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FOREWORD

INTRODUCTION

This is one of a group of handbooks covering
the engineering information and quantitative
data needed in the design, development, construc-
tion, and test of military equipment which (as a
group) constitute the Army Materiel Command
Engineering Design Handbook.

‘PURPOSE OF HANDBOOK

The I1andbook on Experimental Statistics has
been prepared as an aid to scientists and engi-
neers engaged in Army research and develop-
ment programs, and especially as a guide and
ready reference for military and civilian person-
nel who have responsibility for the planning and
interpretation of experiments and tests relating
to the performance of Army equipment in the
design and developmental stages of production.

SCOPE AND USE OF HANDBOOK

This Handbook is a collection of statistical
procedures and tables. It is presented in five
sections, viz:

AMCP 706-110, Section 1, Basiec Concepts
and Analysis of Measurement Data (Chapters
1-6)

AMCP 706-111, Section 2, Analysis of Enu-
merative and Classificatory Data (Chapters
7-10)

AMCP 706-112, Section 3, Planning and
Analysis of Comparative Experiments (Chapters
11-14)

AMCP 706-113, Section 4, Special Topies
(Chapters 15-23)

AMCP 706-114, Section 5, Tables

Section 1 provides an elementary introduc-
tion to basie statistical concepts and furnishes
full details on standard statistieal techniques
for the analysis and interpretation of measure-

ment data. Section 2 provides detailed pro-
cedures for the analysis and interpretation of
enumerative and classificatory data. Section 3
has to do with the planning and analysis of com-
parative experiments. Section 4 is devoted to
consideration and exemplification of a number
of important but as yet non-standard statistical
techniques, and to discussion of various other
special topies. An index for the material in all
four sections is placed at the end of Section 4.
Section 5 contains all the mathematical tables
needed for application of the procedures given
in Sections 1 through 4.

An understanding of a few basic statistical
concepts, as given in Chapter 1, is necesssary;
otherwise each of the first four sections is largely
independent of the others. Each procedure, test,
and technique described is illustrated by means
of a worked example. A list of authoritative
references is included, where appropriate, at the
end of each chapter. Step-by-step instructions
are given for attaining a stated goal, and the
conditions under which a particular procedure is
strictly valid are stated explicitly. An attempt is
made to indicate the extent to which results ob-
tained by a given procedure are valid to a good
approximation when these conditions are not
fully met. Alternative procedures are given for
handling cases where the more standard proce-
dures cannot be trusted to yield reliable results.

The Handbook is intended for the user with
an engineering background who, although he has
an occasional need for statistical techniques, does
not have the time or inclination to become an ex-
pert on statistical theory and methodology.

The Handbook has been written with three
types of users in mind. The first is the person
who has had a course or two in statisties, and
who may even have had some practical experi-
ence in applying statistical methods in the past,
but who does not have statistical ideas and tech-
niques at his fingertips, For him, the HHandbook
wilt provide a ready reference source of onec™
familiar ideas and techniques, The second is the

viii
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person who feels, or has been advised, that some
particular problem can be solved by means of
fairly simple statistical techniques, and is in need
of a book that will enable him to obtain the so-
lution to his problem with a minimum of outside
The Handbook should enable such a
person to become familiar with the statistical
ideas, and reasonably adept at the techniques,
that are most fruitful in his particular line of re-
search and development work. Finally, there is
the individual who, as the head of, or as a mem-
ber of a service group, has responsibility for ana-
Iyzing and interpreting experimental and test

assistance,

data brought in by scientists and engineers en-

gaged in Army research and development work.
This individual needs a ready source of model
work sheets and worked examples corresponding
to the more common applications of statistics, to
;free him from the need of translating textbook
. discussions into step-by-step procedures that can
be followed by individuals having little or no
previous experience with statistical methods.

It is with this last need in mind that some
of the procedures included in the Handbook have
been explained and illustrated in detail twice:
once for the case where the important question
is whether the performance of a new material,
product, or process exceeds an established stan-
dard ; and again for the case where the important
question is whether its performance is not up to
the specified standards. Small but serious errors
are often made in ehanging ‘‘ greater than'’ pro-
cedures into ‘‘less than’’ procedures.

AUTHORSHIP AND ACKNOWLEDGMENTS

The Handbook on Experimental Statistics
was prepared in the Statistical Engincering Lab-
oratory, National Bureau of Standards, under a
contract with the Department of Army. The
project was under the general guidance of
Churchill Eisenhart, Chief, Statistical Engincer-
ing Laboratory.

ix
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Most of the present text is by Mary G. Na-
trella, who had overall responsibility for the com-
pletion of the final version of ,the Handbock.
The original plans for coverage, a first draft of
the text, and some original tables were prepared
by Paul N, Somerville. Chapter 6 is by Joseph
M. Cameron; most of Chapter 1 and all of Chap-
ters 20 and 23 are by Churchill Eisenhart; and
Chapter 10 is based on a nearly-final draft by
Mary 1. Epling.

Other members of the staff of the Statistical
Engineering Laboratory have aided in various
ways through the years, and the assistance of all
who helped is gratefully acknowledged. Partic-
ular mention should be made of Norman C.
Severo, for assistance with Section 2, and of
Shirley Young Lehman for help in the collection
and computation of examples,

Editcrial assistance and art preparation were
provided by John I. Thompson & Company,
Washington, D. C. Final preparation and ar-
rangement for publication of the II:undbook were
performed by the Engineering Handbeok Office,
Duke University.

Appreciation is expressed for the generous
cooperation of publishers and authors in grant-
ing permission for the use of their source materi-
al. References for tables and other material,
taken wholly or in part, from published works,
are given on the respective first pages.

Elements of the U. S. Army Materiel Com-
mand having need for handbooks may submit
requisitions or official requests direetly to the
Publications and Reproduction Agency, Letter-
kenny Army Depot, Chambersburg, Pennsyl-
vania 17201. Contractors should submit such
requisitions or requests to their contracting of-
ficers.

Comments and suggestions on this handbook
are weleome and should be addressed to Army
Research Office-Durham, Box CM, Duke Station,
Durham, North Carolina 27706,



Downloaded from http://www.everyspec.com

AMCP 706-113

PREFACE

This listing is a guide to the Section and Chapter subject coverage in all Seetions of the Hand-
book on Experimental Statistics,

Chapter Title
No.

AMCP 706-110 (SECTION 1) — BASIC STATISTICAL CONCEPTS AND
'STANDARD TECHNIQUES FOR ANALYSIS AND INTERPRETATION OF
" MEASUREMENT _DATA

1 — Some Basic Statistical Coneepts-and Preliminary Considerations
2 — Characterizing the Measured Performance of a Material, Produet, or Process
3 — Comparing Materials or Products with Respect to Average Performance
4 — Comparing Materials or Produets with Respect to Variability of Performance
+ 3 — Characterizing Linear Relationships Between Two Variables
6 — Polynomial and Multivariable Relationships, Analysis by the Method of Least Squares

AMCP 706-111 (SECTION 2) — ANALYSIS OF ENUMERATIVE AND
CLASSIFICATORY DATA

7 — Characterizing the Qualitative Performance of a Material, Produet, or Process
8 — Comparing Materials or Produe.s with Respeet to a Two-Fold Classification of Performance
(Comparing Two Percentages)
9 — Comparing Materials or Products with Respeet to Several (‘ategovies of Performance (Chi-Square
Tests)
10 — Sensitivity Testing

AMCP 706-112 (SECTION 3) — THE PLANNING AND ANALYSIS OF
COMPARATIVE EXPERIMENTS !

11 — General Considerations in Planning Ex'porimcnts

12 — Factorial Experiments

13 — Randomized Blocks, Latin S¢quares, and Other Special-Purpose Designs
14 — Experiments to Determine Optimum Conditions or Levels

AMCP 706-113 (SECTION 4) — SPECIAL TOPICS

15 — Some “‘Short-Cut "’ Tests for Small Samples from Normal Populations
16 — Some Tests Which Are Independent of the Foem of the Distribution
17 — The Treatment of Qutliers

18 — The Place of Control Charts in Experimental Work

19 — Statistieal Techniques for Analyzing Extreme-Value Data

20 — The Use of Transformations

91 — The Relation Between Confidenee Intervals and Tests of Significance
22— Notes on Statistical Computations

24— Bxpression of the Uneertainties of Final Results

hudex '

AMCP 706-114 (SECTI?N 5) — TABLES
Tables A1 through A-37

. . X
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SPECIAL TOPICS AMCP 706-113

DISCUSSION OF TECKNIQUES IN CHAPTERS 15 THROUGH 23

In this Section, a number of important but as yet non-standard
techniques are presented for answering questions similar to those
considered in AMCP 706-110, Section 1. In addition, various spe-
cial topics, such as transformation of data to simplify the statis-
tical analysis, treatment of outlying observations, expression of
uncertainties of final results, use of control charts in experi-
mental work, etc., are discussed in sufficient detail to serve as
an introduction for the reader who wishes to pursue these topics
further in the published Titerature.

A1l A-Tables referenced in these Chapters are contained in AMCP
706-114, Section 5.

xi
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CHAPTER 15

SOME SHORTCUT TESTS FOR SMALL SAMPLES
FROM NORMAL POPULATIONS

A e e S . i

: 15-1 GENERAL

Shortcut tests are characterized by their nplicity. The calculations are simple, and often may
be done on a alide rule. Further, they are casily learned. An additional advantage in their use

is that their simplicity implies fewer errors, and this may be important where time spent in checking
‘

< rediwlans o

is costly. ,
The main disadvantage of the shortcut tests as compared to the tests given in AMCP 706-110,

Chapters 8 and 4, is that with the same values of « and n, the shorteut test will, in general, have a
larger 8, — i.e., it will result in a higher proportion of errors of the second kind. For the tests
given in this chapter, this increase in error will usually be rather small if the sample sizes involved

are each of the order of 10 or less.

Unlike the nonparametric tests of Chapter 16, these tests require the assumption of normality of
the underlying populations. Small departures from normality, hovever, will usually have a
negligible effect on the test — i.e., the values of « and 8, in general, will differ from their intended

values by only a slight amount.
No descriptions of the operating characteristics of the tests or of methods of determfning sample

3
k.
i

¢ aE f edece R o, e

size are given in this chapter.

b PR R ¥ T e v
plman SR S
e

15-2 COMPARING THE AVERAGE OF A NEW PRODUCT WITH THAT
OF A STANDARD

¥

R B et e TS 2t

Y

15-2.1 DOES THE AVERAGE OF THE NEW PRODUCT DIFFER FROM THE STANDARD?

Data Sample 15-2.1 — Depth of Penetration

S St T g

Ten rounds of a new type of shell are fired into a target, and the depth of penetration is measured

for each round. The depths of penetration are:
10.0, 9.8, 10.2, 10.5, 11.4, 10.8, 9.8, 12.2, 11.6, 9.9 ems.

The average penetration depth, ma, of the standard comparable shell is 10.0 em.

e

15-1

fg
§
i
4

;
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SHORTCUT TESTS

The question to be answered is: Does the new type differ from the standard type with respect
to average penetration depth (either a decrease, or an increase, being of interest)?

(1)
(2)

3)

(6)

(6)

15-2,2 DOESs

In terms of 1L

Procedure
Choose «, the significance level of the test,

Look up ¢;_a,2in Table A-12 for the appro-
priate n.

Compute X, the mean of the n observa-
tions.

Compute w, the difference between the
largest and smallest of the » observations.

Compute ¢ = (X — my)/w

If |@! > ¢1_a2, conclude that the average
performance of the new product differs
from that of the standard; otherwise, there
is no reason to believe that they differ.

(N
(2)

@)

@

5)

(6)

Example
Let « = .01
n = 10
©.995 = 0.333
X = 10.62
w = 24
_ 1062 - 10.00
v = 2.4
= (.258

Since 0.258 is not larger than 0.338, there
is no reason to believe that the new type
shell differs from the standard.

AVERAGE OF THE NEW PRODUCT EXCEED THE STANDARD?

a Sample 15-2.1, let us suppose that — in advance of looking at the data — the

irnportant question is: Does the average of the new type exceed that of the standard?

1)

3)

4)

6)

Procadure
Choose «, the significance level of the test.

Look up ¢i_. in Table A-12, for the appro-
priate n.

Compute X, the mean of the n observa-
tions.

Compute w, the difference between the
largest and smallest of the n observations.

Compute ¢ = (X — mo)/w

If © > ¢i_a, conclude that the average of
the new product exceeds that of the stand-
ard; otherwise, there is no reason to believe
that the average of the new product
exceeds the standard.

15-2

¢y
(2)

3)

)

®)

(6)

Example
Let a = .01
n = 10
.90 = 0.288
X =10.62
w =24
_ 10.62 — 10.00
e 24
= (,258

Since 0.258 is not larger than 0.288, there
is no reason to believe that the average of
the new type exceeds that of the standard.

R L T T T e
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COMPARING AVERAGE PERFORMANCE

AMCP 706-~113

In terms of Data Sample 15-2.1, let us suppose that

15-2.3

IS THE AVERAGE OF THE NEW PRODUCT LESS THAN THE STANDARD?

advance of looking at the data — the

important question 1s: Is the average of the new type le... «-.an that of the standard?

(1)

@)

@)

)

(5)

(6)

Procedure

Choose «, the significance level of the test.

Look up ¢1_, in Table A-12, for the appro-
priate n.

Compute X, the mean of the n observa-
tions.

Compute w, the difference between the
largest and smallest of the n observations.

Compute ¢ = (my, — X)/w

If » > ¢1_, conclude that the average of
the new product is less than that of the
standard; ctherwise, there is no reason to
believe that the average of the new product
is less than that of the standard.

Example
1) leta = .01
(2) n = 10
.0 = 0.288
(3) X="
4) w = 2.4
;000 — 10.62
6) o=
= — (.258
(6) Since — 0.258 is not larger than 0.288,

there is no reason to bel'eve that the
average of the new type is less than that of
the standard.
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AMCP 706-113 SHORTCUT TESTS

15-3 COMPARING THE AVERAGES OF TWO PRODUCTS

15-3.1 O THE PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE?

PO A S R AL -V PR

R . VaF =~ T RPN SO I~ .1

Data Sample 15-3.3 — Capacity i Batterias v

Form: A set of n measurements is available from 2ach of two materials or products. The proce-
dure* given requires that both sets contain the same number of measurements (i.e., ny = ny = n).

