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FOREWORD AMCP 706-110 

INTRODUCTION 

This is one of a group of handbooks covering 
the engineering information and quantitative 
data needed in the design, development, construc- 
tion, and test of military equipment which (as a 
group) constitute the Army Materiel Command 
Engineering Design Handbook. 

PURPOSE OF HANDBOOK 

The Handbook on Experimental Statistics has 
been prepared as an aid to scientists and engi- 
neers engaged in Army research and develop- 
ment programs, and especially as a guide and 
ready reference for military and civilian person- 
nel who have responsibility for the planning and 
interpretation of experiments and tests relating 
to the performance of Army equipment in the 
design and developmental stages of production. 

SCOPE AND USE OF HANDBOOK 

This Handbook is a collection of statistical 
procedures and tables. It is presented in five 
sections, viz: 

AMCP 706-110, Section 1, Basic Concepts 
and Analysis of Measurement Data (Chapters 
1-6) 

AMCP 706-111, Section 2, Analysis of Enu- 
merative and Classificatory Data (Chapters 
7-10) 

AMCP 706-112, Section 3, Planning and 
Analysis of Comparative Experiments (Chapters 
11-14) 

AMCP 706-113, Section 4, Special Topics 
(Chapters 15-23) 

AMCP 706-114, Section 5, Tables 

Section 1 provides an elementary introduc- 
tion to basic statistical concepts and furnishes 
full details on standard statistical techniques 
for the analysis and interpretation of measure- 

ment data. Section 2 provides detailed pro- 
cedures for the analysis and interpretation of 
enumerative and classificatory data. Section 3 
has to do with the planning and analysis of com- 
parative experiments. Section 4 is devoted to 
consideration and exemplification of a number 
of important but as yet non-standard, statistical 
techniques, and to discussion of various other 
special topics. An index for the material in all 
four sections is placed at the end of Section 4. 
Section 5 contains all the mathematical tables 
needed for application of the procedures given 
in Sections 1 through 4. 

An understanding of a few basic statistical 
concepts, as given in Chapter 1, is necesssary; 
otherwise each of the first four sections is largely 
independent of the others. Each procedure, test, 
and technique described is illustrated by means 
of a worked example. A list of authoritative 
references is included, where appropriate, at the 
end of each chapter. Step-by-step instructions 
are given for attaining a stated goal, and the 
conditions under which a particular procedure is 
strictly valid are stated explicitly. An attempt is 
made to indicate the extent to which results ob- 
tained by a given procedure are valid to a good 
approximation when these conditions are not 
fully met. Alternative procedures are given for 
handling cases where the more standard proce- 
dures cannot be trusted to yield reliable results. 

The Handbook is intended for the user with 
an engineering background who, although he has 
an occasional need for statistical techniques, does 
not have the time or inclination to become an ex- 
pert on statistical theory and methodology. 

The Handbook has been written with three 
types of users in mind. The first is the person 
who has had a course or two in statistics, and 
who may even have had some practical experi- 
ence in applying statistical methods in the past, 
but who does not have statistical ideas and tech- 
niques at his fingertips. For him, the Handbook 
will provide a ready reference source of once 
familiar ideas and techniques.   The second is the 

1 * 
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AMCP 706-110 
person who feels, or has been advised, that some 
particular problem can be solved by means of 
fairly simple statistical techniques, and is in need 
of a book that will enable him to obtain the so- 
lution to his problem with a minimum of outside 
assistance. The Handbook should enable such a 
person to become familiar with the statistical 
ideas, and reasonably adept at the techniques, 
that are most fruitful in his particular line of re- 
search and development work. Finally, there is 
the individual who, as the head of, or as a mem- 
ber of a service group, has responsibility for ana- 
lyzing and interpreting experimental and test 
data brought in by scientists and engineers en- 
gaged in Army research and development work. 
This individual needs a ready source of model 
work sheets and worked examples corresponding 
to the more common applications of statistics, to 
free him from the need of translating textbook 
discussions into step-by-step procedures that can 
be followed by individuals having little or no 
previous experience with statistical methods. 

It is with this last need in mind that some 
of the procedures included in the Handbook have 
been explained and illustrated in detail twice: 
once for the case where the important question 
is whether the performance of a new material, 
product, or process exceeds an established stan- 
dard ; and again for the case where the important 
question is whether its performance is not up to 
the specified standards. Small but serious errors 
are often made in changing "greater than" pro- 
cedures into "less than" procedures. 

AUTHORSHIP AND ACKNOWLEDGMENTS 
The Handbook on Experimental Statistics 

was prepared in the Statistical Engineering Lab- 
oratory, National Bureau of Standards, under a 
contract with the Department of Army. The 
project was under the general guidance of 
Churchill Eisenhart, Chief, Statistical Engineer- 
ing Laboratory. 

Most of the present text is by Mary G. Na- 
trella, who had overall responsibility for the com- 
pletion of the final version of the Handbook. 
The original plans for coverage, a first draft of 
the text, and some original tables were prepared 
by Paul N. Somerville. Chapter 6 is by Joseph 
M. Cameron; most of Chapter 1 and all of Chap- 
ters 20 and 23 are by Churchill Eisenhart; and 
Chapter 10 is based on a nearly-final draft by 
Mary L. Epling. 

Other members of the staff of the Statistical 
Engineering Laboratory have aided in various 
ways through the years, and the assistance of all 
who helped is gratefully acknowledged. Partic- 
ular mention should be made of Norman C. 
Severo, for assistance with Section 2, and of 
Shirley Young Lehman for help in the collection 
and computation of examples. 

Editorial assistance and art preparation were 
provided by John I. Thompson & Company, 
Washington, D. C. Final preparation and ar- 
rangement for publication of the Handbook were 
performed by the Engineering Handbook Office, 
Duke University. 

Appreciation is expressed for the generous 
cooperation of publishers and authors in grant- 
ing permission for the use of their source materi- 
al. References for tables and other material, 
taken wholly or in part, from published works, 
are given on the respective first pages. 

Elements of the U. S. Army Materiel Com- 
mand having need for handbooks may submit 
requisitions or official requests directly to the 
Publications and Reproduction Agency, Letter- 
kenny Army Depot, Chambersburg, Pennsyl- 
vania 17201. Contractors should submit such 
requisitions or requests to their contracting of- 
ficers. 

Comments and suggestions on this handbook 
are welcome and should be addressed to Army 
Research Office-Durham, Box CM, Duke Station, 
Durham, North Carolina 27706. 
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CHAPTER  1 

SOME BASIC STATISTICAL CONCEPTS AND 

PRELIMINARY CONSIDERATIONS 

1-1     INTRODUCTION 

Statistics deals with the collection, anal- 
ysis, interpretation, and presentation of 
numerical data. Statistical methods may be 
divided into two classes—descriptive and in- 
ductive. Descriptive statistical methods are 
those which are used to summarize or de- 
scribe data. They are the kind we see used 
everyday in the newspapers and magazines. 

Inductive statistical methods are used when 
we wish to generalize from a small body of 
data to a larger system of similar data. The 
generalizations usually. are in the form of 
estimates or predictions. In this handbook 
we are mainly concerned with inductive sta- 
tistical methods. 

1-2    POPULATIONS, SAMPLES, AND DISTRIBUTIONS 

The concepts of a population and a sample 
are basic to inductive statistical methods. 
Equally important is the concept of a distri- 
bution. 

Any finite or infinite collection of individ- 
ual things—objects or events—constitutes a 
population. A population (also known as a 
universe) is thought of not as just a heap of 
things specified by enumerating them one 
after another, but rather as an aggregate 
determined by some property that distin- 
guishes between things that do and things 
that do not belong. Thus, the term popula- 
tion carries with it the connotation of com- 
pleteness. In contrast, a sample, defined as 
a portion of a population, has the connota- 
tion of incompleteness. 

Examples of populations are: 

(a) The corporals in the Marines on July 
1, 1956. 

(b) A production lot of fuzes. 

(c) The rounds of ammunition produced 
by a particular production process. 

(d) Fridays the 13th. 

(e) Repeated weighings of the powder 
charge of a particular round of ammunition. 

(f) Firings of rounds from a given pro- 
duction lot. 

In examples (a), (b), and (c), the "indi- 
viduals" comprising the population are ma- 
terial objects (corporals, fuzes, rounds); in 
(d) they are periods of time of a very re- 
stricted type; and in (e) and (f) they are 
physical operations. Populations (a) and 
(b) are clearly finite, and their constituents 
are determined by the official records of the 
Marine Corps and the appropriate produc- 
tion records, respectively. Populations (c), 
(d), and (e) are conceptually infinite. Off- 
hand,   the  population  example   (f)   would 
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seem to be finite, because firing is a destruc- 
tive operation; but in order to allow for vari- 
ation in quality among "firings" performed 
in accordance with the same general proce- 
dure it is sometimes useful, by analogy with 
repetitive weighings, to regard an actual 
firing as a sample of size one from a con- 
ceptually infinite population of "possible" 
firings, any one of which might have been 
associated with the particular round con- 
ceived. In this connection, note that in exam- 
ples (e) and (f) the populations involved 
are not completely defined until the weighing 
and firing procedures concerned have been 
fully specified. 

Attention to some characteristic of the 
individuals of a population that is not the 
same for every individual leads immediately 
to recognition of the distribution of this 
characteristic in the population. Thus, the 
heights of the corporals in the Marines on 
July 1, 1956, the burning times of a produc- 
tion lot of fuzes, and the outcomes of succes- 
sive weighings of a powder charge ("ob- 
served weights" of the charge) are examples 
of distributions. The presence or absence of 
an attribute is a characteristic of an indi- 
vidual in a population, such as "tatooed" or 
"not tatooed" for the privates in the Marines. 
This kind of characteristic has a particularly 
simple type of distribution in the population. 

Attention to one, two, three, or more 
characteristics for each individual leads to 
a univariate, bivariate, trivariate, or multi- 
variate distribution in the population. The 
examples of populations given previously 
were examples of univariate distributions. 
Simultaneous consideration of the muzzle 
velocities and weights of powder charges of 
rounds of ammunition from a given produc- 
tior process determines a bivariate dis- 
tribution of these characteristics in the 
population. Simultaneous recognition of the 
frequencies of each of a variety of different 
types of accidents on Friday the 13th leads 
to a multivariate distribution.  In connection 

with these examples, note that, as a general 
principle, the distribution of a characteristic 
or a group of characteristics in a population 
is not completely defined until the method or 
methods of measurement or enumeration in- 
volved are fully specified. 

The distribution of some particular prop- 
erty of the individuals in a population is a 
collective property of the population; and 
so, also, are the average and other charac- 
teristics of the distribution. The methods of 
inductive statistics enable us to learn about 
such population characteristics from a study 
of samples. 

An example will illustrate an important 
class of derived distributions. Suppose we 
select 10 rounds of ammunition from a given 
lot and measure their muzzle velocities when 
the rounds are fired in a given test weapon. 
Let X be the average muzzle velocity of the 
10 rounds. If the lot is large, there will be 
many different sets of 10 rounds which could 
have been obtained from the lot. For each 
such sample of 10 rounds, there will corre- 
spond an average muzzle velocity X>. These 
averages, from all possible samples of 10, 
themselves form a distribution of sample 
averages. This kind of distribution is called 
the sampling distribution of X for samples of 
size 10 from the population concerned. Sim- 
ilarly, we may determine the range R of 
muzzle velocities (i.e., the difference between 
the largest and the smallest) for each of all 
possible samples of 10 rounds each. These 
ranges R{ (i = 1, 2, . . .) collectively deter- 
mine the sampling distribution of the range 
of muzzle velocities in samples of size 10 
from the population concerned. The methods 
of inductive statistics are based upon the 
mathematical properties of sampling distri- 
butions of sample statistics such as X and R. 

Let us summarize: A population in Sta- 
tistics corresponds to what in Logic is termed 
the "universe of discourse"—it's what we 
are talking about. By the methods of in- 
ductive statistics we can learn, from a study 
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of samples, only about population character- 
istics—only about collective properties of the 
populations represented by the individuals 
in the samples—not about characteristics 
of specific individuals with unique idiosyn- 

crasies. The population studied may be large 
or small, but there must be a population; and 
it should be well denned. The characteristic 
of interest must be a collective property of 
the population. 

1-3    STATISTICAL INFERENCES AND SAMPLING 

1-3.1     STATISTICAL INFERENCES 

If we were willing or able to examine an 
entire population, our task would be merely 
that of describing that population, using 
whatever numbers, figures, or charts we 
cared to use. Since it is ordinarily incon- 
venient or impossible to observe every item 
in the population, we take a sample—a por- 
tion of the population. Our task is now to 
generalize from our observations on this 
portion (which usually is small) to the popu- 
lation. Such generalizations about charac- 
teristics of a population from a study of one 
or more samples from the population are 
termed statistical inferences. 

Statistical inferences take two forms: 
estimates of the magnitudes of population 
characteristics, and tests of hypotheses re- 
garding population characteristics. Both are 
useful for determining which among two or 
more courses of action to follow in practice 
when the "correct" course is determined by 
some particular but unknown characteristic 
of the population. 

Statistical inferences all involve reaching 
conclusions about population characteristics 
(or at least acting as if one had reached such 
conclusions) from a study of samples which 
are known or assumed to be portions of the 
population concerned. Statistical inferences 
are basically predictions of what would be 
found to be the case if the parent populations 
could be and were fully analyzed with respect 
to the relevant characteristic or character- 
istics. 

A simple example will serve to bring out 
a number of essential features of statistical 

inferences and the methods of inductive sta- 
tistics. Suppose that four cards have been 
drawn from a deck of cards and have been 
found to be the Ace of Hearts, the Five of 
Diamonds, the Three of Clubs, and the Jack 
of Clubs. The specific methods discussed in 
the following paragraphs will be illustrated 
from this example. 

First of all, from the example, we can 
clearly conclude at once that the deck con- 
tained at least one Heart, at least one Dia- 
mond, and at least two Clubs. We also can 
conclude from the presence of the Five and 
the Three that the deck is definitely not a 
pinochle deck. These are perhaps trivial in- 
ferences, but their validity is above question 
and does not depend in any way on the 
modus operandi of drawing the four cards. 

In order to be able to make inferences of 
. a more substantial character, we must know 
the nature of the sampling operation that 
yielded the sample of four cards actually ob- 
tained. Suppose, for example, that the sam- 
pling procedure was as follows: The cards 
were drawn in the order listed, each card 
being selected at random from all the cards 
present in the deck when the card was drawn. 
This defines a hypothetical population of 
drawings. By using an appropriate tech- 
nique of inductive statistics—essentially, a 
"catalog" of all possible samples of four, 
showing for each sample the conclusion to 
be adopted whenever that sample occurs— 
we can make statistical inferences about 
properties of this population of drawings. 
The statistical inferences made will be rig- 
orous if, and only if, the inductive technique 
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used is appropriate to the sampling proce- 
dure actually employed. 

Thus, by taking the observed proportion 
of Clubs as an estimate of the proportion of 
Clubs in the abstract population of drawings, 
we may assert: the proportion of Clubs is 
50%. Since random sampling of the type 
assumed assures that the proportion of Clubs 
in the population of drawings is the same 
as the proportion of Clubs in the deck, we 
may assert with equal validity: the propor- 
tion of Clubs in the deck is 50%. If the deck 
concerned actually was a standard bridge 
deck, then in the present instance our esti- 
mate is wrong in spite of being the best 
single estimate available. 

We know from experience that with sam- 
ples of four we cannot expect to "hit the nail 
on the head" every time. If instead of at- 
tempting to make a single-number estimate 
we had chosen to refer to a "catalog" of 
interval estimates (see, for example, Table 
A-22*), we would have concluded that the 
proportion of Clubs is between 14% and 
86% inclusive, with an expectation of being 
correct 9 times out of 10. If the deck was 
in fact a standard bridge deck, then our 
conclusion is correct in this instance, but its 
validity depends on whether the sampling 
procedure employed in drawing the four 
cards corresponds to the sampling procedure 
assumed in the preparation of the "catalog". 
of answers. 

It is important to notice, moreover, that 
strictly we have a right to make statistical 
inferences only with respect to the hypo- 
thetical population of drawings defined by 
the sampling operation concerned. In the 
present instance, as we shall see, the sam- 
pling operation was so chosen that the pa- 
rameters (i.e., the proportions of Hearts, 
Clubs, and Diamonds) of the hypothetical 
population of drawings coincide with the 
corresponding    parameters    of    the    deck. 

• The A-T»hl#i referenced in this handbook are 
contained in Sactio» 6, AMCP 706-114. 

Hence, in the present case, inferences about 
the parameters of the population, of draw- 
ings may be interpreted as inferences about 
the composition of the deck. This empha- 
sizes the importance of selecting and em- 
ploying a sampling procedure such that the 
relevant parameters of the population of 
drawings bear a known relation to the cor- 
responding parameters of the real-life situ- 
ation. Otherwise, statistical inferences with 
respect to the population of drawings carried 
over to the real-life population will be lack- 
ing in rigor, even though by luck they may 
sometimes be correct. 

1-3.2    RANDOM SAMPLING 

In order to make valid nontrivial gener- 
alizations from samples about characteristics 
of the populations from which they came, 
the samples must have been obtained by a 
sampling scheme which insures two condi- 
tions : 

(a) Relevant characteristics of the popu- 
lations sampled must bear a known relation 
to the corresponding characteristics of the 
population of all possible samples associated 
with the sampling scheme. 

(b) Generalizations may be drawn from 
such samples in accordance with a given 
"book of rules" whose validity rests on the 
mathematical theory of probability. 

If a sampling scheme is to meet these two 
requirements, it is necessary that the selec- 
tion of the individuals to be included in a 
sample involve some type of random selec- 
tion, that is, each possible sample must have 
a fixed and determinate probability of selec- 
tion. (For a very readable expository dis- 
cussion of the general principles of sampling, 
with examples of some of the more common 
procedures, see the article by Cochran, Mos- 
teller, and Tukey(1>. For fuller details see, 
for example, Cochran's book(2). 

The most widely useful type of random 
selection is simple (or unrestricted) random 
sampling. This type of sampling is defined 
by the requirement that each individual in 
the population has an equal chance of being 
the first member of the sample; after the 
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first member is selected, each of the remain- 
ing individuals in the population has an 
equal chance of being the second member 
of the sample; and so forth. For a sampling 
scheme to qualify as simple random sam- 
pling, it is not sufficient that "each individual 
in the population have an equal chance of 
appearing in the sample," as is sometimes 
said, but it is sufficient that "each possible 
sample have an equal chance of being se- 
lected." Throughout this handbook, we shall 
assume that all samples are random samples 
in the sense of having been obtained by sim- 
ple random sampling. 

It cannot be overemphasized that the ran- 
domness of a sample is inherent in the sam- 
pling scheme employed to obtain the sample 
and not an intrinsic property of the sample 
itself. Experience teaches that it is not safe 
to assume that a sample selected haphaz- 
ardly, without any conscious plan, can be 
regarded as if it had been obtained by simple 
random sampling. Nor does it seem to be 
possible to consciously draw a sample at 
random. As stated by Cochran, Mosteller, 
and Tukey(1), 

We insist on some semblance of mechanical (dice, 
coins, random number tables, etc.) randomization 
before we treat a sample from an existent popula- 
tion as if it were random. We realize that if some- 
one just "grabs a handful," the individuals in the 
handful almost always resemble one another (on the 
average) more than do the members of a simple 
random sample. Even if the "grabs" are randomly 
spread around so that every individual has an equal 
chance of entering the sample, there are difficulties. 
Since the individuals of grab samples resemble one 
another more than do individuals of random sam- 
ples, it follows (by a simple mathematical argu- 
ment) that the means of grab samples resemble 
one another less than the means of random samples 
of the same size. From a grab sample, therefore, 
we tend to underestimate the variability in the 
population, although we should have to overestimate 
it in order to obtain valid estimates of variability 
of grab sample means by substituting such an esti- 
mate into the formula for the variability of means 
of simple random samples. Thus, using simple ran- 
dom sample formulas for grab sample means intro- 
duces a double bias, both parts of which lead to an 
unwarranted appearance of higher stability. 

Instructions for formally drawing a sample 
at random from a particular population are 
given in Paragraph 1-4. 

Finally, it needs to be noticed that a par- 
ticular sample often qualifies as "a sample" 
from any one of several populations. For ex- 
ample, a sample of n rounds from a single 
carton is a sample from that carton, from 
the production lot of which the rounds in 
that carton are a portion, and from the pro- 
duction process concerned. By drawing these 
rounds from the carton in accordance with 
a simple random sampling scheme, we can 
insure that they are a (simple) random sam- 
ple from the carton, not from the produc- 
tion lot or the production process. Only 
if the production process is in a "state of 
statistical control" may our sample also be 
considered to be a simple random sample 
from the production lot and the production 
process. In a similar fashion, a sample of 
repeated weighings can validly be consid- 
ered to be a random sample from the con- 
ceptually infinite population of repeated 
weighings by the same procedure only if 
the weighing procedure is in a state of sta- 
tistical control (see Chapter 18, in Section 4, 
AMCP 706-113). 

It is therefore important in practice to 
know from which of several possible "par- 
ent" populations a sample was obtained by 
simple random sampling. This population is 
termed the sampled population, and may be 
quite different from the population of inter- 
est, termed the target population, to which 
we would like our conclusions to be applica- 
ble. In practice, they are rarely identical, 
though the difference is often small. A sam- 
ple from the target population of rounds of 
ammunition produced by a particular pro- 
duction process will actually be a sample 
from one or more production lots (sampled 
population), and the difference between sam- 
pled and target populations will be smaller 
if the sampled population comprises a larger 
number of production lots. The further the 
sampled population is removed from the 
target population, the more the burden of 
validity of conclusions is shifted from the 
shoulders of the statistician to those of the 
subject matter expert, who must place 
greater and greater (and perhaps unwar- 
ranted)  reliance on "other considerations." 
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1-4    SELECTION OF A RANDOM SAMPLE 

As has been brought out previously, the 
method of choosing a sample is an all-im- 
portant factor in determining what use can 
be made of it. In order for the techniques 
described in this handbook to be valid as 
bases for making statements from samples 
about populations, we must have unrestricted 
random samples from these populations. In 
practice, it is not always easy to obtain a 
random sample from a given population. 
Unconscious selections and biases tend to 
enter. For this reason, it is advisable to use 
a table of random numbers as an aid in se- 
lecting the sample. Two tables of random 
numbers which are recommended are by 
L. H. C. Tippett(3) and The Rand Corpora- 
tion,4). These tables contain detailed instruc- 
tions for their use. An excerpt from one of 
these tables'4' is given in Table A-36. This 
sample is included for illustration only; a 
larger table should be used in any actual 
problem. Repeated use of the same portion 
of a table of random numbers will not 
satisfy the requirements of randomness. 

An illustration of the method of use of 
tables of random numbers follows. Suppose 
the population consists of 87 items, and we 
wish to select a random sample of 10. Assign 
to each individual a separate two-digit num- 
ber between 00 and 86. In a table of ran- 
dom numbers, pick an arbitrary starting 
place and decide upon the direction of read- 

ing the numbers. Any direction may be 
used, provided the rule is fixed in advance 
and is independent of the numbers occurring. 
Read two-digit numbers from the table, and 
select for the sample those individuals whose 
numbers occur until 10 individuals have been 
selected. For example, in Table A-36, start 
with the second page of the Table (p. T-83), 
column 20, line 6, and read down. The 10 
items picked for the sample would thus be 
numbers 38, 44, 13, 73, 39, 41, 35, 07, 14, 
and 47. 

The method described is applicable for 
obtaining simple random samples from any 
sampled population consisting of a finite set 
of individuals. In the case of an infinite 
sampled population, these procedures do not 
apply. Thus, we might think of the sampled 
population for the target population of 
weighings as comprising all weighings which 
might conceptually have been made during 
the time while weighing was done. We can- 
not by mechanical randomization draw a 
random sample from this population, and so 
must recognize that we have a random sam- 
ple only by assumption. This assumption 
will be warranted if previous data indicate 
that the weighing procedure is in a state of 
statistical control; unwarranted if the con- 
trary is indicated; and a leap in the dark if 
no previous data are available. 

1-5    SOME PROPERTIES OF DISTRIBUTIONS 

Although it is unusual to examine popula- 
tions in their entirety, the examination of a 
large sample or of many small samples from 
a population can give us much information 
about the general nature of the population's 
characteristics. 

One device for revealing the general na- 
ture of a population distribution is a histo- 

gram. Suppose we have a large number of 
observed items and a numerical measure- 
ment for each item, such as, for example, a 
Rockwell hardness reading for each of 5,000 
specimens. We first make a table showing 
the numerical measurement and the num- 
ber of times (i.e., frequency) this measure- 
ment was recorded. 
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Rockwell 
Hardness 
Number Frequency 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 
17 

135 
503 

1,110 
1,470 
1,120 
490 
125 
26 
3 

Data    taken,    by    permission,    from    Sampling    Inspection    by 
Variables by A. H. Bowker and H. P. Goode, Copyright, 1952, 

McGraw-Hill  Book  Company,   Inc. 

From this frequency table we can make the 
histogram as shown in Figure 1-1. The 
height of the rectangle for any hardness 
range is determined by the number of items 
in that hardness range. The rectangle is 
centered at the tabulated hardness value. If 
we take the sum of all the rectangular areas 
to be one square unit, then the area of an 
individual rectangle is equal to the propor- 
tion of items in the sample that have hard- 
ness values in the corresponding range. 
When the sample is large, as in the present 
instance, the histogram may be taken to 
exemplify the general nature of the corre- 
sponding distribution in the population. 

If it were possible to measure hardness in 
finer intervals, we would be able to draw a 
larger number of rectangles, smaller in 
width than before. For a sufficiently large 
sample and a sufficiently fine "mesh," we 
would be justified in blending the tops of the 
rectangles into a continuous curve, such as 
that shown in Figure 1-2, which we could 
expect to more nearly represent the under- 
lying population distribution. 

1,500 

1.250 
■ 

1.000 • 

750 

500 

250 

■ 

- 

0  i— _i— i      1—1  
55 56 5? 58 59 60 61 62 611 ( 

ROCKWELL HARDNESS NUMBER 

Figure 1-1.    Histogram representing the dis- 
tribution of 5,000 Rockwell hardness 

readings. 

Reproduced   by  permission  from   Sampling  Inspection by   Vari- 
ables   by   A.   H.   Bowker   and   H.   P.   Goode,   Copyright,   1962, 

McGraw-Hill Book  Company, Inc. 

U 
s 
z> a 
ui 

ROCKWELL HARDNESS NUMBER 

Figure 1-2.    Normal curve fitted to the dis- 
tribution of 5,000 Rockwell hardness 

readings. 

Reproduced  by  permission  from  Sampling  Inspection  by   Vari- 
ables   by   A.   H.   Bowker   and   H.   P.   Goode,   Copyright,   1962, 

McGraw-Hill  Book  Company,  Inc. 
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If we were to carry out this sort of scheme 
on a large number of populations, we would 
find that many different curves would arise, 
as illustrated in Figure 1-3. Possibly, the 
majority of them would resemble the class 
of symmetrical bell-shaped curves called 
"normal" or "Gaussian" distributions, an ex- 
ample of which is shown in the center of 
Figure 1-3. A normal distribution is uni- 
modal, i.e., has only a single highest point 
or mode, as also are the two asymmetrical 
curves in the lower left and upper right of 
Figure 1-3. 

A "normal" distribution is completely de- 
termined by two parameters: TO, the arith- 
metic mean (or simply "the mean") of the 
distribution, and cr, the standard deviation 
(often termed the "population mean" and 
"population standard deviation"). The vari- 
ance of the distribution is cr2. Since a nor- 
mal curve is both unimodal and symmetrical, 

REVERSE J-SHAPEO CURVE 
EXTREME POSITIVE 

SKEWNESS 

SKEW CURVE 
MODERATE   POSITIVE 

SKEWNESS 

SKEW CURVE 

MODERATE   NEGATIVE   SKEWHESS U-SHAPED CURVE 

Figure 1-3.    Frequency distributions 
of various shapes. 

Adapted with permission from Elements of Statistical Reasoning 
by A. E. Treloar, Copyright, 1939, 

John Wiley & Sons, Inc. 

Figure 1-U-    Three different normal 
distributions. 

TO is also the mode and the value which di- 
vides the area under the curve in half, i.e., 
the median. It is useful to remember that 
cr is the distance from m to either of the two 
inflection points on the curve. (The inflec- 
tion point is the point at which the curve 
changes from concave upward to concave 
downward.) This is a special property of 
the normal distribution. More generally, the 
mean of a distribution TO is the "center of 
gravity" of the distribution; o- is the "radius 
of gyration" of the distribution about TO, in 
the language of mechanics; and cr2 is the 
second moment about w. 

The parameter TO is the location param- 
eter of a normal distribution, while o- is a 
measure of its spread, scatter, or dispersion. 
Thus, a change in w merely slides the curve 
right or left without changing its profile, 
while a change in cr widens or narrows the 
curve without changing the location of its 
center. Three different normal curves are 
shown in Figure 1-4. (All normal curves in 
this section are drawn so that the area un- 
der the curve is equal to one, which is a 
standard convention.) 

Figure 1-5 shows the percentage of ele- 
ments of the population contained in various 
intervals of a normal distribution, z is the 
distance from the population mean in units of 
the standard deviation and is computed using 
the formula z = (X—m)/<r, where X repre- 
sents any value in the population. Using z 
to enter Table A-l, we find P, the proportion 
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of elements in the population which have 
values of z smaller than any given z. Thus, 
as shown in Fig. 1-5, 34.13% of the popula- 
tion will have values of z between 0 and 1 
(or between 0 and —1); 13.59% of the popu- 
lation, between 1 and 2 (or between —1 and 
-2); 2.14% between 2 and 3 (or between -2 
and —3); and .14% beyond 3 (or beyond -3). 
Figure 1-5 shows these percentages of the 
population in various intervals of z. 

For example, suppose we know that the 
chamber pressures of a lot of ammunition 
may be represented by a normal distribu- 
tion, with the average chamber pressure m = 
50,000 psi and standard deviation cr = 5,000 

.   „, X-50,000.    .       . ,_,. psi.  Then z ——_    '.—and we know (Fig. 

1-5) that if we fired the lot of ammunition 
in the prescribed manner we would expect 
50% of the rounds to have a chamber pres- 
sure above 50,000 psi, 15.9% to have pres- 
sures above 55,000 psi, and 2.3% to have 
pressures above 60,000 psi, etc. 

-3-2-1        0        1        2        3 

z =     X-m 
a 

Figure 1-5.   Percentage of the population in 
various intervals of a normal distribution. 
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1-6    ESTIMATION OF m and a 

In areas where a lot of experimental work 
has been done, it often happens that we know 
TO or a; or both, fairly accurately. However, 
in the majority of cases it will be our task 
to estimate them by means of a sample. Sup- 
pose we have n observations, Xlt X2, . . ., Xn 

taken at random from a normal population. 
From a sample, what are the best estimates 
of TO and cr? Actually, it is usual to com- 
pute the best unbiased estimates of TO and cr2, 
and then take the square root of the estimate 
of cr2 as the estimate of cr. These recom- 
mended estimates of TO and or2 are: * 

£ (x< - x? 
s' = *=! =  n — 1 

X and s2 are the sample mean and sample 
estimate of variance, respectively, (s is often 
called "the sample standard deviation," but 
this is not strictly correct and we shall avoid 
the expression and simply refer to s.) For 
computational purposes, the following for- 
mula for s2 is more convenient: 

s« = n (n — 1) 

* The Greek symbol 2 is often used as shorthand 
for "the sum of." For example, 

4 

22 (X, + Y>) = (X, + F) + (X, + F„) + (X, + Fa) 

3 

£ X,Yt = X,F, + X2Y2 + Af3Fa 
i-l 

3 

y. c = c + c + c = 3c 

Nearly every sample will contain differ- 
ent individuals, and thus the estimates X 
and s2 of m and cr2 will differ from sample 
to sample. However, these estimates are 
such that "on the average" they tend to be 
equal to m and cr2, respectively, and in this 
sense are unbiased. If, for example, we have 
a large number of random samples of size 
n, the average of their respective estimates 
of cr2 will tend to be near cr2. Furthermore, 
the amount of fluctuation of the respective 
s2's about cr2 (or of the X's about m, if we 
are estimating m) will be smaller in a cer- 
tain well-defined sense than the fluctuation 
would be for any estimates other than the 
recommended ones. For these reasons, X 
and s2 are called the "best unbiased" esti- 
mates of TO and cr2, respectively.* 

As might be expected, the larger the sam- 
ple size n, the more faith we can put in the 
estimates X and s2. This is illustrated in 
Figures 1-6 and 1-7. Figure 1-6 shows the 
distribution of X (sample mean) for samples 
of various sizes from the same normal dis- 
tribution. The curve for n = 1 is the distri- 
bution for individuals in the population. All 
of the curves are centered at w, the popula- 

* On the other hand, s is not an unbiased esti- 
mator of a. Thus, in samples of size n from a nor- 
mal distribution, the situation is: 

s is an unbiased 
Sample size, n estimator of: 

2 0.797 a 
3 0.886 
4 0.921 
5 0.940 
6 0.952 
7 0.959 
8 0.965 
9 0.969 

10 0.973 
20 0.987 
30 0.991 
40 0.994 
60 0.996 

120 0.998 
00 1.000 
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tion mean, but the scatter becomes less as n 
gets larger. Figure 1-7 shows the distribu- 
tion of s2 (sample variance) for samples of 
various sizes from the same normal distri- 
bution. 

n = 25 

// n = 16\\ 

Al      n = 4    VK 

^"""'""^//           n = l       'A^Os. 
r*^ // 1- 

Figure 1-6.   Sampling distribution of X for 
random samples of size n from a normal 

population with mean m. 

Reproduced   by   permission   from   The   Metkode   of   Statistics, 
4th  ed.,  by  L.  H.  C.  Tippett,   Copyright,  1952,  John  Wiley  & 

Sons, Inc. 

Figure 1-7.   Sampling distribution of s2 }or 
sample size n from a normal population 

with a = l. 

Adapted  with  permission  from  Some   Theory  of Sampling,  by 
W. Edwards Deming, Copyright, 1960, John Wiley & Sons, Inc. 

1-7    CONFIDENCE INTERVALS 

Inasmuch as estimates of m and cr vary 
from sample to sample, interval estimates 
of m and cr may sometimes be preferred to 
"single-value" estimates. Provided we have 
a random sample from a normal population, 
we can make interval estimates of m or cr 
with a chosen degree of confidence. The level 
of confidence is not associated with a par- 
ticular interval, but is associated with the 
method of calculating the interval. The in- 
terval obtained from a particular sample 
either brackets the true parameter value 
(m or cr, whichever we are estimating) or 
does not. The confidence coefficient y is sim- 

ply the proportion of samples of size n for 
which intervals computed by the prescribed 
method may be expected to bracket m (or 
<r). Such intervals are known as confidence 
intervals, and always are associated with a 
prescribed confidence coefficient. As we 
would expect, larger samples tend to give 
narrower confidence intervals for the same 
level of confidence. 

Suppose we are given the lot of ammuni- 
tion mentioned earlier (Par. 1-5) and wish 
to make a confidence interval estimate of 
the average chamber pressure of the rounds 
in the lot.   The true average is 50,000 psi, 
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although this value is unknown to us. Let 
us take a random sample of four rounds and 
from this sample, using the given procedure, 
calculate the upper and lower limits for our 
confidence interval. Consider all the possi- 
ble samples of size 4 that could have been 

taken, and the resulting confidence intervals 
computed from each. If we compute 50% 
(90%) confidence intervals, then we expect 
50% (90%) of the computed intervals to 
cover the true value, 50,000 psi. See Fig- 
ure 1-8. 

60,000 

5 0.000 

40,000 

il UilN" i,',if i„fi'||,|'''i' I'll'.''.-''1';" h 

J i    i 

CASE A,50% CONFIDENCE INTERVALS 

70,000 

60,000 

50,000 

40,000 

30,000 

II 1 ill 1  _i....li 1 
_ 

- 

1 

1 

1 

— -(-(-■-■- 

1 1     1 1     .     1 

1 

1     I      1 

1 TT   T 

l        1 

10        20       30        40        50        60        70        80        90 
CASE B.90% CONFIDENCE INTERVALS 

100 

Figure 1-8.   Computed confidence intervals for 100 samples of size U drawn at random from 
a normal population with m = 50,000 psi, a — 5,000 psi.   Case A shovis 50% confidence 

intervals; Case B shows 90% confidence intervals. 

Adapted   with   permission   from   ASTM   Manual   on   Quality   Control   of  Materials,   Copyright,   1951,   American   Society   for   Testing 
Materials. 
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In Case A of Figure 1-8, 51 of the 100 
intervals actually include the true mean. For 
50% confidence interval estimates, we would 
expect in the long run that 50% of the inter- 
vals would include the true mean. Fifty-one 
out of 100 is a reasonable deviation from the 
expected 50%. In Case B, 90 out of 100 of 
the intervals contain the true mean. This is 
precisely the expected number for 90% inter- 
vals. 

Note also (Fig. 1-8) that the successive 
confidence intervals vary both in position 
and width. This is because they were com- 
puted   (see  Par.  2-1.4)   from  the  sample 

statistics X and s, both of which vary from 
sample to sample. If, on the other hand, 
the standard deviation of the population 
distribution <x were known, and the con- 
fidence intervals were computed from the 
successive X's and cr (procedure given in 
Par. 2-1.5), then the resulting confidence 
intervals would all be the same width, and 
would vary in position only. 

Finally, as the sample size increases, con- 
fidence intervals tend not only to vary less 
in both position and width, but also to 
"pinch in" ever closer to the true value of 
the population parameter concerned, as illus- 
trated in Figure 1-9. 

m + 2CT -, 

m + la - 

m — la - 

m - 2a - 

1 I 

n = 100 

-1— 
20 

—I 
40 

1000 

0    5 

SAMPLE NUMBER 

Figure 1-9.   Computed 50% confidence intervals for the population mean m from 100 
samples of U, h0 samples of 100, and U samples of 1000. 

Adapted   with permission from Statistical Method from the Viewpoint of Quality Control by W. A. Shewhart  (edited by W. Edwards 
Deming), Copyright, 1939, Graduate School, U.S. Department of Agriculture, Washington, D. C. 
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1-8    STATISTICAL TOLERANCE LIMITS 

Sometimes what is wanted is not an esti- 
mate of the mean and variance of the popu- 
lation distribution but, instead, two outer 
values or limits which contain nearly all of 
the population values. For example, if ex- 
tremely low chamber pressures or extremely 
high chamber pressures might cause serious 
problems, we may wish to know approxi- 
mate limits to the range of chamber pres- 
sures in a lot of ammunition. More spe- 
cifically, we may wish to know within what 
limits 99%, for example, of the chamber 
pressures lie. If we knew the mean m and 
standard deviation o- of chamber pressures 
in the lot, and if we knew the distribution 
of chamber pressures to be normal (or very 
nearly normal), then we could take m — 3<r 
and m + 3cr as our limits, and conclude that 

approximately 99.7% of the chamber pres- 
sures lie within these limits (see Fig. 1-5). 
If we do not know m and er, then we may 
endeavor to approximate the limits with 
statistical tolerance limits of the form 
X — Ks and X + Ks, based on the sample 
statistics X and s, with K chosen so that we 
may expect these limits to include at least P 
percent of the chamber pressures in the lot, 
at some prescribed level of confidence a. 

Three sets of such limits for P = 99.7%, 
corresponding to sample sizes n = 4, 100, 
and 1,000, are shown by the bars in Figure 
1-10. It should be noted that for samples of 
size 4, the bars are very variable both in 
location and width, but that for n = 100 and 
n = 1,000, they are of nearly constant width 

7(7 -j 

5(7 - 

m + 3(7 - 

1(7 - 

-Iff - 

m - 3(7 - 

-5(7 - 

-7j - n = 4 n = 100 1000 

20 40 60 
-1— 

80 100   0 

SAMPLE NUMBER 

-1— 

20 40    0   5 

Figure 1-10.   Computed statistical tolerance limits for 99.7% of the population from 100 
samples of size 4, k0 samples of size 100, and U samples of size 1000. 

Adapted with permission from Statistical Method from the Viewpoint of Quality Control by W. A. Shewhart (edited by W. Edwards 

Deming), Copyright, 1939, Graduate School, U.S. Department of Agriculture, Washington, D. C. 
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and position—and their end points approxi- 
mate very closely to m — 3cr and m + 3cr. In 
other words, statistical tolerance intervals 
tend to a fixed size (which depends upon P) 
as the sample size increases, whereas con- 
fidence intervals shrink down towards zero 
width with increasing sample size, as illus- 
trated in Figure 1-9. 

The difference in the meanings of the 
terms confidence intervals, statistical toler- 
ance limits, and engineering tolerance limits 

should be noted. A confidence interval is an 
interval within which we estimate a given 
population parameter to lie (e.g., the popula- 
tion mean m with respect to some character- 
istic) . Statistical tolerance limits for a given 
population are limits within which we ex- 
pect a stated proportion of the population 
to lie with respect to some measurable char- 
acteristic. Engineering tolerance limits are 
specified outer limits of acceptability with 
respect to some characteristic usually pre- 
scribed by a design engineer. 

1-9    USING STATISTICS TO MAKE DECISIONS 

1-9.1     APPROACH  TO A DECISION  PROBLEM 

Consider the following more-or-less typical 
practical situation: Ten rounds of a new 
type of shell are fired into a target, and the 
depth of penetration is measured for each 
round. The depths of penetration are 10.0, 
11.1, 10.5, 10.5, 11.2, 10.8, 9.8, 12.2, 11.0, 
and 9.9 cm. The average penetration depth 
of the comparable standard shell is 10.0 cm. 
We wish to know whether the new type shells 
penetrate farther on the average than the 
standard type shells. 

If we compute the arithmetic mean of the 
ten shells, we find it is 10.70 cm. Our first 
impulse might be to state that on the aver- 
age the new shell will penetrate 0.7 cm. 
farther than the standard shell. This, in- 
deed, is our best single guess, but how sure 
can we be that this actually is close to the 
truth ? One thing that might catch our notice 
is the variability in the individual penetra- 
tion depths of the new shells. They range 
from 9.8 cm. to 12.2 cm. The standard devi- 
ation as measured by s calculated from the 
sample is 0.73 cm. Might not our sample of 
ten shells have contained some atypical ones 
of the new type which have unusually high 
penetrating power ? Could it be that the new 
shell is, on the average, no better than the 
standard one? If we were obliged to decide, 

on the basis of the results obtained from 
these ten shells alone, whether to keep on 
making the standard shells or to convert 
our equipment to making the new shell, how 
can we make a valid choice? 

A very worthwhile step toward a solution 
in such situations is to compute, from the 
data in hand, a confidence interval for the 
unknown value of the population parameter 
of interest. The procedure (given in Par. 
2-1.4) applied to the foregoing depth-of- 
penetration data for the new type of shell 
yields the interval from 10.18 to 11.22 cm. 
as a 95% confidence interval for the popu- 
lation mean depth of penetration of shells 
of the new type. Inasmuch as this interval 
lies entirely to the right of the mean for 
the standard shell, 10.00 cm., we are jus- 
tified in concluding that the new shell is, 
on the average, better than the standard, 
with only a 5% risk of being in error. 
Nevertheless, taking other considerations 
into account (e.g., cost of the new type, cost 
of changing over, etc.), we may conclude 
finally that the improvement—which may be 
as little as 0.18 cm., and probably not more 
than 1.22 cm.—is not sufficient to warrant 
conversion to the new type. On the other 
hand, the evidence that the new type is al- 
most certainly better plus the prospect that 
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the improvement may be as great as 1.22 cm. 
may serve to recommend further develop- 
mental activity in the direction "pioneered" 
by the new type. 

A somewhat different approach, which 
provides a direct answer to our question 
"Could it be that the new shell is on the 
average no better than the standard?" but 
not to the question of whether to convert to 
the new type, is to carry out a so-called test 
of significance (or test of a statistical hy- 
pothesis). In the case of the foregoing ex- 
ample, the formal procedure for the corre- 
sponding test of significance (Par. 3-2.2.1) 
turns out to be equivalent (as explained in 
AMCP 706-113, Chapter 21) to noting whether 
or not the confidence interval computed does 
or does not include the population mean for 
the standard shell (10.0 cm.). If, as in the 
present instance, the population mean for 
the standard shell is not included, this is 
taken to be a negative answer to our ques- 
tion. In other words, this is taken to be 
conclusive evidence (at the 5% level of sig- 
nificance) against the null hypothesis that 
"the new shell is on the average no better 
than the standard." Rejection of the null 
hypothesis in this case is equivalent to ac- 
cepting the indefinite alternative hypothesis 
that "the new shell is better on the average 
than the standard." If, on the other hand, 
the population mean for the standard shell 
is included in the confidence interval, this 
is taken as an affirmative answer to our 
question—not in the positive sense of defi- 
nitely confirming the null hypothesis ("is 
no better"), but in the more-or-less neutral 
sense of the absence of conclusive evidence 
to the contrary. 

