Uses: Explosive, properlant or
3 inch HE, M42A1 Projectile, Let KC-3:	igniter ingredient
Density, gm/cc	
Charge Wt, ib	
Total Na. of Fragments:	Method of Londing:
For TNT	
For Subject HE	Louding Density: gm/cc
Frequent Velocity: ft/sec At 9 ft	
At 25% ft	Storage:
Density, gm/cc	Advature d
	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
ب عنگ	Compatibility Group
Peak Pressure	
Impulse	Erudation None
Energy	
Air, Confined: impulse	PETRIN esters are listed in reference (b) and most of these esters have been shown to have explosive properties.
Under Weter: Peak Préssure Impulse Ene.gy	An infrared spectrophotometric procedure was developed for the detarmination of the acetone content of PETRIN (ref c). A 2.5 gm sample of PETRIN is dissolved in chloroform and the volume increased to 25 milliliters in
Underground: Freak Pressure Impulse Energy Absolute Vircosity, poises: Temp, 17°C 14.3 23°C 4.3 28°C 3.0 38°C 1.2	a volumetric flask. The acetone content of the PETRIN solution is determined by its infra- red absorption at 5.52,4 in a 0.5 mm cell. A double been method is used with a reference cell containing chloroform and acetone-free PETRIN. The quantity of the latter must be corefully ad used to give a good balance be- tween the test sample and reference cells for the strong PETRIN peak at 6.02,4 maximum. Heat of-
	Explosion, cal/bn 1204

 $\mathbf{266}$

L Kary's

and the stand of the second second second second second second second second second second second second second

Pentserythritol Trinitrate (PETRIN)

AMCP 706-177

NTT.

CA185 7 8

Freparation:				•	
		₩230 ¹ 1			
с(сн ₂ он) _ь +	3HNO 3		onch ⁵ c(ch ⁵ to ²) ³	+	3H20
pentserythritol	nitric scid	sulfuric acid	pentsery thritol trinitrate		weter
N# 136	MF 63	MN 98	MV 271	•	N # 18

Downlo

The earliest procedure used for the manufacture of PETRIN was that developed at Alleghany Ballistics Laboratory. In this process, called the "A process," 80% HNO₃ and the solid pertaerythritol were charged to the reactor and 80% H₂SO₄ was added slowly at a rate to permit control of temperature at 0° to 5°C. This mixture was held for a 2-1/2-hour reaction period, then drowned in water and filtered to give a cake containing both the tri- and tetra-nitrates of pertacrythritol. The cake was dissolved in actions and neutralized in solution with ammonium carbonate, after which the PETN was precipitated by the addition of water. After filtration, the PETNIN was recovered from the filtrate by stripping off the solveit under vacuum. Yields by this process averaged about 40%.

An improved process, called the "B process," used the same primary reaction procedure but a different work-up procedure. After the reaction holding period, water was added to dilute the mixed acid and the batch was extracted in situ with mathylene chloride. The organic layer was separated, neutralized with equeous sodium bicarbonate, and stripped of methylene chloride under vacuum to yield the product directly. Yields by this process were about 50% and quality of the product was much improved over that of the "A process."

The "C process," currently in use, involves assentially the simultaneous synthesis and extraction of PETRIN from the reaction mixture. Nathylene chloride approximately equal to the total usight of the other components is added to the reaction mixture before the sulfuric acid. After a suitable time following the addition of sulfuric acid, the golvent is removed and replaced by fresh solvent one or more times. The combined extracts are neutralized and concentrated. Because of their initially relatively large volume, PETM must be removed by filtration from the concentrated PETRINE solution before the final solvent is stripped. Yields by this process have been 60% to 65%.

Origin:

The nitration products of pentwerythritol or its derivatives containing not more than three NO₂ groups were patented for use as explosives, propellants or ignition materials in 1936 (German Patents 635.432 and 635.433; CA <u>31</u>, 1212 (1937)).

A process in which pentaerythritol monoscetate was converted to pentaerythritol trinitrate momoscetate, which was then saponified under carefully controlled conditions to PETRIE, was reported in 1954 (N. S. Marans, D. E. Elrick and R. F. Preckel, J Am Chem Soc <u>76</u>, 1304). PETRIE was also prepared by the mitration of pentaerythritol with a mixture of BOS HNO₃ and \pm 05 H₂SO₄ in 1955 (A. T. Camp, N. S. Marans, D. E. Elrick and R. F. Preckel, J Am Chem Soc <u>17</u>, 751).

Pentaerythritol Trinitrate (PETRIN)

Downloaded from http://www.everyspec.com

References:54

(a) Rohm and Haas Company, Redstone Arsenal Division, <u>Process</u> for the <u>Manufacture of</u> <u>Pentserythritol Trinitrate Monoscrylate and Petrin Acrylate Propellants</u>, 12 March 1956.

(b) E. Berlow, R. H. Barth and J. E. Snow, The Pentaerythritols, ACS Monograph No. 136, p. 65, Reinhold Publishing Coryoration, New York, 1958.

(c) R. H. Pierson, <u>An Infrared Spectrophotometric Method for Determination of Acetone</u> <u>Content of Pentaerythritoltrinitrate</u>, U.S. Naval Ordnauce Test Station Report NOTS 1877, MAVORD Report No. 5649, 3 February 1958.

and the second second second second second second second second second second second second second second second

C. Jarvalle

54See footnote 1, page 10.

268

<u>Pentaerythritol Trinitroacrylate (PETRIN Acrylate)</u> (Trinitroxypentaerythritol Acrylate)

N

AMCP 706-177

Composition: %	Monomer) (C8H11N3011)	325		
c 29.5	Oxygen Belence:			
H 3.4 CH2ONO2	CO, % CO %	-54 -12		
CH2 - CH-CO2CH2C-CH20N02	Density: gm/cc			
0 51.2 CH_ONO2	Making Point: °C 78 t	o 79		
C/H Ratio 0.239	Freezing Point: *C			
Impact Sansitivity, 2 Kg Wt:	Beiling Point: 'C			
Bureau of Mines Apparatus, cm				
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	Refrective Index, no			
Sample Wt, mg	n			
والمراجع المراجع المراجع المراجع والمراجع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع	n			
Friction Pendulum Test:	Vocuum Stability Test:			
Steel Shoe	cc/40 Hrs, at			
Fiber Shoe	90°C			
Rifle Bullet Import Teet: Trials	100°C			
%a	12010			
Explosions	135°C 150°C			
Portiols				
Burned	200 Grem Bemb Send Test:			
Unaffected	Sand, gm			
Explasion Temperature: *C	Sensitivity to Initiation:			
Suconds, 0.1 (na cop used)	Minimum Detonating Charge, gm			
1	Mercury Fulminate			
5	Loud Azide			
10	Tetnyi			
15 20	Ballia is Merter, % TNT:			
4V	Treat Ter, % TNT:			
75°C International Hast Test:	Fiete Deet Test:	_		
% Loss in 48 Hrs	Method			
100°C Heut Tast:	Condition			
96 Loss, 1st 48 Hvs	Confined			
70 CO22, 127 40 MH2 96 Cu22, 2nd 48 MH2	Density, gm/cc Brisance, % TNT			
Explasion in 100 Hrs				
	Datenaties Rate:			
Flemmability Index:	Confinement			
	Condition			
Hygroscopicity: % N12	Charge Diameter, in. Density, gm/cc			
Velatility:	Rate, meters/second	,		

269

and the state of the second second second

Pentaerythritol Trinitroscrylate (PETRIN Acrylate)

E.L. J.

Fregmentation Test:	Shaped Charge Effectivenest. TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91;	Glass Cones Steel Cones	
Density, gm/cc	Hoie Volume	
Charge Wt, Ib	Hole Depti:	
Total No. of Fragments: For TNT	Color: White	1
For Subject HE	Principal Uses: Ingredient of composite	
3 inch HE, M42Aî Projectile, Let KC-S:	rocket propellants	
Density, gm/cc		
Charge Wt, Ib *		
Yotal No. of Fregments;	Method of Losding:	
For TNT	marines of receival:	
For Subject HE		
	Looding Density: gm/cc	
Fregment Velocity: ft/sec		
At 9 ft At 25% ft	Storege:	
Density, gm/cc		
	Method Dry at temperatures below melting point	
Blast (Rolative to TNT):	Hazard Class (Quantity-Distance)	
Air:	Compatibility Group	
Peck Pressure	Companying Group	
Impulse	Exudation None	
Energy		
	Veet of	
Air, Confined:	Heat of:	
Impulse	Combustion, cal/gm 2923	
Undar Water: Peak Pressure	Explosion, cal/gm 791	
Impulse	1	
Energy		
Underground: Peak Pressure		
Impulse		
Energy		
		1
	9	ļ
		Í

Pentagrythritol Trinitroscrylate (PETRIN Acrylate)

Downloaded from http://www.everyspec.com

AMCP 706-177

Preparation:		(a)				
Hoch2c(ch2NO3)3	+	CH2 = CHCOCL	+	с6н	5N(CH3)2	
pentmerythritol trinitrate (PETRIN) MW 271 Q		ecrylyl chloride MW 90.5		an	ethyl iline 121	
(୦ ₂ ೫୦୦ ମ ₂) ₃ ୦୦ ମ ² ୦୦୦ ପ	1 = 0	1H2 + C6H51	N(CH ₃)	2HCI	(
pentaerythritol trini acrylate (PETRIN acr			thyle			

acrylate (PETRIN acrylate) MW 325

いいない

The original synthesis for FETRIN acrylate employed trifluoroacetic anhydride and glacial acrylic sold as the acrylation agent for PETRIN. These two materials were charged to a reaction vessel and the initial reaction was controlled by the slow addition of PETRIN at a temperature of 10° to 15° C. Following a period of one houw, the batch was drowned in water, precipitating the PETRIN acrylate. This solid was separate by filtration, dissolved in chloroform, and neutralized in solution with sodium bicarbonate. The product was then crystal-lized during a period of 16 hours at 0° C and dried under vacuum to remove traces of solvent. The yield for this process was about 60%.

A significant improvement in yield (to about 74%) and purity (approximately 98%) was realized by the substitution of methanol for chloroform and crystallization of the product from the solution without neutralization, residual acid being removed by washing the filter cake with water.

Because of the high cost and hygroscopic nature of trifluoroscetic anhydride, a new process, based on dimethylaniline and acrylyl chloride, was considered. This process is currently under development in the Rohm and Hass Chemical Processing facilities and is not considered optimum. Yields averaged 46% and product purities averaged 93.5%.

PETRIN Acrylate Propellants:

PETRIN acrylate could be used as a monopropellant because it has a specific impulse of 214 lb-sec/lb and a burning rate of 0.2 in/sec. The addition of an oxidizer increases both the impulse and burning rate.

A composition which presently appears most promising is as follows:

	Composi	tion NM
PETRIN acrylate (> 97% purity), %		(binder)
Triethylene glycol trinitrate, 🐔	11.8 ((plasticizer)
Glycol discrylate, %	2.9 ((crosslinker)
Ammonium perchlorate, %	51.0	(oxidizer)
Hydroquinone, 🖇	0.014 ((polymerization inhibitor)

Measured specific impulse 238 lb-sec/lb, at density of 1.3.

Reference:55

(a) Rohm and Haas Company, Redatone Arsens] Division, Process for the Manufacture of Pentaerythritol Tetranitrate Monoscrylate and Petrin Acrylate Propellants, 12 March 1956.

SiSee footnote 1, page 10.

Pentolite, 50/50; 10/90

				50/50; 10/90		
Composition:		····		Molecular Weights	<u>50/50</u> 265	<u>10/90</u> 234
%	50		10	Oxygen Balance:		
PETN	50		10	CO, %	-42 - 5	-68 -21
INT	50		90	Density: gm/cc	1.65	1.60
				Matting Point: *C	<u></u>	76
C/H Ratio				Freazing Points *C		
Import Sonaitivi	ty, 2 Kg Wt: nes Apparatus,	50/ cm 3	<u>50 10/90</u> 65	Bolüng Point: *C		
Sample Wt	20 mg			Refrective Index, ng	-	
 Picatinny Ars Sample Wt, 	enal Apparatus ma	i, in. 12 15		កដ្ឋារ 🖓 🗸		
				n <mark>p</mark>		
Friction Pendulu	im Test:			Vacuum Stability Test:	50/50	10/90
Steel Shoe			Unaffected	cc/40 Hrs, at		
Fiber Shoe			Unaffected	90°C	3.0	3.0
Rifie Bullet Imp	ect Test: 25 T	rials, 50/	50	120°C	11+	11+
		%		135°C		**
Explosions		72		150°C		••
Partials		20				
Burned Unaffected		0 8		200 Grace Bosel Send Test: Sond, gm	55.6	49.5
Undriected						49.5
Explesion Tomp		•C, 50	/50	Sansitivity to Initiation:		<u>50/50</u>
Seconds, U.I	(no cap used)	290		Minimum Detenating Ch	iarge, gm	0.19*
5	Decomposes	266 220		Mercury Fulminate		0,13*
10		204				-
15		197		*Alternative initiati	ng charges	·
20		>190		Ballistic Mortur, % TNT:	(a)	126
				Trauzi Yest, % TN'i:	(b)	122
75°C Internation % Loss in 48				Plate Dent Test: Method	(c)	В
14010 11			50/50	Condition		Cast
100°C Heat Tet		•	<u>50/50</u>	Confined		No
% Loss, 1st			0.0	Density, gm/cc		1.66
% Low, 2nd Explosion in 1			0.2	Brisance, % TNT		121
			None	Detenation Rate:		
Flammability in	dex: Will no	t contin	ue to burn	Confinement		None
		50/50	10/00	Condition		Cast
Hygroscopicity: 30°C, 90%	% RH	50/50 None	10/99 None	Charge Diameter, in.		1.0
				Density, gm/cc		1.66
Veletility:				Rate, meters/second		7465

Pentolite, 50/50; 10/90

Downloaded from http://www.everyspec.com

AMCP 706-177

Boester Sensitivity Test: (d)	50/50	Decomposition Equation:	
Condition Pressed	Cast	Oxygen, otoms/sec (Z/sec)	
Tetryl, gm 100	100	Heat, kilocalorie/mole	
Wax, in. for 50% Detonation 2.36	2.08	(SH, kcal/moi)	
Wax, gm	A _	Temperature Range, *C	
Density, gm/cc 1,60	1.65	Pinase	
Heat ef: Combustion, cal/gm	·· <u>····</u> ······························	Armer Platy Impact Teet:	50/50
Explosion, cal/gm	1220	60 mm Morter Projectile:	
Gas Valume, cc/gm		50% inert, Velocity, ft/sec	170
Formation, cel/2m		Aluminum Fineness	
Fusion, cal/gm			
	·······	500-lb General Purpose Bombe:	
Specific Heet: coi/gm/*C		Plate Thickness, inches	
		11/4	
		14	
Burning Rete:		134	,
cm/sec		Somb Drop Test;	
Thermel Conductivity:			
col/sec/cm/°C		T7, 2000-1b Semi-Armur-Pierciag Ben	ib vs Concreta:
Coefficient of Expension:		Max Safe Drop, ft	
Linear, %/°C		500-lþ General Purpese Bamb vs Con	crete:
Volume, %/°C		Height, ft	
		Trials	
Hardness, Mohs' Scale:		Unaffected	
Manual Adadation	· · · · · · · · ·	Low Order	
Young's Modulus:		High Order	
E', dynes/cm²			
E, ib/inch ²		1000-it General Purpose Bomb vs Con	krete:
Density, gm/cc			
Compressive Strength: Ib/inch ² 200	0-2200	Height, ft	
Density, gm/ce	1.68	Triols	·
		Unaffected	
Vepor Pressure: *C mm Mercury		Low Order	
*C mm Mercury		High Order	
		······	

27:1

Pentolite, 50/50; 10/90

21

Fragmontation Test:	50/50	Shaped Charge Effectiveness, TNT == 100: 50/50 10/90 50/50 25/75
90 mm HE, M71 Projectile, Lot WC-91:		Gloss Cones(f) Steel Cones (g)
Density, gm/cc	1.65	Hole Volume 157 105 149 119
Charge Wt, Ib	2.: (Hole Depth 116 116 131 119
Total No. of Fregments:		Ceier: Yellow-white
For TNT	703	
For Subject HE	968	Principal Uses: Shaped charges, bursting
3 inch HE, M42A1 Projectile, Let KC-5:		charges, demolition blocks
Density, gm/cc	1.65	
Charge Wt, Ib	0.872	
Total No. of Fragments:		Method of Londing: Cast
For TNT For Subject HE	514 650	
· · · · · · · · · · · · · · · · · · ·		Looding Density: gm/cc 50/50 10/90
Frequent Velocity: ft/suc	- 0	1.65 1.60
At 9 ft At 25½ ft	2810 2580	Sterage:
Density, gm/cc	1.66	Method Dry
Blast (Relative to TNT):	(•)	Hazard Class (Quantity-Distance) Class 9
Ai+:		Compatibility Group Group I
Peak Pressure	105	
impulse	107	Exudation
Energy	••	Compatibility with Mateles
Air, Confined:		Compatibility with Metala:
Impulse		Dry: Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, mild steel conted with acid-proof black paint, and mild steel
Under Water: Peak Pressure		plated with copper, cadmium or nickel are not affected. Zinc plated steel is only slightly
Impulse		affected.
Energy		Wet: Stainless steel, eluminum and mild steel costed with acid-proof black point are
Underground: Peak Pressure		not affected. Copper, brass, magnesium, mag- nesium-aluminum alloy, mild steel and mild
Impulse		steel plated with copper, cadmium, zinc or nickel are slightly affected.
Energy		Effect of Temperature on (h)
Eutectic Temperature, ^O C:	76	Rate of Detonetion: 50/50
gm PETI/100 gm TNT 76°C	13.0	16 hrs at, °C -54 21 Density, gm/cc 1.67 1.66 Rate, m/sec 7470 7440
95°č	25.3	

274

.

Pentolite, 50/50; 10/90

AMCP 706-177

Preparation:

いたので、「「「「「「「」」」」」

1

Pentolite is manufactured by either the slurry method or coprecipitation of PETN and TNT. In the slurry method PETN, in water, is stirred and heated above 80° C. TNT is added and when molten, it coats the particles of PETN. The slurry is cooled with rapid stirring and the separated granules are collected on a filter and dried below 75°C.

In coprecipitation, PETN and TNT are dissolved separately in acetome. The solutions are mixed and the explosives are precipitated simultaneously by pouring the mixed solution into cold water under vigorous agitation. The precipitated solid is collected on a filter and dried in air.

Origin:

Standardized during World War II, with the 50-50 PEIN/INT mixture being the more important for bursting charges and booster-surround charges.

References: 56

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 <u>December 1945</u>.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Maxo 10,303, 15 June 1949.

(e) W. R. Tomlinson, Jr., <u>Blant Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-ORD-5723.

(g) Eastern Laboratory, du Pont, <u>Investigation</u> of <u>Cavity Effect</u>, Final Report, Contract W-672-ORD-5723, E. Lab, du Pont, 18 September 1943.

(h) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explo-</u> sives at Several Different Temperatures, PATR No. 2383, November 1936.

(i) Also see the following Picatinny Arsenal Technical Report on Pentolite:

<u>0</u>	<u>1</u>	2	3	<u>4</u>	٤	6	<u>7</u>	8
1360 1420 1570	1291 1451 1651	1212 1262 1372	1133 1193 1213 1363	1284 2004	1325	1436 1466 1796	1477 1677 1737	1388 1598 1668 1838

⁵⁶See footnote 1, page 10.

275

-; !

PETN (Pentaerythritol Tetranitrate)

Composition: %		Meleculer Weight: (C5H8N4012)	316
C 19.0 0NO2		Oxygen Balance:	
		CO, % CO %	-10 15
N 17.7 02NO-CH2-C-CH	2 0.002	Density: gm/cc Crystal	1.77
ο εο.8 ^{CH} 2		Making Point: *C	141
C/H Rotio 0.134 ONO2		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	17	Boiling Point: *C	
Sample Wt 20 mg	•	Refrective Index, np	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	6 16	nas	
aampie vri, mg		n _{be}	
Friction Pondulum Test:		Vacuum Stubility Tast:	
Steel Shoe C	Trackles	cc/40 Hrs, at	
řiber Shoe U	Jnaffecteä	90°C	
Rifle Buliet Impact Test: 5 Trials *		- 100°C	0.5
96		120*C	11+
Explosions 100		135°C	
Partials 0		150*C	
Burned O		200 Gram Bomb Sand Test:	
Unoffected 0 #4.80% molature in samples		Sand, gm	62.7
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 272		Minimum Detonating Charge, gm	
1 244 5 Decomposes 225		Mercury Fulminate	0.17*
5 Decomposes 225		Lead Azide	0.03*
10 211		Terryl *Alternative initiating charg	
20		Ballistic Mortur, % TNT: (a)	145
	····	Treuzi Test, % TNT: (b)	173
75°C International Heat Test: % Loss in 48 Hrs	0.02	Fiete Dent Test: (c)	·····
-0 6038 (11 90 F115	0.02	Method	A
100°C Heat Test:		Condition	Pressed
% Loss, 1st 48 Hrs	0.1	Confined	Yes
% Loss, 2nd 48 Hrs	0.0	Density, gm/cc	1.50
Explosion in 100 Hrs	None	Brisance, % TNT	129
Rissenskiller fodere 11633 och er bil		- Detenction Rate:	
Flammability Index: Will not contin	ue to burn	Confinement	None
Hygrescepicity: % 30°C, 90% RL	0.0	Condition	Pressed
		Charge Diameter, in.	1.00
Velatility:	0.0	Density, gm/cc	1.70
•		Rate, meters/second	8300

12

10107

276

20.0.5

PETN (Pentaerythritol Tetranitrate)

AMCP 706-177

Beaster Sensitivity Test: Condition	(c) Pressed	Decomposition Equation: (e) (e) (f) Oxygen, atoms/sec $10^{19.8}$ $10^{20.6}$ $10^{23.1}$
Tetryi, gm	5	(Z/sec) Heat, kilocalorie/mole 47.0 50.9 52.3
Wax, in. for 50% Detonation		(SH, kcal/mol)
Wax, gm	3	Temperature Range, *C 161-233 108-120 137-157
Density, gm/cc	1.6	Phose Liquid Solid At melt- ing point
Heat of: Combustion, cai/gm	1960	Armer Piete Impect Test:
Explosion, cal/gm	1385	
Gas Volume, cc/gm	790	60 mm Morter Projectile: 50% Inert, Velocity, ft/sec
Formation, cal/gm	383	Aluminum Fineness
Fusion, cal/gm		
·		500-ib General Purpose Bombs:
Specific Heat: cal/gm/*C	(d)	
Room Temperature	0.26	Plate Thickness, inches
KOOM TEMPETE CUTA	V. EU	1
		11/4
		11/4
		134
Burning Kata;		
cm/sec		Somb Droy Test:
Thurmal Conductivity: cal/sec/um/*C	**************************************	T7; 2060-16 Somi-Armor-Plancing Bomb vs Concrute:
Coefficient of Expension:		Max Safe Drop, ft
Linear, %/*C		300-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
Hariness, Mohs' Scala:	1.9	Triois Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, ib/inch ^z		1000-lb General Purpose Bamb vs Concrete:
Density, gm/cc		
Compressive Strength; ib/inch ²		Trials
		Unaffected
Vapar Pressure:		Low Order
*C mm Mercury		High Order

1

•*

PETN (Pentaerythritol Tetranitrate)

Downloaded from http://www.everyspec.com

. الاتر

• 1

Fregmentation Test:	Shaped Charge Effectiveness, TNT == 1	00:	
90 mm HE, M71 Projectile, Lat WC-91:	Glass Cones Steel (Cones	
Density, gm/cc	Hole Volume		
Charge Wt, Ib	Hole Deptri		
Total No. of Fragments;	Caler:		
For TNT		White	
For Subject HE			
3 inch HE, M42A1 Projectile, Lot KG-5;	Principal Uses: Class A - Detonating fuse an	d boosters	
Density, gm/cc	Class R - Priming composition		
Charge Wt, Ib			
Total No. of Fragments:	Method of Loading:		
For TNT			
For Subject HE			
	Loading Density: gm/cc psi x 3 5 10 20 5	10 ⁻³ 10 40	
Fragment Velocity: ft/sec	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1.74	
At 9 ft At 25½ ft	Storage:		
Density, gm/cc		••	
	Method	Wet	
Blest (Relative to TNT):	Hozard Class (Quantity-Distance)	Class 9	
Air:	Compatibility Group	Group M (wet)	
Peak Pressure			
Impulse	Exudation	None	
Energy	·····		
Air, Confined:	Bulk Modulus at Room	(i)	
Impulse	Temperature (25°-30°C):		
	$Dynes/cm^2 \times 10^{-10}$	4.60	
Under Water: Peak Pressure	Density, gu/cc	1.77	
Impulse			
Energy			
Underground:			
Peak Pressure			
Impulse			
Energy			
	1		

and the second se

Ţ.

THE REAL PROPERTY OF

· • •.``

AMCP 706-177

0.121

50

PETN (Pentaerythritol Tetranitrate)

Compatibility with Metals:

「「「「「「「「「「」」」」」

ない。

Dry: Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, stainless steel, mild steel, mild steel coated with scid-proof black paint and mild steel plated with copper, cadmium, nickel or zinc are not affected.

Wet: Stainless steel is unaffected and aluminum only vary slightly so after prolonged storage. Copper, brass, magnesium, magnesium-aluminum alloy, mild steel, mild steel coated with acid-proof black paint and mild steel plated with cadmium, copper, nickel or zinc are affected.

Sensitivity of PETN to electrostatic discharge, joules; Through 100 Mesh: (g)

*

Unconfined	0.06
Confined	0.21

Solubility, grams of PEIN per 100 grams (\$) of: (h)

Trichlorethylene or Alcohol		Ac	Acetone		nzene	Toluene	
°c	Z	<u>°c</u>	Ł	°c	ž	°c	ž
0 20 40 60	0.070 0.195 0.415 1.205	0 02 03 00 00	14.37 24.95 30.56 42.68	0 20 40 80	0.150 0.450 1.160 7.900	0 20 40 60 80 100 112	0.150 0.430 0.620 2.490 5.850 15.920 30.900

Methyl acetate		Ether		acetute		Cl.lorobenzene	
<u>°c</u>	s.	°C	z	°c	<u>e</u> z	°C	ž
20 30 40 50	13 17 22 31	0 20 34•7	0.200 0.340 0.450	20 30 40 50 60	1.5 4.1 7.6 11.2 14.2	20 30 40 50	0.35 2.8 6.1 9.2 12.2
<u>Ethylenedichloride</u>		Metha	nol	Tetraci	loroethane	Car tetrac	bon hloride
<u>°c</u>	<u>5</u>	ಿಂ	ž	<u>°C</u>	ž	°c	é
10 30 50	0.9 1.5 2.6	20 40 60	0.46 1.15 2.6	20 30 40	0.18 0.27 0.40	20 30 40	0.096 0.103 0.118

50

0.58

PERN (Pentaerythritol Tetranitrate)

St 8.40

161

125

Isopropanol		Isobu	Isobutanol		Chloroform		TNT	
°c	ž	<u>°c</u>	ź	°c	٤	<u>°c</u>	ź	
15	0.02	20	0.27	20	0.09	80	19.3	
20	0.04	30	0.31		•	85	25.0	
30	0.15	40	0.39			90	32.1	
40	0.36	50	0.52			95		
50	0.46	•				100	39.5 48.6	
						105	58.2	
	Eutetic of the	evatem PET	N-TNT is abo	out 13% PET	IN .	110	70.0	
	and 87% TNT at	76°C.	°c.				87.8	
						120	115	

Downloaded from http://www.everyspec.com

Proparation:

(Nitroglycerin and Nitroglycerin Explosives, Nacum)

 $8HCHO + CH_3CHO + CB(OH)_2 \longrightarrow 2C(CH_2OH)_1 + CB(HCOO)_2 C(CH_2OH)_1 + 4HNO_3 \longrightarrow C(CH_2OHO_2)_1 + 4H_2O$

1. In this preparation 1940 gm of iormaldehyde and 600 gm of acetaldehyde are dissolved in 90 liters of water containing 1600 gm suspended slaked lime. The reaction is complete in about 3 weeks if agitated several times a day. The solution is filtered, the calcium formate precipitated with oxalic acid, filtered off, and the water removed under reduced pressure. On cooling the mother liquor about 1200 gm crude pentaery-thritol, melting point $235^{\circ}-240^{\circ}C$ are obtained. Purification is readily effected by stirring with a little alcohol, filtering and recrystallization from water.

2. To 400 cc of strong white nitric acid, are added 100 gm of pentacrythritol (through 50 mesh), at 5° C or below, under good agitation. After addition is complete stirring, at 5° C, is continued for 15 minutes. The mixture is drowned in 3 liters of ice-water, filtered, the product washed free of acid with water and then digested 1 hour in 1 liter of hot 0.5% sodium carbonate solution. The product is filtered, and recrystallized from acetone.

Origin:

PETH was known as an explosive in 1894 when it was proposed as an addition to smokeless powders to raise their flammability and case of combustion (Gorman Patent <u>81,664</u> (1894). Modern methods of preparation are described by Vignon and Gerin (Compt rend <u>133</u>, 590 (1901) ant German Patent 265,025 (1912) and A. Stettbacher (Z ges Schiess - Sprengstoffw <u>11</u>, 122, 182 (1916) and <u>24</u>, 259 (1929)). PETN was not used on a practical basis until after World War I.

Destruction by Chemical Decomposition:

PETM is decomposed by dissolving in 8 times its weight of technical grade acetone and burning the solution in a shallow container. If preferred, warm the acetone solution to 40° C, stir and add 7 parts by weight, to each part of PETM, of a solution of 1 part sodium sulfide $(Na_2S\cdot9H_2C)$ in 2 parts water heated to 80°C. The aqueous solution should be added at such a rate that the acetone solution does not boil. After mixing is complete continue stirring for one-half hour.

PEIN (Pentaerythritol Tetranitrate)

Downloaded from http://www.everyspec.com

AMCP 706-177

References:57

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneoue</u> <u>Sensitivity Tests; Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Ph. Naoum, Z ges Chiess - Sprengstoffy, pp. 181, 229, 267 (27 June 1932).

(c) D. P. MacDougall, Methods of Physical festing, OSRD Report No. 803, 11 August 1942.

(d) International Critical Tables.

(e) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utsh, <u>Ind & Eng Chem</u>, (June 1956), pp. 1090-1095.

(f) A. J. B. Robertson, "The Thermal Decomposition of Pentaerythritol Tetranitrate, Nitroglycerin, Ethylenediamine Dinitrate and Ammonium Nitrate," J Chem Ind <u>67</u>, 221 (1948).

(g) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U.S. Lept of Int, Bureau of Mines, RI 3852, 1946.

(h) Various sources in the open literature.

(1) W. S. Cramer, <u>Bulk Compressibility Inte on Several High Explosives</u>, NAVORD Report No. 4380, 15 September 1956.

(j) Also see the following Picatinny Arsenal Technical Reports on PEIN:

<u>o</u>	<u>1</u>	<u>2</u>	3	<u>4</u>	2	<u>6</u>	I	<u>8</u>	2
750 1170 1260 1390 1320 1360 1380 1390 1430 1450 1570	1041 1311 1381 1451 1561 1611 1651	772 922 1182 1292 1212 1262 1342 1352 1352 1372 1452	843 863 1063 1133 1253 1343 1493 1533	904 1274 1284 1414	1305 1325 1445 1705 1885 2125	1246 1276 1316 1376 1446 1456 1466 1556 1796	407 527 857 1247 1517 1617 1737 1797	318 839 1238 1318 1388 1568 1598 1838 2178	1379 1429 1489 1559 2179

⁵⁷See footnote 1, page 10.

Picramide (TNA) (2,4,6-Trinitroaniline)

Downloaded from http://www.every

Composition:	Molecular Weighe: $(C_6H_1N_4O_6)$	228
% NH2	Oxygon Balance,	1
H 1.8 0 ₂ N 1 NO ₂	CO2 %	-56 -14
$H = 1.8 \qquad O_2 N \qquad NO_2$ N 24.5	Density: gm/cc Crystal	1.76
0 42.2 NO ₂	Melting Point: "C	189 to 190
C/H Ratio 0.500	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt:	Beiling Point: "C Decomposes bef	ore boiling
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Ratractive Index, nº	point
Picatinny Arsenal Apparatus, in. 23		
Sample Wt, rag 20	nä	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n ^D	
Friction Pendulum Test:	Vocuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Bullet Impact Test: Trigis	100°C	0.9
96	120*C	
та та та та та та та та та та та та та т	135*C	
Partials	150°C	
Burned	200 Gran Bomb Sand Tast:	
Unaffected	Sand, gm	48.1
Explosion Temperature: "C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	****
5	Leod Azide	0.30
10	Tetryl	
15 20	Ballissie Morter, % TNT:	100
	Travel Tost, % TNT:	107
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Tout:	
	Method	
100'C Heet Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisonce, % TNT	
	Detenction Rate:	
Flammability Index:	Confinement	None
	Condition	Pressed
Hygroscopicity: %	Charge Diameter, in.	0.5
	Density, gm/cc	1.72
Voletility:	Rate, nieters/second	7300

the second

į.

Picramide (TNA) (2,4,6-Trinitroeniline)

Downloaded from http://www.everyspec.com

AMCP 706-177

Fragmentation Vest:	Shaped Charge Effectiveness, $TNT = 100$ :
90 mm HE, M71 Projectile, Lot WC-91;	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	Celer: Yalloy
For TNT	
For Subject HE	Principal Uses: High temperature heat
3 inch HE, M42A1 Projectile, Lot KC-5:	resistent explosive
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fragments:	Method of Looding: Dress
For TNT	Method of Looding: Press
for Subject HE	
	Leading Density: gm/cc At 50,000 psi 1.72
Fregmont Velocity: ft/sec At 9 ft	At 50,000 psi 1.72
At 25½ ↔	Storage:
Density, gm/cc	Method Dry
liast (Relative to TNT):	Hazard Class (Quantity-Distance) Class
Air:	Compatibility Group Group
Peak Pressure	
Impulse	Exudation None
Energy	
Air, Confixed:	Solubility:
Impulse	Insoluble in water, slightly soluble in
Under Water:	alcohol and ether. Soluble in hot glacial
Peok Pressure	acetic acid, hot ethyl acetate and in benze and acetone.
Impulse	
Energy	Heat of:
Underground:	Combustion, cal/gm (a) 2962
Peak Pressure	Explosion, cal/gm 564 Formation, cal/gm (a) 131
impulse	
Energy	

÷.