Ezxample: There are available two independent sets of measurements of battery capacity. - ‘
Set A Set B :

138 140 ;

143 141 -

136 139 sy

141 143

140 138 ;

142 140

142 142 i

146 139 ]

187 141 j

135 138 )

- §

S0

Procedure Example i ;
:

(1) Choose «, the significance level of the test. (1) Let a = .01 :
(2) Look up ¢}_.ein Table A-13, for the appro-  (2) n =10 R

priate n. @'ous = 0.419 . B i
(8) Compute X, X4, the means of the two (3) X, =140.0 J
samples. X = 140.1 C
(4) Compute w,, ws, the ranges (or difference  (4) w, = 146 ~ 135
between the largest and smallest values) = 11 P
for each sample. wy = 143 — 138 H f
= § i
i
- LI
(5) Compute 5) o = 140.0 - 140.1 .
LI
, X.- X = — 0.0125 ;

Y T Y. + wa)

(6) If |¢'| > ¢ 1-as2, conclude that the aver-  (6) Since 0.0125 is not larger than 90.419,
ages of the two products differ; otherwise, there is no reason to believe that the
there is no reason to believe that the average of A differs from the average of B.
averages of A and B differ.

-

* This procedure is not appropriate when the observations are “paired”’, i.e.,, when each measurement from A is
associated with a corresponding measurement from B (see Paragraph 3-3.1.4). In the paired observation case, the
question may be answered by the following procedure: compute X, as shown in Paragraph 3-3.1.4 and follow the
procedure of Paragraph 15-2.1, using X = X.and my = 0, :

v
AR A R oS i 42 ot e
f ;

3
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15-3.2

DOES THE AVERAGE OF PRODUCY A EXCEED THE AVERAGE OF PRODUCT B?

In terms of Data Sample 15-3.1, let us suppose that — in advance of looking at the data — the

important question is: Does the average of A exceed the ave

7e of B?

Again, as in Paragraph 15-3.1, the procedure is appropriate when two independent sets of
measurements are available, each containing the same number of observations (n, = nz = n),

but is not appropriate when the observations are paired (see Paragrarh 3-3.1.4).

In the paired

observation case, the question may be answerzd by the following procedure: compute X, as shown

in Paragraph 3-3.2.4, and follow the procedure of Paragraph 15-2.2, using X = X, and m,

@)

4)

(5)

Procedure

Choose «, the significance level of the test,

Look up o!_. in Table A-18, for the appro-
priate n,

Compute X., X, the means of the two
samples.

Compute w, , w5, the ranges (or difference
between the largest and smallest valu.s)
for each sample,

Compute

’ XA —XH

@ = o T
% (ws + wyp

If o' > ¢'i1-a, conclude that the average of
A exceeds that of B; otherwise, there is no
reason to believe that the average of A
exceeds that of B.

=~ 0.

Example

(1) Let a = .05
2) n = 10

Play = 250
3) X. = 1400

X, = 1401
(4) Wy = 11

Wp = 5

0 — 140,
() o =220 01
= — 0.0125

(6) Since — 0.0125 is not larger than 0.250,

15-6

there is no reason to believe that the
average of A excveds the average of B.

1
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15-4 COMPARING THE AVERAGES OF SEVERAL PRODUCTS
DO THE AVERAGES OF t+ PRODUCTS DIFFER?

Data Sample 15-4 ~— Breakirg-Strength of Cement Briquettes

The fcllowing data relate to breaking-strength of cement briquettes (in pounds per square

VI b i i St e SV fisranasy i

inch).
Group
1 2 3 4 5
518 508 554 556 536
560 574 598 567 492
538 528 579 550 528
510 534 538 535 572
544 538 544 540 506
zX; 2670 2682 2813 2747 2634
ni 5 5 5 5 5
X, 534.0 536 .4 562.6 549.4 526 .8
1Bgicggﬂzxiet:t%?rént.i:fii:t'i‘c::o&.ﬁtg?&cgoﬁz;ﬁmh;f:.n 11, Analysin of Vatiance and Associated Techniques,’” by N, L. Johnson, Ccpyrignt,
' The question to be answered is: Does the average breaking-strength differ for the different
groups?
L Procedure Example
(1) Choose «, the significance level of the test. (1) Let « = .01
(2) Look up L, in Table A-15, corresponding 2) =25
totand n. n =5
n=mn ="MnN =,..=n;, the number of L, = 1.02
observations on each product.
(8) Compute w,, ws,... ,w., the ranges of the 3) 1w, = 50
n observations from each product. we = 66
Wy = 60
Wy = 32
We = 80
(4) Compute X,, X,,..., X, the meansof @4) X, = 534.0
the observations from each produect. X, = 5364
X, = 562.6
X, =5494
Xzs = 526.8
(5) Comp ew = w, 4 ws + ...+ wy. (5) w' = 288
Comp e w”, the difference between the w'’ = 562.6 — 526.8
la 7est and the smallest of the means X;. = 35.8
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Procedure (Cont) Example (Cont)
(6) Compute L = nw' /v’ (6) L = 179/288
= (.62
(7) 11 L > L,, conclude that the averages of (7) Since Lisless than L,, there is no reason to
the ¢t produets differ; otherwise, there is no believe that the group averages differ.

reason to believe that the averages differ.

N

15-5 COMPARING TWO PRODUCTS WITH RESPECT TO VARIABILITY
OF PERFORMANCE

15-5.1 DOES THE VARIABILITY OF PRODUCT A DIFFER FROM THAT OF PRODUCT B?

The data of Data Sample 15-3.1 are used to illustrate the procedure.
The question to be answered is: Does the variability of A differ from the variability of B?

Procedure Example
(1) Choose «, the significance level of the test. (1) Let a = .01
(2) Look up Fi (ns, ny) and 2) na = 10
F' 2 (ny, ng) in Table A-11*, ng = 10

Flo (10, 10) - .37
Fg95 (10, 1C) = 2.7

- (3) Compute w,, wy, the ranges (or difference 6)) wa = 11
between the largest and smallest observa- Wy =5
tions) for A and B, respectively.
(4) Compute F’ = w,/wy 4) F' =11/5
= 2.2
(B) If F/ < Fiyy(ny, ny) or (5) Since F’ is not less than .37 and is not
F’" > Fi{_a2(ny, ny), conclude that the greater than 2.7, there is no reason to
variability in performance differs; other- believe that the varizbility differs.

wise, there is no reason to believe that the
variability differs.

e Wh;n_usiﬁgi‘—alﬁé ‘A_-_lul, éample sizes need not be equal, but cannot be larger than 10.

15-7
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15-5.2 DOES THE VARIABILITY OF PRODUCT A EXCEED THAT OF PRODUCT B?

In terms of Data Sample 15-8.1, the question to be answered is: Does the variability of A exceed
the variability of B?

ey
@)

@

(4)

)

Procedure

Choose «, the significance leve! of the test.

Look up Fi_. (n4, ng) in Table A-11%

Compute w, , wy, the ranges (or difference
between the largest and smallest observa-
tions) for A and R, respectively.

Compute F’ = w,/wpg

If F' > Fi_, (n4, ny), conclude that the
variability in performance of A exceeds the
variability in performance of B; otherwise,
there is no reason to believe that the vari-

ability in performance of A exceeds that of
B.

(L)
@)

@)

4)

(6)

Example
Let a = .01
Ny = 10
Np = 10
ngg (10, 10) = 2.4
Wy = 11
Wy = 5
F' = 11/5
= 2.2

Since F” is not larger than F'y,, there is no
reason to believe that the variability of set
A exceeds that of set B.

* When using Table A-11, sample sizes need not be equal, but cannot be larger than 10,

15-8
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CHAPTER 16

SOME TESTS WHICH ARE INDGPENDENT OF THE FORM OF
THE DISTRIBUTION

16-1 GENERAL

This chapter outlines a number of test procedures in which very little is assumed about the
nature of the population distributions. In particular, the population distributions are not assumed
to be ‘“‘normal”. These tests are often called “‘nonparametric” tests. The assumptions made
here are that the individual observations are independent* and that all observations on a given
material (product, or process) have the same underlying distribution. The procedures are strictly
correct only if the underlying distribution is continuous, and suitable warnings in this regard are
given in each test procedure.

In this chapter, the same wording is used for the problems as was used in AMCP 706-110,Chapter 3
(e.g., “Does the average differ from a standard?”’), because the general imiport of the questions is the
same. The specific tests employed, however, are fundamentally ditferent.

If the underlying populations are indeed normal, these tests are poorer than the ones given in
Chapter 3, in the sense that 8, the probability of the second kind of error, is always larger for given
a and n. For some other distributions, however, the nonparametric tests actually may have a
smaller error of the second kind. The increase in the second kind of error, when nonparametric
tests are applied to normal data, is surprisingly small and is an indication that these tests should
receive more use,

Operating characteristic curves and methods of obtaining sample sizes are not given for these
tests. Roughly speaking, most of the tests of this chapter require a sample size about 1.1 times that
required by the tests given in Chapter 3 (see Paragraphs 3-2 and 3-8 for appropriate normal sample
size formulas). For the sign test (Paragraphs 16-2.1, 16-3.1, 16-4.1, 16-5.1, and 16-6.1), a factor
of 1.2 is more appropriate.

For the problem of comparing with a standard (Paragraphs 158-2, 16-3, and 16-4), two niethods
of solution are given and the choice may be made by the user. The sign test (Paragraphs 16-2.1,
16-3.1, and 16-4.1) is a very simple test which is useful under very general conditions. The Wil-
coxon signed-ranks test (Paragraphs 16-2.2, 16-3.2, and 16-4.2) requires the assumption that the
underlying distribution is symmetrical. When the assumption of symmetry can be made, the
signed-ranks test is a more powerful test than the sign test, and is not very burdensome for fairly
small samples,

For the problem of comparing two products (Paragraphs 16-5 and 16-6), two methods of solution
are also given, but each applies to a specific situation with regard to the source of the data.

The procedures of this chapter assume that the pertinent question has been chosen before taking
the observations.,

‘; Exc:iept for certain techniques which are given for “‘paired observations'; in that case, the pairs are assumed to be
independent.

16-1
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DISTRIBUTION-FREE TESTS

A
16-2 DOES THE AVERAGE OF A NEW PRODUCT DIFFER
FROM A STANDARD?

Data Sampie 16-2 — Reverse-Bias Collecter Current of Yen Transistors

The data are measurements of I¢po for ten transistors of the same type, where I¢po is the reverse-

bias collector current recorded in microamperes.

The standard -value m, is 0.28ua.

Transistor

Icho

[y
CwoMm-a ot d W~ |

0.28
.18

.30
.40
.36
15
.42

.48

16-2.1

Procedure

(1) Choose a, the significance level of the test.
Table A-83 provides for values of « = .25,
.10, .05, and .01 for this two-sided test,

(2) Discard observations which happen to be
equal to my, and let » be the number of
observations actually used. (If more than
209, of the observations need to be dis-
carded, this procedure should not be used).

(8) For each observation X, record the sign of
the difference X; — m,.

Count the number of occurrences of the less

frequent sign. Call this number 7.
(4) Look up r («, n), in Table A-33.

(6) If r is less than, or is equal to, r (a, n), con-
clude that the average of the new product
differs from the standard; otherwise, there
i8 no reason to believe that the averages
differ.

16-2

(1)

(2)

(35

4)
(5)

DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD? THE SIGN TEST

Example
Let a = .05

In Data Sample 16-2, m, = .28. Discard

the first observation.

n =29

The less frequent sign is — .

Since there are 4 minus signs,
r=4

r (.05,9) =1

Since r is not less than r (.05, 9), thereis no
reason to believe that the average current
differs from my; = .28ua.
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16-2.2 DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARDR? THE WILCOXON
SIGNED-RANKS TEST

Procedurs Example

(1) Choose a, the significance level of the test. (1) Let o« = .05

Table A-34 provides for values of « = .05, In Data Sample 16-2, m, = .28, Discard
.02, and .01 for this two-sided test. Dis- the first observation.
card any observations which happen to be -9

. equal to m,, and let » be the number of "=

observations actually used.

(2) Look up T, (n), in Table A-34. 2) T.s(9) =6
(3) For each observation X;, compute 3) 4)
X: = X,' — My
Xi = mq Signed rank
—.10 —b
(4) Disregarding signs, rank the X} according — .04 —2
to their numerical value, i.e., assign the + .02 +1
rank of 1 to the X! which is numerically +.12 +6
smallest, the rank of 2 to the X! which is + .08 +4
next smallest, etc. In case of ties, assign —.13 -1
the average of the ranks which would have +.14 +-8
been assigned had the X#s differed only —.0b -3
slightly. (If more than 209, of the ob- +.20 +9
servations are involved in ties, this proce-
dure should not be used.)
To the assigned ranks 1, 2, 3, ete., prefix a
+ or a — sign, according to whether the
corresponding X is positive or negative.
(6) Sum the ranks prefixed by a + sign, and (5) Sum + = 28
the ranks prefixed by a — sign. Let T be Sum — = 17
the smaller (disregarding sign) of the two T = 17
sums.

(6) If T < T. (n), conclude that the average (6) Since T is not less than T (9). there is no
performance of the new type differs from reason to believe that the average current
that of the standard; otherwise, there is no differs from m, = .28ua.
reason to believe that the averages differ.

16-3
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16-3 DOES THE AVERAGE OF A NEW PRODUCT EXCEED
THATY OF A STANDARD?

Data Sample 16-3 — Reversa-Bias Collector Current of Twenty Transistors

The data are a set of measurements Icxo for 20 transistors, where I¢go is the reverse-bias collector
current recorded in microamperes,

The standard value m, is 0.28a.

Transistor Tcro
1 . 0.20ua
2 g .16
3 .20
4 .48
5 .92
6 .33
7 .20
8 .53
9 .42
10 .50
11 .19
12 .22
; 13 18
% 14 A7
& 15 1.20
; 16 .14
17 .09
18 .18
19 .26
20 .66

16-3.1 DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD? THE SIGN TEST
Procedure Example

(1) Choose «, the significance level of the test. (1) Let a = .026
Table A-33 provides for values of « = .125,
.05, .025, and .006 for this one-sided test.

(2) Discard observations which happen to be  (2) In Data Sample 16-3, m, = .28. Since no
equal to m,, and let » be the number of observations are equal to m,,
observations actually used. (If more than = 20
209, of the observations need to be dis- n=
carded, this procedure should not be used.)

(8) For each observation X, record the sign of  (3)
the difference X; — m,.
Count the number of minus signs.

ki A%

. AR

sk

Call this number r. r =12
(4) Look up r (a, m), in Table A-33. 4) r(025,20) =5
16-4 h
. N N H \‘iﬂl-»-“;:\‘- i i




B w0 Bl o O L v X B A Gl S D iR, ST RN U0 K 4 UNTRWNE BT L R

St AR HAOR (R et p P a1 3w e T g B S s TORRLPL S ITe S LA 10 3 i
Downloaded from http://www.everyspec.com
AMCP 706-113
COMPARING AVERAGE PERFORMANCE
Procedure (Cont) Example (Cont)
(6) If risless than, or is equal to, r (a, n), con- (5) Since r is not less than r (.025, 20), there is
B clude that the average of the new product no reason to believe that the average cur-
' . exceeds the standard; otherwise, there is no rent exceeds m; = .28ua.
3 reason to believe that the average of the
M . new product exceeds that of the standard.