As the foregoing example illustrates, an 
advantage of the confidence-interval ap- 
proach to a decision problem is that the con- 
fidence interval gives an indication of how 
large the difference, if any, is likely to be, 
and thus provides some of the additional 
information usually needed to reach a final 
decision on the action to be taken next. For 
many purposes, this is a real advantage of 
confidence intervals over tests of significance. 

However, all statistical decision problems 
are not amenable to solution via confidence 
intervals. For instance, the question at issue 
may be whether or not two particular char- 
acteristics of shell performance are mutually 
independent. In such a situation, any one 
of a variety of tests of significance can be 
used to test the null hypothesis of "no de- 
pendence." Some of these may have a rea- 
sonably good chance of rejecting the null 
hypothesis, and thus "discovering" the ex- 
istence of a dependence when a dependence 
really exists—even though the exact nature 
of the dependence, if any, is not understood 
and a definitive measure of the extent of 
the dependence in the population is lacking. 

A precise test of significance will be possi- 
ble if: (a) the sampling distribution of some 
sample statistic is known (at least to a good 
approximation) for the case of "no depend- 
ence"; and (b) the effect of dependence on 
this statistic is known (e.g., tends to make 
it larger). For a confidence-interval ap- 
proach to be possible, two conditions are 
necessary: (a) there must be agreement on 
what constitutes the proper measure (pa- 
rameter) of dependence of the two charac- 
teristics in the population; and, (b) there 
must be a sample estimate of this depend- 
ence parameter whose sampling distribution 
is known, to a good approximation at least, 
for all values of the parameter. Confidence 
intervals tend to provide a more complete 
answer to statistical decision problems when 
they are available, but tests of significance 
are of wider applicability. 

1-9.2    CHOICE OF NULL AND ALTERNATIVE 
HYPOTHESES 

A statistical test always involves a null 
hypothesis, which is considered to be the 
hypothesis under test, as against a class of 
alternative hypotheses. The null hypothesis 
acts as a kind of "origin" or "base" (in the 
sense of "base line"), from which the alter- 
native hypotheses deviate in one way or an- 
other to greater and lesser degrees. Thus, 
in the case of the classical problem of the 
tossing of a coin, the null or base hypothesis 
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specifies that the probability of "heads" on 
any single trial equals 1/2. If, in a par- 
ticular situation, the occurrence of "heads" 
were an advantage, then we might be par- 
ticularly interested in the one-sided class of 
alternative hypotheses that the probability 
of "heads" on any single trial equals P, 
where P is some (unknown) fraction ex- 
ceeding 1/2. If neither "heads" nor 'tails" 
were intrinsically advantageous, but a bias 
in favor of either could be employed to ad- 
vantage, then we could probably be inter- 
ested in the more general two-sided class 
of alternative hypotheses specifying that the 
probability of "heads" on any single toss 
equals P, where P is some fraction (less 
than, or greater than, but) not equal to 1/2. 

The important point is that the null hy- 
pothesis serves as an origin or base. In the 
coin-tossing instance, it also happens to be 
a favored, or traditional, hypothesis. This 
is merely a characteristic of the example 
selected. Indeed, the null hypothesis is often 
the very antithesis of what we would really 
like to be the case. 

1-9.3    TWO KINDS OF ERRORS 

In basing decisions on the outcomes of 
statistical tests, we always run the risks of 
making either one or the other of two types 
of error. If we reject the null hypothesis 
when it is true, e.g., announce a difference 
which really does not exist, then we make an 
Error of the First Kind. If we fail to reject 
a null hypothesis when it is false, e.g., fail 
to find an improvement in the new shell over 
the old when an improvement exists, then 
we make what is called an Error of the Sec- 
ond Kind. Although we do not know in a 
given instance whether we have made an 
error of either kind, we can know the prob- 
ability of making either type of error. 

1-9.4    SIGNIFICANCE  LEVEL AND OPERATING 
CHARACTERISTIC (OC)  CURVE OF 
A STATISTICAL TEST 

The risk of making an error of the first 
kind, a, equals what is by tradition called 

the level of significance of the test. The risk 
of making an error of the second kind, ß, 
varies, as one would expect, with the magni- 
tude of the real difference, and is summa- 
rized by the Operating Characteristic (OC) 
Curve of the test. See, for example, Figure 
3-5. Also, the risk ß of making an error of 
the second kind increases as the risk a of 
making an error of the first kind decreases. 
Compare Figure 3-5 with Figure 3-6. Only 
with "large" samples can we "have our cake 
and eat it too"—and then there is the cost 
of the test to worry about. 

1-9.5    CHOICE OF THE SIGNIFICANCE LEVEL 

The significance level of a statistical test 
is essentially an expression of our reluctance 
to give up or "reject" the null hypothesis. 
If we adopt a "stiff" significance level, 0.01 
or even 0.001, say, this implies that we are 
very unwilling to reject the null hypothesis 
unjustly. A consequence of our ultracon- 
servatism in this respect will usually be that 
the probability of not rejecting the null hy- 
pothesis when it is really false will be large 
unless the actual deviation from the null 
hypothesis is large. This is clearly an en- 
tirely satisfactory state of affairs if we are 
quite satisfied with the status quo and are 
only interested in making a change if the 
change represents a very substantial im- 
provement. For example, we may be quite 
satisfied with the performance of the stand- 
ard type of shell in all respects, and not be 
willing to consider changing to the new type 
unless the mean depth of penetration of the 
new type were at least, say, 20% better 
(12.0 cm.). 

On the other hand, the standard shell may 
be unsatisfactory in a number of respects 
and the question at issue may be whether 
the new type shows promise of being able 
to replace it, either "as is" or with further 
development. Here "rejection" of the null 
hypothesis would not imply necessary aban- 
donment of the standard type and shifting 
over to the new type, but merely that the 
new type shows "promise" and warrants 
further investigation.   In such a situation, 
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one could afford a somewhat higher risk of 
rejecting the null hypothesis falsely, and 
would take a = 0.05 or 0.10 (or even 0.20, 
perhaps), in the interest of increasing the 
chances of detecting a small but promising 
improvement with a small-scale experiment. 
In such exploratory work, it is often more 
important to have a good chance of detecting 
a small but promising improvement than to 
protect oneself against crying "wolf, wolf" 
occasionally—because the "wolf, wolf" will 
be found out in due course, but a promising 
approach to improvement could be lost for- 
ever. 

In summary, the significance level a of 
a statistical test should be chosen in the 
light of the attending circumstances, includ- 
ing costs. We are sometimes limited in the 
choice of significance level by the availability 
of necessary tables for some statistical tests. 
Two values of a, a = .05 and a = .01, have 
been most frequently used in research and 
development work; and are given in tabula- 
tions of test statistics. We have adopted 
these "standard" levels of significance for 
the purposes of this handbook. 

1-9.6    A WORD OF CAUTION 

Many persons who regularly employ sta- 
tistical tests in the interpretation of research 
and development data do not seem to realize 
that all probabilities associated with such 
tests are calculated on the supposition that 
some definite set of conditions prevails. 
Thus, a, the level of significance (or proba- 
bility of an error of the first kind), is com- 
puted on the assumption that the null hy- 
pothesis is strictly true in all respects; and 
ß, the risk of an error of the second kind, 
is computed on the assumption that a par- 
ticular specific alternative to the null hypoth- 
esis is true and that the statistical test con- 
cerned is carried out at the a-level of signifi- 
cance. Consequently, whatever may be the 
actual outcome of a statistical test, it is 
mathematically impossible to infer from the 

outcome anything whatsoever about the odds 
for or against some particular set of condi- 
tions being the truth. 

Indeed, it is astonishing how often errone- 
ous statements of the type "since r exceeds 
the 1% level of significance, the odds are 99 
to 1 that there is a correlation between the 
variables" occur in research literature. How 
ridiculous this type of reasoning can be is 
brought out by the following simple exam- 
ple (5': The American Experience Mortality 
Table gives .01008 as the probability of an 
individual aged 41 dying within the year. 
If we accept this table as being applicable to 
living persons today (which is analogous to 
accepting the published tables of the signif- 
icance levels of tests which we apply to our 
data), and if a man's age really is 41, then 
the odds are 99 to 1 that he will live out the 
year. On the other hand, if we accept the 
table and happen to hear that some promi- 
nent individual has just died, then we cannot 
(and would not) conclude that the odds are 
99 to 1 that his age was different from 41. 

Suppose, on the other hand, that in some 
official capacity it is our practice to check 
the accuracy of age statements of all persons 
who say they are 41 and then die within the 
year. This practice (assuming the applica- 
bility of the American Experience Mortality 
Table) will lead us in the long run to suspect 
unjustly the word of one person in 100 whose 
age was 41, who told us so, and who then 
was unfortunate enough to die within the 
year. The level of significance of the test is 
in fact 0.01008 (1 in 100). On the other 
hand, this practice will also lead us to dis- 
cover mis-statements of age of all persons 
professing to be 41 who are really some other 
age and who happen to die within the year. 
The probabilities of our discovering such 
mis-statements will depend on the actual 
ages of the persons making them. We shall, 
however, let slip by as correct all statements 
"age 41" corresponding to individuals who 
are not 41 but who do not happen to die 
within the year. 
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The moral of this is that all statistical 
tests can and should be viewed in terms of 
the consequences which may be expected to 
ensue from their repeated use in suitable 
circumstances.   When viewed in this light, 

the great risks involved in drawing conclu- 
sions from exceedingly small samples be- 
comes manifest to anyone who takes the 
time to study the OC curves for the statis- 
tical tests in common use. 
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DISCUSSION OF TECHNIQUES 

IN CHAPTERS 2 THROUGH 6 

The techniques described in Chapters 2 
through 6 apply to the analysis of results of 
experiments expressed as measurements in 
some conventional units on a continuous 
scale. They do not apply to the analysis of 
data in the form of proportions, percentages, 
or counts. 

It is assumed that the underlying popula- 
tion distributions are normal or nearly 
normal. Where this assumption is not very im- 
portant, or where the actual population dis- 
tribution would show only slight departure 
from normality, an indication is given of the 
effect upon the conclusions derived from the 
use of the techniques. Where the normality 
assumption is critical, or where the actual 
population distribution shows substantial de- 
parture from normality, or both, suitable 
warnings are given. 

Table A-37 is a table of three-decimal-place 
random normal deviates that exemplify sam- 
pling from a normal distribution with zero 
mean (m = 0) and unit standard deviation 
(o- = 1). To construct numbers that will sim- 
ulate measurements that are normally dis- 
tributed about a true value of, say, 0.12, with 
a standard deviation of, say, 0.02, multiply 
the table entries by 0.02 and then add 0.12. 
The reader who wishes to get a feel for the 
statistical behavior of sample data, and to 
try out and judge the usefulness of particu- 
lar statistical techniques, is urged to carry 
out a few "dry runs" with such simulated 
measurements of known characteristics. 

All A-Tables referenced in these Chapters 
are contained in AMCP 706-114, Section 5. 
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CHAPTER 2 

CHARACTERIZING THE MEASURED PERFORMANCE OF 

A MATERIAL, PRODUCT, OR PROCESS 

2-1     ESTIMATING AVERAGE PERFORMANCE FROM A SAMPLE 

2-1.1     GENERAL 

In this Chapter we present two important 
kinds of estimates of the average perform- 
ance of a material, product, or process from 
a sample. These include the best single esti- 
mate,   and   confidence   interval  estimates.* 

Specific procedures are given for obtaining 
confidence interval estimates when: 

(a) we have a sample from a normal 
population whose variability is unknown; 
and, 

(b) we have a sample from a normal 
population whose variability is known. 

When the departures from normality are 
not great, or when the sample sizes are 
moderately large, interval estimates made 
as described in Paragraphs 2-1.4 and 2-1.5 
will have confidence levels very little differ- 
ent from the chosen or nominal level. 

The following data will serve to illustrate 
the application of the procedures. 

Data Sample 2-1—Thickness of Mica Washers 

Form: Measurements Xu X2, . . ., Xn of n 
items selected independently at ran- 
dom from a much larger group. 

Example: Ten mica washers are taken at 
random from a large group, and their 
thicknesses measured in inches: 

123 .132 
124 .123 
126 .126 
129 .129 
120 .128 

* The reader who is not familiar with the mean- 
ing and interpretation of confidence intervals should 
refer to Chapter 1, and to Paragraph 2-1.3 of this 
Chapter. 

In general, what can we say about the 
larger group on the basis of our sample? 
We show how to answer two questions: 

(a) What is our best guess as to the aver- 
age thickness in the whole lot? 

(b) Can we give an interval which we 
expect, with certain confidence, to bracket 
the true average—i.e., a confidence interval? 

These two questions are answered in the 
paragraphs which follow, using the data 
shown above. Another question, which is 
sometimes confused with (b) above, is 
treated in Paragraph 2-5. This is the ques- 
tion of setting statistical tolerance limits, or 
estimating an interval which will include, 
with prescribed confidence, a specified pro- 
portion of the individual items in the popu- 
lation. 

2-1.2     BEST SINGLE  ESTIMATE 

The most common and ordinarily the best 
single estimate of the population mean m is 
simply the arithmetic mean of the measure- 
ments. 
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Procedure 

Compute the arithmetic mean X of the n 
measurements Xu X2,.. ., Xn. 

X 

Example 

Compute   the   arithmetic   mean   X   of   10 
measurements (Data Sample 2-1): 

.123 + .124 + .126 + . .. + .128 X = 

1.260 
10 

2-1.3 

10 
= .1260 inch 

SOME  REMARKS ON  CONFIDENCE 
INTERVAL  ESTIMATES 

When we take a sample from a lot or a 
population, the sample average will seldom 
be exactly the same as the lot or population 
average. We do hope that it is fairly close, 
and we would like to state an interval which 
we are confident will bracket the lot mean. 
If we made such interval estimates in a 
particular fashion a large number of times, 
and found that these intervals actually did 
contain the true mean in 99% of the cases, 
we might say that we were operating at a 
99%  confidence level.   Our particular kind 

of interval estimates might likewise be called 
"99% confidence intervals." Similarly, if 
our intervals included the true average 
"95% of the time"—strictly, in 95% of the 
times or instances involved—we would be 
operating at a 95 % confidence level, and our 
intervals would be called 95% confidence in- 
tervals. In general, if in the long run we 
expect 100(1 — a) % of our intervals to con- 
tain the true value, we are operating at the 
100(1 — a) % confidence level. 

We may choose whatever confidence level 
we wish. Confidence levels y commonly used 
are 99% and 95%, which correspond to 
a = .01 and a = .05. If we wish to estimate 
the mean of some characteristic of a large 
group (population) using the results of a 
random sample from that group, the proce- 
dures of Paragraphs 2-1.4 and 2-1.5 will 
allow us to make interval estimates at any 
chosen confidence level. It is assumed that 
the characteristic of interest has a normal 
distribution in the population. We may elect 
to make a two-sided interval estimate, ex- 
pected to bracket the mean from both above 
and below; or we may make a one-sided in- 
terval estimate, limited on either the upper 
or the lower side, which is expected to con- 
tain the mean and to furnish either an upper 
or a lower bound to its magnitude. 

2-1.4     CONFIDENCE INTERVALS FOR THE POPULATION MEAN WHEN KNOWLEDGE 
OF THE VARIABILITY CANNOT BE ASSUMED 

2-1.4.1     Two-Sided Confidence Interval 

This procedure gives an interval which is expected to bracket m, the true mean, 100 (1-a) % 
of the time. 

Procedure Example 

Problem: What is a two-sided 100 (1 — a) %      Problem: What is a two-sided 95% confidence 
confidence interval for the true mean m? interval for the mean thickness in the lot? 

(Data Sample 2-1) 

(1)   Choose the desired confidence level, 1 — a      (1)   Let 1 — a = .95 
a = .05 

(2)   Compute: 
X, the arithmetic mean (see Paragraph 

2-1.2), and 

(2) 

Inxx* - (xxy 
\     n (n - 1) 

X = .1260 inch 

s = 0.00359 inch 
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Procedure 

(3) Look up t = <i_a/2 for n — 1 degrees of 
freedom* in Table A-4. 

(4) Compute: 

Xu = X + t 

XL = X - t 

yfn 

sjn 

Conclude: The interval from XL to Xv is a 
100 (1 — a) % confidence interval for the 
population mean; i.e., we may assert with 
100 (1 - a) % confidence that XL <m < Xv. 

(3) 

(4) 

Example 

t = J.976 for 9 degrees of freedom 
= 2.262 

Xv = 

XL = 

.1260 + 2^2000359) 
Vio 

.1286 inch 
1260 - 2^62000359) 

ViO 
= .1234 inch 

Conclude: The interval from .1234 to .1286 inch 
is a 95% confidence interval for the lot mean; 
i.e., we may assert with 95% confidence that 
.1234 inch < lot mean < .1286 inch. 

2-1.4.2    One-Sided Confidence Interval 

The preceding computations can be used to make another kind of confidence interval state- 
ment. We can say that 100 (a/2) % of the time the entire interval in Paragraph 2-1.4.1 will 
lie above the true mean (i.e., XL, the lower limit of the interval will be larger than the true 
mean). The rest of the time—namely 100(1 —a/2) % of the time—XL will be less than the 
true mean. Hence the interval from XL to + oo is a 100(1 —a/2) % one-sided confidence in- 
terval for the true mean. In the example, Paragraph 2-1.4.1, 100(1 —a/2)% equals 97.5%. 
Thus, either of two open-ended intervals, "larger than .1234 inch," or "less than .1286 inch" 
can be called a 97.5% one-sided confidence interval for the population mean. 

We now give the step-by-step procedure for determining a one-sided confidence interval 
for the population mean corresponding to a different choice of confidence level. 

* In A Dictionary of Statistical Terms,l1) we find the following, under the phrase 
"degrees of freedom": 

"This term is used in statistics in slightly different senses. It was introduced by 
Fisher on the analogy of the idea of degrees of freedom of a dynamical system, that 
is to say the number of independent coordinate values which are necessary to deter- 
mine it. In this sense the degrees of freedom of a set of observations (which ex 
hypothesi are subject to sampling variation) is the number of values which could be 
assigned arbitrarily within the specification of the system; for example, in a sample 
of constant size n grouped into k intervals there are k — 1 degrees of freedom be- 
cause, if fc — 1 frequencies are specified, the other is determined by the total size n; 

A sample of n variate values is said to have n degrees of freedom, whether the 
variates are dependent or not, and a statistic calculated from it is, by a natural exten- 
sion, also said to have n degrees of freedom. But, if k functions of the sample values 
are held constant, the number of degrees of freedom is reduced by A;.   For example, 

n 

the statistic    2J    (
X

>  — 3)2  where x is the sample mean, is said to have n — 1 

degrees of freedom. . . ." 

In this example, s2 =  2J 
(-Xi ~ -^)2/(w ~ 1) al»d has "n - 1" degrees of freedom. 
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Procedure 

Problem: What is a one-sided 100 (1 — a) % 
confidence interval for the true mean? 

(1)   Choose the desired confidence level, 1 — a. 

(2)   Compute: 
X 

(3)   Look up t = <i_a for n — 1 degrees of free- 
dom in Table A-4. 

(4)   Compute: 

XL = X - t 

(or compute 

Xb = X + t 
Vn, 

Conclude: We are 100 (1 — a) % confident that 
the lot mean m is greater than X'L (or, we are 
100 (1 — a) % confident that the lot mean m 
is less than Xü), i.e., we may assert with 
100 (1 — a) % confidence that m > XL (or, 
that m < Xu)- 

Example 

Problem: What is a value which we expect, with 
99% confidence, to be exceeded by the lot 
mean? (Alternatively, what is a value which we 
expect, with 99% confidence, to exceed the lot 
mean?) (Data Sample 2-1) 

(1) 

(2) 

(3) 

(4) 

Let 1 - a = .99 
a = 0.01. 

X = .1260 inch 
s = 0.00359 inch 

t = t, 99 for 9 degrees of freedom 
= 2.821 

_  1260 _ (2.821)000359) 
VIÖ 

= .1228 

(or Xü = .1292) 

Conclude: We are 99% confident that the lot 
mean is greater than .1228 inch (or, we are 99% 
confident that the lot mean is less than .1292 
inch), i.e., we may assert with 99% confidence 
that mean thickness in lot > .1228 inch (or, 
that mean thickness in lot < .1292 inch). 

2-1.5     CONFIDENCE  INTERVAL ESTIMATES WHEN WE  HAVE  PREVIOUS KNOWLEDGE 
OF THE VARIABILITY 

We have assumed in the previous paragraph (2-1.4) that we had no previous information 
about the variability of performance of items and were limited to using an estimate of vari- 
ability obtained from the sample at hand. Suppose that in the case of the mica washers we 
had taken samples many times previously from the same process and found that, although 
each lot had a different average, there was always essentially the same amount of variation 
within a lot. We would then be able to take o-, the standard deviation of the lot, as known and 
equal to the value indicated by this previous experience. This assumption should not be made 
casually, but only when warranted after real investigation of the stability of the variation 
among samples, using control chart techniques. 

The procedure for computing these confidence intervals is simple. In the procedures of 
Paragraph 2-1.4, merely replace s by <r and t by z and the formulas remain the same. Values 
of z are given in Table A-2. Note that tF for an infinite number of degrees of freedom 
(Table A-4) is exactly equal to zF. The following procedure is for the two-sided confidence 
interval. 
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Procedure 

Problem: Find a two-sided 100 (1 - a) % confi- 
dence interval for the lot mean, using known a. 

(1)   Choose the desired confidence level, 1 — a. 

(2) Compute: 
X 

(3) Look up z = Zi_0/2 in Table A-2. 

Example 

Problem: What is a two-sided 95% confidence 
interval for the lot mean? (Data Sample 2-1; 
and a is known to equal .0040 inch.) 

(1) Let 1 - a = .95 
a = .05 

(2) 
X = .1260 inch 

(3) Z   =   Z.976 

= 1.960 

(4)   Compute: (4) 

Xv = X + z 

XL = X -z 

Vn 

cr 

Xv = .1260 + 1.960 

= .1285 
XL = .1235 

(.004) 

Conclude: The interval from XL to Xu is a 
100 (1 — a) % confidence interval for the lot 
mean. 

Conclude: The interval from .1235 to .1285 inch 
is a 95% confidence interval for the lot mean. 

Discussion: When the value of o-, the standard deviation in the population, is known, Pro- 
cedure 2-1.5 should always be used in preference to Procedure 2-1.4, which is independent 
of our knowledge of cr. When available, Procedure 2-1.5 (o- known) will usually lead to a 
confidence interval for the population mean that is narrower than the confidence interval 
that would have been obtained by Procedure 2-1.4 (o- unknown). This is the case for our 
illustrative examples based on Data Sample 2-1, but the difference is very slight because 
cr and s were both very small—only 0.03% of the mean. 

Whatever level of confidence is chosen, the t value required for the application of Proce- 
dure 2-1.4 (cr unknown) will always be larger than the corresponding z value required for 
Procedure 2-1.5 (<r known). This is evident from Table A-4. For very small samples, the 
difference can be considerable. Nevertheless, it can happen, as a result of unusual sampling 
fluctuations, that the value of s obtained in a particular sample is so small in comparison to 
cr that, if Procedure 2-1.4 (cr unknown) were used, the resulting confidence interval 
would be narrower than the confidence interval given by Procedure 2-1.5 (a- known). This 
would have been the case, for instance, if Data Sample 2-1 had yielded an s less than 
1.960 (0.0040)/2.262 - 0.00347. With samples of size 10 (i.e., 9 degrees of freedom for s), 
the probability of such an occurrence is about one in three. In such a case, however, one 
must NOT adopt the confidence interval corresponding to Procedure 2-1.4 (cr unknown) be- 
cause it is narrower. To choose between Procedure 2-1.4 (cr unknown) and Procedure 2-1.5 
(cr known), when the value of a IS known, by selecting the one which yields the narrower 
confidence interval in each instance, would result in a level of confidence somewhat lower 
than claimed. 

2-5 

Downloaded from http://www.everyspec.com



ANALYSIS OF MEASUREMENT DATA AMCP 706-110 

2-2    ESTIMATING VARIABILITY OF PERFORMANCE FROM A SAMPLE 

2-2.1     GENERAL 

We take the standard deviation of per- 
formance in the population as our measure of 
the characteristic variability of performance. 
Presented here are various, ways of estimat- 
ing the population standard deviation, in- 
cluding: 

(a) single-value estimates; 
(b) confidence-interval estimates based 

on random samples from the population; 
and, 

(c) techniques for estimating the popula- 
tion standard deviation when no appropriate 
random samples are available. 

The first two procedures are illustrated by 
application to the following data. 

Data Sample 2-2—Burning Time of 
Rocket Powder 

Form: n independent measurements Xs, X2, 
. . ., Xn selected at random from a 
much larger group. 

Example: Ten unit amounts of rocket pow- 
der selected at random from a large 
lot were tested in a chamber and 
their burning times recorded as fol- 
lows (seconds) : 

50.7 69.8 
54.9 53.4 
54.3 66.1 
44.8 48.1 
42.2 35.5 

2-2.2    SINGLE ESTIMATES 

2-2.2.1     s2 and s 
The best estimate of cr2, the variance of a 

normal population, is: 

JKXi-xy    si? (&*)' 

s2 = 
n — 1 n — 1 

For computational purposes, we usually find 
it more convenient to use the following for- 
mula: 

n 
s2 = 

n /   n \2 

t=l \ i=l / 

n (n — 1) 
The   formulas   are   algebraically   identical. 
With any formula, it is important to carry 

a sufficient number of decimal places. If 
too few places are carried, the subtractions 
involved may result in a loss of significant 
figures in s2. Excessive rounding may even 
lead to a negative value for s2. The formula 
recommended for computational purposes is 
to be preferred on this account because only 
one subtraction is involved; and with a desk 
calculator one usually can retain all places in 
the computation of ZXf and (SZi)2. 

We take 

= vs 
\ n (n - 1) 

as our estimate of cr, the population standard 
deviation. 
Example: Using Data Sample 2-2,  SZ?  = 
27987.54, SZ» = 519.8, and thus s2 = 107.593; 
and s = 10.37 seconds.* 

2-2.2.2    The Sample Range as an Estimate of 
the Standard Deviation 

The range of n observations is defined as 
the difference between the highest and the 

TABLE 2-1. TABLE OF FACTORS FOR CONVERT- 
ING THE RANGE OF A SAMPLE OF n TO AN 
ESTIMATE OF c, THE POPULATION STANDARD 

DEVIATION. ESTIMATE OF <j = RANGE/dn 

Size of 
Sample d„ 1 V~n 

n dn [See Note] 

2 1.128 .8865 1.414 
3 1.693 .5907 1.732 
4 2.059 .4857 2.000 
5 2.326 .4299 2.236 
6 2.534 .3946 2.449 
7 2.704 .3698 2.646 
8 2.847 .3512 2.828 
9 2.970 .3367 3.000 

10 3.078 .3249 3.162 
12 3.258 .3069 3.464 
16 3.532 .2831 4.000 

Note:  d„ is approximately equal to /n for 3 ;= n 
^ 10.   Thus for small n a quick estimate of a can 
be obtained by dividing the range by /n. 

* In a final report, values of s should be rounded 
to two significant figures, but as a basis for further 
calculations it is advisable to retain one or two addi- 
tional figures. For fuller explanation, see Chapters 
22 and 23, Section 4, AMCP 706-113. 
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lowest of the n values. For small samples, 
the sample range is a reasonably efficient 
substitute for s as an estimator of the stand- 
ard deviation of a normal population—not as 
efficient as s, but easier to calculate. Using 
the range is particularly valuable for a 
"quick look" at data from small samples. 

As the sample size gets larger, the range is 
not only troublesome to calculate, but is a 
very inefficient estimator of <r. Table 2-1 
gives the factors which convert from ob- 
served range in a sample of n observations 
to an estimate of population standard devia- 
tion O". 

2-2.3    CONFIDENCE INTERVAL ESTIMATES* 

2-2.3.1     Two-Sided Confidence Interval Estimates 

We are interested in determining an interval which we may confidently expect to bracket 
the true value of the standard deviation of a normal population. 

Procedure 

Problem: What is a two-sided 100 (1 - a) % 
confidence interval for o-? 

(1) Choose the desired confidence level, 1 — a. 

(2) Compute: 

\     n (n - 1) 

(3) Look up Bv and BL for n — 1 degrees of 
freedom in Table A-20. 

(4)   Compute: 
sL = BLs 

Su = Bvs 

Conclude: The interval from sL to Su is a two- 
sided 100 (1 — a) % confidence interval estimate 
for a; i.e., we may assert with 100 (1 — a) % 
confidence that sL < u < sv. 

Example 

Problem: What is a 95% confidence interval for 
o-, the standard deviation of burning time in the 
lot of powder? (Data Sample 2-2) 

(1)   Let 1 - a = .95 
a = .05 

(2) 

s = 10.37 seconds 

(3)   For 9 degrees of freedom, 
BL = .6657 
Bu - 1.746 

(4) 
SL = (10.37) (.6657) 

= 6.90 seconds 
su = (10.37) (1.746) 

= 18.11 seconds 

Conclude: The interval from 6.90 to 18.11 is a 
two-sided 95% confidence interval for a; i.e., we 
may assert with 95% confidence that 6.90 
seconds < a < 18.11 seconds. 

2-2.3.2     One-Sided Confidence Interval Estimates 

In some applications we are not particularly interested in placing both an upper and a 
lower bound on or, but only in knowing whether the variability is excessively large (or, 
exceptionally small). We would like to make a statement such as the following: We can state 

* The reader who is not familiar with the meaning and interpretation of confidence intervals should refer 
to Chapter 1, and to Paragraph 2-1.3 of this chapter. The remarks of Paragraph 2-1.3 concerning confidence 
intervals for the average carry over to confidence intervals for a measure of variability. 
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with 100(1 — a) % confidence that the variability as measured by o- is less than some value 
s'u computed from the sample. Similarly, but not simultaneously, we may wish to state with 
100(1 — a) % confidence that o- is greater than some value si. Either statement is a one- 
sided confidence interval estimate. 

Procedure 

Problem: What is a value sü such that we may 
have 100 (1 — a) % confidence that a is less 
than sü? 

Example 

Problem: What is a value sü such that we have 
95% confidence that a is less than sp. (Data 
Sample 2-2) 

(1)   Choose the desired confidence level, 1 — a.      (1) Let 1 - a = .95 
a = .05 

(2) Compute: 
s 

(3) Look up Ai-a for n — 1 degrees of freedom 
in Table A-21. 

(4) Compute: 
S[/   =   Al_a S 

(5)   With 100 (1 — a) % confidence we can as- 
sert that a is less than s^. 

(2) 
s = 10.37 seconds 

(3)   For 9 degrees of freedom, 
A.96 = 1.645 

(4) 
s6 = (1.645) (10.37) 

= 17.06 seconds 

(5) We are 95% confident that the variability 
as measured by a is less than sü = 17.06 
seconds. 

Should a lower bound to cr be desired, follow Procedure 2-2.3.2 with s'u and A^ replaced 
by s'L and Aa, respectively. Then it can be asserted with 100 (1 — a) % confidence thato- > si. 

2-2.4 ESTIMATING THE STANDARD DEVIA- 
TION WHEN NO SAMPLE DATA ARE 
AVAILABLE 

It is often necessary to have some idea of 
the magnitude of the variation of some char- 
acteristic as measured by a-, its standard 
deviation in the population. In planning ex- 
periments, for example, the sample size re- 
quired to meet certain requirements is a 
function of cr. In almost any situation, one 
can get at least a very rough estimate of cr. 
The minimum necessary information in- 
volves the form of the distribution and the 
spread of values. For example, if the values 
of the individual items can be assumed to 
follow a normal distribution, then either of 
the following rules can be used to get an 
estimate of cr: 

(a) Estimate two values ai and bi between 
which you expect 99.7% (almost all) of the 
individuals to be. Then, estimate 

a as ai — bi 

(b)  Estimate two values a2 and b2 between 
which you expect 95% of the individuals to 

be. Then, estimate      o as I ag ~ ba 1 

If the distribution concerned cannot be as- 
sumed to be normal but can be assumed to 
follow one of the top four forms in Figure 
2-1, then the standard deviation may be esti- 
mated as indicated in the figure. This figure 
also illustrates the distribution and rules for 
(a) and (b) above. 
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DISTRIBUTION STANDARD 
DEVIATION 

b-a 

3.5 

b-a 

4.2 

*,—. 

».—. 

Figure 2-1.   The standard deviation of some 
simple distributions. 

Adapted  with  permission  from  Some  Theory  of Sampling,  by 
W.  Edwards Deming,  Copyright, 1950, John Wiley & Sons, Inc. 

2-3    NUMBER OF MEASUREMENTS REQUIRED TO ESTABLISH 
THE MEAN WITH  PRESCRIBED ACCURACY 

2-3.1     GENERAL 
In planning experiments, we may need to 

know how many measurements or how large 
a sample to take in order to determine the 
mean of some distribution with prescribed 

accuracy. Suppose we are willing to allow 
a margin of error d, and a risk a. that our 
estimate of m will be off by an amount d or 
greater.   Since the sampling distribution of 
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X is "normal" to a good approximation for 
samples of four or more measurements from 
almost every population distribution likely 
to be met in practice, we can ascertain the 
required sample size n if we have an avail- 
able estimate s of cr, or if we are willing to 
assume that we know cr. If we have not 
made an estimate or are unwilling to assume 
a value for cr, then we must use a two-stage 
sample. The two-stage method will usually 
result in a smaller total sample size. In the 
two-stage method, we must start by guessing 
a value of cr, but the end results do not de- 
pend upon how good or bad is the guess. 

Sometimes we may have available to us 
one or more samples from the population of 
interest, from which we can derive an esti- 
mate s of cr based on v degrees of freedom. 
Other times we may have one or more sam- 
ples from some other population that has the 
same standard deviation as the population 
of interest, but possibly a different mean. 
Again, we can derive an estimate s of cr 
based on v degrees of freedom. In either 
case, we can utilize this preliminary estimate 
of <r to determine the sample size n required 
to' estimate the mean of the population of 
interest with prescribed accuracy. 

2-3.2    ESTIMATION OF THE MEAN OF A POPULATION USING A SINGLE SAMPLE 

Procedure 

Problem: We wish to know the sample size re- 
quired to ascertain the mean TO of a population. 
We are willing to take a risk a that our estimate 
is off by d or more. There is available an esti- 
mate s of the population standard deviation <r, 
based on v degrees of freedom. 

(1) Choose d, the allowable margin of error, 
and a, the risk that our estimate of m will 
be off by d or more. 

(2) Look up £i_n/2 for v degrees of freedom in 
Table A-4. 

(3) Compute: 

<2s2 

n = 

Conclude: If we now compute the mean X of a 
random sample of size n from the population we 
may have 100 (1 — a) % confidence that the 
interval X — d to X + d will include the popu- 
lation mean m. 

Example 

Problem: We wish to know the average thick- 
ness of the washers in a given lot. We are willing 
to take a risk that 5 times in 100 the error in our 
estimate will be 0.002 inch or more. From a 
sample from another lot we have an estimate of 
the population standard deviation of s = .00359 
with 9 degrees of freedom. 

(1)   Let d = 0.002 inch 
a = .05 

(2) 

(3) 

t = £.9 75 for 9 degrees of freedom 
= 2.262. 

n = 16.5 
(2.262)2 (.00359)2 

(.002)2 

= 17 (conventionally rounded up to 
the next integer.) 

Conclude: We may conclude that if we now com- 
pute the mean X of a random sample of size 
n = 17 from the lot of washers, we may have 
95% confidence that the interval X - .002 
to X + .002 will include the lot mean. 

If we know <x, or assume some value for cr, replace s by cr and ti.a/i by 2i-«/2 in the above 
procedure. Values of Zi.a/2 are given in Table A-2. 

2-3.3     ESTIMATION USING A SAMPLE WHICH IS TAKEN IN TWO STAGES 

It is possible that we do not have a good estimate of cr, the standard deviation of the popu- 
lation. When the cost of sampling is high, rather than take a larger sample than is really 
necessary, we might prefer to take the sample in two stages.  The method (sometimes called 
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Stein's method) goes roughly as follows: Make a guess for the value of ar. From this deter- 
mine n% the size of the first sample. The first sample will provide an estimate s of the popula- 
tion standard deviation. Use this value of s to determine how large the second sample 
should be. 

Procedure 

Problem: We wish to know the sample size re- 
quired to ascertain the mean m of a population. 
We are willing to take a risk a that our estimate 
is off by d or more units. 

(1) 

(2) 

(3) 

(4) 

Choose d, the allowable margin of error, 
and a, the risk that our estimate of m will 
be off by d or more. 

Let a' be the best possible guess for the 
value of <J, the standard deviation of the 
population (see Paragraph 2-2.4). 

Look up Zi-a/2 in Table A-2. 

Compute: 

»■ - M* 
n' is the first estimate of the total sample 
size required. 

(5) Choose %i the size of the first sample, «i 
should be considerably less than n'. (If the 
guessed value of a is too large, this will pro- 
tect us against a first sample which is 
already larger than we need.) A rough rule 
might be to make rax > 30 unless n' < 60, 
in which case let n\ be somewhere between 
.5n' and .In'. 

(6) Make the necessary observations on the 
sample of nx. Compute su the standard 
deviation. 

(7) Look up t i_a/ 2 f or n i 
in Table A-4. 

(8) Compute 

1 degrees of freedom 

n = f2s2 

d2 

n is the total required sample size for the first 
and second samples combined. We then 
require a second sample size of n% - n — »i. 

Example 

Problem: We have a large lot of devices, and 
wish to determine the average of some property. 
We are willing to take a risk of .05 of the esti- 
mate being in error by 30 units. 

(1)   Let d = 30 
a = .05 

(2)   From our knowledge of similar devices our 
best estimate of a is 200 units. 

(3)      z.976 = 1.960 

(4) 

,      (1.960)2 (200)2 

(30)2 

= 170.7 

(5)   Let nt = 50 

(6)   From tests on 50 devices chosen at random, 
Si = 160 units. 

(7) 

(8) 

t = i.975 for 49 degrees of freedom 
= 2.01. 

n = (2.01)2 (160)2 

(30)2 

= 114.9 
= 115 

n2 = 115 - 50 
= 65 

We will require an additional 65 devices to 
be tested. 
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If now we obtain the second sample of size n2 and compute the mean X of the total sample 
of size n = nx + n2, we may have 100 (1 - a) % confidence that the interval X - d to X + d 
will include the population mean m. 

2-4    NUMBER OF MEASUREMENTS REQUIRED TO ESTABLISH 
THE VARIABILITY WITH STATED PRECISION 

We may wish to know the size of sample required to estimate the standard deviation with 
certain precision. If we can express this precision as a percentage of the true (unknown) 
standard deviation, we can use the curves in Figure 2-2. 
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Figure 2-2. Number of degrees of freedom required to 
estimate the standard deviation within P% of its 

true value with confidence coefficient y. 
Adapted with permission from Journal of the American Statistical Association, Vol. 45 (1960), p. 258, from article entitled "Sample 
Size Required for Estimating the Standard Deviation as a Percent of its True Value" by J. A. Greenwood and M. M. Sandomire. 
The manner of graphing is adapted with permission from Statistics Manual by E. L. Crow, F. A. Davis, and M. W. Maxfield, 
NAVORD Report 3369, NOTS 948, U. S. Naval Ordnance Test Station, China Lake, Calif., 1955. (Reprinted by Dover Publications, 
Inc., New York, N.Y., 1960.) 
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Procedure 

Problem: If we are to make a simple series of 
measurements, how many measurements are re- 
quired to estimate the standard deviation with- 
in P percent of its true value, with prescribed 
confidence? 

(1) Specify P, the allowable percentage devia- 
tion of the estimated standard deviation 
from its true value. 

(2) Choose 7, the confidence coefficient. 

(3) In Figure 2-2, find P on the horizontal 
scale, and use the curve for the appropriate 
y. Read on the vertical scale the required 
degrees of freedom. 

(4) For a simple series of measurements, the 
required number is equal to one plus the 
degrees of freedom. 

Example 

Problem: How large a sample would be required 
to estimate the standard deviation within 20% 
of its true value, with confidence coefficient 
equal to 0.95? 

(1)   Let P = 20% 

(2) Let y = .95 

(3) For y = .95, P = 20%, the required de- 
grees of freedom equals 46. 

(4) n = 46 + 1 
= 47 

2-5    STATISTICAL TOLERANCE LIMITS 

2-5.1     GENERAL 

Sometimes we are more interested in the 
approximate range of values in a lot or popu- 
lation than we are in its average value. Sta- 
tistical tolerance limits furnish limits be- 
tween, above, or below which we confidently 
expect to find a prescribed proportion of in- 
dividual items of the population. Thus, we 
might like to be able to give two values A 
and B between which we can be fairly cer- 
tain that at least a proportion P of the popu- 
lation will lie, (two-sided limits), or a value 
A above which at least a proportion P will 
lie, (one-sided limit). 

Thus for the data on thickness of mica 
washers (Data Sample 2-1), we could give 
two thickness values, stating with chosen 
confidence that a proportion P (at least) of 
the washers in the lot have thicknesses be- 
tween these two limits. We call the confi- 
dence coefficient y, and it refers to the pro- 
portion of the time that our method will 
result in correct statements. If a normal dis- 
tribution can be assumed, use the procedures 
of Paragraphs 2-5.2 and 2-5.3; otherwise use 
the procedures of Paragraph 2-5.4. 

2-5.2    TWO-SIDED TOLERANCE LIMITS FOR A NORMAL DISTRIBUTION 

When the mean m and standard deviation or of a normally distributed quantity are known, 
symmetrical limits that include a prescribed proportion P of the distribution are readily 
obtained by adding and subtracting z« o- from the known mean m, where za is read from 
Table A-2 with a. — |(P+1). When m and <r are not known, we can use an interval of the 
form X ± Ks. Since both X and s will vary from sample to sample it is impossible to 
determine K so that the limits X ± Ks will always include a specified proportion P of the 
underlying normal distribution. It is, however, possible to determine K so that in a long 
series of samples from the same or different normal distributions a definite proportion y of 
the intervals X ± Ks will include P or more of the underlying distribution (s). 
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Procedure 

Problem: We would like to state two limits 
between which we are 100 y percent confident 
that 100 P percent of the values lie. 

(1) Choose P, the proportion, and y, the confi- 
dence coefficient. 

(2) Compute from the sample: 
X 

(3)   Look up K for chosen P and y in Table A-6. 

(4)   Compute: 
Xu = X + Ks 

XL = X -Ks 

Conclude: With 100 y % confidence we may pre- 
dict that a proportion P of the individuals of the 
population have values between XL and Xv. 

Example 

Problem: We would like to state thickness limits 
between which we are 95% confident that 90% 
of the values lie (Data Sample 2-1). 

(1)   Let   P = .90 
y = .95 

(2) 

(3) 

(4) 

X = .1260 inch 
s = 0.00359 inch 

K = 2.839 

Xu = .1260 + 2.839 (.00359) 
= 0.136 inch 

XL = .1260 - 2.839 (.00359) 
= 0.116 inch 

Conclude: With 95% confidence, we may say 
that 90% of the washers have thicknesses be- 
tween 0.116 and 0.136 inch. 

2-5.3    ONE-SIDED TOLERANCE LIMITS FOR A NORMAL DISTRIBUTION 

Sometimes we are interested only in estimating a value above which, or below which, a 
proportion P (at least) will lie. In this case the one-sided upper tolerance limit will be 
Xv = X + Ks; and XL = X — Ks will be the one-sided lower limit. The appropriate values 
for K are given in Table A-7 and are not the same as those of Paragraph 2-5.2. 

Procedure 

Problem: To find a single value above which we 
may predict with confidence y that a proportion 
P of the population will lie. 

(1) Choose P the proportion and y, the confi- 
dence coefficient. 

(2) Compute: 
X 

(3)   Look up K in Table A-7 for the appropriate 
n, y, and P. 

(4) XL = X - Ks 

Example 

Problem: To find a single value above which we 
may predict with 90% confidence that 99% of 
the population will lie. (Data Sample 2-1). 

(1)   Let   P = .99 
y = .90 

(2) 
X = .1260 inch 
s = 0.00359 inch 

(3) K (10, .90, .99) = 3.532 

(4) XL = .1260 - 3.532 (.00359) 
= .1133 inch 

Thus we are 90% confident that 99% of the 
mica washers will have thicknesses above 
.113 inch. 
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Note: Factors for some values of n, y, and P not covered in Table A-7 may be found in 
Sandia Corporation Monograph SCR-13(2). Alternatively, one may compute K using the fol- 
lowing formulas: 

2 (» - 1) 

b = zj - a F     n 

K = ZP + y/zl - ah 

(where z can be found in Table A-2) 

2-5.4 TOLERANCE LIMITS WHICH ARE INDE- 
PENDENT OF THE FORM OF THE 
DISTRIBUTION 

The methods given in Paragraphs 2-5.2 
and 2-5.3 are based on the assumption that 
the observations come from a normal distri- 
bution. If the distribution is not in fact 
normal, then the effect will be that the true 
proportion P of the population between the 
tolerance limits will vary from the intended 
P by an amount depending on the amount of 
departure from normality. If the departure 
from normality is more than slight we can 
use a procedure which assumes only that the 
distribution has no discontinuities. The tol- 
erance limits so obtained will be substantially 
wider than those assuming normality. 

