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FOREWORD

INTRODUCTION ment data. Section 2 provides detailed pro-
cedures for the analysis and interpretation of

This is one of a group of handbooks covering enumerative and classificatory data. Section 3
the engineering information and quantitative has to do with the planning and analysis of corn-

data needed in the design, development, construe-
parative experiments. Section 4 is devoted to

tion, and test of military equipment which (as a consideration and exemplification of a number

group) constitnte the Army Materiel Command of important but as yet non-standard statistical

Engineering Design Handbook. techniques, and to discussion of various other

special topics. An index for the material in all

'PURPOSE OF HANDBOOK four sections is placed at the end of Section 4.
Section 5 contains all the mathematical tablesThe Itandbook on Experimental Statistics has needed for application of the procedures given

been prepared as an aid to scientists and engi- in Sections 1 through 4.

neers engaged in Army research and develop- An understanding of a few basic statistical

ment programs, and especially as a guide and Anudrtdigoafebscsaitcl
mend progrande especiitally asd c ian gierand concepts, as given in Chapter 1, is necesssary;

ready reference for military and civilian person- otherwise each of the first four sections is largely
nel who have responsibility for the planning and independent of the others. Each procedure, test,

interpretation of experiments and tests relating and technique described is illustrated by means

to the performance of Army equipment in the of a worked example. A list of authoritative

design and developmental stages of production, references is included, where appropriate, at the

end of each chapter. Step-by-step instructions

SCOPE AND USE OF HANDBOOK are given for attaining a stated goal, and the
conditions under which a particular procedure is

This Handbook is a collection of statistical strictly valid are stated explicitly. An attempt is

procedures and tables. It is presented in five made to indicate the extent to which results ob-

sections, viz: tained by a given procedure are valid to a good

AMCP 706-110, Section 1, Basic Concepts approximation when these conditions are not

and Analysis of Measurement Data (Chapters fully met. Alternative procedures are given for

1-6) handling eases where the more standard proce-

AMCP 706-111, Section 2, Analysis of Enu- dures cannot be trusted to yield reliable results.

merative and Classificatory Data (Chapters The Handbook is intended for the user with
7-10) an engiueering background who, although he has

an occasional need for statistical techniques, does
AMCP 706-112, Section 3, Planning and not have the time or inclination to become an ex-

Analysis of Comparative Experiments (Chapters pert on statistical theory and methodology.

11-14) The Handbook has been written with three

AMCP 706-11:3, Section 4, Special Topics types of users in mind. The first is the person

(Chapters 15-23) who has had a course or two in statistics, and
AM('P 706-114, Section 5, Tables who may even have had some practical experi-

ence in applying statistical methods in the past,
Setio' i 1 provides an elementary iitroduc- hut who does not have statistical ideas and tech-

tion to basic statistical concepts and furnishes niques at his fingertips. For him, the IHandbook

fill[ dtails on standard statistical techniques will provide a ready reference source of once•

for the, amalysis and interpretation of measure- fauiuuliar ideas and techniques. The second is the

viii
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person who feels, or has been advised, that some Most of the present text is by Mary G. Na-

particular problem cal be solved by means of trella, who had overall responsibility for the com-

fairly simplhe statistical techniques, and is in need pletion of the final version of the Handbook.

of a hook that will enable himi to obtain the so- The original phlns for coverage, a first draft of

lution to his problem with a minimum of outside the text, and some original tables were prepared

assistance. The Handbook should enable such a by Paul N. Somerville. Chapter 6 is by Joseph
person to become familiar with the Statistical M. Cameron; most of Chapter 1 and all of Chap-

ideas, and reasonably adept at the techniques, ters 20 and 23 are by Churchill Eisenhart; and

that are most fruitful in his particular line of re- Chapter 10 is based on a nearly-final draft by

search and development work. Finally, there is Mary Ii. Epling.

the individual who, as the head of, or as a mem- Other members of the staff of the Statistical

ber of a service group, has respoiisibility for ana- Engineering Laboratory have aided in various

lyziing and interpreting experimental and test ways through the years, and the assistance of all

data brought in by scientists and engineers en- who helped is gratefully acknowledged. Partic-

gaged in Army research and development work. ular mention should be made of Norman C.

This individual needs a ready source of model Severo, for assistance with Section 2, and of

work shoets and worked examples corresponding Shirley Young Lehman for help in the collection

t,' the more common applications of statistics, to and computation of examples.

Sfree him from the need of translating textbook Editorial assistance and art preparation were

(discussions into step-by-step procedures that can provided by John I. Thompson & Company,

be followed by individuals having little or no Washington, D. C. Final preparation and ar-

previous experience with statistical methods. rangement for publication of the Ilvtdbook were

It is with this last need in mind that some performed by the Engineering Handbcok Office,

of the procedures included in the Handbook have Duke Ituniversity.

been explained and illustrated in detail twice: Appreciation is expressed for the generous

once for the case where the important question cooperation of publishers and authors in grant-

is whether the performance of a new material,, ing permission for the use of their source inateri-

product, or process exceeds an established stan- al. References for tables and other material,

dard; and again for the case where the important taken wholly or in part, from published works,
question is whether its performance is not up to are given on the respective first pages.

the specified standards. Small hut serious errors Elements of the U. S. Army Materiel Coln-

are often made in changing "greater than " pro- mand having need for handbooks may submit

cedures into "'less than' procedures. requisitions or official requests directly to the
Publications and Reproduction Agency, Letter-

AUTHORSHIP AND ACKNOWLEDGMENTS kenny Army Depot, Chambersburg, Pennsyl-

The Handbook on Experimental Statistics vania 17201. Contractors should submit such

was prepared in the Statistic~al Engineering Lab- requisitions or requests to their contracting of-

oratory, National Bureau of Standards, under a ficers.
contract with the Department of Army. The Comments and suggestions on this handbook

project was under the general guidance of are welcome and should be addressed to Army

Churchill Eisenhart, Chief, Statistical Engineer- Research Office-Durham, Box CM, Duke Station,

ing Laboratory. Durham, North Carolina 27706.

ix 1.
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PREFACE

This listing is a guide to the Section and Chapter subject coverage in all Sections of the 11and-
book on Experimentail Statistics.

C'hapter 'itlce
No.

AMCP 706-110 (SECTION 1) - BASIC STATISTICAL CONCEPTS AND
STANDARD TECHNIQUES FOR ANALYSIS AND INTERPRETATION OF

MEASUREMENT DATA

I - Sonme Basic Statistical Concepts-and Preliminary Con'siderations
2 - Characterizing the Measured Performance of a Material, l1'rodiict, or P~rocess
:1 - Comparing Materials or Products with Respeet to Average P'erformnance
4 - Comparing Materials or l~roducts with Respect to Variability of Performiance
5 - Characterizing Ljinear Relationships Between Two Variables
6 - P'olynomial and Multivairiable Relationships, Analysis by the Method of levast Squares

AMCP 706-111 (SECTION 2)- ANALYSIS OF ENUMERATIVE AND
CLASSIFICATORY DATA

7 - Characterizing the Qualitative Performance of a Material, P)roduct, or P1rocess
8 - Comparing Materials or P)rodue,,; with Respec-t to a Two-Fold Classification of P~erformnanlce

(Comparing Two P~ereentages)
9 - Comparing Materials or P~rodlucts with Respect to Several Categories of lPerformanaie (('hi-ISquare

Tests)
10 - Senisitivity Testing-

AMCP 706-112 (SECTION 3) - THE PLANNING AND ANALYSIS OF
COMPARATIVE EXPERIMENTS

11 - General Considerations in I'lann ing- Experiments
12 - Factorial Experiments
13 - Randomized Blocks, Latin Squares, and Other Special-P'urpose Desigiis
14 - Experiments to D~etermine Optimum Conditions, or Lievels

AMCP 706-113 (SECTION 4) - SPECIAL TOPICS

15 - Some "''Short-Cut'' Tests for Small .S4mnples from Normial Popuflations
16( - Some Tests Which Are Indlepend(enit of the Fo iii of the lDistribhution
17 - The Treatment of Outliers
18 - Trie I'laev of Comitrol Charts ini Experimiontal Work
19 - Statijst ical Teehn iques for Amimlyzimig Extrene-Vim Inc Data
20 - Thy' U se of Tranisfornmationis
21 -- The Relation Be-tweeni Confidence I n4,rvals wiul Tests of Signifficnce
22 - Xotes on Sitatistical C omputat ions
2:1- Expressiont of the I'm-erlaiiit les or Finaim lResuilts

Indlex

AMCP 706-114 (SECTION 5) - TABLES

Table,; A~-1 thlromigh \ -:17

x
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DISCUSSION OF TECHNIQUES IN CHAPTERS 15 THROUGH 23

In this Section, a number of important but as yet non-standard
techniques are presented for answering questions similar to those
considered in AMCP 706-110, Section 1. In addition, various spe-
cial topics, such as transformation of data to simplify the statis-
tical analysis, treatment of outlying observations, expression of
uncertainties of final results, use of control charts in experi-
mental work, etc., are discussed in sufficient detail to serve as
an introduction for the reader who wishes to pursue these topics
further in the published literature.

All A-Tables referenced in these Chapters are contained in AMCP
706-114, Section 5.

If

xi
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CHAPTER 15

SOME SHORTCUT TESTS FOR SMALL SAMPLES

FROM NORMAL POPULATIONS

15-1 GENERAL

Shortcut tests are characterized by their nplicity. The calculations are simple, and often may
be done on a slide rule. Further, they are easily learned. An additional advantage in their use
is that their simplicity implies fewer errors, and this may be important where time spent in checking
is costly.

The main disadvantage of the shortcut tests as compared to the tests given in AMOP 706-110,
Chapters 3 and 4, is that with the same values of o and n, the shortcut test will, in general, have a
larger f, - i.e., it will result in a higher proportion of errors of the second kind. For the tests
given in this chapter, this increase in error will usually be rather small if the sample sizes involved
are each of the order of 10 or less.

Unlike the nonparametric tests of Chapter 16, these tests require the assumption of normality of
the underlying populations. Small departures from normality, however, will usually have a
negligible effect on the test - i.e., the values of a and 0, in general, will differ from their intended
values by only a slight amount.

No descriptions of the operating characteristics of the tests or of methods of determining sample
size are given in this chapter.

15-2 COMPARING THE AVERAGE OF A NEW PRODUCT WITH THAT
OF A STANDARD

15-2.1 DOES THE AVERAGE OF THE NEW PRODUCT DIFFER FROM THE STANDARD?

Data Sample 15-2.1 - Depth of Penetration

Ten rounds of a new type of shell are fired into a target, and the depth of penetration is measured
for each round. The depths of penetration are:

10.0, 9.8, 10.2, 10.5, 11.4, 10.8, 9.8, 12.2, 11.6, 9.9 cms.

The average penetration depth, mi, of the standard comparable shell is 10.0 cm.

.15-1
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The question to be answered is: Does the new type differ from the standard type with respect
to average penetration depth (either a decrease, or an increase, being of interest)?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .01

(2) Look up j,_-1, in Table A-12 for the appro- (2) n = 10
priate n. P.,95 = 0.333

(3) Compute Z, the mean of the n observa- (3) X = 10.62
tions.

(4) Compute w, the difference between the (4) w = 2.4
largest and smallest of the n observations.

( 10.62 - 10.00
(5) Compute • (X - m0 )/w (5) = 2.4

= 0.258

(6) If I I -1 > 'I1-f2, conclude that the average (6) Since 0.258 is not larger than 0.333, there
performance of the new product differs is no reason to believe that the new type
from that of the standard; otherwise, there shell differs from the standard.
is no reason to believe that they differ.

15-2.2 DOES AVERAGE OF THE NEW PRODUCT EXCEED THE STANDARD?

In terms of i a Sample 15-2.1, iet us suppose chat - in advance of looking at the data - the
important question is: Does the average of the new type exceed that of the standard?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .01

(2) Look up p,• in Table A-12, for the appro- (2) n 10
priate n. g9= 0.288

(3) Compute X, the mean of the n observa- (3) X 10.62
tions.

(4) Compute w, the difference between the (4) v = 2.4
largest and smallest of the n observations.

10.62 - 10.00
(5) Compute • = (•" - m0 ),/' (5) •= 2.4

= 0.258

S(6) If p > pl-., conclude that the average of (6) Since 0.258 is not larger than 0.288, there
the new product exceeds that of the stand- is no reason to believe that the average of
ard; otherwise, there is no reason to believe the new type exceeds that of the standard.
that the average of the new product
exceeds the standard.

15-2
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15-2.3 IS THE AVERAGE OF THE NEW PRODUCT LESS THAN THE STANDARD?

In terms of Data Sample 15-2.1, let us suppose that advance of looking at the data - the
important question is: Is the average of the new type le.... ,,.an that of the standard?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .01

(2) Look up pl- in Table A-12, for the appro- (2) n = 10
pfiate n. = 0.288

(3) Compute X, the mean of the n observa- (3) =
tions.

(4) Compute w, the difference between the (4) w7 2.4
largest and smallest of the n observations.

,•.0-_10.62

(5) Compute p = (mi, - -Z)/w (5) s k)2.4

J -0.258

(6) If p > pl,, conclude that the average of (6) Since - 0.258 is not larger than 0.288,
the new product is less than that of the there is no reason to bel~eve that the
standard; otherwise, there is no reason to average of the new type is less than that of
believe that the average of the new product the standard.
is less than that of the standard.

15-3
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15-3 COMPARING THE AVERAGES OF TWO PRODUCTS

15-3.1 DO THE PRODUCTS A AND B DIFFER IN AVERAOE PERFORMANCE?

Data Sample 15-3.1 - Capacity ji Batteries

Form: A set of n measurements is available from 2ach of two materials or products. The proce-
dure* given requires that both sets contain the same number of measurements (i.e., nA = nnl n).

Example: There are available two independent sets of measurements of battery capacity.

Set A Set B

138 140
143 141
136 139
141 143
140 138
142 140
142 142
146 139
137 141 .

135 138

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .01

(2) Look up J01/2 in Table A-13, for the appro- (2) n = 10
priate n. '.995 = 0.419

(3) Compute X.1, lu, the means of the two (3) . = 140.0
samples. Xj, = 140.1

(4) Compute wA, wH, the ranges (or difference (4) iv., = 146 - 135
between the largest and smallest values) = 11
for each sample. = 143 - 138

=5

140.0 - 140.1
(5) Compute (5) ,= 8

, = ZA -X,• = -0.0125
S½ (w,, + wB)

(6) If I4'l > W'I-.12, conclude that the aver- .(6) Since 0.0125 is not larger than 0.419,
ages of the two products differ; otherwise, there is no reason to believe that the
there is no reason to believe that the average of A differs from the average of B.
averages of A and B differ.

This procedure is not appropriate when the observations are "paired", i.e., when each measurement from A is
associated with a corresponding measurement from B (see Paragraph 3-3.1.4). In the paired observation case, the
question may be answered by the following procedure: compute X., as shown in Paragraph 3-3.1.4 and follow the
procedure of Paragraph 15-2.1, using X Z, and mi - 0.

15-4
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4,i

15-3.2 DOES THE AVERAGE OF PRODUCT A EXCEED THE AVERAGE OF PRODUCT B?

In terms of Data Sample 15-3.1, let us suppose that - in advance of looking at the data - the
important question is: Does the average of A exceed the ave o,,e of B?

Again, as in Paragraph 15-3.1, the procedure is appropriate when two independent sets of
measurements are available, each containing the same number of observations (nfA = n),
but is not appropriate when the observations are paired (see Paragraph 3-3.1.4). In the paired
observation case, the question may be answered by the following procedure: compute Ztd as shown
in Paragraph 3-3.2.4, and follow the procedure of Paragraph 15-2.2, using X = Id and m0  0.

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .05

(2) Look up - in Tablc A-13, for the appro- (2) n = 10
priate n. .250

(3) Compute XA,, the mean- of the two (3) X,, = 140.0
samples. .X, = 140.1

(4) Compute u.. , w,, the ranges (or difference (4) WA = 11
between the largest and smallest valu.' w,, = 5
for each sample.

140.0 - 140.1
(5) Compute (5) (P 8 1

8

XA - - - 0.0125S½ (wc. + w,,'

(6) If p' > - conclude that the average of (6) Since - 0.0125 is not larger than 0.250,
A exceeds that of B; otherwise, there is no there is no reason to believe that the
reason to believe that the average of A average of A exceeds the average of B.
exceeds that of B.

15-5
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15-4 COMPARING THE AVERAGES OF SEVERAL PRODUCTS

DO THE AVERAGES OF t PRODUCTS DIFFER?

Data Sample 15-4- Breakirti-Strength of Cement Briquettes

The following data relate to breaking-strength of cement briquettes (in pounds per square
inch).

Group

2 3 4 5

518 508 554 555 536
560 574 598 567 492
538 528 579 550 528
510 534 538 535 572
544 538 544 540 506

2Xi 2670 2682 2813 2747 2634
ni 5 5 5 5 5

534.0 536.4 562.6 549.4 526,8

"Excerpted with permission from SlatiRtical Exercrset, "Part II, Analysis of Variance and Associated Techniques," by N. L. Johnson, Ccpyrignt,

1957, Department of Statistics, U aiveraity College. London.

The question to be answered is: Does the average breaking-strength differ for the different
groups?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .01

(2) Look up L. in Table A-15, corresponding (2) t = 5
totandn. n = 5
n = nn = n ni, the number of L. = 1.02
observations on each product.

(3) Compute w,, W 2 ,... , w , the ranges of the (3) wI = 50
n obselvations from each product. w2 = 66

Wa = 60
1V4 = 32
w6 = 80

(4) Compute X1, X2, X.... t,, the means of (4) X, = 534.0
the observations from each product. X2 = 536.4

X3 = 562.6
X = 549.4
X, = 526.8

(5) Comp ew' w + 72 + .w.• . + 1.t. (5) w' =288
Comp e w", the difference between the uw" = 562.6 - 526.8
la -est and the smallest of the means Y,. 35.8

15-6
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Procedure (Cont) Example (Cont)

(6) Compute L = nw"/w' (6) L = 179/288
= 0.62

(7) If L > L., conclude that the averages of (7) Since L is less than L., there is no reason to
the t products differ; otherwise, there is no believe that the group averages differ.
reason to believe that the averages differ.

15-5 COMPARING TWO PRODUCTS WITH RESPECT TO VARIABILITY
OF PERFORMANCE

15-5.1 DOES THE VARIABILITY OF PRODUCT A DIFFER FROM THAT OF PRODUCT B?

The data of Data Sample 15-3.1 are used to illustrate the procedure.
The question to be answered is: Does the variability of A differ from the variability of B?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .01

(2) Look up F'12 (l•A, ni) and (2) nA = 10
Fi./ 2 (n,1 , nn) in Table A-11*. nB = 10

Ff0 ,,, (10, 10) - .37
F. 996 (10, 10) = 2.7

(3) Compute w.i , wI,, the ranges (or difference (3) WA = 11
between the largest and smallest observa- = 5
tions) for A and B, respectively.

(4) Compute F' =WA/w•, (4) F' = 11/5
= 2.2

(5) If F' < F•, 2 (nA, n/1) or (5) Since F' is not less than .37 and is not
F' > Fla-. 2 (n,, n,), conclude that the greater than 2.7, there is no reason to
variability in performance differs; other- believe that the variability differs.
wise, there is no reason to believe that the
variability differs.

* When using Table A-li, sample sizes need not be equal, but cannot be larger than 10.

15-7
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15-5.2 DOES THE VARIABILITY OF PRODUCT A EXCEED THAT OF PRODUCT B?

In terms of Data Sample 15-3.1, the question to be answered is: Does the variability of A exceed
the variability of B?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .01

(2) Look up Fa_. (l•A, ni) in Table A-11*. (2) nA = 10
n = 10

F'.9 (10, 10) = 2.4

(3) Compute WA , w?, the ranges (or difference (3) wA = 11
between the largest and smallest observa- wR = 5
tions) for A and B, respectively.

(4) Compute F' = wA/wB (4) F' = 11/5
= 2.2

(5) If FP > FK_. (hA, nf), conclude that the (5) Since F' is not larger than F,9g, there is no
variability in performance of A exceeds the reason to believe that the variability of set
variability in performance of B; otherwise, A exceeds that of set B.
there is no reason to believe that the vari-
ability in performance of A exceeds that of
B.

* When using Table A-11, sample sizes need not be equal, but cannot be larger than 10.

15-8
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CHAPTER 16

SOME TESTS WHICH ARE INDEPENDENT OF THE FORM OF

THE DISTRIBUTION

16-1 GENERAL

This chapter outlines a number of test procedures in which very little is assumed about the
nature of the population distributions. In particular, the population distributions are not assumed
to be "normal". These tests are often called "nonparametric" tests. The assumptions made
here are that the individual observations are independent* and that all observations on a given
material (product, or process) have the same underlying distribution. The procedures are strictly
correct only if the underlying distribution is continuous, and suitable warnings in this regard are
given in each test procedure.

In this chapter, the same wording is used for the problems as was used in AMCP 706-110,Chapter 3
(e.g., "Does the average differ from a standard?"), because the general import o! the questions is the
same. The specific tests employed, however, are fundamentally different.

If the underlying populations are indeed normal, these tests are poorer than the ones given in
Chapter 3, in the sense that #, the probability of the second kind of error, is always larger for given
a and n. For some other distributions, however, the nonparametric tests actually may have a
smaller error of the second kind. The increase in the second kind of error, when nonparametric
tests are applied to normal data, is surprisingly small and is an indication that these tests should
receive more use.

Operating characteristic curves and methods of obtaining sample sizes are not given for these
tests. Roughly speaking, most of the tests of this chapter require a sample size about 1.1 times that

required by the tests given in Chapter 3 (see Paragraphs 3-2 and 3-3 for appropriate normal sample
size formulas). For the sign test (Paragraphs 16-2,1,16-3.1,16-4.1, 16-5.1, and 16-6.1), a factor
of 1.2 is more appropriate.

For the problem of comparing with a standard (Paragraphs 16-2, 16-3, and 16-4), two methods
of solution are given and the choice may be made by the user. The sign test (Paragraphs 16-2.1,
16-3.1, and 16-4.1) is a very simple test which is useful under very general conditions. The Wil-
coxon signed-ranks test (Paragraphs 16-2.2, 16-3.2, and 16-4.2) requires the assumption that the
underlying distribution is symmetrical. When the assumption of symmetry can be made, the
signed-ranks test is a more powerful test than the sign ttst, and is not very burdensome for fairly
small samples.

For the problem of comparing two products (Paragraphs 16-5 and 16-6), two methods of solution
are also given, but each applies to a specific situation with regard to the source of the data.

The procedures of this chapter assume that the pertinent question has been chosen before taking
the observations.,

Except for certain techniques which are given for "paired observations"; in that case, the pair8 are assumed to be
independent.

16-1
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16-2 DOES THE AVERAGE OF A NEW PRODUCT DIFFER
FROM A STANDARD?

Data Sample 16-2 - Reverse-Bias Collector Current of Ten "(ransishrs

The data are measurements of Icno for ten transistors of the same type, where Icyo is the reverse-
bias collector current recorded in microamperes.

The standard value m0 is 0.28%a.

Transistor ICRo

1 0.28
2 .18
3 .24
4 .30
5 .40
6 .36
7 .15
8 .42
9 .23

10 .48

16-2.1 DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD? THE SIGN TEST

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .05
Table A-33 provides for values of a = .25,
.10, .05, and .01 for this two-sided test.

(2) Discard observations which happen to be (2) In Data Sample 16-2, mn= .28. Discard
equal to m0 , and let n be the number of the first observation.
observations actually used. (If more than 9
20% of the observations need to be dis-
carded, this procedure should not be used).

(3) For each observation Xi, record the sign of (3) The less frequent sign is -.

the difference Xi - mo.
Count the number of occurrences of the less Since there are 4 minus signs,
frequent sign. Call this number r. r = 4

(4) Look up r (a, n), in Table A-33. (4) r (.05, 9) = 1

(5) If r is less than, or is equal to, r (a, n), con- (5) Since r is not less than r (.05, 9), there is no
clude that the average of the new product reason to believe that the average current
differs from the standard; otherwise, there differs from mo = .28ua.
is no reason to believe that the averages
differ.

16-2
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16-2.2 DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD? THE WILCOXON
SIGNED-RANKS TEST

Procedurv Example

(1) Choose a, the significance level of the test. (1) Let a = 05
Table A-34 provides for values of a = .05, In Data Sample 16-2, m0 = .28. Discard
.02, and .01 for this two-sided test. Dis- the first observation.
card any observations which happen to be 9
equal to m0 , and let n be the number of
observation~s actually used.

(2) Look up T, (n), in Table A-34. (2) T.05 (9) = 6

(3) For each observation X;, compute (3) (4)

X" = X, - ma

Xi - M"o Signed rank

-. 10 -5
(4) Disregarding signs, rank the X, according -. 04 -2

to their numerical value, i.e., assign the + .02 +1
rank of 1 to the X, which is numerically +.12 +6
smallest, the rank of 2 to the X• which is + .08 +4
next smallest, etc. In case of ties, assign -. 13 -7
the average of the ranks which would have +.14 +8
been assigned had the XI's differed only -. 05 -3
slightly. (If more than 20% of the ob- +.20 +9
servations are involved in ties, this proce-
dure should not be used.)
To the assigned ranks 1, 2, 3, etc., prefix a
+ or a - sign, according to whether the
corresponding X', is positive or negative.

(5) Sum the ranks prefixed by a + sign, and (5) Sum + = 28
the ranks prefixed by a - sign. Let T be Sum - = 17
the smaller (disregarding sign) of the two T - 17
sums.

(6) If T < T. (n), conclude that the average (6) Since T is not less than T.*(9). there is no
performance of the new type differs from reason to believe that the average current
that of the standard; otherwise, there is no differs from mo = .2 8,ua.
reason to believe that the averages differ.
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16-3 DOES THE AVERAGE OF A NEW PRODUCT EXCEED

THAT OF A STANDARD?

Data Sample 16-3 - Revers*-Bias Collector Current of Twenty Transistors

The data are a set of measurements Icno for 20 transistors, where Icno is the reverse-bias collector
current recorded in microamperes.

The standard value m, is 0.28,ua.

Transistor 1CB0

1 0. 2Oua
2 .16
3 .20
4 .48
5 .92
6 .33
7 .20
8 .53
9 .42

10 .50
11 .19
12 .22
13 .18
14 .17
15 1.20
16 .14
17 .09
18 .13
19 .26
20 .66

16-3.1 DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD? THE SIGN TEST

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .025
Table A-33 provides for values of a = .125,
.05, .025, and .005 for this one-sided test.