-----

### Picramide (TNA) (2,4,6-Trinitroaniline)

41

ownloaded from http://ww

#### Preparation:

Five grams of picryl chloride were dissolved in 180 milliliters of absolute methanol. The solution was then saturated with anhydrous, gaseous ammonia. The time required was approximately  $\mathcal{V}$  minutes. The amino derivative precipitated in 78% yield (3.6 gm) melting at 190°C (literature MP 189°C).

#### Origin:

Picramide (2, 4, 6-trinitrosniline) was first prepared in 1854 by Pisani who treated picryl chloride with ammonium carbonate (CR 39, 853). The use of picramide, as a brisant explosive, was patended by Chemische Pabrik Grieshein 26 May 1894 (German Patent 84,628). Meisenheimer and Patzig reacted trinitrobinzene with hydroxylamine in cold alcohol solution to obtain picramide (Ber 39, 2534 (1906)). Witt and Witte obtained the compound by nitrating a solution of aniline in glacial acetic acid or concentrated  $H_2SO_4$  at about 5°C with concentrated RNO₃ (Ber 41, 3091 (1908)). Holleman gives details of the prep ation from p-nitrosniline and from acctanilide (Rec trav chim 49, 112 (1930)).

# Reference:58

(a) William H. Rinkenbach, "The Neets of Combustion and Formation of Aromatic Nitro Compounds," J An Chem Soc <u>52</u>, 116 (1930).

58See footnote 1, page 10.

## Picratol, 52/48

治療の問題の意思を

i.

ų,

## AMCP 706-177

Somposition: %		Molecular Weight:	236
zo Explosive D 52		Oxygen Belance:	
. ,		CO, % CO %	-63 -19
TNT 48			
		Density: gm/cc Caat	1.62
		Maiting Point: °C	
C/H Ratio		Freezing Point: *C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: "C	
Sample Wt 20 mg		Refrective Index, NW	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	17 19	, un	
www.riprite.trtc, ring		n	
Friction Pendulum Teut:		Vecuum Stability Test:	·····
Steel Shoe	Unsifected	cc/40 Hrs, -:	
Fiber Shoe	Unaffected	90°C	
Rifly Builot Impact Test: Trials		- 100.0	0.37
•		120°C	0.68
Explosions 0		135°C	
Partials 0		150*C	0.7
Burned 40		200 Grant Hemb Send Test:	
Unaffected 60		Sand, gm	45.0
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 9.1 (no cap used) 456		Minimum Detonating Charge, gm	
1 354		Mercury Fulminate	
5 Decomposes 285		Leod Azide	0.20
10 265		Tetryl	0.05
15 260		Ballinia Adarbas Di Thitte ( )	
20 255		Bellistic Menter, % TNT: (a)	100
75°C Infurnational Heat Test:		Treusl Test, % TNT:	م مربقه میشوند. م
% Loss in 48 Hrs	0.0	Plote Dent Test: (b) Method	a
		Condition	, B Cast
100°C Heat Test:		Contined	No
% Loss, 1st 48 Hrs	0.0		ло 1.63
% Loss, 2nd 48 Hrs	0-05	Density, gr./cc	1.03
Explosion in 100 Hrs	None	Brisonce, % TNT	100
Slemmebillty Index:		- Detoschen Rete: (b) Confinement	None
		- Condition	Cast
Hygroscopicity: % 30°C, 90% RH	0.02	Charge Diameter, In.	1.0
	·		1.63
Veletility:		Density, gm/cc	
		Rate, meters/second	6976

Picratol, 52/48

Downloaded from http://www.everyspec.com

Frugmantation Yest:		Shaped Charge Effectiveness, THT = 10	101
90 mm HE, M71 Frojectile, Let WC-	91:	Gluss Cones Store C	ones
Density, gm/cc	1.61	Hole Volume	
Charge Wt, Ib	2.075	Hole Depth	
Total No. of Fragments:		Celer: Bro	
For TNT	703	Bro	wn-yellow
For Subject HE	769	Principal Uses: AP, SAP projectile	and bombs
3 inch IIX, MAZAT Projectile, Lot KC	-5:		
Dansity, gm/cc	1.61		
Charge Wt, ib	0.850		
Yotel No. of Fragments:			
For TNT	514	Method of Losding:	Cast
For Subject HE	487		
<del> </del>		Louding Density: gm/cc	1.62
Fregmont Velocity: 11/sec		•	
At 9 ft At 25½ ft	2590 2320	Storage:	
Density, gm/cc	1.62		
		Method	Dary
Slast (Relative to TNT);	······	Hazard Closs (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure	100		
Impulse	100	Exudotion	None at 65°C
Energy		Duran and he are a	
Air, Confinad:		Preparation:	ĺ
Inpulse		Picretol is made by heating TN	
		90°C in a steam-jacketed melt ke sive D is added slowly, without	
Under Water:		and the mixture stirred until un	iform in com-
Pesk Pressure		position. This slurry is cooled	
Impulse		and poured into the appropriate component.	ammunition
Energy			
Underground:		<u>Origin:</u>	
Peak Pressure		Developed during World War II	as an insensi-
impulse		tive, melt-loaded AP bomb and pr	
Energy		Booster Sensitivity Test:	(c)
Bomb Drop Test:		Condition	Cest
T7, 2000-1b Semi-Armor-Piero	of ng	Tetryl, gm Wax, in. for 50% Detonation	100 1.00
Bomb vs Concrete:	v = + 18	Density, gn/cc	1.63
Max Safe Drop, ft 10,00	00-12,000		-

### Picratol, 52/48

## AMCP 706-177

### References: 59

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part III - Miscellanzous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideratic</u> of RDX/Wax Mixtures as a Substitute for <u>Tetryl in Boosters</u>, NOL Memo 10,303, 15 June 1949.

(d) R. W. Drske, Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells, OSRD Report No. 5622, 2 January 1946.

(e) Also see the following Picatinny Arsenal Technical Reports on Picratol:

<u>o</u>	2	6	ĩ	<u>8</u>	2
1470	1885	1466 . 1796 1956	1737 1797	1838	1729

٤.

⁵⁹See footnote 1, page 10.

「「「「「「「」」」」

のないのである。

Picric Acid

Downloaded from http://www.everyspec.com

ſ

Composition:	1	Molecular Weight: (C ₆ H	3 ^N 3 ^O 7)	229
он с 31.5		Oxygen Balance: CO ₂ %		-45
H 1.3 02N	- NO2	CO %		-3-5
N 18.3	Sec. 1	Density: gm/cc	Crystal	1.76
48.9	ı	Melting Point: *C		122
C/H Ratio 0.656		Freezing Point: "C		
Impact Sensitivity, 2 Kg We:	85	Boiling Point: *C		
Bureau of Mines Apparatus, cm Sample Wt 20 mg	05	Refrective Index, no		
Picatinny Arsenal Apparatus, in.	13	n <mark>0</mark>		
Sample Wt, mg	17	n ₂₀		
Friction Pendulum Test:	<u> </u>	Vacuum Stability Test:		
Steel Shoe		cc/40 Hrs, at		
Fiber Shoe		90°C		
Rifle Bullet Impact Test: Tria!s		- 100°C		0.2
-		120°C		0.5
Skeletions 96		135°C		
Partials 60		150°C	•	
Burned 40		200 Grem Bemb Send Test	1	
Unaffected 0		Sand, gm		48.5
Explosion Temperature: *C		Sonsitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating C	horge, gm	
) 5 Decomposes 320		Mercury Fulminate		0.26*
10		Leod Azide		0.24*
15		#Alternative initiati	ng charges.	
20		Ballistic Mortur, % TNT:	(a)	112
		Trauzi Test, % TNT:	(b)	101
75°C International Heat Test: % Loss in 48 Hrs	0.05	Plate Dart Test:	(c)	
	0.09	Method		A
100 C Heat Tast:		Condition		Pressed
% Loss, 1st 48 Hrs	0.03	Confined		No
% Loss, 2nd 48 Hrs	0.09	Density, gm/cc		1.50
Explosion in 100 Hrs	None	Brisonce, % TNT		107
lemmebility Index:		- Detenation Rate:	(d)	
		Confinement		confined
Hygroscopicity: % 30°C, 90% RH	0.04	Condition	Pressed	Cast
	<u> </u>	Charge Diameter, in.	1.0	1.25
Volatility:		Density, gm/cc	1.64	1.71
• ·		Rote, meters/second	5270	7350

288

....

## Picric Acid

## AMCP 706-177

;

Booster Sensitivity Test:	( Pressed	c) Cast	Decomposition Equation:
Condition			Oxygen, atoms/sec (Z/sec)
Tetryl, gm	10	5	Heat, kilocalorie/mole
Wax, in. for 50% Detanation			(Sit, kcal/mol)
Wax, griv	2	0	Temperature Runge, *C
Density, gm/cc	1.6	1.7	Phase
Heat of:			Armar Plate Impact Test:
Combustion, cal/gm		672	
Explosion, cal/gm		000	60 mm Morter Projectile:
Gas Volume, cc/gm		675	50% Inert, Velocity, ft/sec
Formation, cal/gm 👘 🦿		248	Aluminura Fineness
Fusion, cal/gm (e)		0.4	
Temperature, °C		122	500-16 General Purpose Bombs:
Sp.cifie Heet: cai/gm/*C (e) 0 0			Plate Thickness, inches
0		.235	
30 60		.258	1
		.310	114
120		• 337	114
			134
Burning Rate:			
cm/sec ·			Somb Drop Test:
Thermal Conductivity: (1) col/sec/cm/°C, Density, gu/cc	6.24 x	: 10 ⁻⁴ 406	77, 2000-lb Somi-Armor-Piercing Somb v: Coustate:
			Max Safe Drop, ft
Coofficient of Expansion: Linear, %/*C			500-là Ganeral Purpose Bomb ve Concrete:
Volume, %/°C			Height, ft
	سري فكل مرداد فلنهج		Tricia
Hardness, Mohs' Scale:	2	.1	Unaffected
Young's Modulze:			Low Order
E', dynes/cm²			High Order _
E, Ib/inch ^a			1000-ib General Purpose, Bomb ve Concrete:
Density, gm/cc			
			Height, ft
Compressive Strength; Ib/inch ^a			Trials
·			Unoffected
Vapor Pressura;			Low Order
*C mm Mercu	ry .		High Order
195 2			
255 50			

いた。 読録 一記 たい

の一下の施工し

The Case of

「ため」という。「ない」というない。「ない」というない。

289

!

. . . .

1. 1. 1

語語以外

----

## Pteric Acid

Downloaded from http://www.everyspec.com

..

• •··· ··

11. A

ł

Fragmantation Test:	Skeped Charge Eff. ctiveness, TNT $\simeq$ 100:				
90 mm HE, M71 Projectile, Let WC-91:	Gioss Cones Stee	i Cones			
Density, gm/cc	Hole Volume				
Charge Wt, Ib	Hole Depth				
Total No. of Fragmants:	Coier:	Yellow			
For TNT					
For Subject HE	Principel Uses: Formerly projec				
3 inch HE, M42A'I Projectile, Let KC-5:	now explosive admixture; an manufacture of Explosive D				
Density, gm/cc					
Charge Wt, Ib	3				
Total No. of Fragments:	Method of Loading:	Pressed			
For TNT					
For Subject HE					
		$1 \times 10^3$			
Fregment Valocity: It/sec	3 5 10 12 1.40 1.50 1.57 1.59	15 20 1.61 1.64			
At 9 ft		1.01 1.04			
At 251/2 ft	Storages				
Density, gm/cc	Method	Dry			
Blast (Relative to THT):	Hazard Class (Quantity-Distance)	Class 9			
Alr:	Compatibility Group	Group I			
Peak Pressure					
Impulse	Exudation	None			
Energy					
Air, Confined: Impulse					
Under Water: Poak Pressure					
impulse					
Energy					
Underground: Peak Pressura					
Impulse					
Energy					
	j.				
	1				

## Picrie Acid

## AMCP 706-177

Solubility: grams per 100 grams (%) of: (g)

Wat	ter	Al	coho	Ber	izene	To	luene	Eth	er
°c	ź	°c	k	°c	ž	°C	¥	°c	ž
0 22 20 20 20 20 20 20	0.85 1.17 1.88 2.98 4.53 7.1	င် <b>လ</b> ၀	4.5 6.9 12.0	လင်လ စင်ဖ	~2 9.6 27.5 59	20 60	~13 ~30	20 34•7	~3 3.96

Chlore	oform	Ethyl (	acetate		bon chloride	. <u>Py</u> z	idine .	Acet	tone
°c	é	°c	Ł	°c	ź	<u>°c</u>	ž	<u>°c</u>	乏
20 60	~2 ~5	20 30 40 50	42 58 58 69	20 60	~0.07 ~0.4	10 30 50	24 37.5 58	20 30 40 50	125 137 164 208
Me	Methanol Isopropyl alcohol		hol	Propenol-1		Carbon disulfide			
<u>•</u> .	· £	°c		٤	<u>°C</u>	ź	°c	z	
0 20 40 50	14 19 31 41	10 30 50		6.4 9.8 5.5	0 20 29 50	2.4 3.3 5.4 7.4	20 30	0.12 0.10	

Preparation: (Summary Paport of NDRC, Div 8, Vol 1)

с6н6 + нв(1ю3)2	с _{6^н5^н5^н8^{но}3} + ело3	(1)
С6H5HgN03 * N2O4	с ₆₄₅ но + не(no3)2	(2)
C6H5NO + 2NO	с _{б^н5^N2^{NO}3}	(34)
с6H5N2N03 + H20	c ₆ H ₅ OH + N ₂ + HNO ₃	(30)
с6450к + ню3 <u>No</u> 5	O ⁵ NC ⁴ ^f OH + H ⁵ O	(3e)
C6H5NO HNO3 cxidation and rearrangement	o2nc6H ^t on	(4)
0 ⁵ ис ⁶ он + нио ³ <u>ио⁵</u>	(02N)5сензон + н ⁵ 0	(5)
(0 ² N) ⁵ С ⁶ H ³ OH + НЮ ³ <u>№</u> ⁵	(02N)3C6H2OH + H2O	(6)

1

1

P)

## Picric Acid

Downloaded from http://www.everyspec.com

The two variables of greatest importance in this process are nitric acid concentration and the effective concentration of benzene (i.e., benzene dissolved in the oxynitration solution). The optimal concentration of nitric acid is in the range 10.4 to 11.6 molar (or the equivalent of 50% to 55% by weight for pure acid). The acid concentration greatly influences the over all rate of reaction, below 10.4 molar the rate falls off rapidly, while above 10.4 molar the rates of both the oxynitration reaction and various side reactions, such as direct nitration, increase rapidly. The range mentioned above seems, in general, to give the lowest proportion of neutral nitro-compounds to nitro-phenols with, at the same time, an adequate rate of oxynitratic. The oxynitration solution must be fortified frequently, or, preferably, continuously with ni ric acid. Strengths of nitric acid between 95% and 98% are best, due to the smaller increase in reaction volume than if weaker acid were used. The use of absolute nitric acid requires that its direct contact with liquid benzene be avoided.

The effective concentration of benzene is probably the most critical variable affecting the proportion of neutral nitro-compounds to nitrophenols and amounts of colored by-products. Saturation of the exynitration solution with benzene is undesirable and thus in batch processes slow benzene addition is preferable to the addition of it in one portion; in continuous processes where an excess of benzene is used the rate of agitation is important.

The concentration of mercuric nitrate catalyst does not appear to be a critical factor over a fairly wide range. Concentrations of 0.37 to 0.5 mole of mercuric nitrate per liter of oxynitration solution have been found to give satisfactory results in most cases.

A continuous process, known us the continuous solution process, works on the following cycle. The oxynitration solution is saturated with benzene by vigorous agitation with excess benzene at room temperature, the saturated solution is separated from excess benzene and circulated through a heated coil; it is then cooled to room temperature and agitated again, with benzene, which extracts the organic product and resaturates the oxynitration solution. In evaluating this process, the rate of formation of dinitrophenol per liter of reacting solution in the coil is determined; 70 gm of dinitrophenol per liter per hour is representative perforance. The dinitrophenol is, of course, nitrated to picric acid.

#### Origin:

Picric Acid was first prepared in 1771 by Woulff who found the reaction of nitric acid and indigo yielded a dya. Housmann isolated Picric Acid in 1778 and studied it further (Journal de physique 32, 165 (1788)). The preparation was studied by many chemists but in 1841 Laurent established its identity (Ann chim phys HII, 3, 221 (1841)). It was used as a yellow dya until Turpin, in 1885, proposed Picric Acid as a bursting charge for high explosive shell (French Patent 167,512). The British adopted Picric Acid as a military explosive in 1882 under the name of lyddite and other nations soon began to use it as the first meltloaded high explosive. Mixtures of other explosives and Picric Acid were developed until it was gradually replaced by TNT about 1900. Today Picric Acid is used for the manufacture of Explosive D.

#### Destruction by Chemical Decomposition:

Pieric Acid is decomposed by dissolving in 25 times its weight of a solution made from 1 part sodium hydroxide and 21 parts sodium sulfide ( $Na_2S'9H_2O$ ) in 200 parts of water. Some hydrogen sulfide and ammonia are evolved.

#### Picrie Acid

### AMCP 706-177

#### References: 60

「「読み」「読み」

(a) L. C. Smith and E. G. Eyster, Phyrical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) Ph. Naoum, Z ges Schiess-Sprengstoffw, pp. 181, 229, 267 (27 June 1932).

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M. D. Hurritz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(e) International Critical Tables.

(f) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity Explosive Materials, AC Report No. 2861, First Report, August 1942.

(g) Values taken from various sources in the open literature.

(h) Also see the following Picatinny Arsenal Technical Reports on Picyic Acid:

<u>1</u>	2	3	<u>4</u>	2	<u>6</u>	ĩ	<u>8</u>	2
1651	132 582 1172 1352 1372	1383	694 764 874	65 425 1585	266 556 926 976 986 1446	1347 1557	1118	1549

⁶⁰See footnots 1, page 10.

A STATE AND A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF

PIPE

Composition:		Molecular Weight:		310
20		Oxygen Balance:		
PETN	81	CO ₂ %		-74
Gulf Crown E Oil	19	CO %		- 31
		Density: gm/cc Hand	tamped	1.35
		Melting Point: "C		
C/H Ratio		Freezing Point: *C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Beiling Point: "C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	11	Refractive Index, nin		
Sample Wt, mg	27	n <mark>n</mark>		
		n		
Friction Pendulum Test:	ffected	Vocuum Stability Test:		
		cc/40 Hrs, at 90°C		
Fiber Shoe Una:	ffected	- 100°C		0.48
Rifie Bullet Import Test: Trials		120°C 16 ho		11+
%		135°C		
Explosions 0		150°C		
Portials O		150°C		
Burned O		200 Grein Beinb Sand Test	:	
Unaffected 1.00		Sand, gm		41.6
Explosion Temperature: *C		Sensitivity to Initiation:		
Seconds, 0.1 (no cop used)		Minimum Detonating C	harge, gm	
1 5 Decomposes*		Mercury Fulminate		0.20*
10		Leod Azide		0.20*
15		#Alternative initiati	ng charge	t# ·
20		Ballistic Marter, % TMT:		
*No value obtained.		Trauzi Test, % TNT:		
75°C Internetional Heat Test: % Loss in 48 Hrs		Plate Dant Test:	(a)	
		Method		В
100°C Hest Tast:		Condition		Hand tamped
% Loss, 1st 48 Hrs	0.17	Confined		No
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc		1.33
Explosion in 100 Hrs	None	Brisonce, % TNT		76
Fienmebility Index:		Detenation Rate:		<b>N</b>
Tremmerinty intest		Confinement		None
Hyprocenticity: % 30°C, 90% RH	0.02	Condition		Hand tamped
	0.02	Charge Diameter, in.		1.0
'dietility:		Density, gm/cc		1.37
* ********* * *		Rate, meters/second		7075

調整

PIPE AMCP 706-177 Sheped Charge Effectiveness, TNT = 100: Fregmentation Tet/: Glazz Cones Steel Cones 90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc 1.33 Hole Volume 1.723 Hole Depth Charge Wt, Ib **Total No. of Fragments:** Color: 703 For TNT 519 For Subject HE Principal Uses: Plastic demolition explosive 3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc 1.39 Charge Wt, Ib 0.735 . Total No. of Fragmonts: . Method of Looding: Hand tamped 514 For TNT 428 For Subject HE Loading Density: gm/cc 1.35 Frequent Velocity: ft/sec At 9 ft At 251/2 ft Storages Density, gm/cc Method Dry Class 9 Blast (Relative to TNT): Hazard wines (Quantity-Distance) **Competibility Group** G: Oup I Airs Peak Pressure Exudation Impulse Energy Origin: Air, Confined: Impulse PIPE, a mechanical mixture of PETN and Gulf Crown E Oil, was developed in the United States during World War II. Under Water: Peak Pressure References: 61 Impulse (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III-Miscellaneous Sensitivity Tests; Performance Tests, OSRD Re-port No. 5746, 27 December 1945. Energy Underground: Peak Pressure (b) S. Livingston, Properties of Explosives RIPE, PIPE and PEP-3, Picstinny Argenal Techni-cel Report 1517, 24 April 1945. Impulse Energy Preparation: PIPE is manufactured by simple mechanical mixing of FETN in oil.

d from http://www.everyspec.com

filsee footnote 1, page 10.

Downloa

......

295

1 King

AMCP 766-177

T. N

Plumbatol

1.1

Composition:	Molecular Weight:	291
% Lead Nitrate 70 INT 30	Oxygen Belance: CO ₂ % CO %	-5.4 +9.3
لى 11	Density: gm/cc	
	Maiting Point: "C	
C/H Ratio	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 13 Sample Wt, mg 22	Refrective Index, ng ng ng	
Friction Pundulum Test:	Vacuum Stability Test:	·····
Steel Shoe	cc/40 Hrs, at 90°C	
Fiber Shoe	94°C 163°C	
Rifis Sullet Import Test: Trials	120°C	
% Explosions	135°C	
Partials	150°C	
Burned	200 Gram Bamb Sand Test:	
Unoffected	Sond, gm	32.4
Explosion Temperature: *C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonsting Charge, gm	
1	Mercury Fulminate	
5 Decomposes 230 10	Lead Azide	0.20
15	Tetryi	0.10
20	Balliotic Morter, % TNT:	
	Trouzi Test, % TNT:	
75°C International Host Test: % Loss in 48 Hrs	Plate Dont Test: Method	
100°C Heet Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisonce, % TNT	
Fismmability Index:	Detensition Rate: (b) Confinement Condition	
Hygroscopicity: %	Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	2.89 4850
ويرجوه والمربوع والمربوع والمربوع فلنست والمربوع والمتعاد والمتحاد والمتحاد والمراجع المربع والمراجع والمراجع والمراجع والمراجع		

296

and the second second second

.

7.1

;

in the second

### Plumbatol

## AMCP 706-177

**F** × 19

Fregmentation Test:	Shaped Charge Effectiveness, TNT == 100:				
90 mm HE, M71 Projectile, Lot WG-91: Density, gm/cc Charge Wt, lb	Gi Hole Volume Hole Depth	lass Cones 11 ¹ 4 103	Steel Cones	(=)	
Total No. of Fragments: For TNT For Subject HE	Color:	· <u>·</u> ··································	Light j	rellow	
3 inch ME, M42A1 Projectile, Let KC-3: Density, gm/cc Charge Wt, Ib	Principal Uses:				
Total No. of Fragments: For TNT	Mathed of Loading	,: ]:		Cast	
For Subject HE Fregment Velecity: ft/sec	Looding Density: g	m/cc			
At 9 ft At 25½ ft	Sterage:		<u> </u>	<u></u>	
Density, gm/cc	Mathod			Dry	
Blast (Reletive to TNT):	Hazard Class (Q	uantity-Dist	ance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility G	roup		Group I	
Air, Confined: Impulse	Origin: An explosive and 30% TNT has usee of "Marcar:	been used			
Under Weter: Peak Pressure	References: 62				
Impulse Energy	(a) Eastern gation of Cavity Cavity Effect w	y Effect.	Sec III. Ve	ristion of	
Underground: Peak Pressure	Contract W-672-0 (b) Thorpet	ORD-5723.			
Impulse Energy	istry, Fourth Ed and Company, Lou p. 464.	dition, Vo	1 IV, Long	mans, Green	
Preparation:					
Plumbetol is menufactured by simple mechanical mixing of lead nitrate in molten TNT.					

62See footnote . page 10.

297

and the second second second second second second second second second second second second second second second

## PLX (Liquid)

Composition:			Molecular Weight:	<u>100</u> 61	<u>95/5</u> 61
% Nitromethane	100	* 95	Oxygen Bulence:	¥:•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Euhylenediamine		5	CO, %	-39	-48
*The m xture 95/5 Nits	omethene/	F	CO %	-13	-21
is designated PLX (fo sive). See note unde	or Picatini	y Liquid Explo-	Density: gm/cc	1.14	1.12
	<u></u>		Melting Point: *C	-29	
C/H Ratio			Freezing Point: "C	······	
Impact Sensitivity, 2 %: W Bureau of Mines Apr ara		<u>100 95/5</u> 100+ 100+	Boiling Point: "C	101	
Sample Wt 20 mg			Refractive Index, nm		
<ul> <li>Picatinny Arsenal A, par Sumple Wt, mg</li> </ul>	atus, in.	20 20	់ កង្ហ		
admpne vi t, mg			nB		
Friction Periculum Texts					
Steel Shoe	U	affected	Vecuum Stability Test: cc/40 Hrs, at		
Fiber Shoe	Ui	mffected	90°C		
			100°C		
Cifie Bullet Impact Trat: 1	0 Trials	5 Triels	120°C		
Exclosions	% 0	Č	135°C		
Portials	o	0	150°C		
Sumed	Ö	0	200 Grem Bemb Send Te	100	95/5
Unaffected	100	100	Sand, gm	8.1	50.6
Ezyletian Temperature:	•℃	<u>ەن</u>	Seasitivity to Initiation:		
Seconds, 0.1	100	22/5	Minimum Detonating	Charge, gm	
1			Mercury Fulminote		
5	430	430	Leod Azide		
10			Tetry		
15			B-11-11-14		
20			Jaliistic Morter, % THJ	·	
73°C International Heat To			Trauxi Test, % 14	127	
% Loss in 48 Hrs			Plote Dent Test: Method		
100°C Heet Test:			Condition		
% Loss, 1st 48 Hrs			Confined		
% Locs, 2nd 48 Hrs			Density, gm/ce		
Explosion in 100 Hrs			Brisonce, % TNT		
Flammability Inéos:			Detonution Rates	1/32"*	1/32"*
			Confinement	Glass	Glass
Hygrescopicity: %			Condition	Liquid	<u>Liquid</u>
			Charge Diameter, in.		0.94
Vələtility:		······································	Density, gm/cc	1.14	1.12
-			*Tube wall thickness	0510	6165

298

## PLX (Liquid)

# AMCP 706-177

Booster Sensitivity Test: <u>N11</u> Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm	romethane.	Decemposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (ΔH, kcai/mol) Temperature Ronge, *C	(d)	<del>Vitromethane</del> 10 ^{14.0} 56.6 330-430
Density, gm/cc		Phase		Gaseous
Heat of: Combustion, cal/gm	(*) 2830	Armer Plate Impact Test:		
Explosia), cal/gm Gas Volume, cc/gm		60 mm Moster Projectile 50% Inert, Velocity, f		
Formation, cal/gm Fusion, cal/gm	-348	Aluminum Fineness		
Vaporization, cal/gm	149	500-lb General Purpese I	fondbe:	
<b>Spelific Heet:</b> cal/gm/°C (b) C = 0.4209 - 0.00076t + 0.00 p for 15°C to 70°C	00061t ²	Plate Thickness, inche	15	
		1		
•		14		
		13 <u>4</u> 175		÷
Surning Rote:				
cm/sec		Sumb Drep Tutt:		
Thermal Conductivity:	······································			
cal/sec/cm/°C		T7, 2029-16 Semi-Armer	-Piercing Bami	ve Centrale:
Co.fficiant of Expension:		Max Safe Drop, ft		
Linear, %/°C		500-16 General Purpose	Bemb vs Cerc	rete:
Volume, %/*C		Height, ft		•
Hardness, Mak " Szale:		Triais Unaffected		
Young's Modulus;		High Order		
E', dynes/cm²				
E, Ib/inch ^a		1000-lb General Purpose	Bemb vs Conc	refe:
Density gm/cc		Martaka An		
Compressive Strongth: Ib/inch*		Height, ft Trials		
		Uncflected		
Vepar Pressure:	(c)	Low Order		
*C mm Mescury		high Order		
70 258 85 444				

# PLX (Liquid)

vnloaded from http://w

90 man HE, M71 Projectila, L.: WC-91: Density, gn/cc       Glass Cones       Steel Cones         Density, gn/cc       Hole Volume       Hole Depth         Tetel Ns. of Fregments: For T.NT       Color:       Light yellow         93 lack HE, M42A1 Projectile, Let KC-5: Density, gn/cc       Principal Uses:       MinefielA clearing         94 mainty, gn/cc       Charge Wt, Ib       Principal Uses:       MinefielA clearing         95 mainty, gn/cc       Charge Wt, Ib       Principal Uses:       MinefielA clearing         95 mainty, gn/cc       Charge Wt, Ib       Pumping       Ecoding Density: gn/cc       1.00       25/5         7 breageneet Valeethy: ft/sec       A: 9 th       A: 1.12       1.12       1.12         7 breageneet Valeethy: ft/sec       A: 9 th       Storege:       Nethod       Components stored separately; mixed only when ready to use         9 biset (Reletive to TNT):       Hostord Class (Quanility-Distonce)       Compatibility Group       Exudation         Air, Coesinest: Impulse       Minimum Propegating       100       95/5         Under Weter: Pack Pressure       Yiscosity, centipoises:       (e)         7 map, 10°C       0.748	Frequentation Test:	Shaped Charge Effectiveness, TNT = 160:				
For T NT       Celer:       Light yellow         3 inch ME, M42A1 Projectile, Let KC-3:       Principal Uses:       Minefiel4 clearing         3 inch ME, M42A1 Projectile, Let KC-3:       Density, gm/cc       Charge Wi, ib         Tetsi Ne, of Fregments;       Method of Leading:       Pumping         For TNT       For Subject HE       Leading Density; gm/cc       100       25/5         Pregmente Velecity: ft/sec       At 25% it       Storege:       Method of Leading:       Pumping         Jack ME       Leading Density: gm/cc       100       25/5       1.14       1.12         Pregmente Velecity: ft/sec       At 25% it       Storege:       Method components stored separately; mixed only when ready to use         Wathod       Components stored separately: mixed only when ready to use       Hazard Class (Quentity-Distore)         Ab:       Peak Pressure       Exudation       Exudation         Under Water:       Viscosity, centipoises:       (*)         Peak Pressure       Yiscosity, centipoises:       (*)         Viscosity, centipoises:       (*)       Temp, 10°C       0.788	Density, gm/cc	Hole Volume				
3 iack HE, M42A1 Projectile, Let KC-5:       Principal Uses: Minefiel? clearing         3 iack HE, M42A1 Projectile, Let KC-5:       Density, gm/cc         Charge Wt, Ib       Method of Looding::         Tetul Ne. of Fregments:       Method of Looding::         For TNT       For Subject HE         Leeding Density: gm/cc       1.00         At 25½ it       Density, gm/cc         Density, gm/cc       Method Components stored separately; mixed only when ready to use         Blact (Existive to TNT):       Heard Class (Quontity-Distance)         Abr       Compositibility Group         Peak Pressure       Exudation         Minimum Propagating       100       95/5         Minimum Propagating       0.05       0.063         Under Water:       Pressure       (e)         Peak Pressure       Thickness, ini       0.5	For T NT	Color: Light yellow				
For Subject HE       Looding Density: gm/cc       100       95/5         Pregnant Velecity: ft/sec       1.14       1.12         At 9 fr       At 25½ it       Storage:         Dansity, gm/cc       Method       Components stored separately; mixed only when ready to use         Blact (Relative to TNT):       Hazard Class (Quantity-Distance)         Air:       Peak Prossure       Exudation         Impulse       Exudation       95/5         Under Water:       Yiscosity, centipoises:       (e)         Under Water:       Temp, 10°C       0.748	3 inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Charge Wt, ib Tetal No. of Fregments:					
Pregment Velocity: fr/sec         At 9 fr         At 25½ ft         Donsity, gm/cc         Method       Components stored separately; mixed only when ready to use         Viscot (Reletive to TNT):         Air:         Peak Pressure         Impulse         Minimum Propagating         100       95/5         Thickness, in:       0.5         Viscosity, centipoises:       (*)         Viscosity, centipoises:       (*)         Temp, 10°C       0.748						
Blast (Roletive to TNT):       Hazard Class (Quantity-Distance)         Air:       Compatibility Group         Peak Pressure       Exudation         Impulse       Exudation         Air, Confined:       Impulse         Impulse       100       95/5         Under Water:       Viscosity, centipoises:       (*)         Peak Pressure       Temp, 10°C       0.748	At 9 ft At 251/2 ft	Statege: Method Components stored separately;				
Impulse     25°C     0.625       Evergy     40°C     0.533       Underground:     Compatibility with Metals:       Peak Pressure     Stainless steel, mild steel and duriron not sffected; corrodes brass.       Enorgy     Enorgy	Ab: Peak Prossure impulse Zinergy Air, Canfined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse	Hazard Class (Quantity-Distance)         Compatibility Group         Exudation         Minimum Propagating       100       95/5         Thickness, in:       0.5       0.063         Viscosity, centipoises:       (*)         Temp, 10°C       0.748         25°C       0.625         40°C       0.533         Compatibility with Metals:       Stainless steel, mild steel and duriron				

### FLX (Liquid)

## AMCP 706-177

#### Origin:

Nitromethane has been known since 1872 (Kolbe, J prakt Chem (2) 5, 427 (1872), but was available only as a laboratory product until it appeared as an industrial chemical in 1940. A number of patents have been issued for nitromethane produced as a by-product of the nitration of propane (U. S. Patent 1,967,667 (1934); British Patent 443,707 (1937); and Canadian Patent 371,007 (1938).