2-5.4.1     Two-Sided Tolerance Limits 
(Distribution-Free) 

Table A-30 gives values (r, s) such that 
we may assert with confidence at least y that 
100P% of a population lies between the rth 

smallest and the sth largest of a random sam- 
ple of n from that population. For example, 
from Table A-30 with y = .95, P = .75, and 
n = 60, we may say that if we have a sample 

of n = 60, then we may have a confidence of 
at least y = .95 that 100P% = 75% of the 
population will lie between the fifth largest 
(s = 5) and the fifth smallest (r = 5) of the 
sample values. That is, if we were to take 
many random samples of 60, and take the 
fifth largest and fifth smallest of each, we 
should expect to find that at least 95% of the 
resulting intervals would contain 75 % of the 
population. 

Table A-32 may be useful for sample sizes 
of n s£ 100. This table gives the confidence 
y with which we may assert that 100P% of 
the population lies between the largest and 
smallest values of the sample. 

2-5.4.2    One-Sided Tolerance Limit* 
(Distribution-Free) 

Table A-31 gives the largest value of m 
such that we may assert with confidence at 
least y that 100P% of a population lies be- 
low the mth largest (or above the mth small- 
est) of a random sample of n from that pop- 
ulation. For example, from Table A-31 with 
y = .95, P = .90, and n = 90, we may say 
that we are 95% confident that 90% of a 
population will lie below the fifth largest 
value of a sample of size n = 90. 

REFERENCES 
1. M. G. Kendall and W. R. Buckland, A Dictionary of Statistical Terms, 

p. 79, Oliver and Boyd, London, 1957. 
2. D. B. Owen, Table of Factors for One-Sided Tolerance Limits for a 

Normal Distribution, Sandia Corporation Monograph SCR-13, April 
1958. 
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CHAPTER 3 

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO 

AVERAGE PERFORMANCE 

3-1   GENERAL REMARKS ON STATISTICAL TESTS 

One of the most frequent uses of statistics 
is in testing for differences. If we wish to 
know whether a treatment applied to a stand- 
ard round affects its muzzle velocity, we may- 
conduct an experiment and apply a statisti- 
cal test to the experimental results to see 
whether we would be justified in concluding 
that there is a difference between the per- 
formance of treated and untreated rounds. 
In another case, two manufacturing proc- 
esses may be available—process A is cheaper 
and therefore preferable unless process B is 
demonstrated to be superior in some respect. 
Again, we apply a statistical test to the ex- 
perimental results to see whether process B 
has demonstrated superiority. 

Ordinarily, the statistical test applied to 
the results observed on a sample will point 
the way to decision between a pair of alter- 
natives. For some tests, the two alternative 
decisions will be formally stated as follows: 

(a) There is a difference between the 
(population) averages of two materials, 
products, processes, etc. 

(b) No difference has been demonstrated. 

In other cases, the formal statement of the 
two alternative decisions will be: 

(a) The (population) average of product 
A is greater than that of product B. 

(b) We have no reason to believe that the 
(population) average of product A is greater 
than that of product B. 

In this Chapter and others, we shall con- 
sider a number of statistical tests of differ- 
ences.   The application  of  each  statistical 

test will result in making one of two deci- 
sions, as in the pairs given. In each case the 
pair of alternative decisions is chosen before 
the data are observed—this is important! 

Since we ordinarily obtain information on 
one or both of the products by means of a 
sample, we may sometimes make an errone- 
ous decision. However, the chance of making 
the wrong decision can be reduced by in- 
creasing the number of observations. There 
are two ways in which we can make a wrong 
decision: 

(a) When we conclude that there is a dif- 
ference where in fact there is none, we say 
that we make an Error of the First Kind; 

(b) When we fail to find a difference that 
really exists, then we say that we make an 
Error of the Second Kind. 

In any particular case, we never can be abso- 
lutely sure that the correct decision has been 
made, but we can know the probability of 
making either type of error. 

The probability of making an Error of the 
First Kind is usually denoted by a; and the 
probability of making an Error of the Sec- 
ond Kind is denoted by ß. The ability of a 
given statistical test to detect a difference 
(e.g., between averages) will in general de- 
pend on the size of the difference 8; thus, 
ß has no meaning unless associated with a 
particular difference 8. The value of ß, ß (8), 
associated with a particular difference 8 will 
decrease as 8 increases. For a particular 
statistical test, the ability to detect a differ- 
ence will be determined by three quantities: 
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a, ß(8), and n the sample size. The comple- 
mentary quantity 1—ß(8) is termed the 
power of the test to detect a difference 8 with 
a sample of size n, when the test is carried 
out at the a-level of significance. 

The decision procedure is a very logical 
one. Suppose we wish to test whether two 
types of vacuum tubes have the same resist- 
ance in ohms, on the average. We take sam- 
ples of each type and measure their resist- 
ances. If the sample mean of one type of 
tube differs sufficiently from the sample 
mean of the other, we shall say that the two 
kinds of tubes differ in their average resist- 
ance. Otherwise, we shall say we failed to 
find a difference. How large must the differ- 
ence be in order that we may conclude that 
the two types differ, or that the observed dif- 
ference is "significant"?* This will depend 
on several factors: the amount of variability 
in the tubes of each type; the number of 
tubes of each type; and the risk we are 
willing to take of stating that a difference 
exists when there really is none, i.e., the 
risk of making an Error of the First Kind. 
We might proceed as follows: we would be 
willing to state that the true averages differ, 
if a difference larger than the observed dif- 
ference could arise by chance less than five 
times in a hundred when the true averages 
are in fact equal. The probability of an 
Error of the First Kind is then a = .05, or, 
as we commonly say, we have adopted a .05 
significance level. The use of a significance 
level of .05 or .01 is common, and these levels 
are tabulated extensively for many tests. 
There is nothing unique about these levels, 
however, and a test user may choose any 
value for a that he feels is appropriate. 

As we have mentioned, the ability to detect 
a difference will in general depend on the 
size of the difference 5. Let us denote by 
ß{8) the probability of failing to detect a 
specified difference 8. If we plot ß(8) ver- 
sus the difference 8, we have what we call 
an Operating Characteristic (OC) curve. 
Actually, we usually plot ß(8) versus some 

* Or more accurately, statistically significant. A 
difference may be statistically significant and yet be 
practically unimportant. 

convenient function of 8. Figures 3-1 
through 3-8 show OC curves for a number 
of statistical tests when conducted at the 
a = .05 or a = .01 significance levels. 

An OC curve depicts the discriminatory 
power of a particular statistical test. For 
specified values of n and a, there is a unique 
OC curve. The curve is useful in two ways. 
If we have specified n and a, we can use the 
OC curve to read ß(8) for various values of 
8. If we are still at liberty to set the sample 
size for our experiment, and have a particu- 
lar value of 8 in mind, we can see what value 
of n is required by looking at the OC curves 
for specified a. If, for the a chosen, the 
sample size required to achieve a reasonably 
small ß(8) is too large, and if it really is 
important to detect a difference of 8 when it 
exists, then a less conservative (i.e., larger) 
value of a must be used. Various uses of the 
OC curves shown in Figures 3-1 through 3-8 
are described in detail in the appropriate 
paragraphs of this Chapter. 

It is evident that for any ß(8), n will in- 
crease as 8 decreases. It requires larger sam- 
ples to recognize smaller differences. In some 
cases, the experiment as originally thought 
of will be seen to require prohibitively large 
sample sizes. We then must compromise be- 
tween the sharp discriminatory power we 
think we need, the cost of the amount of test- 
ing required to achieve that power, and the 
risk of claiming a difference when none 
exists. If the experiment has already been 
run, and the sample size was fixed from other 
considerations, the OC curve will show what 
chance the experiment had of detecting a 
particular difference 8. 

To use the OC curves in this Chapter, we 
must know the population standard deviation 
o-, or at least be willing to choose some range 
for or. It is quite often possible to assign 
some upper bound to the variability, even 
without the use of past data (see Paragraph 
2-2.4). After the experiment has been run, 
a possibly better estimate of cr will be avail- 
able, and a hindsight look at the OC curve 
using this value will help to evaluate the 
experiment. 
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We outline a number of different tests in 
this Chapter. For each test, we give the pro- 
cedure to be followed for a specified signifi- 
cance level a and sample size n. For most of 
the tests, we also give the OC curve which 
enables us to obtain the (approximate) value 
of ß for any given difference. Tables are 
provided for determining n, the sample size 
required when a, 8, and ;8(8) have been 
specified. The tests given are exact when: 

(a) the observations for each item are 
taken randomly from a single population of 
possible observations; and, 

(b) the quality characteristic measured is 
normally distributed within this population. 
Ordinarily, the assumption of normality is 

not crucial, particularly if the sample size 
is not very small. 

Alternate procedures for most of the tests 
in this Chapter are given in AMCP 706-113, 
Chapters 15 and 16. Chapter 16 gives tests 
which require neither normality assump- 
tions nor knowledge of the variability of the 
populations; but this greater generality is 
achieved at the price of somewhat reduced 
discriminating power when normality can be 
assumed and the knowledge about the vari- 
ability of the populations, needed for the 
tests of this Chapter, is in hand. Chapter 
15 gives shortcut tests for small samples 
from normal populations which involve less 
computation than the tests of this Chapter 
with negligible loss of efficiency. 

3-2    COMPARING THE AVERAGE OF A NEW PRODUCT 
WITH THAT OF A STANDARD 

The average performance of a standard prod- 
uct is known to be mD. We shall consider three 
different problems: 

(a) To determine whether the average of a 
new product differs from the standard, Para- 
graph 3-2.1. 

(b) To determine whether the average of a 
new product exceeds the standard, Paragraph 
3-2.2. 

(c) To determine whether the average of a 
new product is less than the standard, Para- 
graph 3-2.3. 

For summary of the procedures appropriate 
for each of these three problems, see Table 3-1. 

It is necessary to decide which of the three 
problems is appropriate before taking the ob- 
servations. If this is not done and the choice of 
the problem is influenced by the observations, 
(for example, Paragraph 3-2.1 vs. 3-2.2), the 
significance level of the test, i.e., the probability 
of an Error of the First Kind, and the operating 
characteristics of the test may differ consider- 
ably from their nominal values. 

Ordinarily the variability of a new product is 
not known. At other times previous experience 
may enable us to state a value of a. We shall 
outline the solutions of the three problems 
(Paragraphs 3-2.1, 3-2.2, and 3-2.3) for both 

cases, i.e., where the variability is estimated 
from the sample, and where <r is known from 
previous experience. 

Symbols to be used: 
m = average of new material, product or 

process (unknown). 
m0 = average of standard material, product 

or process (known). 
X = average of sample of n measurements 

on new product. 
s = standard deviation estimate computed 

from n measurements on the new prod- 
uct (used where a is unknown). 

a = the known standard deviation of the 
new product. 

Data Sample 3-2—Weight of Powder 

For a certain type of shell, specifications state 
that the amount of powder should average 0.735 
pound. In order to determine whether the 
average for a new stock meets the specification, 
20 shells are taken at random, and the amount 
of powder contained in each is weighed. 

The sample average X = .710 pound. 
The sample standard deviation estimate 

s = .0504 pound. In illustrating the known-cr 
case, we assume a known to be equal to 0.06 
pound. 
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TABLE 3-1.    SUMMARY OF TECHNIQUES FOR COMPARING THE AVERAGE OF A NEW PRODUCT WITH THAT OF A 
(FOR DETAILS AND WORKED EXAMPLES SEE PARAGRAPHS 3-2.1, 3-2.2, AND 3-2.3) 

STANDARD 

We Wiih to 
Tail 

Whether 

Para- 
graph 
Refer- 
ence 

Knowledge of 
Variation 

of New Item 
Test to be Made 

Operating 
Characleritlici 

of the Teil 
(for a = .05 

and a = .01) 

Sample Size Required 
n 

Nolet 

m differs 
from m0 

3-2.1.1 cr unknown; s = estimate 
of a from sample. 

\X - TOo| > u See Figs. 3-1 
and 3-2» 

Use Table A-8. For a = .05, add 2 to 
tabular value. For a = .01, add 4 to 
tabular value. 

B=''-"(^) 
(( for n — 1 de- 
grees of freedom) 

3-2.1.2 a known \X — ma\> u See Figs. 3-3 
and 3-4 

Use Table A-8. U = 2^"(vi) 
m is larger 
than tn0 

3-2.2.1 <r unknown; s = estimate 
of a from sample. 

(X - m0) > u See Figs. 3-5 
and 3-6* 

Use Table A-9. For a = .05, add 2 to 
tabular value. For a = .01, add 3 to 
tabular value. (t for n — 1 de- 

grees of freedom) 

3-2.2.2 a known (X - m0) > u See Figs. 3-7 
and 3-8 

Use Table A-9. u = 2^{vi) 
m is smaller 
than TOO 

3-2.3.1 o unknown; s = estimate 
of e from sample.. 

(m0 — X) > u See Figs. 3-5 
and 3-6' 

Use Table A-9. For a = .05, add 2 to 
the tabular values. For a = .01, add 
3 to the tabular values. (( for » — 1 de- 

grees of freedom) 

3-2.3.2 a known (mo - X) > u See Figs. 3-7 
and 3-8 

Use Table A-9. tt = "-föi) 
* It is necessary to have some value for a (or two bounding values) in order to use the Operating Characteristic curve. Although a is unknown, in many situations it is possible 

to have some notion, however loose, about the magnitude of a and thereby to get helpful information from the OC curve. Paragraph 2-2.4 gives assistance in estimating a from 
general knowledge of the process. 

3-2.1    TO   DETERMINE   WHETHER   THE   AVERAGE   OF   A   NEW   PRODUCT   DIFFERS   FROM   THE 
STANDARD 

3-2.1.1    Does the Average of the New Product Differ from the Standard (cr Unknown)? 

[Two-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up £i_a/2 for n — 1 degrees of freedom 
in Table A-4. 

(3) Compute 
X and s from the n measurements. 

(4)   Compute 

U   =   <l_„/2 
Vw 

(5) If | X — m01 > u, decide that the average 
of the new type differs from that of the 
standard; otherwise, that there is no reason 
to believe that they differ. 

(6) Note: The interval X ± u is a 100 (1 - a) % 
confidence interval estimate of the true 
average of the new type. 

Example 

(1) Let a = .05 

(2) «.975 for 19 degrees of freedom = 2.093 

(3) 

(4) 

X = .710 pound 
s = .0504 pound 

(Data Sample 3-2) 

u = 
(2.093) (.0504) 

= .0236 

(5) | X - mo | - | .710 - .7351 = .025. We con- 
clude that the average amount of powder in 
the new stock differs from 0.735, the speci- 
fied standard amount. 

(6) Note: .710 ± .0236 is a 95% confidence in- 
terval estimate of the true average of the 
new stock. 
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Operating Characteristics of the Test.   Figures 3-1 and 3-2 give the operating characteristic (OC) 
curves of the preceding test for a = .05 and « = .01, respectively, and various values of n. 

Choose: 

8 = \m — m0\, 
the true absolute difference between the averages (unknown, of course) 

Some value of a. 
(One may use an estimate from previous data; lacking such an estimate, see Paragraph 
2-2.4.   If the OC curve is consulted after the experiment, we may use the estimate 
from the experiment.) 

Compute 

d = 8-  . 

We then can read from the OC curve for a given significance level a and sample size n, a value 
of /8(5). The 0(5) read from the curve is ß(8 \ a-, a, n), i.e., ß(8, given a, a, n)—the probability of failing 
to detect this difference when the given test is carried out with a sample of size n, at the a-level of 
significance, and the population standard deviation actually is a. 

If we use too large a value for <r, the effect is to underestimate d, and consequently to over- 
estimate ß(S), the probability of not detecting a difference of 8 when it exists. Conversely, if we 
choose too small a value of a, then we shall overestimate d and underestimate ß{8). The true value 
of ß(8) is determined, of course, by the sample size n and the significance level a employed, and the 
true value of <r. 

Selection of Sample Size n.  If we choose 

8 = | m — m01, the absolute value of the average difference that we desire to detect 
a, the significance level of the test 
ß, the probability of failing to detect a difference 5 

and compute 

\m — m0| d = 

then we may use Table A-8 to obtain a good approximation to the required sample size. If we take 
a = .01, then we must add 4 to the value obtained from the table. If we take a = .05, then we 
must add 2 to the table value. (In order to compute d, we must choose a value for. a. See Paragraph 
2-2.4 if no other information is available.) 

As an example, suppose that we plan to take a = .05, and want to have ß = .50 for a difference 
of .024 pound; that is, we wish to conduct a test at a significance level of .05 that will have a 50-50 
chance of detecting a difference of 0.024 pound. What sample size should we require? Suppose 
previous experience suggests that a lies between .04 and .06 pound. 

Taking a = .04, with 8 = \m — m0| = .024, gives d = 0.6. Using Table A-8, with a = .05, 
1 — ß = .50, we find the required sample size as n = 11 + 2 = 13. Taking <J = .06, yields d = A. 
From the same table, we find that the required sample size is 25 + 2 = 27. To be safe, we would 
use n = 27. For a < .06, with a significance level of .05, this would give the two-sided t test at 
least a 50% chance of detecting a difference of 0.024 pound. 

If, when planning an investigation leading to a two-sided J-test, we overestimate a, the conse- 
quences are two-fold: first, we overestimate the sample size required, and thus unnecessarily increase 
the cost of the test; but, by employing a sample size that is larger than necessary, the actual value 
of /3(5) will be somewhat less than we intended, which will be all to the good. On the other hand, if 
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Figure 3-1.  OC curves for the two-sided t-test (a = .05). 
Adapted with permission from Annals of Mathematical Statistics,  Vol. 17, No. 2, June 1946, pp. 178-197, from article entitled "Operating 

Characteristics for the Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Note: These curves apply to the following tests: 

(a)   Does the average m of a new product differ from a standard m0? 
8 =   ITO — TOol 

d = TO — TOo See Paragraph 3-2.1.1. 

(b)  Do the averages of two products differ? 
8 = \mA — mB\ 

d* = \mA - mB\ 
VnA + - »JB — 1 \; 

nAnB 
nA + nB' 

where oA = CB = o- by assumption, and nA and nB are the respective sample sizes from 
products A and B.  See Paragraph 3-3.1.1. 

3-6 

Downloaded from http://www.everyspec.com



COMPARING AVERAGE PERFORMANCE AMCP 706-110 

o z 
Ul 
K 
Ul 

O 
< 

o 
Ul 

o z 
o 
>- 

ID < m o or 
a. 

11 

«0. 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

O20 

0.10 

0 

S^ 1 \^ \ ̂  «ü w \\ \ "-— 

\\ \V \ \ 

tt 
\\ \ 

\ 
^ 

V \ \\ 

\\ 
\ X 

\\ 
A \ \ ^ 

*\ 

A 
k* X \: y 

\ 

\ 

% $ \ <h> ^2. 
0   02    0.4    0.6   0.8    1.0    1.2    14    1.6     1.8   2.0   2 

dOR d* 

2   2.4   2.6   2.8   3.0   32 

Figure 3-2.  OC curves for the two-sided t-test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a)   Does the average m of a new product differ from a standard m0? 
3 = | m — m01 

d m   [TO - Wo | gee paragraph 3.2.1.1. 

(b)   Do the averages of two products differ? 
5 = \mA — mB I 

d+ = |mA -mB 

o VnA + - nB — 1 \( 

where irj = ^ = a by assumption, and «A and nB are the respective sample sizes from 
products A and B.  See Paragraph 3-3.1.1. 
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we underestimate a, we shall underestimate the sample size actually required, and by using too 
small a sample size, ß(8) will be somewhat larger than we intended, and our chances of detecting 
real differences when they exist will be correspondingly lessened. 

The following brief table, built around the preceding example, serves to illustrate these points 
numerically for a situation where a = .05, and it is desired to have ß(8) = .50 for 8 = \m — m0\ = 
.024, and a in fact is equal to .04 though this is unknown. 

Value of Resulting Corresponding 
o- Assumed Sample Size 

45 

ß (-024) 

.08 .02 

.06 27 .15 

.04 (true value) 13 .50 

.03 9 .64 

.02 5 .80 

Thus, if <r actually is .04, playing safe by taking a = .06 has more than doubled the sample size 
actually needed, but we have gained a reduction in ß from .50 to .15. 

Finally, it should be noted that, inasmuch as the test criterion u = £i_a/2 —7= does not depend on a, 

an error in estimating o- when planning a two-sided t-test will not alter the level of significance of the 
test, which will be precisely equal to the value of a desired, provided that fi_a/2 is taken equal to the 
100 (1 — a/2) percentile of the t distribution for n — 1 degrees of freedom, where n is the sample 
size actually employed. 

3-2.T.2    Does the Average of the New Product 

[Two-sided 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up 2i_„/2 in Table A-2. 

(3) Compute 
X, the mean of the n measurements. 

(4) Compute 

U = Zl-al2 V^ 

(5) If IX — m01 > u decide that the average 
of the new type differs from that of the 
standard; otherwise, that there is no reason 
to believe that they differ. 

(6) Note that the interval X ± u is a 100 
(1 — a) % confidence interval estimate of 
the true average m of the new type. 

Differ from the Standard (<r Known)? 

Normal Test] 

Example 

(1) Let a = .05 

(2) z.976 = 1.960 

(3) 
X = .710 pound 

(Data Sample 3-2) 

(4) a is known to be equal to .06 pound. 

1.96 (.06) 
A/20 

= .0263 

(5) IX - mo I = 1.710 - .7351 = .025. We con- 
clude that there is no reason to believe that 
the average amount of powder in the new 
stock differs from 0.735 (the specified 
standard amount). 

(6) Note that (.710 ± .0263) is a 95% con- 
fidence interval estimate for the true 
average m of the new stock. 

u = 

3-8 

Downloaded from http://www.everyspec.com



COMPARING AVERAGE PERFORMANCE AMCP 706-110 

Operating Characteristics of the Test.  Figures 3-3 and 3-4 give the operating characteristics of the 

preceding test for a = .05 and a = .01, respectively. For any given n and d = -! ^-, the value 
<T 

of (8(5) = ß{81 er, a, «), the probability of failing to detect a difference of absolute size 5 = | m — m01, 
can be read off directly. 

Selection of Sample Size n. If we specify a, the significance level, and ß, the probability or risk we 
are willing to take of not detecting a difference of absolute size 8 = | m — m<, |, then we can use 
Table A-8 to obtain n, the required sample size. As an example, if a is known to be 0.04 pound, 
and we wish to have a 50-50 chance of detecting a difference of 0.024 pound, then d = 0.6. From 
Table A-8, we find that the required sample size is 11. 

When we know the correct value of a, we can achieve a desired value of ß{8) with fewer observa- 
tions by using the normal test at the desired level of significance a than by using the corresponding 
i-test. The saving is 2 or 4 observations according as a = .05 or .01, respectively. 

Overestimating or underestimating a when planning a two-sided normal test has somewhat 
different consequences than when planning a two-sided t-test. If we overestimate <r and choose 
o-' > a, we also overestimate the sample size required as in the case of the <-test.   In addition, we 

overestimate the correct test criterion u = Zi_<,/2 
—7= for the sample size n actually adopted, with the 
Vn 

result that the effective significance level of the normal test is reduced to a', which is related to a 
by the equation 

Zl- 72 ~ (7) Zl-a/ 

The actual probability of not detecting a difference of 8, ß'(S), is related to the intended risk ß{S) 
by the equation 

Zl-"' = \v) Zi-ß 

ß'(8) will be less than 0(5) when a' > a for all (large) 5 for which ß(8) < 0.50; ß'(8) will be larger 
than ß(8) for all (small) 5 for which ß'(8) > 0.50. For the particular 5 for which ß(8) = 0.50, ß'(S) 
also will equal 0.50. Conversely, if we underestimate a, then we not only underestimate the sample 
size required but also the test criterion for the sample size actually used, so that the actual risk of 
an Error of the First Kind a' will be larger than a, and the risk of an Error of the Second Kind 
ß'{8) will be increased for large 8, and decreased for small 5. 
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The following calculations serve to illustrate these points numerically for situations bordering 
on the conditions assumed in the preceding sample-size calculation: 

Intended significance level a = 0.05. 
Intended risk of Error of the Second Kind ß(8) = 0.50 for 8 = 0.024. 

TWO-SIDED NORMAL TEST 

Actual Actual Risk of 
Value of a Sample Size Significance Error of Second Kind, 
Assumed Indicated Level, a' ß' (0.024) 

.08 43(45)* .00009 (.05)* 0.50 (.02)* 

.06 25 (27) .003 (.05) 0.50 (.15) 

.04 (true value) 11 (13) .05 (.05) 0.50 (.50) 

.03 7(9) .14 (.05) 0.50 (.64) 

.02 3(5) .33 (.05) 0.50 (.80) 

* Values in parentheses are for corresponding two-sided i-test. 

To obtain a numerical illustration of the more general case where /3(<5) ?* 0.50, let us modify the 
foregoing example by taking ß(8) = 0.20, say, as the intended risk of an Error of the Second Kind 
for 5 = 0.024: 

Intended significance level a = 0.05. 
Intended risk of Error of the Second Kind ß(8) 0.20 for 8 = 0.024. 

TWO-SIDED NORMAL TEST 

Actual Actual Risk of 
Value of a Sample Size Significance Error of Second Kind, 
Assumed Indicated Level, a' ß' (0.024) 

.08 88(90)* .00009 (.05)* .046 (.0004)* 

.06 50 (52) .003 (.05) .103 (.01) 

.04 (true value) 22 (24) .05 (.05) .20 (.20) 

.03 13 (15) .14 (.05) .26 (.43) 

.02 6(8) .33 (.05) .34 (.70) 

* Values in parentheses are for corresponding two-sided t-test. 
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Figure 3-3.  OC curves for the two-sided normal test (a = .05). 

Adapted with permission from Annals of Mathematical Statistics,   Vol. 17, No. 2,  June 1946, pp. 178-197, from article entitled "Operating 
Characteristics for the Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Note: These curves apply to the following tests: 

(a)   Does the average m of a new product differ from a standard ra0? 

S = \m — m0\ 

\m — TOO I 
d = See Paragraph 3-2.1.2. 

(b)   Do the averages of two products differ? 

8 = \mA — mB\ 

\mA — TOB | 
d = 

V  CA.  + Ofi 
; <rA and <rB are known.  See Paragraph 3-3.1.3. 
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Figure S-k-  OC curves for the two-sided normal test (a = .02). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a)   Does the average m of a new product differ from a standard m0? 

5 = I TO — m0\ 

I TO — TOo I 
d = .    See Paragraph 3-2.1.2. 

(b)  Do the averages of two products differ? 

8 = \mA — mB\ 

d =     / =-; <rA and oB are known.  See Paragraph 3-3.1.3. 
V a A + cB 
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3-2.2    TO DETERMINE WHETHER THE AVERAGE OF A NEW PRODUCT EXCEEDS THE STANDARD 

3-2.2.1    Does the Average of the New Product Exceed the Standard (a Unknown)? 

[One-sided f-test] 

Procedure Example 

(1)   Choose a, the significance level of the test.      (1)   Let a = .05 

(2)   Look up ti-a for n — 1 degrees of freedom 
in Table A-4. 

(2)   t.tt for 19 degrees of freedom = 1.729 

(3) Compute 
X and s 

(4)   Compute 

u = ti- 

(3) 

(4) 

X = .710 pound 
s = .0504 pound 

(Data Sample 3.2) 

" y/n 
u = 

(5) If (X — TO0) > + u, decide that the aver- 
age of the new type exceeds that of the 
standard; otherwise, that there is no reason 
to believe that the average of the new type 
exceeds that of the standard. 

(6) Note that the open interval from (X — u) 
to + oo is a one-sided 100 (1 — a) % con- 
fidence interval for the true mean of the 
new product. 

1.729 (.0504) 
V2Ö 

= 0.019 

(5) (X - m0) = (.710 - .735) = -.025. We 
conclude that there is no reason to believe 
that the average of the new product ex- 
ceeds the specified standard. 

(6) Note that the open interval from .691 to 
+ oo is a one-sided 95% confidence inter- 
val for true average of the new product. 

Operating Characteristics of the Test.   Figures 3-5 and 3-6 give the operating characteristic (OC) 
curves of the above test for a = .05, and a = .01, respectively, and various values of n. 

Choose: 

S = (TO — TOO),    the true difference between averages, (unknown, of course) 
Some value of o-. (We may use an estimate from previous data; lacking such an estimate, 

see Paragraph 2-2.4. If OC curve is consulted after the experiment, we 
may use the estimate from the experiment.) 

Compute 

We then can read from the OC curve for a given significance level a and sample size n, a value 
of ß(S). The ß(S) read from the curve is ß(S | a, a, n), i.e., ß(5 given a, a, n)—the probability of failing 
to detect this difference when the given test is carried out with a sample of size n, at the a-level 
of significance, and the population standard deviation actually is a. 

If we use too large a value for <J, the effect is to underestimate d and consequently to overestimate 
ß(8), the probability of not detecting a difference of S when it exists. Conversely, if we choose too 
small a value of a, then we shall overestimate d and underestimate ß(b). The true value of ß(S) is 
determined, of course, by the sample size n and significance level a employed, and the true 
value of a. 
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Figure 3-5.  0C curves for the one-sided t-test (a = .05). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard m0? 

5 = m — m0 

d = m - m°       See Paragraph 3-2.2.1. 

(b) Is the average m of a new product less than a standard m0? 

8 = m0 — m 

d = mo-m       gee Paragraph 3.2.3.1. 

(c) Does the average of product A exceed that of product B? 

S = mA — mB 

mA — mB d* = VnA + - nB - 1 \; 
nA nB 

nA + nB' 

where <rA = <*B = <r by assumption, and nA and nB are the respective sample sizes from 
products A and B.  See Paragraph 3-3.2.1. 
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Figure 3-6.   0C curves for the one-sided t-test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard m0? 

5 = m — TOO 

d = m ~m"       See Paragraph 3-2.2.1. 
c 

(b) Is the average TO of a new product less than a standard m0? 

6 = TOO — TO 

d = Wo ~m       See Paragraph 3-2.3.1. 

(c)   Does the average of product A exceed that of product B? 

8 = mA — TOB 

mA — mB d* = 
<r VnA + -nB -l\' 

nAnB 

nA + nB' 

where uA = <rB = a by assumption, and w^ and ws are the respective sample sizes from 
products A and B.  See Paragraph 3-3.2.1. 
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Selection of Sample Size n. If we choose 

S = (TO — Wlo), 

a, the significance level of the test 
ß, the probability of failing to detect a positive difference of size (TO — TO0) 

and compute 

d = TO — TOQ 

then we may use Table A-9 to obtain a good approximation to the required sample size. If we are 
using a — .01, then we must add 3 to the table value. If we are using a = .05, then we must add 2 to 
the table value. (In order to compute d, we must choose a value for a; see Paragraph 2-2.4 when 
no other information is available.) 

If, when planning an investigation leading to a one-sided t-test, we overestimate a, the conse- 
quences are two-fold: first, we overestimate the sample size required, and thus unnecessarily increase 
the cost of the test; but, by employing a sample size that is larger than necessary, the actual value 
of ß(b) will be somewhat less than we intended, which will be all to the good. On the other hand, 
if we underestimate a, we shall underestimate the sample size actually required, and by using too 
small a sample size, ß(5) will be somewhat larger than we intended, and our chances of detecting 
real differences when they exist will be correspondingly lessened. (A numerical example for the 
(wo-sided t-test is given in Paragraph 3-2.1.1.  The one-sided case is similar). 

Finally, it should be noted, that inasmuch as the test criterion u = ti-a —7= does not depend on a, 
VM 

an error in estimating a when planning a one-sided Ntest does not alter the level of significance of 
the test, which will be precisely equal to the value of a desired, provided that ii_a is taken equal to 
the 100 (1 — a) percentile of the t distribution for n — 1 degrees of freedom, where n is the sample 
size actually employed. 

3-2.2.2    Does the Average of the New Product Exceed the Standard (a Known)? 

[One-sided Normal Test] 

(1) 

Procedure 
Choose a, the significance level of the test. (1) 

Example 
Let a = .05 

(2) Look up Zi_„ in Table A-2. (2) z.9B = 1.645 

(3) Compute 
X, the sample mean 

(3) 
X = 0.710 pound 

(Data Sample 3-2) 

(4) Compute 

Vn 

(4) o- is known to be equal 
1.645 (.06) 

U=      V2Ö 
= .022 

(5) 

(6) 

If (X — TOO) > u, decide that the average 
performance of the new type exceeds that 
of the standard; otherwise, that there is no 
reason to believe that the average of the 
new type exceeds that of the standard. 

Note that the open interval from (X — u) 
to + 00 is a one-sided 100 (1 — a) % con- 
fidence interval for the true mean of the 
new product. 

(5) (X - TOO) = .710 - .735 = -.025, which 
is not larger than u. We conclude that there 
is no reason to believe that the average of 
the new product exceeds that of the 
standard. 

(6) Note that the open interval from .688 to 
+ 00 is a 95% one-sided confidence inter- 
val for the true mean of the new product. 
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Operating Characteristics of the Test.  Figures 3-7 and 3-8 give the operating characteristics of the 

above test for a = .05 and a = .01, respectively.  For any given n and d = , the value of 

ß(8) = ß(S\(r, a, n), the probability of failing to detect a positive difference 8 = (TO — TO0), can be 
read off directly. 

Selection of Sample Size n.  If we specify 

8 = (TO — TOO), the magnitude of a positive difference of interest to us 
a, the significance level of the test 
ß, the probability of failing to detect a positive difference of size 8 

and compute 

,       TO — TOo a =  
a 

then we may use Table A-9 to obtain the required sample size. 

When we know the correct value of a, we can achieve a desired value of ß(8) with fewer observa- 
tions by using the normal test at the desired level of significance a than by using the corresponding 
<-test.  The saving is 2 or 3 observations according as a = .05 or .01, respectively. 

Overestimating or underestimating a when planning a one-sided normal test has somewhat 
different consequences than when planning a one-sided <-test. If we overestimate a and choose <r' > a, 
we also overestimate the sample size required as in the case of the <-test. In addition, we overestimate 

the correct test criterion u = Zi_a —p= for the sample size n actually adopted, with the result that the 

effective significance level of the normal test is reduced to a', which is related to a by the equation 

- - (?) Zi- 

The actual probability of not detecting a difference of 8, ß'(8), is related to the intended risk ß(8) 
by the equation 

-(3 Zl-ß'   =1 — 1 Zl-0 

ß'(8) will be less than ß(8) when <r' > a- for all (large) 8 for which ß(8) < 0.50; ß'{8) will be larger than 
ß(8) for all (small) 8 for which ß'(8) > 0.50. For the particular 8 for which ß(8) = 0.50, ß'(8) also will 
equal 0.50. Conversely, if we underestimate a, then we not only underestimate the sample size 
required but also the test criterion for the sample size actually used, so that the actual risk of an 
Error of the First Kind a' will be larger than a, and the risk of an Error of the Second Kind ß'{8) 
will be increased for large 8, and decreased for small 8. (Numerical examples for the two-sided normal 
test are given in Paragraph 3-2.1.2.  The one-sided case is similar.) 
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Figure 3-7.  0C curves for the one-sided normal test (a = .05). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard m0? 

8 = m — TO0 

d = m ~m°       See Paragraph 3-2.2.2. 
(7 

(b) Is the average TO of a new product less than a standard m0? 

5 = TOo — TO 

d = m° ~m       See Paragraph 3-2.3.2. 

(c)   Does the average of product A exceed that of product B? 

8 = mA — mB 

d = ~~1'/■ 2   ,   T i <M 
and OB are known.   See Paragraph 3-3.2.3. 

V*4 + OB 
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Figure 3-8.  0C curves for the one-sided normal test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard m0? 

8 = m — mo 

d = m ~m°       See Paragraph 3-2.2.2. 
a 

(b) Is the average m of a new product less than a standard TO0? 

5 = TOO — TO 

d = m° ~ w       See Paragraph 3-2.3.2. 

(c)   Does the average of product A exceed that of product B? 

5 = mA — mB 

d =     , =       =, a A and aB are known.  See Paragraph 3-3.2.3. 
VO-A + <TB 
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3-2.3    TO   DETERMINE   WHETHER   THE   AVERAGE   OF   A   NEW   PRODUCT   IS   LESS   THAN   THE 
STANDARD 

3-2.3.1    Is the Average of the New Product Less than the Standard {a Unknown)? 

[One-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ti-a for n — 1 degrees of freedom 
in Table A-4. 

(3) Compute 
X and s 

(4)   Compute 

(1) 

(2) 

(3) 

(4) 

Vn 

(5) If (m0 — X) > u, decide that the average 
of the new type is less than that of the 
standard; otherwise, that there is no reason 
to believe that the average of the new type 
is less than the standard. 

(6) Note that the open interval from — oo to 
(X + u) is a one-sided 100 (1 — a) % con- 
fidence interval for the true mean of the 
new type. 

(5) 

(6) 

Example 

Let a = .05 

£.95 for 19 degrees of freedom = 1.729 

X = .710 pound 
s = .0504 pound 

(Data Sample 3-2) 

1.729 (.0504) 

= 0.019 

.735 - .710 = .025. We conclude that the 
average of the new type is less than that of 
the standard. 

Note that the open interval from — » to 
.729 is a one-sided 95% confidence interval 
for the true mean of the new type. 

Operating Characteristics of the Test.   Figures 3-5 and 3-6 give the operating characteristic (OC) 
curves of the above test for a = .05, and a = .01, respectively, for various values of n. 

Choose: 

S — (ra0 — m),    the true difference between averages (unknown, of course) 
Some value of a. (We may use an estimate from previous data; lacking such an estimate, 

see Paragraph 2-2.4. If OC curve is consulted after the experiment, we 
may use the estimate from the experiment.) 

Compute 

d = h- . 
<r 

We then can read from the OC curve for a given significance level a and sample size n, a value 
of ß(8). The ß(8) read from the curve is ß(8 | a, a, ri), i.e., /3(5 given a, a, n)—the probability of failing 
to detect this difference when the given test is carried out with a sample of size n, at the a-level of 
significance, and the population standard deviation actually is a. 

If we use too large a value for a, the effect is to underestimate d and consequently to overestimate 
ß(8), the probability of not detecting a difference of 5 when it exists. Conversely, if we choose too 
small a value of a, then we shall overestimate d and underestimate ß{6). The true value of ß(S) is 
determined, of course, by the sample size n and significance level a employed, and the true value 
of a. 
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Selection of Sample Size n. If we choose 

5 = (m0 — m), 
a, the significance level of the test 
ß, the probability of failing to find a negative difference of size (m0 — m); 

and compute 

, _ m0 — m 
a 

then we may use Table A-9 to obtain a good approximation to the required sample size. If we are 
using a = .01, then we must add 3 to the table value. If we are using a = .05, then we must add 
2 to the table value. (In order to use the table, we must have a value for a. See Paragraph 2-2.4 
if no other information is available.) 

The effect of overestimating or underestimating <r is the same as when a one-sided <-test is to be 
used to detect a positive difference of magnitude 5 = m — m0.  See Paragraph 3-2.2.1. 

3-2.3.2    Is the Average of the New Product Less Than That of the Standard (<r Known)? 

[One-sided Normal Test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up «!_„ in Table A-2. 

(3) Compute 
X, the sample mean 

(4) Compute 

(5) 

U  = Zi_a 
■y/n 

If (m0 — X) > u, decide that the average 
of the new type is less than that of the 
standard; otherwise, that there is no reason 
to believe that the average of the new type 
is less than that of the standard. 

(6) Note that the open interval from — <» to 
{X + u) is a one-sided 100 (1 — a) % con- 
fidence interval for the true mean of the 
new type. 

(1) 

(2) 

(3) 

(4) 

Example 

Let a = .05 

z.96 = 1.645 

X = 0.710 pound 
(Data Sample 3-2) 

o- is known to be equal to .06 pound. 

1.645 (.06) 
A/20 

0.022 

u 

(5) (m„ - X) = (.735 - .710) = .025, which 
is larger than u. We conclude that the 
average of the new type is less than the 
standard. 

(6) Note that the open interval from - » to 
.732 is a one-sided 95% confidence interval 
for the true mean of the new type. 

Operating Characteristics of the Test.   Figures 3-7 and 3-8 give the operating characteristics of 

the test for a = .05 and a = .01, respectively.   For any given n and d = — the value of 

ß(5) = ß(51 a, a, n), the probability of failing to detect a negative difference of size (m0 — m), can 
be read off directly. 
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Selection of Sample Size n.  If we specify 

5 = (TOO — m), the magnitude of a negative difference of interest to us 
a, the significance level of the test 
ß, the probability of failing to detect a negative difference of size 5, 

and compute 

, _ TOQ — TO 

a 

then we may use Table A-9 to obtain the required sample size. 

The effect of overestimating or underestimating <r is the same as when the one-sided normal test 
is to be used to detect a ■positive difference of magnitude 5 = TO — TO0.   See Paragraph 3-2.2.2. 

3-3    COMPARING THE AVERAGES OF TWO 
MATERIALS, PRODUCTS, OR PROCESSES 

We consider two problems: 
(a) We wish to test whether the averages of two materials, products, or processes differ, and we 

are not particularly concerned which is larger, Paragraph 3-3.1. 
(b) We wish to test whether the average of material, product, or process A exceeds that of 

material, product, or process B, Paragraph 3-3.2. 

TABLE 3-2.    SUMMARY OF TECHNIQUES FOR COMPARING THE AVERAGE PERFORMANCE OF TWO PRODUCTS 
(FOR DETAILS AND WORKED EXAMPLES, SEE PARAGRAPHS 3-3.1   AND 3-3.2) 

We With lo 
Teil 

Whether 

Para- 
graph 
Refer- 
ence 

Knowledge of 
Variation Test to be Made 

Operating 
Characteristics 

of Test 

Determination of 
Sample Size n Notes 

3-3.1.1 a A ^^B; both 
unknown 

\XA - Xs\> u, where 
.       „     /rax + na 

V   riA nB 

For a = .05 and 
a — .01 see Figs. 
3-1 and 3-2* and 
Par. 3-3.1.1. 

Use Table A-8. For 
a = .05, add  1 to 
the tabular value. 
For a = .01, add 2 
to the tabular value. 

mA differs 
from ma 

„   _    UriA - 1) s'A + (nB - 1) si 
\           UA + ns — 2 

3-3.1.2 OA ^ ffsj both 
unknown 

\XA - XB1 > «, where 
u = •' J— + ~ 
See Notes. 

(' is the value of Ji_/i for the effec- 
tive number of degrees of freedom 
,       (s-A/nA+s-./nB)' 

1      (SAM*  .   (<s./nB)' 
»x + 1       nB + 1 

3-3.1.3 OAt <*B\ both 
known 

1 XA - XB1 > M, where 

\nA     ns 

For a = .05 and 
a = .01, see Figs. 
3-3 and 3-4. 

Use Table A-8. 

3-3.2.1 a A ^ ffflj both 
unknown 

(XA — XB) > u, where 

,     „     In* + nB 

For a = .05 and 
a = .01 see Figs. 
3-5 and 3-6* and 
Par. 3-3.2.1. 

Use Table A-9. For 
a = .05,  add  1 to 
the tabular value. 
For a = .01, add 2 
to the tabular value. 

mA is greater 
than ms 

.   _    /(»„ - 1) «i + (a. - 1) s», 
F      V            nA + nB - 2 

3-3.2.2 0A ^ <TB, both 
unknown 

(XA - XB) > u, where 

u = e  /si + A 
V is the value of d_ for the effective 
number of degrees of freedom 
,         (A/llA + «a/«»)*          „ 

1      (&/riA)'   .  (si/»s)" 
nA + 1        nB + 1 

3-3.2.3 vA, <*B\ both 
known 

(XA — XB) > u, where 

\»A      nB 

For a = .05 and 
a = .01 see Figs. 
3-7 and 3-8. 

Use Table A-9. 

' Although the common a is unknown, useful information may be obtained from the OC curve if a value (or 2 bounding values) of a can be assumed. 
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It again is important to decide which problem is appropriate before making the observations. 
If this is not done and the choice of the problem is influenced by the observations, the significance 
level of the test, i.e., the probability of an Error of the First Kind, and the operating characteristics 
of the test may differ considerably from their nominal values. It is assumed that the appropriate 
problem has been selected and that nA and nB observations are taken from products A and B, 
respectively. 

Ordinarily, we will not know a A or aB. In some cases, it may be safe to assume that aA is approxi- 
mately equal to uB* We give the solutions for the two problems (Paragraphs 3-3.1 and 3-3.2) for 
three situations with regard to knowledge of the variability, and for the special case where the 
observations are paired. 