(2) Discard observations which happen to be (2) In Data Sample 16-3, m0 = .28. Since no
equal to m,, and let n be the number of observations are equal to mi,,
observations actually used. (If more than
20% of the observations need to be dis- n = 20

carded, this procedure should not be used.)

(3) For each observation Xj, record the sign of (3)
the difference Xf - m0 .
Count the numbei7 of minus signs.
Call this number r. r =12

(4) Look up r (a, n), in Table A-33. (4) r (.025, 20) = 5

16-4
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Procedure (Cont) Example (Cont)

(5) If r is less than, or is equal to, r (a, n), con- (5) Since r is not less than r (.025, 20), there is
clude that the average of the new product no reason to believe that the average cur-
exceeds the standard; otherwise, there is no rent exceeds m0 = .28Ma.
reason to believe that the average of the
new product exceeds that of the standard.

16-3.2 DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD?
THE WILCOXON SIGNED-RANKS TEST

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .025
Table A-34 provides for values of a = .025, In Data Sample 16-3, m0 = .2 8Ma. Since
.01, and .005 for this one-sided test. Dis- no observations are equal to m0 ,
card any observations which happen to be
equal to m,, and let n be the number of
observations actually used.

(2) Look up T. (n), in Table A-34. (2) T.1.25 (20) = 52

(3) For each observation Xj, computo (3) (4)

X• = Xi - M". Xi - m0  Signed Rank

(4) Disregarding signs, rank the X' according -0.08 - 5

to their numerical value, i.e., assign the -0.12 -10

rank of 1 to the X, which is Piumerically
smallest, the rank of 2 to the X, which is 0.20 +15

0.64 ±19next smallest, etc. In case of ties, assign 0.60 +12
the average of the ranks which would have 0.05 + 2

been assigned had the Xý's differed oily 0.25 +17
slightly. (If more than 20% of the ob- 0.14 +11.5
servations are involved in ties, this proce- 0.22 +16
dure sh.iuld not be used.) 0.09 -16
To the assigned ranks 1, 2, 3, etc., prefix a -0.09 - 7
+ or a - sign according to whether the X, -0.0 - 8
is positive or negative. -0.10 - 8

-0.11 -9
0.92 +20

-0.14 -11.5
-0.19 -14
-0.15 -13
-0.02 - 1

0.38 +18

(5) Let T be the absolute value of the sum of (5) T = 91.5
the ranks preceded by a negative sign.

(6) If T < T. (n), conclude that the average (6) Since T is not smaller than T.o26 (20), there
performance of the new product exceeds is no reason to believe that the average cur-
that of the standard; otherwise, there is no rent exceeds mi = .281a.
reason to believe that the average of the
new product exceeds that of the standard.
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16-4 IS THE AVERAGE OF A NEW PRODUCT LESS THAN
THAT OF A STANDARD?

Data Sample 16-4 - Tensile Strength of Aluminum Alloy

"The data are measurements of ultimate tensile strength (psi) for twenty test specimens of alu-
minum alloy.. The standard value for tensile strength is m0 = 27,000 psi.

Ultimate Tensile
Specimen Strength (psi)

1 24,200
2 25,900
3 26,000
4 26,000
5 26,300
6 26,450
7 27,250
8 27,450
9 27,550

10 28,550
11 29,150
12 29,900
13 30,000
14 30,400
15 30,450
16 30,450
17 31,450
18 31,600
19 32,400
20 33,750

16-4.1 IS THE AVERAGE OF A NEW PRODUCT-LESS THAN THAT OF A STANDARD? THE SIGN TEST
Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .025
Table A-33 provides for values of a = .125,
.05, .025, and .005 for this one-sided test.

(2) Discard observations which happen to be (2) In Data Sample 16-4, mo = 27,000. Since
equal to m0 , and let n be the number of no observations are equal to mi,
observations actually used. (If more than
20% of the observations need to be dis- n = 20
carded, this procedure should not be used.)

(3) For each observation X1 , record the sign (3)
of the difference Xi - in6 .
Count the number of plus signs. Call this There are 14 plus signs.
number r. r = 14

(4) Look up r (a, n), in Table A-33. (4) r (.025, 20) = 5
i 16-6
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Procedure (Cont) Example (Cont)

(5) If r is less than, or is equal to, r (a, n), con- (5) Since r is not less than r (.025, 20), there is
elude that the average of the new product no reason to believe that the average tensile
is less than the standard; otherwise, there strength is less than m0 = 27,000 psi.
is no reason to believe that the average of
the new product is less than the standard.

16-4.2 IS THE AVERAGE OF A NEW PRODUCT lESS THAN THAT OF A STANDARD?

THE WILCOXON SIGNED-RANKF TEST

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .025
Table A-34 provides for values of a = .025, In Data Sample 16-4,
.01, and .005 for this one-sided test. Dis-
card any observations which happen to be 27,000.
equal to in,, and let n be the number of Since no observations are equal to too,
observations actually used.

(2) Look up T. (n), in Table A-34. (2) 7T.,125 (20) = 52

(3) For each observation X1 , compute (3) (4)

X: = X i . X -_ ,i Signed Rank
-2800 -11(4) Disregarding signs, rank the X, according -1100 - 8

to their numerical value, i.e., assign the -- 1000 - 6.5
rank of 1 to the X,' which is numerically -1000 - 6.5-1000 - 6.5
smallest, the rank of 2 to the X,! which is
next smallest, etc. In case of ties, assign - 550 - 3.5
the average of the ranks which would have
been assigned had the X"s differed only 450 ± 2
slightly. (If more than 20% of the ob- 450 + 2

550 + 3.5
servations are involved in ties, this proce- 1550 ± 9
dure should not be used.) 2150 +10To the assigned ranks 1, 2, 3, etc., prefix a 2900 ±12
+ or a - sign according to whether the 3000 ±13

corresponiding X1 is positive or negative. 3400 +14

3450 +±15.5
3450 +15.5
4450 +17
4600 +18
5400 +19
6750 +20

(5) Let T be the sum of the ranks preceded by (5) T = 169.5
a + sign.

(6) If T < T. (n), conclude that the average of (6) Since T is not less than T.0,, (20), there is
the new product is less than that of the no reason to believe that the average tensile
standard; otherwise, there is no reason to strength is less than mo = 27,000 psi.
believe that the average of the new product
is less than that of the standard.
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16-5 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE?

Two procedures are given to answer this question. Each of the procedures is applicable to a
different situation, depending upon how the data have been taken.

Situation 1 (for which the sign test of Paragraph 16-5.1 is applicable) is the case where observa-
tions on the two things being compared have been obtained in pairs. Each of the two observations
on a pair has been obtained under similar conditions, but the different pairs need not have been
obtained under similar conditions. Specifically, the sign test procedure tests whether the median
difference between A and B can be considered equal to zero.

Situation 2 (for which we use the Wilcoxon-Mann-Whitney test of Paragraph 16-5.2) is the case
where two independent samples have been drawn - one from population A and one from popula-
tion B. This test answers the following kind of questions - if the two distributions are of the
same form, are they displaced with respect to each other? Or, if the distributions are quite different
in form, do the observations on A systematically tend to exceed the observations on B?

16-5.1 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? THE SIGN TEST FOR PAIRED
* OBSERVATIONS

Data Sample 16-5.1 - Reverse-Bias Collector Currents of Two Types of Transislors

Ten pairs of measurements of Icno on two types of transistors are available, as followvs:

Type A Type B

.19 .21

.22 .27

.18 .15

.17 .18
1.20 .40

.14 .08

.09 .14

.13 .28

.26 .30

.66 .68

16-8
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Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .10
Table A-33 provides for values of a = .25,
.10, .05, and .01 for this two-sided teat.

(2) For each pair, record the sign of the differ- (2) In Data Sample 16-5.1,
-nce X 4 - Xjq. Discard any difference

which happens to equal zero. Let n be the n 10
number of differences remaining. (If more
than 20% of the observations need to be
discarded, this procedure should not be
used.)

(3) Count the number of occurrences of the less (3) There are 3 plus signs.
frequent sign. Call this r. r = 3

(4) Look up r (a, n), in Table A-33. (4) r (.10, 10) = 1

(5) If r is less than, or is equal to, r (a, n), con- (5) Since r is not less than r (.10, 10), there is
clude that the averages differ; otherwise, no reason to believe that the two types
there is no reason to believe that the differ in average current.
averages differ.

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two
products in the paired-sample situation; follow the procedure of Paragraph 16-2,2, substitutincý

A - X,, for Xý - Xi - mo in step (3) of that procedure.

16-5.2 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? THE WILCOXON-MANN-
WHITNEY TEST FOR TWO INDEPENDENT SAMPLES

Data Sample 16-5.2 - Forward Current Transfer Ratio of Two Types of Transistors

The data are measurements of hf, for two independent groups of transistors, where hf. is the
small-signal short-circuit forw: rd current transfer ratio.

Group A Group B

50.5 (9)* 57.0 (17)
37.5 (1) 52.0 (11)
49.8 (7) 51.0 (10)
56.0 (15.5) 44.2 (3)
42.0 (2) 55.0 (14)
56.0 (15.5) 62.0 (19)
50.0 (8) 59.0 (18)
54.0 (13) 45.2 (5)
48.0 (6) 53.5 (12)

44.4 (4)

*The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required
in Step (2)of the following Procedure and Example.
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Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .10
Table A-35 provides for values of a = .01,
.05, .10, and .20 for this two-sided test
when nA , nB, < 20.

(2) Combine the observations from the two (2) In Data Sample 16-5.2, the ranks of the
samples, and rank them in order of in- nineteen individual observations, from low-
creasing size from smallest to largest. est to highest, are shown in parentheses
Assign the rank of 1 to the lowest, a rank beside the respective observations. Note
of 2 to the next lowest, etc. (Use algebraic that the two tied observations (56.0) are
size, i.e., the lowest rank is assigned to the each given the rank 15.5 (instead of ranks
largest negative number, if there are nega- 15 and 16), and that the next larger obser-
tive numbers). In case of ties, assign to vation is given the rank 17.
each the average of the ranks which would
have been assigned had the tied observa-
tions differed only slightly. (If more than
20% of the observations are involved in
ties, this procedure should not be used.)

(3) Let: n, = smaller sample (3) nj = 9
n2 = larger sample n2 = 10
n = n + n2, n = 19

(4) Compute R, the sum of the ranks for the (4) R = 77
smaller sample. (If the two samples are
equal in size, use the sum of the ranks for
either sample.)

Compute R' = nh (n + 1) - R R' = 9 (20) -77
= 103

(5) Look up R. (n1 , n.2), in Table A-35. (5) R.1 , (9, 10) = 69

(6) If either R or R' is smaller than, or is equal (6) Since neither R nor R' is smaller than
to, Ra (n1 , n2), conclude that the averages R.1 o (9, 10), there is no reason to believe
of the two products differ; otherwise, there that the averages of the two groups differ.
is no reason to believe that the averages of
the two products differ.

16-6 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B?

Two procedures are given to answer this question. In order to choose the procedure that is
appropriate to a particular situation, read the discussion in Paragraph 16-5.
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16-6.1 DOES THE AVERAGE OF PRODUCT A EXCEL 0 THAT OF PRODUCT B? THE SIGN TEST
FOR PAIRED OBSERVATIONS

In terms of Data Sample 16-5.1, assume that we had asked in advance (not after looking at the
data) whether the average Irto was larger for Type A than for Type B.

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a .025
Table A-33 provides for values of a = .125,
.05, .025, and .005 for this one-sided test.

(2) For each pair, record the sign of the differ- (2) In Data Sample 16-5.1,
ence XA - XB. Discard any difference n =10
which happens to equal zero. Let n be the
number of differences remaining. (If more
than 20% of the observations need to be
discarded, this procedure should not be
used.)

(3) Count the number of minus signs. Call (3) There are 7 minus signs.
this number r. r = 7

(4) Look up r (a, n), in Table A-33. (4) r (.025, 10) = 1

(5) If r is less than, or is equal to, r (a, n), con- (5) Since r is not less than r (.025, 10), there i3
( lude that the average of product A ex- no reason to believe that the average (if
ceeds the average of product B; otherwise, Type A exceeds the average of Type B.
there is no reason to believe that o aver-
age of product A exceeds that of product B.

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two
products in the paired-sample situations; follow the procedure of Paragraph 16-3.2, substituting
X= X,1 - X, for X-= X, - m,, in Step (3) of that Procedure.

16-6.2 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B? THE WILCOXON-
MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES

Data Sample •6-6.2 - Output Admittance of Two Types of Transistors 4

The data are observations of h,,h for two types of transistors, where h,,b = small-signal open-circuit
output admittance.

Type A Type B

.291 (5)* .246 (1)
.390 (10) .252 (2)
.305 (7) .300 (6)
.331 (9) .289 (4)
.316 (8) .258 (3)

The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required
in Step (2) of the following Procedure and Example.
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Does the average hob for Type A exceed that for Type B?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .05
Table A-35 provides for values of
a - .005, .025, .05, and .10 for this one-
sided test, when hA, n&B • 20.

(2) Combine the observations from the two (2) In Data Sample 16-6.2, the ranks of the
populations, and rank them in order of ten individual observations, from lowest
increasing size from smallest to largest. to highest, are shown beside the respective
Assign the rank of 1 to the lowest, a rank observations.
of 2 to the next lowest, etc. (Use alge-
braic size, i.e., the lowest rank is assigned
to the largest negative number if there are
negative numbers). In case of ties, assign
to each the average of the ranks which
would have been assigned had the tied
observations differed only slightly. (If
more than 20% of the observations are
involved in ties, this procedure should not
be used.)

(3) Let: n, = smaller sample (3) nj = 5
n 2 = larger sample n2 = 5
n= n w+ f•2 n = 10

(4) Look up R. (n1 , n2), in Table A-35. (4) R..s (5, 5) = 19

(5a) If the two samples are equal in size, or if (5a) RB = 16
n8 is the smaller, compute RB the sum of Since R, is less than R.05 (5, 5), conclude
the ranks for sample B. If RB is less that the average for Type A exceeds that
than, or is equal to, R. (ni, n 2), conclude for Type B.
that the average for product A exceeds
that for product B; otherwise, there is no
reason to believe that the average for
product A exceeds that for product B.

(5b) If nA is smaller than •'1, compute RA the
sum of the ranks for sample A, and com-
pute RAI =nA (n + 1) - RA.
If RA is less than, or is equal to, R. (n, , n2),
conclude that the average for product A
exceeds that for product B; otherwise,
there is no reason to believe that the
two products differ.

16-12
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16-7 COMPARING THE AVERAGES OF SEVERAL PRODUCTS
DO THE AVERAGES OF t PRODUCTS DIFFER?

Data Sample 16-7 - Life Tests of Three Types of Stopwatches

Samples from each of three types of stopwatches were tested. The following data are thousands
of cycles (on-off-restart) survived until some part of the mechanism failed.

Type 1 Type 2 Type 3

1.7 (1)* 13.6 (6) 13.4 (5)
1.9 (2) 19.8 (8) 20.9 k9)
6.1 (3) 25.2 (12) 25.1 (10.5)

12.5 (4) 46.2 (16.5) 29.7 (13)
16.5 (7) 46.2 (16.5) 46.9 (18)
25.1 (10.5) 61.1 (19)
30.5 (14)
42.1 (15)
82.5 (20)

* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required
in Step (3) of the following Procedure and Example.

TABLE 16-1. WORK TABLE FOR DATA SAMPLE 16-7

Ranks Ranks Ranks
Type 1 Type 2 Type 3

1 6 5

2 8 9
3 12 10.5
4 16.5 13
7 16.5 18

10.5 19
14
15
20

R1 R, = 76.5 R= 78.0 R3 55.5
ni 9 6 5
Ri /ni 650.25 1014.00 616.05

16-13
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Does the average length of "life" differ for the three types?

Procedure Example

(1) Choose a, the significance level of the test. (1) Let a = .10

(2) Look up X'_- for t - 1. degrees of freedom, (2) t = 3
in Table A-3, where t is the number of x. 0 for 2 d.f. = 4.61
products to be compared.

(3) We have ni, n 2, .... n, observations on (3) In Data Sample 16-7,
each of the products 1, 2, . .. ,.

N =n+n 2 ±+-... -+n,. N = 9+66+-5 20.

Assign ranks to each observation according The assigned ranks are shown in Data
to its size in relation to all N observations. Sample 16-7 and in Table 16-1.
That is, assign rank 1 to the smallest, 2 to
the next larger, etc., and N to the largest.,
In case of ties, assign to each of the tied
observati3ns the average of the ranks which
would have been assigned had the observa-
tions differed slightly. (If more than 20%
of the observations are involved in ties,
this procedure should not be used.)

(4) Compute .Ri, the sum of the ranks of the (4) Ri = 76.5
observations on the ith product, for each of R2 = 78.0
the products. R.i = 55.5

(5) Compute (5)

12 R! 1212 = F. - 3 (N + 1) H = -2-(2280.30) -63-N(,N +I) i-, n

= 2.15

(6) If H > x2,-, conclude that the averages of (6) Since H is not larger than x2go, there is no
the t products differ; otherwise, there is no reason to believe that the averages for the
reason to believe that the averages differ. three types differ.

Note: When using this Procedure, each of the n. should be at least 5. If any n; are less than 5,
the level of significance a may be considerably different from the intended value.
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CHAPTER 17

THE TREATMENT OF OUTLIERS

17-1 THE PROBLEM OF REJECTING OBSERVATIONS

Every experimenter, at some time, has obtained a set of observations, purportedly taken under
the same conditions, in which one observation was widely different, or an outlier from the rest.

The problem that confronts the experimenter is whether hp should keep the suspect observation
in computation, or whether he should discard it as being a faulty measurement. The word reject
will mean reject in computation, since every observation should be recorded. A careful experi.-
menter will want to make a record of his "rejected" observations and, where possible, detect and
carefully analyze their cause(s).

It should be emphasized that we are not discussing the casc where we know that the observation
"differs because of an assignable cause, i.e., a dirty test-tube, or a change in operating conditions.
We are dealing with the situation where, as far as we are able to ascertain, all the observations are
on approximately the same footing. One observation is suspect however, in that it seems to be
set apart from the others. We wonder whether it is not so far from the others that we can reject
it as being caused by some assignable but thus far unascertained cause.

When a measurement is far-removed from the great majority of a set of measurements of a
quantity, and thus possibly reflects a gross error, the question of whether that measurement should
have a full vote, a diminished vote, or no vote in the final average - and in the determination of
precision - is a very difficult question to answer completely in general terms. If on investigation,
a trustworthy explanation of the discrepancy is found, common sense dictates that the value con-
cerned should be excluded from the final average and from the estimate of precision, since these

presumably are intended to apply to the unadulterated system. If, on the other hand, no explana-
tion for the apparent anomalousness is found, then common sense would seem to indicate that it
should be included in computing the final average and the estimate of precision. Experienced
investigators differ in this matter. Some, e.g., J. W. Bessel, would always include it. Others
would be inclined to exclude it, on the grounds that it is better to exclude a possibly "good" measure-
ment than to include a possibly "bad" one. The argument for exclusion is that when a "good"
measurement is excluded we simply lose some of the relevant information, with consequent decrease
in precision and the introduction of some bias (both being theoretically computable); whereas,

when a truly anomalous measurement is included it vitiates our results, biasing both the final average
and the estimate of precision by unknown, and generally unknowable, amounts.

There have been many criteria proposed for guiding the rejection of observations. For an excel-
lent summary and critical review of the classical rejection procedures, and some more modern
ones, see P.R. RiderM". One of the more famous classical rejection rules is "Chauvenet's criterion,"

St which is not recommended. This criterion is based on the normal distribution and advises rejection
of an extreme observation if the probability of occurrence of such deviation from the mean of the n

measurements is less than in. Obviously, for small n, such a criterion rejects too easily.

17-1
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A review of the history of rejection criteria, and the fact that new criteria are still being proposed,
leads us to realize that no completely satisfactory rule can be devised for any and all situations.
We cannot devise a criterion that will not reject a predictable amount from endless arrays of per-
fectly good data; the amount of data rejected of course depends on the rule used. This is the price
we pay for using any rule for rejection of data. No available criteria are superior to the judgment
of an experienced investigator who is thoroughly familiar with his measurement process. For an
excellent discussion of this point, see E. B. Wilson, Jr.0). Statistical rules are given primarily for
the benefit of inexperienced investigators, those working with a new process, or those who simply
want justification~ for what they would have done anyway.

Whatever rule is used, it must bear some resemblance to the experimenter's feelings about the
nature and possible frequency of errors. For an extreme example - if the experimenter feels that
about one outlier in twenty reflects an actual blunder, and he uses a rejection rule that throws out
the two extremes in every sample, then his reported data obviously will be "clean" with respect
to extreme blunders - but the effects of "little" blunders may still be present. The one and only
sure way to avoid publishing any "bad" results is to throw away all results.

With the foregoing reservations, Paragraphs 17-2 and 17-3 give some suggested procedures for
judging outliers. In general, the rules to be applied to a single experiment (see Paragraph 17-3)
reject only what would be rejected by an experienced investigator anyway.

17-2 REJECTION OF OBSERVATIONS IN ROUTINE EXPERIMENTAL WORK

The best tools for detection of errors (e.g., systematic errors, gross errors) in routine work are the
control charts for the mean and range. These charts are described in Chapter 18, which also
contains a table of factors to facilitate their application, Table 18-2.

17-3 REJECTION OF OBSERVATIONS IN A SINGLE EXPERIMENT

We assume that our experimental observations (except for the truly discordant ones) come from
a single normal population with mean m and standard deviation a.. In a particular experiment,
we have obtained n observations and have arranged them in order from lowest to highest
(XI _ X2 < ... X2 X.). We consider procedures applicable to two situations: when observa-
tions which are either too large or too small would be considered faulty and rejectable, see Para-
graph 17-3.1; when we consider rejectable those observations that are extreme in one direction
only (e.g., when we want to reject observations that are too large but never those that are too
small, or vice versa), see Paragraph 17-3.2. The proper choice between the situations must be
made on a priori grounds, and not on the basis of the data to be analyzed.

For each situation, procedures are given for four possible cases with regard to our knowledge of

?n and a.
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17-3.1 WHEN EXTREME OBSERVATIONS IN EITHER DIRECTION ARE CONSIDERED REJECTABLE

17-3.1.1 Population Mean and Standard Deviation Unknown - Sample in Hand is the Only Source
of Information.

(The Dixon Criterion]

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) If: 3 < n < 7 Compute r10

8 < n < 10 Compute r1
11 < n < 13 Compute r2 l
14 < n < 25 Compute r 22 ,

where ri is computed as follows:

rij If Xý is Suspect If X, is Suspect
rio (X. - X._,)/(Xn - X0) (X 2 - Xl)/(Xn - X 1)
ril (Xý - X._,)/(X. - X 2) (X, - X,)/(X,._ - X0)
r,, (X. - Xn_2 )/(X. - X 2) (X3 , I)I(X.-I - X))
r22 (X. - X.) 2).(X. - X 3) (X3_ X)I(X. 2 - X0)

(3) Look up r,_./ 2 for the rij from Step (2), in Table A-14.

(4) If rij > r,_./ 2 , reject the suspect observation; otherwise, retain it.

17-3.1.2 Population Mean and Standard Deviation Unknown - Independent External Estimate of

Standard Deviation Is Available.

[The Studentized Range]

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) Look up q,-. (n, P) in Table A-10. n is the number of observations in the sample, and ;, is
the number of degrees of freedom for s, the independent external estimate of the standard

deviation obtained from concurrent or past data - not from the sample in hand.

(3) Compute ?v = qi_,s.

(4) If X, - X, > w, reject the observation that is suspect; otherwise, retain it.

17-3.1.3 Population Mean Unknown - Value for Standard Deviation Assumed.

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) Look up q,_. (n, oc) in Table A-10.

(3) Compute w = q%_. a.

(4) If X. - X, > w, reject the observation that is suspect; otherwise, retain it.

17-3
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17-3.1.4 Population Mean and Standard Deviation Known.

Procedure Example

(1) Choose a, the probability or risk we are (1) Let a .10,
willing to take of rejecting an observation for example.
when all n really belong in the same group.

(2) Compute a' = 1 - (1 - a) 1" (2) If n = 20,
(We can compute this value using loga- for example,
rithms, or by reference to a table of frac- a' = 1 - (1 - .0) /20
tional powers.) 1 - (.90)1/20

1 - .9947
= .0053

(3) Look up Z-,,/ in Table A-2. (3) 1 - a'/2 = 1 - (.0053/2)
(Interpolation in Table A-2 may be re- = .9974
quired. The recommended method is Z.9974 = 2.80
graphical interpolation, using probability
paper.)

(4) Compute: (4)

a = m - az_,,/2 aq m - 2.80 a
b = rn + aZl_,, 1 2  b m + 2.80 a

(5) Reject any observation that does not lie in (5) Reject any observation that does not lie in
the interval from a to b. the interval from

m - 2.80 a to
m + 2.80 a.

17-3.2 WHEN EXTREME OBSERVATIONS IN ONLY ONE DIRECTION ARE CONSIDERED REJECTABLE

17-3.2.1 Population Mean and Standard Deviation Unknown - Sample in Hand Is the Only Source
of Information.

[The Dixon Criterion]

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) If: 3 < n < 7 Compute rp)
8 < n < 10 Compute r,1

11 < n < 13 Compute r21
14<• n < 25 Compute r22 ,

where rij is computed as follows:

If Only Large Values If Only Small Values
r are Suspect are Suspect
r, (X, - X..,)/(X, - X,) (X 2  X,)/(X. - X)
r,, (X,, X-x,,)/(x - X 2) (X 2 -Xx,)/(x,,., - X0)
r• (X - X.- 2)/(X. - X 2 ) (X3 X')/(Xo, - Xg)
r22 (X .- Xn-)/(X. - X.,) (X -, X.)/(X., -xo

(3) Look up r,,, for the r,, from Step (2), in Table A-14.

(4) If ri1 > r,,, reject the suspect observation; otherwise, retain it.Ht 17-4
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17-3.2.2 Population Mean and Standard Deviation Unknown - Independent Exter:ial Estimate of
Standard Deviation is Available.