% 16-3.2 DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD?

THE WILCOXON SIGNEC-RANKS TESY

Procedure Example

: (1) Choose «, the significance level of the test. (1) Let a = 025

. Table A-34 provides for values of « = .025, In Data Sample 16-3, m, = .28ua. Since
A .01, and .005 for this one-sided test. Dis- no observations are equal to m,,

card any observations which happen to be n =20

equal to mo, and let n be the number of
observations actually used.

(2) Look up T. (n), in 'Table A-34, (2) T.o06 (20) = 52
(8) For each observation X, compute 3) 4)
| Xi=Xi—mo. Xi = m Signed Rank
3 (4) Disregarding signs, rank the X according —0.08 -5
E to their numerical value, i.e., assign the —0.12 ~10
'j rank of 1 to the X! which is numerically —0.08 -5
| smallest, the rank of 2 to the X' which is 0.20 +15
next smallest, etc. In case of ties, assign 0.64 +19
the average of the ranks which would have 0.05 + 2
been assigned had the X!s differed oaly ~0.08 -5
slightly. (If more than 20% of the ob- 0.25 +17
servations are involved in ties, this proce- 0.14 +11.5
dure sk.uld not be used.) 0.22 +16
To the assigned ranks 1, 2, 8, etc., prefix a —0.09 - Z
+ or a — sign according to whether the X! —3(1)3 - g
1S positive or negative. —011 _ 9
0.92 +20
—0.14 -11.5
—-0.19 -14
- —-0.15 -13
-0.02 -1
. 0.38 +18
! (5) Let T be the absolute value of the sum of (5) T = 91.5
ki the ranks preceded by a negative sign,

(6) If T < T, (n), conclude that the average (6) Since T is not smaller than T g (20), there
performance of the new product exceeds is no reason to believe that the average cur-
that of the standard; otherwise, there is no rent exceeds m, = .28ua.
reason to believe that the average of the
new product exceeds that of the standard.

16-5
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16-4 IS THE AVERAGE OF A NEW PRODUCT LESS THAN
THAT OF A STANDARD?

Data Sample 16-4 — Tensile Strength of Aluminum Alloy

The data are measurements of ultimate tensile strength (psi) for twenty test specimens of alu-
minum alloy.. The standard value for tensile strength is my = 27,000 psi.

Ultimate Tensile
Specimen Strength (psi)
1 24,200
2 25,900
3 26,000
4 26,000
5 26,300
6 26,450
7 27,250
8 27,450
9 27,550
10 28,550
11 29,150
12 29,900
18 30,000
14 30,400
15 30,450
16 30,450
17 31,450
18 31,600
19 32,400
20 33,750

16-4.1 IS THE AVERAGE OF A NEW PRODUCT-LESS THAN THAT OF A STANDARD? THE SIGN TEST
Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .025
Table A-33 provides for values of « = .125,
.05, .025, and .005 for this one-sided test.

(2) Discard observations which happen to be (2) In Data Sample 16-4, m, = 27,000. Since
equal to m,, and let n be the number of no observations are equal to m,,
observations actually used. (If more than n = 20
209, of the observations need to be dis- -
carded, this procedure should not be used.)

(3) For each observation X, record the sign (3
of the difference X; — m;.

Count the number of plus signs. Call this There are 14 plus signs.
number r. r = 14
(4) Look up r (a, n), in Table A-33. 4) r(0256,20) =6

16-6
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z Procedurs (Cont) Example (Cont)
(5) If r is less than, or is equal to, » («, n), con- (5) Since 7 is not less than r (.025, 20), there is .
clude that the average of the new product no reason to believe that the average tensile i
is less than the standard; otherwise, there strength is less than m, = 27,900 psi. e
is no reason to believe that the average of '
the new product is less than the standard.
16-4.2 IS THE AVERAGE OF A NEW PRODUCT IESS THAN THAT OF A STANDARD? !
THE WILCOXON SIGNED-RANKS TEST
Procedure Example '
(1) Choose «, the significance level of the test. (1) Let a = .025
Table A-34 provides for values of « = .025, In Data Sample 16-4, 3
.01, and .005 for this one-sided test. Dis- e = 97000 2
card any observations which happen to be o = hE A
equal to m,, and let # be the number of Since no observations are equal to m,, ¥
observations actuallv used. 20
(2) Look up T. (n), in Table A-34. (2) T (20) = 52 3
(3) For each observation X, compute (3) (4)
X=X —m. X;—m  Signed Rank -
L (4) Disregarding signs, rank the X! according :%?gg :1; '
¢ to their numerical value, i.e., assign the
£ RN . --1000 — 6.5
{ rank of 1 to the X! which is numerically 1000 _ 65
i smallest, the rank of 2 to the X! which is — 700 B 5'
L ' next smallest, ete. I case of ties, assign ;
i the average of the ranks which would have 250 11
- been assigned had the X!'s differed only 450 12
[ slightly. (If more than 209 of the ob- 550 L35 B
[ servations are involved in ties, this proce- ) i
1550 + 9 3
b dure should not be used.) 3
£ . 2150 +10 .
p To the assigned ranks 1, 2, 3, ete., prefix a - 5
3 . . 2900 412 _
: + or a — sign according to whether the 3000 113 4
| corresponding X! is positive or negative. 3400 +14 3
§ 3450 +15.5 b
; 3450 +15.5
,h 4450 +17 1
4600 +18
g 5400 +19 3
2 6750 420 3
! L
L (5) Let T be the sum of the ranks preceded by  (5) T = 169.5 :
4 a + sign.
g' 6) T <T., (ﬁ), conclude that the average of (6) Since T is not less than T 5 (20), there is i
the new product is less than that of the no reason to believe that the average tensile -
%, standard; otherwise, there is no reason to strength is less than m, = 27,000 psi. 3
fy believe that the average of the new product i
E; : is less than that of the standard. .
) 16-7
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16-5 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE?

4 A B T i DR Y L2 . RS

T'wo procedures are given to answer this question. Each of the procedures is applicable to a : i
different situation, depending upon how the data have been taken. ;

FRON o

Situation 1 (for which the sign test of Paragraph 16-5.1 is applicable) is the case where observa-
tions on the two things being compared have been obtained in pairs. Each of the two observations
on a pair has been obtained under similar conditions, but the different pairs need not have been
obtained under similar conditions. Specifically, the sign test procedure tests whether the median
difference between A and B ean be considered equal to zero.

Situation 2 (for which we use the Wilcoxon-Mann-Whitney test of Paragraph 16-5.2) is the case
where two independent samples have been drawn — one from population A and one from popula-
tion B. This test answers the following kind of questions — if the two distributions are of the
same form, are they displaced with respect to each other? Or, if the distributions are quite different
in form, do the observations on A systematically tend to exceed the observations on B?

16-5.1 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? THE SIGN TEST FOR PAIRED
OBSERVATIONS

Data Sample 16-5.1 —— Reverse-Bias Collector Currents of Two Types of Transisiors

Ten pairs of measurements of Icao on two types of transistors are available; as follows:

Type A Type B
.19 .21
.22 .27
.18 .15
17 .18
1.20 .40 :
14 .08 .
.09 .14 1o
.18 .28 - i
.26 .30 PR
.66 .68 ‘

16-8
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Procedure Example

(1) Choose o, the significance level of the test. (1) Let a = .10
Table A-33 provides for values of a = .25,
.10, .05, and .01 for this two-sided test.

(2) For each pair, record the sign of the differ- (2) In Data Sample 16-5.1,
ence X4 — Xy. Discard any difference n =10
which happens to equal zero. Let n be the B
number of differences remaining. (If more
than 209, of the observations need to be
discarded, this procedure should not be

used.)

(3) Count the number of occurrences of the less (8) There are 3 plus signs.
frequent sign. Call this r. r=3

(4) Look up r («, n), in Table A-33. 4) r(10,16) =1

(b) If ris less than, or is equal to, r (a, n), con- (5) Since r is not less than r (.10, 10), there is
clude that the averages differ; otherwise, no reason to believe that the two types
there is no reason to believe that the differ in average current.

averages differ.

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two
products in the paired-sample situation; follow the procedure of Paragraph 16-2.2, substituting
X=X, -~ X, for X! = X, — m,in step (3) of that procedure.

16-5.2 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? THE WILCOXON-MANN-
WHITNEY TEST FOR TWO INDEPENDENT SAMPLES

Data Sample 16-5.2 — Forward Current Transfer Ratio of Two Types of Transisters

The data are measurements of &, for two independent groups of transistors, where h,, is the
small-signal short-circuit forw:.rd eurrent transfer ratio.

Group A Group B
50.5 (O* 57.0 (1)
37.5 (1) 52.0 (11)
49.8 (7 651.0 (10)
56.0 (15.5) 4.2 (3)
42.0 (2) 55.0 (14)
56.0 (15.5) 62.0 (19)
50.0 (8) 59.0 (18)
54.0 (13) 45.2 (b)
48.0 (6) 53.5 (12)

4.4 @)

* The numbers shown in par(;ntheses are the ranks, from lowest to highest, for all observations combined, as required
in Step (2) of the following Procedure and Example,

16-9
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M

@)

®3)

)

(®)

(6)

Procedure

Choose «, the significance level of the test.
Table A-35 provides for values of a = .01,
05, .10, and .20 for this two-sided test
when n,, np < 20,

Combine the observations from the two
samples, and rank them in order of in-
creasing size from smallest to largest.
Assign the rank of 1 to the lowest, a rank
of 2 to the next lowest, ete. (Use algebraic
size, i.e., the lowest rank is assigned to the
largest negative number, if there are nega-
tive numbers). In case of ties, assign to
each the average of the ranks which would
have been assigned had the tied observa-
tions differed only slightly. (If more than
209, of the observations are involved in
ties, this procedure should not be used.)

Let: m, = smaller sample
n, = larger sample
N = Ny + N
Compute R, the sum of the ranks for the

smaller sample. (If the two samples are
equal in size, use the sum of the ranks for
cither sample.)

Compute R’ =n,(n +1) - R

Look up R, (n,, ny), in Table A-35.

If either R or R’ is smaller than, or is equal
to, K. (ny, n.), conclude that the averages
of the two products differ; otherwise, there
is no reason to believe that the averages of
the two- products differ.

(1) Let

Exampie

a =.10

(2) In Data Sample 16-5.2, the ranks of the

3

()

(5)

(6)

nineteen individual observations, from low-
est to highest, are shown in parentheses
beside the respective observations. Note
that the two tied observations (56.0) are
each given the rank 15.5 (instead of ranks
15 and 16), and that the next larger obser-
vation is given the rank 17,

n = 9
Ny = 10
n =19
R =177
R =9 20) - 77
= 103
R0 (9, 10) = 69
Since neither B nor R’ is smaller than

E .1, (9, 10), there is no reason to believe
that the averages of the two groups differ.

16-6 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B?

Two procedures are given to answer this question.
appropriate to a particular situation, read the discussion in Paragraph 16-5.

16-10
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b

16-6.1 DOES THE AVERAGE OF PRODUCT A EXCE(D THAT OF PRODUC! B? THE SIGN TEST
FOR PAIRED OBSERVATIONS 3

In terms of Data Sample 16-5.1, assume that we had asked in advance (not after looking at the :
data) whether the average I¢;o was larger for Type A than for Type B. i

Procedure Example

(1) Choose «, the significance level of the test. (1) Let o = .025
Table A-33 provides for values of « = .125,
.05, .025, and .005 for this one-sided test.

(2) For each pair, record the sign of the differ- (2) In Data Sample 16-5.1,
ence X, — Xy, Discard any difference

LTSI VO PR

which happens to equal zero. Let n be the n =10 4
number of differences remaining. (If more 3
than 209, of the observations need to be
discarded, this procedure should not be ;
used.) 3
(3) Count the number of minus signs. Call (8) There are 7 minus signs. j
this number r. r=1 :
(4) Look up 7 («, n), in Table A-33. 4) r(025,10) =1 i
~ (5) If risless than, oris equal to, r («, n), con- (6) Since 7 is not less than r (.025, 10), there i3
clude that the average of product A ex- no reason to believe that the average of y
ceeds the average of product B; otherwise, Type A exceeds the average of Type B.

there is no reason to believe that ¢ aver-
age of product A exceeds that of product B.

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two
products in the paired-sample situations; follow the procedure of Paragraph 16-8.2, substituting
X' =X, - Xyfor X! = X; — m, in Step (3) of that Procedure.

e ontein e et~ DAL RIRe aX

; * The numbers sho.v;ﬁ-_}hﬁi;ﬁx;entheses are the ranks, from lowest to highest, for all observations combined, as required
in Step (2) of the following Procedure and Example.

16-6.2 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B? THE WILCOXON- ;

MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES i

Data Sampie 16-6.2 — Output Admittance of Two Types of Transistors F

The data are observations of k., for two types of transistors, where k., = small-signal open-circuit

output admittance.

Type A Type B

291 (5)* .246 (1) 3

.390 (1) 252 (2) '

.305 (7) .300 (6) i

.331 (9) 289 (4) %

.316 (8) .2568 (3)

16-11
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Does the average k., for Type A exceed that for T'ype B?

@)

2)

3

(4)

(5a)

(5b)

Procedure

Choose «, the significance level of the test.
Table A-35 provides for values of
a = 006, .026, .05, and .10 for this one-
sided test, when n,, ny < 20.

Combine the observations from the two
populations, and rank them in order of
increasing size from smallest to largest.
Assigi the rank of 1 to the lowest, a rank
of 2 to the next lowest, etc. (Use alge-
braic size, i.e., the lowest rank is assigned
to the largest negative number if there are
negative numbers). In case of ties, assign
to each the average of the ranks which
would have been assigned had the tied
observations differed only slightly. (If
more than 209, of the observations are
involved in ties, this procedure should not
be used.)

Let: n, = smaller sample
ne = larger sample
n =N+ ng

Look up R. (ny, ns), in Table A-35.

If the two samples are equal in size, or if
ng is the smaller, compute Ry the sum of
the ranks for sample B. If R is less
than, or is equal to, R, (n.1, n.), conclude
that the average for product A exceeds
that for product B; otherwise, there is no
reason to believe that the average for
product A exceeds that for product B.

If n, is smaller than @z, compute R, the
sum of the ranks for sample A, and com-
pute Ry =ns(m + 1) — R,.