The development of nitromethane liquid explosives was based on information that nitromethane is sensitized to initiation and propagation of detonation by the addition of various amines. This study made at Ploatinny Arsenal in 1945 indicated that mixtures of nitromethane with 5% of ethylenediamine, n-butyl-amine, or morpholine showed considerable promise for application in mine-field clearance (L. H. Eriksen and J. W. Rowen, PATE No. 1565, 17 September 1945).

### References:63

(a) D. E. Holcomb and C. F. Dorsey, "Thermodynamic Properties of Nitroparaffins," Ind Engr Chem <u>41</u>, 2788 (1949).

(b) J. W. Williams, "A Study of the Physical Properties of Nitromethane," J Am Chem Soc 47, 2644 (1925).

(c) L. Medard, "Explosive Properties of Mitromethane," Men poudr 33, 125 (1951).

(d) T. L. Cottrell, T. E. Graham and T. J. ∴vid, "The Thermal Decomposition of Nitromethanes," Transactions of the Farsiay Society <u>47</u>, 584 (1951).

(c) F. Bellinger, H. B. Friedman, W. H. Bauer, J. W. Eastes and W. C. Bull, "Chemical Propellants: Stability of Monomitromethane," Ind Engr Chem <u>h0</u>, 1320 (1948).

(f) Also see the following Picatinny Arsenal Technical Reports on Nitromethane:

<u>o</u>	1	3	٤	<u>6</u>	I	8	2
1660	1681 1831	2113	1565 -	2016	1747	1708	1619

63See footnote 1, page 10.

301

and the state of the second

A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL

Downloaded from http://www.everyspec.com  $\frac{\partial}{\partial}$  .

чт. Т.

1

## AMCP 706-177

1.

## Potassium Dinitrobénzfuroxan (KDNEF)

Composition:	Meleculer Weight: (KC6H4N406)	225
% C 27.3 H 0.4 N 21.2	Oxygon Balence: CO2 % CO %	-60 -18
$\begin{array}{c c} n & 21.2 \\ 0 & 36.3 \\ 0_{2}N \\ \end{array}$	Density: gm/cc	2.21
к 14.8	Melting Point: "C Explodes	210
C/H Ratio 0.416	Freezing Point: *C	
Import Sanshivity, 2 Kg We:	Bailing Paint: *C	
Bureau of Mines Apparatus, cm	Refrective Index, ng ng ng	
Friction Pendulum Test: Steri Shoe Skiplodes Fiber Shoe Explodes	Vacuum Stability Test: cc/40 Hrs, at 90°C	<u></u>
Rifle Bullet Impoct Test: Trials % Explosions Partials	100°C 120°C 135°C 150°C	
Burned Unaffected	200 Grem Bomb Soud Tasts Sand, gri Black powley Suge 9.5	43.6
Explacion Temperature: *C Seconds, 0.1 (no cop used) 1 5 250 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate 0, 30 Load Azide Tetry!	0.20 0.10
15 20	Sallistic Marter, % TNT:	
75°C International Heat Test:	Trausi Test, % TNT:	<u> </u>
% Loss in 48 Hrs	Plote Deat Test: Method	
100°C Heet Test:         0.03           % Loss, 1st 48 Hrs         0.03           % Loss, 2nd 48 Hrs         0.05           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisonce, % TNT	
Flammability Index:	Detenation Ratès Confinement	<u></u>
Hygroscopicity: % 30°C, 75% RH 0.11 30°C, 90% PH 0.27	Condition Charge Diameter, in.	
Veletility:	Density, gm/cc Rate, meters/second	

## Potassium Dinitrobenzfuroxan (KDNBF)

Downloaded from http://www.everyspec.com

## AMCP 706-177

Besster Seasitivity Test. Condition		Decompositiva Equation:
		Oxygen, atoms/sec (Z/sec)
Tetryl, gm		Heat, kilocolorie/mole
Wax, in. for 50% Detanation		(AH, kcal/mol)
Wax, gm		Temperature Range, *C
Density, gm/cc		Phase
Heat of:	2209	Armor Pioto Imaget Test;
Combustion, cal/gm	725	
Explosion, cal/gm	( <i>2</i> ) 604	60 mm Martar Projectile:
Gas Volume, cc/gm	604	50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, col/gm		
		500-16 General Purpose Bombs;
Specific Heet: cal/gm/*C (♭) 		Plate Thickness, inches
~50	0.217	
0	0.217	
25	0.217	11/4
50	0.217	11/2
Burning Rote:		
cm/sec		
		Bomb Drop Test:
Thermal Conductivity:		
col/sec/cm/*C		17, 2000-15 Semi-Armor-Ploreing Bomb vs Concrete:
Coefficient of Expension:		Max Safe Drap, ft
Linear, %/*C		500-16 General Purpose Samb ve Concrete:
Volume, %/*C		Height, ft
		Triais
Hardness, Make' Seale:		Unaffected
Young's Modulus:	يعينينانيه ومنصحيين منطبق ويكوج	Low Order
-		High Order
E', dynes/cm²		
E, Ib/Inch*		1000-lb General Purpase Samb vs Concrete:
Density, gm/cc		
Compressive Strength: Ib/Inch"		
Compreserve prrongrat 107 mcr-		Triots
		Unaffected
Vapar Pressure:		Low Order
*C mm Mercury -		High Order

W BREE MAN

٤

1000

٦

. ...

## AMCP 706-177

j,

## Potassium Minitrobenzfuroxan (KDNBF)

Fregmentation Test:	Shaped Charge Effective.com, TNT = 100:				
90 mm HE, Ju71 Pmj2×3le, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hale Depth				
Total No. of Fragments: For TNT	Celer: Orange to brown				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-3: Density, gm/cc Charge Wt, Ib	Primary explosive				
Total Ne. of Fragments: For TNT	Mothed of Looding: Pressed				
For Subject HE Fregment Velscity: ft/sec At 9 fc At 25½ ft Density, gm/cc	Loading Density: gm/cc         psi x 10 ³ 10         20         30         40         80           1.63         1.77         1.81         1.86         1.98           Storage:         Method         Uut				
Blast (Reletive to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group Group M (wet) Exudation				
Air, Conflaod: Impulse	Solubility in Water, gm/100 gm solvent, at: 30°C 0.245				
Under Weter: Pook Pressure Impulse Energy	Stab Sensitivity:           Density         Firing Point (inch-ounces)           gm/cc         0% 50% 100%           1.63         73         79           1.77         66         75         83				
Underground: Peak Pressure Impulse Energy	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	Activation Energy:       kcal/mol     82.6       Induction Period, sec     0.5-10				

### Potassium Dinitrobenzfuroxan (KDNBF)

Downloaded from http://www.everyspec.com

AMCP 706-177

#### Preparation of Potassium Salt of 4,6-dinitrobenzfuroxan: (a)

Benzfurowan, made by the reaction of ortho-nitroaniline and alkaline sodium hypochlorite, was dissolved in 6 parts of 96% sulfuric acid and nitrated at  $5^{\circ}-20^{\circ}$ C with s 4 to 1 sulfuricnitric acid mixture. The salt was prepared by neutralization of the 4,6-dinitrobenzfurowan with potassium bicsrbonate followed by recrystallization from hot water. The product forms in small golden orange plates which explode at 210°C.

#### Origin:

The potassium salt of 4,6-dinitrobenzfuroxan was first prepared in 1899 by von P. Drost (Ann 307, 56 (1899)).

## References: 64

(a) R. J. Gaughran, J. P. Picard and J. V. R. Kaufman, "Contribution to the Chemistry of Benzfurowan Derlvatives," J Am Chem Soc <u>76</u>, 2233 (1954).

(b) C. Lenchitz, Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Orgunometallic Compounds, PATR No. 2224, November 1955.

(c) Also see the following Picatinny Arsenal Technical Reports on Potassium Dinitrabenzfuroxan:

2	<u>, 3</u>	<u>6</u>		2
2122	2093	2146	•	2179

2,

PTX-1

Downloaded from http://ww

Composition: %		24olecular Weight:	252
RDX	30	Oxygen Balance:	her
Tetryl	50	CO %	-45 - 9
TNT	20	Density: gm/cc	1.68
INI	ζŲ	Melting Point: *C Eutectic	67
C/H Ratic		Freezing Point: *C	
Impact Sansitivity, 2 Kg Wt:		Boiling Point: *C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	44	Refractive Index, nº	
Picatinny Arsenal Apparatus, in. Sample Wt, mg		ពដ្ឋ	
		n 🔓	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at 90°C	
Fiber Shoe	<del></del>	- 100°C	3.0
Rifiz Bullet Impact Test: Trials		120°C	J. C
% Explosions 20		135°C	
Partials 20		150°C	
Burned 0		200 Gram Bamb Sand Yest:	
Unaffected 60	_	Sand, gm	54.8
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.23* 0.22*
10			0.22*
15		*Alternative initiating charges.	
20		Ballistic Morter, % TNT: (a)	132
75°C International Heat Test:		Trauzi Test, % TNT:	
% Loss in 48 Hrs		Plere Dent Test: (b) Method	_
		Condition	B Cast
100°C Heet Test:		Contined	No
% Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs		Dansity, gm/cc	1.68
Explasion in 100 Hrs		Brisance, % TNT	127
		Detenation Ratu:	
Flammability Index:		Confinement	None
Hygroscopicity: %		- Condition	Cust ·
30°C, 90% RH, 15 days	0.00	Charge Diameter, in.	1.0
Veletility:		Density, gm/cc	1.64 7655
		Rote, meters/second	(ככס

306

<u>PTX-1</u>

Fragmentation Test:		Shaped Charge Effectiveness, TNT	=: 100:
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Sto	eel Cones
Density, gm/cc	1.64	Hole Volume	
Charge Wt, Ib	2.180	Hole Depth	
Total No. of Fragments:		Celer:	
For TNT	703		
For Subject HE	999	Principal Uses: Land mines and	demolition
3 inch HE, M42A1 Projectile, Lot KC-5:		charges	
Density, gm/cc	1.63		
Charge Wt, ib	0.864		
Total No. of Fragments:		Method of Looding:	Cast
For TNT	514		
For Subject HE	685	Looding Density: gm/cc	1.68
Fragment Velocity: ft/sec			1.00
At 9 ft	2690		
At 251/2 ft	2460 1.64	Storage:	
Density, gm/cc	1.04	Method	Dry
Slast (Relative to TNT):		Hazard Class (Quantity-Distance	) Class 9
Air:	(d)	Compatibility Croup	Group I
Peak Pressure	<u>111</u>		
Impulse	109	Exudation	Exudes at 65°C
Energy	••		
Air, Confined:		Preparation:	
Impulse		The ternary explosive sys	
Under Water: Peak Pressure	·•	RDX, tetry 1 and TNT is prepar appropriate weight of we'cer- tol (40/60) previously melter	wet RDX to a tetry- d in a steam-
Impulse		jacketed melt kettle. Heating are continued until all the	
Energy		and the mixture is uniform in PTX-1 is also prepared by add	n composition.
Underground: Peak Pressure		Composition B.	
Impulse			
Energy		Dry: Aluminum, mild stee	L not BIIected.
Booster Sensitivity Test: (c)		Wet: Aluminum, mild steel	l not affected.
Condition Press			
Tetryl, gm 100 Wax, in. for 50% Detonation 1.4			
	61 1.62	1	

 $T_{i}$ 

43**72**4)

TAS A DECIMANT

Training and the second second

14

1 1

)

307

and the second

PTX-1

Downloaded from http://www.everyspec.com

#### Origin:

and the second second

The possibility of employing ternary mixtures to obtain explosives having greater power and higher brisance than binary mixtures was suggested by the analysis of Russian 76 mm, armor piercing high explosive rounds (PATR No. 1.11, 17 July 1943). The Russian type ternary explosives, based on the composition and laboratory studies of such mixtures, were indicated to be effective pressed fillers. In conducting a preliminary study of <u>castable</u> ternary explosive mixtures suggested by the Russian fillers, a mixture consisting of <u>RDK/tetryl/TNT</u>, designated PTX-1 was developed which had explosive and physical properties offering considerable advantage for military applications (PATR No. 1360, 27 October 1943; and 1379, 11 January 1944).

A PTX-3 composition, prepared by the addition of Haleite to 40/60 tetrytol, also offered promise but limited to applications where the charge would not be required to withstand storage at 65°C without exudation.

## References: 65

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part <u>III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests; Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo 10,303, 15 June 1949.

(d) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(e) Also see the following Picatinny Arsenal Technical Reports on PTX-1:

<u>0</u>	2	3	6	ĩ	2
1530	1402	1623	1466 1506	1437	1379 1429 1469

⁶⁵See footnote 1, page 10.

PTX-2

1 Beach

;

	Malacular Weisht: 244	243
Composition: %	Molecular Weight: 244	243
RDY 44 - 41	Oxygen Baleace: CO ₂ % -33	- 36
PETN 28 - 26	CO % ⁵ - 3	- 4
INT 28 - 33	Density: gm/cc	1.70
	Molting Points *C Eutecti	c 75
C/H Ratio	Freezing Point: *C	
Impact Sumilifyit /, 2 Kg Wt: Bureau of Minus Apparatus, cm 35	Boiling Paint: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refrective Index, ng ng ng	
Friction Pondulum Test:	Vocuum Stability Test:	
Steel Shoe CruckLes Fibur Shoe	cc/40 Hrs, at 90°C	
Alda Ballat farmer at Walter		2.6
Rifla Bullet Import Teet: Trials	120°C	11+
Explosions 60	135°C	
Partials 0	150°C	
Burned 0	200 Gress Bomb Sund Test:	
Unoffected 40	Sand, gm	\$6.9
Explosion Temperature: *(,	Sanaitivity to Initiations	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5	Mercury Fulminate Load Axide	0.21
10	Leco Azide Tetryi	0.00
15	i urry?	0.00
20	Ballistic Martar, % TNT: (a)	138
75°C Internetional Haat Test:	Treasel Test, % TNT:	
% Loss in 48 Hrs	Plate Dant Test: (b) Method	в
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs	Confined	No
% Loss, 2nd 48 Hrs	Density, gm/cc	1.71
Explosion in 100 Hrs	Brisonce, % TNT	141
Fiemmebility Index:	Detenation Rate: Continement	Vana
		None Cast
		1.0
Hygroscopicity: %		
Hygrescepicity: % 30°C, 90% RH, 15 days 0.00	Charge Diameter, in. — Density, gm/cc	1.70

٩.

309

. . . 1

PTX-2

•

. .

. ..... ... . . . . . . .

## ASCP 706-177

Shaped Charge Effectiveness, TNT == 160: Fregmentation Text: 90 mm HE, M91 Projectilo, Let WC-91: Glass Cones Steel Cones Density, gm/cc 1.68 ~130 Hole Volume 2.226 **Hole Depth** Charge Wt, Ib Total No. of Fragmonts: Color: For TNT 703 For Subject HE 1128 Shaped charges Principal Uses: Fragmentation charges 3 inch HE, M42A1 Projectile, Let KC-5: Density, gan/cc 1.70 0.897 Charge Wi, ib **Total Has of Proymonts:** Method of Louding: Cast 514 For TNT For Subject HE 750 1.70 Londing Density: gm/cc Frequent Valechys ft/soc At 9 ft At 25½ ft 3020 2850 Storege: Density, gm/cc 1.70 Method Dry Hazard Class (Quantity-Distance) Start (Relative to TNT): Class 9 **Compatibility Group** Group I (d) 113 Aler Peak Pressure None at 65°C 113 Exudation Impulse Energy ---Preparation: Air, Confined: Impulse The termary explosive system consisting of RDX, PETN and TNT is prepared by adding the appropriate weight of water-wet RDX to a pen-Under Water: tolite (30/70) previously melted in a steam-Puck Pressure jacketed melt kettle. Heating and stirring Impulse are continued until all the water is evaporated Energy and the mixture is uniform in composition. PTX-2 is also prepared by adding water-wet PETM to RDX Composition B. Underground: Peak, www. Compatibility with Metals: Impulse Dry: Aluminum, mild sidel not affected. Energy Wet: Aluminum not effected. Booster Sensitivity Test: (c) Condition Pressed Cast Tetryl, gm 100 100 Max, in. for 50% Deconation 1.87 2.32 Density, ga/cc 1.61 1.70

## AMCP 706-177

#### Origin:

The possibility of employing ternary mixtures to obtain explosives having greater power and higher brisance than binar, mixtures was suggested by the analysis of Russian 76 mm, ermorpiercing high explosive rounds (PATR No. 1311, 17 July 1943). The Russian type Gernary explosives, based on the composition and laboratory studies of such mixtures, were indicated to be effective pressed fillers. In conducting a preliminary study of castable ternary explosive mixtures suggested by the Russian fillers, a mixture consisting of RDX/PETN/TNT, designated PTX-2 was developed which had explosive and physical properties offering considerable advantage for military applications (PATR No. 1360, 27 October 1943; and 1379, 11 January 1944).

PTX-2

A PTX-4 composition, prepared by the addition of Haleite to 30/70 Pentolite, also offered promise but because of border-line stability in accelerated stability tests, PTX-4 must be proven by long term storage to be acceptable for use in standard ammunition.

### References: 66

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part III - <u>Miscellaneous</u> Sensitivity Tests; <u>Performance Tests</u>, OSRD Report No. 5745, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.

(d) W. R. Tomlinson, Jr., <u>Blast Effects of Rowb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(c) Also see the following Picatinny Arsenal Technical Reports on PTX-2:

2	<u>2</u>	<u>3</u>	4	2	<u>6</u>	<u>8</u>	2
1530	1482	1483 1623	1414	1445	1466	1838	1379 1429 1469

66See footnote 1, page 10.

-22

1

Composition:		Melecular Weight:	217
% SDX	90	Oxygen Belence:	
	-	CO: % CO %	-37 -10
Polyvinyl Acetate	8		1.60
Dibutylphthalate	5		1.00
# 151 D-41-		Softening Point: °C	- 92
C/H Rotio	· · ·	Freezing Point: *C	
mpect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	39	Boiling Point: *C	
Sample Wt 20 ing		Refrective Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	9 13	n <u>B</u>	
		ng	
friction Pondulum Test:		Vecuum Stebility Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: 5Trials *	•		0.45
		120°C	0.88
Supiosions 20		135°C	
Partials 0		150°C	11+
Burned 60		200 Gram Bamb Sand Test:	
		Sand, gm	· 58.5
*100 trials at -46°C - Unaffe	ected		
Explasion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cop used)		Minimum Detonating Charge, gm	
1 330 5 Decomposes 375		Mercury Fulminote	
		Leod Azide	0.22
		Tetryi	
15 20		Ballistic Martur, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
		Method	
IOO"C Heet Test:		Condition	
% Loss, 1st 48 Hrs	0.10	Confined	
% Loss, 2nd 48 Hrs	0.06	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Fismmability Index:		Detenstion Rate: Confinement	Vene
			None
Hygrescepicity: % 30°C, 90% RH	1 0.20	Condition	Cast
		Charge Diameter, in.	1.0
		- Density, gm/cc	1.60

312

ragmentation Test:	Shaped Charge Effectiveness,	înt = 100:
90 mm HE, M71 Projectile, Let WC-91:	Glass Cones	Steel Cones
Density, gm/cc	Nole Volume	
Charge Wt, Ib	Hole Depth	
Total He. of Fregments:	Celera	White
For TNT		*41 V
For Subject HE	Principal Uses:	Demolition charges
3 inch HE, MAZA'I Projectile, Let KC-3:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Londing: Pro	esed or extraded
For TNT		teed of exchanged
For Subject HE	Looding Density: gun/cc	1.60
rugment Velocity: ft/sec		
At 9 ft At 25½ ft	Storege:	ىي (14 شە111 بورىنىيە قەتلەت بىلىپىنىيەن ئىدىنەت ئىرى بەت
Density, gm/cc		
	Method	Iny
liest (Relative to TNT):	Hazard Class (Quantity-Dis	tonco) Class 9
Alm	Compatibility Group	Group I
Peak Pressure	Exudation	None at 71°C
Impulse Energy	EAGODINH	NORE ST II C
chergy	······································	والمؤواة الجريري المتخاصة ومعتمدة فأبا التؤسيلية
Air, Confined:	Plasticity:	
Impulse	-40°C	Cracked
Under Weter:	25 ⁰ C	
Peak Pressure	<b>2</b> 7 0	0.3,
impulse Energy		
Chargy		
Underground: Peak Pressure		
Impulse		
Energy		·

ſ

1

ł

313

がたいというないで、

PVA-4

Downloaded from http://www.everyspec.com

..

· 推查 • 前子

لى فح فيقتها فانا يو الما فاستعد ما هدي

### Preparation:

Explosive PVA-4, a semi-plastic composition of Canadian origin, consists of 90% RDX, 8% polyvinyl acetate and 2% dibutylphthalate (DBP). This formulation was developed by Dr. Sutherland of Shawinigan Chemicals, Ltd. In evaluating various types of polyvinyl acetate commercially available in the United States, a type obtained from Union Carbide and Carbon, under the industrial mamed or designation "AYAT" was the most promising costing for RDX in the proportions RDX/PVA(AYAT)/DBP 92/6/2.

A practical method of preparing this composition was by the addition of a solution of the coating agent to an aqueous RDX slurry. Based on the quality of the product and the pellet densities obtained, a procedure of adding an acetone solution of PVA + DEP to a hot water slurry of RDX, under agitation, was adopted as standard.

#### References: 67

(a) See the following Picatinny Arsenal Technical Reports on PVA-4: 1532 and 1634.

67See footnote 1, page 10.

.

PVN (Polyviny) Nitrate)

# AMCP 706-177

-3

Composition:		Melecular Weight: (C2H3NO3	) _n (89) _n
% C 21		Oxygen Balance: CO2 %	-45
Н 3.4 /н с-си-оно		% OD	- 9
(H ₂ C-CH-ONO N 15.6	2/n	Density: gm/cc	
o 54		Melting Point: "C (Soft P	b) 50
C/H Ratio 0.203		Freezing Point: *C	
Impoct Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	14,864N	Boiling Point: "C Refrective Index, ng	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	4		
Sample W?, mg		n	
		n <mark>e</mark>	
Friction Pendulum Test:		Vocuum Stability Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	6 hours 11+
Rifie Bullet import Yest: Trials			6 hours 11+
96		135°C	
Explosions		150°C	
Partials			
Burned		209 Gram Bomb Sond Test:	<b>)</b> – –
Unoffected		Sand, gm	49.9
Explation Temperature: * *C		Semitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge,	gm
5 265		Mercury Fulminate	
10		Leod Azide	
15		Tetryl	
20		Beilistic Mortor, % THT:	
		Treusi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
		Method	
100 °C. Heat Test:		Condition	
% Lous, 1st 48 Hrs	1.9	Confined	
% Loss, 2nd 48 Hrs	2.1	Density, gm/cc	
Explosion in 100 Hrs	None	Brisonce, % TNT	
Fiemmability Index:		Detenation Rate: Confinement	
Hygrescepicity: % 30°C, 90% RH	0.62	Condition Charge Diameter, In.	
Volotility:	······································	Density, gm/cc	
		Rote, meters/second	,

## AMCP 706-177

後におい

, r

## PVN (Polyvinyl Nitrate)

ないのである。

Fregmentation Test:	Shaped Charge Effectivaness, TNT == 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	Celer
For TNT	
For Subject HE	Principal Uses:
3 Inch HE, M42A1 Projectile, Let XC-5:	
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fregments:	Method of Loading:
For TNT	•
For Subject HE	Landing Density: gm/cc
Revenue and Male they to the	
Fregment Velecity: ft/sec At 9 ft	
At 251/2 ft	Storagez
Density, gm/cc	Method
Bleet (Relative to TNT):	Hazard Class (Quantily-Distance)
Ain	Compatibility Group
Peak Pressure	Exudation
Impulse	EXUDERION
Energy	
Air, Contined:	65.5°C KI Test:
Impulse	Minutes 60+
Under Water:	134.5°C Heat Test: Minutes
Peak Pressure	Selmon Pink 20
Impulse	Red Fumes 25
Energy	Explodes 300+
Underground:	240-Hour Hydrolysis Test:
Peak Pressure	\$ HNO3 5.07
Impulse	5
Energy	Heat of:
	Combustion, cml/gm 2960
	Explosion, csl/gm 900 Cas Volume, cc/gm 838

 $\mathcal{I}_{\mathcal{A}}$ 

PVN (Polyvinyl Nitrate)

AMCP 706-177

### Preparation:

Polyvinyl sloobol is mixed with acetic anhydride. The mixture is cooled to  $-5^{\circ}C$  and the nitric acid is added slowly while the mass is being stirred. The temperature is controlled by the rate of acid addition so that when all the acid has been added the temperature does not rise above  $20^{\circ}C$ .

When the nitration is complete, the mixture is drowned by allowing a fine stream of the syrupy liquid to flow from the nitrator and mix intimately with a large stream of water. This causes the product to precipitate in a fine state.

The finely divided precipitate is purified by boiling in frequent changes of water.

### Origin:

The first proparation of polyvinyl nitrate was reported in 1929 by solution of polyvinyl al.cohol in concentrated sulfuric acid and treatment with nitrating acid at a temperature not over 50°C. (German Patent 537,303). Later patents issued relative to polyvinyl nitrate included U. S. Patent 2,118,487 (193²) and German Patent 737,199 (1943).

4

S. No ats

....

AMCP	706-	17	2
------	------	----	---

RIPE

Composition: %		Melecular Weight:	230
RDX	85	Oxygen Belance:	
	-	CO: %	-70 -35
Gulf Crown E Oil	15	Density: gm/cc Hand tamped	1.37
		Melting Point: *C	
C/H Ratio		Freezing Paint: "C	
Impact Sensitivity, 2 Kg Wt:	53	Boiling Point: *C	
Bureau of Mines Apparatus, cm Somple: Wt: 20 mg		Refrective Index, nº	
Picatinny Arsenal Apparatus, in.	13 25	ns	
Sample Wt, mg	25	n2	
Friction Pondulum Test:		Vocuum Stability Test:	. <u></u>
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials			0.34
• • • • • • • • • • • • • • • • • • • •		120°C	0.56
% Explosions O		135°C	
Partials Q		150°C	
Burned O		200 Gram Bomb Sand Test:	
Unoffected 100		Sand, gm	40.1
Explosion Temparature: *C		Susitivity to Iniciation:	
Seconds, 0.1 (no cop used)		Minimum Detonating Charge, gm	
		Mercury Fulminate	
5 Decomposes; no valu	e ootained	Leod Azide	0.20
10		Tetryi	
15 20		Ballistic Morter, % TNT: (a)	118
۲۷ 		Trousi Toot, % TNT:	
75°C International Heat Test:		Plate Dent Test: (b)	<u> </u>
% Loss in 48 Hrs		Method	в
100°C Heat Test:	· · · ·	Condition Ha	nd tamped
% Loss, 1st 48 Hrs	0.03	Confined	No
% Loss, 2nd 48 Hrs	0.04	Density, gm/cc	37 ، ۲
Explosion in 100 Hrs	None	Brisonce, % TNT	85
		Detenation Rate:	
Flammability Index:		Confinament	None
	A (1	Condition Ha	nd tamped
Hygroscopicky: % 30°C, 90% RH	0.04	Charge Diametzr, in.	1.0
Veletility:	····	Density, gm/cc	1.37
A PRESIMENT.	* GARTINEY!		7390

## RIPE

## AMCP 706-177

Fragmentation Test:		Shepid Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91:			Gluis Cones	Steel Cones	
Density, gm/cc	1.36	Hole Volume			
Charge Wt, Ib	1.766	Hole Depth			
Total Na. of Fragmants:		Colori			White
For TNT	703				rill ge
For Subject HE	592	Principal Uses:	Plastic dem	olition ex	losive
3 inch HE, MIZA1 Projectile, Let KC-5:			• •		
Density, gm/cc	1.42				
Charge Wt, Ib	0.756				
Total No. of Fragments:		Method of Load		17n m.d. An.	- <u></u>
For TNT	514	MEMON OF LODE	18g:	Kand tamp	ea
For Subject HE	501		·		·
		Louding Density:	i gm/cc		1.37
Fregment Velocity; ft/sec At 9 ft	2650				
At 251/2 tt	2370	Storage:			
Density, gm/c¢	1,395	Method		;	Dry
Blast (Rolative to TNT):		Hazard Class	(Quantity-Distor	ica)	Class 9
Air:		Compatibility	Group	(	Group I
Peak Pressure			None at 85°	C in 30 hr	8
Impulse		Exudation	None at 95 ⁰ Exudes at 10	C in 48 hr: 05 ⁰ (: in 118	<b>.</b> 
Energy		<u> </u>			
Ale, Confined:		Origin:	م ^{ر مر} مه تر		
Impulse		RIPE, a mech	anical mixtu	re of REX (	and Gulf
Under Weter:		Crown E 011, 1 during World N	ma developed		
Peak Pressure			1964° 11		
Impulse		References:68			
Energy			Smith and E.		
		Testing of Eng Sensitivity Te	sts: Perform	t III - Min ance Tests	OSRD Re-
Underground: Peak Pressure		port No. 5746,			
Impulse		(b) D. P. M Testing, OSRD	AcDougall, M	ethods of 1	Physical
Energy		Les criss, contr	vabor.c No. O	JJ II MUS	180 17461
Preparation:		(c) Also se Technical Repo	the follow	ing Picatin 1713. 160	nny Arsena 5 and 1517
RIPE is manufactured by simple mixing of RDX in oil.	mechanical				/ 1/1

ł

6HSee footnote 1, page 10.

ì

;

319

1.

1

۰.

a, i

<u>ار</u>

1.1

19:12

,

The first

高麗が

ł

に行され

Silver Azide

Cempseition:	Molecular Weight: (AgN ₂ ) 150
% *	Oxygen Balance:
N 28.0	CO ₂ % -5
Ag 72.0	CO % -5
$A_{\mathcal{E}} - N = N = N$	Density: gm/cc Crystal 5.1
	Melting Point: "C (a) 251 Decomposes repidly above melting point to
C/H Ratio	Freezing Point: "C Silver and nitrogen.
Import Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 6	Boiling Point: *C
Bureau of Mines Apparatus, cm 6 Sample Wt 20 mg	Refractive Index, ng
Picatinny Arsenal Apparatus, in. 3 Samole Wt. ma 18	na
Sample Wt, mg 18	n2
Friction Pendulum Test: PA Small Apparatus	Vecuum Stebility Test:
Steel Shoe Detonates	cc/40 Hrs, at
Fiber Shoe Detonates	90°C
Rifle Builet impact Test: Trials	100°C
	120°C
50 Explosions	135*C
Partials	150°C
Burned	200 Grem Bomb Sand Test:
Unaffected	Sand am (b) Black powder flige 18.9
Explosion Tempsreture: *C	Sensitivity to Initiation:
Seconds, 0.1 (no cup used) 310	Minimum Detonating Charge, gm
1	Mercury Fulminate
10	Lead Azide
15	Tetryl
20	Sellistic Morter, % TNT:
75°C International Haat Test:	Treuxi Test, % $HE'ONC)_2$ (c) 85
% Loss in 48 Hrs	Plate Dant Test: Method
100°C Heet Test:	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisance, % TNT
Flommability Index:	
	Condition
Hygroscopicity: % (b) 25°C, 100% RH 0.04	Charge Diameter, in.
	Density, gm/cc
Veletility: (,5°C, 24 hrs 0.00	Rate, meters/second

## Silver Azide

## AMCP 706-177

Frequentation Test:	Sheped Charge Effectiveness, TNT $\Rightarrow$ 10	D:
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, Ib	Giass Cones Steel Ca Hale Volume Hale Depth	nes
Total No. of Fregmants: For TNT 🔅	Celer: White	to gray
For Subject HE 7 3 inch HE, M42A1 Projuctile, Let KC-5: Density, gm/cc	Principal Uses: Init	'isters
Charge Wt, Ib <b>Tetel No. of Fregments:</b> For TNT For Subject HE	Mathed of Loading: Press	sea
·	Loading Density: gm/cc Varia	ible
Fregment Velocity: ft/sec At 9 ft At 25½ ft	Storaga:	
Density, gm/cc	Method	Wet
Biast (Relative to TNT):	Hazurd Class (Quantity-Distance)	Class 9
Airs Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M None
Air, Confined: Impulse	Initiating Efficiency: Gramm Required to Give Complete Initiation of TWT	(c) 0.02-0.05
Under Weter: Peak Pressure Impulse	Solubility in 100 gm Solvent at Room Temperature:	
Energy	Solvent Weter (b) Aumonium hydroxide	Grams 0.006 Soluble
Underground: Peak Pressure Impulse	Nitric acid Ether (b)	Decomposes 0.017
Every	Ethyl alcohol, 95# Acetone	0.006 0.015
Explosive Power: (1)	Unaffected by water and CO2.	(d)
Kilogram metera 192,000 % Mercury Fulminate 1.037	Heat of: Explosion, cal/gm (c, d) Formation, cal/gm (e)	452 67.8

### AMCP 706-177

#### Silver Azide

Preparation:

 $NaN_3 + AgNO_3 \rightarrow AgN_3 + + NaNO_3$ 

Prepare the following aqueous solutions:

- a. 5% NaNa, sodium szide, 50 cc
- b. 25% AgNO3, silver nitrate, 25 cc

The silver nitrate solution is placed in a 200 cc conductive rubber beaker equipped with a hard wood stirrer operated by an air motor. The sodium azide solution is placed in a separatory funnel fastened in a ring stand above the beaker containing the silver nitrate. A long cord (10 ft) is fastened to the stopcock of the separatory funnel so that the funnel can be emptied by remote control. The silver nitrate solution is now stirred very rapidly and the sodium azide is slowly run into the nitrate solution. Stirring is continued for 5 minutes. The contents of the beaker are filtered through folded filter paper and washed free of sodium azide and silver nitrate with distilled water.

