

DISCLAIMER NOTICE

Downloaded from http://www.everyspec.com

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

101

DEPARTMENT OF THE ARMY HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND 5001 Eisenhower Ave., Alexandria, VA 22333

Downloaded from http://www.everyspec.com

AMC PAMPHLET NO. 706-200

8 January 1976

fikii. Catik

Sail Friday

i

12053

Ø.

in

ENGINEERING DESIGN HANDBOOK DEVELOPMENT GUIDE FOR RELIABILITY, PART SIX MATHEMATICAL APPENDIX AND GLOSSARY

TABLE OF CONTENTS

Paragraph

Page

LIST OF ILLUSTRATIONS	vii
LIST OF TABLES	ix
PREFACE	xi

CHAPTER 1. GLOSSARY

CHAPTER 2. PROBABILITY DIST REPUTIONS, SOME CAUTIONS AND NAMES '

2-1	Cautions	2-1
2–2	Naming Probability Distributions	22

CHAPTER 3. BINOMIAL DISTRIBUTION

30	List of Symbols	3-1
3-1	Introduction	3-1
3-2	Formulas	3-2
33	Tables and Curves	3-2
3-4	Parameter Estimation	33
3-5	Randomized Exact s-Confidence Intervals	3-4
36	Choosing a s-Confidence Level	3-12
3–7	Examples	3-12
3-7.1	Example No. 1	312
3-7.2	Example No. 2	3-24
	References	3-25

CHAPTER 4. POISSON DISTRIBUTION, ~> Nect

	/			
4-0	List of Symbols	4-1	Alta?	
4-1	Introduction	4-1		
4-2	Formulas	4-2		
4–3	Tables and Curves	4-2	"BUIGH / AYAR ASILITY C	· • • • • • • • • • • • • • • • • • • •
44	Parameter Estimation	4–2		;• ·
45	Randomized Exact s-Confidence Intervals	46		
46	Choosing a s-Confidence Level	47		
4-7	Example, Life Test Results	4–7	Π .	
	References	4-12	''	

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS (Cont'd)

Paragraph

ü

(alexa) 04 -

Page

CHAPTER 5. GAUSSIAN (s-NORMAL) DISTRIBUTION

5-0	List of Symbols	5-1
5-1	Introduction	5-2
52	Formulas	5-2
5-3	Tables and Curves	52
5-4	Parameter Estimation, Uncensored Samples	5-13
5-5	Examples	5-13
5-6	Parameter Estimation, Censored Samples	5-14
	References	5-15

CHAPTER 6. PROBABILITY DISTRIBUTIONS DERIVED FROM THE GAUSSIAN DISTRIBUTION

6-0	List of Symbols	6-1
6-1	Introduction	6-2
6-2	Chi-square (χ^2) Distribution	6–2
6-2.1	Formulas	6-2
6-2.2	Tables	6-3
6-3	Chi-square/nu (χ^2 / ν) Distribution	6-3
6-3.1	Formulas	6-3
63.2	Tables	6-7
64	Student's t-Distribution	6-7
6-4.1	Formulas	67
6-4.2	Tables	67
6-5	Fisher-Snedecor F Distribution	6-12
6-5.1	Formulas	6-12
6-5.2	Tables	6-13
	References	6–22

CHAPTER 7. EXPONENTIAL DISTRIBUTION

7—0	List of Symbols	7-1
7-1	Introduction	7-1
7—2	Formulas	7-1
73	Tables	7–2
7-4	Parameter Estimation	7-2
	References	7–8

CHAFTER 8. WEIBULL DISTRIBUTION

8-0	List of Symbols	8-1
8-1	Introduction	8-1

Page

TABLE OF CONTENTS (Cont'd)

Downloaded from http://www.everyspec.com

Paragraph

Strange of the Long State of the second

8-2	Formulas	8-2
8-3	Tables	8-2
8-4	Parameter Estimation	8-2
8-4.1	Graphical Method	87
8-4.2	Maximum Likelihood Method	8-7
8-4.3	Linear Estimation Methods	8-10
8-4.4	Test for Failure Rate: Increasing, Decreasing, or	
	Constant	8-10
8-5	Comparison With Lognormal Distribution	8-10
	References	8-11

CHAPTER 9. LOGNORMAL DISTRIBUTION

90	List of Symbols	9-1
9-1	Introduction	9-1
9-2	Formulas	9-2
9-3	Tables	9-4
94	Parameter Estimation	9-4
9-4.1	Uncensored Data	9–6
9-4.2	Censored Data	9-10
	References	9-10

CHAPTER 10. BETA DISTRIBUTION '

10-0	List of Symbols	101
10-1	introduction	10-2
10-2	Formulas	10-2
10-3	Tables	10-3
10-4	Parameter Estimation	10-3
	References	10-7

CHAPTER 11. GAMMA DISTRIBUTION

11-0	List of Symbols	11-1
1-1	Introduction	11-1
11-2	Formulas	11-1
11-3	Tables	11-2
11-4	Parameter Estimation	11-2
1-5	Gamn.a Function	11-4
	References	11-4
	CHAPTER 12. s-CONFIDENCE	n-ext

PARS

į٧

TABLE OF CONTENTS (Cont'd)

rom http://www.everyspec.com

Paragraph

Page

12-2	Continuous Random Variables	12-3
12-3	Discrete Random Variables	12-5
12-4	Discrete Random Variables, Exact Confidence	
	Bounds	12-7
12-5	More Complicated s-Confidence Situations	12-9
	References	12-9
	1	

CHAPTER 13. PLOTTING POSITIONS

13-0	List of Symbols	13-1
13-1	Introduction	13-1
13-2	Sample Cdf	13-1
13-3	Percentile Ranges	13-2
13-4	Mean	13-2
13-5	Censored Data (Hazard Plotting)	13-5

CHAPTER 14. GOODNESS-OF-FIT TESTS

14-0	List of Symbols	14-1
14-1	Introduction	14-1
14-2	Chi-square	14-1
14-2.1	Discrete Random Variables	14-1
14-2.2	Continuous Random Variable	14-4
14-3	Kolmogorov-Smirnoff	14-5
	Reference	14-8

CHAPTER 15. TESTS FOR MONOTONIC FAILURE RATES

Reference 15-1

CHAPTER 16. BAYESIAN STATISTICS

16–1	Introduction	16-1
16-2	Bayes Formula	16-1
16-3	Interpretation of Probability	16-1
16-4	Prior Distribution Is Real and Known	16-4
165	Empirical Bayes	16-4
166	Bayesian Decision Theory	16-4
16–7	Subjective Probability	16-7
16-8	Recommendations	16-7

TABLE OF CONTENTS (Cont'd)

Fəragraph

Page

;"

CHAPTER 17-SAMPLING PLANS	i
CHAPTER 18. MISCELLANEOUS DESIGN AIDS .	ĸ
References	18-1
INDEX	I-1

a transforment of the second sec

Downloaded from http://www.everyspec.com

AMCI- 706-200

a the state of the state of

LIST OF ILLUSTRATIONS

Title

Downloaded from http://www.everyspec.com

Figure No.

Page

vii/vii Vii/vii

vii/viii

3-1(A)1-sided Upper s-Confidence Limit (80%) for p			
$3-1(B)$ 1-sided Upper s-Confidence Limit (90%) for p $3-1$ $3-1(C)$ 1-sided Upper s-Confidence Limit (95%) for p $3-1$ $3-2$ Special Case for No Failures in N Trials and $C = R_L$ $3-2$ $4-1$ Poisson Cumulative Distribution Function	31(A)	1-sided Upper s-Confidence Limit (89%) for p	3-9
3-1(C)1-sided Upper s-Confidence Limit (95%) for p	3-1(B)	1-sided Upper s-Confidence Limit (90%) for p	3-10
3-2Special Case for No Failures in N Trials and $C = R_L$ 3-24-1Poisson Cumulative Distribution Function4-45-1Curves for Gaussian Distributions5-36-1Chi-square Distribution, pdf 6-46-2Chi-square/Degrees-of-freedom Distribution, pdf 6-86-3Student's t Distribution6-17-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, Contour Plot9-39-2Lognormal Distribution, Gaure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure Rate9-59-5Lognormal Distribution, Failure-rate Mode9-59-6Lognormal Distribution, Contour Plot9-79-79-4Lognormal Distribution, Contour Plot9-79-1Beta Distribution, Contour Plot9-79-2Lognormal Distribution, Contour Plot9-79-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-5Lognormal Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behzved situations)12-12-2s-Confidence Diagram: Discrete Random Variable θ	3-1(C)	1-sided Upper s-Confidence Limit (95%) for p	3-11
4-1Poisson Cumulative Distribution Function4-45-1Curves for Gaussian Distributions5-36-1Chi-square Distribution, pdf 6-46-2Chi-square/Degrees-of-freedom Distribution, pdf 6-86-3Student's t Distribution6-17-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, Contour Plot8-59-2Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure Rate9-59-5Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure rate Mode9-510-1Beta Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable θ (for well-behzved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	32	Special Case for No Failures in N Trials and $C = R_1$	3-24
5-1Curves for Gaussian Distributions5-36-1Chi-square Distribution, pdf 6-46-2Chi-square/Degrees-of-freedom Distribution, pdf 6-86-3Student's t Distribution6-17-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, Contour Plot8-59-2Lognormal Distribution, Contour Plot9-79-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure Rate9-510-1Beta Distribution, Failure Rate, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-510-1Beta Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	4-1	Poisson Cumulative Distribution Function	4-4
6-1Chi-square Distribution, pdf 6-46-2Chi-square/Degrees-of-freedom Distribution, pdf 6-86-3Student's t Distribution6-17-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Contour Plot8-38-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, Failure Rate9-39-2Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure Rate9-510-1Beta Distribution, Failure Rate, Contour Plot9-510-1Beta Distribution, Contour Plot9-510-1Gamma Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behzved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution on [0, 1]14-	5-1	Curves for Gaussian Distributions	5-3
6-2Chi-square/Degrees-of-freedom Distribution, pdf 6-86-3Student's t Distribution6-17-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Contour Plot8-38-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, Failure Rate9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure-rate Mode9-510-1Beta Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable θ (for well-behzved situations)12-12-2s-Confidence Diagram: Discrete Random Variable $12-$ 12-14-1Random Samples of 10 from the Uniform Distribu- tion on $[0, 1]$ 14-	6-1	Chi-square Distribution, pdf	6-4
6-3Student's t Distribution6-17-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Failure Rate8-48-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, pdf 9-39-2Lognormal Distribution, Contour Plot9-79-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-510-1Beta Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behzved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution14-	6-2	Chi-square/Degrees-of-freedom Distribution, pdf	6-8
7-1Exponential Distribution7-37-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Failure Rate8-48-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, pdf 9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution10-111-2Gamma Distribution, Contour Plot of pdf 11-111-2Gamma Distribution, Contour Plot of pdf 11-112-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behzved situations)12-112-2s-Confidence Diagram: Discrete Random Variable12-114-1Random Samples of 10 from the Uniform Distribution14-1	63	Student's t Distribution	6-10
7-2-Reliability Nomograph for the Exponential Distribution7-48-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Failure Rate8-48-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, pdf 9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable12- θ (for well-behzved situations)12-12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution14-	7-1	Exponential Distribution	7-3
8-1Weibull Distribution, pdf 8-38-2Weibull Distribution, Failure Rate8-48-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, pdf 9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-4Lognormal Distribution, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution14-	7-2	-Reliability Nomograph for the Exponential Distribution	7-4
8-2Weibull Distribution, Failure Rate8-48-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, pdf9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Failure Rate, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-510-1Beta Distribution10-11-1Gamma Distribution, Contour Plot of pdf11-11-2Gamma Distribution, Contour Plot of pdf11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	81	Weibull Distribution, pdf	8-3
8-3Weibull Distribution, Contour Plot8-59-1Lognormal Distribution, pdf 9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Failure Rate, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-510-1Beta Distribution10-11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable $12-$ 12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	8-2	Weibull Distribution, Failure Rate	84
9-1Lognormal Distribution, pdf 9-39-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Failure Rate, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-510-1Beta Distribution10-11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable12- θ (for well-behzved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution on [0, 1]14-	8-3	Weibull Distribution, Contour Plot	8-5
9-2Lognormal Distribution, Failure Rate9-59-3Lognormal Distribution, Contour Plot9-79-4Lognormal Failure Rate, Contour Plot9-79-5Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution10-11-1Gamma Distribution, Contour Plot of pdf11-11-2Gamma Distribution, Contour Plot of pdf11-12-1s-Confidence Diagram: Continuous Random Variable12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution on [0, 1]14-	9-1	Lognormal Distribution, pdf	93
9-3Lognormal Distribution, Contour Plot9-79-4Lognormal Failure Rate, Contour Plot9-89-5Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution10-11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable12- $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution on [0, 1]14-	9-2	Lognormal Distribution, Failure Rate	95
9-4Lognormal Failure Rate, Contour Plot9-89-5Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution10-11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable12- $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribution on [0, 1]14-	9–3	Lognormal Distribution, Contour Plot	9-7
9-5Lognormal Distribution, Failure-rate Mode9-910-1Beta Distribution10-11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable $12-14-1$ 12-14-1Random Samples of 10 from the Uniform Distribution tion on [0, 1]14-	94	Lognormal Failure Rate, Contour Plot	98
10-1Beta Distribution10-11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable $12-1$ 12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	9-5	Lognormal Distribution, Failure-rate Mode	99
11-1Gamma Distribution, pdf 11-11-2Gamma Distribution, Contour Plot of pdf 11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable 	10-1	Beta Distribution	10-4
11-2Gamma Distribution, Contour Plot of pdf11-12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable 	11-1	Gamma Distribution, pdf	113
12-1s-Confidence Diagram: Continuous Random Variable $\hat{\theta}$ (for well-behaved situations)12-12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	11-2	Gamma Distribution, Contour Plot of pdf	11-5
$ \hat{\theta} \text{ (for well-behaved situations)} \dots 12-12-2 $ $ 12-2 \qquad s-\text{Confidence Diagram: Discrete Random Variable} \dots 12-14-1 $ $ 14-1 \qquad \text{Random Samples of 10 from the Uniform Distribution on [0, 1]} \dots 14-1 $	12-1	s-Confidence Diagram: Continuous Random Variable	
12-2s-Confidence Diagram: Discrete Random Variable12-14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-		$\hat{\theta}$ (for well-behaved situations)	12-4
14-1Random Samples of 10 from the Uniform Distribu- tion on [0, 1]14-	12-2	s-Confidence Diagram: Discrete Random Variable	12-6
tion on [0, 1] 14-	141	Random Samples of 10 from the Uniform Distribu-	
		tion on [0, 1]	148

٠, . . . <u>:</u>• :

. :

the second s

Page

LIST OF TABLES

Downloaded from http://www.everyspec.com

Table No.

Title	

3-1	Binomial Distribution, Examples	33
3-2	1-sided Upper s-Confidence Limits for p (The Bi-	
	nomial Probability)	3-5
33	Sample Page from a Binomial Distribution	3-14
3 4(A)	Neyman-shortest Unbiased 95% s-Confidence Inter-	3-16
3-4(B)	Nevman-shortest Unbiased 99% s-Confidence Inter-	• • •
(_)	vals for p	3-20
4-1	Poisson Distribution, Examples	4-3
4-2	Nevman-shortest Unbiased 95% and 99% s-Confidence	
	Intervals for μ	4–9
5-1	s-Normal Cdf-gauf(z)	5-5
5-2	Gaussian (Standard s-Normal) Cdf-gauf (z)	5-8
6-1	Percentiles of the Chi-square (χ^2) Distribution	6-5
6-2	Percentiles of the Chi-square/nu (χ^2 /nu) Distribution .	6-9
6-3	Percentiles of the <i>t</i> -Distribution	6-11
6-4(A)	F Distribution—fisf = 99%, fisfc = 1%	6-14
6-4(B)	F Distribution-fisf = 97.5% , fisfc = 2.5%	6-16
6-4(C)	F Distribution-fisf = 95%, fisfc = 5%	6-18
6-4(D)	F Distribution-fisf = 90%, fisfc = 10%	6-20
7-1	Tables of e^{-x}	7-3
7-2	Ratio of Upper to Lower s-Confidence Limits for the	
	Exponential Parameter (with equal size tails on each	
	side)	7-7
11-1	Gamma Function	11-6
13-1	Percentile Ranges for Plotting Points	13-3
14-1	Data for Example No. 2	143
14-2	Critical Values of the Kolmogorov-Smirnoff Test Statistic	146
14-3	Data for Example No. 4	147
16-1	Data and Results for Example—Trial No. 1	16-5
16-2	Data and Results for Example—Trial No. 7	16-5
16_3	Data and Results for Example_Trial No. 2	16-6
10-2	Then and vesally in training and in a second	A 0 0

A State of the sta

PREFACE

Downloaded from http://www.everyspec.com

This handbook, Mathematical Appendix and Glossary, is the last in a series of five on reliability. The series is directed largely toward the working engineers who have the responsibility for creating and producing equipment and systems which can be relied upon by the users in the field.

The five handbooks are:

- 1. Design for Reliability, AMCP 706-196
- 2. Reliability Prediction, AMCP 706-197
- 3. Reliability Measurement, AMCP 706-198
- 4. Contracting for Reliability, AMCP 706-199
- 5. Mathematical Appendix and Glossary, AMCP 706-200.

This handbook is directed toward reliability engineers and managers who need to be familiar with or need to have access to statistical tables, curves, and techniques, or to special terms used in the reliability discipline. References are given to the literature for further information.

Much of the handbook content was obtained from many individuals, reports, journals, books, and other literature. It is impractical here to acknowledge the assistance of everyone who made a contribution.

The original volume was prepared by Tracor Jitco, Inc. The revision was prepared by Dr. Ralph A. Evans of Evans Associates, Durham, N.C., for the Engineering Handbook Office of the Research Triangle Institute, prime contractor to the US Army Materiel Command. Technical guidance and coordination on the original draft were provided by a committee under the direction of Mr. O. P. Bruno, Army Materiel System Analysis Agency, US Army Materiel Command.

The Engineering Design Handbooks fall into two basic categories, those approved for release and sale, and those classified for security reasons. The US Army Materiel Command policy is to release these Engineering Design Handbooks in accordance with current DOD Directive 7230.7, dated 18 September 1973. All unclassified Handbooks can be obtained from the National Technical Information Service (NTIS). Procedures for acquiring these Handbooks follow: 「「「「「「」」」」」

a. All Department of Army activities having need for the Handbooks must submit their request on an official requisition form (DA Form 17, dated Jan 70) directly to:

ownloaded from http://www.everyspec.com

Commander Letterkenny Army Depot ATTN: AMXLE-ATD Chambersburg, PA 17201

(Requests for classified documents must be submitted, with appropriate "Need to Know" justification, to Letterkeny Army Depot.) DA activities will not requisition Handbooks for further free distribution.

b. All other requestors, DOD, Navy, Air Force, Marine Corps, nonmilitary Government agencies, contractors, private industry, individuals, universities, and others must purchase these Handbooks from:

> National Technical Information Service Department of Commerce Springfield, VA 22151

Classified documents may be released on a "Need to Know" basis verified by an official Department of Army representative and processed from Defense Documentation Center (DDC), ATTN: DDC-TSR, Cameron Station, Alexandria, VA 22314.

Comments and suggestions on this Handbook are welcome and should be addressed to:

Commander US Army Materiel Developm

US Army Materiel Development and Readiness Command Alexandria, VA 22333

(DA Forms 2028, Reconnended (inges to Publications, which are available through normal publications supply channels, may be used for comments/suggestions.)

CHAPTER 1

Downloaded from http://www.everyspec.com

ALL SHE SEALS

19/ ----

and the second of the second second

GLOSSARY

LIST OF SYMBOLS

AOQ	= average outgoing quality	N	= population size
AOQL	= average outgoing quality limit	OC	= operating characteristic
AQL	= acceptable quality level	pdf	= probability density function
ASN	× average sample number	pmf	= probability mass function
ATE	= automatic test equipment	QC	= quality control
Cdf	= cumulative distribution factor	QPL	= qualified products list
E { x }	= expected value of x	R	= reliability
FMECA	 failure mode, effects, and criti- cality analysis 	rms	= square root of arithmetic mean of the squares
g(t)	= state of system under usual	RQL	= rejectable quality level
	conditions	Sf	= survivor function
G(t)	= state of system under unusual conditions	S-	- denotes statistical definition
LTPD	= lot tolerance percent defective	t	= time
msc	= mean square error	Т	= time interval
MTBF	≠ mean time-between-failures	x	= value of random variable X
MTE	= mean time to failure	\overline{x}	= population mean
MILL.	T mean time to first-foilure	X	= name of random variable
MIFF	- mean time-to-mst-tanute	α	= producers risk
MTTR	= mean time-to-repair	β	= consumers risk
MTX	 arithmetic or s-expected value for xxxxtime 	θ	$= 1/\lambda$

.35.

λ	= failure rate	
μ	= mean value	
Ø	= standard deviation	on

 $\tau(t)$ = function of time

Some words (phrases) have more than one definition. No relative importance is implied by the order in which they appear. When there is more than one definition of a word (phrase), they are numbered with an initial superscript.

A definition indicated by a * has more complete explanations of the term and fewer ambiguities than other definitions. The definitions in this Glossary try to impart knowledge. The accompanying notes help to provide understanding. Knowledge without understanding can the costly. Do not apply any of these concepts blindly.

See Refs. 1-3 for the definitions of many concepts not listed here.

When the precise statistical definition of a word is intended, the word has "s-" as a prefix; e.g., s-normal, s-independence, s-reliability.

Α

accelerated life test. A life test under test conditions that are more severe than usual operating conditions. It is helpful, but not necessary, that a relationship between test severity and the probability distribution of life be ascertainable.

<u>Note 1</u>. The phrase "more severe" is actually defined by the fact that the Cdf of life is everywhere greater than the Cdf of life under usual conditions.

Note 2. Where there is more than one failure mode, the concept of acceleration is

not simple. Conceivably, a set of test conditions which accelerates some failure modes could be more benign for other failure modes.

<u>Note 3.</u> Accelerated life tests can be qualitatively useful in finding potential failure modes even when they are not quantitatively useful.

See also: acceleration, true

Downloaded from http://www.everyspec.com

acceleration factor. Notation:

 $\tau(t) \equiv$ the time transformation from more-severe test conditions to the usual test conditions.

The acceleration factor is $\tau(t)/t$.

The differential acceleration factor is $\hat{a} \cdot (r)/dt$.

Note 1 acceleration factor is defined only for true acceleration. If the acceleration is not true, the concept is meaningless (see: 2 acceleration, true (Note 3).

<u>Note 2</u>. It helps, but is not necessary, if the acceleration factor is independent of time. In practical situations, it usually is assumed to be independent of time. A good reason for so doing is that there is rarely enough statistical evidence to dispute this simple, convenient hypothesis.

See also: acceleration, true.

¹acceleration, true. Acceleration is true if and only if the system, under the more-severe test conditions, passes reasonably through equivalent states and in the same order it did at usual conditions. (Adapted from Ref. 4.)

Note 1. Acceleration need not be true to be useful.

<u>Note 2</u>. The word "reasonably" is used because the needs and desires of the people involved change from time to time. Things

1-2

need only be close enough for the purposes at hand.

<u>Note 3.</u> "System state" describes only those characteristics of the system which are important for the purposes at hand (just as is true in thermodynamics).

<u>Note 4.</u> Two states of a system are "equivalent" if and only if one can be reversibly transformed into the other by changing the test conditions.

Note 5. Mathematical definition.

- $\overline{g(t)} \equiv$ state of system under usual conditions.
- $G(t) \equiv$ equivalent state of system under more-severe test conditions. It is not the state at the more-severe test conditions, but is the state after being reversibly transformed to the usual conditions.

 $\tau(t) \equiv$ a function of time. There is true acceleration if and only if:

- (a) $G(t) \equiv g(\tau[t])$
- (b) $\tau(t)$ is strictly monotonically increasing
- (c) G(0) = g(0)

(d) $\tau(0) = 0$ (this is a logical consequence of (a) and (c)).

The acceleration factor is defined as $\tau(t)/t$. Incremental acceleration factor is defined as $d\tau(t)/dt$.

² acceleration, true. Acceleration is true if and only if the probability distribution of life for each important failure mode, under the more-severe test conditions, can be changed (by a time transformation) to the probability distribution of life for that failure mode, under the usual test conditions, and:

(a) The time transformation is the same for each such failure mode.

(b) The time transformation is strictly monotonically increasing.

Note 1. Acceleration need not be true to be useful.

Note 2. Let the time transformation be $\tau(t)$, then acceleration factors are defined as in¹ acceleration, true (Note 5).

Note 3. True acceleration could be defined singly for each important failure mode.

See also: acceleration factor.

Downloaded from http://www.everyspec.com

accept/reject test. A test, the result of which will be the action to accept or to reject something, e.g., an hypothesis or a batch of incoming material.

The test will have a set of constants which are selected before the test, and it will have an operating characteristic. For example, a common fixed-sample-size attribute test has the constants: sample-size and acceptance-number; a set of procedures to select a random-sample, to test every item for good/bad (and evaluation criteria therefor), and to stop the test where all items are tested; and an operating characteristic that shows the probability of acceptance (or rejection) as a function of the true fraction-bad of the population from which the sample was a random one.

<u>Note 1</u>. The data also can be used for estimating parameters of the probability distribution of the population. For many kinds of tests, this may be intractable because the test procedures were chosen to minimize resources consumed in the test rather than to make parameter estimation easy.

<u>Note 2</u>. The accept/reject criterion must have only 1-dimension. That is, even if several characteristics are measured (for example, major and minor defects) the numbers so obtained must be combined in some way to get a single number that is then compared against the accept/reject criterion. The accept/reject criterion can be complicated, e.g., accept if the average sample length is between 4.0 and 5.0 in., reject otherwise.

Note 3. This kind of test is used largely for theoretical hypothesis testing and for quality-control acceptance-sampling.

wnloaded from http://www.everyspec.com

See also: operating characteristic, random sample.

*1 acceptable quality level (AQL). A point on the quality coordinate of the operating characteristic of an attribute acceptancesampling plan which is in the region of good quality and reasonably low rejection probability.

<u>Note 1</u>. The rejection probability at the AQL is often called the producer risk α .

Note 2. The conventional definitions (see: defs. 2 and 3) tend to endow this point with very special properties which it does not really have. Conventionally this point (AQL, α) is one of two that define the acceptance sampling plan and its operating characteristic. But any 2 points on that operating characteristic will generate exactly the same acceptance sampling plan. That is why this modified, more usable definition is given.

Note 3. An example of an AQL is 1.5% defective at a rejection probability (producer risk) of 10%.

<u>Note 4</u>. The term itself can be very misleading, especially to non-specialists in Quality Control. Its use ought to be avoided in material written for such people.

See also: operating characteristic.

²acceptable quality level (AQL). The maximum percent defective (or the maximum number of defects per hundred units) that, for purposes of acceptance sampling, can bc considered satisfactory as a process average.

Note. When a consumer designates some specific value of AQL for a certain

characteristic or group of characteristics, he indicates to the supplier that his (the consumer's) acceptance sampling plan will accept the great majority of the lots that the supplier submits, provided that the process average level of percent defective in these lots is no greater than the designated value of AQL. Thus the AQL is a designated value of percent defective (or of defects per hundred units) that the consumer indicates will be accepted a great majority of the time by the acceptance sampling procedure to be used. The AQL alone does not describe the protection to the consumer for individual lots but more directly relates to what might be expected from a series of lots, provided that the steps called for in the reference AQL system of procedures are taken. It is necessary to refer to the OC curve of the sampling plan that the consumer will use, or to the AOQL of the plan, to determine what protection the consumer will have. (Ref. 3)

- ³acceptable quality level (AQL). The maximum percent defective (or the maximum number of defects per hundred units) that, for the purposes of sampling inspection, can be considered satisfactory as a process average. (Refs. 1 and 7)
- *¹ acceptance number. The largest number of defects that can occur in an acceptance sampling plan and still have the lot accepted.

<u>Note 1</u>. In a 1-sample plan, this is a straightforward concept. In an *m*-sample plan (m > 1) the concept usually is applied to each of the samples; so there are *m* acceptance numbers. In a sequential test, the acceptance number is the boundary of the plan which separates "continue testing" from "accept"; it is a function of the number tested, total test time, or whatever variable represents the amount of testing done so far.

1-4

and a full of a second state of the second secon

<u>Note 2</u>. The concept is limited to those plans which have a discrete dependent variable that can be interpreted as **defects**.

Downloaded from http://www.everyspec.com

See also; defect.

- ²acceptance number. The largest number of defectives (or defects) in the sample or samples under consideration that will permit the acceptance of the inspection lot. (Ref. 3.)
- ³acceptance number. The maximum number of defects or defective units in the sample that will permit acceptance of the inspection lot or batch. (Ref. 1.)
- *1 acceptance sampling plan. An accept/reject test whose purpose is to accept or reject a lot of items or material.

<u>Note 1</u>. Rejection may involve 100% inspection or some other scheme rather than outright rejection.

<u>Note 2</u>. These plans often come in sets, so that the user can pick the best one of the set for his purposes.

See also: accept/reject test.

<u>Note 3</u>. Each acceptance sampling plan has an accept/reject (decision) boundary in the "number of failures (defects)" vs "amount of sampling" plans. If the "reject line" has *m* values it is an *m*-sample plan. "m = 1" is most common and is referred to as a single-sample plan. "m = 2" is referred to as a double-sample plan. "m > 2" is referred to as a multiple-sample plan. "m >> 2" often is referred to as a truncated sequential-sample plan.

<u>Note 4</u>. The data can be used to estimate a parameter of the probability distribution, but often the sampling characteristics of such an estimator are not easy to calculate.

²acceptance sampling plan. A specific plan that states the sample size or sizes to be used and the associated acceptance and rejection criteria. (Ref. 3.)

<u>Note</u>: A specific acceptance sampling plan may be developed for any acceptance situation, but inspection systems usually include sets of acceptance sampling plans in which lot sizes, sample sizes, and acceptance criteria are related.

- ³acceptance sampling plan. A sampling plan indicates the number of units of product from each lot or batch which are to be inspected (sample size or series of sample sizes) and the criteria for determining the acceptability of the lot or batch (acceptance and rejection numbers). (Definition of sampling-plan from Ref. 7.)
- *1 acceptance test. Test to determine conformance to specifications/requirements and which is used to determine if the item can be accepted at that point in the life-cycle.

<u>Note 1</u>. If the item is accepted, the life-cycle continues. If the item is not accepted, continuing with development of the item is done according to contract and/or agreement of all parties concerned.

Note 2. See also: Acceptance in Ref. 1.

- ²acceptance test. (1) A test to demonstrate the degree of compliance of a device with purchaser's requirements. (2) A conformance test (in contrast, is)... without implication of contractual relations (Ref. 5.)
- active element. A part that converts or controls energy; e.g., transistor, diode, electron tube, relay, valve, motor, hydraulic pump. (Ref. 6.)

active element group. An active element and

its associated supporting (passive) parts; e.g., an amplifier circuit, a relay circuit, a pump and its plumbing and fittings. (Ref. 6.)

Downloaded from http://www.evervspec.com

- ambient. Used to denote surrounding, encompassing, or local conditions. Usually applied to environments (e.g., ambient temperature, ambient pressure).
- arithmetic mean. The arithmetic mean of n numbers is the sum of the n numbers, divided by n.

Note. This is the conventional average. The term is used to distinguish it from other kinds of mean; e.g., geometric, harmonic.

- assembly. A number of parts or subassemblies joined together to perform a specific function. (Ref. 6.)
- assurance. A qualitative term relating to degree of belief. It often is applied to the achievement of program objectives.
- *¹ attribute. A characteristic or property of an item such that the item is presumed either to have it or not to have it; there is no middle ground.
- ²attribute. A characteristic or property which is appraised in terms of whether it does or does not exist (e.g., go or not-go) with respect to a given requirement. (Acapted from Ref. 1.)
- ³attribute. A term used to designate a method of measurement whereby units are examined by noting the presence (or absence) of some characteristic or attribute in each of the units in the group under consideration and by counting how many units do (or do not) possess it. Inspection

by attributes can be of two kinds-either the unit of product is classified simply as defective or nondefective or the number of **defects** in the unit of product is counted, with respect to a given requirement or set of requirements. (Adapted frem Ref. 3.)

- attribute testing. Testing to evaluate whether or not an item possesses a specified attribute. See: go/no-go.
- automatic test equipment (ATE). Test equipment that contains provisions for automatically performing a series of preprogrammed tests.

<u>Note.</u> It usually is presumed that the ATE evaluates the test results in some way.

- ¹ availability. The fraction of time that the system is actually capable of performing its mission. (Ref. 5.)
- ²availr bility. A measure of the degree to which an item is in the operable and con.mittable state at the start of the mission, when the mission is called for at an unknown (random) point in time. (Ref. 2.)
- ³availability (operational readiness). The probability that at any point in time the system is either operating satisfactorily or ready to be placed in operation on demand when used under stated conditions.
- ⁴s-availability. The fraction of time, in the long run, that an item is up.

<u>Note 1</u>. The item is presumed to have only 2 states (up and down) and to cycle between them.

<u>Note 2</u>. The definition of being up can be important in a redundant system.

availability, intrinsic. The availability, except that the times considered are operating

1-6

time and active repair time. (Adapted from Ref. 6.)

Downloaded from http://www.everyspec.com

Added Note:

<u>Note</u>. This definition does not have widespread use and the term can be misleading. It would be wise to define it wherever it is used.

- average. A general term. It often means arithmetic mean, but can refer to s-expected value, median, mode, or some other measure of the general location of the data values.
- *1 average outgoing quality (AOQ). The expected value (for a given acceptance sampling plan) of the outgoing quality of a lot, for a fixed incoming quality, when all rejected lots have been replaced by equal lots of perfect quality and all accepted lots are unchanged.

Note 1. Quality is measured by fraction defective. The terms AOQ and AOQL are not applicable otherwise.

<u>Note</u> 2. The inspection/sorting/replacement process usually is assumed to be perfect.

<u>Note 3</u>. It often is assumed that all bad parts found during inspection are replaced by good parts. Slight discrepancies in calculated AOQ's can occur if this fact is ignored when it is true.

<u>Note 4</u>. As implied in the definition, the AOQ is a function of incoming quality.

² average outgoing quality (AOQ). The s-expected average quality of outgoir g product for a given value of incoming product quality. The AOQ is computed over all accepted lots plus all rejected lots after the latter have been inspected 100% and the defective units replaced by good units. (Ref. 3.)

<u>Note.</u> In practical cases, different numerical values of AOQ may be obtained, depending on whether or not the defectives found in samples or in 100% inspection of rejected lots are replaced by good units.

- ³ average outgoing quality (AOQ). The average quality of outgoing product including all accepted lots, plus all rejected lots after the rejected lots have been effectively 100 percent inspected and all defectives replaced by nondefectives. (Refs. 1 and 7.)
- ¹ average outgoing quality limit (AOQL). The maximum AOQ over all possible values of incoming product quality, for a given acceptance sampling plan. (Ref. 3.)
- ² average outgoing quality limit (AOQL). The maximum AOQ for all possible incoming qualities for a given sampling plan. (Adapted from Ref. 1.)
- average sample number (ASN). The average number of sample units inspected per lot in reaching decisions to accept or reject. (Ref. 3.)

Added Notes:

<u>Note 1</u>. The ASN usually is applied only where the sample number (size) is a random variable.

<u>Note 2</u>. It is usually a function of incoming quality.

В

bad-as-old. A term which describes repair. The repaired item is indistinguishable from a nonfailed item with the same operating history. Its internal clock stays the same as it was just before failure.

<u>Note.</u> If the failure rate is constant, good-as-new and bad-as-old are the same.

basic failure rate. The basic failure rate of an

item derived from the catastrophic failure rate of its parts, before the application of use and tolerance factors. The failure rates contained in MIL-HDBK-217 are "base" failure rates. (Adapted from Ref. 6.)

bathtub curve. A plot of failure rate of an item (whether repairable or not) vs time. The failure rate initially decreases, then stays reasonably constant, then begins to rise rather rapidly. It has the shape of a bathtub.

Note. Not all items have this behavior.

- **bias.** The difference between the *s*-expected value of an estimator and the value of the true parameter.
- **breadboard model.** A preliminary assembly of parts to test the feasibility of an item or principle without regard to eventual design or form.

<u>Note</u> It usually refers to a small collection of electronic parts.

*¹ burn-in. The initial operation of an item for the purpose of rejecting or repairing it if it performs unsatisfactorily during the burn-in period.

Note 1. The burn-in conditions need not be the same as operating conditions.

<u>Note 2</u>. The purpose is to get rid of those items that are more likely to fail in use.

<u>Note</u> 3. The method of **burn-in** and description of desired results need careful attention. **Burn-in** can do more harm than good.

² burn-in. The operation of an item to stabilize its characteristics. (Ref. 2.)

С

¹ capability. A measure of the ability of an

item to achieve mission objectives given the conditions during the mission. (Ref. 2.)

lownloaded from http://www.everyspec.com

- ²capability. A measure of the ability of an item to achieve mission objectives, given that the item is working properly during the mission.
- censored. A set of data from a fixed sample is censored if the data from some of the items are missing.

Note 1. In a censored life test, it is known only (for censored items) that they survived up to a certain time

<u>Note 2</u>. The reason for the censoring in a life test must have nothing to do with the apparent remaining life of the item.

<u>Note 3</u>. Statisticians sometimes give special names to censoring, depending on which order statistics are censored.

checkout. Tests or observations on an item to determine its condition or status. (Adapted from Ref. 2.)

Added notes:

<u>Note 1</u>. Checkout is often assumed to be perfect, i.e., to judge properly the condition of each part and to do no damage to anything. Checkouts are rarely perfect.

<u>Note 2</u>. It sometimes is implied that any nonsatisfactory condition is remedied (perfectly or otherwise).

coefficient of variation. The standard deviation divided by the mean.

<u>Note 1</u>. The term is rarely useful except for positive random variables. It is not defined if the mean is zero, or if the data have been coded by anything other than a scale factor.

<u>Note 2</u>. It is a relative measure of the dispersion of a random variable.

and the second secon

- complexity level. A measure of the number of active elements required to perform a specific system function. (Ref. 6.)
- s-confidence. A specialized statistical term. It refers to the truth of an assertion about the value of a parameter of a probability distribution.

<u>Note 1.</u> s-confidence ought always to be distinguished from engineering confidence; they are not at all the same thing. One can have either without the other.

<u>Note 2</u>. Incorrect definitions of this and related terms often are encountered in the engineering literature.

<u>Note 3</u>. For more details, consult a competent statistician or competent statistics book.

s-confidence interval. The interval within which it is asserted that the parameter of a probability distribution lies.

<u>Note</u>. The interval is a measure of the statistical uncertainty in the parameter estimate, given that the model is true. There might be more important sources of uncertainty involved with the model not being true.

See also: s-confidence, s-confidence limits.

s-confidence level. The fraction of times an s-confidence statement is true.

<u>Note 1</u>. The larger the *s*-confidence level, the wider the *s*-confidence interval, for a given method of generating that interval.

<u>Note 2</u>. Sometimes the asserted level is a lower bound, all that is known is that the actual level is above the stated level. This is especially common where the random variable is discrete.

<u>Note 3</u>. This refers to the totality of times the procedure of calculating an *s*-confidence statement from a new set of data is effected.

Downloaded from http://www.everyspec.com

See also: s-confidence, s-confidence interval.

s-confidence limits. The extremes of an s-confidence interval.

<u>Note</u>. When only 1 limit is given (along with the modifier "upper" or "lower") the interval includes the rest of the domain of the random variable on the appropriate side of the limit.

- s-consistency. A statistical term relating to the behavior of an estimator as the sample size becomes very large. An estimator is s-consistent if it stochastically converges to the s-population value as the sample size becomes "infinite". It is one of the important characteristics of an estimator as far as reliability engineers are concerned.
- continuous sampling plan. In acceptance sampling, a plan, intended for application to a continuous flow of individual units of product, that (1) involves acceptance and rejection on a unit-by-unit basis and (2) uses alternate periods of 100% inspection and sampling, the relative amount of 100% inspection depending on the quality of submitted product. Continuous sampling plans usually are characterized by requiring that each period of 100% inspection be continued until a specified number of consecutively inspected units are found clear of defects.

Note. For single-level continuous sampling plans, a single sampling rate (e.g., inspect 1 unit in say 5 or 1 unit in 10) is used during sampling. For multilevel continuous sampling plans, two or more sampling rates may be used, the rate at any time depending on the quality of submitted product. (Adapted from Ref. 3.)

controlled part. An item which requires the application of specialized manufacturing, management, and procurement techniques.

Downloaded from http://www.everyspec.com

- controlled process. A process which requires the application of specialized manufacturing, management, and procurement techniques.
- s-correlation. A form of statistical dependence between 2 variables. Unless otherwise stated, linear s-correlation is implied.

Note. In writing for engineers, it is better to write the full phrase "linear s-correlation" to avoid ambiguity.

See also: s-correlation coefficient.

- ¹s-correlation coefficient. A number between
 1 and + 1 which provides a normalized measure of linear s-correlation.
 - <u>Note 1</u>. See *Part Three* for mathematical expressions (for both discrete and continuous random variables).
 - <u>Note 2</u>. Values of + 1 and 1 represent a deterministic linear relationship. Value of 0 implies no linear relationship.
- ²s-correlation coefficient. A number between -1 and +1 that indicates the degree of linear relationship between two sets of numbers. Correlations of -1 and +1represent perfect linear agreement between two variables; r = 0 implies no linear relationship at all. (Adapted from Ref. 3.)
- cost-effectiveness. A measure of the value received (effectiveness) for the resources expended (cost).
- criticality. A measure of the indispensability of an item or of the function performed by an item.

Note. Criticality is often only coarsely quantified.

criticality ranking. A list of items in the order of their decreasing criticality.

cumulative distribution function Cdf. The probability that the random variable whose name is X takes on any value less than or equal to a value x, e.g.,

 $F(x) = Cdf \{X\} \equiv Pr \{X \le x\}$

Note 1. The Cdf need not be continuous or have a derivative. Its value is 0 below the lowest algebraic value of the random variable and is 1 above the largest algebraic value of the random variable. The Cdf is a nondecreasing function of its argument.

<u>Note 2</u>. It is possible to have a joint Cdf of several random variables.

<u>Note 3</u>. The concept applies equally well to discrete and continuous random variables.

See also: pdf, pmf, Sf

D

¹ debugging. A process of "shakedown operation" of a finished equipment performed prior to placing it in use. During this period, defective parts and workmanship errors are cleaned up under test conditions that closely simulate field operation.

Note. The debugging process is not intended to detect gross weaknesses in system design. These should have been eliminated in the proproduction stages. (Adapted from Ref. 6.)

- ² debugging. A process to detect and remedy inadequacies, preferably prior to operational use. (Ref. 2.)
- *1 defect. A deviation of an item from some ideal state. The ideal state usually is given in a formal specification.

1-10

こうちょうちょう ちょうちょう こうちょうちょうちょうちょう ちょうちょうちょう

AMCP 708-200

<u>Note !</u>. The **defect** need not be harmful to the item in any way, even when it is readily detectable.

Downloaded from http://www.everyspec.com

<u>Note 2</u>. This unmodified word is often misunderstood, because an ordinary meaning of the word implies "harmful". Thus it is always wise to be explicit about the kind of **defect** to which reference is being made.

<u>Note 3.</u> Improved nondestructive evaluation techniques often can detect deviations that are completely unimportant, even from a cosmetic viewpoint. Specifications ought to avoid the phrase "detectable defect".

1

² defect. An instance of failure to meet a requirement imposed on a unit of product with respect to a single quality characteristic.

Note. The term "defect", as used in quality control, signifies a deviation from some standard—a condition "in defect of" strict conformance to a requirement. The term thus covers a wide range of possible severity; on the one hand, it may be merely a flaw or a detectable deviation from some minimum or maximum limiting value or, on the other, a fault sufficiently severe to cause an untimely product failure. (Ref. 3.)

- ³ defect. Any nonconformance of a characteristic with specified requirements. (Ref. 1.)
- ¹ defect, critical. A. A defect that could result in hazardous or unsafe conditions for individuals using, maintaining, or depending upon the item.

B. For a major system-such as aircraft, radar, or tank-a defect that could prevent performance of its tactical function. (Adapted from Ref. 6.)

² defect, critical. A defect that judgment and experience indicate is likely to result in hazardous or unsafe conditions for individuals using, maintaining, or depending upon the product; or a defect that judgment and experience indicate is likely to prevent performance of the tactical function of major end item such as an circraft, communication system, land vehicle, missile, ship, space vehicle, surveillance system, or major part thereof. (Ref. 1.)

- ¹defective. A unit of product which contains one or more defects. (Ref. 1.)
- ²defective. A defective unit; a unit of product that contains one or more defects with respect to the quality characteristics under consideration. (Adapted from Ref. 3.)

See also: ² defect.

- dependability. A measure of the item operating condition *zt* one or more points during the mission, including the effects of reliability, maintainability, and survivability, given the item condition(s) at the start of the mission. It may be stated as the probability that an item will (1) enter or occupy any one of its required operational modes during a specified mission, (2) perform the functions associated with those operational modes. (Adapted from Ref. 2.)
- *1 derating. The technique of using an item at severity levels below rated values to achieve higher reliability.

Note 1. This i the opposite of accelerated testing.

<u>Note 2</u>. It is not always obvious how to derate an item. Considerable knowledge about the structure and behavior of the item often is required.

See also: accelerated testing.

² derating. (1) Uring an item in such a way

that applied stresses are below rated values, or (2) the lowering of the rating of an item in one stress field to allow an increase in rating in another stress field. (Ref. 2.)

- design adequacy. The probability that the system will satisfy effectiveness requirements, given that the system design satisfies the design specification. (Ref. 6.)
- discrimination ratio. A measure of the "distance" between the two points on the operating characteristic which are used to define the acceptance sampling plan.

<u>Note 1</u>. It is not an absolute measure of the discriminating ability of an acceptance sampling plan.

<u>Note 2</u>. It often is used in place of one of the measures of quality to define the acceptance sampling plan.

<u>Note 3.</u> It ought always to be defined when used; although since it is ambiguous and not necessary, its use is wisely avoided.

Note 4. A given acceptance sampling plan can have many discrimination ratios depending on which 2 points are used to define it.

distribution. General short name for probability distribution.

<u>Note</u>. It is general in that it does not imply a particular descriptive format such as pdfor Cdf.

¹downtime. The total time during which the system is not in condition to perform its intended function.

Note. Downtime is subdivided conveniently into active repair time, logistic downtime, and administrative downtime. (Adapted from Ref. 6.)

²downtime. That element of time during

which the item is not in condition to perform its intended function.

Downloaded from http://www.everyspec.com

- downtime, administrative. That portion of downtime not included under active repair time and logistic downtime. (Adapted from Ref. 5.)
- downtime, logistic. That portion of downtime during which repair is delayed solely because of waiting for a replacement part or other subdivision of the system. (Adapted from Ref. 6.)
- duty cycle. A specified operating time of an item, followed by a specified time of nonoperation.

<u>Note</u>. This often is expressed as the fraction of operating time for the cycle, e.g., the duty cycle is 15%.

E

- ¹early failure period. That period of life, after final assembly, in which failures occur at an initially high rate because of the presence of **defective** parts and workmanship. (Ref. 6.)
- ²early failure period. The early period, beginning at some stated time and during which the failure rate of some items is decreasing rapidly.

<u>Note.</u> This definition applies to the first part of the **bathtub** curve for failure rate. (Adapted from Ref. 5.)

- effectiveness. The probability that the product will accomplish an assigned mission successfully whenever required. (Ref. 6.)
- s-efficiency. A statistical term relating to the dispersion in values of an estimator. It is between 0 and 1; and the closer to 1, the better. It is one of the important characteristics of an estimator as far as reliability engineers are concerned.

addression and sheep and

- element. One of the constituent parts of anything. An element may be a part, a subassembly, an assembly, a unit, a set, etc. (Adapted from Ref. 6.)
- environment. The aggregate of all the external conditions and influences affecting the life and development of the product. (Ref. 6.)
- equipment. A product consisting of one or more units and capable of performing at least one specified function. (Ref. 6.)
- s-expected value. A statistical term. If x is a random variable, and F(x) is its Cdf, then $E\{x\} \equiv \int x dF(x)$, where the integration is over all x. For continuous random variables with a pdf, this reduces to $E\{x\} =$ $\int x pdf\{x\} dx$.

For discrete random variables with a pmf, this reduces to $E\{x\} = \sum x_n pmf\{x_n\}$ where the sum is over all n.

exponential distribution. A 1-parameter distribution ($\lambda > 0$, $t \ge 0$) with:

and a state of the state of the state of the

 $pdf \{t\} = \lambda \exp(-\lambda t)$ $Cdf \{t\} = 1 - \exp(-\lambda t)$ $Sf \{t\} = \exp(-\lambda t)$ failure rate = λ , mean time-to-failure = $1/\lambda$.

Note 1. This is the constant failure-rate distribution.

Note 2. This has many convenient properties, and so is widely used--even when not strictly applicable.

<u>Note 3</u>. This distribution often is chosen, because of its tractability, when there are not enough data to reject it.

Note 4. Often parameterized with $\theta \equiv 1/\lambda$.

<u>Note 5</u>. It can be converted to a

2-parameter distribution by substituting $(t-t_{\alpha})$ for t everywhere.

F

¹ failure. The termination of the ability of an item to perform its required function. (Refs. 3 and 5.)

Added notes:

Downloaded from http://www.everyspec.com

<u>Note 1</u>. It is presumed that the item either is or is not able to perform its required function. Partial ability is not considered in this definition.

Note 2. Virtually all failures discussed in these Handbooks are random failures.

- ² failure. The inability of an item to perform within previously specified limits.
- ¹ failure, catastrophic. A failure that is both sudden and complete. (Ref. 5.)
- ²failure, catastrophic. A sudden change in the operating characteristics of an item resulting in a complete ioss of useful performance of the item. (Ref. 6.)
- failure, chance. This is a term that is misused so often that it ought to be avoided. See: failure, random.
- failure, critical. A failure of a component in a system such that a large portion of the mission will be aborted or such that the crew safety is endangered.

<u>Note</u>. Criticality is often assumed to have degrees, as in Failure Modes, Effects, and Criticality Analysis.

- failure, degradation. A failure that occurs as a result of a gradual or partial change in the operating characteristics of an item. (Adapted from Ref. 6.)
- failure, s-dependent. Any failure whose occurrence is s-dependent on other failures.

- failure, s-independent. Any failure whose occurrence is s-independent of other failures.
- failure, infant. A failure that occurs during the very early life of an item.
 - Note 1. The failure-rate is usually decreasing.
 - Note 2. It is usually a random failure.

<u>Note 3</u>. It often is ascribed to grossly bad conditions of manufacture, although that need not be true.

- ¹ failure mechanism. The cause in the item of the observed failure mode of the item. It is one level down from the failure mode.
 - Note. See. note on ¹ failure mode.

See also: failure mode.

- ² failure mechanism. The physical, chemical, or other process that results in a failure. (Adapted from Ref. 5.)
- ¹ failure mode. The observable behavior of an item when it fails; e.g., failure modes of electric motor might be classified as bearing seizure, winding short, winding open, overheating.

Note. The distinction between failure mode and failure mechanism is arbitrary and depends on the level at which observations are made. For example, a failure mode of a radar is antenna failure, the mechanism might be motor failure. If the motor is observed, the failure mode might be bearing seizure and the failure mechanism might be loss of lubrication. If the bearing is observed, its failure mode might be loss of lubrication, and the failure mechanism might be seal failure. If the seal is observed,

See also: failure mechanism.

² failure mode. The effect by which a failure is observed; e.g., an open- or short-circuit condition, or a gain change. (Adapted from Ref. 5.)

Downloaded from http://www.everyspec.com

failure mode, effects, and criticality analysis (FMECA). An analysis of possible modes of failure, their cause, effects, criticalities, s-expected frequency of occurrence, and means of elimination.

<u>Note 1</u>. It often is called FMEA (without cruicality).

<u>Note 2</u>. The analysis can include more such as (1) estimated cost to eliminate or mitigate the failure, (2) listing the items in ranked order of cost-benefit ratio to fix them.

failure, primary. A failure whose occurrence is not caused by other failures.

Note. This is sometimes ambiguously called an independent failure.

¹ failure, random. Any failure whose occurrence is unpredictable in an absolute sense but which is predictable in a probabilistic sense. (Adapted from Ref. 2.)

Added note.

<u>Note 1</u>. This term is often improperly used to imply "a constant failure rate process" or "some state of maturity of a design".

Note 2. Virtually all failures discussed in these Handbooks are random failures.

- ² failure, random. Any failure whose cause and/or mechanism make its time of occurrence unpredictable. (Ref. 5.) (See: added notes in definition 1.)
- *' failure rate λ , A. The conditional probability density that the item will fail just after time t, given that the item has not failed up to time t.

1-14

Downloaded from http://www.everyspec.com

AMCP 705-200

$\lambda(t) \equiv pdf \cdot \{t\} / Sf \{t\}.$

The pdj is normalized by the fraction still alive at the time.

Note 1A. This definition is only for continuous random variables whose Sf is well-behaved enough for the pdf to be well defined.

Note 2A. In this case (Note 1),

 $\lambda(t) = \frac{d}{dt} [- \ln R(t)]$

where $R(t) \equiv \lfloor f \lfloor i \rfloor$ is the s-reliability.

<u>Note 3A</u>. The variable need not be time, it can be any continuous measure of life such as operating time, calendar time, or distance.

<u>Note 4A</u>. It has many names such as hazard rate, force of mortality (especially for people's lives), instantaneous failure rate (a poor choice', and conditional failure rate

<u>Note 5A</u>. It must be distinguished from the pdf with which it is occasionally mistaken in the engineering literature.

<u>Note 6A.</u> Its most popular use is where the failure rate λ is constant. Then Sf $\{t\} = \exp(-\lambda t)$.

B The conditional probability that the item will fail at the next time point t_n given that the item has not failed before that time point t_n .

 $\lambda_n \equiv pmf \{ t_n \} / Sf \{ t_n \}.$

The *pmf* is normalized by the fraction still alive just before t_n .

Note 1B. This definition is only for discrete random variables.

Note 2B. The variable need not be discrete

time points, it can be any time-like discrete measure of life such as cycles of operation or events.

<u>Note 3B</u>. This is not a common use of the concept. The random variable is virtually always continuous.

General note.

<u>Note</u> This concept is directly applicable only to either:

(a) Nonrepairable items, or

(b) Repairable items where repair time is ignored and repair is to good-as-new. Each such item is considered to be brand new. For other repairable items, this concept must be defined further before it can be useful.

See also: pdf, pmf, Sf.

² failure rate. The number of failures of an item per unit measure of life (cycles, time, miles, events, etc., as applicable for the item). (Ref. 2.)

Added note:

<u>Note.</u> This may be ambiguous because it could refer to the *pdf*; see: ¹ failure rate, <u>Note 5A</u>. Its use is host avoided unless the ambiguity can be avoided.

³ failure rate. The incremental change in the number of failures per associated incremental change in time. (Adapted from Ref. 5.)

Added note:

<u>Note</u>. This may be ambiguous because it could refer to the pdf; see: ¹ failure rate, <u>Note 5A</u>. Its use is best avoided unless the ambiguity can be avoided.

⁴ failure rate. The rate of change of the number of items that have failed, divided by the number of items surviving. (Adapted from Ref. 5-definition of instantaneous failure rrte.)

⁵ failure rate. The s-expected number of

failures in a given time interval. (Adapted from Ref. 6.)

Downloaded from http://www

Added note:

Note. This definition is ambiguous and ought not to be used.

failure, secondary. A failure caused either directly or indirectly by the failure of another item. (Adapted from Ref. 5.)

Note. This is sometimes ambiguously called a dependent failure.

*1 failure, wearout. Any failure whose time of occurrence is governed by a rapidly increasing failure rate.

Note 1. The failure rate must "become infinite" as time "becomes infinite".

<u>Note 2.</u> The conditional mean remainingtime to failure must go to zero as the consumed life of the item "becomes infinite".

<u>Note 3.</u> An s-normal distribution of life satisfies those requirements and often is used as a typical wearout distribution.

Note 4. It may not be possible to tell, by looking at a failed item what classification or failure is involved. Some of the classifications are for mathematical convenience only.

Note 5. It is usually a random failure.

² failure, wearout. Any of the usual failures that occur due to mechanical wear of a part.

Note. This is the prototype for definition 1.

G

Gaussian distribution. A 2-parameter distribu-

tion ($\sigma > 0$) with

$$pdf \{x\} = \frac{1}{\sqrt{2\pi}} \cdot \kappa p \left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right]$$
$$Cdf \{x\} = gauf(x)$$

$$Sf\{x\} = gaufc(x),$$

"mean value of x" = μ , "standard deviation of x" = σ .

<u>Note 1</u>. This has several convenient properties, and so is widely used—even when not strictly applicable.

<u>Note 2</u>. This distribution is sometimes implied by the phrase "pure random", but it may refer to other distributions as well.

<u>Note 3</u>. More commonly this is called the *s*-normal distribution.

geometric mean. The geometric mean of n numbers is the *n*th root of their product.

<u>Note.</u> The term is applicable only to positive numbers.

- go/no-go. This expression implies that only 2 states will be considered: either it "goes" or it "doesn't go", i.e., is either good or bad. It is the same as attribute.
- good-as-new. A term which describes repair. The repaired item is indistinguishable from a brand new item. Its internal clock has been turned back to zero.

<u>Note 1</u>. It does not always imply perfection, especially if the item contains redundancy.

Note 2. If the failure rate is constant, good-as-new and bad-as-old are the same.

goodness of fit. A statistical term that quantifies how likely a sample was to have come from a given probability distribution.

Н

hazard rate. Same as failure rate.

homogeneous. A. The state of being reasonably close together with respect to one or more important properties.

B. Describable by one of the simple, common, tractable probability distributions.

Note. This is a qualitative term and suggests that its user is satisfied with his description of the events. It usually is ambiguous and ought to be replaced by a more accurately descriptive phrase.

- human engineering. The area of human factors, which applies scientific knowledge to the design of items to achieve effective man-machine integration and utilization. (Ref. 2.)
- human factors. A body of scientific facts about human characteristics. The term covers all biomedical and psychosocial considerations: it includes, but is not limited to, principles and applications in the areas of human engineering, personnel selection, training, life support, job performance aids, and human performance evaluation. (Ref. 2.)

State of the strengthered from the

- human performance. A measure of man-functions and actions in a specified environment. (Ref. 2.)
- hypothesis. An assertion that is to be tested by means of sampling and statistical analysis.

Note. This restricted definition is the way the term generally is used in statistical reliability procedures. Other, more general, definitions are valid also.

See also: hypothesis, null.

hypothesis, null. An hypothesis that there is no difference between some characteristics of the parent populations of several different samples, i.e., that the samples came from similar populations.

Note 1. This is usually tested by:

lownloaded from http://www.everyspec.com

- (a) Being specific about the characteristics of the population
- (b) Pooling the sample data in some way
- (c) Seeing how often one would get samples that differ as much as the samples at hand.

<u>Note 2.</u> An alternate hypothesis is often specified or implied. The more narrowly and specifically the alternate hypothesis is framed, the easier it is to distinguish between the null- and alternate-hypotheses.

<u>Note 3.</u> It is easy to reject the null hypothesis when the occurrence of the observed sample differences (or worse) would be very unlikely. One should, however, be very suspicious when the samples are very alike—someone may have taken liberties (perhaps unintentional or well intentioned) with the date.

<u>Note 4.</u> In some cases, such as goodnessof-fit tests, there is only one sample, and the null hypothesis is that it came from a particular family of distributions.

<u>Note 5.</u> Example. It is hypothesized that 2 samples came from 2 *s*-normal populations that have the same standard deviation and the same means. (The null hypothesis here refers to assuming there is no difference in the means.) The alternate hypothesis is exactly the same, except that the means are different. This is a quite restrictive alternate hypothesis and can be tested quite sharply.

<u>Note 6.</u> The discriminating ability depends not only on the form of the alternate hypothesis but on the amount of the data.

It is always possible to have so few data that one can never reject the null hypothesis or so many data that one will always reject the null hypothesis. The engineering interpretation of the results of hypothesis testing are often quite different from the statistical interpretation.

L

infant mortality. Premature catastrophic failures occurring at a much greater rate than during the period of useful life prior to the onset of substantial wearout.

Note 1. This term is used in analogy to the human situation, where the **bathtub curve** holds for the death rate. Infants have a higher death rate than do older children. Many infant deaths are due to subnormal characteristics of the infant. Likewise, early failures in many equipments are due to substandard characteristics.

Note 2. Infant mortality often can be reduced by stringent quality control and design efforts.

- ¹ inspection. The examination and testing of supplies and services (including, when appropriate, raw materials, components, and intermediate assemblies) to determine whether they conform to specified requirements. (Ref. 1; Source:ASPR 14-001.3.)
- ² inspection. The process of measuring, examining, testing, erging, or otherwise comparing the unit with the applicable requirements. The unit of product may be a single article, a pair, a set; or a specimen, a length, an area, a volume; or an operation, a service, a performance. (Ref. 3.)
- inspection by attributes. Inspection whereby either the unit of product or characteristics thereof, is classified simply as defective or nondefective, or the number of defects in

the unit of product is counted, with respect to a given requirement. (Ref. 1.)

See also: attribute.

Downloaded from http://www.everyspec.com

- inspection by variables. Inspection wherein certain quality characteristics of a sample are evaluated with respect to a continuous numerical scale and expressed as precise points along this scale. Variable inspections record the degree of conformance or nonconformance of the unit with specified requirements for the quality characteristics involved. (Ref. 1.)
- inspection level. An indication of the relative sample size for a given amount of product. (Ref. 1.)

Added note:

Note. When the inspection level is changed, the new operating characteristic will generally cross the old one near the region of "indifference". This means that consumer- and producer-risks will both generally rise or fall when the inspection is reduced or tightened, respectively.

- ¹ inspection lot. A collection of units of product bearing identification and treated as a unique entity from which a sample is to be drawn and inspected to determine conformance with the acceptability criteria. (Ref. 1.)
- ² inspection lot. A collection of similar units or a specific quantity of similar material offered for inspection and acceptance at one time. (Ref. 3.)
- inspection, normal. Inspection in accordance with a sampling plan that is used under ordinary circumstance. (Ref. 3.)

See also: inspection level.

inspection, reduced. Inspection in accordance with a sampling plan requiring smaller

sample sizes than those used in normal inspection. Reduced inspection is used in some inspection systems as an economy measure when the level of submitted quality is sufficiently good and other stated conditions apply. (Ref. 3.)

Note. The criteria for determinin, when quality is "sufficiently good" must be defined in objective terms for any given inspection system.

See also: inspection level.

¹ inspection, tightened. Inspection under a sampling plan using the same quality level as for normal inspection, but requiring more stringent acceptance criteria. (Ref. 1.) (Source: MIL STD-109A.)

See also: inspection level.

² inspection, tightened. Inspection in accordance with a sampling plan that has more strict acceptance criteria than those used in normal inspection. Tightened inspection is used in some inspection systems as a protective measure when the level of submitted quality is sufficiently poor. It is expected that the higher rate of rejections will lead the supplier to improve the quality of submitted product. (Ref. 3.)

<u>Note.</u> The criteria for determining when quality is "sufficiently poor" must be defined in objective terms for any given inspection system.

See also: inspection level.

item. A very general term. It can refer to anything, from very small parts to very large systems.

Note. This term often is used to avoid being specific about the size or complexity of the thing to which reference is made. L

- life test. A test, usually of several items, made for the purpose of estimating some characteristic(s) of the probability distribution of life.
- longevity. Length of useful life of a product, to its ultimate wearout requiring complete rehabilitation. This is a term generally applied in the definition of a safe, useful life for an equipment or system under the conditions of storage and use to which it will be exposed during its lifetime.

lot. See: inspection lot.

lot quality. The true fraction defective in a lot.

Note. This applies to attributes. Other definitions would be needed for variables.

*1 lot tolerance percent defective (LTPD). A point on the quality coordinate of the operating characteristic of an attribute acceptance-sampling-plan which is in the region of bad quality and reasonably low acceptance probability.

Note 1. The rejection probability at the LTPD is often called the consumer risk β .

<u>Note</u> 2. The conventional definitions (see: defs. 2 and 3) tend to endow this point with very special properties which it does not really have. Conventionally this point (LTPD, β) is one of two that define the acceptance sampling plan and its operating characteristic. But any 2 points on that operating characteristic will generate exactly the same acceptance sampling plan. That is why this modified, more usable definition is also given.

<u>Note 3</u>. An example of an LTPD is 20% defective at an acceptance probability (consumer risk) of 10%.

<u>Note 4.</u> The term itself can be very misleading, especially to non-specialists in Quality Control. Its use ought to be avoided in material written for such people.

Downloaded from http://www.everyspec.com

² lot tolerance percent defective (LTPD). Expressed in percent defective, the poorest quality in an individual lot that should be accepted. Also referred to as rejectable quality level (RQL). (Ref. 3.)

<u>Note.</u> The LTPD is used as a basis for some inspection systems and commonly is associated with a small consumer's risk.

M

- s-maintainability. A characteristic of design and installation which is expressed as the probability that an item will be retained in or restored to a specified condition within a given period of time, when the maintenance is performed in accordance with prescribed procedures and resources. (Refs. 1 and 2.)
- maintenance. All actions necessary for retaining an item in or restoring it to a specified condition. (Ref. 2.)

Added note:

<u>Note.</u> Maintenance usually is assumed to be perfect, i.e., to restore all parts to good-as-new and to do no damage to anything. The assumption is rarely true.

maintenance, corrective. This is the same as repair.

See also: maintenance.

maintenance, preventive. The maintenance performed in an attempt to retain an item in a specified condition by providing systematic inspection, detection and prevention of incipient failure. (Adapted from Ref. 2.)

See also: maintenance (and added note).

maintenance ratio. The man-hours of maintenance required to support each hour of operation.

Note. This figure reflects the frequency of failure of the system, the amount of time required to locate and replace the faulty part, and to some extent the overall efficiency of the maintenance organization. This method of measurement is valuable primarily to operating agencies, since, under a given set of operating conditions, it provides a figure of merit for use in estimating maintenance manpower requirements. The numerical value for maintenance ratio may vary from a very poor rating of 5 or 10, down to a very good rating of 0.25 or less. (Adapted from Ref. 6.)

maintenance time, corrective. See: repair time.

malfunction. Anything that requires repair. It is purposely a general word.

Note. It can be anything from a minor degradation to a complete system breakdown.

- marginal testing. A test in which item environments such as line voltage or temperature are changed to worsen (reversibly) the performance. Its purpose is to find out how much margin is left in the item for degradation.
- mean. A. The arithmetic mean; the s-expected value.

B. As specifically modified and defined, e.g., harmonic mean (reciprocals), geometric mean (a product), logarithmic mean (logs).

<u>Note</u>. Definition A is implied unless otherwise modified. It is wise to be explicit if there is any possibility of misunderstanding.

1-20

mean cycles-between-failures. See: mcan lifebetween-failures.

Downloaded from http://www.evervspec.com

mean cycles-to-failure. See: mean life.

mean distance-between-failures. See: mean life-between-failures.

mean distance-to-failure. See: mean life.

mean life.
$$\int_{0}^{T} R(t)dt$$

where

 $R(t) \equiv$ the s-reliability of the item

 $T \equiv$ the interval over which the mean life is desired, usually the useful life(longevity).

Note 1. The concept is defined only for items which are either

(a) Not repaired, or

(b) Repaired to a good-as-new condition, and returned to stock, i.e., after repair they are treated as brand new items. The repair process itself is irrelevant to the concept.

Note 2. T is "infinity" in most definitions. Suppose $R(t) = \exp(-\lambda t)$, the often treated case. Then

 $MTF = \left[1 - \exp\left(-\lambda T\right)\right]/\lambda.$

(a) Suppose T is short compared to $1/\lambda$, i.e., $\lambda T \ll 1$. The MTF $\approx T$.

(b) Suppose T is long compared to $1/\lambda$, i.e., $\lambda T >> 1$. The MTF $\approx 1/\lambda$.

This example helps to clear the confusion between $1/\lambda$ (which is often called the mean-life) and the longevity *T*. If the longevity is "infinite", then the mean life (for constant failure rate) is $1/\lambda$. The mean lives in the literature are virtually always $1/\lambda$, the distinction in this note is very rarely made elsewhere.

<u>Note 3</u>. The concept is applicable to any measure of life, such as calendar time, operating time, cycles of something,

distance, or events. The phrase is ambiguous unless the measure of life is clearly and explicitly defined.

<u>Note 4.</u> When $T \rightarrow \infty$, the $MTF \rightarrow \infty$ for some *s*-reliability functions. In that case, it is important that T not be allowed to "go to infinity".

<u>Note 5.</u> For a sample of N, mean life is just the usual average life-add the lives of N units, and divide by N.

<u>Note 6</u>. There are many definitions of this concept in the literature, some of which are misleading and/or ambiguous. Be extremely wary of any definition that is not equivalent to the one given here.

<u>Note 7</u>. The *s*-reliability of an item is a function of many things, e.g., all the mission conditions.

<u>Note 8</u>. This concept may be modified by such terms as estimated, extrapolated, or observed. See Ref. 5, pp. 340-341.

See also: s-reliability.

mean life-between-failures. This concept is the same as mean life except that it is for repaired items, and is the mean up-duration of the item. The formula is the same as for mean life except that R(t) is interpreted as the distribution of up-durations.

<u>Note 1</u>. The concept is applied, virtually always, only to items where the up-durations are exponentially distributed, i.e., $R(t) = \exp(-\lambda t)$. If it is applied to any other up-duration distribution, there are severe conceptual difficulties and the whole repair philosophy must be carefully and explicitly detailed. With exponentially distributed up-durations (usual case) the repair process itself is irrelevant to the concept.

Note 2. When up-durations are exponen-

AND T & WALF THE AREA STATE OF ALL SALES

tially distributed (rate parameter λ), the **bad-as-old** and good-as-new repair philosophies are exactly the same, because the item at any point in its up-duration has the same R(t) as at any other point, or as any other item with the same rate parameter. If the down-durations are ignored (compressed to zero), then the failure events form a Poisson process with rate parameter λ .

<u>Note 3.</u> The concept is only applied when $\lambda T >> 1$ so that mean life between failures is $1/\lambda$. (See: mean like, Note 2.) If one tries to apply it in other situations, the definition must be extended to include the entire maintenance philosophy.

<u>Note 4.</u> The concept is applicable to any measure of life, such as calendar time, operating time, cycles of something, distance, or events.

<u>Note 5.</u> For a sample of N, mean up-duration is just the usual average up-duration—add the up-durations of N units, and divide by N.

<u>Note 6.</u> There are many definitions of this concept in the literature, some of which are misleading and/or ambiguous. Be extremely wary of any definition that is not equivalent to the one given here.

Note 7. The up-duration of an item is a function of many things, e.g., all the mission conditions.

Note 8. This concept may be modified by such terms as estimated, extrapolated, or observed. See: Ref. 5, pp. 340-341.

See also: mean life, s-reliability.

mean square error (mse). A property of a statistical estimator. It is similar to variance except that it is referred to the true population mean instead of its own mean. $mse = (bias)^2 + variance$

Downloaded from http://www.everyspec.com

<u>Note.</u> The *mse* is often a very useful concept, more so than variance. But the *mse* is much less tractable than variance and so is less often used.

- *1 mean time-between-failures (MTBF). See: mean life-between-failures.
- ² mean time-between-failures (MTBF). For a particular interval, the total functioning life of a population of an item divided by the total number of failures within the population during the measurement interval. The definition holds for time, cycles, miles, events, or other measure of life units. (Ref. 2.)

mean time-to-failure (MTF). See: mean life.

- mean time-to-first-failure (MTFF). Same as mean life, but can apply to repairable equipment (although behavior subsequent to the first failure is irrelevant unless the item is restored to good-as-new and is treated as any other brand new item).
- *1 mean time-to-repair (MTTR). Similar to mean life except that repair time is used instead of life.

$$MTTR = \int_{O}^{T} \overline{G}(t) dt$$
where

 $G(t) \equiv Cdf$ of repair time

 $\vec{G}(t) \equiv 1 - G(t)$

 $T \equiv$ maximum allowed repair time, i.e., item is treated as nonrepairable at this echelon and is discarded or sent to a higher echelon for repair.

<u>Note 1.</u> The value of T can be important for distributions with very long tails, e.g., lognormal.

Note 2. Suppose the repair rate,

$$\mu \equiv \frac{d}{dt} \ [-\ln \vec{G}(t)], \text{ is constant, then}$$
$$\vec{G}(t) = \exp(-\mu t) \text{ and}$$

 $MTTR = [1 - \exp(-\mu T)]/\mu$

If T is long compared to $1/\mu$, the usual case, then $MTTR \approx 1/\mu$. This supposition of constant repair rate is not considered to be realistic although it is often made. Conventional wisdom suggests a lognormal distribution.

Note 3. See: notes on mean life.

- ² mean time-to-repair (MTTR). The total corrective maintenance time divided by the total number of corrective maintenance actions during a given period of time. (Ref. 2.)
- mean time-to-xxxx (MTX). This is simply the arithmetic mean (for a sample) or the s-expected value (for a population) of the xxxxtime.

$$MTX = \int_{0}^{T} \overline{\phi}(t) dt$$

where

xxxx = any event

 $T \equiv$ the maximum considered xxxxtime

 $\overline{\phi}(t) \equiv Sf \text{ of } xxxtime$

See also: mean life.

mission. The objective or task, together with purpose, which clearly indicates the action to be taken (Ref. 2.)

Added notes:

Note 1. In reliability it is presumed that the mission description includes conditions under which the performance is to be obtained, the time duration (where appropriate), and the definition of failure/success. <u>Note 2</u>. The mission can consist of sub-missions (phases) each of which is defined as a mission in itself. The sub-missions can be time sequential or occur at the same time (e.g., multiple missions).

Downloaded from http://www.everyspec.com

module. An item which is packaged for ease of maintenance of the next higher level of assembly. (Adapted from Ref. 6.)

N

s-normal distribution. See: Gaussian distribution.

0

operating characteristic (OC). A. For an accept/reject test: the relationship between probability of accepting an hypothesis and the true value of a parameter in that hypothesis.

B. For acceptance sampling: the relationship between probability of accepting a lot and the true quality (usually measured by fraction defective) of the lot.

Note 1. Probability of acceptance is the same as longrun fraction of lots accepted.

Note 2. The OC is most usually presented as a curve and referred to as the OC curve.

*¹ operating characteristic curve (OC curve). The curve which shows the relationships of the operating characteristic.

See also: operating characteristic.

²operating characteristic curve. The curve of a sampling plan which shows the percentage of lots or batches which may be expected to be accepted under the specified sampling plan for a given process quality. (Ref. 1.)

³ operating characteristic curve. A. A curve showing, for a given sampling plan, the probability of accepting a lot, as a function of the lot quality.

B. A curve showing, for a given sampling plan, the probability of accepting a lot, as a function of the quality of the process from which the lots come. Also, as used for some types of plans-such as chain sampling plans and continuous sampling plans-a curve showing the percentage of lots, or product units, that may be expected to be accepted as a function of the process quality. (Ref. 3.)

Note. For sampling plans, the terms OC curve, consumer's risk, producer's risk, and the like, are used in two senses, referred to as type A and type B, depending on whether interest centers on (A) probabilities associated with sampling from a lot of stated quality or on (B) probabilities associated with sampling the output (series of lots, units, etc.) from a process of stated quality. For sampling from a lot, the values of probabilities, risks, and the like, are based on sampling from a finite population, and for sampling from a process, they are based on sampling from an infinite population.

- operational. Of, or pertaining to, the state of actual usage (being up, being in operation). (Adapted from Ref. 2.)
- overstress. A condition wherein the severity levels of operation (use, etc.) are more than usual or more than the specification.

<u>Note</u>. Often the term is applied where the stress is increased slowly (perhaps in steps) until failure occurs or until an adequate ability to resist the stress is demonstrated.

Ρ

parallel. Items that are connected so that the total flow is through all, and what flows

through one item does not flow through another.

Note. The term is often ambiguous because it can refer to a logic diagram as well as a physical diagram, and the two do not always agree. It is wise to modify the term explicitly to be clear.

part. An item that will not be disassembled for maintenance.

Note. It is a loose term, and applies to the purposes at hand.

passive element. An element that is not active.

See also: active element.

population. The totality of the set of items, units, elements, measurements, and the like, real or conceptual, that is under consideration. (Adapted from Ref. 3.)

Added notes:

Downloaded from http://www.everyspec.com

Note 1. A synonym is universe.

- <u>Note 2.</u> In practice, where the sampling is actual, rather than hypothetical, the **population** is likely to be defined (by working backwards) as that group from which the sample was actually a random sample. This working backwards may arrive at a rather different population than originally was intended. The actual vc "hoped-for" population has been at the root of many statistical errors.
- precision. Degree of mutual agreement among individual measurements. Relative to a method of test, precision is the degree of mutual agreement among individual measurements made under prescribed like conditions. (Ref. 3.)
- predicted. That which is expected at some future date, postulated on analysis of past experience. (Adapted from Ref. 2.)

probability density function pdf. The derivative of the Cdf with respect to the random variable.

vnloaded from http://www.everyspec.cor

Note 1. For continuous random variables only.

Note 2. The Cdf must be well behaved enough for the operation to be performed. Otherwise the pdf will not be defined at the ill behaved places.

See also: Cdf, pmf.

visious and an and a set of adver the set

- probability distribution. A general term that refers to the way a random variable is distributed. It is often used in association with a name such as Gamma, Gaussian, exponential, or Weibull. The probability distribution has quantitative properties such as a Cdf and Sf. If the random variable is continuous and well behaved enough, there will be a pdf. If the random variable is discrete, there will be a pmf.
- probability mass function *pmf*. The amount of probability assigned to each value of the random variable.

Note. For discrete random variables only.

See also: Cdf, pdf.

Q

- qualification. The entire process by which products are obtained from manufacturers or distributors, examined and tested, and then identified on a Qualified Products List. (Source: DSM 4120.3-M.) (Ref. 1.)
- qualified product. A product that has been examined and tested and listed on or qualified for inclusion on the applicable Qualified Products List. (Source: DSM 4120.3-M.) (Ref. 1.)
- qualified product list (QPL). A list of products, qualified under the requirements

stated in the applicable specification, including appropriate product identification and test reference with the name and plant address of the manufacturer or distributor, as applicable. (Source: DSM 4120.3-M.) (Ref. 1.)

- ¹quality. The totality of features and characteristics of a product or service that bear on its ability to satisfy a given need. (Ref. 3.)
- ² quality. The composite of all the attributes or characteristics, including performance, of an item or product. (Source: DOD-D-4155.¹1.) (Ref. 1.)
- ¹ quali'y assurance. A system of activities whose purpose is to provide assurance that the overall quality-control job is in fact being done effectively. The system involves a continuing evaluation of the adequacy and effectiveness of the overall quality-control program with a view to having corrective measures initiated where necessary. For a specific product or service, this involves verifications, audits, and the evaluation of the quality factors that affect the specification, production, inspection, and use of the product or service. (Adapted from Ref. 3.)

See also: ¹ quality control.

- ² quality assurance. A planned and systematic pattern of all actions necessary to provide adequate confidence that the item or product conforms to established technical requirements. (Source: DOD-D-4155.11.) (Ref. 1.)
- quality characteristics. Those properties of an item or process which can be measured, reviewed, or observed, and which are identified in the drawings, specifications, or contractual requirements. Reliability becomes a quality characteristic when so defined. (Ref. 6.)
Downloaded from http://www.everyspec.com

AMCP 706-200

¹quality control (QC). The overall system of activities whose purpose is to provide a quality of product or service which meets the needs of users; also, the use of such a system.

The aim of quality control is to provide quality that is satisfactory, adequate, dependable, and economic. The overall system involves integrating the quality aspects of several related steps, including the proper specification of what is wanted; production to meet the full intent of the specification: inspection to determine whether the resulting product or service is in accordance with the specification; and review of usage to provide for revision of specification.

The term "quality control" often is applied to specific phases in the overall system of activities, as, for example "process quality control".

Note. Broadly, quality control has to do with making quality what it should be, and quality assurance has tc do with making sure that quality control is what it should be. In some industries, quality assurance is used as an all-inclusive term combining both functions. (Ref. 3.)

² quality control. A management function whereby control of quality of raw or produced material is exercised for the purpose of preventing production of defective material. (Ref. 1.)

R

¹random sample. As commonly used in acceptance sampling theory, the process of selecting sample units in such a manner that all units under consideration have the same probability of being selected.

Note: Actually, equal probabilities are not necessary for random sampling; what is

necessary is that the probability of selection be ascertainable. The stated properties of published sampling tables, however, are based on the assumption of random sampling with equal probabilities. An acceptable method of random selection with equal probabilities is the use of a table of pseudorandom numbers in a standard manner.

(The definition of "sampling at random" adapted from Ref. 3.)

See also: population.

²random sample. A sample selected in such a way that each unit of the population has an equal chance of being selected. (Ref. 1.)

See also: population.

*¹ redundancy. The existence of more than one means for accomplishing a given function.

Note 1. Each means of accomplishing the function need not be identical. (Adapted from Ref. 2.)

Further notes:

<u>Note 2</u>. In the qualified definitions of redundancy in the Glossary, the collection of all means for accomplishing the given function is called a group.

<u>Note 3.</u> The changeover (switching) often is presumed to be perfect, i.e., no information or product is lost, the changeover takes negligible time, the system performance never "knows" that the failure occurred. Perfection rarely is observed in practice. Loss of information in computer systems is especially important.

<u>Note 4</u>. Some action is often necessary to disconnect a failed item and possibly to connect a $\frac{1}{2}$ ood item. If much action is necessary, it is often called maintenance.

AMCP 708-200

The distinction between maintenance and redundancy is one of degree of effort to effect the changeover.

- ²redundancy. The introduction of auxiliary elements and components to a system to perform the same functions as other elements in the system for the purpose of improving reliability and safety. (Ref. 5.)
- *¹ redundancy, active. A type of redundancy wherein all items in the group are operating simultaneously.

<u>Note 1</u>. A failed item might need to be disconnected from the system; e.g., centrifugal pumps physically in parallel, might have a check valve physically in series with each pump.

<u>Note 2</u>. The failure behavior of each operating item in the group usually is presumed to be the same, although that behavior might be a function of the number of operating units.

Note 3. This often is presumed to be the same, mathematically, as hot standby.

Note 4. This often is presumed to be the opposite of passive redundancy and standby redundancy.

See also: redundancy.

² redundancy, active. That redundancy wherein all redundant items are operating simultaneously rather than being switched on when needed, (Refs. 2 and 5.)

- redundancy, passive. This usually is standby redundancy.
- *1 redundancy, standby. A type of redundancy wherein some items in the group are not operating, i.e., are on standby.

<u>Note 1</u>. A failed item might need to be disconnected from the system.

<u>Note 2.</u> Some action is usually necessary to connect the new item into the system.