Case 1—The variability in performance of each of A and B is unknown but can be assumed to be 
about the same. 

Case 2—The variability in performance of each of A and B is unknown, and it is not reasonable 
to assume that they both' have the same variability. 

Case 3—The variability in performance of each of A and B is known from previous experience. 
The standard deviations are aA and aB, respectively. 

Case U—The observations are paired. 

3-3.1    DO THE PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? 

3-3.1.1    (Case 1)—Variability of A and B is Unknown, Bui Can Be Assumed to be Equal. 

Data Sample 3-3.1.1—Latent Heat of Fusion of Ice 

Two methods were used in a study of the latent heat of fusion of ice. Both Method A (an electrical 
method) and Method B (a method of mixtures) were conducted with the specimens cooled to 
—0.72°C. The data represent the change in total heat from — 0.72°C to water at 0°C, in calories 
per gram of mass. 

Method A Method B 

79.98 80.02 
80.04 79.94 
80.02 79.98 
80.04 79.97 
80.03 79.97 
80.03 80.03 
80.04 79.95 
79.97 79.97 
80.05 
80.03 
80.02 
80.00 
80.02 

* For a procedure to test whether a A and aB differ, see Chapter 4. 
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[Two-sided t-tesl] 

Procedure Example 

(1)   Choose a, the significance level of the test.      (1)   Let a - .05 

(2)   Look up <i_a/2 for v = (nA + nB — 2) de-      (2) 
grees of freedom in Table A-4. 

(3)   Compute: XA and sA, XB and sB, for the nA 

and nB measurements from A and B. 

(4)   Compute 

[fr* - 1) sA + (nB - 1) sk 
Sp 

(5)   Compute 

U   —   tl_o/2 Sp 

nA + nB - 2 

^ 
nA + «j 

(6) If |ZA - X*| > u, decide that A and B 
differ with regard to their average perform- 
ance; otherwise, that there is no reason to 
believe A and B differ with regard to their 
average performance. 

(7) Let mA, mB be the true average perform- 
ances of A and B (unknown of course). 
It is worth noting that the interval 
(XA - XB) ± u is a 100 (1 - a) % con- 
fidence interval estimate of (mA — mB). 

(3) 

(4) 

(5) 

nA = 13 
nB = 8 

v = 19 degrees of freedom 
<.975 for 19 d.f. = 2.093 

XA 80.02 
s2„ = .000574 

XB = 79.98 
si = .000984 

SP -4 12 (.000574) + 7 (.000984) 
19 

= V.000725 
= .0269 

= (.05630) (.4493) 
= .025 

(6) \XA — XB| = .04, which is larger than u. 
Conclude that A and B differ with regard 
to average performance. 

(7) The interval .04 ± .025, i.e., the interval 
from .015 to .065, is a 95% confidence inter- 
val for the true difference between the 
averages of the methods. 

Operating Characteristics of the Test. Figures 3-1 and 3-2 give the operating characteristic (OC) curves 
of the above test for a = .05 and a = .01, respectively, for various values of n = nA + nB — 1. 

Choose: 

S =\mA — mB|, the true absolute difference between the averages 
Some value of a (= <rA =■ <rB), the common standard deviation. 

(We may use an estimate from previous data; lacking such an estimate, see Para- 
graph 2-2.4. If OC curve is consulted after the experiment, we may use the estimate 
from the experiment.) 

Compute 

d* = mA — mB\ 
VnA + nB -4, nA nB 

nA + nB 
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We then can read a value of ß(S) from the OC curve for a given significance level and effective sample 
size n = nA + nB — 1. The ß(S) read from the curve is ß(81 <r, a, nA, nB) i.e., ß(S, given a, a, nA and nB) 
the probability of failing to detect a real difference between the two population means of magnitude 
5 - ±(mA — mB) when the test is carried out with samples of sizes nA and nB, respectively, at the 
«-level of significance, and the two population standard deviations actually are both equal to o-. 

If we use too large a value for o-, the effect is to make us underestimate d* and consequently to 
overestimate ß(8). Conversely, if we choose too small a value of a, then we shall overestimate d* 
and underestimate ß(S). The true value of ß(S) is determined, of course, by the sample sizes nA and nB 

and significance level a actually employed, and the true value of a (= aA = <rB). 

Since the test criterion u does not depend on the value of <r (= <JA = OB), an error in estimating a 
will not alter the significance level of the test, which will be precisely equal to the value of a. desired, 
provided that the value of ii_a/2 is taken equal to the 100 (1 — a/2) percentile of the ^-distribution 
for nA + nB — 2 degrees of freedom, where nA and nB are the sample sizes actually employed, and 
it actually is true that <rA = oB. 

If aA ^ aB, then, whatever may be the ratio <rA/aB, the effective significance level a' will not differ 
seriously from the intended value a, provided that nA = nB, except possibly when both are as small 
as two. If, on the other hand, unequal sample sizes are used, and aA T± aB, then the effective level 
of significance a' can differ considerably from the intended value a, as shown in Figure 3-9 where 
a = .05. 

a .3- ^ 
z / 
o y 

h (B)   / 
LU ^^F -» 
Ul .i- / 
a. / 
u. / 
O i 
>- I 
V- j 
_l j 
CD .1- 1 
<x / 
CO / 
o "               ' Jl—--"\            '~~ 
0. y/                                       (A) 

.01 
1                                      1                                      1                                     1 

.10                1.0               10.0         100.0 

^-cr\/a\   (LOGARITHMIC SCALE) 
A '       B 

Figure 3-9. Probability of rejection of hypothesis 
mA = mB when true, plotted against 0. 

(A) nA = nB = 10, P(\u{) > 2.101; 
(B) nA = 5,nB = 15, P(\u\) > 2.101. 

Adapted with permission from Biometrika, Vol. XXIX, Parts III 
and IV, February 1938, from article entitled "The significance of the 
difference between two means when the population variances are un- 
equal" by B. L. Welch. 
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Selection of Sample Size n. If we choose 

S = \mA — mB\, the absolute value of the average difference that we desire to detect 
a, the significance level of the test 
ß, the probability of failing to detect a difference of absolute size 5, 

and compute 
\mA - mB\      , 

a =  /== , where a = <rA = <TB , 

then we may use Table A-8 to obtain a good approximation to the required sample size 
n(= nA = nB). If we take a = .01, then we must add 2 to the value obtained from the table. 
If we take a = .05, then we must add 1 to the table value. 

In order to compute d, we must choose a value for a (= <rA = <rB). (See Paragraph 2-2.4 if no 
other information is available.) If we overestimate o-, the consequences are two-fold: first, we over- 
estimate the sample size n (= nA = nB) required, and thus unnecessarily increase the cost of the 
test; but, by employing a sample size that is larger than necessary, the actual value of ß(S) will be 
somewhat less than we intended, which will be all to the good. On the other hand, if we under- 
estimate a, we shall underestimate the sample size actually required, and by using too small a 
sample size, ß{&) will be somewhat larger than we intended, and our chances of detecting real 
differences when they exist will be correspondingly lessened. These effects of overestimating or 
underestimating a (= aA = <rB) will be similar in magnitude to those considered and illustrated in 
Paragraph 3-2.1.1 for the case of comparing the mean m of a new material, product, or process, 
with a standard value m0. 

As explained in the preceding discussion of the operating characteristics of the test, an error in 
estimating a (= aA = <*B) will have no effect on the significance level of the test, provided that the 
value of <i_„/2 is taken equal to the 100 (1 — a/2) percentile of the ^-distribution for nA + nB — 2 
degrees of freedom, where nA and nB are the sample sizes actually employed; and if aA T± <JB, the 
effect will not be serious provided that the sample sizes are taken equal. 

3-3.1.2    (Case 2)—Variability of A and B is Unknown, Cannot Be Assumed Equal. 

Data Sample 3-3.1.2—Compressive Strength of Concrete 

Two investigators using somewhat different techniques obtained specimen cores to determine the 
compressive strength of the concrete in a poured slab.  The following results in psi were reported: 

A B 

3128 1939 
3219 1697 
3244 3030 
3073 2424 

2020 
2909 
1815 
2020 
2310 
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Procedure* 

(1) Choose a, the significance level of the test. 
(Actually, the procedure outlined will give 
a significance level of only approximately 
a). 

(2) Compute: XA and sA, XB and sB, for the nA 

and nB measurements from A and B. 

(3)   Compute: 

nA 

and 

VB = nB 

the estimated variances of XA and XB> 

respectively. 

(4)   Compute the "effective number of degrees 
of freedom" 

/ = VA + VI -2 

nA + 1     nB + 1 

Example 

(1)   Let a = .05 

(2) 

(3) 

(4) 

xA = 3166.0 
si = 6328.67 
nA = 4 
XB = 2240.4 

„2 = 221,661.3 
nB = 9 

vA 
6328.67 

4 
= 1582.17 

VB 
221,661.3 

9 
= 24629.03 

/- 
(26211.20)2 

500652.4 + 60658911.9 
687027005 

- 2 

61159564 
11.233 - 2 
9.233 

-2 

(5) Look up ix-a/2 for /' degrees of freedom in      (5) 
Table A-4, where /' is the integer nearest to 
/; denote this value by t'i-a/2- 

(6) Compute (6) 
t'l-a/2 WA + Vt 

/' = 9 
t'.m = 2.262 

u = 2.262 V26211.20 
= 2.262 (161.9) 
= 366.2 

(7) If | XA - XBI > u, decide that A and B 
differ with regard to their average perform- 
ance; otherwise, decide that there is no 
reason to believe A and B differ in average 
performance. 

(7) \XA - XB\ = 925.6, which is larger than 
u. Conclude that A and B differ with 
regard to average performance. 

* See footnote on page 3-28. 
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Procedure* Example 

(8)   If mA, mB are the true average perform-      (8)   The interval 925.6 ± 366.2, i.e., the inter- 
ances of A and B (unknown of course), val from 559.4 psi to 1291.8 psi is a 95% 
then it is worth noting that the interval confidence interval for the true difference 
(XA  — XB) ±«    is    approximately    a between the averages of the two methods. 
100 (1 — a) % confidence interval estimate 
of mA — MB- 

Discussion. 

To gain some understanding of the nature, properties, and limitations of this approximate 
procedure, note first that V A and VB are unbiased estimates of the true variances <rA/nA and (r%/nB 

of the means XA and XB, respectively. Consequently, VA + VB is an unbiased estimate of the true 
variance of the difference XA — XB, provided only that XA and XB are the means of independent 
random samples of nA and nB observations from populations A and B, respectively. Note next that 
the effective number of degrees of freedom /, defined by the expression in step (4), also can be 
expressed in the form 

1 c2 (1 - c)2 

/ + 2     fA+2 + fB+2 

where 

fA = nA — 1   and   fB = nB—l 

are the degrees of freedom associated with the variance estimates VA and VB, respectively, and, 

VA .    .      . VB c = T?—r^r-   and   1 — c VA + VB   ~~ _ VA + VB 

are the fractions of the estimated variance of the difference XA — XB that are associated with 
XA and XB, respectively. From this expression for /, it is evident that / can never be less than the 
smaller of fA (= nA — 1) and/B (= nB — 1), and/cannot be larger than 

(/A + 2) + (JB + 2) - 2 = nA + nB. 

When VA is so large in comparison to VB that VB is negligible, then c ~ 1 and / ~ fA, which is 
intuitively reasonable—the fB degrees of freedom upon which VB is based are not making a useful 
contribution to the estimate of the variance of the difference XA — XB. Similarly, when VB 

dominates the situation, then c ~ 0 and/ o±fB. In intermediate situations where neither VA nor VB 

can be neglected, both the fA and the fB degrees of freedom make useful contributions, and the 
effective number of degrees of freedom / expresses the sum of their joint contributions. Thus, in 
our illustrative example, fA = 3 and fB = 8, but / = 9+ Both samples make their maximum con- 
tributions, that is, / achieves its maximum of nA + nB, only when VA/VB = (nA + l)/(nB + 1), 
i.e., when s\/s% = nA (nA + l)/nB (nB + 1). 

* The test procedure given here is an approximation, i.e., the stated significance level is only approximately achieved. 
The approximation is good provided nA and nB are not too small. A more accurate procedure is given in Biometrika 
Tables for Statisticians,<" which (in the notation of the present procedure) provides 10% and 2% significance levels of 
|»| =|(X, - XB) - (TOA - mB) I /VVA + VB for nA > 6, nB > 6, and 0 < VA/(VA + VB) < 1. 5% and 1% sig- 
nificance levels of |p| for WA > 8 and nB > 8 and the same range of VA/(VA + VB) are given by Trickett, Welch, and 
James.<2'   (When using either of the tables (1) or (2), it should be noticed that our "a" corresponds to their "2a".) 

The appropriate modification when the value of the ratio of the variances 8 = a\laB is known, but not their respective 
values, is indicated at the end of the Discussion that follows this procedure. 
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When samples of equal size (nA = nB = n) are involved, the present approximate procedure for 
Case 2 (cA and <sB both unknown and presumably unequal) in Paragraph 3-3.1.2, and the exact 
procedure for Case 1 (aA and <rB presumably equal, but their common value unknown) given in 
Paragraph 3-3.1.1 are the same in all respects except for the value of £i_„/2 to be used. In the exact 
procedure for Case 1, the value of h-an to be used when nA = nB = n is the 100 (1 — a/2) per- 
centile of the ^-distribution for v = 2 (n — 1) degrees of freedom, and is completely determined by 
the choice of significance level a and the common sample size n. In contrast, the value of <i_„/2 to 
be used in the approximate procedure for Case 2 when nA = nB = n is the 100 (1 — a/2) percentile 
for the integral number of degrees of freedom /' nearest to the effective degrees of freedom 

/ = (tt + l)(|+y-2, 

and thus depends not only on the choice of significance level a and common sample size it, but also 
on the ratio sA/sB of the sample estimates of <J\ and aB. Furthermore, since/can vary from (n — 1) 
to In, and equals 2w only when s\ = sB, it is clear that the two procedures may lead to different 
results when aA ~ aB. Consequently, when samples of equal size (nA = nB = n) are involved, the 
procedure for Case 1 of Paragraph 3-3.1.1 should be used even when it cannot be assumed that aA ^ OB- 
If in fact aA = <rB, then the effective significance level a' will be identically equal to the intended 
significance level a, and the test will have maximum sensitivity with respect to any real difference 
between the population means mA and mB. If, on the other hand, aA ^ aB, then the effective 
significance level </ will differ from the significance level a intended, but only slightly, as shown by 
curve (A) in Figure 3-9; and the test will tend to have greater sensitivity with respect to any real 
difference between mA and mB than would be the case if the procedure of the present section 
were used. 

In contrast, when the samples are of unequal size (nA ^ nB), the procedure of the present section 
should always be used unless it is known for certain that eA = aB. Otherwise, the effective significance 
level a' may differ considerably from the significance level a intended, even when aA ~ aB as shown 
by curve (B) in Figure 3-9. 

When the smaller sample comes from the more variable population, the effective number of 
degrees of freedom/ to be used with the procedure of the present section is likely to be much smaller 
than nA + nB — 2, the degrees of freedom to be used with the procedure of Paragraph 3-3.1.1. 
Nevertheless, the small advantage of greater sensitivity to real differences between mA and mB that 
the procedure of Paragraph 3-3.1.1 provides when aA = <?B is rapidly offset, as the inequality of 
a A and aB increases, by the much firmer control of the effective significance level by the procedure 
of the present section, except when/is very small (say < 6). 

Finally, it should be remarked that the effective number of degrees of freedom appropriate to the 
procedure of the present section is given more accurately by 

,* _        {VA + vBy (nB0 + nAy 
VA vB 

1 
n\(ß 

nA - 1 
+ r& 

nA - 1  ' nB — n% 

VA ■■ mA and vB 
= ^L 

where 

VA   =         .„ 
nA nB 

are the true variances of XA and XB, respectively, and 6 = oA/o%. 
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It easily is shown that /* never is less than the smaller of nA — 1 and nB — 1, and never exceeds 
nA + nB — 2. If we know the values of a^ and <r|, then we could evaluate /*; but under these 
circumstances we should use the procedure of Paragraph 3-3.1.3, not the present approximate 
procedure. If we do not know the values of a\ and a\, but do know their ratio 6, then the exact 
procedure (Case 3) of Paragraph 3-3.1.3 cannot be applied, but/* can be evaluated. Under these 
circumstances, the approximate procedure of the present section should be followed, with / replaced 
by /*. When we do not know the values of a\ and a%, nor even their ratio 9, then we must rely on 
the best available sample estimate of /*; namely, / defined in Step (4) of the present procedure. 

3-3.1.3    (Case 3)—Variability in Performance of Each of A and B is Known from Previous Experience, 
and the Standard Deviations are aA and <rB, respectively. 

Data Sample 3-3.1.3—Latent Heat of Fusion of Ice 

The observational data are those of Data Sample 3-3.1.1 and, in addition, it now is assumed to 
be known that <rA = 0.024 and ^ = 0.033 . 

[Two-sided Normal Test] 

Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Zi_Q/2 in Table A-2. 

(3) Compute: XA and XB, the means of the nA 

and nB measurements from A and B. 

(4)   Compute 

u 
V~2 „2 
  nA     nB 

Example 

(1)   Let a = .05 

(2) 

(3) 

Z.976 = 1.960 

XA = 80.02 
A = 0.000576 
nA = 13 
XB = 79.98 

a*B = 0.001089 
nB = 8 

(4) 

u = 1.960 4 0.000576  ,  0.001089 
13 

1.960 (.0134) 

+ 8 

= 0.026 

(5) If \XA - XB\ > u, decide that A and B 
differ with regard to their average perform- 
ance; otherwise, decide that there is no 
reason to believe that A and B differ in 
average performance. 

(6) Let mA, mB be the true average perform- 
ances of A and B (unknown of course). 
It is worth noting that the interval 
(XA - XB) ± u is a 100 (1 - a) % con- 
fidence interval estimate of (mA — mB). 

(5) | XA — XBI = .04, which is larger than u. 
Conclude that methods A and B differ with 
regard to their averages. 

(6) The interval .04 ± .026 i.e., the interval 
from .014 to .066 is a 95% confidence inter- 
val for the true difference between the 
averages of the methods. 
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Operating Characteristics of the Test.   Figures 3-3 and 3-4 give the operating characteristic (OC) 
curves of the above test for a = .05 and a = .01, respectively, for various values of n. 

If 7iA = nB = n, and (mA — mB) is the true difference between the two averages, then putting 

_  \mA - TOB| 

we can read ß, the probability of failing to detect a difference of size ± {mA — mB). 

If nA = cnB, we can put d =     /„       = and, using n = nA, we can read ß, the probability of 
VcrA + Co% 

failing to detect a difference of size ± (mA — mB). 

Selection of Sample Size.  We choose 

a, the significance level of the test 
ß, the probability of failing to detect a difference of size (mA — mB). 

If we wish nA = nB = n, we compute 

\mA - mB\ 
d = 

V o\ + 0% 

and we may use Table A-8 directly to obtain the required sample size n. 

If we wish to have nA and nB such that nA = cnB, then we may compute 

,      \mA - mB\ 
c\ + Ca% 

and use Table A-8 to obtain n = nA. 

3-3.1.4    (Case 4)—The Observations are Paired. 

Often, an experiment is, or can be, designed so that the observations are taken in pairs. The two 
units of a pair are chosen in advance so as to be as nearly alike as possible in all respects other than 
the characteristic to be measured, and then one member of each pair is assigned at random to treat- 
ment A, and the other to treatment B. For instance, the experimenter may wish to compare the 
effects of two different treatments on a particular type of device, material, or process. The word 
"treatments" here is to be understood in a broad sense: the two "treatments" may be different 
operators; different environmental conditions to which a material may be exposed, or merely two 
different methods of measuring one of its properties; two different laboratories in an interlaboratory 
test of a particular process of measurement or manufacture. Since the comparison of the two treat- 
ments is made within pairs, two advantages result from such pairing. First, the effect of extraneous 
variation is reduced and there is consequent increase in the precision of the comparison, and in its 
sensitivity to real differences between the treatments with respect to the measured characteristic. 
Second, the test may be carried out under a wide range of conditions representative of actual use 
without sacrifice of sensitivity and precision, thereby assuring wider applicability of any conclusions 
reached. 
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Data Sample 3-3.1.4—Capacity of Batteries 

The data below are measurements of the capacity (in ampere hours) of paired batteries, one from 
each of two different manufacturers: 

146 
141 
135 
142 
140 
143 
138 
137 
142 
136 

B Xj — XA — Xj 

141 5 
143 -2 
139 -4 
139 3 
140 0 
141 2 
138 0 
140 -3 
142 0 
138 -2 

Procedure 

(1)   Choose a, the significance level of the test. (1)  Let a = .05 

Example 

(2) Compute: Xd and sd for the n differences, 
Xd. (Each Xd represents an observation on 
A minus the paired observation on B). 

(2)       Xd = -0.1 
sd = 2.807 

(3)   Look up ti-a/2 for n — 1 degrees of freedom 
in Table A-4. 

(3)   «.975 (9 d.f.) = 2.262 

(4)   Compute 

a/2 
sd_ 

(4) 
0 ORO /2.807\ U = 2262 Ul627 

= 2.008 

(5) If \Xi\> u, decide that the averages dif- 
fer; otherwise, that there is no reason to 
believe they differ. 

(5) \Xd\ = 0.1, which is less than u. Conclude 
that batteries of the two manufacturers do 
not differ in average capacity. 

(6) Note: The interval Xd ± u is a 
100 (1 — a) % confidence interval estimate 
of the average difference (A minus B). 

(6) The interval -0.1 ± 2.0, i.e., the interval 
—2.1 to +1.9 is a 95% confidence interval 
estimate of the average difference in 
capacity between the batteries of the two 
manufacturers. 

Operating Characteristics of the Test. Figures 3-1 and 3-2 give the operating characteristic (OC) 
curves of the above test for a = .05 and a = .01, respectively, for various values of n, the number 
of pairs involved. 
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Choose: 

8 = [ mA — mB |, the true absolute difference between the averages (unknown, 
of course) 

Some value of a (= a*), the true standard deviation of a signed difference Xd. 
(We may use an estimate from previous data.   If OC curve is consulted after the 
experiment, we may use the estimate from the experiment.) 

Compute 

We then can read from the OC curve for a given significance level a and sample size n, a value of 
of ß(S). The ß(8) read from the curve is ß(8\a, a, n), i.e., ß(S, given a, a, n)—the probability of 
failing to detect a difference of ± (mA — mB) when it exists, if the given test is carried out with n 
pairs, at the a-level of significance, and the standard deviation of signed differences Xd actually is a. 

If we use too large a value for <r, the effect is to underestimate d, and consequently to overestimate 
ß(8), the probability of not detecting a difference of 8 when it exists. Conversely, if we choose too 
small a value of a, then we shall overestimate d and underestimate ß{8). The true value of ß(8) is 
determined, of course, by the sample size n and the significance level a employed, and the true 
value of a (= ad). 

Selection of Number of Pairs n required.  If we choose 

8 = \mA — mB\, the absolute value of the average difference that we desire to detect 
a, the significance level of the test 
ß, the probability of failing to detect a difference of 8 

and compute 

d = \mA -mB\ 

where <r is the standard deviation of the population of signed differences Xd for the type of pairs 
concerned, then we may use Table A-8 to obtain a good approximation to the required number of 
pairs n. If we take a = .01, then we must add 4 to the value obtained from the table. If we take 
a = .05, then we must add 2 to the table value.   In order to compute d, we must choose a value for a. 

If, when planning the test, we overestimate a, the consequences are two-fold: first, we over- 
estimate the number of pairs required, and thus unnecessarily increase the cost of the test; but, by 
employing a sample size that is larger than necessary, the actual value of ß(8) will be somewhat 
less than we intended, which will be all to the good. On the other hand, if we underestimate a, 
we shall underestimate the number of pairs actually required, and by using too small a sample 
size, ß(8) will be somewhat larger than we intended, and our chances of detecting real differences 
when they exist will be correspondingly lessened. 

Finally, it should be noted, that inasmuch as the test criterion u = ti-a/i —?= does not depend on <r, 
wn 

an error in estimating a when planning the test will not alter the level of significance, which will be 
precisely equal to the value of a desired, provided that ii_a/2 is taken equal to the 100 (1 — a/2) 
percentile of the ^-distribution for n — 1 degrees of freedom, where n is the number of pairs actually 
employed. 
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3-3.2    DOES THE AVERAGE OF PRODUCT A EXCEED THE AVERAGE OF PRODUCT B? 

3-3.2.1    (Case 1)—Variability of A and B is Unknown, but can be Assumed to be Equal. 

Data Sample 3-3.2.1—Surface Hardness of Steel Plates 

A study was made of the effect of two grinding conditions on the surface hardness of steel plates 
used for intaglio printing. Condition A represents surfaces "as ground" and Condition B represents 
surfaces after light polishing with emery paper. The observations are hardness indentation numbers. 

Condition A 

187 
157 
152 
164 
159 
164 
172 

Condition B 

157 
152 
148 
158 
161 

[One-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ti-a for v = nA + nB — 2 degrees 
of freedom in Table A-4. 

(3) Compute: XA and s2
A, XB and sB, from the 

nA and nB measurements from products A 
and B, respectively. 

(4) 

(6) 

(7) 

Compute 
1) sA + (nB - 1) s% 
nA + nB -2 

(5)   Compute 

U = £i_„ SP V nA + nB 

nA nB 

If (XA — XB) > u, decide that the average 
of A exceeds the average of B; otherwise, 
decide there is no reason to believe that the 
average of A exceeds the average of B. 

Let mA and mB be the true averages of A 
and B. Note that the interval from 
{{XA — XB) — u] to oo is a 1 — a one- 
sided confidence interval estimate of the 
true difference (mA — mB). 

(1) 

(2) 

(3) 

(4) 

Example 

Let a = .05 

nA = 7 
nB = 5 

v = 10 
«96 for 10 d.f. = 1.812 

XA = 165 
si = 134 

XB = 155.2 
sB = 26.7 

(5) 

(6) 

(7) 

Sp -4 6 (134) + 4 (26.7) 
10 

= V91.08 
= 9.544 

u = (1.812) (9 
644> M 

= 17.294 (.5855) 
= 10.1 

(XA — XB) = 9.8, which is not larger than 
u. There is no reason to believe that the 
average hardness for Condition A exceeds 
the average hardness for Condition B. 

(XA - XB) - u = 9.8 - 10.1 = -0.3. 
The interval from —0.3 to °o is a 95% one- 
sided confidence interval estimate of the 
true difference between averages. 
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Operating Characteristics of the Test. Figures 3-5 and 3-6 give the operating characteristic (OC) curves 
of the above test for a = .05 and a = .01, respectively, for various values of n = nA + nB — 1. 

Choose: 

5 = (mA — mB), the true difference between the averages 
Some value of <r (= <rA = <TB), the common standard deviation 

(We may use an estimate from previous data; lacking 
such an estimate, see Paragraph 2-2.4.   If OC curve is 
consulted after the experiment, we may use the estimate 
from the experiment). 

Compute 

d* _ (mA - mB) 1 / nAnB tVr, VnA + nB — 1 \nA + nB ' 

We then can read a value of ß{5) from the OC curve for a given significance level and effective 
sample size n. The 0(5) read from the curve is jS(5 | <r, a, nA, nB) i.e., ß(8, given <r, a, nA, and nB) the 
probability of failing to detect a real difference between the two population means of magnitude 
3=+ (mA — mB) when the test is carried out with samples of sizes nA and nB, respectively, at 
the a-level of significance, and the two population standard deviations actually are both equal to a. 

If we use too large a value for a, the effect is to make us underestimate d*, and consequently to 
overestimate (3(5). Conversely, if we choose too small a value of a, then we shall overestimate d* 
and underestimate /3(5). The true value of /3(5) is determined, of course, by the sample sizes 
(nA and nB) and significance level a actually employed, and the true value of v (= aA = <rB)- 

Since the test criterion u does not depend on the value of o (■= <rA = <rB), an error in estimating <r 
will not alter the significance level of the test, which will be precisely equal to the value of a desired, 
provided that the value of <i_„ is taken equal to the 100 (1 — a) percentile of the i-distribution for 
nA + nB — 2 degrees of freedom, where nA and nB are the sample sizes actually employed, and it 
actually is true that aA = aB. 

If a A ^ <yB, then, whatever may be the ratio <TA/O-B, the effective significance level a' will not 
differ seriously from the intended value a, provided that nA = nB, except possibly when both are as 
small as two. If, on the other hand, unequal sample sizes are used, and aA ^ aB, then the effective 
level of significance a' can differ considerably from the intended value a, as shown in Figure 3-9. 

Selection of Sample Size n.  If we choose 

5 = (mA — mB), the value of the average difference that we desire to detect 
a, the significance level of the test 
ß, the probability of failing to detect a difference of size 5 

and compute 

,     (mA - mB) 
d =  T^==—, where a = <rA = <n> , 

then we may use Table A-9 to obtain a good approximation to the required sample size 
n (= nA = nB). If we take a = .01, then we must add 2 to the table value. If we take a = .05, 
then we must add 1 to the table value. 

In order to compute d, we must choose a value for o- (= <rA — aB). (See Paragraph 2-2.4 if no 
other information is available.) If we overestimate a, the consequences are two-fold: first, we 
overestimate the sample size n (= nA = nB) required, and thus unnecessarily increase the cost of 
the test; but, by employing a sample size that is larger than necessary, the actual value of /3(5) will 
be somewhat less than we intended, which will be all to the good.  On the other hand, if we under- 
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estimate a, we shall underestimate the sample size actually required, and by using too small a 
sample size, /3(5) will be somewhat larger than we intended, and our chances of detecting real 
differences when they exist will be correspondingly lessened. These effects of overestimating or 
underestimating a (— uA = <rB) will be similar in magnitude to those considered and illustrated in 
Paragraph 3-2.2.1 for the case of comparing the mean m of a new material, product, or process, 
with a standard value m0. 

As explained in the preceding discussion of the Operating Characteristics of the Test, an error 
in estimating o- (= <rA = aB) will have no effect on the significance level of the test, provided that 
the value of <i_„ is taken equal to the 100 (1 — a) percentile of the ^-distribution for nA + nB — 2 
degrees of freedom, where nA and nB are the sample sizes actually employed; and if <rA ^ cB, the 
effect will not be serious provided that the sample sizes are taken equal. 

3-3.2.2    (Case 2)—Variability of A and B is Unknown, Cannot Be Assumed Equal. 

Consider the data of Data Sample 3-3.1.2. Suppose that (from a consideration of the methods, 
and not after looking at the results) the question to be asked was whether the average for Method A 
exceeded the average for Method B. 

(1) 

Procedure* 

Choose a, the significance level of the test. 
Example 

(2)   Compute: XA and sA, XB and s|, from the 
nA and nB measurements from A and B. 

(1) 

(2) 

Let a = .05 

XA = 3166.0 
s^ = 6328.67 
nA = 4 
XB = 2240.4 

SB = 221,661.3 
nB = 9 

(3) Compute: 

nA 

and 

(3) 

VA = 6328.67 

(4) 

V B   —   , 
nB 

the estimated variances of XA and XB, 
respectively. 

Compute the "effective number of degrees 
of freedom" 

(VA + vBy 

4 
= 1582.17 
_ 221,661.3 

9 
= 24629.03 

(4) 

/ = VI + 

(5) 

(6) 

riA + 1     nB + 1 

Look up ti-a for /' degrees of freedom in 
Table A-4, where /' is the integer nearest to 
/; denote this value by ti-a. 

Compute 
u = «i_„ VVA + VB 

(5) 

(6) 

 (26211.20)» 
;     500652.4 + 60658911.9 

= 11.233 - 2 
= 9.233 

/' = 9 
t'.n = 1.833 

-2 

u = 1.833 V26211.20 
= 1.833 (161.90) 
= 296.76 

* See footnote on page 3-37. 
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Procedure* 

(7) If (XA — XB) > u, decide that the average 
of A exceeds the average of B; otherwise, 
decide that there is no reason to believe 
that the average of A exceeds the average 
of B. 

(8) Let mA and mB be the true averages of 
A and B. Note that the interval from 
{{XA — XB) — u) to oo is approximately 
a one-sided 100 (1 — a) % confidence in- 
terval estimate of the true difference 
(mA - mB). 

Example 

(7) XA — XB = 925.6, which is larger than u. 
Conclude that the average for Method A 
exceeds the average for Method B. 

(8) (XA - XB) - u = 925.6 - 296.76 = 
628.8. The interval from 628.8 to » is 
approximately a one-sided 95% confidence 
interval estimate of the true difference be- 
tween the averages for the methods. 

3-3.2.3    (Case 3)—Variability in Performance of Each of A and B is Known from Previous Experience 
and the Standard Deviations are aA and aB, Respectively. 

Data Sample 3-3.2.3 

The observational data are those of Data Sample 3-3.2.1 on surface hardness of steel plates. In 
addition, it now is assumed that the variability for the two conditions was known from previous 
experience to be <rA = 10.25 and aB = 5.00. 

[One-sided Normal Test] 
Procedure Example 

(1) Choose a, the significance level of the test.      (1)   Let a = .05 

(2) Look up Zi_a in Table A-2. 

(3) Compute: XA and XB, the means of the nA 

and nB measurements from A and B. 

(4)   Compute 

(5) 

(6) 

= 2i_„ Al — + EJL 
nA     nB 

(2) Z!_a = 1.645 

(3) XA = 165 
a\ = 105 
nA =7 
XB = 155.2 

0% = 25 

(4) 

nB = 5 

u = 1.645 V15 + 5 
= 1.645 (4.472) 
= 7.4 

If (XA — XB) > u, decide that the average 
of A exceeds the average of B; otherwise, 
decide that there is no reason to believe 
that the average of A exceeds the average 
of B. 

Let mA and mB be the true averages of 
A and B. Note that the interval from 
\(XA — XB) — u\ to oo is a 1 — a one- 
sided confidence interval estimate of the 
true difference (mA — mB). 

(5) (XA — XB) = 9.8, which is larger than u. 
Conclude that the average hardness for 
Condition A exceeds the average hardness 
for Condition B. 

(6) The interval from 2.4 to » is a 95% one- 
sided confidence interval estimate of the 
true difference between averages. 

' See footnotes, and also the discussion of the properties and limitations of this type of procedure, in Paragraph 3-3.1.2. 
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Operating Characteristics of the Test.   Figures 3-7 and 3-8 give the operating characteristic (OC) 
curves of the above test for a = .05 and a = .01, respectively, for various values of n. 

If nA = nB = n and {mA — mB) is the true positive difference between the averages, then putting 

, _ (mA - mB) 

we can read ß, the probability of failing to detect a difference of size (mA — mB). 

If nA = cnB, we can put 

_ (mA - mB) 
Vri + Ca% 

and again read ß, the probability of failing to detect a difference of size (mA — mB). 

Selection of Sample Size.  We choose 

a, the significance level of the test 
ß, the probability of failing to detect a difference of size (mA — mB). 

If we wish nA = nB = n, we compute 

_ (mA - mB) 

and we may use Table A-9 directly to obtain the required sample size n. 

If we wish to have nA and nB such that nA = cnB, then we may compute 

_  (mA - mB) 
Vai + Cog 

and use Table A-9 to obtain n = nA. 

3-3.2.4    (Case 4)—The Observations are Paired. 

Often, an experiment is, or can be, designed so that the observations are taken in pairs. The two 
units of a pair are chosen in advance so as to be as nearly alike as possible in all respects other than 
the characteristic to be measured, and then one member of each pair is assigned at random to 
Treatment A, and the other to Treatment B. For a discussion of the advantage of this approach, 
see Paragraph 3-3.1.4. 

Data Sample 3-3.2.4—Molecular Weight of Dextrons 

During World War II bacterial polysaccharides (dextrons) were considered and investigated for 
use as blood plasma extenders. Sixteen samples of hydrolyzed dextrons were supplied by various 
manufacturers in order to assess two chemical methods for determining the average molecular 
weight of dextrons. 

Method A Method B Xj — XA — Xg 

62,700 56,400 6,300 
29,100 27,500 1,600 
44,400 42,200 2,200 
47,800 46,800 1,000 
36,300 33,300 3,000 
40,000 37,100 2,900 
43,400 37,300 6,100 
35,800 36,200 -    400 
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Method A 

33,900 
44,200 
34,300 
31,300 
38,400 
47,100 
42,100 
42,200 

Method B 

35,200 
38,000 
32,200 
27,300 
36,100 
43,100 
38,400 
39,900 

XJ — XA XB 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Compute the Xd and sd for the n differ- 
ences, Xd. Each Xd represents an observa- 
tion on A minus the paired observation on 
B. 

(3) Look up £i_„ for n — 1 degrees of freedom 
in Table A-4. 

(4)   Compute 

u = £i_„ 
Sd 

y/n 

(5) If Xd > u, decide that the average of A 
exceeds that of B; otherwise, there is no 
reason to believe the average of A exceeds 
that of B. 

(6) Note that the open interval from Xd — u 
to + co is a one-sided 100 (1 — a) % con- 
fidence interval for the true difference 
(mA - mB). 

(2) 

-1,300 
6,200 
2,100 
4,000 
2,300 
4,000 
3,700 
2,300 

Example 

(1)   Let a = .05 

Xd = 2875 
Sd = 2182.2 
n = 16 

(3)   «.95 for 15 d.f. = 1.753 

(4) 

« = 1.753 (2-^) 

= 1.753 (545.6) 
= 956.4 

(5) Xd = 2875, which is larger than u. Con- 
clude that the average for Method A 
exceeds the average for Method B. 

(6) Xd-u = (2875 - 956) = 1919. The in- 
terval from 1919 to + co is a one-sided 
95% confidence interval for the true dif- 
ference between the averages of the two 
methods. 

Operating Characteristics of the Test. Figures 3-5 and 3-6 give the operating characteristic (OC) 
curves of the test for a = .05 and a = .01, respectively, for various values of n, the number of pairs 
involved. 

Choose: 

5 = (mA — TOB), the true difference between the averages (unknown, of course) 
Some value of a (= ad), the true standard deviation of a signed difference Xd. 

(We may use an estimate from previous data.  If OC curve is 
consulted after the experiment, we may use the estimate from 
the experiment.) 

Compute 

d-*-. 
a 
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We can then read from the OC curve for a given significance level a and number of pairs n, a value 
of ß(S). The ß(8) read from the curve is ß(S | o> a, n), i.e., ß(8, given a, a, n)—the probability of failing 
to detect a difference (mA — mB) of magnitude +5 when the given test is carried out with n pairs, 
at the «-level of significance, and the population standard deviation of the differences Xd actually 
is a. 

If we use too large a value for <r, the effect is to underestimate d, and consequently to overestimate 
ß{8), the probability of not detecting a difference (mA — mB) of size +8 when it exists. Conversely, 
if we choose too small a value of <r, then we shall overestimate d and underestimate ß{8). The true 
value of ß{8) is determined, of course, by the actual number of pairs n, the significance level a 
employed, and the true value of a (= a)- 

Selection of Number of Pairs {n).  If we choose 

8 = (mA — mB), the value of the (positive) average difference that we desire to detect 
o, the significance level of the test 
ß, the probability of failing to detect a difference of +5 

and compute 

d = (mA - mB) 
a 

where a (= ad) is the standard deviation of the population of signed differences Xd of the type 
concerned, then we may use Table A-9 to obtain a good approximation to the required number of 
pairs n. If we take a = .01, then we must add 3 to the table value. If we take a = .05, then we 
must add 2 to the table value.  (In order to compute d, we must choose a value for <r.) 

If, when planning the test, we overestimate <r, the consequences are two-fold: first, we over- 
estimate the number of pairs required, and thus unnecessarily increase the cost of the test; but, by 
employing a sample size that is larger than necessary, the actual value of ß{8) will be somewhat less 
than we intended, which will be all to the good. On the other hand, if we underestimate a, we shall 
underestimate the number of pairs actually required, and by using too small a sample size, ß(8) will 
be somewhat larger than we intended, and our chances of detecting real differences when they exist 
will be correspondingly lessened. 

Finally, it should be noted, that inasmuch as the test criterion u = ti-a —7= does not depend on a, 
V» 

an error in estimating a when planning the test will not alter the level of significance, which will be 
precisely equal to the value of a desired, provided that <i_„ is taken equal to the 100 (1 — a) per- 
centile of the ^-distribution for n — 1 degrees of freedom, where n is the number of pairs actually 
employed. 

3-4    COMPARING THE AVERAGES OF SEVERAL PRODUCTS 

Do the averages of t products 1,2, ... ,t differ? We shall assume that rii = n2 = . . . = nt = n. 
If the ri's are in fact not all equal, but differ only slightly, then in the following procedure we may 
replace n by the harmonic mean of the w's, 

n„ = «/(1/ni + 1/m + . . . + 1/rti) 

and obtain a satisfactory approximation. 
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Data Sample 3-4—Breaking-strength of Cement Briquettes 

The following data relate to breaking-strength of cement briquettes (in pounds per square inch). 
The question to be answered is: Does the average breaking-strength differ for the different groups? 

Group 

' 1 2 3 4 5 

518 508 554 555 536 
560 574 598 567 492 
538 528 579 550 528 
510 534 538 535 572 
544 538 544 540 506 

xXi 2670 2682 2813 2747 2634 
rii 5 5 5 5 5 
x< 534.0 536.4 562.6 549.4 526.8 
2X2 1427404 1440924 1585141 1509839 1391364 

(sz)2 

n 1425780 1438624.8 1582593.8 1509201.8 1387591.2 

*x>   (SZ)2 
n 

1624 2299.2 2547.2 637.2 3772.8 

s2 406 574.8 636.8 159.3 943.2 

Excerpted with permission from Statistical Exercises, Part II, Analysis of Variance and Associated Techniques, by N. L. Johnson, Copyright, 1957 
Department of Statistics, University College, London. 

Procedure 

(1) Choose a, the significance level (the risk of 
concluding that the averages differ, when 
in fact all averages are the same). 

(2) Compute: 
SJ , sjj, . . .   , !>t . 

(3)   Compute 

= -f W + si + ... + s2) 

If the ri; are not all equal, the following 
formula usually is to be preferred: 

«!- 
(nx -1) s\ + (n, -1) 4 + • ■ • + (n. -1) sj 

(»i + «j+... +nt) -t 

(1)   Let 

(2) 

(3) 

Example 
a = .01 

si = 406.0 
s\ = 574.8 
si = 636.8 
s\ = 159.3 
si = 943.2 

_ 2720.1 
~     5 
= 544.0 

s. = 23.32 
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Procedure 

(4)   Look up gi_a (t, v) in Table A-10 where 
v =(Wi + n3 + ... +nt) - t. 

(5)   Compute 

w = 
■y/n 

(6) If the absolute difference between any two 
sample means exceeds w, decide that the 
averages differ; otherwise, decide that there 
is no reason to believe the averages differ. 

Example 

(4) 

(5) 

<?.99 

V 

t 
(5,20) 

= 25-5 
= 20 
= 5 
= 5.29 

w 
5.29 (23.32) 

"       V5 
123.36 

" 2.236 
= 55.2 

(6) The greatest difference between sample 
means is 562.6 — 526.8 = 35.8, which is 
less than w. We, therefore, have no reason 
to believe that the group averages differ. 

the 

Note: It is worth noting that we simultaneously can make confidence interval estimates for each of 

2 
estimates are correct. The confidence intervals are (X< 
of the ith and jth products. 

pairs of differences between product averages, with a confidence of 1 — a that all of the 

Xj) ± w, where Xit X„ are sample means 
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CHAPTER 4 

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO 

VARIABILITY OF PERFORMANCE 

4-1    COMPARING A NEW MATERIAL OR PRODUCT WITH A STANDARD 

WITH  RESPECT TO VARIABILITY OF PERFORMANCE 

The variability of a standard material, product, or process, as measured by its standard deviation, 
is known to be a0.    We consider the following three problems: 

(a) Does the variability of the new product differ from that of the standard? See Paragraph 
4-1.1. 

(b) Does the variability of the new product exceed that of the standard?    See Paragraph 4-1.2. 
(c) Is the variability of the new product less than that of the standard?    See Paragraph 4-1.3. 

It is important to decide which of the three problems is appropriate before taking the observa- 
tions. If this is not done, and the choice of problem is influenced by the observations, both the 
significance level of the test (i.e., the probability of an Error of the First Kind) and the operating 
characteristics of the test may differ considerably from their nominal values. 

The tests given are exact when: 
(a) the observations for an item, product, or process are taken randomly from a single population 

of possible observations; and, 
(b) within the population, the quality characteristic measured is normally distributed. 

4-1.1    DOES THE VARIABILITY OF THE NEW PRODUCT DIFFER FROM THAT OF THE STANDARD? 

The variability in the performance of a standard material, product, or process, as measured by 
its standard deviation, is known to be <ra. We wish to determine whether a given item differs in 
variability of performance from the standard. We wish, from analysis of the data, to make one 
of the following decisions: 

(a) The variability in performance of the new product differs from that of the standard. 
(b) There is no reason to believe the variability of the new product is different from that of the 

standard. 