Silver azide should be stored under water in a conductive rubber container. This preparation will yield approximately 7 grams.

The preparation should be conducted under a hood and behind a barricade. The product obtained by the above procedure has a very fine particle size, almost colloidal. Very fine silver szide is safer to handle and is just as efficient and stable as the large, coarse crystalline material (Ref b). When a thin film of fine silver azide is precipitated on mercury fulminate, tetryl, etc., these substances are as efficient weight for weight at pure silver azide (Ref g). White silver azide is less affected by light than mercury or lead azide (Ref h). Long colorless crystals which explode on breaking are obtained from azmonium hydroxide.

#### Origin:

Silver azide was first prepared in 1890-1 by T. Curtius (Ber 23, 3032; Ber 24, 3344-5) by passing hydrazoic acid ( $HN_3$ ) into neutral silver nitrate solution. Taylor and Rinkenbach prepared pure "collodial" aggregates and showed its sensitivity depends upon its particle size (Army Ordnance 5, 824 (1925). Silver azide was found in a detonator of foreign emmunition for the first time in 1945 (Ref 1).

### References:69

(a) A. R. Hitch, "Thermal Decomposition of Certain Inorganic Trinitrides," J Am Chem Soc 40, 1195 (1918).

(b) C. A. Taylor and Wm. H. Hinkenbach, "Silver Azide: An Initiator of Datonation," <u>Army</u> <u>Ordnance</u>, Vol 5, p. 824 (1925).

- (c) E. Do W. S. Colver, High Explosives, London and New York, p. 527.
- (d) A. Stettbacher, Spreng u. Schlesstoffe, Rescher, Zurich, p. 97 (1948).
- (e) A. Marshall, Explosives, 2nd Ed, Vol II, p. 767, London.
- (f) A. Stettbacher, Z ges Schless-Sprengstoffw 10, pp. 193-214 (1915).

69See footnote 1, page 10.

## Silver Azide

Downloaded from http://www.everyspec.com

### AMCP 706-177

(g) F. Blechts, Chim et Ind Special No. 921-5 (June 1933); C. A. 28, 646.

(h) L. Wohler and W. Krupko, Berichte <u>46</u>, 2047-2050 (1913).

(i) F. G. Haverlak, Examination of 120/45 MM HE Shell, Italian (FMAM-464), PATR No. 1515, 10 April 1945.

. . . . . . . . . . . . .

...|

17.11.11

Part et a

%		188
	Mok wier Weight: (C2H8N100)	
C 12.8	Oxygen Selanca: CO ₂ %	-60
H 4.3 NH NH	۵۵ %	-43
C-NH-NH-N = N-C	Densily: gm/cc At 3000 pai	1.05
о 8.5 ^{ин} 2 ин-ин-ио	Melting Puint 'C Explodes	140-160
C/H Ratio 0.068	Freezing Point: *C	
Import Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm ?	Sulling Point: *C	
Sample Wt 20 mg	Rafractiva Index, ng	
Picatinny Arsenal Apparatus, in.2; (8 oz. vt.) 8	102	
Sample Wt, mg	11	
Friction Pendulum Toot:	Vecuum Stability Yest:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	•
	- 100°C	
Rifle Bullet Impact Test: Triais	120°C	
% Explosions	135°C	
Portials	150°C	
Burned	200 Gram Bamb Sund Test:	
Unaffected		28.0
	Sond, gm Black powder fuse 4.0	
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cop used)	Minimum Detonating Charge, gm	. 1
1 5 160	Mercury Fulminute	0.40
10	Lead Azide	
15	Tetryi	
20	Ballistic Mostar, % TNT:	
	- Tiouxi Test, % TNT: (a)	61
75°C International Hoot Test: % Loss in 48 Hrs 0.5	Plote Deat Test: Method	
100°C Heet Test:	Condition	
% Loss, 1st 48 Hrs 23.2	Confined	
% Loss, 2nd 48 Hrs 3.4	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flemmebility Index:	- Detenation Rate: Confinement	
Hygrescepiekty: % 30°C, 90% Rit 0.77	- Condition Charge Diameter, in.	
	Density, gm/cc	

1.5

1.1

1.5

324

4.1

Ê.

1.24.61

2

## Tetracene

## AMCP 706-177

Fregmentetion Test:	Sheped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Let WC-91: Density, gm/cc Charge Wt, Ib	Gloss Cones Steel Cones Hole Volume Hole Depth
Total No. of Fregments: For TNT For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Color: Pale yellow Frincipal Uses: Priming compositions and detonators
Tetal No. of Fregments: For TNT For Subject HE	Mothed of Looding: Pressed
Fregment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc Blast (Relative to TNT):	At 3000 pai     1.05       Sharege:     Wet       Mathind     Wet       Hazord Closs (Quantity-Diships)     Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group N Exudetion
Air, Confined; Impulse Under Weter: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Solubility:         Practically insoluble in water, alcohol, acetone, ether, benzene, carbontetrachloride or ethylenedichloride.         Sensitivity to Electrostatic Discharge, Joules:         Discharge, Joules:       (b)         Unconfined       0.010         Confined       0.012         Heat of:       Explosion, cal/gm         Explosion, cal/gm       658         Gas Volume, cc/gm       1190         Initiating Efficiency:       Tetracene is not efficient in initiating high explosives.

1 W 1 1 1 1 1 1 1 1 1 1

the second second second second second second second second second second second second second second second s

1000

A MARY STRANGER AND AN AN

### AMCP 706-177

#### Tetracene

### Preparation:

(Rinkenbach and Burton, Army Ordnance 12, 120 (1931)).

Tetracene is prepared by dissolving 5 gms of aminoguanidine dinitrate in 30 cc of water, cooling to  $0^{\circ}$ C and mixing with a solution of 2.5 gms of sodium mitrate in 15 cr of water. The temperature is maintained at about  $10^{\circ}$ C and 0.5 gm of acetic acid is added. The tetracene separates out and is washed with water, alcohol and ether. It is then dried.

Tetracene may also be prepared by placing aminoguanidine sulphate and sodium nitrite in a large basker and adding water heated to  $30^{\circ}$ C. The heat of reaction causes the mixture to boil; after standing for two or three hours the separated tetracene is filtered off, washed thoroughly and dried.

#### Origin:

Tetracene was first prepared in 1910 by Hoffman and Roth (Ber <u>43</u>, 682) who also studied its chemical reactions and determined its structure (Hoffman et al, Ber <u>43</u>, 1087, 1866 (1910); Ber <u>44</u>, 2496 (1911); and Ann <u>380</u>, 131 (1911)). W. H. Rinkenbach and O. Burton made an extensive study of tetracene and described its manufacture and explosive properties (Army Ordnance <u>12</u>, 120 (1931)).

#### Destruction by Chemical Decomposition:

Tetracene is decomposed by adding it to boiling water and continuing boiling for some time to insure complete decomposition.

References: 70

(2) B. P. MacDougell, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Hiscellaneous</u> <u>Bensitivity Tests</u>; <u>Performance Test</u>, OSRD Report No. 5746, 27 December 1945.

(b) F. W. Brown, D. H. Rusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic Discharges, U. S. Dept of Int, Bureau of Kines, NJ 3552, 1946.

(c) Also see the following Picatinny Arsenal Technical Reports on Twiracene:

<u>o</u>	1	3	<u>4</u>	I	<u>8</u>	2
1450	ц	453	1104 2164	407	318	859 2179

70See footnote 1, page 10.

326

はない

## Tetranitrocarbazole (TNC)

# AMCP 706-177

氏が新聞というないとなっていた。

Composition:	Molecular Weight: (C ₁₂ H ₅ N ₂ O ₈ ) 347
$^{\text{%}}$ $^{\text{O}_2\text{N}}$ H $^{\text{NO}_2}$ c 41.6 $\checkmark$ $^{\text{N}}$ $\checkmark$	Oxygen Belance:
	CO, % -85 CO % -30
N 20.0 ² "	Density: gm/cc
0 37.0	Melting Peint: °C Pure 1, 3, 6, 8-1 somer 296
C/H Rotio 1.032	Freezing Soint: "C
Import Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+	Builing Point: *C
Sample Wt 20 mg	Refrective Index, no
Picatinny Arsenal Apparatus, in. 18 Sample Wt, ma 14	10 10
Sumple Wit, ng 14	nä
Friction Pandulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at
Fiber Shoe Unaffected	90°C
Rifle Bullet Impact Test: Trials	100°C 0.2
%	120°C 0.2
Explosions	135°C
Partials	150°C
Burned	200 Gram Homb Sand Test:
Unoffected	Sand, gm 41.3
Explosion Temperature: *C	Sensitivity in Initiation:
Seconds, 0.1 (no cop used)	Minimum Detonating Charge, gm
1	Mercury Fulminate
5 Jacomposes 470 10	Lead Axide 0.20
15	Tetryi 0.25
20	Bollistic Morter, % TNT:
	Trouil Test, % TNT:
75°C Internetional Heat Yest; % Loss in 48 Hrs	Piete Dent Test:
	Method
100°C Heat Test:	Condition
% Loss, ist 48 Hrs 0.15	Confined
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc
Explosion in 100 Hrs None	Brisance, 96 TNT
	Detenation Rate:
Flammability Index:	Confinement Condition
Hygrescepicity: % 30°C, 90% RH 0.01	Charge Diameter, in.
Vələtility:	Density, gm/cc
	Rote, meters/second

ĺ

327

## Tetranitrocarbazole (INC)

Downloaded from http://www.everyspec.com

"

Freymontation Test:	Shoped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Let WC-91; Density, gm/cc Charge Wt, Ib	Glass Cones Steel Hole Volume Hole Depth	Cones	
<b>Total No. of Fregments:</b> For TNT For Subject HE	Color: Principal Uses: Component of igniter and pyrotechnic compositions		
3 inch HE, (A42A1 Projectile, Let KC-5; Density, gm/cc Chargh Wt, ib			
Tetal No. of Fragments; For TNT For Subject HE	Method of Looding:	Pressed	
Programmi Velecity: ft/sec At 9 ft At 25% ft Density, gm/cc	Looding Dansity: gm/cc Storage: Method	Dry	
Sieut (Relative to YNY); Air: Peak Pressure Impulse Energy	Hazard Class (Quantity-Distance) Compatibility Group Exudation	Class 9	
Air, Confined: Impulse Under Weter: Peck Pressure Impulse Energy Underground: Peok Pressure Impulse Energy	Solubility in Water, <u>gm/100 gm (%), at:</u> 95 ⁰ C <u>Qualitative Solubilities:</u> <u>Solvent</u> Nitrobenzene Acetone Nenzene Chloroform Carbontetrachlorids Ether Zther, petroleum	0.10 Solubility Very soluble Soluble Insoluble Insoluble Insoluble Insoluble Insoluble	

328

Y . C. W. C.

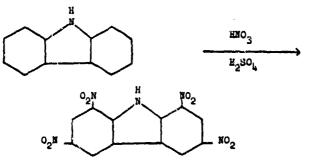
Section Company Section 2 6 14

and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

N.C. AR

Contraction of the second second second second second second second second second second second second second s

ellen Marine


### Tetranitrocarbasole (THC)

AMCP 706-177



1....

<u>.</u> .



Sulfonation: Fifty-six gms of carbazole is dissolved in 320 gms of  $H_2SO_1$  (96%, specific gravity 1.84). The solution is agitated during the addition of the carbazole and the temperature maintained at  $25^{\circ}-35^{\circ}C$ . After the addition of the carbazole is completed, the agitation is continued and solution completed by reising the temperature to  $80^{\circ}-85^{\circ}C$  and maintaining this temperature for one hour. The sulphate is now cooled to  $20^{\circ}C$ .

<u>Nitration:</u> The sulfonate solution is slowly added to 168 gas of HNO₃ (Plant grade specific gravity 1.525 at 15°C) maintaining the temperature at 30° to 50°C. (Time required - 1 hour 25 minutes). The temperature is then gradually reised to 70° to 75°C and maintained for one hour after which the temperature is reised to 85° to 90°C and held for one hour, then lowered to room temperature before drowning.

<u>Drowning:</u> The nitratica mixture is drowned by pouring it into 2 to 3 volumes of ice and water.

Filtering: The separated light yellow product is filtered on a Buchner Funnel and washed with water twice to remove most of the acid.

<u>Purification:</u> The TNC is placed in hot water  $(95^{\circ} \text{ to } 100^{\circ}\text{C})$  and boiled for five to ten minutes with rapid agitation, allowed to settle then filtered and washed once. This procedure is repeated twice, making a total of three "boilings." The final wash is said free.

Drying: The TNC is spread in a thin layer and dried at 100° to 110°C for four hours.

#### Yield: 73.3%.

Melting Point of TNC as prepared: 280°C (compares to 296°C for pure 1, 3, 6, 8-isomer in preceding data).

#### Origin:

のいたいというななない

The preparation of 'hetranitrocarbazole (INC) was first reported in 1880 by C. Graebe (Ann 202, 26 (1880)) who nitrated carbazole with 94% nitric acid. Similar procedures were followed by R. Escales (Ber <u>37</u>, 3596 (1904)) and P. Zierch (Ber 42, 3600 1909)). However, G. L. Ciamician and P. P. Silber observed the formation of four isomeric TMC's when acetyl carbazole was treated with fuming nitric acid (Gazz chim ital 12, 272 1882). In 1912 and 1913 patents were issued to the dyestuff manufacturer, Casella and Company, covering the preparation of polynitrocarbazoles (German Patent 268,173 and French Patent 464,538). The Casella process of

#### Tetranitrocarbazole (TNC)

Downloaded from http://www.everyspec.com

STY AR

i

preparing polynitrocarbazoles by dissolving carbazole in sulfuric acid and treating the solution of sulfonic acids with strong nitrating agents is essentially the process used today in the United States. The crude product, thus prepared, contains principally 1,3,6,8-TNC (W. Borsche and B. G. B. Scholten Ber 50, 596 (1917) and about 10% of the 1,2,6,8-TNC isomer (D. B. Murphy et al J Am Chem Soc  $\frac{75}{75}$ , 4289 (1953). TNC was used in explosives by the Germans during World War II.

### References: 71

(a) D. B. Murphy, F. R. Schwartz, J. P. Picard and J. V. R. Kaufman, "Identification of Isomers Formed in the Nitration of Carbazole," J Am Chem Soc, <u>75</u>, 4289-4291 (1953).

(b) S. Livingston, <u>Preparation of Tetranitrocarbazole</u>, PA Chemical Research Laboratory Report No. 136,330, 11 April 1951.

(c) D. B. Murphy et al, Long Range Basic Technical Research Leading to the Development of Improved Ignition Type Powders - The Chemistry of Tetranitrocarbazole, PA Merorandum Report No. 22, 2 September 1952.

(d) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.

(e) Also see the following Picatinny Arsenal Technical Reports on Tetranitrocarbazole:

<u>o</u>	2	3	<u>4</u>	I
2180	1802	1973	1984	1647 1937

71see footnote 1, pege 10.

## 2,4,2',4'-Tetranitro-oxenilide (TNO)

AMCP 705-177

Composition: % Q	0	Molecular Weight: (C14H8N6010)	420
% c 40.0 c	Į	Oxygen Belence:	
	Ĭ NH	CO. % CO %	-84 -31
H 1.9	NO2 NO2		<u>ير -</u> 
N 20.0		Density: gm/cc	
0 38.1	$\searrow$	Melting Pelat: *C Decomposes	313
C/H Ratio 0.735 NO2	NG ²	Freexing Point: *C	
Impect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: *C	
Sample Wt 20 mg Disationy Arroad Anagonitys in	30	Refrective Index, nm	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	30 11	n <mark>o</mark> n	
		n <mark>u</mark> ,	
Friction Pendulum Test:		Vocuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	••
Rifle Bullet Import Test: Trials		100°C	
%		120°C	0.11
Explosions		135°C	
Partials		150°C	
Surned		200 Grem Benth Sand Test:	
Unoffected		Sond, gm	16.3
Explosion Tomperature: *C		Sensitivity to initiation:	
Seconds, 0.1 (no cop used)	1	Minimum Detonating Charge, gm	
i 5 302		Mercury Fulminate	
5 392 10		Lood Azide	0.20
10		Tetryl	0.25
75 20		Ballistic Mortar, % TNT:	
4U		Truuzi Test, % TNT:	
75 °C International Heat Test:		Plate Deat Test:	
% Loss in 48 Hrs	• ·	Method	
100°C Heat Yest:		Condition	
% Loss, 1st 48 Hrs	0.07	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisonce, % TNT	
Flammability Index:		Detanetion Rate: Confinement	
Hygrescepicity: % 30°C, 90% FH	Trace	Condition Charge Diameter, in.	
Vəlati Hty:		Density, gm/cc	

約末近

間に、上

aiń Stat

1.1

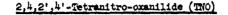
time the second for the St.

M 16 1

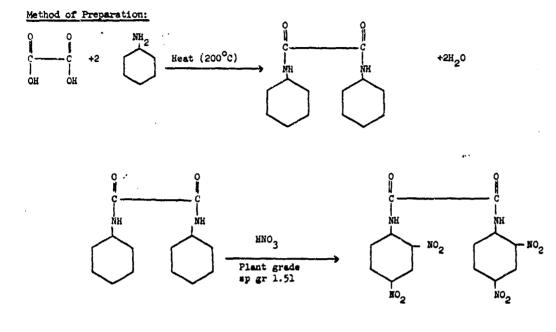
## 2,4,2',4'-Tetranitro-oxanilide (TNO)

Downloaded from http://www.everys

21


ŧ

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 1	GO:
90 run HE, M71 Projectile, Let WC-91; Density, gm/cc	Glass Cones Steel ( Hole Volume	Corries
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color: Tdg	ht yellow
For TNT		NC ARTON
For Subject HE	Principal Uses: Co-monent of black	k nowlen time
3 Inch HE, M42A1 Projectile, Let KC-5:	ar pyrotechnic c	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Looding: Pressed and	
For TNT For Subject HE	composition.	
	Lording Density; gm/cc	
Frequent Velocity: ft/sec		
At 9 ft		
At 251/2 it	Stereye:	
Density, gm/cc	Method	Dry
······································		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Claise 9
Air:	Compatibility Group	
Peok Pressure	<b>n</b>	
Impulse	Exudation	
Energy		
Ale, Continue:	Solubility, gu/100 cc Solvent, s	)
Impulse		<u>°c</u> <u>\$</u>
Under Water:	Water	100 40.10
Peok Pressure -	Nitrobenzene	150 >15
Impulse	Qualitative Solubilities:	
Energy	Solvent	Solubility
Underground:	Ethyl elcohol Benzene	Insoluble
Peak Pressure	Butyl acetate	Insoluble Insoluble
Impulse	Carbontetrachloride	Insoluble
Energy	Ethyl ether Acetic acid	Incoluble Soluble
	Nitric and	Soluble
	Caustic potash Dimethyl formamide	Soluble Very soluble


322

 $(b_{i})$ 









### Oxanilide:

Two parts of oxalic acid are mixed with one part of aniline in a round bottom flask. The mixture is stirred and heated until the reaction is complete as evidenced by the cessation of effervescence. The mass is cooled to room temperature, poured into deveral volumes of water  $(21^{\circ}-24^{\circ}C)$ , filtered on a Büchner funnel and washed free of oxalic add with water and then washed free of actiline with acetone. The oxanilide is air dried to remove the acetone and then dried at 100°-110°C.

### Tetranitro-cosmilide (TNO):

A 5 liter round bottom flask is equipped with a stirrer of a type which will produce a downward "swirl." The flask is surrounded with a water jacket for hot and cold water. Fifteen hundred grams (1.5 kilograms) of 98% plant grade nitric acid is placed into the flask. Five hundred (500) grams of commilde is slowly added to the acid under mapid agitation while the tem, rature is maintained below  $40^{\circ}$ C. After the addition of the commilde is completed  $(2\frac{1}{2}-3$  http://, the agitation is continued 10-15 minutes. The temperature is then raised to  $80^{\circ}$ C over a period of one hour and maintained at  $80^{\circ}-85^{\circ}$ C for 3 hours. The scid slurry is then cooled to room temperature and drowned by pouring over cracked ice. The filtered on a Ellaher funnel and washed with water until it is almost acid free. The filter cake is placed in a besker and sufficient water added to forms "slurry." Live batem is run into the "slurry" under agitation for 10 minutes. The slurry is fullered and the residue washed. The latter treatment of the "slurry" is repeated until the wash water is found to be neutral to

### 2,4,2',4'-Tetrauitro-oxanilide (TNO)

. . .

••••

lithus paper. The TNO is washed with alcohol, then acctone, air dried and finally dried at  $100^9\text{-}110^9\text{C}\text{-}$ 

Yield = 90% to 97.5% of theoretical.

Origin:

 $\cdot y_{i}$ 

ļ

A. G. Perkin in 1892 obtained tetranitro-examilide directly by heating a solution of finely powdered examilide in mitric acid. He also obtained the same compound by the action of a cooled mixture of mitric and sulfuric acids on examilide and precipitation the product by pouring the solution into water (J Chem Soc <u>61</u>, 460 (1892).

### References: 72

(a) S. Livingston, <u>Development of Improved Ignition Type Powders</u>, PATR No. 2267, July 1956.

(b) D. Dubrow and J. Kristal, <u>Substitution of Tetranitro Oxanilide and Hexanitro Cxanilide</u> for <u>Tetranitro Carbazole</u>, PA Fyrotechnic Research Laboratory Report 54-TF 1-38, 20 December 1954.

72See footnote 1, page 10.

Composition: % # c-N		Molecular Waight: (C7H5N508)	287
c 29.3	-NO2 NO2	Onygen Selence: CO, % CD %	-47 - 8
H 1.7 0 ₂ N	<b>T</b> ¹⁰ 2 <i>y</i>	Densily: gm/cc Crystal	1.73
о щ.6	418.1	Malting Point: *C	130
C/H Ratio 0.420	D ₂	Freezing Paint: "C	
Impact Sensitivity, 2 Kg Wt:		Beiling Peint: *C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picc^inny Arsenal Apparatus, in. Sample Wt, mg	26 8 18	Refrective Index, ng ng ng	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impoct Test, Trials		- 100°C	0.3
%		120°C 135°C	1.0
Explosions 13		150°C	
Partials 54		130 C	
Burned 10		200 Gram Bamb Send Tests	
Unoffected 23		Sand, gm	54.2
Explosion Temperature: *C		Sensitivity to initiation:	
Seconds, 0.1 (no cap used) 340		Minimum Detonating Charge, gm	0.20*
1 314 5 Ignites 257		Mercury Fulminote Lood Azide	0.10*
10 238			0.10*
15 236		*Alternative initiating charges.	
20 234		Sollistic Martar, % THY: (a)	<u>,</u> 130
		Treasl Test, % TNT: (b)	125
75°C International Hout Test: % Loss in 48 Hrs	0.01	l'Iste Dunit Test: (c) Method A	B
100°C Heat Test:		Condition Pressed	Pressed
% Loss, 1st 48 Hrs	0.1	Confined Yes	No
95 Loss, 2nd 48 Hrs	0.0		59 1.36
Explosion in 100 Hrs	None	Brisance, % TNT 11.6 13	.5 96
Flemmability Index:	21/4	- Detenction Rate: Confinement	None
		Condition	Presse
Hygroscopicity: % 30°C, 90% RH	0.04	Charge Diameter, in.	1.0
Valetility: 25°C	0.00	Density, gm/cc	1.71
Valetility: 25°C	0.00	Rate, meters/second	7850

Tetry1

ţ

ļ

AMCP 706-177

.everyspec

11

335

1.21

and the second second second second second second second second second second second second second second second

 $P_{1}$ 

# AMCP 706-177

. .

1

11. 1991 11.197

# <u>Tetryl</u>

lesster Sensitivity Test: Condition	(d) Pressed	Decomposition Equation: Oxygen, atoms/sec	(g) (h) 10 ^{15.4} 10 ^{12.9}
Condition Tétryi, gm	100	(Z/sec)	
Wax, in. for 50% Detonation	2.01	Hent, kilocalorie/mole	38.4 34.9
Wax, gm		(AH, kcal/mol) Temperature Range, °C	211-260 132-164
	1.58	Phase	Liquid Liquid
Density, gm/cc	1.70	FILLE	
Heat of:	2025	Armer Plate Impost Test:	<u></u>
Combustion, cal/gm	2925 1080-1130		
	760	60 mm Morter Projectile:	
Gas Volume, cc/gm Examplian col/com	-14	50% Inert, Velocity, ft/	Sec.
Formation, col/gm Fusion, col/gm (e)	22.2	Aluminum Fineness	
Fusion, cal/gm (e) Temperature, °C	127	500-th General Purpose Be	minte
ipecific Heet: cal/gm/°C	(e)	Diete Thiskness Inchus	
-100	0.182	Piate Thickness, inches	
- 50	0.200	1	
0	0.212	1%	•
50 100	0.223 0.236	14	
200	0.230	- 1%	
Burning Rate:			
cm/sec		Bamb Drep Test:	
Thermal Conductivity: (1)	······································		
col/sec/cm/*C 5.81 x 10 4 at	1.394 gu/cc 1.528 gu/cc	17, 2000-lb Sami-Armar-P	iercing Bomb vs Concrete:
Coefficient of Expension:		Max Safe Drop, ft	
Linear, %/*C		500-ib Goversi Purpuse Be	imă ve Concrete:
Volume, %/*C		Height, ft	
	·····	Tricis	
Hardwess, Mohs' Scale:		Unatfected	
		- Low Order	
Young's Modulus;		High Order	
E', dynus/cm²	,		
E, Ib/inch ²		1000-lb Ganacai Purpose B	emb vs Concrete:
Density, gm/cc			
	المستعدية والمتحدين		
Compressive Strengths ib/inch ^a		Trials	
		Unaffected	
Vapor Pressure:		Low Order	
*C mm Mercury		High Order	
		1	

Tetryl

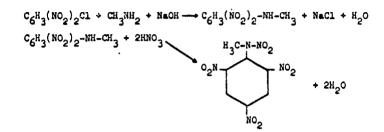
Downloaded from http://www.everyspec.com

## AMCP 706-177

. . .

Fregmantation Test;	- <u> </u>	Shaped	Churge	Effective	iness, Ti	NT = 100	:	
90 mm HE, M71 Projuctile, Lot WC-91:				Glass C	ones	Steel Cor	165	
Density, gm/cc	1.58	Hole	Volume					
Charge Wt, Ib	2.052	Hole	Depth					
Total No. of Fragments:		Coler:	<u>.</u>			Thebt		
For TNT	703	Color:				Light	Yellow	
For Subject HE	864	Principu	d Uses;	Boort	ters; {	ngreater	t of e	жр)т-
3 inch HE, M42A1 Projectile, Let KC-3:						es, det.	onators	<b>.</b> art
Density, gm/cc	1.62			DT881	ting c	pa		
Charge Wt, ib	0.848							
Total No. of Fragments:		Method					Pres	
For TNT	514			nag :			Free	54C
For Subject HE	605	l andina	Banala					<del></del>
		Localing	Dealerty	n gin/cc		See held	)M	
Bregmont Velocity: ft/sec At 9 ft								
At 251/2 ft		Storage	6					
Density, gm/cc		Meth	od				Dr,	
Blast (Relative to TNT);		Hara	rd Class	i (Quanti	ty-Dista	nce)	Clau	g (i)
Ain Peak Pressure		Comp	atibility	Group			Grow	ə G
Impulse		Exur	ation		Doe	s not e	ude at	ى <mark>د</mark> ى:
Energy								
Air, Confined:		Logding	Densi	ty: gr	¤∕ce			
impulse		Cas	t 1.62	Pro	besed	psi x :	10 ³	
Under Water; Peak Pressure		0.9	3 1,40	5 1.47	10 1.57	12 1.60	15 1.03	25 1. (7
Impulse		0.9	1,40	7141	±+2(	1.00	1.03	L. C. C
Energy		ļ			30 1.71			
Underground: Peak Pressure		Effect Rate of	of lem Denon	peratu ntion:	re on		(;;)	
Impulse		16 4	rs at,	•		e).	^	
Energy		Dens	ity, g , m/ae	m/ce		-54 1+52 7150	2 : . : 71 :	53

1


1999 1999

Í

Tetry1

### Preparation:

(Manufacture of Tetryl by Dinitromonomethylaniline Process, Wannamaker Chemical Co., Inc.)



To a solution of 202.5 gm dinitrochlorbenzene in 200 cc benzene, at  $75^{\circ}$ C with good agitation, in 15 to 20 minutes, add 112 gm of 30% aqueous monomethylamine. Then add 129 gm of 31% aqueous sodium hydroxide, in 15 to 20 minutes, at such a rate as to cause refluxing; continue agitation for 3 hours at 70°C. The mixture is concentrated to a liquid temperature of 101°-102°C, cooled, filtered and the precipitate washed with distilled water until the washings give no test with silver nitrate, dried at  $60^{\circ}$ C (melting point 167.2°C).

The dinitromethylaniline is nitrated to tetryl by solution of it in 88% sulfuric acid (197 gm nitroaniline/1190 gm sulfuric) at 25°C, followed by addition of nitric acid. The process is carried out so that the water content remains at 16%. Solution (per 197 gm nitroaniline) requires 5 to 10 minutes, nitration, by addition of the sulfuric acid solution to nitric acid, about 1 hour at 30°C, plus 48 minutes at 50° to 55°C at the end. The mixture is then cooled to 20°C and filtered. The tetryl is dumped into 1 liter water, washed 2 or 3 times with 200 cc cold water, and then stirred 10 to 15 minutes at 50°C with 500 cc water, filtered warm and then washed with water until the washings are neutral to methyl orange. The fatryl dried to constant weight at 70°C weighs about 270 gm.

Tetryl filtered from an acid containing 87% sulfuric acid (or more) -13\% water, at  $40^{\circ}$ C (or over) may fire in 30 minutes to 1 hour and 30 minutes, if not drowned in water. A safe nitration procedure, even on plant scale involves:

1. The concentration of sulfuric in the spent acid is maintained at a low level (approx 80/1.8/18.2 sulfuric/nitric/water).

2. Nitration maximum temperature is 50°C.

3. The slurry is cooled to 35°C before filtration.

4. Filtration time prior to drowning, is minimized (15 minutes maximum).

The crude tetryl produced is recrystallized to remove impurities and occluded acid and to control its granulation.

	nfined Nned		0.007 4.4						
olubility	of tetryl,	grame in 1	00 grams (%)	of:					
Wat	-0T	Carb	on tetrachlor	iđe		Eth	er	<u>95</u> \$	Alcohol
°c	ž	°c		ź		°c	ž	°C	ž
0 20 40 80 100	0.0050 0.0075 0.0110 0.0810 0.184	0 04 09	0	.007 - .015 .058 .154		0 10 20 30	0.188 0.330 0.418 0.493	0 10 20 30 50 75	0.320 0.425 0.563 0.76 1.72 5.33
Chlo	nroform	Carbon d	limulfide	Ethyl	ene dici	loride		Acetone	
°c	ž	<u>°c</u>	ź	°c		É		00	を
0 04 04 00	0.28 0.39 1.20 2.65	0 10 20 30	0.009 0.015 0.021 0.030	25 75		4.5 45			75 95 116 138
Trichlo	roethylene	Ethyl ac	etate		Benzene			Toluene	<u>.</u>
°c	L	°c	ž	oC		<b>X</b>		°C	Z
0 08 08 08 08	0.07 0.12 C.26 0.67 1.50 1.76	80	~ 40	20 30 30 50		7.8 10.0 12.5 16.0		20	8.5
		X	ylene		T	NT			
		°c	£		°c	ž			
		20 30 40 50	3·3 · 4·4 5·4 6·0		80 100 120	82 149 645			

Tetryl

### Origin:

1

Tetryl was first described in 1879 by Michler and Meyer (Ber <u>12</u>, 1792), van Romburgh and Martens studied its properties and proved its structure (Rec trav chim <u>2</u>, 108 (1883); <u>6</u>, 215 (1887); and Ber <u>19</u>, 2126 (1886)). Tetryl was not used as an explosive until World War I.

339

19 A.

· .

Tetryl

Downloaded from http://www.everyspec.com

### Destruction by Chemical Decomposition:

44 ¹⁰ 10 10 10

Tetryl is decomposed by dissolving in 12 times its weight of a solution prepared from 1. part by weight of sodium sulfite  $(Na_2SO_3, 7H_2O)$  in 4 parts water. The sulfite solution may be heated to  $SO^{OC}$  to facilitate decomposition of the Tetryl.

references: 73

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sonsitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Ph Naoum, 7 ges Schless---Sprengstoffw, pp. 181, 229, 267 (27 June 1932).

(c) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

(d) 1. C. Smith and S. R. Welton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetrel in Poosters</u>, NOL Memo 10, 303; 15 June 1949.

(c) C. A. Taylor and Wm. H. Rinkenbach, "The Solubility of Trinitro-Phenylmethyl-Nitramine (Tetryl) in Organic Solvents," J Am Chem Soc <u>45</u>, (1923) p. 104

(f) E. Hutchinson, The Thermal Sersitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC 2861, First Report, August 1942.

(2) R. J. Finkelstein end G. Gamow, Theory of the Detonation Process, NAVORD Report No. - 30-46. 20 April 1947.

(h) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utsh. Ind Eng Chem 1090-1095 (June 1956).

(1) J. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(3) W. 1'. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PATR No. 2383, November 1986.