<u>Note</u> 3. The failure behavior of the standby items is not always clear when this term is used. Often cold standby is implied, but warm- or hot-standby might actually be occurring. It is wise always to be explicit about the failure behavior of standbys-it may even be worse than for operating items.

See also: redundancy.

lownloaded from http://www.everyspec.com

- *² redundancy, standby. That redundancy wherein the alternate means of performing the function is inoperative until needed and is switched on upon failure of the primary means of performing the function. (Adapted from Refs. 2 and 5.)
 - *¹reliability. The ability of an item to complete its mission successfully.
- ²reliability. The ability of an item to perform a required function under stated conditions for a stated period of time. (Adapted from Ref. 5.)
- ³reliability. A general term denoting some measure of the failure characteristics of an item.
- *1 s-reliability. The probability that the item successfully completes its mission, given that the item was in proper condition at the mission beginning.

<u>Note 1</u>. The characteristics of the mission, such as length, environments, and the definition of failure must be defined clearly.

<u>Note 2</u>. The method for assuring "proper condition at the beginning of the mission" must be defined clearly. This is important when the item contains any nominal redundancy.

<u>Note 3</u>. The mission can be either i-shot (such as an explosive bolt) or over a length of time, such as a radar.

Note 4. The mission must be reasonably simple, otherwise other concepts will be more appropriate, e.g., system effective-ness.

<u>Note 5.</u> The concept can be modified by such words as assessed, estimated, predicted, extrapolated, or operational.

<u>Note 6</u>. Sometimes a long range reliability implicitly is being considered, and mission reliability is to be calculated for a short mission during that time. Such a concept requires careful delineation of the conceptual model and its implications. See Ref. 5, pp. 488-489.

<u>Note</u> 7. If repair is to be allowed, the assumptions concerning repair must be stated clearly and explicitly. See notes under mean life and mean life-between-failures.

²s-reliability. The probability that an item will perform its intended function for a specified interval under stated conditions. (Refs. 1 and 2.)

Added note:

- 10 A

No. of Lot of Lo

<u>Note</u>. This is the conventional definition. It lacks some of the important features of ¹s-reliability, e.g., "1-shot missions", and "condition at mission beginning".

³s-reliability. The probability that a device will function without failure over a specified time period or amount of usage.

<u>Note 1</u>. This is used most commonly in engineering applications. In any case where confusion may arise, specify the definition being used.

Note 2. The probability that the system

will perform its function over the specified time should be equal to or greater than the reliability.

(Adapted from Ref. 5.)

Downloaded from http://www.everyspec.com

- reliability, achieved. The reliability actually demonstrated (with appropriate statistical considerations) by hardware tests, at a given calendar time.
- reliability apportionment. The assignment of reliability goals to subitems (e.g., from system to its subsystems) in such a way that:
 - (a) The item will have the required reliability.
 - (b) The resources consumed in meeting the goals will be minimized.
- reliability growth. Any design is incomplete, inadequate, and wrong in places. The failure rate of initially produced items often will be 10 times the hoped-for value. Reliability growth is the effort, the resource commitment, in improving design, purchasing, production, inspection procedures to improve the reliability.

<u>Note</u>. Reliability growth is one of the main reasons that inherent reliability is a pool phrase to use.

- s-reliability, inherent. This is a poor term to use; it is very ambiguous and subject to gross misuse. It can cause much misunderstanding. Very often it means s-reliability calculated using only those failures that an imaginative, aggressive, intelligent designer cannot blame on someone else. This concept violates the very foundation of reliability growth.
- reliability measure. A general term denoting the *s*-reliability, *s*-unreliability or some function thereof.

Note. This term is used most often when the constant failure rate assumption is made. The measures usually being consid-

ered are then s-reliability, s-unreliability, failure rate, mean life, mean life-between-failures.

See also ³ reliability.

s-relisbility, mission. See: ¹s-reliability, Note 6.

- reliability, operational. This is a vague term. It usually refers to a method of calculating reliability using handbook failure rates and severity factors. Its use is best avoided unless its meaning is clearly explained.
- reliability, predicted. The reliability of an equipment computed from its design considerations and from the reliability of its parts in the intended conditions of use. (Ref. 5.)

Added note:

-a' . Jake

and a first the second se

Note. The prediction does not sav what the reliability will be, but what the reliability can be if there is a reasonable reliability growth program.

See also: reliability.

reliability-with-repair. The reliability that can be achieved when maintenance is allowed under circumstances such that the system is never officially down (i.e., any downtime is not charged against reliability).

Note. When using this concept, the circumstances of allowable maintenance and definition of system states must be defined corefully and explicitly.

- repair. The maintenance performed, as a result of failure, to restore an item to a specified condition. (Adapted from Ref. 2.)
- risk. The provability of making a poor decision.

See also: risk, consumer; risk, producer.

*1 risk, consumer β . A point on the acceptance-probability axis of the operating characteristic of an attribute acceptancesampling-plan which is in the region of bad quality and reasonably low acceptance probability.

Downloaded from http://www.everyspec.co

<u>Note 1</u>. The bad quality corresponding to β is often called the lot tolerance percent defective (LTPD).

Note 2. The conventional definition (see: def. 2) tends to endow this point with very special properties which it does not really have. Conventionally this point (LTPD, β) is one of two that define the acceptance sampling plan and its operating characteristic. But any 2 points on that operating characteristic will generate exactly the same acceptance sampling plan. That is why this modified, more usable definition is also given.

See also: lot tolerance percent defective, operating characteristic.

²risk, consumer β . For a given sampling plan, the probability of acceptance for a designated numerical value of relatively pcor submitted quality.

Note. The exact risk depends on whether "submitted quality" relates to lot quality or process quality.

(Adapted from Ref. 3.)

*¹risk, producer α. A point on the rejectionprobability curve of the operating characteristic of an attribute acceptance-sampling plan which is in the region of good quality and reasonably low rejection-probability.

<u>Note 1</u>. The good quality corresponding to α is often called the acceptable quality level (AQL).

Note 2. The conventional definition (see:

def. 2) tends to endow this point with very special properties which it does not really have. Conventionally this point (AQL, α) is one of two that define the acceptance sampling plan and its operating characteristic. But any 2 points on that operating characteristic will generate exactly the same acceptance sampling plan. That is why this modified, more usable definition is also given.

See also: acceptable quality level, operating characteristic.

- ²risk, producer α . For a given sampling plan, the probability of rejection for a designated numerical value of relatively good submitted quality.
 - Note. The exact risk depends on whether "submitted quality" relates to lot quality or process quality.

(Adapted from Ref. 3.)

root mean square (rms). The square root of the arithmetic mean of the squares.

Ş

s statistic. See: standard deviation.

- safety. The conservation of human life and its effectiveness, and the prevention of damage to items, consistent with mission requirements. (Ref. 2.)
- safety factor. A general term relating to the ability of the item to withstand more than the nominal "stresses".

Note. Whenever this is used in a specific sense, it must be clearly defined.

- sampling plan. See: acceptance sampling plan.
- ¹ sampling plan, dcuble. A specific type of attribute sampling plan in which the

inspection of the first sample leads to a decision to accept, to reject, or to take a second sample. The inspection of a second sample, when required, then leads to a decision to accept or reject. (Source: MIL-STD-105) (Adapted from Ref. 1.)

ed from http://www.everyspec.co

- ²sampling plan, double. Sampling inspection in which the inspection of the first sample leads to a decision to accept a lot, to reject it, or to take a second sample; and the inspection of a second sample, when required, then leads to a decision to accept or to reject the lot. (Ref. 3.)
- ¹ sampling plan, multiple. A specific type of attribute sampling plan in which a decision to accept or reject an inspection lot may be reached after one or more samples from that inspection lot have been inspected, and always will be reached after not more than a designated number of samples have been inspected. (Source: MIL-STD-105) (Adapted from Ref. 1.)
- ² sampling plan, multiple. Sampling inspection in which, after each sample is inspected, the decision is made to accept a lot, to reject it, or to take another sample; but in which there is a prescribed maximum number of samples, after which a decision to accept or to reject the lot must be reached.

Note. Multiple sampling as defined here sometimes has been called "sequential sampling" or "truncated sequential sampling". The term "multiple sampling" is recommended.

(The definition of "multiple sampling" from Ref. 3.)

sampling plan, sequentir! A specific type of sampling plan in which the sample units are selected one at a time. After each unit is inspected, the decision is m2 le to accept. reject, or continue inspection until the acceptance or rejection criteria are met. Sampling terminates when the inspection

AMCP 708-200

results of the sample units determine that the acceptance or rejection decision can be made. The sample size is not fixed in advance, but depends on acrual inspection results. (Source: Handbook H53.) (Ref. 1.)

Downloaded from http://www.everyspec.com

Added note:

Note. In practice most such plans are truncated and then become like multiple sampling plans. The term multiple is used most often when there are only a few decision points, say up to 5, whereas the term sequential is used most often where there are many, say more than 5, decision points.

See also: multiple sampling plan.

series. Items which are connected so that what flows through one item flows through another.

<u>Note</u>. The term is often ambiguous because it can refer to a logic diagram as well as a physical diagram, and the two do not always agree. It is wise to modify the term explicitly to be clear.

- severity level. A general term implying the degree to which an environment will cause damage and/or shorte: life.
- *¹ s-significance. A statistical term that relates to the probability that an observed test statistic would be as bad (or worse) than it was, if the hypothesis under test were true.

<u>Note 1</u>. One must distinguish between s-significance and engineering significance; there can be one without the other.

<u>Note 2</u>. It would be wise to obtain the services of a competent statistician if *s*-significance tests are to be used.

²s-significance. Results that show deviations between an hypothesis and the observations used as a test of the hypothesis, greater than can be explained by random variation or chance alone, are called statistically significant. (The definition of "statistical significance, statistically significant" from Ref. 3.)

*1 s-significance level. The probability that, if the hypothesis under test were true, a sample test statistic would be as bad or worse than the observed test statistic.

Note 1. The operating characteristic (probability of rejection) gives the s-significance level for any given test.

<u>Note 2</u>. In many situations, there is a numerical relationship between *s*-confidence and *s*-significance.

- ²s-significance level. The probability (risk) of rejecting an hypothesis that is true. This is also referred to as producer risk in sampling inspection (acceptance sampling). (Adapted from Ref. 3.)
- standard deviation. The root mean square deviation from the mean. It is a measure of dispersion of a random variable or of data. Four cases are important:
 - (1) For a continuous random variable x_i ,

$$\sigma^2 \equiv \int (x-\mu)^2 p df \langle x \rangle dx$$

where

 σ = population standard deviation

- $\mu \equiv \text{population mean} \equiv \int x p df \{x\} dx$
- and the probability distribution is well behaved enough for the expressions to have meaning
- and the integrations are over all values of x (the domain of x)

(2) For a discrete random variable x_{μ} ,

$$\sigma^2 \equiv \sum (x_n - \mu)^2 pmf\{x_n\}$$

のいろうちんちちちちんちちんちんちんちんちん

where

- σ = population standard deviation
- $\mu = \text{population mean} \equiv \sum x_n pmf x_n$ the probability distribution is well behaved enough for the expressions to have meaning the sum is over all values of x_n (the domain of x)

Downloaded from http://www.everyspec.com

(3) For a finite population of size N with random variable x_n ,

$$\sigma^2 \equiv \frac{1}{N} \sum_{n=1}^N (x_n - \bar{x})^2$$

where

 σ = population standard deviation

 \vec{x} = population mean $\equiv \frac{1}{N} \sum_{n=1}^{N} x_n$

(4) For a sample of size N (from an "infinite" population) with data x_n ,

$$\sigma_{\text{vample}}^2 \equiv \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2$$

$$s^{2} \equiv \frac{1}{N-1} \sum_{n=1}^{N} (x_{n} - \bar{x})^{2}$$

where

 $\sigma_{\text{mample}} = \text{sample standard deviation}$

$$\bar{x}$$
 = sample mean $\equiv \frac{1}{N} \sum_{n=1}^{N} x_n$

There is considerable controversy, confusion, and misunderstanding in the literature concerning whether σ_{sample} or \uparrow is the sample standard deviation. The simple answer is that it all depends on what you want to get. There is no question that σ_{sample} is the rms deviation from the mean, nor that it is the maximum likelihood estimator for the population standard deviation of an s-normal distribution. There is likewise no question that s^2 is the unbiased estimate of the population variance (although s is a biased estimate of the population standard deviation) and that, for s-normal distributions, the s- and s^2 -statistics are extremely useful. But the utility of s and s^2 for s-normal distributions does not make s the rms deviation from the mean, nor is unbiasedness very important for s^2 as an estimator for the population variance (rarely, if ever, does one wish to estimate the population variance for its own sake). When the probability distribution is s-normal, one is virtually always interested in the s-statistic, not the σ_{sample} because s is used in calculating a Student's t statistic, a χ^2/ν statistic, an F-statistic, and for s-confidence or s-significance statemen's.

standby. A reserve item, often considered to be part of redundancy.

<u>Note</u>. Nothing is implied about its failure behavior, either absolutely or relative to operating equipment. Often cold standby is implied, but the term is ambiguous.

See also: redundancy.

- standby, cold. A standby which is not degrading in any way and which cannot fail. Its failure rate is zero and is good-as-new when put in service.
- standby, hot. A standby whose failure and degradation behavior is exactly that of a like operating item.

Note. Hor standbys are usually indistinguishable from active redundancy.

standby, warm. A standby whose failure and degradation behavior is not specified. It

AMCP 70C-200

often is presumed to be between hot- and cold-standby, but (for mathematical convenience) often is presumed to include both.

Downloaded from http://www.everyspec.com

Note. It is implied that the failure and degradation behavior is never worse than hot standby.

stress. A general and ambiguous term used as an extension of its meaning in mechanics as that which could cause failure. It does not distinguish between those things which cause permanent damage (deterioration) and those things which do not (in the absence of failure).

See also: severity level.

subassembly. A. A general term implying a lower level than an assembly, i.e., an assembly is made up of subassemblies.

B. Two or more parts which form a portion of an assembly, or form a unit replaceable as 1 whole, but having a part or parts which are replaceable as individuals. (Ref. 6.)

See also: assembly.

- subsystem. A major subdivision of a system which performs a specified function in the overall operation of a system. (Ref. 6.)
- Survivor function Sf. The probability that the random variable whose name is X takes on any value greater than or equal to a value x, e.g.,

 $\overline{F}(x) = Sf\{X\} \equiv Pr\{X \ge x\}.$

<u>Note 1</u>. The Sf need not be continuous nor have a derivative. Its value is 1 below the lowest algebraic value of the random variable and is 0 above the highest algebraic value of the random variable. The Sf is a nonincreasing function of its argument.

<u>Note 2</u>. It is permissible to have a joint Sf of several random variables.

<u>Note 3</u>. The concept applies equally well to discrete and continuous random variables. For continuous random variables with continuous Sf (and thus continuous Cdf), $Sf + Cdf \equiv 1$; otherwise the identity does not hold.

<u>Note 4</u>. Since the identity in Note 3 holds so often, sometimes the Sf is defined that way. (Where there is no chance of misunderstanding, it may appear that way in some Parts of this Handbook series.)

system. A combination of complete operating equipments, assemblies, components, parts, or accessories interconnected to perform a specific operational function.

Т

test category. Category I: A test in which US Army Test and Evaluation Command (TECOM) is responsible for establishing the test objective, preparation, and approval of the plan of test, and the processing and distribution of the report of test. The results of this category of tests may lead to type classification of the materiel undergoing tects.

Category II: A test in which TECOM is performing a service for the requesting agency and in which the test objectives, plan of test, and the processing and distribution of the report of test are the responsibilities of the requestor.

- test severity. The severity level at which a test is run. If there is more than one failure mode, the concept might be ambiguous unless only overall failure rate is considered.
- tolerance failure. A drift- or degradation failure.

See also: failure, degradation.

and the second states of the second states and the second states and

and the second second second second second and the second second second second second second second second second

- tractable. Easy to work with mathematically and statistically.
- truncation. A. Deletion of portions of the domain of a random variable greater-than and/or less-than specified value(s).

B. (For a sequential test) closing the decision boundary so that a decision always is made within a reasonable amount of testing.

U

use factor. *I*. factor for adjusting base failure rate, as determined from MIL-HDBK-217, to specific use environments and packaging configurations other than those applicable to ground based systems. (Adapted from Ref. 6.)

۷

- variable. (in testing) The opposite of attribute; i.e., the characteristic under examination can have many (or a continuum of) values.
- variance. The square of the standard deviation. The term often is used in theoretical statistics because it avoids taking the square root of a calculation. Variance is the second central moment.

REFERENCES

Downloaded from http://www.everyspec.com

- 1. MIL-STD-109, Quality Assurance Terms and Definitions. (All reproduced material was taken from 109B, 4 April 1969. Some references therein to MIL-STD-105 are obsolete, i.e., the latest version does not contain the exact definition.)
- 2. MIL-STD-721, Definitions of Effectiveness Terms for Reliability, Maintainability, Human Factors, and Safety. (All reproduced material was taken from 721B, 25 August 1966, revised 10 March 1970.)
- Glossary and Tables for Statistical Quality Control, 1973 American Society for Quality Control, 161 W. Wisconsin Ave., Milwaukee, WI 53203. (All reproduced material has copyright permission.)

- 4. R. A. Evans, Literature Review Study on Accelerated Testing of Electronics Parts, April 1968, Research Triangle Institute, N68-36621.
- 5. IEEE Std. 100-1972, IEEE Dictionary of Electrical and Electronics Terms, John Wiley & Sons, March 1972.
- NAWEPS 00-65-502, Reliability Engineering Handbook, Bureau of Naval Weapons, 1 June 64.
- 7. MIL-STD-105, Sampling Procedures and Tables for Inspection by Attributes. (All reproduced material was taken from 105D, 29 April 1963, revised 20 March 1964.)

CHAPTER 2

ownloaded from http://www.everyspec.com

PROBABILITY DISTRIBUTIONS, SOME CAUTIONS AND NAMES

2-1 CAUTIONS

The common tractable *PrD's* (probability distributions) have no magic power to transform sample data into absolute knowledge, but many people act as if they did. Some important cautions are listed:

(1) Avoid assuming that the selected PrD represents the physical data outside the range of the sample data, merely because the sample data might reasonably (statistically) have come from it. Gross extrapolation beyond the range of the data is very misleading.

(2) Do not use point estimates of the parameters of the PrD without calculating some measure of their uncertainty such as *s*-confidence* limits or a standard deviation.

(3) Avoid fitting sample data too closely by brute force, possibly by using a multiparameter PrD for each of several segments of the random variable. If one wishes a very close fit, there are several old fashioned methods such as power series which do not clothe brute force in a comery cloak. In samples of less than 10 or so, there can be tremendous scatter in the shape of a sample pdf, all from the same PrD.

(4) Avoid f^{it}ting a PrD to the data merely because it .an be done.

(5) Avoid extensive calculations that select the family of PrD's which gives the best fit (in

some sense) to the sample data. If that is the only reason for choosing a family of PrD's, it is not a good enough reason. It is especially bad practice when the desired results depend heavily on the shape of the PrD outside the region of the data.

The reason for all the cautions to the amateur analyst (and even some professional analysts) is not that he will violate some purist theory, but that he will outsmart himself. After having outsmarted and fooled himself, he will proceed to mislead others. One of the main functions of statistics in reliability engineering is to tell the engineer what he does NOT know from the data.

The main purpose of fitting a PrD to the data is for a summary. Once the data are presumed to be a random sample from a PrD, there is no need to save the data.

It is always possible to have so few data that they could reasonably have come from almost any family of PrD's. It is also always possible to have so much data that they could not have some from any given family of PrD's.

When the purpose of fitting a PrD to the data is to estimate some characteristic of the PrD-e.g., mean, standard deviation, or median-then using the corresponding sample characteristic directly always ought to be considered. That way no delusion of increased accuracy is generated by the extra mathematical manipulations. If this can't be done because extrapolation is massary, then the uncertainties ought to be faced directly, without the delusion of mathematical precision.

÷,

ريه بلميا شده يشام مريامون ، ميشا بالاستال ، ي كال كاره م

[•]The prefix "s-" indicates the word is being used in the statistical sense.

AMCP 705-200

Always ask yourself why you want to do a particular statistical calculation, and will it really help you, or will it just let you fool yourself into thinking you know more about your data than you really do.

2-2 NAMING PROBABILITY DISTRIBU-TIONS

Engineers and statisticians generally approach statistics from different points of view. It is very convenient for an engineer to have a name for each function he uses; statisticians seem not to mind the lack of names for many *PrD's*.

This handbook has adopted the convention of giving a base name to each PrD, and then adding a cuffix to imply a particular function. The base name consists of 3 letters which are reasonably mnemonic.

(1) gau = gaussian

a service of the service of the

(2) csq = chi-square (χ^2)

- (3) csn = chi-square/nu (χ^2/ν) (4) fis = fisher-snedecor (F) (5) $e \ge p$ = exponential (6) wei = weibull (7) lgn = lognormal (8) gam = gamma
- (9) bet = $\underline{bet}a$

Downloaded from http://www.everyspec.com

(10) poi = poisson

The suffix f implies the Cdf, the suffix fc implies the Sf. For continuous Cdf's, the Sf is the complement of the Cdf, from which name (complement) the c is derived for the suffix fc. The suffix hr implies the failure rate (hazard rate). The hazard rate for a PrD generally is defined for a location parameter of zero and a scale parameter of one.

When each *Cdf* and *Sf* have a short name, it is much easier to write equations.

.

in du animitation

CHAPTER 3

Downloaded from http://www.everyspec.com

BINOMIAL DISTRIBUTION

3-0 LIST (DF SYMBOLS	p, N	= parameters
bin	- base name for binomial distri-	pdf	= probability density function
	bution	pmf	= probability mass function
binf	= Cdf for binomial distribution	Pr { }	= Probability
binfc	= Sf for binomial distribution	PrD	= probability distribution
С	= s-Confidence	r	= discrete random variable
Cdf	= Cumulative distribution func- tion	R	= s-Reliability
C, L, U	= subscripts that imply a s-con-	S-	= denotes statistical definition
	fidence; C is general, L is lower, U is upper.	Sf	= Survivor function
СМ _і { }	= ith central moment	StDv { }	= standard deviation
Conf { }	= s-Confidence level	Var { }	= variance
csqfc	= Sf for the chi-square distribu- tion	η	= a uniformly distributed ran- dom variable
cv { }	= coefficient of variation: StDv { } /E { }	-	= the complement, e.g., $\overline{\phi} \equiv 1 - \phi$ where ϕ is any probability
E { }	= s-Expected value	{•;•}, (•;•)	= the fixed parameters are listed to the right of the semicolon,
<i>f</i> , <i>x</i>	= notation used in linear inter- polation (often with sub-		the left of the semicolon
	«cript::)	^	= estimate
I _p	= incomplete beta function	3-1 INTRO	DUCTION
$M_{I}\left\{ \right\}$	= ith moment about the origin	The bind	omial distribution arises when re-
NCM _i { }	= normalized <i>i</i> th central mo- moment; <i>CM</i> _i { }/[StDv { }] ⁱ	is under repeated f	is have only 2 outcomes. Each trial the same conditions as all the trials. One of the outcomes is

3-1

1 215

labeled, and the number of times it occurs is counted. The probability parameter reference to the labeled outcome. The other outcome is not considered further.

wnloaded from http://www.everyspec.com

The base name bin is given to the binomial distribution (for binomial). The suffix f implies the Cdf, and the suffix fc implies the Sf. The Cdf and Sf are not complementary because the random variable is discrete.

3-2 FORMULAS

- N = number of trials, fixed in advance. N is a parameter of the distribution but is always known-never estimated from the data.
- p = probability parameter. It turns out to be the long run relative frequency of the labeled outcome.

$$r = 1$$
 and om variable, $r = 0, 1, 2, \dots, N$

 $\overline{p} = 1 - p$

 $pmf\{r; p, N\} = \binom{N}{r} p^r \bar{p}^{N-r} = pmf\{N-r; \bar{p}, N\}$ (3-1)

$$Cdf\{r; p, N\} = binf(r; p, N) = \sum_{i=0}^{r} \left(\overline{N}_{i}\right) p^{i} \overline{p}^{N-i}$$
$$= binfc(N-r; \overline{p}, N) \qquad (3-2)$$

$$Sf\{r; p, N\} = binfc(r; p, N) = \sum_{i=r}^{N} \binom{N}{i} p^{i} \bar{p}^{N-i}$$
$$= binf(N-r; \bar{p}, N)$$
(3-3)

Table 3-1 shows a few examples of the binomial *pmf*. Some of the symmetries in the binomial distribution are shown in Eqs. 3-1 through 3-3.

It is easier to remember the pmf in the form of Eq. 3-4.

$$pmf\{r_1, r_2; p_1, p_2, N\} = \frac{N!}{r_1! r_2!} p_1^{r_1} p_2^{r_2}$$
$$p_1 + p_2 = 1$$
$$r_1 + r_2 = N$$
(3-4)

Eq. 3-4 is also easy to extend to the multinomial form, e.g., for 4 possible outcomes:

$$pmf \{r_{1}, r_{2}, r_{3}, r_{4}; p_{1}, p_{2}, p_{3}, p_{4}, N\} = \left(\frac{N!}{r_{1}!r_{2}!r_{3}!r_{4}!}\right)p_{1}r_{1}p_{2}r_{2}p_{3}r_{3}p_{4}r_{4}$$

$$p_{1} + p_{2} + p_{3} + p_{4} = 1$$

$$r_{1} + r_{2} + r_{3} + r_{4} = N$$

$$E\{r, p, N\} = Np$$

$$StDv\{r; p, N\} = (Np\bar{p})^{1/2}$$

$$CV\{r; p, N\} = (\bar{p} / pN)^{1/2}$$

$$CM_{3}\{r; p, N\} = Np\bar{p}(\bar{p} - p)$$

$$NCM_{3}\{r; p, N\} = (\bar{p} - p)/(Np\bar{p})^{1/2}$$

3-3 TABLES AND CURVES

Since there are 2 parameters, the distribution is tedious and awkward to tabulate. The pmf is so easily calculated, it rarely is tabulated. One of the most extensive tables is Ref. 1. Refs. 2 and 5 have modest tables. Ref. 3 is reasonably extensive.

The identity in Eq. 3-5 can provide other sources of tables.

$$\sum_{s=r}^{N} {\binom{N}{s}} p^{s} \bar{p}^{N-s} = I_{p}(r, N-r+1) \qquad (...5)$$

where I_p is the Beta Distribution (Incomplete Beta Function), Ref. 4 (Sec. 26.5), and Chapter 10.

TABLE 3-1

ed from http://www.everyspec.co

BINOMIAL DISTRIBUTION, EXAMPLES

N	*	5	The	body	of	the	table	gives	tha	binom	ni al pmt	{r;p,	N	
---	---	---	-----	------	----	-----	-------	-------	-----	-------	------------------	-------	---	--

0 0.59 0.33 0.0031 0.00032 0 1 0.33 0.41 0.16 0.0064 0	0.000010
1 0.33 0.41 0.16 0.0064	
	0.00045
2 0.073 0.20 0.31 0.051	0.0081
3 0.0081 0.051 0.31 0.20	0.073
4 0.00045 0.0064 0.16 0.41	0.33
5 0.000010 0.00032 0.0031 0.33	0.59
$E\{r;p,N\}$ 0.50 1.00 2.50 4.00	4.50
StDv { r; p, N } 0.67 0.89 1.12 0.89	0.67
CV{r;p,N} 1.34 0.89 0.45 0.22	0.15
$CM_{1}\{r; p, N\}$ 0.36 0.48 0 -0.48 -1	0.36
$NCM_3\{r; p, N\}$ 1.19 0.67 0 -0.67 -	1.19

Note: All pmf terms have been rounded to 2 significant figures; that is why the terms do not sum to 1.

The Poisson approximation is useful in ordinary reliability work. If p is taken as the failure probability, it will be reasonably small (if not, very few people are interested in its exact value). The approximation is

the second s

「ない」のないであるというというできたのであるというないです。

$$\binom{N}{r}p\tilde{p}^{N-r}\approx e^{-pN}\left[\frac{(pN)^{r}}{r!}\right]$$
(3-6)

Eq. 3-6 reduces the number of parameters from 2 (p, N) to 1 (pN); it is reasonably good as long as $r \ll N$ and the right hand side sums close to 1 for r = 0, ..., N, viz, csqfc $(2\mu, 2N + 2) \approx 1$ (see Chapter 4). For contractual situations the exact formulas ought to be used.

3-4 PARAMETER ESTIMATION

The parameter N is known. The parameter p is estimated from the data. The estimate

$$\hat{p} \equiv r/N \tag{3-7}$$

is unbiased and maximum likelihood. If r = 0or r = N, Eq. 3-7 is esthetically displeasing to many people, although it is still quite true. Very often (where r = 0, N) a s-confidence limit is used in place of the point estimate, usually corresponding to about 50% s-confidence level.

s-Confidence statements are more difficult for discrete random variables than for continuous random variables. Chapter 12 discusses the matter thoroughly.

The usual s-confidence statements for p are of the forms

$$\operatorname{Conf}\{p \le p_L\} \le C_L \tag{3-8a}$$

$$\operatorname{Conf}\{p \le p_U\} \ge C_U \tag{3-8b}$$

$$\operatorname{Conf}\{p_L \le p \le p_U\} \ge C_U - C_I \tag{3-8c}$$

where p_L and p_U are defined by

$$C_L = binfc(r; p_L, N), \text{ or}$$
$$\overline{C}_L = binfc(N - [r - 1]; \overline{p}_L, N)$$

$$C_U = 1 - binf(r; p_{II}, N) = binfc(r+1; p_{II}, N)$$

In this form, C_L is usually small (say 5%), and C_U is usually large (say 95%). Notation for s-confidence statements is not at all standard; so particular attention must be paid to the example forms. Table 3-2 and Fig. 3-1 are useful for this type of s-confidence statement.

Chapter 12 shows that s-confidence statements for p can also be of the forms

$$\operatorname{Conf}\{p \le p_L'\} \ge C_L \tag{3-9a}$$

 $\operatorname{Conf}\{p \le p'_U\} \le C_U \tag{3-9b}$

 $\operatorname{Conf}\{p'_{L} \leq p \leq p'_{U}\} \geq C_{U} - C_{L}$ (3-9c)

where p'_{L} and p'_{H} are defined by

$$C_L = 1 - binf(r; p'_L, N) = binfc(r + 1; p'_L, N)$$

$$C_{U} = binfc(r; p_{U}, N)$$

In this form, as in Eq. 3-8, C_L is usually small (say, 5%), and C_U is usually large (say, 95%). p'_L and p'_U will be inside the interval p_L , p_U (for $r \neq 0$, N). Table 3-2 also can be used to find p'_L and p'_U . The procedure is to use the entry that is one position above the entry used to find the corresponding p_L and P_U and then to reverse the inequality with C. For the sample in Table 3-2 (N = 10, r = 0), write

Conf{ $p \le 0.552$ } ≤ 90% Conf{ $\bar{p} \le 0.733$ } < 90% → Conf{ $p \le 0.267$ } ≥ 10%

Conf $\{0.267 \le p \le 0.55\} \le 80\%$

Ref. 6 shows some interesting s-confidence limits that can be readily calculated (for $r \neq 0, N$).

3-5 RANDOMIZED EXACT s-CONFI-DENCE INTERVALS

Instead of always choosing the worst case,

Eq. 3-8, exact s-confidence limits can be found by randomly choosing a value between p_L and p'_L , and/or between p_U and p'_U . There is nothing to lose and everything to gain by this procedure because it means not always choosing the worst possible case.

The equations to give the randomized limits are

$$\eta = \frac{binfc(r; p_{L}^{*}, N) - C_{L}}{\binom{N}{r} p_{L}^{*'} \bar{p}_{L}^{*N-r}}$$
$$= \frac{binfc(r; p_{L}^{*}, N) - C_{L}}{binfc(r; p_{L}^{*}, N) - binfc(r+1; p_{L}^{*}, N)}$$
(3-10a)

unless (a) r = 0, and $\eta \le \overline{C}_L$; then use $p_L^* = 0$

or (b)
$$r = N$$
, and $\eta \ge C_L$; then use $p_L^{-} = 1$

(3-10b)

$$\eta = \frac{binf(r; p_U^*, N) - \overline{C}_U}{\binom{N}{r} p_U^* \overline{p}_U^{*N-r}}$$
$$= \frac{C_U - binfc(r+1; p_U^*, N)}{binfc(r; p_U^*; N) - binfc(r+1; p_U^*, N)}$$

$$= \frac{binfc(N-r; \bar{p}_{U}^{*}, N) - \bar{C}_{U}}{binfc(N-r; \bar{p}_{U}^{*}, N) - binfc(N-r+1; \bar{p}_{U}^{*}, N)}$$

unless (a) r = N, and $\eta \leq C_U$; then use $p_U^* = 1$

or (b)
$$r = 0$$
, and $\eta \ge C_U$; then use $p_U^+ = 0$.

where η is a random number from the uniform distribution: $0 \le \eta$ 1. When $\eta = 0$, $p_L^* = p_L$ and $p_U^* = p_U$. If $\eta = 1$ (consider the least upper bound of η), $p_L^* = p_L'$ and $p_U^* = p_U'$.

If special tables which give p_L^* and p_U^* are not available, use Table 3-2 to calculate p_U , p_L and p'_U , p'_L . Then use a set of tables like Ref. 1 to solve Eq. 3-10 by iteration. Table

TABLE 3-2

Downloaded from http://www.everyspec.con

1-SIDED UPPER S-CONFIDENCE LIMITS FOR p (THE BINOMIAL PROBABILITY) (ADAPTED FROM Ref. 7)

The body of the table gives p_c , a 1-sided upper s-confidence (90%, 95%, 99%) limit for p, for the form Conf $\{p \le p_c\} \ge C$.

- p = probability of occurrence of labeled event
- r = number of such events in N trials, the random variable
- N = number of trials in which r events occurred, fixed
- C = s-confidence (minimum value)

Example: For N = 10, r = 4, Conf $\{ p \le 0.646 \} \ge 90\%$

(See note 1) ---+ Conf $\{\overline{p} \le 0.812\} \ge 90\%$ ----- Conf $\{p \le 0.188\} \le 10\%$ Conf $\{0.188 \le p \le 0.846\} \ge 80\%$

۲	C = 90%	95%	99%	r	C = 90%	95%	99%	t	C = 90%	95%	99%
	N.	= 2			Ņ.	= 3			N	# 4	
0	.684	.776	.900	0	.536	.632	,785-	0	.438	,527	.684
, 1	.949	.975-	.995-	1	.804	.865-	.941	1	.680	.751	.859
				2	.965+	.983	.997	2	.857	.902	.958
								3	.974	,987	.997
	N =	: 5			N =	• 6			N	= 7	
0	.369	.451	.602	0	.319	.393	.536	0	230	,348	.482
1	.584	,657	.778	1	.510	.582	.706	1	.453	.521	.643
2	.753	.811	.894	2	.667	.729	.827	2	.596	.659	.764
3	.382	.924	.967	3	.799	.847	.915+	3	.721	.775-	.858
4	.9	.090	.998	- 4	.907	.937	.973	4	.830	.871	.929
				5	.963	.991	.998	5	.921	.947	.977
L								6	.985+	.993	.799
	N -	= 8			<u>N</u> =	- 9			N =	: 10	
0	.250	.312	.438	0	.226	.283	.401	0	.206	.259	.369
1	.406	.471	.590	1	.368	.429	.544	1	.337	.394	.504
2	.538	.600	.707	2	.490	.550	.656	2	.450	,507	.612
3	.655+	.711	.802	3	.599	.655+	.750	3	,552	.607	.703
4	.760	.807	.879	4	.699	.749	.829	4	.646	,6 96	,782
5	.853	.889	.939	5	.790	.831	.895-	5	.733	.778	,850
6	.931	.954	.980	6	.871	.902	.947	6	.812	.850	.907
7	.987	.9^4	.999	7	.939	.959	.983	7	.884	,913	.952
ſ				8	.988	.994	.999	8	.94 5+	.963	.984
								9	.990	.995-	.999
	N =	: 11			N =	12			N =	= 13	
0	.189	.238	.342	0	.175-	.221	.319	0	.162	.206	.298
1	.310	.364	.470	1	.287	.339	.440	1	.263	.316	.413
2	.415+	.470	.572	2	.386	.439	.537	2	360	.410	.506
3	.511	.564	.660	2	.4754	.527	.622	3	.444	.495-	.588
4	.599	.650	.738	4	.559	.609	.698	4	. 3	.573	.661
5	.682	.729	.:`06	5	.638	.685-	.765+	5	.598	,645+	.727
6	.759	.800	.866	6	.712	.755-	.825+	6	.669	.713	.787
7	.831	.865-	.916	1 7	.781	.819	.879	7	.736	.776	.841
8	.895+	.921	.957	8	.846	.877	.924	8	.799	.834	.889
9	,951	.967	.986	9	.904	.928	.961	2	.858	.887	.931
10	.990	.995+	.999	10	.955-	.970	.987	10	.912	.934	,964
				13	.991	.996	.999	11	.958	.972	.988
				1				12	.992	.996	.579
L				L							

Notes:

and the second secon

1. If a 1-sided lower s-confidence limit is desired, use N-r instead of r, \bar{p} instead of p and \bar{C} instead of C, and \cdots switch the inequality. See the example.

2. The +, - after a 5 indicates which way the number can be rounded to fewer decimal places.

N=14 N = 15 N = 16 0 .152 .193 .280 0 .142 .181 .264 .171 0 .250 .134 1 .251 .297 .389 .279 1 .236 .368 1 .222 .264 .349 .337 2 .385+ 2 .478 .317 .363 .453 2 .300 .344 .430 .417 3 466 .557 3 . 393 .440 .529 3 .371 .417 .503 .492 .540 4 .627 4 . 164 .511.597 4 .439 .484 .569 .630 -5 .563 .611 .692 5 . 532 .577 .660 5 .504 .548 .631 .695+ .675-.596 .658 .718 .718 .771 .821 6 .751 .805+ 6 7 .640 .565+ .609 .687 6 7 8 .700 .667 .739 7 .625-8 .757 .794 .854 8 .682 815-.847 .898 ğ .774 .809 .865+ .773 .737 .834 5 ıó 10 869 .896 ,936 10 828 .858 .906 .790 .822 .875-.967 .989 .878 .924 .941 .969 .990 .999 11 .939 11 .903 11 .839 .919 .868 .912 12 13 .961 .993 .974 12 13 .943 .976 .997 12 .886 .910 .945. .947 .977 .997 .964 .993 .999 13 .929 .971 14 14 15 .966 .990 .999 N = 17 N = 18 N = 19 .127 .153 .238 .310 .120 .215+ U .162 .237 0 .226 .114 .146 012 .250 .326 .396 .461 .522 .332 .410 .480 .543 .316 .391 .458 .520 .577 .226 .296 .359 .190 .257 210 .199 .302 .374 .284 2 ž .269 3 .352 3 .334 .377 3 .319 .439 .396 .455 + .419 .476 416 **4** 5 439 45 .378 498 5 .603 .473 .498 .434 .554 .631 .681 .729 .774 .537 .580 .658 .709 .512 .567 .620 .554 .489 541 .530 6 7 .606 67 67 .655+ .702 .650 .689 .758 .659 8 .592 .632 8 8 .703 .740 ĝ .803 ğ .671 .709 ō .642 .746 .680 10 .845-10 .721 .756 .816 10 .690 .726 .788 .803 .834 11 11 .769 .801 .855-11 .737 .770 .883 .827 12 13 14 15 .819 .893 .890 .923 .782 .876 .918 .948 12 13 .815-.844 12 13 .812 .853 .863 14 15 .951 .975 14 15 .933 .950 .973 .899 .920 .890 .927 ,666 968 .979 .991 .937 .953 .905-.925-.954 .941 .972 .994 .976 .992 .952 .970 .994 16 17 18 .956 .981 .997 .994 .997 16 17 .980 .992 16 .999 .997 N * 20 N = 21 N = 22 ŋ .109 .139 .206 0 .104 .133 .197 0 .099 .127 .189 .289 .358 .421 .478 .532 .277 .344 .404 .216 1 2 3 .207 .181 173 .166 198 266 12 1 2 3 .234 .224 .259 .245-.330 .304 .344 .329 ž 45 .361 .401 .345 .384 .460 .331 .369 .443 **4** 5 5 .415-,456 .397 .437 .512 .381 .420 .493 .508 .558 .606 .448 .497 .544 .590 6 .467 .583 .487 .561 .430 .468 .541 6 7 8 6 7 8 .631 .677 .720 .761 .515+ .561 .518 .536 .477 .587 7 .608 8 .653 .630 .653 .628 .672 ğ ÿ .695+ õ .568 .605-.672 10 10 .636 .736 10 611 .647 .712 .741 .783 11 .7(7 .800 11 .679 .714 .774 11 .654 .689 .750 12 .751 .937 .722 .755 + .811 12 .695+ .729 .786 12 13 .793 .823 .871 13 .764 .794 .845+ 13 .736 .767 .821 14 .834 .860 .902 14 15 .804 .832 .878 14 .775+ 804 .853 15 .873 .596 .931 .842 .868 .908 15 .813 .840 .884 .910 .944 .973 .935-.959 .978 16 .929 .950 .879 .901 16 .850 .874 .912 16 17 18 19 20 17 18 .958 .977 .992 .914 946 .932 17 18 .885+ .906 .935+ .938 .982 .918 .961 .974 .995-.983 .998 .993 1.000 19 .995-.997 999 19 .949 .962 .979 20 21 .976 984 993 998 1.000 .995+

CALCULATION AND

and the second

Settimore and the first terms

and the second second second second

;

district of the second second

TABLE 3-2 (Continued)

Downloaded from http://www.everyspec.com

r	90%	95%	99%	r	90%	95%	99%		90%	95%	99%
	N =	23			N =	24			N **	25	
0	.095+	.122	.181	0	.091	.117	.175-	0	.088	.133	.168
1	.159	.190	.256	1	.153	.183	246	1 2	.147	.176	.237
3	.215+	.304	.374	3	.258	.292	.361	3	.248	.282	.349
4	.318	.355-	.427	4	.306	.342	.412	4	.295-	.330	.398
 ∠	.300	.9U9 261	.9/0	5 4	300	.307 475-	305.	5 K	382	420	499
7	.459	.496	.567	7	.442	.479	.548	7	.426	.462	.531
8	.503	.540	,609	8	.484	.521	.590	8	.467	.504	.571
10	.589	.625-	.689	10	.567	.603	.668	10	.548	.583	.648
11	,630	.665-	.727	11	508	.642	.705-	11	.587	.621	.684
12	.670	.704	.763	12	.647	.681	.740	12	.625-	.659	.719
14	.7.48	778	.829	14	.723	.754	.806	14	.699	.730	.784
15	.786	.814	.860	15	.759	.788	.837	15	.735-	.764	.815+
16	.822	.848	.889	16 17	.795+	.822 854	.867 .894	16 17	.770	.798	845+ .873
18	.890	.910	.941	18	.663	.885+	.920	18	.837	.861	.899
19	.922	.938	.962 980	19 20	.695+ .925+	.914 .941	.943 .964	19 20	,860 ,899	.890 .918	.923
					059		0.91		000	042	
21 22	.977	.984	1.000	21	.978	.985-	.991	21	.920 .955+	.966	.982
				23	.996	.a.98	1.000	23	.979	.986	.994
	N7	26			<u> </u>			4 9	,770 	.770	11000
<u> </u>	= 10	20	160		N =	105	157		<u>70</u>	101	159
1	.142	.109	.102	1	.082	.164	.137	1	.132	.159	.215
2	.192	.223	.286	2	.185+	.215+	.277	2	.179	.208	.268
3	.239	.272	.337	3	.231	.203	.320	4	.225	.298	.261
5	.328	.363	.430	5	.317	.351	.417	5	.306	.339	.404
6	.370	.405+	.473	6	.358	.392	.458	67	.346	.380	.445- .484
l é	.451	.487	554	8	436	.471	.537	8	.422	157	.521
9	.491	.526	.592	9	.475-	.509	.57 4 .610	9 10	.459 .496	.494	.558 .593
				,,					200		697
11	.567 .604	.602	.004	11	.549	.583	.045+ .679	11	.532	.505+	.660
13	.641	.673	.731	13	.620	.653	.711	15	.601	.634	.692
14	.711	.742	.794	15	.055+ 689	.720	.773	15	,669	.699	.753
16	.746	.774	.823	16	.723	.752	.802	16	.701	.731	.782
17	.779	.806	.851 .878	17	.756 .788	.783 .814	.831		.733	.762	.810
19	.843	.866	.903	19	.819	.843	.983	19	.796	.821	.863
20	.874	.894	.927	- 20	.849	.871	.907	20	,820	.849	886.
21	.903	.921	.948	21	.879	.899	.930	21	.855+ 943	.876 902	.911
22	.931	.968	.983	23	.934	.948	.968	23	.911	.927	.952
24	.979	.^86	.994	24	.9.18	.969 987	.983	24	.936	.950	.969 .984
25	04K ¹	,790	1.000	26	.900	.908	1,000	26	.981	.987	.995.
					1770	.,,,,	1,000	27	.996	.998	1.000

1

Ķ.

and the second

TABLE 3-2 (Continued)

Downloaded from http://www.everyspec.com

and the second s

VII STAT

AMCP 705-200

いき またかちにきちていろうちょうかいう

A Same and the second

at a we we want and a company

r	90%	95%	99%	1	90%	95%	99%
	N =	29			N -	30	
0	.076	.098	.147	0	.074	.095 +	.142
1	.128	.153	.208	1	.124	.149	.202
2	.173	.202	.260	2	.168	.195 +	.252
3	.216	.246	.307	3	.209	.239	.298
5	.297	.329	.355	5	.287	.319	.340
6	.335-	.368	.432	6	.325-	.357	.420
7	.372	.406	.470	7	.361	.294	.457
8	.409	.443	.507	8	.397	.430	.493
9	.445+	.479	.542	9	.432	.465+	.527
10	.481	.514	.577	10	.466	.499	.561
11	.515+	,549	.610	11	.500	.533	.594
12	.550	,583	.643	12	.533	.566	.626
13	.583	,616	.674	13	.566	.598	.357
14	.615	,648	.705-	14	.599	.630	667
15	.649	,680	.734	15	.630	.661	.716
16	.681	.711	.763	16	.662	.692	.7.44
17	.712	.741	.791	17	.692	.721	.772
18	.743	.771	.818	18	.723	.750	.799
19	.774	.800	.843	19	.752	.779	824
20	.803	.828	.868	20	.782	.807	.849
21	.832	.855-	.592	21	.81(*	.834	.873
22	.860	.881	.914	22	.838	.860	.896
23	.888	.906	.935-	23	.865 (.395	.917
24	.914	.930	954	24	.891	.503	.737
25	.938	.951	.970	25	.917	.932	.755 +
26 27 28	.961 .982 .396	, 971 , 988 , 998	.985- .995- 1.000	26 27 28 29	.941 .963 .982 .996	.953 .972 .988 .998	.972 .985+ .995- 1.000

TABLE 3-2 (Continued)

lownloaded from http://www.everyspec.com

3-3 is a copy of pages 10, 579, & 580, Ref. 1, and is used to illustrate the procedure of finding p_L^* and $p_{U_{\perp}}^*$

A handy random number generator is a coin, flipped several times. Decide whether heads is to be 0 or 1; tails is the reverse. Then multiply the result of the first flip by 0.5, the second flip by 0.25, the third by 0.125, etc. (the numbers are 2^{-flip}), as fine as desired. Then add the numbers. Usually 5 or 6 flips give a sufficiently continuous random variable. (For example, heads is 0, tails is 1; the sequence is H, T, H, H, T, H. Add 0.25 + 0.03125 = 0.28125; truncate to 0.281 for convenience.)

3-8

Use the example in Table 3-2: N = 10, r = 4, $C_U = 90\%$, $C_L = 10\%$. It is shown in Table 3.2 that $p_U = 0.646$, $p_I = 0.188$. It is shown just following, Eq. 3-9c that $p'_U = 0.552$, $p_L = 0.267$. Suppose the random number is $\eta = 0.28125$ (same as in the example in the paragraph immediately above) Linear interpolation (applied several times) will be used to solve Eq. 3-10. The forms of Eq. 3-10 using the rightmost expressions are most suitable for using Table 3-3. They are written as

 $f_L(x_I) \triangleq \frac{vinfc(r, x_I, N) - C_{i}}{binfc(r, x_L, N) - bixfc(r + 1, x_I, N)} - \eta \ge 0$

maria alimenta - and and a

AMCP 706-200

Downloaded from http://www.everyspec.com

Figure 3-1(A). 1-sided Upper s-Confidence Limit (80%) for p (adapted from Ref. 7)

The graph gives the 1-sided upper s-confidence limit for p where

- ρ = probability of occurrence of labeled event
- r = number of such events in N trials, the random variable
- N = number of trials in which r events occurred, fixed
- $\hat{p} = r/N$
- Note. If a 1-sided lower s-confidence limit is desired, use N r instead of r, \vec{p} instead of p, \vec{C} instead of C, and switch the inequality. See the example in Table 3-2.

Downloaded from http://www.everyspec.com

The graph gives the 1-sided upper s-confidence limit for p where

- ρ = probability of occurrence of labeled event
- r = number of such events in N trials, the random variable
- N = number of trials in which r ovents occurred, fixed
- $\hat{p} = r/N$
- Note: If a 1-sided lower s-confidence limit is desired, use N-r instead of $r, \bar{\rho}$ instead of ρ, \bar{C} instead of C, and switch the inequality. See the example in Table 3-2.

Downloaded from http://www.everyspec.com

Figure 3-1(C). 1-sided Upper s-Confidence Limit (95%) for p (adapted from Ref. 7)

The graph gives the 1-sided upper s-confidence limit for p where

- $p \neq \text{orot.}$ bility of occurrence of labeled event
- $r_{\rm eff}$ = number of such events in N trials, the random variable
- N = number of i als in which r events occurred, fixed
- $\hat{p} \approx r/N$

Note: If a 1-sided lower s-confidence limit is desired, use N-r instead of $r, \overline{\rho}$ instead of ρ, \overline{C} instead of C, and switch the inequality. See the example in Table 3-2.

A STATE OF A

ちん い しったっちょう

$$f_{U}(x_{U}) = \frac{binfc(N-r, x_{U}, N) - C_{U}}{binfc((N-r), x_{U}, N) - binfc((N-r) + 1, x_{U}, N)} - \eta = 0 \qquad x_{\text{new}} = \frac{x_{-}f_{+} - x_{+}f_{-}}{f_{+} - f_{-}} \qquad (3-12)$$

$$(3-11b)$$

Downloaded from http://www.everyspec.com

The solution to Eq. 3-11a is $x_L = p_L^*$. The solution to Eq. 3-11b is $x_U = \overline{p}_U^*$. The formula for linear interpolation is where x_{-} and x_{+} are the smaller and larger values of x, respectively; and $f_{+} \equiv f(x_{+})$ and $f_{-} \equiv f(x_{-})$.

Procedure

Downloaded from http://www.everyspec.com

- 1. Solve Eq. 3-11a first. Use $x_{\perp} = p_L$ and $x_{\perp} = p'_L$. The values of f are known from the definition of p_L , p'_L . Use Eq. 3-12 to find x_{new} , round off to 2 decimal places. Solve Eq. 3-11a using x = 0.21.
- 2. Make a new chart, discarding the old pair (0.267, 0.719) with the same sign as f_{new} . Repeat the linear interpolation and round off.
- 3. x is now isolated to be between 2 consecutive entries in the table. Repeat the linear interpolation but do not round off. The answer is $p_L^* = 0.203$.

and the second second

and the shares and a start and

- 4. Solve Eq. 3-11b next. Use $x_{-} = \overline{p}_{U}, x_{+}$ = \overline{p}_{U}' . Proceed as in Step 1. N-r = 10-4= 6.
- 5. Make new chart and repeat Step 1.
- 6. Make new chart and repeat Step 1. Round "up", to bracket the true value.
- 7. Repeat Step 3. The answer is $\vec{p}_{U}^{*} = 0.373$; $p_{U}^{*} = 0.627$.
- 8. Make the final s-confidence statement.

Example

1. <i>C_L</i>	= 0.10	
	x	£
0.	188	$-0.281 = (-\eta)$
0.	267	$+0.719 = (1 - \eta)$
0.	210	
0.	21	+0.113 (new)
2.	x	f f
0.	188	-0.281
0.	21	+0.113
0.	204	
0.	20	-0.044 (new)
3.	x	f
0	20	-0.044
0.	21	+0.113
0.	203	
4. \overline{C}_{U}	= 0.10	
	x	f
0.	354	$-0.281 = (-\eta)$
0.	478	$+0.719 = (1 - \eta)$
0.	389	
0.	39	+0.208 (new)
5.	x	f
0.	354	-0.281
0.	39	+0.208
0	3747	

-0.0394 (new)

-- --

0.37

0.373

8. Conf $\{0.203 \le p \le 0.627\} = 80\%$

TABLE 3-3

Downloaded from http://www.everyspec.com

SAMPLE PAGE FROM A BINOMIAL DISTRIBUTION (Ref. 1)