[Extreme Studentized Deviate From Sample Mean; The Nair Criterion]

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) Look up t. (n, v) in Table A-16. n is the number of observations in the sample, and v is the
number of degrees of freedom for s, the independent external estimate of the standard deviation
obtained from concurrent or past data - not from the sample in hand.

(3) If only observations that are too large are considpred rejectable, compute

t' = (X, - Z)ls,.

Or, if only observations that are too small are considered rejectable, compute

t, = (X - X1)/s,.
(4) If t. (or ti, as appropriate) is larger than t. (n, P), reject the observation that is suspect;

otherwise, retain it.

17-3.2.3 Population Mean Unknown - Value for Standard Deviation Assumed.

[Extreme Standardized Deviate From Sample Mean]

Procedure

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really
belongs in the group.

(2) Look up t. (n, x) in Table A-16.

(3) If observations that are too large are considered rejectable, compute

t,, = (X" - X)/,r

Or, if observations that are too small are considered rejectable, compute

a (4) If t, (or ti, as appropriate) is larger than t. (n, x), reject the observation that is suspect;
otherwise, retain it.

17-5
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17-3.2.4 Population Mean and Standard Deviation Known.
Procedure Example

(1) Choose a, the probability or risk we are (1) Let a = .10,
willing to take of rejecting an observation for example.
when all n really belong in the same group.

(2) Compute a'/2 = 1 - (1 - a)l/n. (2) If n = 20,
(We can compute this value using loga- for example,
rithnis, or by reference to a table of frac- a/ 2 = 1 - (1 - .10)1/•0
tional powers.) = I - (.90)112

= 1 - .9947
= .0053

(3) Look up Zl•,/2 in Table A-2. (3) 1 - a'/2 = 1 - .0053
(Interpolation in Table A-2 may be re- = .9947
quired. The recommended method is z. 9947 = 2.55
graphical interpolation using probability
paper.)

(4) Compute: (4)

a = m - kz-,_/2 a = m - 2.55 .

b = M + 0Z_-,/2 b = m + 2.55

(5) Reject any observation that does not lie in (5) Reject any observation that does not lie in
the intetval from a to b. the interval from

m - 2.55 to
m + 2.55 u.
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CHAPTER 18

THE PLACE OF CONTROL CHARTS IN EXPERIMENTAL WORK

18-1 PRIMARY OBJECTIVE OF CONTROL CHARTS

Control charts have very important functions limits are placed as lines on the specific chart,
in experimental work, although their use in and the decision is made that the process was in
laboratory situations has been discussed only control if all points fall within the control limits.
briefly by most textbooks. Control charts can If all points are not within the limits, then the
be used as a form of statistical test in which the decision is made that the process is not in control.
primary objective is to test whether or not the The basic assumption underlying most sta-
process is in statistical control. The process is in tistical techniques is that the data are a random
statistical control when repeated samples from sample from a stable probability distribution,
the process behave as random samples from a which is another way of saying that the process
stable probability distribution; thus, the unde-- is in statistical control. It is the validity of this
lying conditions of a process in control are such basic agsumption which the control chart is
that it is possible to make predictions in the designed to test. The control chart is used to
probability sense. demonstrate the existence of statistical control,

The control limits are usually comptited by and to monitor a controlled process. As a
using formulas which utilize the information monitor, a given control chart indicates a par-
from the samples themselves. The computed ticular'type of departure from control.

18-2 INFORMATION PROVIDED BY CONTROL CHARTS

Control charts provide a running graphical of control, they indicate where or when the
repetitive process. Control charts may be kept ture of the trouble, e.g., trends or runs, sudden

on any of various characteristics of each small shifts in the mean, increased variability, etc.
subgroup - e.g., on the average, standard de- In addition to serving as a method of testing
viation, range, or proportion defective. The for control, control charts also provide addi-
chart for each particular characteristic. is de- tional and useful information in the form of
signed to detect certain specified departures in estimates of the characteristics of a controlled
the process from the assumed conditions. The process. This information is altogether too-
process may be a measurement.process as well frequently overiookt .i. For example, one very
as a production process. The order of groups is important piece of information which can be
usually with respect to time, but not necessarily obtained from a control chart for the range or
so. The grouping is such that the members of standard deviation is an estimate of the varia-
the same group are more likely to be alike than bility a of a routine measurement or production
are members nf different groups. process. It should be remembered that many

Primarily, concrol charts can be used to of the techniques of Section 1, Chapter 3, are
demonstrate whether or not the process is in given in parallel for known o and unknown a.
statistical control. When the charts show lack Most experimental scientists have very good

18-1
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knowledge of the variability of their measure- TABLE 18-1. TESTS FOR LOCATING AND
ments, but hesitate to assume k~nown a without IDENTIFYING SPECIFIC TYPES OF
additional justification. Control charts can be ASSIGNABLE CAUSES
used to provide the justification.

Finally, as was pointed out in Chapter 17, Control Charts*
Paragraph 17-2, a control chart is the most
satisfactory criterion for rejection of observa- Type of Assignable Cause
tions in a routine laboratory operation. An ex- -"_R

cellent discussion of the use of control charts to Gross Error (Blunder) 1 2
detect particular kinds of trouble is given by Shift in Average 1 .

Olmstead(,,. The three most important types Shift in Variability .. 1 2
of control charts in this connection are the Slow Fluctuation (Trend) 1
charts for the average X, range R, and stand- Fast Fluctuation (Cycle) .. 1 2
ard devi',tion a. The order of usefulness of Combination:
each tyl of. chart in particular situations is (a) Production 1 2
shown in fable 18-1, where a "1" meaw .,ost (b) Research
useful, "2" is the next best, and dots tote 'variation 1
"not appropriate". 

.. ..
As can be seen from Table 18-1, the X and R

charts are' the most useful of the three types. * The numeral 1 denotes the most useful type of chart;
The R chart is preferred to the a chart because 2 denotes the next best; and, .. denote-charts which arenot appropriate for the particular cause.
of its simplicity and versatility; and, unless

Adapted with permision from Ina..,trial Quality Control, Vol. IX,there are compelling reasons to use the a chart, No. 3, (November, 1952) and No. 4, (January, 1953) from article
entitled 'How to Detect the Type of an Aslgnahle Cruse" by P. S.the ? chart is the method of choice. Olmatead.

18-3 APPLICATIONS OF CONTROL CHARTS

Table 18-2 is a summary table of factors for Actual examples of laboratory applications in
control charts for 1, R, and o-, when equal size the chemical field can be found in a series of
samples are involved. Note carefully the foot- comprehensive bibliographies published in Ana-
note to Table 18-2, beginning "When using lytical Chemistry(3 '•-'. These four articles

- -X ) ", because s is so defined are excellent reviews that successively bring
.n- 1 up-to-date the recent developments in statis-

in this Handbook. The last column of Table tical theory and statistical applications that
for convenience in are of interest in chemistry. Further, these

18-2 gives values of bibliographies are divided by subject matter,

using the Table factors with values of s. and thus provide means for locating articles on
control charts in the laboratory. They are not
limited to control chart applications, however.

The most explicit details of application to a
variety of possible situations, e.g., to samples of Industrial Quality Control(7 , the monthly
unequal size, are given in the ASTM Manual (2); journal of the American Society for Quality
in using that Manuw.l, however, the reader agair, Control, is the nost comprehensive publication
must be wary of th( difference between the defi- in this field.
nition of a given therein, and the definition of s For a special technique with ordnance exam-
given in this Handbook. pies, see Grubbs(',.

18-2
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TAKLE 18-2. FACTORS FOR COInFUTN4 3-SIGMA CONTOIOL UMITS

Comi fs Ava0 s. Chid b.IqdStd D*Vidtias ham" F" Rontgit
Num bset of-__ 

_

Obe ltvFteeens FFaeen oe Fdn lefo Fe
IN S6uple, a Ceeinkl 0Ums Ceadwa Unit Cuadie U1111111 Ceelpel U. etwllA~,

A___ IA AtAs VI /st C1 I/is is Ah of Os N .

2 ... 2.121 8.76 1.8 0.562 g1.72 0 1.84 3 0 8.267 1.12 0.8865 0.853 0 3.S8 0 8-27 .70711
3 .... 1.732 2.894 1.023 0 726 1.82 0 1.858 0 2.568 1.693 0.5907 0.888 0 4.358 0 2.575 .81650
4 .... 500 1.880 0.729 0.7979 1.253 0 1.806 0 2.2 2.059 0.4857 0.880 0 4.696 0 2.282 .8600

... 1.342 1.596 0.577 0,8407 1.1894 0 1.766 0 2.089 2.326 0.o .0.964 0 4.918 0 2.115 .894S

6 .... 1.225 1.410 0.483 0.868 1.1512 0.026 1.711 0.030 1.970 2.534 0.8946 0.848 0 5.078 0 2.004 .91287
7.. 1.184 1.277 0.419 0.8382 1.1209 0.105 1.672 0.118 1.882 2,704 0,3698 0.833 0.205 5.203 0.076 1.924 .92582
8. 1.061 1.175 0.373 0.9027 1.1078 0.167 1.638 0.185 1.815 2.847 0.3512 0.820 0.387 5.307 0.186 1.864 .93541
9 1.000 1.094 0.337 0.9139 i.0942 0.219 1.609 0.239 1.761 2.970 0.3867 0.809 0.546 5.894 0.184 1.816 .94281

10... '0.949 1.028 0.30W 0.9227 1.0887 0.262 1.584 0.284 1.716 3.078 0.3249 0.797 0.687 5.469 0.223 1.777 .94868

11 ...... 0.905 0.978 0.285 0.JAO 1.0753 0.299 1.561 0.821 1.679 8.178 0.8152 0.737 0.812 5.534 0.256 1.744 .95U46
12. .. 0.866 0.925 0.266 0.9369 1.0684 0.831 1.541 0.354 1.646 3.268 0.3069 0.778 0.924 5.592 0.284 1.716 .95748
13 ...... 0.832 0.884 0.249 0.9410 1.0627 0.359 1.523 0.382 1.618 3.336 0.2998 0.770 1.026 5.646 0.308 1.692 .96077
14 ..... 0.2 0.848 0.285 0.9458 1.057 '814 1.507 0.406 1.594 3.407 0.2935 0.762 1.121 5.693 0.829 1.671 .96362
15 ...... 0.775 0.816 0.=2 0.9490 !V 'tA 1.492 0.428 1.572 3.472 0.2880 0.755 1.207 5.737 0.848 1,652 .98609

16 ..... 0.750 0.788 0.212 0.9523 1.owi 4).2'! 1.478 0.448 1.552 3.532 0,2831 0.749 1.285 5.779 0.364 1.636 .96825
17 ...... 0.728 0,762 0.203 0.9551 1.0470 0.445 1.465 0.466 1.534 3.688 0.2787 0.748 1.359 5.817 0.379 1.621 .97014
18 ...... 0.707 0.738 0.194 0.9576 1.0442 0.461 1.454 0.482 1.518 3.640 0.2747 0.788 1.426 5.854 0.392 1.606 .97183
19 ...... 0.688 0.717 0.187 0.9599 1.0418 0.477 1.443 0.497 1.503 8.689 0.2711 0.733 1.490 5.888 0.404 1.596 .97S33
20 ...... 0.671 0.697 0.180 0.9619 1.0396 .1.491 1.433 0.510 1.490 3.735 0.2677 0.729 1.548 5.922 0.414 1,586 .97468

21 ...... 0.655 0.679 0.173 0.9638 1.0376 0.504 1.424 0.523 1.477 3.778 0.2647 0.724 1.606 5.950 0.4251.5 75 90
22 ...... 0.640 0.662 0.167 0.9655 1.0358 0.516 1.415 0.634 1.466 3.819 0.2618 0.720 1.659 5.979 0.434 1.566 .97701
28 ..... 0.626 0.647 0.162 0.9670 1.0342 0.527 1.407 0.545 1.455 3.858 0.2592 0.716 1.710 6.006 0.443 1.557 .97802
24... 0.612 0.632 0.157 0.9684 1.0327 0.638 1.99 0.565 1.445 3.895 0.2567 0.12 1.759 6.031 0.452 1.548 .97895
25 ...... 0.600 0.619 0.163 0.9696 1.0318 0.548 1.892 0.565 1.485 3.931 0.2544 0.709 1.804 6.058 0.459 1.541 .97980

FORMULAS*

3-Sigma
Purpose of Chart Chart for Central Line Control Limits

For analyzing past data for control (1, a, Averages :L Al, or
R are average values for the data being =-- A2/f

analyzed) Standard deviations a Boa and B~a
Ranges Dif and Df

-------------------------------------------- -----------------------
For-controlling performance to standard Averages =L .Z' - Aca', or

values (X', a', R.' are selected stand- L-' . A2R,,'
ard values; R,,' = d2a' for samples of Standard deviations c20' BYa' and B2('

size n) . Ranges d 2a', or DIor and D 2C', or
"R, DzR,,' and DR,4 '

* When using s - jI(X -- )2 for the standard 'deviation of a sample instead of x- - one must
n a mplu

make the following changes in the formulas for the central line and for the 3-sigma limits:

(1) Replace AI by n. A. ; replace i by 9; make no change in B, and B,;

(2) Replace c21 B, Bb2 by 4 -n -n- B. and n/ B2, respectively.

This material Is reproduced from the American Standard Control Chart Method of Cottlrolling Q alily During Production, ZI.3-1958, copyrigh(1959 by ASA. copie@ of which may he purchased from the American Standards Aso.wlation at 10 East 4fth Street, New York 16, N. Y.
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CHAPTER 19

STATISTICAL TECHNIQUES FOR ANALYZING EXTREME-VALUE DATA*

19-1 EXTREME-VALUE DISTRIBUTIONS

Classical applications of statistical methods, other materials under applied force, and in
which frequently concern average values and fatigue phenomena. In these instances, the
other quantities following the symmetrical nor- observed strength of a specimen often differs
mal distribution, are inadequate when the quan- from the calculated strength, and depends,
tity of interest is the largest or the smallest in a among other things, upon the length and vol-
set of magnitudes. Applications of the tech- ume. An explanation is to be found in the
niques described in this Chapter already have existence of weakening flaws assumed to be dis-
been made in a number of fields. Meteorologi- tributed at random in the body and assumed
cal phenomena that involve extreme pressures, not to influence one another in any way. The
temperatures, rainfalls, wind velocities, etc., observed strength is determined by the strength
have been treated by extreme-value techniques. of the weakest region just as nQ chain is
The techniques are also applicable in the study stronger than its weakest link. Thus, it is
of floods and droughts. apparent that whenever extreme observations

Other examples of extreme-value problems are encountered it will pay to consider the use of
occur in the fracturing of metals, textiles, and extreme-value techniques.

19-2 USE OF EXTREME-VALUE TECHNIQUES

19-2.1 LARGEST VALUES Unlike the normal distribution, this curve is
A simplified account is given here. Primary skewed, with its maximum to the left of the

sources for the detailed theory and methods are mean and the longer of its tails extending to the

References 1, 2, 3, which also contain extensive right. is that feature much

bibliographies. References 4 through 10, also more likely to occur than are very small values.
given at the end of this Chapter, provide addi- This agrees with common experience. Very
tional information and examples of applications, low maximum values are most unusual, while

Figure 19-1 illustrates the frequency form of a very high ones do occur occasionally. Theo-
typical curve for the distribution of largest retical considerations lead to a curve of this
observations, nature, called the distribution of largest values or

the extreme-value distribution.
The curve in Figure 19-1 is ti derivative of the In using the extreme-value method, all the
function observed maxima, such as the largest wind

D(y) = exp [-exp ( )]. velocity observed in each year during a fifty-

, Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954 from article entitled "Some Applications of Extreme-

Value etos by E. J. Gumbel and J. Lieblein; and, from National Bureau of Standards I'a-hnieal News Bulletin 88. No. 2, pp. 29-31, February
1954, from article entitled "Extreme-Value Methods for Engineering Problems".

19-1
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Figure 19-1. Theoretical distribution of largest values.
Adapted with permln ion from The American Stafintician, Vol. 8, No. 5, December 1954, from article entitled "Some Applications of Extreme-

Value Methbd" by E. J. Gumbel and J. Lleblein.

year period, are first ranked in order of size from Extreme-value probability paper has a uni-
the smallest to the largest, form scale along one axis, usually the vertical,

which is used for the observed values as shown
X, X2 _ . Xi _ . X,,. in Figure 19-2. The horizoatal axis then serves

A plotting position (Xi, Pj) is obtained for each as the probability scale, and is marked accord-

observation by associating with X, the proba- ing to the doubly-exponential formula. Thus,
bility coordinate P; = i/(n + 1), where i is the in Figure 19-2, the space between 0.01 and 0.5 is
rank of the observation, counting from the much less than the space between 0.5 and 0.99.

smallest. The data are plotted on a special The limiting values zero and one are. never
graph paper, called extreme-value probability reached, as is true of any probability paper de-

paper*, designed so that the "ideal" extreme- signed for an unlimited variate.
value distribution will plot exactly as a straight An extreme-value plot (Figure 19-2) of the
line. Consequently, the closeness of the plotted maximum atmospheric pressures in Bergen,
points to a straight line is an indication of how Norway, for the period between 1857 and 1926,
well the data fit the theory. showed by inspection that the observed data

satisfactorily fitted the theory. Fitting the line
*Extreme-value probability paper may be obtained by eye may be sufficient. Details of fitting a

from three sources: (a) U. S. Department of Commerce,
Weather Bureau; (b) Environmental Protection Section, computed line are given in Gumbel.1' From
Research and Development Branch, Military Planning the fitted straight line, it is possible to predict,
Division, Offic e of the quartermaster General; (c) Techni-
cal and Engineering Aids for Management, 104 Belrose for example, that a pressure of 793 mm corre-
Ave., Lowell, Mass. sponds to a probability of 0.994; that is, pres-

19-2
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Figure 19-2. Annual maxima of atmospheric pressure, Bergen, Norway, 1857-1926.

Adapted with per.nision from The American Soliaslician, Vol. 8, No. 5, December 1954, from article entiti,.- . Applicationa of Extreme-
Value Methods" by E. J. Gumbel and J. Lieblein.

sures of this magnitude have less than one 19-2.2 SMALLEST VALUES
chance in 100 of being exceeded in any par- Extreme-value theory can also be used to
ticular year. study the smallest observations, since the corre-

In studies of the normal acceleration incre- sponding limiting distribution is simply related
ments experienced by an airplane flying through to the distribution of largest values. The steps
gusty air, see Gumbel and Carlson, (, page 394, in applying the "smallest-value" theory are
an instrument was employed that indicated only very similar to those for the largest-value case.
the maximum shocks. Thus, only one maxi- Foi example, engineers have long been inter-
mum value was obtained from a single flight. ested in the problem of predicting the tensile
A plot representing 26 flights of the same air- strength of a bar or specimen of homogeneous
craft indicated that the probability that the material. One approach is to regard the sw-
largest recorded gust will not be exceeded in any men as being composed of a large numbe,
other flight was 0.96 ; i.e., a chance of four in 100 pieces of very short length. The tensile strength
of encountering a gust more severe than any of the entire specimen is limited by the strength
recorded. A more recent study, Lieblein, (' of the weakest of these small pieces. Thus, the
presents refinements especially adapted to very tensile strength at which the entire specimen
small samples of extreme data, and also to will fail is a smallest-value phenomenon. The
larger samples where it is necessary to obtain smallest-value approach can be used even
the greatest amount of information from a though the number and individual strengths of
limited set of costly data. the "small pieces" are unknown.

19- .
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This method has been applied with consider- 19-2.3 MISSING OBSERVATIONS
able success by Kase(6) in studying the tensiletesting of rubber, Using 200 specimens ob-tastined sof asutoeassureias m h homoeneityba It has been found that fatigue life of speci-tained so as to assure as much homogeneity as

possible, he found that the observed distribution mens under fixed stress can be treated in the
of their tensile strengths could be fitted remark- same manner as tensile strength - by using the
ably well by the extreme-value distribution for theory of smallest values. An extensive appli-
smallest values. The fitted curve given by this cation of this method is given in Lieblein and
data indicates that one-half of a test group of Zelen(101.
specimens may be expected to break under a
tensile stress of 105 kg./cm.2 or more, while only
one in 1,000 will survive a stress exceeding In such cases, tests may be stopped before all
126 kg./cm.2. specimens have failed. This results in a sample

Other examples of applications are given by from which some observations are missing - a
Epstein and Brooks(7" and by Freudenthal and "censored" sample. Methods for handling
Gumbel~)(9)'. such data are included in Lieblein and Zelen(1'0 .
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CHAPTER 20

THE USE OF TRANSFORMATIONS

20-1 GENERAL REMARKS ON THE NEED FOR TRANSFORMATIONS

The scale on which a property is usually measured (that is, the units in which !-. is ordinarily ex-
pressed) may not be the most suitable for statistical analysis and interpretation. Statistical tech-
niques are always based on assumptions. The validity of results obtained through their use in practice
always depends, sometimes critically, on the assumed conditions being met, at least to a sufficient
degree of approximation. Essentially all of the standard techniques for the statistical analysis
and interpretation of measurement data (e.g., those given in AMCP 706-110ection 1, Chapters 1
through. 6) are based upon assumed normality of the underlying distribution involved; and many
(e.g., the majority of those considered in Chapters 5 and 6) also require (at least approximate)
equality of variances from group to group. Furthermore, the analysis-of-variance tests considered
in AMCP 706-112,Section 3, depend not only on normality and equality of variances among sub-
groups, but also on additivity of the "effects" that characterize real differences of interest among
the materials, processes, or products under consideration; see Eisenhart.("

Real-life data do not always conform to the conditions required for the strict, or even approxi-
mate, validity of otherwise appropriate techniques of statistical analysis. When this is the case,
a transformation (change of scale) applied to the raw data may put the data in such form that the
appropriate conventional analysis can be performed validly. Bartlett(" provides a good general
survey of the practical aspects of transformations, together with a fairly complete bibliography
of the subject to 1947.

20-d 2 NORMALITY AND NORMALIZING TRANSFORMATIOINS

20-2.1 IMPORTANCE OF NORMALITY

The dependence of many standard statistical techniques on normality of the underlying dis-
tribution is twofold. First, standard statistical techniques are in the main based on the sample
mean .9, and the sample estimate s of the population standard deviation. A normal distribution
is completely determined by its mean m and its standard deviation (r; and in sampling from a normal
distribution, XZ and s together summarize all of the information available in the sample about the
parent distribution. This 100% efficiency of X and s in samples from a normal distribution does
not carry over to non-normal distributions. Consequently, if the population distribution of a
characteristic of interest is markedly non-normal, confidence intervals for the population mean m
and standard deviation a based on X and s will tend to be wider, and tests of hypotheses regarding
m or a will have less power, t!.an those based on the particular functions of the sample values that
are the efficient estimators of the location and dispersion parameters of the non-normal distribution
concerned. In other words, use of X and s as sample measures of the location and dispersion
characteristics of a population distribution may result in an intrinsic loss of efficiency in the case
of markedly non-normal distributions, even if the correct sampling distributions of V2 , t, F, etc.,
appropriate to the non-normal distribution concerned ate employed.

20-1
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Second, the customary tables of percentage points of X2 , t, F, and of factors for confidence
intervals, tolerance limits, and so forth, are based on the assumption of sampling from a normal
distribution. These percentage points, tolerance-limit factors, and so forth, are not strictly valid
when sampling from non-normal distributions. The distribution of s", which is identically that
of x2a2/v for P degrees of freedom in the case of sampling from a normal distribution, is especially
sensitive to departures from normality. Consequently, the actual significance levels, confidence
coefficients, etc., associated with the procedures of Chapter 4 miy differ somewhat from their
nominal values when sampling from only moderately non-normal material is involved. Fortu-
nately, the percentage points of t- and F-tests of hypotheses about means are not so sensitive to
departures from normality, so that the standard tests of hypotheses about, and confidence intervals
for, population means will be valid to a good approximation for moderately non-normal populations-
- but there may be some loss of efficiency, as noted above.

20-2.2 NORMALIZATION BY AVERAGING

Many physical measurement prooesses produce approximately normally-distributed data; some
do not. Even when measurement errors are approximately normally distributed, sampling of a
material, product, or process may be involved, and the distribution of the characteristic of interest
in the sampled population may be definitely non-normal - or, at least, it may be considered risky
to assume normality. In such cases, especially when the basic measurements are plentiful or easy
to obtain in large numbers, an effective normalization almost always can be achieved - except
for extremely non-normal distributions - if the questions of interest with respect to the population
concerned can be rephrased in terms of the parameters of the corresponding sampling distribution
of the arithmetic means of random samples of size four or more. This normalizational trick is of
extremely wide applicability; but results, of course, in a substantial reduction in the number of
observations available for statistical analysis. Consequently, it should not be applied when the
basic measurements themselves are few in number and costly to obtain. In such cases, if assump-
tion of normality of the population distribution of the basic observations is considered risky, or
definitely is known to be false, then we may take recourse in available distribution-free techniques;
see Chapter 16.

20-2.3 NORMALIZING TRANSFORMATIONS

If w9 know from theoretical considerations or previous experience that some simple transforma-
tion will approximately normalize the particular kind of data in hand, then, both for convenience
and in the interest of efficiency, we may prefer to use normal-based standard techniques on the
transformed data, rather than use distribution-free techniques on the data in their original form.
For example, certain kinds of data are quite definitely known to be approximately normal in logs,
and the use of a log transformation in these cases may become routine. Indeed, this transformation
is the subject of an entire book which is devoted to its theoretical and empirical bases, and its uses
and usefulness in a wide variety of situations; see Aitchison and Brown.",

Table 20-1 gives a selection of transformations that are capable of normalizing a wide variety
of non-normal types. They are arranged in groups according as the range of variation of the original
variable X is from 0 to c , from 0 to 1 , or from - 1 to + 1. Their "normalizing power" is exempli-
fied in Figure 20-1. For the theoretical bases of these and other normalizing transformations, the
advanced reader is referred to the papers of Curtiss(', and Johnson,("

20-2
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Original Distributions Transformed Distributions
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(1) MEAN MEDIAN

'a(2) MEAN 66 9

MODE .4 MD

(I) ME AN:*MEDIAN
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(e) (2)MEAI4- 76 (e) *. MEDIAN-lIE?"S MEDIAN- .823 MEAN-I 169
MODE - .