Data Sample 4-1.1—Capacity of Batteries 

The standard deviation <r0 of capacity for batteries of a standard type is known to be 1.66 ampere 
hours. The following capacities (ampere hours) were recorded for 10 batteries of a new type: 
146, 141, 135, 142, 140, 143, 138, 137, 142, 136. 

We wish to compare the new type of battery with the standard type with regard to variability 
of capacity. The question to be answered is: Does the new type differ from the standard type 
with respect to variability of capacity (either a decrease or an increase is of interest)? 
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Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Bu and BL both for n — 1 degrees 
of freedom in Table A-20. 

(3)   Compute s, from the n observations 

„        I2X> - (XXy/n 

(4) Compute: 

sL = BLs 

Su = Bv s 

(5) If o-o does not lie between sL and Su, decide 
that the variability in performance of the 
new product differs from that of the stand- 
ard; otherwise, that there is no reason to 
believe the new product differs from the 
standard with regard to variability. 

(6) It is worth noting that the interval from sL 

to Su is a 100 (1 — a) % confidence interval 
estimate of o-, the standard deviation of the 
new product.    (See Par. 2-2.3.1). 

(1)   Let 
Example 

a = .05 

(2) «-1 = 9 
Bu for 9 d.f. = 1.746 
BL for 9 d.f. = .6657 

(3) 

-4 196108 - 196000 

(4) 

/108 
V 9 

= A/12 
= 3.464 

sL = (.6657) (3.464) 
= 2.31 

su = (1.746) (3.464) 
= 6.05 

(5) Since o-0 = 1.66 does not lie between the 
limits 2.31 to 6.05, conclude that the vari- 
ability for the new type does differ from the 
variability for the standard type. 

(6) The interval from 2.31 to 6.05 ampere 
hours is a 95% confidence interval estimate 
for the standard deviation of the new type. 

Operating Characteristics of the Test. Operating-characteristic (OC) curves for this Neyman- 
Pearson "unbiased Type A" test of the null hypothesis that o- = c0 relative to the alternative that 
o- j± o-o are not currently available except for two special cases considered in the original Neyman- 
Pearson memoir.(1) These special cases and more general considerations indicate that the OC 
curves for this test will not differ greatly, except for the smallest sample sizes, from the OC curves 
for the corresponding traditional "equal-tail" test (see Figures 6.15 and 6.16 of Bowker and Lieber- 
man(2)). The OC curve for the present test for a given significance level and sample size n will lie 
above the OC curve of the corresponding "equal-tail" test for <r > <r0 and below the OC curve for the 
"equal-tail" test for a < (r0. In other words, the chances of failing to detect that a exceeds <r0 are 
somewhat greater with the present test than with the "equal-tail" test, and somewhat less of failing 
to detect that <r is less than o-o. The reader is reminded, however, that if there is special interest in 
determining whether a > o-0, or special interest in determining whether u < <?<>, the problem and 
procedure of this Paragraph is not at all appropriate, and Paragraph 4-1.2 or 4-1.3 should be 
consulted. 
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4-1.2    DOES THE VARIABILITY OF THE NEW PRODUCT EXCEED THAT OF THE STANDARD? 

The variability in performance of a standard material, product, or process, as measured by its 
standard deviation, is known to be <r0. We wish to determine whether the variability in perform- 
ance of a new product exceeds that of the standard. We wish, from analysis of the data, to make 
one of the following decisions: 

(a) The variability in performance of the new product exceeds that of the standard. 
(b) There is no reason to believe the variability of the new product exceeds that of the standard. 

In terms of Data Sample 4-1.1, let us suppose that—in advance of looking at the data!—the 
important question is: Does the variability of the new type exceed that of the standard? 

Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Aa for n — 1 degrees of freedom in 
Table A-21. 

(3) Compute s, from the n observations. 

(4) Compute sL = Aas 

Example 
(1)   Let a = .05 

(2) 
A.05 

n - 1 - 9 
for 9 d.f. = .7293 

(3) s = 3.464 

(4) sL = .7293 (3.464) 
= 2.53 

(5) If Si exceeds a0, decide that the variability 
of the new product exceeds that of the 
standard; otherwise, that there is no reason 
to believe that the new product exceeds the 
standard with regard to variability. 

(6) It is worth noting that the interval above 
sL is a 100 (1 — a) % confidence interval 
estimate of o-, the standard deviation of the 
new product.    (See Par. 2-2.3.2). 

(5) Since 2.53 exceeds 1.66, conclude that the 
variability of the new type exceeds that of 
the standard type. 

(6) The interval from 2.53 to + » is a 95% 
confidence interval estimate of the stand- 
ard deviation of the new type. 

Operating Characteristics of the Test. Figure 4-1 provides operating-characteristic (OC) curves 
of the test for a = 0.05 and various values of n. Let ai denote the true standard deviation of the 
new product. Then the OC curves of Figure 4-1 show the probability ß = ß (X | .05, n) of failing 
to conclude that o-i exceeds a0 when <TI = Xa0 and the test is carried out at the a = 0.05 level of 
significance using a value of s derived from a sample of size n. Similar OC curves for the case of 
a = 0.01 are given in Figure 6.18 of Bowker and Lieberman.(2) OC curves are easily constructed 
for other values of n — and, if desired, other values of a — by utilizing the fact that if the test is 
conducted at the a level of significance using a value of s based on a sample of size n, then the 
probability of failing to conclude that <n exceeds <r0 when <n = \<r0 is exactly ß for 

X = X (a, ft n) = Vx?_„ (n - 1)/XJ (n - 1), 

where xp (?) is the P-probability level of x2 for v degrees of freedom, as given in Table A-3. Values 
of p (a, A «i) = X2 (a, A n) corresponding to a = 0.05 and a = 0.01, for ß = 0.005, 0.01, 0.025, 
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.975, 0.99, and 0.995 are given in Tables 8.1 and 8.2 of 
Eisenhart«' for m = n - 1 = 1(1)30(10)100, 120, «.. 
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Figure k-l.   Operating characteristics of the one-sided x2-test to determine whether the standard deviation 
ay of a new product exceeds the standard deviation ao of a standard (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled "Operating Characteristics for the 
Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Selection of Sample Size.    If we choose 

X   -  £i 

a, the significance level of the test 
and, ß, the probability of failing to detect that ux exceeds <r0 when o-i = X<ro 

then for a = 0.05 we may use the OC curves of Figure 4-1 to determine the necessary sample 
size n. 

Example:   Choose 

*=ä=1.6 
a = 0.05 
ß = 0.05 

then from Figure 4-1 it is seen that n = 30 is not quite sufficient, and n = 40 is more than sufficient. 
Visual interpolation suggests n = 35. 

Alternatively, one may compute the necessary sample size from the approximate formula 

- n (a, ft X) - 1 + g ^ ^73 ) 
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where zP is the P-probability point of the standard normal variable z, values of which are given in 
Table A-2 for various values of P.    Thus, in the foregoing example we find 

1 /1.645 + (1.5) (1.645)V 
n~l + 2\ 1.5-1 ) 

= 1 + 

= 34.8 

| (^f^)2 - 1 + \ (8-225)' = 1+| (67.65) 

which rounds to n = 35. Chandt4) has found this formula generally quite satisfactory, and that 
"even for such a small value as« = 5" it "errs on the safe side in the sense that it gives (at least 
for a = ß) a sample size which will always be sufficient." 

Check:   For n = 35, 

X (.05, .05, 35) = Jgm - ^8 = ^ 
(34) 

= 1.50 

Hence ß = 0.05 for X = 1.50. 

4-1.3    IS THE VARIABILITY OF THE NEW PRODUCT LESS THAN THAT OF THE STANDARD? 

The variability in performance of a standard material, product, or process, as measured by its 
standard deviation, is known to be <70. We wish to determine whether the variability in perform- 
ance of the new product is less than that of the standard. We wish, from analysis of the data, to 
make one of the following decisions: 

(a) The variability in performance of the new product is less than that of the standard. 
(b) There is no reason to believe the variability in performance of the new product is less than 

that of the standard. 

Data Sample 4-1.3—Cutoff Bias of Tubes 

A manufacturer has recorded the cutoff bias of a sample of ten tubes, as follows (volts): 

12.1, 12.3, 11.8, 12.0, 12.4, 12.0, 12.1, 11.9, 12.2, 12.2. 

The variability of cutoff bias for tubes of a standard type as measured by the standard deviation 
is a = 0.208 volt. 

Let us assume with respect to Data Sample 4-1.3 that the important question is: Is the variability 
of the new type with respect to cutoff bias less than that of the standard type? 

Procedure Example 

(1) Choose a, the level of significance of the 
test. 

(1) Let               a = .05 

(2) Look up Ai-a for n — 1 degrees of freedom 
in Table A-21. 

(2) n - 1 = 9 
A.96for9d.f. = 1.645 

(3) Compute s, from the n observations (3) 

S      V         n-1 
= V.0333 
= .1826 
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Procedure 

(4) Compute su = Ai_a s 

(5) If Su is less than <r0, decide that the vari- 
ability in performance of the new product 
is less than that of the standard; otherwise, 
that there is no reason to believe the new 
product is less variable than the standard. 

(6) It is worth noting that the interval below Su 
is a 100 (1 — a) % confidence interval esti- 
mate of a, the standard deviation of the 
new product.    (See Par. 2-2.3.2.) 

(4) 

Example 

Su = 1.645 (.1826) 
= 0.300 

(5) Since .300 is not less than .208, conclude 
that there is no reason to believe that the 
new type is less variable than the standard. 

(6) The interval below 0.300 is a 95% confi- 
dence interval estimate of the standard 
deviation of the new type. 

Operating Characteristics of the Test. Figure 4-2 provides operating-characteristic (OC) curves 
of the test for a = 0.05 and various values of n. Let <n denote the true standard deviation of the 
new product. Then the OC curves of Figure 4-2 show the probability ß = ß (X | .05, n) of failing 
to conclude that o-i is less than <r0 when o-i = \<r0 and the test is carried out at the a = 0.05 level 
of significance using a value of s derived from a sample of size n. Similar OC curves for the case 
of a = 0.01 are given in Figure 6.20 of Bowker and Lieberman.(2)    OC curves are easily constructed 

Figure A-2. < Operating characteristics of the one-sided x2-test to determine whether the standard deviation 
<n of a new product is less than the standard deviation <r0 of a standard (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled "Operating Characteristics for the 
Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 
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for other values of n — and, if desired, other values of a — by utilizing the fact that if the test is 
conducted at the a level of significance using a value of s based on a sample of size n, then the 
probability of failing to conclude that <n is less than <r0 when n = Xo-0 is exactly ß for 

X = X (a, ft n) = Vxl (n - 1)/XL/J (n - 1), 

where x|> (V) is the P-probability level of x2 for v degrees of freedom, as given in Table A-3. 

Selection of Sample Size.    If we choose 

a, the significance level of the test 
and, ft the probability of failing to detect that <TX is less than o-0 when <TI = Xo-0 

then for a = 0.05 we may use the OC curves of Figure 4-2 to determine the necessary sample size n. 

Example:   Choose 

X = 3 = 0-5 
a = 0.05 
0 = 0.05 

then from Figure 4-2 it is seen that n = 10 is not quite sufficient, and n = 15 is more than sufficient. 
Visual interpolation suggests n = 14. 

Alternatively, one may compute the necessary sample size from the approximate formula 

n = n («, ft X) = 1 + 2 ( ^^—e) 

where z^ is the P-probability point of the standard normal variable z, values of which are given in 
Table A-2 for various values of P.    Thus, in the foregoing example we find 

„ _ i   , I /1-645 + (0-5) (1.645)V 
n ~ i + 2 V 1-0.5 ) 

1 + \ (^rj = 1+1 (4-935)' = 1+| (24.35) 

= 13.18 

which rounds to n = 13. 

Check:   For n = 13, 

X (.05, .05, 13, . J5| . ^ . Vo.2487 

= 0.499 < 0.50 

Hence, ß = 0.05 for X = 0.50. 
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4-2    COMPARING TWO MATERIALS OR PRODUCTS WITH  RESPECT TO 
VARIABILITY OF PERFORMANCE 

We consider two problems: 

(a) Does the variability of product A differ from that of product B? (We are not concerned 
which is larger).    See Paragraph 4-2.1. 

(b) Does the variability of product A exceed that of product B?   See Paragraph 4-2.2. 

It is important to decide which of these two problems is appropriate before taking the observa- 
tions. If this is not done, and the choice of problem is influenced by the observations, both the 
significance level of the test (i.e., the probability of an Error of the First Kind) and the operating 
characteristics of the test may differ considerably from their nominal values. The tests given are 
exact when: 

(a) the observations for an item, product, or process are taken randomly from a single population 
of possible observations; and, 

(b) within the population, the quality characteristic measured is normally distributed. 

In the following, it is assumed the appropriate problem is selected and then nA, nB observations 
are taken from items, processes, or products A and B, respectively. 

4-2.1     DOES THE VARIABILITY OF PRODUCT A DIFFER FROM THAT OF PRODUCT B? 

We wish to test whether the variability of performance of two materials, products, or processes 
differ, and we are not particularly concerned which is larger. We wish, from analysis of the data, 
to make one of the following decisions: 

(a) The two products differ with regard to their variability. 
(b) There is no reason to believe the two products differ with regard to their variability. 

Data Sample 4-2.1—Dive-bombing Methods 

The performance of each of two different dive-bombing methods is measured a dozen times with 
the following results: 

Method A Method B 

526 414 
406 430 
499 419 
627 453 
585 504 
459 459 
415 337 
460 598 
506 425 
450 438 
624 456 
506 385 

Let us suppose that, in the case of Data Sample 4-2.1, the question to be answered is: Do the two 
methods differ in variability (it being of interest if either is more variable than the other)? 
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Example 

(1) Let            a = .05 

(2) nA - 1 = 11 
nB — 1 = 11 

F.m (11, 11) = 3.48 

(3) A = 5545 

s% = 4073 

(4) F = 5545/4073 
= 1.36 

(5) F.m (11, 11) = 3.48 

1 
= 0.29 

F.975  (11,   11) 

Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up jPi_a/2 for (nA — 1, nB — 1) de- 
grees of freedom, and Fi_„/2 for (jiB — 1, 
nA — 1) degrees of freedom, in Table A-5. 

(3) Compute sA and s% from the observations 
from A and B, respectively. 

(4) Compute F = sA/sB 

(5) ItF> F^al2 {nA - 1, nB - 1) or 

F< 1  
Fi-a/2 (nB - 1, nA - 1) 

decide that the two products differ with 
regard to their variability; otherwise, there 
is no reason to believe that they differ. 

(6) It is worth noting that the interval between 

 1 (&\ 
F^a/2 {nA - 1, nB - 1) \sBJ 

and 

Fu-i, (nB -l,nA- 1) (&) 

is a 100 (1 — a) % confidence interval esti- 
mate of the ratio <TA/crB. 

Operating Characteristics of the Test. Operating-characteristic (OC) curves for this traditional 
"equal-tail" test of the null hypothesis that <rA = <rB relative to the alternative cA ^ aB are given 
in Figures 7.1 and 7.2 of Bowker and Lieberman(2) for the case of equal sample sizes nA = nB = n, 
and significance levels a = 0.05 and a = 0.01, respectively. These curves may be used to deter- 
mine the common sample size nA = nB ~ n needed to achieve a preassigned risk ß of failing to 
detect that <rA/oB = X when the test is carried out at the a = 0.05 or a = 0.01 level of significance. 
The reader is reminded, however, that if there is special interest in determining whether <xA > aB, 
the problem and procedure of this Paragraph is not at all appropriate, and Paragraph 4-2.2 should 
be consulted. 

Since F is not larger than 3.48, and is not 
smaller than 0.29, there is no reason to 
believe that the two bombing methods 
differ in variability. 

(6) The interval between 0.39 (i.e., 0.29 X 
1.36) and 4.73 (i.e., 3.48 X 1.36) is a 95% 
confidence interval estimate of the ratio of 
the true variances, <rA/a%. 

4-2.2    DOES THE VARIABILITY OF PRODUCT A EXCEED THAT OF PRODUCT B? 

We wish to test whether the variability in performance of product A exceeds that of product B. 
We wish, as a result of analysis of the data, to make one of the following decisions: 

(a) The variability of product A exceeds that of product B. 
(b) There is no reason to believe that the variability of product A exceeds the variability of 

product B. 
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In terms of Data Sample 4-2.1, let us suppose that—in advance of looking at the data!—the 
important question is: Does the variability of Method A exceed that of Method B? 

Procedure Example 

(1) Choose a, the level of significance of the 
test. 

(1) Let           a = .05 

(2) Look up Fi_a for WA — l,nB — 1 degrees of 
freedom, in Table A-5. 

(2) nA - 1 
nB — 1 

FM (11, 11) 

= 11 
= 11 
= 2.82 

(3) Compute sA, sB, the sample variances of 
the observations from A and B, respec- 

(3) sA = 5545 
= 4073 

tively. 

(4) Computed = sA/sB. 

(5) If F > Fi_a, decide that the variability of 
product A exceeds that of B; otherwise, 
there is no reason to believe that the vari- 
ability of A is greater than that of B. 

(4) F = 1.36 

(5) Since 1.36 is not larger than 2.82, there is 
no reason to believe that the variability of 
Method A is greater than the variability 
of Method B. 

(6)   Note that the interval above 

1 
*v -1) (Ä) (nA - 1, nB 

is a 100 (1 — a) % confidence interval esti- 
mate of <J\IOB. 

(6) 

F.95  (11,  11) 
= 0.35 

The interval above 0.48 (i.e., 0.35 X 1.36) 
is a 95% confidence interval estimate of the 
ratio of the true variances, aA/o-%- 

Operating Characteristics of the Test. Figures 4-3, 4-4, and 4-5 provide operating-characteristic 
(OC) curves of the test for a = 0.05 and various combinations of nA and nB. Let oA and OB denote 
the true standard deviations of the products A and B, respectively. These OC curves show the 
probability ß = ß (X | .05, n) of failing to conclude that <rA exceeds aB when aA = \<rB with X > 1 
and the test is carried out at the a = 0.05 level of significance using the values of sA and sB derived 
from samples of size nA and nB, respectively. Similar OC curves for the case of a = 0.01 and 
nA — nB are given in Figure 7.4 of Bowker and Lieberman.(2> OC curves are easily constructed for 
other values of nA and nB — and, if desired, other values of a — by utilizing the fact that if the test is 
conducted at the a level of significance using values of sA and sB based on samples of size nA and nB, 
respectively, then the probability of failing to conclude that cA exceeds aB when aA = XaB is exactly 
/Sfor 

X = X (a, j3, nA, nB) ~ \  A" 
(nA 1, nB - 1) 

(nA 1, nB - 1) 

= VFi-a (nA - 1, nB - 1) • Fi_ß (ng - 1, nA - 1) 

where FP (nu n2) is the P-probability level of F for % and n2 degrees of freedom, as given in 
Table A-5. Values of </> (a, ß, nlt w2) = X2 (a, ß, nA, nB) corresponding to a = 0.05 and a = 0.01, 
for ß = 0.005, 0.01, 0.025, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.975, 0.99, and 0.995 are given in 
Tables 8.3 and 8.4 of Eisenhart(3) for all combinations of values of nx = nA — 1 and n2 = nB — 1 
derivable from the sequence 1(1)30(10)100, 120, ». 
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Figure U-S.    Operating characteristics of the one-sided F-test to determine whether the standard deviation 
a A of product A exceeds the standard deviation OB of product B (a = .05; nA = n«). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946. from article entitled "Operating Characteristics for the 
Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Selection of Sample Size.    If we choose 

nA = nB = n 

a, the significance level of the test 
ß, the probability of failing to detect that cA exceeds aB when O-A = XO-B 

then for a = 0.05, we may use the OC curve of Figure 4-3 to determine the necessary common 
sample size n. 
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Figure k-h-    Operating characteristics of the one-sided F-test to determine whether the standard deviation 
a A of product A exceeds the standard deviation <sB of product B 

(a = .05; nA = nB, 3nA = 2nB, 2nA = nB). 
Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled "Operating Characteristics for the 

Common Statistical Tests of Significance" by C. D. Ferris, P. E. Grubbs, and C. L. Weaver. 

Example:   Choose 

X = g - 1.5 
a = 0.05 
ß = 0.05 

then from Figure 4-3 it is seen that n = 50 is too small and n 
polation suggests n = 70. 

75 a bit too large.   Visual inter- 
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Figure U-5.    Operating characteristics oj the one-sided F-test to determine whether the standard deviation 
<TA of product A exceeds the standard deviation aB of product B 

(a = .05; nA = nB, 2nA = 3nB, nA = 2nB). 
Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled "Operating Characteristics for the 

Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Alternatively, for nA = nB — n one may compute the necessary sample size from the approximate 
formula 

where Zp is the P-probability point of the standard normal variable z, values of which are given in 
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Table A-2 for various values of P.   Thus in the foregoing example we find 
/1  RAK _L 1  RAK\2 

2 + n 
(h 

645 + 1.645V 
.4055 

= 2 + (m\* 
= 68. 

V.4055/ 2 + (8.11)2 = 2 + 65.8 

If instead of choosing nA = nB we choose SnA = 2nB or 2nA = nB, then for a = 0.05 we may 
use the OC curves of Figure 4-4 to determine the necessary combination of sample sizes nA and nB. 
Similarly, Figure 4-5 may be used if it is desired to have 2nA = 3nB or nA = 2nB. Alternatively, 
one may evaluate the harmonic mean h of nA — 2 and nB — 2 from the approximate formula 

h _    /Zl-q   +   Zl-ß 
\        lOgeX )' 

and then determine the integer values of nA and nB (satisfying any additional requirements, e.g., 
nA = 2nB) that most closely satisfy the equation 

1 
h 2\nA - 2 ^ nB - 2/- 
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CHAPTER 5 

CHARACTERIZING LINEAR RELATIONSHIPS 

BETWEEN TWO VARIABLES 

5-1     INTRODUCTION 

In many situations it is desirable to know 
something about the relationships between two 
characteristics of a material, product, or proc- 
ess. In some cases, it may be known from 
theoretical considerations that two properties 
are functionally related, and the problem is to 
find out more about the structure of this rela- 
tionship. In other cases, there is interest in 
investigating whether there exists a degree of 
association between two properties which could 
be used to advantage. For example, in specify- 
ing methods of test for a material, there may be 
two tests available, both of which reflect per- 
formance, but one of which is cheaper, simpler, 
or quicker to run. If a high degree of associa- 
tion exists between the two tests, we might wish 
to run regularly only the simpler test. 

In this chapter, we deal only with linear rela- 
tionships. Curvilinear relationships are dis- 
cussed in Chapter 6 (see Paragraph 6-5). It is 
worth noting that many nonlinear relationships 
may be expressed in linear form by a suitable 
transformation (change of variable). For exam- 
ple, if the relationship is of the form Y = aXh, 

then log Y = log a + b log X.    Putting YT = 

log Y, b0 = log a, bi = b, XT = log X, we have 

the linear expression YT = b0 + biXT in terms 

of the new (transformed) variables XT and YT. 

A number of common linearizing transforma- 
tions are summarized in Table 5-4 and are dis- 
cussed in Paragraph 5-4.4. 

5-2    PLOTTING THE DATA 

Where only two characteristics are involved, 
the natural first step in handling the experi- 
mental results is to plot the points on graph 
paper. Conventionally, the independent vari- 
able X is plotted on the horizontal scale, and the 
dependent variable Y is plotted on the vertical 
scale. 

There is no substitute for a plot of the data to 
give some idea of the general spread and shape 
of the results. A pictorial indication of the 
probable form and sharpness of the relation- 
ship, if any, is indispensable and sometimes may 
save needless computing.    When investigating 

a structural relationship, the plotted data will 
show whether a hypothetical linear relationship 
is borne out; if not, we must consider whether 
there is any theoretical basis for fitting a curve 
of higher degree. When looking for an empiri- 
cal association of two characteristics, a glance at 
the plot will reveal whether such association is 
likely or whether there is only a patternless 
scatter of points. 

In some cases, a plot will reveal unsuspected 
difficulties in the experimental setup which 
must be ironed out before fitting any kind of 
relationship.   An example of this occurred in 
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measuring the time required for a drop of dye to 
travel between marked distances along a water 
channel. The channel was marked with dis- 
tance markers spaced at equal distances, and an 
observer recorded the time at which the dye 
passed each marker. The device used for re- 
cording time consisted of two clocks hooked up 
so that when one was stopped, the other started: 
Clock 1 recorded the times for Distance Mark- 
ers 1, 3, 5, etc.; and Clock 2 recorded times for 
the even-numbered distance markers. When 
the elapsed times were plotted, they looked 
somewhat as shown in Figure 5-1. It is ob- 
vious that there was a systematic time differ- 
ence between odd and even markers (presuma- 
bly a lag in the circuit connecting the two 
clocks). One could easily have fitted a straight 
line to the odd-numbered distances and a dif- 
ferent line to the even-numbered distances, with 
approximately constant difference between the 
two lines.    The effect was so consistent, how- 

ever, that the experimenter quite properly 
decided to find a better means of recording 
travel times before fitting any line at all. 

If no obvious difficulties are revealed by the 
plot, and the relationship appears to be linear, 
then a line Y = bB + bJC ordinarily should be 
fitted to the data, according to the procedures 
given in this Chapter. Fitting by eye usually is 
inadequate for the following reasons: 

(a) No two people would fit exactly the same 
line, and, therefore, the procedure is not ob- 
jective; 

(b) We always need some measure of how 
well the line does fit the data, and of the uncer- 
tainties inherent in the fitted line as a repre- 
sentation of the true underlying relationship— 
and these can be obtained only when a formal, 
well-defined mathematical procedure of fitting 
is employed. 

5 - 

H   4f 
< 

ÜJ 

^    3+ 

2 - 

I- 

Dl STANCE 

Figure 5-1.    Time required for a drop of dye to travel 
between distance markers. 
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5-3    TWO IMPORTANT SYSTEMS OF LINEAR RELATIONSHIPS 

Before giving the detailed procedure for fit- 
ting a straight line, we discuss different physical 
situations which can be described by a linear 
relationship between two variables. The meth- 
ods of description and prediction may be differ- 
ent, depending upon the underlying system. 
In general, we recognize two different and im- 
portant systems which we call Statistical and 
Functional. It is not possible to decide which is 
the appropriate system from looking at the 
data. The distinction must be made before 
fitting the line—indeed, before taking the 
measurements. 

5-3.1    FUNCTIONAL RELATIONSHIPS 

In the case of a Functional Relationship, 
there exists an exact mathematical formula (y as 
a function of x) relating the two variables, and 
the only reason that the observations do not fit 
this equation exactly is because of disturbances 
or errors of measurement in the observed values 
of one or both variables. We discuss two cases 
of this type: 

FI—Errors of measurement affect only one 
variable (Y).    (See Fig. 5-2). 

FII—Both variables (X and Y) are subject to 
errors of measurement.    (See Fig. 5-3). 

Common situations that may be described by 
Functional Relationships include calibration 
lines, comparisons of analytical procedures, and 
relationships in which time is the X variable. 

For instance, we may regard Figure 5-2 as 
portraying the calibration of a straight-faced 
spring balance in terms of a series of weights 
whose masses are accurately known. By 
Hooke's Law, the extension of the spring, and 
hence the position y of the scale pointer, should 
be determined exactly by the mass x upon the 
pan through a linear functional relationship* 
V = ßo + ßi %•   In practice, however, if a weight 

of mass Xi is placed upon the pan repeatedly and 
the position of the pointer is read in each 
instance, it usually is found that the readings Yi 
are not identical, due to variations in the per- 
formance of the spring and to reading errors. 
Thus, corresponding to the mass xx there is a 
distribution of pointer readings Yx; correspond- 
ing to mass Xi, a distribution of pointer readings 
Y2; and so forth—as indicated in Figure 5-2. 
It is customary to assume that these distribu- 
tions are normal (or, at least symmetrical and 
all of the same form) and that the mean of the 
distribution of Y.'s coincides with the true value 
y{ = & + ft Xi. 

If, instead of calibrating the spring balance in 
terms of a series of accurately known weights, 
we were to calibrate it in terms of another 
spring balance by recording the corresponding 
pointer positions when a series of weights are 
placed first on the pan of one balance and then 
on the pan of the other, the resulting readings 
(X and Y) would be related by a linear struc- 
tural relationship FII, as shown in Figure 5-3, 
inasmuch as both X and Y are affected by errors 
of measurement. In this case, corresponding 
to the repeated weighings of a single weight i»\ 
(whose true mass need not be known), there is a 
joint distribution of the pointer readings 
(Xi and Yi) on the two balances, represented by 
the little transparent mountain centered over 
the true point (xu yi) in Figure 5-3; similarly at 
points (x2) 2/2) and (x3, 2/3), corresponding to re- 
peated weighings of other weights ws and w3, 
respectively. Finally, it should be noticed that 
this FII model is more general than the FI 
model in that it does not require linearity of 
response of each instrument to the independent 
variable w, but merely that the response curves 

* Note on Notation for Functional Relationships: 
We have used x and y to denote the true or accurately 

known values of the variables, and X and Y to denote 
their values measured with error. In the FI Relation- 
ship, the independent variable is always without error, 
and therefore in our discussions of the FI case and in the 
paragraph headings we always use x.    In the Worksheet, 

and Procedures and Examples for the FI case, however, 
we use X and Y because of the computational similarity 
to other cases discussed in this Chapter (i.e., the computa- 
tions for the Statistical Relationships). 

In the FII case, both variables are subject to error, and 
clearly we use X and Y everywhere for the observed 
values. 
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of the two instruments be linearly related, that 
is, that X = a + b • f{w) and Y = c + d • f(w), 
where f(w) may be linear, quadratic, exponen- 
tial, logarithmic, or whatever. 

Table 5-1 provides a concise characterization 

of FI and FII relationships. Detailed prob- 
lems and procedures with numerical examples 
for FI relationships are given in Paragraphs 
5-4.1 and 5-4.2, and for FII relationships in 
Paragraph 5-4.3. 

T»V*i* 

Figure 5-2.   Linear functional relationship of Type FI 
(only Y affected by measurement errors). 
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JOINT DISTRIBUTION 
OF X,   AND Y| 

Y= /30+/3,X 

Figure 5-3.    Linear functional relationship of Type FII 
(both X and Y affected by measurement errors). 

5-3.2    STATISTICAL RELATIONSHIPS 

In the case of a Statistical Relationship, there 
is no exact mathematical relationship between 
X and Y; there is only a statistical association 
between the two variables as characteristics of 
individual items from some particular popula- 
tion. If this statistical association is of bi- 
variate normal type as shown in Figure 5-4, 
then the average value of the Y's associated with 
a particular value of X, say Yx, is found to de- 
pend linearly on X, i.e., Yx = ßü + ßi X; simi- 
larly, the average value of the X's associated 
with a particular value of Y, say XY, depends 
linearly on Y (Fig. 5-4) i.e., XY = ß'„ + ß[ Y; 

but—and this is important!—the two lines are 
1 ß not the same, i.e., ß[ ^ — and ßö ^ — ■—.* 
pi Pi 

* Strictly, we should write 
mY.x = /3D + ft X , 

and 

mx.r = ßö + ß{ Y 
to conform to our notation of using m to siignify a 
population mean. But this more exact notation tends 
to conceal the parallelism of the curve-fitting processes 
in the FI and SI situations. Consequently, to preserve 
appearances here and in the sequel, we use Yx in place 
of mY.x and Xr in place of mx.r—and it should be 
remembered that these signify population means. 
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V/3o+Ax 

Figure 5-4..   A normal bivariate frequency surface. 

If a random sample of items is drawn from the 
population, and the two characteristics X and Y 
are measured on each item, then typically it is 
found that errors of measurement are negligible 
in comparison with the variation of each char- 
acteristic over the individual items. This 
general case is designated SI. A special case 
(involving preselection or restriction of the 
range of one of the variables) is denoted by SII. 

SI Relationships. In this case, a random 
sample of items is drawn from some definite 
population (material, product, process, or 
people), and two characteristics are measured 
on each item. 

A classic example of this type is the relation- 
ship between height and weight of men. Any 
observant person knows that weight tends to 
vary with height, but also that individuals of 
the same height may vary widely in weight. It 
is obvious that the errors made in measuring 
height or weight are very small compared to 
this inherent variation between individuals. 
We surely would not expect to predict the exact 

weight of one individual from his height, but we 
might expect to be able to estimate the average 
weight of all individuals of a given height. 

The height-weight example is given as one 
which is universally familiar. Such examples 
also exist in the physical and engineering sci- 
ences, particularly in cases involving the inter- 
relation of two test methods. In many cases 
there may be two tests that, strictly speaking, 
measure two basically different properties of a 
material, product, or process, but these proper- 
ties are statistically related to each other in 
some complicated way and both are related to 
some performance characteristic of particular 
interest, one usually more directly than the 
other. Their interrelationship may be ob- 
scured by inherent variations among sample 
units (due to varying density, for example). 
We would be very interested in knowing 
whether the relationship between the two is 
sufficient to enable us to predict with reasonable 
accuracy, from a value given by one test, the 
average value to be expected for the other— 
particularly if one test is considerably simpler 
or cheaper than the other. 

The choice of which variable to call X and 
which variable to call Y is arbitrary—actually 
there are two regression lines. If a statistical 
association is found, ordinarily the variable 
which is easier to measure is called X. Note 
well that this is the only case of linear relation- 
ship in which it may be appropriate to fit two 
different lines, one for predicting Y from X and 
a different one for predicting X from Y, and the 
only case in which the sample correlation co- 
efficient r is meaningful as an estimate of the 
degree of association of X and Y in the popula- 
tion as measured by the population coefficient 
of correlation p = y/ßxß[. The six sets of con- 
tour ellipses shown in Figure 5-5 indicate the 
manner in which the location, shape, and orien- 
tation of the normal bivariate distribution 
varies with changes of the population means 
(m.v and mY) and standard deviations {ax and <JV) 
of X and Y and their coefficient of correlation in 
the population (PXY). 

If p = ±1, all the points lie on a line and 
Y = 0o + ßiX and X = ß'0 + ß[Y coincide. 
If p = +1, the slope is positive, and if p = —1, 
the slope is negative. If p = 0, then X and Y 
are said to be uncorrelated. 

5-6 

Downloaded from http://www.everyspec.com



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES    AMCP 706-110 

22 

21 

20 

19 

18 

44 

43 

42 

41 

40 

39 

38 

37 

36 

18 
17 

16 

15 

14 

13 

'c * \ 

{ \ 
I 

4\\ 
"i * i 5   l< 5   1 7   1 8 

14  15   16   17  18 

p-0 

HTK 

mv = 

I 

16 

20 

^■^s 

A # 7 y 
M C ̂  

\ 
w^ 

i 

? =.6 

ax=l 

<rYs | 

nru 

mv
r 

16 

40 

^ 
A (I "*/ 

- 
ly/J 1 

p=.8 

<rv = 

mx = 

rr\y = 

22 

21 

20 

19 

18 

44 

43 

42 

41 

40 

39 

38 

37 

36 

/' ( 
<-"" 

"-"• —- "^ 
N \ v \ 

^ 
) ) 

26 27 28 29 30 31 32 33 34 

17 

16 

13 

P -- 

mx 

m v 

^ ^N 

~\ \ 

r> \] \ 

\\ r \\ \ 

\ w \\ 
\ 

k  \ 

' \. 
V. 

> 
V J 

A 
"2 6 2 7 2 8 2 9 3 03 1 32 33 34 

<T„ - 

m> 

m« = 

0 

2 

l 

30 

20 

S 

I 

2 

30 

40 

14 15   16   17  18 

V 

^ ^ 
y 

"^ 5=] ̂  
J>* 

t- 

p - 

ms 

mx 

.8 

■Z 

■■ I 

30 

= 15 

26 27 28 29 30 31  32 33 34 

Figure 5-5.   Contour ellipses for normal bivariate distributions 
having different values of the five parameters mx, mY, vx, <rY, pXY. 

Adapted with permission from Statistical Inference by Helen M. Walker and Joseph Lev, copy- 
right, 1953, Holt, Rinehart and Winston, Inc., NewYork, N. Y. 

Sll Relationships. The general case described 
above (SI) is the most familiar example of a 
statistical relationship, but we also need to con- 
sider a common case of Statistical Relationship 
(SII) that must be treated a bit differently. In 
SII, one of the two variables, although a ran- 
dom variable in the population, is sampled only 
within a limited range (or at selected preas- 
signed values). In the height-weight example, 
suppose that the group of men included only 

those whose heights were between 5'4" and 
5'8". We now are able to fit a line predicting 
weight from height, but are unable to determine 
the correct line for predicting height; from 
weight. A correlation coefficient computed 
from such data is not a measure of the true 
correlation among height and weight in the (un- 
restricted) population. 

The restriction of the range of X, when it is 
considered as the independent variable, does 
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not spoil the estimates of Yx when we fit the 
line Yx = bo + brX. The restriction of the 
range of the dependent variable (i.e., of Y in 
fitting the foregoing line, or of X in fitting the 
line Xy = b'0 + b[Y), however, gives a seriously 
distorted estimate of the true relationship. 
This is evident from Figure 5-6, in which the 
contour ellipses of the top diagram serve to 
represent the bivariate distribution of X and Y 
in the unrestricted population, and the "true" 
regression lines of Yx on X and XY on Y are 
indicated. The central diagram portrays the 
situation when consideration is restricted to 
items in the population for which a < X < b. 
It is clear that for any particular X in this in- 
terval, the distribution and hence the mean 
Yx of the corresponding Y's is the same as in 
the unrestricted case (top diagram). Conse- 
quently, a line of the form Yx = &o + biX fitted 
to data involving either a random or selected set 
of values of X between X = a and X = b, but 
with no selection or restrictions on the corre- 
sponding Y's, will furnish an unbiased estimate 
of the true regression line Yx = ßo + ßiX in the 
population at large. In contrast, if considera- 
tion is restricted to items for which c < Y < d, 
as indicated in the bottom diagram, then it is 
clear that the mean value, say Y'x, of the 
(restricted) Y's associated with any particular 
value of X > mx will be less than the corre- 
sponding mean value Yx in the population as 
a whole. Likewise, if X < mx, then the mean 
Y'x of the corresponding (restricted) Y's will 
be greater than Yx in the population as a whole. 
Consequently, a line of the form Y'x = b0 + b^X 
fitted to data involving selection or restriction 
of F's will not furnish an unbiased estimate of 
the true regression line Yx = ßo + ßiX in the 
population as a whole, and the distortion may 
be serious. In other words, introducing a re- 
striction with regard to X does not bias infer- 
ences with regard to Y, when Y is considered as 
the dependent variable, but restricting Y will 
distort the dependence of Yx on X so that the 
relationship observed will not be representative 
of the true underlying relationship in the popu- 
lation as a whole. Obviously, there is an 
equivalent statement in which the roles of X 
and Y are reversed. For further discussion and 
illustration of this point, and of the correspond- 
ing distortion of the sample correlation coeffi- 

YxON X   (o*X<b) 

YxON X  (UNRESTRICTED) 

Figure 5-6.   Diagram showing effect of restrictions 
of X or Y on the regression of Y on X. 

cient r as a measure of the true coefficient of 
correlation p in the populations, when either X 
or Y is restricted, see Eisenhart(1) and Ezekiel.(2) 

As an engineering example of SII, consider a 
study of watches to investigate whether there 
was a relationship between the cost of a stop 
watch and its temperature coefficient. It was 
suggested that a correlation coefficient be com- 
puted. This was not possible because the 
watches had not been selected at random from 
the total watch production, but a deliberate 
effort had been made to obtain a fixed number 
of low-priced, medium-priced, and high-priced 
stop watches. 

In any given case, consider carefully whether 
one is measuring samples as they come (and 
thereby accepting the values of both properties 
that come with the sample) which is an SI Rela- 
tionship, or whether one selects samples which 
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are known to have a limited range of values of X 
(which is an SII Relationship). 

Table 5-1 gives a brief summary characteriza- 
tion of SI and SII Relationships.    Detailed 

problems and procedures with numerical exam- 
ples are given for SI relationships in Paragraph 
5-5.1 and for SII relationships in Paragraph 
5-5.2. 

BASIC WORKSHEET FOR ALL TYPES OF LINEAR RELATIONSHIPS 

X denotes 

2X =  

X   =  

(4) 2X2 

(5) (2X)Vn 

(6) "K 

(10) h    —     xv 

Oxx 

(11) Y 

(12) bxX 

Number of points: n 

Step (1)   2XY 

(2) (2X)(2Y)/n = 

(3) Sm 

=     Step (4) - Step (5) 

=    Step (3) 4- Step (6) 

=   Step (11) - Step (12) 

Equation of the line: 

Y = 60 + hX 

S(,0 = 

Y denotes 

T.Y = 

V    = 

hs:   n = 

Step (1) - Step (2) 

(7)   2Y2 

(8)   (27)2/n 

(9)        Syy                                                      = Step (7) - - Step (8) 

(14)   %^-2 

oM 

(15)   (n - 2) s2
y Step (9) - Step (14) 

(16)   s2
K Step (15) + (n - 2) 

SK                             = 

Q2 

Oh,   —    o 
dxx 

°bl 

Estimated variance of the slope: 

-   Step (16) ± Step (6) 

Estimated variance of intercept: 

n + Sj         
Q2         o2 

Note: The following are algebraically identical: 

Sxx = 2(X - Z)2; Syy = 2(Y - F)2; Sxy = 2(Z - X) (Y - F). 

Ordinarily, in hand computation, it is preferable to compute as shown in the steps above. Carry 
all decimal places obtainable—i.e., if data are recorded to two decimal places, carry four places in 
Steps (1) through (9) in order to avoid losing significant figures in subtraction. 
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5-4    PROBLEMS AND PROCEDURES FOR FUNCTIONAL RELATIONSHIPS 

5-4.1     Fl RELATIONSHIPS (General Case) 

There is an underlying mathematical (func- 
tional) relationship between the two variables, 
of the form y = /30 + ßiX. The variable x can 
be measured relatively accurately. Measure- 
ments Y of the value of y corresponding to a 
given x follow a normal distribution with mean 
ßo + ß\X and variance a\.x which is independent 
of the value of x. Furthermore, we shall as- 
sume that the deviations or errors of a series of 
observed Y'&, corresponding to the same or dif- 
ferent a;'s, all are mutually independent. See 
Paragraph 5-3.1 and Table 5-1. 

The general case is discussed here, and the 
special case where it is known that ß0 = 0 (i.e., 
a line known to pass through the origin) is dis- 
cussed in Paragraph 5-4.2. The procedure dis- 
cussed here also will be valid if in fact /30 = 0 
even though this fact is not known beforehand. 
However, when it is known that ß0 = 0, the pro- 
cedures of Paragraph 5-4.2 should be followed 
because they are simpler and somewhat more 
efficient. 

It will be noted that SII, Paragraph 5-5.2, is 
handled computationally in exactly the same 
manner as FI, but both the underlying assump- 
tions and the interpretation of the end results 
are different. 

Data Sample 5-4.1—Young's Modulus vs. 
Temperature for Sapphire Rods 

Observed values (Y) of Young's modulus (y) 
for sapphire rods measured at different tempera- 
tures (x) are given in the following table. There 
is assumed to be a linear functional relationship 
between the two variables x and y. (For the 
purpose of computation, the observed Y values 
were coded by subtracting 4000 from each. To 
express the line in terms of the original units, 
add 4000 to the computed intercept; the slope 
will not be affected.) The observed data are 
plotted in Figure 5-7. 

Coded Y 
x Y = Young's 

= Temperature = Young's Modulus 
°C Modulus minus 4000 

30 4642 642 
100 4612 612 
200 4565 565 
300 4513 513 
400 4476 476 
500 4433 433 
600 4389 389 
700 4347 347 
800 4303 303 
900 4251 251 

1000 4201 201 
1100 4140 140 
1200 4100 100 
1300 4073 73 
1400 4024 24 
1500 3999 -1 
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Figure 5-7.    Young's modulus of sapphire rods as a function 
of temperature—an FI relationship. 

5-4.1.1    What is the Best Line to be Used for 
Estimating y From Given Values of x? 

CAUTION: Extrapolation, i.e., use of the 
line for prediction outside the range of data 
from which the line was computed, may 
lead to highly erroneous conclusions. 

Procedure 

Using Worksheet (See Worksheet 5-4.1), 
compute the line Y = b0 + b\X. This is an 
estimate of the true equation y = ß0 + ßix. 
The method of fitting a line given here is a 

particular application of the general method of 
least squares. From Data Sample 5-4.1, the 
equation of the fitted line (in original units) is: 

Y = 4654.9846 - 0.44985482 x. 