If R} is less than, or is equal to, B, (n,, ny),
conclude that the average for product A
exceeds that for product B; otherwise,
there is no reason to believe that the
two products differ.

Example

(1) Let a = .05

(2) In Data Sample 16-6.2, the ranks of the
ten individual observations, from lowest
to highest, are shown beside the respective

observations.
(3) ny = 5
Ng = 5
n = 10
4) R (5,5 =19
(ba) Rg = 16

Since Rj is less than R ¢ (5, b), conclude
that the average for Type A exceeds that
for Type B.

16-12

ok St ¥ Mg s, i
B ok Bt Tl A e g it et
R =T RER 4 e ot e £




Downloaded from http://www.everyspec.com - - ﬂ

COMPARING AVERAGE PERFORMANCE AMCP 706-113

16-7 COMPARING THE AVERAGES OF SEVERAL PRODUCTS
DO THE AVERAGES OF t+ PRODUCTS DIFFER?

bt et i P A S R e

Data Sample 16-7 — Life Tests of Three Types of Stopwatches

Samples frorn each of three types of stopwatches were tested. The following data are thousands
of eycles (on-off-restart) survived until some part of the mechanism failed.

PP SRR

Type 1 Type 2 Type 3 >
1.7 (1)* 13.6 (6) 13.4 (b)
1.9 @ 19.8 (8) 20.9 9) ;
6.1 (8) 25.2 (12) 25.1 (10.5) i
12.5 4) 46.2 (16.5) 29.7 (13) j
16.5 (7) 46.2 (16.5) 46.9 (18) j
25.1 (10.5) 61.1 (19) -
30.5 (14) B
42,1 (15) ’<
82.5 (20) ;

* ’I“he numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required
in Step (3) of the following Procedure and Example.

TABLE 16-1. WORK YABLE FOR DATA SAMPLE 16-7

et e e M Dt an LY RN ittt s 2

Ranks Ranks Ranks J

Type 1 Type 2 Type 3 p
! 6 5 ﬁ
2 8 9 §
3 12 10.5 3
4 16.5 13
7 16.5 18 i

10.5 19 -

14

15 4

20 1

R; R, = 76.5 R, = 78.0 B; = 56.5

= 2 o o fba 2o Dl A Y
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Does the average length of “life’’ differ for the three types?

Procedure
(1) Chnose «, the significance level of the test.

(2) Look up x3..fort — 1 degrees of freedom,
in Table A-3, where ¢ is the number of
products to be compared.

(8) We have n,, n,, ..., n, observations on

each of the products 1, 2, ... , (.
N =n1+n2+...+nt.

Assign ranks to each observation according
to its size in relation to all N observations.
That is, assign rank 1 to the smallest, 2 to
the next larger, ete., and N to the largest.
In case of ties, assign to each of the tied
observations the average of the ranks which
would have been assigned had the observa-
tions differed slightly. (If more than 209,
of the observations are involved in ties,
this procedure should not be used.)

(4) Compute ‘R, the sum of the ranks of the
observations on the ith product, for each of
the products.

(6) Compute

3N+

(6) If H > x%_,, conclude that the averages of

the ¢ products differ; otherwise, there is no
reason to believe that the averages differ.

Example
(1) Let a=.10
(2) t =3
Xz.ou for 2d.f. = 4.61

(83) In Data Sample 16-7,

N=9+6+5=20.

The assigned ranks are shown in Data
Sample 16-7 and in Table 16-1.

“) E, =765
Rz = 78.0
R; = bb.b
(5)

: 12 .
H = % (2280.30) — 63
= 2.15

(6) Since H is not larger than x%,, there is no
reason to believe that the averages for the
three types differ.

Note: When using this Procedure, each of the n, should be at least 5. If any =, are less than 5,
the level of significance a may be considerably different from the intended value.

16-14
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CHAPTER 17
THE TREATMENT OF OUTLIERS

17-1 THE PROBLEM OF REJECTING OBSERVATIONS

Every experimenter, at some time, has obtained a set of observations, purportedly taken under
the same conditions, in which one observation was widely different, or an outlier from the rest.

The problem that confronts the experimenter is whether ha should keep the suspect observation
in computation, or whether he should discard it as being a faulty measurement. The word reject
will mean reject 1n computation, since every observation should be recorded. A careful experi-
menter will want to make a record of his “rejected” observations and, where possible, detect and
carefully analyze their cause(s).

It should be emphasized that we are not discussing the casc where we know that the observation
differs because of an assignable cause, i.e., a dirty test-tube, or a change in operating conditions.
We are dealing with the situation where, as far as we are able to ascertain, all the observations are
on approximately the same footing. One observation is suspect however, in that it seems to be
set apart from the others. We wonder whether it is not so far from the others that we can reject
it as being caused by some assignable but thus far unascertained cause.

When a measurement is far-removed from the great majority of a set of measurements of a
quantity, and thus possibly reflects a gross error, the question of whether that measurement should
have a full vote, a diminished vote, or no vote in the final average — and in the determination of
precision — is a very difficult question to answer completely in general terms. If on investigation,
a trustworthy explanation of the discrepancy is found, common sense dictates that the value con-
cerned should be excluded from the final average and from the estimate of precision, since these
presumably are intended to apply to the unadulterated system. If, on the other hand, no expiana-
tion for the apparent anomalousness is found, then common sense would seem to indicate that it
should be included in computing the final average and the estimate of precision. Experienced
investigators differ in this matter. Some, e.g., J. W. Bessel, would always include it. Others
would be inclined to exclude it, on the grounds that it is better to exclude a possibly *‘good’’ measure-
ment than to include a possibly ‘‘bad” one. The argumont for exclusion is that when a “‘good”
measurement 18 excluded we simply lose some of the relevant information, with consequent decrease
in precision and the introduction of some bias (both being theoretically computable); whereas,
when a truly anomalous measurement s included it vitiates our results, biasing both the final average
and the estimate of precision by unknown, and generally unknowable, amounts.

There have been many criteria proposed for guiding the rejection of ohaervations, For an excel-
lent summary and critical review of the classical reiection procedures, and some more modern
ones, see P, R. Rider¢?, One of the more famous classical rejaction rules is ‘“Chauvenet’s criterion,”’
which is not recommended. This criterion is based on the normal distribution and advises rejection
of an extreme observation if the probability of occurrence of such deviation from the mean of the n
measurements is less than !én. Obviously, for small n, such a eriterion rejects too easily.

17-1
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A review of the history of rejection criteria, and the fact that new criteria are still being proposed,
leads us to realize that no completely satisfactory rule can be devised for any and all situations.
We cannot devise a criterion that will not reject a predictable amount from endless arrays ¢f per-
fectly good data; the amount of data rejected of course depends on the rule used. This is the price
we pay for using any rule for rejection of data. No available criteria are superior to the judgment
of an experienced investigator who is thoroughly familiar with his measurement process. For an
excellent discussion of this point, see E. B. Wilson, Jr.t?. Statistical rules are given primarily for
the benefit of inexperienced investigators, those working with a new process, or those who simply
want justification for what they would have done anyway.

Whatever rule is used, it must bear some resemblance to the experimenter’s feelings about the
nature and possible frequency of errors. For an extreme example — if the experimenter feels that
about one outlier in twenty reflects an actual blunder, and he uses a rejection rule that throws out
the two extremes in every sample, then his rerorted data obviously will be “clean” with respect
to extreme blunders — but the effects of “little’’ blunders may still be present. The one and only
sure way to avoid publishing any ‘“bad” results is to throw away all results.

With the foregoing reservations, Paragraphs 17-2 and 17-3 give some suggested procedures for
judging outliers. In general, the rules to be applied to a single experiment (see Paragraph 17-3)
reject only what would be rejected by an experienced investigator anyway.

17-2 REJECTION OF OBSERVATIONS IN ROUTINE EXPERIMENTAL WORK

The best tools for detection of errors (e.g., systematic errors, gross errors) in routine work are the
control charts for the mean and range. These charts are described in Chapter 18, which also
contains a table of factors to facilitate their application, Table 18-2.

17-3 REJECTION OF OBSERVATIONS IN A SINGLE EXPERIMENT

We assume that our experimental observations (except for the truly discordant, ones) come from
a single normal population with mean m and standard deviation «. In a particular experiment,
we have obtained n observations and have arranged them in order from lowest to highest
(X1 €£X,<...<X,). We consider procedures applicable to two situations: when observa-
tions which are either too large or too small would be considered faulty and rejectable, sce Para-
graph 17-3.1; when we consider rejectable those observations that are extreme in one direction
only (e.g., when we want to reject observations that are too large but never those that are too
small, or vice versa), see Paragraph 17-3.2. The proper choice between the situations must be
made on a priori grounds, and not on the basis of the data to be analyzed.

For each situation, procedures are given for four possible cases with regard to our knowledge of
m and o. ‘

17-2
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17-3.1 WHEN EXTREME OBSERVATIONS IN EITHER DIRECTION ARE CONSIDERED REJECTABLE

17-3.1.1 Population Mean and Standard Deviation Unknown — Sample in Hand is the Only Source

of Information.
[The Dixon Criterion)
Procedure

(1) Choose «, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

2) If: 3<n<T Compute 7y
8<n <10 Compute 71,
11 <n <18 Compute 4,
14 <n <25 Compute 7z,

where r;; is computed as follows:

Tij If X, is Suspect If X, is Suspect

T10 (X, = X))/ (X, — X)) (X; ~ X))/ (X, - Xy)
(B (Xn - Xn-—l)/(Xn - Xz) (X9 - Xl)/(an - X;)
To1 (X, - X.—)/(X. — X3) (X: — X)/(Xor — X))

729 (Xn - Xn-2)/(Xn - Xﬂ)
(3) Look up 71,2 for the r,; from Step (2), in Table A-14.

4) If r:;; > ri_a2, reject the suspect observation; otherwise, retain it.

(X5 — X))/ (Xne2 — X)

17-3.1.2 Population Mean and Standard Deviation Unknown — Independent External Estimate of
Standard Deviation is Available.

[The Studentized Range]
Procedure

(1) Choose «a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) Look up qi— (n, ») in Table A-10. = is the number of cbservations in the sample, and v is
the number of degrees of freedom for s, the independent external estimate of the standard
deviation obtained from concurrent or past data — not from the sample in hand.

(8) Compute w = q1_8.

@) If X, - X, > w, reject the observation that is suspect; otherwise, retain it.

17-3.1.3 Population Mean Unknown — Value for Standard Deviation Assumed.

Procedure

(1) Choose «, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) Look up ¢;_, (n, =) in Table A-10.
(8) Compute w = g, 0.

4) If X, — X, > w, reject the observation that is suspect; otherwise, retain it,

17-8
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17-3.1.4 Population Mean and Standard Deviation Known.

Procedure Example
(1) Choose a, the probability or risk we are (1) Let a = .10,
willing to take of rejecting an observation for example.
when all % really belong in the same group.
(2) Computea’ =1 — (1 — a)¥n 2) If n = 20,
(We can compute this value using loga- for example,
rithms, or by reference to a table of frac- a =1~ (1 — .10)v20
tional powers.) =1 — (.90)/2
=1~ .9947
= .0053
(8) Look up #i_a+2 in Table A-2. 3) 1 —-a'/2 =1~ (.0053/2)
(Interpolation in Table A-2 may be re- = .9974
quired. The recommended method is 29911 = 2.80
graphical interpolation, using probability !
paper.)
(4) Compute: 4)
@ =M — 0Zi_a2 a=m-—280¢
b=m + 01 a2 b=m + 2.80 ¢«
(5) Reject any observation that does not lie in (5) Reject any chservation that does not lie in
the interval from a to b. the interval from
m — 280 ¢ to
m 4+ 2.80 0.

17-3.2 WHEN EXTREME OBSERVATIONS IN ONLY ONE DIRECTION ARE CONSIDERED REJECTABLE

17-3.2.1 Population Mean and Standard Deviation Unknown —— Sample in Hand is the Only Source
of Information,
[The Dixon Criterion]

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an obs\;ervation that really

belongs in the group. \
2) If: 3<n<g1 Compute 7y
8<n<10 Compute ry,
11 <n <13 Compute 7y,
14 <n <2 Compute 739,
where r,; is computed as follows: .
If Only Large Values If Only Small Values
Tij are Suspect are Suspect :
710 (Xn - Xn—l)/(Xn - Xl) (X2 = Xl)/(X" - X:l).
i Xo = Xa)/(Xn — X) X, — X3/ (Xuey ~ X))
T2 X = Xoa)/ (X, — Xo) (X3 — X))/ (Xuoh = Xx)
T2e (Xn e Xn—?)/(Xn - X.’l) (X:£ - Xl),/(Xn—2 - X\)

(8) Look up r,_, for the r;, from Step (2), in Table A-14.

(4) If r;; > ri_a, reject the suspect observation; otherwise, retain it.

17-4 N
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(4)

17-3.2.2 Population Mean and Standard Deviation Unknown — Independent Exter:ial Estimate of

Standard Deviation is Available.
[Extreme Studentized Deviate From Sample Mean; The Nair Criterion]

Procedure

Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

Look up ¢, (n, v) in Table A-16. n is the number of observations in the sample, and » is the
humber of degrees of freedom for s, the independent external estimate of the standard deviation
obtained from concurrent or past data — not from the sample in hand.

If only observations that are too large are considered rejectable, compute
tn= (X0 — X)/s,.

Or, if only observations that are too small are considered rejectable, compute
ti= (X - X)/s..

If t. (or t;, as appropriate) is larger than ¢, (n, »), reject the observation that is suspect;
otherwise, retain it.

17-3.2.3 Population Mean Unknown — Value for Standard Deviation Assumed.

M

K . @)
: ®)

4)

(Extrenie Standardized Deviate From Sample Mean]

Procedure

Choose o, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

Look up t, (n, =) in Table A-16,

If observations that are too large are considered rejectable, compute

l, = (Xn - X)/U.
Or, if observations that are too small are considered rejectable, compute
= (X - Xy/o.