$binfc(c, p, N) = \sum_{i=c}^{N} \binom{N}{i} p_{i} \overline{p}^{N-i}$

N = 10

8 1834			0 5400	1 6210	1610	796380		• • • •	.1000	.18.00	.182.000	.02 .1829 .0161 .0008 .0000	.02 .18291 .01617 .00086 .00003	.02 .1929271 .0161776 .0008635	.02 .1529272 .0161776 .0008639 .0000305	.02 .1029171 . .0161776 . .0008639 .	.02 .1929273 .2 .0161776 .0 .0008639 .0 .0000305 .0	.02 . .1029272 .36 .0161776 .03 .0008639 .00 .0000305 .00	.02 .0 .1029272 .262 .0161776 .034 .0008639 .002 .0000305 .000	.02 .03 .1829272 .2625 .0161776 .03450 .000639 .00270 .000639 .0021	.02 .03 .1824178 .362573 .0161776 .034300 .000639 .002764 .0000305 .000147	.02 .03 .1929272 .2625759 .0161776 .0345066 .0008639 .0027649 .0000305 .0001471	.02 .03 .1829272 .2425739 .0161776 .0343044 .0008439 .002744 .00008439 .0027141	.02 .03 .1929272 .2625739 . 0161776 .0345064 . .0008639 .0027649 . 00000305 .0021471 .	.02 .03 .1020272 .2425755 .3 0161776 .0345066 .0 .0008639 .008764 .0 000001411 .0	.02 .03 . .184471 .4425735 .3 .0164776 .0345066 .05 .0008633 .0087649 .00	.02 .03 .0 .1020272 .2425755 .333 .0161776 .0345066 .058 .0008639 .0087649 .008 .0008639 .0087649 .008	.02 .03 .04 .103*272 .2425735 .3351 .0164776 .0345066 .0561 .0006439 .0027649 .0063	.02 .03 .04 .1020273 .2625755 .33516 .0161776 .0345066 .05615 .0006637 .0027649 .008214 .000001411 .000441	.02 .03 .04 .103**7* .3425735 .333167 .0164776 .0243066 .058133 .0006439 .0087649 .00813 .0006439 .0087649 .008413	.02 .03 .04 .193**7* .2625755 .3351474 .0161776 .0345064 .0561338 .0008637 .008764 .00643137 .0000.03 .0001471 .0004474	.02 .03 .04 .1020.275 .3331474 .1020.275 .3331474 .0161776 .0345064 .0581338 .0008639 .0027649 .0082137 .0008630 .0001471 .00042137	.08 .03 .04 .1994.78 .8685739 .3351474 . 0161776 .0343066 .0581338 . .0008.839 .0087649 .0082137 . 00000.03 .0007449 .00048137 .	.02 .03 .04 .1020.278 .2625755 .3331674 .4 .0161776 .0345066 .0581535 .0 .0008639 .0087649 .0082137 .0 .0008630 .0001471 .0004414 .0	.08 .03 .04 .0 .1994778 .2625739 .3351474 .00 .0161176 .034564 .0581338 .08 .0008439 .0087449 .0084137 .06 .00000.00 .0001471 .0000448 .000	.02 .03 .04 .01 .1034272 .2425735 .3351674 .401 .0164776 .0345066 .056133 .016 .0006439 .0027649 .0064137 .011 .00006439 .0027649 .0064137 .011	.08 .03 .04 .05 .199**7* .2625759 .3351474 .4012 .0161776 .0345064 .0581338 .0161 .0008459 .008749 .008137 .0155 .00000.100 .0001471 .0001474 .0155	.02 .03 .04 .05 .1034272 .3625735 .3331674 .401263 .0164776 .0243066 .058133 .08413 .0006439 .0087649 .0062137 .011503 .0000633 .0001471 .0000448 .20130	.08 .03 .04 .05 .1994.77 .2625739 .3351474 .4012631 .0161776 .034364 .0581338 .0441364 .0008.437 .0087649 .0082137 .0113036 .0000.03 .0001471 .0000448 .001288	.02 .03 .04 .05 .1020.77 .2625755 .3331674 .4012631 .0161776 .0345066 .0581535 .0841384 .0008637 .0027645 .0062137 .0115036 .000001441 .000444 .201028	.08 .03 .04 .05 .1994.77 .8625739 .3331674 .4018631 .0161776 .0343066 .0581338 .0861384 .0008.839 .0087649 .0082137 .0115036 .0000.03 .0001471 .000448 .2010.86	.02 .03 .04 .05 .1020273 .2625755 .3351674 .4012631 .4 .0161776 .0345046 .0581539 .041364 .1 .0008639 .0027649 .0082137 .0115036 .0 .00000.00 .0001441 .0000444 .2010286 .0	.08 .03 .04 .05 . .1884878 .8685739 .3331674 .4012631 .4 0161776 .0343066 .0381339 .0861384 .11 .0006639 .0087649 .00621397 .0115036 .01 0000030 .0001471 .0004488 .2010886 .01	.02 .03 .04 .05 .0 .1020273 .2625755 .3351674 .4012631 .461 .0161776 .0345066 .0561539 .0661364 .117 .0006639 .0027649 .0062137 .0115036 .010 00000.00 .0001441 .00044147 .0115036 .010	.08 .03 .04 .05 .06 .1080878 .8685739 .3331674 .4018631 .4613 .0161776 .0343066 .0381338 .0861384 .1176 .0008639 .0087649 .00681397 .0115036 .0146 .000003 .0001471 .000448 .2010886 .0080	.02 .03 .04 .05 .06 .1994 77 .2625755 .3351674 .4012631 .46138 .0161776 .0345066 .0561338 .0861364 .1176 .0008637 .0027645 .0062137 .0118036 .01665 .00000.000 .0001411 .0004414 .0118036 .01665	.02 .03 .04 .05 .06 .103477 .3425739 .3331674 .4018631 .4613849 .0164776 .043066 .0581539 .0641384 .117880 .0008639 .0087649 .0082137 .0118036 .018378 .0008639 .0087649 .0082137 .0118036 .018378	.08 .03 .04 .05 .06 .1994778 .8685739 .3351474 .4018631 .4613649 .0161776 .0343666 .0581338 .0841364 .1175680 .0008439 .0087649 .0082137 .0113036 .0046975 .00008439 .0087649 .0082137 .0113036 .0086975	.02 .03 .04 .05 .06 .1994 77 .2625735 .3351674 .4012631 .4613845 . 0161776 .0345066 .0561338 .0861334 .1176800 . .0008637 .0027645 .0062137 .0115036 .0186376 . .00000.000 .0001471 .0004414 .0115036 .0186376 .	.02 .03 .04 .05 .06 .1034372 .3635739 .3331674 .4012631 .4613849 .5 .0161776 .0343066 .0381339 .0861334 .117680 .1 .00086339 .0087649 .0082137 .0115036 .0146376 .0 .0000030 .0001471 .0004486 .2010886 .0086875 .0	.02 .03 .04 .05 .06 . .1934 173 .2625735 .3351674 .4012631 .4613845 .51 .0161776 .0345066 .0561338 .0861334 .1176800 .55 .0008637 .0027649 .0062137 .0118036 .0186376 .55 .0008637 .0027649 .0062137 .0118036 .00640875 .003	.08 .03 .04 .05 .06 .0 .1080878 .8685739 .3331674 .4018631 .4613849 .516 .0161776 .0343066 .0381338 .0861384 .1175876 .1510 .00066339 .0087649 .00681397 .0115036 .0166756 .0170 .00006639 .0087649 .00681397 .0115036 .0166756 .0170	.02 .03 .04 .05 .06 .07 .189977 .8425739 .3331674 .4018631 .461849 .5160 .0164776 .0245066 .0581838 .0861384 .1175680 .1317 .0006639 .0087649 .0062137 .0115036 .00887878 .7313 .0000030 .0001471 .0000448 .201888 .00887878 .0030	.08 .03 .04 .05 .06 .07 .188477 .8885739 .3331674 .4018631 .4613849 .51601 .0161776 .0345066 .0581338 .061384 .1175880 .15178 .0006839 .0087649 .0082137 .0118036 .0166775 .017937 .0000839 .0087649 .0082137 .0118036 .0166775 .017937	.02 .03 .04 .05 .06 .07 .189*272 .8425739 .3331674 .4018631 .4613849 .516017 .0164776 .043066 .0581339 .0861384 .1177880 .151739 .0008639 .0087649 .0082137 .0118036 .0183778 .01837 .0008639 .0087649 .0082137 .0118036 .008778 .018378	.08 .03 .04 .08 .06 .07 .1994778 .8685739 .3351474 .4018631 .4613649 .5160177 .0161776 .034564 .0583538 .0841364 .1175680 .151759 .0008457 .0087649 .0088137 .0115036 .008678 .013491 .00000.03 .0001471 .000448 .70115036 .0080878 .0083478	.02 .03 .04 .05 .06 .07 .189*272 .8425739 .3331674 .4018631 .4613849 .5160177 .0164776 .0143066 .0581339 .0861384 .117890 .1517399 .0008639 .0087649 .0082137 .0118036 .0186376 .0183781 .0008639 .0087649 .0082137 .0118036 .0186376 .0183781	.08 .03 .04 .05 .06 .07 .1999.78 .8685739 .3351474 .4018631 .4613649 .5160177 .0161776 .0343664 .0581338 .0841384 .1175680 .1517899 .0008439 .008749 .0082137 .0113036 .0086578 .0035781 .0000439 .008741 .000448 .0010888 .0080878 .003578 .0035781	.02 .03 .04 .05 .06 .07 .189*272 .8425739 .3331674 .4018631 .4613849 .5160177 . .0164776 .043066 .0581539 .0861384 .1177880 .151799 . .0006439 .0087649 .0082137 .0118036 .018378 .018378 . .00000030 .0001471 .0000448 .201888 .00000873 .018378 .	.08 .03 .04 .08 .06 .07 . .1994778 .8685739 .3351474 .4018631 .4613649 .5160177 .0 0161776 .0343646 .0581338 .0841384 .1175680 .1517899 .1 .0008439 .0087649 .0088137 .0113036 .0086178 .0013481 .0 00000.03 .0007471 .000448 .001388 .00888 .00878 .00378 .00378	.02 .03 .04 .05 .06 .07 .0 .189*272 .8425739 .3331674 .4018631 .4613849 .5160177 .465 .0164776 .0145066 .0581539 .0861384 .117890 .1517999 .187 .0006439 .0087649 .0082137 .0118036 .0186376 .0185781 .000 .0000033 .0001471 .0000448 .201888 .008873 .018578 .000578	.08 .03 .04 .05 .06 .07 .08 .199477 .2625739 .3351674 .4012631 .4613649 .5160177	.02 .03 .04 .05 .06 .07 .09 .1034272 .3425739 .3331674 .4018631 .4613849 .5160177 .46561 .0164776 .043066 .0581339 .0861384 .1177880 .1517399 .18789 .0008639 .0087649 .0082137 .0118036 .0183778 .0183781 .00607 .0008639 .0087649 .0008137 .0118036 .0008787 .0183781 .00580	.08 .03 .04 .05 .06 .07 .08 .199977 .2625739 .3334574 .4012631 .4413849 .5160177 .465611 .0161776 .0345066 .0511338 .041364 .1175880 .1317299 .187882 .0008437 .0087649 .0082137 .0118036 .0146375 .0171349 .06078 .00008437 .0087649 .0082137 .0118036 .0146375 .0171349 .0008681 .00008457 .0087649 .008764 .001888 .001888 .00876475 .017134761 .0008681
5 6 7 8								•	• •							.000007 .	.0000007 .0	.00	.000	.0000	.00000	.0000001	.0000001	.0000001 .	.0000001 .0	.0000001 .00	.0000001 .000	.000001 .0000	.000001 .00000	.000001 .000001	.0000001 .000007	.0000001 .0000007	.0000001 .000007 .	.0000001 .000000 .000000 .000000 .0000000 .000000	.0000001 .000007 .000	.000001 .000007 .0000 .000001 .000007 .0000 .0000	.000001 .000007 .00000 .000001 .000007 .00000 .00000	.000001 .000001 .000000 .000000 .000000 .000000	.0000001 .0000007 .000000 .0000001 .0000007 .0000001 .0000001	.0000001 .0000007 .000008 .0000001 .0000007 .000008	.0000001 .000007 .000008	.0000001 .0000001 .0000001 .0000001 .00000000	00. 2800000 .000000 .0000000 .0000000. 00. 28000000 .0000000 .0000000. 00. 2000000 .0000000 .0000000000	.000.000 .000000 .0000000 .0000000 .000000	.0000. 880000 .00000000000000. .000000000000000	.000001 .000001 .0000001 .0000001 .0000001 .00000000	.0000001 .000001 .0000001 .0000001 .0000000 .0000001 .0000000 .00000001 .0000003	.0000001 .000007 .000007 .000007 .0000001 .0000003	.0000001 .000001 .0000001 .0000001 .0000001 .0000003 . .0000001 .0000001 .0000003 .	.0000001 .000007 .000008 .000007 .0 .0000001 .000007 .0 .0000001 .000007 .0	.0000001 .000001 .0000001 .0000001 .0000001 .0000003 .000 .0000001 .0000001 .0000003 .00	.0000001 .000007 .000001 .000000 .000 .0000001 .000007 .0000001 .0000003 .000	.0000001 .0000007 .0000007 .000007 .000007 .0000 .0000001 .0000007 .0000001 .0000003 .0000	.000001 .000001 .000007 .000007 .000001 .00001 .0000001 .0000007 .0000001 .0000003 .00000	.0000001 .0000007 .000008 .000007 .000007 .0000001 .0000007 .000008 .0000007 .000001 .0000001 .0000003 .000000	.0000001 .0000001 .0000007 .0000001 .0000003 .0000008 .0000001 .00000001 .0000003 .0000008	.0000001 .0000007 .000008 .000007 .0000193 .0000001 .0000007 .000008 .0000003 .000008	.0000001 .0000001 .0000007 .0000007 .0000009 .00000193 .0000008 .0000000 .0000008 .0000008	.0000001 .0000007 .000003 .000007 .000003 .000003 .000008 .00008 .0008 .00008 .00008 .00008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0	.0000001 .0000001 .0000007 .0000007 .0000007 .0000000 .0000000 .0000000 .0000000 .000000	.0000001 .0000001 .0000001 .0000001 .0000007 .0000001 .0000000 .000 .0000001 .0000001 .0000000 .0000000 .0000000 .000 .0000001 .0000000 .000000 .0000000 .0000000 .0000	.0000001 .0000001 .0000007 .0000007 .0000001 .0000000 .0000001 .0000001 .0000000 .0000000 .0000008 .0000 .0000001 .0000000 .0000000 .0000008 .0000	.0000001 .0000007 .0000008 .0000079 .0000193 .0000 .0000001 .0000007 .0000008 .0000003 .000008 .0000001 .0000008 .000008 .000008	.0000001 .000001 .000001 .000001 .000001 .000001 .000001 .0000001 .0000001 .0000000 .0000000 .0000008 .0000000 .0000001 .0000000 .0000000 .0000008 .0000000
3 1 3 3		. 1	0054	9 540	844	31 71 00			. 6	. 63 , 36 . 07	.1 .651 .263 .070	.10 .6513 .3639 .0701	.10 .65132 .26390 .07019	.10 .631381 .3639011 .0701900	.10 .6513816 .3639011 .0701908	.10 .6513816 . .8639011 . .0701908 .	.10 .6513816 .6 .3639011 .3 .0701908 .0	.10 . .6513216 .68 .3639011 .30 .0701908 .08	.10 .1 .6313116 .608 .3639011 .308 .0701908 .088	.10 .11 .6513816 .6881 .8639011 .3087 .0701908 .088	.10 .11 .6313216 .68154 .3639011 .302790 .0701908 .08844	.10 .11 .6313116 .6681328 .3639011 .3037763 .0701908 .0884435	.10 .11 .6513816 .6681828 .3639011 .3087907 .0701908 .0884435	.10 .11 .4513216 .6681828 . .2639011 .3027907 . .0701908 .0884425 .	.10 .11 .6313816 .6001828 .7 .3639011 .3087904 .3 .0701908 .0084435 .1	.10 .11 . .6513216 .6681525 .72 .2639011 .3027907 .34 .0701908 .0884435 .12	.10 .11 .1 .6513216 .6681828 .781 .8639011 .3027904 .341 .0701908 .0884435 .108	.10 .11 .18 .6513816 .6681828 .7814 .8639011 .3087907 .3417 .0701908 .0844435 .1086	.10 .11 .18 .6513816 .6681828 .78149 .8639011 .3087907 .34178 .0701908 .0884435 .10868	.10 .11 .18 .6513816 .6881888 .781499 .8639011 .3087907 .341785 .0701908 .0884435 .108681	.10 .11 .18 .6513216 .6881828 .7814990 .8639011 .3087907 .3417850 .0701908 .0884435 .1086818	.10 .11 .18 .6513816 .6881828 .7814990 .8639011 .3087904 .3417850 .0701908 .0884435 .1086818	.10 .11 .18 .6513216 .6001828 .7814990 . .8639011 .3027903 .3417850 . .0701908 .0884435 .1006818	.10 .11 .18 .6513816 .6881828 .7814990 .7 .8639011 .3087907 .3417850 .3 .0701908 .0884435 .1086818 .1	.10 .11 .18 .3 .6513216 .6001828 .7814990 .75 .8639011 .3027907 .3417250 .36 .0701908 .0884435 .1005618 .31	.10 .11 .18 .13 .6513816 .6881828 .7814990 .7517 .8639011 .3087908 .3417850 .380 .0701908 .0884435 .1086818 .1300	.10 .11 .18 .13 .6513816 .6881888 .7814990 .7815 .8639011 .3087907 .3417850 .3803 .0701908 .0884335 .108681 .13071	.10 .11 .18 .13 .6513816 .6881828 .7814990 .781576 .8639011 .3087908 .3417850 .380345 .09761908 .0884435 .1086818 .130754	.10 .11 .18 .13 .6513216 .6001828 .7814990 .7515766 .8639011 .3027907 .3417830 .3803692 .0701908 .0084433 .1006618 .1307642	.10 .11 .18 .13 .6513816 .6001828 .7814990 .7515766 .8639011 .3087707 .3417850 .3803698 .0701908 .0884435 .1086818 .1207548	.10 .11 .18 .13 .6513816 .6881828 .7814990 .7815766 .8639011 .3087904 .3417850 .3803692 .0701908 .0884435 .1086818 .1397642	.10 .11 .18 .13 .6513816 .6001828 .7814990 .7818766 . .8639011 .3087707 .3417830 .3003698 . .0701908 .0084435 .1006818 .1307548 .	.10 .11 .18 .13 . .6513816 .6881828 .7814990 .7815766 .77 .8639011 .3087907 .3417850 .3803692 .41 .0701908 .0884435 .1086818 .1307648 .18	.10 .11 .18 .13 .1 .6513816 .6001828 .7814990 .7515766 .77 .3639011 .3087707 .3417850 .3003698 .41 .0701908 .0884435 .1005618 .1307548 .184	.10 .11 .18 .13 .14 .6513816 .6881828 .7814990 .7815766 .7786 .8639011 .3087907 .3417850 .3803692 .418. .0701908 .0884435 .1086818 .1307648 .1843	.10 .11 .18 .13 .14 .6513816 .6081888 .7814990 .7815764 .77669 .8639011 .3087707 .3417830 .3803698 .418.4 .0701908 .0884435 .1086818 .1307648 .18458	.10 .11 .18 .13 .14 .6513816 .6881828 .7814990 .7515766 .7766984 .8639011 .3087907 .3417850 .3803698 .418.400 .0701908 .0884435 .1086818 .1307648 .154389	.10 .11 .18 .13 .14 .6513216 .6881828 .7814990 .7815766 .7786984 .8639011 .3027907 .3417850 .3803492 .410.400 .0701908 .0884435 .1006681 .1307542 .1543898	.10 .11 .18 .13 .14 .6513816 .6881828 .7814990 .7815766 .7766984 . .8639011 .3087707 .3417850 .3803698 .418.400 .0701908 .0884435 .1086818 .1307648 .1845875	.10 .11 .18 .13 .14 .6513816 .6881888 .7814990 .7515764 .7766984 .8 .8639011 .3087907 .3417850 .3803692 .418.400 . .0701908 .0884435 .1086910 .1307648 .1843875 .1	.10 .11 .18 .13 .14 . .6513816 .6881828 .7814990 .7815766 .7786994 .80 .8639011 .3087707 .3417850 .3803692 .418.400 .49 .0701908 .0884435 .1086818 .1307648 .1845876 .57	.10 .11 .18 .13 .14 .1 .6513816 .6881828 .7814990 .7815764 .7786984 .803 .8639011 .3087907 .3417850 .3803692 .418.400 .485 .0701908 .0884335 .108681 .1307868 .1848898 .479	.10 .11 .18 .13 .14 .18 .6513816 .6881828 .7814990 .7515766 .7766984 .8031 .8639011 .3087707 .3417850 .3803698 .418.400 .4857 .0701908 .0884435 .1086818 .1307548 .1848878 .178	.10 .11 .18 .13 .14 .18 .6513816 .6881828 .7814990 .7815766 .7786984 .80318 .8639011 .3087907 .3417850 .3803498 .410.400 .48570 .0701908 .0884435 .108681 .1307548 .1548898 .17880	.10 .11 .18 .13 .14 .18 .6513816 .6881828 .7814990 .7515764 .7786984 .803188 .8639011 .3087907 .3417850 .3803698 .410.400 .485700 .0701908 .0884435 .1086818 .1207648 .1848898 .178803	.10 .11 .18 .13 .14 .15 .6513816 .6881828 .7814990 .7815764 .7786984 .8031886 .8639011 .3087907 .3417850 .3803692 .419.400 .457700 .0701908 .0884435 100688 .1307642 .1845878 .478035	.10 .11 .18 .13 .14 .15 .6513816 .6881828 .7814990 .7515764 .7786984 .8031886 .8639011 .3087907 .3417850 .3803698 .410.400 .4857008 .0701908 .0884435 .1086818 .1207648 .15848898 .1278035	.10 .11 .18 .13 .14 .15 .6513216 .6881828 .7814990 .7815764 .7786984 .8031886 .8639011 .3027907 .3417830 .3803692 .418.400 .4577002 .0701908 .0884435 1006818 .13075642 .18452878 .4786035	.10 .11 .18 .13 .14 .18 .6513816 .6881828 .7814990 .7515766 .7786984 .8031886 . .8639011 .3087907 .3417850 .3803698 .410.400 .4857008 . .0701908 .0884435 .1086818 .1307648 .1848898 .178035 .	.10 .11 .18 .13 .14 .15 . .6513816 .6881828 .7814990 .7815764 .7766984 .8031886 .8 .8639011 .3087907 .3417850 .3803692 .418.400 .4857002 .4 .0701908 .0884435 .100688 .1307642 .1845878 .478035 .8	.10 .11 .18 .13 .14 .18 .1 .6513816 .6881828 .7814990 .7515764 .7786984 .8031886 .88 .8639011 .3087907 .3417850 .3803698 .410.400 .4857008 .49 .0701908 .0884435 .1086818 .1307648 .15488898 .178035 .804	.10 .11 .18 .13 .14 .15 .14 .6513816 .6881828 .7814990 .7815764 .7786984 .8031886 .8850 .8639011 .3087907 .3417850 .3803692 .419.400 .4857002 .4919 .0701908 .0884435 1008688 .1307642 .1845878 .478035 .8044	.10 .11 .18 .13 .14 .18 .16 .6513816 .6881828 .7814990 .7515766 .7786984 .8031886 .88509 .8639011 .3087907 .3417850 .3803698 .418.400 .4857008 .49195 .0701908 .0884435 .1086818 .1307548 .158898 .1788035 .89440	.10 .11 .18 .13 .14 .15 .16 .6513816 .6881828 .7814990 .7815764 .7786984 .8031886 .885098 .8639011 .3087907 .3417850 .3803692 .418.400 .4857008 .491953 .0701908 .0884435 .1006818 .1307548 .1843878 .178635 .8054602
4 5 6 7			81 000	80 000	30 800	3896 104			.00	.01	.012	.0127	.01279 .00143 .00014 .00000	.0127951	.0127952 .0016349 .0001469 .0000091	.0127952 . .0016349 . .0001469 . .0000091 .	.0127952 .0 .0016349 .0 .0001469 .0 .0000091 .0 .0000004 .0	.0127952 .01 .0016349 .00 .0001469 .00 .0000091 .00 .0000094 .00	.0177952 .017 .0014349 .002 .00014459 .000 .0000091 .000	.0127952 .0177 .0014349 .0025 .0001469 .0008 .0000091 .0000	.0127952 .017797 .0014349 .002517 .0001469 .000551 .0000091 .000016	.0127952 .0177972 .0014349 .0025170 .0001469 .00025170 .0000091 .0000173 .0000091 .0000173	.0127952 .0177978 .0014349 .0025170 .0001469 .0005607 .0000091 .0000173 .0000004 .000005	.0127952 .0177972 . .0014349 .0025170 . .0001469 .0008507 . .0000091 .0000173 . .0000094 .000008	.0127952 .0177972 .0 .0014349 .0025170 .0 .0001469 .0008507 .0 .0000091 .0000173 .0 .0000004 .0000008 .0	.01#795# .017797# .02 .0014349 .0028170 .00 .0000445 .0008807 .00 .0000091 .0000173 .00 .0000004 .000001 .00	.0127952 .0177972 .023 .0014349 .0025170 .003 .0001469 .0008507 .000 .0000091 .0000173 .000 .0000004 .000006 .000	.0177972 .0177972 .0239 .0014349 .0025170 .0037 .0001469 .0008507 .0004 .0000091 .0008173 .0004 .000004 .00008 .0000	.0127952 .0177972 .023933 .0014349 .0025170 .00371 .0001469 .00085107 .00040 .0000091 .0000173 .00040 .0000004 .0000006 .00000	.0127952 .0177972 .023934 .0014349 .0025170 .003716 .001449 .0028170 .0003716 .0001449 .0008807 .000406 .0000091 .0000173 .000030	.0127952 .0177972 .0239388 .0014349 .0025170 .0037161 .001469 .0005170 .0004069 .0000091 .0000173 .0004069 .0000004 .0000008 .0000015	.0127952 .0177972 .0239385 .0014349 .0025170 .0037161 .0001449 .0025170 .0037161 .0001449 .0008507 .0004069 .0000091 .0000173 .0004069 .0000004 .0000005	.0127952 .0177972 .0239588 . .0016349 .0025170 .0037161 . .0001469 .0008507 .0004069 . .0000091 .0000173 .0004069 . .000004 .0000015 .	.0127952 .0177972 .0239388 .0 .0014349 .0025170 .0037161 .0 .001449 .0025170 .0037161 .0 .0000091 .00008507 .0004069 .0 .0000004 .00000173 .00003508 .0	.0127952 .0177972 .0239383 .03 .0014349 .0025170 .0037161 .00 .0001469 .0005170 .0004069 .00 .0000091 .0006173 .0004069 .00 .0000004 .0000008 .0000015 .000	.0127952 .0177972 .0239355 .031 .0014349 .0025170 .0037161 .0051 .001449 .0025170 .0037161 .005 .0000091 .0000173 .0004069 .0000 .0000004 .0000005 .0000	$\begin{array}{c} .0127952 & .0177972 & .0239383 & .03134\\ .0014349 & .0025170 & .0037161 & .00534\\ .001469 & .0025507 & .0034069 & .0006\\ .0000091 & .0000173 & .0000308 & .0000\\ .0000004 & .0000005 & .0000015 & .00000\\ .000004 & .0000005 & .0000015 & .0000005 \\ \end{array}$.0127952 .0177972 .0239385 .03130 .0014349 .0025170 .0037161 .005394 .001449 .0028517 .0004069 .000633 .0000091 .0000173 .0004069 .00005 .000004 .0000000 .0000015 .000003	.0127952 .0177972 .0239383 .031304 .0014349 .0025170 .0037161 .0058967 .001469 .0028507 .0004069 .0006332 .0000091 .0000173 .0004069 .0000532 .0000004 .0000008	.0127952 .0177972 .0239588 .0315048 .0014349 .0025170 .0037161 .0055967 .001449 .0025170 .0037161 .0055967 .0000091 .0008507 .0004069 .0006332 .0000091 .0000173 .0004069 .0000535 .0000004 .0000005 .0000035	.0127952 .0177972 .0239383 .0313048 .0014349 .0025170 .0037161 .0058967 .0014649 .00285070 .0037161 .0058967 .0000091 .0008507 .0004069 .00065328 .0000091 .0000173 .0000039 .0000535 .0000004 .0000008 .0000015 .0000003	.0137952 .0177972 .0339388 .0313048 .0 .0014349 .00285170 .0037161 .0058967 .0 .001449 .0008507 .0004069 .0006338 .0 .0000091 .0000173 .0004069 .0000538 .0 .0000004 .0000008 .0000015 .0000038 .0	.0127952 .0177972 .0239388 .0313048 .03 .0014349 .0025170 .0037161 .0058947 .00 .001449 .0008807 .0004069 .0006338 .00 .0000091 .0000173 .0004069 .0000538 .00 .0000004 .00000015 .0000015 .0000029 .00	.0127952 .0177972 .0239588 .0513048 .035 .0014349 .00285170 .0037161 .0058967 .007 .001449 .0008507 .0004069 .0006338 .000 .0000091 .0000173 .0004069 .0000538 .000 .0000004 .0000005 .0000038 .000	.0127952 .0177972 .0239383 .0313048 .0399 .0014349 .0025170 .0037161 .0058967 .0073 .001469 .0008507 .0004069 .0006538 .0009 .0000091 .0000173 .0000308 .0000538 .0009 .000004 .0000000 .000003 .0000008	.0127952 .0177972 .0239388 .0313048 .03996 .0014349 .0025170 .0037161 .0058967 .00738 .001469 .0008507 .0074669 .0006338 .00095 .0000091 .0009173 .0000308 .0000535 .00008	.0127952 .0177972 .0239385 .0313048 .039542 .0014349 .0025170 .0037161 .00538957 .007385 .001449 .0028507 .0004069 .0006338 .0009505 .0000091 .0000173 .0004069 .00006358 .0009508 .0000004 .0000005 .0000038 .0000854	.0127952 .0177972 .0239383 .0313048 .0393642 .0014349 .0025170 .0037161 .0058957 .0073563 .001469 .0025070 .0004069 .0006338 .0009505 .0000091 .0000173 .0000308 .0000538 .0009505 .0000091 .0000008 .0000015 .0000039 .0000854	.0127952 .0177972 .0239588 .0313048 .0359642 . .0014349 .0025170 .0037161 .0058967 .0073263 . .001469 .0008507 .0004069 .0006338 .0009505 . .0000091 .0009173 .0000308 .0000535 .0000856 . .0000004 .0000005 .0000015 .0000029 .0000051 .	.0127952 .0177972 .0239383 .0313048 .0359642 .0 .0014349 .0025170 .0037161 .0058967 .0073263 .0 .0014649 .0008507 .0004069 .00065328 .0009505 .0 .0000091 .0000173 .0000308 .0000535 .0000950 .0 .0000004 .0000008 .0000035 .0000029 .00000054 .0	.0127952 .0177972 .0239588 .0313048 .0399642 .04 .0014349 .00285170 .0037161 .0058967 .0073263 .00 .001469 .0008507 .0074669 .0006332 .0009505 .00 .0000091 .0009173 .0000308 .0000538 .0009505 .00 .0000094 .0009008 .0000015 .0000028 .0000051 .00	.0137952 .0177972 .0239383 .0313048 .039642 .049 .0014349 .0025170 .0037161 .0058967 .0073263 .009 .001469 .0008507 .0004069 .0006338 .0009505 .001 .0000091 .0000173 .0000308 .0000535 .0000856 .000 .0000004 .0000005 .0000015 .00000856 .000	.0127952 .0177972 .0239588 .0313048 .0539642 .0449 .0014349 .0025170 .0037161 .0058967 .0073263 .0098 .001449 .0028507 .0004069 .0006332 .0009505 .0013 .0000091 .0000173 .0004069 .0000535 .0009505 .0013 .0000091 .0000008 .00000308 .0000854 .0001	.0127952 .0177972 .0239383 .0313048 .0539542 .04996 .0014349 .0025170 .0037161 .0058957 .0073563 .0095 .001469 .002507 .0004069 .0006338 .0009505 .00138 .0000091 .0000173 .0000308 .0000535 .0009505 .00138 .0000091 .0000008 .0000015 .0000039 .0000051 .00000	.0127952 .0177972 .0239388 .0313048 .039642 .044969 .0014349 .0025170 .0037161 .0058967 .0073263 .009874 .001449 .0028507 .0004069 .0006332 .0009505 .001383 .0000091 .0000173 .0004069 .0000538 .0009856 .000334 .0000004 .0000005 .0000039 .0000085 .000008	.0137952 .0177972 .0239388 .0313048 .0399642 .0499698 .0014349 .0028170 .0037161 .0058967 .0073865 .0098741 .001469 .0008807 .0004069 .0006338 .0009505 .0013832 .0000091 .0000173 .0000308 .0000535 .0000856 .0001346 .0000004 .0000008 .0000015 .0000039 .0000085	.0127952 .0177972 .0239388 .0333048 .0395642 .0449498 .0014349 .0025170 .0037161 .0058967 .0073263 .0098741 .001449 .0028507 .0004069 .0006338 .0009505 .0013832 .0000091 .0000173 .0004069 .0000538 .0009505 .0001346 .0000004 .00000087 .0000350 .0000085 .000087	.0137952 .0177972 .0239388 .0313048 .0399642 .0499698 .0014349 .0028170 .0037161 .0058967 .0073865 .0098741 .001469 .0008807 .0004069 .0006338 .0009505 .0013832 .0000091 .0000173 .0000308 .0000535 .0000856 .0001346 .0000004 .0000008 .0000015 .0000039 .0000057	.0127952 .0177972 .0239588 .0313048 .0395642 .0449698 .0 .0014349 .0025170 .0037161 .0055967 .0073263 .0098741 .0 .001449 .002507 .0004069 .0006332 .0009505 .0013832 .0 .0000091 .0000173 .0004069 .0000535 .0009505 .0001346 .0 .0000004 .0000006 .0000015 .0000054 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .00000067 .00000067 .00000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .0000067 .00000067 .00000067 .00000067 .00000067 .00000067 .00000067 .00000067 .0000000000	.0137952 .0177972 .0239388 .0313048 .0399642 .0499698 .06 .0014349 .0028170 .0037161 .0058967 .0073865 .0098741 .01 .0001469 .0008807 .0004069 .0006338 .0009505 .0013832 .00 .0000091 .0000173 .0000308 .0000535 .0000856 .0001346 .00 .0000004 .0000008 .0000015 .0000039 .0000085 .0000346 .00	.0127952 .0177972 .0239388 .0313048 .039642 .0499698 .061 .0014349 .0025170 .0037161 .0058967 .0073263 .0098741 .013 .001449 .0028507 .0004069 .0006332 .0009505 .0013832 .009 .0000091 .0000173 .0004069 .0000535 .0009866 .0001346 .000 .0000004 .0000008 .0000015 .0000089 .00000851 .0000087	.0137952 .0177972 .0239388 .0313048 .0399642 .0499698 .0613 .0014349 .0028170 .0037161 .0058967 .0073865 .0098741 .0130 .001469 .0008807 .0004069 .0006338 .0009505 .0013832 .0019 .0000091 .0000173 .0000308 .0000535 .0000856 .0001346 .0002 .0000004 .0000008 .0000015 .0000039 .0000051 .0000087 .0000	.0127952 .0177972 .0239588 .0313048 .0539642 .0449698 .06135 .0014349 .0025170 .0037161 .0058967 .0073263 .0096741 .01301 .0001469 .0008507 .0004069 .0006332 .0009505 .0013832 .00196 .0000091 .0000173 .0004069 .0000535 .0009505 .0001346 .00029 .0000004 .0000000 .0000015 .0000039 .0000051 .0000007	.0137952 .0177972 .0239388 .0313048 .0399642 .0499698 .061357 .0014349 .0025170 .0037161 .0058967 .0073863 .009571 .013010 .001469 .0008507 .0004069 .0006338 .0009505 .0013832 .001959 .0000091 .0000173 .0000308 .0000535 .0000556 .0001346 .000205 .0000004 .0000008 .0000015 .0000039 .0000051 .0000007 .000014
У.		•	1	7	-		-	-		•	.1	.10	.10	.10	.10	.10	.10	.10 .	.10 .1	.10 .19	.10 .19	.10 .19	.10 .19	.10 .19	.10 .19	.10 .19 .	.10 .19 .2	.10 .19 .20	.10 .19 .20	.10 .19 .20	.16 .19 .20	.10 .19 .20	.16 .19 .20	.10 .19 .20	.16 .19 .20	.10 .17 .20 .8	.10 .19 .20 .81	.10 .17 .20 .81	.10 .19 .20 .81	.10 .19 .20 .81	.10 .19 .20 .31	.10 .19 .20 .81	.10 .19 .20 .81 .	.10 .19 .20 .81 .8	.10 .19 .20 .31 .3	.10 .19 .20 .81 .88	.10 .17 .20 .81 .88	.10 .17 .20 .81 .82	.16 .19 .20 .81 .88	.10 .19 .20 .81 .28	.10 .19 .20 .81 .88 .	.000.0001.000001.0000.000	.10 .19 .20 .81 .82 .83	.10 .17 .20 .81 .82 .83	.10 .19 .20 .81 .82 .73	.16 .17 .20 .81 .88 .73	.10 .19 .20 .81 .82 .73	.16 .17 .20 .81 .88 .73	.10 .19 .20 .81 .28 .73	.16 .17 .20 .81 .88 .73	.10 .19 .20 .81 .88 .83 .5	.16 .17 .20 .81 .88 .73 .84	.10 .19 .20 .81 .28 .73 .84	.10 .17 .20 .81 .88 .73 .84
1 8 3 4 5	•••••	14 53 57 57	47445	60116	34340	90 12 02 72			. 8	.86 .56 .36 .08	.863 .560 .363 .088 .081	.8625 .5608 .8628 .0883 .0883	.86255 .56083 .86280 .08834 .08138	.8635520 .560836 .8628010 .086341 .081388	.8635520 .5608368 .3628010 .0863411 .0213229	.8635510 .5608368 .8628010 .0883411 .013389	.8635520 .8 .5608368 .5 .8628010 .2 .0663411 .1 .0213229 .0	.8635510 .87 .5608368 .59 .8628010 .29 .0863411 .10 .0113129 .02	.8635520 .878 .5608364 .893 .8628010 .292 .0863411 .103 .0213229 .026	.8623520 .8784 .5608368 .5932 .3628010 .2932 .0683411 .1039 .0213229 .0266	.8635510 .87842 .5608368 .59324 .8628010 .29332 .0863411 .10392 .0213229 .02663	.8635510 .8784233 .5608368 .8932435 .8628010 .2923204 .0863411 .1039261 .0213229 .0266325	.8623520 .8784233 .5608368 .8932435 .8628010 .2922804 .0663411 .1039261 .0213229 .0866325	.8623520 .8784233 . .5608368 .8932435 . .8428010 .292204 . .0883411 .1039261 . .0213229 .0266325 .	.8623520 .8784233 .8 .5608368 .5932435 .6 .8628010 .2922804 .3 .0883411 .1039261 .1 .0213229 .0266325 .0	.8625520 .8784233 .89 .5608368 .8932435 .62 .8628010 .2923204 .31 0883411 .1039261 .12 .0213229 .0266325 .03	.8635520 .8784233 .898 .5608368 .5938435 .624 .8628010 .2932804 .382 .0863411 .1039261 .120 .0213229 .0266325 .032	.863520 .8784233 .8986 .5608368 .8932435 .6241 .8628010 .292204 .3828 .0863411 .1039261 .1208 .0213229 .0266325 .0327	.8635520 .874433 .69563 5608368 .695435 .42419 .3628010 .292304 .33280 .0663411 .107924 .13280 .0813389 .0266325 .03879	.8635520 .878433 .898625 5608368 .8932435 .424190 .8628010 .2922204 .32280 .0863411 .1039261 .120873 .0213229 .0866325 .032793	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8635580 .8764333 .8926258 5608568 .8932435 .6241904 .8628010 .2923204 .3828005 .066341 .1039241 .1208739 .0213289 .0266325 .0327935	.848530 .74433 .6986258 . 560326 .893435 .4241904 . 8428010 .2733804 .388005 . 080341 .1039861 .1808739 . 0813439 .0866325 .0387935 .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.848530 .478433 .6986258 .90 560326 .5932435 .4241904 .65 .8428010 .2733204 .5282005 .35 .0813419 .0866325 .0387935 .03	.8635580 .8784333 .8986858 .905 5608568 .8938435 .6241904 .653 .8428010 .2932804 .3828005 .358 .0463511 .133984 .1328005 .358 .0413489 .0366325 .0387935 .039	.848530 .478433 .6986258 .9053 560326 .592435 .4241904 .4536 .8428010 .2923204 .5288005 .3885 .080341 .109861 .120879 .1391 .0813439 .0266325 .0387935 .0398	- 8635580 .8784333 .8986856 .90531 - 8608568 .8938435 .6241904 .65362 - 8608010 .2932304 .3828005 .38285 - 066341 .1039841 .1208739 .13914 - 0213229 .0866325 .0327935 .03986	.8435520 .4784233 .6986258 .9053173 5608368 .6932435 .4241904 .45356289 .8428010 .2932804 .3228005 .352558 .086341 .1039261 .1208793 .1391418 .0813429 .0266325 .0327935 .0398684	.8635580 .8784333 .8986856 .9053172 560856 .893435 .6241904 .6556889 .8428010 .2932804 .3828005 .358586 .0463541 .1039261 .1208739 .1394418 .0813389 .0866385 .0387935 .0398684	.848530 .474433 .696358 .9053173 560356 .893435 .424190 .4535489 .8428010 .2733804 .5388005 .3585586 .080341 .1039861 .1208793 .1391418 .0813489 .0866385 .0387935 .0396684	.8635580 .878433 .8986858 .903172 . 560858 .893435 .4241904 .4536889 . 260854 .893435 .4241904 .4356889 . 2608541 .1039841 .1208739 .1391418 . 0863541 .103984 .0387935 .0398684 .	.8635520 .474433 .696258 .9053173 .9 560356 .892435 .6241904 .6556289 .6 .8608010 .2932804 .9328005 .3525586 .3 .083411 .1039261 .1208793 .1391418 .12 .0813429 .0266325 .0327935 .0398624 .04	.8635580 .8764333 .8986858 .9053172 .916 560856 .893435 .4241904 .4536289 .603 -8428010 .2923204 .3218005 .3325586 .303 -048341 .1039241 .1208739 .1391418 .154 -0313289 .0366328 .0327935 .0398684 .047	.8485320 .474433 .696458 .9053172 .956 560356 .893435 .6241904 .6553689 .6515 .8428010 .2733204 .3328005 .3525586 .3931 .080341 .1039261 .1208793 .1391418 .1586 .0913439 .0266325 .0327935 .0396624 .0478	.8635530 .8764333 .8966258 .9053172 .91664 560856 .893435 .6341904 .6356889 .66153 .8428010 .2922804 .3228005 .3585586 .39331 .046311 .109761 .1208739 .1391418 .15867 .0313889 .0366325 .0327935 .0396684 .04780	.8635580 .8784333 .8986858 .9053172 .9166483 5608568 .8938435 .6241904 .6336889 .661530 26428010 .2932804 .3828005 .382586 .3831397 .0863611 .1039841 .1208739 .1391418 .15863197 .0813889 .0866325 .0387935 .03986824 .0478897	.8638530 .4784333 .6986254 .9053172 .9166433 560354 .593435 .4241904 .4536889 .6515304 .8428010 .2923204 .3228005 .3825584 .3831197 .08341 .109861 .1208739 .1391418 .1586739 .0313439 .0266325 .0327935 .0398624 .0478697	.8635510 .876433 .8966258 .9053172 .9166433 . 560856 .893435 .6341904 .6356289 .6515306 . 8428010 .2922804 .322806 .3325586 .3831197 . 0080341 .109761 .1208739 .1391418 .1586739 . 0133289 .0266325 .0327935 .0398684 .0478897 .	.8435320 .474433 .696258 .9053172 .916443 .9 5603368 .693435 .6241904 .6553689 .6515304 .7 .8428010 .2732804 .7388005 .3885586 .393197 .4 .083411 .1039861 .1808739 .1391418 .1586739 .1 .0813489 .0866385 .0387935 .0398684 .0478897 .0	.8635530 .876433 .8966258 .9053172 .9166433 .9 560856 .893435 .6341904 .6356289 .6515306 .70 .8428010 .2923204 .3228005 .3325586 .3031197 .41 .046341 .109761 .1204739 .1391418 .1586739 .17 .0313289 .0366325 .0327935 .0398684 .0478897 .05	.8435320 .4784333 .6986358 .9053172 .9164433 .286 560326 .5932435 .4241904 .6536389 .653564 .707 .8428010 .2933804 .3888005 .3835586 .3831197 .413 .083411 .1039861 .1208793 .1391418 .1584739 .179 .0813439 .0866385 .0387935 .0398684 .0478897 .656	.8635530 .878433 .8986556 .9033172 .916433 .9267 .560856 .893435 .6241904 .6353689 .6655366 .7078 .8428010 .2933804 .3338005 .3385586 .3831197 .4337 .066341 .1039841 .1208739 .1394418 .1586739 .1794 .0813889 .0866325 .0387935 .0398684 .0478097 .0569	.8638530 .4784333 .6986256 .9053172 .9166433 .92473 560326 .5932435 .4241904 .4536289 .6515306 .70780 .8428010 .2923204 .3228005 .3825586 .3831197 .41371 .08341 .1039261 .1208739 .1391418 .1586739 .17940 .0813439 .0266325 .0327935 .0398624 .0478897 .05691	.8635580 .8784333 .8986856 .9053172 .916443 .926733 560856 .8938435 .6241904 .6556889 .6615306 .707884 8428010 .2932804 .3228005 .358586 .3831197 .413717 0063511 .1039261 .1208739 .1394418 .1586739 .179402 00813289 .0366325 .0327935 .0398684 .0478897 .056619	.8638530 .8784333 .8986258 .9053172 .916428 .986733 5608368 .593435 .6241904 .5356289 .6615306 .707843 3628010 .2923204 .5228005 .3825586 .3831997 .4137173 .080341 .109261 .1208739 .1391418 .1586739 .1794024 .0813439 .0266325 .0327935 .0398624 .0478897 .0569196	.8635580 .8784333 .8986856 .9053172 .916433 .9267338 560856 .8938435 .6241904 .6556889 .6615306 .707843 .8428010 .2932804 .3228005 .358586 .3831197 .4137173 .0483611 .1039261 .1208739 .1394418 .1586739 .1794024 .0213289 .0366325 .0327935 .03986824 .0478497 .0564196	.8638530 .8784333 .8986258 .9053172 .916423 .926733 .860856 .593435 .6241904 .5356289 .6615336 .707843 .8628010 .2923204 .3228005 .3825586 .3831397 .4137173 .080341 .109261 .1208739 .1391418 .1586739 .11794024 .0813439 .0266325 .0327935 .0398624 .0478097 .0569196	.8635530 .8784333 .8986556 .9033172 .916443 .9247338 . 560856 .8938435 .6241904 .6536889 .6615306 .7078843 . 3628010 .2933804 .3338005 .3385586 .3831197 .4137173 . .0483611 .1039861 .1208739 .1394418 .1586739 .179024 . .0213389 .0366325 .0327935 .0398684 .0478097 .0569196 .	.8638530 .8784333 .8986258 .9053172 .916428 .9267332 .7 5608368 .593435 .6241904 .5356289 .6615306 .707843 .7 .8628010 .2923204 .5228005 .3825586 .3831997 .4137173 .4 .080341 .109261 .1208739 .1391418 .1586739 .1794024 .4 .0813329 .0266325 .0327935 .0398624 .0478897 .0569196 .00	.8635520 .474433 .6926258 .9033173 .9166438 .9267338 .93 560356 .693435 .6241904 .6536289 .6515306 .7078843 .73 .8628010 .2932804 .3328005 .3325586 .383197 .4137173 .44 .083411 .1039261 .12087935 .0398684 .0478897 .0569196 .066	.8638530 .8784333 .8986258 .9053172 .916428 .9267338 .9357 5608368 .593435 .6241904 .5356289 .6615336 .707843 .738 .8628010 .2923204 .3228005 .3825586 .3831397 .4137173 .444 .080341 .109261 .1208739 .1391418 .1586739 .11794024 .601 .0813389 .0266325 .0327935 .0398624 .0478897 .0569196 .0667	.8635530 .8784333 .8986356 .9033172 .916433 .9267338 .93571 560856 .893435 .4241904 .4356889 .6615366 .707843 .7389 -8638010 .2933804 .3338005 .3385586 .3031197 .4337173 .44419 -066341 .1039841 .1208739 .139448 .1586739 .1794024 .50124 -0133889 .0866325 .0387935 .0398684 .0478897 .0569196 .06698	.8638530 .4784333 .6986258 .9053172 .9166428 .9267338 .755711 5608368 .593435 .6241904 .6536889 .6615306 .707843 .32693 .8628010 .2923204 .3228005 .3825586 .3831397 .4137173 .444194 .080341 .1039261 .1208739 .1391418 .158673 .1794024 .01244 .0313439 .0266325 .0327935 .0398624 .0478697 .0569196 .066989
6 7 8 9 10			1000	7300	0020	98 42 80	5		.00	.00 .00 .00	.003 .000 .000	.0036 .0004 .1000 .0000	.00366 .00044 .10003 .00000	.0036494 .0004403 .000350 .000001	.0036694 .0004401 .000350 .0000017	.0036694 .0004401 .ú000350 .0000017	.0036694 .0 .0004401 .0 .0000350 .0 .0000017 .0	.0036694 .00 .0004401 .00 .000350 .00 .0000017 .00 .00	.0036494 .004 .0004401 .000 .000350 .000 .0000017 .000 .000	.0036694 .0048 .0004401 .0006 .0000350 .0000 .0000017 .0000 .0000	.0036694 .00487 .0004401 .00062 .0000350 .00005 .0000017 .00000 .000001	.0036694 .0048757 .0004401 .0006229 .000350 .0000528 .0000017 .0000027 .0000017 .0000027	.0036694 .0048757 .0004401 .0006229 .0000350 .0000528 .0000017 .0000027 .0000001	.0036694 .0048757 . .0004401 .0006279 . .0000350 .0000586 . .0000017 .0000027 . .0000001 .	.0036694 .0048757 .0 .0004401 .0006229 .0 .0000350 .0000588 .0 .0000017 .0000037 .0 .0000001 .0	.0036694 .0048757 .00 .0004401 .0006889 .00 .0000350 .000058 .00 .0000017 .00 .0000017 .00	.0036494 .0048757 .004 .0004401 .0006229 .000 .000350 .000058 .000 .0000017 .000057 .000 .0000001 .000	.0036694 .0048757 .0063 .0004401 .0006229 .0008 .000350 .0000588 .0000 .0000017 .000027 .0000 .0000011 .0000	.0036494 .0048757 .00636 .0064401 .0068757 .00636 .000450 .0006558 .00005 .000017 .000057 .00000 .000001 .00000	.0036494 .0048757 .006365 .0004401 .0006336 .000854 .0000350 .0000536 .000054 .0000017 .0000001 .000004	.0036494 .0044757 .00363634 .00447 .0064359 .0006364 .000350 .000555 .0000779 .0000017 .000055 .00000779 .0000001 .0000001	.0036494 .0048757 .0063694 .0004401 .0006339 .006644 .0000350 .0000538 .0000779 .0000017 .000058 .000043 .0000017 .0000001 .0000043	.0036494 .0048757 .0063694 . 0004401 .006219 .000844 . 1000450 .000858 .0000779 . .0000017 .000058 .0000779 . .0000017 .000001 .	.0036494 .0048757 .0063694 .0 .000401 .0006319 .0008544 .0 .0000350 .0000558 .0000779 .0 .0000017 .0000558 .0000779 .0 .0000001 .0000051 .0000043 .0 .0000001 .0000001 .0	.0036494 .0048757 .0063694 .00 0004401 .006838 .0008779 .00 1000350 .000858 .0008779 .00 .0000017 .000057 .000004 .00 .0000017 .0000057 .000004 .00	.0036494 .0048757 .0063694 .008 .0004401 .0006319 .0008644 .001 .000350 .0000518 .0000779 .000 .0000017 .0000518 .000043 .000 .0000001 .000001 .000	.0036474 .0044757 .0063674 .0061 .0004471 .00067179 .0008744 .0011 .0000350 .0000588 .0008779 .0011 .0000017 .0000588 .0008779 .0011 .0000017 .000058 .0008779 .0011	.0036494 .0048757 .0063694 .00819 .0004401 .0006339 .0008544 .00117 .000350 .0000538 .0000779 .00011 .0000017 .000058 .0000779 .00011 .0000001 .000008 .000004 .0000001 .000000	.0036494 .0048757 .0063694 .0061933 .0004041 .0068189 .000864 .0011783 .0000350 .0000588 .0008779 .0001178 .0000017 .000058 .0000779 .0001178 .0000017 .0000001 .0000004 .000004	.0036494 .0044757 .0063694 .0061535 .000401 .0006359 .000844 .0011783 .000350 .000858 .0000779 .00011787 .0000017 .000087 .0000043 .000000 .0000001 .0000000 .0000002	.0036494 .0048757 .0063694 .0061935 .006441 .006219 .000844 .0011783 .0060350 .0006219 .0008779 .0001178 .0000017 .000058 .0000779 .0001187 .0000017 .000004 .0000064 .0000064 .0000001 .0000000 .0000002	.0036494 .0040157 .0063694 .0081935 . .0004401 .000899 .000864 .0011763 . .000350 .000898 .0000779 .00011763 . .0000017 .000089 .0000779 .0001187 . .0000017 .000089 .000041 .0000004 .	.0036494 .0048157 .0063694 .0061935 .0 0004401 .006229 .000844 .011783 .0 0004401 .0006229 .0008779 .00011787 .00 .0000017 .000058 .0000779 .0001177 .00 .0000017 .000001 .0000064 .00	.0036494 .0040157 .0063694 .0081935 .030 .0004401 .0006999 .000864 .0011783 .000 .000350 .0000596 .0000779 .0011187 .000 .0000017 .0000051 .0000048 .0000000 .000 .0000001 .0000051 .0000000 .000	.0036494 .0048757 .0063694 .0061935 .003 .0064461 .006229 .000844 .0011783 .0015 .000350 .000058 .0000779 .0001187 .0001 .0000017 .000058 .000004 .0000064 .0000 .0000017 .0000001 .0000006 .0000	.0036494 .0048757 .0053694 .0081935 .01039 .0004401 .0006888 .0008749 .0011783 .00158 .000350 .000888 .0008779 .0011787 .0018 .0000017 .000088 .0000779 .00011787 .0018 .0000017 .000088 .000004 .000008	.0036494 .0044757 .0043694 .0081435 .01373 .000401 .00048757 .0043644 .001773 .001580 .000350 .0000558 .0000779 .0001187 .001580 .0000017 .000055 .0000779 .0001187 .00189 .0000017 .000057 .0000043 .0000004 .000000 .0000001 .0000001 .00000002 .0000000	.0036494 .0044757 .0063694 .0061935 .0103936 .0004401 .0006889 .0008779 .0011783 .0013936 .000450 .000058 .0008779 .0011787 .001189 .0000017 .0000051 .0000044 .0000004 .0000189 .0000017 .0000051 .0000001 .0000003	.0036494 .0048757 .0063694 .0081935 .013936 .0004401 .0006889 .0008644 .0011783 .0015804 .000350 .0000888 .0000779 .0001187 .0015899 .0000017 .0000088 .0000779 .0001187 .0001599 .0000017 .0000081 .0000064 .00000064 .0000057	.0036494 .0048757 .0063694 .0061935 .0103936 .0 0004401 .006229 .000844 .0011783 .001593 .0 0004050 .0000588 .0000779 .0001177 .0001599 .0 .0000017 .0000058 .00000779 .0001187 .0001599 .0 .0000017 .0000001 .0000006 .0000000 .0000003 .0	.0036494 .0048757 .0063694 .0081935 .013936 .01 .0004401 .006838 .0008749 .0011783 .0015864 .00 .000350 .0000888 .0000779 .00011787 .0015899 .00 .0000017 .0000088 .0000779 .0001287 .0001589 .00 .0000017 .0000081 .0000061 .0000062 .0000007 .00 .0000001 .0000001 .00000063 .00000003 .00	.0036494 .0048757 .0063694 .0081955 .0107936 .013 .0064401 .0068289 .000844 .0011783 .0015804 .003 .0060350 .0000588 .0000779 .0001187 .0001589 .000 .0000017 .0000058 .0000043 .0000064 .0000097 .000 .0000017 .0000001 .0000064 .0000000 .0000003 .000	.0036494 .0040157 .0063694 .0001935 .0107936 .0130 .0004401 .0006889 .000864 .0011763 .0013804 .0080 .000350 .0000888 .0000779 .0001187 .001389 .0008 .0000017 .000088 .000048 .0000008 .000087 .0000 .0000017 .000087 .000048 .0000008 .0000097 .0000 .0000001 .0000001 .0000008 .0000003 .0000	.0036494 .0044757 .0063694 .0061935 .0107936 .01301 .0064401 .0064259 .000644 .0011783 .0015604 .00800 .0060350 .0000556 .0000779 .0001177 .0001599 .0002 .0000017 .000055 .0000043 .0000044 .0000059 .0002 .0000017 .000057 .000001 .000004 .0000003 .00000	.0036494 .0044757 .0063694 .0061535 .013736 .01301 .004401 .006839 .000844 .0011783 .0015804 .00208 .000350 .0000538 .0000779 .0001187 .0001599 .00083 .0000017 .0000057 .000004 .0000057 .000005 .0000001 .0000001 .0000002 .0000005 .000000	.0036474 .0044757 .0053674 .00611735 .0103736 .0130167 .0004010 .00061179 .0011763 .0015804 .001188 .0000350 .0000516 .0000779 .00011787 .0011899 .0012835 .0000017 .000051 .0000044 .0000004 .00001897 .0000143 .0000017 .000051 .0000004 .0000005 .0000004	.0036494 .0048757 .0063694 .0061935 .0103936 .0130147 .0064401 .0068289 .000844 .0011783 .0015804 .0020885 .0000350 .0000588 .0000779 .0001187 .00015894 .0002838 .0000017 .0000084 .0000064 .0000064 .00000097 .0000133 .00000017 .0000001 .00000064 .00000097 .0000133	.0036474 .0044757 .0063674 .00611735 .0103736 .0130167 .0004010 .00061170 .0011763 .0013804 .000855 .0000350 .0000516 .0000777 .0001177 .0001389 .000853 .0000017 .000051 .000004 .0000005 .0000143 .0000017 .0000051 .0000001 .0000004 .0000007 .0000143	.0036494 .0048757 .0063694 .0061935 .0103936 .0130147 . 0004401 .006828 .0000779 .0011783 .0015804 .002085 . 10004550 .0000588 .0000779 .0001187 .0001589 .0002838 . .0000017 .0000084 .0000064 .0000064 .00000097 .0000133 . .00000017 .0000001 .00000064 .00000097 .0000133 .	.0036494 .0044757 .0063694 .0061935 .0103936 .0130167 .0 0004401 .0006229 .000864 .0011783 .0013804 .002085 .0 0000350 .0000586 .0000779 .00011787 .0013899 .0022338 .0 .0000017 .0000586 .0000748 .0000004 .0000097 .00022338 .0 .0000017 .0000051 .0000004 .0000003 .0000014 .0	.0036494 .0048757 .0063694 .0061935 .0103936 .0130147 .014 .006401 .006828 .0008749 .0011783 .0015804 .00888 .004 .0080350 .000858 .0000779 .0001187 .0001589 .0008838 .004 .0000017 .000084 .0000064 .0000064 .0000097 .0008338 .004 .0000017 .0000001 .0000064 .00000097 .000013 .004	.0036474 .0044757 .0063674 .00611735 .0103746 .0130167 .016 .0004010 .00061179 .00011783 .0013804 .000185 .001 .000350 .000051 .0000779 .0001177 .001389 .0012838 .0002 .0000017 .000051 .000004 .0000007 .0002838 .0002 .0000017 .0000051 .0000004 .000005 .0000004 .0000	.0036494 .0048757 .0063694 .0061935 .0103936 .0130147 .01611 .000401 .006828 .000874 .0011783 .0015804 .008788 .00878 .000350 .000058 .0000779 .0001187 .0001589 .0002838 .00030 .0000017 .0000084 .0000064 .0000064 .0000097 .0002838 .00030 .0000017 .0000001 .00000064 .0000000 .0000007 .000013 .00000	.0036494 .0044757 .0063694 .0061935 .0103956 .0130167 .016111 .000401 .0006229 .000864 .0011783 .0015804 .002085 .008722 .0000350 .0000586 .0000779 .00011787 .0011599 .0022338 .000306 .0000017 .0000051 .000004 .0000057 .0002338 .000306 .0000017 .0000051 .0000004 .0000003 .0000004 .000002
X	•		2	5		6 :	5		.,	. 9 5	. 2	.26	. 26	.26	. 26 . 9 5 0 7 6 0 1	. 26 .9507601 .	.26 .9507601 .9	.26 . .9507601 .95	.26 .2	.26 .27 .9507601 .9570	.26 .27 .9507601 .95703	.26 .27 .9507601 .9570237	.26 .27 .9507601 .9570237	.26 .27 .9507601 .9570237	.26 .27 .9507601 .9570237 .9	.26 .27 . .9507601 .9570237 .96	.26 .27 .2 .9507601 .9570237 .962	.26 .27 .28 .9507601 .9570237 .9625	.26 .27 .28 .9507601 .9570237 .96256	.26 .27 .28 .9507601 .9570237 .962560	.26 .27 .20 .9507601 .9570237 .9625609	.26 .27 .28 .9507601 .9570337 .9625609	.26 .27 .28 .9507601 .9570237 .9625609 .	.26 .27 .28 .9507601 .9570337 .9623609 .2	. 26 . 27 . 28 . . 9507601 . 9570237 . 9625609 . 96	.26 .27 .28 .23	.26 .27 .28 .29 .9507601 .9570237 .9625609 .9674	.26 .27 .28 .29 .9507601 .9570337 .9625609 .96744	.26 .27 .20 .29 .9507601 .9570237 .9625609 .967447	.26 .27 .28 .29 .9507601 .9570237 .9625609 .9674476	.26 .27 .28 .29 .9507601 .9570237 .9625609 .9674476	.26 .27 .28 .29 .9507601 .9570237 .9625609 .9674476 .	.26 .27 .28 .29 .9507601 .9570237 .9625609 .9574476 .9	.26 .27 .28 .29 .3 .9507601 .9570237 .9625609 .9674476 .073	.26 .27 .28 .29 .30 .9507601 .9570237 .9625609 .9674476 .2717	.26 .27 .28 .29 .30 .9507601 .9570237 .9625609 .2674476 .27175	.26 .27 .28 .29 .30 .9507601 .9570337 .9625609 .9674476 .971738	.26 .27 .28 .29 .30 .9507601 .9570237 .9625609 .9674476 .9717385	.26 .27 .28 .29 .30 .9507601 .9570237 .9625609 .9674476 .9717585	.26 .27 .28 .29 .30 .9507601 .9570237 .9625609 .9674476 .2717585 .5	.26 .27 .28 .29 .30 . .9507601 .9570237 .9623609 .9674476 .9717585 .97	.26 .27 .28 .29 .30 .3 .9507601 .9570237 .9625609 .9674476 .9717585 .971	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717585 .9755	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717885 .97853	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717385 .975538	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717385 .9755381	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717385 .9755381	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717385 .9755381	.26 .27 .28 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717585 .9785381 .	.26 .27 .26 .29 .30 .31 .9507601 .9570237 .9625609 .9674476 .9717385 .9755381 .2	.26 .27 .28 .29 .30 .31 . .9507601 .9570237 .9625609 .9674476 .9717585 .9755381 .971	.26 .27 .28 .29 .30 .31 .30 .9507601 .9570237 .9625609 .9674476 .9717385 .9755381 .978	.26 .27 .28 .29 .30 .31 .32 .9507601 .9570237 .9625609 .9674476 .9717585 .9785281 .97882	.26 .27 .28 .29 .30 .31 .32 .9507601 .9570237 .9625609 .9674476 .9717385 .9755381 .9788660
3345		7572	5448	9411	7032 -	417146			.7		.777	.7777	.77778	.777755	7777850 504°200 3479349 0903542	7777550 504°200 2479349 0903542	.7777850 .7 .504(200 .5 .3479349 .2 .0903542 .1	.7777550 .79 .504(200 .53 .3479349 .27 .0903542 .10	7777550 504(200 533 2479349 272 0903542 103	7777550 .7980 504°200 .5335 3479349 .2725 0903542 .1035	.7777550 .79807 .504(200 .53351 .2479349 .27257 .0903542 .10368	.7777550 .7980705 .504(200 .5335118 .2479349 .2725761 .0903542 .1036831	.7777550 .7980705 .504(200 .5335112 .3479349 .2725761 .0903542 .1036831	.7777550 .7980705 .504(200 .5335112 .2479349 .2725761 .0903542 .1036731	.7777550 .7980705 .4 .504(200 .5335112 . .3479349 .2725761 .1 .0903542 .1036831 .1	.7777550 .7980705 .81 .504(200 .5335118 .50 .3479349 .2725761 .81 .0903542 .1036831 .11	.7777550 .7980705 .814 .504(200 .5335112 .565 .2479349 .2725761 .897 .0903542 .1036831 .114	7777530 504(200 5335113 5631 3479349 2725761 3979 0903542 1036431 1141	7777530 5047800 30511 3479349 0903542 1034731 3479349 1034731 1034731 1034731 1034731 1034731 11411	7777550 5047920 9725761 5047930 9725761 9795761 9795761 9795761 1977760 19905542 1036631 114117	7777555 504780 504780 3479349 3725761 5093542 1036731 1161171 50905542 1036731 1161171	7777550 5047540 347530 9905542 1034751 9905542 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751 1034751	7777555 5047950 50479549 5725751 5479549 5725751 5479549 5725751 5479549 5725751 5479549 5725751 5479540 5479540 5725751 5479540 5479540 5479540 5479540 5479540 5479555 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 557955 55755 557955 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 5575555 55755 557555 557555 55755 55755 55755 55755 557555 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 55755 557555 557555 557555 557555 557555 557555 557555 557555 557555 5575555 5575555 55755555 5575555 55755555 55755555 5575	.7777550 .5047540 .5047549 .5725761 .593512 .5957949 .5725761 .5979405 .5747549 .725761 .5979405 .5 .5979405 .5 .5 .5 .5 .5 .5 .5 .5 .5	.7777550 5047930 50479349 5725761 597949 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 5725761 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 5779405 57257 57795 5779405 57257 57795 57795 5779570 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 5779577 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 577957 57795 577957 57795 577957 57795 577957 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57795 57705 57795 57705 57705 57705 57705 57705 57705 57705 57705 57	7777550 5047540 5047549 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 5057	1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 1777555 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 177755 1777555 1777555 1777555 1777555 1	.7777550 .7777550 .5047500 .5035112 .5047540 .5755751 .5057542 .1036751 .507540 .57557540 .5757540 .5757540 .5757540 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .5757550 .575750 .5757550 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .575750 .5757500 .5757500 .5757500 .5757500 .5757500 .5757500 .57575000 .57575000 .57575000000000000000000000000000000000	.7777550 504(780) 504(780) 504(780) 50511 5075761 5075761 5075761 5075761 5075760 5075761 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 50757760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075760 5075777775 5075777 5075777775 5075777775 50757777775 50757777775 507577777777	.7777550 5047820 347820 347820 347824 347824 347824 3725761 347840 347824 3725761 347740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 34397400 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740 3439740000000000000000000000000000000000	7777550 504780 504780 53511 5479349 5725761 5779408 5339164 593542 1056731 1161171 1336503	.7777530 .7900705 .0169646 .8344869 . 5047800 .533813 .5681710 .5901018 . 3470349 .2725761 .8977405 .3399164 . 0903542 .1036031 .1101171 .1336703 .	7777550 504790 5047939 5479349 5725761 568170 50505542 1056731 1141171 133650 1141171 133650 1141171 133650 1141171 133650 1405542 1056731 1141171 133650 1405542 1056731 1141171 133650 1405542 1056731 1141171 133650 1405542 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 14055 140555 140555 140555 1405555 1405555 1405555 14055555 1405555555	1777150 7900705 0169646 .8344869 .85 5047800 5335118 5681710 5901018 41 3479349 .2725761 .877405 .3339164 .35 0903542 .1036831 .1181171 .1336503 .130	7777550 504780 504780 53511 5479349 5725761 561710 5050542 1056751 1161171 136503 1306 00 10505542 1056751 1161171 136503 1300 1057542 1056751 1161171 1171 1171 1171 1171 1171 1	.7777550 5047840 5047840 505751 50479349 505751 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 5057542 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505555 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 505755 5057555 5057555 5057555 50575555 5057555 50575555 50575555555 505755555555	.7777550 .7777550 .5047500 .5035112 .5047540 .5777550 .5047540 .578770 .5777550 .577750 .5047540 .578770 .577750 .577750 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .5777550 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .577750 .5777500 .5777500 .5777500 .5777500 .5777500 .5777500 .5777500 .5777500 .57775000 .57775000 .57775000 .577750000 .57775000 .577750000 .57770000000000000000000000000000000000	1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 17775500 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 1777550 17775500 17775500 17775500 17775500 17775500 17775500 1777500 1777500 17775	7777530 7977530 5047340 5057340 5057340 5057340 5057340 505754 505754 505754 505754 505754 505754 505754 505754 505754 505754 505755 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575 50575	7777530 778705 8159646 8344869 850817 8 504780 5335118 5681710 5903018 4178178 8 3479349 778561 5681710 5903018 4178178 8 3479349 778561 3879408 3839164 3503893 3 0903542 1036831 1181171 1336503 1130863 3	.7777830 .7980705 .4129646 .8344869 .8508917 .86 5047800 .535813 .5681710 .5701015 .4178178 .64 3479349 .5725761 .8979405 .3339164 .3503893 .37 .0903542 .1036431 .1141171 .1336703 .1308683 .10	.7777530 .7980705 .8189646 .8344869 .8506917 .85 5047800 .5335118 .5681710 .5901018 .4178178 .643 3479349 .725761 .879405 .3339164 .3503893 .377 .0903542 .103683 .161 .1191171 .1336503 .1302683 .167	.7777830 .7900705 .0169646 .8344869 .8508917 .8659 50478300 .533813 .5681710 .5901018 .4178178 .643 3479349 .2725761 .8979408 .3339164 .3503893 .3772 .9903542 .1036831 .1181171 .1336503 .130883 .1679	.7777530 .7980705 .419548 .834489 .850817 .86583 5047800 .535118 .568170 .5901015 .4178178 .6434 3479349 .2725761 .8979405 .3839164 .3503893 .37724 .0903548 .1036831 .1181171 .1336503 .1308683 .16794	.7777530 5047930 5047930 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479349 50479440 50479449 50479440 50479440 50479440 50479440 5047940 50479440 50479440 50479440 50479440 5047940 5047940 50479440 50479440 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 5047940 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 50479400 5047940000000000000000000000000000000000	.7777530 .7980705 .8188489 .850817 .8563586 5047800 .535112 .568170 .5901015 .4178178 .643444 3479349 .2725761 .3979408 .3339164 .3503893 .3772433 0903542 .1036431 .1141171 .1336403 .1302683 .1679478	17777530 7980705 189348 834869 8508917 8656366 504780 5335118 5681710 5901015 4178178 6434445 3479349 7783761 8679405 3339164 178178 6434445 0903548 1036431 1141171 1336403 130863 1679478	1777530 17980705 1819518 834889 850917 8656366 5047800 535118 568170 5901015 4178178 643445 3479349 2725761 3979408 3339164 3503893 3772433 0903542 1036831 1181171 1336503 1302683 1679475	17777530 7980703 1199340 834869 8506917 8656366 506(780) 5335118 5687740 5001018 178178 6434445 449349 2725761 56979408 3339164 513893 3772433 0505542 1036431 1141171 1336403 130863 1679478	1777530 17980705 1819546 834489 8508917 8656566 8 5047800 535118 568170 5901015 4178178 643445 6 3479349 2725761 3979408 3339164 3503893 3772453 4 9905542 1036831 1181171 1336503 1302683 1679475 1	.7777530 504780 504780 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047939 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947 5047947	1777530 17980705 1819516 834489 8508917 8656566 879 5047800 535118 568170 5901015 4178178 643445 668 3479349 2725761 8979405 3339164 3503893 3772433 404 0905548 1036831 1181171 1336503 1302683 1679475 186	7777530 7787030 7880703 8859638 834869 8505917 8656366 87938 504780 5335118 568770 5001018 4178178 6434445 66873 3479349 7725761 8579403 3339164 3503893 3772433 40434 0003542 1036631 1161171 1336503 1302683 1679478 18668	.7777530 .7980705 .419518 .834489 .850917 .856566 .87938 5047800 .535118 .5681710 .5901018 .4178178 .643445 .669781 3479349 .2725761 .8979405 .3339164 .3503893 .3772433 .40436 .0903548 .1036831 .1181171 .1336503 .1308683 .1679478 .186685
6 7 9 10	•••••		93000	5400	20130	715191	7750			.00	.004	.0734 .0044 .0005 .0000	.07341 .00446 .00055 .00004 .00000	.0044611 .000556 .000041 .000001	.0734148 .0044618 .0005562 .0000416 .0000014	.0734148 .0044618 .0005562 .00005416 .0000014	.0734148 .0 .0044618 .0 .0005562 .0 .0000416 .0 .0000014 .0	.0739148 .02 .0044618 .00 .0005562 .00 .0000416 .00 .0000014 .00	.0734146.025 .0044618.005 .0005562.000 .0000416.000 .0000014.000	.0334148 .0357 .0005562 .0007 .0000416 .0000 .0000014 .0000	.0739148 .02872 .0044618 .00551 .00005562 .00073 .0000416 .00005 .0000014 .00000	.0739145 .0887224 .0044618 .0056181 .0005562 .0007350 .0000416 .0000577 .0000014 .0000021	.0334148 .0087224 .0044618 .0056181 .0005562 .0007350 .0000416 .0000577 .0000014 .0000021	.0739148 .0787224 .0044618 .0056181 .000562 .0007350 .0000416 .0000577 .0000014 .0000021	.0734148 .02547224 .0 .0044618 .0056181 .0 .0005562 .0007350 .0 .0000416 .0000577 .0 .0000014 .0000021 .0	.0739148 .0787224 .02 .0044618 .0056181 .00 .0005562 .0007350 .00 .0000416 .0000577 .00 .0000014 .0000021 .00	.0834148 .0887224 .034 .0044618 .0056181 .007 .0005562 .0007350 .000 .0000416 .0000577 .000 .0000014 .0000021 .000	.0739145 .0287224 .0341 .004461 .0056181 .0070 .0005562 .0007350 .0009 .0000416 .0000577 .0000 .0000014 .0000021 .0000	.0839148 .0287224 .03419 .0044618 .0055181 .00700 .0005562 .0007350 .0009 .0000416 .0000521 .00007 .0000014 .0000021 .00000	.0839148 .0287224 .034129 .0045618 .0055181 .007003 .0005562 .0007350 .000960 .0000616 .0000521 .000003	.039148 .025124 .031994 .004616 .0056161 .0070039 .0005562 .0007350 .0009605 .0000416 .0000577 .0000750 .0000014 .0000021 .0000030	.0739148 .0787224 .0341994 .0045678 .0055171 .0070039 .0005562 .0007350 .0009605 .000046 .0000577 .0000791 .0000014 .0000021 .0000793	.0339148 .0357224 .0341993 . .004646 .0056181 .0070039 . .0005562 .0007350 .0009605 . .0000446 .0000577 .000071 . .0000014 .0000021 .0000030 .	.0339148 .0839124 .0341294 .0 0044618 .00554181 .0070039 .0 0005562 .0007350 .0009605 .0 000046 .000057 .0000791 .0 .0000014 .0000021 .0000030 .0	.039148 .0251224 .0311994 .04 .004618 .0056181 .0070039 .00 .0005562 .0007350 .0009605 .00 .0000416 .000577 .000071 .00 .0000014 .0000021 .0000030 .00	.0739148 .0787224 .0541794 .040 .0045618 .00554181 .0070039 .004 .0005562 .0007350 .0009605 .001 .000791 .000 .0000014 .0000021 .0000030 .000	.039148 .025124 .031994 .0403 004461 .0056181 .0070039 .0086 .0005562 .0007350 .0009605 .0012 .0000416 .0000577 .000071 .0001 .0000014 .0000021 .0000030 .0000	.0339148 .00854341 .03410039 .004039 .0045562 .0007550 .0009603 .00124 .0007562 .0007350 .0009603 .00124 .0000014 .0000021 .0000030 .00000	.039148 .025124 .007039 .004030 .004618 .0056181 .0070039 .001248 .0005562 .0007350 .0009605 .001248 .0000446 .0000577 .000071 .0001074 .0000014 .0000021 .0000030 .0000044	.0339148 .0387224 .0341394 .0403927 .0045618 .0055181 .0070039 .0085587 .0005562 .0007350 .0009605 .0012480 .000046 .0000577 .0000771 .00001072 .0000014 .0000021 .0000030 .00000042	.039148 .0351224 .0341994 .0403932 .004468 .0056181 .0070039 .0046507 .0005562 .0007350 .0009605 .0012480 .0000446 .0000577 .000071 .0001072 .0000014 .0000021 .0000030 .00000042	.0339148 .0337224 .034794 .040392 .004567 .055181 .0070039 .086507 . .0005562 .000730 .0009605 .0012480 . .000046 .000057 .0000791 .001072 . .0000014 .0000021 .0000030 .0000042 .	.039148 .0351224 .031134 .040332 .0 .004616 .0056181 .007007 .0086507 .0 .0005562 .0007350 .0009605 .0012480 .0 .000046 .0000577 .000071 .000070 .0 .0000014 .0000021 .0000030 .00000042 .00	.0339148 .03324 .0341994 .040393 .01 .0044618 .0055181 .007039 .066507 .014 .0005562 .0007350 .0009605 .0012480 .00 .000046 .0000577 .0000791 .0010701.000 .0000014 .0000021 .0000030 .0000042 .000	.03.9148 .035124 .0341994 .0403512 .015 .0044618 .0056181 .0070039 .0046507 .0165 .0005562 .0007350 .0009605 .0012480 .0011 .0000014 .0000021 .0000030 .0000042 .0000	.039148 .035424 .0341994 .040393 .04734 .0044618 .0055181 .0070039 .0065307 .01059 .0005562 .0007350 .0009605 .0012480 .00159 .000046 .0000577 .000071 .0001072 .00014 .0000014 .0000021 .0000030 .0000043 .00000	.03.9148 .0387224 .034394 .030392 .047523 .0044618 .00556181 .007039 .0665307 .016593 .0005562 .0007350 .0006503 .0012480 .001590 .000046 .000557 .00013480 .0001437 .0000014 .0000021 .0000030 .0000042 .0000055	.039148 .0256181 .007039 .00403912 .010390 .004468 .0056181 .0070039 .0046507 .0105981 .0005562 .0007350 .0009605 .0012480 .0015904 .0000446 .0000577 .000071 .0001072 .000115904 .0000014 .0000021 .0000030 .00000042 .0000059	.039148 .035424 .0241994 .0403932 .041399 0044618 .0055181 .0070039 .0065307 .0105981 .0005562 .0007350 .0009605 .0012480 .0015904 .000046 .000057 .0000791 .0001072 .0001437 .0000014 .0000021 .0000030 .0000043 .0000059	.03.9148 .0356181 .0041974 .0403732 .011390 .0 .004618 .0056181 .007009 .0048507 .0165981 .0 .0005562 .0007350 .0009605 .0012480 .0113904 .0 .0000014 .0000021 .0000030 .0000042 .0000059 .0	.039148 .035424 .0241994 .040393 .041399 .05 004461 .0055181 .0070039 .0065307 .0105981 .01 0005562 .0007350 .0009605 .0012480 .0015904 .00 000046 .000057 .0000791 .001072 .0001437 .00 .0000014 .0000021 .0000030 .0000043 .0000059 .00	.039148 .0351224 .031193 .0403922 .011390 .011390 .0046517 .0056181 .007039 .066507 .0105981 .015981 .0005562 .0007350 .0009605 .0012480 .001394 .001 .0000014 .0005771 .0010172 .00010437 .000 .000 .0000014 .0000021 .0000030 .00000042 .0000059 .000	.0339148 .033924 .034399 .040392 .013390 .033 0044618 .0055181 .001039 .066507 .0105981 .013 0005562 .0007350 .0009605 .0012480 .0013904 .002 0000416 .0000577 .0000791 .001070 .0001073 .0001 .0000014 .0000021 .0000030 .0000042 .0000059 .0000	.039148 .075724 .0341994 .0403912 .011390 .0114 004465 .0056181 .0070039 .006507 .010591 .0114 0005562 .0007350 .0009605 .0012480 .0011504 .0080 0000446 .0000577 .000071 .0001072 .00011507 .0080 .0000014 .0000021 .0000030 .0000042 .0000059 .00000	.03.9148 .0387224 .0341994 .0403932 .041790 .053103 .0044618 .007039 .0646507 .0105981 .018810 .0005562 .0007350 .0009603 .001012480 .00811 .0000014 .0000021 .0000030 .0000042 .0000059 .0000064	.039148 .0255181 .007039 .006502 .010591 .0185107 .0046507 .010594 .007039 .008507 .0005562 .0007350 .0009605 .0012480 .0015904 .008017 .000046 .000057 .000071 .0001072 .000147 .0001016 .0000014 .0000021 .0000030 .0000042 .0000059 .000008	.03.9148 .035724 .0341994 .0343932 .0473930 .051057 .004616 .00551637 .0065507 .0165981 .0188657 .0005562 .0007350 .0009605 .0012480 .001904 .0020179 .000046 .0005771 .001072 .00013430 .001904 .0020179 .000046 .000577 .0001074 .00010104 .00010104 .0000016 .0000014 .00000021 .0000030 .00000042 .0000059 .0000088	.039148 .0255181 .007039 .006507 .0105981 .0185107 .0046507 .0105562 .000730 .0009605 .0012480 .0015904 .0080179 .000046 .0000577 .0000791 .0001072 .000115904 .0080179 .0000014 .0000021 .0000030 .0000042 .0000059 .0000088	.03.9148 .035724 .0341994 .0403932 .041930 .051077 .0044618 .0055181 .007039 .066507 .0105981 .0188657 .0005562 .0007350 .0009605 .0012480 .001904 .0020179 .0000046 .0005771 .000172 .0001437 .0001437 .0000014 .0000021 .0000030 .0000042 .0000059 .0000068	.039148 .055124 .0341994 .0403912 .0105301 .0551677 .0 .0046567 .005562 .0007350 .0069605 .0012480 .0115904 .0020179 .0 .0000146 .0000071 .001071 .0010127 .0001072 .0001073 .000001072 .0001073 .0000014 .0000021 .0000030 .00000042 .0000055 .0000068 .0	.0339148 .035724 .0341994 .0403932 .0145980 .0581037 .01 .004468 .0056181 .007039 .0086507 .0105981 .0188637 .01 .0005562 .0007350 .0009605 .0012480 .001437 .0001437 .0001 .000046 .0000577 .000079 .000172 .0001437 .0001437 .000164 .00 .0000014 .0000021 .0000030 .0000042 .0000059 .0000088 .000	.039148 .0255181 .007039 .006507 .0105981 .0188457 .015 004468 .0055181 .007039 .006507 .0105981 .0188457 .015 0005562 .0007350 .0009605 .0012480 .0015904 .0080179 .008 0000046 .0000577 .0060791 .0001072 .0001157 .0080179 .008 .0000014 .0000021 .0000030 .0000042 .0000059 .0000068 .0000	.03.9148 .035724 .0341994 .0403932 .047940 .051077 .0531077 .004616 .00551617 .007039 .066507 .0105981 .0188657 .015167 .0005562 .0007350 .0009603 .01017480 .0001437 .0080179 .0080179 .000046 .0005771 .0001071 .0001072 .0001437 .000140 .000100 .0000014 .0000021 .0000030 .0000042 .0000059 .0000068 .00003	.039148 .0787424 .0341994 .0403912 .01790 .0183197 .02316 .0046548 .0056181 .007039 .006547 .0105981 .0188437 .02316 .0005562 .0007350 .0009605 .0012480 .0015904 .0080179 .00855 .000044 .0000577 .000071 .0001072 .000115904 .0080159 .0000014 .0000021 .0000030 .0000042 .0000059 .0000088 .000011
¥ ¥		,	3	3	7	1	5		. 9	. ? (. 3	. 34	.34	.34	.34	.34	.34	.34 .	.34 .3 .9043166 .906	.34 .35 .9043166 .9865	,34 .35 .9843166 .98653	.34 .35	.34 .35	.34 .35	.34 .35 •9043166 •9865373 •9	,34 .35 •9943166 •9865373 •99	.34 .35 .3	.34 .35 .36 .9043166 .9065373 .9084	.34 .35 .36	.34 .35 .36	.34 .35 .36	.34 .35 .36	.34 .35 .36 •9843166 •2865373 •2884700 •	.34 .35 .36 .9043166 .9065373 .9004700 .2	.34 .35 .36 . .9843166 .2865373 .2884728 .22	.34 .35 .36 .3	.34 .35 .36 .37 .9843166 .2865373 .2884728 .2201	.34 .35 .36 .37 .9043166 .9065373 .9004700 .99015	.34 .35 .36 .37 .9843166 .2865373 .2884728 .2221503	.34 .35 .36 .37 •9043166 •9065373 •9004700 •9901507	.34 .35 .36 .37 •9843166 •2865373 •2884708 •2201507	.34 .35 .36 .37 •9043166 •9043373 •90043700 •9201507 •	.34 .35 .36 .37 .9843166 .9865373 .2884708 .2201507 .2	.34 .35 .36 .37 .; •9043166 •9043373 •9004700 •9201507 •99	.34 .35 .36 .37 .34 .9843166 .9865373 .9884708 .9901507 .9914	.34 .35 .36 .37 . 30 .9043166 .9065373 .9084700 . <u>9901507</u> .99160	.34 .35 .36 .37 .30 .9843166 .9865373 .9884708 .8201507 .991607	.34 .35 .36 .37 .30 .9843166 .8865373 .2884728 .2201527 .2916079	.34 .35 .36 .37 . 30 .9043166 .9065373 .9084700 . <u>9901507 .9916070</u>	.34 .35 .36 .37 .30 .9843166 .9865373 .9884700 .9901507 .9914070 -	.34 .35 .36 .37 . 30 .9043166 .9065373 .9084700 .2201507 .2916070 .21	.34 .35 .36 .37 .30 .3 .9843166 .9865373 .9884700 .9901507 .9916070 .991	.34 .35 .36 .37 .30 .31	.34 .35 .36 .37 .30 .39 .9843166 .2865373 .2084728 .2201527 .2916070 .29281	.34 .35 .36 .37 .30 .39 .9843166 .9865373 .9884708 .2201507 .9916070 .992865	.34 .35 .36 .37 .38 .39 .9843166 .9865373 .9884706 .9901507 .9916070 .9928666	.34 .35 .36 .37 . 30 .39 .9843166 .9865373 .9884708 .99201507 .9916070 . 9928 666	.34 .35 .36 .37 .30 .39 .9843166 .9865373 .9884706 .9901507 .9916070 .9928666	.34 .35 .36 .37 . 30 .39 .9843166 .9865373 .9884708 .99201507 .9916070 . 9928 666 .	.34 .35 .36 .37 .30 .39 .9843166 .9865373 .9884706 .9901507 .9916070 .9928666 .9	.34 .35 .36 .37 . 30 .39 . .9843166 .9865 <u>373</u> .9884708 .9201507 .9916070 . 992866 6 .9 2	.34 .35 .36 .37 .38 .39 .44 .9843166 .9845373 .9884708 .9901507 .9914070 .9988666 .993	.34 .35 .36 .37 . 30 .39 .40 .9843166 .9865 <u>373</u> .9884708 .991507 .9916070 .99 88 666 . 99 391	.34 .35 .36 .37 .30 .39 .40 .9843166 .2865373 .2084708 .2201507 .2916070 .2928666 .223253
2345	•	89 69 43 80	1	9967	9935	0.07	1504			. 90	903 716 458 226	.9035 .7162 .4589 .2269	. 0352 .71623 .45893 .22698	. 03523 .716230 .458038 .226086	.9035235 .7162304 .4589388 .2269866	.9035235 .7162304 .4589368 .2269866	.9035235 .9 .7162304 .7 .4589388 .4 .2269866 .2	.9035235 .91 7162304 .73 .4584388 .48 .2264866 .24	.9035235 .914 7162304 .738 4589388 .486 .2269866 .248	.9035235 .9140 7162304 .7383 .4589368 .4861 .2269866 .2465	.9035235 .91404 7162304 .73839 .4584388 .48617 .2264866 .24850	9035235 9140456 7162304 7383926 4589388 4861730 2269866 2485045	.9035235 .9140456 7162304 .7383926 .4589388 .4861730 .2869866 .2485045	.9035235 .9140456 .7162304 .7383926 .4589388 .4861730 .2269866 .2485045	.9035235 .9140456 . 7162304 .7383926 . .4584388 .4861730 . .2264066 .2485045 .	•035235 9140456 92 7162304 7383926 7 4584368 4861730 5 2264866 2485045 2	• 035235 9140456 923 7162304 -7383926 -755 4584388 4861730 -513 2264866 -2485045 -270	035235 9140456 9236 7162304 7383926 7394 4584308 4861730 5132 2264866 22485045 2708	035235 9140456 92361 7162304 7383926 75946 4589388 4861730 51322 2269866 2485045 27084	035235 9140456 923619 7162304 7383926 759462 4589308 4861730 513228 2269866 22455045 270841	935235 9140456 9236190 7162304 7383926 7594627 4589388 4861730 5132284 2269866 22485045 2708415	9035235 .9140456 .9236190 7162304 .7383926 .7594627 4584388 .4861730 .5132284 .2264866 .2485045 .2708415	. 033235 .9140456 .9236190 . .7162304 .7383926 .7594627 . .4589388 .4861730 .5132284 . .2269866 .2485045 .2708415 .	9035235 .9140456 .9236190 .9 7162304 .7383926 .7594627 .7 4584388 .4861730 .5132284 .5 .2264866 .2485045 .2708415 .2	. 005235 .9240456 .9236190 .93 .7162304 .7383926 .7594627 .77 .4580388 .4861730 .5132284 .54 .2260066 .2485045 .2708415 .29	935235 .9140456 .9236190 .932 7162304 .7383926 .7594627 .779 4584388 .4861730 .5132284 .540 .2264866 .2485045 .2708415 .293	. 005235 .9140456 .9236190 .9323 7162304 .7393926 .7594627 .7794 4580388 .4861730 .5132284 .5400 .2260866 .2485045 .2708415 .2939	.9035235 .9140456 .9236190 .93230 7162304 .7383926 .7594627 .77942 4584388 .4861730 .5132284 .54000 .2264866 .2485045 .2708415 .29392	. 035235 .9240456 .9236190 .932305 7162304 .7383926 .7594627 .779429 4580388 .48861730 .5132284 .540003 .2260066 .2485045 .2708415 .293927	.9035235 .9140456 .9236190 .9323056 .7162304 .7383926 .7594627 .7794292 .4584388 .4861730 .5132284 .5400038 .2264866 .2485045 .2708415 .2939277	. 035235 .9140456 .9236190 .9323056 .7162304 .7383926 .7594627 .7794292 .4580388 .4861730 .5132284 .5400038 .2260066 .2485045 .2708415 .2939277	.9035335 .9140456 .9236190 .9323056 . .7162304 .7383926 .759467 .7794294 . .4584388 .4861730 .5132284 .5400038 . .2264866 .2485045 .2708415 .2939277 .	. 005235 .9140456 .9236190 .9323056 .9 .7162304 .7383926 .7594627 .7794298 .9 .4580388 .4861730 .5132284 .5400038 .5 .2260066 .2485045 .2708415 .2939277 .3	.905235 .9140456 .9256190 .9323056 .94 .7162304 .7383926 .759667 .7794292 .79 .4584388 .4861730 .5132284 .5400038 .56 .2264866 .2485045 .2708415 .2939277 .31	. 035235 .9140456 .9236190 .9323056 .400 7162304 .7383926 .759467 .7794298 .794 4580388 .4861730 .5132284 .5400038 .566 .2260066 .2485045 .2708415 .2939277 .3176	.9035235 .9140456 .9236190 .9323056 .94016 .7162304 .7383926 .7594627 .7794298 .79028 .4584388 .4861730 .5132284 .5400038 .56640 .2264866 .2445045 .2708415 .2939277 .31768	. 035235 9140456 9236190 9323056 40166 7162304 7383926 7594627 7794293 7794283 4584388 4861730 5132284 5400038 566403 2264866 2485045 2708415 2939277 3176470	. 035235 .9240456 .9236190 .9323056 .401661 .7162304 .7383926 .7594627 .7794298 .794298 .794288 .4584388 .4861730 .5132284 .5400038 .5664030 .2264866 .2485045 .2708415 .2939277 .3176870	.905235 .9140456 .9236190 .9223056 .9401661 .7162304 .7383926 .7594627 .7794298 .7902887 .4584388 .4861730 .5132284 .5400038 .5664030 .2264866 .2485045 .2708415 .2939277 .3176870	.035235.9140456.9236190.9323056.9401461. 7162304.7383926.7594627.7794298.7942887.4 4580388.4861730.5132284.5400038.5664030 2260866.2485045.2708415.2939277.3176870.	. 035235 .9140456 .9236190 .9323056 .401661 .9 .7162304 .7383926 .7594627 .7794298 .790288 . 4584388 .4861730 .5132284 .5400038 .5664030 .8 .2264866 .2445045 .2708415 .2939277 .3176870 .34	.035235.9140456.9236190.9323056.9401661.94 7162304.7383926.7594627.7794292.7942887.814 4589388.4861730.5132284.5400038.5664030.89 .2269866.2485045.2708415.2939277.3176870.34	.905235.9140456.9236190.9323056.9401661.947 7162304.7383926.7594627.7794298.7942867.816 4584388.4861730.5132284.5400038.5664030.898 .2264866.2485045.2708415.2939277.3176870.3484	.035235.9240456.9236190.9323056.4001661.9472 7162304.7383926.7594627.7794298.7984887.81604 4584388.4861730.5132284.5400038.5664030.89933 .2264866.2485045.2708415.2939277.3176870.3480	. 035235 9140456 9236190 9323056 9401661 94725 7162304 7383926 7594627 7794292 7982887 81604 4589398 4861730 5132284 5400038 5664030 89233 2269866 2485045 2708415 2239277 3176870 348030	. 035235 .9140456 .9236190 .9323056 .9401641 .947259 .7162304 .733926 .7594627 .7794298 .794288 .946295 .4589388 .4861730 .5132284 .5400038 .5664030 .892336 .2269866 .2485045 .2708415 .2939277 .3176870 .348038	. 035235 .9140456 .9236190 .9323056 .401661 .9472594 .7162304 .7383926 .7594627 .7794292 .7942887 .6160453 .4589388 .4861730 .5132284 .5400038 .5664030 .8923361 .2264866 .2485045 .2708415 .2339277 .3176470 .3480385	. 035235 .9240456 .9236190 .9323056 .9401661 .9472594 .7162304 .7383926 .7594627 .7794292 .7962887 .8160463 .4589388 .4861730 .5132284 .5400038 .5664030 .8923361 .2269866 .2485045 .2708415 .2939277 .3176870 .3480385	. 035235 .9140456 .9236190 .9323056 .401661 .9472594 . .7162304 .7383926 .7594627 .7794292 .7942887 .8160453 . .4584388 .4861730 .5132284 .5400038 .5664030 .8923361 . .2264866 .2485045 .2708415 .2339277 .3176870 .3480385 .	. 035235 .9140456 .9236190 .9323056 .9401661 .9472594 .9 .7162304 .733926 .7594627 .7794292 .796288 .7964643 .4 .4589388 .4861730 .5132284 .5400038 .5664030 .8923361 .4 .2269866 .2485045 .2708415 .2939277 .3176870 .3480385 .3	. 035235. 9140456 .9236190 .9333056 .9401661 .9472594 .93 7162304 .7383926 .7594627 .7794292 .7962887 .6160463 .83 4580388 .4861730 .5132284 .5400038 .5664030 .8983361 .41 .2260866 .2485045 .2708415 .2939277 .3176870 .3480385 .36	. 035235 .9240456 .9236190 .9323056 .401661 .9472594 .953 .7162304 .7383926 .7394627 .7794298 .7962887 .8160463 .838 .4584388 .4861730 .5132284 .540038 .5664030 .8923361 .417 .2264866 .2485045 .2708415 .2939277 .3176870 .3480385 .366	. 035235 .9140456 .9236190 .9323056 .401661 .9472594 .93387 7162304 .7383926 .7594627 .7794298 .7892887 .8160453 .83871 4588388 .4861730 .5132284 .5400038 .5664030 .8923361 .61771 .2264866 .2485045 .2708415 .2339277 .3176870 .3480385 .3668	. 0035235 .9240456 .9236190 .9323056 .4001661 .9472574 .75364 .7162304 .7383926 .7394627 .7794298 .7962887 .8160453 .638710 .4584388 .4861730 .5132284 .5400038 .5664030 .8993361 .617719 .2264866 .2485045 .2708415 .2939277 .3176870 .3480385 .366894
6 7 8 9 10	•••••	01		5136	04091	08765	59333			.04	.063	.0435 .0286 .0039 .0004	.08359 .02804 .00392 .00042 .00002	.063597 .028043 .003931 .000431 .00020	.0435979 .0220432 .0039219 .0004214 .000206	.0435979 .0280432 .0039319 .0004314 .0000206	.0635979 .0 .0280432 .0 .0039219 .0 .0004214 .0 .0000206 .0	.0435979 .09 .0286432 .02 .0039319 .00 .0004214 .00 .0000206 .00	.0435979 .094 .0280432 .026 .0039219 .004 .0004214 .000 .0000206 .000	.0835979 .0949 .0280432 .0260 .0039219 .0048 .0004214 .0005 .0000206 .0000	.0435979 .09493 .0220422 .02602 .0039319 .00482 .0004214 .00053 .0000206 .00002	.0435979 .0949341 .0280432 .0260243 .0039219 .0046213 .0004214 .0005399 .0000206 .0000276	.0435979 .0949341 .0270432 .0260243 .0039319 .0046213 .0004214 .0005399 .0000206 .0000276	.0435979 .0949341 .0280432 .0260243 .0039219 .0048213 .0004214 .0005399 .0000206 .0000276	.0635979 .0949341 . .0280432 .0260243 . .0039319 .0048213 . .0004214 .0005359 . .0000206 .0000276 .	.0635979 .0949341 .1 .0280432 .0260243 .0 .0039319 .0046213 .0 .0004214 .0005399 .0 .000206 .0000276 .0	.0635979 .0949341 .107 .0280432 .0260243 .030 .0039319 .0048213 .005 .0004214 .0005399 .000 .000206 .0000276 .000	.0635979 .0949341 .1072 .0280432 .0260243 .0305 .0039319 .0046213 .005 .0004214 .0005399 .0006 .0000206 .0000276 .0000	.0435979 .0949341 .10723 .0280432 .0260243 .03053 .0039219 .004213 .0058 .004214 .0005399 .00688 .0004206 .0000276 .00003	.0635979 .0949341 .107230 .0280432 .0260243 .030337 .0039319 .0046213 .005886 .0004314 .0005359 .000686 .0000206 .0000276 .000036	.0435979 .0949341 .1072304 .0280432 .0260243 .0305376 .0039219 .0048213 .0058864 .0064214 .0005399 .0068865 .0000206 .0000276 .0000366	.0635979 .0949341 .1072304 .0280422 .0260243 .0305376 .0039219 .0046213 .0058664 .0004214 .0005399 .0006865 .0000206 .0000276 .0000366	.0435979 .0949341 .1072304 . .0260432 .0260243 .0305376 . .0039219 .0048213 .0058864 . .0064214 .0005399 .0006865 . .0000206 .0000276 .0000366 .	.0835979 .0949341 .1072304 .1 .0280422 .0260243 .0305376 .0 .0039219 .0048213 .0058664 .0 .0004214 .0005399 .0006865 .6 .0000206 .0000276 .0000366 .0	.0435979 .0949341 .1072304 .12 .0260432 .0260243 .0305376 .03 .0039219 .0048213 .0058664 .00 .0044214 .0005399 .0006865 .60 .0000206 .0000276 .0000366 .00	.0635979 .0949341 .1072304 .130 .0280432 .0260243 .0305376 .035 .0039219 .0048213 .0058664 .007 .0004214 .0005399 .0006865 .600 .0000206 .0000276 .0000366 .000	.0435979 .0949341 .1072304 .1205 .0280432 .0260243 .0305376 .0356 .0039219 .0048213 .0058664 .0071 .0064214 .0005399 .0006865 .0000 .0000206 .0000276 .0000366 .0000	.0635979 .0949341 .1072304 .12050 .0280422 .0260243 .0305376 .03562 .0039219 .0048213 .005864 .00714 .0004214 .0005399 .0006845 .60086 .0000206 .0000276 .0000366 .00004	.0435979 .0949341 .1072304 .120502 .0280432 .0260243 .0305376 .035625 .0039219 .0048213 .0058664 .007140 .0064214 .0005399 .0006865 .600866 .0000206 .0000276 .0000366 .000048	.0435979 .0949341 .1072304 .1205026 .0280422 .0260243 .030576 .0356252 .0039219 .0042213 .0058664 .0071403 .004214 .0005359 .0004865 .6008666 .0000206 .0000276 .0000366 .0000461	.0435979 .0949341 .1072304 .1205026 .0280422 .0260243 .0305376 .0356252 .0039219 .0048213 .0058864 .0071403 .0064214 .0005399 .0006865 .0008668 .0000206 .0000276 .0000366 .0000481	.0835979 .0949341 .1072304 .1205026 . .0280422 .0260243 .0305376 .0356252 . .0039219 .0042213 .0058664 .0071403 . .004214 .0005399 .0006865 .6008668 . .0000206 .0000276 .0000366 .0000461 .	.0435979 .0949341 .1072304 .1205026 .2 .0280432 .0260243 .0305376 .0356252 .0 .0039219 .0048213 .005864 .0071403 .0 .0064214 .0005399 .0006845 .6008668 .0 .0000206 .0000276 .0000366 .0000461 .0	.0835979 .0949341 .1072304 .1205026 .13 .0280422 .0260243 .035376 .0356252 .04 .0039219 .0042213 .0058864 .0071403 .00 .004214 .0005399 .0006865 .6008668 .00 .0000206 .0000276 .0000366 .0000401 .00	.0435979 .0949341 .1072304 .1205026 .134 .0280432 .0260243 .0305376 .0356252 .041 .0039219 .0048213 .0058864 .0071403 .008 .0064214 .0005399 .0006845 .0008668 .0014 .0000206 .0000276 .0000366 .0000481 .0004	.0435979 .0949341 .1072304 .1205026 .13476 .0280472 .0260243 .0305376 .0356252 .04133 .0039219 .0048213 .0058864 .0071403 .00860 .0044214 .0005399 .006865 .6008668 .00108 .0000206 .0000276 .0000366 .0000481 .00006	.0435979 .0949341 .1072304 .1205026 .134760 .0260432 .0260243 .0305376 .0356252 .041330 .0039219 .0046213 .005864 .0011403 .008607 .0064214 .0005359 .0004865 .6008668 .001087 .0004206 .0000276 .0000366 .0000481 .000068	.0435979 .0949341 .1072304 .1205026 .1347603 .0280432 .0260243 .0305376 .0356282 .0413301 .0039219 .0048213 .0058664 .0071403 .0086079 .0044214 .0005399 .0006865 .0008668 .0010871 .0000206 .0000276 .0000366 .0000481 .0000628	.0435979 .0949341 .1072304 .1205026 .1347603 .0280472 .0260243 .0305376 .0356252 .0413301 .0039219 .0048213 .0058864 .0071403 .0086079 .0044214 .0005399 .006865 .6008668 .0010871 .0000206 .0000276 .0000366 .0000481 .0000628	.0435979 .0949341 .1072304 .1205026 .1347603 . .0280432 .0260243 .0305376 .0356252 .0413301 . .0039219 .0048213 .005864 .0071403 .0086079 . .0064214 .0005399 .0006865 .0008668 .0010871 . .0000206 .0000276 .0000366 .0000461 .0000628 .	.0435979 .0949341 .1072304 .1205026 .1347603 .12 .0280432 .0260243 .0305376 .0356252 .0413301 .0 .0039219 .0048213 .0058864 .0071403 .0086079 .03 .004214 .0005399 .006865 .6008668 .0010871 .00 .0004206 .0000276 .0000366 .0000481 .0000628 .00	.0435979 .0949341 .1072304 .1205026 .1347603 .154 0280432 .0260243 .0305376 .0356252 .0413301 .04 0039219 .0048213 .0058864 .0071403 .0088079 .010 .0064214 .0005399 .0006865 .0008665 .0010871 .001 .0004206 .0000276 .0000366 .0000481 .0000628 .000	.0835979 .0949341 .1072304 .1205026 .1347503 .130 .0280422 .0260243 .0305376 .0356252 .0413301 .047 .0039219 .0042213 .005864 .0071403 .0086079 .010 .004214 .0005359 .0006865 .6008668 .0010871 .001 .000206 .0000276 .0000366 .0000461 .0000628 .0004	.0435979 .0949341 .1072304 .1205026 .1347603 .15000 .0280432 .0260243 .0305376 .0356252 .0413301 .04768 .0039219 .0048213 .0058664 .0071403 .0086079 .01031 .0064214 .0005399 .0006865 .0008668 .0010871 .00135 .0000206 .0000276 .0000366 .0000481 .0000628 .00008	.0435979 .0949341 .1072304 .1205026 .1347603 .15000 .0280432 .0260243 .0305376 .0356252 .0413301 .04769 .0039219 .0046213 .005864 .0071403 .0086079 .010314 .0004214 .0005399 .0004865 .6008668 .0010871 .001354 .0000206 .0000276 .0000366 .0000481 .0000628 .00008	.0435979 .0949341 .1072304 .1205026 .1347603 .130008 .0280432 .0260243 .0303376 .0356252 .0413301 .047694 .0039219 .0048213 .0058664 .0071403 .0086079 .010316 .004214 .0005399 .0006865 .0008668 .0010871 .001354 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814	.0435979 .0949341 .1072304 .1205026 .1347603 .1500058 .0280432 .0260243 .0305376 .0356252 .0413301 .0476949 .0039219 .0046213 .0058664 .0011403 .0086079 .0103163 .0064214 .0005399 .0006865 .6008668 .0010871 .0013546 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814	.0435979 .0949341 .1072304 .1205026 .134763 .1300058 .0280432 .0260243 .0305376 .0356252 .0413301 .047649 .0039219 .0048213 .0058664 .0071403 .0086079 .0103163 .004214 .0005399 .0006865 .0008668 .0010871 .0013546 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814	.0435979 .0949341 .1072304 .1205026 .3347603 .1500068 . .0280432 .0260243 .0305376 .0356252 .0413301 .0476949 . .0039219 .0048213 .0058664 .001403 .0086079 .0103163 . .0064214 .0005399 .0006865 .6008668 .0010871 .0013546 . .0000206 .0000276 .0000366 .0000481 .0000628 .0000814 .	.0435979 .0949341 .1072304 .1205026 .1347603 .1300068 .1 .0280432 .0260243 .0303376 .0356252 .0413301 .0476949 .0 .0039219 .0048213 .0058664 .0071403 .0086079 .0103163 .0 .0044214 .0005399 .0006865 .0008668 .0010871 .0013546 .0 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814 .0	.0435979 .0949341 .1072304 .1205026 .1347603 .1500068 .18 .0260422 .0260243 .0305376 .0356252 .0413301 .047694 .05 .0039219 .0046213 .0058664 .001403 .0086079 .0103163 .01 .0064214 .0005399 .0006865 .6008668 .0010871 .0013546 .00 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814 .00	.0435979 .0949341 .1072304 .1205026 .134763 .1500056 .184 .0280432 .0260243 .0303376 .0356252 .0413301 .0476949 .054 .0039219 .0048213 .0058664 .0071403 .0086079 .0103163 .018 .004214 .0005399 .0006865 .0008668 .0010871 .0013546 .001 .0004206 .0000276 .0000366 .0000481 .0000628 .0000814 .000	.0435979 .0949341 .1072304 .1205026 .3347603 .1500068 .18637 .0260432 .0260243 .0305376 .0356252 .0413301 .047694 .0547 .0039219 .0046213 .0058664 .0011403 .0086079 .0103163 .0188 .0064214 .0005399 .0006865 .6008668 .0010871 .0013546 .0016 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814 .00010	.0435979 .0949341 .1072304 .1205026 .134763 .1500088 .18433 .0280432 .0260243 .0305376 .0356252 .0413301 .047694 .054761 .0039219 .0048213 .0058664 .0071403 .0086079 .0103143 .019894 .0064214 .0005399 .0006865 .0008668 .0010871 .0013546 .001477 .0000206 .0000276 .0000366 .0000481 .0000628 .0000814 .000104
2										. • 4		. 4 2	. 42	. 42	.42	. 42	.42	.42 .	.42 .4	.42 .43	.42 .43	.42 .43	.42 .43	.42 .43	.42 .43	.42 .43	.42 .43 .4	.42 .43 .44	.42 .43 .44	.42 .43 .44	.42 .43 .44	.42 .43 .44	.42 .43 .44	.42 .43 .44 .42440 .9963797 .9969669 .9	.42 .43 .44 .	.42 .43 .44 .4	.42 .43 .44 .45 .42 .9653797 .9969669 .9974	.42 .43 .44 .45	.42 .43 .44 .45	.42 .43 .44 .45	.42 .43 .44 .45	.42 .43 .44 .45	.42 .43 .44 .45	.42 .43 .44 .45 .	.42 .43 .44 .45 .44	.42 .43 .44 .45 .46	.42 .43 .44 .45 .46	.42 .43 .44 .45 .46 .42 .43 .9969669 .9974670 .9978917	.42 .43 .44 .45 .46 .42 .43 .9969669 .9974670 .9978917	.42 .43 .44 .45 .46	.42 .43 .44 .45 .46 . .42 .43 .9969669 .9974670 .9978917 .91	.42 .43 .44 .45 .46 .4 .42 .43 .44 .45 .46 .45	.42 .43 .44 .45 .46 .4 ⁴	.42 .43 .44 .45 .46 .47 .42 .43 .44 .45 .46 .47	.42 .43 .44 .45 .46 .47 	.42 .43 .44 .45 .46 .47 .42 .43 .9969669 .9974670 .9978917 .9988513	.42 .43 .44 .45 .46 .47 .aax.441 .978917 .9988511	.42 .43 .44 .45 .46 .47 .485.44 .45 .46 .47	.42 .43 .44 .45 .46 .47 .aakkuun .4453797 .9969669 .9974670 .9978917 .9988511 .	.42 .43 .44 .45 .46 .47 .485.46 .47	.42 .43 .44 .45 .46 .47 . .aakkuun .0063707 .9969669 .9974670 .9978917 .9988511 .99	.42 .43 .44 .45 .46 .47 .4 .42 .43 .44 .45 .46 .47 .4	.42 .43 .44 .45 .46 .47 .48 .aak4440 .4653797 .9969669 .9974670 .9978917 .9988511 .9985	.42 .43 .44 .45 .46 .47 .48 .485.441 .45 .46 .47 .48
2345	•••••	998639			7071	0067	5728			.90 .80 .60	.964	.9644 .8624 .6665	.96449 .86283 .66653 .41777	.964495 .862839 .666537 .417774	.9644958 .8628393 .6665372 .4177749	.9644958 .8628393 .6665372 .4177749	.9644958 .9 .8688393 .8 .6668372 .6 .4177749 .4	.9644958 .96 .8628393 .87 .6668372 .60 .4177749 .44	.0644958 .969 .8628393 .876 .6668372 .689 .4177749 .443	.0644958 .9690 .8628393 .8763 .6668372 .6898 .4177749 .4436	.9644958 .96906 .8688393 .87635 .6668372 .68984 .4177749 .4436J	.9644958 .9690884 .8688393 .8763538 .6668372 .6898401 .4177749 .4436J94	.9644958 .9690684 .8628393 .8763538 .6668372 .6898401 .4177749 .4436394	.0644958 .9690684 .8628393 .8763538 .6665372 .6898401 .4177749 .4436394	.9644958 .9690684 . .8688393 .8763538 . .6666372 .6898401 . .4177749 .4436J94 .	.9644958 .9690684 .9 .8628393 .8763538 .8 .6668372 .6898401 .7 .4177749 .4436394 .4	.9644958 .9690684 .97 .8688393 .8763538 .88 .6668372 .6898401 .71 .4177749 .4436394 .46	.0644958 .9690684 .9731 .8688393 .8763538 .888 .6668372 .6898401 .7183 .4177749 .4436394 .4695	.9644958 .9690684 .97313 .8628393 .8763538 .88887 .6668372 .6898401 .71833 .4177749 .4436394 .46958	. 0644958 . 9690684 . 973135 .8688393 .8763538 .88887 .6665372 .6898401 .712330 .4177749 .4436394 .469581	.0644958 .9690684 .9731338 .8688393 .8763538 .8888757 .6667372 .6898401 .7183307 .4177749 .4436394 .4695813	.764495A .96906A4 .9731338 .868A393 .A763538 .88AA757 .666A372 .6898401 .713330 .4177749 .4436394 .4695813	.0644958 .9690684 .9731338 . 86883953 .8763538 .8888757 . 6668372 .6898401 .7183307 . 4177749 .4436394 .4695813 .	.7644958 .9690684 .9731358 .9 .868839393 .8763358 .8088757 .9 .66663372 .6898401 .7183307 .7 .4177749 .4436394 .4695813 .4		.7644958 .9690684 .9731338 .976 .868839393 .8763358 .8088757 .900 .6666372 .6898401 .7183307 .733 .4177749 .4436394 .4695813 .495	10644958 9690684 9731338 9767 10680393 .0763538 .0000757 .9004 6665372 .6098401 .7123307 .7339 4177749 .4436394 .4695813 .4955	0644950 9690664 9731358 97674 0646950 .0763536 .0004757 .0004 6666372 .6898401 .7183507 .73396 4177749 .4436394 .4695813 .49559		.7644958 .9650684 .9731358 .9767489 .868839393 .8763538 .8888757 .9004403 .6668372 .6898401 .7183507 .7339481 .4177749 .4436394 .4695813 .4955954		.7644958 .9690684 .9731358 .9747439 . .86283953 .8763538 .8888757 .9004403 . .6666372 .6698401 .7183507 .7339681 . .4177749 .4436394 .4695813 .4955954 .		10644958 .9690684 .9731358 .9747429 .97 18680393 .8763538 .8888757 .9064403 .91 16668372 .6898401 .7183507 .7394621 .76 4177749 .4436394 .4695813 .4955954 .58		10644958 1690684 1731358 1747489 19793 10644958 1690684 1731358 10747489 19793 10680393 18763538 18808757 1004403 191108 6666372 1698401 7113350 1339421 178469 4177749 4436094 4695813 4955954 58155	0644958 9690684 9731358 9767489 979931 0688393 8763538 8888757 9004403 911085 6665372 688401 7183507 7339621 7845953 4177749 4436094 4695813 4955954 581557		.7644958 .8690684 .9731358 .9747489 .9799319 .8680393 .8763538 .8883757 .9004403 .9110859 .6665372 .6698401 .7113307 .7339481 .7865982 .4177749 .4436394 .4695813 .4955954 .5815571	0644958 9690684 9731356 9747439 9799319 0688393 .8763538 .8888757 .9004403 .9110859 6665372 .689401 .7123307 .7339421 .7846952 4177749 .4436094 .4695813 .4955954 .5815571	10644958 10690684 1731358 1747489 1799319 9 10646958 10690684 1713358 1004403 101059 9 106680372 1698401 1113307 1339421 186692 7 4177749 4436094 4695813 4955954 5815571 5	. 7644958 .9690684 .9731356 .9767489 .9799319 .96 866839393 .8763538 .8888757 .9004403 .9110859 .98 6666372 .688401 .7183307 .7339421 .7844952 .77 4177749 .4436394 .4695813 .4955954 .5815571 .54	. 0644950 .9690664 .9711358 .9747489 .9799319 .962 .86863939 .8763538 .8888757 .9004403 .9100859 .920 .6666532 .6898401 .718350 .739421 .7846952 .774 .4177749 .4436394 .4695813 .4955954 .5815571 .547	. 7644958 .9690684 .9731356 .9767488 .9799319 .9687 .86883939 .8763538 .8888757 .9004403 .9110859 .9808 .6666372 .688401 .7183307 .7339621 .7846982 .77444 .4177749 .4436394 .4695813 .4955954 .5815571 .8473	. 0644958 .9690684 .9731358 .9767489 .9799319 .96874 .8688393 .8763538 .8888757 .9004403 .910859 .9808 .4666378 .6898401 .7183507 .7339421 .7846952 .77449 .4177749 .4436394 .4695813 .4955954 .5815571 .54737	. 7644958 .9690684 .9731338 .9767489 .9799319 .968748 .96883939 .8763538 .8888757 .9004403 .911059 .9820853 .6666332 .698401 .7183307 .739481 .7846982 .774498 .4177749 .4436394 .4695813 .4955954 .5815571 .547373	. 0644958 .9690684 .9731358 .9767489 .9799319 .9827488 .8688393 .8763538 .8888757 .9004403 .910859 .9808530 .6666378 .688401 .718350 .739621 .7846952 .774498 .4177749 .4436394 .4695813 .4955954 .5815571 .5473730	10644958 9690684 9731338 9787488 9799319 9687488 10688393 .8763538 .8888757 .9004403 .911055 .9208530 6665372 .698401 .7183307 .739481 .7846982 .7744983 4177749 .4436394 .4695813 .4955954 .5815571 .8473730	. 0644958 .9690684 .9731358 .9767489 .9799319 .9887488 . .86883933 .8763538 .8888757 .9004403 .9100859 .9808530 . .6666532 .6898401 .7183507 .7339621 .7846952 .774498 . .4177749 .4436394 .4695813 .4955954 .5815571 .5473730 .	.7644958 .9690684 .9731338 .9767489 .9799319 .9687488 .9 .86683939 .8763538 .8888757 .9004403 .9110859 .9808530 .9 .6666532 .698401 .7183307 .739481 .7846982 .7744985 .7 .4177749 .4436394 .4695813 .4955954 .5815571 .5473730 .5	. 0644958 .9690684 .9731358 .9767489 .9799319 .9827488 .96 .8688393 .8763538 .8888757 .9004403 .9100859 .9208530 .93 .6666372 .6898401 .7183507 .739621 .7546982 .774498 .79 .4177749 .4436394 .4695813 .4955954 .5815571 .5473730 .57	.7644958 .9690684 .9731338 .9767489 .9799319 .9627488 .963 .86683939 .8763538 .8888757 .9004403 .9110859 .9808530 .989 .6666332 .698401 .7123307 .7339421 .7846952 .774498 .793 .4177749 .4436394 .4695813 .4955954 .5215571 .5473730 .572	. 0644958 .9690684 .9731358 .9767489 .9799319 .9687488 .9688 .8688393 .8763538 .8888757 .9004403 .910859 .980850 .98974 .6666378 .6898401 .7183507 .7339621 .7846952 .774498 .7933 .4177749 .4436394 .4695813 .4955954 .5815571 .5473730 .5789	. 7644958 .9690684 .9731336 .9767489 .9799319 .9637488 .963810 .86683939 .8763538 .8888757 .9004403 .9110859 .980830 .989783 .6666372 .688401 .7123307 .7339621 .7846952 .774498 .79334 .4177749 .4436394 .4695813 .4955954 .5815571 .8473730 .878951
6 7 8 9 10	•••••					51354	27893		•••••	. 01	.071	.2014	.20160 .07114 .01714 .00852 .00017	.201609 .071164 .017187 .008529 .000170	.2016092 .0711643 .0171871 .0085295 .0001708	.2014092 .0711643 .0171871 .0085295 .0001708	.2016092 .2 .0711643 .0 .0171871 .0 .0025295 .0 .0001708 .0	.2016092 .22 .0711643 .02 .0171871 .02 .0085295 .00 .0001708 .00	.2014092 .220 .0711643 .060 .0171871 .020 .0085295 .003 .0001708 .000	.2016098 .2207 .0711643 .0805 .0171871 .0201 .0085295 .0030 .0001708 .0008	.2016092 .22070 .0711643 .08057 .0171871 .0056 .0085295 .00308 .0001708 .00081	.2014093 .2207058 .0711643 .0805763 .0171871 .0201498 .0085295 .0030809 .0001708 .0008161	.2016092 .2207058 .0711643 .0805763 .0171871 .0201696 .0085295 .0030809 .0001708 .0008161	.2016092 .2207038 .0711643 .0805763 .0171871 .0201696 .0085295 .0030809 .0001708 .0008161	.2016092 .2207056 . .0711643 .0805763 . .0171871 .0201696 . .0085295 .0030809 . .0001708 .0008161 .	.2014093 .2207058 .2 .0711643 .0805763 .0 .0171871 .0201696 .0 .0085295 .0030809 .0 .0001708 .0008161 .0	.2016092 .2207056 .240 .0711643 .0805763 .09 .0171871 .0201696 .02 .0085295 .0030809 .00 .0001708 .0008161 .00	.2014092 .2207058 .2407 0711643 .0805763 .0904 0171871 .0201696 .0235 0085295 .0030809 .0037 .0001708 .0008161 .0005	.2016092 .2207086 .24070 .0711643 .0808763 .09084 .0171871 .0201696 .02388 .0085295 .0030809 .00373 .0001708 .0008161 .00087	.2014092 .2207058 .240705 0711643 .0805763 .090442 0171871 .0201696 .023588 0085295 .0030809 .003733 .0001708 .0008161 .000272	.2014092 .2207058 .2407033 .0711643 .0805763 .0908427 .0171871 .0201696 .0235883 .0025295 .0030809 .0037335 .0001708 .0008161 .0002720	.2016092 .2207036 .2407033 .0711643 .0805763 .0908427 .0171871 .0201696 .023583 .0082295 .0030809 .0037335 .0001706 .0008161 .0008720	.2014092 .2207058 .2407033 . 0711643 .0805763 .0908427 0171871 .0201696 .0235583 . 0085295 .0030809 .0037335 . 00001708 .0008161 .0002720 .	.2016092 .2207036 .2407033 .2 0711643 .0805763 .0908427 .1 0171871 .0201696 .0235863 .0 0082295 .0030809 .0C37335 .0 .0001706 .0008161 .0008780 .0	.2014092 .2207058 .2407033 .26 .0711643 .0805763 .0908427 .10 .0171871 .0201696 .0235583 .02 .0025295 .0030809 .0037335 .00 .0001708 .0003161 .0002720 .00	.2016092 .2207036 .2407033 .261 .0711643 .0805763 .0908427 .101 .0171871 .0201696 .0235583 .027 .0082295 .0030809 .0037335 .004 .0001706 .0008161 .0008720 .000	.2014092 .2207058 .2407033 .2615 .0711643 .0805763 .0908427 .1019 .0171871 .0201696 .0235583 .0273 .0025295 .0030809 .0037335 .0045 .0001708 .0008161 .0000720 .0003	.2016092 .2207036 .2407033 .26156 .0711643 .0805763 .0908427 .10199 .0171871 .0201696 .0235583 .02739 .0082295 .0030809 .0C37335 .00450 .0001706 .0008161 .0008720 .00034	.2014092 .2207058 .2407033 .261562 .0711643 .0805763 .0908427 .101994 .0171871 .0201696 .0235583 .027391 .0025295 .0030809 .0037335 .004508 .0001708 .0008161 .0002720 .000340	.2016092 .2207056 .2407033 .2615627 .0711643 .0805763 .0908427 .1019949 .0171871 .0201696 .0235853 .0273916 .0082295 .0030809 .0C37335 .0045022 .0001708 .0002161 .0002720 .0003405	.2014092 .2207058 .2407033 .2615627 .0711643 .0805763 .0908427 .1019949 .0171871 .0201696 .0235583 .0273918 .0085295 .0030809 .0037335 .0045082 .0001708 .0008161 .0002720 .0003405	.2016092 .2207056 .2407033 .2615627 . .0711643 .0805763 .0908427 .1019949 . .0171871 .0201696 .0235583 .0273918 . .0085295 .0030809 .0037335 .0045022 . .0001708 .0003161 .0002720 .0003405 .	.2014092 .2207058 .2407033 .2615627 .3 .0711643 .0805763 .0908427 .1019949 .1 .0171871 .0201696 .0235583 .0273918 .0 .0085295 .0030809 .0037335 .0045082 .0 .0001708 .0008161 .0002720 .0003405 .0	.2016092 .2207056 .2407033 .2615627 .28 .0711643 .0805763 .0908427 .1019949 .11 .0171871 .0201696 .0235583 .0273918 .03 .0085295 .0030809 .0037335 .0045022 .00 .0001708 .0008161 .0008720 .0003405 .00	.2014092 .2207056 .2407033 .2615627 .2833 .0711643 .0805763 .0908427 .1019949 .114 .0171871 .0201696 .0235583 .0273916 .031 .0085295 .0030809 .0037335 .0045022 .008 .0001708 .0008161 .0002720 .0003405 .000	.2016092 .2207086 .2407033 .2615627 .39323 .0711643 .0805763 .0908427 .1019949 .11406 .0171871 .0201496 .0235583 .0273918 .0317 .0025295 .0030809 .0037335 .0045022 .0024 .0001708 .0008161 .0002720 .0003405 .0004	.2016092 .2207056 .2407033 .2615627 .283238 .0711643 .0805763 .0904427 .1019949 .114061 .0171871 .0201696 .0235583 .0273918 .031710 .0085295 .0030809 .033735 .0045022 .008404 .0001708 .0008161 .0002720 .0003405 .000484	.2014092 .2207058 .2407033 .2615627 .2832382 .0711643 .0805763 .0908427 .1019949 .1140612 .0171871 .0201696 .0235583 .0273918 .0317105 .0025295 .0030809 .0037335 .0045022 .0054040 .0001708 .0003161 .0002720 .0003405 .0004242	.2016092 .2207086 .2407033 .2615627 .3932382 .0711643 .0805763 .0908427 .1019949 .1140612 .0171871 .0201496 .0235583 .0273918 .0317105 .0025295 .0030809 .0037335 .0045022 .0084040 .0001708 .0008161 .0002720 .0003405 .0004242	.2014092 .2207056 .2407033 .2615627 .2032382 . .0711643 .0805763 .0908427 .1019949 .1140612 . .0171871 .0201696 .0235583 .0273918 .0317105 . .0085295 .0030809 .0037335 .0045082 .0084040 . .0001708 .0008161 .0002720 .0003405 .0004242 .	.2016092 .2207086 .2407033 .2615627 .3932382 .34 .071643 .0808763 .0908427 .1019949 .1140612 .11 .0171871 .0201496 .0235883 .0273918 .0317105 .0 .0028295 .0030809 .0037335 .0045022 .0084040 .0 .0001708 .0008161 .0002720 .0003405 .0004242 .0	.2014092 .2207056 .2407033 .2615627 .2832382 .301 .0711643 .0805763 .0908427 .1019949 .1140612 .12 .0171871 .0201696 .0235583 .0273918 .0317103 .03 .0085295 .0030809 .0037335 .0045082 .0084040 .00 .0001708 .0008161 .0002720 .0003405 .0004242 .00	.2014092 .2207056 .2407053 .2615627 .2832382 .308 .0711643 .0805763 .090447 .1019949 .1140612 .127 .0171871 .0201696 .0235583 .0273918 .0317105 .036 .0085295 .0030809 .023735 .0465022 .0054040 .006 .0001708 .0008161 .0002720 .0003405 .0004842 .000	.2014092 .2207058 .2407033 .2615627 .2832382 .3056 0711643 .0805763 .0908427 .1019949 .1140612 .1270 0171871 .0201696 .0235583 .0273918 .0317105 .0365 0025295 .0030809 .0037335 .0045082 .0084040 .0064 .0001708 .0008161 .0002720 .0003405 .0004842 .0005	.2014092 .2207056 .2407033 .2615627 .2032382 .30867 .0711643 .0805763 .0908427 .1019949 .1140612 .12704 .0171871 .0201696 .0235383 .0273918 .0317105 .03655 .0085295 .0030809 .023735 .0045022 .0084040 .00645 .0001708 .0002161 .0002720 .0003405 .0004242 .00058	.2014092 .2207058 .2407033 .2615627 .2832382 .3086771 0711643 .0805763 .0908427 .1019949 .1140612 .127063 0171871 .0201696 .0235583 .0273918 .0317105 .036556 0025295 .003609 .0037335 .0045022 .0054040 .006457 .0001708 .0003161 .0002720 .0003405 .0004242 .000586	.2014092 .2207056 .2407033 .2615627 .2032382 .3086772 .0711643 .0805763 .0908427 .1019949 .114/0612 .1270655 .0171871 .0201696 .023583 .0273918 .0317105 .036556 .0085295 .0030809 .003735 .0045022 .0084040 .0064574 .0001708 .0008161 .0002720 .0003405 .0004242 .0008860	.2014092 .2207058 .2407033 .2615627 .2832382 .3086772 .0711643 .0805763 .0908427 .1019949 .1140612 .1270655 .0171871 .0201696 .0235583 .0273918 .0317105 .0365560 .0025295 .0030809 .0037335 .0045022 .0004040 .0064574 .0001708 .0002161 .0002720 .0003405 .0004242 .0005860	.2014092 .2207056 .2407033 .2615627 .2032382 .3086772 . .0711643 .0805763 .0908427 .1019949 .114/0612 .1270655 . .0171871 .0201696 .023583 .0273918 .0317105 .0365560 . .0085295 .0030809 .003735 .0045022 .0084040 .0064574 . .0001708 .0008161 .0002720 .0003405 .0004242 .0005860 .	.2014092 .2207058 .2407033 .2615627 .2832382 .3086772 .3 .0711643 .0805763 .0908427 .1019949 .1140612 .1270655 .1 .0171871 .0201696 .0235583 .0273918 .0317105 .0365560 .0 .0025295 .0030809 .0037335 .0045022 .0054040 .0064574 .0 .0001708 .0002161 .0002720 .0003405 .0004242 .0005860 .0	.2014092 .2207056 .2407033 .2615627 .3832382 .3056778 .32 .0711643 .0805763 .0908427 .1019949 .114/0612 .1270653 .14 .0171871 .0201696 .0235383 .0273918 .0317105 .036556 .04 .0085295 .0030809 .003735 .0045022 .0084040 .0064574 .00 .0001708 .0008161 .0002720 .0003405 .0004242 .0005860 .07	.2014092 .2207058 .2407033 .2615627 .2832382 .3086772 .328 0711643 .0805763 .0908427 .1019949 .1140612 .1270653 .141 0171871 .0201696 .0235583 .0273918 .0317105 .0365560 .041 .0025295 .0030809 .0037335 .0045022 .0054040 .0064574 .007 .0001708 .0003161 .0002720 .0003405 .0004242 .0005860 .070	.2014092 .2207056 .2407033 .2615627 .2032382 .3086772 .32881 .0711643 .0805763 .0908427 .1019949 .1140612 .1270655 .14103 .0171871 .0201696 .0235383 .0273918 .0317105 .036556 .04197 .0082295 .0030809 .023735 .0045022 .0084040 .0064574 .00764 .0001708 .0002161 .0002720 .0003405 .0004242 .0005860 .0706	.2014092 .2207058 .2407033 .2615627 .2832382 .3086772 .32882 .0711643 .0805763 .0908427 .1019949 .1140612 .1270655 .141027 .0171871 .0201696 .0235583 .0273918 .0317105 .0365560 .041977 .0025295 .0030809 .0037335 .0045022 .0084040 .0064574 .007682 .0001708 .0002161 .0002720 .0003405 .0004242 .0005860 .07064
×				• •	,						. 1	. 5 (. 5 0	. 50	. 5 0	. 5 0	. 5 0	. 50	. 50	. 50	. 50	. 5 0	. 50	. 5 0	. 50	, 50	. 5 0	. 5 0	. 5 0	. 5 0	.50	. 50	. 50	. 5 0	. 50	. 50	. 50	. 50	. 50	. 50	. 50	. 50	, 50	. 50	, 50	. 50	, 50	. 50	. 50	, 50	. 50	. 50	. 50	. 50	, 50	. 50	, 50	. 50	, 50	. 50	, 50	. 50	, 50	. 50
12345		99935				9 12 12 16	62757			. 9 . 8 . 8	. 9 4 . 9 4 . 8 2 . 6 2	. 9 9 9 0 . 9 8 9 1 . 9 4 5 . 8 2 A 1 . 6 2 3 0	.99902 .98923 .94533 .82812 .62304	.999023 .989257 .945312 .828125 .623046	.9990234 .0892578 .9453125 .8281250 .6230469	.9990234 .9892578 .9453125 .8281250 .6230469	.9990234 .9892578 .9453125 .8881250 .6230469	.9990234 .9892578 .9453125 .8281250 .6230469	,9990234 .9892578 .9453125 .8881250 .6830469	.9990234 .9892578 .9453125 .8281250 .6230469	.9990234 .9892578 .9453123 .8281250 .6330469	.9990234 .9892578 .9453125 .8281250 .6330469	.9990234 .9892578 .9453125 .8281250 .6230469	.9990234 .992578 .9453125 .8281250 .6230469	.9990234 .992578 .9453125 .8281250 .6230469	.9990234 .9992578 .9453125 .8281250 .6230469	,9990234 ,9892578 ,9453123 ,8281250 ,6230469	.9990234 .89257A .9453123 .82A1250 .6230469	, 990234 , 0892576 , 9453123 , 828123 , 8281230 , 6230469	. 9990234 . 699576 . 9453123 . 8281233 . 8281233 . 6230489	, 990234 . 002578 . 9453123 . 881123 . 6811230 . 6310469	. 9 9 0 0 3 3 4 . • 6 9 9 5 7 6 . 9 4 5 3 1 2 3 . 8 2 1 2 3 5 . 6 2 3 0 4 6 9	, 990234 . 987378 . 9433123 . 881133 . 6310469	, 9901234 , 669576 , 9453123 , 8811230 , 6230469	, 990234 . 002578 . 9453123 . 881123 . 6811230	, 9901334 , 669576 , 9453123 , 8811230 , 6230469	, 990234 . 002578 . 9453125 . 8811250 . 6230469	. 9 9 0 0 3 3 4 . • 6 9 5 7 6 . 9 4 5 3 2 3 . 8 2 1 2 3 . 6 2 3 0 4 5 9	, 990234 . • • • • • • • • • • • • • • • • • • •	, 9901234 , 0092578 , 9453125 , 8811230 , 6230469	, 990234 . 002578 . 9453125 . 8811350 . 6310469	, 9901234 , 0092578 , 9453125 , 8812230 , 6230469	, 990234 . 002578 . 9453125 . 881250 . 6370469	, 9901334 . 002578 . 9453123 . 8812330 . 6233469	, 990234 . 002578 . 9453125 . 881250 . 6310469	, 9901234 . 002578 . 9453123 . 8812330 . 6230469	, 990234 . 092578 . 9453123 . 841250 . 430469	, 990234 . 002578 . 9453123 . 8811230 . 6230469	, 9901234 . 002578 . 9453123 . 8812330 . 62304 69	, 990234 . 007578 . 9453123 . 881230 . 6310469	, 9901234 . 002578 . 9453123 . 8812330 . 6230469	, 990234 . 007578 . 007578 . 017578 . 017578 . 017578	, 990234 . 0892578 . 9433123 . 841230 . 4330469	, 990234 . 002578 . 0435125 . 8811250 . 62810469	, 990234 . 007578 . 9453123 . 841250 . 430469	, 990234 . 002578 . 0435123 . 081250 . 081250	, 990234 . 009378 .9483123 .841230 .430469	, 990234 . 002578 . 9453125 . 8811250 . 6230469	, 990234 . 007578 . 9453123 . 841250 . 430469	, 990234 . 002578 . 0435125 . 0811250 . 0310469	, 990234 . 009578 . 945125 . 841250 . 6370469	, 990234 . • • • • 578 . • • • • • • • • • • • • • • • • • • •	, 990234 . • 695578 . • 945123 . • 841250 . • 370469	, 990234 . • • • • 578 . • • • • • • • 578 . • 87125 . • 87125
6 7 8 9		31000	55400			20027	87389				.37	.376	.37691 .1718 .05460 .0107	.376983 .171875 .054687 .010748 .000976	.3769\$31 .1718750 .0546675 .0107422 .0009766	.3769531 .1718750 .0107488 .0107488	. 3769531 .1718750 .0546875 .0107422 .0009766	.3769\$31 .1718750 .0546875 .0107422 .0009766	.3769\$31 .1718750 .0546875 .0107422 .0009766	.3769531 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1718750 .0546875 .0107422 .0009766	.3769\$31 .1718750 .0546\$75 .0107422 .0009766	.3769\$31 .1718750 .0546\$75 .0107488 .0009766	.3769531 .1718750 .0546675 .0107422 .0009766	.376\$\$31 .1718750 .0546875 .0107428 .0809766	.3769531 .1718750 .0546675 .0107482 .0009766	.3769531 .1718750 .0546875 .0107483 .0009766	.3769531 .1718750 .0546873 .0107483 .0009766	.3769531 .1718750 .0546875 .0107422 .0009766	. 3769531 . 1718750 . 0546875 . 0107422 . 0009766	.3749\$31 .1718750 .0546875 .0107482 .0009766	.3769531 .1718750 .0546875 .0107422 .0009766	.3769\$31 .1718750 .0546875 .0107483 .0009766	.3769531 .1718750 .0546875 .0107482 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769531 .1718750 .0546875 .0107482 .0009766	.3769\$31 .1718750 .0546675 .0107482 .0009766	.3769531 .1718750 .0546875 .0107422 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0000766	. 3769531 . 1718750 . 0546875 . 0107482 . 0009766	.3769\$31 .1718750 .0546875 .0107483 .0009766	. 3749\$31 . 1718750 . 0546875 . 0107482 . 0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	. 3749\$31 . 1718750 . 0546875 . 0107482 . 0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3749\$31 .1718750 .0546875 .01074\$.0009766	.3769\$31 .1718750 .0546875 .0107433 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3749\$31 .1718750 .0546875 .01074\$.0009766	.3769\$31 .1718750 .0546875 .0107423 .0000766	.3749\$31 .1718750 .0546875 .01074\$.0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1716750 .0546875 .0107488 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1718750 .0546875 .0107433 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1718750 .0546875 .0107433 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1718750 .0546875 .0107433	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1716750 .0546875 .0107433 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766	.3769\$31 .1718750 .0546875 .0107433 .0009766	.3769\$31 .1718750 .0546875 .0107488 .0009766