(k) Also see the following Picetinny Arsenal Technical Reports on Tetryl:

<u>0</u>	1	2	3	<u>1</u>	۶	6	I	<u>8</u>	2
30 600 770 510 1200 1300 1300 1300 1500 1500 1500 1500	11 361 381 622 861 1251 1251 1251 1251 1431 1651	132 582 982 1392 1392 1392 1392 1492 1492	453 493 623 833 863 1113 2053 2163 2233	84 144 294 314 674 7784 874 904 1134 1134 1234 2224 2204	65 195 565 635 845 1455 1285 1285 1285 1205 2105	266 556 786 986 1126 1316 1316 1416 1446 1556 1636 1956	117 197 637 707 807 857 1047 1137 1287 1337 1367 1437 1737 1797 1937	28 4 39 628 708 8 38 1418 1788 1828 1828 1838	129 179 319 609 709 849 999 1029 1209 1379 1429 1489 1819 1969

³See footnote 1, page 10.

::40

Tetrytol, 80/20

## AMCP 706-177

	100.900.		ARCE IVOI
Composition:		Melecular Weight:	274
70 Tetryl	80	Oxygen Belence:	
1401.11	~	CO, %	-52
TNT	20	CO %	-11
		Density: gm/cc Cast	1.51
		Malting Paint: *C	68
C/H Ratio		Freezing Point: *C	
Impact Sausitivity, 2 Kg Wt:		Boiling Point: "C	
Bureau of Mines Apparatus, cm	28	Befunction Index _ D	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	9	Refrective Index, no	
Sample Wt, mg	17	nSe	
	~!	n	
Friction Pandulum Test:		Vocuum Stability Test:	,
Steel Shoe		cc/40 His, at	
Fiber Shoe		90°C	
		100"C	3.0
Rifle Bullet Impact Tuet: Trials		120°C	11+
~ ~		1	***
Explosions 0		135°C	
Partials 20		150°C	
Burned 0		200 Grem Bumb Send Yest:	
Unoffected 80		Sand, gm	54.0
Explasion Temperature: *C		Sensitivity to initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.22*
5 Ignites 290		Lead Azide	0.17*
10		"Alternative initiating charges.	
15			
20		Ballietis Merier, % THT:	مر ما می است. مراجع است
75°C International Heat Test:		Trousl Test, % TNT:	
% Loss in 48 Hrs		Plate Dant Tast: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.1	Confined	
% Loss, 2nd 48 Hrs	0.5	Density, gm/cc	
Explosion in 100 Hrs	None	Brisonce, % TNT	
		Dutenetien Refe:	
Fiermability Index: Will not continue	to burn	Confinement	
Munacessale bus Gl	0.02	Condition	
Hygrassapicity: %		Charge Diameter, in.	
Volueility:		Density, gm/cc	
		Rate, metens/second	

1

# Tetryto1, 80/20

. .

Sector Sector

deserve

Downloaded from http://www.everyspec.com

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 10	D:
90 mm HE, M71 Projectile, Lot WC-91; Dansity, gm/cc Charge Wt, Ib	Glass Cones Steel Ca Hole Volume Hole Depth	nes
Tetal No. of Fragments: For TNT For Subject HE	Color: Light yel	low to buff
3 Inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Bursters, demoliti	on blocks
Total No. of Fragmants: For TNT For Subject HE	Mothed of Looding:	
Fregment Velecity: ft/sec	Looding Kossity: gm/cc	
At 151% ft At 151% ft Density, gm/cc	Sterege: Method	Dry
Biast (Relative to TNT):	Mazard Class (Quaritity-Distance)	Class 9
Airs Peak Pressure	Compatibility Group	Group I
Impulse Energy	Exuation Exuides	at 65°C
Air, Confined: Impulse		
Under Weter: Peak Pressure		
Impulse Energy		
Undarground: Firak Pressure		
impulse Energy		

1.0

21 A.H.

5.1.1.25

342

.

A COLORED AND A COLORED AND A COLORED AND A COLORED AND A COLORED AND A COLORED AND A COLORED AND A COLORED AND

# Tetrytol, 75/25

and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

## AMCP 706-177

Composition:		Molecular Weight:	270
	75	Oxygan Belence:	
Tetryl	75	CO ₂ %	- 54
TNT	25	<del>%</del> 0.5	-12
		Density: gm/cc Cast	1.59
		Molting Points *C	68
C/H Ratio		Freezing Point: *C	
mpact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boling Point: *C	
Sample 14t 20 mg	20	Refractive Index, n"	
Picatinny Arsenal Apparatus, in.	10	nh	
Sample Wt, mg	17	n <u>o</u>	
Friction Pendulum Test:		Vecuum Stability Tents	, <del>an an del>
Steel Shoe	Cracks	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	•
			3.0
Rifie Buildt Impact Test: Trials		120°C	11+
% Explosions O		135°C	
		150°C	
Portials 30 Burned O			
		200 Grem Bamb Soud Yest:	
Unaffected 70		Sond, gin	53.7
Explosion Tempersities: *C		Sancitivity to Initiation:	
Seconds, 0.1 (no cap used)		Missimum Detonating Charge, gm	
1		Mercury Falminate	0.23*
5 Ignites 310	)	Leod Azide	0.19#
10		*Alternative initiating charges	
15		Ballistiz Mariar, % TNT: (a)	122
20			166
75°C International Heat Tast:		Truck Test, Si TNT:	
% Loss in 48 Hrs		Finte Deat Test: (b)	
		Method B	B
100 °C Mout Yest:		Condition Cast	Cast
% Loss, 1st 48 Hrs		Confined No	Yes
96 Loss, 2nd 48 Hrs		Density, gm/ce 1.66	1.62
Explosion in 100 Hrs		Brisonce, & TNT 138	114
Flammen 52012 Andrew trett to make and			
Finance billy index: Will not cor	iting to curn	Confinement	None
Hygrescepisity: %	0.03	Condition	Cast
	0.03	Charge Diamster, in	1.0
Ve Alliey:	يواليهية الجد الذال ويكار جاعد استخبارا	Density, gm/cc	1.60
		Rote, meters/second	7385

MAN BARRAR

1

# Tetryto?, 75/25

Downloaded from http://www.everyspec.com

Frequentation Text:		Shaped Charge Effectiveness, TNT ==	100:
90 mm HE, M71 Projectile, Lot W	C-91:	Glass Cones Steel	Cones (đ)
Density, gm/cc	1.59	Hole Volume 127	
Charge Wt, Ib	2.101	Hole Depth 120	
Total No. of Frequents:		Celer: Light yell	lov to buff
For TNT	703	ingit yer	
For Subject HE	857	Principal Uses: Bursters, demold	tion blocks
3 inch HE, M42A1 Projectile, Lot N			
Density, gm/cc	1.60		
Charge W*, ib	0.845		
Total No. of Fragmania:		Method of Londing:	Cast
For TNT	514		
For Subject HE	591	Looding Density: gm/cc	1.59
sugment Velocity: ft/sec			
A:9 ft At 25½ ft		Storoge:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):		Hozord Class (Quantity-Distance)	Class 9
به الله الله الله الله الله الله الله ال		Compatibility Group	Group I
Peak Pressure			
Impulse		Exudation	Exudes at 65°C
<b>Unergy</b>			
Alr, Coulland:		Eutechic Temperature, °C:	67.5
lvopulse		gm Tetry1/100 gm TNT 67.5°C	54-82
Under Water: Peak Prossure		Booster Sensitivity Test:	(c)
Impulse			Cast
Energy		Condition Tetryl, gm	100 1.66
Underground: Peak Pressure		Wex, in. for 50% Detonation Dens'ty, gm/cc	1.66
Impulse			
Energy			

Provide a second second

# Tetrytol, 70/30

## AMCP 706-177

Composition: %		Melecular Weight:	266
Tetryl	70	Oxygen Balence:	
10	10		-55 -13
INT	30	CO %	-13
		Density: gm/cc Cast	1.60
		Melting Point: *C	68
C/H Ratio		Freezing Points *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: "C	
Sample Wt 20 mg		Refrective Index, no	
<ul> <li>Picatinny Amenal Apparatus, in.</li> <li>Sample Wt, mg</li> </ul>	11 18	nS	
Jonple m, mg		n _M	
Friction Pendulum Test:		Vacuum Stability Test:	······
Steel Shoe	Unsffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifie Bullet Impact Test: Triais		- 100°C	3.2
•		120°C	11+
% Explosions O		135°C	
Partialu 55		150°C	
Burned 0		200 Green Bernh Sand Test:	
Unaffected 45		Sand, gm	53.2
Explosion Temperature: *C		Sensitivity to Initiation:	
Seconds, 0.1 (no cop used) 41	6	Minimum Detonating Charge, gm	
1 38	7	Mercury Fulminate	0.23*
5 Ignites 32		Loud Azide	0.22*
10 30		"Alternative initiating charges.	
15 28	•		120
20 27	5		120
75°C International Heat Test:		Plute Dout Test: (b)	····
% Loss in 48 His		Method	в
		Condition	Cast
100°C Heet Test:		Contined	Yes
% Loss, 1st 48 Hrs	0.1	Density, gm/cs	1.60
% Loss, 2nd 48 Hrs	0.1	Brisonce, % TNT	117
Explosion in 100 Hrs	None		
Fiemmebility Index: Will not a	ontinue to burn	Confinement	Kona
		Condition	Cast
Hygrascopicity: %	0.02	Charge Diameter, in.	1.0
	ومعروبين وبريان والمترجب والمترجب والمترجب والمتر		1.60
Veletility:		Density, gm/cc	7340
-		Rate, meters/second	1,040

. .

a and a state of the

Server 2, Miller Miller Silver

ł

# AMCP 706-177

7

ť

## Tetrytol. 70/30

ł

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$ :	
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel Cones	
Density, gm/cc	1.60 ,	iole Voluma	
Charge Wt, Ib	2.090	Hole Depth	
Total No. of Fragments:		Color: Light yellow	
For TNT	703	Com: Englist yerrow	W UUII
For Subject HE	840	Principal Uses: Bursters, demolition	blocks
3 inch HE, M42A1 Projectile, Let KC-5:			
Density, gm/cc	1.60		}
Charge Wt, Ib	0.842		
Total No. of Fragments:		Method of Londing:	Cast
For TNT	514		V==V
For Subject HE	585	Leeding Densky: gm/cc	1.60
Fregment Velecity: ft/sec At 9 ft		·	
At 251/2 ft		Storuga:	ł
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	***************************************	Hazard Class (Quantity-Distance)	Class 9.
Airs		Compatibility Group	Group I
Peak Pressure		Exudation Exudes	at 65°0
Impulse			
Energy			
Air, Confixed: Impulse			
Under Water: Peak Pressure			
Impulse			1
Energy			
Underground: Peak Pressure			
impulse		1	1
Energy			
			_

1.1

Sec. 18 ar and

Tetrytol, 65/35

Downloaded from http://www.everyspec.com

# AMCP 706-177

Composition:		Molocular Weight:	264
	65	Oxygen Belence:	_
Tetryl	0)	CO, % CO %	-56 -14
TIT	35	Density: gm/cc	1.60
		Molting Point: *C	68
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt:		Seiling Point: *C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	28		
Picatinny Arsenal Apparatus, in.	11	Refractive Index, RB	
Sumple Wt, mg	17	n2	
		n	
Friction Pendulum Test:		Vocuum Stability Test:	
Steel Shoe	Cracks	cc/40 Hrs, at 90°C	
Fiber Shoe	Unaffected	- 100°C	2.8
Rifie Builet Impact Test: Trials		120°C	11+
%		135°C	***
Explosions 0		150°C	
Partials 10			·····
Burned O		200 Grein Bomb Sand Teso:	_
Unoffected 90		Sand, gm	52.6
E.plosion Temperature: *C		Sansitivity to Ini lon:	
Seconds, 0.1 (no cop used)		Minimum Detonating Charge, gm	* <b></b>
i 5 Ignites 325	i	arcury Fulminate	0.23*
10		Leod Azide	0.23*
15		#Alternative initiating charges.	·····
20		Ballietic Mortar, % 7NT:	
		Treuzi Test, % TNT:	•
75°C Internetional Heat Test: % Loss in 48 Hrs		Plata Dant Test:	
70 COS IN 40 / ITS		Method	
100°C Heat 7est:		Condition	
% Loss, 1st 4" Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
		Detenation Rate:	
Flammability Index: Will not con	tinue to burn	Crafinement	None
Hygrescopicity: %	0.02	- Condition	Cast
······································		Charge Diameter, In.	1.0
Veletility:		Density, gm/cc	1.60
······································		Rate, meters/second	7310

# Tetrytol, 65/35

Frequentation Test:		Sheped Charge Effectivaness, TNY ==	
	۹.	(d) (e Giass Cones Steel	) Cones
90 mm HE, M71 Prejectile, Lot WC-9 Density, gm/cc	1.61		26
Charge Wt, Ib	2.010		19
Total No. of Fragments:			
For TNT	703	Color: Light yello	w to buff
For Subject HE	856		سيبيتيني معربيني ويست
3 inch HE, M42A1 Projectile, Lot KC-:	5.	Principal Usos: Bursters, demoli	tion blocks
Density, gn/cc	1.60		
Charge Wt, Ib	0.845		
Tatal No. of Fragmonts:			
For TNT	514	Method of Loeding:	Cast
For Su ⁴ ject HE	585	Looding Density: gm/cc	1.60
Fregment Velocity: ft/sec	······································		2100
At 9 ft At 25½ ft		Storege:	·····
Dansity, gm/cc		Method	Dry
Blact (Relative to TNT):		Hazard Class (Quantity-Distance)	C1868 9
Ain		Compatibility Group	Group I
Peak Pressure			0
Impulse		Exudation Exc	udes at 65°C
Energy			
Air, Confined: Impulse			
Under Water: Peak Pressure			
Impulse			
Energy			
Underground: Peak Pressure			
Impulse		₽ s	
Energy			

Frank Constanting Party

X Star Star

348

### Tetrytol, 80/20, 75/25, 70/30, 65/35

Downloaded from http://www.everyspec.com

AMCP 706-177

#### Compatibility with Metals:

1

Dry: Copper, brass, aluminum, magnesium, stainless steel, mild steel, mild steel coared with acid proof black paint and mild steel plated with copper, cadmium, zinc or mickel are unaffected. Magnesium-aluminum alloy is slightly affected.

<u>Wet:</u> Stainless steel and mild steel coated with acid-proof black paint are unaffected. Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, mild steel and wild steel plated with cadmium, copper, zinc or nickel are slightly affected.

#### Preparation:

Tetrytols are manufactured by heating TNT in a melting kettle, equipped with a stirrer, until all the TNT is melted. The necessary amount of herryl is added and heating and stirring are continued. The temperature is allowed to drop from  $100^{\circ}$ C until the mixture is of maximum viscosity suitable for pouring. Part of the tetryl dissolves in TNT forming a eutectic mixture which contains 55 percent tetryl. This mixture freezes at  $67.5^{\circ}$ C.

#### Origin:

4

Tetrytols were developed during World War II. The 70/30 tetryl/INT castable mixture is the most important in military applications.

#### References: 74

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III, Miscellanous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1962.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NOL Memo 10, 303, 15 June 1949.

(d) Eastern Labora'cry, du Pont, <u>Investigation of Cavity Effect</u>, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W6/2-ORD-5723.

(e) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Seport, Eastern Lab, du Pont, 18 September 1943, NDRC Contract W-672-ORD-5723.

(f) Also see the following Picatinny Arsenal Technical Reports on Tetrytol:

<u>0</u>	<u>1</u>	2	3	2	6	<u>7</u>	<u>8</u>	2
1260 1360 1420 1500 1530	1291 1311 1451 1651 1951	1372	1193 1213 1363 1493	1285 1325 1885 2125	1376 1436 1466 1506	1477 1737 1797	1158 1388 1838	1379

⁷⁴See footnote 1, page 10,

# AMCP 705-177

P

調整

# TNT (Trinitrotoluene)

Ļ

Composition: %		Melecular Weight: (C	7 ^H 5 ^N 3 ^O 6	;)	227
с 37.0 сн _з		Oxygen Balance: CO, % CO %			-74 -25
N 18.5	-NO2	Density: gm/cc	Crysta]	- <u></u>	1.65
0 42.3		Melting Paint: "C			81
C/H Rotio 0.549 NO	2	Freezing Points *C		*******	
Impact Sansitivity, 2 Kg Wts		Bailing Paint: *C		,	
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	95-100+ 14-15 17	Refractive Index, n ^D		a B T	1.5430 1.6742 1.717
	sffected sffected	Vecuum Stability Test: cc/40 Hrs, at 90°C			
Rifle Builet Impact Test: Trials	*****	- 100°C			0.10 0.23
*		135°C			0.44
Explosions . 4		150*C			0.65
Partials O					
Burned O Unaffected G		200 Gram Komb Sand Yo Sand, gm	aat :		48.0
Explosion Yemperature: *C Seconds, 0.1 (no cop used) 570 1 520 5 Decomposes 475 10 465		Sensitivity to Initiation; Minimum Detonating Mercury Fulminate Lead Axide *Alternative_initi	•		0.24# 0.27#
15					1=100
20		Ballistic Mortar, % TN Trauxi Test, % TNT:	• <u> </u>		i=100
75°C International Heat Tast: % Loss in 48 Hrs	0.04	Plate Dent Yest; Method	A	(a) A	<u> </u>
100°C Heat Test:		Condition	Cest	Pressed	Cast
% Loss, 1st 48 Hrs	0.2	Confined	Yes	Yes	No
% Loss, 2nd 48 Hrs	0.2	Density, gm/cc	1.61	1.50	1.61
Explosion in 100 Hrs	Nene	Brisance, % TNT	1.00	100	100
Fienimability Index: (b)	100	Detenation Rotes Confinement		onfined	Unconfin
Hygrascopicity: % 30°C, 90% RH	0.03			1854û	Cast 1.0
Veletility: 30°C	N11	- Density, gm/cc	1.9	6	1.56

TNT (Trinitrotoluene)

Downloaded from http://www.everyspec.com

## AMCP 706-177

Boostar Sonsitivity Test:	(c)		Decomposition Equation:	(h),	(1)
Condition	Pressed	Crat	Oxygen, atoms/sec	(h) 10 ^{11.4}	(1) $10^{12.2}$
Tetryl, gm	100	100	(Z/sec)		
Wax, in. for 50% De	tonation 1.68	0.82	Heat, kilocolorie/mole (ΔH, kcol/mol)	34.4	43.4
Wax, gm			Temperature Range, *C	275-310	238-277
Density, gm/cc	1.55	1.60	Phose	Liquid	Liquid
Heut of:	(â)		Armer Plate Impact Test:		
Combustion, col/gm		3620	Animer Field Impact Fest.		
Explosion, cal/gm		1080	60 mm Mortar Projectile;		(5)
Gas Volume, cc/g	m	730	50% Inert, Velocity, ft		>1100
Formation, cal/gm		78.5	Aluminum Fineness		
Fusion, cal/am Tamperature, °C		22.34 79	500-ib General Purpose B	nan ha i	(٤)
English Master and Jam /	•				(57
Specific Heat: col/gm/	-	0.000	Plate Thickness, inches	Trials	🖇 Inert
20		0.309 0.328		•	
50		0.353	1	0	
80		0.374	154	0	
			11/2	14 1	100
Burning Rate:			- 131	ţ,	50
cm/sec			Bomb Drop Test:		
Thermel Conductivity: cal/set/cm/*C	See next p	ese.	T7, 2000-16 Semi-Armer-i	Piercing Bamb	vs Concrete:
Coefficient of Expansion	(>)		Max Safe Drop, ft	50	00-6000
Peaticiant at wybousids	•; (b)	_			
Linear, %/ C -40			500-lli Ganarci Purposa I	No Seal	
Linear, %/*C -40 ⁰ -40 ⁰ Volume, %/*C 27 ⁰	to 60°C 5.4 3 to 60°C 6.7 3 to 80°C 16 x	(10 ⁻⁵ (b)	500-H) General Purpose I Height, ft		ete:
Linear, %/*C -40 ⁰ -40 ⁰ Volume, %/*C 27 ⁰	to 60°C 5.4 3	(10 ⁻⁵ (b)		No Seal	ete: Seal
Linear, %/*C _40° _40° Volume, %/*C 27° 16°	to 60°C 5.4 3 to 60°C 6.7 5 to 80°C 16 x to 70°C 26.3	(10 ⁻⁵ ) 10 ⁻⁵ (b)	Height, ft	No Seal 4,000	ete: <u>Seal</u> 4-5,000
Linear, %/*C _40° _40° Volume, %/*C 27° 16° Herdness, Mahs' Scele;	to $60^{\circ}C$ 5.4 s to $60^{\circ}C$ 6.7 s to $80^{\circ}C$ 16 x to $70^{\circ}C$ 26.3 (e)	$(10^{-5})$ $10^{-5}$ (b) $x_10^{-5}$ (r.)	Height, ft Trials	<u>No Seal</u> 4,000 26	ete: <u>Seal</u> 4-5,000 20
Linear, %/*C _LC _L00 Volume, %/*C 270 160 Hardness, Mahs' Scale: Yeung's Medulus:	to 60°C 5.4 3 to 60°C 6.7 5 to 80°C 16 x to 70°C 26.3	$(10^{-5})$ $10^{-5}$ (b) $x \cdot 10^{-5}$ (n) 1.4	Height, ft Trials Unaffected Low Order	<u>No Sea1</u> 4,000 26 24	ete: <u>Seal</u> 4-5,000 20 20
Linear, %/*C _LC _L00 Volume, %/*C 270 160 Hardness, Mahs' Scale: Young's Modulus: E', dynes/cm ²	$\begin{array}{c} to \ 60^{\circ}C \ 5.4 \\ to \ 60^{\circ}C \ 6.7 \\ to \ 80^{\circ}C \ 16 \\ to \ 70^{\circ}C \ 26.3 \\ \hline \end{array}$	$(10^{-5})$ $10^{-5}$ (b) $\times 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$	Height, ft Trials Unaffected	<u>No Ses1</u> 4,000 26 24 2	ete: <u>Seal</u> 4-5,000 20 20 0
Linear, %/*C _LC _L00 Volume, %/*C 270 160 Hardness, Mahs' Scale: Yeung's Medulus:	$\begin{array}{c} to \ 60^{\circ}C \ 5.4 \\ to \ 60^{\circ}C \ 6.7 \\ to \ 80^{\circ}C \ 16 \\ to \ 70^{\circ}C \ 26.3 \\ \hline \end{array}$	$(10^{-5})$ $10^{-5}$ (b) $\times 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$ $0.79 \times 10^{6}$	Height, ft Trials Unaffected Low Order	<u>No Ses1</u> 4,000 26 24 2 0	ete: <u>Seal</u> 4-5,000 20 0 0
Linear, %/*C _LC _L00 Volume, %/*C 270 160 Hardness, Mahs' Scale: Young's Modulus: E', dynes/cm ²	$\begin{array}{c} to \ 60^{\circ}C \ 5.4 \\ to \ 60^{\circ}C \ 6.7 \\ to \ 80^{\circ}C \ 16 \\ to \ 70^{\circ}C \ 26.3 \\ \hline \end{array}$	$(10^{-5})$ $10^{-5}$ (b) $\times 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$	Height, ft Trials Unaffected Low Order High Order	<u>No Ses1</u> 4,000 26 24 2 0 Bomb vs Concr <u>No Ses1</u>	ete: <u>Seal</u> 4-5,000 20 20 0 0 0
Linear, %/*CLC L00 Volume, %/*C 270 160 Herdness, Mehs' Scale: Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc	to $60^{\circ}C$ 5.4 s to $60^{\circ}C$ 6.7 s to $80^{\circ}C$ 16 x to $70^{\circ}C$ 26.3 (e) (b)	$(10^{-5})$ $10^{-5}$ (b) $\times 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$ $0.79 \times 10^{6}$ 161	Height, ft Trials Unaffected Low Order High Order	<u>No Ses1</u> 4,000 26 24 2 0 Bomb vs Conce	ete: <u>Sea1</u> 4-5,000 20 20 0 0
Linear, %/*C =4C =40 ⁰ Volume, %/*C 27 ⁰ 16 ⁰ Hardness, Mahs' Scale: Yeung's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: 1	to $60^{\circ}C$ 5.4 s to $60^{\circ}C$ 6.7 s to $80^{\circ}C$ 16 x to $70^{\circ}C$ 26.3 (e) (b)	$(10^{-5})$ (b) $x 10^{-5}$ (b) $x 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$ $0.79 \times 10^{6}$ 161 $\infty$ -14000	Height, ft Trials Unaffected Low Order High Order 1000-Ib General Purpose	<u>No Ses1</u> 4,000 26 24 2 0 Bomb vs Concr <u>No Ses1</u>	ete: <u>Seal</u> 1-5,000 20 20 0 0 ete: <u>Seal</u> 5,000 26
Linear, %/*C _LC _L00 Volume, %/*C 270 160 Herdness, Mehs' Scele: Yeung's Medulus: E', dynes/cm ² E, lb/inch ²	to $60^{\circ}C$ 5.4 s to $60^{\circ}C$ 6.7 s to $80^{\circ}C$ 16 x to $70^{\circ}C$ 26.3 (e) (b)	$(10^{-5})$ $10^{-5}$ (b) $\times 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$ $0.79 \times 10^{6}$ 161	Height, ft Trials Unaffected Low Order High Order <b>1000-Ib General Purpose</b> Height, ft	<u>No Ses1</u> 4,000 26 24 2 0 Bomb vs Concr <u>No Ses1</u> 5,000	ete: <u>Seal</u> 4-5,000 20 0 0 ete: <u>Seal</u> 5,000
Linear, %/*C =4C =40 ⁰ Volume, %/*C 27 ⁰ 16 ⁰ Hardness, Mahs' Scale: Yeung's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: 1	to $60^{\circ}C$ 5.4 s to $60^{\circ}C$ 6.7 s to $80^{\circ}C$ 16 x to $70^{\circ}C$ 26.3 (e) (b)	$(10^{-5})$ (b) $x 10^{-5}$ (b) $x 10^{-5}$ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 x - 14000 1.62	Height, ft Trials Unoffected Low Order High Order <b>1000-Ib General Purpose</b> Height, ft Trials	<u>No See1</u> 4,000 26 24 2 0 Bomb vs Concr <u>No See1</u> 5,000 21	ete: <u>Seal</u> 1-5,000 20 20 0 0 ete: <u>Seal</u> 5,000 26
Linear, %/*C -4C -60 Volume, %/*C 27 16 Herdness, Mehs' Scale: Young's Medulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: I Density, gm/cc Veper Pressure: *C	to 60°C 5.4 5 to 60°C 6.7 5 to 80°C 16 x to 70°C 26.3 (e) (b) b/inch ² 1380	$(10^{-5})$ (b) $x 10^{-5}$ (b) $x 10^{-5}$ (n) 1.4 $5.45 \times 10^{10}$ $0.79 \times 10^{6}$ 161 $\infty$ -14000	Height, ft Trials Unoffected Low Order High Order 1000-15 General Purpose I Height, ft Trials Unaffected	<u>No Sea1</u> 4,000 26 24 2 0 <b>Bamb vs Concr</b> <u>No Sea1</u> 5,000 21 18	ete: <u>Seal</u> 4-5,000 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
Linear, %/*C -4C -L0 ⁰ Volume, %/*C 27 ⁰ 16 ⁰ Herdness, Mehs' Scale: Young's Medulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: I Density, gm/cc Veper Pressure: *C 80	to 60°C 5.4 3 to 60°C 6.7 3 to 80°C 16 x to 70°C 26.3 (e) (b) b/inch ² 1380	$(10^{-5})$ (b) $x 10^{-5}$ (b) $x 10^{-5}$ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 x - 14000 1.62	Height, ft Trials Unoffected Low Order High Order 1000-15 General Purpose 1 Height, ft Trials Unoffected Low Order	<u>No Sea1</u> 4,000 26 24 2 0 <b>Bamb vs Concr</b> <u>No Sea1</u> 5,000 21 18 0	ete: <u>Seal</u> 4-5,000 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
Linear, %/*C -40° -40° Volume, %/*C 27° 16° Hardness, Mahs' Scale: Yeung's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: 1 Density, gm/cc Veper Pressure: *C 80 85	to 60°C 5.4 5 to 60°C 6.7 5 to 80°C 16 x to 70°C 26.3 (e) (b) b/inch ² 1380 mm Mercury 0.042 0.053	$(10^{-5})$ (b) $x 10^{-5}$ (b) $x 10^{-5}$ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 x - 14000 1.62	Height, ft Trials Unoffected Low Order High Order 1000-15 General Purpose 1 Height, ft Trials Unoffected Low Order	<u>No Sea1</u> 4,000 26 24 2 0 <b>Bamb vs Concr</b> <u>No Sea1</u> 5,000 21 18 0	ete: <u>Seal</u> 4-5,000 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
Linear, %/*C -4C -L0 ⁰ Volume, %/*C 27 ⁰ 16 ⁰ Herdness, Mehs' Scale: Young's Medulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: I Density, gm/cc Veper Pressure: *C 80	to 60°C 5.4 3 to 60°C 6.7 3 to 80°C 16 x to 70°C 26.3 (e) (b) b/inch ² 1380	$(10^{-5})$ (b) $x 10^{-5}$ (b) $x 10^{-5}$ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 x - 14000 1.62	Height, ft Trials Unoffected Low Order High Order 1000-15 General Purpose 1 Height, ft Trials Unoffected Low Order	<u>No Sea1</u> 4,000 26 24 2 0 <b>Bamb vs Concr</b> <u>No Sea1</u> 5,000 21 18 0	ete: <u>Seal</u> 4-5,000 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Level and the second