If t. (or t,, as appropriate) is larger than t, (n, =), reject the observation that is suspect;
otherwise, retain it.
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17-3.2.4 Population Mean and Standard Deviation Known,

Procedure Example
(1) Choose «, the probability or risk we are (1) Let a=.10,
willing to take of rejecting an observation for example.
when all » really belong in the same group.
(2) Compute o’/2 =1 — (1 — a)¥/n. @) If n =20,
(We can compute this value using loga- for example,
r!thmls, or by reference to a table of frae- o/2 =1 — (1 — .10y
tional powers.) = 1 — (9010
=1 — .9947
= 0053
(3) Look up 21,2 in Table A-2. 3 1 -ao/2=1-—.0053
(Interpolation in Table A-2 may be re- = 9947
quired. The recommended method is Z.90sr = 2.55
graphical interpolation using probability
paper.)
(4) Compute: 4)
@ =M — 0Zi_ar)2 a=m-—255«
b =m+a'zl_a'/z b = m+2.55¢7
(5) Reject any observation that does not lie in (5) Reject any observation that does not lie in
the intetval from a to b. the interval from
m — 2.56 ¢ to
m+ 255 ¢.
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CHAPTER 18
THE PLACE OF CONTROL CHARTS IN EXPERIMENTAL WORK

18-1 PRIMARY OBJECTIVE OF CONTROL CHARTS

Control charts have very important funetions
in experimental work, although their use in
laboratory situations has been discussed only
briefly by most textbooks. Control charts can
be used as a form of statistical test in which the
primary objective is to test whether or not the
process is in statistical control. The processis in
statistical control when repeated samples from
the process behave as random samples from a
stable probability distribution; thus, the under-
lying conditions of a process n control are such
that it is possible to make predictions in the
probability sense.

The control limits are usually computed by

using formulas which utilize the information
from the samples themselves. The computed

limits are placed as lines on the specific chart,
and the decision is made that the process was in
control if all points fall within the control limits.
If all points are not within the limits, then the
decision is made that the process is not in control.

The basic assumption underlying most sta-
tistical techniques is that the data are a random
sample from a stable probability distribution,
which is another way of saying that the process
is in statistical control. It is the validity of this
basic assumption which the control chart is
designed to test. The control chart is used to
demonstrate the existence of statistical control,
and to monitor a controlled process. As a
monitor, a given control chart indicates a par-
ticular*type of departure from control.

18-2 INFORMATION PROVIDED BY CONTROL CHARTS

Control charts provide a running graphical
record of small subgroups of data taken from a
repetitive process. Control charts may be kept
on any of various characteristics of each small
subgroup — e.g., on the average, standard de-
viation, range, or proportion defective. The
chart for each particular characteristic is de-
signed to detect certain specified departures in
the process from the assumed conditions. The
process may be a measurement .process as well
as a production process. The order of groups is
usually with respeet to time, but not necessarily
so. The grouping is such that the members of
the same group are more likely to be alike than
are members of different groups.

Primarily, concrol charts can be used to
demonstrate whether or not the process is in
statistical control. When the charts show lack

18-1
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of control, they indicate where or when the
trouble occurred. Often they indicate the na-
ture of the trouble, e.g., trends or runs, sudden
shifts in the mean, increased variability, ete.

In addition to serving as a method of testing
for control, control charts also provide addi-
tional and useful information in the form of
estimates of the characteristics of a controlled
process. This information is altogether too-
frequently overiook« 1. For example, one very
important piece of information which can be
obtained from a control chart for the range or
standard deviation is an estimate of the varia-
bility ¢ of a routine measurement or production
process. It should be remembered that many
of the techniques of Section 1, Chapter 3, are
given in parallel for known ¢ and unknown o.
Most experimental scientists have very good
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knowledge of the variability of their measure-
ments, but hesitate to assume known o without
additional justification. Control charts can be
used to provide the justification.

Finally, as was peointed out in Chapter 17,
Paragraph 17-2, a control chart is the most
satisfactory criterion for rejection of observa-
tions in a routine laboratory operation. An ex-
cellent discussion of the use of control charts to
detect particular kinds of trouble is given by
Olmstead . The three most important types
of control charts in this connection are the
charts for the average X, range R, and stand-
ard devintion ¢. The order of usefulness of
each tyy of. chart in particular situations is
shown in (able 18-1, where a “1” mear :vost
useful, ‘2" is the next best, and dots  1ote
‘“not appropriate’’.

As can be seen from Table 18-1, the X and R
charts are the most useful of the three types.
The R chart is preferred to the ¢ chart because
of its simplicity and versatility; and, unless
there are compelling reasons to use the ¢ chart,
the R chart is the method of choice.

18-3 APPLICATIONS

Table 18-2 is a summary table of factors for
control charts for X, R, and ¢, when equal size
samples are involved. Note carefully the foot-
note to 'l‘able; 1§-2, beginning ‘“When using
5 = \/'z«‘_s&f_&):%

n—1
in this Handbook. The last column of Table

... ", because s is so defined

18-2 gives values of \/@—_—1 for convenience in
n

using the Table factors with values of s.

The most explicit details of application to a
variety of possible situations, e.g., to samples of
unequal size, are given in the ASTM Manual »;
in using that Manu:1, however, the reader again
must be wary of the difference between the defi-
nition of « given therein, and the definition of s
given in this Handbook.

TABLE 18-1. TESTS FOR LOCATING AND
IDENTIFYING SPECIFIC TYPES OF
ASSIGNABLE CAUSES

Control Charts*
Type of Assignable Cause _
X R o
Gross Error (Blunder) 1 2
Shift in Average 1 - ..
Shift in Variability . 1 2
Slow Fluetuation (Trend) 1 - ..
Fast Fluetuation (Cyecle) . 1 2
Combination:
(a) Production 1 2
(b) Research ..
"variation 1

* The numeral 1 denotes the most useful type of chart;
2 denotes the next best; and, . . denote charts which are
not appropriate for the particular cause.

Adapted with permission from [ac:. trial Quality Conlrel, Vol. IX,
No. 3, (November, 1862) and No. 4, (January, 1958) from article

entitled ‘‘How to Detect the Type of an Assignable Ceuse’” by P. S,
Olmstead.

OF CONTROL CHARTS

Actual examples of laboratory applications in
the chemical field can be found in a series of
comprehensive bibliographies published in Ana-
lytical Chemistry¢4.5.0, These four articles
are excellent reviews that successively bring
up-to-date the recent developments in statis-
tical theory and statistical applications that
are of interest in chemistry, Further, these
bibliographies are divided by subject matter,
and thus provide means for locating articles on
control charts in the laboratory. They are not
limited to control chart applications, however.

Industrial Quality Control™, the monthly
journal of the American Society for Quality

Control, is the .nost comprehensive publication
in this field.

For a special technique with ordnance exam-
ples, see Grubbs®,

18-2
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TABLE 18.2. FACTORS FOR COMFUTING 3-SIGMA CONTROL LIMITS
Chart tor Averages Chart for Standard Devietions Chart for Runges
Number of
Obsarvetiens Factors for Pacters for Pectors for Factors for Pavien for n—1
inSample,n | Conkel Limis Central Line Contrel Limits Contral Line Conirel Limits "
A Ay Ay ) I Na [ 5 [ [ N & V/d & [ Dy [+ 3 Dy
2., 2.121 (8760 | 1.880 | 0.5642 [ 1.7725| 0 |1.848| 0 |3.2671.128 |08866!0853| 0 |B8.686| o |8.267|.70711
3 ... 1782 | 2.894 | 1.028 (07286 | 1.8820 | 0 [1858| 0 |2.568|1.693|0.6007|0888! 0 [4.358| 0 |2.575|.81650
“.. 1,500 | 1.880 | 0.729 {0.7979 [ 1.2688 | 0 |1.808| 0 | 2268|2069 |0.4857 |0.880| 0 |4.698| 0 |2.282 | .86608
5...... 1.342 | 1.596 [ 0.577 {0.8407 | 1.188¢| 0 [1.766| O |2089 |2.326 1042990364 O [4.918| ¢ |2.115| 89443
6. 1.225 | 1.410 [ 0.489 | 0.8686 | 11512 | 0.026 | 1711 [ 0.080 | 1.970 [ 2.634 | 0.9946 (0848 | 0 |6.078| 0 |2.004 | .91287
7. 1.184 | 1.277 | 0.419 | 0.8532 | 11259 | 0.105 | 1.672 [ 0.118 | 1.882 | 2.704 | 0.9698 | 0.833 | 0.205 | 5.208 | 0.076 | 1.92¢ | 92582
8. .. 1061 | 1.176 | 0,378 | 0.9027 | 11078 | 0.167 | 1.638 | 0.185 | 1.815 | 2.8¢7 | 0.3512 | 0.820 | 0.387 | 5.307 | 0.136 | 1,864 | 98541
9 ... 1.000 | 1.084 | 0.337 | 0.9139 | 1.0942 | 0.219 | 1.609 | 0.289 | 1.761 | 2.970 | 0.3367 | 0.808 | 0.546 | 5.384 | 0.184 | 1.816 | .94281
10.. .. '0.949 | 1.028 | 0.303 | 0.9227 | 1.0887 | 0.262 | 1.58¢ | 0.284 | 1.716 | 3.078 | 0.5249 | 0.797 | 0.687 | 5.469 | 0.228 | 1.777 | .94868
1. 0.905 | 0.973 | 0.285 | 0.4800 | 1.0753 | 0.299 | 1.561 | 0.821 | 1.679 | 8.178 | 0.3152 | 0.757 | 0.812 | 5.534 | 0,256 | 1.744 | .96346
12... .. 0.866 | 0.925 | 0.266 { 0.9359 | 1.0684 | 0.881 | 1.541 | 0.854 | 1.646 | 3.258 | 0.3069 | 0.778 | 0.924 | 5.592 | 0.284 | 1.716 | .95748
8. 0.832 [ 0.884 | 0.249 [ 0.8410 | 1.0627 ' 0.359 | 1.628 | 0.382 | 1.618 | 8.336 | 0.2098 | 0.770 | 1.026 | 5.646 | 0.308 | 1.692 | .96077
... 0.R02 | 0.848 | 0.285 | 0.9458 | 1.057¢ >384 | 1.507 | 0.406 | 1.694 | 3.407 | 0.2986 | 0.762 | 1.121 | 5.698 | 0.829 | 1.671 | .96362
... 0.775 | 0.816 | 0,223 | 0.9490 w06 ) 1492 [ 0.428 | 1572 | 8.472 | 0.2880 | 0.755 | 1.207 | 5.787 | 0.848 | 1.652 | .96609
1
8. 0760 | 0.788 [0.212 | 0.8623 | 10ow1 0 .27 [ 1478 | 0.448 | 1,562 | 8.632 | 0.2881 | 0.749 | 1.285 | 5.779 | 0.364 | 1.636 | 96825
17...... 0.728 | 0.762 | 0.208 | 0.9551 | 1.0470 | 0.445 | 1.465 | 0.466 | 1.534 | 3.588 | 0.2787 | 0.748 | 1.359 | 5.817 | 0.379 | 1.621 | .97014
8. 0.707 | 0.788 | 0.194 | 0.9576 | 1.0442 | 0.46. | 1.454 | 0.482 | 1.518 | 3.640 | 0.2747 | 0.788 | 1.426 | 5.854 | 0.352 | 1.608 | 97158
19.. ... 0.688 | 0.717 | 0.187 | 0.9599 | 1.0418 | 0.477 | 1443 | 0.497 | 1.503 | 3.889 | 0.2711 | 0783 | 1.490 | 5.888 | 0.404 | 1.596 | 97838
2. 0.871 | 0.697 | 0.180 | 0.9619 | 1.0396 | 0481 | 1.433 | 0.510 | 1.490 | 3.785 | 0.2677 | 0.729 | 1.5648 | 5.922 | 0.414 | 1686 | .97468
21, ... 0.655 | 0.679 | 0.173 ' 0.9638 | 1.0376 | 0.504 | 1424 | 0.623 | 1477 | 8.778 | 0.2647 | 0.724 | 1.608 | 5.950 | 0.425 | 1.675 | .97690
2 0.640 | 0.662 | 0.167 ; 0.9655 | 1.0368 | 0.516 | 1.416 | 0.534 | 1.466 | 3.819 | 0.2618 | 0.720 | 1.659 | 5.979 | 0.434 | 1.566 | .97701
23.... .10.626 | 0.647 | 0.162 | 0.9670 | 1.0342 | 0.627 | 1.407 | 0.545 | 1.455 | 3.858 | 0.2592 | 0.716 | 1.710 | 6.006 | 0.443 | 1.557 | .97802
... 0.612 | 0.682 | 0.157 | 0.9684 | 1.0327 | 0.638 { 1899 | 0.565 | 1445 | 3.895 | 0.2567 | 0.712 | 1.769 | 6.031 | 0.452 | 1.548 | 97895
2. .. £0.600 | 0.619 | 0.153 | 0.9696 | 1.0313 | 0.548 [ 1.392 | 0.565 [ 1.435 | 8.931 | 0.2544 | 0,709 | 1.804 | 6.063 | 0.459 | 1.541 | .97880
!
Adapted 'I(h—;n; from ASTM Maunal on Ql;l}l;(—':‘-bd of Motarisl, p. 118, copyright, 1931, American Beclety for Tasting Materialn T
FORMULAS*
3-Sigma
Purpose of Chart Chart for Central Line  Control Limits
For analyzing past data for control (X, &, Averages X XAz, or
I? are average values for the data being X+ AR
analyzed) ' Standard deviations & B35 and B,s
Ranges R D3R and D,R
For controlling performance to standard Averages X X'+ Ao, or
values (X', o/, R, are selected stand- X+ AR
ard values; R,’ = dyo’ for samples of Standard deviations ¢y’ B¢’ and B,s’
size n) Ranges doo’,or  Dyo’ and Dyo’, or

i’ . "I DaRn’ and D-IRul

* When using s = .’-.".(.X!':‘llﬁ.’ for the standard deviation of a sample instead of ¢ = \/§(g_:_:¥)_f, one must
n — n
make the following changes in the formulas for the central line and for tlie 3-sigma limits:

(1) Replace 4, by \/3‘--3-';.71 A, ; replace & by & ; make no change in B; and B, ;

(2) Replace ¢:, B), B; by \/-n-" - €, \/ n g B, and \/ﬁ ”'i B, , respectively.

This material is reproduced from the Americun Standurd Control Chart Method of Controlling Quality During Production, Z1.3-—1958, copyright
1859 by ASA, copies of which may he purchused from the Americun Stundurds Amsociution at 10 Fust 40th Sireet, New York 16, N, Y.
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CHAPTER 19
STATISTICAL TECHNIQUES FOR ANALYZING EXTREME-VALUE DATA*

19-1 EXTREME-VALUE DISTRIBUTIONS

Classical applications of statistical methods,
which frequently concern average values and
other quantities following the symmetrical nor-
mal distribution, are inadequate when the quan-
tity of interest is the largest or the smallest in a
set of magnitudes. Applications of the tech-
niques described in this Chapter already have
been made in a number of fields. Meteorologi-
cal phenomena that involve extreme pressures,
temperatures, rainfalls, wind velocities, etc.,
have been treated by extreme-value techniques.
The techniques are also applicable in the study
of floods and droughts.