Table 3-4 lists randomized 2-sided s-confidence limits which have special statistical properties. They are not equal-tailed s-confidence limits; they cannot be used separately for upper and lower s-confidence limits. See Ref. 8 for a more complete discussion. In general, the s-confidence limits in Table 3-4 will be different from those calculated using the methods in this chapter. It is difficult to say that one set is better than the other except in the narrow statistical sense stated for Table 3-4.

3-6 CHOOSING A s--CONFIDENCE LEVEL

Choosing an appropriate s-confidence level is always troublesome. Suppose the labeled events are failures; so p is the probability of failure and \overline{p} is the s-reliability. There is obviously little point in having a very high s-confidence that the s-reliability is very low, or a very low s-confidence that the s-reliability is very high. A reasonable compromise is to choose a s-confidence level which is approximately the fraction of success in the sample (unless that fraction is 100%).

If there are no failures, one cau reasonably choose the s-confidence level equal to the minimum 1-sided lower s-confidence limit on s-reliability. Fig. 3-2 shows the graph for this situation. One could also use the Poisson approximation for this case.

3-7 EXAMPLES

ownloaded from http://www.everyspec.com

3-7.1 EXAMPLE NO. 1

Ten tests were run with 1 failure. Find the 5% and 95% 1-sided s-confidence limits on the failure probability p; combine them for a 2-sided s-confidence statement.

AMCP 705-200

Example Procedure 1. N = 10, r = 11. The labeled events are failures. State N, r, $C_U = 95\%, C_L = 5\%$ $\hat{p} = 0.10$ C_{U}, C_{L} , and $\hat{p} = r/N$ (by Eq. 3-7). 2. Use Table 3-2 to find p_U and p_L . Then make 2. $p_U = 0.394$ $p_L = 1 - 0.995 = 0.005$ the s-confidence statements. Conf $\{ p \le 0.394 \} \ge 95\%$ Conf $\{ p \le 0.005 \} \le 5\%$ Conf $\{0.005 \le p \le 0.394\} = 90\%$ 3. Use Table 3-2 to find p'_U and p'_L . Then make 3. $p'_U = 0.259$ the s-confidence statements. $p'_L = 1 - 0.963 = 0.037$ $Conf \{ p \le 0.259 \} \le 95\%$ $Conf \{ p \le 0.037 \} \ge 5\%$ $Conf \{ 0.037 \le p \le 0.259 \} \le 90\%$ 4. Result is H, H, T, T, T, H (unusual, but true) 4. Again choose a random number by the $\rightarrow 0.125 + 0.0625 + 0.03125 = 0.21875 \rightarrow 0.219$ coin flipping method. Take heads = 0, tails = 1. Use linear interpolation in Ref. 1 =η. p_L^* lies between 0.006 and 0.007; to find the exact randomized s-confidence $p_L^* = 0.0066.$ p_U^* lies between 0.37 and 0.38; interval. Use Table 3-3. $p_{U}^{*} = 0.378.$ 5. Conf { $p \le 0.0066$ } = 5% 5. Make the exact s-confidence statements. Conf $\{p \le 0.378\} = 95\%$ Conf $\{0.0066 \le p \le 0.378\} = 90\%$

Downloaded from http://www.everyspec.com

Surger Bound Minster

TABLE 3-4(A)

大学のないというないないで、「「「なないない」」であるとなったので、「ないない」」となっていたが、「ないない」」というないできょうないです。

Downloaded from http://www.everyspec.com

NEYMAN-SHORTEST UNBIASED 95% s-CONFIDENCE INTERVALS FOR p (ADAPTED FROM Ref. 8)

n = 3	n = 3	* = 4	n = 5	n = 6	n = 7	n≈8	n == 9	# = 10	r t n
6 6	6 6	60 00	6 6	60 60	66 00	60 60	00 00	000	0
00 50	00 29	00 28	00 18	00 15	00 13	00 11	00 10	00 09	0.1
00 75	00 50	00 \$7	00 81	00 26	00 23	00 20	00 18	00 16	•2
00 s3	00 59	00 45	00 38	00 32	00 28	00 25	00 22	00 20	•3
00 87	00 63	00 50	00 42	00 35	00 31	00 28	00 25	00 23	-4
00 90	00 08	00 54	00 44	00 38	VU 34	00 30	00 21	VU 20	·9
00 92	00 71	00 56	00 46	00 41	00 36	00 32	00 29	00 26	•6
00 9/3	00 75	00 59	00 50	00 44	00 39	00 33	00 31	00 29	-8
00 94	00 73	00 62	00 51	00 45	00 40	00 35	00 32	00 80	-9
00 95	00 78	00 63	00 58	00 46	00 41	00 36	00 33	00 30	1.0
00 1-0	00 85	69 00	00 58	00 50	00 44	00 40	00 36	00 33	1.1
00 1.0	00 89	00 73	00 62	00 53	00 47	00 42	00 38	00 35	1.3
00 1.0	00 92	00 77	00 65	00 56	00 50	00 45	90 40	00 37	1.3
00 1-0	00 94	00 79	00 67	00 60	00 53	00 48	20 44	00 40	1.5
•• ••		<u>.</u>		AA #1	AA	00 10	00 47	00 41	1.4
	00 96	00 83	00 71	00 61	00 00	00 49	00 40	00 49	1.7
	00 97	00 85	00 73	00 61	00 57	00 50	00 47	00 43	1.8
	00 97	00 86	00 74	00 65	00 58	00 52	00 48	00 44	1.9
	03 97	02 86	01 75	01 66	01 58	01 53	01 48	01 44	2 ·0
		02 90	01 79	01 69	01 61	01 55	01 50	01 46	2.1
		02 93	02 81	01 71	01 63	01 57	01 52	01 48	2.2
		02 95	02 83	01 73	01 65	01 59	01 54	01 50	2.3
		03 96	02 80	02 75	01 67 02 68	01 60	01 55	01 51	2·4 2·5
			A. 60	09 70	00 80	09 69	0.9 8.8	01 39	9.8
			04 88	03 79	03 70	02 63	02 59	02 54	2.7
			05 89	04 80	03 71	03 64	03 59	02 55	2.8
			07 90	06 80	05 72	04 65	03 60	03 55	2.9
			10 90	08 81	06 73	05 66	05 61	04 56	3.0
				08 54	07 75	06 68	05 62	04 58	3-1
				09 86	07 77	06 70	05 64	05 59	3.2
				09 87	07 79	06 71	06 65	05 60	3.3
				10 88	08 80	07 74	06 67	05 62	3.2
					AA 88	00 MK	07 40		• •
					09 82	08 70	07 08	07 84	3.7
					12 84	10 76	09 70	08 65	3.8
					13 84	11 77	10 70	09 65	3.9
					15 85	13 77	11 71	10 66	4.0
						13 79	12 73	10 67	4-1
						14 81	12 74	11 69	4.2
						14 82	12 75	11 70	4.3
						15 83	13 77	11 71	4-4
							14 70	10 60	
							15 70	15 72	4∙0 4•7
							16 80	14 74	4.8
							18 80	16 74	4-9
Notes:							19 81	17 75	5.0
1. The p	airs of figu	res are lowe	er and uppe	er s-confide	nce limits			17 76	5-i
for p	given to 2	decimal pla	ces.					18 78	5.2
2. Nota	tion							19 79	5.4
n =	sample size	(in place o	of V in the	text)				20 80	5-3
r =	number of	labeled eve	nts						
ρ =	probability	of labeled	event						
η =	random nu	mber from	the uniform	m distribut	ion on (0,	1}			
3. For t	abular conv	enience, r,	η is listed a	asr+η.					

TABLE 3-4(A) (Continued)

Downloaded from http://www.everyspec.com

a second to the st

n = 11	n = 12	n = 13	n = 14	n = 15	n = 16	n as 17	n = 18	n = 19	
<u> </u>	6 30	<u> </u>	$\overline{\mathbf{\omega}}$					<u> </u>	$r + \eta$
00 09	00 08	00 07	00 07	00 00	00 00	00 05	00 01	00 0	<u>, , , , , , , , , , , , , , , , , , , </u>
00 15	00 14	00 13	00 12	00 10	00 10	00 10	00 00	00 00	U-1
06 19	00 17	00 16	00 15	00 14	00 13	00 19	00 12	00 17	·Z
00 21	00 19	00 18	00 17	00 16	00 15	00 14	00 12	00 11	•3
00 23	00 21	00 19	00 18	00 17	00 16	00 15	00 14	00 14	•5
								~~ ~~	Ū
JO 24	00 22	00 21	00 19	00 18	00 17	09 16	00 15	00 15	6
00 23		00 22	00 20	00 10	00 18	00 17	00 10	00 15	•7
00 20	00 24 (0 9K	00 23	00 21	00 20	00 19	00 18	00 17	00 16	-8
00 28	00 26	00 24	00 22	00 21	00 19	00 18	00 17	00 17	.9 1.0
00 32	00 30	00 28	00 28	00 23	00 23	00 22	00 21	00 20	1.2
00 38	00 35	00 33	00 20	00 20	00 20	00 24	00 20	00 22	1.4
00 40	00 37	00 34	00 32	00 20	00 90	00 20	00 26	00 23	1.0
01 41	00 38	00 36	00 84	00 32	00 30	00 28	00 27	00 26	2.0
0) <i>(</i> #	01 ()	A) B A	00 68	~		~~ • •	A		
01 40	01 41	01 89	00 36	00 34	00 32	00 31	00 29	00 28	2.2
01 47	01 44	01 41	01 89	V1 30	01 34	01 82	(1) 31	OC 29	7.4
09 61	01 40	09 44	00 40	01 38	01 30	01 34	01 82	01 31	Z-6
04 89	02 40	02 45	UZ 4Z	01 31	01 37	01 30	01 34	01 32	Z-8
V# 02	03 45	03 90	U3 43	03 40	UZ 20	02 30	:2 34	02 33	3.0
04 55	04 51	03 48	03 45	03 43	03 40	03 38	02 36	02 35	8.2
05 57	04 53	04 50	04 47	03 44	03 42	03 40	03 38	03 36	8.4
06 59	05 55	05 53	04 49	04 46	04 44	03 41	03 39	03 38	3.6
07 60	06 56	06 53	05 50	05 47	04 45	04 42	04 40	04 89	3.8
09 61	08 58	07 54	07 51	06 48	06 46	05 43	05 41	0* 39	4.0
09 64	08 60	08 56	07 53	07 50	06 48	06 45	05 43	05 41	4.9
10 66	09 62	03 58	08 55	07 52	07 49	06 47	06 45	06 43	A .A
11 68	10 63	09 60	09 56	08 53	07 51	07 49	06 16	06 44	4.6
13 69	12 65	11 61	10 57	09 54	08 52	08 49	07 47	07 45	4.8
13 70	14 66	12 62	11 58	10 55	10 53	09 50	08 43	08 46	5.0
16 79	14 69	12 84	19 60	11 57	10 54	10 59	00 41	09 47	* 0
17 74	15 70	10 02	12 69	19 60	11 58	10 52	10 81	00 49	0-2
18 78	16 71	15 67	14 84	12 80	19 67	10 55	10 03	10 50	014
20 77	18 72	10 07 18 88	16 64	14 81	12 58	19 55	10 52	10 00	0.0
22 78	20 73	18 69	17 65	Î5 62	14 59	13 56	12 54	12 51	6.0
	ZI 70	19 71	17 67	16 64	15 61	14 58	13 55	12 53	6.2
	22 77	27 78	18 69	17 65	16 6Z	14 59	14 56	13 54	6.4
	23 78	21 74	19 70	18 00	10 03	15 00	14 08	14 55	6.6
		23 70	21 71	19 67	10 45	10 01	15 58	14 56	F **
		47 IO	4Z 1X	21 08	TA 09	18 02	1. 03	10 07	7-9
			23 74	21 70	20 67	18 63	17 61	16 58	7.2
			24 75	22 71	21 68	19 65	18 62	17 59	7-4
			25 78	23 72	21 69	20 66	19 63	18 60	7.6
				24 73	23 70	21 67	20 64	18 61	7.9
				26 74	24 71	ZZ 68	21 65	20 62	8.0
					25 72	23 69	21 66	20 63	8.2
					26 73	24 70	22 67	21 64	8-4
					27 74	25 71	23 68	22 65	8.6
						26 72	24 69	23 66	8-8
						27 73	26 70	24 67	9-0
							26 71	25 68	9.2
							27 72	23 89	9-4
							28 73	26 70	9-8
								27 71	9.8
								28 72	10-0

A STATE AND A ST

And the second se

TABLE 3-4(A) (Continued)

Downloaded from http://www.everyspec.com

n = 2	0 = =	21	* =	22	n ==	23	n ==	24	71 50	26	n =:	28	76 m	- 30	n ==	32	r + n
<u> </u>	\sim	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	6	~	6	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30	6	30	6	3	, . "
	K 00	N ₄	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Å.	õõ	õ.	00	ñ	20	ñ.	ŏŏ	02	200	03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	02	0.1
00 01	e ññ	0.8	ň	08	ãõ	07	00	07	ňň	07	Š	08	00	06	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	05	.,
00 1	1 00	10	00	10	õõ	00	00	ñ9	ŏŏ	08	00	08	00	07	00	07	
00 19	2 00	îĭ	åõ	îĭ	ŏŏ	iñ	őő	ió	őő	09	ŏŏ	04	ŏŏ	08	00	ň8	.4
00 1	3 00	12	õõ	12	00	ñ	õõ	ñ	ŏŏ	10	õõ	<u>09</u>	õõ	09	õõ	08	-5
00 1/	4 00	13	00	13	00	12	00	12	00	11	00	10	00	09	00	09	•6
- 00 IV	5 00	14	őő	13	ŏŏ	18	00	12	őő	ii -	00	ii .	ŏõ	ĩõ	00	00	.7
00 1	5 00	15	ŏŏ	14	ŏŏ	13	00	13	00	12	00	ii -	00	10	őő	15	-8
00 1	6 00	15	00	14	00	14	00	13	00	12	00	12	00	11	00	10	-9
00 1	6 <u>00</u>	16	00	15	00	14	00	14	00	13	00	12	00	11	07	10	1.0
00 1	9 00	18	00	17	00	17	00	16	00	15	00	14	00	13	00	12	1.2
00 2	1 00	20	00	19	00	18	00	18	00	16	00	15	00	14	- 00	13	1.4
00 2	2 00	81	00	20	00	20	00	19	00	18	00	16	00	15	00	14	1.6
00 2	4 09	- 73	0 0	22	00	21	00	20	00	19	00	17	00	16	00	15	1.8
00 2	4 00	23	00	22	00	22	00	21	00	19	00	18	00	17	00	16	2.0
00 2	7 00	25	00	24	00	23	00	22	00	21	00	20	00	18	00	17	2.2
00 2	8 00	- 27	- 00	26	- 00	25	00	24	00	22	00	21	00	19	00	18	<i>z</i> •4
01 2	9 01	28	01	27	01	26	01	25	00	23	00	22	00	20	00	19	2.6
01 8	1 01	- 29	10	28	01	27	01	26	01	24	01	23	01	21	01	20	2.8
02 3	1 02	30	02	Z¥	02	28	02	21	01	25	01	23	01	22	01	20	3.0
02 3	3 02	32	02	31	02	29	02	28	02	26	01	25	01	23	01	22	8.2
02 3	5 02	- 33	02	32	02	81	02	29	02	27	02	26	02	24	C1	23	3.4
03 3	6 03	- 34	03	33	02	32	02	31	02	28	02	27	02	25	02	23	3.6
03 3	7 03	35	03	34	03	33	03	31	03	29	20	27	02	26	02	24	3.8
04 8	8 04	36	04	35	04	\$3	04	32	03	30	03	28	03	26	03	25	4 ·0
05 3	9 05	38	04	36	04	35	04	34	05	31	03	29	03	27	03	26	4.2
05 4	1)5	39	05	87	- 04	36	04	35	- 04	32	04	30	03	28	03	27	4.4
06 4	2 05	40	05	39	05	87	05	36	04	33	04	31	04	29	93	28	4.6
07 4	3 06 4 07	42	05	39 40	06	38 39	00	37	05 06	34 35	05	32 32	01	31	04	28 29	4·8 5·0
08 4	5 05	43	07	42	07	40	07	39	06	30	00	34	05	82	05	30	0-2
08 4	0 08	45	80	43	07	41	07	40	00	37	00	30	00	33	05	31	0.4
09 4	17 09	40	80	44	08	42	07	41	07	30	00	30	00	33	00	31	10.0
10 4	18 US	47	10	40 45	- 09	44 44	09	42	08	39	08	37	07	35	07	33	0·0
			••			40	10	40	00	40	00	90	00	97	07	95	a
12 0		- 60	12	90 80	11	40	19	47	11	14	10	41	00	28	00	26	7.0
10 0	298 478 177 18	55	16	89	13	10 K1	12	20	19	48	- 11	12	10	<u>1</u>	10	28	7.5
10 0	Ka 17	50	17	55	18	53	15	81	14	48	12	45	12	42	- 11	40	8.0
20 0	5r 19	60	18	58	17	56	16	54	15	50	14	47	13	44	12	42	8.5
23 /	54 21	62	20	60	19	57	18	55	17	52	15	49	14	46	13	43	9∙0
24	37 93	64	22	62	21	60	20	58	18	54	17	5 1	15	48	14	45	9.5
27 6	59 24	66	24	64	23	62	22	60	20	56	18	52	17	49	16	47	10.0
28 7	12 27	69	25	66	24	64	23	62	21	58	19	55	18	51	17	49	10.5
	29	71	28	68	26	66	25	64	23	60	21	56	20	53	18	50	11.0
			20	71	28	68	27	66	24	62	22	58	21	55	19	52	11.5
					30	70	29	67	26	63	24	60	22	56	21	53	12.0
							30	70	28	65	25	62	23	58	22	65	12.5
							83	71	30	67	27	63	25	60	23	56	13.0
									81	69	29	65	26	61	25	58	13.5
									33	70	30	66	28	63	26	59	14.0
											32	68	29	65	27	61	14.5
											34	70	31	66	29	63	15
													34	69	32	05	16
															35	68	17

3-19

くの時で、 ひろの湯

Stand of States and a second states of the states

See a wanter the

TABLE 3-4(A) (Continued)

you of

Downloaded from http://www.everyspec.com

* =	34	74 m	36	n =	38	**	40	76. sec	42	**	44	**	46	*	48	# ==	50	r + n
\sim	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	5	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		~	~~~~	~	00	20	60	2	۰ ۸ T
	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			00			100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	
00	05	00	US .	00	00	00	04	00	04	00		w.	U.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V3	U 4
00	07	00	07	00	06	00	06	00	05	00	00	00	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00		00	
00	08	00	08	00	08	00	07	00	07	00	07	00	05	00	06	00	06	~0
00	09	00	09	00	08	00	08	- 00	08	00	07	00	07	00	07	00	06	•8
00	10	00	09	00	09	00	08	00	08	00	08	00	07	00	07	00	07	1.0
00	12	00	n	00	10	00	10	00	09	00	09	00	09	00	08	00	08	1.2
00	13	00	12	00	11	00	11	00	10	00	10	00	10	00	09	- 00	09	1.4
00	14	00	13	- 00	12	00	12	00	11	00	11	00	10	00	10	00	09	1.0
00	14	00	14	00	13	00	12	00	12	00	11	00	11	00	10	-00	10	1.8
00	15	00	14	00	13	00	13	00	12	00	12	00	11	00	11	00	10	2 ·0
00	18	00	17	00	16	00	15	00	15	00	14	00	13	00	13	00	12	2.5
01	19	01	18	01	17	01	17	01	16	01	15	01	15	01	14	01	13	4.0
01	22	01	21	01	20	01	19	01	18	01	17	01	16	01	16	01	15	3.2
03	23	02	22	02	21	02	20	02	19	02	18	02	18	02	17	(12	16	4 ·0
03	26	03	24	03	23	03	22	02	21	02	20	02	19	20	19	02	18	4.5
04	27	04	26	04	25	04	23	03	22	03	21	03	21	03	20	03	19	5-0
05	29	05	28	04	27	04	25	-04	24	- 04	23	04	22	03	21	03	21	5.2
06	31	06	29	05	28	05	27	05	25	05	24	04	23	- 04	22	04	22	6.0
07	33	07	Š I	06	30	06	28	06	27	05	26	05	25	05	24	05	23	6.3
08	34	08	33	07	31	07	30	07	28	06	27	06	26	06	25	05	24	7.0
09	36	09	85	08	33	08	31	07	30	07	29	07	28	06	27	06	26	7.5
10	38	10	36	06	34	09	33	08	31	08	30	06	29	07	28	07	27	8.0
11	40	10	38	10	36	09	34	09	33	08	31	08	30	08	29	07	28	8.5
12	41	12	39	11	87	10	36	10	34	09	33	09	31	09	30	08	29	9-0
13	43	13	41	12	89	11	87	11	36	10	34	10	83	09	31	09	30	9-5
15	44	14	42	13	40	12	38	12	37	11	35	11	84	10	83	10	81	10-0
16	46	15	44	14	42	13	40	12	38	12	87	11	35	11	84	10	33	10-5
17	47	16	45	15	43	14	41	14	39	13	38	12	36	12	35	11	34	11.0
18	49	17	47	16	45	15	43	14	41	14	29	13	38	12	36	12	85	11-5
19	51	18	48	17	46	16	44	15	42	15	40	14	39	13	37	13	86	12.0
20	52	19	5 0	18	47	17	45	16	43	15	42	15	40	14	39	13	87	12.5
22	54	21	51	19	49	18	47	17	45	16	43	16	41	15	40	14	38	13-0
23	55	22	53	20	50	19	48	18	46	17	44	16	42	16	41	15	39	13.5
24	57	23	K4	52	51	24	19	19	47	18	45	18	48	17	42	16	40	14.0
25	58	24	55	22	53	21	81	20	43	19	47	18	45	17	43	17	42	14-5
27	59	25	57	24	54	22	52	21	50	20	48	19	46	18	44	18	42	15-0
28	61	26	58	25	56	23	53	22	51	21	49	20	47	19	45	18	- 44	15.5
30	62	28	50	26	57	25	ň	23	52	22	50	21	48	20	46	19	45	16.0
21	ŘÃ	20	81	97	68	26	5.1	24	53	23	51	22	49	21	47	20	46	16.5
82	65	30	62	28	59	27	57	25	54	24	52	23	50	22	48	21	47	17.0
83	67	8)	64	29	31	28	53	26	56	25	54	24	52	23	50	22	48	17-5
85	68	12	65	31	62	29	59	28	57	26	55	25	õ2	24	51	23	49	18.0
		84	68	32	63	30	61	28	68	27	56	26	54	25	52	23	50	18-5
		35	67	83	84	81	62	80	59	23	67	27	55	26	53	24	51	19-0
		•••	•••	34	66	32	63	31	60	29	58	28	56	26	54	25	52	19-5
				36	67	34	64	82	61	30	59	29	57	27	55	26	53	20-0
					•••	85	65	33	63	31	60	30	58	28	56	27	54	20.5
						36	66	84	64	32	61	81	59	29	57	28	55	21.0
							**	85	65	33	62	32	60	30	58	29	56	21.5
								36	66	34	63	33	61	\$1	59	30	57	22.0
										85	65	34	62	32	60	81	58	22.5
										87	66	35	63	33	61	32	59	23
										- •		87	65	85	63	34	61	24
														37	65	35	63	25
																37	65	26

San Andrew and a state of the second

í

TARLE 3-4(B)

Downloaded from http://www.everyspec.com

NEYMAN-SHORTEST UNBIASED 99% S-CONFIDENCE INTERVALS FOR p (ADAPTED FROM Ref. 8)

	• = 2	*	» 3	n -	- 4	**	= 5	N =	a B	71 ×	× 7	n =	n 8	**	= 9	n ==	10	r + n
6	0 00	6	$\tilde{0}$	6	~ <u>~</u> ``	6	00	6	00	60	00	6	60	60	60	60	00	6
ŏ	0 90	00	68	ŏŏ	54	ŏŏ	44	ŐŐ	87	čõ	83	00	29	ŭŬ	26	00	24	0-1
Ó	0 95	00	78	00	63	00	53	00	45	00	40	60	38	00	32	00	80	•2
0	0 97	00	82	00	68	00	67	00	49	00	44	00	39	00	36	00	33	•3
0	0 98	00	84	00	71	00	60	00	52	00	46	00	42	00	38	00	35	•4
0	0 08	00	86	60	73	(0)	62	00	54	00	48	00	43	00	39	00	36	•5
0	0 98	00	87	00	74	(+0	64	00	56	00	49	00	45	00	41	00	88	•6
0	0 99	00	88 (00	76	00	66	00	67	00	51	00	46	00	42	00	39	•7
0	0 99	00	89	00	77	(0)	67	00	56	00	52	00	47	00	43	00	39	•8
0	0 99 0 99) 89) 60	00	78 78	03	68 68	00	60 60	00	53 54	00	48	00	44	00	40	1-0
v							0.0	•••		•••	••							
0	0 1.	0 00	98 (00	84	မှု	74	00	65		58	00	52	00	48	00	44	1.1
0	0 1	0 00	86 (00	88	00	77	00	68	00	61	00	55	00	01	00	47	1.2
v v	ο τ. Ο τ.	5 00) 90) 90		01	00	4W 91	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	79	<u>60</u>	85		50	60	02 64	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90 60	1.4
ŏ	0 1.	ŏõ	99	00	92	õõ	82	ŏŏ	14	ŐŐ	36	ŏŏ	60	ŏŏ	55	00	51	1.5
		~				~		~	74	00		00	21	00	K Å	~~	K 0	1.4
			/ 00 / AA	00	82	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	83 84	- 00 - 00	78	00	61 89	00	01 89		00 67	- 00 00	59	1.0
		õ	00		93	00	85		77	00	69	00	63	ŏŏ	58	ŏŏ	54	1.8
		ŏ	99	ŏŏ	94	ŏŏ	85	ŏŏ	77	00	70	00	64	ŏŏ	58	ŏŏ	54	1.9
		Ō	i 99	00	94	ŐČ	86	00	78	00	71	00	64	00	53	00	55	2.0
				00	97	00	89	00	81	00	74	00	67	00	62	00	57	2-1
				ŏŏ	98	00	91	00	83	ŎŎ	76	ŐŐ	69	00	64	ŬŬ	59	z · 2
				00	99	ĞÖ	93	00	85	00	77	00	71	00	65	00	60	2.3
				01	99	00	93	00	86	00	79	00	72	00	66	00	61	2.4
				01	9 9	01	94	00	87	00	80	00	73	00	67	00	62	2.2
						01	95	00	88	00	80	00	74	00	68	00	63	2.6
						01	95	01	88	01	81	00	75	00	69	00	64	2.7
						01	95	01	89	01	82	01	75	01	70	01	65	2.8
						02	96 96	02	89 89	01	82 83	01	76 76	01	70	02	60 66	2.8
						•-	•••											
								03	92 93	03	80 87	02	79 80	02	13 74	02 02	69 69	3·2
								04	94	03	98	03	81	02	76	C2	70	8.3
								04	25	03	89	03	82	03	77	02	71	8.4
								05	95	04	89	03	83	03	77	02	72	3.2
										04	90	04	84	03	78	03	73	3-6
										05	90	04	84	03	79	03	74	5.7
										03	91	05	85	04	79	04	74	3.8
										07	91	06	85	05	80	04	75	3.9
										08	92	07	80	00	8U	Ų5	75	4.0
												07	85	06	82	06	77	4-1
												08	89	07	83	05	78	4.2
												08	90	07	84 96		79	4.3
												09	91	08	86	07	81	4.5
																07	01	
														03	87 87	08	82	2.0 4.7
														10	87	08	52	4.8
														11	88	09	83	4-9
														12	88	11	83	5-0
Notes:																11	84	5-1
1. The pa	irs of	figure	is are	lower	arıd (ipper :	s-con	fiden	ce lin	lits fo	rp,					n	85	5.2
given t	o 2 d	ecimal	olar	æs.												10	80 97	2•3 8.4
2 Notati			1.100													: 2 12	88	5-5
z. wotati	011	ei-a f	in -1	and of I	V	ha ***	·+1											**
<i>ïl</i> ≕ Si	ample	* SIZE (in pl	ace of I	A 10.1	uie tex	(1)											

r = number of labeled events

p = probability of labeled event

 η = random number from the uniform distribution on (0, 1)

S. For tabular convenience, r, r is listed as $r + \eta$.

100

and the providence of the probability of the probab

Section 1

Se what is \$5.4.51

A COLOR

and the second

TABLE 3-4(B) (Continued)

Downloaded from http://www.everyspec.com

n = 11	** == 12	n = 13	n == 14	n == 15	n = 16	n = 17	n = 18	n == 19	
60 60		(m m				<u> </u>	<u> </u>	<u> </u>	1 + 1
00 00	00 00	00 00	00 00	00 00	00 00	00 60	00 00	00 00	0
00 2.0	00 20	00 19	00 13	00 17	00 10	00 10	00 14	00 13	0-1
00 20	00 20	00 23	00 22	00 21	JU 19	00 18	00 17	00 17	•2
00 30	00 20	00 20	00 24	00 23	00 22	00 20	00 01	00 18	•3
00 93	00 30	00 20	00 20	00 2%	00 23	00 22	00 21	00 20	1
	00 01	00 20	00 .61	00 20	00 2%	00 20	00 22	00 21	•0
00 85	00 32	00 30	00 28	00 27	00 25	00 24	00 23	UO 22	•6
00 26	00 33	00 31	00 29	00 27	00 26	00 25	00 23	00 22	•7
00 37	00 34	00 32	00 30	00 28	00 27	00 25	00 24	00 23	•8
10 37	00 35	00 32	00 31	00 29	00 27	00 26	00 25	00 23	•9
VU 00	00 8 0	00 33	00 31	QO 29	00 28	00 26	00 25	00 24	1.0
00 43	00 40	00 38	00 35	00 33	00 32	00 30	00 29	CG 27	1.2
00 46	00 43	00 41	00 38	00 36	00 34	00 32	00 31	00 29	1.4
00 48	00 45	00 42	00 40	00 38	00 36	00 34	00 32	00 31	1.6
00 50	00 47	00 44	00 43	00 39	00 37	00 85	00 33	00 32	1.8
00 51	00 48	00 45	00 413	00 40	0C 3 8	00 36	00 34	00 33	2.0
00 55	00 51	00 48	00 46	00 43	00 41	00 39	00 \$7	00 35	9.9
00 57	00 54	00 51	00 48	00 45	00 43	00 41	00 29	00 37	9.4
00 59	00 55	00 52	00 49	00 47	00 44	00 42	00 40	00 38	2.6
00 60	00 57	00 53	00 50	00 48	00 45	00 43	00 41	00 89	2.8
02 61	01 58	01 54	01 51	01 49	01 48	01 44	01 42	01 40	3.0
09 84	09 81	0) 67	01 54	01 81	01 40	01 48	~ ~ ~		• •
02 04	02 01	02 80	01 04	01 51	01 49	01 40	01 44	01 42	3.2
02 68	02 03	04 55	02 50	01 03	01 00	01 48	01 40	01 44	3.4
03 69	03 65	03 49	02 07	02 34	02 52	00 50	01 1/	01 40	3-0
05 70	04 66	04 63	04 50	02 00	02 03	02 50	02 40	02 40	8.0
	VX VV	V# 03	V# 00	03 00	03 04	03 91	VƏ 49	U3 4/	4 .6
05 73	05 69	04 65	04 62	04 59	03 56	03 53	03 51	03 49	4.2
06 75	65 71	05 67	04 63	04 60	04 57	03 55	03 52	03 50	4.4
06 76	06 72	05 68	05 65	04 61	C4 59	04 56	04 53	03 51	4.6
07 77	07 73	06 69	08 66	05 62	05 59	04 57	04 54	04 52	4.8
UY 78	08 74	08 70	07 66	06 63	06 60	06 58	05 55	05 53	5-0
10 81	09 76	08 72	07 68	07 65	06 62	06 59	05 57	05 55	5-2
11 82	09 78	09 74	08 70	07 67	C7 64	06 61	06 58	06 56	5-4
11 83	10 79	09 75	09 71	08 68	07 65	07 62	06 59	06 57	5.6
13 84	11 80	10 76	10 72	09 69	08 66	08 63	07 60	07 58	5-8
15 85	13 81	12 77	11 73	10 69	09 66	OC 63	03 61	08 58	6-0
	14 83	13 79	12 75	11 71	10 68	09 65	09 63	08 60	8.9
	15 84	13 80	12 76	11 73	10 69	10 66	09 64	08 81	A.4
	16 85	14 81	13 77	12 74	11 70	10 67	10 65	09 82	6.6
		16 82	14 78	13 74	12 71	11 88	10 65	10 63	8.8
		17 83	16 79	15 75	13 72	13 6.)	12 66	11 64	7.0
			10 01	1 K - MM	14 154	10 81	10 00	11 00	~ ~
			10 01	10 77	15 75	13 /1	12 08	11 05	7•Z
			18 97	17 70	15 75	14 72	13 09	12 00	7.4
			10 00	19 90	18 77	14 10	10 70	12 07	7.9
				10 00	19 77	17 74	8 71	10 00	4.0 4.0
				~~ OI	10 //	., ,,	10 /1	10 00	0.0
					19 79	17 76	16 73	15 70	8.2
					19 80	18 77	17 74	16 71	8.4
					20 31	19 78	17 75	16 72	8.6
						20 78	18 75	17 78	8.8
						21 79	20 76	18 73	8-0
							20 77	19 74	9 ·2
							21 78	20 75	9-4
							22 70	20 76	9.6
								21 77	9.8
								23 77	10-0

語言な

600

 \mathcal{C}

TABLE 3-4(B) (Continued)

Downloaded from http://www.everyspec.com

96 mi	20	* =	21	* =	22	n =	23	n =	24	14 m	26	n ==	28	71	30	# =	32	
6	3	6	3	6	2	6	200	6	3	6	6	6	5	6	3	6	00	0
àõ	18	ŏŏ	12	ŏŏ	12	00	ĩĩ	ŏŏ	ĩĩ	ŏŏ	ĩõ	ŏŏ	õõ	00	09	ŏŏ	08	0.1
ŏŏ	16	ŏŏ	15	ŏŏ	14	ŏŏ	14	ŏŏ	13	ŏŏ	12	ŏŏ	12	ŏŏ	ň	ŏŏ	10	•2
ŏŏ	18	ŏŏ	17	00	16	00	18	ŏŏ	15	00	14	00	13	00	12	00	ii -	-3
ÖÖ	19	00	18	00	17	00	17	00	16	00	15	00	14	00	13	00	12	•4
00	20	00	19	00	18	00	17	00	17	00	16	00	15	00	14	00	13	•5
00	31	00	20	00	19	00	18	00	17	00	16	00	15	00	14	00	13	•6
00	21	00	20	00	20	00	19	00	18	00	17	00	16	00	15	00	14	.7
00	22	00	21	00	20	00	19	00	19	00	17	00	16	00	15	00	14	-8
00	22 23	00	Z1 22	00	21 21	00	z0 20	00	19	00	18	00	16	00	15 16	00	15	1.0
00	26	00	25	00	24	00	23	00	22	00	21	00	19	00	18	00	17	1-2
00	28	00	27	00	26	00	25	00	24	00	22	00	21	00	20	00	18	1.4
00	29	00	20	- 90	27	00	26	00	25	00	23	00	22	00	21	00	19	1.6
00	81	00	29	00	28	00	27	00	26	60	24	00	23	00	21	00	20	1.8
00	31	00	30	00	29	00	28	00	27	00	25	00	23	00	22	00	21	2.0
00	34	00	32	00	31	00	30	00	29	00	27	00	25	00	24	00	22	2.2
00	30 97	00	02 92	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33	00	8Z	00	3U 91	00	20		21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	94	4'1 9.8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	94	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90	6	30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28	- 00 00	27	00	95	2.8
01	39	õĩ	37	ŐĨ	36	01	34	Õĩ	33	01	31	10	29	01	27	ŏŏ	20	8.0
01	41	01	39	01	37	01	20	01	35	01	32	01	30	01	29	01	27	3.2
01	42	01	40	01	89	01	87	01	36	01	34	01	82	01	30	01	28	3.4
01	43	01	42	01	40	01	38	01	87	01	35	01	32	01	31	01	29	8.6
02	44	02	42	01	41	01	39	01	38	01	35	01	33	01	31	01	30	3.8
02	45	02	43	02	42	02	40	02	30	02	36	02	34	02	32	01	30	4.0
03	47	02	45	02	43	02	42	02	40	02	38	02	35	02	33	02	31	4.2
03	20	03	47	03	44	02	40	02	40	02	40	02	30	02	95	09	22	4.6
04	51 51	03	40	03	10	03	45	03	42	02	40	00	20	0.2	98	62	34	4.8
05	51	.04	49	04	47	04	45	04	44 44	03	41	03	38	03	36	03	34	5.0
05	52	05	50	04	49	04	47	04	45	04	42	03	40	03	87	03	35	5-2
05	54	05	52	05	50	04	48	- 04	46	04	43	04	41	03	38	03	36	5.4
- 06	55	05	63	05	51	05	49	05	47	- 04	44	04	41	04	39	03	37	5.6
06	55	- 06	53	- 6	51	05	50	03	48	05	45	04	42	04	40	- 04	88	8-8
07	56	07	54	07	52	06	<b>5</b> 0	06	49	05	45	05	43	05	40	04	38	6.0
08	59	08	57	07	55	07	53	07	51	06	48	06	45	05	43	05	40	6.5
10	61	10	59	09	57	09	55	08	53	08	50	07	47	07	44	06	42	7.0
11	64	11	62	10	60	10	58	09	56	08	52	08	49	07	47	07	- 44	7-5
- 14	66	13	64	12	61	12	59	11	57	10	54	09	51	09	48	-08	45	8.0
15	69	14	66	13	64	13	62	12	60	u	56	10	53	09	50	09	48	8.2
17	70	16	68	15	66	15	64	14	62	13	58	12	55	11	52	10	49	8.0
19	78	18	71	17	68	16	66	15	64	14	60	13	57	12	54	11	51	9.2
21	75	20	72	19	70	18	68	17	66	16	62	14	58	13	55	12	52	10.0
23	77	21	75	20	72	19	70	18	68	17	64	15	60	14	57	13	- 54	10-5
		24	76	22	74	21	72	20	69	18	65	17	62	16	58	15	56	11-0
				24	76	23	74	21	72	19	68	18	64	17	60	15	57	11-5
						25	75	24	73	21	69	20	65	18	62	17	59	12.0
								25	75	23	71	21	67	19	64	18	61	12.0
								27	76	25	72	22	68	2)	65	19	62	13.0
										26	74	24	70	22	67	20	64	13.9
										28	75	25	72	23	68	22	65	14.0
												27	73	24	70	23	66	14.5
												28	75	26	71	24	68	15
														29	74	27	70	10
																80	- 73	17

A STATE

and the second second second

A STATE STATE STATE

the spinster

ł

·-23

3

William Carl

Sec. March

ł

LASS BURN

Sec. 1.

and the second second

.

......

# TABLE 3-4(B) (Continued)

Downloaded from http://www.everyspec.com

11

50 T 30

3.5.1

00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00<	73 m	34	# =	36	* =	38	n =	40	<b>N</b> ==	42	71 m	44	<b>n</b> =	<b>4</b> 6	11. m	= 48	n =	• <b>5</b> 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~~~~	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		2	5	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~		<u></u>	5	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	<u> </u>	~.,	r + 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	10	<b>~</b>	Å.	- 00	ñã	ã	00	60	00	00	07	00	00	00	00	00	00	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ã.	1.	ñ	ň	ŏŏ	10	ň	10	ă	00	- 00 00	60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	00	01	00	07	٠z
00       13       00       12       00       12       00       11       00       10       00       00       00       00       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       10       00       11       10       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       00       11       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11 <td< td=""><td><i>m</i></td><td>13</td><td>ň</td><td>12</td><td>ŏŏ</td><td>îĭ</td><td>ŏŏ</td><td>11</td><td>00</td><td>10</td><td></td><td>10</td><td></td><td>00</td><td></td><td>00</td><td>00</td><td>08</td><td>-4</td></td<>	<i>m</i>	13	ň	12	ŏŏ	îĭ	ŏŏ	11	00	10		10		00		00	00	08	-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ř	13	ň	13	ŏŏ	12	00	19	ã	n.	8	11		10	00	10	00	05	•6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	14	õõ	13	ŏŏ	13	00	12	00	19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11	00	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	00	09	.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1.0	~~~		~	**	00			10	00	10	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	16	00	15	00	15	00	14	00	13	00	13	00	12	00	12	00	11	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	00	10	00	10		14	00	14	00	13	00	13	00	12	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	10	00	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10		1%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13	00	13	00	13	1.6
00         22         00         20         00         20         00         19         00         16         00         16         00         16         00         17         00         16         00         17         00         16         00         18         00         17         00         16         00         18         00         17         00         16         00         18         00         17         00         16         00         18         00         17         00         16         00         18         00         17         00         16         00         18         00         17         01         26         01         27         01         26         01         27         01         26         01         27         01         26         01         25         01         27         01         26         01         25         01         27         01         28         01         27         01         28         01         27         01         28         03         25         03         25         03         25         03         25         03         26         27         02<	ŏŏ	20	õõ	19	ŏŏ	18	õõ	17	00	16	00	15	00	14	00	14	00	13	1·8 2·0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	93	00	<b>9</b> 9	00	*0		90	00	10	00	10	00						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	23 94	00	92	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	00	19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	00	17	00	10	00	16	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	97	ก้	98	- Ň	94	- M	02		00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	00	19	00	17	8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ň	20	ň	97	- ñi	98		95	61	9A	<u>00</u>	92	00 00	10	00	20	00	18	3.0
0.5       0.6       0.6       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0.7       0	02	31	02	29	őî	28	őî	97	<b>1</b>	98	01	45	01	• "	01	21 02	01	20	4.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•~		~	20	~			20		20	VI	<b>41</b>	01	20	01	ZZ	<b>8</b> .0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03	32	02	31	02	29	02	28	02	27	02	26	02	25	02	24	02	23	5-0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03	30	03	33	03	32	03	<b>a</b> u	02	29	UZ	28	02	27	02	26	02	25	5.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	<b>M</b>	97		00 95	03	92	03	30	03	29	03	273	03	27	03	26	6.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08	40	05	30	05	30	05	00 9x	01	32	03	31	03	29	03	28	03	27	6.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~	÷.	vu	90	~	90	00	00	00	23	04	34	V#	90	04	29	04	28	7.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	42	06	40	06	38	05	36	05	35	05	83	05	32	04	31	04	80	7.5
08       45       08       43       07       41       07       39       07       38       06       86       06       33       06       32       8       06       36       06       33       06       33       07       35       06       33       06       33       95       11         10       45       10       46       09       44       08       42       09       40       08       38       08       37       07       36       07       35       95         11       50       11       47       10       45       10       43       09       41       09       40       08       38       08       37       108       36       10-0         12       52       11       49       11       46       11       44       10       42       10       41       09       39       108       38       11-5       11-5       11-5       11-5       11-5       11       45       11       44       10       42       10       41       09       39       11-5       16       16       16       11-5       11       14       10       <	07	43	07	41	07	39	- 06	38	06	36	06	35	05	33	05	32	05	31	8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08	45	08	43	07	41	07	39	07	38	06	36	- 06	35	06	83	05	32	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09	47	09	44	08	42	08	40	07	39	07	37	07	36	06	34	06	33	9.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	48	10	46	09	44	08	42	08	40	08	39	07	37	07	36	07	35	9.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	50	11	47	10	45	10	43	09	42	09	40	08	38	08	37	08	36	10-0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	52	11	49	- 11	47	10	45	10	43	09	41	09	40	08	88	08	37	10-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	53	13	<b>5</b> 0	12	48	11	46	- 11	44	10	42	10	41	09	39	09	38	11.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	55	14	52	18	50	12	48	11	46	11	44	10	42	10	41	09	39	11.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	56	15	53	14	51	13	49	12	47	12	45	11	43	11	42	10	40	12.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	58	15	55	15	53	14	<b>5</b> 0	13	48	12	46	12	45	11	43	11	42	12.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	59	17	56	16	54	15	51	14	49	13	47	13	46	12	44	12	43	13.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	61	18	58	17	55	16	53	15	51	14	49	13	47	13	45	12	44	13.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	62	19	59	18	56	17	54	16	52	15	50	14	48	14	46	13	45	14.0
23       64       21       62       20       59       19       57       18       54       17       52       16       50       15       49       15       47       15-0         24       66       22       63       21       61       20       58       19       56       18       54       17       52       16       50       15       49       15       47       15-0         26       69       24       66       23       63       22       61       20       58       19       56       18       54       17       51       16       49       16-0         20       69       24       66       23       63       22       61       20       58       19       56       18       53       17       51       16       49       16-0         20       71       27       68       25       66       24       63       22       60       21       68       20       55       19       54       18       52       17-5         30       72       28       69       26       67       21       68       24       61	21	63	<b>2</b> 0	61	19	58	18	56	17	53	16	51	15	49	14	48	14	46	14-5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	64	21	62	20	59	19	57	18	54	17	52	16	50	15	49	15	47	15.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	66	22	63	21	61	20	58	19	56	18	54	17	52	16	50	îš	48	15.5
28       69       24       66       23       63       22       61       20       58       19       56       18       54       18       52       17       50       16.5         28       70       26       67       24       44       23       61       22       59       20       57       19       55       19       53       18       51       17.0         29       71       27       68       25       66       24       63       22       60       21       58       20       55       19       53       18       51       17.5         30       72       28       69       26       67       25       64       24       61       22       59       21       57       20       55       19       53       18.60         29       71       27       68       26       65       24       63       23       60       22       58       21       56       19       54       18.52       17.5       18.60       18.62       17.5       18.60       18.61       17.5       18.60       18.61       17.5       18.60       18.61       19.7<	25	67	23	64	22	62	21	59	20	57	19	55	18	53	17	51	16	49	18.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	69	24	66	23	63	22	61	20	58	19	58	18	54	18	52	17	50	16.5
29       71       27       68       25       66       24       63       22       60       21       58       20       56       19       54       18       52       17.5         20       72       28       69       26       67       25       64       24       61       22       59       21       57       20       55       19       53       18.0         29       71       27       68       26       65       26       64       24       61       22       59       21       57       20       55       19       53       18.0         31       72       29       69       27       66       26       64       24       61       23       59       22       57       21       56       19.0         30       70       28       68       26       65       25       63       24       64       23       59       22       57       21       56       19.0         30       70       28       66       26       64       26       61       24       59       23       57       20.0       23       58	28	70	26	67	24	64	23	61	22	59	<b>2</b> 0	57	19	55	19	53	18	51	17.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	71	27	68	25	66	24	63	22	60	21	58	20	56	19	54	18	52	17.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	72	28	69	26	67	25	64	24	61	22	59	21	57	20	55	19	53	18.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			29	71	27	68	26	65	24	63	23	60	22	58	21	56	20	64	18.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			31	72	29	69	27	66	26	64	24	61	23	59	22	57	21	55	19.0
31       71       20       68       28       66       26       64       25       61       24       59       23       57       20-0         30       70       25       67       27       65       26       62       24       60       23       58       20-5         32       71       30       68       28       66       27       63       26       61       24       59       23       57       20-0         31       69       29       67       28       65       26       62       24       60       23       58       20-5         31       69       29       67       28       65       26       62       25       60       21-6         32       70       30       68       29       65       27       63       26       61       22-0         31       69       29       67       28       64       27       62       22-6         32       70       30       68       29       67       28       64       27       62       22-6         32       70       31       67       20					30	70	28	68	26	65	25	63	24	60	23	58	2%	56	19.5
30       70       25       67       27       65       26       62       24       60       23       63       20-5         32       71       30       68       28       66       27       63       26       61       24       59       21-0         31       69       29       67       28       65       26       62       25       60       21-5         32       70       30       68       29       67       28       65       26       62       25       60       21-6         31       69       29       67       28       65       27       63       26       61       22-0         31       69       29       67       28       64       27       62       22-6         32       70       30       68       29       67       28       64       27       62       22-6         32       70       31       67       20       65       24       63       23         33       69       31       67       33       69       31       67       25         33       69       31					31	71	29	68	28	66	26	64	25	61	2.4	50	92	67	90.0
32       71       30       68       28       66       27       63       26       61       24       59       21.0         31       69       29       67       28       65       26       62       25       60       21.5         32       70       30       68       29       67       28       65       26       62       25       60       21.5         32       70       30       68       29       67       28       64       27       62       22.0         31       69       29       67       28       64       27       62       22.6         32       70       31       67       20       65       27       63       23       23         33       69       21       65       27       63       26       61       22.0         33       69       21       65       27       63       26       61       22.0         33       69       31       67       20       65       28       63       23         33       69       31       67       25       33       69       31					~ 4	• •	30	70	25	67	27	65	28	62	24	60	23	69	20.5
31       69       29       67       28       65       26       62       25       60       21.6         32       70       30       68       29       65       26       62       25       60       21.6         32       70       30       68       29       65       27       63       20       61       22.0         31       69       29       67       28       64       27       62       22.6         32       70       31       67       20       65       28       63       23         33       69       31       67       30       65       24       33       69       31       67       25         33       69       31       67       25       33       69       26							32	71	30	68	28	66	27	63	26	61	94	χQ	21.0
32       70       30       68       20       65       27       63       20       61       22.0         31       69       29       67       28       64       27       62       22.6         32       70       31       67       20       65       27       63       22.6         33       69       31       67       30       65       24         33       69       31       67       25       33       69       31       67       25         33       69       31       67       25       33       69       25								•-	ŝĩ	69	29	67	28	65	26	62	25	Rn	21.6
31       69       29       67       28       64       27       62       22.5         32       70       31       67       20       65       2A       63       23         33       69       31       67       30       65       24         33       69       31       67       25       33       69       26									82	70	30	68	29	65	27	63	26	61	22.0
32 70 31 67 20 65 2A 63 23 33 69 31 67 30 65 24 33 69 31 67 30 65 24 33 69 31 67 25 33 69 26											81	69	29	67	99	R.L	27	89	99.K
33 69 31 67 30 65 24 33 69 31 67 25 33 69 26											32	70	รี้เ	67	20	65	22	63	23
83 69 31 67 25 33 69 26													33	69	81	67	30	65	24
33 6è 26															83	69	31	67	25
																-	33	68	26



Downloaded from http://www.everyspec.com

Figure 3-2. Special Case for No Failures in N Trials and  $C = R_1$ 

All the s-confidence intervals are discouragingly broad. Statistics shows us how little we know from the experiment.

If N is too large for Table 3-2, use Fig. 3-1 or use the Poisson approximation. Ref. 1 can be used to find the inside and outside limits by setting  $\eta = 1$  and 0 and solving for the appropriate value of p.

### 3-7.2 EXAMPLE NO. 2

Thirty tests were run, there were no failures. Find the lower 1-sided s-confidence limit C on the s-reliability R such that C = R.

$$R = 30/30 = 1$$
.

Enter Fig. 3-2 with N = 30; then 1 - C = 1 - R = 0.08 = 1 - 0.92; Conf  $\{R \ge 0.92\} \ge 92\%$ .
### REFERENCES

Downloaded from http://www.everyspec.com

- 1. AMCP 706-109, Engineering Design Handbook, Tables of the Cumulative Binomial Probabilities.
- J. Miller and J. E. Freund, Probability and Statistics for Engineers, Prentice-Hall, N.J., 1965.
- 3. Harvard Computation Laboratory, Tables of the Cumulative Binomial Probability Distribution, Harvard Univ. Press, 1955.
- 4. Abramowitz and Stegun, Eds., Handbook of Mathematical Functions, AMS55, NBS, USGPO, June 1964 with subsequent corrected printings.

- 5. W. J. Conover, *Practical Nonparametric* Statistics, John Wiley & Sons, New York, 1973.
- 6. N. R. Mann, "Approximately Optimal Confidence Bounds on Series- and Parallel-System Reliability for Systems with Binomial Subsystem Data", *IEEE Trans. Reliability*, Vol. R23-5, Dec. 1974.
- 7. Handbook of Reliability Engineering, NAVWEPS 00-65-502, Bureau of Naval Weapons, 1 June 1964.
- 8. C. Blyth and D. Hutchinson, "Table of Neyman-shortest Unbiased Confidence Intervals for the Binomial Parameter", Biometrika, Vol. 47, pp. 381-391 (1960).

3-26

ないであってい

### CHAPTER 4

Downloaded from http://www.everyspec.com

### POISSON DISTRIBUTION

4-0 LIST	OF SYMBOLS	PrD	= Probability distribution
С	= s-Confidence	R	= s-Reliability
Cdf	= Computative distribution func-	r	= random variable, discrete
C, L, U CM _i { }	<ul> <li>subscripts that imply a s-confidence level; C is general, L is lower, U is upper</li> <li>ith central moment</li> </ul>	s- Sf StDv{}	<ul> <li>denotes statistical definition</li> <li>Survivor function</li> <li>standard deviation</li> <li>variance</li> </ul>
Conf { }	= s-Confidence level	·	
csqfc CV{}	<ul> <li>Sf for chi-square distribution</li> <li>coefficient of variation: StDv{ }/E{ }</li> </ul>	μ {•;•},(•;•)	<ul> <li>parameter</li> <li>the fixed parameters are listed to the right of the semicolon, the random variable is listed to the left of the parameters</li> </ul>
E{ }	= s-Expected value	_	= the complement, e.g., $\vec{\phi} = 1$ –
gaujc M _i { }	= Sf for Gaussian distribution = ith moment about the origin		$\phi$ where $\phi$ is any probability
NCM _i { }	= normalized <i>i</i> th central mo- ment; $CM_i \{ \} / [StDv\{ \}]^i$	4-1 INTRO	DUCTION
pdf	= probability density function	The Pois number of	sson distribution relates the actual events in a given interval to the enumber of events in that interval
pmf	= probability mass function	when the	process is Poisson. (Poisson was
poi	= base name for Poisson distri- bution	ssohn.) It	e name is pronounced pwar- is often a good approximation to al distribution.
poif	= Cdf for Poisson distribution	The base distributior	e name <i>poi</i> is given to the Poisson 1 (for <u>Poi</u> sson). The suffix f implies
poifc	= Sf for Poisson distribution	the $Cdf$ , and $Cdf$ and $S_{1}$	nd the suffix <i>fc</i> implies the <i>Sf</i> . The <i>f</i> are not complementary because
Pr { }	= Probability	the random	variable is discrete.

### **42 FORMULAS**

 $E\{r,\mu\}=\mu$ 

 $StD\mu\{r,\mu\}=\mu^{1/2}$ 

 $CV\{r, \mu\} = \mu^{-1/2}$ 

 $NCM_{3}(r, \mu) = \mu^{-1/2}$ 

 $CM_3{r, \mu} = \mu$ 

 $\mu = \lambda \tau$ 

- $\mu$  = Poisson parameter (true average number of events in the interval)  $\mu \ge 0$
- r = random variable, r = 0, 1, 2, ... (actual number of events in the interval)

$$pmf\{r;\mu\} = \exp(-\mu)\mu^r/r! \qquad (4-1)$$

$$Cdf\{r;\mu\} = poif(r;\mu) = \sum_{i=0}^{r} \exp(-\mu)\mu^{i/i!}$$

$$Sf\{r;\mu\} = poifc(r;\mu) = \sum_{i=r}^{m} \exp(-\mu)\mu^{i/i!}$$
  
(4-3)

$$poif(r; \mu) = csqfc[2\mu; 2(r+1)]$$
 (4-5a)

$$poifc(r; \mu) = csqf(2\mu, 2r)$$
(4-5b)

For reasonably large  $\nu$  (say  $\nu \ge 5$ ), Eq. 4.0 is sufficiently accurate.

$$\chi^2_{\nu,Q} \approx \nu \left[ 1 - \left(\frac{2}{9\nu}\right) + z_Q \left(\frac{2}{9\nu}\right)^{1/2} \right]^3 \quad (4-6)$$
  
where

$$csqfc(\chi^2_{\nu,O};\nu) = Q$$

 $gaufc(z_Q) = Q$ 

(4-4)

(4-2)

Downloaded from http://www.everyspec.com

The estimator

$$\hat{\mu} \equiv r \tag{4-7}$$

is unbiased and maximum likelihood. If r = 0, it is esthetically displeasing, although still quite true. Very often (when r = 0) a *s*-confidence limit is used in place of  $\hat{\mu}$  usually corresponding to about 50% *s*-confidence level. If  $\mu = \lambda \tau$ , and  $\lambda$  is to be estimated, merely divide all estimates and *s*-confidence limits for  $\mu$  by  $\tau$ .

s-Confidence statements are more difficult for discrete random variables than for continuous random variables. Chapter 12 discusses the matter thoroughly. The usual s-confidence intervals for  $\mu$  are of the forms

$$\operatorname{Conf}\left\{\mu \leq \mu_{L}\right\} \leq C_{L} \tag{4-8a}$$

 $\operatorname{Conf}\left\{\mu \le \mu_U\right\} \ge C_U \tag{4-8b}$ 

(events per unit measure of  $\tau$ ). then

### 4-3 TABLES AND CURVES

The *pmf* is easily calculated and so is rarely tabulated; Ref. 1 (Table 39 and Sec. 21) gives some tables of individua¹ terms. The *Cdf* is available in tables such as Ref. 1 (Table 7 and Sec. 3), Ref. 2 (Table V and p. 24), Ref. 3 (Table 26.7), Ref. 4, and almost any statistics/probability/quality control textbook.