Figure 20-1. Normal~izing effect of some frequently used transformations.
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20-3 INEQUALITY OF VARIANCES, AND VARIANCE-STABILIZING
TRANSFORMATIONS

20-3.1 IMPORTANCE OF EQUALITY OF VARIANCES

Many standard statistical techniques for the analysis and comparison of two or more materials,
products, or processes with respect to average performance depend on equality of variability within
groups. When the magnitude of the common within-groups variance a2 is unknown, it is cus-
tomary (as in Procedures of Paragraphs 3-3.1.1, 3-3.2.1, and 3-4) to combine the sample evidence
on variability of performance within the respective groups, to obtain a pooled estimate of a'. The
advantages of pooling are: the resultant pooled estimate s2 is a more precise estimate of a2 than is
available from data of any of the individual groups alone; it leads to narrower confidence
intervals for each of the individual group means, and for differences between them; and hence, it

leads to more powerful tests of significance for differences between group means. If, however,
the assumption of equality of within-group variances is false, then the resultant pooled s' does not
provide a valid estimate of the standard error of any of the group averages, or of any of the differ-
ences between them. When marked inequalities exist among the true within-group variances, the
standard errors of individual group averages and of differences between them, derived from a
pooled s2, may be far from the true values; and confidence intervals and tests of significance based
on the pooled s2 may be seriously distorted.

Thus, in Chapter 3, we emphasized that the standard t-tests for the comparison of averages of
two groups of unpaired observations (Paragraphs 3-3.1.1 and 3-3.2.1) are based on the assumption
of equal variances within the two groups. Furthermore, we noted that if the two samples involved
are of equal size, or of approximately equal size, then the significance levels of the two sided t-test
of the difference of two means (Paragraph 3-3.1.1) will not be seriously increased (Figure 3-9,
curve (A)); but the power of the test may be somewhat lessened if the two variances are markedly

unequal. Similarly, two-sided confidence intervals derived from t for the difference between the
two population means will tend to be somewhat narrower than if proper allowance were made for
the inequality of the variances, but the effective confidence coefficient will not be seriously less
than the value intended. These remarks carry over without change to one-sided t-tests (Para-
graph 3-3.2.1) and to the corresponding one-sided confidence intervals. In other words, the com-
parison of averages of two groups by means of the standard two sample t-test procedures and
associated confidence intervals results only in some loss of efficiency when the samples from the two
groups are of equal size, and the reduction in efficiency will be comparatively slight unless the two
variances are markedly different.

In contrast, if the samples from the two groups differ appreciably in size, then not only may the
significance levels of standard two-sample t-tests be seriously affected (Figure 3-9, curve (B)) but
their power (i.e., the entire OC curve) also may be altered considerably, especially if the smallest
sample comes from the group having the larger variance. Hence, in the case of samples of unequal
size, inequality of variances may invalidate not only a standard two-sample t-test for comparison
of averages, but also the associated confidence-interval procedures for estimating the difference
between the corresponding population means.

The foregoing remarks carry over without modification to the Studentized-range techniques
-given in Paragraph 3-4 for the comparison of averages of several groups, and in AMC1P 706-112,
Section 3, Chapters 12 and 13, for the comparison of averages and groups of averages in complex
and more specialized forms of comparative experiments. In all of these cases, if the true within-
group variances differ appreciably from one group to another (or from subgroups to subgroups),
there ordinarily will be a loss of efficiency in the estimation of, say, product means, or treatment
differences. Similarly, there will be a loss of power in tests of significance. If the samples from
the respective groups are of unequal sizes and the true within-groip variances are markedly un-
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equal, these losses may be substantial. Some of the estimates of group means and differences
between group means may have much smaller or much larger standard errors than others, so that
pair-wise t-tests, or Studentized-range tests, derived from a pooled standard-deviation estimate s
m~ay correspond to significance levels far from those intended; and the actual effective confidence
ýveffioients associated with the corresponding confidence intervals may differ substantially from
clhe aniother, and from their nominal values.

20-3.2 TYPES OF VARIANCE INHOMOGENEITY

The situations in which variance inhomogeneity may present a problem can be divided into
two types.

(a) Situations in which there is a functionai dependence of the variance of an. observation
on the mean of the group to which it belongs. Functional dependence of the variance of an obser-
vation on its mean or expected value is an intrinsic characteristic of many non-normal distributions.
The second column of Table 20-1 gives some specific examples. Or, it may be a basic property of
the phenomena under investigation quite apart from the form of the underlying distribution
involved. Thus, in studies of various types of "growth" phenomena, the amount of variation
present at any given stage of the "growth," as measured by the standard deviation of observations
at that stage, is apt to be proportional to the average size characteristic of that stage.
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(b) Situations in which there is present incidental desultory heterogeneity of variance, arising
from inadequate control of conditions or procedure; from differences or shortcomings of equipment
or personnel; from use of inhomogeneous material or inadequate sampling methods; or from other
disturbing features (e.g., partial failure of one or more of the products or treatments) that tend to
produce less, or greater, variability among observations in some groups than in others in an irregular
manner.

Situi'tions of the first type, in which the variance inhoniogeneity present is simply the conse-
quence of a functional dependence of the variance of an observation on its mean or expected value,
"are most easily handled statistically by employing an appropriate variance-stabilizing transforma-
tion. Details are given in Paragraph 20-3.3. Statistical analyses of data arising from the second
irregular type of variance heterogeneity should be left to experts. Variance-stabilizing transforma-
tions are of little or no help in such situations. Helpful advice, illustrated by worked examples,
can be found in two papers by Cochran.(' 7) Recourse usually must be made to subdividing the
experimental observations into approximately homogenous subgroups; or to omission of parts
of the experiment that have yielded data viry different from the rest. An overall analysis may be
impossible. Combination of the pertinent evidence from the respective subdivisions of the data
may involve complex weighting and laborious arithmetic. Various procedures for the combination
of evidence from different experiments, or from separately analyzed parts of a single experimert,
"have been examined and evaluated in a later paper by Cochran.(") Irregular heterogeneity of
variance should be avoided whenever possible, by adequate design of experiments and careful
attention to the control of conditions, procedures, etc.

20-3.3 VARIANCE-STABILIZING TRANSFORMATIONS

When experimentally determined values Xi, X 2 , are such '-hat their variances a are
functionally dtpendent on their mean values mx, in accordance with a common functional relation-
ship, say

2i, = g (m. ,x (i = 1,2 .2 . ), (20-1)

then we may gain the advantages of variance homogeneity in the statistical analysis of such data
by replacing the original values X,, X 2 ,. .. , by transformed values Y, 1  f (X,), Y, = f (X,), ....
whose variances o-?-, are (at least, to a good approximation) functionally independent of their mean
values m r,. Five such variance-stabilizing transformations Y ý f (X) are given in the first column
of Table 20-1; the "situations" (i.e., the range of X and the form of the function g (m) in equation
(20-1)) for which each is appropriate* are indicated in the second column; and the third column
shows the approximate variances of the corresponding transformed values Y, as given by the
approximate formula

V. W• 1f m } .. (20-2 )

where ' (m) denotes the derivative of the function y = f (X) evaluated at X = m, the mean value
"of the original variable X.

Figure 20-2 presents comparisons of the actual values of the variances a?. of the transformed
values Y and the corresponding approximate values given by formula (20-2), for four of the trans-
formations listed in Table 20-1.

• The third transformation in the first column of Table 20-1, log 1 ---X , is variance-stabilizing only for "situat ioas"

of type R.
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Panel Panel(1) .. ,F-~-•---- - (2)

Dependence of the variances of two functions of a sample
value X from a Poisson distribution on the Poisson The ratio of the variance of log.s to its approximate
parameter, m. (1) Variance of N/X; (2) Variance of value 2/(n - 1) in samples of size n from a normal

distribution.

Panel Panel ,0 -
(3) (4)

C , u . * I . 4

Dependence of the variances of three functions of a sample Dependence of the variancesof three functions of a sample
proportion X/n on the population proportion p when proportion X/n on the population proportion p when
the sample size is 10. (1) 40 Var (X/n) ; the sample size is 20. (1) 80 Var (X/n) ;
(2) 40 Var (sin-' vN-Xn) ; (3) 40 Var (p) , where (2) 80 Var (sin-' X/-) (3) 80 Var ((p), where

(sin-' x/in for X = (0in- 4 V n for X 0•. = Bin-' -%X / for X = 1, 2, .. ... n - 1• sin- 9/-n- for X" 1 , 2,... n - 1

4sin-' v/(4 n - 1)/4 n for X = n tsin-, '-n""- for X n

Panel Panel
(5)()

Dependence of the variance of the sample correlation Dependence of the variance of the sample correlation
coeflicierht r and of the variance of the transformation coefficient r and of the variance of the transformation

log -L - r- on the true correlation coefficient p Z • log -!} on the true correlation coefficient o

for sample size n 5. (1) Variance of z' for sample size n = II . (1) Variance of z'
(2) Variance of r (2. Variance of r .

Figure 20-2. Variance-stabilizing effect of some frequently used transformations.
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The logari transformation log s2 is "variance-stabilizing:' for all values of n, since the
variance of log 6 - functionally independent of its mean for all values of n; and, as is evident from

panel 2 of Figure 20-2, the variance of log s, is close to its limiting value 2--_ for all values of
n-

n > 5, say. For further details on this transformation, see Bartlett and Kendall.0'

The other four transformations depicted in Figure 20-2 are variance-stabilizing (to a good
approximation at least), only for favorable combinations of the parameters concerned. Thus, in
the case of the Poisson distribution (panel 1), we see that the variance of -/X is independent of mx
to a good approximatiun only for m > 10, say; but the variance of the more sophisticated trans-
formation I (-v/X + VX/X+ 1), devised by Freeman and Tukey('°), is nearly constant for n > 3,
say. A table to facilitate the use of this transformation has been published by Mosteller et alt(', 12).

Similarly, for the binomial distribution: from panel 3 we see that when n = 10, the variance of
arcsin x/X/n is no more stable as p ranges from 0 to 1, than is the variance of X/n itself; but
with Bartlett's modifications(1), (11) for X = 0 and X = 1, the variance is essentially constant

at k") from p = 0.25 to p = 0.75. On the other hand, when n = 20 (panel 4), the varianceat4n

of the unmodified transformation is nearly constant from p = 0.25 to p = 0.75, so that the un-
modified transformation is quite adequate for this range of p. However, by adopting Bartlett's
modifications, the range of variance constancy at 4n - can be extended to p = 0.12 and
3 = 0.88. When n = 30, the unmodified transformation is adequate from p = 0.18 to p = 0.82,

and with Bartlett's modifications, nearly constant variance at 1-ý--) is achieved from p 0.08
l +r

to p = 0.92. Finally, panels 5 and 6 show the variance-stabilizing power of the log f_-- trans-

formation of the correlation coefficient r, due to Fisher,(", for n = 5 and n = 10.

Figure 20-2 and the foregoing discussion serve to bring out a very importan' feature of variancu
stabilizing transformations: over any range of favorable circumstances for which a particular
variance-stabilizing transformation Y has an essentially constant and known variance a?-, we also
have, in addition to the advantages of variance constancy, all of the attendant advantages of
"a-known" techniques. However, in practice, before proceeding on the assumption that a?- has a
particular theoretical value, we should always evaluate an estimate of a ?, say s ?., from the data
on hand, and check to see vhether s?. is consistent with the presumed theoretical value of a2-. If
it is, then "a-known" tech. iues should be used in the interest of greater efficiency. On the other
hand, if the magnitude indicates that the effective value of all iF substantially greater than
its theoretical value, tf -unknown" techniques, based on s8 ., must be used. In such cases,
the excess of s?. over the Lheoretical value of ao. indicates the amount of additional va. ation present
in the data, which, in principle at least, could be eliminated in future experiments of the same
kind by improved experiment design an, measurement-error control.

t
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20-4 LINEARITY, ADDITIVITY, AND ASSOCIATED TRANSFORMATIONS

20-4.1 DEFINITION AND IMPORTANCE OF LINEARITY AND ADDITIVITY

Expeimental data are much easier to interpret when the effects of the variables concerned are
linear and additive.

When only a single independent variable x is involved, then linearity of the phenomena under
investigation means that the response y corresponding to input x can be expressed in the form

y = lo + o31x (20-3)

when x and y are expressed on appropriate scales. Equation (20-3) is the equation of a straight
line in the x, y.plane. The analysis and interpretation of such linear relationships derived from
experimental data are considered in detai' , Chapter 5.

In the case of two independent or input ciables, say x and z, if the dependence of the re),)onse y
on these two variables is of the form

y = 000 + + + 2Z + 03XZ

= (00 + 0zz) + (01 + 03z)X (20-4)
= (00 + OIX) + (02 + #3x)z

then clearly the response y depends linearly on x for fixed values of z, and linearly on z for fixed
values of x; but the effect of changes in x and z will be additive if and only if the cross product
term is missing (i.e., 03 0). Only in this case will a given change in x, say 6x, produce the same
change in y regardless of the value of z, and a given change in z, say 6z, produce the same change
in y regardless of the value of x; and hence together produce the same total change in y, irrespective
of the "starting values" of x and z. In other words, for linearity and additivity in the case of two
independent variables, the -'esponse surface must be of the form

y = 00 + #,x + #2z (20-5)

which is the equation oi ane in the three-dimensional x, z, y-space.

Similar remarks extenm , the case of three or more independent variables, in which case for
linearity and additivily the response surface must be of the form

wcY = h + .81X + 02z + 13U + 4V + 5W +. (20-6)

which is the equation of a hyperplane in the (x, z, u, v, w,..., y)-space.

When, as in equation (20-4), the cross-product term flaz is present, the effect of a given change
in x, say bx, will depend upon the corre aig value of z; the effect of a given change in z,
say 6z, will depend upon the corresponding value of x I and the joint effect of Ax and 6z will depend
on the "starting values" of x and z. In such cases, we say that there is an interaction between the
factors x and z with respect to their effect on the response y. Hence, in the contrary case, when
the changes in y resulting from changes in the two variables x and z are additive, it is customary
to say that there is no interaction between x and z with respect to their effect on the response y.

Many of the standard techniques of statistical analysis, especially analysis-of-variance tech-
niques, depend explicitly on linearity and additivity of the phenomenon under investigation. Thus,
the usual analysis of randomized-block experiments (Paragraph 13-3.2) is based on the assumption
that the response yi, of the ith treatment in the jth block can be expressed in the form

Yu= Pi +± 0, (20-7)

where pi serves to characterize the expected response of the ith treatment, and may be regarded
as the average response of the ith treatment over all of the blocks of the experiment; and /, charac-
terizes the effect of the 'th block, and is the amount by which th'3 response in the jth block of any
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one of the treatnents may be expected to differ from its a 3rage response over all blocks. Similarly,
in the analysis of Latin-square experiments (Paragraph t3-5.2.1), it usually is assumed that y;,,, ?
the response of the ith treatment under conditions corresponding to the jth row and the mth column,
can be represented in the form

Y, = P '..., (20-8)

where, as before, j, serves to characterize the ift, .atinent, and may be regarded as the expected
response for the ith treatment averaged over all combinations of conditions (corresponding to the
rows and columns) included in the experiment; p, serves to characterize the jth row, and may be
regarded as the amount by which the response of any one of the treatments may be expected to
differ under the conditions of the jth row from its response averaged over all of the experiment;
and K, serves to characterize the mth column, and may be regarded as the amount by which the
response of any treatment may be expected to differ under the conditions of the mth column from
its response averaged over the entire experiment.

In the case of factorial-type experiments involving many factors kChapter 12), complete addi-
tivity as defined by equation (20-6) is rarely realistic. However, if internal estimates of experimental
error are to be obtainable from the experimental data in hand (Paragraph 12-1.2.1), then at least
some of the higher-order interaction terms, involving, say, three or more factors (e.g., terms in
xzw, xzu, ... ; xzwu, . . . ; xzwuv, ... ) must either be absent or at least of negligible magnitude
in comparison to o, the actual standard deviation of the measurements involved.

Thus the importance of additivity in the analysis and interpretation of randomized-block, Latin-
square, and other multi-factor experiments is seen to be twofold: first, only when the effects of
treatmep.ts and blocks, or treatments and rows and columns, etc., are strictly additive can we use
a single number ýo; to represent the effect of the ith treatment under the range of conditions included
in the experiment; and second, only when strict additivity prevails will the residual deviations of
the observed responses Y from response surfaces of the form of equation (20-5), (20-6), (20-7), or
(20-8), provide unbiased estimates 82 of the actual experimental-error variance a2 associated with
the experimental setup concerned. In the absence of strict additivity, for example, when "inter-
action" cross-product terms (,po),j need to be added to equation (20-7), the actual effect of the ith
treatment will depend upon the conditions corresponding to the particular block concerned, being
ý,. + (•8) j for the first block, ( + (10) i2 for the second block, etc. Furthermore, if the experi-
mental data are analyzed on the supposition that equation (20-7) holds, whereas the cross-product
terms actually are necessary to describe the situation accurately, then the resulting residual sum
of squares will contain a component dv.e to the sum of the squares of the interaction terms
(pf) o. Consequently, the resulting variance estimates s2 will tend to exceed the true experimental-
error variance g

2
, to reduce the apparent "significance" of experimental estimates of the actual

treatment effects p, and to yield unnecessarily wide confidence interval estimates for the p, and
for differences between them. Worse, the customary distribution theory will no longer be strictly
applicable, so that the resulting tests for significance and confidence interval estimates will, at best,
be only approximately valid.

Therefore, it is highly desirable that the effects of treatments and other factors involved in a
complex experiment, if not additive, at lea,,L have negligible interactions, in the sense that the
corresponding terms needed to depict the situation accurately be individually and collectively
negligible in comparison with the corresponding main effects (pi, 0j, etc.) and also with respect
to the true experimental-error variance 0,2.
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20-4.2 TRANSFORMATION OF DATA TO ACHIEVE LINEARITY AND ADDITIVITY

It should be noted that in connection with the linear relationship in equation (20-3) we added a
qualifying phrase "when x and y are expressed on appropriate scales." This qualification was
added because, if a response y depends non-linearly on the corresponding input x and the form of
this non-linear relationship is krown, then sometimes it is possible to make a transformation of one
or both 6f the variables so that the relationship between the transformed variables Y' and x' is of
the form of equation (20-3) with y' in place of y and x' in place of x. A number of such linearizing
transformations are considered in Paragraph 5-4.4, and are summarized in Table 5-4.

The art of transformation of data to achieve additivity is far less well developed than are the arts
of transformation t: a.hieve normality, constancy of variance, and linearity. The only situation
that comes to mind for which the exact transformation needed to achieve additivity is obvious,
is the case where, say, treatment, row, and column effects are multiplicative in the original units,
so that instead of equation (20-8) we have

Y1/ti = 1iPjKm. (20-9)

On taking logarithms this becomes

log yijm = log Pi- + log P1 + log K.n, (20-10)

which clearly is of the form given in equation (20-8) in terms of the variables

Y'u, = log Yi,,, P'i = log P, p', = log P1, and K',, = log Kn,.

Fortunately, it often happens that a transformation chosen for the purpose of achieving con-
stancy of variance also improves the situation to some extent with respect to linearity and addi-
tivity. But, this will not always be the case. In some situations, if we can find a transformation
that improves linearity or additivity we may choose to forego the . dvantages of constancy of
variance. Such is the case, for example, when we adopt the probit transformation (Chapter 10)
in order to achieve linearity, with the consequent necessity of performing weighted analyses of the
transformed data to allow for non-constancy of variance. In other cases, variance constancy may
be so advantageous that we are willing to proceed on the assumption that additivity also is achieved
by the transformation to stabilize variance - a situation explored by Cochran("' for the cases of
binomial or Poisson-distributed data.

20-5 CONCLUDING REMARKS

One important characteristic of all of the transformations given in Table 20-1 is that they all
are order preserving: the relative rank order (with respect to magnitude) of the original individual
measurements X 1 , X 2 , ... is strictly preserved in their transforms f (XI), Y 2 = f (X2 ) ...

Consequently, the relative rank order of subgroup means X.(), X( 2), ... of the original measure-
ments will usually - but not necessarily* -- be preserved in the corresponding subgroup means
?(1), F(2) .... evaluated from the transformed data. When these subgroup means on the Y-scale
are transformed back to the X-scale by the inverse transformation X = g (Y), their transforms
X'(1) = g (IM), X'(2) = g (F(2)) .. . will always be in the same relative rank order as the subgroup

* For example, let the original data consist of the following two groups of two observations each: 1, 10 and 5, 5.
Then, X, 5.5, X2  6, and X! > Xi. If now we change to Y =logo X, the data become 0, 1 and 0.699, 0.699
so that F, =0.5, ?F, 0.699, and F, <F
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means P(i), (2.),.. on the Y-scale; and hence, usually - but not always - in the same relative
rank order as the original subgroup means X(i), Z(2), ... on the X-scale. In other words, by
using one of these transformations, we ordinarily will not seriously distort the relative magnitudes
of treatment effects, of block effects, etc.

The "transformed-back" subgroup means X1'(), Z' 2) .... , will, of course, not have the same
meaning as the "straight-forward" subgroup means 90(l), X• 2), .... Thus, in the case of the
logarithmic transformation y = log X, if the subgroup means ?(1), T( 2), ... on the transformed
scale (Y) are arithmetic means of the corresponding Y values, then the "transformed-back" sub-
group means Z',(,) - anti-log F(l), X'(2) = anti-log F(2), .... are estimates, not of the corre-
sponding population arithmetic means y(i) t A(•) . . . , but rather of the corresponding population
geometric means -yr1), Y(s) ...... On the other hand, if instead of considering subgroup means, we
were to consider subgroup medians 1(,), 9( 2 ), .. . , then the corresponding subgroup medians
IP(1), p?(2), ... , on the Y-scale will always be in the same relative rank order as the original sub-
group medians on the X-scale; and the "transformed-back" subgroup medians 1'(1) = g (Y(1)),
9'(2) = g ('(2)), ... , will be identically equal to the original subgroup medians X(,), k(2) .....
Consequently, if there is some danger of ('" tortion through the use of a transformation to achieve
normality, constancy of variance, linearity, or additivity, then consideration should be given to:

(a) whether, for the technical purposes at issue, discussion might not be equally or perhaps even
more conveniently conducted in terms of the transformed values Y, thus obviating the necessity
of transforming back to the original X-scale; or,

(b) whether, f, )urposes of discussion, population medians rather than population means
might well be equ. y or perhaps more meaningful.

In this connection, it must be pointed out that confidence limits for means, differences between
means (medians, differences between medians) etc., evaluated in terms of the transformed values Y
can be "transformed back" directly into confidence limits for the corresponding magnitudes* on
the original X-scale. On the other hand, estimated standard errors of means (medians), differences
between means (differences between medians), etc., evaluated on the transformed scale Y cannot
be "transformed-back" directly into standard errors of the corresponding "transformed-back"
magnitudes on the original scale X. Hence, if standard errors of final results are to be given as a
way of indicating their respective imprecisions, such standard errors must be evaluated for, and
stated as being applicable only to, final results expressed on the transformed scale Y.

As so eloquently remarked by Acton(17 . pp 22 2):

"These three reasons for transforming ... [i.e., to achieve normality, constancy of variance, or additivity] have no
obvious mathematical compulsion to be compatible; a transformation to introduce additivity might well throw out
normality and mess up the constancy of variance beyond all recognition. Usually, the pleasant cloak of obscurity
bides knowledge of all but one property from us - and so we cheerfully transform to vouchsafe unto ourselves thi:i
one desirable property while carefully refraining from other considerations about which query is futile. But there
is a brighter side to this picture. The god3 who favor statisticians have frequently ordained that the world be well
behaved, and so we often find that a transformation to 3btain one of these desiderata in fact achieves them all (well,
almost achieves them!)."

Nevertheless, the following sobering advice from Tippett(', Pi, -141) should not go unheeded: -

"If a transformed variatep[y, having convenient statistical properties, can be substituted for x in the technical argu-
ments from the results and in their applications, there is everything to be said for making the transformation. But
otherwise the situation can become obscure. Suppose, for example, that there is an interaction between treatments
and looms when the measufo is warp breakage rate and that the interaction disappears for the logarithm of the warp
breakage rate. It requires some clear thinking to decide what this signifies technically; and the situation becomes
somewhat obscure when, as so often happens, the effects are not overwhelmingly significant, and it is remembered that
a verdict 'no significant interaction' is not equivalent to 'no interaction.' If the technical interpretation ha.- to be in
terms of the untransformed variate x, and after the statistical analysis has been performed on [y], means and so on
have to be converted back to x, statistical difficulties arise and the waters deepen. Readers are advised not to make
transformations on statistical grounds alone unless they are good swimmers and have experience of the current,%."

E.g., for geometric means on the X-scale, if the transformation involved is Y - log X and arithmetic meanw, are
employed on the Y-scale.
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CHAPTER 21

THE RELATION BETWEEN CONFIDENCE INTERVALS

AND TESTS OF SIGNIFICANCE*

21-1 INTRODUCTION

Several chapters in this Handbook are con- Many statistical consultants, when analyzing
cerned with statistical tests of significance - an experiment for the purpose of testing a
see, for example,AMCP 706-110,Chapters 3 and statistical hypothesis, e.g., when comparing
4. In Paragraph 3-2.1.1, the problem is that means of normal populations, find that they
of deciding whether the average of a new prefer to present results in terms of the appro-
product differs from the known or specified priato confidence interval.
average m0 of the standard product. The test It must be noted of course that not every
procedure involves computing a quantity u and statistical test can be put in the form of a con-
comparing u with the difference between the ob- fidence interval. In general, tests that are
served average XZ and the standard average m0 . direct tests of the value- of a parameter of the
This comparison is the test of significance. A parent population can be expressed in terms of
further step in the procedure, however, notes confidence intervals.
that the interval X ±1 u is in fact a confidence
interval estimate of the true mean of the new
product. alternatively be stated in terms of a confidence

interval for a parameter, why would we prefer
In AMCP 706-111, Chapter 8, the problem of the confidence interval statement? Some au-

comparing an observed proportion with a stand- thorities have stressed the point that experi-
ard proportion is done directly in terms of the menters are not typically engaged in disproving
confidence interval for the observed proportion, things, but are looking for evidence for affirma-
completely omitting the test-of-significance step tive conclusions; after rejecting the null hypoth-
given in Chapter 3 for comparisons involving esis, the experimenter will look for a reasonable
quantitative data. Tables and charts that give hypothesis to accept. The relation between
confidence intervals for an observed proportion confidence intervals and tests of significance is
are used, and we "test" whether the ubserved mentioned only briefly in most textbooks, and
proportion differs from the standard by noting ordinarily no insight is given as to which con-
whether or not the standard proportion is in- clusion might be more appropriate. (A notable
cluded in the appropriate interval, exception is Wallis and Roberts(".)