Other examples of extreme-value problems
occur in the fracturing of metals, textiles, and

other materials under applied force, and in
fatigue phenomena. In these instances, the
observed strength of a specimen often differs
from the caleulated strength, and depends,
among other things, upon the length and vol-
ume. An explanation is to be found in the
existence of weakening flaws assumed to be dis-
tributed at random in the body and assumed
not to influence one another in any way. The
observed strength is determined by the strength
of the weakest region — just as na chain is
stronger than its weakest link. Thus, it is
apparent that whenever extreme observations
are encountered it will pay to consider the use of
extreme-value techniques.

19-2 USE OF EXTREME-VALUE TECHNIQUES

19-2.1 LARGEST VALLUES

A simplified account is given here. Primary
sources for the detailed theory and methods are
References 1, 2, 3, which also contain extensive
bibliographies. References 4 through 10, also
given at the end of this Chapter, provide addi-
tional information and examples of applications.

Figure 19-1 illustrates the frequency form of a
typical curve for the distribution of largest
observations.

The curve in Figure 19-1 ist} derivative of the
function

®(y) = exp (—exp ( )].

Unlike the normal distribution, this curve is
skewed, with its maximum to the left of the
mean and the longer of its tails extending to the
right. The outstanding feature of such a dis-
tribution is that very large values are much
more likely to occur than are very small values.
This agrees with common experience. Very
low maximum values are most unusual, while
very high ones do occur occasionally. Theo-
retical considerations lead to a curve of this
nature, called the distribution of largest values or
the extreme-value distribution.

In using the extreme-value method, all the
observed maxima, such as the largest wind
velocity observed in each year during a fifty-

* Adapted wl!.h permission from The American Statisticiun, Vol. 8, No. 5, December 1954, from artiele entitled “Some Apé)liclt(om of Extreme.

Value Methods' by E. J. Gumbel and J. Lieblein; and, from Nalional Burean of Standards Technical News Bulletin 38, No.

pp. 29-31, February

1954, from article entitled “‘Extreme-Value Methods for Engineering Problems’.

19-1
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Figure 19-1. Theoretical distribution of largest values.

Adapted with germi-ion from The American Sla’intician, Vol. 8, No. 6, December 1954, from article entitled “Some Applications of Extreme-

Value Methbda' by E. J. Gumbel and J. Lieblein,

year period, are first ranked in order of size from
the smallest to the largest,

XISX2£---SX“S---SX:.-

A plotting position (X, P,) is obtained for each
observation by associating with X, the proba-
bility coordinate P; = i/(n 4 1), where 7 is the
rank of the observation, counting from the
smallest. The data are plotted on a special
graph paper, called extreme-value probability
paper*, designed so that the “ideal” extreme-
value distribution will plot exactly as a straight
line, Consequently, the closeness of the plotted
points to a straight line is an indication of how
well the data fit the theory.

* Extreme-value probability paper may be obtained
from three sources: (tg U. 8. Department of Commerce,
Weather Bureau; (b? nvircnmental Protection Section,
Research and Development Branch, Military Planning
Division, Office of the Quartermaster General;(¢) Techni-
cal and Enﬁineering Aids for Management, 104 Belrose
Ave., Lowell, Mass,

19-2

Extreme-value probability paper has a uni-
form scale along one axis, usually the vertical,
which is used for the observed values as shown
in Figure 19-2. The horizoatal axis then serves
as the probability scale, and is marked accord-
ing to the doubly-expenential formula. Thus,
in Figure 19-2, the space between 0.01 and 0.5 is
much less than the space between 0.5 and 0.99.
The limiting values zero and one are.never
reached, as is true of any probability paper de-
signed for an unlimited variate.

An extreme-value plot (Figure 19-2) of the
maximum atmospheric pressures in Bergen,
Norway, for the period between 1857 and 1926,
showed by inspection that the observed data
satisfactorily fitted the theory. Fitting the line
by eye may be sufficient. Details of fitting a
computed line are given in Gumbel.(? From
the fitted straight line, it is possible to predict,
for example, that a pressure of 793 mm corre-
sponds to a probability of 0.994; that is, pres-
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Figure 19-2. Annual maxima of atmospheric pressure, Bergen, Norway, 1857-1926.

Adapted with per.nission from The American Stalistician, Vol. 8, No. 5, December 1954, from article entiticy

Value Methods” by E. J, Gumbel and J. Lieblein.

sures of this magnitude have less than one
chance in 100 of being exceeded in any par-
ticular year.

In studies of the normal acceleration incre-
ments experienced by an airplane flying through
gusty air, see Gumbel and Carlson, ' page 394,
an instrument was employed that indicated only
the maximum shocks. Thus, only one maxi-
mum value was obtained from a single flight.
A plot representing 26 flights of the same air-
craft indicated that the probability that the
largest recorded gust will not be exceeded in any
other flight was 0.96 ; i.e., a chance of four in 100
of encountering a gust more severe than any
recorded. A more recent study, Lieblein,
presents refinements especially adapted to very
small samples of extreme data, and also to
larger samples where it is necessary to obtain
the greatest amount of information from a
limited set of costly data.

o Applications of Extreme-

19-2.2 SMALLEST VALUES

Extreme-value theory can also be used to
study the smallest observations, since the corre-
sponding limiting distribution is simply related
to the distribution of largest values. The steps
in applying the “smallest-value’’ theory are
very similar to those for the largest-value case.
For example, engineers have iong been inter-
ested in the problem of predicting the tensile
strength of a bar or specimen of homogeneous
material. One approach is to regard the sp-
men as being composed of a large numbe, ..,
pieces of very short length. The tensile strength
of the entire specimen is limited by the strength
of the weakest of these small pieces. Thus, the
tensile strength at which the entire specimen
will fail is a smallest-value phenomenon. The
smallest-value approach can be used even
though the number and individual strengths of
the “small pieces’” are unknown.

19-8
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This method has been applied with consider-
able success by Kase® in studying the tensile
testing of rubber. Using 200 specimens ob-
tained so as to assure as much homogeneity as
possible, he found that the observed distribution
of their tensile strengths could be fitted remark-
ably well by the extreme-value distribution for
smallest values. The fitted curve given by this
data indicates that one-half of a test group of
specimens may be expected to break under a
tensile stress of 105 kg./em.2 or more, while only
one in 1,000 will survive a stress exceeding
126 kg./em.2.

Other examples of applications are given by
Epstein and Brooks” and by Freudenthal and
Gumbel®®, -

19-2.3 MISSING OBSERVATIONS

It has been found that fatigue life of speci-
mens under fixed stress can be treated in the
same manner as tensile strength — by using the
theory of smallest values. An extensive appli-
cation of this method is given in Liebléin and
Zelen(w,

In such cases, tests may be stopped before all
specimens have failed. This results in a sample
from which some observations are missing — a
“censored” sample. Methods for handling
such data are included in Lieblein and Zelen©",
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CHAPTER 20
THE USE OF TRANSFORMATIONS

20-1 GENERAL REMARKS ON THE NEED FOR TRANSFORMATIONS

The scale on which a property is usually measured (that is, the units in which °% is ordinarily ex-
pressed) may not be the most suitable for statistical analysis and interpretation. Statistical tech-
niques are always based on assumptions, The validity of results obtained through their use in practice
always depends, sometimes critically, on the assumed conditions being met, at least to a sufficient
degree of approximation. Essentially all of the standard techniques for the statistical analysis
and interpretation of measurement data (e.g., those given in AMCF 706-110,Section 1, Chapters 1
through.6) are based upon assumed normulity of the underlying distribution involved; and many
(e.g., the majority of those considered in Chapters 5 and 6) also require (at least appreximate)
equality of variances from group to group. Furthermore, the analysis-of-variance tests considered
in AMCP 706-112 Section 3, depend not only on normality and equality of variances among sub-
groups, but alse on edditivity of the “‘effects’” that characterize real differences of interest among
the materials, processes, or products under consideration; see Eisenhart.®

Real-life data do not always conform to the conditions required for the strict, or even approxi-
mate, validity of otherwise appropriate techniques of statistical analysis. When this is the case,
a transformation (change of scale) applied to the raw data may put the data in such form that the
appropriate conventional analysis can be performed validly. Bartlett® provides a good general
survey of the practical aspects of transformations, together with a fairly complete bibliography
of the subject to 1947.

20-2 NORMALITY AND NORMALIZING TRANSFORMATIONS
20-2.1 IMPORTANCE OF NORMALITY

The dependence of many standard statistical techniques on normality of the underlying dis-
tribution is twofold. First, standard statistical techniques are in the main based on the sample
mean X, and the sample estimate s of the population standard deviation. A normal distribution
is completely determined by its mean m and its standard deviation ¢ ; and in sampling from a normal
distribution, X and s together summarize all of the information available in the sample about the
parent distribution. This 1009, efficiency of X and s in samples from a normal distribution does
not carry over to non-normal distributions. Consequently, if the population distribution of a
characteristic of interest is markedly non-normal, confidence intervals for the population mean m
and standard deviation ¢ based on X and s will tend to be wider, and tests of hypotheses regarding
m or ¢ will have less power, i!;an those based on the particular functions of the sample values that
are the efficient estimators of the location and dispersion parameters of the non-normal distribution
concerned. In other words, use of X and s as sample measures of the location and dispersion
characteristics of a population distribution may result in an intrirsic loss of efficiency in the case
of markedly non-normal distributions, even if the correct sampling distributions of x2, ¢, F, ete.,
appropriate to the non-normal distribution concerned are employed.
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Second, the customary tables of percentage points of x2, £, F, and of factors for confidence
intervals, tolerance limits, and so forth, are based on the assumption of sampling from a normal
distribution. These percentage points, tolerance-limit factors, and so forth, are not strictly valid
when sampling from non-normal distributions. The distribution of s, which is identically that
of x%%/v for » degrees of freedom in the case of sampling from a normal distribution, is especially
sensitive to departures from normality. Consequently, the actual significance levels, confidence
coefficients, etc., associated with the procedures of Chapter 4 my differ somewhat from their
nominal values when sampling from only moderately non-normal material is involved. Fortu-
nately, the percentage points of {- and F-tests of hypotheses about means are not so sensitive to
departures from normalily, so that the standard tests of hypotheses about, and confidence intervals
for, population means will be valid to a good approximation for moderately non-normal populations-
— but there may be some loss of efficiency, as noted above.

20-2.2 NORMALIZATION BY AVERAGING

Many physical measurement processes produce approximately normally-distributed data; some
do not. Even when measurement errors are approximately normally distributed, sampling of a
material, product, or process may be involved, and the distribution of the characteristic of interest
in the sampled population may be definitely non-normal — or, at least, it may be considered risky
to assume normality. In such cases, especially when the basic measurements are plentiful or easy
to obtain in large numbers, an effective normalization almost always can be achieved — except
for extremely non-normal distributions — if the questions of interest with respect to the population
concerned can be rephrased in terms of the parameters of the corresponding sampling distribution
of the arithmetic means of random samples of size four or more. This normalizational trick is of
extremely wide applicability; but results, of course, in a substantial reduction in the number of
observations available for statistical analysis. Consequently, it should not be applied when the
basic measurements themselves are few in number and costly to obtain. In such cases, if assump-
tion of normality of the population distribution of the basic observations is considered risky, or
definitely is known to be false, then we may take recourse in available distribution-free techniques;
see Chapter 16.

TR ATICTIIE TR R T T X =
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20-2.3 NORMALIZING TRANSFORMATIONS

If we know from theoretical considerations or previous experience that some simple transforma-
tion will approximately normalize the particular kind of data in hand, then, both for convenience
and in the interest of efficiency, we may prefer to use normal-based standard techniques on the
transformed data, rather than use distribution-free techniques on the data in their original form.
For example, certain kinds of data are quite definitely known to be approximately normal in logs,
and the use of a log transformation in these cases may become routine. Indeed, this transformation
is the subject of an entire book which is devoted to its theoretical and empirical bases, and its uses
and usefulness in a wide variety of situations; see Aitchison and Brown.®

N
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£

Table 20-1 gives a selection of transformations that are capable of normalizing a wide variety
of non-normal types. They are arranged in groups according as the range of variation of the original 1
variable X isfrom 0 to < ,fromQto 1, or from —1to +1. Their ‘‘normalizing power’’ is exempli- s
fied in Figure 20-1. For the theoretical bases of these and other normalizing transformations, the o4
advanced reader is referred to the papers of Curtiss® and Johnson.®
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Figure 20-1. Normalizing effect of some Srequently used transformations.
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20-3 INEQUALITY OF VARIANCES, AND VARIANCE-STABILIZING
TRANSFORMATIONS

20-3.1 iIMPORTANCE OF EQUALITY OF VARIANCES

Many standard statistical techniques for the analysis and comparison of two or more materials,
products, or processes with respect to average performance depend on equality of variability within
groups. When the magnitude of the common within-groups variance o? is unknown, it is cus-
tomary (as in Procedures of Paragraphs 3-3.1.1, 3-8.2.1, and 3-4) to combine the sample evidence
on variability of performance within the respective groups, to obtain a pooled estimate of #2. The
advantages of pooling are: the resultant pooled estimate s? is a more preeise estimate of ¢2 than is
available from data of any of the individual groups alone; it leads to narrower confidence
intervals for each of the individual group means, and for differences between them; and hence, it

‘leads to more powerful tests of significance for differences between group means. If, however,
the assumption of equality of within-group variances is false, then the resultant pooled s? does not
provide a valid estimate of the standard error of any of the group averages, or of any of the differ-
ences between them. When marked inequalities exist among the true within-group variances, the
standard errors of individual group averages and of differences betweer. them, derived from a
pooled s2, may be far from the true values; and confidence intervals and tests of significance based
on the pooled s may be seriously distorted.

Thus, in Chapter 3, we emphasized that the standard (-tests for the comparison of averages of
two groups of unpaired observations (Paragraphs 3-3.1.1 and 3-3.2.1) are based on the assumption
of equal variances within the two groups. Furthermore, we noted that if the two samples involved
are of equal size, or of approximately equal size, then the significance levels of the two sided t-test
of the difference of two means (Paragraph 3-3.1.1) will not be seriously increased (Figure 3-9,
, curve (A)); but the power of the test may be somewhat lessened if the two variances are markedly
A unequal. Similarly, two-sided confidence intervals derived from ¢ for the difference between the
| two population means will tend to be somewhat narrower than if proper allowance were made for
3 the inequality of the variances, but the effective confidence coefficient will not be seriously less
: than the value intended. These remarks carry over without change to one-sided t-tests (Para-
3 graph 3-3.2.1) and to the corresponding one-sided confidence intervals. In other words, the com-
* parison of averages of two groups by means of the standard two sample ¢-test procedures and
1 associated confidence intervals results only in some loss of efficiency when the samples from the two
groups are of equal size, and the reduction in efficiency will be comparatively slight unless the two
: variances are markedly different.

significance levels of standard two-sample ¢-tests be seriously affected (Figure 3-9, curve (B)) but
their power (i.e., the entire OC curve) also may be altered considerably, especially if the smallest
sample comes from the group having the larger variance. Hence, in the case of samples of unequal
size, inequality of variances may invalidate not only a standard two-sample i-test for comparison
of averages, but also the associated confidence-interval procedures for estimating the difference
between the corresponding population means.