Table 4-1 shows a few examples of the

Poisson *pmf*. If a Poisson process has a rate  $\lambda$ 

### TABLE 4-1

Downloaded from http://www.everyspec.com

### POISSON DISTRIBUTION, EXAMPLES

### pmf $\{r; \mu\}$

<u>.</u>	<u>μ = 0.01</u>	<u>μ = 0.1</u>	<u>μ = 0.5</u>	$\mu = 2$	<u>μ=2</u>	<u>μ=5</u>	<u>μ = 10</u>
0	0.99	0.90	0.61	0.37	0.14	0.0067	0.45 × 10 ⁻⁴
1	.99 X 10 ⁻²	.090	.30	.37	.27	.034	.0045
2	.50 X 10 ⁻⁴	.0045	.076	.18	.27	.084	.0623
3	.17 X 10 ⁻⁶	.00015	.013	.061	.18	.14	.0076
4		.38 X 10 ⁻⁵	.0016	.015	.090	.18	.019
5	•	.75 X 10 ⁻⁷	.00016	9/i31	.036	.18	.038
6	•	.13 X 10 ⁻⁸	13 X 10-4	.00051	.012	.15	.063
7	•	•	.94 X 10 ⁻⁶	.73 X 10 ⁻⁴	.0034	.10	.090
8		-	.59 × 10 ⁻⁷	.91 X 10 ⁻⁵	.00086	.065	.11
9		٠	.33 X 10 ⁻⁸	1.0 X 10 ⁻⁶	.00019	.036	.13
10			.16 X 10 ⁻⁹	1.0 X 10 ⁻⁷	.38 X 10 ⁻⁴	.018	.13
11			•	.92 × 10 ⁻⁸	.69 × 10 ⁻⁵	.0082	.11
12			•	.77 X 10 ⁻⁹	.12 X 10 ⁻⁵	.0034	.095
13			•	•	.18 X 10 ⁻⁶	.0013	.073
14				•	.25 X 10 ⁻⁷	.00047	.052
15				•	.34 X 10 ⁻⁸	.00016	.035
16					.42 X 10 ⁻⁹	.49 X 10 ⁻⁴	.022
17					•	.14 X 10 ⁻⁴	.013
18					•	.40 × 10 ⁻³	.0071
19					•	.11 X 10 ⁻⁵	.0037
20						.26 × 10⁻°	.0019
•						•	•
•						•	•
25						.13 X 10 ⁻⁹	.29 X 10 ⁻⁴
•						•	•
30							.17 X 10 ⁻⁶
•							•
35							.44 X 10 ⁻⁹
E {r; µ}	0.01	0.1	0.5	1.0	2.0	5.0	10.0
$StDv{r; \mu}$	0.10	0.32	0.71	1.0	1.4	2.2	3.2
$CV\{r;\mu\}'$	10.0	3.2	1.4	1.0	.71	.45	.32
$CM_{3}\{r; \mu\}$	0.01	0.1	0.5	10	2.0	5.0	10.0
$NCM_3 \{ r; \mu$	10.0	3.2	1.4	1.0	.71	.45	.32



Downloaded from http://www.everyspec.com

a hand of

Invite Stor Vathantes - Main

(1:) Jiod = { 1: 1 J JOD NOSSIO

Figure 4-1. Poisson Cumulative Distribution Function

÷

acres washes

and a survey of the second second

$$\operatorname{Conf}\left\{\mu_{L} \leq \mu \leq \mu_{U}\right\} \geq C_{U} - C_{L} \qquad (4-8c)$$

Downloaded from http://www.every

where  $\mu_L$  and  $\mu_U$  are defined by

$$C_U = 1 - poif(r; \mu_U) = csqf(2\mu_U; 2r+2)$$

$$C_L = poifc(r; \mu_L) = csqf(2\mu_L; 2r), r \neq 0$$

 $\mu_L=0, r=0.$ 

In this form,  $C_L$  is usually small (say 5%) and  $C_U$  is usually large (say 95%). Notation for s-confidence statements is not at all standard; so particular attention must be paid to the example forms. Table 6-1 and Fig. 4-1 are useful for this type of s-confidence statement.

Chapter 12 shows that s-confidence statements for  $\mu$  can also be of the forms

 $\operatorname{Conf}\left\{\mu \leq \mu_L'\right\} \geq C_L \tag{4-9a}$ 

 $\operatorname{Conf}\{\mu \le \mu_U'\} \le C_U \tag{4-9b}$ 

### Procedure

1. Find  $\mu_U$ ,  $\mu_L$  from Eq. 4-8 and Table 6-1.

2. Find  $\mu'_{II}$ ,  $\mu'_{L}$  from Eq. 4-9 and Table 6-1.

- 3. Make the s-confidence statements from Steps 1 and 2.
- Make the corresponding s-confidence statements about λ.

$$\operatorname{Conf} \left\{ \mu_L' \le \mu \le \mu_U' \right\} \le C_U - C_L \qquad (4-9c)$$

where  $\mu_L'$  and  $\mu_U'$  are defined by

$$C_U = poifc(r; \mu'_U) = csqf(2\mu'_U; 2r), r \neq 0.$$
  
 $\mu'_U = 0, r = 0.$ 

$$C_L = 1 - poif(r; \mu'_L) = c_s qf(2\mu'_L; 2r+2)$$

In this form, as in Eq. 4-8,  $C_L$  is usually small (say 5%), and  $C_U$  is usually large (say 95%).  $\mu \underline{i}$  and  $\mu_U'$  will be inside the interval ( $\mu_L$ ,  $\mu_U$ ) (for  $r \neq 0$ ). Table 6-1 and Fig. 4-1 are useful for this type of *s*-confidence statement also.

Example. In a 1000-hr life test, there are 3 failures. Find the 5% and 95% 1-sided s-confidence limits on the true mean (for the 1000 hr)  $\mu$ ; also make the associated 2-sided s-confidence statement. Find the corresponding limits on the failure rate  $\lambda(\lambda = \mu/1000$ -hr).

### Example

1. 
$$csqf(15.5;8) = 0.95$$
  
 $\mu_U = 7.75$   
 $csqf(1.64;6) = 0.05$   
 $\mu_L = 9.82$   
2.  $csqf(12.6;6) = 0.95$   
 $\mu'_U = 6.3$   
 $csqf(2.73;8) = 0.05$   
 $\mu'_I = 1.37$   
3.  $Conf \{ \mu \le 0.82 \} \le 5\%$   
 $Conf \{ \mu \le 7.75 \} \ge 95\%$   
 $Conf \{ \mu \le 7.75 \} \ge 95\%$   
 $Conf \{ \mu \le 1.37 \} \ge 5\%$   
 $Conf \{ \mu \le 6.3 \} \le 95\%$   
 $Conf \{ \mu \le 6.3 \} \le 95\%$   
 $Conf \{ 1.37 \le \mu \le 6.3 \} \le 90\%$   
4.  $Conf \{ \lambda \le C.82/1000 - hr \} \le 5\%$   
 $Conf \{ \lambda \le 7.8/1000 - hr \} \le 95\%$   
 $Conf \{ 0.82/1000 - hr \} \le 95\%$   
 $Conf \{ 0.82/1000 - hr \} \le 95\%$   
 $Conf \{ 0.82/1000 - hr \} \le 95\%$ 

Conf  $\{\lambda \le 1.37/1000 \text{-hr}\} \ge 5\%$ Conf  $\{\lambda \le 6.3/1000 \text{-hr}\} \le 95\%$ 

Conf  $\{ 1.37/1000 - ht \le \lambda \le 6.3/1000 - hr \} \le 90\%$ 

The statements about  $\lambda$  and  $\mu$  are discouragingly wide. This is due to the small number of failures.

### 4-5 RANDOMIZED EXACT s-CONFI-DENCE INTERVALS

Traditionally, the s-confidence statement (Eq. 4-8)-worst case-is made to be on the safe side. Instead of always choosing this worst case, one can get exact s-confidence limits by randomly choosing a value between  $\mu_L$  and  $\mu'_L$ , or between  $\mu_U$  and  $\mu'_U$ . There is nothing to lose and everything to gain by this procedure because it means not always choosing the worst possible case.

The equations to give the randomized limits are

$$\eta = \frac{poifc(r; \mu_{L}^{*}) - C_{L}}{\exp(-\mu_{L}^{*})(\mu_{L}^{*})^{*} / r!}$$
$$= \frac{poifc(r; \mu_{L}^{*}) - C_{L}}{poifc(r; \mu_{L}^{*}) - poifc(r + 1; \mu_{L}^{*})}$$
$$= \frac{\overline{C}_{L} - poif(r - 1; \mu_{L}^{*})}{poif(r; \mu_{L}^{*}) - poif(r - 1; \mu_{L}^{*})}$$

(unless r = 0, and  $\eta \leq \overline{C}_L$ ;

then use 
$$\mu_L^* = 0$$
 (4-10a)

 $\eta = \frac{poif(r; \mu_U^*) - \overline{C}_U}{\exp(-\mu_U^*)(\mu_U^*)^{r'!}}$   $= \frac{C_U - poifc(r+1; \mu_U^*)}{poifc(r; \mu_U^*) - poifc(r+1; \mu_U^*)}$   $= \frac{poif(r; \mu_U^*) - \overline{C}_U}{poif(r; \mu_U^*) - poif(r-1; \mu_U^*)}$ (unless r = 0, and  $\eta \ge C_U$ ,

then use  $\mu_U^* = 0$  (4-10b)

where  $\eta$  is a random number from the uniform distribution  $0 \le \eta \le 1$ . When  $\eta = 0$ ,  $\mu_L^* = \mu_L$  and  $\mu_U^* = \mu_U$ . If  $\eta = 1$  (consider the least upper bound of  $\eta$ ),  $\mu_L^* = \mu_L'$  and  $\mu_U^* = \mu_U'$ .

If special tables are not available for  $\mu_L^*$  and  $\mu_U^*$  use Eqs. 3-8 and 3-9 with Table 6-1 to find  $\mu_U$ ,  $\mu_L$  and  $\mu'_U$ ,  $\mu'_L$ . Then use Eq. 3-10 to find  $\mu_L^*$ ,  $\mu_W^*$  by an iterative process.

A handy random number generator is a coin, flipped several times. Decide whether heads is to be 0 or 1; tails is the reverse. Then multiply the resu't of the first flip by 0.5, the second flip by 0.25, the third flip by 0.125, etc. (the numbers are  $2^{-flip}$ ), as fine as desired. Then add the numbers. Usually 5 or 6 flips give a sufficiently continuous random variable. (For example, heads is 0, tails is 1, the sequence is H, T, H, H, T, H, Add 0.25 + 0.03125 = 0.28125; truncate to 0.281 for convenience.)

Example. Use the data and solution from the example in par. 4-4. Find the randomized exact 5% and 95% s-confidence limits. Suppose  $\eta = 0.281$  (the random number in the paragraph immediately above). Since r = 3is not very large, direct calculation of *poif*  $(r; \mu)$  will be used. (This is reasonable on the electronic calculators with engineering functions. An HP-45 was used for this example.)

The forms of Eq. 4-10 suitable for direct calculation with interpolation are

$$f_L(x_L) \equiv \frac{\overline{C}_L - poif(r-1; x_L)}{\exp(\cdots x_L) x_L^r / r!} - \eta = 0$$

(unless r = 0, and  $\eta \leq \mathcal{C}_L$ :

then use  $\mu_L^* = 0$  (4-11a)

$$f_U(x_U) \equiv \frac{poif(r; x_U) - C_U}{\exp(-x_U)x_U^r/r!} - \eta = 0$$

then use  $\mu_{f_l}^* = 0$ ).

(unless r = 0, and  $\eta \ge C_U$ ;

115)

4-7

The solution to Eq. 4-11a is  $x_L = \mu_L^*$ . The solution to Eq. 4-11b is  $x_U = \mu_U^*$ .

The formula for linear interpolation is

Contract on Annual or

$$x_{\text{new}} = \frac{x_{-}f_{+} - x_{+}f_{-}}{f_{+} - f_{-}}$$
(4-12)

where  $x_{-}$  and  $x_{+}$  are the smaller and larger values of x, respectively; and  $f_{-} \equiv f(x_{-})$  and  $f_{+} \equiv f(x_{+})$ .

ownloaded from http://www.everyspec.com

AMC? 706-200

### Procedure

- 1. Solve Eq. 4-11a first. Use  $x = \mu'_L$ , and  $x_+ = \mu_L$ . The values of f are known from the definitions of  $\mu'_L$ ,  $\mu_L$ . Use Eq. 4-12 to find  $x_{new}$ . Solve Eq. 3-11a using  $x_{new}$ . Use Eq. 4-2 to calculate *poij*  $(r; \mu)$ .
- 2. Make a new chart, discarding the old pair (from Step 1) which is farthest from the solution. Repeat the linear interpolation and calculation of  $f_{new}$ .
- 3. Repeat Step 2. Try 1.144 to be sure the solution is bracketed. This is close enough,  $\mu_L^* = x_L = 1.14$ .
- 4. Solve Eq. 4-11b next. Use  $x_{-} = \mu'_{U}$ ,  $x_{+} = \mu_{U}$ . The values of f are known from the definitions of  $\mu'_{U}$ ,  $\mu_{U}$ .

1.  $\bar{C}_{L} = 0.95, r = 3$ 

Example

Downloaded from http://www.everyspec.com

	x	. f
	0.82	$-0.281 = (-\eta)$
	1.37	$+0.719 = (1 - \eta)$
	0.975	-0.138 (new)
2.	x	ſ f
	0.82	-0.281
	0.975	-0.138
	1.125	-0.015 (new)
3.	<u>x</u>	1f
	0.975	-0.138
	1.125	-0.015
	1.143	-0.0004
	1.144	i +0.0001
4.	$\vec{C}_U = 0.05, r$	= 3
	<u> </u>	1 <i>f</i>
	6.3	$+0.719 = (1 - \eta)$
	7.75	$-0.281 = (-\eta)$
	7.3 1	+0.0834 (new)
5.	x	f
	7.34	+0.0834
	7.75	-0.281
	7.434	+0.0099 (new)
6.	x	f f
	7.34	+0.0834
	7.434	+0.0099
	7.4467	-0.0007 (new)
	x	f f
	7.434	+0.0099
	7.4467	0.0007
	7.44586	-0.000057

+0.00066

7,445

- 5. Repeat Step 2.
- 6. Repeat Step 2.
- 7. Repeat Step 2. Try 7.445 to be sure the solution is bracketed.
  - $\mu_U^* = x_U = 7.45.$

The randomized exact s-confidence statements are

Downloaded from http://www.everyspec.com

Conf {  $\mu \le 1.14$  } = 5% Conf {  $\mu \le 7.45$  } = 95% Conf {  $1.14 \le \mu \le 7.45$  } = 90%

The corresponding statements for  $\lambda$  are

Conf {  $\lambda \le 1.14/1000$ -hr } = 5% Conf {  $\lambda \le 7.45/1000$ -hr } = 95% Conf { 1.14/1000-hr  $\le \lambda \le 7.45/1000$ -hr } = 90%.

Table 4-2 lists randomized 2-sided s-confidence limits that have special statistical properties. They are not equal-tailed s-confidence limits; they cannot be used separately for upper and lower s-confidence limits. See Ref. 6 for a more complete cussio .. In general, the s-confidence limits in Table 4-2 will be different from those calculated using the methods in this chapter. It is difficult to say that one set is better than the other

excep. in the narrow statistical sense stated for Table 4-2.

### 4-8 CHOOSING As-CONFIDENCE LEVEL

Choosing an appropriate s-confidence level is always troublesome. There is obviously little point in having a very high s-confidence that the s-reliability is very low, or a very low s-confidence that the s-reliability is very high. A reasonable compromise is to choose a s-confidence level that is approximately the point estimate of the s-reliability; for r = 0 the s-confidence level can be chosen to be equal to the lower s-confidence limit on s-reliability.

### 47 SXAMPLE, LIFE TEST RESULTS

On a life test there were no failures. Find 1%, 99%, 1-sided s-confidence intervals for  $\mu$ , and then find the associated 2-sided s-confidence interval.

### TABLE 4-2

we also garang third day

Downloaded from http://www.everyspec.com

### NEYMAN-SHORTEST UNBIASED 95% AND 99% s-CONFIDENCE INTERVALS FOR $\mu$ (ADAPTED FROM Ref. 6)

r + 11	95	3	9	9%	r + 11	9.	5%	9	9%	r + n	95	<b>%</b>	9	9%
0.01	0	0	0	a I	36	0.5	t a	02	10 3	9-1	40	15-8	2.9	18-6
62	Ū.	0	Ū.	9	37	6	8 2	3	10.5	92	40	159	30	18.8
03	0	U	U	13	3 8	ŧ	<b>H</b> 4	3	10.6	93	41	16	3-0	18 \$
114	0	0	0	17	3 9	7	N 5	4	19.7	9.4	4-1	162	3-1	19-1
05	υ	U	U	19	4.0	8	N 6	•4	10 K	95	4 1	10.3	3-1	19-2
0.06	0	03	0	21	41	08	8 8	0.5	11.0	9.8	43	10.5	3 2	19-4
07	0	-6	U	23	42	4	9.0	-5	113	97	44	166	3-3	19-5
0.5	ø	:	0	24	43	9	91	5	11.5	08	44	16.7	33	196
69	0	N	U	2.5	] 44	10	93	5	11.6	9.0	4.5	16-8	34	19-7
10	9	·9	0	2.7	4.5	10	9.5	5	11.8	10.0	46	189	3.5	19-8
0 12	0	12	0	2.9	1 40	11	9.6	06	11.9	10 2	4.7	17-2	3-6	20-2
-14	0	1-3	0	3.0	47	11	97	6	12-1	104	4 8	17-5	3.7	20-1
16	0	15	0	32	48	12	9 N	7	12.5	106	50	178	3-3	20 \$
18	0	16	0	33	49	13	10 0	•7	123	10.8	5-t	18.0	4.0	21-0
·20	0	1.7	a	3.4	50	14	10-1	8	12-4	110	5 <b>3</b>	18-2	4-1	21-2
0 25	0	2.0	0	36	51	14	10.3	0.8	126	11-2	5-4	18-5	4-2	21-6
30	í.	22	0	38	5-2	1.4	10.4	-9	129	<u>[ 11-4</u>	56	18-8	4/3	21-9
35	0	24	5	40	63	1.5	10.6	U	13 0	116	57	19-1	4-4	<b>22</b> ·1
41)	0	25	6	43	54	15	10.8	۰9	13-2	11-8	5 🕷	19 5	1.6	22-4
45	0	2.6	0	43	55	1.6	109	10	13.4	120	60	19 5	4-8	22-6
0 50	0	2.8	0	4.4	56	16	11-0	10	13-5	12.2	6-1	19-8	4-9	22-9
55	0	29	0	4.5	57	17	112	1-1	136	12.4	63	20-1	5-0	23-3
60	0	3.0	0	4 6	59	1.8	113	11	13.8	126	母-4	20-3	8-1	23.5
6.5	0	30	0	47	59	19	11.4	12	139	128	66	20-6	5.2	23-8
-70	0	3-1	0	4.7	60	20	11.2	1.3	14-0	130	68	20 8	5-4	24-0
0-75	0	3-3	0	4.8	6-1	2.0	117	1-3	14 \$	132	6-9	21-1	55	24-3
-80	0	3-3	0	49	6.5	21	11-8	1.3	14 4	13.4	70	21-4	5.6	24-8
85	0	3.3	0	4-9	63	2.1	120	14	14 6	136	7-1	21-8	8.7	24 9
90	0	3.4	0	60	64	22	122	14	14 7	13-8	7.3	21.3	8-9	25-1
1.0	0	3.8	0	6-1	65	22	12.3	1-4	14 9	14.0	75	22-1	60	25-3
11	0	3-8	0	5.5	66	2.3	10-4	1-5	15 0	14.2	76	22-4	6-1	25-7
12	0	4-1	0	59	67	24	12.6	10	154	14-4	77	22 6	6·3	26-0
13	0	43	0	61	68	24	12.7	1.6	15 3	1 14.0	7.9	22.9	6.4	26 2
14	0	4-5	0	6-4	69	25	12.8	17	15.4	148	80	23 1	6.5	28-4
15	Û	47	0	66	70	26	12.9	18	15 5	15.0	8-2	23.3	6.7	26-7
16		4-9	0	6.7	7.1	27	13-1	18	15 7	15-2	8-3	23-6	6.8	27-0
17		50	0	69	7-2	27	13 2	19	15.9	] 15-4	85	23.9	6-9	27-3
18	0	52	0	70	1 73	28	13-4	1.9	16 0	15-6	86	24-1	7.1	27.5
19	0	5-3	0	7-1	1 74	28	13 5	19	162	15-8	8.8	24-4	7.2	27-8
20	0	54	U	72	75	29	137	20	16-4	160	90	24.0	7.4	28-0
21	01	56	ŋ	76	7.6	29	13-8	20	16.5	16 2	9·1	24.0	7.5	28-3
2 2	-1	5.9	0	78	177	30	139	21	166	10.4	9.2	25 1	7-6	28-6
23	-1	61	0	81	] 78	3.1	14 0	2 2	167	16 C	94	25-4	7.7	28-9
2.4	1	82	0	83	7.9	32	14.1	22	16.8	16-8	9.5	25-6	7.9	<b>2</b> 9·1
2.5	•1	64	U	84	80	3.3	14-3	23	17-0	170	97	25-8	8-1	29-1
26	0-1	66	0	85	8-1	3.3	14-4	24	17.2	17.2	9-9	26-1	8-2	29-6
27	·2	6.7	0	87	82	34	14-6	2.4	17.3	17.4	10 0	26-4	83	29-9
28	·2	68	0	88	83	34	147	2.4	17 5	178	10.2	26.0	- \$4	30-3
29	• 1	G 9	01	0.0	84	3 5	14 9	25	177	17-8	10 3	28-8	8.6	30-4
30	4	7.1	•1	91	8.5	36	15.0	25	17.8	18.0	10 5	27.1	8.8	30-6
31	0.4	73	0 2	9.4	8.6	36	15-1	2 A	17.9	18.2	10-6	27.3	89	30-9
32	4	75	.2	9.6	87	37	15.3	27	18-1	18.4	10.8	27-6	90	31-2
33	- 4	7.6	•2	98	88	38	15.4	27	18.2	186	10 9	27-8	9-1	31-5
34	·5	78	•2	10.0	80	3.8	15-5	28	18 3	18-8	11-1	28-1	93	31-7
3.5	-5	8.0	.0	10.2	1 90	3.0	15.6	2.0	18.4	1 19-0	11-3	28.3	9.5	31.9

Notes:

1. The pairs of figures under each s-confidence heading are lower and upper s-confidence limits for  $\mu$ .

2. Notation:

 $\mu$  = Poisson parameter

r = number of events observed in cample

 $\eta =$  random number from the uniform distribution on [0, 1]

3. For tabular convenience,  $r, \eta$  is listed as  $r + \eta$ .

$r + \eta$	95	%	99 ~~~	9%	(r+n	95 مىسە	%	99 ~	%	1 <i>r</i> + n		196	.99	%
86	69	105	64	112	141	119	165	112	173	196	169	224	162	234
87	70	106	65	113	142	119	166	113	174	197	170	225	163	235
88	70	107	66	114	143	120	167	114	176	198	171	226	103	236
89	71	108	66	115	144	121	168	115	177	199	172	227	164	237
90	72	109	67	116	145	122	160	116	178	200	173	228	165	238
91 92	73 74	110	68 60	117	146	123	170	117	179	201	174	230	166	239
93	75	118	70	120	149	195	172	117	181	202	170	201	107	24U 041
94	76	114	71	121	140	120	174	110	182	203	177	232	100	949
95	77	115	72	122	150	127	175	120	183	205	178	234	170	244
96	78	116	72	123	151	128	176	121	184	206	179	235	171	245
97	78	117	73	124	152	129	177	122	185	207	180	236	172	246
98	79	118	74	125	163	130	178	323	187	208	181	237	173	247
89	80	119	75	126	154	130	179	124	188	209	181	238	173	248
100	81	120	76	127	155	131	180	125	189	210	182	239	174	249
101	82	121	77	120	156	132	181	126	190	211	183	240	175	250
102	83	123	78	130	157	133	182	126	191	212	184	241	176	251
103	84	124	79	131	158	)34	183	127	192	213	185	242	177	252
104	85	125	19	132	159	135	184	128	193	214	186	243	178	253
105	86	126	80	133	160	136	186	129	194	215	187	245	179	254
106	87	127	81	134	101	137	187	130	195	219	188	246	180	256
107	88	128	82	135	162	135	188	131	196	217	189	247	181	237
108	88	129	63	136	163	139	189	132	198	218	190	248	182	258
109	89	130	84	138	164	140	190	133	199	219	101	249	163	206
110	90	131	85	139	165	141	191	134	200	220	192	250	184	260
111	91	132	86	140	166	142	192	135	201	221	193	251	184	261
112	92	134	86	141	167	142	193	135	202	222	194	252	185	262
113	93	135	87	142	168	143	194	136	203	223	195	253	186	263
114	94	136	88	143	169	144	195	137	204	224	195	264	187	264
115	95	137	89	144	170	145	196	138	205	225	196	255	188	265
116	96	138	80	145	171	146	197	139	206	226	197	256	189	266
117	97	139	91	147	172	147	198	140	207	227	198	257	190	268
118	98	140	92	148	173	148	200	141	209	228	199	258	191	269
119	98	141	93	149	174	149	201	142	210	229	200	259	192	270
120	99	142	93	150	175	150	200	143	211	230	201	260	193	271
121	100	143	94	151	176	151	203	144	212	231	202	262	194	272
122	101	144	95	152	177	152	204	144	213	232	203	263	194	273
123	102	146	96	153	178	153	205	145	214	233	204	264	195	274
124	103	147	97	154	179	154	206	140	215	234	205	265	196	275
125	104	148	98	.20	180	154	207	147	216	235	206	266	197	276
120	105	149	99	157	181	155	208	148	217	236	207	267	198	277
127	100	159	100	158	182	156	209	149	218	237	208	268	199	278
128	107	101	101	159	183	157	210	150	220	238	209	269	200	279
129	108	153	101	160	134	158	211	151	212	239	209	270	201	281
130	108	153	102	101	185	159	212	152	222	240	210	271	202	282
131	109	164	103	162	186	160	213	153	223	241	211	272	203	283
132	110	155	104	163	187	101	215	153	225	242	212	273	204	284
133	111	156	105	164	188	162	216	154	225	243	213	274	205	285
134	112	157	106	106	189	163	217	155	226	244	214	275	205	286
661	113	199	107	107	190	164	218	156	227	245	215	276	206	287
136	114	160	108	168	191	165	219	157	228	246	216	278	207	288
137	115	161	109	169	192	166	220	158	229	247	217	279	208	289
138	116	162	109	170	193	167	221	159	230	248	218	280	209	290
' 39	117	163	110	171	194	147	222	160	232	249	219	281	210	291
140	118	164	111	172	195	168	223	261	233	200	220	282	211	292

### TABLE 4-2 (Continued)

And the Party of States

¥.

Downloaded from http://www.everyspec.com

じいや

いたいのの

-----

and an other states and

### TABLE 4-2 (Continued)

Downloaded from http://www.everyspec.com

and the second second

i

$r + \eta$	, 	%	99	9%	r + n		5%	99	1%	i r + n	9	5%	99	9%
19.7	11.4	28.6	9.6	32.2	30.2	20.2	41.7	17.7	46-1	43-0	31.0	58.8	27.8	31.6
19.4	11.5	28.8	0.7	32.5	30.4	20.4	42.0	17.9	48-4	43-5	31.3	67.4	28.9	69.9
19-6	11.7	29-1	9.8	32.8	30.6	20.5	42.2	18-0	46-6	44.0	31.8	87.9	28-6	62.8
19-8	11-9	29.3	10.0	33.0	30.8	20.7	42.4	18.2	46-8	44-5	32.2	58-4	29.0	33-4
20-0	12.0	29.5	10 2	33-2	31.0	20.9	42.7	18-4	47.0	45-0	32.7	58-9	29.4	67.0
					•									
20.2	12.2	29-8	10-3	33 5	31-2	21.0	42.9	18.5	47-3	45-5	33-1	59-5	29.8	64-6
20-4	12.3	<b>3</b> 0·0	10-4	33-8	31-4	21.2	43-2	18-6	47.6	46-0	33-5	<b>60</b> -0	30.2	65-2
20.6	12.5	30.3	10.6	34-1	31.6	21.4	43.4	18-8	47.8	46.5	33.9	60·6	30-6	65.8
20-8	12-6	30-5	10.7	34.3	31-8	21.6	43-6	18-9	48-1	47-0	34-4	61-2	31-1	66-4
21.0	12.8	30.7	10-9	34.5	<b>3</b> 2·0	21.7	43.8	19.1	<b>48·3</b>	47.5	34.8	61.8	31-4	67-0
21-2	13.0	31-0	11.0	34-8	32.2	21.9	44-1	19.3	48-6	48.0	<b>3</b> 5·2	62·3	31.9	67.5
21-4	13-1	31.3	11-1	35-1	32-4	22.0	44.3	19-4	48-8	48-5	35.6	62-9	32-3	68·2
21.6	13.3	31.5	11.3	35.3	32.6	22.2	44-6	19.6	49-1	49.0	36-1	63.5	32.7	68.7
21.8	13-4	31.7	11-4	35.6	32.8	22.4	44-8	19.7	49-3	49-5	36.2	64-1	33-1	69-4
<b>22</b> ·0	13-6	31.9	11.6	35-8	33.0	22.5	<b>4</b> 5·0	10.9	49.5	50.0	<b>36</b> ·9	64.6	33.5	69-9
				••••				<b>6</b> 0 /·	40.0	1				
22.2	13.7	32.2	11.7	36.1	33.2	22.7	43.3	20.0	49.8	00.5	37.3	65-2	33.9	70.8
22.4	13.8	32.0	11.9	30.4	33.4	22.8	40.0	20.2	50.0	01.0	37.8	00.8	34-3	71-1
22.0	14-1	32.7	12.0	30.0	33.0	23.0	40.0	20.5	00-3 50.5	51.0	37-2	00.4	34.7	71.7
22.8	14.4	32.9	12.2	30.8	24.4	23.2	40.0	20.0	80.7	02-U 80.6	38.1	00-9 47.6	30-1	72.3
23.0	13.3	22.1	12.4	310	34.0	23.4	40.2	20.1	00.1	02.2	28.1	07.0	20.0	12.0
927	14.5	22.4	19.5	37.9	24.9	92.5	<b>AR.A</b>	20.9	\$1.0	\$2.0	20.6	89.0	20.0	72.5
93.4	14.7	33.7	12.0	37.6	11.4	23.7	46.7	21.0	61.2	83.5	30.0	88.6	20.0	74.1
92. <b>R</b>	14.9	33.0	19.7	37.0	34.6	22.9	469	21.1	61.5	54.0	40.4	10.9	36.6	74.6
23.8	15.0	34-1	12.9	38-1	34-8	24.0	47-1	21.3	51.7	54-5	40.8	69.8	37	75
24.0	15.2	34.3	13.1	38.3	35-0	24.2	47.3	21.5	61 9	55-0	41.3	70.3	38	76
													•••	••
<b>24</b> ·2	15-3	34.6	13.2	38.6	35.2	24-4	47.6	21.6	52·2	66	42.1	71.4	38	77
24.4	15.5	34.9	13.3	38.9	35.4	24.5	47.8	21.7	52.5	67	43.0	72 6	39	78
24 6	15.7	35-1	13.5	39-1	35-6	24.7	48-1	21.9	52.7	58	43.9	73.7	40	79
24.8	15.8	35.3	13.6	39.4	35-8	24.9	48-3	22.1	52.9	59	44.7	74.8	41	80
25-0	16.0	35-5	13-8	39.6	36.0	25.0	48.5	22.3	£3·2	60	46	76	42	82
					1					1				
25-2	14-1	35-8	14-0	39.9	36-2	25-2	<b>48</b> -8	22.4	53-4	61	46	77	43	83
25-4	16.3	36-1	14-1	<b>40</b> •1	36-4	25-3	49-0	22.5	53.7	62	47	78	43	84
<b>25·6</b>	16-5	36.3	14.2	40 4	30.6	25.5	<b>4</b> 9·2	22.7	53-9	63	48	79	44	85
25.8	16.6	<b>36</b> ·5	14-4	<b>40</b> ∙6	36-8	25.7	40-5	22.9	54-2	64	49	80	45	86
26-0	16-8	36.7	14-6	<b>4</b> 0·8	37.0	25.9	49-7	23.0	<b>ö</b> 4∙4	65	<b>5</b> 0	82	46	87
26-2	17.0	37.0	14.7	41-1	37.2	26.0	499	23.2	54.0	60	51	83	47	89
20.4	17-1	37.3	14-8	41-4	37.4	20.2	50·2	23.3	04.9	67	52	84	48	90
20.0	17-3	37.0	10.0	41.0	37.0	20.4	00.4	23.0	00.1	08	03	60 00	40	91
20.9	17.4	31-1	10-1	41.0	31.8	20.0	60.9	23.0	55.A	70	01 54	80	49	92
21.0	11.0	21.8	10.9	44.1	30.0	20-1	00.0	20.0	00.0		0.	01	00	
27.2	17.8	38.9	15.6	424	38.2	26.0	51-1	24.0	55-9	71	55	88	51	94
27.4	17.0	38.4	15.6	42.6	38.4	27.0	51-3	24.1	56-1	72	56	89	52	96
27-6	18.1	38.7	15.7	42.9	38.6	27.2	51-6	24.3	56-4	73	57	91	53	97
27.8	18.3	38.9	15.9	43-1	38.8	27.4	51.8	24-4	56-6	74	58	92	54	98
28.0	18-4	39-1	16 1	43.3	39.0	27.6	52.0	24.6	56.8	75	59	93	54	99
28-2	18-6	39-4	16.2	43-6	39-2	27.7	52·2	24.8	57-1	76	60	94	55	100
28.4	18.7	39.6	16-3	43-0	30.4	27.9	52.5	24.9	57-3	77	61	95	56	101
28.6	18.9	39.9	16-5	44-1	39.6	28.0	52.7	25-1	57.6	78	62	96	57	102
28-8	19-1	40-1	16.7	44-4	39-8	28.2	52-9	$25 \cdot 2$	57-8	79	62	97	58	104
29.0	19-3	40·3	16-8	44-0	40.0	28.4	53·J	25.4	58·0	80	63	98	69	105
					}					1				
29-2	19-4	40·6	17-0	44 9	40.5	28.8	53-8	25.8	58-6	81	64	99	60	106
29-4	19-6	40-8	17-1	45-1	41.0	29 3	54.3	26.2	59-2	82	65	101	60	107
29.6	19.7	41.0	17-2	45-4	41-5	29.6	54-9	26.6	59-8	83	66	102	61	108
29.9	19.9	41-3	17.4	45-6	\$2.0	30.1	55.5	27.0	60.4	84	67	107	62	109
20-0	20-1	<b>41</b> ·δ	17-6	45.8	42.6	30-5	56·1	27.4	01.0	85	68	104	-93	110

### Procedure

Example

1. Use Eqs. 4-8 and 4-9 along with Table 6-1. 1.  $r = 0, C_L = 1\%, C_U = 99\%$ csqf(9.21;2) = 99%

csqf(0.0201;2) = 1%

2. Conf {  $\mu \le 4.61$  }  $\ge 99\%$ 

 $\mu_U = 4.61 \\ \mu'_L = 0.0101 \\ \mu'_U = \mu_L = 0$ 

Downloaded from http://www.everyspec.com

- 2. Make the feasible s-confidence statements.
- Find the randomized exact s-confidence limits. Use the method near the end of par. 4-5 to find the random number (Let heads → 0, tails → 1).
- 4. Solve Eq. 4-11a. Since r = 0, check the condition " $\eta \leq \overline{C}_L$ ".
- 5. Solve Eq. 4-11b. Since r = 0, check the condition " $\eta \ge C_U$ ". Since r = 0, Eq. 4-11b becomes  $\mu_U^* = \ln(\overline{\eta}/\overline{C}_U)$

- Conf {  $\mu \leq 0.0101$  } > 1% The coin flipping sequence is T. H
- 3. The coin flipping sequence is T, H, T, T, H, T which gives the number 0.703125.  $\eta = 0.703$ (truncated)
- 4.  $\eta = 0.703, \bar{C}_L = 0.99$  $\eta < \bar{C}_L$ ; so  $\mu_L^* = 0$
- 5.  $\eta = 0.703, C_U = 0.99$  $\eta < C_U$ ; so  $\mu_U^* \neq 0$ .  $\mu_U^* = 3.39$

The randomized exact s-confidence statement is Conf  $\{0 \le \mu \le 3.39\} = 98\%$ .

### REFERENCES

- 1. E. S. Pearson and H. O. Hartley, Biometrike: Tables for Statisticians, Vol. I, Cambridge Univ. Press, 1956.
- 2. A. Hald, Statistical Tables and Formulas, John Wiley & Sons, 1952.
- 3. Abramowitz and Stegun, Eds., Handbook of Mathematical Functions, AM555, NBS, USGPO, June 1964 with subsequent corrected printings.
- 4. E. C. Molina, Tables of Poisson's Exponential Limit, D. Van Nostrand Co., NY, 1945.
- 5. Ilandbook of Reliability Engineering, NAVWEPS 00-65-502, Bureau of Naval Weapons, 1 June 1964.
- 6. C. L. Blyth and D. W. Hutchinson, "Table of Neyman-shortest Unbiased Confidence Intervals for the Poisson Parameter", *Biometrika*, Vol. 48, pp. 191-194 (1961).

Downloaded from http://www.everyspec.com

- april 195

10.

AMCP 706-200

### CHAPTER 5

### GAUSSIAN (S-NORMAL) DISTRIBUTION

5-0 LIST	OF SYMBOLS	NCM ₁ { }	= normalized ith central mo- ment: CM, { } / [StDy { }]
С	= s-Confidence	pdf	= probability density function
Cdf	= Cumulative distribution func- tion	pmf	= probability mass function
C, L, U	= subscripts that imply a s-con- fidence level: C is ceneral L is	Pr { }	= Probability
	lower, U is upper	PrD	= Probability distribution
CM ₁ { }	= <i>i</i> th central moment	R	= s-Reliability
Conf { }	= s-Confidence level	\$	= s statistic
csn (	= base name for chi-square/nu distribution	S-	= depotes statistical definition
cv []	= coefficient of variation.	t	= t statistic
UV ( )	StDv{ }/E{ }	Sf	= Survivor function
E { }	= s-Expected value	StDv { }	= standard deviation
gau	<ul> <li>base name for Gaussian (s-nor- mal) distribution</li> </ul>	stu	= base name for Student's t-dis- tribution
gaud			
	= pdf for Gaussian s-normal dis- tribution	Var { }	= variance
anuf	= pdf for Gaussian s-normal dis- tribution = Cdf for Gaussian s-normal dis-	Var { } x	<ul><li>variance</li><li>random variable</li></ul>
gauf	<ul> <li>pdf for Gaussian s-normal dis- tribution</li> <li>Cdf for Gaussian s-normal dis- tribution</li> </ul>	Var { } x x	<ul><li>variance</li><li>random variable</li><li>sample mean</li></ul>
gauf gaufc	<ul> <li>pdf for Gaussian s-normal distribution</li> <li>Cdf for Gaussian s-normal distribution</li> <li>Sf for Gaussian s-normal distribution</li> </ul>	Var { } x x z, Z	<ul> <li>variance</li> <li>random variable</li> <li>sample mean</li> <li>(x - μ)/σ</li> </ul>
gauf gaufc	<ul> <li>pdf for Gaussian s-normal distribution</li> <li>Cdf for Gaussian s-normal distribution</li> <li>Sf for Gaussian s-normal distribution</li> <li>barard ate (failure cate) for</li> </ul>	Var { } x x z, Z µ	<ul> <li>variance</li> <li>random variable</li> <li>sample mean</li> <li>(x - μ)/σ</li> <li>location parameter</li> </ul>
gauf gaufc gauhr	<ul> <li>pdf for Gaussian s-normal distribution</li> <li>Cdf for Gaussian s-normal distribution</li> <li>Sf for Gaussian s-normal distribution</li> <li>hazard ate (failure rate) for Gaussian s-normal distribution</li> </ul>	Var { } x x z, Z µ y	<ul> <li>= variance</li> <li>= random variable</li> <li>= sample mean</li> <li>= (x - μ)/σ</li> <li>= location parameter</li> <li>= wegrees of freedom</li> </ul>
gauf gaufc gauhr M _i { }	<ul> <li>pdf for Gaussian s-normal distribution</li> <li>Cdf for Gaussian s-normal distribution</li> <li>Sf for Gaussian s-normal distribution</li> <li>hazard ate (failure rate) for Gaussian s-normal distribution</li> <li>ith moment about the origin</li> </ul>	Var { } x x z, Z µ v o	<ul> <li>= variance</li> <li>= random variable</li> <li>= sample mean</li> <li>= (x - μ)/σ</li> <li>= location parameter</li> <li>= ωogrees of freedom</li> <li>= scale parameter</li> </ul>

الطنشر

and the second second

- - = the complement, e.g.,  $\overline{\phi} \equiv 1 \phi$  where  $\phi$  is any probability

### **5-1 INTRODUCTION**

The Gaussian distribution is a good approximation to the central portion of many distributions, and often is used to describe the random behavior of product performance. The base name gau is given to the Gaussian standard (s-normal) distribution (for gaussian). The suffix f implies the Cdf, the suffix fc implies the Sf (complement of the Cdf), the suffix hr implies the failure rate (hazard rate)

### 5-2 FORMULAS

- $\mu$  = location parameter
- $\sigma$  = scale parameter,  $\sigma > 0$
- x = random variable, it may take any value

 $z = (x - \mu)/\sigma$ , standard s-normal variate

$$pdf\{x; \mu, \sigma\} = (1/\sqrt{2\pi}\sigma) \exp\left[-\left(\frac{x-\mu}{\sigma}\right)^2/2\right]$$

$$= (1/\sigma) gaud[(x - \mu)/\sigma] \qquad (5 1)$$

 $Cdf\{x,\mu,\sigma\} = gauf[(x-\mu)/\sigma] \qquad (5-2)$ 

$$Sf\{x;\mu,\sigma\} = gaufc[(x-\mu)/\sigma]$$
(5-3)

failure rate  $\{x; \mu, \sigma\} = (1/\sigma) gauhr[(x - \mu)/\sigma]$ 

(5-4)

$$E \{x; \mu, \sigma\} = \mu$$

$$E \{z\} = 0$$
StDv  $\{x, \mu, \sigma\} = \sigma$ 
StDv  $\{z\} = 1$ 
CV  $\{x; \mu, \sigma\} = \sigma/\mu$ , for  $\mu > 0$ 

$$CM_3 \{x; \mu, \sigma\} = 0$$

$$NCM_3 \{z\} = 0$$

$$NCM_3 \{x; \mu, \sigma\} = 0$$

$$NCM_4 \{x; \mu, \sigma\} = 3$$
mode  $\{x; \mu, \sigma\} = \mu$ 
mode  $\{z\} = 6$ 
median  $\{\bar{x}; \mu, \sigma\} = \bar{\mu}$ 
median  $\{z\} = 0$ 

ed from http://www.evervspec.co

Figure 5-1 shows some curves of the *pdf* and failure rate. The random variable x always can be scaled to z so that curves for all values of  $(\mu,\sigma)$  become the same. The *PrD* for z is called the Gaussian or standard s-normal distribution.

The s-normal distribution often is applied to characteristics which are inherently nonnegative such as length, weight, strength, and time-to-fadure. In order that there be no conceptual difficulties, the coefficient of variation ought to be at least 3; then the negative fraction is quite negligible. Truncated (on the left) s-normal distributions can be used (the theory is straightforward) but the extra complication is rarely justified. Where the truncation would be necessary, one often tries a Weibull or lognormal distribution instead.

### **5-3 TABLES AND CURVES**

The pdf is calculated readily, not often needed, and tabulated in many places; so it is not given here. See Ref. 1 (Table 1 and Sec. 1) and Ref. 2 (Table 1). The Cdf is given in Tables 5-1 and 5-2. It also is given in virtually every probability/statistics/quality control book and set of mathematical/statistical tables. The failure rate is given in Table 5-3 Formulas for calculating these and related functions are given in Ref. 3 (Sec. 26.2).

and the second second

the little with



Downloaded from http://www.everyspec.com

### Figure 5-1. Curves for Gaussian Distributions



Downloaded from http://www.everyspec.com



5-4

Colorado de

## STANDARD & NORMAL (GAUSSIAN) Cdf - geuf (7)

 $\int_{-\infty}^{\infty} \exp(-z^2/2)$ , dz. It is the area under the left-side of the pdf. For example, gevt(- 1.63)= 0.51551 × 10⁻¹; the E-notation gives the power of 10. For greater accuracy for large values of Z, use the identity: Ņ The body of the table gives the *Caff* for the standard *s*-normal (Gaussian) distribution, i.e., *gauf*(Z)  $\equiv \sqrt{2\pi}$ 

≣(Z)Jne6	= 1-gau?(-Z).	Fo find gentc(Z	1), the area unde	st the right-side	of the <i>pdf</i> , use t	he identity: get	ifc(Z)≡1 - 200	(Z-)j= geuf(-Z)		
N	0000	0.01	26.0	60°0	0*04	¢0•0	0.06	2:07	9040	0°0
0*0	0005-0	0.5040	0.5020	0.5120	0.5160	0,5199	0,5249	9752.0	0115.0	0.1.1.0
0.1	0,5398	0.5438	6.5478	0.5517	0.5557	9454.0	0.5636	0.5675		0.5753
<b>2</b> •0	0.5793	0,5832	0,5871	0165.0	0.5948	0.5967	0.0025	0000 n	0.0103	
<b>6</b>	0,6179	0.6217	0,6255	0.6293	0,6331	0.6365	0.6406	0_6443	0.6480	0.6517
0 • 4	0,6554	1424.0	0,6628	0 . 6664	U.6700	0.0736	0.2772	0.6508	0.6544	0.6879
0 <b>°</b> 2	0,6915	0,6953	0,6985	0,/019	0,7354	0,7086	0.7123	12,11,0	0.7190	0.7243
9 8 0	0,7257	0.7291	0,7324	0,1357	0.7349	0.7422	0 7454	0 / 486	0.1517	0.7540
0.7	0,7580	0.7611	0,7642	0.16/3	U.7703	0.17.54	19110	0 7794	0./625	292.0
<b>8</b> 0	0,7881	0.7410	0,7939	0,1967	0,7995	0.0023	0.8051	0.8078	0.6106	0.6151
•••	0,6159	0.8186	0,8212	0,9258	0,5254	0.6289	0.8315	0.6540	0.6365	0.6589
•	2.11.2	9244 0	0 101	. 8.46						
					00000	1440.0	4458.0	0.8577	0.8549	0.8421
				0.67.35	0.8729	0.6749	0,8770	0.6790	0.8610	0,6850
	0.5549	1900°0	6900.0	0.8907	0,6925	0 <b>.</b> 8944	0,8962	0969°0	1468.0	0.9015
5 <b>6</b> 1	2504.0	0.9049	0 4066	0.9082	6606 0	0,9115	1516.0	0.9147	C.9162	0.9177
	2616 0	0.9207	0,9222	4226°N	0,9251	0,9245	9126.0	0,9292	0.4506	9129.0
:•2	0,9332	0,9545	0,9357	0,4373	0,9382	0,9594	0.9406	0.9415	0.90,29	9441
1.6	562.0	0,9463	0,9474	1816°0	0 .4495	0.4505	0.9515	0.9525	0.9535	0 4545
1.7	0.9554	0.9564	0,9573	9582	0,9591	0,4540	0.9608	0.9616	0.9625	0.9633
9 • F	0.9641	0.9649	0,9656	C.9664	0.9671	0,96/6	U. 9686	0.9693	0.9499	0.9706
1.9	0,9713	0.9719	0.9726	0.9752	0.9138	0,9744	0,9750	0,9756	0.9/61	0.9767
2.0	0.9772	0.9778	0.9744	1 97AB	1010 0	0.010				
	0.9821	ACA0.0	0830						2101.0	1194 0
	0.9861	0.9864	8448 D							1484.0
	0.9391	0.9896	0.9598	0000						
4.0	0.991 A	0.99.0	0.932	2000 3						
	0.99.53	0.9940	1.4941	1006 3				0.0000		
4.2	0,9953	0.99.5	9999	1995.1						
2.2	0.9965	0.9965	0.9907	0.4968	0.9969	0.9970	1/66 0	0.9972		
2.0	0.9974	0.9075	0.4975	1166 0	0.9977	0.9978	6/66 0	0.9979	0.408.0	
5.9	0+9981	0.9982	0.9962	0,4983	0,9984	0,9984	0.9985	0,9985	9966	9866.0
3,0	0.9967	0.9987	1899.0	0,9988	8834.0	0 . 43B4	0.9989	0.4989	0,9940	0.9990
1.0	0666 0	1466*0	1000.0	1666.0	5992	2699.0	59992	0,4992	0.9993	2999.0
3,2	1466°0	6.993	0.9994	7666 0	7666°N	0°9494	0.9994	29995	2666.0	2466.0
3.5	5000 0	0,9945	0,9395	9446 0	9563 0	9444	0,9996	0.9996	9666	1 9947
3.4	0.9997	0.9997	0.9997	1040.0	1666 0	2,9947	0,9997	0.9997	0.4947	8666 0
3•2	0.9998	1666 0	9666 0	966,.*0	0.9498	£469.0	9666.0	8666.0	0.9995	8666 0
• •	2777.0	0,9998	0.0949	6666 7	6646.0	6666 1	6666.0	0000.0	0.9999	9999
	6666	6666° °	00000000	00000°°°	0000°C	0,0044 0,0000	0,0000	99999°C	6666 0	
		0000	1.0000	1 0000		******		*****	****	****
				* * * * *	2 <b>2</b> 2 <b>2 2 4</b>		1.000	1,0000	1,0000	1,0000

Downloaded from http://www.everyspec.com

AMCP 706-200

an training and the strength of the second second of the State of the strength of the strength of the second se

ta and the second second second second states and a second second second second second second second second sec

ŝ

ALC: SAL

1

## STANDARD PNORMAL (GAUSSIAN) Cof (Continued)

40°0-	0,40414E 00 0,42765E 00 0,54957E 00 0,54957E 00 0,31207F 00 0,214510E 00 0,214510E 00 0,214510E 00 0,13673E 00 0,13673E 00 0,13673E 00	0,13786£ 00 0,11702£ 00 0,985456±01 0,885456±01 0,559112£=01 0,559112£=01 0,559175=01 0,335727±=01 0,33795=01	0,163095-01 0,142626-01 0,142626-01 0,11115-01 0,812426-02 0,479842-02 0,557266-02 0,557266-02 0,557266-02 0,19262602 0,19262602 0,19262602	0,10008E-02 171135E-03 0,50094E-03 0,54151E-03 0,24151E-03 0,12515-03 0,50122E-04 0,50122E-04 0,50122E-04
#Q * O -	0,46812E 00 0,42659E 00 0,53974E 00 0,535197E 00 0,51561E 00 0,51561E 00 0,51561E 00 0,51561E 00 0,51561E 00 0,5242 00 0,15554E 00	0,140/7E 10 0.11900E 00 0,10027E 00 0,10027E 00 0,5793E=01 0,5793E=01 0,5753E=01 0,5753E=01 0,57536=01 0,57536=01 0,57536=01 0,23552=01	0,18765401 0,14629601 0,11394601 0,865631602 0,865691602 0,49501602 0,49501602 0,14912602 0,14412602	0,10550E-02 0,73626E-63 0,51904E-63 0,52943E-03 0,171602E-03 0,11602E-03 0,11602E-03 0,71458-04 0,71458-04
-0,07	0,47210E 0,47210E 0,47210E 0,5555555 0,5555555 0,5555555 0,555555 0,55555 0,55555 0,55555 0,55555 0,55555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,5555 0,555 0,5555 0,5555 0,5555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555	0.142515 00 0.121055 00 0.121055 00 0.102045 00 0.702815-01 0.702815-01 0.454505-01 0.585665-01 0.585665-01 0.585665-01 0.58196-01 0.58196-01 0.58196-01	0.19266-01 0.150056-01 0.1150056-01 0.689406-02 0.647576-02 0.51946-02 0.51946-02 0.51946-02 0.205246-02 0.205246-02 0.205246-02	9.10703E-02 0.76219E-03 0.557784E-04 0.55784E-04 0.27584E-05 0.12126E-05 0.12128E-05 0.12128E-05 0.12128E-05 0.81628E-06 0.81628E-04 0.95945E-04
•0 • 0 •	0,42607 0,42607 0,43607 0,359446 0,359446 0,359446 0,359446 0,35946 0,35646 0,35646 0,35646 0,35646 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,35666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,5666 0,56666 0,56666 0,56666 0,566666 0,56666 0,56666 0,566666 0,566666 0,566666 0,5666	0.14457E 90 0.12502E 90 0.12593E 90 0.12545E 90 0.72145E-01 0.42455E-01 0.424557E-01 0.51445E-01 0.51445E-01 0.51445E-01	0.1969964401 0.1558666401 0.119116401 0.915916640 0.9159564640 0.55966640 0.55966402 0.55966402 0.2511826402 0.2511826402 0.2511826402 0.2511826402 0.2511826402	0 * 11067t = 0.2 0 * 758855t = 0.5 0 * 5597065t = 0.3 0 * 2409716 = 0.3 0 * 1269115t = 0.0 0 * 1265115t = 0.0 0 * 1265116 = 0.0 0 * 1565116
-0,05	0.44036F 00 0.44038F 00 0.56137F 00 0.565137F 00 0.56514F 00 0.526516 00 0.226955F 00 0.2269555 00 0.2269555 00 0.22695555 00 0.22695555 00 0.2269555 00 0.2269555 00 0.2269555 00 0.2269555 00 0.2265555 00 0.2265555 00 0.2265555 00 0.2265555 00 0.2265555 00 0.2265555 00 0.2265555 00 0.22655555 00 0.2265555 00 0.2265555 00 0.2265555 00 0.22655555 00 0.22655555555555555555555555555555555555	0,146866 00 0.1250866 00 0.1058566 00 0.7552866 00 0.75528660 0.47528660 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.49471600 0.494716000 0.494716000 0.494716000 0.494716000 0.494716000 0.494716000 0.494716000000000000000000000000000000000000	0.201824-01 0.157784-01 0.157784-01 0.1526474-01 0.558674-02 0.518484-02 0.218494-02 0.218494-02 0.218494-02 0.218494-02 0.218494-02	0,11442E-02 0,81645E-03 0,57702E-03 0,524028E-03 0,128028E-03 0,135122E-03 0,135122E-03 0,58417E-03 0,59059E-04
-0-04	0.444455 00 0.4444555 00 0.4695175 00 0.3695175 00 0.3695175 00 0.3695175 00 0.36957 00 0.22949605 00 0.22949605 00 0.22955 00 0.22955 00 0.22955 00 0.22955 00 0.22004555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.2200555 00 0.220055 00 000000000000000000000000000000	0,14917E 0,12714F 0,12749E 0,12749E 0,9123E 0,9123E 0,9123E 0,9123E 0,9123E 0,9123E 0,9123E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,9269E 0,	0,206/56-01 0,161/76-01 0,125456-01 0,754566-02 0,754566-02 0,414566-02 0,314566-02 0,325576-02 0,225576-02 0,225576-02 0,2255576-02	0,11829E-02 0,844/4E-03 0,59765E-03 0,59765E-03 0,224086E-03 0,224086E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12652E-03 0,12
-0.03	0.484036 00 1.484036 00 0.4848286 00 0.370706 00 0.337904 00 0.333904 00 0.2340356 00 0.2342706 00 0.2342706 00 0.2342706 00 0.22432706 00 0.22432700 00 0.2243200 00 0.22432700 00 0.2243200 00 0.22432000000000000000000000000000000000	<pre>&gt;.:&gt;1:&gt;1:&gt;0 0.::<??06 00 0.::<???? 0.::<????? 0.:??????? 0.:<?????????? 0.:: 0.:: 0.:: 0.:: 0.: 0.: 0.: 13: 0.: 13: 15: 15: 0: 0: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15</pre>	0.2117AE-U1 0.10586f-01 0.128/4E-01 0.28/4E-02 0.75494E-02 0.75494E-02 0.2692E-02 0.23274E-02 0.23274E-02 0.23274E-02	n.1224RE-02 0.57403E-03 0.51895E-03 0.51895E-03 0.30479E-03 0.30479E-03 0.30179E-03 0.30171E-03 0.95740E-04 0.54072E-04
-0.02	0,44202E 00 0,44202E 00 0,41524E 00 0,31448E 00 0,337248E 00 0,337248E 00 0,255765 00 0,25576 00 0,25776 00 0,277770 00 0,277770 00 0,277700 00 0,27770000000000000000000000000000000	0,15386E 00 0,15386E 00 0,113,236 00 0,93417E=01 0,77804E=01 0,52616E=01 0,4.716E=01 0,34380E=01 0,34380E=01	0,71692E=01 0,17093E=01 0,15209E=01 0,15209E=01 0,77603E=02 0,58647E=02 0,32641E=02 0,24012E=02 0,24012E=02	0.126594=02 0.904264=03 0.9449454=03 0.459094=03 0.213112=03 0.213112=03 0.213774=03 0.2147544=03 0.9996114=04 0.967766=04 0.442746=04
10*0-	0.49641E 00 0.41663E 00 0.41663E 00 0.17828E 00 0.34096E 00 0.35995E 00 0.23885E 00 0.23885E 00 0.23885E 00 0.23885E 00	0.15625E 00 0.113142 00 0.113142 00 0.79270E=01 0.79270E=01 0.75522E=01 0.55522E=01 0.55144E=01 0.55144E=01 0.55144E=01	0,2221%E=01 0,17429E=01 0,13554E=01 0,10444E=01 0,19765E=02 0,45271E=02 0,45271E=02 0,33642E=02 0,33642E=02 0,33642E=02 0,18071E=02	0,13002E-02 0,93544E-03 0,66307E-03 0,46648E-03 0,32481E-03 0,32481E-03 0,12305E-03 0,10363E-04 0,0369403E-04 0,40403E-04
0000	0.50000E 00 0.46017E 00 0.36204E 00 0.36204E 00 0.38458E 00 0.38458E 00 0.3854E 00 0.3854E 00 0.313854E 00 0.221386E 00 0.21386E 00 0.18306E 00	0.150464 00 0.135476 00 0.135476 00 0.968005401 0.807576-01 0.807576-01 0.35479076-01 0.3593076-01 0.359306-01 0.359306-01 0.359306-01	0,227505-01 0,17846-01 0,19756-01 0,019756-02 0,019756-02 0,00976-02 0,00976-02 0,00976-02 0,00706-02 0,255516-02 0,186506-02 0,186506-02	0,134945.03 0,967405.03 0,667145.03 0,463425.03 0,336935.03 0,159115.03 0,159115.03 0,159115.03 0,723485.004 0,930965.04
N	0 - A M T M T M S M OP 0 - A M T M T M S M O O 0 - O O O O O O O O O O 1 + 1 + 5 + 1 + 5 + 5 + 5 + 5 + 5 + 5 +	Q N M T N & N & N & P & P & P & P & P & P & P &	0	0 NM # N& F & Ø MM M M M M M M M I II I I I I I I I I II I I I

Downloaded from http://www.everyspec.com

このとのないないないないないないないないない あいとうちょうちょう

and the second se

いちのうちのちちょう うちのちち しいろうしん

1

AMCP 706-200

# STANCARD 5-NORMAL (GAUSSIAN) Cdf (Centinued)

•0•04	0, 2159464 0, 159466 0, 159467 0, 569376 0, 5565376 0, 5565376 0, 5565376 0, 5565376 0, 15650 0, 15650 0, 15650 0, 16550 0, 165500 0, 1655000 0, 1655000 0, 165500000000000000000000000000000000000	0.179036100 0.105156100 0.51155100 0.512556107 0.1205256107 0.120576107 0.120576107 0.555561107 0.555561100 0.195106100 0.195106100 0.195106100	0.504556-09 0.5004556-09 0.8154436-09 0.8159436-10 0.42199196-10 0.2129196-10 0.5111596-10 0.5111596-10 0.5111596-10 0.51115966-11 0.5200674-11 0.5200674-11	0.670566-12 0.325466-12 0.514146-12 0.514146-12 0.514146-12 0.51544576-13 0.155456-13 0.155056-14 0.355056-14 0.55056-14 0.55056-14
-0.04	0,25186-04 0,145756-04 0,954476-05 0,575406-05 0,575426-05 0,575221-05 0,57426-05 0,143446-05 0,143446-05 0,143446-05 0,143446-05 0,143446-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0,17926-05 0	0,188724-05 0,110944-05 0,5445924-07 0,51245407 0,512864-07 0,513647-08 0,5134474-08 0,5134-08 0,5136-08	0, 60041E=04 0, 52051E=04 0, 12051E=04 0, 126544E=10 0, 25561E=10 0, 11947E=11 0, 20088E=111 1, 24926E=111 1, 24926E=111	0.720776-12 0.346566-12 0.191456-12 0.191456-12 0.171456-13 0.191456-13 0.795446-14 0.795446-14 0.755926-14
-v.07	0,25507t-04 0,15230E-04 0,9173E-05 0,31121E-05 0,34110E-05 0,34110E-05 0,34110E-05 0,34110E-05 0,34113E-05 0,34113E-05 0,55799E-05 0,34476E-05	0,19891E-06 0,117056-06 0,593286-07 0,593286-07 0,225026-07 0,12996-03 0,595566-08 0,59556-08 0,517906-08 0,517906-08	7. 6139554 - 07 0. 141456 - 07 0. 180226 - 07 0. 9995146 - 10 0. 4995146 - 10 0. 425156 - 10 0. 12796 - 10 0. 12796 - 10 0. 12796 - 11 0. 1284 - 11	0,7/4676-12 1,5/4996-12 0,1/9/46-12 0,1400476-12 0,400476-13 0,400476-13 0,406486-14 0,540686-14 0,540686-14 0,145486-14 0,145486-14 0,145486-14
-0,0	0,24546F-04 0,15912E-04 0,15912E-04 0,15912E-04 0,45031F-05 0,45935F-05 0,45985F-05 0,15810F-05 0,15810F-05 0,58643F-05 0,58643F-005 0,58643F-005	0,20965f-00 0,12347f-06 0,12347f-06 0,1208f-07 0,41611f-07 0,234807f-07 0,234807f-07 0,1358867f-07 0,1358867f-07 0,12612ff-08 0,23143ff-08	0.5690616+09 0.363726+09 0.192496-09 0.102486-09 0.553516-19 0.356916-10 0.356916-10 0.356916-11 0.3444506-11	0.83251E-12 0.40359E-12 0.19555E-12 0.919555E-12 0.91955E-12 0.92957E-12 0.42201E-12 0.42205E-12 0.42205E-12 0.42205E-12
50°0-	0,25c09t-C4 0,16624fE40 0,16624fE40 0,10689fF404 0,68059fF405 0,42955fe405 0,125947fe405 0,1751fe405 0,1751fe405 0,1751fe405 0,1751fe405 0,1751fe405	0.220916-00 0.130246-00 0.750506-07 0.750506-07 0.251856-07 0.12245-07 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24462266-03 0.24460000000000000000000000000000000000	0, /24256-09 0, 187416-07 0, 205256-09 0, 205266-09 0, 5259256-10 0, 5259256-10 0, 146556-10 0, 759256-11 0, 759256-11 0, 359256-11 0, 126266-11	0,894594-12 0,4558544-12 0,258544-12 0,258544-12 0,201014-12 0,21014-12 0,2101494-12 0,2100494-13 0,2208024-13 0,2208024-14 0,2208024-14
-0,04	0,267265,04 0,173655,04 0,1117555,04 0,111755,04 0,111755,04 0,11455,05 0,2449795,05 0,174205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,05 0,549205,0505,0505,0505,0505,0505,0505,0505,	0,232775-00 0,157375-00 0,802885-90 0,802885-90 0,850255-07 0,151525-03 0,473385-03 0,473385-03 0,281005-03 0,281005-03	0.770576.09 0.412016.09 0.218796.09 0.218796.09 0.2547576.10 0.55476.10 0.156446.10 0.156446.10 0.791936.11 0.791936.11 0.791936.11	n.961405412 0.466946412 0.424344112 0.224344112 0.5106896415 0.5108916413 0.497084514 0.497084514 0.497084514 0.497084514
-0.05	0,27888E-04 0,18138E-04 0,11585E-04 0,14555E-05 0,447117E-05 0,247117E-05 0,11226E-05 0,11226E-05 0,41115E-05 0,41115E-05	0.245246-00 0.144876-00 0.847556-07 0.847556-07 0.2911776-07 0.201156-08 0.901056-08 0.502156-08 0.517146-08 0.217146-08	n.M19862-09 n.439462-09 0.235224-09 0.125582-09 0.16294224-10 0.1629424-10 0.162444-10 0.162424-11 0.424576411 0.424576411 0.424576411	n, ', ', JZ ? c. L1 n, 501 bat c. L2 n, 241 50E - L2 0, 11 508E - L2 0, 21 299E - L3 0, 23 778E - L3 0, 24 393E - L4 0, 24 393E - L4 0, 24 393E - L4
20.0-	0,290995=04 0,189445=04 0,189445=04 0,180155=06 0,193502=05 0,191575=05 0,17925=05 0,17925=05 0,17795=05 0,17795=05 0,17795=05	0,7575666 0,15776606 0,15776606 0,51884667 0,51884607 0,299800607 0,79906607 0,55262608 0,53262608 0,29424608	0,872094-09 0,467884-09 0,246755-09 0,246755-09 0,261576-09 0,1784-09 0,1795054-10 0,1795204-11 0,455204-11 0,455204-11	0,110936-12 0,559946-12 0,255946-12 0,255946-12 0,122.96-16 0,120946-13 0,120946-13 0,120946-13 0,264126-14 0,264126-14
10°0-	0,30359E-04 0,19783E-34 0,12769E-04 0,12769E-04 0,51685E-05 0,521414E-05 0,20133E-05 0,75465E-05 0,75465E-05 0,75465E-06	C.27215E-06 0.10109E-06 0.94420E-07 0.54813E-07 0.51512E-07 0.1012942E-07 0.1012942E-07 0.554882-08 0.31236E-08 0.31236E-08	0.92762f-09 0.26492f-09 0.26492f-09 0.727609 0.1975/5f-10 0.1975/5f-10 0.975126-11 0.975126-11 0.42794f-11 0.42794f-11	0,119166-11 0,540216-12 0,279/66-12 0,531576-12 0,631506-13 0,137056-13 0,137056-14 0,137056-14 0,1285946-14 0,1285946-14
00*0	C, 31671E-04 0.20538E-04 0.815346E-04 0.55399E-05 0.554125E-05 0.54125E-05 0.54125E-05 0.54125E-05 0.1300.05 0.79355L-06 0.79355L-06	0,280655=06 0,169835=06 0,996445=07 0,333205=07 0,333205=07 0,107185=08 0,331575=08 0,331575=08	0,906596-09 6.550346-09 0.282326-09 0,148826-09 0.776686-10 0.401606-10 0.205586-10 0.104214-10 0.523106-11 0.523106-11	0.127985-11 0.623795-12 0.143885-12 0.143885-12 0.143885-12 0.1430925-13 0.148575-13 0.309545-14 0.309545-14 0.309545-14
2	1 11 11 11 11 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0 - 0 M 3 V 2 M 0 M 0 M 0 M 0 M 0 M 3 V 2 M 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0	0 - N - Z - Z - Z - Z - Z - Z - Z - Z - Z

Downloaded from http://www.everyspec.com

AMCP 706-200

· Safet nut the Ba

5-7

1.1.1

### TABLE 5-2

Downloaded from http://www.everyspec.com

### GAUSSIAN (STANDARD =-NORMAL) Cdf - gouf (z)



Body of the table is z, the standard *s*-normal variate, corresponding to gauf (z).

gout (z)	.00	<u>0.01</u>	0.02	0.03	0.04	0.05	0.06	0.07	0.08	<u>0.09</u>	
.00	-	-2.33	-2.05	~1.88	-1.75	1.64	-1.55	-1.48	-1.41	-1.34	
.10	-1.28	-1.23	-1.18	-1.13	-1.08	-1.04	0.99	-0.95	-0.92	-0.88	
.20	-0.84	0.81	0.77	-0.74	-0.71	-0.67	0.64	0.61	-0.58	-0.55	
.30	-0.52	-0.50	0.47	-0.44	0.41	0.39	0.36	-0.33	-0.31	-0.28	
.40	-0.25	-0.23	-0.20	0.18	-0.15	-0.13	-0.10	-C.08	-0.05	-0.03	
.50	-0.00	-6.03	0.05	0.08	0.13	0.13	0.15	0.18	0.20	0.23	
.60	0.25	0.25	0.31	0.33	0.36	0.39	0.41	0.44	0.47	0.50	
.70	0.52	0.55	0.58	0.61	0.64	0.67	0.71	0.74	0.77	0.81	
.80	0.84	0.88	0.92	0.95	0.99	1.04	1.08	1.13	1.18	1.23	
.90	1.28	1.34	1.41	1.48	1.55	1,64	1.75	1.88	2.05	2.33	
				:	Special N	/alues					
gouf (z)	0	.031		0.005		0.010	0.0	25	0.050		0.1 <b>0</b> 0
z	-3.	.090		-2.576	3	-2.326	-1.	960	-1.645	;	-1.282

-3.090 -2.576 -2.326 -1.960 -1.648 0.999 0.995 0.990 0.975 0.950

2.326

1.960

1.645

2.576

0.900

1.282

B. C. Martin

geuf (z)

z

3.090

### TABLE 5-3

# STANDARD S-NORMAL (GAUSSIAN) FAILURE RATE (HAZARD RATE)

The body of the table gives the failure rate (hazard rate) for the stundard s-normal (Gaussian) distribution; i.e., geuhr(Z)  $\equiv pdf \{Z\}$  /S/  $\{Z\}$ . For example, geuhr(-2.13)= 0.35787 × 10⁻¹; the E-notation gives the power of 10. The failure rate for a nonstandardized variable X (with mean  $\mu$  and standard deviation  $\omega$ ) is (1/ $\sigma$ ) genhr(Z), where  $Z \equiv (X - u)/\sigma$ .

0°0 .... L. 5815 1. 7854 1. 7854 1. 7854 1. 9286 1. 9132 2. 1712 2. 1712 2. 2584 2. 2584 2. 2584 5,3482 0.07 0.06 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 0.05 0,6255 0,6691 0,9567 1,0262 1,0262 1,105 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1 40.04 0,03 0,8107 0,8758 0,8758 0,9450 1,0121 1,0851 1,0851 1,0851 1,2557 1,2557 1,2557 1,2557 1,4614 1,4614 4065 × 2 50.02 1,5531 1,6958 1,6958 1,6958 1,7447 1,8425 1,9472 2,01190 2,2957 2,2957 2,2957 2,2957 2,2957 2,2957 2,2957 2,4321 2,4710 2,5505 2,5505 2,5505 2,6505 2,60319 2,6150 3,1031 3,1031 3,1031 3,1031 3,1031 3,1031 3,1031 L,2024 2,2024 2,2025 2,2025 2,2025 2,2025 2,2025 2,203 2,203 2,203 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,1399 2,139 0.01 L. 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 0.1919 0.9294 0.9294 0.9294 1.1211 1.12111 1.2295 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1 1:7703 1:8541 1:8541 1:8547 2:0241 2:0241 2:2473 2:2449 2:2449 2:2449 2:2449 2:2449 2,3732 2,5515 2,5515 2,5515 2,6414 2,6414 2,9141 3,0058 3,0058 3,1903 3,1903 . 6050 . 6876 ,5251 00.00 0 - NM 30 0 - 00 0 ~~~~~~~~~ 5.0 2 N

the state of the s

" to the state of the Con

Downloaded from http://www.everyspec.com

AMCP 705-200

5-9

تعليهم بعديد بالدياريك منطالا منافر فالمتكافية فالمتلا المالية بالمتالية والمتعالية والمنافرة والمنافرة والمنافرة

STANDARD 5-NORMAL (GAUSSIAN) FAILURE RATE (HAZARD RATE) (Continued)

N	00.0	0.01	0.02	6,03	*0*0	<0.0	40.0	e.07		0.09
I					8146 0	4.2733	4.2525	4.2934	4,3019	4,3115
•	4.2256	4,2351		4 6216	1592		A.5784	4,3879	4,3475	4 4271
• •	4,3210	abcc • #						4836	5294.4	4.5025
×"#	44144	4,4262					0077	a. 5795	4.5891	4.5487
	4.5124	4,5220	5165.4					755	1997	
	2 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.4179	4.6275	4.03/1						100
		4.7139	4,7235	4.7352	4,7428	4,1520				
			8198	4,8294	4.8390	4 5 2 5 6	4.6583			
				4 9557	4,9354	4.9450	4,9547	いまきひょす		
				6260 · ·	5.0319	5140.4	5,0512	> • 0 • 0 B	5,0705	5. 480 C
•		1200.0			1265	5.1182	5.1478	5.1575	5,1472	5.1768
•	5.0698	5*0*42	2411¢c	00116				•	•	
				2116	5352 7	5.2140	5.2446	2.2542	5.2629	9275.2
5.0	5,1845	5,1962	Acn2*c					1125.4	5.3408	5,3705
5.1	5,2033	5,2930	502 °	5155					5.4578	5.4675
	5.3802	5.3899	5,3996	~~~~~	0418.6					SAAS S
	C112	5.4869	5.4966	5,5063	5160	1626.6				
			5.5937	5.0034	5,0131	9229°S	C3C0.C			
			0000 Y	5.7036	5.7103	5,7200	5,7298	545/ 40		
				5 7070	5 . 6 0 / D	5.8173	5.8271	5,8368	5,6465	2000,0
• •	5.7687	10110				5.9147	5.9244	5.9342	5,9439	5,4537
5.7	5.8660	1978.6					0.0210	0.117	6.0414	4,0512
	5.9414	5,9732	202°C	1944.0					1140	4.1487
	0000	6.0707	6,0804	6,0902	***0.0	1401 * 0				
•	•								4 2164	A 2465
<b>4</b> - <b>4</b>	4.1585	0.1662	6.1780	6.1878	0,1975	6.2073	1/12.0			
		945.4	b.2757	6.2854	5495.0	0<02.0	1 # 1 0 * 0			
			6.174	6.3851	6.3929	6,40Z7	6,4125	0,4222		
				A 400	6.4907	6.5005	6,5103	6,5201	0 4 2 C 4 Q	
	+15+c+				A. 5885	12984	6.6081	6.0179	6.6277	
4 ° 4	6.5474	2455.9	040240			404	b.70b1	6.7159	6.7257	+ 1354
5.9	0,6473	6.6571				21040	0000	6.8138	6.8256	6 6 8334
•••	6.7452	<b>6,755</b> 0	0.1440				1000	9119	6.9217	6,4315
	4.0:32	6.8530	5-96-5	1210.4		0001		1.0100	7.0196	7.0296
	1.00.4	6.9511	6,9609	6.4707	C064.0				7 1 1 7	7.1277
	7.0194	7.0492	7,0590	7.0458	1.0786	C020 ° /	C D L D L D			
		•			7 .768	7.1866	7.1965	1.2065	7,2161	1,4259
7.0	7.1375	7.2547k	2/61./					1 4045	7.3145	1.3242
7	7.2357	7.2456	1.2554	202.1			1010	0000	7.4126	7.4224
	7.5140	7.3436	1.3536	7.3055	~~~~					
		7.421	7.4519	7.4618	/ . 4716	7,4814	5164 1	1106 1		
		7 5404	1.5503	7.5631	7.5699	1,5748	· 284•			
			7 4 2 2	7 4585	7.4683	1.6782	7.6660	7.449	1.01.4	
				7 1540	7.7667	1.1706	7.78+4	7,7963	7.6061	00100
7 <b>a b</b>	1.27.47	2/6/4/			7 4452	7.8751	7.8649	7.8948	7,9046	581632
7.7	7,6258	7.6357				7.9716	1.9854	7.9933	8,0051	5,0150
**	7,9243	7,9341				1270 M	0.0019	8.0918	8.1017 8	ø.115
•	6,0220	8.0327	c2+0°0					1 •	•	

いたちのないたいであるとうないとうないであるというできたのであるとうであるとうであるとうであるとうできるとうできるとうできるとうできるというできるというできるというできるというできるというできるというできるというできると

i in

Downloaded from http://www.everyspec.com

AMCP 706-200

# STANDARD S-NORMAL (GAUSSIAN) FAILURE RATE (HAZARD RATE) (Continued)

•	000000000000000000000000000000000000000	300000000000		NNNNNNNNNNN
÷0-	00000000000000000000000000000000000000	00,25547 00,25547 00,10,255547 00,11414255547 00,1141449757577 00,114414977 00,55096 00,55096 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086 00,55086	0,457524 557575 6,25557575 0,2551325 0,180675 0,180675 0,180675 0,180675 0,180675 0,180675 0,180675 0,8156135 0,8156135 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,815626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915626 0,915666 0,915666 0,915666 0,915666 0,9156666 0,91566666 0,91566666 0,91566666 0,915666666 0,915666666666666666666666666666666666666	0,35/296 0,178126 0,178126 0,178126 0,903936 0,903936 0,44486 0,303266 0,20556 0,139266 0,139266
10		8858888888	777777NNN 03000000000	
-0-	0,74766E 0,68694E 0,527246 0,512746 0,512746 0,51246 0,46946 0,421146 0,35406 0,35406 0,354166 0,29507	0,25872 0,225726 0,125945 0,143595 0,143595 0,122026 0,122026 0,702555 0,702556	0,40738 0,576135 0,259994 0,185496 0,185496 0,185456 0,185456 0,185456 0,185456 0,185456 0,185456 0,1936 0,81935 0,471176	0,347876 0,354506 0,154506 0,154916 0,4545016 0,454566 0,414746 0,514746 0,14746
10	000000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·	00000000000000000000000000000000000000	NNNNNNNNNNN 0000000000
• 0 •	6, 7546 69290 69290 69280 69280 69282 69290 69251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 60251 602510 6025100000000000000000000000000000000000	0,228416 0,1228416 0,1798346 0,14702446 0,1457246 0,1457246 0,14576 0,14576 0,14576 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55674 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,55774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,57774 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,577740 0,57777400000000000000000000000000000000	0,474 0,56454 0,56454 0,14454 0,14454 0,145454 1,145454 0,145454 0,667354 0,667354 0,667354 0,667354 0,667354 0,66755 0,66755 0,66755 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,67555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,7555 0,75550 0,7555 0,7555 0,7555 0,7555 0,7555 0,75550 0,75550 0,75550 0,75550 0,75550 0,75550000000000	0, 55874 0, 262314 0, 1962314 0, 1962314 0, 9899114 0, 8899114 0, 8899114 0, 337708 0, 337708 0, 15085 0, 150850 0, 150850 0, 150850 0, 150850 0, 150850000000000000000000000000000000000
2	000000000000000000000000000000000000000	00000000		NNNNNMMMM 000000000
• 0 -	0,7008 0,7008 0,50989 0,509371 0,529371 0,529371 0,529371 0,52935 0,52935 0,52935 0,52935 0,5295 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,5255 0,52555 0,52555 0,525555	0,205916 0,222136 0,222136 0,132716 0,143136 0,143136 0,143136 0,143136 0,145136 0,145136 0,145136 0,59957 0,59957 0,59957 0,59957	00,444760 00,144760 00,144760 00,14467666 00,144676666 00,146666 00,146666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,14666 00,146666 00,146666 00,146666 00,146666 00,146666 00,146666 00,146666 00,1466666 00,14666666 00,14666666 00,14666666 00,146666666 00,1466666666666 00,1466666666666666666666666666666666666	0,30942 0,14652 0,14652 0,14112 0,14113 0,14113 0,25592 0,25592 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,156922 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,15692 0,156920 0,156920 0,156920 0,156920 0,15692000000000000000000000000000000000000
ş	000000000000000000000000000000000000000	000000000000000000000000000000000000000	20000000000	NNNNNMMMM
- 0 -	0,70655 70655 0,70491 0,55555 0,55513 0,55513 0,55513 0,55513 18 0,55513 18 0,5345 18 1 0,5345 18 1 0,5345 18 1 0,5345 18 1 0,545 1 0,545 1 0,545 1 0,555 1 0,555 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,259445 0,25544 0,25544 0,179425 0,17946 0,17996 0,107996 0,107595 0,107595 0,14596 0,127595 0,14596 0,1100 0,0107595 0,01100 0,0100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000000	U. 49/97976. 0.401846. 0.321526. 0.1994576. 0.199805. 0.1195805. 0.912035. 0.512035. 0.512036. 0.512036. 0.512036.	0,38141 0,27965 0,14595 0,14595 0,51519 0,51519 0,51519 0,251145 0,2515 0,2515 0,251145 0,2565 0,1565 0,1656 0,1656
94	000000000000000000000000000000000000000	000000000000000000000000000000000000000	 00000000000000000000000000000000	NNNNNMMMM 00000000000
-0-	0.7750 0.77505 0.7710955 0.5540476 0.5540476 0.5540476 0.5540476 0.5540476 0.5540476 0.5540476 0.5540476 0.5540476 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 0.55005 00000000	0.21905 0.21905 0.22865 0.21066 0.11066 0.152928 0.152928 0.152928 0.155430 0.155430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.415430 0.425430 0.425430 0.4554300 0.45543000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00	0.34522 0.244522 0.244725 0.107595 0.107595 0.107595 0.107595 0.156295 0.156995 0.156995 0.156995 0.156995 0.156995 0.156955
33	000000000000000000000000000000000000000	00000000	63666666666	NUUUUU
- 0 -	0.77688 0.717016 0.717016 0.557466 0.5467576 0.545796 0.5445876 0.4446876 0.35462876 0.35462876 0.314228	0.276625 0.241965 0.241965 0.151325 0.155576 0.155576 0.15122965 0.932515 0.932515 0.55555 0.555576 0.55555 0.55555 0.55555 0.55555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.555555 0.5555555 0.55555555	0.51976 0.51976 0.53587 0.53587 0.53587 0.526986 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0.526186 0	0.405% 7.2160% 7.1156% 7.1156% 7.1156% 0.11156% 0.5499% 0.26039% 0.26039% 0.17665% 0.26039% 0.26039%
20	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000
-0-	0,785 0,785 0,785 0,65 0,55 0,55 0,55 0,55 0,55 0,55 0,5	0 ° 240 0 ° 240 0 ° 210 0 ° 210 0 ° 1544 0 ° 15440 0 ° 15440 0 ° 15440 0 ° 15440 0 ° 154400 0 ° 154400 0 ° 154400 0 ° 1544000 0 ° 1544000 0 ° 154400000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,4178 0,3178 0,32338 0,22338 0,22338 0,22959 0,11515 0,11514 0,11514 0,25450 0,354557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1837557 0,1937557 0,1937557 0,1937557 0,1937557 0,1937557 0,1937557 0,1937557 0,1937557 0,1937557 0,1937557 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,195757 0,1957577 0,1957577 0,1957577 0,1957577 0,19575777 0,195757777 0,195757777777777777777777777777777777777
10	000000000000000000000000000000000000000			00000000000000000000000000000000000000
. 61	0,745 9,7292 0,7292 0,609 0,601 0,601 0,601 0,402 0,4049 0,4049 0,4049 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400 0,400000000	0,24465 0,24465 0,24465 0,1004946 0,1004946 0,11004946 0,1100496 0,110049 0,11004 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,01040 0,000000 0,00000000000000000000000	00 00 00 00 00 00 00 00 00 00	0,4400 0,2110 0,2110 0,2510 0,2510 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500 0,2500
00	<b>8</b> 788888888888888888888888888888888888	00000000000000000000000000000000000000		
•	П Ф П Ф П Ф П Ф П Ф П Ф П Ф П Ф П Ф П Ф	$\begin{array}{c} \textbf{M} \\ $	0.59440 0.457440 0.457440 0.457440 0.457464 0.1255946 0.1265946 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.126440 0.1264400 0.1264400 0.1264400 0.1264400 0.1264400 0.1264000000000000000000000000000000000000	10000000000000000000000000000000000000
N			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * * * * * * * * * * * * *

Downloaded from http://www.everyspec.com

S.,

AMCP 708-200

i capatan data menjeri sing baha

5-11

ころう ちょうしょう ちょうちょう ちょうちょう ないない ちょうちょう ちょうちょう しょうしょう しょうしょう

いちかったは生活があるのない

15

ŝ RATE) (HA7ARD RATE (GAUSSIAN) FAILURE **STANDARD** 

+0 * 0 <del>*</del>	0.929955 0.6126955 0.6126955 0.61267550 0.1575504 0.1575195 0.15551965 0.2551965 0.2551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.255519655 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.25551965 0.255519650 0.255519650 0.255519650 0.255519650 0.255519650 0.255519650 0.255500 0.255500 0.255500 0.255500 0.255500 0.255500 0.255500 0.255500 0.255500 0.2555000 0.25550000000000	0.94414F+06 0.56494F+06 0.55496F+06 0.134436F+06 0.1134656 0.113466 0.113465 0.113465 0.113465 0.115465 0.209536+07 0.209536+07 0.215465 0.209536+07	0.190846 0.190846 0.190846 0.10101 0.2542476 0.2542476 0.2542476 0.2542476 0.2542476 0.2542476 0.2542476 0.2542476 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.214240 0.2142400 0.2142400 0.2142400 0.21424000000000000000000000000000000000	0,48454E-11 0,23727E-11 0,11505E-11 0,11505E-12 0,25236E912 0,226236E912 0,57504E-12 0,57504E-12 0,265377E-13 0,12107E-13 0,12107E-13
<b>.</b> 0*0 <b>.</b>	0,968/2E=04 0,44096E=04 0,41966E=04 0,27232E=06 0,1116E=06 0,1116E=06 0,15596E=05 0,256995E=05 0,268995E=05	0,995594 = 06 0,59474 = 06 0,55255 = 06 0,520685 = 06 0,120201 = 06 0,120201 = 07 0,2201 = 07 0,22201 = 07 0,22200 = 07 0,22200 = 07 0,22200 = 07 0,2200 = 07 0,2000 = 0700 = 07000 = 070000000000000000	5,374764-08 2,203026-08 2,108854-08 0,578186-09 0,578186-09 0,1562409 0,15624-09 0,415916-09 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916-10 0,415916	0,520126-11 0,254956-11 0,125726-11 0,125726-11 0,1282776-12 0,282776-12 0,282776-12 0,282776-12 0,282776-13 0,282776-13 0,292776-13
10.01	0,100406-04 (*6686296-04 0;458226-04 0;284496-04 0,182866-04 0,155166-05 0,4572816-05 0,4572816-05 0,282596-05 0,282596-05 0,282596-05	0,10451E+05 0,626451E+06 0,57162E+06 0,21696E+06 0,12694E=06 0,12694E=07 0,12194E=07 0,25521E=07 0,15142E+07 0,15143E+07 0,25521E=07 0,25521E=07	0, 398245-08 0, 215955-08 0, 115945-08 0, 115945-09 0, 1524295-09 0, 1224295-09 0, 8/1206-10 0, 445065-10 0, 445065-10 0, 445065-10 0, 112065-10 0, 112065-10 0, 112065-10 0, 112055-10 0, 125555-10 0, 125555-10 0, 125555-10 0, 125555-10 0, 125555-10 0, 125555-10 0, 12555555555555555555555555555555555555	0.558256-11 0.275916-11 0.155966-11 0.559956-12 0.539956-12 0.5304726-12 0.5304726-12 0.510476-12 0.541986-13 0.41986-14
	0,10509L-U3 0,69671E-04 0,45751E-04 0,45751E-04 0,22719E-04 0,12160E-05 0,479612E-05 0,479647E-05 0,29647E-05 0,1414E-05	0,109446-US 0,659536-06 0,250356-06 0,2134096-06 0,134096-06 0,134096-07 0,249166-07 0,249166-07 0,249166-07 0,249166-07 0,249166-07	0.42314E-08 0.22968E-08 0.12344E-08 0.123445E-09 0.34595E-09 0.34595E-09 0.34595E-09 0.34595E-09 0.416215-10 0.416215-10 0.24102E-10	0.599116-11 0.294266-11 0.143096-11 0.888866-12 0.328346-12 0.123986-12 0.123986-12 0.534886-12 0.53546-13 0.5556-13 0.95216-14
	0,10944t=03 0,72647t=04 0,47719t=04 0,47119t=04 0,51247t=04 0,5029t=05 0,51122t=05 0,51122t=05 0,51122t=05	0,11504E-05 0.69442E-06 0.41285E-06 0.14161E-05 0.14161E-05 0.49659E-07 0.49659E-07 0.1477E-07 0.14777E-07	0,149555-05 0.244265-05 0.131405-05 0.131405-03 0.599855-03 0.559115-09 0.559125-10 0.559125-10 0.2581225-10 0.129475-10 0.129475-10	0,64291t~11 0.31648t~11 0,15385t~11 0,15385t~11 0,153375t~12 0,153375t~12 0,19586t~13 0,19586t~13 0,19586t~13 0,19586t~13
-0.04	0,113456-03 0.757016-04 0.497886-04 0.497886-04 0.324206-04 0.32406-05 0.942986-05 0.527396-05 0.527396-05 0.326676-05 0.326676-05	0.121024-05 0.731986-06 0.445086-06 0.445086-06 0.14456556-06 0.144566-06 0.445796-07 0.445796-07 0.156676-07 0.156676-07 0.156676-07	0,447756E-V8 0,25974E-08 0,139457E-08 0,14557E-09 0,39358E-09 0,10641E-07 0,27641E-07 0,27641E-10 0,27641E-10	0,689844-11 0.359494-11 0.165414-11 0.165414-11 0.381094-12 0.843514-12 0.843514-12 0.443514-12 0.435514-13 0.843514-13 0.843514-13
	0.11865t=01 0.78397t=04 0.51942t=04 0.33856t=04 0.21548t=04 0.13559t=04 0.55295t=05 0.55296t=05 0.34285t=05 0.34285t=05	0.127912.05 0.709412.06 0.458462.06 0.4254462.06 0.127892.06 0.127892.06 0.127892.00 0.127892.00 0.296032.07 0.166082.07 0.166082.07	0,507275-08 0,276185-08 0,144872-08 0,794445-09 0,419745-09 0,113745-09 0,113745-09 0,295965-10 0,148745-10 0,148745-10	9,740116-11 0,7504606-11 0,177856-11 0,858076-12 0,4416-12 0,910446-12 0,422416-12 0,422416-12 0,422416-13 0,194026-13
-0.02	0,123526-03 0,822196-04 0,541846-04 0,353536-04 0,153536-04 0,228376-04 0,228376-04 0,1579726-05 0,3598066-05 0,3598066-05	0,13450E-05 0.81096E-06 0.48305E-06 0.16699E-06 0.16699E-07 0.55294E-07 0.31347E-07 0.1/604E-07 0.1/604E-07	C.538/7E-08 A.29362E-08 A.15843E-08 0.4459E-08 0.4459E-07 0.24457E-07 0.25457E-07 0.2357E-07 0.31686E-10 0.31686E-10 0.15941E-10	0,795986-11 0.391556-11 0.191156-11 0.423936-12 0.423146-12 0.4262966-12 0.456566-13 0.456566-13 0.456566-13 0.209816-13
-0°01	0.12856E-03 0.85677E-04 0.55517E-04 0.359517E-04 0.2589E-04 0.2589E-04 0.96845E-05 0.60771E-05 0.37755E-05 0.23222E-05	0,14141E=05 0,85259E=06 0,50891E=06 0,30075E=06 0-17594E=06 0-17594E=05 0-17594E=07 0.58456E=07 0.58456E=07 0.18658E=07 0.18658E=07 0.18658E=07	0.57218E=08 0.11234E+08 0.116554E=07 0.4177555=09 0.1298044E=09 0.129804E=09 0.129804E=09 0.33921E=10 0.33921E=10	0.451575555555555555555555555555555555555
0*0	0,13381E-03 0,559944E-04 0,559944E-04 0,259944E-04 0,24943E-04 0,10141E-04 0,10141E-04 0,55694E-05 0,39613E-05	0,14867E=05 0,89724E=06 0,53610E=06 0,18574E=06 0,18574E=06 0,18574E=07 0,51826E=07 0,55140E=07 0,55140E=07 0,19773E=07	0,60759E=08 0,33179E=08 0,17938E=08 0,17938E=08 0,96014E=09 0,506981E=09 0,13867E=09 0,13867E=09 0,131315=10 0,36310E=10 0,36310E=10 0,18303E=10	0,913476#11 0,451356#11 0,220806#11 0,512786#11 0,512786#12 0,512786#12 0,532446#12 0,532446#13 0,245296#13 0,245296#13
N	0-1/Mayereo ***********************************	Q → N M Q N Q N Q N Q Q Q M M M M M M M M M M M M M M M M	0 - N M G N G M O O 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - N M3 N & N & B 

Downloaded from http://www.everyspec.com

- - In stran with the search of the

- un sin

-

i

4

1

.