* Adapted with permaiNsin from The American Staliieician, Vol. 14 No. 1, 1960, from article entitlea "The Relation Between Confidence
Intervala and Teats of Significance- A Teaching Aid" by Mary G NaLella.
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21-2 A PROBLEM IN COMPARING AVERAGES

In this Chapter, we review both procedures from the specified average. Since
with reference to a numerical example, which 10.710 - 0.735 > 0.0236,
was given in Paragraph 3-2.1.1.

we decide that there is a difference.
For a certain type of shell, specifications state From the same data, we also can compute a

that the amount of powder should average 0.735 95% confidence interval for the average of
lb. In order to determine whether the average present stock. This confidence interval is
for the present stock meets the specification, X. =L u = 0.710 =b 0.0236, or the interval from
twenty shells are taken at random and the 0.686 to 0.734 lb. The confidence interval can
weight of powder is determined. The sample be used for a test of significance; since it does
average X is 0.710 lb. The estimated standard NOT include the standard value 0.735, we con-
deviation s is 0.0504 lb. The question to be clude that the average for the present stock
answered is whether or not the average of DOES differ from the standard.
present stock differs from the specification Comparisons of two materials (see Paragraph
value. In order to use a two-sided test of sig- 3-3.1.1 for the case of both means unknown and
nificance at the (1 - a) probability level, we equal variances) may be made similarly. In
compute a critical value, to be called u. Let computing a test of significance, we compare the

t*s difference between sample means, I XA - XB,
S-%n_ with a computed critical quantity, again called

wt. If IXA - Zu I is larger than u, we declare
where t* is the positive number exceeded by that the means differ significantly at the chosen
100() % of the t-distribution with n -'1 level. We alsc note that the interval

degrees of freedom. (See Table A-4.) (ZA - XB) F U

is a confidence interval for the difference be-
In the above example with a = .05, t* tween the true means (mA - mB); if the com-

equals 2.09 and u equals 0.0236 lb. The test of puted interval does not include zero, we conclude
significance says that if I X - 0.7351 > u, we from the experiment that the two materials
decide that the average for present stock differs differ in mean value.

21-3 TWO WAYS OF PRESENTING THE RESULTS

Here then are two ways to answer the original saying YES to this particular question. For
question. We may present the result of a test example, see Figure 21-1. If the true value of
of significance, or we may present a confidence d - m_ were equal to 0.5 a sample of 10
interval. The significance test is a go no-go
decision. We compute a critical value u, and is not likely to detect a difference, but a sample
we compare it with an observed difference. If of 100 is almost certain to detect such a
the observed difference exceeds u, we announce difference.
a significant difference; if it does not, we Using a rejection criterion alone is not the
announce that there is NO difference. If we

proper way to think of a significance test; we
had no OC curve for the test, our decision should always think of the associated OC curve
would be a yes-no proposition with no shadow- s artand parce of the test. Unfort e

lan ofindffeenc. Te sgniicace estmay as part and parcel of the test. Unfortunately,
land of indifference. The significance test may this has not always been the case. As a matter
have said NO, but only the OC curve can of fact, many experimenters who use signifi-
qualify this by showing that this particular cance tests are using them as though there were
experiment had only a ghost of a chance of no such thing as an OC curve.
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Figure 21 -1. Reprint of Figure 3-1. OC curves for the two-sided W-est (a =.05).

Adapted with permission from Annals of Maihematical Statistics, Vol. 17, No. 2, June 1946, pp. 178-197, from article entitled "Operating Charte--
teristles for the Common Statistical Tests'of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver.
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21-4 ADVANTAGES OF THE CONFIDENCE-INTERVAL APPROACH

A confidence-interval procedure contains in- multiple of s, the estimate of a from the sample),
formation similar to the appropriate OC curve, we occasionally can be misled by unusually
and, at the same time, is intuitively more ap- short or long intervals. But the average width
pealing than the combination of a test of Ag- of the entire family of intervals associated with
nificance and its OC curve. If the standard a given confidence-interval procedure is a defi-
value is contained in the confidence interval, we nite function of the appropriate dispersion
can announce NO difference. The width of the parameter, so that or the average the random
confidence interval gives a good idea of how firm widths do give similar information. For a
is the Yes or No answer; however, there is a graphical illustration of confidence intervals
caution in this regard which is explained in the computed from 100 random samples of n = 4
following paragraphs. (actually random normal deviates), see Figure

21-2. Despite the fluctuation in size and posi-
tion of the individual intervals, a proportion of
intervals which is remarkably close to the speci-

Suppose that the standard value for some fled proportion do include the known popula-
property is known to be 0.735, and that a tion average. If a were known rather than esti-
100 (1 - a) % confidence interval for the same mated from the individual sample, the intervals
property of a possibly different material is de- would fluctuate in position only, of course.
termined to be the interval from 0.600 to 0.800.
It is true that the standard value does lie within
this interval, and that we would declare no
difference. All that we really know about the The significance test gives the same answer,
new product, however, is that its mean probably and a study of the OC curve of the test indicates
is between 0.6 and 0.8. If a much more exten- how firm is the answer. If the test is dependent
sive experiment gave a 100 (1 - a) % confi- on the value of o, the OC curve has to be given
dence interval of 0.60 to 0.70 for the new mean, in terms of the unknown a. In such a situa-
our previous decision of no difference would be tion, we must use an upper bound for a in order
reversed, to interpret the OC curve, and again we may be

misled by a poor choice of this upper bound.
On the other hand, the width of the confidence
interval is part and parcel of the information

On the other hand, if the computed confi- provided by that method. No a priori esti-
dence interval for the same confidence coeffi- mates need be made of a as would be necessary
cient had been 0.710 to 0.750, our answer would to interpret the OC curve. Furthermore, a
still have been no difference, but we would have great advantage of confidence intervals is that
said NO more loudly and firmly. The confi- the width of the interval is in the same units as
dence interval not only gives a Yes or No the parameter itself. The experimenter finds
answer, but, by its width, also gives an indica- this information easy to grasp, and easy to com-
tion of whether the answer should be whispered pare with other information he may have.
or shouted.

The most striking illustration of informationi This is certainly true when the width of the provided by confidence intervals is shown in the
interval for a given confidence coefficient is a charts of confidence limits for a binomial param-
function only of n and the appropriate disper- eter. In this case, the limits depend only on n
sion parameter (e.g., known a). When the and the parameter itself, and we cannot be mis-
width itself is a random variable (e.g., is a fixed led in an individual sample.
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Suppose that a new item is being tested for tween the new item nd the standard in this
comparison with a standard. We observe two regard. Intuitively, however, we feel that the
defectives in a sample of 10, and we estimate the interval 0.04 to 0.60 is so wide that our experi-
proportion defective for the new item as 0.20. ment was not very indicative. Suppose that
The 95% confidence interval given in Table we test 100 new items and observe 20 defectives.

A-22, corresponding to an observed proportion The observed proportion defective again is 0.20.
f The confidence interval from Table A-24 is• ~of 0.20 (n =10), is 0.04 to 0.60. Assume that 0.13 to 0.29, and does not include P0 = 0.10.

the known proportion defective for the standard This time, we are forced to announce that the

Po is 0.10. Our experiment with a sample of 10 Th is difere from th andard; an the
new item. is different from the standard; and the

gives a confidence interval which includes Po; narrower width of the confidence interval (0.13
and, therefore, we announce no difference be- to 0.29) gives us some confidence in doing so.

60,000

40,000 , * , , , I , I , I , I , I . I , i
CASE A,50% CONFIDENCE INTERVALS

70_000_

60,000

50,000

k00
40,000

30,000 I I I I
0 10 20 30 40 50 60 70 80 90 100

CASE B, 90% CONFIDENCE INTERVALS

Figure 21-2. Reprint of Figure 1-8. Computed confidence intervals for 100 samples of size 4
drawn at random from a normal population with m = 50,000 psi, L = 5,000 psi.
Case A shows 50% confidence intervals; Case B shows 90% confidence intervals.

Adapted with pormisaion from ASTM Manual of Qualily Controt of Materials, Copyright., 1951, American Society for Testing Materials.
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21-5 DEDUCTIONS FROM THE OPERATING CHARACTERISTIC (OC) CURVE

The foregoing paragraphs have shown that it a m - mI
is possible to have some notion of the discrimin- assume that our d is larger than
atory power of the test from the size of confi- 0.4, and may perhaps infer a bound for the true
dence intervals. Is it also possible, in reverse, value of I m - mo -in other words, some
to deduce from the OC curve what kind of con- "confidence interval" for m.
fidence interval we would get for the new mean?
Although we cannot deduce the exact width of On the other hand, suppose that only 10
the confidence interval, we can infer the order of items were tested and a significant result was
magnitude. Suppose that: we have measured obtained. If we look at the curve for n = 10,
100 items; we have performed a two-sided t-test we see that the value of d which is practically
(does the average m differ from mo?); and we certain to be picked up on a significance test is
have obtained a significant result. Look at the d = 1.5 or larger. As expected, a significant
curve for n = 100 in Figure 21-1, which plots result from an experiment which tested only 10
the probability of accepting H, (the null hy- items corresponds to a wider confidence inter-

pothesis) against d = . From the val for m than the interval inferred from the
test of 100 items. A rough comparison of the

curve, we see that when d is larger than 0.4, the relative widths may be made. More quantita-
probability of accepting the null hypothesis is tive comparisons could be made, but the pur-
practically zero. Since our significance test did pose here is to show a broad general relation-
reject the null hypothesis, we may reasonably ship.

21-6 RELATION TO THE PROBLEM OF DETERMINING SAMPLE SIZE
The problem of finding the sample size re- enables us to pick the proper sample size for the

quired to detect differences between means can experiment.
be approached in two ways also. We can
specify tolerable risks of making either kind of Alternatively, we can specify the magnitude
wrong decision (errors of the first or the second of difference between means which is of impor-
kind) - thereby fixing two points on the OC tance. We then compute the sample size re-
curve of the pertinent test. Matching these quired to give a confidence interval of fixed
two points with computed curves for various n, length equal to the specified difference.

21-7 CONCLUSION

Presentation of results in terms of confidence information. Confidence intervals give a feel-
intervals can be more meaningful than is the ing of the uncertainty of experimental evidence,
presentation of the usual tests of significance (if and (very important) give it in the same units,
the test result is not considered in connection metric or otherwise, as the original observa-
with its OC curve). Things are rarely black or tions. A recent development in statistical
white; decisions are rarely made on one-shot theory that stems from the intuitive preference
tests, but usually in conjunction with other for confidence intervals is given in Birnbaumn(21.
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CHAPTER 22

NOTES ON STATISTICAL COMPUTATIONS

22-1 CODING IN STATISTICAL COMPUTATIONS

Cc-•ag is the term used when arithmetical 3. Careful note must be kept of how the data
operations are applied to the original data in have been coded.
order to make the numbers easier to handle 'n 4. The desired computation is performed on
computation. The possible coding operations the coded data.
are: 5. The process of decoding a computed re-

(a) Multiplication (or its inverse, division) to sult depends on the computation that has been
change the order of magnitude of the recorded performed, and is indicated separately for
numbers for computing purposes. several common computations, in the following

(b) Addition (or its inverse, subtraction) of a Paragraphs (a) through (d).
constant - applied to recorded numbers which (a) The mean is affected by every coding
are nearly equal, to reduce the number of figures operation. Therefore, we must apply the in-
which need be carried in computation. verse operation and reverse the order of opera-

When the recorded results contain non-signifi- tions used in coding, to put the coded mean

cant zeros, (e.g., numbers like .000i21 or like back into original units. For example, if the
11,100), coding is clearly desirable. There ob- data have been coded by first multiplying by

viously is no point in copying these zeros a large 10,000 and then subtracting 120, decode the
number of times, or in adding additional useless mean by adding 120 and then dividing by
zeros when squaring, etc. Of course, these re- 10,000.
sults could have been given as 121 X 10-1 or
i1.1 X 103, in which case coding for order of Observed Coded
magnitude would not be necessary. Results Results

The purpose of coding is to save labor in .0121 1
computation. On the other hand, the process .0130 10
of coding and decoding the results introduces .0125 5
more opportunities for error in computation.
The decision of whether to code or not must be Mean .0125 Coded mean 5
considered carefully, weighing the advantage of Coded mean + 120
saved labor against the disadvantage of more Decoding: Mean = -- ,000 --
likely mistakes. With this in mind, the follow- 125

ing five rules are given for coding and decoding.
1. The whole set of observed results must be 10,000

treated alike. .0125

2. The possible coding operations are the two
general types of arithmetic operations: (b) A standard deviation computed on

(a) addition (or subtraction); and, coded data is affected by multiplication or divi-
(b) multiplication (or division). Either sion only. The standard deviation is a measure

(a) or (b), or both together, may be used as of dispersion, like the range, and is not affected
necessary to make the original numbers more by adding or subtracting a constant to the
tractable. whole set of data, Therefore, if the data have

22-1
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been coded by addition or subtraction only, no Observed Weights Coded Data
adjustment is needed in the computed standard Units: lbs. Units: 100 lbs.
deviation. If the coding has involved multi-
plication (or division), the inverse operation
must be applied to the computed standard 7,423 71
deviation to bring it back to original units. 10,056 101

(c) A variance computed on coded data 100,310 1003
must be: multiplied by the square of the coding 5,097 51
factor, if division has been used in coding; or 543 5
divided by the square of the coding factor, if
multiplication was used in coding.

(d) CQding which involves loss of significant
figures: The kind of coding thus far discussed etc. etc.
has involved no loss in significant figures.
There is another method of handling data, how- Whether or not the resulting average of the
ever, that involves both coding and rounding, coded data gives us sufficient information will
and is also called "coding". This operation is depend on the range of the data and the in-
sometimes used when the original data are con- tended use of the result. it should be noted
sidered to be too finely-recorded for the purpose. that this "coding" requires a b-'her o; der of

judgment than the strictly ar; l -. lng
discussed in previous examplt tuoe some

For example, suppose that the data consist of loss of information does occur. Aecv.ion to
wcights (in pounds) of shipments of some bulk "code" in this way should be made by someone
material. If average weight is the character- who understands the source of the data and the
istic of interest, and if the range of the data is intended use of the computations. The group-
large, we might decide to work with weights ing of data in a frequency distribution is coding
coded to the nearest hundred pounds, as follows: of this kind.

22-2 ROUNDING IN STATISTICAL COMPUTATIONS

22-2.1 ROUNDINC OF NUMBERS procedure should be carried out in accordance
with the following three rules.

Rounded numbers are inherent in the process 1. When the figure next beyond the last place
of reading and recording data. The readings of to be retained is less than 5, the figure in the last
an experimenter are rounded numbers to start place retained should be kept unchanged.
with, because all measuring equipr.ment is of For example, .044 is rounded to .04.
limited accuracy. Often he records results to 2. When the figure next beyand the last fig-even iess accuracy than is attairable with the ure or place to be retained is greater than 5, the
available equipment, simply because such re- figure in the last place retained should be in-
sults are completely adequate for his immed: creaed by 1.
purpose. Computers often are requir. ,l For example, .046 is rounded to .05.
round numbers - either to simplify , When the figure next beyond the last fig-
metic calculations, or because ' retained is 5, and,avoided,~~rtane is 5,e andisue f , 44i
avoided, as when 3.1416 is used f( .4ere are no figures or are only zeros
used for -/2. ,, ,, ains 5, an odd tigure in the last place to

When a number is to be rounded to a specific be retained should be increased by 1, an even

number of significant figures, the rounding figure should be kept unchanged.

22-2
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For example, .045 or .0450 is rounded to both be rounded off to the same place before
.04; :055 or .0550 is rounded to .06. subtracting.

(b) if the 5 is followed by any figures otl Errors arising from the subtraction of
than zero, the figure in the last place to L nearly-equal approximate numbers are
retained should be increased by 1, whether odd frequent and troublesome, often mak-
or even. ing the computation practically worth-

less. Such errors can be avoided whenFor example, in rounding to two deci- the two nearly-equal numbers can be
mals, .0451 is rounded to .05. approximated to more significant

A number should always be rounded off in one digits.
step to the number of figures that are to be
recorded, and should not be rounded in two or 3. Multiplication. If the less-accurate of two
more steps of successive roundings. approximate numbers contains n significant

digits, their product can be relied upon for n
digits at most, and should not be ,itten with
more.

22-2.2 ROUNDING THE RESULTS OF SINGLE As a practical working plan, carry in-
ARITHMETIC OPERATIONS termediate computations out in full,

and round off the final result in ac-
Nearly all numerical calculations arising in cordance with this rule.

the problems of everyday life are in some way

approximate. The aim of the computer should
be to obtain results consistent with the data, 4. Division. If the less-accurate of either the
with a minimum of labor. We can be guided in dividend or the divisor contains n significant
the various arithmetical operations by some digits, their quotient can be relied upon for n
basic rules regarding significant figures and the digits at most, and should not be written with
rounding of data: more.

Carry intermediate computations out
1. Addition. When several approximate num- in full, and round off the final result in

Sbers are to be added, the sum should be rounded accordance with this rule.
to the number of decimal places (not significant
figures) no greater than in the addend which 5. Powers and Roots. If an approximate num-has the smallest number of decimal places. ber contains n significant digits, its power can beAlthough the result is determined by relied upon for n digits at most; its root can bethe least accurate of the numbers en-

tering the operation, one more decimal
place in the more-accurate numbers
should be retained, thus eliminating 6. Logarithms. If the mantissa of the loga-
inherent errors in the numbers. rithm in an n-place log table is not in error by

more than two units in the last significant
For example: figure, the antilog is correct to n - 1 significant

4.01 figures.
.002
.623 The foregoing statements are working rules

only. More complete explanations of the
4.635 rules, together with procedures for determining

The sum should be rounded to and recorded explicit bounds to the accuracy of particular
as 4.64. computations, are given in Scarborough("), and

the effects of rounding on statistical analyses of
2. Subtraction. When one approximate num- large numbers of observations are discussed in

ber is to be subtracted from another, they must Eisenhart('-;:
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22-2.3 ROUNDING THE RESULTS OF A SERIES strict adherence to rules devised for use at the
OF ARITHMETIC OPERATIONS final stage. The greatest trouble of this kind

comes where we mus ubtract two nearly-
Most engineers and physical scientists are equal numbers, and r' ,wy statistical computa-

well acquainted with the rules for reporting a tions involve such subtractions.
result to the proper number of significant fig- The rules generally given for rounding-off,
ures. From a computational point of view, were given in a period when the average was the
they know these rules too well. It is perfectly only property of interest in a set of data.
true, for example, that a product of two num- Reasonable rounding does little damage to the
bers should be reported to the same number of average. Now, however, we almost always cal-
significant figures as the least-accurate of the culate the standard deviation, and this statistic
two numbers. It is not so true that the two does suffer from too-strict rounding. Suppose
numbers should be rounded to the same num- we have a set of numbers:
ber of significant figures before multiplication.A better rule is to round the more-accurate 3.1

number to one more figure than the less-accu- 3.2
rate number, and then to round the product to 3.3
the same number of figures as the less-accurate
one. The great emphasis against reporting Avg. = 3.2

more figures than are reliable has led to a If the three numbers are rounded off to one sig-
prejudice against carrying enough figures in nificant figure, they are all identical. The
computation. average of the rounded figures is the same as the

Assuming that the reader is familiar with the rounded average of the original figures, but all
rules of the preceding Paragraph 22-2.2, regard- information about the variation in the original
ing significant figures in a .ingle arithmetical numbers is lost by such rounding.
operation, the following paragraphs will stress The generally recommended procedure is to
the less well-known difficulties which arise in a carry two or three extra figures throughout the
computation consisting of a long series of dif- computation, and then to round off the final
ferent arithmetic operations. In such a com- reported answer (e.g., standard deviation, slope
putation, strict adherence to the rules at each of a line, etc.) to a number of significant figures
stage can wipe out all meaning from the final consistent with the original data. However, in
results. some special computatior.s such as the fitting of

,in computing the slope of a equations by least squares methods given iih
straight line fitted to observations containing AMP 706-110, Chapters 5 and 6, one shouldcarry extra decimals in the intermediate steps
three significant figures, we would not report - decimals sufficiently in excess of the number
the slope to seven significant figures; but, if we cndered sinficantlt insure ta the com-
round to three significant figures after eachcom-necessary step in the computation, we might putational errors in the final solutions arenessary stp w ithno the compuantfi in the value negligible in relation to their statistical impreci-
oftend ups hopc sion as measured by their standard errors. Forof the slope.

example, on a hand-operated computing ma-
It is easily demonstrated by carrying out a chine, use its total capacity and trim the figures

few computations of this nature that there is off as required in the final results. (See
real danger of losing all significance by too- Chapter 23.)
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CHAPTER 23

EXPRESSION OF THE UNCERTAINTIES OF FINAL RESULTS

23-1 INTRODUCTION

Measurement of some property of a thing in ess is the magnitude and direction of its tend-
practice always takes the form of a sequence of enc t to measure something other than what was
steps or operations that yield as an end result a intended; its precision refers to the typical
number that serves to represent the amount or closeness together of successive independent
quantity of some particular property of a measurements of a single magnitude generated
thing - a number that indicates how much of by repeated applications of the process under
this property the thing has, for someone to use specified conditions; and, its accuracy is deter-
for a specific purpose. The end result may be mined by the closeness to the true value charac-
the outcome of a single reading of an instru- teristic of such measurements.
ment, with or without corrections for departures
from prescribed conditions. More often, it is Precision and accuracy are inherent charac-
some kind of average; e.g., the arithmetic mean teristics of the measurement process employed,
of a number of independent determinations of and not of the particular end result obtained.
the same magnitude, or the final result of a least From experience with a particular measurement
squares "reduction" of measurements of a num- process and knowledge of its sensitivity to un-
ber of different magnitudes that bear known controlled factors, we can often place reasonable

relations with each other in accordance with a bounds on its likely systematic error (bias). It

definite experimental plan. In general, the also is necessary to know how well the particular
purpose for which the answer is needed deter- value in hand is likely to agree with other values

mines the precision or accuracy of measurement that the same measurement process might have
required, and ordinarily also determines the provided in this instance, or might yield on re-
method of measurement employed, measurement of the same magnitude on another

Although the accuracy required of a reported occasion. Such information is provided by theAlthughtheaccrac reuird o a epoted standard error of the reported value, which
value d&,ends primarily on the use, or uses, for

measures the characteristic disagreement of re-which it is intended, we should not ignore the
peated determinations of the same quantity byS~requirements of other uses to which the re-

ported value is likely to be put. A certified or the same me'iod, and thus serves to indicate
the precision (strictly, the imprecision) of the

reported value whose accuracy is entirely un-
known is worthless. reported value.

Strictly speaking, the actual error of a re- The uncertainty of a reported value is indi-
ported value, that is, the magnitude and sign of cated by giving credible limits to its likely inac-
its deviation from the truth. is usually un: curacy. No single form of expression for these
knowable. Limits to this error, however, can limits is universally satisfactory. la fact, dif-
usually be inferred - with some risk of being ferent forms of expression are recommended, the
incorrect - from the precision of the measure- choice of which will depend on the relative
ment process by which the reported value was magnitudes oi the imprecision and likely bias;
obtained, and from reasonable limits to the pos- and on t heir relative importance in relation to
sible bias of the measurement process. The the intended use of the reported value, as well as
bias, or systematic error, of a measurement proc- to other possible uses to which it may be put.
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Four distinct cases need to be recognized: ments of the situation; or, (2) the imprecision
and the bounds to the systematic error are

1. Both systematic error and imprecision nearly equal in indicating possible differeices
negligible in relation to the requirements of the from the true value. Such instances come under
intended and likely uses of the ilt. Case 3.

2. Systematic error not negiLyible, but im- (b) A quasi-absolute type of statement with
precision neutigible, in relation to the require- one numeric, placing bounds on the inaccuracy
ments. of the result, should be used whenever: (1) a

3. Neither systematic error nor imprecision wide or adequate margin exists between ability
negligible in relation to the requirements. to measure and the accuracy requirements of

4. Systematic error negiigible, but impreci- the situation (Case 1); (2) the imprecision is
sion not negligible in relation to the require.- negligibly small in comparison with the bounds
ments. placed on the systematic error (Case 2); or,

(3) the control is so satisfactory that the extent
S~of error is known.

Specific recommendations are made below (c) A single ioumeric expressing the impreci-
plewith respect to each of these four cases, sup- sion of the result should be used whenever theplemented by further discussion of each case in systematic error is either zero by definition or
Paragraphs 23-2 through 23-5. These recom- 8soai ro sete eob eiiinoPendaragr s 23-2throughm23-5.dThesefrecoin- negligibly small in comparison with the impreci-
mendations may be summarized as follows: sion (Case 4).

(a) Two numerics, respectively expressing (d) Expressions of uncertainty should be
the imprecision and bounds to the systematic given in sentence form whenever feasible.
error of the result, should be used whenever: (e) The form "a :- b"'should be avoided as
(1) the margin is narrow between ability to much as possible; and never used without ex-
measure and the accuracy or precision require- plicit explanation of its connotation.

23-2 SYSTEMATIC ERROR AND IMPRECISION BOTH NEGLIGIBLE
(CASE 1)

In this case, the certified or reported result 5462.2706 A
should be given correct to the number of sig- 4359.5625 A
nificant figures consistent with the accuracy 4047.7146 A
requirements of the situation, together with an correct to eight significant figures.
explicit statement of its accuracy or correctness. It must be emphasized that when no state-

For example: mene of accuracy or precision accompanies a
... the wavelengths of the principal visible certified or reported number, then, in accord-
lines of mercury 198 have been measured ance with the usual conventions governing
relative to the 6057.802106 A (Angstrom rounding, this number will be interpreted as
units) line of krypton 98, and their values being accurate within ±i= I unit in the last sig-
in vacuum are certified to be nificant figure given; i.e., it will be understood

5792.2685 A that its inaccuracy before rounding was less
5771. 1984 A than 2c5 units in the next place.

23-2

Downloaded from http://www.everyspec.com



SYSTEMATIC ERROR AND IMPRECISION AMCP 706-113

23-3 SYSTEMATIC ERROR NOT NEGLIGIBLE, IMPRECISION NEGLIGIBLE
(CASE 2)

In such cases- themselves reliably established. On the other
hand, when the indicated bounds are somewhat

(a) Qualification of a certified or reported conjectural, it is desirable to signify this fact
result should be limited to a single quasi- (arid thus put the reader on guard) by inclusion
absolute type of statement that places bounds of some modifying expression such as "be-
on its inaccuracy; lieved", "considered", "estimated to be",

(b) These bounds should be stated to no "thought to be", and so forth, as exemplified by
more than two significant figures; the thirci of the foregoing examples.