EA In contrast, if the samples from the two groups differ appreciably in size, then not only may the

e Y L TERSER
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The foregoing remarks carry over without modification to the Studentized-range techniques
given in Paragraph 3-4 for the comparison of averages of several groups, and in AMCP 706-112,
e’ Section 3, Chapters 12 and 13, for the comparison of averages and groups of averages in complex
b and more specialized forms of comparative experiments. In all of these cases, if the true within-
group variances differ appreciably from one group to another (or from subgroups to subgroups),
there ordinarily will be a loss of efficiency in the estimation of, say, product means, or treatment
differences. Similarly, there will be a loss of power in tests of significance. If the samples from
the respective groups are of unequal sizes and the true within-greup variances are markedly un-
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equal, these losses may be substantial. Some of the estimates of group means and differences
hetween group means may have much smaller or much larger standard errors than others, so that
pair-wise t-tests, or Studentized-range tests, derived from a pooled standard-deviation estimate s
may correspond to significance levels far from those intended; and the actual effective confidence
gpeflicients associated with the corresponding confidence intervals may differ substantially from

-. dhe another, and from their nominal values.
20-3.2 TYPES OF VARIANCE INHOMOGENEITY
The situations in which variance inhomogeneity may present a problem can be divided into

two types:

(a) Situations in which there is a functional dependence of the variance of an observation
on the mean of the group to which it belongs. Functional dependence of the variance of an obser-
vation on its mean or expected value is an intrinsic characteristic of many non-normal distributions.
The second column of Table 20-1 gives some specific examples. Or, it may be a basic property of
the phenomena under investigation quite apart from the form of the underlying distribution
involved. Thus, in studies of various types of “‘growth” phenomena, the amount of variation
present at any given stage of the “growth,” as measured by the standard deviation of observations
at that stage, is apt to be proportional to the average size characteristic of that stage.
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(b) Situations in which there is present incidental desultory heterogeneity of variance, arising
from inadequate control of conditions or procedure; from differences or shortcomings of equipment
or personnel; from use of inhomogeneous material or inadequate sampling methods; or from other
disturbing features (e.g., partial failure of one or more of the products or treatments) that tend to

produce less, or greater, variability among observations in some groups than in others in an irregular
manner.

Situstions of the first type, in which the variance inhomogeneity present is simply the conse-
quence uf a functional dependence of the variance of an observation on its mean or expected value,
are most easily handled statistically by employing an appropriate variance-stabilizing transforma-
tion. Details are given in Paragraph 20-3.3. Statistical analyses of data arising from the second
irregular type of variance heterogeneity should be left to experts. Variance-stabilizing transforma-
tions are of little or no help in such situations. Helpful advice, illustrated by worked examples,
can be found in two papers by Cochran.(®: ¥ Recourse usually must be made to subdividing the
experimental observations into approximately homogenous subgroups; or to omission of parts
of the experiment that have yielded data very different from the rest. An overall analysis may be
impossible. Combination of the pertinent evidence from the respective subdivisions of the data
may involve complex weighting and laborious arithmetic. Various procedures for the combination
of evidence from different experiments, or from separately analyzed parts of a single exnerimert,
have been examined and evaluated in a later paper by Cochran.® Irregular heterogeneity of
variance should be avoided whenever possible, by adequate design of experiments and careful
attention to the control of conditions, procedures, etc.

20-3.3 VARIANCE-STABILIZING TRANSFORMATIONS

When experimentally determined values X,, X,, ..., are such that their variances o %, are

functionally dependent on their mean values my, in accordance with a common functional relation-
ship, say

a’-%.' =g (mt\'.':; (1: = 17 2' .. -)y (20'1)

then we may gain the advantages of variance homogeneity in the statistical analysis of such data
by replacing the original values X, X, ..., by transformed values Y, = f (X)), Y. = f (X5, ...,
whose variances of, are (at least, to a good approximation) functionally independent of their mean
valuesmy.. Five such variance-stabilizing transformations Y = f (X) are given in the first column
of Table 20-1; the “situations” (i.e., the range of X and the form of the function g (n) in equation
(20-1)) for which each is appropriate* are indicaled in the second column; and the third eolumn
shows the approximate variances of the corresponding transformed values Y, as given by the
approximate formula

of > [f (m)] ok, (20-2)

where f' (m) denotes the derivative of the function y = f(X) evaluated at X = m, the mean value
of the original variable X,

Figure 20-2 presents comparisons of the actual values of the variances ¢} of the transformed
values Y and the corresponding approximate values given by formula (20-2), for four of the trans-
formations listed in Table 20-1.

* The third transformation in the first column of Table 20-1, log N il”)? , is variance-stabilizing only for “situatioas’
of type B,
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Panel

Q)

Dependence of the variances of two functions of a sample
value X from a Poisson distribution on the Poisson

parameter, m. (1) Variance of +/X; (2) Variance of
1 e
5 ;\/X +VvX + 12 .

Panel
(€)

Dependenceof the variancesof three functions of a sample
proportion X /n on the population proportion p when
the sample size is 10. (1) 40 Var (X/n);

(2) 40 Var (sin! v/X/n) ; (3) 40 Var (ep) s where
(sin! v1/anforX =0
ep =<8int VX /nfor X =1,2,... ,n~1
sin!'vVidn~1/dnforX =n

Panel
(6)

Dependence of the vuriance of the sample correlation
coefficient r and of the variance of the transformation

2 = 1 log { 5 on the true correlation coefficient p
2 —-r

for sample size n = §. (i) Variance of 2’ ;
(2) Variance of r.

Panel
(¢)]

T ST Y T

TP A €T 0 6Bt HHANI G NN

The ratio of the variance of log.s® to its approximate
value 2/(n — 1) in samples of size n from a normal
distribution.

Panel
(4)

Dependenceof the variancesof three functions of a sample
proportion X /# on the population proportion p when
the sample size is 20. (1) 80 Var (X/n);

(2) 80 Var (sin™t +/X/n) ; (8) 80 Var (¢,) , where

snt'v1/dntor X =0

Py = sin'vX/mforX =1,2,... ,n =1
sintvV@dn—-1 forX =n

Panel
)

Dependence of the variance of the sample correlation
coeficient r and of the variance of the transformation

/=_1_ 14+
z 2]03(

1 -
for sample sizen = 11, (1) Variance of 2’ ;
(2) Variance of r,

) on the true correlation coefficient p

Figure 20-2. Variance-stabtlizing effect of some frequently used transformations.
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The logari: iransformation log s? is ‘“‘variance-stabilizing’’ for all values of n, since the
variance of log s s functionally independent of its mean for all values of 7 ; and, as is evident from

panel 2 of Figure 20-2, the variance of log s? is close to its limiting value 77—3——1— for all values of
n > 5, say. For further details on this transformation, see Bartlett and Kendall.®

The other four transformations depicted in Figure 20-2 are variance-stabilizing (to a good
approximation at least), only for favorable combinations of the parameters concerned. Thus, in
the case of the Poisson distribution (panel 1), we see that the variance of v/X is independent of m
to a good approximatiun only for m > 10, say; but the variance of the more sophisticated trans-
formation } (VX + VX + 1), devised by Freeman and Tukey®, is nearly constant for n > 3,
say. A table to facilitate the use of this transformation has been published by Mosteller et al¢!. 12,
Similarly, for the binomial distribution: from panel 3 we see that when n = 10, the variance of
arcsin /X /n is no mare stable as p ranges from 0 to 1, than is the variance of X/n itself; but
with Bartlett's modifications®®- 9 for X = 0 and X = 1, the variance is essentially constant

(at 1—4;-3) from p = 0.25 to p = 0.75. On the other hand, when » = 20 (panel 4), the variance

of the unmodified transformation is nearly constant from p = 0.25 to p = 0.75, so that the un-
modified transformation is quite adequate for this range of ». However, by adopting Bartlett’s

modifications, the range of variance constancy (at 14?;) can be extended to p = 0.12 and
n = 0.88. When n = 30, the unmodified transformation is adequate from p = 0.18 to p = 0.82,

and with Bartlett’s modifications, nearly constant variance (at 1.085 is achieved from p = 0.08

top = 0.92. Finally, panels 5 and 6 show the variance-stabilizing power of the log —i——i;; trans-

formation of the correlation coefficient r, due to Fisher,® for n = 5 and n = 10.

Figure 20-2 and the foregoing discussion serve to bring out a very importani feature of variancc
stabilizing transformations: over any range of favorable circumstances for which a particular
variance-stabilizing transformation Y has an essentially constant and known variance «#, we also
have, in addition to the advantages of variance constancy, all of the attendant advantages of
“e-known’’ techniques. However, in practice, before proceeding on the assumption that ¢f has a
particular theoretical value, we should always evaluate an estimate of ¢, say s, from the data
on hand, and check to see vhether s} is consistent with the presumed theoretical value of o3. If
it is, then “o-known” tech. ~ues should be used in the interest of greater efficiency. On the other
hand, if the magnitude ‘: indicates that the effective value of ¢} is substantially greater than
its theoretical value, t} _-unknown”’ techniques, based on sy, must be used. Tn such cases,
the excess of s} over the theoretical value of o} indicates the amount of additional va. ation present
in the data, which, in principle at least. could be eliminated in future experiments of the same
kind by improved experiment design an. measurement-error control,
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20-4 LINEARITY, ADDITIVITY, AND ASSOCIATED TRANSFORMATIONS

20-4.7 DEFINITION AND IMPORTANCE OF LINEARITY AND ADDITIVITY

Experimental data are much easier to interpret when the effects of the variables concerned are
linear and addzitive.

When only a single independent variable « is involved, then linearity of the phenomena under
investigation means that the response y corresponding to input z can be expressed in the form

Y = B+ B2 (20-3)

when z and y are expressed on appropriate scales. Equation (20-3) is the equation of a straight
line in the z, y-plane. The analysis and interpretation of such linear relationships derived from
experimental data are considered in detai' - Chapter 5.

In the case of twou independent or input  iables, say z and z, if the dependence of the re:.yonse y
on these two variables is of the form

Y = Bo + B + Bsz + Baxz
= (8o + Baz) + (B1 + Bw)x (20-4)
(Bo + Bix) + (B2 + B:x)z

then clearly the response y depends linearly on x for fixed values of z, and linearly on z for fixed
values of z: but the effect of changes in z and z will be additive if and only if the cross product
term is missing (i.e., 83 = 0). Only in this case will a given change in z, say éz, produce the same
change in y regardless of the value of z, and a given change in 2, say éz, produce the same change
in y regardless of the value of z ; and hence together produce the same total change in y, irrespective
of the “starting values’” of x and z. In other words, for linearity and additivity in the case of two
independent variables, the response surface must be of the form

It

;l ' Yy = Bo+ Bx + B2 (20-5)

which is the equation o: ane in the three-dimensional z, z, y-space.
Similar remarks extena . the case of three or more independent variables, in which case for

linearity and additivity the response surface must be of the form
. Y =B+ 81z + B2+ Batt + B + Bsw + ... (20-6)
~ which is the equation of a hyperplane in the (x, 2z, %, v, w, ..., y)-space.

When, as in equation (20-4), the cross-product term gz is present, the effect of a given change
in z, say éx, will depend upon the corre .ng value of z; the effect of a given change in z,

say 6z, will depend upon the corresponding value of z; and the joint effect of éx and 5z will depend
on the “starting values” of x and z. In such cases, we say that there is an ¢nteraction between the
factors z and z with respect to their effect on the response y. Hence, in the contrary case, when
the changes in y resulting from changes in the two variables z and z are additive, it is customary
to say that there is no interaction between z and z with respect to their effect on the response y.

Many of the standard techniques of statistical analysis, especially analysis-of-variance tech-
niques, depend explicitly on linearity and additivity of the phenomenon under investigation. Thus,
the usual analysis of randomized-block experiments (Paragraph 18-3.2) 1s based on the assumption
that the response y,; of the 7th treatment in the jth block can be expressed in the form

Yii = ¢i + B, (20-7)

where ¢, serves to characterize the expected response of the ¢th treatment, and may be regarded
: as the average response of the ith treatment over all of the blocks of the experiment; and g; charac-
X terizes the effect of the jth block, and is the amount by which the response in the jth block of any

20-9
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one of the tre:.ments may be expected to differ from its a arage response over all blocks. Similarly,
in the analysis of Latin-square experiments (Paragrapl. 13-5.2.1), it usually is assuined that y.;.,
the response of the ith treatment under conditions corresponding to the yth row and the mth column,
can be represented in the form

Yijm = @i+ p 1o, (20-8)

where, as before, o, serves to characterize the itt,  .itment, and may be regarded as the expected
response for the ¢th treatment averaged over all combinations of conditions (corresponding to the
rows and columns) included in the experiment; p; serves to characterize the jth row, and may be
regarded as the amount by which the response of any one of the treatments may be expected to
differ under the conditions of the jth row from ¢ts response averaged over all of the experiment;
and «. serves to characterize the mth column, and may be regarded as the amount by which the
response of any treatment may be expected to differ under the conditions of the mth column from
its response averaged over the entire experiment.

In the case of factorial-type experiments involving many factors (Chapter 12), complete addi-
tivity as defined by equation (20-6) is rarely realistic. However, if internal estimates of experimental
error are to be obtainable from the experimental data in hand (Paragraph 12-1.2.1), then at least
some of the higher-order interaction terms, involving, say, three or more factors (e.g., terms in
T, T2U, ... ) TZWU, ... [ T2WUY, . ..) must either be absent or at least of negligible magnitude
in comparison to ¢, the actual standard deviation of the measurements involved.

i Thus the importance of additivity in the analysis and interpretation of randomized-block, Latin-
3 square, and other multi-factor experiments is seen to be twofold: first, only when the effects of
treatments and blocks, or treatments and rows and columns, ete., are strictly additive can we use
a single number ¢, to represent the effect of the ith treatment under the range of conditions included
in the experiment; and second, only when strict additivity prevails will the residual deviations of
the observed responses Y from response surfaces of the form of equation (20-5), (20-6), (20-7), or
(20-8), provide unbiased estimates s? of the actual experimental-error variance ¢? associated with
the experimental setup concerned. In the absence of strict additivity, for example, when “‘inter-
action’’ cross-product terms (¢8),; need to be added to equation (20-7), the actual effect of the <th
treatment will depend upon the conditions corresponding to the particular block coneerned, being
e: + (¢B)n for the first block, ¢; + (B8) . for the second block, ete. Furthermore, if the experi-
mental data are analyzed on the supposition that equation (20-7) holds, whereas the cross-product
terms actually are necessary to describe the situation accurately, then the resulting residual sum
of squares will contain a component dire to the sum of the squares of the interaction terms
(¢8):;. Consequently, the resulting variance estimates s? will tend to exceed the true experimental-
error variance o?, to reduce the apparent ‘“‘significance’’ of experimental estimates of the actual
treatment effects ¢;, and to yield unnecessarily wide confidence interval estimates for the ¢;, and
for differences between them. Worse, the customary distribution theory will no longer be strictly
applicable, so that the resulting tests for significance and confidence interval estimates will, at best,
be only approximately valid.