The equation in original units is obtained by 
adding 4000 to the computed intercept b0. 
Since the Y's were coded by subtracting a con- 
stant, the computed slope bi was not affected. 
In Figure 5-8, the line is drawn and confidence 
limits for the line (computed as described in 
Paragraph 5-4.1.2.1) also are shown. 
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WORKSHEET 5-4.1 
EXAMPLE OF Fl RELATIONSHIP 

YOUNG'S MODULUS AS FUNCTION OF TEMPERATURE 

X denotes 

2Z =     J_ 

X    = 

Temperature, °C 

12030 

751.875 

Y denotes 

2Y =     _ 

Y = 

Young's Modulus - 4000 

5068 

316.75 

Number of points: n =            16 

(1) 2XY             = 2,300,860 

(2) (XX) {2Y)/n = 3,810,502.5 

(3) Sxy                 = -1,509,642.5 

(4) 2X2 = 

(5) (220V» = 

(6) Sxx = 

(10) &I- 
"TO 

Sxx 
= 

(H) Y = 

(12) hX = 

(13) b0 = Y - hX = 

12,400,900 

9,045,056.25 

3,355,843.75 

-.449,854,82 

316.75 

-338.2346 

654.9846 

&o (in original units) = 4654.9846 

(7) 2Y2 

(8) (2Y)Vn 

(9) S„ 

(14) 
(Sxyy 

(15) (n - 2) s\ 

(16) 4 

=       2,285,614 

1,605,289. 

680,325. 

679,119.9614 

1,205.0386 

86.074 1857 

9.277617 

Equation of the line: 
(in original units) 

Y = bo + Ö!* 

4654.9846 .449,854,82 a; 

S&!   = .005 064 
4.458 638 

Estimated variance of the slope: 

*k 
«2 

Or.x 
.000 025 649 045 

Estimated variance of intercept: 

< = sy{l + §:}   = 19-879 452 
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2    4300  - 

1400 

X. TEMPERATURE  °C 

Figure 5-8.    Young's modulus of sapphire rods as a function 
of temperature—showing computed regression line 

and confidence interval for the line. 

Using the Regression Equation for Prediction. 

The fitted regression equation may be used for 
two kinds of predictions: 

(a) To estimate the true value of y associated 
with a particular value of x, e.g., given x = x' to 
estimate the value of y' = ß0 + ßix'; or, 

(b) To predict a single new observed value Y 
corresponding to a particular value of x, e.g., 
given x = x' to predict the value of a single 
measurement of y'. 

Which prediction should be made? In some 
cases, it is sufficient to say that the true value of 
y (for given x) lies in a certain interval, and in 
other cases we may need to know how large (or 
how small) an individual observed Y value is 
likely to be associated with a particular value of 
x. The question of what to predict is similar to 
the question of what to specify (e.g., whether to 
specify average tensile strength or to specify 
minimum tensile strength) and can be answered 

only with respect to a particular situation. The 
difference is that here we are concerned with 
relationships between two variables and there- 
fore must always talk about the value of y, or Y, 
for fixed x. 

The predicted y' or Y' value is obtained by 
substituting the chosen value (*') of x in the 
fitted equation. For a particular value of x, 
either type of prediction ((a) or (b)) gives the 
same numerical answer for y' or Y'. The un- 
certainty associated with the prediction, how- 
ever, does depend on whether we are estimating 
the true value of y', or predicting the value Y' 
of an individual measurement of y'. If the 
experiment could be repeated many times, each 
time obtaining n pairs of (x, Y) values, consider 
the range of Y values which would be obtained 
for a given x. Surely the individual Y values in 
all the sets will spread over a larger range than 
will the collection consisting of the average Y's 
(one from each set). 
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To estimate the true value of y associated 
with the value x', use the equation 

y'c = &o + &iZ'. 

The variance of y'c as an estimate of the true 
value y' = ßo + ßix' is 

Var y'c = s2
Y. 

1    (X' - xyl 
n T       S„      J 

This variance is the variance of estimate of a 
point on the fitted line. 

For example, using the equation relating 
Young's modulus to temperature, we predict a 
value for y at x = 1200: 

y'e = 4654.9846 - .44985482 (1200) 
ye = 4115.16 

(1200 - 751.875) 21 Var y'c = 86.074   .0625 + 
3,355,843.75 

= 86.074 (.0625 + .0598) 
= 86.074 (.1223) 

Var y'c = 10.53   . 

To predict a single observed value of Y corre- 
sponding to a given value ix') of x, use the same 
equation 

Y'c = bo + b.x'. 

The variance of Y'c as an estimate of a single 
new (additional, future) measurement of y' is 

(X' - xy~\ Var Y- = sV 
|_       n + 'Y" 1 ^  ' ~   '        S, 

The equation for our example is 

Y = 4654.9846 - .44985482 x. 

To predict the value of a single determination of 
Young's modulus at x = 750, substitute in this 
equation and obtain: 

Y'c = 4654.9846 - .44985482 (750) 
= 4317.59 

Var Y' by H+^] 
= 86.074   1 + .0625 + 

= 86.074 (1.0625) 
= 91.45   . 

(750 - 751.875)2" 
3,355,843.75 

5-4.1.2 What are the Confidence Interval Esti- 
mates for: the Line as a Whole; a 
Point on the Line; a Future Value of Y 
Corresponding to a Given Value of x? 

Once we have fitted the line, we want to make 
predictions from it, and we want to know how 
good our predictions are. Often, these pre- 
dictions will be given in the form of an interval 
together with a confidence coefficient associated 
with the interval—i.e., confidence interval esti- 
mates. Several kinds of confidence interval 
estimates may be made: 

(a) A confidence band for the line as a whole. 
(b) A confidence interval for a point on the 

line—i.e., a confidence interval for y' (the true 
value of y and the mean value of Y) correspond- 
ing to a single value of x = x'. 

If the fitted line is, say, a calibration line 
which will be used over and over again, we will 
want to make the interval estimate described 
in (a). In other cases, the line as such may not 
be so important. The line may have been 
fitted only to investigate or check the structure 
of the relationship, and the interest of the 
experimenter may be centered at one or two 
values of the variables. 

Another kind of interval estimate sometimes 
is required: 

(c) A single observed value (Y') of Y corre- 
sponding to a new value of x = x'. 

These three kinds of confidence interval state- 
ments have somewhat different interpretations. 
The confidence interval for (b) is interpreted as 
follows: 

Suppose that we repeated our experiment a 
large number of times. Each time, we obtain n 
pairs of values (x,, Yt), fit the line, and compute 
a confidence interval estimate for y' = ß0 -f ßix', 
the value of y corresponding to the particular 
value x = x'. Such interval estimates of y' are 
expected to be correct (i.e., include the true 
value of y') a proportion (1 — a) of the time. 
If we were to make an interval estimate of y" 
corresponding to another value of x = x", these 
interval estimates also would be expected to 
include y" the same proportion (1 — a) of the 
time. However, taken together, these intervals 
do not constitute a joint confidence statement 
about y' and y" which would be expected to 
be correct exactly a proportion (1 — a) of the 
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time; nor is the effective level of confidence 
(1 — a)2, because the two statements are not 
independent but are correlated in a manner 
intimately dependent on the values x' and x" for 
which the predictions are to be made. 

The confidence band for the whole line (a) 
implies the same sort of repetition of the experi- 
ment except that our confidence statements are 
not now limited to one a; at a time, but we can 
talk about any number of x values simultane- 
ously—about the whole line. Our confidence 
statement applies to the line as a whole, and 
therefore the confidence intervals for y corre- 
sponding to all the chosen x values will simulta- 
neously be correct a proportion (1 — a) of the 
time. It will be noted that the intervals in (a) 
are larger than the intervals in (b) by the ratio 

■y/2F/t. This wider interval is the "price" we 
pay for making joint statements about y for any 
number of or for all of the x values, rather than 
the y for a single x. 

Another caution is in order. We cannot use 
the same computed line in (b) and (c) to make a 
large number of predictions, and claim that 
100 (1 — a) % of the predictions will be correct. 
The estimated line may be very close to the true 
line, in which case nearly all of the interval 
predictions may be correct; or the line may be 
considerably different from the true line, in 
which case very few may be correct. In prac- 
tice, provided our situation is in control, we 
should always revise our estimate of the line to 
include additional information in the way of 
new points. 

5-4.1.2.1    What is the (1 — a) Confidence Band for the Line as a Whole? 

Procedure Example 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sr from Worksheet. 

(3) Look up Fi-a for (2, n — 2) degrees of free- 
dom in Table A-5. 

(4) Choose a number of values of X (within the 
range of the data) at which to compute 
points for drawing the confidence band. 

(1) Let: 1 - a = .95 
a = .05 

(2) sY = 9.277617 
from Worksheet 5-4.1 

(3) FM (2, 14) = 3.74 

(4) Let:        X = 30 
X = 400 
X = 800 
X = 1200 
X = 1500, 
for example. 

(5)   At each selected value of X, compute: 

Yc = Y + h{X-X) 

(6)  A (1 — a) confidence band for the whole 
line is determined by 

Yc ± WL 

(5) See Table 5-2 for a convenient computa- 
tional arrangement and the example cal- 
culations. 

(6)   See Table 5-2. 
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Procedure 

(7) To draw the line and its confidence band, 
plot Yc at two of the extreme selected 
values of X. Connect the two points by 
a straight line. At each selected value of 
X, also plot Yc + Wi and Yc - Wi. Con- 
nect the upper series of points, and the 
lower series of points, by smooth curves. 

If more points are needed for drawing the 
curves for the band, note that, because of sym- 
metry, the calculation of W\ at n values of X 
actually gives Wi at 2n values of X. 

Example 

(7)   See Figure 5-8. 

For example: Wi (but not Yc) has the same 
value at X = 400 (i.e., X - 351.875) as at 
X = 1103.75 (i.e., X + 351.875). 

TABLE 5-2.    COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-4.1.2.1 

1   ,  (X-X)2 

n           Sxx X (X-X) Yc SYC 
syc 

wt Yc+ Wx Yc - Wx 

30 -721.875 4641.49 .21778 18.7452 4.3296 11.84 4653.33 4629.65 
400 -351.875 4475.04 .09940 8.5558 2.9250 8.00 4483.04 4467.04 
800 48.125 4295.10 .06319 5.4390 2.3322 6.38 4301.48 4288.72 

1200 448.125 4115.16 .12234 10.5303 3.2450 8.88 4124.04 4106.28 
1500 748.125 3980.20 .22928 19.7351 4.4424 12.15 3992.35 3968.05 

X = 751.875 s\ = 86.0741857 Yc = Y + &! (X - X) 

coded Y 

Y (original units) 

= 316.75 

= 4316.75 

- = .0625 n 

&! = - .44985482 

S„ = 3,355,843.75 

V2F = 2.735 

ri    (x - xy 
-SYln+       Sxx 

= 2.735 syc 
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5-4.1.2.2    Give a (1 — a) Confidence Interval Estimate for a Single Point on the Line (i.e., the Mean 
Value of V Corresponding to a Chosen Value of x = x') 

Procedure Example 

(1)   Choose the desired confidence level, 1 — a      (1)   Let: 1 — a = .95 
a = .05 

(2)   Obtain sY from Worksheet. (2) sr = 9.277617 
from Worksheet 5-4.1 

(3)   Look up ti-a/2 for n — 2 degrees of freedom      (3)       i.975 (14) = 2.145 
in Table A-4. 

(4)   Choose X', the value of X at which we       (4)   Let       X' = 1200 
want to make an interval estimate of the 
mean value of Y. 

1 + iX' - Xy~\* W, = 2.145 (3.2451) 
n Sx = 6.96 

(5)   Compute: (5) 

and 

Y^Y + b, {X' -X) Yc = 4115.16 

(6)   A (1 — a) confidence interval estimate for       (6)   A 95% confidence interval estimate for the 
the  mean value  of   Y corresponding to mean value of Y corresponding to X = 1200 
X = X' is given by is 

Yc ± W2. 4115.16 ± 6.96 
= 4108.20 to 4122.12. 

Note: An interval estimate of the intercept of the line (ß0) is obtained by setting X' = 0 in the 
above procedure. 
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5-4.1.2.3    Give a (1 — a) Confidence Interval Estimate for a Single (Future) Value (V) of Y Corre- 
sponding to a Chosen Value (x') of x. 

Procedure Example 

(1)   Choose the desired confidence level, 1 — a      (1)   Let: 1 — a = .95 
a = .05 

(2)   Obtain sY from Worksheet. (2) sY = 9.277617 
from Worksheet 5-4.1 

(3)   Look up <i_a/2 for n — 2 degrees of freedom      (3)       t.976 (14) = 2.145 
in Table A-4. 

(4)   Choose X', the value of X at which we       (4)   Let 
want to make an interval estimate of a 
single value of Y. 

X' = 1200 

(5)   Compute: 

W*   =  (MS Sy fl  + \ + ^ 

(5) 

xy 

and 
Yc= Y + b, (X' - X) 

W3 = 2.145 (9.8288) 
= 21.08 

Yc = 4115.16 

(6)  A (1 — a) confidence interval estimate for       (6)  A 95% confidence interval estimate for 
Y' (the single value of Y corresponding to 
X') is 

Yc ± W3 . 

a   single   value   of   Y   corresponding   to 
X' = 1200 is 

4115.16 ± 21.08 
= 4094.08 to 4136.24 . 

5-4.1.3    What is the Confidence Interval Estimate for |3i , the Slope of the True Line y = ß0 + j8i x? 

Procedure Example 

(1) Choose the desired confidence level, 1 — a       (1)   Let: 1 — a = .95 
a = .05 

(2) Look up ti-a/2 for n — 2 degrees of freedom      (2)       i.976 (14) = 2.145 
in Table A-4. 

(3) Obtain sbl from Worksheet. 

(4) Compute 

(3) 

(4) 

(5)  A (1 — a) confidence interval estimate for      (5) 
ft is 

6i ± Wi. 

s6l = .005064 
from Worksheet 5.4.1 

Wt = 2.145 (.005064) 
= .010862 

b, = - .449855 
Wt = .010862 

A 95% confidence interval for 0i is the in- 
terval -.449855 ± .010862, i.e., the inter- 
val from -.460717 to -.438993 . 
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5-4.1.4    If We Observe n' New Values of Y (with Average Y'), How Can We Use the Fitted Regression 
Line to Obtain an Interval Estimate of the Value of x that Produced These Values of Y? 

Example: Suppose that we obtain 10 new measurements of Young's modulus (with 
average, Y' = 4500) and we wish to use the regression line to make an interval estimate 
of the temperature (x) at which the measurements were made. 

Procedure Example 

(1)   Choose the desired confidence level, 1 — a      (1)   Let: 1 — a = .95 
a = .05 

(2)   Look up <i_a/2 for n — 2 degrees of freedom      (2)       i.976 (14) = 2.145 
in Table A-4. 

(3)   Obtain bi and si, from Worksheet. (3)   From Worksheet 5-4.1, 
6i = -.449855 

si = .0000256490 

(4)   Compute 

C = b\- («!_/,)• 4 
(4) 

C = .202370 
= .202252 

.000118 

(5) A (1 — a) confidence interval estimate for 
the X corresponding to Y' is computed 
from 

X' = X + Jh. (?' - Y) 

=rV^+G+£)' 

(5)  A 95% confidence interval would be com- 
puted as follows: 

X' = 751.875 - .449855 (4500 - 4316.75) 
.202252 

2.145 (9.277617) 
±        .202252 X 

4i 
(183.25)2 

/ 3,355,843.75 

= 751.875 - 407.590 

+ (.1625) (.202252) 

± 98.39452 V.0100066 + .0328660 

= 344.285 ± 98.39452 V.0428726 

= 344.285 ± 98.39452 (.20706) 

= 344.285 ± 20.374 

The interval from X = 323.911 to X = 
364.659 is a 95% confidence interval for the 
value of temperature which produced the 
10 measurements whose mean Young's 
modulus was 4500. 
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5-4.1.5 Using the Fitted Regression Line, How Can We Choose a Value (x') of x Which We May 
Expect with Confidence (1 — a) Will Produce a Value of Y Not Less Than Some Specified 
Value Q? 

Example:   What value (a;') of temperature (x) can be expected to produce a value of 
Young's modulus not less than 4300? 

Procedure Example 

(1) Choose the desired confidence level, 1 — a;      (1)   Let: 1 — a = .95 
and choose Q a = .05 

Q = 4300 

(2) Look up U-d for n — 2 degrees of freedom      (2)        tM (14) = 1.761 
in Table 4-4. 

(3)   Obtain bi and si, from Worksheet. (3)   From Worksheet 5-4.1, 
&, = -.449855 

s2
bl = .0000256490 

(4)   Compute 

C = b\ - &_«)* s2
h 

(4) 
C = .202370 - .000080 

- .202290 

(5)   Compute 

t i-aSy   \(Q- f)2  ,  (n + l\r 

where the sign before the last term is + if 
bi is positive or — if &i is negative. We 
have confidence (1 — a) that a value of 
X = X' will correspond to (produce) a 
value of Y not less than Q. (See discussion 
of "confidence" in straight-line prediction 
in Paragraph 5-4.1.2). 

(5)   The value of X' is computed as follows: 

X' = 751.875 

+ -.449855 (4300 - 4316.75) 
.202290 

1.761 (9.277617) ^ 
.202290 

1(4300 - 
\     3,355,: 

4316.75)2 

843.75 + ® C 

= 751.875 + 37.249 

- 80.764662 V.000084 + .214933 

= 751.875 + 37.249 

- 80.764662 V.215017 

= 751.875 + 37.249 - 37.450 

= 751.674 
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5-4.1.6    Is the Assumption of Linear Regression Justified? 

This involves a test of the assumption that the mean Y values (Yx) for given x values do lie on a 
straight line (we assume that for any given value of x, the corresponding individual Y values are 
normally distributed with variance c\, which is independent of the value of a;). A simple test is 
available provided that we have more than one observation on Y at one or more values of x. 
Assume that there are n pairs of values (a;,-, Y,), and that among these pairs there occur only k 
values of x (where k is less than n). 

For example, see the data recorded in Table 5-3 which shows measurements of Young's modulus 
(coded) of sapphire rods as a function of temperature. 

Each x is recorded in Column 1, and the corresponding Y values (varying in number from 1 to 3 
in the example) are recorded opposite the appropriate x. The remaining columns in the table 
are convenient for the required computations. 

TABLE 5-3.    COMPUTATIONAL ARRANGEMENT FOR TEST OF LINEARITY 

X 
= Tem- 

y 
Young's (2Y)2 

per- Modulus 2Y (2Y)2 2Y2 
"i riiXi niXi2 2XY n, 

ature Minus 3000 

500 328 328 107584 107584 1 500 250000 164000 107584 
550 296 296 87616 87616 1 550 302500 162800 87616 
600 266 266 70756 70756 1 600 360000 159600 70756 
603 260 244 504 254016 127136 2 1206 727218 303912 127008 
650 240 232 213 685 469225 156793 3 1950 1267500 445250 156408.3 
700 204 203 184 591 349281 116681 3 2100 1470000 413700 116427 
750 174 175 154 503 253009 84617 3 2250 1687500 377250 84336.3 
800 152 146 124 422 178084 59796 3 2400 1920000 337600 59361.3 
850 117 94 211 44521 22525 2 1700 1445000 179350 22260.5 
900 97 61 158 24964 13130 2 1800 1620000 142200 12482 
950 38 38 1444 1444 1 950 902500 36100 1444 
1000 30 5 35 1225 925 2 2000 2000000 35000 612.5 

TO TAL 4037 849003 24 18006 13952218 2756762 846296 
= r, = Tt = n = T3 = T< = Ts = T, 
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Procedure Example 

(1)   Choose a, the significance level of the test. 

(2) Compute: 

n 

n the w 

(3) Compute 

Si = T6 - 
(TO2 

n 

(4) Compute 

Ts- TtTx 

n 

T, - (T3y 
n 

(5)   Compute 

(1)   Let:        a = .05 
1 - a = .95 

(2) 

(3) 

(4) 

(5) 

Y = 4037 

X 

n 

24 
= 168.21 

18006 
24 

= 750.25 

679057.04 

Si = 846296 - 679057.04 
= 167238.96 

b = 2756762 - 3028759.25 
13952218 - 13509001.5 

_ -271997.25 
443216.5 

= -0.6136894 

S2 = -0.6136894 (-271997.25) 
= 166921.83 

(6)   Compute 

"3   =   T2 
(TO2 

n 

(6) 

S3 = 849003 - 679057.04 
= 169945.96 

(7)   Look up Fi_„ for (k — 2, n — k) degrees of 
freedom in Table A-5. 

(7) n = 24 
k = 12 

F.96 for (10, 12) degrees of freedom = 2.75 

(8)   Compute 

'-S^f)(H) \0 3   —"  Oi/   \«   —   CiJ 

(8) 

F = /317.13X /24 - 12 X^2) V 2707 A     10 

= (.11715) (1.2) 

= 0.14 

(9)   If F > Fi_a, decide that the "array means"       (9)   Since F is less than F^«, the hypothesis of 
Yx do not lie on a straight line. If F < Ft_a, linearity is not disproved, 
the hypothesis of linearity is not disproved. 
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5-4.2 Fl RELATIONSHIPS WHEN THE INTERCEPT 
IS KNOWN TO BE EQUAL TO ZERO (LINES 
THROUGH THE ORIGIN) 

In Paragraph 5-4.1, we assumed: 
(a) that there is an underlying linear func- 

tional relationship between x and y of the form 
y = ft + ftx, with intercept ft and slope ft 
both different from zero; 

(b) that our data consist of observed values 
Yi, Y2, . . ., Yn of y, corresponding to accu- 
rately-known values xi, x2, .. ., xn of x; and, 

(c) that the Y's can be regarded as being 
independently and normally distributed with 
means equal to their respective true values (i.e, 
mean of Y, = ft + ftz,-, i - 1, 2, ..., n) and 
constant variance <r\.x = o-2 for all x. 

Furthermore, we gave: a procedure (Para- 
graph 5-4.1.2.2 with X' = 0) for determining 
confidence limits for ft, and hence for testing 
the hypothesis that ft = 0, in the absence of 
prior knowledge of the value of ft; and a proce- 
dure that is independent of the value of ft 
(Paragraph 5-4.1.3) for determining confidence 
limits for ft, and hence for testing the hypoth- 
esis that ft = 0. 

We now consider the analysis of data corre- 
sponding to an FI structural relationship when 
it is known that y = 0 when x = 0, so that the 
line must pass through the origin, i.e., when it is 
known that ft = 0. To begin with, we assume 
as in (b) and (c) above, that our data consist of 
observed values Yi, Y2,.. ., Y„, of a dependent 
variable y corresponding to accurately-known 
values X\, x2,. .., xn of the independent variable 
x and that these Y's can be regarded as being 
independently and normally distributed with 
means ftzi, ftx2, . .., ftx„, respectively, and 
variances a\.x that may depend on x. We 
consider explicitly the cases of constant vari- 
ance (<ry.x = o-2), variance proportional to 
x (ay.x = xa2), and standard deviation propor- 
tional to x (oy.z = xa). Finally, we consider 
briefly the case of cumulative data where 
X\ < x2 < . . . < x„ and the error in Yi is of the 
form ei + e2 + . . . + e,_i + e(, that is, is the 
sum of the errors of all preceding Y's plus a 
"private error" e, of its own. Following 
Mandel,(3) we assume that the errors (e<) are 
independently and normally distributed with 
zero means and with variances proportional to 
the length of their generation intervals, i.e., 

o\i = (%i — x,_i)a2. Under these circumstances, 
the F's will be normally distributed with means 
ftxi, ßix2,. . ., ftz,,, respectively, as before; and 
with variances <TY{ = Xi<r2, respectively; but will 
not be independent owing to the overlap among 
their respective errors. 

5-4.2.1    Line Through Origin, Variance of Y's 
Independent of x.    The slope of the 

best-fitting line of the form Y =.biX is given by 

where 

6i 

llXiYi 
t=i 

the estimated variance of b 

Q2 

„i Sy 
n - 1 

2 y? - ^4—'- 
i 

n -1 

Consequently, we may effect a simplification of 
our Basic Worksheet—see Worksheet 5-4.2.1. 

Using the values of 6i and sbl so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = fta;, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using <i_a/2 for n — 1 degrees of freedom. Con- 
fidence limits for the line as a whole then are 
obtained simply by plotting the lines y = ß\x 
and y — ßfx, where ßf and ßf- are the upper and 
lower confidence limits for ft obtained in the 
manner just described. The limiting lines, in 
this instance, also furnish confidence limits for 
the value y' of y corresponding to a particular 
point on the line, say for x = x', so that an 
additional procedure is unnecessary. Confi- 
dence limits for a single future observed Y corre- 
sponding to x = x' are given by 

btf ± «i-a/2 Vs\ + {x'Ysl  , 

where sf- and sbl are from our modified work- 
sheet and £i_a/2 corresponds to n — 1 degrees of 
freedom. 
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WORKSHEET 5-4.2.1 

WORKSHEET FOR Fl RELATIONSHIPS WHEN THE INTERCEPT IS KNOWN TO BE ZERO 
AND THE VARIANCES OF THE Vs IS INDEPENDENT OF x 

X denotes 

2Z =  

X    =  

(2) 2X2 

(3) 2Y2 

(4) &i = 

Y denotes 

27 =  

Y =  

Number of points: n = 

Step (1)  2X7 =  

2X7 
2X2 Step (1) + Step (2) 

Equation of the Line: 

Y = biX 

(B)       sZ2 

(6)   (» - 1) s2
K =        Step (3) - - Step (5) 

(7)   s2
r               =         Step (6) - - (n - 1) 

Rv                           — 

Estimated variance of the slope: 

A = ^fe         =        Step (7) ■* - Step (2) 

•«•  = 

5-4.2.2    Line Through Origin, Variance Propor- 
tional to x (<r\.x = xa2).   The slope of 

the best-fitting line of form Y = bixis given by 

the ratio of the averages, and the estimated 
variance of &i is 

SSi = — 

where 

(n - 1) s2 

Si* 
i-l 

m) m 
2^ 

Using the values of &i and sbi so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = ßiX, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using <i_„/2 for n — 1 degrees of freedom. Con- 
fidence limits for the line as a whole then are 
obtained simply by plotting the lines y =■■ ß^x 
and y = ßfx where /8f and ßf are the upper and 
lower confidence limits for ft obtained in the 
manner just described. The limiting lines, in 
this instance, also furnish confidence limits for 
the value y' corresponding to a particular point 
on the line, say for x = x'. Confidence limits 
for a single future observed Y corresponding to 
x = x', are given by 

b,x' ± !W! Vx's* + (x')**J,. 

where s6l is computed as shown above and i!i_tt/2 
corresponds to n — 1 degrees of freedom. 
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5-4.2.3    Line Through Origin, Standard Devia- 
tion Proportional to x (ay-x = x<r).  The 

slope of the best-fitting line of form Y = biX is 
given by 

the average of the ratios \~), 

and the estimated variance of bi is 

o2     _   _ 
*6l     —      __ 

where 

(»-1)s'-S(i7)!- 
that is, 

mm 
n 

J2Ri 
gZ    _ 

n 
n in — 1) 

for Ri 
Yf 

Using the values of &i and sbl so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = ftz, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using ti-a/2 for n — 1 degrees of freedom. Con- 
fidence limits for the line as a whole are then 
obtained simply by plotting the lines y = ß^x 
and y = ß^x where ß? and ßf are the upper and 
lower confidence limits for ßi obtained in the 
manner just described. The limiting lines, in 
this instance, also furnish confidence limits for 
the value y' of y corresponding to a particular 
point on the line, say for x = x'. Confidence 
limits for a single future observed Y correspond- 
ing to x = x', are given by 

bxx' ± t^c/2 x' Vs2 + sg,  , 

where sbl is computed as shown above and <i_a/2 

corresponds ton — 1 degrees of freedom. 

5-4.2.4    Line  Through   Origin,  Errors   of  Y's 
Cumulative   (Cumulative   Data).    In 

many engineering tests and laboratory experi- 
ments the observed values Y1,Y2,...,Yi,..., 
of a dependent variable y represent the cumula- 
tive magnitude of some effect at successive 
values Xi < x2 < xs < . .. of the independent 

variable x. Thus, YltYtt..., may denote: the 
total weight loss of a tire under road test, 
measured at successive mileages X\, x2, .. . ; or 
the weight gain of some material due to water 
absorption at successive times Xi, %*,... ; or the 
total deflection of a beam (or total compression 
of a spring) under continually increasing load, 
measured at loads xx, x2,. . . ; and so forth. In 
such cases, even though the underlying func- 
tional relationship takes the form of a line 
through the origin, y = ßx, none of the pro- 
cedures that we have presented thus far will be 
applicable, because of the cumulative effect of 
errors of technique on the successive Y's; the 
deviation of Yt from its true or expected value 
y, will include the deviation (Y,-_i — 2/,_i) of 
7,_i from its true or expected value, plus an 
individual "private deviation or error" et of its 
own. Hence, the total error of Yt will be the 
sum (ex + e2 + . . . + e,_i + e.) of the indi- 
vidual error contributions of Yx, Y2, . . . , Y<_1, 
and its own additional deviation. 

If the test or experiment starts at x0 = 0, 
and the x's form an uninterrupted sequence 
0 < Xi < x2 < . . . < xn, and if we may regard 
the individual error contributions et, e$,. . ., as 
independently and normally distributed with 
zero means and variances proportional to the 
lengths of the x-intervals over which they ac- 
crue, i.e., if a% = (xt — a\-_i) o-2, then the best 
estimate of the slope of the underlying linear 
functional relation y = ß±x is given by 

6i = 
Yn 

and estimated variance of &i 

1 
s, = (n — 1) xn 

/£ (X* - L^ll _ III 
^i=l       •£* Xi— l »Cny 

in which x0 = 0 and Y0 = 0 by hypothesis. 

Using the values of &i and sbl so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = ftx, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using <i_<»/2 for n — 1 degrees of freedom. Con- 
fidence limits for the line as a whole then are 
obtained simply by plotting the lines y = ßfx 
and y = ßfx, where ßf and ftL are the upper and 
lower confidence limits for ft obtained in the 
manner just described.    These limit lines also 
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provide confidence limits for a particular point 
on the line, say the value y' corresponding to 
x = x'. For the fitting of lines of this sort to 
cumulative data under more general conditions, 
and for other related matters, see Mandel's 
article.(3) 

5-4.3    Fll RELATIONSHIPS 

Distinguishing Features. There is an under- 
lying mathematical (functional) relationship be- 
tween the two variables, of the form 

y = /So + ßix. 

Both X and Y are subject to errors of measure- 
ment.    Read Paragraph 5-3.1 and Table 5-1. 

The full treatment of this case depends on the 
assumptions we are willing to make about error 
distributions. For complete discussion of the 
problem, see Acton.<4) 

5-4.3.1    A Simple Method of Fitting the Line In 
the General Case.    There is a quick 

and simple method of fitting a line of the form 
Y = b0 + biX which is generally applicable 
when both X and Y are subject to errors of 
measurement. This method is described in 
Bartlett,(6) and is illustrated in this paragraph. 
Similar methods had been used previously by 
other authors. 

(a) For the location of the fitted straight line, 
use as the pivot point the center of gravity of 
all n observed points (Xit Y{), that is, the point 
with the mean coordinates (X, Y). In conse- 
quence, the fitted line will be of the form 
Y = b0 + bxX with bo = Y — b\X, just as in 
the least-squares method in Paragraph 5-4.1. 

(b) For the slope, divide the n plotted points 
into three non-overlapping groups when con- 
sidered in the X direction. There should be an 
equal number of points, k, in each of the two 

extreme groups, with k as close to „ as possible. 

Take, as the slope of the line, 

f a - Y1 
6i 

X3 — Xi 
where 

F3 = average Y for 3rd group 
Yi = average Y for 1st group 
Ä% = average X for 3rd group 
Xi = average X for 1st group. 

Data Sample 5-4.3.1—Relation of Two 
Colorimetric Methods 

The following data are coded results of two 
colorimetric methods for the determination of a 
chemical constituent. (The data have been 
coded for a special purpose which has nothing 
to do with this illustration). The interest here, 
of course, is in the relationship between results 
given by the two methods, and it is presumed 
that there is a functional relationship with both 
methods subject to errors of measurement. 

Method I Method II 
Sample X y 

1 3720 5363 
2 4328 6195 
3 4655 6428 
4 4818 6662 
5 5545 7562 
6 7278 9184 
7 7880 10070 
8 10085 12519 
9 11707 13980 

(a) The fitted line must pass through the 
point (X, Y), where 

X = 6668.4 
Y = 8662.6 

(b) To determine the slope, divide the points 
into 3 groups. Since there are 9 points, exactly 
3 equal groups are obtained. 

Y3 = 12190 
Fi = 5995 
x3 = 9891 
X, = 4234 

&i 
Y3 - 7, 
Xz —  Ai 

12190 - 5995 
9891 - 4234 
6195 
5657 

= 1.0951 
&o = Y - biX 

= 8662.6 - 
6195 
5657 

(6668.4) 

= 1360.0 
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The fitted line 

Y = 1360.0 + 1.0951 X 

is shown in Figure 5-9. 

Procedures are given in Bartlett(B) for deter- 
mining 100 (1 — a) % confidence limits for 
the true slope ßü and for determining a 
100 (1 — a) % confidence ellipse for ß0 and ßi 

jointly, from which 100 (1 — a) % confidence 
limits for the line as a whole can be derived. 
For strict validity, they require that the meas- 
urement errors affecting the observed X, be 
sufficiently small in comparison with the spacing 
of their true values a;,- that the allocation of the 
observational points (X,, Y.) to the three groups 
is unaffected.    These procedures are formally 

14000 - 

12000- ■ 

_ lOOOO - 

o 
o 
X 

Ui 

8000 ■ 

6000 • 

<x3.y 

-+- -4- -4- -4- -4- 
4000 6000 8000 

METHOD   I 

10000 12000 

Figure 5-9.    Relationship between two methods of determining 
a chemical constituent—an FII relationship. 
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similar to those appropriate to the least-squares 
method in FI situations, but involve more com- 
plex calculations. We do not consider them 
further here. 

5-4.3.2 An Important Exceptional Case. Until 
comparatively recently it was not realized that 
there is a broad class of controlled experimental 
situations in which both X and Y are subject to 
errors of measurement, yet all of the techniques 
appropriate to the FI case {x's accurately 
known, measurement errors affect the Y's only) 
are strictly applicable without change. 

As an example, let us consider the case of an 
analytical chemist who, in order to obtain an 
accurate determination of the concentration of 
a potassium sulphate solution, decides to pro- 
ceed as follows: From a burette he will draw 
off 5, 10, 15, and 20 ml samples of the solution. 
Volume of solution is his independent variable 
z, and his target values are Zi = 5, x2 = 10, 
xs = 15, and z4 = 20, respectively. The vol- 
umes of solution that he actually draws off 
Xi, X2, X3, and XA will, of course, differ from 
the nominal or target values as a result of 
errors of technique, and he will not attempt to 
measure their volumes accurately. These four 
samples of the potassium sulphate solution then 
will be treated with excess barium chloride, and 
the precipitated barium sulphate dried and 
weighed. Let Ylt Y2, Y3, and Y4 denote the 
corresponding yields of barium sulphate. These 
yields actually will correspond, of course, to the 
actual inputs Xlp X2, X3, and X4, respectively; 
and will differ from the true yields associated 
with these inputs, say yi(Xi), yi(Xt), y3(X3), 
and yi{Xi), respectively, as a result of errors of 
weighing and analytical technique. The sul- 
phate concentration of the original potassium 
sulphate solution then will be determined by 
evaluating the slope bi of the best fitting 
straight line Y = b0 + bix, relating the observed 
barium sulphate yields (Yi, Y2, Y3, and Y4) to 
the nominal or target volumes of solution 
(Xi, Xi, x3, and z4)—the intercept b0 of the line 
making appropriate allowance for the possibility 
of bias of the analytical procedure resulting in a 
non-zero blank. 

Without going into the merits of the foregoing 
as an analytical procedure, let us note a number 
of features that are common to controlled experi- 

ments: First, the experimental program involves 
a number of preassigned nominal or target 
values (zi, Zj, . . .) of the independent variable 
x, to which the experimenter equates the inde- 
pendent variable in his experiment as best he 
can, and then observes the corresponding yields 
(Yi, Y2, . . .) of the dependent variable y; 
Second, the experimenter, in his notebook, 
records the observed yields (Yx, Y2,. . .) as corre- 
sponding to, and treats them as if they were 
produced by, the nominal or target values 
(zi, x2,...) of the independent variable—where- 
as, strictly they correspond to, and were pro- 
duced by, the actual input values (_X\ ,X2, . . .), 
which ordinarily will differ somewhat from the 
nominal or target values (zi, z2, . . .) as a 
result of errors of technique. Furthermore, the 
effective values (Xi, X2, . . .) of the independent 
variable actually realized in the experiment are 
not recorded at all—nor even measured! 

It is surprising but nevertheless true that an 
underlying linear structural relationship of the 
form y = ßo + ßix can be estimated validly 
from the results of such experiments, by fitting 
a line of the form Y = b0 + b\X in accordance 
with the procedures for FI situations (z's known 
accurately, Y's only subject to error). This 
fact was emphatically brought to the attention 
of the scientific world by Joseph Berkson in a 
paper<6) published in 1950, and for its validity 
requires only the usual assumptions regarding 
the randomness and independence of the errors 
of measurement and technique affecting both 
of the variables (i.e., causing the deviations of 
the actual inputs Xi, X2,..., from their target 
values Xi, x2, . . ., and the deviations of the ob- 
served outputs Yi, Y2, . . . , from their true 
values of yi(Xi), y2{X2), . . .). The conclusion 
also extends to the many-variable case con- 
sidered in Chapter 6, provided that the relation- 
ship is linear, i.e., that 

y = ßo + ßix + ß2u + ß3v + . . . . 

If the underlying relationship is a polynomial 
in x (e.g., y = ßo + ß& + ß2x

2 + ß3x
3), then 

Gearyt7) has found that Berkson's conclusion 
carries over to the extent that the usual least- 
squares estimates (given in Chapter 6) of the 
coefficients of the two highest powers of x (i.e., 
of ß2 and ß3 here) retain their optimum proper- 
ties of unbiasedness and minimum variance, but 
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the confidence-interval and tests-of-significance 
procedures require modification. 

5-4.4    SOME LINEARIZING 
TRANSFORMATIONS 

If the form of a non-linear relationship be- 
tween two variables is known, it is sometimes 
possible to make a transformation of one or 
both variables such that the relationship be- 
tween the transformed variables can be ex- 
pressed as a straight line. For example, we 
might know that the relationship is of the form 
Y = abx. If we take logs of both sides of this 
equation, we obtain 

log Y = log a + X log b, 

which will be recognized to be a straight line 
whose intercept on the log Y scale is equal to 
log a, and whose slope is equal to log b. The 
procedure for fitting the relationship is given in 
the following steps. 

It should be noted that the use of these trans- 
formations is certain to accomplish one thing 
only—i.e., to yield a relationship in straight-line 
form. The transformed data will not neces- 
sarily satisfy certain assumptions which are 
theoretically necessary in order to apply the 
procedures of Paragraph 5-4.1.1, for example, 
the assumption that the variability of Y given 
X is the same for all X. However, for practical 
purposes and within the range of the data con- 
sidered, the transformations often do help in 
this regard. 

Thus far, our discussion has centered on the 
use of transformations to convert a known rela- 
tionship to linear form. The existence of such 
linearizing transformations also makes it pos- 
sible to determine the form of a relationship em- 
pirically. The following possibilities, adapted 
from Scarborough/10' are suggested in this 
regard: 

(1) Make the transformation YT = log Y 
(i.e., take logs of all the observed Y 
values). 

(2) Use the procedure of Paragraph 5-4.1.1 
to fit the line YT = bo + byX, substi- 
tuting YT everywhere for Y. 

(3) Obtain the constants of the original 
equation by substituting the calculated 
values of b0 and bi in the following 
equations: 

b0 = log a 
öi = log b, 

and taking the required antilogs. 

(1)   Plot Y against  y on ordinary graph 

paper.    If the points lie on a straight line, the 
relationship is 

Y = a + X 

(2)   Plot  y against X on  ordinary graph 

paper.    If the points lie on a straight line, the 
relationship is 

1 
Y = a + bX' 

or 

Y = a + bX 

Some relationships between X and Y which 
can easily be transformed into straight-line 
form are shown in Table 5-4. This table gives 
the appropriate change of variable for each rela- 
tionship, and gives the formulas to convert the 
constants of the resulting straight line to the 
constants of the relationship in its original form. 
In addition to the ones given in Table 5-4, some 
more-complicated relationships can be handled 
by using special tricks which are not described 
here, but can be found in Lipka,(8) Rietz,(9) and 
Scarborough.(10) 

(3) Plot X against Y on semilog paper (X on 
the arithmetic scale, Y on the logarithmic scale). 
If the points lie on a straight line, the variables 
are related in the form 

aebX, or Y 
Y = abx   . 

(4) Plot Y against X on log-log paper. If 
the points lie on a straight line, the variables are 
related in the form 

Y = aX»   . 
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TABLE 5-4.    SOME LINEARIZING TRANSFORMATIONS 

If the Relationship 
Is of the Form: 

Plot the Transformed 
Variables 

Fit the Straight Line 
YT = bo + biXy 

Convert Straight Line 
Constants (b0 and bi) 

To Original Constants: 

YT = XT — bo = bx = 

Y = a + x Y i 
X Use the procedures of 

Paragraph 5-4.1.1. 

In all formulas given 
there, substitute values 
of YT for Y and values 
of XT for X, as appro- 
priate. 

a b 

V                                        nr 
1 
Y 

X a 
Y~a + bX'    0r 

Y = a + bX 
b 

Y         X X 
Y 

X a b a + bX 

Y = abx log Y X logo logo 

Y = aehX log Y X log a b log e 

Y = aXb logF logX log a b 

Y = a + bXn, 
where n is known 

Y X" a b 

5-5    PROBLEMS AND PROCEDURES FOR STATISTICAL RELATIONSHIPS 

5-5.1     SI RELATIONSHIPS 

In this case, we are interested in an associa- 
tion between two variables. See Paragraph 
5-3.2 and Table 5-1. 

We usually make the assumption that for 
any fixed value of X, the corresponding values 
of Y form a normal distribution with means 
Yx = /3o + ßiX and variance a\.x (read as 
"variance of Y given X") which is constant for 
all values of X. * Similarly, we usually assume 
that for any fixed value of Y, the corresponding 
values of X form a normal distribution with 
mean Xy = ß'0 + ß[Y and variance <A.y , (vari- 

* Strictly, we should write 

my.x = ßo + ft X 

and 

mx.y = & + P[ Y . 

See Footnote in Paragraph 5-3.2. 

ance of X given Y) which is constant for all 
values of Y.* Taken together, these two sets 
of assumptions imply that X and Y are jointly 
distributed according to the bivariate normal 
distribution. In practical situations, we usually 
have only a sample from all the possible pairs 
of values X and Y, and therefore we cannot 
determine either of the true regression lines, 
Yx = ßo + ßiX or Xr = ß'0 + ß[Y, exactly. If 
we have a random sample of n pairs of values 
(Xu Yx), (X2, Yt), . . ., (Xn, Yn), we can esti- 
mate either line, or both. Our method of fitting 
the line gives us best predictions in the sense 
that, for a given X = X' our estimate of the 
corresponding value of Y = Y' will: 

(a) on the average equal Yx- the mean value 
of Y for X = X' (i.e., it will be on the true line 
Yx = /So + |8iX);and 

(b) have a smaller variance than had we used 
any other method for fitting the line. 

5-31 

Downloaded from http://www.everyspec.com



AMCP 706-110 ANALYSIS OF MEASUREMENT DATA 

Q 
O 
I 

UJ > 
§ a. o 
tc 
ui 

400 

300-- 

ui 
o 
UI 
X \- 

CO 
-      200 
t/> 
UI 

in a 
ui 
tr. 
o 
z 
3 
I 

100 - 

o 
«* 
UJ 
cr 

•       .'. 

_L X J_ X 
100 200 300 400 

TREAD LIFE ( HUNDREDS OF MILES ) BY THE WEIGHT METHOD 
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an SI relationship. 
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Data Sample 5-5.1—Estimated Tread Wear of Tires 

The data used for illustration are from a 
study of two methods of estimating tread wear 
of commercial tires (Stiehler and others(n)). 
The data are shown here and plotted in Figure 
5-10. The variable which is taken as the inde- 
pendent variable X is the estimated tread 
life in hundreds of miles by the weight-loss 
method. The associated variable Y is the esti- 
mated tread life by the groove-depth method 
(center grooves). The plot seems to indicate a 
relationship between X and Y, but the relation- 
ship is statistical rather than functional or 
exact. The scatter of the points stems pri- 
marily from product variability and variation 
of tread wear under normal operating condi- 
tions, rather than from errors of measurement 
of weight loss or groove depth. Descriptions 
and predictions are applicable only "on the 
average." 