(c) The certified or reported result itself
shou. e given (i.e., rounded) to the last place
affec by the stated bounds, unless it is de- Results should never be presented in the form
sired LO indicate and preserve such relative "a 1 b", without e,:planation. If no explana-
accuracy or precision of a higher order that the tion is given, many persons will automatically
result may possess for certain particular uses; take ±b to signify bounds to the inaccuracy of

(d) Accuracy statements should be given a. Others may assume that b is the standard
in sentence form in all cases, except when a error or the probable error of a, and hence that
number of results of different accuracies are pre- the uncertainty of a is at least -3b, or ±4b,
sented, e.g., in tabular arrangement. If it is respectively. Still others may take b to be an
necessary or desirable to indicate the respective indication merely of the imprecision of the in-
accuracies of a number of results, the results dividual measurements; that is, to be the

should be given in the form a =L b (or a + b if standard deviation, the average deviation, or the
- c' probable error of a SINGLE observation. Each

necessary) with an appropriate explanatory of these interpretations reflects a practice of
remark (as a footnote to the table, or incor- which instances can be found in current scien-
porated in the accompanying text) to the effect tific literature. As a step in the direction of

that the L-- b, or ± b signify bounds to the reducing this current confusion, we urge that
-e' the use of "a - b" in presenting results in

errors to which the a's may be subject. official documents be limited to that sanctioned

under (d) above.

The particular form of the quasi-absolute
type of statement employed in a given instance The term uncertainty, with the quantitative
ordinarily will depend upon personal taste, connotation of limits to the likely departure
experience, current and past practice in the from the truth, and not simply connoting vague
field of activity concerned, and so forth. Some lack of certainty, may sometimes be used effec-
examples of good practice are: tively to achieve a conciseness of expression

... is (are) not in error by more than 1 part otherwise difficult or impossible to attain.
in ( x ). Thus, we might make a statement such as:

is (are) accurate within ± (x units) (or The uncertainties in the above values are
± ( X )%). not more than ±=0.5 degree in the range

is (are) believed accurate within 0° to ll00°C, and then increase to ±2
....... degrees at 1450 0C.;

or,
The uncertainty in this value does not ex-

Positive wording, as in the first two of these ceed ....... excluding (or, including) the
quasi-absolute statements, is appropriate only uncertainty of ....... in the value .......
when the stated bounds to the possible inac- adopted for the reference standard in-
curacy of the certified or reported value are volved.
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Finaily, the following forms of quasi-absolute These statements are presumably intended to
statements are considered poor practice, and mean that the result concerned is not inaccu-
should be avoided: rate, i.e., not in error, by more than 5 percent

The accuracy o1 . .... is 5 percent. or 2 percent, respectively; but they explicitly
The accuracy of ...... is :j2 percent. state the opposite.

23-4 NEITHER SYSTEMATIC ERROR NOR IMPRECISION NEGLIGIBLE
(CASE 3)

In such cases: on the inaccuracy, i.e., on the overall uncer-

(a) A certified or reported result should be tainty, of a certified or reported value, provided

qualified by: (1) a quasi-absolute type of state- that separate statements of its imprecision and
q ed that places bounds-abonuts syp stematic its possible systematic error are included also.merit that places bounds on its systematic Bud niaigteoealucranyo

error; and, (2) a separate statement of its Bounds indicating the overall uncertainty of a

standard error or its probable error, explicitly reported value should not be numerically less

identified, as a measure of its imprecision; than the corresponding bounds placed on the
(b)nthfied, besue tof its systematicerroond systematic error outwardly increased by at least
(b)two times the standard error. The fourth of

the measure of its imprecision should be stated the followin esrof goo p rti ia
to n mor thn tw sinifiantfigues;the following examples of good practice is anto no more than two significant figures; instance at point:

(c) The certified or reported result itself

should be stated, at most, to the last place The standard errors of these values do not
affected by the finer of the two qualifying state- exceed 0.000004 inch, and their systematic
ments, unless it is desired to indicate and pre- errors are not in excess of 0.00002 inch.
serve such relative accuracy or precision of a
higher order that the result may possess for The standard errors of these values are less
certain particular uses; than (x units), and their systematic errors

(d) The qualification of a certified or re- are thought to be less than +_ (y units).
ported result, with respect to its imprecision and
systematic error, should be given in sentence ... with a standard error of (x units), and
form, except when results of different precision a systematic error of not more than
or with different bounds to their systematic + (y units).
errors are presented in tabular arrangement. ... with an overall uncertainty of a-3 per-
If it is necessary or desirable to indicate their cent based on a standard error of 0.5 per-
respective imprecisions or bounds to their re- cent and an allowance of 4-1.5 percent for
spective systematic errors, such information systematic error.
may be given in a parallel column or columns,
with appropriate identification. Wheji a reliably established value for the

Here, and in Paragraph 23-5, the term stand- relevant standard error is available, based on
ard error is to be understood as signifying the considerable recent experience with the meas-
standard deviation of the reported value itself, urement process or processes involved, and the
not as signifying the standard deviation of a dispersion of the present measurements is in
single determination (unless, of course, the re- keeping with this experience, they, this estab-
ported value is the result of a single determina- lished value of the standard error shluld be
tion only). used. When experience indicates that the rele-

The above recommendations should not be vant standard error is subject to fluctuations
construed to exclude the presentation of a greater than the intrinsic variation of such a
quasi-absolute type of statement placing bounds measure, then an appropriate upper bound
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should be given, e.g., as in the first two of the If the reported value a is the arithmetic
above examples, or by changing "a standard mean, then:
error..." in the third and fourth examples to
"an upper bound to the standard error . . .". estimate of standard error =

When there is insufficient recent experience
with the measurement processes involved, an where s' is computed as shown in AMCP 706-110,
estimate of the standard error must of necessity Chapter 2, Paragraph 2-2.2, and n is the num-
be computed, by recognized statistical proce- ber of completely independent determinations
dures, from the same measurements as the certi- of which a is the arithmetic mean.
fled or reported value itself. It is essential that For example:
such computations be carried out according to The computed probable error (or, standard
an agreed-upon standard procedure, and that error) of these values is (x units), based on
the results thereof be presented in sufficient ( e ) degrees of freedom, and the system-
detail to enable the reader to form his own judg- a()c error is estimated to be less than
ment and make his own allowances for their a'c eoises
inherent uncertainties. To avoid possible mis-
understanding in such cases: . . . which is the arithmetic mean of ( n)

(a) the term computed standard error should independent determinations and has a com-

be used; puted standard error of ..........

(b) the estimate of the standard error em- . . . with an overall uncertainty of ±=5.2
ployed should be that obtained from the relation km/sec based on a standard error of 1.5

estimate of standard error km/sec and bounds of +0.7 km/sec on the
mof s e rsystematic error. (The figure 5.2 equals

SM_ res-iduals, 0.7 plus 3 times 1.5).
np

where n is the (effective) number of completely Or, if based on a computed standard error:

independent determinations of which a is the . . . with an overall uncertainty of +7
arithmetic mean (or, other appropriate least km/sec derived from bounds of ±f:0.7
squares adjusted value) and v is the number of km/sec on the systematic error and a com-
degrees of freedom involved in the sum of puted standard error of 1.5 km/sec based
squared residuals (i.e., the number of residuals on 9 degrees of freedom. (The figure 7 is
minus the number of fitted constants and/or approximately equal to 0.7 + 4.3 (1.5),
other independent constraints); and, where 4.3 is the two-tail 0.002 probability

(c) the number of degrees of freedom v value of Student's t for 9 degrees of free-
should be explicitly stated. loin. As v - t 0, t.002 (v) -*3.090.)

23-5 SYSTEMATIC ERROR NEGLIGIBLE, IMPRECISION NOT NEGLIGIBLE
(CASE 4)

In such cases: value of the standard error so designated should
(a) Qualification of a certified or reported be given, together with a statement of the num-

value should be limited to a statement of its ber of degrees of freedom on which it is based;
standard error or of an upper bound thereto, (b) The standard error or upper bound
whenever a reliable determination of such value thereto, should be stated to not more Ithan two
or bound is available. Otherwise, a computed significant figuies;
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(c) The certified or reported result itself examples of good practice is an instance at
should be stated, at most, to the last place point:
affected by the stated value or bound to its im- The standard errors of these values are less
precision, unless it is desired to indicate and
preserve such relative precision of a higher order than (x units).... with a standard error of (x units).
that the result may possess for certain par- w.
ticular uses; . . . with a computed standard error of

(d) The qualification of a certified or re- (x units) based on ( v ) degrees of freedom.
ported result with respect to its imprecision . . . with an overall uncertainty of ±4.5
should be given in sentence form, except when km/sec derived from a standard error of
results of different precision are presented in 1.5 km/sec. (The figure 4.5 equals 3 times
tabular arrangement and it is necessary or de- 1.5).
sirable to indicate their respective imprecisions, Or, if based on a computed standard error:
in which event such information may be given
in a parallel column or columns, with appro- . . . with an overall uncertainty of ±6.5
priate identification. km/sec derived from a computed standard

error of 1.5 km/see (based on 9 degrees of
The above recommendations should not beconstrued to exclude the presentation of a quasi- freedom). (The figure 6.5 equals 4.3 times1.5, where 4.3 is the two-tail 0.002 proba-

absolute type of statement placing bounds on bility value of Student's t for 9 degrees of
its possible inaccuracy, provided that a sepa- freedom. As v -- , 1.002 (v) -- 3.090.
rate statement of its imprecision is included also.
Such bounds to its inaccuracy should be nu- The remarks with regard to a computed
merically equal to at least two times the stated standard error in Paragraph 23-4 apply with
standard error. The fourth of the following equal force to the last two of the above examples.
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Confidence Belts
(See also: Correlation coefficient; Linear Relationships)
table of, for the correlation coefficient, T-31
table of, for proportions, sample sizes greater than 30, T-45
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y, proportion of samples n for which computed intervals may be expected to bracket

m or a, 1-11
Confidence Interval Estimates
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differences in procedure results for variability known and unknown, 2-5
example of, 1-11
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advantages of, 21-4
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limits, 1-15
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procedure and example, 2-4

two-sided interval XLv and Xz, 2-2
procedure and example, 2-2

remarks, concluding, 21-6
and tests of significance, relation between, 21-1 through 21-6

comparing averages, a problem in, 21-2
figure showing OC curves for two-sided t-test (a = .05), 21-3
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presenting results, two ways of, 21-2

Confidence Levels
(See also, Confidence Limits)
choice of t and z values, variability known and unknown, discussion, 2-5
tables, one-sided distribution-free tolerance limits, T-76
tables, two-sided distribution-free tolerance limits, T-75
table, confidence associated with a tolerance limit statement, T-77

Confidence Limits
(See also: Confidence Intervals; Confidence Interval Estimates; Confidence Levels)
one-sided

table, factors for computing limits for a, T-36
table of, for a proportion, sample sizes less than 30, T-41

two-sided
table, factors for computing limits for a, r-34
table of, fo: a proportion, sample sizes less than 30, T-47

Contrasts, table of minimum required for significance in 2 × 2 tables with equal sample
sizes, T-55

Cornfield, J., 10-24
Control Charts

place of, in experimental work, 18-1 through 18-4
applications of, 18-2

table of factors for computing 3-sigma control limits, 18-3
table of formulas for, 18-3

information provided by, 18-1
table of tests for locating and identifying specific types of assignable causes, 18-2

primary objective of, 18-1
Control Limits

(See Control Charts)
Correlation coefficient, table, confidence belts for, T-31
Cowden, D. J., 18-4
Cox, D. R., 11-6
Cox, G. M., 11-6; 12-21; 13-46; 11-4, -5
Crew, E. L., 2-12; T-37, -41
Culling, H. P., 10-24
Curtis, J. M., 10-24
Curtiss, J. H., 20-13
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Curves
(See also: Control Charts; Operational Characteristic (OC) Curves)
figure showing degrees of freedom required to estimate standard deviation with

stated precision, 2-12
figure showing three different normal distributions, 1-8
figure showing various shapes of, with rega:d to frequency distributions, 1-8
normal

table, values of P corresponding to ZP, T-2
table, values of zP corresponding to P, T-3

use of OC curves to depict disceimiiiatory power of a statistical statement, 3-2

D

d. allowable margin of error in estimates, 2-9
Data

(See alsb: Conclusions; Data Samples; Decisions; Extreme-Value Data)
cautions concerning interpretation of, 1-18
figure showing plot of linear relationships between two variables, 5-2
plotting, for linear relationships of two variables, 5-1

Data Sampler,
aluminum alloy, tensile strength of, 16-6
batteries, cs:acity of, 15-4
breakdown, of electricity meters, 9-4
burning timue of rocket powder, 2-6
causes of rejection of metal castings, 9-6
cement briquettes, breaking-strength of, 15-C
chemical cells, temperature reference, 13-33
defectives in sample of new product, 8-1
field trials of two types of mine fuzes, 8-16
flame tests of fire-retardant treatments

for factorial experiments, 12-4
assuming fractional factorial design, 12-19

inspections and tests of clinical thermometers, 9-2
nickel, spectographic determination of, 13-22
peak-voltage test of fuzes, 10-2
performance of new type of mine fuze, 8-2
resistors, conversion gain of, 13-4
resistors, noise measurement of, 13-14
resistors, reverse-bias collector current of 10, 16-2
shells, penetration depth of, 15-1
small-scale comparison test of two types of artillery fuzes. 8-12
small-scale comparison test of two types of mine fuzes, 8-10
stopwatches, life tests of three ty es, 16-13
thermometers, intercomparisoi oW, 13-14
thickness .,f mica washers, 2-1
transi •tors, forward current transfer ratio of two types, 16-9
transistors. output admittance of two types, 16-11
transistors, reverse-bias collector current of 20, 16-4
transistors. reverse-bias collector currents of two types, 16-8
vacuum tube failures, 9-9
weight of shell powder, 3-3

Davies, 0. L., 6-42; 11-6; 12-21; 14-2, -4,-5
Davis. F. A., 2-12; T-37, -41
Day, B. B., 9-9, -10
DeBaun, R. M., 14-6, -7
Decisions

(See also: Conclusions; Data; Statistical Tests; Uncertainties, Expression of)
approach to a problem, 1-15
procedure, general remarks on factors involved, 3-2
using statistics to make, 1-15

Deckman, D. A., 14-7
Defectives. in sample of new product, data sample, 8-1
Degrees of Freedom

definition of uses in statistics, quote from "A Dictionary of Statistical Terms," 2-3
figure showing d.f. required to estimate standard deviation with stated precision, 2-12

8 , sign of difference, 3-1
DeLury, D. B., 6-42
Deming, W. E., 1-11. -13,-14; 2-9U. S. Department of Agriculture, 1-13, -14
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Deviates
(See also: Normal Deviates; Random normal deviates)
table, percentage points of extreme studentized deviate from sample mean, T-30

Deviation
(See also: Deviation, Standard; Performance, Variability of)
table, factors for computing one.-sded confidence limits for a, T-36
table, factors for computing two-sided confidence limits for a, T-34

Deviation Standard
(lSee also: Deviation; Performance, Variability of)
gure showing degrees of freedom required to estimate with stated precision, 2-12

of some simple distributions, figure showing, 2-9
estimating when no sample data are available, 2-8
number of measurements (sample size) required to estimate with ltated precision, 2-12

procedure and example, 2-12
sample range as an estimate of, 2-6
table, factors for eonverting range of a sample to an estimate of 0, 2-6
sample size iequired to estimate with stated precision, 2-12

Dextrons, molecular weight of, data sample, 3-38
A Dictionary of Statistical Terms, quotes from, 2-3, 6-2
Distribution

(See also: Curves; Distrilc r - ; Sampling Distribution)
bivariate, discussion of, i
of a characteristic

not completely defined until methods of measurement or unumeration are fully
a ecified, 1-2

within a population, 1-2
of one, two, three, or more characteristics in the population, 1-2
of F, table of percentiles, T6
of the t distribution, table of percentiles, T-5

Distribution-free Techniques
(See also, Tests, Distribution-free)
table, confidence associated with a tolerance limit statemeuit, T-77
tables for distribution-free tolerance limits

one-aided, T-76
two-sided, T-75

table, critical values of smaller rank sum for Wilcoxon-Mann-Whitney test, T-80
table, critical values of r for the sign test, T-78
table, critical values of T. (n) for Wilcoxon signed-ranks test, T-79

Distribution-free Tests
(See Tests, Distribution-free)

Distribution-free Tolerance Limits
(See Tolerance Limits)

Distribution Mean
methods for determining measurements and sample size required to establish with

prescribed accuracy, discussion of, 2-9
Distribution, multivariate, discussion of, 1-2
Distribution, Normal

cumulative
values of z, corresponding to P for normal curve, T-3
values of P corr%sponding to z, for normal curve, T-2

figure showing three different curves for, 1-8
determined by m and a, 1-8
table, factors for one-sided tolerance limits, T-14
table, factors for two-sided tolerance limits, T-10
figure showing percentage of population in various intervals of, 1-9

Distribution, trivariate, discussion of, 1-2
Distribution, univariate, discussion of, 1-2*1 Distributions

(See also, Extreme-value Data)
basic concepts, 1-1
frequency, figure showing various shapes of, 1-R
properties of

basic concepts, 1-6
use ot histograms, 1-6

R- bombing, methods, data sampie, 4-8
Di.... W. J., 1-19; 10-24; 17-6; T-4, -5, -24, -27, -45, -78
Dover Publications, Inc., '--12
Draper, N. R., 14-6
Duke University, ii;

j Duncan, A. J., 18-4
Dwyer, P. S.. 12
Dykstra, 0. ;
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E

East, D. A., T-34
Eisenhart, C., iii, 1-19, 4-14, 5-46, 14-6, 20-18, 22-4, T-10
Empire Journal of Experimental Agriculture, 20-13
The Engineer, 9-10
Engineering Tolerance Limits

(See Tolerance Limits, Engineering)
Epling, Mary L., iii
Epstein, B., 19-4
Equations and Formulas

(See also: discussions, and the procedures and examples for specific topics of interest)
analysis of polynomial and multivariable relationships by method of least squares,

6-1 through 6-42
Errors, definitions of the two types, 1-17
Estimates

(See also: Confidence Interval Estimates; Distrilution Mean; Population Mean)
footnote, tabulation showing situation where s is unb'ased estimator of 0, in samples

of size n, 1-10
Estimation, of mean and deviation, basic concepts, 1-10
Ex erimental Designs, 13-1 through 13-46

See also: Blocked Designs; Block Plans, Chain, Incomplete, and Randomized; Ex-
eriments, Planning and Analysis of; Latin Square Plans; Randomized Plans;Youden Square Plans)

in determining optimum conditions and levels, 14-3SExperimental Situation
(See Sensitiv v Testing)

t I Experimentation
(See Experiments, Planning and Analysis of)

EExpriennts(See also, Factorial Experiments)

planning and analysis of 11-1 through 14-8
experimental design, language of, discussion, 11-5
experimental pattern, discussion, 11-3
general considerations in planning, 11-1
nature of experimentation, discussion, 11-1planned grouning, discussion, 11-3

randomization, need for, discussion, 11-4

replication, purpose of, discussion, 11-4
e, requisites and tools for sound experimentation, 11-2.Ex4ressions of Uncertainties(See Uncertainties, Expression of)

• Extreme-value Data

analyzing statistical techniques, for, 19-1 through 19-4
distributions of values, discussion of, 19-1
techniques, use of, 19-1

largest values, 19-1
figure showing theoretical distributions of largest values, 19-2
figure sho"-ring an extreme-value plot of maximum atmospheric pressures in

Bergen, Norway, 1857-1926, 19-3
missing observations, 19-4
smallest values, 19-3

Ezekial, M., 5-46

[I I

Factors
table of, for one-sided tolerance limits for normal distributions, T-14
table of, for two-sided tolerance limits for normal distributions, T-10

Factorials
(See Factorial Experiments)
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Factorial Experiments
(See also, Response Function)
planning and analysis of, 12-1 through 12-21
terminology, discussions and definitions of, 12-1
each factor at two levels

analysis, 12-5
analysis of main effects and interactions

estimation by Yates method, discussion, 12-5
procedure and example, 12-6
table, analysis of data from data sample, 12-8

testing for significance of, procedure and example, 12-8
data sample, 12-4
estimates of experimental error for factorial-type designs, 12-3

internal estimates, discussion, 12-3
estimates from past experience, discussion, 12-3
figure, examiples of response curv*.s showing presence or absence of interactions,

12-2
fractional factorial experiments

applications and designs, discussion, 12-14
data sample, 12-19
table, fractional factorial plans, 8 factors, 12-16
analysis of main effects and interactions, 12-19

Yates' procedure for estimating, discussion, 12-19
table, Yates' method using data from data sample, 12-20
testing for significance of, procedure and example, 12-21

figures showing: a one-half, a one-quarter, and a one-eighth replicate of a 27
factorial, 12-15

tables, reported observations, using data from data sample, 12-4, -19
when uniform conditions cannot be maintained

analysis of blocked factorial experiments, 12-13
main effects and interactions, 12-13
testing for significance of, procedure, 12-13

table, blocked factorial plans for 3, 4, 5, 6, and 7 factors, 12-10
experimental design arrangements, discussion, 12-19

symbols used, definitions, 12-3
I,' distribution, table, percentiles of, T-6
Federer, W. T., 11-6
Ferris, C. D., 3-6, -11; 4-4, -6, -11, -12, -13; 21-3
Finney, D. J., 10-24
Fire-retardant treatments, flame tests of, data sample, 12-4, -19
Fisher, R. A., 6-9, -42; 10-24; 11-6; 13-46; 20-13; T-5, -32, -33
Flame tests of fire-retardant treatments, data samples

for factorial experiments, 12-4
assuming fractional factorial design, 12-19

Folks, J. L., 14-7
Formulas and Equations

(See also, discussions, and the procedures and examples for specific topics of
interest)

examples, using z as shorthand for "the sum of," 1-10
of 82 , 1-10

Fractional Factorials
(See Factorial Experiments)

Franklin, R. E., Jr., 14-7
Freeman, M. F., 20-13
The Free Press, 1-19; 21-6; T-82, -86
Frequency Distributions

(See Distributions, Frequency)
Freudentha!, A. M., 19-4
Friedman, M., 14-6
Functional Relationships

(See also, Linear Relationships)
F1 and FIT as system of linear relationships, 5-3

FI
when only one of two variables are affected by errors of measurement, 5-3
figure showing distribution of pointer readings, 5-4

FIT
when both vtriables are subject to errors of measurement, 5-3

Fz figure show•,ng joint distribution of p-inter readings, 5-5

artillery, small-scale comparison test of two types of, data sample, 8-12

mine
field trials of two types of, data sample, 8-16
performance of new type, data sample, 8-2
small-scale comparison test of two types of, data sample, 8-10

pealk-voltage test of, data sample, 10-2
proportion of defective, data sample, 7-1

I-8

Downloaded from http://www.everyspec.com



INDEX AMCP 706-11-

G

7, confidence coefficient, 2-12
y, confidence levels corresponding to values of a, 2-2
y, proportion of samples n for which computed intervals may be expected to bracket

m or a, 1-11
Gardiner, D. A., 14-6
Geary, R. C., 5-46
Glaser, R. H., 14-7
Glinski, Anna M., T-59
Goldin, J., 14-8
Golub, A., 10-24
Goode, H. P., 1-7
Grandage, A. H. E., 14-6
Grant, E. L., 18-4
Graph papers, probit, normal deviate, and normal ruling, use of to plot probit solution,

10-10
Graybill, F. A., 11-6
Greek alphabet, T-1
Greenwood, J. A., 2-12
Grohskopf, H., 14-7
Grubbs, F. E., 3-6, -11; 4-4, -6, -11, -12, -13; 10-24; 17-6; 18-4; 21-3
Gumbel, E. J., 19-1, -2, -3, -4

H

h, harmonic mean, 4-14
Hackler, W. C., 14-7
Hader, R. J., 14-6, -7; 18-4
Hafner Publishing Company, Inc., 10-24; 11-6; 12-21; 13-46; 14-4, -5; T-32, -a3
Hald, A., 17-6
Hamilton, P. A., T-34
Handbook series, ORDP 20-110 through 20-114

purpose of, ii
scope of, ii
topical coverage in individual Sections, iv

Hartley, H. 0., 3-42; 6-42; 14-7; T-6, -30, -31
Harvard University Press, T-49, -51
Hastay, M. W., 4-14, 14-6, 20-13, T-10
Heady, E. 0., 14-8
Herrera, L., T-55
Hickman, J. B., 14-8
Histograms

figure showing 1-7
steps required in preparing, 1-6
use of for revealing general nature of population distribution, 1-6

Hodges, J. L., Jr., 10-24
Hoerl, A. E., 14-8
Holt, Rinehart, and Winston, Inc., 5-7
Hotelling, H., 14-7
Houghton Mifflin Company, 5-46
Hooke's law, 5-3
Houseman, E. E., 6-42
Hunt, G. A., 9-6
Hunter, J. S., 14-4,-5, -6, -7
Hypotheses, choice of null and alternative, 1-16

1-9

Downloaded from http://www.everyspec.com



AMCP 706-i • EXPERIMENTAL STATISTICS

It

Ice, latent heat of fusion of, data sample, 3-23, .30
Imperial Bureau of Soil Science, Harpenden, England, 12-21
Inductive Statistics

(See Statistics, Inductive)
Industrial and Engineering Chemistry, 14-7, -8
Industrial Quality Control, 9-6; 14-4, -5; 17-6; 18-2, -4; T-14
Institute of Radio Engineers, 14-7
Institute of Statistics, Raleigh, N. C., 13-46, 14-6
International Statistical Institute, 9-9, -10; 14-7
Interpretations

(See also: Conclusions; Data; Decisions; Uncertainties, Expression of)
of data

cautions to be observed in statistical tests, 1-18
risks involved in conclusions from small samples, 1-19

Interstate Printers and Publishers, Inc., T-80
Iowa State College, 6-42, 14-8
Richard D. Irwin, Inc., 18-4

James, G. S., 3-42
The Johns Hopkins Press, 5-46, 22-4
Johns Hopkins University, Baltimore, Md., 14-6
Johnson, N. L., 15.6, 20-13
Journal of the Aeronautical Sciences, 19-4
Journal, American Ceramic Society, 14-7
Journal, American Statistical Association, 14-5, -6; 21-6
Journal of Applied Physics, 19-4
Journal of Industrial Engineering, 14-8
Journal of Polymer Science, 19-4
Journal of Research, National Bureau of Standards, 19-4
Jo' nal of the Royal Statistical Society, 14-6, 20-13

I" K

Ik, number of categories of classification, 9-6
K, factor in approximating limits when m and a are unknown (form, K - Ks and

X + Ks, based on sample statistics X and s) , 1-14
K, factoro, for tolerance limits, normal distributions

one-sided limits, T-14
two-sided limits, T-10

K, multiple of s used in setting tolerance limits1 1-14
Kase, S., 19-4
Kiirber method of analysis, 10-3
Kempthorne, 0., 11-6
Kendall, M. G., 2-15, 6-42, 20-13
Kenworthy, 0. 0., 14-8
Kern, D. Q., 14-8
Knudsen, L. F., 10-24
Kononenko, 0. K., 14-7
Kriegel, W. W., 14-7
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Latin Square Plns
analysis, 13-32
data sample, 13-33

estimation of row (or column) effects, 13-35
estimation of treatment effects, 13-33
symbols, definitions of, 13-32
testing and estimating differences in row (or column) effects, 13-35

procedure and example 13-35
testing and estimating dikferences in treatment effects, 13-34

procedure and example, 13-34
discussion, general, 13-1
planning, 13-30

table of selected Latin squares, 13-31
Least squares theorem, discussion and example equations, 6-3
Lehman, S. Y., iii
Lev, J., 5-7
Levels of Confidence

(See Confidence Levels)
Lieberman, G. J., 1-19; 3-7,-12, -13, -14,-18,-19; 4-14; T-14,-59
Lieblein, J., 19-1, -2, -3, -4
Limits

(See: Confidence Inter,' Tolerance Limits)
Lind, E. E., 4-8
Lindley, D. V., T-34
Lindzey, G., 20-13

Linearity
(See: Linear Relationships; Transformations)

Linear Relationshipsbetween two variables

characterizing, discussion, 5-1
determining form of empirically, procedures for plotting on graph, semilog, and

log-log papers, 5-30
figure showing nlotted data, 5-1plotting the dat~a, 5-1 :

two important systems of, discussion and definitions, 5-3
table, summary of FI, F11I, SI, SII, 5-9
table, linearizing transformations, changes of variables and formulas to convert

resulting constants to original form, 5-31
transformations, non-linear to linear, discussion and procedures, 5-30
basic worksheet for all types, 5-10
functional relationships F1 and FII, discussion and definitions, 5-3.