All all as a

ļ

## INT (Trinitrotoluene)

90 mm HE, M71 Prejectile, Let WC-91:       Gloss Cones       Steel Cones         Density, gm/cc       1.60       Hole Volume       100       100         Total Ne. ef Fregmente:       For TNT       703       Calor:       Light yellow         For Subject HE       703       Principel Use:       GP boxbs, H2 projectiles, det KC-5:         Density, gm/cc       1.60       Obsection       Principel Use:       GP boxbs, H2 projectiles, det KC-5:         Density, gm/cc       1.60       Obsection       Generation       Generation         For Subject HE       514       Principel Use:       Generation       Generation         For Subject HE       514       Sterage:       Generation       Generation         For Subject HE       514       Leading Density: gm/cc       See bulow         Fregment Velocity: fr/sec       600       Art       2. Pressed         Ornsity, gm/cc       1.58       Mathed of Leading:       1. Cast         Air:       Head Pressure       100       Inou       Generation         Impulse       100       Inou       Generation       Inou         Impulse       100       Inou       See Julow       Inou         Air:       Head Pressure       100       Inou <th>Fragmentation Test:</th> <th></th> <th>Shaped Charge Effectiveness, $TNT = 100$:</th>	Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$ :		
Charge Wr, Ib2.104Hole Depth100100Total No. of Fregments: For TNTT03 For Subject HET03Celer:Light yellow3 lack HE, M42A1 Projectile, Ler KC-5: Densirv, gm/cc1.60Principal Uses: demolition charges, depth charges, grenades, propellant compositions3 lack HE, M42A1 Projectile, Ler KC-5: Densirv, gm/ccMathed of Loading: $2.0848$ I. Cast $2.0948$ Total No. of Fregment: For Subject HESil4Mathed of Loading: $2.09488$ I. Cast $2.094888$ Total No. of Fregment: For Subject HESil4Mathed of Loading: $2.095888888888888888888888888888888888888$	90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel Cones		
Cringte Wi, 10     21107     Interstein       Total Ne. of Fregments:     703       For TNT     703       For Subject HE     703       Jineb HE, M42A1 Projectile, Lee KC-5:     Demsity, gm/cc       Demsity, gm/cc     1.60       Charge Wt, 1b     0.848       Total Ne. of Fregments:     For Subject HE       For TNT     514       For Subject HE     514       Fregment Velocity: fr/sec     (k)       Ar 91 b     2500       Ar 91 b     2500       Mathod of Leading:     1. Cast       Fregment Velocity: fr/sec     (k)       Ar 91 b     2500       Mathod Fregment Velocity: fr/sec     (k)       Ar 91 b     2500       Mathod     Dary       Head Ing Density: gm/cc     See bulow       Fregment Velocity: fr/sec     (k)       Ari:     2350       Density: gm/cc     Leading Density: gm/cc       Air:     Head Ing Density: gm/cc       Head Ing Density: gm/cc     Leading Density: gm/cc       Air:     Head Ing Density: gm/cc       Head Ing Density: gm/cc     Leading Density: gm/cc       Air:     Head Ing Density: gm/cc       Head Ing Density: gm/cc     Leading Density: gm/cc       Air:     Head Ing Density: gm/cc <th>Density, gm/cc</th> <th>1.60</th> <th>Hole Volume 100 1.00</th>	Density, gm/cc	1.60	Hole Volume 100 1.00		
For TNT     703       For Subject HE     703       3 Inch HE, M42A1 Projectile, Let KC-5:     Demain, gm/dc       Demain, gm/dc     1.60       Charge Wt, Ib     0.848       Tetal Ne. of Fregments:     For Subject HE       For Subject HE     514       Fregment Velocity: Hr/sec     (k)       At 9 /b     2560       At 9 /b     2560       At 9 /b     2560       At 25 /a ft     2560       Density, gm/cc     1.58       Mathod of Loading:     1. Cast       Fregment Velocity: H/sec     (k)       At 9 /b     2560       At 9 /b     2560       At 9 /b     2560       Start Relative to TNT):     Hozerd Class (Quontity-Distance)       Air:     Pressure       Incuber     100       Impulse     100       Incert Weter:     100       Incert Weter:     100       Incert Weter:     100       Impulse     100       Inder Yessure     100       Inder W	Charge Wt, Ib	2.104	Hole Depth 100 100		
For TNT703 For Subject HE703Jinck HE, M42A1 Projectile, Let KC-5: Density, gn/cc1.60Density, gn/cc1.60Charge Wt, ib0.888Total No. of Fregments: For Subject HE514For Subject HE514For Subject HE514For Subject HE2600At 21 tr2500Steringe Wt, ib1.58Mathed of Loading:1. Cast 2. PressoidFregment Velecity: Marked et TNT2600At 21 tr2500Steringe:1.58MethodBrayVisc Kressure100Impulse100Incrv Velecity: trouble100Marked et StationIone at 65°CIncrv Velecity: trouble100Air: Deck Pressure100Under Weter: trouble100Impulse100Loeding Density: for provise100Undersynamic trouble100Undersynamic trouble100Undersynamic trouble100Undersynamic trouble100Undersynamic trouble100Undersynamic trouble100Undersynamic trouble100Undersynamic trouble100Energy100Undersynamic trouble100Energy100Undersynamic trouble100Energy100Undersynamic trouble100Energy trouble100Energy trouble100 <td>Total No. of Fragments:</td> <td></td> <td>Calar Light vellow</td>	Total No. of Fragments:		Calar Light vellow		
3 inch HE, M42A1 Projectile, Let KC-5:         Density, gm/cc       1.60         Charge Wr, Ib       0.848         Total No. of Fregments:       For TNT         For Subject HE       514         Fregment Velocity: fr/sec       (k)         Ar 2 ir       2500         Density, gm/cc       1.58         Method       Dary         Head Pressure       100         Impulse       100         Air:       Veck Pressure         Veck Pressure       100         Impulse       100         Air:       Compatibility Group       Croup I         Veck Pressure       100         Impulse       100         Incertage	For TNT	703			
3 inch HE, M42A1 Projectile, Lot KC-5:       I.60         Densire, gnr/cc       1.60         Charge Wr, Ib       0.848         Total Na. of Fregments:       Sl4         For Subject HE       514         Fregment Velocity: fr/sac       (k)         Al 7 1r       250         Densire, gnr/cc       1.60         Fregment Velocity: fr/sac       (k)         Al 7 1r       250         Densire, gnr/cc       1.58         Method       Dry         Hoad Pressure       100         Impulse       100         Frergy       100         Mir, Confined:       100         Inroulde       100         Inroulde       100         Under Weter:       100         Prok Pressure       100         Inroulde       100         Undergreend:       100	For Subject HE	703	Principal Uses: GP bombs, HE projectiles,		
Density, gn/cc       1.60         Charge Wt, lb       0.848         Total Ne. of Fregments:       514         For Subject HE       514         Fregment Velocity: ft/sec       (k)         Al 2 Ir       2500         Density, gm/cc       See bulow         Fregment Velocity: ft/sec       (k)         Al 2 Ir       2500         Density, gm/cc       1.58         Method       Dry         Hoard Class (Quantity-Distance)       Class 9         Ownsity, gm/cc       1.59         Method       Dry         Hoard Class (Quantity-Distance)       Class 9         Compatibility Group       Group I         Hoard Class (Quantity-Distance)       Class 9         Compatibility Group       Group I         Exudation       None at 65°C         Impulse       100         Impulse	3 Inch HE, M42A1 Projectile, Let KC-5:		demolition charges, depth charges,		
Total No. of Fragments: For TNTFor Subject HE514For Subject HE514Fragment Velocity: fi/sec(k)A1 25.g. if2500Ornsity, gm/cc1.58Blost (Relative to TNT):MathodPack Pressure100Impulse100Freery100Impulse100Incode f Louding:1. 58MathodDrryBlost (Relative to TNT):Hozord Class (Quantity-Distance)Air:Compatibility GroupOroup IPack Pressure100Impulse100Impulse100Incoder100Incoder100Incoder100Incoder100Deference100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100Incoder100 <td>Density, gm/cc</td> <td>1.60</td> <td>6</td>	Density, gm/cc	1.60	6		
For TNT       514         For Subject HE       514         Fregment Velecity: ft/sec       (k)         A1 9 (t       2500         A1 9 (t       2350         Onsity, gm/cc       1.58         Biost (Relative to TNT):       Hozard Closs (Quantity-Distance)         Air:       Peak Pressure         Peak Pressure       100         Impulse       100         Incurve       1.52 <td>Charge Wt, Ib</td> <td>0.848</td> <td></td>	Charge Wt, Ib	0.848			
For TNT       514         For Subject HE       514         Fregment Velecity: ff/sec       (k)         A1 9 1r       2500         A1 25 1g th       2350         Density, gm/cc       1.58         Bleat (Relative to TNT):       Hozord Closs (Quantity-Distance)         Air:       Peak Pressure         Peak Pressure       100         Impulse       100         Energy       100         Incustor       100         Energy       100         Incustor       100         Energy       100         Underground:       100         Peak Pressure       100         Incustor       100         Energy       100         Underground:       100         Peak Pressure       100         Impulse       100         Energy       100         Underground:       100         Peak Pressure       100         Impulse       100         Energy       100         Underground:       100         Energy       100         Underground:       100         Energy       100 <tr< td=""><td>Total No. of Fragments:</td><td></td><td>Mothed of Londing: 1. Cast</td></tr<>	Total No. of Fragments:		Mothed of Londing: 1. Cast		
Leeding Density: $gm/cc$ See bulowFragment Velecity: ft/sec(k)Ai 9 th2500SterygeiAl 25 lu ft2350SterygeiConsity, gm/cc1.58MethodIrryBlost (Relative to TNT):Hazard Class (Quantity-Distance)Class 9Air:Pack Pressure100Group IPeak Pressure100ExudationNone at $65^{\circ}C$ Inculva100ExudationNone at $65^{\circ}C$ Inculva100Loading Density: ga/ce1. Cast $1.58-1.59$ Vinder Water:1001.351.40Inculva100Thermel Conductivity: cul/sec/cm/°C3.5Underpresend: Peak Pressure100Thermel Conductivity: cul/sec/cm/°CUnderpresend: Peak Pressure1001.51 gm/cc (g)Underpresend: Peak Pressure1001.67 gm/cc (g)Underpresend: Peak Pressure1001.67 gm/cc (g)Underpresend: Peak Pressure1001.67 gm/cc (g)Underpresend: Peak Pressure1001.67 gm/cc (g)Underpresend: Peak Pressure1001.67 gm/cc (g)Underpresend: Peak Pressure1001.67 gm/cc (g)Underpresend: Peak Pressure100Underpresend: Peak Pressure100Underpresend: Peak Pressure100Underpresend: Peak Pressure100Underpresend: Peak Pressure100Underpresend: Peak Pressure100Underpresend: <b< td=""><td>For TNT</td><td>514</td><td></td></b<>	For TNT	514			
Frequency Velocity: ft/sec(k)A1 2 fr2500A1 2 fr2360Density, gm/cc1.58Blast (Relative to TNT):Hazard Class (Quantity-Distance)Air:Peak PressurePeak Pressure100Impulse100ExudationNone at $65^{\circ}$ CIncurve100Mir:Loeding Density; gm/ccIncurve100Mire100Incurve100Mire100Incurve100Mathematic100Incurve100Mire Water:100Peak Pressure100Undergreund:100Preck Pressure100Undergreund:100Preck Pressure100Undergreund:100Preck Pressure100Undergreund:100Preck Pressure100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impulse100Impu	For Subject HE	514			
Ar 9.14 Ar 251.2 ft2600 2360Sterage:Density, gm/cc1.58MethodDryBlast (Relative to TNT):Hozard Class (Quantity-Distance)Class 9Air:Peak Pressure100Group IPeak Pressure100ExudationNone at $65^{\circ}C$ Impulse100Loading Density; gm/ccIncurve100Loading Density; gm/ccAir:100Loading Density; gm/ccIncurve100Loading Density; gm/ccIncurve100IncurveVinder Water:1001.52Peak Pressure1001.53Under Water:1001.635Peak Pressure1001.52Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:100Underground:1.51Underground:1.52Underground:1.00Underground:1.51Underground:1.51Underground:<	· · · · · · · · · · · · · · · · · · ·	().)	Leeding Density: gm/cc Sec Delow		
At $25t_2$ (t $2360$ Sterge:Density, gm/cc1.58MethodDryBlost (Relative to TNT):Hozord Closs (Quantity-Distance)Class 9Air:Peak Pressure100Group IPeak Pressure100ExudationHone at $65^{\circ}$ CImpulsa100ExudationHone at $65^{\circ}$ CIncuste100Loeding Density; gm/ccIncuste100Loeding Density; gm/ccVick Pressure1001. Cast 1.58-1.59Under Weter:1001. Cast 1.58-1.59Under Pressure1001.35Undergreend:100Thermel Conductivity: cul/sec/cm/°CUndergreend:1001.51 gm/cc (g)Peak Pressure1001.54 gm/cc (g)Undergreend:1001.54 gm/cc (g)Peak Pressure100Undergreend:100Pressure100Impulse100Energy100Undergreend:100Pressure100Impulse100Energy100Undergreend:100Impulse100Energy100Uside at Poom Temperature ( $25^{\circ} - 30^{\circ}C$ ): $100^{\circ}C$ Undergreend:100Temp, $85^{\circ}C$ 0.139 $100^{\circ}C$ Undergreend:100Temp ( $25^{\circ} - 30^{\circ}C$ ): $100^{\circ}C$ Undergreend:2.92					
MathodIrryBlast (Relative to TNT):MathodIrryAir:Peak Pressure100Impulse100ExudationImpulse100ExudationAir, Confined:InrpulseInrpulse100Mider Weter:100Peak Pressure100Inder Weter:100Peak Pressure100Under Weter:100Peak Pressure100Under State100Under State100Under Gender:100Peak Pressure100Underground:100Peak Pressure100Underground:100Impulse100Impulse100Impulse100Impulse100Impulse100 <td< td=""><td></td><td></td><td>Sterige:</td></td<>			Sterige:		
Start (Relative to TNT):       Hozard Class (Quantity-Distance)       Class 9         Air:       Peak Pressure       100       Group I         Impulse       100       Exudation       None at $65^{\circ}$ C         Incertain Street       100       Exudation       None at $65^{\circ}$ C         Air:       Compatibility Group       Group I         Marce       100       Exudation       None at $65^{\circ}$ C         Air:       Compatibility Group       Group I         Marce       100       Exudation       None at $65^{\circ}$ C         Air:       Compatibility Group       Group I         Marce       100       Exudation       None at $65^{\circ}$ C         Marce       100       Incertain Street       Street         Marce       100       Incertain Street       Street         Marce       100       Intermal Conductivity:       Culfsec/cm/°C         Undergreend:       100       Intermal Conductivity:       Street         Pressure       100       Intermal Conductivity:       Street         Impulse       100       Street       Street         Impulse       100       Street       Street         Impulse       100       Street       Street	Censity, gm/co	1.58			
Air: Peak Pressure100Compatibility GroupGroup IAir: Peak Pressure100ExudationNone at $65^{\circ}C$ Fmerry100ExudationNone at $65^{\circ}C$ Air, Confined: Impulse100ExudationNone at $65^{\circ}C$ Inder Water: Preak Pressure100Loading Density: gu/ccgu/ccUnder Water: Preak Pressure1001.52 1.59 2. Pressed psi x 10 ³ Under Water: Preak Pressure1001.35 1.40 1.45 1.52 1.55 1.59 1.6Underground: Preak Pressure100Thermal Conductivity: culfsec/cm/°CUnderground: Preak Pressure100Thermal Conductivity: culfsec/cm/°CUnderground: Preak Pressure1001.51 gm/cc (g) 5.28 x 10 ⁻¹⁴ 1.51 gm/cc (g) 5.6 x 10 ⁻¹⁴ 1.51 gm/cc (g) 12.21 x 10 ⁻¹⁴ Underground: Preak Pressure1001.67 gm/cc (g) 12.21 x 10 ⁻¹⁴ 1.67 gm/cc (g) 12.21 x 10 ⁻¹⁴ Underground: Preak Pressure1001.67 gm/cc (g) 12.21 x 10 ⁻¹⁴ 1.67 gm/cc (g) 12.21 x 10 ⁻¹⁴ Energy100Viscosity, poises: Temp, 85°C 100°C0.139 2.92			Method Dry		
Weak Pressure       100       Exudation       None at $65^{\circ}C$ Impulse       100       Exudation       None at $65^{\circ}C$ Air, Confinad:       100       I. Cast 1.58-1.59       Pressed psi x $10^3$ Under Water:       100       1. Cast 1.58-1.59       Pressed psi x $10^3$ Under Water:       100       3 5 10 15 20 30 50       1.35 1.40 1.45 1.52 1.55 1.59 1.6         Under you'se       100       Thermal Conductivity:       cell/sec/cm/°C         Underground:       100       Thermal Conductivity:       cell/sec/cm/°C         Underground:       100       1.51 gm/cc (g) 7.12 x $10^{-14}$ 1.54 gm/cc (g) 12.21 x $10^{-14}$ Underground:       100       1.67 gm/cc (g) 12.21 x $10^{-14}$ 1.67 gm/cc (g) 12.21 x $10^{-14}$ Impulse       100       1.67 gm/cc (g) 0.139       100°C       0.095         Bulk Modulus et Poom       Tempersture ( $25^{\circ} - 30^{\circ}C$ ):       (m)       Tempersture ( $25^{\circ} - 30^{\circ}C$ ):       (m)         Underground:       1000       100°C       0.095       2.92	Stort (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9		
Impulse100ExudationNone at $65^{\circ}C$ Impulse100Ione at $65^{\circ}C$ Air, Confined: Impulse100Ione at $1.58 - 1.59$ Under Water: Preak Pressure1001. Cast $1.58 - 1.59$ 2. Pressed psi x $10^3$ Under Water: Preak Pressure1003 5 10 15 20 30 50Preak Pressure1001.35 1.40 1.45 1.52 1.55 1.59 1.60Impulse100Thermal Conductivity: cul/sec/cm/°CUnderground: Preak Pressure100Thermal Conductivity: cul/sec/cm/°CUnderground: Preak Pressure1001.51 gm/cc (g) 5.28 x $10^{-4}$ Underground: Preak Pressure1001.67 gm/cc (g) 12.21 x $10^{-4}$ Underground: Preak Pressure1001.67 gm/cc (g) 12.21 x $10^{-4}$ Underground: Preak Pressure1001.67 gm/cc (g) 2.21 x $10^{-4}$ Impulse1001.67 gm/cc (g) 2.21 x $10^{-4}$	Air:		Compatibility Group Group I		
Impulse       Impulse         Finergy       Io0         Air, Contined: Impulse       Io0         Under Water:       Io0         Peak Pressure       Io0         Impulse       Io0         Underground:       Io0         Peak Pressure       Io0         Impulse       Io0         Impulse       Io0         Emergy       Io0         Beam gy       Io0         Viscosity, poises:       Temp, 85°C       0.139         Tempr 85°C       0.139         Io0°C       0.095         Bulk Modulus et Poom       Temperature (25°-30°C):       (m)         Dynes/cm ² x, 10 ⁻¹⁰ 2.92	Peak Pressure	100			
Air, Confined: Impulse       Loading Density: $gm/cc$ Impulse       100         Under Water: Prok Pressure       100         100 $3 5 10 15 20 30 50$ 1.35 1.40 1.45 1.52 1.55 1.59 1.6         Impulse       100         Emergy       100         Underground: Prok Pressure       100         Prok Pressure       100         Impulse       100         Impulse       100         Impulse       100         Viscosity 1.19 gm/cc (g) 5.28 x 10 ⁻¹⁴ 1.51 gm/cc (g) 7.12 x 10 ⁻¹⁴ 1.54 gm/cc (g) 5.6 x 10 ⁻¹⁴ Impulse       100         Emergy       100         Viscosity, poises: Temp, 85°C       0.139 100°C         Unk Modulus at Poom Temperature (25°-30°C):       (m) 2.92	Impulse	100	Exudation None at 55°C		
Inclusion1001. Cast 1.58-1.592. Pressed psi x $10^3$ Under Weter:351015203050Peak Piessure1001.351.401.451.521.551.591.6Impulse100Thermal Conductivity: cul/sec/cm/°CCul/sec/cm/°CCul/sec/cm/°CUnderground: Peak Pressure100Thermal Conductivity: cul/sec/cm/°C7.12 x $10^{-14}$ Underground: Peak Pressure1001.51 gm/ce (g)5.28 x $10^{-14}$ Impulse1001.67 gm/ce (b)5.6 x $10^{-14}$ Impulse1001.67 gm/ce (c)12.21 x $10^{-14}$ Emergy100Viscosity, poises: Temp, $85^{\circ}$ C0.139Under server100Use server0.095Bulk Modulus st Poom Temperature ( $25^{\circ}-30^{\circ}$ C): Dynes/cm ² x $10^{-10}$ (m) 2.92	Fineray	100			
Under Water:       3       5       10       15       20       30       50         Peak Piessure       100       1.35       1.40       1.45       1.52       1.55       1.59       1.6         Impulse       100       Intermal Conductivity:       1.52       1.55       1.59       1.6         Underground:       100       Intermal Conductivity:       1.51       gm/cc (g)       5.28 x 10 ⁻¹⁴ 1.51       gm/cc (g)       5.6 x 10 ⁻¹⁴ 1.51       gm/cc (g)       5.6 x 10 ⁻¹⁴ 1.51       gm/cc (g)       5.6 x 10 ⁻¹⁴ 1.67       gm/cc (g)       5.6 x 10 ⁻¹⁴ 1.67       gm/cc (g)       1.21 x 10 ⁻¹⁴ 1.54       1.52       1.55       1.59       1.6         Underground:       100       1.51       gm/cc (g)       5.28 x 10 ⁻¹⁴ 1.54       1.51       gm/cc (g)       5.6 x 10 ⁻¹⁴ 1.54       1.54       1.54       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55       1.55	Air, Confined:		Loading Density: gm/cc		
Peak Pressure       100       1.35       1.40       1.45       1.52       1.59       1.6         Impulse       100       Impulse       100       Impulse	Impulse	100	1. Cast 1.58-1.59 2. Pressed pai x 10 ³		
$\begin{array}{c ccccc} I & I & I & I & I & I & I & I & I & I $					
Energy       100       Interded Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Contro	Peak Pressure		1.35 1.40 1.45 1.52 1.55 1.59 1.6		
Underground:       100       Density 1.19 gm/cc (g) $5.28 \times 10^{-14}$ Peck Pressure       100       1.51 gm/cc (g) $7.12 \times 10^{-14}$ Impulse       100       1.67 gm/cc (g) $12.21 \times 10^{-14}$ Emergy       100       Viscosity, poises:         Temp, 85°C       0.139         100°C       0.095         Bulk Modulus st Poom       Temperature (25°-30°C):         Dynes/cm ² x 10 ⁻¹⁰ 2.92	Impulsu		Thermal Conductivity:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Energy	100			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Underground:		Density 1.19 gm/cc (g) $5.28 \times 10^{-1}$		
Impulse         100         1.67 gm/cc (g)         12.21 x 10 ⁻⁴ Energy         100         Viscosity, poises: Temp, 85°C         0.139           100°C         0.095         Bulk Modulus at Poom Temperature (25°-30°C):         (m)           Dynes/cm ² x 10 ⁻¹⁰ 2.92         0.100		100	$1.51 \text{ gm/cc} (g) 7.12 \times 10^{-4}$		
Energy 100 <u>Viscosity, poises:</u> Temp, 85°C 0.139 100°C 0.095 Bulk Modulus at Poom <u>Temperature (25°-30°C):</u> (m) <u>Dynes/cm² x 10⁻¹⁰ 2.92</u>	Impulse	100	$1.67 \text{ gm/cc}$ (g) $12.21 \times 10^{-4}$		
Temp, 85°C       0.139         100°C       0.095         Bulk Modulus at Poom       0.095         Temperature (25°-30°C):       (m)         Dynes/cm² x 10 ⁻¹⁰ 2.92	Enwrgy	100			
Bulk Modulus at Poom <u>Temperature (25^o-30^oC):</u> (m) Dynes/cm ² x 10 ⁻¹⁰ 2.92			Temp, 85°C 0.139		
$\frac{\text{Temperature } (25^{\circ}-30^{\circ}\text{C}):}{\text{Dynes/cm}^2 \times 10^{-10}} \qquad (m)$					
			Temperature $(25^\circ - 30^\circ C)$ : (m)		
			Dynes/cm ² x 10 ⁻¹⁰ 2,92 Density, gm/cc 1.56		

### INT (Trinitrotoluene)

Effect of Temperature on Rate of Detonation: (1) Temperature of Charge, °C -54 21 60 60 16 16 24 Hours at Temperature 72 Density, gm/cc 1.64 1.63 1.62 1.64 6700 6820 6510 Rate, meters/second 6770 Sensitivity to Electrostatic Discharge, Joules; Through 100 Mesh:

Unconfined 0.05 Confined 4.4

Impact Sensitivity versus Temperature:

Picatinny Arsenal Apparatus, 2 kg wt, inches:

°c	inches
_40	17
Room	14
80	7
90	3
105-110	2 (5 expl in 20 trials)

### Impact Sensitivity versus Loading Method, Large Impact Apparatus, Inches:

Pressed at 1.60 gm/cc Cast at 1.60 gm/cc

T

N.

#### Rifle Bullet Impact Sensitivity versus Temperature, Confinement:

70 26

Stendard Iron Bomb;	Room Temperature	105° to 110°C
No Air Space Trials Exp. asions	10 l very low order	10 7
Air Space Trials Explosions	10 0	10 0
Tin or Cardboard Bombs:		
With or Without Air Space Trials Explosions	10 0	10 0

AMCP 706-17%

### TNT (Trinitrotoluene)

-----

Explosion Temperature versus 'INT Initial Temperature:

-----

TNT Temperature, Initial	Explosion Temperature, ^O C						
Room	470 (Decomposes)						
105°-100°C	480 (Decomposes)						
Explosion Temperature versus Confinement, ^O C:							
Unconfined	Decomposes 470						
Sealed in glass capillary	Explodes 320-335						

Viscosity at 80.5°C:

Viscosity, X, cp log X = 0.046 S + 1.25 S = % solid in slurry Farticle size effect, small

Density, gu/ce:

の語言の言語でないのでの

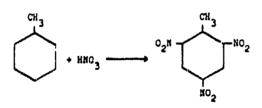
大学に いた 一部時間の

°c	State	gm/cc
27 to 70	Flaked	1.65
80	Flaked	1.64
82	Liquid	1.43
87	Liquid	1.48
95	Liquid	1.47

### Solubility of TNT, gm/100 gm (\$), in: (f)

War	Water Acetone		Benzene		Toluene		
°c	ž	°c	z	<u>°c</u>	¥	°C	ž
8580 8580	0.0100 0.0130 0.0285 0.0675	80 t 80 80 t 80 80 t 80 80 80 80 80 80 80 80 80 80 80 80 80 8	57 109 228 600	89580 89580	13 67 180 478 7 2000	89 68 68 68 0	28 55 130 367 >1700
	arbon chloride	Et	her	Chlor	oform		<u>hloro-</u> ylene
°c	ž	°c	ž	°c	ž	°c	ž
0 40 60 75	0.20 0.65 1.75 6.90 17.34 24.35	0	1.73 3.29	0 20 40	6 19 66 302	25 55	3.5 60

### AHC# 706-177


....

			<u></u>				
Pyrt	ldine	Methyl	acetate		iloride	ethyl-	hoxy~ acetate
<u>°c</u>	ź	°c	٤	• <u>c</u>	ź	°c	_2
20 40 60 70	140 250 640 1250	20 40 50	73 135 280	20 40 60	34 123 460	20 45 50	29.5 49 96
	chloro-	An	<u>iline</u>		propyl cohol	Ethe	nol
°c	 2	°c	ž	°c	ž	°c	. 2
20 40 50	18 50 100	10 30 50 70 80	6.1 11.5 29 74 130	20 50 20	0.76 1.96 2.95	0 22 20 20 00 70	0.62 1.25 2.85 8.4 25
1:00	utyl slooh	0]	<u>c</u>	arbon dist	ulfide	Chlorot	enzene
<u>°c</u>		ź	-	<u>'c</u>	ž	°C	é
0 20 40 50		0.20 0.61 1.41 2.35	2	0 0 0	0.14 0.44 1.4	20 30 40 50	35 51 79 116

TNT (Trinitrotoluene)

Preparation:

(AC 7258, 7259, 7260 - Nitration Kinetics) (<u>Chemistry of Powder and Explosives</u>, Davis)



In older processes trinitrotoluene (TNT) was slowly and laboriously nitrated in three stages using successively stronger acids. Today, however, a single stage nitration is possible, in a short time (less than one hour) producing TNT at a cost of a little less than 6d/1b. In England, a two stage continuous process was developed during World War II; in the first counter current strge, toluene was nitrated to the mono stage mononitrotoluene (MNT); in the second stage, also counter current, MNB was nitrated to TNT.

355

1 4 1

#### AMCP 706-177

#### TNT (Trinitrotoluene)

It was the British work, on the kinetics of nitration of toluene to TNT, that first pointed out the basic importance to nitration processes of the nitroxyl ion  $(NO_2+)$ , on the one hand, and the role of the bisulfate ion  $(HSO_2-)$  and unionized sulfuric acid on the other. These concepts were successful in explaining the maximum in nitration rate occurring at a sulfuric acid content of 92%. This work, for instance, leads to the following equation for the rate of formation of INT from DNT:

 $\frac{d(\mathrm{INT})}{dt} = K(\mathrm{NO}_2^+) [K'(\mathrm{HSO}_4^-) + K''(\mathrm{H}_2\mathrm{SO}_4)] (\mathrm{DNT})$ 

<u>Three Stage Process:</u> Toluene (100 gm) is nitrated to the mono derivative by slowly adding a mixture of 294 gm sulfuric acid (sp gr 1.84) and 147 gm nitric acid (sp gr 1.42) to it at  $30^{\circ}-40^{\circ}$ C, with good agitation. Acid addition requires 1-1.5 hour, and stirring at  $30^{\circ}-40^{\circ}$ C is continued 30 minutes longer. The mixture is cooled and the lower layer of spent acid drawn off.

Half the crude mono is dissolved in 109 gm sulfuric acid (sp gr 1.84) with cooling, the solution heated to  $50^{\circ}$ C and a mixture of 54.5 gm mitric acid (sp gr 1.50) and 54.5 gm sulfuric acid (sp gr 1.84) added, under agitation, at such a rate that the temperature is maintained between 90° and 100°C. Acid addition requires 1 hour, and stirring at 90°-100°C is continued 2 more hours.

While the dimitration mixture is still at  $90^{\circ}$ C, 145 gm fuxing sulfuric acid (oleum containing 15% free SO₃) is added slowly. A mixed acid of 92.5 gm each mitric acid (sp gr 1.50) and 15% oleum is slowly added, under good egitation at  $100^{\circ}$ -115°C over 12-2 hours. The mixture is stirred at  $100^{\circ}$ -115°C for 2 more hours, cooled, filtered, and the TNT cake broken up and vashed with water. The TNT is washed 3-4 times with hot water ( $85^{\circ}$ - $95^{\circ}$ C) with good agitation. The product can be purified either by recrystallization from alcohol or by washing it with 5 times its weight of 5% sodium bisulfite solution at  $90^{\circ}$ C for 5 hour with vigorous stirring, washing with hot water until the washings are colorless, and cooling slawly with stirring to granulate the product.

#### Origin:

Why was first prepared in 1863 by Wilbrand (Ann 128, 178), later by Beilstein and Nuhlberg (Bor 3, 202 (1870) and also Tiemann (Ber 3, 217 (1870), each using different methods of starting materials. It was nearly 30 years later when Housermann undertook its manufacture on an industrial scale (Z angev Chem, 16)1, p. (G; J Chem Ind, 1891, p. 1028). After 1901 TNT began to be used extensively as a military explosive and Germany Lacause the first nation to adopt it as a standard shell filler (1902-1904). During World War I all the major powers of the world were using TNT, with the quantity used limited only by the available supply of toluane. Prior to World War II the development of synthetic toluene from petroleum made available in the United States, an almost unlimited supply of this raw material. Because of the general suitability of TNT for melt-loading and it a extensive use in binary and ternary explosive mixtures, TNT is considered the most important military explosive known today.

#### Destruction by Chemical Decomposition:

THT is decomposed by adding it slowly, while stirring, to 30 times its weight of a solution prepared by dissolving 1 part of modium sulfide  $(Na_2S^{-9})!_2O)$  in 6 parts of water.

#### References:75

(a) D. P. MacDougull, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

⁷³See footnote 1, page 10.

#### TNT (Trinitrotoluene)

Downloaded from http://www.everyspec.com

AMCP 706-177

(b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) L. C. Smith and S. R. Welton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boostern, NOL Memo 10,303, 15 June 1949.

(d) L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.

(e) Report AC-2587.

(f) International Critical Tables and various other sources in the open literature.

(g) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC-2861, First Report, August 1942.

(h) A. J. B. Robertson, Trans Farad Society, 44, 977 (1948).

(i) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah, <u>Ind Eng Chem</u> (June 1956), pp. 1090-1095.

(j) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(k) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simuleted Shells, OSRD Report No. 5622, 2 January 1946.

(1) W. F. McCerry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PATH No. 2383, November 1950.

(m) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.

(n) Mantrov, Journal of Chemical Industry (Russia) 6, 1929, pp. 1686-1688.

(o) Also see the following Picatinny Arsenel Technical Reports on TNT:

<u>0</u>	<u>1</u>	2	3	<u>4</u>	2	6	I	<u>8</u>	2
10	291	132	43	364	65	86	47	118	99
30	551	582	83	694	195	266	87	288	249
240	731	782	133	874	425	556	507	638	269
350	861	892	273	904	555	666	527	738	319
630	891	972	513	1094	695	956	597	768	389
760	901	1072	643	1104	735	986	707	838	499
810	971	1182	673	1124	805	1046	807	1088	701
1120	1041	1192	743	1224	975	1146	817	1098	739
1140	1121	1272	853	1284	1145	1276	83,	1128	779
1170	1311	1292	863	1294	1155	1376	1107	1148	799
1260	1391	1342	1063	1304	1225	1446	1147	1158	889
1270	1431	1352	1123	1314	1285	1466	1217	1188	929
1360	1451	1372	1133	1341	1305	1476	1247	27.98	939
1400	1491	1402	1193	1411	1315	1556	1307	1228	1099
1460	1651	1452	1243	1444	1395	1636	1417	1238	1109
1500	1821	1472	1323	1454	1425	1756	1427	1308	1129

AMCP 706-177

# INT (Irinitrotoluene)

<u>0</u>	2	3	<u>4</u>	2	6	I	<u>8</u>	2
1530 1540 1550 1730 2010 2100 2160	1492 1562 1582 1712 1862	1373 1493 1553 1633 1693 1823 2063 2163	1524 1544 1564 1674 1754 1924 2064 2214	1435 1445 1515 1535 1535 1635 1635 1635 1865 1865 1715 1885 2125 2175	1956 2216 ,	1437 1457 157 1547 1557 1577 1597 1677 1797 1827 1827 1847 2007 2147 2167	1318 1338 1388 1418 1428 1578 1618 1628 1828 1828 1838 1838 1838 2008 2138 2168	1139 1179 1259 1289 1339 1369 1419 1429 14469 14469 1529 1549 1629 1689 1729 1809 1729 1809 1819 1819 1819 1819 1819 1819 181

A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AN

All provide the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

THE DEC

111

358

ł

Jan Beck

### Torpex

Sec. Charles

1.1.1.1.1.1.1.1.1

### AMCP 706-177

Composition: %		Molecular Wsight:	97
RDX	42	Oxygen Belance:	
		CO, %	-55 -26
int	40		
Aluminum	18	Density: gm/cc Cast	1.76-1.81
		Matting Point: *C	
C/H Ratio		Freezing Point: *C	
impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	42	Boiling Point: "C	
Sample Wt 20 mg	-	Refrective Index, 11th	
Picatinny Arsenal Apparatus, in.	9	nů	
Sample Wt, mg	15	• n <mark>b</mark>	
Friction Pondulum Test:		Vocuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Builet Import Test: Trials			
		120°C	1.0
Explosions 20		135°C	
Partials 80		150°C	
Burned O		200 Gram Jamb Sand Tast:	
Unaffected O		Sand, gm	59+5
Explasion Temperature: *C		Semultivity to Initiation:	
Seconds, 0.1 (no cop used)		Minimum Detonating Charge, gm	
		Mercu y Fulminate	0.18
5 Decomposes 260		Leod Azide	
10		Tetryl	
15		Ballistic Martur, % TNY: (a)	138
20		Treval Test, % TNT: (b)	130
75°C International Heat Tast:		Flaty Dant Test: (c)	
% Loss in 48 Hrs		Method	в
100/C Mark Yout		Condition	Cost
100°C Heat Test:	0.00	Confined	No
% Loss, 1st 48 Hrs		Density, gm/cc	1.83
% Loss, 2nd 48 Hrs	0.10	Brisonce, 96 TNT	120
Explosion in 100 Hrs	None		
Flammability Indux:	196	- Decembra River (d) Confinement	Mone
	· · · · · · · · · · · · · · · · · · ·	Condition	Cast
Hygroscapicky: % 30°C, 90% RH	0.00	Charge Diameter, in.	1.0
	······	Density, gm/cc	1.81
Veletility:		Rate, meters/second	7495

and and and

....