Therefore, it is highly desirable that the effects of treatments and other factors involved in a
complex experiment, if not additive, at least have negligible interactions, in the sense that the
corresponding terms needed to depiet the situation accurately be individually and collectively
negligible in comparison with the corresponding main effects (¢:, 8;, ete.) and also with respect
to the true experimental-error variance o2.

N X O i &7 5w
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20-4.2 TRANSFORMATION OF DATA TO ACHIEVE LINEARITY AND ADDITIVITY

It should be noted that in connection with the linear relationship in equation (20-3) we added a
qualifying phrase ‘“when z and y are expressed on appropriate scales.” This qualification was
added because, if a response y depends non-linearly on the corresponding input z and the form of
this non-linear relationship is known, then sometimes it is possible to make a transformation of one
or both of the variables so that the relationship between the transformed variables 3’ and z’ is of
the form of equation (20-8) with y’ in place of ¥ and 2’ in place of . A number of such linearizing
transformations are considered in Paragraph 5-4.4, and are summarized in Table 5-4.

: The art of transformation of data to achieve additivity is far less well developed than are the arts
of transformation (. =chieve normality, constancy of variance, and linearity. The only situation
g that comes to mind for which the exact transformation needed to achieve additivity is obvious,

is the case where, say, treatment, row, and column effects are multiplicative in the original units,
8o that instead of equation (20-8) we have

Yiim = @ipikm . (20-9)
On taking logarithms this becomes
| log yijm = log ¢: + log p; + log km, (20-10)
which clearly is of the form given in equation (20-8) in terms of the variables

Y'im = 10g Yijm, ¢« = log ¢i, p'; = log p;, and «',, = log ..

Fortunately, it often happens that a transformation chosen for the purpose of achieving con-
staney of variance also improves the situation to some extent with respect to linearity and addi-
tivity. But, this will not always be the case. In some situations, if we can find a transformation
that improves linearity or additivity we may choose to forego the . dvantages of constancy of
variance. Such is the case, for example, when we adopt the probit transformation (Chapter 10)
in order to achieve linearity, with the consequent necessity of performing weighted analyses of the
transformed data to allow for non-constancy of variance. In other cases, variance constancy may
‘ be so advantageous that we are willing to proceed on the assumption that additivity also is achieved
by the transformation to stabilize variance — a situation explored by Cochran® for the cases of
binomial or Poisson-distributed data.

20-5 CONCLUDING REMARKS

One important characteristic of all of the transformations ziven in Table 20-1 is that they all
. are order preserving: the relative rank order (with respect to magnitude) of the original individual
measurements X,, X,, ... is strictly preserved in their transforms ! - f (X)), Y. =f (X2 ... .
Consequently, the relative rank order of subgroup means X;,, X, ... of the original measure-
ments will usually — but not necessarily* -~ be preserved in the corresponding subgroup means
Yo, Y, ... evaluated from the transformed data. When these subgroup means on the Y-scale
are transformed back to the X-scale by the inverse transformation X = g (Y), their transforms
X =9gF0),Xae =g(Pa),...will always be in the same relative rank order as the subgroup

L

N el

L1

* For example, let the original data consist of the following two groups of two observations each: 1, 10and 5, 5.
: Then, X, = 5.6, X; = 5,and X. > X.. If now we changeto Y = logio X, the data become 0, 1 and 0.699, 0,699
sothat ¥, =05, 9. =0.699,and P, < P,.

20-11
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means ¥, ¥, ... on the Y-scale; and hence, usually — but not always -— in the same relative
rank order as the original subgroup means X,,, X, ... on the X-scale. In other words, by
using one of these transformations, we ordinarily will not seriously distort the relative magnitudes
of treatment effects, of block effects, ete.

The “transformed-back’’ subgroup means X’;,, X', ..., will, of course, not have the same
meaning as the ‘“‘straight-forward”” subgroup means X(,, X, ... . Thus, in the case of the
logarithmic transformation y = log X, if the subgroup means ¥;,, ¥, ... on the transformed
scale (Y) are arithmetic means of the corresponding Y values, then the ‘‘transformed-back’ sub-
group means X'(,, = anti-log Py, X’ = anti-log P, ..., are estimates, not of the corre-
sponding population arithmetic means g, #en, . . . , but rather of the corresponding population
geonetric means vy, v, .- - - On the other hand, if instead of considering subgroup means, we
were to consider subgroup medians X, X, ..., then the corresponding subgroup medians
Y, P, ..., on the Y-scale will always be in the same relative rank order as the original sub-
group medians on the X-scale; and the “‘transformed-back’” subgroup medians X', = ¢ (Y1),
Xo=9gPw), .., will be {dentically equal to the original subgroup medians X ), X¢), ... .
Consequently, if there is some danger of ¢ stortion through the use of a transformation to achieve
normality, constancy of variance, linearity, or additivity, then consideration should be given to:

(a) whether, for the technical purposes at issue, discussion might not be equally or perhaps even
more conveniently conducted in terms of the transformed values Y, thus obviating the necessity
of transforming back to the original X-scale; or,

(b) whether, f< »>urposes of discussion, population medians rather than population means
might well be equ. .y or perhaps more meaningful.

In this connection, it must be pointed out that confidence limits for means, differences between
means (medians, differences between medians) ete., evaluated in terms of the transformed values Y
can be “transforined back’ directly into confidence limits for the corresponding magnitudes* on
the original X-scale. On the other hand, estimated standard errors of means (medians), differences
between means (differences between medians), ete., evaluated on the transformed scale Y cannot
be “transformed-back” directly into standard errors of the corresponding ‘‘transformed-back”
magnitudes on the original scale X. Hence, if standard errors of final results are to be given as a
way of indicating their respective imprecisions, such standard errors must be evaluated for, and
stated as being applicable only to, final results expressed on the transformed scale Y.

As 30 eloquently remarked by Acton7. pp 221-222);

“These three reasons for transforming . . . [i.e., to achieve normality, constancy of variance, or additivity] have no
obvious mathematical compulsion to be compatible; a transformation to introduce additivity might well throw out
normality and mess up the constancy of variance beyond all recognition. Usually, the pleasant cloak of obscurity
hides knowledge of all but one property from us — and so we cheerfully transform to vouchsafe unto ourselves this
one desirable property while carefully refraining from other considerations about which query is futile. But thece
is a brighter side to this picture, The gods who favor statisticians have frequently ordained that the world be well
behaved, and so we often find that a transformation to obtain one of these desiderata in fact achieves them all (well,
almost achieves them!).”

Nevertheless, the following sobering advice from Tippett(#. rv 344-349 ghould not go unheeded: —

“1f a transformed variate [y], having convenient statistical properties, can be substituted for x in the technical argu-
ments from the results and in their applications, there is everything to be zaid for making the transformation. But
otherwise the situation can become obscure. Suppose, for example, that there is an interaction between treatments
and looms when the measuro is warp breakage rate and that the interaction disappears for the logarithm of the warp
breakage rate. It requires some clear thinking to decide what this signifies tec%nically; and the situation becomes
somewhat obscure when, as 8o often happens, the effects are not overwhelmingly significant, and it is remembered that
a verdict ‘no significant interaction’ is not equivalent to ‘no interaction.” If tge technical interpretation ha+ to be in
terms of the untransformed variate x, and after the statistical analysis has been performed on [y}, means and so on
have to be converted back to z, statistical difficulties arise and the waters deepen. Readers are advised not to make
transformations on statistical grounds alone unless they are good swimmers and have experience of the curvents.”

*E.g., for geomelric means on the X-scale, if the transformation involved is Y = log X and arithmetic means are
employed on the Y-scale.

20-12
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CHAPTER 21

THE RELATION BETWEEN CONFIDENCE INTERVALS
AND TESTS OF SIGNIFICANCE*

21-1 INTRODUCTION

Several chapters in this Handbook are con-
cerned with statistical tests of significance —
see, for example,AMCP 706-110,Chapters 8 and
4, In Paragraph 3-2.1.1, the problem is that
of deciding whether the average of a new
product differs from the known or specified
average m, of the standard product. The test
procedure involves computing a quantity « and
comparing # with the difference between the ob-
served average X and the standard average m,.
This comparison is the test of significance. A
further step in the procedure, however, notes
that the interval X 4 u is in fact a confidence
interval estimate of the true mean of the new
product.

In AMCP 706-111, Chapter 8, the problem of
comparing an observed proportion with a stand-
ard proportion is done directly in terms of the
contidence interval for the observed proportion,
completely omitting the test-of-significance step
given in Chapter 3 for comparisons involving
quantitative data. Tables and charts that give
confidence intervals for an observed proportion
are used, and we ‘“test” whether the ubserved
proportion differs from the standard by noting
whether or not the standard proportion is in-
cluded in the appropriate interval.

* Adapted with permissiun from The American Statiatician, Vol, 14

Many statistical consultants, when analyzing
an experiment for the purpose of testing a
statistical hypcthesis, e.g., when comparing
means of normal populations, find that they
prefer to present results in terms of the appro-
priate confidence interval.

It must be noted of course that not every
statistical test can be put in the form of a con-
fidence interval. In general, tests that are
direct tests of the value-of a parameter of the
parent population can be expressed in terms of
confidence intervals.

When the results of a statistical test can
alternatively be stated in terms of a confidence
interval for a parameter, why would we prefer
the confidence interval statement? Some au-
thorities have stressed the point that experi-
menters are not typically engaged in disproving
things, but are looking for evidence for affirma-
tive conclusions; after rejecting the rull hypoth-
esis, the experimenter will look for a reasonable
hypothesis to accept. The relation between
confidence intervals and tests of significance is
mentioned only briefly in most textbooks, and
ordinarily no insight is given as to which con-
clusion might be more appropriate. (A notable
exception is Wallis and Roberts(®.)

Neo. 1, 1960, from article entitleu “The Relation Betwwen Confidence

Intervals and Tests of Significance — A Teaching Aid”’ by Mary G. Navsella.
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21-2 A PROBLEM IN COMPARING AVERAGES

In this Chapter, we review both procedures
with reference to a numerical example, which
was given in Paragraph 3-2.1.1.

For a certain type of shell, specifications state
that the amount of powder should average 0.735
Ib. In order to determine whether the average
for the present stock meets the specification,
twenty shells are taken at random and the
weight of powder is determined. The sample
average X is 0.7101b. The estimated standard
deviation s is 0.0504 1b. The question to be
answered is whether or not the average of
present stock differs from the specification
value. In order to use a two-sided test of sig-
nificance at the (1 — a) probability level, we
compute a critical value, to be called u. Let

w="LtL

vn
where t* is the positive number exceeded by
100 (%) 9% of the t-distribution with = -1
degrees of freedom. (See Table A-4.)

In the above example with o = .05, ¢*
equals 2.09 and u equals 0.0236 1b. The test of
significance says that if |X — 0.735| > u, we
decide that the average for present stock differs

from the specified average. Since

10,710 — 0.735| > 0.0236,
we decide that there ¢s a difference.

From the same data, we also can compute¢ a
959, confidence interval for the average of
present stock. This confidence interval is
X 4+ u = 0.710 & 0.0236, or the interval from
0.686 to 0.734 Ib. The confidence interval can
be used for a test of significance; since it does
NOT ineclude the standard value 0.735, we con-
clude that the averzge for the present stock
DOES differ from the standard.

Comparisons of two materials (see Paragraph
3-3.1.1 for the case of both means unknown and
equal variances) may be made similarly. In
computing a test of significance, we compare the
difference between sample means, | X, — X5/,
with a computed critical quantity, again called
%. If | X4 — Xp| is larger than u, we declare
that the means differ significantly at the chosen
level. We als¢ note that the interval

(XA —XB) +u

is a confidence interval for the difference be-
tween the true means (m, — ms); if the com-
puted interval does not include zero, we conclude
from the experiment that the two materials
differ in mean value.

21-3 TWO WAYS OF PRESENTING THE RESULTS

Here then are two ways to answer the original
question. We may present the result of a test
of significance, or we may present a confidence
interval. The significance test is a go no-go
decision. We compute a critical value u, and
we compare it with an observed difference. If
the observed difference exceeds %, we announce
a significant difference; if it does not, we
announce that there is NO difference. If we
had no OC curve for the test, our decision
would be a yes-no proposition with no shadow-
land of indifference. The significance test may
have said NO, but only the OC curve can
qualify this by showing that this particular
experiment had only a ghost of a chance of

21-2
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saying YES to this particular question. For
example, see Figure 21-1. If the true value of

d = ’ m;'f—"@ l were equal to 0.5, a sample of 10

is not likely to detect a difference, but a sample
of 100 is almost certain to detect such a
difference.

Using a rejection criterion alone is not the
proper way to think of a significance test; we
should always think of the associated OC curve
as part and parcel of the test. Unfortunately,
this has not always been the case. Asa matter
of fact, many experimenters who use signifi-
cance tests are using them as though there were
no such thing as an OC curve.
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"1 Figure 21-1. Reprint of Figure 3-1. OC curves for the two-sided t-test (« = .05).

Adapted with permission from Annals of Mathematical Statisties, Vol. 17, No. 2, June 1946, pp. 178-197, from article entitled **Operating Charze-
teristics for the Common Statistical Tests of Significance’ by C. D. Ferris, F. E, Grubbs, and C. L, Weaver.
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21-4 ADVANTAGES OF THE CONFIDENCE-INTERVAL APPROACH

A confidence-interval procedure contains in-
formation similar to the appropriate OC curve,
and, at the same time, is intuitively more ap-
pealing than the combination of a test of sig-
nificance and its OC curve. If the standard
value is contained in the confidence interval, we
can announce NO difference. The wtdth of the
confidence interval gives a good idea of how firm
is the Yes or No answer; however, there is a
caution in this regard which is explained in the
following paragraphs.

Suppose that the standard value for some
property is known to be 0.785, and that a
100 (1 — a) 9, confidence interval for the same
propert