•

:::;

¢

AMCP 706-200

and a subscription of the second s

1000

### 5-4 PARAMETER ESTIMATION, UNCEN-SORED SAMPLES

Downloaded from http://www.everyspec.com

Estimation for uncensored (complete) samples is very easy and straightforward; if the samples are censored, more complicated techniques must be used.

Conventional wisdom uses the estimators (for a sample of size N):

 $\hat{\mu}$  = sample mean =  $\overline{x}$ 

$$\hat{\sigma}$$
 = (sample standard deviation)

$$\propto \sqrt{\frac{N}{N-1}} = s$$
 statistic.

 $\hat{\mu}$  is unbiased and maximum likelihood.  $s^2$  is an unbiased estimator for  $\sigma^2$  but s is a biased estimator for  $\sigma$ .

The maximum likelihood estimator for  $\sigma$  is

 $\hat{J}_{ML}$  = sample standard deviation.

Other useful estimators are the sample median for  $\mu$  and various measures involving the sample range for  $\sigma$ . These other estimators will not be discussed further here but can be found in most textbooks on statistical quality control or in Ref. 1.

$$t = \frac{\bar{x} - \mu}{s/\sqrt{N}}$$
(5-5a)

has the Student's *t*-distribution with  $\nu = N - 1$  degrees of freedom. This fact can be used to set *s*-confidence limits on  $\hat{\mu}$ :

$$\operatorname{Conf}\left\{\mu \leq \bar{x} - ts/\sqrt{N}\right\} = stufc(t; N-1)$$
(5-5b)

$$(\chi^2/\nu) = s^2/\sigma^2$$
 (5-6a)

has the chi-square/nu  $(x^2/\nu)$  distribution with  $\nu = N - 1$  degrees of freedom. This fact can be used to set s-confidence limits on  $\sigma$ :

Conf-
$$\{\sigma^2 \le s^2/(\chi^2/\nu)\}$$
 = csnfc[ $(\chi^2/\nu)$ ;  
(N-1)]. (5-6b)

The subscripts L, U are used to denote Lower and Upper s-confidence limits, respectively.

Joint s-confidence limits on  $\mu$  and  $\sigma$  are not feasible. The cases where either  $\mu$  or  $\sigma$  (but not both) is known are simpler to treat but are rarely met in practice.

### 5-5 EXAMPLES

The following data on strengths of a plastic bar were taken from 1 lot of bars. They are listed in order of occurrence. All have the same units, which are ignored here. Assume s-normality and estimate  $\mu$  and  $\sigma$ , along with suitable s-confidence limits.

89.0	85.8
105.2	93.3
105.2	87.5
107.7	92.3
99.5	95.6
λ7 -	- 10

AMCP 705-200

### Procedure

- 1. Calculate the sample mean  $\overline{x}$ , the s statistic, and the degrees of freedom for s.
- 2. Estimate  $\mu$  and  $\sigma$ .
- 3. Calculate s-contidence limits on  $\mu$ . Use Eq. 5-5b.
- 4. Calculate s-confidence limits on s. Use Eq. 5-6b.

There are no data outside the range of 85.8 to 107.7. Therefore, it is difficult to guess what the population is like out there.

The true mean is not known too well, within about 9% (at 90% s-confidence), and the true standard deviation is only known within a factor of about 2 (at 90% s-confidence). Any estimates more certain than those must come from other knowledge-they cannot come from the data. Be very careful not to use the point estimates and blithely forget all the uncertainty. For example, suppose someone wants to know the value of xsuch that only 1% of the population lies below it. One way to get an idea about an answer is to take the 2 worst cases, " $\mu = \mu_L$ and  $\sigma = \sigma_U$ ", and " $\mu = \mu_U$  and  $\sigma = \sigma_L$ " and see what the two 1% values come out to be if the distribution were s-normal. The number of standard deviations corresponding to the lower 1% point is -2.33. Therefore  $x_{1\%,L} =$ 61.2,  $x_{1\%, U} = 87.2$ . We don't know any s-confidence level for this range, but it gives Example

1.  $\overline{x} = 96.11$  s = 7.92 $\nu = 10 - 1 = 9$ 

://www.everyspec.co

2.  $\hat{\mu} = 96.11$  $\hat{\sigma} = 7.92$ 

- 3. For C = 5%, 95%, and  $\nu = 9$   $t_{9, 5\%} = -1.833$ ,  $t_{9, 95\%} = +1.833$ . s-confidence level = 95% - 5% = 90%  $\mu_L = 91.52$ ,  $\mu_U = 100.70$ Conf {  $91.5 \le \mu \le 100.7$  } = 90%
- 4. For C = 5%, 95% and  $\nu = 9$   $(\chi^2/\nu) 9 5\% = 0.3694$ ,  $(\chi^2/\nu) 9 95\% = 1.8799$ . s-confidence level = 95% - 5% = 90%  $\sigma_L = 5.78$ ,  $\sigma_U = 13.03$ Conf {  $5.8 \le \sigma \le 13.0$  } = 90%

us an idea anyway. However, we don't really know that the distribution is s-normal down that low, there might be 7% defectives down at about 30 for all we know. If that  $x_{1\%}$  value is important to know, we have to get more knowledge from somewhere, or admit that we're just guessing.

The detail in this discussion has been to show that making the calculations is straightforward, but getting some understanding is difficult.

In this example, the data were selected randomly from a s-normal distribution with mean 100 and standard deviation 10; the lower 1% point was 76.7.

### 5-6 PARAMETER ESTIMATION, CEN-SORED SAMPLES

Analytic estimation of the parameters is difficult when the samples are censored. The method of maximum likelihood often is used,

5-15/5-16

in such cases, but the equations are very complicated, especially for the covariance matrix of the estimators. Analytic techniques that do not provide a measure of the uncertainty can be very misleading because the uncertainties are usually much greater than for uncensored samples. Graphical estimation is a reasonably good method and can give some idea of the uncertainty.

A statistician ought to be consulted for analytic techniques and the meaning of their results. Ref. 4 might be of some help.

### REFERENCES

wnloaded from http://www.everyspec.com

- 1. E. S. Pearson and H. O. Hartley, *Bio*metrika Tables for Statisticians, Vol. I, Cambridge Univ. Press, 1956.
- 2. A. Hald, Statistical Tables and Formulas, John Wiley & Sons, 1952.
- 3. Abramowitz and Stegun, Eds., Handbook

A PARTY AND

Sec. Sec.

of Mathematical Functions, AM555, NBS, USGPO, June 1964 with subsequent printings.

4. Sarhan and Greenberg, Contributions to Order Statistics, John Wiley & Sons, NY, 1962.

### CHAPTER 6

Downloaded from http://www.everyspec.com

がい、

### PROBABILITY DISTRIBUTIONS DERIVED FROM THE GAUSSIAN DISTRIBUTION

0-0 LIS	I OF SYMBOLS	$M_t \left\{ \cdot \right\}$	= ith moment about the origin
С	= s-Confidence	NCM _i {	} = normalized (th central mo-
C, L, U	= subscripts that imply a s-confi-		ment: $CM_i \left\{ \right\} / [StDv \left\{ \right\}]^i$
	dence level; C is general, $\hat{L}$ is lower, U is upper.	pdf	= probability density function
Cdf	= Cumulative distribution func-	pmf	= probability mass function
	tion	Pr { }	= Probability
$CM_{i}\{ \}$	= ith central moment	PrD	= Probability distribution
Conf { }	= s-Confidence invel	R	= s-Reliability
csn	= base name for chi-square/nu distribution	5	= ș statistic
csq	= base name for chi-square dia	<b>S-</b>	= denotes statistical definition
	tribution	Sf	= Survivor function
<b>CV</b> { }	<pre>coefficient of variation: StDv { }/E { }</pre>	StDv { }	= standard deviation
E { }	= s-Expected value	stu	= base name for Student's t dis- tribution
f	= suffix on base name, implies the Cdf	t	= t statistic
F	= F statistic	Var { }	= variance
fc	= suffix on base name, implies	Ζ	= standard s-normal variate-
	the complement of the Cdf (i.e., the Sf)	ν	= degrees of freedom (also used with subscripts)
fis	= base name for Fisher-Snedecor distribution	σ	= scale parameter for s-normal distribution
gau	= base name for standard s-nor- mal distribution	{ •;• };(•;•)	= the fixed parameters are listed to the right of the semicolon,

AMCP.706-200

the random variable is listed to the left of the semicolon

Downloaded from http://www.everyspec.com

= the complement, e.g.,  $\overline{\phi} \equiv 1 - \phi$  where  $\phi$  is any probability

### 6-1 INTRODUCTION

These  $f \nu D$ 's are rarely if ever fitted to experimental data. They are useful because some estimators for other PrD's have these PrD's. The  $\chi^2$  and  $\chi^2/\nu$  distributions are related to the Poisson and exponential distributions, in addition to the Gaussian distribution. Failure rates are virtually never used with these distributions; so they are not given. They could be readily (although tediously) calculated.

For many reliability purposes, the  $\chi^2/\nu$  distribution is more useful than the  $\chi^2$  distribution.

### 6-2 CHI-SQUARE $(\chi^2)$ DISTRIBUTION

The base name csq is given to the  $\chi^2$ distribution (for chi-square). The suffix fimplies the Cdf, and the suffix fc implies the Sf (complement of the Cdf).

The sum of the squares of  $\nu$  s-independent standard s-normal variates is a  $\chi^2$  variate with  $\nu$  degrees of freedom. In reliability work, the  $\chi^2$ distribution itself is rarely needed; it is virtually always the  $\chi^2/\nu$  distribution that is desired.

### 6-2.1 FORMULAS

$$\nu =$$
 degrees of freedom,  $\nu > 0$ 

$$\chi^{2}$$
 = random variable,  $\chi^{2} \ge 0$   
 $pdf\{\chi^{2}; \nu\} = c(\chi^{2})^{\nu/2} - 1 \exp(-\chi^{2}/2)$ 
  
(6-1)

$$Cdf \{\chi^{2}; \nu\} = csqf(\chi^{2}; \nu)$$
(6-2)  

$$Sf \{\chi^{2}; \nu\} = csqfc(\chi^{2}; \nu)$$
(6-3)  

$$E \{\chi^{2}; \nu\} = \nu$$
  

$$StDv \{\chi^{2}; \nu\} = \sqrt{2\nu}$$
  

$$CV \{\chi^{2}; \nu\} = \sqrt{2/\nu}$$
  

$$CM_{3} \{\chi^{2}; \nu\} = \sqrt{2/\nu}$$
  

$$NCM_{3} \{\chi^{2}; \nu\} = \sqrt{8/\nu}$$
  

$$mode \{\chi^{2}; \nu\} = \begin{cases} \nu - 2, \text{ for } \nu > 2 \end{cases}$$

median  $\{\chi^2;\nu\} \approx \nu - 0.6$ 

 $c \equiv 2^{\nu/2} [\Gamma(\nu/2)]^{-1}$ 

Fig. 6-1 shows some curves of the pdf.

It is convenient occasionally to define the Cdf and Sf for  $\nu = 0$ .

**otherwise** 

$csqf(\chi^2; 0) \equiv 1$ , for $\chi^2 > 0$	<b>(6-4a)</b> [`]
$csqfc(\chi^2; 0) \equiv 0;$ for $\chi^2 > 0$	(6-4b)
$csqf(0; 0) \equiv 0, \ csqfc(0; 0) \equiv 1$	(6-4c)

Some approximations for  $\chi^2$  in terms of the standard s-normal variate z are

for 
$$\nu \to \infty$$
,  $z_Q \approx (\chi^2_{Q,\nu} - \nu)/\sqrt{2\nu}$  (6-5)  
for  $\nu > 100$ ,  $z_Q \approx \sqrt{2\chi^2_{Q,\nu}} - \sqrt{2\nu - 1}$  (6-6)

for 
$$\nu > 20$$
,  $z_Q \approx \left[ (\chi^2_{Q,\nu} / \nu)^{1/3} - \left( 1 - \frac{2}{9\nu} \right) \right] / \sqrt{\frac{2}{9\nu}}$ 
  
(6-7)

where  $gauf(z_Q) = Q$ ,  $ccafc(\chi^2_{Q,v}; v) = Q$ 

6-2.2 TABLES

Calculating the pdf is straightforward but tedious. It is rarely used and rarely tabulated. The pdf is shown ir. Fig. 6-1. Table 6-1 gives the percentiles of the chi-square Cdf. Other good references for the Cdf are Ref. 1 (Tables 7, 8, and Chap. 3) and Ref. 2 (Tables 26.7, 26.8, and Sec. 26.4). Many statistical/qualitycontrol texts give partial tables of the chisquare distribution.

Eq. 6-8 is quite good, even for small values of  $\nu$ ; it is the inverse of Eq. 6-7.

$$\chi^{2}_{Q,\nu} \approx \chi^{2*}_{Q,\nu} \equiv \nu \left[ 1 - \frac{2}{9\nu} + z_{Q} \left( \frac{2}{9\nu} \right)^{1/2} \right]^{3}$$
(6-8)

where

$$gaufc(z_0) = Q$$
,  $csqfc(\chi^2_{0,\nu}; \nu) = Q$ 

Eqs. 6-7 and 6-8 reproduce the  $\{Cdf \ \chi^2; \nu\}$ quite well for values of the *Cdf* as low as  $1/\nu^2$ . Very roughly, the relative error of a tail area of  $1/\nu^2$  is less than  $1/\nu^2$ . For  $\nu = 5$ , Eq. 6-8 gives the following results:

<u>Q</u>	$csqfc(\chi^2 q_{Q,\nu}; \nu)$	relative error in tail area
<u>0</u> .001	0.00092	-0.08
0.01	0.00990	-0.01
$\tilde{1} - 0.1$	1 — Ó.1000	0.0
1 - 0.05	1 - 0.0487	-0.026
1 - 0.01	1 - 0.008	-0.20

### 6-3 CHI-SQUARE/NU $(\chi^2/\nu)$ DISTRIBUTION

The base name csn is given to the  $\chi^2/\nu$ distribution (for chi-square/nu). The suffix fimplies the Cdf, and the suffix fc implies the Sf (complement of the Cdf).

The average time-to-failure in a sample with r failures from the exponential distribution has the  $\chi^2/\nu$  distribution with  $\nu = 2r$ ; see Chapter 7. The sum of the *pmf*'s (rth term to  $\infty$ ) from a Poisson distribution has a  $\chi^2/\nu$ distribution with  $\nu = 2r$ ; see Chapter 4. The ratio  $s^2/\sigma^2$  has a  $\chi^2/\nu$  distribution; see Chapter 5.

### 6-3,1 FORMULAS

Downloaded from http://www.everyspec.com

v = degrees of freedom, v > 0

$$\chi^{2}/\nu = \text{random variable}, \quad (\chi^{2}/\nu) \ge 0$$

$$\inf df \{\chi^{2}/\nu; \nu\} = c(\chi^{2}/\nu)^{\nu/2} - \overline{1} \exp \left[-\frac{\nu}{2} (\chi^{2}/\nu)\right]$$

$$c \equiv (\nu/2)^{\nu/2} [\Gamma(\nu/2)]^{-1} \quad (6-8)$$

$$Cdf \left\{ \chi^2 | \nu; \nu \right\} = csnf(\chi^2 | \nu; \nu) \tag{6-9}$$

$$Sf\{\chi^2/\nu;\nu\} = csnfc(\chi^2/\nu;\nu)$$
(6-10)

$$E\{\chi^2/\nu;\nu\}=1$$

$$\operatorname{St}\operatorname{Ev}\left(\chi^2/\nu;\nu\right) = \sqrt{2/\nu}$$

$$\operatorname{CV}\left\{\chi^2/\nu;\nu\right\}=\sqrt{2/\nu}$$

 $CM_3 \{\chi^2/\nu; \nu\} = 8/\nu^2$   $NCM_3 \{\chi^2/\nu; \nu\} = \sqrt{8/\nu}$   $mode \{\chi^2/\nu; \nu\} = \left\{\frac{1-2}{0}, \text{ for } \nu > 2 \\ 0, \text{ otherwise}$   $median \{\chi^2/\nu; \nu\} \approx 1 - 0.6/\nu$ 

AMCP 708-200



100 0

Downloaded from http://www.everyspec.com

(B) FOR DEGREES-OF-FREEDÓM  $\nu$  = 10, 20, 30, 50, 100 (FOR LARGE  $\nu$ , THE pdf IS RÉASONABLY SYMMETRICAL ABOUT  $\chi^2 = \nu - 2$ .)



### ANS: 706-200

### TABLE 6-1

Downloaded from http://www.everyspec.com

### PERCENTILES OF THE CHI-SQUARE ( $\chi^2$ ) DISTRIBUTION (ADAPTED FROM Ref. 3)

 $csqf(\chi^2; \nu) \equiv Cdf \chi^2; \nu$ 

The body of the table gives the values of  $\chi^2_{\rho,\nu}$ 

such that  $craf(\chi^2_{P, \nu}, \nu) = P$ .

\ p	PROBABILITY IN PAR CENT									
~	0.02	0-1	0.2	1-0	2.5	5.0	10.0	20.0	30.0	40-0
z	·0 ⁴ 3y3	·0 ^{\$} 157	·0* 393	·0' 157	,0°G82	·0* 393	·0158 ·	-0642	•148	•275
2	·0*100	02 200	•0100	-0201	10500	•103	·211	•446	713	1.05
3	·0153	·0243	-0714	+115	-216	•352	•584	1.00	1 47	1.87
4	+(630	10008	•207	•297	•484	-711	1.00	1.65	2.19	2.75
Ś	•158	•210	-412	554	-831	1-15	1.61	2.34	3.00	3.66
6	•200	-381	-676	-872	1.24	1.64	2.20	3.07	3.83	4.57
,	-485	-508	-080	1.2.1	1.60	2.17	2.81	3.82	4.67	5.40
8	+710	-857	1.34	1.05	2.18	2.73	3-40	4.5G	4.43	6.42
ŏ	2072	1.15	1.73	2.00	2.70	2.22	4.17	5.28	6.30	7.16
10	1.20	1-48	2.10	2.50	3.35	3.94	4.87	6.18	7.27	8.30
÷.	1150	1.82	2.60	2.05	2.82	4.87	E168	6.00	Rite	0.24
12	1.03	2.21	3.07	3.57	4.10	5.23	6.30	7.81	0.03	10.2
12	2121	2.62	3.47	3.37	5.01	5.80	7:01	8.62	0.02	102
	4 31	2.01	2.27		5.62	6.57	7.99	0.17	9 93	10.1
		2118	4.07	5.77	5.05	200	8.00	9.47	100	12.0
<b>^</b> 3	3.11	2.10	400	5+5	0.20	/10	0.35	10.2	,	13.0
16	3`54	3.94	5.14	5.81	6.91	7.90	9.31	11-2	12.0	14-0
17	3.08	4.43	5.70	6.41	2.20	8.67	10.1	12-0	13.2	14.9
18	4.44	4.00	0.20	7.01	8.23	9.39	10.9	12.9	14.4	15.9
.19	4.91	5.41	6.81	7.63	8.91	10-1	11.7	13.7	15.4	169
20	5.40	5.92	7:43	8.20	9.20	10.9	12.4	14.0	10.3	17.8
21	5.90	6.42	8.03	8.90	10.3	11.0	13.5.	15.4	17.2	18-8
22	6.40	6.98	8.64	9.54	11/0	12.3	1.40	16.3	18.1	19.7
23	6.92	7.53	9.20	10.2	11.7	13-1	14.8	17.2	19.0	20.7
24	7.45	8.08	9·89	10.9	12.4	>3.8	15.7	18.1	19.9	21.7
25	7.99	8.65	10.5	11-5	13-1	14.6	16.5	18.9	20.9	22.0
26	8.54	0.55	11.2	12.2	13.8	15.4	17:3	.19.8	21.8	23.6
27	0.00	0.80	31.8	12.0	14.6	16/2	18.1.	20.7	22.7	24.5
28	<b>ó 6</b> Ó	10.1	12.5	135	15.3	16.0	18.0	21.6	27.6	25.5
20	10.2	110	13-1	14.3	16.0	17.7	10.8	22.5	21.0	26.5
30	10.8	11.6	13.8	150	16-8	18.5	20.6	23.4	25.5	27.4
21	1 11.4	12.2	1.1.5	15.7	17.5	10.3	21.	21.2	26.4	28.4
32	12.0	12.8	15.1	16.4	18.3	201	22:3	25.1	27.1	20.4
22	12.6	13.3	15.8	17.1	10.0	20:0	22.1	-3-	28.2	-94
21	12.2		16.5	77.8	10.8	21.7	21:0	26.0	20.3	202
35	. 17.8	14.7	17.2	18.5	20.6	22.5	2.1.8	27.8	30.2	32.2
55			-/-			5		.,.		3-3
30	14.4	15.3	17.9	19.2	21.3	23.3	25.0	28.7	31.1	33.3
37	15.0	10.0	10.0	20.0	22-1	24-1	20.5	29.0	32.1	34'2
38	15.0	10.0	19.3	20.7	22.9	24.9	27.3	30.5	33.0	35.2
39	10.3	17.3	20.0	21-4	23.7	25.7	20.2	314	33.9	30.2
40	10.9	17.9	20.7	22.2	24.4	20.5	29%	32.3	34.9	37.1
41	17.*	18.0	21.4	22.9	25.2	27.3	29.9	33.3	35.8	38.1
42	18.2	19.3	22.1	23.7	20.0	28·I	30.8	34.5	30.8	39·1
43	18-8	10.0	22.9	24.4	20.8	29.0	31.0	35.1	37.7	40.0
44	19.5	20.0	23.0	25.1	27.0	29.8	32.2	36.0	38.0	41.0
45	20.1	21.3	243	25.9	.28.4	30.0	33:4	30.0	<b>79</b> .0	42.0
46	20.8	219	25.0	26.7	29.2	31.4	34.2	37.8	40.5	43.0
47	21.5	22.6	25.8	27.4	30.0	32.3	35:1	38.7	41.5	43.9
48	22.1	23.3	26.5	28.2	30.8	33-1	35.9	396	42'4	44.9
-49	22.8	24.0	27.2	28.9	31.6	33.9	36-8	40.5	43 4	45.9
50	23.5	24.7	28.0	29.7	32.4	34.8	37.7	41.4	44.3	46-9

Example: csqf (4.4C; 12) = 2.5% Approximate formula:  $\chi^2_{Q,\nu} \approx \nu \left[1 - \frac{2}{9\nu} + Z_Q \left(\frac{2}{9\nu}\right)^{1/2}\right]^3$ 

where: gaufc  $(z_Q) = Q$ ; csqfc  $(\chi^2_{Q,z}; \nu) = Q$ 

Contesy of John Wiley & Sons, Inc., publishers

Have been by a survey of the second of the

### TABLE 6-1 (Continued)

Downloaded from http://www.everyspec.com

7

+11

115

•_

	PROBABILITY IN PER CENT									» /		
<b>5</b> 0∙0	60 O	70-0	80.0	90 0		ģ5·0	97.5	99.0	99 5	99 [.] 9	99 95	1
	•708	1.07	1.64	2.71		3.84	5.02	6 63	7.88	16.2	12.1	T
1.10	1.81	2.41	1.22	4.01		5.00	7.38	0.21	10.0	13.8	15.2	2
2.37	2.05	1.67	4.63	6-25		7.81	0.35	11.1-	12.8	16-3	17.7	
3-36	1.01	- 88 -	6.00	7.78		0.40	11.1	13-3	11.0	18.5	20.0	1 7
4.15	5.13	0.00	7.2	9.24		11.1	12.8	15-1	16.2	20.5	22.1	3
	6.00						• • • •	.6.9				
5.35	0.21	7.23	8.20	10.0		12.0	14.4	10.0	10.2	22.5	24.1	0
0.32	7.20	8·38	9.90	72.0		14.1	10.0	10.2	20.3	24.3	20.0	1 7
7:34	8.32	9.52	11.0	13.4		15.5	17.5	20.1	22.0	20-1	27.9	8
8.34	0.11	10.2	12.2	14.7		10.9	19.0	21.7	23.0	27.9	<b>2</b> 9·7	9
9.34	10.5	11.9	134	10-0		18.3	20.5	23.2	25.2	29.0	31.4	10
10-3	11.5	12.0	14.0	17.3		19.7	21.9	24.7	26.8	31.3	33-1	11
11-3	12.0	14-0	15.8	18.5		21.0	23.3	20.2	28.3	32.9	34.8	12
12.3	13.6	15.1	37.0	10-8		22.4	24.7	27.7	20.8	34.5	36.5	13
11.3	14.7	16-2	18.2	21.1		23.7	26-1	20.1	31.3	36.1	38.1	14
14.3	15.7	17-1	10.2	22-3		25.0	27.5	296	32.8	37.7	39.7	15
-15		-75	- , 0				-75	•		57.7	•,,,	
12.3	10.8	18.4	20.2	23.5		20.3	28.9	32.0	34.3	39.3	41.3	10
10-3	17.8	19.5	21.0	54.8		27.0	30.5	33.4	35.7	40.8	42.9	17
17.3	18.9	20.0	22.8	26.0		28·9	31.2	34.8	37.2	42.3	44'4	18
18-3	19.9	21.7	23.9	27.2		30.1	32.9	36.2	38.0	43.8	40.0	19
19.3	21.0	22·8	25.0	28.1		31.4	34.3	37.0	40.0	45.3	47.5	20
20-3	22.0	21.0	26-2	20.0		32.7	35.5	38 9	41-4	46.8	49.0	21
21-3	23.0	21.0	27.3	30.8		33.0	36.8	40.3	42.8	48.3	50.5	22
22.3	24-1	20.0	28.1	32.0		35.2	38.1	11.0	41.2	40.7	52.0	23
22.3	25.1	27.1	20.0	11.2		20.1	30.4	13-0	45-6	51.2	53.5	24
21.3	26.1	28.2	30.7	344		37.7	40.0	44.3	46.0	52.6	54.0	25
-10						-	,		.0.4			
25.3	27.2	29.2	31.9	35.0		30.9	41.9	45.0	40.3	54.1	50.4	20
20.3	26.2	30.3	32'9	30.2		40.1	43.5	47.0	49°C	55.2	57.9	37
27-3	29.2	31.4	34-2	37.9		41.3	44.2	40.3	51.0	50.9	59.3	26
28.3	30.3	32.5	35.1	39.1		42.0	45.7	49.0	52.3	58.3	60.7	29
29.3	31.3	33.2	36.3	40.3		43.8	47.0	50.9	53.7	59.7	02-2	30
30.3	32.3	34.0	37.4	41:4	,	45.0	48.2	52.2	55.0	61.1	63.6	31
31-3	33.4	35.7	38.5	42.6		46.2	49.5	53.5	50.3	ð2·5	65.0	32
32-3	14.1	30.7	30.0	43.7		47.4	50.7	54.8	57.6	63.0	6Ğ-4	33
31-3	35.4	37.8	40.7	44.0		48.6	52.0	50·x	59.0	65.2	67.8	34
34.3	36.5	38.9	41-8	46.1		49.8	53.2	57.3	60.3	6ȕ6	69.2	35
25.2		40.0		18.0		67.0	E 4.4	18.6	61.6	68.0	0.6	26
35.3	3/3	39.9	44.9	4/12		51.0	34.4	500	60.0	60.0	701	30
30.3	30.2	41.0	44'0	40.4		52.2	557	29.9	64.9	09.3	72.0	1 3/
37.3	390	42.0	45 /	49'5		5.5.4	20.9	64.4	64.2	70.7	.734	30
30.3	40.0	43'1	40-2	50.2		54.0	50.1	64.4	02.2	72.1	74.7	39
39.3	41.0	44.5	47.3	51.8		55.0	59.3	03.7	00.9	73'4	70.1	40
40.3	42.7	45.2	48.4	52.9		56.9	60.6	65.0	68·1	74.7	77.5	4x
41.3	43.7	46.3	49'5	54.1		58.1	61·8	66.5	69.3	76-1	<b>78</b> ∙8	42
42.3	44.7	47.3	50.5	55'2		59.3	63.0	67.5	70.6	77.4	80.2	43
43.3	45.7	48.4	510	50.4		60.5	64.2	68.7	71.9	78.7	31.5	44
44.3	46-8	49.5	52.7	57.5		61.7	65.4	70·0	73.2	80.2	32.9	45 🗥
46.7	47.8	50.5	\$2.8	\$8.6		62.8	66.6	71.2	74.4	81-4	84.2	46
40.2	A.8.	57.6	5.10	50-8		64.0	67.8	72.4	75.7	82.7	85-0	17
47.3	40.8	\$2.6	56.0	60.0	x	65.2	60.0	73.7	77.0	84.0	86.0	1 18
48.2	50.0	51.9	\$717	62.0		66.2	70.2	74.0	78.2	85.4	88.2	10
40.2	51.0	5417	\$8.2	62.2		67.5	71.4	26.2	70.4	86.7	80.6	50
-19'3	3+3	347	30 4	•J •	•	-15	/- 1	/* -	124	~~/	~, ~	1

### Fig. 6-2 shows some curves of the pdf.

### G-3.2 TABLES

Calculating the pdf is straightforward but todious. It is rarely used and almost never tabulated. It is shown in Fig. 6-2.

. Table 6-2 gives some percentiles of the  $\chi^2/\nu$ Cdf. Tables of the  $\chi^2/\nu$  distribution are handy, but uncommon.

An approximation for  $\chi^2/\nu$  in terms of the standard s-normal variate z is

For 
$$\nu > 20$$
,  $z_Q \approx \left[ (\chi^2 / \nu)^{1/3} \right]$ 

$$-\left(1-\frac{2}{9\nu}\right)\right]\left/\sqrt{\frac{2}{9\nu}} (6-7)\right.$$

Eq. 6-11 is the inverse of Eq. 6-7 and is quite good. See Eq. 6-8 et seq.

$$(\chi^2/\nu)_{Q,\nu} \approx \left[1 - \frac{2}{9\nu} + z_Q \left(\frac{2}{9\nu}\right)^{1/2}\right]^3$$
 (6-11)

where

 $gaufc(z_Q) = Q, \ csnfc((\chi^2/\nu)_{Q, \nu}; \nu) = Q$ 

### 6-4 STUDENT'S t-DISTRIBUTION

The base name stu is given to the tdistribution (for student). The suffix f implies the Cdf, and the suffix fc implies the Sf (complement of the Cdf).

The ratio of a standard s-normal variate to the square-root of a chi-square/nu variate has the t distribution. It occurs most frequently with the s-normal distribution where both the mean and standard deviation of a s-normal distribution are to be estimated from the ample data: <u>Student</u> was used as a pen name by W. S. Gosset in 1908 to publish his derivation of the t distribution. See Chapter 5 br examples of the t distribution. The distriution is symmetrical about the origin.

### 6-4.1 FORMULAS

Downloaded from http://www.everyspec.com

- $\nu$  = degrees of freedom,  $\nu > 0$
- t = random variable, it can take any value.

$$pdf\{t;\nu\} = c(1+t^{2}/\nu)^{-(\nu+\frac{1}{2})/2}$$

$$c \equiv [\sqrt{\pi\nu} \Gamma(\nu/2+1/2)\Gamma(\nu/2)]^{-\frac{1}{2}}$$

$$= 2^{\nu} [\pi \sqrt{\nu} \Gamma(\nu)]^{-1} \qquad (6-12)$$

$$Cdf\{t; v\} = stuf(t; v) \tag{6-13}$$

$$Sf\{t; \nu\} = stufc(t; \nu) \tag{6-14}$$

$$E\{t;\nu\}=0$$

StDv 
$$\{t; \nu\} = \begin{cases} \sqrt{\nu/(\nu-2)}, & \text{for } \nu > 2 \\ \rightarrow \infty, & \text{otherwise} \end{cases}$$

$$CM_3\{t;\nu\} = 0$$
$$NCM_2\{t;\nu\} = 0$$

$$NCM_{4} \{ t; \nu \} = \begin{cases} 3 + 6/(\nu - 4), \text{ for } \nu > 4 \\ \rightarrow \infty, & \text{otherwise} \end{cases}$$

median  $\{t; v\} = 0$ 

$$mode\{t; v\} = 0$$

Fig. 6-3 shows some curves of the *pdf*. They are quite similar to the Gaussian *pdf*. For  $\nu \rightarrow \infty$ , the *t*-distribution becomes the Gaussian distribution.

### 6-4.2 TABLES

The *pdf* rarely is used and almost never tabulated. If needed, it can be calculated (tediously) from Eq. 6-12. Table 6-3 gives the percentiles of the *t*-distribution. Tables for the *t*-distribution are quite common; see, for example Ref. 1 (Tables 9, 10, 12, and Chapter 5).
Downloaded from http://www.everyspec.com

### AMC? 705-200





#### Downloaded from http://www.everyspec.com

#### TABLE 6-2

# PERCENTILES OF THE CHI-SQUARE/NU $(\chi^2/\nu)$ DISTRIBUTION (ADAPTED FROM Ref. 3)

 $csnf(\chi^2/\nu;\nu) \equiv Cdf\{\chi^2/\nu;\nu\}$ The body of the table gives the value of  $(\chi^2 / \nu)_{\rho,\nu}$  such that canf  $[(\chi^2 / \nu)_{\rho,\nu}, \nu] = P$ .

,		PROBA	YTLIN	IN"PR	a CENT	•		PROBA	BILITY	IN PER	CENT	
$\mathbf{X}$	0-05	0-1	0.5	1.0	2.5	5:0	95-0	97.5	99.0	99:5	99.9	99.95
, 1	-0000	+0000	-0000	0002	.0010	0039	3.8410	5.0240	6.6350	7.8790	10.8280	12-1160
2	-0005	-0010	.0050	-0100	-0253	-0515	2.9955	3.0890	4.6050	5.2985	6-9080	7.0010
3	-0051	-ùo8t	·0239 ·	•0383	.0720	•1173	2.0050	3.1100	3.2812	4.2793	5.4220	5.9100
4	-0160	-0227	0518	0742	.1210	·1778	2.3720	2.7858	3.3192	3.7150	4.0109	4.9795
s l	-0316	-0420	·0824	.1108	·1662	•2290	2.2140	2.2001	3.0172	3.3500	4.1030	4.4210
6	-0.100	-0635	1127	•1453	·2002	·2725	2.0907	2.1085	2.8020	3.0913	3.7430	4.0172
7	-0003	-0854	.1413	.1770	·2414	·3096	2.0090	2.2876	2.6393	2.8909	3.4740	3.7109
8	·0888	1071	1680	-2058	·2725	·3416	1.9384	<b>5.1</b> 010	2.2112	2.2444	3.2050	3.4035
9	+1080	1221	.1928	·2320	•3000	•3694	1-8799	2.1137	2.4073	2.0210	3.0974	3.2902
10	·1265	·1479	·2156	·2558	·3247	•3940	1.8307	2.0403	2.3209	3.2100	2.9500	3.1419
11	.1443	·1667	·2366	·2775	·3469	·4159	1.7886	I•9927	2.2477	2.1322	2.5422	3.0124
12	1612	1845	-2502	·2976	·3670	•4355	1.7522	1.9442	2.1848	2.3283	2.742/	2.0010
13	•1773	-2013	·27.42	-3159	•3853	4532	1.7202	1.9028	2.1298	2.2930	2.0500	2.0000
14	1926	·2172	12911	·3329	·4021	-4694	1.0018	1.8050	2.0812	2.2371	2.2002	2.7221
15	+2072	·2322	·3/x07	•3486	•4175	•4841	1.0004	1.9322	2.0302	2.1007	5.2131	2.0479
16	-2210	·2464	·3214	.3632	·4318	·4976	1.6435	1.8028	2.0000	2.1417	2.4532	2.2810
17	•2341	2598	+3351	3709	4449	-5101	1.6228	1.7759	1.9652	2.1011	2.3994	2.5223
18	-2466-	·2725	·3481	·3897	-4573	·5217	1.00,38	1.7514	1.0330	2.0042	2.3507	2.4000
19	-2585	·2846	·3602	4017	+4688	·5325	1.5862	1.7291	1.0019	2.0300	2,3003	214190
20	2699	·2961	•3717	·4130	•4796	.5420	1-5705	1.7085	1.9293	1-9990	* 2.2020	2.3749
21	-2308	.3070	·3820	·4237	·4897	-5520	1.5558	1.6895	1.8539	1.9715	2.2204	2.3338
22	-2911	-3174	.3929	·4337	·4992	·5608	1.2430	1.6719	1-8313	1.9453	2.1940	2.2000
23	.3010	·3273	.4026	*4433	-5082	·5692	1.2292	1.0555	1.8103	1.9209	2.1021	2.2009
24	.3105	·3309	·4119	·4523	-5167	·5770	1.2123	-1-(k]02	1.7900	1.0002	2.1325	2.2203
25	•3196	•3460	-4208	•4610	·5248	-5844	1.2001	1.0253	1.220	1.9771	2.1040	2.19/9
26	·3284	·3547	•4292	•4692	`5325	·5915	1 4056	1.0124	1.7555	1.8573	2.0789	2.1095
27	-3368	-3031	*4373	·4770	·5397	-5982	1.4857	1.2008	1.2394	1.8387	2.0547	2.1429
28	•3449	-3711	*4459	-4845	-5407-	-0040	2:4703	1,2079	1.7242	1.0212	2.0319	2.11/9
29	*3527	-3788	•4524	·4910	·5533	-0100	1-4075	1.5700	197000	1.0047	1.000	2.0943
30	•3601	•3863	-4590	·4984	·5597	·0104	1.4201	1.2000	1.0004	1.7.91	1.990	10/10
31	.3674	•3934	•4664	·5050	.5658	.6220	1-4511	1.5559	1.0830	1.7743	3 1.9700	2.0510
32	•3743	-4003	•4729	-5113	•5716	·6272	1-4430	1.5402	1.0714	1.700	1.952	7 240311
33	•3811	•4070	·4792	-5174	• • 5772	.6323	1.4304	1.2371	1.0599	1.740	9 1.935	5 2.0132
- 34	.3876	•4134	-4853	•5232	-5825	•0372	1.4295	1.2304	1.0403	1.734	1 1.0012	1 1-0771
35	•3939	•4197	-4912	5268	.2077	•0219	1.4229	1.2501	1.0303	1 / 22	• • • • • • • • •	т • У//• • •
36	4000	•4257	-4969	·5342	•5927	-641-4	1 4106	1.5121	1.028	1.710	0 1.999	2 1.0000
37	•4059	*4315	.5023	•5395	•5975	.0507	1.4100	1.2042	1.0102	1189	5 1.074	2 1.9452 (1 1.0.102
38	-4117	' '4371	·5076	•5445	+0021	•0548	1.404	1 4972	1 Loog	) 1.000 1.000	0 1-000 0 1-847	6 1.0160
39	4173	•4425	.5127	-5494	•0005	-0503	1.3993	5 1 490	1.000	1.1.1.1.1	2 1.816	0 1-0024
40	•4220	• • • • • • • • • • • • • • • • • • • •	·5177	.5541	•0100	42027	1.3940	1.4030	1.234		ررن . م مم ^و م ت	
41	+4279	) ·1530	.5225	·55 ⁸ 7	• • 6150	6665	1.383	1.4771	1.294	1.059	0 1.023	0 1.0092
42	433	> -4580	.5271	.5631	-6190	•0701	1.3930	1.1700	1.240	5 1.050	y 1.011	1 1.8646
-43	•4380	•4629	.5316	•5674	+0229	0730	1.379	1.4040	1.2000	5 2.042	a 1.780	8 1-8520
- 44	*4428	5 .4070	.5300	-5715	0207		1.3740	, 1-459	5 7.791	5 1-126	3 1.770	5 1.8117
45	447	5 .4722	•5402	.5750	1.0701	-0003	1-370	1-453		· · ··)	··· •···	
46	•452	o •4767	· 54 <u>44</u>	•5795	·6339	-6835	1.3030	1.448	1.212	5 1.010	iz 11709 un timente	N 1.8204
47	•456	3 .4811	-5484	·583	3 -0374	0000	1.301	7 1.4430	, 1'54I) , 1:54I	5 1.010 7 1.1010	C 1.920	8 1.8101
48	460	9 4853	•5523	.5870	0407	7 10095	1.357	7 1.430	× 1,600	1.600	6 1.7.1	8 1-8006
-19	465	1 489	-5501	-590	0 .04/3	0924 0072	1.353	y 1.433 * *****	1 1.892	t ticko	8 1.73	1.7012
a 🕰		2 44024	· •5502		i "U4/7.		1.120		J+J			

Example: canf (0.3670; 12) = 2.5% Approximate formula:  $(\chi^2/\nu)_{\dot{G},\bar{\nu}} \approx \left[1 - \frac{2}{9\nu} + z_Q \left(\frac{2}{9\nu}\right)^{1/2}\right]^3$ 

where: gaufc (z) = Q; canic  $\left[(\chi^2/\nu)_{Q,\nu};\overline{\nu}\right] = Q$  and  $z_Q$  can be calculated from Eq. 6-7.

Courtesy of John Wiley & Sons, Inc., publishers



Downloaded from http://www.everyspec.com

6-10

Sec. N.

2

Ž

### AMCP 706-200"

# TABLE 6-3

Downloaded from http://www.everyspec.com

# PERCENTILES OF THE t DISTRIBUTION (ADAPTED FROM Ref. 3)

The body of the table gives the value of  $t_{\rho_{i}, y}$  such that

$$Cdf \left\{ t_{P, \nu}; \nu \right\} = stuf \left( t_{P, \nu}; \nu \right) = P.$$
  
$$t_{1, \nu} = -t_{0} t_{1, \nu} = 0.$$

$$1 \cdot p = - \cdot p \cdot \cdot_{50\%} = 0$$

P I				Pr	OBABILITY	IN PER CE	T			
	60	70	8o	90	95	97.5	99	99.5	99.9	99-95
	.275	•727	1.376	3.078	6.314	12.71	31.82	63·66	318.3	636-6
	.280	.617	1.001	1.886	2.920	4.303	6.965	9.925	22:33	31.00
2	1077	.584	.078	1.638	2.353	3.182	4.24I	5:84I	10.33	12.04
3	-271	.569	-941	1.533	2.132	2.776	3.747	4.604	7.173	8.010
7		• •				0. <b></b>	2.268	4.022	6.803	6.840
5	·267	•559	·920	1.470	2.015	2.5/1	2.202	2.707	s-208	5-05C
6	·265	·553	-900	I•440	1.943	2.447	3.142	2.101	4.785	5-405
7	·263	549	-896	1.415	1.895	2.005	2.995	2.255	4.501	SOAI
8	·262	-546.	·889	1,392	1.800	2.300	2.090	3.333	4.207	4.781
9	·261	·543	^{:88} 3	1.383	1.933	2.202	2.071	2.*20	9 - 97	4/
		.5.12	-870	1.372	1.812	2.228	2.764	3.169	4-144	4.587
10	-200	1540	-876	1.363	1.706	2.201	2.718	3.100	4.025	4:437
II	-200	540	.872	1.356	1.782	2.179	2·681	3.055	3 930	4.319
12	.259	539	-870	1-350	1.771	2.100	2.650	3.012	3.852	4·22I
13	·259 ·258	.530	-868	1.345	1.761	2.145	2.624	2.977	3.787	<b>4•140</b> 4
	-9-						0.602	2.0.17	2.723	1.073
15	·258	·536	·866	·1·341	1.753	2.131	21012	2.041	2.686	4.015
16	·258	•535	·865	1.337	1.740	2.120	* 505	2.921	3.646	2:005
17	·257	·534	·863	1.333	1.740	2110	2.307	a.848	2.611	2.022
18 I	·257	·534-	·862	1.330	1.734	2.101	2.224	2.070	2.570	2.883
19	·257	.533	·861	1.328	1.729	2.093	2.239	2.001	3.218	3003
			-860	1.325	1.725	2.086	Q·528	2.845	3.552	3.850
20	-23/	522	-850	1.323	1.721	2.080	2.518	2.831	3.527	3.819
21	-25/	-522	858	1.321	1.717	2.074	2.208	2.819	3.202	3.792
22	.256	-522	-858	1.310	1.714	2.009	2.500	2.807	3.485	3.707
23	•250	·531	·857	1.318	1.711	2.064	2.492	2.797	3.407	3.745
-7				6	a	a	0.48K	2.787	3.450	3.725
25	•256	-531	.850	1.310	1.708	2.000	21470	2.770	2.434	3.707
20	·256	·531	.850	1.315	1.700	2.050	0.472	2.775	3.421	3-1:00
27	·250	·531	·855	1.314	1703	2.052	21467	2.702	3.408	3.674
28	·250	.230	·855	1.313	1.701	2.040	2.462	-2-756	3.306	3.650
` 2 <b>9</b>	•250	.530	·854	1.371	1.099	4.04-	2 40	- 1.50	, <u> </u>	
~~	.256	.530	-854	1.310	1.697	2.042	2.457	2.750	3.38	5 3-646
30	.155	.520	-851	1.303	1.684	2.021	2.423	2.704	3.30	7 3.551
40	-255	.528	-840	1.298	1.676	2.00;	2.403	2.678	3 3 202	2 3.495
30	1.251	+527	-843	1.200	1.671	2.000	2.390	2.660	) 3.232	2 3'400
80	*254	•527	-846	1.292	1.664	1,590	2.374	2.639	.3.19	5 3.413
••	}		•		• . l. h.a.	T-084	2.260	2.60	5 2.17	4 3.280
100	•254	.526	•845	1.200	1.000	1.004	· 2.218	2.60	1 2.12	1 3.330
200	•254	:525	·843	1.200	1.053	1.9/2	2.243	2.00	5 3.I	6 3:310
500	253	.525	-642	1.283	1.040 1.644	1.000	2.326	2.57	6 3.09	0. 3.291
60	·253	•524	•042	1-202	2.040					.0.1
2 (I-P)	80	60	40	20	10	5	2	1	0.2	, · <b>··</b> ·

stuf (2.086; 20) = 97.5%

Courtesy of John Wiley & Sons, Inc., publishers

Ref. 2 (Form.26.7.8) gives the following approximation fc. large  $\nu$  (it is not very good even for moderate  $\nu$ ):

$$z_P = \frac{\left(1 - \frac{1}{4\nu}\right)}{\left(\frac{1}{t_{P,\nu}^2} + \frac{1}{2\nu}\right)^{1/2}}, (z_P \text{ has the sign of } t_P)$$

(6-15)

Downloaded from http://www.everyspec.com

F

where  $gauf(z_P) = P$  and  $stuf(t_{P,\nu}; \nu) = P$ . Eq. 6-15 can be inverted to give

$$t_{P,\nu} = \left[ \left( \frac{1 - \frac{1}{4\nu}}{z_P} \right)^2 - \frac{1}{2\nu} \right]^{-1/2}$$

 $(t_{P, v} \text{ has the sign of } z_P)$  (6-16)

As an example of the accuracy of Eqs. 6-15 and 6-16, for  $\nu = 10$ ,  $t_{1\%, 10} \rightarrow z_{1.1\%}$ .

#### 6-5 FISHER-SNEDECOR - DISTRIBUTION

The base name fis is given to the F distribution (for <u>Fi</u>sher-Snedecor). The suffix f implies the Cdf, and the suffix fc implies the Sf (complement of the Cdf).

The ratio of the squares of 2 s-independent s statistics from the same s-normal distribution has the F distribution. It is the ratio of any two  $\chi^2/\nu$  variates. Fisher's original distribution used a different function of F. Snedecor introduced the F variable and named it after Fisher. Many authors since then have given both man credit.

The symbol F is not used universally for the random variable, but it is by far the most common symbol.

#### 6-5.1 FORMULAS

 $v_1, v_2$  = parameters, degrees of freedom,  $v_1, v_2 > 0$ 

$$F = \text{random variable}; F \ge 0$$

$$pdf \{F; \nu_1, \nu_2\} = c \ F^{\nu_1/2 - 1}$$

$$(6-17)$$

$$\times (\nu_2 + \nu_1 \ F) + \nu_1 \ F)^{-(\nu_1 + \nu_2)/2}$$

$$c = \left[\frac{\Gamma(\nu_1/2 + \nu_2/2)}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)}\right] \nu_1^{\nu_1 n} \ \nu_2^{\nu_2 n}.$$

 $Cdf\{F; v_1, v_2\} = fisf(F; v_1, v_2)$  (6-18)

$$Sf\{F; v_1, v_2\} = fisfc(F; v_1, v_2)$$
 (6-19)

The first parameter is the degrees-of-freedom of the  $\chi^2/\nu$  variate in the numerator; the second parameter is the degrees-of-freedom of the  $\chi^2/\nu$  variate in the denominator.

The F distribution has some symmetry in its parameters which is often used to shorten tables of the I distribution.

$$fisf(F; \nu_1, \nu_2) = fisfc(1/F; \nu_2, \nu_1) \quad (6-20)$$
$$E\{F; \nu_1, \nu_2\} = \begin{cases} \nu_2/(\nu_2 - 2), \text{ for } \nu_2 > 2\\ \to \infty, \qquad \text{otherwise} \end{cases}$$

StDv{F; 
$$v_1, v_2$$
} =  $\begin{cases} \frac{v_2}{v_2 - 2} \left[ \frac{2(v_1 + v_2 - 2)}{v_1(v_2 - 4)} \right]^{1/2}, \text{ for } v_2 > 4 \\ \rightarrow \infty, & \text{otherwise} \end{cases}$ 

$$CV\{F; \nu_1, \nu_2\} = \begin{cases} \left[\frac{2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 4)}\right]^{1/2}, \text{ for } \nu_2 > 4\\ \to \infty, & \text{otherwise} \end{cases}$$

$$CM_{3}\{F; \nu_{1}, \nu_{2}\} = \begin{cases} \left[\frac{\nu_{2}}{(\nu_{2}-2)}\right]^{3} \left[\frac{8(\nu_{1}+\nu_{2}-2)(2\nu_{1}+\nu_{2}-2)}{\nu_{1}^{2}(\nu_{2}-4)(\nu_{2}-6)}\right]; \nu_{2} > 6\\ \rightarrow \infty \end{cases}, \quad \text{otherwise}$$

mode 
$$\{F; \nu_1, \nu_2\} = \frac{\nu_2(\nu_1 - 2)}{\nu_1(\nu_2 + 2)}$$

median{
$$F; \nu_1, \nu_2$$
}  $\approx \left[\frac{1-2/(9\nu_1)}{1-2/(9\nu_2)}\right]^3$ 

The F distribution is related to other distributions (adopted from Ref. 2).

$$fistc(t^2; 1, v) = 2stufc(t; v), \text{ for } t \ge 0$$
 (6-21)

$$fisfc(F; \nu_1, \vec{\nu}_2) = I_x(\vec{\nu}_2/2, \nu_1/2)$$
 (6-22)

$$x \equiv \nu_2 / (\nu_2 + \nu_1 F)$$

where I is the Beta distribution (Chapter 10), also called Incomplete Beta Function, Ref. 2 (Sec. 26.5).

$$fisf(F; \nu, \infty) = csnf(F; \nu)$$
 (6-23a)

$$fisf(F; \infty, \nu) = csnfc(1/F; \nu)$$
 (6-23b)

#### 6-5.2 TABLES

The *pdf* is neither tabulated nor of engineering interest. Table 6-4 gives percentiles of the F distribution (right-hand tail area only). Because there are 2 parameters, the F distribution is difficult to tabulate extensively. Other tables are in Ref. 1 (Tables 18, 19, and Sec. 9) and Ref. 3 (Table VII, called the v² distribution). Abbreviated tables are in most statistics and quality control books..

An approximation is given in Ref. 2 (Formula 26.6.15)

$$z_{Q} \approx z_{Q}^{*} \left[ \frac{F_{Q,\nu_{1},\nu_{2}}^{1/3}(1-c_{1})-(1-c_{1})}{(c_{1}+c_{2}F_{Q,\nu_{1},\nu_{2}}^{2/3})^{1/2}} \right]$$

where  $\overline{gaufc(z_Q)} = Q$  $\overline{fisfc(F_{Q,\nu_1,\nu_3};\nu_1,\nu_2)} = Q$  (6-24)

$$c_i \equiv 2/(9\nu_i) \ll 1$$
, for  $i = 1, 2$ .

Eq. 6-24 is reasonably good even for smaller values of  $\nu_1$ ,  $\nu_2$ , at least in the region where it is usually used (right-hand tail area). Typical results are

$\frac{\nu_1}{2}$	<u><u></u><i>v</i>₂</u>	<u>Q, %</u>	Q(z _Q [*] ), %	relative er- for in tail area, %
5	10	1.00	1:028	2.8
10	5	1.00	1.18	18
3	5	5.00	5.09	1.8

Eq. 6-24 can be inverted to give Eq. 6-25.

$$F_{Q,\nu_1,\nu_2}$$

$$\approx \left[ \left( \frac{1-c_1}{1-c_2} \right) \frac{1+(1-U_1U_2)^{1/2}}{U_2} \right]^3, \ z_Q \ge 0$$

$$\approx \left( \frac{1-c_1}{1-c_2} \right)^3, \ z_Q = 0 \ (Q = 50\%)$$

$$\times \left[ \left( \frac{1-c_1}{1-c_2} \right) \frac{U_1}{1+(1-U_1U_2)^{1/2}} \right]^3, \ z_Q \le 0$$
(6-25)

where

$$c_i \equiv 2/(9\nu_i) \ll 1$$
$$U_i \equiv 1 - c_i z_Q^2 / (1 - c_i)^2 \ge 0$$

The approximations Eqs. 6-24 and 6-25 reduce to those for  $\chi^2/\nu$  as shown in Eq. 6-23 and par. 6-3.

# TABLE 6-4(A)

Downloaded from http://www.everyspec.com

# F DISTRIBUTIONS (ADAPTED FROM Rof. 4)

fisf  $(F; v_1, v_2) = 99\%$ , fisfc  $(F; v_1, v_2) = 1\%$ fisf  $(1/F; v_2, v_1) = 1\%$ , fisfc  $(1/F; v_2, v_1) = 99\%$ Body of the table gives the value of F.

Degrees of Freedom in Numerator v ₁										
		1	2	3	4	5	6	7	8	9
	1	4052.2	4999.5	5403.3	5624.6	5763,7	5859.0	5928.3	5981.6	6022.5
	2	98.503	99.000	99.166	99.249	99.299	99.332	99.356	99.374	99.38Ė
}	. 3.	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
	4	21.398	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
	• •5	16.258	13.274	12.060	11.392	10.967	10.672	10,45r	1085	10.158
l	6	13.745	10.925	9.7795	9,1483	8.7459	8.4661	8.2600	8.1016	7,9761
1	7	12.246	9.5466	8.4513	7.8467	7.4604	7.1914	6, 9928	6,8401	6.7188
[	8	11.259	8.6491	7.5910	7.0060	6.6318	6.3707	6.1776	6.0289	5.9106
	9	10.551	8.0215	6.9919	6,4221	6.0569	5.8018	5.6129	5.4671	5.3511
	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424
20	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315
្រី	12	9.3302	<b>б.926</b> 6	5.9526	5.4110	5.0643	4.8206	4.6395	4.4994	4.3875
at	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021;	4.1911
12	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297
No.	15 -	8.6831	<b>റ</b> , 3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948
Å	16	8.5310	6.2262	5.2922	4.7726	4.4374	4,2016	4.0259	3.8896	3.7804
15	17	8.3997	6.1121	5.1850	4.6690	4.3359	4,1015	3.926?	3.7910	3.6822
E	18	8.2854	6.0129	-5.0919	4.5790	4.2479	4.0146	3,8406	3.7054	3.5971
ed	13	8.1850	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225
L L	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.87.1.4	3.6987	3.5644	3.4567
4	21	8,0166	5.7804	4,8740	4.3688	4.0421	, 3.8117	3.6396	3.5056	3.3961
	22	7.9454	5.7190	4:8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.3458
e.	23	7.8811	5.6637	4.7649	4.2635	3.9392	3.7102	3.5290	3.4057	3.2986
leg	24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
	25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3,2172
	26	7.7213	5.5263	4.6365	4.1400	3.8183	3.5911	3.4210	3.2884	3,1818
	21	7.6757	5.4881	4.0009	4.1056	3.7848	3.5580	3.3882	3.2598	3.1494
	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195
	29	7.5976	5.4205	4.5378	4.0449	3.7254	3.4995	3.3302	3.1983	3.0920
}	30	7.5625	5.3904	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.0005
Í	40	7.3141	5.1785	4.3126	3:8283	3.5138	3.2910	3.1238	2,9930	2.8876
	60	7.0771	. 419774	4:1259	3.6491	3.3382	3.1187	2.9530	2.8233	2.7185
1	120	6.8510	4.7865	3.9493	3.4796	3.1735	2.9559	2.7918	2.6629	2.5586
	<b>∞</b>	6.6349	1.6052	3.7816	3.3192	3.0173	2.8020	2.6303	2.5113	2.4073

inter the

### TABLE 6-4(A) (Continued)

# F DISTRIBUTIONS (ADAPTED FROM Hef. 4).

Downloaded from http://www.everyspec.com

fisf  $\{F; v_1, v_2\} = 99\%$ , fisfc  $\{F; v_1, v_2\} = 1\%$ fisf  $\{1/F; v_2, v_1\} = 1\%$ , fisfc  $\{1/F; v_2, v_1\} = 99\%$ Body of the table gives the value of F.

Degrees of Freedom in Numerator v _l											
		10	12	15	20	24	30	40	60	120	8
	1	6055.8	6106.3	6157.3	6208.7	6234.6	6200.7	6286.8	6313.0	6339.4	6366.0
	2	99.399	99.416	99.432	99.449	. 99 . 458	99.466	99.474	99.483	99.491	99.501
	3	27.229	27.052	26.872	26.690	26.598	26.505	26,411	26.316	26.221	26.125
ł	4	14.546	14.374	14,198	14.020	13.929	13.838	13.745	13.652	13.558	13.463
	5	10.051	9.8863	9.7222	9.5527	9.4665	9.3793	9.2912	9.2020	9.1118	9.0204
	6	7.8741	7.7183	7.5590	7.3958	7.3127	7.2285	7.1432	7.0568	6.9690	6.8801
1	7	6,6201	6.4691	6.31/\3	6.1554	6.0743	5.9921	5.9084	5.8326	5.7572	5.6495
	8	5.8143	5.6668	5.5151	5.3591	5.2793	5.1981	5.1156	5.0316	4.9460	4.8588
1	9	5.2565	5.1114	4.9621	4.8030	4.7290	4.6486	4.5667	4.4831	4.3978	4.3105
	10	4.8492	4.7059	4.5582	4.4054	4.3269	4.2469	4.1653	4.0819	3.9965	3.9090 .
>	11	4.5393	4.3974	4.2509	4.0990	4.0209	3.9411	3.8596	3.7761	3.6904	3.6025
5	12	4.2961	4.1553	4.0096	3.8584	3.7805	3.7008	3.6192	3.5355	3.4494	3.3608
at	13	4.1003	3.9603	3.8154	3.6646	3.5868	3.5070	3.4253	3.3413	3.2548	3.1654 ·
172	14	3.9394	3.8001	3.6557	3.5052	3.4274	3.3476	3.2656	3.1813	3.0942	3.0040
l c	15	3.8049	3.6662	3.5222	3.3719	3.2940	3.2141	3.1319	3.0471	2.9595	2.8684
Ă	16	3.6909	3.5527	3.4089	3.2588	3.1808	3.1007	3.0182	2.9330	2.8447	2.7528
1 Tu	1.7	3.5931	3.4552	3.3117	3,1615	3.0835	3.0032	2.9205	2.8348	2,7459	2.6530
EO	18	3.5082	3.3706	3.2273	3.0771	2.9990	2.9185	2.8354	2 <b>.</b> 7493	2.6597	-2.5660 -
fed	19	3.4338	3.2965	3.1533	3.0031	2.9249	2.8442	2.7608	2.6742	2.5839	2.4893
	20	3,3682	3.2311	3.0880	2:9377	2.8594	2.7785	2.6947	2.6077	2.5168	2.4212;
5	21	3.3098	3.1729	3.0299	2.8796	2.8011	2.7200	2.6359	2.5484	2.4568	2.3603
	22	3.2576	3.1209	2.9780	2.8274	2.7488	2.6675	2.5831	2.4951	2.4029	2.3055
<u> </u>	23	3.2106	3.0740	2.9311	2.7805	2.7017	2.6202	2.5355	2.4471	2.3542	2.2559
e 8	24	3.1681	3.0316	2.8887	2.7380	2.6591	2.5773	2.4923	2.4035	2.3099	2.2107
	25	3.1294	2.9931	2.8502	2.6993	2.6203	2.5383	2.4530	2.3637	2.2695	2.1694
	26	3.0941	2.9579	2.8150	2.6640	2.5848	2.5026	2.4170	2.3273	2.2325	2.1315
1	27	3.0618	2.9256	2.7827	2.6316	2.5522	2.4699	2.3840	2,2938	2.1984	2.0965
	28	3.0320	2.8959	2.7530	2.6017	2.5223	2.4397	2.3535	2.2629	2.1670	2.0642
	29	3.0045	2.8685	2.7256	2.5742	2.4946	2.4118	2.3253	2.2344	2.1378	2.0342
	30	2.9791	2.8431	2.7002	2.5487	2.4689	2.3860	2.2992	2.2079	2.1107	2.0062
	40	2.8005	2.6648	2.5216	2.3689	2.2880	2.2034	2.1142	2.0194	1.9172	1.8047
	60	2.6318	2.4961	2.3523	2.1978	2.1154	2.0285	1.9360	1.8363	1.7263	1.6006
1	120	2.4721	2.3363	2.1915	2.0346	1.9500	3.8600	1.7628	1.6557	1.5330	1.3805
	-	2.3209	2.1848	2.0385	1.8783	1.7908	1.6964	1.5923	1.4730	1.3246	1.000

6-15

# TABLE 64(B)

Downloaded from http://www.everyspec.com

2

15

# F DISTRIBUTION (ADAPTED FROM Ref. 4)

fisf  $(F; \nu_1, \nu_2) = 97.5\%$ , fisfc  $(F; \nu_1, \nu_2) = 2.5\%$ fisf  $(1/F; \nu_2, \nu_1) = 2.5\%$ , fisfc  $(1/F; \nu_2, \nu_1) = 97.5\%$ Body of the table gives the value of F.

Degrees of Freedom in Numerator v1										
		1	2	. 3	4	5	ó	7	8	9
	F 1	647.79	799.50	864.16	895.58	921.85	937.11	948.22	956.66	963.28
	2	38.506	39.000	39.165	39.248	39.298	39.331	39.355	39.373	39.387
	3	17.443	16.044	15.439	15.101	14.885	14.735	14.624	14.540	14.473
	4	12.218	10.649	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047
	5	10.007	8.4336	7.7636	7.3879	71464	6.9777	6.8931	6.7572	6.6810
	6	8.8131	7.2598	6.5988	6.2272	5.9876	5.8197	5.6955	5.5996	5.5234
	7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8994	4.8232
Į	8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4332	4.3572
	9	7.2093	5.7147	5.0781	4.7181	4,4844	4.3197	4.1971	4.1020	4.0260
	10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790
0	J 11	6.7241	5.2559	4.6300	4.2751	4.0440	3.8807	3.7586	3.6638	3.5879
2	12	6.5538	5.0959	4.4742	4.1212	3.8911	3.7283	3.6065	3.5118	3.4358
5	13	6,4143	4.9653	4.3472	3.9959	3.7667	3.6043	3.4827	3.3880	3,3120
1 5	14	6.2979	4.8567	4.2417	3.8919	3.6634	3.5014	3.3799	3.2853	3.2093
5	15	6.1995	4.7650	4.1528	3.£043	3.5764	3,4147	3.2934	3.1987	3.1227
Å	16	6.1151	4.6867	4.0768	3.7294	3.5021	3.3406	3.2194	3.1248	3.0'188
5	27	6.0420	4.6189	4.0112	3.6648	3.4379	3.2767	3.1556	3.0610	2.9849
E	18	5.9781	4.5597	3.9539	3.6083	3.3820	3.2209	3.0999	3.0053	2.9291
00	1.5	5.9216	4.5075	3.9034	3.5587	3.3327	3.1718	3.0509	2.9563	2.8800
Įž	Ż	5.8715	4:4613	3.8587	3.5147	3.2891	3.1283	3.0074	2.912 ⁸	2.8365
	21	5.8266	4.4199	3.8188	3.4754	3.2501	3.0895	2.9686	2.8740	2.7977
0	22	5.7863	4.3828	3.7829	3.4401	3.2151	3.0546	2.9338	2.8392	2,7628
	23	5.7498	4.3492	3.7505	3.4083.	3.1835	3.0232	2.9024	2.8077	2.7313
	6 2!	5.7167	4.3187	3.7211	3.3794	3.1548	2.9945	2.8738	2.7791	2.7027
.Å	2	5.6864	4.2909	3.6943	3.3530	3.1287	2.9685	2.8478	2.7531	2,5766
	20	5.6586	4.2655	3.6697	3.3289	3.1048	2.9'147	2.8240	2.7293	2.6528
	21	5.6331	4.2421	3.6472	3,3067	3.0828	2.9228	2 8021	2:7074	2.6309
	2	5.6096	4.2205	3.6264	3.2863	3.0625	2.9027	2.7820	2.6872	2,6106
	2	5.5878	4.2006	3.6072	3.2674	3.0438	2.8840	2.7633	2.6686	2.5919
ľ	3	5.5675	4.1821	3.5894	3.2499	3.0265	2.8667	2.7460	2:0513	2.5740
	4	5.4239	4.0510	3.4633	3.1261	2.9037	2.7444	2.6238	2.5289	2.4519
- i	6	5.2857	3.9253	3.3425	3.0077	2.7863	2.6274	2.5068	2.4117	2.3344
	12	5.1524	3.8046	3.2270	2.8943	2.6740	2.5154	2.3948	2.2994	2.2217
	00	5.0239	3.6889	3.1161	2.7858	2.5665	2.4082	2.2875	2.1918	2.1136

6-16-

### TABLE 6-4(B) (Continued)

Downloaded from http://www.everyspec.com

# F DISTRIBUTION (ADAPTED FROM Ref. 4)

fisf  $(F; v_1, v_2) = 97.5\%$ , fisfc  $(F; v_1, v_2) = 2.5\%$ fisf  $(1/F; v_2, v_1) = 2.5\%$ , fisfc  $(1/F; v_2, v_1) = 97.5\%$ Body of the table gives the value of F.

	<u> </u>				Degrees o	f Freedom	in Numer	ator v ₁			
		10	12	15	20	24	30	40	.60	120	•
	1	968.63	976.71	984.87	993.10	997.25	1001.4	1005.6	1009.8	1014.0	1018.3
	2	39.398	39.415	39.431	39.448	39.456	39.465	39.473	39.481	39.190	39.498
	3	14.419	14.337	14.253	14.167	14.124	14.081	14.037	13.992	13.947	13.902
	4	8.8439	8.7512	8.6565	8.5599	8.5109	8.4613	8.4111	8.3604	8.3092	8.2573
[	5	6.0192	6.5246	6.4277	6,3285	6.2780	6.2269	6.175ì	6.1225-	6,0693	6.0153
	6	5.4613	5.3662	5.2687	5.1684	5.1172	5.0652	5.0125	4.9589	4.9045	4,8491
	7	4.7611	4.6658	4.5678	4.4667	4.4150	4.3624	4.3089	V.2544	4.1989	4.1423
	8	4.2951	4.1997	4,1012	3.9995	3.9472	3.8940	3.8398	3.7844	3.7279	3.6702
	9	3.9639	3.8682	3.7694	3.6669	3.6142	3.5603	3.5055	3.4493	3.3918	3.3329
1	10	3.7168	3.6209	3.5217	3.4186	3.3654	3.3110	3.2554	3.1984	3.1399	3.0798
N	11	3.5257	3.4296	3.3299	3.2261	3.1725	3.1176	3.0613	3.0035	2,9441	2.8828
	12	3.3736	3.2773	3.177?	3.0728	3.0187	2 9633	2.9063	2.8478	2.7874	2.7249
Ę I	13	3.2497	3.1532	3.0527	2.9477	2.8932	2.8373	2.7737	2:7204	2.6590	2.5955
L L	14	3.1469	3.0501	2,9493	2.8437	2.7888	2.7324	2,6742	2.6142	2.5519	2.4872
Í	15	3.0602	2.9633	2.8621	2.7559	2.7006	2.6437	2.5850	2:5242	2.4611	2.3953
l e	16	2.9862	2.8890	2.7875	2.6808	2.6252	2.5678	2.5085	2.4471	2.3831	2.316?
5	17	2.9222	2.8249	2.7230	2.6158	2.5598	2:5021	2.4422	2.3801	2.3153	2.2474
	18	2.8664	2.7689	2.6667	2.5590	2.5027	2.4445	2.3842	2.3214	2.2558	2.1869
P P	19	2.8173	2.7196	2.6171	2,5089	2.4523	2.3937	2.3329	2.2695	2.2032	2.1333
Ž	20	2.7737	2.6758	2.5731	2.4645	2.4076	2.3486	2.2873	2.2234	2.1562	2.0853
64	21	2.7348	2.6368	2.5338	2.4247	2.3675	2.3082	2.2465	2.1819	2.1141	2.0422
2	55	2.6998	2.6017	2.4984	2.3890	2.3315	2.2/18	2.2097	2.1446	2.0760	2.0032
es	23	2.6682	2.5699	2.4665.	2.3567 [.]	2.2989	2.2389	2.1763	2.1107	2.0415	1.9677
L L	24	2.6296	2.5412	2.4374	2.3273	2.2693	2.2090	2.1460	2.0799	2.0099	1.9353
å	25	2.6135	2.5149	2.4110	2.3005	2.2422	2.1616	2.1183	2.0517	1.9811	1.9055
	26	2.5895	2.4909	2.3867	2.2759	2.2174	2.1565	2.0928	2.0257	1.9545	1.8781
	27	2.5676	2.4688	2.3644	2.25.33	2.1946	2.1334	2.0693	2.0018	1.9299	1.8527
	28	2.5473	2.4484	2.3438	2.2324	2.1735	2.1121	2.0477	1.9796	1.9072	1,8291
	29	2.5286	2.4295	2.3248	2.2131	2.1540	2.0923	2.0276	1.9591	1.9861	1.8072
1	30	2.5312	2.4120	2.3072	2.1952	2.1359	2.0739	2.0089	1.9400	1.8664	1.7867
	40	2.3832	2.2882	2.1819	2.0677	2.0069	1.9429	1.8752	1,8028	1.7242	1.6371
	60	2.2702	2.1692	2.0613	1.9445	1.8817	1.8152	1.74'40	1.6068	1.5810.	1.4822
1	120	2.1570	2.0548	1.9450	1.8249	1.7597	1.6899	1.6141	1.5299	1.4327	1.3104
		2:0483	1.9447	1.8326	1.7085	1.6402	1.5660	1.4835	1.3883	1.2684	1.0000

# TABLE 6-4 (C)

Downloaded from http://www.everyspec.com

. 5

# F DISTRIBUTION (ADAPTED FROM Ref. 4)

fisf  $(F; \nu_1, \nu_2) = 95\%$ , fisfc  $(F; \nu_1, \nu_2) = 5\%$ fisf  $(1/F; \nu_2, \nu_1) = 5\%$ , fisfc  $(1/F; \nu_2, \nu_1) = 95\%$ Body of the table gives the value of F.

Degrees of Freedom in Numerator, V1										
÷	1 2		2	3	4	5	6	7	. 8	9
		161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.85	240.54
		18,513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
		20.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8868	8.8452	8.8123
		7.7086	6.9443	6.5914	6.3883	6.2500	6.1631	.6.0942	6.0410	5.9988
	2	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725 '
	6	5.0874	5,1433	4.7571	4.5337	4.3874	4.2839	4.2066	4.1463	4.0990
	7	5,5914	4.7374	4.3468	4.1203	3.9715	3.8560	3.7870	3.7257	3.6767
		5.3177	4,4590	4.0662	3.8378	3.6875	3.5306	3.5005	3.4381	3.3881
	6	5.1174	4.2565	3.8626	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
	111	4.8443	3.9823	3.5874	3.3507	3,2039	3.0946	3.0123	2.9480	2.8962
>"	12	4.7472	3.8853	3.4903	3,2592	3.1059	2.9961	2.9134	2.8486	2.7964
ĥ	13	4,6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
ar l	14	4,6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
1	113	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
l nou	16	1,4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
2	17	4.4513	3.5915	3.1968	2,9647	2.8100	2.6987	2.6143	2,5480	2.4943
1	18	4.4139	3,5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
I E	19	4.3803	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
6	20	4.3513	3:4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
P.	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3661
	122	4.3009	3,4434	3.0491	2.8187	2.6613	2.5491	2.4638	2.3965	2.3419
	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2,4422 -	2.3748	2.3201
ee.	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
1 Ha	25	4.2417	3.3852	2.9912	2.7587	2.6030	4904	2.4047	2.3371	2.2821
Ā	26	4.2252	3.3690	2.9751	2.7426	2.5868	2.4741	2.3883	2.3205	2,7655
	27	4.2100	3.3541	2.9604	2.7279	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2300
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2,2762	2.2229
•	30	4.1709	3.3158	2.9223	2,6895	2.5336	2.4205	2.3343	2,2002	2.2107
	40	4.0848	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2540	2.1665	2.0970	2.0402
-	120	3.9201	3.0718	2.6802	2.4472	2.2900	2.1750	2.0867	2.0164	1.9588
	<b>_</b>	3,8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

# TABLE 6-4(C) (Continued)

# F DISTRIBUTION (ADAPTED FROM Ref. 4)

Downloaded from http://www.everyspec.com

fisf  $(F; v_1, v_2) = 95\%$ , fisfc  $(F; v_1, v_2) = 5\%$ fisf  $(1/F; v_2, v_1) = 5\%$ , fisfc  $(1/F; v_2, v_1) = 95\%$ Body of the table gives the value of F.