### AMCP 706-177

#### Torpex

			المحمد المحالي المحمد المحالية المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد
Beaster Sensitivity Test: Condition	(c) Pressed	Cast	Decomposition Equation: Oxygen, atoms/sec
Tetryl, gm	10	5	(Z/sec)
Wax, in. for 50% Detona	tion		Heat, kilocalorie/mole (AH, kcal/mol)
Wax, ym	2	0	Temperature Range, *C
Density, gm/cc	1.64	1.81	Phase
Densky, gm/cc	1.0 <del>4</del>	1.01	Filiase
Heat of:	(a)		Armer Piate Impect Test:
Combustion, cal/gm		3740	
Explosion, cal/gm		1800	60 mm Mortar Projectile: (a)
Gas Valume, cc/gm			50% Inert, Velocity, ft/sec 185
Formation, cal/gm			Aluminum Fineness
Fusion, cal/gm			
			500-lb General Purpose Bembs:
Specific Heet: cal/gm/*C	(b)		
At -5°C		0.22	Plate Thickness, Inches
Density, gm/cc		1.82	1
At 15 ⁰ C		0.24	114
At 15-C		0.24	14
			144
Burning Rate:			
cm/sec			
	(1)		Bomb Drop Test:
Thermel Conductivity: cal/swc/cm/*C	(७)	9.7 x 10 ⁻⁴	T7, 2000-16 Semi-Armer-Piercing Bernb vs Concrete:
Density, gm/cc		1.82	
	·····		Max Safe Drop, ft
Linear, %/*C =73 to	75°C 4.7 x	10 ⁻⁵ (d)	560-16 General Purpose Bomb ve Concrete:
Volume, %/*C			Height, ft
fierdness, Mohe' Scale:			Triola
			Unoffected
Young's Modulus:	(b)		Low Order
-	(0)	$3 \times 10^{10}_{6}$	High Order
E', dynes/cm²	9.9	8 x 10 ⁶	
E, Ib/inch ^a	202		1000-16 General Purpose Bomb vs Concrete:
Density, gm/cc		1.77	
······································			Height, ft
Compressive Strength: Ib/Inc	ch' (6) 21	00-2300	Triols
Density, gm/cc		1.77	Unoffected
Vapar Pressure:			Low Order
	Aercury		High Order

19. A.

### Torpex

### AMCP 706-177

Fragmentation Test:	,	Shaped Charge Effectiveness, TNT = 100: 50/36.5/13.5			
90 mm HE, M71 Projectile, Let WC-	91:	Glass Cones Ste	el Cones		
Density, gm/cc	1.75	Hole Volume 150	145 `		
Charge Wt, Ib	2.316	Hole Depth 127	131		
Total No. of Fregments:	Sec.				
For TNT	703	Color:	Gray		
For Subject HE	891				
3 inch HE, M42A1 Projectile, Let KC	-5:	Principel Usos: Depth charges,	UOMDS		
Dunsity, gm/cc	1,79				
Charge Wt, Ib	0.940				
Total No. of Fragments:					
For TNT	514	Mothed of Loading:	Cast		
For Subject HE	647	1			
· ·		Loading Density: gm/cc	1.76-1.81		
Fregment Velocity: ft/sec					
At 9 ft At 251/2 ft	2960 2800	Storage:	<u></u>		
Density gm/cc			•		
		Method	Dry		
Blast (Rela +re to TNT):	(e)	Hazard Class (Quantity-Distance)	Class 9		
Air:		Compatibility Group	Group I		
Peak Pre-sure	122				
Impulse	125	Exudation			
Energy	146	·			
Air, Confined:		Effect of ! superature on Impact Sensitivity.			
Impulse	116				
Under Water:		Temp. PA Impect Test			
Peak Pressure	116	<u> </u>	<u>z</u>		
Impulse	127	25 15			
Energy	153	32 7 104 8			
Underground: Peak Pressure		Viscosity, poises:			
Impulse		Temp, 83°C	4.5		
Energy		95°C	2.3		
		1			

124 6 6 6 6

.361

ŧ

• •

i

الله ا

573

•

4

....

#### Torpex

ALL AND AND

#### Preparation:

Torpex is manufactured by heating TNT to approximately  $100^{\circ}C$  in a steam-jacketed kettle equipped with a stirrer. Water vet RDX is added slowly to the molten TNT, while mixing and heating, until all the water is evaporated. Aluminum is added and the mixture is stirred until uniform. The mixture is cooled, with continued stirring, until it is suitable for pouring. Torpex can also be made by adding the calculated amount of TNT to Composition B to maintain the desired proportion of RDX/TNT, heating and stirring, and adding 18 percent of aluminum to complete the mixture.

#### Origin.

Toppex, a castable high explosive, was developed in England during World War II for use as a filler in warherds, mines and depth bombs. Several variations in the composition of toppex have been evaluated but the following are those used in service munitions:

	Torpex 2 unwaxed	Torpex 2 waxed	Torpex 3
	(a)	(b)	(c)
RDX, % INT, % Aluminum, % Wax, %	42 40 18	41.6 39.7 18.0 0.7	41.4 39.5 17.9 0.7
Calcium chloride, 3			0.5

(a) Made from Composition B-2 or 60/40 Cyclotol.

(b) Made by the addition of aluminum to Composition B.

(c) Made by the addition of calcium chloride to Torpex 2.

Downloaded from http://www

18.87

Wax has the undesirable effect of (1) tending to compute the aluminum, thus giving a less homogeneous and more viscous product, (2) lowering the density of the cast explosive from 1.72-1.75 to 1.66-1.70 for waxed torpex, and (3) lowering the compressive strength from 3700 psi to 1970 psi for waxed torpex. However, wax is used in service torpex for reasons of safety, since there is evidence that its presence lowers the sensitivity of the explosive to impact as measured by laboratory drop tests and bullet sensitivity tests of small charges (Bureau of Ord Res Memo Rpt No. 24, January 1945).

#### References: 76

(a) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(b) Philip C. Keenan and Dorothy C. Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, Part III, <u>Miscellaneous</u> <u>Sensitivity Tests</u>, <u>Performance Tysts</u>, OSRD Report No. 5746, 27 December 1945.

⁷⁶See foctnote 1, page 10.

#### AMCP 706-177

### (d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

Torpex

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-OPD-5723.

(g) Also see the following Picstinny Arsenal Technical Reports on Torpex:

. .. ....

<u>o</u>	1	2	3	2	<u>6</u>	<u>7</u>	<u>8</u>
1530	1651	1292	2353	1585 1635 1885 2355	1796	1797	1838

and a set that the set of the

### AMCP 706-177

· //

### 1,3,5-Triamino_2,4,6-Trinitrobenzene (TATNB)

Composition: %		Molecular Weight: (C6H6N606)	258
с 27.9 н 2.3 о ₂ ^{N-}	NH2 NO2	Oxygen Belence: CO3 % CO %	-56 -19
N 32.6 H ₂ N-	NII2	Density: gm/cc Crystal	1.93
0 37.2	NO2	Molting Point: °C 330 (b, r)	360 (=)
C/H Rotio 0.302		Freezing Point: *C	
Impact Sansitivity, 2 Kg Wt:		Boiling Point: 'C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 11 Sample Wt, mg 7		Refrective Index, ng ng ng	
Friction Pendulum Test: Steel Shoe Fiber Shoe		Vacuum Stubility Test: cc/40 Hrs, ut 90°C	
Rifle Buile: Impact Test: Tri	als	100°C (a, b)	0.36
	<b>%</b>	135°C	
Explosions Partials		150°C	
Burned Unaffected		200 Gram Bomb Sand Tast: Sand, gm	42.9
Explosion Temperature: Seconds, 0.1 (no cap used) 1 5 10	۰c	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryi	0.30
15		Sellistic Martur, % TNY:	
20		Treuzi Test, % TNT:	
75°C Internutional Heat Tout: % Loss in 48 Hrs		Plete Dent Yest: Method	
100°C Hest Test:		Condition	
% Loss, 1st 48 Hrs	0.00	Confined Development	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		
Flommability Index:		Confinement	None
Hygroscopicity: %		Condition Charge Diameter, in.	Pressed 0.5
Veletility:	····	Density, gm/cc	1.80
•		Rate, meters/second	7500

1,3,5-Triamino-2,4,6-Trinitrobenzene (TATNB)

Downloaded from http://www.everyspec

19 B. 19

•

AMCP 706-177

in print has been printed and the second

Fragmantation Test:	jhaped Charge Effectiveness, $TNT = 1$	100:	
90 mm HE, M71 Projectile, Lot WC-91; Density, gm/cc Charge Wt, Ib	Gloss Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT For Subject h ^{. v.}	Color:	Yellow	
<b>3 inch HE, M42A1 Projectile, Lot XC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses:		
<b>Total No. of Fragments:</b> For TNT For Subject HE	Marhod of Lasding:	Pressed	
Fregment Veloc'ry: ft/sec At 9 ft	Leading Density: gm/cc At 50,000 psi	1.80	
At 25½ ft Density, gm/cc	Sterege: Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)		
Air: Peak Pressure Impulse Energy	Hole Volume         Hole Depth         Color:       Yellow         Principal Uses:         Marked of Leading:       Pressed         Leading Density: gm/cc         At 50,000 psi       1.80         Storage:       Method         Method       Dry		
Air, Confined: Impulse			
Under Water: Peuk Pressure Impulse Energy *	1,345 1,675 1,675 1,882	5628 6550 6575 7035	
Undergraund: Peak Pressure Impulse Energy		2831	

(13. Jr.

17. 5. 16 8

### 1,3,5-Triamino-2,4,6-Trinitrobenzene (TAINB)

l

TILL DIG STATES

. Han Witte Via

Downloaded from http://www.everyspec.com

#### Preparation:

### (a)

Absolute alcohol (200 milliliters) was saturated with ammonia and then 12.5 gm (0.028 mol) or 1, 3, 5-tribromo-2, 4, 6-trinitr benzene, prepared according to Hill (NAVORD Report No. 3709, 2 February 1953), was added. The flask was stoppered and allowed to stand at room temperature for a day. Additional ammonia was bubbled into the mixture, which was then heated under reflux for thirty minutes. filtered hot, and the insoluble product collected on a Buchner funnel. The product was washed with water, alcohol, and dried. The 4.7 gm of material recovered was recrystallized from nitrobenzene.

A disadvantage of the above method was that it could not be used for the preparation of large quantities of TATNB. Since it did not seem feasible to develop a new method of preparation, an investigation was made of the reported amination reactions (see Origin below). An attempt was made (Ref f) to find a modification which would produce high yields of a pure product. The process which evolved from this study may be summarized as follows (Ref f): 1,3,5-trichlorobenzene was nitrated "in one step" to 1,3,5-trichloro-2,4,6-trinitrobenzene in 55% yield. The crude nitration product was aminated in benzene with ammonia gas to TAINB, in

#### Origin:

TAINE was prepared for the first time in 1882 by C. L. Jackson and J. F. Wing, who found the compound insoluble in alcohol, ether, chlorod'orm, benzene, and glacial acetic acid; and soluble in nitrobenzene and aniline (Amer Chem Journal 10, 282 (1888)). B. Flurscheim and E. L. Holmes prepared 'M'INB from benzene free pentanitroaniline by gradually adding it to 10% aqueous ammonia (J Chem Sou, Pt 2,3045 (1928)). After boiling, an orange-yellow powder melting above 300°C was obtained. This product corresponded to that described by Jackson and Wing. These authors, as well as ralmer (Amer Chem Journal 14, 378 (1892)), attempted to reduce TATNB to hexa-aminobenzene. Either decomposition occurred or a hydrochloride of penta-aminotenzene was formed. Flurscheim and Holmes succeeded in reducing TATNB with phenylhydrazine by heating them together up to 200°C (J Chem Soc, Pt 1,334 (1929)) (Beil <u>13</u>, 301 and EII, 147).

#### References:77

(a) F. Taylor, Jr., Synthesis of New High Explosives II, Derivatives of 1,3,5-Tribromo-2,4,6-Trinitrobenzene, NAVORD Report No. 4405, 1 November 1956.

(b) L. D. Hampton, <u>Small Scale Detonation Velocity Measurements from May 1951 to May 1954</u>, NAVORD Report No. 3731, June 1954.

(c) E. M. Fisher and E. A. Christian, Explosion Effects Data Sheets, NAVORD Report No. 2986, 14 June 1955.

⁷⁷See footnote 1, page 10.

### Tristhylene Glycol Dinitrate (TEGN) Liquid

1.1

, , ,

and a second

Downloaded from http://www

AMCP 706-177

Composition: %CH_2ONO2	Melecular Weight: (C6H12N208)	240	
с 29.9 н ₂ с	Oxygen Belance:	Ŷo	
	CO2 % CO %	-89 -27	
н 5.4 _{Н2} с ⁻ N 11.7	Density: gm/cc 20°C 25°C	1,33	
0 53.0 H ₂ C 0	Melting Paint: *C	1,32	
C/H Rotio 0.177 H2C CH20NO2	Freezing Point: *C		
Impact Sensitivity, 2 Kg Wt:	Builing Paint: *C		
Bureau of Mines Apparatus, cm 100+ Sample Wt 20 mg	Refrective Index, nº	1.4540	
Picatinny Arsenal Apparatus, in. 43	ne		
Sample Wt, mg	ns		
Friction Pendulum Test:	Vacuum Stability Test:	<u></u>	
Steel Shoe Unaffected	cc/40 Hrs, at		
Fiber Shoe Unaffected	90°C	0 h =	
Rifle Builet Impact Test: Trials	100°C	0.45	
96	120°C 8 hours	0.8	
Explosions	135°C		
Partials	150°C		
Burned	200 Gram Bomb Sand Test:		
Unoffected	Sand, gm	14.7	
Explosion Temperature: *C	Sensitivity to Initiation:		
Seconds, O.I. (no cop used)	Minimum Detonating Charge, gm		
) 5 223	Mercury Fulminate		
5 223 10	Leod Azide		
)5	Tatryi		
20	Ballistic Moster, % 'INT:	**************************************	
AV	Trausi Test, % YNT:		
75' C International Host Test: % Loss in 48 Hrs	Piete Dent Test:		
/g 6438 IFI 40 FIF3	Method		
100°C Hest Test:	Condition		
% Loss, 1st 48 Hrs 1.8	Confined		
% Loss, 2nd 48 Hrs 1.6	Density, gm/cc		
Explosion in 100 Hrs None	Brisance, % TNT		
Flammability Index:	Opt-ration Rate:		
	Confinement	S'riby steel	
Hygr.stopicity: %	Condition	Liquid	
	Charge Diameter, in.	1.25	
Veletility: 60°C, mg/cm ² /hr 40	Density, gm/cc	1.33	
	Rote, meters/second	Fails	

1.0

**WARRY** 

### Triethylene Glycol Dinitrate (TEGN) Liquid

ryspec.com

Ċ

*斯*/-

Ş.

eve

Fragmontation Test:	Shaped Charge Effectiveness, TNT == 100:		
90 mm HE, M71 Projectile, Lut WC-91: Density, gm/cc Charge Wt, ib	Gloss Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color:		
For Subject HE	Principel Uses: Ingredient of rocket and double base propellants Method of Loading:		
3 Inch HE, M42A1 Projectile, Let KC-5: Density, gm/cc Charge Wt, ib			
Total No. of Fragments: For TNT For Subject HE			
	Loading Denuity: gm/cc		
Fregment Velocity: ft/sec At 9 ft At 251/2 ft	Storages		
Density, gr./cc	Method 7,1 guið		
Blast (Relative to TNT):	Hoxard Class (Quantily-Distance)		
Air: Peok Pressure	Compatibility Group		
Impulse	Exudation		
Energy Air, Confined: Impulse	Solubility in Water, gm/100 gm, at: 25°C 0.55 60°C 0.68		
Under Water: Peak Pressure	Solubility, gm/100 gm, t 25°C, in:		
impulse Energy	Ether * Alcohol * 2:1 Ether:Alcohol *		
Underground: Peak Pressure	Acetone - Viscosity, centipoises:		
Impulse	Temp, 20 ⁰ C .13.2		
Energy Heat of:	Hydrolysis, β Acid:           10 days at 22 ⁰ C         0.032           5 days at 60 ⁰ C         0.029		
Combustion, cal/gm 3428 Explosion, cal/gm 357 Gas Volume, cc/gm 851	Vapor Pressure: <u>OC</u> 25 <b>NEA Mercury</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b>		

:1118

#### Triethylene Glycol Dinitrate (TEGN) Liquid

Downloaded from http://www.everyspec.com

AMCP 706-177

#### Origin:

. 20

Lourence prepared triethylene glycol in 1863 by heating glycol with ethylene bromide in a scaled, tube at  $115^{\circ}-120^{\circ}C$  (Ann (3) <u>67</u>, 275). Later in the same year Wurtz prepared triethylene glycol by heating ethylene oxide with glycol at  $100^{\circ}C$ . By action of nitric acid triethylene glycol was oxidized to  $(H_{2}00C \ CH_{2} \cdot 0 - CH_{2})_{2}$  (Ann (3) <u>69</u>, 331, 351).

The Germans and Italians were the first to prepare and use TEGN during World War II as an ingredient of rocket and propellant powders. The commercial production of TEGN in quantity is still difficult and its use as a plasticizer for nitrocellulose is being replaced by other liquid nitrates.

#### Preparation:

Triethylene glycol is purified by fractional distillation under vacuum in an 18-inch Vigeaux fractioning column. The assembly as a whole is equivalent to 4.5 theoretical plates. The distillation is conducted using a 5 to 1 reflux ratio, at a pot temperature of approximately 180°C, and a take-off temperature of approximately 120°C.

The purified triethylene glycol (TEG) is nitrated by carefully stirring it into 2.5 parts of 65/30/5 nitric acid/sulphuric acid/water maintained at  $0 \pm 5^{\circ}$ C. The rate of cooling is sufficient that 300 gm of TEG can be added within 40 minutes. The mixture is stirred and held at  $0 \pm 5^{\circ}$ C, for 30 additional minutes. It is then drowned by pouring onto a large quantity of ice and extracted three times with ether. The combined extract is water-washed to a pH of about 4, shaken with an excess of acditue bicarbonate solution, and further washed with 1% sodium bicarbonate solution until the washings are colorless. The ethereal solution is water-washed until it has the same pH value as distilled water. It is carefully separated from excess water, treated with chemically pure calcium chloride to remove dissolved water, and filtered. The ether is removed by bubbling with dry air until a minimal rate of loss in weight is attained. The yield is  $1.3^4$  gm per gm TEG (84% of theoretical) and the nitrogen content of different batches range from 11.60 to 11.69% by the nitrometer method (calculated 11.67%).

### References: 78

(a) See the following Picatinny Arsenal Technical Reports on TEGN:

• .

<u>3</u>	2	6	<u>7</u>	<u>8</u>
1953 2193	1745	1786 2056	1767 1817	1638

78See footnote 1, page 10.

### Trimonite

Composition: %	Malacular Weight:	217
Picric Acid 88 - C	Oxygen Balance: CO ₂ % CO %	-62 -14
Mononitronsphthalene 12 10	Density: gm/cc Cast	1.60
	Making Point: "C	90
C/H Ratio	Freezing Paint: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 60 Sample Wt 20 mg Picationy Ansenal Apparatus, in. 10	Boiling Point: *C Explodes Refrective Index, no	300
Picatinny Arsenal Apparatus, in. 10 Sample Wt, mg	nដ កដ្ឋ	
Friction Pondulum Test: Steel Shoo Fiber Shoe	Vecuum Stebillity Test: cc/40 Hrs, at 90°C 100°C	
Bilie Bullet Impact Test: Trials % Explosions 0 Partials 0	120°C 135°C 150°C	0.9
Sumed 0 Bunaffected 100	200 Grem Bomb Sand Test: Sond, gm	44.2
Explosion Tempereture: *C Seconds, 0.1 (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fuiminate	· <u>······························</u>
5 Decomposes 315 10	Leod Azide	0.20
15	Tetryi	0.04
20	Ballistic Morrar, % TNT:	
75°C International Heat Test:	Treuzi Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heet Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs		, <del>19 19 - 19 19 19 19 19 19</del> - 19 19
Flammability Index:	Confinement	None
Hygroscopicity: %	Condition Charge Diameter, In.	Cast 1.0
Veletility:	Density, gm/cc     Rate, meters/second	1.60 7020

13

i

с÷С,

чc

•

Fregmentation Test:	Sheped Charge Effectiveness, TMT =	≖ 100:
90 mm HE, M71 Projectile, Let WC-91:	Gloss Cones Ste	el Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Caleri	
For TNT		
For Subject HE	Principal Uces: TNT substitute	in projectiles
3 inch HE, MAZAT Projectile, Let KC-5:	and bombs	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fregments:	Method of Looding:	Cast
For TNT		
For Subject HE	Looding Densitys gm/cc	1.60
Fregment Velocity: ft/sec		
At 9 ft At 251 <u>4</u> ft	Sternge:	
Density, gm/cc		
	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quontity-Distance)	Class 9
Air:	Compatibility Group	Group I
Peak Pressure		-
Impulte	Exudation	Doudes at 50°C
Energy		
Air, Cunfined:	Preparations	
impulse	I We much and all the men	
	Picric acid and alpha-mono are melted together in an alu	
Under Weter: Peak Pressure	Jacketed melt kettle equipped	With a stirrer.
Impulse	Although picric acid alone ro persture for its melt loading	Quires a nigh te (120°C), the
Energy	mixture forms a sutestic melt	ing at $49^{\circ}$ C. C
••	gerous metallic picrates. The	
Underground:	interest as an emergency subs	
Peak Pressure		
Impulse		
Energy		

371

1.1

De Maker

#### Trimonite

Downloaded from http://www.everyspec.com

### Origin:

Trimonite, a castable mixture of picric acid/mononitronaphthalene was developed by the British during World War II as an improvement over tridite which is a mixture of 80/20 picric acid/dinitrophenol. Both mixtures are suitable for melt-loading below  $100^{\circ}C$  and therefore represent an improvement over melt-loading picric acid alone (melting point  $122^{\circ}C$ ). However, tridite is slightly inferior to picric acid as an explosive and dinitrophenol is objectionable because of its toxicity. Trimonite is also slightly inferior to picric acid and TNT as an explosive. Because of the low eutectic temperature of the picric acid-mononitronaphthalene mixture ( $49^{\circ}C$ ), Tridite exudes when stored at elevated temperatures. It does not possess the disalvantages of picric acid (corrosive action on metals, ease of decomposition, etc.) and is a comparatively inexpensive substitute for TNT.

### References: 79

(a) See the following Picatinny Arsenal Technical Reports on Trimonite:

2	5	<u>6</u>	<u>8</u>
1352	1325	926	1098
1372		976	1838

⁷⁹See footnote 1, page 10.

 $\mathbf{372}$ 

### 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)

### AMCP 706-177

Composition:	Molecular Weight: (C ₆ H ₅ N ₅ 0 ₁₄ )	<b>3</b> 86
ъ с 18.6	Oxygen Belance:	
н 1.6	CC ₂ % CO %	-4.2 20.8
O-CH_C(NO_)	Density: gra/cc Form I	1.78
N 21.8 C = 0		
0 '58.0 C/H Patin 0 202 CH2CH2C(NO2) 3	Melting Point: *C	93
C/H Ratio 0.202	Freezing Point: "C	
Empect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C	
Somple Wt 20 mg	Refrective Index, no Form I (e	)
Picatinny Arsenal Apparatus, in. Sample Wt, mg	Crystel Axis a	1.518
50% point, cm (a) 20	β Τ	1.527 1.546
Friction Pondulum Test:	Vocuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Buildt Impoct Test: Trials	100°C 48 hrs	0.60
%	120°C	
Explosions	135°C	
Partials	150°C	•
Burned	200 Gram Bomb Sand Toot:	
Unaffected	Sand, gm	
Explosion Temperature: °C	Sonsitivity to Initiation:	
Seconds, 0.1 (no cop used)	Minimum Detonating Charge, gm	
] 7 500 materia (43 hash ham) (a)	Mercury Fulminate	
5 50% point (Alhot bar) (a) 225	Lead Azide	
10 15	Tetryi	
20	Ballistic Mortar, % TNT: (b)	1.36
	Tieuzi Tent, % TNT:	
75°C International Heat Tout:	Piete Dent Test:	
% Loss in 48 Hrs	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd +1 Hrs	Density, gm/cc	
Explosion in 100 lrs	Brisance, % TNT	
	- Detenation Rate:	
Flommability Index:	Confinement	
Hygrescepicity: % 30°C, 90% RH 0.00	Condition	
75°C, 5 months Ni1 (a)	Charge Diameter, in.	
Valetility:	Density, gm/cc 1.60	1.76
·	Rate, meters/second 7760	829)

1997 (P. C. S. S.

·假始於164/284/29/8-12-4*

373

# 2,2,2-Trinitroethy1-4,4,4-Trinitrobutyrate (TNETB)

Booster Sensitivity Test:		Decomposition Equation:	4.4 x 10 ²¹
Condition		Öxygen, atoms/sec (Z/sec)	$4.4 \times 10^{-1}$
Tetryl, gm Wax, in. for 50% Detonation		Heat, kilocatorie/mole	43.4
Wax, am		(AH, kcal/mol) Temperature Range, °C	
vvax, gm Density, gm/cc		Phase	Liquid
		Fliuse	maara
Hees of: Combustion, cal/gm	1685	Armar Plate Impact Test:	
Explosion, cal/gm		60 mm Mortar Projectile:	
Gas Volume, cc/gm		50% Inert, Velocity, it/sec	
Formation, cal/gm	307	Aluminum Fineness	
Fusion, cal/gm Sublimation, cal/gm (est)	864	500-ib General Purpose Bombs:	
Specific Heat: cal/gm/*C			
		Plate Thickness, inches	
		1	
		104	
		11/2	
		134	
Burning Rate:			
cm/sec		Somb Drop Test:	
Thermei Conductivity: cai/sec/cm/*C		T7, 2000-16 Semi-Armor-Piercin	g Bomb vs Concrete:
		Max Safe Drop, ft	
Coefficient of Expension:			
Linear, %/*C		300-lb General Purpose Bomb v	s Concrete:
Volume, %/*C		Height, ft	
	, ·	Trials	
Hardness, Mahs' Scale:		Unoffected	
Young's Modulus:		Low Order	
E', dynes/cm²		High Order	
E, lb/inch ²		1000-ib General Purpose Bomb	Currentes
Density, gm/cc		1000-10 General Parpose Semis	
	·		
Compressive Strength: Ib/inch ^a		Trials	
		Unaffected	
Vapor Prossure:	(e)	Low Order	
•C mm Mercury		High Order	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
85 4.2 - 10			
$100$ $2.3 \times 10^{-3}$			
$120$ $1.4 \times 10^{-2}$		}	

AMCP 706-177

ragmantation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones		
Density, gm/cc	Hole Valume		
Charge Wt, Ib	Hole Depth		
For TNT	Colories		
For Subject HE	Principal Uses:		
3 inch HE, M42A3 Projectile, Lot KC-5:			
Density, gm/cc			
Chorge Wt, Ib			
Totel No. of Fragments:	Method of Loading:		
For TNT	•		
For Subject HE			
	Leeding Density: gm/cc Form I 1.783 Form II 1.677		
regment Velocity: ft/sec	Liquid, 99°C, 1.551		
At 9 ft	Storega:		
Density, gm/cc	Method Wet		
	Metrica He C		
lest (Relative to H-6'1: Sphere Cylinder (h)	Hazard Class (Quantity-Distance)		
Air: 1-1b Charge: EV# EV# EV# Peok Pressure 0.91 0.84 0.81 0.75	Compatibility Group		
Impulse 0.73 0.67 0.74 0.69	Exudation		
Energy			
Air, Contined:	Bruceton Safety Test Pesults: (g)		
Impulse	Mean and standard deviation of lengths of		
	0.300 diameter cylinder across which initia-		
*Inder Water: Peak Pressure	tion is possible for 50% certainty:		
Impulse	THT 0.391 + 0.040 RDX Comp B 0.391 + 0.042		
Energy	RDX Com B 0.331 7 0.042 T.ETF 0.920 7 0.059		
Underground:	Absolute Viscosity, poises: (e)		
Peak Pressure	Temp, 93.9°C 0.173		
Impulse	106.5°C 0.138		
Energy equivalent weight of H-b for a unit weight f test mixture for equal performance At the ame test distance; D', equivalent volume of -/ for a unit volume of test mixture for equal			

「「「「「「」」」

Downloaded from http://www.everyspec.com

#### AMCP 706-177

ŧ

### 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)

Solubility (Room Temperature):	(*)	
Solvent	Solubility	
Water n-Hexane Carbon tetrachloride Ethanol Chloroform Benzene Nitromethane Glacial acetic acid	Insoluble Insoluble Insoluble 5 gm/100 gm solvent 10 gm/100 gm solvent Vary soluble Very soluble	:
Ethyl acetate	Very soluble	

INETE Forms Entectics With the Following Compounds: (a)

THT BINES (bis(trinitroethyl) succinate) BINEN (bis(trinitroethyl) nitramine) TNB (trinitrobenzene)	57 80+ 68.5 65	:
Compound A (ChHoN, O, formed by condensation of 1;1-dinitroethane) Trinitroethyl trinitrobenzoate (27%)	77 80.5 (1)	;

#### Crystallographic Data:

Three polymorphic crystalline forms have been observed. Low temperature Form I goes through a solid-solid transition at  $89^{\circ}$ C giving Form II. Form II has a melting point of  $92.5^{\circ}$  to  $93^{\circ}$ C. On cooling, Form II does not transform reversibly to Form I when  $89^{\circ}$ C is reached. However, Form II will transform to Form I at room temperature, usually taking a few hours to do so. Form III was observed, which appeared to be stable over a very narrow temperature range on the order of  $0.2^{\circ}$  to  $0.3^{\circ}$ C near 92.5 °C.

(ď)

(a)

#### Preparation:

(NO2)30CH2CH2COC1 +	(NO2)30	H2OH	H2SOL	
trinitrobutyryl chloride	trinitro	ethanol	sulfuric acid	
(NO2) 3 CCH2 CH2 COOCIT2 C(NO2)	)3 +	HCI.	<b>{</b>	
2,2,2-trinitroethyl-4,4,4-tu butvrate	rinitro-	hydroc aci	bloric d	

Isboratory experiments indicate that the present slow step involving overnight treatment of 4,4,4-trinitrobutyryl chloride with 2,2,2-trinitroethanol and aluminum chloride can be replaced by a fast and simple esterification in sulfuric acid. Using 100% sulfuric acid or fortified  $H_0SO_h$ , the ester can be prepared in yields of 95% to 98% in 24 hours at 25°C, in 5 hours at 50°C, or in 3 hours at 65°C. Above 65°C the reaction time is less, but the yield falls off and a less pure product is obtained. The crude white crystalline product on recrystallization from dilute methanol gives a material melting at 92° to 93°C.

376

#### 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)

Downloaded from http://www.everyspec.com

. . . . . . . .

AMCP 706-177

#### Origin:

(e)

INSTE belongs to a new class of explosives characterized by trinitromethyl groups,  $-C(NO_2)_3$ . The chemistry of this class of compounds was studied in Germany by Drs. Schenck and Schimmelschmidt, who discovered in 1942-1943 that trinitromethane or nitroform,  $HC(NO_2)_3$ , was the source of new explosive derivatives. Dr. Schenck prepared the stable solid alcohol, 2,2,2-trinitroethanol, from nitroform and formaldehyde. Dr. Schimmelschmidt reacted nitroform with unsaturated organic compounds, such as acrylic acid, and predicted in 1943 that the ester of 4,4,4-trinitrobutyric acid with trinitroethanol would be an interesting explosive.

In 1947 the U.S. Navy began a program to explore these compounds. The initial task of investigating the chemistry of trinitroethanol was undertaken by the Hercules Powder Company (Navy Contract NOrd-9925). The U.S. Rubber Company studied the chemistry of nitroform (Navy Contract NOrd-10,129). After preparation of the first laboratory samples of TNETB, considerable interest was aroused. In early 1950 the Naugatuck Chemical Division of U.S. Rubber Company was assigned to prepare 100 pounds of TNETB. The Eureau of Ordnance in July 1953 raised the production to 800 pounds with the assistance of the Hercules Powder Company in augmenting the production at Naugatuck (Navy Contract NOrd-11,280). TNETB is a high oxygen content explosive.

### References: 80

(a) J. M. Rosen, <u>Properties of Trinitroethyl Trinitrobutyrute TNETB</u>, NAVORD Report No. 1758, 17 December 1950.

(b) Bureau of Mines Report No. 3107, Part IX, Ballistic Mortar Tests on Trinitroethyl Trinitrobutyrate, 5 April 1950.

(c) L. D. Hampton and G. Svadeba, <u>Evaluation of 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate</u> as a Constituent of Castable Explosives, NAVORD Report No. 2614, 30 September 1952.

(d) U.S. Rubber Company Quarterly Progress Report No. 23, <u>Synthesis of New Propellants</u> and <u>Explosives</u>, Navy Contracts Nord-10-129 and -12,663, 19 August 1953.

(e) M. E. Hill, O. H. Johnson, J. M. Rosen, D. V. Sickman and F. Taylor, Jr., <u>Preparation</u> and <u>Properties of INETB, a New Castable High Explosive</u>, NAVORD Report No. 3885, 27 January 1955.

(f) M. E. Hill, Synthesis of New High Explosives, NAVOLU Report No. 2965, 1 April 1953.

(g) Jacob Savitt, <u>A Sensitivity Test for Castable Liquid Explosives</u>, Including Results for Some New Materials, NAVORD Report No. 2997, 22 October 1953.

(h) R. W. Gipson, <u>Sensitivity of Explosives</u>, IX <u>Selected Physico-Chemical Data of Ten</u> <u>Pure High Explosives</u>, NAVORD Report No. 6130, 18 June 1958.

⁸⁰See footnote 1, page 10.

;

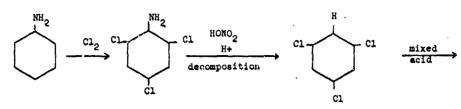
### AMCP 706-177

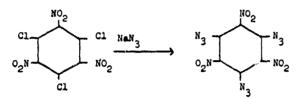
.