FI relationships
figure showing, 5-4
problems and procedures, 5-11
figure showing Young's modulus of sapphire rods as function of temperature,

5-12
procedure, best line to be used for estimating y from given values of X, 5-12
worksheet example of Young's modulus as function of temperature, 5-18
procedure, confidence interval estimates for: line as a whole; a point on the

line; future value of Y corresponding to given value of x, discussion, 5-15
procedure, predicting (1-a) confidence band for line as a whole, 5-16

table, computational arrangement for procedure and example calculations,
5-16

procedure, estimating (l-a) confidence interval for a single point oix the line,
5-18

procedure, estimating (1-a) confidence interval for future value of Y corre-
sponding to given value of x, 5-19

procedure, estimating confidence interval for slope of true line, 5-19
procedure, using fitted regression line to obtain interval estimate of x that .,

produced obf.erved new values of Y, 5-20

procedure, using fitted regression line to choose value of X expected with
confidence (1-a) to produce a value Y not less than a specified Q, 5-21

testing assumption of linear regression, discussion, 5-22
table, computational arrangement for test of linearity, 5-22

procedure, testing assumption of linear regression, 5-23
when intercept is known equal to zero, lines through the origin, discussion, 5-24

procedure, variance of Y's independent of x , 5-24
worksheet example, 5-25
procedure, variance proportional to x, 5-25
procedure, errors of Y's cumulative (cumulative errors), 5-26
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Linear Relationships (cont)
between two variables (cont)

FII relationship
distinguishing features of, discussion, 5-27
figure showing, 5-5
procedure, simple method of fitting the line (general case), 5-27

data sample, 5-27
figure showing relationship between two methods of determining a chemical

constituent, 5-28
important exceptional ctse, discussion and examples, 5-29

statistical relationships SI and SII, discussion and definitions, 5-5
SI relationship

discussion with example, 5-6
figure showing normal bivariate frequency surface, 5-6
figure showing six contour ellipses for normal bivariate distributions having

different values of five parameters, 5-7
SII relationships

discussion and example, 5-7
figure showing effect of restrictions of X or Y on regression of Y on X, 5-8

Link, R. F., T-28
Link-Wallace test, table of critical values of L for, T-28
Linnig, F. J., 18-4
Lipka, J., 5-46
Lord, E., T-26

M

V, 'hmetic mean (or "the mean") of the distribution, 1-8
m 'A age of new material, product, or process, (unknowu), 3-3
in, center of gravity of a distribution, 1-8
m, location parameter of a normal distribution, 1-8
m, median of a curve (the center of gravity), 1-8
m, number of materials, etc., to be compared, 9-6
in., average performance of a standard material, product, or process (known), 3-3
The Macmillan Company, 11-6
Madhava, K. B., 14-7
Mainland, D., T-55
Mandel, J., 5-46, 18-4
Mantel, N., 10-24
Massey, F. J., Jr., 1-19; 10-24; T-4, -5, -24, -27, -45, -78
Matrix Methods, 6-87

formulas using triangular factorization of normal equations, 6-37
triangularization of matrices, 6-88

Maxfield, M. W., 2-12; T-37, -41
McCarthy, P. J., 10-24
McGraw-Hill Book Company, Inc., 1-7, -19; 4-14; 6-42; 10-24; 11-6; 14-6; 17-6; 20-13;

22-4; T-4, -5, -10, -24, -27, -45, -78
Mean, Population

(See Population Mean)
Measured Performance

(See Performance, Measured)
Measurements

(See also: Performance, Measured; Samples)
number required to establish distribution mean with prescribed accuracy, discussion

of methods for determining, 2-9
number required to establish variability with stated precision, 2-12

Metal castings, causes of rejection, data sample, 9-6
Meters, electricity, breakdowns of, data sample, 9-4
Methods of inductive statistics, 1-2
Metron, 20-13
Mickey, M. R., 14-6
Mooney, R. B., 14-8
Moroney, M. J., 1-19
Mosteller, F., 1-4, -5, -19; 20-13
Multivariable Relationships

(See Polynomial and Multivariable Relationships)
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N

n, total number of items, 9-6
n, total number of observations, 1-10
nt, degrees of freedom for numerator, T-6
4, degrees of freedom for denominator, T-6

n,, size of sample for the ith material, product, or process, 9-6
National Bureau of Standards, 4-14, 6-42, 12-21; 19-1, -4; T-59
Natrella, Mary G., Title pages, iii, 21-1
Nature, 14-6
National Advisory Committee for Aeronautics, Technical Note, 19-4
Naval Ordnance Laboratory, White Oak, Md., 10-24
Naval Ordnance Test Station, China Lake, Calif., 2-18; T-87, -41
New York Academy of Science, 14-7
New York University, 14-6, -7; T-55
Neyman, J., 4-14
New products, defectives in sample of, data sample, 8-1
Nickel, spectographic determination of, data sample, 18-22
Non-linear Relationships

(See. also, Linear Relationships)
between two variables, transformation to linear, 5-30

Normal Deviates, random, short table of, T-86
Normal Distribution

See also, D-.stribution, Normal)
etermined by m and a, 1-8

Nirth Carolina Agricultural Experiment Station, 13-46
North Carolina State College, 14-4, -6, -7, -8
j,, degrees of freedom, 2-10
Null Hypothesis

(See also, Hypotheses)
definition, 1-16

Numbers
(See Random Numbers)

0

Observations, table of, criteria for rejection of outlying, T-27
OC Curves

(See: Curves- Operating Characteristic (OC) Curves; Performance Average; Per-
formance, Variability of; Statistical Analysis; Statistical Tests)

Oliver and Boyd, London, 2-15; 6-29, -42; T-5, -32, -33
Oliver and Boyd, Ltd., Edinburgh, 11-6; 13-46; 14-2, -4, -5
Olmstead, P. S., 18-2, -4
Olson, L. R., 14-7
Operating Characteristics

(See: Operating Characteristic (OC) Curves; Performance Average; Performance,
Variability of; Statistical Analysis; Statistical Tests)

Operating Characteristic (OC) Curves
(See also: Curves; Performance, Average; Performance Variability of; Statistical

Analysis; Statistical Tests)
of a statistical test, 1-17
figures showing curves for

one-sided x2 test, to determine whether a, exceeds a, (a - .05) , 4-4
one-sided x2 test, to determine whether a, is less than (, (a = .05) , 4-6
one-sided F-test, to determine whether av exceeds an (a = .05; nA = n2) , 4-11 *
one-sided F-test, to determine whether a, exceeds as (a = .05; nA inB,

8gn = 2n 5 , 
2

flA = no) , 4-12
one-sided F-test, to determine whether aA exceeds as (a .05; nA =ns, 2hA S= s ;

nA = 2nh) , 4-13
one-sided normal test (a = .01) , 3-19
one-sided normal test (a = .05) , 3-18
two-sided normal test (a = .01) , 3-2
tw..-sided normal test (a = .05) , 3-11
ona -Aded t-test (a .01) , 3-15
one-sided t-test (a = .05) , 3-14
two-sided t-test (a = .01) , 3-7
two-sided t-test (a = .05) , 3-6, 21-3
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Optimum Conditions or Levels
(See also, Response Function)
discussion, general, 14-1
experimental designs to determine, 14-3
experiments to determine, 14-1 through 14-8
finding the optimum, 14-3
recommended sources for further study, 14-4

Orthogonal Polynomials
(See Polynomial and Multivariable Relationships)

Outliers, Treatment of, 17-1 through 17-6
rejecting observations

discussion of problem, 17-1
in routine experimental work, 17-2
in a single experiment

extreme observations in only one direction considered rejectable, 17-4
mean and standard deviation unknown, sample is only source of information,

17-4
Dixon criterion, procedure, 17-4

mean unknown, value of standard deviation assumed, 17-5
extreme standardized deviate from sample mean, procedure, 17-5

mean and standard deviation unknown, independent external estimate of devi-
ation available, 17-5
extreme studentized deviate from sample mean; the Nair criterion, proce-

dure, 17-5
mean and standard deviation known, 17-6

procedure and example, 17-6
extreme observations in either direction considered rejectable, 17-3

mean unknown, value for standard deviation assumed, 17-3
procedure, 17-3

mean and standard deviation unknown, sample is only source of information,
17-3
Dixon criterion, procedure and example, 17-3

mean and standard deviation unknown, independent external estimate of devi-
ation available, 17-3
studentized range, procedure, 17-3

mean and standard deviation known, 17-4
procedure and example, 17-4

table, criteria for rejection of outlying observations, T-27
Owen, D. B., 2-15, T-59

P

P, proportion of elements in a population, 1-8, -9
Pachares, J., T-18
Pearson, E. S., 3-42; 4-14; 6-42; T-6, -30, -31
Penguin Books, Inc., 1-19
Percentages

(See also: Performance, Average; Performance, Variablity of)
figure showing percentage of population in various intervals of normal distribution,

1-9
table, percentage points of extreme studentized deviate from sample mean, T-30
table, percentiles of the x2 distribution, T-4
table, F distribution, T.6

table, F' = , T-24
table, for 0, T-26
table, for 0', T-26
table, for the studentized range, q, T-18
table, for the t-distribution, T-5

Performance Average
(See also: Tests, Distribution-free; Tests, Shortcut)
best single estimate of, 2-1

procedure and example, 2-2
comparing materials or products

discussion, 3-1
statistical tests, discussion of -ases in testing for differences, 3-1

confidence interval estimates of, 2-1
general remarks, 2-2

1-14
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Performance, Average (cant)
estimating from a sample, discussion, 2-1
comparing new product with a standard

discussion, 3-3
table, summary of Chapter 3 techndques for comparing, 3-4
does new product differ from a standard

(a known) two-sided normal test
operating characteristics of test, 3-9
figure showing OC curves (a = .01) 3-12
figure showing OC curves (a = .05) , 3-11
procedure and example, 3-8
selection of sample size n, 3-9

(a unknown) two-side t-test
operating characteristics of test, 3-5
figure showing OC curves (a =.01) , 3-7
figure showing OC curves (a =.05) , 3-6
procedure and example, 3-4
selection of sample size n, 3-5

does new product exceed a standard
(a known) one-sided normal test

operating characteristics of test, 3-17
figure showing OC curves (a = .01) , 3-19
figure showing OC curve (a = .05) , 3-18
procedure and example, 3-16
selection of sample size n, 3-17

does new product exceed a standard (cont)
(a unknown) one-sided t-test

operating characteristics of test, 3-13
figure showing OC curves (a = .01) , 3-15
figure showing OC curves (a = .05) , 3-14
procedure and example, 3-13
selection of sample size n, 3-16

is niew product less than a standard
(a known) one-sided normal test

operating characteristics of test, 3-21figure showing OC curves (a = .01) , 3-19
figure showing OC curves (a = .05) , 3-18
procedure and example, 3-21
selection of sample size n, 3-22

(a unknown) one-sided t-test
operating characteristics of test, 3-20
figure showing OC curves (a = .01) , 3-15
figure showing OC curves (a = .05) , 3-14
procedure and example, 3-20
selection of sample size n, 3-21

comparing two materials, products, or processes
discussion, 3-22
table, summary of Chapter 3 techniques for comparing, 3-22
do products A and B differ

OA and an known, two-sided normal test
operating characteristics of test, 3-31
figure showing OC curves (a = .05) , 3-11
procedure and example, 3-30
selection of sample size n, 3-31

as and a& unknown, but assumed equal, two-sided t-test
operating characteristics of test, 3-24
figure showing probability of rejection of hypothesis mA in , 3-25
procedure and example, 3-24
selection of sample. size n, 3-26

GA and a, unknown, cannot be assumed equal, two-sided t-test
discussion of test procedure, 3-28
figure showing OC curves (a = .05) , 3-6
procedure and example, 3-27

paired observations

discussion, 3-31
operating characteristics of test, 3-32
procedure and example, 3-32
selection of number of pairs n, 3-33

1-15
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Performance, Average (cont)
comparing two materials, products, or processes (cont)

does product A exceed B
Ga and aB known, one-sided normal test

operating characteristics of test, 3-38
figure showing OC curves (a = .01) , 3-19
figure showing OC curves (a = .05) , 3-18
procedure and example, 3-37
selection of sample size n, 3-38

paired observations
discussion, 3-38
operating characteristics of test, 3-39
procedure and example, 3-39
selection of number of pairs n, 3-40

rA and on unknown, but assumed equal, one-sided t-test
operating characteristics of test, 3-35
figure showing OC curves (a = .01) , 3-15
figure showing OC curves (a = .05) , 3-14
procedure and example, 3-34
selection of sample size n, 3-35

•A and Ga unknown, cannot be assumed equal
procedure and example, 3-36

comparing several products
do t products differ, equal sample sizes

discussion, 3-40
procedure and example, 3-41

Performance, Measured
characterizing of a material, product, or process, 2-1

Performance, Qualitative
characterizing of

data sample, 7-1discussion, 7-1
one-sided confidenec intervals, 7-3
approximate limits for n > 30 (one-sided), procedure and example, 7-3
exact limits for n • 30 (one-sided), 7-3
exact limits for n > 30 (one-sided), 7-3
best single estimate of true proportion, procedure and example, 7-1
confidence interval estimates of true proportion, 7-2

two-sided intervals, 7-2
approximate limits for n > 30 (two-sided), procedure and example, 7-2
exact limits for n --! 30 (two-sided), 7-2
exact limits for n > 30 (two-sided), 7-2

sample size required to estimate true proportion;
discussion, 7-4
with a specified limit of error in both directions (± 8) , 7-4

graphical method
discussion, 7-4
procedure and example, 7-4

numerical method
discussion, 7-5procedure and example, 7-5

with a specified limit in only one direction (+ 8 or - 8)
discussion, 7-5
procedure and example, 7-6

Performance, Several Categories
comparing materials or products with respect to (chi-square test)

discussion of classification scheme, 9-1
test of association between two methods of classification

data sample, 9-9
discussion, 9-8
procedure and example, 9-9
table, computational arrangement for data sample on vacuum tube failures, 9-10

comparing with a standard
data sample, 9-2
procedure and example, 9-3
table, computational arrangement for data sample on clinical thermometers, 9-3

comparing with a theoretical standard
data sample, 9-4
procedure and example, 9-5
table, computational arrangement for data sample on electricity meters, 9-5

comparing two or more products
data sample, 9-6
definitions of symbols used, 9-6
procedure and example, 9-6
simplified computation for m = 2, 9-8
simplified computation for m = 2 when n, = n:, 9-8
table, computational arrangement for data sample on metal castings, 9-7

1-16
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Polynomial and Multivwriable Relationships (cont)
multivariable functio ial relationships (cont)

standard deviation of a linear function of the /3's, Step (6)
example, 6-13
procedure, 6-12

standard deviation of a predicted point, Step (7)
example, 6-13
procedure, 6-12

analysis of variance test of significance of group of p < k of coefficients, Step (8),
procedure, 6-14

analysis of variance test of significance of last coefficient, Step (8), example, 6-15
confidence interval estimates, Step (9)

example, 6-17
procedure, 6-16

polynomial fitting, 6-18
discussion and example equations, 6-18

use of orthogonal po!ynomials with equally spaced x values, 6-26
discussion of procedures and examples, 6-26
equations showing /3's as a function of a's for polynomials up to 5th degree, 6-36
sample table of orthogonal polynomials, 6-28
Step (1,, example, 6-31

procedure, 6-31
Step (2), example, 6-31

procedure, 6-30
Step (3), example, 6-33

procedure, 6-32
Step (4), example, 6-33

procedure, 6-32
Step (5), example, 6-33

procedure, 6-32
Step (6), example, 6-35

procedure, 6-34
polynomials, up to 5th degree, equation showing fl's as a function of a's, 6-36

Population Mean, Estimation of
using a single sample

procedure and example for determining sample size required, 2-10
using sample taken in two stages

discussion of method, 2-10
procedure and example for determining sample size required, 2-11

Populations
concepts, 1-1
examples of, 1-1
importance of knowing "parent" population from which sample is taken, 1-5
types of "parent" populations, 1-5

Powder
(See also, Rocket powder)
weight of for shells, data sample, 3-3

Prentice-Hall, Inc., 1-19; 3-7, -12, -13, -14, -18, -19; 4-14; 18-4
Princeton University, T-28
Probability Level

one-sided and two-sided tests
tables for testing significance in 2 X 2 tables with unequal sample sizes, T-59

Probit Method of Analysis, 10-8
(See also, Sensitivity Testing)table, maximum and minimum working probits and range, T-33

table, weighting coefficients for, T-32
Probit paper, use of to plot probit solution, 10-10
Probits

(See Probit Method of Analysis)
Proportion

table, arc sine transformation for, T-54
table, confidence belts for (sample sizes greater than 30), T-45
table, one-sided confidence limits for (sample sizes less than 30), T-41
table, twn-sided confidence limits for (sample sizes less than 30), T-37
table, cumulative normal distribution, values of P corresponding to z, for normal

curve, T-2
table, sample sizes required for comparing with a standard, sign of difference is im-

portant, T-51
table, sample sizes required for comparing with a standard, sign of difference is not

important, T-48
Proschan, F., 17-6
Publications, referenced for adapted, reproduced, quoted, or recommended statistical

works
American Standard Control Chart Method of Controlling Quality During Production,

Z 1.3 - 1958, 18-3, -4
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Publications (Cont)
The American Statistician, 19-1, -2, -3; 21-1
Analyst, 14-5
Analytical Chemistry, 18-4
Annals of Mathematical Statistics, 3-6, -11; 4-4, -6, -11, -12, -13; 14-5, -6, 7; 17-6;

20-13; 21-3; T-75, -76, -77
ASTM Manual of Quality Control of Materials, 18-3, -4; 21-5
Basic Engineering, 14-5
Biometrics, 5-46; 14-5, -6, -7; 17-6; 20-13
Biometrika, 3-25, -42; 14-5, -6; 20-13; T-18, -26, -34, -46
Biometrika Tables for Statisticians, T-7, -30, -31
Chemical Engineering Progress, 14-7, -8
A Dictionary of Statistical Terms, 2-3, 6-2
Empire Journal of Experimental Agriculture, 20-13
The Engineer, 9-10
Ihdustrial and Engineering Chemistry, 14-7, -8
Industrial Quality Control, 9-6; 14-4, -5; 17-6; 18-2, -4; T-14
Journal of the Aeronautical Sciences, 19-4
Journal, American Ceramic Society, 14-7
Journal of American Statistical Association, 1-19; 2-12; 5-46; 10-24; 14-5, -6; 19-4;

21-6
Journal of Applied Physics, 19-4
Journal of Industrial Engineering, 14-8
Journal of Polymer Science, 19-4
Journal of Research, National Bureau of Standards, 19-4
Journal of the Royal Statistical Society, 14-6, 20-13
Metron, 20-13
National Bureau of Standards Applied Mathematics Series, 19-4
National Bureau of Standards News Bulletin 38, 19-1
Nature, 14-6
Proceedings of The Royal Society A, 19-4
Review, International Statistical Institute, 14-7
Rubber Age, 5-46
Tappi, 14-7
Technometrics, 14-5, -6, .7
Washington University Studies, New Series, Science and Technology, 17-6

Publishers, of adapted, reproduced, or recommended statistical works
Addison-Wesley PublishinL7 Co., Inc., 20-13
American Cyanamid Company, T-79
American Society for Quality Control, 14-4, -5, -7, .8
American Society for Testing Materials (ASTM), 1-12; 18-3, -4; 21-5
American Soil Sciences Society, 14-7
American Standards Association, 18-3, -4
American Statistical Association, 1-19, 2-12, 5-46, 10-24, 19-4
Cambridge University Press, 1-19; 3-42; 6-42; 10-24; 20-13; T-6, -30, -31
Columbia University Press, 19-4
Dover Publications, Inc., 2-12
The Free Press, 1-19; 21-6; T-82, -86
Hafner Publishing Company, Inc., 10-24; 11-6; 12-21; 13-46; 14-4, -5; T-32, -33
Harvard University Press, T-48, -51
Holt, Rinehart, and Winston, Inc., 5-7
Houghton Mifflin Company, 5-46
International Statistical Institute, 9-9, -10; 14-7
Interstate Printers and Publishers, Inc., T-80
Institute of Radio Engineers, 14-7
Institute of Statistics, Raleigh, N. C., 13-46, 14-6
Iowa State College, 6-42, 14-8
Richard D. Irwin, Inc., 18-4
The Johns Hopkins Press, 5-46, 22-4
Johns Hopkins University, Baltimore, Md., 14-6
McGraw-Hill Book Company, Inc., 1-7, -19; 4-14; 6-42; 10-24; 11-6; 14-6; 17-6; 18-4;

20-13; 22-4; T-4, -5, -10, -24, -27, -45, -78
National Advisory Committee for Aeronautics, 19-4
New York Academy of Science, 14-7
New York University, 14-6, -7; T-55
North Carolina Agricultural Experiment Station, 13-46
North Carolina State College, 14-4, -6, -7, -8
Oliver and Boyd, Ltd., Edinburgh, 11-6; 13-46; 14-2, -4, -5
Oliver and Boyd, Ltd., London, 2.15; 6-29; T-5, .32, -33
Penguin Books, Inc., 1-19
Prentice-Hall, Inc., 1-19; 3-7, -12, -13, -14, -18, -19; 4-14; 18-4
Princeton University, T-28
The Rand Corporation, 1-6, -19; T-82, -86
Sandia Corporation, 2-15
Stanford University, T-59
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Performance, Two-fold Classification
comparing materials or product with respect to, discussion, 8-1
comparing observed proportion with a standard

does new product differ from a standard
procedure for n ---- 30, 8-1

data sample, 8-1
procedure and example, 8-2

procedure for n > 30, 8-2
data sample, 8-2
procedure and example, 8-3

does new pr3duct exceed a standard
procedure for n • 30, 8-3

procedure and example, 8-3
procedure for a > 30, 8-4

procedure and example, 8-4
is new product less than a standard

procedure for n ! 30, 8-5
procedure and example, 8-5

procedure for n > 30, 8-5
procedure and example, 8-5

sample size required to detect a difference of prescribed magnitude
when sign of difference is important, 8-7

procedure and example, 8-8
when sign of difference is not important, 8-6

procedure and example, 8-6
comparing two observed proportions

discussion, 8-9
table, observed frequencies from two samples from two mutually-exclusive cate-

gories, 8-9
table, rearranged for use with Table A-29, 8-12
when sample sizes are equal

data sample, 8-10
discussion, 8-9
does product A differ from B, 8-10

procedure and example, 8-10
does product A exceed B, 8-11

procedure and example, 8-11
when sample sizes are large

does product A differ from B, 8-16
data sample, 8-16
procedure and example, 8-16

does product A exceed B, 8-18
procedure and example, 8-18

when sample sizes are unequal and small
doe.i product A differ from B, 8-12

data sample, 8-12
data, rearranged for use with Table A-29, 8-13
procedure and example, 8-12

does product A exceed B, 8-14
data sample, 8-14
data, rearranged for use with Table A-29, 8-15
procedure and example, 8-14

gam le size required to detect a difference of prescribed magnitude
when the sign of difference is important, 8-20

procedure and example, 8-20
when sign of difference is not important, 8-18

procedure and example, 8-19
Performance, Variability of

estimating, general discussion, 2-6
estimating when no sample data are available, discussion, 2-8
single estimates of s8 and s, procedure and example, 2-6
one-sided confidence interval estimates for (a,, or st) , discussion, 2-7

procedure and example, 2-8
two-sided coafidence interval estimates for (s. and su) , procedure and example, 2-7
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Performance, Variability of (cont)
comparing new material or product with a standard

discussion, 4-1
does new product differ from a standard, 4-1

operating characteristics of test, 4-2
procedure and example, 4-2

does new product exceed a standard, 4-3
operating characteristics of test, 4-3
figure showing 0C curves of one-sided X2-test (a .05) and various n values, 4-4
procedure and example, 4-3
selection of sample size, 4-4

is new product less than a standard, 4-5
operating characteristics of test, 4-6
figure showing OC curves of one-sided x2-test (a = .05) and various n values, 4-6
procedure and example, 4-5
selection of sample size, 4-7

comparing two materials or products
discussion, 4-8
does product A differ from B, 4-8

operating characteristics of test, 4-9
procedure and example, 4-9

does product A exceed B, 4-9
operating characteristics of test, 4-10
figure showing 0C curves of one-sided F-test (a .05; nA = nB) , 4-11
figure showing 0C curvms of one-sided F-test (a = .65; nA = niB, 3nf = 2Wl,