X Y 
= Tread Life = Tread Life 

(Hundreds of Miles) (Hundreds of Miles) 
Estimated By Estimated By 

Weight Method Center Groove Method 

459 357 
419 392 
375 311 
334 281 
310 240 
305 287 
309 259 
319 233 
304 231 
273 237 
204 209 
245 161 
209 199 
189 152 
137 115 
114 112 

5-5.1.1    What is the Best Line To Be Used for Estimating Yx for Given Values of X? 

Procedure 

The procedure is identical to that of Paragraph  5-4.1.1. 
Worksheet 5-5.1), compute the line 

Using Basic   Worksheet   (see 

Y = 6o + byX. 

This is an estimate of the true regression line 

Yx = 0o + ßiX. 

Using Data Sample 5-5.1, the equation of the fitted line is 

7 = 13.506 + 0.790212 X. 

In Figure 5-11, the line is drawn, and confidence limits for the line (see Paragraph 5-5.1.2) 
are shown. 
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WORKSHEET 5-5.1 

EXAMPLE OF SI RELATIONSHIP 

X denotes Tread  Life Estimated 
by Weight  Method 

Y denotes Tread   Life  Estimated 
by Center Groove Method 

4505 2X =  

X   =        281.5625 

27 = 

Y   = 

3776 

236 

Number of points: n = 16 

biX 

= 

Step (1)   2X7 

(2) (2Z) (ZY)/» = 

(3) 5xy 

1,404,543 

1,170,731 

1,063,180 

107551 

(4)   2Z2 (7) 

(8) 

(9) 

(14) 

(15) 

(16) 

272 

(27)2/w 

£>yy 

(sxyy 

(n - 2) s\ 

Sy 

Sy 

985740 

(5)  {nxy/n 1,268,439.0625 — 891136 

(6)   Sxx 136103.9375 — 94604 

(10) 6X = f* 

(11) Y 

.790212 84988.119 

236   9615.881 

(12)   hX 222.494 = 686.849 

(13)   &o = Y - 13.506 = 26.21 

Equation of the line: 

7 = bo + biX 

13.506 + .790212 X 

Estimated variance of the slope: 

si = |^                     =            .005046504 
On 

s6, =                      0.0710387 
Estimated variance of intercept: 

sbn =                     21.048 *-*{»+£} =     443-002 
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Figure 5-11.    Relationship between weight method and center 
groove method—the line shown with its confidence 
band is for estimating tread life by center groove 

method from tread life by weight method. 

Using the Regression Line for Prediction. The equation of the fitted line may be used to predict 
Yx, the average value of Y associated with a value of X. For example, using the fitted line, 
Y = 13.506 + 0.790212 X, the following are some predicted values for Yx. 

X Yx 

200 
250 
300 
350 
400 
450 

172 
211 
251 
290 
330 
369 
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5-5.1.2    What are the Confidence Interval Estimates for: the Line as a Whole; a Point on the Line; 
a Single Y Corresponding to a New Value of X? 

Read the discussion of the interpretation of three types of confidence intervals in Paragraph 
5-4.1.2, in order to decide which is the appropriate kind of confidence interval. 

The solutions are identical to those given in Paragraph 5-4.1.2, and are illustrated for the tread 
wear of commercial tires example (Data Sample 5-5.1). 

5-5.1.2.1    What Is the (1 - a) Confidence Band for the Line as a Whole? 

Procedure Example 

(1)   Choose the desired confidence level, 1 — a      (1)   Let: 1 — a = .95 
a = .05 

(2)   Obtain sY from Worksheet. (2) 

(3)   Look up F!_a for (2, n — 2) degrees of free- 
dom in Table A-5. 

Sy = 26.21 

(3) n = 16 
FM (2, 14) = 3.74 

(4)   Choose a number of values of X (within the      '4)   ijet: 

range of the data) at which to compute 
points for drawing the confidence band. 

X = 200 
X = 250 
X = 300 
X = 350 
X = 400, 
for example. 

(5)  At each selected value of X, compute: 

Yc = Y + 6, (X - X) 

and 

^ = v^ + ^l i 

(6)  A (1 — a) confidence band for the whole 
line is determined by 

Y,±Wl . 

(5) See Table 5-5 for a convenient computa- 
tional arrangement, and the example cal- 
culations. 

(6)   See Table 5-5. 

(7) To draw the line and its confidence band, 
plot Yc at two of the extreme selected 
values of X. Connect the two points by a 
straight line. At each selected value of X, 
plot also Yc + PFi and Yc — Wi. Connect 
the upper series of points, and the lower 
series of points, by smooth curves. 

(7)   See Figure 5-11. 

If more points are needed for drawing the 
curves, note that, because of symmetry, the cal- 
culation of W\ at n values of X actually gives 
Wi3.t2n values of X. 

For example: Wi (but not Ye) has the same 
value at 1 = 250 (i.e.: X - 31.56) as at 
X = 313.12 (i.e., X + 31.56). 
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TABLE 5-5 .   COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-5.1.2.1 

1     (X-X)2 

X (X-X) Yc 4. *rc Wx Yc+ Wt Ve ~ Wi 

200 -81.56 171.6 0.111375 76.50 8.746 23.9 195.5 147.7 
250 -31.56 211.1 0.069818 47.95 6.925 18.9 230.0 192.2 
300 +18.44 250.6 0.064998 44.64 6.681 18.3 268.9 232.3 
350 68.44 290.1 0.096915 66.57 8.159 22.3 312.4 267.8 
400 118.44 329.6 0.165569 113.72 10.66 29.2 358.8 300.4 

X = 281.5625 
Y = 236 

Q2 
by 686.849 

= = .0625 n 
bx = 0.790212 

S„ = 136103.9375 

Yc - Y + 6i (X- -X) 

•V. " [n 
(X - xy 

On 

w 
= 2.735 

Wr = V2F Sre 

5-5.1.2.2    Give a (1 — a) Confidence Interval Estimate For a Single Point On the Line, i.e., the Mean 
Value of V Corresponding to X = X'. 

Procedure 

(1)   Choose the desired confidence level, 1 — a 

(2) Obtain sY from Worksheet. 

(3) Look up <i_a/2 for w — 2 degrees of freedom 
in Table A-4. 

(4) Choose X', the value of X at which we 
want to make an interval estimate of the 
mean value of Y. 

Example 

(1) Let: 1 - a = .95 
a = .05 

(2) sY = 26.21 

(3) n = 16 
*.976 for 14 d.f. - 2.145 

(4)  Let X' = 250, 
for example. 

(5)   Compute: 

W2 = d_a/2 sr   - + ß (X' - xy ]' 
(5) 

and 

Y + bi (X' - X) 

(6) A (1 — a) confidence interval estimate for 
the mean value of Y corresponding to 
X = X' is given by 

YC±W2 . 

(6) 

W2 = (2.145) (26.21) (.2642) 
= 14.85 

Yc = 211.1 

A 95% confidence interval estimate for the 
mean value of Y corresponding to X = 250 
is 

211.1 ± 14.8  , 

the interval from 196.3 to 225.9 . 
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5-5.1.2.3    Give a (1 — a) Confidence Interval Estimate For a Single (Future) Value of /Corresponding 
to a Chosen Value of X = X'. 

Procedure 

(1)   Choose the desired confidence level, 1 — a      (1) 

(2) Obtain sY from Worksheet. 

(3) Look up ti-a/2 for n — 2 degrees of freedom 
in Table A-4. 

(4) Choose X', the value of X at which we 
want to make an interval estimate of a 
single value of Y. 

Example 

(1) Let: 1 - a = .95 
a = .05 

(2) Sy = 26.21 

(3) n = 16 
«.975 for 14 d.f. = 2.145 

(4)   Let X' = 250, 
for example. 

(5)   Compute: 

W3  = il-a/2 sY |_       n 

(5) 

+ (X' - xy 

and 

? + bx (X' - X) 

(6)   A (1 — a) confidence interval estimate for 
Y' (the single value of Y corresponding to 
Z')is 

Yc ± W» . 

(6) 

Ws = (2.145) (26.21) (1.0343) 
= 58.1 

Yc = 211.1   . 

A 95% confidence interval estimate for a 
single value of Y corresponding to X' = 250 
is 211.1 ± 58.1, the interval from 153.0 to 
269.2   . 

5-5.1.3    Give  a   Confidence   Interval   Estimate   For  ßi ,  the  Slope  of the  True   Regression   Line, 
Yx = ft + AX. 

The solution is identical to that of Paragraph 5-4.1.3 and is illustrated here for Data Sample 5-5.1. 

Procedure Example 

(1) Choose the desired confidence level, 1 — a      (1)   Let:      1 — a = .95 
a = .05 

(2) Look up <i_a/2 for n — 2 degrees of freedom      (2) n = 16 
*.975 for 14 d.f. = 2.145 in Table A-4. 

(3) Obtain s6l from Worksheet 

(4) Compute 

(3) 

(4) 

(5)   A (1 — a) confidence interval estimate for       (5) 
ßi is 

bl±Wi . 

sh = 0.0710387 

W4 = (2.145) (.0710387) 
= 0.152378 

6i = 0.790212 
W4 = 0.152378 

A 95% confidence interval estimate for ßi 
is the interval 0.790212 ± 0.152378, i.e., 
the interval from 0.637834 to 0.942590  . 
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5-5.1.4    What Is the Best Line For Predicting Xy 
From Given Values of Y? 

For this problem, we fit a line X = b'0 + b[ Y 
(an estimate of the true line XY = ß'0 + ß[ Y). 
To fit this line we need to interchange the roles 
of the X and Y variables in the computations 
outlined in Worksheet 5-5.1 and proceed as in 
Paragraph 5-5.1.1. 

That is, the fitted line will be: 
X = b'0 + b[ Y , 

where 

K 
and 

X -b[Y 

K = Sx 

From Data Sample 5-5.1: 
107551 

b[ = 94604 
= 1.136855 

b'0 = 281.5625 - (1.136855) (236) 
= 13.26 

The equation of the fitted line is: 

X = 13.26 + 1.136855 Y , 

and this line is shown in Figure 5-12, along with 
the line for predicting Y from X. 

In order to obtain confidence intervals, we 
need the following formulas: 

(S*«)s 

Oxx 

si 

o2          s*x 

*, s\ \n Syy    f 

a o 

ui 
2 

o 
o ec 
to 
<t 
ÜJ 

400 

o 
w  30O 

>- 
CO 

If) 
UI 

200 
CO o 
UI s z 
I 

u.   100-- 
_i 

ui 

Xv =   13.26 + 1 .136855 Y~ 

-4- 4- 
"2^0" 

-4- 

Yx= 13.51 + 0.790212 X 

-4- ■4- -+- 
100 200 3ÖO 400 

TREAD LIFE I HUNDREDS OF MILES) BY THE WEIGHT METHOD 

500 

Figure 5-12.    Relationship between weight method and center 
groove method—showing the two regression lines. 
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5-5.1.5    What is the Degree of Relationship of the Two Variables X and Y as Measured by p, the 
Correlation Coefficient? 

Procedure 

(1)   Compute 

Example 

(1)  Using Worksheet 5-5.1, 

107551 
r = 

y/S. 
r — 

(2) A 95% confidence interval for p can be ob- 
tained from Table A-17, using the appro- 
priate n and r. If the confidence interval 
does not include p = 0, we may state that 
the data give reason to believe that there is 
a relationship (measured by p ^ 0) be- 
tween the two variables; otherwise, we may 
state that the data are consistent with the 
possibility that the two variables are un- 
correlated (p = 0). 

V136103.94 V946Ö4 

107551 
(368.92) (307.58) 

= 0.95   . 

(2)   TO = 16 
r = 0.95 

From Table A-17, the 95% confidence in- 
terval estimate of p is the interval from 
0.85 to 0.98. Since this interval does not 
include p = 0, we may state that the data 
give reason to believe that there is a rela- 
tionship between the two methods of esti- 
mating tread wear of tires. 

5-5.2    SM RELATIONSHIPS 

In this case, we are interested in an associa- 
tion between two variables. This case differs 
from SI in that one variable has been measured 
at only preselected values of the other variable. 
(See Paragraph 5-3.2 and Table 5-1.) 

For any given value of X, the corresponding 
values of Y have a normal distribution with 
mean Yx = ßo + ßiX, and variance <FY.X which 
is independent of the value of X. We have n 
pairs of values (X1, Y{), (X2, Y2),. .., (X„, Yn), 
in which X is the independent variable. (The 
X values are selected, and the Y values are 
thereby determined.) We wish to describe the 
line which will enable us to make the best esti- 
mate of values of Y corresponding to given 
values of X. 

We have seen that for SI there are two lines, 
one for predicting Y from X and one for pre- 
dicting X from Y. When we use only selected 
values of X, however, the only appropriate line 
to fit is 7 = b0 + biX. 

It should- be noted that SII is handled com- 
putationally in the same manner as FI, but both 
the underlying assumptions and the interpreta- 
tion of the end results are different. 

Data Sample 5-5.2—Estimated Tread Wear of Tires 

For our example, we use part of the data used 
in Data Sample 5-5.1 (the SI example). Sup- 
pose that, due to some limitation, we were only 
able to measure X values between X = 200 and 
X = 400, or that we had taken but had lost the 
data for X < 200 and X > 400. From Figure 
5-10, we use only the 11 observations whose X 
values are between these limits. The "se- 
lected" data are recorded in the following table. 

X Y 
= Tread Life = Tread Life 

(Hundreds of Miles) (Hundreds of Miles) 
Estimated By Estimated By 

Weight Method Center Groove Method 

375 311 
334 281 
310 240 
305 287 
309 259 
319 233 
304 231 
273 237 
204 209 
245 161 
209 199 

5-40 

Downloaded from http://www.everyspec.com



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES     AMCP 706-110 

5-5.2.1 What Is the Best Line To Be Used for 
Estimating Yx From Given Values 
of X? 

Procedure 

Using Data Sample 5-5.2, the fitted line is 

Y = 48.965 + 0.661873 X. 

Using Basic Worksheet (see Worksheet The fitted line is shown in Figure 5-13, and the 
5-5.2), compute the line Y = b0 + biX. This confidence band for the line (see the procedure 
is an estimate of the true line Yx = ßo + ßiX.      of Paragraph 5-5.2.2.1) also is shown. 

WORKSHEET 5-5.2 

EXAMPLE OF Sll RELATIONSHIP 

X denotes Tread  Life  Estimated 
by  Weight  Method 

Y denotes Tread   Life   Estimated   by 
Center Groove Method 

SZ = 

X    = 

3187 

289.727 

27 = 

F    = 

2648 

240.727 

(4) 2X2 

(5) (2Xy/n 

(6) OXI 

(10) 0l   -    r. 
On 

(11) F 

(12) &iZ 

(13) &o = Y - 

Number of points: n = 11 

785369 

hX = 

Step (1)   2ZY =  

(2) (2Z) (2Y)/ra = 767197.818 

(3) Sxv 

950815         (7)   2Y2 

923360.818 

27454.182 

0.661873 

240.727 

191.762 

48.965 

18171.182 

(8) (2Y)»/» 

(9) Sm 

(14) (sxyy 

(15) (n - 2) s\ 

(16) S
2

K 

Sy 

655754 

637445.818 

18308.182 

12027.015 

6281.167 

697.9074 

26.418 

Equati« 

Y = &„ 

Si, = 

S*o  = 

3n of the line: 

48.965 + 0.661873 X 

0.159439 

46.88 

Estimated variance of the slope: 

si = 
Q2 Sy 

.0254208 

Estimated variance of intercept: 
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Q 
O 
I 

> 
o 
o 
CE 

tr 
Ld 

ÜJ 
Ü 

400 

£ 300f 

>• m 

o 200-- 
if> a 
IÜ 
a. 
a 
z 
I 

< 
UJ 

100-- 

x = 48.965 + 0.661873 X 

4- -+- -4- -1- -t- -+- 
100 2Ö0 300 400 

TREAD LIFE (HUNDREDS OF MILES) BY THE WEIGHT METHOD 

500 

Figure 5-13.    Relationship between weight method and center 
groove method when the range of the weight method 

has been restricted—an SII relationship. 

5-5.2.2    What are the Confidence Interval Estimates for: the Line as a Whole; a Point on the Line; 
a Single Y Corresponding to a New Value of X? 

Read the discussion of the interpretation of these three types of confidence intervals in Paragraph 
5-4.1.2 in order to decide which is the appropriate kind of confidence interval. 
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5-5.2.2.1    What Is the (1 - a) Confidence Band For the Line as a Whole? 

The solution is identical to that of Procedure 5-4.1.2.1 and is illustrated here for Data Sample 
5-5.2. 

Procedure 

(1)  Choose the desired confidence level, 1 — a. 

Example 

(1)  Let: 1 - a = .95 
a = .05 

(2)  Obtain sY from Worksheet. (2)   From Worksheet 5-5.2 
sY = 26.418 

(3)   Look up ^i_a for (2, n — 2) degrees of free-      (3) 
dom in Table A-5. 

n = 11 
F.96 (2, 9.) = 4.26 

(4) Choose a number of values of X (within the 
range of the data) at which to compute 
points for drawing the confidence band. 

(4)   Let: X = 200 
X = 250 
X = 300 
X = 350 
X = 400, 
for example. 

(5)  At each selected value of X, compute: 

Yc= Y + bUX - X) 

and 

^-^[i + ^-'J 

(5) See Table 5-6 for a convenient computa- 
tional arrangement and the example cal- 
culations. 

(6)  A (1 — a) confidence band for the whole 
line is determined by 

Yc ± W, . 

(6)   See Table 5-6. 

(7) To draw the line and its confidence band, 
plot Yc at two of the extreme selected 
values of X. Connect the two points by a 
straight line. At each selected value of X, 
also plot Y„ + Wi and Yc - Wi. Con- 
nect the upper series of points, and the 
lower series of points, by smooth curves. 

If more points are needed for drawing the curves 
for the band, note that, because of symmetry 
the calculation of Wx at n values of X actually 
gives Wi at In values of X. 

(7)   See Figure 5-13. 

For example: Wi (but not Yc) has the same 
value at X = 250 (i.e., X - 39.73) as at 
X = 329.5 (i.e., X + 39.73). 
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TABLE 5-6.    COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-5.2.2.1 

1  , (X-X)2 

n          Sxx X (X-X) Ye *. w. Wi Y,+ Wi v.- wt 

200 -89.73 181.3 0.384179 268.12 16.37 47.8 229.1 133.5 
250 -39.73 214.4 0.148404 103.57 10.18 29.7 244.1 184.7 
300 +10.27 247.5 0.094751 66.127 8.132 23.7 271.2 223.8 
350 60.27 280.6 0.223219 155.79 12.48 36.4 317.0 244.2 
400 110.27 313.7 0.533810 372.55 19.30 56.3 370.0 257.4 

X = 289.727 
Y = 240.727 

s\ = 697.9074 

n 
= 0.0909091 

Y< - Y + bt (X - X) 

(x - xy~ + 
bi = 0.661873 

S„ = 27454.182 

Yc \_n 

V2F = V8T52 = 2.919 

Wi = V2F sr. 

5-5.2.2.2    Give a (1 — a) Confidence Interval For a Single Point On the Line, i.e., the Mean Value 
of Y Corresponding To a Chosen Value of X (X'). 

Procedure 

(1) Choose the desired confidence level, 1 — a      (1)      Let: 1 

(2) Obtain sy from Basic Worksheet. 

Example 

(3) Look up <i_o,/2 for n — 2 degrees of freedom 
in Table A-4. 

(4) Choose X', the value of X at which we want 
to make an interval estimate of the mean 
value of Y. 

(5)   Compute: 

W2 = <i_a/2 SY   - + (X' - xy T 
and 

Ye = Y + 6, {X' - X) 

(6) A (1 — a) confidence interval estimate for 
the mean value of Y corresponding to 
X = X' is given by 

Y + bi (X - X) ± W2 

= YC±W2. 

a = .95 
a = .05 

(2) From Worksheet 5-5.2 
SY = 26.418 

(3) n = 11 
f.976 for 9 d.f. = 2.262 

(4)   Let 

(5) 

X' = 300, 
for example. 

Wi = (2.262) (26.418) (0.3078) 
= 18.4 

Yc = 247.5 

(6) A 95% confidence interval estimate for the 
mean value of Y at X = 300 is the interval 
247.5 ± 18.4, i.e., the interval from 229.1 
to 265.9 . 
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5-5.2.2.3    Give a (1 — a) Confidence Interval Estimate For a Single (Future) Value of Y Corresponding 
To a Chosen Value of X = X'. 

Procedure 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sy from Worksheet. 

Example 

(1) Let: 1 - « = .95 
a = .05 

(2) From Worksheet 5-5.2 
sY = 26.418 

(3)   Look up <i_a/2 for n — 2 degrees of freedom      (3)   (.975 for 9 d.f. = 2.262 
in Table A-4. 

(4)   Choose X', the value of X at which we want      (4)   Let 
to make an interval estimate of a single 
value of Y. 

(5)  Compute: 

Wz = h^l2 sy |~1 + i 

(5) 

+ (X' - xy\> 

and 

Yc = Y + 6, (X' - X) 

X' = 300, 
for example. 

W3 = (2.262) (26.418) (1.0463) 
= 62.5 

Yc = 247.5 

(6)  A (1 — a) confidence interval estimate for      (6)  A 95% confidence interval estimate for Y 
Y' (the single value of Y corresponding to 
X') is given by 

Y + &! {X' - X) ±W3 

= Ye ± W3 . 

at X = 300 is the interval 247.5 ± 62.5, 
i.e., the interval from 185.0 to 310.0 . 

5-5.2.3    What Is the Confidence Interval Estimate for ßi, the Slope of the True Line, Yx = ßo + ftX? 

Procedure 

(1)   Choose the desired confidence level, 1 — a 

(2) Look up ^-0/2 for n — 2 degrees of freedom 
in Table A-4. 

(3) Obtain sbl from Worksheet. 

(4) Compute 

Wi  = tl-a/2 sh 

(5) A (1 — a) confidence interval estimate for 
0i is 

6! ± W< . 

Example 

(1) Let: 1 - a = .95 
a = .05 

(2) n = 11 
t.976 for 9 d.f. = 2.262 

(3) From Worksheet 5-5.2 
shi = 0.159439 

(4) 

(5) 

Wt = 2.262 (0.159439) 
= 0.360651 

&! = 0.661873 
W* = 0.360651 

A 95% confidence interval estimate for /3i 
is the interval 0.661873 ± 0.360651, i.e., 
the interval from 0.301222 to 1.022524 . 
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CHAPTER 6 

POLYNOMIAL AND MULTIVARIABLE RELATIONSHIPS 

ANALYSIS BY THE METHOD OF LEAST SQUARES 

6-1    INTRODUCTION 

In this Chapter, we give methods for estimating the coefficients of, and for answering various 
questions about, multivariable functional relationships of the form 

y = ß0 Xo + & £i + . . . + ßk-i xh-! (6-1) 

between a dependent variable y and a number of independent variables x0, xu ..., xk_u We restrict 
our discussion, however, to the case in which the values of the independent variables x0, xu . . ., xk-u 
are known exactly, and errors of measurement affect only the observed values Y of y, that is, to 
many-variable analogs of the FI functional relationships considered in Paragraphs 5-3.1 and 5-4.1. 

Methods for the analysis of many-variable relationships in which errors of measurement affect the 
values of the x's involved as well as the observed Y's, i.e., the multivariable analogs of the FII 
structural relationships considered in Paragraphs 5-3.1 and 5-4.3, are not discussed per se in this 
Chapter. If, however, the errors that affect the x's are not errors of measurement, but rather are 
errors of control in the sense of Paragraph 5-4.3.2, i.e., are errors made in attempting to set 
Xo, Xu • ■ ■ , Xk-i, equal to their respective nominal values x'0, x[, . . . , x'k-u then the methods of 
this Chapter are applicable, provided that the errors made in adjusting X0, Xlt ■ ■ ., Xk_u to their 
respective nominal values are mutually independent (or, at least, are uncorrelated). 

The techniques presented in this Chapter are general. They are applicable whenever we know 
the functional form of the relation between y and the x's, and are primarily concerned with esti- 
mating the unknown values of the coefficients of the respective terms of the relationship. Thus, 
taking x0 = 1, xx = x, x2 = x2,. . ., xm = xm, the methods of this Chapter enable us to estimate the 
coefficients of, and to answer various questions about, an mth degree polynomial relationship 

y = ft, + ftx + ftx2 + . . . + ßmxm (6-2) 

between a dependent variable y and a single independent variable x. Alternatively, taking x0 = 1, 
Xi = x, x2 = z, x3 = x"1, xt = xz, and xb = z2, the techniques of this Chapter can be used to investi- 
gate the nature of a quadratic surface relationship 

y = j9„ + (ßlX + ß2z) + (&x2 + ß*xz + &z2) (6-3) 

between a dependent variable y and two independent variables x and z. For example, we may wish 
to test the hypothesis that the surface actually is a plane, i.e., that ßs, ßit and ßb, in Equation (6-3) 
are equal to zero, and so forth. 
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Multivariate* statistical relationships analogous to the SI and SII situations considered in 
Paragraphs 5-3.2 and 5-5.1 are not considered per se in this Chapter. If, however, Y and Xlt 

X2,. .., Xk_u have a joint multivariate frequency (probability) distribution in some definite 
population, and if a sample of size n is drawn from this population, with or without selection or 
restrictions on the values of the X's but without selection or restriction on the Y's, then the methods 
of this Chapter, taking X0 = 1 throughout, are directly applicable to estimating the coefficients 
of, and to answering various questions about, the multivariate regression of Y on Xu X2, . . . , and 
Xk-U namely, 

YM = ft + &X, + ß2X2 + ...+ &_!**_!, (6-4) 

where Y[z\ is shorthand for mY.x,x2 . . . xt_„ the mean value of all of the Y's that are associated in 
the population with the particular indicated combination Xu X2. .. Xk-i, of values of the X's 
(see footnote of Par. 5-3.2)—and, where 

ß0 = mY - ßimXl - ß2mX2 - ... - ßk-imXk_„ (6-5) 

mv, mxi,. .., mIJfc_„ are the population means of Yu Xu .. ., Xk_u respectively. The fitted regres- 
sion, yielded by the application of the methods of this Chapter to observational data of this kind, 
will be of the form 

Y{x] =b0 + biXt + b2X2 + ...+ bk^Xk^ (6-6) 

with    bo = f - 6iZ, - b2X2 - ... - 6*_Ä-i (6-7) 

where Y, Xlr X2,. .., Xk-u are the means of Y, Xu X2,.. ., and Xk_u in the sample; and each b 
will be a best (i.e., minimum variance unbiased) estimate of the corresponding true ß. 

When, as in all of the previously mentioned situations, the relationship between y and the x's is 
linear in the coefficients whose values are to be determined from the data in hand, the Method of 
Least Squares is the most generally accepted procedure for estimating the unknown values of the 
coefficients, and for answering questions about the relationship as a whole. A widely applicable 
Least Squares Theorem is given in Paragraph 6-2; and its application to a general linear situation 
is presented in detail in Paragraph 6-3, with worked examples. Special applications to polynomial 
and other situations are discussed in subsequent paragraphs of this Chapter. 

The numerical calculations required for least-squares analysis of multivariable relationships 
often are lengthy and tedious. Hence, this Chapter is directed toward arrangement of the work 
for automatic computation on modern electronic computers. Consequently, basic equations called 
for in the calculations are written both in traditional and in matrix forms. This Chapter concludes 
with a discussion of matrix operations that are useful both in formulating and in carrying out the 
requisite calculations, Paragraph 6-9. 

In most instances, related Procedures and Examples appear on facing pages in this Chapter. 

* The important distinction in statistical work between a variable and a variate is drawn in the Kendall-Buckland 
Dictionary of Statistical Terms*-') as follows: 

Variable—Generally, any quantity which varies. More precisely, a variable in the mathematical sense, i.e., a 
quantity which may take any one of a specified set of values. It is convenient to apply the same word to denote 
non-measurable characteristics, e.g., "sex" is a variable in this sense, since any human individual may take one of 
two "values", male or female. 

It is useful, but far from being the general practice, to distinguish between a variable as so defined and a random 
variable or variate (q.v.). 
Variate—In contradistinction to a variable (q.v.) a variate is a quantity which may take any of the values of a 
specified set with a specified relative frequency or probability. The variate is therefore often known as a random 
variable. It is to be regarded as defined, not merely by a set of permissible values like an ordinary mathematical 
variable, but by an associated frequency (probability) function expressing how often those values appear in the 
situation under discussion. 
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6-2    LEAST SQUARES THEOREM 

If the n measurements Yu Y2,. .., Y„ are statistically independent with common variance a-2 

and have expected values £r(Y<), 

E(Yt)   = ftjZoi + ßiXu + ß2Xn + . . . + ßk-iXk-1,1 

E(Y2) = ßaXw. + ßixn + ß2x22 + . . . + ßk-iXk-u 

E(Yn)   =  ß<jX<>n + /SiZin  + ß2X2n + . . .   + ßk-\Xk-\,n 

(6-8) 

(6-9) 

then the best linear unbiased estimates ß0, ßi, ß2,.. ., $k-u of the unknown coefficients are given by 
the solution of k simultaneous equations, called the normal equations, 

ß0Xx2
0 + ßxXXoXi + . . . + J3jt_i 2 x0xk_i = 2 x0 Y 

& 2 xtXo + & 2 x\ + . . . + &_! 2 xxxk^ = 2ii7 

% 2 z*-iZo +?i2 a^-iZi + . . . + %_! 2 4-i = 2 a;*-! Y 

where the summation is over all of the n values of the variables involved; e.g., 
n 

2 3:1X2 = 2-i XuX^i, 
»-1 

and the estimate of <r2 is given by 

S2   = T S  [Yi   -   (ßoXoi  +  ßlXU  +  .  •  .   + ßk-lXk-l,i)]
2 

7fr — K    1 (6-10) 

n ZTJc   Sil-S^(S^) 

If no unique solution to Equation (6-9) exists (which will occur when one or more of the x's are 
linearly dependent, for example, if Xi = ax2 + bx3), then not all k coefficients can be estimated 
from the data. Variables may be deleted or several variables may be replaced by a linear function 
of those variables so that a solvable system involving fewer equations results. 

In situations where the variance of the Y's is not the same for all Y's and/or there is correlation 
among the Y's, a transformation of variables is required. The methods for these cases are discussed 
later in this Chapter. 

This theorem can be restated using matrix notation as follows: 

Let, Y Y, 
Y2 

Yn 

,X = #01 X\\ . . . Xjt_i,i 

#02  Xl2   .  . . Xk—l,2 

, and ß ßo 

. ftt-j. Eon Xi„ . . . Xk-i,n 

The expected values of the Y's then is expressed as 

E(Y) = Xß, (6-8M) 

and the condition of independence and common variance is expressed by 
Var (Y) = V = <y*I. 

Under these conditions, the minimum variance unbiased estimates ß of ß are given by the solution 
of the normal equations 

X'Xß = X'Y. (6-9M) 
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The estimate of a2 is given by 

1 
s' = -£ {(7 - Xß)' (Y - Xß)) n-klK HJ   K        ^n (6-10M) 

= rh (y'y - ?'X'Y)- 
Equations (6-8), (6-9), and (6-10) are given in the usual algebraic notation, and the corresponding 

equations in matrix notation are (6-8M), (6-9M), and (6-10M).   . 

6-3    MULTIVARIABLE FUNCTIONAL RELATIONSHIPS 

6-3.1    USE AND ASSUMPTIONS 

Least-squares methods for estimating the coefficients of a functional relation of the form 

y = /SoXo + ftxi + ßiX2 + . .. + ft_ix*_i (6-1) 

are used in a number of situations: 
(a) when it is known from theoretical considerations in the subject matter field that the rela- 

tionship is of this form; 
(b) when the exact expression relating y and the x's either is unknown or is too complicated 

to be used directly and it is assumed that an approximation of this type will be satisfactory. 

In the latter case, the approximation often can be justified on the grounds that, for the limited 
range of the x's considered, the surface representing y as a function of the x's is very nearly the 
hyperplane given by Equation (6-1). The method is strictly valid in (a), but in (b) there is danger 
of obtaining misleading results, analogous to the bias arising in the straight-line case from the 
assumption that the functional relation involved is linear when in fact it is not linear. 

In addition to the validity of Equation (6-1), the following assumptions must be satisfied:* 

(a) the random errors in the Y's have mean zero and a common variance a2; 
(b) the random errors in the Y's are mutually independent in the statistical sense. 

For strict validity of the usual tests of significance, and confidence interval estimation procedures 
in Paragraph 6-3.3 (Steps 8 and 9), an additional assumption must be satisfied: 

(c) the random errors affecting the Y's are normally distributed. 

The x variables may be powers or other functions of some basic variables, and several different 
functions of the same x variable may be used.    (See, for example, Equation (6-2) or (6-3)). 

The data for analysis consist of the n points (x0i, xu, ■ ■ ■, z*-i.i, Yi) {xm, x12,. . ., xA_i,2 Y2)..., 
(xon, xln, . . . , Xk-i.ny Yn), and usually are represented in tabular form as: 

Ao JLl Ä.2 

Xoi Xu Xu Xk-i,i li 

Xo2 Xi2 #22 Xft_i(2 ij 

Xon Xln Xln ... Xfc—l.n I n 

* When these assumptions are not satisfied, see Paragraph 6-6 for the case of inequality of variance, and Paragraph 6-7 
for the case of correlation among the Y's. 
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Alternatively, the data may be expressed in the form of observational equations, 

/SoZoi + ßiZu + ß2X2i + . . . + ßk-iXk-1A = Yi = y1 + ei 

/3o*o2 + ßiXn + ß2x22 + . . . + ßk-iXk-i,2 = Y2 = y2 + e2 

(6-11) 

ßox0n + ßi.xln + ß2x2n + ... + ßk-\Xk-i,n = Yn = yn + e„ 

where eu e2, . .., en denote the errors of the Y's as measured values of the corresponding true y's. 
When the number of observational equations exceeds the number of unknown coefficients, i.e., 
when n > k, the observational equations ordinarily are mutually contradictory; that is, the values 
of ßo, ßi, . . ., and ßie-i implied by any chosen solvable selection of k of the equations do not satisfy 
one or more of the remaining n — k equations. Hence, there is a need for best estimates of the ß's 
based on the data as a whole. 

For a unique least-squares solution, n must not be less than k, and the normal equations (6-9) 
must be uniquely solvable. If not, some variables must be deleted or suitably combined with other 
variables. 

6-3.2    DISCUSSION OF PROCEDURES AND EXAMPLES 

In setting forth the steps in the solution, the formulas are given in the usual algebraic notation 
and also in matrix notation where appropriate. 

Data Sample 6-3.2, selected for arithmetical simplicity, serves to illustrate the worked examples 
of numerical procedures involved in estimating the coefficients of, and in answering various questions 
about, multivariable functional relationships. 

Data Sample 6-3.2 

X\ x2 Xz                      y 

18 12 
2 8 7                              4 
2 6 0 4 
3 12 4 
4 2 7 3 
4 5 13 

We assume that these data correspond to a situation in which the functional dependence of y on 
Xi, x2, and x3, is of the form 

y = ßiXi + ß2x2 + ß3x3, (6-12) 

which is a special case of Equation (6-1) with the term ßoX0 omitted; i.e., with ß0 taken equal to 
zero. Equation (6-12) implies that the functional dependence of y on xu x2, and x3, takes the form 
of a hyperplane * that passes through the origin (0, 0, 0, 0) of the four-dimensional Euclidean space 

* A flat surface in four or more dimensions is termed a hyperplane when it is the locus of points that vary in more 
than two dimensions. 
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whose coordinates are Xi, x2, x3, and y. If we wished to allow for the possibility that the dependence 
of y on Xi, xir and x3, may take the form of a hyperplane that intersects the y-axis at some point 
(0, 0, 0, ßo), not necessarily the origin, then we would substitute 

y = ßoXo + ßiXx + ß2x2 + ß3x3 

for Equation (6-12), and take x0 = 1; i.e., amend Data Sample 6-3.2 by adding an x0 column of l's. 

By analogy with Equations (6-11), Data Sample 6-3.2 and the assumed functional relationship 
Equation (6-12) can be summarized symbolically by observational equations of the form 

ßiXu + ß2X2X + ß3X3i =  Yi 
ßiXa + ßiXn + ßsX32 = Y2 

(6-13) 

ß&u + ßiXit + ßzXu = Ye 

Substitution of the values of the x's and Y's of Data Sample 6-3.2 in Equation (6-13) gives 

ft-1 + &-8 + fc-1 = 2 
ft-2 + ft- 8 + ft-7 = 4 
A-2 + ft-6 + ft-0 = 4 (6-14) 
ft-3 + ft-1 + ft-2 =4 
ft-4 + ft-2 + ft-7 = 3 
ft-4+ ft-5 +ft-1 = 3 

as the observational equations corresponding to Data Sample 6-3.2. 

6-3.3    PROCEDURES AND EXAMPLES 

Step 1 Procedure—Formation of Normal Equations.   The normal equations are formed from the 
sums of squares and cross products as follows: 

ftSa^ + ftSZoZi + . . . + ßk-i?X&k-i = 2ZoY 
ftSXiXo + ft2z? + . . . + ßk-iZx&k-i = SxjY (6-9) 

ßaZXk-iXa + ßiZXk-iX! + . . . + ft_i2zf-i = XXk-iY 

or in matrix form 

X'Xß = X'Y =Q (6-9M) 

where   Q' = (qu q2, . . . , q,), 

and       qj = S */< Y,, 0' = 0, 1, ..., fc - 1). 
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Step 1 Example—Formation of Normal Equations.    The normal equations (See Equations (6-9)) 
corresponding to the observational equations (6-13) are 

0i Sxjj + 02 2XiX2 + ft SXiXa = 2xj7 
01  2XiX2   +  02  2X2   +  03  2X2^3 

ßl  2XlX3  + 02 2X2X3  + 03  2X3 

or in matrix form 

X' X 0 = X'Y 

2x2 Y 

2x3 Y 

(6-15) 

(6-15M) 

where 0 = 0i 
02 
03 

Numerical evaluation of the requisite sums of squares and sums of cross products for Data Sample 
6-3.2 and substitution in Equation (6-15), yields 

01-50 + 02-67 + 03-53 = 54 
0i-67 + 02-194 + 03-85 = 97 
0i-53 + 02-85   + 03-104 = 62 

and the matrices involved in Equation (6-15M) become 

53 
85 

104 

(6-16) 

(X'X) = Xxl 2^X1X2 Z/X1X3 = 
4^X1X2       Z,X>2            Z/X2X3 

2^X1X3       Z/X2X3       ^-^3 

(X'Y) = -2XiY~ 
2x2 Y 

_ r54~ 
97 

= 
92 

L2x3y_ _62_ _«». 

50 67 
67 194 
53 85 

(6-16M) 
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Step 2 Procedure—Solution of Normal Equations.    Equations (6-9) can be solved by a number of 
methods giving values for ß0, $i, ß2, ■ . ■, which can be expressed as 

0o = Coo^o + Coitfi + . . . + Co,k-iqk-i 

@i = Cio<7o + Cntfi + . .. + Ci.i-ig*-! (6-17) 

ßk-i = CA-I.O^O + c*_i,i9i + ... + c*-i,*-i?*-i. 

A solution for the $,-'s can be arrived at without explicitly computing the c,/s, of course, but in 
the following computations the c,-/s are needed. The values of the c,-/s depend only on the sums 
of squares and cross products of the independent variables x0, xh .. ., xk, so that the estimates of 
the ßi's can be expressed as a linear function of the Y's. 

In matrix notation, this step is given by computing the inverse of the matrix of normal equations, 
i.e., 

iX'X)- Coo 

Cio 

Coi 

Cii 

_C*-1,0      Clc-1,1 

and Equations (6-17) become 

ß = (X'X)-iX'Y 
= (X'X)-^Q. 

Co,k-l 

Ci.t_i 

C*-i,t-i 

(6-17M) 
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Step 2 Example—Solution of Normal Equations.    The values ßu ß2, and ß3, that constitute the 
solutions of the normal equations can be expressed (See Equations (6-17)) in the form 

ßi = Cn <?i + Ci2 g2 + c13 q3 

= Cn-54 + c12-97 + c13-62 
h = C21 qi + c22 q2 + cn qs (6-18) 

= Cji-54 + c22-97 + c23-62 
& = c3i qi + c32 q2 + c33 93 

= C31-54 +c32-97 + c33-62 

where the c's are the elements of the inverse matrix 

(X'X)-1 = 

(X'X)~l may be computed in many ways. *   The exact inverse of the matrix {X'X) determined by 

C11 C12 Cl3 

C21 C22 C23 

Cn C32 C33 

the first equation of Equations (6-16M) is 

12951        -2463 
(X'X)-* = 

239418 

-4587 
-2463 2391 -699 
-4587 -699 5211 

where the factor in front of the matrix is to be applied to the individual terms in the matrix 

Using the first equation of Equations (6-18), we get 

« 1 

(6-18M) 

1     239418 
1 

239418 

176049 

{(12951) (54) + (-2463) (97) + (-4587) (62) j 

{699354 - 238911 - 284394} 

239418 

= 0.735 320 652. 

The other coefficients are obtained similarly: 

& = 0.232 175 526 
& = 0.031 664 286. 

The prediction equation, therefore, is 

f = 0.735 320 652 x1 + 0.232 175 526 x2 + 0.031 664 286 z3. 

* The advent of automatic electronic digital computers has reduced the inversion of matrices of even moderate size 
to a matter of seconds. Routines for matrix inversion are standard tools of automatic computation. In contrast, 
matrix inversion by desk calculators is a time-consuming and tedious affair. Detailed illustration at this juncture of 
any one of the common methods of matrix inversion by desk calculator would not only constitute a distractive interrup- 
tion to the orderly presentation of the essential features of this Chapter, but would lengthen it considerably. The two 
most common methods of matrix inversion by desk calculator—the Doolittle method, and the abbreviated Doolittle method 
(also called the Gauss-Doolittle method)—are described and illustrated by numerical examples in various statistical 
textbooks, e.g., in Chapter 15 of Anderson and Bancroft/2' Details of the square-root method, favored by some com- 
puters, are given, with a numerical illustration, in Appendix 11A of O. L. Davies' book.(3) All of the common methods 
of matrix inversion by desk calculators are described in considerable detail, illustrated by numerical examples, and 
compared with respect to advantages and disadvantages in a paper by L. Fox, Practical Solution of Linear Equations 
and Inversion of Matrices, included in Taussky.*4' Reference also may be made to the book of Dwyer.(6) The reader 
of this Handbook who is faced with matrix inversion by desk calculator is referred to these standard sources for guidance 
and details. 
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Step 3 Procedure—Calculation  of Deviation  Between  Predicted and  Observed Value of the Y's. 
The predicted value Yt at a given point (xoi, xu, . . . , xk-liit Y,) is given by substituting the values 
of x in the prediction equation, i.e., 

?i = ßoXoi + ßiXu + ßiXa + . . . + ßk-iXk-i,i, 

and the residuals r< = Y< — F,- are given by 

ri = Yi - Fi = Yi - (ßoZoi + ßiXn + . . . + ßk-iXk-i,i) 
r2 = Y2 - ?2 = Y2 - 0oxa2 + f3iX12 + . .. + iik-iXk-ui) 

(6-19) 

r„   =   y„  -   Yn   =   Yn   -   (^oXon  + $iXln  +  • • •   + ßk-lXk-l,n) 

or in matrix notation 

r = Y - Xß 

where 

r2 

(6-19M) 

r„ 

In classical least-squares analysis, Y, is termed the adjusted value of the observed value Y,. It is 
important to distinguish between the errors of the Y, with respect to the corresponding true values 
yt, and the residuals of the Y; with respect to their adjusted or predicted values Yt ; that is, between 
the ef of Equations (6-11) and the rt of Equations (6-19). 

Step 4 Procedure—Estimation of a2.    The estimate s2 of (r2 is computed from 

1 
s2 = 2r2 

» — A; 
(6-20) 

or in matrix notation 

1 
n — k ix'r) (6-20M) 

-5T=*<y'r-™. 
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Step 3 Example—Calculation of Deviation Between Predicted and Observed Value of the Vs.    The 
predicted or adjusted values Yt corresponding to the observations Y{ are obtained by substituting 
the values of the x'& into the prediction equation. For the first observation, substituting xn = 1, 
«2i = 8, xn = 1 leads to 

Yi = 0.735 320 652 (1) + 0.232 175 526 (8) + 0.031 664 286 (1) 
= 2.624 389 146. 

The corresponding residual is 

r, = Yi - Y, 
= 2 - 2.624 389 146 
= -.624 389 146. 

The full data, the corresponding predicted values (Y,-) and their residuals (r<), are: 

Residuals 
i xu Xn «3i Y< f< Ti 

1 1 8 1 2 2.624 389 146 -.624 389 146 

2 2 8 7 4 3.549 695 514 .450 304 486 

3 2 6 0 4 2.863 694 460 1.136 305 540 

4 3 1 2 4 2.501 466 054 1.498 533 946 

5 4 2 7 3 3.627 283 662 -.627 283 662 

6 4 5 1 3 4.133 824 524 -1.133 824 524 

Step 4 Example—Estimation of <r2.    The estimate s2 of a2 may be computed directly from the sum 
of squared residuals.    Thus, 

1     Sr2 

n — k 

= | (5.808 473 047) 

= 1.936 157 682 

where n is the number of observational points (here 6) and k is the number of coefficients estimated 
from the data (here 3).   Alternatively, s2 may be evaluated from 

s^^jsY'-S/HJ 
1      {70 - (0.735 320 652) (54) - (0.232 175 526) (97) - (0.031 664 286) (62) j 

6-3 

= | (5.808 473 038) 

= 1.936 157 679. 