Legrees of Freedom in Numerator, V											
	]	10	12	15	20	24	30	40	60	120	~~
	1.	241.88	243.91	245.95	248.01	249.05	250.09	251.14	252.20	253.25	254.32
	2	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
<b>.</b>	3	8.7855	8.7446	8,7029	8.6602	8.6365	8.6166	8.5944	8.5720	8.5494	8.5265
	1 4	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.7170	5.6878	5.6581	5.6281
1	5	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3984	4.3650
	6	4.0600	3.9999	3.9381	3-8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6688
	7	3.6365	3.5747	3.5108	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3,2298
	8	3.3472	3.2840	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
	9	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7873	2.7473	2.7067
>∾<	10	2.9782	2.9130	2.8450	-2.7740	2.7372	2.6996	2.6609	2,6211	2.5801	2.5379
2	11	2.8536	2.7876	2.7186	2.6464	2.6090	2.5705	2.5309	2.4901	2.4480	2.4045
t o	12	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.3410	2.296ż
2	13	5.6410	2,6037	2.5331	2.4589	2.4202	2.3803	2.3392	2,2966	2.2524	2.2064
E E	14	2.6021	2.5342	2.4630	2.3879	2.3487	2.3082	2.2664	2 [.] 2230	2.1778	2.1307
L a	15	2.5437	2.4753	2.4035	2.3275	2.2878	2.2468	2.2043:	2.1601	2.1141	2.0658
2	16	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
E	17	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.1040	2.0584	2.0107	1.9604
go	18	2.4117	2.3421	2.2686	2.1905	2.1497	2.1071	2.0629	2.0156	1.9681	1.9168
1 ž	19	2.3770	2.3080	2.2341	2.1555	2.1141	2.0712	2.0264	1.9796	1.9302	1.8780
	20	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
0	51	2.3210	2.2504	2.1757	2.0960	2.0540	2.0102	1,9645	1.9165	1.8657	1.8217
SSS	35	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.9380	1;8895	1.8380	1.7831
. ŭ,	23	2.2747	2.2036	2.1282	2.0476	2.0050	1.9605	1.9190	1.8649	1.8128	1.7570
Å	24	2.2547	2.1834	2.1077	2.0267	1.9838	1.9390	1.8920	1.8424	1.7897	1.7331
	25	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.7110
	26	2.2197	2,1479	2.0,16	1.9898	1.9464	1.9010	1.8535	1,8027	1.7488	1.6906
	27	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7307	1.6717
	28	2.1900	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203.	1.7689	1.7138	1.6541
-	29	2.1768	2.1045.	2.0275	1.9446	1.9005	1.85,43	1.8055	1.7537	1.6981	1.6377
ŀ	30	2.1646	2.0921	2.0148	1.9317	1,8874-	1.8409-	1.7918	1.7396	1.0335	T'0553
	40	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
1	60	1.9926	1.917.4	1.8364	1.7480	1,7001	1.6491	1.5943	1.5343	1.4673	1.3893
	120	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.4290	1.3519	1.2539
	~	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.3940	1.3180	1.2214	1.0000

#### TABLE 6-4(D)

Downloaded from http://www.everyspec.com

and the second state of the second state of the second state of the

# F DISTRIBUTION (ADAPTED FROM Ref. 4)

fisf  $(F; v_1, v_2) = 90\%$ , fisfc  $(F; v_1, v_2) = 10\%$ fisf  $(1/F; v_2, v_1) = 10\%$ , fisfc  $(1/F; v_2, v_1) = 90\%$ Body of the table gives values of F.

Degrees of Freedom in Humerator V										
		1	2	3	1;	5	6	7	8	9
	1	39.864	49.500	53-593	55.833	57.241	58.204	58.906	59.439	59.858
ţ	2	8.5263	9.0000	9.1618	9.2434	9.2926	9.3255	9.3491	9.3668	9.3805
{	3	5.5383	5.4624	5.3908	5.3427	5.3092	5.2847	5.2662	5.2517	5.2400
	4	4.5448	4.3246	4.1908	4,1073	4.0506	4.0098	3.9790	3.9549	3.9357
1	5	4.0604	3.7797	3.6195	3.5202	3.4530	3.4045	3.3679	3.3393	3.3163
1	6	3.7760	3.4633	3.2888	3.1808	3.1075	3.0546	3.0145	2.9830	2.9577
	7	3.5894	3.2574	3.0741	2.9605	2.8833	2.8274	2.7849	2.7516	2.7247
	8	3.4579	3.1131	2.9238	2.8064	2.7265	2.6683	2,6241	2.5893	2.5612
	9	3.3603	3.0065	2.8129	2.6927	2.6106	2.5509	2.3053	2.4694	2.4403
>~	10	3.2850	2.9245	2.7277	2.6053	2.5216	2,4606	2,4140	2.3772	*.3473
5	11	3.2252	2.8595	5.6605	2.5362	2.4512	2.3891	2.3416	2.3040	2:2735
at	12	3.1765	2.8068	2.6055	2,4801	2.3940	2,3310	5.5858	2,2446	2.2135
17	13	3.1362	2.7632*	2.5603	2.4337	2.3467	2.2830	2.2341	2.1953	2.1638
ļ ģ	14	3.1022	2.7265	2.5222	2.3947	2.3069	2.2426	2.1931	2.1539	2.1220
A .	15	3.0732	2.6952	2.4898	2.3614	2.2730	2.2081	2.1582	2.1185	2.0862
ļ, <del>4</del>	16	3.0481	2.6638	2,4618	2.3327	2.2438	2.1783.	2,1280	2.0865	2.0553
<b>B</b>	17	0262	2.6446	2.4374	2.3077	2.2183	2.1524	2.1017	2.0613	2.0284
Pe -	. 18	3.00/0	2,6239	2.4160	2.2858	2.1958	2,1296	2.0785	2.0379	2.0047
L.	19	2.9899	2.6056	2.3970	2.2663	2.1760	2.1094	2.0580	2.0171	1.9836
1 %	20	2.9747	2.5893	2,3801	2.2489	2.1582	2.0913	2.0391	1.9985	1.9649
	21	2.9609	2.5746	2.3649	2.2333	2.1423	2.0751	2.0232	1.9819	1.9480
l ž	22	2.9486	2.5613	2.3512	2.2193	2.1279	2.0605	2.0084	1.9668	1.9327
100	23	2.9374	2.5493	2.3387	2.20(5	2.1149.	2.0472	1.9949	1.9531	1.9189
11-	24	2.927?	2.5363	2 3274	2.1949	2.1030	2.0351	1.9826	1.9407	1.9063
1	25	2.9177	2.5283	2.3170	2.1843	2,0922	2.0241	1.9714	1.9292	1.8947
	26	2.9091	2,5191	2,3075	2,1745	2.0855	2.0139	1,9610	1.9188	1.8841.]
1	27	5.3075	2:5105	2.2987	2.1655	2.0730	2.0045	1.9515	1.9091	2.8743
1	28	2.8939	2.5028	2.2906	2.1571	2.0045	1.9959	1.9427	1.9001	1.8652
1	29	2.8871	2.4955	2.2831	2.1494	2.0566	2.9878	1.9345	1.8918	1.8569
1	30	2.8807	2.4887	2.2761	2.1422	2.0492	1.9803	1.9269	1.8841,	1.8490
	40	2.8354	2.4404	2,2261	2.0909	1.9968	1.9269	1.8725	1.8289	1.7929
1	60	2.7914	2.3932	2.1774	2.0410	1.9457	1.3747	1.8194	1.7748	1,7380
:	120	2.7478	2.3473	2,1300	1.9923	1.8959	1.8238	1.7675	.1,7220`	1.6843
	~	2.7055	2.3026	2.0838	1.9449	1.8473	1.7741.	1.7167	1.6702	1.6315

6-20

t

•

# TABLE 6-4(D) (Continued)

Downloaded from http://www.everyspec.com

コートング人の一個

. 0

# F DISTRIBUTION (ADAPTED FROM Ref. 4)

fisf  $(F; \nu_1, \nu_2) = 90\%$ , fisfc  $(F; \nu_1, \nu_2) = 10\%$ fisf  $(1/F; \nu_2, \nu_1) = 10\%$ , fisfc  $(1/F; \nu_2, \nu_1) = 90\%$ Body of the table gives values of F.

	Degrees ( * Freedom in Numerator V 1										
		10	12	15	20	24	30	40	60	120	ta,
	1	60.195	60.705	61,220	61,740	F2,002	62.265	62.529	62.794	63.061	63.328
	2	9.3916	9.4081	9.4247	9.4413	9.4496	9.4579	9.4663	9.4746	9.4829	9.4913
ļ	3	5.2304	5,2156	5,2003	5.1845	5.1764	5.1681	5.1597	5.1512	5.1425	5.1337
ļ	4	3.9199	3.8955	3.8683	3.8443	3.8310	3.8174	3.8036	3.7896	3.7753	3.7607
1	5	3.2974	3.2682	3.2350	3.2067	3.1905	3.1741	3.1573	3.1402	3.1228	3.1050
]	6	2.9369	2.9047	2,8712	2.8363	2.8:83	2.8000	2.7812	2.7620	2.7423	2.7222
	7	2.7025	2.6681	2.6322	2.5947	2.5753	2.5555	2.5351	2.5142	2.4928	2.4708
1	8	2.5380	2.5020	2.4642	2,4246	2.4041	2.3830	2.3614	2-3391	2.3162	8.2926
	9	2.4163	2.3789	2.3396	2.2983	2.2768	2.25 ^µ 7	2.2320	2.2085	2,1843	2.1592
1	10	2.3226	2.2841	2.2435	2.2007	2.1784	2.1554	2.1317	2.1072	2,0818	é.0554
20	11	2.2482	2.2087	2.1671	2.1230	2.1000	2.0762	2.0516	2.0361	1.999?	1.9721.
4	12	2,1878	2.1474	2.1049	2.0597	2.0360	2.0115	1.9861	1.9597	1.9323	1.9036
10	13	2.1376	2.0966	2,0532	2.0070	1.9827	1.9576	1.9315	1.9043	1.8759	1.8462
Li I	14	2.0954	2.0537	2.0095	1,9623	1.9377	1.9119	1.8352	1.8572	1.8280	1.7973
Lon Lon	15	2.0593	2.0171	1.9722	1.9243	1.8990	1.8728	1.8454	1.8168	<b>, 1</b> .7867	1.7551
<u>a</u>	16	2.0281	1.9854	1.9399	1.8913	1.8656	1.8388	1.8108	1.7810	1.7507	1.7182
15	71	2.0009	1,9577	1,9127	1.8624	1.8362	1.8090	1.7805	1,7506	1.7191	1.6856
5	18	1.9770	1.9333	1.8868	1.8368	1.8103	1.7827	1.7537	1.7232	1.6910	1.6567
ed	19	1.9557	1.9117	1.8647	1.8142	1.7873	1.7592	1.7298	1.6988	1.6659	1.6308
Ž	20	1.9367	1.8924	1.8449	1.7938	1.7667	1.7382	1.7083	1.6768	1.6433	1.6074
1	21	1.9197	1.8750	1.8272	1.7756	1.7481	, 1.7193	1.6890	1.6569	1.62^9	1.5862
l °	22	1.9043	1.8593	1.8111	1.7590	1.7312	1.7021	1.6714	1.6389	1.6042	1,5668
66	23	1.390	1.8450	1.7964	1.7439	1.7159	1.6864	1.6554	1.6224	1.5871	1.5490
5	24	1.8775	1.83 9	1.7831	1,7302	1.7019	1.6721	1.6407	1.6073	1.5715	1.5327
<u>Å</u>	25	1.8658	1.8200	1.7708	1.7175	1.6890	1.6589	1.6272	1.5934	1 5570	1.5176
ľ	26	1.8550	1.8090	1.7596	2.7059	1.6771	1.6468	1.6147	1.5805	1.5437	1.5036
	27	1.8451	1.7989	1.7492	1.6951	1.6662	1.6356	1.6032	1.5686	1.5313	1.4900
	28	1.3359	1.7895	1.7395	1.6852	1.6560	1.6252	1.5925	1.5575	1.5198	1.4784
	29	1.8274	1.7808	1.7306	1.6759	1.6465	1.6155	1.5825	1.5472	1.5090	1.4070
	30	1.8195	1.7727	1.7223	1.6673	1.6377	1.6065	1.5732	1 5376	1.4989	1.4504
	40	1.7627	1.7146	1.6624	1,6052	1.5741	1.5411	1.5056	1.4672	1.4248	1.3769
	60	1.7070	1.6574	1.6034	1.5435	1.5107	1.4755	1.4373	1.3952	1.3476	1.2915
	120	1.6524	1.6012	1.5450	1.4821	1.4472	1.4094	1.3676	1.3203	1.2646	1.1926
•	∞	1.5987	8ز 1.54	1.4871	1.4206	1.3832	1.3419	1.2951	1.2400	1.1686	1.0000

6-22

# REFERENCES

from http://www.everyspec.com

- 1. E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Voi. I, Cambridge Univ. Press, 1956.
- 2. Abramowitz and Strgun, Eds., Handbook of Mathematical Functions, AM555, NBS, USGPO, June 1964 with subsequent corrected printings.
- 3. A. Halo, Statistical Tables and Formulas, John Wiley & Sons, 1952.

1 X 1 X 1 X 1

1 . Halt with here in

and Reiten

-05 willing

The states

1

4. Reliability and Maintainability Handbools for the U.S. Weather Bureau, Publ. 530-01-1-762, ARINC Research Corp., Annapolis, MD, April 1967.

# AMCP 705-200

è

0,111

# CHAPTER.7

Downloaded from http://www.everyspec.com

# EXPONENTIAL DISTRIBUTION

7-0 LIST	OF SYMBOLS	R	= s-Reliability
С	= s-Confidence	5-	= denotes statistical definition
Cdf	= Cumulative distribution func-	Sf	= Survivor function
	= subscripts that imply a sconfi-	StDv{ }	= standard deviation
0, 2, 0	dence level; C is general, L is lower. U is upper	Var { }	= variance
Conf { }	= s-Confidence level	θ	= scale parameter
CM, { }	= <i>i</i> th central moment	λ	= rate parameter
cv{}	= coefficient of variation:	ν	= degrees of freedom
	StDv $\{ \}/E \{ \}$	τ	= random variable
E{ }	= s-Expected value	{•;•}, (•;•)	<ul> <li>the fixed parameters are listed to the right of the semicolon,</li> </ul>
exp	= base name for exponential dis- tribution		the random variable is listed to the left of the semicolon
expf	= Cdf for exponential distri- bution		= the complement, e.g., $\phi \equiv 1 - \phi$ where $\phi$ is any probability
exp <i>fc</i>	= Sf for exponential distribution	7.1 INTRO	DUCTION
<i>M</i> ₁ { }	= ith moment about the origin	This, is	the most commonly used <i>PrD</i> for ime to failure). It is closely related
$NCM_i \{ \}$	<pre>mormalized ith central mo- ment; CM_i { } /[StDv{ }]ⁱ</pre>	to the Pois given to exponentia	sson process. The base name exp is the exponential distribution (for a). The suffix $f$ implies the <i>Cdf</i> .
pdf	= probability density function	and the su of the Cdf	iffix fc implies the Sf (complement).
pmf	= probability mass function	7.9 5091	- A I I A S
<b>Pr</b> { }	= Probability		
PrD	= Probability distribution	λ = rate	parameter, $\lambda > 0$ , $(\lambda \equiv 1/\theta)$

#### AMCP-706-200

 $\theta$  = scale parameter,  $\theta > 0$ , ( $\theta \equiv 1/\lambda$ )

 $\tau = random variable, \tau \ge 0$ 

$$pdf\{\tau;\lambda\} = \lambda \exp(-\lambda \tau)$$
 (7-1a)

 $pdf\{\tau;\theta\} = (1/\theta) \exp(-\tau/\theta)$  (7-1b)

$$Cdf \{ \tau; \lambda \} = \exp(\lambda\tau) = 1 - \exp(-\lambda\tau)$$
(7-2a)
$$Cdf \{ \tau; \theta \} = \exp(\tau/\theta) = 1 - \exp(-\tau/\theta)$$
(7-2b)

 $Sf(\tau; \lambda) = \exp(c(\lambda \tau)) = \exp(-\lambda \tau)$  (7-3a)

$$Sf\{\tau; \theta\} = \exp(\tau/\theta) = \exp(-\tau/\theta)$$
 (7-3b)

failure rate 
$$\{\tau; \lambda\} = \lambda$$
 (7-4a)

failure rate 
$$\{r; \theta\} = 1/\theta$$
 (7-4b)

 $E\{\boldsymbol{\tau};\boldsymbol{\theta}\}=\boldsymbol{\theta}$ 

 $\operatorname{StDv}\left\{\tau;\theta\right\}=\theta$ 

 $\operatorname{CV}\left\{\boldsymbol{r};\boldsymbol{\theta}\right\}=1$ 

 $CM_3 \{ \tau; \theta \} = 2\theta^3$ 

 $NCM_3{\tau; \theta} = 2$ 

mode  $\langle \boldsymbol{\tau}; \dot{\boldsymbol{\theta}} \rangle = 0$ 

median  $\{\tau; \theta\} = \theta \ln 2 \approx 0.7\theta$ 

Fig. 7-1 shows some curves of the *pdf*. The failure rate  $\lambda$  is constant; so no graphs of it are shown.

It is possible to substitute  $(\tau - \tau_0)$  for  $\tau$ , where  $\tau_0$  often is called the "guarantee period". Ref. 6 (Chapter 5) discusses this case thoroughly.

# 7-3 TABLES

http://www.evervspec.c

In the 1950's several tables were generated for the exponential distribution in reliability, e.g., Ref. 2. Since the exponential function has been common in mathematics for hundreds of years, several extensive tables exist in their own right, e.g., Ref. 1 (Tables 4.4 and 4.5). The electronic calculator with engineering functions often contains the exp and  $\ln$ functions, thus tables are virtually unnecessary.

Table 7-1 is an abbreviated set of tables. It uses the fact that  $\exp(x_1 + \cdots + x_5) = \exp(x_1) \cdots \exp(x_5)$ .

In reliability work, more accuracy usually is required for small values of the argument than for large ones, because very low reliability (large values of the argument) is bad anyway and the degree of badness need not be known to many significant figures. Eq. 7-5 is good for all values of the argument, but is easiest to use for small values. The error is always less than the next unused term. (It is: the usual power series:  $x^n/n!$ .)

$$\exp f(x) = 1 - e^{-x} = x \left( 1 - \frac{x}{2!} + \frac{x^2}{3!} - \frac{x^3}{4!} + \cdots \right)$$
(7-5)

For example,  $expf(0.1) = 1 - e^{-0.1}$ = 0.1(1 - 0.0500 + 0.0017) = 0.09517.

Figure 7-2 is a non-ograph for estimating  $R = \exp(-\lambda t) = \exp(-t/\theta)$ .

#### 7-4 PARAMETER ESTIMATION

An s-sufficient statistic for estimating the parameter of the exponential distribution is total-test-time, i.e., the total time to acquire the specified number of failures.

3.0-4 2.5-λ = 3 2.0ğ 1.5-1.0-0,5-0.3 0 1.0 3.5 4.0 4,5 ' 0.ö 0.5 2.5 3.0 1.5 2.0 ò TIME

Downloaded from http://www.everyspec.com



### TABLE 7-1

# TABLES OF e-x

exp	$c(x) = e^{-x}$				
×	e-x	e ^{-0.1 x}	<u>e⁻⁰.01x</u>	e-0.031x	<u>e-0.0001x</u>
0	1	1	1	¹ 1	1
1	0.367879	0.904837	0.9900498	0.9 ³ .000500	0.9 ⁴ 00005C
2	0.135335	0.818731	0.9801987	0.9 ² 800200	0.93 8000200
3	0.0497871	0.740818	0.9704455	0.9 ² 700450	0.9 ³ 7000450
4	0.0183164	0.670320	0.9607894	0.9 ² 600799	0.9 ³ 6000800
5	0.0 ² 673795	0.606531	0.9512294	0.9 ² 501248	0.9 ³ 5001250
6	0.0 ² 247875	0.548812	0.9417645	0.9 ² 401796	0.9 ³ 4001800
7	0.0 ³ 911882	0.496585	0.9323938	0.9 ² 302444	0.9 ³ 3002449
8	0.0 ³ 335463	0.449329	0.9231163	0.9 ² 203191	0.9 ³ 2003199
9	0.0 ³ 123410	0.406570	0.9139312	0.9 ² 104038	0.9 ³ 1004049
10	0.04 453999	0.367879	0.9048374	0.9 ² 004983	0.93 0004998

Example  $e^{-1.7963} = 0.367879 \times 0.496585 \times 0.9139312 \times 0.99401796 \times 0.9997000450 = 0.165911$ 

Example  $e^{-0.0012} = 1 \times 1 \times 0.999000500 \times 0.9998000200 = 0.99880072$ 

exof (

A CONTRACTOR OF A CONTRACTOR O

7-3

AMCP-708-200



Downloaded from http://www.everyspec.com



#### Notation:

- T =total test time for all units;  $T \ge 0$ . This is the random variable.
- r = number of failures; r > 0. This is not a random variable; in principle, it is fixed at the beginning of the test.

The items can be tested in any order, at any time, and with or without replacement. The only restriction is that items be removed from test (e.g., end of test) only upon the failure of some item. If this restriction is not fulfilled, then the Poisson distribution in Chapter 4 must be used.

The usual point estimates for  $\theta$  and  $\lambda$  are

$$\hat{\theta} = T/r \tag{7-6a}$$

 $\hat{\lambda} = r/T \tag{7-6b}$ 

 $\bar{\theta}$  is unbiased and maximum likelihood (in fact, it has virtually all the desirable properties).  $\hat{\lambda}$  is maximum likelihood (but is biased).

 $\hat{\theta}/\theta$  has the  $\chi^2/\nu$  distribution with  $\nu = 2r$ , viz.,

 $Cdf\{\hat{\theta}|\theta;r\} = csnf(\hat{\theta}|\theta;2r)$  (7-7a)

 $\lambda/\hat{\lambda}$  has the  $\chi^2/\nu$  distribution with  $\nu = 2r$ , i. e.,

$$Cdf\{\lambda/\hat{\lambda}; r\} = csnf(\lambda/\hat{\lambda}; 2r)$$
(7-7b)

s-Confidence limits can be set by Eq. 7-8.

 $\operatorname{Conf}\{\lambda \leq \hat{\lambda}(\chi^2/\nu)\} = \operatorname{csnf}[(\chi^2/\nu); 2r] \quad (7-8\underline{a})$  $\operatorname{Conf}\{\theta \leq \hat{\theta}/(\chi^2/\nu)\} = \operatorname{csnfc}[(\chi^2/\nu); 2r] \quad (7-8b)$ 

Table 7-2 shows the ratio of the upper and lower symmetrical s-confidence limits as a function of the number of failures; the ratio is not a function of anything else. This ratio is very large for any reasonable number of failures; e.g., for 5 failures and only 80% s-confidence, the ratio is 3.3 (from Table 7-2). That means that the true value is uncertain to a factor of over 3. To get an uncertainty of 10% (a ratio of 1.10) at a 95% s-confidence level requires about 1700 failures (from Table 7-2).

Example. Ten items are put on test. The failure/censoring times are as listed in the table. All times are in hours and are ordered.

1. 142

http://www.everyspec.cor

- 2. 205
- 3. 249
- 4. 448 (3 unfailed items were also removed)
- 5. 1351
- 6. 2947 (the last item was also removed).

Make estimates for  $\theta$ ,  $\lambda$ , assuming that the times-to-failure are exponentially distributed. All censoring was done at a failure; so this section applies; i.e., the number of failures is not a random variable, the total-test-time is a random variable.

#### Procedure

#### Example

1. Calculate total-test-time T. 1. T  $= 142 + 205 + 249 + 4 \times 448 + 1351$ + 2 X 2947 = 9633 2. State the number of failures r. = 6 2. r = 0.6229/1000-hr 3. Calculate  $\lambda$  and  $\theta$  from Eq. 7-6. 3. λ Â  $= 1605.5 \, hr$ 4.  $(\chi^2/\nu)_{5\%, 12} = 0.4355$ 4. Calculate the 5% and 95% s-confidence limits using Eq. 7-8 and Table 6-2.  $(\chi^2/\nu)_{95\%, 12} = 1.7522$ (Subscripts L, U imply Lower and Upper  $(0.6229/1000 \text{-hr}) \times 0.4355$ λ_L s-confidence limits.) = 0.2713/1000-hr θη = (1605.5 hr)/0.4355 $= 3687 \, hr$  $= (0.6229/1000 \text{-hr}) \times 1.7522$ λ,, = 1.091/1000-hr  $\theta_L$ = (1605.5 hr)/1.7522 = 916 hr5. Make the s-confidence statements. 5. s-Confidence level = 95% - 5% = 90%.  $Conf \{ 0.2713/1000 \text{-hr} \le \lambda \le 1.091/1000 \text{-hr} \}$ = 90% Conf  $\{916 \text{ hr} \le \theta \le 3687 \text{ hr}\} = 90\%$ 6. Calculate the ratio of upper to lower s-confidence limits. (See also Table 7-2). 6. ratio = 4.0

Downloaded from http://www.everyspec.com

Note how misleading the point estimates are with all of their apparent precision.

The test did not give as much information about the parameter as we would have liked. This paradox is well known and has led to several suggestions to avoid it; e.g., use Bayesian methods, or use smaller s-confidence levels.

The data in this test were generated using a set of 10 pseudorandom numbers with  $\theta = 1000$  br ( $\lambda = 1.0/1000$ -hr). The data are quite unevenly distributed which again shows the wide variability in samples which are not large.

Special tables for making these inferences

have been generated; e.g., Refs. 2, 4, and 5. The  $\chi^2/\nu$  (or  $\chi^2$ ) tables are just as easy to use, and one doesn't get lost in someone else's partially explained mathematics.

Often it is desirable to test whether or not the data might reasonably have come from an exponential distribution. For general alternatives, see Chapter 14.

For the specific alternative of a Weibull distribution, see Chapter 8. A s-confidence interval usually is generated on the shape parameter. If that interval includes unity, the exponential hypothesis need not be rejected. In most practical situations there are so few data that the exponential hypothesis is not rejected; indeed, it would be difficult to reject many other hypotheses as well.

# TABLE 7-2

Downloaded from http://www.everyspec.com

### RATIO OF UPPER TO LOWER'S-CONFIDENCE LIMITS FOR THE EXPONENTIAL PARAMETER (WITH EQUAL SIZE TAILS ON EACH SIDE)

Body of table gives the ratio

s-Confidence Level						
number of failures r	60% (20%, 80%)	80% (10%, 90%)	90% (5%, 95%)	95% (2½%, 97½%)	98% (1%, 99%)	99% (½%, 99½%)
1	7.2	22	58	150	460	1100
2	3.6	7.3	13	23	45	72
-3	2.8	4.8	7.7	12	19	27
4	2.4	3.8	5.7	8.0	12	16
5	2.2	3.3	4.6	6.3	9.1	12
6	2.0	2.9	4.0	5.3	7.3	·9·.2
7	1.92	2.7	3.6	4.6	6.2	7.7
8	1.83	2.5	3.3	4.2	5.5	6.7
9	1.77	2.4	3.1	3.8	5.0	5.9
10	171	2.3	2.9	3.6	4.6	5.4
12	1.64	2.1	2.6	3.2	3.9	4.6
14	1.57	2.0	2.4	2.9	3.6	4.1
16	1.53	1.91	2.3	2.7	3.3	3.7
18	1.49	1.84	2.2	2.6	3.1	3.4
20	1.46	1.78	2.1	2.4	2.9	3.2
25	1.41	1.68	1.94	2.2	2.6	2.8
30	1.36	1.60	1.83	2.1	2.4	2.6
35	1.33	1.55	1.75	1.95	2.2	2.4
40	1.31	<b>1.50</b> -	1.69	1.86	2.1	2.3
45	1.29	1.47	1.64	1.80	2.0	2.2
50	1.27	1.44	1.60	1.75	1.94	2.1
60	1.24	1.39	1.53	1.66	1.83	1.95
70	1.22	1.36	1.48	1.60	1.75	1.86
80	1.21	1.33	1.45	1.55	1.69	1.78
90	1.19	1.31	1,42	1.51	1.64	1.72
100	1.18	1.29	1.39	1.48	1.59	1.68
150	1.15	1.23	1.31	1.38	1.46	1.53
200	1.13	1.20	1.26	1.32	1.39	1.44
250	1.11	1.18	1.23	1.28	1.34	1.39
300	1.10	1.16	1.21	1.25	1.31	1.35
400	1.088	1.14	1.18	1,22	1.26	1.29
500	1.078	1.12	1.16	1.19	1.23	1.26
1000	1.022	1.084	1.11	1.13	Ť•10	1.18
1500	1.044	1.068	1.089	1.11	1.13	1.14
2000	1.038	1.059	1.076	1.092	1.11	1.12
2500	1.034	1.053	1.068	1.082	1.097	1.11
3000	1.031	1.048	1.062	1.074	1.089	1.099
4000	1.027	1.041	1.053	1.064	1.076	1.085
5000	1.024	1.037	1.048	1.057	1.068	1.076
10000	1.017	1.026	1.033	1.049	1.048	1,053
<i>r</i> →∞	$1 - (1.7/\sqrt{r})$	$1+(2.6/\sqrt{r})$	$1+(3.3/\sqrt{r})$	$1+(3.9/\sqrt{r})$	$1+(4,7/\sqrt{r})$	$1+(5.2/\sqrt{r})$

# REFERENCES

- 1. Abramowitz and Stegun, Eds., Handbook of Mathematical Functions, AM555, NBS, USGPO, June 1964 with subsequent corrected printings.
- 2. Fritz, Sternberg, Weir, Youtcheff, Reliability Tables, 15 April 65 (originally printed by GE Co., April 1962, R62SD135), NAVWEPS OD 306 68.
- 3. Handbook of Reliability Engineering, NAVWEPS 00-65-502, Bureau of Naval Weapons, 1 June 1964.
- 4. Dior, Gimpe', Thomas, Exponential Reliability Tables, 1 May 63, SD 261, General Electric Co., Missile and Space Div., N63-20169.
- 5. A. H. Cronshagen, Lower Confidence Limits for Mean Life When Lifetimes Are Exponentially Distributed, RCS60, Aerojet-Azusa, 9 May 1960, AD 287-360.
- 6. Mann, Schafer, Singpurwalla, Methods for Statistical Analysis of Reliability and Life Data, John Wiley & Sons, 1974.

AMCP 706-200:

t

ドロデー

÷

Ċ

1

N. 7.

### **CHAPTER 8**

Downloaded from http://www.everyspec.com

C

flæ

# WEIBULL DISTRIBUTION

8-0 LIST C	OF SYMBOLS	S-	= denotes statistical definition	
ACov{ }	= estimated asymptotic covari- ance	Sf	= Survivor function	
AVar{}	= estimated asymptotic variance	StDv{ }	= standard deviation	
	= *Confidence	Var{}	= variance	
Cdf	<ul> <li>Cumulative distribution func- tion</li> </ul>	wei	= base name for Weibull distri- bution	
сти	= subscripts that imply a same	weif	= Cdf for Weibull distribution	
0, 1, 0	dence level; C is general, L is lower, U is upper	weifc	= Sf for Weibull distribution	
СМ.{}	= <i>i</i> th central moment	α	= scale parameter	
Conf { }	= s-Confidence level	<b>, 3</b>	= shape parameter	
CV()	= coefficient of variation.	τ	= random variable	
<b>CT T</b>	StDv $\{ {}^{c} \} / E \{ \}$	ψ	$= \ln(-\ln \hat{R})$	
<i>E</i> { }	= s-Expected value	{•;•},(•;•)	= the fixed parameters are listed	
$M_i\{ \}$	= ith moment about the origin		the random variable is listed to the left of the semicolon	
NCM _i {}	= normalized ith central mo- ment; CM _i { }/[StDv{ }] ⁱ	-	= the complement, e.g., $\overline{\theta} \equiv 1 - \theta$ where $\theta$ is any probability	
n _f	= number of failures			
pdf	= probability density function	8-1 INTRO	DUCTION	
pmf	= probability mass function	This is a very commonly used $PrD$ for life (e.g., time-to-failure). It is a rather tractable PrD and is reasonably rich in being able to fit various sets of data. The base name wei is given to the Weibull distribution (for <u>Wei-</u> bull). The suffix f implies the Cdf, and the suffix fc implies the Sf (complement of the		
Pr{ }	= Probability			
PrD	= Probability distribution			
R	= s-Reliability	<i>Cdf</i> ).	Ferrary (compression of the	

The 2-parameter Weibull distribution always is implied, unless stated otherwise.

#### 8-2 FORMULAS

$$\alpha$$
 = scale parameter,  $\alpha > 0$ 

 $\beta$  = shape parameter,  $\beta > 0$ 

$$r = random variable, \tau \ge 0$$

$$(if \beta < 1, then \tau > 0 for the pdf)$$

$$pdf\{\tau; \alpha, \beta\} = (\beta/\alpha) (\tau/\alpha)^{\beta-1} \exp[-(\tau/\alpha)^{\beta}]$$
(8-1)

 $Cdf\{\tau; \alpha, \beta\} = weif(\tau/\alpha; \beta) = \exp f[(\tau/\alpha)^{\beta}]$ 

 $= 1 - \exp[-(\tau/\alpha)^{\beta}]$  (8-2)

 $Sf\{\tau; \alpha, \beta\} = weifc(\tau/\alpha; \beta) = \exp fc[(\tau/\alpha)^{\beta}]$ 

 $= \exp[-(\tau/\alpha)^{\beta}] \qquad (8-3)$ 

failure rate  $\{\tau; \alpha, \beta\} = (\beta/\alpha) (\tau/\alpha)^{\beta-1} (8-4)$ 

$$b_{l} \equiv \Gamma(1 + l/\beta)$$

$$E\{\tau; \alpha, \beta\} = \alpha b_{1}$$
StDv  $\{\tau; \alpha, \beta\} = \alpha (b_{2} - b_{1}^{2})^{1/2}$ 

$$CV = \left(\frac{b_{2}}{b_{1}^{2}} - 1\right)^{1/2}$$

$$CM_{n}/(b_{1}^{n}\alpha^{n}) = (-1)^{n}(1 - n)$$

$$+ \sum_{i=2}^{n} {n \choose i} (-1)^{n-i} \left(\frac{b_{i}}{b_{1}^{i}}\right),$$

for 
$$n \geq 1$$

 $(b_i/b_1^i > 1, \text{ for } i > 1)$ 

 $M_n = \alpha^n b_n$  (*n*th moment about the origin)

mode  $\{\tau; \alpha, \beta\} = \begin{cases} \alpha(\beta-1)^{1/\beta}, & \text{for } \beta \ge 1\\ 0, & \text{otherwise} \end{cases}$ 

median  $\{\tau; \alpha, \beta\} = \alpha(\ln 2)/\beta \approx 0.7\alpha/\beta$ 

Other types of parameters are often used, e.g.,  $\xi$  in place of  $-\beta \ln \alpha$ ; but the ones used here have the most direct ergineering meaning.  $\alpha$ often is called the characteristic life; it is useful because the Sf for  $t = \alpha$  is  $1/e \approx$ 0.36788, regardless of  $\beta$ .

Fig. 8-1 shows the *pdf*, and Fig. 8-2 shows the hazard rate, both as a function of  $\alpha$  and  $\beta$ . When  $\beta = 1$ , the Weibull distribution reduces to the exponential. Fig. 8-3 is a contour plot of the failure rate.

It is possible to substitute  $(\tau - \tau_o)$  for  $\tau$ , where  $\tau_o$  is called the "guarantee period". Ref. 1 (Chapter 5) discusses this case tho oughly. Unless there is a strong physical reason why  $\tau_o$  ought not to be zero, it is wise to set  $\tau_o = 0$  and deal only with the 2-parameter Weibull distribution.

#### 8-3 TABLES

The exponential function has been common in mathematics for many years. Explicit tables of the Weibull distribution are rare if they exist at all. Electronic calculators that have engineering functions generally can calculate the desired expressions for the Weibull distribution.

#### 8-4 PARAMETER ESTIMATION

Only the 2-parameter Weibull distribution is discussed here. The 3-parameter Weibull distribution  $[(\tau - \tau_o)$  substituted for  $\tau$ ] is not recommended unless there are compelling physical reasons to use it. Ordinarily there are not enough data to estimate  $\tau_o$  with any certainty at all. Often  $\tau_o$  is adjusted by an analyst to "straighten out" the graph on Weibull probability paper; this is very poor practice because sample *Cdf*'s of reasonable size are rarely straight when plotted on the proper probability paper. See Ref. 1 (Chapter 5) for parameter estimation of the 3-parameter Weibull distribution.



Downloaded from http://www.everyspec.com

8-3

C.X 1997

Ş

12.4.