2nA = n.) , 4-12
figure showing OC curves of one-sided F-test (a = .05; nA = nn, 2 nA = 3nB,

nA = 2na) , 4-13
procedure and example, 4-10
selection of sample size, 4-11

Pesek, J. T., 14-8
Planning

(See Experiments, Planning and Annlysis of)
Pike, F. P., 14-8
Plates, surface hardness of, data sample, 3-34
Plotting

(See: Data: Histograms; Linear Relationships; Plotting paper)
Plotting paper, procedures for use of to determine form of a relationship empirically,

5-30
Polynomial and Multivariable Relationships

analysis by method of least squares, 6-1
discussion of many-variable relationships and analysis techniques, 6-1
correlated measurement errors, 6-22

discussion of procedures and examples, 6-22examples, 6-23
procedures, 6-22

inequality of variance, 6-19
discussion of procedures and examples, 6-19
examples, 6-21
procedures, 6-20

least squares theorem, discussion and example equations, 6-3
matrix methods, 6-37

formulas using triangular factorization of normal equations, 6-37
remarks on values needed for computations, 6-41
triangularization of matrices, 6-38

multiple measurements at o or more points, ;scussion and example equations, 6-17
multivariable functional re ionships, 6-4

discussion of procedures I examples, with data sample and equations, 6-5
use and assumptions, discu.._ion and sample of tabulated data and equations, 6-4
formation of normal equations, Step (1)

example, 6-7
procedure, 6-6

solution of normal equations, Step (2)
example, 6-9
procedure, 6-8

calculation of di.viation between predicted and observed t es of Y's, Step (3)
example, 6-11
procedure. 6-10

estimation of v2 , Step (4)
example, 6-11

ocedure, 6-10
nation standard deviations of the coefficients, Step (5)
nple, 6-13
!dure, 6-12
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Publishers (Cont)
University College, London, 3-41
University of London, 4.14
University of Toronto Press 6-42
U. S. Government Printing 6 ffice, 6-4
Van Nostrand, Inc., 18-4
John Wiley & Sons, Inc., 1-8, -11, •-9; 5-46; 6-42; 11-6; 12-21; 13-40; 14-4, -5,

-6, -7; 17-6

Qualitative Performance
(See Performance, Qualitative)

Quenouille, M. H., 11-6

R

r , table, critical values of, for sign test (one-sided and two.sided tests), T-78
R, range (difference between largest and smallest), 1-2
R,, ( = 1, 2, . . .) as sample distribution of muzzle velocities in samples of size 10, 1-2
R,, w -ere i = 1, 2, . . . , collectively determine sampling distribution of range, 1-2
The Rand Coi poration, 1-6, -19; T-82, -86
Randomization

(See: Block Plans, Randomized; Experiments, Planning and Analysis of; Randomized
Plans; Random Sampling)

Randomized Plans
analysis, 13-2completely-randomized plans, 13-1

discussion, general, 13-1
table, schematic presentation of results, 13-2

Random normal deviates, short table of, T-86
Random numbers, short table of, T-82
Random Sampling

basic concepts, 1-4
simple (or unrestricted), 1-4
selection of sample

basic concepts, 1-6
discussion of methods, 1-6
use of tables of random numbers, 1-6

Range
table, factors for converting to estimate of a (= Range/d,.) 2-6
table, maximum and minimum working probits and range, T-33
of n observations, defined as difference between highest and lowest of the n values, 2-6
table, percentiles of the studentzed range q, T-18
sampl- range as an estimate of standard deviation, 2-6

Rank s.i, , table of critical values of smaller, for the Wilcoxon-Mann-Whitney test
(one.sided and two-sided), T-80

Read, D. R., 14-7
Rejecting Observations

(See Outliers, Treatment of)
Rejection"(See also: Outliers, Treatment of)

of outlying observations, table of criteria for, T-27
figure showing probability of rejection of hypothesis MA = mf when true, plotted

again 8, 3-25
Relationships

(See: Functional Relationships; Linear Relationships; Polynomial and Multivariabie
Relationships; Statistical Relationships)

Replication
(See Experiments, Planning and Analysis of)

Resistors
conversion gain of, data sample, 13-4
noise measuremcnt of, data sample, 13-14
reverse-bias collector current of 10, data sample, 16-2

1-21
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Response Function, 14-1
in a factorial experiment, 14-1
figure showing a response surface, 14-2
figure showing contours for a response surface with 22 factorial sign, 14-2

Results, Final
(See Uncertainties, Expression of)

Review, International Statistical Institute, 14-7
Richey, G. G., 5-46
Rider, P. R., 17-6
Rietz, H. L., 5-46
Ringelman, R. E., 14-7
Roberts, H. V., 1-19, 21-6
Rocket powder, burning time of, data sample, 2-6
Rockwell hardness table, for use in preparing histograms, 1-7
Rosenblatt, M., 10-24
Roth, P. B., 14-8
The Royal Society A, Proceedings of, 19-4
Rubber Age, 5-46

S

s, standard deviation estimate computed from n measurements on new product (used
where a is unknown), 3-3"8, unbiased estimator of a, 1-10

s2 , best unbiased sample estimate of varian -, in estimate of o, 1-10
2 , formula of, for computational purposes, 1-10

SI, statistical relationship, when errors of measurement are negligible compared to
variation of each item, 5-6

SII, statistical relationship, when range of one or two variables is preselected or re-
stricted, 5-6

Samples, concepts, 1-1
Sample mean, table, percentage points of extreme deviate, T-S0
Sample Range

(See Range)
Sample Size

e also: Measurements; Population mean; and selection of sample size, under
specific topics of interest)

number required to establish distribution mean with prescribed accuracy, discussion
of methods for determining, 2-9

table, sizes required to detect prescribed differences in averages, when sign of differ-
ence IS important, T-17

table, sizes required to detect prescribed differences in averages, when sign of differ-
ence IS NOT important, T-16

table, sizes required for comparing a proportion with a standard, when sign of differ-
ence IS important, T-48

table, sizes required for comparing a proportion with a standard, when sign of differ-
ence IS NOT important, T-48

Sampling
(See also, Random Sampling)
importance of knowing the "parent" population from which sample is taken, 1-5
principles of, 1-4
quote on randomization, 1-5
techniques, 1-4

Sampling Distribution
of X for samples of size 10, 1-2
figure showing distribution of sample mean X for samples of various sizes from same

normal distribution, 1-11
figure showing distribution of sample variance s8 for samples of various sizes from

same normal distribution, 1-11
Sampling, Random

(See Random Sampling)Sampling scheme, conditions to be insured by, 1-4

Sanderson, B. S., 14-8
Sandia Corporation, 2-15
Sandomire, M. M., 2-12
Sapphire rods, Young's modulus vs., temperature for, data sample, 5-11
Savage, L. J., 14-6
Scarborough, J. B., 5-30, -46; 22-4
Scheft, H., 11-6
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Schneider, A. M., 14-7
Sensitivity Testing

applications of term, 10-1
data, collecting and analyzing, discussion of methods, 10-2
data sample, 10-2
experimental situation, discussion and examples, 10-1
Kirber method of analysis

discussion, 10-3
selection of stimulus levels, 10-3
general solutioai for, 10-4

example, 10-5procedure, 10-4
table, example analysis data, 10-5

simplified solution for special case, test levels equally spaced, equal numbers of
items tested at each level, 10-6
example, 10-7
procedure, 10-6
table, example analysis data, 10-7

probit method of analysis
discussion, 10-8
method, basis of, discussion and formulas, 10-9
selection of stimulus level, 10-8
solutions, discussion, 10-9
exact probit solution, discussion, 10-16

example, 10-17
procedure, 10-16
table, example analysis data, 10-17
example for additional iteration, 10.19
procedure for additional iteration 10-18
table, example analysis data for. ond iteration, 10-19

graphical solutions, discussion, 10-1v
example, 10-11
procedure, 10-10
table, example analysis data, 10-11
figure showing probit regression line. fitted by eye, 10-13

using probit regression line for prediction, 10-21
estimate of proportion expected to respond at specified levels, 10-21
estimates of stimulus levels, 10-21

testing whether line is adequate representation of data, 10-20
example, 10-20
procedure, 10-20
table, test of linearity, example final probit equation, 10-20

when stimulus levels cannot be controlled, discussion, 10-24
up-and-down design, 10-22

discussion of method, 10-22
procedure, 10-23

Severo, N. C., iii
Shells, penetration depth of, data sample, 15-1
Shewell, C. T., 14-8
Shewhart, W. A., 1-13; -14; 18-4
Shrikhande, S. S., 13-46
Shortcut Tests

(See Tests, Shortcut)
a, distance from m to either of two inflection points on normal distribution curve

("radius of gyration" of distribution about m) , 1-8
a, measure of the spread, scatter, or dispersion of a normal distribution, 1-8
a, standard deviation (or population mean; population standard deviation), 1-8
a, known standard deviation of new product, 3-3
ao, known variability of a standard, measured by its standard deviation, 4-1
U2 , second moment about m, 1-8
012 , variance of the distribution, 1-8
2;, example formulas, using as shorthand for "the sum of," 1-10
Signed-ranks Test

table, critical values of smaller rank suim for Wilcoxon-Mann-Whitney test (one-
sided and two-sided), T-80

table, critical values of Ta (n) for, (one-sided and two-sided), T-79
Significance

(,ee, Tests of Significance)
Significance Level

of a statistical test, 1-17
choice o0, for statistical tests, 1-17
tiible, minimum contrasts required for, in 2 x 2 tables with equal sample sizes, T-55

T-55
tables, for testing significance in 2 X 2 tables with unequal sample sires (one-sided

and two-sided tests), T-59
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Significant Contrasts
(See, Contrasts)

Sign Test
(See also, Tests, Distribution-free)
table, critical values of r for (one-sided and two-sided tests), T-78

Skewness
figure rhowing frequency distributions of various shapes, 1-8

Smith, A. C., 14-7
Smith, W. N., 14-7
Square Plans

(See: Latin Square Plans; Youden Square Plans)
Somerville, P. N., iii; T-75, -76, -77
Staircase Methods

(See, Sensitivity Testing, Up-and-Down Designs)
Standard Deviation

(See Deviation, Standard)
Stanford University, T-59
Statement of Tolerance Limits

(See Tolerance Limits)
Statistical Analysis

S(See also: Distribution-free Technique; Sensitivity Testing; Tests of Significance)
Kirber method, 10-3
probit method, 10-8
table, percentiles of the y. distribution, T-4
of samples from binomial distributions

table, arc sine transformations for proportions, T-54
table, confidence belts for proportions for n > 30 (confidence coefficients .90, .95,

.99) , T-45
table, confidence limits for a proportion (one-sided), T-41
table, confidence limits for a proportion (two-sided), T-37
table, minimum contrasts required for significance in 2 x 2 tables with equal

samples, T-55
table, sample size required for comparing proportion with a standard, sign of

difference NOT important, T-48
, sign of difference IS important, T-51

table for testing significance in 2 X 2 tables with unequal samples, T-59
of samples from normal distributions

table, confidence belts for correlation coefficient (confidence coefficient .95), T-31
table, criteria for rejection of outlying observations, T-27
table, critical values of L for Link-Wallace test, T-28
table, factors for one-sided tolerance limits, T-14
table, factors for two-sided tolerance limits, T-10
table, factors for computing one-sided confidence limits for a, T-36
table, factors for computing two-sided confidence limits for a, T-34
table, maximum and minimum working probits and range, T-33
table, percentiles of F', T-24
table, percentiles for 0, T-26
table, percentiles for 0', T-26
table, percentage points of extreme studentized deviate from sample mean, T-30
table, percentiles of the studentized range q , T-18
table, sample sizes required to detect prescribed differences in averages, sign of

difference NOT important, T-16
sign of difference IS important, T-17

table, weighting coefficients for probit analysis, T-32
Statistical Computations

(See Computations, Statistical)
Statistical concepts, basic, 1-1, -19
Statistical Inferences

discussion, definition, and examples of, 1-3
as estimates of magnitude of population characteristics, 1-3
as tests of hypotheses regarding population characteristics, 1-3

Statistical methods, inductive, 1-1
Statistical Relationships

(See also, Linear Relationships)
between two variables

problems and - *cedures for, 5-31
I relationsh
data sami. , 5-33
discussioi and examples, 5-31
estimating confidence band for line as a whole,

procedure and example, 5-36
table, computational arrangement for, 5-37

confidence interval estimate for slope of true regression line, procedure and
example, 5-38
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Statistical Relationships (cont)
between two variables (cont)

SI relationships (cont)
confidence interval estimate for single (future) value of Y corresponding to

chosen value of X, procedure and example, 5-38
estimating confidence interval for single point on line, procedure and example,

6-37
confidence interval estimates for line as a whole, a point on the line, single Y

corresponding to new vatue of X, 5-36
figure showing the line and confidence limit for the line, using relationship be-

tween two methods of estimating tread life, 5-.5
degree of relationship of X and Y as measured by correlation coefficient; proýe-

duie and example, 5-40
procedure, best line for estimating Fx from given values of X, 5-33

worksheet example, 5-34
best line for predicting •y from given values of Y, procedure and example, 5-39
figure showing relationship between two methods of estimating tire tread life,

5-32
figure showing two regression lines, using relationship between two methods

of estimating tread life, 5-39
using regression hine for prediction; using fitted line equation; and example of

predicted values, 5-35
SII relationships

data sample, 5-40
discussion, 5.40
example worksheet, 5-41
confidence band for line as a whole, procedure and example, 5-43

table, computational arrangement and example calculations for, 5-44
confidence interval estimates for: line as a whole; a point on the line; a single

Y corresponding to new value of X, 5-42
confidence interval for slope of true line, procedure and example, 5-45
confidence interval for a single point on the line, procedure and example, 5-44
confidence interval for a single (future) value of Y corresponding to chosen

value of X, procedure and example, 5-45
best line for estimating Fx from given value of X, procedure, 5-41
figure showing relationship between two methods, range of one method restricted,

5-42
Statistical Techniques

(See lbxtr'ýme-value Data)
Statistical Tests

application to experimental results in making decisions, 3-1
cautions concerning interpretations of data, 1-18
use of OC curve to de ict diccriminatory power of, 3-2
uses in testing for diferences in average performance, discussion, 3-1

Statistical Tolerance Limits
(See Tolerance limits, Statistical)

Statistics
preliminary considerations, 1-1
using to make decisions, 1-15

Statistics, Inductive
methods of, discussion, 1-2
use of inductive methods to learn about population characteristics from study of

samples, 1-2
Stiehler, R. D., 5-46
Stopwatches, life tests of three typea, data sample, 16-13
Studentized Range

(See Range)
Sutcliffe, M., T-55
Swan, A. W., 9-10
Sweeney, R. F., 14-8
Switlyk, G., 14-8
Symbols

(See also: discussions, and the procedures and examples for specific topics of inter-
est)

definitions for m , m. , a , and o, 3-3
Systems

(See Linear Relationships)
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T

Tables
(See also, specific topic of interest)
arrangement of A-Tables, discussion, T-1
referenced A-Tables, T-1 through T-89
of random numbers, T-82

example of use of, 1-6
Rockwell hardness reading as first step in preparing a histogram, 1-7
Tappi, 14-7
'rate, M. W., T-80
"Taussky, 0., 6-42
t-distribution, table of percentiles, T-5
Techniques

(See: Discussions of, in front of Sections 1 through 4; Distribution-free Techniques)
Technometrics, 14-5, -6, -7
Testing, Sensitivity

(See, Sensitivity Testing)
Tests

(See also: Significance Level; Statistical Tests)
of significance

table, cumulative normal distribution, values of P, T-2
table, cumulative normal distribution, values of zP, T-3

table, minimum contrast required for significance in 2 x 2 tables with equal sam-
pies, T-55

table, percentiles of F distribution, T-6
table, percentiles of t distribution, T-5
table, percentiles of x 2 distribution, T-4

Tests, Distribution-free, 16-1 through 16-14
discussion, general, 16-1
comparing average of new product with a standard, 16-2

data sample, 16-2
does new differ from standard

the sign test, 16-2
procedure and example, 16-2

the Wilcoxon signed-ranks test, 16-3
procedure and example, 16-3

does new exceed standard, 16-4
data sample, 16-4
the sign test, 16-4

procedure and example, 16-4
the Wilcoxon signed-ranks test, 16-5procedure and example, 16-5

is new less than standard, 16-6

data sample, 16-6
the sign test, 16-6

procedure and example, 16-6
the Wilcoxon signed-ranks test, 16-7

procedure and example, 16-7
comparing averages of several products, 16-13

do t products differ, 16-13
data sample, 16-13
procedure and example, 16-14
work table for data sample, 16-13

comparing averages of two products, 16-8
discussion, general, 16-8
does A differ from B, 16-8

the sign test for paired observations, 16-8
data sample, 16-8

the Wilcoxon-Mann-Whitney test for two independent samples, 16-9
data sample, 16-9
procedure and example, 16-10

does A exceed B, 16-10
the sign test for paired observations, 16-11

procedure and example, 16-11
the Wilcoxon-Mann-Whitney test for two hidependent samples, 16-11

data Sample, 16-11
procedure and example, 16-12
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Testa, Shortcut
shortcut for small samples from normal populations, 15-1 through 15-8
discussion, general, 15-1
comparing average of new product with a standard, 15-1

does new differ from standard, 15-1
data sample, 15-1
procedure and example, 15-2

does new exceed standard, 15-2
procedure and example, 15-2

is new less than standard, 15-8
procedure and example, 15-8

comparing averages of several products, 15-6
do t products differ, 15-6

data Sample, 16-6
procedure and example, 15-6

comparing averages of two products, 15-4
does A differ from B, 15-4

data sample, 15-4
procedure and example, 15-4

does A exceed B, 15-5
procedure and example, 15-5

comparing variability of performance, 15-7
does A differ from B, 15-7

procedure and example, 15-7
does A exceed B, 15-8

procedure and example, 15-8
Tests of Significance

(See also: Confidence Intervals)
and confidence intervals, relation between, 21-1

introduction, discussion of 21-1
comparing averages, a problem in, 21-2

figure showing OC curves for two-sided t-test (a- .05) , 21-3
presenting results, two ways of, 21-2

Thermometers, clinical, inspections and tests of, data sample, 9-2
Thermometers, intercomparison of, data sample, 18-40
e, ratio of variances, 3-28
Thompson, John 1. and Co., iii
Tidwell, P. W., 14-8
Tippett, L. H. C., 1-6, -11, -19; 20-13
Tires

estimated tread wear of, two methods, data sample, 5-38
estimated tread wear of, 5-40

Tolerance Limits
(See also, Distribution-free Techniques)
table, confidence associated with a statement of, T-77
tables, one-sided distribution-free limits, T-76
tables, two-sided distribution-free limits, T-75
table, factors for normal distributions, T-14
table, factors for normal distributions (two-sided), T-10
engineering, definition of term, as different from confidence intervals and statisticol

tolerance limits, 1-15
statistical

basic concepts and examples, 1-14
definition of term, as different from confidence intervals and engineering tolerance

limits, 1-15
two-sided and one-sided values, discussion of, 2-13
figure showing computed limits for 99.7% of population, with intervals tending

to a fixed size as sample size increases, 1-14
determining one-sided limits with stated precision (Xu or XL), procedure and

example, 2-14
determining two-sided limits with stated precision (Xv and XL) , procedure and

example, 2-14
determining limits independent of form of distribution (distribution-free), dis-

cussion of methods, 2-15
one-sided limits (distribution-free), procedure, 2-15two-sided limits (distribution-free), procedure, 2-15

one-sided limits for normal distribution, discussion, 2-14
two-sided limits for normal distribution, discussion, 2-18
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Transformations
table, arc sine for proportions, T-54
of non-linear to linear relationships between two variables, 5-30
use of, 20-1 through 20-13

need for, discussion of, 20-1
normality and normalizing

normality, importance oc, 20-1
normalization by averaging, 20-2
normalizing transformations, 20-2

figure showing examples of normalizing effect of frequently used transformations,
20-3

inequality of variances, variance-stabilizing transformations, 20-4
equality of variances, importance of, 20-4
linearity, additivity, and associated transformations, 20-9

definition and importance of, 20-9
remarks, concluding, 20-11
transformation of data to achieve, 20-11

variance inhomogeneity, types of, 20-5
table showing some frequently used transformations, 20-5

variance-stabilizing transformations, 20-6
figure showing six examples of variance-stabilizing effect of frequently used

transformations, 20-7
Transistors, forward current transfer ratio of two types, data sample, 16-9
Transistors, output admittance of two types, data sample, 16-11
Transistors, reverse-bias collector current of 20, data sample, 16-4
Transistors, reverse-bias collector currents of two types, data sample, 16-8
Treatment of Outliers

(See Outliers, Treatment of)
Treloar, A. E., 1-8
Trickett, W. H., 3-42
Tubes

cutoff bias of, data sample, 4-5
vacuum, failures of, data sample, 9-9

Tukey, J. W., 1-4, -5, -19; 10-24; 20-13
Turner, W. R., 14-7
Two-fold Classification

(See, Performance, Two-fold Classification)

U

u, computed test criterion, 3-4
Umland, A. W., 14-7
Uncertainties, Expression of

of final results, 23-1 through 23-6
definitions of four distinct cases, 23-2

examplez:
of case 1, 28-2
of case 2, 23-3
of case 3, 23-4
of case 4, 23-5

discussion of problem, 28-1
Universities

Cambridge 1-19; 3-42; 6-42; 10-24; T-6, -30, -81
Columbia, W. Y., 19-4
Duke, iii
Johns Hopkins, 5-46, 14-6
Iowa State, 6-42, 14-8
of London, 4-14
New York, 14-6, -7; T-55
Princeton, T-28
Stanford, T-59
of Toronto. 6-42
Washington, 17-6

University College, London, 3-41, 15-6
University of Toronto Press, 6-42
Up-and-Down Design, 10-22

(See also, Sensitivity Testing, Up-and-Down design)
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U. S. Government

Department of Agriculture, 1-13, -14
National Bureau of Standards, 4-14; 6-42 12-21; 19-1, -4; T-59
Naval Ordnance Laboratory, White Oak, Md., 10-24
Naval Ordnance Test Station, China Lake, Calif., 2-12; T-37, -41
Navy Bureau of Ordnance, 10-24
Printing Office, 6-42, 12-21, 19-4

V

Vacuum tubes, failures, data sample, 9-9
VanDyke, J., T-59
Van Nostrand, Inc., 18-4
Van Winkle, M., 14-7
Variability

(See also: Deviation, Standard; Performance, Variability of; Tests, Shortcut)
number of measurements required to establish with stated precision, 2-12

Variables
(See Linear Relationships)

Variances, Inequality of
(See Transformations)

Variance-stabilizing Transformations
(See Transformations)

Vaswani, R., 14-8

!I w

Washers, mica, thickness of, data sample, 2-1
Washington University, 17-6
Walker, H. M., 5-7
Wallace, D. L., T-28
Wallis, W. A., 1-19, 4-14, 14.6, 20-13, 21-6, T-10
Weaver, C. L., 3-6, -11; 4-4, -6, -11, -12, -13; 21-3
Weighting, table of coefficients for probit analy3is, T-32
Welch, B. L., 3-25, -42
Werimont, G., 18-4
Whidden, P., 3-25, -42
Wilcoxon, F., 2-79
Wilcoxon-Mann-Whitney Test

(See Tests, Distribution-free)
Wilcoxon-Signed ranks Test

(See Tests, Distribution-free)
Jonn Wiley & Sons, Inc., 1-8, -11, -19; 2-9; 5-46; 6.42; 11-6; 12-21; 13-40; 14-4, .5, -6,

-7; 17-6; 20-13
Wilson, K. B., 14-6
Wilson, E. B., Jr., 11-6, 17-6
Worksheets

basic, for a~l types of linear relationships, 5-10
example o! FI relationship, Young's modulus as function of temperuture 5-13
for FI relationships, intercept known to be zero, variance of Y's indepenaent of X,

6-x 5
example of SI relationship, 5-34
example of S11 relationship, 5-41
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X

X, representing any value in a population, 1-8X: : X1, .... X.
different sets of observations of any element in a population sample, 1-10
observations taken at random from normal population, 1-10
: average muzzle velocity of 10 rounds, 1-2
best unbiased sample estimate of m, 1-10
average of sample of n measurements on new product, 3-3
sample mean, 1-10
: average of measurements of nt, 1-2

average muzzle velocity of each of many sets of 10 rounds, 1-2

y

Yates, F., 6-29, -42; 10-24; 12-21; 13-46; T-5, -32, -33
Yates' method for obtaining estimates of main effects and interactions for two-level

factorials, 12-5 through 12-21
Youden, W. J., 11-6, 13-40, 18-4
Youden Square Plans

analysis, 18-40
data sample, 13-40
estimation of column effects, 13-44
estimation of row effects, 13-45
estimation of treatment effects, 13-41
symbols, definitions of, 13-36
testing and estimating differences in column effects, 13-44

procedure and example, 13-44testing and estimating differences in row effects, 13.45

procedure and example, 13-45
testing and estimating differences in treatment effects, 13-43

procedure and example, 13-43
planning, 13-36

table showing arrangement of eight plans, 13-37
Youle, P. V., 14-6
Young's modulus, as example data, 5-20, -21
Young's modulus vs. temperature for sapphire rods

data sampl3, 5-11
figure showing (Fl), 5-12
example worksheet (Fl), 5-13
figure showing computed regression line and confidence interval for the line, 5-14
table, computational arrangement for test of linearity, 5 .22

Youtz, C., 20-13

z, distance from population mean in units of the standard deviation, 1-8
z, the standard normal variable, T-2, -3
Zelen, M., 19-4
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