### Trinitro Triazidobenzene

Composition: %	Molecular Weight: (C ₆ 0 ₆ N ₁₂ )	336		
$C$ 21.4 $N_2$ $N_2$	Oxygen Belance; CO ₂ % CO %	-29 0.0		
	Density: gm/cc Crystal	1.81		
0 28.6 ⁰ 2 ^N ^{NO} 2	Matting Point: "C Decomposes	131		
C/H Ratio	Freezing Point: 'C			
Impact Sensitivity, 2 Kg We:	Boiling Point: *C	استورار البرواني والمرار والمرار		
Bureau of Mines Apparatus, cm (&) \$25 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refrective Index, nº nº nº			
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vecuum Stubility Test: cc/40 Hrs, at 90°C			
Rifle Bullet Impact Test: Trials	160°C			
Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Se	135°C			
Explosions Partials	150°C			
Burned	200 Grem Bomb Sand Yest:			
Unaffected	Sand, gm			
Explosion Temperature:         °C         (a)           Seconds, 0.1 (no cap used)          1            1          5         150         10	Sensitivity to initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryi			
15 20	Bellistic Morter, % TNT:			
	Trauzi Test, % PETN:	90		
75°C International Heat Yest: % Loss in 48 Hrs	Plote Dent Test; Method			
100°C Heet Test:	Condition			
% Loss, 1st 48 Hrs	Confined			
% Loss, 2nd 48 Hrs	Density, gm/cc Brisance, % TNT			
Explosion in 100 Hrs				
Flemmebility Index:	Detonation Rute: Confinement			
Hygroscopicity: % 30°C, 90% RH 0.00	Condition Charge Diameter, in.			
Veletility:	Density, gm/cc			

ragmentation Test:	i 1	Shuped Charge Effectiveness,	TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones	Steel Cones	
Density, gm/cc	Ì	Hole Volume		
Charge Wit, 15	i	Hole Depth		
Total No. of Fragments:		· · · · · · · · · · · · · · · · · · ·		
For TNT		Color: Oz	eenish-yellow	
For Subject HE	i	Principal Uses: (c) Ingre	dient of primer wix	
3 inch HE, M42A1 Projectile, Lot KC-5:			didno or primer with	
Density, gm/cc	1			
Charge Wt, Ib				
Total No. of Fregments:	,	Ad-16-14-18-14-14-14		
For TNT		Method of Loading:	Pressed	
For Subject HE		Dead presses at about	. 42,000 psi	
		Loading Density: gm/c >		
rogment Velocity: ft/sec		/ At 42,000 psi	1.75	
At 9 ft At 25¼ ft				
Density, gm/cc		Sterege:		
Density, gm/cc	: 1	Method		
lust (Relative to TNT):		Hazard Class (Quantity-Distance)		
Air:	•	Compatibility Group		
Peak Pressure	i i			
Impulse	'	Exudation	None	
Energy				
	2	Quelitative Solubilities		
Air, Confined: linpulse	1	at Room Temperature:	•	
	•	Solvent	Solubility	
Under Water:		Acetone	Readily soluble	
Peak Pressure		Chloroform Alcohol	Moderately soluble Sparingly soluble	
Impulse		Water	Insoluble	
Energy		Compatibility with Metal	<b>s:</b>	
Underground:	i	Wet: Does not attack		
Peak Pressure		or brass.	and write a set of the set	
Impulse		Heat of:		
Énergy		Combustion, cal/gm	(a) 2554	
		Burning Rate:	(b)	
		cm/sec	0.65	


у. У 5


17

ļ

#### Trinitro Triszidobenzene

Preparation: (e)





Aniline is chlorinsted to form trichloroaniline. The amino group is eliminated by the diazo reaction. The resulting sym-trichlorobenzene is nitrated. This nitration is carried out by dissolving the material in warm 32% oleum, adding strong nitric acid, and heating to  $140^{\circ}-150^{\circ}$ C until no trinitro trichlorobenzene (melting point 187°C) precipitates (Ref f). The chlorine groups are then replaced by azo groups. This is accomplished by adding an acetone solution of the trinitro trichlorobenzene, or better, and powdered substance alone, to an activaly stirred solution of sodium azide in alcohol. The precipitated trinitro triazidobenzene is collected on a filter, washed with alcohol, water and dried. It may be purified by dissolving in chloroform, allowing the solution to cool, and collecting the greepish yellow crystals (melting point 131°C with decomposition).

#### Origin:

This initiating explosive was first prepared in 1923 by Turek who also perfected its manufacture.

### References:81

(a) S. Helf, Tests of Explosive Compounds Submitted by Arthur D. Little, Inc., PATR 1750, 24 October 1949.

(b) A. F. Belyaeva and A. E. Belyaeva CR a.s. USSR <u>52</u>, 503-505 (1946) Chemical Abstracts <u>41</u>, 4310.

A. E. Belyaeva and A. F. Belyaeva, Doklady Akad Nauk. USSR 56, 491-494 (1947).

(c) French Patent 893,941, 14 Normber 1944 (Chemical Abstracts 47, 8374).

(d) A. D. Yoffe, "Thermal Decomposition and Explosion of Azides," Proc. Roy Soc A208, 188-199 (1951).

(e) T. L. Davis, <u>The Chemistry of Powder and Explosives</u>, John Wiley and Sons, Inc., New York (1943), p. 436.

(f) O. Turek, Chim et Ind <u>26</u>, 781 (1931); German Patent 498,050; British Patent 298,981.

⁸¹See footnote 1, page 10.

### Tripentaerythritol Octanitrate (TPEON)

ģ

E

Downloaded from http://www.everyspec.com

### AMCP 706-177

Composition:	Mrtecular Weight: (C15H24N8O26)	732
% С 24.6 Н 3.3	Oxygen Balance:	
N 15.3	CO2 %	-2.2
0 56.8		
CH20N02 CH201 ~2 CH20N02	Density: gm/cc Crystal	1.58
02NOCH2CCH2OCH2CCH2OCH2CCH2ONO2	Melting Point: *C 82	to 84
C/H Ratio 0,115	Freezing Point: *C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: *C	
Sample Wt 20 mg	Refrective Indox, ng	
Picatinny Arsenal Apparatus, in. 9	ng	
Sample Wt, mg . 24	n2	
Friction Pendulum Test:	Vecuum Stebility Test:	·····
Steel Shoe Unaffec		
Fiber Shoe Unaffec		*
	100°C Pure	2.45
Rifle Bullet Impact Test: Trials	120°C Specially purified	1.94
% Explosions	135°C	
Partials	150°C	
Partials Burned		
ourned Unoffected	200 Grem Bomb Send Text: Sand, gin	58.9
		J0+9
Explasion Temperature: "C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5 225	Mercury Fulminate	
5 22) 10	Lead Azide	0.30
•	Tetryi	**==
15 20	Ballistic Morter, % TNT:	
۷۵	Trouzi Test, % TNT:	
75°C Internetional Haur Test: % Loss in 48 Hrs	Plate Dem' Test:	
70 LUSS (FI 49 F3F3	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 1.15	Confined	
% Loss, 2nd 48 Hrs 0.75	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
	Detenction Rete;	
Flammability Index:	Confinement *	None
	Condition '	Pressed
Hygroscopicity: %	Charge Diameter, in.	0.5
N/- 1- altia	Density, gm/cc	1.56
Velatility:	Rate, meters/second	7650

AMCP	706-177
------	---------

### Tripentaerythritol Octanitrate (TPEON)

Booster Sonsitivity Text. Condition		Decomposition Equation: Oxygen, atoms/sec	
Tetryl, gm		(Z/sec)	
Wax, in. for 50% Detonation		Heat, kilocalorie/mole	23.1
Wax, gm		(ΔH, kcal/mol) Temperature Range, °C	215 to 250
Density, gm/cc		Phase Phase	Liquid
rient of:			
Combustion, col/gm	2632	Armer Plate Impact Test:	
Explosion, cal/gm	1085	66 mm Morter Projectilu:	
Gas Volume, cc/gm	762	50% Inert, Velocity, ft/sec	
Formation, col/gm		Aluminum Fineness	
Susion, cal/grn			
Specific Neut: cal/gm/*C		500-lb General Purpose Bombs:	
Specific Impulse:		Plate Thickness, inches	ĺ
lb-sec/lb (cslculated)	240	1	
		11/4	
		134	
		134	
Burning Rute:			
cm/sec		Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/*C		T7, 2000-lb Semi-Armor-Piercing	Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft	
Linear, %/°C		500-15 General Purpose Bomb vs	Concrete:
Volume, %/°C		Height, ft	
······		Trials	
Hardness, Mohs' Scale:		Unaffected	
Young's Modulus:	·····	Low Order	
E', dynes/cm²		High Order	
E, Ib/inch ²			
Density, gm/cc		1000-ià General Purpose Bomb vi	Generate:
		Height, ft	
Compressive Strength: Ib/inch ²		Trials	{
· .		Unaffected	
Yaper Pressure:		Low Order	1
*C mm Mercury		High Order	

### Tripentaerythritol Octanitrate (TPEON)

Downloaded from http://www.everyspec.com

### AMCP 706-177

a share a

weeks of

Fragmentation Test:	Shaped Charge Effect?reness, TNT == 100;
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, ib	Glass Cones Steel Cones Hole Volums - Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Prejectile, Let KC-3: Density, gm/cc Charge Wt, Ib	Principel Uses: High explosive and as possible plasticizer for nitrocellulose .
Total No. of Fragments: For TNT For Subject HS	Method of Leeding: Cast or pressed
Fregment Velocity: ft/sac At 9 ft At,25½ ft	Looding Denwity: gm/cc Pressed at 60,000 psi 1.555 Storege:
Density, gm/cc	Method Dry
Blast (Relative (UTNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse	<u>Hygroscopicity, Gain or Loss in Wt, %:</u> Tire, Hrs% RH at 30 ⁰ C
Under Weter: Peak Pressure	<u>40 70 90</u>
ìmpulse Energy	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Underground: Peak Pressure	192 -0.04 -0.02 216 -0.004 -0.01 +0.03
Impulse Energy	Solubility:
	SolventSolubilityWaterInsolubleAlcoholSolubleChloroformSolubleAcetone, hotVery solubleDenzene, hotVery soluble

14

2

### AMCP 706-177

は、「「「「「「」」」」」」

#### Tripentaerythritol Octanitrate (TPEON)

١.

### Compatibility With Other High Explosives:

100°C Vacuum Stability Test:

	NIN	PEIN	RDX	TPEON
ml gas/40 hrs, 5 gm sample	0.11	2.15	0.39	2.45
ml gas/40 hrs, 5 gm sample of 50/50, TPEON/HE	1.89	1.71	2.32	_

Dipentaerythritol Hexanitrate (IPEHN)-TPEON Fusions:

\$ TPEON	% DPEHN	Solidification Time, Days	MP, C
100	0	1	83
95	5	3	68
90	10	3	69
80	20	5	73
50	50	30	60 (Eutectic)
20	80	5	63
10	90	3	69
0	100	_	73

### Preparation:

(a)

Twenty grams (0.054 mol) of nitration grade tripentaerythritol (TPE) (99%) minimum purity) were slowly added, with stirring, to 160 gm (2.55 mol) of 99% nitric acid at a temperature of  $-25^{\circ}$  to 0°C. On equivalent weight basis, this quantity of 99% nitric acid corresponds to an excess of 6.3 times the TPE used. After addition of the TPE, the reaction mixture was stirred c about one hour at 0° to 5°C and poured into eight times its volume of cracked ice. The

oduct, when allowed to stand overnight, was crushed under water; filtered with suction; and washed copicually with water. It was then treated twice with about 5 times its weight of a 1% emmonium carbonate solution, stirred for several hours, filtered and washed with water until the final washings were neutral to litmus. The final product was washed successively with 50 cc each of ethanol and ether. The material drigd in air weighed 37.8 gm or 96% of theory based on TPE. It had a melting range of 71° to 74°C. Crystallization of the crude TPEON from chloro.form was found to be the most suitable method of obtaining pure TPEON.

#### Origin:

TPEON prepared by the reaction of tripentaerythritol and 99% nitric acid at  $0^{\circ}$  to  $10^{\circ}$ C was reported by Wyler in 1945 (J. A. Wyler to Trojan Powder Company: U.S. Patent 2,389, 228, 20 November 1945).

384

#### Tripentaerythritol Octanitrate (TPEON)

### AHCP 706-177

### References: 82

(a) J. J. LaMonte, H. J. Jackson, S. Livingston, L. B. Silberran and M. M. Jones, <u>The</u> <u>Preparation and Explosive Properties of Tripentaerythritol Octanitrate</u>, PATR No. 2490, 1958.

(b) K. Namba, J. Yamashita and S. Tanaka, "Pentaerythritol Tetranitrate," J Ind Explosives Soc (Japan) <u>15</u>, 282-9 (1954); CA <u>49</u>, 11283 (1955).

(c) S. D. Brever and H. Henkin, The Stability of PETN and Pentolite, OSRD Report Mo. 1414.

(d) E. Berlow, R. H. Barth and J. E. Snow, <u>The Pentaerythritols</u>, ACS Monograph No. 126, Reiahold Publishing Corporation, New York, 1958.

82Sae footnote 1, page 10.

.

### Tritonal, 80/20

1

Composition: %	Molecular Weight:	81
	Oxygon Jalanse:	
INT 80	CO, %	-77 -38
Aluminum 20	CO %	- 38
	Density: gm/cc Cast	1.72
	Melting Point: *C	
C/H Ratio	Freezing Point: *C	
mpect Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 85	Boiling Point: *C	
Sample Wt 20 mg	Refrective Index, nº	
Picatinny Arsenal Apparatus, in. 13 Sample Wt, mg 16	0 ⁰	
Sample Wt, mg 16	n	
riction Pendulum Test:	Vecuum Stability Test:	
Steel Shoe Unsflected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifig Bullet Impact Test: Tricis	100°C	0.1
96	120°C	0.2
Explosions 60	135°C	
Partials 0	150°C	0.8
Burned 0	200 Gram Bemb Sand Test:	
Unaffected 40	Sand, gm	
Explosion Temperature: *C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 610	Minimum Detonating Charge, gm	
1 520	Mercury Fulminate	
5 Decomposes 470	Leod Azide	0.20
10 465	Tetryl	0.10
15	Bellistic Moriur, % TNT: ('#)	124
20		
75°C International Hast Test:	Trues Test, % TNT: (b)	125
% Loss in 48 Hrs	Plute Dent Test: (c)	_
	Method	B
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs	Confined	No
% Loss, 2nd 48 Hrs	Density, gm/cc	1.75
Explosion in 100 Hrs	Brisance, % TNT	93
Flammability Index: 100	Confinement None	None
	Continement Note	
Hygreecepicity: % 30°C, 90% RH 0.00		Pressed
		1.0
Veletility:	Density, gm/cc 1.71	1.72
·	Rate, meters/sacond 6475	67 <b>00</b>

## Tritonal, 80/20

### AMCP 706-177

Beester Sensitivity Test: Condition	(a)	Cast	Decomposition Equation: Oxygen, atoms/sec		
Tetryl, gm		100	(Z/sec)		
Wax, in. for 50% Deton	ation	0.58	Heat, kilocalorie/mole		
Wax, gm			(ΔH, kcal/mol) Temperature Range, °C		-
Density, gm/cc		1.75	Phose		
Neet of: Combustion, cal/gm	(c)	4480	Armer Plate Impact Test: (	e)	
Explosion, cal/gm		1770			
Gas Volunie, cc/gm		-,,•	60 mm Morter Projectile:	509	>1100
Formation, cal/gm			50% Inert, Velocity, ft/sec	100	12
Fusion, cal/gm			Aluminum Fineness	100	
rasion, cury gin			500-lb General Purpove Bombi	k:	
Specific Heat: col/gr//*C	(b)				
At -5°C		0.23	Plate Thickness, inches	Trials	% Ineri
Density, gm/cc		1.74	1	0	
			11/4	• 6	100
At 20 ⁰ C		0.31	11/2	6	33
			- 194	0	
Burning Rate: cm/sec					
cm/sec			Bomb Drop Test: (e)		
Taermal Conductivity:		h			<b>.</b> .
col/sec/cm/°C Density, gm/cc	(b)	$11 \times 10^{-4}$ 1.73	T7, 2000-lb Semi-Armer-Pierc	ing somb ve	Concrete:
Coefficient of Expansion:			Max Safe Drop, ft		
Linear, %/*C			500-ib General Purpose Somb	vs Concrete	:
Volume, %/*C				Seal	Sea 1
Volume, 307 G				4,000	5,000
Hardness, Mohs' Scale:			Trials	34	14
			Unoffected	32	14
Young's Modelius	(b)		Low Order	0	0
E', dynes/cm²		$6.67 \times 10^{10}$	High Order	5	Ó
E, ib/inch ²		0.97 x 10 ⁶	1000-lb General Purpese Borni	h va Canzzata	•
Density, gm/cc		1.72			Seal
·			Height, ft		5,000
Compressive Strength: Ib/is	nch" (b)	2340	Trials	•	24
Density, gm/cc	<u>.</u>	1.75	Unoffected		23
Vapor Prossure:			Low Order		0
	Mercury		High Order		1
					فبني الأنفيون وتباليات مستردي
			ļ,		

# AMCP 706-177

٢Ē

# Tritonel, 80/20

Fregmentation Tout:		Shepod Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Let WC-91:	1	Glass Cones Steel Cones		
Density, gm/cc	1.71	Hole Volume		
Charge Wt, Ib	2.272	Hole Depth		
Tatul No. of Fragmants:		Color: Gra		
For TNT	703			
For Subject HE	616	Principel User: GP bombs		
3 inch HE, Mil2A1 Projectile, Let KC-5:				
Density, gm/cc	1.73			
Charge 'v¥t, lb	0.914			
Tatal No. of Fragments:		Method of Loading: Cas	+	
For TNT	514			
For Subject HE	485			
		Looding Density: gm/cc 2.65-1.7	2	
Fregment Velecity: ft/sec At 9 ft	2460			
At 2514 ft	2380	Storage:		
Density, gm/cc	1.72			
		Method Dry	,	
Sleet (Roletive to TNT):	(1)	Hazard Class (Quantity-Distance) Cl.	as 9	
Air		Compatibility Group Gro	Nup I	
Peak Pressure	110			
Impulse	115	Exudation		
Energy	119	L		
Air. Confined:		Preparation:		
Impulse	130	Tritonal is prepared by adding TNT ar	A	
		aluminum separately to a steam-jacketed		
Undur Weter:	105	kettle equipped with a stirrer. Heatin	ug of	
Peck Pressure	105	the kettle and mixing of the ingredient continued until all the TNT is welted.		
Impulse	118	the viscosity of the mixture is conside	red	
Energy	119	satisfactory (about 85°C), the tritonal poured into projectiles or bombs the sa	11	
Underground.		TNT.		
Peak Pressure	117		-	
Impulse	127			
Energy	136			
L		I		

388

÷.

#### Tritonal, 80/20

### AMCP 706-177

#### Origin:

The Addition of eluminum to increase the power of explosives was proposed by Escales in 1899 and patented by Roth in 1900 (German Patent 172,327). Some recent studies, directed towards establishment of the optimum amount of cluminum in the TNT/Aluminum system, have shown that (1) the blast effect increases to a maximum when the aluminum content is 30% (Ref g); the brisance, as measured by the Sand Test, passes through a maximum at about 17% aluminum (Ref h); in Fragmentation Tests, no maximum is observed, additions of aluminum causing a decrease in efficiency over the entire range from 0% to 70% aluminum (Ref i); end (4) the rate of detonation of cast charges is continuously decreased by additions of aluminum up to 40% (Ref j). For all practical purposes it is concluded that the addition of 18% to 20% aluminum to TNT improves its performance to a maximum. This conclusion is in agreement with that of British workers who measured performance of aluminized TNT-mixtures based on extensive Lead Block Test dats (Ref k).

Tritonal, consisting of 80% INT and 20% aluminum, was developed and standardized in the United States during World War II for use in bombs.

#### References:83

(a) L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5745, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RuX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo 10, 303, 15 June 1949.

(c) Committee of Div 2 and 8, NDRC, Report on HEX and Tritonel, OSRD No. 5406, 31 July 1945.

(f) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(g) W. B. Kennedy, R. F. Arentzen and C. W. Tait, <u>Survey of the Performance of TNT/Al on</u> the Basis of Air-Blast Pressure and Impulse, OSRD Report No. 4649, Division 2, Monthly Report No. AES-6, 25 January 1945.

(h) W. R. Tomlinson, Jr., <u>Develop New High Explosive Filler for AP Shot</u>, PATR No. 1290, First Progress Report, 19 May 1943.

(i) W. R. Tomlinson, Jr., <u>Develop New High Explosive Filler for AP Shot</u>, PATR No. 1380, Second Progress Report, 12 January 1944.

(j) L. S. Wise, Effect of Aluminum on the Rate of Detonation of TNT, PATR No. 1550, 26 July 1945.

(k) Armament Research Dept, The Effect of Aluminum on the Power of Explosives, British Report AC-6437, May 1944 (Explosives Report 577/44).

83See footnote 1, page 10.

# Tritonel, EO/20

(1) Also see the following Picstinny Arsenal Technical Reports on Tritonal:

~	-					For ch Off	111
õ	3	<u>4</u>	2	6	7	8	
1530 1560	1693	1444	1635	2000		ž	
1560	2353		1037	1956	1737 2127	21,38	



The contract of the T

Y. P. 1

「日本の一般の一般の一般

Velter No. 448*

AMCP 706-177

Composition:		Malecular Weight:	281
ж них	70.0	Oxygen Balance:	
Nitrocellulose (13.15% N)	15.0	CO ₂ %	-26
Nitroglycerin	10.7	CO %	-0.5
2-Nitrodiphenylamine	1.3	Dunsity: gm/cc Pressed	1.72
Triacetin	3.0	Making Point: "C	
C/H Rotio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt:	· · · · ·	Boiling Point: "C	
Bureau of Mines Appcratus, cm Somple Wt 20 mg		Refrective Index, nº	
Picatinny Arsenal Apparatus, in.			
Sample Wt, mg		n <mark>o</mark>	
	<u>_</u>	n <b>o</b>	
Friction Pandulum Test:		Vacuum Stability Tett:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Builet Impect Test: Trials		- 100°C	1.29
%		120°C 29 hours	11+
Explosions		135°C	
Partials		150°C	
Burned		. 200 Grem Bemb Send Test:	
Unaffected		Sand, gm	66.4
Explosion Temperature: *C		Sensitivity to Initian:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm.	
1		Mercury Fulminate	
5		Leod Azide	0.30
10		Tetryi	
15 20		Beilistic Mortur, % THT:	
		Treuzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Taut: Method	
90 'C Heet Test:		Condition	
% Loss, 1st 48 Hrs	0.28	Confined	
% Loss, 2nd 48 Hrs	1.12	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index;	<u></u>	Detenction Rate:     Confinement	
Hygroscopicity: %		Condition Charge Diameter, in.	
Veletility:		Density, gm/cc	

*See footnots on following page.

### AMCP 706-177

ř

11

### Valter No. 448#

•

Beauter Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec (Z/sec)
Tetryl, gm		Heat, kilocalorie/mole
Wax, in. fer 50% Detonation		(ΔH, kcai/mol)
Wax, gm		Temperatule Range, *C
Density, gm/cc		Phase
Hast of:		Anner Plats Impact Test:
Combustion, cal/grn	2359	
Explosion, col/gm	1,226	60 mm Morter Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Finaness
Fusion, cal/gm		
	·····	SOO-15 General Purpose Bemba:
Compression at Rupture: \$	8.26	Plate Thickness, inches
Work to Produce Rupture:		
ft-lb/inch ³	9.62	1%
It-10/10c0	9.0z	134
		1
Bu-st-s Badas		1%
Surning Rote: cm/sec		
		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/*C		T7, 2000-16 Semi-Anner-Plercing Bomb vs Concreto:
Coefficient of Exponsion:		Max Safe Drop, ft
Linear, %/*C		500-lb General Purpose Somb vs Concrute:
• • •		
Volume, %/*C		Height, ft
		Trials
Hardnass, Mahs' Scala:		Unoffected
		Low Order
Young's Medulue:	× 10	High Order
E', dynes/cm³	$0.24 \times 10^{10}$	
E, lb/inct/*	0.35 x 10 ⁵	1000-lb General Purpose Bemb vs Constats:
Density, gm/cc		
		Height, ft
Comprussive Strength: Ib/inch ³	2720	Triols
		Unaffected
Vapor Pressure:		Low Order
*C mm Mercury		High Order
*Name assigned by Dr. Mark M. of PA; based on original day James H. Veltman.		

Veltex No. 448

## AMCP 706-177

Fregmentation Test:	Shaped Charge Effectiveness, TNT	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectilo, Let WC-91:	Glass Cones St	ael Cones			
Density, gm/cc	Hole Volume				
Charge Wt, Ib	Hole Depth				
Total No. of Fragments:	Caleri				
For TNT	Centr	Orange			
For Subject HE	Principui Uses: High machanics	at rength			
3 inch HE, M42A1 Projectile, Let KC-5:	machinable exp	losive			
Density, gm/cc					
Charge Wt, Ib					
Total No. of Fragments:	Marked of London	Pressed			
For TNT	Method of Londing:	Pressed			
For Subject HE					
	Looding Density: gm/cc				
fregment Valecity: ft/sec	At 6,700 psi	1.72			
At 9 ft At 25½ ft	Storage:				
Density, gm/cc	Method	Dry			
liest (Koletive to TNT):	 Hazard Class (Quantity-Distance	·			
Air:	Compatibility Group				
Peak Pressure	Companying Group				
Impulse	Exudation	None			
Energy	Machinability	Excellen			
Air, Confined: Impulse					
Under Weter: Peak Pressure					
Impulse					
Energy					
Underground: Peak Pressure		•			
impulse					
Energy					

のない

#### AMCP 706-177

第一部で、第二部に、第二部部で、第二部部で、第二部部で、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、第二部部に、

#### Veltex No. 448

#### Preparation:

The preparation of this class of explosive compositions is illustrated by the method used for Veltex No. 448: Place 675 cc of water in a slurry kettle equipped with an agitator. Add 5.85 gm of 2-nitrodiphen/lamine and agitate for several minutes to obtain dispersion. Then add 93.7 gm of water-wet nitrocellulose (dry weight 67.5 gm) in shell portions. Raise the temperature to  $48^{\circ}$ C and maintain this temperature, but continue the agitation. A mixture of 48.2 gm of itroglycerin and 13.5 gm of triacetin is added over a 5-minute period, with the mixing continuing for an additional 10 minutes at  $48^{\circ}$ C. The HMX (350 gm) is added over a 5-minute period with agitation continued for 30 minutes at  $48^{\circ}$ C. The slurry is croled to room temperature and filtered. The filter cake is dried to a moisture conton between 8% and 12%. The incorporation of this mix is completed by rolling 50 gm portions at a temperature of approximately 90°C. The finished colloid is then preheated on a heat table at  $66^{\circ}$ C. Increments of 25 gm each are pressed at 6700 psi for four minutes at 71°C. A cylinder is then built up by pressing together four 25 gm increments for a dwell time of 15 minutes.

#### Origin:

Veltex is the name given to a series of closely related nitrocellulose compositions prepared in 1957 at Finatiany Arsenal by the solventless process used for propellants. These compositions all contain a high percentage of solid high explosive. They were investigated to determinate the suitability of the Holtex type explosive developed by Hispano Suize of Switzerland, France and Spain, but for which the composition was not reported (Ref a). Compositions similar to Valtex No. 448 and containing 60% to 80% HMX, with either nitroglycerin or writhylanglycol dimitrate as colloiding agent for nitrocellulose, have also been prepared. In general these compositions showed lower heat stability than that of conventional high explosive compositions.

#### Reference: 84

(a) U.S. Air Intelligence Information Report IR-269-55, <u>Holtex-Hispano Suize Emplosive</u>,
 4 May 1955.

84See footnote 1, page 10.

* U. S. GOVERNMENT PRINTING OFFICE . 1871 U - 430-500(6432A)

(AMCRD-TV)

FOR THE COMMANDER:

OFFICIAL:

6000

P. R. HORNE Colonel, GS Chief, HQ Admin Mgt Ofc

DISTRIBUTION: Special CHARLES T. HORNER, JR. Major General, USA Chief of Staff

Downloaded from http://www.everyspec.com

# ENGINEERING DESIGN HANDBOOKS

Downloaded from http://www.everyspec.com

Listed below are the Handbooks which have been published or are currently under preparation. Handbooks with publication dates prior to 1 August 1962 were civilished as 20-series Ordnence Corps Remphilets. AMC Circular 310-38, 19 July 1963, redesignated those publications is 7ud-series AMC Pauphilets (e.g., ORDP 20-138 was redesignated AMCP 706-138). All new, reprinted, or rewised Handbooks are being published as 706-series AMC Pumphilets.

201

202

203

205

Title No. **XHCº 706-**Design Guidance for Producibility "Value Engineering Eliments of Armament Engineering, Part One, isurces of Armament Engineering, Part Two, Inilistics Elements of Armament Engineering, Part Two, Inilistics Constant of Armament Engineering, Part Three, Weapon Systems and Components "Tables of in: Curvillative Binomial Probabilities Experimental Stacistics, Section 1, Basic Con-cepts and Analysis of Weasurement Data Experimental Statistics, Section 2, Analysis of Enumerative and Classificatory Da. Experimental Statistics, Section 3, Planning and Analysis of Comparative Experiments Experimental Statistics, Section 4, Special Topics 100 106 107 108 109 m 112 113 Topics Topics Experimental Statistics, Section 5, Tables Environmental Series, Part One, Basic Environ-114 Environmental Series, Part One, Basic Environ-mental Concepts "Environmental Series, Part Two, Basic Environ-mental Factor" Criteria for Environmental Control of Nobile Systems "Paccaging and Pack Engineering "Myora: "Ic fluids Eluctrical Mire and Cable "Infrared Military Systems, Part One "Infrared Mili 116 120 121 123 125 127 "Infrared Hilitary Systems, Part One "Infrared Hilitary Systems, Part Two (U) Design for Air TensDort and Airdrop of Materiel "aintairability Guide for Gesign Inventions, Fatencs, and Related Mattars Servomechanisms, Section 2, Masurement and Signal Converters Servomechanisms, Section 1, Ineury Servomechanisms, Section 3, Amplification Servomechanisms, Section 4, Power Elements and System Design "rajectories, Oifferential Effects, and Data for Projectiles "Dynamics of a Tracking Gimbal System Interior Sallistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Mata Concerning Targets (U) Solid Probellants, Part One Solid Probellants, Part One Solid Probellants, Part One Solid Probellants, Part One Nilitary Pyrotechnics, Part Two, Solid Probellants, Part One Nilitary Pyrotechnics, Part Two, Safety, Procedures and Glostary Military Pyrotechnics, Part Twe, Afety, Procedures and Glostary Military Pyrotechnics, Part Twe, Safety, Procedures and Glostary Military Pyrotechnics, Part Twe, Bibliography "Amny Autoriel Requirements "System Analysis and Cust-Effects Hiltary Pyrotechnics, Part Twe, Bibliography "Amny Matoriel Requirements "System Analysis and Cust-Effectiveness "Development Guide for Reliability, Part Two, Design for Reliability, Part Twe, Helability Prediction "Davelopment Guide for Reliability, Part Two, Design for Reliability, Part Six, "Attendition Apolication "Development Guide for Reliability, Part Six, "Attendition Apolication "Development Gui 128(5) 133 133 134 135 136 137 138 140 145 150 160(S) 161(5) 162(SRD) 165 170(C) 175 175(C) 178(C) 179 180 185 186 187 184 189 190 191 195 196 197 198 199 200

HINDLE SPERARATION--- not available +OBSOLETE--out of stock

Title APCP 706 "Rotorcreft Engineering, Part Une, Preliminary Design Mutercraft Engineering, Part Two, Detail Design Motorcraft Engineering, Part Three, Qualifica- Lion MSSU/AMCE
 *Timing Systems and Components
 Fuzes, Proximity, Electrical, Part Cne (U)
 Fuzes, Proximity, Electrical, Part Three (U)
 Fuzes, Proximity, Electrical, Part Three (U)
 Fuzes, Proximity, Electrical, Part Five (U)
 Fuzes, Proximity, Electrical, Part Five (U)
 Mardening Meabon Systems Against AF Energy
 Shall Amount (C)
 Characteristics (REPLACES - 246)
 Ammunition, Section 1, Artillery Ammunitinn-General, with Table of Contents, Glossary, and Index for Series
 Ammunition, Section 1, Design for Control of Pilght Characteristics (REPLACED 2-242)
 Ammunition, Section 3, Design for Projection Abaets of Artillery Ammunition Section 4, Design for Projection Abaets of Artillery Ammunition Characteristics (REPLACED S-242)
 Ammunition, Section 5, Inspection Abaets of Artillery Ammunition
 Ammunition, Section 6, Manufacture of Metallic Characteristics (REPLACED S-242)
 Ammunition, Section 6, Manufacture of Metallic Camponents of Artillery Ammunition
 Camponents of Artillery Ammunition
 Camponents of Artillery Ammunition
 Soctical Characteristics of Muzzle Flash Autometic Measons 210 211(C) 211(C) 217(S) 213(S) 214(S) 215(C) 235 239(S) 240(S) 241(S) 242 244 245(6) 246 247 248 249 250 251 252 255 Spectral Characteristics of Muzzle Flash Autometic Weadons Propellant Actuated Jevices Design of Aerougnamically Stabilized Frie Goczect eropon System Effectiveness (U) -Propulsion and Propellants (HCPLACED BY -285) Aerodynamics Trajectories (U) Elevents of Aircraft and Missile Propulsion (REPLACES -282) Structures 260 270 280 281 ( SRG ) 282 283 184(C) 285 Structures Warneads--General (U) Surface-to-Air Hissiles, Part One, System 286 290(C) 291 Scructure: Armedas-General (U) Surface-to-Air Missiles, Part One, System Integration Surface-to-Air Missiles, Part Two, Weepon Control Surface-to-Air Missiles, Part Two, Computers Surface-to-Air Missiles, Part Five, Counter-measures (U) Surface-to-Air Missiles, Part Five, Counter-measures (U) Surface-to-Air Missiles, Part Six, Structures and Power Sources Surface-to-Air Missiles, Part Six, Structures and Power Sources Surface-to-Air Missiles, Part Six, Structures and Power Sources Surface-to-Air Missiles, Part Six, Structures and Power Sources Surface-to-Air Missiles, Part Saven, Sample Problem (U) Fire Control Systems-General Fire Control Systems-General Fire Control Systems-General Fire Control Systems-General Fire Control Systems-General Surface-to-Air Missiles, Part Saven, Sample Problem (U) Volume I, Munitions and Weapon Systems (U) "Design Engineers' Muclear Efforts Nanual, Volume II, Muclear Efforts Nanual, Volume II, Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclear III Nuclea 292 293 294(S) 295/5) 296 297(5) 127 329 331 335(SRD) 336(SRD) 337(580) 338(SRD) 340 341 342 343 344 345 346 '347 356 355 Elevating Nechanisms Traversing Mechanisms Wheeled Amphibians The Automotive Assembly Automotive Suspensions Automotive Bodies and Hulls

396

**REVISION UNDER PREPARATION