đ

つない

و. زېر

Downloaded from http://www.everyspec.com











Downloaded from http://www.everyspec.com

13

2

1

~~~~~

. . .

Downloaded from http://www.everyspec.com

i, , ,

6.

15 -----

8-4.1 GRAPHICAL METHOD

Graphical estimation is feasible using special Weibuli probability paper. One ought always to try to get some idea of the uncertainty involved in the estimates, no matter how roughly the uncertainty is guessed at.

8-4.2 MAXIMUM LIKELIHOOD METHOD

The method of maximum likelihood (ML) is virtually the only analytic technique that is used. Unfortunately, one of the 2 ML equations cannot be solved explicitly, and iterative techniques must be used. The ML method is suitable for any kind of censoring, and always can be used. Even though it is somewhat tedious, it is recommended here because the amateur analyst "can't" go wrong with it.

Estimating the uncertainty in the ML estimates is difficult because one knows only the asymptotic (large sample) behavior. The estimates are asymptotically s-normal; this fact is used in making s-confidence statements.

Notation:

A States

- n_f = number of failures
- x_i = failure or censoring time for item *i* (if more than 1 item is censored at the same time, each is given the value x_i)
- **2** = sum only over all failed items
- Σ = sum over all times (failed and cenati sored)

$$\gamma_i(\beta) = x_i^{\beta} / \sum_{\text{all}} x_i^{\overline{\beta}}$$

The equation to be solved iteratively is

$$g(\hat{\beta}) \equiv \frac{1}{\hat{\beta}} + \frac{1}{n_f} \sum_{\text{fail}} \ln x_i - \sum_{\text{all}} \gamma_i(\hat{\beta}) \ln x_i = 0$$
(8-5)

The γ_i (β) must be calculated each time the value of β is changed. There is only one positive value of β which satisfies the equation; so Newton's method, linear interpolation, or any standard method works quite well. If the data are first graphed on Weibull probability paper, the graphical value of β can be used to begin the iteration. Otherwise, begin with $\hat{\beta} = 1$ (it's about as good as any other):

The equation for & is

$$\hat{\alpha} = \left(\frac{1}{n_f} \sum_{\mathbf{a} \neq \mathbf{i}} x_i^{\hat{\mathbf{f}}}\right)^{1/\hat{\mathbf{f}}}$$
(8-6)

The elements of the asymptotic covariance matrix are estimated by the following expressions:

$$AVar\{\ln\hat{\alpha}\} = \left(\frac{1}{n_f}\right) \left(\frac{1}{\hat{\beta}^2}\right) \left(\frac{\hat{T}_2^2}{\hat{T}_2^2 - \hat{T}_1^2}\right) \quad (8-7)$$

$$\operatorname{AVar}\left\{\hat{\boldsymbol{\beta}}\right\} = \left(\frac{1}{n_f}\right) \left(\frac{1}{\hat{T}_2^2 - \hat{T}_1^2}\right)$$
(8-8)

ACov
$$\ln \hat{\alpha}, \hat{\beta} = -\left(\frac{1}{n_f}\right) \left(\frac{1}{\hat{\beta}}\right) \left(\frac{\hat{T}_1}{\hat{T}_2^2 - \hat{T}_1^2}\right)$$
(8-9)

where

$$\hat{T}_{1} \equiv \sum_{\text{all}} \gamma_{l}(\hat{\beta}) \ln\left(\frac{x_{l}}{\hat{\alpha}}\right)$$
$$= \left[\sum_{\text{all}} \gamma_{L}(\hat{\beta}) \ln x_{l}\right] - \ln\hat{\alpha}$$
$$\hat{T}_{2}^{2} \equiv \frac{1}{\hat{\beta}^{2}} + \sum_{\text{all}} \gamma_{l}(\hat{\beta}) \left[\ln\left(\frac{x_{l}}{\hat{\alpha}}\right)\right]^{2}$$

- ACov = estimated asymptotic covariance
- Aρ = estimated asymptotic correlation coefficient
- AStDv = estimated asymptotic standard deviation

$$AStDv \{ \cdot \} = [AVar \{ \cdot \}]^{1/2}$$
 (8-10a)

$$A\rho\{\ln\hat{\alpha},\hat{\beta}\} = \frac{ACov\{\ln\hat{\alpha},\hat{\beta}\}}{[AVar\{\ln\hat{\alpha}\}AVar\{\hat{\beta}\}]^{1/2}}$$

Eq. 8-4 can be rewritten as

$$\psi = \beta \ln \tau - \beta \ln \alpha \tag{8-11}$$

where

 $\psi \equiv \ln(-\ln R).$

The two usual problems are to estimate ψ (and thus R) given τ , and to estimate τ , given R (and thus ψ). Since the variances are not always small, it is wise to consider $\ln \tau$ and $\ln \alpha$ instead of τ and α . The AVar's of $\ln \tau$ and ψ are

$$AVar \{ \psi \} = (\ln[\tau/\hat{\alpha}])^2 AVar \{ \hat{\beta} \}$$
$$+ \hat{\beta}^2 AVar \{ \ln \hat{\alpha} \}$$
$$- 2\hat{\beta} (\ln[\tau/\hat{\alpha}]) ACov \{ \ln \hat{\alpha}, \hat{\beta} \}$$

(8-12)

AVar {
$$\ln \tau$$
} = $(\psi^2/\hat{\beta}^4)$ Avar { $\hat{\beta}$ }
+ AVar { $\ln \hat{\alpha}$ } - $(2\psi/\hat{\beta}^2)$
× ACov { $\ln \hat{\alpha}, \hat{\beta}$ } (8-13)

Approximate s-confidence limits are set by assuming that the parameters are s-normally distributed with mean given by the maximum likelihood value and standard deviation given by the square root of the asymptotic variance. For small samples, the answers are very rough, but they do serve the purpose of showing the uncertainty.

Example. Ten items were put on test. The failure/censoring times are as listed in the table. All times are in hours and are ordered.

1. 142

http://www.everysp

- 2. 205
- 3. 249
- 4. 448 (3 unfailed items, were also removed)
- 5. 1351
- 6. 2947 (the last item was also removed)

Estimate α , β assuming that the times to failure have the Weibull distribution. (The following calculations were all performed on an HP-45 electronic calculator—a computer is not necessary if there aren't too many data.)

Procedure

- 1. Solve Eq. 8-5 by successive approximation. Linear interpolation on the values of g closest to zero is simple; it is quite similar to Newton's method with numerical differentiation. Choose $\hat{\beta} = 1.0$ and 0.8 for the first 2 trials (just guess). Use 2 or 3 point interpolation to estimate further values of $\hat{\beta}$.
- 2. Solve Eq. 8-6 for α .
- 3. Use Eqs. 8-7, 8-8, and 8-9 to get the asymptotic covariance matrix. $(n_f = 6)$
- 4. Use Eq. 8-10 to get the asymptotic standard deviations and correlation coefficient.
- 5. Use ± 1 standard deviation to put approximate 68% symmetrical s-confidence limits on $\ln \alpha$, α , β .
- 6. Use Eq. 8-12 to find AVar $\{\psi\}$ = AVar $\{\ln(-\ln R)\}$
- 7. From Step 6, evaluate $\psi \pm AStDv \{\psi\}$ and thus the uncertainty in R (for approximately 68% s-confidence) at $\tau =$ 100 hr (R = 93.5%):
- 8. Use Eq. 8-13 to find AVar $\{lnr\}$
- 9. From Step 8, evaluate $\ln \tau \pm$ AStDv { $\ln \tau$ } and thus the uncertainty in τ (for approximately 68% s-confidence) at R = 93.5% ($\tau = 100$ hr), $\psi =$ - 2.70

| | | - | | |
|----|---------|---|---------------|--|
| 1. | β | | g (β̂) | |
| | 1.0 | | -0.1760 | |
| | 0.8 | ł | +0.2444 | |
| | 0.916 | | 0.0188 | |
| | 0.9082 | | -0.0027 | |
| - | +0.9069 | 1 | -0.00001 | |
| | | | | |

Example

1

 $\hat{\beta} = 0.9069$

2.
$$\hat{\alpha} = 1614.77$$

- 3. $\hat{T}_1 = -0.1012$ $\hat{T}_2^2 = 2.0959$ AVar { $\ln \alpha$ } = 0.2036 = 0.451<sup>2</sup> AVar { $\hat{\beta}$ } = 0.07991 = 0.283<sup>2</sup> ACov { $\ln \alpha, \beta$ } = -0.00892 = -0.0699 $\times 0.451 \times 0.283$
- 4. AStDv $\{ \ln \hat{\alpha} \} = 0.451$ AStDv $\{ \hat{\beta} \} = 0.283$ A $\rho \ \{ \ln \hat{\alpha}, \hat{\beta} \} = -0.0699$
- 5. Conf $\{6.936 \le \ln \alpha \le 7.838\} \approx 68\%$ Cenf $\{1029 \text{ hr} \le \alpha \le 2535 \text{ hr}\} \approx 68\%$ Conf $\{0.62 \le \beta \le 1.19\} \approx 68\%$
- 6. AVar $\{\psi\} = \left[\overline{\ell}n \frac{\tau}{1615 \text{ hr}}\right]^2 \times 0.0799$ + 0.167 + 0.0162 ($\ell n \frac{\tau}{1615 \text{ hr}}$)
- 7. AVar $\{\psi\} = 0.740 = 0.860^2$ $\psi = \beta \ln (\tau/\alpha) = -2.705$ Conf $\{-1.845 \le \psi \le -3.565\} \approx 68\%$ Conf $\{0.854 \le R \le 0.972\} \approx 68\%$
- 8. AVar $\{ \ln \tau \} = C.118\psi^2 + 0.0217\psi + 0.204.$
- 9. AVar { $\ln \tau$ } = 1.006 = 1.003<sup>2</sup> $\ln \tau$ = 4.605 Conf { $3.602 \le \ln \tau \le 5.608$ } $\approx 68\%$ Conf { $36.7 \ln \le \tau \le 273 \ln r$ } $\approx 68\%$

AMCP:706-200

The point of going into the analysis in detail is to show that the calculation of the uncertainties is by far the most important contribution of statictics. Without those calculations of uncertainty, a dangerous delusion of accuracy would prevail. These data are the same as in the example in Chapter 7. They are from an exponential distribution with parameter $\theta = 1000$ hr., i.e., a Weibull distribution with $\beta = 1$, $\alpha = 1000$ hr.

8-4.3 LINEAR ESTIMATION METHODS

There are many linear estimation techniques in the literature. None are given here because they require extensive tabulations. The tabulations are usually only for specific sample sizes. Ref. 1 (Chapter 5) discusses many of these and gives the references. Ref. 2 (Chapter 3) collects several of the tables. It is usually wise to go back to the original parer if the explanation of the use of any reproduced table is not clear and explicit. For example, some techniques are designed for uncensored samples, others can be used only if all censoring is at the end of the test. Many of the methods are very good when they apply: it is wise to consult a statistician about using them and about the methods for estimating uncertainty (e.g., s-confidence intervals).

8-4.4 TEST FOR FAILURE RATE: IN-CREASING, DECREASING, OR CON-STANT

The literature contains tables for testing the hypothesis about whether $\beta > 1$ (increasing failure rate), $\beta = 1$ (constant failure rate), $\beta < 1$ (decreasing failure rate). Some tables are not valid if there is any kind of censoring.

You must remember what such a test really does. It says, "Do the test data virtually force me to reject my hypothesis?" If they do force you to reject the hypothesis (i.e., data as bad as yours rarely would be obtained if the hypothesis were true), then you ordinarily accept the alternate hypothesis. But very often the data do not force you to reject your hypothesis—your data are quite reasonable if the hypothesis is true. Then what you really ought to say is "This is a reasonable hypothesis; there may also be many other reasonable hypotheses."

://www.evervspec.co

For the example in par 8-4.2, $\hat{\beta} \approx 0.91$, and $\hat{\sigma}_{\beta} \approx 0.28$ ($\hat{\sigma}_{\beta} \equiv \text{StDv} \{\hat{\beta}\}$). If $\beta_{\text{true}} = 1$, you'd get a $\hat{\beta}$ as low as (or lower than) 0.91 at least gauf[(0.91 - 1.00)/0.28] = 37% of the time. The data do not force you to reject the hypothesis that $\beta = 1$.

Now if $\beta_{truc} = 0.8$, you'd get a $\hat{\beta}$ as high as (or higher than) 0.91 at least gaufc[(0.91 - 0.80)/0.28] = 35% of the time. The data do not force you to reject that hypothesis.

Now if $\beta_{true} = 1.2$, you'd get a $\hat{\beta}$ as low as (or lower than) 0.91 at least gauf[(0.91 - 1.2)/0.28] = 15% of the time. The data do not really force you to reject that hypothesis.

Often it is desirable to make as simple an assumption as the data will allow. That usually means to assume $\beta = 1$ (exponential distribution) if the data will allow it.

8-5 COMPARISON WITH LOGNORMAL DISTRIBUTION

For 10 failures or less (or perhaps even 20 failures or less) data sets from a Weibull and a lognormal distribution are virtually indistinguishable from each other. It is not wise to use a goodness-of-fit test to find which is the better fit because neither one ought to fit the sample data very well; there is just too much scatter in small to medium size samples. This is an illustration of why it is not wise to extrapolate very far from the sample data. These 2 distributions will generally have quite different behavior in the right tail region.

REFERENCES

Downloaded from http://www.everyspec.com

1. Mann, Schafer, Singpurwalla, Methods for Statistical Analysis of Reliability and Life Data, John. Wiley & Sons. 1974.

A STATE OF A

Constant in the local

And the second second

2. W. Yurkowsky, Nonelectronic Reliability Notebook, March 1970, RADC-TR-69-458, AD-868 372.

Ę

्रीम्स् म्लुपू

CHAPTER 9

Downloaded from http://www.everyspec.com

LOGNORMAL DISTRIBUTION

| 9-0 LIST OF SYMBOLS | | $M_{i}\{ \}$ | = ith moment about the origin | |
|---------------------|--|------------------------|---|--|
| - | | pdf | = probability density function | |
| C | = s-Confidence | pmf | = probability mass function | |
| Cdf | = Cumulative distribution func-
tion | Pr{ } | = Probability | |
| C, L, U | = subscripts that imply a s-confi-
dence level; C is general, L is
lower, U is upper | PrD | = Probability distribution | |
| | | R | = s-Reliability | |
| $CM_{i}\{ \}$ | = i th central moment | S- | = denotes statistical definition | |
| Conf { } | = s-Confidence level | Sf | = Survivor function | |
| CV{ } | = coefficient of variation:
StDu $\int \frac{1}{k} \frac{1}{k} dk$ | StDv{ } | = standard deviation | |
| | | Var{} | = variance | |
| $E\{ \}$ | = s-Expected value | x | | |
| f | = suffix for base name, implies
the Cdf | α | = scale parameter | |
| fc | = suffix for base name, implies
the Sf | β | : shape parameter | |
| 641 | = base name for Gaussian distri- | τ | = random variable | |
| guu | bution | {·;·},(·;·) | = the fixed parameters are listed | |
| gaud | = pdf for Gaussian distribution | | the random variable is listed to
the left of the semicolon | |
| gauhr | = hazard rate (failure rate) for
Gaussian distribution | - | = the complement, e.g., $\overline{\phi} \equiv 1 - \phi$ where ϕ is any probability | |
| lgn | = base name for lognormal dis-
tribution | 9-1 INTRODUCTION | | |
| NCM <sub>1</sub> {} | - normalized ith central mo-
ment; CM, { } /[StDv{ }] <sup>f</sup> | This dis
the life o | tribution is used occasionally for femiconductors and mechanical | |

}

parts. Part of its popularity is traceable to its relation to the s-normal distribution, and part is traceable to the non-negative character of the random variable. The basic name lgn is given to the lognormal distribution (for lognormal). The suffix f implies the Cdf, and the suffix fc implies the Sf (complement of the Cdf).

The 2-parameter lognormal distribution is always implied unless otherwise stated.

9-2 FORMULAS

 α = scale parameter, $\alpha > 0$

 β = shape parameter, $\beta > 0$

 τ = random variable, $\tau \ge 0$

$$pdf\{\tau;\alpha,\beta\} = \frac{\beta}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left[\ln(\tau/\alpha)^{\beta}\right]^{2}\right]$$
(9-1a)

$$= \frac{1}{\sqrt{2\pi}(1/\beta)} \left(\frac{1}{\tau}\right)$$
$$\times \exp\left[-\frac{1}{2}\left(\frac{!n\tau - \ln\alpha}{1/\beta}\right)^{2}\right]$$
(9-1b)

=
$$(\beta/\tau)gaud\left[\beta \ln\left(\frac{\tau}{\alpha}\right)\right]$$
 (9-1c)

where gaud is the Gaussian pdf; see Par. 5-1.

$$Cdf \langle \tau; \alpha, \beta \rangle = lgnf(\tau/\alpha; \beta)$$
(9-2a)

$$= gauf\left(\frac{\ln \tau - \ln \alpha}{1/\beta}\right)$$
$$= gauf\left[\beta \ln\left(\frac{r}{\alpha}\right)\right]$$
$$= gauf\left[\ln\left(\frac{r}{\alpha}\right)^{\beta}\right] \qquad (9-2b)$$

$$f\{\tau; \alpha, \beta\} = lgnfc(\tau/\alpha; \beta) \qquad (9-3a)$$
$$= gaufc\left(\frac{\ln \tau - \ln \alpha}{1/\beta}\right)$$
$$= gaufc\left[\beta \ln\left(\frac{\tau}{\alpha}\right)\right]$$
$$= gaufc\left[\ln\left(\frac{\tau}{\alpha}\right)^{\beta}\right] \qquad (9-3b)$$

failure rate
$$\langle \tau; \alpha, \beta \rangle = pdf \langle \tau; \alpha, \beta \rangle /$$

rom http://www.everyspec.com

$$Sf \{ \tau; \alpha, \beta \} \qquad (9-4a)$$
$$= \beta gauhr \left[\beta \ln\left(\frac{\tau}{\alpha}\right)\right]$$
$$= \beta gauhr \left[\ln\left(\frac{\tau}{\alpha}\right)^{\beta}\right] \qquad (9-4b)$$

where gauhr is the <u>Gaussian hazard rate</u> (failure rate); see par. 5.2.

$$B \equiv \exp[1/(2\beta^2)] > 1$$

$$E\{\tau; \alpha, \beta\} = \alpha B > \alpha$$

$$StDv\{\tau; \alpha, \beta\} = \alpha B(B^2 - 1)^{1/2}$$

$$CV\{\tau; \alpha, \beta\} = (B^2 - 1)^{1/2}$$

$$CM_3\{\tau; \alpha, \beta\} = (\alpha^3 B^3 (B^2 - 1)^2 (B^2 + 2))$$

$$\frac{CM_n}{(\alpha B)^n} = (-1)^n \left[1 - n + \sum_{i=2}^n (-1)^i \binom{n}{i} B^{i(i-1)}\right]$$

$$mode\{\tau; \alpha, \beta\} = \alpha/B^2 < \alpha$$

median $\{\tau; \alpha, \beta\} = \alpha$.

Mode of failure rate occurs at $(\alpha/B^2)e^{\gamma}$. γ $(0 \le \gamma \le 1)$ is given in Fig. 9-5. The failure rate is zero for $\tau = 0$, then rises to a single maximum, and finally decreases toward zero. Fig. 9-1 shows the *pdf*, and Fig. 9-2 shows the

Downloaded from http://www.everyspec.com

Figure 9-1. Lognormal Distribution, pdf

9-3

failure rate, for several values of α , β . Figs. 9-3 and 9-4 are contour plots of the *pdf* and failure rate.

There are several ways of putting the parameters into the lognormal distribution, but the common ones in the literature which use the symbols μ and σ are confusing because μ and σ do not stand for the mean and standard deviation of τ , but for $\ln \tau$.

If a change of variable is made from τ to $ln\tau$, then $ln\tau$ has the s-normal distribution. See Chapter 5.

It is possible to substitute $(\tau - \tau_o)$ for τ , where τ_o is called the "guarantee period", Ref. 1 (Chapter 5) discusses this case thoroughly. Unless there is a strong physical reason why τ_o ought not to be zero, it is wise to set $\tau_o = 0$ and deal only with the 2-parameter lognormal distribution.

9-3 TABLES

rom http://www.evervspec.

Tables of the lognormal distribution are virtually nonexisten(. The Cdf and Sf are calculated easily using gauf and gaufc tables (standard s-distribution), see Eqs. 9-2 and 9-3. The pdf can be calculated directly, or from the s-normal pdf using Eq. 9-1.

9-4 PARAMETER ESTIMATION

Only the 2-parameter lognormal distribution is discussed here. The 3-parameter lognormal distribution $[(\tau - \tau_o)$ substituted for τ] is not recommended unless there are compelling physical reasons to use it. Ordinarily, there are not enough data to estimate τ_o

Downloaded from http://www.everyspec.com

estimation. $\alpha \equiv e^{\mu}$

with any certainty at all, Often τ_o is adjusted by an analyst to "straighten out" the graph on lognormal probability paper; this is very poor practice because sample *Cdf*'s of reasonable size are rarely straight when plotted on the proper probability paper. See Ref. 1 (Chapter 5) for parameter estimation of the 3-parameter lognormal distribution.

By far the most satisfactory procedure is to use $x \equiv \ln \tau$. Then x is from a Gaussian distribution; see par. 5-3 for parameter

Downloaded from http://www.everyspec.com

9-4.1 UNCENSORED DATA

 $\beta \equiv 1/\sigma$ (9-5b)

where μ and σ are the mean and standard deviations of x, respectively. s-confidence statements about μ and σ will hold for the corresponding α and β .

Example. The following failure times were observed (all times are in hours). Assume a lognormal distribution. Estimate the parameters.

| 566 | 2171 |
|-------------------|------|
| 625 | 2226 |
| 1000 | 2638 |
| 1 <sup>0</sup> 73 | 2773 |
| 1240 | 3781 |

(9-5a)

-----Downloaded from http://www.everyspec.com

3

() in () .

· · Im warded

to the formation of the second

Downloaded from http://www.everyspec.co

AMCP 706-200

a de Villando

Downloaded from http://www.everyspec.com

1

•

and the second

1. 1. 1. 1.

A CARLENS AND A CARLENS

-

., ہ

Figure 9-5. Lognormal Distribution: Failure-rate Mode

AMCP 706-200

9946 873 **9-9**

AND AND A

ないないに、このないの時間になってい

Procedure

- Calculate the logs (natural) of the failure times (any base will give correct answers if it it is used consistently) and find the sample mean x and s statistic. State sample size and degrees of freedom.
- 2. Calculate point estimates from Eq. 9-5
 - $\hat{\alpha} = e\hat{\mu} = e^{\bar{x}}$ $\hat{\beta} = 1/\hat{\sigma} = 1/s$
- 3. Calculate 90% symmetrical s-confidence limits for α . Calculate then for μ first. Use Eq. 5-5b.
- Calculate 90% symmetrical s-confidence limits for β. Calculate them for σ first. Use. Eq. 5-6b.

The uncertainty in α is more than a factor of 2, and in β is more than a factor of 2. Thus the statistical analysis has shown how little we know about the distribution after taking this sample of 10. The actual data were a random sample from a lognormal distribution with $\alpha =$ 1000 hr and $\beta = 2$. Example

1.
$$\bar{x} = 7.322$$

 $s = 0.656$
 $N = 10$
 $v = 9$

2. $\hat{\alpha} = 1513 \text{ hr}$ $\hat{\beta} = 1.525$

- 3. $t_{.05,9} = -1.833$ $t_{.95,9} = +1.833$ $\mu_L = 7.322 - 0.380 = 6.942$ $\mu_H = 7.322 + 0.380 = 7.702$ $\alpha_L = 1034 \text{ hr}$ $\alpha_H = 2213 \text{ hr}$ Conf $\{1030 \text{ hr} \le \alpha \le 2210 \text{ hr}\} = 90\%$
- 4. $(\chi^2/\nu)_{0.05,9} = 0.3694 = 0.6078^2$ $(\chi^2/\nu)_{0.95,9} = 1.8799 = 1.3711^2$ $\sigma_H = 0.656/0.6078 = 1.0792$ $\sigma_L = 0.656/1.3711 = 0.4784$ $\beta_H = 2.09$ $\beta_L = 0.927$ Conf { $0.93 \le \beta \le 2.1$ } = 90%

9-4.2 CENSORED DATA

Maximum likelihood is complicated because 2 simultaneous equations must be sclved iteratively just as for the s-normal distribution. Ref. 2 shows how order statistics can be used. Ref. 1 also discusses this situation. A statistician oug!.: to be consulted.

REFERENCES

- 1. Mann, Schafer, Singpurwalla, Methods for Statistical Analysis of Reliability and Life Data, John Wiley & Sons, 1974.
- 2. Sarhan and Greenberg, Contributions to Order Statistics, John Wiley & Sons, NY, 1962.

AMCP 708-200

CHAPTER 10

Downloaded from http://www.everyspec.com

BETA DISTRIBUTION

10-0 LIST OF SYMBOLS

| 10-0 L | IST OF SYMBOLS | NСМ <sub>і</sub> { | <pre>} = normalized ith central mo-
ment; CM<sub>i</sub> { }/[StDv { }]</pre> |
|---------------------------|--|------------------------|--|
| B | = beta function | pdf | = probability density function |
| bet | = base name for beta distribu-
tion | pmf | = probability mass function |
| betf | = Cdf for beta distribution | Pr{}
PrD | = Probability |
| betfc | = Sf for beta distribution | R <sup>·</sup> | = Probability distribution
= s-Reliability |
| C
Cdf | = s-Confidence | r, n | = parameters |
| Cuj | = Cumulative distribution func-
tion | S- | = denotes statistical definition |
| C, L, U | = subscripts that imply a s-confi-
dence level; C is general L is | Sf | = Survivor function |
| | lower, U is upper | StDv{ } | = standard deviation |
| $CM_{i}\{\}$ | = <i>i</i> (h central moment | stufc - | = Sf of the Student's t-distribu-
tion |
| con { } | = s-Confidence level | Var { } | = variance |
| 470 | tion | x | ≈ random variable |
| CV{ } | <pre>= coefficient of variation: StDv { }/E { }</pre> | α, β | = parameters |
| E{ } | = s-Expected value | ν_1, ν_2 | = degrees of freedom |
| fisfc | = Sf of the Fisher-Snedecor F
distribution | (';') , (';') | = the fixed parameters are listed
to the right of the semicolon,
the random variable is listed to
the laft of the |
| gauf | = Cdf for Gaussian distribution | | = the completion the semicolon |
| I <sub>p</sub> | = incomplete beta function | | ϕ where ϕ is any probability |
| <i>M</i> <sub>1</sub> { } | = ith moment about the origin | * | = implies use of the (r, n) param-
eter set |

19-1 INTRODUCTION

This is sometimes used as a PrD for s-reliability since the random variable has the range 0 - 1. It also finds some use, in principle, as a prior PrD for Bayesian analysis of the binomial parameter. The base name bet is given to the beta distribution (for beta). The suffix f implies the Cdf, and the suffix fc implies the Sf (complement of the Cdf). Most of the formulas were obtained from Refs. 1, 2, and 3 (many formulas appear all 3 places). The beta distribution is also called the incomplete beta function.

10-2 FORMULAS

 $\alpha, \beta = \text{parameters}, \alpha \ge 0, \beta \ge 0$

- $x = random variable, 0 \le x \le .1$ (for some values of α, β the *pdf* is not defined at the end points)
- r, n alternate parameters, $0 \le r \le n$ (the restriction on n is more stringent than mathematically necessary)
 - $r \equiv \alpha, n \equiv \alpha + \beta 1$ (r and n are usually restricted to non-negative integers)
 - n sometimes is called a "scale" parameter and r a shape parameter

$$B(\alpha, \beta) \equiv \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
 is called the beta function.

$$pdf\{x; \alpha, \beta\} = x^{\overline{\alpha}-1}(1-x)^{\beta-1}/B(\alpha, \beta)$$

for $\alpha, \beta \neq \overline{0}$ (10-1a)

$$pmf\{0; 0, \beta\} \doteq 1$$

$$pdf\{x; 0, \beta\} = 0, \text{ for } x \neq 0\}$$
for $\beta \neq 0$

 $pmf\{1; \alpha, 0\} = 1$ $pdf\{x; \alpha, 0\} = 0 \text{ for } x \neq 1\} \text{ for } o \neq 0$ $pmf\{0; 0, 0\} = pmf\{1; 0, 0\} = 1/2$ $pdf\{x; 0, 0\} = 0, \text{ for } x \neq 0$

for
$$r \ge 1$$
 (10-1b)
 $pmf^* \{0; 0, n\} = 1$
 $pdf^* \{x; 0, n\} = 0$ for $x \ne 0$
 $Cdf \{x; \alpha, \beta\} = I_x(\alpha, \beta) = 1 - I_{1-x}(\beta, \alpha)$ (10-2a)
 $Cdf^* \{x; r, n\} = I_x(r, n - r + 1)$
 $= 1 - I_{1-x}(n - r + 1, r)$
 $= betf^*(x; r, n)$ (10-2b)
 $Sf \{x; \alpha, \beta\} = 1 - I_x(\alpha, \beta) = I_{1-x}(\beta, \alpha)$ (10-3a)
 $Sf^* \{x; r, n\} = 1 - I_x(r, n - r + 1)$
 $= I_{1-x}(n - r + 1, r)$
 $= betfc^*(x; r, n);$ (10-3b)
 $E \{x; \alpha, \beta\} = \alpha/(\alpha + \beta)$
 $E^* \{x; r, n\} = r/(n + 1)$
 $StDv \{x; \alpha, \beta\} = \frac{1}{\alpha + \beta} \left[\frac{\alpha\beta}{\alpha + \beta + 1}\right]^{1/2}$
 $StDv^* \{x; r, n\} = \frac{1}{n+1} \left[\frac{r(n+1-r)}{n+2}\right]^{1/2}$
 $CV \{x; \alpha, \beta\} = \left[\frac{\beta}{\alpha(\alpha + \overline{\beta} + 1)}\right]^{1/2}$
 $CV^* \{x; r, n\} = \left[\frac{n+1-r}{r(n+2)}\right]^{1/2}$
 $CM_3 \{x; \alpha, \beta\} = \frac{2r(n+1-r)(n+1-2r)}{(n+1)^3(n+2)(n+3)}$

 $pdf^*(x; r, n) = x^{r-1}(1-x)^{n-r}r\binom{n}{r},$

 $NCM_{3} \{x; \alpha, \beta\} = \frac{\hat{2}(\beta - \alpha)}{(\alpha + \beta + 2)} \left[\frac{\alpha + \beta + 1}{\alpha\beta}\right]^{1/2}$

ANICP 706-200

$$NCM_{3}^{*}\{x; r, n\} = \frac{2(n+1-2r)}{n+3}$$

$$\times \left[\frac{n+2}{r(n+1-r)}\right]^{1/2}$$
mode $\{x; \alpha, \beta\} = (\alpha - 1)/(\alpha + \beta - 2)$
mode<sup>\*</sup> $\{x; r, n\} = (r-1)/(n-1)$
median $\{x; \alpha, \beta\} \approx (\alpha - 0.3)/(\alpha + \beta - 0.6)$
median<sup>\*</sup> $\{x; r, n\} \approx (r - 0.3)/(n + 0.4)$

1/11 1

2-1

The beta distribution is related to other distributions as follows:

$$\sum_{i=r}^{n} {n \choose r} p^{i} \bar{p}^{n-i} = I_{p}(r, n-r+1)$$

= *betf*\*(*x*; *r*, *n*) (10-4)

 $|stufc(t; v)| = I_x(v/2, 1/2), x \equiv v/(v + t^2)$

(10-5)

$$fisfc(F; v_1, v_{\overline{2}}) = I_x(v_2/2, v_1/2),$$

$$x \equiv \frac{\nu_2}{\nu_2 + \nu_1 F}$$
(10-6)

Fig. 10-1 shows some graphs of Eq. 10-1a. Fig. 10-2 shows some graphs of Eq. 10-1b.

10-3 TABLES

Ref. 4 is an extensive set of tables of Eq. 10-4. Other tables are given in Refs. 5 and 6.

Ref. 2 has tables, a chart, and a discussion of the distribution.

Downloaded from http://www.everyspec.com

Ref. 1 (formulas 26.5.20 and 26.5.21) has two approximations for calculating I_x .

For
$$(\alpha + \beta - 1)(1 - x) \le 0.8$$
,
 $I_x(\alpha, \beta) = csqfc(\chi^2; 2\beta) + \epsilon$
 $|\epsilon| < 0.005$, if $\alpha + \beta > 6$
 $\chi^2 \equiv (\alpha + \beta - 1)(1 - x)(3 - x) - (1 - x)(\beta - 1)$
 $I_x(\alpha, \beta) = gauf(y) + c$
 $|\epsilon| < 0.005$ if $\alpha + \beta > 6$

$$y \equiv \frac{3\left[w_{1}\left(1-\frac{1}{9\beta}\right)-w_{\overline{2}}\left(1-\frac{1}{9\alpha}\right)\right]}{\left[\frac{w_{1}^{2}}{\beta}+\frac{w_{2}^{2}}{\alpha}\right]^{1/2}}$$
$$w_{1} \equiv (\beta x)^{1/3}, \quad w_{2} \equiv [\alpha(1-x)]^{1/3}, \quad (10-8)$$

Eq. 10-8 is related to Eq. 6-24. No tables are included in this Handbook series. Eq. 10-6 and Table 6-4 can be used.

10-4 PARAMETER ESTIMATION

There are no simple good estimation procedures. The method of moments is reasonably straightforward but does not readily allow an estimation of the uncertainties in the parameter estimates.

Downloaded from http://www.everys

4

......

-----Downloaded from http://www.everyspec.com

from http://www.everyspec.com

AMCP 706-200

0.5

x (B) n = 11;r = 1, 2, 3, 5

0.6

0.7

1.0

0.9

0,8

0,3

0.2

0,1

0.4

10-6

1.0

0

ō

AMCF 706-200

REFERENCES

Downloaded from http://www.everyspec.com

- 1. Abramowitz and Stegun, Eds., Handbook of Mathematical Functions, AM555, NBS, USGPO, June 1964 with subsequent corrected printings.
- 2. E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. I, Cambridge Univ. Press, 1956.
- 3. W. G. Ireson, Ed., *Reliability Handbook*, McGraw-Hill, NY, 1966.

- 4. AMCP 706-109, Engineering Design Handbook, *Tables of the Cumulative Binomial Probubilities.*
- 5. K. Pearson, Table: of the Incomplete Beta Function, University Press, Cambridge (England), 1968 (first ed., 1934).
- 6. H. L. Harter, New Tables of the Incomplete Gamma Function Ratio and of Percentage Points of the Chi-square and Beta Distributions, USGPO, 1964.

11-1

ŀ,

ė

.;

CHAPTER 11

Downloaded from http://www.everyspec.com

GAMMA DISTRIBUTION

| 11-0 LISI | OF STMBULS | R | = s-Reliability | | | | | | | | |
|----------------------|---|---|---|--|--|--|--|--|--|--|--|
| С | = s-Confidence | S- | = denotes statistical definition | | | | | | | | |
| Cdf | = Cumulative distribution func-
tion | Sf | = Survivor function | | | | | | | | |
| | = subscripts that imply a s-confi- | StDv { } | = standard deviation | | | | | | | | |
| 0, 2, 0 | dence level; C is general, L is
lower, U is upper | Var{ } | = variance | | | | | | | | |
| Conf { } | = s-Confidence level | α | = scale parameter | | | | | | | | |
| CM | = ith central moment | β | = shape parameter | | | | | | | | |
| csaf | = Cdf for chi-square distribution | Г | = gamma function | | | | | | | | |
| CV { } | = coefficient of variation: | τ | = random variable | | | | | | | | |
| ., | StDv { }/E { } | {•;•},(•;•) | = the fixed parameters are listed | | | | | | | | |
| E { } | = s-Expected value | | to the right of the semicolon,
the random variable is listed to | | | | | | | | |
| gam | = base name for gamma distribu- | | the left of the semicolon | | | | | | | | |
| | uon | - | = the complement, e.g., $\overline{\phi} \equiv 1 -$ | | | | | | | | |
| gamf | = <i>Cdf</i> for gamma distribution | | ϕ where ϕ is any probability | | | | | | | | |
| gamfc | = Sf for gamma distribution | 11-1 INTRODUCTION | | | | | | | | | |
| gaufc | = Sf for Gaussian distribution | This is some of the some of the some set of the set of | the distribution actually used in he exponential distribution exam- | | | | | | | | |
| $M_i\{ \}$ | = <i>i</i> th moment about the origin | ples when
related close | there is more than 1 failure. It is
selv to the chi-square distribution | | | | | | | | |
| NCM <sub>i</sub> { } | = normalized <i>i</i> th central mo-
ment; $CM_i\{ \} / [StDv\{ \}]^i$ | The base of distribution | name gam is given to the gamma $f(f)$ (for gamma). The suffix f implies and the suffix f_{c} implies the Sf | | | | | | | | |
| pdf | = probability density function | (compleme
bution is a | and the surface f implies the S
ent of the Cdf). The gamma distri-
also called the incomplete gamma | | | | | | | | |
| pmf | = probability mass function | function. | guille guille | | | | | | | | |
| Pr{ } | = Probability | 11-2 FOR | MULAS | | | | | | | | |
| PrD | = Probability distribution | α = scale parameter, $\alpha > 0$ | | | | | | | | | |

$$\beta$$
 = shape parameter, $\beta > 0$

$$\tau = random variable, \tau \ge 0$$
 (if $\beta < 1$,

then $\tau > 0$ for the *pdf*)

$$pdf\{\tau, \alpha, \beta\} = (1/\alpha)e^{-(\tau/\alpha)}(\tau/\alpha)^{\beta-1}/\Gamma(\beta)$$

Downloaded from http://www.everyspec.com

 $Cdf \{\tau; \alpha, \beta\} = gamf(\tau/\alpha; \beta)$ (11-2)

 $Sf \langle \tau; \alpha, \beta \rangle = gamfc(\tau | \alpha; \beta)$ (11-3)

 $E\{\tau;\alpha,\beta\}=\alpha\beta$

$$\operatorname{StDv}\left\{\tau;\alpha,\beta\right\}=\alpha\sqrt{\beta}$$

$$CV\{\tau;\alpha,\beta\} = 1/\sqrt{\beta}$$

 $CM_3 \{\tau; \alpha, \beta\} = 2\alpha^3 \beta$

$$NCM_3 \{\tau; \alpha, \beta\} = 2/\sqrt{\beta}$$

$$\frac{E\left\{\tau^{n};\alpha,\beta\right\}}{\left[E\left\{\tau;\alpha,\beta\right\}\right]^{n}} = (1+1/\beta)(1+2/\beta)\cdots$$
$$\times \left(1+\frac{n-1}{\beta}\right), \ n \ge 1$$

mode
$$\{\tau; \alpha, \beta\} = \begin{cases} \alpha(\beta - 1), \ \beta \ge 1 \\ 0, \qquad \text{otherwise} \end{cases}$$

median $\{\tau; \alpha, \beta\} \approx \alpha(\beta - 0.3)$

Miscellaneous formulas are

$$gamf(\tau/\alpha;\beta+1) = gamf(\tau/\alpha;\beta) + x^{\beta}e^{-x}/[\Gamma(\beta+1)]$$
(11-4)

$$gamf(x^{-}/2; \nu/2) = csqf(x^{2}; \nu)$$

for ν a positive integer
(11-5)

$$gamf\{\mu; r\} = \sum_{i=r}^{\infty} (e^{-\mu}) \frac{\mu^{i}}{i!},$$

for r a non-negative integer

(11-6)

Fig. 11-1 shows a few values of the pdf. Fig. 11-2 is a contour plot of the pdf. Many of the formulas in this chapter are adapted from Ref. 1.

11-3 TABLES

Tables of the gamma distribution are not very common. Refs. 2 and 3 are two of the few extensive tables available. Of course, chi-square tables can be used when β is a multiple or $\frac{1}{2}$ (see Eq. 11-5). No tables are included in this volume.

Eq. 11-7 and its inverse are useful for approximating the gamma distribution

$$z_{\mathcal{Q}} \simeq \left[\left(u_{\mathcal{Q}, B/\beta} \right)^{1/3} - \left(1 - \frac{1}{9\beta} \right) \right] / \sqrt{1/(9\beta)}$$
(11-7)

where

 $gaufc(z_Q) = Q$

 $gamfc\left(u_{Q,\,\beta}\,;\beta\right)=Q$

11-4 PARAMETER ESTIMATION

Rarely does one wish to estimate both parameters of the gamma distribution. If β is known, the estimation is straightforward-see the exponential distribution (Chapter 7).

d from http://www.everyspec.com

aded from http://www.evervspe

If both parameters must be estimated, consult a statistician. Be sure to estimate the uncertainties in the parameter estimates.

$$\Gamma(\beta) \equiv \int_0^\infty e^{-u} u^{\beta-1} du \qquad (11-8)$$

11-5 GAMMA FUNCTION

The gamma function appears many places.

See Ref. 1 (Chapter 6) for many characteristics and tables of this and related functions. Table 11-1 can be used to find $\Gamma(\beta)$.

REFERENCES

- 1. Abramowitz and Stegun, Eds., Handbook of Mathematical Functions, AM555, NBS, USGPO, June 1964 with subsequent corrected printings.
- 2. H. L. Harter, New Tables of the Incomplete Gamma Function Ratio and of Per-

centage Points of the Chi-square and Beta Distributions, USGPO, 1964.

3. K. Pearson, *Tables of the Incomplete Gamma Function*, University Press, Cambridge (England), 1922.

----- Downloaded from http://www.everyspec.com

102 AV2

the in a set of a week to an a solution a week of the set of the

AMC# 706-200

Aller die

TABLE 11-1

Downloaded from http://www.everyspec.com

the line of the

1

1

الأفرق بلجنك فبرقتها هار

GAMMA FUNCTION

$n! = \Gamma (n + 1), \text{ for } n \text{ an integer}$ $\Gamma (\beta + 1) = \beta \Gamma (\beta)$ $\Gamma (\beta + n) = (\beta + n - 1) (\beta + n - 2) \dots \beta \Gamma (\beta)$

| | | | and winds "I a marked of the second | | | | |
|------|------------------|------|-------------------------------------|------|------------------|------|----------|
| β | Г(в) | β | Γ(β) | ß | Γ(β) | β | Γ(β) |
| 1.00 | 1.00000 | 1.25 | 0.90640 | 1.50 | 0.88623 | 1.75 | 0.91905 |
| 1.01 | 0.99433 | 1.26 | 0.90440 | 1,51 | 0.88659 | 1.76 | 0.92137 |
| 1.02 | 0.98884 | 1.27 | 0.90250 | 1.52 | 0.88704 | 1.77 | 0.92376 |
| 1.03 | 0,98355 | 1.28 | 0.90072 | 1.53 | 0.88757 | 1.78 | 0.92623 |
| 1.04 | 0.97844 | 1.29 | 0.89904 | 1.54 | ó . 88813 | 1.79 | 0.92877 |
| 1.05 | 0.97350 | 1.30 | 0.89747 | 1.55 | 0.88887 | 1.80 | c.93138 |
| 1.05 | 0.96874 | 1.31 | 0.80500 | 1.56 | C.88964 | 1.81 | 0.93408 |
| 1.07 | 0.96516 | 1.32 | 0.89464 | 1.57 | 0.89049 | 1.82 | 0.93585 |
| 1.08 | 0.95973 | 1.33 | 0.89338 | 1.58 | 0.89142 | 1.83 | 0.93969 |
| 1.09 | 0.95546 | 1.34 | 0.89222 | 1.59 | 0.89243 | 1.84 | 0.94261 |
| 1.10 | 0.95135 | 1.35 | 0.89115 | 1,60 | 0.89352 | 1.85 | 0.94561 |
| 1.11 | 0 . 94739 | 1.36 | 0.89018 | 1.61 | 0.89458 | 1.86 | 0.94869 |
| 1.12 | 0.94359 | 1.37 | 0.88031 | 1.62 | 0.89592 | 1.87 | 0.95184 |
| 1.13 | 0.93993 | 1.38 | 0.88854 | 1.63 | 0.89724 | 1.88 | 0.95507 |
| 1.14 | 0.93642 | 1.39 | 0.88785 | 1.64 | 0.89864 | 1.89 | 0.95838 |
| 1.15 | 0.93304 | 1.40 | 0.88726 | 3.65 | 0.90012 | 1.90 | 0.96177 |
| 1.16 | 0.92980 | 1.41 | 0.88676 | 1.66 | 0.90167 | 1.91 | 0.96523 |
| 1.17 | 0.92670 | 1.42 | 0.88636 | 1.67 | 0.90330 | 1.92 | 0.96378 |
| 1.18 | 0.92373 | 1.43 | 0.88604 | 1.68 | 0.90500 | 1.93 | ·J.97240 |
| 1.19 | 0.92088 | 1.44 | 0.88580 | 1.63 | 0.90678 | 1,94 | 0.97610 |
| 1.20 | 0.91817 | 1.45 | 0.80565 | 1.70 | 0.90364 | 1.95 | 0.97988 |
| 1.21 | 0.91558 | 1.46 | . 0. 88560 | 1.71 | 0.9:057 | 1.96 | 0.98374 |
| 1.22 | 0.91311 | 1.47 | 0.88563 | 1.72 | 0.91258 | 1.97 | 0.98768 |
| 1.23 | 0.91075 | 1.48 | 0.83575 | 1.73 | 0.91466 | 1.98 | 0.99171 |
| 1.24 | 0.90852 | 1.49 | 0.88595 | 1.74 | 0.91683 | 1.99 | 0.99581 |
| | | | | | | 2.00 | 1.00000 |

AMCP.706-200

and the second

CHAPTER 12

Downloaded from http://www.everyspec.com

s-CONFIDENCE

- Martin State of the second

فتتبيعكم إفجلا

No. of Lot of Lo

and the second secon

| 12-0 LIST | r of symbols | η | = random variable from uniform distribution |
|-----------|--|-----------------------------|---|
| С. | = s-Confidence level; or sub-
script that implies such a level | $\overline{\eta}$ | $= 1 - \eta$ |
| Ē | = 1 - C | φθ,μ | = parameters about which a sconfidence statement is to be |
| Cdf | = Cumulative distribution func-
tion | | made |
| Conf { } | = s-Confidence level | V | = degrees of freedom |
| glb | = greatest lower bound | χ <sup>4</sup> !ν | = chi-square/nu statistic |
| LCL | = lower s-confidence limit | | parameter |
| L, U | subscripts implying lower and
upper s-confidence levels and
limits | 12-1 INTI
s-Confid | RODUCTION
lence is one of the first difficult |
| lub | = least upper bound | statistical (
s-Confiden | concepts an engineer needs to grasp.
there is to statistics as entropy is to
Confidence and entropy are basic |
| N | = sample size | concepts f | that must become familiar in their
that is almost impossible to under- |
| pdf | = probability density function | stand ther | n in terms of more-basic concepts. |
| pmf | = probability mass function | This ch
tion wher | apter applies to the common situa-
e the parameters in a <i>PrD</i> are not. |
| PrD | = probability distribution | random va
fixed, us | ariables themselves; rather they are ually-unknown quantities. If the |
| r | = integer random variable | parameters
of the me | s are random variables (irrespective
aning attached to probability), the |
| S- | = denotes statistical definition | situation i
(see Chapt | is handled by a Bayesian technique ter 15). |
| Sf | = Survivor function | Paramet | ters in a PrD are considered to be |
| t | = t statistic | fixed noni
ments tha | random quantities. Probability state-
t contain a parameter cannot imply |
| UCL | = upper s-confidence limit | that the p | arameter itself is a random variable. |

いいころである

AMCP-706-200

A s-confidence statement is generated by an algorithm (computational procedure) which is specified in advance of the experiment. Examples of such procedures are given in the paragraphs that follow. It is presumed that all functions and PrD's are well-behaved enough for the concept of s-confidence to be easily and unambiguously applied. Such is the case for the PrD's usually used in reliability work.

Eq. 12-1 shows one kind of expression which can be used to generate useful s-confidence statements.

$$(\bar{x} - \mu)/s = t_{\nu}$$
 (12-1a)

$$s^2/\sigma^2 = (\chi^2/\nu)_{\nu}$$
 (12-1b)

where \overline{x} and s are the sample-mean and s statistic, respectively, of a fixed-size sample from a s-normal distribution with mean μ and standard deviation σ ;

$$\hat{\theta}/\theta = (\chi^2/\nu)_{\nu} \tag{12-1c}$$

where θ is the sample mean-life of a fixed-size (fixed number of failures) sample from an exponential distribution with scale parameter (mean life) θ .

Each expression in Eq. 12-1 contains on the left:

(1) Only 1 unknown parameter from the PrD, and

(2) Sample statistics, i.e., quantities calculated from the sample data.

Each quantity on the right in Eq. 12-1 is a statistic whose PrD can be determined without regard to the PrD parameters or to the random data although it may depend on such things as the fixed sample size. Both t and χ^2/ν have well-known PrD's (see Chapter 6) and depend on the sample size through ν .

Eq. 12-2 is another kind of expression that

can be used to generate useful s-confidence statements.

http://www.everyspec.com

$$r = c_{\mu} \tag{12-2}$$

where r is the number of fulures observed in a sample from a Poisson distribution with parameter μ , and c_{μ} has the Poisson distribution with parameter μ .

The remainder of this chapter is limited to those cases for which:

(1) There is only 1 unknown parameter.

(2) There is a single s-sufficient statistic. (Examples of s-sufficient statistics are the number of failures in N tries for a binomial distribution, the number of events for a Poisson distribution, and total-test-time to achieve r_0 failures for the exponential distribution.)

(3) The situation is well-behaved enough that no difficulties are involved in making s-confidence statements.

The cases considered here have a simple geometric and analytic interpretation. Consult a competent statistician or a good reference, e.g., Ref. 2 (Chapter 20), for a discussion of other cases.

Suppose the single parameter in a PrD is ϕ and an estimate of ϕ , from a sample, is $\hat{\phi}$. Examples are

(1) Exponential distribution: parameter = scale parameter θ ; estimate, $\hat{\theta} = T/r_0$ where T is total-test-time for r_0 failures.

(2) Poisson distribution: parameter = mean number of events, μ ; estimate, $\hat{\mu} = r$ where r is the observed number of events.

(3) Binomial distribution: parameter = probability of an event p; estimate, $\tilde{p} = r/N$ where r is the observed number of events in N trials.

 $\bar{\phi}$ is a random variable because it depends on the sample data. The procedure for making a s-confidence statement is as follows:

(1) Take the random sample and calculate $\hat{\phi}$ from the data.

(2) Use the algorithm to generate another statistic ϕ_C which will be a s-confidence limit. ϕ_C is a random variable; it is calculated from the sample data.

(3) Make a s-confidence statement. It will use Conf $\{\cdot\}$ rather than Pr $\{\cdot\}$ to denote probability. The Conf $\{\cdot\}$ implies that the parameter is unknown and that a value of the random variable ϕ_C has been calculated from the data. Conf $\{\cdot\}$ is interpreted as the fraction of times such a statement will be true when these 3 steps are followed. Conf $\{\phi \leq \phi_C\} = C$.

The procedure often is extended by calculating 2 values of ϕ_C (ϕ_L and ϕ_U) such that the s-confidence statements are

$$\operatorname{Conf} \left\{ \phi \le \phi_U \right\} = C_U \tag{12-3a}$$

$$\operatorname{Conf} \left\{ \phi \le \phi_L \right\} = C_L \tag{12-3b}$$

$$\operatorname{Conf} \left\{ \phi_L \le \phi \le \phi_U \right\} = C_U \vdash C_L \quad (12-3c)$$

 C_L is usually small (say 5%) and C_U is usually large (say 95%). Notation for s-confidence statements is not at all standard; so particular attention must be paid to the example forms (Eq. 12-3).

Suppose one is estimating the exponential parameter θ by means of a continuous random variable $\hat{\theta} \equiv T/r_o$. (*T* is the total operating time to the predetermined fixed number of failures r_o .) Suppose a s-confidence limit θ_C is calculated at a s-confidence level C. $\theta_C = \theta_C(\hat{\theta}, C)$; then, θ_C is a function of $\hat{\theta}$ and C. The statement

$$\operatorname{``Conf}\left\{\vartheta \le \theta_{C}(\hat{\theta}, C)\right\} = C'' \qquad (12-4a)$$

means that if a $\hat{\theta}$ is found, and C is given, the statement $\theta \leq \theta_C(\hat{\theta}, C)$ will be a true fraction C of the time, regardless of the true value of θ . The reason this can be so is that θ_C is selected so that the statement " $\theta_0 \leq \theta_C(\hat{\theta}, C)$ " is true a fraction C of the time for any particular θ_0 and C, for all random samples from the PrD with that parameter θ_0 . Since it is true for any particular θ_0 , it is true regardless of the value of θ .

ownloaded from http://www.everyspec.com

When the PrD is discrete, the s-confidence statements are usually of the forms

 $\operatorname{Conf}\left\{\phi \leq \phi_{C+}(\hat{\phi}, C)\right\} \geq C \tag{12-4b}$

 $\operatorname{Conf} \left\{ \phi \leq \phi_{C_{-}}(\hat{\phi}, C) \right\} \leq C.$ (12-4c)

This situation is discussed further in Par. 12-3.

In statistical papers, the concept of s-confidence often is modified slightly so that Eq. 12-4b is written Conf $\{\phi < \phi_{C+}(\hat{\phi}, C)\} = C$. This is confusing to nonengineers. This handbook series always makes the inexact s-confidence statements in the form of Eqs. 12-4b and 12-4c.

12-2 CONTINUOUS RANDOM VARI-ABLES

Fig. 12-1 graphically shows how s-confidence limits are derived.

s-Confidence statements need not have the inequality as in Eq. 12-3a, b. They can be of the form in Eq. 12-5. But the form in Eq. 12-5 is not used in 1-sided s-confidence statements in this chapter because it would further complicate an already complicated notation.

Conf $\{\theta \ge \hat{\theta}_C(\theta, C)\} = 1 - C$ (12-5)

Fig. 12-1 is a contour plot of $Sf\{\hat{\theta}; \theta\}$; 3 contours are shown, Sf = 10%, Sf = C, Sf = 90%. The algorithm for finding $\theta_C(\hat{\theta}, C)$ is to choose $\theta_C(\hat{\theta}, C)$ such that $Sf\{\hat{\theta}; \theta_C\} = C$.

Downloaded from http://www.everyspec.com

That is, pick θ_C equal to the θ that corresponds to $\hat{\theta}$ on the Sf = C contour.

 θ_C is a random variable; it is calculated anew each time a $\hat{\theta}$ is estimated.

The algorithm can be checked in the following way from Fig. 12-1. Suppose θ is fixed at θ_0 and that many samples are drawn-each sample yields a $\hat{\theta}$. If $\hat{\theta} < \hat{\theta}_0$, say $\hat{\theta} = \hat{\theta}_1$, the statement " $\theta_0 < \theta_C$ " will be false because $\hat{\theta}_C = \theta_1 < \theta_0$. If $\hat{\theta} > \theta$, say $\hat{\theta} = \hat{\theta}_2$, the statement " $\theta_0 < \theta_C$ " will be true because $\theta_C = \theta_2 > \theta_0$. By the nature of the construction " $\hat{\theta} > \hat{\theta}_0$ " is true a fraction C of the time, i.e., $Sf\{\hat{\theta}_0; \theta_C\} = C$. Since the s-confidence statement is true for any θ_0 , no matter what its value, it is true for any θ . Thus the s-confidence statement is:

$$\operatorname{Conf}\left\{\theta \leq \theta_{C}\left(\hat{\theta},C\right)\right\} = C \qquad (12-4a)$$

where $\theta_C(\hat{\theta}, C)$ is a random variable. A con.mon misunderstanding is to assume that θ_C is not a random variable and to want the statements to hold true, assuming some sort of distribution of θ .

s-Confidence is a difficult concept. It doesn't really answer an engineer's question, "How much engineering confidence do I have in the answer?", but it does respond to a question the statistician <u>can</u> answer.

Suppose there are 2s-confidence limits, θ_U and θ_L such that $\theta_U > \theta_L$; then

$$\operatorname{Conf} \left\{ \begin{array}{l} \theta_L(\hat{\theta}, \ C_L) < \theta < \theta_U \ (\theta, \ C_U) \\ = C_U - C_L \end{array} \right. (12-6)$$

This can be seen either graphically by the construction in Fig. 12-1 or analytically.

12-3 DISCRETE RANDOM VARIABLES

s-Confidence statements (and their derivations) are more difficult for discrete random variables than for continuous ones. The Poisson distribution (parameter μ) is a good example of a discrete random variable, and is the basis for the explanation in this paragraph. The discussion is valid for other discrete distributions, e.g., the binomial distribution.

Fig. 12-2(A) shows contour plots of the *Cdf* and *Sf*. The *PrD* is defined only for the discrete values of *r*. The dashed lines serve only to guide the eye from one point to a related point. The spacing between consecutive *r*'s is irrelevant, as is the shape of the dashed lines. No *Sf* contour (other than 100%) is defined at the left boundary, and no *Cdf* contour (other than 100%) is defined at the left boundary, and no *cdf* contour (other than 100%) is defined at the right boundary. The Poisson variable *r* has no right boundary at r = N. N will be used to denote maximum value of *r*; for the Poisson distribution, $N \rightarrow \infty$. μ_{max} will be used to denote maximum value of μ .

For a given μ and C, $r_{C\mu}$ is defined such that

(1)
$$Cdf(r_{C\mu};\mu) > C$$
, (12-7a)

and

(2)
$$Sf\{r_{C\mu};\mu\} \ge C.$$
 (12-7b)

It helps to visualize $r_{C\mu}$ from Fig. 12-2(A). Just find the value of r for which μ lies between the 2 contours. If $r_{C\mu}$ is a boundary, one of the 2 contours will not be defined there; but Eq. 12-7 will be satisfied since at the right boundary the Cdf $\{r, \mu\} = 1$ for any (r, μ) ; and at the left boundary the Sf $\{r, \mu\} = 1$ for any r, μ .

Define $\mu_{C+} \equiv \operatorname{lub} \langle \mu; r_{C\mu} \rangle$ (12-8a)

$$\mu_{C_{-}} \equiv \operatorname{glb}\{\mu; r_{C_{\mu}}\}$$
(12-8b)

where lub means "least upper bound ` and glb nicans "greatest lower bound".

Downloaded from http://www.everyspec.com

6 6

On Fig. 12-2(A), Eq. 12-8 means to move μ up until it intersects the " $Cdf = \overline{C}$ contour" (for μ_{C+}) and then down until it intersects the "Sf = C contour" (for μ_{C-}).

wnloaded from http://www.everyspe

It can readily be shown that $\mu_{C_{-}}$ and $\mu_{C_{+}}$ are defined, for each r, by

$$Cdf\{r; \mu_{C+}\} = \overline{C}, \text{ for } r \neq N \qquad (12-9a)$$

 $\mu_{C+} = \mu_{\max}$, for r = N

$$Sf\{r; \mu_{C-}\} = C, \text{ for } r \neq 0$$
 (12-5b)

 $\mu_{C-} = 0$, for r = 0

where each r is interpreted as the $r_{C\mu}$ in Fig. 12-2(A).

Fig. 12-2(B) shows how the μ_{C-} and μ_{C+} look for several values of r. The μ_{C-} for one value of r is the μ_{C+} for the previous value, r - 1, except at the endpoints.

By the nature of the construction of Fig. 12-2, the following s-confidence statements are appropriate.

 $\operatorname{Conf}\{\mu \leq \mu_{C+}(r,C)\} \geq C \qquad (12.10a)$

 $Conf\{\mu \le \mu_{C-}(r, C)\} \le C$ (12-10b)

Thus the + on μ_{C+} shows an excess of s-confidence the - on μ_{C-} shows a deficit of s-confidence.

Suppose there are 2 s-confidence levels, C_U and C_L such that $C_U > C_L$. Then the levels can be combined as follows:

$$\operatorname{Conf}\left\{\mu_{L-}(r, C_{L}) \leq \mu \leq \mu_{U+}(r, C_{U})\right\}$$
$$\geq C_{U} - C_{L} \quad (12-11a)$$
$$\operatorname{Conf}\left\{\mu_{L+}(r, C_{L}) \leq \mu \leq \mu_{U-}(r, C_{U})\right\}$$
$$\leq C_{U} - C_{L} \quad (12-11b)$$

Eq. 12-11a is favored by statisticians because the s-confidence is at least the desired quantity. It is the one given in virtually all reliability texts and articles.

Eq. 12-9 shows that when the Cdf and Sf are complementary, the s-confidence bounds (+ and -) come together as in Par. 12-2.

12-4 DISCRETE RANDOM VARIABLES, EXACT CONFIDENCE BOUNDS

It appears to be foolish to use the worst case s-confidence bounds always, because obviously they are always further apart than need be. A method, generally attributed to Ref. 1, is available for generating a s-confidence interval that is exact. The basic idea is to generate a random variable and then, according to its value, choose a μ_C between μ_{C-} and μ_{C+} such that the s-confidence statement is exact.

For a given μ (and $r_{C\mu} \neq 0$, N) the statement $\mu \leq \mu_C$ (for $\mu_{C-} \leq \mu_C \leq \mu_{C+}$) will be true for $r = 1, ..., r_{C\mu} - 1$ and sometimes for $r = r_{C\mu}$, as shown in Fig. 12-2(A). Suppose for a fixed μ we calculate the number $\eta_{C\mu}$ between 0 and 1 such that

$$\overline{C} = pmf \{0; \mu\} + pmf \{1; \mu\} + pmf \{2; \mu\}$$

$$+ \cdots + pmf \{r_{C\mu} - 1; \mu\} + \eta_{C\mu} pmf \{r_{C\mu}; \mu\}$$

$$= pmf \{0; \mu\} + \cdots + pmf \{r_{C\mu}; \mu\}$$

$$- (1 - \eta_{C\mu}) pmf \{r_{C\mu}; \mu\}$$

$$= Cdf \{r_{C\mu}; \mu\} - (1 - \eta_{C\mu}) pmf \{r_{C\mu}; \mu\},$$
for $r \neq 0, N$; (12-12a)

$$C = Sf\{r_{C\mu}; \mu\} - \eta_{C\mu} pmf\{r_{C\mu}; \mu\},$$

for $r \neq 0, N.$ (12-12b)

It is easy to solve for $\eta_{C\mu}$.

$$\eta_{C\mu} = 1 - \frac{Cdf\{r_{C\mu}; \mu\} - \overline{C}}{pmf\{r_{C\mu}; \mu\}}, \text{ for } r_{C\mu} \neq 0, N$$
(12-13a)

$$=\frac{Sf\{r_{C\mu}; \mu\} - C}{pmf\{r_{C\mu}; \mu\}}, \text{ for } r_{C\mu} \neq 0, N$$
(12-13b)

To use this for a s-confidence interval statement, choose an η from the uniform distribution on [0, 1). Then use Eq. 12-14 or 15 to calculate a μ_C (r, C, η).

$$\eta = \frac{Cdf\{r; \mu_C\} - \overline{C}}{pmf\{r; \mu_C\}} \quad (\text{defines } \mu_C),$$

for $r \neq 0, N \quad (12-14a)$

$$\eta = \frac{Sf(r; \mu_C) - C}{pmf(r; \mu_C)} \text{ (defines } \mu_C\text{), for } r \neq 0, N$$
(12-15a)

The reason either Eq. 12-14a or 15a can be used is that the *pdf* of η and $1 - \eta$ are the same.

For
$$r_{C\mu} = 0$$
, N; Eqs. 12-12 and 12-13 become

$$\begin{aligned} \overline{C} &= \eta_{C\mu} pmf \left\{ 0; \mu \right\}, \text{ for } \eta_{C\mu} \geq \overline{C} \\ \mu &= 0, \qquad \text{for } \eta_{C\mu} < \overline{C} \end{aligned} \right\} \text{ for } r = 0; \end{aligned}$$

(12-12c)

$$C = \overline{\eta}_{C_{\mu}} bmf\{N; \mu\}, \text{ for } \eta_{C_{\mu}} \leq \overline{C} \\ \mu = \mu_{\max}, \qquad \text{ for } \eta_{C_{\mu}} > \overline{C} \end{cases} \text{ for } r = N.$$

For r = 0, N; Eq. 12-15a becomes

om http://www.everyspec.co

$$\eta = \frac{\overline{C}}{pmf\{0; \mu_C\}} , \text{ for } \eta \ge \overline{C} \\ \mu_C = 0, \quad \text{for } \eta < \overline{C} \end{cases} \text{ for } r = 0;$$
(12-15b)

$$\overline{\eta} = \frac{C}{pmf\{N;\mu\}} , \text{ for } \eta \le \overline{C} \\ \mu_C = \mu_{\max} , \quad \text{for } \eta > \overline{C} \end{cases} \text{ for } r = N.$$
(12-15c)

Equations corresponding to Eq. 12-15b and 12-15c follow from Eq. 12-14a.

To show that the $\mu_C(r, C, \eta)$ from Eq. 12-15 satisfies the proper s-confidence statement, we calculate Conf { $\mu \leq \mu_C$ }. For $r \neq 0, N$:

$$Conf \{ \mu \le \mu_C \} = [Sf \{ r_{C\mu}; \mu \} - pmf \{ r_{C\mu}; \mu \}]$$
$$+ [pmf \{ r_{C\mu}; \mu \} \times Sf \{ \eta_{C\mu} \}]$$
$$= Sf \{ r_{C\mu}; \mu \} - pmf \{ r_{C\mu}; \mu \} \times Caf \{ \eta_{C\mu} \}$$
$$= Sf \{ r_{C\mu}; \mu \} - pmf \{ r_{C\mu}; \mu \} \times \eta_{C\mu}$$

(because η has the uniform distribution)

(1?-17)

If r = 0, N: Conf $\{\mu \leq \mu_C\} = C$ follows directly from Eqs. 12-12c, 12-12d, 12-15b, and 12-15c.

Unfortunately Eqs. 12-14 or 15 are not simple to solve. Thus special tables must be generated for this method to be useful. Such tables have been generated for 2-sided

s-confidence intervals for the binomial parameter p, and the Poisson parameter μ .

The traditional literature that explains this concept tends to use $(r + \eta_{C\mu})$ as the variable. This renders the understanding more difficult. Although if μ is plotted vs $(r + \eta_{C\mu})$, a continuous curve results which resembles Fig. 12-1.

12-5 MORE COMPLICATED s-CONFI-DENCE SITUATIONS

Easy s-confidence statements are feasible

1. W. L. Stevens, "Fiducial Limits of the Parameter of a Discontinuous Random Variable", *Biometrika*, Vol. 37, pp. 117-124, 1950. for more complicated situations suc! as Eqs. 12-1a and 12-1b because it is easy to generate the appropriate random variable.

Joint s-confidence statements for several parameters in a PrD are very complicated, and are virtually impossible to make in any practical situation.

It is fairly easy to find pathological situations where the explanation of s-confidence given in this chapter does not apply. Those situations rarely, if ever, crise in reliability engineering.

REFERENCES

Downloaded from http://www.everyspec.com

2. Kendall and Stuart, The Advanced Theory of Statistics, Vol. 2, Inference and Relationship 3rd ed., Hafner Publishing Co., NY, 1973.

CHAPTER 13

Downloaded from http://www.everyspec.com

PLOTTING POSITIONS

13-0 LIST OF SYMBOLS

| Cdf | = Cumulative distribution func-
tion |
|-----------|---|
| Conf {'•} | = s-Confidence level of { · } |
| H | = cumulative hazard |
| i . | = ordered failure number, i = 1,
, N |
| i | = reverse order statistic, $j = N$,
, 1 |
| K-S | = Kolmogorov-Smirnoff |
| Ν | = sample size |
| PrD | = Probability distribution |
| s- | = denotes statistical definition |
| Sf | = survivor function |
| | |

13-1 INTRODUCTION

and the second formation of the second s

Any graphical method of analyzing sample data requires a plotting position for each sample point, i.e., the probability to be associated with each data point must be determined. There is no "right" method. Some are more convenient than others; some show the uncertainties in the data better; and some have been shown to have special statistical properties.

Graphical methods are not precise; they contain a great deal of subjectivity and nonrepeatability. These characteristics are not necessarily bad, but they must be recognized. For example, if greatly different answers are obtained from each of the popular plottingposition methods, then the data analysis is in trouble regardless of the plotting-position method. Generally speaking, the uncertainties due to small sample size swamp out the uncertainties due to the various plotting positions.

Plotting positions that use only point estimates ought to be avoided, since a most important use of statistics is to estimate the uncertainty in an answer. The two methods (mentioned here) which encourage estimates of the uncertainty are the sample Cdf (with K-S limits) and the percentile ranges.

When sample distributions are plotted it is often convenient to use one of the special probability papers such as s-normal or Weibull. Even if the theoretical PrD will not be a straight line on the paper, the special paper usually makes the theoretical PrD straighter than it would have been on linear paper.

13-2 SAMPLE Cdf

Notation:

N = number of items put on test

i =the *i*th order statistic

d = Kolmogorov-Smirnoff statistic

Failure *i* is plotted at a probability of i/N. For example, if N = 10, the second failure (i = 2) is plotted at 20%.

The uncertainty in plotting position is introduced by means of the K-S statistic. See par. 14-3 for an explanation of this statistic and tables for its use. In Chapter 13 the plotting position is considered to lie between "(i/N) + d" and "(i/N) - d". If N = 10, and the desired s-confidence level is 90%, then d =0.368. Thus failure #4 would be plotted in the range "0.400 - 0.368 = 0.032" and "0.400 + 0.363 = 0.768". The following s-confidence statement is true for all *i*, irrespective of the actual PrD.

$$\operatorname{Conf}\left\{\frac{i}{N} - d_{C, N} \leq Cdf\left\{x_{i}\right\}\right\}$$
$$\leq \frac{i}{N} + d_{C, N}\right\} = C$$
(13-1)

where

 $x_i = i$ th order statistic

C = s-confidence level

 $d_{C, N} = K - S$ statistic for sample size N and s-confidence C

Because $i/N - d_{C,N}$ and $i/N + d_{C,N}$ often can lie outside the interval [0, 1], the limits often are written as

lower limit = max
$$\left\{0, \frac{i}{N} - d_{C, N}\right\}$$
 (13-2a)

upper limit = min $\left\{1, \frac{i}{N} + d_{C, N}\right\}$ (13-2b)

As shown in the example in this paragraph, for N = 10, i = 4, the 90% s-confidence limits are 0.032 and 0.768. They are discouragingly wide. They show why it doesn't pay to fool around trying to get the best fit to the sample data—the sample data rarely fall on the true -*PrD* very well at all.

Statisticians occasionally recommend not using this test because it is so broad and is especially discouraging in the tail region. But their alternatives assume that much more is known about the data than is usually the case. The sample *Cdf* with K-S limits is always a very sobering method for plotting probability data. See *Part Three* for more detail.

13-3 PERCENTILE RANGES

ed from http://www.every

The *PrD* of order statistics is well known (see Chapter 10). It is useful to use percentiles of this *PrD* for plotting positions. Table 13-1 gives these plotting positions for the 5th, 50th, 95th percentiles. It covers many values of n. These percentiles refer to the s-confidence that any one true value will fall within the range. They are not joint s-confidence levels.

These bands of uncertainty are discouragingly wide. They illustrate how little is known from a sample and how important it is to make interval estimates. This method requires large tables; so, often the sample *Cdf* with K-S limits (see par. 13-2) is preferred.

The median (50%) plotting position often is used by itself when quick plotting must be done. For example, one may wish to get a starting value for an iterative analytic solution. The median plotting position is given approximately by Eq. 13-3.

 $pp_{50\%} \approx (i - 0.3)/(N + 0.4)$ (13-3)

where

N = sample size

i =ordered failure number

Eq. 13-3 is much more accurate than (i - 0.5)/N which is occasionally used.

13-4 MEAN

The *PrD* of the *i*th order statistic (mentioned in Par. 13-3) has a very simple mean that often is used as the plotting position when quick results are desired (usually to be followed by a more precise complete analytic solution). The mean plotting position is given by Eq. 13-4.

| TABLE 13-1. | PERCENTILE RANGES FOR PLOTTING POINTS | ancage Plotting Points of the k-th ordered-failure, Out of a Total Sample of |
|-------------|---------------------------------------|--|
| TABL | PERCENTILE RANGE | eta Bounds Method Percencage Plotting Points of |

Z

| 티 | 0.47/6.1/24
3.3/15/36
8.0/24/47
14/32/56
20/41/65
27/50/73 | ଛା | 0.26/3.4/14
1.8/8.3/22 | 4.3/13/29
7.3/18/35 | 11/23/40
14/28/46 | 18/33/51 | 22/38/56
26/43/60
30/48/65 | 50 | 0.10/1.4/5.8 | 0.71/3.3/9.1 | 1.7/5.3/12 | 2.8/7.3/15 | 4.0/9.3/17 | 5.4/11/20 | 6.8/13/22 | 8.3/15/25 | 9.7/17/27 | 11/19/29 | 13/21/32 | 14/23/34 |
|-------------|---|----------|---------------------------|--------------------------------|----------------------|----------------------|----------------------------------|-----------|--------------|--------------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|----------|----------|
| 위 | 0.51/8.7/26
3.7/16/39
8.7/26/51
15/36/61
22/45/70 | 19 | 0.28/3.6/15
1.9/8.7/23 | 4.5/14/30
7.6/19/36 | 11/24/42
15/20/48 | 19/35/53 | 23/40/58
27/45/63
32/50/68 | 45 | 0.11/1.5/6.4 | 0.79/3.7/10 | 1.8/5.9/13 | 3.1/8.1/16 | 4.5/10/19 | 6.0/13/22 | 7.5/15/25 | 9.2/17/27 | 11/19/30 | 13/21/32 | 14/24/35 | 16/26/37 |
| თ] | 0.57/7.4/28
4.1/18/43
9.8/29/55
17/39/66
25/50/75 | ₽ | 0.29/3.3/16
2.1/9.2/24 | 4.8/15/31
8.0/20/38 | 12/26/44
16/31/50 | 20/36/55 | 24/42/61
29/47/66 | 40 | 0.13/1.7/7.2 | 0.90/4.2/11 | 2.1/6.6/15 | 3.5/9.1/18 | 5.1/12/21 | 6.7/14/25 | 8.5/17/27 | 10/19/30 | 12/21/33 | 14/24/36 | 16/26/39 | 18/29/41 |
| co | 0.65/8.3/31
4.7/20/47
11/32/60
19/44/71 | 11 | 0.30/4.0/16
2.2/9.8/25 | 5.0/16/33
8.5/21/40 | 12/27/46 | 21/39/58 | 26/44/65
31/50/69 | 35 | 0.15/2.0/8.2 | 1.0/4.8/13 | 2.4/7.6/17 | 4.0/10/21 | 5.8/13/24 | 7.7/16/28 | 9.8/19/31 | 12/22,34 | 14/25/37 | 16/27/41 | 19/30/44 | 22/34/47 |
| - | 0.74/9.4/35
5.3/23/52
13/36/66
23/50/77 | 16 | 0.32/4.2/17
2.3/10/26 | 5.4/16/34
9.1/23/42 | 13/29/48 | 23/41/61 | 28/47/67 | 8 | 0.17/2.3/9.5 | 1.2/5.5/15 | 2.8/8.8/20 | 4.7/12/24 | 6.8/15/28 | 9.1/19/32 | 12/22/3ð | 14/25/39 | 17/29/43 | 19/32/47 | 22/35/50 | 25/38/53 |
| ωl | 0.85/11/39
6.3/27/58
15/42/73 | 15 | 0.34/4.5/18
2.5/11/28 | 5.7/18/36
9.7/24/44 | 14/31/51 | 19/3//58
25/44/64 | 30/50/70 | 8 | 0.18/2.5/10 | 1.3/5.9/16 | 3.0/9.4/21 | 5.0/13/25 | 7.3/16/30 | 9.8/20/34 | 12/24/38 | 15/27/42 | 18/31/46 | 21/34/49 | 24/38/53 | 27/41/57 |
| <u>ا</u> مر | 1.0/13/45
7.6/31/66
19/50/81 | 4 | C.37/4.8/19
2.6/12/30 | 6.1/19/39
10/26/47 | 15/33/54 | 21/40/61
27/47/67 | | <u>26</u> | 0.20/2.6/11 | 1.4/6.4/17 | 3.2/10/22 | 5,4/14/27 | 7.9/18/32 | 11/22/36 | 13/25/40 | 16/29/45 | 19/33/49 | 23/37/53 | 26/41/56 | 29/44/60 |
| 4 | 1.2/16/53
9.8/39/75 | 13 | 0.40/5.2/21
2.8/13/32 | 6.7/20/ 4 1
11/28/49 | 17/35/57 | 23/43/65
29/50/71 | | 81 | 0.21/2.9/12 | 1.5/6.9/13 | 3.5/11/24 | 5.9/15/29 | 8.6/19/34 | 11/23/39 | 15/27/43 | 18/32/48 | 21/36/52 | 25/40/56 | 28/44/60 | 32/48/64 |
| m | 1.7/21/53
14/50/86 | 2 | 0.43/5.6/22
3.1/14/34 | 7.2/22/44
12/30/53 | 18/38/61 | 25/46/68 | | 81 | 0.23/3.1/13 | 1.6/7.5/20 | 3.8/12/26 | 6.5/16/32 | 9.4/21/37 | 13/25/42 | 16/30/47 | 20/34/52 | 23/39/56 | 27/43/60 | 31/48/65 | |
| NX | - C C A C C C | | ю – | ų 4 | ភេទ | 9 1 | დ თ | 10 | | 2 | ო | 4 | ß | 9 | 7 | œ | 6 | 10 | 11 | 12 |

Downloaded from http://www.everyspec.com

AMCP 706-200

₹P3

~~· ···

San S

ere and the second of the seco

`..'. li.

ŝ

| 8 | 16/25/3 | 18/27/3 | 19/29/4 | 21/31/4 | 23/33/4 | 25/35/4 | 26/37/4 | 28/39/5 | 30/41/5 | 32/43/5 | 34/45/5 | 35/47/5 | 38/49/6 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|---------|
| 8 | 18/28/40 | 20/30/42 | 22/32/44 | 24/35/47 | 26/37/4S | 28/39/51 | 30/41/53 | 32/43/56 | 34/46/58 | 36/48/60 | 38/50/62 | | |
| 4 | 20/31/44 | 22/34/47 | 25/36/49 | 27/39/52 | 29/41/54 | 31/44/57 | 34/46/59 | 36/49/62 | | | | | |
| 8 | 24/36/50 | 26/39/52 | 29/42/55 | 31/44/58 | 34/47/61 | 36/50/64 | | | | | | | |
| 8 | 28/42/57 | 31/45/60 | 34/48/63 | | | | | | | | | | |
| % | 30/45/60 | 33:48/63 | | | | | | | | | | | |
| 8 | 33/48/64 | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | |
| 8 | | | | | | | | | | | | | |

TABLE 13-1 (Continued)

3-4

0 2 -

œ

a

m ••• ത

Þ

The body of the table lists for each (k, N) the 5%/50%/95% points for plotting purposes. To obtain the 5%/50%/95% plotting points for (N + 1 - k, N) reverse the ords. from the (k, N) and subtract each from 100%. For example, for (k, N) = (2, 5) the percentage plotting points are 7.6/31/66. For (N + 1 - k, N) = (4,5), the percentage plotting points are (100 - 65)/(100 - 7.6) = 34/69/92.4. Points through n = 20 are adapted from Ref. 4 Points through n = 20 are adapted from Ref. 26. It are rounded off to 2 significant figures. J Interpolation for values of N not shown: For k small, interpolate (roughly) on a horizontal line. For values of k near (N/2), interpolate on a diagonal (k/N × constant); in that region they are roughly of the form: median plotting-point ± deviation is easily calculated from the tabulated values, and tha median plotting-point ± deviation. The deviation is easily calculated from the tabulated values, and tha median plotting-point ± deviation. The deviation is easily calculated from the tabulated values, and tha median plotting-point ± deviation is easily calculated from the tabulated values, and tha median plotting-point ± deviation is easily calculated from the tabulated values, and tha median plotting-point is easily estimated from Eq. 25.

Downloaded from http://www.everyspec.com

Ż

AMCP 706-200

$$pp_{mean} = i/(N+1)$$
 (13-4)

13-5 CENSORED DATA (HAZARD PLOT-TING)

If the data are simply censored by stopping the test, then Pars. 13-2, 13-3, or 13-4 can be used for plotting positions. If the censoring occurs among the failures, then it is extremely difficult to find the PrD of failure times.

Hazard plotting was developed for this situation (credit is usually given to Wayne Nelson). The items are listed in order of their censoring and/or failure times (intermingled). They are given the reverse order statistics j (from N to 1). Each failure is then assigned

the observed hazard rate 1/j. The cumulative hazard H_j is calculated for each failure by summing the 1/j (for failures only) up to and including the failure. The plotting position is then

$$Cdf = 1 - \exp(-H_i), Sf = \exp(-H_i), (13-5)$$

Special probability paper can be printed that is labeled with H instead of Cdf (or Sf). It is difficult to assign an uncertainty to the plotting position, but $H \pm \sqrt{H}$ sometimes is used because of the relationship of H to the Poisson and exponential distributions.

An example of this plotting method is given in *Part Three*.

Downloaded from http://www.everyspec.com

1

CHAPTER 14

Downloaded from http://www.everyspec.com

GOODNESS-OF-FIT TESTS

14-0 LIST OF SYMBOLS

Cdf = Cumulative distribution function csqf = Cdf of the chi-square distribution k = number of cells K-S = Kolmogorov-Smirnoff actual numb. in cell i n<sub>i</sub> N = sample size X^{2} = statistic calculated from the data = denotes statistical definition Smean number in cell i μ_i v degrees of freedom = value of chi-square such that $\chi^2_{\nu, P}$ $csqf(\chi^2_{\nu, P}; \nu) = P$

14-1 INTRODUCTION

Statisticians are divided on the utility of goodness-cf-fit tests, although there is no question about their statistical validity. The question is on their utility. In almost any sampling situation, two extremes are possible:

(1) Take so few data that no hypothesis will be rejected.

(2) Take so many data that any hypothesis will be rejected.

Cenerally it is considered unwise to use goodness-of-fit tests as nything more than a very crude means to decide which PrD family to use. Samples are so varied, even from the same PrD, that one can look very foolish by trying to get more information from a sample than is there.

The two goodness-of-fit tests discussed in this chapter calculate a statistic from the data and compare it with the *PrD* of that statistic. Usual procedure is to see if the sample statistic is too large; if it is too large, the fit is regarded as inadequate. It is very worthwhile checking to see if the fit is "too good". If the fit is fortuitously very good (sample statistic is very small), there is a reasonable possibility that the sampling procedure was not as random as was planned. For example, someone may have massaged the data to make them look better.

14-2 CHI-SQUARE

The data are put into cells. The actual number in each cell is compared with the s-expected number for that cell. The numbers are combined into a statistic which has, asymptotically, a chi-square distribution.

14-2.1 DISCRETE RANDOM VARIABLES

The data fall naturally into cells—the discrete values of the random variable. For a large sample, the number in cell i, n_i , can
reasonably be represented as a Poisson situation with mean μ_i for cell *i*. The standard deviation of n_i is $\sqrt{\mu_i}$. If μ_i is large, n_i has a *s*-normal distribution with mean μ_i and standard deviation $\sqrt{\mu_i}$. The n_i is converted to a standard *s*-normal variate by the transformation

$$z_l \equiv (n_l - \mu_l) / \sqrt{\mu_l} \tag{14-1}$$

The sum of squares of ν s-independent standard, s-normal variables has a chi-square distribution with ν degrees of freedom. Suppose there are k cells (values of the discrete random variable), e.g., for the usual pair or dice, there are 11 cells: the numbers 2, 3, 4, ..., 11, 12. If sample size is fixed and known, only (k - 1) of the z_i are s-independent, because if the first k - 1 are known, the kth can be calculated from the data. Therefore $\nu = k - 1$, and the statistic

$$X^{2} \equiv \sum_{i=1}^{k} z_{i}^{2} = \sum_{i=1}^{k} (n_{i} - \mu_{i})^{2} / \mu_{i} \qquad (14-2)$$

has a chi-square distribution with v = (k - 1), degrees of freedom. If any of the PrD parameters are estimated from the data, v usually is reduced by the number of parameters so estimated.

Conventional wisdom suggests that $\mu_i \ge 5$ for all cells, otherwise cells ought to be combined. Simulation has shown that this is too strict. If fewer than 1/5 of the μ_i are less than 5 and none are less than 1, reasonable results will be obtained.

The previous heuristic description of the source of the statistic is not rigorous, but it helps in remembering how to calculate the statistic and what its limitations are.

 X^2 in Eq. 14-2 is compared with $\chi^2_{\nu,P}$ where $csqf(\chi^2_{\nu,P}; \nu) = P$, and P is some reasonably large percentage, e.g., 95%. If X^2 $> \chi^2_{\nu, P}$, the fit is regarded as too poor. Λ^2 also is compared with a $\chi^2_{\nu, P}$ where P is a reasonably small percentage, e.g., 5%. If $X^2 < \chi^2_{\nu, P}$, the fit is regarded as suspiciously good and the source of the data is investigated.

Example No. 1. A single coin was flipped 10 times; the results were 2 heads, 8 tails. Was the combination of coin and flipping-method a fair one; i.e., is this result reasonable when the expectation is 50%-50%?

| Procedure | Example |
|--|---|
| 1. Calculate number in each cell. State degrees of freedom. | 1. $n_H = 2$
$n_T = 8$
$\nu = 2 - 1 = 1$ |
| 2. Calculate X <sup>2</sup> from Eq. 14-2. | 2. $n \mu (n-\mu)^2/\mu$
H 2 5 1.8
T 8 5 1.8
Total 10 10 3.6 |
| 3. In Table 6-1, find $\chi^{2}_{1,95\%}$ and $\chi^{2}_{1,5\%}$ | 3. $\chi^2_{1,95\%} = 3.85$
$\chi^2_{1,5\%} = .0039$ |
| 4. State a conclusion. | 4. The data are not "too good"; so there is no
difficulty there. The data are poor, but they
are that poor over 5% of the time. So one
might be suspicious of the fairness of the
procedure, but that is all. |

(The data actually were acquired with a nominally fair coin and method of flipping.)

Example No. 2. A pair of dice were rolled 72 times; the results are given in column 1 of Table 14-1. Is the combination of dice and rolling method fair; i.e., is this a reasonable result if the expected values are as shown in column 2 of the table?

| TABLE | 14-1 |
|-------|------|
|-------|------|

| | #1 | #2 | #3 | 1 | #1 | #2 | #3 <sup>`</sup> |
|-----|----|-----------|---------------------------|-------|-----------|--------------------|---|
| all | nj | μ_{I} | $(n_i - \mu_i)^2 / \mu_i$ | | <u>n,</u> | $\overline{\mu_i}$ | $\frac{(n_j - \mu_j)^2}{(\mu_j - \mu_j)^2}$ |
| 2 | 2 | 2 | 0.00 | 8 | 10 | 10 | 0.00 |
| 3 | 5 | 4 | 0.25 | 9 | 5 | 8 | 1.13 |
| 4 | 8 | 6 | 0.67 | 10 | 7 | 6 | 0.17 |
| 5 | 8 | 8 | 0,00 | 11 | 5 | 4 | 0,25 |
| 6 | 12 | 10 | 0.40 | 12 | 1 | _2 | 0.50 |
| 7 | 9 | 12 | 0.75 | Total | 72 | 72 | 4.12 |

DATA FOR EXAMPLE NO. 2

v = 11 - 1 = 10

the second of the second s

and the second state of the second state and share and state and

14-3

i

AMCP 606-200

Procedure

Example

- 1. Put the data and s-expected values in a table.
- 2. Calculate the individual terms in Eq. 14-2; then find X^2 .
- 3. In Table 6-1, find $\chi^2_{10,95\%}$ and $\chi^2_{10,5\%}$.

4. State a conclusion.

- 1. See Table 14-1, columns 1 and 2. The usual assumptions about dice were made. $\nu = 11 1 = 10$
- 2. See column 3. $X^2 = 4.12$

3.
$$\chi^2_{10,95\%} = 18.3$$

 $\chi^2_{10,5\%} = 3.94$

4. Since the X^2 is so low, the data are almost suspiciously good. Certainly, X^2 is not too large

(The data actually were acquired with a nominally fair pair of dice and rolling method.)

14-2.2 CONTINUOUS RANDOM VARI-ABLE

The basic theory is similar to that for a discrete random variable in par. 14-2.1, except that artificial cells must be set up. In the absence of an otherwise obvious method, the equal probability method has much to recommend it. The cell intervals are adjusted so that a random observation is equally likely to fall in any cell. With this method, the μ_i can be less than 5.0, perhaps even as low as 1.0 or 2.0. An adequate policy is to choose the number of cells (which must be an integer) so that μ_i is just less than 5; e.g., if there are 43 data, calculate 43/5 = 8.6 and round upwards to 9 cells. In this example, it wouldn't hurt to

choose k = 10 ($\mu_l = 4.3$) because 10 is such an easy number to work with.

If the equal probability method is used, Eq. 14-2 becomes

$$X^{2} = \frac{k}{N} \left(\sum_{i=1}^{k} x_{i}^{2} \right) - N$$
 (14-3)

Eq. 14-2 can also be used if it is more convenient.

Example No. 3. A table in the literature is asserted to be random standard s-normal deviates. Pick the first 50 numbers and check that assertion with a chi-square test for goodness-of-fit.

AMCP 708-200

Procedure

ownloaded from http://www.everyspec.com

1. Choose the intervals.

- 2a. Prepare a table which shows how many fall in each interval.
- b. Calculate x_i^2 for each cell, and complete the table.

- 3. Calculate X^2 from Eq. 14-3.
- Find csqf(X<sup>2</sup>; ν) from Table 5-1, and state the conclusion.

Example

1. With N = 50 numbers, it is convenient to pick 10 cells, $\nu = 10 - 1 = 9$. The cell boundaries correspond to gauf(z) = 0.00, 0.10, 0.20, 0.30,..., 0.90, 1.00. The cell boundaries are shown in column 1 of Step 2.

| 2. interval | x_{i} | x_i^2 |
|-------------|------------|---------|
| -00 | | |
| -1.28 | 5 | 25 |
| -0.842 | . 8 | - 64 |
| -0.253 | 6 | 36 |
| 0 | 5 | 25 |
| +0.253 | 4 | 16 |
| +0.524 | 5 | 25 |
| +1.28 | 6 | 36 |
| +00 | 6 | 36 |
| Total | 50 | 288 |
| | | |

$$k = 10, N = 50, \nu = 9$$

3.
$$X^2 = \frac{10}{50} \times 288 - 50 = 7.60$$

4. $csqf(7.60; 9) \approx 43\%$

5. This is a very average value of X^2 . On the basis of this test, it would be difficult to fault the table.

A detailed discussion of the chi-square test is also given in Part Four, par. 2-4.1 of this Handbook series. For sample sizes larger than, say, 20 or 30, this is a reasonably good test, although the K-S test is also quite good (for any sample size).

14-3 KOLMOGÓROV-SMIRNOFF

This test for goodness-of-fit compares the sample Cdf with the hypothesized Cdf. It finds the maximum difference (+ or -) between the two and compares it to a sample

statistic. Table 14-2 is a tabulation of the critical values. 1-sided tests can be made, but for most engineering purposes the 2-sided test (given here) is better. It is an excellent test and is rarely if ever, inapp. opriate. If parameters of the hypothesized distribution are estimated from the data, the intervals ought to be narrower. See Ref. 1; it is a good general reference on the topic.

Example No. 4. Table 14-3 gives 10 values of a random variable, presumed to be from the uniform distribution on [0, 1]. Are they reasonable values?

· 14-5

TABLE:14-2

| CRITICA | L VALUES OF T
V = sample size, (| HE KOLMOGO | ROV-SMIRNOF
level, S = s-signil | F TEST STATIS | STIC |
|-----------------------------|-------------------------------------|---------------------------|------------------------------------|---------------------------|---------------------------|
| N | c = 80%
s = 20% | 90%
10% | 95 %
5% | 98 %
2% | 997
17 |
| 1 | .900 | .950 | ·975 | .990 | .995 |
| 2 | .684 | .776 | .842 | .900 | .929 |
| 3 | .565 | .636 | .708 | .785 | .829 |
| 4 | .493 | .565 | .624 | .689 | .734 |
| 5 | .447 | . 309 | .563 | .627 | .669 |
| 6 | .410 | .468 | .519 | .577 | .617 |
| 7 | .381 | .436 | .483 | .538 | .576 |
| 8 | .358 | .410 | .454 | .507 | .542 |
| 9 | . 339 | .387 | .430 | .480 | .513 |
| 10 | . 323 | . 369 | .409 | .457 | .489 |
| 11 | .308 | .352 | .391 | .437 | .468 |
| 12 | .296 | .338 | .375 | .419 | .449 |
| 13 | .285 | .325 | .361 | .404 | .432 |
| 14 | .275 | .314 | .349 | .390 | .418 |
| 15 | .266 | .304 | .338 | .377 | .404 |
| 16 | .258 | .295 | .327 | .366 | .392 |
| 17 | .25C | .286 | .318 | .355 | . 381 |
| 18 | .244 | .279 | .309 | .346 | .371 |
| 19 | .237 | .271 | .301 | .337 | . 361 |
| 20 | ,232 | .265 | .294 | .329 | .352 |
| 22 | .221 | .253 | .281 | .314 | .337 |
| 24 | .212 | .242 | . 269- | .301 | . 323 |
| 26 | .204 | .233 | .259 | .290 | .311 |
| 28 | .197 | .225 | .250 | .279 | .300 |
| 30 | .190 | .218 | .242 | .270 | .290 |
| 32 | .184 | .211 | .234 | .262 | .281 |
| 34 | .179 | .205 | .227 | .254 | .273 |
| 36 | .174 | .199 | .221 | .247 | .265 |
| 38 | .170 | ,194 | .215 | .241 | .258 |
| 40 | .165 | .189 | .210 | .235 | .252 |
| approximation
for N > 10 | $\frac{1.07}{\sqrt{N+1}}$ | $\frac{1.22}{\sqrt{N+1}}$ | $\frac{1.36}{\sqrt{N+1}}$ | $\frac{1.52}{\sqrt{N+1}}$ | $\frac{1.63}{\sqrt{N+1}}$ |

Notes:

South States

(1) The approximate formula has an error less than about $\pm 2\%$ of the actual value. (2) This K-S statistic is compared to the $U_{max} \equiv \max_{i} |Cdf_{actual} - Cdf_{hypothecis}|$ for all sample points. If the K-S statistic is no more than U_{max} , the hypothesis is accepted at the appropriate s-confidence level. The 'table gives the 2-sided statistic. (3) This K-S statistic can also be used to put a s-confidence band around a hypothesized Cdf.

14-6

ÄMCP 706-200

Procedure

Example

- 1. Prepare the data in a table.
- 2. Calculate the sample Cdf, and the difference of the Cols. 2 and 3.
- 3. Find the max {kifference}.
- 4. From Table 14-2, find the K-S statistic for several s-confidence levels.
- 1. See Table 14-3. Cols. 1 and 2.
- 2. See Table 14-3, Cols. 3 and 4.
- 3. max. diff. = 0.1708
- 4. s-Confidence level for N = 10 80% 0.323 90% 0.369 95% 0.409

5. Draw a conclusion.

The state of the states

and the second of the second of the second se

5. The maximum deviation is well within bounds.

TABLE 14-3

Downloaded from http://www.everyspec.com

DATA FOR EXAMPLE NO. 4

| order
number | random
number | sample
<u>Cdf</u> | difference |
|-----------------|------------------|----------------------|------------|
| 1 | 0.1080 | 0.1000 | 0.0090 |
| 2 | 0.3153 | 0.2000 | 0.1153 |
| 3 | 0.4708 | 0.3000 | 0.1708 |
| 4 | 0.4885 | 0.4000 | 0.0885 |
| 5 | 0.6018 | 0.5000 | 0.1018 |
| 6 | 0.6795 | 0.6000 | 0.0795 |
| 7 | 0.7548 | 0.7000 | 0.0548 |
| 8 | 0.8791 | 0.8000 | 0.0791 |
| 9 | 0.9032 | 0.9000 | 0.0032 |
| 10 | 0.9961 | 1.0000 | 0.0039 |

Note: For the uniform distribution, $Cdf \{x\} = x$; so column 2 is both x and $Cdf \{x\}$.

Example No. 5. Pick 8 random samples of 10 points each from the uniform distribution and plot their actual Cdf vs uniform Cdf. Draw the 90% K-S lines on the graph. See Fig. 14-1. Of the 8 samples, none crossed the 90% K-S lines, although on the average, 1 out of 10 samples will go outside the limits. The best linear fit to any of the lines is probably not one going through the origin with 45 deg slope (the population line). Certainly, all of the lines are quite crooked. Choosing a curved line to go through a set of points would be most inappropriate.

Downloaded from http://www.everyspec.com

See also the example in Part Four, par. 2-2.6.

Figure 14-1. Random Samples of 10 from the Uniform Distribution on [0, 1]

REFERENCE

1. L. H. Miller, "Table of Percentage Points of Kolmogorov Statistics", Journal of Amer. Statistical Assoc., Vol. 51, pp. 111-121 (1956).

CHAPTER 15

wnloaded from http://www.everyspec.com

TESTS FOR MONOTONIC FAILURE RATES

If it is known that a PrD has an increasing failure rate (IFR) or has a decreasing failure rate (DFR), then various other characteristics of these distributions can be proved. This is a field of current research.

Tests for IFR and DFR, and further references are given in Ref. 1 (Sec. 3.4.6). The arithmetic in applying these tests is tedious but straightforward. There are difficulties in interpretation:

(1) The conclusion applies only to the time interval within which data are taken. There is no guarantee that the conclusion applies to the *PrD* for very long times, but it is at very long times that the conclusion is of most interest.

(2) The alternate hypotheses involve only monotonic failure rates. Failure rates that increase then decrease (e.g., a 'ognormal distribution), or vice versa, are not considered.

(3) It is not clear why a reliability engineer would really want to know this information. Even if he were sure, for example, that a *PrD* had an IFR, he wouldn't know how fast it was increasing. Most of the theorems in the literature are more interesting to the reliability theorist than to reliability engineers.

Before using a test for monotonic failure rates, a statistician ought to be consulted to be sure that the test is not blindly applied and interpreted.

REFERENCE

1. W. Yurkowsky, Nonelectronic Reliability Notebook, March 1970, RADC-TR-69-458, AD-868 372.

CHAPTER 16

Downloaded from http://www.everysp

BAYESIAN STATISTICS

16-1 INTRODUCTION

This chapter discusses the various Bayesian techniques and their caveats and controversies; it does not give detailed information on their use. A statistician ought to be consulted. There is never any quarrel with the Bayes formula (also called Bayes theorem). It is strongly associated with the very definition of conditional probability.

There are 4 main categories of Bayesian activity (the categories are not necessarily mutually exclusive):

(1) Prior distribution is real and known (no controversy).

(2) Empirical Bayes. Prior distribution is real, but unknown.

(3) Subjective Probability. Probability is used as a measure of degree-of-beilef (d-of-b); the prior distribution is one of d-of-b before a particular test is run. This is quite controversial.

(4) Bayesian Decision Theory. This is very difficult to use in practice; so it rarely is used in anything but simple examples in textbooks and articles. If it were used often, it would be very controversial.

16-2 BAYES FORMULA

Suppose the set of possible values for a parameter is discrept and finite: A_i , $i = 1, \ldots, a$. Suppose the possible outcomes of an experiment are the set B_i , $j = 1, \ldots, b$. Then Bayes formula is

$$Pr\left\{A_{i} \mid B_{j}\right\} = c Pr\left\{B_{j} \mid A_{i}\right\} Pr\left\{A_{i}\right\} \qquad (16-1)$$

where c is a normalizing constant such that

$$\sum_{i} \Pr\{A_i | B_j\} = 1$$

 $\sum_{i \text{ implies the sum over all } i.$

If the set of possible values for the parameter is the continuous random variable x, then Bayes formula is

$$pdf \langle x | B_j \rangle = c Pr \langle B_j | x \rangle pdf \langle x \rangle$$
(16-2)

where c is a normalizing constant such that $\int_x pdf \{x|B_j\} dx = 1, \int_x \text{ implies the integral over all } x$.

If the possible outcomes of the experiment are the continuous random variable y, then Bayes formula is

$$pdf\{x \mid y\} = c pdf\{y \mid x\} pdf\{x\}$$
(16-3)

where c is a normalizing constant such that

$$\int_{x} pdf\{x \mid y\} dx = 1.$$

There is nothing controversial about any of these formulas, they are straightforward, well-known applications of probability theory. It is in their use that controversy arises.

16-3 INTERPRETATION OF PROBABILITY

Probability is a mathematical concept and

as such can be applied to anything that fits the constraints of the theory. The two main interpretations are

ownloaded from http://www.everyspec.cor

- (1) Relative frequency
- (2) Degree-of-belief.

Relative frequency is a straightforward concept and is the classical statistical approach. Degree-of-belief often is associated with Bayesian theory and is a controversial approach. The controversy stems about its subjective nature. A prudent person (by definition) will adjust his d-of-b to correspond to relative frequency where the relative frequency is known. For example, a person who is concerned about the outcomes of honest throws of honest dice would be wise to have his d-of-b the same as the well-known relative frequency for dice.

The proponents of d-of-b argue further that there are many situations where relative frequency is not appropriate since it will never be known. For example, it is d-of-b that one has concerning whether a pair of dice is honest or not. It is d-of-b that can be refined by actually throwing the dice and observing the outcomes.

Degree-of-belief before any tests are run ("prior" d-of-b) is subjective and not reproducible from person to person or even time to time for the same person. To opponents this is a disadvantage; to proponents it is an advantage because it recognizes a fact of life. In many complicated situations it is very difficult to know one's d-of-b. One may even believe mutually contradictory things, especially when the contradiction is not apparent.

Many engineers view the results of their own labors very optimistically. In order for them to use d-of-b fluitfully, they must impose a discipline upon themselves. Otherwise, they will commit the sins that opponents of d-of-b like to talk about. Degreeof-belief is useful, but unless one actively practices the necessary discipline, d-of-b must be avoided.

The discipline has the following steps:

(1) Write down the prior d-of-b.

(2) Run many hypothetical experiments. Calculate the new d-of-b after each hypothetical experiment.

(3) Analyze whether or not each new d-of-b seems reasonable in view of the hypothetical data.

(4) (a) If it does, repeat Steps 2 and 3 until virtually all possible outcomes have been hypothesized.

<u>ئ</u>ې

(b) If it does not, revise the prior d-of-b and go back to Step 2.

Example. Suppose an equipment is being designed and an engineer describes his prior d-of-b about its failure rate in a 1000-hr test.

AND AN AVAILABLE

Procedure

Downloaded from http://www.everyspec.com

1. Step 1, state the prior d-of-b.

2. Step 2, try several hypothetical experiments. Use Eq. 16-1 for calculations.

3. Analyze the results (Step 3).

4. Step 4b; try again.

5. Repeat Step 2 of this procedure.

6. Analyze the results.

Example

 See Table 16-1 rows 1 and 2 For row 1 we presume that the engineer has decided it is reasonable to distinguish between these three failure rates. In practice, one would probably use more; e.g., 10<sup>-1</sup>, 10<sup>-2</sup>, 10<sup>-3</sup>, 10<sup>-4</sup>, 10<sup>-5</sup>. For row 2 we presume that the engineer is rather optimistic about his handiwork, i.e., he is just positive it is almost perfect—a very common state of affairs, unfortunately.

2. Suppose 5 samples are put on test. Hypothesize 0 failures 1 failure

2 failures.

See rows 3, 4, and 5 of Table 16-1 for the calculations. We have presumed that the texts are of the pass-fail type. Thus the terms in the binomial distribution give the probability of the observed results for row 3.

3. For the 0 failure case, the new d-of-b's are reasonable. For the 1 failure case, it is not likely that anyone would still have a 13% d-of-b that the failure-rate was 10<sup>-5</sup> For the 2 failure case, the results are reasonable; all the d-of-b has shifted to the worst failure rate.

4. See Table 16-2, rows 1 and 2. This time, for row 2 the engineer is less blindly enthusiastic about his work, because he has seen the bad logical consequences of his former (Table 16-1) allocation of d-of-b about the failure rates.

5. 5 samples are put on test. Hypothesize 0 failure 1 failure 2 failures See rows 3, 4, and 5 of Table 16-2 for the calculations.

6. For 0 failures, the new d-of-b's are reasonable. For 1 failure, the new d-of-b in a 10<sup>-3</sup> failure rate is lower than before, but still seems too high.

AMCP 706-200 -

7. Try again.

8. Repeat Step 2 of this procedure.

9. Analyze the results.

The example will not be pursued further, but in practice, the simulation ought to be nuch more extensive. If one is not prepared to perform extensive simulation on his prior degree-of-belief, he ought to avoid subjective Bayesian analysis altogether.

16-4 PRIOR DISTRIBUTION IS REAL AND KNOWN

This case presents no difficulties, it often is used as an example in textbooks to demonstrate apparent paradoxes about probabilities. It is probably rare that the prior distribution is known, although some work has been done on the PrD of actual reliability vs predicted reliability for some military systems. In these applications the validity of the prior distribution can be questioned as far as its future utility is concerned; but this is no different than in many applications of probability. A statistician ought to be consulted. The blind application of formulas can be very misleading. 7. See Table 16-3, rows 1 and 2. This time, for row 2 the engineer is downright humble about his work, again because he has seen the bad logical consequences of his former (Tables 16-1 and 16-2) allocations of d-of-b about the failure rates.

8. See Table 16-3, rows 3 and 4.

Downloaded from http://www.everyspec.com

9. For 0 failures, the new d-of-b's are reasonable. For 1 failure, the new d-of-b's are more reasonable than they were. Perhaps one could live with them. These methods are the way a rational (in the Bayesian sense) person converts prior d-of-b and the test results into a new d-of-b. One cannot go back and change the prior d-of-h after seeing the real actual data. That is vihy extensive simulation is so necessary. The exact same prior d-of-b that is used to convert the good test results also must be used to convert the bad ones. Anyone who suggests differently is, at best, ill informed. Unfortunately, the Bayesian reliability literature abounds with those bad suggestions about changing the prior d-of-b after seeing the actual data.

16-5 EMPIRICAL BAYES

The prior distribution is presumed to be real, but unknown. As samples are taken, they are presumed to illustrate that real prior distribution. Since the real Cdf of the prior distribution is only coarsely defined by the data (i.e., by the sample Cdf) a smoothing function is employed to estimate the real prior Cdf. Once this real prior Cdf has been estimated, it is used with the sample data in the same way as a real, known Cdf would be.

A statistician ought to be consulted. The choice of a smoothing function is an art, not a science. One may wish to test the hypothesis that the samples do come from PrD's with different parameters. A great deal of engineering and statistical judgment is necessary, and it ought to be made as explicit as possible.

16-6 BAYESIAN DECISION THEORY

The basic tenet is that eventually one wants

16-4

AMCP-706-200

200

TABLE 16-1

Downloaded from http://www.everyspec.com

DATA AND RESULTS FCR EXAMPLE - TRIAL NO. 1

| 1. | a. failure-rate, per 1000 hr | 10-1 | 10 <sup>-3</sup> | 10-5 |
|----|---|-------------------------|-------------------------|--------------------------|
| | b. R , % | 9.52 | 0.100 | 0.00100 |
| 2. | prior d-oī-b, % | 0.1 | 0.1 | 99. 6 |
| 3. | a. prob. of outcome: | | | |
| | 0 failures in 5 tries, R <sup>5</sup> | 0.607 | 0.995 | 1.000 |
| | b. product of rows 2 and 3a | 6.97 X 10 <sup>-4</sup> | 9.95 X 10 <sup>-4</sup> | 0.998 |
| | c. new d-of-b, % | 0.06 | 0.10 | 99.84 |
| 4. | a. prob. of outcome: | | | |
| | 1 failure in 5 tries, 5 R^2 \overline{R} | 0.319 | 4.98 × 10 <sup>-3</sup> | 5.00 × 10 <sup>-5</sup> |
| | b. product of rows 2 and 4a | 3.19× 10 <sup>-4</sup> | 4.98 × 106 | 4.99 X 10 <sup>-5</sup> |
| | c. new d-of-b, % | 85.32 | 1.33 | 13.35 |
| 5. | a. prob. of outcome: | | | |
| | 2 failures in 5 tries; 10R <sup>3</sup> R <sup>-2</sup> | 6.71 X 10 <sup>-2</sup> | 9.96 × 10 <sup>-6</sup> | 1.00 X 10 <sup>-9</sup> |
| | b. product of rows 2 and 5a | 8.71 X 10 <sup>-5</sup> | 9.96 × 10 <sup>-9</sup> | 9.98 X 10 <sup>-10</sup> |
| | c. new d-of-5, % | 99,9,84 | 0.0148 | 0.0015 |

Notation:

d-of-b = degree-of-belief

<u>R</u> = s-reliability, $R = \exp(-\lambda t)$, λ is failure rate, t is 1000 hr for the test

 $\overline{R} = 1 - R$

Notes:

- 1. All calculations are made and kept to 10 significant figures, even though they are all rounded off for recording in the table
- 2. The sum of the d-of-b's is not always exactly 100%, due to rounding errors from Note 1.

TABLE 16-2

DATA AND RESULTS FOR EXAMPLE - TRIAL NO. 2

| 1. | a, failure rate, per 1000 hr | 10 <sup>-1</sup> | 10 <sup>-3</sup> | 10 <sup>-5</sup> |
|----|--|-------------------------|-------------------------|--------------------------|
| | b, <i>R</i> , % | 9.52 | 0.100 | 0.00100 |
| 2. | prior d-of-b, % | 0.4 | 0.6 | 99.0 |
| 3. | a. prob. of outcome: | | | |
| | O failures in 5 tries, \overline{R}^5 | 0.607 | 0.995 | 1.000 |
| | b. product of rows 2 and 3a | 2.43 × 10 <sup>-3</sup> | 5.97 X 10 <sup>-3</sup> | 0.990 |
| | c. new d-of-b, % | 0.24 | 0.60 | 99.16 |
| 4. | a. prob. of outcome: | | | |
| | 1 failure in 5 tries, 5R <sup>4</sup> R | 0.319 | 4.98 X 10 <sup>-3</sup> | 5.00 X 10 <sup>-5</sup> |
| | b. product of rows 2 and 4a | 1.28 X 10 <sup>-3</sup> | 2.99 × 10 <sup>-5</sup> | 4.95 X 10 <sup>-5</sup> |
| | c. new d-of-b, % | 94.14 | 2.20 | 3.65 |
| 5, | a. prob. of outcome: | | | |
| | 2 failures in 5 tries, $10R^3\overline{R}^2$ | 6.71 X 10 <sup>-2</sup> | 9.96 X 10 <sup>-6</sup> | -1.00入10 <sup>-9</sup> |
| | b. product of rows 2 and 5a | 2.68 X 10 <sup>-4</sup> | 5.98 X 10 <sup>-8</sup> | 9.90 X 10 <sup>-10</sup> |
| | c. new d-of-b, % | 99.977 | 0.022 | 0.0004 |

Notation & Notes: Same as in Table 16-1

TABLE 16-3

Downloaded from http://www.everyspec.com

DATA AND RESULTS FOR EXAMPLE - TRIAL NO. 3

| 1. | a. failure rate; per 1000 hr | 10 <sup>-1</sup> | 10 <sup>-3</sup> | 10~5 |
|----|--|-------------------------|-------------------------|-------------------------|
| | b. R, % | 9.52 | 0.100 | 0.00100 |
| 2. | prior d-of-b, % | 1 | 1 | `98 |
| 3. | a. prob. of outcome: | | | |
| | 0 failures in 5 tries, R <sup>5</sup> | 0.607 | 0.995 | 1.000 |
| | b. product of rows 2 and 3a | 6.07 X 10 <sup>-3</sup> | 9.95 X 10 <sup>-3</sup> | 0.980 |
| | c. new d-of-b, % | 0.61 | 1.00 | 98.39 |
| 4. | a. prob. of outcome: | | | |
| | 1 failure in 5 tries, 5 <i>R<sup>4</sup>R</i> | 0.319 | 4.98 × 10 <sup>-3</sup> | 5.00 X 10 <sup>-5</sup> |
| | b. product of rows 2 and 4a | 3.19 X 10 <sup>-3</sup> | 4.98 X 10 <sup>-5</sup> | 4.90 X 10 <sup>-5</sup> |
| | c. new d-of-b, % | 97.00 | 1,51 | 1.49 |
| 5. | a. prob. of outcome: | | | |
| | 2 failures in 5 tries, $10R^{3}\overline{R}^{2}$ | 6.71 X 10 <sup>-2</sup> | 9.96 X 10 <sup>-6</sup> | 1.00 X 10 <sup>-9</sup> |
| | b. product of rows 2 and 5a | 6.71 X 10 <sup>-4</sup> | 9,96 X 10 <sup>-8</sup> | 9,80 X 10-10 |
| | c. new d-of-b, % | 99.985 | 0.0148 | 0.00015 |

Notation & Notes: Same as in Table 16-1

16-6.

AMCP.706-200

to make a decision that is based on the experimental results. Those results are not of interest in themselves; so why analyze them in detail. The procedure is to list the possible states of nature (e.g., the 3 failure rates in Table 16-1). Then the loss or gain involved in choosing each state when some state is true is estimated. Then a criterion for good decisions is hypothesized (e.g., maximize the worst possible loss, or maximize the s-expected value) and the decision is chosen (given the experimental data) according to the criterion for a good decision.

The argument against this whole process is that there are too many arbitrary assumptions that get lost in the shuffle. The final result appears quite emphatic, but the arbitrariness is hidden from view (perhaps unintentionally) and there is no measure of the uncertainties involved. It is argued that except for the most simple-minded situations of the kind used in textbook examples, applying Bayesian decision theory is impossible.

The arguments for Bayesian decision theory are that it gets all the assumptions out where they can be viewed. The value of more information can be calculated, and a variation analysis can be performed to find the critical variables in the decision. Far from hiding things, it makes everything explicit. The complications merely reflect reality.

One certainly ought not to attempt to use Bayesian decision theory without the services of a very competent statistician (who understands it) and a very competent engineer (who understands it). The odds against its being really productive, rather than pointless or misleading are quite high. So unless there are lots of resources, leave it alone.

16-7 SUBJECTIVE PROBABILITY

The 2 main approaches are:

(1) Use a discrete PrD for the random

variable about which degree-of-belief statements are to be made.

Downloaded from http://www.everyspec.com

(2) Use the conjugate prior distribution (continuous). It transforms the simpler situations into very straightforward calculations. For example, for the constant failure rate case, choosing a prior distribution is equivalent to choosing a prior test time and prior number of failures. The pair of sample data (failures, test time) are appropriately added to the prior pair to give the new pair, which will represent the new degree-of-belief. The binomial situation, is similar, except that totalnumber-tested replaces test-time.

The conjugate failure distribution method ought to be used with caution. The family of prior distributions is quite rich, but it is difficult for an engineer to quantify his information in the necessary way. As mentioned in par. 16-3, extensive simulation of experimental outcomes is necessary. It is quite easy, if no simulation is performed, to make seemingly realistic assumptions about one's prior beliefs, which turn out to be grossly misleading.

The discrete prior distribution is more straightforward, although tedious to calculate. It has many advantages in terms of the visibility of the results. In cases where there are double peaks in the new d-of-b distribution, the engineer is alerted to the fact that choosing a single number for his "best" belief might be misleading.

If either of these approaches is used, a statistician ought to be consulted. The arithmetic is easy enough to do (although sometimes tedious) but the results may be difficult to interpret. Merely because the calculations can be made does not mean they ought to be made.

16-8 RECOMMENDATIONS

Engineers have a great deal of prior

knowledge. If they did not, no production line would ever work. But engineers do not design, predict, or produce perfectly. A large part of their training is in the directions to try for improvement. Prediction techniques that somehow use an engineer's prior knowledge, without being overly optimistic (or even blindly optimistic), are needed. Under some

Downloaded from http://www.everyspec.com

conditions, and with help from competent statisticians, one of the Bayesian techniques might be fruitful. This is an area of research, not an area for blind calculations.

Cookbook formulas and procedures have been omitted from this chapter on purpose. They are too easy to misuse.

CHAPTER 17

SAMPLING PLANS

the MIL-STD's.

Downloaded from http://www.everyspec.com

MIL-STD-781 and MIL-STD-105 contain sampling plans that are useful in reliability and quality control. They are not repeated here. Before any sampling plan is used, its operating characteristics ought to be investigated rather thoroughly. If the sample size is not fixed, then the average sample-size and maximum sample-size characterestics ought to be investigated. Much of this is already done in

There is rarely a need to invent new sampling plans. One doesn't really know exactly what operating characteristic he is willing to settle for, and a great deal of arbitrariness exists—enough so that it will usually encompass an already analyzed plan.

CHAPTER 18

MISCELLANEOUS DESIGN AIDS

Several references have collected many reliability-mathematics design-aids. They are not reprinted here since each requires extensive explanation of its procedures and limitations. Some of the aids become obsolete as the techniques and materiel to which they refer are replaced by newer technologies and analyses. Refs. 1, 2, and 3 are good sources of these aids.

REFERENCES

- 1. Handbook of Reliability Engineering, NAVWEPS 00-65-502, Bureau of Naval Weapons, F June 1964.
- 2. Reliability and Mointainability Handbook for the US Weather Bureau, Publ.

530-01-1-762, ARINC Research Corp., Annapolis, MD, April 1967.

3. NAVSHIPS 94501. BuShips Reliability Design Handbook, Fleet Electronics Effectiveness Branch, BuShips, 28 February 1955.

18-1/18-2

В

Bayesian statistics, 16-1 Beta distribution, 10-1, 13-2 Binomial distribution, 3-1, 13-2

С

Chi-square distribution, 6-2, 6-3, 14-1 Chi-square/nu distribution, 6-3 s confidence, 12-1 continuous variable, 12-3 discrete variable, 12-5, 12-7 See also: Under each probability distribution

D

Decision theory, 16-4 Definitions See: The desired word in Chapter 1, for probability distributions. See: The name of the probability distribution Discrete probability distributions, 3-1, 4-1

E

Empirical Bayes, 16-4 Exponential distribution, 7-1

F

F-distribution, 6-12 Fisher-Snedecor F-distribution, 6-12

G

Gamma distribution, 11-1 Gaussian distribution, 5-1 Glossary, 1-1 Goodness-of-fit tests, 14-1

Ι

Incomplete beta function, 10-1

Incomplete gamma function, 11-1

Downloaded from http://www.everyspec.com

Κ

Kolmogorov-Smirnov test, 13-1, 14-5

L

Lognormal distribution, 9-1

Ν

Names (probability distributions) See: Under each name of a probability distribution, 2-2 s-normal distribution, 5-1

Ρ

Plotting positions, 13-1 Poisson distribution, 4-1, 7-2 Probability distribution, *See:* Under the name of the probability distribution

R

Randomized s-confidence intervals, 12-7

s-statistic, 5-1 Student's t-distribution, 6-7

Т

t-distribution, 6-7 Tables, See: Under each probability distribution

W

Weibull distribution, 8-1

(AMCRD-TV)

FOR THE COMMANDER:

Downloaded from http://www.everyspec.com

OFFICIAL: nson G. JC HAROLD

LTC, GS Adjutant General

DISTRIBUTION: Special AMCP 706-200

ROBERT L. KIRWAN

Brigadier General, USA Chief of Staff

\*U.S. GOVERNMENT PRINTING OFFICE: 1576-603-770/310

ENGINEERING DESIGN HANDBOCKS

Avoilable to DA activition from Latiorkermy Army Doper, ATTN: ANCLE-AID, Chamberaburg, PJ 17201. All other requestara-DOD, Nevy, air Porce, Marine Corpe, memilitary Covernment agencies, contractore, private industry, individuals, universities, and others-must purchase Handbacks from National Technical Information Service, Department of Commerce, Springfield, VA. 22131. See Profess for further details and AUC policy regarding requisitioning of classified decements.

| HC 104- | Lile |
|---------------|--|
| 100 | Toolgo Guidence for Productbility |
| 104 | Value Englacering
Elements of Armonent Engineering, Part One. |
| 107 | Sources of Energy Elements Balanceins Balt Sun |
| 104 | Balliotics |
| | Zapon Systems and Composente |
| 179 | Tables of the Cumulative Simental
Probabilities |
| 110 | Reperimental Statist(s, Section), Basic
Crucepte and Analysis of Nessurement Data |
| 111 | Experimental Statistics, Section 2, Analysis |
| 112 | Reperimental Statistics, Section 3, Planaing |
| 113 | Ruperimental Statistics, Section 4, Special |
| 114 | Reperimental Statiutics, Section 3, Tables |
| 115 | Environmental Series, Part One - 3 sie
Environmental Concepta |
| 110 | RevironContal Series, Sert Two, L_tural
Environmental Pactors |
| 117 | Ravironmental Series, Part Thive, Induced
Ravironmental Pactors |
| 114 | Environmental Series, Part Four, Life Cycle |
| 119 | Sovironmental Jeries, Part Five, Glossary |
| 120 | Criteria fer Envisonmental Control of |
| 121 | Packaging and Pack Inglacering |
| 123 | Nyéroulic Fluids
Reliable Military Electronics |
| 123
127 | Electric.) Wire and Cable
Infrared Hilitary Jystums, Part One |
| 128(5) | Infined Hiltery Systems, Part Two (3)
Dealers for Air Transet, and Airdees of |
| 112 | Materiel
Materiel |
| iñ | Maintainability Ingineering Theory and |
| 134 | Haistalasbility Guide (or Design |
| 135 + | *Inventione, Patents, and Belated Matters
*Servoxechesisms, Section 1, Theory |
| 137 + | *Secremechinisms, Section 2, Measurement
and Signal Converters |
| 134 * | *Servemechanisme, Section 3, Amplification
*Servemechanisme, Section 4, Prest Elements |
| 140 | and System Design
Trajectories, Differential affects, and |
| 156 | Dets for Projectiles
Teterior bellistics of Gass |
| 150 | Pundementals of Ballistic Impart typemics, |
| 159(5) | Pundamontale of Bellictic Impect Dynamics, |
| 160(C) | Elemente el Terminal Sellistics, Part One, |
| 161(C) | Elements of Terminal Ballistics, Part Two, |
| 141/000 | ing Targets (U) |
| 143(4) | Application to Hissile and Space Targats (U) |
| 165 | Liquid-Filled Projectile Design |
| 170(8)
175 | Armor and its Applications (U)
Solid Propellants, Part One |
| 176 - | Holid Propeliants, Part Two
Properties of Emplosives of Military |
| 178 | Taterest
Preparties of Explosives of Military |
| 179 | Interest, Section 2 (Replaced by -177)
Evaluative Trains |
| 180 | Priociples of Explosive Behavior |
| 182(SRD) | Explosions in Air, Part Two (U) |
| 184 | Application Military Part Sun, Indery and |
| 100 | Procedures and Glossery |
| 147 | Alitary Pyrotechnics, Fart Three, Properties
of Materials Used is Pyr technic Compositions |
| 194 | HilltAry Pyrotechnics, Part Your, Design of
A-socition for Pyrotechnic Effects |
| 189 | Hilitary Pyrotechnics, Part Pive, Bibliography
Army Mauson System Analysis |
| 191 | System Analysis and Cost-Effectiveness
Computer Aided Losiss of Mechanical Systems. |
| 191 | Pert One
Computer Aided Design of Machanical Systems |
| 195 | Part Two |
| | Introduction, dickground, and Planning |
| 196 | Development Cuide for Reliability, Part Ten. |
| 197 | Development Guide for Bellability, Part Three, |
| 198 | Beliability Prediction
Development Guide for Beliability, Part Four |
| 199 | Reliability Measurement
"Developean Guide for Reliability. Part viva |
| 200 | Contracting for Reliability
Development Guide for Beltability. Part Sin. |
| 201 | Mathematical Appendix and Glossary |
| 303 | Design Restances And And Based Barding |
| 20) | Helicopter Bagineering, Fort Tro, Detail Dedign
Helicopter Bagineering, Fort Three, Qualification |
| 204 | Asevrance
Helicopter Performance Texting |

-

\*\*

| No.
ANCE 706- | <u>Title</u> |
|------------------|---|
| 205 | Timing Systeme and Components |
| 211(C) | ruses, Preximity, Electrical, Part One (U) |
| 212(8) | Puses, Proximity, Electrical, Part Two (U) |
| 214(8) | Fussa, Prezimity, Electrical, Part Four (U) |
| 215(0) | Puses, Freximity, Electrical, Part Five (U)
Nardening Voopen Systeme Agains, RF Energy |
| 237 | *Nortat Verson Systems |
| 234 | *Semil Arms Meapon Systems |
| 249(0)
242 | Grenzees (U)
Design for Control of Projectile flight Cher- |
| 244 | Actoriacica (Replaces -206) |
| | General, with Table of Contents, Closesty, |
| 245(C) | And Inter for Series .
Ammunition, Smythom 2, Design for Terminel |
| 224 | Effects (U)
Augustition, Section 3, Dealers for Control of |
| | Flight Characteristics (Replaced by -242) |
| 248 | Admunition, Section 5, Inspection Asparts of |
| 269 | Art Hery Ameritian Design
Ameritian, Section 6, Menufacture of Netallic |
| | Components of Artillery Ammunition |
| 259 | Senseral
Hutelo Dovices |
| 252 | **Gun Tubes
*Breach Mechanism Dealen |
| 255 | Spectral Cheracteristics of Mussle Flash |
| 270 | Aucomette Weepone
Propellant Actuated Device, |
| 280 | Design of Aerodysamically Stabilized Pree
Rockets |
| 281(580) | Ve von System Effectiveness (U) |
| 284 | Structures |
| 290(C)
291 | VarheadsGeneral (U)
+Surface-to-Air Nissiles, Part Ome, System |
| | Integration |
| *** | Control |
| 293
294(C) | +Surface-to-Air Missiles, Part Taise, Computers
+Surface-to-Air Missiles, Part Pour, Missile |
| 205(0) | Armament (U)
+Surfare-to-Air Higailes, Part Five, Counter- |
| | measures (U) |
| 4.70 | and Power Sources |
| _297(C) | +Surface-to-Air Hissiles, Part Seven, Sampla
Problem (0) |
| 300 | Fabric Design |
| 315 | Short Fiber Plastic Base Composites |
| 329 | Fire Control SystemsConeral
Fire Control Computing Systems |
| 331
335(SRD) | Compensating glaments
*Dealer Testmers' Husiner Effects Manual (DEFEC). |
| | Volume I, Musitions and Weapon Systems (U) |
| 234(230) | Volume II, Electronic Systeme and Logistical |
| 337(SRD) | Systems (U)
*Design Ingineers' Nuclear Effects Manual (DMNM), |
| 118(180) | Volume III, Nuclear Environment (U)
Monsion Environment (U) |
| | Volume IV, Buclear Effects (U) |
| 343 | Corriges and HountsCeneral
Cridies |
| 342 | Recoil Systems |
| 344 | Bottom Cerrieges |
| 346 | Equilibrators
Elevation Hecheolous |
| 347 | Traversing Mechanisms
Whenlad Amhthiaus |
| 355 | The Automotive Assembly |
| 351 | Automotive Bodies and Bulls |
| 360
361- | Wilitary Vehicle Electrical Systems
Hilitary Vehicle Power Plant Cooling |
| 410 | *Electromemetic Compatibility (DEC) |
| •11(3/ | Electro-Optical Systems (Except Guided Hissiles) |
| | to Electronic Variare, Part One, Introduction
and General Approach to Electronic Warfare |
| A12/C) | Yuinershillty (0) |
| | Electro-Optical Systeme (Encept Guided Hissilas) |
| | Vulneratility of Tactical Communications (U) |
| 413(5) | *Vulnerability of Communication-Electronic and
Flectro-Optical Systems (Excest Guided Missilge) |
| | to Electronic Merfere, Part Three, Electronic |
| | Surveillance and Target Ac |
| 414(\$) | =vulnerability of Communication-Electronic and
Riectro-Optical Systems (Except Guided Missiles) |
| | to Electronic Variare, Part Pour, Electronic
Marfare Yulmerability of Avientes (D) |
| 415(\$) | "Yuinerability of Communication-Electronic and |
| | to Electronic Warfare, Part Five, Optical/Sloetronic |
| 416(8) | Warfare Vulnerability of Electro-Optic Systems (V)
Wulnerability of Communication-Electronic and |
| | Electro-Optical Systeme (Except Guided Missiles)
to Electronic Marfara, wart Six, Electronic Marfara |
| | Vulmerability of Satellite Communications (U) |
| 470 | Matric Conversion Guide for Military Applications |