Extracting the square root gives 

s = 1.391 4588. 
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Step 5 Procedure—Estimated Standard Deviations of the Coefficients. The estimated standard 
deviation of 0\ is given by sVöii, where c« is the ith diagonal term of the inverse of the matrix of 
normal equations 

est. s.d. of /3o = sVcöö 
est. s.d. of ßx = sVcn 
est. s.d. of & = s\/fe 

(6-21) 

est. s.d. of ßk-i = sVck-i.k-i. 

^ Step 6 Procedure—Standard Deviation of a Linear Function of the 0's.    The standard deviation of 
L = a0ßo + ai0i + «202 + ... + a*-i/3*-i is-estimated by 

jh-l   k-1 

est. s.d. of L = s^/22 S to&fia (6-22) 
\ i=0 ,-=o 

or in matrix form 

est. s.d. of L = sVl'(X'X)-H (6-22M) 

where I' = (a0,ai, . .., a*-i). 

Cases of special interest are: 
(a) estimate of a single coefficient, i.e., L = ßi, in which case Equation (6-22) reduces to Equa- 

tion (6-21); 
(b) estimate of the difference of two coefficients, i.e., L = 0,- — 0,, in which case Equation (6-22) 

becomes 

est. s.d. of (0\ - ßi) = sVcu + en - 2cij. (6-23) 

Step 7 Procedure—Standard Deviation of a Predicted Point.    Using the results of Step 6, the pre- 
dicted yield fi,, at any chosen point (x0k, xlh,..., xft_1>Ä), is given by 

?h = ßoXoh + ßlXih + . . .  + ßk-l,Xk-i,h 

which is a linear function of the 0's.   Application of Equation (6-22) leads to 

est. s.d. of Yh = sA/2 XI ZihXihCij (6-24) 
\ <=0   j=0 

or in matrix notation 

est. s.d. of fh = sVl'(X'X)-H (6-24M) 

where I' = (x0h, xlh, ..., z*_i,0 
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Step 5 Example—Estimated Standard Deviations of the Coefficients.    The values of the estimated 
standard deviations of the $'s are: 

Coefficient Cu 

Estimated 
Standard Error of 
Coefficient, s\/c^( 

ßi 

A 
ft 

.232 581 

.099 934 

.147 531 

.323 627 

.139 054 

.205 283 

Step 6 Example—Standard Deviation of a Linear Function of the Coefficients.    For illustrative pur- 
poses, consider L = /32 — 10 ft. 

By Equation (6-22), or Equations (6-22M), 

est. s.d. of L = sy/c^i + 100 c33 — 20 c23 

in matrix notation 

est. s.d. of I = sVl'(X'X)-H 

with I' = (0, 1, -10). 

Numerical evaluation in this instance gives 

/537471\* 
est. s.d. of L = 1.391 4588 (23941g) 

= 2.0848. 

Step 7 Example—Standard Deviation of a Predicted Point. By Equation (6-24), or Equation 
(6-24M), the estimated standard deviation of the predicted yield Yh, corresponding to any chosen 
point (xu, x2h, Xsh), is given by 

est. s.d. of Yh = S-/2 S xi^ihCij 

or in matrix notation 

f„ = sVl'(X'X)-H 
where V = (xlh, x2h, xih). 

Thus, the estimated standard error of Yu the predicted or adjusted yield corresponding to the 
first observational point (1, 8, 1), is 

est. s.d. of fi = s[cn + 8c12 + cn + 8c2i + 64c22 + 8c23 + c3i + 8c32 + c33]4 

0.949 235. 
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Step 8 Procedure—Analysis of Variance Test of Significance of a Group of p < k of the Coefficients. 
To test the statistical significance of a set of p of the ß's (for simplicity the last p), start with a 
reduced set of normal equations, omitting the last p rows and columns, and repeat Steps 2, 3, and 4, 
as a problem with (k — p) variables: 

(a) The equations in Step 2 then are reduced to 

2zj$0 + . . . + Xxak-p-ißk-p-i = Qo 

(6-25) 

2iXoXk-p-ißo + • • • T 2Xk-p-ißk-p-i = Qk-p-i 

and its solution becomes 

00    ~   C00<7o  +  • • •   + C0 ,*-J>-l9*-J>-l 

ßk -J>-I 
= ci ,k-p-iQo + . . . + Cfc _p_i ,k-P-iqk-p-i • 

(6-26) 

(b) These values c* will, in general, be different from the ci; for the original equations, so that 
new coefficients 

Po >  Pi »  P2 »  • • • » P* —p—1 

will result. 

(c) A new value of s2, say s*2, is computed from 

**' = w-»-p) j272 -   V1 $r «\ ■ (6"27) 

These operations can be handled conveniently by matrix methods.    Paragraph 6-9 contains a 
further discussion of "Matrix Methods." 

An Analysis of Variance table is formed as follows: 

d.f. Sum of Squares     Mean Square 

Total n 2Y2 

Reduction due to k constants k 
*-i 

Z5 ßi ?.- 
0 

X 

Residual (after k constants) n — k 2Y2 - 2 ft qi 
0 

s2 

Reduction due to k — p constants k — p "IE1 P? * 
0 

A 

Residuals after k — p constants n — (k — V) 
k-p-\ 

2Y2 -   S   ft* Qi 
0 

s*° 

Reduction due to additional p constants V S ft «< - Z) w fc 
0                            o 

P 

If the j/'s are normally distributed about their expected values, then 
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Step 8 Example—Analysis of Variance Test of Significance of Last Coefficient.    The  required 
Analysis of Variance table is: 

d.f.       Sums of Squares Mean Square 

Total 6 70.000 000 

Reduction due to 3 constants (ßu j§2, and ß3) 3 64.191 527 21.397 176 = K 

Residuals (after 3 constants) 3 5.808 473 1.936 158 = s2 

Reduction due to & and /§, only 2 64.145 461 32.072 730 = A 

Residuals (after & and &) 4 5.854 539 1.463 635 = s*2 

Reduction due to ß3 1 .046 066 .046 066 = P 

As implied by Equation (6-27), the sum of squares for the reduction due to ßx and ß2 only = 
ß* qx + ß* q2, where ß* and ß* are the estimates of ßi and ft> that are obtained when ß3 is taken equal 
to zero; i.e., when the underlying functional relation is taken to be y = ß&i + ßix%. 

The steps required to evaluate ß* and ß* are 

(x;z,) = [67    19^J 
(X,X)-, _ J_ r 194        -671 
{Ji A)     ~ 5211 L-67 50j 

™ - [S] - [:;] 
[£*] = (Z'Z)-i [X[Y] 

_ _J_ [ 194        -67") [54] 
5211 L-67 50j[_97_|. 

They yield 

ß* =0.763 193 245 
ft = 0.236 422 951. 

Hence, reduction due to ß* and ß* only is given by 

(0.763 193 245) (54) + (0.236 422 951)(97) = 64.145 461 

as shown in the Analysis of Variance table. 
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Step 8 Procedure (Cont) 
jr 

(a) F = — is distributed as F with d.f. = k, n — k, and serves as a test of whether all k constants 

account for a significant reduction in the error variance. 
p 

(b) F = -; is distributed as F with d.f. = p,n — k, and serves as a test of whether the addition 
o 

of the p coefficients accounts for a significant reduction in the error variance over that accounted 
for by the first k — p constants. 

NOTE: In cases where a constant term is involved (i.e., Xoi = 1) we would use 

F- ?   :     - 
which is distributed as F with (k — 1) and (n — k) degrees of freedom as a test for the efficacy of the 
prediction equation. 

Step 9 Procedure—Confidence Interval Estimates.    Li and L2 constitute a 100 (1 - a) % confidence 
interval estimate for: 

(a) a coefficient ßit 

when Li = ßi — tn_k,a (est. s.d. of /§,) 
Li = ßi + L-k,a (est. s.d. of ßi); 

(b) a predicted point on the curve Yt-, 

when Li = ?i — tn-k,a (est. s.d. of f() 
L2 = fi + tn-k,« (est. s.d. of ff); 

(c) a difference of two coefficients ß{ — /§,-, 

when Li = {ßi - ßj) - tn^k,a (est. s.d. of ßt - ß}) 
L2 = (ßi - ßi) + t„-k,a (est. s.d. of ßi - ßj). 

In the above, <„_*,„ is the value of Student's t for (n — k) degrees of freedom exceeded with 

probability |. 
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Step 8 Example (Cont) 

The test of significance for ß3 is 

s 

.046 060 
1.936 158 

= .024, d.f. = 1, 3. 

The value of F(l, 3) exceeded with probability .05 is 10.13.    The observed F does not exceed 
this critical value, so that ß3 is not regarded as being statistically significantly different from zero. 

Step 9 Example—Confidence Interval Estimates.    For ßu the 95% confidence interval estimate 
Li < ß\ < Li is determined by 

Li = ßi — ts, .05 (est. s.d. of fr) 
= 0.735 320 652 - 3.182 (.323 627) 
= -.294 460 

In = & + t3, .05 (est. s.d. of &) 
= 0.735 320 652 + 3.182 (.323 627) 

= 1.765 102 

where t3,M = 3.182 is the value of Student's t distribution for three degrees of freedom exceeded 
with probability .025 (or exceeded in absolute value with probability .05). 

6-4    MULTIPLE MEASUREMENTS AT ONE OR MORE POINTS 

More than one measurement may be made at some or at all of the values of the independent 
variable x. This usually is done when the random errors are suspected of being composed of two 
components—one component associated with the variation of the points about the curve, and the 
other component associated with the variation of repeat determinations. The jth. measurement at 
the ith. point then can be represented as 

Yij = fttfoi + ß&u + • • • + ßk-iXk-i.i + a + i\u (6-28) 

where the e's and ij's are independent and have variances <r2 and v\, respectively. 

If a number p< of repeat determinations are made at each of the n points, the estimation of o-2 

and c\ follows from a modification of the Analysis of Variance table: 
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Total 

Reduction due to fitted constants 

Residual (after fitted constants) 

Repeat determinations 

Variations of averages about the curve 

Sum of Squares d.f. Mean Square 

<=1 ,'=1 
±)p« 

i 

S ßi (2x,T) = C 
i=0 

ft C/ft 

T -C = R Vpi - k R/(XPi - k) 

LS(y«- F,)
2
 = EO 2p,- — n Evf&Pi - n) 

R — Eo = E\ it — k Bi/(n - ft) 

The expected value of E0/(2p< - n) is <r0
2, and the expected value of EJ{n - ft) is «r2, + p<r2, 

where all the p< are equal to p. 

The quantity [Et/(n - k)]/[Ea/(2p{ - n)] = F is (under the assumption of a normal distribution 
for the e's and ij's) distributed as F, if ff

2 = 0, with n - ft and 2p, - w degrees of freedom, and may 

be used to test the statistical significance of the component of variance associated with the *'s by 
comparing the observed F value with tables of the F distribution. 

If all the pi are equal, the proper variance estimate to use in calculating the standard errors, or 
confidence intervals of the estimated constants, is Ei/(n — ft). 

6-5    POLYNOMIAL FITTING 

If it can be assumed that the relation between the dependent variable Y and the independent 
variable x is 

Yi = ft + ßixt + ftz? + ... + ßk-ix*'1 + u (6-29) 

and that the errors of measurement e, are independent and have the same variance a2, then the 
techniques for multiple regression carry over without change, by setting: 

Xo»   =  lj Xu  = Xi) X2i  = X,J . . .  J Xk—l,i  = Xj 

The normal equations are 

nß0 + 2xßi + 2x2A> + . . . + 2xt-1fr_1 = 2Y 
2x/3o + 2*20i + 2x302 + . . . + Sx%_! = 2x7 (6-30) 

2x*"1/3o + 2x% + 2x*+1|32 + . . . + 2xik~2ßk-i = 2x*-1Y. 

Note that if the constant term is assumed to be zero, variable x0 is dropped, and the first row and 
column are dropped from the normal equations. - 
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In using a polynomial as an approximation to some unknown function, or as an interpolation 
formula, the correct degree for the polynomial usually is not known. The following procedure 
usually is applied: 

(a) Carry through the steps in fitting polynomials of 2nd, 3rd, 4th, 5th, .. . , degrees. 
(b) If the reduction in the error sum of squares due to fitting the kth degree term is statistically 

significant on the basis of the F-test, whereas the similar test for the (k + 1) degree term is not, 
then the kth degree polynomial is accepted as the best fitting polynomial. 

In this procedure, the degree of the polynomial is a random variable, and repetitions of the experi- 
ment will lead to different degree polynomials. When the law is truly polynomial, the computed 
curve will either be of correct degree and hence will give unbiased estimates of the coefficients or, 
if   ot of correct degree, will lead to biased estimates. 

Whea the law is not exactly a polynomial, the error distribution for the Y's will be centered 
around a value off the curve, and it will be difficult to assess the effect of such systematic errors. 
In the limiting case, where the variance of the Y's is nearly zero, these systematic errors will be 
treated as the random error in the measurements. Usually, it will not be valid to assume that these 
systematic errors are uncorrelated. On the other hand, if these systematic errors are small relative 
to the measurement error, their effect probably can be neglected. 

6-6    INEQUALITY OF VARIANCE 

6-6.1    DISCUSSION OF PROCEDURES AND EXAMPLES 

When the measurements Yi have different precision, i.e., when V(Y<) = <s\ and <nx T^ a^ for at 
least one pair of subscripts 1 < ix < i2 < n, the conditions of the least squares theorem of Para- 
graph 6-2 are not satisfied.   However, the transformed variates 

y. 
Yi =± 

have a common variance V(Ft') = 1. Often, we have information on the relative magnitudes of 
the variances a\ only, and not on their absolute magnitudes. If the variances a\ are expressed 
in the form 

A = f, (6-31) 

then Wi is termed the relative weight* of the measurement Yit and the quantities Y* = v w< F< 
have common variance o-„, the magnitude of which may be unknown. In other words, equality of 
variance is achieved through weighting the observations by quantities proportional to the reciprocals 
of their standard deviations. 

: The absolute weight of a measurement is, by definition, the reciprocal of its variance. 
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6-6.2    PROCEDURES AND EXAMPLES 
Procedures—The equations representing the expected values of the Y* are 

E(Yf) = VwiECTi) 
= ßoVvü Xoi + ßiVwi Xu + ... + ßk-iVwi Xk-i,i (6-32) 
= /So X& + ßi X% + . . . + ßk-i Xf-i,i 

where    a;*- = Vwi a;,,. 

The normal equations for the estimation of the ß's are 

2 w xl ß0 + 2 w XoOJi/S! + ... + 2 w ZoZt-iAfc-i = 2 w x0Y 
2 w Xoa;i/3o + 2 w x\ßi + ... + Z« XiXk-ißk-i = 2 w XiY (6-33) 

2 w avc*-i0o + 2 w a;ia;A_i/3i + ... + 2 w 4-A-i = 2 w %_iY 

The estimate s2 of tr2, is given by the usual formula 

S2 = '=1     V"1 / (6-34) 
» — k 

which may be written, in terms of the original variables, as 

S2 = 2r2w< 
n — k 

2 WiY\ - 2 ß i I X) w, Xu Yi 1 

w — k 
(6-35) 

Note that in the case where the value of (r2, is known, we may perform a test of significance of 
s2 

the closeness of the observed estimate to the known value by forming the ratio F = -= and 

comparing this value with the 100 (1 — a) percentage point of the F distribution f or n — k and °o 
(n   _   ](\ S2 

degrees of freedom; or, equivalently, we may compare x2 = -2  with the 100 (1 — a) 

percentage point of the x2 distribution for n — k degrees of freedom.    Restatement of the foregoing, 

using matrix notation, goes as follows: 

If Var (Yi) = Diag (<rf, <& ..., <r2) 

= a? Diag (—,—,..., —), 

then the transformed variates 

7* = Diag (Vwi Vw2. . . Vw~n)Y = WY   and 
X* = Diag (Vi»i Vw2... VwJX = WX 

satisfy the requirements of the least squares theorem of Paragraph 6-2, and the normal equations are 

{X*)'(X*)& = (X*)'Y*   or, 
X' W2 X ß = X' W2 Y. K ' 
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The estimate of ojj is given by 

s2 = -~ {Y*' Y* - $' (X*)'Y*\    or, 
lb fC 

(6-34M) 
,     r'W*r 

n — k 

Examples—Fitting Straight Line Relation (Variance of Y Proportional to Abscissa).    Consider the 
estimation of the coefficients of a line where 

y = a + ßXi, 

and where Var(Yj) = <r2xit i = 1, 2, . .., n.   The equations of expectation are 

B(70   = a + ßXi 
E(Yi)  = a + ßx2 

E(Yn) = a + ßxn 

<$n + ß2x = zYi 

Direct solution of these equations gives 

-^ - s Yt (s -) 
Xj \     Xj) 

= ^L^\V-&-^>\ 

(6-36) 

Transforming to Y* = Yi/y/xi, gives 

E(j?) = -2= + /JVS; 
VXI 

E(Y2*) = -2= + pV£ (6-37) 

B(y*) = -s= + ^vs; 

and the normal equations for estimating a and ß become 

Xi (6-38) 

» s — - s Yi 
ß = S -^^pZ (6-39) 

d = " 2 Yi ~ *** %'{* (6-40) 
n2 - (Sx.) 2 ^-J 

and for the estimate of a2, 

(6-41) 
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6-7    CORRELATED MEASUREMENT ERRORS 

6-7.1    DISCUSSION OF PROCEDURES AND EXAMPLES 

If the errors of measurement are not independent but instead are correlated so that they have 
covariances 

Covar (Y,-,Yy) = <ri3- = <r„- (6-42) 

and variances 

Var (Y.) = a?, 

then a transformation of the variables Yu Y2, . .., Yn, to new variables Yf, Y*, . . ., Y*, is 
required so that the method of least squares may be applied. In some simple cases, a transformation 
in the form of sums and differences of the original variables immediately suggests itself, and the 
expected values of the new variables are computed easily. The example used to illustrate the 
techniques presented in this Paragraph is such a case. 

6-7.2    PROCEDURES AND EXAMPLES 

Procedures—The variances and covariances may be represented by the n X n variance-covariance 
matrix 

V = <»1 012 ... (Tin 
2 

012 "s ... 02n 

_0nl Cn2 

(6-42M) 

Assuming V to be of full rank, i.e., determinant of V is not zero, it is possible to factor V into the 
product 

V = TT' (6-43M) 

where T is lower triangular and T' is the transpose of T. The required transformation then is 
given by 

Y* = T-1 Y       and       X* = 71-1 X (6-44M) 

where (Y*)' = (Y*, Y*, . . . , Y*) is the vector of transformed variables and Y' = (Yu Y2, . . . , Y„) 
is the vector of original variables. X* and X are the matrices representing the equations of 
expected values of the transformed variables and of the original variables, respectively. (See 
Paragraph 6-9 for the method of computing T and T_1). 

The normal equations then are 

(X*)'(X*) $ = (.y*)' Y* (6-45M) 

or, in terms of the original variables, 

X'V-'X ß = X'V-i Y, (6-46M) 

and the estimates of the 0's are given by 

ß = [(XY(X*)]->(X*)'Y* 
= (X'V-'X^X'V-'Y. \ptim.) 

The variance estimate 
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Procedures (Cont) 

is an estimate of unity when the variances and covariances are known.    This may be written as 

1-r {Y'V-iY -ß'X'V^Y] 
* (6-48M) 

n 

where r is the column vector of deviations, r = Y — Xß. 

If, instead of V, a matrix with entries proportional to the variances and covariances is used, say 

W ='-iV, then s2 is an estimate of <r\. 

Examples—Parabolic Relationship with Cumulative Errors.    If the errors of measurements of Y at 
successive x values in a case of a parabolic law Y = ft + ftx + fta;2 are cumulative, i.e., 

Yi = ft + ftXi + ftx? + €, 
Y2   = ßo + ftX2   + ftx|   + «1 +  e2 

Y„ = 

then E(Y) - 

ft + ßixn + ftx* + 23 «•• 
l 

Xi 

x2 x^ 

ft 
ft 
ft 

= Xft 

If all the «'s are from the same distribution, 

then Var (Y.) =   i • <r2 

Covar (7, Y,) = jj. 
;' < i 

and the variance covariance matrix becomes 

<7' 

<T2 

y = <r2 1 
2 
2 

1 
2 
3 

12       3 n 

Taking W = —t V, the necessary transformation is given by factoring W into W = T T'. 
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6-7.2    PROCEDURES AND EXAMPLES  (CONT) 

Examples (Cont) 

A little computation gives 

W = TT' 

W~l = (T')-lT~l = 1 0 0 0 '   1 
1 -1 0 0 -1 1 

1 -1 0 0 -1 1 

1 -1 0 0 0 1 
1_ L    0 0 0 -1 

2 
-1 

-1 
2 

-1 
-1 

2 -1 

-1 2        -1 
-1 1 

which, for the transformed variate, gives 

Y* = T~l Y — 1 
-1 
0 

1 
-1 

0       0 -1 

~YC 
Y2 

Y3 

1_ Y»_ 

Y1 

Y2 

Y3 

Y1 

Y, 

Yn      —   Yn-\ 
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Examples (Cont) 

and 

X* = T-'X = 1 
-1 
0 

1 
-1 

0       0 

1 Xi x\ 
0 Xi  — X\ Xjj        xl 

0 X3   — Xi *3          ^2 

0 Xn         Xn_i Xn         *Cn—1_ 

-1 

1 Xi 

1 x2 

1 Xz 

L-1 

xl 

Note that Y* = Y,- - Y,_, 
= (x< - x<_i)jS0 + (x' - x?-i)0i + «, for i > 2 

and Y* = Yx; 

hence, the Y*'s have the same variance, and have zero covariances. 

The normal equations become 

X*'X*ß 1 Xi 

Xi        A. + S (x* - x,_i)2 

x?       x\ + S (Xi - Xi_i) (x? - a;?_i) 
2 

x? 
n 

x? + S (x,- - Xi_!) (a;? - a;f_1) 

xl + S (x? - x^O2 

2 

"Y, 

asiYi + £ fa - *.-i) W - ^«-0 

zJYi + S (xf - x?_i) (Y, - Y«) 
2 
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6-7.2    PROCEDURES AND EXAMPLES (CONT) 

Examples (Cont) 

or, in terms of the original matrices X'W~lXß = X'W~lY, give 

1      1 1 
x« 
xi 

2      -1 
-1 2      -1 

-1 2      -1 

-1 2 
-1 

1        Xi 

1     x2 

1     x3 

4 

A 

X. Xn %n 

l     1 
Xi       X2 

_x\     a% 

1 

x, 

Xn_ 

2 
-1 

-1 
2 -1 

-1 »■J 

rYi 
Y2 

Ys 

Yn 

which, upon multiplication, will be seen to give the same normal equations as above.    If the analysis 
is carried out in terms of the transformed variables, a2 is estimated by 

s2 = 
2Y*S - 2,3, (s *% Y;\ 

n - 3 

or equivalently, in terms of the original variables, by 

s2 = —^ {Y'W-'Y - ß'X'W-tY). 

6-8    USE OF ORTHOGONAL POLYNOMIALS WITH EQUALLY SPACED x VALUES 

6-8.1    DISCUSSION OF PROCEDURES AND EXAMPLES 

The fitting of a polynomial 

Y = ßo + ßix + ft,*2 + ... + ft-,**-1 (6-49) 

to observations at n equally-spaced values of x (spaced a distance D apart) can be simplified by 
transforming the x's to new variables £„, f(, .. ., &_u which are orthogonal to each other. 
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The variables then become 

ft =    &> - 1 

Xi — X 
& = Xi£i  where &   = D 

(j..   _   ,g\2 n2       1 
' D        )     ~ 12 

S . x,6   where b   , (6^)' - (^) (*£1) (M0) 

£2 (w2   _  £2") 
where      &+, = fcfc - 4 (4fc2 _ 1} &-i. 

The X,- are chosen so that the elements of £, are integers. 

By fitting Y as a function 

Y = ao£'o + «i£{ + • • • + <**-i 6L1, (6-51) 

the estimation of the <*'s and the analysis of variance are simplified because the normal equations 
are in diagonal form. 

In order to obtain the estimates of the /3's and their associated standard errors, or to use Equa- 
tion (6-51) for predicting a value for a point not in the original data, an extra calculation but no 
matrix inversion is required. 

Tables of £', X, and 2(£')2 are given by Fisher and Yates(6) for n < 75, and by Anderson and 
Houseman(7) for n < 104 for up to 5th degree polynomials; in DeLury(8) for n < 26 for all powers; 
and in Pearson and Hartley(9> for n < 52 for up to 6th degree polynomials. Table 6-1 is a sample 
from Fisher and Yates.(6) 

To illustrate the calculations, consider the fitting of a cubic to the following (x, Y) points: 

x 

10 3.4 
20 11.7 
30 37.2 
40 80.1 
50 151.4 
60 253.2 
70 392.6 
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TABLE 6-1.    SAMPLE TABLE OF ORTHOGONAL POLYNOMIALS 

3 
P.      P. P.      P. 

5 
P.       {'i P.       Pi PI      P. PI      PI      PI      P.      P. P< P. 

-1    +1 
0    -2 

+ 1    +1 

-3 +1 -1 
-1 -1 +3 
+ 1 -1 -3 
+3 +1 +1 

-2    +2 -1    +1 
-1    -1 +2    -4 
0-2 0+6 

+ 1    -1 -2    -4 
+2    +2 +1    +1 

-5    +5    -5 
-3    -1    +7 

4 
4 
1 

-1 
+ 1 
+ 3 

+ 1 -1 
-3 +5 

+4    +2 -10 
-4    +2 +10 
-7    -3 -5 

-3    +5 
-2       0 

+5    +5    +5    +1      +1 

-1 
0 

+ 1 
+2 

-1 + 3 -1 

+1 -7 +4 

+1 +1 -5 
0 + 6 0 

-1 + 1 + 5 
-1 -7 -4 

-7 
-5 
-3 
-1 
+ 1    -5 
+3    -3 

+7 -7 
+ 1 +5 
-3 +7 
-5 +3 

-3 
-7 

+3    +5    +1    +3    +1 
+5    +1    -5    -13 
+ 7    +7    +7      +7 

+7 -7 
-13 +23 
-3 -17 
+ 9 -15 
+ 9 +15 
-3 +17 

-23 
+ 7' 

2 («')' 20 
2 

10 
1 

14      10     70 
1       $      « 

70     84    180     28     252 28     84       6    154     84 
1 1 1 7 7 
■L -L TJ TJ TJ7J 

168    168    264 
2        1       « 

616   2184 
A      A 

9 10 11 12 

Pi Pi Pi P. Ps P. Pi Pi P. P. Pi Pi Pi P. P« Pi Pi Pi P.                  P. 

0 -20 0 + 18 0 +1 -4 -12 + 18 +6 0 -10 0 +6 0 +1 -35 -7 +28    +20 
+ 1 -17 -9 + 9 +9 +3 -3 -31 +3 + 11 +1 -9 -14 + 4 +4 +3 -29 -19 + 12    +44 
+2 -8 -13 -11 +4 + 5 -1 -35 -17 + 1 +2 -6 -23 -1 +4 + 5 -17 -25 -13    +29 
+3 + 7 -7 -21 -11 + 7 +2 -14 -22 -14 +3 -1 -22 -6 -1 +7 +1 -21 -33    -21 
+4 +28 +14 + 14 +4 +9 +6 +42 + 18 + 6 +4 

+5 
+ 6 

+ 15 
-6 

+30 
-6 
+ 6 

-6 
+3 

+9 
+ 11 

+25 
+55 

-3 
+33 

-27    -57 
+33    +33 

2 (P)2 60 990 468 330 8,580 780 110 4,290 156 572 5,148 15,912 
2,772 2,002 132 2,860 858 286 12,012 8,008 

A 1 3 i T A 2 * 4 TT 1 1 t "12" A 2 3 2 
7 A      A 

13 14 15 

Pi P. P. P. Pi Pi Pi Pi P. Pi P. Pi Pi              P. P. 

0 -14 0 +84 0 + 1 -8 -24 +108 +60 0 -56 0          +756 0 
+1 -13 -4 +64 +20 +3 -7 -67 +63 + 145 +1 -53 -27           +621 +675 
+ 2 -10 -7 + 11 +26 +5 -5 -95 -13 + 139 +2 -44 -49          +251 + 1000 
+ 3 -5 -8 -54 + 11 +7 -2 -98 -92 +28 +3 -29 -61          -249 +751 
+4 + 2 -6 -96 -18 + 9 +2 -66 -132 -132 +4 -8 -58          -704 -44 
+5 + 11 0 -66 -33 + 11 +7 + 11 -77 -187 + 5 + 19 -35          -869 -979 
+6 +22 +11 + 99 +22- + 13 +13 + 143 + 143 + 143 +6 

+7 
+ 52 
+91 

+ 13          -429 
+ 91        +1001 

-1144 
+ 1001 

2 (P)' 182 572 6,188 910 97,240 235,144 280 39,780                  10,581,480 
2,002 68,068 728 136,136 37,128 6,466,460 

X 1 1 i A TTJTF 2 i 4 A A 1 3 3                          31 ¥              fir u 
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TABLE 6-1.    SAMPLE TABLE OF ORTHOGONAL POLYNOMIALS (Continued) 

16 17 - 18 
{'• ('. .'« fi «'« {'i {'. t'l {'. {'6 fi {'■ £'. {'. (\ 

+1 -21 -63 + 189 +45 0 -24 0 +36 0 + 1 -40 -8 +44 +220 
+3 -19 -179 + 129 +115 + 1 -23 -7 +31 +55 +3 -37 -23 +33 + 583 
+5 -15 -265 +23 +131 +2 -20 -13 + 17 +88 + 5 -31 -35 +13 +733 
+7 -9 -301 -101 +77 +3 -15 -17 -3 +83 +7 -22 -42 -12 +588 
+9 -1 -267 -201 -33 +4 -8 -18 -24 +36 +9 -10 -42 -36 + 156 

+ 11 + 9 -143 -221 -143 +5 + 1 -15 -39 -39 + 11 +5 -33 -51 -429 
+13 +21 +91 -91 -143 +6 + 12 -7 -39 -104 + 13 +23 -13 -47 -871 
+15 +35 +455 +273 + 143 +7 +25 +7 -13 -91 + 15 +44 +20 -12 -676 

+8 +40 +28 + 52 + 104 + 17 +68 +68 +68 +884 

2({')'    1,360 1 
5,712 

007,760 
470,288 

201,552 408 
7,752 

3,876 
16,796 

100,776 1,938 
23,256 

23,256 6 
28,424 

953,544 

X           2 1 V A . A 1 1 ¥ A A 2 * i A A 

Note: For n> 8, only the values for positive {', = are given. 

Note: In Table 6-1, only the values for positive {( = —— are given for n > 8. The missing values (n/2 rows for n even and (n — l)/2 

ws for n odd)  must be supplied by using the given   rows in reverse order, changing the sign for odd-numbered £'.   See n = 7 and 
*— 8 for example of this rule. 

cerpt reproduced w*th permission from SlalUticat Tablet far Biological, Agricultural and MtdUal Rtaeareh (5th ed.). by R. A. Fisher and F. Ystes, 
■rieht. 1Ö57. OUver nnoBoyd Ltd.. Edinburgh. 

From Table 6-1, for n = 7 we copy out: 

So H & ü 
-3 
-2 
-1 

0 
1 
2 
3 

5 
0 

-3 
-4 
-3 

0 
5 

-1 
1 
1 
0 

-1 
-1 

1 

3.4 
11.7 
37.2 
80.1 

151.4 
253.2 
392.6 

where 

ä-i 
x — X 

& = 

3 = 

8 = 

10 

Ö-4 

Ö-7fh 

Xo = 1 

X, = 1 

X2 = 1 

X3 = 1/6 

with   x = 40, D = 10. 
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6-8.2    PROCEDURES AND EXAMPLES 

Step 1 Procedure—Form the quantities 

2Y 
S£Y 

(6-52) 

2&-iY 

and, using the values of 2^'2, ?$?, . . . , given in Table 6-1   form the estimates of the 
parameters, a0, on, ,.., as follows: 

<*« = ~w = y 
A   - *&Y 

<S2 = g&Y (6-53) 
2£2 

«i-l   
2&i 

Step 2 Procedure—Calculate the deviations r, from 

r< = Yi - y - <*,£,, - Ail-l.i - ... - <S*_i|fc_i,f. (6-54) 
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Step 1 Example—Using the values copied from Table 6-1, the following calculations are made: 

ZfJY =   929.6 2&2 =   7 
2£Y = 1764.8 2£2 = 28 
2{JY = 1093.8 2£2

2 = 84 
2£Y =     33.5 2^ -   6. 

The estimates of the coefficients in the representation of y as a function of the &, i.e., as 

V = ao£o + otigi + a2^2 + «3^3 

are given by 

<$o = 2£Y/2# =   929.6/7   = 132.8 

& = 2&Y/2&2 = 1764.8/28 =   63.0285 7143 

($2 = 2£2Y/2£2
2 = 1093.8/84 =   13.0214 2857 

<$, = ZgY/Zg1 =     33.5/6   =     5.5833 3333. 

Step 2 Example—The predicted value for the point x = MKs given by substituting its corre- 
sponding values of the f's (£„ = 1, $[ = — 3, £2 = 5, and £g = —1) in the equation 

Y« = 132.8 + 63.028 5714 £ + 13.021 4286 g + 5.583 3333 jj, 
i.e., YM = 132.8 + 63.028 5714(-3) + 13.021 4286(5) + 5.583 3333(-l) 

= 3.238 0955 

leading to a deviation between observed and calculated of 

r10 = 3.4 - 3.238 0955 
= 0.161 9045. 

For the entire set of points, we get: 

Observed 
Y 

Calculated 
Y 

Residual 
r = Y - Y 

3.4 3.238 0955 0.161 9045 
11.7 12.326 1905 -0.626 1905 
37.2 36.290 4761 0.909 5239 
80.1 80.714 2856 -0.614 2856 

151.4 151.180 9523 0.219 0477 
253.2 253.273 8095 -0.073 8095 
392.6 392.576 1905 0.023 8095 
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Step 3 Procedure—The estimate of o-2 is given by 

1 
s2 = 

n -j, {272 - <S„27 - 428Y - ... - dk_^UY} (6-55) 

Step 4 Procedure—The estimate of the standard deviations of the ä's is given by 

s 
s.d. (<*,-) = 

* »=1 

(6-56) 

Step 5 Procedure—The Analysis of Variance table becomes: 

Total 
Reduction due to fitting <*0 

Deviations from fit with a0 

Reduction due to fitting <*i 
Deviations from fit with a0, ay 

Reduction due to fit of a*_i 
Deviations from fit with ao, au . 

d.f. Sum of Squares 

a/c-i 

n 
1 

n- 1 
1 

w -2 

272 

<$„ (27) = A, 
272 - Ä0 

4 (2^7) = Ä, 

272 - Ac - Äi 

1 
n — k 

<S*-i (2|I_i7) = Ät_! 
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Step 3 Example—The estimate of o-2 is given by 

= | (1.676 9048) 

= .558 9683 

s = V.558 9683 

= .7476. 

Step 4 Example—The standard deviations of the coefficients are given by 

s.d. (<S.) = s/Vs^2" 

s.d. (4,) = .7476/V7   = .2826 

s.d. (<$,) = .7476/V28 = .1413 

s.d. (<S2) = .7476/V84 = .0816 

s.d. (d3) = .7476/V6   = .3052. 

Step 5 Example—The Analysis of Variance table becomes: 

d.f. Sum of Squares Mean Square 

Total 
Reduction due to coef. of & 
Residuals from <20£j 
Reduction due to coef. of £| 
Residuals from <$0|„ + &£[ 
Reduction due to coef. of & 
Residuals from <S0fJ + &^[ + &^ 
Reduction due to coef. of £3 

Residuals from &<,£ + . . . + d3^ 

7 249 115.26 

1 123 450.88 123 450.88 

6 125 664.38 20 944.06 

1 111 232.822 86 111 232.82 

5 14 431.557 14 2 886.31 

1 14 242.838 57 14 242.84 

4 188.718 57 47.18 

1 187.041 67 187.04 

3 1.676 90 .5590 
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Step 6 Procedure—Convert to an equation in the original x units by substituting the expressions 
in Equations (6-50) into Equation (6-51).   By writing the /3's as linear functions of the d's, say 

h = £)&«<*., 
the standard deviation can be computed from 

..d. of/5* = ^i±b\ (s.d. of &i)\ 

The following Equations (6-57) show the /3's as a function of the <S's for polynomials up to 5th 
degree. (If a polynomial of 4th degree is used, simply disregard the terms involving <S6; if 3rd 
degree, disregard the terms involving &i and <26; etc.) 

As an example, if a 4th degree polynomial is fitted, the estimate 183 is given by 

ft X3. .   X4   / x\   . 

and the s.d. of ß3 is estimated by 

WW  SÖsT + \D3)  \D) 2W2 

See Equations (6-57) on page 6-36. 

6-34 

Downloaded from http://www.everyspec.com



POLYNOMIAL AND MULTIVARIABLE RELATIONSHIPS     AMCP 706-110 

Step 6 Example—To obtain the equation in terms of the original x variable, i.e., expressing y as 
y = ßo + ßiX + ß2x

2 + ßsx
3, we substitute as follows: 

9 = «.a)+.(^)+w[(^)'-4]+r[(^»y.7(^»)] 

= («, - 4«, + i2«2 - 6a3) + (fö - iöa* + eöa3)x + \m ~ iöo) *'' + 6000 X • 

Substituting the estimated values for the a's gives 

Y = 3.4428 5714 - .299 007 9375 x + .018 547 6191 x2 + .000 930 5556 x3. 

The standard deviations of the ß's are given by 

s.d. of ßo = s.d. of (<$o - 4^ + 12<$2 - 6<$3) 

-^ 
(-4)*      (12)*      (-6)' 

^    28    r   84   +     6 

-V? 
= 2.170 

sdofj51 = ^  /^-2 + 1=48)! ,gl)! s.a. oi pr     60^28 +    g4    +   6 

= .2190 

'»■«t'-mJk^F 

s.d. of /33 = 

= .006 158 

s      1 
6000 V6 

= .0000 5087. 
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6-9    MATRIX METHODS 

6-9.1    FORMULAS USING TRIANGULAR FACTORIZATION OF NORMAL EQUATIONS 

The matrix for the left-hand side of normal equations can be factored into (X'X) = TT' where 
T is lower triangular, so that (X'X)~l = (T')"1 T"1 = (T-1)' T~K 

Thus, ß = (T-1)' (T-K)) where Q = X'Y. 

Denote the column vector T~*Q by 

92 

Lff*J 

Therefore, ß = (T~l)'g. 

This representation leads to certain simplifications, e.g.: 

(a) The estimate of a2 is given by 

s2 - ;nh(y,y - *'«> 
= ^hc(7T - ^T~1Q) 
= rb v'Y ~ ^ 

(b) The variance of a linear function, L = a'ß of the ß's is given by 

s2 (o' (T-1)' T-'a) = s2 (r->o)' (r->a) 

= s2 2fc2 

when ft = 'hC] = T-ki. 
hi 

(c) The reduction in sum of squares due to fitting the last p constants is 

k-p+l 
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This formulation also permits us to make a detailed Analysis of Variance table. An important 
caution is in order. The reduction due to the addition of ft is the reduction given that ft, ft,..., ft-i, 
have been fitted to the data. The reduction due to ft given that any other set of coefficients have 
been fitted will be different. 

The Analysis of Variance table becomes: 

Reduction due to fitting ft 

Residual (after fitting ft) 

Additional reduction fitting ft 

Reduction due to fitting ft and ft 

Residual (after fitting ft and ft) 

d.f. 

1 

n - 1 

1 

2 

n - 2 

Sum of Squares 

9l 
2F2 - g\ 

9l 

9\ + 9l 
2Y2 - g\ - 

Additional reduction due to fitting ft. 

Reduction due to fitting ft, ft, ..., ft 

Residual (after fitting ft, ft, ..., ft) 

1 

k 

n 

9l 

i 

S^2 "2(7? 
1 

This form of analysis is especially useful in the analysis for polynomials where the ordering is by 
powers of z. In the multiple regression case, the reduction attributed to ft is dependent upon the 
ordering of the parameters ft, ft, ..., £,_i, and will be different for different orders. 

6-9.2    TRIANGULARIZATION OF MATRICES 

The real symmetric matrix 

N = an 
«21 

«12 

«22 

.«nl «n2 

«In 

«2n 

can, if N is non-singular (i.e., if | iV | ^ 0), be factored into the product of two triangular matrices 
so that AT = TT', i.e., 

«11 «12 «In = Cii 

«21 «22 «2n C21 C22 

«nl «n2 «nn Lc»l Cn2 

C21 

C22 

C„i 

C„2 
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The elements ci; are computed from the following (note that c<y = 0 for j > 

cn = \/aTi 
C21 = O21/C11 

C„i  = 0„i/Cu 

C22 = Van — c\x 

C32    =   (O32   ~  C3lC2l)/C22 

Cn2   —   (On2   —  C„iC2l)/C2: 

CJJ  = VO,-,- - C2,y_i - c5,y_2 
2 . » _ r2 , 

Cw'   = (flii — Ci,i-iCi,i-i — Ci,y_2Cy,y_2 — ...  — C,-,iCy,i)/Cyy. 

As an example, consider 

N = 4 6 8 10 
6 25 20 27 
8 20 36 30 
10 27 30 36 

Applying the formulas for c,y, we get 

cn = V4 = 2 
c21 = 6/2 = 3 
c31 = 8/2=4 
c« = 10/2 = 5 

C22 = V25 - (3)2 = 4 

c32 = [20 - 4(3)]/4 = 2 

c42 = [27 - 5(3)]/4 = 3 

c33 = V36 - 22 - 42 = 4 

c48 = [30 - 3(2) - 5(4)]/4 = 1 

C44 = V36 - Is - 32 - 52 = 1. 

This gives 

N = "2 
3 
4 
5 

4 
2 
3 

4 
1 

3 
4 

4 
2 
4 

5" 
3 
1 
1 
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The inverse of a triangular matrix 

T = Cn 

C21       C22 

is given by 

_CB1 C„2 

&21 &22 

&nl &n2 

Cn 

'nnj 

where 

6„ =~ 
Cn 

b21  =  — (&11 C2i)/c22 

&31    =    —   (C31 611  + C32 Ö2l)/C33 

&nl   = — (Cnl &11  + Cn2 621  +  •  •  •   + Cn,n_i 6n_I,l)/C„ 

h 1 

632    = — C32 &22/C33 

642   = — (C42 &22   +  C43 632)/C44 

bn2   =    —   (C„2 &22  + C„3 &32  +  . . •   + Cn,n-1 &n-l,2)/Cn 

6»   =   ^ 

ft«  =   —  (Cij bjj + C,-,y+i bj+i,j + . . .  + C,-,,_i bi-i,j)/Ct 

Example: 

For T = "2 
3 
4 
5 

4 
2 
3 

4 
1 
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The elements of T1-1 are 

1 
&,. 

1   3 
ft» -  - 2 ' 4 =  - 

--[«GM-i)>--£ 
<,,--[5(|)+3(-l) + l(-ä)]/l 17 

16 

622 = 

682 = -2 (| >--! 

»>--[8(j)+i(-!)K-- 

v           1 
Ö33   = j 

•—*e)--i 
b„ - 1. 

s' T- " fe 
8 

-6             4 
-5          -2           4 

-17        -10        -4 

5 
8 

~l 

16 

and N-1 = (TT')~l - (T'-1) (I7-1) gives 

AT-i = 
16 

8 -6 -5 -17" 1 8 1 r   414 156 48 -272~ 
4 -2 -10 16 -6 4 256 156 120 32 -160 

4 -4 -5 -2 4 48 32 32 -64 

16j L-17 -10 -4 16j ^-272 -160 -64 256_ 

6-9.3    REMARKS 

By forming the matrix product 

X'~\ (X,Y) = [X'X       X'Y 
_Y'J \_Y'X       Y'Y 
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and replacing Y'X by 0 (a null matrix) and Y'Y by I (the identity matrix), we obtain 

N = X'X      X'Y 
0 / 

In this form, Y may be a single vector of observations Y' = (Yi^ . . . Y„), or a set of p vectors 

Yu 
Yn 

L.Ym 

Yi, 
Yip 

Then, 

AT-i = \X'xy 
0 ■?]• 

where lisp X p and 0 is p X k, gives all the values needed for the computations of this Paragraph. 
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